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ABSTRACT

T¡ree group theoreticaL probleus êssocLatecl r¡lth para'fieldls

are eonsltterett ln thls thesis

The first tno, dllaorssed Ln cha¡Êers 2 andt 3, are slnilar

since they ileal rith the restricùlons fr¡rosed by ¡lhyslcal requl:re-

neats on theories whose cørtrtatLon relatl'ons ar€ more general than

Boee or Fe¡uí. In both cases the restrlctlons are a eonsequence of

the propertfes of the al-çbras (or repreeentations of these

algebras ) r'trtcfr ar€ generatect by the operators obeyl.ug the nore

general comr¡bation r€lations.

The cl¡ster proper-by requtres that the clescriptlon of viclely

separatedl pfrysleal systerns shoulit be indlepenclent of eech other'

Ttris property, formulatetl for parafteltts, i8 essentia.l\y a reduc-

tion of the groups generatect by tbe para"flelcl creaÈion and

anniTrilatÍon o¡rerators to the appro¡rrlate sub-gror4n ' f'lre parafleLcl

representatlons of these groì4)9 are sueb that for p = l onlJ' are

the reetrictions c[:e to the c}¡ster p:r'operty equival-ent to thoee

placecl upon the theory by the requJ.reuent of locallty. fltttfs fs

not srrrprlsing sinee e eomparlson of locallty and the clustel¡

prorperty shcnrs that the tço coneepts are Lnequlvalent.

Tn the non-relatívistte case the elr¡ster property restrf'cts

Btrysical observables to those of the fom [ Ô*(*),0(r)l * '

Restrlctíng physlcal obeervebles to elene¡ts of thle form inplies

that the theory is Jr:st a eonvenient descriptlon of a systenr of



p fernions (or bosons). Thls a^tso has the important consequenee

that, ln the aseociated quantr:m uecTranieal spaee, physieal

obsen¡ables are syrnmetrlc firnctions of their argumenta. It¡r.rs, for

parafielcls, the synrîetry of observables is a resu-It rather thar¡ an

assrmptlon, as it is usually statecl. ftre relatÍvlstlc case Le

treatect as an ertenslon of the non-relativistlc one, and it ls

ehol¡n that it is neeessary to cteconpose the war¡e fi¡netlon lnto

poaltÍve ancl negative frequeneies ln order to construeb phyetcal-

observablee. The S-¡¡atrix and Wigþtrnan formulatÍons are also

diseusee¿l in 92. For p > 1 only a very restrieted. set of vacuulr

e:çectatlon values of paraflleld. operators factorLze in accorclanee

ulth the cluster property. The vaculm expectatlon valuee of pb2

operators are somewhat exeeplional as a result of the co¡n¡outatlon

relations satisflecl by these operators. Some attention ie also

given to a poseÍble L.S.Z. fomrrla+.ion of parafleltl theory.

In 53 a quantlzation scÌ¡eme recently proBosecl by Kadenova

and Kraev ls shor¡n to be inconsistent slnce lt tloes not ' ln

general-, poeeess a vacuun state of Io¡est energr' Thle follows

fron the propertles of the g.oup generatecl by the analhllation ancl

ereation operators satisflrlng the proposed conmutatf.on relstlons.

ft 1s a]-eo shorn in g3 that the reo-uirenpnt of nnitery lnvariance

of the algebra irylles that for a theozy rrith connt¡ùation rela-

tions of the rorm afl*1 = 0 and [tr,aol- = O, there can only be p

partf cles in the Il¡niverse.



ilhe purely groì¡p theoretical pnoblem of eonstructing the

representattons of a single parabose operator of any order is

consicþrect in 5l+. Ebe representations conesponil.ing to the

Bargmann and hannonic oseillator repreeentatlons of a boson

operator ere fourcl. îtrls is adrler¡eil by the lntrocluc.blon of an

operator R satlsfling

[n,zJ*=fR,ctzl*=o

Ílre equivalenee of the two reBresentations is pronetl by the con-

struction of a unlta:ry integral- transfom eonnectfng then.
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51. TNTRODUSIION

An intrigrujing question in t}¡e deseriptfon of elemetrta,:ry

parbicles is rrhy only Bose end. Fe:mi statisticB appear to be

reallzed. in ttrature. i¡Ihile there does not seem to be any mathe-

matical ínconsistencles in theoríes cleseribing parbieles nore

general than bosons or fer-aions , there i.s , as yet, no dlrect

e4perirnental evidenee for the existenee of any such partlcles '

However physical assunptlons mqy inpose seve1.e restrietions on

a mathenatically eonsístent theory. An approaeh to the problenr

of the existenee of generalized pa.r:tf cles is to deter'¡rine which

properties, if any, of the cþscription of these parbicles are

consistent w'ith phys ical assìltptions .

The first theoretlcal studies of generafizecl statistics

were macre by Gentile, Borsellino, sonnerfeld. end otherr(r).

T?rese stucües t¡ere ¡lainly cOneerned. with the statistical

behavÍour of ensembles of the generalizecl parbieLes' One of the

most impo¡tant results that aroser from theee stuclies was the

realÍzatíon that generalized statisties were associateð with

higher dinenslonal repreaentations of the syroetric group.

Ho¡ever it was not rntil after wigo"t(2) hatl sho¡n that the

Heisenberg equatlons of motion do not r:niquely detennine the

comutation reLatioo"(3) that Green developed the first eon-

lLl
sistent description of generalízetl statistLcs'-'. Using fleltl

theory Green clerivecl a set of rel-ationships for the creation
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and. annihilaù1on operators, more general tha¡r Bose or Fernoi,

whict¡ 'r^r'ere consistent i.¡ith Heisenberg's equation of motion.

T'hese statlstlcs çere te:rned "parastatistics'r, a.s d.istinct from

generalized statistics, by Greenberg and uesslarr(5) *to in¡æsti-

gated their properties. In particular the seleetion r:1es they

d.erivecl inplÍed that all elementary partl-eles are either Bose or

Fer-mi.

Galindo and Ynch:r"io(6) shor¡ecl that parafield states dÍd.

not fonr a 
"epresentation 

of the syrnnetric group. This obJee-

tion r¡as removed. by Lanctshoff a¡rdl stapp(?), *o afüer tlistin-

guishing betveen '?particle" and t'pì-aceu' pernutatlons, shovecl

that parafields fo:¡r a representation of the fo:mer on1y. The

retiuction of the Fock spaee to irretlucible representations of

the partiele perrnutation operators r¡as effectecl by Ohnuki antl

raner,rcrri(8), At tbat stage the relation of the quantum

neclranical opaee to the Foek space of fielcl theory was r:nknown

and obscured diseussion"(9'10'11'12) oo the sfgnificance of place

ancl particle pennutatÍons. Ohnuki and Ka¡refuchi(1o) derived the

relationship between the quantun mecha¡ricaJ- ancl quantum fleLd

ciescripti.ons and shovetl that the quantum mechanical spece associa-

ted. with a parafield pernitted. a sensible interyretatfon of the

in di st in guishabillty o f ident I cal p a^:rt i cle s .

Hartle and Taylor(rS) rrere able to show that the quantum

mechanieal space of parapartíe1es was consistent wlth the cluster
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decomposition property. This properby requires that vi.dely

separated systens of id.entLcal particles are non-interacting.

This result l,'as significant since Steinmann, Lud.ers and others

(r¡+"r5) n"u prevíously shom that not all generalized statistics

çhich correspond to various eollections of irreducible representa-

tLons of So $ere consistent sith the eluster property. lhe proof

by Hartle end Tqylot(rS), fo:mulated. in the quentu¡a meehanieal

6pace, a5sunes that observables are syn¡retric f\.mctions of their

argr:ments. To avold this assulrytion, end. also the conceptuai

d.if fic':lties associatecl vith labeIling identical particles ' 1t ls

easíer to eheck the consistencl¡ of parastatistics r¡ith the eluster

properby within the framework of fielct theory rather than in the

quentur mechanlcal space.

This ís ðone ín 52.1 to 92.6 of this thesis for a non-

relativistic free parafield.. The fomulation of the cl-uster

property in field theory becomes one of red.ucing certain grot4)É 
'

generated by the parafieltl operators, to their various stibgroups.

These grotæs; the orthogonal groræ for parafemi statistics and.

the synrpleetie group for parabose statistice, trrere first connected

wlth parafielcts by Kamefuehí end Takalru=ftf 
(16). 

The appllcation

of the cl¡ster proper-by i.e., the reduction of these groups 1¡ftes

soø: irpozta¡rt resrrlts that have recently been obtained' for para-

femi fÍelds by Brachen and nt."o(t7) and for parabose fielcLs by

Alabiso, Duinio ancl Redonao(18'19).
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rt is for:nd that the eluster property severely restricts

the fo:ø of perrnissible physieal observables to functions con-

strueted from elements of the r:nita4f grolÐ.

Recently Drähl, Haag en¿ Robert"(eo) bave classifiecl the

t'Iocaltt observables of a parafenri field Ín terros of the associa-

tect non-Abelian gauge groups 
(zt'zz). 

They ha'e shortl that a

parafield may provide a convenient deseription of a syste-m of p

femions provided. the physical observables of the parafielcl are

restrieted to elements of U(v). The results of this thesis sho\'r

that the cluster property restricts the pennissíbLe physicaL

observables of a paraf,ield to tbe elements of U(v). Coinblning

these resufte it foLlows that the parafield descrípt'lon is nothing

more than a convenient cleseription of a system of p fer:nrions.

Tn the associated qua.ntr:n ¡echanieal space ttre physieatr-

observables corresponding to elements of U(v) are eymetrtc

fi:nctions of theír argurents. The proof of the c}¡ster property

by Har.bl-e ancl Taylor eorresponds to the proof given in this thesis

that the elements of U(v) are consistent r¡ith the cfu¡ster cle-

conposítion propertY.

rhe extension of these results to relativistie fÍelcls is

also eonsidered ln ã2. In this case, to eonstruct physieal

otrservables which are eonsistent with the cluster clecom¡losition

propeï.by it is necessaly to clecornpose the field operators into

positive and. negative frequencies. Ttris is a more severe
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restriction than that obtained. by OhnukÍ and. Kanefuchi

basie of loeality requírements.

(zs)
on the

Ttre s-matrix approach is briefly eonsidered. and it is sho¡n

that it is possible to eonstruct S-matrlces which are consistent

with the cluster tleeorposition properby.

The consequences of the cluster properby within the

I,Iightnan axlomatÍc u¡,p"ot"t 
('\) nt.r" been r¡ldely investigated.

for Bose and Fermi statistic"(Z:). IIor¡ever Iittle attention has

been pald to the eorrespond.ing problem for paraflelds vith p > 1.

Ueing some general properbies of the vaeuì.¡ln e:çeetation values

of parafleld operators which were clerived. by De1lr Antonio'

Greenberg an¿ sudar"¡or(26) an¿r Govork""(3tt\ is shorrr¡ that in

çnera1 only a very restricted class of vaeuum expecbatlon values

ere consistent with the eluster cleconposition property.

In view of the severe restrictions Ímposed on the vaeuum

expectatíon values of parafield otrlerators a brief åiser:ssion on

the possibility of formulatlng an L.s.z.(28) theory of para-

statistics coneÌudes the first chapter.

Althougþ parastatlstics are sufffcient to satisf$ the

Heisenberg connnutatlon relations 1t cloes not neceseariLy foI1ær

that they are the only posslbilities for generalfzed statieties.

Other alternative statlstics have been proposed by consfderlng

aifferent sets of cormrubatíon rel-atiorr.(t9'æ'31). Fr¡:ctions of

the creation and annihilation operators satÍsfving these
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alternative rel-ations are often associated. with the r¡e11 knor¡n

classical g?oups. As with perafields, physical assurrptlons

(such as the positive definiteness of states) are manífestecl by

the el¡oice of the classicaJ- group. fhis is particularly so for

a set of eomm.ubation relations proposed by Kailenova and ft*rr(30).

ft is shovn in 53 that these statistics do not satisfV the

accepted requirenents of field theory. 1'he restrfetions placed.

on con:nutation relations of the ,orl¡(sr) ' 4*t = o anct

I eO,aul* = 0 by a less obvious physieal assurption are also con-

siderecl. in 53.

'fhe work presented. in El+ does not foll-ow on fron the

preceding ehapters. ft 1s eoncerr:ecl with the ¡lathenatical prob-

lenr of aetual-ly construeting e:ç1icit representations of para-

boee operators. Tt¡e eonstruetion cf matrix representations of a

síng1e parafield operator was consldered. by 0tRaifeartaígh anci

ry*(32) and studíes of the uniqueness of these were made by

variou.s other authors(:¡). The eonstrrrctlon of irreclueíbIe rep-

resentations of v parafe:mí operators was macle by Fyan and

Sud.arehan(Sh) o" means of the representatlons of the o(zu+r)

group associatecl vith the parafe:rni operators. The natrlx rep-

resentation of a single parabose oscill-ator was eonstructed by

Jordan, Mr:kr:ntla and. Peppet(Sf ) ancl the generalizsbion to v

operators has reeently been effected by Alabiso and out¡rto(19).
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[\¡o other representgtions of the boson elge-bra are the

Bu,"gr*n(36) *a hannonic oscirlator(-ar) representations. For

one degree of freedom Yang(38) nu." founct a representation of the

parabose algebra in terrrs of x, $ and R, wtrere R is an operator
clx

whieh anti-eo¡mutes w'ith x ana $ . By r:slng Yangts expressions

for the raising and lowering operators, ha:rconic osclllator rep-

resentations of the perabose algebra are obtained in 9l+. Ttre

Bargrrenn spaee for a singl-e parabose operator is also fou:d and.

its equivalenee to the harmonie oscillator representation is

also shown. A d.iscussion on tbe possibility of generalizing

these results to v clegrees of freeclom concludes 5l+.
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92. CLUSTER RESTRTCTTOTtrS ON PA8AFIET,D OPERATORS

92.i- ilrTRoDUCf,IoN

A firndamental assumption aboub elenentary processes is that

the interaction between tr¡o boåies separated. by a large ôistance

ie negligible. Ttris assuq>tion appears to have good erperirnental

verification as ther:e ís no evidence that a systen of id.entical

pa;:rticles loealized on Earbh 1s affected by the presence of

another group of ictentical parLicles on l4ars. Ït r^roulcl' to say

the 1east, be -uery d.if ficult to descrlbe electron-electron

scattering on Earth if the effeet of all other electron-eleetron

scatterings in the Universe ças to be aeeounted for. This d.e-

conposition of the lJniverse into separate non-interacting regions

is temecl 'reluster decomposition" anct any ttescription of a system

of ictentieal elementary partieles shor¡Lcl exhibit this properby.

That Ís if the system is divided fnto two elusters C1 anil C2 '
vhich are then separated. by a large dista,nce, then eaeh sub-

system na¡r be deseribed independently of the other. Not all

theories will necessarily posses6 this property or alternatÍvely

the cÌr¡ster cleeora¡rositlon property may place cerbaln restrictíons

on a theory. fhe restrictions lmposed on a parafÍelci theory a.re

investigatetl 1n this chapter.

Many authore have ehovn that attenrpts to generallze Bose

ancl Fermi statÍstics within the quantm meehanieal franework by

consldering hlgþer illmensÍona] representations of the s¡rmetrLc
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group are not arbitrary but subjcct to restrictions imposecl by

the eluster properby(r3'r-l+'15). Tlartle and. Taylot(rs) *u

Doplicher, Haag snd Roberb.(U) have shown that the representa-

tions of the symretric group affordeci by the guantuo meehanicaL

space of para-partícIes are consistent with the eluster decom-

position property. fn parbicrrlar Ilartle and. Tq¡Ior irave shown

that the cluster deconposition problem i.s essentially that of

the reduction of Sn+1 to srr. Tlreir proof , however' sssumes

that all operators in the quantum mechanieal space are syrmetric

ft¡nctions of their argr:ments.

on the other hand. ohnukÍ anct Ka¡Tefuchi(ro'e3) have arguecl,

frorn consíderations based on fielcl theory, that not all physleal

observables associatetl wÍth a para.fÍeld theory are syrmetrie

firnctlons of their argunents. It is not obvious ¡¡hether the

proof gÍven by Hartle and Taylor is eapable of being noðified' to

inclucle observables of more general syrmetry t¡res. Tt¡is probl-en

is not taeklect direetly in this thesis, but an alterr:ative

approaeh ís developed whieh d.oes resolve the anbiguÍty.

fhe apprcaeh eonsidered in this thesis is to fo:mul-ate the

cl-uster deconposition properby within the field. theoretic fra,ue-

work rather than, as is norna-lly d.one, Ín the quantr.u læchanical

space. fhis hss the advantage of not onJy showing that para-

fields are eonsistent r¡ith the c}:ster tlecorçositÍon property

bgb also of cler¡onstrating for which elass of operators the
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cluster property ho1ds. An add.itional advantage of the field

tlieory fonaulation is that it a11or¡s a eornparieon w"ith the results

obtained. by Ohnr:ki and Kemefu"nr(zS) r,¡hich are based. on apparently

sinil-ar physí caI assuuptions .

Sircilarly to the quantr:m mechauical case, the applicatlon

of the ch¡ster cleconposition prooerby to parafielcl theory is

essentislly the reduction of varior:s groups to theÍr approprlate

subgror4rs. 92.2 contains a résum6 of some recently dlseoverecl

propertie.(rt) of the representations of o(2v+1), o(2v) and u(v)

affordett by v para.fe:mi operators aad those of the representations

of Sp(2v) ana u(v) affordect by v parabose operato*"(r9). In order

to erçhasize the groqp theory invol-r¡ed. the variables x, of a non-

relativistic parafield, S(xr), are restricted to a finjte number

of valrres labelled 1 to u. fhe transition to continuous variables

1s diseussed at the end of 52.2 ætd. Ís also effected. at the

appropríate point in the diseussion.

ohnuki and. Ka¡nefrr"ot(eS) have consittered a "non-relativlstic

linit of 1oca11ty" and have shorm that it restricts terms in the

interaction Ha¡rlltonian to arbitrary flrnctions of the follolring

termst

+Here, end. througþout the thesis, upper signs refer to parabose

fields and lorer ones to parafetmi fieltls.
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t ó*(*) ,o(v)l t o(x),ó(v)i *!t

and.
tl át

t ô (x),0 (v)l *

fhey assume that this "non-relativístie linnite' is r:quivelent to

the cruster cleconrposition properby and so iuposes ai-I the neeessary

restrietlons on a theory. A comparison of the cond.ltions of

local-ity a¡rd. clr:ster ileconposition is given in 92.3 rvhere it ie

shosn that conceptually, at least, they are different. It Ís

therefore not surprising that for para^fie1d.s the ¡estrictions on

permissible physÍcal observables d.ue to cluster deeonposition are

different than those cbtainecl by Ohnuhi and Kamefuchi basecl on

locality.

In 52.L t¡e cÏ:ster decomposition property is fomulated.

withln the fra¡rerrork of field theory rather than, as is r:sualIy

the case, the quantum mechanical fra¡retzork.

The restrietions on a non-relatlvistic parafieltt theozy ¿h¡e

to the cluster d.ecompositlon property are derived tn 52.5. ftre

results of 52.2 are of par-üicular iupodenee sinee in the para-

ferd. case the problen is essentially that of reducing the

approprlate representations of O(2v+3), O(Zv+e) ana U(v+l-) to

those of the subgroups O(ev+f), O(2v) and U(v) respectlve\y. For

the parabose ease the appropriate reduction ís from Sp(ev+Z) ana

u(v+l) to Sp(2v) an¿ u(v) respeetfvely. rn both the parafennÍ

encl the parabose ease, perrissíble physical observables are
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restricted to the elements of U(v) i..., fi:nctions of operators of

the fo:m

[ ó*{*r),0(x, )l *

Tt¡is is obviously a more severe restrietion than that obtained. by

Ohnl:lci ar¡d Kamefudli. It also r''nË1ies more severe selectLon nrles

than those obtained by prevíow author"(5'S9) ancl in parbicular,

for p > 1 1t forbids tbe annihilation or ereation of paraparticles.

The final sectÍon in 52.5 cørpares thÍs restriction of

physieal observsblee to the unitary glorrp vith the classiflcation

of obser¡ables by neans of the associated gauge grot4)s that has

recently been effected by oränr, Haag antt Robert"(eo). As a

result of restricting physical observables to elements ot U(v)

the results of 'ùhe work of Drühl, Haag and Roberts may be used to

shor thet a paraflle1cl is equiva.lent to a description of p fe:mions

with ceztain restrietlons irposetl.

The dLseussion of a non-relatÍvistlc parafieltl ls compJ-etecl

in 52.6 wit¡ a :¡eviev of the associated guantr.m nechanícal. space

with eq>ha.sis on the sfgnifÍcance of the unitalry rather tha¡r

s¡rnretric groqp. fn the quantua nect¡anical speee the pþslcal

observeþles eorrespontling to elements of U(v) are s¡rnmetric

f\¡rsbioos of their argunents a¡rcl henee conrmute vlth rel-abelling

operators definecl on that spaee, Thie proves, at least for para-

fLelcls, the asgulption of many ar¡thors tbat physlcal obse:rrables

ar€ slmnetrlc functions of theÍr argr.arents. Ítre proofs of the
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eoneistency of the quentun mechanical spaee of parafield-s wlth

cluster reqrrirements may be taken to be qulte general althougþ it
trot¡l-d. obviously be possÍbIe to shorJ the inconsistency of fluretions

whíeh are not s¡rruretric fr¡rctions of their argunents wlth ch¡ster

requlrements. Ttre significenee of the unita.rT group is that it
perrnits e resolution of the obJections raisetl by Ohnukl enct

ranen¡cni(12) against the observabilltSr of particle pe:mutations.

The generalization in 52.7 to a relativietic field.1s con-

plieated by the introtlucbion of an adalittonal v degrees of free-

d.cnn for the clescription of anti-part1cles. Ttre sÍgnlficance of

the momentum representation is discussed a¡rd it is sholrn that

penrissibl-e physical observables are those çhose representatLons

in noæntun space are fr¡rctions of the appropriate unlta.:¡¡

algebra. To achieve this within the particle anti-particle

fonnuLatÍon it is neceesary to tleeon¡rose the wave fr¡nction into

positlve and negative frequencies. fhls 1s a cllrect generallza-

tlon of the non-ælatlvÍstie result. It ls r¡el1 known that the

Ferd. eonnutation relations atre invarie¡lt r¡ncler Bogoliubov trans-

fo:sratione ar¡d Vo:¡o.r(hO) O"" obserr¡ed. that a elnÍIar result holcls

for paraferni etetistÍes. Physieally the Bogoliubov transfo:matlons

reLate the spaces of negative ancl posltive energÍes. For p > 1 en

interesting distincbion between the ty¡les of physical obsen¡ables

that are adniseible in each space resr.¡lts from an applleatÍon of

the cluster clecoryosition properby. ftris fLlustrates the
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ínportance of consiciering the representation space assoeiated with

the algebra of operators as well- as the algebra itself.

In the attenpts to forrsulate an axio¡natic descriptÍon of

el-ementary particles the cluster decomposition properby has

received consiclerably more attention than Ít has in the varíous

field. theoretLc descriptions. In paÉicular the use of "eluster

anplítudese' to paranetrize the S-natrix has proveð e:rbremely

successful. Ttre decoryositíon of the S-natrix nas first con-

siclered by wichnann and Crlchtorr(h1). rn 82.8 their approach is

noilifiecl for parafields and. it is expecteil that a sinilsr para-

¡retrization of the S-rnatrix mry be effectecl. 1f its elements are

constructed. fnom fi:nctions of the appropriate unitary grolrp.

Varior¡s proofs of the cl-r¡ster deconrposition propertie¡ of

vacut¡n e:çectatlon va-lues in the lllghtnan axionatic for¡luLation

have been girr.rr(25). Horever these proofs either

C.:ineetly or lndirectly r:se the local conmutativity eontlition that

tA(x),A(r)Ji = o

when x and y har¡e a space-like separation. Sinee this conclftion

cloes not hoId. for paraflelds in general, not all vacuL¡m e:çeeta-

tion values neeesserily satisfY the c]u^ster decou¡rosition propert¡f .

