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PLASMA STABILITY THEORY AND APPLICATIONS

SUMMARY

The hydromegnetic stability theory of a plasme is discussed
both from a general viewpoint, and with application to a constricted
discharge between electrodes having magnetic surfaces approximated
by hyperboloids of one sheet.

The interchange of adjacent flux tubes in a low-pressure
plasma is considered, with emphasis on systems terminated by con-
ducting pletes, in which only flux tubeg containing equal magnetic
flux can be interchanged. Provided the ends of the adjacent tubes
are at the same magnetic scalar potential y, the stability criterion
adopts a form involving the field-line curvature. However, assuming
perfect electrical conductivity everywhere, complications arise
because the above restriction cannot in general be met in open-
ended systems.

The enselysis is generalized, using the "double-edisbatic"
theory of CHEW, GOLDBERGER and LOW. If stability exists in the
system whose pressure always remains scalar, then the system in
which isotropy cannot be maintained during perturbation is stable
also., For the curvature-dependent perturbation, stability can be
achieved in magnetic-well configurations, and if, in equilibrium,
the sum (pl + p11) of the pressure tensor components is constant
along the field, the criterion reduces exactly to that obtained for

scalar pressure.



Mechenical equilibrium in the discharge is examined and, in
the low-pressure boundary region, the pressure gradient, to first
order in the ratio of plasma pressure to magnetic pressure, is per-
pendicular to the hyperboloid surfaces. The same result is found
for (p + p1y) when the non-isotropic pressure tensor is used.

The stability criterion is applied to the constricted dis-
charge, with careful attention to the problems which arise because
the electrodes do not toincide with surfaces of constent Y. The
exact result obtained for the critical discharge current is inter-
preted geometrically, and is then reconciled with the earlier
approximate expressipn of SEYMOUR.

Considering a general system with perfectiy electrically con-
ducting plasma separated from the vacuum by a surface sheet current ,
a discussion of boundary conditions is followed by an analysis con-
cerning some aspects of the hydromagnetic energy principle of
BERNSTEIN et al, for an arbitrary fluld displecement, £. The
approach adopted extends a derivation of VAN KAMPEN and FELDERHOF,
to deal with a bounded plasms in contact with vacuum and with elec-
trodes. The change SWBE’ in the external megnetic energy, calecu-
lated as work done against the pressure of the wacuum field at the
plasma/vacuum interface, is used to complete the expression SW(E,E),
for the total system. To permit application of the result to the
discharge between electrodes, the proof is generalized by taking
account of necessary insulating supports, leading to some modifica-

tion of the vacuum contribution.



The usual interpretation of the surface contribution to &W is
shown to be incorrect, and for zero internal magnetic field it is
esteblished that neutral stability is obteined at best. The treat-
ment by BERNSTEIN et al, extending the energy principle so that a
constraint on £ arising from the continuity of stress at the surface
can be ignored, is considerably amplified by means of a rigorous
mathematical approach.

Finally the energy principle is used to derive a stability
eriterion for a sheet-current version of the constricted discharge.
For zero internal field, the necessary and sufficient condition for
instebility is that the current must exceed a critical value which,
for identical external conditions, is found to be greater than that
for the system with inter-diffused field end plasma. Treatment of
the discharge with trapped axial field, but no internal electric
current, leads to s sufficient condition for stability. A geo-
metrical interpretation of the stability criterion is given, snd an
approximation for the critical current in terms of experimental
parameters is obtained for the practical case of a thin, slightly

constricted discharge.
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INTRODUCTION

Because of the presence of large numbers of free electrons
and ions, the properties of a highly ionized gas, or plesms (TONKS
and LANGMUIR, 1929), differ considersbly from those of an unionized
ges. On the microscopic scale, the interaction between particles
changes character and obeys the long-range Coulomb law, so that the
plasma dynamics on this scdle must be treated as a many-body problem.
Since electric currents can be sustained, the macroseopic behaviour
of a plasma in its interaction with electromagnetic fields can
often be treated in terms of magnetohydrodynamics (ALFVﬁN and
FALTHAMMAR, 1963, Chepter 3), especially when the motion of the
gas is dominated by the magnetic body force, J x B, where J is the
electric current density and B is the magnetic field.

It is therefore clear that plasma dynamics provides a fruitful
subject for study. This fact, coupled with estimetes thet this
highly interesting state of matter accounts for all but a small
fraction of the material in the universe (ALFVEN and FALTHAMMAR,
1963, p.134), mekes the study of plasmas, both experimental and
theoretical, of major importance. However, further motivation
arises from the possibilities of technological epplicaetions of
plasmas, and the bulk of present day plasmsa resesrch is directed
towards such projects as the development of a controlled thermo-
nuclear fusion reactor (ROSE and CLARK, 1961) for the generation

of power; the direct conversion of kinetic energy to electricel



energy in MHD generetors (ROSA and KANTROWITZ, 1960; PETSCHEK,
1965); and the use of high-velocity ionized gas streams as pro-
pellants in rocket engines for long-term, reliable operation, at
low thrust but high specific impulse (JAHN, 1968).

Experimentally, large, long-lived plasma systems such as the
sun may be studied at a great distance, with obvious difficulties.
However it is an ironicel fact that while plasma occurs in enormous
quentities in nature, in stellar and interstellar material, and in
the earth's ionosphere, the laboratory experimenter is faced with
great difficulty in gaining access to plasma, in the form of highly
ionized gas, for useful periods of time. The main laboratory prob-
lem arises through cooling of the plaesma by heat loss to the
surroundings. The degree of ionization depends critically on the
plasme temperature (SAHA and SAHA, 1934; SEYMOUR, 196la, Fig. 1),
and falls off rapidly as the gas is cooled through diffusion of
particles to the walls of the chamber, and through other mechanisms
such as bremsatrshlung radiation and charge exchange (SPITZER, 1962,
p.147: THOMPSON, 1965a).

A serious problem has been encountered in attempts to prolong
the life of laboratory plasma by keeping it out of contact with
material walls through the use of suitably designed magnetic fields.
This approach relies on the megnetic body forece, jJ X B, to balance
the material forces tending to expand the plasma. It has proved a

relatively simple matter to devise such confinement systems, mostly
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based on the pinch discharge (BENNETT, 1934; POST, 1956), the
magnetic mirror machine (POST, 1958), end the Stellarator (SPITZER,
1958). However attempts at practical realization of these designs
have so far been foiled by unsteble motions which develop in the
plasma, tending to destroy the configuration in times much shorter
than the classical diffusion times (ROSENBLUTH, 1965).

The unsteble motions may be broadly divided into two classes
(LEHNERT, 1967). On the one hand are the localized microscopic,
or kinetic instabilities. These small scale, high frequency oscil-
lations in both position and velocity space are thought to cause
turbulence and anomalously high diffusion rates (BOHM et al, 19L9;
TAYLOR, 1962; DRUMMOND and ROSENBLUTH, 1962; TFOWLER, 1965;
VEDENOV, 1968). They can result from differences in the motion of
various particles occupying the same macroscopic volume, as in the
two-stream instebility (BOHM and GROSS, 1949). A claess of micro-
instabilities results from the anisotropy imposed by the (preferred)
direction of the magnetic field itself (e.g. the "loss-cone" in-
stebility (ROSENBLUTH and POST, 1965; 1966)). Thus the micro-
instebilities are due to properties of the particle velocity dis-
tribution function and are therefore difficult to control.

On the other hand are the macroscopic hydrodynamic or hydro-
magnetic instebilities, which msy involve the unsteble motion of
mecroscopic portions of the plasma. Such large scale motion of the

plasma (e.g. the writhing of a plasma column or torus) can result

in rapid destruction of the plasma body.



The problem of plesme instsbilities has presented a particu-
larly serious obstacle in the path of the developﬁent of a con~
trolled thermonuclear fusion reactor, and it is with reference to
this project that much of the research on instabilities is con-
ducted. This is because a successful reactor must rely on the iso-
lation of a body of very hot plasma (temperature T ~ 108 to 1O9°K)
with & lifetime t and number density n sufficient to satisfy the
eriterion nt > 1016 (LAWSON, 1957) for a D - D reaction, and
nt > 10% for a D -~ T reaction. An excellent review of experi-
mental and theoretical research on plasme instebilities, with
emphasis on the thermonuclear fusion problem, is given by LEHNERT
(1967). Further developments include the recent news of successful
experiments with the toroidal Tokamak mechines (ARTSIMOVICH,
BOBROVSKY et al, 1969; PEACOCK et al, 1969 ; ARTSIMOVICH,

ANASHIN et al, 1969), to which thermonuclear physicists are in-
cressingly directing their attention (PEASE, 1970) .

However it is not only in this sphere that the topic is
important. Instabilities have proved a nuisance in the operation
of some types of ion rocket engines (JAHN, 1968, p.133). Unstable
microscopic oscillations are thought to be responsible for anoma-
lous magnetron current flow sbove cut-off (HIRSCH, 1966), which
represents a problem in the use of crossed-field devices (WELSH
et al, 1960) in the direct conversion of heat to electrical energy.

Unstable oscillations are important in the electron 'plasme’' in



solid-state devices (DRUMMOND, 1965). A number of unstable modes
occur in situations of interest in astrophysics and in the earth's
jonosphere. IEHNERT (1967) and PIDDINGTON (1969, p.16) provide
lists of such phenomena, to which should be added the proposal
(LIN and SHU, 196k4; HOSKING, 1969) that hydromagnetic instebility
could play an importaqt role in the formation of spiral structure
in galaxies.

The full understending of plasma instabilities 1s a challenge
in itself. Also of great importance is the fact that experimental
investigation of the properties of a very hot plasma is severely
hindered by difficulties such as short life-time and diagnostic
anbiguities introduced by instabilities. Clearly a stebilized
high-temperature discharge would be of great value in obtaining in
the lsboratory experimental informestion on such phenomena as
kinetic trensport effects, which have received extensive theoretical
investigation (THOMPSON, 1965b; c).

It has long been recognized that the hydromagnetic instabilities
are strongly governed by the geometry of the confining magnetic
field. A criterion for stability was proposed at an early stage
by TELLER (see BISHOP, 1960), who related the curvature of the con-
fining field lines to the tendency of the plasma to undergo un-
stable interchanges of adjacent flux tubes. Also, explanations of
the fluting instability in terms of charged particle drifts associe-

ted with field gradients and curvature have been advanced



(ROSENBLUTH and LONGMIRE, 1957). The magnetic field geometry is a
factor over which the experimenter has significant control. A
large effort, both experimentel and theoretical, has therefore been
directed to the design of magnetic field configurations which are
expected to provide stebility against hydromagnetic disturbances.
Examples in which some success has been achieved are the magnetic
well configurations (TAYLOR, 1965), the stabilized mirror (IOFFE,
1965) and the cusp geometries (BERKOWITZ et al, 1958; KADOMI'SEV
end BRAGINSKY, 1958).

The use of a constricted discharge, stebilized by an externally
applied magnetic field of favoursble curvature, as a tool for the
investigation of transport effects in a hot plasma and for the
observation of a controlled transition from staebility to instability,
was proposed by SEYMOUR (1961). In a series of papers (SEYMOUR,
1961a; b; c; 1963) he investigated theoretically the temperature
distribution, thermoelectric effects, stability and transport pro-
cesses in a discharge between electrodes, the surface of which is
shaped by the pressure of an external megnetic field so that it
epproximates & hyperboloid of one sheet. His stebility analysis
involved spproximations introduced in the interests of mathemstical
tractability.

One of the mein objects of the present work is to conduct a
more detailed investigation of the hydromagnetic stability proper-

ties of this particular discharge geometry, which could also have



relevance to the experiments being conducted on the dense plasma
focus which forms at the end of the central electrode of a coaxial
plasma gun (see, for example, BOSTICK et al, 1969; COMISAR, 1969).

The theoretical description of hydromagnetic instabilities
relies on the assumption that the motion of particles in the same
macroscopic volume can be represented by an average fluid velocity.
That is, the plasma is assumed to behave like a conducting fluid.
In a fluid the motion of the particles is restricted by collisions
50 that they tend to remain grouped in close essociation, and a
given volume element reteins its identity, being alweys composed of
the same particles. In a plasma with a high enough collision rate,
the pressure tensor Z is simply a scalar, and the equations of con-
tinuity and of motion, derived by taking moments of the Boltzmann
equation, plus an equetion of state linking the pressure p end the
density p, form a complete set.

When collisions are not so frequent the situation is rather
different. There is a lack of cohesion, and the local centre of
mass motion has no meaning in terms of a fluid velocity. However
in the presence of a magnetic field, the charged particles are
forced to gyrate about the field lines, so that motion across the
field is restricted. The situation with a strong magnetic field
in a low-pressure plasma has been treated by CHEW, GOLDBERGER and
LOW (1956), who use the collisionless Boltzmenn equation to derive

& system of one-fluid hydrodynamic equations for which closure is



achieved by neglecting transport along the field. The random
phase distribution of the gyrating particles provides the effect
of an isotropic velocity distribution in the plane perpendicular

to the field. The fluid velocity is just the zero-order electric
E x B

drift,

Vg = » where E is the electric field, and in zero
B2 -

order in the spatial and time derivatives of B, the pressure tensor

is diagonal (SCHMIDT, 1966, p.76), with equal components for the

isotropic motion perpendiculaer to B:

E=p1+ (p11-p)bb,
B
where 1 is the unit tensor and 90 =5 The system of equetions

is closed by two separate adisbatic equations of state, one for
each of 191 end p1j.

Having adopted the fluid model, the plasms-magnetic field
system in mechanical equilibrium is tested for stability with
respect to the small perturbation gjgo,t) which represents the
displacement of a fluid element from its equilibrium position 30.
The equations describing the perturbed fluid are linearized with
respect to the small perturbations in pressure, magnetic field and
plasma density. 1In certain cases of great geometrical simplicity
(e.g. plasma slab, linear pinch) these linearized equations cen
be solved by considering "normal modes":

wt
n

i
gn(zo,t) = §,n(£0)e s



and obtaining a dispersion relation for the eigenvalues W, -
Imaginary solutions for w, then indicate instability.

An alternative method which relies on the existence of an
energy integral for the system avoids the usually difficult normal-
modes solution procedure by exploiting the property of self-

adjointness of the operator F in the linearized equation of motion:

Fe) ,

ok
and the completeness of its eigenfunctions, gn, to show (BERNSTEIN
et al, 1958; KULSRUD, 196k4) that the second-order variation in
potential energy of the system, SW(E,£) can be negative if and only
if there exists at least one negative value of wﬁ. This then veri-
fies what one expects on physical grounds - that if SW can be made
negative by some perturbation field £, the system is unsteble. This
variational approach is essentielly no different from the normal-
mode procedure, but has the advantage (BERNSTEIN et al, 1958) that
if detailed knowledge of growth rates is not required, the question
of the stebility or otherwise of geometrically complicated systems
can often be answered very directly. The normal-mode technique is
the more generel, however, since it can be applied in systems where
dissipative effects are important, for which no potential function
exists (THOMPSON, 1962). Since the stability analyses to be pre-
sented here hinge on the importance of magnetic fleld geometry, the

problem will be approached via the energy principle of idesal hydro-

magnetics.
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When the plasma pressure is small compared with the magnetic

pressure, the potential energy function

B2
W=[d‘l’(——§—1+§u—) R
o]

where v is the usual ratio of specific heat and M is the permeabi-
lity of free space, is dominated by the magnetic energy term. There-
fore 6W will in general be dominated by the change 1in magnetic
energy, which must be positive (LUNDQUIST, 1952; SEYMOUR, 1961c)
if the magnetic field can be approximated as being closely curl-
ffee. The only dangerous perturbations are therefore those which
leave the magnetic field unchanged. The speciel perturbation

which results in the interchange of adjacent flux tubes of equal
flux meets this requirement, and was first discussed by ROSENBLUTH
end LONGMIRE (1957). Their stability criterion, that the tube
volume must decrease with decreasing pressure, is certainly a
gufficient condition for stability against this interchange. How-
ever, for reasons discussed here in Chapter 1, it is doubtful if
the condition &t < 0 (7 being the tube volume) is necessary and
sufficient for stsble interchanges of this type.

The Rosenbluth-Longmire enalysis treats systems with planar
field lines, where the ends of the tubes of matter interchanged lie
at the same magnetic scalar potential, Y. They write the criterion
8T < 0 in terms of the radius of curvature of the field lines, giving
a result in agreement with the curvature criterion of Teller. How-

ever, when considering systems in which the field lines enter
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terminating plates, there can arise situations where the ends of
the flux tubes are not at the same Y. Examples ere systems ter-
minated by end plates which are inclined to the field lines

(COLGATE and YOSHIKAWA, 1964), and the discharge between electrodes,
with both axial and azimuthal magnetic fields. Since the latter
system is of particular interest here, it has been found necessary
to consider important end effects which may arise through this
geometrical effect. It has also been necessary to generalize the
curvature form of the Rosenbluth-Longmire criterion to include the
case where the field lines are twisted space curves, as in the
corstricted discharge. It is noted that scme doubt may be felt
with regerd to the application of the interchange criterion to a
system with shearing field lines. However, as explained by ROBERTS
and TAYLOR (1965), shear should not stabilize the 'twisted, slicing'
interchange mode in systems of finite length, but merely lead to a
reduction of growth rate as kinetic energy is spent on rotating

the flux tubes as well as displacing them vertically.

Assuming a volume distribution of current in the constricted
discharge, there is expected to be a low-pressure region near the
boundary (SEYMOUR, 1961c) where the pressure decreases slowly and
smoothly to zero, and the Rosenbluth-Longmire criterion is applied.
In this region, the hydrodynamics of CHEW, GOLDBERGER and LOW
(1956) should apply, and for this reason the thermodynamic treat-

ment of the interchange is here generalized for the case of the
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pressure tensor discussed sbove, using the 'double~adiebstic’
equations of state to determine SWP, the change in materisl energy
produced by the interchange. As for the scalar pressure case,
stability can be achieved in magnetic-well configurations. In fact
if S(PL + p11) is constant along the field lines, (where § operates
on equilibrium quentities, and gives the variation between the two
interchanged flux tubes), the stability criterion becomes identical
with that derived for the case of scelar pressure. It is therefore
necessary to examine, in Chapter 2, the equilibrium structure of
the discharge, particularly in the low-pressure boundary region.
It is found that the assumption of azimuthal symmetry leads to the
above requirement being met, to first order in the ratio of plasma
pressure at a point to megnetic pressure at the same point. The
symbol v will be used for this ratio, since the familiar symbol B
is more commonly used for the ratio of plasma pressure st a point
in the plasma to magnetic pressure at anocther point outside the
plasma.

The application of the stability criterion to the constricted
discharge is covered in detail in Chapter 3. Careful attention is
given to the problems which arise because the end plates do not
coincide with surfaces of constant §. The analysis elaborates the
earlier work of SEYMOUR (1961c) and the exact result obtained for -
the discharge current which is critical for the onset of unstable

interchanges is reconciled with his approximate expression. The
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importance of the magnetic field geometry in relation to the
critical current is emphasised by the interpretation of the
result in terms of field-line curvature at the discharge boundary.

A éontrasting version of the constricted discharge is that
in which the current distribution is restricted to a very thin
surface sheet. Thus the highly electrically conducting plasma is
held in mechanical equilibrium by the interaction of this sheet
current with the magnetic field on either side of the surface
(KRUSKAL and SCHWARZSCHILD, 1954). In this discharge the plasme
end magnetic field pressures are comparable. It is then more
eppropriate to consider stability with respect to the general
perturbation g(g_o,t). While it is recognised that such systems
are ideal, and not likely to be achieved in practice, their analy-
sis sheds light, at least in the sense of an spproximation, on the
stebility properties of more realistic configurations in which,
due to finite electrical conductivity of the plasma, inter~-diffusion
of field and plasma tekes place.

Before snelysing the constricted discharge in this form,
detailed discussions of some basic aspects of the hydromagnetic
energy principle (BERNSTEIN et al, 1958) are given in Chapters L
and 5. This approach is based on a f1uid theory in which the
strength of collisions is assumed to be such that the pressure
alweys remeins scalar, but the electrical conductivity may be

regarded as perfect. Other spproaches, in which collisions are
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not considered to be so effective, are availsble (KULSRUD, 196L4),
but it is the fluid theory which is applied here since a relatively
dense plesma is assumed. Also in this general analysis the electric
current configuration combines a volume distribution within the
plasma with a surface sheet current at the boundary.

Of particular interest is the gpplication of the general
theory to the discharge between electrodes. A compromise with
reality must be made here, since the conduction of electricity is
assumed to be perfect throughout the plasma whereas in practice
the electrodes, which represent heat sinks, must cause significant
cooling of the gas, leading (SPITZER, 1962, pp. 136-1k3) to a
reduction of electrical conductivity. Of chief concern is the
principle of 'freezing-in' of the magnetic field in the plasmsa
(ALFVEN snd FALTHAMMAR, 1963, p.189), preventing slippage of
matter across the field. The degree to which this approximation
nust hold depends on the time scale of the phenomena involved.

At characteristic discharge temperatures the field-plasma dif-
fusion time is in the region of milli-seconds (SEYMOUR, 1961c),

so the approximation will be Justified only for unstable motions
occurring on a time-scale which is much shorter than this. In the
past, configurations have been destroyed in times of a few micro-
seconds (PEASE, 1970), so it appears reasoneble to assume frozen-

in fields.
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The analysis of BERNSTEIN et al (1958) was not related to any
specific geometry, but assumed only thet the 'region of interest'
was surrounded by & perfectly conducting shell. In application to
the discharge between eleetrodes, it is elear that insulating sup-
ports must be present to avoid short-circuiting of the discharge.
Thus it is important that the system geometry be generalized in
this sense, to permit application of the result in the desired
manner. As will be seen, this necessitates great care in applying
Gauss' integral transform as is required at a number of places in
the proof, and leads to some modification of the final expression
for 6W.

Bernstein et al obtain the expression for 6W as a second-
order functional of § effeetively by integrating the second-order

. aw
expression for ——

Frai given by

%% - f I, eRe
rp(o)

where rp(o) is the equilibrium volume of the plasma. The faet that
F(g) is self-adjoint (which follows from the existence of an energy
integral for the system, or which mey be proved directly (KADOMTSEV,

1966)), ensbles the integration with respect to time to be carried

out , ylelding

W=-% f ar E(x ,t)-F(E(r »t)) .

Tp(o)
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An expression for SW may also be obtained by writing down the
potential energy function and evaluating the second-order variation
with respect to §. However a search of the literature shows that as
yet there is no complete derivation of SW by this method. VAN KAMPEN
and FELDERHOF (1967) use this approach to derive the change in
potential energy for a system in which the plasma is assumed to
extend to infinity. In practice, of course, the plasma iz a finite
body. Therefore the work of Van Kampen and Felderhof is here exten-
ded to derive W for the case of a finite system in which the plasma
is in contact with a vacuum region and with electrodes. Essentially
this necessitates a calculation of GWBE, the change in the energy
associated with the magnetic field external to the plasma, which is
then added to the expression of Van Kampen and Felderhof, to obtain
the final result. In this analysis the care which must be exercised
in epplying Gauss' theorem, because of the existence of necessary
insulators, is most evident. Also, since GWEE is evaluated as the
work done by the perturbetion against the pressure of the vacuum
magnetic field at the plasma/vacuum interface, it is then possible
to critically examine the interpretation commonly given (SCHMIDT,
1966, p.125) to the surface contribution W, (BERNSTEIN et al,

1958) as the work done against the surface current in deforming the
boundeary. This interpretation is found to be incorrect.

A final considerstion concerns the 'extended energy principle’

proposed by BERNSTEIN et al (1958) in order to allow one to ignore
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certain constraints on the perturbation when 6W is minimized to
find the most dangerous motion. Bernstein et al give a short proof
of the validity of this apparently drastic step, while ROSE and
CLARK (1961, pp.284-286) discuss the extension in physical terms,
stressing its importance. On the other hand, however, SCHMIDT
(1966, pp.1hL-149) in his analysis of the linear pinch, ignores
the constraint arising from the continuity of stress across the
plasma/vacuum interface, merely stating that '... this condition
was used in deriving GWS and is already incorporated in ...' the
finsl result for 8W. Because of this confusion in the literature
8s to the significance of the extended energy principle, and in
view of the lack of a detailed rigorous mathematical treatment,
such a proof is developed here, in Chapter 5.

