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(1)
SUMMARY

This thesis deals with several problems from the theory of two
dimensional inhomogeneous diophantine approximation.  The opening
chapter introduces the problems considered by tracing their history,
and the development of some closely related questions.

The problems are attacked by the 'divided cell method", which
was devised by Barnes and Swinnerton-Dyer [11, [2]. If f(x,y) is an
indefinite binary quadratic form, then there corresponds to each form
f, and real point P = P(xo,yo) an inhomogeneous lattice, or grid.

By considering a subset of these grid points, it is possible to
evaluate certain inhomogeneous minima of £.  The geometry of the grid
gives rise to a semi-regular continued fraction expansion of the roots
of the form £. This approach is expounded in Chapters II and III

of the thesis.

Cne of the main problems ccnsidered is a hybrid of the two
classical results of Hurwitz and Minkowski on the minima of indefinite
binary quadratic forms. Suppose f(x,y) is the form

f(x,y) = (ax + By)(yx + &y),
with determinant A = |ad - 8y|. Then, for any real, non-zero

constant., n, we define

M(£f;n) = inf  l(oax + By)(yx + &y + ml.
%,y integral
# 0,0

Chapter IV provides a systematic method for the evaluation of the
function M(fjn), for forms that do not represent zero. The method

is a modification of the divided cell procedure described in the



(ii)
previous chapter.
This method enables us to obtain the best possible constant

for the mixed form preblem.  Let

i = (3/49)(366458018 ¢ - 7320551)
(8238730 6 + 392361)¢ - (164581 @ + 7838) ’

0-23425,..

_ 147 + /21651 104250 + 2/10
- 6 2 0= 3005

]

where ¢

Then, for all forms that do not represent zero, and all non-zerc n,
M(fyn) < Ak,

where equality holds only for an equivalence class of forms. Chapter V

is devoted to the proof of the result.

One immediately wonders whether this constant k is an isolated
value. A complete answer to this question is provided by the follow-
ing theorem, which constitutes Chapter VI.  Suppose that k' is such
that 0 < k' < k, then there exist uncountably many forms, each for
which there is a corresponding n, such that

M(f3n) = Ak'.

In Chapter VII we define a new function, M*(£f), which is an
inhomogeneous minimum of £, under certain restrictive conditioms.
M*(f) is connected with the function

k+(¢,d) = lim inf x|¢x +y + al,
x

for ¢ irrational and o real, which was examined in detail by Cassels
{31, and Descombes [4]. We show, together with several other results,

_ * 278 . e :
that M (f) < 5877 ° which is a best possible inequality.



(iii)
+ +
Let k'(¢) = sup k (¢,a),
a
where o is such that ¢x + y + o does not represent zero in integers X,y.

/5 + 1
2 .

Then in Chapter VIII we evaluate k+(¢), for all ¢ equivalent to

We show that

+¢V/5 + 1y _ 3/5 - 5
k ( 2 ) - 10

0+1708...,
which improves the upper bound of 0+211k... given by Godwin [5], for

Khintchine's absolute constant.
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CHAPTER I

INTRODUCTION AND HISTORICAL REVIEW COF SOME TWO DIMENSIONAL

PROBLEMS IN INHOMOGENEOUS DIOPHANTINE APPROXIMATION

1. The inhomogeneous approximation problems

If ¢ is an arbitrary irrational number, the homogeneous
approximation problem asks the question: how closely can ¢ be
approximated by rational numbers, in terms of the square of their
denominators? It seeks values of h for which the following inequality
is true for infinitely many integer pairs X,y

6 - %l <3 -
This is equivalent to asking the same question of

1im inf [ inf |x(éx - y)| 1< h. (1.1)
x| > =y

We may simplify this expression by using the permanent notation
fxl to denote the distance from x to the nearest integer. Ve may then
replace the lefthand side of (1.1) by the function

h(¢) = lim inf |x|.0¢x0. (1.2)

x| > =

Dirichlet [32] showed that h(¢) is bounded by 1 for all
irrational ¢, and Hurwitz [32] later showed that the supremum of values
taken by h(é¢) over all irrational ¢ isj% , where equality occurs

whenever ¢ is equivalent (in a semse discussed later) to the number

VS + 1
— -

If we exclude this equivalence class of irrationals, then

for all other ¢,



1
h(¢) 5-7-2- .

It was shown by Markov [u46], [45], [10], that h(¢) can take

only a sequence of discrete values greater than 1/3, and that there

are uncountably many ¢ for which h(¢) = 1/3. For each value in

) . 1 1 5 13 .
this sequence JE» 575 % /35T > JIELT ccct- there is an

i . . .
equivalence class of ¢ for whick h(¢) takes this value. This problem

is closely connected to a similapr problem for homogeneous forms
(discussed in §2).

Part of this thesis will be concerned with an inhomogeneous
analogue of this problem. The J{nhomogeneous approximation problem
may be approached from the following geometric ideas.

Suppose C is the circle with unit circumference with some
point O on it, taken as origin. Consider all those points on the
circumference whose arc-lengths from O are }¢x|, where x takes all
integral values. Denote this set of points by S. Let B be the point
whose arc-distance from O is B, where the positive sense is taken to
be anticlockwise. Then the inhomogeneous approximation problem is
concerned with the manner in which the points of S accumulate about
the point B. If B is the point O, then we have again the homogeneous
problem.

We will formulate this problem algebraically by defining the
function

k(¢,a) = lim inf |x|.0¢x + oll, (1.3)
X| >



where ¢ is irrational, a real, and x integral. It may be assumed
that [¢x + all is never zero, else the problem reverts to the homo-
geneous type. Various mathematicians (Kronecker, Hermite for example)
gave bounds on the function k(¢,0), and at the turn of the last
century Minkowski [47] proved that for all ¢, o of the above type,

k(¢,a) < 7 . (1.14)
Grace [31] then showed that this result was best possible in the
sense that, for each € > 0, he constructed an irrational ¢ such that

k(¢,%) >

Y + ¢ °

In fact it has been éhown by Morimoto [50], Barmes [7], that for each d

with 0 x<dx %, there exist uncountably many pairs ¢,o such that
k(¢,2) = d.

Hartman [333, Descombes [23], have investigated this problem
in the case when o is restricted to be rational, say o = -t/s. The
latter author has shown that this is in fact, equivalent to the
problem (1.1) with the inclusion of the additional conditions,

x = t(mod s), y = 0(mod s).
This suggests the seemingly more general problem of evaluating (1.1),
under the conditions

x = a(mod s), y = b(mod s),
where (a,b) = 1. But it is shown (see Théoreme 1, [23]1) that, in a
sense, this reduces to the case a = t, b = 0 above.

Referring to the geometrical interpretation of the general
problem, one would not expect the same results to follow through if

the set S were restricted to those points corresponding to positive



integers x. This is the case, and it leads to an examination of the
function
kT(¢,0) = lim inf x.0¢x + al. (1.5)
¥ > 4o

We will call this the positive inhomogeneous approximation probfem.
It may again be supposed that [I¢x + afl # 0 for any integer x. (1.6)
We now seek values of ¢, such that for all such ¢,a,
K" (¢,0) s c. (1.7)

In 1926 Khintchine [44] proved that (1.7) was valid for

/5 ¢+ 1

C 5 s

equality holding for ¢ = @ = 0; but this is only the

21

=
first step in Markov's homogeneous chain, already discussed, and so

we will exclude this case. Cole [15] proved that under the condition
(1.6), the inequality (1.7) is valid with c = I—;§§7T3= 0-409...

The best possible constant ¢ = 5%%7 , was found by Cassels [11], who
constructed an ingenious algorithm, involving the ordinary continued
fraction expansion'of ¢, for the evaluation of k+(¢,a). Once this
constant had been determined, it became a question of whether it was
isolated or not. Descombes [24], using this algorithm, showed that
there existed only a sequence of discrete values of k+(¢,a), greater
than 1/y = 0s352... This is an analogous result to that of Markov.
Vera S6s {(Turan) [61] showed that Cassel's arithmetic algorithm can be
obtained from the geometric proceduré already considered.

At the other end of the range, Barnes [7] has shown that for

every d with 0 < d s %, there are uncountably many pairs ¢, o for

which



x*(o,0) = a.
Very little is known of the values taken by this function in the range
(%4,1/Y).
Let us define the following functions of ¢;

K(¢) = sup k(¢,a), K () = sup k' (¢,0), (1.8)
a o

where the suprema are taken over all non-zero o satisfying the requirement
(1.6). We have then, for all irrational ¢,

1l + 27
k(¢)$ﬁ', k(¢)$m.

The following surprising theorem was proved by Khintchine [#3].
THEOREM 1.1. Thene exists a positive absofute constant s, such that,
fon any neal wmber ¢, there exists at Leasit one numbern «, gor which

x|¢x + y + af > 8, (1.9)
fon all integens x, y with x > 0.

Morimoto [50]1, Davenport [17], Prasad [55], and Godwin [303,
using methods differing from those of Khintchine, were able to determine
successively better estimates of possible values taken by S§.

Define, for x integral,

c(¢,0) = inf |x|.0¢x + all, (1.10)
X
ct(d,a) = inf x.0éx + of, (1.11)
x>0
and then
c(¢) = sup c(¢p,a), (1.12)
o
ct(¢) = sup T (9,0), (1.13)
a

where the suprema are taken over non-zerc a, under the condition (1.6).



Now clearly from (1.8),
c(¢) s k(§), <o) < k(o). (1.1%)
Define the following constants, where the infima are taken over all

irrational ¢;

c = inf c(¢), k = inf k(¢), }
: 2N ,
(1.15
ot = inf cT(9), X' = inf KT(¢). }
¢ ® }
Then, after Godwin [30] and (1.14),
01407 < H%% <t <k, }
+ } (1.16)
and c < 0+211u... }

As Davenport (p. 79, [19]) noted, a study of Khintchine's
original proof of Theorem 1.l reveals that the result also holds for

negative x, implying that c > 0. Cassels [10] has shown that

1 < ¢ < 1
52 < =12 ¢

The earlier results, proving the existence of some of these
constants, while of interest, were often of little use in evaluating
them, or even for obtaining bounds. The basis for proof of the more
pecent results is usually some form of continued fraction development.
More often ordinary continued fractions were employed, but for some
problems the Hurwitz [36] algorithm had certain advantages [17], [551].
In parts of this thesis we will use a more general type of semi-regular

continued fraction to attack two of these prcblems.

2. The inhomogeneous form problems

Suppose f(x,y) is a binary quadratic form given by
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f(x,y) = ax? + bxy + cy?. (1.17)
If D = b2 - 4ac > 0, then f is called indefinite, and we will assume
this to be the case throughout this thesis. We will also suppose that
f does not represent zero; that is, there do not exist integers
(x',y') # (0,0), for which £(x',y') = 0.

The homogeneous §orm probfem is concerned with the infimum of
values taken by f(x,y), when (x,y) is an integral point, not the origin.
Let

m(f) = | inf [£(x,5)] . (1.18)
(x,y)#(0,0)
integral
m(f) is called the homogeneous mindnum of the form £.

Markov showed that m(£)/A, where A = v¥D, takas only a countable

number of discrete values exceeding 1/3, and that there are uncountably

m(f) _ 1

A 3 This sequence is identical with that of

many £, for which
the homogeneous approximation problem in §1. The corresponding forms
are called Markov forms.

We will now define M(f), the {inhomogeneous mininum of the form £.

Suppose P = P(xo,yo) is a real two-dimensional point, not the origin.

Then
M(£;P) = inf_ [£(x + Xyo¥ * yo)l, (1.19)
(x,y) int.
and
M(f) = s;p M(£;P), (1.20)

where the supremum need only be extended over a complete set of incon-

gruent points (mod 1).



If the supremum in (1.20) is attained, then suppose that C is

the set of points P such that
M(£) = M(£f;P).
Let

M2(f) =  sup M(f;P);
P not in C

then if M2(f) < M(f), it is called the second mindmm of f; and so on.
It is clear that for any constant K,
M(KE) = |K|.M(E), - (1.21)
and a very simple argument [52] shows that
M(£) 2 'm(£). (1.22)
The basic result on the inhomogeneous minima of forms was proved by
Minkowski [#7].
THEQOREM 1.2. 1§ § 46 any indefinite binary quadratic fo/m, then
M{§) < % R
and inequality holds fon all forms which do not represent zeio.
Equality hotds only for fosxms "oquivalent" to § = xy, Ain which case
MIg:P) = MIg) = T,
where P 48 the point (%,%).
The fact that % is best possible, even for forms that do not
represent zero, is seen by the sequence of forms
b (x,y) = x2 - 2kxy + y2,
with k integral, which can be shown to have inhomogeneous minimum
arbitrarily close to A/4, for large enough k [16].

It is reasonable to expect that for many forms, very much



stronger results than Theorem 1.2 are true, results in which A is
replaced by other functions of the coefficients a, b and c. Many
theorems of this kind have been given by Barnes [4], Heinhold [351],
Davenport [16], Inkeri [39], Rogers {573, Bambah [2], Chalk [14],
Mordell [48], and others. One particular result of this kind was

proved by Barnes:

THEOREM 1.3. ‘1§ §(x,y) is given by (1.17), and

ulg) = max { |a|, |e]|, min |a £ b+c|],
then
(4)
M(é) < K 4

whene equality can hold only when M(§) = M(§;P), and 2P = Olmod T).
For a deeper discussion of results of this type consult (s52].
Much of the motivation for a study of the function M(f) arose
from the desire to determine those integers m for which the quadratic
field k(vm) (see Chapter 14,[32]) possesses a Euclidean algorithm.
The existence of a Euclidean algorithm is equivalent to the existence
of an integer p of k(/m) corresponding to each element w of the field,
with the property that
|norm(w + )] < 1. (1.22)
The norm of k(vm) is an indefinite binary quadratic form, with rational
coefficients, say fm(x,y). It follows that k(v/m) is Euclidean if and
only if
M(E 5P) < 1 (1.24)

for all rational points P. Consequently if



i0.
M(fm) <1,
then k(V/m) is Euclidean.
The fact that there are only a finite number of such Euclidean
fields, is an immediate consequence of the following generalization,
due to Davenport [18], of a result considered in §1.
THEOREM 1.4. Let §(x,y) be a binary quadraiic fomn which does not
nepresent zero, then there exist real Xy » Yy such that
[§(x + xp,y + yo) | > T%E (1.25)
holds forn all integerns x, y.
In fact the following result is also shown to be true.
THEOREM 1.5. 14 §(x,y) has integnal coefficients, then there exist
nationak X, , Y, such that (1.25) holds.
As a consequence, since fm(x,y) has integral coefficients,
(1.24) cannot hold whenever A > 128, Since the determinant of fm
is either 2vm or vm, then Euclid's algorithm cannot exist for
m > (128)2.
We define the absolute quantity M, now known as Davenport's
constant, as follows:

M = inf M(f)/A, (1.26)
f

where the infimum is taken over all forms which do not represent zero.

The best known bounds on M, given by Ennola [28] and Pitman [54], are

1 1
30-65 < M T2 (-27)

The methods used to obtain such bounds usually rests on some

semi-regular continued fraction expansion of the roots of the forms.

Davenport and Ennola used the Hurwitz expansion already mentioned,



11,
while Pitman used the more general semi-regular expansions of Barnes
and Swinnerton-Dyer [9], a detailed discussion of which will appear in
Chapter III. In each case, rules are given for the construction of
a chain of integers associated with the appropriate continued fraction
development, and these together describe a point (xo,yo) with the
required property.

During the past twenty years, various methods have been given
for the evaluation of the functions M(£;P) and M(f), for a given form
f and point P. Davenport [16] obtained M(f) for some of the early
Markov forms, and gave the infinite sequence of isolated minima Ml(f),
M2(f), Ms(f),.... for the form x2 + xy - y2. Varnavides [63], [64],
[65] used Davenport's method to evaluate M(fm) form= 2, 7, 11,
where fm(x,y) = x2 - my2. Bambah [1] gave new geometric proofs in
the cases m = 7, 11, and using this method obtained M2(f7). Barnes
and Swinnerton-Dyer [8] considered a more general method applicable to
forms with rational coefficients, and which was also used for the
determination of the successive minima of certain norm forms.

However, by far the most general and powerful method devised
for the evaluation of M(f), where f is an arbitrary indefinite binary
quadratic form, is the divided cell method, developed by Barnes and
Swinnerton-Dyer [9], [5]. To every form f and point P, there corres-
ponds a two dimensional grid. From the geometry of this grid it is
possible to construct a sequence of forms fn(x,y) (-~<n<w), all
related to £ by an integral, unimodular substitution. It is proved

that only four values of each of these forms need be evaluated to



12.
determine M(f;P). This method will provide the basis for all problems
examined in this thesis, and a description of it appears in Chapter III.

The method was used by Barnes and Swinnerton-Dyer [9] for
evaluating the critical determinant of certain asymmetric hyperbelic
regions, and by Barnes [5] for calculating M(f) for two difficult norm
forms. Barnes also used modificaticns of the method in [6], [7], and
Pitman [53], [54] used the method with a great deal of success to
calculate the inhomogeneous minima of a subsequence of the symmetric
Markov forms, thus extending the work by Davenport.

3. The mixed form problem

In the previous section we discussed certain minima of indefinite

forms, where the linear products were: either both homogeneous, or both

inhomogeneous. Chalk [13] showed that if
X = ax + B8y
Y = yx + 8y

were linear forms in %, y, then for non-zero real c, there exist
co-prime integers x, y, such that
|+ eyY] < &, (1.28)
where A = |a5 - Sy| is the determinant of the forms.
Davenport [21] showed that this result is best possible, in the
sense that for every € > 0, there exist linear forms X and Y, and a

non-zero constant ¢, such that

iy
[(x + e)¥] > s
for all co-prime integers X, ¥. The examples that are given in [21]}

are perhaps natural ones, in that Y is chosen to be badly approximable



13.
homogeneously,  and X is badly approximable inhomogeneously.
The question which now arises is whether, on omitting the con-
dition of co-primality on x and y, the constant % still remains best
possible. Davenport provides a negative answer to this question by

showing that the inequality

[(x + e)Y| < (1.29)

A
Gel
is always soluble in integers (x,y) # (0,0). However if infinitely
many solutions are required, then Theorem 1 of [21] indicates that % is
then the appropriate best possible constant.

The problem has further been investigated by Kanagasabapathy

[u1],[42], who successively improved the constant on the right-hand

. 1 1 1
side of (1.29) from Te1 to 35977 ° He also gave Tooep7 a8 @
lower bound on the best possible constant. Mention of their approach

will be made in Chapter 1IV. A section of this thesis will be devoted
to a general arithmetic formulation of this problem, and this will
lead tc an actual evaluation of the best possible constant, and critical
forms.

A further gquestion which, to my knowledge. has not been investig-
ated, is the evaluation of

inf |(X + )Y,
Y>0

where the infimum is extended over integral x, y, such that Y>0. The
methods developed in this thesis, with certain modifications, would be

suitable to handle this question too.
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4. Summary of subsequent chapters

Chapter II of this thesis contains a brief comparison of some
of the properties of ordinary and semi-regular continued fractions.
Several results that are needed for following chapters will be proved.
A discussion of the semi-regular continued fraction to the integer
above is undertaken, and a method for transforming such expansions into
ordinary continued fractions is introduced.

The basic tool for the results obtained in this thesis will be
the divided cell method of Barnes and Swinnerton-Dyer. The method is
expounded in Chapter III, and an arithmetic formulation of M(£;P) in
terms of semi-regular continued fractions is given. The chapter
concludes with several results that provide upper bounds on the value
of M(£f3P), and a theorem which relates the semi-regular expansions of
equivalent (in the usual sense) quadratic irrationals.

A description of a modification of this method which will put
the mixed form problem on an arithmetic basis appears in Chapter iV.
In Chapter V we will show that the best possible constant for the

problem is given by:

K = (3/49)(366458018 ¢ - 7320551) (1.30)
182368730 6 + 392361)¢ - (164SBL © + 7838) ° )
1
- fu= 147 +6/2165_ = BB 1042580352/i6 ] (1.31)

Chapter VI investigates the distribution of the infimum of
values taken by mixed forms. In fact we show that for all k' with
0 < k' < k, there exist homogeneous forms X and Y, and non-zero constants
¢, for which

inf [(X + e)Y| = k'a.
(x,y)#(6,0)



15.
In Chapter VII, further modifications of the divided cell
method enable the investigation of a problem for forms, analogous to the
Cassels-Descombes' positive approximation problem.  For binary quadratic
forms £, we define a restricted inhomogeneous minimum, which we denote

by M*(£), and show that

o 27A
M (f) < 2—87-' N

a best possible result. Extensions of this result are indicated.

The final chapter is devoted to the evaluation of kf(¢), where

¢ is equivalent to /5'; L . We prove that
+¢/5 + 1y _ 3/5 - 5
K 2)' 10
= 0-1708...,

which sharpens Godwin's bound of 0+2114... on et
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CHAPTER II

PROPERTIES OF SEMI-REGULAR CONTINUED FRACTIONS

1. Ordinary continued fractions

Throughout this thesis, extensive use will be made of the
so-called semi-regular continued fraction. But first, for reasons of
comparison, we will recall a few of the important features of the
ordinary continued fraction (0.C.F.). Suppose o > 0 is real, then we
will denote the O.C.F. expansion of a by

o = (al,az,as,.......)

1 1
. a +-—- ———uv.on > (2‘1)
1 a2+ a3+

where a; 2 0, and a, > 0 for i > 1.
The algorithm which produces the partial quotients a; » is as
follows: In this chapter, let [x] denote, as is usual, the integral

part of x. Then

- - 1 -
a=a =a; + 5, : where a, = [al] i
} (2.2)
o = a_ + 1 , where a_= [oa_]. }
n a n
n+l
Consequently o = (al,az,aS,. ..... ’an—l’an)' The @, are:called the

complete quotients. Clearly a given a produces a unique sequence of
integers {an}, provided @ > 1, for all n > 1.
LEMMA 2.17. a 48 notional L4 and only i§ £ts 0.C.F. expansion
ferminates.

This result is equivalent to the termination of the Euclidean

algorithm, and the proof may be found in say [51].
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A continued fraction is said to be periodic if two partial

quotients are identical. If I then we write

=i

r—l’ar"""ar+n—l)' (2.3)

a = (al,az,....

LEMMA 2.2, a i a quadratic innational if and onky 4§ its 0.C.F.

expansion has a non-trivial period. |
The proof may be found in [51].

Suppose a, B are two numbers connected by the relation

-p8t+tg
* " rB+s° (2E)

where p,q,r,S, are integers with ps - rq = 1, then ¢ and B are said
to be equivatent. If ps - rq = 1, the equivalence is called proper
(if not, then impropern).
LEMMA 2.3, Two equivalent numbers have identical 0.C.F. expansions
from some point onwards.

The proof is given in [51].

A quadratic irrational o is said to be neduced (in the semse of

Gauss), if

a > 1, -1 <oa<0, (2.5)
where o is the algebraic conjugate of a.
LEMMA 2.4. Let o be a quadnatic iviational, then o 48 reduced if
and only 4§ the 0.C.F. expansion of o is puwrely periodic: 2zhat 4s,
a = a, gor some n > 1.
A discussion of this kind of reduction may be found in [34], [51].
Now, after Lemma 2.1, we may denote the finite continued
fraction
P

n
Q, ’

(al,a2,....,an) = (2.6)
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where the fraction P,/Q, 4is in its lowest terms. These fractions
are called the convergents of the 0.C.F. development of a, and are

obtained by the following recurrence relations [51]:

Pp=1l, Q =0, Py =2, Q=1 i
Pn+l - an+an * Pn-l : i (2.7)
Qn+l = an+lQn i Qn-l ) }

Clearly the Pn and Qn are positive integers which become arbitrarily
large, as n + @,
LEMMA 2.5. 1§ o is dvational, and o = (al’“z'“3""")' then

tin 7,9,

1}

Q.

The proof (e.g. [51]) is a consequence of the following three

results:

QP >

Pr1 ~ Ufnaa (—;

> (2.8)

uh+an N Pn—l

g = (@, ,8,5000058_50_,4) = 5 (2.9)
1232 %)) T o0+ Q)
which together imply '
1
- P H .
lo - 2 /o | = 5 (2.10)

n OLn+lQn i Qn-l)

from which Dirichlet's theorem follows immediately.

2. Semi-regular continued fractions

In this section, a brief outline of semi-regular continued
fractions (S.R.C.F.) will be given. The classical nctation of Perron
[51] will not be used, but a notation which arises naturally from the
geometry of the problem will be considered.

The 0.C.F. development of a real number o is based on the
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extraction of the integral part of each complete quotient as it arises,
and an inversion of the fracticnal part to produce the next complete
quotient. This yields a unique sequence of integers {an}.

The rules for the development of the kind of S.R.C.F. in which
we will be interested are as follows: At each step of the algorithm,
instead of always extracting the integer below, we usually allow
ourselves the choice of either the integer below, or the integer above.

Given a real number g, |a[ > 1, we define the sequence {an} by;

: - = L e =

(i) o = @ = a; 2 , where a; = [al] or [al] +1, {
provided that [a.]| 2 2, }
1 }

P 1 } (2-11)
(ii) @ Ta - where a = [an] or [an] + 1, }
ntl }
}

provided that |anl > 2.
We will denote the S.R.C.F. in square brackets (to distinguish it from

the 0.C.F., but not to be confused with the integral part notation).

a = [al,a2,a3,.....,an,an+l] i _
) N 0 3 N } (2.12)
T8 TE < T eseera- a ' }

2 3 n ntl

The a, are again called the partial quotients, and the a5
complete quoitients. Note that a_ may take either sign. We define the

sequence of convergents, {pn/qn}, as for the 0.C.F., by

[al,az,....,an] N pn/qn (2.13)
where Pg =1 33=0, p; =2, g =1, %
= B }
Ppt1 T %nt1Pn T Pn-1, } N2EHL)
}
= }

Q41 ~ 2p41% ~ Ipic
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Formulae analogous to (2.8), (2.9) and (2.10) can be shown to hold, by

induction [9].

Pr-1% ~ Ppdpo1 = 1, - (2.15)
n+l*n  *n-1
a=1la,a .02 50 7= — 5 (2.16)
1772 B S ®+1% T In-1
which together imply
P
L 1 : (2.17)

4 qn(an+lqn h qn-l)
Note that if ¢ is irrational, and 1 < o, < 2 for all n, (or
1< -a < 2 for all n), then this would imply a = [2,2,....]1 =1,
which is a contradiction. It therefore follows that we may expand
each irrational a in uncountably many ways as @ S.R.C.F. of this type.
Various prope?ties of these S.R.C.F. are discussed and proved

in [9]. We select the following results which will be required in
later chapters.
LEMMA 2.6. - Suppose that we are given a sequence of infegens {a l,
with la.nl 2 2, and a, not constantly equal to 2 (on to -2) fon
Larnge n; then

(4) zhe sequences {p }, {q,} as defined by (2.14) are such that

pl’l
4,

> 1 4+ —
- n’?

lp,l 2+ 1, lq,i2m
and {jp, |} {anl} ane Atnictly increasing sequences of integens.
(id) the inginite S.R.C.F. [a;,80,83,.......], whose vatue is defined

es Lim p,lq, , converges fo a neal aumber o, with |a| > 1.

n > o
(£id) 44 a, > 0, fon all n > 1, then {pn/qn} 46 a stnictly

decreasing sequence of positive fractions.
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(iv) zhe S.R.C.F. a= [az,az,.......] 0f positive partial quotients
is incrheased £if, fon Aome n, @y, Rpye--ee s Ay nemain constant and
a, is inereased, while a, fon n > n take arbitrary integnal values.
These results form part of 84 of [¢]. where the prcofs are
indicated. The strict monotonicity of {|pn|}, and {lqnl} is a simple
inductive consequence of (2.14). (iv) results from (2.14), (2.15)

and the following lemma.

LEWMA 2.7. - Suppose that §{x) is the Linean fractional form
f - S

where a, b, ¢, d are rneal numbens, then §(x) 4s a monotone function
in any intewal which does not include the point x = -d/c, and increases
if and only if ad - be > 0..