Sone exampl-es are gi'ven Ín 52.9 whíeh suggest that it rtror¡ld. be

dtffÍcul-t to find a sufficiently non-triviel set of va,curm elq)ec-

tation values for wtrich the eh¡ster properby Ttold's.
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ft 1s r¡el-1 knoun that for Bose field.s the lceal conunrtativity

condition lmp11es tt¡at the s-matrix for tuo particle seattering is

oruryti"(h2). For arbitrarT order paraboee fields the 1ocal eop

nutativity eontlltion i.s nodifiett to

Itn(x),n(y)] ¡, A(z)J_ = o

when z is space-lfke l¡'ith respeet to both x end. y. i,lhether or not

thís ínplles that the s-natrix is anal}'tlc 1g r¡nresolved antl in

E2.10 soue eonJectures eoneerning this are cliseussed withín the

L.S.Z. fonmrlatÍon of S-ma.trix theory.

Tlie final- section contains a résuné end d.iscr¡ssion of the

va¡ior¡s results obtained,

92.2 SOME BET,EVAT'I PROPEHIIES OF A PASAETELD

In order not .bo internrpt futu¡e ðÍsewsÍon, some resr¡lts

about parafleltls whidr vill be needed, are glven here.

A non-r"elatívistic parafield g(x*t) satisfiee the follow'ing

equal tlme co¡mr¡bation relatione :

{t[o(xr,t), IO (xr,t), O(r1,t)lrl _ = 2 ôr, 0(1,t)
and.

[ 0(x, "t), [ ô(x.,t), O(x*,t)] *l _ = o

vhere x_. takes a finite mrmber of valuee l- to v. In fr¡tur"e the
1

time varÍables r¡ill be onltted Ín the non-relatiristie d.iser:ssion;

it being understooil that all eomutators (or anti-eo¡øn¡tators)

viII be td<en at, equal times.
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(rr)
Bracken snd Green, have recently obtaíned interestÍng

results eoncerning +"he structure of the representations of o(ev+t)
tglfl+*

generated. b}r ar, 8rr t4ar, 
""1 _, %lar, a"l_ ana 4^", a"l- where

llthe a- and a- are the v creation arrd. annihílation operators forrr
paraferni fields. They have shown the foll_owing resu3.ts:

(f) The vacuum, defined by

a Io> - or' for al]- r
ancl

a **lor=oô lotrs'*rs
where p is the ortþr of the parafielcl, is the lorrest weieht r¡ector

of a finite dlnensíonaL, r:nitary irredueíble representation of

o(2v+r) tabelled Ê,È, ..., |).
(Z) The representation spece Ls found by applying powers of

It
arrs to the vaeuum.

(¡) This representation of O(Zv+f) recluces to p + 1 irre-
clucible representations of the O(2v) subgrorrp generated by

lß lç tÊ14,ar, *"]-r'4ar, a"l_ and.Tar, r"l .-. These representatÍons a:re

labelled (å , å , ... ,* , å - n') r¡here e'= 0,1, ..., p. Repre-

sentations of this ty¡re wiJ-l be te:med, "Foekf' representations of

0(2v). ltore genera.l representatl-ons not of this form w11l- be

te:mecl ?tno,n-Foek" represent ations .

*(l*) rtre n'¡obe? eonaen¡ing cperators Nr" = ä af , a=l _

satlsf!
*oJ6it,I stJ , *aul _ = unJ Niu -
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¡¡hich is the Lie algebra of the r:nitary group U(v).

(:) Irreducible representations of U(u) "¡" ctenoted. by

(9,1, 1,2- , Or) where I, nats be regarded. as the ith ro*n (or

eolu¡or vhen parabose fields are considered.) of a corresponðing

Yormg tu.t,ru*o(L3). Bracken end Green Ìrave shoeìn that for para-

fenni statistics eaeh irreducible representation of U(v) appears

once onþ, that p>- Lt> 9.2> ... >

Ï (-r)J¿.=-q
J=L ¿

vhere q = q.' for v even ar¡d q. = p - q' for v octd.

The last result Ís partieula,r.ly inporbant since it inrplies

that speelfying the r¡nitary 1abe1s of a state ÍmeciíateIy clete:mines

the representation of O(2v) to which the state belongs, i.e.n the

invarÍants of O(2v) a¡" detemined by those of U(u) Uy tfre above

equation. This is a. generalfzation of results obtained previously

ry ohnuki and. Kanefo"rri 
( 1o ) 

.

For parabose fields the ar¡ti-coumutators Li"f,, r=l* ,
rc*

4, af aul * and. 4 ar, a.! * fom a representatlon of the non-cou¡ract

fo:m Sp(2v,R) of the s1æpleetie group. As Alebiso end Outrio(19)

have shorn:, the infinite dinenslonal space obtal.ned by appJying
*

povers ,¡f a_- to the vaeuun reduces into p + 1 irre<lucible r€pre-'r
sentations of Sp(2v). Similarly to the para^fe:mi ease each irre-

iluelble representatÍon of Sp(2u) contains a.L1 those representatl.ons

of U(v) (generatetl by the operators "J.T, a"l*) rrith the sane
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nÌ¡nber of ocld. rowg. Once again an iuportant result hold.s ; that

speeifþ1ng to which Írredueible representation of U(u) a state

belongs irnned.iately deternines to which representation of Sp(2v)

it belongs . It is thls property, conmon tc both parafelsi ancl

parabose algebras, which is cf inprrrbance in congiderations of the

cluster property.

Since the clr:eter properby is forrnulated. in eonfiguratlon

representation the above results, fo:srulated. in moment:,¡m gpace,

shor¿ld. be restated fn configuration representation. Frora the

rather a¡:tifleiat definition of the 0(xr)ts tlre mod.lfication of

the results ls straigþtfo:s,rard. For exarryrle the generators of

the C(ev) suteror{) are

ldo*t*r), o*(rrJ)!-, ä ö(xr)" ô(xr)ì-

and #
äo (xr), o(*r)l_ .

The restriction of the d,omaln of g(xr) to a finÍte set of values

has been introiluced. in order to empha.size the group theoretical

aspect of the cl:ster problen. Tl¡e transitlon to the continuous

case can be effected by replacing sms by integrals and the ôiJt"

by the appropriate tlelta fr¡ncbions. fn particular, the eet of

states f (*,y, ... z)gsr> definecl below stll-I fonr a conplete set of

states and are 1abe1lecl by operators of the fom rd ó*(*) , 0(r)! *.

This is so becawe these properüíes are a clirect conÉequence of

the eo¡¡nr¡ÈatLon :relatlons ancl not of the restriction to a finlte

d.onain.
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ft fs interesting to consid.er the nr:r'ùer conserving opera-

tors N- * as they form a generalization of the so-ealled pa,r:ticle¿J 
/zì

pemutations introduced. by Landshoff and stapntf / and d.Lscwseil in

detail- by neny others (refs. 8, .,, l-3). In parbieular, Ohnuki

and. Ka¡refu*r(fO) n** shorrn that any parafield. state can be ex-

pressed as a línear eombination of states of the form

lio*{*rr), o*{*rr), o*{*r*)}, ¿, ui,
¡¡

where
P, = (lt, Lze ..., Ou)

clenotes a pa.:ticrrler representation of ras¡k n of U(v) entt s.

laÞe1s the basÍe state of that representation, Tl¡e argurents are

to be syruetrized. over the x. rs. In future the above erçression

will be abbrevlated to l(*)ol".t. Ohnr:ki and Karnefuchi fnterpret

0 as denoting representations of particle permutations but their

:¡esults may be suitably nod.ified. to interpret .Q, as d.enotíng repre-

sentations of U(v). As will be considerecl in 52.h }abeI1Íng a

state in this fashion introcluees a redund.ancy into the clescription

of a state since the proJection operator P' onto the n-par.bicle

space satisfies

P l(x) r,s.> <(x) ¿s. In 1 n 1'n

dr,

I
L s.

1

h
Iô-x,-r *T"

h
I

l_

n

þ l,*,"usr' <(x),,øsr l
(x 9,=L

n
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In this eeuation dU

sentation of S an¿l
n

ls the dLmension of the Í,th irueduefble repre-

rlrn

denotes

The redr¡nd.ancy involvecl Ls not of a,ny physical signifieanee

and. eoul,d be renovec!. by Iabe11-ing a state by the chain

U(v) > u(u-I) I ... f u(1). rn man¡r cases the srrs may be thougþt

of as 1abeIs corr€sponcilng to the chain U(v-l) f U(v*2) r ...

) U(1). In future discì¡ssions "choosing e, and s, approprlately"

will æar¡ taklng the partieular besis states (or pogslbly combLna-

tlone of then) which correspond. to the s¡rnnetry labellecl by

u(v-l) : U(v-2) r ... ) U(1) nhich is being dLscr:ssed.

A COMPAAÏSON OF TIM CONDTTIONS OF LOCALIIry AI'ÎD CTUSTEB

DECOMPOSTfION

v

I
Ll

v
T

í2-a -1

v
i

Í=Ln

s2.3

ft¡o eonôitions cotmon to a relativistlc fieId. tbeory are

those of local-ity ar¡d err.¡ster deconpositroo(a5). It ls ofben

assurecl that these two eondLtlons are equlvalent but ' as the

resu-Its of thls chapter l¡fll shoç¡, for p > 1- this is not the cas¡e.

Even for Bose statistics, Sudarshan anil Barttakcl(hh) n"* nt*

posed an exa,nple of a fielcl satisffing loca1 conmtrtar¡ity but

violatlng tlre ch¡ster deeouposition property' rn thls section

the conceptua.l aspects of locality and, the cluster deeou¡roeltion

property r¡ilL be eou¡rared.
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Ttre conùition of locelÍty req'rires theb events wÍth spaee-

1lke separation shor:ld. not interfere slnce interection effeets ¿r€

propagated at vel-oclties less than or equal to the velocity of

U.ght. Tt¡is eonôltion is i:sua1ly expressed ¡lathematicafty(\5) es

t,ar(x), ar(v)i- = o (e.ra)

if x î, y" The interaction Hamiltonien is denoted * ãI(x) ar¡a

x ¡, J¡ d-enotes space-like separation. Onetla, Unezawa and

Pod.olanski(l+6) have suggested that the above relation be supple-

nented. by

trlr(x), ô(y)l.. = o (z.rr)

Ohnr:ki and Kenreflr"nr(23) have applíe¿ both these cond1tione to a

paraflelcl and. have derived the restrictions on the fteLd. observ-

ables. Hower¡er the sbove conditions ?ney be crÍtlcized on tr¡o

aceor¡rts. The firet is that they have been d.erivecl r:sing the

interaction representation r¡Ì¡ich is known to lead to inconsisteneies.

A criticism more relevant to parafleld.s is that the derivation of

(Z,fa) assrunes that the variations are conmr.rting c-nusbere (see

p,l+ef of ref. h5). For p > l this ls not the case and, as Kibbl-e

and Polkinghorne and Set¡arrstein(\?) n** shown, variations mey be

definecl for on\y eertain co¡nbinations of para,field operators. From

this poln+" of vier¡ the above eond.itions ehoulcl uot be appliect to a

paraflelcl without fi:rther Justification.
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As cliseussed, ín the Introd.uetion the cluster property re-

quires that two wid.ely separated elusters of ÍdentÍcal particl-es

should be non-interaetirrg. Althorrgh, as Ìlictrmann and Ctrri"lrton(hl)

ha're pointed or¡t eny large spaee-time separation ie pencfssible;

in general only large spaee-like separations wÍIl be eonsid.ered in

thls thesis. The cluster proper.by is eq)resseè nathenatically by

tbe factorization of e:çectation val-ues representing the results of

rueasurenents. This is a different set of nathernatieal- restrietl.ons

inpoeed on the theory than those inplied by local-ity and the eqr:1^

valence of the tvo sets of restrLctions ne¡r depentl heavily on the

nathenatieal stn¡cture of the theory.

Conceptuelly, loeality is sinply a kinenatical reqr:Lrement

that a eertain spatial separation is too great for interactl.ons,

propagated at less than the speecl of light " to be transverse¿l

wlthln a eerEafn tine lntervel. Hovever it contains no inforsa-

tion on hc¡r the stnengths of these interaetions mry tlepenct on the

separation of the interacting bodies. It is exactly thie infoma-

tion ¡çhieh is supplied. by the cl-r¡ster property vhidr assnmes thet

these interactfons beeorne negllglbl-e as the separatÍon is fnereaseil.

T'lre clÍfference betveen loeaUty a¡rcl c1uster ciecomposltion can

be lIÏ.r.strated by means of a "gentlar¡kenrr or t'thoug¡ttr erçerfment.

f\ro experiments a:re perfo:rned on tvo groræs of sìmí1ar parÈ1c1es,

one group of whic}r 1s on the Ea¡r'ùh and the other w?¡ich la on the

Moon. ff , ln a chosen reference frame, both elçerJ.ments are
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pe"forIned at th¿-¡ saae tine then both the eluster property arid

locality woulil imply that the tva results a.?e independent. Hol,r-

ever, if the e:çeriment on the Moon was pe:rfo:med. at a suffieiently

later time sueh that the Ínteractions propagated from Earth cor¡ld

reach the l,loon then loeality wouId. no longer neeessarily require

the ind.epenclence of the two experirnents. 0n the other herid, the

eLuster prcperty wor¡ld still require the inclepend.ence of the tlro

e:çerinents. Ihls exa,4l1e shows the non-equfvalenee of the two

restrictions.

In both cases the non-relativistic 1lmlte ean easily be

obtained.. As d.iscussed. by Ohnr¡ki end Kalûefuctri the locality con-

ilitions may be ¡rodified by tahing equal-tirce coumutators and

a.lloring the spatial eeparations tc approaeh ÍnfLnÍty. The

clr¡ster deeomposition property is sinilarly ¡rodified. by eonsider-

lng the resr¡lts of rneasurements perfonoed at tbe saüre time but

rith large spatial separation. fhe above disct¡ssions ean be

easily ¡lo&ified. for these non-relativistic cases.

Having cliseussed, the coneeptual differences betçeen the

cLuster property and. loeal-ity the renainiler of this chapter will

be concerned. with demonstrating their mathematlcal inequivelenee

for para.fíeIds, provid.ed, s discr¡ssed at the beginnlng of this

gectlonc eq.s, 2.L are a reasonable ex¡lression of locn.lity for

parafields.
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g2.l+ FORì,I{JLATIOIü 0F TLUSTER DECOMFOSITIOF PROPERTT FOR

PARAFIELDS

Sinee the eluster property ie fon:ulated. in ter¡Ls of

systems that a¡e spatial-Iy separated it is appropriate to use

the configuratÍon rtlçresentation. Previor:s appllcations of the

ch:ster property, lrhile ackno¡¡ledging this, have sol-e\y used the

quant';n nechanical fraoework. Horaever, there is no ::eoson utry

the clwter property cannot be applieci to the fíeltt descrlption.

There are scme dÍfferenees bett¡een the quenturn rnechar¡ical approach

and that of the associated. field theory whieh are releve¡lt. One

Ís that an operator in field theory, sÍnce it is e:çressed as a

fi:netion of the þts, takes the Eane form çhether the systen is

deseribed. in teros of red.r¡nclant parbícles or not. this has an

advantage cr¡er the correeponding quantt¡m mechanicaL description

uhere, for exanrple, an operator rrhieh is a s¡rnnetric firnctlon of

lts argLrrents in C1 m'JBt a^Iso be sytmetrizecl over the argunente of

C2 Lf the system C1 is to be cleseribed. in tems of the redund.ent

cluster C2.. A point to be emphasizett le that in the flelcl theory'

since the nr¡¡ober of parbleles ís not necessarl\r eonsenredt

expeetation values cen be evaluated. between euperpositl-ons of stetes

with dÍfferent nunbers of parblcles.

Any state of a parafield. rnoy be represented. ty lot trhere

ó j, tlî) {{*),,) l(x),,r, ,i'lor= I I
n=0 (x)

n
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and this nay deseribe a state locaJ-ized in C1 provided' the wave-

runcti.ons tj¿) ((xrr)) vanish outside c1. Defining a physical
1

observabret r(c1 ) ty

F(c1) = ,l ., tar(x1, x2, ..., *J) {,(xr) r!(xz) ...Ú(xr)
(x, ) -t

where rr,(xr) stands for eithe" 0(x1) or 0*(x1) ana fa, also has a

vanishíng supporb orrbside c1. Ttre result of a measurernent per-

formeô on syster C1 is given bY

.ol r(cr) lo,

The sa,¡ne messuTement can be perfor'med. ín the presence of a

redund.ent cluster c2. For the puryose of this thesis it t¡i1I

suffiee to consitier one ad.d.itional particle, described by 0(5)'

which has a non-overlappÍng domain with $(xr), í = !,2, "' ' v'

As already noted the fonn of the observable F(Ct ) ts tUe sa¡ne in

combined system so that the only nod.ification is in the description

of the state l*r. only the modificatlons to the basis states

| (x)rrø, 
"i, 

are eonsidered.; the general result follorrs direetly.

As noted. in 52.2 the state l{*)rrø, tit is a basis state of

an Írreducible representation of U(v) and so can be r:niquely

labe1led by the invariants of U(u), U(v-1)' ..., U(f). Any state

tI., tn" l-itdt of continuous x. rs the sr:¡mation is replaced by an

integral.
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in n+l- parbicle system Cr u Cz r¡hieh has tbe se,me labels for these

invariants çil1 then represent the sane state of C1. This is

because the set of all states specifíed. by the U(v) ) U(v*f) :

... ) U(1) etrain is comtrrfete. If C1 is described by the state

I (")rrl,"it, then Ín terrns of the eombined system C1 U C2 a

possible description of this state is the vector

lo't = Lu. "o- I(x)rr("*)ø- s. ->1

where

Itre su¡nation is restrictett to those g'whieh on ttremoval of the

last bose"(h8) reduce to 4, ancl sr. is the basis state of the

representation r1'which is appropriate to sr. This eneures that

the state lo'> has the sa¡re unitary labeLs as the state

l(")rrlr.r. To clescribe a general superpositÍon of states eactr

bs,sis state in the expansion is treated as above wlth one erÈra

restrietion. Rute: ttsuppose lc> is a general superposition of

basls states at least two of whieh, denoted as f øs.t end lf,sr>r

belong to the sa"ne irreducible representation of U(v). fn the

deseription of this state in the co¡ibinecL'systen C1 U C2 , if

lrcr, is deseribed by

I - "u. Il' s. ,t
Lnþ

-*
Lu. "u' eL' = I '
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by

and.

then

Is.Jt

l, 
o*. ln' er.,

bcL' r,'

Ífre Justification for this restriction is given in Appendix 1.

Ðenote Uy lot any state of the n-parbicle system C1 ancl by

f o'> the sane ptrysícal state described fn te:ms of the combinetl

¡+1 particle systen Cl U 6r. The ch.¡ster property then requlres

that the resu.lts of rneesurenents (i.e., the expectati-on values of

physieal observebles) in C¡ shoul-d be inclepenclent of C2. Thfs

requires

.ol F(cl) la> = <a-l r(cr) lo',

92.5 FESTRICTIoNS ON THE PHTSTCÄI oBSERV4SL,ES 0F A NoN-nELATMSTIC
PARAHTELD

For a noa-reLatlvistic parafielct physfeal observables (e.g.

the enerry-monentr¡m of the field or tenus in the interaetlon

H¡miltonian) na¡f be representecl as lntegraLs of fimetions of the

flelct operators $(xr) ""ra ö*(*r). For parafe:mi fielcls these

otrlerator fr¡nctions ney be elassified according to whether they

are eleruentg of the O(2u+t), O(Zu) or U(u) enveloping algebras.

Íhe approprÍate algebras for parabose statistics are Sp(2v) ena

U(v). fhe states of a parafielcl fom the bas.ís for representstlons
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of these groups. fhe introduction of a red.r¡ndant particle intre

duces an extra degree of freed.om end so the el,uster decou¡rosl-tion

is essentialty the reduetÍon of these representatlons to those of

the appropriate subg:rcup. Íhe parafe:mi representatÍons will be

consirlere,L in detail and., since the argr:ment for the parabose

case is conpletely analogous, only the results in the latter case

are inclicated.

S+.ates localized Ín t1 fo:ø representations of O(2v+t),

O(zu) and U(u) r¡híle for the combíned system cr V C2 the repre-

sentations are O(el+S) , O(2v+2) anA U(v+l). The c}¡ster property

is a consideration of the reduetion o¡ o(zv+3), o(ev+z) and U(v)

to 0(ev+1), o(ev) and u(v) respeetively. Each reductl'on is con-

si¿iere¿l separateþ in seetions (a), (t) and (c). fhe results for

the parabose case are eonsidered fn (d). ftlnal1y, in (e), sone

obvious selection rules are discussed a¡rd. fn (f) sn iuporbant

consequence of the restrictions imposed- by tbe cluster property

is d.iscussed-.

(a) Unitan¡ Grow U(v)

As the elements of the uníta,ry grolæ leave I unchangecl'

the results of nea.surements are represented by

<(x-)rrøsrl r(u(v)) I (x)oøsr'

vhere n(u(v)) denotes an element of U(v) a's descrlbed in

52.4. fn the presence of a redrmtlant pe"rüicle locaì.ized
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on C2 the state l(x)rrøsr> of C1 may be described by

lu. .u- lt*)" (xo) l' tJ-t

rrhere the srmmation is as in 52. l+ and

i
L.

cu.=L

is the. onþ restriction on the eoefficients cU.. LV con-

structlon *n I *f , x2, ..., x\) so that the above etate

belourgp to a representation of U(v+L). By a starialar¿l

reduetlon of U(v+l) to U(v) it toffcn*'s tlrat

.(*-)rr(rn)t's'l ¡(u(v) ) I (x)rr(**) e"s r.>

= .(x')rrøsrl ¡'(u(v)) l(*)rrø=r'
.\ it

provlded.' L) = f, ar¡d er. and EJ, are ehosen appropriately.

Thls ensures that the clwter cleccmpositlon properby is

satisfied.. For any copbinatfor¡ of basis states, provitled.

the restrlction of t?.l+ (aiser¡ssed ln Appenclix 1) is

obserr¡ed the eluete:r property fol-Icn¡s dlreetly from above.

The generalizatlon to a ch:si'et C2 of n' ictentical

parbícles folloß clirectly from the reduetlon of tensor

representations of renk n * n' of U(v+V') to representa*vionS

U(u) x U(v') of rank n antl n' respeetir¡e1y. The cn¡cíal

+t+T0* denotes the Yor:ng tableau obtainect from 0 by "removing

.tt

)L

(48)
the last bose"
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Þoint in these eonsiderations is that there exist no para-

fielcl representations of U(v+l-) (or U(r¡rv') in general)

r¡hich, upon reduction, eontaln representations of U(v)

(or U(u) * U(v') in general) ¡.¡hich are not themselves para*

fie1d. representations. The generalization to two or more

redr¡ndant e1r:sters follows by induetion.

(t) orthoeonal Group o(Zv)

Ît¡e eluster property in this ease requires the recl.uc-

tion of o(2v+2) to o(zv).

Consider a state of the comblned. eystem Cr u Ce which

belongs to the representatlon Ë, å, ... , å, å - t) of

O(Zv+2); this corresponds to a superpositlon of etates of

U(v+l-) rríth either zero or p ocld. eolums. Ttrls reduees to

the representation (å, å, . .. , å - t, å - t) of o(2u) by

the folLowÍng drain

Ê,È' ""È,nr,È - 1) r Ë'å, "', å, å- t
t E,È' ..',È- t,å- t)

fhÍs t'non-Fockt' representation of 0(2v) provicles a repre-

sentation (1n general retlueíble) of U(v). Consicler a etate

C1 belonging to s, representatÍon of U(u) rvhich ls contal.ned

in both "Foch" and "non-Foek" representatLons of o(2v). In

teîne of tbe eombinecl system thÍs state may be represented

by a state of U(v+1) r'hich belongs to the representatiø¡
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ß- p- P- P - 1) of O(2v+2) a¡rd which reduces to the\2r Z' "' t Z' z

representation (È,È, ,..,È - t, Ë- t) of o(2v).

lïo¡¡ if the eleraents of 0(2v) are interpreted as

obse::rrabl-es it vor:l-d be possible for an observer on C1 to

determine that" in the presence of C2, the state belongs

to the representation (È,È, ..."È - t, å - t) of o(2v).

For exemple, this cor:lcl be achíeved by evaluating the

Cesinir Ínvaría¡lts of O(ev). Ho,¡ever, representations of

this ty¡re ilo not oceur if the system is d.escrÍbed. in tertrs

of cluster C1 a1one. ftrus an observer in C1 , deterritining

by means of operatore 1ocalÍzed in C1 ttrat the state belongs

to the representation (Ë, å, ...,È - t, å - t) of o(2v),

wouLil be able to pred.lct the exÍstenee of C2. Also the

relatlonship between the lnvariants of O(2v) ana U(v) is

lost for "non-Fock" representations, ao that matrix elements

of O(2v) operators are not independent of the exlstence of

C2. Sorne e:çlieit exanples ar€ given in Appentlix 2.

ff observables are restrlctect to fw¡ctions of the

unitary group then no eontraclLctioa between the two modes

of clescrlption arlees since lt fs never possible to iletennine

to wtrich representation of 0(eu) a state belongs.

