CENTRES, FIXED POINTS AND INVARIANT INTEGRATION

by

Thomas James Cooper, B.Sc. (Hons.)

Thesis submitted for the degree
of Doctor of Philosophy at
The University of Adelaide.

Submitted December, 1973.

Department of Pure Mathematics.

171976



Chapter

= W N

TABLE OF CONTENTS

SUMMARY
STATEMENT
ACKNOWLEDGEMENTS

INTRODUCTION

THE RADIUS DEFINED CENTRE

THE QUOTIENT DEFINED CENTRE

COMPACT SEMIGROUPS OF BOUNDED
CONTINUQOUS MAPPINGS

LOCALLY COMPACT GROUPS

BIBLIOGRAPHY

(1)

Page

(11)

(v)
(vi)

32

66
77

97



SUMMARY

In this thesis we are interested in fixed point
Theorems and their relation to the existence of right invar-
iant integrals on compact and locally compact groups and
semigroups.

We construct two types of centre for non-empty
convex compact sets C and use these for fixed poilnt
Theorems.

For the first of these, the radius defined centre,

we consider a normed vector space, endowed with a locally
convex Hausdorff topology J such that the norm 1s lower
semicontinuous with respect to J. The centre 1s shown to
be non-empty. The norm is then assumed to be locally uni-
formly convex and the centre shown to consist of one poilnt.
These properties of the centre are used to show that any set
# of non-expansive mappings of C onto C has a common
fixed point in C and any left reversible semigroup of continu-
ous (with respect to 7) non-expansive affine mappings of C
into C has a common filxed point in C. By the construct-
ion of a special norm, the first of these Theorems is
applied to show the existence of a right invariant integral
. on a compact semigroup. A counter example where the centre
equals C is also constructed.

For the second, the guotient defined centre, we

consider a vector space X with a locally convex metrizable

(11)



topology 7. When C contains an internal point the
centre is shown to exist and be a non-empty proper subset
of C. C is then assumed to have quotient structure and
it is shown that any set ®# of 1:1 affine mappings of C
onto C has a common fixed point in C and any left
reversible semigroup of continuous 1l:1 Affine mappings of

C into C has a common fixed point in C. Both these
Theorems are applied to show that any non-empty convex
compact subset C of the n-dimensional Euclidean space RD
contains a common fixed point for any set of affine mappings
of C onto C and, also, any left reversible semigroup of
continuous affine mappings of C into C. Furthermore it
is shown that any strictly convex subset of X, the set of
end points of lines through which is closed, and, when X -
also has a norm, any uniformly convex subset of X contain'
common fixed points for the mappings of H.

Sneperman's fixed point Theorem is used to show the
existence, on a locally compact metrizable space X, of an
integral which is right invariant under a left reversible
semigroup of bounded continuous mappings of X into X,
which satisfy certain compactness conditions. For a
locally compact topological group G with a countable basis,
a non-empty convex weakly compact subset T of positive
linear functionals on Co(G), the space of all real valued
continuous functions on G with compact support, is con-

structed and shown to be right invariant under the group
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operations. No fixed point Theorem giving a common fixed
point in T for the group operations has been found, but
an interesting comparison is made with TI', a subset of

bounded members of T.
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CHAPTER I
INTRODUCTION

For a locally compact semigroup G, GCo(G) will
denote the linear space of continuous real walued functions
f on G, with compact support spt(f) and with norm
defined by

BIARSIE

The algebraic dual A ¢onsists of all linear functionals
N on Co(@) and is assumed to be endowed with the weak
topology, the basis of whose open sets at the origin is

the collection of sets of the type
U(0,A,e) = jue A |u(f)] < e for all fe A,

where & is any positive real number and A is any finite
subset of Co(G)e Each of the positive A in A can be
considered as an integral on G.

For each ae G and fe Co(G), a mapping fa,

which belongs to Co(G) if there are suitable compactness

conditions on G, can be defined by
fa(x) = f(xa)

for all xe G TLet ® denote the semigroup of all
transformations T, of A into itself, where T, is

defined, for each ae G, by putting

TaN(E) = N(£fa)



. 2e
for all A€ A If N\ 1is positive end such that

Ta,?\ =N

for all ae G, then N\ 1is considered to be a right
invariant integral on G. In a similar manner a left
invariant integral can be defined. Furthermore, if an
integral is both left and right invarient, it is called
invariante.

If 2 1is a set of mappings of a subset C, of a
space X, into C, then a point x in C is said to Dbe

a common fixed point, in C, for the mappings of L, 1if
Lx = X

for all Le £. Fixed point theory is concerned with the
weakening of the conditions on £, C and X necessary to
prove the existence of the common fixed point. Usually
2 is, at least, a semigroup of affine maps, C is a non-
empty convex compact subset and X is, at least, linear,
Hausdorff and locally conveXe

The existence of invariant integrals and the exist~-
ence of fixed points are related.

# is a set of mappings of A into itself. There-
fore, if a nonempty convex compact subset T of positive

members of A ¢ an be constructed such that
T, CT

for all ae G, and the conditions on #, T and A
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satisfy the requirements of a fixed point Theorem, then
there is in I a common fixed point for the mappings of He
This common fixed point is a right invariant integral on Ge
Tn many cases too, the existence of invariant integrals
leads to the existence of common fixed pointse.

The theory for the existence of invariant integrals
on locally compact semlgroups is fairly complete. The .
work of J.He Michael [17], P.S. Mostert [21] and
L.N. Argsbright [ 1] has shown that a locally compact semi-
group G, satisfying a condition to ensure that £3 be-
longs to Co(G) for each fe€ Co(G), admits a right
invariant integral if G contains a unique minimal left
ideal (which is necessarily closed).

The theory for the existence of common fixed points
is not so complete. The most general Theorems, Sneperman
([24]), C. Ryll-Nardzewski ([23]) and R.D. Holmes and
A.T. Lau ([14], and [15]), require conditions of equi-
continuity, non contractibility (0O does not belong to the
closure of the set {Lx-Ly/L € £} for any x and ye O
guch that x # y) and asymptotic non expansiveness (there

exists a left ideal J in £ such that
p(Lx-Ly) < p(x-¥),

for all x and ye C, Le d and D€ Q, the collection
of seminorms generating the topology of X)e Although

the first of these theorems has been used to show the
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existence of a right invariant integral on a compact semi-
group, it does ndt seem possible to use any of them to
show the existence of a right invariant integral on a
locally compact semigroup or a locally compact groupe

To this extent, fixed point theory has not caught up to
the knowledge of i:;lvariant integrals.

It should be noted that many of the most recent
papers on fixed point theory consider the "action" of a
semigroup on C, but because the interest in this thesis
lies with Theorems that can be applied to show right
invariant integrals on semigroups, the concept of "action
will not be introduced. Those interested may see Holmes
and Lau [14].

The relation between fixed point Theorems and
invariant integrals has received a great deal of attention
and has stimulated the production of more general fixed
point Theorems. The work of M.M. Day [ 5] and [ 6],

T, Mitchell [19] and A.T. Lau [16] gives a good intro-
duction to this work.

The above is a brief outline of the present state
of fixed point theory and invariant integration. This
thesis interests itself in fixed point Theorems and their
relation to the existence of a right invariant integral
on a compact or locally compact semigroup.

The three papers that have given direction to this
thesis are those of Sneperman [24] and M. Edelstein [10]
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and [11]. Sneperman generalized Kakutani's fixed point
Theorem (see page 457 of [ 9]) to make it applicable to
compact semigroups (see the beginning of Chapter I for a
statement of this Theorem). He then constructed a non-
empty convex compact subset T in A which he showed was
invariant under H. H was shown to be weakly equi-
continuous and the fixed point Theorem used to show the
existence of a right invariant integral on the compact semi-
group. Edelstein in the first paper [10] constructed an
asymptotic centre for a bounded sequence of points {un} in
a closed convex subset C of a uniformly convex Banach

space X. For each positive integer m, he defined

ra(x) = sup{|up-x|/n > n}

for each xe C and let g, be the unique point in C

such that

ra(8p) = inf fry(x)|xe Cl.

The sequence f[a,| was shown to converge to a point a in
C, this point being the asymptotic centre. He then showed
that for a function f of € into itself, the asymptotic
centre of the sequence {f"(x)} in C, for some xe C,

is a fixed point of f, if f also satisfied a special
nonexpansive property which takes account of the x chosen.
In the second paper [11], he has further generalized this
Theorem and used it to show that a commutative family of

mappings, which satisfies a special non expansive condition,
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has a common fixed point. We have, in this thesis,
extended the concept of centre to find fixed point
Theorems and used a method of application similar to
Sneperman's.,

One type of centre is discussed in chapter 2 of
this thesise We consider a normed vector space X,
which is also endowed with a locally convex Hausdorff
topology such that the norm is lower semicontinuous with
respect to 7, and a nonempty convex subset C of X,
which is bounded with respect to the norm and compact
with respect to Je Then a concept of radius is used to
define a centre of C, which is shown to be invariant |
under any set of non ekpansive mappings of C onto C.
When the norm is locally uniformly convex, the centre has
only one point. This yields two fixed point Theorems,
the first of which is sufficient to show the existence of
right invariant integral on a compact semigroup, using a
special norm on A. Hence in this application, the
Theorem is as good as the best of the others presently
known. The second fixed point Theorem is similar to the
rirst and also is applicable to show the existence of a
right invariant integral on a compact semigroup.

A second type of centre is discussed in Chapter 3.
We consider a vector space X with a locally convex metriz-
able topology and a nonempty convex compact subset C of

X, which contains at least one internal point. A
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quotient concept for lines thfoﬁgﬁ C 1is used to define

a centre of C, which is independérnit of any norm or other
topology on X. This centre is shown to be invariant
under any set of 1:1 affine maps of C onto C, but only
to exist when C contains an internal point. This also
yields two fixed point Theorems, when the set C satisfies
a condition called quotient structure (for something
similar see normal structure in Brodskii and Milman [3 ])e
These Theorems are applied to the n-dimensional Euclidean
space R!® to show that any nonempty convex compact subset
C of R" contains a common fixed point for any set of
affine mappings of C onto C or any left reversible
semigroup of continuous affine mappings of C into Ce.
Furthermore, in the general theory,when the set C satis-
fies certain convexity properties, 1t 1s showri.to cOntaln«
at least one internal point and the centre is shown to con-
sist .of only one point which yields two further fixed point
Theorems. The interest in thls chapter is that the

fixed point Theorems result from conditions on the set C,
not on the mappings and that we seem to be following a new
direction in which the fixed point is constructed independ-
ently of the topologye.

In chapter L we apply Sneperman's fixed point

Theorem to show the existence, on a locally compact
metrizable space X, of an integral which is right

jnvariant under a left reversible semigroup of bounded
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continuous mappings of X into X which satisfies certain
compactness conditions. In chapter 5, we construct a non-
enmpty convex weakly compact subset I' of positive linear
functionals on Co(G), where G is a locally compact
topological group with a countable basis, and show that T
is invariant under H, the group of transformations. A
fixed point Theorem which would give a common fixed point
in I' for the mappings of # has not been found, but
T, a subset of bounded members of T, .is shown to be
nonemnpty,convex,weakly compact and invariant under H,
yet not to contain the right invariant integral (i.e. the
common fixed point for the mappings of H)e This
demonstrates the difficulty of finding such a fixed point
Theorem and is interesting for further research, because
it shows that the fixed point Theorem applicable to the

locally compact group must include I' but not T,
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CHAPTER 2

THE RADIUS DEFINED CENTRE

The work in this chapter was done jointly with
J«He Michael.

Throughout this chapter, X will denote a normed
vector space which is also endowed with a locally convex
Hausdorff topology J, such that

(i) the vector space operations are continuous
with respect to J 1in the usual way, and

(ii) the norm is lower semicontinuous with respect
to 7 1in the following sense:l

for every xe X and & > O, there exists a
Ue 7, such that xe U and
Iyl > |x| - e
for all y e Us.
C is a non-empty convex subset of X, which
is bounded with respect to the norm and compact with respect

to Je For each xe C, define

p(x) = B2 |xegl. (1)
Put a(C) = 125 r(x) (2)

and let +«(C) denote the set
fxe ¢/ r(x) = a(C)}. (3)

v(C) is called the radius defined centre of C or, when

no confusion is likely to arise, the centre of C.

