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This thesis deals extensively with the field theore-
tical approach to the soluble two dimensional Ising
lattice, which has recently been developed by Hurst and
the author. The aim of this work has been to extend this
approach to all statistical latticelpnblems, and in par-
ticular to look at the unsolved lattice problems. The
problems considered in detail are the two dimensional
square lattice Ising model , the two~dimensional next-
nearest neighbour Ising model, the Dimer problem, Slater's
model of the ferro—electric K.D.P. and the Rys antiferro-
electric model.

In establishing a unified treatment for all lattiece
problems the formalism of Hurst is presented in a compar-
atively new and simple fashion. It is shown that the
partition function for the models can be written in the

general form
% = <o| T exp(zj H(j) ) |o>

where H(j) is a quadratic function of fermion operators

for soluble models and is a quartic function of fermion
operators for unsolved models. Gecneral field theoretical
techniques such as Green's funections and diagonalization of
the Hamiltonian, H(j), are discussed in relation to the

above expression. The exact results for the partition funetion,



- i1 =

spontaneous magnetization of the square Ising lattice and
the partition funetion of the Dimer problem are derived
using Green's functiocns,

The next-nearest neighbour Ising lattice and the
ferro-electric and antiferro-el ectric models are not com=
pletely solved in terms of this formalism. However,
approximate results can be obtained by making a perturba-
tion expansion for the partition function. There is
reason to believe that the analytic behaviour of the par=-
tition function is closely related to the analytic behav-
iour of the first few terms o the perturbation expansion.
This is partieularly so for the cases considered, where the
results agree exactly with the expected results,

The first term of the perturbation series for the
next-nearest Ising lattice is considered, and the values
of the critical indices a, o , B are found to be the same
as the two-dimensional soluble lattices. These results
agree with the "scaling law" approach of Kadanoff, For
the ferro-electric problem, the first-order term contains
the exact critical temperatwe and analytic behaviour of
the specific heat as given by Lieb., Higher order terms are
calculated and are found to contain no new singularities.
The exact solution is obtained for temperatures below the
critical temperature and an exact relation between the
critical temperature and electric field is obtained using

Green's functions,
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CHAPTER I

INTRODUCTI ON

1.1 _Review of Present Status

One of the most active fields of theoretical physics
at the present time is the study of co-operative phenomena
in systems of large numbers of interacting particles.
Powerful mathematiocal methods, borrowed in part from quantum
field theory, have been developed to treat these phenomena,
such as the phase transitions in superconductivity and super=-
fluidity and the order-disorder transition in the Heisenberg
model of ferro-magnetism. However, when analysis by approxi=-
mate mathematical methods indicates a phase change it must
then be ascertained whether these results are a oconseguence
of the system considered or of the approximation used in the
mathematics. For this reason, some exactly solusble models
exhibiting a phase transition have been devised; in particu-
lar the Ising model as a model of ferro~magnetism, and the
Slater and Rys models as examples of ferro-electricity and
antiferro-electricity. It is a coincidence that these
simple, classical model s can also be treated by methods
based on the techniques of quantum field theory. This work
is concerned with one of these methods.,

The Ising model is well known as a model of magnetism,.
It is interesting not only as one of the few non-trivial

many-body problems that is exactly soluble and shows a phase



transition, but also it has recently been shown experiment-
ally(q) that many systems behave as Ising systems, particu-
larly near the critical temperature. Although the exact
solution in the absence of an external magnetic field was

(2)

given originally over twenty years ago by Onsager using
the language of Lie algebras, the flow of papers on exact
solutions is still strong today. The reason is, no doubt,
the difficulty of the original Onsager method and the sub-
sequent calculation by Yang(j) of the spontaneous magnetiza~
tion., Kaufman(4), Newell and Montroll(5), Green and Hurst(6),
have helped to clarify the Onsager method, but it was ghultz,
Hattis and Lieb(7) (herinafter referred to as S.M.L.) who
finally made the solution comparatively simple using field-
theoretical many fermion techniques. The original Lie

algebra is cast into fermion second quantization operators,
which for the soluble Ising lattices reduces to a quadratic
form resembling a system of non-interacting fermions, but

for the unsolved lattices reduces to a form resembling inter-
acting fermions. Kadanoff(g) has introduced the concept of

a Green's function into the S.M.L. formalism, which apart

from giving an alternative evaluation of the partition func-
tion and magnetization, may prove to be a powerful tool in
developing approximate procedures for unsolved problems.

Although the approaches of S.M.L. and Kadanoff will not be

di scussed in detail, it is intriguing to notice the many -



similarities between their techniques and those given in this
work,

The alternative approach to the algebraic solution is to
transform the Ising model to a problem of counting polygons
on a lattice. Kac and Ward(g) were the first to indicate
that the polygons could be summed to give the Onsager solu-
tion, although this method was only made rigorous years
later by Sherman(1o) and Burgoyne(11). Hurst and Green(12)
(see also Kasteleyn(13) and Fisher(14)) simplified consider-~
ably the combinatorial approach by showing that the polygons
could be counted exactly by a mathematical entity called a
pfaffian. The pfaffian technique has gained considerable
popularity, being used by Montroll, Potts and Ward(15) to
calculate the magnetization and by Stephenson(16) to solve
the triangular Ising lattice problem. Hurst(17) has derived
pfaffians for generalized Ising lattices. Also Kasteleyn(18),
(19) (20)
(24)

Fisher and Stephenson have solved the dimer problem,

and Wu s a model of a ferro-electric, with pfaffians.

The technique %o be given in this work is obviously
related to the pfaffian method, but there will be a greater
emphasis on its connection with quantum field theory methods,
with the aim of using the powerful mathematical tools of
quantum field theory. This approach has recently been pub=-
lished by Hurs‘c(zz> and Gibberd and Hurst(zj) for the square

lattice Ising model, where the partition function and magnet-

ization were obtained by Green's function techniques. This
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is analogous to the work of Kadanoff, though the approaches
are different,

A disappointing feature of the existing methods of solv-
ing the Ising model is that they cannot solve any more com=
Plicated problems than those solved by the original Onsager
method. As examples of this, the three dimensional and next-
nearest neighbour Ising lattices cannot be formulated in the
Onsager-Lie algebra approach; the pfaffian method gives the
wrong answer, counting some of the graphs with the wrong sign;
and the S.M.L. and the present approach cast the models into a
a form analogous to the unsolved interacting fermion problem,
Hovwever, one hopes that the approximation techniques associated
with the fermion problem will give useful results. In any case,
as was stated by Wannier(ZA):

"It is unwise to suppress successful techniques when dis-

cussing a subject in mathematical physics, for in the

last analysis a subject grows with the techniques avail-

able to handle it."

Two other exactly soluble models of co-operative phenomena,
exhibiting a phase transition, are Slater's model of ferro-~
electric crystals, in particular KH, PO; (K.D.P.) and the Rys
model or F-model of antiferro-electric materials such as
NHs Ha POs+ The ferro~electric model was originally proposed
by Slater(25) in 1941, and the antiferro-electric model by

(26)

Rys*® in 1963, and until very recently neither of these

models could be solved exactly. Much approximate numerical



work has been done on these models, the most recent being

that of Nagle(27)

, Who developed high and low temperature
series approximations for both models. For the ferro-
electric case, Nagle was able to derive exact results for
the critical temperature and the thermodynamic guantities
for temperatures below the critical temperature, but was
unable to determine the transition temperature for the Rys
model. ITn fact, in this case, the series expansion and
Pade approximate methods predicted the wrong transition

(28)

temperature s 8iven by

exp (-e/ch) . 486

I

1
[NE

instead of

The lack of an exact solution was particularly disturb-
ing since the models, though resembling the Ising model in
many details, failed to yield to the existing Ising techniques.

QO
(22) and Sutherland(jo)have solved both models

Recently Lieb
exactly. The initial setting up of Lieb's solution resembles
closely the algebraic approach or transfer matrix formalism
used by S.M.L. to solve the Ising model. However, the operator be=
longing to the transfer matrix ism longer typical of the operator
of a system of non-interacting fermions, s in the Ising model
case, but instead resembles a system of interacting fermions.

Thus, the operator cannot be diagonalized, but the situation

is saved because the eigenstates of this operator are the



same as the eigenstates of the anisotropic one dimensional
Heisenberg model, The solution then is more involved than
the Izing model solution, since the so-called Hamiltonian
contains an interaction term, and this is why these models
have not yielded to the standard Ising model treatments.
That a solution is possible relies on the fortuitous fact
that the maximum eigenstate corresponds to the known ground
state of the Heisenberg chain.

In this work the abovementioned models of co-operative
phenomena are to be treated in a unified way which is intim-
ately connected with the methods of quantum field theory.

The progress and advancement of quantum field theory occurred
in the early fifties when many of the problems that had pre-
viously been put aside due to the computational difficulties
were approached anew with a more powerful perturbation tech-
nique. This so-called TFeynman diagrammatic perturbation
theory was able to produce experimentally verifiable nuwmerical
results in the field of Quantum Electrodynamics. As a result
of this success, a vast number of mathematical methods, mani-
pulations, expansions and partial summations have been devel-
oped. These techniques have been applied not only to all
aspects of quantum field theory but also to problems of stat-
istical mechanics. Matsubara(31) pointed the way by showing
that the partition function of a system of particles, written

as the trace of a density operator, can be expanded as a series



whose terms can be represented by Feynman diagrams. This

method has been developed in many ways, as seen in the works

(32) (33)

s Kadanoff and Baym s and
(35)

of Martin and Schwinger

Blooh(3h). Also, Goldstone obtained a graphical repres-

entation of the perturbation theory of Brueckner(36), for the
ground state energy of a many-particle system. In the last
twelve years the quantum field theory approach has been used
for almost all many-body problems, the only requirement being
that the Hamiltonian of the system is known and can be written
in terms of second quantization operators. In most cases the
results are good and often they appear to have further applica-
tion beyond their apparent validity. For example, straight-
forward perturbation treatments fail in the theory of super-
conductivity, but more elaborate technigues involving selective
summation of certain classes of Feynman diagrams yield the
correct results(37)’ (38>,

In regard fo the Ising model, field theoretical perturba-
tion methods fall into two classes. The first can be regarded
as the application of the above general diagrammatic techniques
to the Ising model. So far none of these methods have been able
to reproduce the exact solutions of Onsager, but rather give the
molecular field solution as the first order approximation. The
second~order gpproximations hsve been shown by Horwitz and
Callen(39> to agree with the high and low temperature series

(40),

expansions. (Brout Englert(41), Bloch and Langer(az),

Bell(h3), Oguchi and Ono(hh), and Abe(45) have all used



diagrammatic techniques).

The second class of field theory approaches to the Ising
model is considered in this thesis. These are the exact
methods, already discussed, of S.li.L. Kadanoff and Hurst and
Gibberd. Although the rigorous solutions obtained by these
methods contain the most successful description of phase transi-
tions so far, these approaches have not been extended beyond the
limitations of the simple models they solve. In particular, it
is very difficult to draw any conclusions about real systems
from these solutions.,

On the other hand, it is felt that the field theory tech=-
niques are the best approach to phase transitions, which are
characterized by the non-analytic behaviour of their thermo-
dynamic quantities, such as specific heat and susceptibility.
This is because cdher practical methods of approximation, such
as a rapidly convergent expansion technique, cannot hope to
work for functions which are non-analytic in the most interest-
ing temperature range, the critical point. The quantity which
could handle this non-analytical behaviour is the Green's
function. The Green's function first arose as a powerful tool
in quantum field theory, where its own analytic properties
govern many of the properties of the system. As examples, in
the field of elementary particle physics, a simple pole in the
Green's functions correspond to elementary particles, complex
poles correspond to unstakbleelementary particles depending on

which Riemann sheet they lie, while branch points generally



start at energies corresponding to the lowest energies of
multi-particle states. In the study of the ground state of

a many-body problem, the singularity occurs at the energy of
the first excited state. In this thesis it is shown how the
position of the singularity of the Green's function determines
the value of the transition temperature. It would appear
that an expansion in terms of Green's functions, which already
contain the non-analytic behaviour of the system, is likely

to be the most fruitful approach.

1.2 A Brief Outline of the Contents

T — 4 e - A e T

The aim of this work has been to extend the approach of
Gibberd and Hurst(23) to all statistical lattice problems, and
in particular to look at the unsolved lattice problems. The
problems considered in detail are the two dimensional square
lattice Ising model, the two dimensional next-nearest neighbour
Ising model, the Dimer problem, Slater's model of a ferro-
electric, and the Rys model of an antiferro-electric.

In establishing a unified treatment for all lattice

(22)

problems the original formalism of Hurst is presented in
s comparatively new and simple fashion. In chapter two the
counting of graphs on a given Ising lattice is shown to be
equivalent to summing a larger class of graphs, which we have

called Feynmen graphs. The sum of these Feynman graphs is

written as the vacuum expectation value of a time-ordered
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product of exponentials, and the partition functions for the

lattice problems can be written ih the general form

Z = <o| T exp (Zj H(3)) |o>

where H(j) is a quadratic function of fermion creation and
annihilation operators for the soluble models, and is a quartic
function of fermion operators for the unsolved model s.

In chapter three, use is made of the strong similarity of
the above expression to the S-matrix expressions obtained in
field theory. Free and pertgfed Green's functions are defined,
and some of their general properties discussecd. The free
Green's functions are evaluated explicitly, and Dyson's integral
equation is derived for the pert&%ed Green's function., The free
Green's functions are used in the next chapter to evaluate the
partition function and magnetization of .the square lattice Ising
model . The well-~known results of Onsager are obtained, although
the derivation is considerably simpler.

Chaopter five considers the unsolved problem of the next-
nearest neighbour Ising model. Perturbation expansions for the
partition function and magnetization are developed. The first
term of these expansions reproduces the critical behaviour
expected of this model; which is the same as the soluble two-
dimensional l-ttices : a logarithmic singularity in the specif-
ic heat, and the mognetization behaving as (To - T)1§ near the

critical temperature. The critical temperature is calculated
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and compared to the results of Potts(51).

In chapter six, an extra field theoretical technique is
developed. The S-matrix is simplified by taking the Fourier
transforn of the fermi operators, and the resulting expression
is very similar to those of non-interacting and interacting
fermipn systems. From this expression a "reduced Hamiltonian®
approximstion is used on the unsolved problems.

The ferro-electric problem is considered in Chapter seven.,
This problem has not been completely solved using the combina-
torial approach., However, using the Green's function tech-
niques developed in the preceding chapters, it is shown that
the low temperature case can be solved exactly, end that the
high temperature critical behaviour is given exactly by the
first order approximation. Higher order terms of the perturba-
tion aefies are shown not to contain any new singularities. It
is shown that the boundary conditions of this model are import-
ant, »nd that for a model containing helical boundary conditions
an exact relation between the critical temperature and the
electric field can be derived. The recent exact solution of
Lieb is discussed, and comparison between the two methods is
made. TFor the antiferro-elecctric problem, the first order
approximation is shown to predict the exact critical temperature.

The Dimer problem is solved using this new approach, in
chapter eight,

In attempting to develop some of the potential that this

new formalism would appear to have, we have found the important
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result that the first order approximation contains the correct
critical point behaviour for some of the unsolved problems,
€.8., next-nearest neighbour Ising lattice, ferro-electric and
antiferro-electric models. (For soluble Ising models the first
order approximation is equivalent to the exact solution and
hence must give the correct behaviour). #We have also been able
to obtain, for the first time, a relation between the critical
temperature and electric field for the ferro-electric problem,
However, although this technique is more powerful than other
methods, there remain many problems, a few of which are dis-
cussed in the last chapter.

This thesis contains nine chapters numbered one to nine,
The pages are nunbered consecutively and the equations (n, m),
n being the chapter number and m the number of the equation in
that chapter. The references to other literature are collected

at the end of the thesis,
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CHAPTER 2,  REFORVULATION OF THE ISING MODEL

2.1 The Square Lattice
The reformulation of the Ising model to be given in this
chaepter is based on the combinatorial solution of Kac and
Ward(9), who obtained an exact solution for the partition
function by summing all the graphs that could be drawn on
the lattice. Hurst and Green(12) have since shown that the
process of summing all the graphs can be carried out with the
use of pfaffians, and a second quantization formalism. This
approach had some advantage over other methods, but the more
interesting work was to follow when Hurst(21) modified the
second guantization formalism to produce an analogy between
the expression for the psrtition function of the Ising model
and expressions commonly obtained in the field theory approach
to many-body problems. This chapter is concerned with giving
an alternative derivation of the partition function as a
vacuum to vacuum expectation value of time~ordercd exponentials,
It is felt that, in comparison to the method already published,
the following approach is more concise and elegant, and displays
the principles involved in a more transparent form, particu-~
larly the analogy with the quantum field theory of many
particles,
Essentially, the method shows that the process of summing
all Ising graphs is equivalent to summing a larger cless of
graphs, which are called Feynman graphs. These Feynman graphs

can then be summed by a vacuum to vacuunm expectation value of
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an expression resembling the S-matrix in field theory. For
ease of presentation, we shall work in the reverse order,
writing down the S-matrix and then showing that this is equal
to the sum of all Feynman graphs, which in turn is equivalent
to the sum of all the Ising graphs,

Starting with the combinatorial approach of Kac and Ward,

the partition function, Z, can be written as

7 = zlf(r,s) x'y® (2.1)
r,s

where x = tanh BKy ¥y = tanh BK,

and Ky, Ko are the horizontal and vertical bond energies and
g(r,s) is the number of graphs (closed polygons) that can be
constructed from r horizontal bonds and s vertical bonds on g
square lattice. These graphs are called Ising graphs to dis~
tinguish them from the Fe ynman diagrams which will be intro-
duced later,

An important feature of these graphs is that they must
contain no repeated bonds. In many-body theory, no two
identical fermions ere allowed to occupy the same state, and
the particles are said to obey fermi-statistics. Hence, the
Ising graphs can be regearded as obeying fermi-statistics since
no bond can be repeated in a given graph. The fact that the
partition function can be reduced to counting fermion type

this
graphs is a useful ccincidence, for it is/analogy which enables
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the Ising graphs to be counted by a many-fermion type
expression. A typical many-fermion expression which can

be evalusted by the Feynman diagran technique is

t2

=

<o| T exp < /t1H(t) at > | o> (2.2)

where lo> represents the vacuum state and H(t) is the
Hamiltonian of the system, written in terms of second guanti-
zation operators,

Our present aim is to show that we can consider an
expression, similar to eq. (2.2), which when expanded in
terms of Feynman diagrams will exactly count the Ising graphs

associated with the Ising problem. This expression is

| =

<o| T exp < 2; H(3) ) | o> (2.3)

J 1
. 2% 1k 2% 2 2%
where H(J) = Xy a a + ya aJ_m + Yya aJ_1
" 1% 2 - 1% 1
+ Xa aj—m + Xa aJ_1 + 8 p aJ_1

In this expression the variable j is to be regsorded as
representing the jth lattice point on the Ising lattice, and
the operators appearing in H(j) above are associated with this
lattice point. Thus, the lattice coordinate, j, takes the
place of the time veriable, t, in eq. (2.2). The operators

Kl 2%

; 3 1 2 S .
as s a5 are foermi-creation operators and aj, aj are annihilation
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operators, which obey the following commutation rules
[ p* q.] ;

i % : .
— + -~ Psa J,k

_ap* aq*
L j?* %k -
+

The symbol, T, is similar to the chronological ordering

(16)

1
o~
Co

(2.4)

|
o)
[ o]
-
o
Lo}
|
+
]
(@}

symbol of Dyson and requires that the operators assoo-
iated with the various lattice points be arranged in order
of increasing j from the right, and an over-all sign factor
affixed, according to the parity of the permutation from the

standard order given. The symbols |o>, <o| represent vacuum

states such that

L}
o
A
o]
1}
o

a.|o> a
J

(2.5)

i
-

<o|o>

The exponential in eq. (2.3) is expanded as a series to

iﬂ" (i H<J>> o> (2.6)

give

A term such as

<o|T ﬁ% <.2L; H(j) >n | o> (2.7)

which occurs in eq. (2.6) consists of products of creation and



- 17 -

annihilatlon operators. As can be seen from the relations

in eq. (2.5), the vacuum to vacuum expectation value of a

product is zero unless every creation operator has, situated

to its left, its conjugate operator, the annihilation operator.

