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sut"il,íÂRY

This the sis deals extensively with the fie1d. theore-

tical approach to the sol-ubl-e two d-inensi onal Ising

lattice, v¡hich has recently been developed. by Hurst and.

the author. The aim of this work has been to extend. this

approach to aL1 statistioal J-attice pnblems, and j-n par-

t icul ar to look at the un sol-ved- Latt ic e pro bl ems. The

probJ-ens consiclered- in d-etail are the two d,irnensional

square l-attice f sing nod.el , the tv¡o-d.imensional next-

nearest neighbour f sing mod-el-, the Dimer problem, Sl-aterr s

rnod.el of the ferro.eleotrio K.D.Po âod. the Rys antiferro-

eleotrj.c rnod.el .

In establishing a unified- treatnent for aJ-L lattioe

problems the foruralisn of Hùrst is presented. in a oompar-

atively new and simple fashíon. It is shown that the

partiti-on f unction f or tli e mod.el s can be written in the

general form

z = .ol r exp(r. H(¡) ) lot

vrhere H(¡) is a quadratic function of fermion operators

f or so l-uble nod.el- s and- is a quartic f unc tion of fermion

operators f or unsolved. mod-e1s. Gcner al fie 1d. theoretioal

technigues suoh os Gre enr s f unctions an d d-i agonali zation of

the Hamiltonian, tt(¡ ) r &Te d.isoussed in r elati on to the

above expression. The exaot results for the partition funotion,
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Epontaneous nagnetization of the square Ising l-attice and.

the pa rtiti on funeti on of the Diurer pr oblen are d.er ived.

usi-ng Greenr s functicns.

The next-nearest neíghbour fsing lattice and. the
f erro-eleotric arid antif erro-el- ectrio mod-eI s are not go D-

pletely solved- in terms of this f ormal-ism. Hotvever,

approximate results can be obtained- by raakj-ng a perturba-

tion expansion for the parti-tion funotion. There is

reason to believe that the analytio behaviour of the par-

titic¡n funetion is olosely related. to the an alytic behav-

iour of the fÍrst f elv ter¡ns d the perturbati on expansi on.

Thi s is part ioularly so f or th e case s co nsid.ered., whe re the

resuLts agree exactly v¡ith th e expected resuLts,

The first term of the perturbation series for the

next-nes.rest fsing lattice is considered_t &fd. the val_ues

of the critical ind-j-ces d., d, , p are found_ to be the same

as the two-d-imensional sol-ubl-e l-attices. These results

agree with the ilscaIing l-awrr ap pro ach of Kad_anoff . For

the fêrro-electric problem, the first-order tern contains

the exact critical temperatru'e and- anarytic behaviour of

the spe cif ic he at as gÍ- ven by Lie b. High er ord.er terms are

calcuI ated. and- are found. to contain no new singularities.
The exact solutj-on is obtained. fo r temperatw es berow th e

critical tenperature and. an exact relatlon betlveen the

critical temperature and- eleetric fie 1d- is obtaine d. using

Greenr s functiorrs¡
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HAPTER

TNTRODUCTI ON

L..l-k.vreli-o-LÆ esent Status

One of the nost active field.s of theoretical physios

at the pre sent tine i s the stucLy of oo-oPerative phenoroena

in systems of large numbers of interecting particles.

Powerful mathenatioal- method-s, borrowet[ in part from guantun

field. theory, have been d.eveloped. to treat these phenoD€rlâ¡

such as the phase transitions in superconductivity and- super-

fluidity and- the ord.er-d.isorder transition ín the Heisenberg

mod.el of ferro-magnetism. However, when analysis by approxi-

mate mathema.tioal r¡ethod.s ind-icates a phase change it nust

then be ascertained. whether the se resul-t s are a, oonsequence

of the system consid.ered. or of t?re approxination used in the

mathematios. For this reason, some exaotly solurble nodels

exhibJ-ting a phase transition have been devised.; in partiou-

1ar the I sing nrodef a õ a rnod.el of f erro-nagn etism, and. th e

Slater and- Ryõ mod-eJ.s as exalnpJ.es of ferro-electricity and

antif erro-electrioity. It i s a ooinoid.ence that the se

simpl e, cl assioal mod el s ca,n al so b e treated. by mr:thocls

based. on the techniques of quantun field. theory. Thís worlc

is concerned with one of the se nethod.s.

The I sing mo d.ef í s r'rel] knovrn as a no d.eL of magn eti sm'

ft is interestin6 not only as one of the few non-trj-víal

nany-bod.y problerns that is exactly soluble and shows a phase
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'üransi--bion, but al- so it has recently been shov¡n experiment-

arr" (1 ) tna'c many systems behave as I sing sy stems, particu-

lar]y near the criticat temperature. Although the exaot

solution in the absence of an externaf rnagnetic f ie rcl was

given original ly over tv¡enty years ago by Onsage ,Q) using

the language of LÍe algebras, the flow of papers on exact

solutions is still strong tod.ay. The reason is, no d.oubt,

the d-if f iculty of th e original Onsager method- and. the sub-

sequent calculati on by turr*(3) of the sp ontaneous magne tíza-

ti on. Kauf mrn 
(tt) 

, Newerr an d- l{ont"orr (5 ) , Green and Hurst (6 ),

have helped- to cl- arify the Onsager method, bu-b ít v¡as Jtrutt z,

lfattis and. Li"¡(7) (n"rinafter referrecl to as s.ìí"r.) who

finally rnad.e the solution corcFa,ratively simple using fierd.-
-bheoreticar m¡"ny fermion techniques" The original Lie

al6ebra is ca.st into f ermion second q.uanti zatíon operator s,

which for the sorubre rsing l-attices reduces to a quad_ratj-c

form resembling a system of non-interacting fermions, but
for the unsol.,'ed- l-attices reduces to a form resembling inter-
acting fermions. lta¿*norr(8) has introd-uced. the concept of
a Greenrs f unction into the s.Ì.i.1. formalism, v¡hich apart
fron giving an arternative evaluation of the partition func-
ti on an rl, magn etizatio n, nay pr ove t o b e e powerf ul tool in
developing approximate proced-ur es f or unsolved. problems.

A11,hough th e ap pro ache s of s. r,[. L . and. Kad-anof f wi]-r not b e

d"iscussed- in d.etaiI, it is intriguing to notice .the many
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simila.rities between their technioues and those given in this
ïIO rk.

The alternative ap pro aoh to the algebrai-c solution is to
transform the rsing mod.el to a problem of counting polygons

on a lattice. Kac and v,¡ara(9) were the first to ind-i-oate

that the polygons could- be summed. to give the onsager solu-
ti onr arthough thi s method. was only mad.e rigorous ye ars

l ater by sh""*rrr(10) and- Burgoyne (t t ). Hurst and Gru"n(")
(see atso Kast"re"rr(15) and Fish""(t+), simplified- consider-
ably the co mbinatorial appro ach by showing the_t the polygons

courd- be count ed- exactly by a rnathematical entity called. a

pfaffian. The pfaffian technique has gained- consid-erable

popularity, bei-ng used. by Montro11, potts and n""U(t5) to

cal-cul-ate the magnetization and- by Stephenson?e) ,o solve

the triangular Ising lattice problem. Hlr""t (17) has d.erived

pf aff ians for generali zed, rsing l- attices. Also I{asteleyn(t 8),

¡i"t'r""(19) and. stephe.,"orr('o) have so].ved the ùiner prob]-em¡

ancl tlíu Ql) , a mod.el- of a f erro-el ectric, with pf af fians.

the teohnique to be given in this v¡ork is obviously
related. to the pf af f ian method-, but there wil-1 b e a greater

ernphasis on it s connection v¡ith quantum fi e1d. theory rnethocls,

ivith the aim of using the polverfur mathenatical tools of
quanturn fi el-d. theory . Thi s appro ach has recently b een pub-

1i shed- by ¡rrr*"t (22 ) a.nd Gibberd. and Hur ""(23) ,o" the square

lattice rsing mod-eI, where the partition function a.nd- magnet-
j-zatiorl were obtained- by Greenr,s f unction techniques. This
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is anafogous to the v¡ork of Kad.anoff, though the approaches

are d.if f erent,

A d.isappoi-nting feature of the existing method.s of solv-

ing the Ising mod.el is that they cannot solve any more cor-

plicated- problems than those solvecL by the original Onsager

method.. As examples of this, the three d-inensional and next-

nearest neighbour Tsing la.ttices cannot be fornulated. in the

0nsager-lie algebra approach; the pfaffían method- gives the

vÍrong answer, counting so¡ne of the graphs with the wrong sign;

and. the S.Ni.L. and- the present approach cast the nod.els into a

a forn analogous to -bhe unsolved- interacting fernion problem.

Ho';iever, one hopes that the approximation teohniques associated-

with the fermion problem will gíve useful results. rn any case,

as rras stated. by lvanniet(z+).
ItIt is unvrise to suppress successful- techniques-nhen d-is-

cussing ¿r subjeot in mathematical physics, for in the

last analysis a subjecb grows with the techniques avail-

abl-e to hand.l_e it.rl

Two other exactly soLuble models of co-operative phenomena,

exhibiting a ph,ase transiti on t ãt e Slater I s mod-el- of f erro-

electric crystals, in particular KHz P0¿ (X.O.e" ) and the Rys

moc'lel- or F-moclel of antif erro-ele ctric material s suoh as

NH¿ Hz POa. The ferro-electrj-o mod.el- vras originally proposed.

by Slatur(z-5) ar, 1941 , and. the antiferro-efectric mod.e1 by
/ ^r \

Rys'¿o/ in 1963, and. until- very recently neither of these

mod-el-s could- b e solved. exactly. l,iuch approximate numerical
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üíork has been d-one on these mod.e1s, the most reoent being

that of Nagle Q7) , who d.eveloped hish and l-ovr ternperature

series approxi-nati-ons for both mod-ef s. 3or the ferro-

el-eotrj-c case, Nagle vias able to d.erive exact results for

the critÍcal tenperature and. the thermod-ynamic quanti-ties

for tempera.-bures befow the critical- temperature, but T\¡as

unable to d-eternine the trans j-ti on ternperature f or the Rys

mod.el . In fact, in this case, the series expansion and

Pad.e approximate method.s pred-icted- the wrong transj-tion
/^o\

temperature "o) , given by

exp ('' /ut") ,486

instead- of = f

the laclc of an exact solution v¡as particular:-.y d-isturb-

ing since the mod-els, though resembling the fsing model- in

ma,ny d.eta.i1s, faíl-ed. to yiel-d to the existing fsíng techni-ques.

Recently or"o (z:) 
and. Sutherl-urr¿ 

(10)n".re sorved both modef s

exactly. The initial- setting up of lieb I s sol-utíon resemble s

clo sely the algebraic appro ach or transf er rnatrix f ormalísm

used- by S.l{.L. to solve the Ising mod-eI. However, the operator be-
Ionging to the transf er matrix j-s rp longer typical of the operator
of a system of non-interacting fermionsr âs in the Ising mod.e1

case, but instead- resernbles a system of interacting fermions.

Thus, the operator cannot be d-ialgonali zedz but the situation

is saved- because the eigenstates of this operator ¿:ùre the
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same as the eigenstates of the anisotropíc one d.imensional

Heisenberg rnod"el. the sol-ution then is more invol-ved- than

the Icing nod.el soJ-ution, since the so-ca11ed. Hamil-tonian

con-bains an i-nteraoti on termr âhd. this i s why these mod.els

have not yield-ed- to the stand-ard. Ising nod-el treatments.

Ihat a sofution is possibl-e relies on the fortuitous fact

that the maximum eigensta'be oorresponds t o the knovrn ground

state of the Hei-senberg chain.

In this tvorl< the abovementioned moc[e]-s of co-operative

phenomena are to be treated. in a unified. v,'ay which is intim-

ately oonnected. u¡ith the method-s of quan'bum f i el-d- theory.

The progress and advancement of quantum fieLd- theory occurred-

in the early fifties v,¡hen many of the problems that had pre-

viously been put asid.e due to the computational d-ifficulties

rì/ere approaohed. a.new with a rnore powerful perturbation tech-

nique, This so-cal-1ed- Feynman d.iagrammatic perturbatíon

theory v,ias abl-e to produce experimentally verif in)1e nuirr í,::i-caJ-

resul'bs in the fleld- of Quantum Electrod.ynarnics. As a result

of this success, a vast number of nathematicaL methods, ¡nani-

puJ-ations, expansi-ons and. partial sunrnations ha.ve been devel-

oped.o '1-hese techniques have been applied. not only to aL1

aspects of quantum fietd. theory but also to problems of stat-

istical mechanj-cs. l[atsub uru(11) pointed. the r,ray by shorring

that the partition f unotion of a sy stem of particles, rvritten

as the trace of a d-ensity operator, can be expand-ed- as a series
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ïrhose terns can be repr esented- by Feynman di-agrams" This

method- has been d-eveloped. in many ì/laysr âs seen in the l'¡orks

of l,larti-n and Schr,ringe r(32) , I(ad.anoff and- Baym Sl) , and.

Bloch 3l*) . Also, Gold-"torr" (J5) obtained. a graphical repres-

entation of the perturbation theory of Brueckne"(t6), for the

ground- state energy of a nany-particl-e systeni. Tn the Last

tv¡eLve years the quantun fiel-d- theory approach has been used

for al-most aII many-bod-y problems, the only requirement bei-ng

that the Hamiltonian of the system is known and can be v¡ritten

in terms of second- quanti- zation operators. In most cases the

results are good- and- often they appear to have further applica-

tion beyond. their apparent vaJ-icl-ity. For example, straight-

forirard- perturbation treatments fail in the theory of super-

cond-uctivity, but nore elaborate techniques involving selective

summation of certai-n cLasses of Feynman d-iagrams yield- the

correct resurt "(17), 
(¡g).

In regard- to the Ising mod.el , field. theoretical perturba-

tion method-s f all into tr¡o cl-asses. The first can be regard-ed-

as the application of the above general- d.Íagrammatic techniques

to the f sing mod-el. So f ar none of these method.s have b een able

to reprod-uce the exact solutíons of Onsager, but rather give the

molecul-ar fiel-d. solution as the first ord.er approximati-on. The

second.-ord.er approximations have been shown by Horwj-t z and

c at- r un3l) to a1Tee vrith the high and. lov¡ temperature series

expansions. (erout (+o ) , Eng1u"* (4t ) , Bloch and ï-.,ang 
"r(t,-'z) ,

Belr Gl) , oguchi ¿,.nd- or.o 
(hh), and Ab "(+5) nurre all used
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d-iagramrnatic t echnique s ) .

The seconcl class of field. theory appro aches to the rsing
mod.el- i-s consid.ered, in this thesis. These a,re the exact

tne'.;llcr.s, alread-y d-i scus sed.¡ of S. i,,i.L. I(ad.anoff and. IIurst and.

Gibberd-. Although the rigorous sol-utions obtained. by these

method-s contain the most successful- d.escription of phase transi-
tions so far, these approaches have not been extend.ed. beyond- the

limitations of the simpre mod-ets they sor-ve. rn particul¿r, it
is very d-ifficult to d-rav,¡ any oonofusions about rear systems

from these solutions.

0n the other hand, it is felt that the fierd. theory tech-
niques are the best approach to phase transitions, vrhich are

chara,cterized- by the non-analytic beha.víour of their therno-
d-ynamic quantiti-es, such as specifíc heat and susceptibility.
this is because dher practi-cal methods of approximation, such

as a rapidly convergent expansion technieuer cannot hope to
i'¡orlc for functions r,vhích a.re non-analytic in the most interest-
ing temperature range, the critical point. The quantity which

coul-d- hand-l-e this non-analytical behaviour is the Greenr s

function' The Greenfs function first arose as a polverful tool
in quantum fi el-d. theory, v,rhere its or,vn analytic properties

Sovern many of the properties of the systen. a.s examples, in
the field- of elenentary particl-e physics, a simple pore in the
Greents functions correspond to elementary particl-es: complex

poles corresponCr to unstalAl"elementary partì-cles delrend-i-ng on

u¡hich Rienan¡r shee-b they 1ie, while branch points generally



9

start at energies correspond.ing to the 1or'rest energies of

multi-particl-e states. In the stud.y of the ground- state of

a nany-bod.y problem, the singularity oocurs at the energy of

the f irst excited- state. Irr this thesis it is shov'¡n how the

position of the singularity of the Greenrs function d.etermines

the value of the transltion ternperature. It would a.ppear

that an expansion in terms of Greents functions, r,vhich al read.y

contain the non-analytic behaviour of the system, is 1ike1y

to be the nost fruitful approach.

1.2 A Brief Outline of the Contents

The ain of this r,rork has been to extend the approach of

Gibberd. and- Hurs *Ql) to aLl- statistical lattice problems, and-

in particul_ar to look at the unsolved. lattice problems" The

problems considered- in d.eta.il- Ð.re the two d-imensi onal square

l-attice Ising modef, the tlvo d.imensi-onaI next-nearest neighbour

I sing mod.ef , the Dime r probl em, Slat er I s model- of a f erro -

electrio t zld. the Rys mod.el of an antif erro-electrio.

In establ-ishing a unified- treatment for all 1¿rttice

problems the original f orrnal-ism of Hrr""t (22) is presented. in

a comparatively nevr and simple fashion. Tn ohapter tv,¡o the

counting of graphs on a given Ising lattice ís shown to be

equivalent tc¡ summing o larger cfass of graphs, which we have

cal-led- Feynma.n graphs. The sum of these Feynman Sraphs is

written as the vacuum e)tpeotati on vaf ue of a tine-ord.ered
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of exponentials, anil the partition functions for the

probl-ems can be v'¡ritten ih the general- form

z = <ol t exp (x¡ n(¡)) lo'

where H(¡ ) is a cluad-ratic f uncti on of f er¡,rion creation and.

annihilati on operators f o r the sol-ubl-e mod.el-s, and. is a cluartic

function of fermion operators for the unsolved- model-s.

In chapter three, use is mad-e of the strong similarity of

the above expression to the s-m¿rtrix expressions obtained. in

fi eld- theory. Free and- pertll¡ua Greenr s f unctions are clef ined.,

and- some of their general properties d-iscusseil. The free

Greenrs functions are evaluated. explicitly, and- Dysonts integral

equation is C.erived- for the pe"tråed Greenrs funotion. The free

Greenr s functions are us ed. in the next cha.pter to eval-uate the

partition function and magnetization of .the square l-attice Ising

mod-el . The lvell-knorr'n resul-t s of 0nsager are obtained¡ a"Ithough

the d-erivati on is con si-d.erably sirrrpler.

Chapter five consid-ers the unsoh'ed problem of the next-

ne arest neighbour Ising nod.el-. Perturbation expansions f or th e

partition function and- magnetizatíon are developed. The first

term of th ese expansi ons reprod.uces bhe critica.l behaviour

expected- of th j.s mod.el; r'rhich is the same as the solubl-e two-

d-imensional l,.t-bices : a Ìogarithmic singurarity in the speci-f-
1j-c heatr âhd- ths ¡rrL;gnetízation behaving as (f" - T)E near the

critical- tenperature. The cri-bica1 temperature is calcul-ated-
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a.nd. conpared- to the results of Pott"(5t).
In chapter six, en extra fiel-d. theoretical teohnique Ís

d-eveloped.. the S-matrix is si-mplified by taking the Fourj-er

transforrrl of the f ermi operators, and the resulting expression

i s very simil o.r t,o thos e of non-interacting and. interacting

fermi6n systens" Irom thís expression a trreduced- Hamíl-tonianç1

approxì-rna.tion is used on the unsofved. problems.

The f erro-el eotric pr oblen is consj-d.ered. in Chapter seven.

This problem has not been completely soLved usíng the combina.-

toriaL approach. Holrever, usin6 the GreenIs function tech-

niques d-eveloped- in the preced-ì-ng chapter.s, it i-s shown that

the low tenpera.ture cB.se can be solved- exactly, a.nd. that the

high tenpera-bure critical behaviour is given exactly by the

first ord-er approximation. Higher ord.er terms of the perturba-

tion series are shown not to contain any new singularities. It

is shown that the bound-a.ry cond-itions of this nod.ef are import-

ant , ¡,n d- that f or a mod-ef containing heLical bo und-ary co ndítions

an exact rel-atLon betvreen the critical temperature and. the

el ectric fiel-d- oan be d-erived-. the recent exact sofution of

Lieb is d-iscussed-¡ ernd comparrison betl'reen the tvro method-s i-s

rnad.e. For the ¡"ntiferro-el ectric I-,roblern, the fi-rst ord-er

approximation is shov,¡n to pr ed.ict the exact critical temperature.

The Dimer probl-em ís sol-ved- using this ne,ir appro aah, in

chapter eight.

In attempting to d.evelop some of the potential that this

new formaLism lvould. appeer to have, lire have found. the imlortant
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resul-t tha.t the first ord-er approxirnation contains the correct

critical point behavj-our for some of the unsoJ-ved- problems,

ong. ¡ next-nearest neighbour Ising 1a'btice, f erro-el ectríc and.

antiferro-electric mod.els. (lor solubJ-e Ising mod.el-s the first

ord.er approxímati on is equivaf ent to the exact solution and.

hence must give the correct b ehaviour). r:f e have also been able

to obtain, for the first time, a rel-ation betlreen the critical

temperature a,ncl el-eotrj-c f ieId. f or the f erro-electric probLem.

llowever, although this teohnique is more povrerful than other

method.s, there remain many problems, a fel'r of which are ùis-

cu ssecl in the Ia. st chapter.

this thesis contains nine chapters numbered- one to nine.

The pages a.re nuii,bered. consecutively and. the equations (r, m),

n being the chapter number and. m the number of the equation in

that chapter. The references to other literature are oollected.

at the end. of the thesis.
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_ 13

REFORJ.{ULATI ON OF THE ISINe il,{ODEL

2.1 The Soua
-à€ .ré __

re Lattice

The reformula.tion of the rsing rnod.el_ to be given in this
chapter is based. on the combinatorial- êolution of Kac and.

/o\
vüard- \'/ , r,,'-ho obt aine d- an e xact so rution f o r the partition
function by summing a.rl the graphs that cou1d. be d.raru¡n on

the Lattice. IJurst a.nd- Gr""rr(tZ) have since shown that the
process of summing al-l- the graphs can be carried. out v,¡ith the
use of pf aff ians, and a second- quant ization f ormal-1sm. This
approach had- some ad.vanta.ge over other method-s, but the nore
interesting rvork rras to f ol-lov,¡ r;,,hen Hrr""t (21 ) modif ied. the
second. quanti zali on f ormalism to pr od.uce an analogy between

the expression for the po.rtition function of the rsing mod_el-

and- expressions c onmonly obtained- in the fi eId- theoï.y appro ach

to many-bod-y probÌems. This chapter is concerned. with giving
an altcrnatlve d.erivation of the partition function as a

vacuum to vacuum expectation va.l-ue of time-ord.ered. exponentials.
rt is f elt that, in comparison to the method- aIr ead.y publi shed,

the folJ-ovring approach is nore ooncise and el-egant, and_ d_isplays

the principles invol-ved. in a more transparent form, particu-
larly the analogy i,¿ith the cluantun fierd. theory of nany

particles.

