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INTRODUGCTION.

In this thesis, two applications of Chebyshev
polynomials to the numerigal solution of problems have
been given° The thesis can be split into three almost
independent parts. in Chapter 1, a brief review of the
most important properties of Chebyshev polynomials is given.
This is followed by a description of Clepshaw's method for
the numerical solutlon of ordinary linear differential
equations by the expansion of the unknown function and its
derivatives directly in terms @f their Chebyshev series.
This work is the staxrting point of the whole thesis and it
is appropriate to mention here my acknowledgements to
Mr. G.W. Clenshaw who first introduced me to his method
when we worked iogéther in the Mathematics Division of the
National Physical Laboratory, England. The work in this
thesis is, however, entirely my own both in conception and
develdpment° To my knowleﬁge, none of this work has been
duplicated elsewhere,

In Chapters 2, 3 and 4 we tonsider the application
of Chebyshev polynomials to the solution of the one-dimensional

heat equation, 29 3B
3 T

In Chapters 2 and 3, we consider the range of x to be
finite, and are able to compare the numerically found

solutions with the analytic solutions in a couple of part-
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jeular cases., These indicate that the method is a powerful
one, yielding accurate numerical solutions for a comparative-
ly small amount of ecomputation.

In Chapter 4, we attempt to apply the mc thod to the
same equation, where the range of x is infinite. The
independent variable x is first transformed to a new inde-
pendent variable € = LA 2 .. The algebraisation
of the resulting equatiori is then straightforward. The
numerical solution of these equations in a particular case,
however, indicate that the resuttant Chebyshev series
expansions of e are very slowiy convergent. This casts
considerable doubt on thg utility cf the method, and
consequently it is considered t> be a failure., It is never-
theless included in this thesis, as at first glance it
appears to be a possible means of solving an essentially
difficult problem.

In Chapter 5, a generalisation is made of Clenshawk
method to the solution cf ordinary linear differential equa-
tions in terms of any of the uitraspherical polynomials. One
of the objects of this exercise was to investigate whether
the computation in Clenshaw's method might be reduced by
using foxr example, Legendre poiynomials. The -answer is
most emphatically, no; the Chebyshev polynomials being
Loy far the simplest to use. The analysis does, however,
give a fairly rapid means of finding the expansion of
functions satisfying simple linear differential equations,
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in terms of Legendre polynomials. This is used in Chapter
6.

Chapter 6 is concerned with the second of our two
problems, namely the numerical solution of non-singular
linear integral equations of the Fredholm type. Again,
the unknown function is expanded in a series of Chebyshev
polynomials, and substitution of this series into the
equation gives relations between the coefficients in the
expansion which can be solved numerically. The cases of
separable and non-separable kernels are investigated in
detail, A comparison is alsoc made with Crout's method
of using Lagrangian type polynomial expansions for the
unknown function. In the example considered, the Chebyshev
series expansion to the same degree, gives a much more
accurate solution than Crout's. Finally, we consider
expansions in terms of Legendre polynomials, and this is
illustrated by an example. The computations in these
last two Chapters were done on desk machines.

Throughout this work, we notice that in cases
where Chebyshev polynomials can be used, a considerable
amount of precision can be obtained in the final result
for a comparatively small amount of computing. The methods
are not by any means as versatile as the more usual finite-
difference methods. The Chebyshev series techniques
used here depend, for their success, on a ready algebra-
isation of the particular problem. This is not always
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straightforward by any means. Consequently the method
should not be used indiscriminately; a careful evaluation
of the particular problem under consideration is always
an essential preliminary. The methods should be considered
as a useful supplement to the more standard techniques.

In this thesis we have not attempted to discuss the
properties of expansions of functions in any set of orthogonal
polynomials. The well known properties of Chebyshev expan-
sions have been stated in Chapter l. No attempt either has
been made to find the minimax approximation_to an arbitrary
function, using the Chebyshev series as a first approxima-
tion, The view has been taken throughout, that the qalcula-
tion of the coefficients in a Chebyshev {or Legendre) expan-
sion is a sufficient end in itself. The calculation of the
minimax approximation to a function defined as the,solution
of some differential equation with associated boundary -
conditions, should pravide a useful topic for future re:search°

Of the publications arising out of this thesis; the
contents of Chapters 2 and 3 were presented in a very abbrev-
iated form at the First Australian Conference on Automatic
Computing and Data Processing held in Sydney from May 24-27,
1960 in a paper entitled "The Numerical Solution of the Heat
Equation using Chebyshev Series®. A synopsis is given in
the Proceedings of that Conference. Two other papers
entitled "The Expansion of Functions in Ultraspherical
Polynomials" and "The Numerical Solution of Integral
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Equations using Chebyshev Polynomials", based on Chapters
5 and 6 respectively, have been accepted for publication
‘in the Journal of the Australian Mathematical Society.
Fimally, there remains the pleasant task of
thanking those people who have assisted me with this
work., Thanks are due to Dr. J. Bennett and Miss J, Elliott
of the SILLIAC Laboratcry for help with the computations
of Chapter 3; and to Mr. R.G. Smart and Miss J. Campbell
of the UTECOM Laboratory for those of Chapter 4. I would
like to thank Professor R.B. Potts for many heipful sugjest-
ions, his willingness to listen patiently at all times to a
multitude of ridiculous ideas, and for the readiness with
which he has read and criticised aill the written work of
this thesis. Finally, my thanks are due to my wife Lesley
whe in spite of daily receding further from the typewriter
did such én excellent job of the typing, which was not

always transferred to the reproduced copies.
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CHAPTER _ 1

PROPERTIES OF THE CHEEYSHEV POLYNOMIALS Tm (2¢)

l.1 Definitiongs
The Chebyshev polynomial T..(%) of the first kind

and of degree n is defined for —!S%X | vy,

(1101) T (2) = o B  where == ¢onb

These polynomisls are just one member of the set of ultra-
spherical (or Gegenbauer) polynomials. The ultra-spheriocal
polynomilal F.,l:)(*) of degree n and order A is defined

by % =g " -
Pln+ TN+ 5 N - x*) (- M i]
L s )-

(1.2.2) F "")"' P(am)r'(ma-rt)a 'n- [ =) s

for n =0y 1y 2p) = = = & The T.(*)polynomisls corres-

pond to A = O although the atandardisation constant 1s
different from that in squation (1.1.2).

In fact, . 2)

e Ty = B g $RIG0.

The other most commonly used ultra—sp_h‘e‘z'-":l.éal polynomials are
(1) . the Legendre polynomisls F.. (%) , corresponding to

A =43 (2) the Chebyshev polynomisls Um (») of the second
kind, corresponding to A = 1 and (3) the polynomisls x™
which sre obtained in the 1imit as A = ¢ . TFor (1) end
(2), the polynomials are obtained by the direct substitution

of the appropriate value of A in equation (1¢1.2). For a
given value of 1A, the polynomials F (x) for n = 0, 1,
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2, - - = - form g complete orthogonal set of functions in
-]§x* €], the orthogonality being with respect to the

welght function 3
wx) = (1 - x*)

An glternative definition for V., (%) is given by,

- Y2

(1e1ol) U, (%) = m—'—sz(—%r—‘-)-g where = Conb,

We shall also require the definition of the "shifted"
Chebyshev polynomial - T,: (%) which is defined for 0$x ¢
by,
(1.1.5)
The relation between T, (*) and T.:(?t) is given by,
(1.1.6) T b= Ta(ax=-1) = T (32

T:(w)=(‘/oo—n9 witive dx-1 = ten

1.2 Properties of Tan (),

There are two important properties of the T,.,(’l-)
polynomials which we shall note here.

An arbitrary analytic function f (%) cen be expanded
in an infinite series of the ultra-spherical polynomials

P..‘:)' () by the relatilomns,
) = § o PG
(1.2.1) mee 4

ao-) PR (s N ! P [
i ﬁ P(n+aA).P(>\+%)
Lenczos (ref. 1), has shown that of all expansions for

o a'-aL. (23 Dlﬂ(
bt (1 =) F.. (). F(%)

A)
different P-le (») , that corresponding to A = 0 (i.e. Toa (%)

(1-2)



polynomials) gives the most rapid cenvergence of the
coefficients a.(,,., o On the other hand, the expansion
corresponding to A= °0 (the Taylor series expansion about
= 0) gives the least rapid convergence of the coefficients.
Bernstein (ref. 2) has defined the polynomial "FN("-) of
degree N, of "best £it" to £(x), in the range -1 § 2 € |

to be that polynomial for which
| F(%) = Pn (O

-l&‘xél

is least. Furthermore hc shows that the quantity

f(=) — Pn (%)

obtains its greatest numerical value a2t least (N + 2) times

in -1€ %€ | , and changes sign successively at these points.
Consider the expansion of f£(x) in terms of the T.:.L(") poly~
nomials, i.e.

(1.2.2) f(x) = +a, + 2 Qo T (%)

(The coefficient % is included for later conVenience).

Then the remainder R,q(*) is given by, . e
(1.2.3) R, (%) = F() —[fg-ao-r ia.ﬂT_%(xﬂ'- 2 <°‘)
me ) ' n=N+y

Suppose RN (’C) can be closely approximated by the single term
'O-N,j T +1 (=) o The polynomial T,, (x) " is such

: _that it attains its maximum value ¥1 at (N + 2) points in

—l € 72 €| i.e. including the end points. Thus if £(x)
were a polynomial of degree (N + 1), the expansion (1.2.2)
would give exactly the polynomial of best fit of degree N.
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In general f(x) is not, of ocourse, a polynomiel of degree

(N + 1), but the rapid convergence of the coefficients a,
frequently allows the remainder R, (x) to be closely approxim-
ated by the term Qa,,, 1., (*) .« Hence, for many functions
£(x), we £ind the expansion (1.2.2) to be a close approximation
to the polynomial of best fit to £(x).

These two properties together make the polynomials 1., (%) ,
very useful to the numerical analyst. In ths following section,
end in Chapters 2, 3, 4 and 5 we shall be concerned mostly with
expansions in terms of the [ (*) and Tor (%) polynomials.

In Chapter 5, we shall discuse the general expansion in terms
of the ultre-spherical polynomisle P00 .
There is one more result concerning the expansion of an

arbitrary function f£{x) in terms of the T..(») polynomials

which we shall quote here.

- fa) = Lap + 2 a T
v
(1.2.4) TR A

A|o

w
J £ (c028) cormbalb,

1.3 Solutlon of d;rrgrent;g;l_. equations in gegmg of T-nl*z.

Clenshew (ref. 3) has shown how en ordinary linear
ated boundary conditions

geries of Chebyshev

differential equation with assocl

can be solved directly in terms of a

polynomials T (). In this Section, we shall describe

(1-4)



Clenshaw'a method in some detail; and in the next we sghall
consider a falrly trivial example to which the solution cam
be found analytically, and which will be of considersble interest
in Chapter 3.

Suppose we have an m th. order linear differentisl

equation in the range —) $2 £ 1| , given by,

1.3, 2y At oLy .
(13:1) P, tx) ;?“ + Py () CH Po(y = 4,0
where (%), Po(*), Pi(%), - ---- [om (x) are given functions

of x only. Together with this equation there will be m
beundary conditions, and in cases where both the differential
equation and boundary eonditions are homogeneous, a further
normsalising condition. Unlike the methods of numerical
solution of differential equations by finite differences, it
is immaterial whether the boundary conditions form an initial
or a boundary value problem, If it is known that y is contin-

wous in the closed interval -1 ¢ : $! , then we can write,
(1.3.2) Yy(x) = foa, + i A T (%),
ne \
The sth. derivative of y can be written formally as,
(13.3) Ié{s)('x) = -5—0123)... ”'a:"lj\(u) , S=l,3-..,M
ne

(For a full discussion on the validity of these expansions,
see Chapter 5, Section 2).
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From the relation,

(.3.8) 2 ‘f—‘,—;—r,i‘-"_" = L,;-_;'—;;—‘];, (x) — (:("2-"'73 T (%)
it ocan ba shown that,

(143.5) ?«Ma(:: = a(::?i - a(::fl

This 18 a relation between the coeffigients in the
Ohebyshsv expansion of ‘am('&) and la‘w) ) .

Alsg, from

(L.3.6) QaT.(® = T, ™ + T, (x)

ir C-n(\a) denotes the coefficient of T1.,(%) in the expsnsion
of y, then

(1e3e7) Cw ('Kla) = ‘i’(qm-g + o-n-n).

Continued application of this equation gives the relation
betwean the coeffiolents in the expansion of :c"uj and ¥,

forall » = 1, 2."'--"'033

(1e348) C.,. (2° ta) w L (a) Iwet ¢ 25

If the coefficients P° (-x) F,(x), vl o, P_M(-x) in
equation (1.3.1) are polynomiala in x, then equation (1.3.8)
gives us fally rapidly the n th. ¢ocafficient in the Chebyshev
expanaion of '%(x) --'3 in terms of Q.. ") for r = 0, 1,

~- = o~y D In csses whera ’%(w) are not polynomiels in X,

they cen be replaced by suitsble polynomlal approximations.
By using equation (1.3.8); and aquating coefficlents of Ton ()

on each side of equation (1.3.1) for all n, we obtein a

(1-6)



system of linear equations for the unknown cosfficients
o.m for g =0, 1, - - -, m and all n. The use of

-

equation (1.3.5) frequently enagbles us to remove the

coefficients a‘:?

corresponding to the largest values of S .
These equations and those cbtained from the boundary
oonditions cen be solved numericelly either by a recurrence
or an iterative method, which have been desoribed in detsil
by Clenshaw and will B¢ referred to again in Chapter 5.
I¢% is worthwhile to nots here the aimple forms teken -
by the Chebyshov series at the points x = 0, 21 g_
ylod = La,—a, + 68, —a + 05— Qpte-e--n
(32220 ‘5(")'-"'5%"'“0* Qy~0y + 0, = gt oo
Yo e Fa, + 8+ @ 3+ A ¥ Ret oo
These results are useful since bhoundary conditions ars
Prequently epescified at either the end points or the mid-
point of the range.
Similar reaulta can be found for expansions in terms
of the shifted Chebyshev polynomials T (*) , valid for
o¢x < | . If,

YOy = £ A+ L ADTI

nwe
for 8 =0y 1y 2 -~ -~ - -, then the results corresponding
to equations (1+3¢5), (1.3.8) and (1.3.9) are given by
(s) (5+.1). tp41)
(1.3.54) Ln ﬁ“ = n“,‘, x Am-ﬂ
...,,.......\- ¥
(1.3.8A) C (> ‘a) E i( )A!'n =t )i
it

(1-7)



where C:(-F ) denotes the coeffiocient of T,:(ﬂ) in ths
Chebyshev expansion of £, and

[‘3{") *~ $A,-A ¢ A, - A, + Ay - Ag+anus..
g(:—:")f— TR Py + A= Ay + Ay~ At ----. .

(1.3.9A)
1!3(!) cdf 4+ A+ ALY Ay + A, + Agtoune. ..

1.4

g

We shall fllustirate the method by f£inding the
Chebyshev brpmoion of ths funotion ‘a = coa4+ -&)nx 1in
-] $7 &) , Pfor integer valuea of *» This function
satiafien the dl{foun‘tid squation

(2.4.2) i—f‘ + (++ -;-)"n’aa * 0

with the conditions y (0) = 1, ¥'(0) = O.

