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SUMMARY

This thesils describee an accurate and detailed X-ray study
of crystalline sodium. Two previous papers on the temperature
dependence of the intensities are reviewed and their limitations
discussed. Accurate measured structure factors are presented
for the first time, and an accurate X~ray Debye temperature is

determined at room temperature.

Methods for determining real space distributions from limited
amounts of reciprocal space data while avoiding termination effects
have been investigated. An easy, rapid and sensitive integral
method for the determination of the real space distribution for
spherically symmetric atoms was developed and tested. The three

dimensional summation analogue is also presented,

Single crystals of sodium of 3N purity were grown. A total of
six sets of integrated Welssenberg photographic intensities were
recorded from two crystals at two wavelengths at room temperature.
The intensities were measured using a Joyce-Loebl microdensitometer
and corrected for various effects. Considerable care was taken in

recording and measurement to ensure the greatest possible accuracy.

Considerable anisotropy in the intensities at room temperature
was observed. This was considered to be due to anharmonic vibra-

tion of the atoms and was analysed using a fourth order potential
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expansion. This 1g the first time that such anharmonic vibra-
tion anistropy in a body-centred-cubic solid has been analysed in
this way. The atoms were found to be vibrating with greater
amplitude towards the next nearest neighbours and with less
amplitude towards the nearest neighbours. An isctropic Debye
parameter and a single anisotropic vibration parameter were deter=-
mined for each of five data sets. An accurate value of the X-ray
Debye temperature at room temperature was found from the average
of the five isotropic Debye parameters. A re-analysis of previous
work on the basis of anharmonic vibration theory gave potential
parameters which were in reasonable agreement with those obtained
from the present measurements. An alternative description of the
anisotropy as being due to electron density distortion for an
isotropically vibrating atom was found to give an almost equally
good mathematical description, indicating that it provides a good
description of the time averaged electron density. Structure
factors were calculated after taking account of this anisotropy
and are presented for all six sets of data. An accuracy of

2 - 3% 45 claimed.

Considerable extinction was present in all samples. The
extinction was investigated using a wavelength dependent mathe-
matical treatment, and corrected structure factors are presented
for two data sets. Evidence for room temperature annealing over
a period of several weeks due to the thermal motion of the atoms

is presented.
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The contribution of the 3s electron to the structure factors

was confirmed to be unobservable.

Seven structure factors were measured from a small spherical
crystal of sodium using an absolute counting technique. Intensi~
ties were corrected and structure factors calculated and presented.

The above observations have been confirmed but on a relative basis.
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CHAPTER 1

INTRODUCTION

1.1 The Aim of the Project

There has been considerable interest in recent years in
accurate measurement of the X-ray structure factors of various
elements. Such measurements may be expected to give information
about the effect of the crystal field on the electron distribution
and vibrational properties of the atoms. For example, measurements
of "forbidden" reflections in diamond-type structures gives
information about the covalent bonding (Dawson (1967b)). Measure-
ments of low angle reflections in metals provide information about
the effect of the crystal field on the valence electrons (e.g.
Raccah and Henrich (1969) for aluminium). Finally, mecasurements
of a number of reflections at the same temperature, or more usually
of the same reflection at several temperatures, provide informa-
tion about the effect of the crystal field on the vibrations of

the atoms in the lattice.

Alkali metals are of considerable interest in theoretical
physics because their characteristic electronlc structure of an
inert gas core and single valence electron makes them the most
fundamental of metals and enables various solid state calculations

to be performed with relative simplicity. On the other hand, their
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somewhat intractable chemical and physical properties have meant
that very little definitive X-ray or neutron diffraction work has

been done for comparieon.

The aim of the project was to measure as accurately as possible
X-ray structure factors for one or more of the alkali metals in
order to determine crystal field effects, and to relate thesge

results to relevant known information about the alkali metals.

It was decided to measure accurate relative intensities
photographically, with the possible measurement of absoltte structure
factors by counter techniques for comparison. Indeed, both
measurements were made, the photographic relative intensity
measurements being described in Chapters 3 to 5 and the absolute

counter measurements being described in Chapter 6.

1.2 Properties of Sodium

Sodium is a soft, silvery, metallic, polycrystalline solid at
room temperature. It has a specific gravity of ,971 and a melting
point of 97.81%. Single crystals of 99.9% purity have been grown

as part of this work.

Hull (1917) found the crystal structure to be body-centred-
cubic at room temperature. The space group is Im3m and there are

two atoms per unit cell. The value of the lattice parameter used



throughout this work was 4.29068 at room temperature (American

Institute of Physics Handbook, 2nd Ed. (1963)). This value is in
good agreement with a recent value of 4.28860R% at 25°C (Feder and
Charbnau (1966)), determined from a thermal expansion method using

X-ray and interferometric techniques.

The electronlc structure for the eleven electrons in free

sodium atoms is lsz, 2s2

, 2p6 {neon core), 331. An energy diagram
for atomic and solid sodium is shown in Figure 1.1, The energles
for the 1ls and 2s, 2p levels were obtained from X-ray emission
wavelengths and that for the 3s level in the atom from the ionisa-
tion energy. The value of -2.3 ¢V used for the top of the 3s band
was considered the best for a range of values from 2.06 to 2.47 eV
for the work function for sodium., The width of 3.4 eV for the 3s
band in the solid is given by the width of the soft X-ray emission
band. This latter agrees fairly well with the value of 3.2 eV

calculated on the basis of the free electron theory (Seitz (1940)).

A number of other properties of sodium are comsistent with the
simple free electron theory of metals, the number of free electrons
in this case being one. Among these are values for the electrical
resistivity of solid sodium (5.23 x 10—6 ohm-~cm at 29.4°C (Handbook
of Chemistry and Physics (1967))) and the Hall coefficient
(-23.6 x 10-11m3/coulomb) (Kittel (1971)). (The calculated single

free electron value for the Hall coefficient is -24.7 x 10’11m3
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coulomb. The negative sign indicates that the charge carriers are
electrons and the density of charge carriers measured by the Hall
effect 18 1.05 per atom). This theory is also supported by
thermoelectric power measurements in that they are negative and

tend to zero at low temperatures.

Further, a considerable amount of evidence has shown that the
Fermi surface of sodium is spherical to a very good degree of
approximation. (Were it to be entirely spherical, the behaviour
of the outer electron of sodium could be described entirely by
the free electron theory of metals). Such evidence is obtained
from the positron annihilation experiments of Donaghy and Stewart
(1967), the cyclotron resonance experiments of Grimes and Kip
(1963), and the de Haas-van Alphen effect measurements of Shoenberg
and Stiles (1964). Such techniques have measured the sphericity of
the Fermi surface to ~17%. This evidence is in accordance with the
prediction of Cohen and Heine (1958) on the basis of pseudopoten-

tial calculations.

Moreover, the ground state outer electron momentum density
distributions measured by Phillips and Weiss (1968) by means of a
Compton line-~shape technique give the momentum density in sodium as

"essentially spherically symmetric'.

However, sodium is, elastically, a very anisotropic material.
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The most accurate values of its elastic constants are considered

to be those given by Martinson (1969). These are

= 76.9 x 109 dynes/cm2

- 64.7 x 10° dynes/cn®

‘11

12
9 2
and ¢,, = 43.4 x 10 dynes/cm

Using these values, the anisotropy factor, which is given by

2c44

€117%12

is 7.1. (An elastically isotropic cubic crystal has an anisotropy
factor of 1). The relatively low values of the elastic constants
mean that elastic moduli such as the compressibility K, Young's
modulus Y and the shear modulus n are relatively high (for K) and
low (for Y and n), and explain the softness exhibited by the metal.
The formulae and the values obtained on substituting for the
elastic constants are

3

+2¢c

C11%4%12

L0145 x 10’9cm2/dyue

_ leyymep) (2egpteyy)
€112

178 x 10° dynes/cn’



and n = ¢,, for a shearing strain in the [100] cube direction

2 dynes/cmz. Finally, the Cauchy relation given by

= 43.4 x 10
€12 = S holds if the interaction between atoms are due to central
forces and if each atom 1s at a centre of symmetry. Since the

second of these two conditions holds for the sodium structure, the

fact that the Cauchy relation breaks down implies that the forces

between the atoms are not central.

1.3 Wave Function and Scattering Factor Calculations for Sodium

A number of wave function calculations have been made for
atomic sodium. The earliest was the self-consistent-field deter-
mination of Hartree (1928), on which were based the scattering
factor calculations of James and Brindley (1931). A later wave
function calculation by Hartree and Hartree (1948) was a solution
of Fock's equations for the self~consistent-field with an exchange
correction. It formed the basis of subsequent calculations of
atomic scattering factors by Berghuis et al. (1955) and Freeman

(1959).

Scattering factor calculations have been the subject of a
review by Cromer (1965b). The most recently published values have
been those of Cromer and Mann (1968), based on numerical Hartree-
Fock wave functions calculated by Mann (1967), and those of Doyle

and Turner (1968). These last values, which were calculated from
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an Hartree-Fock atomic wave function due to Coulthard (1967), with
allowance for relativistic effects, could be expected to be the

most reliable published values.

However, the relativistic effect is negligible for wave
functions of elements with low atomic numbers, as can be seen from

Table 1.1.

TABLE 1.1

Calculated Scattering Factors for Sodium

31:68 Present Work Doyle-~Turner
.20 8.337 8.335
25 7.621 7.618
.30 6.884 6.881
.35 6.159 6.156
.40 5.475 5.471
.45 4,851 4.848
.50 4.297 4.293
.60 3.401 3.398

The values labelled Doyle-Turner were taken from the paper of
Doyle and Turner (1968). The values labelled Present Work were
calculated by the author. Program SCATFAC (Appendix 1) was written

to carry out the numerical calculation using the Hartree and



Hartree (1948) wave function values. Doyle and Turner comment
that the fourth and probably the third figures in their cal-
culation have no physical significance, and are useful merely for
interpolation purpcses. It can be seen that the two sets cf
values agree to better than .01%. Therefore the values of cal-
culated scattering factors used in this work are those calculated

by the author from the Hartree and Hartree (1948) wave functions.

1.4 The Debye Temperature and X-ray Scattering

It is convenient in crystallography to describe the tempera-
ture variation of the scattered intensity in terms of the Debye-

Waller factor thus:

e |2

-

-2Bg2

~ exp

SinBB

A

Thie theory assumes that the atoms are vibrating harmonically.

where B i1s known as the Debye parameter and s =

This 1s never true, even at OOK, but is often a sufficiently good
approximation to enable a value of the X-ray Debye temperature BD
to be obtained. This estimate of the Debye temperature is similar
to the characteristic temperature obtained from specific heat

measuremenits (Zener and Bilinsky (1936)). For a cubic monatomic



crystal the relation between B and eD may be written

6h2T X
Bm— 1¢(x) +— eee(li4.1)
lmpZ 4
]
where x = o)
T
T is the temperature in °x
1 y dy
¢ 1s the function —-[x
x 9 o¥-1

and the other symbols have their usual meanings.

Walford and Schoeffel (1970) point out that if harmonic

vibrations of the atoms are assumed, there are at least three ways

of determining the X-ray Debyec temperature of a crystal. These are:

(a) The measurement of the integrated intensity of a Bragg
reflection at two or more temperatures. A plot of

I
ln(—Iia versus temperature will give a straight line from

- which can be determined the Debye temperature BD.

Here ITi represents the Integrated intensity of the reflection

at temperature Ti’ and ITO represents the integrated intensity

of the reflection at some reference temperature Tb.

(b) The measurement of the integrated intensitiles of a large

number of Bragg reflections at the same temperature. The
SinOB
)2 gives a straight line, the

I
graph of ln(—i) versus (
F

slope of ¢ which ylelds the temperature factor B and hence
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6., can be found. Here I, is the measured integrated intensity

D i
for the ith reflection, and Fc its calculated structure
factor. An example of the use of method (b) for the accurate
determination of the Debye temperature of aluminium at room
temperature is given in the paper of Dingle and Medlin (1971).

The third method for determination of X-ray Debye temperature

is:

(c) The determination of the inversion temperature of first
order thermal diffuse scattering near a Bragg reflection hkl
(Canut and Amoros (1961)). For the temperature range

8, < T« Tmp’ where Tﬁp is the melting point, the relation

D

for inversion temperature Tinv is given by

am

= — @2 32
Tinv 2 GD dhkl ves(1.4.2)

where dhkl is the spacing of the hkl Miller planes and the

other symbols have their usual meaning.

Little experimental work has been done using this last method,

probably because of the difficulties associated with measuring

thermal diffuse scattering intensities accurately. In addition,

because the inversion temperature depends on the plane spacing

(equation 1.4.2), measurements of diffuse scattering near a low

angle reflection, such as 211 for sodium, would have to be made to
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obtain Tinv near room temperature. Because extinction or tempera-
ture changes of the mosaic structure would make either this or the
first method less accurate, the second method was chosen for this

work.

1.5 Review of Previous X-ray Investigations of Sodium

Few X~-ray diffraction investigations of sodium or any of the
alkall metals have been attempted, Hull (1917) determined the
space group and the location of the single atoms at special posi-
tions in the unit cell, Lonsdale (1942) mapped the thermal diffuse
scattering observed in the Laue diffraction patterns of sodium,
and Barrett (1956) showed that for some of the alkali metals,
including sodium, a partial martensitic transformation to an
hexagonal-close-packed structure occurs at temperatures below
about 50°K. However, the only Bragg intensity studies and Debye
temperature determinations have been those of Dawton (1937) and

Geshko et al. (1968).

Dawton studied the temperature variation of the intensities
of six reflections from single crystals for the temperature range
120°k to 370°K. His observations and conclusions include the

following:
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(a) A "temperature hysteresis" effect was present in the
intensities of lower order reflections for temperatures
between 293°K and the melting point of ~370°K. This effect

disappeared when the crystal was chilled with liquid air.

(b) A "permanent" increase was found in the intensities of
the lower angle reflections with a splitting of the single

crystals into smaller grains when chilled with liquid air.

(c) A Debye temperature was calculated at five temperatures,
the value at room temperature being 119°k * 4°k (read from a

graph). (This corresponds to a B factor of 10.6;';).

(d) The temperature dependence of the intensities was found

to obey the empirical relation

2

L.~ exp-(0.04044 T + 17.08 x 107°T%) SinZe

T B

for filtered molybdenum radiation.
(e) Extinction was found to be present in the crystals.

(f) Scattering factor curves were drawn after absorption
corrections were made to the intensities, both with and
without allowance for extinction effects. These curves were
considerably lower than a theoretical Hartree scattering

factor curve,
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The results of Dawton on the temperature dependence of the
intensities referred to in (d) above were re-analysed for compari-

son with the present results (see Section 5.9).

Geshko et al. investigated the temperature dependence of the
intensity of the 200 reflection for polycrystalline samples of
sodium in the temperature range 115° to 353°K. Their main findings

were:

(2) The presence of anharmonic effects was found as revealed

by the non~-linearity with temperature of the curve

I
£(T) = 1n (L
ITo
where the symbols are as before. This anharmonicity was
described in terms of the temperature dependence of the Debye

temperature as
eD(T) = BD(To) { 1-2.1y,x(T-To) }

where OD(T) represents the Debye temperature at a temperature K
Yg is the Gruneisen parameter

and ¥ 1is the volume expansion coefficient.

This is equivalent to the “quasi~harmonic" theory approach outlined

in section 2.3,
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(b) A Debye temperature of 154°K + 8°K at T = 293°K was

determined. (This corresponds to B = 6.22;';3).

Thus no reliable measurements of the structure factors of
sodium have been made and, in addition, there is a large difference
in the value of the available Debye temperatures. This can be
attributed to the fact that both measurements are inaccurate, that
of Dawton being uncorrected for TDS, and that of Geshko et al.
involving the assumption that there was no extinction present in
the polycrystalline sample, which, as will be seen from the present

work is unlikely to be true (see Section 5.7).

1.6 Previous Determinations of the Debye Temperature of Sodium

Table 1.2 gives a summary of various experimental measurements
of the Debye temperature of sodium, including the two X-ray
measurements already mentioned, Different experimental methods
measure different quantities knovm as the Debye temperature, thus
accounting for some of the differences between different methods.
The generally lower Debye temperature as measured by X-ray diffrac-
tion techniques is consigstent with the experiences of other
authors for several other metals (for example, the work of Wilson

et al. (1966) on nickel and chromium).



TABLE 1.2

15.

SUMMARY OF DEBYE TEMPERATURE DETERMINATIONS FOR SODIUM

Debye Temperature

1599k

155*163°berom
T = 17-58°K

Extrapolated to 135°K

at OOK

160°K

152.5 + 2°Kk

202°k
118-140°K

154 + 8°Kk

Method

Specific heat at low
temperature

Calculated from elastic

constants at low
temperature

Selected from specific
heat curve

Heat capacity measure-
ments at low temperature

Heat capacity measure-
ments at low temperature

Heat capacity measure-
ments

Specific heat at low
temperature

Electrical conduectivity
X-ray measurement

X-ray measurement

Reference

Simon and Zeidler
(1926)

Fuchs (1936)

Blackman (1955)
Roberts (1957)
Gammer and Heer

(1960)

Lien and Phillips
(1960)

Martin (1965)

Medissner (1935)
Dawton (1937)

Geshko et al.
(1968)
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Calculations of the Debye tetipérature for sodium have also
been made recently. One such calculation 1s that of Sherma and
Mchrota (1969) using a non-Debye distribution approach with the
elastic constant data of Daniels (1960). Although a value for eD
is not explicitly given, some agreement with Dawton's results

below 200°K 1s claimed, with discrepancies at higher temperatures.

A second calculation is that of Ronti and Varshni (1969).
The elastic constant data of Diederich and Trivisonno (1966) were
used in three different methods of calculation. Their average
"best theoretical value' for the Debye temperature was found to

be 144.3°K.

1.7 Summary of the Present Work

Various methods for analysing limited amounts of diffracted
intensity data are presented in Chapter 2. Both integral and
summation methods for determining real space distributions are
considered. The application of the generalised structure factor

formalism of Dawson (1967a) tc the present case is presented.

A total of six sets of relative intensities have been recorded
photographically from two cylindrical crystals of sodium at two
different wavelengths at room temperature. After correction for

absorption, Lorentz-polarisation, TDS and anomalous dispersion
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effects, the intensities showed considerable anisotropy. This was
accounted for in terms of the theory of anharmonic vibrations of
atoms due to Willis (1969). The anisotropy was also discussed

in terms of the electron density distortion theory of Weiss (1966).

Considerable extinction was present in all samples, and room
temperature annealing was cbserved. A Zachariasen type extinction
correction was applied. Structure factors are presented for the
data both corrected and uncorrected for extinction. The rececrding
of the relative intensities, analysis and discussion are presented

in Chapters 3, 4 and 5.

An absolute intensity measurement technique described by
Burbank (1965) was used to measure theintemsitles of seven independ-
ent reflections from a small spherical single crystal of sodium.
Structure factors were calculated and compared with the results
obtained from the photographic measurements. This work is des-

cribed in Chapter 6.
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CHAPTER 2

METHODS OF ANALYSING AND INTERPRETING DATA

At an early stage of the project it became apparent that the
pumber of observable reflections was limited (Chapter 3). Accord-
ingly, consideration was given to the investigation of methods for
analysing and interpreting small quantities of reflection data.
Indeed, remembering how the X-ray method "oversolves the structure",
the amount of observational information was still sufficient for
the determination of a dozen or so parameters. Analysis in both
real space and reciprocal space was considered, and various methods
are presented in this chapter. These methods are suitable for use
with monatomic solids, or simple structures where charge transfer

has taken place.

2.1 The Crystal Field and the Determination of Real Space

Distributions; Integral Transforms

If a simple solid with accurately known structure is assumed
to consist of a condensed array of spherically symmetric atoms,
there is a simple relation between the X-ray structure factors and
atomic scattering factors. TFor a monatomic body-centred-cubic

solid such as sodium, this relation is given by
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F(hkl) = & f(hkl) e (2,1,1)
( =0 1if h+k+l is odd
where 8§ (
{ =2 if h+k+l is even

The radial charge density distribution U(r) may then be determined

from the scattering factors by the integral transform (James (1965))

U(r) = 4wrlp(x)= 32nrfgsf(n)81n(4wsr)ds ves(2.1.2)

SineB

and S is the upper limit of s. This can be compared

where s =
with the radial probability density distribution P(r), which for a
single free atom in an array of free atoms, each with independent

non-interacting electrons is obtained from the atomic wave function

by
= *
P(r) X niRi Ri e (2.1.3)
i
where the sum is over 1 subshells of electrons in the atom and Ri is
the radial wave function for each of the n, electrons in the ith

i
subshell.