Essentially, the method- shows that the process of surnrning

all- rsing graphs is equivaJ-ent to surnrníng a larger cl a,s s of
graphs, r,¡ìrich ere call-ed- Feynman graphs. These Feynman graphs
can then be sumned- by a vacuum to vacuum expectation value of
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an expression re sernbling the S-natri-x in f ield. theory. For

ease of presentation, i,re shalf l¡ork i-n the reverse ord-er,

writing down the s-m¡.trix and. the n shorving that thi s is equal

to the surtr of al-l- Feynman graphs, i'¡hich in turn is equivalent
to the sun of all the fsing graphs.

Startin6 ui_th th e combinatorial approach of l(ac and jüardr

the partition func tion, Z, can be v¿ritten as

z (z.t)
f r s

rvhere x = tanh BK1 y = tanh BK2

and K1 , K2 are the horizontar and vertical- bond. energies and_

s (", s) is the number of graphs (closed- polygons) ttrat can be

constructed. fron r horizontar bond_s and. s vertical- bond-s on &

square l-¡,ttice. The se graphs are call-ed- rsing graphs to d.is-
tinguish them from the Fe ynman d-iagrams rvhich wilr be intro-
d,uced. later.

An important feature of these graphs is that they must

contain no relleated- bond.s. rn many-bod-y theoryr Do two

id.entica.l f ermions are al- lovred. to o ccupy the s ame state, and

the partj-cl-es are said- to obey ferrni-statisti-cs. Hence, the

fsíng graphs can be rega.rd-ed- as obeyi-ng ferni-statistics since
no bond- can be relieated. in a gíven graph. The fact that the
pa.rtitíon f unc ti on can be red-uced- to counting f ermion type

thisgraphs is a usefrrl coinciclence, for j-t is/analogy v¡hich enabl-es

It /\rs\rrsi x y
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the Ising graphs to be counted_ by a

expression" À typical many-fermion

be eval-uated- by the Feynnan d_iagram

Hamiltonian of the systern,

zation ope rator s.

Our present aim is to

expression, similar to eq.

terms of Feynman d_iagrams

associated_ r,'rith the Ising

many-fermion type

expression which can

technique is

(2. z)

tz
.ol r exp ( / n(t) dt )\Jrr /

o>

r¡h er e lot retrresents the vacuum state and. H(t)

written in terms of

is the

s e c ond. qu ant i-

sholv that '!re oan consider an

(Z.Z), v¡hj-ch when expand.ed. in

vrill- exactly count the Ising graphs

problem. This expression is

N

<ol T exp

vrhere u (¡ )
2*,xy rj

+xa

(L H(¡) o>
)

(2. l)
j 1

1* 2 1* 1

j "j-* + *oj 'j-t

22*1oi -* + rti 'i-l

21+ i:t. 4".
J-m J-1

1 'tla.
J

2*+ Yuj

ïn this expression the vario.ble j is to be reg.jrd.ed- as

representing the jth rattioe point on the rsing l-a.ttice, and-

the opera.tors appearíng in H(¡ ) above are associated. with this
l-attice point. Thus, the ro.ttice coorclina.te, j, t alies the
prace of the tine variable, t, in €e. (z.z). The operators
1* _2* __ ¿__-.-r I 2rj , o; arc f cri:ri-oreati on operators and. al, "3 are annihilation
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operators, which obey the f ollorring commutation rule s

t
p*

a

uun
p
j

)
l-J

n(¡ )

)(
1

ãT

4I = éJ + 'P¡8
.5

J
t

t
'*

jrk

t :

n1

t

1

l"3-t(
p
ja a 0

o>

(z.L)

represent vaouum

t
++

The symbo], T, is sinilar to the chronologicaJ. ord.eri-ng

syrnbol of Dyso n(+e) ur¿ requires that the operators a.ssoo-

íated. v¡ith the various lo.tt j.oe point s be arranged in orcler

of íncreasing j fron the right, ancl an over-a1l sign factor

affixed., s,ccord-ing to the parity of the pernutation from the

stand.arcl ord.er given. The symbol s I ot, .o I

states such that

u., lot = o ; ."lr;

(z. D)

0

<o o> = I

The exponential ee. (2,5) l" expanded &s o. seríes to

tl

in

oo

t
N

giv e

z

A term such as

<o lT
I

( )
(2.6)

(2.7)

n=O

n(¡ )

J 1

N

)'L

n
.olt o>

O j

v,¡hi oh o ccurs in o e, Q.6) co nsi st s of pr o duct s of cr eation and
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anni-hil-ati on operators. As can be seen f ron the relations
in ee. Q.5), the vacuun to vacuun expectation value of a.

prod-uct is zero unless every creati on oper¿ltor has, situated.
to its l-eft, its conjugate operator, the ¿mnihil-ation operator.
the time-ord-ering operator, T, makes ce;rtain that, for a pro-
d-uct consistin6 of pairs of creation and- annihilation operators,
the creation opere.tor stand-s t o the right of the annihí]ati on

operator. ff the procJ-uct consists only of pairs of operators,
these pairs can be removed. by rneans of the cor,imutation rela-
tions in e9. (2.4), leaving a f actor (-t )1*"y"å , rivhere r is

n'l
the nur¡ber of pairs of u', o1 

o 
operators, s is tËe number of

22','jJ-ai a| o'pe rato rs. The l- term come s f rom e" Q"7), and. theJJñî
.t

f actor (-t )' is d.ue to the anticomrnutation rel-ati ons. For

exanple

* -.olr 1tro> Ð, o>j
,i

<o lT xx

¡

I
J

Ia.
J

I
D

J

= (O a
1

j( )

=

I
J

1

The non- zero contributions rqhich occur in €e. (2.7 ) can be

best represented- by the Feynman diagram technique. To see

this, v{e repr esent each of the terms in H(¡ ) by a vertex, crs

2*2
J J-M

x O> = -X

2*

shor,;¡n in Fig.

xYa

1o

t__
2t¡ 1 ,1.

1. a.JJ
ya Y uj uj-t

x a".
J

2
a.

J-m
1" I
j o j -r

Fig. 1

1* 21a. a.J-m J-1
x â



Then any prod-uct contributing to €e. Q.A) can be repreB-

ented. by a c 1o sed. d-i agram d-rav¡n on th e l attice. As an

example the graph d-rawn in Fig, 2 corresponds to the

pro d-uct

a ø

1B

"t 
o 

a,2.
J+M J

À
loõ

Tî x-y-
¿l' ¡

*
az* t*

j+1
J

a.
J

I
j+m

I<o a a o>j+1

when writt en in th e time-or d-ered f orm.

J+xn j +m+1

j+1

Hence, to evaluate

j

j

Feynman d-ia grams tha t

Fig. 2

€e. (2.6), we have to sum al-l

oan b e d.rawn on th e ]-at ti o e .

eontribution arising from each graph is # (-r )1 *"yu,
where re s are the nurnber of horizontarr v€rtical bonds.

1rhe ñT comes frorn the exponentiat series expansion and. the
factor (-r )1 arises vrhen the pairs of operators are brought

togel;her in the time-ord-ered. prod-uct, whe re I is the number

of p ernutat ions inv olv ed.,

The frcto" 4 can be eliminated- by seeing that a given

graph wil-I ocour n! times. Tf the graph consists of n d.j-ffer-

ent vert j-ces, then th ere are nJ diff erent vùays of obtaining
these vertices from the product in eq. (2"7). Hence, there
v¡il-1 b e nl id.entical graphs . rf the graph contains groups

of similar vertioes; u1 of type 1, u2 of tfpe 2 etc., then

the

The
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this g iven prod.uot can o ccur n! (v 1! uz ! . . . )-1 tines. A1so,

there will be vtl uzl r.. id.entj-cal graphs due to the iclenti-

cal- vertex po j-nts, and. so r by multiplyÍng these two f actors,

there will be nt id-entical graphs. Thus, by';,onIy counting

topologically d-if f erent graphs, a weighting f actor of onJ-y

(-f )1 *"yt need. be associated- with each graph.

I[e shall nov prove that ]- is the number of crossed

bond.s in th e graph, Consid.er a graph wh ere j is the lowest

poínt and. k t he high est vertex on t he l attic e, antl- the line s

j oini-ng j I k d.o not cro ss as shov"n in Fig. J.

rI

k_l
I
I

/I
,/

J
Fig.3

îhen obviously the first pair of operators

prod-uct is that assocíated- with the vertex

the last pair wiJ-l. be those associated- rvith

(t3 u; 
o). 

Thus, the time-ordereô prod.uct

2 (

/

in the ti¡ne-ordere¿L

i., (ri_, ri_r ),, anct

the vertex j ,

will b e

^l'k-1 .) (. .) )( ^l'l'a.
J

u".*
J

ak-n a a
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where th e braclret s contain t he intermed-iate pairs of opera-

tors. Commuting the operators so that pairs representing

vertices of line f ar^e together and. those associated- v¡ith

line II are together, '!.,re obtain

*a2
k-m o a aaa)( (. a (I

j ^l*k-1 a a aaa a a) ( )
2*a.
J

operators of
J1NC I

operato rs of
].ine II

The sígn arising from commuting these operators to this
position is positive, since the pairs of ferrníon operators

comrnute and" the single operator s anticommut e.

Nolv consi-d-er a graph r¡¡here the l_ines oross oncet às in

Fig. 4. ir

/
II

Í
/1'

Fí9. )+.

These l-ines may cross at a vertex poi-ntr âs ín the square

lattice, or the bond-s may cross lrhere there is no rattice
pointr âs in the next-nearest neighbour lattice. rn either
caser this d-iagram represents a prod-uct of operators simil-ar
t o that gi-ven ab ove t ahd by co mmuting th e op erators as soo iated-

l.¿t.i*f¿
I
t

J
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with line I to the front of those associ¿Lted..¡,¡i-th li-ne ff 1re

obta in

*
'i-r a.aa ^zl<-m aaa a)()( a a a I

j ( ) )( ô*
a-.

J

The minus sign is d.ue to the od- d- number of permutations. By

lengthy but similar oonsid-erations it is possj-b1e to show that
the number of permutations involved. ih pairing the operators

in l-ine r, or rr is even. Hence a closed. loop with no crossed.

bond.s has e positive sign, while a loop v¡ith a single crossed

bond. has a f aotor -1 . By ind_uction we oan see that any graph

must have essociated- r,uith it a f actor (-r )1 vuhere I is the

number of crossed_ bond.e.

The many-fermion expression in ee. (2.3) 
"un 

therefore be

evaf uated. by sumrning ¿r11 th e topologically d.iff erent Feynman

graphs vri th a vreighting f acto r of (-f )1 x r
v In fater chapters

these graphs are summed. using many-fermion teohniques, but the

remaínd.er of this chapter v¡i1l- be concerned. vrith showing thdt
the sum of al-l- the Feynman graphs associated. v'rit h ee. (z. j) i"

equj-varlen-tto the sum of all the rsing graphs. There is a

similarity betlveen the two cl- asses of graphs, but there is a

d-ifference i,r¡hich is now discussei[.

The two essential d.ifferences are that in the Feynman

graphs a given bond- may be repe ated as frequently as ïre wish,

and. that the vertex conf igurati on in Fig. ! ca,n oc cur in three
alternat e nray s. For th e rsing mod.el- , the co nf ig urati on j (")

S
a



22

d-oes not existr ârd. only one possibility can occur for 5(b)

Fis. 5 (")

Fis. ¡ (¡ )

The f i rst d-if f erence, that Feynman graphs d.o not obey

Fermi stati stics, r¡as f irst noticed in the fiel-d- theory
approaoh to many f ermion problems, and- th e dif f iculty vras

easily resofved- r¡hen i-b was found. thó the graphs d.isobeying

Fermj--statistics summed- to give a zero contributi onr âs

ooul-d- be expected. from the equation (ri), = O. This same

result ho1d.s f or th e abov e graphs: âs can be seen by consid.-

eri-ng a gene ral example. A graph with a repeated. bond- can

occur in two d_iff erent ivays as shor"¡n in Fig. 6.

)( (¡)a

Fig. 6
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Hov'rever, the weight faotor assooiated. vrith (") will be mínus

that due to (¡) ßince (a) rrus one less crossed. bond.. Hence,

the total contribution from these tuo graphs is zero. This

reasoning can be extend.ed. to any number of repeated. bond.s,

and- shows that these graphs d.o not oontribute to the overall

S Lllll r

The second- ùiff erence, ooncerning th e cros secl bond. oonf ig-
urations oan be removed. in a similar nenner. As the first
graph in Fig. 5 (b ) uiLl have minus th e v,reight of th e other tvro,

this leaves a contribution frorn only one configuration as

required by the Ising graphs. The tr'¿o d.ifferenoes between the

sum of the Isíng graphs antl- Feynman graphs have been eliminated.,

and- except f or the f aotor (-f )I the co ntributions are the sâur@r

For solubl.o lattices 1j-ke th e square l-atti-ce, crossed- bonds can

only occur at a vertex pointr âDd. here they cancel- the contri-
bution from an unt¡anted graph, Hence, it i-s apparent that for

al-l- graphs rr'ith non-zero contributions, 1= O and_ thus,

z xg(rrs) xy " = <ol T exp
N

51.'
r H(¡) ) lo'

this result was first obtained. by

starting f rom t he re sul_t of Gre en

Hrr""t ( 22 ) in a d.ir ect way,

Gt)a¡d- Hur st

*
yutio uri_m *+(r + xyu'JouJ*<ol

j
z

N

1T
2ya aj j-1

2+ *o1orj_t + *r1*t u"¡ 
-0," j-, + *Yu'jou j 

ot'r 
-ruJ-r ) I o>
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Ho',,,rever, the rigorous justifíoation of this
is quit e long an d- involv ed.

As is expected_, the pe.rtition functj-on

soluble IsÍ-ng lattices can b e expressed- in
quad.ratic operator n(j).

s(pre¡rrs) vq.
p

latter expression

of all- t he other

terrns of a similar

s
v (e, g)

2.2 Next Iüeare st I'leighbour Lattice

ïn this section the simplest insoruble rsing lattioe ís
cast into a f ield. theoretio f ormalj-sm. This problem is the

next-nearest neíghbour lattioe, where the jtn spin interacts
v¡ith its nearest eight neighbours as shown ín Fig. /.

V

x

Fig. 7

The partition function can be written as

z ¿r

PrQrrrs
ru

where x = tanhpkl v tanhpk2 î 1f, = tanln|kt it

and. g(prqrrrs)

x

v = tanh¡dka

fsing graphs that can

number of

v,¡ith p di agonal

t i-s the

latticebe d.ralvn on the
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bond.s in th e u d.ir ection, q d_iagonal bond.s in the v d.íreotí on,

r horizontal bond-s an d. s vertica]- bond.s.

Hopefully, tre v¡ou1d. expect that a.n expression suoh as

êg. (2.9) would. count these graphs.

N
<o r (r

j=1
exp

*rj o(rl_r*r

j-1

+ *3-'-r

u(¡) ) lo'

+4" 2

+.'j-, * u]-*-r

+

+ ui-t*t +

2+a +j -nt

+A 1

j-1

(2.9)

=Vâ
4* r*where H(j ) (vt'¡ * ,ru.?o * xa j + "l-t*tJ

aJ-, + "j_r-r ) * v"'¡
t*

( ua 3 rlr

J
+ x€[ j

rtfr+8, j-1

u"j-* * u]-*-r )
f + ou;o(*u.t 

o 
+

ut.*
J

4
j -n+1

a J
j -m-1 + 'j_r )

+A a

3
) )uj -r-1 +a j-1 +

+ '1-r*r ('J-. * "J-r-r + 'j-r ) (j-m

I
a,

In Fig 8 the bond.s to which
\ '^4

J

j-1

th
I

e operator s 'corres pond- is shovrn.

* 
^tæø.

J

a1
J

4 *

t
j

J

,--- a1 
o--_ 

u,
J-t

4

J

3
*

I
I

^"*a.
J-m

1

I
Fig.8

a j-m-r

CL
3
j -m+1
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In analogy with the prevíous seotion, v're can expantl

€g. (2.9) it terms of Feynman cliagrans a.nd. shov¡ that they

are equivalent to the Ising grapha. Holrever, in this latt-

ice there a,re graphs contributing to the total sum, v'rhích

have an od.d. number of oros sed. bond-s. Fig. 9 c ont ains the

simple st example.

j+m j.+m+1

Thus, expressions (z.B) and- (2.9) u=" the same, except that

graphs vuÍth an od-d. number of orossed- bonds lqj.ll be c ounted

níth a negative v,¡eight by ee. (2.9) . Fortunately, we can

includ.e ín the expressíon for U(j) extra terms which wilJ-

oo unt th e graphs wi th an od_d. number of cros sed. b ond.s corr-

ectJ-y. Hov¡ever, the forn of H(¡ ) is now more oomplicated. as

it consists of quartic terms. 'l,Te write the partítion funotion

J

Fig. 9

N
î exp (¡ u"(¡) +

j=1

j'+ 1

H'(¡) ) lotZ = <ol

Hr (i ) i" the quartic
lattice points vrhere

as

wh ere

extr a

10.

(z.t o)

term of operator s, and- introd.uce

the bond.s oross as shovrn in Fig.



27

o

)

I

XXXrt'
a

XXX

t

I

ua

, ,

a

t?

)

,

j+ J -nr

J(

t

Then consi-d.er

no (¡) = Vâ, j
4* z*

Fig. 1 0

t:fÊ | :l'
.+xa
J J

+

j-1 +

( 6 5a +aïrj + a a.

+

3 * tts+ua j (xa j +

5

'3-, )j-1 + +

+ 'j-,¡ + 'j-.,, )

j-1

j*C"", + r'¡-*

j-1

+

Jo * *uJo * "", + ^'i-^
y uti (ua

a j+ a j-m +a 5 a i-1

a"iÞ'i-m * "3-, + '3-, )

g 'le

"¡-*(uj-.' + 'j-r )

3

*J-, * u'j 
o 

u3 -**,

) +xa +

a +a

+4" aj-1 j-1

and ttr (j)

+a j

-*
2a".

J
a a

J

4
j-m+1 J-m

(z.tt)F

a,

li'here the operators correspond. to the bond-s as shown in
I'Í9" 11"
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a,

a
-m J

4*a
J

I
a

(Å

/l
j-1

Èa.J.

a j J
6ts

)
j-n

a

44..
J-

a,

X'ig. 11

lhere are only two pairs of operators in Ho(j) assooiatecL with
the new lattice point, oorresBonding to the vertloes

ancl

This is because any bent vertices goíng through this point wilr
prod-uce graphs whÍch u¡ere not on the or iginal rattice. The

quartic termr itr (J), oorrespond.s to the orossed. bond. vertex.
To show that expression (z.lo) and. (z.ll) give the

correct value for the partition functign, ï/e again expancl the
exponential as a seri.e s an¿L look at ttre sums of prod.ucts of
operators in terns of the neynman d.Íagrans. Thus êe. (Z.t O)
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can be Trri-tten

Z=<O ur(¡) ) lor (z,tz)

The first term in the above series i.s

zs = <ol T exp (r no(j)) lot (z.t l)

rt i s easi.ly verif íe cL that thi s expression ls the same as €e.
and

(2.9)/nenae count s soüÌe d.iagrans rrith th e ïrrong r,veight. We

norr introd.uoe some simpli-f ying notati on. Cal1 the oro ssecl-

bonds that d.o not cro ss at a vertex point, such as tho se in

Fig. 9, Ising-cros sed b ond.s, to d.i stinguish them f rom the

crossed- bond-s in Fig. 5(b) which cross at a vertex point.

Also 1et the sum of all- rsing graphs w j-th no rsing-oro ssed.

bond-s be Iro r and the contributi on f rom all rsing graphs with

p ïsíng-crossed- bonds be Lp. Henoe, from the prevj_ous d-ís-

cussion and. usíng th e above notation, e Q. (2.13) 
"un be

writt sn

Zo Lo Ltt + L2 - r¡ooo

N
(r.n, (¡)
J ='l

1

oãT
oo

TE
IL= )" exp (¡¡

J

!a
oox (-r )'

f-=O

the second. term in the expansion of ee. (Z,lZ)

Zt = <ol T (r¡ sr(j)) exp (¡¡ Ho(j)) lot

t-s

(z.t t*)
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The Feynman graphs arising frour thi s expre ssion will hsve aÌ7

Isíng-srossed. bond., d-ue to the Ht (¡ ) term, counted r,vith a

positive sign and a f aotor of 2, pJ.us other crossed. bond.s

coming from the exp (r¡ Ho(¡)) term, with a factor of (-t )1.

the expression, Zt, counts all Ising graphs with a single

cro ssed.-bond- with a vreight f actor of +2i graphs rvith two

crossed.-bond.s with a f aotor of -lF. This last f act oan be

seen by letting the tr,r9 orosed-bond-s occur at the lattice

sites p and, er Then 21 v¡il1 count this graph, firstlyr lvith

the crossed- bond. at the pth site coming from the factor

Hr(p) and- the q.th site from tto(q) vuith a factor of -2; ani[.

secondly v¡ith the Groõs-bond.s comi-ng from Ht (q) and. Hq (p)

respeotively. Thus, 'the total f actor f or this graph is -l+.

Símilarly f or graphs co ntaining n cro ssecl bond.s, Zt r¡vill- co unt

them with a f aotor Zn(-l )t-1 ; the 2 arlsing from H., ( j), the

(-r)"-1 coming from exp(r, Ho(¡)), and the n is due to the

sunmation over j in ttr(j). Hence,

Zt 2Lt LLz + 6L= oata

thThe k term in the perturbation series of oe. Q-.lZ) r-8

Zy =<O (r
J

and. oan sirnil ar:--y be pr oved. e qual to

^k,¡ l--k! n.,(¡))k exp (¡¡ n"(¡)) lo,

zlr. zkr
k+1

(t+t ) zkt 1

"tld,.k+2

n
k

-oo
2JKx I nn=k

zk¡..k

(-r )"-k

+ (t<+z ) (t+t )
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lo obtain the partition funotion

z zu
oo

E

o1-À

in terns of we sum the ooefficients of L appearing in
J

L j t

i 
Zk, whioh e,re

2n (-r )i-" + ( -r )
j

the last tern¡ oomes from Zo. This oan be writton as

(-r )
j (r

r,vhioh is the binomial expansíon of

j
E

=n I
^it/

n

'i)+
j c-r)"

fi= 1

(-r )r (r 2)
j

1

Heno e,

z Lo + 1¡r + Lz + ....

vrhich is the correct form for the partition funotion. The

partitÍon function for the next-nearest neighbour Iattioe is
therefore given by eesr (z.lo) 

"rrd 
(z.lt). These expressions

are analogous to the many fermion system lvi-th interactíons,

and- at th e pr esent t j- rne can only be evaruated- by approximate

methotls.

oo

x
n

o11=
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2.3 General- Isine Lattices

Vfe norr consid-er luhether al-l f sing pro blems can be repres-

ented. as & vacuun t o vacuutì expe otati- on vafue of a p rc d-uct of

exponential-s. In section 2.1 it was shor¿¿n that the partition

function for all- planar l-attioes, in rvhich the Ising graphs d.o

not oontain crossed- bond-s, Gan be written as

z =.ol T exp (¡ .
J

n(¡)) lo,

where H(j) r¡iIl- be a quad-ratic funotion of f ermi operators.