Some of the simplest applications of the energy principle
are to systems consisting of a field-free plasma in contact with
a vacuum region. For these systems the energy principle reduces,
in its interpretation, to the curvature eriterion of Teller. Only
the surfece terms in 8W are important, and the contribution at each
point on the plasma surface 1s Just the normal curveture of the
field line at that point, weighted by the square of the magnetic
field strength and the squared magnitude of the perturbation com-
ponent En normal to the surface. It is evident that the choice of

geometry of the plesma body is of particular importance.
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In Chapter 6 the application to the field-free version of the
constricted discharge is straight-forward, and yields a eriterion
for stability which, as before, can be expressed in terms of a
critical discharge current. Also as before, the result lends
itself very well to a geometricasl interpretation in terms of field~
line curvature on the surface. To complete the curvilinear
generalization of the linear pinch (TAYLER, 1957; SCHMIDT, 1966,
p.1LL), consideration is also given to the constricted discharge
with trapped internal megnetic field but no internael electric
current density (all current flows in the surface current sheet).
A sufficient condition for stability is derived for this system,
showing grest similarity with the necessary and sufficient result
for the field-free system, and indicating that the internal field
in such a case has no effect on the form of GWS.

In planning an experiment based on the constricted discharge,
the technologist has at his disposal & number of parsmeters, in-
cluding the size and shape of the system, the initial pressure
and volume of the gas, and the magnetic field produced by coils
external to the discharge. Given these parameters it would
clearly be useful to have some idea of the maximum discharge
current which mey be passed without the system becoming unstable
in the sense described sbove. For the geometry of interest in
this thesis, it is possible to obtein an epproximation for the

eriticel current in terms of the initial conditions of the
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experiment, for the practical case of & thin discharge, with a

constriction ratio of radius at the electrodes to radius at the

medien plane not very different from unity.
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'CHAPTER T

THE STABILITY CRITERION FOR INTERCHANGES
IN A LOW PRESSURE PLASMA

1.1 INTRODUCTION

The purpose of this chapter is to discuss from a general view-
point the stability of an equilibrium plasma-magnetic field system
with respect to the perturbation which interchanges adjacent mag-
netic flux tubes. The magnetic field is assumed to be embedded in
a low pressure plasma of very high electricel conductivity. The
discussion assumes an energy principle for stability, the net change
in system potential energy produced by the interchenge being evalu-
ated. Since, in later work, particular interest will be taken in
systems which are terminated by conducting end-plates (for example,
electrodes), attention is here attracted to important effects which
arise from the high conductivity of the end-plates and their
orientation with respect to the magnetic field lines.

The usual 'thermodynamic’ treatment (ROSENBLUTH and LONGMIRE,
1957), which assumes a scalar pressure, may be generslized under

the assumption of a pressure tensor of the form

P = plI + (Pll - B )b:bC ’

where B = Bgo and I is the unit tensor, by using the 'double-

adisbaetic' equstions of CHEW, GOLDBERGER AND LOW (1956).
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1.2 THE VARTIATION IN SYSTEM MAGNETIC ENERGY

The energy associated with the equilibrium magnetic field Eo
In a flux tube is represented by the following integral over the

volume of the tube:

1 2
Wy = 53;‘ f BOdT . (1.1)

Tube
Materiel in the volume element dr; at the point P; in tube number 1
is assumed to be interchanged with the waterial in dtp, at P, in the
adjacent tube number 2. Tube 2 is located in the direction of de-
creasing pressure from tube 1. Tt is a simple matter to show (see,

for exemple, SCHMIDT, 1966, equation 5.107) that the change AW_ in

B
system megnetic energy produced by this motion is given by
2 B 4t
= . 8(¢7) o
AW o § 7 (1.2)

Tube

where ¢ is the flux through a tube (constant, of course, along the
tube), and % represents distance along the tube. The operator §
gives the varliation in equilibrium quantities in travelling from

tube 1 to tube 2. Equation (1.2) may be rewritten as

- Sesy  (6¢)2¥

B My uo¢

AW , (1.3)
where

B A2 . (1.4)
Tube

=
[}

For low plasme pressure, the agssumption of a closely curl-

free magnetic field is made. Then for systems with closed field
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lines, such ag toroids, Stokes' theorem gives 6¥ = 0, leaving

_ (84)2%y
AWB S s (1.5)

0

which, in agreement with & theorem discussed by LUNDQUIST (1952)
and SEYMOUR (1961), is positive and therefore, by the energy prin-
ciple, stabilizing. It is then clear that, as discussed by numer-
ous authors, the only dangerous interchange would be the one which
leaves the magnetic field unchanged. This is achieved by exer-
cising our freedom of choice and taking 64 = 0.

For open-ended systems the situation is slightly different.
Here, the field lines enter conducting end~plates which in general
are not orthogonal to §09 so that 6¥ # 0. It may then be seen that
here the choice of §¢ is restricted, for if it werg(zgt; AWB could
be minimized with respect to 8¢ simply by setting ETEET— to zero

and solving for 8¢, so that

BWy (min) = - 9%“%5 (1.6)
(o]

<0,
violating the theorem mentioned above. In fact, on the short time-
scale of unstsble motions considered here, the magnetic field in-
side the conducting end-plates should be regerded as constant in
time. Then the well-known condition of continuity of the normal
component of B at an interface, and the fact that in a flux tube
interchange the direction of B is unchanged, lead to the coneclu~

sion that the magnetic field in the plasma must be unchanged.
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Thus one is compelled to choose §¢ = 0, so that AW, venishes.
Note thet, following ROBERTS end TAYIOR (1965), it is assumed in
the above that there is a thin resistive layer at each end plate,

so thet lines of force are not tied and interchanges can occur.

1.3 THE VARIATION IN SYSTEM MATERIAL ENERGY

Assuming the adiabatic gas law,
pTY = const., (1.7)
Y being the usual ratio of specific heats, the energy associated

with the matter in a flux tube is given by

Wp S I ;L“d‘_'f_i_ 4 (1.8)
Tube

For the interchange described in Section 1.2, it is easy to show,
by applying equetion (1.7) to the elemental volumes dr; end dtsp,

that the change in material energy of the system is

o, = I {G(dT)Gpo *+ vp, Lﬁigﬁlli} . (1.9)

This is the most general form for Aqu but it is noted that
the expression comuonly used is (ROSENBLUTH end LONGMIRE 1957)

2
vp (6T)

- s (1.10)

AV = bp 8T +

obtained by spplying equation (1.7) to the volumes Ty and Ty of
the two flux tubes. It should be recognized then thet the form
(1.10) is arrived at by choosing a special perturbation which

leaves the pressure constant along a field line after the inter-
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change, as it was in mechanical equilibrium before the interchange,
when the equation Vpo = io X go was satisfied. This is, of course,
a sensible choice to meke since the most dangerous perturbation is
that which would cause the greatest lowering of system potential
energy. 1f, instead, the perturbation produced & pressure gradient
elong the field lines, matter could then flow to equalize the
pressure, thereby lowering the potential energy of the system.

The perturbed pressure in tube 1, for example, could be written as

»* deY
P1 = P2
d‘l'lY
. sfar)yY
= (py + Gpo)(l * ) (1.11)

*
Since p; and Gpo are constant along the field line, p; will be
§(dr)
dt 1
is subject to the constraint:

constant if is constant along the field line. However §(dt)

J §(dr) = 81 . (1.12)
Hence,if ﬁi%%l is constant, it must follow that
slar) _ 8t _ const . (1.13)

dr T

Substituting equation (1.13) into (1.9) then leads to (1.10). The
same result may be obtained by formally minimizing expression (1.9)
with respect to 8(dt), subject to the constraint (1.12), by the

standard procedure of the calculus of variations.
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Heving obtained expression (1.10), the usual argument
(ROSENBLUTH and LONGMIRE 1957) proceeds by assuming that, if p_ is
smell enough, the following inequelity is always satisfied:

o

—Zi> %T- , (1.14)
Po
so that the sign of
61)o 8t
SRS
o]

is jJust the sign of Gpo3 which is negative. Then, since

GpO 8t ( )
S —_— + — .
AW13 pOGT( B, Y T) R 1.15
and the interchenge is chosen so that AWB = 0, the necessary and
sufficient condition for stebility is that &t be negative, a con-

dition on the magnetic field geometry alone. However, the general

velidity of the inequality (1.1k) is difficult to prove. It can-
6p
not be achieved by esssuming singular behaviour of —52 gince, with

P, decreasing smoothly towards the vacuum, |6po| must slways be
6p

e

less than Pys so that cannot diverge even é&s Py -+ 0.

An alternative view gf this situation could however be ob-
tained by considering the interchange of one tube contalning plasma
at the very low pressure P with another tube which is &t practi-
cally zero pressure, soO that |6p°| ~p,. In deriving AWb, ps would

then be set to zero, resulting in

AW = ~pdt , (1.16)
P [e]
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which is still of "second-order" in the perturbation since

P = - Gpo. Thus & necessary snd sufficient condition for stability

o
is agein 8t < O.

However a difficulty arises here concerning the possibility of
having |Gpo| ~ Py bearing in mind that the variation § is teken
over an infinitesimal distance. TFor, letting x be a dimensionless
coordinate measured n;rmally to the nested magnetic surfaces, and

ranging from zero on the magnetic axis, to unity at the outer limit

of the system, the equation of mechanical equilibrium,

Vo, =1, X B, (1.17)
leads to

P, = po(x) ) (1.18)
so that

8p, = p00)6x > (1.19)

where 8x € 1. Therefore, in order to have IGpo' ~ P> it would be

necegsary for

p (x)
°o |~ |i|§» 1. (1.20)
P, §x
Mgo, from equation (1.17),
p(x) = 13, < Bl (1.21)

where hX is the scale factor for the coordinate x. Further, the
current density jo is proportional to the number density of charge
carriers, while the pressure P, is proportional to the plasma
particle number density. Since all charge carriers must be sup-

plied by the low pressure plasma, it follows that if Jo were
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A 2u Yo .
expanded in terms of the smallness parameter v = —— , its lead-
g
ing term would have to be of at least first order in v. This is
why Eo may be epproximated as being curl-free in the low pressure
sltuation. Therefore, p; must be of at least first order in v.
Since, by definition, po is of order v, it follows that the in-
equality (1.20) cannot hold.
In view of the sbove discussion, it is evident from a study of
the literature that a rigorous proof showing the condition
8t <0 (1.22)
to be necessary and sufficient for stability has not yet been
given for the realistic case of a smoothly decreasing pressure pro-
file. If (1.22) is satisfied, the system is certainly stable, but
if 8t > 0, the system may or may not be stable, depending on the

sign of

which depends not only on the geometry of the magnetic field
(glving 8t), but also on the structure of the discharge (defining
Spo). Summarizing,

(1) if 6t < 0, AWP > 0, giving stability;

" T . . )
(2) if 0 < &t < Yo |6po|, AW? < 0, giving instability;

.y (1.23)
T|6p
(3) if 61 > Tp—"—— , AW >0, giving stability, (1.24)

o
and it is seen that a second region of stability given by (1.2L)

could possibly exist.



dl+0odl

TCu+8u,v+dv,w+ow)

a=ugh,du+voh,dv+wyh,ow

dr i
A (u,0,w) | B

Fig. 1. Adjacent skew field lines AB and CD. The vector a is
verpendicular to both lines, in this three--dimensional
configuration.
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1.4 THE IMPORTANCE OF FIELD LINE CURVATURE

Remembering that the flux ¢ is constant along a tube,

T = f sdf = I (¢/B)ag = ¢ I asv/s ,

where & is the cross sectional area of the tube, and the subscript
o on B has been dropped for convenience. Then, since §¢ = 0, the
inequality (1.22) becomes

8 f aw/B <0 ,

and hence, with ¢ > 0,
6 f aw/B < 0 . (1.25)

Now consider two points A and C on adjacent field lines, but
at the same magnetic scalar potential ¢ (B is assumed curl-free),
as in Fig. 1.

A and C are joined by the elemental vector a, where, choosing
an orthogonal curvilinear coordinate system (u,v,w), with W, per-

pendicular to the magnetic surfaces,
a=uhbdu+vhév+wh dw. (1.26)
- =ou -0V oW

Since A and C are at the same 9,

acB=0 . (1.27)

The field maegnitude on the line AB is B, while on the line CD
it is B + 8B. Points B and D are &t potentisl ¢ + 4y .

Since V x B = 0, it follows that, to first order

s(ar)/B = - aLsB/B2 . (1.28)
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This implies that, referring to (1.4),

oY

8 J B4

i

f{aBdsL + B&(dR)}

=0 .,
That is, the corresponding ends of the interchanged flux tubes must
be at the same magnetic scalar potential.

From (1.28),
s(an/B) = 6(ar)/B - AL8B/B2 = - 2a86B/B? . (1.29)

Equation (1.29) and the inequality (1.25) indicete the stability of
so-called 'magnetic well' configurations with B increesing in the
direction of decreasing pressure.
Now
B x (v x B) = V(%B%) ~ B-VB ,

and so
v(%B2) = B°VB , (1.30)
in this case of curl-free B.
Thus, introducing the Frenet-Serret set of wnit vectors

(2.1 1€2 323) , and setting _]i = EIB .
VB = Be;-Ve; + e1e1°VB .

Since ej°Vey = de;/d% is recognized as the curvature vector K = e,/R,
where R is the unsigned radius of curvature of the megnetic field

line,
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or
V.B = BK , (1.31)

where !i is the gradient operator perpendicular to the field line.
Thus

6B = 8"V, B = BaK , (1.32)

and so (1.29) becomes
§(as/B) = ~ 28°KdL/B . (1.33)
Thus stebility is achieved if

&K
J & =5 >0. (1.34)

The importance of the direction of the curvature vector X is
now epparent. Expression (1.33) extends the expression for 5(as/B)
from the case of planar lines (ROSENBLUTH and LONGMIRE) to the more
general case of non-planar, twisted lines. The inequality (1.3%)
permits a qualitative discussion of the stability against inter-
change, using Teller's familier curveture criterion (BISHOP 1960,

p.87).

1.5 SYSTEMS WITH 8Y # O

The form (1.33) only arises when e satisfies (1.27). That is,
the ends of the tubes of matter supposed to be interchanged must
lie at the same magnetic scalar potentiel ¢. Now in general, the

ends of the corresponding flux tubes will not be at the same Y.
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Fig. 2. Plasma slab bounded by slanted end plates (e.s. elect_.rodes).



3L,

For example, consider a system with uniform, streight field lines,
but terminated by slanted end plates (e.g. electrodes). Such a
system (Fig. 2) has been considered by COLGATE and YOSHIKAWA (196L4).

Points A and B are at the same Y, but the ends of the corres-
ponding flux tubes are at A and C, which are not at the same Y. In
thls case, although Teller's criterion predicts neutral stability,
the criterion 6t = 7 - Ty < O predicts stebility, since 1) < 13.
If the end plates were slanted in the opposite directions, the
opposite prediction would be made.

This sort of argument can be extended to a system with curved
field lines, terminated by vertical plates. (Fig. 3). Agsin,
points A and B are at the same Y, while the end points A and C are
not. The interchange which is immediately classified unstable by
Teller's criterion is the one in which the matter in tube 2,
between A snd A°, is interchanged with the matter in tube 1,
between B and B” (not between C and C°).

Now if the condition of very high electrical conductivity
applies throughout the plasma, the lines of force will be frozen
into the metter, and it will be impossible for flux tube AA” to
interchange with flux tube CC” without gll the matter in each tube
being interchanged. The effect which this constraint would have
on the stebility of the interchange is simply estimated by considera-

tion of a special case, as follows.



| Magnetic field lines
/)
A

A\B

Surface
s = constant

N\ 6—897Z
[ N\
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TN

E7d plate
NA
O

Fig. 3. Bounded system with curved field lines terminated by
vertical end plates. The field is assumed curl-free,
and 8T = Tp -~ Ty .
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Suppose the field lines sre arcs of concentric circles
centred on O (Fig. 3). Then, since B is assumed curl-free, it
follows that

B =C/R; C = constent , (1.35)

and the volume of flux tube 1 is, with flux ¢ = Bx (tube area),

Ty = 26R8/B = 2¢R28/C , (1.36)
while
1o = 2¢(R + SR)2(8 - 66)/C =~ 24(R%26 + 2R6S6R - R260)/C, (1.37)
since both tubes contain the same flux ¢.
Hence
6t = 1, - T] = 2¢(2R6SR - R256)/C . (1.38)
Thus stebility is obtained if
28R/R < §68/6 . (1.39)

Using Fig. 4, 66 cen be expressed in terms of &R as follows:

SR/R66 = tanR = tan(90 - 8) = coth , (1.40)

that is,

8R/R = 868/tanb . (1.k1)

Substituting (1.41) into (1.39), it is found that stability
is ensured by satisfying the inequality
20 < ten6 . (1.42)
Thus it appears that the condition of very high conductivity
would be strong enough for a stseble situetion to be achieved over
a certain range of 9, even though the field curvature is unfavour-

able by Teller’s eriterion. Similarly, a system with fevourable



_End plate

Fig. 4.  Detail from Figure 3 for expressing 66 in terms of §R.
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curvature may be unstable for a certein range of 6.

From equstion (1.38) it is seen that if 86 is zero, then
6t > 0, snd Teller's criterion correctly predicts instability. &6
can be zero if the end-plates coincide with surfaces of constant ¢,
or if the condition of very high conductivity is relaxed so that
the field lines are no longer frozen into the plasma and the flux
tubes masy interchange without the matter between C and B, and
between C* and B”, teking part in the motion.

The foregoing snalysis finds support in the theory of charged
particle motions. Particle drifts resulting from the curvature of
the field lines (ROSENBLUTH and LONGMIRE, 1957) produce charge
separation and electric fields which, if the field curvature is un-
favoursble, will drive the fluting interchange instability. In a
system with end-plates which are not orthogonal to the magnetiec
field lines, it is predicted (DIMOCK, 1966) that charge-dependent
cross-field particle drifts could result from reflection at the
end-plates. Depending on the end-plate orlentation, these drifts
could be destabilizing in exactly the same way as the curvature
drifts discussed in the literature.

A simple picture of these drifts mey be cbtained by consider-
ing straight field lines passing into an end-plate which is inclined
at h5o to B, and off which the particles are specularly reflected.
As described by DIMOCK (1966), a charged particle travelling along

a field line, with no perpendiculaer velocity component, is



37.

reflected into a vertical plane, undergoes a half gyration before
striking the plate a second time, when it 1is reflected back into
the plasma, again travelling along the field. The net result of
the two reflections is to displace the particle a distance of two
gyro-radii perpendicular to the field, in a direction which depends
on the sign of the particle's charge. This intuitive result is
supported by the more general treatment (DIMOCK, 1966) which assumes
arbitrary plate inclination and a realistic velocity distribution.
However it must be noted that doubt has been cast on the occurrence
of these drifts by the result of an experiment with a Q-device
(DECKER, 1966) in which the inclination of the end-plate failed to
have any observable effect on the stebility of the plasma.

1.6 GENERALIZATION BY ASSUMING A DIAGONAL, ANISOTROPIC
PRESSURE TENSOR

Under the sssumption that heat flow along the magnetic field
lines may be neglected (CHEW, GOLDBERGER and LOW, 1956), the
collisionless Boltzmenn equation msy be used to derive one-fluid
hydromegnetic equations for which the material stress tensor is

disgonal, but not isotropic:

ida

= p.l.'-]':- + (Pll - pl )EOP_O > (1-’43)

where I is the unit tensor and B = BEO. In this theory the adiaba-
tie gas law for scalar pressure is replaced by two equations of

stete, one for 1] and one for pi1:



38.

= const. (1.L4)

and

p11B?13 = const. (1.45)

Within the framework of this theory we present a discussion of
the flux tube interchange, analogous to that given previously for a
plasma in which the pressure tensor always remains isotropic. of
course the magnetic energy term will in this case be no different
from the expression (1.2): it is necessary only to evaluate the
change in material energy of the system. Here the energy associated

with the plasma in & flux tube is given by

WP = [ (1@11 + pl )dT » (l.h6)
Tube

where the subseript 'o' for equilibrium gquantities is omitted for
convenience. Then the varistion in system material energy result-
ing from the interchange in which plasma in 4ty replaces plasma in

dt,, a8 in Section 1.2, is

oW, = J (py1(1) + pr(l))dxl + I (p11(2) + Pf(Q))dTZ

Tube 1 Tube 2
[ een@ + g @) - [ Gpu +pene
Tube 1 Tube 2

= U pf(l)dn - I pl(g)de] + H pr(2)d'r2 - [pl(l)drl]

oo e - [ pn@s] + o] s - | p(Dan,
(1.47)
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where the asterisk is used to denote perturbed quantities.
Let

A= [ pf(l)dl'l - [ pl(2)d'r2 . (1.48)

Relabelling for convenience the volume T in (1.44) by dt and then
applying this equation of state to the material which is initially

in the volume dr, and which occupies dr; after the interchange,

®
B

»
pl(l)drl . pl(E) 5y dt,

B192
pl(2) Wd’rz. (1.49)

Therefore,

. f (2)a (B1¢2 1)
! T2 18,91 T
r ¢2 B1 B2
= B s I 1.50
| pl(E)d'rz 5, (¢1 ¢2) (1.50)
Next, let
[
C = pf(z)d-rz - I Pl(l)dTl 3 (1.51)
J

By an argument similar to the above 1is obteined

¢y B2 By '
C = I pl(l)d'l'l gl— ($2-’= H N (1.52)

so that, combining equations (1.50) and (1.52),

¢2 ¢1 B]_ Bz
[ (PL(Q)de B T Pl(l)dTl g;) ($T oy

aE Eos® (1.53)

where § has the same meaning as before.

A+ C




4o.

Defining
¥
2D = J py1(l)dry - J p11(2)ar, , (1.54)

and meking use of the equation of state (1.U45), it can be shown

thet
Bzz dT23 ¢12 ¢22 3
2D = f p11(2) ( - ).  (1.55)
422 B2 dt;2 B2 adry?
Similarly the quantity
%
2F = | p11(2)dty ~ p11(1)ar, (1.56)
becomes
B1? dr,3 92 $12 \
oF = f p11(1) ( - ) . (1.57)
12 Bp? arp,? B2 ary?

Hence, combining equations (1.55) and (1.57).

Bzz d’l.‘23 B]z dT13 ¢12
D+F=% J {p11(2) ———— - p11(1) )
52 ¢12 By? a2
$22 3p2 2
ar3B
N Y [ 5 (o1 LB 6 (22 . (1.58)
By2 dr,? $? B2ar?

Finslly, combining equations (1.53) and (1.58), and using
expression (1.47),

AWb =A+C+D+ F

aré 3n2 2
(Il B dt °B<y ¢
- . S— ;/ . Le
I{G B ]5(¢) + 756 (Pll ¢2 }S(Bzd'rz)} (1 59)

A situetion which mey be of interest in practice concerns a
system for which the pressure tensor is a simple scelar in equili-~

brium, but adopts the anisotropic form when perturbed. That is,
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the collision rate is high enough to keep P isotropic while the
system is in equilibrium, but too low, on the short time scale of
the instability, to maintain isotropy as the perturbation develops.
The change in material energy in this situation would be given by
expression (1.59) with the substitution p3; = P =P Expension

of (1.59) then yields, after some algebra,

2 2
AWb = f {sps(ar) + 3p Lgi%%ll—-+ 3pdt (%?) - Ups(ar) %%} ;

where X = %'. Further rearrangement gives

4 s(ar) 3
FEe ( ar 2

5 _[8(dr)12

2
w = [ fopstan) + 3 p L4EE .

X

(1.60)
Comparing now expressions (1.9) and (1.60) it is noted

that in the present case, AWb differs by a positive definite term

from the result obtained, with v = 2—, for the system in which the

3
stress tensor remains isotropic during the perturbation. Hence it
is found, in agreement with BERNSTEIN et al. (1958, p.28), that if
the system whose pressure remains a scalar is stable, then the
system in which isotropy cannot be maintained during perturbation
is also stable. Note also that the value of %-for ¥ corresponds to

that of a gas with three degrees of freedom, where use is made of

the kinetic theory result (SPITZER, 1962, p.lT7):

e (1.61)

m being the number of degrees of freedom.
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Expression (1.60) can be reduced to the form (1.9) only if p
is required to satisfy both equations (1.4l4) and (1.45), specialized

for the case p;; = P, = p. Then elimination of p leads to
t2B3 = const.

Thus, applying this equation to the volumes dr; and dry; = 4t
+ &6(dr), involved in the interchange, it is easy to show that

6(&12}33) =0 .

¢)3

Then, with X = -% , it follows, by expansion, that

(1.62)

The result (1.62) clearly leads to the venishing of the posi-
tive definite ‘term%p ar (% - % an ? of (1.60), leaving
expression (1.9).