As in Seection (1,3), we assums that

\3“’“) =3 a,',’) +“§aﬁf’ Ta (™), Jw s:0,l,Q,
(When refering to the function values we omit the super-
saript (o) and for ths firat and eecond derivatives, use a
supersoripted dash and doubls dagh yespectively). Egquating
the coafrieients of I..(%) %o sero for sll n in equation
(1.4.1) we have
(Loke2) al + (++E)'n*a, =0 [t o mz00a,
We shall solve theme squationrs by the yesurrence method,
uaing equation (1.3.3) in the forms
(elie3) Q'ny = Qs+ Fmaa, Omei ® Qyy + 2ma,,,

In Table 1.1, we givs the numerical solutfion to 6D for the

(1-8)



caee © = Q. We start the eomputation with a, = |,

/ /
Oy = U= =0 Qg = @y ¥ --...x0 , and

','D = Qy=---70, Since the funetion is even in - 1§25 | ,

a
we have immediately that «&._  and a::\ are zZero whén n is odd
and o, is Zero when n is even. With the givem initial
velues we use equation (l.4.3) to glve a; and Qg in tuen.
Equation (l.L.2) is used in the form

R a, = -0 4053F 4734 al,
to give @; , from which we campute af, and Qz using again
equation (1.4.3),and then 4, . The proecess is continued .
until we reach G,

/ "

mn A, Q.. Q.. normoiadel 6 | Resrelired Qo

0, -205 58772 ) +507 26736 || 40,94k 002 | +0.9%iL 002|

1' 0 +387 81286 0 0 ) 0

2 4108 76156 0 ~-268 358L0 || -0.499 L4O3| -0.499 4O3

3F 0 ~47 23336 0 o | - o

W -6 09620 0 +15 OL176 || 404027 992 | +0.027 992

5 0 +1 53624 O 0. 0

6] + 12995 0 - 32064 || ~0.000 597 -0.000 597

7o - 256 o | o | o

8 - 146 o] + 360 +0.000 007 ' +0.000 007

© 0 + 20 0 o ; 0
A0+ 1 0 0 0 | 0
COOTTR = 0473 0D) ~0- k99 403 Ta(x) +0:027 992 T, (%) = 0-000 597 T, (x) + 0057 T (%),

PTeble 1.l

Heving ccamputed all a.,, afm s a';',\ by the method described
above, the solution has %0 be normglised in order to give
Y (o) = | o This is done by multiplying the a.,

computed by —i / 2177 8339 , the denominator being the

(1-9)



g

value of 4 0 + ﬂg!(")naaﬂ of the gomputed a. . The
required value of the coefficients in the Chebyshev expansion
of con § M are given in the column hesded "normslised a,
Por other values of r, a similer computation can be carried out.

The Chebyshev expansion of this simple rﬁnction can also
be found  _ analytically. This 1s shown in the next Section,
where we also derive the properties of an important matrix I?
which will appear later, in Chapter 3.
1.5 The metrix L.

In the previous secticn we described how Clenshaw'a
method can be used to find numerically the coefficients in
the Chebyshev expamsion of Co>(++%)7x , and illustrated
the method in the case of » = O,

From equation (1.2.4), we have that the coeffieients

are given directly by
(1.5.1) 3J con (o B)n Tu ()

a., = .n--l rrﬁ:::;q

Obviously when n is odd, &.. is zero since the integrand

is then an odd functlon of x. In the case of' n even
(z 2. , say) the integral in equation (1.5.1) 1s closely
related to the Béssel function J, (%) of the £irst kind and
of orderdm .

The Beesel function J;mm(,') can be defined by (sae,

for example, ref. L)

m
(1.5.2) T () = #f cos (% Al B = 2mB) o

(1-10)



writing O = ¢+ 2 » and expa:r .\(_?JB&, the integrand we have,

|‘f.,
TM(") _ 3%—'2 [ cn (% crer;;), c..o':élzm.f;.afcjo:
the seoond integral being sero. if we further write

" e m¢ P then .y 4

T n) (3 t) Tamlt) 10

- 1-¢
Hence we have Mtahlr that :
(1e5.3) Qg ® DT [(++ £)ym]
form =0, 1, 29 = - = = and all ».
The comparison of the theoreticsl velue with the

numerisally caloulated value for » = O is given in Table l.i

The results are in exaot agresment to 6D,

Let us 1ook now in mors deteil et aquations (l.bhs2).
If we apply the results of equation (1.3.5) twice to this
equation, we £ind the following relation betwesn the coeff-
jolents Qga.. (M *® Sorn )

2. af Bomes Qam Qswnsa
(245:4) O.M-!’(""’i)” S (v = 1) alum-l)‘.’ﬁm?&ﬂ“) 2

velid for mm 1, 2, = - = - =« PFor the purposes af thie
Seotion, we Will mot use the boundary conditions ss given in
equation (1.4.1), bus will use the faos that Co> (*+ s PLEY
48 sero vhen x = 1, 80 fh;not.

(105.5) La, + ) Qg =0

If, fvom equation ( 1.5-5;‘,‘ ’u substract equations (1l.5.4) for
all valuss of m, we find

(1.5:6) Lo - (“t)"[f" “mat f o 1.7‘?3—»”!) ““"J e

(1-1)



On further regrrangement of equatlons (1.5.4) and (1:.5.8)

we find the followlng system of equaticons

.. . 2a i L L
{ - + » ‘ e =3 e
_-H o L T2 _Cop (g““ z.,.Xn’a i “'} RS ‘)
|
(257 44—, =P, L a
A lam~t) Bmez [ty wn® = ‘) e va-n/o?w'#") ek
16 Q

lfw—* wa T A, e == (3’,.’,)""2

Bguations (1.5.7) can be writien in the mairix form

a
(3.5.8) fg = - (a»-:a!‘)"n*'“ [

where @ is the column vector {@,,Q,, ..-.. { and P 1is
the matrix (f@;) 120y s 2 — = —~my J20ply 2p = = = o
glven by

=1 = -5“-“" Y o =
SRRk R

1. 5. ST ! ey R S
S F° et PO, Pug @ &wm~w YU i)
6«,,» Mi;; F«ue at'f""(";;“m J}”i,in_:_h”g O

Fpom equation (1.5.8) we have that the latent roots of the

infinite matrix F’ are given by

. _-J.i”mm. fw‘ A 0,02, ...
;\"‘ i {es.t+9:g n*
These results for the matrix [ will be used ia Chapter 3,

where we shall compare ita analytic properties with the
numeriesl solution of theionﬁ—dimensional heat eguation in

a particular casg.
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CHAPTER 2

i VR R R S R N R
AHE ONE-RUMENSIONAL HEAT KOUATION .

2.1 Stgtement of the problem.

The major part of this thesls is concerned with the
application of Chebyshev polynomials to the solution of
linear partisl differential equations of the parabolic
type. In this Chapter we shell consider the numerieal

solution of the equation,
2
(2.1.1) L

———— 5

ot 3%x?

for £20, where we assume that the range of x has besn
adjusted 80 =~ &x=| , This eguation ig the well
known hest (or diffusion) equation in one (space) ,dimenéion.
In these contexts the variasble t represents the time, X some
space co-ordinate, and O(®,t) the temperature (or concentrat-
ion). We shall frequently refer to these variables with
aueh physical interpretation in mind.

Along the boundaries =1 |, we apeclify general

dinear boundary sonditions of the form,

| { MO+ i = B (E) aleng x= ot
2’1‘.2 .a - e
( ) o anle 4-/«&.., 3‘3 = ei)_u(t) M n = I,
where ¢,({t) , ¢_,(t) ars given functions of the timet,
and A, , Moo Aot J4-) gre constants,  Together with these
boundery conditions, there will be asn initisl condition of

the form,
(2.1.3) 5 = f(x) Zuw ~ts%xg), E=0,

(2-1)



We shall assume that the Chebyshev expansion of §(x) is
knowna

In Chapter 4, we shall again consider equation (Z2.1.1)
in the csse where the range ofxis infinite. In order to use
Chebyshev polynomiale, the space varisble has first to be transf«
ormed to & néw variable § , say, such that — ! £ §<) . The
most suitable form of transformastion is found to be

g ® Mx
The partial differential equation is then of the form
1) 2’0 20
ole — = g ———— g —
(2.1.4) 8 = RO SE t PSS + po(6)B
where }0“ fpy and > are pulynomisls in e This is the

most general form of the equ:ztion which c¢an be solved by the
method of Chebyshev polynomialse.

In the case of equation (2.1.1), however, we can
compare our numerical solutions with known analytie solutions,
snd this enables us to make a detsiled analysis of the method.
For the infinite range, we are not so fortunately placed, and
can only use the results of the finite range to guide the
method of numeriecal solution,

2.2 Brief Revicw of Pinite Difference methods of Solution.

The ususl way of finding numerieal eolutions of
equations (2.1.1), (2.1.2) amd (2.1.3), 18 to replace both
derivaetives by some finite difference approximations, snd to

solve the resulting system of difference equatioms numeriecally

using some form of digitasl computer. It has been found that



there are stebility problems, arising from the behaviour
of the rounding-off error, which depend upon thes form in
which the difference approximstions to the deriwvatives ara
made. Richtmeyer (reference 5) gives s full diseussion of
these problems.

Consider the (%,t) plsne covered with a mesh of width
$x, St « Any point (¥, t)  in the plane can then be rep-

resented by a number pair (m,n) where
2=, 8% , b= mSt,
and we shall write B(W\Sw,m&)aa ®awm,m =+ Richardson, in

his pioneey work on the aubject, replaced the partlal diffep~
entlal equation st the point [%,t)by the partial difference

equation,

w)'"_'li_l i 9?”)%" - ‘Oﬂm_;,.n' — agm,% ¢+ 9%4,).“

(2«;2?7) 'a St S {sx)z.'"'”‘“""""'
There is s truneation srror in this equation, but this is
originally taken %o be zero. fhe only unknown gquantity in
equation (2.2.1) 18 B, m+1 which can be expressed in
Lterms of the remaining known functions. Such g form is
sald to be "explicit'. It ean be shown, however, tha% in
the repeated application of equation (2.2.1), the round-off
errops will dominste the pequired solution for 211 values of
gt

P = ZE;S& >0
Thus, the above finite-difference representation of the
partial differential equation is useless for computing

purposes. (Richardson was unaware of this since he only

performed the integration up to a small value of & , and
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the round-off errors were still small at this stage.
(quation (2.2.1) 48 of the second order in the t-direction,
whereas equation (2.1.1) is only of the f irst order. It is
now réealised that replacing a differential equation By a
higher order difference equation irequently leads to spurious
solutions deing introduced, which may swamp the required
solution).

Another explicit system of difference equations

12 O ey = Own m

can be found by replacing 3t by St s t0 give,
(2.2.2) B, = O, o+ A (00, = B+ Onsr )

The numerical solution of these equations remains stable

provided + € ’/2_ » 'Thies means that St and $« camnot be
chosen independontly and, for example, with a fixed+, if
we halve $» then we must take a quarter of St . In many
cases, this means that we must tske a large number of steps
over a smzll interval $t, in order to keep the truncation
error within specified limits.

An alternztive method of spproach 1s €0 use an
"implicit" representation of the partigl differentisl equction
where the difference equation now containg more than one ubi-
known walue of ® at b= (n+1) 8t . For example, if
we replace the derivatives by differences at the point
(% ,b+ £ $t) we £ind a system of equations

@ i[ et mer = ROm,mai

MR), Al

( 2 97..-,. E Wy I & +- 9‘
2020
3) AR ¢ 3 9‘ ), . a@.‘m’“ My W

(2-4)



These equations are sitsble for all +=¢ , however, over each
step St we must now solve @ gystem of simultansous equations.
The values of S and &Y can now be chosen independently of
each other (compatible with the allowable truncatiocn error).
The amount of computation over cach step $¢ is now greater than
for equation (2.2.2), but we can generally take a larger valus
for $L than befors.

Many other implicit forms of equations can be used, and
these are fully diseussed in rsaference 5. We shall say no
more about i hem here.

2+3 The method of Hariree snd Womersley.

A pather different method for the solution of equation
(2.1.1) has been given by Hortree and Vomersley (reference 6).
They replace ounly the time derivative by a finite-difference
approximation, and consider the resulting system. of ordinary
differentisl equations. Considering now only the t-direction
subdivided into intervals of wldth $t, we can replace equation

(20‘1.'}) at the point &,+ ;zSt' by,
' »;\I I| _ s ,;,Q Bﬂ
{(2:3.1 e & a[ e ] + O (/gﬁ'>

07 e

The subscripts O,! denote values at the times {, and l,+ 5,
respectively. Onee again neglecting the truncstion error,
equation (2.3.9) represcnis a two-point boundary valus problem
(from the boundary conditions et #* L] ), where B, is
known and B, is the function to be found. Having determined

B, () s this becomes the new &, (%) over the next inter-
val %F . Tn this way the integration can proceed in the

{2-5)



t-direction, and the trunestion error depends only upon the
value of St . Hartree and Womersley proposed solving equation
(2.3.4) by means of an analogus computer, and in particular a
differentisl analyser. |

There is cne impordant fact which must be noted. In
solving equation (2.3.1) it is assumed that the t runcation
error is small enough to be neglected in a first approximation,
This will only be the ease provided that the function P (%, &)
has no singularities and in particular that there is no singul-
arity initislly. The initial function f(*)must therefore
gatisfy the boundary conditions along * = X | . 1If this
i8 not the case, the inltial singularity must be removed

in some waye.

2.4 The Method of Chebysheyv Polynomialsg.

In the method to be described here we solve a slightly
modified form of equation (2.3.1), using Clenshaw's method of
direct expansion in Chebyshev polynomlals. We choose as the

dependent varisble not B,(*) but the function
q(x) = B, () — B ()

Fegleeting the truncation error, the equation for?(ﬂ) is given

L @lé' ol Bo
(2.he1) ;{:?‘2. - a&g = =2 ol ® ZLN -l s xs |
where & = ‘/St ° Ue Write, N
9y = Y To (%)
(2.4.2) n‘
) = L&, + i T (o)

with similar expressions fop t;he Pirst and gecond derivatives

(2-6)



except that they are polynomials of degree (N=1) and (N-2)
respectively. On substituting expansions (2..:.2) into
equation (2.4.1) end equating coefficients of T (x), we
obtain,

. " n - - A N-2,
(zo)_‘_.B) ak‘l'w= QW -c-z_bw iﬂ‘f‘ . = 0,’, O\J"'- )
Applying equation (1.3.5) once, gives
(2 ‘ / ‘ ,D_’ = .‘B— (a - O . \"-w‘n= l,a,--;N-l.

helt) @ 4+ ED = r (Gnn T Bn)

Using equation (1.3.5) again, we find the following relation

between the a, and b, coefficients,

_* _ o R R — b
(2.4.5 o (1) QRn.z [-7-: +,a(n‘- ')]a'-n, -+ Lo (nh ‘) ey n

forn =2, 3, - =, N provided we take Oppr = Qg = O

These equations are of a falrly simple form. To find those
corresponding ton = 0 and 1, we must investigate the boundary
conditions along x = %,

2,5 The Boundary Conditions along x = <1,

We shall first cohsider how the boundary condition
along x = 1 can be expressed in terms of &, and e&» o The
corresponding condition along X = =1 will then be quoted
without proof, since its derivation is similar to that
along x = 1,

From the boundary conditions at t=¢t, , ana t= & |

on subtracting we find

(2.5.1) ;\'? * P :—;}"3— =4 ()~ ¢ (£,) ﬁw =),

(2=7)



Rewerlting this in terms of a4, » ai," and using equation
(1.3,9) we have, o
g 4. / s
(2:5.2) - )ﬂg[’"@ g Sﬂw +/“[ % * Z"‘m]- b (E) — o, (6)
)
From this @quation we want o eliminate the aL . Now from

the boundary condition ot € = b, , we have,

(2.5.3) A [i"ﬁ* + Z%m]%’/u[ A" Z»&%] P, (£).