That the above arguments holil only for p > 1 can be

seen fron the red.uetlon of tne (1¿,4, ... , L, k) reBresenta-

tion of O(Zv+Z) afforäed by p - 1. The above ctlfficulties
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d.o not arise since the oniy reþresentation of C(2v) obtained

is label-Ied' ()5, ta, .. . , 2), l{o urnon-Fock" representatÍons

oceu-r ancl it is quite eonsistent to inter?r€t the elements

ot o(2v) as physiea-r- observables. this is a fu¡aia¡rental

differenee between Fer"¡ri and higher order parafermí statis-
tícs.

( c ) Orthoeonat Groræ O( 2v+1)

Since o(ev+f ) contains of 0(2u) as a subgror4r it is
oblious from the previor:s section that ere¡cents of o(ev+r)

ar¡e not eonsistent with the crr:ster asisumption. This is
also apparent from the faet that O(2(v+v,)+t) does not

inclr:cie O(eu+f) x O(2v'+1) as a subgroup, so that even the

non'-relativistic rlnit of locality is not satisfied. This

holds for all p end so reproduees the well-knorn resurt that
it is lnpossible to create or annÍhilate an odd number of
fer¡done.

(a) Non- vistic Perabose Fielcls

fhe argr-rments for the parabose fler-ctjs are complete\r

anarogous to the pnraferrni case except that the relevent

algebras are Sp(2v) ana U(v). The only operators that a¡¡e

eonsÍstent wlth the cluster decomposition property are the

erements of the r:nítary group generated. by the tiJ t" ¡rhere

tt
niJ =,ÃQ k ), ó(x,)!*
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The expl1Ïtrlles of Appendix 2 can easily be ¡rod.ifiect by

replacing co¡onutators by anti-cormrutators end. eonsidering

s]'mrnetríc rather then arrti-sylr:metrie states " Once again

these argr:nents hold- for p > L only. By ordertng al*l the

partleles in C1 to the right and all in C2 to the left, the

cluster pro¡rerty can easily be sho¡n to hold for any operetor

in Bose stcbistics.

(e ) Seleetion Rul-es

Selectlon rules for parafields have been clerived by a

nr:mber of other authors(Sl) o"rud. on the tocality require*

ments. The restrietion of obsersrables to funetions of the

unitary group obvlor.rsly irnposes more severe selection ru1es.

Since elements of the unltar¡r group are number eonsenring

operatore it follo¡s that in any reactÍon the nunber of

parapartlcles on both síales of the reaction ls conserr¡ed

i.e., paraparbicles are neither ereated or destroyed.. This

seleetLon rule howe'rer, applfes only in the case of a sfngle

paraflelcl. To d.lseuss the more general case of interacting

fiel-ds the relative comutation relations betrreen clifferent

fielcls mr:st tre consldered. Thie is not dlscussed. in this

thesÍs.

(r) The Equivalenee of a ParafermÍ Theonr to p Fernion
Fielcls

It ls well, known that a parafernl fielcl of order p

can be rrritten as a 6un of p cornnrrtlng ferrnion fleItls, 1.e. "
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0(x) =
0fo

o=l-

)

fhese Green eouponent fields ean be related to a set of p

anti-conmubing ferroion fields by means of Klein tra¡rsfo:ma-

tions. This indicates that a parafe:rrí theory of ortler p

nay be equlval,ent to a system p fe:mions ' Drühl, Haag ancl

notor.ts(2o) (an¿ ohnr.rki and Kamefue?¡i(zr), have shor,m,

sinee the Klein transfornation is in genera"l non-Ioeal,

that the equlvalence wj.IL only holct ff cer-bain restrictions

are placed on the theory. The effect of tbeee restrictions

is to Lildt the ctroice of fo:m.< of operatorg representing

physieal obsenrables.

[be gauge transformations on the Green corponent

fielcls that leave the paraferni conmutation relatlons

invariant fo:m representations of U(p) , O(f ) and SO(p).

Orüfrt, Haag ancl Roberts have shown that if the algebra of

observables ls invarlant urder U(p) transformatLons then

the paraferní field is Just an alternative description of

a system of p feruions. Hotrever Braelren *a ctu"n(h9)

have sho¡n that the grcup strrreture cf the Green eomponent

fields may be cha¡acterized by the diqgran
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o(2v) r so( u(v )

p) ) r so(p)

I

@

I

I

pU )o(

€.8., ths U(v) operatovs lduT, .*, - are invariant urder

the transfo:mration* *!t) * 
"(l)- = I cù., r(r<) . nhereTrtlr1Kr

o* is a r-uÍtary matrix. Tlrus the algebra coresponding

to U(p) is U(v). Nov, from the previous seetlons, the

cluster property restricts the oi:sers¡ebles to elements of

U(u). But Drüh1, Haag and Roberts have sho¡m that thls

restriction is equivalent to descrÍbing a system of p

fermions.

fn other wo¡cls, the cl:ster property ensures that a

paraferml fieldt 1s equivalent to a system of p fermions

rríth cerüain eondLtíona inçosetl. Exactly what these con-

ditions a¡e end what their physlcal interpretation wor¡Iil

be Ís an interestlng problem, whieh, in particular for

p = 3 ¡ mâV ltave im¡lortant consequences.

92.6 THE QUAI\NUM MECHANICA¡ SPASE ASSOCIABED IIITTH A PARAETELD

The restrietion of physlgal obserqables in parafielC. theory

to elenents of the unitary group also lnp3.es a restriction on

observables in the corresponcling quant'um neeharilcal space. In

viel¡ of the reeent eoncern of authors w1th the quantum inechenical
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sÞaee of perapaÉÍcles the results obtaÍned. in the previoirs

sections are diseu8sed. wíthin the quentr:n ¡nechanieal frameworilç.

ltre quantum nechanlcal r*ave fi¿rcticns asscciated rrtth a

parafield are definua uu(rz).

t(*),(*),rsi,(k)nsJ) = .(x)nß"i I (r)nø"r,

Tlris defines g as a function of n variables (*t, *z , ..., *r)
and as suctr provides a, representation of r:-.r:rrutations of these

varlebl-es. SÍnce pe::mutaticns of the variables (*l , xz , . . . u *n)

only anount to a relabelling of the ve-riables they do nct change

a physical state and hence cannot be interpreted. a.s physíeaI

observables.

rt is knorrn that operators corresponding to fì:nctfons of
the N-. are, in the associated. quantr¡m meehanical spac"(ro),

s¡rumetric fì¡nctions of their argr:nents. In stand.ard. dlscr¡ssions

of permutation s¡rmnetry it ls usuarly stated as a¡l assurption

that observables are syrruþtr1e fr¡nctions of their argr:nents.

rhis is unnecessarïr for parafields since the restriction of
physieal obsen¡abres to fi¡:ctions of the Ni¡, and hence to
symrnêtrÍc f\¡rctÍons in the quantr.rm mechanical space, folJ-ows

d.irectly fron the cluster assrrmption. since these observables

conmute with arl relabelling operators they are r¡nabIe to èie-

tinguish betr¡een states witÌ¡ln en irreducfble representation of
the reiabei-1ing operators and hence the coneept of a ,generalizecl
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,,(50)ray naturalJ:¡¡ arl.ses. Apart from sone modifications, suctr as

the replacement of irreclueible representatiors of s' by recluelble

ones ' the quantum mecha¡rical space associated. isith a parefiel¿ is
siriLar to that prrcposecl by Greenberg and. Ì,bssiatr. Ttre conJeeture

of Greenberu(5l) that 'reaeh veetor ir Ë¡,.r. corresponds to a¡r

entire irreclueÍbIe representation, bel-onging to the sa¡ne yor:ng

tableau. in ã^ .o 
tt has been verÍfled.. HÍs seccnd eonJecture that' rd.rri.

tothe redundancrJr associatect vith the genere.lized rrys that repre-

sent states of parÈieIes which are not Bose or Fermi tr 
"e.*. 

is
removed. lt äF.T. a¡d. at the sane tùne the unobsen¡able perrrutation

operators are ellminatec," is also true since the n*(o)rg are not

definecl when acting o¡ states in the field theorXr. A one-to-one

correspondence between the quantr¡o necha¡¡f cal space and the para-

ficÌd. nry be presenrecl by choosing a parü1erÈar basis staÈe in ar¡

irretlucible repreeentation of the relabelling operators arid. e1i¡r1-

natlng the nest. Ttris has no physieal effect slnee the concept of

labealing Ítl¡entical parËl-cIes is art,iftciat ar¡d not of any physlcal

sÍgnifleance. T'his so-call-ed. "elimination of the genera.lÍzed ray'

has b-een <lise¡¡ssed. in detail by Hartre end. Taylo"(rs) and. also by

stott and raylo"(n).

within the fielcl representation the el-ements of the unítary

group form a generalization of the partÍcre perotrtatíon operators

introduced by Lan¿shoff aErä Stapp. fn faet the restriction of

observables to elements of the r.rnitary group is a generalÍzatfon
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of the suæestion by Landshoff anci stapp that physical obaervables

are fi:netions of particle permutations.

ohnr¡ki and. Ka¡¡efuchi(12) n"rr" argued that pa,r:ticle pe:muta-

tions of the momentum Iabels, i.e. the llu(o)'s nay only be inter-
preted. as physieal observables for e fr.ee (non-interactfng) riet¿
since the II*(o)'s are not defined when aetÍng on arbitrary n-

paztiel.e states. Ilowever operators which are similar to partíele

pemutations wt¡en acting on states with all- l-ebels clifferent can

be expressecl in terms of the ltrr, wÌrere

oiJ = a"i' 1r
The tr¡o suc}r olnratore are

;P+D

uiJ = *tJ *Ji - Ntt

ancl

tu
uiJ

r| (rvrr+ru.rr)

slnce both u' ana Ùr, are deflned a^s fi¡eetions of generators of

the unitary group they can be apprled to any state r¡ithin the

Fock space a¡¡d. henee their interpretation as phyaleal observables

hortls for both free ancl non-interaetlng ftelcls. rn par-bicular the
4,U' form a representation of the permutation eubgroç of U(v)

whfch eorrespontle to the ÌIeyl reflections of the weight diagra,n

of the appropriate rept¡esentaÈion of U(v).
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82.7 BEL.êJTIVISTIC

The relativístic cliscussion of the cl_uster decornposition

properüy is coupricated. by the introduetion of a¡r exbra v degrees

of freed.om for the description of anti-partieles. For the para-

ferní fíe1ds the cluster properüy wil-I be ilLscussed in two repre-

sentations; (a) the 'lnegative enerry pieture" an¿ (b) ttre

"posltive enersr píeturet'. The resufts obtained. are dlfferent for

the two representations. For parabose field.e only the posltive

enerry representation is applieable. fn the folloring dÍscwslons

the coordinate and, Ín generaJ-, the monentu¡r variebles will take

a contlnuouÉs range of values.

(a) Negative Energr States

The expansion of the para^fer.ni r¡ar¡e fi:action ln the

Heisenberg representation is

ú(x) = ,#l u'u C?'{Í, ""(n)*'(3) u-ip"*

l+

+
3

vhere g, = / g2- + m2, *"(&) are Dirac spinors, the %(t)8
satisf! paraferml cornnr¡bation relations and p"x = pot - n"ð. The

l*
ao(p) are inte4greted- as creation operators for particles of

positive (negative) enerry for r = 1 or e (S or ¡+). The "no-

partlclefi state is defined. by

a"(g)lxr=o vr,g.

I ""(- ç)o'"(g) e*in"*1 (z.z)
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Applying powers ot "]{gl to lxt defínes a representation which

will be tenned the negative energy picture. ft should not be

eonfi:sed. l¡ith the hole theory of Dírac where a representation is

defined. by applying either creatlon or annihílation operators to

a etate that is completely fiI1ed. r,rith negative enerry particl-es.

Ignoring spin ind.iees and. restricting the momenta to a finíte

nr.mber; u, of degrees of freedon the expansion (e.2) can be

r¡ritten

û(x) = a" u"(x) * ""*u ur*u(x) = u (x)
a

(z.z')
P=l-

p

By analory with the non-relativistic case the cluster

properby restricts physical observables to fr¡r¡cbions of the fom

t il(x), ,!(v)l _. lhís could easily be checlced by substituting the

appropríate relatÍvistics fÍeld operators in the examples of

Appendix 2 and.usingthe faet tnat ¡+(x-y) +O as x-y+co

in a spaee-like d.ÍrectÍon. Hor,¡ever, since it is llore convenient

to use the momentu¡L r€presentation in this and futr:re diseussions,

the sfgnifieanee of the rnomentr:m representation w111 be dlseussed

here.

Srppose x and y have large spaee-Iike separation ancl

eonsider an expectation value of the form

.xl ...ú(x) ...-t(v) lx'

From e:çansion (2.2-) tr¡ts becores

q

2tt

I
1

v
I
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l+f

(e. ¡)

X>
p=1 c=]-

* 
lT "o 

(x)üo(v)

Using the eo¡rnr¡tation relatlons this ean, in genera.1, be retlueed

to e:çressions of the fo:m

II <xl 
%

uo(x)üo(v) uoo

It
a

2v 2v'-,

ol, "' "1, 
f l5{")ü"(v) ooo 'xl lx'

For example the relevar¡t ter"rs in

.xl û(x)l(v) lx'
¡ecluee to

2v 2uII
p=1 o=1

In the linit of a continuor¡s range of monent a (2.3) can be

nritten

I un "-in'(x-v) r(*(p)) .xl lx,
J

çhere f ( (v(p) ) Ís some fi:nction of Dirac spinors. Tl¡is íntegraL is

of the fono

[ "-rn.(*-y) ¡,(p)dp
I

which by the Riemann-Lebesque lemna approachee zero as l* - yl

approaches infinlty.

It¡is neans thaÈ in orcþr to reduce the eorplexlty of

sone of the sr:bseqr¡ent algebras, tems cq¡tainint ôOo ot

6(pO po) nry be lgnored on the r:nclerstancllng that the Rienann-

Lébesqrre lenrna is r¡sed where appropriate. It is only possible



l+z

to use this lenma for those Þ, and. pk nhich are conJugate variabLes

to the xrrs and. ats whieh have a lerge spaee-like separation.

rn the monentum representation, by an arguoent enarogous

to the non-relativistÍc ea,se e physlcar observables are restr{,cted

to elements of the u(2v) generated by the U4, 
"ol ... The onty

operators 'in the eonfiguratlon representation lÈ¡f ch reduees to

the unitary group elements are fr¡netions of

t ü(x), ú(x)l

(t) Positive E¡rerqr¡ States

Ttre ex¡ransion of the var¡e-fi¡nction in the positive

energ¡ representatlon is

rÞ(x) =
1_

ra42
I utn (fl " t- {"r(p)*r(g) ç-rn'x- R rFJ_

+ b: (R)v"(ç) "in'*1 (2.l+)

= ,(+)(x) + v(-)(*) ,
.g, tl.

wt¡ere a"(g) ana tf(4) are interpreted as creatíon cperato¡s of
positive energ¡ particles and ar¡ti-partieles respectively. A

physical, vacuuln state is cleflnecl by:

a"(g) fot=ur(p) lot=6 v",g.
Restricbing the momenturn varlables to a finite number; u, of

clegrees of freeclom and ignoring spin ind,ices thís can be rrrltten

as
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Simiì-arly to the negative energy representation the cluster

property '¡i11 be fo:mulated. in the møentum representatLon.

Ilre algebra generated by the arrs ancl brrs is O(l+v+l-)

a¡rd a state of n par-bleles in C1 is characterLzed. by tbe U(2v)

iabels r¡here the U(2u) algeUra is generatecl by

ld ri, rJl *, '4 4, oJl -, ätl, arl -
and i*,ào;, oJl_ . (e.¡\

The descriptlon of the system in te¡ss of C1 U Cz lntroduees an

e:ctra clegree of freecicm beeause Ce ¡rey contain a perticJ.e or

antf-paÉic1e. The reduetion of the representations of U(2v+l)

to U(2u) ensures that the elements of tbe r:nitary group are

perrlsslble pþsical observables, while the appearanee of "non-

Í'oclctt representations of the orthogonal groqp ln the red.uction

of O(l+u+z) to O(l+v) preclucþs tbe elements of O(l+v) as physical

observablee. All this is qr:lte straightfonrard. a¡¡cl follot¡s $ith

only s1Íght nodifieations to the ergtment used ln the nor¡-rela-

tirrlstlc case.

Within the coordinate representation this restriction

iqrlies that the only pe:missible observables are those v?¡ich

ca¡l be eor¡stnrcted. from fi¡ccÈlons of the fom (e.5). Deem-

posing the var¡e functlon lnto positive ancl negatJ.ve frequencies

the pend.sslble eombfnatlonÊ are
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(-)

*) (*) , i(-) (")i -, i..!(

(*) 
', ü(*) (y)l and t ü

-) (+)(x), ú

(+) (x), 0
(-)

(v)1

(y)l

¡+U.

(z.t)

t

t,t

Eowever these are aot the only possibilities since for exau¡rIe

the operefor

E = i f ,*- *n-t* rot ü) u'ö Þ.ø)

hss the mouentr¡¡n representatíon

rr- I lal t
P'r

nr(+)
P'r

* w(-)
P.'r

_zl

where

a¡ril

-l:l = ä.ltsl , a,(p)l-

-l,l = a uf (s) , b p_)l

3¡r the above argrments E Ís a permissíbl-e observable since the

integfation has renor¡ed. the offenctlng tems. Ilor¡ever this

integration lrrplles a non-locallzability which is not cleslrable

in fielô theory since it ilçIies that the uhole of the UnÍverse

must be conelclered.. AtteuptÍng to locelize the description by

integrating only over a flnÍte volume çoulcl lnvaLidate the

reduetion ot (2.6) to (z.l) since the or-thogonal terus, i.€.,

f .ifgl, .itllt- woul-d not clfsappear. In this case the operator

E wor¡1d no longer be eonsistent with the eh:ster cleccrnposition

property. In ortter to construet operators whieh are consLstent

(r
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t¡ith the ch:ster d.ecomposition property it is necessarry to

clecompose the wave funcbions into positive and negative frequencies.

(e) A Co¡æarison of the Positive ancl Neeatiì¡e Enermr
Bepresentations

Farafer¡ni conmutation rel-ations are invarlant l¡rder

Bogoliubov transfonnations of the fo:¡l

.> a-
-K

fgnoring the possibility of rryrlotf.c representatÍone these trans-

formatlons are unitary. ft vould then appear, usíng the erpan-

sion (2.2) ttrat since t ü(x), ú(x)l _ is coqratible with the

cl-uster property Ín the negative enerry representation then it
shoìrÌcl aLso satisf$ the clr:ster pro¡rerty in the posltive enerry

pieture if the e:çension (Z.l+) is r¡sed. This is equlvalent to

requirlng that if the operato"" t .l , uol - 
(p,o = 1 ... 2v)

satisf! the e}.¡ster properby in the negative energ/r representation
It

then it follo¡s the opera+"ors [ "i, bJ] _, where rr*u = b" ,

satisf$ the eluster property in the ¡nsitive enerry representation,-

fn fact, as hes been shoun in the preceeding seetions, this is not

the case encl in the posltlve enerry representation, operators of

the fom I a. , b,l do not satisff the cluster pro¡rerty. Itrer J-
apparent eontracliction 1s resolvecl by obsenring that transfonra-

tions of the form a*.. * tl ao not preserve the unita.rry symetrTr+v r
of the basis states and hence a statenent of the el-uster properby

in one representation does nct trar¡sfom into the eorresponding

tß

bLa-
-l{



I+6

statement of Èhe eruster property in the other representation.

¿¡1 q¡enpIe showíng the necessity of consid.ering the cÌuster
property in each space is given Ín Appendix 3.

The paraffeld. r¡ersÍon of Dirac's hole theory, which

has the expansion (Z.Z') tor the fielfl operators ancl which ea,n bL=

consLderect inte:seôiate between the positive and. negative enerry

representatÍons, ca¡r be eesily shoÌrn to be equivaleut to the

positive ene"gy representatlons as far as the eluster property is
eoncerned. this is beea.use the pbysiear vacuua is ctefinecl in
the hole theory to be

loo' = ({*r)n ("iuln ¡¡'
Once again this indicates the inportanee of fomulatfng the

cluEter property 1n that spaee slnee considering the erqra.nsíon

(z.z' ) atone wor¡rd incorrectry irply that [ ü(x), ú(x)] is a

pe:missible physical obsen¡able.

(a) An

fn this seetion an exrmple is given to show that
r¡ithin the particle-antíparËfele representetion operators of the

forn [ 
-U(xt 

¡ , ,Þ(x2)j _ ao not satisf] the cluster properüy.

Ignoring spín intlices ü(x) has the ex¡ransÍon

ú(x) =
*

oh+
êx-Íke

1
2k

o>0t1
{ ik.x

þù3/z
aIt

ô ]
o

The transition amplltude for an operator of the form [ü(xr¡, ü(xz)l
betneen the vacuu¡x ar¡d. the anti-syrunetrle partlcle-ar¡tipartlcle

state
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i,7(-)(xg), u(-)(*,*)l _ lo'

ie pr^*(*, - xa)a+(xz - x¡)

fn the presence of a redunttant pa.::ticl_e the sane

process may be clescribed. by the foJ_lowlng transition amplitucle,,

.ol ,!(*){*. + la) Iü(x1), {,(*2)l_ {il(-)(*s)ü(-){*u * 
^"¡

* ú(-)(*u) - v(-)(*u)ü(-)(x5 + 
^o)Ð(-)(*r)) lo'

çhere a is an arbitrary spaee-like veetor antt À * æ . Ttre

asyrptotle behaviour of the ¿+(z) tr¡netion for z space-1ike

is given by

t+ (z) . 
-J- "-z(3zng l"l3)4

which can be ignored for ]-arge z. .ê-s I + - the ebove vacuum

ex¡netation value approaches p2(p - e)¡+(xz - xs)¡+(xr - x,*)

A*(*o - *s) which does not factor"f.ze according to

üx5<ol {,(*)(
( )

) (*s) lo' .o I t ü{*t ) , ,t'(xz )l

' ¡¡(-)(x3), u(-)(*,.)l- lo'
as requf:recl by the cLr¡ster property.

rt is easily eeen that this is Jr.rst a generarization

of the rrnclerrying group theoretlcal concepts to the cotrfÍguraÈion

representatlon.
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(e) Relativisti eParabose FÍelds

Since Bose and., in general, parabose eonmutation

relations are not invariant und.er transformations of the fonn
lé

% * L the relativistlc parabose theory can onry be formulated
in terns of positive energr par-ticles. only the charged and

neutral scalar fiel-ds are eonsidered here; the generalization to
veetor and tensor fields can readilv be effeeted..

Ttre restrictions of observables to those whose Fourier
transforrns are fr.¡nctions of the lÊtk, 

?ro's 
follors directly from

tbe cluster property. Denote by ô(x) either

1

(z(zr)s
fk.x

>0
8.e
It

ê

*
aI

lÊ

ktbok>0

ik "x+ e i

or

t
o

= f aofr, n\, 
trr* 

*b .

¿3tt -lknx f k.x+ e ]
o

For the drargect ar¡d urchargecl ffeÌtts the elwter property inrplies
that the folloving are perartted as physical obsenrables:

t o(*)*(*), o(-){")r *, I o(-)*(*), o(-){")1* ,

t o(*)(*), ô(-){")l* ancl to(*)*(*), o(-)*{")l*

r¡hich is a straightfowarrl generalízatlon of the paraferni ease.

ALso defining n(x) = âo ó(*) then the folroring operator for the

real seelar fierd. is corryatÍbre with the cl¡ster property
I

H =4 J 
ur* {m2 +2(x) + [ 4(x)"f ô(x) + nz(x)]
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Hovever, as for the paraferrri case, this irrylies a non-loealizabi-

lity since the whole Universe must be eonsidered. 0nce again, in

order to eonstruct operators whose d.o¡rain is a finite voLume of

configuration spaee ar¡tl which are consistent with the cluster

property, it is necesse.lry to clecorpose the war¡e-fr¡nctÍons lnto

positíve and. negative frequencies.

ft is obvÍous that, as for the non-relativistic case,

this irrplies more severe restrictions on the theory than r,¡oulcl

follow from localÍty. In partieular 1t is clifficult to construct

interaction Ha¡nLltonians ffr(x) such that

lilr(x)' rr(v)l_ = O for x ¡, y

Hor,¡ever it nqy be possibl-e that this is not satisfiecl but macro-

causality is, since fron S2.3 the vanishing of the ebove co¡muta-

tor mey not be a reasonable e:çression of nieroeausality for a

parafield. An interestlng approaeh to this has been lnitiatect by

ilapi6rkowk r"ßz) who has shovn that for c* aLgebras the inclepen-

clence of observations in space-like regions (Vi anil V2) d.oes not

neeessarily inply nicroeaugatity, i.e., IO(Vt), O(Vz)] = Q.