While the foregoing procedure achieves the reduction of (1.60)
to (1.9), it has doubtful physical significance. This is because,
in the necessarily collisional system associated with the mainten-
ance of isotropy of the stress tensor, equations (1.L4) end (1.45)
would not be valid, being derived (CHEW, GOLDBERGER and LOW, 1956)
from the collisionless Boltzmenn equation.

In general the complicated expression (1.59) is of little
practical use. However, for the interchange considered in Section

1.k & useful criterion may be derived. Following the earlier

trestment for scalar pressure, a choice of the mapping vector a
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such that a°B = 0 leads, via equation (1.28) and the assumption

8¢ = 0, to
§(dar) - 5(4’(12'\ B
ar B’ ¢4
. 8(ar) $B
as B
_ 26B
= - == (1.63)
With 8¢ = O, expression (1.59) may be expended to give
; 8B 8B 4By 2
MW = - J {6 p ar % + pslar) 5 - pdr &)
ép11 3p11
11 §5(ar) §B
= [ 3 + B at + 2p11 ;2"] (GBdT + BG(d’t))} N (1.6’4)
Use of equation (1.63) then leads to
s = - | {spjar B - 3p a (5—13-]2 + (6p11 - kpy; B)sBar}
_ 6B §By?
=~ | ars(p1y +p) 5+ | ar(3p + kpi1) (—F] . (1.65)

The second integrel is positive and therefore stabilizing. A
sufficient condition for stebility against this interchange is
therefore

f arélp, + p11) B <o . (1.66)

It is therefore found that, as in the scalar pressure case,
stability would be ensured if confinement were in a megnetic well
in the sense that G(pl + p11)8B < 0. Also if the structure of the

plesma is such that
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B-V(pyy +p) =0, (1.67)

then 6(pyp + pl) mey be teken out of the integral in (1.66).

Then, assuming &(py; + pl) < 0, the sufficient condition for stabi-

lity reduces to the condition I ar %§-> o, (1.68)
or, using (1.32) and the fact that dr = 9%&-, with ¢ > 0 ,
a'K
J @ —->0, (1.69)

as for the system with scalar pressure.
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CHAPTER 2

MECHANICAL EQUILIBRIUM IN A CONSTRICTED DISCHARGE

2.1 INTRODUCTION

A constricted discharge 1s considered (SEYMOUR, 1961), the
surface of which is shaped by interaction with an external megnetic
field so that the discharge boundary approximates a hyperboloid of
one sheet (Fig. 5). This surface coincides with the coordinate
surface w = w. of the oblate spheroidal system (u,v,w) defined in

b

terms of cylindrical polar coordinates by

r = k cosh ucos w
7z =k ginh u sin w (2.1)
b =v 5

The domains of the variebles are

0 <w=

hel |

- <y < o
0 v 21

end the scale factors are

h u);i R (2.2)

h = k(sin?w + sinh?
u w

h k cosh u cos w . (2.3)

v

The constant k is the distance off-axis of the common foci of the
u end w coordinate surfaces. The system is symmetric about the
median plane u = 0, and the electrodes occupy pert of the co-~

ordinate surfaces u = ue and u = - ué.



§ ™

=—ue

Fig. 5. 1In oblate spheroidal coordinates the discharge occupies
the region

-u S<usau,
e e

i <w<n7/2.
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2.2 MECHANICAL EQUILIBRIUM WITH SCALAR PRESSURE

Interest centres on the low pressure region at the boundary,
where it is proposed to apply the ROSENBLUTH-LONGMIRE (1957) stabi-
lity criterion 8t < 0, discussed in Chapter I. . A basic assump-
tion is that the main discharge current flows in a region closer to
the axis than to the region of interest. Thus the total magnetic
field in the low pressure region is sensibly curl-free and may be

written

where §° is the curl~free part due to the main discharge current
and the currents flowing in external coils, and _]§_1 is 5 small
perturbation produced by the small current Q_l which flows in the
boundary region. It is assumed that _B_l is very small compared
with B®. TIn terms of the orthogonal unit vectors u , v , W
. -0’ -0’ —o

associated with the chosen coordinate system, it is noted that

=8 u +8°v_ , (2.4)
u -o v —0

since it has been assumed that w = Wy approximates the discharge

surface. §_° satisfies the equations
vyxB° =0 (2.5)

and
v-B- =0 . (2.6)

Using this pair of equations, analytical expressions for Bﬁ and
Bsr mey be derived. Equation (2.5) yields, under the assumption of

gzimuthal symmetry,
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9 oy _
e (hva) =0, (2.7)
2 (n.B%) =0 (2.8)
W Tuu *
and 3 o
5= (n B2) = (2.9)
Equations (2.7) and (2.9) give
o) ©
v

where the constant C is proportional to the total discharge current.

Equation: (2.8) gives
h B = F(u) (2.11)
u u ?

vhile, with the assumption of ezimuthal symmetry, equation (2.6)

yields

5’% (hh BY) =0 , (2.12)
or

hvthi = G(w). (2.13)

Combining equations (2.11) and (2.13), and using equation (2.2)

gives

k cosh u F(u) = = A, (2.14)

where A is the separation constant.

Therefore

and so using equation (2.2),
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B° = L) ) (2.15)

u . \ 1
k2 cosh u (sin?w + sinh2u)?

The constant A can conveniently be determined from a measurement
of Bz on the surface, at the median plane. Denoting this measured

value by BM, then

A= BMkz sin w_ . (2.16)

At this stage the assumption of scalar pressure is made, and
then the following equation of mechanical equilibrium must be satis-

fied in the steady-state plasma near the diffuse boundary:

Vp = J_l % (_B_O + _B_l) (2.17)
- inl 120 _ 41gnl 10 1l _ slpl
= u (1Bl - 3180 - 30BL) + v (0B, + 3R, 3B
1n° 1nl . +1p° _ s1pl
+ v_;o(Jqu + 318l - 3B, iju) . (2.18)

Becsuse of the assumption of azimuthal symmetry, (Vp)v must be

zero. This leads, with B':r # 0, to

1 = 41 = i
b bl o . (2.19)
Then
= inpl _ 1 o 1
vp = u J By w s (Bu + Bu) . (2.20)
Thus
—ap= Q = - 1 o 1
= how vp hwjv(Bu+ Bu) . (2.21)

so that, to first order in the small fields ,1_1 and 13_1 5

% - _pglp° .
ow w'v u
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Also,

EB‘: L] 3 11
e = PyucVe = h B, (2.22)

which is of second order in 1} and g}, so that to first order, %E
is zero. Thus, to first order in J! and §}, the pressure is a
function of w only and in this epproximation msy therefore be con-
sidered constent throughout en elemental flux tube of g?.

Equating mixed partial derivatives of p, using equations (2.21)

and (2.22),

9 10 1ply = _ O 1gl
3u (thvBu * thvBu) T 7w (huquw) ) (2.23)

As a first step in an iterative procedure, neglect second-order

terms in (2.23) and write

3%-(hw3$33) =0, (2.24)
so thsat
1 = Jiw)
v = e (2.25)
w u

wvhere J(w) is an unde termined function. It is possible to obtain
an explicit form for J(w) by substituting (2.25) into (2.23) to

give the second order equation

Bl J(w)B!

) & 09 - R (2.2
B B
um u

Using expressions (2.2) and (2.15), equation (2.26) becomes

J(w) 5%-(hw cosh u Bi) = ~ cosh u 5%-(J(w)thé) ) (2.27)
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Because of the solenoidal nature of the total magnetic field,
veBl = 0 . (2.28)

With the assumption of azimuthal symmetry, this condition

gives
9
3u

1y = _ 9 1
(hvthu) . (huhva) , (2.29)

which becomes, through the use of equations (2.2) and (2.3),

9 1\ _ cosh u 3 1
= (hW cosh u Bu) Il v (hW cos W BW) ] (2.30)
so that equation (2.27) may be written

J(w) 8 1y = o 1

e B (hW cos W BW) = (J(w)thw). (2.31)

Rearrangement of equation (2.31) leads to
1 . 1 -
J(w)thw tan w + J (w)thw 0. (2.32)

From (2.2) it is clear that h_ is non-zero in the region of inter-

est so that, with Bvlr # 0, cancellation gives
J*(w) + J(w) tan w =0 . (2.33)
Equetion (2.33) is satisfied if
J(w) =K cos w , (2.34)

where K is a constant which must be regarded as 'small' in the
came sense that j! is small since, using (2.25),

_ K cos w

n B°
v u

31 (2.35)

v
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Equation (2.21) then gives, in first order,

%&-: - K cos w (2.36)
or
p = - K sin w. (2.37)

Since p > 0 and, in the region of interest, sin w > 0, it must
follow that K < 0. Note that this gives %5-> 0, as required since
in the present coordinates, w increases as one moves into regions
of higher pressure.

Thus within the approximation p € EE— ,the assumption that

2u°

the magnetic and pressure surfaces approximately coincide with the

w coordinate surfacesis consistent with the equations of equilibrium
and Mexwell's equations. However, in the plasma interior the
pressure is expected to be so high that this approximation ceannot

be made. The complete equations without approximations must then

be considered:

Vp = lx E. . (2.38)
uol =V x3B, (2.39)
VeB=0 . (2.4%0)

Tt is shown below that the asssumption p = p(w), B, =0, is not
consistent with these equations, except for s trivial cese.
The assumption p = p(w), B, = 0, requires J = 0. Thus, from

the expanded form of equation (2.39),

B(hva)/Bu =0 g



or

B = f(w)/hv \ (2.41)

where f(w) is an arbitrary function.

From (2.40) is obtained

B(hthBu)/au =0, (2.42)

or

Bu = g(w)/hvhw s (2.43)

where g(w) is also an arbitrary function.
Only the w component of (2.38) remains, and this becomes,

after use of (2.39) and some algebra,
= - 2 _
u, dp/aw £(as/du) /o2 (g/huhvhw)a(hug/hvhw)/aw . (2.h44)
Using (2.2) and (2.3) this reduces to
. 2 2.2
M, dp/aw = - f(df/dw)/nv --F(w)/huhv , (2.45)

where

F(w) = gdg/aw + g2sin w/cos v . (2.46)
Substituting for the scale factors and rearranging gives
uokzcoszw cosh*u dp/dw + (fdf/dw - uokzcos“w dp/aw)cosh?u + F/k?
- (faf/aw)cos?w = 0 . (2.47)

Equation (2.L47) is setisfied for all u and w only if the co-
efficients of the different powers of cosh u vanish for all w, end

this leads to the results:
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dp/dw =0 ,
faf/dw = 0 , \ (2.48)
F=0. |

These results are trivial because they imply that Ju =3 =0

i.e. they imply no physical discharge.

2.3 MECHANICAL EQUILIBRIUM WITH NON-SCALAR PRESSURE

The equation of mechanical equilibrium to be satisfied in
this case is
vVep=J xB, (2.49)
with the pressure tensor P in the form (1.43). Under the same
assumptions as before of low pressure, small electric current and
azimuthal symmetry the ergument following equation (2.18) applies,

so that in first order,

(V-B) =0, (2.50)
(Veg)v =0 , (2.51)
and
(o]
(vag)W = - onbBu . (2.52)

The unit tensor ; is invariant under a transformestion of axes
(FERRARO and PLUMPTON, 1966, p.217), so that V-I = O. Then, with

reference to (1.43),
v-E = Vp + (p11 - p )b Vb + (P11 - 1 )b Vb

+bb % (py - Pl) (2.53)
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where, in the present spproximstion,
E‘o

2" 5
B

Thus, deleting the superscript for convenience,

Bu ] Bv ) Bu Bv
o = — —_— —_— 4 e
AL (Bhu du " Bh_ av) (B % 7B l’o]
B B B2 B B B B v
=y (Y22 v 2 2 (s BY 0
-0 Bhu ou B B%h ju —o -0 Bhu u B B2h Ju
u u
BB, du B2 v
o v * — Bx_ro ? (2.54)
B%h B2h
v v

utilizing the assumption of azimuthal symmetry. Referring now to
the expressions for the derivatives of the unit vectors (a1,87,83)
of the general orthogonal curvilinear coordinate system (51,52,53)

(MORSE and FESHBACH, 1953, p.26):

a1 & dhy a3 dhy
3E; T hp 963 ~ By 9E3
da; & dhy
37~ By 0Ep

9my a3 dhg
BE3  h) 9

(plus their cyclic counterparts), equation (2.54) may be rewritten

as
Bu 9 Bu szr ) Bu ]
) - ——— ——— — - ———— ———— + — ——— —
by Vo, = ¥l 5y &y 5 Rt ARl (Bv)
u thu u
B B_ dh
.
B2h h M
uv
B_fl o Bf-r o
‘,_,0{ ot BW'} . (2.55)
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Further,

Ao‘
1}
B

~—

|

|
o
<3

I

since V°B = 0. Therefore, because of azimuthal symmetry,

—_—

B
= Lk (B
VB T h au(B
u
and
2
u 9 rl uv 3 (1
b, VB, = U, & hu (B Yo Bn_ du & - (2.56)
Also,
EoBi d Bqu d
bb V(p11 - ) = o 35 (P11 - 2) + ¥ sy 3q (P11 - B) -
u

u

(2.57)
Therefore, using equations (2.53), (2.55), (2.56) and (2.57) the

components (Vﬂg)u and (V°£)v mey be finally obtained so that eque-
tions (2.50) and (2.51) become respectively

Bpl Bu 9 Bu Bi ahv i ? (1
wmren-ple B - mwm e Sl
v
2

(2.58)

and
3 (P By ahv 3 (1 Bv 0
- by (B * @ B @t o) =0
v

(2.59)

Since B is assumed to be approximately curl-free, the result

(2.41) (obtained from the condition J_ = 0) must apply, yielding
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Bhv 1
= 1) 5y (g3
=
hV BBv
= e it & (2.60)
v

Equetion (2.59) may therefore be written

oB

0 B 1 v 3 (L Bv
(11 -2) U35 (8) - 5355 * By 3 B! +'§-—(p11 -p) =0,

which becomes, by cerrying out the first differentistion inside

the curly brackets,
9 rl 1 _
2(p11 - 7)) 39 (—B-) B 5% (p11 -p) =0. (2.61)
This equation can be integrated to obtain
P11 - B, = t(w)B? , (2.62)

where t(w) is en arbitrary function whose megnitude is such that
2

|t(w)| is much less then unity, so that |p1; - pll < Bu

Using equations (2.60) and (2.62), equation (2.58) may be

written
5p B 9B B2 o2
1 3 u v 2 9 (1 u oB
— — = —+ — [ + —= =t =
3u + t(w) {BBu du (B * Bv u BBu du (B) 'BZ ou .
or
ap
1 3 (1p2 9 (132
— — + — = .
u + t(w) {Bu (6Bu) u (éBv)} 0
Therefore, since B2 = Bﬁ + B% ’
Byi
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which integrates to give
p = - Lt (w)B2 + P(w) , (2.63)

where P(w) is snother arbitrary function, whose magnitude 1s much

2

lese than o— .
2u°

Also, with the use of equation (2.62),

p11 = Bt (w)B? + P(w) (2.6h)
so thet finally,
P11 *+ p = 2P(w) . (2.65)

Thus the present analysis shows that the combination (p1; + pl) is

constant along & flux tube of the magnetic field approximated by
(2.4). Therefore, reverting to the stability criterion (1.66), it
is seen that in the present system, the reduction of this criterion

to the forms (1.68) and (1.69) is valid.
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CHAPTER 3

STABILITY OF THE CONSTRICTED DISCHARGE

3.1 INTRODUCTION

The purpose of the curved external magnetic field in the
discharge discussed in Chapter 2 is to provide extra compression
of the plasma near the median plene and also to give a stabilizing
contribution, because of its favoureble curvature. It is expected
that this stabilizing contribution will eventually be cancelled by
the destabilizing effect of the azimuthal magnetic field produced
by the discharge current, as that current is increased beyond some
eritical velue (SEYMOUR 1961). A deteiled stability analysis for
the low pressure boundary region is presented in this chapter.

The exact result obtained supports the ebove reasoning provided
that in the interchenge the ends of the tubes of matter are dis-
placed along surfaces of constant nagnetic scalar potential so that

8¥ = 0.

3.2 THE INTERCHANGE WITH 6Y # O

In the present geometry, the tubes of matter terminate on the
electrodes u = u, and u = - u,- However, the surfacesu = constant
are not surfaces of constant ¥, since here the magnetic field has a
component Bv as well as a component Bu' Thus the ends of the tubes
are pot at the same ¥. This meens that if the approximation of

infinite electrical conductivity is made, en interchange involving
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the condition a°B = 0 is not possible. In fact, as discussed in
Section 1.5, all the matter in each tube would have to take part in
the interchange, and the relevant §t would just be the difference

in volume between flux tubes (of equel flux) on two surfaces w = v

and w = wy + 8w, each tube extending from one electrode to the

other. Thus it would only be necessary to evaluate

t(w) = ¢ J 2, (3.1)
and to then find
§T = Sw % (3.2)
dw

Equation (3.1) may be eveluated by using the expressions for
the megnetic field components derived in Section 2.2. Since 4R is

an elemental vector tangent to a field line, it follows that

& xB=0, (3.3)
which implies
hudu/Bu = hvdv/Bv = aL/B , (3.4)
since
(ar)2 = n2au? + nh2av?
1 v
and

B2 = B2 + B2 ,
u v

Therefore, using equations (2.2), (2.15) and (3.L),. expression
(3.1) becomes, after integration between the limits u = - u  end
u=+ ue, .

(%) = 2k3¢ (sin?w sinhu_ + (sinh®a )/3)/A . (3.5)
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From equation (3.5) it follows immedistely that, at w = w,

8t = Lk3¢ sinw, cosw

H . sinhu sw/A . (3.6)

Since the coordinate w falls from m/2 on the z axis to Wy et
the discharge boundary, it follows from the definition of 8§ that

dw < 0, and so equation (3.6) gives
§t <0 . (3.7

Hence, by (1.22), we slways have stability! In gpite of the
unfavoursble curvature of the azimuthal field, the 'freezing-in'
effect of infinite conductivity gives stability against the inter-
chenge of flux tubes on adjacent surfaces w = constant, for all
values of dischaerge current.

In the limiting cese of & straight circular cylinder of length

L, with field components B, end By, equations (2.5) and (2.6) give

B, = C/r (3.8)

and

B, = constant. (3.9)
Then equetion (3.1) becomes

i
= 1(r) =9 I dz/BZ = ¢L/EZ = constant . (3.10)
(o]

From equation (3.10) it is seen that 8t = O, which implies
neutral stability for the case of a linear pinch with infinite con-
ductivity. But of course it is well known that such a pinch is

not hydromegnetically steble; there are other perturbations which
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are unstsble. Hence the important conclusion is reached that here
we are by no means considering necessary and sufficient conditions
for stebility against all perturbetions, but only stebility agsinst

a rather special type of perturbation.

3.3 THE INTERCHANGE WITH a<B = O

Considerstion is now given to an interchange whose stability
has been described qualitatively with the aid of Teller's
criterion (SEYMOUR 1961). This is the case of a variation with
a°B = 0. For this to be feasible, some resistivity must now be
allowed, particularly in the region of the electrodes. This is in
accordance with the practical situation, and the presence of a
resistive sheath st the electrodes explains why "line~tying" can
be overcome, so that interchanges can occur.

Guided by equation (3.5), in this case

s Y (3.11)

i
—

t(u, ,u_,w) =

¢k3(sin?yw sinhu,_ + (sinh3u*)/3)/A
+ ¢k3(sin?w sinhu_ + (sinh3u_)/3)/4 . (3.12)

T, is the volume of that part of the tube which lies in the

positive u helf of the system, while t_ is the volume of that part
which lies in the negative half. u = u, is the end point of the
tube in the positive helf, while u = -~ u_ is the end point in the

negative half region. wu, mey differ from u,, 8s shall be seen.
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Then
§t = 61+ + 8t .
Now Tt is a function of the variables w, u, and u_, which vary

from one tube to the other. Thus 8T may be obtained by differentis-~

tion with respect to these varisbles:

T 3T 3T 3T
8t = 6w 5— + 6u+E+ 8 =+ Gu"_é-u—:_ . (3.13)
= ¢k3[gsinw cosw sinhu+ Sw + coshu, (sin?w
+ sinh2u+)6u+]/A + ¢k3[zsinw cosw sinhu 6w
+ coshu_ (sin?w + sinhzu_)ﬁu_]/A i (3.14)

where Su, = % Su(* ui,w), su(u,w) end 6w being as defined in the

elemental vector a given by equation (1.26), subject to the assumed
condition &°B = 0. &t is to be evaluated at the boundary, w = WB'
Further progress is made by expressing Su in terms of 6w, as

shown below.

From equations (1.26) and (1.27),
v = - h B Su/h B_ . (3.15)
uu vv
Mnother expression for 8v is obtained by considering the
equation of a field line. From (3.L4) is first obtalned
dv = h B du/h_B_ . (3.16)
u v v u

Substituting expressions (2.10) and (2.15) for B and B into
(3.16) and integrating with w held constant, one obtains the equa-

tion of a field line,



u=1Ue
a
_ N —w,+0
w=wb+8w w_wb+bw\ W=wWy+ w\
u=0 u=0 u=0
w =Wy, w=wy,
a

ll==“lle

© =t

(a) u=-te (b)

[
ranges of GVO, the azimuthsal variation at u = 0O:

Fig. 6. Three possible cases corresponding to different

(a) u,o= o, WS U (v) u, = U, U= U, - | su(- u_,wb)I; (¢) inversion of (b).
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u
vEv o+ (xC/Acos?w) [ (cosh?u” -~ cos®w)du”/coshu” . (3.17)

o

Therefore,

v = Gvo + kCcoshu Su/Acos2w + 2kC sinhu sinw Sw/Acos 3w

-~ kC 8u/Acoshu . (3.18)

Equeting the two expressions for §v and solving for Su, gives

Su = - §v /T - BSw , (3.19)
where
T = [kzcz(sinzw + sinh?u) + A?coszwﬂ/AkCcoshu coslw (3.20)
and
8 = 2k2C2sinhu coshu sinw/coswEkzcz(sinzw + sinh?u)

+ A2cosZv] . (3.21)

T is positive for all u and en even function of u, while B is
an odd function of u and positive for positive u.

From this point, the presentation is a little clesarer if the
sign of § is reversed, so that Sw > 0. The criterion for stability
is then

81 >0 . (3.22)

It is now necessary to consider three cases which are 1llus-
trated in Fig. 6. Note that these plane diagrams do not give e
true representation of the magnetic field lines, which are reslly
twisted curves. Case (c) is just the inversion, ebout the median

plane, of case (b), so that there are only two separate cases to



\

u= — llf:

Fig. 7. A variation with dulu_,w) > 0, éu(-u_,w) < 0, is not
allowed by the field ilne geometry.
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consider. Note also that there exists a fourth possible combination

of the signs of 6u(u+ ) end Su(- u_,w), namely

6u(u+,w) >0 (3.23)

su(- u_,w) <0, (3.24)
depicted in Fig. 7.
As shown below, this situation is not allowed by the geometry

of the field lines. Thus, the inequality (3.23) gives

Au(ue Wy + Sw) <0 , (3.25)
where
A= -8 and Sw > 0 .
That is,
- Avo ¢
o+ o) " B(ue,wb + Sw)Aw < 0 . (3.26)
e’ b
Let
re,G = I‘(ue,wb + Sw) ,
Be s = B(u v + sw)

and use the fact that Aw < O.
Then (3.26) becomes

Av_» T

0 e

sBe s |aw| . (3.27)

The inequsality (3.24) gives

Au( - u W+ Sw) >0 ,

and this leads to
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bv < - aw| . (3.28)

re,dﬁe,d

Clearly, since T >0, B > 0, conditions (3.27) and (3.28)

e,l

are not compatible. Hence the situation in Fig. T is not allowed.

e,d

Case (a)
Recalling the definitions of u,, u,, and u_, Fig. 6(a) shows
u, =u, , (3.29)
u =u_ , (3.30)
- e
and
Gu(ue,w) <0, (3.31)
Sul - ue,w) >0 . (3.32)
Condition (3.31) gives
v > - F(ue,w)s(ué,w)6w = - T8 6v . (3.33)
Condition (3.32) gives
- bv_ - T(- ué,w)B(— ué,w)ﬁw >0,
or

- 8v_+ P(ue,w)B(ue,w)Gw >0,

using the parity properties of T and B.

