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Abstract

In this work the quantisation and renormalisation of Yang-Mills (YM) gauge theories in

axial gauges is examined. Faddeev-Popov ghosts are known to decouple in these gauges,

and particular attention is given to the temporal gauge case. I first approach the gauge-

field propagator ambiguity by parallel transport from the Coulomb gauge to the temporal

gauge to obtain a propagator that breaks time-translation invariance. This result agrees

with the propagator derived in the 'fully-fixed gauge'approach of other authors. Problems

with implementing such propagators in perturbation theory are discussed with reference

to the taking of limits and the Green's function properties of the propagator. The major

impediment in this approach is that the breaking of time-translation invariance makes

proving renormalisability in this gauge intractable. I thus turn to an alternative: Land-

shoff's alpha-prescription for the temporal gauge field propagator. I discuss two derivations

of the prescription: one, due to this author, maintains BRST invariance in the temporal

gauge-fixed Yang-Mills Lagrangian, but has non-local terms in the Lagrangian implying

an infinite number of new vertices. This is unwieldy so I pursue a second, related, deriva-

tion of Przeszowski which sacrifices BRST invariance for locality and so generates no new

vertices. Poincare invariance of the free Abelian theory is recovered in a subspace of the

indefinite metric Hilbert space; the Gauss law is valid for matrix elements of states in this

subspace. Tadpole graphs in the alpha-prescription, which do not vanish even in dimen-

sional regularisation, ate shown not to contribute to the Wilson loop. I compute, to one

loop, the quark-self-energy and quark-gluon vertex correction in the alpha-prescription

and make some progress on the renormalisation problem.

vll



vlll



Declaration

Except as stated herein this thesis contains no material which has been accepted for the

award of any other degree or diploma in any University. To the best of my knowledge

and belief, this thesis contains no copy or paraphrase of rnaterial previously published or

written by another person, except where due reference is made in the text of this thesis.

I give my consent for this thesis to be made available for photocopying and loan.

A.C.Kalloniatis

lx



X



Acknowledgernents

At a personal level I wish to thank my family for their long distance comfort and concern

over the last four years during which this work was undertaken both in Adelaide and

Cambridge. Also of great personal support have been the Greeks of the communities of

St Anthony's and St Athanasius in Adelaide and Cambridge respectively, and my friends

David, Paul and Anne.

I thank my supervisor, Dr Rod Crewther, for maintaining interest in this work through-

out and for a quite critical reading of this thesis. I am also indebted to the staff and

students of the Department of Physics and Mathematical Physics, at Adelaide, especially

Dr Andy Rawlinson who fulfilled a role as sounding board for many ideas, Professor Angas

Hurst for much physics and history of physics, ... and BilI for my sanity.

I express gratitude towards Professor John C. Taylor, Dr Peter V. Landshoff and the

students of the Department of Appìied Mathematics and Theoretical Physics, University

of Cambridge, for their hospitality during my visit to Cambridge, England.

I also thank: Dr Jurek Przeszowski(Warsaw) for his collaborative advice, and nume¡ous

other workers in axial gauge theories for their time and hospitality as I visited them. In

particular I mention Dr Martin Lavelle (Regensburg), Professor André Burnel (Liege) and

Professor George Leibbrandt (Guelph).

Financial support was provided by: the Australian Government (through a Com-

monwealth/Australian Postgraduate Research Award), the organisers of the Workshop on

Physical and Nonstandard gauges at the Technical University of Vienna, Dr Rod Crewther

(travel grant to Vienna) and the British Council (Postgraduate Travel Bursary to Cam-

bridge).

XI





1

To my Adelaide Greeks:

the Fotiadis and Panagiotopoulos Fami[es



2



Chapter 1

Introduction

This thesis is concerned with work recently done by the auth.or on the long-standing

problem of quantising gauge-theories in non-covariant gauges. The purpose of this chapter

is to outline the structure of the work and to place the key ideas preceding this work into

some historical framework-

1.1 Covariant Formulations

Since the successes of Einstein's theory of gravitation, the Quantum Electrodynamics

of Feynman, Schwinger and Tomonaga, and the Weinberg-Salam-Glashow Theory unifying

electromagnetism and the weak nuclear force, the gauge principle has come to be accepted

as the basis for a complete description of the strong-interaction and the unification of the

fundamental forces.

The subject matter of this thesis, non-couarianf gauges such as the temporal gauge,

are as old as Quantum Mechanics itself; Weyl[l] considered such gauges in his early work

on quantising electrodynamics. Despite this early foray into non-covariant manifestations,

the earliest successes in electrodynamics used covariant gauges - in the work of Fermi[2]

for example - where the desire to maintain the invariance properties of Special Relativity

took strong precedence. Indeed, many of the issues that are raised in this thesis were

encountered even then: such as the differences in implementing gauge constraints in the

classical theory and in the quantum theory, the relevance of this to the structure of the

quantum Hilbert space of states and indefinite metric structures. In the quantum theory

of the free electromagnetic field this developed into the work of Gupta and Bleuler[3],

Nakanishi[4], and takes its most rigorous form in the papers of Strocchi and Wightman[5]

and in the C*-algebra formalism by Grundling and Hurst[6].

When Yang and Mills[7] and Shaw[8] generalised the gauge-invariance of the electro-

3



4 CHAPTER 1. IN.IRODUCTION

magnetic potentials from the Abelian U(1) group to non-Abel-ian gauge theories a vast

array of researchers turned the area into the rich structure it is today. The significant

discovery here was the identification of residual gauge symmetries in the gauge-fixed ac-

tion in terms of Grassman transformations - the transformations of Becchi, Rouet, Stora

and Tyutin IBRST] [9, 10]. The BRST formalism is now the most elegant way of treat-

ing covariant non-Abelian gauge theories in the covariant but indefinite metric formalism.

Faddeev and Popov[l4] were able to give an elegant explanation in both a canonical and

path-integral approach for the observations made by Feynman[l5] and DeWitt[16] - that
in non-Abelian theories in covariant gauges extra (ghost) degrees of freedom are required

in order to safeguard the unitarity of the S-matrix. These fictitious fields are mathemat-

ically necessary for a local formulation of quantised gauge theories where the massless

gauge boson is treated in a covariant fashion with redundant ð.egrees of freedom. The

generalisation of the Gupta-Bleuler method for selecting the physical Hilbert space in the

non-Abelian case was rather elegantly formulated by Kugo and Ojima[17]. Faddeev[l2],

dealing with so-called flrst class constraints, and Senjanovic[13], extending Faddeev's work

to include second class constraints, were able to implement for non-Abelian gauge theo-

ries the generalised Hamiltonian dynamics of Dirac[li] in the path-integral formalism.

Another approach to the implementation of constraints in the quantisation of relativistic

field theories was developed in the combined works of a number of authors - Fradkin and

Vilkovisky[l8] and Batalin and Fradkin[19] and related works. Here the constrained sys-

tem admits the use of dynamically 'active' Lagrange multipliers for the constraints, and

ghost fields. Physical unitarity and gauge independence are gauranteed in this approach

by the compensation of multipliers and ghosts due to their opposite statistics. I mention

this work here for completeness and shall have no further recourse to this otherwise quite

fruitful area. Henneaux[20] reviews all this work on the role of FP ghost flelds and BRST

invariance within these systematic approaches to constraints in gauge theories.

Thus at the formal level, non-Abelian gauge theories were examined in covariant

gauges. 't Hooft and Veltman were able to prove the renormalisability of the theory, and

the implementation of the theory in the theories of electro-weak and strong interactions

(quantum chromodynamics) has been nothing short of thorough.

L.2 Noncovariant Gauges

t.2.1 The 196Os

A noncovariant gauge is one which introduces a breaking of manifest Lorentzinvariance

in the choice of gauge itself. As mentioned, noncovariant gauges such as the temporal



1.2. NONCOVARIANT GAUGES

gauge, or the Coulomb gauge are quite old. As well as the work of Weyl cited earlier,

Heisenberg and Pauli utilised the temporal gauge in an early treatment of the quantisation

of Maxwell's theory[21]. The temporal gauge in quantised electromagnetism was later

studied in a preliminary work by Kummer 1221. However, given the advantages of a

manifest Lorentz invariant formulation other authors did not take up axial gauges until

the developments in non-Abelian gauge theories during the seventies.