The integral transform of equation 2.1.2 has been used by
Medlin et al. (1969) to determine the conduction electron proba-
bility density distribution for solid aluminium. However the nature
of scattering factor curves and the presence of the sf(s) term in
the integrand of equation 2.1.2 mean that the integral converges
very slowly. This means a large value of the integration limit S

is required in order to avoid termination ripple. Indeed, Medlin
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et al. used observed values of f to s ~1.4X-1, and calculated free
atom values of f to s NIZR-l in their calculation for aluminium,
It is not immediately obvious which regions in real space are most
affected by this theoretical extrapolation. If only for this

reason this technique needs to be handled with some care.

The term sf(s) in the integrand of equation 2.1.2 bears
some resemblance to the term which arises on differentiation of one
member of a Fourier pair. That 1s, if two general functions f(r)
and F(s) are a Fourier pair, then %%ﬁil and 12wsF(s) are also a
Fourier pair. It was decided to investigate the derivative proper-
ties of Fourler transforms in order to try to find a more rapidly

converging real space distribution function than that given by

equation 2.1.2.
Two functions FI(R) and FZ(R) were considered, where
R
FI(R) = IO 4rrp (x)dr vss(2.1.4)
= (R g2
and  F,(R) = [ 4nrZp(r)dr . (2.1.5)

It follows from these functions that the radial density distribution

may be determined at r = R as

BFI(R)

4mR2p(R) = R ees(2.1,6)

R
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oF (R)
£ Ve (2.1.7)

and 47R%p (R) =
3R

Now an expression for FI(R) in terrg of the scattering factor may
be determined from equations 2.1.4 and 2.1.2 as follows., Sub-
stituting for 4wr2p(r) from equation 2.1.2 into equation 2.1.4 and

reversing the order of integration gives
F, R) = 321f5 sf () [} sin(4msr)dr ds
1 0 0

g 1-Cos (47sR)
= 32wf0 sf(g) ——— ds
4ns

= 1672[3f(s) Sin2(2msR) ds .. (2.1.8)

Similarly for FZ(R)’ 1f we substitute from equation 2.1.2 into

equation 2.1.5 and reverse the order of integration, we have
F,(R) = 32nfs sfi8) [} r Sin(4msr) dr ds
2 0 0

Integrating the term fg r Sin(4nrsr)dr by parts gives

s Sin (4msr) rCos(4msr) |R
F,(R) = 32n[  sf(s) - ds
4ug? 4ns 0
S Sin(4nsR)
= 8Rf £(s) ~ Cos(4msR)| ds
4sR
...(2.1.9)

It can be seen that the integrands in both equations 2.1.8 and
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2.1.9 involve only the term f£(s) rather than s f(s) and the higher
order spectra are not weighted., Therefore both the functions
FI(R) and FZ(R) are more rapidly convergent than the integral in

equation 2,1.2.

Physically, only the function FZ(R) seems to have any obvious
significance. It represents the total number of electrons inside
a sphere of radius R. It should be therefore a useful function
for interpreting charge transfers or core contractions in spherical

atoms. The function EI(R) has units of inverse length.

The analytic wave function for the hydrogen ground state is

glven by

~r/a
Yig "—/—'—ﬂf e © e (2.1.10)
o

where a, is the Bohr radius. wls was used to find both FI(R) and
FZ(R) by the integral equations 2.1.4 and 2.1.5. The radial
density distributions were then determined analytically from these
functions by the differential equations 2.1.6 and 2.1.7. These
distributions were then compared with the analytic distribution
given by the special form of equation 2.1.3 for this one-electron

atom in order to check the validity of the functions and the method.

A numerical check was provided for FI(R) by calculating the

function by equation 2.1.8 from scattering factors calculated from
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the Hartree and Hartree (1948) wave functions for the complete
sodium atom. The limit of integration S was 142-1. The radial
density distribution was then determined by equation 2.1.6, The
resultant curves in each case are shown in Figures 2.1(a) and
2.1(b). The radial density distribution curve in Figure 2.1(b)
is in agreement with that obtained from the Hartree and Hartree
wave functions to within the accuracy of the graph. Similar
agreement was obtained for the radial density distribution curve
determined from a calculated FZ(R) function for sodium. Although
nothing is claimed to have been established to this stage the
technique has been shown not to have generated any artefacts. It
is reasonable therefore to expect to be able to use the method for
limited experimental reciprocal space data where convergence of
the transform is desirable without the use of extrapolated

theoretical data.

(It should be noted here that the functions FI(R) and FZ(R)
were calculated at about 50 points in each case, then interpolated
at a large number of poiits depending on the mesh size required for
differentiation purposes. This was done because interpolation is
a much less time consuming computer procedure than integration.

The interpolation method used in this work was a fourth order
polynomial fitting procedure such as that used in program SCATFAC
(Appendix 1), The numerical integration was carried out by a one

dimensional Simpson's rule procedure as for program SCATFAC, and
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the numerical differentiation was carried out by a backward
difference procedure, and was similar to that used in program

EXTINCT (Appendix 1)).

The function FZ(R) had more physical significance than
FI(R) and was therefore investigated more fully and in particular
to determine its stability for small amounts of reciprocal space
information. The analytic hydrogen wave function for the ls state

as given in equation 2.1.10 and the 3s state given by

1 18r 2r2
Ve = ——75 (2T - —+—) e
3s 81/31ra03 2 a ag

-r/3ao

were used. In each case, the scattering factors were determined
from the wave functions and FZ(R) was calculated by equation
2.1.9. Finally, the radial density distribution was calculated

by equation 2.1.7. The radial probability density distribution
calculated from the ¢1s wave function is shown in Figure 2.2.(b).
The distribution is fairly broad and spread out a little more than
the distribution expected, for example, for low atomic number atoms
in the solid state. The FZ(R) function was calculated for inte-
gration limits S of 1, 2 and 38-1 in equation 2.1.9. The three
curves obtained are shown in Figure 2.2 (a), and are identical
within the accuracy of the graph. The distributions obtained

from each are identical within the accuracy of the graph to the
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probability density distribution shown in Figure 2.2(b). The
ability of the Fz(R) to handle extremely spread out distributions
was then tested in the case of the hydrogen 3s state., The radial
probability density distribution is shown in Figure 2.3(b). This
is an extreme test of the type of distribution that might be
expected for the valence electron of a metal crystal such as sodium,
where, although the core electrons may be distributed inside

about lg, the valence electron distribution may be spread out

over W4f if there is no solid state distortion of this distribu-
tion (see Figure 2.4(b)). The FZ(R) function for the hydrogen

3s state was determined for a very small numerical integration
limit of § = .0587!, and is shown in Figure 2.3(a). The distribu-
tion obtained from it is shown in Figure 2.3(b). The FZ(R)
function has no obvious termination ripple, nor does the radial
density distribution. The latter, however, does not have suffi-
cient resolution to show the three peaks in the probability
distribution and indeed was not expected to show this because the
FZ(R) function was calculated in the region 0 to 48 with only 18
resolution, and elsewhere with only 0.58 resolution. However, the
distribution peak 1s at the radial distance expected and the width
is also as for the probability distribution. At this stage it
appeared that the method provided stable values of FZ(R) and also
gave a good method for determining the radial density distribu-
tion provided that the F2(R) function was calculated at sufficient

points.
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A final check was obtained by calculating the function
FZ(R) from the numerical Hartree and Hartree (1948) wave functiouns
for the sodium 3s electron for integration limits S of (a) 62-1,
(b) 1.48-1 and (c¢) .643-1. These last two values correspond to
the edges of the MoKu and CuKareflecting spheres respectively.
The resultant curve is shown in Figure 2.4(a). The difference in
the curve for case (b) from that for case (a) was less than .1%Z,
and for case (c) less than 1%. The corresponding density distri-
butions were obtained and that corresponding to case (c¢) is shown
in Figure 2.4(b) together with the radial density distribution
obtained from the wave function. The density distribution for
cases (a) and (b) were almost identical to that calculated directly
from the wave function. A calculation of the radial demsity
distribution using equation 2.1.2 with an integration limit of
.648_1 yielded an identical curve to that in Figure 2.4(b)
obtained from the F2(R) curve calculated with the same integration

limit.

It can be concluded that the function F2(R) is, as expected,
more stable to limited reciprocal space information than the dis-
tribution function given by equation 2,1.2. A radial density
distribution curve may be calculated from FZ(R) and will give
similar results to that calculated from equation 2.1.2 provided
FZ(R) is calculated at sufficient values of R to give the resolu-

tion required.
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The sensitivity cf the F2(R) function to different types of
scattering factor curve may be ascertained from calculations, for
example, on the 0" iom in Mg0. The 0" ion is unstable in the free
state; it is stabilised by the crystal field. There has been
interest in the past in the way the 0 1is bound in Mg0 (e.g. Togawa
(1965), Raccah and Arnott (1967) and Sanger (1969)). Two theore-
tical determinations of the 0 scattering factor have provided the
basis for the analysis of experimental data in most cases published.
The first of these scattering factor determinations was calculated
by Suzuki (1960) for an 0" ion artifically stabilised at the centre
of a sphere of uniform charge +2. The second was calculated by
Tokonami (1965) from a variational wave function for 0= in Mg0
specifically. It was suggested by Tokonami that the charge distri-
bution in this second case is slightly contracted. Calculation of
FZ(R) functions for the two scattering factor models gives an
indication of the sensitivity of the function to different reci-
procal space information, The difference between the two sets of
scattering factor values is only about 5%. The calculated FZ(R)
functions are shown in Figure 2.5(a), where an FZ(R) curve calculated
from the relativistic Hartree~Fock atomic scattering factors for
oxygen of Doyle and Turner (1968) is presented also for comparison.
A model picture for the two ionic electroms in the 0 ion is given
by Figure 2.5(b), where curve (a) represents F2(R) (Suzukli) -~

FZ(R) (Doyle and Turner) and curve (b) represents FZ(R) (Tokonamt) -
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FZ(R) (Doyle and Turner). (Sanger (1969) has shown using the
formalism of Dawson (19672) (section 2.3) that there is no evidence
of distortion of the ion from spherical symmetry. The FZ(R) method
is, then, a valid way of representing the distribution). It can be
seen from Figure 2,5(b) that there is a considerable difference in
the two curves despite the small difference in scattering factor.
Indeed, there is a difference of almost half an Angstrom, for

example, in the radius of the sphere which encloses 1.6 electrons.

In summary, the function FZ(R) is much more stable for small
amounts of reciprocal space information than the radial density
distribution determined by equation 2.1.2. A radial density dis-
tribution may be determined from the FZ(R) function via equation
2.1.7, provided sufficient values of FZ(R) are generated to gilve
the required resolution. This distribution is, however, no more
stable than the distribution determined by equation 2.1,2. The
FZ(R) function 1s particularly sensitive to small changes in the
scattering factor curve. This function may therefore be useful for
simple structures where a relation such as 2.1.1 exists, or for
compounds where charge transfers or charge distributions are of some

significance,

An example of the use of the function with experimental
scattering factors is in the case of aluminium, where several
authors have shown that the low angle scattering factors are not in

agreement with calculated Hartree-Fock values. The function FZ(R)
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was calculated for the three valence electrons for aluminium, The
experimental distribution was determined by using the difference
between interpolated values of the measured scattering factors of
Raccah and Henrich (1969) and of the theoretical A1+++ scattering
factors of Freeman (1959). A theoretical distribution for compari~-
son was calculated in a similar way from the Al and AI'H'+ scattering
factors of Freeman. The two curves are shown in Figure 2.6. The
experimental distribution is narrower than the theoretical one and is
pushed further out from the core. It might be argued that the curve
is a mathematical consequence of the interpolation procedure used
between g = 08-1 and the first reflection. This is partly true for
that part of the distribution at distances greater than about 1.58,
but that part of the distribution inside about 1,58 is determined

by the difference in experimental scattering factor from the

theoretical value and so is real.

This method would provide an easy, rapid and sensitive means
of determining relative distributions for, say, the alkali metals
in a variety of bonding states, provided the scattering factor
curves could be obtained from the observed structure factors. For
example, the fully lonised state would be represented by NaCl. The
scattering factors for sodium are obtained from the structure

factors by solving by interpolating the equations

Flep = 4y * £)
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where the plus sign is applicable for h,k,l all even and the minus
sign for h,k,1 all odd (Brill (1967)). The virtually unionised
state would be represented by, for example, the clathrate structure
of Nagsi, . (Rasper et al. (1965)). 1In between would be various
organic compounds (for example, the cryptates (Truter and Pederson
(1971))), minerals (for example, the alkali silicates (Bragg and
Claringbull (1965))), alloys and possibly protein structures, Given
these distributions it should then be possible to predict the
behaviour of the electrons in various types of bonding states.
Comparative studies of this type have recently been carried out on

the second row hydrides (Cade et al. (1969)).

2.2 The Crystal Field and Determination of Real Space

Distributions: Summation Methods

If an electron density distribution is required for atoms
which cannot be regarded as being spherically symmetric, that is,
there are anisotropic features in the structure factors, themn the
use of the integral functions may lead to misinterpretation of the
information present. In this case a summation method must be used.
The most usual is that given by

1l 4= |
p(x,y,2) = ;-i:i F(hkl) exp I =271 (hxt+ky+lz) e (2.2.1)

-=00
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where V is the volume of the unit cell, and x, y, z are the frac-
tional coordinates of the point in the unit cell at which the

density is being determined.

Equation 2.2.,1 suffers from termination errors. These may be
reduced by taking a difference demsity or by using extrapolated
values of the structure factors beyond the experimentally observ-
able range. Each of these latter methods, however, involves some
assumptions about the structure factors beyond the observable range

of data, and as a result may give rise to misleading information.

There are two similar methods for using as little extrapolated
information as possible, and reducing the series termination error.
These are to find the average density in a small cube of side §
centred at the point x,y,z in the unit cell, or the average density
in a sphere of radius 6, centred similarly. In each case § 1s
measured as a fraction of the lattice parameter. The first procedure
was suggested by Calder et al. (1962) in determining the charge
transfer in LiH and described more fully by Weiss (1966) for LiH

and Mg0. The average density can be expressed as

] o
o (x,y,2) = — LIE F(hkl) exp [-27i(hxtky+lz)]
V hkl
Sinwhé Sinmké Sinnl$

x ( ) ( ) ( } v..(2.2.2)
nho Tké 718
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Here, the normal expression for the electron density has been
Sina

modified by the Lanczos smoothing factor *in three dimen-
sions. This procedure is actually an application of the use of
Lanczos smoothing factors in the suppression of the Gibbs phenomenon
in Fourier series. Physically, the Lanczos factor as used in three
dimensions in equation 2.2.2 represents the Fourier transform of a
cube of side § centred at the origin. This means that for small §,
the smoothing function is spread out, and the error in p is still
large. Alternatively, as § gets larger, any non-spherical details
in the density will be lost. Hence a compromise must be reached
which 1s just wide enough to admit the available scattering data,

that is, having a fairly large box, and applying a much broader

smoothing function corresponding to a much smaller box size.

The second procedure, introduced here, is to find an average
electron density over a sphere. This is a better approach to the
smoothing of reciprocal space data than the box of Calder et al. and
Weiss, because the spherical symmetry of the transformed smoothing
function is a better approximation to the shape of the atom than the
box. The average electron density over a sphere is given by

_— l o
p(x,y,z) = ;-ﬁii F(hkl) exp [-2wi(hxtky+lz)]

== 0D

3(Sin(2wR) - 27R Cos(2mR))
X eee(2.2.3)
(2."-R)3 R
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where R = 6(h2+k2+12)8. Similar comments on the size of the sphere

apply here as in the case of the average density in the box,

We now see that the expression for the average density over a
sphere of radius & bears a close relation to the function F2(R).
It has been shown that FZ(R) represents the total number of
electrons inside a sphere of radius R, thus the average density over

the sphere will be

F,(R)

P(R) = ce.(2.2.4)

4 o3
3 ™R

Thus we have series and integral analogues for finding average
densities in a sphere. As has already been remarked, these may
find some use in determinaticn of charge transfers etc.. in structures,

for example, similar to LiH.

2.3 The Effect of the Crystal Field in Reciprocal Space

Although chemical crystallographers traditionally are inter-~
ested in real space distributions,involving such things as charge
transfers in bonding etc., and therefore are interested in transforms
of the type discussed in the previous two sections, the search for
purely crystal field effects may be better carried out in reciprocal

space (e.g. Kurki~Suonio (1968)). Dawson (1967a) has described a
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general structure factor formalism to account for crystal field
effects. Its use for diamond and fluorite structures has been
described by Dawson and others in a series of papers. This formalism
was found to be suitable for the analysis of the sodium data, and

is outlined below.

The effect of the crystal field is to change the atomic pot-
ential function. This in turn can have two effects. The first is
that the electron density distribution may be distorted from the
spherical symmetry usually assumed for the free atom state, and the
second 1s that the atomic vibrations become anharmonic. The effect
these have on the scattered intensities can be taker into account

using the following general formalism due to Dawson (1967a).

The structure factor may be expressed in two forms, thus

F(S) = zfj(é)Tj(é) exp Zni(é.gj) .. (2.3.1)
3
and F(ﬁ) = A(é) + iB(g) ee0(2.3.2)
28in®
B
Here |8] === «e.(2.3.3)
A

fj(é) is the X-ray atomic scattering factor for the jth atom, and
Tj(ﬁ) is 1ts temperature factor. Now fj(g) and Tj(§) can be further

separated into centrosymmetric and antisymmetric parts, thus

£4Q) = £, @) +if, (R ee.(2.3.4)
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Tj(ﬁ) = Tc,j(é) + iTa,j(é) «e(2.3.5)

This leads to

A(S) = E(E.T,~€,T,); Cos2mg.py = (£,T+,T )Sin2ng.k,
3 -

e (2.3.6)

where the notation has been shortened in an obvious way. There is

a corresponding term for B(E).

it is convenient to note here that for neutron diffraction, the
X-ray scattering factor must be replaced by the isotropic neutron
scattering length bj. There is no possibility of separating bj as
for fj in equation 2.3.4 and no possibility of observing electron

density distribution distortionms.

1f the symmetry of the particular structure, i.e. sodium, is now
taken into account, it is found that because each atom has centro-
symmetric m3m point symmetry, the terms B(g), fa and Ta are all zero,

and the structure factor becomes

F(é) = A(g) = ;chc COSZ"E'Ej eee(2.3.7)
As a consequence of the centrosymmetry, there 1s no possibility of
finding "forbidden" reflections as in the diamond structure, because
these can only arise from cross-combinations of antisymmetric
scattering terms with centrosymmetric vibrational terms and vice

versa.
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The two effects of the crystal field on the centrcsymmetric
scattering and vibrational factors in sodium will now be considered

specifically in (a) and (b) below.

(a) The crystal field may distort the electron density from the
normally assumed spherical shape. This can be taken into
account by expanding the electron density in terms of
functions having the expected symmetry of the structure. For
bee sodium, there are eight nearest neighbours in the <111>
body diagonal directions. The density is expanded in terms of

functions which point toward the eight nearest neighbours, thus
P, = Pg +(Spc’4 ee+(2.3.8)

where Gpc 4 is a fourth order anisotropic correction term to the
9

normal spherically symmetric demsity B;. This transforms to

fc = fc + ch’4 ...(2.3.9)

where again, Efc 4 is a fourth order anisotropic correction
?

term to the normal spherically symmetric f;. The term ch 4
s

can be represented as
ch’A = A(e’¢) X <j4(4“8r)> 'l'(2.3l10)

where A(8,$) has directional properties and <j4(4nsr)> is

the expectation value of the fourth order spherical Bessel
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function with respect to some wave function which depends on
the function used in expanding the density. Dawson (1967b)
has expanded the density in terms of Kubic Harmonic functions

which give the form

<j, (4mr)> = bn(-1)*[ ) r?(lexp(-or"))3, (4nsrYdr
... (2.3.11)

Weiss (1966) uses a slightly different approach in using

<j,(4msx)> = [ R2(r) j (4mst) dr ... (2.3.12)
where R(r) are the radial wave functions for the electron
shell being distorted. This latter approach will now be

developed more fully.

