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SUMMARY

This thesis d.eals r,¡ith sevenal problems fnom the theor:y of tt¿o

dimensional inhomogeneous diophantine aPProximation. The opening

chapten intnoduces the problems considerec by tracing their history,

and the development of so¡ne closely nelated guestions.

The problems ane attacked by the ttdivided cell methodtr, which

was devised by Bannes and Swinnerton-Dyer [t], l2f. If f(x,y) is an

indefinite binany quadratic for:m, then there corresponds to each forst

f, and neal point P = P(xoryo) an inhoupgeneous iatticeo on g:rid.

By considening a subset of these gnid points, it is possible to

evaluate centain inhomogeneous mininra of f. The geometny of the gníd

gives rise to a semi-regulan continued fnaction expansion of the noots

of the fonn f. Thís appnoach is expoundeo in Chapters II and III

of the thesis.

one of the main problens ccnsidered is a hybrid of the two

classical nesults of Hunwitz and. Minkcr¡ski on the minima of indefinite

binary quadnatic fo:r¡ûs. Suppose f(x,y) is the fonm

f(x,y) = (sx + ßY)(1x + ôY),

r,¡ith detezminant [ = loô - ßVl. Then, for any rea], non-zero

constant: rìr wê define

lf (f ;n) = inf ilax + ßY)(rx + ôY + n) [.
xry integral

I 0r0

Chapte:: ItJ pnovides a systematic method for the evaluation of the

function M(f;n), fo:: forrns that do not nepresent zeno. The nethod

is a rnodification of the Civided ce1l pnocedure described in the
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previous chapter.

This method enables us to obtain the best possible constant

fon the mixed form p:robJ-em. Let

lç= I - 732055
(8238730 e + 392361 0- 164s81 0 + 7838

= 0.23425...

. 1q7+m Lo42so+2Ñvtnere 0=--6- anc s=.-T6õ3--.
Then, for aII forms that do not repnesent zero, and all non-zero nt

I't(f ;n) S Ák,

whene equality hclds onJ-y fon an equivalenee class of fonms. Chapter V

is devcted to the pnoof of the result.

One immediately wondens whethen tllis constant k is an isolated

value. A eomplete answer: to this question is pnovided by the follovr-

i-ng theo:rem, which constitutes Chapter VI. Suppose that kr is such

that 0 S kt 4 kr then the:re exist uncountably many forrns, each fon

v¡hich the::e is a cornesponding ¡, such that

I'1(f ;n) = Ak'.

In Chapter VII v¡e define a netr functíon, Mr(f), which is an

inhomogeneous minirnum of f, undet- certain nestrictive conditions.

M*(f) is connectec vrith thc function

k+{ô,o¡ = tin ínf xlô" * y + al,
x++-

fon ô ir:rational and o real, which was examined in detail by Cassels

[3], and Descombes [4]. ![e show, together r'¡ith sevenal. othen nesults,

27^that !!*(f ) s ffi , r'rhich is a best possible inequality.
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Let ¡r+(ö) = Süp k+(ó,q),
0

r¡here a is such that $x + y + q, does not rePlPesent zero in íntegells x'y.
fl+t

Then in Chapter VITI rve evaluate k+(+), fon atl Ó equivalent to
2

Ìle show that
-+16+ t.r e6- SK I-TJ =-T-

= 0.1708... r

which impnoves the upPer bound of 0'2II4...

Khintchiner s absolute constant.

given by Godwin [5], f,or"
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CHAPTER I

INÍ'TRODUCTION AND HISTORTCAT REVIEII OF SOME TTTO DIMENSIONÂL

FROBLEMS IN INHOMOGE}TEOUS DTOPHANTINE APPROXII'IATION

I The inhomogeneous aÞproxina tíon problems

Ifoisanarbitnanyirnationalnurnberr,thehonogeneous

appnoximation p::oblem asks the question: how closely can 0 be

app:loximated' by national numbens, in tenns of the Square of their

denominatons? It seeks values of h for r¡hich the fo]Lowing ineqr:ality

is tnue fo:r infinitely many integer pairs x,y'

lo-|l .þ,
This is equÍvalent to asking the same question of

lim inf I inf lx(Qx - Y)l ] s ir' (1'1)

lxl *- Y

!{e may simplify this expression by using the perrmanent notation

tlxll to denote the distance fnom x to the nearest integen' tle may then

replacethe lefthand side of (1'f) by the function

h(ö) = rim Ínf lxl.[6x[. (].2)
l"l *-

Dirichlet [32] st¡oweil that h(0) is bounded by I fon all

irnational Q, and Hurtuitz [gz] later showed that the suPremum of values

taken by h(0) over alt innationat O itrå, where equality occurs

wheneven $ is eo¡ivalent (in a sense discussed later) to the numben

rs t t . If we exclude this equivalence class of innationals, then
2'

for all other f'
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h(ö) s ti,
It r.¡as shown by Mar¡kov [46], [45], [10], that h(ô) can take

only a sequence of discrete values gneater than 1/3, and that thene

ane uncountabty many S for r'rhich h(0) = 1/3' For each vafue in

this sesuence å , ;a, , È, , tï# there is an

í
equivalence class of { fon whicb h(ó) takes this value. This prob}em

is closefy connected to a sinilan problem for homogeneous fo::ms

(discussed in 52).

Par.t of this thesis wil-l- be concerned with an inhomogeneous

analogue of this probì-em. The ínløytlogenQtuÂ app,Loxfuna.Íion p,LobLul

nay be approached fnom the following geonretric ideas.

Suppose C is the circle with unit circumfe:rence with sorne

point O on it, taken as onigin. Consider all those points on the

circumference v¡hose ar:c-lengths from O are I O" I , whene x takes all

integr:a} values. Denote this set of points by S. Let B be the point

u¡hose anc-distance fnom 0 is Ê, where the positive sense is taken to

be anticlockwise. Then the inhomogeneous approximation pnoblem is

concerned with the manner in which the points of S accumul-ate about

the point B. If B is the point 0, then vre have again the homogeneous

problem.

tüe rsil1 formulate this pnobJ-eur algebraically by defining the

function

k(O,u) = lim inf lxl.[Ox + aû, (I.3)
lxl *-



a

whene Q is inrational, 0 ï'ealr and x integral. It may be assurned

that [$x + a0 is neven zer.'o) else the pnoblem neverts to the homo-

geneous type. Various mathematicians (Knonecker, Herrnite fon exanple)

gave bounds on the function k($ro), and at the tur:n of the last

century Minkowski [+7] proved that for all $, o of the above tyPe'

k(O,a) s i. (1'4)

Grace [Sl] then showed that this nesult vras best possible in the

sense that, fon each e > 0, he constnucted an inrational Q such that

k(þ,4)' -+ .4+Ê
In fact it has been shown by Moninoto [50], Bannes [Z], that for each d

with o s d s 14, there exist uncountably many pains $,4 such that

k(,i,,c) = d'

Hantman [33], Descornbes [23], have investigated this problen

in the case when a is restricted to be rational, sêY s = -tls. The

latte:: author has shown that this is in faet, equivalent to the

pnoblern (1.1) with the incl-usion of the additional conditions,

x i t(mod s), y = O(mod s).

This suggests the seemÍngly more general problen of evaluating (I.I)'

under the conditions

¡ç = a(mod s), y = b(mod s),

where (a,b) = 1. But it is shown (see Théorène 1, [23]) that, in a

sense, this neduces to the case a = t, b = 0 above.

Refenring to the gecrnetr.ical interpnetation of the genenal

problen, one would not expect the same llesults to follow through if

the set S were ¡:estricted to those points cornesPondíng to positive



integers x.

function

This is the case, and it leads to an exar¡ination of the

k+(O,ct) = lim inf x.00x + all.

4

(1. s)
x++6

We will catl this the po*i.tive inhonagutetuÃ ary¡þxinaÍi,on WbLúL

It rnay again be supposed that [Ox + o0 I O for any integen x. (f.6)

Ile now seek values of c, sueh that for all such $rc'

t+(o,a) < c. (1-7)

In 1926 Khintchine [aa] proved that (1.7) was valid for

" =Ë , equarity holding for f = 
ß 

l', o = 0; but this is onry the

finst step in Mankovts homogeneous chain, alneady discussed, and so

we will excLude this case. CoIe [tS] proved that under the condition
?

(1.6), the inequality (I.7) is valid with c = TT!716 0'409"'

The best possible constant " = #, ùtas found by Cassels t111, who

const¡'ueted a¡l ingenious algo::ithm, involving the or:dinany continued

fraction expansion of 0, for the evaluation of k+(Qrd). Once this

constant had been determined, it became a question of whethe¡r it was

isolated or not. Descornbes [24], using thís algo:rithm, sho¡¿ed that

there existed only a sequence of discnete va.Lues of k+(çrc), greater

than L/,1 = 0.352... This is an analogous nesu.Lt to that of Markov.

Vera Sôs (Tr:¡an) [61] showed that Casselrs anithmetic algonithn can be

obtained frorn the geometnic procedu::e alneady considened.

At the other end of the nange, Barnes [7] has shoYm that fon

eveny d lrith O S d < %, thene are uncountabì.y rnany paÍns $, cr fo:r

r¡hich
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k+(oro) = d'

verry little is known of the values taken by this function in the range

(%,I/t).

Let us define the following functions of Ô;

k(ô) = sup k(ô,a), k+(O) = suP k+(o,o), (1'8)
OC

whene the suprema alle taken oven alI non-zero a satisfying the requirenent

(1.6). ÌIe have then, for all- inr^ational {'

k(o)s+, t+(o) =#.
The fo1Ìowing surprising theorem Ì¡as proved by Khintchine [43].

THEÏREII 1.1. Thue uçUtá a. Wçi.live, ab¡,ohtlø einÁÍottt õ, tue-h thßl',

{on anq nesl nntbe)L þ, thUe QxiÁfÁ ai Lea,tt one W[nbe)L a, (on wlvLclt

xlqx+U+ol to, (r'9)

{on dl}. inÍe4aø x, g ut&tL )( > 0-

Morimcto [50], Davenport [r21, Prasad [55], and Godv¡in [30]'

using methods differing fnom those of Khintchiner wene able to determine

successively better estimates of possible values taken by ô.

Define, for x integral'

c( q,c) = inf lx | .0Ox + cll , (r' 10)
x

"*(o,o) = inf x.[ox + a0, (1.[)
x>0

and then

c(6) = sup c(q,c), (r'12)
o

"*(o) = sup "*(o,o), 
(1']3)

c

whene the supnero.o" taken over non-zero cr under the eondition (t.6)'
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Now qlearly fron (1.8),

c(ô) s k(0), "*(o) < t+(o). (r'r4)

Define the follor¡ing constants t whene the inf ína ërr¡e taken over all

irnational {;

c = inf c(o), k = inf k(0),
00

ct = inf .*(O), kt = inf k+(ô).
00

Then, after Godwin [30] and (r.t+¡'

o.l4o? . O3å. .+ 5 k+,

c* . 0.2114...

)
Ì
]
Ì
)

(1.Is)

(r.16)
and

Ì
)
Ì

As Davenpo::t (p. 79, []91) noted, a study of Khintchiners

original proof of Theorem 1.I reveals that the nesult also holds for

negative x, implying that c > 0. cassels [I0] has shown that

1l
Iilscs17'

The ea:rlien nesults, proving the existence of some of these

constants, while of interest' !¡ere often of little use in evaluating

them, on even for obtaining bounds. The basis fo:r proof of the more

recent results is usually some form of continued fraction development'

Mone often ordínary continued fnactions were employed, but fo:r some

pnoblems the Hg:cwitz [36] algorithrn had certain advantages [t7J' [55].

In pants of this thesis we will use a more genenal type of semi-regulan

continued fraction to attack tt¿o of these pnoblens.

The inhomoqeneous form2

Suppose f(xry) is a binary quadratic form given by
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f(xry) = ax2 + b><y + cy2. (I.I7)

If D = b2 - 4ac > 0, then f is caLled indefinite, a¡¡d we will assume

this to be the case th:roughout this thesÍs. We will also suppose that

f does not repnesent zero; that is, thene do not exist integens

(xt,y') I (0r0), for which f(xt rÏ') = 0.

Tl,;re hønogøneþu/s donm ptob.t-em is concenned with the infimr.rn of

values taken by f(xry), when (x,y) is an integnal point' r¡ot the origin.

Let

m(f ) = inf lr{x,y) l. (1.18)
(x,Y )l( o 

'o 
)

integral

n(f ) is caÌled the lumogulSßtJ't mLnÁ'rltvtt of the forrn f .

Markov showed that m(f)/^, where A = 6, takes ooly a corrnta.ble

nunbe:r of discnete values exceeding L/3, and that thene ane uncountably

many f, for which P = å. This sequence is identical with that of

the homogeneous approxination probfen in 5I. The con:responding forrns

ane called Markov forms.

tÍe wiII now define M(f ), the inlumogutenu minimnn of the for'¡n f .

Suppose P = P(xOrVO) is a :real two-dinensional point, not the onigin.

Then

M(f ;P) = inf lr(* + x6,Y + yo)|, (1'19)
(xrY) int.

and

U(f ) = sup M(f ;P), (I.20)
P

where the supremum need only be extended ovell a complete set of incon-

gruent points (¡nod 1).
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If the supnemum in (1.20) is attained, then suppose that c is

the set of poÍnts P such that

l,l(f)=M(f;P).

Let

Mz (f ) = sup M(f ;P);
PnotinC

then if M2(f) < M(f), it is call-ed the ó¿condminírutn of f; and so on.

It is clean that for anY eonstant K'

(1.21)M(Kf) = lKl.M(f),

and a very simple argr:rne¡1 [52J shows that

M(f ) ¿ km(f )' (L'22'

The basic result on the inhonogeneous minima of forrns I^Ias proved by

Minkowski [42].

THEOREI'I t-2 t6 I iÅ anq inde{íwí'te birwul quadnnt'Lc {onm, then

M(dl 'f,,
ond inu¡u,[.í.tq lwLda (on oX]- {otunt u*lieh do rot tLepftuenl. zulo.

Equil,íf,tt hoLfu onLg (on donu "e4uivaløylt" to 6 = xq, inwluí-eh cue

U(d;Pl ='l{(dl =I,
whute P i.t th¿ Wtur l%,2l..

The fact that k is best possible, even for fo¡ms that do not

represent zeto, is seen by the sequence of forms

h*(x,y) =x2. 2kxy+Y2,

with k integral, which can be shovm to have inhomogeueous minimum

arbitrarily close to ô/4, fou lange enough k t16l'

It is reasonable to e:çect that fon many fo:rms, very much
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stronger results than Theonern 1.2 are tnue, results in whích Â is

replaced by othen functions of the coefficients a, b and c. Many

theone¡ns of this kind have been given by Bannes [a], Heinhold [35]'

Davenport [f01, Inkeri [aS], Rogers [57], Banbah [Z], Chalk [I4]'

Mo::delÌ [4g], and others. one panticulan result of this kind was

proved by Barnes:

rueopeu t.s. Iß dtr^,ql i's gíven bU (I -17l,, and

u{d} = ffio)( { l"l, l"l , mín la t ô + cl },

thevt

M(d) ,+,
uthettp eauntLt| enn lu14 on'Lg ttthu M(dl = ¡Å(d;?l , Md 2P = ïlmad 1l'

For a deeper discussion of nesults of this type consult [52].

Much of the motiv-ation for a study of the function M(f) arose

from the desire to detennine those integers m for which the quadnatic

field k(ñ-) (see Chapten 14,1327) possesses a Euclidean algonithm.

The exístence of a Euclioean algo:rithm is equivalent to the existence

of an integer p of k(ñ') cornesponding to each element û¡ of the field'

with the propentY that

lnorm(tr + p)l < 1. (J'22)

The nonm of k(ñ') is an indefinite binany quadnatic forrn, with:rational

coefficients, say fr(x,y). It follows that k(ñ') is Euclidean if and

only if

M(fr;P) < I (I'24)

for aII rational- points P- Consequently if



M(fm) < I,

then k(ñ) is Euclidean.

The fact that there are only a finite numben of such Eucl-idean

fields, is an immediate conseguence of the following generalization,

due to Davenport [t41, of a nesult considered in 51.

THEOREIT 1.4. Lef. ófu,A| be a bínatu1 q.Lud^Ãî;c dottn wluLe-h dne¿s vnt

neptuønÍ. zerlþ, then thette, exi,6t netL xO , Ug Áuch t-hnL

ld(** xg,U+Ugll ,r+,
hold,s {on øW ínte4e-n's x, A.

In fact the fotlowing result is also shown to be tnue.

10.

(l-.2s)

THEOREM 1.5. l{ $lx,rjl lta's itttøgna'L coø{diccQrú}r, thøn thenø e*itt

naLLono.L xO , Ug Ãuey'r iltaâ' (1 .25!- luLd¡.

As a consequence, since fr(xry) has integral coefficients,

(1.24) cannot hol-d whenever À > I28. Since the detenninant of f,n

is either 2ñ' or ñ', then Euclidts algonithm cannot exist for

m > (tzg)2.

vÍe define the absolute quantity t't, now knom as Davenpont I s

constant, as follows:

M = inf'M(f)/A, (1.26)
f

where the infinun is taken oven all fonms which do not represent ze!o.

The best knov¡n bounds on M, given by Enno1a [Zg] and Pitman [5t+], ane

1-I
3õft6 < 11 < #. (r-27)

The methods used to obtain such bounds usually nests cn sone

semi-regular continued fraction expansion of the noots of the forrns.

Davenport and Ennola used the Hur:witz expansíon already mentioned,
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while Pitrnan used the more general semi-regulan expansions of Ba::nes

and Swinnenton-Dyer [9], a detailed discussion of which will appean in

Chapten III. In each case, :ru1es ane given fon the construction of

a chain of integers associated v,¡ith the appnopriate continued fnaction

development, and these together describe a point (xO'YO) r,rith the

::equireri property.

During the past twenty yeatrs, vanious methods have been given

for the evaluation of the functions M(f;P) and M(f)' fo:: a given fonm

f and point P. DavenPort []61 obtained M(f) fo:r some of the eanly

Ma:rkov forms, and gave the infinite sequence of isolated rninir¡a Ml(f )'

M2(f), ¡13(f),.... fo:: the fom x2 + xy - y2. Vannavides [63], [64],

t65l used Davenportrs method to evafuate M(fr) for m = 2, 7, 1I,

whene frn(x,y) = *2 - ^y2. Banbah [tJ gave new geometnic pnoofs in

the cases m = 7, lf, and using this rnethod obtained M2(fZ). Bannes

and Swinnenton-Dyer [8] considered a mone general method applicable to

fonns with national coefficients, and which was also used fon the

deterrnination of the successive minirna of certain nolnn forrns.

Hovrever, by fa:r the nost general'and powenful urethod devised

for the evaluation of M(f), where f is an arbitrany indefinite binary

quadnatic fcrrn, is the divided celL method, developed by Barnes and

Swinnenton-Dyer [9], [5]. To every forn f and point P, there corues-

ponds a two dimensional gnid. From the geornetry of this grid it is

possibì-e to construct a sequence of forrns frr(xrY) (--<n<-), all

related to f by an integnal, unimodulor substitution. It is proved

that only four values of each of these forms need be evaluated to



],2.

determine M(f;P). This nethod wiil provide the basis for aIL problems

exanined in this thesis, and a description of it appea::s in Chapten III.

The method. was used by Bannes and Swinnenton-Dyer [9] fon

evaluating the critical detenminant of certain as3¡mmetric þ¡rperbol-ic

regions, and by Barnes [S] fon calculating l'!(f) fon two difficult norm

forrns. Bar:nes also used modifications of the method in [6]' [7], and

Pitman [53], [54] used the method r,¡ith a gneat deal cf success to

calculate the inhomogeneous minima of a s',¡bsequence of the sSrmmetnic

Mar.kov forms, thus extending the r¿onk by Davenport.

3. The rnixed forrn em

In the previous section we discussed certain ninirna of indefinite

fozms, whe::e the linear p:r'Oducts !,rerei either both homogeneous, or both

inhomogeneous. Chalk [i3] snowed that if

X=ax*ßy

y=yxrôj

Were linear forms in x, y, then fcr non-zero neal- C, there eXiSt

co-Wírn¿ integers x, Yr such that

l(x+e¡vl .f , (1.28)

where 
^ 

= l"O - eVl is the determínant of the fcrms'

Davenpo::t [2t] showed that this result is best possible, in the

Sense that for every e > 0, there exist Ii¡rea¡ forrns X and Y, and a

non-zero constant c, such that

[(x+c)vl ,u+T,
for atl co-prine integers x, Y. Thè exarnples that a:re given in [Zf]

are pe:rhaps natuï'al ones, in that Y is chosen to be badly approximable
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homogeneously,' and x is badly approximable inhornogeneously.

The question whÍch nor¡ arises is whethen, cn omitting the con-

dition of co-primality on x and y, the constant k still nernains best

possible. DavenPort Provides a negative ansvten to this question by

showing that the inequalitY

l(x+c)vl .# O.2s)

is always soluble in integert (*ry) I (0,0). Howeven if infinitely

many solutions ane required, then Theonem I of [2f] indicates that % is

then the appropriate best possible constant.

The problem has fu:rther been investigated by Kanagasabapathy

[41]rl42f, who successively inpnoved the constant on the night-hand

side of (t.zg) from # to #n. He also gave 4¡þ as a

Iov¡en bound on the best possibl-e eonstant. Mention of thein approach

will be ¡nade in Chapter IV. A section of this thesis.will be devoted

to a genenal anithmetic forrnulation of this pnoblem, and this r"¡i1l

lead tc an actual eva¡:ation of the best possible constant, and cnitical

fonns.

A furthen question which, to ny knowledge, has not been investig-

ated, is the evaluation of

inf lCx + c) lY,
Y>0

where the infimum is extended over integ:rai x, y, such that Y>0. The

methods developed in this thesis, trith centain nrodifications, woul-d be

suitable to handle this question too.
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4. Sumna¡l¡ of subseguent chaptens

Chapte:r II of this thesis contains a brief companison of so¡ne

of the properties of ordinary and semi-z'egu1a:r continued fractions.

Several nesuits that alte needed for following chaptens wil-L be pnoved.

A discussion of the se¡ni-negulan eontinued fraction to the integen

above is undentaken, and a roethod for transforrning such expansions into

ondinary contínued f:ractions is introduced.

The basic tool for the nesults obtained in this thesis r+iIl be

the divided cell method of Barnes and Sr¡innenton-Dye:r. The nethod is

expounded in Chapten III, and an arithmetic formulation of M(f;P) ín

terr¡S of semi-negular continued f:ractions is given. The chapten

concludes with several nesults that pnovide upper bounds on the value

of M(f;P), and a theorern which relates the seni-negulan expansions of

equivalent (in the usual sense) quadnatic inrationals.

A descr:iption of a modÍfication of thís method whích wíll put

the nixed fonn p:roble¡n on an anithmetic basis appealls in Chapte:: IV.

In Chapten V we will sho¡,¡ that the best possible constant for the

problem is given by:

ft= (3/49)(366r+s8018 - 7320551 (1.30)
+ 0- 0+

--, _ rq7 + Æ61 --r A - 104250 + 2fr- 1. Ã! rllhene 0=---- anG - g0O5 . tI.sJ.,

Chapter Vf investigates the distníbution of the inffunum of

values taken by nixed forms. In fact we show that fon all kr lrith

O < kt < k, thene exíst honogeneous fo:sns X and Y, and non-zero constants

c, for which

rnt
(x,y)l (o,o )

l(x+c)rl =i<ra.
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In Chapte:r vrl, fuf'ther r¡odj-fications of the divided cell

¡nethod enable the investigation of a problem for fonns, analogous to the

Cassels-Descornbesr positive appnoximation p:roblem' Fon binany quadnatic

forns f, we define a::estiicted inhonogeneous minimun, which we denote

by M*(f), and show that

r.r*(¡) 
= frå ,

a best possible r-esult. Extensions of this result a:re indicated'

The final chapter is devoted to the evaLuation of kt(S), whene

6+ r lÍe prove thatQ is equivalent to 2 s6- sk*[ 10

= 0.1708.. .:
+

which sharpens Godwinrs bound of 0'2IL4 ... on c .



CHAPTER II

PROPERTIES OF SEI"IT-REGULAR CONTINUED FRACTTONS

'1. Ondinany continued fnactions

Thnoughout this thesis, extensive use will be nade of the

so-called semi-negular continued f:raction. But finst, fon neasons of

companison, IÁIe will necall a few of the impontant featu::es of the

ondinany continued firaction (O.C.F. ). Suppose cr > 0 is neal, then we

wiJ.l denote the O.C.F. expansion of o by

(I = (alra2ragr.......)

16.

( 2.1)

Q.2)

whene a- > 0. and a. > 0 for i > l-.I_ ' I

The algorithm r^rhich pnoduces the pdJt'tfu'L c¡ttoLienÍ'| a. , is as

follows: In this'chapter, J-et [x] denote, as is usual, the integnal

part of x. Then

rvhene a., = [arJ

t.r, t

I
ù=0'=âtt-tl- I c

ẑ

11q af".... )

ur, * ;-f , whene an = [orr1
n+r

)
)
)
]on

Consequently a = (41 ,d2rd3r. . . .. . ,ân-l_ror). The c,. are, called the

aiwLa-te quoLLenfÁ. Clearly a given cr pno'iluces a unique seguence of

integens {arr}, provided orr t I, fon all" n > 1.

LEM!Á 2.1. o i,s ¡ttLí-ovwL il and onl-g i( i.A 0.C.F. øxprttÁion

twrvLyntu.

This nesult is equivalent to the tenmÍnation of the Euclidean

atgoríthm, and the pnoof may be found in say [5I].
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A continued fraction is said to be periodie if two pantial

quotients are identical. If o" = oo+r, , then we wnite

g = (al ,è2r... . rêr-1 :êor. .. . ,â::+n-l ). (2.3)

LELliiA 2.2. q. i.8 a cg.aúwtJe i.nr'nbLona.L i{ wtd crtbLi i[ ilÁ O.C.F.

eq)afl.sion lta¿ a- vun-ixivi-o'I- pwínd.

The proof may be founá in [5i].

Suppose d, B are two nunbens connected by the ::elation

(2.4,

where p¡g:frs, are integers with ps - rq - tlr then o and ß ane said

to be eqwLva,tztri.. rf PS - rq = 1, the equivalence is called ptL0pal

(if not, then impnoPut).

LEI'Ill 2.3. Tun zcawLva.Lent nwnbuÁ hnv¿ idenLLetL O.C.F. øxpavvsi-ovt^

dtwm tomø poini onwüLd^

The proof is given in [5f].

A quad::atic irnational a is said to be tedscød (in the sense of

Gauss), if

a > 1, -1 . -*- . 0, (2.5)

r+he::e ã is th. algebnaic conjugate of a.

LEtt¡'tA 2.4. LeJ a be a qßd)úLLc fu)Lobbna,L, Ílten a i¿ neútcaÅ íß

and onLg Ld thø O.C.F. u,pl$A,@n od a i.a paløLq pwínd,Le; tJú.t i.s,

t = únr (0,'t-,somøn> 1.

A discussion of this kind of neduction may be for:nd in [3a]' [5I].

lùow, after temma 2.!, we may denote the finite continued

fraction 
p

(.1ru2,....rarr) = of , (2.6)



whene the frastion P¡/Q¡ is in its Jowest terms. ltrese fractioos

are calIed the cOnvQJLgønL| of the O.C.F. development of ct' and are

obtaÍned by the following recurnence nel-ations ISt]:

Po=I, Qo=0, Pf=.1, Qt=1,

Pn+l- = an+lPn * Pn-r '
Qrr+.I = "rr+lQr, 

+ Qr,-L

cì-early the Pn and Qn ane positive integens which becorne anbitranily

langerasn+@.

LEIÃ]iA 2.5. Id a il fuÅo.LLonaL, and cr = (a1,a2rojr.-.-.1, thøn

Lírn p,rl\, = a.
n+Ø

The pnoof (e.g. tSIl) is a consequence of the following three

nesults:

Ì
]
)
]
]

I8

(2,7)

(2.8)

(2.e)

(2.10)

P'Qn-l - QtPr,-r = (-1)n'

g = (arra 2r--..rânron+', = H#
which together imPlY

[u - Pr,/Qnl = 0n+1
I

+ -1
t

from which Dirichletfs theorem foflows immedíately.

2. Semi-regulan continued flractions

In this section, a brief outline of semi-negular continued

fractions (s.n.c.F.) wí1l be given. The classical notation of Pennon

[51] will not be used, but a notation'"rhich anises natunally from the

geometry of the problem wiII be considered'

The o.c.F. development of a real number a ís based on the
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extnaction of the integral pant of each complete quotient as it anises,

and an invension of the fractionaÌ pant to produce the next complete

quotient. This yields a unique sequence of integens {arr}.

The nuies for the development of the kind of S.R.C.F. in r.rhich

we will- be interested are as follows: At each step of the algonithn,

instead. of always extracting the integer below, rÌe usual_ly a1Ior.r

ourselves the choice of either the integer below, o:r the integen above.

Given a neal nuhbe:: o, lol ,1, vre define the sequence {arr} by;

(i) q= I , trhene a, = [arl on [or1 + 1,of
o2

-r

provide<i that l"Il Z 2,

(ii) a- = .- - å , whene a- = [crrrJ on [crrrJ + 1,nnon+rn

provided that l"r,l : z.

)
]
Ì
)
Ì
Ì
]
Ì

( 2.11)

We r,¡il} denote the S.R.C.F. in squane bnackets (to ¿istinguish it from

the O.C.F., but not to be confused with the integnal pant notation).

a = [a1 ,a2râ3r.....rarrrcrr*1J

1111
q-t u2- a3-' . . o .urr- an+I

Q.L2)
)
]
)
]

)
]
Ì
]
i
)

The a. ane again called tne patúi,a,t qußtiei.L6, and the air

eompLete rg.wLLetnt's. Note that a' nay take eithen sign.

sequence of ennvestgøvttÁ, {prr/q,,}, as for the O.C.F., by

[-1r.2r.... ,"o] = prr/g.,

where po = 1, g6 = 0, pI = "1r 
g1 = 1,

Pn+1=an+IPn-Pn-f,

I{e define the

(2.13)

9n+l_=an+tQn-9n-1'

(2.14)
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Fonnulae analogous to (2.8), (2.9) a¡rd (2.10) can be shor'¡n to hold, by

induction [9].