I shall be particularly concerned with noncovariant gauges characterised by gauge-

conditions involving n . A where n, is the gauge-vector defining the temporal gauge (n

time-like), the light-cone gauge (n on the null-plane) or space-like axial gauge (n space-

like). The homogeneous aúal gauge choice is thus one where n. A = 0.

The first paper applying noncovariant gauges to the Yang-Mills (YM) field is that of

Arnowitt and Fickler[23] which shows that, in distinction to the Coulomb gauge 1, the

constraints arising from the requirement that the Euler-Lagrange equations be consistent

with the Heisenberg equations in Schwinger's action principle can be solved exactly.

L.2.2 The 1970s

Much of this work was on the formal machinery of quantising the theory. In the

early seventies perturbative calculations in non-Abelian gauge theories were undertaken

in earnest.

In non-covariant gauges this work began with the investigation of the form of the

S-matrix generating functional in the space-like axial gauge by Fradkin and Tyutin[24]

and applying the light-cone gauge to the anomalous dimensions of twist-four operators by

Karnz, Kummer and Schweda[25] which I discuss in some detail now.

The first explicit statement of the decoupling of ghosts appears to be by in the above

cited paper by Fradkin and Tyutin who, deriving the generating functional, state: "[t]he

Feynman rules have no additional diagrams" arising from a non-trivial functional measure.

Fradkin and Tyutin also write down the form of the gauge-fleld propagator but draw no

comment on the appearance in this expression of an ambiguous pole in momentum space.

This problem remains unresolved, certainly for the temporal gauge, even to this day.

Examining some of the solutions proposed for this problem is the central goal of this

thesis.

It was the paper by Katnz et al. that first appreciated the problem of the ambiguous

pole in the gauge-field propagator. Curiously enough, their solution in that work echoes

lArnowitt and Fickler in their paper actually refer to the r¿diaúion gauge which I shall take to be the

gauge with both â;,4¡(ø) : 0 and ,40 : 0. This can only be implemented without eliminating physical

degrees of freedom in the case of free electromagnetism - see chapter 2.

5



6 CHAPTER 1. INTRODUCTION

a flavour of both the Leibbrandt-Mandelstam (LM) prescription - which arose in the

eighties - and the principal value (PV) prescription popular in the seventies. Namely, they

recognised even then that a useful approach would be to deflne the spurious pole such

that the Wick rotation was stili possible2 But that left an ambiguity for zero momentur¡r

for which they used a PV regularisation [27].

The next paper of note was the application of the temporal gauge to a theory of scalar

multiplets coupled to gauge-vector bosons by Delbourgo, Salam and Strathdee[26]. The

propagator ambiguity was appreciated there also and the PV prescription was offered as a

solution on the grounds oftheir being no absorptive part, thus no unphysical contributions

to the unitarity of the S-matrix[28, 29]. There too it was realised that the non-Abelian

Ward identities, or alternately the Slavnov-Taylor identities retained their simplest forn
in this gauge - a direct consequence of the decoupling of ghosts from the generating

functional. This was realised independently by Kummer in [30], in which he also advocated

the PV prescription. Cornwall[31], in an appendix to a paper on scalar meson theories,

discussed the light-cone gauge and in particular noted that naive power counting breaks

down with light-cone integrals; the divergence of integrals does not correspond with that
obtained 'by adding tensor indices'. Chakrabarti and Darzens[32] report on similar results

independently of Cornwall as does Crewther [33] who discusses the presence of logarithmic

dependence on momentum in divergent parts. In short, these observations render the proof

of renormalisability in the light-cone gauge intractable. In light of these comments, the

view developed that the light-cone gauge might suffer from more devastating pathologies

than the space-like and temporal axial gauges.

Crewther, in the above work[33], used the axial gauge in the operator product expan-

sion. Unitarity was explored, again in the temporal gauge, by Konetschny and Kummer

in [3a]. Here, using the PV prescription, the imaginary part of the S-matrix was checked

explicitly to see if the unphysical degrees of freedom cancel - which they do for the pV

for precisely the reasons advocated by Delbourgo et al. Asymptotic freedom in the axial
gauge was examined by Frenkel and Taylor[35] (and later, in the context of the Lehmann

representation, by West[36]). A derivation for the PV from first principles was finally
given by Frenkel[37].

The goal in this 'middle period', as one might call it, remains unaccomplished to this
day: to set non-covariant gauges on an equal footing with covariant gauges. This is tan-
tamount to demonstrating that the quantum theory in such gauges is fully equivalent and

consistent with the covariant formulation, namely that it is unitary and renormalisable.

2This is discussed in the appendix of their paper: the prescription is given in their equa.tion (A.2) in
which, by the way, ø should be replaced by 6.
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Moreover, if the seeming advantages of the gauge are to be verified for practical compu-

tations in fleld theory the task would seem to be showing that ghost-decoupling - indeed

the minimisation of the number of redundant degrees of freedom - is consistent with the

physical requirements of gauge independence of observables, unitarity and renormalisabil-

itv.

L.2.3 The 1980s

As far as the non-light-cone gauges were concerned, the'above work established the

PV as the accepted prescription. In the early years axial gauges with PV prescription

were applied to a number of areas including gravity[38, 39] and in deep inelastic scattering

and parton theory by authors such as Dokshitzer et al[40], and Bassetto et al[41]. In this

case, the decoupling of ghosts and the form of the gluon polarisation vectors rendered this

gauge a more physically transparent gauge in the ladder approximation.

But the period of activity in which the field finds itself in today opened in the early to

mid-eighties when the prevailing view on these gauges was challenged. As has been said,

this view was that the non-light-cone gauges were considered to be in a more healthy state

than the light-cone gauge. The significant step away from this position was in the work of

Leibbrandt[42], and Mandelstam[43] who independently arrived at a new prescription for

the gauge-ambiguity in the light-cone gauge - the Leibbrandt-Mandelstam (LM) prescrip-

tion. Leibbrandt derived the prescription by requiring that one be able to Wick rotate

the contour in energy space without crossing new poles generated by the prescription in

the first and third quadrants. Leibbrandt tested this prescription in the computation in

basic Feynman integrals in perturbation theory and verifled that, unlike the PV case,

naive power counting was indeed satisfled. In the same paper he discovered that, while

naive power counting now succeeded, new problems were introduced in the guise of non-

polynomial dependences on the external momentum in one-loop divergences such as the

gluon self-energy. The divergences of logarithmic form detected in the previous decade[33]

were not present in this case. Rather, one was now faced with divergences involving

ll@. "), where p is the external momentum. Non-polynomial or non-local divergences

demand non-local counterterms and one generally has no control, by power counting ar-

guments, over what types of terms may arise. The proof of renormalisability is thwarted.

Vigorous activity by a number of groups enabled progress in understanding these diver-

gence structures and developing a successful renormalisation program for the light-cone

gauge. Work here included understanding constraints imposed on non-local counterterms

by BRST invariance[44, 45], a derivation of the LM prescription in the context of Dirac

generalised Hamiltonian dynamics by Bassetto et al.[48], and the demonstration of order

7



8 CHAPTER 1. IN?RODUCTION

by order renormalisability of the theory[49] based on the observation that the non-local di-

vergences decouple from unamputated Green's functions. Work on the renormaüsation of

Yang-Mills theories in the light-cone gauge was also done in the Vienna school by [51, 52].

