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iv

This thesis considers some aspects of frequency modulation
systems using frequency compressive feedbacke. The most common of these
is the frequency modulation with feedback (FMFB) system and the ensuing
investigation will be principally related to this system.

The first chapter contains a brief outline of the historical
development of frequency compressive systems.

In the second chapter, a theoretical and experimental invest-
igation into the threshold of FMFB under unmodulated conditions is
conducteds It is shown that feedback causes a threshold which is due to
the non-linear response of the IF tuned circuits to phase (or frequency)
modulation. It is also shown that this threshold can be adequately
described in terms of impulse phenomena.

The third chapter considers modulation dependent effects in
the threshold of FMFB. It is shown that several independent effects
related to the IF filter and frequency detector raise the FMFB threshold
under modulated conditions, and their minimisation requires much more
careful design than is immediately obvious.

Chapter four contains an evaluation of the possibility of
applying FMFB to a time multiplex telemetry systeme. It is shown that
under typical conditions the advantages are likely to be marginal.

In the final chapter, a preliminary consideration of systems
related to FMFB is presented. In particular the dyramic filter system
and the phase locked frequency divider are shown to have similar properties

to FMFB, although there are scme aspects which are peculiar to each device.
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CHAPTER I: INTRODUCTION.

In 1937 Armstrong [1] first demonstrated the practicability of
frequency modulation and showed the necessity of using an amplitude limiter
if the best performance (in terms of noise rejection) was to be obtained.

J«G. Chaffee [2] in 1939 proposed the use of negative feedback in
an FM receiver to achieve essentially the same result as the amplitude
limiter. His aim was to show that the use of feedback in a system with-
out a limiter produced comparable results to the use of an amplitude
limiters

In 1944, Beers [21 ] described a frequency compression receiver
employing frequency division. He found it necessary to supplement his
system with frequency feedback in order to handle the frequency deviation
desired.

In the late 1950's interest in frequency modulation with feedback
(FMFB) was revived » &8s it seemed that the use of feedback in a system
with an amplitude limiter could improve upon the performance of ordinary
FM receivers. The limitation with ordinary FM was that to obtain a
high output signal to noise ratio (SNR), a large deviation ratio was
necessary, and the wider bandwidth necessary to pass these signals
resulted in more noise in the RF and IF sections of the receiver. It was
shown that if the carrier to noise ratio (CNR) prior to detection fell
below 10-12 db, then a threshold phenomenon occurred, the salient
feature being a rapid rise in output noise.

The fact that FMFB reduces the deviation ratio of the signal
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indicated that an IF amplifier of smaller bandwidth than before could

be usedo Due to the reduction in the IF noise an extension of the
acceptable operating range to smaller carrier powers should be expected,

or gltermatively, for the same carrier level a much wider deviation

signal could be transmitted resulting in a higher output SNR. Improvements
were obtained, although indefinite improvement could not be achieved

by increasing the feedback factor.

In 1962, Enloe [ 3] showed that the use of feedback could only
improve the performance of an FM system by a limited amount. This he
attributed to a feedback threshold which occurred at higher carrier
levels as the feedback was increased.

In the succeeding chapters it is intended to present results of
some recent investigations into the nature and properties of FMFB
threshold. . The implications, as far as optimisation in different circum—
stances is concermed, are discussede

FMFB is in fact only one member of a class of FM detection systems
employing feedbacke Other systems in this class and their relation to

FMFB are discussed in a later chapter.



201

CHAPTER 2: FMFB THRESHOLD UNDER UNMODULATED GONDITIONS.

2.1 Discriminator threshold.

This occurs in an FM system when the small noise approximation
to the output SNR breaks down. This effect has been analysed extensively
(e.g. Stumpers [&] ) and has been shown tc depend on the predetection
CNR and the deviation ratio of the FM signal. Such analyses gave import-
ant results, but did not shed much light on the mechanism of threshold.

The approach of Rice [5] , who describes the onset of thresh-
old as a superposition of two processes, has done much to improve the
understanding of FM threshold. The two processes are the linear model
giving rise to noise with a quadratic power spectrum, and an impulsive
process giving rise to noise with a uniform power spectrum. The
impulses result from phase jumps in the signal caused by the carrier
plus noise phasor encircling the origin.

2.2 Feedback threshold.

In an FMFB system, Enloe [ 3] considered that there were two
thresholds, one the ordinary discriminator threshold and the other a
feedback threshold.e He showed that in systems where the feedback
threshold was predominant, this occurred at a mean square local oscillator
phase deviation of about 0.1 radz.

He attributed this threshold to an interaction of the incoming
in phase noise components with the local oscillator phase modulation.

The figure of 0.1 rad2 was obtained from measurements on several FMFB

systems and the figure was reasonably consistent.
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It was apparent, however, from observations made on the experi-
mental model described in Appendix F, that feedback threshold was a result
of impulsive noise and in fact was indistinguishable from discriminator
threshold.

An analysis on the basis of impulsive noise was performed
by Schilling and Billig [6] . Although superficially promising, the
effect of feedback is entirely disregarded as an impulse source.

203 System equations,

Figure 2.1 shows the block diagram of an FMFB system along
with its small noise linearised low pass equivalent circuite The
approximations are concerned with the replacement of the IF filter by
a linear transfer function H1(S) and the representation of the input
by its phase alone.

The differentiation of phase produced by the frequency detector
is compensated by integration in the VCO. The nett effect is simply
a gain term A = K

1
We shall first study the system under unmodulated conditionss

K2.

If the carrier is coscu1t, then additive gaussian noise n(t) may be
resolved into inphase and quadrature components, so that the received

signal may be expressed as:

v1(t) = Re {(1 + x(t) + y(t))ejw’]t} seses (1)

where x(t) and y(t) are low pass gaussian random time variables i.e. we
represent n(t) by the phasor z(t) = x(t) + j y(t). In order that the

resolution (1) be unique, we assume there are no significant noise
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components at frequencies exceeding 20)19
On multiplication with the local oscillator signal
v2(t) =R, { 2 eJ(a)Zt + ¢ (t)):} and assuming the sum frequency comp-

onents are removed, the IF signal is:

v3(t) = R {(1 + x(t) + Y(t))ej( wj(t) - 3(¢)) } cecos (2)

where QB = aﬁ - Wye If the IF filter has a transfer function H(S), then

the output from the IF filter is:

v, (%) = Re{ (1 + x(t) + 3y(8)) o3 P8 oI w;,t} ceeee (3)

where the bar denotes the effect of passing the quantity under the bar
through a filter of transfer function K(S) = H (8 + j ag)g i.e. we may

define the bar operation by:
[0 o]
70 <[ K wer)ar

o
where k(+) is the impulse response corresponding to the transfer function
H(S + J a@).

The instantaneous IF phase is given by:

o(t) = arg{ (1 + x(t) + dy(t)) o9 B(¥) } cocos (L)

The feedback is accounted for by the fact that the VCO phase is obtained

by passing ¢(t) through a basebsnd filter H2(S) and amplifying it. i.e.

]
¢(t) = Ao (t) ceeos (5)
where the asterisk denotes the effect of passing 6(t) through a filter

of transfer function H2(S). ieeo

6*(1:) = [whz(f) 6(t-7) ar

0
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where h2(t) is the impulse response of the filter of transfer function
H2(s).,

The simultaneous solution of equations (4) and (5) describes
the unmodulated behaviour of FMFB. The effect of modulation is
considered in Chapter 3.

2.4 Power series approximations.
Ir K(S) = H(S + ja)j) = Kr(S) + J Ki(S) where Kr(s) and

Ki(S) are real for S real, then

K,.(8) z«{ B(S + jws) + H(s - ij)}

K, () Jz-g{ﬂ(s + J"wj) - H(S - jw3) }

K(S) is the transfer function describing the bar operation.

If Ki(j w) = O for all @ in the range of significant frequency
components of x(t), y(t) and ¢(t), then K(S) represents a real filter
to these signals (i.e. one in which a real excitation gives a real
output) .

The requirement Ki(j w) = O is equivalent to the IF transfer
function having a symmetrical amplitude response and an antisymmetrical
phase response about w3. This condition is usually closely approximated
over the IF passband in practice, provided w3 corresponds to the centre

frequency. We may take H(J a)3) = 1 without loss of generality. .

Let 2(t) = (1 + x(t) + § y(%)) e 3 (t)

Expanding the exponential as a power series givess

2(t) =1 + x(t) + y(£)p(t) + J(y(t) - B(t) = x(£)g (%)) + 0(p2)
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Hence Z(t) = 1+%(t) + y(t) (t) + 3(F(£)-p(t) - (©)B(t) ) + 0(p2)

Assuming the IF filter has the symmetry properties discussed above,
then a2ll barred terms are real.
If we also assume x(t), y(t) and ¢ (t) are small compared

with unity, then:
o(t) = (y(t) =g(£))(1 = x(t)) = () g(8) +E(t) evee (6)

where €(t) contains terms of third order and higher.
If the system is above discriminator threshold, ;(t)<<1
and may be ignored in the first term on the right hand side of (6).
The term E(%T]E(EF’ is not necessarily negligible however; and this was
considered by Enloe to be the non-linear term causing feedback threshold.
If the IF filter has a transfer function H(S), then it can be
shown (esge [3] ) that the transfer function to smell phase variations

on a carrier frequency 03 is given by:
) o H(S + jw) (S - jo)
H(S) = =7 =-z7-7-é- -_T_T—:;i' csaes
€ 2{ H(30; + H(=3, } (7)

If the IF response has the symmetry properties discussed earlier, then
H(jag) is pure real and may be taken as unity as before. Equation (7)

then reduces to:
H1(S) = K(S) cosoa (8)

ice. in this case the incremental phase transfer function is the same
as that of the bar operation.

Putting 1 - x(t) ~ 1 in (6) and combining with (5) gives:

¢ (t) +A$(E) = A{ F8)- - z(t) ¢ (t) *} cenee (9)
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%
Omission of the term xfti ¢zt5 in (9) yields the linear model. In
this case ¢(t) depends only on y(t), and the transfer function connect-

ing them is:
A H (8) H(S)
HO(S) = 1 +j_A H1 (‘g) HZ(S) XXX (10)

where Hc(S) is called the closed loop transfer function. If the psd
of the incoming RF noise is 7(f) = constant, then x(t) and y(t)

each has a psd of 27 (f). The psd of ¢(t) is therefore:
. 2

*
If the term x(t) ¢Zt$ is retained in (9) then we can

rewrite (9) in the form:

27 N
#(t) = F(t) - =z(¢) (%) eesae (12)

where the cap denotes the effect of filtering by Hc(S) ieeo

30 = [ ) ) ar

where hc(t) is the impulse response corresponding to the transfer
function HE(S).
If the second term on the right hand side of (412) is small

then we may put ¢(t) ~ f(t) in this term. Hence

o8 =~ §3) - o) Q) e (13)

Now since x(t) and y(t) are independent, the psd of x(t) F(t)
is found by convolving the individual spectra. Also the cross spectrum
of 9(t) and x(t) 9(t) is zero since the cross—correlation function

is identically zero.



2.7

< 5(t) x(t4r) Ptar)>

()

R
cross

< x(t4)><F(t) F(t+7)>

0 since x(t) has zero mean.

Hence we may add the psd's of §(t) and x(t) F(t) to give the

psd of ¢(t) s viz.

G¢(f) = |Hc(ja)) | : [Gy(f) + /+°°|Hc(j2n'?\) |2 Gy(x)(;x(f-x) dx}

where Gx(f) and Gy(f) are the psd's of x(t) and y(t) respectively.
As shown previously these are both equal to 277 (f). Therefore, by using

the fact that 77(f) = constant:
6, (2) = 27 () | B,() |° {1+<§<t>2> } ceren (1)

To satisfy our approximation in (13) we need < 3( t)% <<1e

We define the closed loop bandwidth Bc ass
F_\2[7 Ly i2
B, = (57=3) / |5, () |© af
- oo

and the parameter P, as:

be = IO E,

where Py is in fact the CNR which would exist if the RF signal were
passed through a bandpass filter of bandwidth equal to Bc' Hence Pe
is called "the CNR in the closed loop bandwidth." [3] .

+ oo
Since <§2(t)> = 2 n(f)[ IHc(jw)lz df, we can also write:

- o0
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2
Y PRY F
Hw?s o
2F p s
The linear model corresponds to the term {1 + ‘<§¥t)2)> } in (14)
being unity. If we assume threshold corresponds to #db deviation from

linearity, then the value of Pq at threshold is:

Po(th) = 413 { F_E.'i}z ceees (15)

This agrees with the experimental result obtained by Enloe, except

F

: 2
that his result was 4.8 {E:L} . Bquation (15) indicates a mean square
local oscillator phase deviation calculated from (44) of <¢2(t)>

0.136
rad>. [ c.f. Enloe 0.103 rad’ + 14 %, although it was not clear whether
this was measured directly or calculated from other parameters using the
linear equivalent circuit. Also Enloe's threshold criterion was an
impulse rate of 1 per second. This corresponds to 3db increase in

output noise if PIF = 13db in his system. His system had a BKHZ baseband
bandwidth and a 6KHz 3db bandwidth single pole IF filter.]