Pn-IQn-Prr9rr-1 =1r

o = farra 2)....rênrcn+I, = ffi ,

( 2.ls )

(2.16)

which together impiy
D I
Ç-effi' (2.r7)

Note that if c is irnat-ional, and 1 . or, < 2 fon all n, (o::

l- < -a < 2 for all n), then this would imply e = [-2r2,....] = I,
n

which is a contnadiction. It therefo::e fcllows that we nay expand

each irrationaL a, in uncountably many vreys as a S.R.C.F. of this type.

various pnope:rties of these s.R.c.F. ane discussed and pnoved

in [9]. ]le select th¡e following nesu]ts which wilt be::equi::ed in

later ehapters.

LEIItttA 2.6. Su¡tpole ÍhÃÍ. we, ahe given a, løquetrcø o{ fufe4etu {æn},

wi,th lonl , 2, and a.n twt covvsto.nilU eraunl- fn 2 lon to -2l, ßon

Lotgø n; thut

wl t-hø de:¡luence.s {r)n}, {qn} at de{ined bg l2.l4l anø tuch tlnt.

lnnl > n + 7, l,tnl , n, l+l '- | * L ,

and {ipnl} {lctnl.I aæ- ,tuLçf,t4 ino-nea,ting 
^equznceÁ 

od ìnÍegotu.

(ül tJtø indinÅ,t¿ S.R.C.F. l&7,e2,a3,.......1, u¡lw¿e va.fute 'u de{ined

trs Un pnlen , cþnve,+gu to 0. ,LaÂ't lwrbÙL e, wi.tlt lo,l > 1.

fl->æ

liiil i{ dn, 0, don a,{.L n > l, then 
ltrrlQn} 

it a tttwc-thq

deaæaafut4 âøquQ,nce o.d poti.tive ónßctiortÁ -
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lívlÍheS.R.C.F.a=1a7,&2,.,)oßpoai'LL,lepaü'ial.quotiøltfrt
fu inateglød 4, don æme n, &1, &2, , 4n-, tænø'Ln covala'vut- dnd

on il inupat¿d,, uhí.Le ar 6on L > lL tilzø Aúi'ttutu¡ itúe4tu'L va'futu'

These results forn pant of $4 of [9], where the proofs are

indicared. Tt¡€ stnict monotonicity of tlprrlÌ, and tlq"l) is a simple

Ínductive consequence of (2.14). (iv) nesults fro¡¡ (2'14)' (2'15)

and the following lemma'

LEt¡l.lA. 2.7 . Suppote fuar ßlxl i's the linesn {nner'Lonnl {otut

{(r} =#4,
wlætzø d, b, e, d anø neil nwnbel6, Íhøn llxl ¡'s a- movwlnne $uneÌ)nn

Ln anq ittUua2 wluLcl+ doU vwt ine,bde the poitt't' x = -d/c, utd inuætÁeÅ

i{ and onL4 i6 ad - bc > 0''

The proof follows i¡nnediately frorn the inequality

(ad - uc)'ff ' o, fo" f ¿b¡à'

Anyirrationa]-numbero,l"l>l,maybedeve]-ope<iinS.R.C.F.

of the above type in infinitely many ways, each yierding, by (2'r1), a

sequence of intege:rs {ar}, with larrl > 2' and an not constantry equal

to 2 (or -2) for lange n' Conversely' Lemma 2'6 ehows that any

suchseguenceofpartialquotientsconverges,intheabovesense,toa

neal nr¡nben a, with l"l > r'

Thefollowingrelation,which].inksthecompletequotientswith

the convergentso will be requíned in the next chapter'

LF-IúIÅ^ Z.g. LeJ s = l&yra2r .......1 anda-t u^ltrL

o.¿= La¡,oi*1,......1; lhen Qnon*1 ' qn-l = o1d3""'q¡+l'
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PR00L. I{hen n = l, the result follows fnom (2.f4). Suppose that fo:r

some m, r"¡ith m 2 2, we have

%-foo, - %-Z = 02o3. . .. .0rr

then by (2.I1) , (2.L4'),

o2o3.....d¡n+1 = or+r(%-r("m - fl. I - %-z)

= 0m+rtn - 9ot-t'

and the lemna follows by induction.

It will be of interest in Chapten VfI to have a result,

analogous to Lern¡ra 2.3rfor the S.R.C.F. expansion of equivalent numbers.

Such a theorem is pnoved in 96 of Chapter III. Thene are many mcl:e

intenesting nesuJ-ts about S.R.C.F.. expansions which we could include

here, but as they will not contribute to the main theme of this thesis,

they will be omitted (see [51]' t59l).

I{e conclude this section on general properties of S.R.C.F.

!¡ith the following result (compare l¡ith a sfunilan theorem in [3a]).

THEORETtr 2.1. Ãw1 exparui-on o{ a. W,ndlLovt¿Lc fuülnLLonal a, ¿n S.R.C.F.,

eßnto,in^ 6orûe eiftVú,e,tø qwLLenft e-n, auch thaf lãnl < t.

W. Having wrÍtten s as a linear fuactional form in co, by (2.16),

then wd nay solve for crr, and take the algebraic conjugate, obtaining

Qn-2t - Pn-2
q
n 9n-ro - Pn-I

rd,,r = lffil.lrn-'ffi,tn æt
= lffil.(r * lo,,-.e--r16 - p¡-l/%-r)l-t).

Fnon (2.15),
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l.low since

n, we have

lim prr/gr, = a, I ã, and fim lqnl = -, then fo:r lange enough
ll->æ-- n+@

t%t = lffil.(r* rç|¡)
But temma 2.6 implies that le,r-rl S l%-t l - r, and so

t-"t s[1 - r*r).(r* r*l) .r,
pnovided n is large enough.

3. Expans icns to the ínteger above

fn this section, r.re wiII examine one panticula:r expansion fnom

the infinitely rnany s.R.c.F. expansions of an irnational a > 1. At

each step of the algorithm, we wí1I always choose the integen above;

consequently, in (2.u), we have ar, = [arrJ + 1, fon all n, and ar, > 2'

(and not constantly equal to 2 fo:: Iange n). I"le will call this

the A-expansion (A.C.F. ) of a. The A-expansion of an in::ational is

unique.

Vanious tnansformations have been given [51]' [Ss1, fon con-

venting one type of ccntinued fraction to another; In Chapter VII' we

witl requine the A-expansions of certain redr:ced quadnatic innationals,

knowing theits 0.C.Ë. expansions. l'tre v¡ill- rlov¡ Prove a result v¡hich

will enable us to obtain these. lle will use the following Pennanent

notation (for all tyPes of continued fnactions). If any segnent of

chain is repeated. s tiures, this segment may be enclosed in brackets and

subscnipted with an s, as follows:

[arra2r.. .. ranr(btrb zr' ... rbo)"rên+rs+Ir' "' ]'



In the above notation, we will use the convention that s = 0 irnplies

this segnent of chain is deleted. thus

[ar'...rôrrr(b1r"'rbo)6,ân+1, ] ] 
(2.1g)

- [aIr....:êrrrên*]'....]. ]

I.6 a = f l2l rLrßJ, n > 0, then

_ ln+ll9-nCL=4-
,Lþ - FTf '

24.

LElllM, 2.9.

PRæF. Application of (2-14) implies Po = o + I' qr = r; the nesult

follor,¡s fnom (2.ILr.

THE1REI'| 2.2. 16 i-n 0.C.F.,

s = (artúlrxl , whule L> 0, x> 1, &2 0,

thu ín A.C.F.,

a+ I =fa+2rl2lrLrx+1).

?RAOF.
1o=a+1;1¡71'

x

=af1- 11 + +

rxfl-

Clearly
(r+l)x+I ;' lr and therx+I

:result then follows from Lemma 2'9'

This theonem enables us to convert an o.c.F. expansion into a

S.R.C.F. expansion, and vice versa. Qsing the convention (2.18) and

inse:rting an appï\cpniate (2)o into the s.R.c.F. expansion, if necessarlr'

if c = (arra2râ3rô4r...--.), then

a + l- = lar+2,(r)ur-rrag+2r(t).u-t'......1.

]
]
Ì

we have:

This relationship enables nany of the prope:rties of the

(2.re)
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A-expansion to be deduced f:rou¡ the corresponding nesuLts for¡ O.C.F. It

ís also possible to obtain expressions for the peniod of the A-expansion

of a quadratic irnationaL, in tenns of the period of the O.C.F. expan-

sion and its pantial quotients; but we will not include thÍs theorry.

If a is a quad:ratic inrational, then we will call e Ã-ne'duced íf

c>1, o<ã'<t. (2.2o)

By (2.5), if B is reduced and c = ß * 1, then ct is A-reduced.

tEMt'lA 2,10, The A-expami-on o{ t i's pwLodic i6 and onlg ió o i¡ a

quodtt o,tie fuul'Li.o noL.

pR00F. This foltows fnom the conversion (Z.fg), and Lemu¡a 2.2.

IEA.{I,{A 2.11. I{ e ì.t A-neùrceÅ, Íhen aLL eomyil-et'e cawLLe*$ Ln i.ts

A.C.F. expatai.on ae A-neÅucçÅ.

PR00F. Now, c satisfies the inequalities (2,20), and

1
0=ü, -d 1o2Ì

I
rvhene ^l 2 2, and o2 , I. But o = u] - ãr, which implies

o . ãZ < 1, and. hence c, is A-reduced. The nesult follows by induction.

LEtrltrlA 2.12. I{ the A-ex¡taruion 06 a is ptt)tz petúnd,Le, then a it

A-nødtcød.

rf(c/|/F. The lenrna nay be proved in a sirnilan mannen to the O.C.F

case, by showing that if

g = La,rêa:....14-L'2' -n l, ß = Lanran_lr...., "rl,
1then B = *. However, we r'¡ill deduce the nesuft from Lemna 2'4'

Now, if c is peniodíc, then each complete quotient has an

A-expansion that is pune peniodie. since all partial quotients cannot

equal 2, then thene exists an n fon which or, t 2' But by (2'19),



a_ - I will have a pune peniodÍc O.C.F. expansion, and by Lenma 2.4
n

wÍll be reduced, implying that O < ã < t. Thus c' is A-:reduced;

but a is a conplete quotient of orrr and hence by Lemma 2.11, c is

A-reduced.

The converse result is also true, as may be shown using a

sirnilan technigue to [20] (p. foO).

LE¡Ál,lA 2.13. I{ o. i's A-nedtceÅ., thøn i.t's Ã-etparuion b fxnøttl

puúod'Le.

ry. Lemmas 2.L0,2.11 imply that the A-expansion of o is, in fact,

pericdic, and that each complete quotient is A-reduced. Hence for

some D ( ü¡ or, = or. Q.2L)

For arbitrary i t o, si = .i - *- , and so
- *i+1

l/(ai+r) = "i - #. ;
I

sl-nce
l-
g.

l-
> 1, then

ar=[I/-ar*I]*1,

26.

By an inductive argwrent,implying an_I = âm_1, and so cn-I = dm_1.

o=o1=cn-n+l'

pnoving the pune periodicity of c.
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CHAPTER ITT

THE DIVIDED CELL MET}TOD

1. Intnoduction

This chapten witl be <ievoted to a description and explanation

of the dívided ceIl rnethod, const::ucted by Bannes and Swinnerton-Dyen.

this expositor.y chapter is included because the p:rob1ems examined in this

thesis will be t::eated by nodifications of the method, fon which details

of the analysis will be neguired. Many of the results f:rom [5]' [9]'

152f, [53], will- be referned to ]tithout pnoof. The theory of the

divided cell was first desc¡rÍbed in [5], [9], and was laten treated in

depth, by Pitman [52].

As far as possible, the notations used in the }iterature

neferred to will be ernployed, and any changes explicitly noted.

Suppose forn neal cr, ß¡ Y, ô, EO ¡ rl0, we conside:: the set of

pointsrl , in the t, n-p1ane, given bY

Lr 
€=Eo+ax+ßY ]

] ' (3.r)
t=nO+yx+ôy Ì

whene x, y take all integral values, and tne deÍwnívøtl't A = lcô - ßYl

is non-zero.

If tbe set L contains the point (trn) = (0,0), then it is called

an hnrwgeneiuÁ X-a.ttilø. If, not, then r"¡e call L an-íythgnogenæuS

La,ttiCe, or a gruLd. lle will use the latter terminology. We will be

interested, in those grids which have no points on either axis, and so we

will assume this to be the case throughout the ehapten. Later we will
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see that this condition is of great ímpontance to the genenal method.

If A, B are any two points of [ (called grid or lattice points),

then we witl call the line AB a InLfiee Unerand any line segurent AB

which contains no otirer g:rid point, a !,1'Ltíce Ãløp.

Suppose that we have a paralleJ-ogram' whose ver:tices are the

grid points A, B, c, D, then if its area is a as pneviously defined,

then ABCD is ca11ed a c?-!L of the g'rid. The foLlowing nemarks a?e

either c1ear, or follow by arguments similar to those in [32] (pp. 26-29)

(i) Any edge of a cell is a lattice step.

(ii) A cell contains no points of I in its interion.

(iii) Any two adjacent edges of a cel1, together with some

point of L, generate the whole gnid [91.

)
]
Ì
)
]
]
)

(3.2)

Let a, bo p, g, r, s' be integers with ps - rq = tl; then the

íntegral, unimodular tnansforriation of vaniables fnom (xry) to (XrY),

defined by

x=a+px+qY ]
]' (3.3)

y=b+rX+sY ]

when applied to the grid L of (3.1), pnoduees a gnid Lt;

L,: 
E =6ð r arx + ßtY

n=nå*YtX+ôrY,

for integral X, Y, where the constairts !¡ith the prine are simply

nelated to the eorÉtants without the prime. In fact, it is easily

seen thet the gnids L and t! are identical'

If, howeverr a gnid Lt is defined bY
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Er = KE
,1.
L. (3.4)

n n

whene (Ern) is a point of L, and K is a non-zero constantrthen the grids

L and Lt an-e said to be Ãimilnft:

There exists a definite connection between grids and indefinite

bÍnary quadratic forms. Suppose that f is such a fotm, then we may

denote it, fon real a, b, c, o, Ê, Y, ô, bY

f(x,y) = ax2 + b:¡y + cy2 )
Ì' (3'5)

= (cx + Ey)(1x + ôy) )

where [= loO- eVl = (b2-4ac)%=ñ. Âiscalledthe deiùuytínryt

of the fonm, and D its d,í¿eníninanf-

If xO, and YO ane anY ::eaI numbers,

f(x+ *o,y * Yo) = (ão+ ox+ $y)(no + 1x+ öy), (3'6)

çrith EO = cx' + gyo, and t0 = Y*O + ôY0

Comparing this with (3.1), the set of values taken by

f(x + xgry + yO), for integral xr Y, is the same as the set of values

which are the products,of coondinates of the 1attice points of the gnid L,

oll any grid simil-ar to it. Hence the value of M(f;xoryo) = M(f;P),

defined by (1.19), is identical with the suplremtfn of real nr:mbers m,

vrith the propenty that there is no poÍnt of I in the hy¡rerbolic region R;

R: len¡ < m. (3.7)

It also follows that

u(r;p) = inf tlgnl; (8,î) a point of []. (3.8)

Thus fo¡: any pairs of forms and points, say f, P and fI, Pl, to which

thene corresponds identical or simil-an grids, we have

l.
R

]
Ì
]

t
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M(f ;P) = l{(fr;Pr)

It also follows that the inhornogeneous minina, defined in (1.20)' ¡'l(f)

and M(fr) ane equal, whenever f is related to f, by a substitution of

the fonn (3.3), with a = b = 0-

Any dinect evaluation of M(f;P) by (3.8) would involve a

calculation of all the values lEnl, where (trn) is a point of L. C1early

there will be many points of L at which this product is very large.

In fact, those points fon which len¡ is srnall, will be nean the o:rigin

ou one of the axes. Hence the basis of nany methods to evaluate

M(f;p) is to provide an algonithn which picks out a suitable sequence of

gnid points of [, dhich have the t¡smallest't values of len¡.

2. Outline of the method

A eel'ì of a grid is said to be d,Lvi.ded if it has a ventex in

each of the foun quadnants (and not on an axis). The basj-c result fon

grids and d.ivided cells ¡tas Proven by Delauney [221, (see also [3], [49],

ts6l).

THE}RE¡L 3.1. Evettq tuto d,íneuioyt0,(. gtuLd, u:i,th no point on er.fhÚL

0ri6, Iu^ af. Leøt onø divídzd ce.LX..

Delauneyrs proof was sketched by Barnes and Swinnerton-D¡rer

[S], and relies on the fact that the grids under consídenation have no

point on either axis. The proof will not be given here, but in

Chapten IV a sirniiar result will be proved for a special type of grid.

Assurning the existence of a divided eell, it is possible to

construct frorn it a unique chain {Sn}, -@ < n 4 æ, of divided cells,

which flatten out against the E-axis as n + co, âDd against the n-axis
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as n .) -o. Bannes and Swinnenton-D¡rer developed the construction of

this chain of cells by means of a sirnple algorithrn, which generates a

cornespond.ing chaín paín of integers {an+lrerr}, satisfying a set of

conditions.

The following theorem justifies callinS {Srr} the chain of

divided ce1ls of the grid.

THEORE]T 3.2. Thø e-lwLn o{ ee}-/'t tsn} üI'í,6iag dtøm 
^o'ne. 

d,íNidel cø(I

o{ a. gní.d. L, coniaíns aIL the d'Lvidel' cúlÅ 06 L.

Although this nesult is of considenable intenest, it is not

explicitly used in the applications. The pnoof follows inrnediately

from Theonems 2.L, 2.2 of [52].

Convensely, suppose that we take any chain pain {arr*Iren},

satisflring the neguired conditions, then it can be shown that it

determines the chain of divided cells of a grid, which is itself unigue

except fon a constant nultiple of each coordinate.

The essential step in the argirment is that the infinr:¡n (3.9)

need only be taken over" those grid points of L which ane vertices of

some divided ceII of the chain {Sn}. This leads to an arith¡netic

forrnulation of M(f;P), it terms of the chain pair {arr*lren} anising

fr"om a conresponding grid. Thus the problem of evaluating M(f) nay be

attacked independently of the gnids, by considening all possible chain

pairs satisfying the requined conditions, and then applying the anith-

metic formuiation. 55 3, 4, 5 of this chapter will indicate in

detail- (but usually without proof) the steps in the above argument'

with reference to thein aPPearance in the lite:ratr¡re.



3. The algorÍthn

Suppose we have a grid L given by (3.1), and So is a divided

ceIl AOBOCODO, whose existence is guananteed by Theonem 3.1. Let

us suppose that the ventices of SO ane named in a clockr¡ise direction,

and tbat AO is in either the finst, or the third, quadrant. lÍe now

define t¡.ro rnone divided cells of L, S, the ÁucczÁâon of So, and S_, the

prledecu^ou of S0. Define the two intege::s ho,ko, as follows:

(a) If the line segment AODO is parallel to the t-axis, put

by convention ho = k0 = -o.

(b) If not, then AoDo (and BoC.), pnoduced in some direction, will

inteneect the 6-axis. Let lh'l U. the nr¡nber of lattice steps

of tength leODol tfrat must be taken fron So, on the infinite

line AoDo, in order: to intensect the E-axis, and let ltol Ue tte

corlresponding nurnben of l-attice steps of the sarne length on the

line BOCO. Let these intensecting lattice steps be ArB, and

CrD, respectively, and give hO and kO the sign of the slope of

AoDo'

This process clearly defines a unique new divided celI with vertices

In s5rmbols, íf we put YO=

AI=40-(ho+I)Vo

BI=Ao-hoyo

cl =c0*(ko+l)vo

A1,81rc1rD1'

32.

AO - DO = BO - CO, then

t
J

)
ì.
'] (3.s)
)
Ì
)Dt = Co + kgYg

Now hO and kO are non-zeno integers of the same sign. Note

that A, is either in the first or third quadrant. If Ao is in the
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first quadrant, so too is A* v¡heneve:r hO ' O. (3'10)

By considering the intersections of AoBo and coDo with the

n-axis, then a unique divided ceII S-r, 'n¡ith vertices A-rrB-1rC-IrD-1,

nay be obtained, and non-zero integens h-r, k-I defined by considening

SO as the successor of S_r.

Thus, pnovided that there is no lattice line parallel to an

axis, a doubly infinite chaÍn of divided cell-s, {Srr}, -- ( n ( -¡

with vertices ArrrBrrrCrrrDrr, can be const::ucted, such that Ao is always

in either the first o:r the third quadrant.

Associated with this chain is the sequence of non-ze::o

integen pairs {hnrkn}, obtained from the follorving formulae:

A -=ff -(h +t)V--n+l- -n n --n

B _ -A -hvn+J. n n-n (g.U)
c -=C +(k +l)Vn+I n n -rl

Drr+l =crr*krrYt

where Yrr=Arr- Drr=tn - crr= Bn+1 -An+' = cn+l - Dn+r'' (3'12)

Denote the n-coondinate of the point P by n(P),and so on.

The following lenunas will p::ovide ínfor'¡nation on the integens h.r, kn,

and the ventices of the divided ce}ls.

L1l,ll,l^ 3.1. h. and !¿.- ate non-zutß fuûe4etu, uJhicJL lnvø Íhe Aane 'sl.:gn.

This has already become evident in the above dÍscussion.

LElitÁA 3.2. It i.6 .inpouíbL.ø thn't

Vl .$ort d'll n ¿ n0 lon n s ng I ¡ ei.then

(al ho = -l , o,L lbl hn = -1'

lül $ott aLt rL >- 0 lon n s 0l , and tomø ng,
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t^ -!^ -1
"nO*ro= 'tng+24+7 - ''

The pnoof appears in [9] (Lerma l), and relies on the faet that

there are no lattice points on the axes.

Let us assume fnom now on that there is no lattice line

parallel to an axis, which is equival-ent to supposing the natios a/8,

y/ô in (3.1) to be irnational; then hrr, krr, are finite fon aII n'

LEîvlltl{ 3.3. 'q(Unl, n(Án), n(6n1, n{cn) , \(Ðnl ,

bnd Elv _,r1, E (A_n) , 1(B_rrl , Erc_n! , El!_rLl ,

s+J4loa-ch zUL7 (I.L tL * 6¡ cmd Mþ.e. Athi*AnníXq Langø va,Luq¿ d-,5 n'> -6.

The pnoofs ar?e found in [9] (Lemna 2), and [s2] (lernna 2.3).

This lenrna pnoves the intuitive concept of the chain of cells flattening

out against an axis, fon la::ge values of l"l:

It so happens that the integer pain hrr, kh, is not convenient

to work with, and thenefore t¡e define a furtheþ intege:: pair by:

a - -h +kn+Inn ( 3. 13)

LE¡ttitA 3.4. en*l and ,n Løve the ,5afl1ø paú'tLi. lanl z 2 óon

a.l! n, buf an r"Lot covl'6tßn'f.t-t1 øc¿ua'L to 2 (on tn -2l' 6ctn Latge n

(poti,LLv e otl nz4a'LLv Q.l .

Fua,thut, l.nl s lon*tl - 2, bui tn*l * ,n otL dn*l - en

L¿ not coyl7'tatr.t|q eqtta,t- Ícr -2 (on a.LL f.atqe n (¡co,s.íLLve- o,L negaiivzl .

The l-ernma follows from (3.13) and Lemna 3.2. rle will see

.l-aten that fo¡ the special kind of g:rids considened in Chapten IV '
Lenmas 3.2, 3.4, do not alvraYs hold.

n
k-h

nn
E

)
)
]
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Now if f is a binary quadnatic form, and P a poiat, associated

ïith the gnid [, then:

THEOREII 3.3.

tttl{;p) = inl { l6nl; lq,nl i¡ a vulex 06 sn, don æme n }

The theonem resufts from [9] (Theorem 5), and is given in full

in [52] (Theorem 2.1). The p:roof nests on the fact that if Pn and

P - are different vertices of successive divided cells in a given
n+I

quadrant, then ther.e is no point of L within the intenior of the tni-

angle formed by the axes and the l-ine PrrPrr+I. Since, by constnuction,

lrterrll 5 le{rrr*r)1, ln(err*r)l s In(Prr)1,

t{e can neadily see that thene is no point within the negion forrned

by the axes, and the straight line segments PrrPrr*J, foo all n' It

foll-ows by convexity anguments that, in a fixed quadrant, the region R

of (3.7), contains a lattice point of ! if and only if it contains a

ventex of a divided celt of {Srr}. The theonern follows.

In o:¡d,e:: that this theorem be oi some practical use in the

evaluation of M(f;,P), we witt fínd arithmetic expressions for the

pnoducts of the coordinates of the ventices of the divided celIs in the

chain {Srr}, in terns of the associated chain pain sequence {arr*iren}.

In so doing, a ce:rtain t¡rpe of semi-regulan continued fnaction (Chapten

II) anises naturally fnom the geornetry of the gnid, and its chain of

divided ce1ls.

4. Arithmetic fornu-l-ation of the ventices of the divided cell's

Denote the vertices of the divided celI S' by



cr, = ( ßntrrrYrrnrr)

Br, = (Ên(En + orr),Yo(nr, + r))

or, = [ßrr(tr, + t),Yrr(nr, + 4rr))

nr, = (ßn(tn + on + l),Yo(nr, + r + 6rr))

This compì.etely defines the real nr¡nbers 9rr, Err, Yrrr rìrrr 0rr, 0r,' for

each n. Note that the to and n' are not quite the same as those of

tsl (p. 204), and 0r, = crr/Bn, ûr, = ôrr/yrr, but these changes ane

consistent Brith the change of notation made in [5] (P. 243).

By (3.2) (iii), the grid L is given, for all n, bY

L: 
t=ßrr(trr+orrx+y) T, (3.rs)
n=Yn(rìrrtx+OnY) i

whe:re x, y take all integnal values. Clea:r1y

^ 
- lerrvrr(onon - t)1. (3.16)

By (3.12),

Yr, = (ßrrorrryo) = (-ßrr+l_r-yo¡10rr11). (3']7)

Now, as in tgl, it follov¡s that (3.n), (3.12) and (3.13) imply

Yn+I=-an+IYrr-Yn-r'

By equating coondinates, we obtain fnom (3.17),

ßn+Ion+l = -trr+lßrron - ßrr-1orr-r

v=-âY-v
I n+.1- -n+1 'n t n-I

A doubly infinite sequence of integer pairs {prr'qo}, may be

defined by putting

Yn = (ßnorr,yrr) = (-r)n[ßo(ooPn - err),Yg(Pr, - ooerr))' (3' 20)

Now (3.19) impJ-ies that this sequence of integen pairs satisfies the

recunrrence relatíons, for all n:

)
)
)
)
Ì
]
)

36

( 3. 14)

(3.]8)

(3.le)
]
)
Ì
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p_l=0r g_I=-t; po=lr gg=0; pl=.lr g1=l; 
i

Pn+r = an+rPn - Pn-r )'. (3-21)
)

9n+t = an+t% - 9n-t )

Referning to (2.I2), (2.I4) and [9], it is clean that the

ratios prr/% are convergents of a semi-neguì.ar continued firaction, and
D

that fon n > 1, F = [arrar,....,arrJ,
Ïr

D

and for n I 2, nî = [o0,ê-rr....,4-n+2].

Various propenties of these continued fnactions were discussed

in Cbapte¡r If. We now state the following result which línks these

S.R.C.F. developments having pantial quotients from the sequence tarr),

r¡ith the vertices of the divided celLs.

LEITíMA 3.4. Qg = larra2ra3r......l,

eg = l4gr4-lrd_2r......1.

W. Since temma 3.3 implies In(vrr)l * o, as n + æ, then (3.20)

indicates lin ln(Vo)f = tim le,'rotoe - nrr/q)l = Q.

11 +@ n+@

The nesult foll-ows from Le¡nma 2.6. The ¡:esult for 0O follows sirnílanly.

Since üre may take any step of the sequence {arr} as a ::efenence

point, it follovús as a conollany that, fo:: all n:

ór, = f.rr*lran+2r......] Ì
). (s.22)

0r, = farrrôn_Ir......]. Ì

Following [7], we will make the definitions,

tr =2E +e +I ]n _n n Ì. (3.23)
urr=2ln+1+0n ]
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Note that these notations dÍffer from the o' and t' used in [52]' [Sg]'

THE}REII 3.4. Fon aII n,

FtfL en--¡.-f--6

À =e .+|n n-t ¡Z 19 n-lo n-2' ' ' 'o n-tl
(3.24)

on= to*J -llfr er*o

lþn+lÖn*2" " þn*t,

It is sufficient to consider the results fo:r the case n = o,

as the general nesult follows identically, except for a constant shift

of sgbscript. The pnoof fo:r this case aPPeans in detail in [9]

(Theo:rem 2). The rnethod is to exPress AO and CO as a Iinear combination

of VOr Yfr...,Yn-I, for arbitnary n > 0' Then after addition'

extnactíon of the n-coordinate, and allowing n * -¡ we obtain the nesult

for uO. The pnoof fon lg follor¿s analogously'

THEOREII 3.5. Sttppotø thaL fhe gnLd L cþrÜuzÁpond^ to ¿ome 6onn 6,

and. ytoitú. lx' ,U'| , tlru, úlx + { ,U + U'l b e4wLvd'Lwr.t I,i.e'. i't i,t

rc-Inl¿d bt1 a tuúüÍrLLotL o{ the tqpe l3"3ll Îp eaeJt o( the $ottø

)
]
)
)
)

ónlx * ,i,q + rlnl = on* * u * E,rl lx + Qnti * nnl, (ot a!À
onþn -

ce¡lain Lequencs. od poit'tt {xn,tJn}-

This is a consequence of (3.14), (3.15), and (3.16); the proof

is given in [S2] (Theorem 2.3). Recurrence relations satisfied by

a¡s {xrrYrr} are given, but we will not need these'

lle will now quote the theorem which pnovides the nequined

anithrnetic formulation of the ventices of the divided cells.