The time-ordering operator, T, makes certain that, for a preo-

duct consgisting of pairs of creation and annihilation operators,

the crcation operator stands to the right of the annihilsation

operator., If the product consists only of pairs of operators,

these pairs can be removed by means of the commutation rela-

1. r s
Vo

tions in eq. (2.4), leaving a factor (-1)7x s Where r is

£ o
the number of pairs of a1 ag operators, s is the number of
J
a? a?r operators. The ;% term comes from eq. (2.7), and the
n
ffactor (—1)1 is due to the anticommutation relations. For

exagmple

% 1 %

<o|T x a1 a1 |o> = -<0|T X a1 a . |o>
J J J J

1% 1
= <0 a . a. =1 X |0o> = -
| ( PR Y ) | x
The non-zero contributions which oceccur in €q. (2.7) can be

best represented by the Feynman diagram technique. To sece

this, we represent each of the terms in H(j) by a vertex, as

shown in Pig. 1. l
« 2% 13 2% 2 2% a1
a a a ., =
voay o Y% %5-m d *5 J-1
iu_ ...... BT ORI ST i ._..1'
!
X a1 * a X ’1,1 * a1 a a
J J=m ~d J=1 j=m  Tj-1
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Then any product contributing to eq. (2.6) can be repres-
ented by a closed diagram drawn on the lattice. As an

example the graph drawn in Fig. 2 corresponds to the

product
1 * % % %
<o| ++ x®y? a? al al a2 a? al a?  a! o>
43 J+1 Ti+m TJam T T3+ T3 T J

when written in the time-ordered form.

J+m | J+m41

Hence, to evaluate eq. (2.6), we have to sum all the
Feynman diagrams that can be drawn on the lattice. The
contribution arising from each graph is é% (-1)1 xy®,
where r, s are the number of horizontal, vertical bonds,.
The é% comes from the exponential series expansion and the
factor (_1)1 arises when the pairs of operators are brought
together in the time-ordered product, where 1 is the number
of permutations involved.

The factor £T can be eliminated by seeing that a given
graph will occur n! times., If the graph consists of n differ-
ent vertices, then there are n! different ways of obtaining
these vertices from the product in eq. (2.7). Hence, there

will be n! identical graphs. If the graph contains groups

of similar vertices; vy of type 1, v, of type 2 etc., then
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this given product can occur n!(vs! va! ..s)  times. Also,
there will be v4! vo! «.. identical graphs due to the identi~
cal vertex points, and so, by multiplying these two factors,
there will be n! identical graphs. Thus, bysonly counting
topologically dif ferent graphs, a weighting factor of only
(-1)1 x'y® need be associated with each graph.

We shall now prove that 1 is the number of crossed
bonds in the graph. Consider a graph where j is the lowest
point and k the highest vertex on the lattice, and the lines

Joining j, k¥ do not cross as shown in Fig. 3.

et k
-~ .
e
4 7
IT / p
/ 7/
f /
. rd I
[ y
ST— P" /
5
Fig. 3

Then obviously the first pair of operators in the time-ordered

2
kem

the last pair will be those associated with the vertex j,

product is that associated with the vertex k,(a a£_1)\and

(az* a’*) Th the ti a a duct will b
j j ° U.S, e lme=oraere pI'O uc W1 e

%*

a2 p fmeq (o o) (o) wevnen (b0) a27 8l
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where the brackets contain the intermediate pairs of opera-
tors. Commuting tle operators so that pairs representing
vertices of 1line I are together and those associated with

line ITI are together, we obtain

* £
alzc_m (° ') o0 (' ‘) a a;{-1 (l 0) L} (- o) ag
| | B |
operators of operators of
line I line II

The sign arising from commuting these operators to this
position is positive, since the pairs of fermion operators
commute and the single operators anticommute,

Now consider a graph where the lines cross once, as in

" k
g |
/

/s
/ I

o fo -7

o

/ /

T

[ SRS

Flg. z}-u

e

Pige 4.

These lines may cross at a vertex point, as in the square
lattice, or the bonds may cross where there is no lattice
point, as in the next-nearest neighbour lattice. In either
case, this diagram represents a product of operators similar

to that given above, end by commuting the operators associated



with line I to the front of those associated with line II we

obtain

The minus sign is due to the odd number of permutations. By
lengthy but similer considerations it is possible to show that
the number of permutations involved ih pairing the operators
in line I, or II is even., Hence a closed loop with no crossed
bonds has a positive sign, while a loop with a single crossed
bond has a factor =-1. By induction we can see that any graph
must have associated with it a factor (—1)1 where 1 is the
number of crossed bonds.

The many-fermion expression in eq. (2.3) can therefore be
evaluated by summing all the topologically different Feynman
graphs with a weighting factor of (-1)l x'y%, In later chapters
these graphs are summed using many-fermion techniques, but the
remainder of this chapter will be concerned with showing that
the sum of all the Feynman graphs associated with eq. (2.3) is
equivalent to the sum of all the Ising graphs. There is a
similarity between the two classes of graphs, but there is a
diff'erence which is now dbcussed.

The two essential differences are that in the Feynman
graphs a given bond may be repeated as frequently as we wish,
and that the vertex configuration in Fig. 5 can occur in three

alternate ways. TFor the Ising model, the configuration 5(a)



does not exist, and only one possibility can occur for 5(b)

]__

—

Fig., 5(a)
] | I! l‘
Fig. 5(b)

The first difference, that Feynman graphs do not obey
Fermi statistics, was first noticed in the field theory
approach to many fermion problems, and the dif ficulty was
easily resolved when it was found thd the graphs disobeying
Fermi-statistics summed to give a zero contribution, as
could be expected from the equation (a;)z = 0., This same
result holds for the above graphs, as can be seen by consid-
ering a general example. A graph with a repeated bond can

occur in two different ways as shown in Fig. 6.

| : s

(a) (b)

Fig. 6
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However, the weight factor associated with (a) will be minus
that due to (b) &ince (a) has one less crossed bond. Hence,
the total contribution from these two graphs is zero. This
reasoning can be extended to any number of repeated bonds,
and shows that these graphs do not contribute to the overall
sume.

The second difference, concerning the crossed bond config-
urations can be removed in a similar manner. As the first
graph in FPig., 5(b) will have minus the weight of the other two,
this leaves a contribution from only one configuration as
required by the Ising graphs. The two differences between the
sum of the Ising graphs and Feynman graphs have been eliminated,
and except for the faotor (-1)1 the contributions are the same.
For soluble lattices like the square lattice, crossed bonds can
only ocour at a vertex point, and here they cancel the contri=-
bution from an unwanted graph. Hence, it is apparent that for

all graphs with non-zero contributions, 1 = O and thus,
r s i
Z = Zg(r,s) xy~ = <o| T exp 5§1 H(3) ) o>

This result was first obtained by Hurst(zz) in a direct way,

starting from the result of Green andHurst(47)

N * o4 ® *

7 = <0|== (1 4+ xva? g a2 a? a2 gt
élq ( T8y Byt T8 A5l * By 25
* % L3 E
4 b 9 2 % 2 1 2 1
+ Xa, a, Xa ., a N . Xxya, a R : o>
i ti-1* Jem * FjomTgaq * XTEy By 85y =1 |
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However, the rigorous justification of this latter expression
is quite long and involved,

As is expected, the pertition function of all the other
soluble Ising lattices can be expressed in terms of a similar

gquadratic operator H(j).

262 Next Nearest Neighbour Lattice

In this section the simplest insoluble Ising lattioce is
cast into a field theoretic formalism. This problem is the

th . ]
next-nearest neighbour lattice, where the j spin interacts

with its nearest eight neighbours as shown in Fige 7.

'.'l\. 37'

®

Fig. 7

The partition function can be written as

~ P _q _r s
Z= o Pr,s 8(Psarys) wh vl x oy (2.8)

where x = tanhBky 3 ¥ = tanhfk, ; u = tanhfks ;

v

1l

tanhfk, ; and g(p,q,r,s) is the number of

Ising graphs that can be drawn on the lattice with p diagonal
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bonds in the u direction, g diagonal bonds in the v direction,
r horizontal bonds and s vertical bonds.
Hopefully, we would expect that an expression such as

(2.9) would count these graphs.

<o| T exp (ZN H(3) ) |o> (2.9)
j=1
where H(j) = vas* (yag* + ua;* + xag* + 3—m+1 +
af_p + a?_m_1 + 8l 1) + ya? *(ua;* + xas* + ag_m+1 +
8%on * ag_m_1 + 1) + uaJ (an* + ag_m+1 + a5
®jomaq * Bjoq) * *8] (aJ et * 3em * Pjomet * B3aq)
& a;-m+1 Cr ?-m-1 N aJ 1) N ag -1 (ag-m-1 i 33_1)

3 1

M PO B B

In Fig 8 the bonds to which the operators correspond 1s shown,

a EJ'j J
J ///’
b
\\\\\ . o

SN

2 .
jom=4 j-n J=ma]
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In analogy with the previous section, we can expand
eqe (2.9) in terms of Feynman diagrams and show that they
are equivalent to the Ising graphs. However, in this latt-
ice there are graphs contributing to the total sum, which
have an odd number of ocrossed bonds. Fig. 9 contains the
simple st example,

j.+:m J+m1

AN

~
j Jat
Fig. 9
Thus, expressions (2.8) and (2.9) are the same, except that
graphs with an odd number of c¢crossed bonds will be ¢ ounted
with & negative weight by eq. (2.9). Fortunately, we can
include in the expression for H(j) extra terms which will
count the graphs with an odd number of crossed bonds corr-
ectly. However, the form of H(j) is now more complicated as
it consists of quartic terms. We write the partition function
as
N
Z = <o| T exp (% Ho(3) + H1(3) ) |o> (2.,10)
Jj=1
where Hy(Jj) is the quartic term of operator s, and introduce
extra lattice points where the bonds cross as shown in Fig,

10
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'] ] » » .
x »o X w
v ¢ - » L
x * 3 X
[ ] L] o e 4
Fig. 10
Then consider
. % q Sk * é o 5 1
H = va? 2 ua’ xal a® a® a + 8
0o(J) 3 (yaj + uey 4 j ey ray_ g+ 51 j-1)
2 ¥ 3 % q* 6 2 = 1
+ ya2 (ua? xal a’ a2 a. + a.
T s ( § TRy v Byt 85+ 85y 5-1)
* * %
3 1 2 5 1 1 6 2
A : \ xa! ) a
+ ua (an +aj v o+ al s aJ_1) + Xa (a5 + a%_ +
5 1 6 2 5 1 2 5
a4+ aj_1) + aj(aj-m + a5y + 8 _1) + aJ_m(aJ PR 1)
A% %
a® 1 a% al al 4
R B I T j-m * %5 F5emad
" e
d i) = 2a% a5 at 8’ 2.11
and Hq (3) ay 8% ai_n1 ®ion ( )

where the operators correspond to the bonds as shown in

Fige 11
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Fig. 11

There are only two pairs of operators in Ho(J) assoociated with

the new lattioce point, corresponding to the vertices

S m N

This is because any bent vertices going through this point will
produce graphs which were not on the original lattice. The
quartic term, Hq¢(j), corresponds to the orossed bond vertex,

To show that expression (2.10) and (2.11) give the
correct value for the partition function, we again expand the
exponential as a series and look at the sums of products of

operators in terms of the Feynman disgrams. Thus eq. (2.10)



can be written

) N
7 = <ol T 3 %T §§1H,(j) = o (25 Ho(3) ) |o> (2.12)

The first term in the above series is

Zo = <O| T exp (zj Ho(j)) |0> (2.13)

It is easily verified that this expression is the same as eqe.
(2.9)/%zioe counts some diagrams with the wrong weight. We
now introduce some simplifying notation. Call the cerossed
bonds that do not cross at a vertex point, such as those in
Figse 9, Ising-orossed bonds, to distinguish them from the
crossed bonds in Fig. 5(b) which cross at a vertex point.
Also let the sum of all Ising graphs with no Ising-crossed
bonds be Lo, and the contribution from all Ising graphs with
P Ising-crossed bonds be Lp. Hence, from the previous dis=

cussion and using the above notation, eqe. (2.13) can be

written
Zo = Lo - L1 + Lz = seevse

(-1)* 1y

The second term in the expansion of eq. (2.12) is

Zy = <o| T (zj Hy(3)) exp (Zj Ho(j)) lo> (2¢14)



The Feynman graphs arising from this expression will have an
Ising-=crossed bond, due to the Hy(j) term, counted with a
positive sign and a factor of 2, plus other crossed bonds
coming from the exp (Zj Ho(J)) term, with a factor of (—1)1.
The expression, Z4, counts all Ising graphs with a single
crossed-bond with a weight factor of +2; graphs with two
crossed-bonds with a factor of =4. This last fact can be
gseen by letting the th cromed-bonds occur at the lattice
sites p and g. Then Z4 will count this graph, firstly, with
the crossed bond at the pth site coming from the factor

H1(p) and the qth

site from He(q) with a factor of =-2; and.
secondly with the oross-bonds coming from Hy(q) and Ho(p)
respectively, Thus, the total factor for this graph is =i4.
Similarly for graphs containing n crossed bonds, Z4 will count
them with a factor 2n(-1)n-1; the 2 arising from H{(j), the
(_1>n-1 coming from exp(zj Ho(j)), and the n is due to the

summation over j in Hy(J). Hence,
Z{ =2L1 ""le-Lg +6L3"‘ ees e

th
The k term in the perturbation series of eqg. (2.12) is

k
2 Ly VK .
Zp = <o T & (35 Hi(3))F exp (35 Ho(3)) lo>
and can similarly be proved equal to

k k k 1
Zy = 2L = 2L, (k+1) + 2 Ly, o (k+2) (k+1) 57

o0
=283 (-1)rk g on
n=k n
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To obtain the partition function
[o.e]

zZ = % Z

k=0 k

in terms of Lj’ we sum the coefficients of Lj appearing in

) Zk’ which are
k

j e 3
3 28 (-1)d™" ci v (=1)9

n=1

The last term ocomes from Zo. This can be written as

(1) (14 3 (-2)" 6})
n=1

which is the binomial expansion of
(-1)7 (1 - 2)? =1

Hence,

oo
z Z =L0+L1+L2 + oo 00

n=o o
which is the correct form for the partition funotion. The
partition function for the next-nearest neighbour lattice is
therefore given by egs. (2.10) and (2.711). These expressions
are analogous to the many fermion system with interactions,

and at the present time can only be evaluated by approximate

methods,



2e3 General TIsing Lattices

We now consider whether all Ising problems can be repres-
ented as a vacuum to vacuum expectation value of a product of
exponentials. In seotion 2.1 it was shown that the partition
function for all planar lattices, in which the Ising graphs do

not contain cro ssed bonds, can be written as
Z = <o| T exp (Ej H(3)) o>

where H(j) will be & guadratic function of fermi operators.

For a more general planar lattice containing crossed bonds,

the partition function can be written as above, except that

H(j) contains quartic terms. Extra vertices have to be included
wherever two bonds may oross, and a quartic term iB associated
with this new vertex. In the case of three-dimensional lattices,
these can be considered as an infinite number of planar lattices,
where a bond in the z-direction corresponds to a line joining two
points on the neighbouring planes. Such a bond will give rise to
a large number of crossed bonds, and each vertex will need m
extra vertices introduced, to eliminate these crossed bonds,
where m is the number of vertices in a row on the lattice. Thus,
the partition function ocan be written in an analogous form to

eqe (2.10), but it would appear to be too cumbersome to manipulate
successfully. Essentially, the quartic terms, which are regarded

as ocorrection terms are too numerous to be neglected in any
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approximate calculation (see Chapter 5).

Another unsolved problem is the Ising model 1in a magnetic
field. This problem reduces to counting not only closed graphs
but also line graphs, and we have not found a quantity which
will count these latter graphs correctly. The one-particle
Green's function, defined in the next chapter, counts single
line-graphs, however, the sign which it attributes to the
weight of each graph is positive or negative, depending on
the shape of the graph. This ¢ould only be corrected with
the inclusion of a quartic term, and so complicates the
expression. The many=particle Green's functions would also
be required and these have not been evaluated yet. Hence the
formalism we have developed here for regarding the Ising pro-
blem as a many fermion problem is specific to planar lattices,
and does not resdily generalize to more difficult Ising pro-
blems., However, as shown in later chapters, the approach is
perfectly general when dealing with other planar lattice stat-
istical problems, such as the Dimer problem, the two-dimension-
al ferro-electric and antiferro-electric problems.

Finally, we slbuld briefly mention the work of Vdoviohenko(AS),
as he obtainecd the partition function of the square lattice
Ising model, by showing that one has to sum a larger class of
diagrams (oorre5ponding to our Feynman graphs). He aid this
by means of a determinant. Basically the c¢lass of diagrams to

be summed are the same, but Vdovichenko avoided as far as
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possible the use of concepts not contained in the original
combinatorial formulation of the problem. This meant that

he could solve the square lattice case, but could not attempt

a formulation for lattices with crcesed bonds.



CHAPTER 3. _ GREEN'S FUNCTIONS

In studying the Problems of quantum=£field theory, the
method of Green's functions has proved to be a very powerful
and useful tooles In this chapter it is shown that the Green's
function technique is also useful in evaluating the thermo-
dynamic quantities of the Ising model., OQur definition of the
Green's function for the Ising model is based on the defini-
tion of time~dependent Green's functions in field theory. The
free or unperturbed Green's function is defined in terms of
the Hamiltonian Ho(j), where Ho(j) is only quadratic in the
creation and annihilation operators, and is evaluated in
Section 3.3 The pertubed Green's function is defined in terms
of the fullHamiltonian He(j) + Hy(J) and is expressed as s
funoction of the proper-self energy part, A, in section 3.4 In
this section we shall define the Green's function, and show its
relation to the partition function and average energy.

To simplif'y the expressions, it is necessary to introduce
a change in the notation. The following notation was originally

used by Hurst(zz) and is denoted by

% Re
A% (3) = ya2 A% (3) = xa'l
J J
2 . 2 1 . 1
A% (5) = % n 21 (3) = 831
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The operators belonging to a given lattice point, Jj, are all
labelled by the variable j now, and the superscripts represent

the directions of the bonds as shown,.

4

R

Defining a matrix k by

/0 -1 - -1
K = 1 0 -1 -1 (3.1a)
1 1 0 -1 f
1 1 1 0 /

the eq. (2.3) can be written
4

B 1

Y z i Dy Qs
Ho(3) = [ G,aq B Kpq & (3) 4%C3) (3.1b)

where Ho(j) is the so~called hamiltonian for the square lattice.
For the next-nearest neighbour problem there is a similar

change of notation.