The orbital part of the charge density is expanded in terms
of a simple function that points in the eight <111> directions,

thus

(xy) 2+(x2) 2+ (yz)?
p v 14u ) ... (2.3.13)
(x2+y2+22) 2

where o is an adjustable constant that depends on the aspheri-
eity. 1If this is converted to spherical coordinates and the
scattering factor calculated in the usual way as

Sin(4msr)

f(s) = < ————u-> eee(2.3.14)
4msr
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where the wave function used is

¥ (x,0,¢) = 2rrR(x)E(6)2($)

SineB
where s = x

R(r) is the radial part of the wave function and E(8) and

¢(¢) are the two angular parts, the result is

%—Aﬂj4(4ﬂsr)>
f(s) = <j0(4wsr)> - s .o (2.3.15)

1+Z-(;

where A is given in terms of the Miller indices h,k;1 as

3 (h*+k*+1%) - 9 (h2k2+h?12+k212)
A= ...(2.3.16)
(h2+k2+12)2

and

<), (4rsr)> = Io 4wr2Rz(r)jn(4ﬂsr) dr ... (2.3.17)

The jn(Ansr) are the spherical Bessel functions (see Appendix 1),
where
Sin(4rwsrx)
j (4msr) = ———
o

4msr
Thus it can be seen that in equation 2.3.15 above <j0(4ﬂsr)>
is the familiar scattering factor for a spherically symmetric

charge density, which is modified by the crystal field by the second
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term

%— A<j, (4nsT)>

15
14 I
If o is 0, the charge density is spherically symmetrical and

the scattering factor is given by the usual equation.

Similar expansions to that in equation 2.3.13 can be set up to
give charge densities pointing in the other directions in a
cubic crystal. The scattering factor calculated as above will
always be given in terms of the expectation values of the
spherical Bessel functions, the parameter a, and a directional

function similar to A.

The effect of the crystal field on the atomic potential may
alter the vibrations of the atom from harmonic to give some
anharmonic component. This phenomenon has been examined by

Willis (1969), as follows.

The potential for harmonic vibrations is parabolic in terms of
the atomic displacement, but the anharmonic factors can be
taken into account by expanding to higher orders. Truncating

at fourth order terms gives the potential for the Kth atom as

= Lo r2 4
VKﬁul,uz,uB) V0 + 50T -+ BKuluzu3 + Yg¥

by gl -%r‘*) ...(2.3.18)

L
+ GK(u1 + u, 3
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where

and Uy, Uy, u, are the components of displacement g from the equili-
brium position. 1If the atom is at a centre of symmetry BK = 0,
This leads to a general expression for centrosymmetric temperature

factor given by

-Q%k T Y 21 2 Y
T = Nyexp( ) {115k, (—%}+10(kBT)2(—) (—%}(nzﬂchﬂ)
*k %K % %

3 - 4 (K 2512412412
-3 (—) (—;) (h2+k2+12)

a o
o K

2. Ok 3
-(kBT)3(——}‘*(-4—l;) ftat- ¢ (h2H3412))}

a
o c"K

«ee(2.3.19)

where

N = (1-15K,T (512{-) )-‘1
K

a, is the lattice parameter, and the other symbols have their usual
meanings. If the vibrations were harmonic, then Yg = GK = (0, and

the temperature factor reduces to the familiar

T, = exp(—%Q2u§)
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Sin2o
- exp(— B -————E} ...{2.3.20)

22
Thus the additional terms which occur in the temperature factor for
anharmonic erystals are either isotropic in reciprocal space with
magnitudes determined by Ygs ©OF anisotropic with magnitudes deter~

mined by SK.

I have applied this theory of anharmonicity to the specific
case of sodium in order to separate the anisotropic and isotropic
thermal vibrations. The animotropic features can be observed in
intensity measurements at a single temperature, but the isotropic
features can be observed only for intensity measurements at several
different temperatures. Since the atoms in sodium are all in identi-
cal symmetry positions in the lattice, the subscript K will be

dropped in the following. Now putting
A = N{1-15k T(L)+10( )2 (31}2 1133 (h2+k2+12)
"B 02 kB a, o

27 Y
-(kBT)3 (—)" (—)} (h24x2412)2} ... (2.3.21)
a th'
o
2m L 8
Y= Dt (3 ()
a Of.q
s}

where Y is a constant at constant temperature T,

D = hi+k441Y -% (02+k2+12)2
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then
SinZe, YD
T,=Aexp (-B—7—) (1- ;—) .o (2.3.22)

If the isotropic anharmonic parameters are fairly small, the
factor A can be taken into account as a small change AB in the

harmonic Debye temperature parameter B thus

SinzeB}

Tc = exp (- B” "

(1 - PD) «e.(2.3.23)

where B“ = B + AB

Y
and P A

The temperature factor can now be written in a similar way to

the scattering factor as in equation 2.3.9 thus,

Tc = Tc + 6Tc,4 ers(2.3.24)

where now, GTC 4 is a fourth order correction term for anisotropic
»

anharmonic vibrations only, whilst T: is not a harmonic Debye

temperature factor, but involves isotropic anharmonic factors.

Now equation 2.3.19 is not in a convenient form to enable a
calculation of the relative magnitudes of § and a to be made. This
can be done however if the Debye parameter is expressed in terms of
the temperature explicitly by using the "quasi-harmonic" approxima-

tion as follows (Willis (1969)).
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If the crystal expands on heating, it is assumed that there is
a relative reduction in the frequencies of the normal modes of
vibration proportional to the relative change in volume of the
crystal thus:
Aw Av
— —YG—-E-—‘YGXT .on(2-3t25)
w v
where w represents frequency, v volume

Yg = Gruneisen constant,

and ¥ = volume coefficient of expansion.
This yilelds
Tc (quasi-harmonic) = Tc (harmonic) (1+2YGXT) e.+(2.3.26)

This is equivalent in terms of the previous symbolism, to assuming

a temperature dependence of parameters ¢, v,6 of

o

— I

|.<

= -§—== 1 - Z'YGXT .00(2.3-27)

% Yo %

where a is the value of o for no expansion, and it is assumed that
ZYGxT<<1. The expression for the exponent of the Debye-Waller
factor for a cubic monatomic solid can then be written as

1

v 2 )
2w = (-é-;) (n24k2+12) (a—o—) pT
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2w 2y
+ (O e (5 @n?
a a k
o oB
27 20y
- (9 mzaca) | 3 (kBT)2
aO aOS
2n_y 2y
+ (;—) (2424122 (=) ()’
(o} (o]
27y 1 126o 3
- () G224p21246212- SN+ - ) (kD)
a 5a
(o] (o}

...(2.3.28)

If we now apply this expression to the case of sodium, and assume

that in equation 2.3.23 PD << 1, we can rewrite that equation as

Sin%0, :
*) exp ("'PD) ae 0(203129)

T = exp {- B
(o4 P( )\2
(The assumption that exp (~PD) ~ (1-PD) is in fact quite reasonable

even for a relatively highly anharmonic solid such as sodium).

If we now equate the anisotropic parts of the exponents as given
by equatioss 2.3,28 and 2.3.29, and substitute for D, we have

Elou
s EEF

—_— . P

a: (eyT)

3 ... (2.3.30)

The effect of the crystal field on the scattering and vibrational
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parts of the structure factor, as summarised in equations 2.3.9
and 2.3.24, can be inserted in equation 2.3.7 to give

F(8) = (?c + 8f 4) (Tc + 8T, ,) cOszn(,g.;gj) ... (2.3.31)
j L] 9

Ignoring the product of the two § terms, anisotropic features in the
structure factor can arise from cross-combinations of isotropic

scattering and anisotropic vibrational terms or vice versa.

Now 5fc,4 and 6Tc,4

an ajustable parameter from the experimental observations and since

currently can be found only by determining

the symmetry produces the same directional effect in each case, there
is no way of determining from the experimental observations which
of the two possible effects is present. That is, an arbitrary

judgement must be made.

Distortions of the electron density distributions have been
claimed to have been observed for the 3d outer electrons in bee V
(Weiss and De Marco (1965)) and also bec Fe (Weiss (1966)). The
measurements were made at room temperaturz and GD was found to be

323°K for V. The electronic configuration of V is .....352, 3p6,

3, 4s2 and of Fe is .....332, 3p6, 3d6, 482-

3d The 33 electrons are
the least tightly bound in each case, the binding energy being
n10eV. In this case anisotropic anharmonic contributions to the
Debye-Waller factor were considered to be negligible on the basis of

Maradudin and Flinn‘s (1963) estimates of such a contribution in
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lead at T ~ BD. However, Wolfe and Goodman (1969) suggest that

the anisotrxopic contribution to the Debye-Waller factor is
considerably larger than the estimate of Maradudin and Flinn, and
might in fact be observable. In the case of diamond, where the
binding energy of the bonding electroms is also ~ 10 eV, it is
considered by Dawson (1967b) that the distortion of the binding
electron density 1s the cause of the observed "forbidden" structure
factor 222. The possibility of observable anharmonic effects is
considered to be very small because the large value of the Debye
temperature for diamond (OD ~ 1800°K) implies that the atomic
vibrations will be smell and essentially isotropic at room tempera-

ture.

On the other hand, anharmonic vibrations are claimed to be the
cause of anisotropic features in neutron diffraction measurements
of UO2 and Can which have fluorite structures (Dawson, Hurley and
Maslen (1967)). As noted previously, there is no possibility that

electron density distribution distortions are being measured if

neutron diffraction is used.

In general, anisotropic features in the structure factors will
probably be due either to anharmonic vibratioms 1f T > GD, or to
distortions of the bonding electron density distribution for low

angle reflections.
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2.4 The Contribution of the 3s Electron to the Structure Factor

for Sodium

Interest has been shown in the last few years in the effect
of the crystal field on the valence or bonding electrons in metals.
Aluminium has been one of the most extensively studied metals in
this respect, and it has been found that the lowest angle scattering
factors have values about 47 lower than calculated values from
theoretical free atom wave functions (e.g. Raccah and Henrich
(1969)) and Medlin, Dingle and Field (1969) have showm that the
radial density distribution for the three valence electrons in solid
aluminium more closely approximates a theoretical distribution
calculated from the pseudopotential data of Harrison (1966) than
that calculated from the Hartree-Fock wave function for the free

atom.

The situation in sodium is more difficult because there is only
one valence electron per atom and only two atoms per unit cell.
The free atom scattering fartor for the 3s electron in sodium was
calculated from the wave function of Hartree and Hartree (1948),
and is shown in Figure 2.7. It can be seen that the contribution
to the free atom scattering factor for the lowest angle reflection
in sodium (the 110 reflection) is in fact slightly negative. This
makes it unlikely that any sclid state effects on the 3s electron
in sodium will be observed by X~ray diffraction techniques; but not

impossible, since the effect in aluminium was sufficilent to reduce
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the scattering factor for the first few reflections below both the

free atom scattering factor and the neon core value.

In view of other evidence (Section 1.2) that sodium can of all
metals be most nearly described by the free electron thecry, it is
unlikely that there would be a large solid state effect even if it
were observable. On the other hand, the radial density distribution
calculated for the valence electron from the Harrison (1966)
pseudopotential data for sodium (see program PEDNA, Appendix 1)
gives a different result from that calculated from the Hartree and
Hartree (1948) wave functions. The two are shown for comparison in
Figure 2.8. It should be possible to determine a golid state con-
duction electron demsity distribution from the momentum distribution
determined by ‘Phillips and Weiss (1968), but the experimental

uncertainty is probably too large to give meaningful results.

Although the 3s electron contribution to the sodium
structure factors is likely to be unobservable, much additional
information on the properties of sodium in the solid state can be,
and indeed, has been found by a study of all the available X-ray

diffraction data.



o (r) (ello\)

l.rrr2

0.7

0-5

o
w

0-1

— —— —

CALCULATED FROM  HARRISON

CALCULATED FRCM HARTREE
WAVE

FUNCTION.

PSEUDO - POTENTIAL.
AND  HARTREE

RADIAL

PROBABILITY

DENSITY DISTRIBUTION FOR

Na 3S ELECTRON.



49.

CHAPTER 3

INTENSITY MEASUREMENT PROCEDURES

This chapter presents a discussion of the accuracy required,
and obtainable by various experimental techniques to observe
crystal field effects on diffracted intensities. The techniques
used in crystal growth and recording and measuring the relative

intensities are also presented.

3.1 Accuracy of Theoretical Scattering Factors and Experimental

Techniques

It has been shown (e.g. Raccah and Henrich (1969)) that the
crystal field effect on the valence electron distribution in metals
is only a few percent. Crystal field effects of other types may
also produce relatively small changes in structure factor (e.g.
Dawson, Hurley and Maslen (1967) on anharmonic vibrations). Thus

{t was necessary to try tc achieve the best accuracy available.

In any determination of relative experimental scattering
factors, the final values will be influenced to some (generally
undetermined) extent by scaling procedures. Accordingly it is
necessary to know the accuracy of the theoretical free atom scatter-

ing factors used and also to have some insight as to how they
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night depart from the experimental solid state values.

Absolute experimental measurements by Chipman and Jennings
(1963) have verified that Hartree-Fock free atom scattering factors
for the inert gases are accurate to about 1% over a range of

Sin6 -
: B up to 0.48 1. It has been supposed in Section 1.3 that the

relativistic Hartree-Fock free atom scattering factors of Doyle and
Turner (1968) are the most accurate calculations of their type to
have been published. 1t has been shown in Section 1.3 that the
author's free atom scattering factors calculated from the wave
functions of Hartree and Hartree (1948) for sodium are in excel-
lent agreement with those of Doyle and Turnmer. It may be concluded,
therefore, that relativistic effects are not significant. Free
atom scattering factors accurate to 1% calculated from Hartree

and Hartree wave functions have therefore been used in this work.

There has recently been considerable discussion on the
accuracy available in experimental techniques, and on the relative
merits of various techniques. Diffractometer techniques are
generally supposed to be accurate to ~l%, Young (1969) has
reviewed the advantages and disadvantages of precise counting
techniques, while Jeffery (1969) has reviewed evidence for an
accuracy of 1% in photographic intensity recording. However, the
report on inter-experimental agreement of the Single Crystal
Intensity Measurement Project (Abrahams et al. (1970)), which was

carried out on crystals of D(+) - tartaric acid using a wide range
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of diffractometers and techniques, states that "two scaled experi-
mental sets of structure factors, measured under circumstances
similar to those of the project will most probably differ by 6%,
agree no better than 37 and usually no worge than 10% except in
cases of extreme systematic error'. A cautious generalisation
might be that it is improbable that any set of experimental
structure factors will be accurate to 1%, however precise are the

measurements.

One of the particular problems in recording intensities from
sodium was the rapid falloff in intensity at higher angles due to
the large thermal motion of the atoms. This required long record-
ing times for higher angle reflections. It will be shown (Section
5.7) that sodium crystals may undergo internal mosaic changes
when dipped in liquid air and may subsequently anneal at room
temperature. This highlights one of the advantages of the photo-
graphic technique in that reflections are recorded virtually
simultaneously, giving easy recognition of deficiencles in either
crystal or apparatus. The photographic technique is also useful
in that it allows some errors to be avoided easily, for example,
multiple diffraction errors. These are particularly important in

a very high symmetry crystal 1like sodium (Section 4.1).

It appeared that the photographic intensity measurement method

outlined by Jeffery (1969) of photometry of integrated Weissenberg
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photographs taken with CuKu radiation was precise to 1Z. It
appeared also that photographic methods had some advantages in the
present case. It was decided to measure the relative intensitiles
by the method of Jeffery, using an integrating Weissenberg camera
for recording and a Joyce-Loebl recording microdemsitometer for
measurement of the intensities. The experimental requirements

for accurate X-ray intensity measurement by photographic means
were reviewed by Jeffery and Whitaker (1965). Their suggestions
on the stabilisation of the X-ray source, operation of the inte-
grating camera, integrating limits, multiple diffraction and

processing and photometry of films have been used.

It was decided also to measure absolute intensities for
several reflections. The method described by Burbank (1965) was
found to be the most suitable for the type of crystal available and
was used for the work described in Chapter 6. The intensities in
this case were recorded on a horizontal diffractometer with a

proportional counter and pulse height analysing equipment.

3.2 Crystal Growth

Small single crystals of sodium have been grown by a number of
experimenters. Andrade and Tsien (1937) and Weymouth and Soepano
(1962) have grown crystals from the melt using cylindrical glass

moulds. Spherical crystals have been grown at the Division of
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Tribophysics of the C.S.I.R.0., by very slow cooling (Michell
(1968)). Dawton (1937) grew crystals by methods similar to both

those above.

Since sodium is very reactive and oxidises rapidly on
exposure to air, some form of protective coating is necessary.
This is normally of regular shape such as  spherical or cylindri-
cal to allow easy correction of the intensities for angle
dependent eﬁfects. The optimum diameter of 2/u, where u is the
linear absorption coefficient, is 0.64 cm for sodium, scattering
MoKa radiation, and 0.68 mm for scdium scattering CuKd radiation.
However, crystals of < .5 mm diameter were required to comply with
the assumption of the kinematical diffraction theory that the

whole width of the crystal is bathed In the beam.

Initially spherical crystals were grown under 'Vaseline'
petroleum jelly by the method of Michell. They were then packed
in petroleum jelly and mounted in gelatin capsules. The crystals
were unsuitable, however, since they oxidised over a period of a

few days.

Samples were then grown by slow cooling in capillaries drawn
from large bore, thin-walled soft glass. The technique was unsuit~
able because the samples were polycrystalline, and the capillaries
were impractical because the bore and wall thickness could not be

made adequately uniform, and there was heavy diffuse gcattering
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from the glass. Capillaries made by coating a wire with liquid
perspex were also unsuitable because the sodium oxidised when in

contact with the perspex.

Finally, crystals were grown in commercial Lindemann glass
capillaries designed for X-ray work (Siemens Cat. No. 176346).
The diameter was 0.5 mm and the wall thickness 0.01 mm. The
capillaries were found to give only small background scattering
relative to the intensity of the Bragg reflections after long
exposure. All the crystals used in the project were grown from

69.9% pure sodium supplied by Koch, Light Laboratories Ltd.

The final technique for the preparation of single crystals
was as follows. The capillaries were first cleaned with chromic
acid, rinsed with distilled water, and dried over a flame and in a
desiceatow.. A few cubic centimetres of sodium were cut from a
slab and the oxide coating removed. The sample was melted in a
bath of liquid paraffin. This fluid was chosen because it produced
the least rapid reoxidation of the freshly cut sodium of a number
of fluids suitable for the purpose. Molten sodium, with a liquid
paraffin covering, was drawn into the tube by means of an eyedropper
and clamp, the tube removed and cut to a suitable length. The ends
of the tube were then sealed in a flame. It was found essential
to leave an air gap between the sealed end of the tube and the
1iquid paraffin protecting the crystal. Otherwise, when the

crystal was mounted on 2 set of goniometer arcs, the mounting
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cement was found to be able to mix with the liquid paraffin,

causing rapid deterioration of the crystal.

Generally the specimen was polycrystallipe at this stage. It
was made to crystallise by drawing axially from a bath of paraffin
0il held at a temperature a few degrees above the melting point of
sodium. The bath was open to the atmosphere, thus a travelling
temperature gradient was produced. Initially this procedure
produced polycrystalline specimens. Honeycombe (1959) has suggested
that better crystallisation is obtained using this type of technique
by reducing superccoling at the solid-liquid interface. This can
be done by increasing the temperature gradient and reducing the
drawing rate. Satisfactory single crystals were grown by reducing
the drawing rate to 2.2 cm/hour. This rate is comparable with the
rate of 2.4 cm/hour used by Weymouth and Soepano (1962) in a

similar method.

3.3 Aligmment of the Crystals

Transmission Laue diffraction patterns of the crystals were
photographed, using white radiation from a copper target. A
stereographic projection was made of the resulting pattern, and
sets of Bragg reflections belonging to zones of planes in the
crystal were found. These reflections, and themn all other .Bragg

reflections in the pattern were indexed.
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Also clearly visible on the films were patterns of diffuse
scattering and diffuse "extra reflections' due to thermal motion

of the atoms,

If 21l the Bragg reflections were indexed unequivocally, and
did not display evidence of internal structure, the specimen was a
single crystal. The stersographic projection showed which of the
three main rotation axes for a cube, <001>,<110> or <111> was
nearest to the cylinder axes. The gonilometer arc settings were
then adjusted to give approximately that rotation axis, and the
final adjustment wds made by the "double oscillation” procedure of

Davies (1950},

Weymouth and Soepano (1962) considered the possibility of
preferred orientation im becc crystals and in sodium in particular,
and concluded that their cylindrical sodium crystals were more
frequently oriented close to <111> than <110>. It has been this
author's experience, however, that the reverse was more likely to
be true, with a few crystals being oriented near an <001> axis.