THEORETI 3.6. It {ar*1,.n} i.t the 
^|4/uence, 

oó ir4f%|J'^ connee.te-d.

wLth tlw gnid. L lenmupond,iig tt the 6onn {, and, '¡tofuú. Pl, añ



i\,'(2) =n

Ml3l =

A

4føn$^ - I 
I

^

l(o^ * 1 - r,r) (0,, * I - ur) I

l{or,-l-rr) lqn l*u,o) 
I

l(e, - 1 + )\nl (4¡r - t - ur) I

t

)
]
]
]
)
]
i
i
i
i
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(s.zs)

(3.26)

anþn -

rfl =4ry?T l(on* 1+ x,)(s,o* t *vnll

then

¡iló;?t = :o$n ,

u¡tnAp

Mn= folnl{;Pl = ín6 {t,f) i i = 1,2,3,4}-

ThÍsresult(t71,[52])foll-ov¡sfromTheorens'3r(3'14),and

(3.15), after the variab.Ies have been changed according to (3'23)'

trre u(i).". derived from Crr, Dr,, Brr, An, in that or"der'
n

Sunma::y of the nethod so far

suppose that we have some grid., associated r^rith a form f, and

point P, then we constnuct a sequence of divided cells, which yields

a sequence of intege:r pai:rs {an+I,err}, with the following propentÍes t52l'

(i) l"rrl z 2, an not constantly equal 2 (or -2) fo::

la:rge n of either sign.

ltrrl s lan+tl - z, and en has the same parity as an+r'(ii)
(T}IJ neithe:: an+I f en nor an+I - en is constantly

equal to -2 fon large n of eithen sign'

fon any n, and all n ¿ 0 (or r S c), we cannot have

an+2n+l- * en+2:r = an+2t+2 = en+2r+r = 2'

)
)
)
)
)
]
]
)
)
)
]
]
i

(iv)
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By neans of this seguence pair, Theonem 3-6 enables a calcul-

ation of Mrr, and henee M(f;P).

The question which is of irnportance now is: Given a chain pain

{an+lrerr} satisfying (3.26), does this r:níquely dete:s¡ine the sequence

of divided cells for some grid, and can r¡e evaluate M(f;P) by (3-25r?

In order to answer these questions we state the following two

theorems.

TIIE1REI\| 3.7. The fun aüvLQÁ

l*n+n+tl - z

aJLe ettTvÜLgent $on- oxl n, and'

to"4;2. . . .on*rrlï
,¿= I

t,

loo*tl-2. J,
+ -2 5 lô,tl - t,Ön¡yÞ¡+2'"'þn*n

-2
on-lan-2'"'on-n

Equ.a.Liù4 tLoLd^ in the, X.o,tt d¿wettLLon's i6 and ovr.Lttr iß oU the ao

involvel ltave coratanÍ. t'rgn.

Again it is only necessary to considen the case when n = 0'

The pnoof for the finst in each pain of::esults, mêY be found in [52];

the othe:r results follow by synnetny.

THEIREi,| 3.8. Fon a.P-L n,

l^nl .lt,.l -1 i. ß.27)
lunl .lonl -t Ì

The p::oof is a consequence of (3.26) and Theorems 3.4' 3.7'

and nay be found i¡ [52J, [5].

lonl-r. 
J=,

1lonlI



If the sequence pain {ao*lr€rr} satisfies (3.26)' then fo:r all

n, the values of 0rr, 0o, lrr' Ur, may be computed by the fonnulae (3.22)

and (3.24). Consequentlyr v¡e can find trr, rìr, f:rom (3.23). If, as

usual, the function sgn x is defíned. by the equation x.sgn x = l"l,

then we have the following for:rnulae ([5]' P. 24l-)z

sgn En = sgn (6r, + I) = -sgn 0n

sgn (Er, + orr) = sgn (Eo + on + 1) = sgn o'

sgn nn = sgB (nr, + 1) = -sgn 0r,

sgn (nr, + Ôn) = sgn (nr, + 0n + I) = sgn Ón

Consider, then, the four points, An, Bn, Cn, Drr, defined. by

(3.14). The fonmulae (3.28), (3.29) iurply that these points ane

vertices of a divided cell of the grid I of (3.15). If we then

calculate the coordinates of the foun point" Arr+1, B¡+L, Cn+I' Dn+I,

using (3.11), we obtain for ß = -Onr y = -1l0n*1, the points

(eorrtEn+t * 0rr+r * t),vvn(tn+r + 1 * Oo*r))

(eerr(E.r+I + grr+l),YYrr(nrr*r * r))

( Ê Êrr6n*r, YYrrnrr.,.1 )

(øerrtErr+I + r),tyn(în+t t orr*r)J

Ì
)
)

]
]
Ì
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( 3.28)

(3.2e)

(3.30)

)
Ì
)
Ì
)
)
Ì

Now
A/ ( On+l 0.+t - 1)

a/(oron - l)

- 0n(0n+r - t/0n+t)
on+lOn+l - r

= ßy.

Hence by (3.16), the foun points (3.30) genenate a grid which

is similan to L. In fact, by the sane argunent as before, the points
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form the vertices of a divided cell of r--his similan gnid. Thus any

sequence pair {arr*lrsn}, satisfying (3.26) deter'¡nines a gr:id r¿hose

chaín of divided cells satisfy the nelations (3.11), and this gnid is

unique, apart fronr similarity tsl (p. 242').

Any indefinite binary quadratic form may be written

f(x,y) = ¡6+T (ex + y)(x + 0Y). (3.31)

Such an f, which does not represent zeîo, is called I-tedlrceÅ (inhono-

geneously reduced) if

lel ¡1r lOl >r. (3.32)

If, in addition, we have eO < 0, then f is said to be Gotb¿'nøúrced,.

This is the classicaL fonn of neduction.

LFJ,tttA 3.6. T{ llx,Al iÁ an indøditri,te binoaq quøúØÍ/Lc {onn uln'kh

dou ywt. tLeryuuú. ze^rr, Íhu thute ¿xiÁfrs an T-neútcød {otu e4uivalen't.

to i.t.

this follows f:rom the analogous result fo:: Gauss-neduced

forrns [5], L261. The fotlowing theor:en [5] also provides a

panaì-lel with the classical ::esults.

LE!,Å!,M, 3.7. I( {Ix,Al iÁ yttupottt)nytrtL tt a {oturr wifh fu'teana,L

eie;lioiuf^ atd dou ytot tlep,L*etf zeJu, lhu lhest?. üLø onÎ,y a (ini.te

yu.ûlbQJL o{ I-trcfuted {omø e4wLvoLen't tn ólx'1yl .

Suppose that Ìre wish to evaluate the inhomogeneous nininr:m

of a for'¡n which does not nepnesent zeno. By Lenma 3.6, thene is an

I-redueed forrn equivalent to itr sãY fo, and furthen¡r¡ore M(f) = M(fo).

Now, for the forrn fO, and any point P, thene corresponds a grid, with

its chain of divided. cel1s and associated sequence {ao*rrerr};
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Theonen 3.6 then enables us to calcu1ate M(f;P). If

fo(x,Y) = ¡;¡}- (oox + Y)(x + 0oY),

and we take any semi-regular ex¡ransion 0O = [a'ra-1'....] and

0O = [ar,arr....J (of r.rhich thene are uncountably nany), then using

the ruLes (3.26) we may choose a companíon sequence {err}. This chain

pain will cornespond to tbe chain of divided cel-Is of a grid associated

with fO, and some point Po. Hence, as in [5J,

M(f) = sup M(fo;P)
P

= sap u( {arr*1,err} ) ,

where the latter suPremum is extended ove:r all possible chain pains

associated v¡ith the fonn fO, in the above way.

As we have afneady seen, there ane infinitely many fonn chains

{f } of l-reduced fonms, aII equivalent to a given fonn, f. In contnast
n

to the case of Gauss-reduction, hre can no longer guarantee that eveny

I-ned,uced form equivalent to fO, will bel-ong to one of these chains.

In the above context, {ao} is ca}Ied. an a-chain Ol the lotîn

6, {nm the 6om ó0. The pnobiem of determÍning all the form chains

of the fonm f, and all the l-neduced fonms equivalent to it, wi1l be

discussed later in this chaPter.

5. Bounds on the value of l'l(f;P)

lüe prove the following extension of [5] (temrna 3.2).

THEOREI.I 3.9. Fon antl ehnin {^o*,,.n}, da.tfu\qhq 13.26l' ,

Ul6;Pl < iÁn< dnm¡atl(tn - l-) (On - t)1, l(on + tlirþn+ lll,

lon{6,n t ur}1, l(en t lnlool}. (3.34)



44

W. As a conseguence of (3.27)' ar:- the fou¡ tenms (0., * I t Àn)

have the same sign, as do the four terms (0rr t l t urr). (3'35)

From Theonem 3.6 we have

M- = min tt:t); i = 1,2,3,4]. (3'36)

Notr,

M
n s rnln {t:t),t:",

. ¡r(1)u( 2)yYz 
.n

Substitute fi:orn (3.25), anC use the inequality between the geometric

and anithmetic means, to give

)( -I+ %

( 3.37)

+Ì- 0

s

4

A( - 1)(
4 0 0n

onôn - f
-l_- +I-M<n

As Em=Íll(or, - Àr,){r,!.

the other five conponents of (3.34) are obtained similanly,

fno¡n different painings of the tli).n

The following statement of Minkowskirs theonem is a corrcllary.

THEOREIÁ 3.10, 16 6 i's an inde{inLtø, b,írLüq clunlna.tie $own wtrúclt

dou twt. ,Le+heJsent z*lto, Íhat

þl{d} < k^.

PP<00F. Fon any l-:reduced form fo equivalent to f, anC any assoc-

iated chain pair {annlrtn}, one of 0nôr, t 0, or 0rrÔ, ' 0 is true

for each n. In the fi::st case, by the first two altennatives of (3.34),

using Lernma 2.7,

-'rì
l"f < k¡.
n -1n

In the other case, by one of the thind alternatives in (S.S+¡'
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^
(

+eôn'n4M<n- < ,4L.

In Chapten VIr, we will further extend Theorem 3.9 to deal

with a more conplicated situation. The following resuLt r¡ilI be used

sevenal tímes throughout this thesis.

THEOREII 3.11. Suppo.se lJtaÌ. we oJtø ?!ïtÃidüittg chafu WirlÁ wi.tlt the

p@pei,tu lJuL, {on a.l}- n,

lenl 'A'1, lorl '8'1.
Suppore fr,W tuch ehafuU luvø a eÃwmon Á?gmuú., tlu.t a4nøU {on at

Lentt 2z+2 etn^eaLLLvø va.Lte's o{ Íhe eJú,¡rL paþt In lüS¿1. Thrcn,

i6 F iÁ anA lçixødl onø o( fhe doø a,Ltetua,LLvu |13.25!. at tþ'e cent'u"L

atep o{ the envnnon tegrnent, w¿ hLavt.,

F = F, * Otll ,

u¡hüe the Wíne id ueÅ to d,uttngui¡h thø vaninÃU ,ín îhe frto eha,ítU,

and the ctoruLanL inp%ed bq thø o¡dU ,ufÃli.on i.a a $wetion o$ A and

B onLg.

W. tle nay suppose, without loss of genenality, that the conunon

chain segment is

("-*i'e-r+i--l_), i = 0,1r..... '2r'f1. 
(3.38)

Then 0o = [a, ,d2r.... rêo:ôo] = ffi '

and 0f = [ar, a2,....,ao,Ôf1 = ff*ffi ,

since, by (2.14), the definitions of Por 9r,, depend only on the values

^L, u2'......, an. Hence (2.fs) and Leruna 2.6 (i) irnply
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loo - o¿l = =O(
17 ) (3.3e)

( 3.40)

o? 9n-1 % n - q"-r
l1

Similanly

and since lqlz ",
luo-uilsl.rl

loo-efil =o(þ).

+...o..*lt'I I

Let n = lr/2), (integer pant notatÍon); then by tenrma 2'8,

lä,
rl
ril 0n

I * ot!1.ln

Now, the finst ter:m on the :right hand side of this inequalíty is
l

clearty O(þ), as a result of (3.26) and (3.39). By a sin¡rle

inductive argunent, it fottows that the rernaÍning terTns are afso O(þ).

Consequently,

luo - uöl = orll = o(å). (3'41)

SiniJ-anly,

lro-ril =o(i).
Now, F is of the fonn r = iqffþ

to (3.42),

*o = *ö + ot|),

yo = Yå + ot|).

3.39) and the a.bove r:esu]ts,

= Ilqo? - ogtål + orll
loo0o - rl

= o(!).
l1

Note that at each step of the argument, the constant inplied by the

O notation dePends onlY on A and B.

t

( 3.42 )

whene, by (3.39)

Using (3.26), (3.27)' (

lr - r'¡
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The following theonem will often enabLe much chain exclusion

to be <Ione, h'ithout excessive splitting of cases.

THEÌREM 3.12. Tl+ø va,Ùrc ol ltl(6;Pl ¡etmitlÁ unl-llavlqed a-dtett fhø

$oLtnwíng e-Lanentattu ehtún opüLa'tiotl^ on the elw.Ln WUL {an+y,en}i

lil nevauLng thø chain ytain abou't 40ffi8' poLvtÍ; i.e'. {on âomø m,

fuúueho-ngø 6on a.I-?- n, la^*¡,.n*n_ll and (o^-orlrrm-zl .

l,ül tøpkte,Lvrg tlrc chaLn ynin bg {an*1,-.,r}.

liiil neyila.cing the eJtaín ¡tún bU {-cL¡¿+7,1-1}^*Lrn}, 6orL a {ixed.

ínfo4ut m.

The pr,oof is given in [5]. In Chapter: VII, we r¡ill funthen

examine this result, in the light of a slightly different problem.

6. Semi-negulan expansions for equivalent quadratic innationals

tte r¡iIl fol.Low the notation of [52], [53], and u¡:ite the

integnal, unimodular linear tnansformation as the matnix,

( 3.43 )

r¡here ps - rq - tli if the substitution

grves

then we wnite

¡¡=pX+qY

Y=rX+sY
f (x,y) = F(X,Y),

F = rr = ¡Þ ql . (3.44)
LT SJ

Pitman [53] (p. 92) has shown, by examples, that it is not

always possible to obtain a1t the l-reduced fonms equivalent to f by

taking aII the fonms that occur in the chains f:rom f. Nor is it

:l
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ahrays possible to obtain aII chains of equivalent fo¡ms of f' by

taking al-I chains from some one fonm, even in the case when it is a

Gauss-reduced fonn, with integnal coeffieients. The following :result

gives ansllens to some of the questions that arise fnom this discussion.

THEOREI{ 3.13. SupqÃe. { i's anE l-neduced {otu (giv¿vl, ôa4, bq l3.31ll '
and g anq Gatu¿-tteútc.eÅ dotur, ywpe'nLq ec¡uivaleni. ln ('; i,e.

glx,gl =;6fl-¡(ox+ tlllx+u'Ul , (3'4s)

uti,th r¡ < -.1 , ond rrr' > l. Then evW¡ $oru clain 6t.an I conta'ítU

al. Lesst one oó thø lhnee {onm

I-l rl l- l o-le, nLo i), slL-i i)- (3.46)

The proof is given in both [52], [53].

THEOREM 3.14. Id thø ó and g in thø above thennøn lnvø intøgnnL

coe:{ßic,Lu4Í6, then evuu! (1otu o-lnín óMflt ó contn,íttt .ínlirti.tel¡J wßng

oca!üLwtcQrs o( a donm od the- þuíßd 13.461 , md. the dittance' be'û,il¿ul

thuø oarrJúLence.^ Ívwt necumnilq tlp ¿omø doml .u bowdei.

'T<00F. 
(sketch) Thene exists a tnansformation T, cf the $rpe (3.43)'

with ps - qr = lr such that f = gT. If f and g are given by (3.31)

and (3.45) respectiveì-y, then as in [26] (p. 99), therrrootsil of f and

g are nelated by

6=P-+r. ô=sol +q. (3.42)
qûJ + s r0J' + P

In the p:roof of Theo:rem 3.13, two types of T ane distinguished,

those r¡hich irnply that any chain }eads for:ward, and those which imply any

chain leads backv¡ards, to one of the triad (3.46). There are only

a finite number of forms equivalent to f (Lenma 3'7)' and' the existence
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of the fundamental auto¡¡rcrph of f , f26f, irnplies the existence of a T

of both types mentioned. The nesuit follor¿s frcrn this. It is Theonem 2

of [sa].

Suppose rfr is an anbitna::y quadratic irrational $¡itb lúl , f ,

then we are intenested in the complete quotients encountened in an

arbitrarry seni-regular expansion of it. The following nesult gives

a semi-:regula:r counterpart to Letw' 2.2.

THE}REM 3.15. Suppote p, lVl ' l, b 0, qu,4üß.tiß. inarinnnl, Md

u iÅ a neducei ntmbüL e4u*vaLe*t to i,t læe l2.Sll, then enA Áanl-

,Legu,UJL exryÅ^i.on ct| V lß'5 a^ a. cnrnpLe.tø qrctietf onø o{ t'he nwlbuLy

ë, o,+1, +;, (3.48)

o,L tha,üL nego'LLvu.

u?.(00f . The existence of such an a follows from the well-kr¡om nesult

(intfunated in the proof of Lenuna 3.6)) that to everSr indefinite binary

quadratie form, there exists a Gauss-reduced form equivalent to it'

I{e nay assume that s > f , by rnaking the tr.ansformation l-* Î-l ,
Lu -rl

if necessar5l.

Now, by Theorem 2.I, any semi-regulan expansion of rþ leads

forr.rand to a complete guotient, say o, such that 16l < 1. If g = I/T,

¡¡ = f/ã, and of = cr then the foIIns f and g given by (3.31) and (3.45)

:respectively, ane equivalent, and both are multiples of integnal forms'

suppose that f is pnopenly equival-ent to g, then since g is

Gauss-reduced., we may apply Theo:rem 3.13, r*hich implies that every

form chain from f, contains at least one of the tniad (3.46). But

by Theoneur 3.14, any ehain in fact leads fo:rwand to one of these forms'
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Hence, by (3.t+7), any seni-regular exPansion of $r(and thus Ú), leads

to cne of t¡r, (d, I I, or *, , which is the nequined result.

rf f is impnope:rly equivalent tc g, then -[å -i] is properlv

equivalent to g, and the same argunent impties that evelT¡ expansion

of (-q) leads fo:rv¡ard to one of the tniad (3.48) as a complete quotient.

The :lesult again follows since, if Ô = [ul'....rarrr0rrJ' then

-0 = [-a1r.... r-arrr-0rrJ.
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CHAEITER IV

FORI.TJLATION OF THE MI)GD FORil PROBLEM

I. Outline of the rnethod

In this chapter we v¡iIl develop the appa::atus necessary to solve

the nixed form problem enunciated. in Chapter I. Suppose that (ex + y)

and (x + Oy) are two linear forrns that do not rePresent zero (0 and 6

a¡e therefore ir¡:atÍonaf), then our aim v¡ill be to evaluate the constant

k, defined by

sup I inr 
I

o,ó,c (x,Y)l(o,o)l
0x+ )(x + +0,

e0-t )=t (4.1)

whene c is neal and non-zero, and xry are integral'

I^le may suppose without loss of gener:a1ity that thene do not

exist integers xt, Yt, such that xt + Ôyr + c - Qt'el-se the infimun

in (4.1) is clearly zero2 a trivial case.

The method used by Davenport [2I], and Kanagasabapathy [4I],

[42], involved an examination of three particulan va.Iues taken by the

mixed fo¡rn. Assuining that these values Ì{ene greater than kr (> k)'

for alt 0, 0, o, they obtained contradictions. while this raethod

l
has yielded a cLose approximation to k (kt = ¡qfu = 0'2348...),

it is not SuitabLe for evaluating the best possí5le constant.

Or:r appnoach wiII follow similar lines to that of Chapten III.

Fon each nixed form we wil-i define a grid, and constnuct a doubly

infinite chain of cells, the vertices of r'¡hich will suppty us with

a suitable seguence of points at which we may evaluate the pnoducts

of the coordinates.
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2. P-gnids and p-divided cells

suppose that we have an I-nedueed form of determinant 1, and

a non-zero r:ea1 number a. Define, fo:: such a fonm f,
(ox + )(x + +a (4.2 )e0-r

r¡here the infimum Ís extended over integnal pairs (xry), not the o:rigin.

Fon each such f and a,, ?fe may define a grid L as follows.

Suppose ß > o, T > o. and Sv = ffi¡ , then Put

6 = B(ox + y) )
L: ) , (4'3)

n=y(x+öy+s) ]

¡rhe¡:e x, y take all integral values. L has unit determinant. If

we assume that x + 0y + c[ does not represent zerc' then it follows

that L is a grid with:

(i) onJ-y the point (E'n) = (0rYa) on the axes'

(ii) no lattice line paralle} to an axis (since 0, S ane imational).

tfe wiLl call such a set of points a p-gnLd. Note that these p-gnids

we::e excluded f:ro¡n the considerations of Chapter III. If ABCD is a

cell of a p-grid, and if it has one ventex on an axis, and the other:

three ventices in diffenent open quadnants, then we r¡í11 caII ABCD

a pseudo-divided ceII, or a p'd'Lvid-ed co{Ì-

I{e wil-I now sketch the proof of an analogous result to Theonem 3.I.

AJ-though we will not explicitly use thÍs resul-t, it is of interest.

THEIREM 4.1. Evutty þ,w d'ímevaiona'L p-gbLd hat ai Len'tt ane

p-d,Lvidød cel.L.

PR00F. By s¡nnmetr.y, lre may suppose that the point on the axis is

M(f;e) = inf 
I(x,y)l(o,o) |
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P(Or¡O), where t0.0. l{ow, in any bor¡nded' region of the plane, there

is only a finite number of gnid points; hence there exists a positive
except P,

nunber K, such that thene ane no g:rid points,.in the negion R, defined

by the inequalities

R: lEl . Kr ln - nol . lnol.

By Minkowski I s fi¡¡rdamental theorem in the geometry of nr¡mbens , if K

is íncreased continuousJ-yo then there is some value, sðY K = tr' for

which there is a gr:id point Q on the borrndany of R, but not within it'

Clearly Q cannot lie on the line n = 2rì0, else its neflection in P

(i.e. tbe point 2P - Q) lies on the €-axis, which is impossible'

Hence ã(Q) = €r, n(Q) = Df, where 2n0 ' nI ' 0.

suppose finst that 2no. îl.1or then QP is a lattice step,

and thene exist lattice lines panalle} to it, egual distances apant.

If Z is the next lattice line parallel to QP on the onigin side, then

the onigin must Iie between QP andZ; for if tot, L would contain a

Iine segment of length greater than QP, with no g:rid points on it.

Nov¡ Z contains two gnid points with lgl . ltfl, and since thene are

no points of I in R, then there is a lattice step TU on 4, with T and

U in the first and second quadrants. Then P, Q, T, U, are the vertices

of a p-divid.ed cell-.

If, howeven, nO . 11 . O, then neplace Q by Qt, its reflection

in P, and the proof foflows as before.

ithm3. The

Ìle refen to a result by Davenport [zr] (lernma 2),r¡hich will-
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enable us to assume the existence of a p-divided cell of a pa:rticular

shape in a p-g:rid.

LEI,I¡IA 4.1. I$ X and V atte. lwrmgenenu Xinun $otuu o( uni't delaÅulin-

aJ'Lt, wlyich do not,Le+rLeÁeJIf. z?Jlo lotL inte4etU, anl c;'S ang vun-zs)1o

unÁ¡An¿., thøyt fhUre uilLt an itr'tegrcL uwÍnoùúslt ltutt't(otorcLínn

into thø nut vanítb|et x, u, wlví-cll ttu:u(onu (x + 
"¡v 

into

t|x + øu - elfx -,þal
e+ô ,

ufuetø e > l, 0 . þ. 1, I < a < o.

c0R0t-tARv. Clúlgi"ng lhe vwtoi,bn to be conÃ.t'6tafi. wi.th l4.ll, we

neq conui.d?i, túti-thotú. bAÁ o{ gevlaloü'tA, lhø dotuu

i{ox + Allx+ þA + el }
)
)'

(4.4)

whe¡ø g>1, o.-l . -0<as-1. Ì

This is a¡r furnediate consequence of Lern¡na 4.1, aften replacing

0, 0, and c¡ by -1/e, 0, anê- -c lesPectively. tle may also suppose

that a < -1; for if c = -1r then (x,Y) = (1r0) leduces the inhomo-

geneous facton to zero, which contnadicts one of oun assumptions'

Putting er =¡g6fr, 1, for B >0¡ Y> 0, Ietus considerthe

p-gníd L, defined by (a.3), unden the conditions (4'4)' If

co = (oe,y(l + e)), ro = (o,vo) l
oo = (ß(1 + o),v(r + a + ç)), oo = (ß,v(0 + o)) ì' 

(4's)

then AoBoCoDo is a p-divided cell, in which AoDo has negative slope.

For a coruesponding f and c, it is c1ea.n that

M(f;a) = inf tlEnl; (g,n) is a point of L, not Bo)' (4'6)

using a sinila:r method to that of chapter III, we will now
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construct a doubly infinite sequence of divided and p-dÍvided cells,

and prove that the infímunr in (a.6) need only be taken oven those gríd

points which ane ventices of cel1s i'n this chain

Ìtre define the áfrcc¿ó 60rc of AOBOCODO in exactly the same s¡ay

as (3.9). It follows f:rom the geometry of the p-g:ríd that AtBtCtDl

will be a genuine divided cell, and that the const:ruction yields an

integer pain (h.rk'), which has both components negative, inplying

.1 = ho + ko < o. (4'7)

FronthegenuinedividedceJ.lA'B'.lDl,denotedbyS'r}'ecall

constnuct its successor, Sr, also a genuine divided cell; and so on'

giving::ise to a one-sided chain of divided celLs {So}, n Z 1, and a

sequence of integer pairs {hn,kn}¡ n ì 0, satisfying the equations

(3.11). No h' on k' will be infinite, sÍnce we ane supposÍng 0 and

ö to be iruational.

Now we can constnuct a cel1 S-r: which we will call the

prulexelAlrL of SO, by using the sane fo¡'mat Process described in Chapten

III, considening Bo to be that ventex of so which is in the for¡rth

quadnant. Denote the lattice step of length ICODOI on the line CODO,

intersecting the positive n-axis, by B-rC-ti take A-'D-I to be the

lattice step of the same iength on the line AOBO, such that A-t is in

the open thind quadrant, and D-t coincides with Bo' Then A-rB-tC-tD-t

is a p-divid.ed ceII, and the formulae (3.I1) define the integen pair

h-., , k-.,. CleanlY h-I = 1'
.I

similanly, by considening D_, to be the repnesentative of the

fou:rth quadrant, we can define the p-divided cell s_, to be that cell
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fon r¡hieh S-, is the successor. In this case B-, = D-I = BO' and

k_2 = I. '¡le can repeat this process indefinitely, defining the

sequeDce of p-divided cells ts-Ì, n < 0. Note that so is the only

mer¡ben of this seguence for: r'¡hich ArrDn has negative slope' rde have

2¡ D2n-1 = B2n-z for all n S O. In fact , the 1abel1ing of ve:r-tices

is such that a given point (say Ar.) alte:rnates in opposite quadnants

as n decreases; thus A2r, i= in the first quadrant "td A2n-I is in

the third quadnant fon all negative n. This is a consequence of the

fact that the point BO is a vertex of each p-di'rided cell in {Sn}, and

h2rr-t = k2rr-2 = 1' (n s o) ' 
(r+' 8)

implyirrg

"r, = hr_r + krr_, > o, (n s o). (4.9)

As in chapter III, we will be interested in what :rest::ictions

are irnposed on the doubly infinite sequence {horkri. lle consider t}¡o

cases sepanatelY.

Case 1: n < 0 The equations (4.8), (4.9), with the notation (3'l-3)'

imply that, for n < 0,

.r, = (-l)n(an+r - 2). (4.r0)

This result is contrar¡r to (3.26) (iv), and arises because of the

existence of a gnid point on an axis.

Suppose that the eguations

h2.r=k2rr-r=1 (4'11)

holti, in addition to (4.8), fo: aII n =.0 4 0. Then, as in the

pnoof of Lermra 3.2 ([9], Lemma 1), and from the geonetry of the

algorithn (see figure I), we have for all n 5 nO'
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D2n = B2rr-r = Ð2n. 2 = D' saY'

D is in the second quadrant; suPpose Pn is the ventex of Sn in the

fi:rst quadrant. Then for aLl tt s n0, the triangle DBoPn has constant

anea (equal to l."t = 4), and. consequently the Pr, lie in a bounded negion

of the first quadrant. Thus there are only a finite number of

diffenent points Prr, none of which lie on the n-axis. By the constnuct-

ion of the cells, we have for aÌl n 5 nO'

trr-D=Pn+l-Boi

thus in the usual notation, since E(80) = 0 and E(Pn).g(D) < 0,

t(Prr) < t(Pn+I),

v¡hich contnadiets the fact that thene a:re only a finite nurnben of

diffenent Prr, ^ f to. llence (4.11) cannot hoid'

Thus fon this case 1, we have ar, >- 2, î S O, with strict in-

equality infinitely often. Also, (4.8) iinplies that the condition

(3.26) (ii) is still val-id fon negative n'

Case2:nl0 {Srr}, n > 0, is a sequence of genuine divided cells,

and the proof Lemma 1, [9], is valid, since there are no grid points

on the ã-axis.

combining these two cases we state the following lenna.

LEI\ï|'LA 4.2. U, 6 iÁ an inC,zdiwí'tø binanq c¡uadna,t'Le dotut, and a. att!

tety non-zuto tuntbett, bofJt dalt¿{Aing the. c.cndi-t-íovw 14.41, then thUte

co,t)LeÁWnd6 to thqn a p-grLLd, aÁ6oeiß.t¿d wi,th u)h'Lc.!L thenø i's a doubLq

in$iwi.te6øquønLe- o( p-d,Lvidød and d,Lvid¿d cø[,[Jt, geruln'.titlg fhø ínfe4at

pL,í)L ,serluence {-an+.l,rnl. Fur,flxüffiane, .tlLe, {ol.f,ov*íng covldi-Íiûn^ a.tLø

aaLísdLed:



lLl lcnl >- 2, and onil nnt' es*tatûhg qual to 2 bn'21

don X-asqe tt o( ei.then tígtt. 'In {ae-t, on' 2 don o"I't'

n s 0, ond a, < 0.

läl |rnf r lay¡*ll - 2, and en\ws Íhø dame povi'tu M en+l'

Fon n < o, ,n= (-t)'tlon*l - 2l-

li.ül nøithut &n*I * ,n vlorl en+l - .n fu eilatanllq e(aui"['

tß -2 {ot f.a4ø n o{ üfltu- aþn.

{iul {on anq m, thø n.e-ln"LLon

em+2r'+1 * tm*Ult= &m+2L+2 - em+Ztt+l = 2'

dou not twLd {on oI} n > 0; no'L dou i't lwld {on

a.(2 n s 0, í{ n i,t øttøYt.