Thus
§v < T B 6w . (3.34)
O e e

Since Sw, Pe and Be are all positive, conditions (3.33) and

(3.34) are compatible, and show that case (a) covers the renge

- T B W < 8v < T _g:év . (3.35)
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Substituting into (3.1k4), using (3.29), (3.30), and the fact

that

Su, = % su(+ ut,w) R

evaluation at w = Vo gives

6t = ¢k3|2si i + in?
T = ¢k [?51nwb cosw, sinhu_ 6w coshue(s1n Wy

fh 2 _ . 3 :
+ sinh ue)( Gvo/I‘e SeGW)]/A + ¢k [231nwb cosw, sinhu, Sw

2

2 2
+ coshue(51n w, + sinh u.e)((SvO/I‘e = BeGW)]/A .

b

The terms involving Gvo cancel, leaving

- 3 i X _ X -
8§t = 2¢k (QSlan cosw, sinhu_ B, coshue(51nZW£ + sinh ue))ﬁw/A .

Using (3.21), this becomes, after some algebra,
34 2 ol _ 1202 (ain2y  + sinh?u )2
Lok sinw sinhue[A costw - k°C (sinw, + sinh ue) ] 8w
2n2 2 s 1.2 2 a2
A coswb[k C%(sin w, + sinh ue) + A?cos wb]

8t =

(3.36)
From (3.36) and (3.22) it is seen that, as expected from the
discussion given by SEYMOUR (1961), a transition from stability to
instebility cen occur ag the discharge current (proportional to c)
is increased.
The sign of 8t is governed by the sign of the factor in square

brackets, which becomes negative if C > Ccrit , where

- 2 s 2 s 12
Ccrit. Acos w5/k(51n Wy * sinh ue) X (3.37)

Thus, since 6w > 0, condition (3.22) is violated if C > Corit . ?
and so Ccrit gives a measure of the current value which is critical

for the onset of unstable interchanges. It is of interest to note
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that, in view of the discussion of Section 1.3, the system might be
expected to enter a second stable régime as C is increased further
so0 that the inequality (1.24) becomes satisfied.

The result (3.37) may be obtained by commuting & with the
integral sign in (1.25) and evalusting the resulting integral.
This operation has been carried out, forming an important consis-
tency check as presented in Appendix I.
Case (b)

From Fig. 6(b) it is seen that in this case,

u, = u : (3.38)
and
u =u, - | su(- u_,wb)l
=u, - |Au(ue,wb + &w)| (3.39)

where A = - §, and Sw > 0 .

Also the conditions

Su(ue,wi) <0 (3.%0)
and
Au(- u Wy + Sw) > 0 (3.41)
apply.

Condition (3.40) gives
§v_> - T B &w , (3.42)
(o] e e
while (3.41) is

Au(- ue,wb) + Sw3du/dw > O .
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Neglecting the higher order terms,

Au(- ue,wb) >0,

or

sul(- ue,wb) <0 .
This leads to
sv_ > T B 6w . (3.43)
The conditions (3.42) and (3.43) are compatible and so the
situations in Fig. 6(b) and Fig. 6(c) are allowed by the field line

geometry. As in the case (a), using the fact that u, = u and

su 5u(u+ ,wb) R

+
(S'r+ = ¢>k3[2sinwb coswb sinhueéw - coshue(sinzwb + sulnhzue)(dSvo/I‘e
+ Beaw)] /A .
In this cese, however, u_# U, and
§t_ = ¢k3|:2'sinwb cosw, sinh(ue - Su_)éw + cosh(ue - Gu_)(sinzwb

+ s:i.nhz(ue - Gu_))du_] /A

3 . \ .. D + sinh2
~ ¢k |:251nwb cosw, s1nhu66w + coshue(51n v, sinh ue)éu_] /A

3 . i sn2u0 4 ainh2 -
ok [E‘smwb cosw, sinhu_éw + coshu_ (sin w, + sinh ue)

(= sul

u, + 6u_yw )] /A

~ 3 * s 2 + 3 2 X
ok [?smwb cosw, sinhuerSw + c‘l'oshue (sin L sinh ue)

(

suf - u, ,Wb) ):l /A
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- 3 . o + )
ok [251nwi cosw, sinhu 6w + eoshu, (sinw

+ sinhzué)(dvo/re - BeGW)]/A .

Thus, in this approximation the form of 81 is the same as in
case (a). Hence the critical current for instability is the same

as before, and is given by equation (3.37).

3.4 RELATION TO FIELD LINE CURVATURE

An interesting feature of the result obtained here cen be
deseribed in terms of the transition point Q (SEYMOUR 1961) which
defines the value of u at which the normal curvature of the field
lines in the surface w = L vanishes. This is the value of u at
which each field line becomes tangential to one of a family of
straight lines which lie along the curved surface; each of these
straight lines cen be regarded as a generator of the ruled surface.

Perhaps the simplest method of locating Q is by direct evalua-

tion of the normal curvature. BEquation (1.31) gives

B2K = V(%B?) - Beje1°VB

[la /v ) (3/20) + (ay/n)(a/ow)] %2
- (Bu, + szo)(Bu/Bhu)(aB/Bu) . (3.L4)

The curvaeture vector K has two components, the normal curve-
ture, gn, and the geodesic curvature, Eg’ which lies in the sur-

face w = constant. K, is just the w component of K:

K = (EO/thZ)B(%BZ)/BW =Kw . (3.45)
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while
= - '+ 1. 2
gg (_1_1_0Bv y_oBu)(Bv/huB Y3(%B%)/du . (3.46)
From (3.45) it is seen that En will be zero when
3(%B2)/ow = O . (3.47)

Using (2.10) and (2.15), equation (3.L47) reduces to

QSinWEKZCZ(sin?W + sinh?u)? - A2cos'w] =0

k*cosh?u cos3w(sin?w + sinh?u)?

Thus Q, on the surface w = w,_, is defined by the equation

b
kzcz(sinzwb + sinh?-uQ)2 - Azcos“wb =0 . (3.18)
For u < uQ’ the normal curvature is negative and is directed

out of the plasma, while for u > u,, the opposite holds.

Now (3.37) gives

kzcgrit (sinzwb + sinh?-u.e)2 . Azcos”wb =0 . (3.49)

Compering (3.48) and (3.49), it will be noted that when
¢C=¢C_. ,thenu, =u . The critical current is Just that
crit. Q e
current which places the transition point Q on the electrode.
Basically there are two contributions to the integrand in
J 6(de/B) as expressed in (1.33). They arise from the two com-

ponents (normel and gecodesic) of K. The contribution to (1.33)

made by the normal curvature is

- 2dka-K /B = - 2aeh SvK /B . (3.50)



2.

As noted efter equation (3.48), K, is negative in the region

Q

(3.22), 6w is positive everywhere. Hence, for u < uq, the contri-

W < u. while with the convention adopted immediately before eqguation

bution of Kn is positive, and therefore stabilizing in view of
condition (3.22). That is, plecing Q at the electrode allows only
a stabilizing contribution from the normal curvature (SEYMOUR 1961).

The geodesic curvature mskes the contribution
- 2d%a:X /B .
-8
From (3.46) is obtained
° = - L 12
aK, (suB_ - h 6vB /n )(B /B*)2(2B%)/ou . (3.51)
Using (3.15), equation (3.51) becomes

aK = (6u/B2)5(%B2)/ du= - (1/B2)(8v /T + B&w)a(4B?)/du , (3.52)

the last equation being obtained by using (3.19).
The complete geodesic term in the integrand of (1.33)

becomes, by use of equations (3.4) =nd (3.52)

(2hudu/13u32)(avo/r + BSw)a(%B2)/3u . (3.53)
Now
2 2
582/5u = 5% { A + C ]
k%cosh?u(sin?w + sinh?u) k2cosh?u cos?w
: 2 2 2 2 2
_ - 2sinhu [ ¢ A (cosh?u + sinh2u + sin?w)] . (3.54)
k?cosh3u leos?w k2 (sin2w + sinh?u)?
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(1) 9B2/%u is an odd function of u ;

(2) for u >0, 9B%/du <0 .

Therefore, since I' is an even function of u, the first term
in (3.53) is an 0dd function of u, and will meke no net contribu-
tion to the overall integral from - Uy to u,- This fact was seen
earlier as the 6vo terms in 67, and 8t_ cancelled out when 6t was
computed.

On the other hend, the second term in (3.53) is an even
function of u and gives a net contribution to the integral which is
negative (for 6w > 0) end therefore destebilizing. It is this part
of the geodesic contribution which just cencels the stabilizing

effect of the normal curvature when u.e =1 end it is this

Q B
destebilizing effect of the geodesic curvature which makes the
condition uQ > u, not just a sufficient condition for stability
against this interchange, as asssumed by SEYMOUR (1961), but also
a necessary condition.

The overall sign of the geodesic term depends on the sign and
magnitude of Gvo compared with TRéw. As has been seen in Section
SmSe Gvo is largely arbitrary, but whetever the case, there is
always a zero net contribution from the Gvo term and a net de-
stabilizing effect from the other term, provided the system is

symmetric in u, so that the integral (1.33) is evaluated between

lower and upper limits of u symmetrically disposed sbout u = 0.
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3,5 COMPARISON WITH THE EARLIER RESULT OF SEYMOUR

The expression for the critical current Icrit.’ derivable
from equation (3.37), may be compared with that obtsained by
SEYMOUR (1961). Seymour's expression was obtained by assuming
that a sufficient condition for stability would be satisfied by
placing Q at the electrode. The transition point was approxi-
mately located by equeting tan 6, = (BV/Bu)electrodes and ta.neg,
where eg is the inclination of the surface generator lines to the

7z exis. He obtained, for the critical current,

g, = 5¢Etaneg/1rre , (3.55)

(equation (4.5) in his paper, 1961), where ¢p s the total
external magnetic flux through the discharge, and was epproximated

8s ¢E = B nrg , by assuming the magnetic field to be roughly

M
constaent over the median cross section.

By considering the geometry of the hyperboloid of one sheet
it is easy to show that

taneg = cotwb . (3.56)
Hence (3.55) becomes
- 2
T = 5B,re cotwb/re 3 (3.57)

The critical current is obtained from equation (3.37) as

follows. In MKSC units, neglecting the displacement current,

VxB=1ud . (3.58)
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and then it is easily shown that

¢ = uOI/2n . (3.59)

= - 2 . 2 . 2
I . onC . ./uo 2rAcos wb/uok(s1n W, * sinh ue) .

Using equations (2.1) and (2.16), some msnipulation leads to

B (2wBM;g cotwb/uore)[coshu.e sinzwb/(sinzwb + sinhzué)] .

(3.60)

Icrit.

Thus , but for the units conversion factors, this expression
differs from (3.57) by the factor in square brackets. The two
expressions may be reconciled by considering the two approximations

involved in Seymour's analysis:

(1) An spproximate expression for Bu of the form

B, ™ 1/r? (3.61)

was used, and

(2) The transition point was located in an approximete way

by equating taneBe and taneg.

These two epproximations are deslt with below, where it is
shown that by using more accurate expressions, the correction factor

obtained sbove arises quite naturally by using Seymour's method.

Firstly, the spproximate form for Bu yielded

taneBe = "Icrit.re/5¢E . (3.62)

(equetion (4.4) of Seymour's paper), or



Generator v="constant,

w = constant = wy

Fig, 8. The generator SS” is at a distance r from the z axis,

to which it is inclined at an angle eg.
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- 2
tenby = Icrit.re/SroBM . (3.63)

If, on the other hand, expression (2.15) is used for B>

then, with the help of equations (2.1) end (2.10)

(u T

tanBBe = (Bv/Bu)electrodes N o ecrl

V)
t.re/EWBMrg)(51n vy

+ sinhzu.e);E/co'e.hu.e sinv, (3.64)
and it is noted thet part of the correction factor in (3.60) is
alreedy emerging.

Secondly, to locate the trensition point more sccurately, one
must equate taneBe with tanee, where in general, 6 is the angle
between the generator line and the tangent to the curve v = constant ,
w = constant, at the point P (Fig. 8).

The expression for tan® is
tan® = (hv/hu)dv(u;wb)/du , (3.65)

where v = v(u;wb) describes the generator passing through the
point (O,vo,wb), v, being srbitrary (Fig. 9). For simplicity,
t ke v, = 0. Then, remembering thet the generator is inclined at
angle Gg to the z axis eand lies at a perpendicular distence r. from
it, the equations of the generstor in the cartesian system (x,y,2)
(Fig. 9) are:

X=r (3.66)

and

y = zta.neg = zcotwb . (8.67)

using equation (3.56).



Fig. 9. The discharge cross section at the median plane.
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Using equation (2.1) and the facts that

»
I

I cCos VvV

and

Yy ¥ sin v

equations (3.66) and (3.67) yield

tan v = sinh u ,
from which equation (3.65) then becomes

tend = h_/h coshu . (3.68)
Using equations (2.2) and (2.3) and evalueting at the electrode,

1
= s 2 s 102 %
ta.nee co‘cw,D 31nwb/(sin W, t sinh ue) 3 (3.69)

The ebove treatment is easily generelized to the case of
arbitrary v, by use of the rotated cartesian system (x”,y”,z)
(Fig. 9).

It csn now be seen thst in (3.69) the remaining part of the
correction factor in (3.60) has emerged.

The finsl step is to equate tanb_  with ta.nee, end to solve for

Be
Icrit.’ as below:
u I r (sin?w, + sinh?u );’5 cotw, sinw
o crit. e b e’ b b
L 1 ]
2 . 2 2., Y2
2By xr2 coshu, sinmw (sin w, + sinh ue)
which gives
2 2
~ 21rBMro cotwb coshue sin wb \
Torit, = r J (3.70)
’ HoTe sinzwb + s:i.nhzue

in agreement with expression (3.60).
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3.6 THE SLIGHTLY CONSTRICTED DISCHARGE

The derivation sbove of expression (3.70) shows how the correc-

tion factor, given by

coshue sinzwh
F = ’ (3-71)
ain2w, + sinh?u
b e

arises when the two approximstions in Seymour's analysis are
teken into account. The conditions under which Seymour's expres-
gion is a good approximation to the result (3.70) may be seen as
follows.

If
sinhzu_e < sinzwh <1, (3.72)

then

F = coshu
e
zl,

since u, must be very small for (3.72) to hold. Therefore, under
condition (3.72), the approximation is good. It is shown below
that this condition is satisfied in the practical case of & dis-
chaerge with semi-length 2 considerably greaster than its radius
ro gt the median plane, and a constriction ratio, of radius re at
the electrodes to radius at the median plene, not very different

from unity:

H

€ ~
;_~ 1 . (3~73)
(o]



79.
Equation (3.73) yields, through use of (2.1),

coshu =~ 1,
e

or
sinh2ue <1, (3.74)
while the condition
r2 € 52
o) e

gives

coszwb < gin’w sinhzue

b

Therefore, since sian < 1, it follows that

coszwb < sinhzue <1, (3.75)

using (3.74). Condition (3.75) further indicates that sinw, =1,
so that, finally,
sinhzu.e < sinzwb .

It is easy to show by partial differentiation that, for a
given velue of U F increases monotonically with sinwb, in the
region of interest. Thus for a given value of u > F cannot exceed
the wvalue EBE%E—-, obtained by substituting the maximum value of
unity for sinwbein equation (3.71). Since coshue mist always be
greater than 1 (u.e > 0), it is clear that F cannot exceed the
value unity, for eny geometry.

However F may assume values much less than unity, in geometries

for which Seymour's expression is not a good approximation to the

exact result. For example, if U, is large enough so that
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cos.hu.e 4y sinhue v 10, say, corresponding to the system with a high

= h . . 1
constriction ratio, then F by 10

3.7 CONCLUSION

The thermodynamic stebility criterion of ROSENBLUTH and
LONGMIRE (1957) has been applied to the interchange instability of
the surface layer of a constricted discharge. The discharge
boundary is shaped by an external magnetic field, to approximate an
hyperboloid of one sheet. This gives rise to the possibility of
stabilizing forces, under Teller's curvature criterion. The sign
of the field line's normel curvature depends on the direction of
the field line in relation to that of the surface generator. The
balance of stabilizing forces, from the normal curvature, against
destabilizing forces from the geodesic curvature gives rise to a
critical current, sbove which interchange instability sets in. An

expression for the critical current has been obtained in the form

= ¢ = 2 s 2 + ainh2
uoIcrit./gﬂ C.pig, = Acos wh/k(51n w, + sinh ue) .

where A = BMkzsinwb, BM being the axial magnetic field component on
the surface w = Wy of the discharge, at the median plane. Icrit.
mey be written in terms of the dimension-parameters of the dis~
charge, Ty end 2> where rO is the discharge radius at the median

plane, and z_ is the discharge semi-length. Using (2.1), 1is

obtained
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1
2022 _ 2\%
) 2wBMro(k ro)

Tepit. =
° 2 + 2 - 2
uO ( ZG k rO )

The destabilizing effect of the geodesic curvature of the field
lines is such that the current must not exceed that value which
places the transition point Q (at which the normal curvature changes
sign) at the electrode. This means that the requirement that Q be
at the electrode is not only a sufficient condition for stability,
as sssumed by SEYMOUR (1961), but also a necessary condition. The

expression for Ic obtained by SEYMOUR (1961), is a good

rit.

approximation for the present expression, for a discharge with

e o]
and
r?2 <€ 22
o) e
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CHAPTER L

THE ENERGY PRINCIPLE FOR HYDROMAGNETIC STABILITY

4.1 INTRODUCTION

The analysis presented in the foregoing chapters dealt with
the stability of low pressure plasma-magnetic field systems with
respect to the specialized perturbation which results in the inter-
change of adjscent magnetic flux tubes. In particular en expres-
sion was derived for the discharge current which is critical for
the onset of unstable interchanges in the low pressure boundary
region of a diffuse constricted discharge. Attention is now given
to the treatment of a more general class of fluid motions charac-
terized by the small perturbation field, § . £ is usually taken
to mean the displacement of a fluid element from its equilibrium

position T and is written

£=E&(z_,t) . (4.1)

This approach is based essentially on a fluid theory in which the
strength of collisions is assumed to be such that the pressure
always remains scalar, but the electrical conductivity may be
regarded as infinite.

An expression for SW(EJE), the change in system potential
energy produced by the perturbation, may be obtained by writing
down the potential energy function and evaluasting the second-order

variation with respect to £ . Although an expression for 6W has
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been obtained (BERNSTEIN et al, 1958) effectively by integrating
the second-order expression for %%-, there does not appear to be
in the literature a complete derivation of &W by the former method.
VAN KAMPEN and FELDERHOF (1967) use this approach to derive §W for
a system in which the plasma extends to infinity. They are thus
coricerned only with a fluid domein, and certain terms, which by
application of Gauss' theorem become integrals over the fluid sur-
face, are assumed to give zero contributions as the surface is
extended to infinity. Their work is here extended to derive &W
for the case of a finite system in which the plesme is in contact
with a vacuum region and with electrodes. The result is found to
be in substantial agreement with that of BERNSTEIN et al (1958),
although some modification arises because here the plasma region is
not considered to be completely surrounded by a conducting shell,
as in the sbove reference, but instead allowance is made for
insulating supports for electrodes. This necessitates great care
in applying Gauss' integral transform as is required at a number
of places in the proof. Such a generalization of the system
geometry then permits application of the result to the discharge
between electrodes.

In the present chapter, and in the next, no particular con-
figuration is assumed for the system, but in the final chapter
the conditions for stability discussed here will be applied to the

constricted discharge. Since in the later work a field-free
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discharge will be considered, some of the discussion here will be

related to such systems.

Lh.2 STATIC AND DYNAMIC BOUNDARY CONDITIONS

Consider a highly conducting magnetically confined plasma,
insulated from its surroundings by a vacuum region. The system
will be described by orthogonal curvilinear coordinates (uj ,up suz)
with unit vectors (ej,es,e3). At the interface between field end
plasma, e3 is taken to be the mit normal vector directed into the
plasma.

Using a clrcumflex to indicate vacuum quantities, the vacuum
magnetic field E_at all times satisfies Maxwell's equetions with-

out displacement or conduction current:
VB =0 , (4.2)

v x §_= 0 3 (4.3)

and when the system is perturbed so that e time-dependent situa-

tion is produced,

UxB=o— . (h.14)

VoE =0 . (4.5)

The boundary conditions to be applied at the interface are
well known (KRUSKAL and SCHWARZSCHILD, 1954). At such an inter-
*
face, one introduces a sheet current J and jump discontinuities

in the magnetic field and particle pressure (and in the electric
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field, in the dynamical situstion). Relations involving the dis-
continuities in the physical quantities are derived by integrating
the appropriate equations across the thin layer which the surface
sheet is assumed to approximate, and then allowing the layer to
become vanishingly thin.

In the layer the following equations apply:-
The equation of motion, in the absence of charge accumulation and

gravitational forces:

av
p=—=-Vp+ ] xB; (h.6)

at
the conservation of meass:

%%4. Va(pl) =0 ()'l'-7)

the infinite electrical conductivity approximation:

E+yxB=0; (4.8)
the adiabatic equation of state:

4 "y =0 - 4

T (P ) =0 (4.9)

Maxwell's equations without displacement current:

e
VXxE= - (4.10)
VxB=ud, (h.11)

and
VeB =0 . (k.12)
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These equations are listed, together with the conditions
under which they are valid, by BERNSTEIN et al (1958). They are
displayed here for convenience, all symbols having their ususal
significance.

Equation (L4.6) becomes, on carrying out the sbove procedure,

s (k.13)

where <X> denotes the jump in the quantity X on crossing the inter-

face in the direction of n, where, in this coordinste system,

n=-e3. (4.1k)

It is enlightening to examine the integration of the magnetic
body force tern J x B in equation (4.6). 1In the limit of zero
layer thickness, lf must lie in the interface since current cannot
flow into or out of the vacuum. B must also lie in the interface
in order to evoid infinite acceleration due to unbalanced tangen-
tial forces on the massless current sheet. Thus the surface layer
nmay be considered as an assembly of surfaces in which lie the mag-
netic field and electric current vectors. This assembly reduces
to the surface current sheet as the layer thickness, As, tends to
Zero.

The magnetic body force per unit ares exerted on the leyer is
glven by

f ds ) xB, (4.15)
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where s represents the path of integration normal to the magnetic

*
surfaces in the layer. Quentitatively, J 1is defined as

* *
j_=fdj_=fds,1. (4.16)
Hence the magnetic force per unit area is
® L
fd,ixauxg, (b.17)

vhere B as defined by (L.17) is an appropriate average of B for
the layer. It is shown below that, as stated but not explicitly
proved by KRUSKAL and SCHWARZSCHILD (1954), the appropriate aver-
age to take for E after allowing As to become vanishingly small is
just the arithmetic mean of the values on the two sides of the
layer.

The result for E is obtained by integrating expression
(4.15), as follows. Meking use of equation (U4.11) and a standard

vector identity, the integral assumes the form

l* x B = EZ-L—_J ds (B-VB - VB?) . (4.18)
o

On allowing As to tend towards zero, the first term of (L.18)

vanishes, while the second term becomes
2
- p =, (4.19)
= 2u

Thus

=_£<§>°'2_'(§_i+§e)a (’"’-20)
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where §1 is the field on the inside of the interface, and §e
(strictly the vacuum quentity, B) is the field on the outside of
the interface.

By means of standard procedure equation (4.11) can be inte-
grated across a rectangular cross-sectional element of the lsyer

to give, for As - 0 ,
* ~
Bl =nx<B>, (k.21)
vhile, by means of the pill-box technique, the solenoidal property

of B leads to

n<B> =0 . (4.22)

Therefore the vector product of n with equation (k4.21)

becomes

uogx’l*=—<B>, (4.23)

upon expansion of the vector triple product and use of (L4.22), and

so equation (L4.20) gives

= .y
1l xB=n(nxj) %3 +B)
*
- N 1,
=nn - {1 x%(B; +B)} . (k.2L)
*
Sincen °J =n°B, =n°*B =0, it follows therefore that
= == ==
Tx By ) (k.25)
:j_ X.B_J. X/Z_}}i'!'ge ] .25

thus identifying B as the arithmetic mean of B, and B,
A further boundary condition of importance in the dynamical

situation is
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nx<E> = (nv) <B>, (4.26)

where v is the velocity of points on the interface. This equation,
elegantly derived by JEFFREY (1966), expresses the continuity of
the tangential component of E in the frame of reference moving
with the interface.

Summarizing, the conditions of interest at the interface, in

the special case of zero internal magnetic field, are essentially
B2 = 2u p (k.27)
from equation (4.13); and from equation {(L.22),
essB=0, (4.28)

which epply at all times. In particular, using the subscript o

to indicate quentities in the equilibrium state, the absence of an
internal field leads to the condition that P, is constant through-
out the plasma. Equation (4.27) then implies that ﬁg is constant
at all points on the interface.