For a more general planar lattioe containing orossed. bond.s,

the partition function can be v¡ritten as above, exeept that
tt(¡ ) oontains quartio terms. Extra vertices have to be íncl-ud.ed.

v'¡herever two bond-s nay oross, and- Ð. quartic tern iø assooiated.

with thís nelr vertex. In the case of -bhree-d.imensional l-attices,
these can be oonsid.ered. as an infinite number of planar lattices,
where a bond- in the z-d-irection oorrespond-s to a l-ine joining two

point s on the neighbouring plane s. Such a b ond il¡ill give ri se t o

a rarge number of cros sed. boncLs, and- each vertex v¡il1 need. m

extra vert ice s i-ntrod- uced., to e1 iminat e the se cros sed- b ond-s,

where ûr is the nunber of vertices in a ror,,¡ on the lattice. Thus,

the partition function oan be lvritten in an anal-ogous form to
oQ. (Z.tO), but it would. appear to be too cunbersone to nanipulate

suocessfully. Essentially, the quartic terrns, lvhich are regard.ed.

as oorrection terns are too numerous to be neglected_ in any
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approxirnate calcul-ation (se" Chapter 5),

Ano ther uns oLvecl pro bl- em i s th e I sing mo d-el- in a magneti c

fie1d.. This problem red-uoes to counting not only cl-osed. graphs

but al-so line graphs, end we ha.ve not found- a quantity rvhich

vuill count the se l- atter graphs oorrectly. The one-partiole

Greenrs function, d-efined in the next chapter, oounts single

Line-graphs, however, the sign ',rhich it attributes to the

weight of eaoh graph is positive or negative, d-epend.ing on

the shape of the graph. This c ould- only be co rrected- vrith

the inclusion of a quartio term, and so cornplicates the

expression. the nany-particle Greenrs funotions lrould. aJ. so

be required- and- tirese have no t been evaluated- yet. Hence the

f ornalism rve have d.eveloped. he re f or regard-ing th e Ising pro-

bl-em âs a many fernion problem is speoific to planar lattices,

and d-oes not reacliJ-y general-ize to Írore d-iffioult Ising pro-

blems, Ho'wever, as shown in later chapters, the approach is

perf eotly general r'¡h en dealing v,¡i th other planar latti ce stat-

istical problens, such as the Dimer problen, the two-d-imension-

al ferro-el-eotric and. antiferro-eIe ctrio problêDSr

Finally, ïre slo uId. brief ly rnenti-on the ,;york of Vdoviohen¡o (4-a¡
,

as he obtaincd- the partition funotion of the square lattice

fsing rnod.el , by shor,ring that one has to sun a larger cl_ass of

d.iagrams (oorrespond-ing to our Fe¡,¡¡¡¿r. Eraph"). He d.id- this

by nean s o f â d-eterurinant. Basioally th e cl ass of d.iagrams to

be summed- are the sane, but Vd.ovichenko avoided- as far as
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possible the use of concepts not contained. in the original

combinatorj-al- formul-ation of the problem. This meant that

he co uLd solve ttr e square lattice oasee but could- not attempt

a formulation for lattioes with crcssed- bond-s.
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c TER 3. GREEN I S FUTJCTT ONS

3.1 Greenr s Functions and. The r¡rodvnamic Ouantitie s

in stutlying th e problerns of quantum-f ie]-d_ th eory, t he

nethod. of Greenl s functions has proved. to be a very powerful

and. usef ul- tool. fn this ohapter it is shor,¡n th at the Greenr s

f unction t echnj-que is aJ-so us efuJ. in evaluating the th ermo-

d.ynamic quantíties of the fsing mod.el-. Our d.efinition of the

Greenr s f unction f or the Ising mod-el is basecl on the d.ef ini-

tion of time-d.epend.ent Green I s f unctions in field- theory. The

f ree or unperturbed- Greerir s f unction is d.ef ined. in terms of

the Haníltonian Ho(j), r,¡here Ho(j) ir only quad.ratio j-n the

oreation and- annihilatíon operatorsr and is evaluated in

Seoti-on 3.3 The pe rtubed- Greenr s f unction is d-ef ined. in terms

of the ful1Hamit-tonian Ho(¡) + Hr(j) .nd- is expressed. as a

function of the proper-seIf energy part, .t\, j-n sectí on 3.4 In

this section tre shall- d.ef íne the Greenr s funciion, and- show its

rel-a.tion to the pa rtition function and average energy.

To simplify the ex;oressíons, it i s neoessary to introd.uce

a change in th e notation. The fo1lo'r,ring notation vras originally
used- by Hur *(22) o.d. is denoted by

* r{'¿o(¡) y u'i

2

t'(¡) = ]KA,
J

¿'(¡) It" (¡ ) J-m j-1
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a. 8r- ven

no w, an d-

lattioe point, j¡

the superscri-pts

are al]-

represent

The operators belonging to

label-1ed. by the variable j

th e d-ireotions of th e b ond.s

Definingamatrixkby

-1

t'(¡)

a s s hov¡n.
+

T

0

1

3

0

1

1

0

1

À

t

0

(j.t u)k

=A

11

'che ee. (2.3) can be i'uritten

Ho(i) = n ,Inr=, å r.nq Ap(i) Aq(i) ( i.1h)

vr¡here Ho(j) i" the so-ca].Led. hamiltonían for the square lattice.

For the next-ne arest neighbour pro blem there is a similar

change of notation.

r'(¡)

t' (¡ )

n'(i) = a1 a'(¡)

r'(¡)

t'(¡) r¡a

¡." (¡)

Ae (¡)

a'" ( j)

5 2
j-m

^3
J-n

j-1 ÊA j -1

^r*a.
J

ot.u
J

o1 
o

J^'.oJ

Ito(i) = u]_r*r .+,t(j) 5¡Ba,
J

^s 
*

a.
J

v¡here the superscripts represent the bon<1s shorn¡n,
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B 7
6

1 5

2 4
12 11

3

irù e d.ef ine k

-1

r f or thi s l attice, û. s the matrix

0

1

1

1

1

1

1

0

0

0

0

0

1

1

1

1

1

I

1

0

0

0

0

-1
-1

0

1

1

1

1

1

0

0

0

0

-1

-1
0

1

1

1

1

0

0

0

0

-1

-1

0

1

1

1

0

0

0

0

-1

-1

-1

0

1

1

0

0

0

0

-1

-1

_'l

-1

-1
0

1

0

0

0

0

lc
þq

-1
¿

J

-1

-1
-1

-'l
0

0

0

0

0

000
000
000
000
000
000
000
000
0 0-1
000
100
010

(t. zu)

(t.za)

0

0

0

0

o

0

0

0

0

-1
0

0

and then oe. (Z.ll) can be written

Ho(j) -1þo
PrQ

Ap(J) aq(¡)

srtThe unpertubed. or free Greenfs

for al]. lattice probler,rs as

function Go (f ,t ) i r cLef ine d.

At (1) .o,t (r ) exp (r no(¡)) lor .zo''
J

(r,r) =<O T

u"(¡)) lo'j

Ge
srt

whcre Zo = <o[ T exp (¡ ß. t)
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lhis is in d.irect analogy to

co (c'rt r 
) <oIr u"(t)u.(tt)"*p( o(t)at)lot t.olr exp( ito(t)at) lo>I

which is used. in

The pertubed.

simi]-ar manner as

e",t(rrt)

Th erefore

ð.2(')
= <o T

f i eJ.d. th eory.

or exaot Êreen r s f uncti_on is d.ef ined. Ín a

<o Ir A" (r ).qt (t ) exp (r Ho(i) +j il,(¡)) lor.z-1 (5.+)

Obviously the perturbed. Greenr s function ís the sa.me as the free
Greenrs function for the square lattice since ur (j) = o, but is
d-iff erent f or th e next-nê are st neighbour l_atti oe.

The Greenr s f unctions are very sirnpJ-y related. to the thermo-

d-ynamic quantities of th e Tsing mod-el . To iLl-ustrate the rela-
tion between the partition function and- the Greenrs functions,
we intro d.uce an arbitrary pa raneter e into t he d-ef inition of Z.

z (e) =<O lrexp (x¡
"Ho 

(i ) + H' (¡)) lo, (1, s)

ã? j

where the t ime-ord.eri-ng oper ator, T, al-lows the d.iff erentioation
to be carried- out without regard- to the anti-commutation prop-
erties of the operators. îhus

x Ho(j)
j

exp (¡ euo(j) + H'(¡)) lot

'(L)'
9å(")
d.e ti tnrn å unrn çPrQ (irirt)
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the d.efinition of the Greenrs funotion has been genera-

to

where

Iiz eð"

., Srt
tr

and. hence

(t rt<, e ) ,r" (1)tt (r)"*p(r .eno (i )+H., (¡) ) lo>.2-1 (e)<o lT ß.e ¡

Now

I

l.
s¿l-e,)

d-e
z(")-1 d.e = log z

T
log Z d.e

t.zKPrQ P¡9
çPr8 (jrjr.)x.

J
x (t.l)

It ',rill be seen in Chapter 4 that the integration in this equa-

tion can be performed quite simply for the square lattice.

A sinple relation exists betv,¡een the internal energy per

partj-cIe of the Ising mod.eland.the êreenrs function. This

arises from the d.efinition of the internal energy per partiolet
11vt

Ë' 1 az
æNZ

laz
(ã"

0x
Eø

I 92
ðy+ 9s

ap )NZ

for the square lattíce" Using oe. ß"+) we obtain

z -1 AZ
ãr =¡ ¡

PrQ
uJrn çFrQ (¡'¡) xj

l¿.
J

E K,,

P¡Q PPQ
çPre (¡r¡)z-1 Az

w v -1



¿+0

wh ere

k/

0

0

0

0

0

0

U

0

1

0

0

0

1

0

-1
^

0

1

0

0

-1
0

kt,

A

-1

0

000
111

Henc e

r - N-1 t j Trace (t<, c-(¡, ¡ ) o' (*-1 -*)

+ k'e(iri) K2 (y-1-y) )

A similar result can be obtainetl- for the next-nêarêst neíghbour

problen.

the oorrelation functj-ons between neighbouríng spins can be

expressed as linea,r functi ons of Greenr s f unotionsr and. in

Chapter 4 a d.eterminant, whose el-ements are Greenf s f unctionst

is shown to b e ec¿ua1 to the mo.gnetization.

these are not the only Greenr s functions vuhich have been

d-efined. in relation to the Ising problem. Both Ivlontroll¡ Potts

ana v,lu"¿(15) and Kad.arrorr(B) have d-ef ined- Greenr s f unctions, and-

there is & cLirect conneotíon between then, aì-though they all

arise in d.ifferen'r; formalisns.

3.2 Prope ráé€Êæ#æ ties of Greenf s Functions.

In stud.ying the Greenr s f unctions which ari-se i-n the

cluantum-many bod-y pnblems, many useful- properties can be d-erivetl

without reguiring very much inforrnation about the hamiltonian of



the sy stem. Dispersíon ref ations and sum ru1 es can often be

d-erived.. Unf ortunately, it has not been po ssible to obtain

similar relations for the Greent s f unction, d.ef ined- in the pre-

vious secti on, although the follor,ving re suJ-t is neoessary.

Since we have given the lattice cyclic bound-ary co nd.it ions,

such th at the lattíoe is wrapped. onto itsel-f helically, the

Greenrs funotions are period.io. This is cf ear from the

relati on o.1u ' *
J = u jtm where IV is th e number of lattioe poÍnt s t

and. hence

gPrQ(jrro) = GP'a(jtm, klN)

Al-sor âs the hamiltonian, tto(j) + ttt (j), is translatíonalIy

invarient irith respect to the tine variable, j: çPrQ(jrt ) i"

a function of (¡-to) on1y. Thus

gPr9(¡rr) sPre(¡-r)

)+1

Those two properties enabl-e us to ivríte GPrA(¡-fc) as a fourier

Se fl-ê Sr

çPre(¡-r.) -1 çP'q (" ) exp (zr.ir ( ¡ -t )/rv)i\
N
t

T=1

and- conversely

t

The faot that the Greenrs funotíon can be

fourier series arises very naturally frorn the

*n, A(r) =Xj
GP' q (j ) exp (-zrri (t.g)

v,¡rj.tten as ù

work in Chapter

¡/iv)
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6, r,¡here the hamil-tonian is d.ia6onalized. by a fourier trans-

formation, The fouríer transforrn of the Greenrs funotion,

Gp'q(") can then be expressed in terms of the d.iagonalized

h a¡nil t oni an.

3.3 Evaluation of the Free Greenr s Functíon

In this section, a general expression for the unperturbed-

Greenrs funotion is established-. This Greenrs function, given

by ee. (3,3) frr" alread-y been evaluated. by Gibberd- and. Hur r*(ZS),

by summing all the tr'eynrnan graphs associated- v¡ith the expres siono

Here oe. (3.3) i" evaluated. by a nore general rnethoð, whioh

involves setting up and. solvíng an j-ntegral equation for

GoP'q(i-L). Both method.s aï'e typioaJ- of those enoountered

in many-bo d.y the ory. E q. (3 .3 ) c an b e v¡ritt en a s

-L
Go,u(f_t) z;1 .o I r A" (1) ,rt (ro ) j" Íi (E¡ Ho(¡))" lot

The vacuurn to vacuum exp ect¿Ltion value of a time-ord-ered pro-

d.uct of creation and annihilation op"rat#-s is evaluated. by

neans of flIíckr s Theorem, which says that the time-ord-ered pro-

d-uct i s equal to the normal-ord-ered- prod-uot with all- pos sible

pairings. Thís means sumrning over time-contractions between

all po ssibl e pair s of ope rato rs r,'¡hich appe ar in the pr od.uct.

The time-contraction of tv¿o operators Ap(f) and. Aq(k) is

written as 4Preç1rk) and i-s d.efined by



r(¿p(r) aq(k)) = u(¿p(r) -tq(r.)) + ,qPrs(1ri.) (3.10a)

where T and. N are the tÍme and. normal ordering operators res-

pectively. If ¡,(f rf ) d-enot es the matrix of tíme-orcLered. con-

traotions, we find. that for the sguare lattice

0

0

-xô

0

0

0

-yô

L-1 ,kx ô

0

0

0

0

lô1-rrk
0

0

-nr

0

0

a(r,t) =

N

r=1

1+1 ,k

r
-Xú)

0 ì.4n r lc

0

0

0

0

0

0xû,

= * 
"1.,"r(r-t)

0

0

0

yu

nr

1-
=ño

0 -yt^l

,r(r-t) ¡(") (1. t o)

wh ere úJ = exp (2*í /N)

The oorrespond.ing form of l(r) for the next-nearest neighbour

lattioe i-s
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00
00
00
00

xürr o

00
00
00
00
00
O -ttf
00

00
00
00
00
00
00

mr-yû) u

00
00
00
00
0-1

'o
0

0

0

0

0

0

0
rm

uû,

0

0

0

x(¡, 0

0

yu

0

0

0

0

0

0

0

0

0

-mr

0

0

U

0

0

0

0

0

0

0

0

0

0

0
+mr

00
-r0û,

00
00
00
00
00
(n-1 )r o

CJ

0
1

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

-uû)

.,r, (-rn+1 ) r

vûJ

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

The sunrning over al-I time oontro.oti ons Ís e quivalent to summing

over all diagrams¡ and these fa1l into two oategories; those

consi sting of a line starting ancL end.ing with the operators

Au(1) and. lt(t ), and- those whioh are olosecL loopso Exanples of

eaoh are gíven in Fig. 12.

Jz

jr
iz ir

1

Fig. 12

It is sho,ivn in Gibberd. and Hurst (zt) that, in summing

oontribution from a

1-

over topologica.J-ly d.ifferent d.iagrams the
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given d.iagran d-ep end.s onJ-y on the t ine co ntracti ons r epr e sent ecL

by the d.iagran. Hence the contribution fron a di sconnecteð

d.i-agran is the procluct of the contributions f roro it s oonneoted.

components. Ihus we can faototíze out the summation over alJ.

closed- J.oop cl.iagï&rrsr

Summati on over
a1l- graphs

At'P'(r-j, )k

sunnation over
line graphs

9l p 9e

1j

sumrnati on over
loop graphs

to eval-

Zs in the

ne ed. to sum onJ.y

line graph. such

i l i
But the summation over all loop graphs is equivalent

uating the quantityt Zo, whioh therefore canoeJ.s the

d.enominator.

Hence to evaluate the Greenrs function we

over alJ. line graphs. the contributíon fron a

as that given by Fig. 12 is

â.Pzrqt(jn-j.)k ¿92 rt( j"_r)
Pr rPz

The sun over all l-ine graphs can be represented- tliagranmatic-

a1l-y &s Go P, I (r-t ) = -"'{}---- where prq refer to the
1k

d.i-recti ons of the l-ine s at l-,k. Now, r,üe can d.ivi de the s erie s

of line graphs into the sirnple st line graph, plus aJ.1 others

minus this graph. Diagrammatically this is represented. as

Ò-.--*-+ +

1 k t_k k

TÍriting d own the

obtain

Go!rq(r-k) =

contributions of thi.s graphi.caJ- equatior¡ we

t
s

¿Pre(r-i.) + jr ,t AP's (r-¡ )t srt eot'q(¡-i.)
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whioh is an integral or sunmation equation f,or Go (t-tc).

oan be written as the following natrix equation

co (r-k ) ¿(r-t) + co (¡-t )3 /r(r-i ) k

This

(zrt z)

ß.'t 3¡

whioh is solved. by taking the tr'ourier transforns

e, (r-k) ,r (t-tc ) *o (" )

ancl .A (r-t ) ,r(t-t) n(")

Substituting this into the integral equatíon, we obtain

1-=ñl
1--Nr

eo (r). =

and henoe eo (r)
¡'(r) + Â(r) t

= [r -¿(")t ]-r
[,r-1 (") - r. ]-1

co (")

;.(r)

Tberef ore, the f ree Green I s f unction has b een evaluatetl a.s

eo (¡-t<) or(J-k) [t-1 (")_r]-1

The Greenrs function Go(j-k, e), clefined by @g. ß.e)
be evaluatecl by a slmilar technique, 6íving

co (j-kre ) ,r(i-k) [n-1 (")-"r]-1 ç3.1t+)

Equations (3,13) ancL (3.14) frotd. for both the Ising

that w-e have been consícleríngr and. the elements of

[¿-1 (")

1-=ñl
can also

1-=ñl

k l-1

].attices

the matrix

for the square lattioe Isíng nod-el are given by



¡(")
¿(")
a(")
¡ (")
¡(")
¡(")
a(")
a(")
¡(")
¿(")
¡(")
¡(")
¿(")
¿(" )
¿(")
lYh er e
¡(')

+
-T

C,J

xy ûJ

mru +üJ( -*" 
)

(m+1 )r
+

OL-xy- 6

xz (t -v" )
o-txy- üJ+xy

- (rn+1 )

(t , r )
(t ,z)
(t,t)
(rrh)
(z,t )

(z,z)
(2, l)
(l,t)
(l,z)
(t,l)
(l,tr)
(+rr )

(+,2)
G,l)
(+,+)

2 t -mf lllfr
=XJI \ú'J (¡) )(t -n)r
= xT úJ 

* ' * / - -xz y 6-nr-xy" ut -xt y'
= *r"-*y ,' (r-t"*rt") î Nz (l-v1 * *y. ,"
= -*y'r'.-*ty" + *ur(m+1 )r - *"y ^^'
= -xy ,(m-1)r + *y, ,-" * *ry r* + *ry,

2 t f -fr= xJr- (rJ -6 )
a lllf

= -x-l u -x'y'
-r

= -X(tJ

= -xy üJ + x- y û, + xy- û) + x.'y-

'1)"- *"y rB"
*ry ,-*" * x.'y.

= -y "-Ï" * 1.y "-*t (r" * ,-") + y' (1-x?)*w".rît"
= -xy "(-n+1)t + *yt ,'+ y xlr-t* * xty'

Ò , f -11 r
= -xy^ (td -û) )

(1 +*'¡ (t +v, ) - x (t -y" ) (r" + r-*) - v(r -*. )(r 
t"*r-t")

(s.t s)

3.)+ The Þerturbed- Greenr s Function

ïn general the perturbed- Greents function cannot be

eval-uated. exaotly. llany of the approximation techniques used.

in many-bod-y theory are based. on approximations to the exact
Greenrs function and. this section is ooncerned with d.eveloping

such at echnique for ]attioe problems. At first sight, ít
might appear that a systematic approximation proced.ure for
cal-culating e(¡-t) vrould. be to sum the contributions of al-l
rLiagrams of the first f ew ord.ers. rt has been found. in many
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fiel-cts of physics, hoi-relrer, that the analytic properties
(poles, branch points, asymptotic behaviour) are not signi-
ficantly affected- if vre incl-ud-e only a finite number of

cliagrams" Hence, e.¿en in the first approximati_on, it is
necessary to includ-e an infinite nurnber of di agrams. vfe

sharl- consid-cr an j-nfinite partiar sunrnation which reads
-'co D;tsonl s equati on, and- expresses the Greenr s f unction in

teri:rs of ¡, proper-se1f -energy par-L ,f ( j-t) " As .¿1,(¡-t )

ciallno'5 br-' e'val rratecl exactly, Lt is necessary to obtain an

approxj-rna-bion for Â(¡-t ), usi-ng physical and- nathe¡catical

argrlments" A simple approximation foi'Â(j-t) :_" gÍ-ven in

sec-bj-on 7"3 for the ferroelectric problen, IJowever, as has

roen fcun'J. j_¡r !he iùany-fermj-on problens, r,rhen straight-
.ior¡,¡arL1 re ::turl:a-bion theory' f a.iJ-s, the Greenl s function
L'llJ,)-.oach Ìias often had to foLlor,v soLutions obtained. by

exper:Lnien-; or o'cLrei theoret'ìcaI me-bhod.s" often in these
plobJ-cns, G:eenrs f unction methods are not a reliable guid-e

into 1r.¡¡,r,:¡6i;¡n ficlcls, bu-b can be u;ed,co nbi;ain oorrect

¿rnsIiIe:rs 'co probl-erns v¡?rose ans'uTers are a,f re¿rd_.,r known. Con-

sequei:'i;ly, tbc lros'i; appropr-iate approxj-ma';ion for .t1.(¡-r)

has no't;¡et beeir obtained_ for l_attice problems"

The perturbed- Greelre s function has 'been d-ef ined. as

^þse(I__ro) Ho(j)+rr1 (¡¡ )lotx
j

<ulr ÂP(r)¿q(r) "*p ( z -1
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The Feynman graphs associated- with the quantity

line graphs starting and. end.ing with ¡^p (1) anct J!

are again
n(n).