The relative distributions of orientations probably depend on the
methods and conditions of growth of the crystals, such as the speed

of travel of the temperature gradient.
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3.4 Preliminary Observations

It was immediately apparent that there was a very rapid
falloff of intensities with Bragg angle. At room temperature, non-
integrating exposures of the order of 12 hours were required to
record all the reflections in the CuKu limiting sphere (14 indep-
endent reflections). However, non-integrating exposures of up to
64 hours in MoKa radiation at room temperature produced only about
12 of the possible 112 independent reflections in the MoKu limiting
sphere. In addition to the already low definition of the higher
angle reflections, background scatter from the glass capillaries

became excessive at these long exposures.

It was supposed initially that the limited number of
reflections obtained with MoKa radiation was due in part to the
Lorentz-polarisation effect as GB approached 450, in which case,
the use of a shorter wavelength such as AgKa radiation would have
been beneficial. Calculations showed, however, that the falloff
in intensity was due rather to the high B factor produced by the
large thermal vibrations in the solid. This can be seen from
Table 3.1 where the intensity reduction factor Lp due to Lorentz-

polarisation effect in MoKa radiation and that due to thermal

motion (e-M) is given for various reflections. Here e-M = e‘ZB
Sin2gp
-K§—~—-where the value of B used was 5.3, calculated from equation

1.4.1 on the basis of the harmonic theory, for temperature T = 90°K,

and assuming the Debye temperature eD = 150°K.
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It i1s apparent from Table 3.1 that even at low temperatures
there is considerable thermal motion of the atoms. This was con~
firmed by using a low temperature attachment on the Weissenberg
camera. Various exposures were taken with temperatures as low as
120°K with a total of 5 crystals. (It was impractical to consider
very low temperatures due to the martensitic transformation of the
crystals observed by Barrett (1956)). The following observations

were made:

(a) There was a 'permanent' increase in intensity of the low
angle reflectioas.

(b) The shape of the reflections on the photograph became very
irregular on cooling, indicating change in the mosaic
structure of the crystal,

(c) There were still heavy thermal diffuse scattering
stresks at low temperatures.

(d) Long exposures were still required to record the high

angle reflections.

It was found that the number of Independent reflections
obtained with MOKa at the lowest temperatures was 16, or two more
than were obtalned with CuKa radiation at room temperature. In
view of the small gain in observable reflections, which indicated
the essentially similar vibration properties of the solid at low

temperatures as at room temperature, and the greater complexity of
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TABLE 3.1

Lp AND THERMAL MOTION FACTORS

Reflection gjl_ Lp
110 .75 8.5
200 .56 6.0
211 42 4.9
220 .32 4,2
310 24 3.8
222 .18 3.4
321 .13 3.2
400 .10 3.0

et .075 2.8
420 .056 2.6
332 142 2.5
422 .032 2.5

43t .024 2.3

510
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low temperature recording, it was decided not to measure the

intensities at low temperatures.

Xerographic recording of the X-rays was tried in an effort to
increase the definition of the high angle reflections. Some
success with this technique had been reported by Wolfe (1969). An
ordinary piece of xerography paper was sensitised and a flat
transmission Laue exposure of a sodium crystal was made. This was
then developed in the usual way for xerographic paper. Several
further exposures were made, varying initial charging voltage on
the paper, type and length of developing and amount of exposure.
Lead-barium sulphate screens were also used to try to reduce expo-
sure time. However, although the technique was capable of detecting
X-ray reflections, only a few of these were actually recorded, and
the definition was much inferior to that obtained with ordinary
film. Although this technique has scope for development, it was

not considered further here.

A proportional counter was set up on a Unicam S-25 goniometer
to determine whether counter techniques might be expected to give

better definition. No evidence of greater definition was found.

Milledge (1969) has discussed the problem of poor definition
in film techniques with particular reference to small crystals.
One solution suggested was the use of intensifying screens, or some

similar high sensitivity recording system such as that afforded by
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Polaroid film., Unfortunately Polaroid film does not as yet produce
a transparent negative directly suitable for densitometry.
Milledge, however, reported good results with Ilford Industrial A
film and Dupont "Lightning Special" screens in conjunction with
MoKu radiation; but CuKu radiation did not produce encouraging

results.

As Dupont screens were not immediately available, Ilford Fast
Tungstate screens, which were recommended by Ilford for use with
Industrial A film, were used as a comparison with the normally
used Industrial G f£film. The results were unsatisfactory because in
general the definition at high angles was greater for Industrial
G film than Industrial A filu with screens, and the exposure time

was not greatly less for the latter case.

It was decided therefore to measure all the reflectiomns
available at room temperature using the integrating camera and

Industrial G £ilm.

3.5 Intensity Sets

Six sets of intensitiles were reccrded from two different

crystals. Details are given in Table 3.2,

Four film packs were used for each exposure, with black

wrapping paper interleaved between each film for CuKu radiation,
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TABLE 3.2
Set Crystal Rotation Radiation Exposure
Axis time/layer
1 1 <001> CuKu 24 hrs
2 1 <001> MoKa 48 hrs
3 2 <001> CUKa 24 hrs
4 2 <210> CuKa 20 tirs
5 2 <210> MoKa 24 hrs
6 2 <001> MoKd 24 hrs

and 0.05 mm tin sheets between each film for molybdenum radiation.
This produced film factors of about 4 and reduced fluorescent

radiation between films.

3.6 Apparatus; Developing and Handling of Films

A self-rectifying X-ray set with standard interchangeable
Philips tubes was used for intensity sets 1 and 2, The tubes were
run at 45 Kvp and 22 mA., All the other sets were recorded using a
constant potential unit operated at 40 Kv and 20 mA. The input
voltage for both these sets was supplied from a Stabilac M5000
voltage stabiliser with a rated stability of + 1%. After allowing

the stabiliser about an hour to warm up, the voltage and current
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outputs could be held with no mpticeable long term drift.

The Weissenberg goniometer used for all six sets of intensi-
ties was a Unicam § 35 model, but the integrating camera was
designed and built in this laboratory by Dr. E. H. Medlin. This
camera produced a series of ten step-shifts about the axis of
rotation of the crystal for each of a series of ten step-shifts
along the axial direction. One shift about the axis of rotation
occurred each time the camera translarjonmechanism reversed
direction. The amount of the step~shift could be adjusted in each

case.

The film used throughout was Ilford Industrial G, the developer
Il1ford Phen-X and the fixer Ilford Ilfofix. All films were devel-
oped at a temperature within 1°¢ of 20°C for five minutes or its
temperature equivalent. The films were washed for about one minute,
fixed for 5 minutes and finally washed in running water for 20-30
minutes, and allowed to dry in the open air. All layers for each

set of exposures were developed together under the same conditions.

3.7 Densitometry

The measurement of relative intensities was carried out on a2
Joyce~Loebl Mark IIIC Automatic Recording Microdensitometer. This

was a conventional two beam ilnstrument, with a null balance
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obtained by a linear density wedge. The recording table and film
table were driven at relative speeds determined by the variable
ratio arm between the two. Three wedges were used. Most of the
densities were measured using the A or 0-0.5D wedge, but a few of
the most dense reflections were measured using the B or 0-1.0D
wedge or the D or 0-2.0D wedge. The measured densitles were never
greater than 1.2D up to which point the film density versus X~ray
intensity curve is linear (Jeffery (1969)). The ratio of recording
table to film table movement used was 50 to 1, and the objective was
a 20 x lens, giving a magnification of 44 times. The final slit

width was 0.5 mm, giving a resclution of 11 microns.

There were two modes of operation of this densitometer. The
first gave a differential forward movement of the recording table
depending on the rate of change of amplitude of the pen. The second
gave a uniform motion of the recording table, which allowed a
measurement of the area under the traced curve by recording an
integrated, digitised pen amplitude over the scan. This latter

mode was used throughout.

The instrument was capable of reproducing readings to an
absolute value of * %% for the more dense reflections. Each
reflection and its background level were recorded twice and the
final intensity was the average of the two. One or two reflec-

tions with unremoveable background interference were discarded,
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otherwisé 411 available reflections were recorded.

The wedges had been calibrated by the manufacturer. To put
the densities recorded with the B and D wedges on the same scale
as those recorded with the A wedge, the density of a suitable
reflection was measured several times with each wedge, and an
average taken. The ratios of the wedge densities found, and those

listed by the manufacturer are listed in Table 3.3.

TABLE 3.3
Wedges Manufacturer Experimental
B:A 2.1 2.08
D:A 4.1 4.12

To determine the accuracy of the densitometry method, a
reflection with medium density in the A wedge range was measured
13 times. Each time the film was moved away from its reading
position, so that the errors involved were the random errors of
trying to reposition the film at exactly the same position coupled
with the errors due to the accuracy of the machine itself. The
result was a density of 100.0 arbitrary units with standard devia-
tion 3.5 units and standard error .86 units. This means, using

Student's t test, that the mean density will be 100 % 1.85 at the
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95% confidence limit, for 13 samples.

3.8 Diffraction from Other Alkali Metals

It has been stated in Section 1.1 that sodium was the only
alkali metal suitable for X-ray diffraction investigation. The
reasons for this should be stated here. Firstly, the thermal motion
of the atoms is large as indicated by the low Debye temperature.
This vibrational motion increases with atomic number. It might be
expected therefore, that for alkali metals with Z > 11, there
would be even less observational information than for sodium, and
extinction would be greater. On the other hand, the optimum
diameter of 2/u for a lithium crystal is greater than 5 cm for
Cugu radiation, and so the diffraction from a crystal of ~.5 mm
would be weak. For these reasons this work concentrates on a
careful analysis of diffraction data in sodium. An understanding
of this metal should lead to informed speculation about the behav-

iour of the other alkali metals in similar bonding configurations.
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CHAPTER 4

MEASURED INTENSITIES: CORRECTION FACTORS

Values of measured intensities, methods of correcting for
various effects and values of the correction factors will be
presented in this chapter. In general only results for set 3 will
be presented, the other results being given in Appendix 2, Set
3 has the lowest calculated errors, but on the other hand shows

the least effect of anharmonic vibration.

4.1 Multiple Diffraction

It has been pointed out in recent years (e.g. Jeffery and
whitaker (1965), Yakel and Fankuchen (1962) and Zachariasen (1965))
that the recording of intensities using equi-inclination geometry
about any symmetry axis, and in particular about a crystal axis in
a cubic structure, leads to the condition of multiple diffraction.
For the particular case of a cube rotation axis, this involves all
reflections on non-zerc layers. Jeffery (1969) has suggested a
simple way to overcome this difficulty by deliberately offsetting
the equi-inclination angle by about %0. This procedure was used

for all non-zero layers for all six sets of intensities.
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4,2 Film and Layer Scaling Factors

In all cases, least squares film factors were calculated
from the measured intensities by program AUFAC, whilst the least
squares layer factors were caleculated by program AULAC after the
intensities had been corrected for spot shape, Lorentz-polarisation,
absorption and TDS effecte. Programs AUFAC and AULAC are very
similar, both being extensions of the SUFFAC least squares scale
factor program coded by G. L., Paul. The two programs were adapted
for the crystallographic program library of Adelaide Unilversity by

Dr. M. R. Snow of the Physical and Inorganic Chemistry Department.

4.3 Spot Shape Corrections

It is well known (Phillips (1954)) that spots on upper layer
equi-inclination photographs are extended on one half of the film
and contracted on the other. The usual procedure for dealing with
this problem for rotations about a symmetry axis, where reflections
of a particular type occur on both sides of the film, is to find

the harmonic mean intensity I , given by

ZIEIc

I = vee(4.3.1)

i}
IE+Ic
where IE is the extended spot intensity and Ic the contracted

spot intensity. On the other hand, if the rotation axls is not a
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symmetry axis, reflections of the same type may not be present on
both sides of the film. In this case the mean intensity Im is given

by

Im = Io(l X CosBB) eee(4.3.2)

where Io is the observed intensity and K is an empirically deter-~

mined correction factor (Rollett (1965)).

After film factor scaling, symmetry related reflections from
each side. of the film were averaged and the mean intensity from
both sides of the film determined by equation 4.3.1 for intensity
sets 1,2,3 and 6 where the rotation axis in each case was a highly
symmetrical cube axis. In the case of intensity sets 4 and 5 where
the rotation axis was a nonsymmetrical <210> axis, equation 4.3.2
was used to determine the mean intensity from both sides of the

film.

The measured relative intensities after film factor scaling

and spot shape correction are presented in Table 4.1,

4.4 Lorentz-Polarisation Corrections

Corrections were made for the Lorentz and polarisation effects
simultaneously. The Lorentz correction factor, which takes into

account the way the reciprocal lattice point hkl passes through



TABLE 4.1

RELATIVE INTENSITIES AFTER FIIM FACTOR SCALING AND SPOT

SHAPE CORRECTIONS

Set 3
Reflection Layer 0 Layer 1 Layer 2
110 4251,5 3963.8
200 2237.7
211 948.5 1316.2
220 637.2 603.7
310 303.8 237.4
222 163.8
2l 78.4 89.5
400 50.8
( 330 35.4
g 411 22.7
420 20-9 20.0
332 13.3
422 8.6
( 431 6.1
2 510 5.7 5.1

521 5.0 5.1
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the reflecting sphere is given in the case of equi-inclination

geometry by

E Cos@y

where £ is the radial cylindrical coordinate of the reciprocal
lattice point in the usual notation as given by Intermational
Tables (1959). The polarisation factor takes account of the
polarisation of the incident beam, If this radiation is unpolar-
ised, the polarisation factor p is given by
1+C03226B
P
2

The total effect can therefore be taken into account by multiplying
the observed intensities by the factor

1 ZECOSQB

(1p) "~ =

1+Cos29B

A program was written to carry out this procedure.
The offsetting of the equi-inclination angle could involve

corrections to the intensities of up to about .85%. These were

ignored on the grounds that they are insignificant in this case.
4.5 Absorption Corrections

Zero layer absorption correction factors A* are tabulated as
a function of uR and OB for cylindrical crystals in International

Tables (1959). Here, u is the linear absorption coefficient, R is
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the radius of the crystal, and 6, the diffraction angle. These can

B
be modified for upper levels of equi-inclinatlion Weissenberg photo-
graphs by putting uSecv in place of u and y/2 in place of Y

Here, v 1s the equi—inclinati&n angle and y 1is the angle between
the projection of the incident beam and the projection of the

diffracted beam on the cquatorial plane of the reflecting sphere,

and is given by

sin L = Sec v /(51076 -51n?V)
2

The values of p for sodium for both CuKa and MoKd radiation
were calculated from values of mass absorption coefficient u/p

tabulated for various wavelengths in International Tables (1962).

A program was written to interpolate the tabulated values of A%

for the present work and is briefly described in Appendix 1.

For both crystals used, the cylinder axis was inclined at a few
degrees to the rotation axis. The absorption corrections calcu-
lated as above were therefore slightly inaccurate, but calculations

showed that this inaccuracy was 3% at the worst, and was ignored.

Since MR was ~.7 for a cylindrical crystal of radius ~.23 mm,

the absorption factor for CuKu was n3, and for MoKu wag ~l,
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4,6 Thermal Diffuse Scattering Corrections

Thermal diffuse scattsring (TDS) has been recognised over the
last few years as one of the major sources of error as yet uncon-
sidered by crystallographers in systematic correction procedures
(e.g. Willis (1969)). A number of authors have presented success-
ively more sophisticated treatments (e.g. Nilsson (1957), Annaka
(1962), Schwartz (1964), Cooper and Rouse (1968), Rouse and Cooper
(1969) and Lucas (1968, 1969, 1970)), Most of these have attempted
to correct for TDS in terms of a correction VB to the isotropic

Debye parameter B.

Lonsdale (1942) however, first pointed out that the TDS
pattern for sodium is extremely complex, largely due to the elasti-
cally anisotropic nature of sodium. Thus any correction for IDS in
this metal must take into consideration this anisotropy and will
not be applicable as an adjustment to the isotropic Debye parameter,
butmust be calculated for each independent reflection. The only
one of the above methods which does this is that of Rouse and Cooper
(1969), Their treatment is for 6 =26 or w scans on a diffractometer
and depends only on knowing the way the reciprocal lattice point
passes through the reflecting sphere, that is, the volume of
reciprocal space swept out as the reflection passes through the
reflecting sphere, and the scattering cross-section, which is
derived from the elastic constants. The most accurate clastic

constants for the case of sodium were those given by Martinson
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(1969), and these were used for this correction procedure.

The geometry of equi-inclination photographie procedures is
associated with the geometry for w scans. Thermal diffuse scatter-
ing corrections for photographically recorded reflection intensi-
ties have been discussed by Annaka (1962). He used the width of
the spot in each direction as the''receiving 8lit'" on the film.
Accordingly, unintegrated Weissenberg photographs were taken with
both copper and molybdenum. radiation. Densitometer traces across
the film and from top to bottom taken under the same conditions as
for intensity measurement gave a measure of the "aperture" height
and width respectively. These readings were averaged for two
separate spots. The spot sizes were found to be approximately
linear with BB, and a straight line was fitted by means of a least

squares routine.

The theory outlined by Rouse and Cocper is as follows. If IO
is the integrated Bragz intensity, then the total integrated

intensity may be written

I= Io (L+a, +0, + ...)

1 2

where s az etc. are the contributions of TDS for one-, two- etec.
phonon scattering. Values for @, etc. can be found by determining
the differential scattering cross-section in each case and inte-

grating over the solid angle swept out in the scan.
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A program to calculate the first order anisotropic thermal
diffuse scattering correction oy by the method of Rouse and Cooper

was written and details are given in Appendix 1.

The calculated. correction factors (1 + al) for set 3 are
tabulated in Table 4.2. The procedure for set 3 was slightly dif-
ferent from that for the other five sets. The correction factor a
will vary from layer to layer as the mauner in which the reflection
passes through the reflecting sphere and hence the swept volume
varies. For set 3, spot sizes were measured for each layer and
separate correction factors calculated for each layer on the basis
of these spot sizes. (In order to save computing time this pro-
cedure was simplified for the other data sets by using correction

factors calculated from the zero layer spot sizes only).

4.7 Layer Scaling

Values of the measured intensities for sets 3 and 4 after
application of Lorentz-polarisation, absorption and TDS corrections
are given in Table 4.3. It was initially planned that sets 3 and
4 and sets 5 and 6 could be layer scaled together, giving two sets
of two-axis data for the second crystal, each at a different
wavelength, This was done using the layer scaling program AULAC
for sets 3 and 4, but it was immediately obvious that the two sets

of data could not be put on the same scale. This can in fact be



TABLE 4.2

IDS Correction Factore (l+u) used in Correcting

Relative Intensities

Set 3
Reflection Layer 0 Layer 1 Layer 2
110 1.0166 1.0218
200 1.0358
211 1.0632 1.0431
220 1,0748 1.0589
310 1.0814 1.0931
222 1.0769
321 1.0973 1.0785
400 1.1501
( 330 1.1107
g 411 1.1206
420 1,1263 1.0955
332 1.0708
422 1.0916
( 431 1.1468
g 510 1.2316 1.0981

521 1.1000 1.1120
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TABLE . 4.3

Averaged Intensities after Correction for

Lorentz-Polarisation, Absorption and TDS

set 3
Reflection Layer O Layer 1 Layer 2
110 7017 .4 4720,8
200 5527.9
211 2796.8 2718.2
220 2567.5 1815.8
310 1330.1 995.5
222 708.1
321 385.3 418.6
400 242.3
( 330 166.6
2 411 104.6
420 87,81 82.98
332 49,12
422 28.58
( 431 13,78
E 510 12.35 12.02

521 4.364 4.317
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TABLE 4.3 (Continued)

Set 4

Reflection Layer O Layer 1 Layer 2 layer 3 Layer 4

110 761.3 420.7 496.6
200 827.87 454.9 309.9
211 751.0 622.8 433.5 425.4
220 333.0 325.9
310 305.2 196.7 242.5
222 155.5
321 208.0 148.8 109.1
400 109.0 75.72
( 330 47.41
E 411 67.38 39,22 35.62
420 48.91 33.00 30.18
332 28.31 20.28 18.25
422 20.66 9.067
( 431 7.292 5.093

(
( 510 5.372 4.181 5.125
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seen directly from Table 4.3, where the order of magnitude of
intensity difference between the two sets for the 110 reflection

is about 10, while that for the 431-510 pair is about two. The
six data sets were then treated as separate sets, and layer scaled
using AULAC assuming that symmetry related reflections on different
layers were identical. Sets 3 and 4 were internally consistent

when layer scaled in this way.

