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PI,ASMA STASTLITY THEORY APPLICATTONS

SUMMARY

The hyctromagnetic stability theory of a plasma is dlscussed

both fron a general vierçoint, and. vith appticatlon to a eonstricted.

discharge between electrodes havfng nagnetic surfaces approximated

by hy¡lerbolofds of one sheet.

The interchange of a{acent flux tubes in a J-ov-pressure

plasna ls eonsidereci, with enphasls on systerns teruinated by con-

ducting plates, ín whlch only fLut t\¡bes ebntaining equal magnetic

fluc ean be interchangecl. Proviilett the ends of the aclJaeent tubes

are at the sa,me magnetíc scal,ar potential rf , the stability criterlon

adopts a for:n invotving the field-line curvature. Ho¡¡ever, assuming

perfeet electrieal concluctivity everyv¡here, coqpl-icatlons arl-se

because the above restriction caùhot in general- be met in open-

ended systems.

The analysls is generalized, uslng the t'double-aôiabatierr

theory of CHE[{, GOLDBERGER ancl T.,OII. If stabllity exists in the

system whose pressure always remains scalar, then the system 1n

which Ísotropy cannot be maintainecL tiuring perturbation is stable

also. For the curvature-dependent perburbation' stability can be

achlevetl in magnetic-wel-I configurations, and if, in equilíbrÍum,

the sum (na * prr) of the pressure tensor conq)onents is constant

a1-ong the field." the criterion reduces exactlJ to that obtaÍnecl for

scalar pressure.



I¡feehanical equilibriun Ín the d.ischarge is examfned end, in

the low-pressu"re borrndary region, the pressure grad.ient, to first
order in the ratio of plasna pressu"e to magnetic pressure, is per-

pencl-i.curar to the hyperboloid. suifaees, The sa¡re result is for¡nd.

for (p, + ptl) when the non:isotropic pressure tensor is usecl.

nhe stabilÍty criterion is applied. to the constricted d.Ís-

eharge, with caref\rl attentÍon to the problerns which arise because

the electrod.es do not èoineld.e with surfå,èeg of constant r|. The

exact resurt obtaínecl for the eritical- *ischarge current ís ínter-
preted. geonetrically, and. 1e then reeonciled wíth the earlÍer

approximate expression of SEYMOUR.

consÍderÍng a general system with perfectiy electrically eorr-

ducting plasma separated from the vacuum by a surface sheet eurrent,

a d.iscussion of bounp.ary eonditions is followed by an analysis con-

cerning some aspeets of the hyd.romagnetic energy prÍncipre of

BERNSTEfN et al, for an arbitra^ry fh:Lc1 displacement, t. The

approaeh adopted. erbends a derivation of VAN l(AldPEN and IELDERHOF,

to d.eal- with a bor:ncled plasma in contact with vacuum ar¡d with elec-

trodes. The change ôwBE, 1n the erternal magnetic enerry, calcu-

ratetl as work done against the pressure of the va,cuÌxn fíeld at the

plasna/vacuum interface, is used. to eomplete the erçression ôw(ErE),

for the total system. To perrnit applieation of the result to the

d.ischarge between erectrodes, the proof is generalized. by takíng

accor¡nt of neeessary insulating supports, leacling to some nod.ífica-

tion of the vaeuum eontribution.



The usual lntetpretation of the surface contribution to ôW is

shor¿n to be incorect, æd for zero internal magnetic fielcl it is

establishecl that neutral stability is obts.ined at best. The treat-

nent by BERNSTEIN et aI, exbending the energlr principle so that a

constraint on E arising from the continulty of stress at the surface

can be ignored, is considerabJy a,qplifÍed by meens of a rí6çorous

mathenatical approach .

Finally the enerry principle is used to derive a stability

criterion for a sheet-current version of the constrieted discharge.

For zero ínternal fiel-ci, the neeessary ancl suffleient contlition for

instability is that the current mu.st exceed. a eritica-l value which,

for id.entíca] external conditions, ls for¡nct to be greater than that

for the system with inter-tiÍffuseci fieltl and plasma. Treatment of

the cllscharge with trappecl axial fÍeIcl, but no internal el-ectric

eurrent, leatls to a sufficient condition for stabllity. A geo-

metrical interpretation of the stability criterion Ís given, and an

approximation for the eritíca] current in terms of experimentaL

parameters is obtained for the practical case of a thín' slightly

constrictecl tlis charge .
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TIITRODUCTTON

Because of the presenee of large numbers of free electrons

ancl ions, the properbies of e higloly ionized ga¡i, or plasma (tOnfS

a¡rtt L'AIÍGMLIIR, ]-929), dlffer eonsid.erably from those of an r:nlonized

ga.e. On the mÍeroscopie seale, the interaetion between parbicles

changes cheraeter and. obeys the long-raJrge CouJ.onrb 1aw, so that the

pl-asma ftrnarnì cs on thís sealle must be treated as a marty-body problem.

Since eLectrie eu¡rents een be sustaine¿l, the macroscopie behavíor.¡r

of a plasma in its lnteractlon with electromagnetÍe fields ean

often be treated. in te:ms of magnetohyd.roclynamics (¡.1¡'VÉtl ana

riir,tH¡¡,n¿nn , 1963, Chapter 3), especially wiren the motion of the

gas ls dor¿inated. by the negnetic body force, J- x B, where f, 1s the

electrie current density ancl B is the magnetie field.

ft 1s therefore clear that plasma dyne,rnics provides a fruitfirL

subJect for study. Thls fact, eoupled with estimates that this

highly lnteresting state of n¿tter aeeounts for all- but a smal1

fraction of the material Ín the unlverse (¿I,rv,Éw ana ¡'ä¡fUA]4ldAR,

L963, p.L3)+), makes the study of plasmes, both experimental and.

theoretfcal, of naJor fmportance. However, ftrrbher motivation

arises from the possibilities ofteehnologlcal applieations of

plasnas, euìd the bulk of present clay plasma research is clirect,eil

to,rards such proJects as tbe tlevelopment of a controlled. the:s¡o-

nuclear fi:sion reactor (nOSn and CLAßK, l-961-) for the generation

of power; the cllrect eonverston of kinetic enerry to eLectrical
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enerry in MHD generators (nOSa and KAIiTTROI^IITZ, 1960; PETSCTIEK,

A96r); and the use of high-velocity ionized gas streans as pro-

pellants in rocket engÍnes for long-te:rr, reliable operation, at

1o¡¡ thrust but high specific ínpulse (¡¿HtU, L968).

Erpeiimentally, large, long-livecl plasma systems such as the

sun may be stuclied. at a great d.istance, with obvÍous iliffÍculties.

However it is an ironical fact that while plasma occurs Ín enornous

quantities in natr¡re, in stellar and. interstellar nateriaf , and ln

the earthrs ionosphere, the laboratory expelimenter 1s faced, r¿lth

great d.lfficulty in gaining access to plasma, in the forrn of highly

ionÍzed. gas, for usefuJ- períod.s of time. The maÍn laboratory prob-

lem arises through cooling of the plasma by heat l-oss to the

surror:nilings. The degree of ionization depends crltieally on the

plasma tenperature (SruU and. SAIí4, 193\; SEYMOUR, 1p61a, Fig. 1),

and. fa1ls off rapfd.ly as the gas is cooled through diffusion of

particles to the waU-s of the cha¡nber, and through other meeha¡risms

such as brsrstr€jhlurg radiation ancl eharge exchange (SprtznR, 1962,

p.1l+? i THoMPSoN, t-965a) .

A serious problem has been encormtered in attempts to prolong

the l-ife of laboratory plaema by keeping it out of contact with

naterial- wa1ls through the use of suitably ttesigned magnetic fielcls.

This approach re1ie6 on the magnetic body force, J_* B' tobalance

the material- forces tend.ing to er¡rand. the plasrna. It hes provecl a

relatÍvely sinple matter to devise such confinement systems, mostly
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based on the pineh diseharge (¡nNiveff , 1931+; POST, ]:916), the

magnetic mlrror machine (post, 1958), md the Stellarator (setrznn,

1958). However attempts at practical realizatlon of these designs

have so far been foilect by unstable motions which develop in the

pJ-asma, tending to destrq¡ the eonfiguration ln tlmes much shorter

than the cLassÍcal diffusion tines (noSutlgLUTH, l-965).

The r:nstable motÍons msy be broatLly divictecl lnto two classes

(f,nHuER"f, 1967). On the one hand are the localized mícroseopic,

or kinetic instabilities. These small scaIe, high frequeney oscil-

latÍons in both position and. velocÍty space are thought to cause

turbulenee and. anomalously high díffusion rates (¡Oil¡¿ et aI " I9\9;

TAYLOR , :1962; DRUMMOND antl ROSENBLUTTI, 1962; rollliER , 1965;

VEDENOV, 1968). they can result from ttifferences ín the motlon of

various particles oeeupying the same mac"oscopic volune, as in the

two-stream instability (sOIiM and. GROSS, 19h9). A elass of nlcro-

instabilities results from the anisotropy imposed. by the (preferreci)

d.irection of the magnetlc field. itself (e.e. the t'Ioss-cone" in-

stability (noSgttei,uTH ancl PosT, 1965i t966)). Thus the miero-

instabllities are d.ue to properbies of the parbicle velocity d.is-

trlbution fi:netion and. are therefore d.ifficuft to controL.

0n the other hand. are the macroscopic hyclrodyna.mic or hyd.ro-

magnetic instabilities, which may involve the unstable motion of

nacroscopic porbions of the plasma. Such large scale uotfon of the

plasma (e.e. the writhing of a plasma column or torus) can result

in rapltt ilestruction of the plasrna body.
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The problem of plasma instabilities has presented' a partieu-

1arIy serious obstacle in the path of the development of a eon-

trolled. thermonuefear fusion reaetor, anil it is with reference to

this proJect ttrat much of the research on instabil-ities is con-

clucted.. This ís because a successful reactor must rely on the iso-

lation of a botly of very hot plasrna (temperature 1 n, 1OB to tOgoK)

wlth a lifetíme t and. number d.ensity n sufficient to satisfy the

eriterion nt > 1016 (r,Rwsol, 1957) for a D - D reaction, ffid

nt > l-Ol4 for a D - T reaction. An excellent review of experl-

mental and. theoretical research on plasma instabitíties, vlth

erçhasis on the thermonucfear fusion problem, is gíven by LEHNERT

(tg6l). Further developments inctucle the recent news of successful

experiments with the toroidal Tokamak machines (¿¡fSlCOVlCH,

BOBROVSICÍ et al " 1969; PEACOCK et al " 1969; ARTSIMOVICH'

AIIASHIN et a1-, 1¡969), to which thermonuelear physieists are in-

creasingly directing thefr attention (pu¿sg, 1970)'

However it is not only 1n this sphere that the topÍc is

imporbant. rnstabi]ities have proved a nuÍsance in the operation

of sone ty¡res of ion rocket engines (¡Amg , 1968, p.133). Unstable

microseopic oscillations are thought to be responsible for anoma-

lous magnetron current flor¡ above cr:¡b-off (gfnSCit t ]]966), which

represents a problem in the ¿se of crossed-fÍeld- devlces (WnfSit

et alo 1960) in the direct converslon of heat to electrical energr'

unstable oscíllations are imporbant in the electron 'pla.smaf in
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solid-state clevices (ORU¡0¡OWO , L965). A nu¡nber of unstable mocles

oeeu? in sÍtuations of interest in astrophysics ar¡d. ín the earbhrs

ionosphere. LEI{NERT (tg6l) and PIDDINGTON (L969, p.16) provide

lists of such phenomena, to lrhieh should. be add.eil the proposal

(f,fn ana SHU, l-96h; HOSKING, A969) ttrat hydromagnetic instability

cor¡ld plEf an ingortant role in the formation of spiral structur€

in galaxies.

The fu1l understanding of plasma lnstabilities is a challenge

in ltse1f . AIso of great imporbance js the fact that er¡rerímenta-1

investigation of the properbies of a very hot pJ-asma is severely

hindered by tlifficultles such as short life-time antl díagnostic

amhiguities Íntroduced by instabilities. Clearly a stebilized.

high-temperatr:re discharge r¿ould. be of great value in obtaining in

the laboratory ex¡rerimental information on such phenotnena as

kinetie transporb effects, which har¡e received extensive theoretical

investigatton (ttiOlæsoN, 1965b; c).

It has long been recognized that the hyd.romognetlc Ínstabillties

are strongly governecl by the geometry of the confinlng magnetic

field.. A criterion for stabl]lty was proposed- at an early stage

by TELLEB (see BISHOP, 1960), ùo related the curvature of the con-

finlng fielcl lines to the tendency of the plasma to undergo Ìrn-

stsble interehanp¡es of ad.Jacent flux tubes. À1so, explanatlons of

the fluting instability in tem.s of charged parbicle drifts assocla-

ted. with field ggad.ients and curvature have been advaneeô
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(nOSU¡¡gfUTH and LONGMIFE, Ig57). The magnetie field geometry is a

faetor over which the ex¡rerlmenter has significant eontrol. A

large effort , both e:<perl.mental ar¡ct theoretical, has therefore been

directecl to the clesign of magnetic fieLct configuratlons whÍeh are

expected. to provide stabílíty against hyd.ronagnetic disturbances .

Exemples in which some suceess has been achieved are the magnetie

well configurations (f¡,yf,On, 1965), ttre stabi]-izetl roirror (tOffE,

1965) and the eìrsp geometries (gnnfOWff Z et aL, ].:g58; I(ADOMISEV

and BRAGINSIff, l-958).

The use of a eonstricted. discharge, stabilized by an exbernally

applied magnetic fielct of favourable curvature, as a tooL for the

investigatlon of transporb effects in a hot plasma and. for the

observation of a controlled. transition from stabllity to ÍnstablIity,

Ìüas proposert by SEYMOUR (1961). In a serÍes of papers (SUyl¡Oun,

I967a; b; c; 1963) he investigatecl theoretÍcally the temperature

ttistribution, ther"moelectric effects, stability enci transporb pro-

cesses in a ùtseharge between electrod.es, the surface of whieh is

shaped by the pressure of an ercternal magnetlc fie1d. so that it

approximates a hyperbolold. of one sheet. His stabillty analysis

invol-ved. approxímations introcluced. in the interests of mathematical

tractabÍlity.

One of the main obJects of the present work ls to conduet a

more cletai.lecl lnvestigation of the hydromagnetic stability proper-

ties of this partier¡lar ùischarge geometry, whlch cou1cl also have
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relevance to the experÍments being conducted on the d.ense plasna

focr¡s whieh forrns at the end. of the eentral elect.rode of a coaxial

plasna gun (see, for example, BOSTICK et al, 1969; COMISAR,1969).

The theoretical ilescrlption of hyttronagnetic instebilities

reÌies on the assumption that the motion of partícles in the same

macroscopie vol-u:ne can be represented by an average f}rid. velocity.

Thet is, the plasma is assu¡led. to behave like a conductÍng fluitt.

In a fluiit the motÍon of the partieLes ie restrlcted by collisíons

so that they tentl to remain grouped in close associatlon, and. a

given voluue element retains its íilentity, belng always composed of

the sa¡ne particles. fn a plasma with a higþ enougþ collision rate,

the pressure tensor ! is sirnply a scalar, Ðd the equatlons of con-

tinuity and. of motion, derived by taking moments of the Boltzmann

equation, pluÉr en equation of state llnklng the pressure p antl the

d.ensity p, for:n a conplete set.

When collÍsions are not so frequent the situatlon is rather

clifferent. There is a lack of eohesion " and the locaL eentre of

mass motion has no meaning in te:rns of a fluid veloeity. However

in the presence of a magnetic field., t'he eharged. partlcles are

forced to ryrate about the field. Iínes, so that motion aeross the

fleltt is restrietecl. The situation with a strong magnetic flelcl

in a Low-pressure plesma has been treated. by CIIEll, GOLDBERGER and.

tOW (a956), who use the eollisionless BoltzmaÌtn equation to deríve

a system of one-fh¡1d. hydrodynarnic equations for which closure ls
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achievecl by neglectin65 transport along the field.. The rand.om

pbase d.istribution of the gyrating parbieles provicles the effect

of an isotropic velocity cllstribution in the plane perpendieular

to the fielct. The fruicl veloeity is Just the zero-order erectric
ExB

ttrift, y' = 

- 
, where E is the electric fieltl, eld ln zero

gz

order in the spatial- and. time derlvatives of B, the pressure tengor

is diagonal (SCHI\,trVL" 1966, p.T6), with equal components for the

isotropic motion perpentlicular to B:

E = prl + (prr - Prl%% e

E.
where f is the r¡nlt teneor and % = E- 

. The eystem of equations

is closed by two separate adlabatíc equatlons of state, one for

each of p, antl pr r .

Having adoptecl the fluici nodeI, the plasma-magnetic fleltt

system 1n mechanieal equllibrfum is testecl for stability rrtth

respeet to the small perturbation !(qrt) which represents the

clisplacement of a fl-uid element from its equlllbrium positiott å.
The equations descrlbing the perturbecl fluid. are Linearized wÍth

respeet to the smal1 perturbations Ín pressu?e, magnetic field anit

plasma tlensity. In cerbain cases of great geometrical siupliclty
(e.e. p1-asma s3-ab, linear pinch) ttrese Linearizect equations cen

be solvetl by consid,ering tlnormet mod.estt:

ir¡ t
nrrcå( ,t) = Ç(q)e
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and obtainíng a dispersion relation for the ei6'envalues torr.

Imaginary solutlons for trr' then indícate instability.

An alternative nethod. which relies on the existence of an

energr lntegral for the system avoids the usually difficult no::mal-

motles solution procedure by exploiting the property of self-

ad.Jointness of the operator F in the línearized. equatlon of motion:

end the completeness of its eigenfirnctions, å.r, to show (¡nnUSfPnV

et al-, 1958; KULSRUD, f96I+) tnat the second-order variation in

potential energ¡r of the system, 6W(€,8) esn be negative if and' only

if there exists at least one negatlve value of urfr. This then veri-

fies what one expeets on physice,l gror:ncls - that if ôl^I ean be made

negative by some perturbation fiel-d å, the system is unstable. This

variational approach is essentially no clÍfferent frOm the norztal-

mod.e proceclure, but has the ad.vantage (nEnnSnnfN et a1, 1958) ttrat

if d.etailetl knowledge of grotrbh rates 1s not required, the question

of the stabflity or otherwise of geometrieal-ly couplicatetl systems

can ofben be ansr¡ered. very ùirectly. The nortral-mode technique is

the more general, hovrever, sinee it ean be applied in systems where

clissipative effects a^re inportant, for which no potential functlon

exists (THOWSOU , L962). Sinee the stabllity analyses to be pre-

sentecl here hínge on the importance of magnetíc fleld. geonetry, the

problen r.¡iIl be approached. vÍa the enerry prínciple of ideal hyctro-

rnagnetics.
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When the plasrna pressure is small eomparecl wíth the magnetic

p"essure, the potential energlf function

t{ = |' u" l--:P 82 r*'ty -T * ãI-o/ e

where y is the usual ratio of specifie heat and uo is the permeabi-

l-ity of free spaee, is donrinated. by the magnetic enerry tenn. fhere=

fore 6tf will in general be d.oroinated. by the change ln magnetic

energr, which ¡lust be posltive (rusoQufSî, :-:g52; SEYMOUR, 1961c)

if the magnetic fleld. can be approximated as being closely curl-

free. The only dangerous perturbatÍons are therefore those whÍeh

leave the nagnetic fíeIcl unchangecl. The special perturbation

which results in the interchange of adJacent flux tubes of equal

flux meets this reqrrirement, and wes first discussed by ROSENBLIJIIH

anrL LONGIvIIRE (!957). Their stability criterion, that the tube

volune must decrease with d.ecreasing pressure, ís cerbainly a

sufficíent cond.ltion for stabíl-íty agaÍnst this interchange. How-

ever, for rea.gons discr.lssed. here in Ctrapter 1-, it is doubtful if

the cond.ition ôt < O (r being the tube volr¡ne) ls necessary ancl

sufficient for stable interchenges of this type.

The Rosenbluth-L,ongnire ene^lysis treats systems with planar

field. lines, where the ends of the tubes of matter intercha¡lged lie

at the sane magnetÍc scalar potentíú, ü. They write the criterion

ôr < 0 in terms of the radir.¡s of eurvature of the field' lines, giving

a resr¡J-t in agreement with the curvature crÍterÍon of Tel1er. How-

evere vhen considering systens in whictr the field lLnes enter
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terroinating plates, there ean arise situations where the ends of

the flux tubes are not at the sa,nre r/. Exarples ere systems ter-

ninated by end plates whích are inclÍned. to the fieltl lines

(COfOAfn and YOSHIKAI,IA, f96+), Md the ctischarge between electrocles,

with both aldal and azímuthal magnetic fields" Since the latter

system ís of partieular interest here, it has been found. necessary

to consider inportant enrl effects whích may arise througþ this

geometrÍeal effect. It has also been necessaly to generalize the

curvature forrn of the Rosenbluth-Longmire eriterion to include the

case where the field. llnes are twisted. space curves, as in the

corstricted. discharge. It 1s noted. that eone doubt may be felt

wÍth regard. to the appllcation of the interehange criterion to a

system wlth shearing fÌe1d. 1ines. However, as explained. by ROBIIRES

aptt TAYLOn (fq6l), shear should not stabilÍze the rtwisted, slicinge

interchenge mode in systems of fínite length, but nerely lead to a

reduction of growbh rate as kinetie enerry is spent on rotating

the flux tubes as well- as d.isplacing them verbieally.

Assrrming a volume distribution of cr:trent in the constrieted.

discharge, there is expected to be a lor.¡-pressure region near the

bor:nd.ary (SUy¡¡OUn, tp61c) where the pressure decreases s1or,¡Iy and.

smoothly to zero, ancl the Rosenbluth-Longpire eriterion is applied.

In this region, the hytÞoctynanics of CHEI4I' GoLDBERGER and LOll

(1¡g5,6) should apply, anil for this reason the thermoclynarnic treat-

nent of the interehange is here generalÍzed- for the case of the
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pressÌrre tensor discussed. above, usÍng thc r doubl-e-ad.iabaticr

equations of state to determine ô\, the change Ín material energ¡

produced by the interchange. As for the scalar pressure c&eie,

stability can be achieved. in magnetic-well configurations. rn faet

if 6(p, + plr) is constant along the fj.et-d lines, (wher-e 6 operates

on equilibrium quantities, anil glves the variation betr+een the two

lnterchanged flux tubes), the etability criterion becomes identical
wÍth that cterived. for the case of scarar pressure. rt ís therefore

neeessary to exanine, in chapter z, t]ne equllibrir:m structure of
the díseharge, particularþ in the low-pressure bowrd.ary region.

rt is found. that the assunçtÍon of azimuthal syurmetry leatts to the

above requirement being met, to first order in the ratio of plasma

preEsure at a point to nregnetÍc pressure at the sane point. The

s¡rmbol v r¡1l1 be used for this ratio, since the fa¡niliar symbol ß

is more comnon\r used for the ratio of plasma pressure at a point

in the plasma to magnetic pressure at another point outside the

plasna.

fhe appllcation of the stabilÍty criterion to the constrietecl

discharge 1s covered in detail in chapter 3. careful attention ís
given to the problerns which arise beeause the end plates do not

coincide with surfaces of constant ù. The anotysis eraborates the

earlier l¡ork of SEYMOUB (f96fc) an¿ the exact result obtained for -

the discharge curr€nt which ls criticar for the onset of unstable

interehanges is reconciled. wlth hÍs approximate expressfon. The
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inporbance of the magnetie fielct geometry in relation to the

critieal current is emphasised. by the ínterpretatÍon of the

result in terns of fieLd.-line curvature at the discharge boundary'

A contrasting version of the constricted ctlsclrarge is that

1n whieh the current clistributlon is restrieted to a very thin

surface sheet. Tltus the higþty eleetricalJy conducting pls'sma is

held in meehanical equilibrium by the interactíon of this eheet

current wlth the magnetic field on either sld.e of the surface

(rnusrAl ancl scIMARzscHrLD, 1951+) ' rn thie èischarge the pla"sna

ancl magnetic field pressures a,re comperable' It ís then more

appropriate to consider stability with respect to the general

perturbation !(q,t). Ïihile it ls recognisecl that such systems

are idealn afiil not 1ikely to be achieved. 1n practice, their 8na1y-

slsshed.slight,atleastínthesenseofanapproxlmation,onthe

stabillty properties of more real-lstic configurations in which'

due to finite electrieal concluctivity of the plasma" inter-cLiffi:sion

of fieLd. and pÌesma takes place '

Beforeana^lysingtheconstricteddischargeinthisforn'

ttetailed- d-iscussions of some basic aspects of the hyttronagnetíc

enerry prÌncípIe (¡nnNSnnfN et al, 1958) are given in Clrapters h

antt 5. ThÍs approach is based' on a flulcl theory in which the

strengt,hofcollisionsisassrlB€Cltobesuchthatthepressure

alvays remal-ns scalar, but the el-ectrieal conductivity nay be

regarded as perfect. Obher approaches u in which collielons e^re
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not eonsidered to be so effective, are available (fUfSnUO, l-96h),

but it is the fluÍd theory nhich is appliecl here since a relatively

dense plasma is assumed. Also ín this genera.l ana.lysis the eleetríe

eurrent configuration combines a volume ttistribution within the

plasma r¡ith a surface sheet current at the bound.ary.

0f particular lnterest 1s the application of the general

theortrr to the d.ischarge between electrocles. A compromise wlth

realÍty must be made here, sinee the conduction of electricity is

assumed. to be perfect througþout ttre plasma urhereas in practice

the electrodes, which represent heat sinks, must eause signifleant

cooling of the gas, t-ead.ine (SpftZER, L962, pp. f36-rl+3) to a

reduetion of electrical eonductÍvity. Of chief concern is the

prÍneípIe of tfreezfng-Ínr of the magnetic fieLd in the plasma

(¡r,rvÉ¡r ana ¡'är,rgAI\4t\4AR " 1963, p.189), preventÍng slippage of

matter across the fÍelcÌ. The degree to which this approxlmation

nust holtl clepends on the time scale of the phenomena involved..

At charaeteristic tllsdrarge temperatures the field.-plas¡ra dif-

fusion ti¡re ís in the region of mi1li-seconcls (SnruOUn, l-961e),

so the approximatÍon will be Justifiecl only for unstable motions

oceurrÍng on a time-seale which is much shorber than this. In the

Pæt, configuratlons have been d.estroyed. in tines of a few rn-icro-

seconcts (pmSn 
" I}TO) , so it appears ressonable to ossrure frozen-

in fÍeltls.
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Ttre analysis of BERNSTEIN et al (fg:B) r¡as not relatett to eny

specific geometry, but assumecl only that the rregion of Ínterestf

r{as sumounded. by a perfecÈly eonclueting sheIl. In application to

the tiischarge between eleøtrodes, ft ís e'Iear that instÈating sup-

porbs must be present to avoid shorb-cireuiting of the discharge.

thus 1t 1s lmporbant that the system geometry be generalízecl ín

thls sense, to pernlt application of the result ln the d.esired'

ulâ,nnêr.r As will be seen, this neeessltates gfeat care i.n applyíng

Gauss I integnal transforn a.s is requÍrect at a nr¡mber of places ín

the proof , erid. leads to some ¡rod,ifieation of the final e:qlression

for ôïI.

Bernstein et aI obtain the elqlreseion for ôll as a seeond-

order ffir¡ctlonal of E effeeùÍvel.y by Íntegrating the seeond-order

rl\'ferpression for fr , given by

where t_(o) is the equilíbrÍum volume of the plasma. Tt¡e faCb that
p

I(E) is se1-f-a{Joint (whích follows fYom the existenee of 8n enerry

integral for the system, or l¡hieh may be pro'vett ttlrectly (fR¡O¡flSUV'

1966) ), enables the integration with respeet to time to be earriecl

out, yielcling

ôr,r = - , | *;;(ro,t)"r(E(5,t))
t (o)
p'

#=-f u."å"q(E_),
tn(o)
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An expresslon for 6[I may also be obtained by vriting d.ovn the

potential energy function and evaluating the second-order varÍation

with respect to t_. However a search of the líterature shows that as

yet there is no complete d.erivation of ôt¡l by thÍs method. VAN KAMPEN

and. FELDERHOF ( L967) use thís approach to derive the change in

potential enerry for a system in which the plasma is assr¡med. to

exbend to infinity. In practice, of course, the plasma is a finite

body. Therefore the røork of Van Kanpen and Feld.erhof is here exben-

d.ed. to d.erive ôW for the case of a finite system in which the plasma

is in contact with a vacuum region and rn¡ith el-eetrodes. EssentÍal1y

this neeessitates a calcufation of ôWBE, the change in the energy

associated. wlth the magnetic field. exbernal to the plasroa, r¡hich is

then added. to the expression of Van Ka.npen and. Feld.erhof , to obtain

the final resul-t. In this analysis the care which must be exercised

in applying Gar:,ss I theorem, because of the existenee of necessary

insulators, is most evident. AIso, since ðlVU, is evaluated" as the

work done by the pertr:rbation against the pressure of the vacuum

magnetic field. at the plasma/vacuu¡n interface, it is then possíble

to eritically examine the interpretation eomtronly glven (SCgWm,

1966, p.a25) to ttre surface contribution ô\ (enRNstrrN et al,

1958) as the work done against the surfaee current in deforming the

bound.e"ry. This interprebation is fou::d- to be incorrect.

