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ABSTRACT

Three group theoretical problems assoclated with parafields
are considered in this thesis. ) .

The first two, dlscussed in Chapters 2 and 3, are similar
since they deal with the restrictions imposed by physical require-
ments on theories whose commutation relations are more general than
Boge or Fermi. In both cases the restrictions are a consequence of
the properties of the algebras (or representations of these
algebras) which are generated by the operators obeying the more
general commutation relations.

The cluster property requires that the desceription of widely
separated physical systems should be independent of each other.
This property, formulated for parafields, is essentially a reduc-
tion of the groups generated by the parafield creation and
annihilation operstors to the appropriate sub-groups. The pearafield
representations of these groups are such that for p = 1 only, are
the restrictions due to the cluster property equivalent to those
placed upon the theory by the requirement of locality. This is
not surprising since a comparison of locality and the cluster
property shows that the two concepts are inequivalent.

In the non-relativistic case the cluster property restricts
physical observebles to those of the form [¢*(x),¢(y)]t .
Restricting physical cbservables to elements of this form implies

that the theory is Just a convenient deseription of a system of



p fermions (or bosons). This also has the important consequence
that, in the associsted quantum mechanical space, physical
observables are symmetrie functions of their arguments. Thus, for
parafields, the symmetry of observables is a result rather than an
assumption, as it is usually stated. The relativistic case is
treated as an extension of the non-relstivistic one, and it is
shown that it is necessary to decompose the wave function into
positive and negative frequencies in order to construct physicsl
observables. The S-matrix and Wightmen formulations are also
discussed in §2. For p > 1 only a very restricted set of vacuum
expectation values of parafield operators factorize in accordance
with the cluster property. The vacuum expectation values of pb2
operators are somewhat exceptionel as & result of the commutation
relations satisfied by these operstors. Some attention is also
given to a possible L.S.Z. formulation of parafield theory.

In §3 a quentization scheme recently proposed by Kademova
and Kraev is shown to be inconsistent since it does not, in
general, possess a vacmum state of lowest energy. This follows
from the properties of the group generated by the annihilation and
creation operators satisfying the proposed commutetion relations.
It is also shown in §3 that the requirement of unitary invariance
of the algebrs implies that for a theory with commutation rele-
tions of the form a£+l = 0 and [ak,agl_ = 0, there can only dbe p

particles in the Universe.



The purely group theoretical problem of constructing the
representations of a single parsbose operator of any order is
considered in §4. The representations corresponding to the
Bargmann and harmonic oscillator representations of a boson
operator are found. This is achieved by the introduction of an

operator R satisfying
[R’Z]+ . [R,dZ]"' =0 .

The equivalence of the two representations is proved by the con-

struction of a unitary integral transform connecting them.
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§1. INTRODUCT ION

An intriguing question in the description of elementary
particles is why only Bose and Fermi statistics appear to be
realized in Nature. While there does not seem to be any mathe-
matical inconsistencies in theories describing particles more
genersal than bosons or fermions, there is, as yet, no dlrect
experimental evidence for the existence of any such particles.
However physical assumptions may impose severe restrictions on
s mathematically consistent theory. An approach to the problem
of the existence of generalized particles is to determine which
properties, if eny, of the description of these particles are
congistent with physical assumptions.

The first theoretical studies of generalized statistics
were made by Gentile, Borsellino, Sommerfeld end others(l).
These studies were mainly concerned with the statistical
behaviour of ensembles of the generalized particles. One of the
most important results that arose from these studies was the
realization that generalized statistics were associated with
higher dimensional representations of the symmetric group.
However it was not until after Wigner(e) had shown that the
Heiséenberg equations of motion do not uni gquely determine the
commutation relations(3) that Green developed the first con-
gistent description of generalized staxistics(h). Using field

theory Green derived a set of relationships for the creation



and annihilation operators, more genersl than Bose or Fermi,
which were consistent with Heisenberg's equation of motion.

These statistics were termed "parastatistics”, as distinct from

(s)

generaelized statistics, by Greenberg and Messish who investi-

gated their properties. In particular the selection rules they
derived implied that all elementary particles are either Bose or

Fermi.

(6)

Gelindo and Yndurain showed that parafield states did

not form a representation of the symmetric group. This objec~

tion was removed by Landshoff and Stapp('), vho after distin-

guishing between "particle” and "place” permutations, showed
that parafields form a representation of the former only. The
reduction of the Fock space to irreducible representstions of

the particle permutation operators was effected by Ohnuki and

(8)

Kamefuchi At that stage the relation of the guantum

mechenical space to the Fock space of field theory was unknown

(9,10,11,12) on the significance of place

(10)

and obscured discussions
and particle permutations. Ohnuki end Kamefuchi derived the
relationship between the quantum mechanical and quantum field
descriptions and showed that the quentum mechanical space associa-
ted with a parefield permitted a sensible interpretation of the
indistinguishability of identical particles.

Hartle and Taylor(la) were able to show that the quantum

mechanical space of paraparticles was consistent with the cluster



decomposition property. This property reguires that widely
separated systems of identical particles are non-interacting.
This result wes significant since Steinmenn, Luders and others
(14,15) had previously shown that not all generalized statisties
which correspond to verious collections of irreducible representa-
tions of Sn were consistent with the cluster property. The proof
by Hartle and Taylor(l3), formulated in the quantum mechanical
space, assumes that cbservebles are symmetric functions of their
arguments. To avoid this assurmtion, and alsc the conceptual
difficulties associated with labelling identical particles, it is
easier to check the consistency of parastatistics with the cluster
property within the framework of field theory rather than in the
quentum mechanical space.

This is done in §2.1 to §2.6 of this thesis for a non-
relativistic free parafield. The formuletion of the cluster
property in field theory becomes one of reducing certain groups,
generated by the parafield operators, to their various subgroups.
These groups; the orthogonal group for parafermi statistics and
the symplectic group for parasbose statisties, were first connected
with parafields by Kamefuchi and Takahashi(lé). The application
of the cluster property i.e., the reduction of these groups uses
some important results thet have recently been cbtained for para-

fermi fields by Bracken and Green(17) and for parabose fields by

Alabiso, Duimio and Redondo(18’19).



L.

Tt is found that the cluster property severely restricts
the form of permissible physical observsbles to functions con-
structed from elements of the unitary group.

(20)

Recently Drihl, Hasg and Roberts have classified the

"1ocal” observables of a parafermi field in terms of the associa-
ted non-Abelian gauge groups(gl’zz). They have shown that a
parafield may provide a convenient description of a system of p
fermions provided the physical observsbles of the parafield are
restricted to elements of U(v). The results of this thesis show
that the cluster property restricts the permissible physical
observables of & parafield to the elements of U(v). Combining
these results it follows that the parafield description is nothing
more than s convenient description of a system of p fermions.

Tn the mssociated quantum mechanical space the physical
observebles corresponding to elements of U(v) are symmetric
functions of their arguments. The proof of the cluster property
by Hartle and Taylor corresponds to the proof given in this thesis
that the elements of U(v) are consistent with the cluster de-
composition property.

The extension of these results to relativistic fields is
also considered in §2. In this case, to construct physical
obgervsbles which are consistent with the cluster decompogition
property it is necessary to decompose the field operators into

positive and negative frequencies. This is & more severe



{
restriction than that cbtained by Chnuki and Kamefuchi‘23)

on the
basis of locality requirements.

The S-matrix approach is briefly considered and it is shown
that it is possible to construct S-matrices which are consistent

with the cluster decomposition property.

The consequences of the cluster property within the

(24)
(25)

Wightman axiomatic eapproach have been widely investigated

for Bose and Fermi statistics However little attention has
been paid to the corresponding problem for parafields with p > 1.
Using some general properties of the vacuum expectation values
of parafield operators which were derived by Dell' Antonio,

(26) (27)

Greenberg and Sudarshan and Govorkov, i1t is shown that in
general only a very restricted class of vacuum expectation values
are consistent with the cluster decomposition property.

In view of the severe restrictions imposed on the vacuum
expectation values of parafield operators a brief discussion on

the possibility of formulsting an L.S.Z.(28)

theory of pare-
statistics concludes the first chapter.

Although parsstatistics are sufficient to satisfy the
Heisenberg commutation relations it does not necessarily follow
that they are the only possibilities for generalized gtatisties.
Other alternative statistics have been proposed by considering

different sets of commutation relations(29’30’3l). Functione of

the creation and ennihilation operators satisfying these
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alternative relations are often associsted with the well known
classical groups. As with parafields, physical assumptions
(such as the positive definiteness of states) are manifested by

the choice of the classical group. This is particularly so for

8 gset of commutstion relations proposed by Kademova and Kraev(3o).

It is shown in §3 that these statistics do not satisfy the

accepted requirements of field theory. The restrictions placed

(31), _p+1
%

on commutation relations of the form = 0 and

[ak,al]n = 0 by a less obvious physical assumption are also con-
sidered in §3.

The work presented in §4 does not follow on from the
preceding chapters. It is concerned with the mathematicel prob-
lem of actually constructing explicit representations of para-
bose operators. The construction of matrix representations of a

gingle parafield operator was considered by O'Reifeartaigh and

an(32) and studies of the uniqueness of these were made by

Ry
(33)

various other authors . The construction of irreducible rep-

resentations of v parafermi operators was made by Ryan and

(34)

Sudarshan by means of the representations of the 0(2v+1)

group associated with the parafermi operators. The matrix rep-

resentation of a single parsbose oscillator was constructed by

(35)

Jordan. Mukunda and Pepper and the generalization to v

(19)

operators has recently been effected by Alabiso and Duimio



Two other representations of the boson slgebra are the

(36) {37)

Bargmann and harmonic oscillator

(38)

representations. For
one degree of freedom Yang has found & representation of the
parabose algebra in terms of x, % and R, wvhere R is an operator
which anti-commutes with x and -—;; . By using Yang's expressions
for the raising and lowering operators, harmonic oscillator rep-
resentations of the parabose algebra are obtained in §L4. The
Bargmann space for a single parabose operator is also found and
its equivalence to the harmonic oscillator representation is

also shown. A discussion on the possibility of generalizing

these results to v degrees of freedom concludes §k.



§2. CLUSTER RESTRICTIONS ON PARAFIELD OPERATORS

§2.1 INTRODUCTION

A fundamental assumption sbout elementary processes is that
the interaction between two bodies separated by e large distance
is negligible. This assumption appears to have good experimental
verification as there is no evidence that a system of identiceal
particles localized on Earth 1is affected by the presence of
another group of identical particles on Mars. It would, to say
the least, be very difficult to describe electron-electron
scattering on Earth if the effect of all other electron-electron
scatterings in the Universe was to be accounted for. This de-
composition of the Universe into separate non-interacting regions
is termed “"cluster decomposition” and any description of a system
of identical elementary particles should exhibit this property.
Thaet is if the system is divided into two clusters C; and C,,
which are then separated by a large distance, then each sub-
system may be described independently of the other. Not ell
theories will necessarily possess this property or alternatively
the cluster decomposition property may place certein restrictions
on a theory. The restrictions imposed on a parafield theory are
investigated in this chapter.

Meny authors have shown that attempts to generalize Bose
and Fermi statistics within the quantum mechanical framework by

considering higher dimensional representations of the symmetric



group are not arbitrary but subjcct to restrictions imposed by

(13,14,15) (13) a4
(15)

the cluster property Hartle snd Taylor

Doplicher, Haag snd Roberts have shown that the representa-
tions of the symmetric group afforded by the quantum mechanical
space of para-particles are consistent with the cluster decom-
position property. In particular Hartle and Taylor have shown
that the cluster decomposition problem is essentially that of
the reduction of Sn+1 to Sn' Their proof , however, assumes
that all operators in the quantum mechanicel space are symmetric
functions of their arguments.

On the other hand Ohnuki and Kemefuchi'0»23)

have argued,
from considerations based on field theory, that not all physical
observables asssociated with a parafield theory are symmetric
functions of their arguments. It is not obvious whether the
proof given by Hartle and Tsylor is capeble of being modified to
include observables of more general symmetry types. This problem
is not tackled directly in this thesis, but an alternative
approach is developed which does resolve the ambiguity.

The approach considered in this thesis is to formulate the
cluster decomposition property within the field theoretic frame-
work rather than, as is normally done, in the quantum mechanical
space. This has the advantege of not only showing that pere-

fields are consistent with the cluster decomposition property

but also of demonstrating for which class of operators the
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cluster property heolds. An additional advantage of the field
theory formulation is that it allows a comparison with the results

obtained by Ohnuki and Kamefuchi(23)

which are based on apparently
similar physical assumptions.

Similarly to the quentum mechanical case, the application
of the cluster decomposition property to pasrafield theory is
essentially the reduction of various groups to their approprilate
subgroups. §2.2 contains a résumé of some recently discovered

(17)

properties of the representations of 0(2v+1), 0(2v} and U(v)

afforded by v parafermi operstors and those of the representations

(19)

of Sp(2v) and U(v) afforded by v parsbose operators In order
to emphasize the group theory involved the variebles Xy of a non-
relativistic parafield, ¢(xi), are restricted to a finite number
of values labelled 1 to v. The tramsition to continuous variables
is discussed at the end of 2.2 and is also effected at the
appropriate point in the discussion.

(23)

Ohnuki and Kemefuchi have considered a ‘non-relativistic

limit of locality" and have shown that it restricts terms in the
interaction Hamiltonian to arbitrary functions of the following

’c,erms-r

*Here, and throughout the thesis, upper signs refer to parsbose

fields and lower ones to parafermi fields.
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(o ()00, » [8(x),8()0,

and '
L6 (x),8 (I, .

They assume that this "non-relativistic 1limit” is equivalent to
the cluster decomposition property and so imposes all the necessary
restrictions on a theory. A comparison of the conditions of
locality and cluster decomposition is given in §2.3 where it is
ghown that conceptually, at least, they are different. It is
therefore not surprising that for parafields the restrictions on
permissible physical observables due to cluster decomposition are
different than those obtained by Chnuki and Kamefuchi based on
locality.

In §2.4 the cluster decomposition property is formulated
within the framework of field theory rather than, as is usually
the case, the quantum mechanical framework.

The restrictions on a non-relativistic parafield theory due
to the cluster decomposition property are derived in §2.5. The
results of §2.2 are of particular importance since in the para~
fermi case the problem is essentially that of reducing the
appropriate representations of 0(2v+3), 0(2v+2) and U(v+1l) to
those of the subgroups 0(2v+1), 0(2v) and U(v) respectively. For
the parsbose case the appropriate reduction is from Sp(2v+2) and
U(v+1) to Sp(2v) and U(v) respectively. In both the parafermi

and the paraebose case, permissible physical observables are
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restricted to the elements of U(v) i.e., functions of operators of
the form _

[4 () 00x,)1,
This is obviously a more severe restriction than that obtained by
Ohnuki and Kemefuchi. It also implies more severe selection rules

than those obtained by previous authors(s’39)

and in particular,
for p > 1 it forbids the annihilation or creation of paraparticles.

The final section in §2.5 compares this restriction of
physicael observables to the unitary group with the classification
of observsbles by means of the associsted gauge groups that hes

recently been effected by Druhl, Haag and Roberts(go).

As a
result of restricting physical observables to elements of U(v)
the results of the work of Drihl, Haag and Roberts may be used to
show that a parafield is equivelent to & description of p fermions
with certain restrictions imposed.

The discussion of a non~relativistic parafield is completed
in §2.6 with & review of the associated quantum mechanical space
with emphasis on the significance of the unitary rather than
symmetric group. In the guantum mechanical space the physical
observebles corresponding to elements of U(v) are symmetric
functions of their srguments and hence commute with relabelling
operators defined on that space. This proves, at least for para-

fields, the assumption of many authors that physical observables

are symmetric functions of their arguments. The proofs of the
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consistency of the quentum mechanical space of parafields with
cluster requirements may be taken to be quite genersal although it
would obviously be possible to show the inconsistency of functions
which are not symmetric functions of their arguments with cluster
requirements, The significance of the unitary group is that it
permits e resolution of the objections raised by Ohnuki end

Kamefuchi (12)

against the observability of particle permutations.
The generalization in §2.7 to a relativistic field is com-
plicated by the introduction of an additional v degrees of free-
dom for the description of anti-particles. The significance of
the momentum representation is discussed and it is shown that
permissible physical observsbles are those whose representations
in momentum space are functions of the appropriate unitary
algebra. To achieve this within the particle anti-particle
formulation it is necessary to decompose the wave function into
positive and negative frequencies. This is a direct generaliza-
tion of the non-relativistic result. It is well known that the
Fermi commutation reletions are invariant under Bogoliubov trans-

(ko) has observed that a similar result holds

formations and Volkov
for perafermi stetistics. Physically the Bogoliubov transformations
relate the spaces of negative and positive energies. For p > 1 en
interesting distinction between the types of physical observables

that are admissible in each space results from an application of

the cluster decomposition property. This illustrates the
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importance of considering the representation space associsted with
the algebra of operators as well as the algebra itself.

In the attempts to formulate an axiomatic description of
elementary particles the cluster decomposition property has
received considerably more attention than it has in the various
field theoretic descriptions. In particular the use of "cluster
amplitudes” to parasmetrize the S-matrix has proved extremely
successful. The decomposition of the S-matrix was first con-

sidered by Wichmann and.Crichton(hl).

In §2.8 their approach is
modified for parafields and it is expected that a similar pera-
metrization of the S-matrix may be effected if its elements are
constructed from functions of the gppropriaete unitary group.
Various proofs of the cluster decomposition properties of
vacuun expectation values in the Wightman axiomatic formulation

(25)

of field theory have been given However these proofs either

directly or indirectly use the locel commutativity condition thet
{ A(X) ,A(Y)J F =0

when x and y have a space-like separation. Since this condition
does not hold for parafields in general, not all vacuum expecte-
tion values necessarily satisfy the cluster decomposition property.
Some examples are given in §2.9 which suggest that it would be
difficult to find & sufficiently non-triviel set of vacuum expec-

tation values for which the cluster property holds.
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It is well known that for Bose fields the local commutativity
condition implies that the S-matrix for two particle scattering is

(42)

enelytic For arbitrary order parabose fields the local com

mutativity condition is modified to
[la(x),A(y)l,, A(2)I_=0

when z is space-like with respect to both x and y. Whether or not
this implies that the S-matrix is analytic is unresolved and in
§2.10 some conjectures concerning this are discussed within the
L.5.Z. formulation of S-metrix theory.

The final section contains & résumé snd discussion of the

various results obtained.

§2.2 SOME RELEVANT PROPERTIES OF A PARAFIELD

In order not to interrupt future discussion, some results
sbout parafields which will be needed are given here.
A non-relativistic parafield ¢(xi,t) satisfies the following

equal time commutation relstions:

[o0x; 58D, 14 (x,08), olag, 80 1 = 2 6, ol t)
and
[o(xgst), Dolxgot), ¢lx 2 3 =0
where X tekes a finite number of values 1 to v. In future the
time variables will be omitted in the non-relativistic discussion;
it being understood that all commutstors (or anti-commutators)

will be taken at equal times.
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Bracken and Green,(17) h

ave recently obtained interesting
results concerning the structure of the representations of 0(2v+1)
* #* £ %
1 1 1
generated by 8.5 8. o a_, as] | 8.5 as] _and H 8. as] _ where
*
the N and 8., are the v creation and annihilation operators for

parafermi fields. They have shown the following results:

(1) The vacuum, defined by

8, [0> =0 for all r

and

#
a, &, |0> =D 6rs |O>

vhere p is the order of the parafield, is the lowest weight vector
of a finite dimensional, unitary irreducible representation of
O(2v+1) labelled (5, %, ..., B).

(2) The representation space is found by applying powers of
a.:'s to the vacuum.

(3) This representation of O(2v+1l) reduces to p+ 1 irre-
ducible representations of the 0(2v) subgroup generated by
Y a:, e,s] R | &, as]_ and 4 a:, a:] _+ These representations are
labelled (£ , g s eens % , g-— q”) vhere ¢” = 0,1, ..., p. Repre-
sentations of this type will be termed "Fock" representations of
0(2v). More general representations not of this form will be
termed "non-Fock" representations.