92.8 S-IVIATRIX TI{EORY

As an exa.4>Ie of the cluster propezties of theories other

than fielct theory, the S-rnatrix description is eonsidered.. Er¡en

for Bose or Femi etøbistles the cluster proper-bÍes of S-matrÍx

theory has receir¡etl eonsiderable attention. In par.üieular
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Wichmann and. CrÍchrorr(l'r) have shown hov to paranetrize the S-

matrix by neans of "elu.sts¡ erlrI'litudes". Taylor(lS) nu* noilified

theÍr argument to consider phase factors, vhich may be relevant

for ilifferent srrperseleetion sectors. !'or local Bose or Ferrnl

fielcts the clrrster alrplitudes contribr-rbing to scattering proeesses

are essentíally the Feynnan diagra,ms of the correspond.ing pertur-

bation theory. Ttrls essentially verifies the cluster deconrposi-

tion properby for locaI fÍelds. For parafieldg the s-matrix ca¡¡

t,e shovn to be eonsistent vith cluster properties provided. its

elements are restrícted to functions of bhe unÍtary tpe opera-
tl

tors I a (4 ), a({)l *. The argunent is a streightfon¡ard generali-

zation of that given by !üichrnann and Crichton. Since there are

atlditional sr:per-selection n¡J-es in a paraflelcl theory the consfclera-

tion of phase factors Ís eo¡rIíeated anct not discussed.. Ttris cloes

not effect aliy conelusions s:Lnee no atternpt has been made to

paranetrize th.e s-¡ratrix by eJ-uster ampritudes or to correlate

this parametrizatlon for '?para-l-oeal- field.s'r with the approprlate

Feynnan diagreme.

Denote b¡r Wn the set of all n-particle monentum space

r¡ar¡e fi:nctions qrhich are infinitely ctifferenti..tt"(2\) end of
ttfa.6t clecreaset'.

by

For every { in wo an operator a*¡q¡ is deflned

A*(o) = tv- t .a3(pr)...a3(gr,) o(pr,...,frr) "*{gr)...r*(g,r). n J(_)
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where IiI_ is sri appropriate normalization constant. The vacuum
n

state is cteflined by

a(¿r) lo' = s

a(pr) *n{RJ) lo' = pð(Êi - B¡)

An Hilbert space, I/, can be construeted in the ueuaJ- sense by
*

applying A (0)'e to the vacuun. For parebose statistics it 1s

more eonvenient to use symretrizeci versions of the ¿*(ö)'"

and.

clefined. a,e

lo'

a*tol!, = *í ft_la3(pr) 
... a3(p,,)

* olr(pr, ..., grr) "o{¿r) ... Jtqrl

= *í ft*la3(gr) ... a3(q)

* ó(Rr ' ..., B.) {tn(pr) ... t-tç"lll
].

where the ,C antl s. are Sr, labele as òiseussed previously"

Tl¡e S-natrlx, S, is a uritary napping of Il onto ltself ancl

the plane-wave S-uatrix eÌenents are tearpereil clístrÍbutions de-

fllned by

Lr.
s=n 

"n 
(gt, .. . , Sm; Rl , .. . , Èo)mn

9,--r,
- .ol {a(gr) ... a(qr)t]' st"*tprl "*{g,,)t]n lo'

nn
where 0", so, and..Co, sn are synmetry labels referrlng to S, ancl

S' respeetively. fhe trans]-ation operator V(f ,z) is sueh that
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wher¡eforn=1

It follolrs that

v(r ,z) ¡*( 4 ) u-11 r ,z) = ¡* ( 0')

O'(Ei) = ô(pr) "*p 
(iz"p. )

9.
n n( Ì

L

Þ
)It(0";o)

(-)
d'Êt

ó z
[n+n'

Sn+n's
nn

utÊrr*n '

9,.1,
* o"nl. ( (pr ,. . . ,Êo)"t

n+n n
(to*r,. . . ,fn*rr.) )

9,-
n

t s
n

n*n
e:cp (t I

k=n

The lúel l---. mr:st be drosen such that ft specifies an irr^e-n+n

ducible repreeentation of Sn+n, which reduees to the øpproprÍate

representations 0r, antl 1,rr- of S' ancl Srr, resÞeetively. For

exqlJ-e the funetion

(pr,fe0:i ( )
92
gI t (Ê, ):l)

= 0(Br rfz ,p3 ) - O(tz ,fe,fr ) + O(Bs ,f r ,gz )

- o(pe,82,Br )

has 1,3 = (2,1), g, = (1-oL) anci lr = (f).

Iüith this notation the eluster requlrements, es statecl by

tttcUrna¡rn anct Crict¡ton are generalizetl to
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l-r-m

zÐ
9,
n

B
.{(û-;o)

0

n
èn

9"

('þ" ;r) n
9,n+n

sn+rt
i S

n n

r, 9,-
* lt(o';o)"* (þ" ar).'.Ì

mEl

9.n+rt

Ít+In

mn

9" 9,-n
=.(rlr';O) ls|(o';o)rt' .({,";o) lsl(0";o)s Ð

n m

9"
n

9,.
m

and

:3'(q.,';c)
¿r'rg*+r'

n mfm

L

f sf i(4';o)rn( þ";z)
m

0n1y the first of these two restrictions wiIL be considered.. TL¡e

appl-lcatlon of the eh¡ster deconBositíon property is quite sÍnpie

ancl 1t folloç¡s the previous sections that only S-natrices whose

elements in mo¡rentum space are functions of the unitary-type

operators are pemissible. In parbicular the second. exaq>le,

when motllfied for parebose operators, in Appencllx 2 qulte clearly

sholrs that the elementE of the fimetlons a.ssoeiatetl with the

orthogonal group violate the above factorizatÍon property.

It is straightfor:r¡ard. to construct S-matrices from opera-

tors of the form t 
"*{5) , a({)l * vlrích are consistent wlth the

other a:rLons of S-matrix theory. The ease w"Íth r'¡hieh this can

be done as eomparect nith field. ttreory ls because S-natrix theory

doee not requlre the local behavÍour of flelfl theory. Due to the

couplicated natr¡re of the eomutation relations funetional dif-

ferentiation of parafielcls ean only be dlefined. for certaln

operators(h?). The para,rrctrization of the S-natrfx by eluster
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arplitudes in a fashion si¡ûilar to Bose statistics is not a

trlvÍat problen because of sueh diffÍeulties and so Ís not con-

sidered, in this thesis.

92,9 .I\IT GITIMAN FORMULATION

fhe lJíghtuan fo:mulatíon of parafield. theory has been d.is--

cussed by Dellr Antonio, Greenberg anc Sud.arshar¡(26) *u also by

co.rorLoo(27). These authors har¡e shown that the usual conditions

on vaeutm expectatlon values (abbreviatetl to V.E.V. ) such as weak

loeal eonrnutavity, T.C.P, ar¡d the spin-statistics theorem are

satisfled by parafield.s. For paraf,e:mí ffel,ds Govorkov has ob-'

tainecl restrictions on the V.E.V. 1s based on loeal-ity require-

ments. It woul-d. not be surprizing in vlew of the resrrlts ob-

tafnetl in previous sections 1f the cluster deconrposition property

clid not impose more severe restrictions on the theory.

Hor¡ever Dellr Antonio, Greenberg and. Sudarshan maintain

tl¡at the ch:ster tlecornposition property holtls for the V.E.V.ts

of paraflelcùe. They naintain that thís ls so beearrse proofs of

the clr.rster property (i.e,, Jost@>), do not depend on local eom-

nutativity vhictr is e;çressed. 
"a*

iA(x)' ¿(y)l = Q for x ^, Jr .

Sinee these proofs involve a consideration of the matrix elements

of the translatlon operator it woulcl appear that the elueter

*A(x) is used to clenote a ueutral sealar fielrl.
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tleeoupos!.tion property shoulcl hc¡l-d. for parafields. Hor¡ever for

Bose field.s it is possible to oycler tbe fields such that any v.E.v.

of the form

<ol a(xr) ... A(x, + ra) ... À(xr) ... A(xr, + tra) lo' ,

(¿ß)
es À + o ancl for a an arbi-tra4f space-lÍke veetor can be

orderecl as

<01 a(x1) ... a(xr) A(x* + Àa) ... a(xn + la) lo' (z'8)

Ttre c1r¡ster problen then reduces to evaluation of the rcatrÍx

eleuente of the trenslation operator. For paraflelils the conünts

tation reLations are

t t a(x) , A(y)J *, A(z)ì - = o

for xl"z ar¡tl Yryz e

a¡¡tl 1n general these relationships are not suffieient to ensure

that V.E.V.fs een always be ordered as fn (2.8). Ítrus the sten-

clarcl argrmentS basecl soJ-ely on the matrÍx e]ements of the tre¡rs-

latfon o¡lerator are not sufficient to prove the cluster cleco¡n-

position pro¡lerties of parafiettls .

rn fact, as the exalrples in the pr"evior:s sections ancl the

Appentliees shsrr, the cluster deconposition properby does not hold

for a]l, V.E.V.rs of parafieLct operators. Tt¡is is bccause free

field. theories are an exam¡rIe of the !Ílghtnan a¡domatic fortula-

tlon.

*Thrcr:ghor¡t this section a vilI denote an arbitravy space-1lke vector-
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For interacting field.g the ÌÍigþtman fomt¡J.ation is con-

rreniently investigated. rrsing the Green arlsat,z. Tt¡is is tiefinetl by

A(x) = f Ac¿(x)
o=1

r¡here

llt'(*), Ro(v)l* = o for x¡'r

ancl
tgd(r)"aB(v)l* = o if o# g

Using the properties of the V.E.V. ls of these eon¡lonent fields

it is shown in Appendíx h ttrat fot p = 2

1tu .l(*r) a(x2 + la) A(x3) A(x4 + la)>
À+-

I <A(xr) a(x3)> <A(x2) A(x'+)>

Bf the sa,me metbod

}i*..t(*r) ¿(xz) A(x3 + ra) A(x'+ + Àa)>
l-ræ

= <A(xr) a(x2)> <A(xs) t(x+)>

property is not necesserily satlsfÍed. A non-trlviaL set of

parafieltt operators wbose V.E.V.tg do satisfy the ch¡ster property

is given by the set

A(xr, *r*r) = [A(xi¡, A(xi+l)]* .

For *i . *J, *i r *J*r, *i*1 t *J and *Í*L * *¡*1 it folIot¡s

fron the cormutation rel-atlons for the A(x)'s that

t a(xr, *i*1) , ¡(*J , *¡*1)tr - = o
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Ttre proof of the cluster decomposition of the V.E.V.rs of the

A(xry)'s is analogous to Bose statistics, Alternatively" lt

co-uJ-ti be proved using the Green ansatz.

fn teims of sptoetrizecl V.E"V.f s the eluster property may

be formr¡lateil 1n a fa-shion similar to 52.8. The cLuster properùy

in this case r¡ou1d requlre that

ï1ï.r(a(x1) ... e(xn)tl" rot"r) + ra)
n

n

9,.
n

8-n
n(y , + ¡,a)) ]

Ln+n'

sn+n'

Tno exam¡rles are given to show that for p > 2 this restrietecl fo:rn

of the e}:ster decorçosition property tloes not holcl' These

examples a¡:e eonsidered in Appendix l+.

It is an interes+.ing pecullarity that the sy¡n¡etrizecl

V.E.V. rs of parabose operators of order two are conslstent with

the clwter requlrements. This ls due to a property of the rep-

resentations of Sr, (or in monentuo spaee u(n)) affordecl by the

pb2 operators. Tbese irre{lucible representations of So (or U(n))

are exactly those obtair¡ed. by reclucing the clfrect procluet of two

totally s¡rmætric representations Srn and. S* for n = 2N and.

SO antl S¡*, for n = 2IV+1. fhis is easy to see sinee in the

recluction of the ôirect protluct of tr¡o tota-l}y s¡¡mmetric
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representations S* and. S*, each representation of S***. r'rith less

than tr¡o rows oecurs onee on1y, Hor¡ever this is Just the repre-

sentatÍon spaee of S**". afforded. by pb2 operators and it Ís in

this va6r that pb2 statistics are equivalent to the theory of tr¡o

Bose fields. The reduction of some 1ow order tensor products is

gÍven belor,r.

(r) x (r) =(2,0)+(r,r)
(z,o) x (1) = (3,0) + (z,r)

(e,o) x (2,0) = (l+,0) + (¡,r) + (z,z)

ete., where (m,n) denotes the Young tableau wíth m boxes Ín the

flrst ror¡ and. n {n the seeond. This property is r:nique to para-

bose statistics of order two and. es the followlng exarple shovs

eannot be generalized to pb3 (end. hÍeher order statistlcs),

(r) " (r)' (l) = (3,0,0) + z(2,1) + (t,t,t)

Sinee the 'rhook" itiagr". appears tr¡iee this cannot represent pb3

since the corresponcling representation appears once only for any

parafield. A type of statÍstics approprlate to the above redue-

tion has been proposed by can¡enter('\). rt is thls factorlza-

tlon property which ensuTes that the synmetrized v.E.v. f s of

parabose operators of order tr¡o are consistent with the eluster

de eo4>os ition property .

Än inpo'tant set of V.E.V. ts are the t'ttl'¡cated'r V'E'V' f s

introdueed by Haagß'). They are defined inductively by
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"(o){*r, 
..., *.) = "{"' 

(*r, ..., *r)

* I "Ío) 
(*ro ..., :.¡) ... wÍn-k)t... *,,)

where the suûnation extenclg over all vays of clivicting the

XI, ... , Tn into nore than one groç such that the oriler wÍthin

a.ny grot4) Ís the BÂyrÞ aÉ¡ the lefl-har¡d sicle. fbe eluster

properby then requires tfrat W{n) ("t , ... , xrr) + O i.f a,ny set of

the argunents x1, ...: x' have a large space-llke separation.

ïn parbieular, by explicitly eonstruc'ting w$3){"rrxzrx3), it only

holcls that
].in
À* w{sl (xr 

"*z + tar x3) = o

iff

|li wt*1 ,x2 t Àao x3) = It(xr,x3) tl(x2)

Ae has been shown earrier for p > 1 thfs does not hortt and so for

the tn¡rcatecl V.E.V. rs the eluster deeompositlon property is not

saÈlef1ecl. Ttre inapor.Ëanee of this ls iu¿tleatett 1n the nexb

seetlon.
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92.10 COIüJECTUBES ON TTIE CAUSAL BEHÀ\ITOUR OT' Pêß.q,ÌÛEtDS

fn a relsbivistic theory the con:subation relations between

fieltt operators e,re no longer Just an expressíon of permutation

syumetry of id.entíeaI parbicles. For exalr¡rle, the coneept cf

causality is erpressed. for Bose fieltls as

l¿(x),A(v)I -o for:<tuy

It is çeIl-knorvn that ttrls condition, within tbe L.S.Z. approach,

implies the analyticity of the S-r"t"i*(42). From ihis anelyti*

city follors d.l-spersion relations and syr,nretries such as c?oss-

. , -. -ing (which is ar¡ obvior¡s exbension of tbe eoncept of lnterchanging

icÌentical parbicles ) .

For parabose fllelds the eo¡mutation relations arle

ttn(x), n(y)la, A(z)i- = o þ.ú

for x tu z and. y ry z. Ehe previous chapters have been eoncerrrecl

rith the consequenees of tbls reiatÍon as far as the elr¡ster

property is conee:sred. Althougþ this approach essentially only

ileals 'r¡'ith the identity of parbicles it ras for¡nd to place strong

restrlstions on the theory. To in',restÍgate fully the r.estrictions

placed on a theory by Q.g1 the causaLity aspect of the eornmuta-

tion relations should. be inr¡estigatecl. As in the Bosc case the

L.S.Z. approach would seen to be a natural franework to consider

thfs. Iior¡ever the fonnulation of an L.S,Z. approach to para-

fielcls ls not at al.l straightfcmard, so only sore conJectures
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and relevant results rrilI be diseusse¿l.

The L.S.Z" approach for parafields assluûes the existence of

an ínterpolating field L(x) such that the asymptotic in anil out

fields are d.efined as

Aout = lino* **_ A(x)

ino

naa*(55) an¿t Ruel1e(56) have shown that the as¡rruptotie condÍtion

for x^+too ce¡¡ be interpreted as the vanishing of the interaction
o

betneen tuo cl-usters a"s their spatial separatíon approaches

infi.nity. fn partieular, a requirement for the existence of the

as¡rmptotie linits is that the trr,¡ncated. V.E.V. fcr equal tine

cleerease ¡rore strongly than any porúer of R, where R is the radlus

of tbe snallest sphere enclosing elJ- polnts in the group. How-

ever florr the previor¡s section the tn¡rcated V.E.V.rs do not

exhlbit this properby for all separations of their argtnents.

It is not intended to go into a detailed dLscr¡Ésion of vhether

the existence of the as¡runptotic fielcls ean be prorzed. from less

strinçnt conditLons for parabose or Baraferui fielcls ar¡d for the

remainder of this section it vil1 be assr¡mecl that the limits cto

exist.

The in and out field.s a^ne relatetl via the S-natrix by the

follo,ring equation

*A =$ A. Sout ]n
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Substituting

where

oß
oub

^+u(xo) = t 
J

Linx+æ
o

au (x)

¡f
d3x f (x) Ð

à* ¡,(x)
ß ox

o

the four bogr s-natrix elenent taifu, oi;u') ** be reduced to a

two body S-matrix eÌement. It is no longer obvious that, as in

the Bose ease, the eoramr¡tation relatÍon for Â(x) fmplíes that

these elements are analytic. It is not obvior¡s lrtrether a

generallzetl reclueticn folsuLa ean be clerivecl as 1n the Bose cas¡e.

One reason for this car¡ be seen fron a consideration of the

perturbartion e:çansion of the S-aatrd.x for higher orcler parabose

flelcls. Tbe S-natrix is ueually ex¡lanclecl as

: t- iln îs = l- + I_ \|L I *t ùr, t(*t, ... , *o)
IT=I '

x :A.rr(xr) ,.. aro(xo):

where t(x1, ..., *n) is a tiæ-ordered V.E.V. and : : denotes

nornaÌ ordering. For Bose fields the cteflnition of no:rmal orcler-

ing is urique ancl the S-matrlx !s eorylete (tn an operator sense).

Ho¡ever for parabose fiel-cls the tlefinition of norual ortlerÍng Ls

anblguogs; for exar¡lle tt¡e nomal procluct of the tvo operators
*

% anct aU coulcl be <Iefined as elther

*- lf ñ
tt(auaO) ='{ae., 1r,l* - ä oou
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wr*o"f) = fi'u
Both clefinitions have zero V.E.V. and for p > l are independent.

ft is nc¡t clear what extra properties, if arÐr, a clefinition of

norrnaL ordering ghoulcl possess vhieli couf-d d.ifferentiate between

the tr¡o deflnitions. Althougþ normal ordering is only an aitt to

evaluating tbe V.E.V.'s of S-matrix terns and go an¡r eonsistent

clefinitions should. be satisfactory, it is quite possible that

only certain clefinÍtions woul-cl pernit the S-matrix elements to

be ana\'ùf e. Eo¡ever, irreepectÍr¡e of the choice of tlefinition

of norrrral ord.ering, the S-¡ratrix is no longer complete. Sl¡ailer

d.ifficulties in cteflning tine-orctereû and retartþcl-ord.ered. pro*

ducts of field operators vf¡ieh are relativiatically invarÍant

also exÍst.

The eauEallty condition for Bose fielcts ls often expressed

or

as
i¡(x)' J(Y)l- = o for x n, y

where J(x) = (tr + n2) A(x). fhfs has been elegântty deriveci

from a coneeptual id.ea of causality of the s-raatrlx by Bogolfi¡bov

and. Shirkorr(:?) uslng the eoncept of fr¡netional- clerivatives.

tr'unetiona.l clerlvatives can only be defined. for a certain class

of fmebionals for parafi"rur(b7) and it is certainl-y not obvÍous

tbat the relationshlp

l[¡(x),J(v)l¡,J(z)i-=o for xNz and yNz
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can be derived. in a simil-ar manner to the Bose ease.

0n the other hand. a study of the S-natrix el_enents of

quantum eleetrorlvnnmiss by voJJro'r, Mecarbhy end Amatr¡n'i(s9) nu"

shovn that the matrix elements only d.iffer fro¡r those of the Fer:ui

case by certain nunericar faetors. fhis would, seem to inply that

the S-¡ratrix elements are analytic.

Using the Green ansatz i.e.,

A(x) = ¿d(x)ï
o=1

and clefining

s = s(r) ,(e) ... ,(r)

vhere t(J ) t" the S-natrix for ttre ¡th eou¡ronent fi.e1d thc.n a

stand.arcl S-¡natrix theory 1s ttefinect provlcled.

,r(i), ,(J), = e

rt is strafghtfo¡r¡arcl to prove from the factorizatfon of the

v'E.v. ts of dl.fferenÈ couponent fleIcls that the s-natrix eLementE

are anal¡¡ble. However it is ctiffierrlt to find a suiteble defini-

tlon of norrnal proctuct r,ùích enables s to be ex¡landed. sorely ín

terns of parafield. operators without resor-bing to the Green

eouponent field.s.

Assuring analytlcity to be an e:rpression of car.¡satity it
is not at all obviorrs from the abo've dÍscì¡Bslon lù¡ether a causal

S-natrix theory of parapa"r:üÍe1es ean be developed. Evldenee.for

either polnt of view hes been given abo¡¡e. rt rnay be conJeetured
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that on\y those S-matrices which ere consistent with the cluster

cleeo4pcsition property are causal.

52.l-l_ cONcLUSroNs

Although paraflelcls satisty the axiol¡s of quant',m mecbanf es

in the senae that they form a sensible Hilbert space' severe

restrlctlons are placed r4ron the theory by the ch¡ster deeorposi-

tion properÈy. Ttre clrrster problern is essentially a reclueticn of

various grotrys to their appropriate subgroups.

For a non-relativlstic fielct the physical observables are

restricted. to those of the forl

I t *.t*1, o(x) o(x)l + dx

Fronl thls restrietlon of observables to elements of U(v) it

follorrc that a paraferni (parabose) tiera of order p is equíva-

lent to a set of p fernions (bosons). Another ln¡nedlate con-

seguence of this is that in the assoeiateil quantum nechanical

space the corresponding observebles are s¡nmetric f'r¡netions of their

argnents.

For relativistic fÍe]tls the only physical obsen¡ebl-es that

are conpatibLe with the ch¡ster decoupositfon property are those

vtrose momentun representations are functions of the operatore

I **{5), a(¿)} *. One way to ensure tl¡is ís to deconpose the

fielct operators inio their positive and negative cor4ronents antl to

construet interastions fror¿ these.
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fn s, similar fashion an S-matrix theory nhich is conçatible

rrith the clwter ciecomposition property ean be developed..

Tbe restrlctions derLved are quite general ar¡d d.c not assur¡e

any particr¡lar moclel for the interaetions.

I^Iithin the l[ightman axionatic fo:mrrlation of parafield

theory only eertaln \¡.8.V.'s are consistent r¡ith cluster decom-

poaitíon. lìn attempt to fo:sr a general-ized cluster cleconpoeition

property r:sing strametrizeC. V.E.V.rs only works for p = 2 clue to

a pecrrlio^:iity of the p'c2 corn¡nrtatíon relations.

An ilrportant aspect of fieLtl theory arises from the varÍous

ttiscusslone of the cluster property. The cliscussions made use of

norù Jræt the a.lgebra generated. by a set of operators but also of

the parbicr:ler repreeentations of ttre appropriate algebra. This

enphasizeÉ, at l-eest f or parafieltls, the imp,ortance of consider-

ing the representations of the elgebra as t¡elJ- ae the algebra

itself. It is not surprlsing ttrat violations of the eLuster

property are pa.rüicrrlar\r obvior.¡s ln the lflgbtnan formulation

since V.E.V.rs are essentially the rnatrlx elements of operators.