A final consid.eration concerns the terbended ener4¡ principlet

proposecl by BERNSIEIN et at (1958) in order to a11or¡¡ one to ignore
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cerbain constraints on the pertuïbatíon when ô\tr is minlnized to

find the most dangerous motion. Bernstein et aJ giye a shorb proof

of the validity of this apparently ilrastic step, while RosE and

CLARK (1;96;-, pp.28l+-286) ¿Íscuss the exbenslon ín physical terms'

stressing its importance. On the other hand, hovever' SCIIMIDT

Ogeer pp.1h\-1b9) in hís analysis of the linear pÍnchn ignores

the constraint arising from the continuity of stress across the

plasma/vacur¡¡r interface, merely stating that ' ... thÍs condition

was used in d.erivins ô11, and. is al-reaity ineorporated' in .. .t the

final result for ôiÙ. Because of this confusion in the literature

as to the significanee of the exbended energf principle, ancL in

view of the lack of a tletailect rigorous mathematical treatment,

such a proof ís d.eveloped here, Ín Chapter 5 '

sorne of the simplest applications of the ener8y principle

ere to systems consisting of a field.-free plasma in contact t¡1th

a vacuum reglon. For these systeros the enerry prlneiple recluees'

in its interpretatlon, to the curvature criterion of Teller' Onl;f

the surface terrns in ô11 are imporbant, and' the contrÍbution at each

point on the plasma surface is Just the norua.l curvature of the

field. line at that point, weightecl by the squs,re of the magnetic

fielcl strength and the squarecl magnitude of the perbr:rbation com-

ponent En norrna.l to the surface. It 1s evident tlrat the choice of

geometry of the pJ_asma body is of parblcular inportance.
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In Chapter 6 the applieatlon to the field-free version of the

constricted. d.ischarge is straigþt-forward, ffid yields a eriterion

for stability llhich, as before e eaJl be expressed in terns of a

critical discharge eurrent. Also as before, the result lends

itself very well- to a geornetrical interpretation in terms of field'-

l-ine eurvature on 'bhe surface. t'o eomptete the curvllinear

generalÍzation of the linear pinch (fAylpn, I}ST; SCHI4IUI " 1966,

p.f-l+l+), consicleration is also given to the constrieted discharge

with trapped, internal magnetic fiel-d. but no tnternal electric

current d.ensity (411 current flows in the surface current sheet)'

A suf,fic\ent eondltion for stability is derived for this system'

showlng great simÍlaríty with lhe neeesßafV and suffíeienú result

for the fielit-free system, and. ind.icating that the internal ffeld

ín such a case has no effect on the form of ôlrl* '

In plennlng Bri erperlment based. on the constricted discharge'

the technologi.st has at his disposal a number of para,meters, in-

clucting the síze and shape of the system, the lnitiaJ- pressure

and volune of the gas, and the magnetíc field. Broduced' by coils

exbernal to the discherge. Gíven these para.meters it vould

clearly be useful to have some idea of the maximum dlscharge

eurrent r¡hich ma.y be passed without the system becoming unstabl-e

ín the sense described. above. For the geometry of ínterest in

this thesis, it is possibl-e to obtain an approxination for the

crÍtical current ín terms of the initial cond.itlons of the
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e:q)eriment, for the practical case of a thin d.ischerge, with: a

constriction ratlo of radius at the el-eetrodes to radius at the

median plene not very dÍfferent from unity.
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CHAPTER T'

rrrE srAsÏ L I rY 
_C 

Rlr EEIpI_.qoR_I rytERcIlAN GE S-

IN A LO\.¡ PRESSURE PLASMA

]-.1- INTRODUCTION

Ttre purpose of 'bhis chapter is to discuss from a general vlew-

point the stabillty of an eqrrillbrium plasma-magnetic fÍelct system

wÍth respect to the perturbation whÍch interchar¡ges acfacent mag-

netic flux tubes. The magnetic fieLcl 1s assunecl to be embed.ded Ín

a lor¡ pressure plasma of very higlr electrical conductivÍty. The

discussion assumes a,n energf princípIe for stabillty, the net change

in systen potential ener6¡ proctuced by the interchange belng evalu-

ated. Since, in later work, particular lnterest will- be taken in

systems which are terninated. by conducting encl-plates (for exa¡rpIe,

electrodes), attention is here attracted. to important effeets whleh

arlse from the hígþ eonduetivity of the end-'plates ar¡d their

orlentation with respect to the magnetlc flelct Lines.

The wua.L ethermoctynamicr treatment (nOSPWBLfEH antl LONGI,ÍIRE,

1957), whieh sssunes a scalar pressure¡ n&trr be generalized. r¡rcler

the assrruption of a pressure tensor of the forn

E = PrI * (prr - pr )ÞJ" ,

where B = Bb- and I ís the r¡nít tensor, by usf.ng the tdouble-
'Ð=

aôÍabatier equatione of Cruw, GOIJDBERGER AIÙD toW (L956).
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I,2 TI{E VARTATTON IN SYSTEM MAGNETTC ENERGY

The enerry assoclated with the equilibrium magnetic field {
ln a flux tube ís represented. by the follol¡ing integral over the

voh¡¡re of the tube:

ws t-
2v

B2d:.
o

(r.r)

(l.e)

o
Tube

Material in the volume element d.r1 at the point P1 in tube nr¡rber l-

is assu¡oecl to be interchanged. with the material in d.r2 at P2 in the

adJacent tube nurbet 2, Tube 2 is locatecl in the díreetion of cle-

creasing pressure from tube 1. It is a simple matter to shc'Ì{ (seeo

for exauple, SCHMIIJI,1966, equation 5.107) that the change ÂI{, in

system magnetlc ener6r prod.uced. by this motion is glven by

aws
B d,0

o
0

where Q ís the flux through a tube (constant, of eourse, along the

tube), enil .0 represents cIÍstance along tbe tube. Tbe operator ô

grves the variati.on 1n equilibrlum quantlties ín travelling fnom

tube 1 to tube 2. Equation (f .e) may tre rewritten as

awB = (r.:)

where
I{= I sdn (r.l+)
Jo

Tube

For low plasma pressure, the assum¡rtlon of a closely curl-

f:ree magnetic field is made. Then for systens w-lth cloeed. fielct

(oo)2v
uoo

6óôV
u'o
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(r.r)aws

whlch, in agreernent with a theorem cliscussed by LUNDQ,UIST (1952)

andl SEYMOUR (1961), is positive and therefore, by the energy prin-

ciple, stabillzing. It is then elear that'as dlscussed by numer-

ous authors, the only itengerous interchange would be the one which

leaves the ma5gretic fieltt unchanged.. This is achieved' by exer-

cising our freedom of choice ar¡d taking ôÔ = 0.

For open-encted systens the situatlon is sliebtly dlfferent.

Here, the field lines enter eondueting enct*plates r'¡hich in general

are not orthogonal to %" so that 6V # O. It may then be seen that

her.e the choice of öS is restrlctecl, for if ít r'¡ere.not, AlJo could
d (at¡¡*) Ð

be ninimized with respect to ôQ simply by setting U1¡;# to zero

and. eolving for ô$ ' so that

^lr'(ilin)=-'ffiiÌ' 
(r.6)

'o

-<0,

violating the theorem mentÍoned above. In fact, on the shorb tlre-

scale of unstable motions considerecl here, the nagnetÍc fleltl ln-

side the conciucting end-plates should be regartlecl as constant in

tlne. Then the rrell--known conditíon of continuity of the nornal

component of B at an interfaee, and the fact that in a flux tube

lnterchange the d.frection of B ie r.mchangedo lead to the conclu-

sion that the nagnetic fielcL in the pJ-asma must be r¡chengecl'
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Thus one ts compelLed to chooee ôô = 0, so that A\ vanishes.

Note that, followlng ROBERTS and. TAYI¡B (]-:g6S) , it ls assuned Ín

the above that there is a thin resistíve layer at each entl pIate,

so that lines of force are not tietl and, interchanges ca.n occur.

1.3 THE VARIATION TN SYSTEIvI MATERIAI ENERGY

Assumlng the acliabatic gas law,

prY = const., (r-.?)

y being the rrsual ratio of specifÍc heats ¡ the energy assoeiated

with the matter in a flux tube is given by

}Tp Y

pclr
1

(r. B)

Tube

For the lnterchange described- in Sectíon 1.2, it Ís easy to shotr,

by applying equation (1.?) to the elemental voh.¡mes dr1 and dt2,

that the change ln material energ¡ of the systen ís

o"n=J{oru")ôpo+vn.E$}. (r.g)

This is the most general form for A\' but it is noted. that

the expression eouroon\r used ie (nOSENBLUTH a¡rci IONGMIRE l95T)

Aon = 6r¡ ôt + 
YPo(6r)2 

(1.r-o)p ^o f '

obtained by applying equatlon (1.7) to the voLr¡mes t1 and t2 oî

the tr,ro flux tubes. It shor¡ld be reeognizecl then that the forrn

(r.rO) is a¡rrír¡ed at by choosing a speclal perturbation whf ch

leaves the pressure eonstant along a f,leld. lLne afteir the ínter-
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ehsngp , as 1t was in mecha¡1iceI equíI1brivr- before the interehange '
when the equation ypo = Jo " % was satisfied. This ls, of course,

a seneible choice to raalce sinee the r¡cst clangerow perturbation is

that whlch l¡orrld cause the greateet lowering of eystem potential

energ¡. If, Ínsteacl, the perturbation pro¿Luce¿I a pres,sure gradlent

along the fie!â. I|nes, matter cor:ld. then flo¡ to equalÍze the

pressure, thereby lowering the potential energy of the system.

The perturbed pressure in tube 1, for exa.upleu could. be written as

* drzY
Pt=Pz

d. tY

= (pr + 6po) (r * -ù(È'I¡Y ( r, rr)

Slnce p1 an¿ ôpo are constant along the field 1ine, pf w11r be

constant ff ô(dr) is constant along the field line. However 6(dr)crt
is subJeet to the constraint:

(r.rz)

Ilence r lf l-s constant, ít must follol¡ that

ô(+r)=E=const. (1.13)
clr r

SubstÍtuting equatton (1.13) into (1.9) then leacls to (f .fO). lhe

sane result nay be obtaíned by formally nÍninlzing ex¡rregsion (f.g)

with respect to ô(dr), s¡bJect to the constraint (f.fe), by the

standard procedure of the calcuJ.us of verlations '
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Having obtainett expression (f.fO), the usual arg'ment

(nOSUiV¡f,UtH end LgNGMIRE 195?) proceeds by assumÍng that, Íf po Ís

sn8,11 enougtr, the following inequallty is always satisfied:

lîl 'l'+l ' (1'1r+)

so that the sign of
6n(+. t 8,)

is Just the sign of 6pou which is negatlve' Then, sinee

ôo
ÀÏJ- = p^0"* * '.,, E) , (1.15)

p -o tPo

and. the lnterchange ís chosen so that AWB = O, the necessary artd

sufffcient condition for stability is that ôt be negative ' a con-

clition on the magnetlc field. geonetry a1one. Hower¡er, the general

valictity of the inequality (f "f)+) is difficult to prove. It can-

not be achieved by assuning singuler behaviour of ì3 stnce, wíthpo

po decreasing smoottrly towards the vaeuum' lOpol nust always be

less than por so that til eennot ctlversp even as Po * o'

Ar¡ a.lternative vÍew of this sltuatlon eould hovever be ob-

talned by consittering the interchange of one tube containing plasma

at the very low pressure Po with another tube whÍch is at practl-

ca1,Iy zero preseure' so that lspol - Po' In d'erlvl"g 
^wp' 

p2 woultl

then be set to zeror resulting ín

O"n=-poôt '
(r.16)
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which is stil1 of "second-order" in the pertr:rbation since

'p ry - ôp . [hrrs a necessaqy arìd sufficient conùitlon for stabllity-o

is again ôr < 0"

Hower¡er a ôifficulty arises here concerning the possibflity of

having lOpol * po, bearíng in nínd. that the variation ô 1s taken

over an infiniteslnal distance. For, letting X be a dinensionless

coordinate measured normally to the nested magnetic surfaces, and

ranging from zero on the magnetíc axís, to untty at the outer 1tmÍt

of the system, the equation of neche¡ricaJ- equilibrium'

vn =.1 xB (r.rr)
'o{

lead.e to
( r, rB)

so that

no = no(x)

vhere 61 ( 1-.

necessary for

ôp-=p:(x)ôx, (1'19)-o

Therefore, in order to have lOpol * Po, it would be

#l -l,il"' (r.eo)

ALso, from equation (1"1?),

no(x)=n*l.Jo'%l " (1'21)

where h is the scale factor for the coordinate X. Frrrther, the
X

eurrent ttensity Jo is proportlonal to the nr¡mber denslty of eharge

carriers, vhile the press*" Þo 1s proportional to the plaema

particle nunber clensity. Since all- eharge earriers must be sup-

plied by the 1ow pressure plasma, it follows that if Jo were
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expancled- in terrns of the smallness parametc-r v =

ing term would have to be of at least ffrst order ii u. fl¡is is

why % may be approximated as being curl-free in the Iow pressure

sltuatlon. Therefore, p'must be of at least first order in v"

Since, by defÍnition, po ís of order v" Lt fol.lowe that the ín-

equolity (f ,eO) cannot hol,ct.

In vÍew of the above d.lscussiou, it is evid.ent f?on a stucly of

the llterature that a rigoror:s proof showing the condÍtion

ôr < o 6.zz)

to be necessarx¡ ancl sufficlent for stability has not yet been

gLven for the reatistic ease of a smoothly clecreasing pressure pro-

file. If (1.22) is satigflled, the system is certainly stabl-e, but

if ôt > 0, the system may or may not be stable , depend.lng on the

sign of ôo(+-Y+) '

r¡hich depends not only on the çometry of the magnetic field.

(elvins ôt), but also on the structure of the discharge (clefining

ôp_). Sunmarizing,

(r) if 6r < o, A% > o, gÍving stabilÍty;

, its leatl-

(z) if 0 < ôt . 
ü lOpol, AWp * O, giving lnstabillty;

(r. z:)
rlôp^l

(S) 1f u" r *- , Âwp > 0, giving stabilltv, (r.zl+)

and it ls seen that a second reglon of stabillty given bV (1.2l+)

could possibly exist.
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C

dl+ôd¿

(**E*,¿r+ôu,w+ôø)

a - *ohuôu * voh, ôu+wo h, ôw
ç

d¿

,e (¿¡,u,to) ts

FiA. 1. Ad,1 acent sk-ew field Ìines A3 and. CD. The r¡ector a is
oerpend.icular to both lines, in this three--d.imensîonal
configuration.
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]-.I+ THE IMPOBÍAIüCE OF FTELD LINE CURVA'IUNE

Remerbering that the flux $ is eonstant along a tube'

T= sd0 = (o/n)aø = 4 d9, /B ,

where s ís the cross sectlonaL area of the tube, Ðd the subscript

o on B has been droppeô for convenience. Then, sÍnee ô0 = O, the

inequal-ity (r,22) beco¡ree
r

óô I an,/B < o ,
I

and hence, with 0 > 0t

t'
I

ô dølB < 0 (t.z>)

Nor consider two points A ar¡cl C on adJacent fíel-tt 1ines, but

at the sane magnetle scalar potential rl (n ts aseuned. curl--free),

as in Fig. 1.

A and c are Joined. by the eLemental vector !r where, ehoosing

an orthogonal curvillnear eoorûi.nate system (urvrr¡), with \ fer-

penôicular to the magnetJ.e surfaces '
(t.26)

Since A a¡rtl C are at the sa.me { '
g.g = o Í.zl)

The f:leltl nagnitucle on the line AB is B, whlle on the line cD

1t ls B + ô8. Points B and D are at potential tt + dü

Since V x B = O' it fol-torus that, to flrst orcler

6(al)ln=- dsôB/82. (1.28)

a = u h ôu + v h ôv + 1t-h--61f
= rc--u- æv -1¡
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Ttris iuplies that, referring to (f .\) '

6V=ô Bd0

{6Bdt, + 86(dc)}

=Q

That is , the correspontting ends of the lnterchanged fJ-rrx tubes must

be at the saJne magnetic scalar potentia-l.

From (l-.28) ,

ð(dr,/B) =6(d0)/a- d0ôB/82=-24.0ô8/82. (t'29)

Equation (t.Zg) and the inequaLity (t,Z>) indícate the stability of

so-callecl rmagnetic l¡ellr configurations r'¡ith B inereasing in the

ilirèction of ileereasíng pressure .

Now

g x (v x s) = i(t1lz) - B"vg ,

antl so

v(rrez)=B.Vg, (1.30)

in thÍs case of cr:rI-free B.

Tlrus, introducing the Frenet-serret set of unit vectors

(=r rgz ne3), anil setting å = glB )

VB = Bgr"Vgr + Ðg"VB

Slnce el"Ve-t = âgl/âf, ls recognized as the euyr¡ature vector K = 92/R,

where R is the qnslgned radlus of cur:r¡ature of the nagnetic fieltl

lLne,
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( r. sl+)

or
V,B = BK e

I-
(r. gr)

where V, ls the grattient operator perpentticrrlar to the flel-cl line.

Thus

68 = a.V,B = Ba"K , (f-.32)

and. so (t,zg) becomes

o(ar,/¡)=-2g.Eci¡,lB. (r.:s)

Tl¡us stabllity is achíeve'ù if
a"K

dl'5->o

The iuporta¡¡ce of the èirectlon of the curvature vector K Le

nor apparent. E:qlrr:sslon (f .33) ertentls the expresslon for 0(¿g/g)

fron the ease of plenar llnes (noSm[ÍlLUlH anû LONGT'ünE) to the more

general case of non-planaro trristed l{nes. Tbe inequalfty (1.31+)

perults a qualltative discusslon of the stability against Lnter-

change, using Telleris fa¡riLlar eurwature crlterLon (gfSIIOp t96O"

p.8?) .

L,5 SYSTEI,IS mÎIl !V-# 0

The fo:m (r.ss) only arisee when a satisfles (t.zl). that ls,

the endls of the tubes of matter supposed to be fnterchangeô mlst

Iie at the eaOe nagnetic scg.lar potentia.l rl. Nor¡ Ln general' the

ends of the correspondfng flux tubes wiLL not be at the sane {.
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For exa,mpIe, eonsliler a systen with uniform, stralght field lines,

but terrntnated by slanted. end plates (e.g. eleetrodes)' Such a

system (fig" e) has been eonsidered. by COT,GATII and YOSHIIíÁWA (fq6l+).

Points A and. B are at the sa¡re r!, bd the ends of the correÉt..

pond.ing fl-ux tubes axe at A and. C, vhich are not at the sane rf . fn

this case, althougþ Tellerrs criterlon pretllcts neutral stabilfty,

the criterion 6r - 12 Tt < 0 pred.lcts stabí1-ity, since t1 < ^t2"

If the end p3-ates were eIÊnted in the opposite dlrectlons, the

opposite precliction would. be matle.

Tl¡ís sort of argr.ment can be errbendecl to a system with cunretl

field. lines, terminatect by vertical platee, (nig" 3). Again,

polnts A ancl B are at the sa,rne r!, while the end points A and. C are

not. fhe interchenge which is innedíate1y cleesified unstable by

Teller$s eriterion is the one in whÍeh the matter in tube 2,

between A and A'n is interchanged vith the natter in tube 1,

between B and B" (not between C e¡:d c " ) .

Now Íf the condltion of ve:y high electrleaL eoniluctivÍty

applies througþout the plasma, the llnes of force wiLL be frozen

into the metter, and it will be Írnpossll:rle for fLux tube AA'to

interchange with flux tube CC'wlthout, aLL the matter 1n eaeh tube

belng interchangeci. The effect which thLs constraint woul-cl have

on the stabílity of the interchar¡ge 1s sinply estlnatetl by eonsidera*

tlon of a special case, as foLlone.
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Suppose the field l-ínes are arcs of concentric circles

centred on O (Fie. 3). Then, sinee B ls assumed curl-free, it

follows that

¡=C/R; cÊconstant, (r-.35)

anit the volume of flux tube 1 fs, with flux ö = gx (t¡r¡e area) ,

rr = 2óRe /n = Zçn2O/e , (1.36)

while

rz = 2C(n + $B)2(o - oo)/c n z0(n2e + 2R0ôR - n2Oe)/c, (r.¡f)

since both tubes contaln the same fluc ô"

Hence

6r=12-rt=20(2ReôR*R2ôe)/c. (r.SB)

Thus stability 1s obtainecl Íf

2ðR/R<ôe/0. (r-.39)

tlslng Fig. l+, ôO cari be e:qlressed in terms of 6R as follos¡s:

ôR/Rôo = tanß = ten(90"- 0) = cotg " (r..1+0)

that is,
ôR/R=ô0/tane. (1.\r)

Sr:bstltutine (1.1+r-) into (r-.39), it is founcl that stability

ls ensurecl by satlsfling the inequollty

20<tan0. (i-.l+2)

ftrue Ít appea,rs that the contlition of very hÍgþ eontluetivity

worrlcl be strong enougþ for a stabl-e situation to be achieved over

a certaln rütge of 0, even though the fielcl cun¡atu:¡e is r¡¡rfavour-

able by Tellerrs eriterion. Siruilar1y, a system wÍth favourable
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cul'vs,ture may be unstable for a cerJain range of 0.

From equation (1.38) it Ís seen that if ô0 is zero, then

6t > O, ffid Tellerf s críterion correctly pretlicts instability. 6e

cen be zero if the end-plates coíncide wíth surfaces of constant {'

or if the condítÍon of very high concluctlvÍty is relaxed so that

the fieId. lines are no longer frozen into the plasma and the flux

tubes may interchange without the rnatter between C and B, and

between C' and. B', teking part in the motion.

The foregoing analysís finds support in the theory of eharged.

particle motions. Particle d.rifts resulting from the curvature of

the field lines (nosr¡wgLUTH and LONGMIRE, r9,7) produce charge

separatÍon and electrlc fields which, if the field. eurvature is un-

favourabfe, will drive the fluting interchange instability. In a

systen with end.-plates which are not orthogonal to the magnetic

fieltt l-ines, it is predicted (OlytOCtC, f966) that charge-tlependent

cross-fieId particle ctrlfts couId. reeult from reflection at the

encl-plates. Dependíng on the end-p]ate orlentation, these clrifts

could be ttegtabilizing ín exactly the sa¡ne way aB the curvature

drifts discussed in the literature.

A simple pieture of these drifts may be obtained by conslder-

ing straight field. lines passing lnto an end.-plate rqhich is incl-ined

at )+5o to B, and. off which the particles are specularly refleetetl-

As described by DIMOCK ÍgAø), a ehargefl parbicle travelling along

a field Iine, with no perpendíeufar velocity colçonent, is
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reflected. into a vertical plane, tmdergoes a half ryration before

striking the plate a second time, when 1t is refleetecl back into

the plasna, again travelling a-l-ong the fie]d. The net result of

the tr,ro reflections is to ctísplace the partícIe a clistance of two

ryro-radíi perpenctieular to the fie]d., Ín a d.irection whlch depends

on the sign of the partíc}e's charge. This intuitive resr:lt 1s

supported by the more genergl treatment (DI¡'IOCK, L966) whieh assunes

arbitrary plate incllnation ånd" a realistic velocity d'istrlbutlon'

Hosever it must be notecl that doubt has been cast on the occurrence

of these drifts by the result of a¡ experinent with a Q-d'evlce

(O¡Cfnn 
" ]:966) in whích the inclination of the encl-plate faileil to

have any observable effect on the stabilíty of the plasma.

I,6 GENERALIZATION BY ASSUMING A DIAGONAL" ANISOTROPIC

PFESSURE TENSOR

Unðer the assumption that heat f]or'' along the magnetic fiel-d

lines mey be neglectecl (Cltgw, GOLDBERGER anct Lol^I, 1-956), th"

collisionless Boltzma,nn equatlon may be used to derive one-fluid

þyclromagnetíc equations for which the material stress tensor ls

ttiagonal, but not isotroPic:

E = prl * (prr - Pr l%% , (1'l+3)

vhere -Ï is the r:nít tensor ancl B = B%. In this theory the acllaba-

tic gas law for scalar pressure ls repl-acecl by two equations of

etete, one for Pt antl one for P11:



Pr" _ ^^¡c*. (r.\h)
T- = const '

encl

prrB2.3 = const. (r'hf)

lIlthfn the framevork of this theoly lfe present a díscussion of

the fLux tube interchange, analogor:s to that given previor:s1y for a

plasma 1n whieh the pressure tensor always remalns lsotropic' 0f

course the maggretic energr term w111 in thls case be no clifferent

from the e:çressfon (f .Z): it is necessallr only to evaluate the

change 1n material enerp¡r of the system. Here the energy associateù

with the plasma fn a flux tube ís glven by

Itn=.| ('ærr+pr)at, (r-'l+6)

Tube

vhere the subscrípt ror for equillbrírrn quentities is onitted' for

convenience. Then the variation in systen material energr result-

ing from the interchenge in which plasna in d.t1 repiaces plasrna ln

dt2, ås in Section I.2, ls

(bpîr(r) +ritrl)arr + J tt*ir(z) +rf(z))a",allp

38.

Tube 1 Tube 2

(brr(r) + pr (1))atr - (brr(z) + r, (e) )ar2

Tube l- Tübe 2

']= [f ,î,t)d,r - f n(2)d.2] . [f ni Q)atz - f *
. r[f pî,(r)a"' - f prr(2)drz] . *[f nT'tr) dtz'

(r)ar

prt(1)dtt

(r. tlr)

,



where the a^sterisk Ís 1¡sed to denote pertgrbed. quantities.
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( r. hB)

(r. he )

(r.¡o)

( r. ¡r)

(t.>z)

Let

Relabel-Iing for convenience the volume t in (L.l+4) ty dr and then

applying thls equation of state to the material r¡hich is initially

Ín the volune d.t2 anð which oecupíes dt1 after the interdtange'

* Br*
rf (r)dtr = pr (2) Ç kz

r, = lrirrldtr - f n, rt)arz .

Bróz
= Pr (2) ¡;¡; drz.

Therefore,

A=frr(2)at2 ffi tf

= f n' Q)ar,f ,# "å,

Ne:ct, Iet

, = lritzldrz - f nr,1)drl

By an argument similar to the above is obtainecl

. = jn,(r)a,,* ,r1 i,l ,

so that, conbining equations (f.¡O) and (t.5¿),

o*c=f (nr(a)*rþ-pr(r)a.rþ qi þ
ô C+) i)oI

where ô has the sane neanÍng es before.

( r. ¡s)



Definíng

l+O

( r.:t+)2D=

2F=

f nit(r)art - f prr(2)¿tz e

and naking use of the equation of state (f.hf ), it car¡ be shor'rn

that
or2 þzz ì ( r.:: )2D=

B¡2 dr 12
^ ^)'B2¿ d.t2¿

SinÍIarly the quantity

(

I ni, Q)arz - f "11(r)at1
(r.:6 )

( r. rr)

( r. ¡8)

becomes
¡ Br'- dt r 3 þ22 þtztt = I Prr(l) rr, t"r" *; - Bl d'fj

Ilenee, conblning equations (1.55) and (1.5T),

D + F ='" I(prr(e ,t#- prr(l) ,þ"trrt ut/
812 dt13

þtz

RrZ ¡rrzl
=-Þ"f o(n,'f, lr(#Jþ22

FÍna1ly, combining equations (r.:¡) and (r.:8)' and using

erqrressÍon (r.l+7),

AI4I =A*C+D+Fp

=-f{o #l,g¡ +%ô(pr'Ë,,,f_.,Jt . (r.rg)

A situation whlch nray be of lnterest in practlce coneerns a

system for which tlre pressure tensor ls a simple scalar in equfli-

brfum, but attopts the anisotropic form when perburbed. That 1s '
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the coLlísion rate ís hieh enougþ to keep E isotropic while the

systen is in ecluÍJ-lbrium, but too 1ow, on the short time scale of

the instal:iIity, to maíntain isotropy as the perburbation develops.

The change in materiaJ- enerry in thls situation wor:J-d. be given by

e:qlression (1.59) witti the substitutlon pll = P1 = p. Erçansion

or (f ,59) tfren yielcls, afber some algebra,

orn=f {unu(at)+å"IO#+f ro. (P 2

Ì.

AWp

E
B

where X = tr'urÈher rearran€lement gives

2+m
I- m

J {ono(at) + .r IA#Ë + 3pdr #)' -' r+p6(a.l $}

3 'SXr2Xr

Conrparing now expressíons (f.g) and (1.60) it is noted

that in the present ease, OOtn differs by a positive d.efinite tern

fron the result obtainecl, with v = å , for the system in whích the

stress tensor remains isotropic during the perturbation. Hence Ít

ie found., in agreement r,¡ith BERNSTEIN et aI. (fg:8, p.28), that 1f

the system whose pressure remalns a scalar is stable' then the

system in which ísotro¡6r ca¡rnot be mafu¡tained during perturbation

is also stabLe. Note al-so that the value of + for y corresponcls to
5

that of a ga,s with three clegrees of freedom, where use ie made of

the kinetic theory result (SprTZ¡n, 1962, F.1T):

( r.6o )

(r.6r)

m being the nr:mber of degrees of freetlom"
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E:çression (f.go) 
"an 

be reduced. to the rom (l-"9) only if p

ls required to satisf$ both equations (f .l+l+) and (f .h¡) , speciaJ-ized

for the ease pt1 = p1 = Þ. Then elininatíon of p leatls to

r2B3 = eonst.