%
(4) The number conserving operators N, = Y e a.s]_

satisfy

[ - _
[Ny Mol o= 8y Map = 850 Mgy
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which is the Lie algebra of the unitary group U(v).

(5) Irreducible representations of U(v) are denoted by
(215 25, ouuy Ev) where 2, may be regarded as the 1%y (or
colurm when parsbose fields are considered) of = corresponding

(h3).

Young tablesu Bracken and Green have shown that for para-

fermi statisties each irreducible representation of U(v) appears

once only, that p =2 81 = 2, = ... = SLv?—-O and
v
yo(- 1)32j =-q
J=1

where g = 97 for v even and ¢ = p -~ q” for v odd.

The last result is particularly important since it implies
that specifying the unitary lebels of a state immediately determines
the representation of 0(2v) to which the state belongs, i.e., the
invariants of 0(2v) are determined by those of U(v) by the sbove
equation. This is s generalization of results obtained previously
by Ohnuki end Kamefuchi(lo).

For parsbose fields the anti-commutators %a:, zams]+ :
>l a:, a:]+ and 8. aS]+ form a representation of the non-compact
form Sp(2v,R) of the symplectic group. As Alsbisc and Duimio(lg)
have shown, the infinite dimensional space obtained by applying
powers of a:. to the vacuum reduces into p + 1 irreducible repre-
sentetions of Sp(2v). Similaerly to the parafermi case each irre-

ducible representation of Sp(2v) contains all those representations

*
of U(v) (generated by the operators %l 8. as]+) with the same
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number of odd rows. Once again an important result holds; that
specifying to which irreducible representation of U(v) a state
belongs immediately determines to which representation of Sp(2v)
it belongs. t is this property, common tc both parafermi and
parabose algebras, which is of importance in considerations of the
cluster property.

Since the cluster property is formulated in configuration
representation the sbove results, formulated in momentum space,
should be restated in configuration representation. From the
rather artificial definition of the ¢(xi)’s the modification of
the results is straightforwsrd. For example the generators of

the 0(2v) subgroup are

HoT(xg), o (x) 1, M (), (x))_

and

ERMCHREICN I

The restriction of the domain of ¢(xi) to a finite set of values
has been introduced in order to emphasize the group theoretical
aspect of the cluster problem. The transition to the continuous
case can be effected by replacing sums by integrals snd the 613'5
by the appropriate delta functions. In particuler, the set of
states |(x,y, ... z)lsi> defined below still form a complete set of
states snd are lsbelled by operators of the fann%i¢*(x), ¢(y)}t.
This is so because these properties are a direct consequence of

the cormmutation relsastions and not of the restriction to a finite

domain.
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It is interesting to consider the nurber conserving opera-
tors Nij as they form a generalizastion of the so-ecalled particle

(7

permutations introduced by Landshoff and Stapp and discussed in

detail by many others (refs. 8, .., 13). 1In particular, Ohnuki

(10)

and Kamefuchi have shown that any parafield state can be ex-

pressed as a linesr combination of states of the form

- * *
[{o (xi1)’ é (xiz), cee b (xin)}, 2, 8>
where
2= (815 05 ey zv)

denotes a particuler representation of rank n of U(v) and 4
labels the basis state of that representation. The arguments ere
to be symmetrized over the xi's. In future the above expression
will be abbreviasted to |(x)n2,si>. Ohnuki and Kamefuchi interpret
% as denoting representations of particle permutations but their
results may be suitsbly modified to interpret % as denoting repre-~
sentations of U(v). As will be considered in §2.4 labelling a
state in this fashion introduces a redundancy into the desecription
of a state since the projJection operator Pn onto the n-particle

space satisfies

d
)
1
Pp=ar (x§ ,Q,Zl s.=.z-1 I(X)D!Lsf <(x)njz'sil
n i
29
) (x§ zzl ar |(xytey> <Gty |

n
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In this equation dz is the dimension of the !Lth irreducible repre-
sentation of 5 and
? )

(x)n

denotes
v

v v
i;=1 i§=l i§=1 ‘

The redundancy involved is not of any physicel significance
and could be removed by labelling a state by the chain
U(v) D U(v-1) 2 ... 2 U(1). 1In many cases the s;'s may be thought
of as labels corresponding to the chain U(v-1) D U(v-2) D ...
D u(1). In future discussions "choosing s; and 8y eppropriately”
will mean taking the particuler basis states (or possibly combina-
tions of them) which correspond to the symmetry lebelled by
U(v-1) D U(v-2) O ... D U(1) which is being discussed.

§2.3 A COMPARISON OF THE CONDITIONS OF LOCALITY AND CLUSTER
DECOMPOSITION

Two conditions common to & relativistic field theory are
those of locality and cluster decomposition(zs). It is often
assumed thet these two conditions are equivalent but, as the
results of this chapter will show, for p > 1 this is not the case.
Even for Bose statistics, Sudarshan and Ba.rdakci(hh) have pro-
posed sn example of a field satisfying local commutavity but
violaeting the cluster decomposition property. In this section

the conceptual aspects of locality and the cluster decomposition

property will be compared.
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The condition of locality requires that events with space-
like separation should not interfere since interection effects are
propagated at velocities less than cor equal to the velocity of

light. This condition is usually expressed mathematically(hS) as

[Hi(x), B (y)i_=o0 (2.1a)

if x vy. The interaction Hamiltonian is denoted as HI(x) and

X N y denotes space-like separation. Oneda, Umezawa and

)]
Podolanski(46) have suggested that the sbowve relation be supple-
mented by
[E (x), ¢(z)1_=0. (2.1v)
(23)

Ohnuki and Kamefuchi have applied both these conditions to a
parafield and heve derived the restrictions on the field observ-
ables. However the sbove conditions may be criticized on two
accounts. The first is that they have been derived using the
interaction representation which is known to lead to inconsistencies.
A criticism more relevant to parafields is that the derivation of
(2.1a) assumes that the variations are commuting c-nurbers (see
p.421 of ref. 45). For p > 1 this is not the case and, as Kibble
(¥7)

and Polkinghorne and Scharfstein have shown, variations may be
defined for only certain combinations of parafield operators. From
this point of view the above conditions should not be spplied to &

parsfield without further justification.
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Az discussed in the Introduction the cluster property re-
quires that two widely separated clusters of identical particles
should be non-interacting. Although, as Wichmenn and Chrichton(hl)
have pointed out any large space-time separation is permissible;
in general only large space-like separations will be considered in
this thesiz. The cluster property is expressed mathematically by
the factorization of expectation values representing the results of
measurements. This is a dfferent set of mathematical restrictions
imposed on the theory than those implied by locality and the equi-~
valence of the two sets of restrictions mey depend heavily on the
mathemaeticel structure of the theory.

Conceptuelly, locality is simply a kinematical requlrement
that a certaln spatiel separation is too great for interactions,
propagated at less than the speed of light, to be transversed
within e certain time intervel. However it contains no informa-
tion on how the strengths of these interactions may depend on the
separstion of the interacting bodies. It is exactly this informa-
tion which is supplied by the cluster property which assumes that
these interactions become negligible as the separation is increesed.

The difference between locality and cluster decomposition cen
be illustrated by means of & “gendanken’ or "thought" experiment.
Two experiments are performed on two groups of similar particles,
one growp of which is on the Earth and the other which is on the

Moon. If, in a chosen reference frame, both experiments are
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performed at the same time then both the cluster property and
locality would imply that the two results are independent. How=
ever, if the experiment cn the Moon was performed at a sufficiently
later time such that the interactions propagated from Farth could
reach the Moon then locality would nc longer necessarily require
the independence of thz two experiments. On the other hand, the
cluster property would still require the independence of the two
experimenta. This example shows the non-equivalence of the two
restrictions.

In both ceses the non-relativistic limits can easily be
obtained. As discussed by Ohnuki and Kamefuchi the locality con-
ditions may be modified by taking equal-time commutators and
allowing the spatial separations tc epproach infinity. The
cluster decomposition property is similarly modified by consider-
ing the results of measurements performed et the same time but
with large spatial separation. The sbove discussions cean be
easily modified for these non-relativistic cases.

Having discussed the conceptual differences between the
cluster property and locality the remainder of this chepter will
be concerned with demonstrating their mathematical inequivalence
for parafields, provided, as discussed at the beginning of this
section, egs. 2.1 are a reasonsble expression of locality for

parafields.
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§2.4 FORMULATIOR OF CLUSTER DECOMFOSITION PROPERTY FOR
PARAFIELDS

Since the cluster property is formulated in terms of
systems that are spatially separated it is appropriste to use
the configuration revpresentation. Previocus applications of the
cluster property, vhile acknowledging this, have solely used the
guantum mechanical framework. However, there is no reason vwhy
the cluster property cannot be applied to the field description.
There are scme differences between the guantum mechanical approech
and that of the assccisted field theory which are relevant. One
is that an opersator in field theory, since it is expressed as a
function of the ¢'s, takes the game form whether the system is
deseribed in terms of redundant particles or not. This has an
advantage over the corresponding quentum mechanical description
where, for exemple, &n operstor which is a symmetric function of
its erguments in C; must also be symmetrized over the arguments of
Cp, 1f the system C; is to be described in terms of the redundent
cluster Cp. A point to be emphasized is that in the field theory,
gsince the number of particles is not necessarily conserved,
expectation values cen be evaluated between superpositions of states
with different numbers of particles.

MAny state of a parafield may be represented by |a> where

© h (

> = £ ((x) ) [(x) .2, 8,5
fa néo (}z{)nﬂzl 5 x), Ixn 8;



25.

and this may describe a state localized in Cy provided the wave-

functions fig) ((xn)) venish outside C;. Defining a physical
i

observable F(Cy) by

F(Cy) = (z-) fcl(éls X9y eevs Xj) Pixy) wixg) ... w(xj)
J %
where ¢(xi) stands for either ¢(xi) or ¢ (xi) and fc1 also has a

vanishing support outside C;. The result of a measurement per-

formed on system Cj is given by
<a| F(Cy) lo> .

The same measurement cen be performed in the presence of a
redundant cluster C,. For the purpose of this thesis it will
suffice to consider one additional particle, described by ¢(xR),
which has a non-overlepping domain with ¢(xi) ol = Hi2y ey D
As already noted the form of the observable F(Cj) is the same in
corbined system so that the only modification is in the description
of the state [u>. Only the modifications to the basis states
|(x)n2, Si> are considered; the general result follows directly.

As noted in §2.2 the state ‘(x)nm, §,> 1s a basis state of
an irreducible representation of U(v) and so cen be uniquely

labelled by the invarisnts of U(v), U(v-1), ..., U(1). Any state

*In the 1limit of continuous xi's the summation is replaced by an

integreal.
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in n+l pasrticle system C; Y C; which has the same labels for these
invariants will then represent the same state of C;. This is
because the set of all states specified by the U(v) D U{v~1) D
... D U(1) chein is complete. If C; is described by the state
|(x)n2,si>, then in terms of the combined system C; YV Cp a
possible description of this state is the vector

la> = Z’ c, - I(x)n(xR)z‘ s, .>

. i
where

The summation is restricted to those £° which on "removal of the

(18)

last bose” reduce to £, and s,. is the basis state of the

i
representation 2° which is appropriate to 8, This ensures that
the state |a”> has the same unitary lsbels as the state
|(x)n2,si>. To describe a genersl superposition of states each
basis state in the expansion is treated as sbove with one extra
restriction. Rule: "Suppose |au> is & general superposition of

bagis states at least two of which, denoted as Iﬁ,si> and I!Ls >,

J

belong to the same irreducible representation of U(v). In the

description of this state in the combined system C; U Co , if
|2,si> is described by

Z c,. |27 s, >
e 2 i
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and
Isz>
by
g‘ b, . |2~ sj,>
then
cz, = bl‘

The justification for this restriction is given in Appendix 1.
Denote by la> eny state of the n-particle system C; and by
ld‘> the same physical state described in terms of the combined
n+l particle system C; U C;. The cluster property then requires
that the results of measurements {i.e., the expectation values of
physical observables) in C; should be independent of C. This

requires

<a| F(Cy) o> = <a”| F(Cy) |a™> .

§2.5 RESTRICTIONS ON THE PHYSICAL OBSERVABLES OF A NON-RELATIVISTIC
PARAFTELD

For a non-relativistic parafield physical observables (e.z2.
the energy-momentum of the field or terms in the interaction
Hamiltonian) may be represented as integrals of functions of the
field operators ¢(xi) and ¢*(xi). For parafermi fields these
operator functions mey be classified according to whether they
are elements of the 0(2v+1l), 0(2v) or U(v) enveloping elgebras.
The sppropriate algebras for parabose statistics are Sp(2v) and

U(v). The states of & parafield form the basis for representations
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of these groups. The introduction of a redundant particle intro-
duces an extra degree of freedom and so the cluster decomposition
is essentially the reduction of these representations to those of
the appropriate subgroup. The parafermi representations will be
considered in detail and, since the argument for the parabose
case is completely analogous, only the results in the latter case
are indicated.

States locelized in C; form representations of 0(2v+l),
0(2v) end U(v) while for the combined system C; V C, the repre-
sentations are 0(2v+3), 0(2v+2) and U(v+l). The cluster property
is & consideration of the reduction of 0(2v+3), 0(2v+2) and U(v)
to 0(2v+1), 0(2v) and U(v) respectively. Each reduction is connv
gidered separately in sections (a), (b) and (c). The results for
the parabose case are considered in (d). Finally, in (e}, some
obvious selection rules are discussed and in (f) an importent
consequence of the restrictions imposed by the cluster property
is discussed.

(8) Unitary Group U(v)

As the elements of the unitary group leave £ unchanged

the results of measurements are represented by

<(x’)nﬁsil F(U(v)) I(x)nﬂsj>

where F(U(v)) denotes an element of U(v) as described in

§2.4. 1In the presence of a redundant particle localized
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on C, the state I(x)nzs > of C; may be described by

J

E' c, I(X)n (xR) ' 5>

where the summation is as in §2.4 and

is the only restriction on the coefficients Cpae By con-
struction x # X1y X0y e00s x, 80 that the above state
belongs to a representation of U(v+l). By a standard

reduction of U(v+1l) to U(v) it follows that
<(X’)n(xR)2’si,l 7(u(v)) |(x)n(xR)Z‘sj,>

= <(x’)n25i| F(U(v)) l(x)nﬁsj>

provided’f 2% = £ and 8y - and S,j" are chosen sppropriately.
This ensures that the cluster decomposition property is
satisfied. For any combination of basis states, provided
the restriction of §2.4 (discussed in Appendix 1) is
observed the cluster property follows directly from sbove.
The generalization to a cluster Cp of n” identical
particles follows directly from the reduction of tensor

representations of rank n + n” of U(v+v”) to representations

U(v) x U{v”’) of rank n and n” respectively. The crucial

N [
+2 denctes the Young tableau obtained from & by "removing

the last bose"(he).
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roint in these considerations is that there exist no para-
field representations of U{v+1) (or U(v+v’) in general)
which, upon reduction, contain representations of U(v)

(or U(v) x U(v”) in general) which are not themselves para-
field representations. The generalization to two or more
redundant clusters follows by induction.

(b} Orthogonal Group O(2v)

The cluster property in this case requires the reduc-
tion of 0(2v+2) to 0(2v).

Consider a state of the combined system Cy Y C, which
belongs to the representation (g-, %, ooy ‘2—, g— - l] of
0(2v+2); this corresponds to & superposition of states of
U(v+1) with either zero or p odd colums. This reduces to
the representation (%, 2., %-— 1, 12)-- 1) of 0(2v) by
the following chain

D R
&% o 333-9°83 331

>G5 ....5-1,8-9.

This "non-Fock” representation of 0(2v) provides a repre-

sentaxioﬁ (in general reducible) of U(v). Consider a state
C; belonging to a representation of U(v) which is contained
in both "Fock"” and "non-Fock” representations of 0(2v). 1In
terms of the combined system this state may be represented

by a state of U(v+1l) which belongs to the representation
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Q%, gy IR gy E-— 1) of 0(2v+2) and which reduces to the

representation (83 53 R g—- 1, g-- 1] of 0(2v).

Now if the elements of 0(2v) are interpreted as
observables it would be possible for an observer on C; to
determine thet, in the presence of C,, the state belongs
to the representation [gy %, cees g-— 1, g-_ 1} of 0(2v).
For example, this could be achieved by evaluating the
Casimir invariants of 0(2v). However, representations of
this type do not occur if the system is described in terms
of cluster C; glone. Thus an observer in C;, determining
by means of operators localized in C; that the state belongs
to the representation (83 53 cens g—- 1, g-u 1) of 0(2v),
would be sble to predict the existence of C;. Also the
relationship between the invariants of 0(2v) and U(v) is
lost for "non-Fock" representations, so that matrix elements
of 0(2v) operators are not independent of the existence of
Cy. Some explicit examples are given in Appendix 2.

If observebles are restricted to functions of the
unitary group then no contradiction between the two modes
of description arises since it is never possible to determine
to which representation of 0(2v) a state belongs.

That the above arguments hold only for p > 1 can be

seen from the reduction of the (%, %, ..., %, %) representa-

tion of 0(2v+2) afforded by p = 1. The sbove difficulties
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do not arise since the only representation of 0(2v) obtained
is lebelled (%, %, ..., %). Ho "non-Fock" representations
occur and it is quite consistent to interpret the elements
of 0(2v) as physical observsbles. This is a fundamental
difference between Fermi and higher order parafermi statis-
ties.

(¢) Orthogonsl Group O(2v+1)

Since 0(2v+1) contains of 0(2v) as a subgroup it is
obvious from the previous section that elements of 0(2v+1)
are not consistent with the cluster assumption. This is
also apparent from the fact that O{2(v+v~”)+1) does not
include 0(2v+1) x O(2v”"+1) as a subgroup, so that even the
non-relativistic limit of locality is not satisfied. This
holds for all p end so reproduces the well-known result that
it is impossible to create or annihilsate an odd number of
fermions.

(d) Non-Relativistic Persbose Fields

The arguments for the parsbose fields are completely
analogous to the parafermi case except that the relevant
algebras are Sp(2v) and U(v). The only operators that are
consistent with the cluster decomposition property are the

elements of the unitary group generated by the Nij's where

%
Ny = Y ¢ (xi), ¢(xj)]+ .
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The exemples of Appendix 2 can easily be modified by
replacing comutators by anti-commutators snd considering
symmetric rather than anti-symmetric states. Once agein
these arguments hold for p > 1 only. By ordering all the
particles in C; to the right and all in C, to the left, the
cluster property can easily be shown to hold for any operator
in Bose statistics.

(e) Selection Rules

Selection rules for parafields have been derived by a

number of other authors(39)

based on the locality require-
ments. The restriction of observables to functions of the
unitary group obviocusly imposes more severe selection rules.
Since elements of the unitary group are number conserving
operators it follows that in any reaction the number of
pareparticles on both sides of the reaction 1s conserved
i.e., paraparticles are neither created or destroyed. This
selection rule however, applies only in the case of a single
parafield. To discuss the more general case of interacting
fields the relative commutetion relations between different
fields must be considered. This is not discussed in this
thesis.

(f) The Equivalence of a Parafermi Theory to p Fermion
Fields

It is well known that a parafermi field of order p

can be written as a sum of p commuting fermion fields, i.e..
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s = 3 o )

o=1
These Green corponent fields can be related to a set of p
anti-commuting fermion fields by means of Klein trans forma-~
tions. This indicates that s parafermi theory of order p
mey be equivelent to a system p fermions. Druhl, Haag and
Roberts(zo) (and Ohnuki and Kamefuchi(zl)) have shown,
gince the Klein transformetion is in general non-local,
that the equivalence will only hold if certeain restrictions
are placed on the theory. The effect of these restrictions
is to limit the choice of forms of operators representing
physical observables.