The value of <3$°(t)> at threshold as defined by equation (15) is
0s121. This is also the value of <¢ (t)2> calculated from the linear
model.

A digital simulation of the system represented by equation (9) gave
close agreement with equation (14) « This is shown in Figure 2.2 (0db
input noise corresponds to 77(f) =1/6 voltz/Hz for the model of Appendix E.
This also corresponds to Po = %(F=-1)2/F2. Further deteils of digital
simlations are found in Appendix G).

The approximation (14) predicts no change in the shape of the output
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spec trum.

The apparent agreement between this model and the experimental
results of Enloe is rather deceptive, since the region of deviation from
linearity is also the region where the approximations made become
increasingly inaccurate.

This fact was emphasised when equation (6) with all second
order terms retained was used in a digital simulation. The results are
shown in Figure 2.3, This indicated little change from linearity, which
is inconsistent with experimental evidence. It seems, therefore, that
power series approximations do not lead to satisfactory models for
explaining threshold behaviour.

However the results obtained are useful in that they indicate
the critical parameters involved in the occurrence of threshold. In
particular, it is noted that the mean square value of ¢(t) is significant,
in that if this is small enough, the system is above threshold (provided
the system is also above discriminator threshold).

A simulation of the exact relations in equationS(u) and (5)
and practical experiments indicated that the occurrence of feedback
threshold is not a smooth rise in output noise. Rather, it is impulsive
in nature, similar to discriminator threshold in normal FM.

Figure 2.4 shows the results of the digital simulation. For
input noise levels exceeding -410db, the mean square value of ¢ does not
converge., This was due to jumps in the mean value of ¢ , each jump

corresponding to an impulse of noise in the output.
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2.5 Impulse approximations.,

2.5.1 Impulse mechanisms.

Using the approach of Rice [5] and regarding the
threshold as the result of two separate processes, the linear process
and the impulsive process, the number of jumps in the mean value of ¢
was counted. This was obtained from a digital simulaticn of the exact
equations (4) and (5)-

The results are shown in Figure 2.5 (simulation 1).
Approximately equal numbers of positive and negative jumps occurred, the
magnitude of the jumps being 21T(F=1)/T=

The theoretical treatment of this approximation requires
a prediction of the impulse rate in terms of system parameters. For
ordinary discriminator threshold, Rice was able to predict the impuise
rate by multiplying together the zero crossing rate for the quadrature
noise component and the probability of the signal (carrier + noise) phasor
lying in the second or third quadrants. The cause of the impulse in
this case is an encirclement of the origin by the signal phasor, corres-
ponding to a phase jump of + 27 radians, and the freqency detector gives
an output corresponding to the time derivetivsz of phose (Le.e. an impulse).

In feedback threshold, however; impulses occur even when
there would normally be no encirclement in the absence of feedback.
To study the behavicur of the system, it is convenient to consider a low
frequency model in which phase is the variable. The frequency detector,

baseband filter and voltage controlled oscillator represent linear
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operations on the phase, being differentiation; low pass filtering and
integration respectively. Since integration and differentiation are
complementary, it is convenient to ignore them completely in the analysis
of the system, except to remember the output is finally the time derivative
of the phase.

The mixer is a linear phase differencing device if the
sum frequency components can be neglected. The IF filter, although linear
to the cartesian components of the signal phasor, is not linear to phase
itself,

If the input to the IF channel is of the form

v,(t) = R {Z(t) ej“’3t] ceeee (16)

where Z(t) is the phasor representation of vi(t), then the output is of

the form:
vo(t) = R {W(t) ejwst} ceeee (17)

If the IF filter transfer function is H(S), the transfer function linking
z(t) to Ww(t) is H(S+j0J3)o A high Q LC resonant circuit closely approx-
imates the symmetry requirements mentioned previously and hence K(S) =

H(S+ja)3) corresponds to a real filter. The differential equation corres-

ponding to K(S) is:

Loams) | owey) - z(4) coree (18)

A dt B
where A 1is the semi 3db bandwidth of the IF filter in radians/éeco This

is shown in Appendix B, which also considers the case where the Q is
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not necessarily high and the filter resonant frequency is different from
the carrier frequency.

The differential equation (18) has a particularly
simple geometrical interpretation. At any instant the r esponse phasor
W(t) moves towards Z(t) with a velocity proportional to the separation
distances If 2Z(t) is constant, the path of W(t) is a straight line.

Bquation (18) may be converted into an equation in the
IF phase 6 (t), with excitations x (t), y(t) and ¢ (t). For FMFB the

vector Z is given by:

z(t) = (4 +-z(t))e_j¢(t) seces (19)
where z(t) = x(t) + jy(t) is the noise phasor.
On putting W(t) = r(%t) eje(t) and eliminating r(t) from e quation (48),

the phase equation is:
{y(é.-Aé) -?3 y + (2(.?2 +'0<;.S)(1 + x) } cos( 6 +¢)
- {(1+X)(.6.-A5) +éJ; - (2:92 + 5(2) )y} sin( 6+¢) =0 ...(20)

It is evident that although linear in Z(t) and W(t),
the system is not linear in 6 (t), particularly when Z(t) and W(t) are mark-
edly different. The general effect for large differences in the argu-
ments of Z(t) and W(t) is that the response is initially more sluggish
than predicted by the linear model.

Figure 2.6 shows the response if the phasor W is

displaced angularly by an amount 6:‘. from its rest position Z(t) = 1+30 =
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constant. This could be obtained from equation (20) by putting
x(t) = y(t) = ¢(t)=0 and using appropriate initial conditions for 6.

However, in this case an exact analytical solution can be ohtained

from equation (18) using the initial condition W(0) = 01 |
Hence:
W(t) = 1 -(1-eJ6i ) e- At o0 e e (21)
and the phase 0 (t) is given by the argument of w(t).
e(t) = arg { 1 - (1-eJ6i) e-At } coswd (22)

Note that 6(t) = 305 at t=—1A— in 2.

In the absence of local oscillator modulation, (i.e. ¢(t)
= 0 ) it can be seen that if the response phasor W(t) encircles the

origin, then an impulse appears in the output. This corresponds to
discriminator threshold and is conveniently analysed by using the fact
that W(t) is gaussian. (i.e. the cartesian components of W(t) are jointly
gaussian), This has been done by Rice [5] .

In FMFB, ¢(t) is not zero and in general W(t) and 2(t)
are non-gaussian. However threshold occurs when there are phase jumps
in W(t), although these are not necessarily 27 in magnitude as will
be seen shortly.

Figure 2.7 shows a model of FMFB equivalent to Figure
2.1» Inclusion of the amplifier of gain A+l means Go(t) is equal to
the incoming phase under ideal conditions. If the phasor 1+z(t) encircles

the origin slowly enough that the loop follows it, then g (t) will jump 277,
o}
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the IF phase 6(t) will jump 27/F and the local oscillator phase

¢ (t) will jump 2 7 (F—1)/F.

In fact there are an infinite number of "rest" states
for ¢ (t) separated by 27 (F - 1)/F, and & jump from one state to another
is accompanied by an impulse in the output. »

A difficulty arises here that even in the absence of
feedback, & single pole IF filter has an infinite impulse rate. This
is because the impulse rate is proportional to the RMS value of the
derivative of the quadrature noise, which is unbounded for a single pole
filter. In practice a single pole response is never actually obtained
exactly and the impulse rate is always finite.

To avoid this difficulty it is necessary to consider
an IF filter with a faster skirt roll-off. This could be provided by
another tuned stage of wider bandwidth such that the response in the
passband is still essentially single pole. Conventional IF stages (eege
maximally flat) cannot be used because of loop stability problems and
modulation dependent effects (see Chapter 3).

In the no feedback case, an IF channel consisting of
two tuned stages of bandwidths B1 and B2, produces an impulse rate
proportional t°«fE:EE; The nett sensitivity of the threshold carrier
level to changes in bandwidth ratio B, /132, while still maintaining the
same noise bandwidth, is relatively small, being about 0.7db difference
for ratios of 4 and 4100.

It is convenient therefore to assume the IF filter

consists of the basic single pole filter plus a similar stage of wider
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bandwidths In FMFB the effect of the additional pole will be assumed
to be compensated by a zero in the baseband filter (see Appendix E).

In considering the threshold of FMFB it is evident that
in certain cases it is possible to say that this is caused predominantly
either by effects similar to normal discriminator threshold or by effects
related to the feedback. The external behaviour of the system is
identical in either case, the impulses in the frequency detector cutput
being caused by 27 /F jumps in the IF phase and 27 (F=)/F jumps in
the VCO phase.

24542 Prediction of impulse rates.

A more convenient model of the FMFB system is obtained
by introducing the noise at a different point in the circuit. In the
absence of feedback, the incoming white noise passes through the mixer
and the mixer output noise is also white. Passing through the IF filter
only modifies its psd and hence the model of Figure 2.8 is obtained. The
transfer of the noise input is also justifiied under feedback conditions
because of the whiteness of the input noise n(t). This technique has
been used in analyses of the phase locked loop [13] .

If the psd of n(t) is n(f), then on the assumption
that the mixer is an ideal multiplier and the VCO signal is given by

v, = Re(ZeJ(w2t +9‘5)), the psd of n'(t) is given by:

. 2
n'(£) = [HGw) | n(£) ceese (23)
where H(S) is the IF filter transfer function and use has been made of

the fact that n(f) = constant,
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The advantage of this representation lies in the
fact that we do not have the complication of interaction between the
noise and the VOO phase modulation prior to IF filtering. Also the
mean square value of n'(t) is finite and much less than unity if the
system is above threshold.

Figure 2.5 shows the results of digital simulations
on both the original model of Figure 2.1 (simulation 2) and the modified
model of Figure 2.8 (simlation 3). The impulse rates obtained are not
significantly different for the two models.

Figure 2.9 shows the phasor diagrams of an FMFB system
at some time t for both the original model of Figure 2.1 and the modified
model of Figure 2.8. The phasor z'(t) represents n'(t). The dotted
lines with arrows indicate the paths the filter output phasors would
follow if the input phasors were frozen. If the local oscillator phase
deviation ¢)(t) is smll, then impulses may occur due to n'(t) becoming

large enough for the IF carrier plus noise phasor W(t) to encircle

the origin,
The rest states are defined by the equations:
¢I‘ + 61‘ = 2Tk (k ar integer) ceo (21’3)
¢r = A er ®s o (2ll-b)

where 0  and ¢r are the rest values of 6(t) and ¢(t) in the
absence of noise. In the presence of noise they may be regarded as the
short term mean values of these quantities. Equation (24&) is the con-

straint imposed by the IF filter and (24b) corresponds to the feedback path.
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If the phasor W(t) encircles the origin this introduces
an extra 27 on the left hand side of (24a) due to the increase in 6(t).
This is absorbed into new rest states 0. = 0. + 27 /F and ¢r’ = ¢r +
21 (F-1)/F in accordance with (24b). The nett IF phase jump is
therefore 27/F. This effect produces results nearly identical to
normal discriminator threshold in ordinary FM. The VGO phase ¢ (t)
jumps 27 (F-1)/F even though its fluctuation about ¢, may be small
initially.

If the VCO phase variation ¢ (t) is sufficiently large
then impulses can occur, even though n'(t) be small. Due to the
non-linear behaviour of the IF filter, if the angular difference between
the IF input and output phasors increases to a magnitude greater than 7,
the output phasor approaches the input vector from the opposite direction.
This results in the value of k in (21a) increasing or decreasing by 1
and the new rest states correspond to a 27 /F Jump in 6r and a 27 (F= )/F
Jump in ¢r°

Note that both the above effects are due to the IF
input and output phasors slipping relative to each other by an amount
2 radianse It is only the cause of this slip which distinguishes
discriminator threshcld from feedback threshold. Of course, in a
practical system, it is not possible to accurately distinguish an
impulse as being due to one or the other.

The impulse rate prediction of the first effect (called

discriminator threshold) can be achieved using the results of Rice [5]
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for normal FM. For the latter, the rate is evidently related to the
magnitude of the deviation of the VCO phase ¢ (t). This scorresponds

to the feedback threshold.

(a) Discriminator impulse rate.

The discriminator impulse rate from Rice [5] will be derived.
If the carrier is of unit amplitude and x'(t) + j y'(t) is the phasor

representation of n'(t), then the impulse rate is given by:

= ' ' = oesae
vg = vy Plx'<-1) (25)
where v, = totel number of impulses / sec.
vy' = zero crossing rate of y'(t).