Thus, applying this equation to the volumes d.t1 ancl dt2 = d.tt

+ ô(ar), ínvolr¡ecl in the interchange, it is easy to show that

^ rdr2B3'tô[--J = Q

0"

9.
B

Then, with X = , it follows, by expansion, that

(t.62)

The result (t"62) clearly leads to tire vanishing of the posl-

tir¡e dertnite te::n I n u. (9t# - å 
qJ2 or (1.60), leavins

erqrressÍon (r.g).

trihiIe the foregoing proeed,ure achievee the reduction of (f -60)

to (1.9), it has doubtf\¡I plrysical signÍfieance. This is because,

in the necessaríIy eoLLisionaL system associated with the roainten-

ance of isotropy of the stress tensor, equations (f.t+t+) an¿ (f.ll:)

r+ould not be valid, being derived (CUEW, C'OLDBERGER and. tOI^t, L956)

fronr the eoLLísion1æss BoJtzmann equation.

In genera.l the eourplícatect e:qrression Í.lg) is or litt1e

practical we. However, for the lnterchange consideri:cl ín SectlOn

1.1+ a useful crfterion may be clerived. Following the earlíer

treatnent for scalar pressure, a ehoiee of the mapping vector a

ôx 2 ô(dr)-1-=5 dr '
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such tha,t q"B = O l-eads, via equation (f.eg) and. the assumptlon

60=orto
ô(dr) = ¡f@ì B

clr "\B/ 
ôd.e,

= úd¿)_: ô8.
d!,B

2ôB=-- B
( r.6s)

llith ô0 = O, erq)ression (1'.59) nay'be e4panded to give

I
o"n = - j f, {at S + pr6ta,l S - pldz (åÐt

t+. + {P + 2Þr, H (ona. + Bô(a.))} (r.6r+)

Use of equation (r.6S) then l.eads to

alr* = - |' {un, u'Ë- 3nrdr (uuu)t * ($- hprr Pr)ôBdt}p J .'r u -r .-8, - 
Bz'

I
= - lcrrô(p1r 

+ Þr) +- I *,3Þr * r+prr) (+)' . (r-6r)

The seconct integrat is positive ancl therefore stabilizíng. A

sufficíent, conëition for stability against this interchange is

therefore
t
J 

u.o(n, * nrr) ?. o " (t.66)

It is therefore found that, as ín the scalaf. pressure case'

stabíIÍty i¡ou1d be ensured if confinerent vere 1n a nagnetic well

ín the sense thart, 6(n, * prr)ôn < C. .trlso if the stnrcture of the

plasma is such that
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B"V(plr + PI) = O , (t.61)

then 6(prr + fr1 ) *aV be taken out of the integral in (:..66).

Then, assuming ó(prr * pt ) . O

Iíty red.uces to the condition

the sufficient conåition for stÐbi*

at$'0, (1,68)

or, r:sfng (f.¡z) anA the fact that dt = # , wíth Ô > 0 ,

8,"K
d!,-5->0, ( r.6g )

as for the system r¡ith scalar pressure"
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CH-qPTER 2

MECITAI{ICâT IN A CONSTRTC1TED DISCIIARGE

2.). INTRODUCTTON

A constrictett clfecharge ls considered (SEYMOUR, 1961-), the

surface of whf ch is shaped. by interaction with an e:cbernal ma,gnetic

fielcl. so that the d.ischarge borrndar¡¡ approximates a hyperboloid of

one sheet (fig. 5). Thls surfaee coineides Ùith the coorclinate

surface * = *b of the oblate spheroid.al system (urvrw) cteflnedl in

terms of cylinctrical poJ-ar coorùinates by

r = k co'sh Ueos w

z=ksinhusinvr

0=v

(e. r)

The tlonains of the variables are

o**nå
-@<u<co

0(v(2r r

ancl the scale factors are

(z.z)

h =keoghueosw. (e. r)
v

The constant k ls the distance off-a:<is of the colmon foci of the

u and. w coorilinate surfaces. The system is syrmretric about the

rnedtian pLane u = 0, ffid the electrocles occupy part of the co-

ord.inate surfaces o = t" ancl u

h = þ = k(sin2rv + sinh2u)L",uw



r): nlT

3

ll: lJe

U, rnfo pqge.

W:l0b

t¡):0
(-n, o) (n , o) x

ç

fl: 0

U:-Ue

frr oblate spheroidal coordinates the discharge occuples
the region

-u (u(u.
e e-

1r. (w(n/2.
b

Fie.5.
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2.2 }4ECHANICAL EOUILIBBIUM I/IITH SCALAR PRESSURE

Interest centres on the low pressure region at the bounda,:ry,

where it Ís proposed to apply the ROSENBLIJTII-LONGMIRE (11957) stabi-

1íty erlterion ôt < 0, dÍscussed ín Chapter I. A basfc a,sslrrt4)-

tion ís that the rnain discharge current floç¡s ln a region closer to

the axfs than to the region of interest. Tttus ttre total magnetle

fieltl in the low pressqre regfon is sensibly c¡rI*free and' may be

written

r¡here go i" the curl-free part d.ue to the main d'ischarge current

anö the cr:rrents flot^rlng in external coils, &d gt i= a small

perbr:rbation produced. by the small ci¡rrent f,l which flows ín the

bowrd.ary region. ft is assurnecl that d i" very small eompared

wíth þo. In terns of the orbhogonal unit vectors tlor %'%

a,geociated with the chosen eoordinate systemo it is noted that

Bo=Bou +Bov-, (e.l+)
= -u--o v-o

since it has been assr.¡netl that * = *b approxímates the d.ischarge

surfâ,ee. go satisfles the equations

VxBo=o e.5)

a¡rcI
V"Bo = 0 (e.6)

Using this pair of equatíons, analybical e:çressions for Bf, and

tT * be tlerlved.. Equation Q.>) yielcls, und'er the assurptlon of

azinr¡thal synretry'

B=Bo+BI



an¿I

a

3w

a

aw

a

Au

(r'.*ru|) = o ,

(nno)=o'uu-

(tr go) = o'vv'

lt8.

(z.t)

(2. 8)

(z.g)

Equatlons Q.l) ana (2.9) eive

(e. ro)

where the constant C is proporbional to the total diseharge current.

Equation,(z.g) gÍves

h,rnl=¡1r.¡ n (z.ra)

wlril-e, with the assumption of azimuthal syrnmetry, equation (2.6')

yielcls

fr{o'r'*r!)=0, (2.r2)

or
n.,¡*ti = G(w). (2.13)

Conbining equations (2.11) and (2.13), and. using equation þ.2)

gives

k cosh u F(u) =
c(w) =4, (z.rl+)
cos r¡

r¡here A is the eeparation constant.

Iherefore

F(u) A=-kcoshu'

c
hv

Bo=v

enil so wlng equation (z.z),
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A (e. r: )

k2 cosh u (sin2v¡ + sinh2u)
,4

The constant A cEìn conveniently be cletermined from a measurement

of Bo on the surface, at the ned'ian plane' Denoting this measured
u

value bf B*o then

I = BnÈz sin wo . (2.1:6)

Atthisstagetheassrmptionofscalarpressurelsmade,ancl

then the following equation of meehanicaL equlllbrium must be satis-

flecl ln the stea(y-state plasma near the diffuse bounclarry:

vP = ,lt * (Þo * 4) (e'rf)

= rb(rlti - ¡..ïti - lln|) * 5{r}nl * r+Bl - lle})

+ qtllei * rlB+ - ¡TtT - lle| . (2' r-8)

Becar¡se of the ass'mption of azlmuthal synmetry, (VB).,, must be

zero" Ttrls 1eads, with gl + O, to

.ir = rr = o . (2.L9)
dÌ¡' t u

Then
(2.¿o)

BOu

vp = %¡ïB* - %rï (ei + nl)

Itrus

# = n*%.vp = - rr*f |(ni + nl) '

so that o to first order ín the small field's ¡] *¿ g'l 
'

âP = - n llgoâw --l¡"v u

(z,z:-)
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.[Iso,

*= n.'%.vp = r'.*tlej , (z.zz)

whieh is of second. order it J-l tnd åI, so that to first orA"r, ffi
ls zero. Thus, to first order it, J-l and Pi, the pressure is a

function of v only and. in this approximation ney therefore be con-

sitteretl constant througþoub an elementaL flux tube of Bo.

Equating mixed. parbial derivatives of p, using equatlons (Z.Z]-)

anct (2 .22),
àt,
a,r,.,*JlBi.rr;i"i,) =-$fn"lfnll . Q.zs)

As a flrst step in an lteratíve procedure, neglect second-order

terms in (2.e3) and write

frtr'*llnl)=0, (2"2t+)

so that
(z.z>)

where ¡(w) is an und.e termined. fi,¡nctLon. Ït ís possible to obtain

an erçIleit forrn for J(1¡) by substltuting Q.25) into (Z.ZSI to

give the second order equation

^ sr ^ ¡(w)¡1
;(w) fi (#) = - ã* (t') (2.26)

uu

Using expressions (Z.Z) an¿ (2.15), equation (2,26) becomes

.r(r) ,| (h* eosh u nl) = - cosh "'# (,r(w)t n]) . (z-zl)

,l(q)
hBo'ù¡' t1

.l -'Jv - ,
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Becar:se of the solenoíd.aI nature of the total magnetic field'

v"4=0. (2.28)

I^lith the assumption of azimutha.l syrnmetry, this condltion

gives

frtn-,.n*t'.|)=^Stn,rt';n$), (z'zg)

which becomes, througþ the use of equations (z'z\ ana (z'3) 
'

* tn* cosh u Bå) = - ffiB¡T,o* cos w B]) , (a'30)

so that equation Q.Zl) may be wrítten

jS * rnnn cos w B;) = S t,rt"lt¿1. (e.sr)

Rearrangement of equation (e.¡r) leads to

,l(w)tr;$tenw+J'(w)h*ui=o ' (2'32)

Fron ( 2,2) ft is clear that h* iS non-zero in the region of inter-

est so that, with Bl * O, cancell-ation gives

¡"(w)+,r(w)tanrr=0. (e's¡)

Equation (z'SE) ls satisfied 1f

J(rv)=Kcosw, (z'Eh)

where K Ís a constant rrhich must be regarded as rsmallr in the

salme sense that JI is small sinee, using Q'25)'

tl-Eeoslr. (z 3i)
'v hBowu



Equation (Z.Zt) then gives, 1n first orcler,

-?!.
ãw =-(cosr,f

52,

(2.26)

or
p-.-Ksinw. (z.st)

Since p > 0 and, in the region of interest, sin w > 0n it must

foll-ou¡ that K < 0. ltrote that this givet *t 0, ffi required sinee

in the present coortlinates, 'w increases as one moves into regions

of higler pressure.

Thus withln the approximation p ( 
ä 

,the assumption that

the magnetlc and. pressure surfaces approximately coincicle r¡ith the

w coorclinate surfacesis eonsistent with the equations of equillbriu¡t

and. Mæcv¡eJlrs equations. Ho'ç,¡ever, in the plasma interior the

pressure is erçectecl to be so high that thls approximation cannot

be made" The complete equations without approximations must then

be considererl:

vp=l_xB, (2.:B)

uJÌv"g, (2.39)

V"å=0. (Z.l+O)

ft is shown belou¡ that the essumption p = p(w) , B* = O, is not

consistent ¡¡ith these equatlons, except for a trivial ca.se.

The assurrption p = p(w), B* = o, requires J* = 0. Thus, from

the expanded, fonr of equatlon (2.39)"

a (hvBv) /âu = o ,
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or
Bv = f(w) /h, , (z.l+r)

where f(r¡) is an arbitrarry furction.

From (2.h0) fs obtaÍnect

a(rr.,rç.,.)/äu=0, Q"\z)

or
n.,.= e(w)/n.¡, " 

(2.1+3)

where e(w) is aJ.so an arbitra^:ry function.

Orly the Lr eomponent of (e.SB) remains, eniL this becomes,

after use of (z.Sg) and some olgebra,

uo dp/ar = - f(d.f/dw) ln?, -(eÆror,¿)a(nìrslttrrrtr)lan . (z'41+)

Using (z.z) an¿ (e.3) tHis reduces to

uo dp/a^r - - f( at/aw)/* -r'(w) /"?t?, , (2't+5)

where

F(r¡) = ede/dt¡ + g2sin w/cos r'¡ . (z't+6)

substituting for the scaJ-e factors and. rearrenging gives

Uokzcosgw coshhu rlp/dw + (f¿t/ar,¡ - Uokzcos4w Ap/¿r^¡)cosh2u + p/rrz

- (r¿r/anr)cos2w=0. (2.1+7)

Equatlon (Z.hf) 1s satisfled for all u and w only if the co-

effÍelents of the dlfferent powers of cosh u vanish for a}l w, ancl

this leads to the reeu.lts:
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ctp/tiru = O ,

fd.f/A^¡ = O , (2.1+8)

F=0.,.1
These resu-Its are trivÍal becauge they iryly that Jo

i.e. they lmpfy no physical clischarge.

J = 0;

2.3 MECHANICAI EOUILIBRIUM \^IITH NON-SCALAR PBESSURE

The equation of ¡rechanicat equilÍbriun to be satisfied. 1n

thls case is
V"E=J_*¡, (2.\9)

with the pressure tensor E in the for¡r (1.1+3). Uncier the sane

assr,mptions as before of 1ow pressure, small- el-ectríc current and

azimubhal symnetrXr the argr:ment following equatton (2.18) applles,

so that Ín first order,

(v"q¡__=6, (2.5o)
=11

(v"E)_-=o u (2.5L)

and
(v"p) =-n.flBo. (z.SZ)' ='lJ -t"v u

Ttre unit tensor ! is invariant uncler a transfonnation of axes

(fgnneno ancl PLUMHI6N, l-966, þ.21..7), so that V"I = 0. Then, wlth

reference to (r.h3),

v"E = epr * (prl : pr )%.% + (prl - pr)%V"%

+ %%'v(prr - pr) (2.:s)

v



l¡here, in the present approximation,
BO

b = -.-rc 
Bo

Thus, d.e.leting the superscrÍpt for eonvenience'

hÌv'

5r.

(z.st¡)

b
-

a

âu

âv

àu

BBuv
B2hu

+
Bu
Bhu

u
-o

Vb

B
(jJ

B^B¡/]) ii 1rt- 
-

\Bh âu Bhltv

.BB
*") (#+. Ëy")-o

B^BuoÆì
Bh ðu tB/

u

ã

-u 
+ vdurc -o

gZ
u

g2tr
u

{
+

BB
+ üv âurc

âv

âv
-)ãv+v

B2hv

v

B2

B2hv

utilízing the assumption of azimuthal- syrnrnetry. Referring nolr to

the erçressions for the clerivatives of the unít vectors (at¡9rge)

of the general orthogonal curvilinear eoordlnate system (€t ,Ez,Et)

(¡¿onSn and trESIIBACH, 1953, p.26):
â91 -g ðhr a3 ðh1

ãã=-úú-h3ðt3'
âgr g è}:z

-=
èEr h1 àEr )

âat a3 âh3

E=hr ðtt

(p1E thelr cyclic counterparbs), equation (2.5l+) nay be rewritten

aÉt

v
-_O

32
a

â"

Bu
Bhu

{brc"fr
B
(+l â

âuu-o
+

â

ðu

B
u

Bhu
{

g2n nv u
BB

11 1'

gZn nuv

'Íf--o

àh B2 Ðhur v vl
Ð\ü s2h h ðw

vrf

'o

+

B

GÐ

(2.>s)
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Further,
B

V"b = Vo{ rt

sÍnce V'å = O. Therefore, beeause of azlmuthal syr:netry'

â

ancl

B
V"b =+{h u

= ,"0 
Çt)

(Ðud

(2.>6)

(z.sg)

since B is assumed. to be approxinately cr¡rL-free, the result

(e.hf) (obtafned from the condition J, = 0) raust aPPl]r, yieldíng

82

%v"%=%#*(åi.qu

âr5
âu \B/

BBuv
Bhu

-fr trrr - q)
(z.st)

Therefore, using equations (2.>l), (2,55), þ.>6) ana (2'5T) ttre

componentr (V.E)o and (V"E)*r rry be flnally obtained so that equa-

tions (z.So) and (z.StJ beeome respectively

¡pI . , B-- ^ -B--. P,2 âh B2

t'+ (prr -n,r{}* iË *#.+¡t tÐt
v

P1 ) = O , ( z .:B)

ancl

Also' 
u 82

bobo"v(prr -pr) =#fr(nrt -Pr) +Y-o

lt

^BB(prr - nt){* Ç) + BFv þ. u" * t$t . i* (prr - P' ) = o

BBuv
g2h

u

p2-uA**t* (pr r



(nrr - q) {* fu *þ Çrl

hv v
Bâuv

Equation þ.Sg) *ay therefore be vritten

âB

5'l

(2.60)

- Pr) = o,â (pr r|+
Bvô
E-â"+ B uv a

vhlch becomes, by carrying out the flrst ctifferentiatíon insítle

the curly brackets '

2(pir - pr) ãi H . å* (prr - P1 ) = o' Q'6t)

This equation ean be integrated. to obtain

prt-pr=t(w)¡z, (2'62)

where t(w) is an arbitrary fqnction whose magnitude is sueh that

uo ft(w)l is much less than r:nity, so that lpt, - prl < 
+

Using equations e.éOl and ( Z.6Z), equation (2.58) nay be

written

o?

9- * t(*) rr"" * (þ * u" þ + BBI ¡î trrl .|Po Ì = o,

þ * tt') {fi t'r"31 . fi t'ru1)} = o.

Therefore, since sz = B?, * BT ,

ðP,

#. t(w)e * = o '
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l¡hich integrates to give

pt = -' 'at(w)sz + P(w) , (2'æ)

rrhere p(r,r) ís another arbitrary function, whose magnitude ls much

lese than B2
2v

o

AJ-so, with the use of equation 12,62),

prr = %t(w)e2 + P(r¿) (e'6\)

so that finally'

prr+pr=2P(w). (2.65)

Thus the present analysis shows that the combinatíon (pt1 + p, ) is

consta,nt along a flux tube of the magnetic fiel-d approxÍmated' by

(e.\). Therefore, ?evertlng to the stabitity criterion (f.66)' it

1s seen that in the present system, the retluction of this eríterion

to the forns (r.68) an¿ (1.69) is valid''
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CHAPÎER 3

STI\BILITY OF TTTE CONSTRÏ CTED DISCHARGE

3.1 INTRODUCTTON

The purpose of the curvetL external magnetÍc fieltl in the

cl,iseharge diseussed. in chapter 2 is to provid.e exbra eonpression

of the plasma near the med.ian plane and also to give a stabilizlng

contributJ-on, because of its favourable curvature. It Ís expeetetl

that tbls sta'bilizÍng contribution will eventually be cancefJ-etl by

the destabiliztng effect of the azÍmrrthal nagnetic fleld produced

by the discharge eurrent, as that current ís increasecl beyontl some

critical value (spyl¿oun Lg6ù. A detailed' stability analysis for

the low pressure bor-rnd.ary region 1s presented Ín this chapter'

The exaet result obtained supports the above reasoning provicled'

that Ín the interchange the encls of the tubes of uatter are clis-

placed. along surfaces of constellt magnetic sealar potential so that

ôY = 0.

3.2 TTTE ]NTERCHA}IGE ÍTTTH ôY + O

Inthepresentgeometry,thetubesofmattertemlnateonthe

electrodeg u = u" and ü = - ll"' Hogever, the surfacesu = constant

are not surfaees of consta¡rt rþ, since here the magnetic field' has a

component 8., as well as a component B.,' thus the ends of the tubeg

are not at the saare rlr. Thls means that if the approxlmatÍon of

infinite el-ectrical concluctlvity is rnade, en interchange involving
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the eonclition a.B = 0 is not possíble. In fact, as d.iscussecl in

Seetíon L.5, aLL the matter in each tube woul-cl have to take part in

the interchange, ffid the relevant 6t would. Ju.st be the difference

Ín volume between flux tubes (of equal flux) on two surfaees w = *b

and. w = Tí,- + ôw, each tube exbending from one electroile to the
b'

other. Thus it would. only be necessary to eva-luate

fa¿t(w)=41J B ' (¡'r)

and. to then flnd

or = ôw *! . (s.e)
ctl,r

Equation (f .f) rnq¡ be evaluated. by rrsing the e:q>ressions for

the magnetic fielct conponents derivecl 1n Section 2.2. Since d!, is

an elenenta.l vector tangent to a fÍeld lÍne, it follows that

ct.Q,xB=o, (r.¡)

r¡hleh inpliee

trdu/B =hdv/B =d.o/Buuvv (r. t+)

s].nce

and.

(aø)2=hlauz+¡2¿o'2

¡2=92¡¡2
u v

llherefore, using equations (z.z), (a.15) and (:.1+) r, expression

(S"f) beeones, after integratíon between the l-inits u = - u" and

u = i 1f,",

r(w) = er36(stnzw sfnhun + (sinh3u")/l)tt. (S.:)
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From equation (3.5) it follows irnmeclíate1y that, at w = *b,

ôr = l+tc30 sinwo eoslrb sinhu" ôw/A (3'6)

Since the coordinate w falIs from n f2 on the z arcis to wO at

the tllscharge bormdarlf , it follor¿s from the ctefinition of ô that

ðw < O, &d so equatÍon (3.6) gives

Hence, by (1 .22) " we always have stabilityl In spite of the

mfavourable cr:rvature of the azimuthal fie1d, the rfreezin6S-in'

effect of infiníte concluctivity gives sterbllity against the inter-

change of flgx tubes on adJacent surfaces l¡ = constant, for all

values of d.ischerge eurrent.

In the limitÍng case of a straigþt circuler cylinder of length

L, with fleld components B, and BU, equations (2.>) ena (2.6) give

B, = C/r (3.8)

and

ôt<0

B = constant.
z

(s. r)

(¡.s)

Then equatlon (3.1) becomes

rL
r = r(r) = O l-a"lør= óL/Bz = constant . (3.10)

o

From equation (3.10) it is seen that ôt = 0, which lupJ-fes

neutra-l staþility for the case of a linear plnch with inflnite con-

cluctivity. But of course Ít |s well knov¡n that such a pinch Ís

not hydromagnetically stable¡ there are other perturbations whieh



62.

are r¡:rstable. Hence the lnporbant conclusion ís reached" that here

lre ere by no meerxs consid.ering necessary and. suffieient cond"itíons

for stebility against all perturbations, but on\y stability against

a rather speeial t¡re of perturbation.

3.3 TIIE INTERCHANG¡I ItrITH a.B = 0

ConsiCeratÍon ls now given to an interehange whose stabilfty

has been clescribed. qualitatively vith the aitl of Tellerrs

criterion (sg"f},toun ]-:96]-). This ís the ease of a variation with

a'B = 0. For thls to be feasiblee some resÍstivlty nust nowbe

allowed., parbicularly in the region of the electrodea. This is in

accordence with the practical situation, drd the presence of a

resistive sheath at the el-ectrodes erqrlains why '?1ine-tying" ea,n

be overcome, so that interchanges can occur.

Gulded. by equation (3.5), in this case

r (u* ,u- ,r¡) = r+ t "* ( S. rr)

= Ok3(sin2w sínhu* + (sinh3u*)/3)/A

+ 0k3(sin2w sÍnhu + Gintr3u ) /s) lt . (3.12)

t* is the vo}¡ne of that part of the tube which lfes in the

positive u half of the system, while r_ ís the volune of that part

which lLes in the negative hal-f. ü = u+ is the encl point of the

tube 1n the positive half, while 1r = - u_ 1s the end point in the

rregative half region. ut ray d.lffer from u", as shalf be seen.
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Then

ô.r = ôro .r ôr_

Now t ís a firnctfon of the variables w, u* and u_, which vary

from one tube to the other. Thus 6t may be obtr¡;ined. by differentia-

tion with respect to these variebles:
äa* ât* ât ðr

ôt = ôw ârr: + Uq *. + ow 5;:+ ôu_ ¡;l , (3.13)

= ôk3 [esin* cosw sirùru* ôw + eoshu* i"rnt*

+ sinh2u+)ôd/R + 4,1ç3fz"itt* cosr^r sinhu- ôn¡

+ coshu_ (sin2w + sinh2u_)6u_]/A , (S.rl+)

where 6o= = t 6u(t u*rw), 6u(u,w) and. 6w being as tteffned. ln the

elemental vector a given by equatlon (t.26) " subJeet to the assumed

eondition a'B = 0. 6t is to be eveluated at the bounda":ar, \ü = rd'b.

tr\rrther progrese is made by e:ç:ressing ôu 1n terms of ôw, as

ehown below.

From equations (t,26) ar¡d (r .27),

6v=-huBu6u/hR . (3.15)

Another expressfon for ôv is obtained by eonsíclering the

equation of a flleLd lfne' From (3.l+) is ffrst obtainecl

dv=hBdu/hB (3.L6)uv vu

Substitutíng expressÍons (e.rO) ar¡a (e.l-5) for B' end 8,, into

(E.fe) an¿ integrating wÍth lr held constant, one obtains the equa-

tlon of a fle1d line,



U:Ue tI: Ue
U: Ue

tÐ:tÐb-l- ôur a:abr tÐ:tÐb* u)

ü:0 U:0
ü:0

t0: tJb u:|dbt 0:Ub

Il: - Ue (.) ll- - tle

(") U: -tle

îig. 6. Three possible cases corresponcing to d.ifferent ranges of 6vo, the azir:utha.l variation at u = 0:

I ou(- ,r-,*o) | ; (") inversion or (b).

(b)

(") u
e

uu=ll .+ e'



6l+.

v=v
o

Therefore,

+ (t<c/¡cos2w)

+ kCcoshu 6u/Aeos2w + ?kC sinhu sinw ôw/Acos3w

|,*("o"tt,r' - cos?rÍ')du'/coshu' . (3.1?)
I

o

6v = ,5v
o

- kc ôu/¡.eoshu . (3.18)

EquatÍng the two e:r¡lressions for ôv ancl sol-ving for ôu, gives

ôu=-ôvo/t-ßðr', (3.19)

where

| = E"rr(sin2w + sfrù2u) + Azeos2w]/Ærccoshu cos2w (S.zo)

and.

g = 2¡2¿2sínhu coshu sínw/coswfxzcz(sinzw + slnh2u)

+ Rzcos4r] . (3.21)

I is posÍtive for all u and an even fi.¡nctfon of u, whlle g is

an octd. functÍon of u and. posltive for posítive u.

Fron this point, the presentatlon le s, little elearer if the

sígn of 6 1s reversed., so that t5w > O. The crlterion for stability

is then
ôr > o . (3.22)

It is now neee6sa,4¡ to consider three cases which are !l-lus.-

trated 1n Fig. 6. Note that these plane diagra¡re clo not give a

true representatlon of tbe magnetfc field. lines, which are really

trrfsted eurveË. Case (c) is Just the inversion, about the mecllan

p]ene, of ca,se (¡), so that there a1'e on\y tvo separate ca^gee to



U: Ue

,

u)- wb* ô ¿¡.,

U:0

b

lJ- - ue

,w) > o, ôu(-u_rr,¡) < o, is not
ine geometry.

lÐ: l))

Fis. 7. A variation vith ôu(u-
a11owed. by the field 1
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consider. Note al-so that there exists a forrrbh possible co¡rbination

of the signs of ôu(u+,rr) end. ôu(- u-rw), na,nely

ôn(r+,w) > o (:.as)

and

,5u(- u_,w) < ri , (3.2l+)

d.epicted in Fig. J.

As shown be1ow, this situatÍon is not al.lowed. by the geonetry

of the fieltt lines. Thus, the inequallty (3.23) gíves

Âu(u",\ n ôw) < O , (3.25)

vhere

Â=-6end.6r¡>0

That 1s,

Let

and use the fact that Àw < 0.

Íhen (3.26) beeomes

ato n re 
,6ße ,ô l¡*l

The lnequaltty (3,21+) gives

-Av
il""rr+TTl- ß(u"'*o * ðw)aw < o

t"rô=t(u",\+6w)

ßur6=ß(u"rwo+ôw)

t

,

ß.26)

ß.zt)

and this l-eaôe to

Au(-u",*b*ôw)>o,
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ato t - re,ôße,ô l¡*l (e' aB)

Clearly, since r",6 r 0, ße,6 t O, condÍtions (S.Zf) and (3.28)

are not eompatÍþIe. Hence the situation in FiS. T is not alIowed..

Case (a)

Reea3-1Íng the d.efinitions of uu, ü+, and u_, Fig. 6(a) shows

u+ = rre , (3,29)

(s.so)u u ,e

and

or

ôu(uo,v) < o ,

ôu(-u"rr¡)>0.