On adding twice cquation (2.5.3) to equation (2.5.2) e get

[ (a,+38,) + i(“ + )]+/ﬂ [‘L/O +ad )+ Z‘(a 1ad/ ')J
¢, (£) + P, (),

From equations (2.4.5) and (2.4.4) we £ind, after some

(2o5nl¢) .

algebraie reduction,

N
4 I AP |
[5{@ «M%)wa«s-:% ﬁ%{ Op + 7o & a5 Yo o s

(2654 5)

e O (5)) b _IN=5)
‘ML frte W= 1) N anfN=aYN3) T AN 1)

e

and
N2

S a 2 PV
*’2-5«6)2{a rall) s ‘&g‘”*a mé;_%"‘«-@ Ow = #ﬁlmﬁ%g,

respecuvvslyo It now remains to find an expression for

(e} + 24.) in terms of a, and &, . Again, using
sguation (1.3.5) with m = 1, and eguation (2.L.4) with

n= 2, wa find,
) %
(2.5.7) ol + ab, = Flo-a3) + 2(a, +230,)

Summing up, the boundary condition slong x = 1 gives the

foliowing relation between the «a,_  and »@»% -

(2-8)



rmaoi[?\n(a‘?" "'"“)"*’ &ﬂj”a [3‘ )*/u (H __,.>‘;
ve [T, ]M[?ﬁw =/~‘]
N=2
- MNE u)t’w 1) I "‘) 5
(2.5.8) “"“ .
" (N=5) R, ] &&a}
a““'[awlw-a.)(rd""?) T
o g’ iN-8) RN, + —%AL—Q}
N -a(N_,a")(NE‘-!) (1) |
< by ¢ 200~ L8 = di6)

This eguation is not very .elegant. We notice, however, that
81l the unknown ¢, appear on the left hand side, with all known
qusntities on the right hand side.

A gimilar expression is found for the boundary condition

along ¥ = -1, and is given by

r a().r_'(’«l+_. 'Pj’““'J“a{-)“(H a)“}f”“'(” H-)J
w R e
[T - Bpafonl- o 3 -]
f~3,
- f'vo')'ﬂ" _ ) (_.')%‘
&B&)n!—nrk('ﬂﬁ” R SUER) = Qk/”m:n;iq {wn*=1) O
(2.5:94 + awm,[ " N R ) e, ]
AN(N=3AN-3) (n=-2) |
+ aN[ 0 v=sYRAer L) u,
El(N«-Q)(N'“m;) (N“d)
ng %”, “@‘a + Q(- P V"‘”\)'&v - ., (t)) -~ @_Pu-o;

(2-9)



2.6 Method of Solution.

Equations (2.4.5), (2.5.8) and (2.5.9) completely
define the problem. On the left hand sides of the equations
we have the unknown coefficients 4, , on the right hand
sides all the quantities are known. Before representing
these equations in matrix form, we further manipulate
equations (2.5.8) and (2.5.,9) to give two eguations on the
right hand sides of which we have quantities of the form

b:: b, + Y (ta,L‘,) and &Tra 4, + |, (to, b))
respectively. The quantities Yo and Y, are linear
combinations of the functions 4’1 (to), 4>, (t,) > ‘P-, (ta); ‘#’-,(ﬁ)
obtained from the above manipulation. The two new ecuations
wvhich we consider as replacing equations (2.5.8) and (2.5.9)
are so messy algebraically that no attempt will be made to
write them down here. When considering a particular problem
within this general sc};eme, the elimination is generally
straightforward.

The resulting system of modified equations can be

written in the matrix form as

*
(2.6.1) oM 2= B
~ *
where @ is the column vector {ao, A, womn- aN;‘” L7 is
* X * " ®
the column vector i ’{lo ) «Qr, ) (’z ) 'Q)N % where -e)“ = l)-n

for M 2 X, and m"‘ (&) is the sguare matrix of
order (N+ 1) of the coefficients in the equation. Its

general form is

(2-10)



X % X % X .. o.. . X
¥ ¥ X %K L. P
¥ O % O X
® 0 X 0 X e
%ﬂn’b"; \‘
X O X O
}{OK{,

The proposed proeadure for computation is ss followsg.
Suppose we hgve reached the value { * ™, §t . The Chebyshev
expsnsion of Por this walue of F is known, and we define
the colwm vector &tm to be the vector of the coefficients i.e.
e = 4, 8, by, o, B0

Let }g”‘"’denate the colum vector

H/fﬂ? - ; W, (wm Bt (“nva-a)SE'}) W (""s"){“‘“)&');@» =“@§
We dofine the eolumm vector A by

twy
ER(M T f‘fmq}

~ (e

¥inelly the column vsetopr 9\@1/ of the Chebyshev coefficients

of @[‘ﬁ) gives,
{nad

a = 4 - A

e Ao i

We solve the complete syabemn of eqguagtions by,
fra e 1) $lw} tn)

£ I mace d

(2,6.2) Aﬁ} = 2; (&) ;6. g’

whore, from equation (2,6.9) we have that TN [‘?@) is
o

square matrix of opder (N+1) given by

T8 = Iy + My

~

T, being the unit matrix of order (N+i). We use equation

M

(2~11)



. #)!
(2:6.2) sueeessively starting at w = O s GO give ﬁ) 5

ﬁ(“,, -'?g‘zﬁ ste. in turn lee. the Chebyshev expansion of
the function O (7, b) for b= St A5k, 38t ok,

tn using equation (2.4.1) we have assumed the truncation
ePrror 0 VO HEPO. To minimise the effeet of {this error, we
perform 2 integrations over the entlre range of & wequired,
one st intervals 5S¢ , the other at interval &/a2 .
After theme integrations, bthe coefficients are conbinad at
sorvesponding values of € using A extrapolation. Full
datalls of this will be given in the next Chepter where we
sonsider the integration i two cases whose gnaly tic solud-
ionz con be expressed in terms of elemsntary funetions.
we shsll slso disouss more fully the gomputabional procedure
gnd presentation of resulbas ¥inally» we shall discuss
the sdvsntages and disadvantages of the mathod and compara
it with she finite differenss methods oublined in Section

{2.2)0



CHAPTER 3.

THE_COOLING AND RADIATION PROBLEMS.

We shall now consider in some detail the
numerical solution of the "eooling" problem, which is
synmetric about x = O , The boundary conditions are
now given simply by

O=0 jo—v* x=%)] | ol €30
We shall take the case where the initial temperature is
parabolic i.e.

B(%,0)= 1= = T, ~5xTa fov -Isx&|
The analytic solution of this problem is given by (see,

for example, reference 7),

(3.1.1) Q(x,t)= i-i'—l*—'-?e«f[ (—-—*-'zr-l——m(m-o- -OLES

Since we are considering only the symmetric case
we will have Q™ O whenever . is odd. Writing
n =+ with N=aR and substituting A= 1, M, = O,

cf: ()= O in equation (2.5.8), we £ind,

& 7% _ ; (arR-5)R Qe
=2 )q"* w22 b& o, (™= )t ')a“+4-(R-UX4R n *

'] ~ = &o
Equation (2.5.9) gives exactly the same relation, and equation
(2.4.5) becomes

(3.1.2)

& . S R =4
(3.4.3) g = 1) 2 ["i *a(c..-r’—v)]a“ *3.,(3,,.,,,)%»*-:. at

b«» +=1,8,----,R G""""} 2gr+a = O.

(3=1)



Bquations {3.1.2) and (3.1.3) are in the form
suggested in Section (2.6) as most sultable for computation,
and we write them in the form

(3e1ah) ;/:/lﬂ(«ﬂs) a = 4.

& and 6 sre thse eolwm vectors { o, @y, amf and
j«bm b,, =xzm=s, »f)m} respectively. ﬁn (%) 18 a
square matrix of order (R+1) s whose cgoeffiecients depend
upon the parameter k . We ean weite

(3408 Ma(R) = - % I+ B P

whers Lq is the unit matrixz of order (R+1) , and Fe 1s a
R

s

square matrix of order (R+)) whose elements /n i 4,)=0,1,-

are independent of R , defined by
AR~

{ e = L y ; ____-;_QL.. i ; T
Fou U }Om b FOJ (b_o’ ‘_‘_)([4 - ;) }O (ﬂ "YJI‘R" ,\
fw )_ 2,3, - .. R-L
i} By e
(300 Faw oo oo™ Pl " iy ot 5725

[

P-.h&, = 1;{944") ;}92'-‘41 = ___'.'/c)‘-mQ -‘0

3& 4= Hh R, o, R~ el

. = y = / S
\‘ }ﬁRO e PR;R"' 0 ’ /oR,R -t QR(QR ‘) kkn LI.R |
The matrix f,q is closely related to the infinite matrix f

discussed in Section (l.5); in fact f,q is ths prinecipsl

eub-matrix of order (R+1) of P except for a change in
the last elemsnt of the first row.

3.2 The matrices Le ana £

Beffore invesitigating the mumsriesl sclution of
equation (3.1.4), let us look in more detsil at the properties

(3-2)



of the matrices fr ama I . Suppose we hed assumea

that the Chebyshev expansions for %( %) snd §,(r) contained
en infinite number of terms. Proceeding in a similar way

to that described in Sections (2.4) and (2,5) for the symmetrie
¢ooling prodlem, the regulting infinity of equations ean be
represented in matrix form ss

ISR
(3:2.0) ) stere M(&) = ~2 T + Rp
—~ PN, A
a, { are now infinite column vectors {0,,0,, ...._§,
{ by gy oorenn }respeetively, and the matrix f is axgetly
that defined in Section (1.5). In this "ideel” case we

cen find the latent roots and vectors of the infinite matrix

ﬁ_" (#) , from the known results for the matrix P+ wnat
effeot does the truncation of the series after (R+ 1) terms
have on thece latent roots and vectors? The latent roote of
.ER have been computed on SILLIAC (the computer at the Univer-
s8ity of Sydmey) for R= /0 , and are compared with the first
(R+1) latent roots of P  in Table (3.1).

In the eomputation of the latent roots of Pg o
the data was given to 3D . Since the matrix e 18 un-
symmetric the latent roots were computed by first forming the
characteristic equation, and then finding the roots of thie
polynomial, & process which may lead to considerable error
in the roots of smallest modulus, so that too much signif-

icance should not be placed on these rootsg. In the selution

(3=3)



]
|

) 5 —— T _ . &
x| M T ey | el b g
0 -1.6211 3894 -1.6211 3894
1l -0.1801 2655 -0,1801 2654
2 -0.06L8 4556 -0.06L48 1556
3 ~0.,0330 8ul7 -0.0330 8451
L -0.0200 1406 -0.0200 1i2)4
5 -0.0133 9784 -0.,013L 1043
6 -0.0095 9254 ~0.0093 1712
7 ~0.0072 0506 -0.0062 5123
8 -0.0056 0948 -0.0030 2379
9 ~0.004ly 9069 -0,001) 7067
‘10 -0.0036 7605 «0.0000 0002

Comparison of first eleven latent roots of P with those of [y
'.l'!‘ble ‘ :aj)

of equations (3.2.1), it is shomn in Section (3.4) that

we are interested only in the latent roots of f,g with
largest modulf . It ean be seen from Table 3.1 that
these roots agree extremely well with those of the infinite
matrix E .

Due %o ths amount of eomputing involved, the latent
vectors of f & have not basn compared directly with the
xnown latent vectors of P . However, in Section (3.3)s
there is an excellent check found of the computed valuss with
the analytic values of the coefficients in the Chebyshev
expansion of O (7, t) for particular values of & .
This shows that the latent vectors of [« must agrse
fairly well with the latent veghors of f °
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3.3 pmumerigal Solution eof the Cooling Probleum.

Equations (3.1.4) have been solved by the method
outlined in Section (2.6). If ;@M) denotes the vestor of
Chebyshev coefficients at the time = m. St  , then,

4?)‘““) - IR(*.) &t\n)

~

(3.3.1) o re TB(&) = IR + M:(k), wid {)m= fl,“zl ,q...-,OI

Choosing suitable values of R and R , we first invert
Me(#) and form the matrix Te (%) . The integration
proceeds by repeated post-multiplication of the matrix

o) o) (2>
Te (&) by the colum veetors © , ;Q o jej ete.

t 2) (3) .
to give 'f{ 9 ’,Q ’ b , = — = = - respectively.

In this example, we have chosen R < /10 amd
have performed two integrations with R = 200 and 400
i.e, with St ¢ '/aa'o and '/40'0 respectively. We shall
examine in detall the results for a fairly small vslue of
t (t=0:2) , and a fairly large value, (t =/) . The
computed values of the coefficients '(J‘;u are given in

the first two columms of Tables (3.2) and (3.3).
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(2-¢€)

The coefficients which ere not shown; ars sero to 8D .

P = 200 £ = 400 extrapolated tgg?utigel
o +0.5980 1652 +0,5950 203L +0.5950 2135 +0,5950 2134
b § -0.3145 2283 -0 3145 2387 =0e 3145 2422 ~0. 3145 2420
2 +0.0173 0460 +0,0173 0354 «0,0173 0319 +0.0173 0347
3 =0,0002 8380 «0,0002 8349 ~0,0002 8339 -0,0002 8340
4 «0,0000 0692 «0,0000 0696 =0:0000 0697 ~0.0000 08697
5 +0.0000 0075 +0,0000 0073 +0. 0000 0075 +0.0000 0078
6 -0.0000 000hL ~0,0000 000k =0,0000 0004 -0,0000 000k
7| -0. 02 +0. 0'1 0 0
%he soefficients 4, at L =0
Table 3.2
2 R = 200D &R = 400 extrapolated theoretical
0 +0.0826 1928 +0,0826 2119 +0.0826 2184 +0.0826 2182
1 -0.0437 0785 -0,0437 0888 ~0.0437 0922 -0.0437 0922
2 +0.0024 4987 | 40,0024 4993 +0.0024 4995 40,002l 4995
3 ~0,0000 §222 -0,0000 5222 =0s0000 5222 «0.,0000 5222
y +0.,0000 0059 +0,0000 0059 +0.0000 0059 +0.0000 0059
3 | -0. oy -0s 0O'L 0 0
The ooefficients <, at t=10




In these computations the coefficients of ﬁﬂ(k) were
given ta 8D , 80 that the results for R = 200, 00 will
contain aome round-off error in the lesst signifleant place.
Pollowing the usual practice when integrating parabolic type
partisl differential equatione, the truncation error can be
reduced by combining the results obtained from these two
integrations by mesns of " &&-extrapolation"- ir & ( &)
represents the vector at a ceritain time ¢ cobtained from an
integration in steps of St , and & (2&) represents those
values from sn integration in stéps of §t /z ¢ the extrapolatsd
value © (®) is givem by

(3.3.2) pl) = 5[0 & (k) = p(R)]

This extrapolstion is performed after each integration has
been completed i,e. using the "deferred approsch to the
limit." The extrapolated values of fra,,, obtained in thie
way at £ =02 and /'O , are shown in columm 3 of Tables 3.2
and 3.3 respectively.

Finglly, the theoretical valuss of bar ean ba

found in thigs case. From equation (3.,1«1) we have

where C,, [ cod ( N+ 3 )n x] denotes the Chebyshew eosfficient
of T,, () in the expansion of coo (w+ 3)TWa. In Section
(1.5), we Pfound,

(3.3.4) C,,,[ oo (n + é)n‘x] = {,!(—l)"~ TM[(Y\+ -,!;_)nl
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The theovetical values obisined from equations (3.3.3) and
(3s3.4) are shown in column 4 of Tables 5.2 and 3e3. The .
agreement of the extrapolated values with the theamtiﬁal
volues is aseny, In both cases, t0 be sxcellent. The only
discrepancies ogcur in the least gignificant digit. These
resulte indicate that the latent vectors of [,  imet approx-
imate closely, those of the matrix [ .