AT (3) = ay_, 8 (3) = 2%, B (3) = &%
A4 (3) = a® A5 (5) = 1% $(3) = 3 *®
= a’ j) = a’ A°(3) = a3
J J J
# *
A7 . - 2. AB . - 4. 9 _ .3
(1) = ot (3) = ot 2 (8) = a3,
A79(3) = a4 A1) = 5 * A2 (5) = as ¥
= f5-met =8y =y

where the superscripts represent the bonds shown,.



8 \71/6
g JR— 5
. /TN,
3 12 11

We define k, for this lattice, as the matrix

0 =1 =1 =1 =1 =1 =1 =1 0 0 0 0
1 0 =1 =1 =1 =1 <1 =1 0 0 0 O©
1 1 0 =1 =1 =1 =1 =1 0 0 0 O
171 1 0 =1 =1 =1 =1 0 0 0 O©
11 1 1 0 =1 =1 =1 0 0 0 0
T 1 1 1 1 0 =1 =1 0 0 0 0 (3.2a)
11 4 1 4 1 0 -1 0 0 0 O
11 1 1 41 41 1 0 0 0 0 0
0O 0 0 0 0 0 0 0 0 0-1 0
o 0 o0 0 o0 0 O 0 0 0 0 -1
o 0 o0 o0 0 ©o0 0 0 1 0 0 O©
0O 0 o 0 0 o0 Q@ 0 0 1 0 O©
and then eq. (2.11) can be written
Ho(3) = 2% k__ AP(3) a%(3) (3.20)

Psaq baq

The unpertubed or free Green's function Gos’t(l,k) is defined

for all lattice problens as
5,t s t . -4
Go ?"(1,k) = <o| T A%(2) A%(k) exp (2, Ho(4)) o> *2o

where Zo, = <o| T exp (Ej Ho(3)) lo> (3.3)



- 38 =

Yhis is in direct analogy to

Go(tyt') = <ofT a*(t)a(t1)exp(jHo(t)dt)|o>/<o|T exp(/ﬁo(t)dt)|o>

which is used in field theory.
The pertubed or exact Green's function is defined in a

similar manner as
S,t S t . . -1
677 (1,k) = <o|T A%(1)A" (k) exp (2,80 (3) + Hi(3)) lo>.z (3.4)

Obviously the perturbed Green's function is the same as the free
Green's function for the square lattice since Hy (j) = 0, but is
different for the next-nearest neighbour lattice,

The Green's functions are very simply related to the thermo-
dynamic quantities of the Ising model. To illustrate the rela-
tion between the partition function and the Green's functions,

we introduce an arbitrary parameter € into the definition of Z.

z(e) = <o| T exp (z; eHo(3) + Hi(J)) |o> (3.5)
Therefore
az(€) . . i
= = <o| T3 Ho(§) exp (2 eHo(3) + Hy(3)) o>

dJ J
where the time-ordering operator, T, allows the differentiamtion
to be carried out without regard to the anti-commutation prop=-
erties of the operators, Thus

=1 dZ(e) 1 Psq ..
Z « == =%,2 . 5k G+
(e)* de i °pya 2 Sp,q (Jste)
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where the definition of the Green's function has been genera-

lized to

6% ¥ (1,k,e) = <o]|T As(l)At(k)exp(ZjeHo(j)+H1(J))|0>-Z-1(€) (3.6)

1
Now / Z(e)-1 . Qgéﬁl . de = log %
[}

and hence
1

log 2 = | de . 2 i x eP*9 (5,3,€ 3.7
g j; 325,47 K, (isds€) (3.7)

It will be seen in Chapter 4 that the integration in this equa-
tion can be performed quite simply for the square lattice.

A simple relation exists between the internal energy per
particle of the Ising model and the Green's function. This
arises from the definition of the internal energy per particle,

L,

_ - J. [8z , 38x 82 , 9y
=T %z \3x dF Y Iy B

for the square lattice. Using eq. (3.4) we obtain

-1 aZ ? Psq . . -7
7 === 3,3 k G2% (5,3) x
0x !
Jp,q Psq
-1 82 ” Psq . s -1
Z = L. 2 k G
ﬁy 3 Psq (J;J) y

Psq



where
0 0 -1 o0\ /o 0 0 =1
V11 0 -1 0 0 0 =1
i#
\o o 1 0, \1 1 1 o/
Hence

E =N Z; Trace (k' G(3,3) K (x-1-x)

rk"e(3,3) K2 (v T-y) )

A similar result can be obtained for the next-nearest neighbour
problemn.

The correlation functions between neighbouring spins can be
expressed as linear functions of Green's functions, and in
Chapter 4 a determinant, whose elements are Green's functions,
is shown to be equal to the magnetization.

These are not the only Green's functions which have been
defined in relation to the Ising problem. Both Montroll, Potts
and Ward(15) and Kadanoff(8> have defined Green's functions, and
there is a direct conneotion between them, al though they all

arise in different formalisms.

3.2 _Properties of Green's Functions.

In studying the Green's functions which arise in the
quantum-many body poblems, many useful properties can be derived

without requiring very nuch information about the hamiltonian of
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the sy stem. Dispersion relations and sum rules can often be
derived. Unfortunately, i1t has not been possible to obtain
gimilar relations for the Green's function, defined in the pre-
vious section, although the following re sult is necessary.,
Since we have given the lattice cyclic boundary conditions,
such that the lattice is wrapped onto itself helically, the
Green's functions are periodic. This is clear from the

1% g *®

relati on aj = aj+N where N is the number of lattice points,

and hence
eP29(35,k) = P54, k+N)

Also, as the hamiltonian, Hoe(j) + H4(j), is translationally
invariant with respect to the time variable, J, Gp’q(j,k) is

a function of (j=k) only. Thus

eP29(5,k) = ¢P29(5-x)

These two properties enable us to write Gp’q(j-k) as a fourier

serie s.

N
P2 9(5-x) = Ntz P 9(r) exp (2mir(j-k)/N)
I‘=1

and conversely
P Ur) = 2 eP?9(y) exp (-24i r j/N) (3.9)
J
The fact that the Green's function can be written as a

fourier series arises very naturally from the work in Chapter
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6, where the hamiltonian is diagonalized by a fourier trans-
formation. The fourier transform of the Green's function,
Gp’q(r) can then be expressed in termns of the diagonalized

hamiltonian,.

223

~-Evaluation of the Free Green's Funotion

In this section, a general expression for the unperturbed
Green's function is established. This Green's function, given
by eq. (3.3) has already been evaluated by Gibberd and Hurst(zj),
by summing all the Feynman graphs associated with the expression,
Here eq. (3.3) is evaluated by a more general method, which
involves setting up and solving an integral equation for
Gop’q(jnk). Both methods are typical of those encountered
in many-body theory. Eq. (3.3) can be written as

5,% -1 S t 1 RENRN of
¢ "(1-k) = 25 <ol 2%(1) A" (k) T 5 (z, Ho(3)) [o>
n=0

The vacuum to vacuum expectation value of a time-ordered pro-
duct of creation and annihilation operatgéés is evaluated by
means of Wick's Theorem, which says that the time-ordered pro-
duct is equal to the normal-ordered product with all possible
pairings. This means summing over time-contractions between
all possible pairs of operators which appear in the product,.

The time-contraction of two operators Ap(l) and Aq(k) is

written as AP?9(1,k) and is defined by
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T(AP(1) A%(x)) = N(aP(1) a%(x)) + AP29(1,x) (3.10a)
where T and N are the time and normal ordering operators res-
pectively. If A(1l,k) denotes the matrix of time-ordered con-

tractions, we find that for the square lattice

/ \

/’ 0 0 .XGl-—'l,k 0 \‘\\
' 0 0 ; 0 o :
a(lk) = | 1-m,k |
l -X61+1,k 0 0 0 j
i 0 -y61+m,k 0 0 ;
f 0 0 xw-r 0 E
| \
i -mr
R e
- N r \
r=1 ) 0 0 0 f
\
V0 —yu" T 0 0 ;
N
1 1=k
- F % o0 ) (5.10)

where ® = exp (ZWi/N)

The corresponding form of A(r) for the next-nearest neighbour

lattice is



X

1
+
5

1

0 o 0o o0 xw To 0 0 0 0 o
0 o o 0 0 0 0 0 0 w 0
0o 0 o 0 0 o0 yuw ™o 0 0 0 0
0 0 o 0o o0 0 0 0 0 0 0 1
w® 0 o 0 0 ©0 © 0 0 0 0 0
0 0 o o0 o0 0 0 0 ¥ 0 0 0
0 0 -yo 0 0 0 0 0 0 0 0
0 0 o 0 o0 o0 © 0 0 —vom1)T o 0
0 o 0 0 ouw t 0 0 0 0 0 0
0 0 o o0 0 0 vulmm1)T g 0 0 0
0o-w® 0 0 0 0 0 0 0 0 0
0 0 0 -1 0 0 0 0 0 0 0

The summing over all time contrections is equivalent to summing
over all diagrams, and these fall into two categories; those
consisting of a line starting and ending with the operators
A% (1) ana At(k), and those which are closed loops. Examples of

each are given in Fig. 12,

Fige. 12

(23)

It is shown in Gibberd and Hurst that, in summing

over topologically different diagrams the contribution from a
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given diagram depends only on the time contractions represented
by the diagram, Hence the contribution from a disconnected
diagram is the product of the contributions from its connected
components. Thus we can faotorize out the sumnmation over all

closed loop diagrams,

Summation over - [ line graphs loop graphs

summation over :] [ summati on over‘]
all graphs

But the summation over all loop graphs is equivalent to eval-
uating the quantity, Ze, which therefore cancels the Zo in the
denominator,

Hence to evaluate the Green's function we need to sum only
over all line graphs. The contribution from a line graph. such

as that given by Fig. 12 is

S59D1 . ' ' P29Qq1 . . Qz st/ k
1l- k A = k A =
A ( Ji) Pi1sP2 (J1 JZ) 91992 (Jz )

The sum over all line graphs can be represented diagrammatic-
ally as GoP?%(1-k) = ’”*(::}““’ where p,q refer to the
directions of the linei at l,k.k Now, we can divide the series
of line graphs into the simplest line graph, plus all others

minus this graph. Diasgrammatically this is represented as

’ y ")
c---—-i o = PO + B ettt '}; el

1 k 1 x 1 Tk

Writing down the contributions of this graphical equation we

obtain

%
GoP2e(1-k) = P2 %(1-k) « 5.5 Ap’s(l—j)ks Go *3(j-k)

s8,t st
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which is an integral or summation equation for Go(l—k). This

can be written as the following matrix equation
Go(L-k) = A(1-k) + 3 A(1=5) k Go(j=k)

which is solved by teking the Fourier transforms

wr(l-k)

Go (1-k) = 1 & Go (r)

1}

and  A{Z=k) 3 wr(l-k) A(r)

]
=4 B

Substituting this into the integral equation, we obtain

Go(r) = A(r) + A(r) k Go(r)

and hence Go(r) = [1-!&(r)k]-1 = (r)
= (27 () - k] (3.12)

Therefore, the free Green's function has been evaluated as
A 1 -k -1 -1
Go (3-k) = % 3 o* W) (177 () k) (3.13)

The Green's function Go(j-k, e), defined by eq. (3.6) can also

be evaluated by a similar technique, giving

Go(imkse) = § 2 ™) 17" (r)-exc]™ (3.14)

Equations (3.13) and (3.1%) hold for both the Ising lattices
that we have been considering, and the elements of the matrix

[A~1(r) - k]-1 for the square lattice Ising model are given by
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A(r) (1,1) = xzy éw-mr - mmr)

8(r) (1,2) = xy w 1-m)r-x2y 0 Faxy? el -x2y?

A(r) (1,3) = prny w0’ (w-mr+wmr) - x2 (1-y® + xy*> o

A(r) (1,4) = -xy2o®-x #ih= x2y ™%

A(r) (2,1) = -xy w(m 1§ P hox%y o™ 4 xPy?

A(r) (2,2) = xy* (v" =" )

A(r) (2,3) = -x%y w o y2 + Xy W (m+1)r_ xy? W’

A(r) (3s1) = 'Xw—r + Xy W (wmr+ -mr) 4 (1—y2) - xyzw-r
A(r) (3,2) = -xy w-(m+1)r 2y o " 4 xy?e ' 4+ x2y?

- w-—-"ﬂ.r)

A(r) (3,3) = x%y ("7
A(r) (3,4) = =xy%0 "~ - x2y® 4+ xy (m—1)r; x2y P

A(r) (4,1) = =xy w—(m+1 Taoxy? 0 4 xPy o PT 4 x2yl

8x) (4,2) = =y 0™ 4 xy T (W7 4 0TT) by (1ex?)eyx® 0T
A(r) (4,3) = -xy w(-m+1)r + xy2 w4y xPw T 4 xPy?

A(r) (,4) = =xy® (0 =w"")

Where

B(x) = (4x®) (143%) = (1= )(u" + 0™7) = y(1-x* Y(0 "T4u=0T)

(3.15)

3.4 The Perturbed Green's Function

In general the perturbed Green's function cannot be
evaluated exactly. Many of the approximation techniques used
in many-body theory are based on approximations to the exact
Green's function and this section is concerned with developing
such a t echnique for lattice problems. At first sight, it
might appear that a systematic approximation procedure for
calculating G(j-k) would be to sum the contributions of all

diagrams of the first few orders. It has been found in many
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fields of physics, however, that the analytic properties
(poles, branch points, asymptotic behaviour) are not signi-
ficantly affected if we include only a finite number of
diagrams. Hence, even in the first approximation, it is
necessary to include an infinite nunber of diagrams. We
shall consider an infinite partial summation which leads

to Dyson's eguation, and expresses the Green's function in
terms of o proper-self-energy part A(j“k)n As A(j-k)
cannot be evaluated exactly, it is necessary to obtain an
approximation for A(jnk), using physical and mathematical
arguments. A simple approximation for A(j-k) is given in
section 7.3 for the ferroelectric problen. However, as has

esn fecund i the many-fermion problems, when straight-

0

)

orwvar? merturbation theory fails, the Green'’s function
¢pproach has often had to follow solutions obtained by
experimens or other theoretical methods. Often in these
problens, Green's function methods are not a reliable guide
into unkncwn fields, but can be used to obtain correct
answers to problems whose answers are slready known. Con-
sequently, the nos®t appropriate approximation for A(j=-k)
has not yet been obtained for lattice problems,

The perturbed Green's function has been defined as

67 21-k) = <of? AP(1)2%(k) exp (2 Ho (3)+H1 (3) )o> 2"

J
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The Feynman graphs associated with the quantity are again
: : . . 2 4

line graphs starting and ending with 4% (1) and 4 (k).

However, due to the gquartic term the graphs are more com=

plex. The lower orders of the graphs are

i 27N
e -+ R —+ o-*—f:_\“-\—-—*._ g —+

(f> )

\ _.')‘ \“/
e, e 4 EESS

These are of such a complex nature that they cannot be
summed exactly. However, we can still set up diagrammati-
cally an integral equation for the Green's function, which
is called Dyson's equation, as follows.

Let us define AP?%(j-k) as the sum of all diagrams

which have the struoture

where the semi-circle represents any sub-diagram that is
connected to an incoming line in the pth direction at pointy
Jsand to an out-going line in the qth direction at lattice
point k, and which cannot be divided into two parts by break-

ing only one line. Contributions to AP?%(3j-k) are

s —




and such diagrams as
— N

) ()
&_/ H}t/
do not belong to the sub-olass of diagrams A(j-k), which is
often ocalled in perturbation theory, the proper-self-energy
diagrams. The unfilled points in these diagrams represent a
quartic term in the product, while the lines represent all
contributions from the gquadratic terms., Thus the lines in
this case represent the free or unperturbed Green's functions.
The diagrams which are summed to give GY?%(j-k) can be par-

tially summed and written as

= _{ = M\\l..___-. - *—® ""‘“_"‘C{‘*‘(\) O (_:,\ —=

where —i J— represents the exact Green's function
and PP the free Green's function. Written alge-
braically, the above becomes
t
P2 9(5-k) = GoP?9(j~k) + 3 GoP?5(5-1)2% % (1-n)e®? I n-k)
l,m,s,t
which can be written as the following matrix equation
G(3=k) = Go(j-k) + T Go(j-1) A (1-n) G (m=k)
l,m
Using a Fourier transformation to solve the above equation, we

obtain
G(r) = Go(r) + Go(r) A(r) &(r)
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Hence, e(r) = [1 = Golr) A(x)]T Golr)

(6o~ (r) = a(r)]”

i

(477 (r) = x = ACe)]"" (3.16)

0]

on using eq. (3.713),
When the arbitrary parameter , €, is introduced in the

definition of the Green's function, we obtain the result

G(r,e) = [A71(r) - ex - A(r,e)]” (3.17)

where A(r,e) is also a function of e,
The expressions given here are typical of those used

(#9), except that generally the Green's

in many-body theory
funections are not matrices but scalars. Likewise k, and
A—1(r) would be scalars, where A(r) is of ten called the
propogator, and k is the vertex part.

The results given in eqgs. (3.13) and (3.17) will be

used in the rest of this work to obtein the thermodynamic

guantities of the models studied.



CHAPTER 4. SOLUTION OF SQUARE LATTICE ISING MODEL

Lo Partition Function

In this chapter, the thermodynamic gquantities of the
square lattice Ising model will be evaluated with the use of

the Green's functions. The results for the partition function

(2)

and magnetization are the same a s those obtainecd by Onsager

(3)

and Yang » although the derivation is simpler. Much of this

chapter has already been published by the author and Hurst(zz).
The partition function is obtained from equations (3.7)

and (3.14).

x

Log % = de .5 Tk GoP?% (5-j,¢
g /O 5 p,q2 Dsq o (J J’)
1
= - / de %.Trace = k Go (j~js€)
o J
where the minus sign is because k = =k

Psa q,p

3 o)y [heex a()]”"

Combining these two results, we obtain
1

Log Z = ~/ de Zj Eg Trace % kA(r)[1-¢€k A(r)]-1
(o]

=
l
—

1
-/ de ZN Trace
o r=1

kA(r)[1+ek A(r)+e® kA(r) KA(T) +eo.]

N+
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The series is convergent for all temperatures and on perform-

ing the integration, we obtain
Log Zz = -3 Trace 7 [ka(r) + f(xa(x))? . T(kA(r))® 4 e ]

Trace log (1 = ka(r))

I
nea =
—

[SES

s

log det. (1 - ka(r)) (hot)

1
nes =
(MBS

.1

On substituting for k and A(r), (egs. (3.1), (3,10) ), the

well-known result follows

2 =3 [ Get) () x () (7 4 )

H =

=

1
- y(1-x?) (" 4 ¢"T) }

The critical temperature, mean energy and specific heat
can be obtained from this expression. The details of these
calculations will be given in the next chapter where an approxi-

mation to the next-nearest neighbour lattice will be made.

Le2 Magnetization

The evaluation of the spontaneous magnetization of the
Ising model has always been a complicated problem. Onsager
was the first to obtain the solution, but he only announced the
comparatively simple result. Four years later Yang published
the first solution. Since then, alternative derivations have

been given by Montroll, Potts and Ward(15), using Foeplitz
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(8)

using integral equations and Kadanoff s

(50)

determinants; Green
who used Green's functions based on the algebraic formalism,

In this section, yet another method is given which is based on
the field theory approach which has been developed so far. It
will be also shown that the methods mentioned above are simply
related to each other.