Hovrever, d.ue to the quartio term the graphs are more com-

p1ex. The lower orders of the graphs are

+ + -+-

--|_ Þ

These ere of such a oomplex nature that they oanr¡ot be

summed- exactly. Hor,¿ever , ÍI e can stil1 set up d.iagramnati-

caIly an integral ecluation for the Çreenr s f unction, v¡hÍch

is ca1Ied. Dysonr s equationr as follow s.

Let us d-efine l\P'q(¡-k) es the sum of alt d.iagraros

which have the struoture

where the semi-circle represents any sub-d.iûgram that is

conneoted. to an Íncoming J-ine in the pth d.íreotion at point¡

jrand to an out-going J-ine in the qth clirection at lattice

point k, and. i',rhich cannot be d.ivid-ed. into two part s by break-

íng only one line. Contributions to ÂPtq(j-k) are

+

+

+
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and. such d.iagrams as

d-o not belong to the sub-olass of d-ia6rams 
^(i-k), 

which is

often oall-ed. in perturbation theory, the proper-self-energy

d-iagrams. The unf il1ed point s in the se d-iagrams represent a

quartio tern in the product, while the lines represent all

oontributíons from the quadratic terms. Thus the l-ines in

this case represent the free or unperturbed- Greenrs functiortsr

The d.i-agrams ',vhioh are summed. to give

tia1ly summed and written es

gPrQ(¡-r.) oan be par-

GoP, " ( J-r )nu't (r-*)et r 9(r-r 
)

where

and. &Æ

.+---'o +

€ represents the exact Greenr s function

the f ree Greenr s function. Tfritten alge-

above beoome sbraicaJ.ly, the

sPre(¡-r) GoPrq(i-k)

co (i-i<) E Go(¡-r) ¡ (r-')
lrm

+D
1rm¡srt

which can be written as the foLlowing matrix equation

e(¡-r) G ('-t )

Using a Fourier transf,ormation to solve the above equation, lve

obt ain
c(") = G6 (r) + Go (") l(") e(")
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Henc e, g (" ) Ir eo (r) t(") l-1 eo (r)

Ieo-1 (") - ¡(")]-1

-1A r I (") l-1)t ( k 3.t e)

on using €9. (j.13).

Tühen the arbit rany parameter c ê , is introd.uoed. in the

d.ef inition of the Greenr s function¡ we obtaj-n the result

G(rre) = [t-1 (") - ek - 
^(",")]-1 

(l.tl)

v¡here /f(rre) is also a funotion of e.

The expressions given here are typical of those usecl

in nany-body theory(+g), exoept that general-ly the Greenrs

funotions are not natrices but soalars. f,ikewise kr and.

¿-1 (") would be scalars, v¡here ¿(") is of ten calJ-ed the

propogator, and. k is the vertex part,

The results gj-ven in eqs. (3.13) and. (1.17) wiì-l be

used Ín the rest of this wo rk to obtain the thermod.ynamic

quantities of the mod.els stud.ied.
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CH,û,PIER l¡. S0LUTI0N 0F SQUÂRE L¡,îTICE f SING MODEL

4"1 Partition Function

In thj- s chapter, the thermod.ynami-o quantities of the

square lattice Ising mod.ef will- be evaluated. with the use of

the Greenr s f unctiom.sr The result s f or the partj-tion f unction

and- nagnetizatj-on are the same a s those obtaincd- by Orrrug""(2)

urra furrg(J), although the d.erlvation is sirnpler. Much of this

chapter has alread.y been publishecl by the author and Hurst QZ).

the partition functi on is obta j-necl from equations (l.l)

and- (3 .'t lr) .

Log ¡.x,J PrQI.z

E.îraoe
J

d.e
1,
2¿t GoPrQ (¡-jru)

PrQ

l"

1

I"
Log Z d.e

L u Ge (¡-ir.)

-k
PrQ QrP

d-e

where the minus sign is because k

co ( j-kre) r"(j-t) a(*) [r-er< ¿(*)]-1

Conbining the se two r esult s, we o btaj-n

,N
tH

ñ i=r

E I
N

x N
t=1 rraoe f ta(r) [r -et ¿(")]-1j

N

ï
d-e X

T=1 Trace f ta(r) [t +ek A(r)+e2 kA(r) tn(r) {o o o l
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series is convergent for alr temperatures and. on perform-
the integration, tre obtain

Log Z -E_ rrace $ [ta(r)r å(t¿(") )" + å(tt("))t * .... ]+

N

="lt
N

="!t

I trace J-os (r ta(r) )

å roe d.et. (r ta(r ) )

(1 +x" ) (1 *y' ) (1-y") ( aJ +d

(+.t¡

0n substituting for k and. A(r), ("q.". (3.1), (lrrO) ), the
well-known result follows

22

y(1-x2) (rt"*r-t=)

The oritical temperature, mea,n energy and spe oif ic heat
can be obtainecl from this expression. The d.etails of these
caloul-ations wil.l- be given in the next ohapter v¡here &n approxi-
rnation to the next-nearest neighbour lattice vuirl be naile.

u,.2 Magnet i z atio n

The evaLuation of the spontaneous magn etization of the
ïsing mod-e1 has arlvays been a complicated. problem. Onsager
rvas the f irst to obtaín th e solution, but he only announced_ the
conparatively si-mple result. Four years later yang published.
the first solution. SÍnce then¡ alternatj-ve d.erivations have
been given by Lriontrolr, potts and. I¡/ard-?5), using îoeplitz

N
T1
r-1

r
)

-r-x
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d.eterminants; sreen(50) using integral equations and Kaclarrorr(8)

who used. Greents functíons based. on the algebraic formalism.

ïn this section, yet another method. is given which is basetl on

the fielcl theory.approach whioh has been d.eveloped. so far. It

v¿ill- be also shown th at th e method_s nentioned. above are s iroply

related. to each other.

In chapter 2 it was shown how the partj-tion functions of

the fsing lattíces oouJ-d. be red-uoed. to the vacuun expectation

value of a ti¡re-ordered- operator exp(lj H(j)), vrhere tt(¡) is

a quaclratíc expression of feruÍon creation and. anníhilation

operators. Here the urethod. is generalized so as to express

the correlation functions as the vacuum expectation value of

exp(lj Ht(j)) v¡here Ht(j) canbe regard.ed as a perturbed.

hamil-tonj-an. îhis can b e expand.ed- as a series in analogy

with Dysonr s perturbation expansion in fielcL theory. the

series oan be surnmed., using Greent s functionsrto give the

exact result because Ht (j) ir quad-ratio ín the fermi-operatorsr

the oorrel-ation function .ut 
"k*1 

> f or a pair of spins

l-ocated- at the sites 1 and- k+1 is d-efinecL &s

<s õ )=Z -t ("osh Kr cosh K, )N

t

1
I

€=t1
"1 "k*t X

a

J

N

TI j )(t+y

k+1

j=1

(t** s S j+1 s. )
J+m'

(+. z¡
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vlhere Z is the partition function, uj = t1 represents the

state of the spins at the lattice site j, tKrkî and- tK2kT

are the interaction energies between horízontal- and vertical

pai-rs of spins respectively, and.

x=tanhKr y tanh K2.

I4re shall only consid.er oorrelations where the (i<+t )-tf, spin

is on the same horizontal row as the first spin. The gener-

a!ízatíon to other o&ses is straightforward.. Using the

id e nt ity

t1 tk* 
1

equation (l*.2) can be written &s

(".,, 
"r) (srsr) aaaaa ("u"u*., )

N

'"1 "k*1 
t =Z1x

-1 k ilx
S=+ 1

j=1

=X if j(k

(t +x, "j "j*1 ) 
(t atssj "j*r¡ (¿*. ¡ )

where x.
J

= rc if j>k

ancl Z 
't

z(aosh Kr )-N (oosh K, )-N.

Apart from the j dependence of *j, eguation (L.3) i"

id-entical with the expression for the partition funotj-on.

thus, using the Eame tèchnique that was used. in chapter rr to
express the partition function in an s-matrix form, we can
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obtain a similar expression for atr"k*1t.

a"rtk*1 t = 7't -1 *k <olT
N

exp (r Ho(i)
j=1

k
+xH'

j ='l

(¡ ) ) o>

wheru Ho (J) is the sane as for the squa,re lattioe

funotion ancl is given by equation (l.l) and H'' (i )

perturbatj-on which talces c&re of the i tl.epend-ence

aniL is given by

II'(i) n,äir å *n,n ¿P(¡ )aq(¡ ) 1)

p artitíon

is the

of *j,

( 1

x2

where

'"1"k*'l 
t

0

0

1

0

'l

0-1 0

0

-1

0

-1

k,

<olT exp(

00
0

1

Def 5-nÍng

s(n) exp
='l p r g=1

as the unperturbed- S-natrix we have

(
N
E

J

4
E tt< np(¡)nq(¡) )pq

kl+
XE
j=1 p r g=1

1

2 Ap ( j )nq(i ) (+, -1 ) )s (rv) lo>.2'-1*nkt
pq.

If we expancL the exponential u¡e obtain the series

"1 
tk*1) <o lrIt +

,{-

x
,p

,k*,(r
1"' j=1

oo

¿
h-

1z k,
pq. ¡tp(¡)Äq(¡)

1Q=

( kx1

x- 1 ) ) " I s (r ) | o> . zî1 (+.¿*)



57

To eval-uate this we again use lfickrs theorem, whioh means

sumning all- d.iagrams in the above proclucts. Now, if the

f actor S (Iv) vrere not present in equation (L.4) *u wo uf d sum

over all d.iagrans, who se contributions would- be given by the

time contractions Àpq(irk). These diagrams that aríse from

the series part of equation (¿*.4), and not fron the factor

S(w)r we ïri11 call skeleton d.iagrerms. It is clear that since

the operators appear in pairs th e skeleton d-iagrams are go i-ng

'bo be olosed. Ioops. Now by a famitiar technj-que used. in field.

theory, when th e contributi ons f ro m S (n ) are includ.ed.¡ we sum

all po ssible skeleton d.íagrams, but instead of u sing the prop-

agator .,LPa(jut ) *" must noïv use the Greenrs function GPq(iri.)

to d.eternine the contribution from a d.iagran. For as we have

a1r ead-y seen the Green I s f unction i s a sunmation over a1l cLia-

gratns between two points and. so the above technique is equiva-

lent to summing over afl skeleton diagrans where now eaoh line

in the skeleton d.íagram represents a partiaJ. sumnation over all

possible ðiagrams betlveen two points. The contribution from

the sun over skeleton diagrans will have to be multipled. by

Zt t whic h takes aco ount of al-l- th e clo sed. loops arising from

the factor S(w).

diograns which arise from the

nP(¡)nq(¡) (+, -1 ))"1 we rirst
oan be removetL by sunmi-ng only

term

To sum a1l- the skeleton
h

J
x 1

2 k,pq

t / znnt

[r+'Ë 1

ñ¡ 11

notice that the factor
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topologically d.ifferent d.iagrâ.ns. This

tributj-on of a d-isconnectecl- graph is the

neans that the con-

prod.uot

use the

of it s

linkecLconnected. parts. This fact enabl-es us to

cluster enpansion

sun over all- d.iagrams exp [ "rrm 
over c onnected. d.iagrams ].

Thus we have to sum over topologically

loops. The contribution from a" síng1e

ctifferent oonnectecL

k,
Pt 9t

n-point loop is

' " "k/ prrg* gQrPz (ir,i, ) gq"P'(ir rir)...G*[Pt (jrrrir )

¡ ì.=r Ë j- r gi=1 2n

-1 )t.

QrrP t

n
2 -1 o

( irrr j t )

1

;2
(

Let l' be the contribut ion f rom the sum of topol8i-oa11y d.iff -

erent loops with n vertices. Then

k4
-1L n k' . ..k/pr qt PrQn gQtPz(jrrjr)...G

L
x( )

where the faotor

over

cycl ic

whi ch

1

ñ Golres f ro n the f ao t that i-n s umning

Piqfjf each graPh ís repeated-

graph. The ninus sign comes

2n tines

fron the

since it is a

f act or (-r )P
oocurs in the cLef inition of TIick I s lheorern. Hence

k
.x
J,

.{.
1

'l

ã,Ln Tr (t'e( j,t¡iz)...k'c(jnrir)) (*" -1 )t
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r,r*r 
( i r - i ")*. o e rr, ( jrr-i r ) 

¡ o (rr ) c(r.) . . . c ("rr) J

'L 'u

(+" -1 )* (r, ¡ )

where c(r) = [-*" -x'y" x'y(rt"*r-t")+xr¡-r (l-y" ) ]/¡(").

The last step in e quation (4.5) it given j-n the appendixr at

the end. of thi s Chapter.

I[hen the size of the lattice is very 1arge, the sumnations

in equati-on (+.¡) can be coïr.vertetl to íntegrals. If we write

(t-t ) ro

N-n

antL set

we obtaín

NThe sunmation X l-s
r=1

this cân

2trms

equivalent to

be written as

exp (io ) ; ûJ exp (ip ) .

,

þ

r
(¡)

N t *E
ID

0

mr

Then equation (+,5) becores

and. in the limit of

¿t_0 ¿tø.

2tr

clO1..cLO

¡n
S=1

E¡N

t=1
t

large nrm

2tr 2r
mn ï"1\ñÌ" o

k,
6l

=l¿-- nJi=1
I 1

Io(z,-)2nn

uio, ( J t - iz)+. . .*iorr(irr-i.r )

n
dö't ,, , dÉr,
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' ,< ["(ottþt) c(lzrþr)...c(0rrrørr)] (+" -1 )" ,

where o(orÉ) = (-x'-xt y"-2xty cosg + *u-io(l'y'))¡t(orø)

with a(0rø) (1+x2 ) (t+r" ) zx(l -yz ) coso-2y (l -*' ) co s{,

The

the

integrals over the

following relation
ö i can b e evaluatetL imnedlioteJ.y since

ho:.its$t)

dø c(0,ø) (+" -1 ) 1 r (o) /xI
2tr I

2r

-i0
o

where

Thus,

u e

f(0)

í0
)

r("io )/u("

(r -n"io ¡å

) t

--l--(zo)"

t

i0 I"z(t -ne )

n

r (orr)

(

I

t

Â (t -v) /*(r +r) , and- B = x (1 -y¡ / (t +v) a

k
¡Â
l_

1

nJf,n

2r
d.01..c10 uio r (ir -d, )+. '+Íoo(j;-'5 t ¡

o

1- 3ß¿) 1 xlx

k
¡

j=1

aaa t l a (¿*.6

T[e oan simpJ-ífy this nuJ.tipJ.e integral by d.efining the

operator PU by

P h(d) 1
2rr ij(ø-0)

k 2r d.0 e h(0)ï o
a

PL is o, proiection operator

1 to k of the fourier serie s

which proiects out the frequenoies

of h(ø)n We also define Ptf as
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o

o

r(o')

d-0 e

an operator which acts on a f unotion h(ø) a.s follows:

(prr) h(ø)
2Tr ii (ø-0 ) f(o) h(o).

k
t

ì-
.J- I

I
2rt

I

I
If we now
2r

1=-oo

d.ø o (p-or,)

intro duce an

I
int eg raI

o

an d- cLelt a f unc -

into the
2r

eir (c-on)

dc 'o uu. "iI(d-orr) "ti.' 
(0.. -orr). ..

L

extra
oo

¿rd- E'I=.ootion
o o

multiple integral expression in equation (+.e) r wo obtain

2tr
L n

1

(zo)n*1

r

k
x

oo

E1
n j 

1=1
Ir

iin(É-on_1 )

l t laaaa

f (0 )

e

trTe c an th en

write this

x

use the above ctef inition of the operator Pnf to

&s

oo

¡

¿@
tF

=¿r n- l=-oo

1 1

Io

2r
d.pearPPo ( -t /x)Pr. ( 1-f /x) . . . .

Pk (1 -r /x) "-ilP
2r¿'t' 

d.É "iIÉ [pr. ( t -r /x) ln "-11d

L n n a=rco 2r

IL
2tr o

1r

Thus we have the r esult th at

I Pr. ( -r /x) ]n

log (.ur 
"

1

n
(+. z)

(t*.4 ¡

(8)
,

oo

E

1 
L, = Tr t-os (r -pr. ( -t /x))

Il=

-k
)k+1 >J(

This expression is similar to that obtainecL by Kad.anoff
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although the tlerivations are seemingly unrelated. AIso ¡ this

expre ssion is sirnply related- to the integral equations usecL

by Gre"n(50) rrr¿ Hartwig $z) , and- th e Tooprit z ð.eterminant

of Montrol1, Potts and. W."¿15), to evafuate the oorrelation

functions. The integral equations can be obtained- from

equation (4.8) ¡y writing

Tr log (r -Pr(r -r (o)/*)) 1og

where ì.i are the eigenvalues of the equation

k
nI.

i=1 a

(r pr. + Pr rþ)/*)ur(o)

Multiplying by (t-P ) gives

r,.ur(o) (+.9)

k

(r -pk a
(o ) (1-Pr.) ri ur(o )) u

and hence u

Mul-tiplying

Pk

l-
(e) = enur(o) for ì. t/1 .

equation (4.9) ty Pnr we get

ì, a*-1 r (o ) ur(o ) rour(o) = r't ut(o) 1,.t4l .

îhis is the integral equation which was clerived. by ctifferent

method.s by Green and. Hartwig.

the loeplj-tz d-eterninant of Montroll, Potts and. IJtIard.

can also be written in the form of eguation (t*.8¡. I[e regartL

f ("i0 ) u. a toeplitz rnatrix with element, f í- . given by the

(i-¡ )th "ourier 
oo efficient of f ("tu ). The proieotion opera-

tors P lvhen v¡ritten in natrix notation have zero eIe¡nents
k
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everyvrhere except the d.iagonal elements

are unity. Then equatíon (4.4) can be

Ioe(("r"k*1r*-k¡ = 1og d-et. (t-ro + Pt

the same result as ltlontrol-l, Potts and.

to (tort) whÍch

the eval-uation of equation (4.8) can be carried out

in a variety of ways. The generalizaLion of Szegos Theorem

enables us to evaluate the Toep]-i-tz Determinant form of

eguation (4.8¡. Thís is the method used by Montro11, Fotts

antl 1[ard.. Green was able to solve the integral equation

(t,t)

r(uio)

writt en

x-1 f), whioh gives

T[artl.

o&n be factorizetl and. then it s

inverse can be founó[. îhe n¡thocL presented. here was fj-rst
(a)given by Kad.anoff It also relies on the fact that we

form exactly beoause

=+Tr[P

o

can find the inverse of the operator Pk f (0) ¿s k+o¡ and'

henoe is relatetL to Greenr s method-. The teohnique when

applied. to the matrix representation of Pk f(0) gives an

alternative proof of Szegos theorem. Thus it appeers that

aIl" th e appro aohes are olosely conneotec[.

To evaluate equation (4.9) *" take the perfect cliffer-

ential- of the equation with respect to the variables A anð

B.

a. 1og <"r"k*j) = 
"_1., 

cr. Lr, + k Y (h.to)

Using equati on (l*.7 ) .',,re obtai

kcLLn k (r-*-1 r(o¡)euJ"-1 P ct (*-1r (o ) ).



The extra operator PO

future work and- nakes

6l+

whi-ch is insertet[ sinplifies the

no cl-ifference to the expression sinoe

P-2
1r

P..It

oo

x d_L Tr
'1-PU + Pk

seri-e s inside the unit cirole.

p 0 (*-1r(o)). (¿*.rr)

u'

'l

I kn *-1r(o)pr

To evaluate the inverse of (t-Pt + Pt *-1r(o) 
"u) 

we use
I 1.

some properties of o("io). Now ,r(z) = (t-ør)à (l-l.z¡-ä has

a single singularíty at the poi-nt z = L-1 , trra ,r-1 (r) has a

singularity at z -- B-1 . If th e low temperature oase, T(îor

is oonsitlered it "rn7Bf;o*n(t5) *nr, B<A<1. Thus, the singu-

laritie s of u(r) rrra ,r-1 (, ) 1ie outsíde th e unj-t cirole.

Heno" lrtl 1r¡ are analytic and. can be expand.ed- as a lay1or

u(z)
oo

E uz u z
n-1

a
n

z
oo

E( )n n
O=O fl= O

If we

tiv e

tive

clefíne P = Iin P-.kI(.+ oo

frequenoies of the

frequencie s. Since

P ,rt1 (

we 6oe that P proiects out all Posi-

Fourier Seri es, antL (t -p) tfre nega-

lrtt ("Í0)p consists of only positive

eguations are true.freguencies the following

.,rt' ("io) p

+u- t ("(t-p)

,rt1 (uio )

i0 )p 0.=

(
i0Pu õ+1

)p.

-i0
e ) (r -p) 0.

(+1u-P ("tu) P Pu +1
e
i0 ) (t-p) (+.te)
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Using these equations we can see by nultiplication that

(t-n + u-1 ("tu) p x u("-tu)) is the right and Left inverse

of (r-p + P r(o) x-1 P). Substituting this into equatíons

(h.to¡, (L.tr) *" set

-1 í0 -i0 1
cL 1og M Tr (u (e )nxu(e

where Mz = lim (sl
k'+ oo

¿[r(uio) * -1 
]

"k*1, 
j-s th e magnet ization.

r("i0) a(*-1 ) + ..r-1 ("-tu) x-1 d o("tu)

) ¿[r (" i0 -1)x l )+fimkx
k-+ oo

(+.t 3¡

+

a(,r-1 ("-to ) ),

cl-x

,r("io) -1x

(+. r +)

Substituting equation (4. t l*) itt e quati on (4.13) means we have

to evaluate the trace of three expressionB¡ The first one

can be evaluated. to give lin k *-1 dx, which wiJ.l cancel
k+*

thb last term ín eguation (4.13). The traoe involving the

thircl term j-n equation (4.t1*) gives the interesting contri-

bution and. shall be evafuated explicitly. Using the last

equation in (t*.lZ) vre have to evaluate

Tr (p -i0 -'l -i0u e ) a("( ( e ))

-1 i0tr (n (eu ) (r -p) i0 -i0( ) a roe u(e ) ) (t*.t 5¡u

the trace obtainetl from the

when written out in fuII is
The first term

second- term in

here is siroilar

equation (+. t l)

to

ancl-
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d.0

2tr

æ
E
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2r
"iJ 

(d-o)a los..r("-io)e-írof 2o 
d-ó

IJlur.rO

t1

oo

x
a-
lJ-

i "iIø1=- oo

,l

oo

D

of

oo

L

o 1

d_0 d- 1og .r("io) 0 since the integral is zeîo.2r

The second- terrn equation (4.t 5) lu

2Í
I sd

2r I 2T

2nilÉ !9r ii' (É-or ) -1 íor
ti e

) a ros

(e )u

2tr

o

d0,
2r

J]-=-oo o

I i "-ii, 
(0 t -0, ) ,(.i0" ) a ros *("-i0" ¡

-il02
o iz =o

2r tlo r i "ii, 
(0"-ot ) -1

)2T u (e ior
ï o I

2tr
cL0,
2tr

oo

t
iz =air=1

i0

o

u e
-i0

"-ii, 
(o t -0, ),rç"ior ¡ ¿ ros ,("-io" ¡

oo

x
iz =o

oo

E

ir='l
f
l

d_0

'o ug, 
"io"-(ir+i")2tr

ür. .: o(uio") arogrr(*-io").
J r +Jz

o

Now the summation over j r ancl

i t ine s. Hence the

2tr

above can

d-0 ij0
2tr

e

-1 l-ou (e

is such th at j r +je

writ ten a s

..r("io ) cL 1og ,r("-io

Jz

be

L o@curs

colrl
j=1 J o

. f ao drl-J2tdo

j u' )j

)( ) u e( ( \

l_ I 2'n
-å' t"u '("io ) a rog u(e-tu ).