4.8 Anomalous Dispersion Corrections

The phenomenon of anomalous dispersion, which is due to the
interaction between the frequency of the incident radiation and
any natural absorption frequencies of the scattering atom, can be
taken into account as follows (after James (1965)). The atomic

scattering factor may be written as
f=1£ + Af' + 1af"

where Af' and Af" are the real and imaginary frequency dependent
parts of the scattering factor, and f0 is the frequency independent
scattering factor for no interaction of the incident and absorbing
frequencies. For the correction of intemsities, this may be

written as

|£]2 = (£, + 0E")2 + (AE™)?
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and a first order correction for relative intensities is made by

nultiplying the observed intensities by the factor

f2
(2]

oo (4.8.1)
(£ +of' )2+ (AE")2

where f0 is the calculated Hartree-Fock scattering factor,

Values for Af' and Af" have been calculated by Cromer (1965a)
from relativistic Dirac-Slater wave functions for a number of
elements for five wavelengths, including CuKa and MoKu. Although
the wave functions used throughout this work for the calculation
of scattering factors are Hartree-Fock type, there would be negli~
gible difference in the values of Af' and Af" calculated from these

wave functions than those calculated from the values of Cromer.

The values of Af' and Af" given by Cromer for each wavelength

and used in the correction procedure are given in Table 4.4.

TABLE 4.4
CuKa MoKﬁ
Af! .12 .04
Af" 14 .04

The values of Af' and Af" are relatively insensitive to changes
Sin6p

in » and are taken as constants.
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A program to calculate the correction for anomalous dispersion

for each reflection as given in equation 4.8.1 was written,

The values of the anomalous disgpersion correction factors
applied to the relative intensities for CuK.Ol and MoKu radiation
respectively are given in Table 4.5. The values of the intensities
for set 3 after layer scaling and anomalous dispersion corrections

were applied are given in Table 4.6,

The observed intensitles have now been processed to the stage
where they can be related with thecretical data for the deter-

mination of thermal parameters and solid state effects.



TABLE 4.5

Calculated Anomalous Dispersion Correction Factors

Reflection

110
200
211
220
310
222
321
400
( 330
2 411
420
332
422
( 431
E 510

521

Applied to the Relative Intensities

ggKa Radiation

97311
.96989
. 96667
.96338
»96001
.95658
.95312
«94963
.94613
.94613
.94264
.93916
.93571
.93231
.93231
.92564

ygxd Radiation

.99098
.98988
.98880
.98768
»98653
.98536
.98418
.98299
.98179
.98179
.98059
.97939
.97820

.97702

82.



TABLE 4.6

Intensities after layer Scaling and Correction

for Anomalous Dispersion

Set 3
Reflection Intensity
110 6177.9
200 5361.5
211 3458.4
220 2326.5
310 1250.5
222 860.0
321 481.5
400 230.1
( 330 157 .6
5 411 128.7
420 89.74
332 57.95
422 33.59
( 431 16.69
E 510 13.24

521 5.184
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CHAPTER 5

DEBYE PARAMETERS:

ANHARMONICITY AND EXTINCTION: ERRORS

In this chapter are preesented details of the determination of
the Debye and anharmonicity parameters, and information about the
atomic potential which can be derived, a discussion of extinetion,

and an estimate of the experimental errors.

5.1 Wilson Plots

The experimental structure factors Fo(hkl) can be determined
from the observed relative intensities I(hkl) if these latter can
be put on an absolute scale by finding the scaling factor K and the
Debye parameter B in the expression

- 2
2BSin GB

I(hk1l) = KF2 (hkl) exp (TJ ..o (5.1.1)

As pointed out in Section 1.4, the methed chosen for the
determination of B, and the scaling of the intensities was that
first described by Wilson (1942) and used here in the following

form.
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It 1s assumed that the Fo values are sufficiently similar to
the Fc values that the parameters K and B can be determined using

the equation

—2351n29B
I(hkl) = KF2 (hkl) exp (—————3) e (5.1.2)
c )\2
Here Fc(hkl) is the structure factor calculated from the Hartree—-
Fock spherically symmetric free atom wave function, and related to

the X-ray scattering factor by
Fc(hkl) = 2f (hkl)

for a single atom beec lattice (see equation 2.1.1). Equatiecn

5.1.2 can be written as

ZBSinzeB

1n(1/F2%) = 1nK -
Cc }\2

Sin%g
Thus a plct of ln(I/Fi) versus -—Xy—g should yield a straight line
with a slope of 2B and an intercept of 1lnK. These values of B and
K can then be used to calculate values of Fo(hkl) from equation

5.1.1.

A least squares program was written to calculate structure
factors and B and K parameters by this procedure.
Sin%o

A plot of 1n(I/F§) versus 2' for set 3 is given in Figure
A
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5.1, The vertical bars indicate the estimated experimental errors.

The errors will be discussed in Section 5.6.

5.2 Anisotropy of the Intensities

It was obvious from the Wilson plots, such as that for set 3
in Figure 5.1, that there was considerable anisotrcpy in the
intensities. As seen in Section 2.3, such anisotropy features may
be due either to electron density distortions or to anharmonic
vibrations of the atoms. The error bars in Figure 5.1 indicate
that the anisotropy is due to one of these causes and is not merely

the result of inaccurate measurement.

Taking the anharmonic vibration theory first, equation

2,3.23 gives a temperature factor of

-B'Sin%0,
T, = exp (""‘;‘“‘“—) (1-PD) oo (5.2.1)

A

where

D = h*+ K%+ 1% - %—(h2 + k2 + 12)2
and P 1s an anharmonicity parameter.

Using the value of B' determined by the least squares Wilson
plot procedure described in Section 5.1, a value of P was found

from a least squares fit of F1 to the Fo'a obtained from the Wilson
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plot procedure, where

F, = Fc(l - PD)

1

These values of F1 were then used to recalculate B' using the
Wilson method, and the procedure was cycled to find further values
of B' and P until convergence was reached. This was generally

after 2 - 3 cycles.

On the other hand, such anisotropic features could have been
due to distortions of electron density from spherical. From equation

2.3.15 and using the notation of Section 2.3, this can be described

by
1
F#<j, (4msz)>
£(s) = <jo(4nsr)> - vee(5.2.2)
e
4o
where 3 (h*He*+1%) =9 (h2k2+h21 24k 21 2)
A =
(h2+k2+12)2

and a is a parameter describing the extent of the distortion.

Sind
3 at which the anisotropy is apparent,

At the values of
only the core electron demsity could contribute to the anisotropy
via such a mechanism as that above, since the valence electrons do
not contribute to the scattering at such high angles. It was
assumed in the present case that because the experiment was carried

out at a high temperature relative to both the Debye temperature and



88.

the melting point, and because the least tightly bound electrons in
the sodium core are the 2p6 electrons which are still relatively
tightly bound at A39eV, that most of the anisotropic effects were
due to the anharmonic vibrations rather than the clectron density
distortion. However, to provide a compariscn, a least squares
value of o was calculated for each data set, using the final value
of B' obtained for each data set from the cyclic determination of B'
and P described above, and assuming P = 0, that is, nocne of the

anisotropy was due to anharmonic vibrations.

3.3 Debye and Anharmonicity Parsmeters

As outlined in Sections 5.1 and 5.2, the Debye parameter . B'
and the anharmonicity parameter F were determined simultaneously
by alternate application of least squares procedures. This method
was convergent for sets 1 to 5, TFor set 6 the method was not
convergent. However, only four reflections were available in this
set for the least squares fitting procedure. In this case arbitrary
values of B' = 8,50 and P = ~-10 x 10—4 were applied and gave a

reasonable fit.

The values of the Debye parameters and scaling factors and
their respective standard errors determined from the least squares
Wilson plot procedure for each set are given in Table 5.1. Also

given in Table 5.1 are the anharmonicity parameters P for each set.
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TABLE 5.1

Debye Parameters, Scaling Factors and their Standard

Errors, and Anharmonicity Parameters

Set B a k 4 RGO
1 8.48 .30 474.3 90.2 ~9.83
2 8.95 .34 39,10 8.81 -19.2
3 7.86 .12 92.53 6.62 -7.01
4 7.54 .46 41.57 11.13 -9.37
5 7.97 .56 1.923 .506 -11.19
6 8.50 44.56 -10.

The average room temperature value of B' obtained from the
values derived from sets 1 to 5 is 8.16 * .25. This must be
regarded as being more accurate than the value of 10.2;:; read
from a graph given by Dawton (1937) because the thermal atomic
vibration effects of TDS and anharmonicity were unknown and uncor-
rected for at that time. It must also be regarded as being more

2 given by Geshko et al. (1968).

accurate than the value of 6.2;:
The work of these latter authors was done using the 200 reflection
from a polycrystalline sample. It was assumed that no extinction

was present because the sample was initially dipped in liquid air.

However, in the present single crystal case, the 200 reflection

intensity 1s considerably affected by extinction even after the
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crystal had been treated with liquid air. This can be seen from
the Wilson plot for set 3 in Figure 5.1. It seems unlikely that
extinction would have been totally removed in the polycrystalline

case merely by dipping the specimen in liquid air.

If we assume that it makes physical sense to calculate a
harmonic Debye temperature at room temperature from the isotropic
B' value of 8,16 * ,25 for what is obviously a highly anharmonic
solid, the Debye temperature value obtained is 134 % 2°K. This is
considerably lower than Debye temperatures listed in Table 1.2,
Section 1.6, but as remarked in that section, this is consistent
with the experience of other authors for other metals, including

nickel and chromium.

The calculated anharmonicity parémeters P are listed in Table
5.1, They are all of the same magnitude, but the value for set 2 is
numerically about twice as big as the rest. The average value
for the first five sets is ~11.3 = 2.1 x 107, Equation 2.3.30
gives the relation between the anisotropic quartic anharmonic,
and harmonic parameters of the potential expansion. Substituting
the appropriate values for sodium gives

§

0 15.3ev73 R4
L v
aO
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5.4 The Structure Factors

The observed absolute zero structure factors Fo calculated
from equation 5.1.1 are given for set 3 in Table 5.2. Also listed
are Fc and Fl’ where these are as before. It can be seen that
overall, the observed structure factors more closely agree with the
F1 than the Fc. This is seen also in the values of the indices R

and Rl’ where these are

- §|Fc’j—Fo’j|
§|Fo,jl
and
. -ilFl,j_Fo.jl
;:lfo,jl

where the sums were taken over only the non-extinction affected
reflections J. The calculated effect of anisotropic anharmonicity
on the structure factor is a maximum of 15% for set 3, which has
the lowest calculated anharmonicity parameter. Also listed in
Table 5.2 are the calculated errors (GF) in the structure factors
Fo’ and the structure factors FZ' These are discussed in 8ections

5.6 and 5.5 respectively.



TABLE 5.2

Observed and Calculated Structure Factors

Reflection

110
200
211
220
310
222
321
400

( 330

(

( 411
420
332
422

( 431

(

( 510

521

F
10.12
11.67
11.60
11.78
10.69
10.98
10.17

8.70
8.91
8.06
8.33
8.28
7.85
6.81
6.07

"5.82

Set 3

17.65
15.74
14.20
12.90
11.80
10.85
10.03
9.32
8.71
8.71
8.16
7.68
7.36
6.88
6.88

6.25

17.65
15.68
14.23
12.95
11.65
11.03
10.15
8.77
8.76
8.38
8.01
8.19
7.61
7.16
6.00

5.87

17.66
15.64
14,25
12.98
11.58
11.18
10.18
8.64
8.90
8.33
7.99
8.21
7.50
7.14
6.05

5.93

opf2)
2.2
3.3
1.9
2.1
1.7
3.3
1.6
2.7
2.6
2.0
1.9
5.4
2.9
2.5
2,8

2.3

92,
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5.5 Electron Density Distortion Approach

For comparison with the anharmonicity approach to the observed
anisotropies, the density distortion parameter & (Section 5.2) was
calculated for each set. Theee are listed in Table 5.3. These
parameters have no physical significance except that the sign of a
indicates that the distribution is distorted inwards along the
<111> directions and outward along the <100> directions. Again,
the parameters are all of the same order of magnitude, but vary by

a factor of up to 4 from smallest to largest.

The values of F2 and R2 are given in Table 5.2 for comparison

with the values F1 and Rl' Here F2 = 2f(s), where £(s) is given by

equation 5.2.2, and

AL
R, = 1
;;IFO,_,,I

where the summation is taken, as for Rl’ only over those reflections
j which are unaffected by extinction. From Table 5.2 it can be

seen that the values of F1 and F, are very similar. As a conse-

2
quence the values of R1 and R2 are almost identical. This result
does not mean that the electron distribution is distorted from
spherical symmetry, but rather that the time averaged electron
density produced by the thermsl motion is distorted inwards in the

<111> directions, or nearest neighbour directions, i.e. the atomic
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TABLE 5.3

Electron Dengity Distortion Parameter o

Set o
1 =7.74
2 -5.79
3 -16.7
4 -16.7
5 -8.57
6 ~22.1

vibration amplitude is greater in the <100> directions, or the

directions of the next nearest neighbours.

Table 5.4 gives the values of A, and <j4(4nsr)> as calculated

in program SCATFAC (Appendix 1) from the sodium 2p6 wave functions.

3.6 The Errors in the Structure Factors

The errors presented are standard errors calculated from the
spread in the measured intensities, and do not include any estimate
of the errors involved in calculating the parameters BR' and K.

The formalism is as follows. If observations xj, j=1,2 ,.....n
of a variable (the intensity of a reflection) are made and the mean

is E} the standard error is



TABLE 5.4

Values of Electron Density Anisotropy

Parameter A, and <j4(4wsr)> for Na 296 Electrons

Reflection A 534(5E§£li
110 -.75 .01196
200 3.0 .03993
211 -.75 .07588
220 -.75 .11510
310 1.65 .15484
222 -2.0 .19349
321 -.75 .23017
400 3.0 .26439

( 330 -.75 .29595
E 411 1.4722 .29595
420 .6 .32483
332 -1.7417 .35106
422 -.75 37479
( 431 -.75 .39615
g 510 2.4453 .39615

521 .85 43241
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1
g = (—_ z (x -x)z);! -.n(5o601)
n(n~1) j=l,n
Then the standard error of any function of a number of measured

means My, My «eewe M, .80 f(ml,m2 o5 afs 3 mn) is

af of f 5
o= 2+ (I a2+ .. (=) D% 6.2
omy om, om

where Ops Ty veees O aTE the standard errors corresponding to the
means Wy, My «cowo M respectively. These two relations form the

basis of the error estimation.

In calculating average relative intensities, the film factors
were calculated and applied to the intensities read from each four-
film-pack. Mean intensities and the standard errors were then
calculated by means of equation 3%.6.1 for each side of the film
from all symmetry related reflections of a particular type hkl.
Equation 5.6.2 was then used to calculate the standard errors in
the mean intensities after spot shape corrections were applied.
Similarly, equation 5.6.2 was used to calculate the standard errors
in the mean intensities after Lorentz-polarisation, absorption and
TDS correction factors, layer scaling and anomalous dispersion
corrections were applied. 1In calculating the errors due to the
layer scaling procedure, the errors in the layer scaling factors

were taken as the standard deviations of the scaling factors as
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produced by program AULAC. The Lorentz-polarisation, absorption,
IDS and anomalous dispersion corrections were assumed to be
absolutely accurate. The estimated errors in the structure factors
as in Table 5.2 are then just half the estimated errors in the

intensities.

The standard errors on and ok in the parameters B' and K
respectively obtained in the Wilson plot were determined from the

relations

2 2 2
fa. % %
n [xx] A

[da]
02 =
(n-2)

A = n[xx] - [x]?

where we are fitting the straight line
y=ax +b

to n points., The symbols 9, and 0, represent the standard errors

in the coefficients a, b respectively, dj represents ax, + b - yj

3

and the symbol [ ] represents I .
j=1l.,n
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The procedure for calculation of errors in structure factors
does not take explicit account of errors in film factors, but
these are implicitly considered in the spread in the intensity
values averaged after film factor scaling. Likewise, no explicit
account need be taken of the errors in the actual densitometering
process, provided these are smaller than the spread of errors in
the intensities. It has already been shown that these errors are
probably A2%, and since the standard error in the intensity spread
is in general greater than this, these errors are considered to be

implicitly accounted for.

The error involved in taking the Lorentz-polarisation correc-
tion as absolutely accurate is negligible because the cell spacing
is known accurately and all the relevant coordinates can be calcu-
lated to a much higher degree of accuracy than 1s available in the
data. Likewise there is negligible error in the absorption
correction, as it is relatively small, even for CuKu radiation. A

similar argument applies for the anomalous dispersion corrections.

It is more difficult to estimate errors in the TDS correction
because a number of assumptions are made. Firstly, the “"aperture"
used is taken as the size of the spot as determined by the least
squares fit of a straight line to measured spot sizes on film.
Secondly, it was assumed that second and higher order TDS scattering
was removed in the background, since these corrections are con-

siderably more difficult to compute than the already difficult first
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order correction. The largest error is likely to be in calculating
the volume of reciprocal space swept out in a scan. Correction
factors of up to 40% were calculated for sodium. But even 1if these
are in error by 10%, the greatest error in the corrected intensi-

ties will be 3% for the highest angle reflections.

Finally, the calculated errors (as in Table 5.2 for set 3 and
Appendix 2 for the other five sets) may be an overestimate of the
errors in the structure factors. This may be inferred from the
fact that on the average, the calculated errors are greater than

the index R1 for each of the sets of data by a factor of about 1k,

5.7 Extinction

For convenience, various relevant detalls of the intensity
measurement for the various data sets are tabulated in Table 5.5.
In this table, "Time Elapsed" for any intensity set means the time
elapsed between the measurement of that set and the previous set.
The extent of the extinction present for each data set can be seen

from Table 5.6 where the calculated extinction parameters

- ol
F .(l—PD )
c,i h]

73

have been tabulated. It can be seen that sets 3 and 4 could not be

scaled together as wag originally planned (Section 4.7) because
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TABLE 5.5

Experimental Conditions

Data Set Crystal Radiation Rotation Time
Axis Elapsed
1 1 CuKa {001} -
2 1 MoKd [001] -
k] 2 CuKu [o011] -
4 2 CuKu [210] 1 month
5 2 MoKu [210] 1 week
6 2 MoK [o01] 1 week
TABLE 5.6

Extinction Factor y

Reflection Set 1 Set 2 Set 3 Set 4 Set 5 Set 6

110 .07 .11 .33 .09 .10 .07
200 .10 .22 55 17 «23 .13
211 .19 W42 .66 .30 42 .23
220 .32 .62 .83 .43 $52 .33
310 .36 .63 .84 «52 .66 .48
222 .40 .78 .62 .70 72
321 74 74 .81

400 .66
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there was considerably less extinction present in set 3 than set 4,
This was due to the fact that the crystal was dipped in liquid air,
thus increasing the imperfections, before the recording of the set
3 intensities. 1In the interval between the two sets of data, the
extinction had increased markedly. Lonsdale (1948) has suggested
that the large thermal vibration of the atoms was respomnsible for
the "self-annealing” of sodium observed by Dawton (1937) as a
hysteresis in intensity with cycles of heating and cooling between
room temperature and the melting point (Section 1.5). The time
scale for this hysteresis was up to 3 hours. It is not unreasonable
to assume that a similar effect has been observed in the present

case over a time scale of geveral weeks at room temperature.

It 1s interesting to note that Feder and Charbnau (1966) dis-
covered an irreversible temperature effect in the macroscopic
expansion properties of sodium crystals when the sodium surface had
acquired a coating of oxide. Also it was found that isothermal
specimen shrinkage and growth occurred in sodium specimens after
heating and cooling respectively. The temperature range being
investigated was -25°C to the melting point, which was about the
same range as that observed to produce hysteresis effects in X-ray

intensities by Dawton.