For p > l- the existence of an L.5.7.. for¡ralism is questíon-

able. It 1s also not obvious vtrether the two-body scattering

qq\litudeÉt are necessarily analytie.
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53. PIrySTCAL RTSTRTCNTONS Oi{ SOME ATÍERNATIVE
ÌifHlHODS OF QUANIIZATfON

83.1 Introcluction

Although the nost well-knorn, ârrd rcst appealing, parafielcls

do not exhawt the alternatives to Bose or Fe:si quantization.

Many other types of statisties have been prcr¡rosed by postulatfng

varÍous comutation relatior," (4 
'30 '31'5b ) t"t*een the creatÍon

anct annihilation operators, al ana a-. firts iE relatfvely easy tort
tß

do Eince in general the a, and ar may be aseociateci rûith the lor,rer-

ing ancl raising operators of a Lle aLgebra.

fn the pn:ceding chapter it rcas shown that severe restrÍe-

tions are placed on parafietcls as a eonseguence of the representa-

tlons of the varior.¡s grotrys afÌlorded by a set of parafielci opera-

tors. fn general, physica.l restricÉions, sueh as the c}:ster

properby, wÍIJ. iryose restrÍctlons on other attempts to genera-

lize Bose and Fenri ststistics. Often ttrese restri.ctions, as for

para,fielfls, have a siuple interpretation 1n ter.ns of the elgebra
$

genereted by the appropriate functiong of the a, and. ar.

Sueh fs the case for a t¡>e of statistics recently propoeed.

by Katiemova ancl rt".lr( 30). Their statistics are relatetl to

O(evrl.), bÉ as is shonn in 53.2 this algebrais inappropriate for

a description of quantr:m fieLd. theory. It ls possÍble to rnotllf$

their algebra to overcome the obJectlons raised in 53.2 but ít is

still not clear r¡hether these moclifleit algebras are congietent

nith other pnoper'üies of field theory.
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fn $3.3 coronutati.on relations of the foro ( sr¡

o+l-
"rt 

-=o

and
I a*ra-l = Q¡Ð-

are showrl to be ineonpatible w'ith invariance of the algebra r¡nder

infinitesimal unita,rxy transfomations. However tt Ís possfble

that this is too severe a restriction to be placed on a quantrmr

fi.elct description. Finally B.s an exârq)le of the above eo¡muta-

tlon relations the statistícs proposed by park=( sil are considered

and. related. to para.field operators.

53.2 An Ineonsisten cy in the Quantization S cheme of
ancl Kreev

Kademova and. Kraev have recently proposed. a new quantiza-

tion sctreme for spin half flelds r.¡hieh has commutation relations

very sinilar to those of paraferní fields. Ttreir seheme hovever,

a1lovs ar¡ r¡nrlmitecl nr:¡riber of iclentieal spin-barf partieJ-es in a

gfven stete. fhe cormubation relations generate a representation

of o(2u,1) in clistinction to the parafemi representatione of

o(ev+r).

The proposed trilinear corr¡mutation r"elatione for the

e:reation operators af ana their (assr¡rea) herui.tian conJugates,1

the annihilatÍon operators ar, i = Lr?r...,ve atre

tarJi,t,-l-. = - 2ôiJ% ,

[ar,[uJ,%]-J- = o (f.r]
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encl the relations obtained from these through herrnítian conJuga-

tion antl apprication of Jaeobirs id.entj.ty. These differ frou the

parafend counutation reratícns in the sign of the rigþt-hand side

of the flrst equation.

A "vacuusì statett vector lOr i" req.uired. to satisf!

a: lot=o 31'
i,C I*irj lo'= p ôrJ lo' (s.z)

where p ia sone positive constant, the i'or¿ler of ilre Bara-
*staÈistics". The operatot flpi = %$*r,"rl _ - p) is t¡en to be

Ítlentiflecl as tteountlng the nuraber of partlel-ee in the ith state'î -

ancl is elained to have a epectrum consietlng of ar1 non-negative

integers.

TL¡e consisteney of this sehene has been estabrtehed only in

the case uhere there is Jwt one pair of creation and ennihira-

tion operators, "f *a a1. ït is easy to find an ineonsistenq¡

l¡hen there is more than one such pair"

Consider the operators
{c t(St=Ua2+az,Bl-all_,

-t(tÊ52 = 1-ní[ a2 + ai,a1 + afì

sg = %[ "r ,.1] ,

which in viel¡ of (3.L), satis* -n" fa¡d1iar angular mornentum

relations

I si 
'SJ] * = i. .i¡t st
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ancl ¡'¡hidl are her¡ritian operato¡ç in the representations under

&isc'¿ssion. As proved in erementa:ry g.uantun nechanies texts, anlr

eigenvarue of s3 ln suclr a representatíon nust be integral or

half*od.d-fntegrat. Mor¡e inrportantll, if À is such an eigenvalue,

so is -ì.
t{or¡ it is easily shorrn that the specbn:n of s3 is here un-

bor¡¡ttecl ebove o exeept in the trivial representation a, = aT = o 
"t1

aact tt forlors at once that it is also r¡nbowrded belo¡. For

suppose 53 has a maxim¡m eigenva^l-ue Àr* t 0. Then, because
lÉ rÊ

[S3,a1]_= åt, there must exist a nomalizable sta-le vector l1¿

such that
53 lxr = tnoc lxr, lxt = o.

But, then

I'na* ll lxrll2 = .* lSs lxt

= h.xl (*1"f - "T*r) lx'

= - tdl a1f ¡>ll2

ç 0,

uhich is contradietory.

Ïn thís wery it nanr be shor'¡n that the speetrum of each operator
*

äarrari- is unbor¡nded above and beLow in the representations of

lnterest. rt is thus Írposaible by ery adclltion procegs to ensu¡e

that s3 has a posltlve spectnrm. The sa¡¡e is therefore tn¡e of

the spectrwr of each lfni, contra^q¡ to the clairE of Karlenova a¡rd,

Kraev, ancl as a result such operators are quite r¡:suitable for

{å

a1
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us¡e as "number operators". Moreor¡er, it follovs that no represen-

tation of the algebra (:.t) in whieh *f f= the hernitian conJugate
1

of a' contains a r¡ector lOt satísfling eqs. (S.e).

As Katlenova a¡rd. Kraev have poínted out, the algebra (S.f)

1s isomorphic to the Lle algebra of O(2v,1). fn the case v = 1,

the eonrpact subalgetrra eontains onlv one element, rÃ"r,"fl *, 8$d

it is possible to find an infinite-dinensional- r'epnesentatÍon

o+(-p)(58) in vhieh thfs operator is hermÍtia¡r and has a spectrr.u

bourded belor¡ by a positive eonstant p. rt Ís a representatíon

of this ty¡re utrtch Kademova enil Kraev r¡ish to use for each operator
*

ä ar rarl _. Unfortr:ne,te1y, as the prececling argr.uuents shol¡, it is

lnqgossible to find en infinite-d.ineneional. representation of the

O(Zv,f) algebra, v > 1, in r,rhÍch the operators td 
"i.,.ll_ have

these properties.

The inconsÍstency of (3.1) tlas also been reeently demon-

strated by ohnr:ki, Yernad.a and Kanefuebi(5g) *no ehored that certel.n

two partiele states have negative norns.

ït is possible to notliff the cormutetion r¡elations to avoid

the above cliffÍculties. Since O(erf ) is loealIy isonorphlc to
su(1,1) Bracken(60) o.u suggested. the generalfzatlon to the al-gebra

su(v,1). Dencting the generators of su(v,1) as N., the operators

Nio *d Noi 
"* be interpreted. as ereation and annihil-atÍon opera-

tors respectively. The relevant conuutatlon r"elations are
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l*
I a,,[ tJ,%] *l _ = oro*J * ð.J*ri

la*arl- = o.

Another genera).ization has been propcsed ty rorre(61) *to genera-

lizedl the 0(2 11) algebra to O(2,v). The con:¡n¡tation r¡el-ations

are then those of the trmod,ifÍed. boson operators" sJxd ar€

and.

Iar,arl_ = o.

Both cases wouJ-d. certainly Leaci to wrusual, thougþ possibly not

incorrect, fie1d. theories.

and

93.3 Statistics nith a Maximr¡m

tÊ

I ar,[ "J,%]_l - = - 2ôiJ% o 2ôii._r¡ o 2ô¡t.i

0ccupanq¡

53.3a

Tbe erçanslon of a fleJ.ct operator 1s

shoulct be invariant r:ncler r¡rltarv transforrations of the 0k(*)t".
For lnflnitesimal transfo¡uatlons this reqrrires that the comr¡ta-

tlon relations for the rlrg shor¡ld be invariant under the foÌIow-

Íng transforsati.ons:

ô(x)=Iokt*)1 ,
k

rrbere tt¡e +k(x) eure a coqrlete set of one-particle vave-fr¡rctlons.

BlalyntelßÍ-girü1e(6e ) n"" obse:¡¡ett that the comr¡tatfon relatíons

StetistÍes with %n*t = 0 and I a,aul- = 0

%*\=\*f%*"u
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anil

(s.3)

A sinple physical lnteqgretatlon of this condlition would be that

it requires if p is the naximum oceì4)aney of a state in momentum

space then p is also the naximrn occl¡pancy in configr¡ration

spaee. For sx¡nq)le, fn ttre case of Fennl statistics lt requires

that q] = 0 is equivalent to (ó(x))2 = O. Bialynfcki-Birrr-ta hasl(

observetl that parastatisties are invarier¡t r:nder (S.:).

Statistics with a maxÍ¡l¡¡m occupancïf of p are usua].ly

characterfzeti by q-P+l = O. Requiring the Ínvarlance of thistr

rel-a,tion ':nder transfornations of the t1rye (3.S) it follo¡s that

oøk
tÊt4ll
t-*t'=%-[

9,

lß

^L

a
ß

+aa."P-l o... +"Þ* =e.rKr r I(
p

ar

Requiring, in tr::m tbat thie and. sr¡bsequent relations are also

Ínvaxiant rmder transfor-natl.ons (S.S) it follors by induction

that

{tlr' "1r' "'' *i--r} = o
p+r

vhere { i is the synmetrizer over the p+l argurents containecl

within.

For statistlcs of the fom aOp+1 = O and Ilr.ø]- = 0

invarLanee ur¡der trer¡sfomations (S.S) inplies from above that

ul, "i, ... "rn*, = 0 ancl hence that there an:e no nore than p

particlee Ín the lhirrerse.
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It is possible that the requirenent of unitary ínvarÍa¡lee

is too strong, for Parks' statisties (to Ue cllseusse¿l belo¡") nry

have sone signiflcance in the B.c.S. theorJr of sr4rerconductivity(63)

It is interegtlng to note that Fend statistiee follc¡w

direct\y fron d = 0, irreduclbility of tbe algebra and inveriar¡ce

r¡rcler Ínfinitesinal. rmltary transfor"nations. Ðefinlng
tß ttI = a a * aa,, then a2 = O ínplles

*
[a,l]_ = [a "À]_ = 0 .

Irreduclbtlity Í¡ryliee that À = cf where c may be chosen to be

unity. Invariance of

a2=o

and
*

aa

*

**aa=L

r:ncler (S.¡) i¡rplies that

ancl

Ltg*tgt.=o

%%
**ur, l=6kg

flower¡er lt is not possible to generalLze thls and clerlve a rrniqrre

set of statlstics from the condlLtions %n*t = 0, lrrectuclblllty

of the aLgebra and. invarla¡rce under infinltesinal r:nitary trans-

fomatione.
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53.3b

Parks t co¡¡nutation relations nay be writien €Ls :

IaO,aul_ = 0

[ {,ue,l - = 2ôks(ç -'zro)

[ 1'Nul - = ôLstr

For n^ = L reelizatlons of this al-gebra can be construsted,o

fron parafermi operators. Denoting a parafermi operator by 1 then

1D
L=t¡-%'

= un(l)o*(e) bt
(p)

(i) thriheie bO ie the I Green coryonent flelci. T,Iith the convention

of upper slgns for p er¡en and lower signs for p odcl. the ats
eatlsf!

a^2=ok

[1,aoll=0 '
*

[ tr,aol - = 2ô*u(trk - h) (3.1+)

ancl

I aO,lful _ = ôt gL for p even

=Q forpotlcl

r¡hlch are a genera.lizatlon of Parkst coþm¡tation rel-atlons for

oo = 1. The proof is relegated to Appencl.ix 5.
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For n^ > l- an ansatz sÍnilar to that for para,ferui o¡rerators
o

nqr be conetructeal. Defíne

% L
(i)

çhere

no

I
L=1

(r ) JI
^g,

(i)
ancl each 1 satisfles (3.1+) for p eveû. ft fo]-lore directly

that
n+1oa

.k =Q,

[1,aul_; o ,

),
I

(
L = t fu(t) ,.0(J )*,

=0fo¡1/J,

ancl

Itbere

t{,*ul-=2ôou("o-þ

[ 1'l[*l- = ô*,,I

n
o

so=l
" L=l

uo(i )

No ebte4rt 1e nade to generaltze the statigties for p odttl.
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5h. B¿.RGMANN AND H.LqiqONIC OSCITLATOA RE"BESEIüIATTONS
OF .A, PARASOSE OPBd,TOR

9l+.1 fntrodustion

Three r,tel1-knorn representations of the Bose conmutation

rerations are; a) the natrix represent"tiorr(6L) or tne operators,

b) the Bargnann representaiíon(36) t¡ ten¡s of corr¡r1ex variables,

and e) tr¡s fnÍri l-iar quantum rnectranlcal ha::¡ronic oecillator

represent*tiorr(3?). rt is of interest, espeeiall.v in viev of

their association with repr€sentatíons of the sylçleeti" *"o*(t6) ,

to ftnct the corresponcling irreclucible representations of parabose

operators.

Ttre matrix representæbions har¡e recently been obtalnecl by

A1úiso ancl ùrinfo( fl) . ftrey have calculated. the ¡latrix eLements

for a set of v parabooe operators. fn this chapter the analogues

of the Bergnann encl ha.monic oselllator representatlons are

constnrcùed and. varioue properties of these r€presentatiqrs ure

derived.. Ehe repreeentations are restr{ctecl to those of a slngle

operator anct the genera.lizatlon to v ilegrees of freeclon has not

been effectecl.

Ttre Bargnrann representation of the Bose relations wes the

followlng eomr¡t ation relation :

ldrrzl_ = 1 .

To construct the more general parebose representatLons it is
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necessaJîr to introiluce an extra operatori B, w'ith the properties

[R,zl* = [R,dz]n = o

*
Elçresslons for a end a are

a

a, =z,

ancl
a= d

2
* ln

z ?

r¡here the siuplest reaLization of R is the reflection operator.

lJhen r = (- t)o+lo the a and ** forr a representation of the para-

boee algebra of oclcl orcler sinee p = 20 + 1. The ehoiee

r = (- t)o*1(o + N) correspond.s to an even order paraÞose algebra

sinee, in this ease, p = 2o + 2 . The iatroùuctl.orr of R cÌeeon-

poses the representation space into subspaces of er¡en and. ocld.

fr¡rrctions end the parabose operators take different fi¡retlonal-

forns in each subspace,

Afber the vacut¡m state is ¿letetleined en imporbant dlstinebiosl

betr¡een the repreeentation for p od.d. and p even appears. For p

oclct the Bargrann spaee is of the fo:m zsf(z)(o = 0r1,...) l¡here

f(z) is an entire regular (anaJ.ytie) runæion. Ho¡¡ever for p even

the space ls of tt¡e forn Æ' ,*t(r); theae f¡¡netions are no

longer dlfferentiabie at z = 0 and hence are not entire. Althougþ

it, fs possible to find analybic nepr.esentatlons for p even' they

are not ec¡rsidered becar¡se of the conparative sÍmplicity of the

non-anal¡¡tie ones.
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*
Íllre metrie is deternined by requiring that a a;rd a are

adJoints. ThÍs results in the metric taking a 2 x 2 natrix font;

its elenents being nodtfied Bessel fir¡:ctions of the thirtl kind.

The diseussion of the Bargroann space is coupleteil by a

calculatlon of a eonplete set of basis vectors and the cletemina-

tion of the representation of the urit elenent (reproclueing

kernel).

The harmonic oscillator representatione for the paraft'ose

algelrra mqr be cleterninect by taking the following ex¡lressÍons

for p and q:

p=-i(a*+f,n)
and

8=Xt

r+here a real-ization of R is the refleetion operator. Tttls space

ea¡r also be ctecoryosecl into even and odd' ñ:¡¡ctions. This repre-
l3B) 

r¡no constructed, for P od'È['sentatlon ves Proposect bY Yang'-

a represen+,ation by applying pouers of

-1 ,n==(q-ip)
/z

to the state of lor¡est enerry. Ho¡¡ever, Yeng tlicl not clerive the

co¡¡¡outation relations fcr the p and Q, ar¡ð so ctid' not reaLlze

that they forned a representatlon of the parabose algebra.

A clifferent method of obtaining the representatlon space ís

ìtsed in this thesis. rf p and q are substltuted in the llamiltonian

for the harmonic oscillator' the resulting Schröd'inger equation
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may be r:sed. to deternine the enerry eÍgen-states. fhe energy is

quantized, i.n a simiJ-ar manner to that for the Bose case by re-

quiring that the vave-functlons are bor¡nCed at infínity. For both

p even ancl p otld. the basis states are orthonoinal Laguerre poly-

nonials vhich are generalizations of the HermÍte polynomÍals of

Bose statlstics.

The integral transfonn that e)q)resses the equlva.lence of the

Bargmaan anil harrpnie oscillator representatlons ls cafcr:lated by

requiring that z an¿t d- * I n eorresponcl to the raising anilzz
lor.rering operators 4 tn - ip) urrd + (e + ip) respectively. This

ñ ã-
integral transforr has a matrix stnrsbu¡e eorresponding to the

cleeouposition lnto even ancl octil fw¡ctions.

The generalized Bargraann ancl ha¡monic oscil-lator represente-

tions are shom to be equivalent by the proof that the integral

tra¡¡sfo:m is unita^:ry.

The conelucling remarka concern the possiblllty of general-

ising these representations for u > 1 degrees of freedom. A

representation of the Green component fields lg nlso brlefly

eliccl¡6¡eð.

5h.2 Barmann SÞaee of a Slnsl-e Parabose Operator

El+.2.1- Representebion of the Creatlon antl Annihilation
Operators

The parabose ecmnutation relationg for a single

operator are
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€r¡il

SlniLarly,

^t6
I az,a ] =:2&

n2
Ia al =-2a.t

orst
A reallzaúion of this algebra ney be forrnd. in tems of the opers-

z
d

dz aqdRwhereRsaúisfiee

Thus

[n,zJ* = [R,ttz]* = 0 (l+.r)

enat the abbreviation cL" = * has been introduced.. ïf the choÍce
*a =z and r=d"oå* isna¿te, lrheretisaÉpresentan

arbitrarX¡ eonetant, then

,
a2=d?-1-n2-3nzr222

[ *2 r"*] =[d!,zl -3[n,"]
a-

Zz

=e l¿ +anì\z z ,

=2a.

*2
Ia ,d- = Ízzrdrl-

=-2?,

2a
tß

rn the abor¡e equations aact throughqut this chepter the Bose case

may alweye be obtainecl by sr¡bstitr:ting t = 0.
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A speciflc real-ization of R ís given by the reffec-

tÍor: operator, So in adclition to satisflrine (l+.1), R also satis-

fies R2 = f. Ttre introduction of the refleetion operator uteans

that the spaee upon which the annihílation end creation operators

aet ean be deconposetl into even and odcL fr¡nctions. fn the

foIlcn'¡ing it is convenient to consider any element of the spaee

as a two eouponent vector, i.e.,
/

(z)

(z)

vhere
f (r) = f(z) + r(' z)

e

ancl

ro(z) = r(z) - r(- z)

Any operator aeting on the space r¡ill have a two-climensional

matrix strueture, ancl for nr¡ltiptication anci adciition of f\¡nctions

thle stnreture wi1l be

f(z) = f
e o
(z)

(z)

f )z

f
o

t"(z)

It is stralgbtfonrsrd to show that thÍs structure is a poly-

nomlal ring. The representatíon of R is

R-- 10
o-1

*
a¡rd hence the representations of a and a are
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0 d.
z

f
z

at +rzz o

and.

I
I

i

0

z0

t-ir

t-J-tr=e

z

respectively. Horer¡er, this is not the only representation of R

possible. If the transfomation , = .t 1s matle then R nay be

represented by the folLoring transformatl.on:

R
tt'e +e

-tSince il
z

e dt it can easlly be checl<ed that i,be comutation

relations holcl Efnce

[Rrz!+=Ret+etR

R+etR

=Q,

anct sid.J.ar1y

[R,dzl* = 0

The operator R no longer satieflee R2 = I.

9\.2.2 Vecurn antl Exeitecl Stebes

'flle vaeur.m Etate is cleflned. by

af0t = O

aüd

aa*f or = plo> ,
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çhere p is the order of the parabose elgebra.

In the Bargmann representation tbese eq¡lations

beeone

z ð., fo(z) + r to(- ") = o (¡+.e)

ancl

z a- ro( z) - t to(- ,) = (p - r) ro(z) (,+.3)
z

both of which are dlfferenee dÍfferential equations and where

fo(z) Ís the vaeulm state, A necessaqf condition that (l+.2) a¡ra

(l+.3) ere satisfietl is

z a,, ro(") = # ro(z)

tttis inplies that É
fo(z) = e(-à) ,2

where c(ã) fs a fi¡nction of ä (x - i.y), to be tteternined.

Horcever, althougþ

tc(ã), z d.rl_ = C

ít tloes not necessarily folLow that

sínce

'Rl
to

Substítutins fo(z) in (\.2) inpties that
P¿ P¿

c(ã)P ; 1,.2 + r ¡l- ã\G ù 2 
= Q

2 o r I u\

ft ls convenient to take ttifferent sol¡tions of this equation

depenctlng on vtrether p is even or oclcl. For p odd (i.ê. r p = 2o + 1)

tc(ã),dr*|nl-=o

at
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take c(ã) = 1 and henee t (* 1)o*1o ís the appropriate soluüion.

Forpeven (i.Ê.rp =2a+ 2)tetce.(ä)=ñ andhenee

t = (- f)o*l(o + a7.), rhere the conr¡ention Æ= 1 is actopted.

throughout this thesis. Thræ the va,euum sta^r,e may be r¡ritten:

fo(z)=ru when P=2o+1 e

and' = /ã, zd when p = 2(o + 1)

ancl c = 0r1,

ft" ,rth exclted etate in each case ean be rrftten

fnr = ,o+n for p ottd

and' 
lnt = ,Æ, ,o*o for p e.ven .

fhere fs hoçever a major dlfference between these tuo spaces.

For p od.d." the basis of the Bargman¡r space conslsts of powers

n -o-12", A, T er¡d hence span analytíe fi¡nctions. For p even,

cir¡e to the appearence of the facto" ã, tlre Bargnann Bpace con*

talns non-analylie fr¡netione. Hol¡.ever" in this case, every

element ca¡: be written as a prnod.u* Æ f(z) vhere all l(z)ts

are enalyttc f¡.Ë¡ctlons .

It is possible however for the case p even to fo:m

a. representati.on of the parabose operators in ter¡ns of analyt'ic

flurcËions. Consider the alternatl\re representation introducecl in

the previor:s eection:

R: t + t * in , " = "t and d, = "-t 
tlt
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If the vaeuì.t¡!! state is denoted by F(t) it satisfies the equation:

F"(t)=-tF(t-ir)

A sol-r¡bion of the above is F(t) = uBt provided the fo11ov'ing

equation ís satisfied

* ß(- 1)-ß = .

The solr¡tions to this transcendental equatÍon Ítren ß = 0,112,..,

are Just t = 0, * 1 r - 2! ¡.. which have aLrea{y been used. for

parabose algebras of octcl order. It can be shom that for para.-

bose algebras of even order the abo'ue equation a'Lso has solt¡tions.

Tn all- ca,ses the r,'aeut¡n state, td henee all exeÍted states r &re

enalybie fi¡nctions.

Sl.nce there exists an equivalence Inapping fYon the

non-analytie Bargmann space to the analytÍc space and because of

the greater sinplieity of the forner, only the non-analytic spaee

¡¡1I1 be coneid.ered.. ft¡is fo}lo¿s from the faet that the reBresen'-

tatlons of the parabose algebra satisffing

afo=O
anal *

u,"" fo = pfo

a,re pniq'le to rrithin a r:nitary equivalen""(5). It also foll-ows

fro¡n this, that any reprÊsentation of tþe a ancl u* Ír, terns of

more general frmctions of the zr d" and R mr¡st be equivalent to

the repreeentation t* = " arrd a = il- + : R .zz
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$l+.2.3 l¡letric

Since the Bargnann space has been cleeorcosed. into

even and otld. fi¡netions the metric nay take a tlifferent for¡n in

each subspace. Ttre metrie çhieh ensur,es a is the adJoint of a*

rrill be assrrmed to take the general fo:m

pll pt2

þzz2l

Beeause the general fonn of the metries for p even and. p ocict are

ilifferent, eaeh case vill be treated separately.