In the temporal gauge there were further surprises. Several papers had appeared up

until this time arousing suspicion that all was not well with the PV prescription even off

the light-cone[46,47]. Bassetto et al. had also argued this in the case of space-like nt) orr

the grounds of unitarity violation[5O]. Caracciolo, Curci and Menotti [CCM]in [53] tested

the PV prescription for the temporal gauge propagator in the gauge-invariant rectangular

(static) Wilson-loop. The result, to order ga in perturbation theory, had been checked in

various gauges by numerous authors[54, 55,56, 57, 58]. The exponentiation property of

this quantity in the large time-limit, which enables the determination of the inter-quark

potential for static quarks, had been well-understood by these authors. Using the PV

prescription the wrong result was obtained. The signiflcance of this result should not

be underestimated - the ghost free temporal gauge with PV prescription is inconsistent

with gauge invariance. Indeed, CCM found that extra terms were needed to obtain the

correct result - these terms breaking time-translation invariance thus rendering elegant

momentum space techniques of conventional field theory inapplicable.

This provoked a number of strands of work: numerous authors further examined

the role of non-translationally invariant propagators in the temporal gauge field theory

[59,60, 67,62,63,64]. Bassetto et al[65], Nardelli[66] and Soldati[67] have studied, what

has been termed, the Wilson loop criterion for non-covariant propagator prescriptions in

more thorough mathematical detail. Cheng and Tsai have investigated the equivalence

properties of gauge-invariant operators such as the Wilson loop and their relationship to
ghost-gluon couplings [68, 69, 70]. Their approach has been applied in the computation

of Wilson coefficients in the gluon condensate by Lavelle et al.[71]. Haller, using a for-

malism previously developed for spinor quantum electrodynamics in covariant gauges[22],

has investigated non-translationally invariant structures in terms of ghost operators in-
volving the non-physical components of the gauge fleld[73]. Slavnov and Frolov have given

quite rigorous derivations of the CCM propagator and shown it to be consistent with the

unitarity of the S-matrix[74].

Given the cumbetsome properties of the non-translationally invariant propagators,

Landshoff proposed a momentum space prescription, the alpha prescription, for the tem-

poral gauge for which he was able to obtain the correct Wilson loop behaviour[75]. Steiner

made an early effort at giving a derivation for Landshoff's propagator[76]. But no real

progress has been made on the origins of the alpha-prescription until recently. This thesis

will report on aspects of that work.



1.3. AIMS

In light of the abandonment of the PV prescription, much work had to be redone in

the non-light-cone gauges. In particular the generalisation of the LM prescription off the

light-cone was studied by the Vienna schools[77, 78] and by Leibbrandt[79]. The same

sorts of non-local divergence structures as for the light-cone gauge were encountered[80].

Unfortunately here no such decoupling can be shown to occur for Green's functions of the

theory. Despite thisLazzizzera[81,82] and others[83,84] were able to derive the generalised

prescription in non-light-cone gauges. Hüffel et al.[85] demonstrated that the generalised

prescription satisfled the Wilson loop criterion, though recent work has called this result

into question[86]. Pollack was able to show that for the S-matrix amplitude for quark-quark

scattering the non-localities decouple[87]. Bagan and Martin were able to compute the

three-gluon and four-gluon vertex corrections in the generalised LM prescription[88]. Most

recently, the role ofnon-local divergences in the light-cone gauge using the LM prescription

has been ca,lled into question by Burnel and Caprasse[89]. This issue is clearly contentious.

Because in this thesis I will deal with alternatives to the LM prescription, as will become

evident, I take no particular position on this development.

Leibbrandt published a review[90] on the subject in 1987 summarising the huge amount

of material published up until the late eighties. Since then a workshop has been held on

the subject[91], and another workshop on Gauge Theories on the Light-Cone which also

included numerous papers in this field of activity. Finally, the Italian school under Bassetto

have published a monograph essentially collating the contribution he and his collaborators

have made to the field[92].

It is important to stress that the consequence of this research has been to establish the

light-cone as a valid gauge. Off the light-cone, non-Abelian gauge theories suffer seeming

irrepairable pathologies - words spoken by Bassetto himself[93]. It is to this I shall turn

my attention in this work.

1.3 Aims

The numerous threads in the above historical overview can be drawn together by sum-

marising what work in the last three decades on the non-light-like axial gauges has been

generally directed towards.

l.Deriving from first principles an unambiguous theory in the temporal gauge - par-

ticularly where the propagators of the theory are well-defined.

2.Clarifying what unphysical degrees of freedom, including Faddeev-Popov ghosts, are

or are not inherent in the formalism.

3.Demonstrating that the unitary S-matrix is retrievable.

I



10 CHAPTER 1. INTRODUCTION

4.Proving that observables calculated in this gauge are gauge-independent.

S.Proving that the theory can be consistently renormalised. This is particulaly im-

portant, despite the knowledge that non-Abelian gauge theories are renormalisable in
covariant gauges, because there are so many subtleties in noncovariant gauges that one

cannot be entirely sure that the theory is genuinely equivalent to the covariant theory until
this program has been achieved. Classical equivalence of the theory in the two gauges is

simply not a sufficient guarantee.

With the exception of (3), the work on this thesis is directed along precisely these

ünes. After a chapter introducing the relevant technical aspects that shall be employed in

subsequent chapters, I turn in the second chapter to the approach of fully-fixed temporal

gauges. I shall give my own derivation of the non-translationaliy invariant propagators

in this gauge by parallel transport from the Coulomb Gauge where no ambiguities occur

in the free electromagnetic theory. I shall clarify certain problems with this approach,

particularly the Green's functions properties of the propagator which have not been ex-

plicitly noted in the literature before. When examining the non-Abelian theory I reiterate

previously stated arguments why this approach to the temporal gauge is not, in the end,

helpful in providing a ghost-free gauge in which one can prove renormalisability.

Given this state of affairs, in the remainder of the work I turn to the other prescrip-

tion available in the temporal gauge: the alpha-prescription due to Landshoff. I give two

approaches to deriving the prescription, one of which originates in my work. However I
demonstrate that this - BRST invariant approach - again over-complicates the system by

introducing non-local vertices. I thus follow the second approach, due to Przeszowski and

demonstrate consistency between Poincare invariance in the candidate physical Hilbert
space of states in the free electromagnetic theory. In the non-Abelian theory I com-

plete Landshof's proof of the Wilson loop exponentiation in the alpha prescription by

showing that tadpole graphs, previously overlooked in Landshoff's original work, vanish

safegaurding the exponentiation. In the final chapter I turn to the renormalisation in the

alpha prescription. I develop techniques for performing loop integrations in the prescrip-

tion which are applied to the basic one loop corrections in Yang-Mills theory coupled to

fermions: the gauge-field self-energy, the fermion-gauge-field coupling correction and the

fermion self-energy. The results are shown to be consistent with Ward Identities that
are simple and suggest ghost decoupling is indeed a property of the alpha-prescription.

The renormalisation is carried out to one loop order - though the form of the gauge bo-

son self-energy necessitates the introduction of a BRST non-invariant counterterm. The
problems this inspires are discussed. Nonetheless it shali become transparent that the
alpha-prescription is an improvement on the generalised LM prescription in that no non-
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Iocal ultraviolet (UV) divergences are found, and there is some promise that the theory

will be renormalisable to all orders.

The original material is contained in (sub)sections 3.I.2, 3.2.L,3.2.3, 3.3, 4.2, 5.1.2,

5.2.L,5.2.3,5.2.4,6.2,,6.3,6.4 and all of the material in appendix B. These results have

been published or are in preprint form in [94, 95, 97, 96, 98].

There is a statement of conclusions reached on the non-translationally invariant ap-

proach at the end of chapter three, and a more extensive list of conclusions in the final

chapter, suggesting that the alpha-prescription is a promising approach to the temporal

gauge but with numerous problems remaining to be solved. The references are collected

at the end and appendices include tables of integrals useful for the alpha-prescription.
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Chapter 2

Background and Techniques

2.L Outline

In this chapter I review some of the key tools used in aspects of this work. Techniques

such as dimensional regularisation in ultraviolet (UV) divergent Feynman integrals, and

the derivation of the perturbative expansion in gauge theories are by now quite standard

in field theory. The reader is referred to any text on gauge theories for that material -

for example[99, 100]. These texts are my soutce for the conventions and notation adopted

through most of this work. I discuss the framework of non-Abelian gauge theories in

order to establish aspects of this notation. I then briefly review the formal method of

the Faddeev-Popov trick in the functional formalism with respect to non-covariant gauge

choices. This will establish the naive theory in the axial gauge in which the propagator

remains ambiguous. I examine some of the peculiarities of the temporal gauge choice.