The assumption is that every time the phasor crosses the

negative real axis an impulse occurs. Now vy' is given bys

vy' = mIF/qT ccsos (26)

< y'2> / < y'2 > and is a property of the IF

2
where Dp
filter alone if the incoming RF noise is white.

Also x'(t) is gaussian Of pdf:

Y 12
p(x') = 1 e B /2<x % ceoseon (27)
2
7' >
Brp -
Hence vo= T / p(x') a x!
) ip T
lees vy = - erfe ( 'VpIF) soeee (28)

where erfc is the complementary error function and PIF = 1/2<x'?s

is the CNR at the IF filter output.
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(b) Feedback impulse rate.
A feedback impulse results when the IF output phasor fails

to "track" the IF input phasor, and hence the critical point is where
these phasors differ in argument by radians. If this difference
increases beyond 7 radians, the IF output phasor may approach the
input by the shorter route, involving a slip of 27 radians. Feedback
constraints redistribute this according to equations (24a) and (24b).

Referring to the phasor diagram of Figure 2.9b representing
the modified model of Figure 2.8, we may consider that if the angular
difference between the IF input and output phasors exceeds r radians,
then a feedback impulse is almost certain to occur. (This is analogous
to the impulse phenomenon in ordinary FM threshold, where an impulse
almost certainly occurs if the argument of the signal plus noise phasor
exceeds 7 radians in magnitude.)

If we denote the IF output before n'(t) is added by the

phasor:
V(t) = a(t) e’ a(t) cesee (29)

then if n'(t) is represented by the phasor z'(t) = x'(t) + j y'(t),
the final IF output phasor after n'(t) is added is given by:
W(t) = V(t) + Z'(t) cecoe (30)

For the above model, the IF input phasor is simply the constant
amplitude phasor éﬁ]¢(t). We may therefore state that the condition

for an impulse to occur is that:



| p(t) + a(t)]| >= ceees (31)

The fact that the distributions of ¢(t) and (%) are non-
gaussian means that & prediction on the basis of gaussian pdf''s is not
likely to be accurate, particularly in view of the sensitivity of the
impulse rate to the tails of the distribution.

Let us define vy (t) = ¢(t) + a(t) where +y(t) is assumed
continuous and not necessarily confined to the range =97 to 1 .
(i.e. we take into account all 24 Jumps in «{(t)). We are therefore
interested in the rate at which y(t) crosses odd multiples of 7,
the even multiples of 7 corresponding to rest states.

If p( y,y) is the joint pdf of y (%) and its time derivative,

then the rate of crossing a level Yi is given by: [18&]

[e o]
'l)k+ =[ Y p( Yk ,'?') d‘? sesee (32)
o
where vk+ = rate of crossing Y in a positive direction.
In particular, we are interested in the rate of crossing levels

Yy = (2k+1)7 , k an integer. The total positive crossing rate is

therefore:

+ oo
v, = Ve, = [ X p({2ku)m 5 v ) a¥  eeeee (33)
-0 __CX;
If we reduce Y(t) modulo 27 to the range - <Yr(t) < 7 » then the

joint pdf of Yr(t) and y(t) iss
+00

af Yr,*?) = X p(Yr + 2k, v ) eeoee (34)

k:‘.—Qo
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Hence from (33) we obtain:

v =[°°{r om, ¥)avy cesse (35)

+
0

If the distribution q(yr Y ) is symmetrical in Y and
then the negative crossing rate v_ is equal to v, This will
normally be so under unmodulated conditions and correct tuning of the
FMFB system. The nett impulse rate is therefore Vo= 21;*.

If we write q(Yr sY) = q*l(Yr) QZ(Y/Yr) , where q1('{r) is the
pdf of '{r(t) and qz(?/yr) the conditional pdf of +(t), then from (35) we

can express the impulse rate as:

Vp = q1(v) < I%lir . ceeo. (36)

Here we have assumed the symmetry requirements above are satisfied.

The assumption that Yr(t) and -?(t) are jointly gaussian leads
to large errors in (36). The main source of error is in the factor
q (i) , where because of the poor fit to the tails of the gaussian dis-
tribution, the error is extremely large. The factor < |vy| >Y =1ris
also in error if evaluated in the gaussian assumption, althoughrthe
error is not nearly sc significant as that of q_1(1r).

We shall first consider the properties of the phase of a sine-
wave plus random gaussian noise. The properties of Y(t) will be similar;
although filtering and feedback will obviously have some effects

The pdf of the instantaneous phase §(t) of a sinewave plus

gaussian noise is given by: [18b] .
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. 2
p(e) = 42; { e PWap cos6 e-p81n6(1+erf(~/,5_cosﬁ)) :}..... (37)

where p is the CNR.

Hence:
plmr) = Jz; {:e-p -NTD  erfc h/b_} eooss (38)
Using the asymptotic expansion for erfc (Wp ) [28], (38)
becomes:
-0 {
= 2_— -J_ 0 J_ } cao0ee
p(m) = == rak (p2) (39)
The high CNR gaussian approximation to the pdf of 6(t) gives:
_po2
= _& eesee
P, (0) -J = e (10)

i -
2p
very nearly gaussian as p - o, the expression (40) with 6 = v does not

since <@ 2> - for large p. Note that even though &t) becomes
converge to the correct value as given by (38). The fit to the tails
of the gaussian distribution in terms of relative error is very poor.

We will also show that <|f|> is different from <|5I>5=1T .
These would be equal if ¢(t) were gaussian. The first can be found
from the pdf of 6 as derived in Appendix A. The result (from Appendix A)
iss

<|8]> = n &"2P I (%) ceces (41)

where m is the radius of gyration of the IF filter characteristic

(rad/sec).

The second can be found from the known impulse rate of sinewave



plus gaussian noise as given by equation (28): viz.
m
v = 2'"_ erfc(@-) ceeces (14.2)

However we can also write (using (36):
vs= P(7T)<|é|>6m_ XXX (43)

where p(mw) is given by (38).

Hence:
<|&]> wfe (]
Lobog - fp( b) cevne (42)
<|6]> e EPIO(%p) E'e ~NTD erfe(ND) }
Using the asymptotic expansions for erfc (Np) and Io(%p) [28 we obtain:
<|6]> _ N
—L=T— - 2p (1 + 0(1)) coves (45)
<|8]> P

This ratio diverges as p -+ .

Thus even though 6(t) tends to gaussian as p = oo ; the impulse
rate prediction assuming §(t) is gaussian does not converge to the
correct value.

If however, we assume 6(t) gaussian and that an impulse occurs
whenever |0(t)| exceeds some value @ o? then to obtain the correct
impulse rate, we require
2 e-p 602 = = erfe(Np) (

- = o seseo (46)

where the left hand side is the crossing rate of a gaussian process and

the right hand side is as given by (42).

Hence:

6, =\]’L 1n{erfcf~m } ceoee (47)
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A plot of 00 against p is shown in Figure 2.10. A prediction
of the output noise (from a frequency demodulator) based on 00 = constant
is shown in Figure 2.11. is.e. the impulse rate is assumed toc be given
by the expression on the left hand side of (46). Also shown is the result
given by the right hand side of (46), which is Rice's result. The IF
transfer function is assumed rectangular of bandwidth 12fa (corresponding
to an FM system of modulation index 5.) (fa = baseband bandwidth).

It can be seen that the gaussian model produces a curve of
the correct shape, but one in which the rate of increase in noise is
slightly higher than given by Rice's curves.

If we proceed in the same manner with 1'(t) (i.e. assume that
Y(t) is gaussian and an impulse occurs if l Y(t) I exceeds y'o), then
the impulse rate is:

m

2 2

b = X oY /2> coees (48)
f T
Since the threshold impulse rate isv, = 0.08 77(f)fa2

(from Appendix D), this yields the value of Y, vize

m

2 2
YO = 2<Y > ln { ’Y- P } 20003 (l|-9)
0.087Tn(f) £,

The value of n(f) can be found from the equation:

<% = 27;(f)[+°° |Hc(jw)|2 af eeers (50)

where ‘<¢2:> is assumed to be a value consistent with the results of Enloe.
For the typical FMFB system of Appendix B, the value of Yo is shown for

various feedback factors and IF bandwidths in Figure 2.12.
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The fact that Yo is largest at high feedback factors is an
indication that Y(t) becomes more nearly gaussian as the feedback factor
increases.

The power series approximation of Section 2.4 indicated that
the magnitude of ¢(t) was the factor which determined feedback threshold
and this wes supported by experimental evidence. [3],[29] .

If we assume an impulse occurs when |¢(t)| exceeds a certain
magnitude ¢‘), then the wvalue of ¢o is given by an expression identical
with (49) except that y is replaced by ¢. For the typical FMFB system
of Appendix B, a plot of ¢° against F for various IF bandwidths is
shown in Figure 2.13.

2.5+.3 Threshold behaviour.

Using the previous results for'v(1 and Voo the impulse
rates due to discriminator and feedback effects respectively, the threshold
performance of FMFB can be predicted.

Assuming that we may regard the discriminator and feed-

back impulse mechanisms as independent, the total output noise is given

by: (Appendix D).

2 2
N° = 167 n (f)faB/S + 87 ( vy o+ vf)fa cesse (51)

The first term is the above threshold gaussian noise (quadratic spectrum)
and the second term is the impulse noise (flat spectrum).

is given by equation (28), whereas v_ is given

N
ow v a

d
by (48) or by a similar expression involving ¢. Hence:
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o= 16ﬂ2n(f)fa5/3 - &rof {% erfo(ND 1) + Tq_’TL e-Y02/2 <Y2>]

coeoe (52)

The total noise plotted against P1F is shown in Figure
2.14 for the typical system of Appendix BE. Also shown are experimental
points from the working model of Appendix F. It can be seen that the
agreement between experimental points and the theoretically predicted
results is quite close, although the predicted rate of rise of noise is
slightly greater than that obtained experimentally. This is similar to
the results of Figure 2.11 for a normal frequency modulation system.

The values of % and ¢° were obtained from Figures 2.12 and 2.13 respect-
ively, for the parameter values F = 10, A = 3,

Comparison with the digital simulation results, as shown
in Figure 2.5 , indicated that the impulse rates obtained by simulation
were uniformly greater than predicted by the above theory. This was
attributed to the poor approximation of the pseudo-random sequence to a
gaussian distribution, even after filtering (see Appendix G). Also at
carrier levels appreciably below threshold, the impulses tended to occur
in bursts, similar to the effect observed in the phase-locked loop by
Smith [26] . This means that the true output noise due to impulses will
be less than given by the expression in Appendix D.

It is evident that the assumption that the rate of |¢(t)|
crossing ¢C)gives an adequately accurate representation of the impulse

rate due to feedback. The spread in the values of ¢b encountered is less
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than that of the values of Yor Also in view of the fact that the necessar
parameters involving ¢ (t) (e.g. m¢ s <¢2>) are more easily calculated
than those involving 'Y(t), the rate of crossing ‘¢° may be used in the
prediction of feedback impulse rates.

2.6 Conclusions.

The threshold behaviour of FMFB is adequately explained in
terms of impulse phenomena. Discriminator and feedback thresholds may
be considered independently with little error. The discriminator thresh-
0ld can be predicted using the results of Rice, and the feedback threshold
can be predicted in terms of the rate of crossing a certain level by
the local oscillator phase.

The fact that the loop is sluggish for large values of ¢ (t)
results in the assumption of ¢(t) being gaussian being in error. TFor
this reason, a critical level ¢c)1ess than 7 was computed on the basis
of ¢(t) being gaussian.

The treatment of threshold in this section has been confined
to unmodulated conditions. The effect of modulation is considered in

Chapter 3.



CHAPTER 3: MODULATION DEPENDENT THRESHOLD.

It has been shown that the carrier level at which threshold occurs
in ordinary FM is practically the same for modulated and unmodulated
conditions, although the behaviours below threshold may differ. [5]

Observations on FMFB indicated that modulation could affect
the threshold point, but care in design could minimise modulation
dependent effects.

3.1 The IF filter.

3411 The IF non-linearity.

The IF filter is non-linear to phase for large
excursions, but its small signal transfer function alsec changes in the
presence of modulation. If the IF filter transfer function is H(S),
then the small signal transfer function to phase or frequency modulat~
ion on a carrier of frequencya)c is [3]

1) = Bpedwa) G- ) } eee (1)
jwe) H(-jwg)

As shown in Appendix B, a high Q tuned circuit of

resonant frequencycuo has a transfer function to phase given by:

2 2
H1(S> = SA+ A2 + ’2 L N ] (2)
(s +A) + N
where A = semi 3db bandwidth (rad/sec)
N = , "W

The pole-zero pattern is shown in Figure 3.1.

The single pole at S = = A for A = O splits into two conjugate



complex poles and a real zerc, all lying on a circle passing through
the origin.