In chapter 2 it was shown how the partition functions of
the Ising lattices oould be reduced to the vacuum expectation
value of a time-ordered operator exp().‘.j H(j)), where H(j) is
a gquadratic expression of fermion creation and annihilation
operators. Here the method is generalized so as to express
the correlation functions as the vacuum expectation value of
exp(zj H'(j)) where H'(j) can be regarded as a perturbed
hamiltoniane. This can be expanded as a series in analogy
with Dyson's perturbation expansion in field theory. The
series can be summed, using Green's functions,to give the
exact result because H'(j) is quadratic in the fermi-operators.

The correlation function <sys > for a pair of spins

ka1

located at the sites 1 and k+1 is defined as

-1 N
<8 8 4> = (cosh Ky cosh K, ) b 5 81 o1 X
_§=11
N
1 . S, . S, .
.({ (1+x sJ sJ+1) (1 + ¥ SJ SJ+m) (4.2)

J=1
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where Z is the partition function, sj = +1 represents the
state of the spins at the lattice site j, #*K1kT and +K2kT
are the interaction energies between horizontal and vertical

pairs of spins respectively, and
x = tanh K, y = tanh Kj.

We shall only oconsider correlations where the (k+1)-th spin
is on the same horizontal row as the first spin. The gener-
alization to other cases is straightforward. Using the

identity

51541 = (8135)(8595) weene (oyoy )

equation (4.2) can be written as

N
<s, s, .> = 271 & 3 (M+x.s8.5. ,)(1+ys.s,
17k+1 1 . 3§37 541 i d+m)  (4.3)
- j=1
-1 .. .
where ) B X if jgk
' = x if j>k

i

and Z4 Z(cosh K1)_N (cosh Kz)-N.

Apart from the j dependence of X9 equation (4.3) is
identical with the expression for the partition function.
Thus, using the same téchnique that was used in Chapter II to

express the partition function in an S-matrix form, we can
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obtain a similar expression for <S’Sk+1>'

-1k N k
Z:" & <o|T exp (B2 Ho(d) + T W (3) ) lo>

J=1 J=1

<S,Sk+1> =

where Ho(J) is the same as for the square lattioce partition
funotion and is given by equation (3.1) and H (j) is the
perturbation which takes care of the j dependence of xj,

and is given by

1
¥ () = 24, + AP (5)a%(; i i 1
(3) = [ 22y 2 x, o &7(9)a70) ( > )
where
/o 0 -1 0 \
0 0 -1 0 3
k' = 1 1 0 - f
‘. /
Defining
N L ] D q
S(N) = exp ( Z z z kb (3)42(3) )
j=1 p,q_=1

as the unperturbed S-mnatrix we have

k b 1 P q 1 -1k
> = <o|T exp(Z R R (3)8%(3) (g2 ~1))8(M)]o>e24” x

j=1 p,q_:‘l

<S1Sk+1

If we expand the exponential we obtain the series
k L

00
> = <o|T[1 + % %, (z 2 AP(3)a%(s)
n=1""° J=1 p,q=1 Pa

<38, 8

17 k41

[

(2 - 1))n]s(N)|o>.zT1 A (hok)
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To evaluate this we again use Wick's theorem, which means
sunning all diagrams in the above products. Now, if the
factor S(N) were not present in equation (hel) we would sum
over all diagrams, whose contributions would be given by the
time contractions qu(j,k). These diagrams that arise fron
the series part of equation (4.4), and not from the factor
S(N), we will call skeleton diagrams. It is clear that since
the operators appear in pairs the skeleton diagrams are going
to be closed loops. Now by a familiar technigue used in field
theory, when the contributions from S(N) are included, we sum
2ll possible skeleton diagrams, but instead of using the prop-
agator qu(j,k) we must now use the Green's function qu(j,k)
to determine the contribution from a diagram. For as we have
already seen the Green's function is a summation over all dia-
grams between two points and so the above technique is equiva-
lent to summing over all skeleton diagrams where now each line
in the skeleton diagram represents a partial summation over all
possible diagrams between two points. The contribution from
the sum over skeleton diagrams will have to be multipled by
Z1, which takes account of all the closed loops arising from
the factor S(N).

To sum all the skeleton diasgrams which arise from the

jid

[o)0]
1
tern [1 + %, =, (j§1 e K AP ()a%(3) (%2 -1))™] we first

notice that the factor 1/2nn3 can be removed by summing only



- 58 -

topologically different diesgrams. This means that the con-
tribution of a disconnected graph is the product of its
connected parts. This fact enables us to use the linked

cluster expansion
sum over all diagrams = exp[sum over connected diagrams].

Thus we have to sum over topologically different connected

loops. The contribution from a single n-point loop is

k’ .Ql.kl ' » - . -
P1Q4 P, 9, ¢P2 (54,52) qupz(Jz:Js)---anp1(jnsJ1)

(1;2 -1 )no

(=]
Let Ln be the contribution from the sum of topo%gically diff-

erent loops with n vertices. Then

x . 1 q,P1
L = . ) = k! s I n .
n = 3%=1 Bi,05=1 T Fpiay poa, 61 (G1sde)eeie T (3, 5d4)
1 n
(;2 '1) o
where the factor é% comes from the fact that in gsumning

over Piqiji each graph is repeated 2n times since it is a
cyclic graph. The minus sign comes from the factor (-1)F

which occurs in the definition of Wick's Theorem. Hence

; . . 1 n
Lo= 2, =5 Tr (KG(Jrsde)eeek G(3 534)) (52 -1)
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k N : . .
I O I e A A UA Rt LR AL C S (YOO YO BT )
(2 -1)"  (4.5)
where o(r) = [-x® =%y - xy (™40 )axu™ (1-y%)1/0(x).

The last step in equation (k.5) is given in the appendix, at
the end of this Chapter.
When the size of the lattice is very large, the summations

in equation (4.5) can be converted to integrals. If we write
r=2s4+ (t=1)n ,

and set

¢ - 2mms g g 2mliot) ¢

N
we obtain
w' = exp(i®); ™" = exp(id).
g N . . n il . S
The summation Z° is equivalent to Z 27, and in the 1imit of
r=1 s=1 t=1

large ny,m this can be written as

2w 2
15 a6 dg.
TZW;T /; [0

Then equation (L4e5) becones

21
N 1 1
Ln =.2 - n 2n [ de"'den d¢"”d¢n
Ji=1 {2m) o

o104 (Je=dz)+eeesi® (5 -J1)
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X [0(01,81) 0(62,82)e0u0(8 58 )] (22 -1)",
where ¢ (0,¢) = (=x®-x2y?-2x%y cos¢ + xe-ie(1-y2))/A(6,¢)
with 4(6,8) = (1+x2) (1+y®) - 2x(1-y?)cosb-2y(1-x%) cosd.

The integrals over the ¢i can be evaluated immediately since

the following releation holds(51)

2
T asete8) (e 1) =1 - 2(0)/x
where £(8) = u(e®)/u(e"%),
u(eie) = (1—Beie)% (1—Aeie)"% 3

A= (1=y)/x(1+y), and B = x(1-y)/(1+y) .

k 2w , . o
2 1 —_1—_ f d61..d6 ele_‘l(J1—Jz)+oe+_lenkgr-.i-_,a1)
o = n n

1 (2#) 0

[_ﬂ%i_l:l... |:1 - f(in) ] (4.6

We can simplify this multiple integral by defining the

operator Pk by

k o .
P, h(g) = = 1. ] a0 oid(9-9)
j o)

521 ow h(e) -

Pk is a projection operator which projects out the frequencies

1 to k of the fourier series of h(¢). We also define P, f as
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an operator which acts on a function h(¢) as follows:
k
)

) 26) = 3 [ a0 o0 eo) o)

‘]=1 em

If we now introduce an extra integral and delta func-
2m 2 co .
. il(g¢-06_) .
tion fo d¢ 6(¢—6n) = fo d¢l___§Do e n’ into the
multiple integral expression in equation (4.6) , We obtain

) k 2w 2w . . s
L = - % " — / ag¢ [ deiell(¢_en)ela'(e'-en).u
S Q [¢]

1Jn(¢'en_1) [} £(64) [} B f<e£2 .
x
We can then use the above definition of the operator Pkf to

write this as

L=t 3 L o ade®p (1-£/x)P, (1-£/x)
n = n 211_ ¢e Pk p.d Xk X)oeosoe
l1=—0 (o]

p, (1=¢/x)e” M7

0o 2 .
1 L 114 - | i
. 1=§w == /O d¢ e [p (1-£/x)]" e

-

E = = Do [Pk (1-£/x)]" = (4.7)

Thus we have the result that

o0
5 b
=4 -

Tr log(1-Pk(1-f/X))

log (<s1s

BIPEE a (4.8)

This expression is similar to that obtained by Kadanoff(S),
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although the derivations are seemingly unrelated., Also, this
expression is simply related to the integral equations used

(50) (52)

by Green and Hartwig , and the Toeplitz determinant
of Montroll, Potts and Ward15), to evaluate the correlation
functions. The integral equations can be obtained from

equation (L4.8) by writing

k
Tr log (1-Pk(1-f(6)/x)) = log T N
i=1
where ki are the eigenvalues of the equation
(1 - P + P f(e)/x)ui(e) = Kiui(e) (4.9)

Multiplying by (1—Pk) gives
(1-Pk) ui(e) = (1—Pk) 1 ui(e)

and hence ui(e) = Pkui(e) for h;#1.

Multiplying equation (4.9) by P, we get
-1

This is the integral equation which was derived by different
methods by Green and Hartwig.,.

The Toeplitz determinant of Montroll, Potts and Ward
can also be written in the form of equation (4.8)., We regard
f(eie) as a Toeplitz matrix with elements fi-j given by the
ie)

(i—j)th Fourier coefficient of f (e o« The projection opera-

tors Pk when written in matrix notation have zero elements
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everywhere except the diagonal elements (1,1) to (k,k) which
are unity. Then equation (4.8) can be written

-k -1 . .
81, 1% ) = log det. (1—Pk + P x f), which gives

the same result as Montroll, Potts and Ward.

log(<s,

The evaluation of equation (4.8) can be carried out
in & variety of ways. The generalization of Szegos Theorem
enables us to evaluate the Toeplitz Determinant form of
equation (4L+e8)e This is the method used by Montroll, Potts
and Ward. Green was able to solve the integral equation
form exactly because f(eie) can be factorized and then its
inverse can be found. The m3athod presented here was first
given by Kadanoff(S). It also relies on the fact that we
can find the inverse of the operator P, £(8) as k—xo, and
hence is related to Green's method. The technique when
applied to the matrix representation of P, £(8) gives an
alternative proof of Szegos Theorem. Thus it appears that
all the approaches are closely connected.

To evaluate equation (4.8) we take the perfect differ-
ential of the equation with respect to the variables A and

B.

o]
fo})
=
+
~
I

> =
k41 n

g
a7

d log <818 (#-10)

Using equation (4.7) we obtain

adL =+ [P (1-x"" f(e))Pk]n'1 P a (x"'e(e)).

k
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The extra operator P, which is inserted simplifies the

k

future work and makes no difference to the expression since

P.2 = P. o«

b P oa (x £(8)). (ho11)
+ P x £(0)P, k

1-Pk

x * Pk

: 1 -1
gsome properties of u(ele). Now u(z) = (1-Bz)2 (1-az) 2 has

To evaluate the inverse of (1-P x_1f(6) Pk) we use

& single singularity at the point z = A

singularity at z
is considered it
larities of u(z)

Hence ut1(z) are

-1
, and u (z) has a
= B_1. If the low temperature case, T<Tc’
be .
can/shown(15) that B<A<l1. Thus, the singu-

and u-1(z) lie outside the unit circle.

analytic and can be expanded as a Taylor

series inside the unit circle,

u(z) =

If we define P =

tive freguencies

tive frequencies.

[oe) (o 2]

E u_z" u-1(z) R A
n n
n=0 . n=0
lim P, we see that P projects out all posi-

k

of the Fourier Series, and (1-P) the nega-

k= o0

Since ui1(ele)P consists of only positive

frequencies the following equations are true,.

(1-p)u? (*°

) P =

0.

+1(eie) e 3 (eie)P.
P ut' (™) (1-p) = 0.
(%) = ut (1% p 2 P ut! (%) (1-P)  (4.12)
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Using these equations We can see by multiplication that

(1-P + " (ele) P x u(e-le)) is the right and left inverse
-1

of (1-P + P £(6) x P). Substituting this into equations

(410), (4e11) we get

_ X iy ‘5. - »
Tr (u 1(ele) P x u(e le) ale(e™ )x 1]) + lim kx dax
k= oo

d log M

(ho13)

where M? = lim <s4s > is the magnetization,

k= oo

d[f(eie) x -1] = f(eie) d(x-1) + u_1(e—ie) =1 a u(eie) +

k41

u(eie) e d(u—1(e-ie)).
(ho1d)
Substituting equation (4.1%) in equation (4.13) means we have
to evaluate the trace of three expressions. The first one
can be evaluated to give - lim k x_1 dx, which will cancel
the last term in egquation (Ejfg). The trace involving the
third term in equation (4.14) gives the interesting contri-

bution and shall be evaluated explicitly. Using the last

equation in (4.12) we have to evaluate

e (P ule™t®) a(u™'(c71%)Y)

- Tr(P u-1(e ie) (1-P) u(e ie) d log u(e-ie

))  (k.15)

The first term here is similar to the trace obtained from the

second term in equation (4.14) and when written out in full is



v [GIE]

2 co . 2T o0 . _ i -416
f dg 7 il¢ / a® elj(¢ 0) 4 log u(e 1e)e il
2w 2T .
] l==0c0 J=1

s a6 10
= 2 f T d log u(e” ) = 0 since the integral is zero.
=1

The second term of equation (4.15) is

2 o) 2 oo 985 _ .
- / %% T o1l / d61 5 elJ1(¢‘e1) = 1(6161)
o

l==c0

T §e=1

-16,y -i10,

-2 oo . s .
/ dez Z e"lJz (61-62) u(elea) d_ ]_og u(e
o]

2 . . 2
% = ]) 404 ? 81J1(62'61) u_ 161) / dez ?
Je

=0

e-ij2(61_62)u(ei62) d log u(e-lez)

co 0o 2m . R .
- - b n [ %%z elez(J1+Jz) o . . ule lez)dlogu(e 2y,
J1=1 J2=0 e
Now the summation over j¢ and jp 1is such that js+Jj2 = 1 occurs

i times. Hence the above can be written as

[e] 2m P . .
-z ]‘ 49 5 o190 w . u(et?) a 108 u(e™?)
j=1 o}

" aé d -1, i6 io ~-ib
= 1i > b (u (e Y)Y u(e™) 4 1log u(e )

. dd d 1.0 =10
i [ 5 35 los u(e™) d log u(e ).

Substituting the explicit expressions for u(ele) we obtain
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/ 2T 30 4 [ -iBe+? . _J [ —ape~1® : ane "1 ]
---— » _-6
o) 2 L 1-Bele 1 Ae16 1-Be 1=Ae t

_ _ A _8z_ 1| =Bz . Az _l -dBz dAz—1
= 2wiz I} | 1-Bz 1=Az -1

i
e

d log M

1-Bz 1-Az

. 1[ dB,B _ A dB _dAB A dn ]
M 1-p%2  4-pB  1-BL  1-2?

a log[(1-B%) (1-22)/(1-4B)?]

|
oo =~

Integrating we obtain

¥® o (1-p2) (4-22 )/(1-1B)% -

The constant of integration is zero, since M=1 at zero temp-
erature,

This is the exact result for the magnetization of a
square lattice for temperatures below the critical tempera-
ture. TFor temperatures above the critical temperature we
can show that B<1 but A>1. Hence our expansions for ui 1(z)
do not hold for the high temperature case. However, we can
obtain some similarity between the high and low temperature

cases if we consider £(z) as given by

£(z) = v(z) (z v(z"1 )7

A - 1
where v(z) (1-Bz)2 (1-4 1z)z'

1

Now v(z)i1 are analytic inside the unit circle and

hence have expansions which only have positive powers of z.
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However, the extra factor z in the definition of f(z) now
prevents us from finding an inverse to the operator (1-P +

Pf (eie)P). In fact the presence of this extra factor z
means that this operator has a zero eigenvalue with an
eigenfunction eiev_1(ei6)0 We have already shown that

M = _ﬁdki and hence M = 0 provided the product of the remain-
ing :;éenvalues is finite.

Some Jjustification of the last statement can be pro-
vided in the following way. We notice that the operator
can be factorized into (1-P 4+ P e-ieP) X (1-P + P V(eie)
v-1(e_ie)P). Using the relation Tr 1n (AB) = Tr 1n A + Tr

1ln B we get

v-1 (e-le

In M = Tr ln(1-P + P v (ele) )P) +

~i0

Tr I1n(1-P + P e ~ P) (4.16)

If the first term on the right hand side of equation
(4.16) is evaluated by the same method as was used in the low
temperature case we obtain 1n (1—A_2)(1—B2) (1-A_1B)2. The

sccond term in equation (4.16) can be evaluated by writing

~-i06

Tr 1n (1-P+P e'lep) = lin Tr 1n (1-P1 + P e F. ) = lin
k—sco < k k=0
1n det., (1—Pk + Pk e_lePk). This determinant has ones on the

diagonal elements except for the elements (1,1) to (k,k) where

there are ones on an off~-diagonal. It has the fornm
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This determinant is obviously zero. In:the limit as koo
the determinant remains zero. This definition of the value
of the infinite determinant is in accordance with the physi-
cal representation of an infinite lattice as a limitingcase
of a sequence of finite lattices, and so is the most natural
one to ochoose, If instead the infinite determinant were
evaluated by Jjust calculating its eigenvalues ananbiguity
would arise because the operator P e-ieP is non-Hermitian
and possesses a continuous infinity of eigenvalues in the
region of the complex plane Ihl<1. In a certain sense this
approach still leads to the conclusion M=0 but it is more
difficult to justify. Substituting these results into
equation (4.16) we see that the magnetization is zero for
all temperatures above the critical point.

Thus, the standard results for the partition function
and magnetization have been obtained using Green's functions,
Both these methods would be suitable for all Ising nodels,
but as pointed out in Chapter III, the Green's functions for

the unsolved nodels are not known exactly,



- 70

Le3 Appendix

We give here an outline of the proof of equation

(4. 5). Using equation (3.13) we see that X'G has the

structure

/ 0 a

i a1 82 4 \

1

( a4 g 0 a4 \

\ 0 b, bs bs |

\ -84 -8a2 0 =84 /
where a4 = -qu, az = _G32’ 8.4 = -934 and bs = G13 + st
- G%*?. The zero entries arise since r§1 (wr-w-r) = 0.