There is, in fact, some evidence to suggest that the crystal

underwent further anmealing after measurement of data set 4. We
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expect the data sets measured with MoKa radiation to show less
extinction than data sets measured with CuKd radlation, 1f all
other conditions are identical. This is true for sets 5 and 2 when
compared with sets 4 and 1 respectively. However the difference in
extinction factors between sets 4 and 5 compared with the difference
in extinction factors between sets 1 and 2 is emall. This seems to
indicate that further amnealing took place in the week or so
between the measurement of data sets 4 and 5. Finally, the differ-
ence in extinction factors between sets 5 and 6, measured from the
same crystal with the same radiation, seems to indicate that
further annealing took place in the week or so between the measure-
ment of data sets 5 and 6. Thus it appears that sodium may anneal

at room temperature over a period of some weeks.

5.8 The Extinction Correction Program

As seen from Table 5.6, extinction was present in all intensity
sets recorded, and correction procedures were investigated. Recent
descriptions of extinction have been given by Weiss (1966),

Hamilton (1969), and Zachariasen (1967, 1968) with extensions to the
latter by Cooper and Rouse (1970). This latter method was suitable
for use with data collected at two wavelengths from a single eylind-
rical crystal, provided that the positional parameters of the atoms

in the unit cell were accurately known. As these conditions were
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fulfilled in the present case, this was the method used. It is
briefly outlined below, with a full description of the mathematics

and programming given in Appendix 1.

The assumptions of the Zachariasen method for a spherical
crystal are that the imperfect crystal 1s made up of spherical
mosaic blocks of mean radius r, with their orientation characterised

by the Gaussian function
W(A) = V2 g exp(-2w2g2A2)

It is assumed that the higher angle reflections are unaffected by
extinction, and average values of r and g are calculated from the
low angle reflections from two sets of data at different wavelengths.
These average values are then used to determine the corrections to
be applied to each of the sets of data. The Cooper and Rouse
modifications are firstly to take account of an angle dependence of
the extinction factor, and secondly to adapt the Zachariasen theory

for cylindrical crystals,

Zachariasen (1968) states that it may not be possible to
justify the assumption of isotropy of shape and orientation of the
mosaicdomains for some crystals. Hamilton (1969) has discussed ani~
sotropic extinction corrections. Cooper and Rouse (1970) point

out however, that such corrections may lead to misinterpretations

of other effects. Fhris-wouid—be—partienianriy-go—in—scdivny—ywhioh
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The case of sodium is particularly relevant here since considerable
anistropic effects other than extinction are present yet, because of
its elastically anisotropic nature, sodium might be considered likely
to display anisotropic extinction. Hamilton's method

was therefore not considered.

The Cooper and Rouse extinction treatment was applied to sets
1 and 2, and sets 4 and 5. The annealing previously described
prevented any corrections being applied to sets 3 and 6. Table
5.7 glves Fl’ the corrected observed structure factors for set 1,
F2, the corrected observed structure factors for set 2, and Fi and
Fé, the calculated Hartree-Fock structure factors with corrections
for anharmonicity. It can be seen that the corrected structure
factors are over corrected for the higher angle reflections and
under corrected for the low angle reflections to a marked degree
in both cases. It seems that the theory cannot handle heavy
extinction as is present in thls case. This is probably a conse-
quence that the physical assumption underlying the theory is
inappropriate. The real crystal is unlikely to ccmsist of small
spherical perfect crystal blocks, ' but this probably is a suffi-
ciently good approximztion where the number of imperfections in the
crystal is large, and extinction small. The calculated domain size
and spread parameters r and g respectively are 4.7 x 10"5 cm and
8.8 x 103 for sets 1 and 2, which support Zachariasen's statement

that "extinction effects will be very severe if r > 5 x 10'-5 c

3u.

m
and g> 5 x 10 It is also possible that the parameters r and g

calculated from the low angle reflections are inerror because the



Reflection

110
200
211
220
310
222
321

400

w
w
o

PN NN
o~
P
e

420
332
422
( 431

( 510

F

15.04
13.16
14.20
15.13
13.08
12.38
14.36
10.36
13.08
11,52
11.37
12.13
10,80
10.27

7.46

7.32

TABLE

5.7

7.71
7.26
5.64

5.72

105.
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extinction is anisotropic.

The results for sets 4 and 5 were similar.

5.9 Reanalysils of Dawton's Work

In view of the obvious anharmonicity showm by sodium in the
present case, it was thought worthwhile to reanalyse Dawton's (1937)
data on the temperature dependence of the intensities in sodium,
since this leads to information about the parameters in the poten-

tial expansion.

Dawton listed ratlos at three different pailrs of temperatures
of the intensities of the five reflections, 110, 200, 220, 310 and
400. The temperature ratios were 117/180°%, 117/291°k and 117/368°K.
The ratio of intensities at 117°K and 180°K was also measured for
the 440 reflection. Dawton showed that the data could be approxi-

mately fitted by an empirical formula of the type

2

I~ exp - (.04044T + 17.08 x 107°T2)Sin 0

T
lll(Slgll)
for molybdenum radiation, but no physical interpretation of this

result was made.

By comparison with equation 2.3.28, it can be seen that such

coefficients are related te the potential parameters @y Yo and
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60 . The intensities listed by Dawton were not corrected for TDS,
and insufficient is known about the experimental arrangement to
enable corrections to be made. It has already been seen that such
corrections are of considerable importance in the case of sodium,

and any determination of the potential parameters without this

correction will be approximate only.

Taking equation 2.3.28, the exponential of the Debye-Waller

factor at temperature T is given as

2W(T)

]

2'ﬂ'2 " 1
(;—) (h24k241%) (—) kT

o} aO

ZYG
(

+

2r 5 X

(4 (h2+k2412) ) (k)2
ao 0"OkB

2T o 20'Y0

(;‘9 (h2+2412) 3 ) Gy ve:(5.9.2)
o o}
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+ (—) (h2+k2+12)2(—;—) (k,T)°
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(o] 0

(Zﬂ)" Loy 1.4 1 12y

= U (h2k24n2 212 2 ple S o 2 qn 3

A L £ )( Sa“°) (k1)
0

where the symbols have the same significance as in Section 2.3.

Then, putting
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p(hk1) = h2k2+c212+h212- ZhY- b= J1
2n 2 1
a(hkl) = (—)° (02H22) (=) Ky
a0 aO
2% 2y %
b(hkl) = (——)2 (h24x2+12) (—) kp?
%o %*B
.00 (5.9.3)
27 20y
c(hkl) = (——)2 (02H2+12) () k2
a2 a3
o) (o]
2wy 2Yo
amk1) = () @*2)2(—) kB
a Gu
(o] o
2w L 12‘Y°
£(hkl) = (—} peakl) (—) k;®
a 5ot

o} (o)

we can write

I(T,)
In ( Z

)

- [a(hkl)(TZ-T1)+(b(hkl)-c(th)XT%—T%)
I(t,)

+ (d(hkl)~f (hkl)) (Tg-Tg)] vee(5.9.4)

where I(T) is the observed intensity at temperature T. Then
observations of ratios of intensities at three or more pairs of
temperatures will allow the coefficients a(hkl), b(hkl) - c(hkl)

and d(hkl) - f(hkl) tc be determined.
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Although Dawton has shown that his empirical formula 5,9.1 fits
all six reflections reasonably well, it was decided in the present
case to use the 400 reflection for computing the parameters since
the present work has shown that this reflection 1s the least likely
of the five to be affected by extinction. The values of the
parameters found using equations 5.9.3 and 5.9.4 and the values of

I(Tz)/ I(Tl) for 400 as given by Dawton are
o = ,6 eV 3_2
o
YO =—09 eV 8.—4
=4
60 =3, eV R

The value of

128 3 24

(

h°} = -47 eV~
Sac
is in qualitative agreement with the value of -37 ev™3 8% obtained

in the present work.

The value of the other parameters required in equation 5,5,2

were

a, = 4.2906 2 and

"Yd = 1,25

= 20.1 x 107 %1
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These latter two values were taken from Geshko et al. (1968).
Using the fact that for a cubic crystal
g2 = SinzeB/A2

h2+k2+12

m

4a?
o

the exponent of the Debye-Waller factor cam be written

W = 2.2 x 1072627 + 1.1 x 1026212 + 9.1 x 10 95212
. p -
~ 2.0 x 1077 g%° #——r % 7.5 x 10 743
(2ao)
no-(5-905)

where these terms correspond in oxrder to the terms given in equa-
tion 5.9.2. This formula corresponds reasonably with the empirical

formula of Dawton (equation 5.9.1) of

20 = 2.03 x 10 26T + 8.59 x 10

552T2

From equation 5.9.5 it can be seen that the second term, due to
thermal expansion only, is much smaller than the third term, which
depends on the fourth order potential parameter Yor Similarly,
the fourth and fifth terms, which depend on the fourth order
potential parameters Y, and 60 respectively, will become of the

same order as the thermal expansion term for values of sZT greater
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than about 50°K R-z, or about 120°K for s2 at the edge of the copper

reflecting sphere.

It seems then, that any explanation of anharmonic phenomena in
sodium crystals which merely uses the "quasi-harmonic' approach,
or merely includes the thermal expansion term only, is not likely
to give a very accurate account. TDS of order n will affect terms

in ™. The values of o, in particular will be smaller.

5.10 On the Determination of Low Angle Scattering Information

from Neutral Sodium Atoms

For reasons given in Section 2.4, there is little likelihood
of observing any contribution to the low angle Bragg intensities
from the 3s electron in metallic sodium. Even if it were not for
this reason, the particular vibrational properties of sodium, which
give rise to large extinmction and TDS, preclude accurate low angle
scattering data being measured., Any low angle X-ray diffraction
Investigation of bound sodium atoms would need to be undertaken for
a solid with a large unit cell, and where the sodium is loosely
bound, with virtually no charge transfer. Such a structure is that
of N388146 reported by Kasper et al. (1965). It is cubic, with
a=10.2 % and space group Pm3n. The eight scdium atoms are in

two sets of special positions, one atom at each of the equivalent

origin and body-centred positions, and six atoms at the % % 0 set



112.

of positions. The structure is an analogue of the gas hydrate
clathrate type structure 46 HZO.SM. In the present case, the two
types of sodium atoms occur at the centres of polyhedrsl cages of
sllicon atoms., The sodium~silicon distances are relatively large
at 3.5 R, which implies that the sodium atoms are uncharged.
Unfortunately, Kasper et al., have not refined the structure fully,
or given accurate observed structure factors. If accurate data
were available, it would be possible to investigate the scattering

from sodium atoms at two crystallographically non~equivalent types

Sind
- Boo.o7 871,

This 1s sufficiently small to enable a contribution from the sodium

of sites down to a lower limit in reciprocal space of

38 electron to be observed in the first several reflections.

This completes the main work based on the relative intensity
data. A supplementary set of absolute intensity data was measured

for comparison and is presented in the next chapter.
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CEAPTER 6

ABSOLUTE INTEGRATED INTENSITY MEASUREMENTS

6.1 Introduction

Absolute intensity measurements of X-ray diffraction from metals
have become more frequent in recent years, due to interest in solid
state effects. Most of these investigations have been carried out
on powders or thin crystal plates. However neither of these methods
is suitable for sodium because the type of specimen required can-
not be prepared. A method suitable for small single crystals was
that described by Burbank (1965). This, with some modifications,

was the method adopted by this author.

6.2 Outline of the Method

The method is for a crystal which is small enough to be com-
pletely bathed in the incident X-ray beam and has ideal mosaic
texture. The absoclute integrated intensity is then given by
(James (1965))

e , 1+C05226B

E
— =83 |F|2 () ————= av vee(6.2.1)
I

2
s me ZSinZBB

where E 1s the reflected energy
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w is the angular velocity of crystal rotation

I0 is the incident beam enegxgy per unit area and unit time
N is the number of cells per unit volume

A is the transmission factor

V is the volume of the crystal, and the other symbols have

their usual meanings.

Burbank (1964, 1965) has discussed methods of measurement of
absolute intensities from small crystals and has concluded that
certain conditions are most suitable. These arc that the crystal and
focal spot define the collimation, the spectral distribution is
determined by balanced filters and the 6-26 scanning technique is

used with relatively long wavelength radiation.

Accordingly, nickel and cobalt balanced filters were used with
copper radiation. The integrated iIntensities were recorded for the
zero layer using a 6-20 scan. The direct beam was measured using

a pin-hole and attenuators.

6.3 Apparatus

The work was carried out manually on a horizontal goniometer
with a Philips PW1010 constant potential generator. The counter
was a 20th Century xenon-filled proportional counter linked to
Ekco electronics, consisting of an amplifier,pulse height analyser

(P.H.A.), scaler, ratemeter and a chart recorder.
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The balanced filter foils, supplied by Goodfellow Metals Ltd.,
were 99.9% pure foils of nickel (0.0093 mm) and cobalt(C.01002 mm).
They were nominally balanced for CuKB at 107 transmission. Atten-

uation folls were aluminfum (5 mil) and aickel (0.75 mil).

The crystal 'viewed" the focal line of 10 x 1 mm as a spot at
a take-off angle of 6° through a pair of 3 mm circular apertures
in one of which was mounted one of the pailr of balanced filter
foils. These, as were the aluminium and a set of six nickel
attenuation foils, were mounted between two 1 mm thick lead strips
shaped to fit into the incident and diffracted beam tunnels in
place of the normal slits. The other nickel attenuating foils used
were mounted on brass holders such that they could be placed
perpendicular to the diffracted beam between the crystal and the
counter. The receiving aperture immediately in front of the
counter was a 3 mm square aperture in two 1 mm thick lead strips

mounted in the diffracted beam tunnel in place of the usual slits.

6.4 The Wavelength Spectrum

The wavelength spectrum was determined using the goniometer
as a spectrometer with an LiF crystal plate cut parallel to the

200 planes. The scanning speed was 4029/m1n.
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The amplifier and P.H.A., were adjusted to centre on the CuKh
peak, The effect of the P.H.A. can be seen in Figures 6.1 and 6.2,
where Figures 6.1(a) and 6.1(b) show the spectrum with no P.H.A.
for the Ni and Co filter foils respectively, and Figures 6.2(a)
and 6.2(b) show the spectrum with P.H.A. for the two foils res-
pectively. Wavelengths far from CuKa, in partieular the short
bremmstrahlung wavelengths, have been reduced. Figure 6.1 shows
also a slight imbalance of the foils at CuKB, and a small pesak
due to WLa contamination in the source. The imbalance was improved
by placing a v .75 mil nickel foil between the crystal and the
receiving slit for all measurements. The resulting wavelength
spectrum is shown in Figures 6.3(a) and 6.3(b). The CuK, and WLa

B
peaks have become negligible.

The spectrum was measured also with the aluminium attenuator
and each of the filter foils in turn in place to check that the
filter balance was not affected by the aluminium attenuator. The

results are shown in Figures 6.4(a) and 6.4(b).

6.5 Operating Conditions

There was an optimum voltage at which to work which gas
determined by the following statistical considerations. Suppose the
direct beam is measured with suitable apertures and attenuating

foils. I1f B and o are the direct beam intensities measured with
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the Ni and Co filter foils respectively, then the net count is

given by N, where
N=§f -oa
IfEgva, 8> N, a >> N, the error in N given by

o, = ¥YB+o

will be unreasonable, whereas if B > a, N~ B, N > a, the relative
statistical error will be much smaller. Burbank (1965) suggests an

optimum working voltage of 23 Kv for CuKu, with Ni and Co balanced

filters.

Values of B and a for direct beam measurements were obtained
at a number of voltages. Table 6.1 shows the ratio of B/a for

various constant potential accelerating voltages, with 30 mA current.

TABLE 6.1
Voltage (Kv) B/o
20 4.50
22 3.38
24 2.60
26 1.98
28 1.50

30 1.23
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The lowest available accelerating voltage of 20 Kv was used at
30 mA, because the measured B8/a ratio was highest for this voltage.
These and all other experimental conditions were kept constant

where possible throughout the experiment to minimise scale factors.

6.6 Counter Calibration

The overall dead time of the counter and electronics system
was required in order to estimate the'linear" counting range. The
following procedure was used. The LiF spectrometer was first set
to the CuKu peak. The count rate was then measured using from zero
to eight nickel attenuation foils of nominal thickness .75 mil.

It was assumed initially that because these foils were cut from the
‘'same strip of nickel, they were of the same thickness and therefore
had identical absorption coefficients. This was later verified
(Section 6.7) to a tolerance of 1.5%.

N

Values of ln(ﬁéi—} were calculated, where Nj is the count rate
with j attenuating %;ils in place. At low count rates (v300 cps)
the value of 1n(ﬁ$i—) had become constant at -.629, indicating that
dead time countiné_iosses were negligible., Using this comstant

value, values of N were calculated, where

¢,
N

Ne,i-17 exp(-.629)

A value of the dead time ¥ for a particular j wag then oBtained from

the usual formula
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1 -~ ﬁ‘iﬁ
S (.—cl.i)
N

An average value of T obtained from count rates up to 7000 cps was
* 7.38 usecs. This gives a '"linear" counting range to within 5% up

te 4000 cps. In general, maximum count rates used were below 2500 cps.

6.7 Calibration of Attenuating Foils

The attenuating coefficients of each of the eight nickel foils
used for the counter calibration (Section 5.6) were checked sep-
arately for CuKu. The average coefficient was found to be 1,92 #
.03 with a counting statistical error of 1%. It was concluded that

the assumption of identical thickness for each of the foils was wvalid.

The attenuation coefficient at CuKa of the .5 nil aluminium

foil was measured under a variety of conditions. The average was

found to be 6.66 £ .11,

Attenuation foils having an absorption edge near the wavelength
of interest are normally used in work of the type being deseribed
because they prevent Lurdening of the radiation. However, attenuat-
ing foil such as aluminium, which has relatively flat absorption
characteristics near CuKd, can be used in the present case because
the P.H.A. discriminates against the hardening effact of the

attenuating foils,



120,

6.8 The Growth of the Crystals

Small spheres of sodium were shaken from a mass under paraffin
0il, and sucked into glass capillaries of the type used for
cylindrical crystals (Section 3.2). The tubes were sealed as
previously described. The molten sample was plunged into liquid
alr. This treatment provided a reasonable chance that a single
crystal with reasonable spot shape would be formed. (If this treat-
ment were applied to larger, cylindrical specimens in the hope of

producing a powder, the result was a polycrystalline sample).

It was found necessary to grow the crystal sufficiently large
to touch the sides of the tube on cooling; otherwise the crystal

moved inside the tube.

The crystal was dipped in liquid air a second time before
use. A subsequent photograph showed that the spot shape had

become irregular with this treatment.

The crystal grown for this work was found to be oriented near
a <311> axis, and was aligned photographically by the method des-
cribed in Section 3.3. It was then transferred to the horizontal

goniometer and aligned finally by the method of Furnas (1957).

6.9 Measurement of the Integrated Reflection Intensities

The horizontal and vertical dimensions of the aperture required
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(Th and Tv respectively) are given by (Burbank (1964))

Th n Sh + ZCh + 2M

T ~8 +C +M
v v v

Here S is the source size expressed as the angle subtended at the
crystal (.28°), C is the crystal diameter expressed as the angle
subtended at the source (.140) and M is the angular width of the
mosaic spread. Taking Sh equivalent to Sv and Ch to Cv’ we have
Th nv 56 + 2M and Tv v .42 + M. To allow for mosaic irregularities

and mis-setting of the crystal a 1.43° square aperture was used,

The theoretical range of integration 1is similarly given in

terms of $,C and M (Burbank (1965)) as from 291 to 262 where

208, < 29

1 Ni(K edge) §-C-M

26, >

2> 0o(k edgey TS TETH

It was found that the scan range required was less than the
theoretical range. Th's was possibly because the two liquid air
treatments given the crystal before its use had effectively reduced
the mosaic spread M to zero, and also because the wavelength dis-
persion was less than that defined by the balanced filters, due to

the P.H.A.
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The working procedure adopted was first to make a tracing
with the chart recorder using each filter in turn. From this the
maximum scan range and limits 291 and 262 for each reflection were
determined. Further scans were then made with each filter in
turn, and the integrated count recorded with the scaler. Fixed
counts were then made for 100 seconds with each filter in turn at
261 and 262. Each count was immediately duplicated. A few measure-
ments were rejected as being affected by local electronic inter-
ference. An average was taken when two suiltable readings were
obtained. Superimposed traces of the 110 reflection for each cof

the filter foils are shown in Figure 6.5.