The effect on an FMFB system is that as the carrier
frequency moves away from the resonant frequency, the gain and phase
margins of the feedback loop are reduced and an inecrease in loop noise
occurse. This increase may be calculated in typical cases. If a single

pole baseband filter is assumed, then the open loop transfer function is:

A(sp + 82 + 29 ceeee (3)

H (s)
{(s +A)2+7\2 }of s+

The closed loop transfer function is given by:

HG(S) = Ho(s) sevse (4)

1 + Hoisj
For the transfer function (3) this is:

A(SA + A e + 7\2)
S3 + (1+27) 52 + (7\2+A2+FA +A)S + F(A2+7\2) oo (5)

Hc(s) -

The mean square local oscillator phase is given by:

+co
<¢2> = -[ 27? (f) IHQ(jw) |de sacee (6)
- 0
This integration may be performed with the aid of

standard tables [25] .

=HEE.E(F-1)2§ éﬁ:+(?+1)ﬂ2+27\2&+?\2f 7)
F20 + (F3n24(208P)n +7\2(1 -F)}

<pe>

This reduces to the expected form for A = O viz,
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n(e, (F - 1)°A
Sn <0 = F(1 +4) reees (8)

<p

A plot of equation (7) for typical parameter values
is shown in Figure 3.2.

This indicates a 2db increase in <¢2; when A= A,
and hence the threshold carrier level would be 2db higher. The
increase in <¢2> is mainly at frequencies above baseband and the ocutput
noise is not greatly affected if the system is above threshold. If
the system is near threshold, however, the increase in <¢2> may be
sufficient to cause feedback threshold, with a consequent rise in
output noise,

Previously we assumed a two pole IF transfer function
with a compensating zero in the baseband filter. Since the extra IF
pole corresponds to a much wider bandwidth than the main pole at S = = A
the effect of carrier detuning is negligible for the wvalues of A of
interests Inclusion of this pole produced negligible corrections to
equation (7) for |h | <2 A

Since frequency modulation may be regarded as a
quasistatic variation of the carrier frequency, it is evident that
modulation will affect the point at which threshold occurs. For more
complex IF filters the system may even become unstable on the modulation
peaks.

3442 The IF CNR effect.

As the IF filter response is not flat if a single

tuned circuit (or the two pole modification mentioned in Chapter 2) is
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used, the IF CNR falls as the carrier is detuned. The IF CNR will be
3db lower at an IF carrier deviation equal to the 3db point of filter
(ieee &t A= A ). In the vicinity of threshold therefore, carrier
detuning may reduce the IF CNR to a point where discriminator threshold
occurs.

Thus in general, the unmodulated CNR must be above
threshold by up to 3db in order to prevent threshold occurming under
modulated conditions. This IF CNR effect can be minimised by reducing
the IF deviation (which sacrifices most of the improvement achieved by
FMFB), or by use of a more complex IF filter in which the response is
flat over the IF passband. However, the latter may involve problems
in loop stability and further aggravate the effect discussed in the
previous section.

The above threshold output noise may be calculated
from the transfer functions derived in the previous section. If the
output voltage is assumed taken from the output of the baseband filter
(see Figure 2.1) then this corresponds to the time derivative of ¢ (t).

The spectral density of this voltage is given by:
2
270(f)w .
Go(f) =—£_-)—— |Hc(gw) |2 veees (9)
K
2

where K, is the VCO gain constant (rad/sec/volt).
The mean square output noise in a baseband bandwidth

fa is given by:
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+fa
N =[ 6, (f) ar erees (10)

=fa

where for the model considered fa has been normalised to

-1 H

21T 2

Numerical integration of (10) for the typical values
used in Pigure 3.2 (i.eo F = 10, A = 3) indicated less than 0.2 db
change in output noise over the range |7\|g6.

Figure 3.3. shows the variation of output noise with
carrier detuning for the experimental system of Appendix F. This was
plotted for three different carrier levels, corresponding to =2db, +2db
and +6db relative to the threshold carrier level under unmodulated
conditions.

This illustrates that the output noise varies little
with modulation if the system is well above threshold. In the vicinity
of threshold, however, the system can go below threshold on the modulation
peaks and the output noise rises.

The two effects involving the IF filter are essentially
independent, except that attempts to improve one is usually at the
expense of the other. The optimum condition is where they are equal in
effect, since this gives the minimum deterioration of threshold level
under modulated conditions. For the system considered, the single pole
IF (or its two pole modification) is close to optimum, giving a threshold
deterioration of the order of 3db at the maximum frequency excursions.

These two effects do not explain the extremely rapid rise



Odb Carrier Level corresponds to threshold(unmodulated)

ho
? ?
N S i A
'l‘ /
\ L ~Carrier level = -2db /
30 \ 18 @I 1
. \ ;
\ /
Relative \ I VAN
' /
Output \ /
\ 7/
Noise Q -
20 = 7
. ~ . Ve
(db) 1 =
O~ — @ ~
) Design Oplerating hange ’_l /P
o\ / @
10 > = = .
" TNo._ - Carrier level = +2db ’,0/ /
O~ T~0< _ 0__,,@-’ ,/
\\ bo - = _G)“ = Vi
A Yo) — - - O
~ L - + . L - ul
~< oo ._/Carr'ier level 6db o ---©
0 O~ -l - ——@--— =0~
=400 -300 =200 =100 0 100 200 300 400

Statiec Signal Frequency Deviation (KHz)

FIGURE 3.3: VARIATION OF QOUTPUT NOISE WITH CARRIER DETUNING (EXPERIMENTAL).

eG°¢



3-6

in noise at the extremities of the curves of Figure 3.3, especially the
one corresponding to -2db carrier level. The other carrier levels exhibit
this effect; but at greater frequency offsets as the carrier level
increases.

Observations indicated that this was a result of the
feedback loop losing synchronism. I%t was found by Davis [7] that this
was closely related to the frequency detector. A study of this effect
is found in the following section.

3.2 [The freguency detector.

In an FMFB system the frequency detector converts the instant=
aneous frequency of the signal at the output of the IF filter into a
voltage. There are several means of doing this, but the characteristics
are generally similar to the form of Figure 3..4.

In ordinary FM it is only necessary that the linearity of
the detector achieve the quality required in the output signal.

In FMFB however, the instantaneous IF frequency depends on the
voltage output via the baseband filter and voltage controlled oscillator.
Hence feedback is applied around the characteristic in Figure 3.4, being
negative in the operating region but reversing to positive on the tails
of the characteristic. This results in a characteristic of the form of
Figure 3.5.

This characteristic has an extended linear range, but alsc
has unstable regions. Under low noise conditicns, a peak RF deviation

of the order of a)1 can be used. However in the range of deviations
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between W, and @, there exists the possibility of another stable state,

1
which can easily be achieved during the relatively high noise conditions
near threshold.

In the vicinity of threshold, the peak RF deviation is limited
to the order of Wy otherwise jumps from one stable state to the other
produce rapid deterioration of the output signal.

It was shown by Davis [7]that even for an ideal frequency detec~
tor (i.e. one in which output voltage is proportional to instantaneous
frequency), the above effect occurs due to the suppression of signal
by noise. The relation between the output voltage and IF carrier
frequency is non-linear and of the form of Figure 3.4.

In the case of a practical discriminator, the effect of
suppression of signal by ncise is more complex. This problem can be
approached by considering the pdf of the instantaneous frequency of a
sinewave plus gaussian noise and using this in conjunction with the
discriminator characteristic to find the mear output vcltage.

36241 Fregquency distribution method.

The pdf of the instantaneous frequency is (from

Appendix A):

ey~ P
Ky - CRRLCRVEAC) RN D
where ‘Qi = wi/m
d = (J)I/m
o= p(+ dni)z / (1 +nzi)
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2
%z (p=-pd°)

g
]

w = IF filter centre frequency (rad/sec)
w_ = carrier frequency (rad/sec)
m = radius of gyration of IF filter characteristic

about a)o (rad/sec)

wi(t) = 1instantaneous frequency with respect to W, (rad/sec) R
This is a random time variable.
wp = IF carrier deviation = (wc - wo).

For the purpose of illustration a simple stagger
tuned discriminator will be considered. This consists of two high Q
tuned circuits of bandwidth 2 separated by 2 N2 o where o is a frequency
scaling constant. This gives better than 1% linearity in the range
- to + 0o -
The voltage~frequency characteristic of this discrim-

inator is:
1 1

. 2 i 2
\/1 + ('\/Q‘wl/a) \/1 - 2 +wl/oz) -ee (12)

v(wi)

The mean output voltage is therefore:

) <[ @) 20 an, ceene (13)

where v(Qi) is given by (12) with ﬂi = wi/m and

p(ﬂi) is given by (11).
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Equation (13)was integrated numerically for the case
m= e The result is shown in Figure 3.6. This curve assumes the
CNR is comstant (at 12db), whereas in fact it falls as the carrier
frequency moves away from the IF filter centre frequency. For a filter

of power transfer characteristic:

|B(jw) |2 = RN ceeee (18)
which has m =g and is only 2.2db down at = , the result is also
shown in Figure 3.6.

These curves are only approximations since the
discriminator is not a lagless device. However they do indicate that
the discriminator characteristic at threshold may be markedly different
from that at higher CNR's.

The digital simulation results on Figure 3.6 are
from section 3.2.3.

342.2 Amplitude distribution method.

An alternative approach used was to consider that
the discriminator circuit produced an output corresponding to the
difference of the envelopes of the signals appearing at the outputs
of the stagger tuned pair.

On the assumption that the noise is gaussian, and the

carrier of amplitude A, the joint pdf of envelope r(t) and phase 6 (t) is:

2 2

2 2
p(r,6) { = } " =2reesd 240 (45
arfon 20

where o = RMS noise.
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This may be used to find the mean envelope amplitude
<r> (ses Appendix C) via:

> = of’}g{ (1 +p )LL) + pz1(/°/2)}e'p/2 veer (16)

- 2
where 0 = CNR = Az/éa' .

For the stagger tuned discriminator used previously and assunming a
single stage IF filter of bandwidth 2¢ ; the difference of the two
envelope averages from the stagger tuned pair was calculated. The
action of the limiter was assumed to maintain the carrier amplitude
constant at the output of the IF filter, although the CNR altered as
the carrier frequency moved from the centre frequency. The results
are shown in Figure 3.7.
3.2.3 Simulation,

To check the validity of the previous calculations
the system was simulated digitally. A low pass equivalent circuit
was used, as an RF simulation by digital means was impractical because
of the inefficient use of computer time. Figure 3.8 shows the actual
model and the low pass equivalent which was simulated. The transfer
functions Hij(s) are defined in Appendix G.

The solution involved the solving of 12 simul taneous
first order differential equations. A shift register code was used to
generate the noise components x(%) and y(t).

The results are plotted as points in Figures 3.6 and

3«7 showing agreement within the statistical limits expected. Also
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plotted on Figure 3.7 is the R.M.S. output noise.

The agreement between the digital simulation results
and the results of the previous section indicated that the idealisation
concerning the limiter was justified in this application.

5¢2+4 Evaluation.
Following the method used in[7] , the IF deviations

when the signal deviation equals w2 and @, are plotted against feedback

1
factor in Figure 3.9, both for the ideal frequency detector and the

discriminator characteristic obtained previously by digital simulation.

For the ideal discriminator, W, = w is not encountered

2

in normal operation (i.e. wII < A ) until F = 36 db. For the practical

diseriminator however this is F = 13.5 db which is well within the range
normally usede An IF deviation correspording to w s = @, is not
normally reached in either case, since this corresponds to operation well
outside the linear region.

The preceding gives a qualitative nciiosn of She 1izitati-u
of the frequency detector, whereas a quantitative result would be more
useful. Analysis based on the pdf of instantaneous frequency is complicat-
ed by the fact that a single pole IF filter has an infinite radius of
gyration m; The inclusion of an extra pole as done previously and the use
of the high CNR gaussian approximation removes this difficulty.

We shall show that the probability of the loop losing
synchronism is sufficiently high that, if w> w, then the performance

deteriorates rapidly.
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If the IF frequency noise is considered to be gaussian
(high CNR approximation) the rate of crossing a certain level can be
found. In particular, the rate of crossing the critical IF deviation
wcr corresponding to a sigrnzl deviation of w " is of interest. If this

occurs, the loop jumps to & new stable state and is said to have lost

synchronism.
The crossing rate is given by:
m 2 2
w - W .
1/+ = S e cr /2 < 12> evece (17)

where v, = number of upward crossings per sec.

<% .%> / <w 2s
=4 i

™y
For a two pole IF response, <cui2> is finite but
@12> is not. In order to obtain a finite value for the laiter, it is
necessary toc have st least a 3 pole response.
In a typical practical system, the rate of crossing
W is sufficiently high in the vicinity of threshsld to restrict the

peak modulation deviaticm to less than w For the system considered

2°
earlier, <wi2> is Ce374 A2 for an IF CNR of 12db. A stagger tuned
discriminator as considered earlier has W, = 1.50A and the probability
of W, exceeding w @ris shown in Figure .10 for various quasistatic IF
deviations.