(It could also be referred to as the Chebyshev centre of
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¢ in GC.)

The concept of centre has been previously used to
show the existence of fixed points by M. Edelstein {10 ]
and [11] and L.P. Belluce and W.A. Kirke [2 ].

The concept of centre has also been used by M.S. Brodskii
and D.P. Mil'man [3 ].

It will be shown that +¥(C) is non-empty, convex
and compact with respect to Je. It will also be shown
that every mapping of C onto C, which is nonexpansive
with respect to the norm, takes v(C) into y(C) and
that when the norm satisfies a special convexity condition,
v(C) has exactly one point.e In this case y(C) is
therefore a common fixed point for all non-expansive
mappings of C onto C.

The existence of a common fixed point is then used
to prove the existence of an invariant integral on a
compact metrizable semigroup. The existence of such an
integral, has of course been known since 1956, when it was
established by Rosen in [22 ]. It is given here as an
application of the fixed point theorem. In [2n ]
Sneperman has given a similar application using a some-

what different fixed point theorem.
The existence of the common fixed point for onto

mappings is also used to show the existence of a common
fixed point for nonexpansive mappings of y(C) into y(C)

when the mappings satisfy the special intersection property
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of left reversibility (equivalent in the application, to
right reversibility of the semigroup).
231 Theorem:

If 7! 4is the restriction of the topology 7
to the set C, then r is lower semicontinuous on C
with respect to J'.
Proof':

Let xe C and € > O. There exists ze C
such that

| x~z| > r(x) - /2 (L)

Since the norm is lower semicontinuous with respect to J,

then there exists a Ve 7 such that x-ze V and
]Wl > ]x—zl - g/2 (5)
for all we Vo Put U= (V+z) NC. Then Ue 7',
xe U and for all ye U, y-ze V, so that by (4) and (5),

r(y) = Iy-zl > r(x) - ¢
for all ye U. #

2:2 Theorem:

v(C) is a nonempty convex subset of C which
is bounded with respect to the norm and compact with
respect to Je
Proof:

For each n, let

a(C) = fxe G/ r(x) < a(C) + 1l
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Since r is lower semicontinuous and C 1is compact,
Yn(C) 1is compact with respect to 7 for all n. From
(2), Yn(C) is nonempty for all n. Therefore

v(c) = A yu(C)

is a nonempty compact subset of C. From (1), (2) and (3),
the boundedness of +4(C) is obvious and the convexity
straightforward. #

We define a mapping T of C into C +to be non -

expansive if, for all x and ye C,

. (6)

lo(x) - T(y)| < |~y

-2¢3 Theorem:
Every non-expansive mapping T of C onto C maps
y(C) into +(C).
Proof:
Consider any xe ¥(C) and ye C. There exists
Ee C such that T(&) = y. Now
|x-g] < a(c).
Hence from (6),
|T(x) - 2(&)| < a(c),
i.e.
|T(x) - y| < a(C).
Since this holds for all ye C, then r(T(x)) = a(C),
T(x) e y(C) and T maps +(C) into +(C). #
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The norm H is said to be locally uniformly convex
if for every x and ye X, with x #y, and every
D> %|x-y|,
5(x,y,D) = inf [D-l3(x+y)-El/2 € X, |x-E| < D,|y-%| < D}
is a positive number.
2:l, Theorem:
If the norm is locally uniformly convex, then
v(C) contains only one point.
Remark: The norm need only be locally uniformly convex
on C.
Proof:
Suppose +y(C) contains two distinct points x and
y. Consider any Ee C. Then |x-g| < a(C),
ly-g] < a(C) and
5(x,y,0(C))< inf fa(C)-|2(x+y)-2z|/z € C,
| x-z| < a(C), |y-z] < a(C)}
< a(C) - |3(x+y) - &«
Hence
|1 (x+y) - E] < a(C) - 8(x,y,a(C)).
This wholds for all E e C and therefore
r(i(x+y)) < a(C) - 8(x,y,a(C)).
But since a(C) > i|x~y|, then &(x,y,a(C)) is a posi-
tive number and so r(i(x+y)) < a(C), a contradiction.

#
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2¢5 Theorem:

If the norm is locally uniformly convex and if &
is any set of non-expansive mappings of C onto C, then
the mappings of # have a common fixed point in C.
Remark: The members of H do not have to be linear.
Proof:

If C contains only one point we have nothing to
prove. Assume that C contains more than one point.
Then, from 2:3, all members of # map y(C) into v(C)
and, from 2:4, yv(C) contains only one member. This

member is the required fixed point. #

236 An application of the fixed point theorem 2:5 to
show the existence of a right invariant integral
on a compact metrizable semigroupi
G is a compact metrizable semigroup. Let 4 ©De

a metric generating the topology of G. c(@) is the

Banach space of all real valued continuous functions on G

with the supremum norm. fr(n) 1 is a sequence of members

of C(G) such that the linear manifold # spanned by them
is dense in C(G) and

|etnd)| = 4 (7)
for all n. (See page 246 of [12] for proof of separabil-
ity of C(G)s. TFor each fe C(G) and ae G, fa 1is the

member of C(G) defined by
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fa(x) = £(xal,
for all xe G. A is the normed vector space of all
bounded linear functianals A on C(G). For each

ANe A and ae G, define

I A
#(nse) = [ 227" (A(£5™)))2]% (8)
Define a norm on A, Dy
|7\| = :Z%_Q‘(?\,a) . (9)

2:6:1 Lemma:t
If fe C(G) and fax] is a sequence in G

which converges to an element a of G then
lfak - fa‘ -+ 0,
as k o ooe
Proof:
Suppose fax — fa| .does not -+ 0 as Xk — ooe
Then there exists an &' > O and a subsequence {bp} of
fax}, such that
1£i, - 2| > o

for all . For each r, let x. € G be such that

| £0, (%) = falm)| = (£, - fal,
so that
| £(x,br) - f(x.a)| > &
for all r. Let {x ] be a subsequence of {xr } which

converges to an element x’ of G. Then

|£(x br ) = £(xc,8) | > & (10)
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for all s. But xrs'brs—px'a and x.,a -+ Xx'a a8 S — coe

This contradicts (10). -3

2:6:2 Theorem:
For all Ne A there exists an ae G such that
IN] = 2(ns2) (11)
Proof:

Consider any A€ A. Choose a sequence f{ax} in

G such that

Al > 20nax) > 1Al - 2 (12)
for all K. Since G is compact metric, there exists a
subsequence (b} of f{ax} converging to an element a
of G. By (12),

g (nsbr) = (N) (13)

as T — ooe Let K Dbe a constant such that

In£)| < x|z}, (1)
for all fe C(G). Therefore, by (7),
In£f2)]| < & (15)

for all r and n.
By 2:6:1, lfgﬁ) - (M| 50 as r - x, hence by
(14) N£ED) » N(£fP)) as r - . By (15), the series

concerned is uniformly convergent and hence

¢(7\sbr) - ¢(7\!a)
as T - o, 50 that by (13),
8(n,8) = [N #
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Define on A the functional B by

B(A) = inf #(N\,a). (16)
aeCG

2:6:3 Theorem:
For all Ne A, there exists an ae G such that
B(A) = 8(n,a),
Proof:

Similar to 2:6:2. 4

2:6:4 Theorem:

If G is left simple, i.e. Gx = G for all

xe G, then

g(ns0) > O (17)
for all Ne A, with N\ £0, and all be G. Hence
B(n) is a positive number for all Ae A, with A\ # O.
Proof':

Let Ne A, with AN £0 and let be G. Since G
is compact it contains at least one idempotent ([27]). By
Theorem 1-27 on page 38 of [4 ], G is a left group.

Then the mapping x of G onto G, defined by

x(x) = xb,
for all xe G, is 1:1. Hence x 1is a homeomorphism
of G onto G. It follows that the linear manifold
spammed by the set of functions

(4D /n = 1,2,000 ]
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is dense in C(G). Then

¢(7\,b) > Oa #

236:5 Theoren:

If G is left simple, then the norm for A 1is
locally uniformly convexe.
Proof: )

Consider sny A and pe A with A £ u, and any
real number D, with D » %l%rul. We have to show that
8(n»u,D) = inf{D-|+(n+u)-E|/E € A,|n-E| < D,|u-E| < D}
is a positive number. Consider any Ee€ A Wwith
In-g|l <D and |u-g| < D.

There exists an element be G such that

it

[8 (En+du-E,D) ]2
1[8 (n-2,b) 12+3[2 (u-E,b) 13- +[2 (n-1,D) ]2

< i[sup #(N\-E,a)]%+1i[sup #(u-E,8) ]~ #+[inf #(N\-u,8)]?
aecCG aeG Xt

= 1|n-E|2+% [p-E| 2= #[B(N-1) ]?
< D? - #[B(N-u)12.
Since N £ 4, then, from 2:6:4, AB(A\~-u) 1is a positive

|+ () -g]2

number. Hence there exists a positive number 9 such

that,for all EZe A, with |[»E| <D and |p-g| <D,
|+ (wp)-€| < D=3, (18)

where o is dependent only on A,4 and D. Hence
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8(7\9#9])) 2 0

and therefore it is a positive number. #

Let J denote the weak topologye
2:6:6 Theorem:

The norm for A 1is lower semicontinuous with respect
to Je.

Proof':

Let Ne A and let & > O. We have to show that
there exists Ue 7 such that ANe U and
lul > Il - e (19)
for all upe U Let be G Dbe such that
Inl = 2(n,p).

Hence there exists a positive integer N, such that
[ 3 2negm )21 > Il - e (20)

Let ¢ be a functior. defined on A by
p(m) = [ 3 20 (n(£{™))?)%, (21)

for all ne& A Let & > O be such that

1

N2§ < Ze. (22)

Put
U= fpe M{Ovp)(£l™)] < 8 for n=1,2,..,N}.
(23)

Then Ue 7, Ne U and,for all pe U,
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g(N\) < ¢u) + ¢(n-u),

so that,by (20) and (23),
IN] = 2e < 8(u,b) + NZs
and,by (22),
< Iul + e
Thus
el > In] - ¢

for all pe U. Therefore (19) holds. #

Let T be the set of all positive linear function-

als N in A for which
A1) =1 (24)

and _
()| <, (25)
for all fe C(@) with |f£| < 1.

2:6:7 Theorem:

I'' is a non empty convex subset of A which is
bounded with respect to the norm and weakly compacte.
Proof:

The convexity and boundedness of I are straight-
forward. The existence of a positive linear functional
with An(1) =1 and |n(£)| < §2}, for al1 fe C(G) with

|£| < 1, can be shown by letting ae G and defining
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AE) = £(a)
for all fe C(G).
For weak compactness, we need ofily show that T 1is
weakly closed (see Theorem l-61-A, page 228 of [25]).
The weak closure of T follows easily from its definition.