For large veluss of  , it can be shown that
B
4. -sxtrapolstion over one sbep SU ; reduces the truncation
3 5
error from O(SE) to O(St) . Prom equation (3.1.1)
when & is large enough so that the valus of O (%,t)een be
reprosented by the first term only, then

- 5t

(3elis1) Olx, b+ 8t) = ¢ . 0(xt)
Prom equation (3.3.1)a :lf‘/u..n(-ﬁz) iz 2 latent root of IR (&)
corresponding to a latenmt root A, of Fp , them
J . RAa,t+ 2
“t+ B gA. - 3
Since Akare all megative, the largest latent rook S ()

(30'4@2) /A%{'k) = ﬂ +

corpesponde to the latent root A, of largest modulus. This
root 48 A,= ~1b/n* , and the largest latent root o ()is

thexefore given by, 278t
)= 5 N3t . nt(se) _ nise) *
R vt A + " ———t ¢
(331&93) /’!"ﬂo('k> ]+ T)gﬁ' ! &y 3a 250 +0(S )



Again, from equation (3.3.1), for large enough w , then
(D

(3.lel) LT R) < T () 2T = g, () B
On ecomparing this equation with equation (3.4.1) we see that
the largest latent root of [ .(R) mmst approximate

_ M5t
enp(-13%) 5 vut,

n2st 2 B e\ Lre\3 8 % lo §
s e nt(a)T_ mlse) | n(8t)  n(st) b
(3.8.5) e % =1- 57+ 53 384 N 6k 132 886 *O(St)

If we ocompare this expansion with that for Mo (R) s WO

see that there is =sn error of O(Sf)s in each step St .
Suppose now that we halve the interval of integrat-

ion, and sgain integrate from & = M. St to b = (m+1)8t

If the largest latent root of |r (2R) 1s /uo(ah) » them

on performing the integration over two steps of length St/z,

we have, Q’(ﬂ+.3(9&) =/u:[;2&) &‘(-n)

(ma )

Combining the two vectors {')M“)(a«k) and Q (&)
by equation (3.3.2), for &textrapolation, we have,
( (m+1) (wm)
(67w = L [wpl(a8) = po(O]4
] <
(3."-06) 0 (nd
) = pl) & (=ey)
Expanding g [6)in terms of & 5 we obtain
/ L kS 3
6k . Y 6 $/5r)" 5
(SelgeT) pa ) = | = St ?1_3!553 - no(se)" ni(se)T  n"(se) +o(st)"
, ‘ 384 blhb 196 608

Thus, on eomparing this expansion with that of W(—”as’/u),
' s
we see that over one step St » the error is mow O(St)
3
as compared with O(S t)” obtained previously.

(3-9)



This analysis gives a partial justificstion for
#: ~sx$rapolation, although not for using the deferred
approach tc the 1imit,
3.5

NS ACADN OF KOBUATHs

While we are still desling with a gomparatively
simple problem, let us sonsideyr means of presenting the

It is
proposed that foy sash value of t » ths fumction O(~,t)be

ropresented by the extrapolated Chebyshsv eccefficients (with

roegults of the integration for tabulation purposes.

one minor modification).

discussed below. .
In Teble 3.i, ws give the cosffisients for

b= 0"“(0'0‘5) 0'120 of the cooling probvlem, . extrapolatsd
from the two integrations with R > 200 and 40D |

place of 4,

as compuied, we give instead

The merits of such a schems are

z Yo

. In

£=0100

k=0 105

t=0"ho

t=0. 118§

troaa0’

OOV E VN O

+0.381 721

-0.401 492

40.019 496

40,000 360

-0.000 091

40,000 00S
0

20.376 938

~0e 396 683

+0: 019 543

40000 279

+0.000 005
0

+0+372 22},
-0a391 921
+0019 559

=000 207

«0s000 07l
+0,000 005
D

+0.367 577
-0 387 207
+0.019 548
+0.000 243
~0.000 066
+0+000 OOL4

0

+0q362 99‘7“

~04382 541

40,029 513

+0.000 086

=04 000 osgi

+0.000 00L
0

The soefficients 4, where

(3-30)
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Consider the following peints e
(1) PFor & given tabulated value of t , to find

©(x,t) for emy x in =) S7% €| , the Chebyshev sorice
can be evaluated by an ingenious nﬁthod due to COlenshaw
(reference 8).
e flx) = § b, T (n) AL

-F?ve;’ = olg= xd,

where o, , o, , are found from the sequence

(3e504) do = awo ., + duyu= ..
with oly,, = Oy, = O« The error due to round-off
found by computing §(#) im this way is shown to bde the same
g8 that which would be obtained in summing the series directly.
Thus by the use of equation (3:5.4), no interpolation is
negessary in the x-direction as would be the case if funetion
vaiues wers tabulated directly.

(2) Por each valua of L oonsidersd in Table 3ol
the function is given for all x by just 6 eosfficients. In
tabulating the function values, we would probably present
© (%,t) at intervals of say 0.05 in X 3.6. 11 values
would be required for eash ¢ .+ 80, from the point of
view of the compiler, space is saved. Also, if it is
required to use the valuea of O(,t)for given values of &
in some further computation involving an elestronic computer,
4t is much sasier to give the function im terms of its
Chshyshey ovefficients together with a sab-rontine to sum the

(3-11)



Chebyshev series uging equation (3.5.1), than %o s tore
disorete function velues and a sub-routine for their interpol-
ation.

(3) If O(n,t) 1s not required to as many dscimal
places as tabulated, the series may be suitably truncated.
Suppose, for example, we want O (u,t) for sams velue of X
at t= 0! to 3P only. Then, negleeting all cosfficients
which are serc to 31 , We neéd only use the first 3 terms in
the expansion instead of the 6 ss given. singe | Tn(x)] s )
for all % in -/ $x €| and all n , ths neglected coefficients
cannot contribute more than sheir asbaolute value to the sum.

In evaluating O (%,t) for non~-tebular velues of & ,
ws oan either interpolate on the function values evaluated for
ths required > abt adjacent tabulated values of t , or inter-
polate directly on the Chebyshev soefficients and sum the
resultirg series. The cosfficients given in Tsble 3.L are
quadraticslly interpolable im the t-direction, so that in this
cage, direct :lnterﬁolat:ion on the cosfflcients appears to be
the more convenient method., Yo facilitate the interpolationm,
the gscond differences could slse be tabulated.

3.6 The Rediation Problem.

In order 'to gongider a case wvhere the boundary
sondition contains a derivative, we have snalysed the
npadiation” problesm in some detail. We shall consider the
symmetric case, whera the houndary condition is glven by

(3.641) e + %?E = O aﬂﬂhﬂ 2= |
(3-12)



An initisl temperature,
(3.6.2)  {(M,0)=3-2"= =T () —~4 T,
has been taken which again gives us g problem with no

singularity initially. The analytic solution is given by

(see reference 7),

(3643) pln,t) = kL

e aon oo, X

o L2 (2F 4+ ) Conslan

3 .
w8
1
L
o

where o, are the roois of
(306.1) oL Lo ol = )

The sualysis of this problem is similar to that
for the cooling problem. Consequently we shsll only quote
the essentisl resultas, keeping proofs and discussion to a
minimume. PFrom the boundary condition equation (2.5.8) on
putting M * I, N=AR and =M, < | ot ¢ (E)2 0
we find, ol

2
L2 ™) ﬁi-&q ' &Z AL .
) (2 “’> St s K (b= 1 Y ht P 1) Gar
(3b605) g £ % )
(') sov n’?— o
L (8 ol 1.5 TR
?_. (AR e 8 X R~ 4% ) S °
Equation (2.4.5) becomes,
P‘J\ = ! + & ?’a .,_ -—-__.-:i{?-g\-k—-m-u—w a < 6
(258=0) St (2t -1) S [2 Aty e T giarey) M ¥
for +: 1,3, _._., R, taking CQe,, = O « These
(R+ 1) equations can be combined into the matrix form,
(30607) . MR (&) 9 = :ib,

(3-13)



where we now write
(3.6.8) Me (®) = — 3 Irz + -ﬁ [

The matrix R, is similar to f,q exaept for different alements
along the firet row. it is clesaely related to an infinite
matrix (A which can be obtained by a method snalogous to that
for P . by considering the Chebyshev expansion of the function
Y = Loyl fn —1 €2 €| 4 such that,

o 6o =i = shomg 2z 1,
(3:6.9) Tl IO
This function sstisfiss the equation
: A 2
e O e + 0( = O
(3.6.10). =4, Y =
Assuming,

m .
y = ;.l,‘-ap + Z'au'T;,(u)
we find in turn S
] _ ‘ R
(3.6011) o + i@y = 0 for AT 0,3,
(3.6.12) M -1) QY , + L*(@gpan™ @y )= O fw de )@
and

Qai-a Qhgs Qaraa L
(3:6:23) S1ar=h (5513 Bfarery | b O
Por = 1,2, __ ... ¢ The boundary condition, equation

(3.6.9) gives ¢ ¢ .
%.'ao + E Ay, + 2 Qopoy = 0
T2 tel )

Using equation (3.6.12), the terms in (., ., gan be
eliminsted from this eguation to give -

C I
(3.6.124) '%.'Qo + EQM - dl{';{'o'o —1‘2’(,”;_,) a:w}:—- (»
‘ + 2 <

If cash of egquations (3.6.13) iz subtracted from equation
(306.1’-&)' we rim,

(3-34)



T ol

; . 23 . :\-’
(3’6015) '—500 + “(;2" Ciﬂ. + ? —-—g—{—‘....’..‘t..{-—n a&f - -:l.t» aD
' +=2 (+°- l)(h-‘#‘ - ')

Equations (3.6.15) and (3.6.13) can be written as

(366416) §2 a = - _3;5 a

where the matrix () has elements % fw 4Ly 0ha, .

defined by . .5
o w 23—3- + T gL—' ”"' Roy & e

g8 ot 0 U gy P

(3:6.27) %‘J 2 /oé_d. ZW ,,:,of‘ 2|

(gee equation (1.5.9) )e Since the funetion 'Z, = Coool %

satisfies the boundsry condition (3.6.9) only for thoss
values o, satisfying equation (3.6.4)s we have that the
latent roots of Q are given by ~ l"'/@(f‘; for n=0,,2 ...
The coefficients of the Chebyshev expansion of (oo o, A
gan be shown from Section (l.5) to be

Qo= AUNT T, (3n) fo T2 0 b3
Thus we know the latent roots and.corresponding latent
vectors of Q .

A somparison of the first gix latent roots of Q

and the latent roots of Olg for R= 10 is given in
Table 3.5

(3-15)



n | AL Lo e
o | -5.404 134 -5.404 133
1 =0,340 865 =0,340 865
2 =0,096 528 =0.,096 528
3 -0.04l 049 =0.0l) 049
L =0,025 015 «=0,025 014
5 -0,016 081 =0,016 102
6 -0.011 034
7 -0.007 892
8 =0,004 313
9 -0,002 141
10 =0,000 309

Table 3.5

Only the first six values of A, have been computed.
The comparison between these roats and those of Gl is
excellent.
Solving equation (3.6.7) in the form

b(‘n-n) = -,-R(&) &“"’

o ot )
where To(R) = l" + ﬁglk)
the following re:ults were obtained for R = a0v at
t= 01, 0 et 1©O , and are comparéd with the

theoretical walues,

(3=16)



| F= 0 . =02 E=).0

) £ = 260 theorstie R = 200 theoretiocal £ = 200 theorstical.
© | <4630 179 | 44630 172 || +15.,296 17h | +L.296 175 +2:375 388! +2.375 389
1| ~0.180 835| ~0.480 832 || -0.451 175 | -0.451 174 -0.250 842! -0.250 8,2
2 | 40,00k 655 | +0.00L 65l || +0.,006 216 | +0.006 2i6 40003 966 | +0:003 966
3 +#0, 000 295 »0.000 295 +04s 000 063 +0.000 068 0,000 628 | =0.000 025
4 | «D.000 015 | «0.000 015 || ~0,000 006 | -0.000 006 0 0

5 0 O 0 0 0 0

The goefficients U,

R
plttY s Lo, + 2 4y, T, (%)
T =i

Pebie 3.6
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Thess resulits, without &wo—extmpolations show excelleant
agreement with the theorobical valwes, o 6D

Since we know the latent roots of (X , the
effegt of &haxtr@olation can hé investigetyd as in Seetion
Jsly» to show that the truneation errcr over & singfle atap St
is again reduced from O ( St)’ to '0(5(')5 s Thg”réma!rks
on presentation of resulits are applicable here alao.
3.7 Conclusion.

In this Chapter we have considersd in some
detail the numerical solution of the parsbolic«type haat
egqration in two particulaer ozses. We have seon that the
eomputation involves Just two basic operations, the inveraion
of & matrpix; and the multiplication of a matrix by a ¢olumn
veshor, The effect of &&-v-extmpolaaion has been shown to
dearenpe the truncation error.

Lot us now compare the adventages and disadvantages
of this method with the fimite-difference msthods reviewsd
in Seotiom 2:2.

{4) Onee the matrix M hes been computed and
invexrted, the sumount of vompniation involved in the integrat-
lom is eonsiderably less them in both the explicit and implicid
finite differense methods. 1t issiggested that in cases
where R can be taken small enough, the entire oporation is

a practicable proposition for desk mechine computation.

(3-18)



{2) When sh elgctronic computer is svailable,
the programwing is almost trivial, since all established
machines have 1ibrary pyrogrammss for the inversion and
miltiplication of matrices. The programming involved in °
the impliecit finite difference method is certzinly not
teivial although ii 1o stralghtforward.

(3) There are no 8 tability problems to be
congidered as compared with the explicit finlte differense
method. The truncation error depends only upon ore
parameter, obf .

(1) Im the tabulation of D(¥,t) as diseussed
in seation 3.5, We dispense with imterpolation in the
« ~direction snd need only consider interpolation in the
F ~direction. The Cinite difference methods, where
function valuee ave tabulated for discrete valuss of X and
¢ . involve the user in two-dimengionel interpolation. For
the compiler, space can generally be saved by giving the
Chebyshev coefficients instead of function values at discrete
pointsg.

(5) One dissdvantage of the method is that R
18 not known & prieri. A judicious guess for R mmast be
made from comsideration, for example, of the number of terws
in the Chebyshev expansion of the imitial function. If R is

cshosen to¢ large, more work thap necessary will have been donep
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if R is taken too small, the calculations will have to be
repeated, In the two examples coneidered above, R has
been chosen too large for results to &), so that more
computing then necessary has been done.

(6) The method of Chebyshev series is not (in ite
present form) as versatile as finite difference methods
which can for example, be used for non-linear equations.
The amount of algebrailzation needed before computing is
commenced is greater than in finite difference methods,
It is also not at all certain that such a simple computa=
tional procedure can always be used.

In the case of the general linear equation given by
equation {(2e.1el), it is suggested that when the resultant
ordinary differential equation has no singular points in
-} X £ § , the direct method of computation used in
this Chapter will always be possible. In the next Chapter,
we shell consider an example vhere the ordinary differentlal
equation has singularities at the end points of the range,
An iterative method of solutlion is described in this case.

(3~20)



CHAPTER L
THE_ONE-DIMBNSIONAL HEAT BQUATTON, INFINITE RANGE.

ol Statement of the Problem.

In this Chapter we agaln gounsider the equation

3 s
{u-@lol) ’ét- - @}L; 2

where now the range of L ig infinite jc.e. = ¢ € 2 £ oo,

We shall consider only one £alrly restricted set of boundary

cgonditions, where
/?)_/«m 9{‘?:_,5) = 0 wdl & 20
b
(Ll‘mloz) 7("?)?:00 .
and © L("‘f:; O>\~

%(ND Yy %J’@'“ﬂa

b

As in the previcus Chapters, the initisl temperature must

satisfy the boundary condition,  so that,
e £ L2 = D,

<y T
There are four possible methods for the numerical solution
of equations (Lol.l) and (Lo.l.2) :=
(1) carslaw and Jaeger (reference 7) show that the

analytic solution is given by

@0
~ s - ~ {xm )
(Lolo3) (k) = &W?J §0) exp | "L??"J"Q"?