The proof follows immediately from the inequality

(ad - bc)_-f_ll—xii >0, for f,{b/d,

Any irrational number a, la] > 1, may be developed in S.R.C.F.
of the above type in infinitely many ways, each yielding, by (2.11), a
sequence of integers {an}, with |an| 2 2, and a, not constantly equal
to 2 (or -2) for large n. Conversely, Lemma 2.6 shows that any
such sequence of partial quotients converges, in the above sense, to a
real number o, with la] > 1.

The following relation, which links the complete quotients with

the convergents, will be required in the next chapter.

LEMMA 2.8. Let a=[a1,a2,.......] and as usuak

a; * [ai’¢i+7"""']; then Qplps] ~ Qp_p = %9%3 c*Fpa1
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PROOF. When n = 1, the result follows from (2.14). Suppose that for

some m, with m > 2, we have

1% = Ypop T Gplgeecs o s
then by (2.11), (2.14),
a,e o =a (a_ - =) - )
273" """ m+l m+1'9m-1%n T o -2
m+l
= %% T Iner

and the lemma follows by induction.

It will be of interest in Chapter VII to have a result,
analogous to Lemma 2.3,for the S.R.C.F. expansion of equivalent numbers.
Such a theorem is proved in §6 of Chapter III. There are many mcre
interesting results about S.R.C.F. expansions which we could include
here, but as they will not contribute to the main theme of this thesis,
they will be omitted (see [51], [59]).

We conclude this section on general properties of S.R.C.F.
with the following result (compare with a similar theorem in [3?]).
THEOREM 2.1. Any expansion of a quadraiic iwational o, in S.R.C.F.,
contains some complete quoiient o, such that |a | < 1.

PROOF. Having written a as a linear fractional form in a , by (2.16),

then weé may solve for @ 5 and take the algebraic conjugate, obtaining

o Q2% = Ppp
N S 2 |

From (2.15),
9h-2 P
qn-l
n-2

n-2y,— Pn-1
)/(a - -2y
qn--2 qn—l)I

.ET .
|

("-

A

i _ -1
a_,; (1 hay 39,0 - Py /ey )1
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Now since 1limp /q = a # o, and lim anl = «, then for large enough
n—)mnn n >
n, we have
-2

qn-l

-

)8

e | <

1+ ——
la, ;|
But Lemma 2.6 implies that an_2| < |qn_l| - 1, and so

).(1 + ‘

Ian|_<_(l— l|)<l’

1
ey, -1

provided n is large enough.

3. Expansicns to the integer above

In this section, we will examine one particular expansion from
the infinitely many S.R.C.F. expansicns of an irrational a > 1. At
each step of the algorithm, we will always choose the integer above;

consequently, in (2.11), we have a = [an] + 1, for all n, and a 2 2,

(and not constantly equal to 2 for large n). We will call this
the A-expansion (A.C.F.) of a. The A-expansion of an irrational is
unique.

Various transformations have been given [51], [59], for con-
verting one type of csntinued fraction tc another: In Chapter VII, we
will require the A-expansicns of certain reduced gquadratic irrationals,
knowing their 0.C.F. expansions. We will riow prove a result which
will enable us to obtain these. We will use the following permanent
notation (for all types of continued fractions). If any segment of
chain is repeated s times, this segment may be enclosed in brackets and
subseripted with an s, as follows:

(b, ,b 1.

[al,aQ,....,an, 12 2"""br)s’an+rs+l""'
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In the above notation, we will use the convention that s = O implies

this segment of chain is deleted. Thus

fa.,eeesa s(b.yeeesb ) sa seenns ] }
1 n 1 r 0’ ntl } (2.18)
= [al,....,an,an+l,....]. }
LEMMA 2.9. 1§ o= [(2)1,83, n 20, then
_fn+1)8 -1
7w - -1 °
PROOF. Application of (2.14) implies p,=T* 1, q, = T3 the result
follows from (2.11).
THEOREM 2.2. 14 4n 0.C.F.,
a = {a,a+l,x), where 20, x>1, azd,
then in A.C.F.,
a+ 1= [a+2'(2)n’X+1]'
B 1
PROOF. o,—a-l--————-————(r_'_l)_'_}.
x
_ 1
Fatl -y e+l
rx + 1
Clearly (r+ Dx+1_(r+1)x+ 1) - x > 1, and the

rx + 1 “Trx+ 1) - (»r - 1)

result then follows from Lemma 2.9.
This theovem enables us to convert an 0.C.F. expansion into a
S.R.C.F. expansion, and vice versa. Using the convention (2.18) and

inserting an appropriate (2)0 into the S.R.C.F. expansion, if necessary,

we have: if @ = (3. ,8.58.28, seccace ), then }
1°%2°%3°%> B
} (2.19)
at+l-= [al+2’(2)a2—l’a3+2’(2)a4-1’ ...... iz }

This relationship enables many of the properties of the
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A-expansion to be deduced from the corresponding results for 0.C.F. It
is also possible to obtain expressions for the period of the A-expansion
of a quadratic irrational, in terms of the period of the 0.C.F. expan-
sion and its partial quotiemts; but we will not include this theory.
If o is a quadratic irrational, then we will call a A-zeduced if
@a>1, 0<0o<l, (2.20)
By (2.5), if B is reduced and o = B + 1, then @ is A-reduced.
LEWHA 2.10.  The A-cxpansion of o is periodic if and only if @ is a
quadnatic Luvationak.
PROOF. This follows from the conversion (2.19), and Lemma 2.2.
LEMMA 2,11, 14 o« 4is A-neduced, then all complete quotients in <14
A.C.F. expansion are A-neduced.

PROOF. Now, a satisfies the inequalities (2.20), and
a:a :a--J;
1 1 02’
where a, > 2, and o, > 1. But o =a, - é;, which implies
. 1 2 1 oy
0 < Eé < 1, and hence oy is A-reduced. The result follows by induction.
LEMMA 2.12. 14 the A-expansion of o is pwre perdedic, then a A5
A-reduced.
PROOF. The lemma may be proved in a similar manner to the 0.C.F

case, by showing that if

o = [al,aQ,....,an], g = [an,an_l,..
1

then B =
o

..,al],
However, we will deduce the result from Lemma 2.4.

Now, if a is periodic, then each complete quotient has an
A-expansion that is pure periodic. Since all partial quotients cannot

equal 2, then there exists an n for which @ > 2. But by (2.19),



26.
@ - 1 will have a pure periodic 0.C.F. expansion, and by Lemma 2.4
will be reduced, implying that 0 < E; < 1. Thus @ is A-reduced;
but ¢ is a complete quotient of @ s and hence by Lemma 2.11, o is
A-reduced.
The converse result is also true, as may be shown using a
similar technique to [20] (p. 100).

LEMMA 2.13. 14 o is A-neduced, then its A-expansion 48 pwiely

periodic.
PROOF. Lemmas 2.10, 2.11 imply that the A-expansion of a is, in fact,
periodic, and that each complete quotient is A-reduced. Hence for
some n<m, o = o . (2.21)
n m
For arbitrary i > 0, a, = a, - —l—-, and so
i i .
i+l
. _ 1 .
i
5 13 )
since = > 1, then

e

a; = [l/&-iﬂ:| L)

implying a . By an inductive argument,

= a and so o = o
n-1 m-1?

n-1

R T NS

proving the pure periodicity of a.
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CHAPTER III

THE DIVIDED CELL METHOD

1. Introduction

This chapter will be devoted to a description and explanation
of the divided cell method, constructed by Barnes and Swinnerton-Dyer.
This expository chapter is included because the problems examined in this
thesis will be treated by modifications of the method, for which details
of the analysis will be required. Many of the results from [5], [9],
{523, [531, will be referred to without proof. The theory of the
divided cell was first described in [5], [9], and was later treated in
depth, by Pitman [52].

As far as possible, the notations used in the literature
referred to will be employed, and any changes explicitly noted.

Suppose for real a, B, Y, 6, £g. ng, we consider the set of
points,L , in the &, n-plane, given by

E=E& + ax + By

0

§
nO + YX + Oy

where x, y take all integral values, and the detesminant A = |as - By|

}
} (3.1)
}

n

is non-zero.

If the set L contains the point (E,n) = (0,0), then it is called
an homogeneous Lattice. If not, then we call L an.{nhomogeneous i
Lattice, or a ghid. We will use the latter terminology. We will be

interested in those grids which have no points on either axis, and so we

will assume this to be the case throughout the chapter. Later we will
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see that this condition is of great importance to the general method.
iIf A, B are any two points of L (called grid or lattice points),
then we will call the line AB a Zatfice £ine,and any line segment AB
which contains no other grid point, a Lattice step.
Suppose that we have a parallelogram, whose vertices are the
grid points A, B, C, D, then if its area is A as previously defined,
then ABCD is called a celf of the grid. The following remarks are
either clear, or follow by arguments similar to those in [32] (pp. 26-29)
(i) Any edge of a cell is a lattice step.
(ii) A cell contains no points of L in its interior.

(3.2)
(iii) Any two adjacent edges of a cell, together with some

[ R N e

point of L, generate the whole grid [9].
Let a, b, p, 9, ', S, be integers with ps - rq = *1; then the
integral, unimodular transformation of variables from (x,y) to (X,Y),

defined by

X =a+pX+qY

(3.3)

Nt o N
v

y =b+ rX+sY
when applied to the grid L of (3.1), produces a grid L';
£ =g, +a'X+ B'Y
I & £
n=ngt y'X+8'Y,
for integral X, Y, where the constants with the prime are simply
related to the censtants without the prime. In fact, it is easily

seen that the grids L and L' are identical.

If, however, a grid L' is defined by
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E' = Kg }
L gl }, (3.4)
n' = Fn }

where (E,n) is a point of L, and K is a non-zero constant,then the grids
L and L' are said to be similan.

There exists a definite connection between grids and indefinite
binary quadratic forms. Suppose that f is such a form, then we may

denote it, for real a, b, ¢, o, B, vy, 6, by

f(x,y) = ax? + bxy + cy? }
}s (3.5)
= (ox + By)(yx + 8y) }

where A = |aé - By| = (b? - !+ac),/2 = /D. A is called the determinant
of the form, and D its discrimnant.

If Xqs and yo are any real numbers,

f(x + XysY + yo) = (go + ox + By)(no + yx + 8y), {3.6)

with EO = ox, t Byo, and LI C O Gyo.

Comparing this with (3.1), the set of values taken by
filx + ®qy t yo), for integral x, y, is the same as the set of values
which are the products of coordinates of the lattice points of the grid L,

or any grid similar to it. Hence the value of M(f;x ) = M(£f;P),

0*Yo
defined by (1.19), is identical with the supremum of real numbers m,
with the property that there is no point of L in the hyperbolic region R;
R: |gn} < m. (3.7)
It also follows that
M(£;P) = inf {|&n]; (&,n) a point of L}, (3.8)

Thus for any pairs of forms and points, say £, P and fl, Pl’ to which

there corresponds identical or similar grids, we have
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M(£;P) = M(fl;Pl)
It also follows that the inhomogeneous minima, defined in (1.20), M(f)
and M(fl) are equal, whenever f is related to fl by a substitution of
the form (3.3), with a = b = 0.

Any direct evaluation of M(f;P) by (3.8) would involve a
calculation of all the values |£n|, where (£,n) is a point of L. Clearly
there will be many points of L at which this product is very large.

In fact, those points for which |gn} is small, will be near the origin
or one of the axes. Hence the basis of many methods to evaluate

M(f;P) is to provide an algorithm which picks out a suitable sequence of
grid points of L, which have the Ysmallest" values of IEnI.

2. Outline of the methcd

A cell of a grid is said to be divided if it has a vertex in
each of the four quadrants (and not on an axis). The basic result for
grids and divided cells was proven by Delauney [22], (see alsc £33, [u9l,
[561).

THEOREM 3.1. Eveny two dimensional gnid, with no point on either
axis, has at Reast one divided cell.

Delauney's procf was sketched by Barnes and Swinnerton-Dyer
[9], and relies on the fact that the grids under consideration have no
point on either axis. The proof will not be given here, but in
Chapter IV a similar result will be proved for a special type of grid.

Assuming the existence of a divided cell, it is possible to
construct from it a unique chain {Sn}, -o < q < », gf divided cells,

which flatten out against the E-axis as n + =, and against the n-axis
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as n > -, Barnes and Swinnerton-Dyer developed the construction of
this chain of cells by means of a simple algorithm, which generates a
corresponding chain pair of integers {an+l’8n}’ satisfying a set of
conditions.

The following theorem justifies calling {Sn} the chain of
divided cells of the grid.

THEOREM 3.2. The chain of cells {S } arnising gnom some divided cell
0§ a gnid L, contains all the divided cells of L.

Although this result is of considerable interest, it is not
explicitly used in the applications. The proof follows immediately
from Theorems 2.1, 2.2 of [52].

Conversely, suppose that we take any chain pair {an+1’en}’
satisfying the required conditions, then it can be shown that it
determines the chain of divided cells of a grid, which is itself unique
except for a constant multiple of each coordinate.

The essential step in the argument is that the infimum (3.8)
need only be taken over those grid points of L which are vertices of
some divided cell of the chain {Sn}. This leads to an arithmetic
formulation of M(f;P), in terms of the chain pair {an+l’€n} arising
from a corresponding grid. Thus the problem of evaluating M(f) may be
attacked independently of the grids, by comsidering all possible chain
pairs satisfying the required conditions, and then applying the arith-
metic formulation. §§ 3, 4, 5 of this chapter will indicate in
detail (but usually without proof) the steps in the above argument,

with reference to their appearance in the literature.
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3. The algorithm

Suppose we have a grid L given by (3.1), and So is a divided
cell AOBOCODO’ whose existence is guaranteed by Theorem 3.1. Let
us suppose that the vertices of S0 are named in a clockwise direction,
and that A0 is in either the first, or the third, quadrant. We now

define two more divided cells of L, S, the successor of SO, and S__l the

1
paedecebbon of SO. Define the two integers ho,ko, as follows:

(a) If the line segment AOD0 is parallel to the &-axis, put
by convention hO = k0 = -,

(b) If not, then AODO (and BOCO), produced in some direction, will
intersect the £-axis. Let |h0| be the number of lattice steps
of length |A0D0| that must be taken from SO, on the infinite
line AODO’ in order to intersect the £-axis, and let |k0| be the

corresponding number of lattice steps of the same length on the

line BOCO' Let these intersecting lattice steps be AlBl and

ClDl respectively, and give h0 and k0 the sign of the slope of

AODO.

This process clearly defines a unique new divided cell with vertices

Al,Bl,Cl,Dl. In symbols, if we put Y0= A0 - D0 = B0 - CO’ then
- - L
Al AO (ho + l)YO i
B, =A_ -hV }
1 0 0~0 } (3.9)
C, = Cy+ (kg + 1)V 1
D, = Cy + k¥, }

Now ho and ko are non-zero integers of the same sign. Note

that Al is either in the first or third quadrant. If Ao is in the
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first quadrant, so too is Al’ whenever ho < 0. (3.10)

By considering the intersections of AOBO and CODO with the
n-axis, then a unique divided cell S—l’ with vertices A-l’B—l’C—l’D—l’
may be obtained, and non-zero integers h—l’ k-l defined by considering
S0 as the successor of S-l'

Thus, provided that there is no lattice line parallel to an
axis, a doubly infinite chain of divided cells, {Sn}, - < n < »,
with vertices An’Bn’Cn’Dn’ can be constructed, such that An is always
in either the first or the third quadrant.

Associated with this chain is the sequence of non-zero
integer pairs {hn,kn}, obtained from the following formulae:

= A - (hn + 1)Yn

n+l n
n+l e = Ve
(3.11)
cn+l e cn + (kn + 1)Yn
Dn+l - cn ¥ knYn
where Yn = An - Dn = Bn - Cn = Bn+l - An+l = Cn+l - Dn+l' (3.12)

Denote the n-coordinate of the point P by n(P),and so on.
The following lemmas will provide information om the integers hn, kn’
and the vertices of the divided cells.
LEMMA 3.1. hn and k are non-zerno integens, which have the same sign.
This has already become evident in the above discussion.
LEMMA 3.2. 1t is Ampossible that
(i) for all n 2 ny lon n < ny ), either
(@) h = -1, on (b) kn = -1,

n
(i) for akl n > 0 (on n < 0}, and some n,,



34,

hno+2n : '2n0+2)r,+1' = 1.

The proof appears in [9] (Lemma 1), and relies on the fact that
there are no lattice points on the axes.

Let us assume from now on that there is no lattice line
parallel to an axis, which is equivalent to supposing the ratios a/B,
v/$8 in (3.1) to be irratiocnal; then hn’ kn, are finite for all n.

LEMMA 3.3.  lV ), nfA ), n(B,), nlc,), (D),

and g(v_.1,

elA_,), &(B_), gfc_, ), €(D_.),
approach zeno as n + =, and take anbitharnily Lange values as n + -,
The proofs are found in [9] (Lemma 2), and [52] (Lemma 2.3).
This lemma proves the intuitive concept of the chain of cells flattening
out against an axis, for large values of In|.
It so happens that the integer pair hn’ kh’ is not convenient

to work with, and therefore we define a further integer pair by:

a =h_ + k Y
n+l n n } (3.13)
e =h -k j
n n n
LEMMA 3.4. a,; and e, have the same parity. Ian| > 2 fon

all n, but a, not constantly equal to 2 (orn to -2} for Large n
(positive or negative).

Further, |e | < gl - 2, but a gt oL e,

is not constantly equal to -2 for all Lange n (positive or negativel.
The lemma follows from (3.13) and Lemma 3.2. We will see
later that for the special kind of grids considered in Chapter IV,

Lemmas 3.2, 3.4, do not always hold.



35.

Now if f is a binary quadratic form, and P a point, associated
with the grid L, then:

THEOREM 3. 3.
M{§:P) = inf { |en]; (g,n) 4is a vertex of S,, for some n }

The theorem results from [9] (Theorem 5), and is given in full
in [52] (Theorem 2.1). The proof rests on the fact that if Pn and
Pn+l are different vertices of successive divided cells in a given
quadrant, then there is no point of L within the interior of the tri-
angle formed by the axes and the line PnPn+l' Since, by construction,

lece )| < fee Dl Ine ) s In®)I,
we can readily see that there is no point within the region formed
by the axes, and the straight line segments PnPn+l’ for all n. It
follows by convexity arguments that, in a fixed quadrant, the region R
of (3.7), contains a lattice point of L if and only if it contains a
vertex of a divided cell of {Sn}. The theorem follows.

In order that this theorem be of some practical use in the
evaluation of M(fi;P), we will find arithmetic expressions for the
products of the coordinates of the vertices of the divided cells in the
chain {Sn}, in terms of the associated chain pair sequence {an+l’sn}'
In so doing, a certain type of semi-regular continued fraction (Chapter

II) arises naturally from the geometry of the grid, and its chain of

divided cells.

4. Arithmetic formulation of the vertices of the divided cells

Denote the vertices of the divided cell Sn by:
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c = (85vn,) {
B, = (B8, + 8oy (ny + 1) i ; (3.14)
D= (B (5, + 1),y (n +¢))) i
a = (B (e +6 +Ly(n +1+4)]) 1}

This completely defines the real ngmbers Bn, En, Yn* Mo ¢n’ en, for
each n. Note that the En and n, are not quite the same as those of
[9] (p. 204), and en = an/Bn, ¢n = 6n/yn, but these changes are

consistent with the change of notation made in [5] (p. 2u3).

By (3.2) (iii), the grid L is given, for all n, by

£=8(f +08.x+y) }
L: - : nmoon }, (3.15)
n=qyn +x+¢y) }

]

where x, y take all integral values. Clearly

A= |enyn(en¢n - . (3.16)

By (3.12),

v

n~ (Bnen’yn) = (-Bn+l’_Yn+l¢n+l)‘ (3.17)

Now, as in [9], it follows that (3.11), (3.12) and (3.13) imply

Yol = “3ne?n ~ Yaert (3.18)
By equating coordinates, we obtain from (3.17),
B .6 =-a BB -8B .8 }
+ - -
nt+l ntl ntl™n ' n n-1"n-1 } (3.19)
}

Yo+l © p+1’n T Yn-l

A doubly infinite sequence of integer pairs {pn,qn}, may be
defined by putting
- - - n - -
Vo= (88,7) = CGDY(By(egp - an)svolp, - 4gan))- (3.20)
Now (3.19) implies that this sequence of integer pairs satisfies the

recurrence relations, for all n:
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P, =0, a;=-1 py=1, 95=0; py =a;, q; =13

Pher ©

Gt © Pni1%n T Gn-1
Referring to (2.12), (2.14) arnd [9], it is clear that the

4h+1Pn 7 Pp-a1 (3.21)

(SRR Wy )
5

ratios pn/qn are convergents of a semi-regular continued fraction, and

P
n
that for n 2 1, -5; = [al,a2,....,an],
P_n
and for n > 2, a: = [ao,a_.l,....,a_n_'_z].

Various properties of these continued fractions were discussed
in Chapter II. We now state the following result which links these
S.R.C.F. developments having partial quotients from the sequence {an},

with the vertices of the divided cells.

LEMMA 3.4. ¢y * [a,,az,as,. ..... 1,

8 [“0’“-1'a-2"°'°"]'

PROOF. Since Lemma 3.3 implies [n(V )| - 0, as n + =, then (3.20)

indicates  lim |n(V )| = 1lim |q v,(¢q - P /q )| = 0.
n-> o

i1 > o
The result follows from Lemma 2.6. The result for 8 follows similarly.

Since we may take any step of the sequence {an} as a reference

point, it follows as a corollary that, for all n:

¢ =1L

a a XN
n n+tl® n+2° ]

}
1. (3.22)
.. }

g = [an,a

n n—l,nuooo

Following [7], we will make the definitions,

A
n

"

28 + 6 +1 }
S }. (3.23)
}

U

N 2nn + 1+ ¢n
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Note that these notations differ from the o, and T used in [52], [53].

THEOREM 3.4. For akl n,

N e
A =€ + }
Yl Vl"1 I.L=16n-1en’2....en’}l, }
e }. (3.24)
-1)" e }
W, =€, tl nAn }

R 100010427 S
It is sufficient to consider the results for the case n = 0,
as the general result follows identically, except for a constant shift
of subscript. The proof for this case appears in detail in [9]
(Theorem 2). The method is to express Ao and C0 as a linear combination
of YO’ Yl""’Yn-l’ for arbitrary n > 0. Then after addition,
extraction of the n-coordinate, and allowing n + =, we obtain the result
for u,. The proof for Ay follows analogously.
THEOREM 3.5. Suppose that the grnid L corresponds to some form 4,
and point (x',y'), then §lx + x',y + y') 48 equivalent (L.e. 4L 48
nelated by a substitution of the type (3.3)) 1o each of the fomms
B lx + Xy * Y, Wff—_ﬂenx UASL- AL nyl, fora
centain seguence of points {xn,yn}.
This is a consequence of (3.14), (3.15), and (3.16); the proof
is given in [52] (Thecrem 2.3). Recurrence relations satisfied by
the {xn,yn} are given, but we will not need these.
We will now quote the theorem which provides the required
arithmetic formulation of the vertices of the divided cells.
THEOREM 3.6. 14 {an+1’sn} A8 the sequence of infegers connected
with the grnid L (comnespending to the fom §, and point P), and
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(1) _ 4 - -
” 4|6n¢n - j| ‘(en 1 An)(¢n 1 uﬂ)| i
ul?l . o o LRSI WITWER R )
no4le0, - T " o i Y (3.25)
ML p— e, -1+ )le, -1 -ull 1 '
o 4Te,8, - il n n' o Yn )
wldl - = e + 1+ xl)l¢ +1+u])l i
n ’4|en¢n - 1] n n o %)
Zhen
M(é}'P)= '{'nﬁMnr
n
whenre

= Dl = ; (£). ; .
M, - Mn(ﬂ,P) = dnf M7 £ = 1,2,3,4}.

This result ([7]1, [52]1) follows from Theorem 3.3, (3.1%#), and

(3.15), after the variables have been changed according to (3.23).

The M(l) are derived from C_, D , B_, A_, in that order.
n n n’> n

n

Summary of the method so far

Suppose that we have some grid, associated with a form £, and
point P, then we construct a sequence of divided cells, which yields

a sequence of integer pairs {an+l’€n}’ with the following properties [52].

(1) Ian| 22, a mnot constantly equal 2 (or -2) for
large n of either sign.
i < - : : ity as ]
(ii) lenl < Ian+l' 2, and e has the same parity as a .,
(iii) neither a ,, + e mOr a ., - € is constantly (3.26)

equal to -2 for large n of either sign.

(iv) for any n, and all r 2 0 (or r < 0), we cannot have

+ =
an+2r+l €n+2r

et gt A gt At Mgt g et S ! Mg g et

2 sor2 T Cntopel C 2
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By means of this sequence pair, Theorem 3.6 enables a calcul-
ation of Mn’ and hence M(f;P).

The question which is of importance now is: Given a chain pair
{an+l’en} satisfying (3.26), does this uniquely determine the sequence
of divided cells for some grid, and can we evaluate M(f;P) by (3.25)?

In order to answer these questions we state the following two

theorens.,

THEOREM 3.7. The two series

© 2]

{appns1l - 2 , |ap-»| - 2 ,
n= 1T¢n+1¢n+2' *t '¢n+)n| n=1 |?;*1-19141—2' . 'Bu—nl
ane convergent for all n, and
v Apans1] - 2
la, | -2+ |y <ol -1,
n+1 a1 101002+ Opan N
] Qo )
la ] - 2+ [ ryond < fo | - 1.

n_,en_z....en_n
Equality holds in the Last assertions Aif and only if all the a,
involved have constfant sign.
Again it is only necessary to consider the case when n = 0.
The proof for the first in each pair of results, may be found in [52];
the other results follow by symmetry.
THEOREM 3. 8. For all n,

Irl <o | -1 )
n )

" : (3.27)
lu o< fo,l -1 }
The proof is a consequence of (3.26) and Theorems 3.%, 3.7,

and may be found in [52], [5].



L1,

If the sequence pair {a 2E } satisfies (3.26), then for all

n+l
n, the values of en, ¢n’ An, womay be computed by the formulae (3.22)
and (3.24). Consequently, we can find E» My from (3.23). If, as

usual, the function sgn x 1is defined by the equation =x.sgn x = |x|,

then we have the following formulae ([5], p. 241):

sgn £_ = sgn (E_ + 1) = -sgn © }

n " n }, (3.28)
sgl@n+9n)=sg1@n+en+l)=sg1% }
sgn n_ = sgn (n_+ 1) = -sgn ¢ }

" o R 1. (3.29)
sgn (nn + ¢n) = sgn (nn to 1) = sgn ¢n }

Consider, then, the four points, An’ Bn’ Cn’ Dn’ defined by

(3.14). The formulae (3.28), (3.29) imply that these points are

vertices of a divided cell of the grid L of (3.15). If we then

calculate the coordinates of the four points An+l’ Bn+l’ Cn+l’ Dn+l’

using (3.11), we obtain for B = -en, Yy = —l/¢n+l, the points
(BBn(En+l 6n+l * l)’Y\Yn(nn+l &k ¢n+1)) i
(88 (& )avy (n .. + 1)) }
n+l n+l) n ntl }. (3.30)
(BS En+l’YYn n+l/ i
(B8 (& ; * 1)svyy(n g + ¢ . )) }

Now
A/(8p41¢p41 - 1) . O,(dn - 1/65)
8/(O0, - One10ns1 ~ 1

- en(9n+l = 1/¢n+l)

¢n+l

n+l

= By.
Hence by (3.16), the four points (3.30) generate a grid which

is similar to L. In fact, by the same argument as before, the points
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form the vertices of a divided cell of this similar grid. Thus any
sequence pair {an+l’€n}’ satisfying (3.26) determines a grid whose
chain of divided cells satisfy the relations (3.11), and this grid is
unique, apart from similarity [5] (p. 2u2).

Any indefinite binary quadratic form may be written

£x,y) = g=T (0% + I(x + dy). (3.31)

Such an f, which does not represent zero, is called I-reduced (inhomo-
geneously reduced) if
le] > 1, el > 1. (3.32)

If, in addition, we have 8¢ < 0, then f is said to be Gawss-reduced.
This is the classical form of reduction.
LEMMA 3.6. 1§ §(x,y) is an indefinite binary quadratic form which
does not nepresent zero, then there exists an I-reduced form equivalent
1o i%.