These results cot?respond to those of (3.26) in the genenal

divided cell method. Lemma 3.3 has its counterPart in the following:

LEM¡L 4.3. U¿iry the nßtl.Íinn l3.l2l ,

n(U,rl, n(Anl, nlBn)o n{C,.} , nlÐnl, (4'r3)

Elu--nl , glÃ-nl , EIB-nl , Elc-nl , EW -nl , (4'14)

eaeJt app.+oac.h zeJto, o¿5 n + æ. Aú n * --, thøq aÌ'[. tæbe attbillttttrÅ't'q

Latye valuu lpoti,LLvø on nega,tiv¿1 , wi'th tlrc zxcepLion o{ thnt veltfet

od the p-d'Lvi-død ce-Xbt whieh i-t (íxød on Íhrc'n'a*í'6'

ry00f. Since {Sn}, n > 0, are genuine divided cells, the results

fon positive subscripts follow identicalty with Lenma 2 of [9]' For

n S 0, let R, and Q' be the vertices of S' in the second and third

quadrants nesPective1Y. Then

le (yol [ = lEtqnl l; (4'1s)

henee fnom (3.12), as in Lemma 2 of [9], if we can prove that l(Qn) + O

)
)
Ì
]
Ì
)
)
]
)
]
]
]
)
)
]
)
]
)
]
]
]
)
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(4.12)
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as n + -o, the colTlplete result holds. Now

Ie (o,r) | = Iã(Qt n, - R,*r) |

' It(Qrr*r - Bo)l = le(orr*rll'

It is easily seen that equation (3.IS) still holds for this pnoblem

(since the algorithm is described by the formulae (3.11) for all n),

and so

larr*rE(Q,r)l s lq(Qn+r)i + lerorr-rll

. lt(Qrr*r)l + le(o'll,

implying, for all n < 0, lt(Qn)l . çft letOrr*rll.

Now since by (a.f2) (i), an : 3 for infinitely many negative n,

lrtco>l . ule{0,,*.)1,

for infinitety nnny negative n; this inplies the result.

The f inal asse:rtion of the lemma fo:: n ) *, follov¡s fon

(4.14) in an identical manner to Leuma 2.3 of [52]. Let tPo] be

the sequence of ventices in one of the first, second on thind guadrants,

then if ln(Prr)l aoes not become airbitnanily lange as n + -ær thene

exists a constant K, such that for aI1 n < 0, the points Pr, lie within

the square l¿l < K, lnl < K. Now, this impl-ies that thene are only

a finite number of dÍfferent Prr, none of which lie on the axes, and

this cont:radicts the fact that t(Pn) + 0 as 11 + -æ. This cornpletes

the len¡na.

we will now show that the ve::tices of the sequence of cells

{S }. provide a suitable set of g::id points ove:r which the infimi¡n in'n--
(4.6) -may be takeni



60.

THE?RE\,i 4.2. Sunpoez thøt thz^ø i's a, poitr.t o{ L in'the'nggiøn.'R

R: len¡ .nlt E/o, (4.16)

ihc-yl tþLelL¿ i¿ a vett¿x o[ a yt-d"Lvåd¿d on divLdeÅ cø12. o$ fJte cho.ín

{s/,}, ín R.

W. As we have pneviously noted, the proof of the cornesponding

nesult (Theórem 3.3) rested on the fact that the triangle formed by the

axes and the line joining different consecutive vertices of divided

cells contained no point of I in its intenion. Each quadrant was

considened separ:ately. Since al-1 the requined conditions are satis-

fied in the finst and second quadnants, the nesult of the theorem

follows for the upper half-plane. Th.at is, if P - P(tOrnO) is a

point of I in the upper half-plane, and leonol . r, then the:re is a

vertex of a celI of {Srr}, sây Q = Q(tr,nr) with lernrl . *.

Suppose, howeven, that P(tgrno) is in R, and in the lowen half-

prane. rf n0 < n(80), then the reflection of P in Bo (say, p'(-86,n2))

is also in R, since

leonri. leonol.".
Thus we need considen only those P for which n(80) ' n0 ' 0.

Now the::e is no point of L in the nectangle n(BO) < D < 0,

6(CO) < E < 0, and so we need only considen that pant of the thind

quadrant fon which E < E(CO), n(BO) < r¡ < 0. If {Pn}, r à 0, is the

seguence of verti-ces of divided ceLls of iSrrÌ in the third quadrant, then

it follolvs, as before, that there is no point of L in the regíon

bounded by the E-axis, the line n = n(CO), and the infinite polygonaÌ

curve which is the ioin of PO, Fl, P2,.... Thus by the stnict convexity
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of the negion len¡ > m in the thi:rd quadnantr aDY negion R of the

type (4.16), r¡hicb contains a point of L, also contains a point Prr, for

some n.

(4.17 )

Simila:r1y the theorem holds -i-n the founth quad::ant, since thene

arenopointsof L inthenectangle 0< ã< E(ts')' n(Bo) < ¡ < 0'

CORILLAR|. Utø tnßA ,LepLecø 14.61 bli

¡J(6;al = ¡st| tlgnl;(E,nl tt ve¡rfex o'Á Sn, don aome n, and E / 0I'

4. Vertices of P-dívided celLs

lle now obtain the arithrnetic fo::mulation fon the vertices of the

chain of cells {Sn}. Ðerrote these vertices, as in (3'14)' by

cr, = (ßr,to,Yrrn¡)

ar, = (Brr(En + en),Yrr(nr, + r))

or, = [ßrr(tn + 1),Yrr(rr, + 0rr))

Ao = (ßn(En + or, + l)rYr,(nn + 1+ +rr))

and this uniquely defines, for all n, the ßrr, Yrr, trr, Dn, 0rr'0rr'

Note. For n = 0, these fo¡rnulae coineide with (4.5), when we put

EO = -00, 0O = -e, 00 = -Ô, rìg = -(I + c), ßO = ß, Yg = -Y.

The p-g:rid is then described, fo:r each n, by

E = ßrr(tr, + grrx + Y) i
Ì (4.18)Lt 

n=Yn(nn**+ónY) ]

fo:r alÌ integral values of x, y; and since À = 1,

I (4.1e)
I or,vrr l eó -1n'n

)
Ì
)
)
l
Ì
)

fon V-n

I.le have already noted that the equation (3.18) is still valid,

defined. by (3.]2). As in the previous chapter, the sequences
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tprrÌ, terri may be defined by (3.20), and the recunnence relations

(3.21) apply, indieating that the Urr/O' are convergents of serni-regulan

continued fnactions. Since Lemma 4'.3 is valíd, we have, following

Lemma 3.5 and its corollary,

ôr, = ["rr*rran+2r. ... ] ]
). (4.20)

or, = farrr.rr*l_r..'...1 ]

Recall the following definitions (3.23).

I =2E +0 +] )n -n n ]. (4.2I)
þrr=2nr,+1+on )

Now, since the recurnence nelations (3.1-1) satisfied by the ventices

of the cells are the same fon the p-grids of this chapten, neference to

the proof of Theonern 3.4 neadily confirrns that the nesult stíIl hold's

for the rnodified algorithm. Hence

THEIREM 4.3. Fot øLL n,

LE¡'ÁM/. 4.4.

rn='*-r- )rffi'
, î l-llL.n+ttrn= tn'a!1ffi'

1'6 {on*l,e*} taLí-tlq tht eind^.ti-ovt6 14.12l. , thwt

{on n s 0, xn = l-If'' ,u* - 11, G.22)

{onn>0, lrrl.leol -1, (4.23)

dot aLL n, lunl .lOrl - 1. (4.24)

00f . Notice that (1t.22) contradicts its counterpa:rt ß.27 ), and

this cnystallizes the basic difference betv¡een the genenal forrnulation

of the pnoblem, and the nodification considered in this chapten.
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The conditions (4.12) an<i (s.20) ane identical fon the case

n + æi consequently (a.2a) fol-Lows as in Theo:rems 3.7, 3.8. For"

n < o, howeven, (4.I2) (ii) irqplies

."_.Ì = (-1)n-1lrr,_r_l .

But the a_ are all positive fon non-positive n, and hence we may aPPIy
n

Theorem 3.7;

= (-r)n-l(an ,, -,îrffi,
= (-l-)o-](en - 1).

The:re remains only the inequality {4.23). This follows Theorems

3.7, 3.8, sinee fo:r n > 0, the sequer¡ce ên, ên_l , èn_2:-.....

cannot have constant sign (tr'0)' and since for all r'

Irol<1."+rl-2.
THEOREIú 4.4. Suppodø tlla.t {a-n+,,.n} ,sa.t'Á{Lu l4.l2l and @túLQÅ-

pond,S to th¿ {:onn ú and thø nuL non-zuto runtbüL o., ae.'LÃ[ging .4,4l,;

Lú,

lLl {on n > l, Mn = l,l,rl$;al = in{ ífu|

i"t dø(Lneci bq 13.25l'.

läl {ot n = 0, M0 = ¡{o({,'cr) = ín6 {rtrl; í = 1,2,3},'ahatø

t;t) = T¡6þfuoo{ ióol - t * uo}

,y, = (uo - l)(lOol * I - uol!.llagögi + t't

1

co

). =e -+ tn n--L u
r=

^tl3l ="'0

(-r)"

zlle0þ0¡ + Il

1en-J-en-2. 
. . .0o-o

íil
,1

i í = 1,2,3,+t, wlwæUf)

tlorl - ? - uol

i
]
Ì
]
]
]
Ì
)

(4.2s)



'(i,íil 
don n < 0, l"ln= Mnld;al = in{t,n::l; i = 1,2,3}, whue

tlt) = +af 'nlþn 
+ t + l-tln*t vnl

r|'l = Tre-l-nþTT {'" - 1l{ôn - | + (-llnun}

ultl = W-fu lçn + t + l-1 lnvnl

)
]
]
]
)
i
)
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(4.2s) ,

w. (i) The resul-t fo:: this case holds analogously to Theorem

3.6rtakingA=1.

(ii) For n = O, equation (4.22) inÐLies ÀO = | - 00, from which follovrs

ãO + eO = 0: and so by (4.17), E(nO) = O- The nesult follolus by

evaluating the products of the coordinates at the remaining three vent-

ices of (4.17), using the forr¡ulae (4.2I) and (+.22\.

(iii) If vre sr:.bstitute the fonmu.Ia fon Àrr, (4.22r, in the tnansfor"med

equations (g.ZS) (which are of course stj.ll vatiC fon p-grids), then

we obtain the nequined result by considering the two cases' n even or

odd.

The assertion of the theorem follows fi:om the conollary to

Then we. løvø

li{ = lr{ l6;al = ín6 ¡.{ .lt
n

of the cell S
n

Summa::y of the method so fai:

Given any forn f which does not nepresent zeror and an o

satisfying (4.4), then by constructing the chain of cel-ls {Sn} of an

associated. p-gnid L, a sequence pair of intege"" {.rr*lrerr}, satisfying

Theorem 4.2, since the t"t(i) u"" values of lgnl, where (g,n) is a vertex
n



(4.i2), is obtained. Theorern 4.4 then enables the evaluation of

I't(f ;a). l[e wí]-l- now show that the conve:¡se nesult is true.

Suppcse that we have a dor:bly infinite seguence pain {arr*lren},

satisfying the conditions (4.12). We may define 0rr, .0r, by (a.20), and

Àrr, Ur, by the conresPonding expressions in Theonen 4'3, and consequent-

ly uniquely define Err, l' by the relations (4.21)'

Consider the for:r points A. Br, Crr, Drr, defined by (4'17)'

In the same nay to that indicated in the pnevious chapter, the vaLues

of h and k enable us to compute the coordinates of the four points
nn

An+1, Bn+', Cn+J, Dn+', fron the fotrlnulae (3.r1). These ane given by

(3.30).

Whenever n > 0, (4.23) and (4.24) imply the validity of the

relations (3.28) and. (3.29). Consequently Âr, Brr, Crr, Drr, and

An+', Bn+l-, Cn+1, Dn+l, are vertices of divided ce]ls of similan gnids'

Fon n < 0, (4.24) implies the valÍdity of equations (3.29),

and (4.22) irnplies

65.

(4.26)En

tn

+0 0,
n

+ L = 0r

for n even,

fon n odd.

i
)
)

Since 0rr, 0, 0r, > O, it foll-ows that both Arr, Brr, Cn, Drr, and

An+', Bn+I, Cn+I, Dn+I, are the foun vertices of p-divide{ cells in

sinílan p-gnids.

If n = 0, then EO * 0O = 0 implies that BO is on the ¡-axis

c D are the vertices of a p-divided ce11 of some P-0' 0tBo'and Ao'

grid. Since lÀr_l . ler[ - r, lurl . lOrl - 1, then both (3.2e) and

D81'cl'(3.29) ho1d, and henee Arr I , are vertices of a genuine
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dívided cell fron a simila:n P-g::id.

Thus, the chain pair tarr*l-rtn] colrresponds to a chain {Srr} of

p-divided and d.ivided ceiLs f::om some p-grid L, which is unique apant

fnom sinilarity. Hence to every f, and cl satÍsfying (4.4), there

corresponds an integen chain pai:: {arrlrr€rr}, satisfying (a'r2), and

convensely. Fcr convenience, the chain pair will be displayed as

follows:

.-2, .-L, uO I .t, ã2, a3.'.'' 
(4.27)

I

. . . . . Ê_3' ê-2, "-I I 
tO, El' e2" ' "

The vertical line (called f¡e cznth¿ of the chaín) separates the

homogeneous and the inhomogeneous chanacten of the chain, in a sense

that will be amPtifíed l-ater.

5. A usefu.l- lenrna

Ite first note that the upper bounds fon Mn which ane given in

Theorem 3.9 ane still valid when n > 1. Theorem 3.I0 shows that the k

defíned in (4.1) satisfies k s %. clearly Theone¡n 3.11 also holds

fon chains of the tyPe (4 ,L2).

For la::ge negative n, Theorem 3.11 and (4.22) suggest that

lu-l is close ao 0n - The following lennra gives a useful expJ-ieit

formulation for lu'I.

LE¡it'lA 4.5, Fon tr < -1 ,

þn-r=lunt.ffift.
PROOF. Since ö, , 0, c

n = (_1)n(arr+l - 2), for ali n > 0, then
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lurrl = (ur,+f - z) + oooor

Now On = an+' - 1/ es th

Ir

ó -1=a --2+'n n+l- 0

0n+t-1-
n+1

0n+1ón+Z' . ..0-l

(4.28)

hence

on - r = ("r,+r - 2) + W+..c+ qffi - ffi; .

The result follows by combining these two expressions.

Remark If we considen a chain {arr}, with ar, ì 2 and

,o = (-t)n(arr*, - 2) for: aJ-1 n, then both lurrl = Ór, - I and

ll_l = 0_ - 1. It is easily shor¡n that the point Bo is then the
' n' n

onigln, and the ttgridu L is a homogeneous tattice. We could then

d.erive an alternative formulation for the homogeneous fonn problem,

in terms of the contínued fnaction to the integer above. The three

products at each steP ane

en (0n-1)(ón-I)
eó -]n'n

0,,
0ó -1' 0ô -rn'n n'n

,

This geometnic interpnetation of the A-expansion of an irrational in

terms of ceIls of homogeneous lattices' is closely connected to a

geometnic setting for ordinary continued fnactions which was bniefly

considered by Cassels in his book An Intnoduction to the Geometry of

Nurnbers (p. 301) .

Thus in chains of the type (a.12), we distinguish two tnends.

(i) As n + --, the appnopriate three p¡oducts of Theorem 4.4 ane

aslrrnptotic to the three alternatives (4.28).

(ii) For positive no the four alternatives of Theonem 4.4 ane identical
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with those of the general Ínhomogeneous case discussed in Chapten III.

As a consequence we woul-d expect to be able to constnuct chaÍns

$rith the propenty:
't

(i) Mtu È asn+-ærêndn vÐ

(ii) M n\ asn+æ.n

Fon this type of chain, the val-ues of l'l' appnoaching M(f;o) occun

fon small values of n (i.e. near the centre of the chain). lle will,

in fact, prove that the cnitical chain has the pnopenty Ml = k.

6. Application of the method

The nethod that we have described will be applied in the next

chapter to evaluate the best possible constant k, defined by (a.1).

Clearly

k = sup M(f;c),
frd

wher:e the supr.emum is taken over all forms that do not repnesent zero,

and al-l non-zero cr.

By Lernma 4.I and its corolJ-ary, we need only consider those f

and a which satisfy (4.4); such for'¡ns are chanactenized by a chain

pain {arr*',.n}. Thus

M = I'l(f;e) = M({.rr+l,err}),

whích may be calculated by (a.25).

k = sup M( {an+', err} ) ,

whe:re the supremum extends over all chain pai::s satisfying (a.12).

If there exists a chain pair fon which M({.rr*t,err}) = k, then

it wifl be called a ení-LLesL elwLn, and the cortlesPonding f and c, a
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ü,í.tLcoL 6onn. Fo:r example, if 00, 00, î0, are values taken fnom a

cnitical chain, then by (4.17), since 0O * Eo = O, a critical fonn is

given by

t (0x+y)(x+$y+a) (4.2e),00-r
where o = -00, 0 = -0gr and a = -(1 + nO). If we change the variables

in (4.29) by the integnal unimodulan transfonnation (3.3), then the

equivalent form obtained has the same value of the infimun. (4.30)

In the next chapter we will show that k has the value given

by the formulae (1.30), (t.St).



70.

CHAPTER V

EVATUATION OF THE CONSTANT K

1. Introductony l-emmas

The punpose of this ehapte¡r is to detennine the best possible

constant, k, by the nethod fo:mulated in chapter IV. Íüe hSve seen

that it is sufficient to consider those chain pains with the special-

ized pnopenties (4.I2). Moving in a step-wise process from the centr€

of the chain, the values of each mernben of the chain pair will be

isolated by the inequality I'ln ¿ k, fon all n, whene k = 0'234254343...

is the constant defined in (t.gO), (1.31). This will- Lead to a unique

chain, whose minimum will be evaluated in 53.

Hence from the outset we will suppose that Mn ä k, for all n,

thus enabJ-ing us to exclude from considenation any chain which implies

fo:: some n and, i, u(i) . L. For convenience, M(f;a) wirl be abbrev-

iated to M, províded that the::e is no ambiguity.

The folJ-owing lenmas, giving bounds on some of the vaniables,

will be used consistently thnoughout the proof. I"Ie define the two new

vaniables

( s.1)1 = un/Örr r o = ),, /Ann'nn

tEfi,lÁ,lÁ 5. t. Fon n > I ,

lil i6 lrþn, o, thøn lonl , T+E , Md lO,.l , &> 15'87.

liil í6 lnþn. o, thwt lqn'l > 2; (ua,thauoLe íl |tnl ' 30, thøn

lonl > to.
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LENtil 5.2.

lil i{
lül i{,

Fonn>1,
> 0, thwt

< 0, lhen

l.nl < o-0668, I

l.rrl <t -41¿, I

| . o'0669.

| .l - 4lz< a.063.

eó
nfL o

ct

n

n
eônlL

PROOF OF LE¡IUA 5.1.

(i) ff 0_0_ > 0, then by Theorern 3.9 and Lemma 2.7, whenevennn
f tr,f s uG - +k),

M . r le".l-,- rtllo"l,- rl
__n - +( lor,0rrl _ l)

lo"l - 1

=rfr"T-
<k.

Thus l0r,l > 1/(I - 4k). By slmmetry, the result also holds for lOrrl.

(ii) If e_ó_ < 0, suppose without loss of genenality that a_., > 0;n'n " n+I
then 0r, = 2 - 1/0n+I > 2 when 0rr+1 .0. If orr*t > 0, then by (i),

0n+1 r 15, and the nesult again holds. If, hoÌrever, l0rrl r gO, then

by Theonem 3.9 and Lemma 2.7, whenever lO"l < 10,

M . (len!,+ r)Ílo"J,- r). (3r)(e) 
_"n- ffi'GjÉõ'k'

Thus we have lOrrl > 10.

P?.00F 0F LEl,ÁtlA 5.2.

(i) If e_ó_ > 0, then the previous lemma inplies thatn'n
> (ts.87>2 > 250. uow if lrrrl ¿ 0.0668, Theonem 3.9 impJ-ies

M . 0n0n(l_ - lrnl) < (250)(0.9332) . L^'n' 4(grrqr, - t) (+)(249)

Thus l.rrl < 0.0668. By the s¡rmmetny of Theorem 3.9, the result also

holds for lo.I.
(ii) If 0r,0r, . 0, then wheneven lrrrl > 1 - 4k,

eôn'n
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M . ler,grrltr,- ltol) . 1- ,lt',1 . *.--"=W- 4 --

SfunilarJ-y, the nesult hoLds for lorrl.

Thnoughout the remainden of this chapter, we will- often use

the :resuLt in Leuuna 2.7 without specific r.eference to it

2. Chains with eo ¿ 0

This section wil-l be devoted to the proof that eO < 0 in

any chain fon which M ¿ k.

Now fon eO ì 0, we have ÞO t -1; thus t¡henever 0O t 2"14,

we have, by (+.25),

M(3)
0

Hence eO < 2.14 and consequently .O

<zte.#':++ïr'fr't'

When
I

0

-r = -("0 ' 2) = -1, and so -2 < u-

-I t 3. Hence by (a.25), since 0

lu-rl = I'ol =

0; if, however

Hence Ir
0

cases, I_1 > -0.04.

Nocr if 0_1 . 2.2, then since 0_1 . 3,

(2) - 1)(0_ - 0"96

X0.0, then since eO I 0, we have eO = 0.

+ . O.Ort, by Lenma 5.2. Thus, in both

=2on3.

By the gene:ral fonm of the chaín

I < 0; now since .1 . 0, then

. < 1.17,

"o = 3' 0
e3-1

e

0

ol(2) . (0=t_- t)(0_r_I 1) . (0:12)(a) . u."-l- - @- 5.02

tÍhen 
"O = 2, then._1 = 0. Using the sa¡ne argu:ent as in

Lemma 5.I (i), it follows that lOOl > 2. Now if IO > 0r then

r-r = -to t

0

IM
(0

2 e_10-1 - I <(r.?)(?.04)<t.LI.2
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If 0_1 t 4, then since 0_l t 2, and I-I t -0'04, vre have

,1î).ffi.ff.r.
thus 2'2 < 0_I . 4, which inplies that L"54 < 0o < 1'75-

Now, by Lemma 5.2, !0t -0'07, imPlYing

(i) if lool . 5r t|t' . ffi. r.,

(ii) ir lool ;, 5r *å" . t'ål?i,rÈi[3]-;'iit' . n.

Ìle have now excluded all possible cases when eO > 0. Hence

we have that uo < 0. lle have by the fo:rmuiLa (4.I2), .r, = (-f)nlerrl

fon n < O; if er, = 0, then un = -tn+a, indicating that Ër, ".d Urr+Ì

are of opposite sign. Thus, fon alJ- n < 0, un = (-I)nluol; this

enables us to newrite pant of Theorem 4.4.

THEOREII 5.1.

u;t' = rq;ú_.-Tt oo( lool - t - lusl ),

*['t = TTeil#Try (uc - r] (lool * I * lu¿l ],

t

and don L < 0,

(lool -'t + lurl),

(r,, tllþn- 1+ lunll,

(0n * 1 + lunl);

)
)
]
)
]
)
]
)
)
)
)
Ì
Ì
Ì
]
Ì
]
Ì
)

( s.2)

,I'l = ffi-1ryonlö,r+t 
- lunl),

^l2l 
=n

il(3) =n ?lenþn - l)

I
eón' n

1

VIThø øxpnu¿Lon¿ [on l,ln , n > 0, ane gívøn bt! 13.25l,.
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3. Evaluation of the minimum of a centaÍn chain (C)

In this section we will prove that the infimurn of the followíng

chain (designated by (C)) is k. ttre use the notation of the pnevious

chapter, and dividing the chain at the centne, we write each half on

separate lines:

t
5' 5 5q

3
2
0

) 2

03l
31 4, 4,
I, -2) 2,æ 3 3,

-11, 21, 461, -17, 50
-f, -1, -29, -I, -2

49, -42, 49, -42
-3, o, 3, 0t l .D

that

Suppose that x = [ãlfs], then

4 + Æõ- 
= l-.790569...*=0_4=-T-

8x2-16x+3=0,implying

Consequently

oo=[2,4,4,3,x]=ffi=#. (s.3)

Suppose that y = t4%-421, then 42yz - 2058y - 49 = 0, inptying that
147 + lztosY 

= 49. o2g7g7g..-y=ós=ffi=49.0237979... (5.4)

We wil] now prove a genenal lemma, the fuII force of which

will not be used in this section, but r¡iII be of considerable signif-

icance in the latter pant of this chapten.

LEllt'lA 5.3. l$ we ltave a ha,td-etwLn o,{ Íhe dol[-owfu4 dotan:

(L, -OZt At -&4t A.....

Ê, 0, -e, 0, e. .. ..

wlluLe dzn*l = d, ,zn = (-llnr, ,Zn*l = 0, {on aIL n ¿ 0, avld

0,, ,, e,n, xJLø aL[- poÁi,LLve and o( the co¡tnee,t patúfi1 and ¿Lze; thut

lv¡,/ool = l.ol = 4/e.

W. We are supposing that the chain commences at -f =.r aO =..

It is clear fno¡n the sign pattern of the chain that
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uo = e(ì. 
"irffi.u-r 

)

since lrrrrl

and so

=e+

len l

,

l.rrrl - e/a =

T 2n+2 l-e/a
.lôzr,+rl + r

Now fo:r all n we have

The nesult follows from this.

C0ROLLARy, Fon the eha'Ln (Cl undut un'si-detø.t'Lon,

I'Sl = 314e.

We wil-l- nobr use (5.3), (5.4), the fact from G.22) that

).0 = I - 00, and the basic recurnence relations between the variables,

in orden to conpute the values set out on the folJ-owing tabl-e. The

values are t¡'uncated.

TAßLE 5.1.

"lÖzn+fl 
* f > 3, and hence fon every integen n,

Ito-e/al .[å)".

n

0

I

2

3

4

5

6

lo" I lo" I

0.0864

0.0446

0.0630

0.0564

0.0387

0.0612

tr, I

L.73r2 11'0476

11 " 5776

o.4223

0.0498 20.9978

0 " 0497 461.0 5872l_ . 086 3

46C .9525 0.0628 17.0200

49 - 9796l_7.002I 0 " 0551

49 " 023750 " 0588 0.041_0

48. 9800 0.0604 42 .0203 0.0014
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We will nolr pnoceed to examine, in tunn, the fou:r (o:r thnee)

altennatives from Theor:em 5.1, at each step of the chain, with the

intent of showing that Mr, t k fon all n I 1, and that M, = k.

It will be necessany to tneat those steps in the chain which have

smafl values of n separately, since theùe is no pattern in {arr*rrerr}

which readily leads to genenat methods. ttre note that there is

usually at teast one of the products which obviously exceeds k. Ìfe

commence with the night hand chain (n > 1).

(i) Proof that Me t k

clearly u!1) ' r.. Now, by (3.25), uf,2) , t't if(4)
2

(e l)(- I + ll -Ì- | )

4 _1)
2 2

which holds if and only if þ2 - lurl 'T^#- ;fon, putting 0 = 0r,

, - öz - lurl and y - l^zl - 1, the ínequarity ned'uces to

x-Ir1/y-t
x+1'e/y +1'

which is true if and only if x > e/y, since the function on the left-

hand side of the inequality increases with x. We wil-l use this method

often, without including al-l the detaits. Now for the chain (C), by

Tabre 5.r, þ2 - lu2l > 461 - 2g.L > 430, and 0o 
"'lfÀ;l-:f ' *-s4s'6 < +2s'

rhus *1" , rlu' , ho';i;;ì:03;i,8'o
(2r.0364)(433.0022\\:\Þ- 38884"1- - r\'

by (3.25) and Lemma 2.7. Similarly
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".(3) _ {rs - clrrl - r)¡lerl)(0, + ze + l..l), (le.g)(+or.os + z8.os)Ytà' = rm

Clearly M

rre can show that

It the:refone follows that vz >k.

(ii) Pnoof that M >k

L",,.
r'!u) ' *!')

(iii) Pnoof that M >k

Al-so

> k.

Using an analogous method to that in (i),

, if and only if 0

'03 lÀgl.u31-

For the chain (C), Tab1e 5.1 implies that 03 - l^al< 461 - 28 = 433r

- lo.land #lrJ' dffi > 43s. using the appnopriate bounds fnon

Table 5.1, we obtain

,5u) ' rå" = 'tu'åláå3,3u"" u.

Sirnilarly

M!r) = 
to. + i + ll¡l)(lo¡l-:, r - lu¡l) > (461 + ?9)(17 - 2) > k."3 +(o.lô,I + r) 313s2

It thenefone follov¡s that M3 t k.

cleanry u[3) t Z. I"le nay :.eadily show that *Í" t ,Ít',

if and onry ir 
-hr;t ' loul - lÀul. Fcn the chain (c),

0r 49.9
1-jÇt'id > 16's > leul - lrul' rÍe have

"(r) = 
tleul - r -,lrull(ou + r + luull > (rs.094g)!s2.s]-B) > k.,",4- -@-

Thus ¡re have that M+ > k.
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(iv) Pnoof that M >k

Cleanly tft) 'a. Fon the chaÍn (C) we have

e

À -L
5

Similarly

Thus we have that M

,t'h,ur>os t,

Thus by (l.ZS¡,

( st.11 ) (44.998 )
4[(so"06)(4s) - rJ

- luu

M!2).
5

which implies, as in (i), that tlu' t

>k.

(v) Proof that
5tk'
>k m>3

Fc:: the purpose of a r^esult in the next chapten, we will show

that the inequality (v) nemains valid fo:: a2m+I - -\2 and -44. It

follows from (3.25) and the sign pattenn of the chain (C), that the

same fou¡- alternatives occurl at each such step, M2m, m ¿ 3. This

Ís a consequence of the fact that only the order of the pnoducts

aLte:rs wheneven the e-chain is reversed in sign (Theonem 3.f2). lle

will use the following notations:

tr*' = -r-ÇTrïF.ir (or* + 1 + lrr'll(l0z'l - r - lur'l)'

tX' = qã;J-rh-nt (er* - t + lrr'l )( lozml + r + lur'l )'

tf' = [ro.;rrrïTTt (0r, - t lrr,llt löz*l * r - lur,l),

trT' = ro.rJùJ;TI (e2* + I - lrr*l lt lor,nl - r * lur,l ).

Clearly ,53' , ,. Now, for m ¿ 3, we have by Table 5.1, and

Lemrnas 5.2, 5.3, the following inequalities:
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48"98 . 02, < 49"024, +2"02. IÔZ*l < ++'oS,

2.es8s < 3 - losl = lrul s l^rrl < 3 + dffi < 3'0015,

lurrl = lt2r+rl = s/+e = o'0612"'

Using these bounds and Lemna 2.7, we obtain

(e + e.s)( |
(ss.e)(q0.s)>EiÉfrffiT> k')

'tå
- r.1)

,f' ,

4 0 þz^ +
2m

(e 4.o01s)( I 0 | * 0.938) 44. s78s ) (44'968
8.98 44.03 +4 +I ¡ k,

o2t þz^

2.002)( l0 | - 0.939)

4

M
(4)
2m

(o

3)

2m 2m

Thus, even when a2m+I = -44, l{2'n > k, m > 3.