This integral may be evaluated npumerically using Gauss-

Hermitisn quadrature. However, if B (=, £) is required
for a large number of values of % and U, this is perhaps

not the best method of approach. For the spot=checking of
values of Q(X,t) obtained by other, more direct, methods

(L=1)



equation (4.1.3) is very useful.

(2) To the required accuracy, the function O(=x,t)
may be zero for |x]> X , say. The range of = is then
essentially — X € x £ X, e may then use the finite-
difference methods outlined in Chapter 2 for the numericsl

integration of equation (L4.1.1). Alternatively, on defin-
4
ing a new space variable 3 < X » 80 that -) £9 3

we can use the Chebyshev series method of Chapters 2 and 3.
The number of integrations needed to reach a given value of
t is now proportional to X~ as well as St . If X

is too large the method might not be very practicable-

(3) Hartree (reference 9) has described s finite-
difference method of solution. As in reference ( 6), he
replaces the partial differential equation by a system of
ordinary diffcrential equations. Suppose the integration

has reached t = t, , and we want to integrate over one
etep SC o At time t, + 'ﬁ‘ 5t we can write

(39)xt’ .\ = Bf-vl t,-rS&')- O(xt,) + O(Sl’)f:b

a E e S S S S AT et

and (3_2_9‘> - ( 3 i 2
2% '4)?04‘}'91’ -xt-.g,ge- 3 X, ° + 015&)‘

Neglecting the truncation error, the partial differential
equation (4.1.1) is replaced by

2
(hodols) ‘%;“;—E_ - 2kw = - L &6

(4=-2)



where w(x) = B,(x) + 6,(x) , R= '/st  ana the
subscripts O and | denote values at the times &, ana
t,+ 8¢ respectively. Together with the boundary
conditions at x= * o , equation (Le1.4) constitutes a two
polint boundary value problem. An indlscriminate use of
finite-difference methods will give serious build up of error
in the numerical solution of equation (L.41.k4). Hartree
shows how this integration can be performed so t hat the
round-off errors can always be kept under control. Having
determined w (=), we can corpute &, (%) which is taken
as the new ©O,(x) in the integration over the next time
interval St . The integration can thus proceed in the
t-direction.

(4) 1In this Chapter we attempt to solve equation
(4o1.4) by the method of Chebyshev series. In order to
express w and @, in terms of Chebyshev series we must define
a new independent variable § = € (%) guch that ~1g%g
The resulting differential equation can then be integrated by
expanding all the dependent variables in series of T (%)
Thus, in theory, we can determine W , hence 8, , and the
integration can proceed in the t-dilrection. This is the

general outline of the method to be discussed in this Chapter.
Although by the choice of § given in Section (L.2), the.

algebraisation of the problem ie comparatively simple, the
golution of the resulting equations indicates that the Chebyshev

series for @ are very slowly convergent. This necessitates
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using a large number of terms in the series for O at
each value b ¢« The evaluation of O (=, t) for any
particular value of X is then very tedious, thus defeating
the purpose of the method. The breakdown of the method
will be discusssed more fully in Scetion (L.4), after a
numerical solutlion of the equations for a particular case

has been found in the next Section.

L.2 Reduction of the Equations.
Firstly we must choose a sultable new independent

variable f C Obviously we must choose f such that the
range — © € X § o0 corresponds to -/ S §<1 .

Furthermore, we want f such that if we write

~N
(Be2:1) A = %—ao + 9 0., T (F),
O ' ol
then the coefficlents in the Chebyshev expansions of ¢
o>

and ;:-.. can be expressed fairly simply in terms of

the coefficients Q.. o In a numerical solution of

the Orr-Sommerfeld equation, Clenshaw and the author
(reference 10) found that the transformation

(42.2) 3 Gond.

satisfied both these requirements. ir (., (‘3)

denotes the coefficient of T,',L ( E) In the Chebyshev expansion

of 3 » and 1f' we write H~g
3 (s> (s)
w
(}.!.-203) aib_‘g i E alf- + 2 a""- T""\(E)
Olg ° ﬂﬁ!'
for S= 1, & s then
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"

2 ol |
C'“’ [[' - ‘l[;) ::\'E_

é—[(m+ 1y @y, = (‘V‘--')a.h_.]

on using equations (1l.3.7) and (lo3.5)- Similarly, ve
find,

(ho2.l) Con (:“/fﬁ':) = i—[(wn)(m-»a)am,— dn'a, + (ﬂ-i)’_ﬂ-;{)aw_z]

eluy dw
These forms for C., ['.,Tw) and (., ( A2 ) are fairly
simple, and the author has been unable to find a "better"

transformation in this respect.

vriting, N
(L4 2, 5) e, (x) = -’,;Jq 4 3: 6,,\7"“('5) R

substituting these expansions into equation (L.l.l), and
equating coefficlents of T,,-L (E) we £ind,

=) R) S Zt_ﬂ,_',' = i“‘:*_t){.“‘i‘@ =
(Lo2e6) ™ ("'"T‘;""Z'“" Q- t [a * s&ja‘ﬂ IR Qpsa™ &»"\-

valid for m=0,1,3, - ..., N , These are (N+ ') equations
for the (N+1!) unknowns Q, , provided we take Ay, ® Ay, =0,
There is therefore no need for any extra equations given by
the boundary conditions.

Po investigate this more fully, let us look at the
differentiasl equation with § as the independent varisble.

Applying the transformation given by equation (4e2,2) to

equation (L.l.4) we obtain,

2 o’ ‘ ay oM g
(bezo7) (1-8%) fﬁ-gi‘-i—aﬁ(t-E)dE Ihw= ~ LR,

(4~5)



This equation has regular singularities at ¥ = + | -
but there is only one solution which is regular at both
points. Thus there is only one solution for -/ € ¥ €/
possessing a convergent Chebyshev series, and this solution
is determined uniquely by the differential equation. (In
Chapter 2, equation (2.4.1) possessed two solutions having
convergent Chebyshev series and the boundary conditions had

to be used to determine which combination of these two
solutions was required‘)m Returning to equation (L.2.7)s
we have specified that the functions 6, , 6, must vanish
at T= & ° In the "ideal" case wheré an infinite
number of terms are taken in the Chebyshev expsnsions of 0,
end w , it is easy to show that these conditions are auto-

matically satisfiedo From equations (4.2.6), if to half

the equation for 7M=0 we add each of the equations
corresponding to M= 1,3, o __ we find,

o0 Q0

[
(Lp02o8) i— [ % QO + “Z'o”“] = 3_ ‘&0 + i ‘e)'r"
ne=t

Thus O, = 90 =0 at § =) without any extra condition
being neededo A similar analysis holds for § = -1 1if

g™
again to equation (L.2.6) corresponding to m=0 we add (-1)

times the equations for m = !, %, —---.
when considering a finite number of terms in the

expansion of w and O, , the boundary condition is

not satisfied exactly at €= o LEven though we
start with 6, = 0 at §= 1| , ©, will not vanish

at E: h ° In the step by step integration an

(u-6)



error 1s therefore introduced at each step. To overcome
this, the equations corresponding to M= N-1, N

are modified so that 8, 1is equal to zero at § = =+ I
This is considered in greater detsll in the next Section,

where g numerical solution is evaluateds

4o3 Numerical Solution of tho Equatigns.

In this Section we consider in detail the numericsl
golution of equations (4.1.1) and (L.1.2) where

(ho301) B(7,0) = aech’2e = |- "= + — LT, (€).

LY
In this case the solution is even, so t hat in equations
(Lo2.6), Q. = A, = 0 when v is odd. Writing

= 2+ and N = 3R  these equations become

L s -
a9 00 = L‘_,K': az. S Ig}@
(Lho302) - (M-I)(ai' a)q AN - (24 + )20 +1)
I & Pt =2 e} adfe J ok I e 242
L] = M
for 4= 1,2, -, R woth, aar<+z= O . In order that

f_f;'a,, +¢£|aw should be zero at each step in the

computation, the equation .(4.3.2) corresponding to - = R

is replaced by,

R-1)Y 4R = X) 1 4 AaR(aR-1)
(’-!-03=2A) . ( 'li'h —__Q&R-z.'-[.;a b &= Jmam

a&-

In the first attempt at the solution of these equations,

we used the direct method of Chapter 3 where the equations

Ma = & |  the

are writien in the matrix form [ = ~

matrix M is inverted and ths successive colum vectors ’f{;
NS
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are computed by the post-multiplication of a matrix with a
column vector. It soon became apparent that a large
number of tcrms were needed in the Chebyshev expansions of
wr o~ O, . Since the direct method would then
Pirst involve the inversion of a large matrix, the following
iterative scheme was devised, where the number of terms
required in each expansion was determined automatically as
the integration proceeded.

Consider first the integration over one step &t
so that R = /s is given. The values of ¥,
()
a
denote the jb& iteration on the unknown quantity a,,.

are known from the previous integration. Let &

Equations (4.3.2) end (L4o3.24) can be written as,

G0 _ akR X (ar- 1 X+=1) GV (A+ 1Y +1) ()
(4e3:3) Qan = (o) 7 LiRe ) a2 ¥ TRy gy atea

for +=1,2, .. ..., R—I s together with
T ' - (j"’ﬂ
(L4e3els) a'(g*) = @ ’e)o + ar %a
GG+ g R (R=1Yar—1) i+
(,-|-03o5) and aaa =“&+R(3R") €14 4&+R{QR"|) arR-2

{))
The iteration was started by assuming that a,, = 34&,,

for al} 1 . From equation (4e3.3) with = | , the
value of at:) can be computed using the values of aﬁ’m &,
ith + = Q& , we next compute o.‘;’ ueing the newly found
value o.t:) with ai" and ¥, . This evaluation

- t2)
of o 15 continued until we find en Q,,  vwhich

Qon P
is smaller than some prescribed value | x 10 , SaYe
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To P decimal places, this 1s taken to be the last term
required, and i1t is corrected using equation (4e3.5)s These
values of 0.:,3 arc oompared with the previously found
vaiues, a‘,’,f. to see if there 1s any change. If there is,
we ctart a new iteration a‘,i? in t‘l':e’ game way at (g = |,
This iteration is continued until a., end ag. . are
the same for all ¥+ . Finally a, 1s computed using
equation (4.3.4). This gives us the Chebysghev series for &
and we compute 9, from the equation,

Cow (8) = Caplw) = €5 (8.
Thus, we find a new right hand side, and the pProcess 1is
continued. This scheme was programmed for the UTECON
computer in basic machine language. For the particular
problem considered, two integrations were performed with
R = 200, 400 » Following the integrations in Chepter
3¢ the two results were combined by &’- extrapolation in the
deferred approach to the limit. These extrapolated values of

the coefficients 4., are given for b= 0:09, 0-1lb
and 025 to 6D 1in Table L.l.
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o t=0.09 E=01p _ E=0-35%
o] +0.958 604 +0.930 530 +0.898 Loy
i -0.424 186 =-0.379 585 -0.334 207
2 =0.045 L8]l -0.062 806 «0.074 213
3 -0.007 465 -0.015 291 -0.023 411
4 =0.001 588 -0.004 674 -0,009 030
5 =0.000 LOS5 =(0.001 668 =0.003 981
6 =0.000 118 -0.000 666 =0.001 933
7 ~0000 038 o000 291 ~0.001 011
8 =0.000 014 -0.000 136 =0.000 560
9 =0.000 005 ~0.000 067 -0.000 325
20 «0.000 002 -0.000 035 ~0.000 197
11 ~0.000 001 ~0.000 019 -0.000 123
12 0 ~-0.000 011 =0.000 079
13 =0.000 006 =0.000 052
14 -0.000 00L ~0.000 035
15 =0.000 002 =0,000 02k
16 =0.000 002 ~0,000 017
17 ~0,000 001 -0,000 012
18 =0.000 001 ~0 000 009
19 0 ~0,000 006
20 =0.000 005
29 ~0,000 003
22 =0,000 003
23 -0,0U00 002
2l =0.000 002
L -0.000 001
26 ~0.000 001
27 =0.000 001
28 ~0.000 001

:U’.Q, CS'Q' ‘6‘4:’\‘-[:«‘!\‘\-):‘} - ‘b o

6(x,¢) = 'z!f

o

Table L.l

(4-10)
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These results indicate that the series expansions are

slowly convergent, and that over the range of € considered,

the number of terms is increasing with €

accuracy of these results, the values of 8

vere computed using equation (4.l.3).

To check the

along X =0

The comparison is

given in Table 4.2, together with the velues of O »

computed from the serieg, for %X = 0

(which should

be zero).

t [6(0,t) by gpadmdin | B(0,t) fiom murizo  ([O60,6) from mrieo
0.09 +0.864 198 +0.86L 199 «0o000 001
0.16 +0.793 860 +.793 861 +0.000 001
0.25 +0.726 315 +0.726 321 +0.000 003

Table 4o?

The agreement along =0 1is seen to be quite good, any

discrepancy can easily be accounted for by round-off and

truncation errors in the sumation of the series This is

also true glong X = %0,

Because of these results, it was decided to proceed
no further with the computation and to discard the method

as a fallure. To expect anyone to sum a Chebyshev series

of 29 terms to compute a value of ® correct only to 5P

was considered to be too much of an imposition!
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belt Conclusign
To pose the problem in a slightly different form:,

we have agttemmted to use the Chebyshev series method of
Chapters 2 and 3, to solve the aguation

' Y s 4 o
(4eod) (1-¢%) -3';“- - a8(-3 >3'!' = gé'

for —) £ ¥ S | , with given initiel and boundary
conditions. In spite of the simple form of the resulting
algebraic equations, the solution although tractatle, gives

series expansions for O which are long and very slowly
convergent. The reasons for this are not at all odbvious

to the author, It may be conjectured that the soluticn
of any equation with singular points at the boundaries
might behave in @ similar fashion. Alternatively, it might
be that the transformation § = 4%A = uged in solving

equations (4el.1) and (4¢1.2) is & particularly bad ones to
use, in gpite of the simplicity of the resulting equations.
(It might be worth noting here that in reference (10), the
authors used upto 96 terms in the series to obtain a
significant resul‘q)\ There may be snother transformation
of T he space variable, which although perhagps more algebra-

ically cumbersome, will give a more rapidly convergent
Chebyshev seriess The asuthor is at present of the opinion

that it 1s the singularities introduced by the transformation
from #n infinite to a finite range, which will prevent any

similar method from being succcassful. e do, however, live

and learn.
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CHAPTE] o

THE EXPANSION OF FUNCTIONS

IN_ULERASPHERTCAL POLYNOMIALS.

5.1 Introduction.

In thils Chapter we shall consider a method for
finding the expansion of an arbitrary function f() s
in a series of wltraspherical polynomials Fﬁ?%*} » These
are defined in equation (1.1.2). Por a full deseription of
the ultrasphericsl polynomials, ses, for example, Szegl,
(reference 11). Suppose we are given a function (%)
which is continuous in -—) €% £ | s and we want to £ind
its expansion in an infinite series of Fifm(%) « IP,

O
()

(501.1) f(x) = i Q. Foo (3

M =0

then from the orthogonallity property, we have.

vy [ -4
. PN (ns )P ] (- 5Y Y Py £00) oo

(5.1.2)  a. -\j%—}"{w+a>\)r'(}\+'3z)

-1
In geneval, 1% is not possible t0 evaluate the integral
occurring in this equation explicitly, and to find Q.
recourse hags %0 be made to some suitsble quadrature technigque.
In $his Chapter, we shall consider only those functions f(x)
which can be represented as the solution of s lineasr differ-
entlial equstion with appropriate boundsry conditions, and
will solve this equation by a method similar to Clenshaw’s

(refercnce 3) for the Chebyshev polynomials T, (*). The
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method t0 be described esn therefore be considered as a
generalisation of Clenshaw's for use with any of the ultra-
spherical polynomials. In practice we sre most interested
in expansions in Legendre polynomials and, to a lesser extent,

in the Chebyshev polynomials of the second kind.