#

We note that I' does not contain the zero func tional.
Define a semigroup H of transformations Ty, for

all ae G, of I into T by
(TaN) (£) = N(£a), (26)

for all fe C(G) and ae G,
From Theorem 2:6:l4, G contains idempotent e and

G 1is a left group. Hence
xe = X

for all xe G Hence

TeN(E) = N(F) (27)

for all hNe A and fe C(G), since
fo(x) = £(xe) = £(x)

for all fe C(G) and xe Gs
2$6:8 Theorem:
For all ae G, T, is a non-expansive map of by

into I and, if G is left simple, T onto Te
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Proofs:
Consider any ANe I' and any ae G. Then
(TanN) (1) = A(1.) = (1) = 1.
Consider any fe& C(G) with |f| < 1. Then
lea] < |£] <1
and therefore
(TN (2)] = IN(£a)] < 1.
Hence Tyahe I' and T, maps I into T for all ae Ge
For non~expansive, consider sny ae€ G and N and
pe Te We have to show that |Ta (7\"#” < |7\~u|. Now
from 2:6:3 there exists an element ce G such that
|In-u|l = 8(\-u,c).
But, for all b and de G, Ee I and ge C(G),
(2)4(x) = gy (xd) = g(xdb) = gqp(x)

for all xe G, and, therefore,

(Tq) (8n) = E((&p),) = E(&ap)

Hence

| Ta (A1) | = B(n~p,ac)

< sup % (N\-u,x)
xeG

= ||,
For & left simple, consider any ae G and any
he T. Let e ©Dbe the idempotent in G such that
Xe = X

for all xe G. Then there exists be G such that ba=e.
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But for all Ae I and fe C(G),

(ToaN) (£) = N(fa) = M(£a)y ) = (BN (£a) = (TaToN) (£)

and, from above, TyA e I's Hence by (27),

N = Te)\ = Tb a?\
= Ta (TpN)
and therefore T, maps T onto T. #

2:6:9 Theorem:

If G is left simple, then there exists a positive
right invariant integral on G.
Proof:

A with the above norm and the weak topology of tl?e
dual, # and T satisfy the conditions of Theorem 2:5.
Therefore the mappings of H have g common fixéd point,
No Say, in T Hence, for all ae G and fe C(G),

No(fa) = No(£)s

This Ao 1s the required positive right invariant integral

on G #

We now assume that G contains a unique minimal
left ideal. One of the results of W.G. Rosen [22] is
that this is a necessary and sufficient condition for the
existence of a right invariant integral. Sneperman has

also shown, in [2)], that the right reversibility of G
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(i.e. Gx NGy is non empty for all x and ye G) is
equivalent to the statement that the minimal two sided
jdeal of A is a subsemigroup of A with left inverses;
i.e. to the statement that the minimal two sided ideal of
A is a subsemigroup of A which does not possess a proper
left ideal; i.e., since the union of all minimal left
ideals of a semigroup is a minimal two sided ideal, to
the existence of a unique minimal left ideale Granirer has
shown that every left amenable semlgroup (i.e. a semigroup
which admits a left invariant mean) is left reversible ([131]).

Let this unique minimal left ideal be K. Then it
can be shown that K is a compact metrizable left simple
semigroup (see J.H. Michael [17] Theorems 2:1 and 5:1).

Therefore from 2:6:9, there exists a positive right
invariant integral, N, say, on K.

For each fe C(G), let f£* denote the restriction
of f to K and define positive linear functional » € A
by

M (£) = No(£#) (28)

for all fe C{(G). Since for every real valued continu~
ous function g on K there exists a fe C(G) with
f¥=g, \, is non trivial. We shall now show that is a
right invariant integral on G, 1.€. for all
ae G and fe C(a),

N (£a) = N (£) (29)
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Now K has the properties
KxD K (30)
for all xe S and
Kx = K (31)
for all xe K. Let ae K and fe C(G). Then, from
(31),
£3(x) = £5(x) = f(xa) = £%(xa) = (£*)a(x) (32)

for all xe K. Hence,from (28) and (32),

No (£2)
N((E*) a)
= No (£¥)
= N () (33)
Let ae G~K and fe C(G)e Let be Ko Then,from

%¢(fa)

)

il

(30),there exists ce K such that ca=b. Hence,from

(33),

N {(£p)
%1((fa)e)
N (£2) o

N (£)

Therefore (29) holds and we have constructed a
right invariant integral on G,
Note: 1In a similar manner Theorem 2:5 could be applied to
show the existence of a fixed point in a weakly closed
bounded convex subset C of a Hilbert space under any set

of non-expansive mappings of C onto C.
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This completes the discussion of the applications.

The general fixed point theory will now be continued.
2:7 Theorem:

If the norm is locally uniformly convex and if #
is any semigroup of continuous (with respect to 7) non-
expansive affine mappings of C into C such that H
is left reversible, i.e.

T4 N T/H4 is non empty (34)
for all T and T/ e H, then the mappings of H# have a
common fixed point in C.
Proof:

(This is similar to Sneperman's Proof).

If C contains only one point, there is nothing
to prove. Therefore assume C contains more than one
point. Let X ©be the collection of all subsets K of
C which are non-empty convex and compact, with respect to
7, and for which HK 1is a subset of K. Order X Dby
inclusion. Then (X,C) is a pre-ordering. Consider a
chain X, in X. Then, since any two members of Xo are
related, A; N Ag NeesN Ax 18 nonempty for any finite

sequence A, ;Ap,ese,Ar in Xo-. Hence
K, =N{a/Ae Xo}

is nonempty. It is straightforward to show that X, 1is
convex and compact, with respect to J, and contains HK,.

Hence X, 1is a member of X. It is obviously also the
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lower bound of the chain X,. Therefore by Zorns Lemma,
X has &4 minimal element, K, say. If K, contains only
one point there is nothing further to prove, therefore
assume K, contains more than one point.

We now show that TK, = K, for all Te H. We
first show that, for all n and T,,Tz,++,T, € H, there
exists H,; ,Hzseee,Hy € # such that

T,Hy, = ToHy = eee = TpHy W (35)
From (34), there exists H, and H, such that (35) holds
for n=2. Suppose there exists H;,Hgyeee;Hxk.y € B such
that (35) holds for mn=k-1. - Then, from (34), there exists
H and Hx € # such that T H,H = TyHg. Hence

and so (35) holds for n=k. By Mathematical Induction, (35)
holds for all n.
Let xe Ko+ Then (35) gives for all n

T,Hy (x) = ToHg(X) = oo = TpHy (%)

i.e. for all n and all T,;,Ty,..,Ty, € H, there exists
Xy 3XpsessXy € Ko such that

T,X, = TgXg = oo = TpXpoe
Now it is clear that for every finite sequence T;,Tz,e«,Tp
in H

n
N T,(X,) 1is non empty.
{=1

Since X, 1is compact, with respect to J, and for each
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Te #, T(K,) is closed, it follows that

Kfy = N T(X) (36)
Tes

is non empty and compact, with respect to J. Since
each T is affine, XK{ is convex.

If now T, and T, are arbitrary transformations
in #, then from (34) there exists H, and H, such |
that T,H, = T,H, and therefore, since K§ C Ho(Ko),
it follows that,

To(K§) C To[Ho(Ko)]
Ty [Hy (Ko) ]
c Ty (K)
Hence To(KL) C T(K,), for all Te H, and so,from (36),

To(K§) C Kb
Therefore Ki{ = K,, since X, is minimal. Hence by
(36) and the minimality of Ko, T(Ko) = Ko for all
T e H.
Then K, and % satisfy the conditions of Theorem
235 and therefore K, contains a fixed point under K.

This is also a fixed point in C. #

If the norm topology and J are the same and X
is a Banach space, then from lemma 1 of [7], if the
diameter of C(diam(C)) is positive, there .exists an

element ue C such that
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r(u) < diam(C)f

It can be easily shown that «(C) = ¢ iff
r(x) = diam (C)

for all xe C. Therefore in the above case Y(C) is a
proper subset of C if C contains more than one point,
Hence the existence of a fixed point in C, wunder a left
reversible semigroup of non-expansive affine mappings of. C
into C, can be shown by using a Zorn's lemma argument
similar to the proof of Kakutani's fixed point theorem

as proved on page 457 of [9]. This will be valid without

the norm property of local uniform convexitye. In—Ffeoty

\3 \ess genesal
his isp%he-

3§;§EQ{§§gk%oint theorem se—bket shown by Mitchell in [8].
If the norm and the topology J are not the same,

but C has normal structure or the stronger condition of

completely normal structure (see Brodskii and Milman [3]

and Belluce and Kirke [2]), then «(K) can be shown to be

a proper subset of any convex subset X of C which is

compact with respect to J and contains more than one point.

Similarly to the above, a Zorn's Lemma argument shows the

existence of a fixed pointcgn. C under a left reversible

tkbine

semigroup of non—expansiveAmappings of C into C.

Local uniform convexity of the norm emd—effineness—oef
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mappings is again not required. This is similar to the
fixed point Theorem of Belluce and Kirke [2], the paper
other than those of Edelstein's that uses a centre. It
weakens many of their assumptions, but, of course, it re-
quires the norm to be lower semicontinuous with respect to
the topology Jand the V\/\Cl()\:)i\V\ﬁS to be af€ine.

But in general this can not be done because there
are C for which +v{(8) = C, as shown in the followinge
2:8 Counter Exampie

Let M be the spaze of all bounded real sequences
fan}® + 7 is the Tychonoff product topology. | | is the

n=1
supremun norm;

‘{an H = Islill)\] ‘anl .

This norm is lower semicontinuous with respect to J.

Let C be the weakly closed convex hull of

2,2,25e00 {a§°)}
1,2, 2500 iagi)}
2,1,2, 000 (al?)]
2,2,1, 000 1a$®? 3

For this we shall show v(C) = C.
Obviously C is convex and nonempty and every

member of C is a weak limit of members of the convex hull
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o {{al®1, fa{®1, {al®},...}. For any foule C,
1 <b, €2, forall ne N, and so C 1is bounded with
respect to the norm. By using a diagonalising argument
one can find, for any sequence in C, a subsequence which
converges weakly to an element in C, so C 1is sequent-
ially compact with respect to J. Since J is metrizable,
C is compact with respect to Je The diameter of C can
be shown to be 1 and, by considering the convex hull of
f aéo)}, {agi)}, {aﬁz)},...} and weak limits, l{bn}I can
be shown to be 2 for all f{b,} in C.

But then if we consider any f{b,}e C, by looking
at |{bnl - {agk)}l, for all k, it can be shown that

P(Ibn}) = 1

Therefore o(C) = 1 and hence y(C) = C.
So we have constructed a nonempty convex bounded
weakly compact set C whose radius defined centre is

itself.
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CHAPTER 3
THE QUOTIENT DEFINED CENTRE

X 1is a vector space endowed with a lorally convex
metrizable topology J such that the vector space operatf
ions are continuous, with respect to 7, in the usual |
mannere. C 1is a nonempty convex compact subset of X.

We call p and internal point of C 1if there
exists a positive § such that, for all ze C and all

t, with |t| < s,
p+t(z-p) e C. (1)

I(C) is the set of all internal points of C.

For any p and ge X, define

[p,al = Py + (1-N\)ae X/0 <A < 1}

For any x and ye X, [x,y] is defined to be a line
through C if x4y amd 1 = sup{A e R/Ax+(1-A)y e C}
and O = inf {Ae R/Ax+(1-\)y e C}. For any Xx,y,p and
ge X, [x,y] is defined to be parallel to [p,q] 1iff
(x~y) is a non negative multiple of (p-q)s If p and
qe C, [x,y] is a line through C with pe [x,y] and
[p,a] is parallel to [x,y], then ge [x,¥].
L(C) .is the set of all lines through C and

E(C) 1is the set of all end points of lines through C.
(The compactness of C ensures that these end points be-

long to C). TFor every pe C, L,(C) is the set of all
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lines containing p, through C and E,(C) is the set
of all end points of all lines, containing D, through C.
We assume that C contains at least one internal

point.

For any p,x and ye X, such that pe [x,y],

define Np(x,y) to be the unique real number such that

0 < N (x,¥) <1 (2)
and
D = 2 (X,3)x + (1=3 (x,¥))¥e (3)
Obviously
N (X5¥) = 1 = N (¥,%)e )

if x,y,z and pe X and are guch that ze [x,y] and
pe [x,z], then

N (X5¥) = Np (%,2) - (5)
If z £y, then
No (x,5) > 7\p(xsz)' (6)

If x,y,2z and pe€ X and are such that pe [x,y] ard

z e [x,p], then

7\p(xsy) < 7\p(Z’Y)' (7)
If 2z # x, : :
Mo (x,y) < Xp(z:FY)O

For eny p,x and ye X with pe [X,5], P # X
and p #y, define

1= )
oy () = ) (8)
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Then,from (4),

a (%) = {575 (9)
and
N (x,7) = 7;3%(;:57 0 (10)

We also note that,from (3),

np (%,5) (p=x) = (1=%p (x,7)) (y-D)
and, therefore, if X 1is also endowed with a norm,

10 (%,9)  lp-x|
A (%,¥) T le-wl®

Op (x,y) =

(11)

But it should be recognised that the definition of
ap (x,y) is independent of any concept of distance and
dependent only on the vector space properties of Xe.
3:1 Theorem:

p is an internal point of C iff there

exists a positive constant X such that
op(x,5) < K

for all [x,y] e Lp(C).