CondÍtion (S.Sr) gives

6to t - r(u",*)ß(r"¡)6tr = - I"ß"ôw .

Conclltion (S.Se) gives

- ôto - r(- u",w)ß(- ue,w)6w > o )

- 6to * ¡(ue,w)ß(u",w)ôw > o,

(r.¡r)

(E.se)

( s. sE)

(s. ¡\)

uslng the parity propertíes of I ancl ß.

['lrus

6v <Ißôtr.o e.e

Since ôw, f" anct ß" are all posltlve, conditions (3.SS) an¿

(S.Sh) are compatlble, and show that ca.se (a) covers the range

( I ß''ôw .ee-Ißôw(ôvee o
(:.gl)
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Substitutlng lnto (S.ll+), using (¡.eg), (3.30), anct the fact

that
ôrt = t ôu(t u*rw) )

evaluationatw=5gives

ôr = ôk3fz"irr*o cos\ sinhu" ôw + coshu"(sin2wo

a sinh2u*)(- ovo/r" - ß"ôw)7/t, n pt3fesinwo coswb sinhuu 6w

+ coshu"(sín2wo + sinhz-u")(ovo/r" - Suow)]/a .

The terms involving ôvo cancel, leaving

ôt = 2ök3(2sinwo coswb sinhuu - Êu coshuu(sin2vo + sinh2u"))Oo¡/g .

Using (:.er), this becomes, after sone algebra'

6t
l+ôt3srn5 sinhuuþzcos\ - uzcz(sín2wo + sÍnh2u.¡'JY

A coswolxzcz(stn2wo a sính2u.¡ + R2cos2wJ
(¡. s6)

From (3.36) and (3.22) it 1s seen that, as exÐeeted from the

d,iscusslon glven by SEYMOUR (fg6f), a ttansitlon from stablIÍty to

lnstabllity cen occur as the cllscharge current (proportional to C)

is lncreased.

Ttre sign of ôt js governed. by the sign of the factor in square

brackets, which becornes negatlve if C > Ccrit., where

CerÍt.=Acos2wo/t(sin2wo+sinh2u"). (3.3?)

Thr:s, since 6w > O, condftion (3.22) is violated lf C > Ccrlt.,

ancl so Ccrit. gives a measure of the current value whleh ls eritica.l-

for the onset of üstable interchanges. It is of interest to note
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that, in vier,¡ of the d.iscu.ssion of Seetion 1.3, the system night be

ex¡rected to enter a seconcl stable régime as C Ís increased. further

so that the inequality (f.el+) becomes satisfiect.

The result (3.3?) may be obtaíned by commuting ô with the

integral sign in (t.Z>) ana evaluatÍng the resulting integral.

This operation has been earried out, forming an important consÍs-

tency check as presented. in AppendÍx I.

qesg--(b)-

Frorn Fig. 6(t) it ig seen that in this case,

t* = tu (3'38)

and

r_ = r" - lou(- .,r_,*o)l

lau(u",wo+6v)[ , (3.39)

where^=-ô, and. ônr>0

AIso the conclitions

ôu(u",*o) . o (3.40)

a¡rd

au(- u. r*b * ôw) > o

appIy.

Condition ( S. l+O ) gÍves

6v >-Ißôw.o ee

( 3. l+r-)

whlle (S.l+r) fs

(s.l+e)



or

Negleeting the higher order terros,

Au(-u",5)>0,

This lea¿ls to
6v> 6w

6g

( s. t+s)
o

rße'e

The conditions (¡.hz) ana (S.)+S) are compatibl-e and so the

situations in Fig. 6(U) anct víg. 6(c) are allowed by the field. line

geometry. As in the case (a), usfng the faet that un = uu and

ôr* = 6u(u* rw¡ ) ,

6r* = ô*3[esin5 cosr,¡b sinhuoôw - coshuu(sÍn2vo '¡ sinhzu.)(ovo/I"

+ ß"ow)] /l .

In thls case, however, u_ 4 r" and

ôt. = Ot3fzsinwo eosvb sinh(ue - 6u_)ew + cosh(u" - ôu_)(sin2wo

+ Êinh2(ue ou-) )ou ] /a

- Ok3[zsin5 coslrb sinhu.ôw a soshus(sÍn2rto + sinh2uu)ou ]la

= ôk3[Z"itt*O cost¡b sinhuuôw + coshue (sin2w. + sính2u.) *

1- ou( - ue + 6u-,*o ) )J /a

a, 4¡3[3sinw, eoswb sinhu"ôw + coshuu (sin2w. + sírùr2u") x

1 - ou(- ue,wb))]/l
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= Ok3þsinwo cosrlb sinhu"ôw + eoshu" (sin2wo

+ sinh2u")(ovo/r" - ouew)]/a .

Thus,inthisapproxÍmationtheforrnofôtisthesa¡reasin

case (a). Henee the erÍtical current for instability is the same

a,s beforeu ancl is glven by equatÍon (3.3?).

3.ll RELATION TO FTELD LINE CURVATURE

An lntereeting feature of the resr:lt obtal.ned. here can be

cþseribed in te:ms of the trar¡sítlon poínt Q (SfV¡'fOU¡ 1961) whictl

d.efines the value of u at which the normal cun¡'ature of the field'

lines in the surface * = rb vanishes. This is the va.l-ue of u at

which each field. l1ne becones tangentia.t to one of a farnily of

straight llnes ruhich I-Íe along the cr.rr¡ed surfaee; each of these

stralght lines can be regartied. as a generator of the ruled su-rface '

Perhaps the sÍmplest nethod of l-ocating Q is by d.lrect evalua-

tlon of the nornal curvature. Equation (1'31) gíves

B2K= v(r.ßz) -sgrgr.B

= [qlr.,r)(a/au) * (%4) 1a¡a'w\>,sz

- (tÅ + B.*rvo)(n'./eno)(an/au) ' (3'l+l+)

The eurrratr:re vectOr K has two cornçlonents, the normal cutwa-

ture " K " and the geocl'esic curvature " K ' r'¡hich lies in the sur-
vsYt :it' --- 

- ' 
-'

face w = constant. q, It Just the 1r coqponent of K.:

5, = (%/hnBt) ð(r.Bz)/âw = Knq t
(:. l+r )
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'lt

(3.46)

(3"4?)

K = (u B - v B )(s /h ¡+)a(>"nz)/au .-g '{v -ou v u

trYom (3.h5) it is seen that K r^rill be zero when

ð(r.Ð2)/âw = o

using (e.ro) and (z.t>) , equatÍon (3.1+T) recluces to

zsinwnrzc2(sin?w + sirìlh2u)z - Rzcosavl-,
k4cosh2u cos3o¡(sin2w + sinh2u)2

Thus Q, on the surface * = *b, is defined by the equation

UzCz(sin2w'+sinhzua)Z*Ã2.or\=O (S.h8)

For u. tQ, the no:mal curvature is negative and 1s d.irected.

out of the plasma, while for u t *e, the opposite holds.

ttor¡ (3.3?) sives

k2cz"rrt.(sin25as1nh2u.)2-A2cos\=9 (s.l+q)

Cor¡raring (3.1+8) and (3.1+9), it will be noted that when

C = Ce"it., then te = *". The crltical current 1g Just that

current which places the transition polnt Q on the electrode.

Basically there are two contributions to the integrancl in
I
I O(a¿/n) a,s e)q)re6sed in (1.33). 1rhey arlse from the two com.-
t
ponents (nonnal and geoclesic) of E. The contribution to (f.S3)

made by the no:mal eurvature is

- 2d.Q,a"K /B = - 2dl,h ö\üK /B
- -1' T{ n'

(s. io)
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As noted after equation (S.l+B), K' is negative ln the regÍon

u < u^ while r¡ith the eonvention aclopted lnmediately before equation
w,

ß.ZZ), ôw is positive ever¡nuhere. Hence, for u < ue' the cont'rí-

bution of K-^ is positive, anil therefore stabi]-izing 1n view of
-11

condltion (S,ZZ). That Ís, plaeing Q at tÏ¡e electrode allows only

a etabilizing contribution from the norma.l curwature (SnyUOUn 1961).

The geodesic curvature makes the contribution

* 2d..0a"K
b
/s

From (3.1+6) is obtainecl

g.Eg = (ôú., - hrr6vB.',/trrr) (n.,r/n4)a(v.n2)/au . (s'¡r)

using (¡"r:), equation (3.51) becones

Ê.r(^ = (Ou/sz )a(,.Ð2 )/a.r.= -(!n2)(Ovo/I + ßôw) à(r"rz)/au , (S.fz)
'- -ß

the last equation being obtained by u'síng (S.rg).

Ttre connplete geodesíc term in the Í'ntegrand' of (f'33)

beeomes, by. use of equations (S.l+) and (3,52)

(znrrau/n,rl2 ) (ôvo/r + ßôw) ðP.Bz ) /au . ( s' rs)

Now

a¡2lau = *
A2 g2

+
\cosh2u(sin2Ì,, + sinh2u) k2cosh2u cos

- 2sínhu cosh2u + 2u+

k2 cosh3u

a,2

¡2(sin2w + sinh2u)2

4
n''!f ( s. tl+)
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Tt¡us:

(r) ðr2/à1r íe an odd. functlon of u ;

(e) for u > o, ä82/ðu < o

Therefore, Sinee f le a,r: er¡¡en ftrrrction of u, the first term

tn (3.53) is an otld. fi.mction of u, anct w111 meke no net contribu-

tlon to the overall lntegral from - u" to uu. This fact waË seen

earlier as the ôvo tetms Ín ôt* ancl ôr_ cancelled out when ôr wes

conputed..

On the other hand., the secondt term in (3.53) is EìrÌ even

f¡nction of u anct gives a net contrl-bution to the lntegral whieh is

negative (for ôw > O) and therefore destabillzing. It is this part

of the geodesic eontribution rvhÍch Just cencels the stabilizing

effect of the no:ma1 curvature when uu = tQ i ancl it is this

clestabiHzing effect of the geodesíc eurvature which makes the

condition tq Þ t" not Just a suffleient condltíon for stebilÍty

against this interchange, 8,s eÆisuÍled by SEYMOUn (fg6f ) , but also

a necessarlr conditÌon.

The overall sígn of the geodesic ter'm tlepends on the sign and

nagnitude of ôvo comparetl with tßôw. As hag been seen in Section

3.3, 6vo is largely arbitrary, bd whatever the case, there is

alwsys a zero net eontríbution fron the ôvo terrn and a net de-

stabilizing effeet from the other tem, provld.ed' the systen is

syrnmetric in u, so tha,t the integral (f..33) ís evaluated betr¡een

lor¡er anct t4rper lfinits of u syrmoetrtcaLly ttisposed' about u = 0 '
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where 0

z axis.

3.5 COMPARISON I,ITTH TIíE EARLIER RESUÍ,T OF SEYMOUN

The etçression for the eritlcal eurrent f crlt. , derlvabl-e

from equation (3.37), may be compared nith that obtafnecl by

SEyMOUR (fg6f). Seymor:r's expression was obtained by assumíng

that a suffieient condition for stability would. be satisfied by

placing Q at the electrode. The transltlon point was approxi-

mately located. by equating tan 08" = (nrr/nrr)"rectrocles and' tanOu'

c
is the inclination of the surface generator lines to the

He obtaÍned, for the critical current '

it is easy to ghow that

tanO

ïcrit. = 5ôrtanuu/n"u , (3'55)

(equation (l+.5) in his paper, 1961), where 0, was the total

external nagnetic flux through the d.ischarge, md was approximated'

r* 0U = B*nrzo , by a,ssr,uring the magnetie field to be rougþIy

eonstant over the median cross section'

Syeonslcteringthegeorretrl¡oftheh¡¡perboloidofonesheet

g
cotru. (3.56)

Ilence (l.Sl) beeomes

rcrit. = 5B*r! cotS/r" . (3'57)

The critical current is obtained from equation (¡.3?) asl

followe. In l"fl(sc r¡nits , neglecting the dieplaceraent cu-nent '

Y*B=uotr, (3'58)
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and then ít is eesily shown that

c=vor/2Tr. (S.fq)

Thus

Ierit . = }nC"rit./uo = 2nAcos2wo/uok(sin2wo + sinh2u")

Using equations (e.f) an¿ (2 ,1:6), some manipr:l-ation leacls to

rcrit. = (znn¡r2 cotwo/uor")[eostruu sínzwo/(sin2wo + sinir2uu)]

(s. 6o )

Thus, but for the units conversion factors, this expressíon

ùiffers fron ( 3.57) by the factor in square braclcets. The two

expressions may be reconciled. by considerfng the two approxlmations

lnvolved. in Seyrnourrs analysis:

(f) An approximate erçression for B' of the folro

Bu, Llrz (S.6r)

vas used, and

(e) The transltlon poÍnt was located in an approrimate wey

by equatlng tanO* and tan0*.

fhese two approximations are clealt with beloru ' where 1t is

ehown that by using more aceurate expressions " the eorrection factor

obtalned abor¡e arises quite natura,lly by using Se¡nnourt s nethod''

Ffrstly, the approximate form for B' yieLded

t*oB" = rrerit.ru/5ög , (3,62)

(equation (l+.h) of Seyrnourts paper), or
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S,

Generator U:'CoDstant,
l)) : constant: tr)b

Fie. B. The generator SS- is at a d.istance r_ from the z a,xis,
o

to vhich it is inclined. at an angle 0o.
Þ

0"

S
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tanO ï t . 
ru/5r2oBM .criBe

( 3.63)

If, on the other hancl, erqrression (2.3;5) is usett for Brr,

then, vith the help of equatlons (e.f ) ana (e.rO)

t*tr" = (e',r/nrr)electrode, = (uor" 
'.'rt,l.e/ 

zrBM{) ( sin2wo

¡ slnh2u.)%/costru" sinq , (3.6h)

and it is noted that parb of the correetion faetor i.n (3.60) is

already emerging.

Secondty, to locate the transitfon polnt more aceurately' one

must equate tan0r" vith ten0"r.r,ühere 1n general, 0 is the angle

between the generator line and. the tangent to the curve v = eonstant,

w = constant, at the point p (fie. 8).

The expression for tanO is

tano = (tr.r/rrrr)av(u;wo) /clu , ( s.6: )

where v = v(u;w.) describes the generator passing through the

poínt (o,vor\), vo being arbítrary (rie. q). For siuplieityo

take v = 0. Then, rememberLng that the generator ís inelinecl at
o

angle 0U to the z axls and lÍes at a perpendicular d'istance ro from

it, the equatÍons of the generator in the cartesian system (x,yrz)

(rie. 9) are:

* = "o ß.66)

end.

Y = ztsn0

uslng equation (3.56).

(s.6?)= zcotw-gþ ,
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Fig. 9. The d.ischarge cross section at the median pIane.
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Using equation (Z.t) and the facts that

x=rcosv

cotw. siru,r'

7T

ancl

t=1sÍnv,

equations ß.ee) ana (S.eZ) yield

tanv=sinhu,

frorn whlch equation ß.e>) ttren beeornes

tanO=hrr/h.,rcoshu. (¡.68)

Usíng equatlons þ.2) an¿ (2.¡) and evaluating at the electrode,

1,
tanou = eotu¡ sinw./(slnzw. + sinh2u")2 (E.6g)

The above treatment 1s ea.slly generalizetl to the case of

arbitrary to by use of the rotated cartesian system (x' ,y',2)
(rie. s).

It can now be seen that in (3.69) tne remaining parb of the

correction factor fn (3.60) ¡as emergecl.

Ttre final step is to equate tan0* wlth tanO", *d to eolve for

I .. . as below:cr1t. '

uI r(sln2w- +slnh2u)%'o crlt. e' b e'

Znn 
6r,2o 

coshu" sÍnw. (slnzwo
'uu)4

whÍctr gives

+ sinh

I2nB*r2 cotwo 
,, 

coshu" sinzwo
I crit. ur'o e n25 + sinh2u"

\
si

t

in agreement r¡ith erçression (S.60).

) (s.ro)
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3,6 TI{E SLIGHTLY CONSTRTCTED DISüIATGE

The d.erivaticn above of expression (3.?0) shows how the correc-

tion factor, given bY

coshuu sin25
( s. rr)f=

sin2wo + ginh2uô

arises when the two approximations in Seymour's ana\rsis are

taken into aceount. The eond.Ítions rrnder w,hich Se¡mourts expr€s-

slon is a good approximation to the result (S.tO) *uy be seen s,s

follorss

If
sinhzu" ( slnzwo <1, ß.tz)

then

F ¡Y coshu
e

æ1¡t

sinee u- mr:st be very smal1 for ( 3.72) to ho1cl. Therefore, lnder
e

condition ß,lz), the approximatlon is good" It is shown below

that thls condition ls satisfiecl in the practieal ease of a dis-

charge r^rith ser0i-length zu considerably greater than its raclius

r- at the neôlan pJ-ener Ðd a constriction ratior of radius r" at
o

the electrodes to raclius at the median plene ' not very d.lfferent

from unl-ty:
r
:nz f .r

o

(s. z¡)
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or

Equatlon (S.fS) yield,s, through use of Q.t),

coshu" æ 1,

sinh2u (r.rl+)

while the eond.ition
12422

gives

cos2wo ( sin2wo sinhzu"

Therefore, since sinw. < 1, Ít follows that

eos2wo(sinh2u"(1, (s.Zl)

usin6¡ (:.fh). Condition (3.75) furbher Índicates that sinw. az 1-'

so that, finally'

sinh2u { sin2v-ED

It is easy to show by partial differentiation that, for a

given value of uu, F increases monotonically with sinrv., in the

region of interest. Thus for a given value of uu, F cannot exceed'

1
the value + , obtained by substituting the ma:rimr¡m value of

cosnu
e

unity for sinw' in equatlon (3.71). Since coshu" must always be

greater than 1 (ue , o), it is clear that F cannot exceed the

value unity, for anY geometry.

llol¡ever F ma,y assune values much less than unity, ín geometrLes

for whÍeh Se¡rmourr s expression is not a good approximation to the

exact result. For exanrple , íf u" is large enougþ so that

4 1-r
e
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coshu_ n, sinhu- n, 10, say, corresponding to the systemwith a highee
constrictÍon ratío, then f õ # .

3.7 CONCLUSTON

The thermoclyna^nic stabilíty criterion of ROSENBLUTH and.

LONGMIRE (tgll) has been applíed to the lnterchange ínstability of

the surface layer of a constrieted d.ischarge. The d.ischarge

borrndary is shapecl by an erternal magnetic fÍeld, to approxlmate an

hyperboloid of one sheet. This gives rise to the possibility of

stabilizing forees, uncler Tellerrs curvature criterion. The sign

of the fíe1d. line's normal cr:rvature depends on the direction of

the fiettt line in relation to that of the surface generator. The

balanee of stabillzing forces, from the normal eurvature, against

d.estabilizing forces from the geodesic curvature gíves ríse to a

critical eurrent, above whích interehange instabíIíty sets in. An

expregsion for the critical current has been obtainecl in the forul

uolcrit ./2n = Ccrit. = Acos2wo/k(sínzwo + sinh2uu) ,

where A = Brl2sinr,¡.o, Bon beíng the axial- magnetic field component on

the surface rü = wo of the d.iseharge r at the nedian pIane. Ierit.

may be written 1n terms of the dimensÍon-paraneters of the tlis-

charge, ro end ze, where ro is the d.iseharge radius at the nedien

p1ane, ffid z" Ís the d.ischarge semÍ-1-ength. Using (Z.f), ts

obtained.
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znn*rf(t2 - "'.)
7rr^

I crit.
vo(22 + rt2 - rf )

The destabiÌízing effect of the geodesic eurvature of the field'

1lnes is sueh that the current must not exceed that value whích

places the transitÍon point Q (at whieh the normal curvature ehanges

sign) at the electrode. This means that the requirement that Q be

at the eleetrode ís not only a suffÍcient eonclition for stability'

as assuüed by SEYMOUR (3;96L), but also a necessary eondition. The

ex¡rression for fcrit. obtainect by SEYMOU¡ 1196f) , is a good

approximation for the present expression, for a dlseharge with

o

ancl
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CHAPTER I+

THE ENERGY PRINCIPLE FOR HYDROMAGNETIC STASTLÏTY

I+. T INTRODUCTTON

The analysis presented in the foregoing chapters dealt with

the stabÍlity of 1ow pressure plasma*magnetic fÍe1d systems wlth

respect to the specialized perturbation wTrich results 1n the inter-

change of aclJaeent magnetic flux tubes. Tn particular en expres-

sÍon was cterived. for the d.ischarge current which is criticaf for

the onset of r.¡nstable ínterchanges in the 1or'r pressure bounclary

region of a cliffi:se eonstricted. d.ischarge. Attention is nor^r gÍven

to the treatment of a more gçeneral class of fIuid, motions charac-

terizetl by the smal1 perturbation fielct, E . E is usually teken

to mean the dísplacement of a fluid element from its equilibrium

position %, arìd. is written

å = !(E,t) (t+.r)

Ttris approaeh is based eesentially on a fLuld. theory ín which the

strength of collisions is assumed. to be such that the preseure

always remains scalar, but the electrlcal conductivity na¡r be

regarded. as infinite.

An erçression for ôlü(E'E), the cha,nge in system potential

enerry prod.uced. by the perturbation, mey be obtalned. by writing

d.ov¡n the potential energf fi¡nction and eva.luatíng the seeond-orcler

variation trith respeet to E Althougþ arr e)q)ression for 6lf has
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been obtained (gnRNStUfN et al, 1958) effectÍvely by integrating

the seeonð-ord.er ex¡rression for ff , tnure does not appear to be

Ín the literature a complete derivation of ôI,ü liy the former method..

VAII KAI\,ÍPEN and FELDERIIOF (tg6l) use thÍs approach to derive ôI.î for

a system 1n which the plasma efrend.s to lnflnity. They are thus

concerned only with a fluitt domain, md cer-bain telrts' which by

application of Gausst theorem becone integrals over the fluid. sur-

face, are assumed. to give zero contributions as the surfaee is

extended. to infiníty. Their work 1s here ertend.ed. to derive ô!l

for the case of a finite system 1n rvhich the plasma is in contact

with a vaeurml region and. wíth electrodes. The result is fotxtd. to

be in substantíal agreement with that of BEBNSTEIN er, aJ- (fgl8),

although some modification arises because here the plasma region is

not consiclered to be cornpletely surrouncled by a conducting sheI1'

as in the above reference, but instead. alfowance is made for

insulating suppor-bs for electrod.es. This necessitates great cere

in applylng Gaussr integral transform 8,s Ís required. at a number

of places in the proof. Such a generalization of the system

geometry then permits application of the result to the d.ischarge

between eleetrodes.

In the present chapter, ùld in the nexb, no particular eon-

figuration is assumed for the system, but in the final chapter

the cond.itions for stability dlscussed. here wíII be applieil to the

constricted. discharge. Since ln the later work a fieLd.-free
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ttischarge r^riIl be consid.ereil, some of the discussion here wíII be

related to such systerns.

\.2 srATrc AtùD DYNA}4IC BOUNDARY CONDIÎIONS

consider a higþ1y concluetíng magnetically confined plasma'

insulated. from Íts surroundings by a vacuum region. The system

r,¡ill be described. by orthogonal cu::r¡ilinear coordinates (u1ru2ru3)

with unit vectors ("f,g¿,9g). At the interface between field and'

plasma, 9S is taken to be the rmít normal vector directed. into the

plasma.

Using a circr:mflex to inùicate vacuulll quantities, the vacuum

magnetic fielcl Ê at all times satisfies Ma:qnrellrs equations with-

out d.isplaeement or conduction eurrent:

v'Ê = o , (l+'z)

VxÊ=ot (h.s)

and when the system is pertqrbed, so that a time-depentlent situa-

tion is producecl,

vxÊ= 
aÞ

- at (l+'L)

V"E_ = 0 (L.r)

The bound.a^:ry conditíons to be applied at the interfaee are

well knorvn (fnUSf¡f, and SCIIItrARZSCHILD, 195h). At such an ínter*

face, one introduces a sheet current J-* *d Jurrp discontinuities

in the magnetic field. and partiele pressure (and in the electric
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field, in the dynardcal situation). Relations involving the clis-

eontínuitíes in the physical quantities are derived by integrating

the appropriate equatlons across the thin layer whieh the surface

sheet is assuned to approximate, md then allowing the layer to

become vanishingly thÍn.

Tn the layer the following equations apply:-

The equation of motion, in the absence of charge accumr:-Iation antl

gravit ational- forces :

dv
edt--Vp+J-*B; (l+.6)

the conservation of mass:

# * o"(pv) = o '

the infinite electrical eoncluctivity approxÍmation :

å + v x 9= 0 ;

the adiabatic equation of state:

d. ¿ -Yr¡f (no ') = o ;

Ma:ç¡ellrs equations rtÍthout displaeement current :

âB_

V * å= - F ,

vxB=uor'

( l+.7)

(l+. 8)

(t+.g)

(l+. r-o)

( h. r_r_)

and
v"å= o ( l+. r-2 )
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TÌrese equations are listed., together with the condÍtions

under whj-ch they are valid, by BERNSTEIN et af (fg:B). They are

d.isplayecl here for convenience, ell s¡rmbols having their usual

slgnifieance.

Equation (l+.6) becomes, on carrxring out the above procedure,

o2(p+i¡-.)=0, (l+.f-3)
tFo

¡.¡here '$Þ denotes the Jurp ir: the quantity X on crossing the inter-

face Ín the direction of [r where, in this coordÍnate system,

,=_qr. (l+.rl+)

It is enlípþtenÍng to exa,mine the integration of the magnetíc

bo{y force tenn J_ t e in equation (l+.6). In the límit of zero

layer thickness, ¡* mrr"t 1ie in the interface since current cannot

fl-ow into or out of the vacuum. B must also lie in the interface

1n order to avoíd. Ínfinite aeceleratíon due to urbalanced tangen-

tial forces on the massless current sheet. Thus the surfaee layer

may be consi¿Iered" as an assenbly of surfaees in which lie the nag-

netic field. and electric eurrent vectors. Thís assembly recluces

to the surface current sheet as the layer thickness, As" tends to

zeTo,

The uagnetie body foree per r:nit area exerted on tbe Layer is

glven by

dsf,xB, (l+.1i)
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where s represents the path of integration nornal to the magnetic
*

surfaees in the layer. Quantitatively, f, ís defined. as

dI ds¿.

( h. rr)

where Ë as definect by (l+"rf) is en appropriate average of B for

the layer. It Ís shor¿n belolç that, as stated. but not explieitly

proved by KRUSKAL ar¡d SCIII^IARZSCHILD (fgf tl) , the approprÍate aver-

age to take for E afber allovring As to becorne vanishingly sma11 ís

Jr:st the arithraetic mean of the values on the two sLdes of the

layer.

The result for E is obtained by integrating e:çression

(4.r>), as follor,rs" Makíng use of equatíon (l+.11) and a etaridard

vector ictentity, the integral assumes the foru

*xl
t_ =)

lÈ

TBx
tÊdl

o2
- n ( -> '¿t).'o

(t+. 16)

Hence the magnetic foree per r:nit area is

BX

J-
l_ ds (n"ve - vUBz) ( l+. rB)

On allowing Às to tend. towards zero, the first tern of (l+.f8)

vanishes, while the second tenn becomes

te

Bx
u'o

(l+.rg)

B ,

Ttrus

'l
=-ïr<B>":l(9.+

=ro _1 ( l+.20 )



where B. is the field. on the insÍde of the interface. and B
--'-€

(strictly the vacuum quentÍty, Ê) i. the field on the outsicle of

the interface.

By means of stand.ard. proeedure equation (h.11) can be inte-

grated across a rectangular eross-sectional element of the la.yer

to give, for Às + 0 ,

88

(l+. 21)

( l+. eh)

(l+.ei)

whi1e, by means of the píI1-box teehnique, the solenoidal properby

of B leacls to

=Q ()+,22)

l3uol =Ax{B),

xE=n(nt¿*) ">J4 Bæ )

{J-* * %(+ )l

n"(B)

Therefore the veetor product of n with equation (h.Zf)

beeomes

It
uæ*J_ =-(B), (l+.e:)

upon erq)ansion of the vector tríp1e product and. r:se of (l+.22) , ffid

so equation (\.20) gives

tß

¿ +

=nn +

= 0, it follows therefore that

B<

*Sineeg"J_ =q.q. = n'B
- --e

*
B-'eB.*L

t¿
*_

¿ * å= \1, +

thus identifling B as the arithnetÍc mean of gj. *d %.
A further bountlary cond.ition of iuportance in the ffnauúcal

situation is
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nx<E> =(q.l)<q>, (\.26)

where v 1s the velocity of poínts on the interfaee. This equation,

elegantly derived. by JEFFREy (tg66), e)q)resses the coni;lnuity or

the tangential eomponent of E Ín the frame of reference moving

with the interface.

summarizingo the eond.itÍons of interest at the fnterfaee, ín

the specÍal- case of zero internal magnetic fíeId., are essentÍal1y

Ê2 = 2uop Q+.zl)

from equation ()+.13); and from equatlon (l+.ZZ) ,

e3"Ê=0, (l+.28)

which apply at a1l times. fn parbieular, rr.sing the sr:bscript o

to indicate quantities in the equilibrir:m state, the absence of an

ínternal fÍeId. leads to the cond.itlon that po ís constant through-

out the plasma. Equation (l+"Zl) then Ímplles that Ê2 ts constant

at aIL points on the ínterfaee.