(a) p oqd

A scalar prochrct is dlefined to be:

(r,e) = [l * ¿ä (-r",Fo , (o r{zz)

\zr(';)
r¡Ìrere the p, ¡ a,re to be dete:mineô by the eonditlon that a

l"l
*

and. a are adJoint. Nor¡

(r,ae) = II u" d; (re,ro)

P ¡2(zã,)

Pzz(z?)

ott atz 0 'cl

z

2t p22 +

T

z

T

z
0

lJ * dz {re p',(dz* ;Þ. + T" orr(d, - }p"

* ?o rrr(a" + ï)*. * To ozr(d, - |lsoÌ (l+. ¡+)

ïf it ís assutred that the functions f and g do not gror too fast

at fnfinity and. are analytie so that cl, l" = d"io = O, (l+.\)

reduces to
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ll * dz l- r"ry'" * t" f, on*, - F" þ u"

- î.*Þrr eo -,rYB" * ?o I on e"

ctpzr
-?o;}Bo-folozreoÌ

atz

p22

I

(b.6a)

(h.6b)

(4.?)

flowever

áûd

ptr

p2l

+ 7oã pll ge + ioä Pt2 sol

So (a*f,g) = (f,eg) for all f a¡rd g Broviôetl' the followfng equatlons

a¡re eatieflecl by tbe Pts:

ful'- r--. (r+.ia)- -îPrl=-292r

dprz,r- ([.5t)
T+Zp2t=-zQtZ

tJt,ul = 
JJ i;ê

f
o

dz {z {?" Z p2t se + -r" ã ezz 8o +

dz dz (o

\

z

0

ge

Bo
i

dptr a

T*iol1=-zPzz
dgzz r -
T--2922=-zQtl

El'td.uetton of 921 from h.5 elves

Y- (22 +

632

t(t - 1)rgtz=o
22

rhich ls a fol!4 of BesEelrs equatlon vith lnagÍnary argtment.
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since the derlvstion has required. that terrns of the fol]n f" ptz 8"

vanlsh at infinity the eorrect ehoÍ.ee are the motlifiecl Bessel

fr:nsÈions of the thircl kÍnd which in watsonrs notati on(65) "*
tlenoterl by Ku(z). ttre as¡rnptotic fo:ør;

ru(z) " fi;"
ensures the assu¡rccl behaviour at infinlty. The solutÍon of (['?)

is:

onþã') = erlzâ Kr-r, (zã) (h'8a)

shere c 1s an arbitrary eonstant. Equations (h.5) are reeurrence

relatlons for Bessel fr:netions and it follows that

pz{zã) = c/zì, t<rU Þ7,) (h.8b)

slnlJ"arly frorrr equations (l+'6) lt follovs that

prt(zã) = ¿lzz Kfrh
(zi-], ( \.8c )

and
( t+. 8¿)

Slnce the order of the parafieltt ctepencls only on t no l-oge of

general.ity woulcl oeeur íf e sere to be set eque-l to zero. Hovever

lf R is r:nita":ry i.e., B*R = I then

It then foIlor¡s that

r-y'zzK rT-4Pzz(zã) = a )



90

Since ff = l_0
0-1

the above courutator is only zero when the off-

diegonal elements of p(zri,) are zero í.e., c = O. Ttre val-ue of the

constant ¿ is 1
,1

E
/;

The Bose case is obtainect by substitutlng t = 0 and

noting that

(t) B even

A scalar produet is clefllnecl for p odtt by:

K = K.z-4

(r,g) = II u, d; (?e,lo)

-zz

9tt

azl

prz\ /

,rj(
cÎare

Goo

Again the Orrare tleteruLnecl by requiring that

(f,"e) = (",*f,g)

The clerivation of the equations Èletendnfng the metrie is alnost

läenticaL to the case of p oclct. Horever the relation

*¡tr) = o (4,s)

no longer holcls slnee t(z) is not enalytlc. Since

f(z) = Æ, t^(t)

lrhere fr(z) is a.nalybfe (l+.9) ee¡r be replaeect by

ftrt,¡ = firtù
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drezz-(t-Ð+Pzz=-ãp,-

Elininating p22the above equations can be redueeiÌ to

"t uå plr(u) * r d.., prr(u) - (n2 + (r +'¿)z)prr(u) = o

where u = zã . The above equation for p is Besselrs equation,

end. the choice of the Bessel fi:netion to give correct asyrnptotÍe

behaviour irçIies:
r

p¡(zã) =+ hK"*.Gã) (l+.rca)

Íhe equations d.eterrnining p ere not¡ nod.Ífiecl. to

dzprl+(t+Ð+pll=-ãpzz
andl

anti similarly

pzzþi) = 'rÆ r"* (zã) (l+. rot )

As for p ocld., the unÍtarity of R froplles

PLz=Pel=0

E\.e.\ A Co¡ælete Or'bhonormal Baels

(a) Orbhonorrnal Set of Basis States

(tt ) p oclcl

TL¡e norm of any state f(z) is dleflned by

(r,r) = II * {z (Nz),{(z')) ptJzà) 0

ezzhã)

fÃ z )

f (z')

(

0
o
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For palrs of excited. states of the for- zofi and. zdtu, the scalar

proclueü, since the metrie is cliagcrnal-, is zero r¡nless both states

have the seoe parity i.e. , both m and n ar€ even or ocld.. In thie

case terns in the scalar procluct reduee to

' -- -d'+ndzdzz o..'11
r - r CÛ*EI
lzz tz

Substitutlng

ieZ=TÊ dz dä = rd,r'd,O

ancl

=ilnm
r

, -r LQttlzz) = î fi,øx,uhã\

=Q form*n.

û¡r¡s if p f.s a fi¡nsblon oî zâ only the ortbogonality of the statee

is incùa¡rentlent of the ætrfe.

Then

the abor¡e integral beeones

and

rnon = + /? J"t"*o**2 xr*(rz,u, 
f]r"te(n-rnlu,

ï =r = /¿fn nn t ¡ lo
r2a+Za+4 (12 )arr*

K

Since t = (- 1)o+1o a¡¡cl K -. = K-. it follo¡s that the integral,-UU
spl-its fnto tvo eases:

Í2,. Æ e4(r2)arhn+2
,6I 2u+

Jo"

^2n+1 -
tr

/; J-rzo+lrn+h 
*

a++z
(r2)¿r .



On sr¡bstltuüfng 12 = u anil using trr" 
"eer¿t(66)

f- r.,{t)tu-1at = 2v-2.Ëå:r;r¡5.:)Jo !

the above eguatlms for f, retluce to

Tzo= 
*""*'" 

f (n + r) r(o * n * L)' o

93

(h.:¡)

and

r2o*r = 
*"a+Zn+r 

r(n + r) r(a + n + ål' o.

Cl+mu

(a) p even

The arg:rnent to show that

(E offi, E.o*o) = o

nben u # n ts exactly the se¡re as for p ocld. ancl forlo¡s cllrec,tly

from tbe tlecoryosltion z = r "f 
0. once egatn, the evaruation of

the norm, slnce t = (- t)o*l(o + t) and Ku = K_u, splLts lnto the

foJ-lol1ng tço easee:

Í2o = (Æ 
"*h, /"¿ ,o*b)

Aa orthøor¡ral set of basÍs statee is then

and

o+2n+1

fn a fashfon sluilar to p ocld lt ean be Ehown that

1

/r.-
m

c*m
z

/= c*2n*1.rzzz )Ízrr*t = 1E' u
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'rn= Æ f.
2s+l+n+r 3 ro(r2)or

t-

/ñ
za+Znt(n+o+1)r(n+r) (t¡.u)

2a+hn+5r r - (r2)ar
c¿+l-

ancl

lz,'*,=Æf"

= 1 
"a+Zn+r 

r(n + s, + z) r(n + 1).
/ñ

An orthonormal set of states ls

o+m 1 F ct+m
UvZZZ.

/ra

For any orcler of tbe parabose a.lgebra the Hilbert space spanned

by the uts will be denotecl bY F-

(u) Co@leteness

The set of fr¡nctions relevant to the parabose

algebra have the fomr zof(z) for p octd and zo Æ ilr) for B even,

çhere f(z) is an entire anal¡¡bic fixrction. In both cases ít

suffices to eonsi(þr fi¡nctlons of the for^n ,of(r) and, since any

t(z) ean be r.¡niql¡ely decomposed lnto even ar¡d. od.cl com¡ronents '

only the even eo¡tponents need. be consÍd.erecl. Thr:s, sinee f(z) is

entíre,

t'(zl = zd fe(z)

2m+a
zo2ooi

tt=0
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Definíng llfll = ¡f ,f)" it folLo¡rs that

6!

llr112= I
ü4r...

luzrf ' ,"^

rhere 12, l. glven bV (l+.Lt) for p octd and (l+.12) for p e\ren.

Every set of eoefficients r d2m, for whieh the above sum eonverges

ilefines an entire fr¡rctlon f e F. stnilarJy the lnr¡er produet of

two frurctions f , g of parltv (- t)d ts given by

(r,s) =Lãz',92^Tz^
m

where

e(zl Bz^'2nlo

Iloranyf'eF,

(u-, t'(z))= l-tu uzm ,

uT¡ich e:q)re6see the colçleteneEs of the sfsten u,'. fn a eíni1ar

rry if

f"(zj = ,o ro(z)

c 2r}c+L
= !'n*t'

then

=I
¡û

llf-11 , = L lo*rrl",^*,
m

anct the set of %r*f are corrylete for the f --rB r"¡trich have a

finlte norn.
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(o) Sone Ineoualities

From the cleflnítlon llfll = (f ,f)% and the cleeorn-

posftion of the space intc er¡en anô odd fi;netions it follcr¡s that

llfll = llf ll + llf lleo

Ineguallties can be derived. for the er¡en entl od.d coø¡ronents

separately.

( dr) p otlcl

The e:çansion

ø+Zm
o2mf.(z) = If

m
z

has a parity (-t)o. By schwarzt inequality

f r*(z)12 < (I lo^r*2^¡¡z
m

a+2m 2
( hTT
m

I oetl2l ( Í2^I
m

z

The seconcl faetor, vttic}r is evaluated, in the next sectlon w111

be rþnoÈed by I*(zã). Then

lr*(z)l < {r*(zã)}k ttr*ti
grnt]-arlt

It-(z)l < {r-(zã)}% ttr-ll ,

ilt¡ere

I I
m

Gã) 1re+2rùL1z
re*t
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(cr)

ã, th) where f(z) is analytic. Denoting

t*(z) = Æ, I or, ,a+2m
n

B even

Ttre functions in this case are of tbe fom

then

lr*(z)l'< I
m

(

(

I or, f,"f ro*2^12

lorrl ' t")

X )

I
m

I
m

< llff ( z)ll2 t*(zã) ,

where T*(zi,) is evaluated ln the ne:ct seetion. Sirnilarly

I r_(z) 12< r_( zã) llr_(z)li 2,

r¡here

ï I lE ,o*2¡*112
Tzm+Im

In both cases arry general fl¡netion f(z) in tte

space satisfies

It(z)l < *(") ttrtt

The usef\Llness of a relatlon of this form, apart fro¡r shoring the

equivalence of strong antl pointwise eonvergenee as cliscr¡ssed. by

Bargnann, ls that it enables a set of principal vectors to be

defined. fhe intezpretation of r^r(z) as the trreproclucing kernelrt

ls discr¡ssecl in the next sectlon.

(zZ)
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Sl+.2.5 Reproclneing Kernel

The last seetíon shor¡ed that for any analytic

fi:netion f(z) e F the following relations holcl:

lr*(z) | < r*(z) ttr*li

anci

It_(z) I * t-(z) ll r_ll

fn an iclentleal nanner to that usecl by Bargmarrn for Bose statlstlcs,

a set of ttprincípa1 vectors" of P rnq¡ be for¡nd in each subspace.

fhese prÍncipal vectors are denotecl by e* and. e] ana are. sueh that

ileJf = r*(a) and lle-jl = r-(a)

The "reproctueing ke¡Ílel", I* is ctefÍned. by

r*(w) = [ t*(w,") r*(z) do ;à)
-J

and is equal to Ef,(z). rt is the representation of the r:nit

operator ancl. in te:ms of any corçlete orthonoma,l systen .rrï, ,rå,

... for eaclr subspace

+ft'l "ft,l
Using the appro¡rriate set of orthonormal fi¡lctlons 1n each sub-

space the reproclucing kernel jn each subspaee is evaluated. belou.

( a) B oclct

I. (wv) =f

l- ,- .d*2ft

- 
(wv)tzni

n=011r...

-d 2n

I
n=011r...

a-4
(frv)
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where I tùenotes a mod.lfled Beesel t¡nctlon of the first kind.
v

SiniJ-arly

l-(r¡¡) = I 1 ,- \

- 

(1rlrl
t2n*l-

e+Zn+I

ll=0 11r. . .
- a+1 2nr1)-L ^r

n=0r1r... "' r(n + " * /)
l-

Ë

(t) p even

a,f-t
(frv)

n=011r...
r (wv) = I 1 t- F= r- ro.Þ2¡

;:- Ym¡vr.¡ v [wv,
-2n+

anct sinllarþ
= ã ñ /*" ï (ñv) ,0

I
n=0,1r. . .

1 1= f=,- rd*2n*l___ r/t¡W t/l¡V (t¡ll,
t2rr*l-I (wv) =

element ew

= ã /,* Æ ro*r(frv)

For p ocitl the sr¡bstitution u = 0 gives the unit

decomposecl into even and otlcl par"bs.

$l+.3 HARMONÎC OSCILI.ATOR REPBESENTATIONS OF A PARABOSE OPERATOR

5h.3.1 Representation of the Parabose Algebra

A representation of the parabose algebra ls given by

anal

8=x.
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Slnilar1y to the Bargtrann space B is such that [R,x]+ = [R,d*l* = 0
x

and, R = B. 'Ihe uniqueness of these ex¡rressions, to t¡ithin a

unitary equivalence, for p anit q has been demonstrated by Yeng.

Ralsing and lcnrering operatoffi, rì end t respectively, are defíneil

by

n = 

= 
(q - ip) = + (* - d* - l r)

*/2lz
and

E=-1(o-+ip)
,E

- - 1 (x + d + 3-n)

'trxx

* ThLs deflnition cliffers fron that used by Bargnann by a minus

sign. Ttris !s beeause the resìrlts are expressecl !n terms of

Laguerre polynoniai-s rather thAn Herrnite poJ-ynonials which are

expressed a.s

H2r, = (- r)n z2n nl + ,

ç1th the (- f)n factor cou¡rensating for the mlnr¡s sig¡r ln the

ttefinitions used in this thesis.
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AE in the Bargmann spaee the representation spaee

is decorposed. into even and od.d. fi¡nctlons. Tbe seal.ar produet ls

then given by

L(t,g¡ = f f

7

o

lÊ

e (u"
\so

Itoe

go

T

x

0
I
x

o

*
)( dJ(

trl, rll(tr,g) = -

l3+f
o

f ô
toe go)dx .

Then

and

tÊ r0(r,ng) = - (r
et f

x-

0

d.x

x- +¿tx

<.xtd. x

tb(

+ clx

go

f [te + a* + r-J r]] so +

{(* * u* -:) 'lt 'J dx

8"x0

0
f
x

<-x+d x

=-l{rlr*+ã*+pBo*

rlr**ã*-f,)e"Ìa,.
Thr¡s

(r,ne) = (tr,e)

and sinllarly
(t,ge) = (nf ,g)

so that n ancÌ t are ad.Joint operators.
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The state of lor¡est enersr is d.efined by

trl,, =Qo

on substituting for t anci putting ûo = e:rp l- {r) g(x), g satisfies

g-(x)*ie(-x)=o

This is the real fom of the equation for the vacuum state of the

Bargmann space. The solutions spLit into tvo cases

( a) B od'd:

x e4)cl ( +)vo

whereP=24+1rand

(t ) p even:

rf
o

L

(o+1)
,Ñ x er!I, (-d t)

vherep=ls,+2.

Tt¡e coeffllclents o and r ar€ again related by

r = (- t)o+lo for p oclcl anct , = (- t)a+l(o + t-r) for p even.

5\.3.2 Schrödinger Equation

ghe raising and. 1oterÍng operators n and E are
*

analogor:s to the e::eation a¡¡cl annfhllation operators a and. a

respectively. fn a sinilar manner to that used for the Fock

representations Yang has eonstructed a representation of the para-

bose al-gebra by applying 1þwers of n to r!o; the "state of lowest
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enerryet. Ar¡ alternative method. for eonstructing the representatÍon

space is to obsenre that the operrator

n=a{.n, EI -È
satisfies

[H, n]- = n

and so H can be interpreted. as cor¡nting the powers of n in an

arbitralry state, since 
"to = Thr¡s the eigenstates of H fors a

representation of the parabose algebra. Defining H- = H + | ana

srlbstitr$ing for n end E in terrns of p and q gives

H"=4(q2+p2)

vhieh is the Schrödínger equation for the one-dimensional para-

bose hannonic oseÍl]-ator ln r¡nits of m = o = ñ = 1.

AfÈer a further substitution for p arid. q in te:ms

of x, d* and R, the eígenvalr:e equation

Húl = Àúl

becornes
d2,1,.

++ {À- - xz - ¡+¡ller = c
x'

(t+. r¡)

lyhere l' = 2À + p

Since I H, Rl _ = 0 it follor,¡s that H and R form a

cou¡l1ete set of cørmrbing operators. Ttre eigenstates of H can

thus be clessifíed. according to their parfty and. are denoted by

û* aecordÍng to the equation

RÚ.À = türl



Ttre ctifference equation (\.13) is then reduced to a 2nd order

clifferential equation, the solution of l¡hich r¡il-1 be eonsidered.

separately for p otld. and. p even.

104.

(h. rh)

(a) p odd

(a.1)

dtt*r

dx2

Solutlon for er¡en fi:nctions

The ttifferential equation (l+.fS) beeomes

T rf+ (r' - "z -
x:2

" 
2 

r^(x2 )

-0I

which can be recognized as the tlifferential equation for the

rad.ial eorçonent of the three dinenslonal hannonie oscil1a-

ao"(:?).

0n substltublng
x.2

ü+¡.
r+l-=x

v^(x) satisfÍes

vÀ (x)=6

t¡hich is Ku¡mer's form of the eonfluent hypergeonetric

differential equation. To ensure reasonable behaviour at

lnfli.nity the series must be ter¡ninatecl i.e. ,

i-
f(À--2t-3)=n

As for the Bose case, this restricts (quantizes) ttre eigen-

values of H to the form

^(r) 
- %{\n + 2r + 3 - p}
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Ttre solution of (l+.rl+) is then

It is readily checked that a seeond solution of (\.11+) is

'r,jfr) r"l = *-" e

*2
2 -r-%

n
L (*2)

provided the eigenvalues of H are quantized according to

are for tr even;
x2

,(z)-4t\n_2t+1_pÌ

From sanson"(67) the Lagirerre fi¡nctions tj(x) have sensible

behaviour aror¡ncl zero providecl v>-1. Ihis ínposes a

restrl-ction on the co¡rbinations "t {,ll) * Uf ) whieh are

arlmissible. fhis restriction is strr¡rrisingly, f.dentieal

to the requirement that the parbicular combination is an

even fr¡netion of x. Sinee r = (- t)o*lo the even soLutions

ü*rr(x) = xG e-- t{%t*'l

and. for a odd:

ü*rr(x) = *a+t .2 14ùt*'l

with eigenvalues 2n and 2n+L respectÍve1y.

(a.e) Odd. solutions

Íh¡ od.d. so}¡tlons ean be simply derl.ved from

the er¡en ones by noting that the differential eguatf.on for

x2



106

the odd. solutions o

¿2rÞ_1,
+ [r- x2 r(r - 1) Ú.=0,

¿*2 x2

can be derived fron (l,.il+) by the substitubion r + r - 1.

ïJnder the substitution r + r - 1, the requirenent of
positÍve ciefinlteness of the energtrr eigenvalues and. od.d

parity of the eigenfi:nctlons the solutions are for d even:

x2

t - (x) = *cr*1 e-t ¡où(*z)'-n n

and. for c ocld.:

.ct
þ2n

(l
e

and

x2

V.-(x) = *o " 
2

-fl
ro-L'(*2)n

with the eigenvalues of H being 2n+l- and 2n respectively.

ïf the even and od.d. solubions for a partieutar

value of a are orclerecl with respect to the nagnitutle of the

eigenvah:es of H then, denoting Ui * the eigenvector

eorrespontling to the mth eigenvalue, for any value of o

x2
2 lfi-"1*z 1

x2

For n = 0 the t'state of lo'rest enerry" as calculated in

5l+.3.L is obtaine.d since t:(x2) = t. The Bose ease, onee

again¡ ilff be obtained by snbstituting o = 0 and noting that
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Har*r(*) = (- r)t 
"Zn+L 

rr: rf,"(*2)

vher"e II . denotes He:rnite polynonial.s.
u

(u) Solr¡tions for o e-r¡en

The solutíon of (l+.r¡) for p e'ren is very

siniLar to that for p odd. a¡ltl so only the inpor-bant dis-

tinctions ¡¡'i11 be eonsldlered.

(t. r) Euen SoLr¡tÍons

A- solr¡tion of (l+.rl+) is:
x-z

úio(x) *"i¿ ,ã .-T ,r#.1*z¡n

rvtrere " = (- r)o+1(o + 4). Nor¡ since [RrEl = 0 it fo]-lo¡s

nrrr(x) = (- I)n 22î nt tl'Uz)

x:z

úfr(x) = *'ù /J. "T rlq{*z)

and

that

Ls a].so a soL.t¡tfon.

so that

. (r),ùi*'(x) =

These tr¡o solt¡tions mq¡ be conbl.ned.

úio(x)

Ç(x)

x>0
x<0

whích mry be lrritten as

x2
2

'lfrrl) 
t*l = xr*-.- G "

r\ùt*rl .
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Considering a second solution:
x2

,,jf )t-l = x-rúâ ,fl"l uT t-r*'"' (x2 )

and. requiring either of the three cond.itions

(a) even parity wrder R,

(t) sensi'l¡Ie behaviour at the origin

or

are for d even:

(c) positive definiteness of the spectn¡m of I/

inrplíes that the solutions are for d even:

x2

ü*o(x) = *" frÃ u-t ,,f {*t)

and for cr odd.:

x2

(t.z) odd. Sol¡bions

Sr¡bstituting r + r - 1 the od.d solr¡tions

x2

ù x
-n

and. for cr odd.:

{l-l "-- "o+11*z 
¡)

a+1(

rl,l ( x =x)

x2

" ,fl*l "-t ,,o1*t ¡-n

This nay be written in the compact fo:m

x2

Úår, = *" ffi "-r r'o(*t )

and xz

üår,+r = *o*1 'f l"l "-- ¡c1x2 )
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vhere the rfr ts are eigenvectors of H eorrespond.ing to eígen-

values 2n and. 2n+1 respeetÍireIy.

5h.3.3 A Co¡ælete Orbhono:ma1 Ba.sis

ft follo,rs from construction that the even and. od.d

firnctions are orthogonal. The normaLization ís different for

*d úåo*f and. ¡tust be considered separately.

(a) P odd

(r) (u!,,(*l , v!r(*) )

.ct
þzo

=$

=$

e
[-*

o,

L(n+ s,+r2)

2

n!

nn nl

(z) (v!r,*r{*) , úf,**.(*) )

,æI 2g+lx
J_-

-x2 a+Lr,où(*z)
n

r(n+"*Jt
e L (*2 )

m

ûn

çhere use haç been mad.e of the ortbogonallty reletl.one for

Legr.rerre pol¡moniat Êrc6). The orthonormal set of states are

, ,12

ofo(*) = (- r)n 
-4

*a .'T rl-"1*z¡

and

o
0 (x) = (* r)n2r:+a

x2
at1 -T 

-a4¿,x*-'e ' t[-''k2)nj f"
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A factor (: f)" has been includect to ensure that

ofi(*)=+(n)'öl(*),qo
rtrere Ol i" the state cf t.o¡,rest enerry. The (- f)'

obvíor:sIy does not affect the noru of the state.