Note: It is obvious that if pe I(C) and [x,y]e€ Iy (c),
then p#x and D # Ve

Proof:

Only if: Let p Dbe an internal point of C. Then,
from (1), there exists positive real number & such that

for all ze C and for all t, such that [t| <8,
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p+t(z-p) € C. Put

K:'go

Consider any [x,y}e L,(C). Then p-8(x~p)e C and,

obviously, e [x,y]. Hencesfrom (5)»
8
N (%) 2 N (%), p-8(x-2)) = 577 +

Hence,from (8),

1

Ifs Let X be such that o(x,y) < K for all
[x,y] € L,(C)s Let ze C and be such that =z £ De
Extend [z,p] to [x,y]e Ly(C). Since o, (x,5) < K
and oy (x,0 - 3(x-p)) = K,

[x,p ~ 2(x-p)] € [x,¥].
Therefore, since ze [Xx,p],

[z,p - %(z—p)] c [x,¥].

8 = min(1,1 )‘

[p+8(2-p),p-8(z-p)] C [z,p - %(z-p)] c C.

Put

Then

When z=p, then p+t{(z-p) =p and e€ C, for all t.
Hence for all z and for all t, such that |t| < 8,

p+t(z-p) € C; i.e. p is an internal point of C.
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3382 Corollary:
The intersection of I(C) and E(C) is empty.
For any pe I(C), define

op(C) = [x,y]s;lpr(c) oy (X,5) e (12)

a(C) = inf ap (C)e (13)
pe I(C)

If p¢ I(C), then the supremum in (412) is undefined. In
fact,if pe E(C), then there exists [x,y] e Ly(C) with
y=p, which means o, (x,y) is undefined for this [x,y].
Therefore o(C) is equal to the infimum of ap(C) taken over
all p in C. If a(C) < 1, then there is an internal point
p such that a,(C) < 1. Therefore for any [x,y] e L, (C),
a, (x,y) < 1. But, from (9), o,(y x) > 1 and,therefore,
from (12), a,(C) > 1, a contradiction. Hence
a(C) = 1.
Define
v(C) = {pe I(C)/a,(C) = a(C)i. (14)

This is called the guotient defined centre of C, or when

no confusion is likely to arise, the centre of C. We
note here that this centre, unlike the radius defined
centre, is independent of the topology on X. It depends
only on the shape of the non empty convex compact set C.

Obviously +(C) 1is a proper subset of C.

It will be shown that +v(C) is nonempty convex and

compact. It will also be shown that every mapping of C
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onto C which is 1:1 and affine, maps +v(C) into v(C).
This, with the property that v(C) is a proper subset of
C, will be used to show that C, if it has quotient
structure, contsins a common fixed point for all 1:1
affine mappings of C onto C and a common fixed point
for a left reversible semigroup of continuous 1:1 affine
mappings. of C into C.

The existence of these common fixed points is then

applied to finite dimensional spaces to show the existence
of common fixed points, in nonempty convex compact subsets
of these spaces, for affine mappings of C onto C and
left reversible semigroups of continuous affine mappingse

After this application, sets for which the
quotient defined centre consists of only one point are
discussed. Sets of this type will contain common fixed
points if they contain at least one internal point and do
not require guotient structure. In particular it is
shown, when C is either uniformly convex or strictly con-
vex with E(C) closed, that C contains at least one
internal point and that y(C) consists of only one point.
In these cases v(C) is therefore shown to be a common
fixed point for 1:1 affine mappings of C onto C or
left reversible semigroups of continuous 1381 af?ine mapp=-
ings of C into C. ‘

3+3 Theorem?
If pe ¢ and p¢ E(C) and ye E(C),
then the intersection of the half line
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fop + (1-a)y e X/o < 1}
and E(C) consists only of y.
Proof's
Let p be any member of C, not in E(C), and ¥y
be any member of E(C). Let

L = fop+r(1-a)y e X/a < 1}.

Assume there exists in the intersection of ¢ and E(C)

an element y, € E(C), such that y, #y. Then
v, € [py] or ye [pyys]le If y, € [P,y], then
¥ =N + (1-N\)y

for some real number A\
such that 0 < A < 1.
Now. y, € E(C) means
that there exists

x, € E(C) such that
[x,,5.] € L(C).

pé& [x,,y4] otherwise
Vi = Je Therefore

there exists

[X,72] € L(C) and par-
allel to [x,,¥4]e Let
z = Nz + (1-N)ye.
Then ze C and
z=y; = Nz + (1=N)¥y = 2p - (4-A)y = A(ya-p).

Hence [z,y,] 4is parallel to [x,y,]. Therefore, since
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pe E(C), z is on the indefinite extension of [x,,¥y,],
but does not belong to [x%,,y,]e This is a contradiction
of ze C. If ye [p,yi], Wwe arrive at a similar
contradiction in the above way with the positions of ¥y
and y, interchanged. Hence the intersection of (¢ and

E(C) consists only of y.

334 Corollary:

If pe C and p¢ E(C) and [x,y]e Ly(C), then
the intersection of the indefinite extension of [x,y] and
E(C) consists only of x and ¥
3¢5 Theorem:

If pe C and p¢ E(C), then E,(C) = E(C).
Proof:
Let p be any member of C not belonging to E(C).
Obviously E,(C) < E(C)s Consider any xe E(C). Then
[x,p] can be extended to [x,,y;] € L,(C). From theorem

313, =x,=x. Hence xe E;(C). Therefore E(C) = E,(C).

#

3:¢6 Theorem:

For all p, and pz e C ~ E(C) and for all
0 <A< 1, Apg+{(1-N\)p: & E(C)e Hence C ~ E(C) 1is a
convex set.
Proof:

Let p, and p, Dbe any members of C, not in E(C),
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and N\ be any real number strictly between O and 1.

Then Ap; + (1-A)ps € [PysP2] and [p,,pz] can be extend-

ed to [x,y] € L(C). From Corollary 3:l, Aps+(1-A)pz&E(C)
#

3:7 Lemmas

Let f{pn! be a sequence in C with limit p,
{¥yn} be a sequence in E(C) and x and ye E(C), such
that x # p. Suppose that

[x,yn] € Ly, (C),
for all n, and [x,y] e Ly,(C). Then there exists a
subsequence f{yy .} of {y,} with limit y, in C and
such that pe [X,¥0],
N (%,50) € Np(x,¥)
and 2, (X,y0) is the limit of the sequence {Np,_ (x,ymr)}
88 T — cos
Proof:
Let {pn} be any sequence in C with limit p.
Let {y,} be any sequence in E(C) and x and y be any
members of E(C), such that x # p,
[x,7n] € Ly (C),
for all n, and [x,y]e L,(C)e From (2) and the proper-

ties of resl numbers, there is a subsequence {7‘an (x,ynq)}

of N (x,yn)} with limit %,, & real number such that

0 € N < 1. FProm the compactness of C, there exists a
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subsequence f{y,,.} of {yn,} with limit y, in C.

Hence by taking limits as r - o« of both sides of
Pay, = Moy (XoTa)x + (10, (%53, ) ).,
we have
P = NoX + (1=0o)¥os

Therefore D€ [X,¥0]s LXs¥o] 1S a subset of [x,y], since

pAx%x, and N = N(X,¥)s Hence, from (5),

7\p (x,yo) < 7\p (x,y) .

3:8 Theorem:
If f{pn} 1is a sequence in I(C) with limit

p in ¢ and B is a positive real number such that

o, (C) < B
for all n; then pe E(C) and o,(C) < B. (Hence from
Theorem 3:1, pe I(C).) '
Proof:
Let {p.] be any sequwnce in I(C) with limit p
in C. Let B be any positive real number such that

%, (C) < B (15)

for all n.
Consider pe E(C). Then there exists xe E(C),
such that x Zp and [x,p]e L(C), and a sequence {y,}

in BE(C), such that [x,y5]e L, (C) for all n. Then,
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by Lemma 3:7, there exists a subsequence {y,,} of §vn}
with 1limit yo in C such that pe [X,y0]. Hence, from
Corollary 3:L, yo=p. Hence Np(xX,¥,) = O.

But, from Lemma 3t7, this means that
Kpnq(xsynq) - O

a8 g - «« Therefore, from (8), the sequence
{apnq(x,ynq)} is unbounded. Hence, from (12), the

sequence {apnq(c)} is unbounded. This contradicts (15).
Therefore p & E(C).
Let [x,y] be any line through C containing p.
We will show that op(x,y) < B+ Since p¢ E(C), x # p.
Let a sequence {z,} in E(C) De such that
[x,2,] € Lp,(C)s Lemma 3:7 shows that there exists a
subsequence {Z,,] of {z,} with limit 2z, in C such
that pe [x,%Z,] and N, (%,2,) 4is the limit of the sequence
Pong(XsZng)de  From (12),
A, (XsZng) < B
for all gq. Therefore, from (10),
Nong(Xs2Zng) > 1—1—3-
q +
for all q. Taking limits,
N (X,20) 2 -1—1—- .
+B

But, from Lemma 3:7, Ap(xX,2Z,) € N (x,y). Hence
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N (X,¥) > 7%3 .

Hence, from (10),

Cp (X:Y) < B.

3:9 Theorem:

Y(C) is a nonempty convex compact proper
subset of OC.

Proof:

For each k, define

ve(C) = foe I(C)/a (C) < a0) + 1l

From (13), the assumption that C contains at least one
internal point and Theorem 3:1, ¥x(C) is nonempty for
a1l k. From Theorem 3:8, for any k, if fon} 1is any
sequence in Yx(C) with limit p in C, then pe ve(C) s
Hence, for any k, yx(C) is closed and hence compact.
Therefore we have a decreasing sequence fyx(C)} of non-

empty compact sets. Therefore

v(c) = 0 ve(C)
=1

is nonempty and compact.
For the convexity of y(C), let p and g De
any members of y(C) and let N\ be any real number

strictly between O and 1. Let

s = »p + (1-N\)aq.
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Now from Theorem 3:6, s ¢ E(C). We shall show that

se yv(C).
Assume s ¢ v(C)e Then og(C) > a(C) or the set

fog (x,5)/[%,y] € Ls(C)}

is unbounded. In either case (from (412) in the first case)

there exists [x,y] € Lg(C) such that
as (x,5) > a(C). (16)

Let p, and g, € E(C) and be such that

[x,p.] € Lp(C) and [x,q,] € Lq(C).
Consider lines through p,
and g, parallel to [p,q]
cutting [x,q,] extended
in g, and [x,p;] ex-
tended in Dpge. Either
Pz € [%x,p4] or g€ [x,q,].
Say Dz € [X,P1]

Let S5 = Npz + (1-A)Qye

Then s, € [s,y] and, from (5),

e (%,5) > N (X84),
and, therefore, from (8),

as(x,y) < Og (x’sﬂ.)' (17)
Since [pg,q,] 1is parallel to [p,q], then

oq(x,q,) = ag(x,8,). (18)
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But qe v(G). Therefore, from (12), oq(x,q,) < «(C).
Hence, from (16), (47) and (18), a(C) < a(C), a contra-

diction. Therefore se v(C).

#

Let T be amap of C onto C which is 1:1 and

affine. The inverse T1 of T is also a 131 affine

map of C onto C.
3:10 Lemmat

If T is a 1:1 affine map of C onto C,
then T maps E(C) onto E(C),

Proof:

Let T bYe any 1:1 affine map of C onto C. Let
X be any member of E(C). Then there exists y e E(C)

t

such that [x,y]e L(C). Since T is affine,

T([x,y]) = [Tx,Ty]-

Extend [Tx,Ty] to [x,,y;]e L(C). But then

T ([x4,¥1]) = [T-1x,,T 1y, ]
and
[x,y] = T°2[Tx,Ty] C [T?x,,T"%y,].
From Corollary 3:h4, T-1x, = x; i.e. Tx = x, € E(C).
Hence T is a map of E(C) into E(C). Since T is
1¢4 and maps C onto C, T is a map from E(C) onto
E(C).
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3:11 Theorem:
If T is a 1:1 affine map of C onto G,

then T maps #(C) onto +¥(C)e.
Proof's
Let T %be any 1i4 affine map of C onto Ce

Let p be any member of v(C)e Since T is 1:1, from
Lemma 3:10, Tp does not belong to B(C). Consider any
[x,¥y] e LTp(C). Since T and T"! are affine and from Lemma
3140, [T%x,T"%y] € Ly (C) and

N (TixsTiy) = %TP(X’Y)'

Hence, from (8), (12) and (14),
an(x,y) = ap (T 1x,T%y) < a(C).