Thus the trace of k' G is (aj+az2-84) + bs which on sub=-

stitution of ‘the values from equation (3.15) gives
Tr (k'G) = bz + bs#*
Y (emde)r nr - -or
where bs(J15d2) = L @'V T (ax®y® - xPexPy(u 4w )

+ x0 T(1-32)) a(x) ",

Similarly k! Gy k! G, can be written

ay az O aa /; Lig As 0 ' \
{ a1 az O a4 ; Ay HP 0 Aa
0 b, bs ba | 0 Bz By Bs
~a1 -ap 0 =as ) \l-Aq ~h2 0 ~Ag

from which we obtain

Tr (k’G1 k! Gg) = bs* Ba® 4, bs Bsx,
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We can repeat this procedure obtaining

Tr (k' Gy k' Gpoook! Gn) = b3(1) p5(2)eeebs (n) + bsx(1)bs*(1)
essb3¥(n)
The sunnation over r, means th at the contribution from the
complex conjugate b* is the same as that from b. Hence we

obtain equation (4.5).
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CHAPTER 5, NEXT-NELREST NEIGHBOUR ISING MODEL

5al First Order Approxination to the Critical Temperature
This chapter is concermcdwith the evaluation of the
thermodynamic gquantities of the next-nearest neighbour
Ising lattice. Although this ppblen is not solved here,
this work derives results for the critical tenperature, Tc,
and the critical indices «, &' , B which are a reasonable
first approxinatione.
The suggested values for the critical temperatures
are obtained by examining the singularity of the free or
unperturbed Green's function. Although there is no rigor=-
ous proof that the singularity of the free Green's function
will be the same as that for the perturbed Green's function,
evidence in some other areas of physics has shown that this
assunption can yield valid answers. For example, in the
field of strongly interacting particles, the perturbation
nmethod is inapplicable because the coupling constant is
very large. Thus the perturbation series cannot necessarily
be expected to converge, and no significance is attached to
the numerical values of the individual terms. However, Eden,
Landshoff, 0live and Polkinghorne(53), Hwa and Teplitz(54)
consider that, although the perturbation method may be nean=-
ingless outside quantun electrodyn~nics, the singularity

structure of some of the perturbation terms may contain useful
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information about the analytical properties of the complete
S-matrix. In the case of strong-interaction physics a know-
ledge of the singularity structure of the first few terns has
helped as a useful diagnostic. In many-body problens,
Thouless(37) has shown that the transition tenperature of a
superconducting sy stem can be obtained from the requirement
that the "ladder diagrans®™ of the usual graph theory lead to
a divergent sum. Other examples, which have more relevence
to the present Ising model approach are the ferro-electric
and anti-ferro~-electric problems, It has been shown in
Chapter 7 that the exact critical temperatures are predicted
by the singularities of the free=Green's functions for both
these models. In this seotion, the singularity of the first-
order term is suggested as the value of the critical tempera-
ture for the next-nearest neighbour lattice.

The critical point, Tc, is determined by the temperature
gt which the partition function has a singularity, whereas
the critical indices a, &, § are determined by the nature of
the singularity. Again we assune that the nature of the singu-
larity is the same as the singularity of the first-order
approximation., The values we obtain for the critical indices

using this assunption are
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These results are the same as the results for the soluble
square lattice nodel., The idea that the inclusion of the
next-nearest neighbour interactions would make no difference
to the values of the critiocal indices has already arisen from

(55)

the "scaling law" theory of Kadanoff's One of the con-
sequences of this approach 1s that the critical indices
should not be affeoted by the details of the interaction,
Just as the long-range correlations should be insensitive

to these details., If a correlation extends over a large
nunber of lattice sites, the correlation should be sensitive
only to the grossest features of the interaction and should
not be affected by the introduction of some next-nearest
neighbour interaction. . Our Ising model calculation does in
fact help to confirm this hypothesis.

If we use the expression for the perturbed Green's
function given by eq. (3.16), the thernodynamic quantities
can be given exactly in terms of the unknown gquantity, the
proper self~energy part, A(j-k). To obtain the above nen=-
tioned results, the approximation, A(j-k) = 0, has been
nade, which does not appear to be very drastic when discus-
sing the critical phenomena, but is not a good approximation
when discussing the absolute values of the thermodynanic
quantities. For exanple, the first order approximation for
the partition function agrees with the series expansion only

up to terms of order xyuv. The standard perturbation theory
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converges for this model since the effective coupling con-
stant is less than one, and by including the second-order
terns the partition function will agree with the series
expansion up to terms of the order x*y*u®v?. However,
there ia considerablc labour inveolved in calculating this,
and so the next-order calculations have been performed only
on the ferro-electric problem where the method is the same,
but less tedious. We feel that the next-order term will
not change the critical indices, and as these are the most
important gquantities, there is no immediate necessity to
evaluate it.

The partition function can be written as

1
N
Log Z = [ de I Trace » k[A—1(r)-e k—A(r,e)] 1
o r=1

where we have used equations (3.17) and (3.7).
The term A(r,e) prevents the integration over € fron
being carried out, but if we make the approximation A(r,e):O,

we obtain in a similar manner to eq. (Le1)

N
log 22 = I log det (1-ka(r)) (5¢1)
r=1

In order to simplify the model, put x = y and u = v, and
then usingequations (3«2) ana (3.11), we obtain
det (1-ka(r)) = (1+x?)? (14u?)? + 16x*u(1-u?)

+ x(1-x2)(4u® - (1-u2)2)(wr ot 3o 5 w-mr)
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- u(1_x2)(1_uz)(w(m+1)r 2 @ -(m41)r . w(1-m)r . w-(1_m)r)

If we let the size of the lattice tend to infinity, we

obtain for eq. (5e1)

1 1 e
N log 7% = =——— //‘ dod¢ losg D(6,¢) (5.2)
(2m)? o

where D(0,¢) = (1+x2)% (14+4u®)? + 16x%u (1-u?)
+ 2x(1-x2) (u® - (1-u®)?) (cosb + cos¢)
- 2u(1-x2) (1-u®) (cos(®+4) + cos(B=¢) )

The integral in eq. (5.2) is not necessarily analytic since

the integraendis singular in the range of integration. The

determination of the singularity of such integrals has been
(17)

discussed by Hurst , who shows that the following cgua-

tions will deternine the position of the singularity.

D(8,4) = O (5.3)
ap(0,8) _ 3D(8,¢) _ o (5.4)
96 o¢

The solutions of eqg. (5.4)are 6 and ¢ equal to either 0 or

2w, Hence eq. (5.3) becomes

1
o

o
] - 9% = 2u = x® - u? - hxu + 2xu® + 2xPu + .x%0

or

1]
o

1 4 2x = 2u = %2 - u? 4 Lxu - 2xu? 4+ 2x%u + x°u®
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These two equations were solved numerically and the
results are plotted in Figures 13 and 14. The ratio of
the di agonal to the horizontal interaction strength
CK;/K1), is plotted against the transition temperature
divided by the transition tenperature of the square
lattice (Tc/Tc,s)° The re;ults are compared to those
obtained by Donb and Potts(56), who used high and low
temperature extrapolation techniques. The results show
the same trend in the case of the ferro-magnetic model,
but di sagree for the antiferro-magnetic model, where the
present calculations indicate a double and triple phase
transition. The correot behaviour is not known at this
stage, but we should indicate that double phase transi-
tions are not uncomnon in antiferro-nmagnetic systems.

Lee andﬁYang(57)

have given a thermodynanic proof that
ferro-nagnetic sy stems can only have one possible phase
transition point, but this proof does not hold for anti-
ferro-magnetic systens. That it is possible for anti-
ferro-mnagnetic systems to have multipie phase transitions

(58),

has been shown firstly by Vaks and Larkin who have
solved exactly a two dimensional Ising model which exhib-
its similar nultiple transition points for antiferro-

(59)

nagnetic interactions. Secondly, Bienstoock has shown
that the antiferro-magnetic three-dimensional Ising nodel

can have a double transition point in a magnetic field,
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Finally, double phase transitions ococur experimentally, as,
for example, in the ferro-electric crystal Rochelle Salt.
However, to determine whether a mnultiple phase transition
does occur in the next-nearest neighbour Ising model, one
would have to do more extensive study into the high and low
temperature expansions, and al so look at the singularities

of the higher order terms of our perturbation expansion.

5.2 The Critical Indices a, o

The critical indices a, & are determined by the asym-
ptotic behaviour of the specific heat, C, near the critical

point temnperature, Tc, and are defined by

C ~ ae ¥4 T < To
-l
~ gt |e|a+b' T > Te
where € = (T = Tc)/Toc
From the equation
- 1 o)
E = = T 35 log Z
we obtain
7. .28l .08« 3T , 2 _ 08I, 298
da o 3y o°F T 88 OB

where, using the first approximation for the partition function,

eq. (5.2) can be written as
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Log 2z = I = % . ?“13; //'ded¢ log [a+2y(cos6 + cos¢) +
N 2

28cos8 cos¢]

The derivatives of the general expression I, have been

(60)

evaluated by Grecen and Hurst in terms of the complete
elliptic integrals of the first and third kindse. Using

these results, the average energy, E, can be written as

E (T) = E (Te) + 4(T-Tc) log |T-Tec| + «.e

for T close to Tec, where the 1og|T-Tc| arises from the
elliptic integral K(k). Thus the average energy per spin

is continuous at t he critiocal point, and the specific heat
has a logarithmic singularity at T = Tc. This deternines

a and « , since, by convention, a logarithmic singularity is

denoted by a = o; & = 0.

53 Critical Index [P

A formal expression can be written for the correlation
functions of the next-nearest neighbour Ising model, which
is analogous to the expression derived in section 4.2 for

the square lattice model. We obtain

k N
<B18) 4> = <c|T exp (.2 B () + z Ho(J) + H1(j))|o>.Z-1. (5.5)

,J=1 J=1
where Ho(j) and Hy (3) are given by egs. (3.2) and (2.11) and

# (j), for the correlation functions in the x direction, is
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defined by

W) = 8% b AP(5) a%(8) (2. - 1)

21
Psg= Dsq

where k! is the 12 x 12 natrix

ky o
(30
o o,
/0 o o 0 -1 0o 0 0 \

o o o o -1 0 0 0

/ o o0 0 o - o o 0

and ki =§ o o o 0 -1 0 0 O

11 4 4 0 =1 =1 =

o o o o 1 0 0 0O

©o o o o 1 0 0 0

Lo o o o 1 0 0 o0

LA perturbation expansion can be obtained for ege. (5.5) in
the usual way, the first term of which will be
k

N
-1
<s1s, ,> = <o]|T exp( 2 H (j) + 2 Ho(3)) lo> 2o (5.6)
* j=1 j=1

where Zo-1 is the expression for the partition function,
obtained by neglecting the quartic term Hy(j). The expres-
sion in eqe. (5.6) can be evaluated exactly, using the sane
teohniquec that was developed in section 4.2 L similar result

is obtained, which for the magnetization becones
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where, using

f(z)

Cz

1

il
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Trace log(1-P + Pf(eie))

(50)

a notation originally used by Green

nf=

(1-Az)% (1—Bz-1)% (1—Bz5% (1-Az-1)-

Sy Cy C5 4+ 2 84 C4 Sz - G

[c3 ¢ + 2 8% S22 = (142 8% ) (1-52)2

14%2 2x

L =Sl Sy =

1-x? 1 ~x?
2

ko 8, = =23

1=u? 1 =y?

(5.7)

Equation (5.7) is similar to eq. (4.8) and can be

evaluated in an identical way to give

8 _(1-22)(1-B%) o
(1-AB)?

< T
c

M

Like the square lattice case, &£ = 1 when T = Tc.

The eritical index S is defined by

and hence

M~ a(To -T)ﬁ T < Te.

log M
B = lim ——————a
TTo log (To=T)
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Substituting the results for M given above, we get

g = lin % log(1=4)
7T o log(Tc=-T)

since the other terms are zero in the limit T=Tc. A Taylor's

series expansion of A about T = Tec gives

1 = A(T) =1 A(Te) &+ (T=Te) A (Tc) + eese

(T=Te) 4 (TC) % eoee

fl
o
+

One can verify that A (Te¢) is non-zero and hence B = g

The above results for the critical indices a,a’ , § have
been obtained from the first-order expression for the parti-
tion function, namely

7 = <o|T exp(Z Ho(3)) |o>
J

which is equivelent to the general Ising problem discussed

(50)

by Green This first=order expression was discussed in
section 2.2, where it was shown that it counts all the Ising
model graphs, but those with an odd number of crossed bonds
have a negative weight associated wth them. To obtain the
correct partition function the quartic term nust be intro=-
duced. However, it appears from the results obtained above
that the analytical behaviour of the partition funetion is
not affected by the incorrect counting of some of these

graphs. As mentioned earlier in this chapter, there are,

in other fields of physics, precedents for assuming that
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the partial summations of the graphs will contain the
correct analytical behaviour. However, one would like to
have more rigorous criteria for defining when the neglected
ternms do not contribute. An investigation into this point
would involve the calculation of the higher-order terns.
For this model the calculation is very tedious, although
straightforward; the Green's function requires the inver-
sion of the 12 x 12 matrix (A—1(r) - k) and the subsequent
terms are long and involved. Because of this, the calcula~-
tions for the higher-order terms will be performed on a
simpler model, the ferro-electric model, where we will also
be able to make a conparison with an exact solution recently
found by Lieb.

The setting up of a perturbation series for the three
dinensional Ising model has proved unsuccessful, which is no
doubt due to that fact that the perturbing hamiltonian,
gH1(j), contains correction terns of the order of N?, whereas
the 2 dimensional models contain only N correction terns.
(See section 2.3). Hence, one would not necessarily expect
the first order approximation to count a significant number
of graphs correctly. This indeed appears to be the case, for
the calculation of the specific heat using the first-order
approximation does not contain a singularity at all. An
alternative form of partial summation of diagrams must there-
fore be found before the three~dimensional Ising model can be

treated successfully.



CHAPTER 6. DIAGONALIZATION OF THE HAMILTONIAN

In the quantum field theory approach to many=-fermion
problems, a grecat many technigues rely on transformations
of the fermi-operators. One of the most common transforma-
tions is the Fourier transformation to momentum space (or
spin waves for magnetism), whereby the summing of the Feynman
diagrams is greatly simplified, Other transformations, such
as the Bogoluibov canonical transformation are particularly
useful in diagonalizing a quadratic expression. Such trans-
formations often result in the useful concept of quasi-
particles.

In this chapter, the possibility of applying a trans-

formation to the many~fermion expression for te Ising model

N
is investigated. With an expression such as I kp 9 AP (5)a%(s),
j=1 °?
the olvious suggestion is to make a Fourier transformation such
as
N
* *
at” o L 3 exp(2mi j k/N) bl’{
o YN k=1

However, if such a transformation is inserted into

<o| T exp(Ej Ho(3) ) |o>

the creation and annihilation operators loose their j depend=-
ence, and the operator T becomes meaningless. Thus, in
general this transformation cannot be applied directly to the

above expression. However, for the particular examples that
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arise in the lattice problems, there is an extra property
which enables us to overcome this difficulty. Looking at

8ll the possible time-ordercd products of operators arising
from the pairs of operators in Ho(j), we notice that for every
pair of creation and annihilation operators, the oreation

*
operator, a? , stands to the right of its corresponding anni-

hilation operator a?. Since we arc taking the vacuum to
vacuum ecxpectation value, only the products in which all the
operators appear in pairs will have non-zero contributions,
and hence when the time-ordering is carried out, all the
creation operators will appear to the right of their annihila-
tion operator. This was the original rcason for needing the
time-ordering operator, T, as pointed out in Chapter 2. As an

example, consider the operators arising from the square graph

shown in Fig. 15, which are
T(a* (3)A%(3)4% (34m)a® (3am)a* (§+1)A" (341)4% (Geme1) 2" (S4mat))

A2 (G+med YA (ama1 ) A% (Gam) A% (Jam)Aa® (G+1)A" (5+1)A% ()% (5)

n

4 * %

-
*

-
*

2 9 2 2 2 2 2
= &a, a . a, ., . 4. a . A X
J#1 %jem %jem ®5 Fie1 %y %5 ® o
J+m J+m41
J J+1

Fig. 15
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In field theory the normal order of a product of
operators is defined as the creation operators appearing
to the left of the annihilation operators. Hence, defin-
ing the anti-normal order as the reverse to normal order,
it can bhe seen that the operation of time-ordering on our
products of operators puts the operators in an almost anti-
normal or der.

Define an anti-normal ordering operator N such that

% 5

= (=1)P *
1 am s e ) = ( 1) (aj al oo e aka

)

N (a. a

]
i % ®

m

where p 1s the number of permutations required to rearrange
the operators. Then from the previous discussion it follows
that T(product of pairs of operators) and N (produoct.8f pairs
of operators) are expressions which can be proved to be
equivalent, by rearranging the order of the operators and
using the anticommutation relations (2.4). Thus, we can

verify for the lattice problems that
T (product of aj) = N (product of aj)
and he nce
<o|T exp(zj H(j)) lo> = <ofN exp(Ej H(3)) |o>

since the vacuum to vacuum expectation value of the expon-
ential can be expanded into a series of products of pairs of

operatorse.
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This is a very useful result, for the Fourier trans-
formation suggested earlier can now be used, since the

operator N orders the transformed operators, b in the

k,

same way as the original operators a..

The Fourier transformation and its inverse are defined

as
N i
£3 E ]
L Y
J V2N k=-N
N i
a1. = “'l— pX w—Jk b;{
J VN  k==N
N i
'b;{* = —1—— n w—Jk 1*
V2N  j=-N &3
N X
bl e e 3 dE gt (6.1)
K 7 AN j==N J

where w = exp(ZWi/N).

Since. the lattice has cyclic boundary caditions the opera-

Q%

tor a s 0 ¢ 1 € N corresponds to a

1
N-i °

* %
The bé ’ bi s are creation operators, snd the bﬁ, bi
are annihilation operators, and they act on the vacuum state

accordingly, which can be seen as follows,.

N 3
1 w+Jk

b; [o> =z =— I at |o> =0
V2N §j==N J
N i .
sk - E]
<of v = sl 3 N S
VON j==N J
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1 * 1
b, can be evaluated

The commutation relations of the bk » Dy

as follows.,

q P A (Jk+d' k' ) | o9 P
[bk’ bk’] s 2N By Ep ¥ 30y +

% o
Similarly [}i, bﬁ, ] =0
+
P o,a* a_ (3k-3'%' ) [.p _q*
[bk’ i J+ oW 2y Ty ¢ TR

1 s 1
= ., L, w(Jk J* k )

+

= 2N !
) g Jed Psa
1 N j(k-k )
- vt 2. [ 5 3 6 6
2N “j==N Psa ko,k 'psq

where 0 is the kroneker delta symbol.
Thus the new operators, bk’ obey fermion commutation rules.

Inserting the transformation, eqe. (6.1) into expressions

e g *

such as 2, a2 a' we obtain
Jd J dJd
2* g% 1 J(kak! ) 2% 4%
Zj aj a5 = 3§ Zj Zk Zk, w by by,
N
e ”
LT S T
= 2 k==N
N
i 2 1 2 ¥ g ¥
=531 (b Bl + v b))
Also,
* 1 J(k=k! )amk! %
5 .82 2 L 2 2
JaJ &5_p = BN Zj Zk zk’ W by bk’
£ g (2% vz ™K L p2 ¥ 2 7T
=20,k kYt Pk Pk



From these calculations we find that under tle Fourier
transf‘ormation,zj Ho (¥> transforms into 12- Z, Ho (k) where for

the square lattice

_ 2 ¥ g ® 2 ¥ g ¥ 2™ .2 mk 2% .2
Ho (k) = xy(bk vl * bZ, by ) + y(bk CHANIE R S e
2* .1k 2 % .1 -k 1% ., DK 1% ., =mk
+ y(bk by &+ b2 bl w ) + x(bk b: w o+ bl bI, )
1% 4k 1% 9 -k 2 1 (n=1) _, .4 =(m=1)k
#ox(el blow o+ pl bl oW ) 4 (B b b2, by )

(6.2)

The partition function for the square lattice can now be

written as

2 = <ol W exp(3 5, Ho(x)) lo> (643)

- #*
where the anti-normal operator N, now acts on the bk’ bk

and puts them into anti-normal order. The advantage of te
expression we have obtained by transforming the operators
is that Ho(k) is diagonalized with respect to the variable
(k). This is useful, since using the commutation relations
for the operators bk’ it can be seen that the Ho(k) commute

for different values of k

Ho (k) Ho (k') = Ho(X ) Ho(k) k£k!