Conttitions (h.27) an¿ (l+.eA) ínply a geometrf c properby of

the megnetlc lines of foree on the interface 1n equilibrír:m;

nornely, that they are geodeslcs or sn.r(o) r,¡here, for convenience,

Sn.,r(o) represents the equilÍbrium interfaee bet¡,reen the plasma and

vacuun regÍons. The proof is as folIows. Fir¡t, applieation of a

standarcl veetor identl+,y to the vaeuum magnetic flerd Ê glves

Ê"(v*Ê) =v(hÊz)-Ê"v!, (h.29)
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which, Ín view of equatlo, (l+.3), reduees to

Ê"É = v(>,â2) (1.:o)

ïntroducing the eurvature vector iç = ( "v)Ê, l¡here Ê is trre

unit veetor in the clirection of Ê ,

ÊrE= v(rß2) -û(û.v)p,gz) f1.31)

- (1 - ü)"v{t¡' ¡ , (h. se )

r¡here the rrnit tensor I = gtg: + W + gsg3 . (l+.33)

On the interface the conttition (h.e8) means that

Êrgr Ê2¿

--+ T'BB
b= (l+. sh)

and so

Ê2r =

that on Spv

{erg., + vg + gsq¡ - (tt:l .
B

Êoeo

+) I"v(""Åz)
B

+

Ê.'2 Êr2 ÊlÊ,={e:"r(l -# +wtr"¡ 
" 

(e1s2+s2sr)

+ usg3Ì "v(rrÊz) (h. S¡ )

fn vié+¡ of tfre rena^r'tsb folførÍrig eqùation (h.ea) ii is seen

(o),

er .v(rÅ2o) = V..v(rÅ| ) = o ,

and. so in equilibríum, on Snrr(o),

Êþ = *es "v('zÊ|) (l+. s6 )
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Ttrus on S---(o) ttre vector curvature of the equil-ibrir¡:n fieldpv

lines 1s evezXnrhere normat to Sn.r(o). Uslng the language of

differential geometry, the geodesic curr¡ature of the fielcl lines

on S---(o) is zero; tlius, by definitÍon, the field lines on S---(o)pv' ' pv

are geodesies of S___(o).pv'

[.3 pERnrRBATroN oF T]m vAcuuM MAGNETIc FIELD

In praetiee the plasma is a finite body, either elosed upon

ltseIf (torl¡s),or terninated by eleetrodes. For the latter case ít

Ís a^ssumed here that the eleetrocles are sufficÍent1y hot for the

plasma in their inmettiate vlcinity to satisf! the infinite e1-ec-

trleal- conductivity approximatíon leading to equation (h.B).

.Llthougþ VAN KAMPEIT and ÏELDEBHOF concerrÌ themselves with an

infinite plasma, for a finite plasma it is nevertheless possible

to obtain fron their work (tg6l, p.T5) an eq>ression for ôlÍ,

r¡hich represents the second-order variation in potential energr

associated. with the pla,sna and magnetic field. within tnr the

plasma volume. The complete erçression for ôÏtr in the case of a

finite plasma can be obtained. by ad.d.íng to 6fr the expression rep-

resenting the second.-order variation in 'lnl"r, the enerry of the

external magnetic field. This d.erivation is carried. through belov¡.

For the clischarge between electrodes, which wíll be the sub-

Ject of the flnal chapter of thís thesis ' one cannot make the

usual assuru¡ltion that the region of interest - plasma and vacuum -

is completely surrou:rcled. by a perfectly conclucting wa1I. Ïn fact
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if , a-s is usual for example in l-Ínear pinch erqceriments, a stabi-

1ízing conducting shel1 is used, coaxial witir the dlscharge ancl

continuous for the length of the discharge o then it is cl-ear that

ÌnstÈatlng supporbs for the electrodes mr:st elso be present to

avoid. short-circuiting of the clischarge. That is, the stabílizing

she1l should not be consid.ered completely closed. aeross the ends.

ïn the development given below, the assuruption of a efosed

wa,1l is not made. Instead. the general case 1g considered., in

which the volume external to the plasma ís assurned to corçrise

vacuum regions, perfect cond.uctors end perfect insulators. One

may also assume for generality that the confinecl plasma may be

parbly i.n eontact with all three medía, but since a very hot

infinitely conducting plasma cannot remain in contact with an

insulator without the occurrence of rapid quenching, it is assuned

here that the plasma is in contact only with vacuum and. with very

hot electrodes. At the electrode surfaces the condítlon

not = O (h.3?)

must appJy.

For such a system the surface terms not taken into considera-

tÍon by VAI{ I(A¡4PEN and FELDERHOF must be includ.ed. 'Ihe important

resr:lt obtainecl here is that the form of ôll clerived. for this sys-

tem by exbend.l-ng the approach of VAIÍ KAIIPEN and FELDERHOF is in

agreeuent with that obtainect by BERNSTEIN et aI (1958), except for

soroe moclLflcation of the ve"euum contrLbution. This moôificatíon
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al:ises sinply because the entire region of interest is no longer

confined to the interior of a closed conducting wa1lo bú erbends

to infinÍty. The expression obtained ín second order from

VAI\I KAI4PEN and, FELDERIIOF Ís, assr:ming zero gravitational fiel-d

(v¿tu lcl¡,tpEN and. FELDERHoF " p.75, equation (el) et seq.)

ofr = % i ul",tf ror 
2'" 

U'(q î q) + vpo(v"å)z
r (ol
p

+ (v'r)g.'vpoÌ * ü I".L,j;oDo 

n %r) rr'vs - åv"E)

* {g"r%} % - {s"%"v%} { .q , (l+.38)

where

Q=vx(íxE), (l+.Sg)

r'(o) is the equil-itrrium plasma volume, anil Sn(o) encloses tn(o),

¡¡'itlr d.S_ directed out of the plasma.rc
Consider the terrn

{E"E"vB }B .ds'1¿ {---o {
(o)

B

in the surfaee integrel of equation (l+.SB). Its lntegrand. ls zero

on the plasma-vacuum Ínterface tno(o), since %"d.% is zero there.

It 1s also zero on the plasma-conducting el-ectrode interface Sn"(o),

a,s may.be see4 from the following. on Sn.(o) it is necessary to

eonsider situåtions where the magnetíc fielct tloes not lie in the

interface, but actual-ly enters the electrode. (e.g. a linear

pinch with internal axial field. ) nt the interface the condítion



9l+

dS_XE=O

nust apply. This becomee, through equation (h'B)'

a!_*(gxB)=0,
or (¿üg)r - (aq'v)s = o

since the interface is rigid. and fixedr då'v = 0r ar¡il so

(og"n-)I= o . (\'l+o)

Integratett to first orcler, this gives

(¿s"B)E=0. (l+.l+1)
'{-€-

Hence when dSo'¡ * 0, the freezing*in effect of infinite

concluctivity lead's to t = 0 at the plasma-electrode interface'

C1early, then å.å"V% must be zero on Sn"(o), íf %"d% 
+ 0

Since expression (f+.:B) represents ô\ + ô\' r'rhere \ ls the

energf of the magnetlc field in the plasma and' \ 1e the material

enerryoftheplasrra,toextenclthed.erivationhereonemustinclude

the variation 6\, Ín the energr of the magnetic field which

oecupies the voh:me exbernal to the plasma'

Thisvariationmaybecalcr-:1ated'tosecondorderintheper-

tr:rbation,astheworkdoneagainstthepressr.¡reofthevacuummag.

netic fielct in cleforning the surface sn.r(t)' The valitlity of this

approach is establ-ishect in the following ôlscussion'
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The magnetic enerry external to the plasma me¡r be written

wsn # f "'u'' o i"+î(t )+t,
t (l+.h2)

( l+. \3)

(h.l+\)

where the subseripts c a¡¡d Í on the trs ?efer respectlvely to the

cOhduetor antl lrtsulator regions. In the rigict natefiaÌ occupying
âB

r, the electrical eonductivity is ertremely hieh, &d to F is
c

sensibly zero there, at least on the rapict time-sca1e of unstable

motions consítleretl here.

Then

d__ L tt
Ewsn = 2% dt

clr)tt;
+1

gz

t

I
ar+lf(r,t)v'dSr| - -'

s(t)
I f 'tr,'l

*t*, B2v" d.S',+

I
î( ) I

Appencllx II provicles a rigorous analytieal proof that the tlme

derivative P = # J 
r(f,t)<tt nay be expanded to the intuitiveJy

3(t)
obvious fovm

tT

r,¡nere S(t) is the surface enclosing.(t),I is the velocity of a point

on S(t), ar¡,l då is directed out of t(t). Appl-ying this result to

equaticn (l+.)+3) yietd.s, therefore,

d.

clt )
1

t
*I

î(

wsn

)+t 1

clt 2v
o

s (t)

(h.hl)
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l\rhere fS(t) touncts the combined. volumes of vacuum and ínsulator.

That is,

s(t) =tnr,*s"r,*spi*s"i*s*, (L'\6)

where S- is the interfaee bet'n¡een nedia ? at and Îb e , and S- ís

the Fsurfaee at infinity". In (h.h5) ttre prime is introd.ueed so

that on S___ there will be no confir.sion between dq', directed out
pv

of the vacuum, enct då, directed, out of the pla"sma consÍstent t+ith

its equillbrir:n form dS in (l+.SB).

Introd.uelng the rnagnetic veetor potential A such that B =

V x A¡ the volume integral in equation (h.)+5) becomes, but for

the facto" 1
uo

àB
ã (%¡2 )ar = B at clt

Ðt

î (t )+r î (t )+r 11

ÐA
(v x n)"(V *: )at

Ot¿

(l+. h?)

î (t )+t 1

Since no currents flot¡ in î(t) and ti" v x (V x $ = O,

end so
âA AA

(v x A)"[o ,. ¡iJ = v" (ã; x (v x å)),

using a stan¿Iard vector id.entlty. Appl-ying Gausst theorem to the

integraL (l+.I+?) therefore glves



â_
çeg2)ar =ât

(t )+r
1

ðA
(ag"** )"vxA

s(t )

r
=-- l(aå"*g)"vxå, (4.1+8)

I
s(t )

àA
since the electric field E- = - ,a

Now d.S'x E must venish on the rigid conducting surface" S"r,

*d S"i, end fl¡rthermore it is assuned that the field quantities

falI off rapid.ly enouglr for the contribution from the lntegral

(h.l+8) over S- to be vanishÍngIy small. A¿tititionally, conditions

(l+.8) and (l+.26), together with the fact that B lies in the surface

tn-r(t) in ttre plasma/magnetic fieltl nodel chosen leads to

ds'xû=q(I.dq") (l+.tlg)

I
I

f .a".¡,+ . (v ,, ¡))

s(t )

97.

onSpv
(t).

Thus, assumÍng Spi to be zero, equation (l+.h8) recluces to

I # u.t')d" = - j ac""ul-')'v x Â

î (t )+"r sn.r(t )

Ê2rr" ds'

A^
because Þ= V x A .

êupv(t)

(l+.¡o)



Considering nor,¡ the surfaee integraL in equation (l+.1+¡), it

is noteti that sinc" S"., *d S"i are rigid, r¡.dQ'= 0 at those sur-

faces. On the reasonable e^ssumption that the integral over S- is

va^nishingly small, and remenberÍng that S-, is here considered zero,
p1

this integra-l therefore reduces to

f o'*dÊ'= +ll_

2rt

98.

(h. ir)

(l+.fe)

Ê2v" ds_'

(t)
pv

Ttrus, substítuting the results (\.fO) ana (l+.ff) into equation

(h.h:),

o
s(t ) Ð

1_

a* "ru
Ê2v" ctS' .

2v

s (t)
pv'

Rz
Sínce *-'AS' is the force direeted. into the pl-asma by the

2u'o
pressure of the vacuum magnetÍc fielcl at the plasma/vaeuu:n ínter-

face, integration of equation (\,>Z) wíth respect to tjme verifíes

that the change in externat ma6çnetic energy is Just the work d'one

against the preesure of the vacuun nagnetic fieLd. in deformÍng the

surface.

Originally the result (\.>¿) was tterivect by a metho¿ r¡hích

ínvolved the assr:rnptlon of a fo:rn of equation of state for the

pIa,sma, and whiet¡ made explícit use of the law of Conservation of

total systen energy. The more general method. presented above makes

no a.ssumptions concerning the material insid.e Sn. The original

clerivation is given, for interest, in Appenclix IfI.

o
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¡+.1+ EVAl,uATroN oF 61,lBE

To find ôr,ür, to second ord.er ln the perturbation, equatlon

(h.:z) must be written to second order and lntegrated. To carry

tliis integration through it ís noted that, fron the Lagrangian

vieupoÍnt, physieal properties in a given fluid element at (rrt) are

fr¡nctions of tlre initial positlon % of the fluÍr1 element, and of

the tine t. Thus to first order i* E.u the vacuum magpetie field

at the boundary at time t is (see, for exarnple' SCIIMIDT " 1;966,

p. 123) ,

Ê(t,t¡ =Þ(%,o) +g'vB-(%,o) + v x ôÂ, (h'53)

while
v(r.,t) =-# € (ro,t) . (h'5h)

Hereu OÂ is the first-order perturbation in Â. Furbher, to

obtain the required expressíon for dS.(rrt), one integratet # tdq)

uith respect to time. The ex¡rregsion tot fr (aEJ on a deformÍng

surface is r:suaLly <lerived by tensorlal nethocls (see , for exe'up1e,

ERINGEN , 1;962), but an easily rxrderstooil vectorial proof has been

developecl to obtain the result (see Appenctix I ' JAMES and SEYMOUR

(rgtr) ) ,

f taql = (v.l)<iå - (vy.)"ds , (l+'::)

where r¡ is the velocity of points on the surface' Integrated' to

first order 1n the displacement, equatton (l+'55) lead's to

ds(r.t) = uå(%,o) + (v'E)as(a,o) - ve"oå(5,o), (t+'56)
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Therefore, introducing the du:nny variable t" insertion of

equations ()+.53) , (L.51+) anô ( I+"56) i'nto (l+"52) gÍves

¡L

uoôwB' = - .¡ ur I rþZ+ Ë.v(Ê!) + rL"u " uÂ] þ [q
o tnrr(o' 

* voFãs. - vE.ds,-l (h.rT)+ v"Eds; - vE {l

vhere % = 9(fo,o) *d dS; = dsírr(Io,o) (ôirectect lnto the plasma)'

Since all quantÍties fn (h.57) are firnctíons of (a,t'), ffid Io iu

ind.ependent of tlme " the integrations can be cornrnrttedu ancl so

rearranging and retaining terrns in the integrand to second order

in E,

ds'-ouoô wgp
¡t rât ãE ât I
J*' t"sz L#. (v"å) ñ- r.o åJ

s (o) o
pv'

+ sv(+-æf) -å. %"0,. oÂþ . (I+'tB)

Integrationofthefirsttermistrivla'l.Integrationofthe

remaining tenns is non-trívia.t but can bl^ achieved in the folIor,ríng

wey. First consider the seconct, thírct and. fourbh te:ms together:

Ï'et t["itu''{u"Ê3[to"å)'þ-þ'4I=-.ldE
s(o)oP.' 

+þr"vt'-'Ê'"¡Ì (l+'59)

ds'{
Spv

o(o)



a-or

ât I ä6

- å"v Fl . Þ g.v(r"Ê3)Ì , (r+.:60)

by applicatíon of the expansion of v xtþ,. O . Recall-ing that

râE I aå aE

v(uÊft)' L*. tl = ãÞ E"v(%Êf) - E'ðr'v(ræ3) '

an¿ rr^sing the pressure bala¡:ce equation (h.13), equation (l+.60)

may be rewritten as

r = - i q "ftu, " I'ß'.gr"þ - E'v þt . E þ'v("'$3)Ì
sPt'(o ) o

rt' t -DE

- f"u.' I *; ' {(uono + %Bzo)v ' (Þ * EJ * v(láÅ|'

o
S (o)
pv

(l+.61)

It is fr¡rther notecl that

-âErãE
-."þtzo3l , (þ. dl = (ag . v(ræ3))'Ç,. g¡ ' (\'62)

To progress furbher, eonsidet v(uoPo * %nzo)' Then

V * V(uopn* rÐ2o) = O; hence applicatíon of the theorem of Stokes'

and interpretation of the vanishÍng line Lntegral so obtainecl ln

relation to a smaIl reetangr:Iar circuit with its longer sides

sltuateil on each sitle of a porbion of the plasma/vacut¡m interface

Iea¿s, with the aitt of equation (h.13), to the result (see, for

exaqrle , ROSE anct CLARI(, f96f )



<o{, x v(uopo + rrB2o) t ¡ O r

l-02

( l+.6s )

or

% " v(uotro +|-rBZ) = d% " vt>æ2o)

Equation (l+.62) therefore becomes

ãE

u%"þtu$31 ,, (;|- . sl] = (q . v(uono * ae!ù'fþ ' tl

þtu"no 
+ r,BZ). {þ'" d] ( I+.6h)

By making use of the etçansion of V x
[trono 

+ %sZ)(
AE

r-EJ
the second surfaee integral Ín equatíot (l+"6r) ney nol'¡ be written as

rlEr
,r = J 

dÞ;.0 * 
[{uono 

+,.,BzJ(#,. g]J . (t+.65)

s (o)
pv'

If s (o) rs a closecl surfaee (i.e. if the plasma is in
pv

contact wíth vacuun only) , Gausst theorem may imred.Íately bç

applietl +'o the integrar J of (l+'65) to show that ít vanishes'

since y. (V x \) = 0 for a1l veetors N. If, however, the plasma

is in contact with electrodes, Sn-r(o) wil-1" not be a closed srrrface'

In this easee suppose C(t) is the crrrve representÍng the inter-

section of S (t) an¿ S (t). Then (l,1.65) may be transfomed bypv' pc

the '¿se of Stokesr theorem to obtain

ràt
t=.|dr-'(#.d(uopo+'Ð|), (l+'66)

c(o)

where tL l is an element of path around C(o), its cllrection being

specified b]" neans of the right-hand screw nrle used in relation to

= dS"'{



pc

B-"dS_ + O aBp]ies, the efreezing-in' effect of infiníte concluctl---o _e --aE

vlty tead.s to ¡| = E = O there, ít follows that the integral

(l+.66) correspondingly vanishes. If on the othet hand B "d9* = 0'

the perburbation | 1s constrained in such a marxner that the tlls-

plaeenent of fluid, elements or Sp" nn:st always be para-lIeI to Snc.

Thet is,

v(r,t)"da(r) = o

But

v(r,t) = * !(A,t)

and, to first order,

Hence in first ordler,

àt
¿ts )=ot

the direction of %".
Sincc lt hes been shown that if, on 5

103.

(o), ttre condition

r
-rO

(

-at

and. then, Íntegrating to first order,

E"dS- = 0 r sfnée å= O at t = 0 .3'.e

Cor¿bination of these results thus ylel-cLs

-ãEd%"(¡6=*Ð=o e

end sínee tl !"6_c = 0 (as C lies in Snc

_àEaf"[r*. x $ = Q '

), it fo1lor¡g that
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leading to the result that the integral ¡ in (l+.66) above vanishes

when S---(o) i.s not a eloserf surface. At this stage the integral fpv'

of equatior (h,61) reauees to

ds' 'rc

p.r( o )

f'ur' {'"iìiEo"þ - s."'þ * gþ'o eÊ\)I ,

o
D

whÍch can be integratett by parbs to give

f q "{'ÐZGo"g. - E'vgJ + I E'v('-'Ê|)}

sn'*'( o)

+ ds" .

- itur" 1u"n'þ v,r - þø . þ s"vtzBf)Ì ,

Spv(o) o

a resu]-t vhiclr yields, þr use of ther deflnition (h.59)'

r = -, l *;" |".n'"Er " t- E VEI + E 5.' v(ræ3) Ì .

s (o)
pv'

The final term in equation (l+.l8) fs

r( = - I fat' (aq .þ ,(%'o , ôÂ) . (\.6s)

snt'( o) o

To sÍuplif! K one notes that use of equations (l+.53) ' 
(l+.51+) and

(l+.16) enables equatíon (\.l+9) to be ex¡rressed to first order as

âôÂ âq_ . ^ds'x rrZ= - tq ";-rJ % , (t+.69)

(h.67)
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and hence (l+.68) becomes

tftðôÂr(=l f dr"fds'*EÐ.v"ôÂ-. (l+.70)
J ) \rc
sn'*'(o ) o

AA

Since q, " ,, is zero on the eondueting surface" S.., anil S"r'

and the field querrtities are assune¿I vanishingly small at infinity'

the íntegral K of (l+.70) nay be taken over S(o) = s---(o) + S^-- +pv' cv

S + S , the surface bountllng the co¡rbined volunes of the vacuum
c1

and ínsulator regions. Commuting the surface integration and the

íntegration çith respeet to tirre, ortd. interchanging the dot and

cross in (\.To),

ðôA

rl(= dt (,*"vx64)ds' "-o t

o s(o)

wtrleh, upon pernissible application of Gaussr theoreu, furbher

transforms to
âôA(p'" v * ô4)r(= dt

o
Ju"o"
î ( o)+ri

( I+. fr)

(l+.?2)

Ex¡renslon of the integrand, ffid applieation of the vanlshÍng

electrlc current conditíon V x V x ôA = O enables (l+'?1) to be

rt
f=rr) dt u" # 1.¿ x ôA)2

d.r

)

V

(

x

1
o

) +To
1

,2

T (
t-

written as

o +T

ôA) 2



Thus, flom equatlons (l+.58), (h.61) and (l+.72r,
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(l+.fg)

uoô%t i q 'Lç*ÅZ) - ", luq ' l",n1tgv"t t"vå)

S (o)
pv

\.5 DETEF.Ì'{INAT'ION 0F ðI{

T (o)
p

o
(o)

pv

+ E E"v(rpZ)I *r,- ôt(

e (o)

I
.î(

2A)Vx6

+To
l_

To complete the expressÍon for the second-order veriation in

the potential enerry of the system, the second-order terrns 1n

equation (l+.fS) must nor,¡ be ad.d,ed to equatiot (l+.38), the result

obtainefl by VllN KÁMPEN and ÞELDERHOF. Noting that in equation

(L.sA) sn(o) = tn.r(o) + sn"(o), and recalling that

(i) B 'als- = o on s----(o) e-€{pv
(il) t = 0 or Sp"(o) ir %.% * o th-'re,

(lii) uopo * ,"tZ = 4îPo t"o equation (L.13),

equation (\.38) cen be wrÍtten in the form

r . lql'sfr=L I at {' )*'o ;î * J.o"(e * g-) + vpo(v'å)z + (v'6)E"vpoÌ

1
2u

(h.rl+)

Spv

Reneuùe@ that d$ , smmation of the terms ln 6fr entt= -- dS'rc
the second-order terms in ô![* gives the final ex¡rression for the

variatlon of the system potential energy'
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ôW.k ilt

T (o)

+
o

where

ôI^I = ôirl
F

6I^f 6wn

f
lql2

{ % - J""(e, E) + yBo(v"t)2 + (v'E}t'vpo}
o

p

2y
1_ d%.å {g"v(aÊ!) - å.%.v-Bú} (v * oR)2

o

s

+

pv *1 (l+.rr)
1

Ithe equilibrirm quantities satisf! the equatlon of nechanical

equillbrirrm,

VPo Jot%'

which, by a star¡d.ard. transfotmation, rnay be written as

(o)

VB
1s

= v(p (h.rtí)

( h. ??)

( l+. ?B)

u --o --o o
o

ltlith the help of thls result equation (b.?5) may now con-

venlent\r be wrítten in the forrn

+
S

+ I

(a) ô!I is the fluid contributlon given by
F

lql'ô\=%
-_ 

I o

u tto'o
(q " E) + yno(v.L)z + 1v.g)t"vnoÌ ,iu""{

I (o)
p

(t) ôll, ís the surface eontribution gíven by

t -ô2 ^- B^2-
ow, = % J 

dEo'E {g.ofuJ - E. v (po * #.) }

s _(o)Bv'

(l+.Te)



By ex¡lressÍng the perturbation as

.Ë=%%'E+(uoxg)xn-,
and, lnsezting this form inside the curly "bracket in (l+.T9)

r Ê2 B2
ow. = % J 

d%.9. {{q.E)q'r(d) - (q"å)%"v(po + #.) },
S (o)
pv'

sinee (% * å)"% = O. F\:rbher, by rrríting d.So = lo doo (directecL

out of the plasrna) ,

I B-2-
ow, =2 J 

aoo(q.-Ç.)t*%'v(po+ù) t . ([.Bo)
'o

snrr(o )

(e) ô\ is the contribution from regíons external to the

plasma given by

ôwE=ùf aro(v x ôA)2. (l+.sl)

î(o)+ti

Usíng the argr-rment which appears prl-or to the result (l+.52).

the fact that here

v'(oÂxyx6Â)=(vxôÂ)2,

Gauese theorem" atd the boundary condition on Snrr(o)

%*oÂ=-(d%"å)Þo, (h.82)

obtaÍned by integration of equatlon (l+.69), ttre resr:l-t (h.8f ) can

also be erçressed in the interesting form

I

J 
tag.r)E..v " ôÂ

1
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( l+. 83)ôwu
2v

o
Spv(o)
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Thus the approach used by vAN KAIIPEN ar¡d F'ELDERIIOF has been

extend.etl to a system comprislng a fínite plasma body, with e:cbernaL

rigidl conductors and. lnsulators er¡d external magnetie fieltl' to

obtaih the second order variation in potentíal energr originally

obtained by BERNSTETN et al. by a different approach. The present

ex;pressÍon differs from that of Bernstein et al. in that the

volu¡ne of lntegration for the expressiot (\.81) Ís not linited to

the interior of a eond.ucting she}l, but extends to inflnity sncl

íncludes both vacuum and insulator reglons.

I+,6 DrscussroN 0F THE sunFAcE CoNTRIBUTIoN , ôl,la

It is tempting to id.entifV the surface tern 6W, in eq'.ration

(l+.?7) rvíth the seeoncl-ord.er parb of the r,rork perfo:med. agalnst the

surface current in displacÍng the bound.a,r'¡¡ by E ' as has been done,

for example, by SCHMIDI (t966). Hor¿errer, on making a closer

exanination of this ter¡r, it becomes cloubtfrrl if Ít is correct to

make this ldentification. For exa,mpIe, in the special case of zero

intenral fiel-d, the "work done against the surface currentft

(Scn¡aiAtrs phra,se) ts Just the work clone against the pressure of

the vacur:m magnetic fíe1cl, given abor¡e to seeoncl-order by equation

(l¡.fg). Couparing the second.*order part of (h.73) with expresslon

(l+.80) ror ô\, one notes the following stríking cliffelence:

e:çression (l+.80) is zero uncler the condition

n-.t = Cl , (h.Bl+)
--O 4
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whereas under this cond.itÍon erpressíon (l+.fl), r*rlth the help of

the result (l+.83) reduces to

ôI{o",=+ids:"tÊ2å"v8, (h.85)
-B-U zuo J -

snrr( o )

r,ùtich is not necessarily zero. This d.ifference reflects the fact

that conclition ()+.8)+) does not imply that the surface is r:ndeformed

to second ord.er in t. In fact, there remains a seeond-order

d.eformation which requires a second order arnor::rt of t'ork, given in

(l+.85). The condition whieh does ensure no deformatíon of the

plasma surface is

v.dS'=O. (l+.86)

To díscuss the effect of the eonclition (h.86) on ô\u, it is help-

fi¡I to transform (l+.ff ) as follor*¡s: the change in plasma volune

ôt resultlng fron perLurbation in this case can be expressed as

t
ôt=- drr'

os
då'" r '

prr(o)

( l+. 8Z)

( I+. BB)

and hence, by use of equatÍons (h.lh) and (l+.16),

rôt=- dt' f tq + (v'å).% ' (v-s.)"¿%)"
âg

W
os (o)

dls' .
{

o

pv

dS'oE --Oé

prr( o )

¡t ðE ât

.| 
ut' ((v"g) tf'- ç;"og]

S Dpv
(o)



Using a standarcl vector id.entity, forurlate

l-t_1

(\"Bg)

(h.qo)

(l+.gr)

ds
¡t -.àg ðã- ðE âE_.

..[ dt' {(,r o.g- - urrog) - þ.v" f - E.v }br}
o

f,àE\u.'"l¿ts'.v"[ãI;-*ÊJ=Q,

-
snt'( o)

r
o

Spv(o)

by Gaussr theorem.