Substituting the explicit expressions for u(e i0
) *u obtain
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i0
-r--tse
:--T6',1-Be

iA"io
1 -Aeao

-cLBe
-i0 -i0

+ ld-.'r,ecLlogM=i + -i0 -i0o 1-Be 1-lle

f
d.zzffi 'i [ #H. ¡#z]t;-:+.:#r)

rt dl:.ë - 4-gg
j -8" 1 -¡,8

d.À B Â d_¡.+ ----
1 -BÂ I -Lz l

= $ a roe[ (1-8") (r-¡')/(t-an)"]

Integrating we obtain

(t -¡' ) (r -;r" ) / (t -m)"8
T{

The constant of integration is zero, since M=1 at zero tenp-

eratu.f € ¡

lhis is the exact result for the magnetízat,ion of a

square lattice for ternperatures bel-ovr the critioal tempera-

ture. For temperatures above th e critical- temperature Tue

can show that B<1 but Â>1. Hence our expansions for ut ' (r)

d-o not hold- f or the high temperature case. However.r we can

obtain some simil-arity betr,reen the high and lov¡ temperature

cases if vre consid er f (z) as gi ven by

r(r) = u(r) (z v(z-' ))-'
141

rvhcre "(r) = (t -øz)z (r -¿-' ,)u .

Now u (r)!1 are analytic insid-e the unit cirole and.

hence have expansions whioh onÌy have positive powers of zo
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Hor,vever, the extra f actor z in l.]ne d.efinítion of t(r) norr

prevents us from find-ing an inverse to the operator (t-n +

Pf ("tu)o). rn fact the presence of this extra factor z

means that this operator has a zero eigenvalue with an

eigenfunctíon ei0v-1(utu). ïfe have arready shown that
oo

M = n I- and. hence !l = O provid-ed. the prod.uct of the remain-
L]-='i

ing eigenvalues is finito.

Some justifj-cation of the can be pro-

operat or

P .r("io)

vided. in the following

can

-1

be factorj-zeð. into
-i0

last statement

notioe that the
-Í0

e +

(e )p).
get

Using th e

way. I'üe

(t-r + P

r ef ati on

P) x (t-p

1n (;¡) = TrlnÂ+Tr

-i0

Tr

1n B r¡ve

1n M Trrn(r-P+Pv ("tu) -1

Tr In (t-n+n "-ior) = lim 1r In (r-p

d.eterminant has

el-ements

v e )p) +

equati on

ín the low

The

writ ing

FÏ )-rim
k+oo

ones on the

t o (t rlo ) where

fo rm

(

Trfn(t-f+Pe -iop) (+.r e )

If the first term on the right hand sid-e of

(lr.l6) i" evafuated by the same method. as ï!¡as used.

temperature case vre obtain In (l-1,'2 Xr -e2) (t -rr-1

second- t erm in equati-on (+.16 ) can b e evaluated. by

B)".

lc+Pt
-i0ô

ln det. (

di-ago n al

there are

k-roo

1-PL + Pt u-iono). This

e1 ernents except for th e (t,t)
one s on an of f -d-iagonal. It ha s the
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T 0

(}t
Õ p Q

0,
þ

ï

This d.etermj-nant i s obviously zero. In the limit as k'-roo

the d.ete r¡ninant remains zeto. Thls d.ef inition of the value

of th e infinite d-etermi-nant is ín aocord-ance with the physi-

cal representation of an infinite J.attice as a limi-tingoage

of a sequence of f inite Jattices, and. so is th e most natural

one to ohoose. ff Ínstead the inflnite d.eterminant were

eval-u¿,ted. by just calculati-ng lts eigenvalue s an anhiguity

would. arise because the operator P "-ioP 
is non-Hermitian

and. possesses a contj-nuous infinity of eigenvalues in the

region of the complex plane lllaf. fn a oertaín sense this

approach stil1 Iead.s to the conclusion M=0 but it is nore

Aifficul-t to justify. Substituting these results into

equation (l*.16) *" see that the magnetizatíon is zero f or

all- tempera'lures above the critical point'

Thus, the stand-ard- results fo r the partition function

and. magne|Lzation have l¡een obtainecL using Greenr s funotions.

Both th ese uethocLs would, be suitable f or all Ising nod-eI s,

but as poj.ntetl out in Chapter III, the Greenr s functions f or

the unsol-ved. nod.els are not knov¡n e xaotly.

a

öú

o
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4.3 ¡lppe nclix

lfe give here arl outline of th e proof

(4. 5). usíng equation (3.13) *" see that

stru of ur e

8, 1

Ð. 1

0

-41

&z

ã2

b2

-&z

0ã4

0&¿
bg b¿

0 -a4

34 and b¡ t¡
N
E

+ b¡ whioh otl

(3.t5) sives

of e guati- on

k'G has the

l5 a23It+

= 0.

sub-

wherg 8,r = -Êtl t az = -G32 , a¿ = -e

G4l. The zero entries arise since

îhus the trace of k'G is (tr*"*-uo)
', (,*-,-")

stÍtution of .the values f ron equation

wh ere t¡(irria)
N t. . \
, ,o\Jr-Jz )r(_*"y. Nz-xzy(rt"*, -t")

xo,-r(1-y') ) a(")-1 .

Tr

+

Sínil-ar1y k'Gr k'Çz can be written

1P=

(t,c) b¡ + b¡*

/.r

At

0

-Ar

8' 1 â'2

ê1 ã2

0bz

0

0

b¡

0

A4

eL4

b¿

J\Z

I\2

B2

-/\z

0

0

B¡

0

A¿

La

Ba

-/!¿- 8,4

fron whioh we obtain

-at 'ãz

Tr (k, e1 k, e") b¡* B¡* + b¡ Bs.
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lÏe can repeat this procecLure obtaíning

Tr

The sunnation over ti- neans th at

oomplex oonJugate bY¡ j-s the sane

obtain e guation (4.5).

br(1) bi(2)...bs (") + br*(t)tr*(t)

...br*(t)

th e cc¡ntribution f ron the

as that fron b. Hence we

(t, e ,t kt Gz. ..k' G )n
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CH¿.PTER 5 " NIXT-NEirRE ST Nli IGHBOUR ISING MODEL

5 "1 Fir st 0rd- er l.gp L.o_IÀgg tion to the Critical- lerirperature

this chapter is concerncd.with the evaluation of the

thermod-ynanic quantities of the next-nearest neighbour

Ising l-attioe. /ilthough this pobl.en is not solved heret

this work d-erives results for the critical tenperature, Tct

and. the critical inclices ct, dt, P v'¡hich are a reasonable

first approxinatíon.

îhe suggested values for the critical tenperatures

are obtained by exanining the singuì-arlty of the f ree or

unlerturbed. Green I s function. -4,lthough there i s no rigor-

ous proof that the singularity of the free Greenrs function

will be the saae as that for the perturbed. Greenrs function,

evid.ence in sone other a"r^eas of physic s h¿rs shown th at this

assunption can yield- val-id- ans\ü€rso For exanple, in the

field- of strongfy interacting particles, the perturbation

nethod- is inapplicable because the coupling constant io

very l¿rge. Thus the perturbation series cannot necessarily

be expected- to converge¡ and. no significance is attached. to

the nunerical- values of the ind-ivid-ual terns. Hov¡ever, Ed-en,

Land-shoff , Olive and loì-kinghorn"(51), Hv¡a a"nd- Tepl. ,rt(S+)

oonsider that, aÌthough the perturbation nethod- nay be nean-

ingle ss outsid.e quantun electrod-y:r r,nic s, the singularity

structure of sone of the perturbation terns aay contain useful
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infornation about the analytical properties of the conplete

S-matrix. In th e ca.se of strong-int eraotion phys ic s a l<now-

led.ge of the singularity structure of the fírst few terns has

helpecL as a useful d-iagnostio. fn nany-bod-y problenst

Thoulu"r(57) has shov¡n that the transition tenper ature of a"

superconducting sy sterir oan b e obtained. fron th e requirenent

that the rrladùer d-ia.granstr of t he usual graph theory leacL t o

a divergent sürto Qther exanple s, whioh have nore relevance

to the present Ising nocle1 approach are the ferro-electrio

and- anti-f erro-eleotric pro blens. It has been shovün in

Chapt er 7 that the exaot critioaL tenrperatures are pred.ioted-

by the singularities of the free-Greents funotions for both

these nod.el-s. In this seotion, the singularity of the first-

order tern¡ is suggested as the value of the critícal tenpera-

ture fo r the next-nearest neighbour latt j-oe.

îhe critj-caf point, Tc, is d.eternined- by the tenperature

4t which the partition funotion has a singularj-ty, whereas

the critical ind.ices q., N, B are d-eterninetL by the nature of

the si-ngularity. l,gaín we assuae that th e nature of the singu-

larity is the sane as the singularity of the first-ord-er

a.pproxination. the va.f ue s tr'¡e ob tain f or the oriticaJ ind-ices

using this assunption are

o(=qt=0p 1
a
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These results are th e saae as the results for th e sol-ubIe

sguare l attice no d-eI . The id-ea that th e inclusion of the

next-nearest neighbour interactions r¡¡ould nake no d.ifference

to the vafues of the critioal ind-ioes has alread.y arisen frorn

' Kadanoff Is $n) . one of the oori-

sequences of this approa"ch is that the criticaL indices

shoul-cl not b e aff eoted. by th e detail- s of th e interaotí on,

just as the long-ronge correlations shoul-d- be insensiti-ve

to these d.etail-s. If a correlation extends ov er a large

nunber of lattioe sites, the oorrel-ation should be sensitive

only to the grossest features of the interaction and shoul-d.

not b e aff ected. by the intro d.uction of sone next-near.est

neighbour interaction. 0ur Ising nodel caLculation d.oes in

fact help to confirn this hypothesis.

If we use the expression for the perturbed- Greenrs

function given by eq. (3.16), the thernod.ynamic quantit j-e s

ca.n be given exactly in terms of the unknovrn guantity, the

proper sel-f -en ergy part, 
^(i-k). 

îo obtain the above nen-

tioned- results, the approxination, ¡,(i-i<) = O, has been

nad.e, rirhich does not appear to be very drastic when d.iscus-

sing the critical phenonena, but is not a good approxination

vrhe n d.i scu ss j-ng th e ab so l-ute vaJ-ue s of th e th e rnod.ynanic

quantities. For exanple, the fi-rst ord-er approxination f or

the partition functic¡n agree s vrith the series expansion only

up t o terns of ord.er xyuv. The stand ard. perturbation theory
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converges for this nodef since the effective coupling con-

stant is less th an one, a.nd- by inolucling the seoond.-ord.er

terns the partition function will- agree with the series

exp ansion Up to terns of the orde t Xz y" rt2 v2 . However,

there ie consiclerabl-c Labour invofved. 1n cal-cuLating thJ-st

and so the next-ord.er calculations have been perforned onJ-y

on the ferro-eleotrío problen where the nethod- is the samet

but less ted.ious. lVe feel that the next-order tern will

not change the critical- ind-ioes, and- as these are the most

inportant quantÍ-ties, the re is no inned.ia,te ne cessity to

evaluate it.

The partition function oarÌ be written as

log
N

d.e X Trace
r=1

z t å r.["t-t (") -e k-n (", 
" ) l-1

o

where we have used equations (3.17 ) end- (1.7).

The terui lt(r, e ) pr event s the int egration over e f ron

being carried. out, but íf we nake the approxination ¡t(r, e )=0,

rve obtain in a sinil ar nanner to e e. (+. t ¡

fog 2,2 = d.et (t -te(r) ) (¡.r)

In ord.er to simplify the nod.ef r Put x = y and- u - vt and-

then usingequations (1.2) and. (t.ll), we obtain

(l +xt )' ( t *,rt )' + 1 6tz u( t -.rr' )

N
E log

t=1

det (t -ta(r) )

)+ x(1-x')(+,r' (t -lr' )' ) (r" + (¡)
-r +ûJ

r¡r + (¡,
-mr
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-(n+1 )r ,(t -n)r + ,- (l -r)"¡
u(1-x" ) (r -u' ) (a,

ff we let

obtain for

+úd +

th e size of the lattice tend- to inf inityr w€

eQ. (s.t)

2'tr

fr to* z2 lil.

D(0,ø)

1 dodø los D(0,ø) (S.z)
(zo)'

where D(0 'ø)
(t +xt )t ( t +,t' )' 16xz u (t -"" )+

+ 2x(1-x2 ) (l+"" (1-,r')") (coso + oosó)

2u(t-x2) (t-,r") ("o"(o+d) + cos(o-p) )

The integral in €e. (5.2) i" not necessarily analytio since

the íntegran,l is singular in the rang e of integration. The

d-etermination of the singularity of such integrals has been

d.iscussed. by Hurst çll) , who shov¡s that the forlowing e gua-

tions v,ril-l- d.eternine the position of the singularity.

0

0

(¡. t)

(¡.+)aD(0,ø) aD (0, d)

The so 1ut j- on s of ê e.

2,rr. Henc€ eer (S.l)

1-2x2u-xz
or

1 + 2x 2u-xz

a0 aþ

(5. t*) are 0 and- Ó e qual t o ei the r' 0 or

b econe s

',J' l+xu + 2xuz + 2x?u + 'x1ü^' = 0

u2 + 4xu 2xuz + 2x2u + N'ttt = 0
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These tno equations were soLved numerically and the

resufts are plotted- in Figures 1t and. 14. The ratio of

the ùi agonaf to the horizontal- interoction strength
/-- / \lKz/-- ), 1s pl-otted- against the transition tenperature. _. lll . .

d.ivicled. by the transition tenperature of the square

lattioe (t"/r"r"). The results are compared. to those

obtaineil by Dor¡b and Pott "(5e), 
who used. high and- 1ow

teroperature ertrapolation technique6. The result s show

the sane trend" in the case of the ferro-nagnetic nodel,

but cli sagree f or the antif erro-nagnetie rnod-el, wh ere the

present calcuJ.atlons indioate o d.ouble and triple phase

transition. The correot behaviour i-s not known at this.

stage, b ut we should. ind.ícate th e"t tl.oubl e phase t ransi-

tions are not unc.oaja,oxl in anti-f erro-nagnetic sy steDS¡
¡t ç- \

Lee orrd. Yorg\2/ / have given a thermodynanic proof that

ferro-nagnetio systens can only have one possible phose

transition point, but this proof d.oes not hold- for anti-

ferro-nagnetic systens. That it is possible for anti-

ferro-nagnetic systens to have multiple phase transitions

has been shovrn firstly by Vaks ând. Larkin(58), who have

solved exactly a two d-inensional Ising nodel which exhib-

its sj-niIar nultipJ.e transition poínt s fo r antif €rro-

nagnetio interaotions. Seoond-1y, Bienstoon(51) has shown

that the antiferro-nagnetic three-tLinensionol Ising nod.el-

can have a cloubLe transition point in a nagnetic field.
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X'ina1ly, double phase transiti ons oc cur experinentallyr â8r

for exanple, in the ferro-eleotric crystal- Roohelle SaIt.

HoweveI.r to d.etermine whether a nultiple phase transition

d.oes occur in the next-nearest neighbour Ising mod.elr one

wo uld. h ave to d.o nore e xten sive stud-y into tÌre high and 1ow

tenperature expans ions, and aI so look at th e singular j-ties

of the hi6her order terns of our perturbation expansion'

2.4-.!þs--qrrtical Ind-i-oes d.. e( a

80

The criti'caI j'ncLices q', qt are deternined by

ptotic behaviour of the specifio heat, C, near the

point tenperature, Tc, and. aTe clefined by

c +b T<Tcae

the asym-

crit ic al

a
ap Iog Z

4
H: _

N

aô
ãF

AI
ã6

u
ap

ðs'
dF

AI
ãã

a | " l-"' +b' T>To

From the equation

we obtain

E'

where, using the

êQ. (5.2) can be

where € = (f rc) /rc

AT

ñ

first approxination for the pertition functíont

written as
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!%*z
N (zo)"

The d.eri-vative s of

evaJ-uated- by Grcen

elliptio Íntegrals

these results, the

E (r) = I

2ôco s0 co sf, ]

the general expression

and lluru* (60 ) in te ras

of the first and- third-

average enu"gy, ã, oan

+ cosf) +

1, have been

of the complete

kind.s. Using

be writ ten e.5

= I =+ ' 1

J,l uuuø 1os lo*zy(ooso

+ n(r-to) ros

th e log I r-rc Ifor T cJ-ose to Tc, ','uhere

("t 
"k+1r = <clî exp (

arises fron the

Hr(j))lo>.2-1. (5.5)

(r" ) I r-rc I + a..

eIIiptic integral I((t ). îhus the average energy per sp1n

is continuous at t he critioal- pointr âod- the specific heat

has a logarithr:ric singularity at T = îc. This d-eternines

q. a4d d' , since, by convention, a logarithnic singularity is

d-enoted by d. = o; qt = or

a Critíc I
-L nd-ex

¿t fornal- expression can be written for the correlation

functions of the next-nearest neighbour Ising nod.eI, whioh

is analogous to the expression d.erived, l-n seotion 4.2 f or

the square lattice r:lod-el . lVe obtain

k
x

j
H'(j)

N
E Ho(j)

j=1
+ +

1

where Ho (i) anct ttr (i) u"e given by e{so

H' (j), for the correfatíon functions in

(1. z)

the x

and- (z.ll) and.

tlirection, is
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defineð by

H'(j)

wh ere k' i- s x 12 natrix

I

I

k
¡H'

j=1

the 12

kr 0

00
k,

and. k I

À perturbation

the usual wayr

0

0

0

0

1

0

0

0

0

0

0

1

0

0

0

0

0

0

I

0

0

0

0

0

0

1

0

0

-1

-1

-1

0

I

1

-1

0

0

0

0

0

-1

0

0

0

0

0

0

0

00

00
J

0

0 0

0000 1

N

+X
j=1

00

expansion can be obtaíned- for eg. (5.5) itt

the first brn of which wi]I be

ttt "k*1t <olT exp( (¡) Ho(;)) lo, zo-1 (r.e1

where Zo-1 is the expression for the pa.rtítion functi-on,

obtainecl by negl ecting th e quartic tern Ur (i ). The expres-

sion in eg. (5.6) can be evaluated exactly, using the sane

teohUique that was d-eveloped- in sect ion l+,2 ¿ sinilar result

is obtained., whÍch f or the r,ragnetj-zation beoolle s
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Mz = îrace tog(r-p + Pf("íu))

where, usÍng a notation originally used by Green

(¡.1)
(ro¡

r (r) çt -i,u¡L ( -nu-1 ¡L ? -nuit ? -tyu-1 )-t

STCTCZ +2SrCtSe G

c1 1 - sã (ct + t)

SrCrC2+2SrCr32e
E---

cr+1-Sz (0, 1)

n2tI [c? cZ + 2 s? s']' (t+z sÎ ) (t-så)'

Jl=

Cr 1r"1
I -xz

lsgl
1 -ttz

2xSl
1 -xz

2u

1 -v2
Cz Sz

Equation (5.7) i" sinilar to €Q. (+.9) and- can be

evaluatecl in an id.entical way to give

MB=
g:/t:)11:81)

(r -lr)"
T< c

I¿ike the square J-attice oase, A = 1 when T = Îc.

The oritical ind.ex B is definect by

M ñ, a(to -T)P r <

ancL h eno e
log M

B=Iim
T-+To roe (to-t )
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Substituting the results for M given abovet we 8et

p

sinoe the other terr,ls are zeto in

series expansi on of .t about T = To

the limit T.+To. -l¡. TaYlorrs

gives

1
l- l- 1Ìl e-

T-rT c

rge(kÐ-
roe (rc-t )

1 - n(r) + (r-rc ) r" (rc )1 n(rc )

o + (r-rc ) a' (r" )

+ a..a

+ o...

One oan verify tinat .J (tc) l" non-zero and hence p = å.

The ebove results for the critioal ind.ices atq't þ have

been obtained. fron the first-ord-er expression for the parti-

tion function, nanely

z = <olr exp(r Ho(i)) lot
j

which is equj-valent to the general Ising problen d-iscussed-

by Gre"n(50). This f irst-ord-er expressi-on was di scussed. in

seotion 2.2, where it was shown that it counts all- the Ising

mod-el graphs, but tho se vri th an od-d- nunber of cro ssecl bond-s

have a negative Ideight assooiated- wlbh them. To obtain the

correct partition function the quartic term nust be intro-

d.uced-. Hovrever, it appears fron the results obtained above

that the analytical b ehaviour of the partition function is

not affected. by the incorrect oounting of sone of these

graphs. .A.s mentioned. earlier in this chapter, there aret

in other fi e1d-s o f phy sic s, preced-ent s f or assuning th at
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the partial sunnations of the graphs wil-I oontain the

correct analytical behaviour. However, one would. like to

have nor e rigorous criteria f or d-ef ining when the neglectetl

terms d.o not contribute. lin investigation into thj-s point

would. involve the caloulation of the higher-order terr¡s.

For this nod-e1 the calculatíon is very ted.ious, although

straightforv¡ard-; the Greenf s f unction requires the inver-

sion of the 12 x 12 natrix (¿-l(") - l<) and. the subsequent

terns are long and- involved. Because of this¡ the cal-cula-

tions f o r the higher-ord-er terms vriJ-I be perf orned on a

sinpler no d-el- , th e f erro-el-ectric no d.e1, whe re vüe wi 11 af so

be able to nake a couparison with an exact solutíon recently

fountl by Lieb.

The setting up of a perturbation series for the three

d-inensional Ising nodel has proved unsuocessful, which is no

tLoubt d-ue to that f act that th e perturbíng hamiltonian,

lU,, (l) t contains correction terns of the ord-er of N" , whereas

th e 2 d.inensi onaf nod-ef s co ntain only N correction terns.