(¡) B even

(r) (v[t*i, u!"(*) )

= fi" ,", "-*t Lo(*2) rfi(xz)a*

T n+o+1
n

(z) ('oln*r(*), ,r,

=$ nn

Ìnn

d
20fL

(x) )

nhe orthonormal basis set is

nl
I,'2

I'(n+o+1)

r (n+o+2U

x2
20 ll-lol,r(") = (- r)t L e rl(x2)

EìJÎO

o!rr*r(*) = (- r)' nl f" c¡+1 rfr+l{*z)./t"t
x2
2Y e

The Laguerre po\rnomials are a ty¡le of orbho-

gonal polnomials and the empleteness of these ftrnctions is

proved. Ín any ,"o(6f) on orthogonal functions. Thus for

both p even and p odd. any square integrable fr:nction nay be

e:rpantletl in ter:¡rs of the colrylete set of basís states ô!r,
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*d ôån*f . The sþace spanned. by these fi:nctíons is denoted

I/ ar¡d. eonvergence in this space is not absolube but only

convergenee in the mean. fhis hor¡ever is no obJection.

sh.I+ EQUIVAJ,ENCE OF THE BAREil4ANN AIÍD HARTIONTC OSfiLLATON
REPRESENTATIONS

S h.l+ . f An Inteeral l.[appine

Sinee both the Bargnann and hamonic oscillator

space are repreeentations of the parabose algebra i.t imediately

follows frora general theory that they are unitarily equivalent.

The napping from f/ onto F ís in terms of en íntegral transfo:n:
It(z)= ln(z,x)'I(x)ax,
)

where A(z,x) is the kernel of the integral transfom to 'be deter-

mined.. Folloning Bargnannrs analysis A(z,x) can be for,¡nd by the

requirement that nú ls napped. lnto a*f and Eü into af.

The most general fom of A(zrx) as a2 x 2 matrix

operator is

All(z,x)

lr2¡(z,x)

The napping then requires that

,*r=f(

=Jo

À12 ( z ,x)

A22(z rx)

I (¡-fr)q, ¿*

dxüzIr')

(n,¡) ax
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vhere, for convenience, the arguments have been d.ropped a¡rd the

errrc$ over n indicates the direction in vhieh the d* asbs. Using

the natrix representations the above equations detertiníng A ean

be çritten

(x + d._ * l)nt, (x + a- + |)a11xxxx =-rE zAZt zAZ 2

(x+ .dx - :)A22
(x+ tl z¡.ta* * !).0,r,

( h.15 )

Sinilarly

"r=f (#.i*)u*

= J 
afË,r,ta,

= f roitr* ,

r¡hich in matrix notatÍon becomes

(x-

,,8

(x - a* + a)¿le (* - d* - i)ott

d* * !)arz k - d.x - å)ort

(u, - l)o^ (a
z 2A2

T

z

(d, * T)op
(d" o l)n¡ (h.16)

Fron Appendix 6 the sol-r¡bions of the par-bial differential equations

for tbe cliagonal elements are:
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L 
o-r.( 

z,x) = c o-r."(/îáxrJz "1G2+22 
) Ja-1ft6 zñ ( h.lra)

and.

!,r+¿-.(r,x) = "o+a(/l ,*¡1 u-'a(x2+'2) J (iõ zÐ . (l+.1?b)
a1]-z

The notatÍon has been sintplÍfÍed here by tlenoting

Ait by Au(zrx)i +.he integral transfom whieh maps states of parity

(: r)u+ã 1n I/ onto states of the sane parity in F, rt is atso

shorn in Appendix 6 ttrat the off-die€onal ele¡rents are zero. ,fo(v)

is the stand.ard. Bessel fi¡nction ar¡d.
v

(-r)2 þ
,E

(u ) p even

From Appendix 6:

Ao(z,x) = c;( ã zi, l*ll% u4(x2+22) to\{l 
^*\

is the napping for states of parity (- l)d and

oo*r(",x) = "á*r 
( ll zl, l*l)% "''e(xz+zz)

v

( h. r8a)

8o*1(tñ,*)
(t+.r8u )

The eonsta¡¡tis the napping for states of parity (- f)d+l-

v

tí=(-r) 2

Sirallarly to p odd, the integral transfor¡r is diagonal.

,4
T
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Eh.l+.a Uniterity of tbe fntegral lransfo:m

The equíva.lence of the two representations requi.res

A(zrx) be rrnita^:ry. ThÍs is equivalent to the foltolring conditions.

\a: Jor,",*) {(n,x)¿x= rt(zs),

vhere rt(^n) le the representation of the unit element in even or

od.d. subspaces of î .
Il+¡: 
J 

au(",") d (r,v)dpu( zã,) = ot(* - y)

vhere Ot(* - y) ls the tlecolçosition of the ô-fr¡nction into its
even or ocltl colponents. Slnce it is more convenient to ¡¡ork in

terms of well-defÍnetl integrals l+g is replaeed by

hB': 1í¡r
À+1

(r)

for Au(z,x) then

becoæs

Tbis equals

ã" õ fu vl J-6

Evaluation of \A
(a) p o¿o

Sr¡bstltuting either (l+.17a) or (h.ffU)

I A
u

(z,x)Ãu(w,x)dx

kÐ4 .-4h2+,i2)* "-*' tuftã zx)

G iã ñx)oc .XJ
U

/l ,zît'" ru*"õ)
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r¡hieh is t+(æ¡) for v = r + Lrætd¡.-(zv) for v = a-%.

The identitu(6e¡

f- -.2t2
jo tu(ct) .ru(ot) e-Y u dt

= 4 {2 exp [ - k v 
-" h, + ßz)] tr(>.aøt-2!

has been used.. Ttris id.entity is valid. provided Rev > - 1

and Re 12 > O. 'Itre choice d = - i6 z, ß = iñ. ;r,

u = c ¡ L, and y = l- ensures that these inequalities are

satisfÍed.

Sinee tt(z¡r) are the r¡nit eIe¡rents calcr¡].a-

ted in 5l+.2.5 eondÍtion \¡\ has been satisfied.

(b ) p even

Substituting either (l+.1-Ba) or (\.f80) in
I

.J ^u(z,x) 
Ãu(w,x)ax

the Íntegral becoues

G7, vã)1 c
_4kz+ttz) x2l"l e

r"oãe'ë,'lv vl a_æ

* Jvftñ' "*) Ju(- rã frx)ax.

since Jr(- z) = (- t)v,lu(z), the faqto" Gl (and not 4)
in the e:çression for A(z,x) ensures that the abor¡e integral

is non-zero. Evaluation of the Íntegrals in a si¡rilar ma¡cner

to p odd gives

J q,,z,x) Ãu(w,x)ex = ã þzv l)'a ïu(2fr) = tt(zw) ,

¡ftich are the appropriate reproducing kernel-s for p e'r¡en.
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(z) Evaluation of l+B'

In Appendix 7 it is shown that ou(lrx,I),

defineci. þ

has the fo::ri

ou(r,xv)= 
J 

o"(lz,x) au(rã "r) dou(zã) t

j; ffi ¿'>"(*z+Yz) r-'l
l_-À+

ï
U

for u = a ! 2. Since the e:qrression for ou for v = d or

o * 1 is the above nr:].tiplied. by a factor tr , and sinee l+ 1,

only the above ex¡rression need be dl.scr-lssed.

Qy inspection the argurent of Iu approactres

infinity as À + 1. An asynptotic erçansion of ïu(z) is(66).

M-l_
ru(z) "#É I (- l)n (v ,m)(zz)-m

t (z)' 1 {"
" y'atz

*z+ivn1

m=0

M-1_
+ie -z+ivT

T
m=0

Consitlering on\r the ffrst order terms in the elçansion the

asyq>totic fo¡s of fu(z) wilf æ * "' * z + 6 and
/ñ

I -z+ivn: e - --' as z + - 6. Since in a d.onaín where one of these
'ffi
is very Large the other 1s vezy srnaJ_I it is convenient to

lncorporate both forns in the one e)q)reesfon:

z + 1e
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t¡"ith the understanding that on\r the d.oninant tern i-s con-

eidered. in each case. As

2\,2xvz = Ì-ïç
Ít follows that

T1i ""(À,x,v)

lin l- 1-';:':ñffi exn {-'e\z + vz) '
4++ i(: r)v ery (- ,^t*,)Ì
t--¡,+ - t-*À4--

tra x2+
1-1,4

x { exI)

- ,. lim r t _- eÐ t- r,lú- (x + y¡z= -' \*r tffi¡u¡ 
L1 + ¡2

. ff (* - ")']Ì 
* i(- r)v ffi",æ {- t[

+ (* - 
")t 

* t * ^i (* * "¡z'l¡11+tr2 1-À2 J'

= % 3Ë [{(r * "z¡ "-e2s'I {e.G)-l .- t2/e2¡

+ i(- r)u {(r + e2) "-tttt} [lz.ñ)*t "- "/"'])
rhere

,7- - t.2-1¿= ¡- ^-) r s=%(x+y¡ and t=r<(x-y).t1 
+ ).2-

.A,e discussed by Bargmann, the first te:¡r

approaches the one-dimensional d,elta functions; ô(x - y).

Sr¡flar1y the seeond tern approaehes 6(x + y). Substituting

v=crtfugives
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oo:,(x,y) = t"{ð(x - y) + (- r)o ô(x + y)}

ar¡d.

a.,1r,-r(x,v) = %{6(x - v) - (- r)d o(x + v)} ,

where the definition ou(x,y) = il| ou(l,x"y) is used.

sinee oo-¿(*,y) + oo+a(*,J¡) = ô(x - y) tne above ex¡rressions

are Just the d.ecorrposition of ô(x - y) into lts approprÍate

representation in tbe spaces of even and. odd. f\.rnctions.

There is only a slight modification involved

in exùend.ing the above argr,ment to p even. As À + 1¡

ou(Àrx,¡r) approaches

" {"¡p ,31+ i(- r.)v exp ffili
For xy > 0 the first term ín the seeond braeket d.ominates

and so ou(l,x,x) + %ô(x - v) sinee /EL = ,. on the

other hand. for ry < 0 the second tem do¡nlnatee and hence

ou(À,x,Í) *'4G t)v o(x + y) since Æ= + , a¡rd rhis

eancels the exbra I factor. Substituting v = c entl. c * 1,

and combining the results it follows that

oo(x,y) = Lr{6(* - 
") 

+ (- f)0 ô(x + y)}

and
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Once again this is the requíred. deeomposition of the

ô-fi¡rction Ínto the appropriate even ar¡d ocld. frxretions.

It is easily eheeked. that

ou(x,y)=Io)(*lo|(rl

r¡here for v = o - t¿ or a the er-mnatÍon fs over n er¡en and

forv = o+Lzor u + l-the sunmation is overnod.d. For

Itr even

ô;r(- *) = (- r)o ol*(*)
and. so

ou(- x,ï) = (- r)0 ou(x,y)

for the appropriate values of v. This is a verífication

of the d.ecour¡lositfon of ou(x,v) into even or odd. eomponents.

'5h. l+. 3 the Conneetion between Basis St ates of F and. Il

Fro¡r the r:nitarity of A(z rx) an e4plicit eonneetÍon

between the basls states of F anct I/ can be deri.ved..

a) p od.d

From the e:cpanslon

Ít follorrs that

(r.ru )u*h
'TiTv+n+il'

2m

ru(t ) = I
m=0

;ft (zvr-utu('b))l z

b=0 zz)(v+n+1)
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Bìrt

ru(zb) = Æ (za)-" f ^",2,x) 
Au(t,x)oc

fron 34.

Thus

where

,t+Zm=Æ 22m+v r(v+n+r-) [*,

* Av(zx) t;ft r-u-% .av(b,x)] 
lo=o*

=Æ 
"2n+v 

r(u + ¡o + r-) [ "* Au(z,x) i(*l *

l(*) = ;ft {¡-v-% ou(o,*)}lo=o

= e þ ?" .4* f ,o-v 
"-%t2v 

¿1t2 )n

x rr(i6 o*)) 
lo=o

1 r - ro \'1." -to,2
\_ ¿, 

^ 
g

n+!+fu
2-

" t;(x2) ,

where the last line follou¡s frcm the m ðifferentÍations of the

nod.ified. generating relation for Laguerre polynomia^ls 
(66)'

I
n=011 ,...

22

q(x2)"2t(- r)'
I(n + v+ L) 

Zn

= "2 (xa) (- r) ' tu(ilz xz) (l+. rq)

l_

v
-, zd

v
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Reenanging coeffleients and. substituting v = o - % ft fol-lorus that

(}+2m

o-U(,,x) Orr(x)ax=fo
- ot2mwhere *d 0eo, are the orthonor-oal basis states of F and. Il

respectlvely. SimÍlar1y for v = q + !e;

I o*u","x) ö2*¡r-(x)ax

u

o+2rf l-u

As a partieular exenple td<e

Nffi(66 )

[- ¡ (A ) "-'('t' tx*1 ¿tJo u

(ã)u (2.É)-u-1 elç (- +rã2.-2)

Substitr¡ting U = a-'4., 'a=ifTz, Y= 1 then it follons that

(iõ zx)ax

1(z) =
{r(c + þ)1

which is the vacrn¡m state of the Fock space for p odd..

d
z

I
v

(t ) p erren

Fron hA,

(z¡) = (zn)-4 (zã a6)-'" Av
(z,x\ Av(b,x)dxf_
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and. so

oa2ú = Þn)-% ,2m+v r(v + n + 1) [* þ¿)-'u-, = \1T) -¿ I 
J.-_

x Au(z,x) {$- (/[6 ru)-1 au{r,*)}lo=o * .

Substitutlng (4.18) for Au (z,x), d.iffererrtiating (h,f9) and

colLeeting coefficients imp3-ies for u = c¡

,ra+2nr = i o", ,,ù a|^(x)dx ,

which is the required connectlon between basis states. sinilarly
it fcl-lows that

a+2nr+1 Iu--'¿ûrr¿ = J 
oo*r(r,*) O!r*r(x)ax .

ïf usÍng Diraef s,bra and ket notation(68), trre

orbhono:mal basis states of F are denoted. by l#> ana those of

I/ are denoted by l*tt then equation (l+.19) inrplies that

a(z,x)=Ilunt.xtl

The unitarity of A(z,x) is inplied by the orthonomality of the

respeetive states and. relations of the form

,o*t= [or";x) ôfi(x)ax

ean be expressed as

lfr=[1""r.*nl*\
n

The validity of the above equation also follorys from the ortho-

nomality of the besis vectors.
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s l+. I coNcLUSroNS

T\nro representation spaees for a single parabose operator

have been constructed. and theír equivalence has been proverL.

An cbvíor¡s generalizatÍon of this is to construct the

corresllonding representations of an arbÍtrary nu¡rber, v, of

operators. To effect thÍs it Ís neeessary tc consider, in the

appropriate representation space, frmctions of v variables. rt
Ís not suffÍcient, unfortunately, to generarize the creation

tß*tç
operators aIç a2, ...r au to zL,22, ..., Zv restectively because

this r¡ould imply f ri, +_ = O whieh only holds for p = 1. ïn

order to satisf) t"i, .ri. {f _ = 0 and ["i, + -i o a môre

eomplicated renresentation of the u,l'" i. needed.. This mcre

general representation has not yet been for¡rd.

For an arbitrary parabose field. the elements ä *1, *r, *
generate a representation of the unitary group end., when i = J,
reduee to z. + * 1 if the Bargnann representation is usecl. Ttre1 ctzl

appropriate generallzation of this could be expected. to be

d
"iJ = ,r4. Hower¡er the e., satisf! the add.itlonal eonmutation

relations:

ti¡ ttn - "tJ "ig = ôLø "iJ - ôÍø 
"t ¡

As l,ouelc(69) nu" shown this restricts the representations of u(v)

to totally symnetric tensors. This is only consistent wlth para-

bose operators for v = 1. Ttrus erry generaì-izatíon r¿ould. then
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-lt¡treduce ld. a, , a.] * to something other than z_. +- . Not knoring1- J Ì 1 ozJ

the form of the unitary operators fb:Éher comrpllcates the problen

of fincÌing the general representation of the parabose algebra.

Another generalizatÍon is to fornr a representation of the

Green colçonent fields fn te:ms of z, d" antl the appropriate

reflection operators. For pb3 the Green ansatz is:
Ir1t2*3*

a =a +a +a-

and

a=a,I+¿2¡"3

where

f
L aJln=6, i#J

anil.

{lÊ r
[a' , a'] -a -t for al]- 1.

A representatlon of these operators 1s gÍven by

1$ 2tç _ ?tßa- =2, a,- =Rlzz, d- =R1R2z3

ilT rlÊ r l+

"' I+ = [a' )a,

anil

al=d. z!' a2 = Rldrr, a3 = RtR2 d.u,

where R, a:¡e refleetion operator.s satisflingI

[n* zrl_ = [Rl, d" ]_ = o,,J-
and

r/J

for all i.[Rr, z*l* = [Ri, dri]+ = o,
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lhe generallzation of thís to higher order parabose fÍeIcls

ls straightfor:¡rard antl. the proof forlows by induction. rt ls not

intended. to study these representations bere, or their reciuctlon

into irredueíbre parebose representatione, rt is vorth noting

that, 1n eontrast to the irreducible parabose opereÈors eonstnrcÈed.

earlier, it ls relatively easy by appropriate labelLlng to cæ*

st:nrct the retlucible representations for v dlegrees of freed.om.
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APPENDIX 1

RESTRTCTIONS ON T.lrE DESCRIPTÍON OF SlAlES

The rrle of 52.1+ folrows directly from the fact thai any

n-parbicle state fc> satisri""(10)

lc' = tl'" nit 
un '::'((x)") l(x)"r s"

0F C1 IN ÏERMS 0F STATES OF C1 u Q2

rirn

h
T

L--

d^

I" ,(ø) ((x) ) l(x) r s.>
1sl_ "i n 'n 1

1=l_

for a-11 J = 1 , d¿. Consid.er *y lß> whieh is a eo¡rblnation

of states of the form f (x)rr0 s1r, l(*)rrø "rt, l(*)rrl rnt.
By choosing an appropriate eombinatÍon of the fj[) {{*)rr),s, any

lBt rry be e:rçanded in terns of a,r¡y one of the states l(x)rrø srt.

, To ensure that the deseription of | ß> in the combined. system

Ct v Cz is independent of the choiee of s, the rr:le of S2.h nr¿st

obviously be obser¡¡ed..

The follorlng exam¡rle indicates the neeessity of this rule.

Consider a state of the forr

lo> =.1 \Q,t,0,...,0)> + ce l(e,1,0,...,0)"

where the usual- argrrments have been dropped and the prime dis-

tinguishes between the states. Then for an operator, say F,

r¡hlch ls an element of U(u) ana whlch effects the transitlon
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fron l(2,1,0,...0)> to l(2,1,0,...0)->, it folIor¡s that

'ol 
-F lot # o. Hovrever if the rure of Ee.l+ ís not obser'ed a¡rd

if the state lor í" d.escribecl in ter-ms of a redwrd.ant particle by

lo" = "r I (e,2r0,...,0)(e,r,0,...,0)>

+ e2l (z,L,Iro,. ..,0)(2,1,0,. .. ro)'>

then it imned.iately follovrs from the reduction of U(u + f) to U(v)

that <o'l -r lo-t = 0 and the err¡ster property d.oes not appear to

hold. This ls because

<(2,1,1,0,.. .,0) (e,1,0 0.. .,0) -l F I tr,2,o ". . .,0) (z,t,o 
". 

. .,0)>

# .(2,1,0,...,0),1 F 1tr,1,0,... ,o), ,

whfch is guite appropriate since the L.H.s. describes in addltion

to the transltion (2,1,0,... ,0) * (211,0,...0) - of c1, an e:<tra

transitlon of the eouplete system fro¡r (2 r2,O,...,O) to a

(211,1-,0r...,0) type symetry. Ttre R.H.S. eontains no infoma-

tion aborrt the symoetry of the combÍned system.

rf the nrle of F2.l+ is inposed a penrissíbIe descrlBtion of
the state Jo> is by the vector

c1 | (z ,2,o,...,o)(2,L,0,...o)t
+ czl (2,2,O,.. .,0)(2,t,0,.. .,0)',>

a¡¡cl it follovs clireetry fro¡r the reduetíon of the uritary group

that the ehæter property hoLds.
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APPENDIX 2

VTOI,ATTON OF TI{E CLUSTER PROPERTY BY

ELÐ{EM¡S OF THE ORIIIOGONAL GROTJP

(a) Consider the ease of cluster C1 being restrlcted to twcr

degrees of freedom, i.e. vl = 2 an,l eluster C2 with v2 = 1. Ttre

states of C1 fotr representations of the gror4)s U(2), 0(l+) and

0(5). fn pertÍcrrlar the state lo> rvtrere

lo' = {ór(*1) or{*r) - oÌ(*r) ot(*r)l lo'

eorresponds to the representation (f,f-) of u(2) ana henee to the

representatton Ê, Ð of 0(l+) where p is the order of the para-

field 0(xr). fhe state lot i" an elgenstate of the operator

.L¿

[ô' (xr), 0' (*t)]_ t O(x1), O(xz)ì_

wlth eigenval-ue - l+p. In ter.ms of the ccmrblned system Ct U Ce

the state lat carr be represented. by any state l¡hiel¡ has the same

U(2) tatels as lor. Any state having these required Labels can

be e:çressed. as a eonbination of the tr¡o staies

lo', = p{or(*r) o+t**) 0'h(*r) - or'(*r) ot(**) 0t(*1)} lo'

- (p - z) or('ç) [ ot(*r), ot(*r)l_ lo'
ar¡d.

lo", = öl'(*n) t ot(*1), of (xz)l - lot

Hower¡er the above states correspond to eigenvalues zero and. - l+p

respectively, of the above element of 0(2v). In particular if the
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elements of O(2v) are pemitted es physieal observables and. we

describe a state cf c1 in ter¡ns of the combined system ¡y lo-t
then the matrix ele¡rents of elenents of o(2v) differ from those

obtained. lry a eonsideratÍon of c1 al-one. A consistent inteqcre-

tation ca¡r be obtained. by restricting physical observables to

elenents or u(2). This is due to the fact that the ba.sis states

of the eomblned systen Ct u Cz fom representations of U(3), 0(6)

and 0(7). rn particrrlar the state lo'r t"longs to the reirresenta-

tion E, È, È - t of 0(6) and, upon restrictÍon to the appro-

prlate fi.¡nction of x1 and x2, to the representatlon Ç - t, å - t)
of 0(l+). The violation of the cluster property by elenents of

the orthogonal groqp is due to the appearance of "non-Foek"

representations of the tn>e (å - t , Ë - l-) which are not present

when the cluster C1 is consid.ered alone.

Itre above example is reaùiIy generalized to the case of

eontinuoræ range of degrees of freedon. A general antfsymnetrÍc

(syrnetric) state lc> is written as

lor = i ot(*) ,ô*(v )l * lot

and. the abone number conservlng operator is written as

r

.l 
* * t., (*,v) t or(*), ot(v)i * t +(x) , ô(r)l *

where fr, (*,y) has a vanishing support outside C1. Ttre eigen-

value of this operator on the state lc> is t l+p{tar(*,y) +

fn- (f ,x)Ì. fn the presence of the redr¡ndant cluster C1 the abovet/l
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antisSmmetric state ca¡t be represented. by the r¡eetor

lo-, = pt0+(x) +'i(n) o+(v) t o'i(y) 0r(n) ör(*)) f o,

t (p - z) ot(n) t,Þr(*), or(v)l * lo,

Since

ta,. (n'Y) = ta, (x,n) = tr, (n,n) = o

the eÍgenvalue in the state lo't or the a]rove operator 1s zero.

Ttrw for these operators the ch:ster property does not hold.

(¡) Another exau¡r1e is illustrative as it shows that for the

"non-Fock" representations of o(zu) the eonnection between the

lnvariants of U(v) a¡¡d O(2v) does not hold, or, Ín the notatlon

of Kcr¡e¡¡chi and. ohnr:ki(z:) ,o" elements of o(2v) do not eonserve

A. A 1s the number of ottd. colums ln the young tableau speelfþ-

lng the partlcr:lar Írreducible representation of U(v). Take the

case of vt = 3 and. fcr sluplfcity consfd.er p = 2. Ttren lf lo>

represents the state

cr l(r,r,o)> + c2 l(e,r,r)t

loeallzecl in cluster c1 then it direetly ßo1J.ors from the con-

servation of A that

ifF

.ol t, (o(zv)) lo>=o
(o(zu)) te of the fo:s

[ 0(xr, ), O(xrr)1_ .