Then, since

integration and use of (l+.8ç) gives

dfj'o-{

* [g0", å'vEJ = ql t't - F""l + G'"1,: " t"'ä

*f .E.Gv.e -E.vEl =l
¡t AE

J 
u.' (tv.q) ,r-

ù (o)
pv

and so equation (h.BB) becomes

s(o)opv'
âE

- ðt 'og)

ôt=- f q'bo"E - å'vEJ¿lfi'"E - z--o :

p.r(o)S S (o)
pv

Returning to equatÍon (l+.?3), for the special case of zero

internal magnetíc fieId. it has been seen from the argr:nent following

equatÍons (\.27) and (l+.z8) tirat Ê2o is consta.rit at all points on the

plasma/vacuul interface. Tltus, using this fact and. the result

(\.gr), ôwBE may be written



^¡
B¿

ôwBE = 4o' +l
S

(as:. E)E"vP.îr?)
-fJ -- u

ILz

(t+.gz)

(o)
pv

ù J tuq'rlfl 'Y x ôÀ '
s (o)
pv

where the vol-r¡ne Íntegral appearing in (l+.73) has been replaced by

means of equatÍon (l+.83). The resul-t (\.92) of course stil] assumes

the form (l+.85) r,rhen %'å = O, as is read.ÍIy seen with the help of

equatÍon (l+.gf) . On the other hantt the stronger conditlon ([.86)

(whlch lmplies the first-order result %'E- = O too) ensures the

verrishing of ôI,l* given by equation (l+.92).

Obviously, if the ídentification of 6trtl, referred' to above is

to be eorreet in general, it has to be eorrect for the special

case of zero ínternal magnetic fÍe1d. The above cliscussion there-

fore reveal-s that the interpretatíon of the tern ô1^1, as the r'¡ork

clone against the surface current by displacing the boundary by t

is not correct. Indeed., the manner in which we erbend Van Ka,lrpen

and FeLderhofîs expression (h,38) here by d.etermining and. including

the second-order variation of the megnetie energlf exbernal- to the

plasma shorr's c1-ear1y tha,t ôl'IS given by equation (\.80) 1s a compo-

site tero, made up from the seconcl-order surface term appearing fn

ô\U of ecluation (l+.f¡), &d the seconcl-orcler surface term present

ín equation (h.]h), a suítab]y mottifled form of equatlon (l+.38).
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CTIAPTER 5

THll EXTE1{DED ENERGY PRII'TCIPLE

5.r INTRODUCTI0Ì,[

In cleríving the complete erçression (l+.?5) for ôlI, t¡e con--

dítion (l+.13) of eontinuity of stress over the plasma borrndary ha's

been assuned. to apply. As shown b;¡ IIERNSTIEIN et aI (1958, equation

(Z.ZZ) ) , continuity of stress over the bor:nclary lead.s to a con-

straint relatlonship on [,- as folIot^¡s:

tsÊ
-. ypov"g + tu"(-q n E-"vB^) = a'(o x oÂ + E"o%) (:.r)

uo '-: r' { uo

Ttris constraint relationship restricts the freedom of ehoice of g"

Ilence, recalling that the sign of t\I^I .rr, deterrnines the stabillty

of tÌ¿e pla.sma system, mallhematiesl d,iffieulties arise r'rhen ninimi*

zation of 6W is attempted- with respect to all possihle perturbations.

However the cnerg¡¡ principle may, in a sense, be extend.ed. so that

tþis inrportant constraint can be ígnored, provid-ecl ô'il(t,E) is

written in the aPProPriate forr,t"

5.2 A CONSEQUENCE OF THE CONTINU]TY OF STRESS ACROSS SÞv'

To obtain an íd.ea of the consequences of (:.f) on plasma

stability, the special case of a system having zero internal field

is, for tractabil-ity, nor^r eonsid.er:ed'" Forbirís casee

vpo=0,



so that po = constant,
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(¡.2)

and then equations (\.fB), (h.79) and (h.80) Trecome respeetively

Yp
o I u' (v"E)2 ,Jo6hr

T (o)
p

Q.=v*(E"B€)

f u"" {E"v(v.t) + (v'E)2},

=O

F 2

ôr,iÐ = -;; f t+1"f1 {s"'¡('-"Ê3)i , (r':)

snrr(o)

and.

,** = -rt- lu"" (q'å)'%"0 ('ÐZ), (t'rr)

sn',r(o )

equations (h.Élr) and (l+.83) for ô\ remain unchanp4ed" rrhile

equntion (:.r) reduces to

uoypo v'å = %"0 " oÂ + ,E-"v (''r82") , (:'5)

since g'¿"vÈ = E'v(''Ð?){ (-)

Combinlng equatÍons ( l+ 
" 83) r¿nd (5 

" 3) , and using r:quation (: .: ) '

YP
ô1Ir+ô%= -Ê

S (o)
pv

YP

I

o

T p
(o)

(:.6)
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by use of the Gauss integral trensformation.

Therefore', in this case' combination of er¡uations (5'Z) ana

(:.6) l-eads to
Yp^ t

ôhï = 6I,iF + ôV, + 6i^IU = ^" --:Z 
'| 

U"o E"V(V.E) $,1)

tn(o)

!'rom the res¡It (i.f ) it is seen that a class of pr:rburbatj.ons

6 exist, satisfling the conditlon

6.v(v"q) = o, (1.8)

vhich feads to the vanishing of ôT,rr. This cl-ass of E clearly

includes the incompressibfe perturbations, v.Ë_ = o. Hence, for

tbis special plasma eonfÍ-guration it is evid.ently not possible for

ôI,tr > 0 for all possítrle F... In other rn¡ords " such a system cannot be

completely stable, but at best only neutrally sta1c]e" To examine

this parbicutar situatÍon more specifically it js convenient to

obta.in the following alternative fo::m of ôW from equations (l+'81)'

(>.e) and (5.1+)"

o,nr=? Iu'"(v.E)z-.t- å) "v(tÊ2o)

S

( nd.o

t_

2 n
-o

T (n)
p

o -î
(o)pv

+ 1

I
î(

dt
o

(v * oR)2
o

)o

2u

*t

(¡.q)



ar?.

The first and. third. terr..ts (OW- ana Ot^tU) are alvays posÍti're. Ïf

aIt points on Sn.r(o), the seconil tertrr

Then 6lr r,rilI bc: zero only if each term

n "YF¿È2) is positive'- o
at

(61L) ís arways posibive.

is separately zero. This would require

v.å=vx,5a=n.E=0" (5.10)

Th¿rb is, the system would be stable for all perturbations except

the one for which %'"ä = o, for whicTr it ..,iould- be r¡eutraJ-Iy stotrle"

ii., agreernent .,¡lth the argument stemming fron the condition (5'E)'

Thus, r,¡trile the plasma in this case is nclt completel¡f stable, but

only neutrally stable, the least favourabfe perturbatiorr eatisfying

the eondÍtion n '¿ = O does rlot" to fírst order, Þhysicalli¡ disturh'---- --o é

the pla,sna surface, Ðd so does not have clire eonsequences fronl a

practical viewpoint.

On the other hand, if %"V(LrÊ3) is negatj.ve in some regÍon R

of S (o) , it will ber possíble to fincl a perturbation for r¡hich the
pv'

plasma, is urstable. For examplc., consider a perburbatlon for which

v"ä is zero except in a very thin l-qyer et the sr:rfa,ce:, a,nd for

whích n.E is zero except in the region R, lrhere ít produces a
-f) --'

fluting of the surface along thr: negnr,tic fiel-d Iínes. For such a

pertr.rrbation, the d-esto.bilizÍng ôl'lo term coufd be made very large

comparc'cl vith the stabilizlng tenns cS\ and ô\, and so the system

would be uns.bable. unde.r these cou&itíons the fact that thcre

nrigþt exist a non--trivial perturbati.Ön which makes ô!,1 zero is

irrelevant.
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5.3 ilIT}]IMTZATTON 01¡ 6].{ E}ruENS]ON OF TiIE ENERGY PJìII.ICIPL]I

The progra,tïnìi) nolr ís to minimizr: ô!J r.¡ith respect to.E: subJect

to the various bourdary conôitions. The rnathenatica'I d'ifflcultles

j.nvolved in tahing account of ectruatiot ()+.13), (which in first order

yields equation (l.r)), and. the equation

\¡ x V x ôÂ = o , (r.11)

may be avoided by sinplv ignoring these conclitíons. Thc Justifi'-

ca.tion for taking thís apparently drastic step is discussecl from a

somer¿hat physieal vielrpoint by ROSE and CLARK (f96f', paee 2Bh).

Using O% = - % ancl equation (\.82), the remaining botxrdar¡" con"-

<titions to be satisfied' by the perburbation are

¿!o * eÂ = - (aeo"r)\ ß.tz)

cn S (o) .snd,
Ðv'

dg x6A=o (5.13)
{

on S . Thq.'set of veetors ? r^¡hich satisff equations (l.f), (5'r1),
õ-

ß,:-:z) and (l.r¡) i" clearly a sub*set of the set of vectors E

rvhíeh satisfþ ß.11Z) and (5.13) , but not necessarÍIy (:'f ) apd (5'11) '

Therefore thc set of ôW(l,t) is contained in the set of 6ÏI(ã,6)'

Hence if 6llmìn(å,E) an¿ ôwmín(å,[) are the potentíal energy varia-

tions obtained. by mininizing ôW r^rith respect to Ç arrtt t- resBectlve\r,

then it maY be eonclud.ed that

ôhrmj.n(å,g) (ôwnin(ä,Ï.). (5.11r)



119

Ìlence ¿r sufficicn'b conòitÍ.on for st:Lb:il-ity with res'pcct to

the rcar perburbation ä is that 6%.r.(!,-5j be positlve ' llhile the

a::gument leadjng to tliis conc}:sj-on is straigh'bfo:r.rard, it is not"

however, str obvious thnt er:aminat;ion of the sipgt of Olçrn(E'6)

(wíth 
-E nct constreined- by (:.r)) rrctualay yíeld's a' necossary and

sufficient eond.ition fo:: stabil-:ity. ThÍs 'erbendecl eneìrgy principlee

vas a.tso proposed. by BEF,IISTIITN et 41. (f!rt$). A C.ctailed mathe"-

¡latieal- proof of the extended energy principle , rvhich does not

a'ppc€],r to har.,e been presented c]-ser,there, is rl.evetoped. as folf.ows.

Consid(tr ther pertu:'bation velocíty

-v(r,t) = * t(q,t) + , frn(a,tl , (5'1'5)

r,¡tlere T.= Io + E(%rt) + e ilå¡,t), E is a paramt"ter of suallness'

and. il is a vector of zero order :i.n e on the surface of tjre pl-asrria'

falling rapidly +uo Zêro in the distance e fron the surface' AIso'

;f n(a,t) x rLs(r,t) = o

rrros f, ¡ is non-"zero only in a volu$¿ of order e, anct rep::esents a

inotion of matter perpendicul-ar to the perturbed fluid' surfaco' n.

vari-es on\y ,'i]ovly in any di'reet'ion 'para11e1 to the.: surfaee ' i'n

such a r,rzr,y that the pe:rturbed pressu.se and ma€p:retic field' satisfy

cquatÍon (h.13). g-(%rt) is of zero order in e' and varies only

slowly in all d.Írcetions.

The first-=order form of equa:bion (h"r¡) l¡ill nor" change frorn

equation (:.r), additfonal terms appearing rlue to en. It is shorvn
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below tlrat such tezms must arise because en in fact produces

clranges l.n the pressu1'e p ond magnetic fíe1d. B of zero orrìer in e "

Consider first the stand.ard flrricl mechanics result

ân
+ eV"ãT ,

using equation (i.f¡). fn view of the as;uned properbies of
âE

AVDt the term ti.ãf tt (1.f6) is of zero or¿er in e. Furtlier,

consíderíng the seeond. term in (>.t6), to lor¡est order 1n e

ãn
cVa-- ¡,

at t#t

1dn - 
aE

- 
,-=- --.- = Vorr 

= Í7o-yp¿lt 'L At
(¡.r.6)

(r.rr)t

a zero-orfler result in e which Ís readily obtainect by exlpressing

nabla ín the fonn

v=n(p..v)*gx(gxv), (5.18)

substitutine (5.18) into (5.fT), ar:Id, bearing in nind tlre proper-

ties of an/ãt assumed. above, permissibly neglecting in the result*

lng erçression the term perpenclicular to [.

The result (:.rf) shows that eân/ðt of equation (5.15) gives

a contribution to v"g" and thus, from (5.i:6), to ap/¿t, which is of

zero oråer in e; therefore changes in p due to 'En a"e of zero

oriler.

For the magnetlc fieId, equations (1t.8) and (l+.ro) give the

f a¡T ili ar infinite e Ie ct rí cat con duct ivíty result
AB

J= V x (v x B)ðt
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which, with V"B = 0, enables the

e4pressed as

dB AB

convective derivative of Þ to be

* = Ua 
+ v"Vå = B.Vv .- !V"v . (l.rp)

From the foregoíng it is inrned.iately seen that the second

term on the right*hand. side of (>.]¡g) eontains a eontribution from

eÐn/at vhich is of zero orde:: in e. on the other hand, r:sing

erquation (5.r5),
âE ðn

B"Vv = B'V =- + e B"V ;ïÒT' 'J U

a.E

=Bov*+o(e), (5.20)
OtJ

slnce, because of the ass¡rned properbies of Ðn/ât, q'V(a¡-/at) is

of zero order in a. Hence eân/Ðt givcs rise only to tern's of

orcler e ín (5.20).

T'he nett result of these contributions is that in eq.uatÍon

(>.tg) terms nf zero order in e arÍsù from eàn/àt: therefore

changes in å d,ue to Ên aTe of zero ord-er. From these consídera-

tions it is clear that 6 here <1oes not necessarlly satísf-v the

constraint equatio" (:.r).

cL EVALUATION OF ô1^I

The potentia,f energ¡ variation resultlng frora the perturba-'

tion v- 1s



ô'tr = * it ur' { f [,-l""q.oq* (r. uirJo""]u,

o rn(t )

"" 
(i- x B- *' vp)¿t

(t)
p

"'þq'vB 
- v(p. 

ä,]*
o(t)

ô\^l = - ctt
rt

J

1,.22.

15.2t)

o

o

T

rl
J

dt'

T

r"+1l
B2 .'

tff)

Ð,s can be seen from equauion (h.rS)" (l+.29) o" (l+,76J.

Then application of Gau;st theorem to equaticn (5"2:l-) gives

(p 15.22)

(a) Evaluation of Volume fntegrel.

consideri.ng the volume integral insÍd.e the curly brackets

crf (5,22), the integration rrrith respeet to time is facilít¿tted by

the followÍng transformation ;

(IJ

+

)tpv

with the help of the e:qransion of ""[fr 
. 

#);]LO-

( a .s. )at
.1 1

J 
(oiBíBJ ) - Bi.Ð,J ("iBJ )]

I
T

v"B'VIJ d.t - '¡. B.1J
(t)

þ

T tl

T

p
(t)

Ð
(t)

dt



= |, [r"(v"ts s) - e"e"urr-iu' ,JL -I

rn(t )

since ,JUJ = V"Þ- = O

.Applying Gar.¡sst theorem., equation (5.23) becomes

þ'B"Vv_ dt +

(t)
p

B"B'vT dr ,

(t)
p

1.23"

$.zs)

(>.2\)

$.25)

v.s)n. dsI"q'V!- t1r = -
(t)

pT S (t)pvT

T

since in thís sheet-current model B'd,S vanlshes at all points on

ùpv

ïn terms of this result the volume Íntegral- Ín equatÍon (5,22)

bcrcomes

T (t)
p

From tlre ¿iscussion relating to equation (5.f6), V"v is of

zero order in e. Further, from equo,tion (5.2o), å"Vv is also of

zero order. p end Ðbeing of zero order, it follol¡s that the inte-"

granrì. of v ís of zero order, md thus if integrated over a vohuue

of order e, will yie1d. a result which is of ord'er e'

Therefore if lhe domain of the volume integral Y is changed- to
âtt

t(t) - rn(t) - t"(t), qhere rr(t) is the volume in rvhj-ch at i'

non-zero, an error of orcler e is involr¡ed:
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i[o "nv'r tlt

t (t)
p

= I l-r" * Pt-ìv.v - 
Ð"å'o"l¿t + o(e) . ( 5.26)

J L* 'lo ilo -l
r(t)

rn r(t), -y.(q,t) = # E(q,t), whe,rc E(q,t) nas the sane

properbies a,s in the usual treatments (e.g. BERIiÍSÎIIIN et aI.) where

the e'cluation of nction is l-inearized and. perturbed cluantitíes lre

expresserl to first ord.er in the perburbation, viz, ,

p(t-,t) = n(q,O) * vl(1,0)v'E

= po - ypoV"6 , (5.?7)

B(r.,t1 = Þ(%,0) + Q + g-"vP(q,o)

=r +o+E"vB (>.en)
:oj

dt = (1 +v^å)aro , (5.29)

v =v -.vE.v " (5'30)
TO(fo

'¡¡here as usual

.Q.=vx(Ex$), (5'31)

r,rhile in equatÍons (S.zl), 15.28) and (r.29) ' v = vo.

Using equatiorrs $.2il to (5.30) tt:e volune integral 15.26)

may, with V = Vo, be written to second- order as

ry=
B"B. Vrrr-'- =luoJ



o\

--t

2u)'o

- ypo(v"E)(v 
þ.ü [%

^2õL

v"g) (v.=-) - (vE)"v
¿t"

2B

i
âE r--_t

r.J
dE,

r25.

(5.s2)

{= o {(no ntlt

t(o)
.QV.--

àt'
àE ð8.

+ B oE"(vB^)v"--- .- Er-.8^. [v -:)v'E +
fu =" .'_-o. 

ât, _.c) *o . ât.
ãt ag aå

B "B "(v¿)"y -ï-., 8 "g.V 1 - B_"q"(ve^)"V 
-fu ão t'¿t 

ðt, 
:o ] 

ãt- f) -- { At.

âE âË- r
_ Ë"(ve ).8 .v.-:- - e"B "r' -- l] + o(e) ,:2. \'lO, fu ãt- 

i -,O at.J

where the second-ord.er terms have been retainecl, fertembering ttrat

all fÍr.st orc.r)r terms in 6lÍ must sunr to zero because the,: initial

state is an equilibrir:m state, for rvhich the potential energ¡

function is stationary.

It is irçortant norrr to ehow that tTle integration with respect

to time <lf this er¡rression (and of the correspondlng seconcl order

ex¡rression for the surface integral in equation (5'22) can be

carríed out without reguiríng "Ç- 
to satisf}Ê the first-order con-'

strei.nt equatir:n (l.r). Since å., f" independent of tine' the

inte¡4rations with respect to time and volume rnay be cornmuteù' 'Ihe

first time-integral to be evaJ-uated is thcrefore

r
o

àE

dt'["' *)(v"E)
at'

f u.' -L- 1v" s¡zJ at" '-
o

= tzr(\t. E)2
(i. ¡s)



]-26

The next integrotion is

1 dt
2v

¡t ÐE

I ¿t'(vE)'ir'-l-l-àt'
o

o
rdr' (ðiEj)(are.í )

Bocause of its sirnmetry Ín i and J this term is easily inte'-

g?ated by pazts t0 gÍve

'-"(3iEJ)(arer) = -'-"(vù'v"E. (:'¡t+)

The terms involving % *d Q in expression $ 'ZZ) can be

integrated if q 1s first expanded by the usual vector id'entity"

Rearrangement then reduces these tems to

itu-' (%"0å - %v"sl"(q"' il, - %t"þ

r

t-

uo
o

Õ

%"vg. - %0"Ël'
o

1_

2v
o

Ydt'= -

i)t'
o

Corabination of e r'ressions (5.3S), (f .:l+) and. (5.35) then

lg."og 
* %0"ål'

Itu* f F;.r"B"vå+ 
(n . #.)0"1]u.

(¡.¡:)

shows that

r
o o

T (t)
p

=rlI 1
%"vs - %o'g-l' ' (po *

uo

.(o)

Bz t

+, t v's)a -(v-r*)'t't]lanå ...
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.*[ypo(v"L)2oto+o(r¡ +o(u3) , (536)

the terns o(e) arising from eqtr-ation (5.26) n ffid o(E3) frorn the

expansion or (5.26) Ieading to ecluation (.5.32).

À resÍd.ual error of order s is invotved 1f the domain of

integratíon is here ehangecl frern r(o) to tn(o), the equÍlibrj.un

.¡olume of the pI asma. Exeept fo:: an error of this order, the narL

of (5"36) or second order in 4 i-s preeise\r the ôÍlnl cxpression

derived by VAN f,Al4PEtï and- IELDERHOF (p"75, equatfon (20)) fcrl â

system corrprisÍng f}'ujd oniy. Tt can be transfornred. to give ex'-

pression (tr.Sg) withoub :requiring Ç to obey the constraint

equation (i.r).

(U ) nvatuation of Surfaci: In

Attention is now d.írected. to the surface integral in

eguation (=,zZ). Sinee p and B are such that equation (4"rS) Ís

satisfied., this term mqy be vritten

I f"u." f ft""u4 ,

s (t)
Ðv

ß.tt)

with dS d.irected out of the plasma"

Using the chaln rule operator

, ä"oo , (t.38)

the change occurring ín dS- as the perburbation deveJ-ops is obtained'

from equation (l+ 
" 55 ) as
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aT og- = (vo"t)då -- Yor"d,-'i - vri-"'/o".y c1å * vÊ'vol"t1 , (: "¡9)

r,¡here i- = -L + e n It rvill be cleo.r that the t1:ird. and fourth

terms are of second tlrilcrr in the perturbation. Therefore to first

order d(dS)/dt beeomes

¡J- ¿g = (v .v)as
dt o-'-{ V v" d,S trc

and so using equati-on (f .fl) and. the usual clot notation,

* rq = (vo"åluq - {vg)"dQ^ + vo"(en)% - vo(en)"a{, ' 15'\o)

In a 1ocal Cartesian cocrrLinate system with 9n " dSo = C

and e and e_- lying in the surface, equation (f .hO) cu"t be expressecl
--1( -a

as

= (vo.È)% - (v;i)"/ls + u(ãiii)aq^ - -u.t(DiiJ)ffioj

= (vo.E)d% - tvjl"ds +.(a"ñ")dqo - ae(a"ñr)dsoJ 
+ o(e)

= {vo"å)d% - {voË)'d% * .ftrir)d%'= '(â"i")q.dso 
+ o(c) ,

15.\r)

Cancellation ¡4ives to first order in the

#uq"

sÍnce dS dsea,'o o

perburbatÍon

-d o.
dr .y = 1vo"å.)d% - (t',rË) 'a% + 0(e) ' (5'h2)

Integrating wÍth respect to tine then yÍelds, in first oriler,

d$.=d9",+(vo"t)% (vo-ã.)"a%+o(e). (5'4s)

An expression for û on the perturbed. surfaee, to first order in E '

is still required. Tr,ro cases must be considered:*
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(") Th.e perturbation at the surface ls d.írecte¡d. out of the

plasma.: -

fn thj-s case ít is first neccssery to consider the

effect of the ehange in tirne ocr:urring at the point r to

lrhich the fluid. elenrent is d.isplace,l:

Ê(q,t) = Ê(r,o) + oÊ-(r,t)

Tt ís now permissible to apply a fÍrst-order Taylor expansion

to Ê(r,o) u giving the ehange l¡hich occurs because of the

spatial tisplacernent. To first order Ín the perturbation

(¡.1l+)

X

turbed" quantities have been assumed. to vary slowly in d-lrec-

tíons pn:ra-L1el to the surface, ít is f owrd that in faet Þ.

nust vary slor+'Iy 1o aíZ d.lrections. Therefore equation '

ß.1+>) beeores,

(t) The perturbation at the surface is directed into the

plasma:

In this casc the spatial effect mrst be consldered. first 
'

and. so apBlicatir¡n of Taylor's c.xpansÍon gives, t'o first order

$-(',t)=Ð.(%,t) +(å+en)"vp(q,t) . (r.L+5)

Ex¡randing equatlons (l+.2) and (h"S) in a local Cartesían

coordinate system, with e dS = 0 " enC reea1lÍng that pcr-'{)
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Ð-(f,*¡ = å(%ut) + q"vp(go,t) + o(e)

an<l consideraticn of the ehange .rf Ê(fr,t) with time leads to

û(t,t¡ = U(%,o) + 6ii(%,t) + å'vé(%,o) + o(e)

=Ê +oô+E.vÊ +o(e), 15'tr5)
-o 3 0-€

consistent with ectruatlon ( 5 . hl+) .

Using equations 15.t+3) and ( 5.\6), I of (¡.:f ) beeornes, arith

retention of second*orcler terms only '

I" = 1 ltur'
u^JvO

e (o)
pv

"VÊa)

+ o(e ) ,

ðt
--1,¿g | + o(e)
ât' 'J

15. hT)

^a[Since f, - -- =-. the bormda4r eondition (l+'l+g) sesisfied on
O l,/

+ ,B .E
-aì :

S (t) rspv
(¡.1+8)

(l.l+g)

To first order j.n the perturbation, equation (5.lr$) j.s, fn the

present case

âôA

Ðo*-Ðt =-(

where oÂ is the flrst-order pezturbation ín Â. Comparing equations

15.r+?) e¡rd (5.hg) with equatÍons (l+.¡B) anå ()+,69) respectivety,

it is seen tha,t the evaluation of I to zero order i'n e reduees to

the procedure followed earLier in this section for ofutaining the
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sêcood:-order part of 6l{BE, which did. not invoke the use of eeluation

(¡.f), but where, of course, { vas ccnstrained. by that rr-quatj.on.
)

liha.t :is" f is given by the second*order parb of equation (h.73),

plus terms of order e "

Inlhen the final result ror I is co¡nbined with ( 5.36), trens*

forrned via. equation (l+.38) to the torm (h.fh), the second.-order

va,riation in potential energr becomes, rvith reference to equation

(l+.r¡),

ôw(ä) = ot^i(t,E) +'o(e)

= ô!ü-(Ë,t) + ôr,r^(q"E) + ow-(oÂ,0Â) + o(e) , (5.50)
¡ 

-- 
È) 

-- 
IJ

where ôI,lF, ôi,IS end ô\ are the same firnctionals as appear ín

equation (\.ff), but here I need not satÍsf]r the constraint (>.f).

,.5 DISCUSSIOIV

From the foregoing 1t is concludecl that for a given functíona1

6hl(6,t) of the smaJ-l, sIowIy "¡aqring fi:netion i=, which tloes not

necessarily satisfþ equation (f .f), but r'rhích is sue.h that eg.uatJ-ons

(¡ 
" rr) , (5.12) and (1.:-:) are s¿:,tisfiecì., there is a physically

::ealizable perburbation È- sucn that equaticn (l+.13) is satisfied anil

which mekes the second-order varíation in potential enerry a::bi.-

trariþ close to O'lrt(g,!). Thus

ôr,rnín(ä)=ow*rr(å"q)+o(e), (5.51)
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and. so a necessarnr and.suffi.cir:nt cond.ition for stabili'by cen be

obtained by examining thc sign of 6l{rirr(g,E), while in mi-niinizÍng

ô}tr(_årt)o the bound,ary eoncition (f "r) may be ígnored"

It is importa,r:t to note that the above analysis ieads

naturally to a functional- of the forn ôWU + 6'w, + ôWU given by

equation (L.7?). One concludes that it is not pernoissible to use

the furrctional
î

6trr = * % I t"r'(t)¿t^J --- (r ,

tn(c)

r*here F(Ð i.s the first-order r:nbalanced force in the fluitl, since

this fonn eennot be obtained fron (Oq + ôW, + ô\) r:nless E does

in fact satisfy equation (t"t) (see JIEHIùSTEIN et a^1. 1958, page 23).

On the other hand., because of the self-ad.JoÍnt property of F

with respeet to ? it "* be shown (c.f. BERNSTEfII et aJ-., i958,

page 22) tY,at

òr^r(t,t) = % [ dr -.'È"F(g)JL'
to(o)

As J.mprierl by BEBNSTEIN et at., thlri fo::m of ô!f ca¡l be de'vel.oped-

to givc the result (5"50), This alterna.tive proof , r*tich, for

rigour, contains mueh of the d.etail- included. in the above deriva.'-

tion, has also been completed. The present proof is, cf course'

nore appropriate in the context of this thesÍs, md the alternati'¡e

has been omltted. to conserve space'
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ft should. be notecl aLso that to obtain a suffieient condition

for instability cne maðr use the sa;ne fi:nctional, but 'ç,¡ithout

requÍring OÂ to satisfJ¡ equation (i.rf ). This is possÍ.ble becar:se

(f.rf) is in fact the Eul-er equation for ¡rinimizin6 ô\, subJect to

(>,l-:z) a¡r¿ (f.rE). TIence, if a funetion ôÂ appearing in (h.Sr)

does not satisfy (5.11), another function ôÂ* , whieh does satísflr

(f .ff ), would cerbainly decrease 6\ without ehangÍng 6\, or 6Ïir.

Therefr:re, if fì,rnctions E and OÂ- are formd. whieh satlsfy (>.t.2)

Bnd (5.r-3) but ncrt neeessarily (5.1) and (5.11), and r,rhich make the

fi¡nctional 6!l(t,g) negatÍve, then there is a physically realizable

perturbation for which ôW is certainþ negative, ffid the system is

r:nstaþle.