Conditions (L4.27) and (4.28) imply & geometric property of
the magnetic lines of force on the interface in equilibrium;
namely, that they are geodesics of Spv(o) where, for convenience,
Spv(o) represents the equilibrium interface between the plasma and

vecuunm regions. The proof is as follows. Firet, applicastion of a

standard vector identity to the vacuum magnetic field E_gives

x (V x E) = 7(%B2) - §°VE . (4.29)

[t
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which, in view of equation (4.3), reduces to
(4. 30)

°

V(%B2) .

>
&>
il

Introducing the curvature vector K= (ﬁfV)EJ where ﬁ_is the

unit vector in the direction of § ,

B2k = v(582) - B(b-v)(382) (4.31)
= (I - bb)-v(%82) , (4.32)
where the unit tensor I = eje; + eje, + eses . (k.33)
On the interface the condition (4.28) meens that
. ]§1§.1 ﬁzﬁz
b= + S & (4.3k)
B B
and so . . N .
A Biei  Baep  Biey  Bpey
B’K = {e1e1 + esep + e3e3 = (— * —) (— + — }-v(%H2)
B B B B
8,2 B,2 B8,
={oe1 (- =) + erer(1 - = - —= (e105 + ege1)
2 B2 ﬁz

+ e3e3}-v(82) . (4.35)

In viéw of the remarks following equation (4.28) 1t is seen

that on Spv(o),

e1 *V(B2) = g W2 ) =0,

and so in equilibrium, on Spv(O)’

(4.36)



91.

Thus on Spv(o) the vector curveture of the equilibrium field
lines 1s everywhere normal to S v(o). Using the language of
differential geometry, the geodesic curvature of the field lines
on Spv(o) is zero; thus, by definition, the field lines on Spv(o)

are geodesics of Spv(o).

4.3 PERTURBATION OF THE VACUUM MAGNETIC FIELD

In practice the plasma is a finite body, either closed upon
itself (torus),or terminated by electrodes. For the latter case it
is assumed here that the electrodes are sufficiently hot for the
plasma in their immediste vicinity to satisfy the infinite elec-
tricel conductivity epproximation leading to equation (L.8).
Although VAN KAMPEK and FELDERHOF concern themselves with an
infinite plasma, for a finite plasma it is nevertheless possible
to obtain from their work (1967, p.75) an expression for &W,
which represents the second-order variation in potential energy
associated with the plasma and magnetic field within Tp, the
plasma volume. The complete expression for 6W in the case of a
finite plasme can be obtained by adding to 8W the expression rep-

resenting the second-order verietion in W the energy of the

BE®
external magnetic field. This derivation is carried through below.

For the discharge between electrodes, which will be the sub-
ject of the final chapter of this thesis, one cannot make the

usual assumption that the region of interest - plasma and vacuun -

is completely surrounded by a perfectly conducting wall. TIn fact

a
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if, as is usual for example in linear pinch experiments, a stabi-
lizing conducting shell is used, coaxial with the discharge and
continuous for the length of the discharge, then it is clear that
insulating supports for the electrodes must also be present to
avoid short-circuiting of the discharge. That is, the steabilizing
shell should not be considered completely closed across the ends.
In the development given below, the assumption of a closed
wall is not made. Instead the general case 1s considered, in
which the volume external to the plasma is assumed to comprise
vacuum regions, perfect conductors and perfect insulators. One
may also assume for generality that the confined plasma may be
partly in contact with all three media, but since a very hot
infinitely conducting plasma cannot remsin in contact with an
insulator without the occurrence of rapid quenching, it is essumed
here thet the plasma is in contact only with vacuum and with very

hot electrodes. At the electrode surfaces the condition

neg =0 (4.37)
must apply.

For such a system the surface\ terms not taken into considera-
tion by VAN KAMPEN and FELDERHOF must be included. The important
result obtained here is that the form of W derived for this sys-
tem by extending the approach of VAN KAMPEN end FELDERHOF is in
agreement with that obtained by BERNSTEIN et al (1958), except for

some modification of the wvacuum contribution. This modification
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arises simply because the entire region of interest is no longer
confined to the interior of a closed conducting wall, but extends
to infinity. The expression obtained in second order from

VAN KAMPEN and FELDERHOF is, assuming zero gravitational field

(VAN KAMPEN and FELDERHOF, p.T5. equation (21) et seq.)

W =1% [ dr {7—-|HJ2 = i0°(@_x E) + YPO(V’§)2
r (o) °
= BZ
+ (?ng)FoVPo} + ou_ I l[uopo * 7§J(Eqv§.* EVeE)
"p(O)
epm)n, - {og,m) g e, (1. 39)
where
@=9x(gxB), (4.39)

Tp(o) is the equilibrium plasms volume, and Sp(o) encloses Tp(o),
with d§o directed out of the plasma.

Consider the term

in the surface integrel of equation (4.38). Its integrand is zero

on the plasma-vacuum interface S_ (o), since B <dS is zero there.
PV o o

It is also zero on the plasma-conducting electrode interface Spc(o),

as may be seen from the following. On Spc(o) it 1s necessary to

consider situations where the magnetic field does not lie in the

interface, but actually enters the electrode. (e.g. a linear

pinch with internal axial field.) At the interface the condition



ok,

s x E=20

must apply. This beconmes, through equation (4.8),

a8 x (xxB) =0,

or

Since the interface is rigid and fixed, dS-y = 0, and so
(dg+B)v = 0 . (k.%0)
Integrated to first order, this gives

(a8 °B)E =0 - (L.b41)

Hence when d§o°§0 # 0, the freezing-in effect of infinite
conductivity leads to £ = 0 at the plasma-electrode interface.
Clearly, then E°£°VB_ must be zero on spc(o), if B °dS # O

Since expression (4.38) represents GWﬁ + GWP, where Wﬁ ig the
energy of the magnetic field in the plasma and Wﬁ igs the material
energy of the plasma, to extend the derivation here one must include
the variation GWﬁE in the energy of the magnetic field which
occupies the volume external to the plasma.

This variation may be calculated, to second order in the per-
turbation, as the work done against the pressure of the vacuum mag-
netic field in deforming the surface Spv(t). The wvalidity of this

spproach is established in the following discussion.
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The magnetic energy external to the plasme may be written

I 2.
oz = B [ B2ar (4.12)

+2(t)+
1c+1(t) Ty
where the subscripts c and i on the t's refer respectively to the
conductor and insulator regions. In the rigid material occupying

9B
Ta the electrical conductivity is extremely high, and so - 1is

ot
sensibly zero there, at least on the rapid time-scale of unstable
motions considered here.

Then
a _ 1 d 2
= Vg = EE;"EE J B2(r,t)dr . (4.43)

t(t)+
(t) T

Appendix II provides a rigorous analytical proof that the time

derivative g%%ﬁl.= E%-I f(r,t)dt may be expanded to the intuitively
t(t)
obvious form
de(t) _ 2 p(r,t)ar + ( f(r,t)v-as , (L.Lh)
at 3t T | HEbirres
T(t) s(t)

where S(t) is the surface enclosing t(t),v is the velocity of a point
on S(t), and dS is directed out of t(t). Applying this result to
equaticn (4.L43) yields, therefore,

4 = 2 [ 3 1p2 21 | Rp2yeas-~

7 "mp ~ W f = (B%)ar + &= f BZv-ds”, (L4.h5)

Q
'?(t)+'ri S(t)
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where 3(t) bounds the combined volumes of vacuum and insulator.
That is,

S(¢)=Ss_+8 +8.,+8.+8_, (4.L6)
pVv cv pi cl L

where Sab is the interface between media 'a’ and "', and S is
the "surface at infinity”. In (4.45) the prime is introduced so
that on Spv there will be no confusion between dS~, directed out

of the vacuum, snd dS, directed out of the plasma consistent with

its equilibrium form dS_ in (4.38).

Introducing the magnetic vector potential A such that B
V x A, the volume integral in equation (4.45) becomes, but for

the factor jL

(o]
d 112 3_]1
I’é‘{(/éB )dT=IE*§‘{dT
%(t)+ri %(t)+-ri
JA
zj(vxé)a(vxﬁm : (4. 17)
T(t)+Ti

Since no currents flow in t(t) end T4s VX (v x A) =0,
and so

3A 3A
(Vv x é)o(v X 5%3 = V”(g{ x (V x é)) ,

using a standard vector identity. Applying Gauss' theorem to the

integral (L4.47) therefore gives
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24
[[& G v xw)

f - (382)ar

%(t)+Ti s(t)

7y
[ e xzrvxa

s(t)

- f (@88 x E)°V x

=

(L.48)

S(t)
oA
since the electric field E = - T

Now dS° x E must vanish on the rigid conducting surfaces ch
end Sci’ end furthermore it is assumed that the field quantities
fall off rapidly enough for the contribution from the integral
(4.48) over S_ to be vanishingly small. Additionally, conditions
(4.8) and (L4.26), together with the fact that B lies in the surface

Spv(t) in the plasma/magnetic field model chosen leads to

as” x £ = B(voas”) (4.k9)

on Spv(t).

Thus, assuming Spi to be zero, equation (L4.L48) reduces to

[}
1
——

f(t)+ri Spv(t)
=-J§;@' (4.50)
Soy(t)

because

J>
1]
<]
X
£
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Considering now the surface integral in equation (L.L5), it
is noted that since ch and Sci ar¢ rigid, v°.d8”® = 0 at those sur-
faces. On the reasonable assumption thet the integral over S_ is
vanishingly smell, and remembering that SPi is here considered zero,
this integral therefore reduces to

L | B2yeas” = —=— | B2veas” . (4.51)
2u =K = 2uo - -

o
s(t) spv(t)
Thus, substituting the results (4.50) and (4.51) into equation

(L.b5),
d

4 s =t | B2y.dg”
at WBE__QUOJBzdg ' (.52
Q
Upv(t)
B2
Since BT d8“ is the force directed into the plasma by the
o

pressure of the vacuum magnetic field at the plasma/vacuum inter-
face, integration of equation (4.52) with respect to time verifies
that the change in external magnetic energy is just the work done
ageinst the pressure of the vacuum magnetic field in deforming the
surface.

Originally the result (L4.52) was derived by a method which
involved the assumption of a form of equation of state for the
plasme, end which made explicit use of the law of conservetion of
total system energy. The more general method presented above makes
no essumptions concerning the materiel inside Sp. The original

derivetion is given, for interest, in Appendix III.
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4.4 EVALUATION OF WBE

To find GWBE to second order in the perturbation, equation
(4.52) must be written to second order and integrated. To carry
this integration through it is noted that, from the Lagrangian
viewpoint, physical properties in e given fluid element at (;‘_,t) are
functions of the initial position r, of the fluid element, and of

the time t. Thus to first order in E, the vacuum magnetic field

at the boundary at time t is (see, for exemple, SCHMIDT, 1966,

p.123),
B(r,t) = B(xr_,0) + E°VB(z_,0) + V X S84 (L.53)
while
= 2
vlr,t) = 55 £ (r,t) . (4.5k4)

Here, G_A_ is the first-order perturbation in .71 Further, to
obtain the required expression for aS(r,t), one integretes E%_ (as)
with respect to time. The expression for {%- (a8) on & deforming
surface is usually derived by tensorial methods (see, for example,
ERINGEN, 1962), but an easily understood vectorial proof has been
developed to obtain the result (see Appendix I , JAMES and SEYMOUR
(1971)),

-é%- (d__s—) = (Va-\i)dfi— (Vlr_)od_S_ 3 ("hSS)

where v is the velocity of points on the surface. Integrated to

first order in the displacement, equation (4.55) leads to

as(r,t) = as(r_,o) + (veg)as(z_,o) - vg-ds(r_,o) , (L.56)
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Therefore, introducing the dummy variable t°, insertion of

equations (4.53), (L.54) and (4.56) into (L4.52) gives

t 3 ¥
6 = - - 1 AZ Eo A2 A o A .:—: C
W I dt I /2[30 + EoU(B2) + 2B oV X 6,3] o7 [ds_o
o Spv(o)
+ Vegds? - vg_oago] , (b.57)

where B = B(r_.,0) and a87 = d§?v(£0,o) (directed into the plasma).
Since all quentities in (4.57) are functions of (goﬁf), and L, is
independent of time, the integrations can be commuted, and so

resrrenging and retaining terms in the integrand to second order

in &,
t 3E 3E  3&
SPV(O)
A 98 . . 8
+ EoV(5B2) 5=+ B oV X 84 771 - (4.58)

Integration of the first term ig trivial. Integration of the
remeining terms is non-trivial but can pe achieved in the following
wey. First consider the second, third and fourth terms together:

Let

t ol 3 B
= ‘4 a [ % o R —)
I=- J as J at {ZBOL(V £ 5= - 5e vg]
0
Spv(o) e
. rey(:B2
+ w= £V082)] (%.59)

& T 3 14
- j a’ - J at” {%Béle (-a—é—,—xg;) AL
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14 g ‘ -
- g &—»] ¢ £ 02} (1 560)
by aepplicaetion of the expansion of V X( _J Recalling that

R 9 L1 N Ak .
v(B2) x [55— xg_:l = o £ V(482) - £ 5 0aED)
and using the pressure balance equation (4.13), equation (k4.60)

may be rewritten as

t L 2 9 dE >
. . 1 Do \ ° }4
1--Id§ofdt{3(_v gv%,}+§_%,V(LBO)}

Q

Spv(o)

% | BE
_ . ., 112 S 1.R2
j at I as7 o {(up, + B2V (GGe= x &) + v085)

© Spv( o)

X (Bt _)} (4.61)

It is further noted that

x ) . (4.62)

: 9F
d§5°[V(;§B§) * (g7 5)] = (85

To progress further, consider V(uopo + %Bg). Then
v x V(uopo + %Bg) = 0; hence application of the theorem of Stokes,
and interpretation of the vanishing line integral so obtained in
relation to a smell rectangular circuit with its longer sides
situated on each side of a portion of the plasma/vacuum interface
leads, with the aid of equation (4.13), to the result (gee, for

example , ROSE and CLARK, 1961)
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-~ - + 1n2 > 8 \
<as’ V(uopo 4BO) =0,
or

q- 1R2) = g9~ 1R2
87 x V(up, + %B2) = 487 x v(BZ) . (4.63)

Equation (4.62) therefore becomes
oz [v02) x (e 8)] = (a5 » v<uo +582)) - (e

= as’e [v(u D, + /132) x ( _)] (4. 64)

3F
By meking use of the expansion of V X [(uopo + %Bg)(s%7'x gj],

the second surface integral in equation (4.61) mey now be written as

3
(o= * 9] - (4.65)

= ‘o 1

Spv( o)

If Spv(o) is a cloged surface (i.e. if the plasma is in
contact with vecuum only), Gsuss' theorem may immediately be
epplied to the integral J of (4.65) to show that it vanishes,
since V-(V x N) = 0 for all vectors N. If, however, the plasme
is in contact with electrodes, Spv(o) will not be a closed surface.
In this case, suppose C(t) is the curve representing the inter-
section of spv(t) and spc(t). Then (4.65) may be transformed by

the use of Stokes' theorem to obtain

13
I= Jdlc_ x £) (u_p, +%B2) » (4.66)

¢(o)
where d@ 1 is an element of path around C(o), its direction being

specified by means of the right-hand screw rule used in relstion to
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the direction of 4S__.
—pVv
Since it hes been shown that if, on Spc(o), the condition
§0"d§c # 0 ppplies, the 'freezing-in' effect of infinite conducti-

3g
vity leads to 77— = £ = O there, it follows that the integral

ot
(k.66) correspondingly vanishes. If on the other hand goedgc = O
the perturbation § is constrained in such a manner that the dis-
placement of fluid elements on Spc must always be parallel to Spc'
Thet is,

But

and, to first order,
a8 (r) = a8 (r,) + g_(go,t)omgc(;o) :

Hence in first order,

3E

a7 B (r) = 0

and then, integrating to first order,
E-dS =0, since £ =0att =0.
Combination of these results thus yields
0

B, x (g=x 8 =0,

and since d ;jdgc = 0 (as C lies in Spc)’ it follows that
9%
az- (

m 80,
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leading to the result that the integral J in (L.66) above vanishes

when Spv(o) is not a closed surface. At this stage the integral I

of equation (4.61) reduces to

t o B % %
| — G-, s o s 1 D e— a B o ;'
I J as’ j at {/zBo(QV e A at,) * E o V(ZBO)} ’

Spv(o) ©

which can be integrated by parts to give

I=- f as; B2 (v-g - £-vE) + & E-VCE])}

Spv(o)
t . (OF 9k oL ~y
L A LA " N s " 1.
+ f as; J at” {%B2 (= V-E - 5= ve) + == V0B .
O
SPV(O)

e result which yields, by use of the definition (4.59),

fe -l I a2 (gv-g - £ovE) + £ E-V(sB2)} . (4.67)

Spv(o)

The final term in equation (4.58) is

]

t
K= - J [ at ~ (d§_(; e )(B_oav x 8A) . (L.68)

(o]
Spv(o)

To simplify K one notes that use of equations (L4.53), (4.54) and

(4.56) enables equation (4.49) to be expressed to first order as

38k g

d_S_;X?=— (d§é°'at—,)§o R ()4-.69)
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and hence (4.68) becomes

t 384 .
K = f f at”(as: x ﬁ;) ¥V x 8A . (4. 70)
o}
Spv(O)
2
Since d4S” x — 1is zero on the conducting surfaces S and S .,
-0 at cv ci

and the field quentities are assumed venishingly small at infinity,
the integral K of (4.70) may be teken over S(o) = Spv(o) B ek
sci + 5, the surface bounding the corbined volumes of the vacuum
and insulator regions. Commuting the surface integration end the
integration with respect to time, and interchanging the dot and

cross in (4.70),

98A

t
K=Jdt‘fd§;°(a—;xv><6A_] ,

© S(o)

which, upon permissible application of Geuss' theorem, further

transforms to

t 36A
K=Idt'fdfrvc(-£;xv><55). (k.71)
t(o)+
1(0) T3
Expansion of the integrand, and application of the vanishing

electric current condition V x 7 x 6A = O ensgbles (L.71) to be

written as

A
]

t
%Idt’fdr%(VX5A_)2

o -
+
t(0) Ty

it

1 f ar(v x 58)2 . (4.72)

t(o)+
(o) T
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Thus, from equations (4.58), (L.67) and (L.T2),

. ~or(3%R2) - % as oy
uoéWBE f d§o Eﬂ“Bo) 2 J dﬁo {2

Spv(o) Spv(o)

+ g £ev(B2)} + % f dr(v x §A)%2  (L.T3)
f(o)+’ri
4.5 DETERMINATION OF &W

To complete the expression for the second-order variation in
the potential energy of the system, the second-order terms in
equation (4.73) must now be added to equation (4.38), the result
obtained by VAN KAMPEN and FELDERHOF. Noting that in equation
(4.38) Sp(o) = Spv(o) + Spc(o), and recalling that

(i)

(ii)

o

=0 on Spv(o) .

B -dS
o o
E=0onS (o) if B -dS # O th:re,
= pc — =

PO +1/2=1A2 . R
(111) P, + %BS = %BS from equation (4.13),

equation (4.38) cen be written in the form

_ lal?
W =2% [ dTO { 0 - io°(9,x g) + ypo(vo§)2 + (veg)gvao}
T (o)
L JLB2(EVoE - Eo oB o
- 5 f as_ {12}30(5\7 £~ E°VE) + (£°B vla_o)g} : (4.74)
Spv(o)
Remerbering that d8 = - as’, summation of the terms in &W and

the second-order terms in GWBE gives the final expression for the

variation of the system potential energy,
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1ql?

Mo

SW =3 f v {— - 4,°(Q % E) + yp (V°E)? + (V-g)E-Vp }

rp(o)

A . Ju(3B2) - £oB - 1 2
o KRR AR U R EXLEVCE

s (o) T(o)+r (4.75)

v i

The equilibrium quantities satisfy the eguation of mechanical

equilibrium,

VPo - io X Eo ?

which, by a stendard transformation, may be written as
1 B,*
o
i BB = Tl ) e
) o
With the help of this result equation (L4.75) may now con-

venlently be written in the form

W = SW, + 8Wg + Wy (4.77)

where

(a) &W_ is the fluid contribution given by

F
lal? ,
Wy = % f ar i 0 - J_oo(g x E) + ypo(Vog_) + (v«g)gono} :
rp(o) (4,78)
(v) GWS is the surface contribution given by
B2 B 2
_ \ 9(—2) _ r. Ll
silg = s f 85 vz ) - 2l + 5 0b - (. 79)

Spv( o)



108.

By expressing the perturbation as
n n°§+(_rlo><§_)x_l}_oa

5‘:

and inserting this form inside the curly bracket in (4.79)
B2

o
s}t s

= o ° <+
(Eo E)Eo V(po 2uo

SWg = 2 f 3858 {8, (572

“pv(°)
since (Qo x E)en = 0. TFurther, by writing a8 =n do_ (directed
out of the plasma),

B 2
§Wy = % f dco(n £)?< n °V(PO + 5%;3 > (4.80)
SPV(O)
(c) GWE is the contribution from regions externael to the
plasma given by
oWl = Eﬁ—oj ar_(v x 64)2. (L.81)
f(o)+ri

Using the argument which appears prior to the result (L.52),

the fact that here
Vo(8A x ¥ x 64) = (v x 64)% ,
pv(0)

Gauss' theorem, and the boundery condition on S
(4.82)

a8 x SA = - (a87°E)B_ ,

obtained by integration of equation (L4.69), the result (4.81) can

also be expressed in the interesting form
(4.83)

= ---]-—— ‘o B o A
s = - - | 35087 o

SPV(O)
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Thus the approach used by VAN KAMPEN and FELDERHOF has been
extended to a system comprising a finite plasme body, with externel
rigid conductors and insuletors and external masgnetic field, to
obteinh the second order varietion in potential energy originally
obtained by BERNSTEIN et al. by a different approech. The present
expression differs from thst of Bernstein et al. in that the
volume of integration for the expression (4.81) is not limited to
the interior of a conducting shell, but extends to infinity and

includes both vacuum and insulator regions.

4.6 DISCUSSION OF THE SURFACE CONTRIBUTION, aws

It is tempting to identify the surface term GWS in equeation
(4.77) with the second-order part of the work performed against the
surface current in displacing the boundary by £, as has been done,
for exsmple, by SCHMIDT (1966). However, on meking a closer
examination of this term, it becomes doubtful if it is correct to
meke this identification. For example, in the special case of zero
internal field, the "work done ageinst the surface current’
(Schmidt's phrese) is just the work done against the pressure of
the vacuum megnetic field, given sbove to second-order by equation
(4.73). Comparing the second-order part of (L4.73) with expression
(4.80) for &W

S

expression (4.80) is zero under the condition

, one notes the following striking difference:

QO°§_= o, (L4.8L)
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whereas under this condition expression (4.73), with the help of

the result (4.83) reduces to

1 ~

= = “o3R2 ro }

GWBE 2“0 f ds QBO E°VE , (h.85)
Sp (o)

which is not necessarily zero. This difference reflects the fact
that condition (L.84) does not imply that the surface is undeformed
to second order in §. In fact, there remains a second-order
deformation which requires a second order amount of work, given in
(4.85). The condition which does ensure no deformation of the

plasma surface is

Y_uds’ =0 . (h.86)

To discuss the effect of the condition (4.86) on SWpp, 1t is help-
ful to transform (4.73) as follows: +the change in plasma volume

8t resulting from perturbetion in this case can be expressed as

t
§t = - J at” J as“ev , (L.87)

o o
OPV(O)

and hence, by use of equations (4.54) and (L4.56),

t dE
8t = - ( at” J [dgé + (vo_g_)dg:é . (Vg)odgé)" o
9]
SPV(O)
t T 1
= - J as’<g - [ s’ f at” ((ve£) ® ST""VQ . (L,88)

8. (o) Spv(o) ©
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Using a standard vector identity, formulate

t 3E .14 oF of
[ [ @ (G ve - 508 - (v o - &7 )
SPV(O) ©
t 5E
= f at” I 4827 x (= x &) =0, (4.89)
2 s__(o)

PV
by Gauss' theorem.