(See section 2.3). Henoe, one would not necessarily expect

the f irst ord-er approxinatlon to co unt a. signif icant nunnber

of graphs correctly. [his ind.eed- appears to be the case, for

the caloul-ation of t he specif ic heat using the first-ord.er

approximation does not contain a singularity at all. Ân

al-ternatj-ve forn of partial sunnation of diagrams nust there-

fore be found. before the three-d.inensional Ising nod-eI can be

treated. suoce ssf u11y.
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CHÀPTER 6, DI¿.GONALTZ¿.TION OF TTIE H¡.MTLTONTAN

fn the guantum fieId. theory approach to many-fernion

problems, E great nany technigues rely on transfornations

of the fermi-operators. One of the most common transforma-

tions ís the Fourier transformation to momentum space (or

spin Iryaves f or nagnetism), whe reby the summing of the Feynnan

d-iagrarns is greatly sinplifí ed-. 0ther transf ormations, such

as the Bogoluibov canonioal transformation are particularly

useful in cliagonaJ-izing a quad.ratio expression. Such trans-

formations often result in the useful conoept of quasi-

p art icL e s.

In this ohapter, the possibility of applyi-ng a trans-

f ornati on to the rnany-f ermion expr es sion f or tlÞ I sing no d-el
N

is investigated.. V[ith an expression suoh as X k_
i_.1 P¡9
ú-t

the olvi-ous sugge stion í s to make a Fourier transf ormati on such

&g

¿p(¡)¿q(¡),

*

However, jf such a transfo rmati on is inserted- into

<ol r exp(r. Ho(j) ) lot

the creation and. annihilation opcrators loose their j èepencl-

ence, arrd- the operator T becomes meaninglesso Thus, in

general this transf ormation c annot be applied. d.irectly to the

above ercpression. However, for the particular examples that

I
j + . l. "*n 

(ari i k/N)
vN k-1

b-r 
*

-t{
a
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ari-se in the lattice probLems, there i-s an extra property

which enabl-es us to overcome this d.ifficulty. Looking at

al-1 the po ssible tine-or'clercd. pr od.uct s of operators ari sing

from the pairs of operators in H"(¡)r wc notice that for every

pair of creation and- annihilation operators, the creation
¡C:operator, aPr'-, stand-s to th e right of it s correspond.ing a¡ni-
.J

hilation operator aÏ. Si-nce rïe arc ta.king the vacuum to
J

vacuum expectation value, only the prod.ucts j-n which all the

operatorÊappeerinpairsvrillhaveÏ}o[-ze]"ooontributions'

and. hence when the time-ord.ering is carried. out, al.l the

creation operators TIri1l appear to the right of their annihila-

tion operator. This tras the original rcason for need.ing the

tine-orderi-ng operator, T, as pointed- o ut in Chapter 2, Âs an

exampler consid.er the operators arising from the square graph

shown in Fig . 15, vrhi-oh are

r (¿o (¡ )¿'(¡ )rr'( j*')n" ( jftn).\o ( j+t )¡r ( j+t )¿' ( j+n+t )lt ( j+n+1 ) )

nu ( j+m+1)¿'( j+m+t )¿'( j*'o)¿'( j+m)n'( j+t )¿r (;*t ¡¡o ( j)n'(¡)

2 I 1* "*j+1
I 'l'^2d.

J
al.

J

o*a'.
J

xz y'=A q a
i+1 J+m J+m

a a j

j+m j+n+1

1j

Fig. 15

+
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In f ield- theory the normal ord.er of a pr od.uct of

operators is d-ef ined. as th e creation ope rators appearing

to the l-ef t of the annihil ation ope rator s. Henoe, d.ef in-

ing the anti-normal ord.er as th e rever se to normal ord.er,

it oan be s een that the operati or1 of ti me-ord.ering on our

prod.ucts of operators puts the operators in en alnost anti-

no rnal or cler .

Def ine an anti-normal ord-ering oper ator Ñ such that

(-r )P ("¡ "1
-**N (aj .k uI r^ a )a aa a .jl*

uk

where p i s th e number of p ermut ations required- to rearrange

the operators. îhen from the previous d.iscussion it follows

that 1'(prod-uct of paírs of operators) and Ñ (proctuot;o'f pai-rs

of operator s) are expressíons lvhich can b e proved- to be

equivalent, by rearranging the or d.er of the operato rs and

using the anticommutation relations (2.4). Thus, Tve can

verify for the lattice problems that

T (prod.uct of "¡ )
f (pt od.uct of uj)

and he nce

<o l1 exp (E¡ H(¡)) lot = <olñ ir(¡)) lotexp (l .

since the vacuum to vacuun expectation value of the expon-

ential can be expanded- into a serie s of prod-ucts of pairs of

operators.
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This is a very useful result, for he Fourier trans-

f ormation suggested- earlier can now be us ed-r sinoe the

operato" Ñ ord.ers the transformecL operators, bk, in the

same way as the original- operators "j.
The Fourier transf ormati-on ancl i-t s inverse are d.ef inecl

ag

I
j

1

j
lfzm

u
jk *1

1

,*
a

N
x

k=-N
I
k

b;

b

1I

fzu

a

#
bk {zw

b k Vzl¡

where u = exp ( 2ri/*) .

(e . r )

t he opera-

I

al-ilc ltFâ
J

N
x r,l- JK

k=-N

a
N
t

j =-N

l-
ô

J

N
X O+JK

j=-N
a

0
N
x

j =-N

1

N
2,

j =-N

I jk I
J

(^,

Since the lattice has cyclic bountlary cørditi ons

" {r .*ltor u_i , o r: i < N correspond.s to 
"ñ_:_ .

{rl. -o*The bk , bi t ãTe creation operators, and.

are annihilation operators, and. they aot on the

¿rccordingly, which can be s een as foll-ows.

the bkt
v ac uum

b;

stat e

b O>=

i tN'

-::y'zn lot = o

it
k=<o

k

b
y'zu

üJ
- jlc <o a j
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The commutation relations of the

as follows.

can be evaluated-,i*, b;

Sirnil arly

,fl,

bfl ' of,o

[oon
, ['3, 4,] .].

'3,. ] .

,l

ãñ x.
J

,j, 
"(it*i'k' 

)

0

[.fl1

j,

N
j =-N

l

b b1-Â

ô
PrQ

2*
-k

PrQ

ô

b 2

q*
0b

lc'

t l x
+

, j (t-t<' )

x

J

E.
J

J-
2N

J-
2N

1

2N

tj,

"( 
jt -i' k' )

X.02.* 
^'.d J J-rl

uirj' ô

E

where ô i s the kro nek er d-elt a symb o1 .

Thus the new operators, bkr obey fermion

Inserting the transf ormationr eg. (6.t )

suctr as x. u1o u.1o *" obtainJJJ

,j(i.+t'¡ ,

2*

un 
rn'

E.
J

rf
z
k

,*
o.

J '3o = * t¡ xr. xk,

PrQ

co rnmut at io n rule s '
into expressions

,;,.

N
x

lc =-N

t tlt

-k

t*b -k+ b

u

1

2

(oi *
,Ntñ ).- 2k;1

Lx
k

å -i.' 
('i n

*Ibk )

I
2N

j (t<-t<, )**k,

z* 2

*
E.

J k,

bi

z
k

+

k,

)

.fl,Iso,

U)
mk

b -k b -k

b

TJ
-mk
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From these calculations we fincl that

ri'(ti) transforms i-nto

the square l- atti ce

1

2

und.er tÌæ Fouri-er

Xa tto (k) where for

nk z*'

tran sf o rma ti o nr E .

*(o;*

so (k) xv (b? + y(beo b
-*n 

)

-Itrk.u)

- (n-t )t<

2.; o)

, (t-t F *¡r. bl or'-KK

+*(oiob;2

b +b 2¡g
-k

k z* -k
CrJ +b b ûJ ) +

-l< -k
k -k

ûJ +b b u
-k k

2
u)

mk
b 1* b 2

k -k -k

r*
-k

2

k

b
rr

+ y(b k

(++ b; t*úJ +b b-k ûJ ) b b2

k )-k

(6.2)

The parti-ti on f unction fo r th e square lattice can now be

written a s

t

where the anti-normal operato" Ñ,

as

z = <ol ñ ""n(å n" (ro) ) lot (6 ,3)k

novÍ acts on th" b;, bk

and puts them into anti-normal ord.er. The advantage of tiÞ

expression we have obtained- by transforming the operators

is that Ho (k) i" cl-iagonalízecl with respect to the varÍabl-e

(t ). This is useful, since using the commutation relations

f or the operators bL, it can be seen that the ito (k) commute

for different value s of k

Ho(k) tto(t, ) Ho (]c ) no (r ) u/u'

Thus we can ïI rite ee, G.3)

z2
k

N
û

À

=l

<ol ñ u*p(Ho(t)) lot (6 . t+)
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Thi s expression can be evaLuatecl by expand-ing the exponen-

tial and- counti-ng all Don- zeto terms. .A.s there are only

f our diff erent kind.s of operators, all f if th and. higher

ord.er t erms in the serie s are zeîo sínc e t hey clo not obey

ferrni-statistics. Henoe we can writê êer (6.¿+) as

1

N
iT
k=

22 .olñ (r+no(rc) .h (so(r.))'

I
TT

.olfr (y rnlc oï* oi + ïø-mlc u"-f l"-n + *rk

I
'f' al). (uo(t))'+

(no (r.) )' ) lo' (6 .5)

The evaluation of these terurs is conparatively simple, where,

for example, the only terms contributing to <olÑ Ho(k) lot
are

+
,lok

,*b;

*r-k tt,1 tt,- ) Io,

whioh on putting the terms in anti-normal ord.er and evalua-

ting gives

r Dk -IIIkr t k -kl-ytúJ + ú, ) - x\û, + tr )

Evaluating al.l the terms in expression (6.5) yield.s the

expected- result

N
11
k=1

( (t+x'¡ (t+r'z) - y (t-*1 (rtk*r-tk)

)

û



93

-4. Greenl s f unction can be d.ef ined- in terms of these

operators in the usuaL nannerr anð as would- be expected.

from the analogous procedure in field- theory, thís Greenrs

function is equivalent to the Fourier transforn of the

Greent s function ï,¡hich vrag d.ef ined- in terms of the origína1
*operators, â r .
J

so f ar v¡e have showed that t he Fourier transf ormation

d,iagonalizes a. quad-ratic Haniltonían vri-th r espeot to it s

f tirnet ooord-inate j. If we look nolv at the quartic term

u1o tl o a4. a=. vrhich occurs in the next neare st
J J J-n+1 J-n

neighbour problem, and use a simj-lar transformation, we get

*
2z tto

J
t3-**t j-m H' (i)3

j
5

J

x
2N2

krr kzt k:r k¿
, 
j (k,r +ke -k¡-ko )* (*-1 )k¡+mk¿

a a

1
¿
j x

* s'ßb 6 b b 4
kt k2 k¡ b:ka

E k1 kz k¡ k¿
('J

Now this Haniltonian is no longer d.iagonalized- r,víth respeot

to the variabl" ltl, and. has the familiar form of the many-

fermion Hamiltonian with an interaction. îhis result

enables us to use the many forms of approxinations that oan

be performedL on such expressions. The appropriate approxi-

mation, hovr ever, r,viI1 have to be justif ied- by physical argu-

ments, and. these a,re not vrell established yet. Since the

1

ãñ ô (k r +k, -k¡ -k¿ )
(m-t )k: +mk¿ lfl oufl orfl 

, 
oio
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phase transition in supe rcond.uctivity oan be pred-ictetl-

theoretically lvith a ¡?reducedil Hanil-tonian, one i s temptecL

to red.uce the above Hamiltonian so that it too beoornes a'

soluble problem, and- hope that thoçe t erms and. cLÍagrams

whioh oro negleoted. d.o not nakc an inportant contribution

to the analytíc behaviour of the partition funotion near

the transition point. By approxj-nating the Hamiltonian Ht

with the expression

Hr' im to,,n" , (*-1 )k' +*k" bii oi.l .il, b 3

k2

the partition function oan be evaluated exactly, where vle

use a teohnique whioh is closely related- to the Bogoluibov,

Zubarev and- Tserkovnitool, (61 ) theory f or superconductivity.

The f j-nal resuf t is the s ame as that obtainect by negleoting

nr (j) ("q. (+.t)) except that u and- v are replaced. by

u - Lp, u - lU, where g t Lt are the sofutions of an i-ntegral

equati on, similar to that encountcred. in superoond-uctivity.

Thus the inclusion of t he rrreclucei[r' Hamiltonian gives rise

to a change in the interaction strengths of the ùiagonal

bond.s, which resembl-es mass renormalrzation in fieLd. theor"Q*e¡

The d-etaiJ- s of this calculation are given f or the f erro-

electric probfem in section 7.3. To look at the consequenoes

of using such a Hamiltonian on the nature of the interaotions

and. graphs of the f sing mod-e1, Iire expr ess 'rit' in terms of

a



the original operator s,

transform. trfe obtain

Ht' x

-95

tj' by taking the inverse Fourier

^4Jr-
1

2N
N

it¡i'=1 a"
rn+ j, -m

-tIo

Jr
-f.t

a
Jz

As N-+09 the weighb associated- withth e guartic termst 1

!fr,
goes to zero. Hence, lîe have an infinit e nunrber of terms

of zeto weight, and. whose total effect is non-zeTo and-

finite. the only terr¡s in this hamiltonian which corres-

pond. to Ising graphs with orossed boncls a.Te those when

jr=iz ¡ and. the se terms are û, snaff proportion of the totaL

number of qu artic terms. this red.uced- hamiltonian nodel

then, though exactly soluble is not very interesting

physically. Nevertheless it is interesting to be abl-e to

wríte the partítion function in a forn which so closely

resembles the nany-fernion trnob1en.

1
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R 7. TYIO DI I\,,ÌE }TSI ONAL FERRO-EIJE CTRIC S

7 .1 Sl-aterr s }rtod.el of K D P

e ous

Ferro-electrios aI'c na-berial s ';'¡hioh pos seÊs a spontan-

electric polarization, whioh oan be reversed- by opply-

) eleotrio field. E. F€rxo-electrioity has been

e electrioel analogue of ferromagnetism, as is

he simila.rity in their names. The analogous

bh ese phenonena. are re speotively the spon-

:ation and. r,ragnetism; the d-ieI eotrio constant

ity; and- both have a transition temperature

polarization and maånetization respectively

)non of ferroma.gnetism has been stud-ied- both

rnd theor etically in Sreat detail and- i s norr

stooCt, vherea.s ferro-eleotricity was first

e crystal Roohe]-le saLt onJ-y in 1921 , and-

s a rigorous theoretical explanation. 0f

> expl ana-bi ons , th e th ermodynamical t heo ,u(62) ,

al ly observed. resul-ts. Hot/ever, this approach suffers from

the d.rawbaok 'bh at it doe s not talce into co ns iclerati on any of

the üríoroscopic proper-bies of t he sys tem. :' second., lnore

recent approach, given by Cochron(Un) u*prains ferro-eIectrl-

city on the basis of lattice vibrations. Hov,rever, this theory
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fail-s to account for the ferro-el-ectrioity in the substance

K 112P0¿. The reason is that cLif ferent rnechanisms can pro-

d-uce this phenomenon, and the K Hz P0¿ crystal belongs to

a cfass of ferro-el,ectrios in which the hyd-rogen bond.s pfay

a more important role than the Lattice vibrations. One of

the f irst and- most wid.ely acoept ed- theorie s whioh made use

of th e hyd-rog en b ond. s v¡as d.ue to Sl at u"('5 ) tn 1941 and. his

mod.el- has been successful in pred-icting some of the fepro-

eLectric propertie s of K Hz POa .

There has been a cosid.erabl-e r eviva]- of interest in

SLaterr s mod.el-, whi-ch until- very r ecently coul-d- only be

tackled- with approximate method-s, ê.g. mean fiel-d. method.

(stater), high and. l-ow tempe rature ser.ies expansions(Nagl "Ql) ¡.
However, d-ue to Lieb t s recent exact solution, Slaterr s model

ha s beoome the second. mod-e1 of co-operative phenomena to have

an e xact treatment, which exhibits a phase transi-tion. Ïn

this chapter, r¡re shal-l- show how the techniques that were

d.eveloped- earfier for the Ising mod.el can be applied- to

Slater I s mod-el-, giving an exact solution fo r ternperature s

b elow the critical- point and. goo cl approximation s f or higher

temperatures. Hov'rever, these results have been rather fore-

shad.owed- by th e arrival of Lieb I s exact solut ion, and- so vüe

are now more concerned. wit h using this mod-el- as a check f or

the approximate solutions which are based on our f ield--

theoretical formaLism.
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In the remainder cf this seotion, the partition function

is expressed- as a vacuum to vacuum expectation va1ue. In

section 7.2 th e thernodynamic quantities are d-ef ined. in terms

of Êreenrs functions, which are cafculated- exactly for temp-

eratures beLow the critical tenperature. In seotion 7.3

several high temperature approxirnations are oonsidered-. These

give the correct criticaL behaviour for the specific heat¡

but fail to exhibit a latent heat. Section 7.4 contains a

d.iscussion of the Rys antiferro-electric probtem and. in the

last sectlon Liebrs exact sol-utÍon is oonsid.ered.

The K Hz PO¿ crystal contains phosphate groups (pO¿)

l-inked- t o f o ur neighb ouring gro ups by hyd-rogen bond.s. SJ.ater

assumed. that th e hyd.rogen atoms are capable of occupying one

of two d.ifferent positions on the hydrogen bond. The d-iffer-

ent pos sibl e arrangements of the hyd-rogen atoms r esul-t in

d-iff erent orientations of the (H, PO¿ )- d.ipo1es. The d-ipoles

are assumed- to have l-ov¡est energy when pointing in the same

d-ireotion, c ausin6 a tend.ency tovrard-s spontaneous polariza-

tion at low temperatures, rvhile at high ternperatures the

d-ípoles take up a rand.om orlentation. There nust a1lûays be

tv,¡o hyd-rogen a,toms near every (pOo) group since (n pO¿) and

(fr PO¿ ) are not favoured. energetically.

Slaterr s mod-eI of K.D.P. in tlvo-dimensions assumes that

the pho sphate groups are situat ed. on the l-attice sites of a

square lattice. îhe hyd-rogen atoms are si tuated- on the bond.s
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between tlvo phosphate group s and c an take up two po sitíons as

s hown

P0¿ H 0t P 4 H P0¿

These configurations gan be

on the bond.s of the l-attice

convenLently represented- by arrorÍõ

as shown

/-

There are onJ-y two hydrogen atoms near eaoh (PO4 ) group, and

thi s restrict s the nod.el to six po ssible conf igurations al

each vertex, which are 1abel1 ed. and represented- as shown j-n

Fis. (t 6 ).

(r ) (z) 3) (+) (¡) (6 )

Fig. 16,

Eaoh vertex configuration has an energy associated- with

it and for the crystal- K Hz PO¿ r Sl-ater has ohosen the

enefgies 6.¡ = ez =0 i e3 = C4 = ês = €6 = €¡ FOf A roodel

of an antiferro-electrÍo substance Rys has d.efined a clifferent

set of interaction energies. ïre shafl also consider the case
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when a vertical eLectric fi eld- E Ís present. The d-ipoIe

for two vertical arroÍ/s is d., and hence the energies, vit

to the el- ectrlc f iel-d- are vt = Y4 = -ctE i vz = v5 = d'E ;

V5=V6=0.

The partition function for the nod-eI is

moment

due

z exp (-p¡ (") )

lvhere the sum is over all possible configurations of the model

anù E(s) is the energy of the configuration. The sum over all

configurations can be replaoed. by a summation over a olass of

graphs drawn on the lattice as foLLows.

The stand.ard oonfiguration of th e mod.el- i-s d.ef ined- by

the conf igurati on clrar,¡n in Fíg , (17) .

Fig. 17.

Any other configuration can be obtained from the standarcl

configuration by reversing th e d.ireotion of pairs of arrows

at a l- attioe poínt. If w e r epr esent th e rever sed sp ins as

l_ine s on the lattice, then thr: stand-ard- oonf iguration is

t
Þ



represented. by no lines

st and.ard. confi guratio ns

I attice. The pos s ibI e

reversals of spins on
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ùravrn o n th e l- at t ic e, and th e

oorrespond- to cfosed graphs on the

vertices qihich represent the al lowabl-e

the stand.ard oonfiguration are

An example of a. single closed. loop j-s given in Fig. (t B).

Fig. 1 8.

lïe note that every graph must cross the bo und.ary of the

lattice and so it wil-l- b e neoessary to tl-ls cu ss th e bound.ary

cond.itions of the lattice. Il¡e aI so see that the graphs are

typical fsing graphs where no bond- may be repeated-, aniL the

graphs are closed. loop s. -An important d-if f erence is that

there are only six possibl-e vertices whereas the Ising mocl-e1

contains eight. the vreight s to b e associated. with these



vertices,

-E cl N is

after factorizing

the energy of the
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out a te rm exp(pEdN)rwhere

stantlarð confj-guration are

Ç

-1'---

Ho (i ) + n,(¡) ) lot

r*

1

1 exp (- z1ßd.) u*p (-z1nd-P e) 
"*p 

(-p r) exp ( -pEð.-p e) exp ( -gEJ'-P e)

ytx

where y exp (-pna) exp ( -P ")

It can now be shov,Inr using the methods of Chapter 2t

t hat

2 yxyxxv

x

z = y-N .ol r .*n(T (l.t)

v¡here Ho(j) = utjo a"¡-, r"x +"j rtfi t za xy
J-ma x t

jî+j-1

I
'i-1

H' ( j) a a
t (l.z)j-m j-1 tr

An important d.if f erence between thi s and the Ising model

is the appearance of a quartic term, even though there are no

crossed- bond-s. The reason is that v,¡hen evaluating e9. Q.l¡

by means of the Feynman graph technique such configurations as

XVu".o
J

+

.ùral
J

u".o
J
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will be countt.cL twi-ce, appearing as

antl

(') (¡)

Since (") ha s one more cro ssed. bond. than (¡ ) , and. the weight s

&ssociated. with the graphs are th e sa,me, the sun of their con-

tríbutions i.s zero. As graphs with such a vertex configura-

ti on must be j-ncLud-ed. in the suur, a quartio term is ad-tl-ed. to

the hamj-ltonian to co unt the se graphs. By expanciing the

exponential of the quartic term, as vúe have alread-y tl-one for

the Ising nod.el- in secti on 2.2e we can prove that these graphs

are oounted. correct1.y,

As we have aÌread.y ind-icated.r each graph of t'he

ferro-eleotric problem must cross the boundaries of the

lattice. A bond joining the edges of the lattice is equiva-

lent to a long-range bond. and. can give rise to crossed.-bond-s

and- hence graphs that are weighted. with a minus sign. It was



1olt-

(67) (68 )shov¡n by Potts and- Tfard. and- Green and. Hurst , that for

the Ising nod.el th e graphs whích cros se¿l' the boundarie s ancl

v¡ere oounted incorrectly gave a neglible contríbution.

However, this is not necessarily so for the ferro-eleotrj'c

problen, since all- the graphs nust oross the bounclarie s'

In tr'ig, 1g th e typical cros sed boncls arising f ron helical

bound.ary conctit ions are shown,

(")

(r)
Fig.19.