The gauge transformations on the Green component
fields that leave the parafermi commutation relations
inverisnt form representations of U(p), O(p) and sO(p).
Drihl, Haag and Roberts have shown thst if the algebra of
observebles is invarient under U(p) transformations then
the parafermi field is Just an alternstive description of
s system of p fermions. However Bracken and Green(hg)

have shown that the group structure cf the Green component

fields may be characterized by the diagram
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0{2v) > s0{2v) 2 U(v)

P ,
Ulp) D 0o(p) 2 solp)

*.
e.g., the U(v) operators 4 2. a }_ are invarisnt under

the transformations a(l) -+ a(l) = § . a(k) » Where
r T k=1 ik
¢,, 18 a unitary matrix. Thus the algebra corresponding

1k
to U(p) is U(v). Now, from the previous sections, the
cluster property restricts the observeables to elements of
U(v). But Druhl, Haag and Roberts have shown that this
restriction is equivealent to describing a system of p
fermions.

In other words, the cluster property ensures that a
parafermi field is equivalent to a system of p fermions
with certain conditions imposed. Exactly what these con-
ditions are and what their physical interpretation would
be is an interesting problem, which, in particular for

p = 3, may have important consequences.

§2.6 THE QUANTUM MECHANICAL SPACE ASSOCIATED WITH A PARAFIELD

The restriction of physical observables in parafield theory
to elements of the unitary group also imples a restriction on
observables in the corresponding quantum mechanical space. In

view of the recent concern of authors with the quantum mechanical
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space of paraparticles the results obtained in the rrevicus
sections are discussed within the quantun mechanical framework.
The guentum mechanical wave functions associated with a

parafield are defined by(lz):

¢(2)((x)nsi,(k)nsj) <(x) sy |0) 20>

This defines ¢ as & function of n varisbles (xj, x5, ..., xn)

and as such provides a representation of vrermutations of these
variables. Since permutations of the variables (x1, X35 v0n, xn)
only amount to a relabelling of the varisbles they do not change
& physical state and hence cannot be interpreted as physical
observebles.

It is known that operators corresponding to functions of
the Nij are, in the associated quantum mechenical space(lo),
symmetric functions of their erguments. In standard discussions
of permutation symmetry it is usually steted as an assumption
that cbservables ere symmetric functions of their arguments .
This is unnecessary for parafields since the restriction of
pPhysical cobservables to functions of the Nij’ and hence to
symmetric functions in the quantum mechanical space, follows
directly from the cluster assumption. Since these observables
commute with all relabelling opereators they are unsble to dis-

tinguish between states within an irreducible representation of

the relabelling operators and hence the concept of a "generalized
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ray”(SO) naturally erises. Apart from some modifications, such as

the replacement of irreducible representations of Sn by reducible
ones, the quantum mechanical space associated with a parafield is
similar to that propcsed by Greenberg and Messish. The conjecture
(51)

that “each vector in %

of Greenberg F.T

corresponds to an
entire irreducible representation, belonging to the same Young
tableau, in HQ.M." has been verified. His second conjecture that
"the redundancy associated with the generalized reys thst repre-

sent states of particles which are not Bose or Fermi in H is

Q.M.
removed in HF.T. and at the same time the unobservable permutsation
operators are eliminated” is also true since the Hx(p)'s are not
defined when acting on states in the field theory. A one-to-one
correspondence between the quasntum mechanical space and the para-
ficld may be preserved by choosing a particuler basis state in an
irreducible representation of the relsbelling operators and elimi-
nating the rest. This has no physical effect since the concept of
labelling identical particles is artificial and not of any physical
significance. This so-called "elimination of the generalized ray"

has been discussed in detail by Hartle and Taylor(ls)

(11)_

and also by
Stolt and Taylor
Within the field representation the elements of the unitary
group form a generalization of the particle permutation operators
introduced by Landshoff and Stapp. In fact the restriction of

observebles to elements of the unitary group is a generalization
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of the suggestion by Landshoff and Stapp that physical observables
are functions of particle permutations.

Ohnuki end Kamefuchi(le) have argued that particle permuta-
tions of the momentum lsbels, i.e. the Hk(p)'s msy only be inter-
preted as physical observables for s free (non-interacting) field
since the Hk(p)'s are not defined when acting on arbitrary n-
particle states. However operators which are similar to particle
permutations when acting on states with all lebels different can

be expressed in terms of the Ni where

J
*
=1 g}

Nyg =dap al, +5.
The two such operators are

Upy = M3y My3 - Vg4
and -
o5 (N 1, ,)

¥,

Since both UiJ end ﬁij are defined as functions of generators of
the unitary group they can be applied to any state within the

Fock space and hence their interpretation as physical observables
holds for both free and non-interacting fields. In particular the
ﬁij Tform a representation of the permutation subgroup of U(v)

which corresponds to the Weyl reflections of the weight disgram

of the appropriate representation of U(v).
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§2.7 RELATIVISTIC PARAFIELDS

The relativistic discussion of the cluster decomposition
property is complicated by the introduction of an extra v degrees
of freedom for the description of enti-particles. For the para-
fermi fields the cluster property will be discussed in two repre-
sentations; (a) the "negative energy picture” and (b) the
"positive energy picture™. The results obtained are different for
the two representations. For parabose fields only the positive
energy representation is sapplicable. In the following discussions
the coordinate and, in general, the momentum varisbles will take
a continuous range of values.

(a) Negative Energy States

The expansion of the parafermi wave function in the

Heisenberg representation is

L 2
v = =2 [ @ (B (] s pi(p) P
(211)3/2 ER r=1 *

b :
+ ] a (- phip) 7P (2.2)
r=3

where E = v ;‘a?- + m?, wr(;\zl) ere Dirac spinors, the g (g)
R T
satisfy parafermi commutation relations and p:¢x = pot - P°X- The

»
ar(g) are interpreted as creation operators for particles of

positive (negative) energy for r = 1 or 2 (3 or 4). The ‘no-

particle” state is defined by

ar(g) [x> =0 VooR -
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Applying powers of a:(]a) to |x> defines a representation which
will be termed the negative energy picture. It should not be
confused with the hole theory of Dirac where a representation is
defined by applying either creation or snnihilation operators to
e state that is completely filled with negative energy particles.
Ignoring spin indices and restricting the momenta to a finite

number; v, of degrees of freedom the expansion (2.2) can be

written
v 2V
vi(x) = rZ]_ a, ur(x) tea uﬁv(x) = pzl 2, up(x) (2.27%)

By analogy with the non-relativistic case the cluster
property restricts physical observables to functions of the form
[9(x), ¥(y)] _. This could easily be checked by substituting the
appropriate relativistics field operators in the examples of
Appendix 2 and using the fact that rt(x - y) >0 as x -y >
in a space-like direction. However, since it is more convenient
to use the momentum representation in this and future discussions,
the significance of the momentum representation will be discussed
here.

Suppose x and y have large space-like separation and

consider an expectation value of the form
x| vee WxY LB e ke

From expansion (2.2°) this becomes



b,
2v 2v
p=1 g=1
x Hup(x)uc(y) :
Using the commutation reletions this can, in general, be reduced

to expressions of the form

Vv

I B™~100

2v 7 _
. zl h-up(x)uo(y) R I P (2.3)
o=

p=1

For example the relevant terms in

<«x| wxVy) |

reduce to
2v 2v

) w(x)u (y)s .
p=1 o=1 P g pa
In the limit of & continuous range of momenta (2.3) can be

written

J dp e-ip'(x-y) ewip)) <«x| ... |x

where £((w(p)) is some function of Dirac spinors. This integral is
of the form

I e-—ip"(x-y) F(p)dp

which by the Riemann-Lebesque lemma epproeches zero as Ix - yl
spproaches infinity.

This means that in order to reduce the complexity of
some of the subsequent algebras, terms containing Gpg or
6(pp - Pc) may be ignored on the understanding that the Riemann-

Lebesque lemma is used where eppropriate. It is only possible
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to use this lemma for those Pj and Py which are conjugate varisbles
to the xj's and xk’s which have a large space-like separstion.

In the momentum representation, by an argunent analogous
to the non-relativistic case, physical cbservables are restricted
to elements of the U(2v) generated by the %[a:, ab]_. The only
operators in the configuration representation which reduces to

the unitary group elements are functions of
Eo(x), v(x)] .

(b) Positive Energy States

The expansion of the wave-function in the positive

energy representation is

%

p(x) = _._]'_..._._J‘ dap (_ﬂ_l) § {8. (E)WI‘(R) e-—ipex
ER =1 T

+

b (p)v(p) &%) (2.1)

v+ v

% #
where ar(g) and br(g) are interpreted as creation opersators of
positive energy particles end anti-particles respectively. A
physical vacuum state is defined by:

a,.(p) lo> = b (p) 0> =0 Vr,p.

Restricting the momentum varisbles to a finite nuwber; v, of
degrees of freedom and ignoring spin indices this can be written

as

v *
P(x) = jzl {aj uJ(x) + bJ uj+v(X)} .
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Similerly to the negative energy representation the cluster
property will be formulated in the momentum representation.

The algebra generated by the ar's and.br's is 0(Lv+1)
and a state of n particles in C; is characterized by the U(2v)
isbels where the U(2v) algebra is generated by

# ¥
%%,%Ja%;b

1 ,¥b., 8,
I A

and o
by, b (2.5)

The description of the system in terms of C; VU C, introduces en
extra degree of freedom because C, may contain a particle or
anti-particle. The reduction of the representations of U(2v+1)
to U(2v) ensures that the elements of the unitary group are
permissible physicel observasbles, while the eppearance of "non-
Fock" representations of the orthogonal group in the reduction
of 0(4v+2) to O(k4v) precludes the elements of O(L4v) as physical
observebles. All this is quite straightforward end follows with
only slight modificetions to the argument used in the non-rela-
tivistic case.

Within the coordinate representation this restriction
implies thet the only permissible observables are those which
cen be constructed from functions of the form (2.5). Decom-
posing the wave function into positive and negative frequencies

the permissible combinations are
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e, 30 ena 15 0, 300

Ly,

However these are not the only possibilities since for example

the operstor

E=i f (Fru b2 vi,° 9) a¥%

has the momentum representation

(+) (-)
E = (9 + N
A
where
)l o
and

nl-) . 1’z,fb:(p_), b (p)_ .

R.T

- 2)

(2.6)

(2.7)

By the sbove arguments E is a permissible observable since the

integration has removed the offending terms.

However this

integration implies a non-localizsbility which is not desireble

in field theory since it implies that the whole of the Universe

must be considered. Attempting to localize the description by

integrating only over a finite volume would invalidate the

reduction of (2.6) to (2.7) since the orthogonal terms, i.e.,

» »
[a.r(’p_), ar(l_i_)]_ would not diseppear. In this case the operator

E would no longer be consistent with the cluster decomposition

property. In order to construct operators which are consistent
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with the cluster decomposition property it is necessary to
decompose the wave functions into positive and negative frequencies.

(c) A Comparison of the Positive and Negative Energy
Representations

Parafermi commutation relations are invariant under

Bogoliubov transformations of the form

Ignoring the possibility of myriotic representations these trans-
formations are unitary. It would then appear, using the expan-
sion (2.2) that since [ ¥(x), ¢(x)] is compatible with the

cluster property in the negative energy representation then it
should also satisfy the cluster property in the positive energy
picture if the expansion (2.4) is used. This is equivalent to
requiring thet if the operators [a; . ab}m (p,o=1... 2v)
satisfy the cluster property in the negative energy representation

*
then it follows the operators [ai, b ]_, vhere a =b ,

J r+v r
satisfy the cluster property in the positive energy representation,
In fact, as has been shown in the preceeding sections, this is not
the case and in the positive energy representation, operators of
the form [ai, bj]— do not satisfy the cluster property. The
apparent contradiction is resolved by observing that transforma-
tions of the form L. -> b:_ do not preserve the unitary symmetry

of the basis states and hence a statement of the cluster property

in one representation does not transform into the corresponding
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ctatement of the cluster property in the other representation.
An exeample showing the necessity of considering the cluster
property in each space is given in Appendix 3.

The parafield version of Dirac’'s hole theory, which
has the expansion (2.27) for the field operators and which cen be
considered intermediate between the positive and negative energy
representstions, can be easily shown to be equivalent to the
positive energy representations as far as the cluster property is
concerned. This is becsuse the physical vacuum is defined in

the hole theory to be
6 = (0 oo (o P T
Once again this indicates the importence of formulating the
cluster property in that space since considering the expansion
(2.27) alone would incorrectly imply that [9(x), W(x)l_is a
permissible physical observable.
(d) An Example

In this section an example is given to show that
within the particle-antiparticle representation operators of the
form [ ¥(x1), vix,)] _ do not satisfy the cluster property.

Ignoring spin indices ¢(x) has the expansion

The transition amplitude for en operator of the form [ §(x;), Y(xp)1
between the vacuum and the anti-symmetric particle-antiparticle

state



hr(.
EE(-)(xs), ¢(-)(X4)]m {o>
. + +
is p2A"(x) - x)A (x5 - x3) .
In the presence of a redundant particle the same
process may be described by the following transition amplitude,

0] ¥ (xg + 28) 150x1) s vt 5 (2535 (x5 + 2a)

< 37 0) = 9 )T (s + 2003 (230 oo

where & is an arbitrary space-like vector end A + » ., The
asymptotic behaviour of the A’ (z) function for z space-like

is given by

NOK 1 T e 2
(32r3 |2{3)*

which can be ignored for large z. As A + = the sbove vacuum
+
expectation value approaches pZ(p - 2)A+(x2 - x3)A (%7 - xy)

A+(x5 - x5) which does not factorize according to
<0] ¢(+)(xs)$(_) (x5) [0> <0] [T(xy), vlxp)} _

x [$(‘)(X3)5 w(-)(xu)]_ [o>
as required by the cluster property.
It is easily seen that this is just a generalization
of the underlying group theoretical concepts to the configuration

representation.
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(e) Relativistic Parabose Fields

Since Bose and, in general, parsbose commutation
relations are not invariant under transformations of the form
g > a; the relativistic parabose theory can only be formulated
in terms of positive energy particles. Only the charged and
neutral scalar fields are considered here; the generalization to
vector and tensor fields cen readily be effected.

The restrictions of cbservables to those whose Fourier
transforms are functions of the Ea;, a%]+'s follows directly from

the cluster property. Denote by ¢(x) either

3 o . S T
1 [ ? k {ak Jkex | Jkexy
/?E(Qﬂ)s k0>0 fo) N

or

3 -flre * .
1 f a3k b, o~ikex ik %y
k

T — S— e
V2(21)3 >0 Kk, Tk %

For the charged and uncharged fields the cluster property implies

that the following are permitted as physical observables:

6™, 6, 10, 8P,

66, o n, wma 160, oo,

which is a straightforward generalization of the parafermi case.
Also defining w(x) = 3 6(x) then the following operstor for the

real scalar field is compatible with the ecluster property

H=1% I a3x {m? ¢2(x) + v ¢(x)°z o(x) + 72(x)}

=jd9(k)14ak, ak]+w}\s X



However, as for the parafermi case, this implies a non-localizebi-~
lity since the whole Universe must be considered. Once agsin, in
order to construct operators whose domain is a finite volume of
configuretion space and which are consistent with the cluster
property, it is necesssary to decompose the wave-~functions into
positive and negative frequencies.

It is obvious that, as for the non-relativistic case,
this implies more severe restrictions on the theory than would
follow from locality. In particular it is difficult to construct

interaction Hamlltonians HI(x) such that
[HI(X)’ HI(y)]_ = 0 for x vy .

However it may be possible that this is not satisfied but macro-
causeality is, since from §2.3 the vanishing of the gbove commuta-~
tor may not be a reasonable expression of microcausality for a
parafield. An interesting approach to this has been initiated by

%
(52) who has shown that for C algebras the indepen-

Napidrkowkis
dence of observations in space-like regions (V; and V,) does not

necessarily imply microcausality, i.e., [0(Vi), 0(Vy)] = 0.

§2.8 S-MATRIX THEORY

As an example of the cluster properties of theories other
then field theory, the S-matrix description is considered. Even
for Bose or Fermi statistics the cluster properties of S-matrix

theory has received considerable sttention. In particular
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(b1)

have shown how to parametrize the S-
(53)

Wichmann and Crichton
matrix by means of "cluster amplitudes™. Taylor has modified
their argument to consider phase factors, which msy be relevant
for different superselection sectors. For local Bose or Fermi
fields the cluster amplitudes contributing to scattering processes
are essentially the Feynman diagrams of the corresponding pertur-
betion theory. This essentially verifies the cluster decomposi-
tion property for local fields. For parafields the S-matrix can
te shown to be consistent with cluster properties provided its
elements are restricted to functions of the unitary type opera-
tors [a*(lé ), a(,%)]+. The srgument is a straightforward generali-
zation of that given by Wichmann and Crichton. Since there are
additional super-selection rules in a parafield theorv the considera~
tion of phase factors is comlicated and not discussed. This does
not effeet any conelusions since no attempt has been made to
parametrize the S~matrix by cluster amplitudes or to correlate
this parsmetrization for "para-local fields" with the appropriate
Feynmen diagrams.

Denote by Wn the set of all n-particle momentum space

(24)

wave functions which are infinitely differentiable and of

#
"fast decrease”. For every ¢ in W an operator A (¢) is defined
by

A*(¢) = Nn J(m)ds(gl). ..d3(-gn) ¢(Rl""’3n) a*(;el)...a*(gn)
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where Nn is an appropriate normalization constant. The vacuum
staete is defined by
a(py) [o> =0

and

a(gi) a*(gj) [O) = pG(Ei - gj) |0> .
An Hilbert space, H, can be constructed in the usual sense by
epplying A*(¢)'s to the vacuum. For parabose statistiecs it is
more convenient to use symmetrized versions of the A*(:b)’s

defined as

* Q2 " ) ‘
A (¢)si =N J(m)d3(g1) cee 43(p )

X

6 (s vves ) @ (g1) ooe 8 (p))
“i

N f(w)aa(gl) ... ad(p)

x

6(R1s s ) Lo (R1) -ev 8 ()1
1

where the & and s, are Sn lebels ss discussed previously.
The S-matrix, S, is & unitary mepping of H onto itself and
the plane-wave S-matrix elements are tempered distributions de-

fined by

L L
m n

s s (%15 secey '%m:’ Rls cvey En)

m n

5

9’m * *® R’n
= <0 {alg1) ... alg )}s S{a (Rl) ee. 8 (;31,1)}s |o>
m n

where R’m’ sm and Q,n, Sn are symmetry labels referring to Sm and

8, respectively. The translation operator U(I,z) is such that
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U(T,z) A*(¢) v (1,2) = A#(¢‘)
where for n = 1
¢'(gi) = ¢(gi) exp (iz°p,) .
It follows that

~ jz'n Q’n - 2'n+n g
(¢ 0, (677352) e

n n n+n

= 3 3
I(w)d Rl e a }\):n+n’

pen- ’?'n n-
X ¢sn+n‘ ((31,---,gn)sn ; (gn+1,-.-,gn+n,)sn')

n+n” # »
exp (1 ] zep) & (p1) ... = (p,) lo> .
k=n
The label 2’n+n' must be chosen such that it specifies an irre-
ducible representstion of Sn +n” which reduces to the appropriate

representations R’n snd Q'n' of Sn and Sn‘ respectively. For

example the function
23 2 Ly

$(p1:02-R3) = ¢(p2.p3-p1) + ¢(p3.p1.p2)

mn

¢(p3,R2:81)
has 3 = (2,1), %, = (1,1) and 2; = (1).
With this notation the cluster requirements, ss stated by

Wichmann and Crichton are generalized to
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lim ln 2= *nen-
e <LLV730) 7 (W7752)
n n n+n

2 foa &y
x |{(¢730) " (¢7752) 3 7 >
s S . B -
ik n m¥m

%, 2 8- L
= <(p7350) " Is](¢730) "> <(w7750) " |s](97750) " >
n m n” m”

and

lim

2 .8 .
m } m+m S
Z>

9 %
<(¢‘;0)sn|8|{(¢‘;0)Sm(¢";Z)S Je
n n )i} m+m

=0 .