Then, since
? 9 9F 9F 9
o (evo8 - £:98) = (= Vg - 5vE) + (8o - BV 50)

integration and use of (L4.89) gives

t 5
e [ d§6°(§y°§_" gfvg) = [ dgé of at” ((v-g) —
o
Spv(o) Spv(o)
OF
- —BF °V§) ) (’"‘-90)
and so equastion (L4.88) becomes
§t = - f dggog_m 3 J dgéo(éyaé__ Efvg) . (4.91)
Spv(o) Spv(O)

Returning to equation (L.73), for the special case of zero
internsl magnetic field it has been seen from the argument following
equations (L.27) and (4.28) that ﬁg is constant at all points on the
plasma/vacuum interface. Thus, using this fact and the result

(4.91), awBE may be written
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BZ

s =2 1 2, 0 U (LR2
S¥pg = 2p ST - f (a82°£)E-V(4B2)
o o
Spv(o)

- = (aS”-g)B -V x 8A (4.92)

2110 -0 — —0 —_ 3 ]

s_. (o)

v
where the volume integral appearing in (4.73) has been replaced by
means of equation (L4.83). The result (4.92) of course still assumes
the form (L.85) when n g = 0, as is readily seen with the help of
equation (4,91). On the other hand the stronger condition (4.86)
(rhich implies the first-order result n - = O too) ensures the
vanishing of 8Wp, given by equation (L.92).

Obviously, if the identification of GWS referred to sbove 1is
to be correct in general, it has to be correct for the special
cese of zero internal magnetic field. The &gbove discussion there-
fore reveals that the interpretation of the term GWS as the work
done against the surface current by displacing the boundary by &
is not correct. Indeed, the manner in which we extend Van Kampen
and Felderhof's expression (4.38) here by determining and including
the second-order variation of the magnetic energy external to the
plasma shows clearly that 6§ given by equation (L4.80) is a compo-
site term, made up from the second-order surface term appearing in
SW._., of equation (4.73), end the second-order surface term present

BE
in equation (L4.T4), a suitebly modified form of equation (L.38).
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THE EXTENDED FNERGY PRLNCIPLE

5.1 INTRODUCTION

In deriving the complete expression (4.75) for éW, the con-
dition (L.13) of continuity of stress over the plasma boundary has
been assumed to apply. As shown by BERNSTEIN et al (1958, equation
(2.32)), continuity of stress over the boundary leads to a con-
straint relationship on § as follows:

B
B,
= YpV g+ 3 (@ + E'V_@O) =

o] (e}

-::Iécb

(V x SA + g_avgo) . (5.1)

This constraint relationship restricts the freedom of choice of E.
Hence, recalling that the sign of (Swmin. determines the stability

of the plasma system, mathematical difficulties arise when minimi-
zation of W is attempted with respect to all possible perturbations.
However the energy principle may, in a sense, be extended so that
this important constraint can be ignored, provided SW(E,E) is

written in the appropriste form.

5.2 A CONSEQUENCE OF THE CONTINUITY OF STRESS ACROSS S v

To obtain an idea of the consequences of (5.1) on plasma
stability, the special case of a system having zero internal field

is, for tractability, now considered. For this case,
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so that P, = constant,

_Q_::Vx(éx )

P, s :
WL & == f dr (v-£)% , (5.2
Tp(o)
8V = 51;- [ (a8 °E) {gv(%ﬁ%)} . (5.3)
(o)
Spv(O)
and
= c£)2 n -V (B2
Mg = B f W, (B8 277 C) (5.4)
Spv(o)

cquations (4.81) and (4.83) for W, remain unchenged, while

equation (5.1) reduces to

e oF = B o AJ -V 1f,A2 .
uoYp, V0E= B V"‘S:{“;"‘E'(’*-o)’ (5.5)
i R o« g~ UR ] v 1?/‘2

since B “£-VB_ = § v (% 0)

Yo,
GWS + GJE = - “5—‘ J (d§0°£)V°£
Spv(O)
Ypo
= - [ ar | {g-V(Veg) + (ve£)2} , (5.6)
t (o)

P
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by use of the Gaves integral transformation.
Therefore, in this case, combination of equations (5.2) and

(5.6) leads to

W = W + SWg + Wy = ~ —5— f dr_ E-V(V-E) . (5.7)

From the result (5.7) it is seen that a class of perturbations

£ exist, satisfying the condition

EV(VeE) (5.8)

mn
Qo
-

vhich leads to the vanishing of 8W. This class of § clearly
includes the incompressible perturbations, VeE = 0. Hence, for
this special plasma configuretion it is evidently not possible for
8W > 0 for all possible £. In other words, such a system cannot be
completely stable, but at best only neutrally stable. To examine
this particular situation more specifically it is convenient to

obtain the following alternative form of ¢W from equations (h.81),

(5.2) and (5.4),

W = IEQ ar (v-£)? + = do {(n *£)2 n -V(%32)
' ) = 2u_ o ‘o 2 o o
S
p(0) Dv(o)
1 2
+ ar (Vv x S6A)? . (5.9)
2u0 o} =
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The first and third terms (cSWF and 6WE) are always positive. If
"t 1’)"2 . . . . . - ¢ .
n, ,(fBO) is positive at all points on %pv(o), the seccond term

(GWq) is always positive. Then W will be zero only if each term

is separately zero. This would require

VeE =Y xSA=Em cE =0 . (5.10)

That is, the system would be stable for all perturbations except
the one for which 9—00-‘5- = 0, for which it would be neutrally stable,
in agreement with the argument stemming from the condition (5.8).
Thus, while the plasma in this case is not completely stable, but
only neutrally stable, the least favourable perturbation satisfying
the condition goog_z 0 does not, to first order, physically disturb
the plasma surface, and so does not have dire consequences from a
practical viewpoint.

On the other hand, if gOﬂV(%ﬁg) is negative in some region R
of Spv(o), it will be possible to find e perturbation for wvhich the
plasme iz unstable. For example, consider a perturbation for which
V:£ is zero except in a very thin layer at the surface, and for
which goog_is zero except in the region R, where it produces a
fluting of the surface along the magnetilc field lines. TFor such &
perturbation, the destebilizing SWS term could be made very large
compared with the steabilizing terms GWF and SWL, and so the system
would be unstable. Under these conditions the fact that there
might exist a non-trivial perturbation which makes OW zero is

irrelevant.
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5.3 MINIMIZATION OF &W; EXTENSION OF THE ENERGY PRINCIPLE

The programme now is to minimize &W with respect to £, subject
to the various boundary conditions. The mathematical difficulties
involved in taking account of equetion (4.13), (which in first order

yields equation (5.1)), and the equation
vxvxshi=0, (5.11)

may be avoided by simply ignoring these conditions. The justifi-
cation for taking this apparently drastic step is discussed from &
somewhat physical viewpoint by ROSE and CLARK (1961, pege 284).
Using d§6 = - d§o and equation (4.82), the remaining boundary con-

ditions to be satisfied by the perturbation are

(5.12)

a8 x 8A = - (d_s_ocg_)go

on Snv(O) and

48 x 8A=0 (5.13)
I /

on 8,. The set of vectors E_which satisfy equations (5.1), (5.11),
(5.12) and (5.13) is clearly a sub-set of the set of vectors
which satisfy (5.12) and (5.13), but not necessarily (5.1) and (5.11).
Therefore the set of §W(Z,E) is contained in the set of SW(ELE).

. oy . ;
Hence if Swmin(gig) and awmin(gig) are the potential energy varia-

ny

tions obtained by minimizing 8W with respect to E_and.g_reSPectively,

then it may be concluded that

) (5.1h)

e

) =< 5
6wmin(§9£) wmin(—
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Hence & sufficicent condition for stability with respect to
the real perturbation E‘is that 5wﬁin(§3§) be positive. While the
argument leeding to this conelusion is straightforwsrd, it is not,
however, so obvious that examination of the sign of swmin(gﬁg)
(with £ not constrained by (5.1» actually ylelds a necessary and
sufficient condition for stability. This "extended energy principlef
was also proposed by BERNSTEIN et al. (1958). A detailed mathe-
natical proof of the extended energy principle, which does not
appear to have been presented clsevhere, is developed as follows.

Consider the perturbation velocity

Ry
it Moo

w(z,t) = 5 Elzg.t) + t) (5.15)

where r = r + E(r ,t) + ¢ nl{r ,t), € is a parameter of spmallness,
=T s L 2o =0 :
and n is & vector of zero order in £ on the surface of the plasma,

falling rapidly to zero in the distance € from the surface. Also,

J -
5ol .t) X as(r,t) = 0 .

Thus 3%73_15 non-zerc only in o volume of order €, and represents a
motion of matter perpendicular to the perturbed fluid surface. n
varies only slowly in any direction parallel to the surface, in
such a way that the perturbed pressure and magnetic field satisfy
cquation (4.13). §j£o,t) is of zero order in £, and varies only
slowly in all directions.

The first-order form of equstion (4.13) will now change from

eqguation (5.1), additional terms appearing due to en. It is shown
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below that such terms must arise because €n in fact produces
changes in the pressure p and magnetic field B of zero order in e.
Consider first the standard fluid mechanics result

o0& on

_u—J'—QB-: o = Vo-— 0 ———
e A T (5.16)

using equation (5.15). In view of the assumed properties of
3E

9E/9t the term Voa;_in (5.16) is of zero order in e. Further,

considering the second term in (5.16), to lowest order in €

an

eV ™

R (5.17)

a zero-order result in e which is readily obtained by expressing

nabla in the form
v=nlnv) ~nx(nxv), (5.18)

substituting (5.18) into (5.17), and, bearing in mind the proper-
ties of on/3t assumed sbove, permissibly neglecting in the result-
ing expression the term perpendicular to n.

The result (5.17) shows that e3n/2t of equation (5.15) gives
a contribution to Vev, and thus, from (5.16), to dp/dt, which is of
zero order in €: therefore changes in p due to -en are of zero
order.

Tor the magnetic field, equations (4.8) and (4.10) give the

familiar infinite electrical conductivity result

9B

_é—'t?:vx(xx“B‘)
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which, with VB = 0, enables the convective derivative of B to be
expressed as
&
at

N
=

O
~

°B
= e— ° == ° o 7 ©
sp * Y°VB = BeVy - BV-¥ . (

From the foregoing it is immediately seen that the second
term on the right-~hand side of (5.19) contains a contribution from
sBp_/Bt which is of zero order in €. On the other hand, using

equation (5.15),

9F om
B-Vy = BV 5+ ¢ BV 3¢
3E
= ;_B_VV 'B'_E'F O(E) N (5'20}

since, because of the assumed properties of In/dt, _@V(an_/'at) is
of zerc order in . Hence ea_n_/at gives rise only to terms of
order £ in (5.20).

The nett result of these contributions is that in equation
(5.19) terms of zero order in e arisc from edn/dt: therefore
chenges in B due to en are of zero order. From these considera-
tions it is clear that g here does not necessarily satisfy the

constraint equation {(5.1).

5.4 EVALUATION OF &W

The potential energy variation resulting from the perturba-

tion v is
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§W = - ft i J ve(y ®x B - Vp)dr
° Tp(t)
= Jt at” f Xa[u—l—_ovg- 7(p + ;—)]dr .
° Tp(t; ) ’ (5.21)

as can be seen from equation (4.18), (L.29) or (L.T76).

Then application of Gauss' theorem to equation (5.21) gives

t 2
SW = = f at~ { J [;L'V“B"VB + (p + E——)Vov]dx
. Luo — — ey 2-“0 —
© (t)
T
P
B2 .
e (p + 1-2-1:;')_!06__&_3} (5922)
spv(t)
_ 2
with the help of the expansion of V°L(p + Z—]Y-
o]

(a) Evaluation of Volume Integral

Considering the volume integral inside the curly brackets
of (5.22), the integration with respect to time is facilitated by

the following transformation:

o 0\7 T, ’a'.
fy_B B &t I.rlBj( j131)dr

Tp(t) Tp(t)

J [Bj(viBiBj) - Bibj(viBj):IdT
TD(t)



= J [vc(veg B) ~ §°§°Vx]d'r , (5.23)

since 3,B, = VB =0 .
33 —

Applying CGauss' theorem, equation (5.23) becomes

I ¥°B-VB At = - J BeBeVy dr + I (veB)B-aS
rp(t) Tp(‘t) spv(t)
= - [ BeB-Uv dr , (5.24)
Tp(t)

gsince in this sheet-current model B-df vanishes at all points on

8

v’
Tn terms of this result the volume integral in equation (5.22)
becomes
2
¥ = [ [(p + B )Vov - -}“B°B°\7V-|d'l' . (5.25)
] 2u’ T w7

Tp(t)

From the discussion relating to equation (5.16), Vev is of
zero order in e. Further, from equation (5.20), B°Vv is also of
zero order. p and B being of zero order, it follows that the inte-
grand of ¥ is of zero order, and thus if integrated over a volume
of order e, will yield a result which is of order €.

Therefore if the domain of the volume integral Y is changed to

.

(t) = Tp(t) - Te(t), where Te(t) ig the volume in which 5;—15

non-zero, an error of order ¢ is involved:
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3
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k1S
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] o}
Tp(t)
- B2 Be3: V¥ ¢
= f l(p + E—UO')V"K‘* uo _d’l.' + O(E) . (5-2 )
t(t)

3
In t(t), v(r,t) = 5€-§jzo,t), where gﬂgo,t) has the same
properties as in the usual treatments (e.g. BERNSTEIN et al.) where
the equation of mction is linearized and perturbed quantities are

expressed to first order in the perturbation, viz.,

p(r,t) = olr_,0) - vp(r, ,0)V-E
=P - YPOVI’E 3 (5-?7)
B(r,t) = B(r_,0) + @ + E-9B(x ,0)
=B, Q+ & VB (5.28)
dr = (1 +v-glar_ , (5.29)
v, =V Y EV_, (5.30)
r (@] o= 0
where as usual
Q=vx(gx3B), (5.31)

-—-O
while in equations (5.27), (5.28) and (5.29), V = V-
Using equations (5.27) to (5.30) the volume integral (5.26)

nmay, with V = \‘/O3 be written to secoud order as
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at” ot~
(o)
oE SE
2. l -
- yp (Veg) (vo—)+ = [B Qv o—-
© st Mo KO T at”
= =
+ B £ (VB )V = B +B o (7 ——)VoE +
s 00 T at
33 13 3
B B °(V§)°V — Eongfv R ugn(vgo).v o
3t at° 2t~
3g 9F
- E(B_)eB »V — - @B v —} + 0le) , (5.32)
9t~ ot~

where the second-order terms have been retained, rerterbering that
gll first order terms in 6W must sum to zero because the initial
state is an equilibrium state, for which the potential energy
function is stationary.

Tt is important now to show that the integration with respect
to time of this expression (and of the corresponding second order
expression for the surface integral in equation (5.22) can he
carried out without requiring & to satisfy the first-order con-
straint equation (5.1). Since r, is independent of time, the
integrations with respect to time and volume may be commuted. The

first time-integral to be evaluated is therefore

t 2
at” (v —) (v-E)
o) at”

1 v .9 2
L | at” —— (V-E)
at

|
e
S~
<3
]
oy
S
N

(5.33)
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The next integration is

1 0L
- J at " (VE)eVem—

3t~
o

t
= - J at (aiaj)(ajai) .
0
Because of itz symmetry in i and J this term is easily inte-

greted by parts to give
- 3500, 8,)(3,8;) = - B(VE)T°E (5.34)

The terms involving B_ and Q in expression (5.32) can be
integrated if Q is first expanded by the usual vector identity .

Rearrangement then reduces these terms to

1 BE d3E
- «—f at” (B +VE - B VeE)+(B oV —— = B_Vo—]
Yo ° ° et 5t ”
@]
=g | e 2 |B -vg - B vg|?
Yo -
o .l Ip oeve - £l2
=y l_B_O vE - BV 5‘ . (5.35)

Corbination of expressions (5.33), (5.3L4) and (5.35) then

shows that

t t ™ 2
I Yat© = - J at” J L yemB+ (p+ 2 ]v»x}dT
- == 24
(@] o] N (t? ©
P i ,
1 0 - Ve
= J {ﬂ; B °VE - B W;‘ - (o, * -Q—u;-][(-.,o;_)z ~(vg)-¥ g]}d,zr.;o
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+ 3% [ vp (782 a5, + 0(e) + 0(E)) (5.36)

the terms 0(e) arising from equation (5.26), and 0(£3) from the
expansion of (5.26) leading to equation (5.32).

A residual error of order € is involved if the domain of
integration is here changed from t(o) to Tp(o)9 the equilibrium
volume of the plasma. Except for an error of this order, the part
of (5.36) of second order in E is precisely the W expression
derived by VAN KAMPEN and FELDERHOF (p.T75, equetion (20}) for a
system comprising fluid oniy. It can be transformed to give ex-
pression (4.38) without requiring £ to obey the constraint
equation (5.1).

(b) Evaluation of Surface Integral

Attention is now directed to the surface integral in
equation (5.22). Since p and B are such that equation (4.13) is
satisfied, this term may be written

t 22
= f at” j B yeas , (5.37)
2y — —

O O
spv(t )

with dS directed out of the plasma,

Using the chain rule operator

v 2V -9 Ev (5.38)
r o] r =

the change occurring in dS as the perturbation develops is obtained

from equation (4.55) as
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b o
e

¥ev veds , (5.39)

(V ov)dS = ¥ vedS = V_Eo¥ ov a5 + V
o~"=""o-"=" 'r* o= "— r* o

v
where £ = £ + e n . It will be clear that the third and fourth

terms are of second order in the perturbation. Therefore to first

order 4a(ds)/dat becomes
L a5 = (v oy)ds_ - V veds
a = o~ o o— o’

and so using equation (5.15) and the usual dot notation,

d 8 ° . ®

e = v of o - Z)o o > 4 = o . N

3 38 ( B £)a (v £)-d8 + v, (en)ds Vo(eg_) as (5.40)
In a local Cartesisn coordinate system with e, x a5 =0

and ¢ _ and ey lying in the surface, equation (5.40) can be expressed

—— by ] u. i r o AQ 2 B - N fad
ag = (v :£)as - (7.8)eas  + e(3;n;)a5  ~ e;e(d;n,)as,

(v -£)as - (v g)eas  + (3 n,)as - g—ze(aznj)dso,j + 0(e)

Q > C‘. = ; e . [ - ) 5
(VO E)dto (VOE) dio + 8(3z”z)dﬂo e(BZnZ)gzdSO + 0(e) ,

(5.h41)
since d§0 = gzdso . Cancellation gives to first order in the
perturbation

d .
G - S a . T EY e ) .
i & (vo gﬁ)db_o (\&g_) as_ + 0(e) (5.42)

Integrating with respect to time then yields, in first order,
= ; ° = \v o + N .
as = a8 + (V +E)aS, (v E)eds o(e) (5.43)

An expression for E_on the perturbed surface, to first order in &,

ig still required. Two cases must be considered:-
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The perturbation at the surface is directed out of the

plasna: -

In this case it is first necessary to consider the

effect of the change in time occurring at the point r to

which the fluid element is displaced:

It

to

B(x,t) = B(xr,0) + sB(x,t) .

is now permissible to apply a first-order Taylor expansion

B(r,0), giving the change which cccurs because of the

spatial displacement. To first order in the perturbation

Blr,t)

~

,0) + &9 Blr_,0) + 6B(z,t)

= B(r
r,
= B(r,0) + £ v B(r_,o) + en-V _B(r_,o) + 6B(r,t)
=B+ gov F B : :
B+ E°V B+ &8+ 0(e) (5.L4)
(b) The perturbation at the surface is directed into the
plesma:

In this casc the spatial effect must be congidered first,

and so spplication of Teylor’s cxpansion gives, to first order

B(r,t) = Blz_,t) + (£ + en)v Blz ,t) . (5.45)

Expanding equations {(4.2) and (4.3) in a local Cartesian

coordinate system, with e, dgo = 0, and recalling that per-

4

turbed quantities have been assumed to vary slowly in direc-

tions parallel to the surface, it is found that in fact ﬁ.

must vary slowly in qll directions. Therefore equation:

(5.45) becomes,
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+ g0V B +
B(z_.t) + £V B(r ,t) + 0(e)
and consideration of the change of Eﬂgo,t) with time leads to

(r,t) = B(r,

>

,0) + 8B(x_,t) + g9 B(r_,0) + 0(e)

~ ~ ov ~ hk
B, + B+ EVEB * ole) , (5.L5)
consistent with equation (5.4h4).

Using equations (5.43) and (5.46), Y of (5.37) becomes, with

retention of second-order terms only,

.ot 1S .~ . 9%
z = _—J d.t‘ J {}éBQOv —-o(Ve_g_dS — vgedgo) + _B.OBGP_ °d§o
Mo d g Bt~ o ot~
Spvl) . .8
+ B B VB -—T»dgo} + 0(e) .
ot
A (5.47)
Since E = - 5 , the boundary condition (4.L9) setisfied on
S__(t) is
pv( ) -
- a8 x 5 = (ag-wB . (5.18)

To first order in the perturbation, equation (5.48) is, in the

present case

A 3. .
a S N Iy
Bo * 3¢ (a8, 5¢) B * Ofe) 2l

where ﬁé'is the first-order perturbation in A, Comparing equations
(5.47) and (5.49) with equations (4.58) and (4.69) respectively,
it is seen that the evaluation of Z to zero order in e reduces to

the procedure followed earlier in this section for obtaining the
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second~order part of &W

SE? which 41d not invoke the use of equation

(5.1), but where, of course, { was constrained by that equation.
That is, Z) is given by the second-order part of equation (4.73),
rlus terms of order ¢.

When the final result for z‘ is corbined with (5.36), trans-

formed via equation (4.38) to the form (L.T4), the second-order

variation in potential energy becomes, with reference to equation

(4.75),

sW(¥) = sw(E,g) + 0(e)

SWL(E,E) + OWg(E,E) + SWL(84,64) + 0(e) , (5.50)

where (SWF, GWS and GWF are the same functionals as appear in

equation (L4.77), but here £ need not satisfy the constraint (5.1).

5.5 DISCUSSION

From the foregoing it is concluded that for a given functional
6W(§,_.§) of the small, slowly varying function £, which does not
necessarily satisfy equation (5.1), but which is such that equations
(5.11), (5.12) and (5.13) are satisfied, there is a physically
realizeble perturbation © such that equetion (4.13) is satisfied and
which mekes the second-order variation in potentisl energy arbi-

trarily close to SW(£,£). Thus

Gwmin(:gi) = Gwmin(g_,_g_.) + 0(e) ) (5.51)
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and so a necessary and sufficient condition for stability can be
obtained by examining the sign of 6wﬁin(§ﬁ§)’ while in wminimizing
SW(E,E), the boundary condition (5.1) may be ignored.

Tt is important to note that the above analysis leads
naturally to a functional of the form SWF + GWS + GWE given by

equation (L4.77). One concludes thsat it is not permissible to use

the functional

where F(E) is the first-order unmbalanced force in the fluid, since

this form cannot be obtained from (GWF + GWS + SWE) unless E does

irn fact satisfy equation (5.1) (sece BERNSTEIN et al. 1958, page 23).
On the other hand, because of the self-adjloint property of F

with respect to E it can be shown (c.f. BERNSTEIN et al., 1958,

page 22) that

As implied by BERNSTEIN et al., this form of &W can be developed
to give the result (5.50). This alternative proof, vhich, for
rigour, contains much of the detail included in the above deriva-
tion, has also been completed. The present proof is, of course,
more appropriate in the context of this thesis, and the alternative

has been omitted to conserve space.
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It should be noted slso that to obtain a sufficient condition
for instability one may use the same functional, but without
requiring Gé'to satisfy equation (5.11). This is possible because
(5.11) is in fact the Euler equation for minimizing 8W,, subject to
(5.12) and (5.13). Hence, if a function 8A appearing in (L.81)
does not satisfy (5.11), another function 65&, which does satisfy
(5.11), would certainly decrease §W, without changing SW,, or &Wg.

Therefore, if functions £ and GA_are found which satisfy (5.12)
and (5.13) but not necessarily (5.1) and (5.11), and which meke the
functional SW(E,E) negative, then there is a physically reslizsble
perturbation for which W is certainly negative, and the system is
unstable.

For a system with zero internal magnetic field, the potential
energy variation corresponding to the form (5.9) becomes, from the

extended energy principle result (5.50) and use of equations (5.2),

(5.4) and (L4.81)

Yp
ny (o] l ~
sW(g) = —,——[ (veg)2ar_ + —;[ dco(gong_)zn ov(l/ng)

2 2u -0
Tp(o) Spv(o)
+ ,5-111—[ |v x 84]%ar + ofe) . (5.52)
o
%(o)+ri

However, unlike § in equation (5.9), in this result g is not
constrained by equation (5.1). Hence, reverting to the discussion

following (5.9), there is freedom here to choose an incompressible
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perturbation £, where govg_is non-zero only within the surface-
fluting region R.
Using equetions (4.36), (5.52) and the condition Vg = 0,
sw(¥) = == | ao £ 282k + ==— | |v x 8A|2ar + 0(e) (5.53)
- 2u o’n o 2u ' = ?

o o’
Spv(o) T(O)+Ti

where K = n, K is the vector curvature of the lines of magnetic
force.