This probability is high ¢x3 the crossing rate {17)
would also be high for 9 system irn which <(I)i2> is defined. Any

static IF deviation beyond the smaller critical frequency (e.g. 0.55A for
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above) will result in the second stable state being achieved for long
periods of time, with consequent signal deterioration.
3e205 Quasilinearisation.

A possible technique of analysis is the quasilinearisat-
ion method [8] e In this, the non-linear device is replaced by a
linear amplifier of gain such as to minimise the mean square error made
by the substitution.

If a lagless non-linearity f(x) is replaced by an

amplifier of gain G, the error is minimum if:

G = i‘g [oox p(x) f(x) ax sseea (18)

where p(x) is the pdf of the input signal x(t). If x(t) is gaussian,
then

G = foo £' %) p(x) ax eessa (19)

In the case of FMFB, x is the instantaneous IF

frequency Wy which has an unbounded mean square value for all IF
filters and CNR's. This is a consequence of the finite probability of
a frequency impulse when the carrier plus noise phasor encircles the
origin. However we may use the high CNR gaussian approximation with little
errors

Equation (19) then gives a relation between the gain G and the
mean square frequency deviation<w i2>' An analysis of the linearised
system gives <w 12> in terms of G. This may be obtained from Appendix E

by putting 1 + (F~1)G instead of Fe.
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For the discriminator characteristic defined by
equation (12), equation (19) was integrated numerically for various
values of<w 12> and static carrier deviations w T° (For Wy + O we
interpret <w12> as the mean square fluctuation of w4 about its mean
values This mean is Wy in the high CNR approximation). The frequency
scaling constant of the discriminator was chosen to be o = A , giving
1% linearity over the normal operating range.

Figure 3+11 shows a plot of G versus <w12> for
Wy = 0 and Wy =A+ Also shown are the family of curves relating
<w i2> to G for various IF CNR's. These curves are strictly only valid
for wyp = O as the IF detuning effect causes an increase in<wi2> R
possibly of the order of several db for Wy = Ae

Figure 3.11 indicates a fall in loop gain below an IF CNR
of about 13db. With the carrier detuned this fall in gain occurs at a
higher IF CNR. However, the gain G must be correctly interpreted. I%
is in fact the effective gain of the non-linear device to random fluct-
uvations about static or quasistatic quantities. The modulation is
assumed quasistatic and this obeys the non-linear characteristic given
by equation (13). The modification to this characteristic has already
been considered in sections 3.2.1 , 3.2.2 and 3.2.3.

Develet's analysis of the phase~locked loop[ 12] by this
technique revealed a critical carrier level below which no solution was
obtained, indicating threshold in the form of loss of lock. In the case

of FMFB there is no such phenomenon and the quasilinearisation method
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does not predict any marked increase in loop noise.

This points to the basic limitation of the quasilinear—
isation technique, which; while well suited to the analysis of small
non=linearities; is inadequate for the type of characteristic involved
here. The fact that the loop switches from conditions of negative
feedback to positive feedback indicates that an approach postulating
an equivalent loop gain is unlikely to be successful. This is evident
from a caleculation of the mean square error, which is not negligible in
the range of <w12 > of interest.

3.3 Conclusions.

It has been shown that the natures of the IF filter and the
frequency discriminator can affect the performance of FMFB significantly
under modulated conditions. The performance is mainly affected near the
modulation peaks, resulting in deterioration of the signal in this
region.

The IF filter has the effect of increasing the threshold carrier
level in the presence of modulation, whereas the frequency discriminator
limits the peak frequency deviation of the signal.

Particular attention must be paid to obtaining a discriminator
which is linear well outside the normal operating range in order to reduce

the latter effect, particularly at high feedback factorse.
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CHAPTER L : OPTIMISATION OF FMFB,

Lel Analogue Systemss

In an analogue FM system the performance parameter used may
be the output SNR required. It is convenient, but not necessary, to
specify this for sinusoidal modulation. SNR requirements for other
forms of modulation can be expressed as an equivalent SNR for sinusoids.

Optimisation of FMFB entails choosing the system parameters
to achieve the required performance so that a cost parameter is minimised.
The simplest cost parameter is the transmitter power required; although
other factors such as bandwidth may also be of importance.

The optimisation of FMFB involves choosing the system para-—
meters such that the itwo thresholds occur at the same carrier level [3] .
Although the optimum loop transfer function is physically unrealisable,
very little degradation in performance occurs if the open loop response
is a simple two pole response, one pole from the IF filter and another
from an RC baseband filter. The results are shown in Figure 4.1 and
are similar to those obtained by others. [3, 9, 10].

The threshold limit is calculated from Shannon's resultNthat
in an ideal system the encoding at RF and baseband should be ideal viz.

C = fa 1og2 (1 + SO/NO) = B 10g2 (1 + Si/Ni) cecess (1)

where B is the RF bandwidth and fa the baseband bandwidth.

This relation may be solved for p (the CNR in a bandwidth 2fa)

in terms of the output SNR, SO/NO. It is interesting to note that

FMFB is only5 -6db above this curve at the point of closest approach.
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L.2 Communication efficiency.

A figure of merit proposed for comparing communication systems

is communication efficiency, defined by Sanders [11] to be :

g - Energy per bit (2)
- Noise spectral density A

For the purposes of calculation; the equivalent form

. & .8 voese (3)

is more convenient, where Si/Ni is the incoming CNR; C the information
rate and B the RF bandwidth. If the baseband bandwidth fa were encoded
perfectly, then C = fa 1052(1 + SO/NO) bits/sec, where SO/N° is the
output SNR at basebande The royise spectral density referred to in
equation (2) is the so called "one sided"® spectral density, which is
double the "two sided" spectral density used elsewhere in this thesis.

The communication efficiency may be calculated for both FM
and FMFB and the results are shown in Figure 4.2. The efficiency varies
with the output SNR required; being best at about 20db SNR for FM and
30db for FMFB.

It is apparent from both Figures 4.1 and 4.2 that FMFB
realises its full capabilities of threshold improvement at high output
SNR's. An ideal system using infinite bandwidth has 8 = =1 .6db.

Le3 Telemetxy applications.

Y341 General.

In this section a typical FM time multiplex telemeiry
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system is considered and a comparison is made between the performances
of FM and FMFB.

It is assumed that the various signals are sampled
at a high rate and stored in a hold circuit until the next sample.
The resulting "histogram" or "boxcar" waveform is then applied to an
FM transmitter.

At the receiver, a filter is required which will minimjse
the errors due to noise and those due to signal degradation. Usually a
filter is chosen such that the histogram becomes a set of exponential
curves, and the value reached at the end of the sample period is different
from the true value by only a small amount, At this point the histogram
is sampled, the small signal error being tolerated to reduce the noise
error. The filter is chosen to minimise the overall error.

The specification of a telemetry system is usually
in terms of the overall accuracy required. In the following, the minimum
carrier level required to achieve this accuracy at a given sample rate is
derived.

Le3e2 GChoice of filter.

The ideal filter is one which provides maximum noise
rejection combined with a minimum rise time to a step input. The gaussian
filter is one which, (in the class of linear filters without overshoot)
has the shortest rise time for a given bandwidth. The gaussian filter
is not physically realisable, but may be approximated by the Simmonds
filter [19, 24 ], the accuracy of the approximation depending on the

number of sections used.
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It has been shown that a 5 section Simmonds filter
gives the fastest rise time for errors in the range 0.1% to 1 0% [19] »
Filters with fewer sections have a longer rise time, whereas those with
more sections tend to have a time delay.

The transfer function of an n section Simmonds filter
has n identical real poles. For the telemetry system considered, a
5 section filter will be assumed.

If T is the time constant of the common pole,; then

B = 0.0905/T Hz
0 } 20w (li-)
Bsap = 0.0615/T =0.680 B, Bz
where B0 = integrated bandwidth to quadratic FM noise
B}db = 3db bandwidth.

The signal error is related to the difference between
the excitation and the response at a time t (the sample period). If it
is assumed all sample levels are equally probable, then the RMS error is
1/N6 times the peak error. [19 ]. A plot of the RMS error (relative +o
the maximum peak to peak signal) against ts is shown in Figure L4.3.

This is commonly called the crosstalk error,

Lo3.3 Optimum ratio of crosstalk and noise errors.

The total mean square error <£,° > is equal to the sum

t
of the mean square crosstalk error «5 > and the mean square noise error

<f_‘h >« The noise error is proportlonal to B 3 Figure 4.3 shows the
total RMS error plotted against Bots for various levels of neise.

The minimum noise occurs when the ratio of the RMS noise
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error to RMS crosstalk error is approximately 2:1 and this value will
be assumed optimum. Because of the very broad minima in Figure 4.3,
errors in this assumption will have negligible effect.

4+3sY4 Design of an FM telemetry system.

For convenience the following symbols are defined:

S = ratio of IF 3db bandwidth and twice baseband bandwidth
Pt = threshold value of the IF CNR (discriminator threshold)
m = modulation index = ratio of peak frequency deviation and

baseband bandwidth.
The well known bandwidth rule for FM will be
assumed viz.
S = 1+m cecss (5)

(a) Noise errors.

In an FM system of peak frequency deviation fd, the mean
square noise error (relative to peak to peak signal of Zfd) is
given by:
2 3 2
<€, "> = 7B, /61=c £ eocee (6)
where Pc = carrier power
7 = noise spectral density (assumed constant).
Bo = Simmonds filter integrated FM bandwidth.
This may be rewritten in the form:
on B 3 2
<€n > = (Bo/fa) /21'. po (fd/fa) teeo0s (7)
P
¢ . i
where o, = 57 fa = CNR in bandwidth 2fa°
f = nominal baseband bandwidth of system.
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Putting in terms of the parameters defined earlier,
2 3 (s - 1)2
<€n > = (Bo/fa) /Zlq.s p‘t_ S 1) esces (8)

(b) Filter bandwidth.

If a total error <£,t2> is specified; then <€,n2> = 0.8 <€‘l:2>
on the assumption of & 2:{ ratio of EMS noise error 4o RMS crosstalk
errore Hence for a given value of <6t2> and values of S and pt s equation
(8) can be solved for Bo/fa » Also from <662 >= 0,2 <€t2> s the value

of Bots can be determined from Figure 4a3.

(¢) Minimum carrier level.

The carrier level is expressed in terms of the parsmeter
P t
Py = :- = s Which is equal to the CNR in an RF bandwidth equal to
n

twice the sample rate.

p, = sp, (Bt )/(B/t,) seses (9)
Hence from previously calculated results, pc may be found.
(a) Optimisation procedure.
(1) A range of values of S was chosen.
(ii) The values of p, were obtained by using results obtained
by others. [3, 14 ]w
(iii) A range of values <Ct2>was chosen, and hence the values
of <6n2 > and <602> (such that <€,n2> =4 <602 >)e
(iv) The parameter Bo/fa was calculated from (8)
(v) The parameter Bots was obtained from Figure 4.3.
(vi) The parameter p, Wes calculated from (9).

(vii) For each value of <€ t2 > the value of S which gave the minimun



L7

value of p, Was chosen, provided Bo/fa was less than 1.5. (This latter
condition is necessary to prevent the 3db bandwidth of the Simmonds
filter exceeding the nominal baseband bandwidthe)
The results of this calculation are shown in Figure Lok,
Lo3e5 Considerations in FMFB telemetry.

Because of the nature of the feedback FM sys#em, it
is not able to foliow rapid changes in signal frequency satisfactorily.
The histogram modulation consists of a set of step changes in frequency.
Due to the finite response time of the feedback loop, a large change in
frequency can cause loss of synchronism in the system.

The problem is to confine the IF carrier within the IF
passband at all times. One obvious (but inefficient) method is to
reduce the peak frequency deviation of the signal. Alternatively the
modulating waveform may be passed through a prefilter ahead of the
frequency modulator, thus reducing the rate of change of frequency
to a value that the loop can track without difficulty; or the feedback
loop may be modified so that it can handle step changes in frequency
without difficulty. [15] »

Le3+6 FMFB telemetry system with transmitter filter.

In this section, the FMFB receiver will be assumed
to be the optimum analogue system with a& two pole loop transfer
function. At the transmitter end, a filter is used to limit the maximum
rate of change of frequency. This filter affects the histogram

modulation, and since it is effectively in series with the Simmonds filter
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it causes an additional creosstalk error. It will be assumed that ths
overall receiver transfer function is that of a 5 section Simmonds filter.
There is very little error in this assumption, since the closed 1loop
bandwidth is usually much larger than the Simmonds filter bandwidth.
Alternatively, the overall receiver transfer function can be made that

of a 5 section Simmonds filter by suitable baseband filtering.