-

Only the first of these two restrictions will be considered. The
epplication of the cluster decomposition property is quite simpie
and it follows the previous sections that only S-metrices whose
elements in momentum space are functions of the unitary-type
operators are permissible. In particular the second example,
when modified for parsbose operators, in Appendix 2 quite clearly
shows that the elements of the functions essociated with the
orthogonal group violste the asbove factorization property.

It is straightforward to construct S-matrices from opera-
tors of the form [a*(k), a(,%)]+ which are consistent with the
other axloms of S-matrix theory. The ease with which this cen
be done as compared with field theory is because S-maetrix theory
does not require the local behaviour of field theory. Due to the
complicated nature of the commutation relations functional 4if-
ferentiation of parafields can only be defined for certain

(u7)

operators The parametrization of the S-metrix by cluster
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amplitudes in a fashion similar to Bose statistics is not a
trivial problem because of such difficulties and so is not con-

sidered in this thesis.

§2.9 WIGHTMAN FORMULATION

The Wightman formulation of parafield theory has been dis-
(26)

cussed by Dell' Antonio, Greenberg and Sudarshen and also by

(27). These authors have shown that the usual conditions

Govorkov
on vacuum expectation values (abbreviated to V.E.V.) such as weak
local commutevity, T.C.P. and the spin-statistics theorem are
satisfied by parafields. For parafermi fields Govorkov has ob-
tained restrictions on the V.E.V.'s based on locality require-
ments. It would not be surprizing in view of the results ob-
tained in previous sections if the cluster decomposition property
did not impose more severe restrictions on the theory.

However Dell' Antonio, Greenberg and Sudarshan maintain
that the cluster decomposition property holds for the V.E.V.'s
of parafields. They maintain that this is so because proofs of
the cluster property (i.e., Jost(QS)) do not depend on local com-

*
mutativity which is expressed as

{A(x), A(y)I_=0 for xny .

Since these proofs involve a consideration of the matrix elements

of the translation operator it would sppear that the cluster

#A(x) is used to denote & neutral scalar field.
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decomposition property should hold for parafields. However for

Bose fields it is possible to order the fields such that any V.E.V.

of the form

<0| Alxy) ... Alx; +2a) ... A(xJ) oo Az + 28) lo>
as A > » end for a en arbitrary space-like vector(*) can be
ordered as

<0 A(xy) ... A(xJ) Alxg + 2a) ... Alx + Xa) |o> (2.8)

The cluster problem then reduces to evaluastion of the matrix
elements of the translation operator. For parafields the commu-

tation relations are

[[A(x), Aly)I,, Al2)]_=0
for x vz and y';'z s
and in general these relationships are not sufficient to ensure
that V.E.V.'s cen always be ordered as in (2.8). Thus the stan-
dard arguments based solely on the matrix elements of the trans-
lation operator are not sufficient to prove the cluster decom~
position properties of parafields.

In fact, &5 the examples in the previous sections and the
Appendices show, the cluster decomposition property does not hold
for all V.E.V.'s of parafield operators. This is because free
field@ theories are an exemple of the Wightman axiomatic formule-

tion.

#*Throughout this section a will denote an arbitrary space-like vector.
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For interacting fields the Wightman formulation is con-
veniently investigated using the Green snsatz. This is defined by

Alx) = E A%(x)

a=1

where

]
o

[A%(x), Aa(y)im for x vy

[2%(x), A°(y)1, = 0 ifa#8 .

Using the properties of the V.E.V.'s of these component fields

it is shown in Appendix 4 that for p = 2

U <A(x;) Alxy + Aa) Alx3) Alxy + ra)>

Ao

# <A(x;) Alx3)> <A(xp) Alxy)> .

By the same method

HUB a(x;) Alx,) Alxs + 2a) A(xy + Aa)>

. <A(x1) A(XZ)> <A(x3) A(Xq)> .

Thus for p = 2, and in general any p, the cluster decomposition
property is not necessarily sstisfied. A non-trivial set of
parafield operators whose V.E.V.'s do satisfy the cluster property
is given by the set

A(xi, ) = [A(xi), Alx, . . )]

X4 41704

For xi v xj, xi n xj+1, xi+l ~ xJ and xi+1 Y XJ+1 it follows

from the commutation relations for the A(x)'s that

[Alx, , xi+1), A(xd, xj+l)} =0 .
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The proof of the cluster decomposition of the V.E.V.'s of the
A(x,y)'s is analogous to Bose statistics. Alternatively, it
could be proved using the Green ansatz.

In terms of symmetrized V.E.V.'s the cluster property may
be formulated in a fashion similar to §2.8. The cluster property

in this case would require that

£
1lim - n
- <{(alxy) ... A(xn))sn (&(yq1) + 28) ...
Qn‘ 2n+n’
Ay . + xa)) "~} >
n 8 .'s y
n” “n+n
‘ zn Zn,
= <{Alxy) ... A(x)} > <{Alyy) ... Ay )3 P>
. n n’

Two examples are given to show that for p > 2 this restricted form
of the cluster decomposition property does not hold. These
examples are considered in Appendix L.

It is an interesting peculiarity that the symmetrized
V.E.V.'s of parsbose operators of order two are consistent with
the cluster requirements. This is due to a property of the rep-
resentations of § (or in momentum space U{n)) afforded by the
vb2 operastors. These irreducible representations of 5, (or U(n))
are exactly those obtained by reducing the direct product of two

totally symmetric representations S, and SN for n = 2N and

N

SN and SN*l for n = 2N+1. This is easy to see since in the

reduction of the direct product of two totally symmetric
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representations SN and SN’ each representation of SN+N’ with less
than two rows occurs once only. However this is Just the repre-
sentation space of SN+N‘ afforded by pb2 operators and it is in
this way that pb2 statistics are equivalent to the theory of two
Bose fields. The reduction of some low order temsor products is
given below.

(1) x (1)

(2,0) x (1)

(2,0) + (1,1)

(3,0) + (2,1)

(2,0) x (2,0) (L,0) + (3,1) + (2,2)

ete., where (m,n) denotes the Young tableau with m boxes in the
first row and n in the second. This property is unique to pare-
bose statistics of order two and as the following example shows
cannot be generalized to pb3 (and higher order statistics),
(1) x (1) x (1) = (3,0,0) + 2(2,1) + (1,1,1) .

Since the "hook” disgram sppears twice this cannot represent pb3
since the corresponding representation appears once only for any
parafield. A type of statistics appropriate to the gbove reduc-

(sh).

tion has been proposed by Carpenter It is this factorize-

tion property which ensures that the symmetrized V.E.V.'s of
parsbose operators of order two are consistent with the cluster
decomposition property.

An importent set of V.E.V.'s are the "truncated” V.E.V.'s

(55)

introduced by Haag They are defined inductively by
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W(n)(xl, cees xn) = Wén) (X145 «ves xh)

+) Wék) (X1, vovs xk-) Wl(,n”k)(... xn)

where the summation extends over all ways of dividing the
iy ok ox3 X, into more than one group such that the order within
any group is the same as the left-hand side. The cluster

property then requires that Wén) (X715 voes xn) + 0 if any set of

the arguments x;, ..., X, have s large space-like separstion.

In particular, by explicitly constructing Wé3)(x1,x2,x3), it only

holds that

lim _(3)

rae Vi (xy.,x; + A&, x3) =0
iff

1im

T W(xy,xo + Aa, x3) = W(xy,x3) Wixy) .

As has been shown earlier for p > 1 this does not hold and so for
the truncated V.E.V.'s the cluster decomposition property is not
satisfied. The importsnce of this is indicated in the next

section.
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§2.10 CONJECTURES ON THE CAUSAL BEHAVIOUR OF PARAFIELDS

In a relativistic theory the commutation relations between
field operators are no longer just an expression of permutation
symmetry of identical particles. For example, the concept of

causality is expressed for Bose fields as
[a(x), A(y)}_=0 for x vy .

It is well-known that this condition, within the L.S.Z. approach,

(hz). From this anelyti-

implies the analyticity of the S-matrix
eity follows dispersion relations and symmetries such as cross-
ing (which is an obvious extension of the concept of interchenging

identical particles).

For parsbose fields the commutation relations are
/
flAa(x), A(y)l,, A(2)}_=0 (2.8)

for x v z and y v z. The previous chapters have been concerned
with the consequences of this reiation as far as the cluster
property is concerned. Although this approach essentially only
deals with the identity of particles it was found to place strong
restrictions on the theory. To investigate fully the restrictions
placed on s theory by (2.86 the causzality aspect of the commuta-
tion relations should be investigated. £4s in the Bosc case the
L.3.Z. spproach would seen to be a natursl framework to consider
this. However the formulstion of an L.S.Z. approach to para-

fields is not at all straightforward, so only some conjectures
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and relevant results will be discussed.
The L.S.Z. gspprcach for parafields assumes the existence of
an interpoleting field A(x) such that the asymptotic in and out

fields are defined as

Ao = Mmoo Alx) .
in
(55) (56) . s
Haag and Ruelle have shown that the asymptotic condition

for xd+tw can be interpreted as the vanishing of the interaction
between two clusters as their spatial separation approaches
infinity. In particular, & requirement for the existence of the
asymptotic limits is that the truncated V.E.V. for equal time
decrease more strongly than sny power of R, where R is the radius
of the smallest sphere enclosing all points in the group. How-
ever from the previous section the truncated V.E.V.'s do not
exhibit this property for all separations of their arguments.
It is not intended to go into a detailed discussion of whether
the existence of the asymptotic fields cen be proved from less
stringent conditions for parabose or parafermi fields and for the
remainder of this section it will be assumed that the limits do
exist.

The in and out fields are related vias the S-matrix by the

following equation

out Ain
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Substituting
AB . llmxo+w AB(X)
where o
Alx) =1 a¥ £i(x) =— Alx)
R 7o B ox
X o
)
the four body S-matrix element (A out® Ag B” ) mey be reduced to a

two body S-matrix element. It is no longer obvious that, as in
the Bose case, the commutation relation for A(x) implies that
these elements are analytic. It is not obvious whether s
generalized reduction formule cen be derived as in the Bose case.
One reason for this casn be seen from a consideration of the
perturbstion expension of the S-matrix for higher order parabose

fields. The S-matrix is usually expanded ss

=1+ Z - 1) J axy ... dx t(x3, .0y x )
n n
n=1
X :Ain(xl) P Ain(xn):
where t(xy, +--: xh) is a time-ordered V.E.V. and : : denotes

nornmel ordering. For Bose fields the definition of normal order-
ing is unique and the S-matrix is complete (in an operator sense).
However for parsbose fields the definition of normal ordering is
anbiguous; for example the normal product of the two operators

%
ak end az could be defined as either

* *»
NMaga) =3e, gl, Sxa
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or
# #

N(alak) = a8 .
Both definitions have zero V.E.V. and for p > 1 are independent.
It is not clear what extra properties, if any, a definition of
normal ordering should possess which could differentiate between
the two definitions. Although normal ordering is only an aid to
evaluating the V.E.V.'s of S-matrix terms and so any consistent
definitions should be satisfactory, it is quite possible that
only certain definitions would permit the S-matrix elements to
be analytic. However, irrespective of the choice of definition
of normal ordering, the S-mastrix is no longer complete. Similar
difficulties in defining time-ordered and retarded-ordered pro-
ducts of field operators which are relativistically invariant
also exist.

The causallty condition for Bose fields is often expressed

Palx), 3N _=0 for x vy

vhere j(x) = (O + m?) A(x). This has been elegantly derived
from a conceptual idea of causality of the S-matrix by Bogoliubov
(57)

and Shirkov using the concept of functional derivatives.
Functional derivetives can only be defined for a certain class
of functionals for parafields(w) and it is certsainly not obvious
that the relationship

(alx), 3y, 3(z)_=o0 for xnvz end y Nz
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can be derived in a similar manner to the Bose case.

On the other hand a study of the S-matrix elements of
quantum electrodynamics by Volkov, McCarthy end Amatﬁni(39) has
shown that the metrix e¢lements only differ from those of the Fermi
case by certain numerical factors. This would seem to imply that
the S-matrix elements are analytic.

Using the Green ansatz i.e.,

Alx) = E 2%(x)
a=1

and defining

(1) .(2) (p)

S=-°8 S .. 8

(3)

where S is the S-matrix for the Jth component field thenm a

standard S-matrix theory is defined provided

It is straightforward to prowve from the factorization of the
V.E.V.'s of different component fields that the S-matrix elements
ere snalytic. However it is difficult to find a suiteble defini-
tion of normal product which enables S to be expanded solely in
terms of parafield operators without resorting to the Green
component fields.

Assuming analyticity to be an expression of causality it
is not at all obvious from the above discussion whether s causal
S-matrix theory of paraparticles can be developed. Evidence for

either point of view has been given sbove. It may be conjectured
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that only those S-matrices which ere consistent with the cluster

decomposition property are causal.

§2.11 CONCLUSIONS

Although parafields satisfy the axioms of quantum mechanics
in the sense thet they form a sensible Hilbert space, severe
restrictions are placed upon the theory by the cluster decomposi-
tion property. The cluster problem is essentially s reduction of
various groups to their appropriate subgroups.

For a non-relativistic field the physical cbservables are

restricted to those of the form

J [¢*(x), o(x) o(x), ax .

From this restriction of observables to elements of U(v) it
follows that a parafermi (parabose) field of order p is equiva~
lent to a set of p fermions (bosons). Another immediate con-
sequence of this is that in the associated quantum mechanical
space the corresponding observebles are symmetric functions of their
arguments.

For relativistic fields the only physical observebles that
are compatible with the cluster dacomposition property are those
whose momentum representations are functions of the operators
[a*(k), a(%)}i. One wey to ensure this is to decompose the
field operators into their positive and negative components and to

construct interactions from these.
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In a similar fashion an S-matrix theory which is compatible
with the cluster decomposition property cen be developed.

The restrictions derived are quite general and do not assume
any particular model for the intersactionms.

Within the Wightmen axiomatic formulation of parafield
theory only certain V.E.V.'s are consistent with cluster decom-
position. An attempt to form a generalized cluster decomposition
property using symmetrized V.E.V.'s only works for p = 2 due to
a peculiarity of the pb2 commutation reletions.

An important aspect of field theory arises from the various
discussions of the cluster property. The discussions made use of
not just the algebra generated by a set of operators but alsc of
the particuler representations of the appropriate algebra. This
emphasizes, at least for parafields, the importance of consider-
ing the representations of the algebra as well as the algebra
itself. It is not surprising that violations of the cluster
property are particularly obvious in the Wightman formulation
since V.E.V.'s are essentially the matrix elements of operators.

For p > 1 the existence of an L.5.Z. formalism is question~-
able. It is also not obvious whether the two-body scattering

amplitudes ere necessarily analytic.
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§3. PHYSICAL RESTRICTIONS ON SOME ALTERNATIVE
METHODS OF QUANTIZATION

§3.1 Introduction

Although the most well-known, and most eappealing, parafields
do not exheust the alternatives to Bose or Fermi quantization.
Many other types of statistics have been proposed by postulating

0,31,5L
(29,30,31 ,54) between the creation

various commutation relations
and annihiletion operstors, a: and ar. This is relatively essy to
do since in genersal the e, and a:_ may be associated with the lower-
ing and reising operators of a Lie algebrs.

In the preceding chapter it was shown that severe restric-
tions are placed on parafields as a consequence of the represente-
tions of the various groups afforded by a set of parafield opera-
tors. In genersal, physical restrictions, such as the cluster
property, will impose restrictions on other sttempts to genera-
lize Bose and Fermi statistics. Often these restrictions, as for
parafields, heve a simple interpretstion in terms of the algebra
generated by the appropriate functions of the a. and a:_.

Such is the cese for a type of statisties recently proposed

(30). Their statistics are related to

by XKademova end Kraev
0(2v,1), but es is shown in §3.2 this algebra is insappropriate for
a description of quantum field theory. It is possible to modify
their algebra to overcome the objectiona raised in §3.2 but it is
still not clear whether these modified algebras are consistent

with other properties of field theory.
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In §3.3 commutation relations of the form(Bl)
23 P+l =0
r
and
[arsasl_ =0

are shown to be incompatible with invariance of the algebre under
infinitesimel wnitery transformstions. However it is possible
that this is too severe = restriction to be pleced on a quantum
field description. Finally as an example of the above commuta-
tion relations the statistics proposed by Pa.rks( 30 are considered
and related to parafield opersators.

§3.2 An Inconsistency in the Quantization Scheme of Kademovs
and Kreev

Kademova and Kraev have recently proposed a new quantizg-
tion scheme for spin half fields which has commutation relations
very similar to those of parafermi fields. Their scheme however,
allows an unlimited number of identical spin-half particles in a
given state. The commutation reletioms generate a representation
of 0(2v,1) in distinction to the parafermi representations of
0{2v+1).

The proposed trilinear commutation relations for the
creation operators a.: and their (assumed) hermitian conjugstes,

the annihiletion operators B‘i’ i=1,2,...,v, are

*
[ai.[ajgak]_] T

[ejla,gql] =0 (3.1)
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end the relations obtained from these through hermitien conjuga~
tion and application of Jacobi's identity. These differ from the
parafermi commutation relations in the sign of the right-heand side
of the first equation.

A "vacuum staete” vector |0> is required to satisfy
8y fo> =0 ,

* - |
a8, lo> = p 854 10> (3.2)

where p is some positive constant, the “order of the para-
statistics™. The operstor Npi = %([ai,asle - p) is then to be
identified as "counting the number of particles in the i'l state",
and is claimed to have a spectrum consisting of all non-negative
integers.

The consistency of this scheme has been estsblished only in
the case where there is just one pair of creation and ennihila-
tion operators, ar end 8). It is easy to find an inconsistency
vwhen there is more than one such pair.

Consider the operstors

51

* *
;5[32 + az,8) - al}_a

% ®
Sy = %ilay + ag,a; + ;] _
*
S3 =34 g 531],5
which in view of (3.1), satisfy the familiar angular momentum

relations

[Si’sjlu =i Eijksk s
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and which are hermitian operators in the representations under
discussion. As proved in elementary quantum mechanics texts, any
eigenvalue of S3 in such a representation must be integral or
half-cdd-integral. More importantly, if A is such an eigenvalue,
so is -A.

Now it is easily shown that the spectrum of S3 is here un-
bounded sbove, except in the trivial representation 8 = a.i =0,
end it follows at once that it is also unbounded below. For
suppose S3 hes a maximum eigenvalue Ama,x > 0. Then, because

* %
[S3,81]_= a;, there must exist a normalizsble stajie vector [

such thsat

*
83 | = A ek |x>, a1 [x> = o.

But then

A noxot2

. < [83 |x

* *
x| (a1e; - ajsg) x>
- Yiay x>l 2

<o,

which is contradictory.

In this wey it may be shown that the spectrum of each opereator
2 a.i,a:]_ is unbounded sbove and below in the representations of
interest. It is thus impossible by any addition process to ensure
that S3 has a positive spectrum. The same is therefore true of
the spectrum of each Npi s contrary to the claims of Kademova and

Kraev, and as a result such operators are guite unsuitsble for
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use as 'number operators”. Moreover, it follows that no represen-
tation of the algebra (3.1) in which a: is the hermitian conjugsate
of a,, contains a vector |0> satisfying eqs. (3.2).

As Kademova and Kraev have pointed out, the algebra (3.1)
is isomorphic to the Lie algebra of 0(2v,1). In the case v = 1,
the compact subalgebra containg only one element, M ay ,aT] _»s 8nd
it is possible to find an infinite-dimensional representation
D+(—p)(58) in which this operator is hermitian and has a spectrum
bounded below by & positive constant p. It is a representation
of this type which Kademova and Kraev wish to use for each operator
o a.i,a:}_. Unfortunstely, as the preceding arguments show, it is
impossible to find an infinite-dimensional representstion of the
0(2v,1) algebra, v > 1, in which the operators X a.i,a:]_ have
these properties.