This follows from the analogous result for Gauss-reduced
forms [5], [26]. The following theorem [5] also provides a
parallel with the classical results,
LEMMA 3.7. 1§ 4{x,y)l {8 proportional to a form with integral
coefficients and does not nepresent zero, then there are only a finite
numben 0§ I-neduced fonms equivalent to §(x,y).

Suppose that we wish to evaluate the inhomogeneous minimum
of a form which does not represent zero. By Lemma 3.6, there is an
I-reduced form equivalent to it, say fO’ and furthermore M(f) = M(fo).
Now, for the form fO’ and any point P, there corresponds a grid, with

its chain of divided cells and associated sequence {an+l,an};
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Theorem 3.6 then enables us to calculate M(f;P). If
A

— (B x + y)(x + $.¥),
60¢0 -1 0 0

fo(x,y) =
and we take any semi-regular expansion 80 = [ao,a_l,....] and
¢0 = [al,az,....] (of which there are uncountably many), then using
the rules (3.26) we may choose a companion sequence {en}. This chain
pair will correspond to the chain of divided cells of a grid associated

with £ and some point PO' Hence, as in [5],

M(f)

sup M(f,;P)
P

sup M({an+l,sn}),

where the latter supremum is extended over all possible chain pairs
associated with the form fo, in the above way.

As we have already seen, there are infinitely many form chains
{fn} of I-reduced forms, all equivalent to a given form, f. In contrast
to the case of Gauss-reduction, we can no longer guarantee that every
I-reduced form equivalent to fO’ will belong to cne of these chains.

In the above context, {a } is called an a-chain 0§ the fomm
§, from the form 60. The probiem of determining all the form chains
of the form £, and all the I-recduced forms equivalent to it, will be

discussed later in this chapter.

5. Bounds on the value of M(£f3;P)

We prove the following extension of [5] (Lemma 3.2).

THEOREM 3.9. For any chain {a e ds satisfying (3.26),

n+1?
M(g:P) < M < T%AT’TW{“GH - U, - 1], [le, + Dle, + 1,

1o, (¢, * w1l (e, 2 MEMIE (3.31)
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PROOF. As a consequence of (3.27), all the four terms (Bn x ] % ln)
have the same sign, as do the four terms (¢n t ] % un). (3.35)

From Theorem 3.6 we have

M_ = min {M(i); i=1,2,3,4}. (3.36)
n n
Now,
M < min {M(l),M(Q)}
n n n
< (v Pyl2y%, (3.37)
n n

Substitute from (3.25), and use the inequality between the geometric
and arithmetic means, tc give

Al(Bn + 1 - Ap)(8p - 1 - Ap)(ép + 1 - Wp)(%p - 1 ¢ ) |
n - slo ¢, - 1]

6. - A )¢ I,
ulen¢n l| n n°'n
The other five components of (3.34) are cbtained similarly,

(1)

from different pairings of the Mn .

A

The following statement of Minkowski's theorem is a corollary.

THEOREM 3.10. 14 4 45 an indefinite, binary quadratic form which

does not nepresent zero, then
Mi4) < %a.

PROOF. For any I-reduced form f_equivalent to £, and any assoc-

0

iated chain pair {a

£ > < 1
n+l’€n}’ one © 6n¢n 0, or Bn¢n 0 is true

for each n. In the first case, by the first two alternatives of (3.34),

using Lemma 2.7,

A0 - 1)(9,] - 1)
s(e o 1 - 1]

Mn < < %A,

in the other case, by one of the third alternatives in (3.34),
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M < alen|Cén] = lunDd <

< . LA,
n u(len¢n, + 1)

In Chapter VII, we will further extend Theorem 3.9 to deal
with a more complicated situation. The following result will be used
several times throughout this thesis.

THEOREM 3.11. Suppose that we are considering chain pains with the
propenty that, for akll n,

len' >A> 1, |¢n| >B> 1,
Suppose two such chains have a common segment, that agrees for at
Least 2n+? conseeutive values of the chain pain (n Large}.  Then,
if F is any (§ixed) one of the four alternatives (3.25) at the central
step of the common segment, we have (

F=F o+ 0,

whene the prime is used to distinguish the variables in the two chains,
and the constant implied by the onden notation is a function of A and
B only.

PROOF. We may suppose, without loss of generality, that the common

chain segment is

(a-r+i’€—r+i-l)’ i=20,1,.0000,20+1, (3.38)
Prép = Pp-1
Then b = [ ,8,,.000,a_,0 1 = L —I=2
0 1°72 r’‘r qr¢r - Q.
' = y = Pr_-¢n' . pn_l
and ¢0 [al,az,....,ar,¢r] s

Aty = Gp-1
since, by (2.14), the definitions of Pns 9. depend only on the values

B1s Bpseneeees A Hence (2.15) and Lemma 2.6 (i) imply
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op = 03] 1
lo, - oil = l4n ~ ¢ : = 0(=). (3.39)
: : [(qrér - qr—l)(qr¢r - qr—l)[ o
Similarly
lo, - o3l = 0(%2). (3.40)

Let n = [r/2], (integer part notation); then by Lemma 2.8,

and since |qn|2 n,

11
B oot 91.1e4]

n

+|o.o.c+|€n|

1 1 1
T =% +0(-I-l-).

luo - u(')l = |€l| ¢]|-

Now, the first term on the right hand side of this inequality is
clearly 0(%2), as a result of (3.26) and (3.39). By a simple
inductive argument, it follows that the remaining terms are also O(%z).
Consequently,

|u0 - “6' = o(%) = o(%). (3.41)
Similarly,

1
= 1 = =
12, agl = 0. (3.42)
Now, F is of the form F = & ., where, by (3.39)
8500 - 1

to (3.u42),
1
=1 el
Xy = % + O(r)’

1
— <! L
Yo = Yo T 03

Using (3.26), (3.27), (3.39) and the above results,

_ 180%g - 8p¢o] 1
|IF - F'| = Tog6g = 1] + 0(3)
= 0(&) .
r

Note that at each step of the argument, the constant implied by the

0 notation depends only on A and B.
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The following theorem will often enable much chain exclusion

to be done, without excessive splitting of cases.

THEOREM 3.12. The value of M(§;P) nemains unchanged aften the

following clementary chain operations on the chain pair {an”,en};
(£) neversing the chain pair about some point; L.e. for some m,

Ainterchange forn akl n, | j3

L L LY T Y
(LL) neplacing the chain pair by {a, 7,1
(4ii) neplacing the chain pain by {-a,,;, (-1)™"e,}, fon a fixed .
integen m.
The proof is given in [5]. In Chapter VII, we will further

examine this result, in the light of a slightly different problem.

6. Semi-regular expansions for equivalent quadratic irrationals

We will follow the notation of [52], [53], and write the

integral, unimodular linear transformation as the matrix,

T = [ﬁ ‘sl“ (3.43)
where ps - rq = *1; 1if the substitution
x = pX + qYf
y = rX + sY
gives fix,y) = F(X,Y),
then we write
F=fT = f[g ‘;‘] (3.44)

Pitman [53] (p. 92) has shown, by examples, that it is not
always possible to obtain all the I-reduced forms equivalent to f by

taking all the forms that occur in the chains from £. Nor is it
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always possible to obtain all chains of equivalent forms of f, by
taking all chains from some one form, even in the case when it is a
Gauss-reduced form, with integral coefficients. The following result
gives answers to some of the questions that arise from this discussion.

THEOREM 3.13. Suppose § is any I-neduced form (given, say, by (3.31]),

and g any Gauss-neduced form, properly equivalent Zo f; 4L.e.
glx,y) = E:AfT {wx + y){x + v'y), (3.45)

with w < -1, and o' > 1. Then every §o/m chain from § contains
at Least one of the three forms

11 10
g9, g[o 1:': g[_l 1]~ (3.46)

The proof is given in both [52]1, [53].

THEOREM 3.14. 1§ the § and g in the above theonrem have .integrel

coefficients, then everny form chain from § contains infinitely many
ocowunences of a form of the triad (3.46), and the distance between
these occwwvences (not necessanily the same form) 4s bounded.

PROOF. (sketch) There exists a transfcrmation T, of the type (3.43),
with ps - qr = 1, such that £ = gT. If f and g are given by (3.31)
and (3.45) respectively, then as in [26] (p. 99), the 'roots” of f and

g are related by

t
Butr 4 S0 %9 (3.47)
quw + s rw' + p

In the proof of Theorem 3.13, two types of T are distinguished,
those which imply that any chain leads forward, and those which imply any
chain leads backwards, to one of the triad (3.46). There are only

a finite number of forms equivalent to f (Lemma 3.7), and the existence
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of the fundamental automorph of £, [26], implies the existence of a T
of both types mentioned. The result follows from this. It is Theorem 2
of [5u].
Suppose ¢ is an arbitrary quadratic irrational with |¢| > 1,
then we are interested in the complete quotients encountered in an
arbitrary semi-regular expansion of it. The following result gives

a semi-regular counterpart to Lemma 2.2.

THEOREM 3.15. Suppose y, |¢| > 1, 48 a quadratic {uational, and

a is a reduced number equivalent to it (see (2.5)), then any semi-

negulan expansion of v has as a complete quotient one o the numbens

[¢]

a, a+1, T3 (3.48)
on their negatives.

PROOF. The existence of such an o follows from the well-known result

(intimated in the proof of Lemma 3.6)) that to every indefinite binary
quadratic form, there exists a Gauss-reduced form equivalent to it.

We may assume that a > 1, by making the transformation I} _0] R

if necessary.

Now, by Theorem 2.1, any semi-regular expansion of ¥ leads
forward to a complete quotient, say ¢, such that [$] <2. If 6 =1/9,
w = 1/a, and w' = o, then the forms f and g given by (3.31) and (3.45)
respectively, are equivalent, and both are multiples of integral forms.

Suppose that f is properly equivalent tc g, then since g is
Gauss-reduced, we may apply Theorem 3.13, which implies that every
form chain from f, contains at least one of the triad (3.u46). But

by Theorem 3.14, any chain in fact leads forward to one of these forms.
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Hence, by (3.47), any semi-regular expansion of ¢,(and thus ¥), leads
]

o
1l - o'

to cne of w', w' + 1, or , which is the required result.

If f is improperly equivalent to g, then f[; _g] is properly
equivalent to g, and the same argument implies that every expansion
of (-¢) leads forward to one of the triad (3.48) as a complete quotient.

The result again follows since, if ¢ = [al,....,an,¢n], then

l,....,—an,—¢n].

-$ = [-a
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CHAPTER IV

FORMULATION OF THE MIXED FORM PROBLEM

1. Outline of the method

In this chapter we will develop the apparatus necessary to solve
the mixed form problem enunciated in Chapter I.  Suppose that (6x + y)
and (x + ¢y) are two linear forms that do not represent zero (6 and ¢
are therefore irrational), then our aim will be to evaluate the constant
k, defined by

(0x + y)(x + ¢y + a)
8¢ - 1

sup (  inf )=k (4.1)

0,0,0 (x,y)#(0,0)

where o is real and non-zero , and X,y are integral.

We may suppose without loss of generality that there do not
exist integers x', y', such that x' + ¢y' + o = 0,-else the infimum
in (4.1) is clearly zero, a trivial case.

The method used by Davenport [21], and Kanagasabapathy [41],
[42], involved an examination of three particular values taken by the
mixed form. Assuming that these values were greater than k' (> k),
for all 6, ¢, o, they obtained contradictions. While this method
has yielded a close approximation to k (k' = E7§%777'= 0-2348...),
it is not suitable for evaluating the best possible constant.

Our approach will follow similar lines to that of Chapter III.
For each mixed form we will define a grid, and construct a doubly
infinite chain of cells, the vertices of which will supply us with

a suitable sequence of points at which we may evaluate the products

of the coordinates.
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2. P-grids and p-divided cells

Suppose that we have an I-reduced form of determinant 1, and

a non-zero real number a. Define , for such a form f,

(ox + y)(x + ¢y + a)|
6 - 1 i

M(f;a) = inf
(x,y)#(0,0)

(4.2)

where the infimum is extended over integral pairs (x,y), not the origin.

For each such f and o, we may define a grid L as follows.

1

Suppose 8 > 0, y > 0. and By = o0 - 1] ° then put
E = glox + y) }

L: } 9 (Ll"a)
n = y(x+ ¢y + a) }

where x, y take all integral values. L has unit determinant. If
we assume that % + ¢y + o does not represent zero, then it follows
that L is a grid with:

(i) only the point (£,n) = (0,ya) on the axes.

(ii) no lattice line parallel to an axis (since 6, ¢ are irrational).
We will call such a set of points a p-giid. Note that these p-grids
were excluded from the considerations of Chapter III. If ABCD is a
cell of a p-grid, and if it has one vertex on an axis, and the other
three vertices in different open quadrants, then we will call ABCD
a pseudo-divided cell, or a p-divided cell.

We will now sketch the proof of an analogous result to Theorem 3.1.
Although we will not explicitly use this result, it is of interest.
THEOREM 4.1. Every Zwo dimensdonal p-grid has at Least one
p-divided cell.

PROOF. By symmetry, we may suppose that the point on the axis is
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P(O,no), where n, < 0. Now, in any bounded region of the plane, there
is only a finite number of grid points; hence there exists a positive

except P,
number K, such that there are no grid points,in the region R, defined
by the inequalities
R: lel <%, In-ngl < Ingl.

By Minkowski's fundamental theorem in the geometry of numbers, if K
is increased continuously, then there is some value, say K = El, for
which there is a grid point Q on the boundary of R, but not within it.
Clearly Q cannot lie on the line n = 2n0, else its reflection in P
(i.e. the point 2P - Q) lies on the &-axis, which is impossible.
Hence £(Q) = &

n(Q) = n., where 2n0 <n, <0,

r 1 1

Suppose first that 2n, < n, < then QP is a lattice step,

0 0’

and there exist lattice lines parallel to it, equal distances apart.

If £ is the next lattice line parallel to QP on the origin side, then
the origin must lie between QP and £; for if not, £ would contain a
line segment of length greater than QP, with no grid points on it.

Now £ contains two grid points with [g] < IElI, and since there are

no points of L in R, then there is a lattice step TU on £, with T and

U in the first and second quadrants. Then P, Q, T, U, are the vertices
of a p-divided cell.

If, however, n, < < 0, then replace Q by Q', its reflection

0" ™

in P, and the proof follows as before.

3. The algorithm

We refer to a result by Davenport [21] (Lemma 2),which will
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enable us to assume the existence of a p-divided cell of a particular
shape in a p-grid.

LEMMA 4.1. 14 X and ¥ arne horogenzous Linear foxms of unit detersnin-
ant, which do not nepnesent zero forn integers, and ¢ 45 any non-zero
constant, then there exists an integral unimodufar transformmation

into the new vaniables x, y, which transforms (X + c)Y 4nto

t{x + oy - o) (x - ¢y)
8 * ¢ ¢

whene e>1, 0<¢<1, 1<acx<e
COROLLARY. Changing the notation to be consisient with (4.1}, we
may consider, without Loss of generality, the forms

t{ox + y)(x + ¢y + o)
Teg| + 1 ’

(u.4)

L s e
-

where 6>1, 8<-1, -¢p<acg-1
This is an immediate consequence of Lemma 4.1, after replacing
¢, 6, and o by -1/6, ¢, and -a respectively. We may also suppose
that o < -1; for if a = -1, then (x,y) = (1,0) reduces the inhomo-
geneous factor to zero, which contradicts one of our assumptions.
Putting By = TgaTi;—I-, for B > 0, y > 0, let us consider the

p-grid L, defined by (4.3), under the conditions (4.4). If

c, = (Be,y(1 + a)), By = (0,va) }
}, (u.5)
D, = (B2 + 8),y(1 + o+ ¢)), Ay= (Byy(¢ + @) 3

then AOBOCOD0 is a p-divided cell, in which AOD0 has negative slope.
For a corresponding £ and a, it is clear that
M{f;a) = inf {|&n|; (&,n) is a point of L, not Bo}. (4.6)

Using a similar method to that of Chapter III, we will now
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construct a doubly infinite sequence of divided and p-divided cells,
and prove that the infimum in (4.6) need only be taken over those grid
points which are vertices of cells in this chain.

We define the successor of A B C D in exactly the same way

0"0°0°0
as (3.9). It follows from the geometry of the p-grid that AlBlClDl
will be a genuine divided cell, and that the construction yields an
integer pair (ho,ko), which has both components negative, implying
a, = h0 + ko < 0. (4.7)

From the genuine divided cell AlBlchl, denoted by Sl’ we can
construct its successor, 52, also a genuine divided cell; and so on,
giving rise to a one-sided chain of divided cells {Sn}, n 21, and a
sequence of integer pairs {hn’kn}’ n » 0, satisfying the equations
(3.11). No hn or k_ will be infinite, since we are supposing 6 and
¢ to be irrational.

Now we can construct a cell S—l’ which we will call the
predecesson of SO’ by using the same formal process described in Chapter
III, considering B0 to be that vertex of SO which is in the fourth
quadrant. Denote the lattice step of length |C0D0| on the line CODO’

intersecting the positive n-axis, by B_lC_l; take A-lD—l to be the
lattice step of the same length on the line AOBO’ such that A_l is in

the open third quadrant, and D-l coincides with BO. Then A_lB_lC_lD_l

is a p-divided cell, and the formulae (3.11) define the integer pair

h k

BUREL Clearly h_l = 1.

Similarly, by considering D_1 to be the representative of the

fourth quadrant, we can define the p-divided cell S_2 to be that cell



Figure 1.
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for which S_l is the successor. In this case B_2 = D_l = Bo, and

k‘2 = 1. We can repeat this process indefinitely, defining the

sequence of p-divided cells {Sq}, n < 0. Note that S0 is the only
member of this sequence for which AnDn has negative slope. We have
B2n = D2n-l = B2n-2 for all n < 0. In fact, the labelling of vertices
is such that a given point (say An) alternates in opposite quadrants
as n decreases; thus A2n is in the first quadrant and A2n-l is in
the third quadrant for all negative n. This is a consequence of the
fact that the point B, is a vertex of each p-divided cell in {Sn}, and
hy 3 =ky p =1, (nz0) (4.8)

implying

a = hn—l + kn-l >0, (n < 0). (4.9)

As in Chapter III, we will be interested in what restrictions
are imposed on the doubly infinite sequence {hn,kn}. We consider two
cases separately.

Case 1: n < 0 The equations (4.8), (4.9), with the notation (3.13),

imply that, for n < 0,
e = (-1Na_,, - 2). (4.10)
n nt+l
This result is contrary to (3.26) (iv), and arises because of the
existence of a grid point on an axis.
Suppose that the equations

h, =k

P G

hold, in addition to (4.8), for all n < n, < 0. Then, as in the

proof of Lemma 3.2 ([9], Lemma 1), and from the geometry of the

algorithm (see figure 1), we have for all n < n

0’
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Don = Bop-1 ¥ Dopop = s saV-
D is in the second quadrant; suppose Pn is the vertex of Sn in the

first quadrant. Then for all n < n,, the triangle DBOPn has constant

03
area (equal to %A = %), and consequently the Pn lie in a bounded region
of the first quadrant. Thus there are only a finite number of
different points Pn, none of which lie on the n-axis. By the construct-
ion of the cells, we have for all m < n,,

PLm D= P~ B

thus in the usual notation, since g(BO) = 0 and g(Pn).g(D) < 0,

E(Pn) < g(P_..),

n+l
which contradicts the fact that there are only a finite number of
different Pn’ n < ng. Hence (4.11) cannot hold.

Thus for this case 1, we have a 2 2, n < 0, with strict in-
equality infinitely often.  Also, (4.8) implies that the condition

(3.26) (ii) is still valid for negative n.

Case 2: n 2 0 {Sn}, n > 0, is a sequence of genuine divided cells,

and the proof Lemma 1, [9], is valid, since there are mno grid points
on the g-axis.

Combining these two cases we state the following lemma.
LEMMA 4.2, 14 § 46 an indeginite binany quadratic form, and o any
neal non-zerno number, both satisfying the conditions (4.4), then there
connesponds to them a p-grid, associated with which there 4s a doubly
infinite sequence of p-divided and divided cells, generating the integen
pairn sequence {an+7’€n}’ Furthermone, the §oLlowing conditions are

satisfied:
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{4) lanl > 2, and @ 44 not constantly equal to 2 (on -2)
jon Range n of eithen sign. 1In fact, a 21 forn akl

n<d, cmda.1<0.

() e, l s lan”] - 2, and ¢, has the same parity a5 a,,q-.
__nh ~
Forn<0, €, = (-1) (an” 2).
(£id) neither a4 + €, norn a4
to -2 fon Large n of either s4gn.

- €, iy constantly equal

[iv)  for any m, the nelation

Crznrl * Smean = Gmronrg T Smansl 5

does noit hotd for all n = 0; nox does it hold for

all n < 0, if n is even. }

These results correspond to those of (3.26) in the general
divided cell method. Lemma 3.3 has its counterpart in the following:
LEMMA 4.3. Usding the notation (3.12),

ri([/n), n(An), n(Bn), n(Cn), nwn), (4.13)

g ), glA_)), €(B_ ), glc_), &lD_,), (4.14)
each approach zeno, as n + w.  As n > -=, they all take anbitnarnily
Lange values (positive on negative), with the exception of that vertex
0§ the p-divided cells which 48 §ixed on the n-axis.
PROOF. Since {S_}, n > 0, are genuine divided cells, the results
for positive subscripts follow identically with Lemma 2 of [9]. For
n £ 0, let Rn and Qn be the vertices of Sn in the second and third
quadrants respectively. Then

lev | = letels (4.15)

hence from (3.12), as in Lemma 2 of [9], if we can prove that E(Qn) + 0
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as n + -», the complete result holds. Now
l&;(Qn)l - IE(Qn+l h Rn-*-l)|
< IE(Qn+l - BO)l - IE;(Qn+l)l'
It is easily seen that equation (3.18) still holds for this problem
(since the algorithm is described by the formulae (3.11) for all n),
and so

la

L CINT IR IO T IR L C D)

< fete, 1 + fetels

. . 1
implying, for all n < O, |€(Qn)! & m‘r_—l‘ l‘t’(Qnﬂ)l'

Now since by (4.12) (i), a2 3 for infinitely many negative n,
lece )] < %leta , )],

for infinitely many negative nj this implies the result.

The final assertion of the lemma for n + —=, follows for
(4.1%) in an identical manner to Lemma 2.3 of [52]. Let {P_} be
the sequence of vertices in one of the first, second or third quadrents,
then if In(Pn)I does not become arbitrarily large as n + -=, there
exists a constant K, such that for all n < 0, the points Pn lie within
the squafe IEI < K, lnl < K. Now, this implies that there are only
a finite number of different Pn’ none of which lie on the axes, and
this contradicts the fact that E(Pn) > 0 as n > -, This completes
the lemma.

We will now show that the vertices of the sequence of cells
{Sn}, provide a suitable set of grid points over which the infimum in

(4.6) may be taken.
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THEOREM 4.2. Suppose that there L8 a point of L in the negion R

R: len] <m,  ®#o0, (4.16)
then thene 4s a vertex of a p-divided on divided cell of the chain
{Sn}’ in R,

PROOF. As we have previously noted, the proof of the corresponding

result (Theérem 3.3) rested on the fact that the triangle formed by the
axes and the line joining different consecutive vertices of divided
cells contained no point of L in its interior. Each quadrant was
considered separately. Since all the required conditions are satis-
fied in the first and second quadrants, the result of the theorem
follows for the upper half-plane. That is, if P = P(go,no) is a

point of L in the upper half-plane, and lgonol < m, then there is a

vertex of a cell of {Sn}, say Q = Q(gl,nl) with Iglnl| < m.

Suppose, however, that P(Eo,no) is in R, and in the lower half-

plane. If < n(BO), then the reflection of P in BO (say, P'(-ﬁo,n )

"o 2
is also in R, since
len | < len | <m
02 00 o
Thus we need consider only those P for which n(Bo) < no < 0.
Now there is no point of L in the rectangle n(BO) <n <0,
E(CO) < & < 0, and so we need only consider that part of the third
quadrant fer which g < g(CO), n(BO) <7< 0. If {Pn}, n > 0, is the
sequence of vertices of divided cells of {5 } in the third quadrant, then
it follows, as before, that there is no point of L in the region
bounded by the £-axis, the line n = n(Co), and the infinite polygonal

curve which is the join of PO’ P., P Thus by the strict convexity

13 Poaeres
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of the region IEnI > m in the third quadrant, any region R of the
type (4.16), which contains a point of L, also contains a point Pn, for
some n.
Similarly the theorem holds in the fourth quadrant, since there
are no points of L in the rectangle 0 < & < E(Bl), n(BO) <n < 0.
COROLLARY. We may replace (4.6) by

M(4;a) = ind {|en]; (E,n) a vertex of Sn, fon some n, and € # 0}.

4, Vertices of p-divided cells

We now obtain the arithmetic formulation for the vertices of the

chain of cells {Sn}. Deriote these vertices, as in (3.14), by

¢, = (Bnﬁn,Ynnn) %
B, = (Bn(gn + 0 ),y (n + 1)) i , o
b= (B (&, + 1y (n + $.0) %
=B (et + Ly (n + 1+ ¢)) }

and this uniquely defines, for all n, the Bn, Yy En’ n s ¢n, Bn.

Note. For n = 0, these formulae coincide with (4.5), when we put

go = -603 eo = _e’ ¢0 = -¢'5 no = —(l + G), 80 = Ba YO = =Y.

The p-grid is then described, for each n, by

g=g(g +oxty)

(4.18)

P
e
[ -

i

n Yn(nn tx+ ¢ y)

for all integral values of X, y; and since A = 1,

_ 1
I8 v | = Toa -1 (4.19)
We have already noted that the equation (3.18) is still valid,

for Yn defined by (3.12). As in the previous chapter, the sequences
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{pn}, {qn} may be defined by (3.20), and the recurrence relations
(3.21) apply, indicating that the pn/qn are convergents of semi-regular
continued fractions. Since Lemma 4.3 is valid, we have, following

Lemma 3.5 and its corollary,

¢n - [an+l’an+2""'] i. (4.20)
en = [an’an»l”""'] }
Recall the following definitions (3.23).
An = 2En + en + 1 }
}. (4.21)
wo=2n + 1+ ¢ }

Now, since the recurrence relations (3.11) satisfied by the vertices

of the cells are the same for the p-grids of this chapter, reference to
the proof of Theorem 3.4 readily confirms that the result still holds
for the modified algorithm. Hence

THEOREM 4. 3. For all n,

]

"
€ + (-1) EVL")&'_
n VL" hz,en_1en_2...

o>
"

-1 ,
.en_&
©

= B ¥ (-1)"ensen
e L e A T AR

LEMMA 4.4. 1§ f{a e} satisfy the conditions (4.12), then

n+l’
n-1
for n < 0, A, = (-1)" "le, - 1, (4.22)
gon n > 0, It <le,l - 1, (4.23)
gor all n, b, | <l¢,l - 1. (4.24)
PROOF. Notice that (4.22) contradicts its counterpart (3.27), and

this crystallizes the basic difference between the general formulation

of the problem, and the modification considered in this chapter.
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The conditions (4.12) and (3.26) are identical for the case
n + »; consequently {(4.24) follows as in Theorems 3.7, 3.8. For
n < 0, however, (4.12) (ii) implies
n-1
€ = = €
n-1 -1 n-l"

But the a are all positive for non-positive n, and hence we may apply

Theorem 3.7;

- v (=D epepea
A_ = € + —
n et rzlen—len-Q""en—r
oo n-1
= - a. -
= (-1 -2+ ¥ g l)e ( = 2)
2 p=1"n-1"p-2°"°""¥n-r
B n-1
= (-1)" "(8 1.
There remains only the inequality {4.23). This follows Theorems
3.7, 3.8, since for n > 0, the sequence a s N N SRR
cannot have constant sign (al < 0), and since for all r,
Isr| < iar+ll - 2.
THEOREM 4.4. Suppose that {an+1,sn} satisfies (4.12) and cornes-

ponds to the form § and the real non-zero number o, satisfying (4.4);
Let,

(&) formz 1, M =M (§a) = ing Wl i - 1,2,5,4), where u'dl

n
is degdned by (3.25).

i) for n = 0, My = H_(§5a) = ing wid; = 1,2,3, whene

(1) _ 1 Co
Mo~ = 7(T6g5,1 * 1) epliogh = 1+ uy)

M(2) i 1
0 Z{eg0p1 * T)

1
0%0

(6, ~ 1) llepl + 1 - wy) (1.25)

[ N R e s
-

(3) _
My" = arrega, T Uegl = 1 - )
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(id) fon <0, M =M (§5a) = in {M'Ef); £ =1,2,3}, where

i

{1y _ n+l
nn b
)
(2) _ 1 - . R
M, = Tl66, ~ 17 (e, - Nlo, - 1+ (-1)7) i (4.25)"
}
(3) _ 1 "
A (e IR ’
Then we have
M= M{§;a) = iﬁﬁ M.
PROOF. (i) The result for this case holds analogously to Theorem

3.6, taking A = 1.
(ii) For n = 0, equation (4.22) implies AO =1- 90, from which follows
50 t 8, = 0, and so by (4.17), E(BO) = 0. The result follows by
evaluating the products of the coordinates at the remaining three vert-
ices of (4.17), using the formulae (4.21) and (4.22).
(iii) If we substitute the formula for An, (4.22), in the transformed
equations (3.25) (which are of course still valid for p-grids), then
we obtain the required result by considering the two cases, n even or
odd.