(vi) Proof that Mr¡1rj_L:- n ì 3_

tleagainallowa2m+1=-42or.44.Fonconvenienceput

2m+1 = r; then we have, as in (v),

(1)

4 0 0 +

I- ,+(lorlo" + r)

M = 

'CãÉ-+TI 
rlool - r + lrol)(0" + t - luol),

= [c1o;TLñt ilool + r - lroll(oo - r - lu"l),

t:" = ãil,1fuñt r lo"i + 1 + fr"l)(Qo - t + luol),

M(
n

( 4 (lo"l - r - lroll(oo + t + lu"ll.

Crearry *f," , ,. We can readily obtain the following bounds:

42.02 " lool < ++.0s, 49.02 . 0o . 49.024,

0.0604 . lrrl s lÀol . for, * frfl < 0'0613,

3.0013 . luol = s - tt';i < 3'ool5.

)
Mr
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Hence it follows that

lle will now focus our attention on the left-hand side of the

chain.

(vii) Proof that M

M
(1)
0

M

>k

By (5.2) and Table 5.1, we have immediately;

oo(l0ol - z) - (1.23)(e)'tõJF>@>k'
(0"73 13

1.73 .0 +
> k,

2

(3)- lool -l.rl , r.o.so'trc;-or-ffi-"'
Thus MO t k.

(viii) The case M 1

clearly tll' ' ,.
o-r = [4,4,3,ilJJ] > 3"72'

o-r* lu-1| =2++-#

Nov¡ for the chain (C),

Hence

> z + # > 2"r7 >
3.72
I.72 ' ,

which impries by the method used befone that t!1) t *!Î).

Since l^rl = L/ëo, the recunrence relations satisfied by

the vanÍables, and the sign pattenn of the chain (C), imPly, bÏ simple

sr:bstitution, that



M(3) - tz - oo)-(glorl + r + lu.l)
-]-=t

Í,,=q,il:*,#
no", u(!) decneases, and ul') ir,""easesr as 0o increases.

functions of 0O have a common vafue at the point

The two

8I

(s.s)

(s
I *1")

2(r + lu^l * slo^lloo=ffi.
wheneven 0O . ã0. By Lemma 2.7 r 60 incneases inHence M

lOOl, and decreases in lUOl; thus, by Table 5.I, fon the chain (C)r

eo'ffi>r"73ra'oo.
Thus if MI = k, as \^re ¡.¡irl laten prove, then tli" *.

Vle will treat the remainder of the chaÍn (C) in a s1íght1y

different way, by considering each of the three al-tennatives in turn.

(ix) (1)
Proof that M >k m<-1

Using (5.3), we find that

t5-s,zl - 2(4 t ûõ-) 
= 4'77485...

3

tsJJl =ry= 4'44151-...

Now, sinc" lurl . ö* - 1, then for ãm+I = 2, 3r on 4,

(which implies 0* . 4),

M(r) - e,tgr_+.r - lrl*l), =,9r,, 
r,_ > k.m 2(em0m - 1) o*otn - 1 0n

ffi"r "r*, = 5, then eithen ór. [5r2r5] < 4.45, tr.4'45,

g 0, < [515,2] < 4'78, o*. 1'8.

]
)
Ì
)

rhus eÍther t,f.,t' , 1¡ffi > k, 9,{t' ' G;ffi;:1> k.
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(2)(x) Pnoof that >k n<-1

By Lenrma 4. 5, I u* I = 0,n - I - or, where d,,,, =

Now {a } is a monotone decreasing sequence as m + --i thus we have
m

o-2

and fon all m -< -4 '

9e1 - 
'l

r < 0.6,

o<o,.<m-+ 4_30_20_r l50f-4

Now fon m = -2 on -3, we have 0 >210m>3randso
m

0-r-1 - ô-r-t . # = 0.04.

(2) (0, - 1)(0m
M

m e*$* -1

Fon m I -4,

thus

0n > tZ;E5l >'1 "79, 0*t [2,3'3] > l'62, and aln < 0'04¡

M(2) >
m

(e -1)(0 -1.02)m'm
0ô
m'

_ (0.79)(0.6) -t-1 .g-t ^'-I

(xi) Pnoof that

0
m

m

>k m<-f(3)

Considen finst m = -2 or -3; then lurl > 2) om < 4,

< [4,4] = 3.75, ímprying that

t{(3) , =,9t 
* t 

=, , 6:J5
'^m '2(e ó -1)'28nm

>k.

tlhen m S -4, then

r3)
M.

m

û < 0.04, which gives
m

ó - 0.02-,m¿7-7¿Uô .I
m'm

If a, = 5 and am+f = 5, then ón . 5, 0r = [5r2r5] < 4.45; thus

rÍr, , #, *.

rf a, = 5 and âm+L = 2, then ö* < [2,5,5] < 1"792, 0* = tæl < 4'?75;

*Í" , ffi, *.

If a, = 2, then 0*. 2, and so tÍt' t 1/0rn t %, *.
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The:re nemains only .the step M, for investigation.

(xii) Pnoof that M k

Cleanry ul3) ' L. Using Table 5.1, we obtain

Now, fon the chain (C), since

le,_l -frrl =u'1ft''

From ( 5. 3 ) and ( 5. t+) v¡e have 05

Now, sÍnee

0.0668 >

llr.l = r/oo,

l+ u1

hence, as fon (iii), tÍ.t' ' ,Í". Now,

,.(2) _ 12(01 - r - lulll _ 3(0r - 2 + l.2l)
^'1 =@W'

r , 24727 ô5 - 4e4 + lusl
11 l 

= 

-

t',2t-@.

8238730 0s - 164581
!'le have 0, = [zrr461r-]-7,50,051 392361 0u - Teee

Successive substitution of the basíc fonmulae implies:

_r4z+ffil
b u

5

30s

Tõ'' and

lerl = [rr,-00, = ryi@ . substituting these varues in the

expression fon ul2) 
"Uo.re, 

we obtain fron (I.30) and (1.3I),

(2) (g/'+s)(3664s801s 0s - 7320s51)
M (8238?30lerl + 3e2361)Os - (164sB]lerl + 7838) = ft.1

Ile enunciate the following theorem, which we have pnoved;

THE?REI'L 5.2. Fon the cltnin I'Cl , trl = b.

4. Isolation of the value of

Lernma 5. 2 funplies that both ltrl < o.0668o and lorl < 0.0668.

l"1l -ltol *r>o,then
luol - r'oooe

'Tõ;T:FTTõ;T '



irnplying

<k.

L
e-1 3-0

0
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(s.6)

< 1"43¡ now,

luol <o'0668lool *1'14

Suppose 0o t 2.3, then by (5.6), (5.2),,å".ffi.
< 2,3. If "o = 3, then

Þy 52, Irol ¿ r, which inplies lOol : 3 + ,¡öt> 2'9, (by Lem¡na 5.1).

(5.5) then implies

lu-rl = 1+ l,ol ' 1"0668 . ir:i < 1's'

Since ô .

--(o .,0 ., - r)
(0.43)(3.5)- )-2Za- w- 6.58

Thus 0

, 3r

'!î)

0

Thus we have the following result:

THE}REM 5,3. A ûútLeÃ.f- cltn'Ln lnt a.O = 2.

5. Isolation of the value of a

Thnoughout this section we will enrploy the following temPorary

notations. Let a = l.rl,. = leol, ana c=a-e. Notethat

since a and e have the sarne parity, c is even and funthenuþne , c ¿ 2,

Í{e commence by obtaining a series of lerrnas which pnovide bounds on c.

LEI,ltM,5,4.

TEMMA 5.5.

#>4Þtl6ol .Io,

c< l+rl - luOl*0.063
t

LEhlIlA 5.6. SupryÁe tha.Í. v = 4lzl lO¿l * .-1, than
" "0

c>xv,

whüte. x i's the positLve. ttoot o( vx2 - (v - 2lx - | = 0;



ROOF OF LE¡/INIA 5.4. Taking account of the appnopniate signs, we have

fnom (3.25), since .1 . 0, Ê0 { 0'

i.e. *= 4.'nrrr .

Note. x = x(v) is an incr¡easing function of v, (since åf t or, and

hence Ìre may neplace v, ín x(v), by any lower bound of 4k( l0ot - är.

tÍt'= q¡¡¡ï-tl clorl - 1- lrrl)l(or * 1- ur)|,

*Í" = IIqftTII tlerl + 1- lrrl)l(0r - 1+ ur)l'

The basic :tecurrence nelations enable us to revmite these

expnessions with the vaniables at the zero step:

tÍ.t' = [arjfu eo"lt lool - a - luol n e + 1)1,

85.

hence

4 e
0 0o +

oo(c + 2)l(1 - lOol + a + luol - .)1.

Now, by (9.27), sgn(ó1 +1- ul) = sgn(01 - 1+ul) =sgn,0I¡

and since ?üe are assunring both tÍ.t' - k and tÍ." 
= 

k, then we have

by addition,
l_ lilo | - u - lu l+e+t + +a+ -e
e

0
0 0 +1

0

The nesult follows imnediatelY.

,Í" =
I

)+I
c

1-
(

0

p3:00F 0F LE¡tt¡lA 5.5. Now

c=a_e=lool _luol *f
In the case r^¡her" 0f > 0, the result follows fnom Lenma 5. 2. llhen

Ó, . O, and Ul , 0, then the nesult holds by Lemrna 5.I, since 0rÔ, > 0.

rn the finar case when 0l ' 0, and Þ1, ' 0, then the Lenma holds if

(r + lurltZlOrl .1- 4k < 0'063; if not, then

lool ="*ä, and luol =e+rr;
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This concLudes the pnoof of the lernma.

PR00F 0F LEtIttA 5.6. Fnom Lem¡na 5.4 we have,

vi

o:l

L5lvlil{ 5.9. a i¡ odd;

c+1-'c+2
Since c > 2, this inequality holds Íf a¡rd only if

.t - (.r - 2)c - v I o,

v-2+¡Ffic ¿ ----7-- ,

(the roots of the porynomial in c have opposÍte sign). The nequined

nesult follows immediately.

The following three lemmas will- neduce the numben of possibJ-e

values that the va¡.iable a may take.

LEMtt s.7. 16 lorl > 20, then |rol < 1"7382.

LE!Å["M,5.9. 4 s, 22,

$tnf-hwrwte. 11 s a. 21, and i{ þl . 0,

thu 17 s a < 21,

PR00f 0t Lãtrlh{l. 5,7. sínce 2, v > (0.937)(zo + o'5) > r9.2.

Then, by Lernma 5.6,

. :-Z,2 + rÍî44
"' ffi . v > (o'egl(l0ol * Ul.

Combining this with Le¡nma 5.5, we obtaín

(0.8e)f lOol + 4) < c < lOol - luol * 0.063r

which implies lu_rl = l.ol . 0.11. Thus if 0_t t 3.g19I, since

0_t t 2, we have

0 + 1.11

oo'

e

)3
T

1
M(

2
-l-ó

3.11< ïEA?68 < k'
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If 0_1 . 3.8191, then

PR00F 0F LEI'LiI,|A 5,8.

0O . 1.7382.

llhen a ¿ 23, Lemrna 5.1 implies that

lool > 22.937, By the previous lemrna, * > 0'5753, and so
oo

v > 4k(22'937 + 0'5753) > 22'031+.

Applyíng Lemrna 5.6 in an analogous Ì^¡ay to that in the pnevious pnoof, we

obtain x > 0"95666, and so

(0.s964)(l0ol + 0.5753) < c < l+ol - luol * 0.063:

which impJ-ies

luol < o'1036lool - o'4s.

If 0_l t 3.8123, then si.nce 0_t t 2, we have

'1i) '*#++li'1ffi'*'
If, however, 0_I. 3.8123, then gO. L'7377, implying by Lemma 2.7

,å". .W).n.
This concLudes the pnoof of the lem¡na,

PROOF OF LE¡IIMA 5.9. put f(c) = # . Lemma 5.4 impties

lool . # - % < u,

where U is some convenient uppen bound. Tabulating these nesults

for c = 2, 4r...., 20, we obtain:

c 2 4 6 I TO 12 14 16 1B 20

f(c)

U 2. 35 4.63 6.82 8'99 1l-.15 ls.30 I5.44 17.59 19.73

TABLE 5.2.

Now, whenevell a Ís even, since aften 52 e > I, we have e 2 2,

a > c + 2. Lemma 5.1 implies that lOOl > a - 0.063, and so

r+40

2t
2r.87

I
ã

24
5

48
7

80
9

r20
1I

r68
l_3

224
I5

288
17

360
19



c+r.93?<lOol<u.

this provides a contradiction for every value of c on Table 5.2, and so

excludes the possibilÍty of a being even.

Similanly, when a is odd, a ¿ c f 1, and so

c+0.937<lOOl .U,

whích pnovídes a contnadiction fon alL c < 6, on Table 5.2. Hence

a is odd, and a > 9.

Now if 0t.0, Lemma 5.1 irnpries that lefl > 15.8, since 01 .0.

In the case a = 15, r¿e have 0o . 1.25, and (+.2+) inplies that

M(2)<oo-1 0.25-,-t'to . -%-. Ï:u-5.. *.

Hence, in this case, 17 s a 3 2I.

When 0l t 0, then c + 1 . l0Ol . U, whíeh is contnadicted when

c = 8. Thus, 11 5 a S 2L. This conrpletes the pnoof.

The fol-lowing lernma enables us to exclude most of the remaining

values of a.

Líilfll^ 5.10.

The niah.t-tßrld tidø ine¡etaeÁ uri.tll lrgl, ard døctcet¿u with. lçOl.

??<00F. We use a method analogous to that of !3 (viii).

recurnence relations imply, after (5.2),

(3) (2-oo)(3loo!+L+luoll

88.

the basic

M t-r - 2(o;10;f.1)

a decneasing function of 00. Now t[" is an incneasing function of

00, and sínee M s min {t!i)rt[')], M cannot exceed the co¡nmon vatue of

the two functions of 0Or which occurs when
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Thus
(zlool * g + eluoll - t+lool * 2 + zluoll)tlonl + r + luolt

ztl0ol(7l0ol + s + sluol) +'+lOol * 2 + 2lu6l,l

(slo lrt lo lt

l{<

l+r+l | + r + lu
+(g2 7 ôo uo +7 0o +2+2 uo

It is clea:r that this fu¡rction incneases with luOI. Make the

followingabbneviations: f= lOol, o,=l+ luol, ß=3luol *7,and

q(0) =
(3ö+s¡14+o)
iþz+ß0lzs

It is readily verified that

"r"(#) = -ssn[(2ac - 3ß)ö2 + a(14o - r2)0 + c2(ß - s)).

Now all the coefficients of the polrers of Q ane positive sínce r 
=, 

t,
(and so ß > 9), and a > l. Thus 99. O, and the nesult follows.

dö

THE}REM 5.4. Ãnq cni.bLen.L e-juvLn ha¿

al = -ll, ,0 = -1, a, > 0,

PR00F, By Table 5.2, it ís clean that fon a1.L a that nenain, e = I;

for if not, a cont¡:adiction is obtained as in the pnoof of Lemma 5.9.

Suppose that l-3 < a s 2I. If r1 = 0, then lull = lrZl < O,OZ;

by Lenuna 5.1, lOrl > 2, and so l.Il < 0.04. Consequently, if either

rl < 0r o¡l al = o, then

luol = 1 + tt
Now lOol > 13, (since if a = 13, Lemma 5.9 imp1ies that OI > o).

Substituting these bounds Ín Le¡nma 5.10, we find

,.(ut.o*å*r.ou).n.

< 1.04.

On the othen hand, if 
"1 

t 0, and e, I 0, $re considen thnee



cases:

(i) 0 < o, (u,

'1"

I < 0) implies

A,%o rl . 0,

LEtÁilA 5.12.

hence by Lenma 5. 2, 0 .,

< 0"097.

=2+

41æ <k.

> 2.0833, and

a-1
TIoJ < <

20

90.

1.0668

HIlu ., I

(ii) o < 01 < 10, (ur t o); by Lemma 5.2, !1. (0.07)l0'l < Q.?,

contradicting e, I 0.

(iii) 01 > 10, (ut t 0) implies, since, by Lemma 5.2' uI ¡ 0'93,

,Í.t'= .ffi.t.
Thus we concJude that a = If, and hence "2 

t 0 (lenma 5.9).

6. Isolation of the value of

Ïle commence this section with two lemmas whÍch wiIl enable us

inmediately to isolate the value of er.

TEMMA 5.11. A)e lwve

1 .71 65 . 00 1 '73251 ,

uh,Lch inytLiu

0-5771.! <0.5826.
"o

e, f 0.

'1 = -l'
pR00F 0F LE!ÅMi. 5.11. Theonem 5,4 implies that ll < lOOl < i-2;

and

I
lT;T 11

If 0_I t 3.7384, then

'11).ffiffZ.*,
and so 00 . 2 - d*¡6 < 1.?32sI, and |o , o's77l. (s.7)
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Now c = I0, and using the method of Lenna 5.9, (5.7) imPties

lool . 5Í*o' 1- 
o'0

< 1I"6424 - 0'5771 = 11.0653,

and so 01 t 15"3. Hence if e, ì 0, then by Lemma 5.2'

(r0)(0 + 1.0668)

Thus we have e, < 0, which imPlies

luol =L+tI'1'
If oo . r'7165, then since lOol > 11,

(e | + z) (o.zl6s)(13)
' ITE;ãõril' ^'rå" . 2(e 0o +1

L 1

- 1)( lo

0

The lemma is thenefore Proved.

w00F 0F LE!Å[4A 5.12. rf

which implies lurl > 1'933.

163.668<ffi<k'

(s.8)

e, I -1, then, after (5.8), we have e, S -2,

Now, sinc* lÀrl = 1/oo,

(a-r+2/0 )(0 - 0.e33)

Mll) .
+( 0 0 +1)

0 I
which, by Lerrn a 2.7, is an inereasing functiot of | 'H

Thus, by the

pnevi'ous lemma, if 0, < 36 ,

*,,(u).'-1

1

4 a+ 0 +1

rÍu' .

If, however, ó

(tr.roo¡16 - 0.933)

| _ 1)(O
4 e 0 +II

(ro.sg)(37)<ffi<k'

6 14 I
> 36, then by theorem 3¿9 and Lemna 5.II'

tle +1)

1

This concludes the Proof.

THE?REIII 5.5. Ãny ctt'tLLu'L e-haLn ha.t

ar=21 , lu1 I <1, o3'0, ,zto'

W?F. .l = -1, and so a, is odd. Conside:: the two cases:

(i) lf., I t r. !'tre have from Lemma 5.2, that lutl < 1'0668'
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aZ= 23, Now, since lutl = I Ì ,2, I, we have 
f, 

t o; also

l^rl > r. rf oz t o, then

ì,(3) _ (02- 1-.1À21)(Ô?.- 1- u2) .rr.-, -2r,r -,.,r2 - .q.ffi.ñ.

If 0z . 0, and erl 0, then since lorl 7 2t,1".ffi.

Now, by temma 5.11,

when f, > 23.5,

and r¡tren 0I . 2l'5,

Hence we have 2l'5 < 0

t0(0r + 2'0668) 2SS.66g<@'ffi'k'

10( 0.r + 2) 246
'---1- 4(r1.577ö. + 1) 1050.5.I

If þZ . 0, and .2 = O, then since ô, > Ze, and

lurl = r + lt.lzlorl < 1'04,

(r0)(0 + 2.04 ) 250.4
' ToEE¡ ' *'

< 23.5, which implies, f::om Ler¡una 5.1, that

2I.I 2"067) < k.
188. I

0 +1
T

From

*Ít' .

(1)
1

(1)

M

1

M

4

T

This completes the exclusion of the case lurl > 1.

(ii) lu, I s 1. Leruna 5.2 implies that lu, | > 0'933.

-

Lermra 5. Il,

¡rhen ÖL, 22'6,

and when 0, < 20.5,

Thus we have 20"5 < 0

a2 = 2L'

¡krI

< 22.6, which irnplieso fnom Lemma 5.1, that

uz à 0.

Suppose then that .8.0; ít fol-Iows that rr.< 0, and so

Now lÀzl = I + loll = 1+ ïj*-;.1. > 1'04s, and 0, < 2I'I;
0'¿

thus
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when

and when

and

lu, I

*Í"

lurl*fìo'ooró2'(u) (on - o.é4g)(o.e39lo"ll
Mì''<#. <kr"2 -@

lle therefone conclude that aa > 0r and u2 S 0.

then, as usual, lrzl < o.o+. Now 0t . zt, and so

,l', . iîEË. !S:eÐ. r.

The theonem is now complete.

If E2= o'

7. The maximal chain fon 0

lüe will now examine possible a-chains as n + -cD. Let us say

that a panticulan chaín is (eallbLe in b, af lhe ¡toínÍ. n, if Mr, : k.

Fon exanple, the chain (C) of 53 is feasible in k, fon all n. The

folS-owing l-emma supplies a ne$¡ bound on 0r, unden the nestnictÍons

imposed on the chain by the previous sections.

LEWA5.l3. e0.1.73134.

R00F. Now, by Theonern 5.5 and Lemma 5.1, 20.9 < 0, < Zt. Thus

lu-rl = #' ffi ' # < o'o864ss'

01
ó. =2+ >2+ 20"9

230.9
> 2.090515.

11ô +1I
Now, if 0O t 1'73134, then 0-1 t 3'72217, which implies that

,11) . < r.

The nesult thenefone follows.

lüe will- no$r prove two lernmas which wilL enabl.e us to pnoduce the
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maximal feasible chaÍn for 0

IEMI{A 5.14.

rãl,lMA 5.t5.

P?l00F 0F tE¡l,lMA 5.14.

-4snS-1.
(5.2),

Thus we have

e g s 12,4 ,4 13,2 re _Sl.

cLns 5, {on a,U n < 0.

Now (2.15), (2.16) and Lemrna 2.7 togethen

0

imply that the expansion of an inrational to the integen above in serni-

regulan continued fractions is an incneasing function of each pantial

quotÍent, independently of what folLows. But

1.73134 = 1214,4 13 r2rlgr. . ..];

hence if any of â_4, a_g, ê_2, op ê_1, incnease from these values,

then 0O > 1.73134, contnadicting Lemna 5.13.

P3l00F 0F LEilt'ÁA 5.15. The pnevious Iemna inplíes that an S 5, fon

Howeven, for any n < 0, if > 0.766, then by (a.24) and
n

0 -1. t_. o.
n

< 0.766. Similanly, by s5rmmetry,
0r,

< 0.766, fon aII

Now, if 
"rr 

t 5, then by (a.24),

T

e

I1
e
n

n<0.

whene v= + < 1.532, and so

M(3) <
n

I
,a

n
v
n

n
I
n-1e

I
0n

*Ít'.*þr'.u.

The r:esult now follows.

The mo¿inaL cJø,Ln don e 
0

12,414,3rzÆf ,

THEOREM 5.6. .u
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and tlli.s chÃitt,t¿ óentLbLø in l¿ {ot rt < -1 , when dolhowød bg a cJnim o(

the {onn .ínp%Qn bq ss2-6.

W, By Lemna 5.I5, a-, and a-6 cannot exceed 5, and by the

argument in Lenma 5.14, if they equal 5, we will have a langer value fon

0O than r.rhen they ane neplaced by smaller positive integens, independent-

1y of the values of arrr n S -7. Thus take .-5 = .-6 = 5.

Now ô-O t [5o2r3,3] = 57/L3, and if 0-6 t 4'5' then

M(3)< $-a -IL4r.r_6 <Çõ]T<EE7<k.

Thus 9_6 = [510-7] < 4.5, which ímplies 0_7.2, and so 
^_7 = 2.

Usíng àn inductive process, ¡re choose tvro successive values of

a_ to be as large as possible (i.e. 5), which fonces the pantial quotient
n

of next lowen index to be 2; fon, if fon some n S -2, we have

a3n+1 = "gr, = 5r then 03rr t [5r2r3r3]o of course, implying that

a3r,_l = 2, as above.

Hence the given chain provides an uppen bound fon 00. The

chain is also feasible fon n 3 -2, since the chain (C) is feasible, and

an examination of the proof of this (53 (ix)-(xi)) neveals that we need-

ed no mone infor.mation about the night-hand pant of the chain than we

alneady have pnoved is a consequence of M > k.

The impontanee of this nesul-t will be evident laten, when we

show that the ninimun of the ct-itical chain is taken at *Í.", which ís

an incneasing function of 00.

cdRottARy. 5t 95 - 2,m 
= | ,7 3l2gg7 , . .oolT

1
wluLc.lL inp!-Lu

e
0

> 0"57760405... (s.e)



W00F . The nesult foLlows as for forrnula ( 5. 3 ) .

8. Isolation of the

96.

> 20.99787.

rE[,{Â{A 5.1 â. M lt' * rlnl ** be wní,ttwt a's {une.tioru o( e.n;

uhen e o inuten¿u , ,['l du*n^et , utth'í,Lø u[al inureoÁu.

'TIÏOF. Now l^rl = a%, which implies

(eo+l)/(uoo+r)+2r
(eoþ)/ (floo + 1) + 2rþ2 - r

Hence, by Lermna 2.? and ( 5.2), u!2) a""oeases as 0o inèneases.

Similarly, putting o. = 2J.ô, - I, we obtain

which by Lernma 2.7 is an increasing function of 0oo since 3c - 50, > 0.

The result fon u!a) fot1ows irunediately fr^om tbis.

We now pnove two lerrmas which give bounds fon the values of aa

ana l'rl.

e, - r- + ll"l
o2þ2 - L

tE[,Ír,tÁ 5.17 . 436<þ < 470.
2

tEM'r{A 5.18. 0,063. 1.2i.0.06316.
pR00F 0F LEMfv{A 5.17. rf +Z > 470, then û, = 2t - I/Ö2

Ìlhen

VIhen

lu2l - I s 0.o6o8s 0r, then (s.9) implies,

*(r)_s(rg+(lu^l-r)zo^). .u'''2 - lo. lo.+r -(u.s7?60405)(20.99787)+1-"'

lurl - I > 0.06088 0r, then (5.9) and Le¡nna 5.16 togethen irnply,

'lu, 
.,,ìi?3î:3iàåi?Í;åî,!Îii, . -.

Thus we have S, < 470.
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llhen

If ó, < +30, then 0L . 20'9977L.

lr2l < o.06309, by (s.9),

,jr,=w. .r.
t[hen l.2l > 0.06303, then by Lemmas 5 .1r, 5.16,

s7a2 - r)(21.1367)(0.936
M(2) <"2 4(21.0863302 - 1)

<k.

<k.

The result is now comPlete.

PR00F 0F tElfi{A 5.18. Fnon the previous lemma it follows that

è1 < 20"997873.

llhen l.rl -.0.063, (5.9) inplies as befone,

(2) (3)(ig.060873 <k.M I 0 +1I 20- I
When lt l ¿ 0.06316, temmas 5.16,5.L?, imply

2

rlu' . ( 21.036t+84 436 0.93684 +l-
2 - 0863736 4364 -1

The nesult follows.

The value of e, can now be isolated by the following rather

tz = -29'

R00F ¡ Suppose that [.rl S 2?, then by Lernmas 5.2, 5.I7,

tedíous lemma.

tElvl¡l,lA 5.1 I ,

Sinllar'ly, when l.z

lul .27:9g68<0.063.lô21 436

30

In both cases vte contradict Lemma 5.I8.

> 0.06316.b
þ2

29.93
4',i6-

Let us exanine the case e
2 = -28. flhen a^ : 446, we have

o
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as before, l.zl . ffd# < 0'063; when a3:442, then vie have

l.2l t ffi > 0.06916. Thus, again by the pnevious l-enunar aa = 444

(since a, is even). This case is difficuÌt to exclude; it seens

pnobable that Ít could pnovide chains with infimum close to k.

Now we have 0, < 444'1, and so 0, < ZO'9977483' Suppose that

lt2l ¿ 0.06307, then following the rnethod of proof in Lemma 5.17'

*t" ( 21.1367 )( 0.9369 _1)
<k.

4 2I.0 -1
2

Thus l.2l < 0"06307.

when lerl > 11.s7?63, tL"
tÍhen lorl < 11.57?63, then

(3)(t9.0608183) ¿ 1-- ^.

0o r 1.73121. If l.zl ¿ 0'06305, then

since þ2 < 444.1, by Lemma 5.16'
(2r.t3627)(o'9369sS _r)

<k.
4 0 -1

2

Thus we have l.zl < o.o63os. (5'10)

Now since 03 > 4oo, it is easily venified that lOrl > 12, by a

similan pnoof to that of Lemma 5.1. Hence 0, < +++'09, and wheneven

lu2l 2 28, lrzl t ü#õ6 > 0'0630s, contnadicting (s'ro)'

Thus

following two cases:

(i) <0( >0 When lurl * t: o.ooslorl, sinc" lrrl = 1/oo,

lÀ21 -1 I
= c, say, then

,!" .

lurl .28, and consequentry ii < 0. Considen the

oz oootoz

r5u', =

+ I - ll lrt l+ l-r-l (+rz + a)(0'997)
4oe

(e

4(e
3 03 +1

ll

<k.



l.lhen

thus cont:radicting (5.I0).

( iÍ) >0( <0

Lemma 5.1,

When 0 < 380,
3

lfhen

Anq ü,i,LLer,,î. ehn Ln hal

e, = -29, a3 = 461, &4. 0, v3, 0,

lurl s 1'03, then since 0g t 15 ¡y

lu.l * r < 0.003 lo.l, trr.n l.gl < 0.003 - Ll1031, ana

l,z I = #;,lI{;r' iihffi ' ï# > o' o63os'

99.

ö, > 31,

,5".ffi.r..
rf l.gl = 1, then we have 1.03 < lual < L.07; if ô

28þ" - L
l.2l . #;=. #'h < 0'063, contnadicting Lemma s.18.

r5".ffi'k.
Thus lral u 2, and lu3l > 1.e332.

31
3

If

When 0a > sso, suppose that lurl - I ¡ 0.00303, then

,!u,.ffi.ffi.n.
rf, howeve:r, lurl - I < 0.00303, then lr3l < o"oo3 + 1/03 < 0.0057;

thus l12l t U# > 0.06305, cont:radicting (5.10).