The inconsistency of (3.1) hes also been recently demon-
strated by Chnuki, Yameds and Ka.mefuchi(sg) who showed that certain
two partiele states have negative norms.

It is possible to modify the commutation relations to avoid
the sbove difficulties. Since 0(2,1) is locally isomorphic to
su(1,1) Bracken(60) has suggested the generalization to the algebrs

SU(v,1). Denoting the generators of SU(v,l) as N, , the operators

J

Nio and'Noi cen be interpreted as creation and annihilation opera-

tors respectively. The relevant commutetion relstions sare



T2.

logla,a] 1 =60 +5

ik? T k%
and
{ a, ,aJ] _=0.
Another generalization has been proposed by Lohe(sl) who genera-

lized the 0(2,1) algebra to 0(2,v). The commutation relations
are then those of the "modified boson operators” and are
[ Nl 28 + 268 + 28
Loglag.al] 1 = - 28,8 + 26,2, Ju
and
[ai,aJ]_ = 0.
Both cases would certainly lead to wmusual, though pessibly not

incorrect, field theories.

§3.3 Stabtistics with a Maximum Occupancy

§3.3a Statistics with akp+1 = 0 and {ak,azl_ =0

The expansion of a field operstor is
k
o(x) = ] ¢ (x)a_ ,
k

where the cbk(x) are a complete set of one-particle wave-functions.

Bialynicki-Birula 62’

has observed that the commutetion relations
should be invariant wnder witary transformations of the ¢k(x)'s.
For infinitesimal transformations this requires that the commuta~

tion relations for the ak's should be invariant under the follow-

ing transformations:

B >y =y * % %ep By
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and
*

# # »
B T B T 8y - é e (3.3)
A simple physical interpretation of this condition would be that
it requires if p is the maximum occupancy of & state in momentum
space then p is elso the maximum occupancy in configuration
spece. For example, in the case of Fermi statistics it requires
that a§ = 0 is equivalent to (¢(x))2 = 0. Bialynicki-Birula has
observed that parastatistics are invarient under (3.3).
Statistics with & maximum occupancy of p are ususlly

ckaracterized by akp+1 = 0. Requiring the invariance of this

relation under transformations of the type (3.3) it follows that

p-1, e

P _ P, -
akar * a'ra'ka‘r e & 8% 0.

Requiring, in turn that this and subsequent relations are also
invariant under transformations (3.3) it follows by induction

that

{a.il, aiz, ey By

where { } is the symmetrizer over the p+l arguments contained
within.
For statistics of the form & P'* = 0 end [ ,a] =0
% 2% -
invariance under transformations (3.3) implies from sbove that

8 = 0 and hence that there are no more than p

14

8.11 aiz e

particles in the Universe.



Th.

It is possible that the requirement of unitary invariance
is too strong, for Parks' statistics (to be discussed below) mey
have some significance in the B.C.S. theory of superconductivity(63).
It is interesting to note that Fermi statistics follow
directly from aﬁ = 0, irreducibility of the algebrs and invariance
wder infinitesimal unitary transformastions. Defining

* #
A=aa+ as , then 82 = 0 implies

*
fa,Al_=[a ,A}]_=0.

Irreducibility implies that A = cI where c mey be chosen to be
unity. Invariance of
el =0

and

under (3.3) implies that

Y T

and
*

%
B8y * 8y 8 = O

However it is not possible to generalize this and derive a unique

set of statistics from the conditions akp+l = 0, irreducibility

of the algebre and invariance under infinitesimal unitary trens-

formetions.
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§3.3b Parks' Commutation Relations

Parks' commutation relations may be written as:

. 8 (-r 1 )
Ly sapd_ = 26, (% -im)

Loy ool = 68,8 -
For n, = 1 realizations of this slgebra can be constructed

from parafermi operators. Denoting s parafermi operator by Che then

1 . p

T %
N bk(1)bk(2) s b

(p)

(i)

vhere bk iz the ith Green component field. With the convention

of upper signs for p even and lower signs for p odd the ak‘s

satisfy

Lo .a0;=0,

Lo ,a,]; = 26, ,(N, %) (3.4)
and

[ak’N;z,].. = 6,,8 for p even

0 for p odd

which are a generalization of Parks' commutation relations for

n, = 1. The proof is relegeted to Appendix 5.
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For n, > 1 an ansatz similar to that for parafermi operators

mey be constructed. Define

© (1)
- 1
o =l o
where
[ak(i)’az(J)l- - [ak(i)=az(3)*l_

Ofori#3yj,

and each ak(i) satisfies (3.%4) for p even. It follows directly
thet
no+1
o 0 =0,
[a .81 =0,
[a%,a] =25 (5 - -2)
8 o8l = 28, (N, - 5
and
Y
where n
N, = Zo w (1)
L {21 3

No attempt ie made to gemeralize the statistics for p odd.
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§4. BARGMANN AND HARMONIC OSCILLATOR REPRESENTATIONS
OF A PARABOSE OPERATOR

§4.1 Introduction

Three well-known representations of the Bose commutation

(6k)

relations are; a) the matrix representation

(36)

of the opersators,
b) the Bargmenn representation in terms of complex variables,
end c) the familiar quantum mechanical harmonic oscillator

(31)

representation It is of interest, especially in view of

their essociation with representations of the symplectic group(16) s
to find the corresponding irreducible representations of parabose
operators.

The matrix representations have recently been obtained by

Alsbiso and Duimio(lg)

. They have calculated the matrix elements
for a set of v parsbose operstors. In this chapter the analogues
of the Bergmenn end harmonic oscillator representations are
constructed and various properties of these representations are
derived. The representations are restricted to those of a single
operator &and the generalizetion to v degrees of freedom hes not
been effected.

The Bargmenn representation of the Bose relations uses the

following commutation relation:
{dz,z] _=1.

To construct the more general parsbose representations it is
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necessary to introduce an extrs operator; R, with the properties

iRzl = [R,dz]+ =0 .

¥
Expressions for a end a are

and T
a=d4d +—R,
Z z

vwhere the simplest realizagtion of R is the reflection operator.

*
When T = (- 1)a+1a the 8 and a form a representation of the para-
bose algebra of odd order since p = 20 + 1. The choice

T = (_ 1)(1“'1

(a + %) corresponds to an even order parsbose slgebra
since, in this case, p = 20 + 2 . The introduction of R decom-
poseg the representation space into subspaces of even and odd
functions and the parabose operators take different functional
forms in each subspece.

After the vacuum stete is determined an important distinction
between the representation for p odd and p even sappears. For p
0dd the Bargmenn space is of the form z f(z)(o = 0,1,...) where
f(z) is en entire reguler (analytic) funetion. However for p even
the space is of the form /2.3 2%f(z); these functions are no
longer differentiabie &t z = O and hence are not entire. Although
it is possible to find analytic representations for p even, they

are not considered because of the comparative simplicity of the

non-anglytic ones.
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%
The metric is determined by requiring that a and a are

adjoints. This results in the metric taking a 2 % 2 matrix form;
jts elements being modified Bessel functions of the third kind.

The discussion of the Bargmann space is completed by a
calculation of a complete set of basis vectors and the determine~
tion of the representation of the unit element (reproducing
kernel).

The harmonic oscillator representations for the parabose
algebre may be determined by teking the following expressions
for p and g:

; T
- 1(d.x + 5 R)

Lol
1]

and
qQ=x,

where a reslization of R is the reflection operator. This space
can also be decomposed into even and odd functions. This repre-

(38)

sentation was proposed by Yang who constructed, for p odd,

a representation by applying powers of

-1
n==—=/(q ~ip)
V2

to the stete of lowest energy. However, Yang did not derive the
commutation relations for the p and q, and so did not realize
that they formed a representation of the parabose algebra.

A different method of obtaining the representation space is
used in this thesis. If p and q are substituted in the Hamiltonian

for the harmonic osecillator, the resulting Schrodinger equation
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may be used to determine the energy eigen-states. The energy is
quentized in & similar manner to that for the Bose case by re-
quiring thet the wave-functions are bounded at infinity. For both
p even and p odd the besis states are orthonormal Leguerre poly-
nomials which are generslizations of the Hermite polynomisls of
Bose statistics.

The integral transform that expresses the equivalence of the
Bargmann and hermonic oscillator representations 1s calculated by
requiring that z and dz + %-R correspond to the raising and

lowering operstors == (@ - ip) =nd :11(q + ip) respectively. This
V2 Vz

integral transform has & matrix structure corresponding to the
decomposition into even and odd functions.

The generalized Bargmann and hermonic oscillstor representa-
tions are shown to be equivalent by the proof that the integral
transform is unitary.

The concluding remarks concern the possibility of general-
ising these representations for v > 1 degrees of freedom. A
representation of the Green component fields is also briefly
discussed.

§4.2 Bargmsnn Space of a Single Parabose Operator

§4,2.1 Representstion of the Creation and Annihilstion
Operators

The parabose commutation relastions for a single

operator are
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[82,8"] = 2a

»
[8.2,83"1 = - 2&.

A realizstion of this algebra msy be found in terms of the opere-

tors z, 0. end R where R satisfies

dz
[R,z] = [Ra], =0 (%.1)
and the abbreviation dz = Ed has been introduced. If the choice
a*= 2z and a= dz +-;-R is made, where 1 1s at present an

arbitrary constant, then

2
a2=d§-L32_—R,
22 22

fr:)
N
m*
o
i
L]

[a2,2) _ - < [R,2]

2 {a, + ;- B)

Similarly,

*
[a2

ol =122,4]_

= - 2z

#*
= = 23

In the above equations and throughout this chapter the Bose case

mey always be obteined by substituting t = O.
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A specific realization of R is given by the reflec-
tion operator. So in addition to satisfying (b4.1), R also satis-
fies K2 = I. The introduction of the reflection operator means
that the space uporn which the annihilation and creation operators
act can be decomposed into even and odd functions. In the
following it is convenient to consider any element of the space

as a two component vector, i.e.,

s

f(z) = ffe(Z)\
\%o(e)
where -
fe(z) = f(z) + £(~ z)
and
fo(z) = £(z) - £(- 2) .

Any operator acting on the space will have a two-dimensional
matrix structure, and for multiplication and addition of functions

this structure will be
/7 \
p /
£(z) = {fe(z) fo(z) i

\ :
\\fo(Z) fe(z)/
Tt is straightforward to show that this structure is a poly-

nomial ring. The representation of R is

R=(1 0
0 -1/
& %
and hence the representations of & and a are
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and

respectively. However, this is not the only representstion of R
possible., If the transformation z = et is made then R may be
represented by the following transformetion:

oo L e

Since d_ = et 4, 1t cen easily be checked thet the comutation

relations hold since

t

[R,zl, = Re’ + ¢°R

= et-l'nR + etR

and similarly
[R,dz]+ =0 .

The operstor R no longer satisfies R? = I.

§4.2,2 Vecuum and Excited States

‘The veacuum state is defined by

al0> = 0
and
*
aa |0> = p|0> R
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where p is the order of the parabose slgebra.
In the Bargmann representation these equations
become
zd £(z) + 7 (- 2) = 0 (4.2)
and
z 4 £9(z) - 1 £9(~ z) = (p - 1) £°(z) (4.3)
both of which are difference differential equations and where
£(z) is the vacuum state. A necessary condition that (%.2) and
(L.3) are satisfied is
z a_ £°(z) = B=2L 9(z) .
b 2
This implies that p-1
£°(z) = c(z) 2
vhere c(z) is a function of z (x ~ iy), to be determined.
However, although

[elz), = a] =0
it does not necessarily follow thst

0

[e(z), 8, + - R _

since
[z,Rl_#0.

Substituting £°(z) in (4.2) implies that

Rl Bl
() 25222 +rel-3)(-2) % =0.

It is convenient to teke different solutions of this equation

depending on whether p is even or odd. For p odd (i.e., p = 20 + 1)
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teke ¢(z) = 1 and hence 1t = (~ l)a+1cz is the appropriate solution.
For p even (1i.e., p = 2a + 2) teke c(z) = Yz and hence

+ re—
= (-1)% l(a + %), where the convention V- 1 = i is adopted

throughout this thesis. Thus the vacuum state may be written:

£2(z) = 2* when p=20+1,
and /“—' o _
= ¥zz z when p = 2(a + 1)
and a=0,1, ...

The nth excited gstate in each case can be written

at+n
|n> =z for p odd
and
m o+n
|n> = Vzz 2 for peven.

There is however a major difference between these two spaces.
For p cdd, the basis of the Bargmann space consists of powers
zn, n = L;-'——l and hence spar snelytic functions. For p even,
due to the appearence of the factor v/z—E- the Bargmann space con-
tains non-analytic functione. However, in this case, every
element cen be written as a product /;E £(z) where all f(z)'s
are anslytic functions.

It is possible however for the cese p even to form
a representation of the parabose operators in terms of enalytic
functions. Consider the alternative representation introduced in

the previous section:

17{:‘l:->*t'.=-iﬂ,z=et and dz=e-tdt.
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If the vacuum state is denoted by F(t) it satisfies the equation:

() = - TF(t - im) .

A solution of the above is F(t) = eB

K provided the following
equation is sstisfied

~el-1)P =,

The solutions to this transcendental equetion when 8 = 0,1,2,...
are just T = 0, + 1, - 2, ... which have already been used for
parsbose algebras of odd order. It cen be shown that for para-
bose algebras of even order the sbove equation also has solutions.
In all cases the vacuum state, and hence all excited states, are
analytic functions.

Since there exists an equivalence mapping from the
non-analytic Bargmenn space to the analytic space and because of
the greater simplicity of the former, only the non-enalytic space
will be congidered. This follows from the fact that the represen-

tations of the parsbose algebra satisfying

and
%
an f° = pf0

(5)

are unique to within a unitary equivalence It also follows

#
from this, that any representation of the & and & in terms of

more general functions of the z, dz and R must be equivalent to

®

the representation a =z and a = dZ + i—R .
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§4.2.3 Metric
Since the Bargmann space has been decomposed into
even and odd functions the metric may take a different form in
each subspace. The metric which ensures a is the adjoint of a*

will be assumed to take the general form

(011 P12\

]

\ /
P21 622/

\ /

Because the general form of the metrics for p even and p odd are

different, each case will be treasted separately.

(a) p odd
A scalar product is defined to be:

™,
b
“

(f,g) = IJ dz dz (¥é’§o) p11(zz) plz(zE)\I/g

1 e \
&21(25) pzz(z'i)/ 1\__@3;0/I

where the p,, are to be determined by the condition thet a

i}

*
and a are adjoint. Now

(£,8g) = IJ dz dz (f f ) /Bll 912 .// 0 dz B E_ (

J

T
\\921 pzz/ el 0 &,/
=” dz dz {F pia(a + S + F ppila - Ly
3 e Z A e Z Z""0
- T = T
+ fo Ozz(dz + ;Jge + fo pzl(dz - z)go} . (k. h)

If it is asssumed that the functions f and g do not grow too fast

at infinity and are analytic sc that a, ?e = dz?o =0, (4.Y%)

reduces to



- _ Gpr12 g _ do1n
2 {_ fe dz ge + fe z P12 ge - fe dz o
- T N - dpzz Tl T
- L, P11 8, - Ty g 8 T, 7 P22 &
do21

= T
SR e - fo 7z P21 go} :

However

\ ) N . F A,
(a £,2) “ dz 4z {0 z ) /fe\ {/011 012\ /7 &\

' \ I 3 i
g O \fo/- \ P21 P22, | &,
N

N £ \

[J dz dz {fe z P21 B + fe Z po2 go +

+¥ Zeng +T zen2 g} -
. . % .
So {a f,g) = (£,8g) for all f and g provided the following equations
are satisfied by the p's:

doyp-

T -
& - g P12 = - Z P2l (k.5a)
a1z - 5
S+ 5021 % - 2012 (L.5v)
and |
dr1 o -
-3-;—-+ -z-pll = - 2 P22 (4.62)
22 _
—=— =~ T2 == Z P11 - (4.6v)
Eliminetion of pp; from 4.5 gives
%y
— - (22 + I-(""t'-——l)')l:uz =0 (4.7)
dz? z2

which is a form of Bessel's equetion with imaginary argument.
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Since the derivation has required that terms of the form fe P12 8,
vanish at infinity the correct choice are the modified Bessel
(65) ,_.

functions of the third kind which in Watson's notation

denoted by Kv(z). The asymptotic form:
AR
Kv(z) v //22 N

ensures the assumed behaviour at infinity. The solution of (L.7)
is:

p12(22) = cvez X_, (zz) (4.8a)

T="3

where ¢ is an arbitrary constent. Equations (4.5) are recurrence
relations for Bessel functions and it follows that

pp1(22) = cvzz LS (zz) . (4.8b)

Similarly from equations (4.6) it follows thet

p11(22) = d/zz KT+% (zz) (4.8¢c)
and
p22(z2) = a/ea Ky (73) . (1.84)

Since the order of the parafield depends only on T no loss of
generality would occur if c were to be set equel to zero. However

%
if R is unitary i.e., R R =T then

(rRf,Rg) = (f.g) .
It then follows that

[R,p(z,z)]_=0 .
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Since R = (1 o] ) the sbove commutator is only zero when the off-
o -1

diegonal elements of p(z,z) are zero i.,e., ¢ = 0. The value of the

constant 4 is l-//é “
™ T

The Bose case is cbtained by substituting v = 0 end

noting that

K=K, = (n_ -zZ .

2272
(b) p even

A scalar product is defined for p odd by:

(f,g) = IJ dz az (£,% )/ p11 P12\ / 8.\ -

I

P21 P22/\ &, /
Again the pijare determined by requiring that
%
(f,ag) = (a £,g) .

The derivation of the equations determining the metric is almost

ldentical to the case of p odd. However the relation
d 3 -
% f(z) =0 (4.9)
no longer holds since f(z) is not enalytic. Since
£(z) = Vo2 fa(z)
where fa(z) is enalytic (4.9) cen be replaced by

%ﬂa=§ﬂn.
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The equations determining p are now modified to

N}

1
4, p11 + (T +3%) 2011 = -2 p2

and

[N

1
d, P22 - (t - %) ~ P22 = - 2 P11

Eliminating pjothe above equations can be reduced to
u? d% p11{u) + u du p11{u) - (w2 + (1 + %)2)911(u) =0
where u = zz . The above equation for p is Bessel's equation,

and the choice of the Bessel function to give correct asymptotic

behaviour implies:

orFe
p11(zz) = il =k Y (zz) (4.10a)
and similarly
p22lei) = L2k, (ad) . (1.100)
22 T :

As for p odd, the unitarity of R implies
P12 = p21 =0 .

§4.2.4 A Complete Orthonormal Basis

(a) Orthonormal Set of Bagis States

(1) p_odd
The norm of any state f(z) is defined by

\

(£,£) = ” dz dz ('f:(z),i*:(z-)) /p”(zE) o fe(z)- 4

\\ 0 p22(z23} fo(z)
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For palrs of excited states of the form Za+n end zafm, the scalar

product, since the metric is diegonal, is zero unless both states
have the seme parity i.e., both m and n are even or odd. In this

cagse terms in the scalar product reduce to
I = IJ dz az 2% o, . (22)2%"2 .
nn ii
Substituting

z = rel® . az a5 = rarde

7)) = l‘J/é: Pt p
pii(zz) ==/ Vz7z KTt%(zz)
the sbove integral becomes

i~ T
- ;_//g Iwr2a+n+m+2 K, (r2)ar I J18(n-m) o
oY T+ o

H
I

0 form#n.
Thus if p is & function of 2z only the orthogonality of the states
is independent of the metriec.

- _ /2 [ aton+ 2
I =I,°= //; Im ZKTt%(r Jar .

r
(o]

Then

since T = (- 1)* % ana K_ =K it follovs that the integral

eplits into two cases:

_ /2 [T 2athn+2 2
2n //;—I r Kaé%(r Jar

e}

/E ® oathn+h
= /& 2
I2n 1 - Ior Ka %(r Jar .