The assertion of the theorem follows from the corollary to

(1)

Theorem 4.2, since the Mnl are values of |£nl, where (£,n) is a vertex
of the cell Sn.

Summary of the method so far

Given any form f which does not represent zero, and an a
satisfying (4.4), then by constructing the chain of cells {Sn} of an

associated p-grid L, a sequence pair of integers {an+l’8n}’ satisfying
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(4.12), is obtained. Theorem 4.4 then enables the evaluation of
M(f;a). We will ncw show that the converse result is true.
Suppose that we have a doubly infinite sequence pair {an+i,en},
satisfying the conditions (4.12). We may define ¢n’ ﬁn by (4.20), and

An’ u by the corresponding expressions in Theorem 4.3, and consequent-

ly uniquely define En, n, by the relations (4.21).

Consider the four points A.n B ,C, Dn’ defined by (%.17).

n n

In the same way to that indicated in the previous chapter, the values

of hn and kq enable us to compute the coordinates of the four points

s from the formulae (3.11). These are given by

D
An+l’ Bn+l Cn+l’ n+l

(3.30).
Whenever n > 0, (4.23) and (4.24) imply the validity of the

relations (3.28) and (3.29). Consequently An, B s C» D, and

n

. Dn+l’ are vertices of divided cells of similar grids.

3

An+l’ Bn+l cn+l

For n < 0, (4.24) implies the validity of equations (3.29),
and (4.22) implies

E +06 =0, forn even, }
S } (4.26)
g+ 1=0, for n odd. }

Since 6 > 0, ¢_ > 0, it follows that both A , B , C_ , D , and
n n n> n’ n® 'n

A

n+l? B

Cn+l’ Dn+l’ are the four vertices of p-divided cells in

n+l?
similar p-grids.

If n =0, then Ep T eo = 0 implies that B0 is on the n-axis
and AO, BO’ Co, DO’ are the vertices of a p-divided cell of some p-

grid. Since |A] < lo ] - 1, luy| < [#,] - 1, then both (3.28) and

(3.29) hold, and hence Al’ Bl, Cl’ Dl’ are vertices of a genuine
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divided cell from a similar p-grid.

Thus, the chain pair {an+l’€n} corresponds to a chain {Sn} of
p-divided and divided cells from some p-grid L, which is unique apart
from similarity. Hence to every f, and o satisfying (4.4}, there
corresponds an integer chain pair {an+l,sn}, satisfying (4.12), and
conversely. For convenience, the chain pair will be displayed as

follows:

(4.27)
-3

The vertical line (called the centre of the chain) separates the
homogeneous and the inhomogeneous character of the chain, in a sense

that will be amplified later.

5. A useful lemma

We first note that the upper bounds for Mn which are given in
Theorem 3.9 are still valid when n 2 1. Theorem 3.10 shows that the k
defined in (4.1) satisfies k < %. Clearly Theorem 3.1l also holds
for chains of the type (4.12).

For large negative n, Theorem 3.11 and (4.22) suggest that
Iunl is close to ¢n - 1. The following lemma gives a useful explicit
formulation for |un|.

LEMMA 4.5, Forx n< -1,

¢_1 -1+ Ho1
¢n+1¢n+2""¢-1

n
k=

¢, " 1

(4}

. n i
PROOF. Since ¢n >0, e = (-1 (an+l - 2), for alli n > 0, then



67.

a, -2 a - 2 u
'u I = (a +l bt 2) + —n-z};—z—-———-—-!--ooq-‘- ¢_l ¢ - ¢ ¢ "l ¢ .
n o n+l Pot1%na2° %2 Pnei®ne2n o1
Now ¢n =a - l/¢n+l’ implies that, for all n,
o1 ~ L

¢ - 1l=a -2 ¢ T

n n+l ¢n+l
hence

a - 2 -2 -1

¢ in) l = (an+l - 2) + _D:t.z__+..e.|. z"l ¢ + i—l ¢ )
’ P+l bne1%ne2 0 %2 Oneafmentc et

The result follows by combining these two expressions.

Remark If we consider a chain {an}, with a > 2 and

e = (—l)n(an+l - 2) for all n, then both ]unl =¢ - 1 and

Ilnl =8 - 1. It is easily shown that the point B,y is then the
origin, and the "grid" L is a homogeneous lattice. We could then
derive an alternative formulation for the homogeneous form problem,
in terms of the continued fraction to the integer above. The three

products at each step are

6, i bn , (84 - 1)(dp - l)-
en¢n -1 en¢n -1 en¢n -1

(4.28)

This geometric interpretation of the A-expansion of an irrational in
terms of cells of homogeneous lattices, is closely connected to a
geometric setting for ordinary continued fractions which was briefly
considered by Cassels in his book An Introduction to the Geometry of
Numbers (p. 301).

Thus in chains of the type (4.12), we distinguish two trends.
(i) As n + -=, the appropriate three products of Theorem 4.4 are

asymptotic to the three alternatives (4.28).

(ii) For positive n, the four alternatives of Theorem 4.4 are identical
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with those of the general inhomogeneous case discussed in Chapter III.

As a consequence we would expect to be able to construct chains
with the property:
(1) Mnm /% as n > -», and
(ii) Mo % as n > =,
For this type of chain, the values of Mn approaching M(f;a) occur
for small values of n (i.e. near the centre of the chain). We will,

in fact, prove that the critical chain has the property Ml = k.

6. Application of the method

The method that we have described will be applied in the next
chapter to evaluate the best possible constant k, defined by (4.1).
Clearly

k = sup M(f;0),
f,a

where the supremum is taken over all forms that do not represent zero,
and all non-zero a.

By Lemma 4.1 and its corollary, we need only consider those f
and o which satisfy (4.%); such forms are characterized by a chain

pair {a ,en}. Thus

ntl
M= M(fia) = M({an+l,en})>
which may be calculated by (4.25).
k = sup M({an+l,sn}),
where the supremum extends over all chain pairs satisfying (4.12).

If there exists a chain pair for which M({an+l,sn}) = k, then

it will be called a cnitical chain, and the corresponding f and a, a
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citical §orm.  For example, if 8ys $y» Ny are values taken from a

o!

critical chain, then by (4.17), since 60 + go = 0, a critical form is
given by

, (0% + y)(x + ¢y + a)
0¢ - 1 2

where 9 = 04> ¢ = ~dp> and o = -(1 + no)- If we change the variables

(4.29)

in (4.29) by the integral unimodular transformation (3.3), then the
equivalent form obtained has the same value of the infimum. (4.30)
In the next chapter we will show that k has the value given

by the formulae (1.30), (1.31).
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CHAPTER V

EVALUATION OF THE CONSTANT k

1. Introductory lemmas

The purpose of this chapter is to determine the best possible
constant, k, by the method formulated in Chapter IV. We have seen
that it is sufficient to consider those chain pairs with the special-
ized properties (4.12). Moving in a step-wise process from the centre
of the chain, the values of each member of the chain pair will be
isolated by the inequality Mn > k, for all n, where k = 0-234254343...
is the constant defined in (1.30), (1.31). This will lead to a unique
chain, whose minimum will be evaluated in §3.

Hence from the outset we will suppose that Mn 2 k, for all n,
thus enabling us to exclude from consideration any chain which implies
for some n and i, Mii) < k. For convenience, M(f;o) will be abbrev-
iated to M, provided that there is no ambiguity.

The following lemmas, giving bounds on some of the variables,
will be used consistently throughout the proof. We define the two new

variables

T, F un/¢n, o, = xn/en . (5.1)

LEMMA 5.1. Fornz21,
i i 1 1
(4(.) '{-6 en¢n > 0, athe,n |6n| > T—-_j-E B a.nd |¢n| > T:—TE > 15-87.

(i) 44 e, <0, then |¢n| > 2; furthenmone if Ienl > 30, then
le, | > 10.
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LEMMA 5.2, Fornz 1,

(£) if 8,6 >0, then lrnl < 0-0668, o, | < 0-0668.
(id) 4§ ©,6 <0, then lrnl <1 - 4k, |°n' <1 - 4k < 0°063.

PROOF OF LEMMA 5.1.

(i) If 6 ¢ > 0, then by Theorem 3.9 and Lemma 2.7, whenever
nn

e | < 1/(1 - uk),
n

w < ol - 1en] - 1)
n 4(|6n¢n| - 1)

A

< k.

Thus |en| > 1/(1 - 4k). By symmetry, the result also holds for |¢n|.

(ii) If en¢n < 0, suppose without loss of generality that a

> 0, then by (i),

> 0

- £
then ¢, 2 2 l/¢n+l > 2 when ¢p1 < 0. If O 41

en+l > 15, and the result again holds. If, however, lenl > 30, then

by Theorem 3.9 and Lemma 2.7, whenever |¢n| < 10,

w < Uenl # 1en] - 1) (31)(9)

n= w(le ¢ |+ 1) OIS

Thus we have |¢n| > 10.

PROOF OF LEMMA 5.2,

(i) 1If o 6, > 0, then the previous lemma implies that
6 > (15:87)% > 250. Now if Irnl > 00668, Theorem 3.9 implies

y < Safall - [Tn]) . (250)(0-9332)
n = (e ¢ - 1) (4#)(249)

< k.

Thus 'Tnl < 0°0668. By the symmetry of Theorem 3.9, the result also

holds for Ic I.
n

(ii) If 6 ¢_ < 0, then whenever |t | 2 1 - uk,
n'n n
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< |6n¢n|(l = ITILI) < 1- ITn' < k.
[ =

Mo<
n 4(]9n¢n| +1)

Similarly, the result holds for |cn|.
Throughout the remainder of this chapter, we will often use

the result in Lemma 2.7 without specific reference to it

2. Chains with ¢, > 0

This secticn will be devoted to the proof that €y < 0 in

any chain for which M 2> k.

Now for e, > 0, we have > -1; thus whenever 8, > 214,

0= o 0
we have, by (4.25),
Mé3) < 2(60122} 7 < 230 < k.
Hence eo < 214 and consequently a, = 2 or 3.

When a, = 3, 6_1 =iz } 60' By the general form of the chain
€ = —(a0 - 2) =-1, and so -2 < My < 0; now since a, < 0, then
¢—l > 3. Hence by (4.25), since e_l < 117,

oD Pl e <
When a, = 2, then €4 < 0. Using the same argument as in

Lemma 5.1 (i), it follows that |¢0| > 2. Now if py > 0, then

Mg F T 0; if, however Hy < 0, then since €y 2 0, we have €y = 0.
T o
Hence Ip_ll = ITOI = El < Y < 0-04, by Lemma 5.2. Thus, in both
0
cases, u_l > ~0-04,

Now if e_l < 2+2, then since ¢-l < 3,

w2 By - 15(%; - 0-96)  (1-2)(2-04)

< k.
-1 2(6_j0_, - D 112
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If o6, > U4, then since ¢ , > 2, and u , > -0-04, we have
-1 -1

-1

+ 104 .
(3) , ¢, +1 3eo4

M
-1 2(e_y9, - 1) 14

< k.

Thus 2+2 < 6 ., < 4, which implies that 1-54 < B < 1-75.

1l

Now, by Lemma 5.2, > -0<07, implying

Ho
(3) 5 - 0+93 p
0 2{(1-54)(5) + 1)

(2) _ (1°75 - 1)(5 + 1°07)
Mo " ° 2((1+75)(5) + 1) < ke

(1) if |¢yl <5, M k,

(ii) if I¢o| > 5,

We have now excluded all possible cases when g 2 0. Hence
we have that u, < 0. We have by the formula (4.12), e = (-l)nlenl,
for n < 03 1if € = 0, then T Ty indicating that n and LS
are of opposite sign. Thus, for all n < 0, M H (—1)n|un|; this
enables us to rewrite part of Theorem u.h4.

THEOREM 5.1.
1
0, -1 -
7o, 6,1 + 11 0 |¢0| |u0|),

(2) _ 1

(1)
Mo

(3) _ ]

and for n < 0, (5.2)

1
2 6,4, -

(2) _ 1 -
My " = 76,8, - 11 (e, - g, - 1+ 11,

1
uilh . 8,00, + 1 - lull,

1 .
7T§;$;_TFTT (¢n + 1+ |un|);

(L)

n

et St bl At ) Mg et gt et gt A Mgl gl At ) g Mpd bt )

ul3) .
n

The expressions fon M ™', n > 0, are given by (3.25).
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3. Evaluation of the minimum of a certain chain (C)

In this section we will prove that the infimum of the following
chain (designated by (C)) is k. We use the notation of the previous
chapter, and dividing the chain at the centre, we write each half cn

separate lines:
5, 5,2, 5,5,2]3, b
w| 3, -3, 0, -3,3,0 |1, -2

-11, 21, 461, -17, 50 [ 49, -u2, 49, -42
-1, -1, -29, -1, =2 -3, 0, 3, 0 lw

N

Suppose that x = [2,5,5], then 8x% - 16x + 3 = 0, implying

4 + Y10

that x = 6_I+ == 1-790569... Consequently

71x - 26 _ 5195 - 2/10
4lx - 15 2997

o, = [2,4,4,3,x] =

0 (5.3)

Suppose that y = [49,-42], then Uu2y2 - 2058y ~ 49 = 0, implying that

y = 4 = L EIEOL < ug.0237979... (5.4)

We will now prove a general lemma, the full force of which
will not be used in this section, but will be of considerable signif-
icance in the latter part of this chapter.

LEMMA 5. 3. 14 we have a half-chain of the following foxm:
a -Gy, @ Gy, Aeoon.
€, 0, -e, 0, evuoves
- - - n -
where Qpur) = G Epp = (-1)7€, €oap1 = 0s B0 all n >0, and
a, €, a,, ore all positive and of the correct parnity and Adze; then
|U0/¢0l = |T0| = afe.

PROOF. We are supposing that the chain commences at a, = a, ¢, = €.

0

1

It is clear from the sign pattern of the chain that
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. 1
uy = e(1+ ] )i
> e DTN

T
since =g + . Thus
20| |¢2n+l’

N
2n+l
and so
gl - oo « Lzl 222
2n+l

Now for all n we have a|¢2n+l| + 1 > 3, and hence for every integer r,
lir
|T0 = E/a| N [3) .
The result follows from this.
COROLLARY., For the chain (C) under considenation,
|15| = 3/49,
We will now use (5.3), (5.4), the fact from (4.22) that
AO =1~ eo, and the basic recurrence relations between the variables,
in order to compute the values set out on the following table. The

values are truncated.

TABLE 5.1.

" IX jou] o] 5|

0 1-7312 0-4223 11-0476 0°0864
1 11:5776 0.0498 20.9978 0+04L6
2 21.0863 0-0497 L461-0587 0°0630
3 460°9525 00628 17°0200 0°-0564
Yy 17°0021 0-0551 499796 00387
5 500588 00410 49-0237 0+0612
6 48-9800 0+0604 42+0203 0°001k
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We will now proceed to examine, in turn, the four (or three)
alternatives from Theorem 5.1, at each step of the chain, with the
intent of showing that Mn > k for all n # 1, and that Ml = k.
It will be necessary to treat those steps in the chain which have
small values of n separately, since there is no pattern in {an+l’sn}
which readily leads to general methods. We note that there is
usually at least one of the products which obviously exceeds k. We

commence with the right hand chain (n > 1).

(i) Proof that M, > k

(2) | ()

2 2 d

Clearly M;l) > k. Now, by (3.25), M

(62 -1+ |A2!)(¢2 -1- |u?l) . (92 +1- |X2|)(69 +1 - lu7|)
4(82¢2 - 1) u(62¢2 - 1) 4

8 ]
which holds if and only if ¢2 - |u2| > Ti—Tz:—I-;for, putting 6 = 92,
2

X = ¢, - |u2| and y |x2| - 1, the inequality reduces to

x=-1 8/y - 1
x+1 o/y+1°

which is true if and only if x > 8/y, since the function on the left-
hand side of the inequality increases with x. We will use this method
often, without including all the details. Now for the chain (C), by
o 21.1
. - by = o 2
Table 5.1, ¢, = |u,| > 461 - 291 > 430, and M TR

(2) _ (4) (85 - 0-0499)(¢, - 28-0565)
M2 > M2 > 4(62¢2 ="

425.

Thus

> (21+0364)(433:0022) S
388841

k,

by (3.25) and Lemma 2.7. Similarly
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(3 (19 - ([ ] - 1)/71e (o, + 28 + |T3|)> (18+9) (46106 + 28+05)
2 7 4(e2¢2 - 1) 38910

> k.

It therefore follows that M2 > k.

(ii) Proof that M, > k

Clearly Mg2) > %. Using an analogous method to that in (i),
(5) _ (3) . |45
we can show that M3 > M3 , if and omly if 1_:_T;;T > 63 = |A3|.

For the chain (C), Table 5.1 implies that @, - |A3| < 4Bl - 28 = 433,

|¢3| 17-02
>
1 - Iu3l 0+0388

and > 438, Using the appropriate bounds from

Table 5.1, we obtain

W (3 _ (B - 80+ {opDDCeg] + |y D) | uanyaz-osss) |

3 3 58,650 + 1) > T 313859 s
Similarly
W1 (e 1 v [agDdCeg] =1 - fugl) | qued + 20027 - 2) |,
3 b(o,]0,] + 1) 31352 .
It therefore follows that M3 > k.
(iii) Proof that M, > k
Clearly Mis) > 4. We may readily show that Miz) > Mﬁl),
. . by .
if and only if i—;—TE;T > |eu| - |Au]. For the chain (C),
by 49.9
T qu[ > 5oon > 16-5 > |64| N |A4]. We have
e (el -1 - Do, + 1+ D , (15-0648)(52-918) _
4 “(|64|¢4 + 1) 340304 :
Also
MCONN (ley] - log[)C4y - 1) _ (36-939)(u8)
> > k.
4 l+(|9,+|¢4 + 1) 3336

Thus we have that Mu > k.
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(iv) Proof that M_ > k

Clearly Mgl) > %. For the chain (C) we have

0 50
5 -
gl - 17 106~ 77 % lug 5
which implies, as in (i), that Méu) > MéQ). Thus by (3.25),

y(2 st 1 oy [)Ces - 4 - 76D (51.11)(us-998)
e

> > k.
4(8.9. - 1) 4{(50-06)(49) - 1)

Similarly

() _ (85 = 3 - o, Do +2) (47 - 0-06)(51+03)

M > > > k.

5 u(es¢5 -1) 4{(50)(%9-03) - 1]
Thus we have that M5 > k.
(v) Proof that M2m >k, m>3

For the purpose of a result in the next chapter, we will show

that the inequality (v) remains valid for a -42 and -44., It

2m+l -
follows from (3.25) and the sign pattern of the chain (C), that the
same four alternatives occur at each such step, M2m’ m 2 3. This
is a consequence of the fact that only the order of the products

alters whenever the e-chain is reversed in sign (Theorem 3.12). We

will use the following notations:

M(1) _ 1

m G, e, v D) Pam Y Aon 2 Clogyl = 1= gy 1),
Mgi) = 4(62m{¢;ml + 1) (e2m =L |A2ml)(|¢2m| iRl |u2m|)’
Mgi) - 4(62m|¢zm[ + 1) (62m -1 |)\2m|)(|¢2mI = Iu?ml)’
Mé;) = u(92m|¢2ml 17 (O + 1 - Dy Do, -1+ Ju, D
Clearly Méi) > %. Now, for m 2 3, we have by Table 5.1, and

Lemmas 5.2, 5.3, the following inequalities:
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48-98 < 9, < 49:024, 42:02 < |¢2m| < L4403,

_ 3+007 .
2.9589 < 3 - 1051 = |A6| < IAZm| < 3+ Tayeagy < 3T005,

= ! = = .
lu, | =t | = 3/49 = 0-0812...
Using these bounds and Lemma 2.7, we obtain

(1), (oo + 3:9)(|éon| - 1+1) | (53-9)(140°9)

> > k,
2m 4(92m|¢2m| + 1) u{(50)(u2) + 1)
y(3) , (8o = #-00LS)(Jopy| + 0-938)  (uy.9785)(us-968)
om u(ele¢2m] + 1) 4[(u8-98)(L4L-03) + 1) i
MO N 2:002)([¢, | - 0v939) (u6.978)(41-081)
2m u(ezm|¢2m| + 1) 4{(u8-98)(142+02) + 1)
Thus, even when Ayl = U4, M2m >k, m 2 3.
(vi) Proof that M2m+l >k, m2 3
We again allow Al - -42 or -4, For convenience put
2m+l = r; then we have, as in (v),
(1) _ 1 _ - B
M, " = w(fe_Jo_ + 1) (ler‘ ok Ilrl)(¢r e |“r|)’
r''r
w2 . : (ol +1+ A Do, -1+ |u D)
r uf]er|¢r + 1) r r T pfie
(3) _ 1
N u(le_to_ + 1) (Ierl RIS lArl)(¢r -l ‘url)’
r''r
) - L ol -1- D +1+ ]
r 4(|0r1¢r + 1) T T T '’

(2)

Clearly Mr > %. We can readily obtain the following bounds:

42.02 < |9r| < 4403,  49:02 < ¢ < 49.024,

il 0.07
0-0604 < |x,} < |Ar| < ig{8 + 477) < 0-0613,
3
3.0013 < |u | =3+ < 30015,
r 49|¢r+l|
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Hence it follows that

M(l) : (lerl - 0-94)(¢r - 2+002) . (41-08)(47-018) S
r G(Te_ o, + 1) 5[(42-02)(43+02) + 1] :
(3) | (|8g] + 0-938)(¢, - 4-002) ~  (uu.968)(45:018)

M. 2 5(1o_T6, + 1) F[(G5-03)(49:02) + 1] =

W) 5 (lo,] - 1-062)(¢, + 1) L (40-958)(53-03) .,

r u({er|¢r + 1) 4((42-02)(49+03) + 1) :

We will now focus our attention on the left-hand side of the
chain.

(vii) Proof that M, > k

w

By (5.2) and Table 5.1, we have immediately;

1, Sl -2 awsye
0 z(eo|¢0| + 1)~ 2((1-73)(11) + 1} i
W2, 8 - DUel +2 - Iy (0.73)(13) "
0 2(eo|¢0| + 1) 2{(1-73)(11-05) + 1) B
NEIR log] = 17yl 10-95 -
0 2(eo|¢0| + 1) © 2[(1-7#)(11) + 1)
Thus M0 > k.
(viii) The case M_;
Clearly Mfi) > %, Now for the chain (C),
9_1 = [4,4,3,2,5,5]1 > 3-72. Hence
lu | + 2 0
0 1.9 372 -1
¢ 1+ fu =2+ > 2 4 =5 > 2017 > 7= > —
1 1 |¢0| 111 1472 " 0, - 2
which implies by the method used before that Mfi) > MSi).

Since Ikll = 1/8_, the recurrence relations satisfied by

O’
the variables, and the sign pattern of the chain (C), imply, by simple

substitution, that
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(3 . (27 89)(3leg| + 1+ [ugl)

-1 2(8,19,1 + 1) i
(20 _ 8801 + |upl - legl)
1 206,18, + 1)
(3) (2)

Now, M decreases, and Ml increases, as 90 increases. The two

-1
functions of 90 have a common value at the point
201+ |“QI + 3|¢Ol)

6. = 5
0 7 8T ¥ Tlugl - 316, ]

3) , {2

(
Hence M_l 1

whenever 60 < 56. By Lemma 2.7, 66 increases in
|¢0|, and decreases in |u0|; thus, by Table 5.1, for the chain (C),

== 701964
60>W>l7313>90.

(3)

vk

Thus if Ml = k, as we will later prove, then M

We will treat the remainder of the chain (C) in a slightly

different way, by considering each of the three alternatives in turn.

(1)

(ix) Proof that M ~° > k, m < -1

Using (5.3), we find that
2(4 + /10)

[5,5,2] = . = 4e77u85. ., }
}
o= = (5.5)
[5,2,5] = 1_153f1§ = 4euylsl. ., ;
Now, since Ium[ < ¢m - 1, then for 3 41 T 2, 3, or 4,
(which implies ¢ < 4),
0 + - )
M(l) = m(g?e - l?ml) P 5 i 5 L, %.
m m¢m a®m O
When a ., =5 then either ¢ < [5,2,5] < Leus, 6 < 4-u5,
or ¢ < [5,5,2] < 478, 8 < 1-8,

i Th.05Y2 - 1 .
Thus either Mm > G-55)2 =1 > k, gg_Mm > T (478) = 1 > k
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(%) Proof that MEQ) >k, m< -1

= 3= |
By Lemma 4.5, Iuml = ¢ - 1 - am’ where a = ¢-l I _ll .

m ¢rn+1¢m+2”"¢-l

Now {am} is a monotone decreasing sequence as m - -3 thus we have

¢y -1 21 -1,

%25 T, 21 URE
and for all m < -4,
L ¢y - 1 1.1
a < Q < = < = 0-04.
m -4 ¢_3¢_2¢_l ‘15¢¥l -4 275
Now for m = -2 or -3, we have em > 2, ¢m > 3, and so

M(2) B} (em - (¢ -1 - %dm) - BT
m 8 ¢ -1 5 '
m'm

For m < -4, em > [2,5,5] > 179, 6> [2,3,3] > 1-62, and a < 0«04

thus

NEIR (6 - 1)(¢ - 1-02) , (0-79)(0+6)
m 6.0, 1 19

(xi) Proof that Mis) >k, m < -1

k.

Consider first m = -2 or -3; then |um| > 2, em < b,

o < (4,41 = 375, implying that

(3) ¢p + 3 6+75

M > - >
m 2(em¢m - 1) 28

> k.

When m £ -4, then o < 0*04, which gives

M(S) S ¢m - 0+02

m 6m¢m -1
Ifa =5anda . =5, then ¢ <5, 0 =[52,5] <u45; thus
(3) , _u-98 k.
m 2125
1f a_ = 5 and a . =2, then ¢ < [2,5,5] < 1792, e = [5,5,2] < 4+775;
(3) _ 1-772
Mo 7 7ess7 T X
If a =2, then 8_ < 2, and so M(s) > 1/ > %> k.
m m m m
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There remains only the step Ml for investigation.

(xii) Proof that M., = k

1
Clearly Mis) > k. Using Table 5.1, we obtain
() _ (J8y] - 053¢, (11)(20:9)
> > > k.
1 4(]o ¢, + 1) 4{(11-5)(20-9) + 1)
Now, for the chain (C), since |Al| = 1/84s
= 21 .
oyl = Iyl =11> yogs > 15 Mk
hence, as for (iii), Mil) > M§2). Now,
(2) _ 12(¢y -1 - luy 1) 3(¢) -2 + |5 1)
1l u([elTbl + 1) |el|¢l + 1

8238730 ¢5 - 164581
392361 ¢5 - 7838

We have ¢l C [21,461,—17,50,¢5] =

Successive substitution of the basic formulae implies:

24727 ¢g - 494 + |ug|

75| = 35731 b, - 7838

Y 3¢
From (5.3) and (5.4) we have ¢. = el n2lbol ,  |u| =—=, and

5 6 5 49

104250 + 2/10 - .
lell = [ll,-GOJ = 9005 . Substituting these values in the

expression for M§2) above, we obtain from (1.30) and (1.31),
(2 (3/49)(366458018 ¢5 - 7320551)
1 (8238730]9 | + 392361)¢, - (16u581fe | + 7838)

We enunciate the following theorem, which we have proved:

THEOREM 5.2. Forn the chain (C), M = k.