Thus we can write eqs. (6¢3) as

|=

7? =

I~

T <o| T exp(Ho(k)) |o> (6e4)
k=1
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This expression can be evaluated by expanding the exponen-
tial and counting all non-zero terms. As there are only
four different kinds of operators, all fifth and higher
order terms in the series are zero since they do not obey

fermi-statistics. Henoe we can write eq. (6.4) as

<o|N (14Ho (k) + %T (Ho (k))? + é% (ﬁo(k))3 +

Tr (Ho (1))* Vo> (6.5)

The evaluation of these terms is comparatively simple, where,

for example, the only terns contributing to <o|ﬁ Ho(k) |o>

are
o~ mk _,% _, -mk o, *%* _, k 4% 4
<o|¥ (y w bl bL + yu b2, I 4+ xe b by o+
=k 1%
xw bl bl ) o>

which on putting the terms in anti=normal order and evalua-

ting gives

—mk) -k)

nk k
-y(w + @ - x(w + W

Evaluating all the terms in expression (6.5) yields the

expected result
2R ((1ax2) (1ay®) - y(1-0) (0™ 40™™)

- x(1-y®) (@ 40F) ) .
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L Green's function can be defined in terms of these
operators in the usual manner, and as would be expected
from the analogous procedure in field theory, this Green's
function is equivalent to the Fourier transform of the
Green's function which was defined in terms of the original

#
operators, aj.

So far we have showed that the Fourier transformation
diagonalizes a quadratic Hamiltonian with respect to its
'time' coordinate jo If we look now at the quartic term

6* s*

4 a’> which occurs in the next nearest

N A a ., .
J J J=m+1 “jem

neighbour problem, and use a similar transformation, we get

6 5% 4 3 .
2? A e Hy (3) =

wle 3 o5 wj(k1+kz-k3-k4)+(m-1)k3+mk4
2N2 j k13 kz, k3, kg X

6 * 5% .4 3
bk1 bkz bk3 bk4

(m-1)k3+mk4bs*bs*b4

3
T 5(ky+ka =ks=ks) L Y3 Pks

N “ky ks k3 ka

Now this Hamiltonian is no longer diagonalized with respect
to the variable lk|, and has the familiar form of the many-
fermion Hamiltonian with an interaction. This result
enables us to use the many forms of approximations that can
be performed on such expressions. The appropriate approxi-
mation, however, will have to be justified by physical argu-

ments, and these are not well established yet. Since the



- 9l =

phase transition in superconductivity can be predicted
theoretically with a "reduced" Hamiltonian, one is tempted
to reduce the above Hamiltonian so that it too becomes a
soluble problem, and hope that those terms and diagrams
whioh are neglected do not make an important contribution
to the analytic behaviour of the partition function near
the transition pointe By approximating the Hamiltonian Hjy

with the expression

(m=1)kq+mko. 6% . 5% .4 3
Hy = gﬁ Ek1 s ko @ bk1 bkz bk1 bkg

the partition funection can be evaluated exactly, where we
use a technique which is closely related to the Bogoluibov,
Zubarev and Tserkovnikov(61) theory for superconductivity.
The final result is the same as that obtained by neglecting
H1(j) (eq. (4.1)) except that u and v are replaced by

u - %Dg v - %H; where p, # are the solutions of an integral
equation, similar to that encountered in superconductivity.
Thus the inclusion of the "reduced"™ Hamiltonian gives rise
to a change in the interaction strengths of the diagonal
bonds, which resembles mass renormalization in field theorychG).
The details of this calculation are given for the ferro-
electric problem in section 7.3, To look at the consequences

of using such a Hamiltonian on the nature of the interactions

and graphs of the Ising model, we express Ey' in terms of
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the original operator s, aj, by taking the inverse Fourier

transform. We obtain

Hy' =L2N ae* 5% 4 s

N Z31sde=t %ir %3z Pie-mat %je-m
As N-oog the weight associated with the quartic terms, gﬁ’
goes to zero. Hence, we have an infinite number of terms
of zero weight, and whose total effect is non-zero and
finite. The only terms in this hamiltonian which corres-
pond to Ising graphs with ocrossed bonds are those when
ji=J2, and these terms are a small proportion of the total
number of gquartic terms. This reduced hamiltonian model
then, though exactly soluble is not very interesting
physically. Nevertheless it is interesting to be able to
write the partition function in a form which so closely

resembles the many-fermion problem.
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CHAPTER 7, TWO DIMENSIONAL FERRO-ELECTRICS

721, Slater's Model of K.D.P.

Ferro-electrics arc meterials which possess a spontan-
eous electric polarization, which can be reversed by apply=-
» eleetric field E. Ferro-electricity has been
e electricel analogue of ferromagnetism, as is
he similarity in their names. The analogous
these phenomens are respectively the spon-
ration and magnetism; the diel ectric constant
ity; end both have a transition temperature

polarization and magnetization respectively

snon of ferramagnetism has been studied both
mnd theoretically in great detail and is now
stood, whereas ferro-electricity was first
e crystal Rochelle salt only in 1921, and

s a rigorous theoretical explanation. Of

(62)

w

explanations, the thermodynamical theory

(63)

.v2n 0f Landau vyields many of the experiment-

ally observed results. However, this approach suffers from
the drawbaock that it does not tske into consideration any of
the microscopic properties of the system. .. second, more

(62)

recent approach, given by Cochran explains ferro-electri-

city on the basis of lattice vibrations. However, this theory
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fails to account for the ferro-electricity in the substance
K H,POs. The reason is that different mechanisms can pro-

duce this phenomenon, and the K H; PO, crystal belongs to

a class of ferro-electrics in which the hydrogen bonds play
a more important role than the lattice vibrations. One of

the first and most widely accepted theories which made use

of the hydrogen bonds was due to Slater(25)in 1941 and his

model has been successful in predicting some of the ferro=-

electric properties of K H, POs.

There has been a cmsiderable revival of interest in
Slater's model, which until very recently could only be
tackled with approximate methods, e.g. mean field method
(S1ater), high and low temperature series expansions(Nagle(27)).
However, due to Lieb's recent exact solution, Slater's model
has become the second model of co-operative phenomena to have
an e Xxact treatment, which exhibits a phase transition. 1In

this chapter, we shall show how the techniques that were
developed earlier for the Ising model can be gpplied to
Slater's model, giving an exact solution for temperatures
below the critical point and good approximations for higher
temperatures. However, these results have been rather fore-
shadowed by the arrival of Lieb's exact solution, and so we
are now more concerned with using this model as a check for
the approximate solutions which are based on our field-

theoretical formalism.
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In the remainder cf this section, the partition function
is expressed as a vacuum to vacuum expectation value. In
section 7.2 the thermodynamic quantities are defined in terms
of Green's functions, which are calculated exactly for temp-
eratures below the critical temperature. In section 7.3
several high temperature approximations are considered. These
give the correct critical behaviour for the specific heat,
but fail to exhibit a latent heat. Section 7.4 contains a
discussion of the Rys antiferro-electric problem and in the
last section Lieb's exact solution is considered.

The K H, PO, crystal contains phosphate groups (POg4)
linked to four neighbouring groups by hydrogen bonds. Slater
assumed that the hydrogen atoms are capable of occupying one
of two different positions on the hydrogen bond. The differ-
ent possible arrangements of the hydrogen atoms result in
different orientations of the (H, PO4) dipoles. The dipoles
are assumed to have lowest energy when pointing in the samne
direction, causing a tendency towards spontaneous polariza-
tion at low temperatures, while at high temperatures the
dipoles take up a random orientation. There must always be
two hydrogen atoms near every (PO,) group since (H PO4) and
(H; PO4) are not favoured energetically.,.

Slater's model of K.D.P. in two-dimensions assumes that
the phosphate groups are situated on the lattice sites of a

square lattice. The hydrogen atoms are situated on the bonds
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between two phosphate groups and can take up two positions as

shown

) |
P —'—-—-—-—-——( T :
POs | EH ]?04 POs | = PO,

The se configurations can be convenlently represented by arrows

on the bonds of the lattice as shown

'___,___,_,_4._.._.___ g ; Py

There are only two hydrogen atoms near each (P04 ) group, and
this restricts the model to six possible configurations at
each vertex, which are labelled and represented as shown in

Figo (16).

(i —E«\ _>__<T< >/T‘< <*>
T o

(3) (%) (5) (6)

Fig. 16,

Bach vertex configuration has an energy associated with
it and for the crystal K Hp POy, Slater has chosen the
energies €4 = €3 =0 : €3 = €34 = €5 = € = €+ For a model
of an antiferro-electrio substance Rys has defined a different

set of interasction energies. We shall also consider the case
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when a vertical electric field E is present. The dipole moment
for two vertical arrows is d, and hence the energies, v due
to the electric field are vy = v4 = —=dE ; v = v3 = 4E ;

vs = Ve = O

The partition function for the model is

7 = exp (-FE(s))

b
L
where the sum is over all possible configurations of the model
and E(s) is the energy of the configuration. The sum over all
configurations can be replaced by a summation over a class of
graphs drawn on the lattice as follows.

The standard configuration of the model is defined by

the configuration drawn in Fig. (17).

! _—
e B S R

VA N AN N A

S ~
& e 2 B

Ny
\

|
v
N/
J
W

\I7
%
W

Fige 17.

Any other configuration can be obtained from the standard
configuration by reversing the direction of pairs of arrows
at a lattice point. If we represent the reversed spins as

lines on the lattice, then the standard configuration is
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standard configurations correspond to closed graphs on the
lattice. The possible vertices which represent the al lowable

reversals of spins on the standard configuration are

] o

-

r"} £

a

i
!
|
|
|
I
F
I

I

= ——— = __.__._._1
|

!
J

) v

Fig- 18-

We note that every graph must cross the boundary of the
lattice and so it will be necessary to discuss the boundary
conditions of the lattice. We also see that the graphs are
typical Ising graphs where no bond may be repeated, and the
graphs are closed loops. An important difference is that
there are only six possible vertices whereas the Ising model

contains eight. The weights to be associated with these
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vertices, after factorizing out a term exp(B E d N), where

-E d N is the energy of the standard configuration are

1 exp(-28Ed) exp(-20Ed-fe) exp(-Be) exp(-pEd-pe) exp(-pEi-fe)
1 y? y°x x X yx

where y = eXp(—ﬁEd) x = exp(-Be)

It can now be shown, using the methods of Chapter 2,

that
-N ] ]
2 =3 <o| T exp(Z Hol(J) + He(3) ) |o> (7+1)
J
sy _ 2% 2 2 1% 4 1% 2
where Ho(j) = % &y, YX 4 ay 8y x + a3 8% Xy
*
+ a? a3_1 Xy
Hi(3) = a2 a1 a2 a® , ¥° (7.2)
J J j=m —j-1

An important dif ference between this and the Ising model
is the appearance of a quartic term, even though there are no
crossed bonds. The reason 1s that when evaluating egq. (7.1)

by means of the Feynman graph technigue such configurations as
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————

O\
ot
)

will be counted twice, appearing as

—

- N
(

( and
NS

Since (a) has one more crossed bond than (b), and the weights

associated with the graphs are the Same,-the sum of their con-
tributions is zero. As graphs with such a vertex configura-
tion must be included in the sum, a quartic term is added to
the hamiltonian to count these graphs. By expanding the
exponential of the quartic term, as we have already done for
the Ising model in section 2.2, we can prove that these graphs
are counted correctly,

As we have already indicated, each graph of the
ferro-electric problem must cross the boundaries of the
lattice. A bond joining the edges of the lattice is equiva-
lent to a long-range bond and can give rise to crossed-bonds

and hence graphs that are weighted with a minus sign., It was
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shown by Potts and Ward(67) and Green and Hurst(68), that for
the Ising model the graphs which crossed the boundaries and
were counted incorrectly gave a neglible contribution.
However, this is not necessarily so for the ferro-electric
problem, since all the graphs must cross the boundaries.

In Fig. 19 the typical crossed bonds arising from helical

boundary conditions are shown,

) I ——

!
I
|
|
|
|
|
| D
|1
|
|
U

\J

Y

(v) (c)

Fig. 19.
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The graph in Fig 19(a) has an even number of crossed bonds
and is counted correctly while those in Figs. 19(b), (c),
have an odd number of crossed bonds and are counted incorrectly.
However, graphs (b) and (¢) contain a vertex ——I, which is
not an allowable vertex for the ferro-electric problem. By
extending the above arguments it can be shown that all the
graphs for the ferro-electric model will contain an even number
of crossed bonds with helical boundary conditions, and hence
the expression (7.1) will count them correctly. However, with
toroidal boundary conditions, there are graphs with an odd

number of crossed bonds, and an example is given in Fig. (20).

Fig. 20.

Hence, an extra quartic term is required in our hamiltonian if
we are to consider a toroidal lattice. However, Lieb has solved
the toroidal lattice case, and a simple generalization enables
his transfer matrix approach to solve the helical lattice

problem. The solutions are identical in the limit N-co , and so
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we can conclude that the boundary conditions do not affect

the thermodynamical properties. Hence, the expression (7.1)

is correct, regardless of the boundary conditions, as N=oco.
Recently, Wu has considered a model of a ferro-electric

which is equivalent to replacing the quartic term in eq. (7.1)

by zero. He solved this problem using the pfaffian method.

We have shown that eq. (7.1) is the correct expression for the

partition function of the ferro-electric problem, and that the

appearance of the quartic term is why the pfaffian approach

has failed.

72 Exact Solution for T < Tc.

The partition function has been expressed in terms of a
vacuum to vacuum expectation value of a time~ordered product
of exponentials. We can now consider the expressions for
the average energy per vertex, the spontaneous polarization
and correlations in terms of the Green's functions. If we
defihe

1 » b ] 2 . 2 3 . _ 1*
AY(3) = ay_q & (i) = ya A% (3) = xal

o,
&
VY
Ce
g
!
]
o
o

and

- = O o
I
-—
t
-
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then the eqs (7.2) can be rowritten as

; = Py 29
Ho(3) = 3 pfq koo B G) a7(0)
He(3) = == 20(3) £7(3) 42 (3) &' (3) (7

With this notation, the exact Green's functions e (5-x)
and the free Green's functions Ger’3(j-k) are defined by
equations (3.4) and (343)s The propdgator or commutator

defined by eqs (3.10a) can be evaluated, giving

‘ -r

{ 0 0 Xw 0

r 0 0 0 xy2w
A(I‘) = r

1 -Xu 0 0 0

\ 0  ~xytut 0 0 //

The free Green's function, given by eq. (3.13)
=1 -1
Ge (r) = A (r) -k
can now be evaluated explicitly. We obtain

Go(r) = /0 A

"A* O

where 4 is o 2 x 2 matrix, and A* the complex conjugate.

nyr "'1 "'2 1 i)

«3)

(74)
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(ne1)r mr

W

where A(r) =
2

r
b4 Xy

The free Green's functions, in the co-ordinate rep-

resentation, Go(j-k), can be evaluated exactly in the limit

of an infinitely large lattice. We consider first

Go14(r)

™ =

G‘o14(0> . %I'
r=1

and replacing the sum by an integral, we obtain

ot i [ ey (£
o]

(2m)? x2 y? x

ff 27Tded¢ %2 vz -i(6+¢)
(2#)2 -i¢

<1 - EX_E:zg > (1-x —16)

1=xe

The denominator can be expanded as a power series in e

provided that

_Ex":..{.g < 4
1-~xe
2 2_4
or cos 6 <« Lt X XX

There are two cases to consider.

14y?
relation in eqes (7.6) holds for all 6, and hence

, then the

..j_¢

(7.5)

2

(7.6)

2 -1(6 .
014 (0) = 1 // Wd6d¢ %% 2 e lF +9) [1 _ __Ezi?g e-1¢+._']

-10 -i

(2#)2 1=xe 1=xe
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as the integration with respect to ¢ makes each term in the
gxpansion zero,.

If x > T , then the relation in eqe (7.6) holds for
all Q < 6 < ;;y— Q where Q = arcos(lizﬂ:z—z—). For 0 inside
this intevel, thc integral is zero aftij integrating with

respect to ¢. When © is outside this range, we write the

integral for G°14(o) as

14( ) Al [f 21 _xzyz e‘i(?;d’)' a6d¢
o (+ - (1=xe720) ™ ) we o
xy?

The denominator can now be expanded as a power series, giving

i /‘ f o eemif <1 % (1-x0"ie)ei¢ . ..,> aedae
(2m)® xy*

0
1 b -~16
= oo ] - xe 7 g6

H
- sin Q .

2m

-Q

A similar integration technique for all the Green's function

elements yields the following results
Go'*(0) = 6o®%(0) = =Go*"(0) = =Go7%(0)

{ o x s (1ay®)7

- . 2 "'1
=sin Q@ x > (1+y%)



|
-
-~
o

i

2=

O R < O 1

-E . % sin g x > (1+y2)"
T 2
Ty

24 42 o] x < (1+y2)-1
Go (0) = =Go (0) = {
-9, X 2y~1
i sin Q x > (1+y )

where Q

1
o
=
[e)
o
n
/’T\
+
»
N
1
"
]N
3
»
~—

(7.7)

H
i
o
=
Q
O
[
/“\
<
b
+
-—
]
™
S~

The remaining Green's function elements are zero for all X

A further, very usceful result is that
. 2 "1
Go(j-k) = O x ¢ (1+3%)

since we can now determine the exact Green's function for the
range of temperatures x < (1+y2)-1. The exact Green's function

has been shown to be given by
-1, -1 .
67 (3-k) = 6o (J=k) + 2(J-K)

where A(j-k) is the sum of all the irreducible graphs. As the
weights associated with these irreducible diagrams are given

by Go(Jj-k), A(j-k) will be zero for all x € (1+y2)_1. Thus

e(j-k) = Go(j=k) = 0 x < (143°)7
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The above svaluation of the exact Green's function ensbles us
to calculate the thermodynamic quantities for all x < (1+y2)—1.

The internal energy per vertex, E, is given by

— 1.1 oz
E=-%"3% 3

_ .1 8z 1.8z _1 .1 8y 29z

="% 3% Z 3x % 7 3 3y

Substituting in eq, (7+1) and using the definition of the

Green's function, we obtain

E = e(6®2 (o) + &®" (o) + ¢*%(0) + G*'(0) ) + AE +
AE (2642 (0) 4 G*' (o) + %2 (o) + & (&' ()&% (0)-6*2(0)e?" (o) )

.8

= dE for gll x € (1+y2)-1 (7.8)

The spontaneous polarization, P, is defined by

5]

[\

log 2 = : % . 8y

1
BN 9E

1

1
P:"ﬁ

(o
o

_a - 2a6*% (o) - 2ae** (o) - 2§ (651 (0)? - 6*%(0)e! (o) )

= d X € (1+y2)—1

The corrklation functions can bec expressed in terms of
Green's functions as follows. Let <m,n> denote the probability
that the horizontal arrows at the sites m and n are both point-
ing to the right. Then <m,n> is the sum of all configurations

weighted with the Boltzman factor, exp(-ﬁEs), with the arrows
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at m and n pointing to the right, divided by the sum of all
the configurations (the partition function). To calculate
the sum of these configurations we use an expression similar
to the one derived for the partition funetion, except that
those t erms which represent a reversal of the horizontal

th

arrows at the mth and n lattice sites are subtracted from

the Hamiltonian. Hence,

<m,n> = <o| T exp(=A%(m)A'(n) - A% (n)4®*(m) -

-1; A (w)a%(n)a® (n)a' (n) - A% (n)a'(n) - A%(n)aZ(n) - 1—2—¢"~4(n)A3(n)

2% (n)a" (n))

¥ exp (2" Ho(3) + Hi(3) ) o> » 57

Jj=1
Bxpanding the exponential, and omitting terms containing a given

operator more than once we obtain
<myn> = <o| T (1=£*(m)2'(n) - A% (m)A%(n) -

1; A (m)a® (n) a2 (m)at(m) ) (1-2°(n)at(n) - &% (n)a%(n) -

s LY (n)a (n)A2 (n)A'(n) ) exp (; Ho (3) + Hi(3) ) o> 7~

X J

N

= (1=67"(0) =672 (0) = == &*1(0) 672 (o) + - G42(0)a>" (o) )?
X X

+ higher order torms, up to j: ¢*% (n=n)6¢> ' (n-n)62* (m-n)x
x
G’s(m-n).
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Hence,for x < (1+y2)"1

<my,n> = 1 all myn.