I

and
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On substituting r2 = u and using the result(66)

[e=)
w1, _ ju=2 (u + W =V
jo K, (£)t" et = 2¥7° r (BT (B

the above equations for Im reduce to

1 _o+2n

Ien=—/}2 Tm+ 1) T(a+n+%>0 (L.11)
and
- 1 ,o2n+l o
I2n+1-/;r-2 I‘(n+1)1"(a+n+2)>0.

An orthonormsal set of basis statee is then

a+m 1 _atnm
u =—2 .
VI
n
(a2) p even

The ergument to show that
(/z—g zu.+m, /2z 2%*B) = o

vhen m # n is exactly the same as for p odd and follows directly
from the decomposition z = r eie. Once again, the evaluation of
the norm, since T = (- 1)u+1(a + %) and K, = K_,» sPlits into the
following two cases:

I, (v/z.i zu+2n’ /z—i— za+2n)

and

I (Va7 272040 /7 042y

on+l

In a fashion similar to p odd it can be shown that
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12 = /ﬁg’ Im r2u+hn+3 K (r2)ar
n L o

= 100N ey 0w 1) T(n + 1) (4.12)

and

_ 2 ® 20+hn+S 2
Top+1 = /(; Io r K4p(77)ar

L o020+l pp 4 oa + 2) T(n + 1).
Yor

An orthonormal set of states is

el G e
/1
n
For eny order of the parabose algebra the Hilbert space spanned

by the u's will be denoted by F.

(b) Completeness

The set of functions relevant to the parshose
o o /7:
algebra have the form z £(z) for p odd and z~ Vzz f£(z) for p even,
where £(z) is an entire analytic function. In both cases it
suffices to consider functions of the form z f(z) and, since any
f(z) can be uniquely decomposed into even and odd components,
only the even components need be considered. Thus, since f(z) is

entire,

£°(z) = z° fe(z)

[+ <]
2 2m+o
o, z .
2m
=0



95.

1
Defining I fll = (f,£)? it follows that

o«

2= J lo, [2 1
m=0,... em &
vhere I, 1is given by (4.11) for p odd and (4.12) for p even.

Every set of coefficients, Apns for which the sbove sum converges
defines an entire function f ¢ F. Similarly the inner product of
two functions f, g of parity (- 1)% is given by

(f.g) = 121:1 Yom Bem IEm
where

N om0
glz) = g Bop 2 :

For eny £f“ € F,
(o £7(2))= VI, 0y s

vhich expresses the completeness of the system u, . In & similar

way if
£7°(z) = 2% £ (2)
o
- z = z2!!14'(1"'1
2m+l ~
n
then
s 2 2
214 = z |a2m+1| I2m+l

m
and the set of Uy hq 8Ye complete for the £°°'s which hawe g

finite nomm.
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(¢) Some Inequalities

1
From the definition lfl = (£,£)2 and the decom-

position of the space into even and odd functions it follows that
il =0eh + 00l .
e o]

Inequalities can be derived for the even and odd components

separately.
(éir p_odd
The expansion
_ a+2m
f+(z) = g -

has a parity (-1)®. By Schwarz' inequality

l£, (2)]2 < (] |a2m2a+2m')z
m

o+2m
< (] 1, 06,02 (71215 .
il m 2m

The second factor, which is evaluated, in the next section will

be denoted by I (zz). Then

-\4k
£, (2)| < {1,(22)}7 I £}
Similarly
Iz ()] < (1_GDYEued ,

where

a+2m+l; o
1 (a3) = | B—12 .
m

2m+l
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(c,) p even
The functions in this case are of the form

/gglf(z) where f(z) is analytic. Denoting

3 ] a2

z,(z)
then

= a+2
2,17 <] | 0, V22 2702

< (gl latpl® Tpp)
(Mg

z
m I2m

X

< IIf_’_(z)II2 I+(zE) :
where I+(ZE) is evaluated in the next section. Similarly

I£_(2)P< 1_(22) b £_(2)ii2,

where

In both cases any general function f(z) in the
space satisfies

[ £(z)| < w(z) ol .

The usefulness of a relation of this form, apart from showing the
equivalence of strong and pointwise convergence as discussed by
Bargmann, is that it endbles a set of principal vectors to be
defined. The interpretation of w(z) as the "reproducing kernel"

is discussed in the next section.
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§4.2.5 Reproducing Kernel

The last section showed that for any analytic

function f(z) € F the following relstions holad:

|£,(z)] < 1,(2)0e

and
£ (z)] < I_(2) liell

In an identical manner to that used by Bargmenn for Bose statistics,
a set of "principal vectors” of F may be found in each subspace.

+ =
These principal vectors are denoted by e, and e, and are such that

+ .

lleall = I+(a.) and IIeall = I_(a) .
The "reproducing kermel”, I, is defined by
£, (w) = j ,(w,2) £,(2) do(23)

4
and is equal to 'e,;(z). It is the representation of the unit

+ +
operator and in terms of any complete orthonormal system vy, Vo,

... for each subspace

iu)=£ﬁm)§u).

Using the appropriate set of orthonormel functions in each sub-

space the reproducing kernel in each subspace is evalusted below.

(a) p odd
I, (wv) = oy
+ n=0,§.,... I2n
= - o 1 1 - 2n
=Tr(%:'} n=0§. .Er(n+a+%)(%)
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where Iv denotes a modified Bessel function of the first kind.

Similarly

z 1 (wv) o+2n+1

n=0,1,... I2n+l
- o+l - 2n

AET ] A —2—— @

n=0,1,... n: I‘[n+a+;2)’-) 2

=/§ e I () .

I_(wv)

i

(b) p even
L) = ] s Ak T Gm*Pn
n=0,1,... 2n

= /or Vv v/w_'\-: Ia(ﬁv) .

and similarly

I_(wv)

Z I 1 /W-;-T- ‘/v'sr(;w)a+2n+l

n=0,1,... 2n+l

fon i S TG
o+l

For p odd the substitution o = O gives the unit

element e’ decomposed into even and odd parts.

§4,3 HARMONIC OSCILLATOR REPRESENTATIONS OF A PARABOSE OPERATOR

§4.3.1 Representetion of the Parabose Algebra

A representation of the parabose algebra is given by

- _ 4 T
P = 1(dx+xR)

and
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Similarly to the Bargmenn space R is such that [R,x]+ = [R,dx]+ =0
#

eand R = R. The uniqueness of these expressions, to within a

wnitary equivalence, for p and q has been demonstrasted by Yang.

Reising and lowering operators, n and £ respectively, are defined

by
-1 = i T
n=—1(q-1ip) = —(x -d_ - = R)
. V2 /2 * X
and
-1
£ =— (q + ip)
V2

i(x+d +LR) .
‘/2- X X

# This definition differs from that used by Bargmenn by a minus
sign. This is because the results are expressed in terms of
Laguerre polynomials rather than Hermite polynomials which are

expressed as

_ n 2n_, .-%
Hy = (- 1)" 2% n! L~ >

with the (- 1)P factor compensating for the minus sign in the

definitions used in this thesis.
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As in the Bargmenn space the representation space
is decomposed into even and odd functions. The scalar product is

then given by

# %
(£,g) = J-w(fé, £) K%e ax

1}
=
W
am
+
b
o %
o
S

Then

(f,ng) = - ’(f:, f::) 0 x-dx+-;‘; (ge\de
g

- [ [le+a,+ 3 e,

{(x+a,-3 g

and

(ef,g)

< T
\x+d-——
\ X X

* */
- I (£,£) o x+d + 1 (/;e ax
0 €
\

*
_J{fe (X+Ex+5 & *

f: (x+§x—§) ge}dx.

(ef,g)

(£,ng)

end similarly
( nf,g )

(£,2¢g)

so that n and £ are adjoint operators.
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The state of lowest energy is defined by

Ev_=20.

o]
x2 :

On substituting for £ and putting y_ = exp (- -2—-) g(x), g satisfies

. T

g’(x) + = gl-x) =0 .
X
This is the resl form of the equation for the vacuum state of the
Bargmann space. The solutions split into two cases
(a) p_oda:

1 x

by o et e ()
T{a + %)

vhere p = 20 + 1, and
(b) p even:
. 2
] :T—_..}_..——_M_- le xaexp (—L)
0 2
/%(a + 1)
where p = 20 + 2.

The coefficients a and T are again related by

+ +
= (-1 1o for podd e&nd 1= (-1)° l(a + %) for p even.

§h.3.2 Schrodinger Equation

The raising and lowering operators n and £ are
)
analogous to the creation and annihilation operators a and e
respectively. In a similar manner to that used for the Fock

representations Yang has constructed a representation of the para-

bose algebra by applying powers of n to wog the "state of lowest
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energy". An alternative method for constructing the representation

space is to observe that the operstor

- 1 B
satisfies

[Hy, n}_=n
and so H cen be interpreted as counting the powers of n in an
arbitrary state, since Hwo = 0, Thus the eigenstates of H form a
representation of the parabose algebra. Defining H® = H + R and

2
sqbstituting for n and £ in terms of p and q gives

H” = %(q2 + p?)

which is the Schrodinger equation for the one-dimensional para-
bose harmonic oscillator in units of m= w= % = 1.
After a further substitution for p and q in terms

of x, dx and R, the eigenvalue equation

HYy = Ady
becomes )
acy
P PR . L Py, (1.13)
ax? x?

where A" = 2\ + p .

Since [H, RI_ = 0 it follows that H and R form a
complete set of commuting operators. The eigenstates of H can
thus be clessified according to their parity and are denoted by
¢¢ according to the equation

Rbiy = 20y -
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The difference equation (L4.13) is then reduced to a o rder

differential equation, the solution of which will be considered

separately for p odd and p even.

(a) p odd

(a.1) Solution for even functions

The differential equation (4.13) becomes

d2w+l (t + 1)
—';— + (- x2 - -—-—;—-—-]wﬂ =0 (k. 2h)
dx X

which can be recognized as the differential equation for the

radial component of the three dimensional harmonic oscilla-

sor'3T)

On substituting

x2
+
- XT 1 e 2 y)\(xz) ,

yA(x) satisfies

xd%y. (x) v, (x)
A A 1 s
__—2_.+ (T+%_,x)___+.ﬁ.()\ _21-....3)y)\(x)=0

which is Kummer's form of the confluent hypergeometric
differentisl eguation. To ensure reasoneble behaviour at

infinity the series must be terminated i.e.,
% (A»* -2t -3)=n .

As for the Bose case, this restricts (quantizes) the eigen-

values of H to the form

A(l) =%{ln + 21 + 3 - p} .



105.

The solution of (L4.1Lk) is then

x2

(1) _ LT+l 2 ™%, o
w+n (x) = x e Ln (x2) .

It is readily checked thet & second solution of (k.1l) is

x2

Wii)(X) =xTe? L;T'%(xz)

provided the eigenvalues of H are quentized according to

(2)

X =4%{n - 21 +1 - p} .

From Sansone(67) the Laguerre functions I;(x) have sensible

behaviour around zero provided v>-1, This imposes a

(1) (2)

whi a
n an ¢+n ich are

restriction on the combinations of ¢
admissible. This restriction is surprisingly, identical
to the requirement that the particular combination is an

+
even function of x. Sinee T = (- 1)% 1y the even solutions

are for o even:

X2
Yy (x) = 5% e 2 Lz'%(xz)
and for o odd:
x2
Uy, (¥) = X+ eHE_DLZ+%(x2)

with eigenvalues 2n and 2n+l respectively.

(a.2) 044 solutions

Thz odd solutions can be simply derived from

the even ones by noting that the differential equation for
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the odd solutions,

a2y
- g (X‘ o 2 =

(Tt - l)]
ax? x2

]\b_)\-_-o’

can be derived from (4.il) by the substitution T > 1t - 1.
Under the substitution T + v - 1, the requirement of
positive definiteness of the energy eigenvalues and odd

parity of the eigenfunctions the solutions are for o even:

<2
vo(x) = x%1 e ? Lz%(xz)

-n

and for o odd:
2

X
2 1
x* e Lz 3(x2)

v (x)

-n

with the eigenvalues of H being 2nt+l and 2n respectively.

If the even and 0dd solutions for a particuler
value of o are ordered with respect to the magnitude of the
eigenvalues of H then, denoting w; as the eigenvector

corresponding to the mth eigenvalue, for any value of o

%2

——

o a2 _a-% 5
by =X e L (x2)

d
an xz

o _.otl T2 o, o
Vopey =% e L (x%)

For n = 0 the "state of lowest energy" as calculated in
§4.3.1 is obtained since Lz(xz) = 1, The Bose case, once

agein, may be obtained by substituting o = 0 and noting that
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0 (x) = (- 1)® 2°% ni 17%(x2)
2n
and
- n ,2n+l 3.2
H2n+1(x) = (-1)" 2 n! .un(x )

where H\) denotes Hermite polynomials.

{b) Solutions for p even

The solution of (4.13) for p even is very
similer to that for p odd eand so only the important dis-
tinctions will be considered.

(b.1) Even Solutions

A solution of (L.1k) is:

x2

P - T"'l'é -E_ T‘FI/?_ 2
1p+n(x) = x Yx e L, (x2)

where T = (- 1)L (o + %). Now since [R,Hl _= 0 it follows

thsat

x2

pafoy L TV = T2 ¥y, o
¢+n(x)-x V- x e L (x2)

is also a solution. These two solutions may be combined

so that
v2 (x) x>0
wii)(x) = th(x) x <0
+n

which may be written as

2
X
wii)(x) = x™% |x| e 2 L:éé(xz) 3
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Considering a second solution:

8200 = ™ 2] 0 2 1™ (2

and requiring either of the three conditions
(a) even parity under R,
(b) sensible behaviour at the origin

or
(e¢) positive definiteness of the spectrum of H

implies that the solutions are for o even:

%2

w+n(x) = ¢/ x| e-z_ Lg (x2)

i

and for o odd:
+ / +1
w+n N a 1 a ( 2)

(b.2) 0d4d Solutions

Substituting T > t - 1 the odd solutions

are for o even:

2
b's
lp_n(X) . Xd«"‘l / 'XI e 2 L§+l(x2)
and for o odd:
%2
v, (x) = =V x| e 2 Lz(xz)

This may be written in the compact form

x2
a _ _o 2 .0,
Yop = X x| e Ln(x )
and x2
o _ o+l 2 _Or o
Yppgq = X lx] e Ln(x )
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where the Y's are eigenvectors of H corresponding to eigen-

values 2n and 2n+l respectively.

§4.3.3 A Complete Orthonormal Basis

It follows from construction that the even and odd
functions are orthogenal. The normelization is different for wgn
o .
and w2n+1 end must be considered separately.
(a) p odd

(1) (42 (), 42 ()

e 2 1 1
J x2u e Lz 2(x2) L; /Z(Xz)dx
@00

T(n + a + %)

= § =
mn n.

°

(2) (W 0 (x5 ¥5 Lo (x))

® 2

J o e e ¥ Laﬂé(xz) Laﬂﬁ(xz)

. n ™
T(n + a + g)

= § -
mn n.

vhere use has been made of the orthogonality reletions for

(66)

The orthonormal set of states are
2
3 >

I 2 %
¢gn(x) = (-1)" |:I“(n +na + %) | x" e Lz (x?)

Leguerre polynomials

and

n M
¢gn+1(X) =(-1) L . 3]‘J

p+o+2




110.

A factor (- 1) has been included to ensure that

(n)™ ¢g(x);

where ¢g is the state of lowest energy. The (- 1)°

obviously does not affect the norm of the state.
(b) p even

(1) (v, (x) 5 ¥ (x))

[ve]
2
J x2% |x| 7% Lz(xz) Lg(xz)dx

T(n + 0o+ 1)
- :

=6
mn n!
(2) (v 41 (x)s V5, (%))
=5 T(n + a + 2)
mn n!

The orthonormal basis set is

x2

¢gn(x) =& DF [P(n +n; + 1):{;2 x /l—x[ ¢ © Lz("z)

and 2
& y) = (- 1)B n! 1%‘ o+l Ay -}2{_. atl, ,
Sopsp'x) = (=1 T+ o +2)] * =] e L (x*) .

The Laguerre polynomials are a type of ortho-
gonal polnomiais and the completeness of these functions is
proved in any text(67) on orthogonal functions. Thus for
both p even and p odd any square integrable function may be

expanded in terms of the complete set of basis states qbgn
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and ¢gn+1' The space spanned by these functions is denoted
H and convergence in this space is not absolute but only
convergence in the mean. This however is no objection.

§k,h EQUIVALENCE OF THE BARGMANN AND HARMONIC OSCILLATOR
REPRESENTATIONS

§4.4,1 An Integral Mapping

Since both the Bargmann and hermonic oscillator
space are representations of the parabose algebra it immediately
follows from general theory that they are unitarily equivalent.

The mapping from H onto F is in terms of an integral transform:
2(2) = [ Al x)utax

where A(z,x) is the kernel of the integral transform to be deter-
mined. Following Bargmann's analysis A(z,x) can be found by the
requirement that ny is mapped into a*f and &Y into af.
The most general form of A(z,x) as a 2 x 2 matrix
operator is
(fAll(z,x) A1o(z 4x)
\éZI(z,X) Ppolz,x) /.

The mepping then requires that

M
af

.
J (zA)y ax

[
- A(my) ax

i
| (An)y dx
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where, for convenience, the arguments have been dropped and the
arrcw over n indicates the direction in which the dx acts. Using
the metrix representations the above equations determining A can

be written

(X + dX - %)‘[\;12 (X + dX + ;‘rc')A]_l -'\\ = - 1/2— ZA21 ZAZ;Z\
(x + dx - %)Azz (x + dx + ;I(')AZI ;.A“' ZA]_Q_
(h.15)
Similerly
s,z
af = I (dz 2 RAdex
- j A(Ep)ax
= f (AE)yax ,

which in matrix notation becomes

/

( (x - a_ + i)Alz (x -4 - DA \
| }
VAR .
= - /E/(dz - %)Azl (a, - %)Azz'\

(g, + -E-)AH (a + TZ-)AIZ__). (4.16)

From Appendix 6 the solutions of the partial differential equations

for the diagonal elements are:
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L (2402 =
b alzx) = ¢ 4 (V22x)% e (" +2") T, s (172 2x) (4.17a)

and

A (22 -
Aa_'_l/z(z,x) = cuq.l/z(@ zx);é e (x%+2%) Ja%(i/z zx) . (L.17b)

The notation has been simplified here by denoting
Aii by Av(z,x); the integral transform which maps states of parity
+2
(- l)v 2 in H onto states of the same parity in F. It is also

shown in Appendix 6 that the off-disgonal elements are zero. Jv(v)

is the standard Bessel function and

N
RV s
v /2
(b) p even

From Appendix 6:

Aa(z,x) N c&(/E-zE lxl)l/2 e—g(x2+zz) Ja(i/E-zx) (4.182)

is the mapping for states of parity (- 1)% end

- L L(x24z2)
- A’ 2 Z\XTFZ
Aa+1(z,x) =cly (V2 2z |x])* e Ja+1(i¢2 zx)

(4.180)
is the mapping for states of parity (- l)a+1. The constant
v

. 2 X
¢l = (= 1) “ =" .

Similarly to p odd, the integral transform is diagonal.
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§4.4.2 Uniterity of the Integral Transform

The equivalence of the two representations requires
A(z,x) be unitary. This is equivalent to the following conditions.

LA: J Av(z,x) E (w,x)dx = Ii(zw),

+
where I7(zw) is the representation of the unit element in even or
044 subspaces of F.