4, Isolation of the value of &

0
Lemma 5.2 implies that both lrl| < 040668, and |cl| < 0+0668.
. 1 - 8
Now, since |ll| = |50{ W Sy and |al| = |e | + 1 > 0, then

0
ol legl - 1) + 1 R} leg| - 1 [uol - 1+ 0668
eolall t1 ]all |¢o| & l/l¢1| )

0.0668 > |o, | =
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implying
lugl < 0-0868|¢ | + 1-14 . (5.6)

Suppose 60 > 23, then by (5.6), (5.2),

M(S) 1-0668|¢0I + 014  1.0668

o 2239, + D) ‘e < ©

1
Thus eo < 2.3, If a, = 3, then e_l 3= eo < 1-43; now,

by §2, |so| > 1, which implies |¢0[ >3+ 1/¢, > 2:9, (by Lemma 5.1).

(5.6) then implies

1+14
|u_l| =1+ lrol < 1-0668 + TEST < 1.5,

Since ¢-l > 3,

eI (6, - Loy + 0-5) (0-43)(3-5)

< k.
-1 2(6_16_, - 1) 6:58

Thus we have the following result:

THEOREM 5. 3. A enitical chain has a, = 2.

5. 1Isolation of the value of a1

Throughout this section we will employ the following temporary
notations. Let a = |all, £ = Ieoi, and ¢ = a - e. Note that
since a and ¢ have the same parity, c¢ is even and furthermore, c¢ 2 2.

We commence by obtaining a series of lemmas which provide bounds on c.

LEMMA 5.4,

cle + 2) 1
C + 2 4klog} + Eb) '
LEMMA 5.5. e < ]¢a| - |u0| + 0+063 .

LEMWA 5.6.  Suppose that v = 4k(|gg| + &), then
0

e 2 xv,

where x is the positive noot of vx?2 - (v - 2)x -1 = 0;
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v -2+ HEFT

4.2 X = 70

Note. =x = x(v) is an increasing function of v, (since %§-> 0), and

hence we may replace v, in x(v), by any lower bound of 4k(|¢0| + %-).

PROOF OF LEMMA 5.4, Taking account of the appropriate signs, we have
from (3.25), since a, <0, e,<0,
(1) _ 1
My o F EC6,4, - 1] Clog =1 - {2 DfCoy + 2 -],
(2) _ 1
1T WTGge, - D (ol + 3= DIy - 1+ wpl.

The basic recurrence relations enable us to rewrite these
expressions with the variables at the zero step:

M(l) = 1

1w el + 1) o cllogl - a - ful +e+ D],
(2) _ 1
o 4(8 foql + 1) Ogle + 2@ - |¢0| +a+ |u0| - o).

Now, by (3.27), sgn(¢l + 1 - ul) = sgn(¢l -1+ ul) = sgn,¢l,

and since we are assuming both Mil) > k and M§2) > k, then we have
by addition,
Lk, 1. (1ol - a-lugl +e+1)+ (1~ o] +a+ lug| - s]l.
8y et 27 uk(eol¢o| + 1)
The result follows immediately.
PROOF OF LEMMA 5.5. Now |¢.| =a+=>= and |u | =€+ 1,5 hence
0 6y 0 1
. s i -1
c=a-¢*= |¢0| - Iu0| + ¢l N

In the case where ¢l > 0, the result follows from Lemma 5.2. When
¢l < 0, and ¥ > 0, then the result holds by Lemma 5.1, since el¢i > 0.
In the final case when ¢l < 0, and Hy < 0, then the lemma holds if

(1 + |ul|)/|¢l| < 1 - 4k < 0.063; if not, then
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M(l) |¢l| -1- lull '¢ll - |¢l|(l - 4k) _
< < 2
1 4], | oy

This concludes the proof of the lemma.

PROOF OF LEMMA 5.6. From Lemma 5.4 we have,

c+ 1
c+ 2

c 2 e V3
Since ¢ 2> 2, this inequality holds if and only if
2 - (v-2c-vz2 0,

or

= M= 2+ W2+ g
- 2 2

(the roots of the polynomial in c have opposite sign). The required
result follows immediately.
The following three lemmas will reduce the number of possible

values that the variable a may take.

LEMMA 5.7, If |épl > 20, then le,l < 7-7382.
LEMMA 5.8, a g 22,
LEMMA 5.9, a 48 odd; funthewmone. 11 < a < 21, and if ¢; < 0,

then 17 < a < 21,
PROOF OF LEMMA 5.7. Since By < 2, v > (0-937)(20 + 0+5) > 19.2.

Then, by Lemma 5.6,

e > 17+2 + /19:2Z + &
384

v o> (0-89)(|¢0| +%).
Combining this with Lemma 5.5, we obtain
(0-89)(|¢0| + %) <c< |¢0| - |u0| + 0063,

which implies lu_ll = |T0| < 0-11. Thus if 6_, > 3-8191, since

1
¢ 1 > 2, we have

(3) ( 4, +1-11 3:11

< < k.
-1 " 2(e_jb_, - 1)~ 13276k
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If _, < 3:8191, then 6y < 1-7382.

PROOF OF LEMMA 5., 8. When a 2 23, Lemma 5.1 implies that

|¢0] > 22.937. By the previous lemma, %- > 0-5753, and so
0

v > 4k(22°937 + 0°5753) > 22-0314.
Applying Lemma 5.6 in an analogous way to that in the previous proof, we
obtain x > 0-95666, and so
(0-8961) (¢, | + 0:5753) < c < [¢,] - |u | + 0-063,
which implies
|u0| < 0-1036|¢0| - 0+U5,

If 6 > 38123, then since ¢

-1 > 2, we have

-1

(3) _ ¢y + 1-1036  3.1036
-1 2(e_j¢_; - 1) 18-2192

M < k.

If, however, e_l < 3.8123, then 90 < 1-7377, implying by Lemma 2.7

() (0°7377)(1-10360)| + 0-55)  (0.7377)(1-1036)
0 L7377 ]4,] + 1) 34758

< k.

This concludes the proof of the lemma.

PROOF OF LEMMA 5.9. put £(e) = L&D ponna 5.4 implies

c+ 1
£f(c)
ool < S -

[

< U,
where U is some convenient upper bound. Tabulating these results

for ¢ = 2, 4,...., 20, we obtain:

0

N
=
(o)
®

10 12 14 16 18 20

e(ey] & |2+ |48 | 80 | 120 | 168 | 224 | 288 | 360 | 440
3 5 7 9 11 | 13| 15 | 717 | 13 | 21

U (235 [463 |6+82 |8-99 [11¢15|13-30(1544|1759|19+73|21-87

TABLE 5.2.

Now, whenever a is even, since after §2 ¢ > 1, we have € 2 2,

axc+ 2, Lemma 5.1 implies that |¢0| > a - 0-063, and so
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c + 10937 < |¢0| < U.
This provides a contradiction for every value of c on Table 5.2, and so
excludes the possibility of a being even.
Similarly, when a is odd, a 2 ¢ + 1, and so
c + 0:937 < |¢0| < U,
which provides a contradiction for all c < 6, on Table 5.2. Hence
a 1s odd, and a 2 9.

Now if ¢; < 0, Lemma 5.1 implies that |el| > 15.8, since 8 0.

l<
In the case a = 15, we have 6_ < 1¢25, and (4.24) implies that

0
(2) 8% -1 0-25
Mo " < —e < Tvzs < k-
0
Hence, in this case, 17 < a € 21,

When ¢l > 0, then ¢ + 1 < |¢0| < U, which is contradicted when
c = 8. Thus, 11 < a < 21. This completes the proof.
The following lemma enables us to exclude most of the remaining

values of a.

LEMMA 5.1,
(3]g] + 1+ luglhllegl + 1 + upl)

M 2T, 177 TBTag * TTegT 7 2Tl 7 2)

The night-hand side increases with |uy|, and decreases with |¢,].

PROOF. We use a method analogous to that of §3 (viii). The basic

recurrence relations imply, after (5.2),

(3 _ (2 - 6)3]8,] + 1+ Ju )

- 2
-1 2(60|¢0[ + 1)
a decreasing function of 60. Now Mé2) is an increasing function of
(3) ,(2)

84> and since M < min {M_l ,M0 }, M cannot exceed the common value of

the two functions of 90, which occurs when
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_ Tlegl + 3+ 3]y
0 " ufog| + 2+ 2[ug["

Thus
(719, + 3+ 3lu by - gl + 2+ 2lu D)o ] + 1+ lugh
2(1oo1(7la 1 + 3 + 3[u 1) + 8oyl + 2 + 2[u )

IA

Glagl + 1 daghagl £ 1+ lugh)
T 2(7]eg]%2 + Glugl + Doyl + 2 + 2[u,[) '

It is clear that this function increases with |u0]. Make the
following abbreviations: ¢ = |¢0', a =1+ Iuol, B = 3|u0| + 7, and

(3¢ + ) + a)
a(¢) = 764 + B¢ + 2a

It is readily verified that

sgn(%%) = -sgn((28a - 38)¢2 + a(l4a - 12)¢ + o2(B - 8)).
Now all the coefficients of the powers of ¢ are positive since € > 1,
|
(and so 8 > 9), and o > 1. Thus %% < 0, and the result follows.

THEOREM 5.4. Any crnitical chain has
ay = -11, € * -1, a, > 0.

PROOF. By Table 5.2, it is clear that for all a that remain, € = 1;

for if not, a contradiction is obtained as in the proof of Lemma 5.9.

Suppose that 13 < a < 21. If ¢, = 0, then Iull E |r2| < 0.07;

by Lemma 5.1, |¢l| > 2, and so |Tl| < 0-04. Consequently, if either

L5 < 0, or €, = 0, then

Iuol =1+ 7T <104

Now |¢0| > 13, (since if a = 13, Lemma 5.9 implies that ¢, > 0).

Substituting these bounds in Lemma 5.10, we find

(41-04)(15-0u4)
2637

On the other hand, if <

M< < k.

1> 0, and € # 0, we consider three
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cases:
(1) ¢, <0, (ul < 0) implies

(1) _a-1_ _a-1 20
"L uTe

(ii) 0 < ¢l < 10, (ul > 0); by Lemma 5.2,

‘Wa T 05 < E(aL <k

Wy < (o»o7)|¢l| < 047,

contradicting £y # 0.

(iii) ¢; > 10, (ul > 0) implies, since, by Lemma 5.2, uy, > 0.93,
s G Dol +1 - D eoaeon
1 u(]el¢l] + 1) 4{(21-5)(10) + 1) )

Thus we conclude that a = 11, and hence a, > 0 (lemma 5.9).

2

6. Isolation of the value of a,

We commence this section with two lemmas which will enable us

immediately to isolate the value of €

.
LEMMA 5,117, We have
1.7165 < 8, < 1-75251,
which implies
0-5771 < L < 0.5826.
3]
0
Also g < 0, and € # 0.
LEMMA 5.12. e, = 1.

PROOF OF LEMMA 5.11, Theorem 5.4 implies that 11 < |¢0| < 12,

hence by Lemma 5.2, ¢ , = 2 + 1 200833, and |u - |Mo| . 1°0668
-1 (6] -1 % 11

< 0-097,

If @ > 3-7384, then

-1
(3)  2:0833 + 1-097
M, < ~Z(e-7883) - X
1
and so 8, < 2 - zT=5Er < 1.73251, and > 0°5771. (5.7)

0
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Now ¢ = 10, and using the method of Lemma 5.9, (5.7) implies

IS
I | < 220 L o 9y.6uou - 0-5771 = 110653,
0 Lk 5,

and so ¢l > 15°3. Hence if el > 0, then by Lemma 5.2,
g1 (20)(¢; + 1-0668) 163-668

1 ST e, * D) NGB EERET R

Thus we have e < 0, which implies
- 1
Iyl =1+ 1) < 1. (5.8)
If 6, < 1:7165, then since |¢0| > 11,

(2 8 - 1 ({ogl +2)  (0-7165)(13)

0 2(eO|¢01 + 1) € T2(19-8815) &

The lemma is therefore proved.

PROOF OF LEMMA 5.12. If e # -1, then, after (5.8), we have € < -2,
which implies Iull > 1-933. Now, since |Al| = 1/90,
a-1+ 2/9 - 0933
M(4) j ( 794)($; )
1 4((a + 1/6,)¢;, + 1} ’
which, by Lemma 2.7, is an increasing function of %-. Thus, by the

0
previous lemma, if ¢l < 36,

RO (11:166)(¢, - 0-933)  (11.166)(35-067)

1 G((11-582609, + 1) 1671-86 ke

I1f, however, ¢l > 36, then by Theorem 3.9 and Lemma 5.11,

(|él| - 1)(¢, + 1) . (10¢59)(37)
RS 4[(11-59)(36) + 1)

< < k.

My < u(le
This concludes the proof.
THEOREM 5.5. Any enitical chain has
a, = 21, |u1| <1, as > 0, €y < 0.
PROOF. €. = -1, and so a, is odd. Consider the two cases:

1l 2
(1) l£1| > 1. We have from Lemma 5.2, that Iull < 1+0668.




Now, by Lemma 5.11,

10(¢, + 2+0668) .
(1) , ¢, . 255668
1 4((11-577)¢, + 1) 1092-2

when ¢l > 235,

(2) 12(¢; - 2) . _58'5
i 4((11-577)¢, + 1] = 2499

and when ¢l < 21°5, M < k.

Hence we have 21+5 < ¢l < 23+5, which implies, from Lemma 5.1, that

u
a, = 23, Now, since lu | =1+ 1, > 1, we have -2 0; also
2 1 2 ¢2

|x2| >1. If ¢, >0, then

FON (0, -1 - |2, )6, ~1-u) 8, -2 S22l
2 (0,9,

<
- 1) 492 G2-4
If ¢2 < 0, and €5 # 0, then since |¢2| > 2,

4(3) (0, - 2)({9,| +0:067) (27.1)(2-087)

2 = MO EEES) < 188+8 e
2172
If ¢2 < 0, and €, = 0, then since ¢l > 23, and
iyl = 1+ Jel/le,l < 1oom,
(1) _ (10)(¢; + 2-04) 250-4
1 4(11°577¢l + 1) 1069
This completes the exclusion of the case Iull > 1.
(ii) lﬂll < 1. Lemma 5.2 implies that Iull > 0+933. From
Lemma 5.11,
(1) 10(¢, + 2) 246
MEER 5, 3 E22E8s 1 S B(i1-577¢, + 1) _ 1050°5 s e
(2) _ 12(¢, - 1-933) 22249
and when ¢) < 205, My" < TOT.ETTg, v D) C 9583

Thus we have 20°5 < ¢l < 22+6, which implies, from Lemma 5.1, that

a, = 21.
Suppose then that ay < 0; it follows that T, < 0, and so
1l
uy 2 0. Now |A,[ =1+ fo,] =1+ M, 7T > 1.049, and 6, < 21+1;

thus
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when |u,| + 1 2 0:061 ¢,,

MO 0-049)(0-939 /¢, |) . (21:051)(0-939) _
2 4(621¢2| + 1) 8Lel

ks

and when |u2| + 1 < 0+061 ¢,,

(2) 12(19 + (1 + |U2|)/]¢2|] (3)(19-061) .

ST (I 17Te,1 10,1 + 1) S T omge1l k.

We therefore conclude that a, > 0, and My < 0. If e, =0,

3 - 2
then, as usual, |12| < 0-04.  Now ¢l < 21, and so
W(2) 39y - 1096 (3o
1 [Gl|¢l + 1 24k
The theorem is now complete.
7. The maximal chain for 60
We will now examine possible a-chains as n + -«. Let us say

that a particular chain is feasible in k, at the point n, if M k.
For example, the chain (C) of §3 is feasible in k, for all n. The
following lemma supplies a new bound on 60, under the restrictions

imposed on the chain by the previous sections.

LEMMA 5.13. 8, < 1-73134.
PROOF. Now, by Theorem 5.5 and Lemma 5.1, 20+9 < ¢, < 21.  Thus
ol -l S
and § . =2 4=m—donsz 4 223, 5.090815.
-1 11g, + 1 2309
Now, 1if 60 > 1-73134, then e_l > 3+72217, which implies that

(3) . 3:17701 :
-1 2((2-090515)(3-72217) - 1)

The result therefore follows.

M

k.

We will now prove two lemmas which will enable us to produce the
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maximal feasible chain for 6..

0
LEMMA 5,14, 90 < [2,4,4,3,2,6_5].
LEMMA 5.15. a, < 5, forall n < 0.
PROOF OF LEMMA 5.14. Now (2.15), (2.16) and Lemma 2.7 together

imply that the expansion of an irrational to the integer above in semi-
regular continued fractions 1is an increasing function of each partial
quotient, independently of what follows. But

1.73134 = [2,4,4,3,2,19,....1;
hence if any of a5 @35 @ 55 0P a2, increase from these values,

then 8y > 1-73134, contradicting Lemma 5.13.

PROOF OF LEMMA 5.15. The previous lemma implies that a <5, for
-4 £ n < -1, However, for any n < 0, if -% > 0+766, then by (4.24) and
n
(5.2),
(6_ -~ L)(p_-1) 6 -1
M(2) < Il ¢_1'L < Y < k'
n 6 ¢ -1 0
n'n n
Thus we have %- < 0-766. Similarly, by symmetry, %- < 0-766, for all
n n
n < 0.
Now, if a > 5, then by (4.24),
(3) ®n 1
Mn <% ¢ -1 " a -v_ °?
n'n n n
1 1
where vn = T + = < 1.532, and so
n-1 d>n
(3) 1
M " < Temes < ¢
The result now follows.
THEOREM 5. 6. The maximal chain for o 0 LA

[2,4,4,3,7,5,5],
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and this chain 48 feasible in k fon vi < -1, when followed by a chain of
the fonm implied by ss52-6.

PROOF. By Lemma 5.15, a_ . and a_g cannot exceed 5, and by the

5

argument in Lemma 5.14%, if they equal 5, we will have a larger value for

60 than when they are replaced by smaller positive integers, independent-

ly of the values of a,ns ~-7. Thus take ag=ags= 5.
Now ¢—6 > [5,2,3,3] = 57/13, and if 9-6 > 4.5, then
(3) ¢_g 114
Mo T g, -1 wer
Thus 8_, = [5,0_,1 < 4-5, which implies §_, < 2, and so a_, = 2.

Using an inductive process, we choose two successive values of
a to be as large as possible (i.e. 5), which forces the partial quotient

of next lower index to be 2; for, if for some n < -2, we have

Bhe =, El @ = 5, then ¢3n > [5,2,3,3]1, of course, implying that

2, as above.

q3n-1

Hence the given chain provides an upper bound for & The

0
chain is also feasible for n < -2, since the chain (C) is feasible, and
an examination of the proof of this (83 (ix)-(x1)) reveals that we need-
ed no more information about the right-hand part of the chain than we

already have proved is a consequence of M 2 k.

The importance of this result will be evident later, when we

show that the minimum of the critical chain is taken at M§2), which is
an increasing function of 90.

COROLLARY. 5195 - 270 _

———— g ¢ —7gg7 1.7312897...

which impLics = > 0-57760405... (5.9)

0
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PROOF. The result follows as for formula (5.3).

8. 1Isolatien of the value of a

3
LEMMA 5.16. M%) and ui*) can be written as functions of oy
when 8 increases, Mézl decreases, while Mé4) inereases.
PROOF . Now |Al| S %-, which implies
0
6, - 1+ x| __(8g +1)/(118) + 1) + 21 .
8,9, - 1 (eo¢2)/(1le0 + 1) + 21¢, - 1

Hence, by Lemma 2.7 and (5.2), Mé2) decreases as eo increases.

Similarly, putting o = 2l¢2 - 1, we obtain

0, + 1 - || _ 23285 + 20 ,
62¢2 -1 (lla + ¢2)Bo + o

which by Lemma 2.7 is an increasing function of 60, since 3a - 5¢2 > 0.

(4)
2

The result for M follows immediately from this.

We now prove two lemmas which give bounds for the values of a

3
and |12|.
LEMMA 5.17, 436 < ¢, < 470.
LEMMA 5.18. 0:063 < |1,{ < 0-06316.

PROOF OF LEMMA 5.17. If ¢, > 470, then ¢, = 21 - 1/¢, > 20-99787.

When |u2l - 1 5 0-06088 ¢,, then (5.9) implies,

u(l) - 3(29 + (lu,l - 1)/9y) 2 (3)(19-06088) o
2 fo Te, + 1 (11-57760405)(20+99787) + 1

When |u2| - 1> 0-06088 ¢,, then (5.9) and Lemma 5.16 together imply,

(4) P (21-036484)(093912)(470)

My 4{(21-08637)(470) - 1}

< k.

Thus we have ¢2 < 470.



If ¢, < 436, then ¢, < 20+99771.
When |T2l < 0+06303, by (5.9),

e ooy, = 25 oD (3)(19:06074) j
1T T e e v 1 (11-57760405)(20+99771) + 1

When 112| > 0-06303, then by Lemmas 5.11, 5.16,

k'

u(2) < (21-1367)(0-93697¢, - 1) .
2 4(21-086336, - 1)

The result is now complete.

PROOF OF LEMMA 5.18. From the previous lemma it follows that

¢, < 20-997873.

When |r2| < 0.063, (5.9) implies as before,

(2) (3)(19-060873)
Mo 20-997873[6, + 1 a

When |12| 2 0-06316, Lemmas 5.16, 5.17, imply

(¥) _ (21-036484)((1436)(0-93684) + 1)
2 4{(21-0863736)(436) - 1)

M < k.

The result follows.

The value of €, can now be isolated by the following rather

2
tedious lemma.
LEMMA 5.19, e, = -29.
PROOF Suppose that |e2i ¢ 27, then by Lemmas 5.2, 5.17,
Ms|  27-0668
— ———— .
3 3E < 0-063.
2
Similarly, when |e,| 2 30,
2| > 22:93 , 406316
¢, 470 '

In both cases we contradict Lemma 5.18.

Let us examine the case €, = -28. When a,. > 446, we have
2
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28°0668

as before, lT2| < 0593

< 0:063; when ag < 442, then we have

v, | > 27:98
2 Ly2°1
is even). This case is difficult to exclude; it seems

> 0°06316. Thus, again by the previous lemma, a, = Ll

(since a,

probable that it could provide chains with infimum close to k.
Now we have ¢2 < Yuyiel, and so ¢l < 20+9977483. Suppose that

|12| > 0006307, then following the method of proof in Lemma 5.17,

(2) (21-1367)(0-93693¢, - 1)
oy " < 4(21-086336, - 1)

<k

Thus |v,| < 0-06307,

(2) (3)(19+0608183)
When |0 | > 11:57763, M,"" < 977579%3)(20-9977483) ¥ 1 k.

When |6,| < 11.57763, then 6, > 1-73121. If |t,| 2 0-06305, then

since 9, < yute1, by Lemma 5.16,

(2) (21°13627)(0°93695¢, - 1)
M4 < 2 < k.
2 u(21-08637¢2 - 1)
Thus we have |T2| < 006305, (5.10)

Now since 6, > 400, it is easily verified that |¢3| > 12, by a

similar proof to that of Lemma 5.1. Hence 9, < 44409, and whenever

28

|u2| > 28, |T2| > Tiigg > 0006305, contradicting (5.10).

u
Thus |u2| < 28, and consequently $3 < 0. Consider the
3
following two cases:

(1) $5.< 0 (ug > 0). When |u31 +1> o-ooa|¢3|, since |Al| = 1/8,,
Il -1 1
2 = = a, say, then
D) 188,95 ’
G Gt 1 - DaDUegl =1 - TugD (a7 + w0-997)
3 t(o fo ] + 1) 4o,
(417+003)(0+997)
(1) (443+95)

< kl
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WhEs |u3| + 1 < 04003 l¢3|, then |13l < 0.003 - l/|¢al, and

28 - |t 27+997 ¢, + 1 .
.| = - ltol 4,1 BETEEET 1 omoen
2! T umw 176, T THERTe,] + 1 Ty
thus contradicting (5.10).
(i1) ¢, > 0 (u, < 0). When |u3| < 1-08, then since ¢, > 15 by

Lemma 5.1,

y(3) . _(415-003)(15.03)
3 4((443-95)(15) - 1)

< k‘

If |e3| = 1, then we have 103 < |u3| < 1:07; if ¢, < 31,

28¢, - 1
e, « ¢, . 867
2 4ulg, - 1~ 13763

w3 < (415+003)(31+07) _
3 L{(843-95)(31) - 1}

< 0063, contradicting Lemma 5.18. If ¢3 > 31,

< k'

Thus |s3| > 2, and |u3| > 1+9332.

When ¢, < 380,
3
wH) (417-003)(¢, - 0-93) (417+003)(379-07)

<
3 4(443+95¢, - 1) < B{(443.95)(380) - 1) ke
When ¢3 > 380, suppose that |“3l -1> 0-003¢3, then
M(u) (417'003)(0-997)¢3 (415°752)(380) S

3 < T(55°955, - 1) © L[(443-95)(380) - 1)

If, however, |u,| -1 < 0+003¢,, then |13| < 0:003 + 1/¢, < 0-0057;

5 27-9943

thus |T2| v

> 006305, contradicting (5.10).
The proof of the lemma is now complete, since after excluding
the case €y = -28, the only remaining value that it can take is -29.

Ve can now prove the following theorem which isolates the value

of as.

THEOREM 5.7. Any critical chain has

€y = -29, as = 461, ay < 0, Mg < 0.



PROOF. Suppose that a, > 463, then as usual, |t

3 ARE 7T

contradicting Lemma 5.18.

If a4 < 459, and |u2l 2 29, then by Lemma 5.1,

|T2| > E%%TI > 0°06316, also contradicting Lemma 5.18, Thus we have
|u2| < 29, and hence T4 < 0. Clearly if a, g 457,
| 2| > %%%%% > 0-06816. Thus we consider the following two cases for
ay = 459,
(1) ¢, <0 (u, > 0). When |13| > 0+005, then since |A3| > 2893
and 03 < 460, we have

g 8y 1 - 1A, 10€0-995[0,] - 1) (w60 - 27.93)(0.995)

. 4(63]¢3[ + 1) (4)(460)

When |7_| < 0005, then |[t,| > 33%%%% > 0-0631.
(ii) $G~> 0 (u3 < 0). Using the method of proof of Lemmas 5.1, 5.2,

we obtain 040, > (436)(15) = 6540;  thus whenever |13| 2 0+06315, we

have by Theorem 3.9,
855(0+93685) (6540)(0-93685)

3 < Thle e, - D) T(#)(6539) < X
28-93685
If, however, |13| < 0+06315, then |12| > g > 0-063043.
Thus from cases (i) and (ii), we conclude that if a, = 459,

3
then |12[ > 0.063043; thus by Lemma 5.16, as in the proof of Lemma 5.18,

y(#) (21 -036484)( (458-93)(0936957) + 1)

2 4{(21-0863736)(458-93) - 1] K

Hence we have that a, = 461. If, in addition, [u2| < 29,

3
29 o s
then lr2| < 560-93 < 0063, contradicting Lemma 5.18. When |u2| > 29,

T, > 0, and so, if ¢3 > 0, then as before,
w3 8- 1- 12,1 431+003

3 5, < ) (460-95)

< k'



The complete result now follows.

9, Isolation of the value of a,

The previous sections of this chapter indicate that any critical
chain is of the form:

I.Ol'2 -ll, 21, 451’ au,.....

veeas0 | -1, =1, -29, €4,.....
where a, < 0, and €5 < 0. We now isolate the pair s €5¢
THEQREM 5. 8. Any cuitical chain has
a, = -17, €3 = -1, ag > 0, uy < 0.
A . o
PROOF. Suppose that |p3| > 1, then if again a = 556.5, , then
W3 -1 gD ogl + 2 - Tus)  (us1 + o) , _u32-008 e
3 u(e, ¢, | + 1) 149 (4)(460-95)
3'73 3
Now, if €q = 0, then as in Lemma 5.19 we have certainly
007 29+006
[¢3| > 12, and so |1g4] < 5~ < 0:006.  Thus lt,| < Sgg— < 0-063,
contradicting Lemma 5.18. It follows that €4 = -1, and since |u3| <1,
then o = 0. (5.11)
By Theorem 3.9, if |¢3| < 15-34, then
M < (u61)(1u-34) < k.