5.2 Solution of Linesr Differential Equations in Ultraspheriesl
Polynomials.
In Chgpter 1 we discussed Clenshaw's method for
the solution of linear differential equations, by expansion
of the dependent variable directly in s series of Chebyshev
Polynomiadis, T..(*) .« Again, we suppose that we have an
m the order linear differential equstion in -/ Sx x| ,

given by, o

(5.2.1) Fm‘") 4+ F’“" ,("l)__"d;_l ..... + /:o(x)y = rz(x)
together with m boundary conditions, which determine the
function y = £() uniquelye We now write

(5.2.2) y = ) a, RGO

mz0

where the coefficients a.. are tobe determined, and the

(s)
s th. derivative oflj, \3 (%) 1s expanded formally as

o0

(5.203) Y (2 = i a® P

RadiEE ¥

for s= 4,2, __.,6 ™, L

)

Let us consider for a moment, the solution of

equation (5.2.1) by Chebyshev series. It is fairly obvious
that even if (ﬂ= { (%) can be expanded in a convergent Chebyshev
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e
,."‘, ¢ THE fllg s
fal J‘- J \(\

gories, it does not necsssarlly follow that a ::n;‘.‘-t‘{"fé'u,;;,-.' t )U
geries can be found for all iis derivatives. Cona: !‘@%%\r
example, the function y = (1 — x‘)yz' « This function is

continuous in -~ < =x & | and can therefore be represented
by a convergent Chebyshev series. The derivative, however;
is not continuoug in —) €x £ | , being infinite a®t the end
points, # = X | , so that it cannot be represented by a

oonvergent Chebyshev axpansion. This function setisfies

the equatlon

(5+2.14) (I-—w‘)fi + oy = 0 mith .v(o)-.: l,

which is of the form given by equstion (5.2.1). Esch term
in this equation is continuous in =~ § x £/ , and the formal
use of the divergent series for the first derivative does
lead to the ceorrect series expansion for the funection LJ ®

This stetement is true in general. Provided each
term in equation (5.2.1) is continuous in ~ Il $x <€ | , we can
uge the formsl expansion for the S 2. derivat:u.ve of \3 » even
though this series might be divergent. If any term P(w)—%
in equation (5.2.1) is not comtinuous In =1 £ | , then
the function f(*) iz not continuous in the closed interval,
and so cannot be represented by such an expansion.

Clenshaw's method depended upon the use of equation
(1.3.4) to give the result of equation (1.3,5), smd on
aquation (1.3.6) to give the result of equation (1.3.8).
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Por expansions in terms of the ultraspherical polynonials

(» ,
P2 we start with the relations

N A
(50 24 5) F(A)(x) e : o Pv\-n(") - H__‘__L"__m_,_ ol P =i (%)
" 2w+ A) oot aln+ 3‘1) »;:;E..
and
: ()] . + | A A e ] o {2
(5.2.6) xPo (%) = S Bu.(") + T . %)
both of which are valid for m = | .
From equation (5.?.3), " o ol
(sS4 ) ts-n) " s Q : ? (“’{’)
() = (,Q) e e D s ) e
lﬂ X e R ar=- 2en +RAP S te"‘(

on using equation (5.2.5). On differentisting equation

(5:.2.3)s we £ind, o €2

(s-n)(x) N a(S) O{‘P (7‘)

Y W ol

from which, on equating coefficients, we have;
5% 1) (5+1)

(S) a'v\“' a'n""
2y al e fma  frr
(5 2.7) i Gt AA= R %‘9’9«)‘!’&

This equation is the generalisation of aquation (l.3.5). For

computing purposes, this equation is not as easy tO use as
equation (1.3.8), since the coefficients om the right hand
gide sve functions of T . To simplify the computing, we
define a related set of eaefficients 6mby writing,

(5.248) a (v\+‘\)% y all mMBO, S0, .., m,

The equation then tskes the simpler form

(5.2.9)  a(ms+») o = oo )
Again, let (., ("&) denots the coefficlent of P.,?)(w)

in the expansion of % « Then,
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E Q.. = P,:xm(z)
"neo ’

(1

e e e et —— i ——A T

¢ [ mom, (m+ 3N AL, [ o
ia('m)«-l) i a[w+2+')]P ()

on using equation (542.6) and resrranging terms.

Thus.
’ N QAapa) (v + a)‘)amﬂ

(5.2.20) (o (xy) = Tamar= 1) BlweAat ) bk

and in terms of the coefficients b.. , we fing,

(5.2.21) C.,‘(vna): '-2-'6“ + =(n+AN)o,,, , w20

By continued spplication of equntion (5.2.10) we can find
CM('»talg) s ("'3'2)) etc, Equation (5.2.10) is
considarsbly more cumbersome bthan equation (1.3.7), and
even in terms of the coelffloients &“_ » the equation for
Cn(2Y)  is not arithmetically simple. No further
simplification appears to bhe poassible.

In general, equatlong (5.2.7) and (5.2.9) are only
valid for W 21! , since Q,.,, {r.“_ have not yet been
defined for negative values of " . (For the Chebyshev
polynomials [, (%) Q._, = Q, for sl values of M)«
It will be shown in Seetion 5.k , that for all A exeept
those for which 2A is an integer, we must take q_. * $...= O
for N7 .
5.3 Boundagry Conditions.

Thege are generally givem st either 2 = O op x= X,
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(»
For completences, the values of F‘_,-: (%) at these points

are given here

( F(A)(') - F’('nr-:- anr)

n

M (ax), m!
"N ", (N
)= -y R
(5.3.1) P?“( ") (-1)
Enﬂ(o) = 0 4 ~ =0
(AY" - {..)‘V\ P('ﬂ‘*a) .
L P,M(o)- -n.'l:_{k) , M =0

These results are valid for all values of A , except A~ O
If we know that is either an odd or an even .

funetion of % , then since P2(x)  1s even when w is

even gnd odd when n is odd, we have

Y SV, Qo B Agne, = 01 MZ20

(593u2) jﬂ

¢3w¢d) °':m°"“‘°’~"£’am= o)-n’)O

5.4 Method of Solution.

From the differential eguation with sssociated
boundary conditiona, we obtain an infinite set of linear
algebraie equations in the unknowns {r::) for S 0,1, - ..
--,mand 2all >0 . The numsrical solution of these
equations can be performed by the two methods described by
Clenshew (refervence 3). Thesz are the method of recurrence
and the iterative method.

In the recurrence method it is assumed that »6:2 0

for M >N , ghere N is not known a priori. QGuessing a

{s)
guitable /N and giving arbitrary values to £, , the
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ce) €9 (5)
equations can be solved to give B 'e"N—z J &

In general the boundary conditions are not satisfied by one
such solution, and linear conbinstions have to be made of two
or more such solutions with different values of —b:j) . The
method is in genersl falrly quick, the main disadvantage being
that N may be chosen either too emall or too large. 1In the
forusr case the required accuracy fox the coefficients will not
be obtained, in which case the computation must be repeated
with a larger N . If N ie chosen tco large, more computation
then necessary will have bsen done. In general a sclution
by recurrence 1is direct amd rapid although eare mmat be taken
thet figures are not lost from the most significant end when
linear combinations of solutions are taken, If this does
occur, the solution may be improved using the iterative me thod.

The iterative scheme starts with some initisl) guese
for the ?.. which satisfles the boundary conditions. From
these values equation (5.2.9) can be used to compute 6,’,\ , ’3!.,'1
ebce hen all f)f) have been found, these values can be
uwsed to compute a new 4, from the recurrence relation, agein
satisfying the boundary conditions. This procedure is
conbinucd until the desired accuracy is reached. However,
the iterative scheme does not always converge, or it may only
converge slowly. In such cases the recurrence method must
be uged.

5.5 Lzpangien in Legendre Lolynomisig.

We shall now consider in some detall the expansion
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of a function f(2) in terms of the Legondre polynomisls P,(x).
wWriting, - ~> )
s s
t% (-x) = 2 S P.n (2¢) N
“ws»y

equations (5.2.8) - (5.2.11) becone
(<)

Q‘_:>:- (y\+-§-) b, all wn, odls
1<) (S41) fe41)
(a’"'“)i): o ’e’mil - ’b‘nd-l ) A ?’
(545.1) " <+ |

C»\('ﬂta)z S Qe * mﬁm“ , m20
C,Jma): '%-,e,

respectively.

ey + L (ma )b, neo

For an expansion in Legendre polynomisls, s meaning
ean be given to a_,. , 4., for wm=1,33 ..., Prom
equation (5.2.6) with A = /2 , we have

(56 5.2) x P (%) = Q/%”," E“(X) + a:+ | E\-.(*).

Thig relation ecan be used to recur forwsrds i.e. to find

Paay (2 given F (%) and F,_ (%), or to recur back-
wards to find P,., (%) in terms of T, (x) emd F,,, (%)
With =m0 , we see Prom equation (5.5.2) that [, (x) 1is
indeterminate. We defline

R, (x) = = F(x)

then puttingn suceessively equal 0 «l; -2, - - - - we f£ind
thsat F_z(’f) = P,(ﬂ ’ P—3(")= - R(W) end in general,

FD_M (7() T e R\_, ('X)
For the coefficients Q(,i) and a(')f:) » Wwo must have,
sy _ ¢s)
N i
{s §
(5-5.3) arbarer Do = ’e)-\n-c
for 0,1, - ... and all values of S5
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' We shall now congider a simple example, using
the above reulfs to £ind the oxpansion 'of a function in
terms of Legendre polynomials.

Exgmple H.l. Suppose ws want to £ind the Legendre expansion _

-}

of € for -l saxc} o This function eatisries the
equation ?94 .
- 9 0 wrtd ylo) =1
ol ! v y
th (<)
el l'é(g)(x) T E a.. P (%) fbf $=0,)
nep

and using eqnuations (5.5.1) we find,
(™ + ";")4?),'“ = [’W{)-n—. + (m+1) 'e'-n-ro] * O
With this equation written in the form

(5e50ts) Ao, = 3":{"[“’“'%4\ - 9‘“*'“’««],‘

and using the second of equations (5.5.1) 4in the form,
/
(5.5 5) ,();_' = Do, + (Fme )b

)
we can readily compute <. 4. and hence a. by the
0y ‘ N
recurrence method,. Sines e is an even function,
| , A ,
Y,..,= 0 and b, = O for allm .

The complete computation is shown in Teble 5.1
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‘w

& o!, Qo =(n+E) by | la 0 Pn(0)

n “n

01102 08866 51 OLh433.0 | 1.46265 || +1.000 000
1 87 63917

2| 1y 68505 56 71262.5 | 1.05198 || «0,500 000
3 1 21392

4 1 42339 6 L0525.5 | 0.18354 || +0.375 000
5 1 L4O3L)

6 10030 65195.0 | ©.01868 || -0.312 500
7 9951 _

8 553 4700.5 | 0.00135 || +0.273 438
9 550

10 25 262.,5 | 0.00008 || -0.246 094
11 25

12 1 12,5 40,225 586

o™= 1.abaus F(x) 4 105198 R(x) + 018354 Fy(n) + 001868 R (%)
+ 0-0013S [3(=x) 4 0- OUTO8 Fo (%)

Tabple 5.1
As @ starting point we have takem D=1, &y, = &y v, ... =0
snd '@)fs i 5:5 s _...=0 , With these starting veluss, equat-

ioms (B.5.4) and (5.5.5) can be uged to compute L., bl
for a1l m <! , and hence &, » These valuee of Q. have
%o be multiplied by a consiant ¥ which is determined from

the as yet unsatiafied houndsry eondition. This glves,
fa
¥ ) anPate)= |

Mo
from which we find ¥ = 0286 545 X 10°® . fThe coefficlents
a.. are given to s§D . Ag a check we find that for %=/,

e = 2. 7138
(5-10)
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5.6 The eoefficients Qo , Ao for nepative ™M .

The use of equations (5.2.9) and (5.2.11) gives

rise to recurrence relations where we might have to assign a
meaning to a ., o 4.,  for negative values of - . Ve
have seen for the Legendre polynomials that a:s.l = - a':’..
and «(’152 = f):ﬁs.).; for all values of m|m . A Mmila%‘
analysis can be used for all uliraspherical polynomials of
order A , when 22 i8 an integer.

Suppose AA ® , Where ™ 13 an integer. From

the recurrence relation, equation (5.2.6), we find

) ¢
E_{:\\l?{) = R: (7() LA == ~ = E(Yh—i)(”) = O
(M
with 2., () being indeterminate. Defining,
¢ N Prm
- VA (7‘) T - D (7‘),
then (2 ) - g ¢ S
2 (s 45 0% B jwr all 430,
For the ecoefficlents a(.,f) s We have,
() )
= >
( a-—(wH +y - ay > 120
(5’6°1)1 o () ) 7$)
wth ALz A, Ll Qs = O,
‘ , (s
and for the coefficients 4.,
¢s) ($) W
56642 . (s) {s) s
IU..‘-LM -y = b.z T e e e = -t =1) = 0,

When AA is not an integer, we have simply
af_sq)\ - ‘6:2 = 0 Z.«'t,:-,r " = |,
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5,7 Expansion in Chsbyshev Polynomiale of the Secopd Kind.

The Chebyshev Polynomials of the Second Kind U, ( )

are obtained by putting A = | in eguation (1.1.2).
oD
Writing (s
8» m(,x) i 2 a. U, ()

1

equations (5.2.8) - (5.2.11) become

(s)
a’s = (e ) DL fwaﬂ"f\s
(s) 531 (Sn)
9\(“'*')& ’b-n-; - m*l )
(50701) C“('x,g')_ Ji a"ﬂ"" + 2 a‘h*" 5 N ¢>4 0
C‘“(W'D: @f&n—n"' é'(“‘*z)’e"w-n , 20

Let us now look again at the expansion of - "wa -1$2¢)
in terms of the U..(%) polynomials. Substituting the
direct expansions for (d and ‘2}, into the differential
equation and equating coefficients of U, (%) to zero for

all n , we find after some algebra,
i }
(5.7.2) «6,.,.., s -;Y—\-[(nw) b, = (n+2) {tm,]

If woe write the second of equations (5.7.1) in the form
) /
(5.7.3) B2 4 + Afwn+1) b,

M=) v}
we can preceed in exactly the same way ss in Sectlon 5.5.

The results of this computation, starting with a(’),?_ = | -
D=8, = ..

lla.