[ A B ()t (a) = 6%x - 9)

where St(x - y) is the decomposition of the §-function into its
even or odd components. Since it is more convenient to work in
terms of well-defined integrals 4B is replaced by

1im

LR~ ey

[ 2,02.08, 02 )0 (23) = 62x - )

(1) Evaluation of LA

(a) p odd
Substituting either (L4.17a) or (4.17b)
for Av(z,x) then
'[ Av(z,x)Av(w,x)dx
becomes
. 2432 _—
2 e ¢ ra(z@'r);ie;é(zlﬁw )xe 7 (12 2zx)
v oV v
x Jv(- iv2 wx)ax .
This equals

JL ()% 1 ()
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+ -
which is I (zw) for v = ¢ + % and I (zw) for v = g = k.
The identity(66)

g 2.2
o -Yt
JO Jv(wt) Jv(Bt) e at

exp [- % v ™2 (a2 + 82)] Iv(%dBY-Z)
has been used. This identity is valid provided Rev > - 1
and Re y2 > 0. The choice a = - iv2 z, B8 = iV/2 W,
V=at)kand vy = 1 ensures that these inequalities are
satisfied.
Since I (zw) are the unit elements calcula-

ted in §4.2.5 condition 4A has been satisfied.

(b) » even

Substituting either (4.18a) or (4.18b) in
I Av(z,x) ;’T.v(w,x)dx

the integral becones
= - =Y A (24372 2
V2 ¢ ¢ (zz wi)° e 3(z5hr) lx] ™
vy

X Jv(i@ zX) Jv(—- 1v2 wx)ax.

Since Jv(_ z) = (- 1) J\)(z)9 the factor V|x| (and not vx)
in the expression for A(z,x) ensures that the sbove integral
is non-zero., Evaluation of the integrals in a similar mamner

to p odd gives

J A\)(z,x) f&v(w,x)dx = /o1 (2Z W 5)1/2 Iv(zv—r) = Ii(zw) .

which are the appropriate reproducing kernels for p even.



116.

(2) Evsluation of 4B~

In Appendix T it is shown that ov(l,x,y),

defined by
cv(l,x;y)= f Av(lz,x) Av(lz,y) dpv(zz) .

has the form

chxz 2)
e_12(x2+y2 ) eh 1_)\;

I (&L)

Vxy
Vi ok

1 - Y

for v = a * %. Since the expression for 9, for v = o or
a + 1 is the ebove multiplied by & factor A, and since > 1,
only the sbove expression need be discussed.

By inspection the argument of Iv approaches

infinity as A > 1. An asymptotic expansion of Iv(z) is(66):

{ 2 M-1 mn -m
e Z (' 1) (v,m)(2z)

Iv(z) "
212 m=0

—z+ivy YL -m
+1ie } (vm)(22)77} .
m=0

Considering only the first order terms in the expansion the

asymptotic form of I (z) will be e? as z > » and

Y2rz
=i R g5 7 - @, Since in a domain where one of these
Vonz
is very large the other 1s very small it is convenient to

incorporate both forms in the one expression:

1 {ez o ie~z+ivﬂ}

5

I (z) ~
v 21z
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with the understanding thet only the dominsnt term is con-

gsidered in each csse. As

2
i 2A°xy
1 -2
it follows that

lim

A1 cv(h,x,y)

. L, 2 2
Hn 1 L {-u(x2 4+ y2) - A2 yh
ofm /1 - A% 1 -~ Ak

2
[exp 22XV 4 i~ 1)V e (- M)}
9 =n 1 -4
L lim 1 L11 - A2 2
5 e — exp {- % (x +y)
AT A 1+ 22
1+ (X - y)Z]} + i(- 1)\) _ 1 exp {_ ;ﬁ[
1 -2 /r(1 - 22)
_ 52
Lo A (x-yz e 222 (e 2f]
1+ A2 1 -2

5 U2 (f(1 4 62) ™57 [(2evm) L o ¥/E7

i(" l)\) {(1 + s2) e-aztz} {(25)/1?)_1 e- SZ/EZ})

where

1 - 222
e = =), s=%(x+y) =md t=%(x-y).

14+ A2

As discussed by Bargmann, the first temrm
approaches the one-dimensional delte functions; &(x = y).
Similarly the second term approaches §(x + y). Substituting

v=otX gives
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o o (x,y) =%{6(x -y) + (- 1)¥ 8(x + y)}
o=>s
and
O'u_'_l/z(X,Y) = %{G(X - lY) - (- l)a G(X + Y)} ]
where the definition o (x.y) = lim o (A,x5) is used
; BOVIETT T s O AN )

Since cu_l/a(x,y) + ca_l_;é(x,y) = &(x - y) the above expressions
are Just the decomposition of &8(x - y) into its eppropriate
representation in the spaces cf even and odd functions.

There is only a slight modification involved
in extending the sbove argument to p even. As A - 1,

o, (A ,x,y) approsaches

(g2 4 v2
" S S, [- 35(x2 + y2) - 2 (x* +y )} /lx:yl
27/1-T- /i- ;\L} 1 - x'-l' Xy

2)2 . 2x2
x {exp (_)‘&_)+ i(- 1)¥ exp =20y
1 - A% 1 -
For xy > O the first term in the second bracket dominates

f .
1 /_IEX_I_ =
and so cv()\,x,y) + %8(x - y) since / el 1. On the

other hand for xy < O the second term dominates and hence

crv(l,x,y) > %(- 1)V 8(x + y) since /J%L == , and this

i

cancels the extra i factor. Substituting v = a and a + 1,

and corbining the results it follows that

ca(x,y) He(x - y) + (- 1)% 8(x + y)}

and

Ohey(Xs¥) = Bl8(x = y) ~ (- )% 6(x + y)} .
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Once again this is the required decomposition of the
6-function into the appropriate even and odd functionms.

It is easily checked that

o (x,y) = I{ 8, (x) o> (y)

where for v = o - % or o the summation is over m even and
forv=o0+%or o+ 1 the summation is over m odd. For

m even
v _ o v
dop (= x) = (- 1) by, (%)
and so
o
o (- xy) = (- 1) o, (x,¥)
for the appropriate values of v. This is a verificetion

of the decomposition of Gv(x,y) into even or odd components.

§k.4.3 The Connection between Basis States of F and X

From the unitarity of A(z,x) an explicit connection
between the basis states of F and H can be derived.
a) podd
From the expansion

(%m)v+2m

m!T{v + o + 1)

I (b) =
v mzo

it follows that

dm AV z2m
— (2"D Iv(zb)) =~
a(b2) 2 (v +m + 1)

b=0
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But
() = f2 () [ 4(n,0) 06 x)n

from 3A.

+ -1
2V 2m _ /‘%i 22m+v I'(v +m + 1) [ .3

i -yl .
4 p™V=% 4 (b,x)}

X Av(zx) { dx

b=0

- v
= /2™ 1+ m e 1) [ 5 a0 $0) &

where
m

a(v2)™

V-3 A, (b,x)}

Bx) = {v

b=0

Mok e & oy P

x Jv(i@ bx)}
b=0
fk n!

_ n _v#s Ax?
" T(n+v+1) N

(-1

n +
2

+ 3

(-
e

AV
x Ln(xz) 5

where the last line follows from the m 4differentiations of the

(66)

modified generating reletion for Laguerre polynomials
Ve 2y,20¢_ \1
; 9 Ln(x 25 (- 1)
n=0,1,... @+ Vv+1) o
22 R
=e? (™ 2? (-1) %7 (1/2 ) (4.19)

Vv

roj<
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Rearranging coefficients and substituting v = a = % it follows that

uoz+2m = [ Au—%(Z’X) ¢2m(x)dx

+2

vhere u@ " and ¢2m are the orthonormal basis states of F and H

respectively. Similarly for v = o + %3
o+2m+l
u = [Acﬁ%(z,x) ¢2m+1(x)d.x )

As a particular example take

o

Ay (25x) ¢ (x)ax

-00

2

£(z) = [

Lz

i 2ca_;§(/2- z);§ e

{r(o + %)}*

) o _
I 2 g x Ju—% (iv2 zx)dx
o

Ny

Now(66)

% 242
J T (at) e YT ¢ g
L, w

()" (2Y-2)-u-1 exp (- % "&27-2) .

i

o -%, a=3iv2 z, vy =1 then it follows that

Substituting

3
m o

fz) = —T
{r(a + %)}*

which is the vacuum state of the Fock space for p odd.

(b) p even
From 44,

Iv(zb) = (21:)"% (zz bﬁ)';5 J:Av(z,x) Av(b,x)dx
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and so

L |
R el o (o)™ p2mty T(v +m+ 1) f (zz)"2
o0

Im
x A (2,x) {——53—75 (Vb vV) 7L Av(b,x)} ax .

a(p?)

b=0
Substituting (4.18) for Av(z,x), differentiating (4.19) and
collecting coefficients implies for v = a,

at2m _ o
u . [ AG(Z 9X) ézm(x)dx >

which is the required connection between basis states. Similarly

it follows that

(x)ax .

o+2m+1 o
u = f Aoar(zox) g 00

(68), the

If using Dirac's bre and ket notation
orthonormal basis states of F are denoted by Ium> and those of

H are denoted by Ixm> then equation (4.19) implies that

Alz,x) = ] |Ju®> <)
n

The unitarity of A(z,x) is implied by the orthonomality of the
respective states and relations of the form

o+m
u

f Az ,x) ¢;(x)dx

can be expressed as

[u™> = 7 |u™ <« .
n

The validity of the sbove equation also follows from the ortho-

normality of the basis vectors.
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§4.5 CONCLUSIONS

Two representation spaces for a single parabose operator
have been constructed and their equivalence has been proved,

An cbvious generalization of this is to construct the
corresponding representations of an arbitrary number, v, of
operators. To effect this it is necessary to consider, in the
appropriate representation space, functions of v varisbles. Tt
is not sufficient, unfortunately, to generalize the creation

* ¥#* *
operators aj, a5, «.., &, to 21, 22, vvey z, respectively because

* %
this would imply [ai, a,] = 0 which only holds for p = 1. 1In
. * * * [ * * :
order to satisfy [ai, aj]+ ak]_ = 0 and a; aj]_ # 0 a more

#
complicated representation of the ai‘s is needed. This more

general representation has not yet been found.

For an arbitrary parabose field the elements Y a:, aj]+
generate a representation of the unitary group end, when i = j,
reduce to z; a‘—:: + 1 if the Bargmenn representation is used. The
appropriate géﬁera.lization of this could be expected to be

€;,, = z. =—— . However the e,, satisfy the additional commutation
i} i dzJ i)
relations:
e..,e . ~-e,e, =38 e,, -6, e :
ij "k& k3 Tif ke "ij ie "kJ
As Louck(69) has shown this restricts the representations of U(v)

to totally symmetric tensors. This is only consistent with para-

bose operators for v = 1. Thus any generalization would then
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*
reduce 3 8y s aj]+ to something other than z; -d—g—— . Not knowing

J
the form of the unitary operators further complicates the problem
of finding the general representation of the parabose algebra.
Another generalization is to form a representation of the

Green component fields in terms of z, dz and the appropriate

reflection operators. TFor pb3 the Green ansatz is:

a =a +a +a
and
a=al+a2+ad
where
e, a1, =1a¥, aY, =0,  1#
and
[ai*, ai] =1, for all i.

A representation of these operators is giwven by

#» * *
al' =2z , a2 = Riza, a3 = RjRoz3

and
al =da , a2= Rldzz, ad = RiRy d23

where Ri are reflection operators satisfying

[Rps 2l =R, 8,1 =0, 143

and

[Ri’ z_i]+=[Ri, dZ] 0, for all i.

.
i
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The generalization of this to higher order parshose fields
is straightforward and the proof follows by induction. It is not
intended to study these representations here, or their reduction
into irreducible parsbose representations., It is worth noting
that, in contrast to the irreducible parsbose operators constructed
earlier, it is relatively easy by appropriate labelling to con-

struct the reducible representations for v degrees of freedom.
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APPENDIX 1

RESTRICTIONS ON THE DESCRIPTION OF STATES
OF C; IN TERMS OF STATES OF C; UV Cp

The rule of §2.4 follows directly from the fact that any

n-particle state |a> satisfies(lo)
h
_ _ (2)
o = (}zc) Q-Z-l " fsj (Gay) 162 sy
n

a
h 2
(2)
£ ((x) ) [(x) & s>
(JZc)n R,Zl S§=l Si X n ' X n s1

]

for a1l j =1, ..., dl' Consider any ]B> which is a combination
of states of the form l(x)n2 51>, l(x)nz 89>, un I(x)n2 o>

By choosing an appropriate combination of the féz) ((x)n)'s, any

J

|g> may be expanded in terms of any one of the states l(x)nz 54>
, To ensure that the description of |B> in the combined system
C; V Cy is independent of the choice of s; the rule of §2.4 must
obviously be observed.
The following example indicates the necessity of this rule.

Consider a state of the form
o> = ¢; ](2,1,0,...,0)> + ¢ |(2,1,0,...,0)">

where the usual arguments have been dropped and the prime dis-
tinguishes between the states. Then for an operator, say F,

which is an element of U(v) and which effects the transition
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from |(2,1,0,...0)> to |(2,1,0,...0)">, it follows that
<a| ¥ |o> # 0. However if the rule of §2.4 is not cbserved and

if the state |a> is described in terms of a redundant particle by

la> = ¢1](2,2,0,...,0)(2,1,0,...,0)>

+ ¢p)(2,1,1,0,...,0)(2,1,0,...,0) ">

then it immediately follows from the reduction of U(v + 1) to U(v)
that <a‘| F |u’> = 0 and the cluster property does not appear to

hold. This is because
<(2,1,1,0,...,0)(2,1,0,...,0)°| ¥ |(2,2,0,...,0)(2,1,0,...,0)>
# <(2,1,0,...,0)°| F |[(2,1,0,...,0)> ,

which is qulte appropriate since the L.H.S. deseribes in addition
to the transition (2,1,0,...,0) - (2,1,0,...0)" of C1, an extra
transition of the complete system from (2,2,0,...,0) to a
(2,1,1,0,...,0) type syrmetry. The R.H.S. contains no informa-
tion about the symmetry of the combined system.

If the rule of 52.L4 is imposed a permissible description of

the state |a> is by the vector

e1l(2,2,0,...,0)(2,1,0,...0)>

+ c;[(2,2,0,...,0)(2,1,0,...,0)">

and it follows directly from the reduction of the unitary group

that the cluster property holds.
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APPENDIX 2

VIOLATION OF THE CLUSTER PROPERTY BY
ELEMENTS OF THE ORTHOGONAL GROUP

(a) Consider the case of cluster C; being restricted to two
degrees of freedom, i.e. v; = 2 and cluster C, with v, = 1. The
states of C; form representations of the groups U(2), 0(L4) and

0(5). In particular the state |a> where
lo> = {87 (x1) ¢7(xp) - 07(x0) 6T (x)} o>

corresponds to the representation (1,1) of U(2) and hence to the
representation [23 SJ of 0(l4) where p is the order of the para-

field ¢(xi). The state |u> is an eigenstate of the operator

[oT(x1), 6T (x2)]_ To(x1), 6(x)1

with eigenvalue - Yp. In terms of the combined system C;y Y Coh
the state |oz> cen be represented by any state which has the same
U(2) labels as [a>. Any state having these required labels cen

be expressed as a combination of the two states
lam> = p16T(x1) 87(x) 6T(x5) - 07 (x2) 070 oTx)} o>

- (o - 2) 67(x) [67(xa)s 6T ()] Joo
and
o> = ¢T(xR) [¢+(x1), ¢T(xz)]_ [o> .
However the sbove states correspond to eigenvalues zero and - bp

respectively, of the sbove element of 0(2v). In particular if the
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elements of 0(2v) are permitted as physical cbservables and we
describe a state of C; in terms of the combined system by ’u‘>
then the matrix elements of elements of 0(2v) differ from those
obtained by a consideration of C; alone. A consistent interpre-
tation can be obtained by restricting physical observables to
elements of U(2). This is due to the fact that the basis states
of the combined system C; U C, form representations of U(3), 0(6)
end 0(7). In particular the state |u‘> belongs to the representa~
tion (53 53 g- - 1) of 0(6) and, upon restriction to the appro-
priate function of x; and x;, to the representation (g—— 1, g-— 1)
of O(4). The violation of the cluster property by elements of
the orthogonal group is due to the appearance of "non-Fock"
representations of the type (g—- 1, E—— 1) which are not present
when the cluster C; is considered aslone.

The ebove example is readily generalized to the case of

continuous renge of degrees of freedom. A general antisymmetric

(symmetric) state |o> is written as
|a> = [cb%(x),#'fp(y)]i |o>
and the sbove number conserving operator is written as
f ax ay 2o (xay) [o7(x), 6T, [9(x), o)1,

where fCl (x,y) has a vanishing support outside Cy. The eigen-
value of this operator on the state |a> is ¢ hp{fcl(x,y) +

fc (y,x)}. In the presence of the redundant cluster Cy the above
1
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antisymmetric state can be represented by the wvector

ple"(x) ") 6T(y) £ 6T TR 6T} oo

la=>

i+

(p-2) 6" () 167, oTtr)1, o> .

Since

fc1 (Ryy) = fc1 (x,R) = fCI (R,R) =0

the eigenvalue in the state [a’> of the above operator is zero.

Thus for these operatocrs the cluster property does nct hold.

(b)  Ancther example is illustrative as it shows that for the
"non~Fock" representations of 0(2v) the connection between the
invariants of U(v) and 0(2v) does not hold, or, in the notation
of Kemefuchi and Ohnuki(23) the elements of 0(2v) do not comserve
A. A is the number of odd columms in the Young tebleau specify-
ing the particular irreducible representation of U(v). Take the
case of vy = 3 and for simplicity consider p = 2. Then if |a>
represents the state

e; [(1,1,0)> + ¢ [(2,1,1)>

localized in cluster C; then it directly £ollows from the con-

servation of A that

<a Fe, (o(2v)) |e> = 0

if FCl (0(2v)) is of the form

[¢(x11), ¢(xiz)]_ .
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When the system is described in terms of the combined system

C; V Cy the essociated group is 0(8). It can readily be checked
that the representation of 0(6) lebelled (1,0,0) contains both
the representations (1,1,0) and (2,1,1) of U(3). Since the sbove
element of 0(6) behaves essentially like a lowering operator it
has non-vanishing matrix elements between these states and thus
to an observer localized on C; it would eppear that the con-
servation law of A does not hold. As before this can be avoided

by restricting observebles to functions of the unitary group.
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APPENDIX 3

BOGOLIUBOV TRANSFORMATIONS OF PARAFERMI
FIELDS AND THE CLUSTER PROPERTY

Consider a set of three pf2 creation and annihilation
#
operators a.r, a,. Denote ]x> as the solution of
a,llx> = a,2|x> = ag|x> =0 .

Consider 3 to label a redundant particle on C, and 1 and 2 to be
labels referring to C;.. The anti-symmetric state of C; may be

described in the presence of C; by either

1 * % *
108> = a1, a3l _ e3le
or
o * % %
|¢1(1 ) - a1 a3 ap|x>

Applicetion of the cluster property would imply that the only
permissible observables are elements of the U(2) algebra generated
% % * *
by (a1, 291 _, [ e, 23] _, [8), 8] and sy, a;] .
Considering a Bogoliubov transformation

* %
b; = a1, by = ay, b3z = a3

and defining |0> as the state such that
b1]0> = by|0> = b3jo> =0 ,
it follows that

»* *
Jo> = (a3)2 (a3)%]%>.
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A permissible physical observeble i.e., [af, aZ]Q is equal to the
operetor [br, b;]_. It would lead to a contradiction to consider
this operator as a physical observable, since a similar applica-
tion of the cluster decomposition property in the space of the
b's would imply that observables are restricted to elements of
the form [b:, bj]-' Thus the {bf, b:]_ cannot be interpreted as
physical observables, because under the Bogoliubov transformations

the physical interpretation of the theory alters. 1In particular
(1)

for this example the anti-symmetric state |¢n > becomes
1 ®» % *
|¢;() s . [1, b2l _ b3(by)? (b3)2 [o0>

3* L3 *
- Wby, by} by |0>

Thus, although

<¢1(,1)I [by, byl _ I¢I(,1)>

equals

<¢;1)'| [by, bl |¢1()1)'>

where

(1)~

* *
P > =[b1’b2]_ |0> s

o

% #*
it does not follow that [bj, bp] satisfies the cluster property
(1)
Y
In particular the physical content of the two representa-

since |¢ > no longer describes an anti-symmetric state on Ci.

tions is not invariant under the Bogoliubov transformations because
the operators which determine the physical content i.e., the N

13

are not invariant under these transformations.
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APPENDIX L

EVALUATION OF VACUUM EXPECTATION VALUES

The Green ansatz for interacting parafields is particularly
useful in the discussion of V.E.V's. This is because, as Dell'
Antonio, Greenberg snd Sudarshan and Govorkov have shown, the
V.E.V. of a product of Green component fields factorizes to the

product of the V.E.V.'s for each field. For example
<A(1)(x1) A(l)(xz) A(Q)(X3)>
= <A(l)(xl) A(l)(X2)> <A(2)(X3)> .