Therefore an(C) < a(C)e Hence Tpe y(C). Therefore
T is a map from v(C) into y(C) and since T is a 1:1
affine map from C onto C, T maps +v(C) onto y(C).

#

'For future brevity we shall define a nonempty
convex compact set C +to have guotient structure iff every
convex compact subset of C which contains at least two
members, contains at least one internal point.

3212 Theorem:
If C has quotient structure and H 1is any
set of 1:1 affine maps of C onto C; then the mappings

of # " have a common fixed point in C.
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Proof:

If C contains only one point, there is nothing
further to prove. Therefore assume C contains more than
one point. Let X ©be the collection of all nonempty
convex compact subsets K of C, for which T(X) =K
for all Te H¢e . In a similar manner as in the proof of
Theorem 2:7, a Zorn's Lemma argument gives a minimal member
of X,Ko, saye

If K, contains only one element, there is noth-
ing further to prove. Therefore assume it contains more

than one element. Since C has quotient structure, X,
contains at least one internal point. Therefore we can
construct v(X,) which, by Theorem 39, is a nonempty

convex compact proper subset of K,. From Theorem 3:11,

T(v(K)) = v(Xo)

for all Te H. Hence v(K,) contradicts the minimality

of Ko

3:13 Theorem:

If C has quotient structure and #H 1is any
left reversible semigroup of continuous 1:1 affine maps of
C into C, then the mappings of # have a common fixed

point in C.
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Proof:

If C contains only one point, there is nothing
further to prove. Therefore assume C contains more
than one point. Let X be the collection of all nonempty
convex compact subsets K of €, for which T(K) =K
for all Te H. Similar to Theorem 3412, a Zorn's Lemma
argument gives a minimal member of X, K, say.

If X, contains only one element, there is noth-
ing further to prove. Therefore we assume K, contains
more than one point. Similar to Theorem 3:12 we can
construct y(K;), a nonempty convex compact proper subset
of Kgs Similarly to the proof of Theorem 2:7, we can
use the left reversibility of # ana the continuity of
the members of H# to show, with an induction argument,

that T(XK,) = Ko, for all Te He. Then ,from Theorem 3:11,

T(v(X)) = v(XKo)

for all Te #, and hence y(X,) € X, a contradiction of

the minimality of XKg.

#

3:14 An application of the fixed point Theorems 3:12 and
3:13%3 to show the existence of fixed points in nonempty
convex compact subsets of the finite dimensional Euclidean
vector spaces under sets of affine maps:

R" is the n-dimensional Euclidean vector space.
The topology J 1is the usual norm topology. C is a

nonempty convex compact subset of R".
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Let a be any element of C. Consider C-a.
This is a nonempty convex compact subset of R" contain-
ing O. Let {u;,.¢e,ux} Dbe a maximal set of linearly
independent vectors in C-a. Construct the open geometric
k-simplex

Sa = <8,8+U;seee,at > | (19)
Then S, is a subset of C. Let

b = E%T (a+(asuy J+eaet+(atux) ). (20)

b is the barycentre of S5+ The k+1 elements a,a+U;,see,8+0x
are the vertices of Ss« ODviously be Co
We shall show that b is an internal point of

C and hence that C has gquotient structure.

Let M be the k-dimensional Euclidean vector
subspace of R" spanned by the set of vectors
fu;,eee,ux ] and endowed with a norm topology induced
from R. Obviously C-a 1is a subset of M and S,-~a is
an open k-simplex in M with vertices O,u;,«..,ux and
barycentre b-a.
3314:1 Lemma:

In M, b-a is an interior point of C-a.
Proof:
Since C is convex, C-a 1is convex and, therefore,

the convex hull of the vertices of.S;-a is contained in C-a.
The open k-simplex S;~a i1s the interior of this convex hull
(see the bottom of page 171 of [8]) in M. Hence Sg=a is
contained, with the interior of C=a, in M. b-a e S,-a,
hence, in M, b~a is an interior point of C-as

#
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3:14:2 Theorems:
b is an internal point of C.
Proof:
To show that b is an internal point of C, we need
only show that %b-a 1is an internal point of . C~a.
Let 0d(C-a) be the boundary, in M, of C-a.
Since each line through OC-a is contained in M, the

end points of these lines are contained in 0(C-a),

i.e. E(C-a) = a(C-a). (21)
From Lemma 3:14:1, b-a 1is an interior point of C-a apnd,
therefore, there exists a positive real number €& such

that

l(b—a) - z] > &
for all ze d8(C-a). Therefore, from (21),
| (b-a) - x| > & (22)

for all xe E(C-a). Since C is compact, C-a is
compact and, therefore, the diameter of C-a, diam(C-a),

is finite. Put
5 = g
= Ten(C-a) °
Then for all ye C-a and for all t, such that lt‘ < 3§,

|t} |y-(b-a)|
§.diam(C-a)

| (b-2) + t(y~(vb-a)) - (b-a)]

N

= ge
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Therefore, from (22), (b-a) + t(y-(v-a)) € C-a; i.e. D-a

is an internal point of C-a.

#

For any nonempty convex compact subset of R?,
we can construct an internal point in the above way.

Hence,

3:14¢3 Corollary:
C has quotient structure.
This property of C leads directly to the

following.
3:14:4 Fixed points for 41:1 affine maps:

If # 4is any set of 1:1 affine maps of C onto
C, # and C satisfy the conditions of Theorem 3:12 and,
therefore, the mappings of # have a common fixed point
in C. If #H, is any left reversible semigroup of
continmuous 1:1 affine maps of C into C, H, and C satisfy
the conditions of Theorem 3:13 and, therefore, in this
case too, the mappings of H, have a common fixed point
in C.

But these conditions on # and H, may be
further weakened.
3:14¢5 Lemma:

For all ye C, the maximal number of linearly

independent points in C=-y is invariant (and equals k).
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Proof:

Assume thaf there exists y and 2z e C such that
y ;é z, the maximal number of linearly independent points
in C-y is n and the maximal number of linearly inde-~
pendent points in C~z is m, with m > n. Let
Uyyeee,U, bDe a maximal set of linearly independent points
in C-y and Vy,«es,Vp De a maximal set of linearly
independent points in C-z, with Vy,es+,Vy SO chosen

that, if Nysess,q € R and are such that
y—Z = 7\1V1+...+Mvm, (23)

then Ng+esethg #Z 1o
Now, for 1 = 1,2,ee0,m, Vi + (2-y) € C-y.
Since
C~y € Spfuysese,sty}
and, since m > n, then v, + (2=¥),eee,Vy + (2-y) are
linearly dependent points in C-y. Therefore there

exists [ly,eessip € R and not all zero, such that
o (v, + (2=y))+eeettiy(vy - (2-y)) = 0;
i.eo, if we let 77 = ﬂ1+..g+/_tm’
Uy Viteeotlgyn = N(y=2)e
If n # O, then
Y-z = TR bt By
- T’ 1 * o0 77 m,

which contradicts the choice of Vi,¢e¢e,Vy 1in (23). Ir
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1n=0, then [, Vi+seetliygvy, = O, which contradicts the linear

independence Of ViseeesVye #

3i4L4:6 Lemma:

If T is a linear map of R® into R® which takes
C onto C, then the restriction of T to C is 1i1.
Proof:

Let T be any linear map of R® into R" which takes C
onto C. Assume that the restriction of T to C is not 1:1;

ie.€e that there exists p and g € C, such that p#£a and Tp=Tq.
We will show that this gives rise to a contradiction of

Lemma 3:1L:5.

Let x be any member of C. Let {ViseeesVi}

be a maximal set of linearly independent points in OC-X

and let
Sy = <X, X+V 5000 yX+Vg> o
Then
DP=X = Ny ViteeetNgVi
and

g=X = /J,1V1+. e oty Vi

fOr some Njsseesshkslyssessfiy € R and such that there

exists K such that 1 < X < k and
N A Mg (24)
(or else p=q). Since Tp =Tq and T is linear,

T(p-x) = T(a-x);
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i.eo 7\1TV1 +eoo ot KkTVk = “1TV1+000+MKTVK

i.e. (7\1""/11)TV1+--o+(?\k""/£k)Tvk = O.

From (24), this means that Tv,,...,Tvy are linearly
dependent.
Now let w De any member of C-x. There exists

Ei"",gk [=3 R and SuCh that
W= E VyiteeotExVks

S8ince T is linear,

TW = EiTv1+n-.+EkTv1go

Hence T[C-x] is a subset of Sp{Tvy,...,Tvk}. It is

straightforward to show that
T[C-x] = C - Txe.

Hence C-Tx is a subset of Sp{Tvi,...,Tvk}, and since
TV, s.00,Tvx are linearly dependent, then the maximal set
of linearly independent points in C-Tx is less than k,

which contradicts Lemma 3:14:5. 4

321427 Theorem:
BEvery affine map of C onto C is 1:1,
Proof:
Let T %be any affine map of C onto C. Let L
be the 1:1 linear map of R"™ onto R" defined by

L(x) = x+a
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for all x e R". Then L-“1TL is an affine map of C-a
onto C-a. Extend L"ITL to map H of R" into R"
by

H(x) = o-*TL(y); where there exists scalar a such

that x=ay for some ye C-a,
= 0; otherwise.
Then it is straightforward to show that H 1is a linear
map of R"®™ into R"™ which takes C-a onto C-a and
for which
H(x) = L-1TL(x) (25)
for all xe C-a. Let
T/ = LHL-?%,

Then T is a linear map of R"™ into R" which takes
C onto C. From Lemma 3:14:6, the restriction of T

to C is 131, But, from (25),
T (x) = LL-*TL-1L(x)

= T(x)

for all xe C. Hence T is 1:1. "

This Theorem leads on to the following.
3¢14:8 Fixed points for affine maps.

If H# is any set of affine maps of C onto OC,
# and C, from Theorem 3:14:7, satisfy the conditions of
Theorem 3:12 and, therefore, the mappings of H# have a

common fixed point in C. If H, 1is any left reversible
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semigroup of continuous affine maps of C into C, then
#, and C, even with Theorem 3:14:7, do not exactly
satisfy the conditions of Theorem 3:13. But if we use
Zorn's Lemma, similarly to the proof of Theorem 3:13, to
find a minimal nonempty convex compact subset K, of C
and if we use the left reversibility of #H; and the con-
tinuity of the maps of H, to show that T(K,) = K, for
all Te H,; then, from Theorem 3:14:7, #; and K,
satisfy the conditions of Theorem 3:12. Therefore the
mappings of H; have a common fixed point in X, amnd,
therefore, in C.

This ends the discussion of finite dimensional
applications. We now resume the study of the quotient
defined centre and the fixed point theory.

If +v(C) contains only one point, then, from
Theorem 3:12, this point in C is a fixed point for 1:1
affine mappings of C onto C. In this case we would
not require C to have quotiént structure but only to
contain an internal point. We now consider setg of this
type.

3:15 Convexity:
For this section we assume& that X 1is also
" endowed with a norm.
Remark: There need be no relationship between the norm
and J. The norm is only required for the study of

uniform convexity.
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C is defined to be strictly convex iff for all

p, @and pze C, such that p; # D2y and for all qe€ C

there exists an € > 0 such that
t
(1-t}a + 3(py+p;) € C (26)

for all te [0,1+e]. C is defined to be locally
uniformly convex iff for all distinct p; and py e C
there exists an & » O such that (26) holds for all
ge C and for all te [0,i+e]. C is defined to be

uniformly convex iff for all positive constants D there
exists an & > O such that (26) holds for all p,,DPs
and qe C, such that lPi‘le 2 D, and for all
te [0,1+e].
(These definitions were suggested by the previous concepts,
in this thesis, of internal point and local uniform con-
vexity of a norm and the concepts of strict and uniform
convexity of a norm.)
Note: If U 4is the unit ball in X defined by the norm,
and if the norm is strictly, locally uniformly or
unifarmly convex, then U has the same convexity as the
norm.