C1
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llhen the systeu is deseribed 1n terme of the comblned. systeun

Cr u Cz the essoeiated. group is O(B). It can readlly be ctreeked

that the representatlon of 0(6) latel-l-ed (1rOrO) cor¡tatns both

the representations (1,tr0) ana (z,trt) or u(3). since the above

element of 0(6) behaves essential-ly J-ike a lowering operator it

has non-vanishÍng matrix eLerents between these statee antl thr¡s

to ar¡ obsen¡er localizecl on C1 tt uould appear that the con-

eervatlon ]-aw of A does not holcÌ. l\s before this can be avoided.

by restrlcting observables to fr¡ncülons of the unitary groìæ.
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ÁPPE}IDTX 3

BOEOLIUBOV TRAI{SFOBMATIONS OF PARA¡EzuT

FIELDS ÆID TIIE CLUSÎER PROPERTY

Consid.er a set of three pf2 ereation and. annihilation
*

operators ê , a, . Denote lXt "" the solution of'T'î

*llX, = a2lx> = a3lXt = O

Consider 3 to label a redunctant particle on C2 anct 1 ar¡d. 2 to be

labels refeming to C1. . The anti-s¡rmetric state of C1 may be

d.escribed. in the presenee of C2 by either

Itlt)' = I 'l ' ^;t -'i lx'

lo
(z)

lx'
or ***>-ê1a3&2

n

Application of the ch¡ster property woulcl l¡çIy that the only

permissible observables are elements of the U(Z) afepbra generated
lÊtß*t+

by Iar, all_, Iaz, azl _, I at, azl - and I aj, a1l_.

Considering a Bogoliubov transfornation

bt=al , b2="T, ts=*l
and tleflning lOt u.s the state such that

trlo, = bzlo> = b3Jot = 6 ,

it follows that

lo, = Gl¡z (.f)z¡x'.



133.

A permissible physicat observable i.e., I "f , u2l_ is equal to the
It li

operator [b1, b2ì_. Tt r¡ouIct ]-ead. to a contradiction to eonsider

this operator as a physical observabre, sinee a similar appliea-

tion of the clwter decomposition property in the space of the

brs r¡oulcl lnpry that obsen¡ables are restríeted to elements of
_10_**the fort [bi, bJ] _. Thus the tbi, btl- cannot be Ínterpreted. as

physical obse:¡¡ab1es, beeause under the Bogoliubov transfomations

the physÍcal interpretation of the theory arters. rn particular

for this exn?ïrlìIe the antÍ-symrctric state lrÍt)r becomes

Itjt'' = [bl, bz]- b3(b;)2 (ti¡z lo'

= - h{bT, bT} bT lo'
lhus, althougþ

.rlt'l r ri, bTl - l4t''
equals

"lt)'I
åt tÊ

lbr, bz] _
(r)-
pó

where

I olt) 
', 

= [ oi, räl _ lo, ,,¡p

it ctoes not fo1lcn^, that [ol, oll - satÍsftes the clwter property

sinee lOlt)t no longer clescrlbes an ar¡ti-s¡Trnmetrie state on C1."p
fn partÍcr¡lar the physical content of the two representa-

tfons is not invarlant r¡nd.er the Bogoliubov transfomations because

the operators whieh cletemine the physical eontent i.e. r the N'

are not invariant under these transformatlons.
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APPENDIX l+

EVA],UATION OF VACIJT]M EXPECTATION VALUES

fhe Green ansatz for interacting parafields is partteularly

usefi¡I in the diseussion of v.E.vrs. This is beeause, as Dellt
Antonio, Greenberg arrd. sudarshan and. Govorkov have shown, the

v.E.v. of a prociuet of Green eomponent fieltts faetorizes to the

produet of the V.E.V. rs for eaeh field.. For exam¡r1e

.o(r)(*r ) ¿(1)(*r) a(e)(xg),

= .4(1) (*r ) a( Ð (*r¡, a¿(2) (x3 ),

since eom¡ronent llelds with different superscripts anti-eomrrrte,

v.E.v. 's of a product of operators in r¡hich there are an ocrcr

nunber of eaeh component fleld, a¡rcl there are at l_east two

d.ifferent strncies present , vanish. As an exam¡rIe :

.o( r) (x1 )r .o(z ) (x2 ),

= .4(1) (*r ) r(2) (xe ),

= - .4(2 ) (*, ) a(1) (*r ),

= - .¡(2) {*, ¡, .o(r) (xr )>

=Q

since the eomponent fÍerds ar€ assured. to be equJ.valent the

v.E.v. of a prod.uct of operators a^1-1 raberled. by the sa¡ne super-

scrlpt can be taken to be fnctependent of that sr4>erseript. rhle

irplies that
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.o(i)(*r) ¿(i)(*r¡, = .a(J,,*r, a(i)(*r),

since the v.E.v.0s of a product of Green eomponent fields arl
with the sane superscript have identieal properties to a Bose

field it will be assu¡red. that these v.E"v.!s satÍsfy the eh:ster
deconposition property.

Both properties diseussed ¡¿irl be r¡sed. Ín the following.

Exa¡q¡le 1: Evaluation of <A(xr + te) A(x2) A(x3 + ta) a(xq)>

forp=2asÀ+o.

Substituting A(xr¡ = o(r)(xr) + o{e)(xr), the follciwing

results for the par-bicular component fields are obtalned:

lira
À+-

1)<A (x1 + ra) A

<A

(xs + Àa) a
( (r) (r) (r)

(x'* )t(x2) a

= .a(1)(*r) a(t)(*r), .a(1)(*z) a(r)(*,*),

Tt¡is assr.mes that the eluster ilecomposition proper-ty is valitt for
eac}r colçonent fieId.

Sinilarly

lim
À+æ

(2)(*, + ra) o(e), ( 2) (z)

- 'o(z)(*r) ¡(z)

V.E.V.ts of the fom

.o(r) (x1 + ra) A

vanish.

x2 A (x3 + ¡,a) A (xa )t

(x3 )t ..4
(¿) (x2) aþ) (xa)t

(z) (z) (z)(xz) a (xg + Àa) A (xa )t

)
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The other non-vanishing V.E.V. rs are of the fo:¡l

.o(r)("r +-ra) ¡(2 )(
x.2 ) A

( 1) (*a + ra) A
(z)

(r) (r)
=-<[ (x1 + ra) A (xg + la)> <A

(e)

1) (z) (z)(xs)>.4 (x2) a

(xz) n

(xa)>

') (*u)'

(z)

= - .A(1)(*r) n

V.E.V.'s of the fo:m

(

.o(r) (x1 + ru) n(1)(*z)

I .o,t),*r, r(i)(*r), .A(i)(*r) r(i)(*u),
l_=I

* .o(r) (*r ) a(1) (x3 ), .oÞ) (x2) A(2) (*u ¡,

¡(2)(*r)r.a(1)1

¡ n(t) (*r ),)(

o(o ) (*, ),

1in
tr+o

( z)
A (*s + Àa) A (xa)t

vanish as a result cf cl-uster decomposÍtion and. factorizatlon of

the V.E.V. f s.

Colleeting terrns it holds that

Jit .n(*r + Àa) A(xz) A(x3 + ra) ¿(x'+)>
tr+co

- </L xt 1)
x2 ) A (x'*)t

# .A(xr) a(x2)t .A(xs) A(x4)'

fn a símiler manner for p > 2 the sa¡re exÀnple may be used

to show that the cluster properby is not satisfied.

If it is also assuned. that

<A
(x

x.
1

=<[

(e), (
)

(r) {*r)
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then

linr
læ

lhis hoJ-d.s only for pb2 statÍstícs.

ExaryIe 2

and

<A(x1 + la) A(x2) A(x3 + fa) A(xa)> = e

Let W(x1xz ... xrr) denot. <A(xr) e(x2) ... a(xrr)> and. defLne

*(z'r) (x1x2x3) = ll(xrxexz)

- Ìil(x2x3x1) + w(x.x1*2) - W(xsxzxr)

"(r 'r) 
(*rxz ) = ÏJ(xrxe ) - r,I(xzxl )

ft foLlows that

^t* 
*(t'1)(*1*2*, + Àa) = w(1'1){*,*r) w(xs)

iff

|f w(*1*3 + la xz) - tr(xzxe + ra x1) = o

Substituüing

a(*, ) = A0(x
Jo=L

and. conslderÍng the varlous te¡ss it can be sho¡n by an argunent

sfnllar to that r¡sed, in the previous exaÍïìle that only for p = 2

doee

p

I

lin
Àæ tr{(xrxa + tra x2) - w(xzx, + Àa x1) = o .

Thua onþ for p = 2 does a restrleted. cluster properby hold..



Example 3

Since the free scalar field A(x) satÍsfíes the lriightman

arcions the t/.E.V.rs of the A(x.)'s shor.¡l-d. also satisf! any for.m

of the cluster d.eccmrposition property. Substítr-rbÍng

138

-ik.x lË

%
e + o"k

in the V.E.V. !il(x1x2x3xr+) gives the result

Ìt(x1x2x3xu¡ = p2{À*(*, - x2)a+(x3 - xr*)

+ a+(x2 - *3)a*(*r - x4)Ì - p(p - 2)¡*(*z - x+)

* A+(xr - x3)

R(x)= t 
' I

(z(zn)s)a JY
.in'l d3r

1
k

o0
(

o

Define

*(2,27(x1x2x3x4) =

W(x1x3x2x+) - w(xzx3xtxh) + w(xzx+xrx3) - W(xt*ax2x3)

+ W(xgxtx¿xq) - tr{(x3x2x1x,+) + w(lqx2xtx3) - w(xax1x2x3)

+ I{(xrx¡x'+xz) - }r(x2x3x4x1) + w(x2x4x3x1) - w(xrx4x3x2)

+ trf(xgxrxt+xz) * W(xgxzxqxl) + W(xaxzx3xt) - W(x,*x1x3x2)

T'hen, ignoring ¿*(q) as I beeoznes large spacelike,

T]3 "("2)(*t*r*3 
+ Àa xa + la)

= 2p1a+(xr - x2) - A+(xz - xl))(a+(*3 - x4)

- ¡+(x+ - x3))

= 2pÀ(xr - xz)À(xs - x,+)
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Hor¿ever

r(r,r) (*rxz, 
"(r,i) 

(r3x,+)

p2Â(x1 -x2)a(xg-x,*)

and, so once again the factorization of V.E.V. rs only holds for

p=2sinceforp>2

Tli "(''2)(*1*2*, 
+ Àa x4 + Àa)

I w(1'1) (*r*r) w(1'1) (*g*q)



From 53.3ib f. i" expressed. as

% = olt) olt'...ofn)

= roli', oÍr'*,_

APPENDTX 5

A REPRESENTA TON OF PARI(S ' COMMI.MATION

RELATTONS BY PARAFERMI OPERATORS

rho

(nr. r)

I
a- = C. From the

K

= 0 and hence that

rr{il,oÍr)r_
where

a¡rtl

=e forilj,

rr[i), oÍt)*]* = onu

since f{il)2 = o it ctirectly forlors that

expression for % it follor¡s that [ %, ojt),

rrdil,o[t,,* = o

b
L

t{n) o(n)*

+

[aO, arl+ = O where the upper sign corresponds to p even and the

lower sign to p od.ct.

tr'ron (45.f) it folIo¡s that

a-k 9.
rdr) o(rl'ç b(2)

(z)x*
a

- (onu - o(r)x oft)) (uno u(')* ol'))

..(ono - rfn)* o,ln)i

= (- r)P 4 E * ôr¿ tt - ,,[t) - 4t) - ...
) * 4ir) nl') * ... (- r)P-1 d,z) n(s)

))

4'
o-(Pk



1b1

= (- r)P "i f. * 6kn il - Nk] , ( aS.z)

vhere 4t't" the number operator for ttre ith corçonent field.
ft ís only necessaqf to shor¡ that

I ao, Nol _ = 26tÍ, % ,

sinee it follorrs trivially that [N., l[J]- = o an¿ wT = Ni. ]Icrrr

r fu, "Ít)l - = olt) ... rolt,, oÍt,, * ... {n) = ôk0 %

ïn general the relation

t %, nlt oÍn)l_ = 6rø %

ean be shown to hol-d by induction. Thr¡s [ %, N¿] _ nill be a

llnear eonbination of ôtc %rs whose coeffieLents are gÍven by the

ex¡lansion (¡:.e). pro¡r (A5.2) it follorrs that the sun of the

coefffelents viIl be the sa¡re as the sr¡m of the eoefficíents ln
the expansion of - (f - *)P tritf, the higþest and Iot^rest poners

of x removed. Now the sum of all the coefficients in (r - *)p

is zero for all p. For p even, 1 antt f ua.r" the sane slgns so

the sr:m of the renaining tern is - 2. Thr¡s

[ 1, Nnl- = + 2ônu to

For p odd., 1 an¿ f have opposite signs and so the sr:n of the

remaining terme Ls zero. This inçlies the r¡rusual result:

[1' ]Iul"- = 0.



II+2

The resulting connutatlon relations are

0
2

% )

an¿l

anci

[ao,a,l;=0,
lÊ

I ao, anll = 2ôLs (% - w;)

t ao, lrfl - = ôr¿ 
% for p even

t 1' ltil _ = 0 for p ocld

where N,i = % N,_ is the nr¡rnber operator.K_I(
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APPE$DTX 6

DETERMINATION oF THE IMIEGRAL TRANSIOBM A(z.x)

Equations (l+.15) ana (4.f6) of 5l+.1+.1 cen be reaga¡rgecl into

two sets each containing two pairs of eorpled par.tfal d.ífferentiaL

equations. The equations are

(a). (¿6. ra)

(x+cl-x ) Azz 6z A¡1 (a6. rr )

a,r¡d.

(* - d* - llorr = - 6 {a, - I)o,,, (a6. aa)

(x- (a6.er )

(s). (¿6. ¡a)

(a6. æ )

ancl
(16. \a)

(46. hu)

Solution of set A

Diffenentiating (n6.fa) a¡rd substituting for Ã22 ancl d* 422

fron (46.1b) tfre follovlng equation is obtaÍned:

r(t + 1)

(x + d* + a)art = - /ã z A22

Í
x

(x+d*-i)otr =-ãz!\zt

(x+d*+a)azl =-rEzAtz

(* - d* + !)arz = - /1 (u, - T)o^

(x - a* - l)nrr = - õ la, + !)\2.

a-?- nry + 2x ct-- Arr + (f - 222 + x2xx

ll

)Arr = o (a6. ¡ )
x2



1\4

In a sÍni]-ar manner (46.2) retluce to

u2 or, + 2z d" Arl + (1 - zx2 + z2

-t(r-+1))A11 =9. , (¿6.6)
zz 

)411 =9 ' (¿6,

Substituting

Arr = "-%(x2+22) € o(E) ,

nhere 6 =(zr*)\rotrr (46.5) end (t6.G) becøe

E2 t"(t) + t u'(t) - (ez + (t + h)2) u(E) = o,

rhieh ls Besselrs equation vith inagina.:ry argrnent. The sorr¡bion

is

Arr = uru. "-"(*+22) tø ,*)'" q.4 (ã zx\

where Q"*r, (* ã ,x) is ary corbination of Bessel fr¡rctioas with

inaginarxr argurent anct lndtex t + 4 o" - (" + %) an¿ au is an

arbitrar¡¡ coefficient .

Sinilarly equations (16.Zl red.uce to

a?- b, + 2x c1-. Azz + (t - zz2 + x2 - t(t-- 1)1A22 
= ox L' x xZ 

-'

antl

d2 Aoo a 2z d,¿Azz+ (t- zxz + z2 - r(r-- 1)¡Azz= o .u--z--22

Since these equatíons are symetric r,¡'ith respecù to fnterchange

of x and. z the soh¡tlon is



th5

0r2z = ^r*r., "-4(x2+22) çre ,*)'= er-r. (õ zx)

where Q ls defíned above.

fgnorlng the 412 antt 421 terms (rrhteh wl11 be shcr¡n to be

equal to zero) the appropriate choices for the Qrs are:

(r) o otld

Q,tt = J
d+44

o+l-

(i6 zx) and.

Qzz=J o--\
(t6 zx)

where the upper sign eorresponds to p otlcl a¡rtL the Ìoner sigl to

o

p even.

(z) ca even

Qlt = Ja,-Þ.
G6. zÐ and

8zz=Jd++
dr1

(iñ zx)

î¡ere is holrever an important nod.ifleation to the

solutions for p even. Denoting Fï * the reflectlon operator

for the x varlable lt hol-ds that

tR*, di.* 2x dr¡ + (1 - 222 + x2 - r(r-+ 1))l- 
= 0

f

Qy a sinil-nr technique to that appllec1 to the so}¡tÍons of the

Schrödinger equation in 5l+.3.2b the tÆ factor in the sol-r¡tion

may be motlified to f!. SÍ¡dlarly since

[2, a2 a 22 d7+ (1 - 2x2 + uz - t(t-+ r\t-- 
= o

ct



an ertra E t^"to, nqy be addecl to the solutíon. Ttre motLLfiecl

solution now becornes

Arr = ^r-r."-\-(x2+72) 
(ñ ,, l*l)% a,r* (ã zx)

and
Ã22 = tr¡..-'"-(x2+'2) (ñ ,¿, l*Da errto (6 zx)

rl+6

Solr¡tion for Set B

Prennltlplytne (A6.hu) by -Ez gives

2z (a, * !)\z = (x - u* - l) G6 z)Azt

and. substitrrbing (46.:a) tbis becornes

(¡6.2)

Stnllarly from (a6.3b) and (a6.hc)

2 (dz - t)" Al2 = (x + a* + |) (* - d* * þorr. (a6.8)

ttren (46.?) - (46.8) iryHes

2 (lz, drl .- + zrlÃtz = 2 (lx, dl*l - - zr)a,12

andl hence

rAl2 = - tAtZ.

For t # 0 this irnplles Atz = O. Sinilarly L2L = 0 antt hence

A(z,x) 1s rlÍagona]..



l-l+7.

fn tems of the algebras a, a

Ís equivalent to requiring that

tß

and E:I the abo¡æ argr.nnent

zltr-[a,.*]_]
is ¡napped into

* t'*- [ E, n] *]

substítr¡ting the appropriate expressions for â, 8n, t and n thls
requirement Ís that R is rnapped into F i.e. 

"

î(- z) = A(z,x) ú(- x) ¿x

which implies that
I n, R(z,x)J - o

As for the netric, vanishing of the above eomrutator ÍnpJ_íes thet

A(z,x) is diagonal.

Defllning
tÈNr=4a,al+-4

ancl
N*=än,El+-r4

it foIlor¡s from the definition of A(z,x) that

r-fÎN inNxe ' l(r,x) = A(z,x) e (46.e¡

Sinee R =
lttN

(å_ I is the sírnplest elosed ertensÍon of both

e
z and e

x then (46.9) rectuces to RA = ÄB anct hence A is

diagonal.

I

nN1



APPENDTX

EVATUATIOTI OF AN INTEGRAT

(- r)n (- r)^

rl+8.

2tt+v+la))

To shov that the integral_ transfo:m Au(z,x) is r:nitary it
is necessary to evaluate the following integral:

ou(À,x,y) = J 
nrtrr,x) Au(Àã,y)ap,r1";¡

A cletailecl evaluation of o for p octd. fs given berow, the relevant

mottifications for p even belng discussecl fn (t).
(a) B oclcl

Substltr¡tine (l+.17) ror Au anil (t+.8) for su the

integral beeones

ou(À,x,],) : * tç 
"*,(x2ty2, I u" dî, zì,

* "'*"*ã') 
,.,r(r ñxzx).ru(- rãr ãv) ruhã) .

*2*y2(+ )e TI
nm

v2)

sinee

x 2-v-n-n

x

Jv

rj(xzl rlr
I(n+v+1)f(n+v+1)

I a, a; ,;, ¿tu*u ,Zn+t ruÞil ,

(66t
v

(z(xzl'I = .-Ðã "*' Ï
L;(x)zn

I(n+u+1)
n=0

Eçaluatlng the Íntegral (wtrte¡ ie of the fom ¡;2trlu4-,.2,

ancl substítuùing gives the folloring erq)ression for o:

z



rl+9

ou(r,x,v) = 
^2u+1 

(rqn)u4 .'akz+rzl

{{*2) q(yz) r4' ,,:XI
n

t(n+v+1)
À4 (x2+y2 )

t-la)+ t- 4k2+y2)= ;l'/xY e e

xI

xe

which, upon repeating the sane steps as for p ottct, reduces to

The last lfne foLlor¡s from the fact that the Bessel function T,,

is a generatÍng f'nction for proclucts of Laguerre polynonial src6\

i.e.,
i nl

"!o 
rd*-l r'l(x) {(Y) rn

v

= (t- r)-1 .,ç t-À*i$ (xrr)tt"lg1
ror lrl < 1.

Substituting v = c ! I then gives the requlred resr¡Lt.

(t ) p even

Substftutine (l+.f8) for A, and (h.10) for ou implies

ou(r,x ,Ð = ? ^' lryl% u-Ð'(*2w2) [ a, aA

* zã ¡,¡(i6 xzx) tr(- t6 xãy)

$t,'*z') ru2i) .



150.

rr2)

o.,(tr,x,y) = l'2 - / l*l u-r'(*2*Y2)u 1-).4

x J ç2).2 xv.,^,ur[lj

for lll < 1.

t-^2

SubstÍtuting v = ü or o + 1 gives the requirect result.
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The quântization scheme recently proposed by Kademova and Kraev is shown to be inconsistent.
There is no apparent way in which it can be modified in order to provide a scheme liable to a reasonable
physical inberpretation.

Kademova and Kraev [1] have recently pro-
posed a new quantization scheme for spin-half
fields, which would allow an unlimited number of
identical spin-half particles to occupy one and
the same state.

The trilinear commutation relations they sug-
gest for the creation operators ai and. their (as-
sumed) hermitean conjugates, the annihilation
operators a¿, i = lr2r. .. , are

[o¿,lol,"n]l = -2õ¿¡ap, loi,loj,oøll = 0, (1)

and the relations obtained from these through
hermitean conjugation and application of Jacobi's
identity. These differ from Green's parafermion
commutation relations [2] in the sign of the
right-hand side of the first equation.

According to Kademova and Kraev, one
should require in addition to (1) the existence of
a "vacuum state" vector l0) satisfying

o¿lo¡ = s,
aia;lÐ = po¿jlo), (2)

where P is some positive constant, the "order of
the parastatistics". The operator Nøi =

à(["¿,"i1 -p) is then to be identified'as "counting
the number of particles in the ith state", and is
claimed to have a spectrum consisting of all
non-negative integers.

The consistency of this scheme has been es-
tablished only in the case where there is just one
pair of creation and annihilation operators, al
and a1, It is easy to find an inconsistency when
there is more than one such pair.

Consider the operators

I Supported by a Rothmans Junior Fellowship.
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\=ä[oz*ol,oy-o\1,
sz = ài lo2 * ol,o1 * oll

s, = àlay,aT),

which, in r¡iew of (1), satisfy the familiar angu-
lar momentum relations

[s¿, s7l = ie¿¡pSp ,

and which are hermitean operators in the repre-
sentations under discussion. As proved in ele-
mentary quantum mechanics texts, any eigen-
value of 53 in such a representation rnust be in-
tegral or half -odd-integral. More irnportantly,
if À is such an eigenvalue, so is -À.

Now it is easily shown that the spectrum of 53
is here unbounded above, except in the trivial
representation a¿ - aI = 0, and it follows at once
that it is also unbounded below. For suppose 53
has a maximum eigenvalue Àmax > 0. Then, be-
cause [S3,aj] -- oi, there must exist a normal-
izable state vector | ¡) such that

s3lil=À,o"*1il, ojlil=0.

But then

Àro.* lll Ð ll 
2 = (x ls¡ I xl

= àel@pT,_olo1)lx)

= -åll,1lÐll2

_. 0,

which is contradictory.
In this way it may be shown that the spectrum
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of each operator à1"¿,oi) is unbounded above and

below in the representations of interest' The

same is therefóre true of the spectrum of each

N^;. contrary to the claims of Kademova and

K"riev, and as a result such operators are quite

unsuitable for use as "number operators"'
Moreover, it follows that.no representation of

ttre aþ"n"ã (1) in which af is tite hermitean con-
jugatJof a¿, corLtains a vector l0) satisfying
eqs. (2).' .ls fademova and Kraev have pointed out, the

below by a positive constant p' It is a represen-
tation oi this type which Kademova ald Kraev

wish to use for each operatot |la¿,ø)1' Untor-

in which one could amend it in order to obtain a

scheme liable to a reasonable physical interpre-
tation.

We wish to acknowledge a useful discussion
with Professor C.A. Hurst.
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