Since component fields with different superscripts anti-commute,
V.E.V.'s of a product of operators in which there sre an odd
number of each component field, and there are at least two

different species present, veanish. As an example :
<A(1)(X1)> <A(2)(x2)>
= <A(l)(x1) A(z)(x2)>
= - @) AV s
= - <A(2)(x2)> <A(1)(x1)>
=0 .
Since the component fields are assumed to be equivalent the
V.E.V. of a product of operators all labelled by the same super-

script can be taken to be independent of that superseript. This

implies that
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<A(i)(X1) A(i)(X2)> B <A(j)(X1) A(j)(X2)> .

Since the V.E.V.'s of a product of Green component fields all
with the same superscript have identical properties to a Bose
field it will be assumed that these V.E.V.'s satisfy the ecluster
decomposition property.

Both properties discussed will be used in the following.
Example 1: Evaluation of <A(x; + Aa) Alxp) Al(x3 + Aa) Axy)>
for p =2 as A + o,

Substituting A(x) = A(l)(xi) + A(g)(xi), the following

results for the particular component fields are obtained:

iig <A(1)(x1 + Aa) A(l)(xz) A(l)(X3 + Aa) A(l)(X4)>

= a® ) AW a®(x) AW () .

This assumes that the cluster decomposition property is valid for
each component field.
Similarly

1lim <A(z)

A0

(x; + 2a) A (%) 1@ (5, + 2a) 4 ()5

= @) 1@ () a@ () 4@ ()
V.E.V.'s of the form
20y 4 18) 4@ () 2@ (x5 + 28) 2@ (3)>

vanish.
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The other non-vanishing V.E.V.'s are of the form
B +2a) 2@ () AP (x5 + 2a) 4 (5,05

- <A(1)(X1 + )\a) A(l)(X3 + )\a.)> <A(2)(X2) A(e)(xu)>

_ <A(l)(x1) A(l)(X3)> <A(2)(x2) A(e)(xu)> .

V.E.V.'s of the form

lin
pEe

<A(l)(x1 + An) A(l)(xz) A(Q)(X3 + )a) A(Q)(xu)>
vanish as a result of cluster decomposition and factorization of
the V.E.V.'s.

Collecting terms it holds that

1lim

s <A(x; + ra) A(xp) Alxz + ra) A(xy)>

2 . . . .
T <) AW ) alB i) a1 ()5
i=1

- <A(1)(x1) A(l)(xa)> <A(2)(x2) A(g)(X4)>
- @) 8@ g0 alM () 2V )
# <A(xy) Alxp)> <A(x3) Alxy)> .

In a similar manner for p > 2 the same example may be used
to show that the cluster property is not satisfied.

If it is also assumed that
<A(k)(xi) A(k)(x1)>

= () A(”)(x3)>
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then
lim

oo <B(x1 + 2a) Alx) Alxz + X&) Alxy)> =0 .

This holds only for pb2 statistics.

Example 2

Let W(x1x; ... xn) denote <A(x;) Alx,) ... A(xn)'> and define

W(a’l)(X1X2X3) = W(x1x3%5)

- Wixoxsxy) + Wixaxyxp) - W(xaxsx;)

and .
W(l’l)(xlxz) = W(xixy) - Wixoxy) .

It follows that

1.3;3 W(e’l)(xp{zxa + 2a) = W(l’l)(xlxz) W(x3)
iff

:)E-i»]i Wixixs + Aa xp) - Wlxoxs + dax) =0 .
Substituting

Alx,) = § A%(x,)

o=1
end considering the various terms it can be shown by an argument
similar to that used in the previous example that only for p = 2
does

lim

e W(X1X3 + Xa xp) - W(xpxz + Xax1) = 0 .

Thus only for p = 2 does a restricted cluster property hold.
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Example 3
Since the free scalar field A(x) satisfies the Wightman
axioms the V.E.V.'s of the A(xi)'s should also setisfy any form

of the cluster decomposition property. Substituting

1

Ax) = ——— —
: (2(2n)3)? Jko>o k,

[815 Jmikex a; KSE NN

in the V.E.V. W(x;x;x3x,) gives the result
Wixixoxaxy) = p2{A (x; - x5)A (%3 - xy)
+ + +
+ A (xp - x3)8 (x3 - x4)} ~ plp - 2)A7 (x5 ~ xy)
+
x & (x1 - X3) .
Define
W(2’2)(X1X2X3Xq) =
Wxyxaxoxy) - Wxaxaxixy) + Wxpxyxyjxs) - Wixjxuxoxs)

+ Wxgxyxoxy) - Wxgxoxyxy) + Wlxyxpx1x3) = W{xyxyx9%3)

+ Wixyxaxuxs) - Wixoxaxyxy) + Wxoxuxaxy) - Wlxyxyxax,)

+ W(ngle,,)Q) W(X3X2XL+X1) + W(XQX2X3X1) - W(X4XIX3X2) .

Then, ignoring A+(£) as E becomes large spacelike,

linm

2,2
- W( ? )(xleX3 + Aa xy + Aa)

op(8T(xy - 1) - A (xp - x1))(aY (x5 - x)

A+(x4 - x3))

2pA{x; - x)0(x3 - xy) .
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However
w(l’l)(xlxz) W(l’l)(X3xu)
= p2A(x; - x5)A(x3 - xy)

and so once again the factorization of V.E.V.'s only holds for

p = 2 since for p > 2

lim

N W(z’z)(x1XZX3 + \a x, + Aa)

4 W(l’l)(xlxz) W(l’l)(}gxk) )
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APPENDIX 5

A REPRESENTATION OF PARKS' COMMUTATION
RELATIONS BY PARAFERMI OPERATORS

From §3.3b & is expressed as

8 = bél) bég)... bép) (A5.1)
where

(1) (3), _ . (1) (5%

[bk > by | —[bk > by 1_
=0 for i # 3 ,
(i) (1), _
v, v, 1, =0

and

(i) _(i)*  _
[bk ? bm ]+ - 6k2 )
Since (blil))2 = 0 it directly follows that aﬁ = 0. From the

(1)]+ = 0 and hence that

i ]
expression for a it follows that Lay bj
[ak, aj]; = 0 where the upper sign corresponds to p even and the
lower sign to p odd.

From (A5.1) it follows that

& a: = bél) bél)* bé2) bé2)* - bip) bép)*
= (8, - bél)* bil)) (8yp - bé2)* béa))
(8, - bép)* bép))

(- 1)P a; 8, + 8, {1- nil) - nie) N

. nép) . nlgl) nlie) + ... (- 1)P? née) n}£3)

..n'P))
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- p ¥
= (- 1) a, & + 6 {1 - Nk} s (A5.2)

(1)

where n, is the number operator for the ith component field.

It is only necessary to show that

[a, N1 =25, 8 ,

*
since it follows trivially that [Ni, NJ] = 0 and Ni =N,. Now

[a ., néi)]m = bél) e ) néi)]m . bép) = 8

In general the relation

(1) 9.7 néq)]_ =3

Ly, o ke %
can be shown to hold by induction. Thus [ak, NQ]_ will be a
linear combination of Skz ak's whose coefficients are given by the
expansion (A5.2). From (A5.2) it follows that the sum of the
coefficients will be the same as the sum of the coefficients in
the expansion of - (1 - x)P with the highest and lowest powers
of x removed. Now the sum of all the coefficients in (1 - x)p
is zero for all p. For p even, 1 and x* have the same signs so

the sum of the remaining term is - 2. Thus

[ak, NQ]_ =+26, 8 .
For p odd, 1 and P have opposite signs and so the sum of the

remeining terms is zero. This implies the unusual result:

[%,Ndm=0.



1k2,

The resulting commutation relations are

[a-ks a]; = 261{2 (]/2 - le)

and
for p even

]

[
o
=

o

[%,Nﬂu—

and

1]
(@]

[ak, N;Z] _ for p odd

vhere Ni = Nk is the number operstor.
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APPENDIX 6

DETERMINATION OF THE INTEGRAL TRANSFORM A(z,x)

Equations (L.15) and (L.16) of §4.L4.1 cen be rearranged into
two sets each containing two pairs of coupled partial differential

equations. The equations are

(A). (X #* dx + i)All = - /5 Zz A22 (A6.1a)
(x + dx - %)Azz = -2z A1 (A6.1b)
and
(x - a_ - %)Au =- /2 (aq - g),a_zz (A6.2a)
(x - a + %)Azz =- /2 (a + %)An . (A6.2b)
(B). (x+a_ - i)ﬁ-m = - /2 z Ay, (A6.3a)
(x+a_+ %)A21 = - /2 2z A (A6.3b)
and . . T
(x - a + ;)A12 = - /2 (dz - ;)Azl (A6.ka)
(x - dx - i‘)Azl =~ /2 (dZ + %)A].Z‘ (A6.hp)

Solution of set A

Differentiating (A6.1a) and substituting for Ap, and 4. Azz

from (A6.1b) the following equation is obtained:

di Ay +2x d Bpp + (1 - 222 + x2

e )y a0, (A6.5)
X2
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In a similar manner (A6.2) reduce to

di By1 + 2z d Ay + (1 -2x2 + 22

_xli+d) ) Aj3 =0, | (46.6)
ZZ

Substituting

Ay = o 2(x+2?) vE ule) ,

where £ =(v/§zx)‘both (A6.5) and (A6.6) become
£2 u(g) + Eu’(g) - (82 + (v +%)2) u(g) =0 ,

which is Bessel's equation with imaginary argument. The solution

Py

1s

An = ey e_%(x2+zz) (/2 zx);é Qy, (V2 zx)

where Q'r+15 (+ /2 zx) is any combination of Bessel functions with
imaginary argument and index T + 3 or - {(t + %) and &, is an
arbitrary coefficient.

Similarly equations (A6.2) reduce to
di Aoy +2x 4 Ay + (1 - 222 + x2 - T(T—Z‘Q)AZZ = 0
x

and

dzA22+2ZdzA22+(1—2x2+2,2—T(T—2—]l)A22=0.
Z

Since these equations are symmetric with respect to interchange

of x and z the solution is
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_1( 24,2 1
- s(x“+22) 4
Azp =& ;e (V2 zx) Y (V2 zx)

where Q is defined sbove.

Ignoring the A, and Ay; terms (which will be shown to be

equal to zero) the appropriate choices for the Q's are:

(1) o odd
U1 = T (12 zx) and
o+l

Qoo = Ja—% (1/2 zx)

o

where the upper sign corresponds to p odd and the lower sign to

p even.
(2) a even

Q1 =T, 5 (iv/2 zx) end

o

Ja+% (i/2 zx) .
a+l

Q22

There is however an important modification to the

solutions for p even. Denoting Rx as the reflection operator

for the x variable it holds that
o(t + 1))] =0

[R., a2 +2xd_+ (1 - 222 + x2 -
x* x x
By a similar technique to that applied to the solutions of the

Schrodinger equation in §4.3.2b the vx factor in the solution

may be modified to /]xl. Similarly since

- 2 2, 42 _ tlt+ 1) _
s - -
[z,8 +2z4d4 +(1-2x>+d -—7— =0

Z 2 -
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an extra s/g factor may be added to the solution. The modified

solution now becomes

1 2+ 2 - ]‘5
A1 =8y e (x%42%) (/2 zz |x|)? Q.3 (/2 zx)
=2 2

and

25(x2+22) - %
Ays ey € (V2 2z |x|) Y (/2 zx)

Solution for Set B

Premultiplying (A6.4b) by -/2z gives

2z (a_ + %)Alz =(x-a_ - ;‘?) (-¥2 2)4y,

and substituting (A6.3a) this becomes

2z (4, + %)Alz =(x-a_ - %) (x+a_ - i—)Alz . (86.7)
Similarly from (A6.3b) and (A6.Le)

2 (dz - gﬁz Ayp = (x + dx + %’ (x - dx + %)Alz. (A6.8)
Then (846.7) -~ (A6.8) implies

2 ([z, dZ] _+2t)ay =2 (Ix, dx]_ - 21)41,

and hence
TA12 = = TAlz.

For T # O this implies A;, = 0. Similarly A,; = 0 and hence

A(z,x) is diagonal.
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#
In terms of the algebras a, a and £,n the above argument
is equivalent to requiring that

1 *
E{l"[a’ al}

is mapped into

1
E{l ”[Ea ﬂ]u}

*
Substituting the appropriate expressions for a, a s £ and n this

requirement is that R is mapped into R i.e.,

(- 2z) = f Az ,x) ¥(- x) dx

which implies that

[R, A(z,x)] =0 .
As for the metric, vanishing of the above commutator implies that
Az ,x) is diagonal.

Defining %
N.o=da ,a -3%

end
Nx=;in ,E]+“"1’2

it follows from the definition of A(z,x) that

inN ian

e % Alz,x) = Alz,x) e ' (26.9)
Since R = g_ g) is the simplest closed extension of both
inN inN
e % and e ¥ then (A6.9) reduces to RA = AR and hence A is

diagonal.
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APPENDIX 7

EVALUATION OF AN INTEGRAL

To show that the integral transform Av(z,x) is unitary it

is necessary to evaluate the following integral:

p gl - -
ov\l,x,y) I Av(kz,x) Av(lz;y)dpv(zz) ;

A detailed evaluation of o for p 0dd is given below, the relevant
modifications for p even being discussed in (b).
(a) p odd
Substituting (4.17) for A, and (4.8) for p,, the
integral becomes

N = (2402 - -
cv(x,x,y) = %-/ky e 5(x%4y2) f dz dz zz

A2 =
y e°§'{zz+zz) 3 (1/232x) 3 (- 1/2xzy) K (22) .
2v+1
= A () )y gn gy
nnm
vV Vv
" 2-v-m—n LD(XZ) Lm(yZ)

Tm+v+1)T(m+v+ 1)

- [ + -
x J dz d7 z7 ZoOTV 2otV Kﬁ(zz) .

since(66) S

7 (2(x2)®) = ()2 e §
v n=0

v n
Qn(x)z

I'(fn+v+1) °

_ombvil  Opbvels
Evaluating the integral (which is of the form (Z-0 "2, 720V*%))

and substituting gives the following expression for o:
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+ s L(x24y2
2v+1 ()% o % (x24+y?)

cv(k,x,y) = )

L;l)(xz) L:(yz) )\hn n'

p) T'(n+ v+ 1)
n -XL}(XZ.,.![Z)
(w2472 4
N A fx? g s(x +y ) e 1-2
1 -t
2
x T 2 Xy )
Vi o b

The last line follows from the fact that the Bessel function Iv

is a generating function for products of Laguerre polynomials(66)
i.e.,
v n' v v n
! T(n + v + 1) Ln(x) Ln(y) A
n=0 ‘
v

== 0TV erp (- 2E2TN () 2 :

202)®

vi 1 -2 |
for [A]| < 1.

Substituting v = o * % then gives the required result.

(b) p even
Substituting (4.18) for A end (k.10) for p,, implies

L L (242 -
o, (x,x,¥) %-12 lxy]?® e 3(x*4y7) I dz dz

X 22 Jv(i/§ Azx) Jv(- iv2 Azy)

2 .
Lo
X e Kv(zz) .

which, upon repeating the same steps as for p odd, reduces to



A% (x24y2)
2,2 2
cv(xsx,y) = — //lxyl H(x%+y?) Y
-2
2
x 1 (A2
Ve
for [A] <1

Substituting v = o or a + 1 gives the required result.
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The quantization scheme recently proposed by Kademova and Kraev is shown to be inconsistent.
There is no apparent way in which it can be modified in order to provide a scheme liable to a reasonable

physical interpretation.

Kademova and Kraev [1] have recently pro-
posed a new quantization scheme for spin-half
fields, which would allow an unlimited number of
identical spin-half particles to occupy one and
the same state.

The trilinear commutation relations they sug-
gest for the creation operators a; and their (as-
sumed) hermitean conjugates, the annihilation
operators a;, i =1,2,..., are

[a’[! [a;’ak]] =- 26ijdk s [ai’ [ajaak]] =0, (1)
and the relations obtained from these through
hermitean conjugation and application of Jacobi's
identity. These differ from Green's parafermion
commutation relations {2] in the sign of the
right-hand side of the first equation.

According to Kademova and Kraev, one
should require in addition to (1) the existence of
a "vacuum state" vector ]0} satisfying

a;|0)=0,
aiaﬂo) =p6ij|0>, (2)

where p is some positive constant, the "order of
the pargstatistics". The operator Ny, =
%([ai,ai] -p) is then to be identified as "counting
the number of particles in the ¢th state", and is
claimed to have a spectrum consisting of all
non-negative integers.

The consistency of this scheme has been es-
tablished only in the case where there is just one
pair of creation and annihilation operators, a’{
and ¢q. It is easy to find an inconsistency when
there is more than one such pair.

Consider the operators

i Supported by a Rothmans Junior Fellowship.

420

Sy =£[a2+a§,a1-a’{],
- * *
Sy = tifag + ag,a1 +ai)
*
S3 = zay,aq],

which, in view of (1), satisfy the familiar angu-
lar momentum relations

(S;,S;1 = i€ S,

and which are hermitean operators in the repre-
sentations under discussion. As proved in ele-
mentary quantum mechanics texts, any eigen-
value of Sg in such a representation must be in-
tegral or half-odd-integral. More importantly,
if X is such an eigenvalue, so is -A.

Now it is easily shown that the spectrum of Sg
is here unbounded above, except in the trivial
representation a; = a;-k = 0, and it follows at once
that it is also unbounded below. For suppose Sg
has a maximum eigenvalue A5 > 0. Then, be-
cause [S3,a’{] S aI, there must exist a normal-
izable state vector |x)such that

83[X>:Amaxlx>5 a;lx>20.
But then
Amax |”X>”2 = (X|S3|X>

x| (ara] -ajap) |0
ey 02

<0,

which is contradictory.
In this way it may be shown that the spectrum
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of each operator %[ai,a:] is unbounded above and
below in the representations of interest. The
same is therefore true of the spectrum of each
Np;, contrary to the claims of Kademova and
Kraev, and as a result such operators are quite
unsuitable for use as "number operators"”.
Moreover, it follows that no representation of
the algebra (1) in which aj is the hermitean con-
jugate of a;, contains a vector lO> satisfying
eqs. (2).

As Kademova and Kraev haye pointed out, the
algebra (1), with n pairs of creation and annihi-
lation operators, is isomorphic to the Lie alge-
bra of O(2n,1). In the case n = 1, the compact
subalgebra contains only one element, [ay,a7],
and it is possible to find [3] an infinite-dimen-
sional representation D*(-p) in which this oper-
ator is hermitean and has a spectrum bounded
below by a positive constant p. It is a represen-
tation of this type which Kademova and Kraev
wish to use for each operator %[ai,a’f]. Unfor-

PHYSICS LETTERS

13 December 1971

tunately, as the preceding arguments show, it is
impossible to find an infinite-dimensional repre-
sentation of the O(2n,1) algebra, » > 1, in which
the operators %[a;, ;] have these properties.

We may conclude by saying that, not only is
the quantization scheme of Kademova and Kraev
inconsistent, but also there is no apparent way
in which one could amend it in order to obtain a
scheme liable to a reasonable physical interpre-
tation.

We wish to acknowledge a useful discussion
with Professor C.A.Hurst.
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