The proof of the lemma is now complete, since aften excluding

the case e, = -28, the only nemaíning value that it can take is -29.

Ìle can now prove the following theorem whÍch isolates the value

of ar.

THÉOREIT 5,7.
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PRO}F. Suopose that aa > 46g, then as usuat, lrzl . ffi < 0.063,

contnadicting Lemma 5.18.

If a3 s 459, and lurl 2 29, then by Lenna 5.1,

l"2l t ¡fåT > 0'06316, also contnadictíng Lemrna 5.18. Thus we ha¡e

lurl < 29, and hence t3 . 0. Cleanly if aa S 457,

l.2l t ffi > 0'06316, Thus we consider the following two cases fon

tg

(i)

and

üÍhen Itsl > o.oos, then since lÀ31 > 28.93

lr
Q3

I lto.ss5 | ô 1) (460 - 27.93)(0.995)

- 

\ ^.- (+)(460)

= 459.

0 <0 Þ >0

0g ' +oo, we have

(o +l
M s

(4)
ã 4(0 +I

3

Ïlhen l.sl < o.oos, then l.el 'l# > o'06s1.

(ii) 9" t o (uo < 0). Using the method of p::oof of Lerunas 5.1, 5.2,
-.-ú-

we obtain 0g0e t (436)(15) = 6540; thus wheneve:r l.gl | 0.063J-5, we

have by Theonern 3.9,

*'' ffSffi ' "''ilì[3;33i"'' *'

rf , howeven, l.sl < o.o63rs, then l.2l ' î3åg > 0.063043.

Thus from cases (i) and (ii), we conclude that if aa = 459,

then IrZl > 0.063043; thus by Lernma 5.16, as in the pnoof of Lemma 5.18,

..(4) - (2L.036484)l(4se.e3)(0.9g69s7) + rl,'t2 . . r.

Hence we have that a3 = 461. If, in addition, lUrf S ZS,

then lr2l . ¡5ft5 < 0.063, contradicting Lemma 5.18. When lprl 2 29t

tg t 0, and so, if 0S t 0, then as befone,

M(s) < o. - r - lr.l - 431.003
'03 '*--lõ;- < 

I1T(4õõ;õ3T< k'



The complete nesuJ.t now follows.

9. Isolatíon of the value of a,

the pnevious secti.ons of this chapten indicate that any cnitical

chain is of the form:

where
"4 

. 0, and e3 S 0. We now isolate the pair "4, .g.

THEOREM 5.8. Irnq aú,LLeÆ cJwín þr,¿

an= -17, ,3= -l , &5r 0, t4.
Suppose that lu3l 2 1, then if again

2
0

0.

PROOF " = roir%l ' then

e3 = -f, and since lUal . f,
( s.11)

(431 + s)
uog

Now¡ if tg = 0, then as in Lemma 5.19 v¡e have centainly

lo.l > L2, and so l.gl . # < 0.006. rhus lrr[ . i#q < 0'063,

,!rr = lu.ll .

contnadicting Lermna 5.18. It follows that

then .4

lorl . rs'34, then

t.'ffi'n'
But if lOul < 3, then as in Lenma 5.1, we have sinc" lo+l , lS,

'o ' r(,ÍlîÌ5î'til' -'

Thus ao I -15, which Ínplies that 1",*l ¿ 1? (since au must be odd).

Hence S2 . 46I'0 , and Ôt . 2O'9978312; thus if

lrrl : o'o6go2rt, then by (5,9),

*Í"' <k'

< 0.

By Theonem 3.9, if
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llhen

29+

lr2l > 0.0630211, then

= luzl ' (0.0630211)(+or + Ulö31),
lla
J¿.

03

and so

I u, I > o'06302r-r + o. os 2727L1 o, I .

Suppose that lOrl > r7.1, then lurl > 0.964; consequently,

we find, as above,r''å".ffi.*.
Hence 

"4 = -U. Suppose that .5 . 0, then (5.D) inplies

14 t 0. (5,12)

I,lhen l.+ | 2 o. o4o5, since I O, I < 17 ,,åu'.ffij+.ffi.*.
when l.4l < 0.0405, since loul < 17.1, by (5.12) and Lemma 5.2,

,"(1) _ rleul - r - llullrlorl - r + luult
'''4 = '

(17.1 I.93 L.0405
4 I <k.

a

Thus we have that a-
5

and u4 t o, which comPletes the0 )

proof of the theonem.

10. Isolation of the value of a

rn onden to obtain the value of a, in any critícal chain, we wirr

pnove a succession of lemmas, which pnognessivery inprove the bounds

on the ne.l-evant variables.

tE¡l,tli,lA 5.20 . 0.03838 . lr4l . 0.040406, en I 0.

LEMf\l 5.21. þn < 55..t

tE¡1út{Á 5.22.
'4 = -2'

tE¡tlMA 5.23. a5 = 48, 50 on 52.
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'1ßl00F 
0F LEWI, 5.20. Put c=

0 461
1 I

3 0
2

> 46I m' > 460.9525, ùnplying when lt,* | < 0.03838,

43r + c)(16.1 + 1.,*l) ( 431-. oo24 ) (17. 03838 )

1

Iejp¡,f lorl > 17, andI nolr

31348.77
<k.

':"
(

by the usualThus 1.,* | >

r.4r = l+l
rr loul < 2

4t(460.es2s)10.1 + rJ

0.03838. If .4 = 0, then

< 0.034, a contradíction. Hence we have

method,

luul > o's3'

9, then

'[" 
. tle l+o.oz)( -1.93 )

0,*

rf lOul > 2e, then lOrl . 17.035;

The ¡result follows.

PR00F 0F LEtlll/' 5.21. Now

also we have

lemma implies

_ (rz.07)(27.07)'ffiT'i''
thus whenever Irul : 0.040406,

0u+t

..(u) (499.0024)(12.035- o.o+o+00)
,n3 < < K.

lÀrl > 1, which implÍes

o
29 02- L

< 0.063;
3 461 e -l-

2

leul < 17.003, and so if 04
> 55, then the previous

The lenma fol-lows.

PR00F 0F LÉ|'IMA 5.22. tle have alneady seen in the pnoof of Lemna 5.20

that l.4l ¡ 1, and lOul > 2s. Hence if lr4l = 1, then

4l .';Z' < o'ooz, contradicting Lemma 5.20.

The pnevious tvro lenmas imply that

I

luul. (0.04041)l04l < (0.04041)(ss) < 2.3.



Lenma 5.2 then implies that .4 = -2.

PR00F 0F tE¡tü{A 5.23. rr aU S 46, then by Lema 5.1'

lrul 'Hl > 0'041. rf au = 54, then again l.4l . ffiå< 0'03833.

In both cases we obtain a contnadiction of Lernma 5.20.

Nor¿ since a5 must be even, then by Leruna 5.21' aU = 48, 50,

or 52.

THEOREM 5.q. Anq aútLeal ehar:n haÁ

a, = 50, lual < 2, and e, * o'

r04

0 < 20.99783108;I

(s.13)

r{¿OOF. suppose that l.+l t o.o3e4s. Now lOrl = rz + f. >
-Y4

17.01919, and since lual = I - l.ul s 0'96055, vre have, by Lemna 2.?,

l.2l = 3"++#+ < o'oo3o2'2.

= 461 t Ë;f 
< 461'os8?6, imPlYing

rÍ".ffi.n.
2

lle also have 0

hence by (5.9),

Thus

,I

lr4l < o"os94s.

Now leul. I'l.oo2

lo3l .

2, and since 02. 22, then

2902-L
461 e -1 < 0,062815.

2

Suppose that aU = 52. If O < 0S < 20, then Theorem 3.9 inplies that

(os - t)(os - t) _ _ (sLÐGÐ_Ms:@'@'k'
Thus it follows that whatever the sign of 0U, we have 04 t 51'95.

Then,

1) (le +r)l-z*fo
4

| )(r.ose4s
ô+n

(rs.o6s02)f(r.ogg,+s)(sr.ss) + 1) -,a a rC.
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Thus

(i)
a5 I 52.

Suppose that a, = 48, then by the usual nethod,

r r l-'93l.+l tffi> 0.04.

(ii) Suppose that ar:50, and eithen luUl > 2, or .S = 0, then

luul > r.993, since in the latten case l.5l < o.oo?, as we have seen

befone, 'using 
Lerunas 5.1, 5.2. Hence

l'41 '# > o'o3sz.

In both cases (Í) and (ii), (5.13) is contnadicted, and so the

theoren is cornpleted.

11. Structure of a cnitical- chain Þain, fon n ì 6

Reviewing what we have shov¡n so fan, we know that any chain

which is feasíble in k fon all n, must have the followíng form:

...2
( s.14 ).0

-11,21r 461r -17r 50,
-1r -f, -29r -I, -2rò....

lnle now continue to exa¡nine the night-hand side of the chain pain.

It is to be expected that thene wil-I be unusual behaviour in the chain

fo:r smalt values of ln[, fon it is hene that the change fnom the homo-

geneous to the inhomogeneous natune of the problem is reflected. The

Iange and appanently nandom vaniations in the chain (5.14) indicate

that our expectations ane justified. Never"theless, we would also expect

that when the inhomogeneous characten of the chain plays a do¡ninant nole,

(i.e. when n +*ø), the chain shoul-d settle down to some reeunring

behavioun, as is already suggested vrill occun fon the left-hand chain

by Theonem 5.6.

In this section, we will puove that any feasÍble chain nust be of
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a certaín specialised structr¡re. tüe assume that the chain fon 0O is

held constant. !ùe comnence by proving thnee lemmas which will

eventually enable us to obtain the cnitical chain.

tEÍI¡r,{A 5.24.

tEl,lMA 5,25. Itle have.

16 lur l culd l.E

w00F 0F LEMMA 5.24. rf0

16 lurl onA lrzl both inenQr.áe., lhen u!21 inarQÃÂu.

,Í') = 
s(sl- 

'3 

+-l:^l) wilr inqrease.r lotl9t
If 01 dec:reases, then 0, decneases. Hence

..(2) 3(tg0e + lurl - I),.rr=m,
which is a decneasing function of 0r' wÍll increase.

The lemma then foll-ows.

o6' o'

both inutea,se, thwr u!21 inaruÃeÁ.

incneases, then since l"2l inoleases,

5o'1; thus if l.5l : 0'043,

(49.05)(0.957).ffff.k.

1

PR00F 0F tEfvli,lA 5.25. Suppose that "6 
. 0. Then by Theonem 5.9'

u5 , o. Cleanly l^ul > 2.05, and o

(otr + r- - lrultrlosl - t - lu,
5

ll
+(eul0ul + r)*fu'=

tte have then ltsl < 0.043, and so l.4l t H+ > 0.039. since

lOrl > Lt"olgg' then as in Theoneur 5.9,

l''21= *ffi < 0'063021173'

similanly lurl = 2e + lr3l < 2e + #ffi < 2e.0s647.

CalcuLating the values of lurl and ltrl aCain fon the chain (C)

(to sufficient accuracy) we find

l.rla = 0'0630211983... lurla = 29'056475...'

whene the subscnipt C denotes the values fon the chain (C).
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Thus by the pnevious lermna

rÍ', . (rÍ',)
Consequently, we have .6 , 0'

=ft.

PR00F 0F LEtl¡,lA 5.26. By the pnevious lemma, and (5.14), we obtain

lurl = 2e + 
uttåri¡l':lr; t 

.

Since eu 10, then luul > 0.9,and so Lemma 2.7 írnplies tbat lurl

incneases when óu decreases, since (48)(u) + (851)t lusl - 1) > o.

tlhen 0u decreases, then 0, decreases, and so l"2l incr"eases.

Suppose then that 0U incneases. We may wnite

(4e+l.ul)ou-l
lurl =2e+ -¡5 '

thus again by Lemma 2.7, since 851 - (1?)(48 + ltrl) > 0, and

incneases, we have lurl increases. [Íe neadily check that lual

incneases while lOal decreases, which togethen imply that

1,,_zglorlTlu.lt'2t - 46110al+r

l's I

ihcneases.

The lemna now follows ín both cases fnom Lemma 5.24.

tEt{f'ff 5.27.

PROOF. Suppose that Nor¡ 0 < 50.0589, and
5

l.gl < o.o62.

Ir-l > 0.062.'5'
e? - lr.l 460 - 2s

= #%+ Ì-'Effi> o"ossi'

Thus if 0u > 53"5,

M(4) < 
(0. - I -. loul)(0'9380" + r) . (+s.oo3s)(sr.rg3) < Þ"5 - 4(o5os-1) - 1o7og -^'

If ô, < +4.1, since 05 > 50.0588, and b the above method lo+l < 0.0552,

lo4 |
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'f" = 4 esos - 1

Fience, by Lenma 5.1, we have 49 S a6 S 53, and

0.062 s l"Sl . 0.0668,

which implies that

3.o34.lurl.g.o,
since 48.937.05.53.1. Therefone we have that ltsl = 3, and u6

is odd.

rf au ì 51, then luul > (50'9)(0'062) > 3'r, which is

impossible. Then aU = 49, and .6 t 0. Clear1y eU I 0, else

by the usual method lu'l < 3'01, a contradiction. Thus lu.l > O'93'

and since 0u < 49 and lOul > r0, then in aII cases we have

llt ¡

we have

a,ltSo

PROOF.

(o

M!3).
b

+ 1 + lo | )to.seaq _r)

(o - 1 - lr | + o.o7) (45.07) (10.07)
r956

<k.
4 e

b̂ 06

This conpletes the lenna, and Ï'te can now isolate the values of

a- and e^.bb

LE¡,MA 5.28. Anq ení-ticol chain ha¿

aU = 49, e5 = -3;

lu5l >3, ,6=0, 16t0, and o7t0.

suppose |tsl g 0'06; then it4l t # > 0'0388, and so

lurl < o.s6t2. Now lorl > f7'02, and hence l.3l . T# < 0'0s647s.

thus with the method and notation of Lemma 5.25,

lr2l' ffi < o'0630211e8 < l'r1.,

and lurl < 29'056475. lurla . rt follows fnom Lemma 5.24 that

r'rl2) . t. Thus v¡e have that

-t
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( s. rs)o.06< l.sl <0"062.

ïle may now proceed by using the method of the previous lemna.

If 0S t Sg'5' then

--(4) (49.0038)(0.940" + 1) 27e9.8t'ri' <@'-1151õ'' *.

rf 0, < +s.5, then

¡r!2) . (ul,llul!::?u+u ;.t) . # . r."s - +(50.0588ôs-Ì) -8706

Thus, by Lemna 5.1, we have 44 S a6 S 59, and fron (5.15) we obtain

2'6 < luui < 3'7, implying that .s = -3. Lern¡na 5.2 then impties that

2.933. luul . 9.067. If au > 53 or au s 47, then u¡e have

l.sl . H < 0.06 on l.sl r I# > 0.062, rlespectively, both

contradicting (5.15).

Thus a = 49 or 51. Considen the two cases:
6

(i)

rf0 > 49, then | "s | 
< 3/49 = I .s lg, and so by Le¡nma 5,26

5

ul2) . x.

If 0S.

Ìthen l.6l s o"o

¡¡!3).b-

49, then 0O t 0, and U6 _. 0 (since tU _< 0).

18'
(e^ - ,+ + lo.l)(r.oreó^ - r) . (4s.1-)(t.ors) _.ffij:<k.

Vlhen

with

( ii)

l.6l >o.ots, lrsl .ï#38<0.061 .f.uls,

luul -. 3, ímplies, again by Lemma 5.26, that

luul ' s.

Now if eu I 0, then luul > 0.93, by Lemma 5.2.

lOal > f0, tu > 0, and e6 < 51, ¡re centainly have

,Í"

which togethen

<k.

Since
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Thus we have .6 = 0.

I{hen aU = 51, then

contnadicting (S.fS). Thus

howeven, 
"Z 

t 0, and hence

e

l.ol < o.ooz, and l.sl . €i.s < o.o6r

"6 6 = o, and lu5l > 3. rf,= 49¡ e

0, thenu6

-4 o

In anq elti,LLcal clnin u,se have, (on n ¿ 3,

arn= 49, ,Zn-l = (-lln3, .zn= 0,

dttd azn*l = -42, -44, on -46.

Remank. One may also easily exclude the occurrence of a2n+1 = -46,

but as this is not necessary for our purposes, the proof wíIl not be

included.

P?<00F. lle will prove the result inductively.

Fon the case n = 3, Lemma 5.28 implies that "? 
. 0r 15 < 0,

"6 = 0, and aU = 49. In fact, thene remains only to reduce the

perrnissible ::ange of values that aZ may take. lfe do this by pnoving

that l.7l > o'06.

3
Må

) 56
e4

6

The lernnn now foll-ows in full.

We will now prove the rnain theonem of this section. It will

fíx the st:ructur¡e of any cnitical- chain pain fon n à 5. The pnoof that

the chain (C) considered in 53 is in fact the critieal chain is a símpIe

corolJ-any to this resul-t.

THE0RELI 5.10.

N.06.

(2)(17)
07l

Lu

1

+

that
2

Suppose nceOI¡t st
9

04 t 17t we have

0.04107 ,
0 5

I+)(s0)(17
0+l¡

o
5 +0,*50 1
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and 06 < [49,50,-17] < 48.98004. Thus if lOul < 40.085, since

. .t.

Now if lOUl > 40'085, and .Z = -40, then .g t O and 07. I1.8.

Thus, by Theo::em 3.9,

tr'ffi'u'
Hence we have l"rl z 42, and so lOul > 41.9. Thus

luul = 3 + l.rllloul < 3 + ffi < 3'00144 . luul.,

and

t.sl = :|ffi = +dj# < s/4e = l.ul.,

Consequently, by Lemma 5.26, tl2) . f.. Thus we have

lu5l = l.zl > o.oo. (s.16)

llhen lOul > 47.9, we use the above bounds for 0u and loul to obtain,

¡/(3) (45'0211)(47'9 + o'94),à-'.@.k.
I^then lOul < 39, since luul < o.06z,

M(+) (47.0211)(39 - 0.933)
'6 t@'*'

Since 
"6 = 0, ã7 is even, and so 40 S luzl s 46.

It is mo::e difficul-t to exclud" 
^,1 = -40, than a2n+l = -40

fon n ¿ 4, beeause of the sign of aU. However, if Ì^le can prove

l.?l < 0.061-3s, then if lOul < qo.o3, (s.u)
..(4) (+z.o2rr)(gg. o913s)l'tÀ . . k.

Later we wiII see that these conditions must be satisfied.

lÍe will take as oun inductive hypothesis the following:



For aLl integnal n r¿ith 3 : n 5 m, fon an integer

m, supposê arr, = 49r ,2rr_l = (-1)n3, e2n = 0 with

(-l)turr, , o, l.zrr+rl t 0.06, and a2n+r = -42, -84,

or -46.

Mzn*r 
=

(r+0.1 - 0.93)(0.94)

- 

- ^.( +) (46.L)

Hence we have 
^2rr*2 

> 0, and {-t)t+lurmtl_ > 0, fnom (5.18).

]
]
)
Ì
)
)
Ì

ILz.

( s. r8)

( s .Is)

As in $3 of this chapter, it follows that fon all í, ô S i 5 ãn, the

app:ropriate pnoducts ane given in 53 (v), (vi), depending on the parity

of i. lfe will obsenve the sarne notations in this section.

Note. l{heneven applicabJ-e we will use the l-ess sfiringent condition

l.zr,*rl :,*0, until we have shorrn that l"zl ¿ 42 (i.e. until the

conditions (5.17) ane satisfied).

Now if
^Zrr*2 

< 0, since by the inductive hypothesis

lu^*rl . 46'1, and (À2.*t)(uzr*t) < 0, thenT I'o'oo,2m+1

Now

o.o6 < lrrl s lÀz**rl . w < 0'0614

4o.o2.lozr+tl<+o.os

Wh"r ô2r*It 59.5, in the notation of 53 (vi), we have

(45.0914)(0.

)
)
)

'*ì' 4 1+

llhen Q
2mù1

< 41.5,

$o

+1)
< (4s.og+r1)(s6.e3) < L.- 10959
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'lll,..
(lor.+rl* r - lorn,l)(o.e4oz.*r- llufl¡z*ilo f + rl

( 40.96 ) ( 38.01 )----L- 6647

Thus, by Lerrna 5.1, we have U, 3 ^r^*2 
s 59, and Lem¡na 5.2 irnplies

that 0.06 < Itzr+tl . 0.063, giving

2.5 < (0.06)(4r.9) < luer*rl . tO.063)(59.r) < 3.8.

Hence, by what immediately pnecedes the formula (5.19), we have

r2rn+r = (-1)n+13.

I'le uray now isolate the value of a2m+Z by the following senies

of steps.

(i) rf a2m+2 | 58, then lrzr*tl . H < 0.06.

(ii) If azm+Z = 51r then suppose that eithen luZr+fl < 3, on

e2^+2 = oi we have l.r*rl . # < 0.06.

Both (i) and (ii) contnadÍct (5.18)

(iii) If 
^hn+2 = 5l on 49, then suppose that lu**r-l t 3 and

e2m+2

(-t)mr

I 0. Since then

2m+2, O. It follows that whateve¡r the sign of þZm+2, ot

whateven the panity of n, we always have

(e llt loMNn*2'
4 0 0 -1

?lr,r+2 2nft2

u2m+l = (-1)t+1(s + (-r)trr**2),

-r-l l*r-l l)

Now by Lernnas 5.1, 5.2, we have luer*zl > 0.93, l0zr+zl t to,

lÀzr+zl ' s; thus

Mz*z.W.n.
This excludes a2m+2 2 51; and also 

^Zrnn2 
= 49, with

and

lrz^*zl ¡ 1 and luzr+rl' s.
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Again using the notation of g3 (vi), we have the following:

(iv) If 
^2^r2S 

45, by the bounds (5.19), since lur*rl t 2"93,

M(3) - (41-'02 - 0'0ô)(t+s't - 3'93) -'"2m+r"i'

(v) If 
^2^+2 

= 47 and 0zm+t < 47 (þZ^+Z > 0), suppose that

luzr+rl z z'948, then

,olilr'ffi'*.
Thus r¿e have luZr*fl. z'948, and by the same argument as in (iii),

{-r)n+lurm+2 > 0, and Itz^*zl t 0.052. rf lrzr+zl s r, then

luZr+zl . 1.07, and by Lernma 5.1, þzm+z > 15. Takíng, without loss

of genenality, ¡n to be odd (Theonem 3.I2), we obtaín since l\zr*) ,3,

M til, ..ffi
<k.

rf |tz^*zl Z z, then luzm+zl > l-.93. Hence

when þzn+z < 40, ,l*1, . ffi. r.,

and when þzn+z > 40, we have since l.r*rl t 0.052,

,tÌ1,.ffi.r.
This excludes the case when 0Zr*f < 47.

(vi) If 
^2*2 = 47 and 02r*1 t 47 (þZ^+Z < 0), suppose that

luzr*rl ¿ z'978, tben

'f1"ffi'n'
Thus we have luzr+rl . 2"978r and since 1-t)murr*2, o, and
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Itzr*zl t 0.022, then

'til,
(02.*z + I - l^rr*rl)(l0zr+zl - r - lurr*rl)

u( rr**r loz*z ¡ + r)
(45.1)(0.978)'ftiiiff i'

Thus in (v) and (vi) we hav excluded the case 
^2rr*2 = t+7.

(vii) Fron (iii) then, !¡e conclude that a2m+2 = 49. Consider the

two subcases.

(a) þr**r.l-t-g.. rf 0zr+r > 4e, then l"zr*rl . s/ae. tlhen

óz**r ç 49, (þz^+z t o), then as Ín (v), (-l)m+tu^*, t o.

llhen lr^*rl -. o.oz, t!fr1, . ffi. r.,

and when lrr^*rl ' 0.02, then l.zr*rl . #;f,å < 3/4s.

Thus if 
"2r*2 = 49 and luz**rl S g, we have |rzr+rl. g/ag. (5.20)

(b) þr**,1-, a. This ímpIíes that (-t)mtrr* 2 , o.

rf þ2^+2 ' 0 we have with the pnevious notation (m odd),

'\?.r.ffi.6ffi;.r.
Thenefone we have after (iii), for the case (b),

þ2^+2 , o, {-t)t+lurm+2 t 0, ,zrn*2 = o, (5.21)

As we have seen earlier in this theorem, the fact that IOZ^*) t +f

impries that l0zr*zl t tt.e. Thus lrz^*zl . T# < o.oos?, and it
follows that l.zr+tl . qflg < o.06rss, since 0-*, > q9. Thus, in

both cases (a) and (b), aften (5.20)' if .2r+I = -40 then

lOrrl < 40'03, and ltrr*rl . o'06135. Now all these calculations are

valid fon m = 3r ênd so the condítions (5.I7) ane satisfied, inplying



l.rl : +2. tle are now justified in taking 42 : l.z

inductÍve hypothesis (5.18).

Now fon 3 S n S m, lle have wheneven lt2n+rl < s7+s,

l'rr,-rf =ffi< 3/4s.

Thus, if any lrrr,*rl . a/+s, then by a sirnple inductive a:rgunent,

l.sl < 3/49 = Itula, By (5.20), this is tnue fo:r the case (vii) (a).

The semÍ-reguJ-an continued fnaction e:<pansion

loul = [ l"zl,-'+g, l.sl,-49,.. .., l"zr+rl,-'+sr.-.,]

= ( I .z | ,+9, lan | ,+s , . . . . , I uz*+r | ,+s , . . . . )

whene the latter expression is the ondinany eontinued fraction expansion;

it is a well known nesult (".g. [26]) that lOul is an incneasing

function of luzrr+rl, ir l.rr*rl remains fixed for 3 s n < n s m.

Since by the inductive hypothesi" l.rrr*tl ¿,*2, then if fon sone n,

(o < n s n), l.zn+rl t +2, then lOul , loslc = (EFl. Thus if

lt^*rl < s7+s, then lrzl < s/4s, and

luul = 3 + l.rlzloul < 3 + 

"r#.8 
= luul.;

also luul < 3/49, and so by Lenma 5.26, we have tÍ.') . *. Thus vre

may suppose that a2n+I = 42, fon

ïfe will novr prove that if lt
then so too does lrrrr-r_1, wheneve:r

be true since we have, when lr

3SnSm.

zn+rl and

3SnSm.

'+2luzn+ll +ltzn*tI '

zn+rl and luzn*rl'

116.

I s +0, ín the

(s.22)

u2n+L l uotr, incr:ease

This is easily seen to

zrn+rl 
< g/49 and hence l"rrrl = 42,

lu"-*., l.l.r.*', Ilurr,-.l = s *

which incneases in both lt
Suppose that luer*rl=s.lurr*rl., then as we have seen in
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the case (vii) (a), l.zr*rl . g/+g = ltrr*rla; thus using the above

nesult, together vrith the fact that l"ro*rl . e/+S and l.zr,+tl = +2,

(3 s n f m), we obtain luul . luslc and lr5l . Itsla, inutving by

Lemma 5.26 that tÍ') . *, (s.23)

Thus we have luzr*rl , g, and aften (5.21), the inductive

hypothesis holds at the step mtl, with the exeeption of the two

condition" l"z**gl > o'oe and 42 s l.zr*gl S +9. tle now pnove that

these ane also satisfied.

Suppose that l.z**gl S o'oo. Then if l.zr+gl S ,*0, we have

lózr*zl < +o'r; also we have a2^+2 < 49'r, lÀzr*zl t s, and

lrr*rl . o'07, imPlying that, in the notation of gg (v),

'liì, =

'ffi't'
tühen l.z^*gl >, +2, then

luz**rl -' g - f*rih < 3'00144' lurr*r|.,

and

lrzr*rl 
= 
gl# < s/4e = l'2,*:.1c.

It then folJ-ows by an identical angument to (5.23), that ul2). t.

Thus lr-*al t o.oo.

Now we already have l"zr*gl ¡ +2. rf lþz^+) t +z'9, then

,|iì,'#'r..
Thus a2nt3 = -42, -44, on -46, and al-l the conditions (5.18) are valid

The theonem is therefore tnue, by induction.fo:: n = m+1.
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COROLLARY. The e-høLn l9l i" tltø aú,t'LcsL cJuin.

!R00F, Now, we have been hoJ-díng the chaÍn fo:r 0O constant in this

section. tÍ." is cJ.eanly an íncneasing function of 0or and so takes

its maxirnun at the largest feasible value of 00, which by Theorem 5.6

is go = [2,4,q,3,ã]5þ1.

By Lemma 5.3 and Theonen 5.10, we have ltrrr-r-l = 3/49, for all

n ì 3. Thus any chaín which may possibly be c:ritical has lt'l = lrsl..
I{e have already commented that luul is a decneasing function of lOul,

and so any chain which has luzrr+tl t +z fo:: some n I 3, has

lurl . lurla, and eonseguentry tÍ" t u.

Thus the chain (C) gives the naximum possibLe value of nLt',

fon chains feasible in k, fon all n. Hence (C) is the cnitical chaÍn.

The hybnid natu::e of the problem seens to have been responsible

for the length of the proof. Perhaps though, the difficulty of proof

is not neally surprising. Howeven, it is also of intenest to know how

the vafues M(f;c) are distnibuted in the intenval [0,k), This is the

subject of investigation in the next chapter.

In concl-usion, sre are able, after (4.29), to exhibÍt a cnitical

forrn

r(ex+y)(x+óy+o)00-1

where

o - zõo' t Srgs a - 910183910q - l-8I8229
- 2997 ' Y 823873005-164581

o=-r"(þ*ffi1.
49( 8238739ôs 164581) / '

with ô
5

= (147 + ffiî)/ø,

,
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The cnitical value is attained by this nixed fonm at the point

(xry) = (-6,0). The value k is also taken by alJ- equivalent fonms,

in the sense of the remark (4.30).
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CHAPÎER VI

SUBSIDIARY RESULTS FOR THE MIXED FORM PROBLEM

1. Intnoduction

In Chapter V, we showed that k = 0.23425..., given by (I.30),

is the best possible constant for the mixed forrn pnoblem, which we

fonnulated as a special degenenate case of the divided cell algorithm

for the associated gnid. The question raised at the conclusion of the

previous chapter: was that of the distnibution of the infimum values of

such fonrns. We have alneady noted in the first chapten that the

corresponding question fon homogeneous fonms is not yet completely

settled, whil-e the Ìiminf p:roblerns Ín inhonogeneous appnoximation wene

conside:r'ed by Ba:rnes [7].

One might neadily imagine that from the st:ructune of the

cnitical chain and Theorem 3.1L, k is in fact a point of accumulation

of values of M(f;o). For example, we coul-d put in the chain (C),

a2n+l_ = -44, for some lange n, without effecting the feasibilÍty, in k,

of the chain, except at the step Mrr (see Chapten V, g3 (v), (vÍ)).