Finally, the Dirac method of constraints is reviewed, as the technique will be utilised in a

later chapter.

2.2 Non-Abelian Gauge Theories

The most natural generalisation of the Maxwell theory, so effective in classical and

quantum electrodynamics, is one where the gauge-transformations become elements of a

non-Abelian group G, such as ^9U(1Í). This means that the potentials are now matrices

and are written as a linear combination

(Ar(r));¡ : Alr(r)Tï¡ (2.r)

The indices i, j label the components of an arbitrary matrix representation, R, of the ma-

trices ?". For brevity I shall often suppress these indices. These representation matrices

13
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are the generators of the semi-simple Lie algebra of the group G obeying the group alge-

bra [To, Tu] : ifabcTc and f"b' are completely antisymmetric structure constants. The

quadratic Casimir invariants relevant to the generic representation R are deflned by

(7"7")t¡ = Cz(R)6¿¡ (2.2)

while I shall also need the analogous expression for the adjoint representation,

¡acd' ¡bcd' = cz(G)6"b . (2.s)

The gauge-invariant Lagrangian density for an ,S¿l(¡f ) non-Abelian gauge theory with
fermion interactions is given by

1t: -iFi,Fot"' + rþi(iþ¿¡ - *6¿¡)rþt (2.4)

where

Fl, = orAi - a,Ai+ gÍ"b"A!*A:, (2.5)

is the field-strength tensor in component form which transforms under the adjoint repre-

sentation of the internal gauge symmetry group G : Stl(N ), and the covariant derivative

is defined by

(Dr);¡: or6¿j - isri¡Ai. Q.6)

I shall also have occasion to refer to the covariant derivative with respect to the adjoint

representation

Diu = 6"'0, - gf"b'A'r. (2.7)

2.3 Non-Covariant Gauge Fixing

In this section I largely follow the exposition given in the review by Leibbrandt[gg]. I
shall be concerned throughout this work with homogeneous non-covariant or axial gauges

defined by the condition

n'A"=o (2.8)

where nt" is a fixed vector which falls into one of three regions depending on whether

n2 : n\np is positive (time like axial gauge),zero (light-cone gauge) or negative (space-

Iike axial gauge). In particular I shall be concerned with the time-like case for which there

is no loss of generality in choosing the vector n = (1,0,0,0) - and this explicit choice will
be made at numerotrs points of this work. Thus my primary concern is with the temporal

gauge choice

A3:0 . (2.9)
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In the Faddeev-Popov approach[l4, 101] this gauge-choice can be implemented by

choosing the gauge-fixing functional

F"lAl: n. Ao . (2.10)

Now an important quantity to be considered is the Faddeev-Popov determinant which is

merely the Jacobian determinant for the formal path-integral with respect to infrnitesmal

gauge- transformations :

d,et(Mp): d*tfiffil (2.11)

which, for the above choice for F, is evaluated to be

det(n. ô6"b + gf"b'n.A") . (2.r2)

Recall the standard identity

f

J Ds det(Mrls,4Daçr"¡sA(ø)l) = 1 (2.13)

where Dg is the invariant functional integral measure for an integration over the gauge

group space

Ds =flds" (2.r4)

for group parameters go, with a running f.oå f up to the dimension of the group. The

formally gauge-invariant path-integral generating functional for Yang-Mills theory is given

by

zlJ.,X,xl= N 
IDADúD1þ""pþ ld,ar(L+ 

J.A+,þx+x,Ðl (2.15)

where f, is given by Q.a) and. JP, ¡ and X are c-number sources for the gauge and fermion

fields, permitting the generation of Green's functions of the theory. By introducing the

trivial identity (2.13) into this expression one obtains

I IZlJ,X,Xl: N DADsDTþDrþ det(Mpf A!)6(F"P Al) exp[i d,ar(L+ J.A)). (2.16)

Now 2A is a measure invariant under local gauge transformations. The Faddeev-Popov

determinant is also gauge invariant. Thus one can perform a gauge-transformation in the

path-integral measure and integrand from e A -- A with the corresponding transformations

on the fermion flelds enabling the the infinite volume factor [Dg to decouple and be

absorbed into the normalisation constant.

The task remains to cast this expression into a local form, amenable to perturbative

diagrammatic computations by exponentiating terms into an effective action. The delta-

function is easily dealt with by recognising the homogeneous gauge-condition (2.8) is a

special case of the inhomogeneous non-covariant gauges

n-Ao:C" (2.17)
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where C"(*) is an arbitrary functional taking values in the gauge-group aþebra. One may

thus average the generating functional over C"(*) using a sharp Gaussian weight

I5à"*p[-( il2^) | dar(c"(r))2] (2.18)

from which one recovers the homogeneous condition. This may alternately be achieved

through a multiplier field B"(ø) in a term in the Lagrangian of the form[4]

B"n - Ao (2.1e)

Computation of the Euler-Lagrange equation for the multiplier fleid B' shows the homo-

geneous condition (2.8) is returned.

Finaily, the determinant is exponentiated bv rewriting it as an integral over scalar

Grassmann fields 4" and. ¡" which transform under the adjoint representation of .ç¿l(N),

giving the final expression for the effective Lagrangian

L"f f = Lv¡¡ - B"n'A" I rl"n' D"'rlo . (2.20)

The Grassmann fields are the Faddeev-Popov ghost fields necessary in covariant non-

Abelian gauge theories in order to retain unitarity of the S-matrix[l5]. The crucial obser-

vation here is that the gauge condition F"IAI = n.Ao does not involve a derivative âr.
Implementing the gauge-condition at the level of the Lagrangian, one thus obtains for the

ghost term

Lppc-r¡"n.06"br¡b. (2.2I)

Notice that the Feynman rules implicit in this expression do not involve a vertex between

the ghosts and the gauge-boson. In other words, the ghosts have decoupled from the

theory - much as they do in linear gauge quantum electrodynamics. This is the essential

advantage of these gauges. In a BRST analysis, of course, the ghosts must be retained[gg].

Thus the statement of decoupling applies to a perturbative Feynman diagram expansion.

There are other levels at which the ghost decoupling can be seen. The ghost term

may be carried into the perturbative expansion where they appear in closed ghost-loop

Feynman diagrams. For the inhomogeneous case (À -+ 1 in (2.18)), Frenkel demonstrates

the decoupling by observing that the integrals are of a tadpole form which vanish in
dimensional regularisation[lO2]. The decoupìing can be seen to hold for the planar gauge

(where n' A = V"(x) for some arbitrary fleld Iz") by expanding about small gauge-

transformations and flnding that the formal Faddeev-Popov determinant is independent

of the gauge-field and thus may be decoupled[4O]. Finally, for the homogeneous case again,

the decoupling is seen at the diagrammatic level in that the ghost-gauge field vertex is
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proportional to the gauge vector np ar'd so in unamputated graphs one obtains factors of

the form

nt" Dib,(p) (2.22)

where ni,,!,(p) is the propagator or two-point Green's function for the gauge-field to which

I turn in greater detail later - and for a true homogeneous axiai gauge expression (2.22)

must vanish reflecting the original gauge condition. Thus ghost diagrams drop out of

S-matrix amplitudes.

Some of these arguments assume the propagator prescription for the ghost fleld is

consistent with dimensional regularisation. I shall come back to this in the context of the

alpha-prescription in chapter 4.

Turning to the remaining Feynman rules one finds that the gauge fleld and fermion

vertices are exactly the same as in the covariant formulation (see appendix A for details).