Obviously uniform convexity implies local uniform
convexity which implies strict convexity.

Tt can be easily shown that C is locally
uniformly convex iff +(p,+pz) is an internal point of C
for all distinct p, and p, € C. Hence if C 1is uni-

formly or locally uniformly convex it contains internal
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points, If C is strictly convex it may not contain
internal points due to the fact that in the definition
€ 1is dependent on q. But if C is strictly convex,
it does contain internal points if E(C) is also closed.
In fact,
3315:1 Lemma:
If E(C) is closed, with respect to 7, and

C is strictly convex, then C is locally uniformly convex;
i.e. for all distinct p, and Dy, € C, (p;+p2) € I(C).
Proof:

Let p; and ps; be any members of OC. From the
definition of strictly convex, %(p,+pz) does not belong
to E(C). Therefore, if we let 2z = $(p,+pg) and [x,y]

be any member of L,(C), z #x, z £y and
0 < '}\z(xsy) < 1. (27)

We can show C is locally uniformly convex if we show
ze I(C) and this is true, from Theorem 3:1, if there

exists a constant K such that
Gy (X:y) < K

for all [x,y]e L,(C).
Assume this is not so. Therefore, since J
is metrizable, we can choose sequences {x,} anmd f{y,}! in

E(C) such that [xn,yn]e Ly (c), for all n, and

oy (Xp,¥n) = o (28)

a8 Il - ooe
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Since E(C) is closed with respect to 7, it

can be shown that there exists subsegquences {an} and
ian} of {x,} and {y,}, respectively, with limits of

X, and ¥y, in E(C). By an argument similar to Lemma

3:7, it can be shown that [X,,¥o] € Ly(C) and
Nz (_an ,ynq) - Ng (Xo sYO)

as g - we From (27), O < N (%,¥0) < 1 and therefore,

from (8), it can be easily seen that o, (X0 s¥0) < oo and
Xy, (an ’ynq) - 0z (X0 ,¥0)

as g —» «s Hence (28) does not occur. "

Note: It can be shown, with a similar argument to that
used in the proof of Lemma 3:15:1, that, if C 1is strictly
convex and E(C) is closed with respect to 7, then for

all pe I(C) there exists [x,y]e L,(C) such that

ap(xsy) = OLp(C). (29)

This property is the result of the closure of the set
E(C) of end points.
3:15:2 Theorem:

If C is strictly convex and E(C) is
closed with respect to 7, then v(C) contains only one
pointe.

Proof:
Assume y(C) contains two distinct points p, and

Do Let
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z = 3(py + D2)

From Lemma 3:15:1, 2z e I(C) and, from (29), there exists
[x,y] € L,{(C) such that

a(C) = a,(C) = o, (x,¥). (30)
Bxtend [x,p,] and [X,p.] to lines [x,y,] and
[x,y2] through C. Construct X
lines through y, and Yy,
parallel to [p,,Ps]e One
of these must cut [x,ys]
or [x,y,]. Let the line
through y, parallel to
[P1,P2] cut [x,y2] in ys.
Let

zZ, = 3(y, + ¥2)o
Then 2z, € [x,y].
SBince C 1is strictly convex, there exists an ¢ > O
such that (41-t)x + tz, € C for all te [0,1+e]. Hence.
z, £ y. Therefore, from (6),
N (X,7) > Mo (%524 )
Hence, from (8),
a, (x,5) < a;(x,2,). (31)
But because [y,,ys] is parallel to [p,,pz], then
% (X,2,) = api(x,yi)
and, becuase p, € y(C), from (10),
o, (x,y,) < a(C). (32)
(30), (31) and (32) gives rise to a contradiction. 4
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Note: In the application 3:14 E(C) is closed. (This is
because E(S,) is closed).
3:15:3 Theorem:
If C is uniformly convex, then +(C)

contains only one point.
Proof:

Assume y(C) contains two distinct points p, and
pze Let z = i(p,+py). Since |p;-p2| is a positive
constant, from the uniform convexity of C, there exists

€ > 0 such that

(1-t)q + % (a,+92) € C,

for all 4q,,9; and qe C, wsuch that Iqi-qz]?lpi—p2|,
and for all te [0,1+¢g].

Consider any [x,y] e Ly(C). Similarly to Theorem
3:15:2, construct [x,y,] and [x,yp] e L(C) and
let the line [y,,ys] parallel to
[P1,p2] cut [x,7,] in ¥,
Let

2, = Jz’(?h"‘Ys )e

As before 1z, € [x,¥].
Since

|y.-vs| 2 |P1"le,
then

(1-t)x + tz, e C,

for all te [0O,1+e]. Let
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Zy = —ex + (1+€)2,.
Then z, e [2,,y] amd 2, £ z,. It is straightforward

to show that

%z(xyzi) + €
1 + &

%m(xszz) = . (33)

From (5), %z(ny) = XZ(X,ZZ). Hence az(x,Y) < az(xyzz)
and, from (42) and (33), it is straightforward to show

that

o (%,5) < o (X’Zi)<1 - kﬂxfzihe)‘ (34)

Since [y,,¥ys] is parallel to [p,;,pP:] end p; € v(C),
then
oy (X,2,) = api(xyyi) < a(C).

Hence it can be shown, from (9), (10) and (34), that

a, (x,y) < a(C) (1—3[%% + e:]-i).

Hence, from (12),

a, (C) < a(C) <’1 - e[ﬁ_ﬁé% + e:]—i>

< afC),

a contradiction. #

The above Theorems 3:15:2 and 3:15:3 with Theorem
3:11 give immediately the following two fixed point

Theorems.
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3215t Theoren:
If C is strictly convex, E(C) is
closed with respect to 7 and H is any set of 131
affine maps of C onto C; then the mappings of H# have

a common fixed point in C.,

Remark: The norm is unnecessary for this fixed point
The orem.
3:15¢5 Theorem:
If C is uniformly convex and H 1is any
set of 1:1 affine maps of C onto C; then the mappings

of # have a common fixed point in C.

Remark: These two theorems and Theorems 3:12 and 3:13
differ from most other fixed point Theorems in that the

restrictions are on the set C and not on the set # of

mappingse.

This ends our discussion of sets with special
convexity properties. We now end this chapter by noting
a relationship between the diameter of vy(C) and the
diameter of C and by giving a counter example that
shows that even in the finite dimensional Euclidean vector
space there are nonempty convex compact sets for which

the quotient defined centre contains more than one point.

Note: If X has a norm and we denote, for all subsets
A of X, the diameter of A by diam(A), then it can be

shown that



6lie

a(C) + = - 1

diam(yx (C)) = diam(C)

Lol B e B

a(C) + = + 1

for all k. Hence

diam(y(C)) = g{%}—f—% diam(C)

and, therefore, y(C) contains only one point when o(C)=1.

3:16 Counter Examplet

R® is the 3-dimensional Euclidean vector space
with the usual norm topologys. C 1is a wedgeshaped subset
of R® with vertices (0,0,0), (1,0,0), (0,1,0), (0,0,1),
(0,1,1) and (1,0,1). B(C) is closed. C contains
internal points (e.g. (%,4&,4)).

Let A be the triangle in R2® whose vertices are
a= (0,0), b=(1,0) and ¢ = (0,1). By straightchecking
it is possible to show that, if 2z = ($,4), then

Z—
oy (X,5) = z_; <2

),

(M

for all [x,y] e Lp(A), that, if 4 = (3,
a,(a,d) = 2
and that, for any 2z, € A, such that 3z, # z, there exists
[x,¥] e in(C) such that
az, (x,5) > 2.
Hence v(48) = {(4,4)] and a(A) = 2.

If A’ 1is any triangle in R®2® with vertices u,v

and w, then we can construct a linear homeomorphism f
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from A onto A! with f(a) = u, £(b) =v and £(c) = w.
Using this, it is easy to show that +y(a') = {£(&,4)] and
alA?) = 2.

The asbove results for a 2-dimensional triangle can
be used to show that, if p = (&,4,4) end q = (+,%,8),
there exists [X,,¥1]e Lp(C) anmd [%;,¥2] € Lg(C) such
that

O‘p(xi:Y::) = aq(xzay'z) = 2,
that, for all 2z e C but not contained in [p,al, there
exists [Xs,¥s] € Ly(C) such that

az(xa s¥s) > 2
and that, for all [x,y]e Lp(C) amd [x',y']e Ly (C),
op (x,7) € 2 and oq(x,y') < 2.

Hence of(C) = 2 and +y(C). contains, at least, the

two distinct points p and q. (Actually it can be shown

that +v(C) = [p,al.)
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CHAPTER
COMPACT SEMIGROUPS OF BOUNDED CONTINUQOUS MAPPINGS.

In [10] Sneperman proved the following fixed point
Theorem:?

Let K be a convex compact set in a locally convex
topological space X and let £ be a semigroup of linear
transformations of K into K which are equicontinuous
on K and such that L,£ N LgZ is nonempty for all L,
and Lpe £ (i.e. £ is left reversible). Then, in K,
there exists a fixed point X, such that £X, = Xp.

In a manner similar to that used by Sneperman in
[24] to show the existence of a right invariant integral
on a right reversible compact semigroup, we shall use this
Theorem to show that there exists, on a locally compact
metrizable space X, an integral which is right invariant
under a left reversible semigroup G of bounded continu-
ous mappings of X into X, which satisfies certain
compactness conditions. Since the semigroup operations
continuously map a topological semigroup into itself, this
application includes the existence of a right invariant
integral (under the semigroup operations) on a metrizable
right reversible compact semigroup.

The existence of the right invariant integral is
first shown when X is compact. A nonempty convex

weakly compact set T of nontrivial positive bounded
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linear functionals and a left reversible semigroup # of
linear transformations of T into T, corresponding to
the members of G, are constructed to satisfy the condi-
tions of Sneperman's fixed point Theorem. The resulting
fixed point in I is an integral on X which is right
invariant under G. When X is not compact, a right
invariant integral on a compact subset Y, which is also
mapped into itself by the members of G, of X, is
extended to an integral on X and this extension is shown
to be also right invariant under G.

X is a locally compact space with a metrizable
topology. o 1s a metric generating this topologye. G
igs a left reversible semigroup of bounded continuous

mappings of X into X, compact with respect to the
metric 4 defined by

d(¢9‘/’) = Ssup P(¢(x)9 (/I(X)), (1)
xeX

for all ¢ and ¢ e G, and such that, for all compact
subsets C of X, #-1(C) is compact, for all @ & G.

Co(X) is the normed linear space of all real
valued continuous functions (the norm is the usual
supremum norm). A is the vector space of all linear
functionals on GCo(X), endowed with the weak topology of
the dual. (Note that the members of A need not be

bounded.)
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# is the semigroup of transformations T¢, for
each #e G, of A into A defined, for all Ne A and
fe Co(X), by

TN (E) = N(£e8), (2)

where fo# € Co(X) (#-2(spt(f)) is compact) and is defined
by
(fo8) (x) = £(#(x)) (3)

for all xe X. It is straightforward to show that #H is
left reversible and the members of # are linear.

We assume for the time being that X is compact.
Then GCo(X) 1is a Banach space.

Define T to be the set of all positive bounded

linear functionals N\ in A such that
A1) = 1 (L)

and

InE)| < 4 (5)

for all fe Co(X), such that |f| < 1. Then, from
Theorem 2:6:7, I is nonempty, convex and weakly compact.
Obviously I does not contain the zero functional.
431 Theorem:

For each ¢ e G, Ty maps I into T.
Proof:

Consider any #e G and Ae T. Let f be any

member of Co(X) with |f| < 1. Then, from (3),
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lfo¢| = sup |(fo¢)(;V)i
yeX

]

sup |£(2(y))|
yeX

u 4]
, (y)i:;zsp(x)g xl £(#(y))|

< ] < 1.

i

Therefore, from (2) amd (5),

|z ()| = [n(£o9) ]
< 1.