1 to 262 with the

nickel filter foil and o similarly for the cobalt foil, Suppose

Now suppose B is the integrated count from 20

also that Bl’ ay and 82, a, refer to fixed counts recorded with the
Ni and Co foils at 291 and 262 respectively. Then Bl and a4 will
not be identical, nor will 62 and Ays because there will be addi-
tional background scattering including TDS, Compton scattering etc.
This integrated background count is denoted as y, and it is assumed
that v is linear in 260. (This assumption is particularly invalid

for TDS, but a correction may be made later). Then
y =n(By - o;)+(8y - a,)] A28

where n is a conversion factor related to the scanning rate used

(0.5o per minute) and the time taken to record the fixed counts
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%1 61. Gy 82 (100 secs). Its value is 1.2 obtained thus:
1.2 x no. of counts/100 secs = no. of counts/120 secs = counts/1°29
The net count is then given by
N=R~0-¥%
with a statistical error of
where the "total" count NT is given by

NT = 8 + o + %nA20 [61 + ay + 82 + az]

If no beam attenuator is used, then E = N, The .5 wmil aluminium
foil was used for the 110, 211 and 220 reflections where the peak

counting rate exceeded 2500 cps without an attenuator. In this case

E = N x attenuation factor

- 2 4 42 2%
Ig [NT x (att., factor)< + ¢ (att.factor)xN ]

«es(6.9.1)

6,10 Direct Beam Mecasurement

The energy falling on unit area per unit time in that part of
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the beam received by the crystal was measured by replacing the

crystal with a platinum aperture of nominal diameter 120 microns

from a Philips electron microscope, and mounted in the centre of a

1 em square lead plate about 1 mm thick. The average aperture
diameter was measured with an aptical comparator, and was found to

be 121.4 microns (standard deviation 3.0 microns) from 12 measurements.
The aperture was combined with eight of the .61 mil Ni foils. The
absorption coefficient of each of these foils was 1.92 * .03, The

net recorded intensity was 1.50 x 1013 photons/metrez/second, with

a standard deviation of 4.8%.

The absorbing effect of the glass capillary tubte used was found
by setting the spectrometer crystal to CuKa, and mecasuring the count
rates obtained with and without the glass tube mounted over the

receiving slit., No significant change in counting rate was observed.

6.11 Results

The integrated intensitles recorded for a total of 17 reflec~
tions are given in Table 6.2. It can be scen that there is a marked
variation in the intensities of symmetry related reflections at low
angles. The spread in the 211 intensities, for example, is from
~25% to +29% of the mean value. The lowest intensity for the 211
set and the two 330 reflections were remecasured after checking the

alignment of the crystal, but no significantly different
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TABLE 6.2

Integrated Intensities

Reflection Intensity Att. Factor Corrected Intensity
110 93587 6.66 623290
110 123629 6.66 823370
211 24067 6.66 160290
211 20171 6.66 134340
211 28767 6.66 191590
211 34756 6.66 231470
220 11688 6.66 77842
220 19427 6.66 129380
330 10072
330 8788
411 10190
411 5737
411 7439
332 5038
332 4576
422 3168

422 3390
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measurements were obtained., Since the spread in measured intensi-
‘ties for the two pairs of high angle reflections is small, and is
within the limits of experimental error (Section 6.12), it is pro-
bable that the large spread in the low angle symmetry related

reflection intensitles 1s due to extinction effects.

The averaged intensities for the seven independent reflections
are listed in Table 6.3. These are the values tzken as E in the

equation (derived from equation 6.2.1)

1+C0s226 1
Bl = & (2/A (———)1 )
28in26 )
) veo(6.11.1)
where ) )
e’ 2 )
- 233 (— %
k = [w/T N%A% { 2) vl )
me
TABLE 6.3
Averaged Integrated Intensities
Reflection Intensity
110 723330
211 179423
220 103611
330 9430
411 7789
332 4807

422 3279
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The values of the transmission factor A were obtained assuming
that the crystal was a sphere of radius .23 mm, and interpolating
values of the absorption factor A¥* (-A-l) at the relevant values
of ¥R and & (4 being the linear absorption coefficient and R the
crystal radius) from the tables of A* for spherical crystals given
in International Tables (1959). This was done using program
BBSCORR as for the relative intensity measurements (Section 4.5

and Appendix 1).

Some experimental constants for the calculation of k in

1

equation 6.11.1 were w=.25% min™" = 7,27 x 10'-5 radians secm1

Io = 1.504 x 1013 counts s’.ec.lmn2

V = 6.76 x 107113

The volume of the crystal, V, was determined from optical comparator
measurements of the size of the crystal. This was found to approxi-
mate a cylinder, but with rounded ends. The total length was
464 £ 005 mm and diameter .462 * ,006 mm. The cylindrical
section was v .34 mm luang. The volume was estimated as the volume
of a cylinder of diameter .462 mm and length .34 mm, plus the
volume of two sections of a sphere of base diameter .462 mm and
height ,061 mm. The volume of a cylinder of dimensions .46 mm x
.46 mm is about 13% greater than that calculated above. It is not
reasonable to assume, therefore, that the volume 1s known any

more accurately than about 5%.
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Values of the observed structure factors were calculated using
equation 6.11.1. These were corrected for isotropic thermal
motion by multiplying by the temperature factor exp (BSin26/22)
where the value of B used was 8.16, the average of the five values
obtained from the relative intensity sets (Section 5.3). Anomalous
dispersion corrections were made to the structure factors as for
the relative intensity sets (Section 4.8). TDS correction factors
were calculated via program TDSCORR (Appendix 1), but in this case
the volume integration in reciprocal space was defined by the 0-28
scan, the size of the aperture used and the angle through which the
crystal was rotated, The TDS correctiocn factors o are presented
in Table 6.4 together with the corrected observed structure factors
FO and the calculated Hartree-Fock structure factors Fc' It can
be seen that there is evidence of anisotropy. An anharmonicity
parameter P (Section 2.3) was calculated from the splitting of the
330-411 pair of reflections. Its value is -.00240. It can also
be seen that the Fo values are low by a factor of about 2. Values
of the observed structure factors multiplied by a scaling factor
of 2.247, and of the calculated structure factors corrected for
anharmonicity by the factor exp(-PD), where P and D are as defined
in Section 2.3, are given in Table 6.5. Possible reasons for
requiring the extra scaling factor of 2.247 will be discussed in

Section 6.12,



IDS Correction Factor; Observed and Calculated

TABLE 6.4

Reflection

110
211
220
330
411
332

422

Structure Factors

e
.099
«36

1.25
1.25
1.51

1.53

— 0 —
4.84
4.78
4.77
4.00
3.64
3.72

3.47

TABLE 6.5

—_—c -
17.65
14.20
12.90
8.71
8.71
7.68

7.36

Observed and Calculated Structure Factors

Reflection

110
211
220
330
411
332

422

2,247F

10.88
10.75
10.71
8.99
8.17
8.37

7.81

P = ~,00240

129.
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The values of observed and ealculated structure factors
tabulated in Table 6.5 agree very well for the four higher angle
reflections, but there is promounced extinctign for the three
lower angle reflections. This 1s gimilar to the results given in
Table 5.2 for the relative intensities of set 3. 1In both cases,
the crystals were dipped in liquid air before the intensities were
recorded. The anharmonicity parameter P in the present case is
about twice that determined as an average of the five relative

intensity set parameters.

6.12 Errors

Of the measured quantities involved in equation 6.11.1, an

estimate of the error in V has already been given as 5%.

An estimate of the error in the absorption correction A* as
a function of uR for a spherical erystal has been given by Burbank
(1965) assuming a 10% error in uR. The distortion from spherical of
the crystal used in this experiment was estimated at a maximum of
11%. For the value of uR ~ .7 applicable here, the errors inA* given
by Burbank range from about 12% for 6 = 0° to about 7% for 6 = 90°.
It was estimated, therefore, that the error in A due to uncertainty

in R was about 10%.

The error in measuring Io was due solely to the errors in
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calibration of the attenuating foils and measurement of the
aperture size since the counting statistical errors were " Az
The standard deviation of the attenuation coefficient for each
nickel foil was 1.6%, and the standard deviation of the aperture

was 2.5%. The overall error in Io wae estimated at 4.8%.

Other sources of error may be multiple diffraction and TDS.
The former can be disregarded for measurement on the zero layer of
a non-symmetry axis in a crystal where there are relatively few
reflections. The TDS correction factors calculated in the present
case are larger than those calculated in the case of the photo-
graphically recorded relative intensities because the estimate of
the volume swept out in reciprocal space as the aperture scans
through a reflection is larger. It is possible, therefore, that the
first order TDS correction is too large. This would make the
structure factors too low. On the other hand, no correction has
been made for higher order TDS. This would make the structure

factors too high,

The statistical errors in E, given according to equation
6.9.1 are listed in Table 6.6. The corresponding calculated
errors O in the structure factors are given also. The Op values
are all v 6%. This is due almost entirely to the errors in A

and V, which are due to the distortion of the crystal from spherical,

The accuracy of the method depends therefore, not on the counting
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statistical accuracy, but on the accuracy with which the size and
shape of the crystal can be determined. In common with Burbank,

we can conclude that more reliable information about thermal motion
or density distortions can be obtained from a larger set of

accurate relative intensity measurements than from a few absolute

intensities.
TABLE 6.6
Reflection _0(%) _op{2)
110 1.7 6.1
211 1.8 6.1
220 1.9 6.2
330 _ 1.8 6.1
411 2.0 6.2
332 3.2 6.3
422 4.4 6.5

None of the above errors can account for the scaling factor
of 2.247 used in Table 6.5. Because the scaled observed structure
factors show extinction and anisotropy to about the same degree as
those measured previously (Table 5.2), it is unlikely that there
are large errors in the measurement of the intensities. However,
in order to check that there were no such errors due to crystal

misalignment or electronics drift in the P.H.A., various intensities
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were remeasured. The crystal alignment and P.H.A. were carefully
readjusted before each reading. The results are shown in Table
6.7. The only major difference from those listed in Tables 6.2
and 6.3 was the intensity for 220, which can be explained as
"annealing" as observed previously (Section 5.7). (The individual
reflections in Table 6.7 are not necessarily the same as those in

Table 6.2).

TABLE 6.7

Integrated Intensities

Reflection Intensity Att. Factor Corrected Intensity
220 7906 6.66 52654
220 12190 6.66 81185
330 10464
330 9027
411 9632
411 9245
411 7117
332 4571
332 3620
422 2805

422 3411
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TABLE 6.7 (Continued)

Averaged Integrated Intensities

Reflection Intensity Errors (%)
220 66920 1.45
330 9746 1.75
411 8665 2,92
332 4096 3.71
422 3108 4.70

Similarly, the direct beam was remeasured using a larger
(368 micron) pin hole punched in a large lead sheet. The
remeasured value of Io was in agreement with the original value to

within the experimental error.

The need for a scaling factor is not due, then, to inaccurate
measurement, but to factors which cannot be properly estimated in
this case due to the type of crystal used. For example, there
will be absorption of the incident and diffracted beams from the
crystal by the glass capillary and the oil surrounding the crystal.
There may also be systematic errors due to inaccurately known
values of the linear absorption coefficient u, and the other
factors already mentioned. (The specimen is not suitable for an

experimental measurement of u).
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In summary, the scaled observed structure factors obtained
here confirm the observations of anisotropy and extinction dis-
cussed in Chapter 5. For example, the magnitude of each effect
1s about the same as observed for set 3 of the relative intensity
sets. The igotropic Debye parameter B' = 8.16 obtained in Section
5.3, together with the calculated anisotropy parameter P = -,00240
gave an excellent account of the four higher angle structure
factors. Evidence for room temperature annealing after liquid air
chilling of the crystal was again observed. Finally, the method is
not sufficiently accurate for absolute measurements for a crystal

of this type.
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CHAPTER 7

CONCLUSIONS AND DISCUSSION

Accurate experimental structure factors for metallic sodium
have been presented for the first time. Probably the most striking
aspect of the results i1s the anisotropy exhibited in the higher
angle reflections, where deviations in intensity of more than 15%
from the expected values for an isotropically vibrating spherically
symmetric Hartree-Fock atom were recorded. This anisotropy 1s due
to crystal field effects and has been described in terms of the
generalised structure factor formalism of Dawson (1967a). Of the
two possible physical interpretations of this phenomenon, the most
probable is that the anisotropy is a result of anharmonic vibra-
tions of the atoms. This might be expected given other known
physical information about sodium which indicates large and possibly
anisotropic thermal motion of the atoms in the solid. This
information includes the high isotropic Debye parameter, low melt-~
ing point, and the low values of the elastic constants and the
anisotropy they show. A consequence of the observed anharmonicity
is that anisotropy should be present in other measured quantities.
In this respect, macroscopic experimental data relating to
anharmonic vibrations is generally limited. For example, there is
no data regarding anything other than isotropic thermal expansion

coefficients of the alkali metals whereas thermal expansion is a
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consequence of anharmonicity and can be expected to be anisotropic
even for cubic sodium crystals. It is usual to calculate the

linear expansion coefficient o (Kittel (1971)) as
< x> =aTl

where, using Boltzmann statistics,

0 oY)
!_“x e kBT dx
< X> =

fmm a ESEL dx
- BT
where x is the displacement of the atom from its equilibrium
position, and V(x) is the potential. Since the coefficients of the
potential expansion are known, it would be possible to calculate

the expected anisotropy in the thermal expansion coefficient.

The anharmonic vibration theory due to Willis (1969) has been
used in the analysis. Although this theory assumes an Einstein
model of the crystal and has various mathematical simplificatioms,
it has nevertheless been found to be a good model for this situa-
tion. This is the first analysis of anharmonicity in the body-
centred-cubic enviromment using this theory; this is so because
an atomic potential expansion to fourth order is needed to describe
vibrational motion in sodium. Previous structures for which
vibrational anisotropy has been studied have been adequately

treated by the quasi~harmonic theory (for example KCl (Willis (1969)))
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or a third order potential expansion (for example, the fluorite
structures (Willis)). The sign of the anharmonicity parameter
used in the analysis indicates that the atoms are vibrating, as
might be expected, with greater amplitude toward the next nearest
neighbours in the <100> directions, and with smaller amplitude
toward the nearest neighbours in the <111> directions. As a result,
the measured structure factors are greater than calculated
Hartree-Fock values for those reflections near {111} and smaller
than calculated values for reflections near {100}, A diagrammatic
representation of this phenomenon showing those sections of
reciprocal space which scatter more or less than for isotropically

vibrating atoms is given in Figure 7.1.

The second possible explanation of the observed anisotropy,
that of distortion of the eléctron density from spherical, with
isotropic vibrations of the atoms, is improbable. The least
tightly bound electrons in the sodium core, the six 2p electronms,
have a binding energy of ~ 39 eV. At a distance of % 38 from a
charge of one electron, any electron is subject to a Coulomb
potential of about 4 eV. It is unlikely, then, that the 2p electrons
will be perturbed from spherically symmetric. The method, however,
gives similar mathematical results to the first method. This
indicates that it provides a good description of the time averaged
electron density. Neither theory provides a means of determining

the real space amplitude of vibration.
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The potential parameters determined from a reanalysis of

Dawton's work and in agreement with this work are
a, = .6 eV sz
Y, = -9 eV g
6, = -3. v &7

it is expected that thermal vibrations "soften" at large amplitudes.
This is indeed the case as seen in the negative sign of the
isotropic fourth order parameter Y. An indication of the relative
importance of the anisotropic vibrations, however, is given in the
relative magnitudes of the two fourth order terms Y, and 60. In
addition, the effect of thermal expansion on the temperature

factor appears to be small compéred with the contribution from

the Yo parameter.

The physical properties of the Group I elements are such
that higher atomic number elements have lower melting points,
lower Debye temperaturzs and hence larger vibration amplitudes.
Thus it might be expected that all the alkali metals would show
significant anisotropy in structure factors due to thermal vibra-
tion. They should all be regarded, then, as highly anharmonic

solids.
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It is possible that anisotropic vibrations might be expected
for the lighter alkali metals even in structures where the metal
is in an ionic state. The alkali ion has only one bhonding
electron, but may be coordinated to six or more other atoms. In
this case, it is likely to be relatively loosely bound and capable
of large vibration amplitudes, which may be anisotropic depending
on the surrounding coordinating atoms. Some evidence for this
has been found in the alkali feldspars, for example (Bragg and
Claringbull (1965)) and in some coordinated complex ions (Butler

(1971)).

The large thermal vibrations appear to be in part the cause of
the large extinction observed in sodium. Even after beilng dipped
in liquid air, two crystals showed ~ 707 extinction for the 110
reflection, but both crystals subsequently annealed at room tempera-
ture. This process of annealing may go on over a period of some
weeks until the extinction for the 110 reflection is greater than
90%. There is not usually any suggestion in the literature of a
connection between extinction and thermal motion. It is inter-
esting to note, however, that Cooper and Rouse (1970) report
almost 90% extinction in crystals of CaF, and SrFZ, both of which
show anharmonic vibrations which may be accounted for by a third-
order potential expansion (for example, Mair and Barnea (1971)).
The extinction theory of Zachariasen (1967) modified by Cooper and

Rouse was applied, but did not give reasonable results. The
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reasons for this may be geveral. Firstly, the mathematical
assumption that the crystal is made up of spherical mosaic domains
with a Gaussian distribution of orientations is probably not true
physically, and is not adaptable to the case of strong extinction.
Secondly, the functional form of the extinction parameter y(x)

may not have been suitable in the present case. For example, the
final form of the function y(x) used by Cooper and Rouse (1970)

to describe the extinction observed in SrF2 was quite different
from that used for sodium. Further, they conclude that "it is
likely that some further improvement could be made in the exact
form of the closed form expressions used". Thirdly, there may
have been anisotropic extinction present in some form. For
example, there was evidence of vartation in intensity in low angle
symmetry related reflections in sodfum (Chapter 6). A similar
effect has been observed by Cooper and Rouse in Can, where it was
attributed to anisotropy in extinction due to variation in the

state of perfection in the crystal.

It has been shown that there are good theoretical and practi-
cal reasons why the contribution of the 3s electron cannot be
observed in measured Bragg intensities for sodium. Most of the
available supplementary evidence (for example on the Fermi surface)
suggests that the valence electron in Na is indeed the most "free"
of any of the alkali metals. There may still be some doubt over

this matter, however, for two reasons., Firstly, the Harrison
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(1966) pseudopotential calculation of the radial electron density
distribution shows a significant departure from the free atom
distribution. It has been shown by Medlin et al. (1969) that the
experimental aluminium valence electron density distribution more
closely resembles that calculated by Harrison than the free atom
distribution. Secondly, it has been pointed out by Weiss (1967)
that of the sequence of elements Ne (Z = 10), Mg (Z = 12), Al

(Z = 13), and Si (Z = 14), only measured intensities from Al are
at variance with values predicted by Hartree-Fock free atom theory.
Weiss suggests that this may be connected with the fact that Al

is the only odd Z element in the group. If this connection were
true, then it would be expected that a similar effect might be
observed in sodium (Z = 11), and in fact, in all the alkali netals.
It should, then, be a worthwhile exercise to investigate the low
angle scattering by means of a structure such as the clathrate
type of NaSSi46’ where the sodium atoms are virtually in the same

valence state as in the metal.



APPENDIX 1

COMPUTER PROGRAMS

All programs referred to in this thesls were written by the
author except the film- and layer-scaling programs AUFAC and AULAC
respectively. These last are maintained in the crystallographic
program library at Adelaide University. All computing was carried

out on the CDC6400 computer of the University of Adelailde.

1. Program SCATFAC

This program was written to calculate atomic scattering
factors for sodium from the Hartree-Fock wave functions of Hartree
and Hartree (1948). The method used was essentially that of

Berghuis et al. (1955).

The tabulated wave functions and radii were first converted
to Angstrom units, then interpolated at 298 poiants, giving the wave
function at a total of 354 points. The interpolation procedure
used was an nth order polynomial fitting method described by
Rollett (1965). It was found that n = 4 gave satisfactorily

accurate results.

The scattering factors were then calculated by carrying out

the numerical integration of the equation



z 2 Sin{4xsy)

f(s) = !0

dr eea (1)
4sr

where R 1s the radial wave function as tabulated by Hartree and

Hartree, and therefore
R2 = 4nrzp(r)
where p(r) is the electron density,

SineB

SB

A

and Z the maximum value of r at which the wave functions were
tabulated. The numerical integration was carried out by Simpson's

rule.