For a system with zero ínternal nagneti.c field., the potential

energ¡¡ varíation corresponcllng to the form (>.9) becomes, from the

extendeti energr principle result (>.lO) and r¡se of equations $"2),

(5.1+) ana (l+.81)

YP

f {v"¡.)ta.. . 2fr; I a""(1o" E)'% v(%îr2o)6l^I(ä) o
¿

T (o)
p snrr(o)

6.sz)

1

However" unlihe 6 in equatlon (5.9) 
" in this result 9.. is not

constrained by equation (¡"f). Hence, reverting to the discussíon

foIlowÍng (5.9), there is freedom here to choose an incompressibl-e

I
î(

lv ' oal?-¿r + o(e)

) +To
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perturba,tion !, whe're no"E is non-zero only rsithin the surface*

fluting re¿1ion R"

Using ecluatlons (l+. S6) , (S .SZ) and the conditíon Y'ã = 0,

ôr^r(å) =.r+. I
1

lv x o4l2¿t + o(e) e

(o)+ t.

1
ts¿K

o
2 +doËo-n 2v ß "sg)

o
S (o)
pv

where K = n K 1s the veetor cr:rvature of the fines of magnetic
-o

force "

Note that here ít is convenient to define the line cr-¡r.¡ature

1n te:sns of the signed quantity K, whereas, in the earlier r'¡ork of

Section 1.\, it was easier to use tlne tmsígn¿d radius of curvatr:re,

R, and define i{ in term.q of the cLirection of 9, the unit princípa1

normal to the field 1ine. Thr.¡s the stability of the surfaee mqy be

lnterpreted. in terrns of Tellerrs fn¡il-iar cun¡ature eriterion (e.f '

BERNSTEIN et al-. , 19580 pþ,31*2) 
"

As BERNSTEIN et at. show, it is possible to nake the magni.tud.e

of the vo|:me integral ir, (5.53) above arbitrarily smell compared

urith that of the surface integral, and therefore a necessary and

suffieient conditlon for instability can be cbtained. by cxanining

the sign of the surface integral ¿ùonc-'.
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CTIA.HTER 6

APPLICATTON TO THE CONSTRICTED DTSCIIARGE

6"t rNTRODUcrroN

Consid.eration is now gíven to a constricted. discharge

betl¡een electrodes, in which the total discharge current is

assumed to fl-ow ín a very thin layer on the plasma surface. It is

lnteresting first to conslder an idealízed. experiment ín which the

gas is initially at pressurc po and oceupies the whole discharge

cha¡ber of voh::ne ro, The gas is ionized and macie highly eonduct-

ing by the application of an intense electrie fielcl. Breakdown

occurs and. at the sane time external eolls are energized, pro-

d.ueing a magnetic fíeId whlch is strongest near the med.ian plane

of the tl"ischarge colunn. Because of the very high eleetrical

conductÍvíty of the plasrna, the d.iseharge current is confined.

to a rrery thin layer whieh frlreeps inwards because of the pinch

effect antl the pressure of the external flel-d.. The plasma is

thus rapiclly cotq:resseil, and. the clischarge coh:¡¡n is centrally

constricted.

Becawe the compregsion is so rapiô 1t nay be assurned, as in

previous chapters, that the gas obeys the ad.Íabatic law, so that

the pressure and volune at any time are related to their initÍal

values by the equation

ovp1 1/o'=pr
where .¡ ls the usual ratio of specific heats of the gas.

(6. r)
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It is assumed. that compression ends when a balance is reached

betveen the plasma, pressure and. the magnetic fie1d. pressure at the

surface. llhus an equilibriu¡r situatfon is fírst considered., in

whieh there is zero nagnetic field- in the plasma, and the plasma

pressure is constant throughout the dischar6¡e, with a sharp drop

to zero across the current sheet. This situatíon differs from that

associated. with a configuration of the sa,ne geometry investigated

in ea¡lier papers by SEYMOUn (fg6f) and in Chapters 2 ancl.3, in

which a diffuse diseharge was consid.erecl, with a large part of the

cllseharge current flowlng close to the axis.

Later the ana\ysis lri11 be exbended. by consídering an axial

nagnetic field to be trapped wlthfn the plasma.

The dischar6le surface in equilibrium is shaped by the pressure

of the external magnetÍc fj.eld. ani[, as before, is approximated. by

a hyperboloid of one sheet (fie. 5). Againo the system is des-

crlbed by the oblate spheroidal eoordinates (u,vrw) u where equations

(e.r) , (2.2) an¿t (e.S) apply. The prasna occupies the region

u; ( w 4 n/2

u (u(uee
0 (v-(2n

(6.2 )

antl all scalars are assuîeci ind.ependent of v in equilibrlum.

In the vaeuum region erterior to anct within the conducting

walL vhich surrouncls the plasma colurn'
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(6.6)

(6. B)

or
t = (B' rBo.rBr) , (6. E)

it being convenient to omit the circunflex and the subscript 'o'

here without confusion because ín the analysis of the ne:rt section

there is no magnetic fÍe1d. within the plasma, a,nó[ eg-uiI1brÍun

quantities only will appear. Furbher, on Spv(o), where rtr = raIOr

TI

-ö
(6 .l+)

or

% = (%u,Bbv,o) (6.5)

the subscript tbr indicating quantitles evaluated. on the bound.ary.

6,2 APPLICATION OF TITE ENERGY PRINCIPLE

In the present ease

n =wrc-o t

and so, wlth reference to ôþ given by the result (5.1+), and

wing (6.:), on the surface w = uor

n"v(ra-sz) = # (#)
llb D

.ABâB
= ok {eo" (,#)o * %, t;'åb}. (6.2)

Tlcluation (4.3) yieltts, with azimuthal synmetry,

fr(r'rrn,r)=o '
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fr(r'.rn.*r)=o e

${r1rno)-fr{n*r*)=o
Equations (6. B) and (6.9) give

c r#)

(6.9)

(6.r0 )

(6. rs)

(6.r1+)

(6. rr )

(6.u)

where C is a eonstant, proportional to the total discharge current

r.

In fact C is the E¡aJne constant as t¡as used in Chapter 3 and,

in If . K. S . C. r:::it s , is gl"ven by

uï
¡ = J-. (6.r:2)"-zr.

From (6.1-1),

t
c

hvvB

âh

¡2_vb

and so equations (6.11) a¡rd (6.]-3) eive

bb

b h3_
vb

Fron (6,r)" %* = o on sn.r(o), and. so the second term in (6.10)

must vanish when evaluated at w = wO, leavin8

âB

%" ("J
g2

B-
bu

t

b

(rr s )Ì = outl'_
b

a

âw{

ah

b

or

b h
ub

(e=)



fn the present case the cond.ition (\-zl) reduces to

1\0.

(o.r.6l

(6.rr)

Ì. (6.18)

%rr=(2uop*uår,

ancl so, tron (6.15) and (6.16),

,2_

,

àB

%" (#b
(zuop - 

"å.r)
ãh

h_
uþ

(;,^,r)o.

IJsing equations (6.rh) and (6.1?), (6.7) becomes

(zuop - 4")d"v(r.Ðz) = - *-{" -vb #ffi+
h

ub b

The expression (l.l+) for ô\ nor'¡ becomes, with n ú"

b

ôI¡I
t-

S2u 'o

1

o

o

do

pv
(Þ

tlo

pv

{É
h-

TTþ

)

(euop - Burr)' (þ".# tr) Ì=- hub b
(6. rP )

Expression (6,];g) is specialized. to the oblate spheroiflal geomr-'try

by the use of ecluations (Z.z) a¡r.t (2.3), yielding

t)

ã 2 sinw-'wþ ( 2uop - tårr) cosllb cz -r6l^ls 2v h_
1¡Ib (sinzwo + sirù2u) k2cosh2u cos35{

o
o

(o)

Wlth the aseistance of equations (Z-Z)

maníprÈation yields

(e.S) and (6.n),

S]-nI,f-
b

(2popk2cc,sav, - C2)

2v
l_

k3cos 3wo ( sin2wo + gi-rrt 2t) 3/2

where the integratlon is to be carrÍed. out over the surface vI = ÌIO r

fromu= -lf tou= u. rt is lrrnedietely arentthat the sign
ee

I u"*i
S (o)
pv

(6.2o)r5lI., =Þ
o
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of the integrand in (6.20) is detennined. by the sign of i;he

braeketed term in the nr:merator, and. that the sign of this term

is independent of position on the surface Sn.r(o) : $= llb. There-

fore the sign of this bracketed. term determines the sígn of the

complete integral. The necessary and sufficient condition for

instability Ís that the integral (6.2O) be negative, which leatts

to the condition

2uopk2cos\-c2<0. (6.2:-)

It is therefore cleay that, as in the exact solution obtained

previousÌy (Chapter 3), a transition to instability can occur as

the d,iseharge current is increasecl. There exists a critical

value for the d.ischarge current, defined by

ccrit.=(2uop)%L"or2*o, (6.22)

above trhich, accorðing to the theory of idcal hydronragnetlcs,

instability of the surface develops. In M.K.S.C. units the crití-

cal current is, from equation (6.12),

T 2n t^ p)Ltk"or2*o , (6.æ)Lcrít. = ;; t:zuoì

where, of coursê ¡ p and rv. have values appropriate to the equili-

brir¡m confÍguration reached.
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6.3 THE DISCHAREE I'IITH IMBUDDED AXIAI T'IAG}TETIC FTELD

The díscharge discussed in flection 6.2 ís the curvilinear

g;eneralization of the eyì-indrical pinch clíseharge w"ith ar¡ axial

magnetic field. in the vacuuß region onty. Stahility analyses of

such a cylinttrlcal discharge by the normal mode approach (TAYLER,

1gr7) a,nd by the energSr principle approach (scmtfpf ,1966, PP.1hl+-

1\9) sfrow that it is always lnstabIe. The instability arises, as

erpected, from the unfavourable crrrwature of the azimuthal magnetie

field producecl by the dÍscharge cument; stability within the

frame-work of this theory eari only be achieved 1f the discharge

colurnn is surounded. by a eondueting metal she11, ffid an arcial

magnetic field ís trapped. within the plasma. This latter coulcl be

achÍer¡ed by energÍzing the external coils Juet before breakdown

occurs so that some erbernal magnetie flux can be trappecl as the

eurrent sheet irnplodes. Again, dl the dischs,rge eurrent is

assumed to flcr',¡ in the surface current sheet. In this case, the

stabilizing effect comes from the te:m ôr,rrla in the expression (\.ff)

for ôI^I. 6\ beconee, for zero Ínternal current density' sÍmpJy

(see equatlon ( l+. T8) )

(6.21+)

t (o)
p

which is, of eourse, always positíve. In arriving at e:<¡lression

(6.2l+) use has been made of the fact that in this case

vPo Jo*%=o

ôwF = l f u".,+ + yp(v"E)2)



Tn the cu::r¡ilinear generallzation of this linear díseharge'

the surfaee sheet current flows Ín the surface * = *b, and there

is a trapped internal magnetic field. givcn by

B-= (Er^,0,0) , (6.25)

with
V x B = O 6,26)

ancl

v.å = o rc.27)

The arralysis of Section 2,2 ttren applieso anil gives, for the

specíal case of obl-ate spherold.al geometry'

1l+3.

( 6. ze)Bu

Ilowever, as will be seen, there is no need to specialize the

geonetry in the following analysis whlch, in this respect, is

quite genera-l.

The energ¡-prineÍple o,pproach neeessitates the ninimÍzation of

6hl,, with respect to E, for a given borxrdary prescription of å. As

shown by BERNSTEIN et al (1958, Section )¡), the Eul-er equetion for

this minlmization is Just

r,(_e_) = o (6.29)

r¿here 4(E) fs the first-order r:nbalanced force generated in the

plasma by the perturbatlon. For the case of zero internel eleetríe

current, equation (6.2g) red.uces to (sctlMrÐr L966, p.1l+5)

Å(oxe)xB+ypv(v.!)=0. (6.30)
ro
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The assumptlon of q¡lind-rical symnetry in the special ease of

the linear diseharge leads (SCm¿flf L966, p.f'h6) to a consid'erable

sinplÍfícatÍon of equatlon (6.30), resultÍng in

whlch is easily solved.

written

vz(s_"Q) = o , (6.Sr)

However in general, equatlon (5.30) ¡lay be

å t- v(n.Q) + Þ"vQ.+ q"vå) + vpv(v'!) = o, (6'se)
uo

by usÍng tlre veetor expansion of V(B-"Q) and the condition (6.26)'

Teking the divergenee of (6 32) ,

- l- B"Ql -r

vzlvpv.E - --l +':v'[g"vQ+ Q"v¡¡] = 6 . (6'33)
L'- ¿ uol uo

Since, with V"B = V"Q = 0'

v x. (q x B) = E'VQ_ - Q..Vg ,

it follows that

v" (g"vQ) = v. (A"vå)

Therefore equation (6.g:) becomes

r B-"&t ovtlvov.t--:l +L v.Þ.oQ]=0. (6.¡t+)
L'- 3 HoJ ilo

ThÍs is the generalized counterpart of (6.Sf). Unlike (6.Sf)

it is clifficuLt to solve ana1ytica]ly, parbícularly in the oblate

spheroidal- geonretry. Since the function t for whÍch

q = o rc35)
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arìd.

v"t = o (6.26)

minimizes the positlve quantÍty 6Wtr to zero, it Ís of i.nterest

to see íf this represents other than a trivial solutíon of (6.31+).

It is shown below that, because E_ has to satisfþ eerbaín bound-eu-'v

conclltion-e, the onJy fi:nction for rshich (6 35 ) ar.rd (6,56) can be

satísfied. in the tliseharge is in fact the trívíal solution, 6 = Q.

Thus, e=Vx(Exg)

= B'V{ - E"VB * BV'E

sinee v"å = o. Then" with (6.36),

Q=g.vt-E.vÞ. (6.Sr)

Using (6.25), md writlng 6 = (6.,r,8o.,8*),

B
q"vg - # * t%r* n 

%E.,, 
* Io6*)

1l

BE ðuu-u {
= 

--+
hðuu

BâEuu-u'€h ñ-*u

Bâã
+ v -È='t*-Ðn duu

BE âvu-v rc

u

âu

â

d

B.11+1l 
-{h u

BE âÌr11-1I tl\.---t

hh ãwJuw

BE âwu-\{ -
Ðuhhu u

En
(6.38)

Through we of the expressions follouing equation (z"f\), for the

derivatives of the r:nít vectors, and the assumptlon of azimuthal

symraetryn equatlon (6.S4) becomes

Bu+'tf-rch
u

BâE
q.vå= % (.=#

u

¿6v
+

â

âE Bã'1t u-uÎt
-

+ u
ðu hhulr

u

(6.2ç)



Further,

ÐB
u

hu

By a treatnent sÍmilar to the ebo've, this reduces to

BEu-u

Bã âu BE ðu E AB BE ðu
- U-U -O U-v -o 'T,I U 1l-1I -!

4--¿-A--4--' h âu h âv -bfr âv h ðwu v 'lf 'ttr

E ^ qva ttÐr
å.vq = (#** nt.#. ##J %8*UV}I

ã àB E àB BE Ah BË Ah

c."'ug-% (##.#a.,üE) +%##.q ("##
u w uv ulr

Eu

1l+6

(6.1+o)

(6. t+r)

(6.t+z)

tl
-o ðu

hhulf

9

Substituting expressions (6.39) an¿ (6.\o) lnto (6.Et),

8=u¿ --o
fB..,t-l¡Lu

âhEAB1l-uu
ðw -h â" -

u

âhrvl
ðrl+

+

1r"!

1ü

-

rBlut_-
Itrr-u

rBlut-

ItrL1l

Ðu hlruv

âu

Ttren the Ìr-component of equation (6 35) becomes, with Bu + 0,

AE-w
0

ah
!I

âu

or

Ew

h
ÌI

E

(#)
Ìü

ã

âu
0

SiniJ-arly, the v-coaponent of (6 3l5) ¡rsy be tieal-t with to give

à

âu =Q (6. ì+3)



The u-eomponent of (6"35) nay be rearranged- as

ähhtt 1l

1\7.

(6.)+ir)

¡2--u rI

- 

t-h\Buu
¡tu Eu

gz
u

Bu ,3w =Q t

n2 ¿u -r{
++-hhu ïr'

2
1

âu
Bu

2

or

Çb . þuiulf

h
â (#)=0"àu

u

Iûow, as dlscussed ín Sectíon \.3, the freezing-in effect of

the higþ electrieaJ- concluctivít;r of the plasma leads to the con-

d.itlon E = 0 at u = a ou, where the lines of force of B enter the

electrodes. Cond"ítions (6. \Z) and (6.)+3) tfrerefore gi.ve

gv=tlr=O (6.1+5)

throughout the plasma. This cond.ltíon ín turn reduces equatlon

(6. t+l+) to
a

ãu
(

E-ur

B) =Q (6.h6)
u

so that, since 6.,, (t r") = O, Eo must also be zero throughout the

plasma. That is, E has to be identically zero for conclitions

(6.2¡) ana (.6.S6) to nora, so that the soLution of (6.:[) repre-

sented bv (6,35) and (6.s6) is trivtat.

Although equation (6.31+) poses enalytíca1 clifficulties, it is

fortwately not necessaly to effect its solution because a useful

result in the form of a sufficíent erÍterion for stability can be

obtained. by an alternative method., as folJ-cnrs. Since, for thls

system, ô'\ (eeuation (6.2\)) ar,¿ 6\ (eguation (l+.81)) are botli

positive, this sufficient conditÍon for stability is derived. by
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"equiring ô-r^IS (equatíon (h.Bo)) to be posÍtive afso. Here', the

constricted discharge, trith surface approxircating a ffi>erboloiC- of

one sheet, contrasts wíth the eylindrical discharge, because the

favourable eurvature imposed by the exbernal magnetic field. makes

ít possible, as will be seene for 6W, to be positive províd.ed- a

certain transitíonal discharge currcnt is not exceecled. For the

cylindrieal discharge (rnylgn, L7ST; SCHMTITI, t966) ôwo must always

be negatlve for Er, = q" E. * 0

The clerivation of this conditíon is entirely analogous to that

given for the field-free system in Section 6.e. Equatíons (6.25)

anct (6.26) yieldo É in Section 2.2,

¡=F!") - (6.lt?)
h.,, '

it being convenient here to ornit tlre subscript 'ur on B since the

v- and w- cotponents of the internal fielcl B are zero. fhen

B.

q"v(1-."n2)=-#i#..Ifb o

uo' 
.ãh,r.,

= n*n; i#)u' (6'hB)

Ttre ter¡r n 'V(]'jB2) 1s aerived in exactly the seme wa*y as before,

yieltting, through uee of the pressure balance equation

2uop+4=4"*rå., e

the form



n.v(%Ê2-rc

th9

(zuop+rfr-{,r)
C2

h3_vb

ah

l , (6.\s)
h

ub

¿2+-
b h3-vþ

1=-lt*b { (-**l (#

{)
1__

h_!Ib
+

b b

corresponctÍng to ectruation (6.r8). combiníng equatlons (6.hS) and

(6.1+9) to aeter¡rine ( n .v(,,á82) ), :.t is noted. that the tenns

involving BO cancel, leaving

(2uop æ-bv
1hUII

Ì. (6.:o)
h

Þ
p1r

ub b

tr'inally, making use of the fact that in equilíbrium

Vp =.1 X B = 0 in this systern l¡Íth zero ínterns,l current d.ensity,

expression ( l+. BO ) becomes

6ws = t J aoo ($ .E)< h 'v(1-¡z) ¡
S (o)
pv'

( zuop q")
1-

do

r2
'1ñ

h-
lfb

)

Ì

{ h2p

¿2

o
o

o
ub b

(

+ (6.st)
¡3_

vb

It is noted that er¡lression (6":f) is of exactly the sane form as

that obtained. for the system r,rith zr:ro lnternar fleld. (equatíon

(6.19)). Thus, specieJizlng to the oblate spheroictal geometry and

noting tlrat t-- is again given bV (6.11), it is clear that tbebV

erpression for the transition current Ctr*r. above which ôI,ia is

negative w111 be the sane as that given before fuccrit..The differ-.

ence between the two systerrur ís that car*r. here is not critica,l

b
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for the o¡rset of instabilÍty, but merely marks the value of dis-

charge ctrretrt below rrhieh tire system is certainly stable, wÍthin

the fra¡nework of thÍs theory. 0f course, in the línít of zero

internal fieId., the extra stabilization represented. by the positive

qua,ntity ôI^I, is lost and Ctr""r". recluces to the critical current,

cerit. '

Rever"bing to expressÍons (6.19) ana (6.:f ) for ôIr/r, and.

bearing in mincl that they refer to structurally èifferent systems,

it is of interest to consid.er thelr equivalênce of fo:m. The

Teason for the similarlty lies in the fact that ôlfa 1s, essentia.lly,

a field-l1ne curvature termr (equatÍon (:.>S)). In the integrand of

6W* the internal fielci eurvature evaluated on the plasma side of

the Ínfinitesinally thin surface current sheet and welghtett by the

square of the internal fie1d. magnitude at the sanre point, is sub-

tracted. from the vacuum field curvatr:re, weighted by Ê2, evaluated

at' the corresponding point on the vacuum side of the surface

current sheet. /\lthougþ, eompared. r+rith the field-free system, the

discharge with internal alciel fielct has exbra u-eomponent fieltts

both inside and., to maintain pressure balance, outsicle the surface,

the cunratures of these erctra fie1d. eomponents Just on elther side

of the vanishíngly thin surface are clearly the same. Then, when

the lntegrand. of ôW, is obtained. a*s outl-ined. above, the contribubLon

of the interr:al field at the surface Ís cancellecl by that of the

exbra vacuum field needed Just outsid.e the surface to satisf!

presBure balanee"
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6.I+ CRTTTCAL CURRENT TN TER¡4S OF TBJT INITIA.L CONDTT]ONS OT' TIIE
E)(PERIMEI,TT

.An approximatfon for the critical current in tenns of the

initial conditions of the experiment (d.escribed. a.t the begÍnning

of Section 6.f) ls useful-, anil is obtained for the oblate spheroid.al

geometry in the following anelysis. The dfseussion is, for simpli-

city, restrieted. to the flel-d.-free system. This serves to illus'-

trate the method. used and- the approximations involved,, which eould

then be appliett to the more compLicated system r,rith internal field,

if required.

Ttre d.iseharge voLurne r cBJt be computecl ín terms of the plasma

geonrctry parameters kr uo and. r,r.. The adÍabatíc equation of state

(6.r) mey then be e:q:ressecl

,o Õ- --\ (6'>z)p = p(p eT ,lç,ruerwb/

At equilíbrfr:.n, the pressure tral-ar¡ce equation is

2uop = 4

13., 
* 4.,

and so if Bbu = BM, the exbernal magnetic field. component at the

med:ian plane u = 0,

2uop Bl{

with the aíit of equation (6.ff).

( 6. ::)
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Referring ncnr to the result (6.22) , let ít be assu¡red heve

that ec¡uilibrÍtrm of the plasma/magnetic field configuration is

reached at the critical eurrent. Then equations (6.52), (6.22)

and (6.53) may be solved for Cerit. ancl wO in terms of the quanti-

ooties p-rr", k und. B*. To this encl lt is first necesssrflr to obtain

an expresslon for the vo}¡¡rc t of the discharge'

¡2n ru
I I u 

h- tr--h-- du dv dw ,I I llvÌ¡¿o /-11
â

(6.:l+)

the íntegration linÍts being cleer fron the i.nequalities (6.2).

The integration procedr:re is straightforyarct, ffid yields

" =ånk3sinrruu{r - (t-xz'13/2 * sinh2u" [i - (t-x2)'11 , (6.>s)

r¡here X = cosw.. Reeallíng the díscussion in Section 3.6, the

degree of raclial constriction is not expected to be large, so that

it is reasonable to take

woæ n/2

or
x2 € r . (6.56)

Ttre inequality (6.56) enahles (6.55) to ue approximatetl to

second. ord.er in X by binonrial expansion, givíng

t =3 nk3sinhun(3 + sinh2u")x2 . (6.57)

Defining

t"=?rk3sÍnhu"(3+sinnzu"), (6.¡A)
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r=FX2
e

Combination of equatlons (6.1) €nd (6.59) resu.Lts ín the

e4plieit fo::m of (6.>Z) requirecl,

(6.s9)

(6.6o)p
.-)vqx *' t

¡¡hefe

o = oo.otF -Y G.6:-)
e

Substitution of the result (6 .6o) into eguations (6,22) ana

(6"fS) gives, in tenas of T = cosrrb, the respective results

c:ri.t. = 2uoqkz*z(z-v¡ , (6.62)

and

c3"i.t.=2uoqkz*2(t-v'**'*t" (6'æ)

Elimination of C?rit from the last tvo equations leacls to

'o2"M x2"(-vx2_t-=0. (6,d+)
2u-q'o'

(a) Solutfon lor y = 2.

In terns of m, the nu¡tber of degrees of freedo¡n over

whích the energ¡ of conrpresslon becomes dlstributed-" the

acliabatic inctex in equatlon (6.1) is given by equatlon (1.61).

If the compression is assumecl to be two-dimensional, as

would seem appropriate for the case of ímploslon of a cylÍndri-

cal eurrent sheet onto a collislonl-ess plasm&, Y = 2, and' so,

from equation (6.62)

¿z =2uok2 " (6.6j)
crl.t. 'o*
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Thus, for a two-dimensional compression the critical

eurrent obtained, from equations (6.12) enA (6.6¡), is

rcrtt.= 
ilt(auoq)% 

. (6.66)

fn this c","u l"rit. is therefore simply cii:tennined. by the

initÍaI condi+"1ons of the experiment, end. is independ.ent of

the externe.l ctruentity BU. In fact, for f = 2, equatíon (6.611)

red.uees to
B_-2

dFN4+xZ -l-=0, rc'67)

wíth solutlon for X2- of form

--ô ËoQ Bnf '',- - ryz = _L {t (r + 2 -l"r-)-, - t_} . (6.68)

"*'' 
Èo8

From equatlons (6.t4) and (6.6r),

q > c , (6.69)

and so to avoid. X becoming imagínary the positive sign nust

be talren ln equation (6.68). Ilence for y = 2, x2 is always

real and positive, irrespcctive of the value of B¡4, and' the

existence of a rea-l solution of equatiot (6.6?) ¿oes not

inpose a conclition on Br.

(b,) Sol-ution for 1 = 3.

It is öoubtfr:I íf the assumptl-on of a two-dimension¡rl

compression would. be valid Ín the present geonet4f' Reflec-

tions of plasma parbicles off the curr¡ed imploding curent

sheet and off the eurvecl end. plates wouLd tend- to produce
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d.istributlon of the energ;y of coinprcssion over all three

translational d.egrees of freedom, even in a coll-Ísionless

plasma. Thus, if a r¡alue of 3 is e^ssuned. for m, y = 5/3 and.

equation (6.61+) becomes

o2
"M (6.r0)

oo-
which ís clifficr:lt to solve exactly.

Ilowever, sÍnce the Ínequality (6.56) applies Ít is

pcssible to obtaín an approtcinate solubion to the more general

form (6.6h), as foIlows. The first ter¡l ín (6.61+) becones

2Btur

"nut

x1o/3 + xz - 1 = o ,2u

x2^t (6.t:-)

(6. rr)

(6.rt+)

2uop '

by means of equatÍon (6.60), whJ.ch applles when X2- <i 1.

Hence, regardlng p and krb a,s 'rerlticaf" quantitles,

equation (6.6h) yields

B.?
M

4,"r=l:x2=sÍn2tb-1, 6'rz)

in view of (6 .56). TLre inplication of thís result is thet

\rr, Biven for the critical current by equation (6.ff) as

2uoq

c ..

\.r("'o) = ¡ffi
b

at the neclien plane, satisfies, with reference to (6.53), tfre

conclitÍon

4*r(",0) < srt
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That this is a reasonable resuft wrder the conditions

eited. follows from the fact that for sueh a plasna/na€netic

field. geometry the stabíaizi:ng effect of the e:cbernal fiel.tt

is quite snalL becawe the shape of the d.isctrarge surface is

not greatly altered. from that of a cylindrical d.ischarge, md

henee, relatively, the destabilizÍng effect of the azinr¡bhal

self-field, nust be kept smal1 to avoid. instability. This

fact is amplifiecl in Section 6,5.

Noting that q cloes not depend. q)on %, equations (6,TL)

and (6.72) gíve the first approxiniatÍon for *b *

^ 2uo
u?^( -^ €-. (6.7i)

tt'
If now the term X2 ls not neglec'l;ed in equation (6.6h),

brrt is e:çressed. in terrns of thc flrst approximation (6.75),

there results a second approximation to X2Y, givr:n by

th
Ì (6.t6)tfv -1*t,-é" IBM' BM"

where, from (6.56),

t/t
<1

Eraplc¡¡ing the first approximation (6.1>), equations (6.fe)

2uo( e'J
BM,

and (6,62) Lead. to rl- * vr
e 
\-tJ 

nr.(u
I

on)t

(6.tt)

(6. ?8)N-¡

Bl,t

ïerit.
uo
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Thís expressíon gives an apprôximation for tbe c::itical

curfent 1n terurÉ of the initlal conclition quantitÍes po, ro,

u., and the measurable euantity BnU.

llhen y = p, (6.f4) reduces to equation (6,66) 
"" requÍred;

ancl lrhen \ = 5/3, equation (6.T8) beeones

g.

aSnt( u

3.
5

)q
I o (6,ts)crit . 1

5foBI,t

6,j GEOÞIETRIcAL TNTERpRETATToN oF TIrE cRrrrCAI CUNRENT

there i.s a sfrrple interpretatíon of the result (6.22) , From

the geometry of the diseharge surface (Sny¡,lOUR, A96l) it Ís knor¡n

that if the fielcl line d.ireetÍon l-ies to the left of a surface

generator (nig. 8) at a given point, then the fíeld IÍne curves

away from the plasma at that poÍnt and. should, by Tel-lerrs cr:nature

criterÍon, provid.e a stabilizing effect. The opposite holds if the

field line direction lies to the ríg-þt of the generator. To deter-

mine the field line direction relatlve to that of a chosen generator,

cortparíson is mad.e between tr,ro angles 0 and.0rr deflned ag folIows"

As in seetion 3.5, e is the angre between the straight line
generator passing through the polnt P(urv,wo) ana the ta,ngent to the

curve v = eonst., w = eonst. througJr p; 0

equation
, is clefÍned by the

tan0, (6. Bo )
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snd is the angle between the direction of the field line at P and.

the same tangent.