/
203 '6»'3= &fs T ... .. & © i3 given in
Table 5,2
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N T FETT T YT N
O | 303 74805 303 74805 1.52819 |
1 194 47854 |
2 28 40301 | 85 20903 0.37259
3 2l 06048
N 2 20658 11 03290 0.0482Y
5 1 994638
6 13360 93520 0.001,09
7 12428
8 656 5904 0, 00026
9 * 620 ||

10 27 | 297 0,00001
11 26 || ,

2™’ = 1+338Yq LU (x) + 037259 Uy (%) + 02 ohBak U, ()
+ 0 ooueq Uy tx) 4 0 0TvaL Us(x) + 0 0oool Uy ()

Table 5.2

In order 'to satisfy the boundary condition that ';3(0) =} we must
mﬁltiply the first computed a. by O+ k37 265 X /0”7 to give the

true Q. .
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5.8 Sunnation Ser 0
In this seetion we supnogce thzt & series expansion

for f(») , to the required accuracy, has been found and is

given by N : .
£in) = i a.. P (D
n3o

To sum this series for a g:l.ven X o, we oan either evaluate
(%
P (%) for all n and sum, or we ean use the method des-
eribed by Clemshaw (reference 8). For the ultraspherical

. ()
polynomisls P,,\ () » We consiruct & sequencse dN ’ 0(,;,-,,

L Y o’o Wher‘e, .
— &AM+ ) (m+ 2N) .
o n i x A, t Y] Oy = A, MEN

(5.8.1) )
M dN.’.’ s dN.’z: 0

Then for a1l A # O , the function f(%) is given by
(5.8.2) £{=) = d

To investipate thoe effect of round-off errors
in d. and the subseruent error in -F'(X) . suppoée €, 1s

the error in d, . Then €, satisfies the recurrence

relation,
alnis ) (n+ 2X)
(5.843) Eon T o EL e T s mag® O

This 18 o sccond order recurrence relation with two linearly

indevendent solutions ;lven by

) 1 i (9,4)
IR :_‘: *) L ey (0,
P (n+a) Pln+ %

(5=-1Y)



Aere P m( 7)) is the Jaeobi polynomial of degree m -~ |
with/B cde A= /2 , and QM - (’f) is the Jaco‘bi function

of the second kind, (For a complete description of these
functions, the reader is referred to Szegh, reference 11 ).
Now, a rounding error £(M). in either dp or a, introduces

an error £, (M) 1n o!.,. {(+ <€ M), given by -
Es(M) = { £ ﬁ':'."/u) + m G, ( }

f‘l'r ¥ d)
where ¢,vw. are constants which can be detsriined from the
eonditions,
M ! ;‘ ~ (R) Qld,d)( )
M T e——— -e P {'X) + T M=)
e (M) f{mM 4 &)
| 14,8) (ol,d)
and 0 . (M‘“?_'_.._H;{'F’) x)+-wrQM' )f
p(M+14d)

Solving these two equations for € and v , we find that

E(M) M! (M add 1) (=) (oY (el pr mn}
o) EafM) = e - , L0t
(5.8.) i) = STLTE TR {P YT Y A T

The error in (%) due to this error in d, or 4, 1is

then given simply by £_,(M) « Before putting + = O
ta,0) a,d)

in equation (5.8.4), we write F., A( ) 1n terms of P.,. ()
and PT::':! ¢ , and Gl.t ’“( Y in terms of Qf:m( ) and
Q_;i’f) (») from the recurrence relation for F.fd'“ () and
&N ﬂ « Then, on putting + =0 , we £ind,
£, (M) = €(M) P"'"" CD(M13440). (14 4)
(5.8.5) M+ o+1).P(1+3d)

"

€(M), P ()

(5=15)



from the definition of the ultraspherical polynomial fi:AYw)

in terms of the Jacobi polynomial Fﬂ:ﬁd)(w) where o= A~ /2,
This analysis 1s valid for all A # O . and’CIGDShaw (refer~
ence 8) has shewn for this case that €,(M) = E(M) Ty ().

This error is exdetly the same as that found from
sunming the series for ¥ (*)  using directly the values of
the ultraspherical polynomials. The use of the recurrence
relation, equation (5.8.1), provides a rapid method for
evaluating | (%)  without recourse to tables of P£ KEI

Thia will be most useful in electronlic eomputers where storage

space is at a premiunm, In partiecular, for series expensions
in Legendre polynomials, since IR (] £ for
all % in - $A & | , then | & (M| S 1EM].

5.9 Conglusions.
In this Chapter we have desceribed a method whereby

the coefficients in the expansiox; of an arbitrary fupction £x)
in an infinite scries of uliraspherical polynomials ' P.,(:“(’t) )
may be cobtained Lo any required degree of accuracy without
using quadrature, The function £ (71) ie assumed %o
aatisfy some lincar differential eqﬁation with associated
boundary conditions. This dirferential eguation can then
be solved directly to give the unknown coefficients.

Of all the ultraspherical polynomials, we
have seen in Chapter 1 that the Chebyshev polynomiala of the
first kind are most useful to the numerical analyst. From
equations (5.2.7) - (5.2.11) we see that these polynomials
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give the sihplest arithmetic forms for a:i) in teras of
q(:t:: and a::'.) , and for C., ( ‘3). etc.

An expansion of Legendre polynorials gives the "best"
polynomial approximation to £(x) in ihe least sguares
sense in the range — 1€ X $ | . In Chapter 6, we shall
make use of these expaneions in the numerical solution of
Fredholmtype integral equations.

Of the other ultrasphericel polynomials, occasionel’
‘use is made of the Chebyshev polynomiale of the socond
‘kind. The remaining polynomials appear to be of academic

interest only.
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GHAPTER 6.

LINEAR TNTEGRAL BEQUATIONS.

6.1 Intrcduction.

In this Chapter we investigate the numerical
solution of non-singular linear integral equations by the
direct expansion of the unknown function f(x) in a series
of Chebyshev polynomials T;V(X) « The use of.polynomial
expansions is not new, and was first deseribed by Crout
(reference 12). He writes () &s a Lagrangian-type
polynomial over the range in ¢ ., and determines the un~
known coefficlents in this cxpansion by evaluating the
funetions and integral arising in the equation at chosen
points X; , A similar method (known as collocation) is
used here for cases where the kernel is not separablec.
From the properties of expansion of funcilons in Chebyshevw
pelynomials, as given in Chapter 1, we may expect greater
accuracy 1n this case when compared with other polynomial
expansions of the same degree. This is well borne out in
comparison wlth one of Crout’s examples.

The most common methed of solution of integrel
equations is by the use of finite differences., Fox and
Goodwin (reference 13} have made a thorough investigatien
of these methods, using the Gregory guadrature formula
for the evaluation of the integral. Other metheds for the
algebraization of the Integral egustion usilng CGaussian

guadrature bave been described by Eopal (refercnce ).
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The erux of the problem is to find easily the Chebyshev
exnansion of the given functions in the equation. To find
these, we restrict ourselves to funciions which ean be rep-
resented as the solutlion of some linear differential equation
with associated boundary conditions. The solution of the
differential equation can then be found directly in terns of
Chebyshev series by Clenshaw's method (reference 3), outlined
in Chapter 1.

Linear integral equations can be divideinntoAtwo
types depending upon the limits of the integral. A% equation

\
A

of the form 2 , _
) W= Fe) A [ Ko fipey,
where F, K are given functions; 2, e, ¥ are finite constants
and () iz the unknown function, is knowun as a "Fredholm
equation”. When the up-er limit of the integral 1s not a
constant, out ls the wvariable x 2 the eguation takes the form
(6.1.2) £ = FOO 4 2] Kl y) £yl

and is knowm as a "Volterra equation".

We shall consider only equations of the Fredholm type,
and in order to use Chebyshev polynomials we must change the
range of the vadable * Pfrom o sxx <4 to elther -1 € x5 |
or 0 ¢ »x¢g | o In the former case we use the 1. (%)
polynomials, defined by equation (1.1.1), and in the latter
cagse the shifted polynbmials 'ﬁi(x) , defined by equatlion
(1.1.5).

Before prececding with the discussion of methods
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of soclution, we shall need results for
(1) the produet of two Chebyshev expansions
and (ii1) the integral of a function whose Chebyshev

expansion is given.

6,2 Product of two Chebyshev expansions.

Suppose, v
f(x) = fa, + i_ ., T (%)

(602.1) o
and 3 (x) = ;’:—l L, + hzs.&,\_T.w (%)

and we want to find the Chebyshev expansion of the product of
f(x) and g('x) « PFrom the relation,
(602.2) 2T 00 To(x) = T, 00+ Th )™

we £ind that %0
$e0 g0x) = Hede + L dnTold

v =\

(6.2,3) 0
where d., = é’[ 0,0, + Zam (b, * &mn], M2 0.
W=/

%
A similar result holds for expansions in terms of the T._ (=) .

polynomials. Ir,

%: Ao + iA'nT"rf(x)

(6.2.4) SA78) S o
and 3(1) B L ) BT ()

=i
then o

»
x = +D, + )WT_n(X)

(6.2,.5) ‘f( )2(1) S 'nzu;
where P, = ‘;':[AOB.,, + 2ﬂm(3,m_m+ B«,n.,.&)])"’n? 0,

™|
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6.3 Integral of f(x),
With f(x)defined as in equation (6.2.1), we

want the Chebyshev expansion of I(x) , where

2’
(6.301) I(x) = I' £ (x) o

Now J(x) is the solution of

I witl I(-1) = 0O
(64302) o= ey

On weiting, (%) > & % + 2 2., (‘K)

mal

equating coefficients of [, (%) in equation (6.3.2), and
uéing equation (1.3.5) we find, oo

(6.3‘,3) ‘60 - ao - '& a, - a“'a “3_," . )

a,., - @
(6.3.4) anda 4, = ""am = i«‘ w2,

In many problems, we want I(l)and this is gilven by,

a
(6.345) I() = @ - < i L,_“:”.\:, ]

In solving Fredholm equations, we require the
integral of the product of two functions between the limits
-/ and +1 o Defining f(x) and g(1) as in equation (6.2.1),
and using equations (6.2.3) and (6.3.5), we find

I flx)gtdx = a (Z % - .,.5:,;;1“?:)
(6:3.6) ™ b By s —&“WJ
* ia [ S

+a.
Similar results can be found for expansions in

terms of the T,,,_("C) polynomials. Defining § () as
in equation (6.2.4), then if
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°b

2t . s
Tho = [ fmse ~ £8 + 3 B TH60,
) h (I
we f£ind, = ™A
D _ 6 o 1) 20n
=3 Ao " A v\g; Tt 1

(60307) A“_, - m4|

B.= =& I i A

!
For f{‘{x)o{x s Ve find,
[

I - -
%no - . b | ﬂ?m,

(6.3.8) I0H) =

ne

Pinally, for the integral of the product of two functions,
1f £(x) and q/x) are defined as in equation (6.2.4) them

- fﬂx)fa(ﬂdoc = + A, [ B, "“' xw‘ ] B,-.,,]
o 1305 - § Tt Do

We are nowv in a position to examine in detail the
nunerical solution of Fredholm-type integral equatioms. The
method depends entirely upon whether the kernel K(w, la) 18
separable or not. In Section 6.4 we will diascuss the case
when the kernel is separable; and compare the method with
one of Crout‘'s exanples in 8ection 6.5. In Sections 6.6
and 6.7 we will investigate the ocase of non-separable kernels,

6.4 Separable Kernel.
In general, when the kernel is separable we Wwill have
(6.‘4.1) K(V,‘é) = 2 3-\\\(")"\ (‘3)

m=z)

The Fredholm integral equation can then be written
(6u2) F£0x) = Flx) + ) i goe () f 2 () £ 3) ol

where the range in X has been normalised to —) € € |},

e v\



F(x) 3mlx) ; A om (la) are given functions and we
assume that thelr Chebyshev expansions are knowmn. Further,

let us approximate to f(*) by a polynomial of degree N,
i.e. fo0 = ¥a + 9 a,T.().

mns=1
Ir F['X) $ 0 , we choose N to be the degree to whieh F (%)
is given to the required accuracy. Ir F(X)=0 , then
N can only be estimated a priori from, perhaps, some physical
eriterion., If N 1is eriginally chosen too small, this will
be apparent from the series expansion for f(%) , The calcul-
ation will then have to be repeated with larger N . Ir N
is chosen too large initially, then unnecessary extra work will
have been done. Many integral equations, however, arise
from physical problems where socmetkhing 1s‘ known of the form

of {(x) which will enable us to make a reasonable guess for

N ., Now T, = I,'/Km(g)f(l})‘i}

is a constant depending upon @,,Q,,-..-.., @, and can be
evaluated using equation (6.3,6). Ir C, (6 )denotes the
coefficient of T, (%) in the Chebyshev expansion of a
funetion G (%), then on equating coefficients of [.. (%)
on each side of equation (ebuﬁaz) we find,

(6.,1403) a,= c-n. (F) +‘ P i_ C-n. (g‘m)I,m (ao,-.,QN)f)*ﬂ=o)')--,N

El‘his gives a system of (N+ l) linear equations for the
unknown coefficients d,, Q,, -._, Ay,

(6-6)



These ecuations can be solved numerically by standard
methods to give the Chebyshev expansion of f (%) . From
this series the value of the function can be found for any x
in the range - ! € *x < | | by the method of reference 8.
An exactly similar analysis holds for the range

0<x<1| , uwhen the T.:{'M) polynomials are used.
Example 6.1. Let us consider the integral equation

Flx)s ~Zoon(312) + 2 [eondnlx—y)Fly) ok,
whose solution is given by (%)= 4w (¥ nx) . The kernel

1s separable with M = &  where, 3 e
I, - f F('a)OM(Jz'ﬂ‘g)oha oot I, = fo-r(na)m(;n\j)dg.
Using Clensh,aw s method, we find,
Al (L) = 40°602 194 £ 0-513 6as T, (x) - 0+ 103 su6 T, ()
g T. )+ommT(x8

F0-013 732 T, (%) + 0001359 "t
- 0. 000 UO7 T,, (),

In this exzample, we see that to ©J> we can represent the

expansion of F(%*) by a polynomial of degree 6. Conseguently

we take N = b , and assume tint .
£0) = LA, + S ALTI00

n=e

Using equation (6.3.9), we find

[T.] 4 0-315 309 A, F 0-173 950 A, - 0-3k7 295 A, £ 0:109 113 A,
Ll -0 cac740 A, t 002z cosAg = 0- 03 169 A,

With these values we f£ind on solving equation (6.4.3) the

following Chebyshev expansion for {000,
£x) = 0-60230 + b =maT () - o 1355, (x) = O 01373"' “tx)

+0:-00136 T, ") 4 0 muT (x) — o- 6vCODI T, ('x)
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This expansion can be compared with that for A, (','; ﬁw)
from which we see that there is an error of approximately
| x 10~ ° o Although starting with the -expansion of all
the given functions to 46D , some accuraecy has been lost
in the sixth deeinal place due to rounding errors.
With this Chebyshev expansion for (%) we might
eonclude from the rate of convergence of the last three coeff-

-8
jcients, thut the truncation error will be less than ! X /0

With a round=-off error in each term less than "2 X 10 -

we might conclude just from the series expansion that the error
in §{«) will be less than 4 X /0" >, Consequently we can
assume that the expansion will give values of {( 71') correct
to 4D for all values of X in O € ¥ S | | This we know
to be correct, being a generous upper estimate of the error.

Pinally, we note that whenever the kernel 1s separ-
able, the integral equation is satisfied for all values of =
when determining the relations between the coefficients A, .
6.5 Comparison with Crout's method.