Only the gauge-fleld propagator has changed

6"b
Dib,(n) =

p2 lsr, - nv I Punp. (2.23)Pp

p.n

where physical asymptotic conditions[103] dictate that the pole at p2 = 0 should be treated

in the sense of Feynman's prescription p2 --- p2 * ie where e is a positive inflnitesmal

quantity which suffices to define the deformed contour in p6 space. Note that the result

(2.23) is consistent with (2.22).In this case however there is an additional pole a,t p.n:0
- the source of the woe and effort discussed in the first chapter and to which I shall return

in greater detail in subsequent chapters.

2.3.L BRST Invarrance

The effective Lagrangian, with non-covariant gauge-fixing term and ghost term retained

have an additional BRST symmetry [9, 10] under transformations involving the Grassman

anticommuting fields. Because I shall not make specific use of the transformations in this

work I omit a detailed discussion. But an important aspect to note is that the BRST

transformations are a subset of the gauge transformations, where the gauge part of the

transformation is written in terms of the Grassman field. Thus the original gauge invariant

piece of the Lagrangian is itself BRST invariant. The ghost term cau be seen to be simply

a consequence of BRST variations of the gauge-fixing term. Thus the sum of the gauge-

fixing and ghost terms is also BRST invariant.

This symmetry provides a rich framework in which formal aspects of the theory such as

renormalisation and the quantisation can be carried out in powerful and elegant ways. In

the former case the Slavnov-Taylor identities [104, 105] or related BRST identities prove
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essential in dealing with the renormalisation of YM theory to all orders in perturbation

theory. In the latter case, so called BRST quantisation permits an elegant framework in

which to prove unitarity of the theory, and Poincare invariance. In particular the Kugo-

Ojima criterion [17] where physical probability conserving states are distinguished from

redundant states within the indeflnite metric Hilbert space by being annihilated by the

BRST charge, namely the Noether charge corresponding to invariance under the BRST

transformations, is especially useful in the context of the functional approach to field

theories.

2.4 The Temporal Gauge

Now I focus in more detail on peculiar aspects of the fleld theory in the temporal gaugc

theory defined, by Áfi = 6.

The flrst observation is that this condition does not completely remove all gauge degrees

of freedom - there is a residual invariance under time-independent gauge transformations

Ai@)-- Ai@) - oibab(x) 
" (2.24)

Residual gauge freedom is not of course peculiar to axial gauges. For example, covari-

ant gauge QED retains a residual symmetry under gauge-transformations described by

functions ø(r) satisfying

Dø(u) = 0. (2.25)

As mentioned, the requirement of causal time-boundary conditions dictate how the

remaining freedom is to be fixed and lead to the well-defined covariant gauge propagator

with Feynman ie prescription.

That the propagator ambiguity in the temporal gauge is related to the residual time-

independent gauge freedom is most readily seen by considering that one fixes the gauge in

perturbation theory in the first place in order to invert the quadratic differential operator

in the Lagrangian or equations of motion. In coordinate space, for the temporal gauge

one encounters the time-derivative operator, ôs, which must be inverted to derive the bare

two-point Green's function of the free theory. This inversion implìes an integral operator

for which there is an arbitrary constant (with respect to time) of integration which remains

unfixed. This is precisely the ambiguity in question. These 'constants' of integration are

directly related to the asymptotic properties of the flelds as n . t = oo * loo which, in

turn, enjoy the residual gauge freedom[36].

This means that one way of dealing with the propagator ambiguity is by removing

this freedom and this approach will be discussed in the next chapter. But there are other
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approaches which retain the residual freedom, as implicit in the Leibbrandt-Mandelstam

(LM) prescription[106] or in the method I shall adopt in later chapters with the alpha

prescription.

Another issue in the temporal gauge is the loss of the Gauss law - an essential feature

of the physical sector of a theory of massless gauge interactions.

To see how the Gauss'law arises in the unfixed Yang-Mills (YM) theory consider the

canonical Hamiltonian in the classical theory

H v M : I o" rt|ry, ft, + 
Ien"¡ 

ef¡ r ú ( 4 ;0; + *) rþ i s A? th ;T' rþ - A3@ rþ-y oT' ú + D?b F|i)l

(2.26)

where the last term was obtained after an integration by parts and the surface term

discarded - permissible for YM theory in the context of perturbation theory.

One sees that the zero-component of the gauge-freld, Afi, does not play a dynamical

role in (2.26), rather it acts as a Lagrange multiplier for the Gauss law constraint

nib@)r!(r)+ srhor"ú =0 (2.27)

where ri : F3;.

In the covariant gauge quantum theory this constraint is implemented as an operator

equation: the Gauss law operator is identically zero.

In the temporal gauge theory with Afi absent from the classical formalism the Gauss

law constraint cannot arise. So, as it must be present in the physical theory it must be

imposed as a condition on the physical sector of the Hilbert space of states. Recall that in a

general quantum freld theory the total Hilbert space may be too large: there may be more

states than are actually physicaliy relevent for probability conservation (unitarity) and

a positive definite Hamiltonian. The Gupta-Bleuler criterion[3] in covariant gauge QED

serves to distinguish the physical sector from the redundant states in such an indefinite

metric space. In non-Abelian covariant gauge theories the Kugo-Ojima[l7] criterion fulfills

the same purpose. In the temporal gauge there is an extra requirement that if the theory

has an indefinite metric then the criterion that serves to distinguish states for which, for

example, the Hamiltonian is positive definite must be consistent with the Gauss law being

implemented on these states.

There are two ways in which this can be achieved which I refer to respectively as strong

ar.d weak conditions on physical states:

oib (r)r!(r) + srhor" úlphs s) : s (2.28)

or

(phs s' 
I 
nib (r)r! (r) + g rhoT" rþlphy sl : s (2.2e)
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Thus the first involves the Gauss law operator annihilating a physical state, while the

second implementation enforces matrix elements of the operator between physical states

to vanish. Various formulations that appear in the literature implement the Gauss law in

one of these ways - some to more advantage than others[82].

I have clearly been somewhat cavalier in the above description with the role of con-

straints in the quantum theory. A more careful approach will be elucidated in the next

section on the generalised Hamiltonian dynamics as formulated by Dirac.

I conclude this section by discussing the propagator structure specific to the temporal

gauge. The temporal gauge condition, A3@): 0, means that one is left with the spatial

components of the gauge vèctor field, Ai(r). For the remainder of this discussion I shall

suppress the adjoint index, a. By the Helmholtz theorem the field can be decomposed into

a sum of two terms - spatially transverse and longitudinal

A¡(n) = ,qT @) + A! (r) (2.30)

where A¡l,l(r):0 defines the transverse component. Idempotent operators can be con-

structed

ð,ô,eu+nf
0¿0¡

v2

which will project out the transverse and longitudinal parts

AT't = P['L li '

Pl (2.31)

(2.32)

(2.33)

The transverse and longitudinal free gauge fields satisfy the following equations of motion

Pi

EAT

trA! + ôiïjA!
=Jï
:J!

(2.34)

(2.35)

which can be obtained by applying the projectors onto the Ðuler-Lagrange equation with

the temporal gauge condition imposed. Observe that the transverse and longitudinal

equations have decoupled implying that there are two Green's functions to be considered,

with no mixed transverse-longitudinal Green's function to be dealt with. In the quantum

theory this is reflected in the observation that there is a vanishing time-ordered vacuum

expectation value between transverse and longitudinal quanta.

Going to momentum space, the propagators are easily derived, either directly as

Green's functions of the decoupled equations or by applying the Fourier transforms of
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the projectors onto the full bare propagator

nT¡@)

nt@)
,]-a *Øno*'#)
r p;p¡

21

(2.36)

lz.sz)

Iro-yol . (2.38)

p'o lpl'

and one notes that the transverse part is precisely the propagator used in the Coulornb

gauge - unsurprising since the Coulomb gauge condition, 0¿A¿(r) = 0, amounts to setting

the longitudinal gauge field to zero.