Note that here it is convenient to define the line curvature
in terms of the signed quantity K, whereas, in the earlier work of
Section 1.4, it was casier to use the wnsigned radius of curvature,
R, end define X in terms of the direction of ey, the unit principal
normel to the field line. Thus the stability of the surface may be
interpreted in terms of Teller's familiar curvature criterion (c.f.
BERNSTEIN et al., 1958, pp.31-2).

As BERNSTEIN et al. show, it is possible to make the magnitude
of the volume integral in (5.53) above arbitrarily smell compared
with that of the surface integral, and therefore a necessary and
gufficient condition for instability can be cbtained by cxamining

the sign of the surface integral alone.
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CHAPTER 6

APPLICATION TO THE CONSTRICTED DISCHARGE

6.1 INTRODUCTION

Consideretion is now given to & constricted discharge
between electrodes, in which the total discharge current is
assumed to flow in a very thin layer on the plaesma surface. It is
interesting first to consider an idealized experiment in which the
gas is initially at pressurc pO and occupies the whole discharge
chanber of volume TO. The ges is ionized and made highly conduct-
ing by the application of an intense electric field. Breakdown
occurs and at the same time external coils are energized, pro-
ducing a magnetic field which is strongest near the median plane
of the discharge column. Because of the very high electrical
conductivity of the plasma, the discharge current is confined
to a very thin layer which sweeps inwards because of the pinch
effect and the pressure of the external field. The plasma is
thus rapidly compressed, and the discharge column is centrally
constricted.

Because the compression is so rapid it may be assumed, as in
previous chapters, that the gas obeys the adisbatic law, so that
the pressure and volume at any time are related to their initial
values by the equation

XY
pTY = pOTO . (6.1)

where y is the usual ratio of specific heats of the gas.
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It is assumed that compression ends when a balance is reached
between the plasms pressure and the magnetic field pressure at the
surface. Thus an equilibrium situation is first considered, in
which there is zero magnetic field in the plasma, and the plasma
pressure is constant throughout the discharge, with a sharp drop
to zero across the current sheet. This situation differs from that
associated with a configuration of the same geometry investigated
in earlier papers by SEYMOUR (1961) and in Chapters 2 and 3, in
which a diffuse discharge was considered, with s large part of the
discharge current flowing close to the axis.

Later the analysis will be extended by considering an axial
magnetic field to be trapped within the plasma.

The discharge surface in equilibrium is shaped by the pressure
of the external magnetic field and, as before, is approximated by
a hyperboloid of one sheet (Fig. 5). Agein, the system is des-
cribed by the oblate spheroldal coordinates (u,v,w), where equations

(2.1), (2.2) and (2.3) apply. The plasma occupies the region

w, Sw<mn/2

b

~u fu<€u 3 (6.2)
e e {
1

0 <v<or | .
and all scalars are assumed independent of v in equilibrium.
In the vacuum region exterior to and within the conducting

wall which surrounds the plasma column,
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(8,8 ,B

ou’ ov’ ow

g

or

(B ,BV,BW) , (6.3)

B =15
it being convenient to omit the circumflex and the subscript ‘o’
here without confusion because in the analysis of the next section
there is no magnetic field within the plasma, end equilibrium

quantities only will appear. Further, on S__(o), where w = w_,

oV
B v =0 (6.1)

or
By = (BpysBy,y»0) G

the subscript 'b' indicating quantities evaluated on the boundary.

6.2 APPLICATION OF THE ENERGY PRINCIPLE

In the present case

n"=w_, (6.6)

0 -0

and so, with reference to aws given by the result (5.4), and

using (6.5), on the surface w = w.

b’
n e 9(E2) = 5 (%Ei)
. b b
, 9B 2B
=5 By G * By GO b (6.7)
wb b b

Equation (L4.3) yields, with azimuthal symmetry,

3
a (hva) =0 , (6.8)
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d
o (hva) =0, (6.9)

3 p) _
5;—(huBu) N sa-(thw) = [0 = (6.10)

Equations (6.8) and (6.9) give

B o= = (6.11)

where C is a constant, proportional to the total discharge current
I.
In fact C is the same constant as was used in Chapter 3 and,

in M.K.S5.C. units, is given by

UOI
C = 5r (6.12)
From (6.11),
(BBVJ c (ahv_) 6 )
N . Ly | .13
awr b n2 ow b
vb
and so equations (6.11) and (6.13) give
3B 2 O
By G, ==l ()
b hvb b

From (6.5), B, =0 on Spv(o), and so the second term in (6.10)

must vanish when evalusted st w = w, , leaving

'b’
{—9-(h B)} =0,
ow uu b

or

(Bw ]b = - }E (-8—W—)b (6.15)
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In the present case the condition (L.27) reduces to

B = (2up- Bgv)l”- ) (6.16)

and so, from (6.15) and (6.16),

B (2p p - B2 ) on
ua _ 0 bv w
Bbu (Bw b - hub (Bw )b. (6.17)

Using equations (6.14) and (6.17), (6.7) becomes

(2up ~ B2 ) on 5 dh
E(-)‘av(lyzBZ) = - hl { oh Bbv [ﬁll] + --——C (——3wv) }. (6.18)
Wb b b h3 b
vb
The expression (5.4) for §Wg nov becomes, with n = - nZ,
2 _ 2
= L i (2uop Bbv) ahu\ ¢2 ahV\
oWy = 2u 5 h 5w ).t a3 (Bw )}
o wh ub b vb b
s__(o) (6.19)

v

Expression (6.19) is specialized to the oblate spheroidal geometry

by the use of equations (2.2) and (2.3), yielding

2 o4 . Rn2
1 f - £.° sinw (2uop Bbv)coswb i o2 |
2“0 © By (sinzwt + ginh?u) k2Zcosh?u cos3wb

GWS =

L}

opv(o)

With the assistance of equatioms (2.2) , (2.3) and (6.11),
manipulation yields

2 b _ 02
sinwb(Qquk cos " c?)
3
w3/

SW = §1-f doog§ (6.20)
Mo k3cosdw. (sinw, + sinh?
b b
s (o)
PV

where the integration is to be carried out over the surface w = W, _,

from v = -~ u, to u= u,- Tt is immediastely apparent thaet the sign
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of the integrand in (6.20) is determined by the sign of the
bracketed term in the numerator, and that the sign of this term
ig independent of position on the surface Spv(o) POWE W There-
fore the sign of this bracketed term determines the sign of the
complete integral. The necessary and sufficient condition for
instability is that the integral (6.20) be negative, which leads

to the condition

2uopk2cos”wb - 02 <0 . (6.21)

Tt is therefore clear that, as in the exact solution obtained
previously (Chapter 3), a transition to instability can occur as
the discharge current is increased. There exists & critical

value for the discharge current, defined by

i
C = (2uop)2kc052 (6.22)

crit. Yy 2

above which, according to the theory of ideal hydromagnetics,
instebility of the surface develops. In M.K.S.C. units the criti-

cal current is, from equation (6.12),

= 2’ % 2 ‘
Iopit, = g (2uop) keos®w, (6.23)

where, of course, p and vy have values appropriate to the equili-

brium configuration reached.
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6.3 THE DISCHARGE WITH IMBEDDED AXTAL MAGNETIC FIELD

The discharge discussed in Section 6.2 is the curvilinear
generalization of the cylindrical pinch discharge with an axial
megnetic field in the vacuum region only. Stebility analyses of
such a cylindrical discharge by the normal mode approach (TAYLER,
1957) and by the energy principle approach (SCHMIDT, 1966, pp.1llk-
149) show that it is alweys unstable. The instability arises, as
expected, from the unfavoursble curvature of the azimuthal megnetic
field produced by the discharge current; stability within the
framework of this theory can only be achieved if the discharge
column is surrounded by a conducting metal shell, and an axial
megnetic field is trapped within the plasma. This latter could be
achieved by energizing the external coils just before breakdown
occurs so that some external magnetic flux can be trapped as the
current sheet implodes. Agein, all the discharge current is
assumed to flow in the surface current sheet. In this case, the
stebilizing effect comes from the term §W, in the expression (4.7T)
for SW. GW? becomes, for zero internal current density, simply

(see equation (L4.78))
lal?

Id’ro(u

TP(O)

o2
=
1l
N

+ yp(veg)?) , (6.24)

o

which is, of course, always positive. In arriving at expression

(6.24) use has been made of the fact thet in this case

o Tl % B %O -
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In the curvilinear generalization of this linear discharge,
the surface sheet current flows in the surface w = s and there

is & trapped internal magnetic field given by

B = (B, ,0,0) , (6.25)

with
vV x E- = 0 (6.26)

and
veB =0 . (6.27)

The analysis of Section 2.2 then applies, and gives, for the
special case of oblate spheroidal geometry,

B = A . (6.28)

Y k2coshu(sin?w + s:i.nhzu);22

However, as will be seen, there is no need to specialize the
geometry in the following analysis which, in this respect, is
quite general.

The energy-principle spproach necessitates the minimization of
GWF with respect to £, for a given boundary prescription of . As
shown by BERNSTEIN et al (1958, Section L}, the Euler equation for
this minimization is Just

F(g) =0 (6.29)

wvhere F(£) is the first-order unbalanced force generated in the
plasma by the perturbation. For the case of zero internal electric

current, equation (6.29) reduces to (SCHMIDT 1966, p.1k5)

;1— (v x Q) x B+ yp7(V-E) =0 . (6.30)
e}
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The agsumption of cylindrical symmetry in the special case of
the linear discharge leads (SCHMIDT 1966, p.1h6) to a considerable

simplification of equation (6.30), resulting in
v2(B:Q) = 0 , (6.31)

which is casily solved. However in general, equation (6.30) may be

written

u—l— (- v(B°Q) + B-VQ + Q°VB) + ypY(VeE) = 0 , (6.32)
(o]

by using the vector expansion of V(B-Q) and the condition (6.26).

Teking the divergence of (6.32),

vZ[.va,,g-_ _;-:] + _1. Ve [—_B—uvg-{- Q;VB =0 . (6-33)

Therefore equation (6.33) becomes
B-Q

VZ[YPVD_E_ - ;—:] + I[z—‘ Ve l:]énV_Q_] = Ol m (6'3)4)
o} o]

This is the generalized counterpart of (6.31). Unlike (6.31)
it is aifficult to solve anselytically, particularly in the oblate
spheroidal geometry. Since the function £ for which

Q=0 (6.35)
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and

Veg = 0 (6.36)

minimizes the positive quantity (‘SWF to zero, it is of interest
to see if this represents other than a trivial solution of (6.3k).
It is shown below that, hecause { has to satisfy certain boundary
conditions, the only function for which (6.35) and (6.36) can be

satisfied in the discharge is in fact the trivial solution, € = 0.

Thuss g=vx(§xg)

= B-VE - E°VB ~ BV-E
since V-B = 0. Then, with (6.36),
Q = BVE - E°VB . (6.37)

Using (6.25), end writing £ = (Eu,EV,EW),

s 09
BUUE = - Fw (Bofy ¥ Toby W8,
B & 3du B.. 3E B E ov B 3¢ B £ dw
__uu__g_l__qo_g_ 4-4v o, U A
h du h. 2u h du -o h_ %u h u
u u u u u
Buagw
+ el s - 608
thu'c)u (6.38)

Through use of the expressions following equation (2.54), for the
derivetives of the unit vectors, and the assumption of azimuthal

symmetry, equation (6.38) becomes

B 3E B E oh B 23g
BeVE = u (-2 o+ 0 4y BT
= <o ‘h_ du hh 5%’ —oh_ 3du
u uw u
B 9E B £ oh
+ L =l ALty (6.39)

¥ W % " hon w/
u uw
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Further,
3 £ £
= (w3 v 3, w &
=B = (h T h R Bw) 1--loBu
u v W
£ 9B B E du B E_ ou E 9B B E du
=y B _u, uu o uv "o w_u, uww o
-0 h 2u h au h ov —o h _ ow h ow
u u v W W

By a tregtment similar to the sbove, this reduces to

£ 9B £ 3B B £ oh B E_dn
EeVB = u .._ll__ll_..._l’__‘i) v _U_V+W (M_W
= = -0 ‘“h_ 9du h Jw -oh h 9du - ‘hhh 3u
u uv uw
BuE;u Bhu
-W-)'_;;“) & (6.11,0)
uw

Substituting expressions (6.39) end (6.40) into (6.37),

+ u_u o w_u
h_ %u hh 9w  h_du h  dw
u uw u w

. [ﬁg_a&u BE Oh E OB £ OB ]

u 'V“
h %  hh 9du
. u v -~

|-B 9g Bugv Bhv-*

W u'w
h 2w h h_ Bu
u uw -

(6.41)

B _ 9k B £ 9dh 7
u W
v |

Then the w-component of equation (6.35) becomes, with Bu # 0,

T By
du h du = °
w
or £
9 Wy _
. Qﬂ? =0 . (6.42)

Similarly, the v-component of (6.35) msy be dealt with to give

3
LY =0 . (6.43)

3u ‘h
v
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The u-component of (6.35) may be rearranged as

2 N 2 2
Bu (JL ng EE_ aBu] . Bu Qw (1 ahu_ hu DBu s
—_ - g — " = 5 ) ,
hu Bu du B 2 au hu hW Bu ow B 2 ow
u u
or
€ £ h
a3 u Ww d w _
w ) Yhoaw G 0 (6.44)
u W u

Now, as discussed in Section 4.3, the freezing-in effect of
the high electrical conductivity of the plasma leads to the con-
dition £ = 0 at u = % Uy where the lines of force of B enter the

electrodes. Conditions (6.42) and (6.43) therefore give

m

E =0 (6.45)

v w

£
throughout the plasma. This condition in turn reduces equation
(6.44) to

EBJ (g_z) =0 (6.16)
so that, since gu (+ ue) =0, Eu must also be zero throughout the
plasma. That is, £ has to be identicsally zero for conditions
(6.35) and (6.36) to hold, so that the solution of (6.34) repre-
sented by (6.35) and (6.36) is trivial.

Although equation (6.34) poses analytical difficulties, it is
fortunstely not necessary to effect its solution because a useful
result in the form of a sufficient criterion for stability cen be
obtained by an alternative method, as follows. Since, for this

system, W, (equation (6.24)) and 6W_ (equation (4.81)) are both

E

positive, this sufficient condition for stebility is derived by
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requiring & (equation (4.80)) to be positive also. Here, the
constricted discharge, with surface approximating a hyperboloid of
one sheet, contrasts with the cylindrical discharge, because the
fevourable curvature imposed by the external magnetic field makes
it possible, as will be seen, for GWS to be positive provided a
certain transitionsl discharge currcent is not exceeded. For the
eylindrical discharge (TAYLER, 1957; SCHMIDT, 1966) GWS must elways
be negative for gn = Eoeg_# 0

The derivation of this condition is entirely analogous to that
given for the field-free system in Section 6.2. Equations (6.25)

and (6.26) yield, as in Section 2.2,

p = Elu) (6.47)

it being convenient here to omit the subscript 'u' on B since the

v- and w- components of the internal field B are zero. Then

B
b 3B
n oV(4B2) = - — (&
-0 hwb ow b
Bb2 (M%ﬁ
=0 (= . (6.148)
hubhwb Gl b

The term govv(%ﬁz) is derived in exactly the same way as before,

yielding, through use of the pressure balance equation

A

2 . R2 2
& seFE B = Blut Bov o

the form
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(2up + B2 - ﬁ% ) ah ah
180y _ 1 b . C
n, V0af?) = gi- (2 =G, T G b (609)

2
h b b h3
vh

corresponding to equation (6.18). Combining equations (6.48) and
(6.49) to determine < goav(%BZ) >, it is noted that the terms

involving Bb cancel , leaving

(21 P - ﬁ% ) oh 2 oh
e T(LR2)S =t 0 v m C A
< n oV(B%)> = A =)+ P (6.50)

Wb ub b n3 b
Vb
Finally, meking use of the fact that in equilibrium
Vp=J x B =0 in this system with zero internal current density,

expression (4.80) becomes

- L | o S 1 2
SWg = 2, J do_ (B -£)*< i -7(B%) >
Spv(o)
2 _ A2

it J do EW (2uop Bbv) ahu}

2H, ° ho b w Ty
Spv(o)
5h

02

h b

b

It is noted that expression (6.51) is of exactly the same form as
that obtained for the system with zcro internal field (equation
(6.19)). Thus, specializing to the oblate spheroidal geometry and
noting that ﬁbv is again given by (6.11), it is clear that the
expression for the transition current Ctrans. ebove which GWS is
negetive will be the same as that given before ﬁn‘Cc r..The differ-

rit

ence between the two systems is that C

here is not critical
trans.



150.

for the onset of instability. but merely marks the value of dis~
charge current below which the system is certainly stsble, within
the framework of this theory. Of course, in the limit of zero
internal field, the extra stabilization represented by the positive

quantity SW_ is lost and C reduces to the critical current,
F trans

ccrit.'

Reverting to expressions (6.19) end (6.51) for 8W.,, and
bearing in mind thet they refer to structurally different systems,
it is of interest to consider their equivalence of form. The
reason for the similarity lies in the fact that 6WS is, essentially,
s field-line curvature term (equation (5.53)). In the integrand of
GWS, the internal field curveture evaluated on the plasma side of
the infinitesimally thin surface current sheet and weighted by the
square of the internal field magnitude at the same point; is sub-
tracted from the vacuum field curvature, weighted by ﬁz, evaluated
at the corresponding point on the vacuum side of the surface
current sheet. Although, compared with the field-free system, the
discharge with internal axial field has extra u-component fields
both inside and, to maintain pressure balance, outside the surface,
the curvatures of these extra field components just on either side
of the vanishingly thin surface are clearly the seme. Then, when
the integrand of SWS is obtained as outlined above, the contribution
of the internal field at the surface is cancelled by that of the
extra vacuum field needed Jjust outside the surface to satisfy

pressure balance.



6.4 CRITICAL CURRENT IN TERMS OF THE INITIAL CONDITIONS OF THE
EXPERIMENT

An approximstion for the critical current in terms of the
initial conditions of the experiment (described at the beginning
of Section 6.1) is useful, and is obtained for the oblate spheroidal
geometry in the following analysis. The discussion is, for simpli-
city, restricted to the field-free system. This serves to illus-
trate the method used and the approximations inveolved, which could
then be applied to the more complicated system with internal field,
if required.

The discharge volume T can be computed in terms of the plasma
geometry parameters k, u, and w, . The adigbetic equation of state

b
(6.1) may then be expressed

. o O
P = P<p s T aksueawb) . (6052)

At equilibrium, the pressure balance equation is
- Rr2
2up = 8
2 4 p2
Bbu Bov

and so if Bbu = BM, the external magnetic field component at the

median plane u = 0O,

2
i B el e =
2up = BX + , (6.53)

with the aid of equation (6.11).
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Referring now to the result (6.22), let it be assumed here
that equilibrium of the plasma/magnetic field configuration is
reached at the critical current. Then equations (6.52), (6.22)
and (6.53) may be solved for Cpq, 80d W in terms of the quenti-
ties po,'ro9 k and BM' To this end it is first necessary to obtain
an expression for the volume T of the discharge,

n/2 2m u,
T = J I J hhh duadv dw , (6.54)
v vw
W. (o] -ue

the integration limits being clear from the inequalities (6.2).

The integration procedure is straightforward, and yields

1
T = % Trkssinhue{l - (1-x2)32 . sinh®u, 1~ (1-x2)%}, (6.55)
where X = COSW, .« Recalling the discussion in Section 3.6, the

degree of radial constriction is not expected to be large, so that

it is reasonable to take

W m/2

or
X2 <€ 1 . (6.56)

The inequality (6.56) ensbles (6.55) to be approximated to

second order in X by binomial expansion, giving

T = = TTkBSinhue(B + sinhzue)Xz . (6-57)

win

Defining

F =
e

W

ﬂk3sinhue(3 + sinhzue) , (6.58)
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- 2
= FeX . (6.59)

Combinetion of eguations (6.1) and (6.59) results in the

explicit form of (6.52) required,
Y

OTO e
P M-E——-——-—-: qX Y ’ (6-60)
7 Yx2Y
‘e
whete 7
q=p1 F. (6.61)

Substitution of the result (6.60) into equations (6.22) and

(6.53) gives, in terms of X = cosw, , the respective results

'b’
2 = 22(2-y)
C2 g, = 2M QKX , (6.62)
and
2 - 2,2(1=y) _ L2202
ccrit_ 2u_qk*X Bk“Xe . (6.63)
Elimination of Cirit from the last two equations leads to

B 2
Moy .o1=0, (6.64)
2uoq

(2) Solution for y = 2.

In terms of m, the number of degrees of freedom over
which the energy of compression becomes distributed, the
adiabatic index in equetion (6.1) is given by equation (1.61).

If the compression is assumed to be two-dimensional, as
would seem appropriate for the case of implosion of a cylindri-
cal current sheet onto a collisionless plasma, y = 2, and so,
from equation (6.62)

2 - 2
€244, = 2u Ak . (6.65)
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Thus, for a two-dimensional compression the critical

current obtained from equations (6.12) end (6.65), is

I - 2% (2 o) (6.66)
crit. H Mo ' '

In this case Ic is therefore simply dotermined by the

rit.

initial conditions of the experiment, and is independent of

the external quentity Bj. In fact, for y = 2, equation (6.64)

reduces to
2
BM

2uoq

X+ x2 -1=0, (6.67)

with solution for X? of form
2
g2 = 0% {+ (1+2 -liM—-)l”é -1} . (6.68)
BM2 Hod
From equations (6.58) and (6.61),
qQ>0, (6.69)
and so to avoid X becoming imaginary the positive sign must
be taken in equation (6.68). Hence for y = 2, X? is alweys
real and positive, irrespective of the value of BM, and the
existence of a real solution of equation (6.67) does not
impose a condition on BM.
(b) Solution for y = 3.
It is doubtful if the assumption of a two-dimensional
compression would be vslid in the present geometry. Reflec-

tions of plasma particles off the curved imploding current

sheet and off the curved end plates would tend to produce
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distribution of the energy of compression over all three
translational degrees of freedom, even in a collisionless
plasma. Thus, if a value of 3 is assumed for m, vy = 5/3 and
equation (6.6L4) becomes

B 2
§M~—x1°/3+x2-1=0 ; (6.70)
n_a

which is difficult to solve exactly.

However, since the inequality (6.56) applies it is
possible to obtain an epproximate solution to the more general
form (6.64), as follows. The first term in (6.6L4) becomes

2 2
BM B

X2 b | (6.71)

2qu 2UOP

by means of equation (6.60), which applies when X2 < 1,

Hence, regerding p and w, as "ecritical” quantities,

b
equation (6.6L4) yields
BM2 7 2 A
2uop =1 - X% = gin L 1, (6.72)

in view of (6.56). The implication of this result is that

B, ,» &lven for the critical current by equation (6.11) as

Ccrit ccri'l-
Bbv(c’o) = kcoswb =Tk X (6.73)

at the median plane, satisfies, with reference to (6.53), the

condition

Bgv(c,o) < B§I . (6.7h)
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That this is a reasoneble result under the conditions
cited follows from the fact that for such & plesma/megnetic
field geometry the stebilizing effect of the external field
is quite small because the shape of the discharge surface is
not grestly altered from that of a cylindricsal discharge, and
hence, reletively, the destabilizing effect of the azimuthal
self-field must be kept small to avoid instebility. This
fact is amplified in Section 6.5.

Noting that q does not depend upon W, s equations (6.71)
and (6.72) give the first approximation for w._ as

b

21 q
Y ~ ‘2’ . (6.75)
BM

If now the term X2 is not neglected in equetion (6.64),

but is expressed in terms of the first approximation (6.75),

there results a second approximation to X2Y, given by

1/y
21 q 2u g
XY %“s;_ {1 - ( Z) }, (6.76)
By By
where, from (6.56),
1/y
2u_q,
— <1, (6.77)
BM2

Employing the first spproximation (6.75), equations (6.12)

and (6.62) lead to (1 + vy pt
20 Y Tax(u q)Y
I ., = : 2 . (6.78)
crit. (2 - x]
w B, Y



This expression gives an approximation for the eritical

current in terms of the initial condition quantities po, TO,

ue, and the measurable quantity BM.

When vy = 2, (6.78) reduces to equation (6.66) as required;

and when y = 5/3, equation (6.78) becomes

8 3
5

2mk(u_q)

o

. (6.79)

Icrit.