We shall now compare by means of an example, the
Chebyshev series expansion with the method of Crout. In this
problem, the kernel is again separable, although it has a
discontinuity in the Pirst derivative.

mmample 62 oo 5 [ K (ny) Flyddy
0

| < [ ==y
Ui K(%,\a)-. H_‘EL il s

%(L-ﬂ) fw ‘9"‘-

FIL

()



This integral equation arises in the problem of the buekling
of a bean of length | . It is an eigen-value problem in
which we want to find those values of A for which a non-
trivial solution exists. In particular we wish to f£ind the
first mode of buckling where the mid-point of the beam is an

anti-node. The analytic solution for this mode of dbuckling 1is
Fla) = ain T X e BT
2

(-

Lb
Defining 'S - % s 47 = -L?- ) /,( = 2_‘:« Ocmeol ;um;c;\‘j,
4(Le) = a(S) oot -F(Ln,,?)s »u('y}))

the eguation can be writtezé as,

)
wu( %) s { (1= %) £.7u(1,‘)ol-,7+ SL(!--»;)«.(-.’)%}.
Again, the kermel is separable although each integral contains

the variable as a 1limit.  VWrite, « ;
w ()= A, + 2 AT(S),

g ne| )
T(S) s [ maln)oby ot TS = f, =) aaln) oy
The function I (¢)satisfies the equations,
AL _ su(e) o Ilo)=o0

——

On writing dI (5)= 2% +.,\S;, N T—:(S) we find at once,
Lyz 3 N, whine Yo 2 in (At 20”3 Al)
! « A similar result can be found for the coeffic-
ientsf;n the Chebyshev expansion for J ( ) . Returning to
the integral equation, 1if C: (6) denotes the ecoefficient
of T.. (S) 1in the Chebyshev expansion of G (S5)  thenm,
Colu): p X[ 1- s(r-7)] fr ot .
On sim»Hlifying this expression we find the following 3 term
recurrence relation for 14.,; , valid for all M = 2. |

(6.5.1) (m+1) ﬂ,;_l +[I(o'v;("n’-l)£-QM]nﬂ’i—(v\-,)An*;: 0,
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vhére & = 1//—& « Corresponding to =+ = 0 , and
using the vulues for o, and /G., we find,
) ) oD

(6°5;2) (9ee —")Ho"' 7Azl— 3L"ZL(Y\’-|!YhV\‘-!) nﬂm =0

A correasponding egquation can be found for m =171 , but since
we are interested only in the first mode of buckling whiech
gives a solution symmetrical ebout 35> 2 , we have,

AOM‘H =0 , w0

Reuriting equation (6.5.1) with 2w in place of + gives
(6.5.3) (2 + ,)H%_l } [3&(#%1—1)6'#?\]{3“4* (_QM-I) A:M: 0, n3)
Equations (6.5.2) and (6.5.3) eompletely define the problem
for symmetrical solutions.
Pollowing Crout, we assume that «(5) ean be approxis-

ated by a polynomial of degree four, so that,

w(sy = £A, + A, INOE A, T:(f)
The three equitions for ﬂo ; 142 , /44 obtained from equ: tions
(6.5¢2) and (6.5.3) can be written in the matrix form

MA < €4
where ﬂ i1s the column vector 5 Ao, H, ; ﬁqf ana M
is the matrix,
L - L —
pT 3% Tiao
S I I
32 2 9%
192 120
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The largest elgenvalue of this matrix edrresponds to

/L 98958 ao that, EL
A= 1 86"75 8 >
Grout finds ) = 9:-87¢05 £L L; , and these two numerically

found solutions must be compared with the analytic solution,

A+ 9-8960 "';_1; :

Using the Chebyshev expansion to the same order

as Crout'’s Lagranglan-type expansion we have found a mach
better approximation to t he eigenvalue. The errors are

ax 10°°

and 445 X 10°° respectively, although the
great accuraoy in the Chebyshev éase seems slightly fort-
uitous since on repeating the calculation wifh a sixth
degree polynomial, the eigenvalue is found to be A =9 86946 f'ff
ari error of 6% 10°°  which is larger than for the fourth
degree case,

Por the eigenfunction §f({(%) , 1f we normalise

ae L
the solution so that F{ 73) = | , we find,
$(x)= 047230 = 04997 T.(',:) + ¢ 02799 T, '—)
The comparison with Crout'’s solution, and the analytic

sclution is shown in Table 6,.1.
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(2+~9)

EXACT CROVT CHEBYSHEYV EX PANSIONS
edato = || 2= 9-97005 £ } A= 9-88958 Ex A =9-80966 EL
/1 P LR degerer Jerror] 10 ﬂ Z‘“‘ al--q;-n- jermtIx 0° 5*&@&2 Jesror) x 10°
0.0, 1.0 0 0 o 0.,00058 58 {=0, 00004 N
0.1, 0.9 0,30902 0.30716 186 0.30878 2 (+0.30906 L
0.2, 0.8 0,58779 0.58716 63 0.58862 83| 0.58785 .
0.3, 0,7|  0.80902 0.80918 16 | 0.81000| 98| 0.80907 5
0.4, 0.6 0.95106 |l* 0.95119 13 0.95142 36| 0,95107 1
0.5, 0.5 1,00000| 1.00000 0 1,00000 0 {+1.00000 0
0% 2 ferm) = 38990 "9 (ertet)=| 54729

Table éll




For the given tabular points, the maximum error in the
Chebyahev expansion (98 x 187°) 1s less than in Crout's
case (186 x 10°°) Also, the sum of t]"a,e squares of the
errors at these points 1s less for the Chebyshev expansion.
Taking a aixthld.egree expansion for f(*) we

find . 4
£(x) = 0-47202 = 0- w3 T, (E) + 000195 T, (%) - 600060 T"(Z‘)

The maximum error at the given points has now been reduced
to bx 107° » & considerable improvement in accuracy
obtained with little extra computation.

6.6 Non-separable kernel.

In most problems where a numerical appraach is
required the kernel will not be separeble. There are two
poasible methcds of approach. We can try to approximate
to the kernel by a function which is separable, and then
use the method of Section 6.4. Alternatively, we can
consider the equation as it stands and proceed by a method
of collocation,

Suppose that the range of the independent variable
o has been normalised to -)S$ 2 ¢ | and we have the
following Fredholm equation, :

(6.6.1) () = Fx) + 2 [ Kiny)fiy) oy,
where A, F(x), 6 Kk(x, ﬁa) are given and we have to find f(x) ,

As before, write b
Foo) = o+ L oa T (x)
where N in general is not known a priori but might be

(6-13)



estimated from perhaps, some physical grounds, In order to
determine the (N+1!) constants a,, a,,-...,4a, Wwe write
down the integral equation at each of (N +1) points x; ,
say, where t=1,a, .. ., (N+1), Equation (6.6.1) is then
replaced by the (N+1) equations

(6.6.2) F(x:)= F(»i)+ Zj'K(x;,g) 'F(la)o&a Y4z ,a, .., N+,
For each value of x; . w'e now compute the Chebyshev
expansion for K(x; , ‘3) either from a differential equation or
by some curve fitting process. Using equation (6.3.6),

we obtain the value of )
' le‘i")s ['K(”t:%);(‘a)&?

in terms of the coefficients ao,,a,,...., Oy - The quantity
F(x;) is known immediately, and using Tables of Chebyshev
‘Polynomials (reference 1) we can write doun f(2;) in terms of

0,,0,,.._.., a,, for each value of X; , Equation (6.6,2)

)

becomes

(6.6.3) F(x)= Fx)+ XTI (x:,1) et N
which is a system of N4-1) linear equations for the
unknoan coefficients. These can be solved by standard
methods,

We shall illustrate the method by means of an

examnple taken Trom reference 13,

Example 6.3 v [ l | i
foo * 7"[. [V +x-yY] fly sy =1

Let us consider first the equation with positive sign,
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We approximate to the function {(x) by means of a
polynomial of degree 6. ° Since {(x) ie an even function
of *x , we write

f)= Fo, + a, T,(x) + “u,T; (x) + a, T, (x),
and only consider positive values of ¢ » which have
been chosen as,

x;t 0,05 ,08 o~ 0

The kernmel X (*;, g) can be considered as satisfying a
differential equation of zero order with polynomial coeffic-
ients, given by |

(6.6.4) (14 x})K(%i0y) = 2, 9K{"“%) + 72 K(X;»U) = |

o0y

I we write

K(xi,y) = §4,06) + Mg‘ O (%) To (y)

then on substitution into equation (6.6.4) and using the
formula for C,\[-’ Kin:, g)] and _C“[ g‘kh.‘ ’ g)]

we obtain the recurrence relation between the coefficlients
&, for each value of *; . The coefficients in the
expansion of K(%i,Y) for x; = 0, 0'5, 0'S and /-0

are given in Table 6,2.
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(9+~9)

n b, (o) L, (0-5) b, (0-8) L. (1-0)
4] +1.414 214 +1.361 549 +1,252 701 +1.137 729
1 0 +0,31920 +0,42286 +0.43457
2 -0,24264 =0.42703 ~0,00841 +0, 04965
3 o =0,08453 =0,06081 =0,03079
L +0,04163 -0, 00300 -0,02218 =0,01912
5 4] +0,01245 =0,00023 «0,00449
6 =0,00714 +0,00385 +0,00293 +0,00037
7 ) ~0,00091 +0,00116 +0, 00070
8 +0.00123 =0,00085 +0.00004 +0,00025
9 0 =0, 00009 =0.00014 +0,00003
10 =0,.00021 +0,00011 =0,00006 =0,00002
11 0 +0,00004 o =0,00001
12 +0,00004 =0, 00001 0 o
13 o =0, 00001 0 0
‘M ~0.0000% o} 0 0

KON, 9) = T 4,00) +

e A

Table 6,2




evaluation of I (i)

With these coefficients for M (%, '3)

for each value of >¢;

be made by means of eguation (6.3,6) to give

Ilo, =
I(os,1)=
I(o-s,1)=
101, D)=

0.78540 a,
0.72322 a,
0.63055 a,
0,55358 a,

-0.71238 a,
=0.57161 a,
-0.414763 a,
~0.32602 a,

+0,.03686 o,
-0.04902 a,
=0,10331 a,
-0.11278 a,,

the

can now

-0,04217 a,
-0,02328 a,
~0,02458 a,
~0.02975 a,

Substituting these values into equation (6.6.3) gives the

following system of equations,

0.75000 o,
0.73021 a,
0,70071 a,
0.67621 a,

~1.22676 a,

-0.68195 o.,_
+0,14706 o,
+0.89622 a,

+1,01173 a,
-0.51560 a,,
-0.87608 a,
+0,96410 o,

the solution of which gives
fbx)=  0.70758 + 0.04957 T,(x)-0,00102 T, (») -0.00022 T, (»)

-1.01342 o,
+0.99259 a,
~1.,00494 o
+0.,99053 a,

)]

I
Y

The comparison of this solution with that obtained by

Fox and Goodwin is given in Table 6,3.
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(81-9)

}
o Ol r

e R E el PR R

0 0.657h4 0.65741 0.65745 1,919 1.91%03 1.91925 0
20,25 | 0.6638 | 0.66385 0.66397 1.8997 1.39958 1.89966 | 0,25
0,50 | 0.683%2 | 0,68318 0,68323 1.842Y 1.84240 1.84261 | Z0.50
¥0.75 | 0.7149 | 0.71482 0.71432 1.7520 1.75208 1,75318 | 0.75
21,00 | 0.7557 | 0.75571 0,75576 1.6397 1.6397 1.63987 | *1.00

Table 653




Taking the integral cquation with negative sign
and proceeding as before, we find
f)= 1,77447 - 0.24003 T, (%) + 0.00490 T, (x)+ 0,00037 Ty (x)
The comparison of this solution with Fox and Goodwin's is also
given in Table 6.3. Fox and Goodwin have presented their
results only to 4D with an estimated maximum error of I x1p" %
due to round-off, snd we see that the results found here
agree exactly to within the prescribed error.

Of the computational labour in thia solution of the
problem, most was spent in the determination of the Chebyshev
expansions of K (7, ka) o With these cxpansions found, comp-
aratively little labour was necessary for the eva;mtidn of
I (%;,') end the solution of the equaticne for the coefficients

Qs o Had we found it necessary to use a higher degree
polynomial for {(x), all previous results for KA, '3) and
T(>, 1) can be used again. VWhen the degree of the
polynomial approximation to £(>) is not known a priori, we
can start with s small N and increase the degree until the
necessary accuracy in the solution 1is reached.
6.7 Use of Legendre Polynomiglg.

In the above example, since the limits of
integration are from —! to + | , this suggests expanding
all functions in terms of the Legenirs polynomials T (%),

The evaluation of I (%;,!) 1s then almost trivial due to
the orthogonality property of the Legendre polynomials in

the range —/<%<l . For suppose



N
$60 = L AP (),
end for a given X; , we ’:sind that
KOtow) = ] 4, () Paly)

n“asp

where in generalM# N, but let us suppose M > °

Then since . Q S
P OO PO o = 3007 O

we have that N
(6.7.) T, = [ kin, ) flg)oly = ¢ Ron ban)

R = |
This equation is considerably simpler than equation (6.3.6)

nweo

for Chebyshev polynomials, The problem is now one of
f£inding the expansion of K (g, '3) in terms of Legendre
polynomials. Thia can be found by the method described in
Chapter 5, provided the function satisfies some linear differ—
ential equation. However, we shall find in general that
the recurrence relation betwaen the coefficients Um
is more complicated for Legendre polynomials than for
Chebyshev polynomials, The computing time saved in using
equation (6.7.1) instead of equation (6.3.6) will generally
be more than off-set in the computation of the expansions
K=, \3).

The integral equation of Example 6.3 has been

solved by writing f(*) as the fourth degree polynomial,

flx) = a,F,0) + a, B, (x) + o, R, (%)
To determine the three unknown coefficients a,, a, and a, we
have used collocation at the points x;= 0,05 oot I-0.

The expansions in ngendfe polynomials of the kernel

(6~-20)



K, 'ﬁ) are given in Table 6.4, where we have
written, | | i
: ; >~ - 6» ()l,.)P“f ) .
K(“‘,ta)glf’(“i°'a) nio 9

The coefficients &, (%) are again computed from equat-
ion (6.6,4) using the results for C., [‘j K, -3)] and

CW[ ‘)‘K (s, ‘3)] » for expansions in Legendre Polynomials.

"~ L., (o) L., (0-5) L. (1:0)
0 +0,78540 +0,72322 +0.553517
1 - +0,36820 +0,45365
2 -0,35398 -0,16775 +0,08067
3 -0,14610 -0,0454L
L +0.08296 -0,00911 -0.03538
5 +0,02631 -0,00989
6 -0.01722 +0,00950 +0.00052
7 -0,00207 +0,00163
8 +0.00339 =0,00231 +0,00067
9 - -0,00030 +0,00008

10 -0,00067 ~0,00005

11 -0,00003

12 +0,00013 -0,00001

13

1y -0.00003

K(*iy) = i:frn("a)ﬁ"a)

W= 0

Table 6.4

Substituting these expansions into the integral equation
with positive sign and using equation (6.7.1), we £ind the
following equations for the coefficients Q,, 0., Ay,

(6-21)
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1,50000 9, - 0,54507 a, + 0,38089 a,
1.46042 0, ~ 0.14636 a, =~ 0,28970 a, = 1
1.35241 a, + 1,01027a, + 099750 a, = 1

the solution of which give
+ve “1"” . F(n) = 0:6%07 + 0:0bLIS F, (x) - 0- 0014t R, (x)
Repeating the calculations for the 1ntegrall equation with
nggat:l.ve sign, we find,
- vt s $(x)= 1. 82129 - 0: 18971 R(x) + 0. 00829 F,(»),
These results are tabulated in Table 6.3 and agree excellently
to 3D with the previously obtained results.

6.8 Copnglusionp.
In this Chapter we have considered the use of
Chebyshev polynomials in the numerical solution of integral
equationg of the Fredholm type. The method described here
is not as versatile as the‘ﬁnite-difference techniques,
since it depends on the Chedbyshev expansions of the funct ions
arising in the equatioms being readily computed., However,
in cases where the method ecan be used without a prohibitive
amount of labour, we obtain the value of the function through-
out the range of L, inatead of at a discrete number of points,.
When comparing the method of Chebyshev expansions
with Crout'’s Lagrange~type polynomial. expansions to the same
degree, a greater accuracy is obtained, = Furthermore, from
the magnitudes of the coefficients in the Chebyshev expansion,

some estimate can generally be made to its accuracy,

(6=22)
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UMMARY.

In this thesis, two epplications of Chebyshev
polynomials to problems in numerical analysis have been
“described. Starting with Clenshaw's method for the
solution of linear ordinary differential equations by
expanding the dependent variable and its derivatives
directly in Chebyshev series, the numerical solution of
the one dimensional heat eqnatidn has been considered.

The partial differential equation is first reduced to a
gystem of ordinary differential equations by the method
first proposed by Hartree and Womersley. This resulting
system of equations is solved using ClénShaw's method.

Two particular problems have been worked out in detail

and indieate that the method is a ugéful one. A second

- application of Chebyshev series is made in-the solution

of linear non-=singular infegral equatiohs of the Fredholm=-
type. Compared with the polynomisl approxihation methad
propased by Crout, the Chebyshev method gives greater
accurac&. Finally a generalisation of'CIenshaw’s.method

is made into the solution of ordinary differential equations
by expansions in series of ultraspherical polynomials.
This givesg in particular, a repid means of finding expansions
in Legendre pelynomials of functions satisfying simple
differential equations.