(a) The transmitter filter.

The object of the transmitter filter is to reduce the overshoot
of the IF frequency when a step change in the modulating voltage occurs.
An overshoot in the step response of a network is generally related
to a rise in the amplitude response at high fregquencies.

The closed loop response. of the FMFB system with the cutput
taken after the baseband filter tends to be fairly flat. The response
at the output of the frequency detector corresponds to this response
multiplied by the inverse of the baseband filter, giving a rising
response of frequencies beyond basebands The transmitter filter is
chosen to be identical to the baseband filter in order to keep the
overall frequency response relatively flate.

From the resulting transfer function, the overshoot e, may
be calculated: (relative to an excitation of a unit step)» The peak
IF deviation will be slightly larger than the compressed signal

deviation. The worst case gives:

3
(fd)IF = 7 (1 + 2e0) eosss (10)
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The IF bandwidth is given by:

Bp = 2(f, + (f5)p) caves (11)

and hence the relation between medulation index m and the parameter

S = Byp/2f, is:
m = eseoe (12)

(b) Noise errors.
The mean squere neise error is the same as for the FM telemetry

system and is given by (7). Substituting for m = f&/fa from (12) gives:

<€ 2> = (1 + 2%)2 (Bo/fa)5/248ptF2(s -1)2 ccooe (13)

n
(c) Filter bandwidth.
Given a total error ««%2:>, equation (13) can be solved for
Bo/'f'a assuming the other parameters (vigz. egs S5 Pys F) are knowno
Figure 4.3 cannot be used to obtain Bots since the overall
response is modified by the inclusion of the transmitter filter. Figure
Le5 shows the crosstalk error as a function of Bots for various ratios
of B /f .
From this figure, the value of Bots ecan be obtained.
() Minimum cerrier level.
As in the previous case, equation (9) is used to calculate the
carrier power parameter;pje
(e) Optimisation procedure.
This is essentially the same as before except that from the

values of S and p, chosen, it is necessary te calculate the feedback factor
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F which optimises the loop performance under analogue conditions and
also the overshoot e, which is dependent on the loop transfer function.

The results of this optimisation are shown in Figure L4.6.

Le3.7 FMFB telemetry system with modified loop.

(a) Regquirements.
The feedback loop must be able te follow the rapid

changes in input frequency without losing synchronisme This is achieved
by making the baseband filter of wider bandwidth, or omitting it entirely.
In doing so, however, the feedback threshold is enhanced so the perform-
ance deteriorates. There is no additional crosstalk error introduced,
however.
As in the previous section, the overall receiver trans-
fer function is assumed to be that of a 5 section Simmonds filter.
The IF deviation is again limited by the overshoot e, and
the relation between m and S is given by equation (12).
(b) Receiver optimisation.
It is necessary to know the optimum feedback factor
and the baseband filter bandwidth before the overshoot can be calculated.
If the filter bandwidth is known then the feedback factor
which optimises the loop can be found and the overshoot e, obtained.
Using equation (12) the value of m may be found. The optimum value of
the baseband filter bandwidth is that which gives the maximum value of m.
For a range of values of S, the optimum baseband filter

bandwidth was calculateds with the corresponding values of €y F, m.
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(e) Noise errors.

The expression is the same as previously given in
equation (13).

(&) Filter bandwidth.

Solving (13) for Bo/'fa and using Figure 4.3 to obtain
BotS enables the minimum carrier level to be calculated.

(e) Minimum carrier level.

Using equation (9) the parameter p = may be calculated.

(f) Optimisation procedure.

This is the sams as for FM except that for each value
of S, the optimum values of F, LR and m must be calculated. This
involves finding the baseband filter bandwidth which gives maximum m.

The results are shown in Figure L.7.

L.3.8 FMFB with transmitter filter and modified loop.

If a wider baseband filter is assumed and a transmitter
filter identical to it is used, then the telemetry system may be designed
along the lines of the previous section. However it was found that the
optimum baseband filter bandwidth was equal to the nominal baseband
bandwidth fa and hence the system was identical to the transmitter filter
system of section 4.3.6.

L4.3.9 Comparison of FM telemetry systems.

Figure 4.8 shows the value of Po required for the three
FM telemetry systems considerede It can be seen that the modified loop

system is marginally superior to the transmitter filter system and both
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are better than ordinary FM for errors less than 1%

In all the foregoing calculations, distortion due to
the non-linear behaviour of the IF filter has been ignored. This would
probably be significant at low error levels and reduction of these errors
would require an IF bandwidth greater than assumed.

4ely Conclusions.

FMFB produces the largest improvement in threshold in analogue
systems at high output SNR's. This is evident from the fact that comp=-
ression of the modulstion index below unity does not achieve any worth=-
while saving of IF bandwidthe The improvement on a narrow band system
is therefore small. At high SNR's the carrier power saving can be as
high as 5-10db which is a very significant saving in terms of transmitter
installation, or alternatively a large increase in useful propagation
distance can be achieved for the same transmitter power.

The application of FMFB to telemetry does produce some carrier
power saving of the order of 2db at 1% error and 3db at 1% error.
However the nature of FMFB does not really suit it to the type of
modulation encountered in the time multiplex system considered. Possibly
the use of pulses of narrower spectral width than the rectangular pulses

would enable higher gains to be made in this regard.



CHAPTER 5° SYSTEMS RELATED TO FMFB.

In this section the results of a preliminary investigation into
systems related to FMFB is presentede FMFB is in fact only one member
of a class of frequency compressive systems, the aim of all being to reduce
the effective frequency deviation of an FM signal, but each differing in
the means of achieving it.

The two systems which will be considered in this chapter are the
dynamic filter and the phase locked frequency divider. The former
is a type of tracking filter and the second a frequency compressive system
where no conversion to baseband occurs within the feedback loop.

5¢1 The dynamic filter.

5¢1+1 Introduction.

In FMFB the receiver is made to track the incoming
instantaneous frequency by means of a voltage controlled oscillator and
a fixed IF chammel. The tracking is achieved by an error sensor (the
frequency detector) providing a correction voltage to the VCO in order
to minimise the error.

An alternative method of tracking the signal is to actuall;
alter the resonant frequency of the IF channel and use a fixed frequency
oscillator. In this case, of course, an oscillator/mixer combination
is not necessary in theory, but since in practice it is easier 4o manipulate
signals at IF rather than at RF they will normally be included.

The possibility of altering the IF resonant frequency

gives rise to the so called "dynamic filter". A threshold improvement
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achieved by such a system is based on the same principle as FMFB, namely
a reduction in IF bandwidth and a consequent reduction in noise.

5¢1.2 Dynamic filter response to Fil.

If a normal tuned circuit is excited by a sinusoid
whose frequency differs from the resonant frequency by a fixed amount,
then the output signal is a replica of the input signal except for an
ampl itude change and a phase shift, both of which depend only on the
frequency difference.

It has been shown [16] that if a dynamic filter whose
centre frequency is varying sinusoidally is excited by a frequency
modulated signal such that the difference of the instantaneous excitation
frequency and the instantaneous centre frequency is constant, then the
output signal is a replica of the input except for an amplitude change
and a phase shift. Also the amplitude and phase modifications are
dependent only on the frequency difference.

The response of the dynamic filter to an arbitrary
signal is most conveniently found by resclving the incoming signal into
components which differ in frequency from the filter centre frequency by
constant amounts. This is analogous to Fourier analysis in the case of
fixed tuned circuits.

5e1+3 Dynamic filter FM detectors.

One form of FM detector suggested by Baghdady [17] is
shown in Figure 51« This is a dynamic selector circuit which uses the
output of the frequency detector to tune the dynamic filter to the

instantaneous frequency of the FM signal.
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Although in theory this will give a threshold improvement,
it is found in practice that maintaining perfect tracking in amplitude
and phase for the whole modulation bandwidth is extremely difficult [16] .
This is because the system is essentially an open loop system, the tuning
of the dynamic filter having no direct effect on the instantaneous frequ-
ency of the signal. However such a technique has some application in
the separation of two FM signals [20] .

A closed loop system similar to FMFB might be as shown
in Figure 5.2, A possibility for the detector is to measure the phase
difference between the input and output signals of the dynamic filter [16] .

Such a system as Figure 5.2 is identical to FMFB as
far as processing the signal is concerned and has the same threshold
performances It is interesting to note, however; that there is no para-
meter equivalent to the VOO phase, although the integral of the dynamic
filter instantaneous frequency does represent this.

5e1e4k Conglusions,

In view of the similarity of the dynamic filter %o the
VCO/fixed IF system, it is evident that the performance of a feedback
type detector using a dynamic filter is identical to an FMFB system.

Practical difficulties associated with the system of
Figure 5.2 are in obtaining a linear variation of frequency with voltage
without bandwidth alteration and in obtaining a linear off-tune detector.
These difficulties make such a system an unattractive alternative to

FMFB.
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5.2 The phase-locked frequency divider.
5¢2+.1 Introduction.
This system has properties similar to FMFB but has the

additional constraint that it is phase synchronous. The basic block
diagram is shown in Figure 5.3.

The system has several applications, the most common
being as an accurate frequency divider. However since frequency division
achieves frequency compression also, the possibility of using it as an
FMFB type detector also arises. A system of this form was studied by
Beers [21] s although he found it necessary to supplement the frequency
compression by means of FMFB in order to obtain a workable system.

Although similar to FMFB in its processing of the
frequency modulation, it is evident that the physical operation of the
system is markedly different. Firstly, in the absence of signal there
is no local oscillator signal and hence arises the question of whether
the system is self starting or not, and secondly, the fact that it is
phase synchronous may impose additional constraints.

5022 Relation to time varying systems.

It is evident from Figure 5.3 that because of the inclus-
ion of non-linear elements such as the mixer and frequency multiplier,
the describing eguations will be non-=linear.

Consider a simplified form of Figure 5.3 in which the
mixer is a perfect multiplier, the IF a single tuned circuit and the
frequency multiplier a lagless non-linear device. See Figure 5.4

The differential eguation describing the circuit is:

d2v dv
LC == 4+ RC @t v = vi(t)f(v) swaea (1)
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In the particular case where f(v) = v, (1) becomes a
lineer time varying differential equation. If vi(t) is sinusoidal, (1)
can be transformsd into the Mathieu equation. Normalising the resonant

frequency to 1 red/sec and defining the following:

IC = 1
N S I
E = 3L = 20 << 1
vi(t) = A cos pt

then equation (1) becomes:

d2v dv
—5 + ZCE + V(1 “’A cos pt) = O scevee (2)
dat

whereby on change of variables:

2
dw2 + w{a-2qcos 27 ) = O L ()
dT
where 27 = pt
wir) = vw(t) e &F
2
a =-%(1 -ef)
P
2
q = 2
P

Equation (3) is the standard Mathieu equation. The particular solutions
of interest are expcnentially growing oscillatory solutions when ax 1.
This corresponds to freguency division by a factor of 2.

To ¢»tain a periodic solution in v(t)s; it is necessary
to find an oscillatory solution for w (7) with an exponential growth

rate of € secd1 «» From the theory of the Mathieu equation, for small £
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the required value of q is given by:

2

?=@®ra-1)% 448 coeee (L)

In terms of the parameters of Figure 5.4 this becomes:
2 2,2 2+\2 2
12 = (1 =22 (- pD? 4 ne Bt veres (5)

Since the range of interest for p is in the vicinity of p=2 we put

p=2(1 +#ﬁ’) and(5) becomes:

A = 46,.’1 +[L2 + 0(e?) eeves (6)

Vhen y = + 1 this corresponds to the IF filter operating at its 3db
point, since for small& , the 3db points are 1 x € and the IF signal
is a sinusoid of frequency p/2 =1 +UCE.

If vi(t) is a quasistationary frequency modulated wave
then (6) gives the condition for sustained oscillations. A practical
realisation of Figure 5.4 would require an A greater than that given by
(6), with a limiter of some form in the feedback locp to maintain the
oscillation amplitude at a finite value.

The simplest form of limiter is the ideal hard limiter

f(v) = sign (v). The describing differential equation is now:

d2v dv
;;E + 28 F +V o= vi(t) sign (v) esses (7)

This may split into three linear differential equations for the three
regions v(t)> 0, v(t) <0 and v(t) = O, or alternatively the oscillation
amplitude may be found by using a harmonic balance technique. Assuming
the output wave is approximately sinusiodal of frequency p (due to the

high Q tuned circuit) the limiter output is a square wave.
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If:
v(t) = e cos(pt +¢)
then sign (v) = # (cos(pt +¢ ) =% cos 3(pt +¢ )+ee) «euen (8)
If vi(t) = A cos 2pt then the component at frequency p

resulting from vi(t) sign (v) ise

n(®) = B foos(ot =p) - % cos(et + 3¢) | -enne (9)

When vp(t) is filtered by the IF filter, it must give

v(t). At frequency p the IF filter has a response:

H(jp) = 2 1 eoco0se (10)
1 =-p +J2Ep

Hence &2 _gg; (cos ¢ ~ ¥ cos 3¢ )2 + (sing + ¥ sin 3¢ )2 v (1)
m (1 -09)% + nef 9
¢ = argl: e_'j¢-% ej3¢:| = arctan &';22 essno (12)

1-p
The solutions to (441) and (12) are shown in Figure 5.5.