Since 10# = 1, then, from (2) and (L),
T A1) = A1) = 1.

Hence T¢7\e I's

L:2 Theorem:
For all d e G, T¢ is weakly continuous on As
Proof:
Let ¢ Dbe any member of G. Consider any open

neighbourhood

U(0,A,e) = fue AM|u(f)]| <& for all fe A}

of O, where & 1is any positive real number and A is

any finite subset of Cy(X). Then
Ao = [{foB/f e Al

is a finite subset of Co(X) and, if N is a member of

the open neighbourhood V(0,A@,e) of O, then, from (2),
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lT¢7\(f)| = ‘7\(fo¢)| < €

for all fe A, 1i.c.
T N\ € U(0,A,8).

Hence T¢ is weakly continuous on Ae. #

L:3 Lemmas
If A is a finite subset of GCo(X) and
% € G, then for every positive real number & there

exists a positive real number § such that

| (75 = TN < e,

for all fe A, Ne I'-' and ¢ e G, such that
a(d,y) < 8.
Proof:
Consider any finite subset A of GCo(X) amd ¢ e G.
Let & be an arbitrary positive real number. From the

definition of T and the properties of norms,

In(e)| < 2|g] (6)
for all ge Co(X) and Ae I-I's Hence, from (2), (6)

and Theorem L:1,

| ((7g = TN ()] = [N(£o8 - foy)]
< 2|fop - foyl,
for all fe A, e I'-I' and ¢ e G. Therefore we need
only show the existence of a positive real number § such

that
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|for - foy| < %e, (7)
for all fe A and ¢ye G, such that d(g,¢) < 8. But,

of course, if, for each f e A, there exists positive real

numbers §¢ such that
| for - foy| < ie,
for all ¢ e G, such that d(d,¢) < 8;, then, since A
is finite,
§ = min{s;/f € A}
will satisfy (7). Hence we need only show the existence
of such 8;.
Choose any f e A. Assume that no §; exists,

i.e. that there exists a sequence {#,} in G with limit

& € G such that

(8)

=
0]

| fop - fos.| >

for all positive integers r. But then there exists a

sequence {x.} in X such that, from (3),

lfb¢ - fb¢r| = I(fb¢ - fb¢r)(xr)|

|£(# (%)) - £(8: (%)) ]

(we are assuming that X is compact). Let {x,} be the
subsequence of {x.} which converges to limit x’ in X.

Then, from (8),
If(¢(xrs)) - f(¢rs(xrs))l Z %8 (9)
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for all positive integers s. But &, (x..) - 8(x') and

#(xp;) » 8(x’) as s - . This contradicts (9).

L:l4 Theorem:
H is weakly equicontinuous on Te.
Proof:
Consider any open neighbourhood U(0,A,e) of O in
Ao We have to show that there exists an open neighbour-
hood V of O such that
T¢)\e v,

for all #e G and Ne V N (I-T), i.e. such that

|z (2)] < e,
for all fe A, 8e G and Ne VN (I-T).

Consider any ¢ e G. Then, from Theorem 4:2,

there exists an open neighbourhood Vé of O such that
lT ()| < te, (10)

for all fe A and Ae Vy (and so Ne vy N (r-1)).
From Lemma l:3, there exists a positive real number 8¢

such that
| (75 = 7)) (0)] < 2o (11)

for all fe A, Ne I'-I' (and so Ae vy N (r-r)) and

y € G, such that da(#,y) < 8ye

Ny = v e G/a(8,y) < s¢}.
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Then, from (10) and (11),

|T¢7\(f)| < €, (12)
for all fe A, ye Ny amd ANe vy 0 (r-r). But

G= U N
seC ¢

and G is compact, hence there exists BysasesPyp € G such

that
n
G= UNy . (13)
i=21 b
Put
V= NV
YR Pl

Then V is an open neighbourhood of O in A and, from
(12) and (43),
|z ()] < e,

for all fe A, y€ G and Ne VN (T-T). #

We now have a nonempty convex weakly compact set
T in a locally convex topological space A and a semi-
group H of linear transformations of T into T which
are weakly equicontinuous on K and such that # is
left reversible, Hence Sneperman's fixed point Theorem
is applicable and gives the following Theorems
L:5 Theorem:

If X is compact, then there exists an

integral on X which is right invariant under Ge
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Proof:
Sneperman's fixed point Theorem shows that there
exists a positive bounded linear functicnal x4 in T

such that
T¢ﬂ = U
for all #e G, i.e. such that
p(fod) = p(£)

for all fe Co(X) amd ¥ G. Thus 4 is the integral

on X which is right invariant under G. #

If X is not compact, we choose any xe X and
consider the set
Y = fae X/a =g(x), 8 e G}
in X. Since G 1is compact, it is easily shown that Y

is compact and, furthermore, it is easily shown that

g(Y) C Y (14)

for 2all J e G. Hence Theorem L:5 is applicable to Y
and, therefore, there exists an integral g on Y which
is right invariant under G.
Extend y to an integral 7n on X by, for all
fe Co(x),
n(£) = p(e'), (15)

where f! 1is the restriction of f to Y.
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L6 Lemma:

For all e G and fe Co(X),
(foB)! = flod.

Proof:
Let ¢ De any member of G and f Dbe any member
of Co(X). Consider any y e Y. Then, from (14),

#(y) e ¥ and, hence, from (3),

£ (8(y))
£(8(y))
(fo2) (¥)
(fo8) ' (y).

(£708)(¥)

il

Hence

flof = (foB)!.

L4s7 Theorem:
n 1is right invariant under G.
Proof:
Let @ be any member of G. Consider any
fe Co(X). Then, from (15), Lemma L4:6 and the right
invariance of pu,
Tyn(£) = n(2ep)
p((fog)?)
= p(f'og)
p(£)
n(£). 4

1

i

Il

1l
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Therefore 7 is an inteégral on X which is right
invariant under G. (Note that, since T does not

contain the zero functional, g and 7 are nontrivial.)
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CHAPTER

LOCALLY COMPACT GROUPS

In two of the previous chapters, we have construct-
ed centres for nonempty convex sets, which were compact in
some sense, and used these to show the existence of fixed
points,. One of the motivations for this was to find a
fixed point theorem that could be used to show right
invariant integrals on a locally compact group. The exist~
ence of a right invariant integral on a locally compaet
group has, of course, been known since 1929 when it was
shown by J. von Neumann in [26], but it was hoped to
show a direct connection between a fixed point Theorem
and the right invariant integral similarly to that shown
for compact semigroups by Sneperman in [ 24] and
also in this thesis in 236.

In this chapter we consider a locally compact
topological group with a countable basis amd a nonempty
convex weakly compact subset T of positive linear func-—
tionals on GC,(G), the space of real valued continuous
functions on G with compact supporte. It is shown that
the group operations take I' onto T We have been
unable to obtain a fixed point Theorem which gives an
element of I' which remains fixed under the group opera-
tions, but a. subset I'" of I', consisting of some of the
bounded linear functionals of I', can be shown to be non-

empty, convex, weakly compact and invariant under the group
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operations, i.e. in nearly all respects identical to T,
yet not to contain the linear functional, which is a
common fixed point for the transformations corresponding
to the group operations, i.e. not to contain the right
invariant integral. This counter example demonstrates
the difficulty of finding a fixed point Theorem applic-

able to the locally compact group and reveals some inter-
esting directions further research for such a theorem could
takee.

G is a locally compact topological (Hausdorff)
group whose topology has a countable basis. G 1is there-
fore separable and since the group operations are continu-
ous with respect to the topology, tluen the function @
from GxG onto G defined by

¢(Xsy) = x 1y,

for all x and ye G, 1is continuous. Hence, if U
and V are compact subsets of G, then UxV is a
compact subset of GxG and U"'V is a compact subset of
Ge Similarly VU-%* is a compact subset of Ge. There-~
fore, from Theorem 1:22 on page 34 of [20], G is
metrizable and there exists a metric p for G which is

right invariant, i.e. a metric p such that

p(za,ya) = p(x,y)

for all x,y and ae G, and which generates the topology

of Ge
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C,(G) is the vector space of all real valued
continuous functions f on G with compact support
spt(f). Co(G) is endowed with the usual supremum norme.
Since the topology of G has a countable basis,we can
construct a sequence {V,} of compact subsets of G
such that G is the limit of the interiors of the V.
By Exercise IV 4.3 on page 246 of [12], for each
positive integer n, the Banach space C(V,) of all
real valued continuous functions on V, 1is separable.
Hence it can be shown that C,(@G) is separable.

Let e be the identity element in G. Since

G is locally compact, there exists a positive real number
8§ such that the set fxe G/p(x,e) < 8} is compact.
Define f, € Co(G) Dy

+8 - p(x,e)
3 ’
i3 ; when x 1is such that p(x,e)< 48,

fo (x)

O; otherwise. - (2)

Let C4(G) %be the set of all positive members of
Co(G)e Obviously fo, e C4(G). For each fe Co(G) and

ae G, define the right translation f, Dy
fo(x) = £(xa)

for all xe G. Since VU1 1is a compact subset of G,

for all compact subsets V amd U of G, and

[Spt(fa):‘a= spt(f), (3)
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1.ee [spt{fa)] = [spt(£)]{a}-2,

for all fe Co(G) amd ae G, spt(fa) is compact and
hence f, € Co(G) for all fe Co(G) and ae G. Let
7 be the set of functions g in C¥(G) such that

g = (f5)a
for some ae Ge.

We note, for all fe Co,(G), g€ # and a and
be G, that

(1) (fa)p(x) = £5(xD)
for all xe G, i.e.

(fa)o

f(xba) = fpa(x)

fras (W)
(11) ga € #;

(iii) fe = £3 and

(iv) |£a| = |£].

Define the diameter of any subset C of G by

diam(C) = sup p(v,w).
v,we @

Then, from (3), it can easily be shown that
diam(spt(fy)) = diam(spt(f)). (5)
Hence, for any ge #,
diam(spt(g)) = %8. (6)
Furthermore it can be shown that, for any ge #,

spt(g) = {xe G/p(x,a71) < 48}
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and

g(x) =‘f8 A ; xe spt(g),

33

= 03 otherwise,
where ae G and is such that g = (f5)ae

Define a functional v on C§(G) Dy:

k
v(f) = inf 3 Ci; where the infimum
is taken over all positive real numbers
Cisens3Cx for which there exists f,eee,fx € 7
k
such that 3 Cify > f, (7)
=1

for all fe C4(G)s Then it can be shown that

(1) v 1is a sublinear functional;
(ii) v(0) = 0;
(iii) v(f) = v(g), for all f and ge C{(G) such that
£z g; and
(iv) v is right translation invariant, i.e.
v(fy) = v(r)
for all fe Co(G) and ae G.
Now define, for any positive real number 4, a
d-packing on G to be:
a subset S8 of G such that
(1) p(x,y) 24 for all x and ye S, and
(ii) there is no point ze G ~ S8 such that

o(z,x) > d for all xe S. (8)
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Then, given 8 1is a d-packing on G for any 4, it can
be shown thats
(1) Sa is a d-packing on G for any a€ G (using
the right invariance of p); and
(ii) the intersection of S and any compact subset OC
of G is a finite set (using the sequential compactness
of C).
5:41 Theorem:?
There exists at least one d-packing on G
for each Qe
Proof:
Let d he any positive real number. Let % De
the collection of all subsets C of G such that
p(x,y) » & for any X and ye Cs» Order § DbY
inclusions Then (%,C) is a preordering and any chain

¢! in € has an upper bound

¢! = U Cc
Ce 8!

Thus Zorn's Lemma is applicable 1o ¢ and ¢, therefore,
has a maximal element, G, Saye

Since G, €%, then p(x,y) > d for all X
and ye€ Co» Let 2z be any member of G not in GCge
1 p(z,x) > 4 for all x& Cos then GCo V {z}e 6,
contradicting the maximality of Coe Hence there is no
ze G~ Cy such that p(z,x) = & for all xe& Co.