But Theonem 3.fl ensunes us that Uf2) 
"orrfd 

be made anbítrarily close

to k, by ehosing n sufficiently lange. In fact, we could constnuct

in a similar way chains with Ínfima arbitnarily close to any kr, hrith

0 s kt s k. Consequently the intenval [0,k] would be dense in the

val-ues M(f;o). This nesult follows fnom the next theorem, the pnoof

of which will constitute the renainden of this chapten.

THEORE¡I 6,1, Fon evu4 lz' , tue-h lluÍ. 0 s h' < b, thøtte ex,i,6t
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ttvtcotwÍabl,q wwnA bitwLA qutùØLLc dottnÅ [, to eneh od wtvLch thuø

eßrulupondÁ a,t. Lon¿t onø rus.t non-zulo vunbu a., utì.th

M(d;o) = lz'.

Note. It will become apparent that the following is :realIy a stnaight

forv¡a:rd extension. There exist uncountabJ,y many 0reach for" whieh

there correspond uncour¡tab1y many pairs (0ro), such that

inf
(x,y)l( o,o)

(0x+y)(x+4y+c)l

2 Constnuction of the chains (C*)

We first show that the nesult holds tnue when kr = Q.

Given any integen s > 0, we can find an rs such that fon all n I ns

[(2)r,x] < 1+ 1/s.

Consider those chain pains which satisfy (4.f2), and which have Er, = 0,

nì0rand

0o = [(r\ror,u r(2)2o2,4,...'(2)ro"14,...]

Now at the centnal step of the block ,rrrr, we have, fon some m, by

theonen 3.9,

M<m-

Thus the infirnum of such a chain is 0, and thene are uncountably nany

sequences {nj}, with nl : n", for aI1 s.

Fo:r kr > 0, we will constnuct a chain which is a modífÍcation

of the erÍtical chain (C). A bnief examination of the calculations

used to dernonstnate the feasibility, in k, fon n I 1, of the chain (C),

¡leveals that only local values of the chain pain were invoLved.

e0-1 = kl.

e(

4(e0 -1)mm

- 1)(0m - 1)
m
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Similanly the:rational bor.¡nds on the vaníables pnovided by Table 5.1,

a:re uneffected by variations in an+l and err, p:rovided n is lange

enough. This is a consequence of Theonem 3.1I.

Suppose that we ane given some kr, wíth 0< kr< k. Since aIl

the complete quotients of the chain (C) are bounded below, Theonem 3.1I

ensures that thene exists an N such that no matten how we change the

chain (C) for n ì N¡ we have uf2) r r.t.
Define r,¡ = [ñõ"] = 50 + 7Æ, and an in::ationaL (in genenal)

number a, by

(o - I)(1 - o) _ ¡r (6.r)
4ul

Since kr<k<0.234255rwehave 0<e<l_. If ois

irrational, expand I/a as a semi-negulan continued fnaction to the

íntegen above, and compute the sequence of convengents {lo/q} by

(3.21), If o ís national, put po/gn = L/e, fon all- n. By

Leruna 2. 6, {p-/s-} conve:rges to r/a-n -n

Pr,/L > t/o'

Now Let {nrr} (n, > 1) be any stnictly monotone incneasing

seguence of positÍve integens. Considen the chain denoted (C*),

which is identical to (C) fon atl n f N (defined above), and fon n > N

fnom above. Hence

(6.2)

has the fonn:

-42, 100, 1000,

0, -5, 0, i:
':]

ool

J,",_,

-rmPl

hqt

_2np2

2ng2t 2r
3

-2mps

2mo 2rs+L

2n
2

(6.3)
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whene m ís an anbitnary positive íntegen, and the vertÍcal- Iíne

signífies the point aften which the chain diffens fnorn (C).

3. Evaluation of the Ínfimun fon the etrain (C*)

(i) l{ithout loss of generality, take \ = ,+e, tN_I = 3. Atl the

bounds on the vaniab.Les fon tr < N, conforrn to the nequinements of

Chapten V, 53, implying Mr, t k', fon n < Il. Now lO*la t l0*l , +2,

0'0499. lu*l . lu*lar ând oN > 49'023, impryÍng ti,at ufi), i = 2, 3,4,

ane feasible in k, (see Chapter V). Also

MÍ
1) (o*, - 2.oor5)( lO-,1 - o'9501)

a' 4(oNloNl + 1)

At the (N+l)th step, cleanry M(3)
N+L

(ii)

and

and

> k, and

'4ll' 'l\i lu=.liülll"+'ri ''" ' '-?;îìÍå3ì;" 'u.
Now since 0l¡*1 t (Or*a)a, and luu*rl . lr,n*rla, .h"n we have

,rÍ11 '(tff]).'n. Àr.so ltr*rl, +2, oN+r > ee, l^r*rl > o.oo,

rl < 5"01, irnplying

"ffftffi#f '*'
(iii) Now ÞN+2=ffi(ffi)

lu**

4iì

< 0,

lu*nrl . 0'0r, 5 < l^**rl . s.002, 0N*2 t roo, ô**, > sss.

'Íil
M(2)
"N+2

CleanJ-y ¡ kr

(or*r-6.002)(0N+2-r)

k

-Í:l
u(ot't*20¡¡* 2 - l)

- (93.998)(998)
'6tr'
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M(4) , (eN+^ - 4'oo2)0N+^ , .95.998, u'T+2 a(01¡*20¡¡*2 - L) (4)(100) - "'

(iv) Suppose that we examine a step in the chain fon which an ì 100,

an+I 2100, and en-l = "r, = 0, then l^rrl < I and lurrl ¡ 1r

irnplyÍng

l{ , te. - r -.1},,11(0,,_: r - lurrl) , (0,.,_: 2)(0,,_: 2)'-n: 4(er.,orr-t) - 4(en0n-1)

972> ETGõi--tJ > k'

Hence, (i) to (iv) irnply that the only places in the chaín

(Cr) which could possibly be not feasible ín k, ane Mr, and those

steps Mn, Mrr+I whene ån+I = -hps, fon some natunaL numben s. Let

n and s denote such a position in the chain; then by the argument of

(iii), we have Àrr.0, and Un+I .0. hle also have, by Lenuna 2.6,

or, t t' orr+r t o' (o'+¡

òteanty U(1) t L. If we apply the nethods of 53, Chapten V, we

neadily obtain that *lt' ' ul2), i...

t,

if and only if ffi ' +F . Now by the ronn of .r,+L êrd

En, vre have that the right-hand side of this latten inequality is

uniforrnly bounded for: the particulan n unden considenation, (the bor¡¡rd

being a function of kt). Since lÀr,l may be nade arbitnanily smalL

by choosing rl sufficiently large, a suítable choice of n, ensunes that

this condition is satisfÍed fon all such n.

Similan1y, $re have that ul+) t *tzl , if and onry if
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lo,rl - lunl ' Now by (6.2), ps ì 9"/a, implying

lOrrl - lurrl > (2mp" + 0'01) - (zmq" + 0.001)

> 2m(p" - 9")

> 2nq"(J./a - f),
and hence lonl - lurrl can be nade anbitnanily lange (fon a fixed kr)

by choosing n range enough. since lerrlztr - lurrll is r.nifonnly

bounded fon the panticulan n unden considez'ation, we may suppose

M(4), M(2).nn
Thus we have Mn = Ml2) provided both n, and m are chosen

(as firnctions of kt) to be lange enough. Now

lv tþ I . :'n" I 3;1ot < o lo + o.oor/lô l-
' ' n' 'n ' ,rnps * r/ orr*t 9"/P" + o'ool/ I On I ;

hence, aften (6.1), (6.2) and (6.4), we have

M(2) >
n

(or - r)( | l*r-l lr

P )l I * o.ese)

4 (0 ô'n +1
(o - I)[tr -

(¡) 0 +1
n

, (r¡ - L)(1 - q"/p")
4t¡

- (o-1)(1 -a)
- 4t¡l

Now at the step Mn+', it is :readily venified that the rores

of |tnl, lO,rl and l^nl, lurrl are interchanged (as in Lemma 3.12),

and that the same bounds appry fon conresponding vaniables, Thus

unden the same conditÍons on nl and m, we have

Mn+r = tllì'n'.
Thus the chain (C*) is feasible in kr, fon alL n.
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Now r '>6
S

Define the set S as fol-l-ows:

S = {n; ên+l_ = -rtnps fon sone s}.

as sà-rimplying

lirn 0

n+6
ninS

lir¡r I

n+@
ninS

,, = ,, lim I 
^rrl 

- o,
n'à@
ninS

lim lO
n+cÞ
ninS

l=-,n

U,,

Hence

lim trr=#=kr.
n+æ
ninS

Consequently, the infimun of the mixed fonm conresponding to

any such chain (c*) is kt. Thene ane uncountably many forrns since

{n"} is an anbitnary (except fon nr) increasing sequence, of r¿hích

thene ane uncountably many.

The fact that fon each (0ro) there exist r¡rcountabJ-y nany 0,

follows fnom Theonem 3.11, and the fact that O_f, = tæl nay be

neplaced by 0-g = [+,(S)"rr3rri1 "t"o" t is sufficient]y lange and

{srr} an arbitnary incneasing sequence of natunal nu¡nbens, without effect-

ing the feasibility (in k) of the chain (C*). I will not give the

proof of thÍs, but ít follows by stnaightforwand calculations of the

type given above.

/on I (q./p. ) = a.-t- -.Ilim
i+-
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CHAPTER VII

A RESTRICTED INHOMOGENEOUS MTNIMUM OF FORMS

1. Introduction

!,le will suppose that f is an indefinite binary quad:ratic forrn

that does not repnesent zeno fon integens, and that P is the :real

point (x.ryo). lle have alneady seen in Chapter IfI, that f and P

togethen defíne a set of sinilan grids Ín'the €, n-plane. M(f;P) was

defined to be the infimum of the pnoducts of coordinates at all the

gnid points. In this chapter we will investigate the infimr¡n taken

over those gnid points which ane in only one of the foun possible half-

planes defined by the axes.

Let f be an l-reduced fonn, then we rnay uniquely denote it, ín

the usual way, with lel ¡ rr lOl ¡' l,
f(x,y) =u¡\(0x+v)(x+ 6y¡; (7.I)

then

f(x+ ' txo,Ï + yo) = 

"#= 
(0x + y + to)(x + 4y + no), (7.2)

whene

Eo=Oxo+Yo

to=*o*oYo

Ìüe define U+(t;P) as foLlows:

f;P) = inf
0x+y+EO>0

where the infímu¡n extends over all integers x, y such that

0x+y*rOto.

)
)
)

(7.3)

I

M'( À(0x+y+80) (7.4)



Similanly hre may define M-(f ;P):

M-(f;P) = inf Àl(ox + y +-ãn)(x,+ 0y + nn)l 
,ex+y+to.o lo0-11 '

where the infi¡num is taken over aLl Íntegens x, y such that

0x+y*tO.O.
Note that Theonem 3.10 implies

M(f;P) = nin t¡¡+(r;P),M-(f;P)\ < r4A.

Define the forrn g, after' (3.++), by

g(x,y)=rl9 1l =-*Â-Ll oJ oO -T (9x + Y)(x + 6Y¡'

and let Q be the poÍnt (yO,xO). thus

L28.

(7.s)

(7. e)

Then

(7.6)

(7.7)

(7.8)M+(g;q¡ = inf 
-^a(0x 

* v * noll
Qx+y+nO>0

x+ey+E
e0-1 t

and

M-(g¡Q) = inf ll(Ox + y + nn)(x + ey + Eo)l
leo - 1l

ox+y+nO<0

Consider the gnid L, given by

t¿ E=ß(ox+Y+Eo)
L¡ 

n=y(x+ôy+no)
fon all integens x¡ I, ¡rhene ß > 0, y > 0, and ßy =

Å

leo - rlt
M (f;P) take an infinum oven eÍther the night on Ìeft-hand plane of L,

while M*(g;Q) consider those points in eithen the uppen on lower:

haJ.f-plane.

In orden to obtain inforrnation which is independent of the

partieular l-neduced fo¡m chosen fnom an equivalence class, we define,

aften (7.6) and (7.1)z

¡lr(t;p) = Mr(g;Q) = max {l¡t(f;p),¡l*(g;Q)}, (7.10)



+2s.

and

Mf (f ) = Mr(g) = sup M*(f ;P), (?.11)
P

where the sup:remum need only extend over a conplete set of grid points

incongnuent nod L.

Cleanly, if f and h ane equivaJ.ent l-neduced for'¡ns that do not

nepresent zeno, then M*(f) = M*(h); thus r.¡e may define, fon any

indefinite binary quadratíc form g, M*(g) to be equal to the value

M*(f ), whene f is any eguivalent I-reduced fo¡'rn.

the punpose of this chapter is to investigate the supnemr¡m of

values taken by M*(f), and to evaluate this functíon fo:r a centain

s€queûce of equivalence classes of forms. I{e will deduce these nesults

fno¡n a nelated pnoblem, solved by CasseJ-s [t]l and Descombes [24].

ïle wilL ne-define the function k+(0,o), on irrationals S, and

non-zeno real o, such that 0x + y + o does not nepnesent zeno in

integens xr yr (see (I.5) and (1.8)). Put
¡k'(o,a) = lim inf x[çx ] c0, Q.r2,

x+lo
and

k+(o) = sup k+(ó,o). (2.13)
0a

Cassels [tl] showed that

(ô) = #,
that there

sup k
0

+

while Descombes [24] proved is a dec¡:easing seguence of

(7.r4)

isolated values fon k+(4ro), which appnoach the limit
1' - zzseoe;=399r+7t@= 0.352...'t\= F-"

Descombes used the algonithm originally descnibed by Cassels.
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It involved the ondina:ry continued f:raction expansion of 0, together

$rith an associated sequence of integers, which arose f::om the inhono-

geneity of the pnoblem. By means of yet anothen modification of the

divided cell- rnethod p:reviously described, we will re-formulate this

pnoblen in te:rns of semi-negulan continued fnactions, and then eonvent

Descombesr critical chains into this context. lle will then connect

the appnoxímation pnobtem with the nestricted forrn pnoblem described

above.

2, The critical- chains of Descombes

The couples

thene exist integens

0
r = P9-1-JLr0+s

LEI/¡IA 7.1 ,

(ô,e) and (0t,at) ane said to be e4u*voLenÍ if

pr gr !r sr a, b, with ps - qr - tlr such that

. cr = lps - qr)o. + g+++, r0 + s > o.t s rO+s n0+s'
16 lþ,el and {0',a'I anø e4wLva.Le:t1', lhwt

l¿* (óro) = Þ+ lot,at l.

(7.15)

The pnoof is given in [2a] (Proposition 3).

l{e now pnoceed to guote the nesults obtained by Descombes.

DefÍne the sequence of integens tsr,), n I 0, as follows:

"O = 0, sI = 1, sn+L = 542 sr, - sn-I. (7.16)

!üe rnay then define the foltowing sequences of integers based on {srr}.

A
n =14s -257srr+1

3s -+398sn+J- r
cr 9sr*1 -L44sn

D

Btl

i
)
)
)
)
)
i

11
2s r+1

+223stl

(7.r7\



*rn = =P+J + 257 snr MzP+t

= 1I sn+r + 75 sn' N2p+r

= 7 
"p*1 

+ 263 sn' azp+t

2p+1

zzs-ffi

= 25 s -f 8s- 1r "P+1 - -Pt

= lg9 "p*l * , "n,

= ]-27 s .. + I s_ ¿-, -p+1 _ -p,

= 34s -+2s.P+f P

_rs-fiõ-
1o

13r-.

(7.18)

( 7.le)

)
i
)
Ì
)
Ì
)

N
2p

orn

35sp' 6

Using these sequences, we may define the pair (rloroo), and the neal

nunben y, (fon r Z -2), changing the notation of [24] slightly to

coincide with (7.t2).
7-ñ

þ-2= ff' v

6

and for

1+p+
e

2p

?"( -D )+

rl,

^ô
+z)

-1 2340 0

Ì
)
]
]
)

)
]
)

]
)
)
]
)

(
rr=

t3
rì1'

't _2

c

o_2 = I/I4, o-I = 1/90, cr' = 1/I0, and fon

eo= (Moúo+No)/24o.

28ñ
27

2 ô ð +2)
andfo:rr¿1, -D

l1

(7.20)

(7.2L')

r

0Y

rìIn

Y t

+cYo
rr rr

ïle can now enunciate the basic nesult of [2a]'

TTIEORE¡'I 7.1.

(¿) {v t iÁ an ine¡.en¿Lng aer¡uwtce, and i( '¡ i,t gívwt bg 17,11ll
,L

I',tn Y
tL+@ ,L ='(.

läl Fon a.I'L fr ,- -2, tÁ)e. hßve

lz+ l,l,o,-oul ' 1/'(2.

liiil Id we exeltd¿ all- uup.Lu ec¡wLvalenÍ

ln one o$ lùo,-anl , 6ort -2 s n I n, lhen

f¿*[rl,ro) .lz+lr¡,rr-anl - I/.(n

lin the tetae o( lT.tsll
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li.:vl Futúhetuonø, i{ hþ,ol it rwt. e4wLvahenf. fu lr¡n,-o,ol lon

tomø t, thwt

lr* lrþ, ol s I /y ,

and o4uaü,tr1 hoL-d¿ $on uncoutúabl,g nwtq couple's ({,,a1 .

The whole of [2a] is devoted to the pr"oof of this assention.

It is J-ong and tedious, as night be imagined fnom the statement of the

theonem, and no attempt of pnoof will be ¡nade in this thesis. Hovtever,

we will deduce several nesults about M*(f) from it. lle did not incLude

pants (a) and (c) of the theonern ([24], p. 283), because these ane

neally homogeneous nesults.

Fon oun punposes, the e:<plicit values of (rÞ"r-co) given by

(7.19) and Q.2O) will be of less inte¡rest than the algonithmic develop-

nent of the pain. As ín the hornogeneous case, sínce ere are dealirg

with a lim inf pnoblem, only the rrtailrt of this development wiLl be

nelevant.

tet ß] be the tait of the ondinany continued f::action expansionn

of {rr. In the notation of Chapten II, 93, let us denote the ordinary

continued fraction bLocks as follows:

Ar = (4r1rlr1) = (4113) )
)

Bt = (4rIrl,1,Inl) = (4rls) Ì. (7.22)
)

ct = (3r1,1-r1) = (3rI3) ]

Then, fnom [2a] (pp. 324,327-330, 351-), we nay suppose

BLz = (Aå), ßlr = ((B'c')-), ßå = (B:), I] ( 7.23)
gi=((A'(B'C')')-), fonr:1. Ì

By Lemma 2.4, the B; ane neduced fon r >_ -2, and íf
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ßo = ßi + I, the ßo viIl be A-neduced. By Lemma 2.12 the A-expansion

of Ê- will be pure peniodic. Define the following seni-negular blocks:'11

A = [613], g = [6,3,3], C = [Srg]. (7.24)

Then, by (2.19) aften the convention (2.18), the equations (7.23) ane

valid also when the pnimes are ¡removed. Thus

B-2 = [A-J, ß-1 = [(BC)-]' ßo = [B*]' ]
) (7.2s)

ßr = t(A(Bc)r)-1, fon n : r. ]

If {n¡} is an anbitnany incneasing sequence of positive

Íntegers, then any innationar rp, whose ondinany continued firaction

expansion tail- is given by: say,

(Ar(Brc')mfAt(B'c')¡n2...) = (A'(B'c')r*)il=r, 0.26)
togethen r¡ith a connesponding s, has

k+(,,,ro) = L/r.

creanly thene are uncountably nany such {,,. The pnoof of this nesult

rnay be found ín [2a] ( ae, p. 349). the connesponding A-expansion

in semi-negulan continued fractions, is given by (7,26) with the pnimes

ne¡noved f:rom the blocks.

Altennative rnethod for calculating k*(Oro)3

lle will- now briefly describe a funther degenenate ease of the

divided cell method, used by Bannes [7], to pnove the existence of

uncountably many pains ($ra), fon which t+(O,a) = ô, fon each 6 with

osôs%.
Cleanly vûe may suppose that, in (7.12),

-f <c<0, -f .0to<0. (7,27,
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Coasiden then the gnid [, in the Ç, ¡-plane.

L: 
E=x )

), (7 .28)
n=0x+y+a ]

where xry take all integral va.Lues. since r"¡e are supposing that

Qx t }¡ + q does not represent zeuo, there ane no gr:id points on the

g-axis. ['le readÍly see (as in [7]) tt¡at

t+14,o) = lim inf {lgnl; (t,n) a point of L, t > o}. (?.2s)

The cel-l

Co = (o,o), Bo = (l,g + a),

Do = (0,1 + a), Ao = (r,O + 1+ s)¡

by (7.27) and (7.28), genenates the grid L, which has rmit determÍnant.

Using the formulae (3.9), we can again constnuct a divided ceII

Sr, of L, together with an integen pain (ho,k.) (as in [ZJ, we nay

use the convention, if necessary, that an axis rnay be considened as

part of any guadrant that it bounds). Continuing this pnocess for

n I 0, we obtain a sequence of divided celrs {so}. Howeven, the

argorithrn does not appry for n < 0, sinee there arre lattice l-ines

panallel to the n-axis. The results of Chapter rrr apply identicaÌly

fo¡r n 2 0, and by (3.13), the argonithm yields a sequence of pai:rs

{an+lrerr}, n I 0, which satisfies the relevant conditions in (3.26).

If we denote the ve:rtices of S- by (3.f4), then we have,n

0r, = [tr*1'an+2"""] ]
] , (7.30)

or, = [arrrên_Ir.... ,uI] ]

and
(-r)n e---æ

ie
)
Ì
]

nu =2n +1+ônn'n +

::=fôn+t0n+2. . . .0rr*" )
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)r. = 2En-n +e +l=e
n

* 
tii r-r l" t* - (-t)n

n-l- 
"lt0r,-tOr, -2' '" tr-" 0rr-10.-z' ' ' ' 0t )

)

( 7. 31)

C1early 0., and tr, a¡e rational numbers, and the nesul-ts are

consistent Ì¡ith the convention of Chapter IfI, wheneby h_, and k_,

ane defined to be infÍnite, sinee CODO is a segment of the rì'axis.

Consequently, the forur fo(x,y) = x(ôx + y + c) is equivalent

to each of

frr(x,Y) = e;\ 
(orrx + y + õn)(x + Poy * nrr), (7.32)

n'n
fon all n ì 0, if

0o = 1/ô, nO = c,/0. (7.33)

By a nethod similar to those of Chapter III and IV, the converse

nesuJ't may also be seen to be true. Any one-sided chain satisfying

(3.26) fon n > 0, conresponds to a sequence of fonns (7.32), (7.33).

It is easily proved that the l-im inf in (7.29) need only be

extended over those gnid points in the right hand plane which ane

vertices of a divided ce1I of the chain {Srr}. By the natune of the

algorithrn, as we have alneady rernanked in Chapter III, An is either in

the finst or third quadnants. Hence we v¡ish to evaluat. lgnl "t
either A_ and B_, or C_ and D We have aheady commentednn'nn
that whenever the slope of ArrD' is positive (and hence an+l > 0) then

A' and Arr+.1_ u"" in ventically opposite quadrants, while if âoD' has

negative slope (and herrce an+' < 0), then Ar, .rd Arr+1 are in the

same quadrant. Since AO is in the fi:rst quadrant, it follows fnom

Theonern 3.6 that



k*(0,*) = rin inf
n+æ

M*,

136.

(7.34)

( 7.3s)

whene

M
+

onwards,

(0t,a') is

{ min {tÍt),*Í"t,

I 'io {rÍt),rlu'r,

(-t)narar.. .."r, . oif )
l
]
)

]
]
]ì.t
)
Ì

n
1-f (-l)narar. .. ..r, , o

In (7.35), we will denote the occurrence of the uPPer alte¡rnative by

Xrr, and the lower altennative by Yrr.

Since the lim inf is nequired in (7.3t+): ãDY behavior¡¡r

of the chain which :":;" only a finíte nr¡nber of times, will not effect

the vaLue of k+{4ra), provided the corr:ect altennative is maintained.

If the nules fon deciding which alternative to take at each

step of the chain are reversed, in (7.35), (define this value to be M-),

then we ane evaluating lgnl in the left-hand pIane. Put

k-(0,4) = lim inf M] = l-im inf lx(0x + y + a)l
n+onx+-co

= tim inf xl(S* + y - a)l (7.36)
x++-

= k+( o r-0)

Suppose we have two chains r.¡hich are identical from some point

Say the chain fon (0,4) is {arr+lrtr}, and the chain for

{at .nt r ";) , whene

an+r+I

= gl
m+r

,ct ), if (-r)*+tar.. .urr.i....å, o

af
m+r+

a

]
)
Ì

I
Entr

for some m and n, and all r ¿ 0. Then it follows that
4¡'(0'

k+{ 4t ,-c'), if

]
Ì
]
]

k+14,c¡ =

{
{
{
{ (-t)t+t.r. . ."r,.i.. .-; . o

. (7.37)
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We will now discuss the application of two of the elementany

chain openations mentioned in Theonem 3.I2, and thei:r effect on the
+

value of k'(Qra). A prirne attached to a vaniable will signify its

value aften the openation has been applied.

THEOREI.,I 7.2.

lfl I{ the tþn o{ îhe {en} ehn'ín it tevetued, then

f¿*(O',o') = {lû,-a} = b-(0,cr}.

läl II thø óLgnâ o{ Íhe {an} c-!ú/ítl, and aL-tetrnaie. mqnbe¡t o{ the

{en} eJtain, aJLe tløvuLáel, thut

Þ*lo',o'l = f¿*(o,ol on þ*(0,-ol.

?RAOF.

(i) I{e have 0r, = 01, 0r, n -u Hence fo:l all

n

(either

Then U_ = Ul, À = -À:, and it is easily checked, as in (i), that'n .n' n n-

the pnoducts within the alternatives X- and Y- are interchanged.nn
If, howevsr, Ên = -.å, then bre may show that the pnoducts

are presenved. Ncw, since

n : 0, the application of this operation intenchanges the values

t't(I) ..¿ t:u', and also ul2) .ra ,:t'. consequently, aJ.though the

pairing in (7.35) is maintained, the altennatives X' and Yo a:'e inten-

changed, and the result follows by (7.36).

(ii) lfe have e -e Suppose r.re have tr, = .å,

e = (-1)"-1rt with n odd).r)1

t
nun-tn

À= 0;'

I
n-00r, =andt

n

e- = (-t)re-t with n even, or
rll

r^¡ithin the aLternatives X and Ynn
sgn ((-r)naia¡...."å) = (-I)nssn ((-l)nata2...."r),

it is neadily checked that aften the application of the operation, the

rules (?.35) constantly give eithen the sane altennatives, or the



opposite altennatives for the two chains.

this.

Remanks.
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The ¡esu1t follows fnom

(i) The neversing of a one-sided chain has no neaf meaning, but later

in the restnicted fonn problem, r¡e r¿ilÌ see that this operation cones-

ponds to neplacing f and P by g and q Ín U+(f;P) (see (7.6) and (?,7)).

(ii) As a consequence of this theonem, if r¿e ar:e investigating both

the altennatives of a chain (e.g. the value of max {k+(Örtcr)}), then we

nay anbítranily choose the sign of some a. and err.

4. Solution of the positive appnoximation pr:oblem by semi-regulan

continued fnactions

In this section we will deterrnine the critieal semi-negular

chains cor¡responding to those of Descourbes in 92. Since the ß;

(fon n Z -2, are neduced quadnatic innationalsr Theonem 3.15 implies

that any rth qritical chain must belong to the set of semi-negular:

expansions that Lead fo::wand to one of the following nr:mbelrs, as

conplete quotient.

or thein negatÍves.

l{e will- show that the appropriate seni-regular expansions for

the cnitical chains are those A-expansions of the go (on thein negatives)

indicated in (7.24), (7.25). In o:rder to prove this v¡e wilt nequire

the follor.ring lerama.

, ( 7. 38)
ll

LELMA 7.1 . Id one o( the (oU-owLng Íhneø 
^i.tuÂtíþtus 

otí,âe,
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líl lanl = len+tl = z.

lül lanl = z, lan+ll s 6, nnon*l < o.

çíiil lonl > too.

thwt, (on i = n orl n-l*, u)e hwve

VROOF

that a
n

Ynax {tlt} r l/l = 0'352.,.L

By Theorem 7.2, t'¡e may suppose without loss of genenalÍty,

>0 and ), >0.
n

(i) lfhen a.,=2,since ¡ <I, lUI.f,reconsiderthefoll-ow-._¡r

ing cases of (7.35):

(a) o_ . 2, þ- . 2. By (3.25) and (3.27),n-n
* (e_ - 1+ Ir l)(¿ - 1+ lu'll.,rr,r; lr,l,rrl t, < t/3.torr= (onon ¿,

(b) en , 2, öo, 2. tle have

,rt . ot o'Mrr'ffi; < L/3'

(c) 0r, , 2, þn. 2. By a combination of the methods (a)o (b),

¡'.0,,(9g=-,1 * lï.1) e-(o- - l)--n W-'ãffi;<I/3'
(d) e < 2, ö > 2. This follo¡¡s as in (c).n-'n

Consequently, in any cnitical chain, we have ltrrl > 3/2, and.

lo,,I > sl2.

I{hen arr*t = -2, since 3/2 < grr. 3, 3/2. l0r,l . 3, then (3.27)

,)\
funplies,

atX: min
n trlr),*l

< r/3.
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atY:
n

rnin tu(3)-M(4))n -n
(rr, - I +, lo)(lOrrl * r - lurrll (or, + t + l,rr)f lOrrl - r - lurrll

< max

< max

v'rhen

4(0 lôl+r)n' 'n' t )4(elól+r)
n "n'

o-( 10.1 + r) 0,.,( lo,,l - rl
,+(enlônl + r) '2(e lo"trtl

(ií) By pant (i), we may suppose that -6 S ar¡t' < -3, and

oslrr<1;

at X_: as in the proof of Theo:rem 3.9,n

,i,, {u(t),"Í", .låfia$îl . ,.

at Y_: consider the two cases;
n

when u -< 0, then since 0r, . 3, I ôr, | , 2, we have

[(3)(3/2) + L) '
31-15

lõ-r - E[

,(3) = 
(e. - r +.r.)(lO.l +.r - lurrl) .'h +(onlorrl + r)

> 0, we consider the three subcases;

3(3/2 + 1)

0 (l l+r) 9
-2gt

4 en 0n +

(r) if l+"1 < 4, then by (3.27),

nlu'= .frffi.f
(Ir) if lOrrl > 4, and s s u¡ S 1, then

(3) _ or,( lO'l * zl - sn s nit¡ffiTt' zo
PI

(rfr) ir 4 < lOrrl < 7, and xr t l, then as in (I),

,,(4) _ err( lOrrl - z) - Is'''n = {lonl + lt = E
Hence the nesult (ii) follows in all cases.