The device is theoretically self-starting although in practice hysteresis
or backlash in the limiter may prevent reliable self-starting. However
provided A is large enough, the system should always self start.

For the divide by two circuit there is also the possibii-
ity of instability due to multiplier imperfections. Unless the mixer is
ideal or at least balanced, a direct feedback path at the IF frequency
exists and oscillations independent of the excitation may occur.

5¢2¢3 The divide by three system.
In Figure 5.4 if f(v) is such that the second harmonic

of v is favoured then the circuit will divide the frequency by three. A
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logical choice for f(v) might be a quadratic device f(v) = (xv2, follow=
ed by a high pass filter to reject the D.C. component.

Using the technique of harmonic balance to generate a
solution v = e cos (pt-+¢) with an excitation vy = A cos 3pt; it is

found that the solutions for the high Q case are:

2
e = q'_i - ' 1 ceces (13)
\](1-1»2)2 + hépP
$ = ~% arg (1 - p° + j=p) venee (11)

There are two solutions to (13) one of which is e = O.
The other solution e = ey is a separatrix between exponentially increas-
ing and exponentially decreasing oscillatory solutions. This indicates
the system is not self starting and unless the amplitude of the solution
is greater than ey the output will be exponentially decreasing., Also a
momentary decrease in the excitation amplitude may cause the oscillations
to stop .

The exponentially increasing solution can be restricted
to a finite amplitude by placing a limiter in the loop. In practice it
would be desirable to have a self-starting systems This could be done
by making the frequency multiplier & free running oscillator which is
synchronised with the IF output when this reaches a certain magnitude.
This technique was used by Beers [21] o Alternatively, self starting
could be achieved by modifying f(v) so that the second harmonic output is
proportional to e for small e rather than e2 as for the quadratic device.

A suitable non-linear device is f(v) = | v| o The resulting
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divide by three circuit has similar characteristics to the divide by
two circuit, in that there is a minimum input amplitude required for
growing solutions.

5e2e¢4 The divide by n system.

In a practical frequency compression system a large
compression ratio (typically 410-50) is required in order to obtain
significant improvement in performance.

In its simplest form of Figure 5.4 it is evident that
the function f(v) must be such that the harmonic output is at least
linearly related to the input voltage for small inputs. This is not
usually satisfied by conventional multiplierse.

It is evident that if £(v) is continuous and continuous
in all its derivatives then the above condition will not be satisfied,
since the amplitude of the Kth harmonic will vary as the Kth power of the
input,.

The simplest solutions for £(v) which contain only

one point of discontinuity are:

{sign(v) 3 n even } ceeee (15)

£(v) = [v] 3 nodd
remembering that a divide by n system requires an (n—1) frequency
miltipliers

The function sign (v) produces odd harmonics of constant

amplitude for all input amplitudes and the output of the system reaches

a steady value given by the harmonic balance equations- (under unmodulated
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conditions.)

The function |v |produces even harmonics of amplitude
directly proportional to the input amplitude. The system will excite
provided the input exceeds a threshold value. To limit the exponentially
growing output, some form of AGC is required. The simplest method is to
modify £(v) eege

|v | 5 ] v's L
£(v) ={ W vl o, ceeee (16)

In practice of course, the harmonic output would be
filtered to eliminate the unwanted components, and also to shape the loop
response into a desirable form as for FMFB.

Practical difficulties associated with this type
of system are self-starting of the system and adequate operating range (to

accommodate wideband FM). The first can be eliminated by using a free
running oscillator which is synchronised with the IF signal, However it
it difficult toc obtain reliable synchronisation over the frequency range
required, e.g. Beers [ 21 ] found it necessary to supplement his system
with FMFB.
5.245 Phase stability.

In a circuit of the form of Figure 5.3 there are n
stable subharmonic phases for which the circuit operates. These stable
phases are 27 /n aparte In this property the system is identical to
FMFB and in fact the low pass linear approximations are the same. This

indicates immediately that an n + 1 frequency multiplier is not possible
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for successful operation, as this corresponds to positive feedback in
the phase eqnivalent circuite.

In the FMFB system some of the filtering is done by the
IF filter and some by the baseband filters The IF filtering is non-linear
to phase whereas the baseband filter is linear. The IF non-linearity

is +the primary cause of threshold effects in the system.

In the phase=locked frequency divider all filtering is
done by bandpass circuits, and the modulation dependent threshold
effects will therefore be accentuated. dJumps from one stable state to
another result in frequency impulses at the frequenscy detector output
and threshold occurs in a similar manner to that in FMFB.

5¢2.6 Comparison with FMFB.

The phase locked frequency divider is similar in its
effect to that of an FMFB system, except for some restrictions on the
system parameters. It is necessary to examine these restrictions to see
whether they produce any asdvantages or not.

One restriction is that the feedback factor must be an
integer. This may be a disadvantage in that system optimisation may re-
quire a non=integral feedback factor. However the performance is unlikely
to be affected significantly by using the nearest integer value.

Another restriction is that the system is phase
synchronous, although this is another implication of an integral feedback
factore In a sense FMFB is also phase-synchronous, the limit of its

accuracy being determined only by the stability of the loop gain. An
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arbitrery constent is introduced in FMFB due to the operations of
differentiation (frequency detector) and integration (V.C.0). Phase
synchronism does not therefore produce any advantages or disadvantages as
far as threshold improvement is concerned.

The restriction that all filtering must be done by
BE circuits is one which puts the phase-locked frequency divider at a
disadvantage compared with FMFB, as the modulation dependsnt threshold
effects will be much more predominant, and loop stability difficulties
may be encountered.

From a hardware point of view the phase locked frequency
divider is probably more difficult to realise than FMFB and does not
lend itself to easy alteration of the feedback factor, should this be
required.

5.2.7 Conglusionse

The phase-locked frequency divider has a performance
comparable with FMFB; but cannot better it. It has some practical
disadvantages, although the property of exact frequency and phase

synchronism; may be of use in some applications.
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APPENDIX A: The pdf of the instantaneous freguency of sinewave

plus random noise.

Let v(t) = cos 2w £ t + n(%) cesss (1)

where n(t) is bandlimited gaussian noise of spectral density G’n(f)o
If Gn(f) = O for |f | >2f  then the resolution of (1) into inphase

and quadrature components is unique. viz.
v(t) = (1 + x(t) ) cos 2wt t = y(t) sin 2WE bt cosoo (2)

where x(t) and y(t) are low pass gaussian time varisbles in quadrature.

The instantaneous phase 0 (t) of v(t) is:

6(t) = arctan{;f&“%r} cooss (3)

and the instantaneous frequency deviation from W, is:

: (4+ x(£) (&) = 22 v(£)
6(t) = = = coece (&)
(1 + x(2))% + y(t)2

To find the pdf of § we need the joint pdf of x(t) and y(t)

and their derivatives. Let u, = x(t), u, = y(t), u3 = x(t) ana

u, = y(t). Then:

1. 9,1
u = —_J— T -E.u. A u cGcoee
p( 13 u23 uj,uli.) (ZT)Z IA|E e (5)
where u = column vector [ui]
u? is its transpose
A is the matrix [aij]wher’e ai;‘j = <u; u >
A~1 is its inverse

| Al is its determinant.
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If Rij(T) = <ui(t) U (+ +7T)> is the cross correlation

function of u N and uj then

a,., = Rij(O) ceess (6)

1J

The cross correlation function is related to the power spectral

density by the relation:

+ oo ot
Ry, (1) =f 64 5(£) eI2MT o veoee (7)
and hence: -
+ oo
R;; (0) =[ ¢, (2) ar vouee (8)

We know

Gxx(f) = ny(f) = Gn(fafc) + Gn(f+fc)

cocesae (9)
qu(f) = J(Gn(f-fe) - Gn(f+fc) )
Also we have the relations:
G (f) = jomt G_(f)
Gqg(f) = baft? e (£) 26
80080 10
G .(f) = jomr G _(f
xy( ) 3 Xy( )
22
Gii(f) = Wr'F ny(f)
Ao 2|01 O
0-h K O

ERC k%J



oo
where 0-2 = mean square value of n(t) = 2[ Gn(f)d.f
oo
¥ - -Z—f (w0 w )% (£) ar  °
h =— (w~w)G(f)df
If we define W, and m2 as follows:
W = =55 F wC (f) ar
o 2 Jo o @
2 2 2
m H 0_2 [ (OJG- CUO) Gn(f) af
o
then:
h = W ~-w
o c
K2 = n? 4 b
It is convenient to introduce a change of variables to
Vs Vo V3 and Vh_ such that
u= TvVv a;oou (11)
where T is a lower triangular matrix such that TT' = A. This
factorisation is possible since A is a real symmetric matrix. The pdf
Vs V ;
of v1, 32 Z‘_ is
4 - ]
p(v1’ v 59 vl&.) 2 eivv ebo GO (12)
(2m) -
Now T = g 14 0 0 O L
0O 14 0O
®eec9 0 (13)
O+ m O
h 0 O m
From (4)
. (1 +u1) u u2 ui
6 2 2 cocoes (12‘.)
(1 mswu‘1 ) o

a3




Substituting foru from (11) and (413) and defining:

d = =-h/m = normalised carrier offset
Qs = —;:Lh- = normalised frequency deviaticn from W,
N
g
then )
v '3 d)=V_ V
( / +N( ", * A 2 '3
ﬂi = 2 2 00696 (15)
(‘71 +N)° o+ V2

To find the pdf of Qi we substitute for 'V3 in the pdf (12)

and integrate over the variables not required. The limits are assumed

- o0 10 + oo unless otherwise stated.

P(ﬂi) =f[f P(‘{l s Vo VBs V)?i-) J dv’] dVZ dVZ'_ cesos (16)
av (v, +N)% + v°
h = ——— = emso s o

The exponent in (12) is given by:

Vv

2 2 2 2
%{\(I +v, +v3‘(v1, V., vl.,.’ni) + VL;. }

B2( VZ++C)2 +%D

"
|-

where B, G, D are functions of V'1 5 Vzg 5

Performing the V integration in (16) gives:

L

4 J g 2
P(ﬂi) = (21T)3/2 /f dv, dv, soeoe (18)

B L
\/ (v1 +2)° + v22

Y5

Now B =




- ot e e ]
5 5 {_—%d(v1+%)+ﬂibv1+%) + v,
and D =V, +V, 5 >

(V1 +7\) +V2

Hence:

—%D
p(ﬂi) =(;7j?/‘§ /Jf +\/(v1+7\)2 +v22 e dv1 A, ceees (19)

Convert to polar co-ordinates r, ¢.

v1+7\= rcos ¢ .

V2 = r sin ¢.
W et 00
P(ﬂi) = : 3/2 [ [ 2 e %{rz - 2\r cos g +7\2+(%r—7\d cos ¢ )2}
(2r2) ] :
'."‘: r=-0

dr 4@ ceess (20)

Performing the r integration:

T
-p 2
p(ﬂi) o ep_Z\B/zr/’ (1 +2u coszg’;) a2y gos | @ eeees (21)
271+ 3/ $=0
where p = ?\2/2 = CNR in IF bandwidth
2 ; 2
po= p (1+2.0)/(1+0.)
y = Hp-pdd)

Finally performing the ¢ integration by putting x = 2¢ ;

y= P em
p() = — >/ [ (1ep+ poos x ) & % Xax
L a(1+0,%)° 2
1 xX= 0
J-P
0,) o=t '
p(2,) a2 [(1+u) L)+ I (y) } ceees (22)
+5©)

where I0 and I1 are modified Bessel functions of crder O and 4 respectively.

It is interesting to note that as p — « the asymptotic form
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of p(ni) is not gaussian except for ﬂi in the vicinity of de. i.e. As
p - the instantaneous frequency is distributed normally about the
carrier frequency only for small deviations from the carrier. The
deviation from gaussian form can be attributed to the finite probability
of an origin encirclement by the carrier plus noise phasor, at which
time @ is very large (an impulse).

We also require <|Q i]> for the case when the carrier is
centrally tuned (i.e. d=0). We start from the expression for p( nl)

given by equation (20). Hence:

™ «© (- cos ¢ +224r20, 2
<log |> = (__275'/(; j’wfo rzﬂiea( s Ql)cmidrdqs

2m)°
cees (23)
Performing the nl integration:
m 1, 2 2
_ 2 ~zlr" = 2\r cos g+ N )
<a;|> —W f fm e dr d ¢
: 0 '~

Performing the r integration:

2 = 17\2 sin2¢
. -2 =z
<|a4l> = %n U, e dg¢
e-%p 2w =P COS X
= 24 f s d x
0

where p =N =CNR, x =2¢ .