3 u{(460)(15-34%) + 1)

But if |¢u| < 3, then as in Lemma 5.1, we have since |eu| > 15,

(16)(2)
% < T3 7 1)

< k.

Thus a, # -15, which implies that |a4| > 17 (since a, must be odd).

4
Hence ¢2 < 461+07, and ¢l < 20-9978312; thus if

|12| < 0°0630211, then by (5.9),

M(2) < (3)(19°0608523) <
1 (11.57760405)(20.9978312) + 1

k.
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When 112] > 0+0630211, then

29 +

23| = |u,| > (0-0630211)(u61 + 1/]4.]),
8, 2 ®

and so
Iu3| > 00630211 + o~052727ll¢3|.
Suppose that |¢3| > 17-1, then |u3| > 0+964; consequently,

we find, as above,

(3) = (431+003)(17-1 + 0+036)

M3 L[ (%60-95)(17°1) ¥ 1)

< k.

Hence a, = -17. Suppose that ag

> 0, (5.12)

< 0, then (5.11) implies

Hy
When |1,] 2 0.0405, since [¢,] < 17,

() (433-003)(}o,| - |7,])  (433-003)(16-9595)

3 S Tw(EE0+S5[e [+ 1) W[(860-95)(AT) + 1) ok

When |T4I < 00405, since leul < 171, by (5.12) and Lemma 5.2,

w2 (o | -1 - I, Do, -1+ lu D) (17-1 - 1.93)(1-0405) ’

y T(18,0,] - D ) G(17+1) i

Thus we have that a5 > 0, and My, < 0, which completes the

proof of the theorem.

10. Isolation of the value of a

5

In order to obtain the value of ag in any critical chain, we will

prove a succession of lemmas, which progressively improve the bounds

on the relevant variables.

LEMMA 5. 20. 0:03838 < |T4| < 0+040406, €y # 0.
LEMMA 5,21, ¢4 < 55.
LEMMA 5,22, eg = =2

LEMMA 5,23, ag = 48, 50 on 52,



103.

1
PROOF OF LEMMA 5.20. Put ¢ = ; now |¢,| > 17, and
. i 1909192| 3
6, = 461 - 3- > 4Bl - 5z > 460-9525, implying when |14| < 0403838,
NOM (w31 + ) o] + |ry]) . (431-0024)(17-03838) _
3 4{(460-9525) [¢,} + 1) 3134877 :

Thus |7,| > 0-03838. If €, =0, then by the usual method,

y
IT':;—E

< 0034, a contradiction. Hence we have |uu| > 0-93.
If |¢ | < 29, then

M(2) (Ie |+0 07)($ -1+93) (17 07)(27-07)
4 u(Te,Te, + 1) R[N + 1)

< k.

If |¢u| > 29, then |¢3[ < 17.035; thus whenever [Tul > 0.040406,

(4) _ (433-0024)(17-035 - 0+040406)
3 4((460+9525)(17-035) + 1]

< k'

The result follows.

PROOF OF LEMMA 5.21. Now |A2I > 1, which implies

296, -1

A S " :
log| < gerga—T < 0-083;
2

v

also we have |eu| < 17+003, and so if ¢u > 55, then the previous

lemma implies
41 . (lo,] - 2 + |og])(2-040u19, + 1)
Y 4(]eu|¢u + 1)

o £15-066)((1-04041)(55) + 1} _
4((17-003)(55) + 1)

The lemma follows.

PROOF OF LEMMA 5.22, We have already seen in the proof of Lemma 5.20

that Iaul > 1, and |¢ul > 29, Hence if Isu| = 1, then
1°07
29

ITuI < < 0°037, contradicting Lemma 5.20.
The previous two lemmas imply that

lu,| < (0.0n0u1) g, | < (0-0u041)(55) < 2:3.
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Lemma 5.2 then implies that €, = -2,
PROOF OF LEMMA 5.23. If ag < 46, then by Lemma 5.1,
1-93 - i 240668
|t,| > fgog > 0-04l.  If a. = 54, then again |7,| < £57g33 < 0-03833.

In both cases we obtain a contradiction of Lemma 5.20.

Now since ag must be even, then by Lemma 5.21, ag = ug, 50,
or 52.
THEOREM 5.9. Any eritical chain has
a; = 50, |u4| <2 and &g # 0.
PROOF. Suppose that Irul > 003945, Now |¢3! = 17 + %- >
S Y
1701919, and since |u3| =1 - |r,| s 0-96055, we have, by Lemma 2.7,
29'¢3| + 'u3|
l7,| = reLle, T ¥ 1 0+06302112.
We also have ¢, = 461 + |%51 < 461-05876, implying ¢, < 20°99783108;
3
hence by (5.9),
e i (3)(19-0608522) K
1 20-99783108Tbl| + 1 :
Thus |r4| < 003945, (5.13)
Now |94|< 17-0022, and since 6, < 22, then
29 8, - 1
lo ———2 < 0-062815.

| <
3 461 62 -1

Suppose that ag = 52. If 0 < ¢5 < 20, then Theorem 3.9 implies that

L6 - (g - 1) (51-1)(19)
57 w(6 9, - 1) 4{(52-1)(20) - 1)

M < k.

Thus it follows that whatever the sign of ¢5, we have ¢u > 51-95,

Then,
L eyl -2+ loglya-03suse, + 1)
I 5(Te,[¢, * 1)
(15-06502)((1-03945)(51-95) + 1)
4{(17.0022)(5195) + 1)

< k.
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Thus a5 # 52.

(i) Suppose that a,. = 48, then by the usual method,

IT l 1-93
I

5

> 581 > Qe0L,

(ii) Suppose that a_ = 50, and either luul >2, 0or g. =0, then

5 5

|uu| > 1+993, since in the latter case ITSI < 0-007, as we have seen

before, using Lemmas 5.1, 5.2. Hence

1-993
Il > 1

In both cases (i) and (ii), (5.13) is contradicted, and so the

> 0-0397.

theorem is completed.

11. Structure of a critical chain pair, for n > 6

Reviewing what we have shown so far, we know that any chain
which is feasible in k, for all n, must have the following form:

seens? -11, 21, u61, -17, 50,.....
TR -l’ _19 -293 -l, "2,0.-.. (s'lu)

We now continue to examine the right-hand side of the chain pair.
It is to be expected that there will be unusual behaviour in the chain
for small values of |n|, for it is here that the change from the homo-
geneous to the inhomogeneous nature of the problem is reflected. The
large and apparently random variations in the chain (5.14%) indicate
that our expectations are justified. Nevertheless, we would also expect
that when the inhomogeneous character of the chain plays a dominant role,
(i.e. when n » +«), the chain should settle down to some recurring
behaviour, as is already suggested will occur for the left-hand chain
by Theorem 5.6.

In this section, we will prove that any feasible chain must be of
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a certain specialised structure. We assume that the chain for 60 is

held constant. We commence by proving three lemmas which will

eventually enable us to obtain the critical chain.

LEMMA 5.24, 14 qul and ITZI both increase, then M;Z) increases.

LEMMA 5,25, e have a, > 0.

é

LEMMA 5. 26, 14 |u5| and |15| both increase, then M;Z) increases.

PROOF OF LEMMA 5.24. If ¢l increases, then since IT2| increases,
(2) _ 3(¢] -2+ ITQI) : .
Ml = 6. To. + 1 will increase.
1'11
If ¢l decreases, then ¢2 decreases. Hence
(2) _ 3(19%, + luo| - 1)
My " s (21fe,| + )¢, - {0,] °
1 2 1

which is a decreasing function of ¢2, will increase.
The lemma then follows.

PROOF OF LEMMA 5.25. Suppose that a, < 0. Then by Theorem 5.9,

Mg > 0. Clearly IASI > 205, and 0 < 50°1; thus if Irsl > 0-043,

g Os + 1 - IgDegl - 2 - [ugh)  (uo-05)(0-957)
5 u(05|¢sl + 1) (4)(50-1)

1-957
50-1

< k.

We have then |15| < 0043, and so |qu > > 0-039. Since

|¢3| > 170199, then as in Theorem 5.9,

29{¢,| + |u,|
|7,| = w16, ¥ 1 < 0+063021173.
similarly || = 29 + | ] < 29+ Tt < 29.05647.

Calculating the values of |p2! and |12| again for the chain (C)

(to sufficient accuracy) we find

|7,l, = 0-0630211083... |u,|, = 29-05647s...,

where the subscript C denotes the values for the chain (C).
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Thus by the previous lemma

M(2) < (M(Z))
1
Consequently, we have ag > 0.
PROOF OF LEMMA 5.726. By the previous lemma, and (5.1%), we obtain

48¢. + |u-| - 1
851¢, - 17

|u2| = 29 +

Since €g # 0, then |us| > 0+9,and so Lemma 2.7 implies that |u2|
increases when ¢s decreases, since (48)(17) + (851)(|u5| -1) > 0.

When ¢5 decreases, then ¢2 decreases, and so |T2| increases.

Suppose then that ¢5 increases. We may write
(u8 + |t Do, - 1
lu,| = 29 + 2~ :
2 851{{)5 - 17

thus again by Lemma 2.7, since 851 - (17)(48 + |15|) > 0, and |T5|

increases, we have |u2| increases. We readily check that |u3|
increases while |¢3| decreases, which together imply that

| = 299, + [u,]
Tl = WL [ + 1

increases.

The lemma now follows in both cases from Lemma 5.24.

LEMMA 5.27. |15| < 0062,
PROOF. Suppose that |r | > 0-062. Now 6. < 50:0589, and
|* | 460 - 29
lo, | = 17e m 1 > I eo) + 1 > 970951,

Thus if ¢5 > 5345,

NOM (6, - 1 - |o,|)(0-938¢, + 1) . (49-0038)(51-183)
5 58,6, - 1) 10708

< k.

If ¢5 < 48e1, since @

g > 50-0588, and by the above method |o, | < 0-0552,



108.

we have
(2 Gg 1+ o, [7C0-938¢5 - 1) (s1-318)(u4-2178)
5 - u(e_¢,. - 1) 9627 :
575
Hence, by Lemma 5.1, we have 49 < A < 53, and
0:062 < |15| < 0.0668,
which implies that
3-034 < |u.| < 3-8,
since U48937 < ¢5 < 53-1. Therefore we have that |€5| = 3, and ag
is odd.
If ag > 51, then |u5| > (50°9)(0°062) > 3-1, which is
impossible. Then ag = 49, and T > 0. Clearly €, £ 0, else

by the usual method |u5| < 3°01, a contradiction. Thus lu6| > 0-93,

and since 66 < 49 and |¢6| > 10, then in all cases we have

W3 e m - gD Uogl +0:07) (45.07)(20-07)

< < k.
6 u(96|¢6] - 1) 1956

This completes the lemma, and we can now isolate the values of

a6 and 56'

LEMMA 5.28. Any cuitical chain has

ap = 49, £z

also |u5| >3, g4 0, wy < 0, and a, < 0.

= -3;

PROOF. Suppose |15| < 04063 then irul > l%%i > 00388, and so
0-9612
|u3| < 0+9612. Now |¢3| > 1702, and hence |13| < o5y < 0056475,

Thus with the method and notation of Lemma 5.25,

IT I P (29)(17-02) + 0-89612
2 (461)(17-02) + 1

< 0063021198 < |12|C s

and |u2| < 29056475 < IMQIC i It follows from Lemma 5.24 that

M(2)

1 < k. Thus we have that
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0:06 < |15| < 0°062. (5.15)
We may now proceed by using the method of the previous lemma.

If ¢ > 59°5, then

w(®) (49-0038)(0-94¢, + 1)  2789-8
5 4(50-0589¢, - 1) 11910

If ¢5 < 435, then

D ey < B2 < k.
Thus, by Lemma 5.1, we have UL < ag < 53, and from (5.15) we obtain
2+6 < Iusi < 37, implying that €g = -3. Lemma 5.2 then implies that
2:933 < |u.| < 3-067. If a 2538 or ag < 47, then we have
Itsl < gé%%% < 006 or |15| > 2;3?i > 0.062, respectively, both

contradicting (5.15).

Thus a6 = 49 or 51. Consider the two cases:

(1) !u5| < 3,

If ¢5 > 49, then |T5| < 3/49 = ITSIC’ and so by Lemma 5.26

W2

1 k.

If ¢5 < 49, then g > 0, and Hg < 0 (since 1. < 0).

6
When |16| < 0°018,
(3 (8 -4+ o 1)(1-0184, - 1)  (45.1)(1.018)

g = (0,6, - D ey
3 - 0018 .
When ]Tsl > 0-018, lrsl < ggo3— < 0-06l < ITslc, which together

(2)

1 < k.

with |u5| < 3, implies, again by Lemma 5.26, that M

(ii) Jl%| > 3.
Now if 86 # 0, then ]usl > 093, by Lemma 5.2. Since

|¢6| > 10, T > 0, and 96 < 51, we certainly have

6
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(3 (0g -4t logDCeel + 2 - lugD)  ureomyao-0m) §
6 4(10gogl - 1) 4{(51)(10) - 1] :
Thus we have ee = 0.
3007
When a = 51, then |16| < 0.007, and |15| < T5o3 < 0°08,
contradicting (5.15). Thus ag = 49, e, = 0, and Iusl > 3. If,
however, a, > 0, and hence u6 > 0, then
(3) 8 -4+ logl ys.1
Mg = < 5o, < Tge < k-

The lemma now follows in full.

We will now prove the main theorem of this section. It will
fix the structure of any critical chain pair for n 2> 5. The proof that
the chain (C) considered in §3 is in fact the critical chain is a simple
corollary to this result.

THEOREM 5.10. In any enitical chain we have, for n > 3,

- - - n -
ag, = 49, Eon-1 - (-1173, egp = 0

and 42, -44, on -46.

et = °

Remark. One may also easily exclude the occurrence of a -46,

2n+l

but as this is not necessary for our purposes, the proof will not be

included.
PROOF. We will prove the result inductively.

For the case n = 3, Lemma 5.28 implies that a, < 0, Mg < 0,
€g = 0, and ag = 49, In fact, there remains only to reduce the

permissible range of values that a, may take. We do this by proving

that |r7| > 0°06.

Suppose that IT | < 0-06. Now, since > 17, we have

8
< 0-04107,

7
[ = 2|0, + 2] _ (2)(a7) + 0495
5 so]eq| + 1 (50)(17) + 1

lo
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and 6, < [49,50,-17] < 48-98003.  Thus if |¢6| < 40085, since
lugl < o-0s,
yu) O =2 ¢ lo. DUl - 1+ | ]) g (47+0211)(39+145) L2
6 (051061 + 1) 4((48:98003) (40-085) + 1)
Now if |¢6| > 40+085, and a, = -40, then ag > 0 and ¢, < 11-8.
Thus, by Theorem 3.9,
(41)(10+8)
U < qeoaie + 1 - X
Hence we have |a7| 2 42, and so |¢6| > 41«9, Thus
0+06
lusl =3+ |T7|/|¢6' <3+ El._g < 3-00144 < 'uslca
and
3l ]+ |7l 3fe | + 0-06 ) |
|75l = valo [ + 1 = 43[4 [ ¥ 1 < 3/u9 = gl
Consequently, by Lemma 5.26, M§2) < k. Thus we have
|“e| = |T7| > 0406, (5.16)

When |¢6| > 47.9, we use the above bounds for ©
M(3) (45+0211)(47+9 + 0+94)

6 and |05| to obtain,

6 © W[(48-98008)(47°3) + Ij’< =
When |¢6| < 39, since |u6| < 0+087,
M(u) . (47-0211)(39 - 0-933) _ X
6 4{(48.98003)(39) + 1] :
Since €g = 0, a, is even, and so 40 < |a7| < 46,
It is more difficult to exclude a_ = -40, than a = =40
. 7 2n+l
for n > 4, because of the sign of ag. However, if we can prove
|t,] < 006135, then if |4 | < no-03, (5.17)
M(u) < _(47-0211)(39-09135) o
6 4( (48+98003)(40-03) + 1) :

Later we will see that these conditions must be satisfied.

We will take as our inductive hypothesis the following:



112.

For all integral n with 3 < n < m, for an integer 1

}

m, suppose a, =49, e, . = (-1)"3, €y, = 0 with }
e } (5.18)

(-1) Hon > 05 |T2n+l| > 006, and a, ., = -42, -b4, ;

or -46,. }

As in §3 of this chapter, it follows that for all i, 6 < i < 2m, the

appropriate products are given in §3 (v), (vi), depending on the parity

of i. We will observe the same notations in this section.
Note. Wherever applicable we will use the less stringent condition
|a2n+ll > 40, until we have shown that |a7| 2 42 (i.e. until the

conditions (5.17) are satisfied).

Now if a)mio < 0, since by the inductive hypothesis
> 0 0 < . A <
[tpmgy | > 0008, 10, | <u6e1, and (A )(w, ) <0, then
M < ol =1+ 12y DUl =1 - Ty D
+1 -1
Zm+1 u(|°2m+1¢2m+1| )
. (lo, .1 -1+ |o, |)(0-94)
L —
2m+l
(46+1 - 0:93)(0-94)
< (5)(56+1) e
Hence we have a > 0, and (-l)m+lu > 0, from (5.18).
2m+2 i 2m+1 i
Now
3.007
006 < |A,] < | | < == < 0-0614 }
7 2m+1 49 ). (5.19)
40402 < |o, . | < 46-03 }

When ¢2m+l> 59.5, in the notation of 83 (vi), we have

(1) (u5-091u)(0-94¢2m+l + 1) . (45-0914)(56-93)

M < < k.
2m+1 4(u46 03¢2m+l + 1) 10959

When ¢ < 415,

2mt+l
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(3) _ (lo, .1 +1- I“sz)(°‘9”¢2m+1,’ 1) (40.96)(38-01)

M <
2m+l 4(|e2m+l|¢2m+1 + 1) 6647

< k.

Thus, by Lemma 5.1, we have 42 € 59, and Lemma 5.2 implies

s a2m+2

that 0:06 < |t | < 0-063, giving

2m+1
2:5 < (0°06)(41+9) < |“2m+1l < (0+063)(59+1) < 3-8,

Hence, by what immediately precedes the formula (5.19), we have

_ mt+l
Momey = (-1
We may now isolate the value of 3 pm+2 by the following series
of steps.
. 3-067
(l) If 32m+2 2 53, then lT2m+l| < —52—.9- < 0+06.
(ii) If a2 = 51, then suppose that either Iu2m+l| < 3, or
3-007
€ynpp = 03 We have lt,ne1! < Tooa3 < 0°06.
Both (i) and (ii) contradict (5.18).
(iii) If a,  , = 51 or 49, then suppose that |u2m+ll >3 and
. _ m+l m
€ o2 # 0. Since Momel = (-1) (3 + (-1) T2m+2)’ then
m .
(-1) Tomt2 > 0. It follows that whatever the sign of Pomsn® OF

whatever the parity of m, we always have

- < omyp -1 |A2m+2|)(l¢2T+2' t 1 - fupnol)

L (80l bomenl = 1)
Now by Lemmas 5.1, 5.2, we have |u2m+2| > 093, I¢2m+2| > 10, and
112m+2| > 3; thus

(51-1 - 4)(10-07)
Hom2 < 2050 b [

This excludes A4 > 51; and also ot - 49, with

I€2m+2| 2 ol lamd Iu2m+ll it
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Again using the notation of §3 (vi), we have the following:

(iv) 1If 3,42 S 45, by the bounds (5.19), since |u2m+l| > 2°93,
M(S) < (4102 ~ 0°06)(45°1 - 3.93) <k
2m+1 H((%0-02)(¥5-1) + 1) :
(v) 1If a4 = 47 and ¢2m+l < 47 (¢2m+2 > 0), suppose that
|“2m+1| > 2+948, then

(3) _ (40-96)(47 - 3-348)

Home1 4{(40°02)(47) + 1)

< kl

Thus we have | < 2-948, and by the same argument as in (iii),

lu2m+1

M >0, and |t, | >0-082. If |e

Hom+2
| < 1-07, and by Lemma 5.1,

(-1) < 1, then

2m+2I

> 15. Taking, without loss

[ame2 om2

of generality, m to be odd (Theorem 3.12), we obtain since IA

L Y 1 PN

- 1)

ome2l > 3

+ 0:07)

w2 oo -
2mt2 (02 92me2

o (u7°1 - 4)(15-07)
w{(47°1)(15) - 1)

< k.

if | > 2, then | > 1.93., Hence

Iu2m+2

(1) _ (45:1)(40 - 0.93)
amt2 © H{(47.1)(%0) - 1]

IE2m+2

when Somt2 < 40, M < k,

and when ¢ > 40, we have since |12m+2| > 0-052,

2m+2

w1 (u5-1)((0-948)(10) + 1)
2m+2 E{(47-1)(40) - 1)

< k.

This excludes the case when ¢2m+l < 47,

(vi) If 3y 4o = 47 and ¢2m+l > 47 (¢2m+2

> 2+978, then

2m+lI =
(3)  (40-96)(47-1 - 3-978)
2m+l  4((40:02)(47°1) + 1)

< 0), suppose that
u

M

< k.

; 5 m
Thus we have | < 2+978, and since (-1) Horeo > 0, and

Iu2m+l
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lT2m+2| > 0-022, then
w1 (8 |_gm+2|)(|¢2 +2I == |“2m+2l)
Mome2 = 400y ol0oryol * 1)
(451)(0.978) < I
(4)(47.1) '
Thus in (v) and (vi) we have excluded the case 3 omt2 = L7,
(vii) From (iii) then, we conclude that qpren © 49. Consider the

two subcases.

(a) | < 3. 1 ¢ > 49, then |1, .| < 3/49. When

I 2 +l—

2m+l 2m+l
) <49, (¢ > 0), then as in (v), (- l)m+l > 0.
2m+l ’ 2m+2 ? ? Homt2 2
(2) _ (45-1)(1-02%, ., - 1)

When [ty o 5 0°02, My, < B9 D¢ sy S 55

2mt2

2°98

. <

and when |T2m+2| > 0°02, then IT2m+l| < 55793 3/u9.
Thus if I 43 and lu2m+l| < 3, we have |T2m+l| < 3/49. (5.20)

. ¢ . m
(b) lEQm+l| > 3. This implies that (-1) Tomt > 0.

If ¢2m+2 > 0, we have with the previous notation (m odd),
(2) < (62m+2 -1 - IA2m+Q|) < 45-1 <mliz
2m+2 40, 4o (4)(49-1)
Therefore we have after (iii), for the case (b),
m+l =
bompp € O (P17 o > 0 ey, = O (5.21)
As we have seen earlier in this theorem, the fact that |62m+2| > 41
. . 0-0668 .
implies that |¢2m+2| > 11-8. Thus |T2m+2| <18 ¢ 0-0057, and it
3°0057 i .
follows that |T2m+l| < %5 ¢ 0-06135, since ¢2m+l > b9, Thus, in
both cases (a) and (b), after (5.20), if el - -40 then

|¢2m| < 40403, and < 0+06135. Now all these calculations are

l1-2m+l|

valid for m = 3, and so the conditions (5.17) are satisfied, implying
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|a7| > 42, We are now justified in taking 42 < la7| < 46, in the
inductive hypothesis (5.18).

Now for 3 < n < m, we have whenever |T2n+1| < 3/49,

3+ o, 1714, |
- _2ntl 2n
an-1l = THET Ul T ° o

|

Thus, if any |r | < 3/49, then by a simple inductive argument,

2n+l
lT5| < 3/49 = ITS'C‘ By (5.20), this is true for the case (vii) (a).

The semi-regular continued fraction expansion

|¢6| [Ia 'ugalagla'ug,--- -49,...,]

7> “slagney s
(|a7|,49,|ag|,49,,,,,,| l,ug,....)

a2m+l

where the latter expression is the ordinary continued fraction expansion;
it is a well known result (e.g. [26]) that |¢6| is an increasing

function of I, if | remains fixed for 3 < r < n < m.

Iauwl

Since by the inductive hypothesis

Ia2n+l

|a2n+ll > 42, then if for some n,

(3snsm), |a, | > 42, then |¢6| > |oglo = (82,%9).  Thus if

| | < 3/49, then Ir7[ < 3/49, and

2m+1
3

lugl = 3+ Jr 1/ 1¢g] < 3 + = lugles

5 71/ 1% 905 [ sic?

also |u5l < 3/49, and so by Lemma 5.26, we have M§2) < k. Thus we

may suppose that qnel 42, for 3 £ n < m. (5.22)
We will now prove that if |T2n+l| and |u2n+l| both increase
then so too does Iu2n-l|’ whenever 3 £ n £ m. This is easily seen to
be true since we have, when ITTm+l| < 7/49 aTd hence |a2n| = 42,
u o | T
IU | =3+ 2n+] 2ntl ,
e Y2Monea | Tona |
. . . . )
which increases in both | 2n+l| and lu2n+l|
< < 1
Suppose that lu2m+l| £3 Iu2m+ll then as we have seen in

c’
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the case (vii) (a), < 3/49 = |1 thus using the above

2m+1|c3
| < 3/49 and |a

|T2m+l|

result, together with the fact that | = 42,

|T2n+1 2n+l

(3 £ n £ m), we obtain |u5| < luslc and |15| < |TSIC’ implying by

(2)
1

Lemma 5.26 that M < ki (5.23)

Thus we have | > 3, and after (5.21), the inductive

[ome
hypothesis holds at the step m+l, with the exception of the two

| > 006 and 42 < |a < 46, We now prove that

conditions 2m+3| <

|T2m+3

these are also satisfied.

Suppose that | | < 0°06. Then if | < 40, we have

|a2m+3

| > 3, and

Com+3

|¢2m+2| < 40-1; also we have 6 < u49+1, |A

2m+2 2m+2

|U2m+2| < 0°07, implying that, in the notation of §3 (v),
ay Gy ot 2= o Do, =1 o))
2m+2 4(62m+2|¢2m+2| + 1)
< (47-1)(39°17) <%
B{(ee-1)(80°1) + 1]
When |a, .| 2 42, then
0°06
< < . <
ol <3+ 13 grooms < fu, 1.,
2m+2
and
3|00 0] + 0°06
I, | < S53me2 <3/m9 = |t |
2m+l 49|¢2m+2| + 1 om+1 ! C
It then follows by an identical argument to (5.23), that M(z) < k.

1
Thus |T2m+3l > 0-06.

|a2m+3I 8 e If |¢2m+2

(3) _ (45-1)(u47-9 + 0+94)
2m+2  4{(49°1)(47+9) + 1)

Now we already have | > 47:9, then

M < k.

Thus -42, =44, or -U46, and all the conditions (5.18) are valid

a2m+3 &

for n = m+l. The theorem is therefore true, by induction.
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COROLLARY. The chain (C) is the eritical chain.

PROOF. Now, we have been holding the chain for 6, constant in this

0
section. Miz) is clearly an increasing function of 60, and so takes

its maximum at the largest feasible value of 90, which by Theorem 5.6

is 90 = [2,4,4,3,2,5,5].

By Lemma 5.3 and Theorem 5.10, we have | = 3/49, for all

|T2n-l

n > 3. Thus any chain which may possibly be critical has |t |

sl = I7gle-
We have already commented that |u5| is a decreasing function of |¢6|,

and so any chain which has | > 42 for some n 2 3, has

25041
Iu | < |u | and consequently M(z) < k.
5 5'C? 1
Thus the chain (C) gives the maximum possible value of Miz),
for chains feasible in k, for all n. Hence (C) is the critical chain.
The hybrid nature of the problem seems to have been responsible
for the length of the proof. Perhaps though, the difficulty of proof
is not really surprising. However, it is also of interest to know how
the values M(f;a) are distributed in the interval [0,k). This is the

subject of investigation in the next chapter.