More significantly also note in the above expressions that the propagator ambiguity is

isolated in the longitudinal part which, for the unprescripted propagator, factorises into

a spatial part and a term Ilp2o which I shall refer to as the time-dependent factor, or

just the time-factor, of the longitudinal propagator. In momentum space I shall denote

this generally as D(ps), and its Fourier transform as D(rs, g¡). I use the same symbol D

here but it shall be clear from the context which is being dealt with. The situation will

be encountered where a non-translationally invariant form for D is derived in coordinate

space for which the corresponding Fourier transform in terms of a single momentum ps

does not eúst. The question of what prescription should be used in the propagator thus

amounts to that of what form D should take when a prescription is introduced. I sha,ll

use subscripts to distinguish the different forms for D suggested by different authors.

As an example of one possible prescription that I mentioned in the first chapter, I give

the Fourier transform of the PV prescription

ri- 1 / dko 

"-;t"s1ro-ro)¡ 
,, I 

,= + ---1-l"åt'zl 2r- t(ko+ie)zr(ks-ie)2)
1

2

This I denote by

Dpv(ro,ao)= -|l*o-yol . (2.39)

Note that using Dpy( no, Ao) in the longitudinal propagator means the resultant propagator

is a Green's function of the equation of motion (2.35). This is because Dpy satisfies the

equation 
â2

a^rDrrl"o,uo): -6(*o -yo). (2.40)

2.5 The'Wilson Loop

2.5.1 General Loops

The Wilson loop is the non-local gauge-invariant operator defined by

Wîll: (Tr P exp is $ a' . n¡
JI

(2.41)
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I'igurc 2.1: lVilson loop around an arbitr.¿rry closcd contour I'.

rvhcre I dcfincs a closed contour in space-time (fig.2.1) around rvhich the path-orderecl

exponetttial is defined. The gauge-invariance is a property of the contour being close<i anrì

tracecl. The closed-loop path-ordered exponential has its earlicst applications in electro-

dynantics in the rvork of Mandelstam [107] but was a,dopted by lVilson in [5a] as a useful

order parameter to detect the onset of deconfinement in lattice QCD. The 'stringy' nature

of the loop was the basis of the dual resonance model before QCD and thus formecl the

basis of the string theories that were the inspiration of much activity in the '80s[108, 109].

The Wilson loop can be brought into the domain of standarcl field theoretic techniques.

The contour I may be represented by the curve , r(n) whe¡e To 1 r¡ ( 41 is some real

quantity parametrising the contour such that, for a closed contour xr(rlo): ør(r71). Then

the path-ordered exponential is

w;i = [pexp l,i"' 
o, on4#o,@(,1))];¡ (2.42)

rvhere i,j label the representation ofthe operators over which the trace is taken to give

the final gauge-invariant quantity.

A perturbative expansion may be developed by obtaining Green's functions from the

functional by considering the generating functional for the loop operator[10g]

z[^,^]: I o"oz.*n I d,r¡lzLrz - itzA,"z\ff * i\z ¡ i2¡1 e.4:t)

rvhere the Wilson loop becomes just

w : -t-rn zlÀ,Àll.r=.r=o (2.,1.1)

Ilere, z and z are one-dìmensional Grassmann fields lvhich exist on the contour; À an¿

À are sources for these Fermi fields. The logarithm of the generating functional clearly
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Figure 2.2: A, diagram in the perturbative computation of an arbitrarr'\\'ilsorr loop.

enables the removal of vacuum graphs from the perturbative expansion. One sees that the

Wilson loop computation has been reduced to a theory of YM gauge-fields coupled to one-

dimensional fermions. The last step is to introduce into (2.43) the functional integral over

,4.u with associated ghost fields by applying Faddeev-Popov quantisation to the system.

Application of standard techniques to this yields a set of Feynman diagrams as illustrated

in figure (2.2) which may be computed to give contributions to the loop operator to any

order in perturbation theory.

Dotsenko and Vergeles[110], proving a conjecture by Polyakov[ttt], show that for

smooth contours, the Wilson loop may be renormalised by absorbing infinities into the

charge renormalisation. In particular they demonstrate the exponentiation property of

the loop expansion: that each order of perturbation theory corresponds to a term in the

expansion in the coupling constant, g, of an exponential.

2.5.2 Static Loop

The static Wilson loop, defined by a rectangular contour in, say, the 13 - I plane

(fl9.2.3) where the time-length ? is taken to be very large, has proved useful in the study

of heavy-quark bound systems such as charmonium[l12].

The heavy nature of the charm and bottom quarks make a perturbative expansion of

the loop a valid tool to study such systems - even for long range effects. From the above

one can see that the one-dimensional fermions defined on the contour are indeed, in the

static case, a pair of infinitely massive coloured fermions - static quark fields. The picture

that seems consistent with this cluantity is of a quark-antiquark pair created from the

vacuum 'quasistatically' drarvn apart to spatial separation -L and held apart for some long
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C: T

L

Figure 2.3: 'l'he static Wilson loop contour in the ø3 - f plane

time ? whereupon they are drawn back together and are permitted to annihilate.

Using the functional methods mentioned in the previous section a set of simple Feyn-

man rules may be developed to compute order by order contributions to the lVilson loop.

These rules are summarised in appendix A. The types of diagrams are illustrated in figure

(2.4). Because contributions from diagrams with closed dynamical fermion loops inserted

in the Wilson loop are separately gauge-invariant, these can be ignored in the calculations

I shall be performing later.

The choice of gauge is significant in this computation. For example, in a covariant

gauge FP ghosts must be included in the computation[55, 56] with the appropriate ghost-

loop insertions included in the diagrams. The computation has also been done in the

Cou-lomb gauge by Appelquist et aJ.[57, 58]. The result obtained in all the above compu-

tatìons, to order ga in perturbation theory, is

W _ e-irv(L) e.45)

where V(L) is the potential between a static quark-antiquark pair:

v(L)= s2c2(R) I ##rt + fic,(cx+ r,r#-lr"+ $lr e.46)
Here ¡r is the renormalisation point and 16 is the Euler constant.

2.5.3 The Temporal Gauge

The temporal gauge is an appropriate gauge in which to cornpute the static Wilson loop.

The property of ghost-decoupling suggests a whole set of diagrams may be ignored. More-

over, the temporal gauge property of the propagator

D33=4!:Dî3=o e.4T)
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Figure 2.4: Diagtams contributing to the static lVilson loop to order ga. As there are

many diagrams, all different possible attachments of a propagator to the rectangle sides

are summarised by the vertex of a gluon with a circular contour.

means that any diagrams with a gluon leg attaching to the vertical 'rungs' of the loop

vanish (for some examples see fig.2.5).

Of cou¡se the problem remains the choice of prescription. The computation was f.rst

done by Caracciolo et af.[53] (CCM) who tested the PV prescription (2.38). The diagram

with a gluon self-energy (fig.2.6) proved to be particularly sensitive. In fact using the PV

prescription, namely Dev in the longitudinal propagator, the exponentiation property

was not recovered: the prescription failed to produce the correct gauge-independent result

(2.46).

The ¡emarkable result uncovered by CCM was that the correct Wilson loop behaviour

to older ga in perturbation theory was recovered with a time-factor of the longitudinal

part of the propagator

Dccv(ro,ao):-|lro_ yol+]{".*yo)*r (2.48)

where 7 could take any real value. One notes that the first term corresponds to the

PV prescription (2.38). But there is an additional term rvhich breaks time-translational

invariance. Thus the resultant propagator cannot be Fourier transformed in terms of a

single four-momentum.

As a consequence of the surprising result that the Wilson loop, being a gauge inde-

pendent object, was able to pick out problems with the PV prescription, the Wilson loop

'criterion' is now a key diagnostic tool in testing consistency of propagator prescriptions
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Figure 2.5: some wilson loop diagrams that vanish in the temporal gauge

Figure 2.6: A self energy contribution to the lVilson loop in the temporal gauge.
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in the temporal and other axial gauges[65, 66, 67, 113]

2.6 Dirac Method

There are numerous pedagogical expositions of the Dirac constraint method[114, 115]

including lectures by Dirac himself[l1]. I shali be content here with highlighting the main

features. The work of Faddeev[l2] and Senjanovic[13] has shown that the methods to be

discussed here do indeed dovetail into the path-integral formalism used in the last section

but I shall not go into these connections.