]
Loyl = e 2P I(%p) eeose (24)
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APPENDIX B: Incremental phase response of a tuned circuit.
The transfer function of a parallel LGC tuned circuit may

be written in the form:

2§A o060
a(s) = (s +A)2+w02 e

where A= G/2C semi 3db bandwidth (rad/sec)

The small signal transfer function to phase modulation on a
carrier frequency W, is:
. H(S + jw) (S - jw,)
H1 (S) = % [ H(j wcs + HE—-,"jwc j eooee (2)
For the transfer function (1) this becomes:
3 2 2 !- 3 2 .2 } 2 . 2\, 2 .2
2A87 + (BA°+NN) 87 + | 27+ A N T+07) (S + (A7 ) (A+),)
[(S +A )2 +7\14}[(S +A)2 %7\22 ]
L - (3)

H1(S) =

where A ’

n
g
i
e

7\2=w +w

If W, is not greatly different from W, then under high Q
conditions A, >> 7\1 and A, >»> A .

The transfer function (3) can be then approximated by:

2 2
H1(S) = AS + A -- ?\ ceecs (4)

(s +A)2 +7\12

This approximation is valid for frequencies w << N o°
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The approximate location of the other two zeros may be found

from the root relations of the numergtor of (3) and the knowledge that
2 2,2

one root is approximately n .

Sum of roots = - —1 2

Product of roots == — ——

~ This yields the values of the other two zeros as:

2 2

A, A A A
S s S = - 2 + 7\1 2 - 2 6oeese (5)
: b 16/_\.2

The pole-zero diagram is shown in Figure B-{. The approximat-
ion (4) includes only those singularities in the vicinity of the origin.
In the special case of 7\1 = 0, the approximation (4)

reduces to:

H1(S) = _SfA— evsoe (6)

which is the transfer function of a low pass RC filter.
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CIRCUIT TO PHASE.
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APPENDIX C: Mean amplitude of sinewave and gaussian noise.

If a sinewave plus narrow band noise is put in the form:
v(t) = {1 + x(t)} cosup t - y(t)sin w,t = r(‘b)cos{wct + 0 (t)}... (1)

then since x(t) and y(t) are jointly gaussian, the pdf of r(t) andd (t) is:

;'2—grcg§6 + 1

r —

p(r, 6) - e 2 sse00o0 (2)

o omrg 2 20
Hence:

2
] 21 oorz e_r-2_r;cgs@+1
<r> = oo 2 o ar 4 6
0:0 I‘:O

r2—2_rcost9+1

1 ™ +oo 2 -
= 2 [ f veooe 202 dr d 6
2T a
6=0 r=-o0
Performing the r integration gives:
i
T sin"9
1 2 2 -
<r>= 0'“/-2_1T_J (¢ +cos“6) e 20_2 aé
=0
m (1 - cos 26)
=O'é’n' [___0 (o-2+f1§+%cos26)e J.;,O‘2 aé
2
2= 1/h o 2 5 cos¢
PP =0 (o +%+%cos¢)e40_2 d¢ whereg= 20
2
-1/ o
2
= e_o__\/ 7/2 { (c© + %) IO(:ZL)+%I1(:O12—)}
,17 -] .
<I‘> =0 2— e Ep { (1+p) IO(%p) + IO I1(%p) }ooooo (3)

= CNR



APPENDIX D: Threshold in FM and FMFB.

If the RF noise psd is 77(f) = constant and carrier
amplitude = 1, then the gaussian and impulse components of the output
noise are:

1. Gaussian noise.

2
G1(f) - Bg”® n(£) volts /Hz

In a bandwidth fa , the noise is given by:
[ ~ 4 2 3
N = G(f)af = 164 n(f)fa /3 veves (1)

2e Impulse noise.

Suppose the impulse area is 27 and the impulse rate
is v per second. On the assumption that these are independent
and are distributed according to a Polsson distribution, we
have:

6,(£) = by voltsz/HZ
at frequencies for which the impulse duration is negligible
compared with the period.
Hence in the bandwidth fa we have:

2

N2 . 8’[7' v fa LR (2)

If threshold is defined to be the point where

I L . _ "
N, + h1 = 5 db more than.N&, (i.es N, = .12N&) we have:

o =Q%ﬁ@)%2 coese (3)
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APPENDIX E: Typical FMFB system.

2
] a AN
IF transfer function to phase H1(S) = 15+0)(Staln)
Baseband filter transfer function H (S) = ¥
2 ~aA(s+

The trensfer functions of the IF phase 6(%) and the VCO

phase ¢ (t) from the input phase 6i(t) are (for the linear region):

_ A (F=)
Biag s 4+ (1+A)8 +AF - ()
2
}%i._é 0 = aA (S+1) oo e00 (2)

(52 +(1+2)s +AF)(S + 2d)

For a unit carrier amplitude, the spectral density of Gi(t) is 27 (f).

Hence the mean square values are:

' 2
2 £ e
<¢ > . o %‘afﬂg) cowan (3)
; 2 o 2
<31)2> ) n(f){ﬁ%(a-q) cenen (1)
625 _ () aAf1 s (sl +2 35*“‘/_6223"___ veees (5)

F{ Fia + (a2+2a+F)A + af{a+) AZ J

22 _ o) 8® A {4 s (Pea)p w8 £2] ceenn 16)
{ Fra + (a2+2a+F)A + ala+) AZE

Also the IF CNR is given by:

B (1+a)
Pr = Zaan(r) seses (7)
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To model the experimental set up the following values were
chosen: * =10, a =10, A= 3. Barly models involving the power
series approximations had & = o « In the determination of Yo and ¢o’
the feedback factor F and the IF bandwidth A were varied with 'a'

being constant at 10.
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APPENDIX F: Experimental model of FMFB.
The experimental set up of an FMFB system is shown in Figure F-.
The system was designed for a baseband bandwidth of 1OKHZ, an IF band-
width of 60KH and a feedback factor of 10 (20 db).
The mixer stage consisted of a tunnel diode mixer which convert-
ed the incoming 290 MHz signal into a 50 MHz first IF. Integral with
the mixer was a varactor diode tuned tunnel diode oscillator. The theory
and construction of the mixer and oscillator is described in [23] .
Following the mixer, two stages of 50 MHZ ampl ification were
provided before conversion to a second IF of 5 MHZ. One stage of 5 MHZ
amplification was followed by a limiter stage and frequency detector.
AGC was applied to the 50 MHZ stores only.  This was effective over an
20 b input signal ronges
A direct coupled baseband amplifier and filter completed the
feedback path. Direct coupling was used to improve the tuning stability.
The IF amplifier consisted of several tuned stages, and in
order to maintain a predominantly single pole response, all circuits
were broadband except one (the 5 MHZ stage). The baseband filterwas a

single pole filter, although some lead compensation was used to improve

the stability and transient behaviour of the loop.

In practice it would be better to confine the feedback to
relatively few stages rather than apply feedback around the whole system.
This would reduce the problems assoclated with loop stability and also
obviate the necessity of using IF circuits with specially tailored

responses. However, the system constructed enabled representative
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measurements to be obtained.

A source of error which proved significant was 1/f noise in the
transistor amplifier stages at baseband. Under high output SNR conditions
this noise tended to mask the quadratic spectrum noise. This was largely
eliminated by using a lower cut off frequency of 440 HZ in all measurements
involving output noise. Another minor source of error involved feed-
through of amplitude noise from the limiter.

Absolute measurements of CNR required a knowledge of the
receiver noise factor. This was measured by a diode noise generator & i
found to be 11 db. As the image rejection of the first mixer is quite
good, this noise factor may be added to the incoming noise spectrzl dan-
sity in order to obtain the effective input noise psd.

The system was designed to have the dicriminator and feedba.k
thresholds occur at the same carrier level, as under these conditions
the system is optimum.

The output in Figure F-1 was passed through filters with s%::

B
(s}

skirts in order to measure the output noise. The effective bandwidth was
440 - 10250 Hz.
Figure F-2 shows the complete circuit diagram of the experimental

FMFB system.
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APPENDIX G: Digital simulations.

In digital simulations, the differential equations corresponding
to the different transfer functions were solved numerically using a
fourth order Runge-Kutta integration formula[22] + A standard program
was developed which enabled solution of simultaneous high order different-
ial equations without having to express them as a series of equivalent
first order equations.
All narrow band RF voltages were represented in phasor form and
the appropriate low pass transfer functions involving the phasors used
to represent the effect of RF filtering.
The input and output of a bandpass filter of transfer function
H(S) may be resolved as:
v, (£) = R, { (a, () + Jay(t)) ed@st }
cesos (1)
v (t)

out

R, [ (b1(t) + J bz(t))ejwct }

/

where w, is a convenient carrier frequency, but otherwise arbitrary.
The resolutions are unique if vin(t) and Voﬁt(t) have no significant
components at frequencies exceeding 2a6°

The transfer functions connecting ay to'bj are given by

Hij(S) below:

H,(S) = Hy(s) = %[ H(S +jw_) + H(s - jwc)]
H‘IZ(S) - "H21(5) = Ejj—[iH(S + Jw,) - H(s - ‘h)c)] coes (2)
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A 36 bit shift register code was used to generate a pseudo~
random binary sequence. The particular code used generated a feedback
bit corresponding to the logical difference of bits 31 and 36. This gives

360 bits.

a maximum length sequence of length 2
In the digital simulations, the pseudorandom sequence generated
a two level signal + 1 at intervals corresponding to the integration

process increment h. The psd of the output is:

. 2
a(f) = h{%—ﬂl—J eesae (3)
which is white for fh « 7 .

In actual fact because the sequence is periodic, it has a
line spectrum. However, since the discrete components are separated by
approximately 2-36/h Hz’ the approximaticn to a continuous spectrum is
extremely good.

The binary sequence itself is of course not a good representation
of gaussian noise. If, however, it is passed through a low pass filter
of cutoff frequency <<1/h then the output is approximstely gaussian. In
many applications it is sufficient to allow the system itself do the
filtering.

Figure G- shows the amplitude distribution of the output of
an RC filter of time constant 100 h when excited by the pseudorandom
sequence. The observations were taken over a time of 105h, eorrespon&ing

to 105 bits of the sequences A class interval width of 0.02 volts was

used.
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The distribution is approximately gaussian although it is
slightly skewed. The fit to the tails of the gaussian distribution is
not good in terms of relative error. This was also observed by Smith [27].

The above indicates that a filtered pseudorandom sequence is
a reasonably good approximation to gaussian noise except where the tails
of the distribution are of importance. In these cases the results may
be subject to considerable error. This applies in particular to the
similation of impulse phenomena in FMFB.

Referring to Figure 2.5 the systems modelled in the various
similations were:

(i) Simulation 1 modelled the typical FMFB system of Appendix E
except that a =oc. i.e. the IF filter had only a single pole response.
This was also the model used for the earlier power series approximations
of section 2.4.3.

(ii) Simlation 2 modelled the system of Appendix E with a = 10,
This system was the one used in theoretical calculations and was the one
closely approximated by the experimental system of Appendix F.

(iii)similation 3 modelled the same system as simulation 2, except
that the equivalent n'(t) representation of Figure 2.8a was used.

In all three cases, the total number of jumps observed was
limited by the computer time required for simulation. Generally a number
greater than 25 was obtained in order to give a reasonable approximation
to the impulse rate. In view of the limitations of the pseudorandom
sequence as a substitute for gaussian noise, greater refinement was not

considered necessarye.
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APPENDIX H:

H

Published papers.

BeRes Davis:

B.R, Davis:

"Factors affecting the threshold of feedback FM
detectors"; Trans. L.E.E.E. on Space Electronics
and Telemetry, Vol. SET-10: 90, Sept. 1964.

"Bquivalent variable centre-frequency amplifiers";

The Radio and Electronic Engineer, Vol. 28:381, Dec. 196L.



Davis, B. R. (1964). Factors Affecting the Threshold of Feedback FM Detectors.
IEEE Transactions on Space Electronics and Telemetry, 10(3), 90-94.

NOTE:
This publication is included in the print copy
of the thesis held in the University of Adelaide Library.

It is also available online to authorised users at:
https://doi.org/10.1109/TSET.1964.4335600



https://doi.org/10.1109/TSET.1964.4335600

Davis, B. R. (1964). Equivalent variable centre-frequency amplifiers. Radio and
Electronic Engineer, 28(6), 381-388.

NOTE:
This publication is included in the print copy
of the thesis held in the University of Adelaide Library.

It is also available online to authorised users at:
https://doi.org/10.1049/ree.1964.0153



https://doi.org/10.1049/ree.1964.0153
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