In conclusion, we are able, after (4.29), to exhibit a critical

form
, (ex + y)(x + ¢y + o)
8¢ - 1 »
where
e 2V10 - 5195 _ 91018391¢. - 1818229
- 2997 ’ - 82387309, - 164581 i
18014063¢, - 359856
a = —%(¢ + ),
49(8238730¢, - 164581)

with ¢5 = (147 + v/21651)/6.
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The critical value is attained by this mixed form at the point
(x,y) = (-6,0). The value k is also taken by all equivalent forms,

in the sense of the remark (4.30).
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CHAPTER VI

SUBSIDIARY RESULTS FOR THE MIXED FORM PROBLEM

1. Introduction

In Chapter V, we showed that k = 023425..., given by (1.30),
is the best possible constant for the mixed form problem, which we
formulated as a special degenerate case of the divided cell algorithm
for the associated grid. The question raised at the conclusion of the
previous chapter was that of the distribution of the infimum values of
such forms. We have already noted in the first chapter that the
corresponding question for homogeneous forms is not yet completely
settled, while the liminf problems in inhomogeneous approximation were
considered by Barmes (7].

One might readily imagine that from the structure of the
critical chain and Theorem 3.11, k is in fact a point of accumulation
of values of M(f;a). For example, we could put in the chain (C),
a5 41 = -44, for some large n, without effecting the feasibility, in k,

of the chain, except at the step Ml, (see Chapter V, §3 (v), (vi)).

(2)

But Theorem 3.1l ensures us that Ml

could be made arbitrarily close
to k, by chosing n sufficiently large. In fact, we could construct
in a similar way chains with infima arbitrarily close to any k', with
0 < k' g k. Consequently the interval [0,k] would be dense in the
values M(fja). This result follows from the next theorem, the proof

of which will constitute the remainder of this chapter.

THEOREM 6.1. For every k', such that 0 s k' < k, there exist
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uncountably many binany quadratic foxms §, to each of which thenre
corresponds at Least one neal non-zerno number o, with

M{§;a) = R'.
Eézg. It will become apparent that the following is really a straight
forward extension. There exist uncountably many 6,each for which
there correspond uncountably many pairs (¢,a), such that

(6x + y)(x + ¢y + 0)| _

1
5% =T k'.

inf
(x,y)#(0,0)

2. Construction of the chains (c¥*)

We first show that the result holds true when k' = 0.
Given any integer s > 0, we can find an T such that for all r 2 rg
[(2) ,x] < 1+ 1/s.
Consider those chain pairs which satisfy (4.12), and which have en = 0,
n > 0, and
¢0 = [(2)2rl,u,(2)2r2,4,...,(2)2rs,u,.,.]

Now at the central step of the block (2) we have, for some m, by

2rs

Theorem 3.9,

(6 - 1)(¢_ =~ 1) (1/s)(1/s)
m m
Mm . 4(9m¢m - 1) < 4{(1 + 1/s)% - 1} s

Thus the infimum of such a chain is 0, and there are uncountably many
sequences {ré}, with ré 2T, for all s.

For k' > 0, we will construct a chain which is a modification
of the critical chain (C). A brief examination of the calculations

used to demonstrate the feasibility, in k, for n # 1, of the chain (C),

reveals that only local values of the chain pair were involved.
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Similarly the rational bounds on the variables provided by Table 5.1,

are uneffected by variations in a1 and € provided n is large

enough. This is a consequence of Theorem 3.11,
Suppose that we are given some k', with 0< k'< k. Since all
the complete quotients of the chain (C) are bounded below, Theorem 3.11

ensures that there exists an N such that no matter how we change the

(2)
1

chain (C) for n 2 N, we have M > k',

Define w = [100] = 50 + 7V51, and an irrational (in general)

number a by

(w - 1)(1 - a) N

o k' (6.1)

Since k' < k < 0234255, we have 0 < o < 1. If o is
irrational, expand 1l/a as a semi-regular continued fraction to the
integer above, and compute the sequence cof convergents {pn/qn} by
(3.21), If o is rational, put pn/qn = 1/a, for all n. By
Lemma 2.6, {pn/qn} converges to 1/a from above. Hence

pn/qn > 1/a. (6.2)

Now let {rn} (rl > 1) be any strictly monotone increasing
sequence of positive integers. Consider the chain denoted (C¥*),
which is identical to (C) for all n < N (defined above), and for n > N

has the form:

eeo=t2, LS -42, 100, 1000, (100 —2mpl 100 --2mp2 100 o
-4 0, 3 O’ —5, 0, 0 2r —l qul 0 2r 2mq2 0 2I‘ LRC I
1l 2 3
LY -QmPS 1.00 .
(6.3)
T 2mqs 0 2r .
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where m is an arbitrary positive integer, and the vertical line

signifies the point after which the chain differs from (C).

3. Evaluation of the infimum for the chain (C¥*)

(i) Without loss of generality, take ay = 49, 3. All the

0

bounds on the variables for n < N, conform to the requirements of

Chapter V, §3, implying Mn > k', forn < N. Now ‘¢N|C > |¢N| > 42,

(i)

0-0499 < IuNI < luNIC, and @ > 49-023, implying that My

!i=2’3’u’

are feasible in k, (see Chapter V). Also

M(l) N (GN - 2‘0015)(|¢NJ - 0°9501) N (47+0215)(41+0499) 5 B
N BCO foyl + 1) 4{(49-023)(u2) + 1) )
(ii) At the (N+1)th step, clearly M(s) > k, and
N+1
(1) (|9N+11 - 1:1)(dy,, *5:9) , (40-9)(105-9) _
+1 u(IeN+l!¢N+l + 1) (4)(u201) :

Now since c? and then we have

N1 (¢N+l) liger | < Tigerleo
M(2) S (M(2)

N+1 w1de > ke Also [oy | > 42, oy, > 99, [y, | > 0-0s,

and | < 5.01, implying

IuN+1

(w) | Uyl - 08 Coy,; - ¥+01)  (41.06)(u-99)
+1 u([°N+l[bN+l + 1) 4((u2)(99) + 1)

> k.

(iii) Now
(_l)2r1 UN+2+2r

PNe2 T3

) <o
ceesd % >
N+3 N+1+2r; TN+2+2r;

and < 5+002, © > 100, ¢ > 999.

lugeoh < 001, 5 < a N+2 N+2

(1)
Clearly MN+2

M(Q) . ¢” ) - 101
N+2

N+2I
> k,

> k,
HON42

(3) _ (By., - 6°002)(¢

§ Neo = 1) (93-998)(998)
N+2 u(e

5 - 1) > 5(100)(999) - 1] ~

3 I
N+2°N+2
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(4)  (Byyp = H°002)6y,,  95-998

> > k.
+2 4(6N+2¢N+2 - 1) (4)(100)

(iv) Suppose that we examine a step in the chain for which a, 2 100,

a,, 2100, and e . =e =0, then lxnl <1 and I“nl <1,
implying
Sy -1 - e -1 - fu b (e - 2)(¢n1— 2)
n - u(en¢n - 1) u(en¢n - 1)
974
> ez -1y ke

Hence, (i) to (iv) imply that the only places in the chain
(C*) which could possibly be not feasible in k, are Ml, and those

steps Mn’ M 1 where a

= = —2mps, for some natural number s. Let

+1

n and s denote such a position in the chain; then by the argument of

(iii), we have An < 0, and Mopp € 0. We also have, by Lemma 2.6,
en > W, ¢n+l > W (6.4)
élearly M(l) > k. If we apply the methods of §3, Chapter V, we

n

i.e.

readily obtain that M£3) > M;2),

(6, - 1 - A Dol + 1+ |u ) J (e -1+ DoDCop] +1 - fu D) ,

u(en|¢n| + 1) u(enTbn['+ 1)
. oo 6 -1 e+
if and only if ATX l > ?u - Now by the form of a ., and
n n

€ s We have that the right-hand side of this latter inequality is
uniformly bounded for the particular n under consideration, (the bound
being a function of k'). Since Ixnl may be made arbitrarily small

by choosing ry sufficiently large, a suitable choice of r, ensures that

this condition is satisfied for all such n.

M), 42

Similarly, we have that Mn N

» if and only if
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|¢n| = Iunl > i—lET%;T . Now by (6.2), P 2 9 /¢, implying
o, = lu > C2mp_ + 0-01) - (2mq_ + 0-001)
> 2nlpg - q )
2 2mqs(l/a - 1),
and hence |¢n| - Iunl can be made arbitrarily large (for a fixed k')
by choosing m large enough. Since |en|/(l - Iun|) is uniformly

bounded for the particular n under consideration, we may suppose
w5 (2
n n

(2)

Thus we have Mn = Mn provided both r. and m are chosen

1

(as functions of k') to be large enough. Now

2mq_ + 0°001
2‘45*4 1/¢
mps n+l

lu s | < <q/p_+ 0~001/|¢nl;

hence, after (6.1), (6.2) and (6.4), we have

(2, - DUsl+ - fuD
n 4(m]¢n| + 1)
(w - (1 - a/p) e | + 0:999))
> 4ule [+ 1)
(v - 1A - q./p)
bw
(m‘l)(l‘a)_ 1
z T S

Now at the step Mn+l’ it is readily verified that the roles

of Ienl, |¢n| and Ilnl, ]unl are interchanged (as in Lemma 3.12),

and that the same bounds apply for corresponding variables. Thus

under the same conditions on rl and m, we have

_ 4(3) '
Mn+l - Mn+l > k.

Thus the chain (C*) is feasible in k', for all n.
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Define the set S as follows:
S = {n; a = —2mps for some s}.

Now Ty +® as s >, implying

lim 6_ = w, lim |A_| =0, 1im |¢_ | = =,
n <> n+oon n=>o a
nin S n in S n in S

lim |u /¢ | = 1lim (q./p.) = «.
noe 0D {re 174
nin $

Hence
lipm M =8 - DA -a)
n Ly
n ="«
nin S

Consequently, the infimum of the mixed form corresponding to
any such chain (C*) is k'. There are uncountably many forms since
{rs} is an arbitrary (except for rl) increasing sequence, of which
there are uncountably many.

The fact that for each (¢,n) there exist uncountably many 0,

follows from Theorem 3.11, and the fact that 6_, = [5,5,2] may be

2
replaced by 6_, = [4,(3)Sn]n:l where 2 1is sufficiently large and
{sn} an arbitrary increasing sequence of natural numbers, without effect-
ing the feasibility (in k) of the chain (C¥*). I will not give the
proof of this, but it follows by straightforward calculations of the

type given above.
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CHAPTER VII

A RESTRICTED INHOMOGENEOUS MINIMUM OF FORMS

1. Introduction

We will suppose that f is an indefinite binary quadratic form
that does not represent zero for integers, and that P is the real

point (x ). We have already seen in Chapter III, that £ and P

0*Yo
together define a set of similar grids in the £, n-plane. M(f;P) was
defined to be the infimum of the products of coordinates at all the
grid points. In this chapter we will investigate the infimum taken
over those grid points which are in only one of the four possible half-
planes defined by the axes.

Let f be an I-reduced form, then we may uniquely denote it, in

the usual way, with |e] > 1, |¢] > 1,

£(x,y) = ﬁif—-i- (ex + y)(x + ¢y); (7.1)
then
£A
flx + Xgey + yo) = o1 (6x +y + 50)(x + ¢y + no), (7.2)
where
E. . =6x. +y }
o =S8 Ly (7.3)
Mo = ¥ * ¥, }

We define M+(f;P) as follows:

(7.4)

X+ ¢y + nol
— 0k 3

MT(£P) =  inf  A(Bx + y + e

Bx+y+£0>0
where the infimum extends over all integers x, y such that

0x + y + & > 0.
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Similarly we may define M (f3P):

- Al(ex + y + E ) (x + + n,)
M (£3P) = inf | = |ez°- T by + ng)| s (7.5)
6x+y+§0<0
where the infimum is taken over all integers x, y such that
x + y + EO < 0.
Note that Theorem 3.10 implies
M(£3P) = min {MT(E;P), M (£3P)} < %A,

Define the form g, after (3.u44), by

_ 0o 1! _ A
glx,y) = f[l 0] TR (¢x + y)(x + oy), (7.6)
and let Q be the point (yo,xo). Thus (7.7)
. X+ 8y + &
M+(g;Q) = inf A(¢x + y + no) ——6$—¥—i——g| : (7.8)
oxty+n >0
o
and
- . A(dx + y + n. )(x + 6y + E,)
M (g;Q) = inf I y |9¢0— 1] Y 0 I . (7.9)
¢x+y+n0<0
Consider the grid L, given by
E=pg(ex+y+ Eo)
L:
n = y(x + ¢y + no)
for all integers x, y, where B > 0, vy > 0, and By = 0¢A- T e Then

Mi(f;P) take an infimum over either the right or left-hand plane of L,
while Mt(g;Q) consider those points in either the upper or lower
half-plane.

In order to obtain information which is independent of the
particular I-reduced form chosen from an equivalence class, we define,
after (7.6) and (7.7):

M*(£;P) = M*(g;Q) = max {Mi(f;P),Mt(g;Q)}, (7.10)
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and

M*(£) = M*(g) = sup M*(£;P), (7.11)
P

where the supremum need only extend over a complete set of grid points
incongruent mod 1.

Clearly, if f and h are equivalent I-reduced forms that do not
represent zero, then M*(£f) = M*(h); thus we may define, for any
indefinite binary quadratic form g, M*(g) to be equal to the value
M*(f), where f is any equivalent I-reduced form.

The purpose of this chapter is to investigate the supremum of
values taken by M*(£), and to evaluate this function for a certain
sequence of equivalence classes of forms. We will deduce these results
from a related problem, solved by Cassels [11] and Descombes [24].

We will re-define the function k+(¢,a), on irrationals ¢, and
non-zero real a, such that ¢x + y + o does not represent zero in

integers x, y, (see (1.5) and (1.8)). Put

kK (¢,a) = lim inf x¢x + all, (7.12)
X >+ o
and
kK (4) = sup kT (9,0). (7.13)
a

Cassels [11] showed that

sup k+(¢) = %— s
¢

while Descombes [24] proved that there is a decreasing sequence of

isolated values for k+(¢,a), which approach the limit

_ 773868 - 285u47/510 _
/y = St = 0-352... (7.14)

Descombes used the algorithm originally described by Cassels.
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It involved the ordinary continued fractipn expansion of ¢, together
with an associated sequence of integers, which arose from the inhomo-
geneity of the problem. By means of yet another modification of the
divided cell method previously described, we will re-formulate this
problem in terms of semi-regular continued fractions, and then convert
Descombes' critical chains into this context. We will then connect
the approximation problem with the restricted form problem described

above.

2., The critical chains of Descombes

The couples (¢,2) and (¢',a') are said to be equivalent if

there exist integers p, q, r, S, @, b, with ps - qr = $1, such that

_ + _(ps -ar)a , ad + b
o' = E%?:T{% , ol = T + ol r¢ + s > 0. (7.15)

LEMMA 7.1, 1§ (¢,a) and (¢',0') are equivalent, then
B (o,a) = R (¢,0').
The proof is given in [24] (Proposition 3).
We now proceed to quote the results obtained by Descombes.

Define the sequence of integers {sn}, n > 0, as follows:

8, = 0, s, = 1, s 40 = 542 S, ~ Syt (7.16)

We may then define the following sequences of integers based on {sn}.

Ar = 14 Sopl " 257 s, ;
B = 3s + 398 s }

r r+l r } (7.17)
cr = 9 S " 1ub s, i
}

Dr = 2 S el + 223 s,



M2p = sp+l + 257 Sp’ M2P+1 = 25 sp+l + 8 Sp’
N2p =11 sp+l + 75 sP, N2p+l = 189 sP+l + 2 Sp’
A2p = 7 sp+l + 263 Sp’ A2p+l = 127 sp+l + 8 Sp’
62p = sP+l + 35 sp, 52p+l = 3L Sp+l + 2 sp.

Using these
number ik (for r

coincide with (7.12).

s = LS 7 g =225 - /510, 15 - Y110
-2 s ta1 2340 * ¥ 10
(A -D )+ YA S (B8 + 2)
and for » > 1, ¢ = —= - r I T D ,
= r C
r
a_, = 1/1u4, a_y = 1/90, ag = 1/10, and for r > 1,
¢p = (Mrwr + Nr)/zAr'
_28/7 _ u5/510 _ 10/110
Yo =27 > Y17 7383 ° Yo 37 °

8A2Ya 8 (A §_ + 2)
and forr 21, Y, = G{Zy (A - DM N - B
rr r rer Et

We can now enunciate the basic result of [2u].

THEOREM 7.1.

[ N N

3

e et et Aot ey

L
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(7.18)

sequences, we may define the pair (wr,ar), and the real

> -2), changing the notation of [2u4] slightly to

(7.19)

(7.20)

(7.21)

{£) {Yn} is an increasing sequence, and if Y 48 given by (7.14)

Lim Yy = Y-
Nn >
(i) Fonr all 2 2 -2, we have

+
K (yp-ay) = 1Y,

(Lid) 1§ we exclude all couples equivalent (in the sense of (7.15))

to one of (¢n"“n)' forn -2 < n < n, then

+ +
R {y,0) < R {y,,-a ) = 1/v,.
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(4v) Furthewnone, £§ (v,a) 48 not equivalent o (¥,,-e,)  for
some n, then
& lv,a) s 1/y,

and equality holds forn uncountably many couples (y,al.

The whole of [24] is devoted to the proof of this assertion.
It is long and tedious, as might be imagined from the statement of the
theorem, and no attempt of proof will be made in this thesis. However,
we will deduce several results about M*(f) from it. We did not include
parts (a) and (c) of the theorem ([24], p. 283), because these are
really homogeneous results.

For our purposes, the explicit values of (wr,-ur) given by
(7.19) and (7.20) will be of less interest than the algorithmic develop-
ment of the pair. As in the homogeneous case, since we are dealing
with a lim inf problem, only the "tail" of this development will be
relevant.

Let B; be the tail of the ordinary continued fraction expansion
of wr. In the notation of Chapter II, §3, let us denote the ordinary

continued fraction blocks as follows:

A' = (4,1,1,1) = (4,1,) I
b
B' = (4,1,1,1,1,1) = (4,15) } . (7.22)
i
Cc* = (3,1,1,1) = (3,13) i
Then, from [24] (pp. 324, 327-330, 351), we may suppose
B', = (A3), ', = ((B'C") ), g} = (Bl), i
2 ! 0 } (7.23)

By, = ((AT(B'C')p),), forr > 1. }

v

By Lemma 2.4, the B; are reduced for r » -2, and if
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Br = B; + 1, the Br will be A-reduced. By Lemma 2.12 the A-expansion
of Br will be pure periodic. Define the following semi-regular blocks:
A =[6,31, B =[6,3,3], C = {5,3]. (7.24)
Then, by (2.19) after the convention (2.18), the equations (7.23) are

valid also when the primes are removed. Thus

B, =1[A], 8. =[(BC),. ], B, = [B.], }
. . 0 }  (7.25)
B, = C(a(BC),) 1, for r > 1. }

If {m} is an arbitrary increasing sequence of positive
integers, then any irrational y, whose ordinary continued fraction
expansion tail is given by, say,

(A1 (BIC!)p A (BIC!)y ....) = (A'(B'c')mk);=1 . (7.26)
together with a corresponding , has
k+(¢,a) = 1/y.
Clearly there are uncountably many such ¢. The proof of this result
may be found in [24] ( 38, p. 349). The corresponding A-expansion
in semi-regular continued fractions, is given by (7.26) with the primes

removed from the blocks.

3. Alternative method for calculating k+(¢,a)

We will now briefly describe a further degenerate case of the
divided cell method, used by Barnes [7], to prove the existence of
uncountably many pairs (¢,a), for which k+(¢,a) = §, for each § with
05624

Clearly we may suppose that, in (7.12),

-l<a<0, -1l<¢+ac<0. (7.27)
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Consider then the grid L, in the &, n-plane.

£=x }
L: }, (7.28)
n=¢x+y+a }
where x,y take all integral values. Since we are supposing that

¢x + y + a does not represent zero, there are no grid points on the
g-axis. We readily see (as in [7]) that
k+(¢,a) = lim inf {|gn|; (&,n) a point of L, £ > 0}. (7.29)
The cell
c

0

Do

(0,a), B

0 (l=¢ + a)ﬁ

(0,1 + a), A0 = (1,9 + 1+ a),

by (7.27) and (7.28), generates the grid L, which has unit determinant.
Using the formulae (3.9), we can again construct a divided cell
Sl, of L, together with an integer pair (hO’kO) (as in [7], we may
use the convention, if necessary, that an axis may be considered as
part of any quadrant that it bounds). Continuing this process for
n 2 0, we obtain a sequence of divided cells {Sn}. However, the
algorithm does not apply for n < 0, since there are lattice lines
parallel to the n-axis. The results of Chapter III apply identically
for n 2 0, and by (3.13), the algorithm yields a sequence of pairs
{an+l’en}’ n > 0, which satisfies the relevant conditions in (3.26).

If we denote the vertices of Sn by (3.14), then we have,

d = [@a_ .. 38 .npeeees ] }
n n+l® n+2 }, (7.30)
g =
n [an,an_l,....,al] b1
and
) (_l)r c }
mo=2n +14+¢ =€ + ) nEn R }
= n n 2 r=1¢n+l¢n+2""¢n+r }



n"l r € n
(=1) "n-r-1 (-1)
1t ) =1 + }s

A =28 + 06 +1=c¢
n n n n r=1 n-1 n—2""en—r en—len—2"" 1}

Clearly en and ln are rational numbers, and the results are

consistent with the convention of Chapter III, whereby h 1 and k 1
are defined to be infinite, since COD0 is a segment of the nN-axis.
Consequently, the form fo(x,y) = x(¢x + y + a) is equivalent

to each of

t]
Se -1 (enx +y+ gn)(x t oyt nn), (7.32)

nn

fn(x,y) =

for all n 2 0, if
¢ = M, g = /¢ (7.33)

By a method similar to those of Chapter III and IV, the converse
result may alsoc be seen to be true. Any one-sided chain satisfying
(3.26) for n > 0, corresponds to a sequence of forms (7.32), (7.33).

It is easily proved that the lim inf in (7.29) need only be
extended over those grid points in the right hand plane which are
vertices of a divided cell of the chain {Sn}. By the nature of the

algorithm, as we have already remarked in Chapter III, An is either in

the first or third quadrants. Hence we wish to evaluate Iinl at
either An and Bn’ or Ch and Dn' We have already commented

that whenever the slope of AnDn is positive (and hence 3 41 > 0) then

An and An+ are in vertically opposite quadrants, while if AnDn has

1

negative slope (and hemnce a,; < 0), then An and An+ are in the

+1 1

same quadrant, Since A0 is in the first quadrant, it follows from

Theorem 3.6 that
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xt (¢,0) = 1lim inf M (7.34)
N+ o
where

{ min {M(l) (2)} if (-1)"2.a.....a_ <0 }

N i n 172 n }
Moo=y } (7.35)

? { min {M(a) (u)} if (-D"a.a.....a_ >0 }

172°""""n

In (7:35), we will denote the occurrence of the upper alternative by
Xn’ and the lower alternative by Yn.
Since the 1lim inf is required in (7.34), any behaviour
of the chain which gc:ﬁ:s only a finite number of times, will not effect
the value of k+(¢,a), provided the correct alternative is maintained.
If the rules for deciding which alternative to take at each

step of the chain are reversed, in (7.35), (define this value to be M;),

then we are evaluating |§n| in the left-hand plane. Put

kK ($,0) = lim inf M_ = lim inf |x(¢x + y + a)| }
n > o X > - @ }
= lim inf x|(¢x + y - a)] i . (7.36)
w4+ @
5 }
= k (¢,-a) b1

Suppose we have two chains which are identical from some point
onwards. Say the chain for (¢,a) is {an+l’€n}’ and the chain for

(¢',a') is {aé+l,e£}, where

a a'
ntr+l mtr+l

[ -
-

e!
ntr m+r

€

for some m and n, and all r > 0. Then it follows that

mt+n

{ k' e'a"), if (-1) a-..aal...al >0 )
k+(¢,a) = f i - (7.37)
+, ., v . m+n ' '
{ k (¢*,-a"), if (-1) a,-..aaj...a; < o }
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We will now discuss the application of two of the elementary
chain operations mentioned in Theorem 3.12, and their effect on the
value of k+(¢,u). A prime attached to a variable will signify its
value after the operation has been applied.
THEOREM 7.2,
(&) 1§ the sign of the {e } chain is neversed, then
R (67,a) = &' (4,-a) = £ (4,0,
(48) 14 the signs of the {an} chain, and alternate members of the
{en} chain, are neversed, then
R (¢7,0') = k' (¢,a) on k'(,-al.
PROOF.
(i) We have Bn = e;, ¢n S ¢;, An E —A;, woos —ug. Hence for all

n > 0, the application of this operation interchanges the values

(2)
a

. nd M£3). Consequently, although the

M(l) and M(q), and also M

n n
pairing in (7.35) is maintained, the alternatives Xn and Yn are inter-
changed, and the result follows by (7.36).

. » =_] =_' :’
(il) We have en Gn and ¢n ¢n. Suppose we have en en,
(either e_ = (-1)Fe! with n even, or € = (—1)r_15' with n odd).
_— r T — r r
Then un = u%, An = -lé, and it is easily checked, as in (i), that
the products within the alternatives Xn and Yn are interchanged.

If, however, En = —65, then we may show that the products
within the alternatives Xn and Yn are preserved. Ncw, since
_1)B 101 'ty = ¢_1)? _1yR
sgn ((-1) ala2....an) = (-1)"sgn ((-1) ala2....an),
it is readily checked that after the application of the operation, the

rules (7.35) constantly give either the same alternatives, or the
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opposite alternatives for the two chains. The result follows from
this.

Remarks.

(i) The reversing of a one-sided chain has no real meaning, but later
in the restricted form problem, we will see that this operation corres-
ponds to replacing f and P by g and Q in M+(f;P) (see (7.6) and (7.7)).
(ii) As a consequence of this theorem, if we are investigating both
the alternatives of a chain (e.g. the value of max {k+(¢,ta)}), then we

may arbitrarily choose the sign of some a, and e

4, Solution of the positive approximaticn problem by semi-regular

continued fractions

In this section we will determine the critical semi-regular
chains corresponding to those of Descombes in §2. Since the B;
(for r > -2) are reduced quadratic irrationals, Theorem 3.15 implies
that any rth critical chain must belong to the set of semi-regular
expansions that lead forward to one of the following numbers, as
complete quotient.

B' =8 -1, B +1=8, —P=-
r r r

B! B, -
r -8 B > (7.38)

r

or their negatives.

We will show that the appropriate semi-regular expansions for
the critical chains are those A-expansions of the Br (or their negatives)
indicated in (7.24), (7.25). 1In order to prove this we will require

the following lemma.

LEMMA 7.1, 1§ one of the following three situations arise,
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6 gyl = lag,l = 2.
(i) |an| = 2, |an+1| <6, aa <0
(Lid) Ianl > 100.
then, for L = n orn n-1, we have
max {M;} < 1/y = 0-352...
PROOF. By Theorem 7.2, we may suppose without loss of generality,

that a >0 and X > 0.
n n

(1) When a = 2, since A <1, Iu I < 1, we consider the follow-
n+1 n n

ing cases of (7.35):
(a) Bn < 2, ¢n < 2. By (3.25) and (3.27),

s (o, -1+ |x D¢ -1+ |u]) C ey - (g, - 1)
n - 4(6n¢n - 1) (en¢n - 1)

M < 1/3.

(b) en > 2, ¢n > 2. We have

* 6_¢
—Dnn_
oW - D i

(c) 6 >2, ¢ < 2. By a combination of the methods (a), (b),

+ 0.6 -1+ |u ] 8 (¢ - 1)
M <5t s D < 206 RO
nn nn

1/3.