Consider a simple mechanical system of N.degrees of freedom described by coordinates

gn¡ h : l,...,ff. In general the Lagrangian will be singular - some of the conjugate

momenta, which are functions of the velocities Çn, may depend on each other. In other

words there will exist M ( try' constraints on some of the momenta, known as primary

constraints as they arise directly from the Lagrangian,

x*(q,,P) = o (2.4s)

form=Ir...rM.
The simplest example of a system with an infinite number of degrees of freedom having

the same behaviour is that of electromagnetism where the vanishing of the conjugate

momentum n6(ø) : 0 by virtue of the antisymmetry of Frr,,is a trivia,l primary constraint:

zrs is a linear combination of the zr¿ momenta, where the coefficients are zero. Indeed

this example illustrates the problems with constraints in quantising a theory in that the

vanishing of zr¡ contradicts the equal time commutation relations that one would like to

impose based on the classical Poisson bracket relations[99].

Now the physics of the system with Hamiltonian function,

H:pnpn-L (2.50)

is the same as that for the same Hamiltonian with the constraints added via a set of

undetermined multipli ers )'t!,.n

Ht: H *u^x^. (2.51)

For consistency, the primary constraints must be conserved in time. Consider the quantity

1þ^: {H,X*} (2.52)

where the Poisson b¡acket is defined in the usual way (see appendix A). If it does not

already vanish, 2.52 must be set equal to zero and this implies a number of secondary

constraints, which can in turn be added to the Hamiltonian with associated mulipliers, oo.
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This procedure can be repeated until no more new secondary constraints are generated.

To do this consistently the constraints must not be imposed until a.ll Poisson b¡ackets

have been computed. This defines a uealc constraint in the Dirac sense. Thus a strong

constraint in the Dirac sense is one imposed before the computation of brackets. This is

distinct from my use of the terms 'strong' and 'weak' in the last section to denote the two

ways of implementing the Gauss law on a Hilbert subspace in the temporal gauge.

The indeterminacy of the system has now been re-expressed in the unknown multipliers,

un¡aa¡... The set of constraints thus generated can be regrouped in another way - those

for which the Poisson bracket between pairs of them gives another constraint are known

as first class quantities (clearly there are an even number of these), and those that do not

are second class. Following the above algorithm, the time-conservation requirement on

the second class constraints will yield equations which can be solved for the undetermined

multipliers. So the number of undetermined multipliers equals the number of first class

constraints.

The second class constraints present quite distinct problems in generating a consistent

quantum theory. In general, flrst class constraints in a classical theory are realised as

conditions on states in the Hilbert space. Dirac gives a simple argument to demonstrate

the problem posed by second class constraints. Consider a simple classical system with

second class constraints on the position and momentum operators:

q: p:0 (2.53)

where these constraints are weak in the Dirac sense. As has been said, in the quantum

theory these occur as conditions on states or wavefunctions

qlrþ)

plrþ)

0

0

(2.54)

(2.55)

But then the quantity (qp - pq) should annihilate a state (in the strong case, or have

vanishing expectation value between states in the weak instance) - this contradicts the

second class property of q and p, that their Poisson bracket (also second class) does not

vanish. The classical Poisson bracket of second class quantities is not the appropriate

quantity to be taken into the quantum commutator of the corresponding operators.

The solution given by Dirac is to introduce a modification of the classical Poisson

brackets. If one forms a matrix from the set of second class constraints, X;, of some

arbitrary system

C;¡ : l{x;,x¡}l (2.56)
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then the inverse of this matrix can be shown to exist. One then introduces the Dirac

bracket between two quantities A and B:

{A,B}*:{A,B}-{A,7;}Cat{X¡,8}. (2.57)

The repeated index, as usual, denotes a summation but can also mean a space-integration

where A and -B might be field variables. These brackets are consistent with the classical

equations of motion. The Dirac bracket is now a first class quantity and can thus be

appropriately taken into the equal time commutator to deflne a quantum theory. For a

general set of constraints one can choose appropriate linear combinations of them that

minimise the number of second class constraints enabling maximal use of the Poisson

bracket. A simpler approach is to make allthe constraints second class by expanding the

set of constraints with some suitable subsidiary constraints and use the Dirac brackets øb

i,nitio. Thus each first class constraint requires the introduction of a subsidiary constraint

or ga,uge constraint in order to get all constraints second class. Another way to see this

is to recall that the dynamics is still only determined up to a number of Lagrange mul-

tipliers equalling the number of first class constraints. Introducing the subsidiary gauge

constraints enables determination of these multipliers.

At this point, having constructed the Dirac brackets, all the constraints can be strongly

implemented (in the Dirac sense) which enables one to deal with the reduced Hamiltonian

- the Hamiltonian with the constraints implemented - and the Dirac brackets.

Thus in the case of free electromagnetism the problems identified earlier due to the

vanishing of zrs are satisfactorily resolved by noting that this generates a secondary con-

straint

ï¿tr¡ = 0 (2.58)

- and this is precisely the Gauss law constraint for the free theory. An important aside is

that, implementing the constraint (2.58) weakly, the operator ô;zr¿ becomes the generator

of gauge transformations via the Dirac bracket.

One has two first class constraints. The constraint algorithm terminates at this point.

To make these second class one needs two gauge constraints and one choice is the radiation

gauge

As : 0 (2.59)

Ô;A¡ : 0 (2'60)

and constructing the matrix of constraints with this system gives a classical Dirac bracket

which avoids the contradictions which occur with the naive Poisson bracket. This approach

gives precisely the canonical system for quantising the free Maxwell theory used in [116].
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Chapter 3

Non- Translat ionally Invariant

Propagators

3.1 Fully-Fixed Gauge

3.1.1 Subsidiary Conditions

I demonstrated in the last chapter that the origin of the propagator ambiguity in the

temporal gauge is the residual gauge-freedom under time-independent transformations.

This immediately suggests one approach to resolving the propagator ambiguity which I
wish to briefly review here and then present a similar, though somewhat simpler approach

in the next section. I shall follow, up to a certain point, the exposition of Girotti and Rothe

(GR) [61], although other authors have followed related approaches such as Leroy et al.

[63], (tMR) and Lavelle et al. (tSV) [64]. I have chosen not to follow tliese derivations

as the first requires a preliminary discussion of the Feynman kernel formalism of Rossi

and Testa [117, 118] and the latter uses the technique ofstochastic quantisation, both of

which are outside the scope of this thesis.

The essential step in all these approaches, nevertheless, is to simply flx all the gauge

degrees of freedom. Now in free electromagnetism this is achieved by the two gauge

conditions

As = 0 (3.1)

Ô;A¿(x) : 0 (3.2)

the first defining the temporal gauge, the second being the Coulomb gauge condition. The

two conditions can only be imposed simultaneously in a free Abelian gauge theory.

In an interacting Abelian theory, with current Jp(r), the above conditions cannot be

imposed simultaneously. This is easily seen in the Euler-Lagrange equation for the ,4s

31
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field in the Coulomb gauge

Ao(,) = | 0", *è't"fø (3.r)

so one cannot also impose the temporal gauge condition without constricting the physical

degrees of freedom contained in the charge density .I¡.

However a weaker form is valid, where, along with the temporal gauge condition, one

imposes the Coulomb gauge at a specifi,c instant in time

?¿A¿(ts,x) : 0 (3.4)

This is equivalent to setting the longitudinal part of the photon to zero at the arbitrary

time and indeed removes all remaining unphysical degrees of freedom. That this is the

case can be seen by performing a gauge transformation on the longitudinal field at the

time ús:

6A!(to,x): ô¿ø(x). (3.5)

If this transformation is to be constrained so as not to take the field out of the gauge

where (3.a) applies, then this must vanish. So â,ø(x) = 0, and for flelds with vanishing

space-like boundary conditions, this means ar itself vanishes; there is no freedom left.