Equation 1 is the zeroth order example of a general set of

equations

<jn(4nsr)> = f; szn(4ﬂsr) dr ees (2)

where jn(4wsr) are the spherical Bessel functions given by

. Sin(4msy)
sglhree] =
4msy
Sin(4wsr) Ces(4wsr)
jl(lnrsr) = - cas (3)

(4wsx)? (4wrar)



2n+l

jn+1(4nsr) = jn(4vsr) - jn_1(4ﬂsr) ees(3)

4rar

This program was also adapted to calculate <j4(4wsr)> using the
wave function of Hartree and Hartree for the 2p6 electrons only.
Here

1058in(4msr) 105Cos (4wsTr)  45Sin(4wsr)

j4(4nsr) = - -
(4msr)® (4rsr)t (4rer)3

10Cos (4wsx) Sin(4wsr)
+ + eos(4)
(4msr)? (4wsr)

2. Program PEDNA

This program was written to carry out the determination of the
radial demsity distribution for the sodium valence electron from
the Harrison (1966) pseudopotential data (see Section 2.4). The
electron density is given by

9} Singr

px) = =2 [} da o’ o
2 qr

e oo (5)

where QO is the volume per ion
pq is a relative density form factor which 1s derived from
the pseudopotential via Poisson's equation, and

q is the reciprocal space variable.



The radial density then beccomes

4ur? 4r2 2 Sinqr
Q(x) = p(x) = —-—f dq q Pq eeo(6)
9] i ° qr
)
This equation can then be written as
Zkgr2 Sinkpxr
[}
Q(x) = f x2 p  ———— dx oo {7)

T * x kFxr
where x = q/kF and kF is the value of q at the Fermi surface.
Values of o to x = 5.0 are tabulated by Harrisom (1966) at
intervals of Ax = .1. This range was extended to x = 10.0 with the
gsame intervals by fitting a function of the form
A

£ (x) =— exp (~Bx) ..o (8)
x

to the last two tabulated values of Pyt Equation 7 was then
integrated by a simple trapezoidal method. Finally, a simple
trapezoidal integral of Q(r) at intervals of Ar =,] .gave the area
under the Q(r) curve, i.e. the effeective number of valence elec-

trons. This was found to be 1.0l electrons.

3. Program BBSCORR

This program was written to find absorption factors from the

tabulated values of A*(u'R,v/2) given in International Tables



(1959). Here

u' = uSecv

Sinv/2 = secvy (Sin%6-Sin4y) ()

where U, v, R and v have been described previously. (See Sectiow.4,5)
Values of u' and v/2 were first calculated from these equations,

then the tabulated values of A* were interpolated twice, first at

the appropriate values of v/2 for six values of u'R by means of a
Lagrangian interpolation procedure described by Rollett (1965).

Using the same procedure, the values of A* were then interpolated

at the appropriate value of p'R for the values of v/2.

4, Program TDSCORR

The first order TDS correction factor ay is given by (Rouse
and Cooper (1969))

Cos2al (q)

e du dv dw ...(10)

kyT B2 1
Oy e | e
1 2

X
A3Cosec2oy * q? 3=1,3 pV%(q)

where B is a reciprocal lattice vector for Bragg reflection with

B = |B| = 4w5in6 /2

q 1s the wave vector of the scattering phonon (q = |q|)

(j,q),3 = 1,3 represents the mode of the phonon g



Vj(ﬂ) is the velocity of the mode (J.g)

du is an element of angle through which the crystal is
rotated during a scan, and dv and dw are elements of
vertical and horizontal divergence angles respectively
in the scattered beam

ag(g) is the angle between the polarisation direction of the
mode (j,g) and E

and the other symbols have their usual meanings.

Cooper and Rouse (1968) have shown that the angles, du, dv, dw
can be described in terms of a set of orthogonal axes Xx,y,z where
z 1is in the direction of the scattering vector, and y is perpendi-
cular to the plane containing the incident and scattered beams.

The equation for oy then becomes

2k,T  Sinby 1 Coszaﬁ(g)
S ) I 2 i 2, dx dy dz
T A q” j=1,3 ij(q)
«..(11)
Now the factor
Cos2al (q)
S - z __J-"._ 000(12)
T j=1,3 pVg(g_)

. 2 -1 2 -1 5 -1
Cos BB(A )11+Sin BB(A )33+SinzeB(A )13

where
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The matrices Akl aj a, Cjklm ee o (17)
) =
where Cjklm bjnbkpblqurcnpqr ... (18)

Here a 2 are the direction cosines of q(j,m = 1,2 or 3) and

A

Cjklm the elastic constants of the medium referred to the

X,y,Zz axes, i.e. b, etc. are the direction cosines of

jn

the x,y,z axes referred to the orthogonal axes for

which the elastic constants Cnpqr are given, i.e. the

crystal axes.

A program was written to determine oy thus. The Ciklm were

calculated from the elastic constants of Martinson (1969) via



equation 18 after the b n etc. were calculated for each reflection.

3
The values of u,v,w were determined from the least squares straight
line fit of the spot sizes, and the reciprocal space volume swept
out in the scan and determined by u,v,w was split up into an

nxnxn grid for the purposes of numerical integration. The con-

version to x,y,z coordinates was made via the equations

x = kw - 2tand
y = kv

2ku Sind® Cosb

N
[}

for the w scan, or

x = kw + 2 cotb
y = kv

2ku Sind Cosb

N
[}

for the 8-26 scan. Values of q and aj, a were calculated and the
values of Akl calculated via equation 17. These were then used to
calculate the inverse matrix elements (A“]‘)kl via equations 13, 14
and 15. The calculatiun of Sq was then a straightforward procedure
for each reflection via equation 12, The numerical integration
involved in equation 11 was then carried out over the nxnxn grid,
using a Simpson's rule procedure adapted for three dimensions. The
minimum value of n needed for the results to converge was ll. For
this grid size, the progrem required 700008 words of core space and

took about four seconds per reflection.



5. Program EXTINCT

This program was written to calculate extinction corrections
to the observed structure factors according to the modifications
of Cooper and Rouse (1970) to the theory of Zachariasen (1967,

1968) (see Section 5.8).

The physical baeis for the Zachariasen theory is that the
crystal is assumed to consist of spherical mosaic domains of mean
radius r, with their orientations characterised by a Gaussian

function
W) = V2 g exp(-2n2g2A2) .ee(19)

Then the extinction correction factor for the intensities for a

spherical crystal is given by

y = (1+2x)_;5 .ol (20)
P2 -1 = C as
where X = f——) Q2 Tr* .0 (21)
P
-1 a2\r y
QA = | —= Sin26 ..o (22)
N mne?v B
p_ = [1+ Cos?™20,1/2 ... (23)
T = RAJA*/d (UR) ee o (28)
r 2
r* = r[1+ (——) ]-;2 ..+ (25)

Ag



where A(uR) is the transmission factor and the other symbols have
their usual meaning. If determinations of rf and rg at two differ-
ent wavelengths Al and 12 are available, then the two parameters r

and g for the crystal can be found via

r = rirs[ (A3-22)/ (A3ry2- A%rfz)]%
... (26)

g = (fr8/A0) [(2-A2)/ (r¥2-rg2)]

The relation between ''observed" and "calculated" structure factors

(F0 and Fc respectively) is then given by

|F | = Kch|[1+2x]“% ... (27)
or
IF | = KE | (xx + (4ax2)%) 2 ... (28)
where
x* = x/(1+2'x)l5 <0 (29)

Cooper and Rouse (1970) have extended this theory of
Zachariagen in two ways. Firstly, they make allowance for an angle
dependent effect by replacing the factor y by

1 1 1

yh= - ]+ [1+2x£(8)] ...(30)
£(98) £(0)

where
1
£f(0) =1+ — Sin
3

243 (g ... (31)



Secondly, the theory has been extended for correctioms to a
cylindrical crystal by taking a slightly different form for
equation 20 of (ignoring the angle dependence)
o 5/4
y = [ — (erf/3x)//3x) ... (32)
2
If the angle dependence modification is now combined with the
form of y for cylindrical crystals, the modified extinction factor
becomes
1 1 1 vy w

yla 1 - — + [ — (exf/3xE(8) )//3xE(®)]
£6)  £(8) 2

5/4

...(33)

In programming, first the values of f(8) given by equation
31 were calculated for each of the two sets of intemnsities collected
with two different wavelengths. The values of the scaling con-

stants K in the equation
1.
lF,| = k|F_|ly"] .o (34)

were then calculated by averaging over higher angle reflections
where the extinction factor was ~ 0., Values of yl for the lower
angle reflections were then calculated via equation 34, and values
of the extinction parameter x for each set were calculated as an
average of values of x found for several extinction affected low
angle reflections via equation 33. The values of the error

function erf(t) were read in for 313 values of t, and the table



searched for the nearest value of t to correspond to the particular
value of 3xf(6) being used. The values of x found via equation 33

were those given by
x = 0.01 (1.1)"; n = 1,100

which gave the closest solution for yl to that obtained from the

experimental values via equation 34.

Next the quantities plspZ,Qo)\"1 and T were calculated. The
values of A* were calculated as for the absorption correction
program BBSCORR, and the numerical differentiation of A* with res-
pect to uR was done by the method of forward differences over 8
values of uR. Values of r* were then calculated via equation 21
for each of the intensity sets. The parameters r and g were then

calculated via equation 26.

Having found the parameters r and g, the procedure was
reversed to find, for each wavelength, values of the correction
factor r* from equation 25, x from equation 21, y1 from equation 33
and finally, corrected values of the observed structure factors

from equation 34,



APPENDIX 2

TABLES AND FIGURES FOR DATA SETS 1,2,4,5 AND 6

In general, only tables and figures for data set 3 were
presented in the text. Various corresponding tables and figures
are presented in this Appendix for all data sets not presented in

the main thesis.

Table 1 gives the relative intensities after film factor
scaling and spot shape correction (see Table 4.1 for set 3). The
averaged intensities after correcticn for Lorentz-polarisation,
absorption and TDS are shown in Table 2 (see Table 4.3 for sets 3
and 4). The intensities after layer scaling, and correction for
anomalous dispersion are shown in Table 3 (the corresponding

values for set 3 are shown in Table 4.6).

The Wilson plot figures corresponding to that for set 3

(Figure 5.1) are shown in Figures 1 to 5.

Finally, observed and calculated structure factors, standard
errors and reliability indices are given in Table 4. These corres-

pond to the values for set 3 given in Table 5.2.



TABLE 1

RELATIVE INTENSITIES AVERAGED AFTER FIIM FACTOR

SCALING AND SPOT SHAPE CORRECTIONS

set 1
Reflection Layer 0 Layer 1 Layer 2

110 2682.8 4210.6
200 1380.2
211 1113.6 1590.1
220 857.4 911.8
310 430.4 431.0
222 247.6
321 242.8 220.3
400 95.1

( 330 96.¢°

5 411 86.2"
420 58,.1% 55.94
332 44.45
422 27.1!

( 431 26.4%

E 510 16.2. 21,7

521 17.9: 9.3



TABLE 1 (Continued)

Set 2
Reflection Layer 0 Layver 1 Layer 2 Layer 3 Layer &
110 3715.5 4698.5
200 2373.8
211 1667.3 3187.6
220 1204.3! 1625.4
310 632.4 513.5 2045.3
222 391.3
321 250.5 222.9 432.0
400 8l.1.
( 330 55.7¢% 109.8
5 411 43.4. 120.2
420 22.7: 29.5: 49,0
332 17.8: 24,1
422 10.2: 16.4..
431 7.5 12,93



TABLE 1 (Continued)

Set 4

Reflection Layer O Layer 1 Layer 2 Layer 3 Layer 4 Layer 5

110 484.5 = 340.9  872.7
200 332,7 201.6 257.9
211 232.5 197.9 155.7  178.8  202.6
220 90.94 100.7
310 69.93  47.08  58.90 51.17
222 37.71
321 40.27  29.77 22.05  22.69  22.34
400 21.10 15.82
( 330 10.09
E 411 14.23 8.60%  7.65.
420 10.85 8.14 7.08%
332 7.49% 5.48: 4,85
422 5.72¢ 2.91"
2 431 3.22.  2.24 2.52



TABLE 1 (Continued)

Set 5

Reflection layer 0 Layer 1 Layer 2 Llayer.3 Llayer 4

110 204.0 156.7 331.1
220 117.9 107.7 236.0
211 91.53 94.74 89.47 135.0
220 43.12 70.10
310 42.78 23.79 27.99
222 18.72
321 15.24 14.90 10.61 14.51
400 6.2 6.41:

( 330 3.17.

E 411 2.81: 2,97 2,25
420 2.09: 2.394



TABLE 1 (Continued)
Set 6
Reflection Layer 0 Layer 1 Layer 2 Layer 3
110 226.1 237.2
200 162.3
211 90.51 138.7
220 81.98 75.42
310 52,27 36.94 99.38
222 33.70
321 13.84 18.37 24.61
400 11.06
( 330 6.928 7.12
E 411 3.860
420 3.254



TABLE 2

RELATIVE INTENSITIES AFTER ABSORPTION,

LORENTZ-POLARISATION AND TDS CORRECTIONS

Set 1
Reflection Layer 0 Layer 1 Layer 2
110 5978.6 6871.7
200 4558.7
211 4411.4 4431.8
220 4285.8 3656.9
310 2446.3 2387.2
222 1382.1
321 1534 .2 1324,3
400 58 .5
( 330 583.6
E 411 501.7
420 312.6 293.4
332 204.8
422 109.9
( 431 72.23
g 510 42.98 57.12

521 21.06 10.84



TABLE .2 (Continued)

Set 2

Reflection Layer 0 Layer 1 Layer 2 Layer 3

110 975.2 872.0
200 891.6
211 694.2 840.5
220 617.1 590.5
310 358.3 276.1 368.5
222 197.5
321 169.5 124.7 171.4
400 56.0
( 330 40.8. 57.1.
f 411 30.5:
420 17.23 20.0:
332 12.9: 14.9 .
422 7465

431 5.1



TABLE 2 (Continued)

Set 5
Reflection Layer 0 ILayer 1 Layer 2 1layer 3 Laver 4
110 50.16 29.14 26.76
200 43,20 35.38 38.74
211 40,69 40.03 33.13 40.98
220 20.59 27 .68
310 23.83 12.50 14.09
222 8.8% -
321 9.68: 9.74r: 8.28"
400 4.21% 3.98.
( 330 2,26:
E 411 2.07- 2,11 1.59+
420 1.55 1.65



TABLE 2 (Continued)

Set 6

Reflection Layer 0 Laver 1 Layer 2 Layer 3

110 56.75 41.37
200 58.53
211 36.23 35.14
220 41.17 26.84
310 29.49 19.79 17.81
222 17.23
321 9.14° 10.67 10.13
400 9.097
( 330 5.55 4,057
E 411 2.98:

420 2.797



TABLE 3

AVERAGE RELATIVE INTENSITIES AFTER LAYER SCALING AND

ANOMALOUS DISPERSION CORRECTIONS

Reflection Set .1 Sét 2. Set 4 Set 5 Set 6
110 6159.4 1035.1 793.9 40.33 585.6
200 4587.7 947.3 762.8 46,23 579.4
211 4477.5 947.5 734.1 44,31 514.6
220 4006.4 722.2 588.6 29.94 392.8
310 2314.1 343.3 373.3  19.44 282.9
222 1479.8 258.7 273.4 12.41 247.8
321 1444.5 172.0 182.2 9.742 148.7
400 576.0 59.08 112.6 4,424 89.35

( 330 572.9 53.61 78.91 3,142 56.66

g 411 474.7 35.44 67.36 2,357 43,99
420 307.3 24.22 52.51 1,668 27 .47
332 215.3 15.47 32.40
422 115.1 9.684 17.59

( 431 67.31 5.081 8.764

§ 510 42.05 7.552

521 13.33
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TABLE 4

OBSERVED AND CALCULATED STRUCTURE FACTORS,

STANDARD ERRORS AND RELIABILITY INDICES

set 1
Reflection  F  _ Fo Fy . Fo_ _op(Z

110 4.54 17.65 17.66 17.66 3.4
200 4.93 15.74 15.66 15.58 2.9
211 6.13 14.20 14.24 14.27 3.3
220 7.30 12,90 12.97 13.02 5.5
310 6.99 11.80 11.59 11.47 4.4
222 7.04 10.85 11.11 11.35 10.2
321 8.75 10.03 10.19 10.26 3.2
400 6.96 9.32 8.54 8.30 5.3
330 8.74 8.71 8.94 8.99 5.6
411 7.95 8.71 8.25 8.14 3.5
420 8.06 8.16 7.95 7.91 2.8
332 8.49 7.68 8.39 8.47 8.3
422 7.81 7.36 7.71 7.62 4.7
431 7.52 6.88 7.26 7.27 5.7
510 5.95 6.88 5.64 5.63 4.5
521 5.31 €.25 5.72 5.77 3.7

R = .080

Ry = .030

R, = .031



TABLE 4 (Continued)

Set 2
Reflection F, _ F._ F,_  _F,_ 9 (%),

110 5.93  17.65 17.66  17.67 4.4
200 7.23 15,74  15.58  15.51 14.4
211 9.23  14.20  14.28  14.31 4.3
220 16.27 12,90 13,04  13.07 4.7
310 9.03 11.80 11.38  11.32 2.7
222 10.00  10.85  11.35 11.58 4.1
321 10.39  10.03  10.35 10.36 1.8
400 71.77 9.32 7.80 7.82 4.9
330 9,44 8.71 9.16 9.13 2.8
411 7.67 8.71 7.82 7.88 4.4
420 8.09 8.16 7.74 7.79 3.2
332 8.24 7.68 $.07 8.84 4.2
422 8.32 7.36 8.04 7.79 12.8
431 7.68 6.88 7.63 7.45 9.2

R = .091

R, = .030

Ry = .033



Reflection

110
200
211
220
310
222
321
400
330
411
420
332
422
431

510

TABLE 4 (antinued)

F

- -

5.36
6.45
7.77
8.54
8.34
8.76
8,78
8.47
8.70
8.04
8.71
8.40
7.60
6.58
6.11

Set

Fo
17.65
15.74
14.20
12.90
11.80
10.85
10.03

9.32

8.71

8.71

8.16

7.68

7.36

6.88

r.88

R =
R1 =

R2 =

4

)
17.66
15.66
14.24
12.57
11.60
11.10
10.19

8.58

8.78

8.27

7.96

8.36

7.69

7.25

5.70

067

.038

.036

_F
17.66
15.64
14.25
12.98
11.58
11,18
10.18
8.64
8.90
8.33
7.99
8.21
7.50
7.14

6.05

2 —

_op(Z),
1.6
3.3
2.1
3.5
7.8
5.3
1.8
5.8
2.6
1.9
2.3
3.0

11.2
2.8

2.8



Reflection

110
200
211
220
310
222
321
400
330
411

420

TABLE 4 (Continued)

_Fo._
5.69
7.56
9.19
9.38
9.38
9.31

10.24
8.57
8.97
7.77

8.11

Set 5

F_ Fy
17.65  17.66
15,74 15,64
14.20  14.25
12.90  12.99
11.80  11.54
10.85 11,16
10.03  10.23
9.32 8.38
8.71 8.98
8.71 8.16
8.16 7.90
R = ,051

R1 = ,019

R, = .018

R .

17.66
15.60
14,27
13.01
11.50
11,31
10.24

8.38

8,97

8,19

7.93

_op(2)

1.2

o7

o
.
(o))

1.7
2.9
7.8
2.0
2.3
5.4
4,3
7.1



TABLE 4 (Continued)

set 6
Reflection —Fo _ —Fc _ ”Fl _ —FZ _ _gF(Zl
110 4,57 17.65 17.66 17.66 1.8
200 5.72 15,74 15.65 15,64 5.1
211 6.79 14,20 14.24 14,25 4.4
220 7.48 12.90 12.97 12,97 2.5
310 7.99 11.80 11,58 11.59 2.5
222 9.42 10.85 11,11 11,16 4.5
321 9.19 10,03 10.20 10.17 1.5
400 8.98 9.32 8,53 8,69 2,0
330 9.01 8,71 8.94 8.88 2.0
411 7.94 8.71 8.24 8,36 2.9
420 7.90 8.16 7.94 8.01 1.8
R = ,050
Rl = ,026
R, = .028
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