We have calculated the thermodynamic guantities for the case

X < (1+y2)—1, obtaining

T - Ea
P = 4

<m,n> = 1

These results show that the model remains in the standard state

for all T € Tc, a result which was known from Nagle's series

expansions, and confirmed by Lieb. However, the dependence of

the critical temperature on the electric field is a new result.

We have that

x = (1+y2)7] (7.9)

z and thus Tc = e e {5 E=oo, x = 1 and

When E = O, x, =
k log 2

hence Tc = e This behaviour corresponds to the physically

observed behaviour in ferro-electric crystals.

Lieb (private communication) has since shown that his own
solution also predicts that the critical temperature is given
by the eq. (7.9). BStrictly, we have shown only that the
To obtain

critical temperature is given by X, > (1+y2 )-1-

the equality it is necessary to show that

E > Ea for x > (1+y2)_1
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This means that the sum of the Green's functions in eq. (7.8)
should not be zero for x > (1+y2)_1. The exact Green's
functions are not known exactly in this range, but the zero,
first and second order approximations indicate that they are

non-zero and thus the above inequality is satisfied.

7.3 Approximate Solutions for T > Tc

For temperatures above the critical point, the free
treen's function has been evaluated (eq. (7.7) ), but the
exact Green's function is insoluble. Thus it is necessary
to meke approximations for the Green's functions, in order
to look at the thermodynamic gquantities. It will be shown
that the first-order approximation gives the correct asympto-
tic behaviour of the specific heat, but does not exhibit a
latent heat. Higher order approximations are considered and
these give the same resultise

The first approximation is to neglect the quartic term.
This is equivalent to neglecting the second vertex in Fig. 16,
and hence reduces to the model considered by Wu. The average
energy 1is given by eq. (7.8) and substituting the values of
the free Green's function, we obtain, for the case when the

electric field, E, is zero

<]

i
!
{

€ 1
arcos ==
T 2x

E has a branch point at x = % and

1
= 0 + Len as X = 3.

eal]
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The only possible physical value for E is 0, and hence E is
continuous at the transition point. The specific heat, C,
is given by

1

= 2 -z

C:Q’%:—‘gs“’ [4X2-1—|
kT2

Thus the specific heat diverges at T = Tc. The behaviour of

4

X near X = 5 is determined by the Taylor series
X = Xc + (T ] TG) 'g'% | + o e a0
T=Tc
=x + (T = Tc) € x /
¢ N sz
T
= == = 1
where & = (Tc )
Substituting in above we obtain
) 1
C r e €? (14400-1) 2
ke T?

and hence the critical index o' , defined in Chapter 5, is
equal to .

We shall now consider higher order approximations in order-
to verify that the asymptotic behaviour of the specific heat as
given by the first order approximation is correct, and to 1dok
for an approximation which contains a latent heat. We have

considered three kinds of approximations. The first is the



usuel perturbation expansion about the quartic terms in the
Hamiltonian. The second is the first-order approximation to
the Green's function using Dyson's equation, and the third
is the "reduced"™ Hamiltonian approximation which is used in
superconductivity theory. 4l1l these approximations confirm
the above asymptotic behaviour of the specific heat, but
there is no latent heat present.

The perturbation expansion for the partition function is

o0
1 . .
Z = <o{T Z T (Zj H1(J)n exp(lﬂ.j Ho(J) ) |°>

n=0
We can use the well-known linked-cluster expansion to obtain
o n
Log %2 = log %0 + < 2 (zj Hy (3) ) >0 (7.14)
n=1

where < ssees > denotes the sum over connected diagrams and

Zo = <o| T exp(Zj Ho(3) ) o>

Log Zo can be calculated using the free Green's function, and
the average energy and specific heat arising from this tern
is identical to the first approximation considered above. The
second term of eqe. (7.11) is
1 8
<o|T 2, == A*(3)2%(3)A% (3)A"(3) exp(Z, Ho(j) ) |o> connected.
J 42 J
The connected diagrams are represented as
| 'H\ and
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where the lines represent the free Green's functions. Thus,

the first correction to log Z is

5,k (681 (0) 637 (o) = Go (o) 63%(0) )

x
N (2.8.8in @ _ @
- (PR )
where Q = arcos (2x)-1 when E = 0,

The average enecrgy, E’, arising from this term is

A
N o8 b4

¢ X <z_9_§_i_.g_3-9;.>

T ]

€x (.20 sin Q 202 2 sin Q 89 _ 2Q.008Q 3
i ( x° * X + X ox * b d - 5%

- 29 99)

x? dx
Near and above the critical point

1 1 -3
9~ 2(88)%  sin qm 2(a8)° W (a8)7T

where A and & are defined in eqe (74710)e

Hence, E 32eAe0s¢

2
This correction to the average energy, E, tends to zero as
T - Tc’ and hence does not produce a discontinuity in E,
The next highest order correction consists of terms
resulting from graphs with two four-point vertices. There
are many possible graphs to be constructed, but we shall

look at only one such graph; that shown in Fig. 21(b).



N

Fig. 21-

The contribution from this graph is

5 =L e%2(0) 642 (o) 631(5-4") &' (j-4")

js 3 x*
- ‘jz., '1: [e*2(0)]* [e>'(3-5')]"
2J° X

0 . .
1 2 { 1 “Jfa_ 1Py d+1
- -ws, o [6#2(0)] I:Z’” [-qubx (1-xet) 41

X

. an Q ) S
= - N J: <- %-+ EE0R )2 r é; / d¢ x 1(1—xel¢)2 +

x ] L -Q ]
higher terms. (7.12)
. _1 . - 2
e Nyt (.8 . x_ 8in Q\* [x__ , _ 2 sin Q + x sin 20
- < T T aT ) [ el B o2 Foee

The neglected terms in eqe. (7.712) are also of the order of
52. Thus, E & 0 and C = constant, and so this term does not
alter the asymptotic behaviour of the average energy.

The prece ding approximations are based on the straight-

forward perturbation expansion. We shall now consider an
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alternative procedure which is an infinite partial summation of
graphs, obtained by approximating the Green's function. Dyson's
equation for Green's functions, which was derived in Chapter 3

is used.

¢~ 1) Go ' (r) - A(r)

2, 0TI A(3) (7.13)

A(r)

1}

The simplest disgrams for the irreducible vertex part

A(3-3" ) are those shown in Fig. 22.

gy N

Fig, 22
Defining this first approximation as Ao(j-i’ ), we note that

Ao (j=3" ) is zero unless j = J', due to the special structure

of the diagrams, and hence
Ao(r) = AQ(O)
From the diagrams in Fig. 22 it ocan be seen that

AZB(r) = &o8'(r) A3 () ~Go® (o)

u

At (r) ¢32 (o) Ag% (r) -¢3' (o)

1
i

Substituting these results into eq. (7.13) gives
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G(r) = 0 M

-M* 0

where M* is the complex conjugate of the 2x2 matrix M.

WBT
=l 1 + A B + 1
M H et e
A (r) WT
B + 1 .- 1 + A
_ 9 _x sin Q _ X s
where A = = ——— B = - sin Q

y (r) = (2;£ -1 4 A><§£ -1+ A ) - (B+1)?

The expression (7.8) for E beocomes, when E = 0
E = 2¢ (63'(0) + G32(0) )

which, on substituting the above approximation is

_ 1 ' 2 = ei(“b.x-1 - Q.'lr-1
E mi 26 [ aoas Sy e (W
where & = A? - B® - 2(A+B) B = ax~T - x
-2
Y = X

The asymptotic forms for these functions are for x ® %

[N

1
a g - % (8)2 pgwm -2+ 2 (8) Y ® 4=166

T
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The integral in eq. (7.14) can be evaluated in a similar

manner to that of eqe (7¢5). The result is that for x>

2
e arctan 2o (EExyal > =
o =3 a4 \2f-y-a

[F <§ - %,> + 2(a?4 B%) <§; + %a > |
'%(’JXE+"W%>&I‘OOS<::’2—-EE>

Using the asymptotic forms for a, B, Y, we obtain the result
that E ~ (5)%, which agrees with the previous approximations.
The last approximation which we shall consider is to

reduce the Hamiltonian, so as to enable the problem to be
solved exactly. One way of doing this, as we have shown,

is to eliminate the quartic term. However, a more satis-
factory modification is to neglect only some of the quartic
terms, which can be done when the Hamiltonian is written in
terms of the fourier transformed operators bé, bi*. This
approach was first used in the theory of superconductivity

by Bogolitvov, Zubarev and Tserkovnikov(61). Apart from its
importance for the theory of superconductivity, the Bogoliubov
theory is one of the few exact theories in statistical mech-
anics. Much of the work done in what follows is based on the

(65)

clear account of the Bogoliubov approach given by Blatt .
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We have used the fourier transform discussed in Chapter

5 to obtain the following results from eg. (7.2)

P oHo(3) = & 2& Ho (k) = % pox n* bl
0 = 0 =
j= gli=sn “k=mN koox
mk 2% .2 k o2% 4 mk * 42

X bk bk + Xw blc bk + XW bk bk

N
. 1 ks+k *_q 0k

:oH(3) = 1R z 8 (k1 +la =kz=ke )0 Ot OBE DL bL by
j=1 k‘[,kz ’kS’kd

To make the problem exactly soluble by the Bogoliubov method,

it is necessary to replace Ej Hi(j) by the "reduced"” Hamilton-

ian Hi4o
1 mko 4l 2% 1% 2 4
B —— b
He = 35 2 v Pk, Pxy Pk Pk
k1 ’kz
= - '11:-.'\-1 z Ck Dk
- k1’k2 1 2
k o ) nk 2* 2
where Ck = W bﬁ bk Dk = W bk bk

Bogoliubov's method consists in meking a di splacement of the

operators Ck Dk; that is, we introduce a set of real con-
b4

stants u and p, and new operators Y, and 6k by

k

Co= v+ D = O + &y (7.15)

The "reduced™Hamiltonian can now be written in terms of these

new quantities.

+y, O (7.16)

-1
= b o= E
Hy N H ke ks

5
kK, ke ¥ Vky Px.
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If the last term in eqe. (7+16) is ignored, the resulting
Hamiltonian is quadratic and can be solved exactly. The
aim of the Bogoliubov method is to adjust the constants By
and Py in such a way that the correction, arising from the

negleoted terms yk1 8 4 becomes completely negligibles Let
2

k

us define

L p

. (7.17)

=
u
=] R
™4
=
~
©
u
=] b

k

The expression for the partition function, Zy, based on the

reduced Hamiltonian, then becomes
2 N _1 —18
723 = <o| N exP(i Ho (k) 5 Yy P 5 'k'“) los x
exp( - g H p)
Using egquations (7.15) we get
722 = <o| N exp(Z H(k)—lpC-lllD)IC»eXP(E#D)
: Py 5o 2 k2 k 2

= <o| W exp(Z, H' (k) ) o> eXp(g noo)

k 1 % mk

e 1 IR R _ 2 2 _ 1
where H (k) = b, bpow (x -3 p) + bl by (x 5 u)
1* 2 nk 2* 1 k
+ xbk bk w + xbk bk W e

%4 can be evaluated by the same technique as was used to
calculate a similar quadratic expression in Chapter 4. The

result is

2 N r 1 nr 1

Zy =1 1~ 0 (x=3p)-w (x=%u) +
r=1

w(m+1)r

4= % (o+n) + % o) }2 (7.18)
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S

The effect of the term = which was

1

— b

4N Kki.k2 yk1 kp’
neglected in this calculation, now has to be made as small:as

possible. To do this, we impose the following condition on

Yy and 6k’ which also determines the values of the constants
Prs Hye

<o| N Yy exp(Zk H' (k) ) |o> = 0

<o| N 8k exp(Zk H1(k) ) lo> = 0

This condition is equivalent to the one used by Bogoliubov,
Zubarev and Tserkovnikov in their approach to superconductivitye.
With such a condition satisfied, they showed that the extra
contribution arising from the neglected terms is completely
neglible in the 1limit of infinite volume. A heuristic proof
of this for the case considered here is given. The neglected
terms are regarded as a perturbation, and expanding about

these, we obtain the following perturbation series.

= © 9 n
ol Ble 2 (- i Vi By Jexp (B WD) o>
= 2
(7.20)

The first term in this series has been calculated. The

second term is

- — N & 1
N 2 <ol ® i, O, exp(zk H' (x)) |o>
kqyka

which can be written, since H'(k) is diagonal with respect

to k
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- == I <ol ¥ Yy, exp(H' (x)) |o> <o|N 6k2 exp (H' (k, ) |o>

N
M ry,k,
1 <o| W exp(H'(K) ) |o>
kfkq ks
= 0 because of eq. (7.19). The only non=zero contribution
is when ky = k,, which gives

- -t 3 <o| ™ Vi, S exp(H'(ky)]o> I <ol T exp(d'(k))]|o>

LN X, ki Kk Lk 4

The sum over kg in the above gives a contribution of the
order of N, and this cancels the % in front. Thus, the
eorrection term is independent of N. An extension of this
argument shows that all the terms in expression (7.20) are
independent of N, and hence, if the series converges, its
limit is also independent of N, Thus the correction to the
free energy, F = N_1 log Z, will be neglible as N-ox o Hence,
eqe (7.18) is exact if p and u are given by the relations
(7.19).

Using egs. (7.19) and (7.15), and the fact that H'(k) is

diagonal with respect to k, we obtain

— L)
<ol T o pl" v exp(a' (k))]o>

<o|ﬁ exp(H’(k))|o>

Hye

[oF 4 o) 1)7, a7 ()

where this last result follows from expanding the exponential
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k
and 8(k) = 1=6% (x=30) 0™ (x-3u) + 0 E (Gou - fx(osn) )
Similarly,
=~ mk _ %  , 1
<o |V w bE by exp(H'(k))]o>
p S
k

<o|T exp(a'(k))|o0>

S0 -o™ s o UE (goy] a7 ()

Hence, to evaluate p and u from eqg. (7.17), we need to solve

the coupled integral equations

[ - o o o0™DE )] a7 (k)

=g

%
k
2 [ - W™, (™R 1)) a7 (k)
k

=i

In the limit as the size of the lattice tends to infinity,
the summation can be replaced by integrals, and the above
equations become

el . .
1 0 5]
C T Gme f/‘ a0ag (-e2® ¢ O+ (1))
(2’lT)z o)

(1 - (%) (eebu) o o (04 (He )y

(7.21)
where we have chosen the obvious solution 4 = p. For x € %,
it can be seen that y = o is a solution as expected. Hence,

there is no correction to the expressions already obtained for
T < T, For T > To’ we evaluate the integral using similar
methods to those used in evaluating eq. (7¢5). The results

which concern us are firstly that ¢ > o. This is not sur-
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prising since the definition of u is a Green's function,
which are related to the correlation functions which are
always positive. Secondly, the integral on the R.H.S..of
(e (7.21) is zero if u 2 2-4x. Hence, for x > %, there
will be an inconsistency in the integral eq. (7+21) unless
4 < 2=4x, Therefore 0 € U < 2-4x, and so 4 is a continuous
function with a singularity at x = %. It can be shown, by
considering the expression for the average energy per vertex,
E, that if g is continuous at x = %, then B is also contin-
uous. Hence this "reduced" Hamiltonian approximation also
fails to exhibit a latent heat,

In the case of superconductivity, there are good physical
argument s showing that the "reduced" Hamiltonian contains the
important interaction terms when the system 1s in the super-
conducting state. Unfortunately, for the ferro-electric
problem we can equally argue that the "reduced" Hamiltonian
does not contain the dominant terms. However, as this "reduced"
model is exactly soluble, it is worthy of some study.

From the previous approximations, we have been unable to
obtain a latent heat, or discontinuity in the average energye.
The probable reason for this is that in the approximations
which we have considered, too much wieght is attached to the
graphs which occur in Wu's model, which does not possess a
latent heat, and not enough weight to the graphs which arise

from the quartic term in the Hamiltonian.
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7e¢4 Rys Antiferro-electric Model

(26)

The F-model proposed by Rys to explain the antiferro-
electric properties of the crystal NH, Hp POs has an identical
structure to the ferro-electric model discussed in the previous
section, but the interaction energies are modified in order to

give it antiferro-electric properties. They become, in the

absence of an electric field
€{ = €2 = €3 = €4 = € €5 = €¢ = O
Hence, the partition function can be written as

7 = xN <o|T exP(Zj Ho (3) + Hy (3)) o>

. 1 ® ® ~1 2% =1 4% 2
where H.(J) = aj aJ 1 + aJ aj—m + X aj aJ_1 + X a aJ_m
: -2 2% 1% 2 1
Hi(j) = (2 - x 7) aj aj aj-m aj_1 (7.22)

This expression, again, cannot be solved exactly, but it does

possess some interesting features. We note that Hy (§j) = O

1
when x = 2 2., Thus at this temperature the model can be

solved exactly, and we obtain

oy U
722 = x I determinant (1-kA(r))
j=1
where
/o 0 =1 -]
0 0  -x"1 -1
k = 4 X_1 0 0
-1
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-w
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w 0
0 Mty
0 0
0 0



Thus,

N
22 - w2V (1ex"? - W - G"T w(m+1)r)

r=1
in
and/the limit of a large lattice

N 29r

-1 1 . i

N~ log Z = =—=- j/ a0d¢ (%% qmye _i0__2 i¢ _» _i(64+9)
8 o e” =x%e T4x? e )

(66)

This result has since been confirmed by Wu
The free Green's function is non-zero except when T = O,
and so we cannot obtain an exact solution for a given tempera-
ture range as with the Slater model., However, the free
Green's function does contain a singular point at x =« =, which
indicates that the tran sition temperature is given by X, = %.
This was later confirmed by the results of Lieb, which indi-
cates that this simple approximation may have a wider range of

validity than it apparently should,

75 Lieb's Solution

Lieb has solved the ferro-clectric problem by using the
transfer matrix approach, which had been previously used by
Schultz, Mattis and Lieb to solve the Ising model. There is
a8 similarity in the formalisms since both problems can be
expressed as

7 = Trace V© = . N\
R 1

where Xi are the eigenvalues of the transfer matrix V.