From equations (:.eg), (z.z) an¿ (2.¡), on the surface w = lL,

eOSl.lb
tanO = (6 . 81)

(6.82)

(6.8:t)

(6.Blr)

(sin2wo + sinn2u)%

For w = wb, ecluatíons (6.il) and (6.16) give

c

and.

B-=
bv k eoshu coslrb

(2uopx2cosh2u eos2rro .- C2)
,2

B.
bu k coshu cosl¡b

each as a firnction of the coordinate u.

Thus substitution of the results (6"82) an¿ (6.8e) into

equation (6.80) glves

Rþv

-=
I)D-

bu

ctanoB=
(2uopk2cosh2u eos2*t - c2)

To compare 0 and 0B it l'.É convenient to íntroduce a quantity A,

defined as

a=tan2er*tan2t

= (tane, * t.sng)(t"ne' + tanO) , (6.8i)

and exa¡nine its sign.

Using equations (6.8r) and (6.84), equation (6.85) can be

nanipulaied to the fomr

cosh2u( ri2 * 2vopk2cosq5 )
A=

(sinh2u a sin2w¡)(euopk2eosh2u cos2wo - c2)
(6.86 )
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To cleternine the sigr of a i.t is formd advantageous to elininate

(2tropk2cosh2u cos2*b - Ct) tron the d.enominator of (6.86), usíng

(6.8:) again. Thus

Ct -" eu-ok2cos4or,
¡ = o* ----I

k2&2 cos2w: (sinh2u + sin2l¡- )bu þ' -- ---- b'

(6 .8r)

Frorr this form it i-s seen that the denominator of A is alwa¡'s

positive; henee the sign of A is con:p1etely determined by the

sign of the numerator in (6.8?). In turn, from equatíon (6.85)

the slggì of A corresponds to the sign of tan0' - tanO, si.nce, for

the geometry und.er consÍd.erationo

a.i, oB.þ,

ancl so in (6.85)

B
+tanO>0 (6 "BB)

tan0, > tan0 if C2 > zuopk2cos4wo . (6.89)

Ïlith reference to Fig. E, if (6.49) ¡ot¿s, so that 08 r 0,

the fie1d. line clirection lies to the rígþt of the generator, end.

the field. line curyes tor,rard.s the pLasma" giving a d.estabíIizíng

effeet. Note that condition (6.89) Ís in¿ependent of position on

the surfaee, so that íf it is satísfled. the fiel-cl'lines everXnrhere

curve toward.s the plasma and" the entire system is unstabl-e. Further,

when the magnetic field. resultant lies precisely along a generator,

equation (6.89) confirus the existence of a critical current gíven

tanO

ft now follows that
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by expressíon (6 "22), derlved. by rrreans of the enerry principle in

Sectlon 6.2. Physica]-Ly, the transition to instabi-lity occurs rLS

a resu-l-t of the increase in the d.estabílizing azimuthal fie1d., which

srr'j-ngs the direc*uion of l;he resultant magnetf e field. across the

surface generator into the unstable region. Obviously' if the sur-

face Ís on\y slightly eonstricted., the surface generator angle 0

wíll be sma1l,, anil instabitity wiLL set in at a relatively 1ow

value of d.ischarge current. Ilenee the remarks follov¡ing eqnation

(6.rt+).

6.6 DrscussroN 0F TIIE AppRoxuu.ATron

Considering norr the critical current for y = 5/3 given by the

approxination (6 .79) " it is seen that lcrít " 
decreases wlth in-

ereasing B*, for given rlinrensiorrs en¿l inÍtial condÍtions. /it first

this result seems paradoxical, since B* Eives a measure of the

strength of the stabilizing fieltt. However, for a given initÍal-

pressure antl volune, :'.ncreasing Bn,, must gÍve increased. cOmpression

of the plasma, leading to a higher value of wo , and a lower value

of X = cos\{b" fn fact, in the wieinity of the critical discharge

current, equation (6.15) noros approximatety, for x2 4;-.. As X is

reduced., the stabÍlÍzÍng effect of the favourable currrature ím:

posed by the erternal fiel-d is reduced. This is seen from expressÍon

(6.8f) for the tangent of the generator angle 0, evaluated at the

median plane,
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(6.qc)

(6.9r)

(6.92)

tan0 =o
æY¿r t(r - x2)

tor x2 4 1. As 0o beeomes smal-ler, it is easíer for the azímuthal

sel-f-fiel-d component to srdng the resultant fieLd vector across the

òirection of the generator. At the same time, the surface value of

thís destabílizing azimuthal fierd. increases as c increa,ses and. x

decreases, as is evident from equation (6.82), tend.ing to increase

the angle 0- of the resultant magnetic fieId., as shown by equation--B
(6.8)+)whenu=0,

tanO c
1,,
').Bo (zpoptr2x2 * c2)

c
kBMx '

since at u = 0 equation (6"8S) gives

(euopi<2x2 * c2)z
R=R=-bu "M KX

At the critieal. cr.¡rrent, tanOo of (6.90) becomes equal to

t*0Bo of (6.91), so that

Cerit. = kBr',ð' ' (6'gS)

a result whích con also be obtained. by eti¡rÍnating 2lroq from

equatÍon (6.6¿) by rne"ns of equation (6 "7r) " Itquation (6.gS) 
"urr*

not be obtained fron (6.63) usÍng the fj.rst approxínation (6.75)

onlJ" since equatíon (6.6:), being of <lifferent order in X from

((>.62), yJ.elcis Ccrit . = 0. Of course, usÍng the second, approxina:

tlon (6,16) , equatlons (6.62) ana (6.æ) consistently yield, to
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"

fonrth orrfeÌ in X, C?"it = k2-Bfð4, ir agrcernent r,¡ith (6.93). To

sunmp-rise, in nÌanning an experiment here, one may fix the initial

quantities, Þor to, k and. u^, thr:s cletermining F^ or (6.¡8) and. o..'ce
of (6.61,), and then, depending on the compressÍbility of the plasma

(a mcasure o:f qhich is y of (f.6f)), it is of :'-nterest to consider

hov the final- value of X attaineci depencls on the initial choice of

BM" It is cl-car from the rel¿rtíonship (6.%) that, for given k,

Ccrit. varics iinearly with the prod.uct Bt,ð'. fn turn, by writing

equation (6. ll) in the form 1

(zu q )Y'o- (6.e\)t*ð' ?"=y e

B't Y

it is seen that the y-dependence of B"X2 ís as follor¿s:

(i) Ï'or n = 1 Ín (r.6f)r y - 3 end Br.X2 i.ncrerases arith By.

(i-i) For m = 2, "( = 2 ancl n;X2 is independent of B*.

(iii) For m = 3, T = 5/3 and Brf2 decreases as Boo increases'

prom (i), (ii), (iii) and" (6.g3) lt fol:.orqs that for a¡r

rrssruûed one d.egree of freedom Ccrit. increases r,li'bh Br; for two

d.epçrees of freeri.on Ccrit. is not affected. bV BOO:, and for three

d.egrees of freed.om Ccrj.t. d"r.:creases ü,s B,* is increased."

The¡ c¡rse (ii) is somewhat curious, anil it rnight be concludr:d

that since Ccrit. j-s ind.epend.ent of B¡,1, the choice of B* is in no

way res-bricted.. But it must be recaLled. that the clegree of radÍa,'l

constriction of the d.ischarge has bec.:n assumed. srna]I, so that (6.¡6)

applÍes. Corresponcängly, tlre inequality
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L(2uoq)-t*tr, (.6.95)

obtained frorn (6.?7) ror y = 2, nust be satisfied in case (ii),

Equatíon (6.78) mqy be used. to determine h* Icr.it. depend.s on

k, the d"lstence a'wey from the system syrnnetry rrxis of the comrrron

focí of the u and w coordinate surfaces " k may be usefully re-

garded. as a system scalíng factor" The 1nÍtia1 volume of the clis-

elrarge wou1cl scal-e as k3, ffid hence c1 of equation (6"6]-) lrould., with

the assfstence of the expression (6.58) for Fu, scale as ko, i.e.

q rernains eonstant 1f po does not scale vith k, but is regarded as

an indepenclent pararneter. 'Iherefore equation (6.f8) shows that

IcrÍt. lror:.Id scale as k for a given value of B*. This conclusion

refleets the faet that the d.estabilizing azimuthal magnetic field

%rr(",0) of equation (6.1:Ð produced by ïcrÍt. scales as k-'1. If

Ì: is varied, equation (6.90) shows that the tengent of the generator

anglc. at the rnetlian plane ie not altered, end hence, for the

critícaI current conditíon, tm0Bo must not change with k. But

t*OBo is, fron equatíon (6.8l+), sirnply Bt.,r(",0)/Blt" Thus, for an

all-ocated. vafue of B*, Bbv(c,O), given by equation (6.?3), must not

change. TÏris cond.ition Ls met 1f C"rit 
" 

varies &E k, e.s r*s,s

deduced from equation (6.?B).
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6.1 cor,4pARrsoll krfrn THE RESULT FoR THE DTFFUSII DrscuARcrl

Flnalty, for a given stabílizj.ng field. B*, a comparison nay be

made between the critlcal current given by equation (6.22) , *d

that obtained. earl-ier in Ctrapter 3 for the ùiffuse tlíscharge. From

equation (S.:f) and the defined parameter A = ByF2 sínw', the

critical current for the diffuse discharge can be written

u^ * rÈ kBy
-" r = c - , (6,96JZn 'criU. - "crít. - 

sin2wb + slnh2u.

whereas here, for the sheet-eurrent discharge, equation (6"p2)

becomes, by rnea,ns of equatlon (6 ,72) ,

tt
kB* cos2wo

SJ-nr,Ib
(6.9t)

(6. e8)

crit.

Comparison of equations (6"96) and (6,9?) shor,¡s that

tç

erit .
e <ccrit 

"

ït is therefore concluded 'bhat tlie d.iffuse discharge l¡ould be

unstabl-e for a lower d.ischarge current than r¡ould. the fiel-d.-free

d.ischarge. A1so, the presence of the internal field. in the ùiffuse

df-scharge would result in a loss of coinpression of the plasma, com*

pared. with 'bhc field.-free ease.
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CONCLUDING REI,ÍARKS

A detailed. swnmary of the material presented Ín this thesis

has al-read¡r beep given in the Introduction" To complete the dÍs-

cussion at thís point , the following cornrcents are made.

Sone of the analysis (..e. Seetj.ons 2.3 and 6.3) has teen

carriecl out in the context of a general orthogonal curvilinear

coordinate system (urv,r+) c '¡rith the assumption of syrnmetry with

respect to one coordínate (v) on]y. The results obtained. there-

fore have a much r¡ider application than that eryloyed here. A1so,

general conclusions ca¡.i be drawn from the detailed discussion of

Cï:apter 3, concerning the dangers in neglecting the effect of

geodesie curvature when considering d.estabÍlizlng mechanisms

arising from field-line eurvature in magnetostatic systems wlth

twisted fleltl lines.

Speclalized- results have been obtained. by application of the

general theory to a specific geometry of constricted. discharge.

For a nunerical íl1-ustratlon, consider the fielcl-free discharge

(Ctrapter 6) characterized by values of wb close ,o i . Assuming

a stabll-lzing fielct B* of 1.0 weber fmetre2, a scaling parameter

k of order 1.0 metre, Ðd a value of 0.1- for cos wb, expressions

(6.97) and (6.::2) yield Ïerit. tu 1Os alrlps. Bearing in nind. the

linitations of the mod.el- used here, anil assumÍng that the remafning

fo::nid.able technological dif ficultÍes ean be overeome ' theory there-

fore precllcts that it should be possible to pass currents of a
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magnitude sufficient to produce a considerable pinching effect,

without encou¡tering the severe hydromapçnetic instabilities conmon

in eylind.rícaI pinches.

In this thesis, the speeific aims oubfined in the Introduction

have been achieved. Hotrever, erçerience gained. in the course of the

vork ind"Ícates that there exist further d.ifficult but vorbh-while

problems for firture solution in this interesting geometry, which

could be highly relevant to recent erçerlments r,rith non-cylindrical

z*pinches and" dense plasma foci. For exampl-e, a stabillty analysis

of the curvil-inear analogue of the cylindrical systern treated theo:

retlcally by SUYDAM (fq:B) and NEIüCOIIB (1960) could be a proJect

of considerable Ímporr.ance. Partícular d.Ífficulties will arise

here, for two reasons. Fírst1y, the firnctions appropriate to this

coordinate system are the oblate spheroidal wave fwrctions, which

are not easy to handle in general. A second problem eríses

because magnetostatic equilibrium ig necessa^rry for appl-ication of

the hydromagnetic ener6¡ príneiple (SfUOtt , L959), whereas it has

been shown here in Section 2,2 t}¡at the nragnetostatic equations

and, Maxr,¡ellts equations are not satisfied by the conffguration Ín

which the magnetic e¡:d. electrÍe-current surfaces are hyperbolold.s

of one sheet on which the plasma pressure (coqrarable Ín magnltude

to the magnetic pressure) Íe constant. The necessity for such

equilfbriu¡n has apparently been ignored by COMISAR (tg6g) in tris

analysis of the denee plasma focw, although there seems to be
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excellent agreement of his results with those of experiment. In

the absence of a static equilibrium, it rnay be posslble to study

this geometry as a {yna.rnieal stability problem, using no:rnal mode

analysis and. nr:nerical nethods.

Finally, it should be recalled that the ideal hydromagnetie

stability theory has severe lim.itations in íts applieation to

plasmas, beíng based on a somewhat unrealistic moclel whieh neglects

the effects of transport proeesses, ffid of factors sueh as the

fÍnite ryroratlius of tlre plasma particles. The inclusion of sueh

plasma properties greatly enlarges the number of possibl-e in-

stabÍUties (f¡mlnnf , 196T). Of particul-ar ímportance is the fact

that fÍnite perbÍcle mass, the Ha1l effect, pressure gradients,

electrie fields para1Ie1 to the magnetie fie1d, as well- as finlte

resistivityo remove the constraint of frozen-ín fielde. This

changes the charaeter of possible motions ancl leac1s to a range of

resistive ínstabilities, most of whieh have been d.etected. in

llnear pinches (f,UmtSnf " 1967), and shoulcl be relevant in the con-

stricted. discharge. Considering the temperature d.istributions

derived by SEYMOIIR (];g6]-), there may be lnstabilitles assocíated

with fínite heat conductivity along the magnetic field (CAf,nnV

et al, 1963). In acldít1on, of course, numerous microinstabilltÍee

eould. be important, particularly the ?r¡niversaf instabilities

cbiven by inhomogeneities in plasma temperatr.lre and d.ensity.
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(r/s)as/âu - - sinhu

coshu(A2cos2w + 92Y26?-)

* s2r.2cl

170.

A2cos2w S2 + A2cosh2u cos2w

g2

(r)

APPENDIX I

As mentioned in Section 3.3, it is possible to evaluate the
lt

variation 6 [ aÙ"/n ¡y commuting ô and the I sign, anil earrying out)J
the resultÍng integration. Equation (1.29) is

0(aøl¡) = - Zdl.,(e ua¡/âu + ôr,¡ðB /ùr)/82 , (r)

where h--ôu ar¡cl Ì¡-,ôrv are com'oonents of the elemental vector a whichU l^t

defines the variation sueh that a"B = 0. It is also known that

ôu=-ôvo/f-ß6w (z)

(equation (S.tg) et. seq..).

From equation (3.5\),

where 32 = sin2w + sính2u.

Combíníng (a) anA (3) gives

contribution to the integral from - u

omitted.

+

A2cosh2u cosZw
ðvoDB

gz(¡zcos2w a g2Y2g2 BI âu
(l+)

As cli.scussed in Section 3.1+, the term in ôvo gÍves no net

(ou/¡)ãBlãu = -zt'zc'z"i"tt'z" =i"* 0" 
l1

cosw(A2cos2w + g2Y2ç2) L

to u", anil may therefore be
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A treatment sirnilar to the above gives

(ow/B) ðB/,!w =
sínw ôw(sqk2cz- -- A2cos4w) (r)
s2 cos2w( A2 eosZrr a gzY2ç2)

The eomplete integrenil is, using equations (3.1+), (f ), (l+)

ana (5),

2:K3
"- î- tanrr coshu ôwclu

S 4kz1z - A2cos4w + zlzkzlzsinh2u
A?cos2tt -' g2y2g2

(6)

DefiningMandNas:

I{ - C2k2S4 - A2cos4r+ ,

(ou) = l+C2k2sinhu coshu S2d.u ;'v¡'

sinhu
I\I

The integral is therefore
u

e

N = A2cos2q a ç2y292 e

(N)ro = zc?rç2sirùru coshu clu ,

lengthy manipulation will reduce the integrand, on the surface

w=wurto

2}-3- A tanwb Òlrd

- t +tanwo ôw

¡3

-ue
I't(ue ,wb ) sinhu"

A=-\ tanw. rlw
N ( ue ,l¡b
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The eritical current ís obtainecl by ectruating thÍs expression

to zero and. solving for ccrf.b.. This operation reduces to sorvíng

M(uu,wo) = O ,

yield.ing

Cerit.=Acos2wo/t(sin2wo+sinh2uu) (f)

rvhich is the saflre as equatíon (¡.gf ).
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APPEI\IDÏX TI

lthile,ìquo.tion (!+"lil+) of Section l+"3 rnay be re6;arded as en

intuitively obvíous result, ln the ínterest of rigour an enalytieal

deirívation is provided. here.

Generally, íf g(t) Ís tire time-d.epend.ent firnction given by

I
e(t) = f r(r,t)at

J

r(t )

(r)

where t(t) is a sirnple closetl volume, bounded by the surfaee S(t)"

the tlme ¿lerivative ¿e/at may be obtaincd by enrplq¡ing orbhogonal

curvÍlinear eoorclinates to ex¡rress g(t) as e, triple íntegral

possessing tlne-d.ependent limits of lntegration. Ilor'¡ever, the:

proof is greatly simplified by cÌroosinp¡, in parbícu1ar, spherical

polar eoordinahes. Thís choice occasíons no loss of generality"

since aIL points on an¡¡ elosed. surface S(t) may be described in

te¡ms of coordinates r, 0r0 havÍng their origin lrithin S(t)" by the

equation

rt = rr(o,O,t) (z)

For sinplicity it is assumed. that 11 is a single-valued'

funetlon of 0 and 0. In terms of the eleu:entary volune so deflneclo

ary arbitrar¡¡ silçIy*connected- voh¡rne may then be treatecl by sunming

a, nu:nber of such elenentary '¡ohnnes "



In terrns of r, 0 and ô, g(t)'becomes the triple integral

rTì+,

(¡)

(\)

e(t) = f(r,0,þ,t)dt

d.0 d0

(e
f(

,Ort)
r,0,ô rt)r2 sÍnO d.r

oo

T

r
o

1

I"u' f'.¿O ¡(0,0,t) ,

oo

where

ïl (e,o,t)
f(r,0,00t)r2 sin0 clr .F(e,ó,t) =

o

observing that the l-irnits of Íntegratiori rnrith respect to 0

and 0 are constants,

- t'n ¡2rqg= I'oo f- o^-L¡'ro-¿-t) (:)
dt - J "' j *'f àt !\vtYtu'

oo
Fron ()1) it is seen that F(g,Ö,t) is a one-climensional

integral whose up-per l_irnit depends on the three coordínates 0, 4)

and t. ¡'rorn (5) it is seen that the parbial derivative of F with

respeet to t is required hcre, 0 and. 0 trein¡¡ held constant. Thc

theory of differentiation of a d.efinite' integral d.epend-ing on ii,

para.neter¡ s[¡] x¡ and having limits also dependent on x is thcrefore

applicable, the requirerl forrqula bein¿¡ (see, for exarnple, HILDEBFJ\ND'

1963) ,

. rB(x) rB(x) 
^

# f"iï;,s)ds = I"'*' *; nt*,s)ds + p(*,t) H- - n(x"r) S '

A(x) a(x) ( 6



Therefore, since 0 ancl d are held constant, applieation of (6)

to (h) gives

# o(0,ó,t) = #,1"'Í?;1;lì,t),, sino dr

^

1,75"

(z)

since A(x) or equation (6) is zero here.

Substitution of (T) into (5) eives

þtr,u,.l,t)12 *t.u] dr + f (rt ,0,ô ,t)r! sin0 x

# "t(e,{,,t) ,

2n (0,4,t),
þt",u,g,t)12 "t"t]

f"'
(o,o,t)

a
ât

o

d.er
o

es
dt

. f:.r fl'.* r(r1 ,0 ,o ,t )r! sine S 11(o ,ô,t)

= f # r(r,t)a" + I:-, f.".ó r(rr,0,0ot)r! stno x

t(t)

d0 f"' ðt dr

o o

(B)

Now 11, 0, 0 and t are the coordinates of a point P on the

surface S(t) at time t. As time passesthe surface deforms, and the

velocÍty of P is glven by

drt 
do

% =FA,+'t æ+ + rr sino #+ (9)

In the parbicular curwilinear coortlinate system ehosen irere the

vector element of surface area då on the surface descrlbecl by (a) is

reaclÍly cleterrnlned. as follor.rs. The elements of length assocÍate¿I

# "r1e,p,t)



dS=dslxdÐ

P3

dg2

P2.

e_r
ds1

An element of surface area on S(t) is ¿erined by the
surface points PIrPzrP3, chosen so that ds1 = P1P2 is
orthogonal to e,, artcl d!: = P1P3 is orthognal t. %-û

P1

,

-

Fig. 10.



wlth d.r, d.0 end. d.{ are, in terms of the scale factors hrr

respectively

hrdr=d.r,

h0d0=rdO ,

tO U0 = r sing dÔ

dÊ=dgr*då2

IT6,

h h0t

(ro )

(rr)

(re)

0

t

since h" = 1, hO = r a¡rcl hO = " sino in the spherical polar co-

ordinate system chosen.

Fron FÍg. 10, if PI, P2 and. P3 are three closely assoclatecl

points on the surface rl = lt (0,Ort), a vector surface element dS

normal to this surface as shol¡n is given by

t

where dgt u with tail at P1 and. tip at P2, has no Q-component, artcl

ds, , wi.th tail also at P1 and tip at P3, has no O-eornponent . In

other l¡ords, ,f,gr , lying in the tangent plane to the eoordínate Bur¿

face $ = constant at P1, has conponents 11 d.0 gu and.' because 11

tlepends on 6 alone r:ncler these conclÍtions,
àrt
ðe

1.e
ârt

tlÐ = 11 d.0 gO * ãõ'- ug 9r

Sími1ar1y, for the coordinate surfaee 0 = eonst. and a-ssoeiated.

eTat0

tangent plane at P1, ds2 has the form

àrt
dÐ = 11 sino ¿O % 

* ã¡- dÓ %
(rs)
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Hence, from (ü), (re) ana (rS), d,S normal to the surface

11 = rt(0,Ô,t) becomes

ãrl
¿S=r?

I
sinG d"0 dó e - 11 : sin0 d0 tlô e'a'auf

ôrt
-trãO a0401 ( r\)

(r:)

(16 )

( rr)

s].nce

:* :.Â t :rìrPvw %

Pro¡r (9) e¡ia (rh),

q.dS = r? sin0 d0 dO-?I
drt ð"t a0 ârt

ae dt aô
@l
¿ft,

= r1 sine u, uO p

[., I"'-ö r(rr,0,ó,t)r! síno P = f t,+,t)5"aÉ
s(t)

and so (B) Uecones finally

9et%=9r'9"* xe =_?

by use of the chain rule for d.ifferentiation of d.rl/att

fn the lieht of the result (f5), thc. clouble integral Ín

equation (8) may be vritten

Êe
dt

T

f r(r,t)at + j r(r,t)r"d[ ,

s(t)

a result whf ch rigorously establÍshes equation (l+.l+lt) of Sectíon l+.3.
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APPENDIX TII

As rnentioned. in Section l+.3, it is possible to d.erive the

fesult (l+.>z) uy tne fol1ow{ng method, which involves the assumptÍon

of a form of equa,tíoh of gtate for the plasma.

ïf Inl represents the total potential ener$r of the system ancl F

ie the force per unit voh,me acting in the fluid.n then

dI,I (r)v"F dr
dlt

t (t)
p

where v is the perturbation fluid. velocity, Neglecting gravita-

tlonal forees,

dr v"(J- " e - vp)

(t)

dI'I
dt

Tp

'c (t)
p

I

i u. 
""þ e.vB -vt . F-J] , (z)

by use of equation (l+.L1) antl a standard vector identity. Appli-

cation of Gauss I theorem gíves

# = - I * t* v'B.vÞ + (n . 
ä)0""Ì

r (t)
p

+ dS.v +(n 82r

-t
2l)'o t

s (t)p

where dS 1s directect oub of the plasma.

(s)



lf=If +
p t*n n 

"ua

= \{, + hIrU " 
(l+)

where W_ is the potential energr ascribable to the plasma naterialp

and W* ls the enerry associated with the magnetic fielcl imbecld.ed.
itp

Ín the plasma. It ís assr¡ned, followi.ng V.Al{ I(AIUPE}I and. FELDERHOF

\gel) p.19 , that \ nqy be written

hÌp Püdt e

(t)

(:)

Nov¡

Tp

where rJl Ís the compresslon enerÐr per unlt mass e gíven by

L79.

(6)

(8)

tft=-

p

The equation of state of the plasma is assuned to be of the forrt

p = p(p,T)

= p(p1¡),r(t)) (r)

p

o

where T is the teruperature.

of tine:
{,(t) = -

Hence rþ may be written as a fi.¡netion

r
o

-P- dg dt, ,
p2 dt'

tI gp-
ctt2

so that

qu.
clt

p

(s)



Then

(ov *

(t)

82 .,

--t
2u)'o

t-80

(ro )

W.=
1 dr

1p

and.

= I tyr pdr + u $ (oa.) * 
dtq ,#;, dr

tn(t )

dIìI.
1

dt

+ 92
2",o ;l- r a.l Ì

,lHere, ¡f is the total- derivatÍv" (# + v"t/) e measu?ed by an

observer moving r,¡ith the fruÍd., As the flow develops, a given

fluid element dr r¡¡il-I deforrn, but wiLl- retain its id.entityo being

always composed of the sa,ne partÍcIes. rts mass , pdt, ís then a
constant of its motion:

¡$tou')=o 1rr)

EquatÍon (fO) tnen beeomes

dl,ü. t

#= Jt*f"¿r + 3 (#)u.. ä$ ra"r1 ('')
T (t )p

Eqranding equation (11), and. r.rsing the equation of conservation of
matter, (1t.7), ùhe standard hyd.roåynamic result is obtained

¡| (at)=(t¡'v)d' ' (r:)

AJ-so, by use of }rlarcurel-I's equatÍons and. the high eleetrÍcar con-

cluetlvity approximation (l+. B) ,



Therefore

I p

so that, flnally,
dl'I.

1
dt

d.B AB

æ=at+v-"v[

BdB
u dt

o

=Vx(r."8)+ï.vq

vBVryB

1_81.

(tt+ )

(rr)

(rr)

( rB)

= 1 B"B.vv * Bt o"a, .uo-- uo

Using equations (9), (1S) an¿ (r5), equation (r2) may ¡e

written
dw.-"i 

I u. {3 E-'Þ-"or - * V"v -' pv"Y} , (16)
õ-= J ro -*o

tn(t )

where equation (lr.?) has been used a1so.

As shown in Section 5.Ir(a),

dr B"B.Vv = -
(t)

clt v"B"VB ,

(t)1p

I * {* v"B'YB + ¡n * Þ1rujv.r}

T (t)
p

Corcparing equatl-ons (3) an¿ (rB), it 1s seen that

s (t)p

il!,I
at åþ. f *' (n . åi-")



182

cIl^I

dt
I gt-l

2u)'o
*joq.r(r*

dt^t dwi
.-= 

-+
dt d.t

I
S

o

(rs )

Spv

(t).

(t)

since d^S.v i.s zero on S But equation (l+) givespc

dw¡¡

and so

ttt

dS"v

prr(t )

(n.ä
S

2v
1 dË'"v Ê2 ,

(t)
pv

in agreement wÍth (I+.>¿), where dS, = * dS, and the pressure

balance equation (h.fS) has been used..
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