(d) 6 <2, ¢ > 2. This follows as in (c).
Consequently, in any critical chain, we have |6n| > 3/2, and
> a
o | > ar2

When a1 = -2, since 3/2 < en <3, 3/2 « |¢nl < 3, then (3.27)

implies,
(6, - (¢ | + 1+ [u)

(1) M(2)
uCe_l¢ | + 1)

at Xn: min {Mn oM

} 5

) ;?n - 1)|¢nl) -1
o lo | + 28

< 1/3.
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&t i min {M(s) (4)}
(o, - L+ 0o | +2- fu]) oy +1+2a )¢ ]-1- I“n|)]
u(en|¢n| + 1) ) u(en|¢n| + 1)
( 6. (lo.| +1) e (o | - 1) )
u(en|¢n| + 1) ° 2(enl¢nr+ 1)

3(3/2 + 1) —§J _ 15
4((3)(3/2) + 1] * 107 " uy °

< max |

< max |

(ii) By part (i), we may suppose that -6 < a < -3, and

n+l
0 <A <1
n
at Xn: as in the proof of Theorem 3.9,
D) (2 = A el
min {Mn M } < u(e N 1y <
at Yn: consider the two cases;

when u < 0, then since 8 < 3, |¢n| > 2, we have

u(3) . (6, - 1+ 2o | +1 - |u]) . o (Jo | + 1) .9
n u(e_j¢ | + 1) u(e |¢ [+ D °

5

N
@

when yu > 0, we consider the three subcases;

al

(1) if |¢n| < 4%, then by (3.27),

y eyt i ade | -1 - Ju D e el -1 9
n u(eﬁ]¢n] + 1) 2(9 |¢ [+ 1) =76 °

(11) if |¢n| >4, and 0 <u_ <1, then

(3) _ fegl +2) o

M < < =3
n u(en|¢n] + 1) 26

(I1I1) if u < |¢n| < 7, and Hy > 1, then as in (I),

(5) _ 8ol - 2) 15
n 2(6 |¢ |+ 1)

M

Hence the result (ii) follows in all cases.

(iii) The bound 100 in the enunciation of this lemma is just a
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convenient number, which could be reduced to 6 with considerably more
effort.

When 0 < i < 0-39 Qﬂ, then since we may suppose from (i) that

l¢n| > 3/2, and so |6n¢n| > 150, we have as in the proof of Theorem 3.9,

= +2)e | (1-39)(150)

M < <
n u(en|¢n| - 1) (4)(149)

< 1/y.

When An > 0-39 Qn’ we have, since Woq An -2,

Mg N :n e: 2
%n-1 Onfpo1 %na
0:39)(a_ - 1) - 2
N ( )( . ) 37 | Gede.

2 T 1 TY)
n

Now, since |6n_1| > 3/2, and ¢n—l > 100, we may assert in all cases,

Mt < (Ien,1| i lknnll)(¢n—l SE 5 un-_l)
n-1 uCle ;¢4 - 1)

lo,_, 1{Co-6w)0p ) + 1)

2(]en_l|¢n_l -1)
(1+5)(65)
) AL

We have now concluded the proof of the entire lemma. As a
consequence, the situations (i), (ii), and (iii) cannot occur infinitely
often in any of the critical chains.

THEOREM 7. 3. The tail of the critical {an} chains consists of the
A-expansions of the B8,, as given by (7.24) and (7.25).

PROOF. We have already noted that the critical {an} chains are
among those semi-regular chains which lead forward to one of

B;, B; +1, if:rﬁr , or their negatives.
r

Suppose that {an} is an arbitrary semi-regular chain, which
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B'
leads forward to ET—ELi', for some r, r > -2.  New, by (7.22) and
r
(7.23), we have B; > 4, and so
B! n
- < == [2,2,2].
Br -1 3

Thus any such chain contains consecutive twos, and so, by Lemma 7.1,
the complete quotient 'ETE%‘I, (or its negative), may occur only a
finite number of times. i

Suppose then, that we have a chain which leads forward to
either B; or Br’ then we show that only their A-expansions from this
point on can be critical. Suppose that we have expanded B; or Br
in A.C.F., so that it equals, for some k > 0,

[al,az,....,ak,a],

where the a; will be 3, 5, or 6.

We will investigate the effect of changing the . to a - 1,

to give

-a
[al,az,..’..,ak - l’u - l].
Consider the following cases:
(i) 3. = A Equations (7.24) and (7.25) imply that o > 2, and

hence

a f T < 2; since 3 - 1 = 2, then Lemma 7.1 implies that this
change cannot be made infinitely often.
(ii) 3 = 5. Again by (7.24) and (7.25), o = [3,6,....], and using

the notation (2.18) and the transformation (2.19) twice, we obtain

o [3,(2)0,6,...],

and

Q
i
=
"

(1,1,4,.....),
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whereby

—— = (0,1,1,4,....),

and

1
a-1 o -1

= [2,3,(2)3,....].

Since the 3 leads without choice to consecutive twos, then this
chain segment cannot be part, infinitely often, of a critical chain.
However, if we choose the lower alternative and change the 3 to 2,
then we will again violate Lemma 7.1,

(iii) Ek_i_g‘ If a = [3,6,....], then the result follows exactly
as in part (ii). If not, then from (7.24) and (7.25), we readily see

that o = [3,3,a,...], where a is either 5 or 6.

Following the method of part (ii), we obtain

1
a -1

= (0,1,1,1,1,a - 2,1,....),

implying

o
a -1

= [2,3,3,(2)a_3,3,....].

Clearly we cannot leave (infinitely often) the consecutive
threes, since they lead to consecutive twos, nor can we change the
first 3, without violating Lemma 7.1. However, using the same method,
we find that

[3,(2)a_3,3,...] = {2,-(a - 1),...],
which contravenes Lemma 7.1, whether -(a - 1) is changed or not.

Thus we have shown that we cannot deviate from the A-expansion
of Br (or B;) infinitely often, without implying, for the correspond-
ing ¢ and a,

k¥ (e,0) < 1/v.
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Consequently the tail of the critical chains must be given by the
semi-regular expansions (7.25) (or their negatives). Associated with
these a-chains will be a corresponding e-chain, which we will determine
later.
LEMMA 7.2. For Lange enough n, the e-chain for critical chains
(£) 4is alternating in sign if {a } has 6, as its tail,
(44) has constant sign if {a } has -8, as its fail.

n
PROOF. Since, by Theorem 7.2, (ii) follows from (i), we may

suppose that a > 0, for all n > N. By the form of the relevant
expansions, if n is large enough, we have en¢n > 4, and so,as in the

proof of Theorem 3.9,

(Sn - |)‘nl)ct’n
4(e ¢ - 1)
n'n

min {M;} < < 1/3,

Since a > 0, then the cases Xn and Yn will alternate with successive
values of n; hence, so too will the sign of An, in order to maintain

the products containing the factors (en t 1+ IAn|).

COROLLARY. The appropriate products, forn Large enough n, are:
o * 1+ Iyl 1 - ]

4,9, 1) i
and i (7.39)
oy = 1+ Iayl1th] - 1+ I )
4[Pn¢n|— 1 ’ }
This follows immediately from (3.25), (7.35), and the previous
lemma.

LEMMA 7.3. In ay oultical chain, for n Lange enough, wheneven

@iy = 3, 5, on 6,
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then
Ienl =1, 1, on 2, nrespectively.
PROOF.
(i) When a4 s 3, the result follows, since € must be odd.

(ii) When a

ntl S5, by (7.25) and Theorem 7.3, we have a chain

segment

[...,6,3,3,5,3,6,...3s
If |En| =3, then |u | >3+ 1/¢ . >3%, and 2| <2, o > 2%
¢, < l9/u. Thus, by (7.39),

+ 3 - 2°75 . N
M; < (enu(eii:n— 1) 2 < u[(zfg)?ifgsi)- = e
Consequently, Ienl = 1.
(iii) When a1 T 6, then we have a chain segment
[...,3,6,3,...1].
If Isn} = 4, then as in the previous case, lun[ > 4, Ilnl < 2,

¢n < 23/4, and Gn > 2%, implying

+ (5+5)(2+5)

U < w[2-5)(5-75) - 1) < Y-

If Bl E 0, then using the method of the proof of Theorem 3.9, we have,

since en+ > 55, ¢ > 25,

1 n+l

ut < (8nyy + l%n11l)¢n+1 é Oy * Doyyy
n+l u(e - 1) 4(9n+l¢n+l - 1)

(6-5)(2-5)
5((5-5)(2°5) - 1) < M-

n+1%n+1

The lemma now follows in full.

Consequently, if n is large, the € associated with the a 1

in a critical chain is automatically fixed by Lemmas 7.2, 7.3. We
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may therefore consider the blocks A, B, C, of (7.2k), to be blocks of
integer pairs. We may now state the following result.
THEOREM 7.4. Suppose we have a one-sdided chain pair which has as
its tail the A-expansion of B,, for some 2 -2, given by (7.24) and
(7.25), (on any chain obtained §rom such a chain pairn by applying one
0f the operations of Theorem 7.2); +then for the corresponding ¢ and

a, exactly one of k (o,a) on k' (6,-a) has the vatue 1/y, (defined

Y
in (7.21)), while the other has a value Less than %.

This result follows from Lemmas 7.2, 7.3, and Theorems 7.1,

7.3.

5. Supremum of values taken by M*(£)

If £ is any I-reduced form given by (7.1), then there corres-

ponds a grid L, as in §1, of this chapter. From (7.4) to (7.9), we

obtain:
M+(f;P) = inf {IEnI; (E,n) a point of L, & > 0} }
}
M (£3P) = inf {IgnI; (£yn) a point of L, & < 0} }
2 .o (7.40)
M (g;Q) = inf {|&n|; (&,n) a point of L, n > 0} i
M (g;Q) = inf {|&n|; (£,n) a point of L, n < 0} }

Because the rules, (3.11), for moving from cell to cell by the
algorithm are the same for each modification of the general method, so
too the rules for determining which pair of vertices is in the right-
hand plane remain unaltered. Thus if An is in the first quadrant for

some n, then the sign of a completely determines the quadrant of

+

Ar+l’ and the sign of a determines the quadrant of A Now A0

n-1°
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is in the first quadrant, and so we may evaluate M+(f;P) by a similar

set of rules to (7.35). It is clear that

M (£:;P) = inf M;(f;P), (7.41)
n
where

Mt (f P) = min {M(3) gu)}; %

+ { min {M(l) gz)}, if (-l)nal....an <0 }

ifn >0, M(f;P) = { ( ) (u) = }
. { min {M }, if (-1) ay...0a > 0 §(7-42)

}

+ { min {M(l) (2)} if (—l)na a_j..a < o}

ifn<o0, M(£f;P) ={ (3) (q) }

n { min {M }, if (- nt aga_y--a ., o}

Again we will refer to the upper and lower alternatives at the
nth step as Xn and Yn respectively. By consistently reversing the
rules (7.42), taking X, as starting point (and M (£;P) = mln{M(l) (2)})
we may calculate M (£;P), and consequently M*(£;P), from (7.8), (7.9),
and (7.10). In fact, the chains for g, Q, of (7.6) and (7.7), may be
determined from the following lemma.

LEMMA 7.4. 14 the doubly infinite chain pair {an+1’€n,} 48 nevensed
about some point (say n = 0), then the chain obtained corresponds to
the foxm g, and the point Q, of (7.6) and (7.7).

PROOF. For a step n, in the original chain, there corresponds a

step n' in the resultant chain such that

en = ¢n' i ¢n = en'

Ap = Hpr oo - A -
(i)

Consequently, the groupings as a whole, of the four products Mn , are

preserved (for some other value of n), but, however, their order is not.
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(2)

In particular, the values Mn

(3)

and Mn are interchanged. Now, as we

have already noted in Chapter III, M§l), MSZ), Mgs) and M;u) are

J J

derived from Cj’ Dj’ B. and Aj’ respectively. Thus at the alternative

3
Xn' in the reversed chain, we are evaluating the products of the
coordinates at Cn and Bn’ vertices of the nth divided cell in the grid
associated with the original chain. Similarly, Yn' corresponds to an
evaluation at An and Dn' The result may then be checked in all cases,
it following from (3.25), (7.8), (7.9), and (7.42).

In 84 of this chapter, certain results were stated, which
involved the lim inf of one-sided chains. We will now deduce from
these various results on the infimum of two-sided chains. We will use
the following obvious extension of the notation used in Chapter II.

[“(al’a2""’an)"""]
Consider the following chain pairs, where {en} is chosen in

accordance with Lemmas 7.2 and 7.3, and the blocks A, B, C, are given

in (7.24):
C_,: Lofn] i
c¢  La(B0)] }
} (7.43)
CO: [Bol] }
}
C.: [(A(BC) el (r > 1) }

THEOREM 7.5. 1§ the chain painr C, (n2-2), comnesponds o a

§osm 511, and a point P,L = P,L(x,l,yn), then
max {Mt(ﬁn;Pn)}= A/Yn; (7.u44)
fuwithesmone, 44

01
9y = 6a[, 0], and 9, =9, 1ly,,x1], (7.45)
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max {Mt(g,L;%L)} s oy, (7.46)
whenre equality holds if and only Lf the chain C, 48 symmetrical
{identical with its inverse). 1 equality does not hold, then we may
neplace the night-hand side of (7.46) by 4/y.

PROOF. It is clear from Theorems 3.11 and 7.4, that if the infimum
in the definitions of Mi(fr;Pr), were replaced by lim inf, then (7.44)
would hold. But the chains Cr are totally periodic, and so there are
only a finite number of different values for the Mii)(fr;Pr).
Consequently, the infimum will equal the lim inf, and so (7.44) follows.
By Lemma 7.4, the chain pair associated with g, and Qr’ will be

the reverse of the chain Cr. In the case of C_, and C0 (the only

2
symmetrical Cr), equality will clearly hold in (7.44). But for r = -1
and r > 1, Cr is not symmetrical, and its reverse provides a new
periodic chain; any right-hand half-chain derived from this chain

can never be one of the critical chains of Descombes. Thus equality

in (7.46) would contradict Theorem 7.4, as would equality with any

constant exceeding A/y, on the right-hand side.

(g . -
COROLLARY. M (6nfpn) = A/yn.
This is immediate upon (7.10).
* -
THEOREM 7.6. M (6&) = A/Yn'
PROOF. We may suppose that fr(x,y) is given by (7.1) where

$ =8, ©6=1/3,

r

¢ being the algebraic conjugate of ¢. Then the chain for fr and some

other point S, incongruent mod 1, must contain a semi-regular expansion
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of ¢, as a right-hand chain (together with an associated e-chain).
Now the theory of §4 clearly shows that the A-expansion of ¢, with its
particular e-chain, must be taken if the infimum of the chain is to be
greater than A/y. Hence the lim inf of the chain does not exceed
A/y_,s implying
Mt(fr;S) S A/,

for all such S. Similarly, M*(g.;S') ¢ A/y,.. The result follows by (1.11).

We will require the following lemma, which will enable us to
construct from a two-sided chain with a certain infimum, a one-sided
chain with an arbitrarily close lim inf.
LEMMA 7.5, 1§ H 48 a finite set of integer pains, and {an+,,en}
any inginite sequence whose elements are taken §rom H, then for every
integern 4§ > 0, there exists a block containing § integer pains of H,
which occuns infinitely many times in the sequence {an+1,sn}.
PROOF. The lemma is clearly true for j = 1. Assuming the truth
of the assertion for j = k, we have that there exists a block of k
members of H which occur consecutively in the given sequence, infinitely
often, But each of these blocks can be followed by one of only a
finite number of elements of H, one of which must then occur infinitely
often. Thus the result holds for j = k + 1,
THEOREM 7.7. Forn all fonms that do not nepresent zeno, say f§,

we have

274
M*(ﬂ) < 7@77 .

Suppose that § is not equivalent to the §omm f_p 0f Theorem 7.5, then

W (§) < o/v_; = 7oy
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whene equality holds fon fomms equivalent to f_q-
IEEKH} Suppose C is any two-sided chain pair which is not identical
to C_2. Then C is one of the following three types:
(a) C does not contain the sub-chain [...Anl.
(b) C = [XA_,], where X is a one-sided chain which does not contain
the sub-chain [ A...].
(¢) € = [AYA_1, where Y is a finite chain segment not equal to A, for
any positive integer n.
Let f and P correspond to the chain C, and suppose
M+(f;P) = pA.
Then for all n, we have
M'(£:P) = M > oa.
Assume, for an appropriate €, that
0<e<p- (l/y_l). (7.47)

After Lemma 7.1, we have that Ienl and |¢n| are bounded in the
interval (1+5,101). Thus we may apply Theorem 3.11, and the constant
implied by the O notation is independent upon the particular chain
segment under consideration. There therefore exists an integer m,
with the property that the respective products belonging to the centre
of a common chain segment of length 2m from two chain pairs, differ by
no more than €.

Now, in the cases (a) and (b), C must contain some chain segment
different from A, which occurs infinitely often. Consequently, by the
method of Lemma 7.5, there exists a block, D say, of length 2m, and

containing this segment, which occurs in C infinitely often. 1In the
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case (¢), let D = Agp:

Consider the cne-sided chain C*, given by

c*: [(D2)e1, (7.48)
where in the cases (a) and (b), Z is a chain segment which separates
two blocks D, whereas in the case (c), let 2 = Y.

Since every step of the chain C* (far enough along) is the
centre of a chain segment of length 2m which also appears in C, then it
follows from (7.35), (7.42) and (7.47),that, for some ¢, a, correspond-
ing to the chain C*, (suitable Z will preserve the alternatives in D),

k' () 2p - € > /y_y-
But C¥ is not one of the critical chains of Theorem 7.4, and so this is

a contradiction. The theorem now follows.

6. Other results for M*(f)

The obvious question to be asked now is whether M*(f) takes
only the discrete values A/Yr’ (r » -2), greater than VAR In the
previous section we have seen that for certain equivalence classes of
forms {fr}’ we have M*(fr) = A/yr. But it seems certain that there
are doubly infinite chains, other than the Cr of (7.41), for which
M*(£) > A/y.

To enable such results to be obtained, it seems as though we
would need lemmas of the type Lemme 28 ([24], p. 349), whereby the
products at certain "privileged" points of the following chain segments

are compared;

...A(BC)jA(BC);A..., 0<ix<i',

...A(BC)j,A(BC)i,A-.-, 1<j<i.
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It is probable that the identical results would follow through for the
semi-regular algorithm, by the same involved type of argument used in
[24] (pp. 326-355). If this were so, then chains of the type

[w(A(BC)i)(A(BC)j)m],
for corresponding f and P, would have M+(f;P) < Ay, for i > 3j, and
limninf M;(f;P) £ A/Yj, for i < j. The question as to whether A/Yj
is approached from above or below could be settled by detailed, but
straight forward analysis of the type needed for Lemme 28 of [24].
Limitations of space prevent such an investigation from being under-
taken in this thesis, but it seems reasonable to conjecture that
A/Yr are, in fact, the only values exceeding A/Y, taken by M*(£f).
For example, if {ri} is a finite, strictly increasing sequence of
positive integers, with k members, then it would be consistent with
[24] to conjecture that the chain
[w(A(BC)rl)A(BC)rz....A(BC)rk_l(A(BC)rk)m]

has infimum equal to A/Yrk.
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CHAPTER VIII

AN UPPER BOUND FOR THE CONSTANT K

/5 + 1
2.__

1. Semi-regular expansions for

In this chapter we will demonstrate the method of §3, in the

previous chapter, in evaluating k+(¢), given by (1.8), where ¢ is

/5 + 1
== .

equivalent to By (1.15), it is clear that
HORES

Godwin [30] proved that k' > 0°1407... We will prove that

k+[/§‘; 1) = 35 - 5 . ge1708...,

10
implying from (1.16), that

¢t < x' < 0-170s...,
which improves Godwin's bound of 0°2114...
Now since ¢ is reduced, Theorem 2.15 implies that every semi-
regular expansion of an equivalent number to ¢, has as a complete

quotient one of

/5 1+ 1 /5 + 3 $ V5 + 3
¢ = 5 V=9¢0+1= 5> 1% " 32 ° -¥,
or their negatives. But
v = [3,¥] = [2,-2,-¥]. (8.1)

Consider the blocks

A = [3], B = [2,-2]
(8.2)

[

¢ =[-2,2], b = [-3]
Thus any expansion of an equivalent number to ¢, leads eventually to

the following blocks alone:
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AA, AB, BC, BD, CB, CA, DD, DC. (8.3)

By the symmetry of the blocks, it is clear that, for large
/5 + 3 V5 + 1
5 and % 2

also takes values which are arbitrarily close (as n + «) to these four

enough n, ¢n takes only the values % , while en

numbers.

2. Investigation of certain block sequences

LEMMA §.1. The occwrrence, infinitely often, 04 AA, where the two
accompanying values of the e-chain have the same sign, implies for a

corvesponding o,

b (/- + 1

)<3/§-5
10

PROOF. Suppose a_ = a = 3, and without loss of generality,

by Theorem 7.2, € 1°~ € 1.
By (3.27),

¢n+]—l=/§"l
¢n+l :

u - 1] <

Similarly

V5 -1
2 -]

1im A - 1] <
app: n n

where app. n means the limit is taken over those appropriate n for

which a_ = a = 3, and ¢ = ¢_ = 1. Thus at either alternative
n n+l . n=1 n
lim inf M < ((V5 + 3)/2 - 2 + (V5 - 1)/221[(/§+ 3)/2 + (V5 - 1)/2)
. n (/s + 3)¢ - 4
_35 -5
10 '

COROLLARY. The same result holds fon the block DD, whene the
associated E, e 04 opposite sign.

This follows from the lemma, and Theorem 7.2.
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LEMMA §.12. The ocewrence of the block BC, infinitely ogten,

implies that
+ /5 + 1 3/5 -5
k(= ’ta)sT'
PROOF. Suppose that a =a. . = -2 then we have a chain segment:

i 22 20 Dhusne
i0:0, 0, O, Osus

Suppose that there are infinitely many such n, forming the sequence

. /5 + 1
{nk}. Then, since ¢nk+l = " 3
n, +1 " L s 5
= < =
lu I lTn +lI 2 )

e S k ¢nk+l

Similarly
Ln o | <3255
k > o nk

Hence it follows that

.. s ((V5 + 3)/2 - 1 + (3 - V/5)/2)2
l;m+}2f Mnk s (V5 + 3)¢ - &
_3/5-5
- 10 :

COROLLARY. The same nesult holds gon the bLock (3.

This follows from the lemma, and Theorem 7.2.
LEMMA §. 3. The occwuvrence of the block ABD, .infinitely ogien,
with a = 2, and €2 and €

h+(/§'; I,ta) p 3/§;- 5 .

t1 0§ opposite sign, implies

PROOF. We may suppose without loss of generality that €1 - 1t

Then consider the chain segment:
. 3, 2, "2, -3---
son=ly 0L Oy Lerew
V5 + 1

Now, w, > 0, 0« ln < en -1, and ¢n B we e, Again let such n
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form the sequence {n}. Hence

(6 -1 -2 )Cey | +1-uy)
Dy k+® Pk koo l}(ankw)nkl )

(V5 - 1)(/5 + 3)
8Y5(v5 + 1)

_ 1
_Wg.

at X : 1im inf M® < 1im inf

e ey 1 xnk)(l¢nk! - 1=y )
at Yn : 1lim inf Mn < lim inf 5(0 |¢ } + D)
k k > k k =+ o nk nk

((/51- 1)V/5 - 1)
4vs(vYs + 1)

5 - V5
20 °

COROLLARY. The foflowing chain segments cannoit oceur infinitely

often:
... 3, 2, -2, -3.. }
e..=1, 0, 0, 1.. }
.ee 3, 2, -2, -3... }
oo 1, 0, 0, -1 }
(8.4)
.~3, -2, 2, 3., }
1, 0, o0, 1... }
ee -3, =2, 2, 3... }
«..=1, 0, 0, -1... }
This follows from the lemma, and Theorem 7.2.
LEMMA §.4. The only posaible chains for which
g2ty 3-8
/e
are those whose tail A
[AnIBQaZCAnsBDh4C.....], (8.5)

whene {"i} 45 a scquence of posditive integerns, and the e-chain 4s
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chosen 80 that none of (8.4) occur infinitely often, and Lama 8.1 is
not contravened.

EEQQE: Clearly we cannot have [A,] or [Del, since, by Lemma 8.1
and its corollary, this would contradict the conditions (3.26), for

large n. The result now follows from (8.3) and Lemmas 8.2 and 8.3.

3. Evaluation of k+(

/5 4+ 1
2

THEOREM §.1. Suppose the sequence {n.} in (8.5) tends to inginity,
then forn the comresponding a,

/3-"'1 )_3/3-"5
—z % 770

PROOF. Suppose that i is arbitrarily large, and a = 2, say, then

M

consider the chain segment

...CA_ BD “es
i Piyr

which consists of the following integers, putting v = r;+l,

coww B5teeed 2, =2, =3 .00=300e

e PN (0 [ Mlyrenes o (8.6)
As usual, let {nk} be the sequence of such steps in the chain
i = = i froi i
(i.e. where Iankl |ank+l| 2). It is clear from the sign pattern

of the chain that at each such step, the two appropriate products will

correspond. In the chain segment (8.6), we have An <0, w2 0.

Hence at the sequence of alternatives corresponding to the choice Yn:

1

(le + 1)(|¢ - 1)
I "k' l nk] <
= 4v5 °

+
1im inf M < 1lim inf
k &> o nk_ k + l']'(lenk‘i’mkl + l)

Thus it is clear that the appropriate alternative at each step is the

one which involves the factors (lerl t ]+ Ilrl).
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Now, since r. + o, it is readily checked that

. 5 -
lim |u_ | = lim (e ] -1)= 5 x s
k > nk k > o nk
and
lim IA l = J§'; L .
k > o nk
X (1) (2) . i

It may be shown, as in Chapter V, that M > M » if and only if

n n
|4 1
6, + 'Anl < 1—:—?;;1-; but we have

lim (Ienkl + lxnkl)(l - lunkl)/|¢nk| =5 - 2/5 < 1.

k> o
Thus
(fle_ -2+ bde |+1-]u D
. + = . nk nk nk n_k
lim M = 1lim ([0 T+ 1)
k + = Dy k + n¢n
k "k
_ 35 -5
T 10
Now, re-defining n, let us suppose that a, =a = 3, and
€1 = " T 1. Then Yn is the relevant alternative, and so by
(3.27),
6_+ 1+ A -
MO RN Bl > 21 5 3J§; 5
n n¢n ¢n
Now € is either followed by €41 = 1, in which case |un| > 1,

or by two consecutive zeros, whence

u 2(/5 - 1) 7 - 3Y5
=1 - =1 - |[—nD+2 1 - = ] - L R
g | LY S 1trenl - 5+ 35+ D) 2

A similar result holds, in the limit, for IAnl. If {n} is the

sequence of such n, then

(3)

lim inf M > lim inf
k + o e k > o q(enkq’nk - 1)

(enk - (7 - 3«%)/2](¢nk - (7 - 3/5)/2)

_ (/5 - 1)2 L35 -5
7575 + 1) i
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By Theorem 7.2, this also covers the cases when a =a = =3.

Let us now consider the step where a =-a =2, a = 3,

n-1 n n+l
w(1) ¢ (2
s n

and I 1. As before, , if and only if

K
lenl + lln| < ﬁT—ELI - For the appropriate sequence {n }, we have
n
. _ 305 - 1)
kl-l>m°° (lenkl + l)‘nkl)(lunk' - l)/l‘.bnkl =g L
B e e by Dl [ by D
) =1+ |X -1
1im ko3 . 3 %k ) Py . 2(/5+1) 85 -5
e e u(lenk¢nk| - 1) T V5(V5 ¥ 1)2 10 .

By Theorem 7.2, there only remains to investigate the steps for which

a =3, a, =2 with e , =1. Clearly, for the appropriate {nk},
o, o Ueg T-1e iy DX, -2 - e, D
lim M = 1lim man D)
k+o "k koo ! nk¢nkI
(/5 + 1)(¥5 -1) _3/5-5
Vs(v¥s + 1)¢ 10  °
The complete result now follows.

THEOREM §.2. Suppose that in (8.5] {ai} —+ & then fon the

cornesponding q,

{2+(/§+1+)<3/§-"5
7ol s T
PROOF. Let {n} be the sequence of n for which Ianl = Ian+1| = 2.
(i) Suppose that {ri} is eventually constant, then
/5 -1
[u | = ¢ < and lim |A = .
nk 2 ® k+mlnk|
1f ¢-'/§;1, then
2 _ - 2 -
lim Mf =¢ (1 z) <3'/I3 3

nx L(4 + 1) 2 :
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(ii) If {ri} is not constant then there are infinitely many J,

£ i < . = i 1
for which rj rj+l Let a 2, in the segment

...(3)rj, 2, -2, (-3)rj+l...

Clearly

/5 -
] < ful < Bt

and the result holds by the method of €i).

COROLLARY.
+ V5 + 1, 2/5-5
k| 2 b= 10 ‘
PROOF. This follows immediately from Lemma 8.4, and Theorems 8.1,

and 8.2.
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