However, the structure of V differs significantly for the
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two problems. For all soluble Ising models V can be
expressed in terms of Fermi operators, and has an analog-
ous form to soluble many=~body problems, which can be solved
by diagonalization of a gua dratic form., In principle, all
the eigenvalues of V (or the trace of Vm, see for example
Thompson(7o)) can be evalucted exactly. For the ferro-
electric problem, V has a more complex structure, which is
similar to that of a system of interacting fermions, and henoe
cannot be treated exactly. However, Lieb has found that the -
maximum eigenvalue of V can be calculated. The calculation
relies on the remarkable fact that the eigenstate of V
corresponding to the maximum eigenvalue is the same as the
ground state of one of the few soluble interacting fermion
systems, the linear antiferromagnetic Heisenberg chain. Thus
using the solution of this latter problem, Lieb is able to
obtain an exact solution for an apparently unrelated problem.
In this section we shall consider some interesting aspects
of Lieb's solution, without géing into any of the mathematical
details which have already been well considered by Lieb(71).
The first point which we mention is that the exact solutions
of the ice, ferro-electric and antiferro-electric problems

all take the form Q

Z = / d® p(9) log D(H) (7.23)
-Q

where, for example, in the ferro~electric problem
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Q = arcos (2x)-1

D(6) = e

The first-order approximations for these models which
can be obtained from the combinatorial method by neglecting

the quartic term in eqs. (7.1) or (7.22) are

’ rro 2
Z = Z—-;: j/ d0d¢ log D' (6,¢)
2w o
. [0
= o7 [ Qd@ log D(6) (7.24)

Comparing eqg. (7.23) and (7024) we can conclude that our first
approximation corresponds to putting p(0) = g; . Lieb regards
p(e) as a density function, and thus this approximation is
equivalent to regarding the di stribution of the 6 as being
uniform. It now becomes apparent that the first order approxi-
mation prediocts the analytical behaviour of the model correctly
because of the close similarity of the approximate solution

t0o the exact solution. The p(e) does not affect the analytical
behaviour of the integral in eqe (7+23), except in that it
gives rise to the latent heat.

The second point of interest is that the approximations to
the ferro-electric model and the linear Heisenberg chain are
very similar. The Hamiltonian of the Heisenberg chain, when
expressed in terms of fermi creation and annihilation opera-
tors contains a quartic term, and hence ocannot be solved

exactly, although the ground state has been obtained by
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Bethe(72) and Hulthen(73). Lieb, Schultz and Mattis(74)

proposed a soluble model of an antiferromagnetic chain,

by truncating the full Hamiltonian so that the quartic

term became equal to zero. This is called the X-Y model,
and its analogue in the ferro-electric problem is Wu's
model, where in the field theoretical formalism, the quartic
term is also equal to zero. Thus, in both the ferro-electric
problem and the antiferromagnetic chain, by truncating the
Hamiltonian, we obtain the Wu and X-Y models. They both
have many features of +the exact models, but are now linear
problems and are oompletely soluble. In both models, it is
found that the neglect of the quartic term is equivalent to
replacing the p(@) in the exact solution by (2#)_1.

The last poiht, which should be mentioned, is that Lieb
was able to obtain his solution from the fact that the graphs
with N/2 vertical bonds contain the dominant contributions.
Lieb oarries out, essentially, a partial summation of these
graphs, since his approach has not yet been able to success-
fully sum all the graphs. On summing all the graphs with
N/2 vertical bonds, he then proves that in the limit N-oo ,
all the omitted graphs .ive rise to anegligiblecontribution.
It was the partial summation of graphs in association with
lattice statistical problems which led to the development of
the present field theory techniques. However, we have not

been able to perform the particular partial summation required
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for this model with the formalism developed in this Chapter,
apart from using essentially the same method as that used by

Lieb.
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CHAPTER 6, ~THE DIMER PROBLEM

Some of the combinatorial methods used for solving
lattice statistical problems are based on the use of pfaff-
ianse For the dimer problem this is the best known solution,
and for the Ising model the use of pfaffians was the first
rigorous combinatorial approach. An alternative technique
for the Ising model has been considered. This is related to
other quantum mechanical problems of statistical mechaniocs,
and consists of representing such quantities at the partition
function by <of| T exp(Ej Ho(3) ) |o> « The partition function
for the dimer problem can also be written as a vaeuum to
vacuum expectation value and henoe can be evaluated by the
techniques developed in previous chapters.

Briefly, the dimer problem is to determine g(p,q), the
number of ways of arranging p horizontal dimers and g vertical
dimers on a rectangular lattice of m columns and n rows, SO
that every lattice point is covered by one and only one dimer.,
The usual gquantity computed is the partition function, Z,

defined by

z = 2 g(p,q) xPyt

bPsad

T he evaluation of the partition function can be cast as
one of counting closed graphs on a lattice, by showing that
there is a one-to-one corrcspondence between the graphs and

the dimer configurations,. This is demonsitrated by Jjoining
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the points on the dimer lattice in pairs as shown in Pig. 23,

—
)
p—
& 0/1

Fig. 23-

These "double" points will be regarded as a single-point
for the lattise on which the graphs will be drawn. The stand-
ard dimer configuration, in which all the dimers are horiz-
ontal between the pairs of points shown, eorresponds to no
graph drawn on the lattice. For a different dimer configura-
tion, we replage the dimer Jjoining A& to A Dby one Jjoining A
to B’ say, This then leaves the point B to be ecovered by =
dimer joining B and C, This process is carried out until a
dimer covers A’ . Then a new dimer configuration will have
been produced, to which there corresponds a closed loop on
the lattice. It is now éasy to see that there is a one-to-
one correspondence between dimer configurations and graphs

(18)

drawn between the "double®™ lattice points. Kasteleyn used
a graph approach to the dimer problem, but his method is not
suitable here,

Hence we need to sum all the graphs on the lattice which

(1) do not have repeated bonds and (2) do not have more than

two bonds joining any one lattice point. There are nine
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possible kinds of vertex for this lattice and these are shown

in Figp 2)+o

b
' 7

{
T

Fige 2L,
The progedure is now identical to the Ising model case.
We write the expeetation wvalue <o| T exp(zj He (J)) [°>
and show that the sum of all Feynman graphs arising from
this expression i8 equal to the sum of all the Dimer graphse.
We associate fermion operators to the bonds as shown in

FPige 2h
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Then it can be shown that the expression for H(j) will be

. Xv o _3% 4% ¥ 3% 2 Na * 3
= === . . = : . a a.,
H(j) T8y 8y +y 8y eynty j-m

L 2 x 1% 3 X 1%

IRt aj—1 * 3 J J=n + 2 J aJ—1
1 & 1 YV _3%* ¥ 1 2 3
- —~ a . - a A Be1

e = aj-m 854 *+ 7% %5 85 * 3 S-n a5 n (8.1)

The bond weights have been generalized so that vertical
dimers in the odd numbered co lumns have weights v and those
in the even numbered columns weight y. Similarly there are

two weights u, x for the horizontal dimers as shown in Fig.26.

u X

Fig. 26.

The quadratic pairs of operators in the expression H(j)
correspond to the vertices drawn in Fig. 18. Hence, it can
be seen that all the Feynman diagrems assoclated with expand-
ing <ol T exp(Zj He(j)) |o> contain all the possible dimer

graphs with the correct weight factors. We will now show
that the sum of all the Feynman diagrams which are not Dimer
diagrams is zero, Firstly, graphs with re pecated bonds sum

to zero as in the case of the Ising model. Secondly, graphs
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four lines to a point sum to give a zero contribution since
each vertex can occur in two ways, with opposite signs, as

shown in Fig. 27.

L

-vVe

4+Ve
T .
(“_‘ R /'y S ’ T ___’Jr
: +Ve

-ve

N P Z AR

i —e e L

"\__‘ "q_‘ ___/ i1 ; n
-vVe +Ve =ve +ve

Flgo 27.

and similarly for six bonds at a point

= =

y
1
N/

+ve +ve +ve

e .

T
l
f]
|

-ve -ve =-Vve
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The proof that each graph has the correct sign is the
same as that given in Section 2.1 for the Ising model and
will not be dealt with again,.

Let us define

1 (3 _ 1 2 (= _ 3 3( s =~ a2
M(3) = 8} _y A% (3) = S A% (3) o’ n
% ” %
A*(3) = xa’ A% (5) = yaé A% (3) = vag
J

and then H(j), given by eq. (8¢1) becomes

H(3) = = 2 F ok 2P(5) %)
Psq
where k is the 6x6 matrix
/o o -1 =1 -1 0
K/ 0 0 =1 =1 -1 0
j 1 1 0 0 0o -1
i 1 1 0 0 0 -1
\\ 1 1 0 0 0o -1
No o 41 1 1 o0

The commutator A(r) can be evaluated in the normal way

giving
0 0 0 xw T 0 0
0 0 0 0 0 vo T
i) = | 0r 0 0 0 yo T 0
Xw 0 0 0 0
| 0 0 -vo" T 0 0
\\o -yt 0 0 0
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Using the results of section 4.1, we obtailn
N

72 = ol ﬁz det (1-k A(r) / u)

r=1
N
/2
I1

r=1

{(u-xwr) (umx0™T) & (30 %= vo™) (yu"T- vw_mr)}

and letting the size of the lattice tend to infinity gives

A . 3
qujz /] a8d¢ log [(u-xele)(u—xe-le) +
2 (o}

Lng:

i

e—i¢— vei(}S ei¢- ze_i¢ B
(v ) (v ) J (5.2)

This solution of the generalized dimer lattice was given

first by Stephenson 69) using the pfaffian approach., For
the case when u = X, ¥y = V €(. (8.2) reduces to the standard
forn
Log 7 = % . ]j 2wd6d¢ log [%2(1—ele)(1—e—ie) +
(2m)® 0

As with the Ising model, a Green's function can be defined
by the relations given in Chapter 3. This Green's function
can be used to obtain the occupation probability of a single
dimer, and the joint occupation probability of two dimers.

The results obtained are the same as those given by Fisher

(20

and Stephenson )and will not be repeated. The main concern
in including this section is to show that the field=-theoretical

technique developed in this thesis is a systematic unified



treatment of tackling all known lattice problems; that the
partition function for all pleanar lattice statistical
problems can be written as <o| T exp(Ej H(j)) |o> and

that the thermodynamic functions are readily calculated

from the Green's functions,
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8 —— T e

GHAPTER 9.  CONCLUSION

The formalism presented in this thesis is based on the
combinatorial approach to lattice problems, but it uses the
relatively simple properties of fermi operators rather than
an explicit representation by unwieldy determinants or
pfaffians. This enables the thermodynamic quantities of the
soluble two-dimensional nearest-neighbour Ising models and
dimer problem to be evaluated simply in terms of the Green's
functions. This formalism also has wider applications than
other combinatorial methods since lattice problems which
cannot normally be expressed in terms of determinants or
pfaffians (such as the ferro-electric problem and the next-
nearest neighbour Ising model) can be expressed in terms of
the fermion operators. The resulting expressions, though
it may not always be possible to evaluate them exactly, are
at least amcnable to the many approximation techniques used
in quantum field theory and many fermion theory.

From the view-point of new results, the ferro-electric
problem in the presence of an eiectric field has been the
most rewarding. Previously,combinatorial methods were unable

to handle this problem, but from the approach developed in
this thesis, the exact critical temperature and thermodynamic

properties below the critical temperature have been obtained.
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For problems which can be formulated in terms of an
S-matrix, but which cannot be evaluated exactly, the
concept of summing the dominant terms, or the graphs with
the dominant contributions,is a possible approach. Various
methods of infinite partial summations of graphs have been
given in this thesis. In all cases, these approximations
have been carried out because of their use in other fields,
and lack a simple physical motivation based on the proper-
ties of the lattice problem. Despite this, these approxi-
mations have been shown to reproduce much of the exact
critical phenomena of the models. These results indicate
that this new approach may be a useful formalism for par-

tially solving unsolved lattice problems.



- 144 -
BIBLIOGRAPHY

(1) For a recent review of experimental results see
"Critical Phenomena," M.S. Green and J.V. Sengers,
Eds. (N,B.S. Mise. Publ. 273, 1966) and L.P.
Kadanoff et ale., Rev. Mod. Phys. 39, 395, (1967).
(2) L. Onsager, Phys. Rev, 65, 117 (1944).
(3) C. N. Yang, Phys. Rev. 85, 808 (1952).
() B. Kaufman, Phys. Rev. 76, 1232 (1949);
B, Kaufman and L. Onsager, Phys. Rev. 76, 124L4 (1949).
(5) . F. Newell and E. W. Montroll, Rev. Mod. Phys. 25,
353 (1953),
(6) H, S. Green and C.4L. Hurst, "Order-Disorder Phenomena"
(Interseience Publisher, Inc. New York, 1964). Chapt. 6.
(7) T.p. Schultz, D.C. Mattis and E.H. Lieb, Rev. Moda. Phys.
6, 856 (1964).
(8) L.P, Kadanoff, Nuovo Cimento 4k&B, 276 (1966).
(9) M. Kac and J.C., Ward, Phys. Rev. 88, 1332 (1952),
(10) S, Sherman, J. Math, Phys, 1, 202 (1960).
(11) P.N. Burgoyne, J. Math. Physe 4, 1320 (1963).
(12) C.A. Hurst and H.S. Green, J. Chem. Phys. 33, 1059 -(1960).
(13) P.W. Kasteleyn, J. Math. Phys. 4, 287 (1963).
(14) M.E. Fisher, J. Math. Phys. 7, 1776 (1966).
(15) EB.i. Montroll, R.B. Potts and J.C. Ward, J. Math. Phys.
Lk, 308 (1963).

(16) J. Stephenson, J. Math. Phys., 5, 1009 (1964).



(17)
(18)
(19)
(20)

(21)
(22)
(23)

(24)

(25)
(26)
(27)
(28)
(29)

(30)
(31)
(32)
(33)

(34)

- 145 =

C.L. Hurst, J. Chem. Phys. 38, 2558 (1963).

P.%W. Kasteleyn, Physica, 27, 1209 (1961).

M.E. Fisher, Phys. Rev. 124, 1664 (1961).

M. E. Fisher and J. Stephenson, Phys. Rev. 132,
1411 (1963).

F.Y. Wu, Phys. Rev. Letters, 18, 605 (1967).

C.A. Hurst, J. Math. Phys. 7, 305, (1966).

R.7. Gibberd and C... Hurst, J. Math. Phys. 8, 1427,
(1967).

G.H. Wannier, "Statistical Physics" (FJohn Filey and
Sons Inc. New York 1966). P.352.

J.C. 8later, J. Chem. Phys. 9, 16 (1941).

F. Rys, Helv. Phys. icta 36, 537 (1963).

J.F. Nagle, J. Math, Phys. 7, 1484 (1966); 7, 1492 (1966).
J.F. Nagle, preprint.

E.H. Lieb, Phys. Rev. Letters 18, 692 (1967); 18, 1046
(1967); 19, 108 (1967).
B. Sutherland, Phys. Rev. Letters 19, 103 (1967).

T. Matsubara, Prog. Theoret. Phys. 14, 351 (1955).

P.C. Martin and J. Schwinger, Phys. Rev. 115, 1342 (1959).
L.P. Kadanoff and G. Baym "Quantum Statistical Mechanics"
(New York: PBenjamin, 1962).

C. Bloch "Studies in Statistical Mechanics"™ edited by

J. de Boer and G.E. Uhlenbeck (North-Holland Publishing

Co., Lmsterdam, 1964), Vol. III.



- 146 -

(35) J. Goldstone, Proc. Roy. Soc. (London) £239, 267
(1957).

(36) K.i. Brueckner, Phys. Reve 100, 36 (1955).

(37) D.J. Thouless, Ann, Phys. (N.Y.) 10, 553 (1960),

(38) A. Katz, Nuclear Physies 42, 394, 416 (1963).

(39) G. Horwitz and H.B. Callen, Phys. Rev. 124, 1757
(1961).

(40) R, Brout, Phys. Rev., 115, 824 (1959).

(41) F. Bnglert, Phys. Rev. 129, 567 (1963).

(+2) ¢, Bloeh and J,S. Langr, J. Math. Phys. 6, 554 (1965).

(43) R.L, Bell, Phys, Rev. 143, 215 (1966).

(44) T, Oguchi and I. Ono, Prog. Theor. FPhys. 35, 998
(1966),

(45) R. Lbe, Prog. Theor, Phys. 33, 600 (1965).

(46) See for example S.S. Schweber, "An Introduction to
Relativiaetioe Quantum Pield Theory" (Harper and Row,
1961) .

(47) H.S. Green and C.A. Hurst, "Order-Disorder Phenomena"
(Interscience Publishers Inc., New York, 196L4). Chapte.
b

(4¥8) N.V. Vdovichenko, J.E.T.P. (U.5.S.R.) L7, 715 (196L4).
Engl, Trans: Soviet Phys. J.E.T.P. 20, 477, (1965).

(49) see for e xample T.D., Schultz, "Quantum Field Theory

and the Many-Body Problem", (Gorden and Breach, Science

Publishers, Inc. (1964)), P.63 Chapt. III.



(50)
(51)

(52)

(53)

(54)

(55)

(56)

(57)

(58)

(59)

(60)

(61)

(62)

- 147 =

H.S. Green, Z. Phys. 171, 129 (1963).

H.S. Green and C.A. Hurst "Order - Disorder Phenomena®,
p.139.

R.E. Hartwig, Ph.D, Thesis.

R. J. Eden, P.V. Landshoff, D.I.0Ol¥re and J.C.

Polkinghorne, "The inalytic S-Matrix" (Cambridge

University Press, 1966).

R.C. Hwa and V.L. Teplitz, "Homology and Feynman
Integrals", (W.A. Benjamin Inc., 1966).

L.P. Kadanoff, Physics 2, 263 (1966) and L.P. Kadanoff
et al, Rev. Mod. Physies 39, 395 (1967).

Cos Domb and R,B. Potts, Proc. Roy. Soc. London, 2104,
125 (1951).

L.D. Lee and C.N. Yang, Phys. Rev. 87, 410 (1952).

V.G, Vaks, A.I. Larkin and Yu, N. Ovchinnikov, J.E.T.P.
(U.S.8.R.) 49, 1180 (1965). Engl. Trans: Soviet

Phys. J.E.T.P. 22, 820 (1966).

L. Bienstock, J.Appl. Phys. 37, 1459 (1966).

H.S. Green and C.A. Hurst, "Order - Disorder Phenomena
Chapt. 8, p.338.

N.N. Bogoluibov, D.N. Zubarev and Y.A. Tserkovnikov,

Dokl. fAkade Nauk S.3.8.R. 117, 778 (1957) Engl. Trans:

Soviet Phys. Doklady 2, 535 (1957).
E. Fatuzzo and W.J. Merz, "Ferro-electricity" Sele cted
Topics in Solid State Physics. Vol 7 (North Holland

Publ. Co. 1967) Chapte 3.



(63)

(64)
(65)

(66)
(67)

(68)

(69)
(70)
(71)
(72)
(73)

(74)

: 118 :
L.D. Landau and E., M. Lifshitz, "Statistical Physics"
(Pergamon Press, London 1958), Chapt. 14.
W. Cochran, Advan. Phys. 9, 387 (1960);10, 401 (1961).
J.M, Blatt, "Theory of Superconduotivity" (New York
Aoademic Press, 1964), Chapt. 6.
F,¥Y. Wu, preprint.
R.B. Potts and J.C. Ward, Progr. Theoret. Phys. 13,
38 (1955),
H.S. Green and CsiA. Hurst "Order - Disorder Phenomena®
Chapte 3o
Js Stephenson, PhyD, Thesis.
C.J. Thompson, J, Math, Thys. 6, 1392 (1965),
E.H, Lieb, Phys. Rev. 162, 162 (1967).
He Bethe, Z, Physik 71, 205 (1931).
L. Hulthen, Arkiv, Mat. Astron. Fysik 264, No. 11 (1938).
see also J. des Cloizeaux and M. Gaudin, J. Math. Phys.
7, 1384 (1966)
E.H. Lieb, T.D. Schultz and D.C. Mattis, Ann. Thys.
N.Y. 16, 407 (1961). See also S. Katsura, Phys. Rev.

127, 1508 (1962).