=

uoBM

[N
N

GEOMETRICAL INTERPRETATION OF THE CRITICAL CURRENT

There is a simple interpretation of the result (6.22). From
the geometry of the discharge surface (SEYMOUR, 1961) it is known
that if the field line direction lies to the left of a surface
generator (Fig. 8) at a given point, then the field line curves
away from the plasma at that point and should, by Teller's curvature
criterion, provide a stabilizing effect. The opposite holds if the
field line direction lies to the right of the generator. To deter-
mine the field line direction relative to that of a chosen generator,

comparison is made between two angles 6 and 6 defined as follows.

B’
As in Section 3.5, 6 is the angle between the straight line

generator passing through the point P(u,v,wb) and the tangent to the

curve v = congt., w = const. through P; SB is defined by the

equation
B _(P)
tanfy =}J(FT , (6.80)

pDu
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and is the angle between the direction of the field line at P and
the same tangent.

From equations (3.68), (2.2) and (2.3), on the surface w = w,

b’
cosw,
tand = —= (6.81)
(sinzwb + sinhzu)2
For w = w,_, equations (6.11) and (6.16) give
_ C
Bbv ~ k coshu cosw, 3 (6.82)
end 1
(2u_pk?cosh?u cossz - 02)=
B = 2 3 (6.8"))
bu k coshu coswb
each as a function of the coordinate u.
Thus substitution of the results (6.82) and (6.83) into
equation (6.80) gives
tano,, = Sov - o (6.84)
) bu (2uopkzcosh2u coszwb - 02)°2
To compare 6 and GB it is convenient to introduce a quantity A,
defined sas
A = tanZeB ~ tan?9
= (taneB - tane)(ta.nSB + tan6) , (6.85)

and examine its sign.
Using equations (6.81) and (6.8k4), equation (6.85) can be
manipulsted to the form
cosh?u(c? - 2uopk2cos“wb)

A= . (6.86)
(sinh?u + sinzwb)(zuopkzcoshzu coszwb - C2)
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To determine the sign of A it is found advantageous to eliminate
(2uopk2cosh2u coszwb - C2) from the denominator of (6.86), using

(6.83) again. Thus

c2 . 2uopk2cosl‘wb
A = X (6.87)

sz%ucoszwb(sinhzu + sinzwb)

From this form it is seen that the denominator of A is always
positive; hence the sign of A is completely determined by the
sign of the numerator in (6.87). In turn, from equation (6.85)

the sign of A corresponds to the sign of tan®_ - tan®, since, for

B
the geometry under consideration,
6<F, Oy<g
and so in (6.85)
ten8y + tand > 0 . (6.88)
It now follows that
tenby > tan® if c2 > 2uopk2cos”wb . (6.89)
With reference to Fig. 8, if (6.89) holds, so that 6_ > o,

B

the field line direction lies to the right of the generetor, and

the field line curves towards the plasma, giving a destabilizing
effect. Note that condition (6.89) is independent of position on
the surface, so that if it is satisfied the field lines everywhere
curve towards the plasma and the entire system is unstable. Further,
when the magnetic field resultant lies precisely along a generator,

equation (6.89) confirms the existence of a criticel current given
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by expression (6.22), derived by means of the energy principle in
Section 6.2. Physically, the transition to instability occurs as

a result of the increase in the destabilizing azimuthal field, which
swings the direction of the resultant magnetic field across the
surface generator into the unstable region. Obviously, if the sur-
face is only slightly constricted, the surface generator angle 6
will be small, and instability will set in at a relatively low

value of discharge current. Hence the remarks following equation

(6.74),

6.6 DISCUSSION OF THE APPROXIMATION

Considering now the critical current for y = 5/3 given by the
approximation (6.79), it is seen that I, .y, decreases with in-

creasing B

, for given dimensions and initial conditions. At first
M

this result scems peradoxical, since B, gives a measure of the

M
strength of the stabilizing field. However, for a given initial
pressure and volume, increasing BM must give increased compression

of the plasma, leading to a higher value of W, o and a lower velue

of X = cosw, . In fact, in the vicinity of the critical discharge
current, equation (6.75) holds approximately, for X* € 1. As X is
reduced, the stebilizing effect of the favourable curvature im-
posed by the external field is reduced. This is seen from expression

(6.81) for the tangent of the generator angle 6, evaluated at the

median plane,
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tand =~ o~ X, (6.90)
° (1. x2)%

for X2 € 1. 2s 60 becomes smaller, it is easier for the azimuthal
self-field component to swing the resultant field vector across the
direction of the generator. At the same time, the surface value of
this destabilizing azimuthal field increases as C incresses and X
decreases, as is evident from equation (6.82), tending to increase
the angle SB of the resultant magnetic field, as shown by equation

(6.84) when u = 0,

taneBo = G T
(2u_pk?x? - €)=

. (6.91)

- kB X * ’
since at u = 0 equation (6.83) gives

1
(2n pk?X? - €2)*

B, =B = ; (6.92)

bu M kX
At the critical current, tand  of (6.90) becomes equal to

tano,  of (6.91), so that
- 2
Copit. = KBX® (6.93)

a result which cen also be obtained by eliminating 2uoq from
equation (6.62) by means of equation (6.75). Equation (6.93) cen-
not be obtained from (6.63) using the first approximation (6.75)
only, since equation (6.63), being of different order in X from
(6.62), yields Copit. = 0. Of course, using the second approxima-
tion (6.76), equations (6.62) and (6.63) consistently yield, to



162.

i 2 2 —_ 2n2yh 4 Y ECEme 1
fourth order in X, €2 .. = K*BIX*, in agreement with (6.93). To
sumerise, in nlanning an experiment here, one may fix the initial
. o o s r

quentities, p~, T, k and u,, thus determining F_ of (6.58) and o
of (6.61), and then, depending on the compressibility of the plasma
(a measure of which is y of (1.61)), it is of interest to consider
how the final value of X attained depends on the initial cholce of

BM‘ It is clecar from the relationship (6.93) that, for given k,

ccrit varies linearly with the product BMXZ. In turn, by writing
equation (6.75) in the form 1
, (2uoq)Y ‘o
= — .Oh
By X % . (6.94)
Y
BM
it is seen that the y-dependence of BMX2 is as follows:
(i) Tor m =1 in (1.61), v = 3 end BMXZ increases with By, -

(ii) Form= 2, v = 2 and BMXZ is independent of By.

(iii) Tor m 2. vy = 5/3 and BMX2 decrecases as BM increases.

From (i), (ii), (iii) and (6.93) it follows that for an

asgumed one degree of freedom.Ccrit increases with BM; for two
degrees of freedomccrit is not affected by BM; and for three
degrees of freedom.CcriT decreases as BM ig increased.

The case (ii) is somewhat curious, and it might be concluded

that since Cc . is independent of B

rit. the choice of BM is in no

M?
way restricted. BRBut it must be recalled that the degree of radial
constriction of the discharge has been assumed small, so that (6.56)

applies. Correspondingly, the inequality
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]/
(zuoq)‘2 < B (6.95)

M 9
obtained from (6.77) for y = 2, must be satisfied in case (ii).

Equation (6.78) may be used to determine how I depends on

erit.

k, the distence away from the system symmetry axis of the common
foci of the u and w coordinste surfaces. k may be usefully re-
gardcd as a system scaling factor. The initial volume of the dis-
charge would scale as k¥, and hence q of equation (6.61) would, with
the assistance of the expression (6.58) for F, scale as k°, i.e.

q remains constant if po does not scale with k, but is regarded as
an independent parameter. Therefore equation (6.78) shows that

I._. would scale as k for a given value of B This conclusion

crit. M
reflects the fact that the destabilizing azimuthal magnetic field

. -1 .
Bbv(c,o) of equation (6.73) produced by T .44, SC8les as k ~. If

k is varied, equetion (6.90) shows that the tangent of the generator
angle at the median plane is not altered, and hence, for the
critical current condition, taneBo must not change with k. But

tanfy is, from equation (6.84), simply Bbv(c,O)/BM. Thus, for an

allocated value of B, (¢,0), given by equation (6.73), must not

Bbv

change. This condition 1s met if Cc varies as k, as was

rit.
deduced from equation (6.78).
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Finally, for a given stabilizing field B

e & comparison may be

made between the critical current given by equation (6.22), and
that obtained earlier in Chapter 3 for the diffuse discharge. From
equation (3.37) and the defined parameter A = BMkz sinwb, the
critical current for the diffuse discharge can be written

Mo % % kBM.coszwb sinw,
on ICI‘i‘t = Ccrit, = s (6.96)
’ ’ sinzwb + sinhzue

vhereas here, for the sheet-current discharge, equation (6.22)

becomes, by means of equation (6.72),

kB, cos?w.
— 2 (6.97)

Ccrit T sinw
‘ b

Comparison of equations (6.96) and (6.97) shows that

*

(6.98)

Ccrit. < Ccrit.
It is therefore concluded that the diffuse discharge would be
mstable for a lower discharge current than would the field-free
discharge. Also, the presence of the internal field in the diffuse
discharge would result in a losg of compression of the plasma, com-

pared with the field-free case.
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CONCLUDING REMARKS

A detailed summary of the materiael presented in this thesis
has already been given in the Introduction. To complete the dis-
cussion at this point, the following comments are made.

Some of the analysis (e.g. Sections 2.3 and 6.3) has been
carried out in the context of a general orthogonal curvilinear
coordinate system (u,v,w), with the assumption of symmetry with
respect to one coordinate (v) only. The results obtained there-
fore have a much wider spplication than that employed here. Also,
general conclusions can be drawn from the detailed discussion of
Chapter 3, concerning the dangers in neglecting the effect of
geodesic curveture when considering destabilizing mechanisms
arising from field-line curvature in magnetostatic systems with
twisted field 1lines.

Specialized results have been obtained by application of the
general theory to a specific geometry of constricted discharge.
For s numerical illustration, consider the field-free discharge
(Chapter 6) characterized by values of w, close to g—. Assuming

8 stabilizing field B, of 1.0 weber /metrez, a8 scaling parameter

M

k of order 1.0 metre, and a value of 0.1 for cos Wi 0 expressions

(6.97) and (6.12) yield I, n 105 amps. Bearing in mind the

rit.
limitations of the model used here, and assuming that the remaining
formidable technological difficulties cen be overcome, theory there-

fore predicts that it should be possible to pass currents of a
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magnitude sufficient to produce a considerable pinching effect,
without encountering the severe hydromsgnetic instaebilities common
in cylindrical pinches.

In this thesis, the specific aims outlined in the Introduction
have been schieved. However, experience geined in the course of the
work indicates that there exist further difficult but worth-while
problems for future solution in this interesting geometry, which
could be highly relevant to recent experiments with non-cylindrical
z-pinches and dense plasma foci. For example, a stability analysis
of the curvilinear analogue of the cylindrical system treated theo-
retically by SUYDAM (1958) and NEWCOMB (1960) could be & project
of considerable importance. Particular difficulties will arise
here, forltwo reasons. Firstly, the functions appropriate to this
coordinate system are the oblate spherocidal wave functions, which
are not easy to handle in general. A second problem arises
because magnetostatic equilibrium is necessary for application of
the hydromagnetic energy principle (SIMON, 1959), whereas it has
been shown here in Section 2.2 that the magnetostatic equations
and Maxwell's equations are not satisfied by the configuration in
which the magnetic and electric-current surfaces are hyperboloids
of one sheet on which the plasme pressure (comparsble in magnitude
to the magnetic pressure) ig constant. The necessity for such
equilibrium has apperently been ignored by COMISAR (1969) in his

enalysis of the dense plasma focus, although there seems to be
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excellent agreement of his results with those of experiment. In
the absence of a static equilibrium, it may be possible to study
this geometry as a dynamical stability problem, using normal mode
analysis and numerical methods.

Finally, it should be rccalled that the ideal hydromagnetic
stability theory has severe limitations in its application to
plasmas, being based on a somewhat unrealistic model which neglects
the effects of transport processes, and of factors such as the
finite gyroradius of the plasme particles. The inclusion of such
plasma properties greatly enlarges the number of possible in-
stabilities (ILEHNERT, 1967). Of particular importance is the fact
that finite particle mass, the Hall effect, pressure gradients,
electric fields parallel to the magnetic field, as well as finlte
resistivity, remove the constraint of frozen-in fields. This
changes the character of possible motions and leads to a range of
resistive instabilities, most of which have been detected in
linear pinches (LEHNERT, 1967), and should be relevant in the con-
stricted discharge. Considering the temperature distributions
derived by SEYMOUR (1961), there may be instabilities associated
with finite heat conductivity along the magnetic field (GALEEV
et al, 1963). In addition, of course, numerous microinstabilities
could be importent, particularly the 'universal' instebilities

driven by inhomogeneities in plasma temperature and density.
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APPENDIX T
As mentioned in Section 3.3, it is possible to evaluate the
varigtion § [ d2/B by commuting & and the f sign, and carrying out

the resulting integration. Equation (1.29) is
8(as/B) = - 2de(8udB/5u + SwoB/dw)/B? , (1)

where huGu and hwéw are components of the elemental vector a which

defines the variation such that a*B = 0, It is also known that
Su = ~ §v_/T - Bow (2)

(equation (3.19) et. seq.).

From equation (3.54),

(1/B)3B/au = -_sinhu [Azcoszw 82 + A2cosh?u cos?w
coshu(A%cos?w + S2k2¢?) g2

® SZKZCZ:I X (3)

-

where 82 = sin?w + sinh2u.

Combining (2) and (3) gives

(8u/B)dB/du =

2k202sinh?u sinw 8w [l g
cosw(A2?cos?w + S2k2¢2)

A?cosh?u_cos?w -J_ 5vo 9B
§2(AZcos2w + s2k2c2)” BT o

(4)

As discussed in Section 3.4, the term in 6vo gives no net
contribution to the integral from - ug to u,» and may therefore be

omitted.
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A treatment similar to the above gives

sinw 6w(8%k2c? -~ A2cos'w)
S2cos2w(AZcos?w + S2k202)

(8w/B)3B/dw = (5)

The complete integrand is, using equations (3.L4), (1), (L)

and (5),

e —Kw-tanw coshu Swdu

2K 3 [s”kzc2 - £2cos'w + 282k2025inh?u
A2cos2w + 621202

" 252k%C? sinh®u cosh?u cos?v| (6)
(AZCOSZW * SZkZCZ]Z .J

Defining M and N as:

M = 02k28% - AZcos™w ,
(aM) = LC2k2ginhu coshu 82du ;
W

A2cos?yw + (2x2g2

=
1}

(an) 202x2sinhu coshu du ,

W

lengthy manipulation will reduce the integrand, on the surface

3
- gl—{---ta;m»rb Swad

M sinhu
A ( N } )

The integral is therefore

u
k3 € (M sinhu
-2 jK-taan Sw f d [ I ]
-u
e
3 M(u_,w. )sinhu
= - b E tanu sw —e 2 =

A b N(ue,wh)
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The critical current is obtained by equsting this expression

to zero and solving for Ccrit . This operation reduces to solving

M(ue,wb) =0 -

yielding

- 2 Y
Ccrit. A cos wb/k(s1n w, + sinh ue) (1)

which is the same as equation (3.37).
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APPENDIX TI

While =quation (L.L4L) of Section 4.3 may be regarded as an
intuitively obvious result, in the interest of rigour an analytical
derivation is provided here.

Generally, if g(t) is the time-dependent function given by

glt) = f f(r,t)ar , (1)

(t)

where t{t) is a simple closed volume, bounded by the surface S(t),
the time derivative dg/dt may be obtained by employing orthogonal
curvilinear coordinates to express g(t) as a triple integral
posgsessing time~dependent limits of integration. However, the
proof is greatly simplified by choosing, in particular, spherical
polar coordinates. This choice occasions no loss of generality,
since all points on any closed surface 5(t) mey be described in
terms of coordinates r, 8,4 having their origin within S(t), by the
equation

r; = r1(8,0,t) . (2)

For simplicity it is assumed that r; is a single~valued
function of 6 and ¢. In terms of the elementary volume so defined,
any arbitrary simply-connected volume may then be treated by summing

e nurber of such elementary volumes.
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In terms of r, 6 and ¢, z(t) becomes the triple integral

g(t) f f(r,0,0,t)ar

T

m 27 r1(9,4,t)
= f ae f do J £(r,0,6,t)r? sind dr

o (e} e}

T 2m
f ae f de F(0,4,t) . (3)
(o] (]

where

r]_(es(b,t)
F(8,b,t) = I f(r,0,6,t)r? sine dr . (1)

]
Observing that the limits of integration with respect to 6
and ¢ are constants,
i 2w
dg . c
de - J as J ab = F(0,6,t) (5)

e} o]

From (4) it is seen that F(0,4,t) is a one-dimensional
integral whose upper limit depends on the three coordinates 6, ¢
and t. From (5) it is seen that the partial derivative of F with
respect to t is required here, 6 and ¢ being held constant. The
theory of differentiation of a definite integral depending on a
parameter, say X, and having limits also dependent on x is therefore
appliceble, the required formula being (see, for example, HILDEDRAND,

1963),

B(x) B(x)
f p(x,s)ds = I g%-p(x,s)ds + p(x,B) %%-— p(x,A)

A(x) Ax) (6)

&le
=
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Therefore, since 6 and ¢ are held constant, application of (€)

to (L) gives

3 3 I‘]_(O,(t),'t)
5;—F(6,¢,t) = 50 J f(r,0,6,t)r? sine dr
)
r1(0:¢ct)
= j 'é% [}(r,6,¢,t)r2 siné]dr + f(r199,¢5t)r% sin® x
& 5
er(es'\b)t) ) (7)

since A(x) of

equation (6) is zero here.

Substitution of (7) into (5) gives

ag
dt

+

i

T om r1(6,0,t) . -
J ae j dé f 5;—[£(r,e,¢,t)r2 sin?Jdr

O o} o}

v 2m 5
f ae f a¢ f(rl,e,¢st)r§ siné =+ r1(6,0,t)
(o] (o]

3 m 2m
- f 5 flzstlar + f a8 f a$ £(r1,0,4,8)r} siné x
o

Now ry,

surface S(t)

velocity of P
v =

T
In the p

o
o(t)

%r1(6’¢9t) . (8)

0, ¢ and t are the coordinates of a point P on the

at time t. As time passes the surface deforms, and the

is given by
dl‘l
a6 . ag
——— + —— N
& St Ty g & T TSN Gpgy (9)

articular curvilinear coordinete system chosen lLere the

vector element of surface area dS on the surface described by (2) is

readily determined as follows. The elements of length associated



Fig. 10.

An element of surface area on S(t) is defined by the
surface points Pj,P,,P3, chosen so that dsy = PPy is

orthogonal to g¢, and ds, = PPy is orthognal to g
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with dr, 40 and d¢ are, in terms of the scale factors hr’ h h

0° 7¢?
respectively
b ar = dr, '\
hy 0 = rdo (10)
h¢ d¢ = r sind dé ,}f
since hr =1, he = r and h¢ = r sin® in the spherical polar co-

ordingte system chosen.
From Fig. 10, if P;, P, and P35 are three closely associated
points on the surface r; = r (6,6,£t), a vector surface element as

normal to this surface as shown is given by
as = dsy x ds5 (11)

where ds;, with tail at P end tip at Py, has no ¢-component, and
dsp, with teil also at P; and tip at P3, has no 6-component. In
other words, dsj, lying in the tangent plane to the coordinate sur=

face ¢ = constant at Py, has components r; 4o end, because T3

€q
depends on ¢ alone under these conditions,

31‘1

36 9 8. 3

31‘1

+ do e (12)

dsy = rp 46 Yl e, -

€s
Similarly, for the coordinste surface 6 = const. and associated

tangent plane at P;, dsy; has the form
3!‘1

g¢ + TS ad e, - (13)

dgp, = r; sinb d¢
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Hence, from (11), (12) and (13), aS normal to the surface

r; = ry1(0,4,t) becomes

Brl
r 56—-sin6 ae da¢ g,

as = r% sin6 46 dé e
- =r

arl
- Tl gg @0 dd ey s (14)
since
S0 XSy T G S X8 T T % XS T T gy
From (9) and (1L4),
dry ary ary
° - 2 3 P --____.g‘g . __....._ﬂ
Y08 = ] sin® @ & (G- 55w - 5% &)
Brl
o 2 ad — 1
r? sin® do dd . (15)
by use of the chain rule for differentiation of dr;/adt
In the light of the result (15), the double integral in
equation (8) may be written
T 2m ar;
2 a2 — = T
fode L do £(r1,6,¢,t)r] sind = J f(l;p,t)zp as , (16)
s(t)
and so (8) becomes finally
88 = | 2og(r,p)ar + | £(r,t)veas (17
at at =2 =m0
T s(t)

e result which rigorously estsblishes equation (L.L4) of Section k.3.
REFERENCE :

HILDEBRAND, F. B. (1963) - "Advanced Calculus for Applications”.
Pp.359-60. (Prentice-Hall, Inc.: New Jersey).



178.

APPENDIX IIT

As mentioned in Section 4.3, it is possible to derive the
result (4.52) by the following method, which involves the assumption
of a form of equation of state for the plasma.

If W represents the total potential energy of the system and P

is the force per unit volume acting in the fluid, then
aw _
dt-—I_EdT, (1)
t_(t)
p

where v is the perturbation fluid velocity. Neglecting gravita-

tional forces,

%“"Idfr(ix_li—\?p)
Tp(t)
- 2L g, B2 .
__JdTE[uo_B_vg_v(p"'zuo], (2)
Tp(t)

by use of equation (4.11) and a standard vector identity. Appli-

cation of Gaugs' theorem gives

2
- f dr {;1; vB B+ (p + -Su—o)w_}
Tp(t)
+f_.'1(p+%), (3)
o}
sp(t)

where 35 is directed out of the plasma.
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Now

Wi * W » (%)

where Wb is the potential energy ascribable to the plasma material
and WBp is the energy associated with the magnetic field imbedded
in the plasma. It is assumed, following VAN KAMPEN and FELDERHOF

(1967) p.19, that w? may be written

wp = f pvdt (5)

Tp(t)

where Y is the compression energy per unit mass, given by

p
= B as
b=~ f p,2dp ‘ (6)

The equation of state of the plasma is assumed to be of the form

plp,T)

g
i}

plp(t),T(t)) , (1)

vhere T is the temperature. Hence ¥ may be written as a function

of time:

t
o(t) = - I 2.8 a4, (8)
p2 at~”
o]
so that
v _ _p d
at , at (9)
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Then

= B
W, = f (o + = ) dt
)
t
Tp( )
and
aw )
1| d 4 4 (B
e f Fral LR - (part) + B ( uO) at
t
Tp( ) )
B2 4 ,.
+ E—a_-t“ (dT)} . (10)

Here, a%— is the total derivative (5%-+ sz}, measured by an
observer moving with the fluid. As the flow develops, a given
fluid element 4t will deform, but will retain its identity, being

always composed of the same particles. Its mass, pdr, is then a

constant of its motion:
a
a;—(pdr) =0 . (11)

Equation (10) then becomes

aw, , ,
BN ) 4 (B - B2 &
& - f{dt T % (euo)dT Tl & (ar)} . (12)
T_(t
p( )

Expanding equation (11), and using the equation of conservation of
matter, (4.7), the standard hydrodynamic result is obtained

da

- | =( Vo N

= (ar}y=(vev)ar (13)

Also, by use of Maxwell's equations and the high electrical con-

ductivity approximation (L4.8),
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dB 9B

_.=__..+ °
rralc g

v x (l x B)+ v-VB

= Eo'gz . ‘B.Vﬁy_ (1)_|_)
Therefore
a [132 & 4
2u /-
dt Fuo uo dat
2
- -];—ogov-'y'- - -:B—— VOE . (15)
uo uo

Using equations (9), (13) end (15), cquation (12) may be
written
aw, 2
—= = f dr {—1- BeBeVy - i Vov - pvev} (16)
M - 2u, =

where equation (4.7) has been used also.

As shown in Section 5.4(a),

f dt BeB*Vv = - f dr veB°VB , (17)

Tp(t) Tp(t)

so that, finally,

et I ar = v B+ (p+

2
27y} (18)
o o]

Tp(t)

Comparing equations (3) and (18), it is seen that



182,

aw,
= -4--—1~+ [ v (p + -E—z—) s (19)
S

since dS-v is zero on Spc(t). But equation (k4) gives

\
g Wy A
at dt dt
and so
aw >
BE _ B2
at I d_s_y_ (p+2uo)
spv(t)
= . é_LI as”ev B2 i
Mo
spv(t)
in agreement with (b.52), where d8” = - 4dS, and the pressure

balance equation (L4.13) has been used.
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