(")
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The graph in Fig l9(a) frus an even number of crossecl bond.s

and. is oounted. oorrectly whiLe those in Figs. f 9(b)r ("),

have an od.d. number of crossecl, boncLs and are counted incorrectly.

However, graphs (b) and (") contain a vertex J, which is

not an allowable vertex for the ferro-eleotric problem. By

extend.ing th e above arguments it oan b e shown th at all the

graph s f o r the f erro-electric mo del- w1l-l oontain an even number

of crossed. bond-s vqith hel-icaI boundary conditions, an d. hence

the expression (l.l¡ will co unt thern oorrect]-y. Howeverr with

toroid-a1 bound.ary cond.itions, there are graphs with an ocl-d.

number of crossed. bond.s t ùîd. an exarnple is given in Fig. (ZO).

Fig. 2O.

Henoe, an extra quartic term is required. in our hamiltonian if

we are to consider a toroid.aJ- lattice. However, Irieb has solvec[

the toroid.al lattice case, and- a si mple generali zatio n enables

his transfer matrix q>proach to solve the helical lattioe

problem. The solutions are id.enticaL in the limit N-+oo r and. so

I

I

I

t-
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we can conclud-e that the bo undary oonditions d.o not aff ect

the thernodynamical properties. Hence, the expression (t.t)

is correct, Tegard-less of the bound.ary conditions, as N-+oo.

Recontly, Vüu has con sid.ered. a mod.eI of a f erro-el ectri-c

whj-ch is equivalent to replacing the quartic term in eg' (l .t7

by zeTo. He solved- thiE pr obl-em using the pf aff ian method.

IrIe have shov¡n that € e. Q .l) i s the correct expression f or the

partition function of the ferro-electric problem, and- that the

appearance of the quartic term is vuhy the pfaffian approach

has fail ed.

7.2 Exact Sol-uti-on f or T < Tc.

The partitíon function has been expressed in terms of a

vacuum to vacuum expectation value of a time-ordered- produot

of exponentials. trTe can nolr consid-er the expressions for

the average energy per vertex, the spontaneous pol-arizati-on

and- corref ations i-n terms of the Greenr s functions. ff we

d-ef ihe
*

¡.' (¡ ) ¿" (¡)
"""j-, 

¿'(¡ )Iu i-l = Xã.
J

to (¡ ) z*xya j

0

0

1

1

0

0

1

I

-1
¿

0

0

-1

0

0

and-

k



then the eg. (7.2) can be rewritten as
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¡).F(j) ¡q(¡)rio ( ¡ ) xk
PrQ

1

2 !rQ

H'(i)
^o(j) 

¿'(¡) L'(i) n'(¡)1 Q.t)
x"

Tùith thi s notatíon, the exact Greent s functions Gpq(i-lr)

and- th e f ree Greenr s f unctions GoP t n(¡-n) tte d-ef ined. by

equations (3.1*) and- (1.3). The propdgator or oommutator

d.efined. by eg, (l.tO*¡ can be evaluated, giving

0

0

0

0

0

xo 0

*(") r
-xû,

o xyz t¡-nr

0

mr -1 -2

0

0
¡ IIIT

-xy- u 0

The f ree Greenrs funotion¡ Biven by êe. (l.ll)

Go-1 (r) h-1 ( r k

can novr be evaLuated- explicitly. trile obtaj-n

OA \
I-A* 0

rvhere ¡\ is rì 2 x 2 matrix, and-.ii* the oomplex oonjugate.

0

)

co (")

xy I

r-1J-
¡(") 1

Q .+)
¡\ û,

À

û)x -1



vühere ¡(") 0l
(ma1 )r
*t y' x
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xy

r
(¡) ûJ

mr

t

the f ree Greenr s functj-ons, in the co-ord-inate rep-

resentation, Go (i-k), can be evaluatecL exaotJ-y in the limit

of ar) inf initoly large lattioe. lÏe consider f irst

g.oto(o)

and- replacing the sum by an integral, we obtain

N 14
E Go (")

t=1

1

N

Goto(o) I

{z'')"

1

(zo)'

*" y'
e
iø

xy2

-i0

-1

0.s)

Q.e ¡

l

2r i (o*çl )
d0d_ø

\
e

2rr xzd0dé

1
x-yz e-

i0
e

,

)

x

z -i (o+É )

( )
(t -xe-í01 -xe

i

-iøThe d-enomj-nator can be expand-ed. as a pov¡er series ín e

provicle d- t hat

xyz <1-i0
1 -xe

or 1 +>Ez xt yocos 0 <
2x

There âre two oases to consj-d-er. ïf x a -t , then the
1 +lz

ço'o (o ) = I*r; JI .
z -i (o+ø ) 2xy

0

2r
d0dÉ xz

1 -xc
I

1 -xe -i0
-íó

ê *ooo
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as the integration with respect to þ makes each term in the

expansion zeroc

ïf x t -1--, then the relation in eq. (7.6) nofas for
1 +lz

all Q < 0 < 2t Q whene a = arco 1¡xz -xz :fa
2x

this intcval, thc integral is zeto after integrating with

respect to ó. l'lhen 0 is outsicle this range, YÍe write the

j-ntegral for Goto(o) as

. For 0 insid.e

_x2 2 -i (o*ø )
d_0 d.

(t -xe )"
çora(o) 1

2r

I xYz e
-iø

The denominator can nov¡ b e expand-ed- as a poTiler serj-es, giving

(ur¡'

I

l
2T

xe

-Í0

^x¿0=-;sj-n0

xy )

*-1_
(zo)' t

(
q

a

-Xe 1

I

+ ... d0dd
)o

1

ã.,r
-i0

A similar

el-e ment s

-0

i-nt egration technigue f or all the Greenr s funotion

yield.s the foll-ovring resul-ts

goto(o) ço" t (o) -coo t (o) -Gou'(o)

x< (t +y" )'1o(

L -!- sin A x t ('t+y')-1
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)

eott(o) -eott (o) rO
=l 1eL--+ Í

x

sin A

(t+y" )

Ty2

(
1 -rl xL 5+3sinA

7f 4T

(t +v" )

¿\s the

g iven

Thu s

-1
-eoot (o) o

a = arcOS

x< (t *v" )Goto (o)

where

-1(t *y' )

1 +x' -xz yt
2x )

)
P = aroos

The renaining Greents function

ii further, very useful- result

0.1)

e1 enents are zero f ot a-l 1 x¡

/u4 *'+1-xz
I É-----

\ 2v"x

since vre can nov¡ d-etermine

range of temperatures x <

has been shov¡n to be given

is that

eo (¡-r<) 0 x ç (t +v') -1

tir e exaot Green I s f uncti on f or the

1t*l')-1. The exact Greenr s function

bv

G=1 (i-k) Go (¡-t) + ¡(¡-t )

where l(¡-t) i" th e sum

weíghts associated. with

by Go(i-t), ¡(¡-t ) will

of aIl- the irred.ucible graPhs.

th ese irred-ucible d.iagrams are

be zcro for all x < (l*Yt )-1.

Go(i-k) = o x < (t*v")-1c(¡-r<)





112

at n and n pointing to the right, d.ividetl- by the sum of al-l-

the conf igurations (tfre partition f unction). To calculate

the sun of the se configurati-o ns we us e an expression similar

to the one d.erived. for the !artition funoti.on, exoept that

those t erms which represent a reversal of the horizontal

arrows at th e n,th "nd ,rth t ut*r"u sites are subtracted f ron

the Hamiltonian, Hence,

(mrn) = <O T exp (-.13 (t)¿r (to) ¡'(r)n'(*)

J- ro (m)rrr (n)rr2 (m)r.r (m)
x-

,N
X exp (X

j=1

-dxpand.ing th e exponentj.al,

operator more than once we

l,'(tr).tt (") Â'(t')¿" (")

nr(¡))lo,,z'1

L.¡.o (n)n'(n)
No

Â2 (n)rrt (n) )

tto ( j ) +

and. omitting terns containing a g:iven

ob t ain

(ürD) = <O T

J- ¿'(r,)¡,'(n)ri' (n)¿'(n) ) u*p
xz

(t-e" (o) -c'" (o)

1; 
n^ (rn)43 (*)¿" (m).tr (m) ) (t -irr (n)¿t (r') A'(tr)¿' (")

(t -¡.'(*)nr (m) Â'(r)n" (r)

+(r
.)

Ho(i) u,(¡) ) lo, ' z-1

J- eo, (o) er, (o)
xZ

1 e4" (o)G" (o) )'
x'

+

+ higher order tormsr up to

et t (*-t).
j; *"' (t-r,)c" (m-n)G2 a (rn-n)x
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Henoerfor x < (t+y")-1

([rh) 1 all ltt¡oo

llle have calculatecl tlie thermodynamic quantities for the case

x < (l+y')-1 , obtaining

Ett

(DrO)

These results show th at the mod.el remains in the stand-arcL state

for aL1 T <

expansions, and- confirmed- by lrieb. However, the d.ep endence of

the critical- teurperatutp on the el.eotric field- is a nelv result.

trTe have that

*" = (t +Y' )-1 (l .g)

lÏhenE = O, *" =+ and-thusTc =---9---. ÂsE+oor x-'+1and.
kfog 2 c

hence To -) oo. This behaviour correspond.s to the physically

observed. behaviour in f erro-el-ectric crystaL s.

Lieb (private oommunication) ft"s since shovrn th at hís own

solution also preôicts that the critical temperature is gíven

by the €e. (7.9). Strictly, we have shov¡n only that the

criticaL tenrperature is given by *" , (t+V' ¡-1. To obtain

the equality it is necessary to show that

n-

P ¿t

1

î > Ed. for xr(l+yt)-1
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Ihís ne ans that the sum of the Greenr s f unotions in €9. (Z.A)

shouLcL not be zero f or x , (1+Y" )-1 . The exact Greenr s

f unctions are not knoivn exactly in this rallge, but the zeTo t

f irst and- second ord-er approxinations ind-icate th at they are

non- zeîo and. thus the above ínequality is satisfiecL.

7.7 Àn¡roximate Sol-utions for f > Tc
.:::--5é;----;--

For temperatures above the critical point, the free

Greenrs function has been evaluated ("q. Q'l) ), but the

exaot Greenr s function is insol-ubl-e. Thus it is necessary

to rnake approximations for the Greenr s f unctions, in ord-er

to l-ook at the thermodynamic quantities. It will- be shown

that the first-orcler approxj-mation gives the correct asyrnpto-

tj-c behaviour of the speoífic heat, but d-oes not exhibít a

l-atent heat. Higher ord-er approxiroations are oonsiderecl and'

these give the sane results.

The first approxination j-s to neglect the quartic term.

Thi s i s equivale nt to negl eoting the seo on¿ v e rt ex in Fig ' '16 ,

and- hence red.uoes to the nocl-ef consid.ered. by Ïüu. The average

energy i-s given by eg. (7.8) and- substituting the values of

the free Greent s funotion, 17e obtain, f or thc câse when the

electric fie1d., E, is zero

Zg aroos
,IT

a branoh

J [en as

1
E

=.E;

E

2x

pointatx=+and-

x -+ L.

has

-+ o



the only possible

continuous at the

is given by

physical value for E J.s Or and- h"tt"" E is

transition point. The specific heat, C,

-2e1
nkT2
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xz- 1c
AE
AT i'

Thus the speoifio heat d.iverges at f = îc. The behaviour of

x near x = + ís d.etermincd. by the Taylor series

(r òxrc) ãî+ + a...
cx

x

T=T c

+ (r r") ex
c

L * /!ô

where ô 1)

Substituting in above \¡re obtain

C3 e" (t ç4eô-t )
rrklz

2
o

o

(z.ro¡

m

\Tc

2
1-z

c

and hence the critical ind-ex d', d-efined- in Chapter 5, is

equal to t.

l¡Ie shall noï/ consid-er hi-gher order approximations in order"

to verify that the asymptotic behaviour of the speoific heat as

given by th e f irst ord.er app roximat j- on is cor rect r âD d t o ldok

for an approxination which contains a latent heat. Yfe have

consid.ered- three lcind-s of approxímations. The first is the
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usual perturbation expansion about the quartic terms in the

Hamiltonian. The second- i-s th e f irst-ord-er appr oximation to

the Greenr s function using Dysonr s equation, and. the third.

is the rrred.uced-rr'Hamil-tonj.an approximation which is used ín

supercond.uctivi-ty ttreory. ¡',11 th ese approximations c onf irn

the above asymptotic behaviour of the specific heat, but

there is no latent heat present.

the perturbatíon expansion fo r the partition funotion ís

z .o lr

'lVe can use the vÍe11-knclwn 1i-nkecl-cl-uster expansion to obtain

Log Z fogZo +< I (f

oo

E

fl= O

1

;T (¡; nt(i)'exp(r¡ Ho(¡) ) lot

j c

denotes the sun over connected d.iagrans and

n-1
(7,t )

consitlered. above. The

where ( ¡

ave ra8 e

j-d.ent ica]-

r) c

If'(i) ) lo'

Zs can be cal-culated. using the f ree Greenr s f unction, and.

zs = <ol T exp(1.

Log

the

is

energy a.nd. specif ic heat ari sing from this term

to the first

of ee. (7.1t)

iÌppr oxim ati on

issecond- term

<o lî exp (l .x.
J

J-
xcz

/" ( j )¡.' (¡ )¡" (¡ )rn (¡ ) ti' (¡ ) ) lot conrqted.

The connected- dJ-agrarns are representecl-

and.

as
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where the

the fírst

lines represent the

Gorrection to 1og Z

t j J-
x"

(eá' (o ) eå' (o )
42

Go

free Greents functi-ons. Thus,

is

(o) eã'(o) )

'* (e-s--sre-s-5)

where A arcos (zx) -1

The average energy, E-,

1

ñ

when E = 0.

t ãTising from this term is

frr= aT N
æ

/zAsina
\--"- 5)

ex
;7

3-A+rq-g +
292-J-x +

2sin0
x

3Q. ogå9
x

9a
ôx

aQ
ãï+

3393
xz ôx )

Near and. above the c ritical po5-nt

1

2 (¡o )
1-zQ ^, 2(Aô) sin Q æ 2(Aô)

1
Ò g9

ôx

where A and. ô are defined in ê9. (7.t o).
T2. A. ô. eHence, fr È

2tz

This correction t o the average ene rgy t E, tentls to zero as

T -+ I-, antl hence d.o es not p rocLuce a d.iscontinuity in E.

The next highest ord.er correotion c onsists of terms

resulting from graphs with two four-point vertices. There

are many poss j-bIe graphs to ü;e constructed., but w e sha1l

look at only one such graph; that shown in Fig. Zt(U).
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(")

Fig. 2'l .

The oontribution from this graph is

(r)

¡ -1- Go'(o) Go"(o) ç"(¡-j, ) ett(¡-¡, )
irj' x4

1_

x4
leo" (o ) ]' Ie" (i-i' ) ]'=X ¡ 4,

d t..,

Ieo'(o)]"1

x t
1

2r /:-
E.

J
N

= -Nl- (-g*
xo \ Í

(- g *
\Í

4
dø *-i (, -*.iC ¡ 

i+1 l z

-J

(7 .t z¡

sJ-n 2Q 2

l

ener$/ o

the straight-

consid.er an

)'l*/ln" x-1 (t -xe iþ
)'

2

higher terms.

^ 2 sin0+ xvT2r

+

Nx-a

È ô2 for

Ihe neg]-ected terms in €e. (7.t Z)

^2ö-. Thus, E o ô and- C s oonstant,

alter the asymptotio behaviour of

The prece rLing apÞroxinations

are also of the ond.er of

and- so this term d.oes not

*¡ o o

îrpm
I^/I.

c

the average

are based. on

I

forward. perturbation expansion. T[e shal1 now
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alternative proced.ure v¡hioh is an j-nfinite partial summation of

graphs, obtained by approximatj-ng the Greenrs function. Dysonrs

equation f or G.reenr s functions, whioh was derived in Chapter 5

i s use¿I .

c-1 (") = ço-1 (") - n(*)

l(') o-rr ¡r(¡)

eá'(") lã'(")

D.
J

(7 .1 3)

The simplest dia.grams for the irred-uoibl-e vertex part

l(¡-¡' ) are those shown in Fig. 22.

Fíg' 22.

Defining thj-s first approximation as /to(i-i')r we note that

^o 
( j-j, ) is zeTo unless j = i, , d-ue to the speoial structure

of the diagrams, and- hence

^o 
(") to(o)

From the d.iagrams in Fig. 22 it oan be seen that

¡å" (")

nå'(")

-eå" (o )

e3'(o) ¡iá'(") -e3' (o )

Sub sti-tuting these resuLt s into eq. (7.13) gives
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OM

-M* 0

where M't is the OompleX oonjugate of the 2x2 matrix M.

I
nr

ù,

x 1+A B+1

1+A
M

¡'(")
B+1

î

sín a

ù)

x

where B=T
7r

Ê îe -2r*

¿'(r) (¡+t )"

The expression (7.9) ror F beoomes, when E 0

E 2e (et' (o ) e'" (o) )+

whioþ on substituting the above êpproximation is

íø -1
Q.TI e x

2e

-1

E
(2n)" o*p (rru*"t9) +ye

-1x

l" (o+É )
(7. 14)

-1where q = ¿z B2 z (¡,+s ) B Ax

-2Y=x

the asymptotio f orrns f or these f unctions are for * o t

å
,IT43 (ô)

I
2 (ô)

,|

y s l¡-1 6ô
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The integral in €e. (7.14) can be evaluated

manner to that of êe. (7.5). The resul-t is

in a simiLar

that for x>t

2
x

À
Ie

1f

)_l

a'-ß'
. a-ßarotan -J-

o,+p

z(o" + F" )

(zgilxs \
\rp -r-" )

(J- - g-
\€ " 

Tq"4t
/o a\(;-r)*

-*(#.*) aroo s (v-*.-v
\ -2p )

using the asymptotic f orms f or d., F, Y t we obtain the result
'|

that ñ E (ô)2, whioh agrees with the previous approxirnatiorlsr

The last approxination which we shall- consider is to

reduce the Hamil-tonianr 60 &s t o enable the problem to be

solved- exaotly. One Ï'ray of d-oing thist as r¡e have shown'

is to eliminate the quartic term. However, a more satis-

faotory mod-ification is to neglect only some of the quartic

terms, whigh can be done v¡hen the H¿Lmiltonian is ¡,vritten in

terms of the fourier transforned. operatoru b;, orlo' this

approach was fi-rst used in the theory of supercond-uotivity

by Bogoliubov, zl.ibarev and Tserkovnikov(6t ). Âpart from its

importance for the theory of supercond-uctivity, the Bogoliubov

theory is one of the felv exaot theories in statistical rnech-

anics. Much of the work done in what follov¡s is based on the

clear account of the Bogoliubov approach given by Blatt G5).
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We have used. the f ouríer

5 to obtain the following re

cLiscussecl in ChaPter

oe. ft.2)
tran sf o rm

sult s from

,N
-J¡ xü¡

2k=-N
1

2k
1

N
þ

=

no(¡)

mkxt) b b 2 + XÛJk

nr(i)

k *
b b I + xÛJk

+
.loko¿ok

2

k
. r*
o-

l<
2*

N

=åo
Ho (k)

j

mk2

lc
bì-

N
E

j=1
I
ñ ô (kr +kz -.*t-kt) r'k'**"oîlriloiroi"E

kr rkz ek3 ¡kt

To nake the problem exaotly

it is neoessary to replaoe

ian H1.

Ht t
kt ¡k2

1

so].uble

H' (i)

(,mkz +kt

by the

by the

Bogoliubov methotLt

rrrecluoedil Hami.lton-E.
J

1

IN
b30

K2
I tl'

k¡b bí, b;,

x
kt tkz 'n., 

ou,
4ttt

whe re

operators

stants Ik

C- =ü)IT
b I

lt b

DLi

nk rn

= (¡) b b 2

k k

c.
I< ,

and- p

k a 2I
k D.k

Bogoliubovts nethod. consists in making a

that is, we introduoe a

and nevr operators Yk ancl-

Yk + !L Du = ôk *

dí splacement of the

s et of real corl-

ôo bY

ek ft.tr)c

l<

Eu
kr rkz

k

The nrecLuced.trHamiltonian oan now be v'¡ritten in terrns of these

guantities.

-.1Hr = Ift

n eï\I

k1 ok. + uk, uo" + Yk, 'k. 
+ Yk, uu, (7'16)
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rf the Last terrn ín eQ' (7 '16) l" ignored' the resurting

Hamiltonian is quacLratic and- can be solvetl exactly. îhe

aim of t he Bogoliubov nethod- i s to ad.j u st the co ngt ant s IJk

and- oU in suoh a way that the oorreotion, arising from the

negleotecl torms yk, Un" e becomes conpletely negligJ'ble' L'et

us d.ef ine

Et oL
k

I
¡+-N

no(k) -LYyp

E u 9=
1

ñ Q.17)k

the expression for the partition funotion, ztt based on the

reðucecl- Hamiltonian, then beoones

Z"t = .ol Ñ exp(l -!anu)

!
2

1
2

1

7(x-Lr)o;*

+
N
n

-ä(p*u)*for)J"

(-äpp)
k

+ oî.o oi

o>x

mk

exp

usi ng eguati,oos (7,1 5) lrI e get

22 = <o I f exp(rn no (t) pC p
k

= <o I N exp(ln nt (t) ) lo, ""n 
(ä p p)

on) lo, exp (ä p p)

lvhe r e H'(k) k (x ll)b;

b

(,
üJ

xb l*
k î r*k + xlfl" ul ,n .

by the sa.me technique as was used' to

quad-ratic etcpre sslon in Chapter l+.

1 ,' (*-Lp ) -rt" ("-år )

Z't oan be

oaL c ulat e

result is

+

evalu at ed.

a similar

2

Zt

The

t
(

1

,(n+1 )r (z.r e)
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1

EN

ne g1 e ct ed.

possible.

Yk and ôk,

P k, !k.

the effect of the tern tr lt" Y y , uo. ' which was

DoTt has to be mad.e as smalI'as

the follovring cond.ition on

the constantsthe values of

in thLs calculation,

îo do thisr we impose

whic h aL so d.et ernine s

<o ) lot = o

<o ôn H'(r) ) lor = o

This cond.ition is eguivalent to the one used. by Bogoliubov,

Zubarev and. lserkovnikov in their approach to supercond.uotivity.

With suoh a contlition satisfied, they showed- that the extra

oontribution arj.siug f,rom the neglected .terns is completety

neglible in the linit of infinite volume. Á. heuristíc proof

of thís for the case consid.ered here i-s given. The neglectecL

terns are regard-eiL as a perturbation, and. expand-ing about

these, we obtaín the f ollov,ring perturbation series.