(iii) The bound 100 in the enunciation of this lemrna is just a
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convenient nrmben, which could be neduced to 6 with considenably mone

effo:nt.

llhen 0 < ¡,_ 5 C.39 0-, then sÍnce we may suppose fnom (i) that+

lOrrl t 3/2, and so lurrôrrl t tso, we have as in the p:r'oof of Theonem 3.9,

'i'ftffi'Î#ìP<L/\'
I{hen l_ > 0.39 0_, we have, since u_ , > À - 2,

-.f-l¡ 

¿¡-¿ t¡

un-rtrtto - 2

On-l orrÖrr-t On-t

(0.39)(a -1)-2 az

-ìñ>c'36.

Now, sinc" lurr_rl , a/2, and ôrr_I t l0o, we may assert in alI cases,

r le llt +1- )l+r+l
4

t
Mn-1 e-n-l 0n-t -

'ffi
.{H##.1/t.

l{e have nor"¡ concluded the pnoof of the entire le¡una. As a

consequence, the situations (i), (ii), and (iii) cannot occur infinitely

often in any of the cnitical chains.

THEOREII 7.3. Tlp tai.l- o( fhe wítLea,t {anl einitu enui,sl¿ o{ the

Ã-expatui.otw o{ rhe g,L, oÁ givat bq .7.241 ann n,251.

W. We have already noted that the cnitical {arr} chains are

among those semi-negular chains which lead fonwand to one of

ß1, Bj + r, t$- ¡ orl their negatives.r?- r r-Þr

Suppose that {arr} is an arbiürary seroi-negular chain, r¡hich



ßt

EÈ , fon some r, r Z -2.
r

ßt t 4, and so

ß:4
Ë.ä= 

12,2,2f.

Thus any such chain contains consecutive twos, and so, by Lemma 7.1,
BIthe complete quotient FÈ, (on its negative), may occun only a

r
finite nwrben of times.

Suppose then, that we have a ehain which leads fo¡*rand to

either ß; or ßo, then we show that onry thein A-expansions from this

point on can be critical. suppose that we have expanded ß; or B"

in A.C.F., so that it equals, fo:: sone k > 0,

[ul ,"2,....,ak,o],

whene the a. wiJ-l be 3, 5, on 6.
].

lle wilJ- investigate the effect of changing the a* to .t - f,

to give

[ur,.2'. .... ,a - 1rã-T]
Considen the following cases:

(i) q- = 3. Equations (7.24) and (7.25) impty that a > 2, and

hence -s =<2s _ l_ ; since 1 - f = 2, then Lemma 7.1 inplies that this
ehange cannot be made infinitel-y often.'

(ii) % = 5. Again by (7.28) and (7.2sr, a = f3,6,....1, and. using

the notation (2.f8) and the tnansforrnation (2.19) twice, we obtaÍn

o = [3,(z)0,6,...],

and

t42.

Ncw, by (7.22) andleads forç¡a¡d to

(7.23), we have

a - 1 = (1rlr4r. .. .. ),
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wheneby

"+ 
= (0,1,r'r+,""),

and

c-1
ñ=r+;i.=12,3'(2)3,""1'

Since the 3 leads Ìrithoì¡t choice to consecutive twos, then this

chain segment cannot be part, infinitely often, of a cnitical- chain.

However, if ¡re choose the lowqr alternative a¡rd ehange the 3 to 2,

then u¡e will again violate Ler¡ma 7.1.

(íii) a,- = 6. If o = [3,6r....], then the :result fo]lows exactly

as in part (ii). If not, then from (7.24) and (7.25), we neadiÌy see

that s = [3r3rar...], whene a is either 5 on 6.

Following the method of pant (ii), we obtain
I

;iT= (0r1r1,1rIra - 2r!r....),

implying

å = [2,3,3,(z)u-r,3," "]'
Clearly we cannot leave (infinitely often) the consecutive

thnees, since they lead to consecutive tros, nor can we ehange the

finst 3, without vÍolating Lemnra 7.1. However, using the same method,

we find. that

[3,(2)a_3,3,...] = [2,-(a - 1),...],

which contnavenes Lemma 7.1, whether -(a - 1) is changed or not.

Thus we have shown that we cannot deviate fi:on the A-expansion

of ß (on
tl

ing $ and

Oi) infinitely often, without inplying, fon the cornespond.-

cI,

k+(0,a) < Ll.(.
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Conseguently the tail of the cnitical chains must be given by the

semi-negula:r expansions Q,25) (or their negatÍves). Associated with

these a-chains wiLi be a conresponding e-chain, which we witl deternine

Iaten.

LBlllulL 7,2. Fott ?at4e uwugh n, the e'e-løin {on eníLica.t e,haiu

lil ì,t altetutaling ín ti4n L( LanI lul grL a.,s i.t6 ta'i't,

läl lnt esvuÌøtt. aþn i{ lan} lut -BL a'6 ilÁ ttuíL.

7R00F. Since, by Theorem 7.2, (ii) follows firom (i), we may

suppose that ur, t 0, for all n > I'l, By the form of the nel-evant

expansions, if n is lange enough, we have 0rró, t 4, and soras in the

pnoof of Theorem 3,9,

min{ui}.*ffi <r/3.

Since .r, t 0, then the cases X' and Y' will alternate with successive

values of n; hence, so too will the sign of Àrr, ín onde:r to ¡naintain

the products containing the factors (e' t 1 + lfnl).

CâR?LL RV, The apwryí-dfe p,Loduets, óort Langø uoLqh n, arLe.:

+ 1 + ll lt ll+t-lu
0

Ì
Ì
Ì
)
)
)
i

n

and (7.3e)

lemrna.

LEMTTA 7.3.

This foLlows imnediately from (3.25), (1,35), and the previous

In ang üilicol eJnÃiJL, [on n lntqe etwugh, u)tLønøvelL

4^*l = 3, 5, on 6,
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thwt

PROOF.

(i) !ühen

(ii) tfhen

segment

l.¡nf = 7, l, ott 2, tL%pee.LLvelA.

an+1 = 3, the :result follows, sÍnce en must be odd.

ên+l = 5, by (7.25) and theorem 7.3, we have a chain

[... 16r313r51316r...]

If Irof = 3, then lu,rl > 3 + l/ón+r > 3\, anð. lÀr,l < 2, 0n, 2%,

ôr, < ts7+. Thus, by (7.39),

rl .ffi-ffi<r/.(.
Consequently, l.rrl - 1.

(iii) lfhen ên+I = 6, then we have a chain segment

[...131613r...].

If ltrrl = 4, then as in the previous cdse, lurrl , +4, lrrrl . z,

qn < 23/4, and 0n, 2%, impJ-ying

,l'ffi<r/t-
If .r, = 0, then using the method of the pnoof of Theorem 3.9, we have,

since e -n+l_

1
M+

n+

> 5'5' 0 > 2.5,
n+1

+l( llo
4 on+10n+1

6- 5) 2.5 ) < Lly.4

The lenna nov¡ foLlows in ful-I.

Consequently, if n Ís lange, the e' associated with th. .rr+l_

in a critical chain is automaticalJ-y fixed by Lermas 7.2r 7.9. tÍe
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may therefone consÍden the blocks A, B, C, of Q.24), to be blocks of

integen pains. lfe may nott state the following nesult.

THEOREM 7.4. Strppode ule llqve 0- onø-ôLdQn chtirL pain which hs¿ at

i,tÅ ta.i.L the Ã-er,pani-on o( B,n, don søne fr 2 -2, gívur bU 17.24l, ond

17.251 , lon ang e-train obtainú. {twr tueh a c}nim pain bU appl.4ing one

o{ fhe op?rÃÍi-ovtÁ o{ Thenncrn 7.21; thu don flp on¡tnuryndivlg A and

c, exaeÌLq one o{ þ*(O,o) o,L f¿*(0, -al luÅ the vúup. l/.(n He(ined

in Í7.211l', uútihe the othen Iw d va.fue te,sa thu A.

This resul-t follows fron Lenmas 7.2, 7.3, and, theonems 7.1,

7.3.

5. SuÞremun of values taken bv Mr(f)

If f is any I-neduced form given by (7.I), then thene comes-

ponds a grid L, as in 51, of this chapten. From (7.4) to (7.9), we

obtain:

u+(r;p) = inf tlgnl; (E,r) a point of L, 6 > o)

l{-(f;P) = inf {lEnl; (t,n) a point of L, 6 < o}

M+(g;Q) = inf {lEnl; (E,n) a point of L, n > 0}

M-(e;Q) = inf {lqnl; (t,n) a point of L, n < o}

)
Ì
)
)
)
]
)

(7.40)

Because the rules, (3.I1), fo:r moving from celI to cell by the

algonithrn a:¡e the sa¡oe fon each nodification of the genenal method, so

too the rufes for deterrnining which pair of ventices is in the right-

hand plane nemain unaltened. Thus if An is in the fi:rst quadrant fon

some n, then the sign of arr+l co@lete1y determines the quadrant of

An+I, and the sign of a' deternines the quadr.ant of Arr_I. Now AO
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is in the first quadrant, and so ne tay evaluate lt+(t;p) by a simiJ.a:r

set of nufes to (7.35). It is clear that

u+(r;p) = i¡rf
n

M+
n

( 7. ¡+1))Pf( t t

whene

ifn>0,

if n < 0,

0nt '
Unt t

Consequently, the groupings as a whole, of the forln products uli), "o.
pneserved (fon sone othen value of n), but, however, thei:r onder is not.

uftr;el = min {tát),r,r[a)];

+. I 'io {ufl),r:" }, ir (-:.)nar. .. ."r, . o

H'(f ;P) = {"rrt'"' - 
i nin tu(3),*Íur], if (-t)n"r....ar, > 0

. { rio {u(I),t:"}, if (-t)naoa-l..an+r.0
ultr;rl = {t nin {*:",*:u'}, if (-t)t"oa-r..ar,+r' o

)
)
]
]

T,'.
Ì
)
)
)

)42

Again we wilJ. nefer to the upper and lower a.lternatives at the

nth step as X' and Yo nespectively. By consÍstently reve::sing the

nules 0.42), taking xo as starting point (and ll-o(f;P) = tirr{ufl),u[2)ll

Ì¡e nay calculate M-(f;P), and consequently M*(f;P), fnom (7.8), (7-9),

and (?.IO). In fact, the chains fo::8, Q, of (7.6) and (7.7r, may be

deter^mined fronr the fol-lowing leruna.

LEtll,t^ 7.4. l( the fuubLA 'rndínife cl'La"ín WírL {ûn+1,ey¡} i,¿ nzveiÁed

abouÍ. 6ûne Wirtf laaq n = 0l , friu îhe ehoirl obtøíned eøtthsl\Wnda tû

the (otwr g, and the point Q, oó 17.61 and 11.7!..

W. Fon a step n, in the oniginal chain, thene corresponds a

step nr in the nesultant chain such that

ôn --

u=
n

n
Q=

nll=n

nre

I
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rn pa:lticuJ-an, the vafue= lt(2) arra uj3) "o. intenchanged. Now, as wenn
have alneady noted in chapter rrr, nnjt', tj", tjt' .r,¿ uÍ4) .o"

derived frorn C.. 0.. B. and 4.. resDectivelv. Thus at the altennative:, Dj' Bj and 4., resPectivelY.

X , in the reversed chain, üte are evaluating the products of the
ft'

coordinates at C' and Brrr ventices of the nth divided cell in the gnid

associated ¡.¡ith the oniginaÌ chain. Sirnilanly, Yrrr cornesponds to an

evaluation at A_ and D_. The nesuJ-t may then be checked in all cases'nn
it following from (e.zs), (7.8), (2.9), and 0.42).

In $4 of this chapte:r, certain results vrere stated, which

involved the lir¡ inf of one-sided chains. He wiiL now deduce from

these various results on the infi¡nr:m of two-sided chains. lle wilL use

the following obvious extension of the notation used in Chapten II.

[-(arrarr. . . r"r) r. ... . ]

Consider the following chain pains, where {er.} is chosen in

accordance v¡ith Le¡¡mas 7.2 and 7.3, and the blocks A, B, C, are given

in (7.2a):

[-A-]

[-(BC)-]

[-B-]

[-(e(sc)r)-] (r : 1)

c ]
)
]
Ì
]
)
)

c

wo.

c:r

-2'

-1 (7.43)

(7.44)

THEOREtrI 7.5, Id thø cluin Wih Co ln z -Zl, e¡¡tnetynnlt to a

6onn 6o, dnd a. witú. Po = Polxu,Uol, fltwt

mdx {l,lt ll¡P ol }= Ll t ni

lo
Lt

dutúhetwnrLe, i.6

gn 6tL and %= %hJn,*ol , ( 7.4s )
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thut

tvsx {ll'fS¡\ll s Lltn, (7.46)

who¡e equnU¡A hDI-dÁ í{ and ovLLq i6 thø ehn'ín Co fu arynne,tnLoal

Unwúiul uti,th i.tt inte.tu¿\. U et¡unlLtg dou vwt [atd, t-hu we wwg

ne+Itee fhø níalvt-lwd tz-d,ø o( .7.46l. bq Llt.

W. It is clea:r fnon Theorems 3.1-1 and 7.4, that if the infinr¡n

in the definitions of ut{f";n"), rtlerle neplaced by lirn inf, then (7.44)

would hotd. But the chains C" ane totally peniod.ic, and so there a:re

only a finite number of d.ifferent values fon tfr. u(i)(fo;Po).

Consequently, the infirnun will equal the lin inf, and so (7.44) follows.

By Lemma 7.4, the chain pain associated with g" and Qo, wiJ-l be

the never:se of the chain Co. In the case of C_, and CO (the only

s¡nrunetrical Cr), equality will cleanly hold in (7.44). But fon :: = -1

and r 2 1, C-- is not s¡nnmetnical, and its reverse pnovides a nelr
11

periodic chain; any night-hand half-chain derived from this chain

can never be one of the criticaL chains of Descombes. Thus equality

ín (7.46) would contradict Theorem 7.4, as would equality with any

constant exceeding Â/y, on the :right-hand side.

9'R LLARV. M*l{o;Pol - tltn
This is imrediate upon (7.10).

THEORETT 7.6. f'{* (6¿) = a,/.t ¡.
P?(OOF. He may suppose that f"(xry) is given by (7.1) whene

0=Bn, o=LÆ,

I being the algebraic conjugate of 0. Then the chain fon fo and some

other point S, incongruent mod I, must contain a seni-regular expansion
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of 0, as a night-hand chaÍn (together r¿ith an associated e-chain).

Now the theory of 54 cl-early shows that the A-expansion of $, with its

particular e-chain, must be taken if the infimwn of the châin is to be

gneaten than A/y. Hence the lim inf of the chaÍn does not exceed

Ã/.to, Ímplying

t
M (fo;S) f A/yn,

fon all such S. Similarly, p1r(gr ;S') s tlyr. The result {otlo.,s by Þ.rl).

lle will nequine the following lerrma, whieh wiLl enable us to

constnuct fnom a two-sided chain with a centain infinr:m, a one-sided

chain with an anbitnarily close li¡n ínf.

LET,I¡IA 7,5, 16 H iÁ a {ini,te 
^eJ 

ol fuÍe4u pt,fuÁ, Md {ena1,en}

atLU inÇinLte 
^utuulce. 

u)hoáe elanønt¿ aÌLe tølzul dnon H, thu {on evuLA

Lntegen j , 0, thestø øx,i,ttt a bLocl¿ conia.inirry i ivú.qut WürÁ 06 H,

¡t)hieh ocatJú irl6¡-ni-teh!! tnanA Linu in th¿ 
^e4uence 

{on*lrrn}.

PR00F. The l-emma is cleanLy tnue fon j = 1. Assuming the truth

of the assention fon j = kr we have that there exists a bl,ock of k

membens of H which occun consecutively in the given seguence, infinitely

often. But each of these blocks can be folLowed by one of only a

finite number of elements of H, one of which must then occur ínfinitely

often. Thus the nesult holds for j = k + f.

THEOREII 7.7. Fon aIL {ontu ilaf. do vwt tepnuent za)o, 6a4l 6,

u,e, hßve

¡u*(dl 
'u+h

Supynae f.t,.af 6 i¿ not equiva,Lenl, tn the (onn

Ml(d) s 
^/t-t = f## ,

6_Z oó Thentwn 7.5, thwt
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whe¡e eauaLhg holls [ott {ottws uauivoletf. 6 l-t.
?R00F. Suppose C is any two-sided chain pain whieh is not identical

to C_r. Then C is one of the following three types:

(a) C does not contain the sub-chain t...4-1.

(b) C = [)ß-], whene X is a one-sided chain which does not contaín

the sub-chain [J. . . ].

(c) q = [-AYA-], whene Y is a finite chain segment not equal to Att for

any positive integer n.

Let f a¡rd P correspond to the chain C, and suppose

tl+(t;p) = pa.

Then for all n, we have

ultr;rl=¡rl:p¡.
Assume, fon an app¡lopniate e, that

0<e<p-(I/v_r). (7.47')

After Lenma 7.1, we have that leol ana lOrrl are bounded in the

intenval (l-.5,101). Thus ùre may apply Theo:rem 3.I1, and the constant

implied by the 0 notation is independent upon the particulan chain

segment unden considenation. There therefore exists an integer rn,

¡¡ith the pnopenty that the respective pnoducts belonging to the centne

of a comnon chain segment of length 2m from two chain pains, differ by

no more than e.

Now, in the cases (a) and (b), C nust contain some chain segment

different fnom A, which occuns infinitel-y often. Consequentty, by the

method of Lema 7.5, there exists a block, D say, of length 2m, and

eontaining this segment, which occuns in C infinitely often. In the
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case (c), let D = A2r.

Considen the one-sided chain C*, given by

c*: [(Dz)-], (7.48)

whene in the cases (a) and (b), Z is a chain segment which sepanates

two bl,ocks D, wbeneas in the case (c), let Z = Y.

Since every step of the chain C* (fan enough along) is the

centne of a chain segment of length 2n which also appears in C, then it

follows fnom (7.35), (7.42) and (7,+1)rthat, fon some ôr ü, connespond-

ing to the chain C*, (suitabfe Z wi.Ll plleserlve the alternatives in D),

k+(ô,c)ìp-e>I,/v-r.

But C* is not one of the critical chains of Theonem ?.4, and so this is

a contradietion. The theoren now fol]ows.

6. 0then r.esults fon !l+(f )

The obvious question to be asked now is whether U*(f) takes

only the discrete values L/.¡r, (n > -2), greaten than L/1. In the

pnevious section we have seen that for centain equivalence classes of

forrns {foi, we have M*(fr) - O/yn But it seems cer.tain that thene

are doubly infinite chains, other than the Co of (7.41), fon which

M*(f) , L/y.

To enable such nesults to be obtained, it seems as though we

would need lem¡nas of the type Lemrne Ze ([2+], p. 349), wheneby the

pnoducts at certain |tprivilegedrr points of the fottowing chaín segnents

ane companed;

. . .A(Bc) jA(Bc)iA. .

. . .A(BC). ,A(BC)í,A

0 S i 4 ir o

r s i . j'.
,
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It is probable that the identical nesu.Its would foll,ow through for the

serni-negulan algorithm, by the same involved type of argument used in

[Z+1 1nn. 326-355). If this ¡'¡ere so, then chains of the t]De

[-(A(BC)i) (A(Ec) j )-],

fon conr:esponding f and P, wor:ld have t't+(t;p) 5 A/1, for i > j, and

limrrinf r.rl<f ;e) - Ã/\i, fon i < j. The questÍon as to whether A/Y.

is approached from above or below could be settled by detailed, but

straight fon¡a:rd analysis of the t¡pe needed for Lernme 28 of [Z+1.

Linitations of space prevent such an investigation from being unden-

taken in this thesis, but it seens neasonable to conjecture that

¡/'tr ane, in fact, the only values exceeding Â/y, taken by Mr(f)'.

Fon example, if {r. } is a finite, stnictly increasing seguence of

positive integens, with k rnenbens, then it would be consístent with

[2t+] to conjectu:re that the chain

[-(A( BC )r1 )A( BC )r2 . . . . A( BC )r*-r( A ( BC )r,* )-J

has ínfinr:m equal to 6/yr¡.
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I. Se¡ni

CHAPTER VITI

AN UPPER BOI.JND FOR THE CONSÎA¡¡T K+

expansions fon 6+ r
2-

In this chapter ¡.¡e will demonstrate the method of 53, in the

pnevious chapter, in evaluating k+(o), given by (1.8), whene 0 is

eguivalent to + . By (r.r5), it is crear that

k+

Godwin [gO] pnoved that kt t 0'1407... tle will pnove that

ß+t ) = +# = 0.1?08... ¡

irnplying fnom (I.16), that

"+ : k+ Í 0'1708...,

which improves Godwints bor¡¡¡d of 0'21-14...

Now since Q is neduced, Theorem 3.I5 inplies that every semi-

regulan expansion of an equivalent nì.nber to 0, has as a conplete

quotient one of

þ = +, ú = o + r = +, ,{- = -l-u *-t = -v,

o¡r their negatives. But

ú = [g,t] = 12,-2,-ù1. (8.1)

Conside:r the bloeks

A=[3]rB=12,-2f

C=L-2r2f,D=[-3]
( 8.2)

Thus any expansion of an equivalent nu¡r'.ben to 0, leads eventually to

the following blocks alone:

(o) ì k+.

2
k*(

)
)
Ì
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AA, AB, BC, BD, CB, CA, DD, DC. (9.3)

By the slnmetry of the bl-ocks, it is clear. that, fon lange

6+ e 6+ renough r, 0r, takes only the values t
2

and t
2

. whil-e e-n
alto takês values which ane anbr'trarily close (as n + -) to these foun

nr:mbors.

2. Investigation of centain block sequences

LE!"$M, g.l. The occurur.eytce, inÇinilrlq o{twt, o( M, u*tene the frrc

aeßnryrghlg vøhtet o{ the e-cha,ín lave îhe 6øine 
^ign, 

inyiliu {on a

cttüLeÁWnd,ítlg s, îJut.

p*1r5î!,to¡ 
=tr?a- 

t 
.

W. Suppose ân = ên+l = 3, and without loss of generality,

f,, -ll<Ot*J. r-ß-trun rr 'ffi-= T.
Similarly

rin ltr, - 11=T,
aPPi n

whene app. n means the linit is taken over those appropriate n for

which ên = an+Ì = 3, anJ En_l = .n = l. Thus at either alternative

by theonem 7.2,

By (3.27),

lin inf
n

c0RoLr_^RV.

e-=e=f.n-I n

t
¡t
n 3

6+ s 2-2+ 1 2 ß+3 2+
+3) -4

- g/l- s- --10-'

The tøt¿ zext(i. hof-d^ {on the bheþ. t0, uhete the

(

a,t¿oeisied Ê.- atn o{ oprysi.te ¿tgn.n

This follows from the lemna, and Theoren ?.2.
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LBtÃtr{ 8.2. Thø ocantttætte-e 06 the bbel¿ Be, in{ituUehg o$hwt,

inpl,iøt thnt

b*l ¿a) s

PROOF Suooosethat a =ann+
...2, -2, -2,
...0, 0, 0,

Suppose that there aÌe infinitely urany such n, forming the sequence

{\}. Then, since Órr¡+t

2
0

3-ß-5
-Tõ- .

L = -2, then we have a chain segment:

3
2

ß
luonl = Itn**r.l .

Sinilarly

1i¡n
k+-

Hence it follor¡s that

n¡
tlim inf M

k-r- s6- s

CilR0LLARV. The 6Øp ,Lu,ilf. holdÁ {on the blßeh. CB.

This follows firom the lenrna, and Theo¡rem 7.2.

LEitM 8.3. The ocan¡tnenee o( the. blnel¿ 
^80, 

irLÇiní,telq o{ten,

wifh a, = 2, and ,n-Z M en+l od oppoai.fn á4n, inpf,M

6* qÇ,ro¡ , tßii t 
.

W. tfe rnay suppose without loss of genenality that Eo+l = 1.

Then considen the chain segnent:

3, 2) -2 -3...
...-1r 0, 0 1...

I 6+ r

10

Now, u > 0, 0 < )t < 0'n - n n t and ó'n 2
Again let such n
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(8.4)

1 Onk Àr,u){lOrrnl + r - unk)-1-
atXnk

atYn¡

l-im inf
k+-

Ii¡r inf
k+-

M.
nk S lin inf

k+- 4(e l0 l+1)nk' 'nk'

I
4ß

+

t{n¡

c0R0r.rARv The $oilntaitg eha,fu áegmurl,s cnnnot ocllul ,ín6inltø14

o{ten:

LELN 8.4.

20

2, -2, -3...
0, 0, 1...

t
t

,
,

1

l

I
3

)
l
)
]

)
]

]
)

3,
t,

-3,
t,

,
,

,2 3...
0,

, 3

2

0

2

0
2
0

2

0

,

...-3,
, . . -l ,

2

0
,
,

This follo¡'¡s firom the leur¡na, and Theorem 7.2.

Tlv onbl pot*Lbte efu,ít^ {on uú,ieJt

6+ 1{5 
+u!,¿ , tf?a- t

aÅp tllo^e wlwae tai.L i's

E{orffiur'Ao3BD,r4c'" "), (s' s)

{ttr} i,t a ae4uuee o{ poti.tive inte4ean, and frte e-elnin i,tuhue
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c-lwtwt ¿o t-!tnt. none o{ lí,4l occüL in{ituAQhq o{ten, and Løtnn 8.1 iÅ

wl, ennl¡waled.

W. C1eanly we cannot have [A-] on [Ð-], since, by Leunna 8.I

and its conollany, this t¿ould contradict the conditions (3.26), fo:r

].arge n. The nesult now follows fnom (8.3) and temmas 8.2 and 8.3.

3. EvaLuation of t+(

THEOREN 8.1. Suppoae. Íhø dequwrce {nr} ín 18.51 twtdt to ¡n6tuú.tg'

thu {on the eø*etponding cr,

¿* 1\J,o¡ =

PROOF. Suppose that i is anbitra:nily large, and 
"r, = 2, sâY, then

consider: the chain segrnent

' "cAr'BDoi+r'"'
which consists of the following integens, puttÍng v = )1i*Ie

3r....3 2, -2, -3r...-3...
...(-1)T....1¡ o, o, rr...1... ( 8.6)

As usr:al, let {n*} be the sequence of such steps in the chain

(i.e. whene ¡"rr*l = l"r,**r_l = z). rt is clea:: fnour the sign pattern

of the chaín that at each such step, the two appropniate pnoducts r+ill

conrespond. In the chain segment (8.6), we have lrr. O, Ur t O.

Hence at the seguence of aLte¡rnatives corresponding to the choice Yrr:

(l I
-<4ß'

tlim inf M < lirn inf
k+- nk- k+- n

K

| + r)tl l-rl
+

Thus it is clea¡r that the appnopnÍate altennative at each step is the

tleoltl+lrol).one which involves the factors



159.

Now, sinc" oi + -, it is :readily checked that

lu'nl = 
nt.l'_, 

|%ul - r) = t

and

Thus

lim
k+-

M+
nk

1im
k+-

¡rr,tl
ß-t

l-r*l
4

llr I

tkotk

l*r-l lr

-t

2

It may be shown, as in Chapten V, that M

0,, * lÀ,,1 . J+rî ¡ but we have

(1)
n M(n , if and only if)2

lim
k+-

Iin
k+-

( lerrnl + ¡rnr.l)(r - lu,rnl¡7l0r,rl = s - zß < t.

M(4)
n

lurrl = t - l.rr+rl = r -

(10
1im

k+-
s6- s

10

e +1+Inn

u

( 0

+1

Now, re-defining n, let us suppose that ên = ên+I = 3, and

En_l = -€r, = l. Then Yr, Ís the relevant alternative, and so by

(s.zz>,

l- g6- s
2(0ô -r)n'n 2Qn 10

Now .., is either followed by sn+l = 1, in which case lurrl ¡ lr
or by tlro consecutive zeros, whence

>1-
0n+lûn+z

A simitar:resul_t holds, in the lirnit, fon lÀr,1. If {n¡} is the

sequence of such n, then

tiu¡ Ínf M(3) > lirn inf
k-+- nk k+-

- (t - tß>tz)(
4 0ônk'nk -1

- (z - zß>tz)
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By Theonem 7.2, this also covens the cases when an = an+l = -!.
Let us now consíder the step where oo_1 = -.r, = t, "n+I = 3,

and ,r, = 1. As before, t:t' . tÍ' , Íf and only if

I e,, I + l^r,l . --'!-Ll: .
n

For the appnopniate sequence {nn}, we have

{lo,,nl + lÀr,rl)(1u,,*l - rltlo,,nl =
s(6- r )lim

k+o /5+3 <1.

Also

Iir¡
k+-

tl%rl - r * ¡rr*l¡1|ônrl - r * lu.ull g6- s
u( lu'ror,.l - r) lõ-

By Theorem 7.2, there only r.enains to investígate the steps fon which

ôn = 3, an+I = 2, with .rr_1 = l. Cleanly, for the appropniate {nn},

( le,,ul - r +]r*lx lonkl - r - lu,,ull
4(10,,k0;;l - I-

The complete result no!.r follows.

THEOREII 8.2. Sup¡toaø fiaf, in ,8.51 {zr} n- e , thu don the

eßMæ,ïlfrtrùítS s,

¡r*1\!,ro¡ =#.
W. Let {n¡} be the sequence of n fon which lurrl = l"rr+tl = z.

(i) Suppose that {nr} is eventually constant, then

lin M+ = liur
k+- n¡ k+-

lurr*l = e < , and li¡n ll- I = E.
k+- t'k

6+ r
2 ' theD

Iir¡
k+-

rf s;
,,r - þ2 - (1 - r)2 - g6- s
"'rk --f,tffit-'---'
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(ii) If tnr) is not constant then thene ane infinÍtely many j

fo:: which oj . oj*r. Let .o = 2, in the segment

...(3)- ., 2, -2, (-3)_.
"j 

- ni+I

Cleanly

l^nl . lurrl . ß-t

and the nesult holds by the nethod of €i).

COROTLARY.

PP(OOF. This follows irurediately fnom Lemma 8.4, and Theorems 8.I,

,

,2

and 8.2.
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