Hence G0, 1is a d-packing on Ge "
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Define a functional g on C§(G) Dby:

p(f) = inf » f£(x); where the infimum
xe S

is taken over all Zs-packings on G, (9)

for all fe C;(G). Then it can be shown that

(i) up is a superlinear functional;
(11) p(0) = 0;
(1i1) u(f) > u(g); for all f and ge C§(G) such that
f>8;
(iv) u is right translation invariant; and
(v) there exists at least one function fe ct(g) such

that w(f) > + (e.g. the function &, € C§(G) defined by

Bo(x) = EZB%ELEL; when x is such that p(x,e) < &,

= 0; otherwise).
5.2 Lemma:
If fe C§(G), S is a # 8-packing on G and

Cyse+905C¢ are positive real numbers and £;,ese,fx € &

such that
k
i=1
then
s f(x) € I Cyo
xeS =1
Proof:

Let f be any member of C§(G) and a be any member

of G. Let Cy,..4,Ck be positive real numbers and
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fi,ooo,fk (=3 3 -be S'U.Ch that

k
S Cyfy > fu
i1=1

Let
E={xe S/ £f(x) > 0}. p

If BE is empty, then

» f(x) =0
xeS

k
and is obviously less than or equal to 12 Cie Therefore
=1

assume E 1is non emptye

Put
I(x) = {i € set of positive integers / 1<i<k, x e spt(fy) i,
for all x e E. Choose any x € E. Then
xe spt(r) ¢ U spt(e)
and so there exists a positive integer K such that
1<K<k and x € spt(fK). Hence I(x) is non empty, for

all xe E. If there exists elements y and ze€ E

such that y £ z, then, since
diam[spt(£y)] = %38
for all i, (from (6)) and
p(y,z) > 28,

both y and 2z can not belong to the same spt(f), for
any i such that d1<i<k. Hence the intersection of I(y)

and I(z) 1is empty for all distinct y and 2z e E.
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Now for all xe B, if Jj 1is a positive integer
such that 1 < j <k and j& I(x), then x¢ spt(fy)
and therefore f3;(x) = 0. Hence

) Cify(x)
iel(x

K
3 Cyfy(x)
i=1

£(x)

A\

for all xe E. But f, € 1 Dby definition. Therefore

£; <1 for all 1 < 1 < k. Hence

£(x) < 3= (o8
ieI(x)

for all xe G Therefore

T f£(x) T £(x)
xe8 xek

1l

N

Cy
xe€E ieI(x)

k
g 201,
1=1

since the I(x) are disjoint. "

From the above Lemma L4:2 and the definitions of
v and g ((7) and (9)), the following Theorem follows
easily.
5:3 Theorem:
v(f) = u(f) for all fe C§(G).
Furthermore it is straightforward to show from

the definitions that

pu(£) - v(£+h) < v(g) - u(eg+h) (10)

for all f,g and he C3(a@).
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Define a functional p on Co(@) by:

p(£) = inf[v(8) - p(y)];
where the infimum is taken over all ¢ and
y € C5(G) such that f = @8-y (11)
for all fe Co(G). Then, from the properties of v and
U, 1it can be shown that
(1) p(£) > u(£) (12)
and
p(-f) < -u(£) (13)
for all f e C3(G);
(i1)  p(f) = -v(|f]), and, hence, -w < D(f) < o for all
fe G (G)S
(i11) p(0) = 03
(iv) p is a sublinear functional; and

(v) p is right translation invariant.

A 1is the vector space of all linear functionals on
Co(G) endowed with the weak topology 7. (Note that

the members of A need not be bounded. Define

I' to be the subset of all linear functionals AN in A
for which
AN£) < p(f) (14)
for all f e Co(G).
We note that

7\("f) < P("‘f) ’
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and hence that

-p(-f) < N (£),
giving, from (14),
-p(-f) < A (£) < p(f), (15)
for all ANe I and fe Co(G).

If fe Ct((G), then from (13),
-p(-f) > u(f),

hence, from property (iii) of 4,
-p(-f) > O,
and therefore
AE) =20

for all Ae T. Therefore all members of I are positive
linear functionals.

It is straightforward to show that T is convex,
weakly closed and does not contain the zero func tional
(use the function #,, defined in property (v) of 4, apd
(13)).
5:4 Theorem:

T is nonempty.

Proof:

Consider any ¢ e Co(G), which is not the zero
function. Let M/ be the linear manifold spanned by ¢.
Define a linear functional n on M’ by

n(y) = p(y).
We shall now show that
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n(£) < o(£),
for all fe M.

Let f be any member of M. Then there exists a
real number o such that f = af. If ois non negative,,
then it can be shown, from the sublinearity of b, that

n(£) = p(£). (16)
If o is negative, let e be an arbitrary positive real
number. Then, from (11), there exists #, and #,eC}(G)
such that
v(By+g) = p(8,) < p(y) + 3e

and

v(gy) - u(@a+y) < p(-¢) + Ze.

Then, from (10) and (16),
n(-¢) = -n(y) = -p(¥)

< = v(B,+y) + p(8,) + e

< v(By) - u(B+¢) + %6

< p(=¢) + e
Since € 1is arbitrary,

n(=¢) < p(-¢).

Hence, for negative a, it can be now easily shown (from

the sub-linearity of p), that
n(£) < p(£).

Therefore, since p is a sublinear functional, by
the Hahn-Banach Extension Theorem, there exists a linear

functional 7' on GCo(G) such that
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n' (£) = n(£)
for all fe M and
n' (£) < p(F)
for all fe Co(G)e Hence n' e I and I is, therefore,

non emptys. #

5:5 Theorem:
I' 1is weakly compact.

Proof: (This is similar to Theorem L4.61-A on page 228
of [25]).

For each fe Co(G), [-p(-f), p(f)] is a compact
subset of the real line. Let

A= 1 [-p(-£),p(£) ],
fe Co (G)

Then A is compact and, from (45), I 1is a subset of A.
The topology induced on I' by J 1is the same as that
induced by the Cartesian Product topology of A. There-
fore to show that T 1is compact, we have only to show that
I' is closed in A.

But I' is weakly closed in A. Therefore to show
that T' is closed in A, we only have to show that, if
E 1is an element of the closure of I in A, then & is
linear, i.e. Ee€ A

Suppose £ 1is an element in the closure of T in A.
Consider any positive real number e and any f and

ge Co(G)s Then
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U= Ine O-E)(E)]| <&, |(-E)(R)] < &, |(A-E)(E+)]| < &}

is an open neighbourhood of & in A. This neighbour-
hood contains some element ne I and, therefore, since

n 1is linear,

|g(£+8)-£(£)-E(e) | < |n(f+e)-E(f+g)]|
+|n(e)-g(e)| + |n(g)-(g)|
<3e.
Hence, since & is arbitrary, E(f+g) = E(f)+E(g). 1In a
similar manner, it can be shown that E(Bf) = BE(f), for

any real scalar gS. #

For each ae G, define the linear transformation
Ta of A into A Dby
TaN(£) = N(£,) (17)
for all fe Co(G)e H is the set of T,, for all ae G.
We note, for all ANe A and a and be G, that:
(1) TaTun(£) = Tyn(£a)
N (fa)s)
Nfpa)
= ToaN(F).
for all fe Co(G@) (from (8)), i.e.

TaTv = Tpas (18)
(i1) T, 1is the identity transformation;
(iii) T,~, 1s the inverse of T, (and hence T, is 1:1);

(iv) # is a group isomorphic to G;
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(v) T, is continuous with respect to 7 (see Lemma 5
of chapter II of [24]); and
(vi) T, is norm preserving.
5:6 Theorem:
# maps I onto T
Proof:

Consider any ANe I' and ae G. Let f be any
member of GCo(G)e Then, from (14) and the right invari-
ance of p,

Nfa)
p(fa)
p(f),

and so Tgh € Te Furthermore, if we put

TaN(E)

N

H = Ta~17\’
then, from (18),
Taph = TeN = No
Hence T, maps I onto T. 4

5:7 Bounded linear functionals:

Define T' +to be the subset of T consisting of all
linear functionals in T which are bounded by a positive
constant K = Tﬁﬁy where ¢ is the function from the proof
of Theorem 5:4 and C = max [|p(¢)|, |p(~¢)|], i.e. for all
ne I and for all fe Co(G),

In(e)| < x|£]. (19)
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5¢7:1 Theorem:
I'Y 4is nonempty, convex and weakly compact.
Proof:
In the proof of Theorem 5:L, the linear functional =7
on M/, the linear manifold spanned by ¢ e C§(G), is

bounded, in fact,
l"?(f)l < T%r |f|’

where C = max[|p(¢)], lp(-¢)|], for all fe M. Define
functional q on Go(G) by

a() = min[ 157 ||, 2(9)] (20)

for each fe Co(G)e It is straight forward to show that
q 1is a sublinear functional. Therefore, in a similar
manner as in the proof of Theorem 5:L4, we can use the
Hahn~Banach Extension Theorem to show that there exists a

linear functional & on GCo,(G) such that

g(f) = n(r)
for all fe M and

g(f) < g(f) (21)
for all fe Cyo(G). From (20) and (21), E(f) < p(f) for
all fe C, (@), hence Ee I', and

g(f) < T%I' | £ (22)

for all fe GCy,{(G). But, from (21), for all fe Cy,(G),
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-g(£) = £(-1)

< q(-f),

and from (20), this means that

-£(£) < 77 |1

. (23)

C
= r
ToT |
Hence, from (22) and (23), & is bounded by TQT, and ,

therefore, is a member of I/, Hence TI! 1is nonempty.

If N and 7ne I and are bounded, it is straight-
forward to show that t\ + (1-t)n (which is a member of
I'y since I 1is convex) is bounded, for all real numbers

t between O and 1. Hence TI'Y 1is convexX.

Let F Dbe the subset of A consisting of all
members of A which are bounded by K. Then, from
Theorem L.61-A on page 228 of [25], F is weakly
compact. T/ 1is the intersection of I' and F and,

hence, is also weakly compact.
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53712 Theorem:
# maps I’ onto IV,
Proof:

Consider any Ae I ard ae G. From Theorem

5:6, Tane I' and there exists 4 = Tari%‘e I' such that
T.it = Ne We, therefore, need only show that T\ and
Tafi)‘e T, i.e. are bounded. Let f be any member of
Co(G). It is straightforward to show that |fu| = |£].

Hence, with (19), this gives

‘Ta‘)\(f)l = ‘7\(fa)|
<K |fa]
=% |£|,

and, similariy,

T _.N(£)] <X |£].
|, | | £] ]

Therefore I and I are nearly identical in this
situation. But as will be shown, the common fixed point

for the mappings of # (i.e. the right invariant integral)
cannot be a member of I'! when G is not compact. This
exemplifies the difficulty of finding a fixed point
Theorem that can be used to show the existence of a right
invariant integral on a locally compact group. In fact,
since # 1is unchanged in its action on I' and TI?, this
points to the need to consider conditions on the nonempty
convex weakly compact set I (as in Chapter 3) when look-

ing for such a fixed point Theorem. For example, the
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answer may be, as in Chapter 3, with conditions on the
convex compact set or with a topology in which T 1s
compact and T/ 1is not.

5:7+3 Theorem:!

If G is not compact and & 1is a common
fixed point, in I, for the mappings of #, then & is
unbounded, i.e. E¢& I'.

Proof:
Assume E 1is a common fixed point, in I, for the
mappings of #. Consider the function &, € C§(G) as

defined in property (v) of sublinear functional 4, 1i.e.

Bo(x) = §:9§5&§l; when x is such that p(x,e) < &,

= 0; otherwise.

Then |#,| =1 and
spt(2,) = {xe G/p(x,e) < 8}. (24)

From (13) and (15),
£(@0) > u(do) > L (25)

S8ince G is not compact, there exists sequence
fa,} in @ such that e = a, and p(ay,a,) = 8§, for
all distinct positive integers n and mn. For each n,

let
En = (¢O)a'x—11°

Then, for each n, g, e C3(G), |&.]| =1, from (24),

spt(egn) = {xe G/p(x,a,) < 8}
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and, since g is a common fixed point for the mappings of

# and (25) holds,
£(gn)

E((¢o)a-ﬁi)

= £(85) > [ -

For each n, put

hn = Egi.

Then, for each n, h, e C§(G), |hy| <1 and

Hence £ 1is unbounded. m
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