ñ yk exp(ro H' (r.)

exp (lnN

oo

+E
n=1

x
k,i tkz

nI
J+tl

(ñ<o Ir 1

;T vkr ôi." ) lexp(ro n' (t)) lot

(7.2o)

the first term in this series has been cal-oulated.. The

seconc[ t erro is

t
4u

<o N vE

kr rkz
k1

uo, exp(rn u'(x)) Iot

which can be writtenn since tt'(t) i" d.iagonal with respect

to k
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4u

n .ol -N

k/k 1 ,k2

= O because of €g. (7.19).

is lvhen k1 = kzt whioh gives

125

l-X <ol N y exp(n'(o)) lot <olñ ôkr exp(Ht(t")Iot X
k2

tk kz

1

EÑ

exp (H' (t) ) I ot

The only non- zero co ntribution

X <o lrv ô e*p (n' (t, ) I ot | ñ exp(tt'(t))lo'n <o
k1 u/k t

the sum over kr in the above gives a oontribution of the

ord.er of N, ancl this gancels the in front. Thus, the

correction tern i s ind-epend.ent of Ñ. An extension of this

argument shows that afl- the terms in expression (7.20 ) rre

i-nd.epend-ent of N, a.nd- hence, if the series converges, its

limit is also ind.ependent of N, Thus the correotion to the

f ree energy, F = N-1 log Z, will be negJ-ible as liÞoo . Henoe,

eg' (7.t8) i" exaot ír p and u are given by the relations

(7.t9),

Using eeso (7.19) and (7.15¡, and. the fact that Ht (t) i"

d.iagonal- v¡íth respect to k, r¡re obtai-n

<o ll k
exp (tt' (t)) lot

Lrk
.o lñ exp (ti' (r. ) ) I o,

kr lcr

1
N

b;bi*
lc

(,

t
k-u+ ,k(m+1 )(*_år)1. A (r. )

v'¡here this last resul.t folloy,¡s fron expand.ing the exponential
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and- ¿ (t ) 1-u ("-åp )-, G-Lu) , (m+t )t< (Lp u
k mk

+

Simil arJ-y,

.o ll û)
mk

bk
,t

b ?

k exp(tt'(r.))lot
p

.olÍ exp(Ht(r.))lot

-1
A (t)

t"b *p) )

*¡r) )-1

k

mk
-u +t)

Hence, to evaluate p

the coupled Íntegral

and- p¿ f rom og. (7.17), we need. to solve

equat ions

(m+1 )k (*-å¡r)l ¡-1 (,.)

(m+t )t G-tp ) )t

u = * t t - ,k + u
I\

K

o=ro1 i.t-û,r
mk (n+1 )t< ("-åp ) I a -1

+ûJ

fn the limit as the size of the l-attice

the sunmati-on can be replaoed. by integrals,
equations becorne

(t)

t end. s to inf inity,

and- the above

1
, n2'Ír

lJ"dodø
i0 i (e+ø )

u (-e +e X

G-Lp) + e
i (o+ó) t:-

l+ (t .zt )

G-Lu))

, i0 ió.(e +e ' ) (

rvhere rre have chosen the obvious solution u = g. For x < å,

it ôan be seen that U = o is a solution as elcpected-. Hence,

there is no oorrection to the expressions alread-y obtained. for

T ( T". For T, Tor wê evaluate the integral using sinilar

method.s to those used- in evaluating eg. (7.5). The re sults

which conoern us are fj-rstly that tJ 2 o o This i- s not sur-
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prising since the d.ef inition of p i s a Greenr s f unction,

which are related- t o the oorrelat ion f uncti-ons which are

alvuays positi-ve. Seoond.ly, the integral on the R.H.S. 'of

€e. (7.21) i" zero if lJ >. 2-)+x. IIence, for x , L, there

v¿iJ.L be an inconsistency in the integral €Q. (7.21 ) unless

p < 2-4x. Theref ore 0 < ,J < 2-4x, and so P is a conti-nuous

f unction rr¡ith a singularity at x - t. It can be shown, by

consid-ering the expression for the average energy per vertex,

E, that if U is continuous at x = l, then E is also contin-

uous. Hence this trreduceclrl HamiLtonian approxirnation afso

f ail- s to exhibit a latent heat.,

In the case of supercond-uctivity, there are good physical

argument s shovring that the rrred.uced.tr Hamilto nia.n cont ains the

important interaction terms vrhen the system is in the super-

oond-ucting state. Unf ortunately, f or the f erro-electrj-c

problen TVe c an equaIJ-y argue that th e îtreilu ce ilrt Hamil-t onian

d-oes not contain the dominant terms. Ho','¡evert a s this rrred-ucedrl

model ís exactly so1ub1e, it is vrorthy of some study.

From the previous approximations, lre have been unable to

obtain a l-atent heat¡ or d-isc ontinuity in the average energy.

The probabl-e reason f or thi s i s that j-n the approxirnat j-ons

whioh v,re have consi d.ered-, too much r.rieght is attached- to the

graphs which occur in i'üur s mod-e], which does not possess a

latent heat, and- not enough vreight to the graphs v¡hich arise

from the quartic term in the Hamil-tonian.
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7.1+ Rys Antif erro-electric lvlod.el

the

electric

s tr ucture

section,

give it

absence

(26)
F-mod-e1 proposed. by Rys to

properties of the orystal NH.

to the f erro-el ectri-c model

but the interaction energies

antif erro- eI ec tric prop e rt i e s .

of an electric field-

explai-n the antj-ferro-

H2 P0¿ has an id.entical

d-iscus setL in the Previous

are nod.ified. in ord-er to

They becone, in the

€5 0.ê1 ê2 = e 3 = ê4 = € €s

Hence, the partítlon function can be v¡ritten as

Z=X N <olT exp(l Ho(j) +
J

rt* l

Hr(j))lo'

ú 2a +x a

a,
I

j-m j-1 (7.22)

it d.o es

0

be

*1 -1 u,1or'.J J-nwhere Hr (j ) = A- A. + A
J J -,I j-m

z
j

tt

tj-t + xj

-2 *
H1(i ) x(z )

2a.
J

a"
1

j

Thi s expre ssion, again, cannot b e sol-ved- exactlyr but

possess some interesting f eatures. l'üe note that Hr (i)
1

¡Íhen x = 2-z . Thus at thís tempe rature the mod.el- can

solved exactly, and v¡e obtain

22 = x
2N d.eterminant (t -tl (" ) )

00-1Fr
-400-x-1

N
l

j 1

'1 x 0

0

0

0I

where

k

lc
-1

-1

-1
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0

û)

0

-t,0 ûJ

0

0

o

0

0

0

-lnf
¿(') 0

-0,
r

mr0 -tl 0
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Thus,

7rz = *"N
N
l

I=
t)

I
Ln

o.nð./t:ne linit of a large lattice

? -*-2

d.0 d.ø (n" -'l -*"

(m+1 )r

N2 e
i(o+ø)

(66)

except when

for a given

T mr
OJ +ûJ

_1_ l'f
Boz JJ.

2r
N fog Z

result has since been confirmed. by trÏu

îhe f ree Greenr s f unction is nofì-zeto

so vÍe oannot obt ain an exact soLution

i0"ióe -X-e'+ )

Thi s

and

1 = 0t

tempera-

ture range as with the Sla.ter modeL. Howeverr the free

Greenr s f unction d-oes eontain a singular point at x = å, wbich

ind.ioates that the' tran sition tenperature is given b1r xc = t.

Thi s was lat er conf irmed by the re sults of L,ieb, which ind.i-

cates that this simple approximation nay have a wid-er range of

vaJ-id.ity than lt apparently should.

7.5 Liebrs Sol-ution

T.,íeb has solved. the ferro-clectric problem by uÊing the

transfer matrix approe.oh, lrhich had been previously used. by

Schultz, Ir[attis and. Lieb to sofve the f sing mod.e1. There is

a sinilarity in the formalisns since both problems can be

expressed. as

z

of the transfer m¿rtrix V.

m

I
ì.x.

L
Traoe vn

wh ere ì. .
l-

Holv ev er,

t he eigenvafues

structure of V

are

the d.iffers significantly for the
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two problems. For all soluble Ising models V oan be

expressed. in terms of Fermi opera.tors, ancl has an analog-

ous form to solubl-e many-bod.y probLems, which can be solvecL

by d.iagonalizati-on of a qua dratic form. In prinoípfer all

the eigenval-ues of V (or t he t :'^ace of Vt, see f or exampl e

Thomp"on(70)) can be evalu¡,,ted- exactly. For the ferro-

electric problem, V has a more complex structure, which is

simiLar to that of a system of interacting fermions, and. henoe

cannot be treated- exaotly. Hol';eye¡, Lieb has found. that the

maximum eigenvafue of V can be caIculated.. The calcuLation

rel-ies on the renarkable fact that the eigenstate of V

oorrespond.ing to the naxinum eigenvalue i s the so,me a s the

ground- state of one of the few soluble inter&cting fermion

systems, the Iinear antiferromagnetic Heisenberg chain. îhus

using the solution of this latter problern, f,ieb is able to

obtain an exact solutj-on for an apparently unrelatecl problem.

fn thi-s section v¡e shalJ- consid-er some interesting aspeots

of Irj-eb I s solution, without going into any of t he matllero¿rt j-caI

d.etails whích have already been wel-1 considered by Lieb Ql).

The first point which rve nrentj-on is that the exaot solutions

of the ice, f erro-el-ectric o.nd. antif erro-electric problems

a].l take the f orm
a

1) d.0 p(o) tos D(0)
-al

where, for example, in the ferro-electri-c problem

(t .4¡
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arco s

í0
= I -E

(2")
-1x

the first-ord.er approxiriations for these mod.els which

can be obtainecL from the oombinatorial rnethod by neglecting

the quartj-c term in eqs. (Z.r ) or (7.22) u""

z - --1-- [[ '* dodø roe D' (0,ø)
(zo)" I J o

"rQ
= + l" do los D(o) (l-z+)

zlf I -g

Conparing êe. Q.Z3¡ and (7rZL) *" oan oonclud'e that our first

approximation eorresponds to putting p(O) = â, o Lieb regards

p (O ) as a. d.ensity f unotion, and. thus thi s approxirnation is

equj-valent to rega.rd.ing the di stributíon of the 6 as b eing

uniforn. It now becomes apparent that the first ord-er approxi-

mation pred.iots the anal-ytical behaviour of the mod.el correctly

because of the close similarity of t he approxi¡nate solution

to the exact solution. fne p (0) d.oes not aff ect the analytj-caI

behaviour of the integral in êe. (7. ü) , except in that it

gives rise to the latent heat.

The second- point of interest ís that the approximations to

the ferro-el-ectric mod-eI and. the linear Heisenberg ohain are

very s imil ar . The Hamil-tonian of th e He j-senb erg olrain, when

expressetl in terms of fer¡ni creation and annihilation opera-

tors contains a quartic tern, and hence oannot be solved

exaotlyr a.lthough the grouncl state has been obtaineù by
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s"th" (72) Qt) Q+)and- Hulthen a Lj-eb, Schultz and- Mattis

proposed- a soluble mod-el of an antiferrorn&gnetic chaint

by truncatin6 the fr.¡l-1 HamiLtonian so that the quartic

term became equal to zeto. This is called- the X-Y mod-eI,

and- its analogue in the ferro-electrj-c problem is iVur s

mod.eL, where in the f ield- theoretioat f ormalism, the quartic

term is also equal to zeTo. Thus, in both the ferro-electric

problem and the antiferromagnetic chain, by truncating the

H amilt onian r wê obt ain t he '!iru and- X-Y mo del s . They b oth

have many features of the exact models, but are now linear

probLems and- are oompleteJ-y sol-ubl-e. In both mod.e1s, it is

found. that the neglect of the quartic term j-s equivalent to

replacing the p(o) in the exact solution by (zo)-1.

The last poíht, vrhich shouLd. be mentioned., is that Lieb

TVas able to obtain his soluti-on f ron the f act t hat the graphs

vtLl,lt N/2 vertícal bonds contain the dominant contributionsr

Lieb osrries outr essentially, a partial sumnation of these

graphs, since his approach has not yet been able to suocess-

ful1y surTr all the graphs. 0n summing all- the graphs v¡ith

N/Z vertical- bond-s, he then proves that in the Limit N-roo,

all the omitted- graphs .ive rise to a negligÍble contri-bution.

It v'Ias the partial summati-on of graphs in assocj-atíon vrith

lattice statístic¿r1 probleins i¡¡hich 1ed. to tlne d-eveÌopment of

the present fiel-d- t heory 'r;echníques. Hovuever, lve have not

been able to perform the partÍcu1ar partisl sunrnation requi-red-
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f or thi s mod.el v¡i th the f ornali sm d.ev elop ed- in this Chapter,

apart from using essentialty the same rnethod. as that used' by

Lieb.
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CHAPTER B. THE DI[fER PROBLEM

Some of the coärbinatorial rnethod-s used- for solving

lattice statisticat i-rrobJ-ems are based. on the use of pfaff-

ians. For the d-irner probleiü this is the best knol'¡n solutiont

and for the Ising nod.eJ the use of pf affians lvas the first

ri-gorous combinatorial approach. An al-ternative teohnique

f or the Ising ¡ood-el- has been oonsidered.. Thi s is related to

other quantun mechanica.l problems of statistical neohanics,

and. consists of representing such quantities at the partition

function by <ol T exp(f¡ H"(¡) ) lot . The pa.rtition funotion

for the dimer problenn can also be written as a vacuum to

vacuuln expectation value a,nd- henoe can be evaluated by the

techniques d.eveloped in previous chapters.

Brief ty, the C.imer probleir is to d.eterririne g (p, q), the

number of ways of arranging p horizontal d-imers and- q verticaL

d.imers on a rectangular l-attice of n columns and n rolrs¡ so

that every lattice point i s covered by one and only one d,j-mer.

The usual- quantity conputed- is the partition function, Zt

d efined by

z - x s(p,q) *Pyq
Prg

T he eval-uation of the partiti on function oan be cast as

one of counting ol-o sed gra.phs on à la.ttioe, by showing that

there is a one-to-one correspond.ence between the graphs and.

the d-imer oonfiguratj-ons. This is d-emonstrated. by joining
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the points on the d-imer lattice in pairs as shown in Fig. 23.

c €3
T!

{:È,

Iig, 23.

These ndoubfetr points wil_1 be regard.ed. as a single-point

for the ratti-oe on rvhioh the graphs r¡'¡il-1 be d'rar'rn' The stanô-

ard d-imer Oonf iguration, in which all- the d-imers are lnor¡+z-

ontal- betlreen the pairs of poi-nts shownr eorrespond-s to no

graph d.rawn on the Lattice. For a different d-irner oonfigura-

tion, we replage the öimer joining Â to A' by one joining A

to B, salr This then leaves the point B to be covered. by a

d.irner joining B and C. This process is carried- out until- a

d-j-mer covers -/.1'. Then a nerir d-imer configuration wil-1 have

been prod-uced-, to whiOh there corresponcl-s a cl-osed- loop on

the lattice. ft is nor,r easy to see the'b there is a one-to-

one correspond-ence between d.imer oonfigurations and- graphs

d-rarvn between the tf doubletr l-attioe point s" Kasteleyn(18) used

a graph approach to the dimer problen, but his method- is not

suitable here.

Hence rve need.-bo sun all the graphs on the lattioe v,¡hich

(t ) d-o not have repeated. bonds and. (Z) do not have nore than

two bond-s joining any one lattice point. There are nine

BB,.¿.

3o



136

possible kind.s of vertex f or t hi s la ttice and th ese are shown

in Fig . 2)+.

Iig.24.

The proqed-ure is non id.entioal to the Ising mod-eJ Çase.

lïe vrrite the expe¡.tation value <ol T exp(r. äo(¡)) lot

and- show that the sum of all Feynman graphs arising from

this expression ia equal to the suin of all the Diner graphs.

li,ie associate fernion opeI.ators to the bonds as shor,vn in

Fig.25.
f+a

â

ol'
a'.

J

j-1

j

j-rn

rg
Ia a t

j

2a.
J -In

FiS. 25.
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Ihen it can be shor¡n that the expression f or H(¡) rvil1 be

xv 3tÈ
u a.

J

3* 2
+ à j a +j-m J

*
_v

u
a¿

u
2t

j

x
'u

iÊ

H(¡ )

graphs lvith

that the surn

d.iagrarns is

J
ô

2

j-m oj-t + a.
J-m

a
?a.
J-m

cl+xu

!
u+

:F .l2 1*
j

3

j

3a. +
J-m

*1I
u

1-
u

1

jj-1 u ¿-l

(e.r)^2d j-na + v:
u

*tlr

aa,
2
ì

The bond- weights have been general. i-zed- so that vertioaL

d-imers in the od-cl nurnbered. eo lurnns have lïeights v and. those

in the even numbered. oolutlns weight y. Sinilarly there are

tln¡o vre ight s u, x f or the ho rizont aJ- d.iroer s o.s shovrn in Fig.26.

x

v
f

\r

t1

v
r.

v
u

Fig. 26.

The quadratic pairs of operators in the expression I{(i)

correspond- to the vertices d-ravrn in Fig. 18. Hence, it can

be seen that a1l- the Feynrnan d-iagrens associated. lrith expand-

ing <ol T H. (¡ ) ) lot eontain al-l- the possibl-e d-iner

the co rrect i^ieight f act ors. ltle will- notl shor¡

u

v

.\¡

exp (l .

of al-l the Feynrnan d.iagrarns lvhich are not Diurer

Firstly, graphs r,¿ith re

c âs e of t he I sing mo clel.

peated. bond-s sum

Sec ond.J-y, graphs

zeTo.

to zero as in the
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four lines to a point

each vertex can occur

shown in Fig. 27.

give & zero oontribution since'

ways, with opposite signsr as

+ve

+ve

+ve

+ve

SUr,r tO

in tlro

-Ve +ve -Ve

-Ve +ve -ve

-Ve +Ve -Ve

Fig, 27.

ancL sinil-arly for six bond-s at a point

+ve +ve

-Ve -ve -V€
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has the

2.1 for

correot sign is

the I sing mod-e1

the

and.

the proof that each graph

same as that given in Seotion

wí]1 not be d-eal-t v'¡ith again.

let us d-ef ine

Ar (j) =A ¿'(¡)

Au(i)

a.
J -rfl

z*yaj

3 A'(j) 2

j-u=Aj-1

a'(¡) =XA

where k is the 6x6 matrix

ancl tiren tt(j), given by êe.

n(¡)

becomes

PrQ
¡-p (¡ ) ¿q(¡ )

t*
j

¿" (¡ ) = V8, 3"
J

(a.r )

L
u

t
PrQ

r
D l<

0 0

0

I

1

-1 -1 -1

-1

0

0

0

-1

-1

-1

0

0

1

-1

1

11

0

0

0

0

0

0

0

0

001 11

The o omnrut ator li(" ) c an b e evaluat ed in the normaL way

giv ing
0

0

0

xtJ

0

0

0

0

0

0

0

0

0

0

-VûJ

0

-rxu 0

0

yû)

0

0

0

0

0

0

0

0

0

vú)

¿(") r
0

0

0

00 ,yrr mr

nr

-nr
-lllf



1)'"0

Using the resul-ts of sec-bion l¡.1, r'ìIe obtain
Nr/z
I

t=1
d.et (t -t a(") / u )Zz = ,-tN

r -r
*/'

n
t=1

)( u-xû, ( )
, -mf IIìf r ¿ lilf -IIII r(yt, vGr / \Y(,) - v(^) )

and- letting the size of the lattj-ce tend- to infinity gives
2Tr

u-x(¡, +

Ii, ) (u-xc -i01

Ë
1 t

i0(Log
(zo)'

(v"

This solution of the
first by Stephenson

the case when u = xt

forrn

d.0d.ø los U-Xez +

-ié-'uiÉ)("uid- ,u-j-þ) 
-) (8.2)

Eeneralized- d-imer lattice vtas given
("eg) usíng the pfaffj.an approach' For

y = v ee. (g.e) reduces to the stand-artl

1

1;
I (t -"

2Tr
d.0d-ø los t"

i0
) (t -" -i02 )LogZ= +

(zo)"

y" (1 -"2iþ ) (r -u -2j-ø)

As lvith the Ising nodel- , a C.reenr s f unction can be d-ef ined.

by the relations given in Chapter 3. This Greent s function

can be used- to obtain the occupation probability of a síng1e

d-imer¡ ancl the joint occupa-bion probability of tt¡o d.imers.

The results obtained- are the sane a.s those given by Fisher

and- Stephenson(20)u.rra uil-I not be repeated-. The main concern

in ì-nclucling this section is to shoçv that the field--theoretÍoal

technique d.eveloped- in this thesis is a systernatic unified-

l
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treatment of tackling aLl known lattice problerns; that

partition function for all planar lattice statistical-

probl-ems can be v,rrj-tten as <o I T exp(l j H(i ) ) lot and

that the thermod-ynamic functj-ons aTe read-ily calculated

from the Greenr s f unctiorlsr

the
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CHÂPTER 9. C ONC LUSI ON

The formalism presented. in this thesis is based on the

conbinatorial approaoh to l-attice problems, but it uses the

relatively sirople properties of f ermi operators rather than

an explicit re pr e sentat iore by unv¿i eId.y det e rm j-nant s o r

pfaffians. This enables the therrnodynamic guantities of the

soluble two-d-imensional nearest-neighl¡our Ising nod-e1s and

d-imer probl-em to be evaluated sirnply in terms of the Greenr s

functi-ons. This formalism also has rvid-er applications than

other combinatorial nethods since Io.ttice problens l'vhich

c&nnot normal-ly be expressed. in terms of determinants or

pfaffians (such as the ferro-electric problem and the next-

nearest neighbour f sing noclef ) ""n be expressed. in terms of
-bhe fernion operators. The resulting expressi-ons, though

it na.y not alvrays be po ssibJ- e t o evaf u¿rt e t hen e xactfy, are

st least ¿menabl- e 'Go the nany approxi-nation t echnique s used-

in c¿ua.ntum field- theory anô many fernion theorf,o

From the vien-point of netr results, the ferro-el-ectric

problem in the presence of an electric fiel-d. has been the

mo st relrard.ing. Previously, conbinato rial method.s r4Iere una-bIe

to hand-l-e this problern, but from the approach d.evel-oped- Ín

this thesis, -bhe exact crítical teurperature and. thermoclynamic

properties below the critical temperature have been obtained-.
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tr'or problems v'¡hich can bê formuLated- in terms of an

S-matrix, but which oannot be evafuated exaotly, the

concept of sunmi-ng t he d.omínant terns, or the graphs vrith

the d.ominant contributions, ís a. possible approach. Various

nethod-s of infinite partial- sumrnations of graphs have been

given in this thesj-s. In all cases, these a.pproximations

have been carried out because of their use in other field.st

and. laok a simple physiaal motivation basecl- on t he proper-

tiÞs of the lattice probler,r. De spite this, these approxj--

mations have been shown to reprod.uce much of the exact

critícal- phenomena of the r¡od-el-s. The se re sult s ind-ic ate

thot this nerü approach mây be a useful formalisn for par-

tial1y solving unsolved- lattice probleflso
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