3.L.2 Non-Abelian Case

For non-Abelian gauge theories this argument is complicated by the presence of the

gauge field in the covariant derivative which appears in the galrge variation:

6 Ai L (to,x) = ù¿ao (x¡ + s f"u'$lA ' (to,x)ôjc.r'(x)l . (3.6)

The transverse component has mixed into the longitudinal field under the transformation.

So the vanishing of this variation implies, by vanishing space-like boundary conditions,

that

,"(*) +of"o'$llf(to,x)âiar"(x)l :o (3.2)

and the derivative in the second term may be applied on the product of the transverse

fleld and o. Moreover we may act on the whole expression with V2 to obtain

v2c.,"(x) +gfabcailAu¡'(to,x)ø"(x)] :g. (3.8)

Finally we use V2 : -ôjTi and invoke boundary conditions to obtain

ï¡u"(x) - sf"b"Arr1rs,x¡r"1*) = o. (8.9)

Contracting ø'(x) into this expression causes the second term to vanish by antisymmetry

in f"b'and one is left with a"(x)\¡a"(x) = 0 or, by boundary conditions, a.r"(x)c..,"(x) = 0.
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For real functions ¿.r this has unique solution uo = 0. Thus, again, there is no gauge freedom

Ieft.

Now the significance of this is that complete gange fixing is achieved for arbitrarg ts.

GR argue that the Iimit ús -* *oo is necessary for the two conditions to be imposed

simultaneously in the non-Abelian theory, a statement which is not supported by this

analysis.

However there is merit in GR's proposed limit in that it reduces the above analysis

to the simpler one given for the Abelian theory by using the property that the transverse

gauge fleld vanishes at time Aoo:

llr(+æ,x) = o (3.10)

This property follows from the vanishing at this point of the transverse propagator which

is a Green's function of the field ,4J[119]. That the transverse propagator vanishes follows

from the ie prescription which causes damping in the coordinate z6 at infinity (of course

this only reflects the physical boundary conditions one adopts in perturbation theory

anyway).

From this, and considerations I shall come to, it may seem advantageous to seek to

take this otherwise unnecessary limit. However, there are problems associated with taking

the limit, which shall be discussed later.

Nonetheless, in both the Abelian and the non-Abelian cases one has selected a spe-

cific time and one might already suspect that time-translational invariance is compro-

mised in gauge dependent quantiti,es. For any physical observable such as the S-matrix

time-translational invariance, along with invariance under other Poincare transformations

should be recovered.

3.1.3 Propagator

Now I proceed to the derivation of GR's form for the time factor in the longitudinal

propagator, and thus of the prescription they propose.

Resuming with GR, I write down the generating functional for Green's functions using

the Faddeev-Popov method for implementing the gauge conditions. The free part suffi.ces

for deriving the gauge field propagator:

zolrr ,,þl: I oAr io6|1 lrpiqçto, x))exp 45 + I darff Ar n + | an,ç|*)ó(r)) (8.11)
N'X

where / is a scalar potential related to the longitudinal field by

'q!@): o¿ó (3.12)
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and J" z;rLd ú are current sources for the transverse vector and scalar fields respectively.

Clearly, the á6 = 0 condition has been imposed from the outset - or alternately, has been

imposed via a delta functional and the integral absorbed into a normalisation factor. This

leaves the functional integration over A¿ which has been split into integrations over the

transverse and the longitudinal parts separately - the latter achieved by integration over

the scalar field /. I have slightly deviated from the presentation of GR, who maintain the

integration over ,4.; - but specify that it amounts to a transverse integration by introducing

the Coulomb condition ô;,4.¿. This I flnd to be slìghtly misleading and thus have described

it in this way. The introduction of the functional 6(ô¿þ(ts,x)) imposes the subsidiary

condition (3.4).

The action, expressed in terms of the transverse and scalar frelds, is given by

r/2 [ d,ar(Ar is;¡nAr i + óa|v,ó) (J.13)'.1 \

where terms have been dropped after integrations by parts - permissible in perturbation

theory in a trivial sector of the gauge fleld space where surface terms can be ignored.

Now the transverse sector will simply yield the propagator in the Coulomb gauge after

inversion of the kinetic operator in the action.

For the longitudinal sector I exponentiate the delta function in the integrand via

lfoçai6ço,x)) : ""pt# I oo, I any61r¡t(ns - ts)v2"6(yo -ú¡)ó(x - Ðó(y)l (3.14)
i,x

where the limit as À --+ 0 is implicit.

One finds that the longitudinai propagator is given by

Dot @,u) = il1,ðiôT1(ro,ao;x - y; ú6; À) (3.1b)

where the spatial dependence factors neatly in

G(ro,Uojx - y;úo; À) = -Dx(ro,ys;ts)V-26(3)(x - y) (3.16)

and D¡ satisfies the equation[61]

ffio^- ir(r, - to)D¡= -ó(zo - yo) . (3.17)

The presence ofthe delta function ó(øs-fs) suggests, already, that the subsidiary condition

(3.a) has conspired to break time translation invariance. GR now proceed to the À : 0

limit but go into no details on the taking of the limit, something I shall return to. But

denoting this limit in D¡ by Dcn and requiring that, for fixed ao, DGR remain finite as

Irol -- oo leads to the unambiguous solution

1.1Dcn(ro,uo): je(xs-yo)(xo-uo)+)(xo+so)-to-0(ro-¿o)("0-úo)- 0(yo-to)(yo-úo) .

(3.18)
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This is the form that GR give in [61]. The result was reexpressed in a more compact form

by LMR[63]:

Drun(ro,uo) : -|lro - yol * Tør- ¿ol * f,la" - t"t . (3.1e)

As I have noted, it is unnecessary to take ú¡ - *oo. But taking ts large but still finite

Dwn(xo,uo) - -1¡l*o - yol +|t*r* yo) - lúol (J.20)

which connects with the result used by CCM in the Wilson loop computation. I shall

discuss more fully the limiting properties of the GR/LMR form in a later section.

The remaining Feynman rules for gauge boson vertices in the non-Abelian theory follow

from standard perturbative techniques. I shali discuss the relevance or otherwise of FP

ghosts later as well.

GR have checked the more general form (3.19) for the time part in the Wilson loop

and find that the fs dependence drops out - thus the limiting procedure has no bearing

on the Wilson loop consistency - and the correct result is obtained.

3.2 Alternative Derivation of Propagator

3.2.1 Derivation

In this section I discuss a more'intuitive'derivation of the propagator (3.19). This is

based on my original work with Crewther in [94, 96].

The essence of this approach is to treat the temporal gauge theory (naturally) as the

parallel-transported or gauge transformed version of the theory in a gauge in which there

are no ambiguities. Provided that the process of performing the gauge transformation

invokes no ambiguities, the resultant theory in the temporal gauge should be ambiguity

free. The intention is therefore to perform transformations on field operators themselves,

as well øs their Green's functions - such as the propagator.

I shall work in the Abelian theory which suffices for the determination of the gauge

fleld propagator. There are a number of choices I could make for the starting gauge -

covariant (Feynman) gauge or another noncovariant gauge which seems to be understood

in greater detail, such as the Coulomb gauge. In fact I shall start with the latter.

I thus denote the Coulomb gauge potentials by Cr(r), satisfying ô¡C¡(r): 0, the

potentials in the temporal galrge by Ar. The parallel transport along a time-like curve

(line) is, in general, given by

Ar(*): u-rcp(x)tt ¡ 4u-rortt (3.21)
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where, to connect the temporal with the Coulomb gauge, U may be written
IO

U(rs,x): pexp(-(Iliù 
| d"rCs(r,x)) . (J.22)
ús

Such a choice automatically ensures A*(r) satisfies the temporal gauge condition, Ao =.0,

as U satisfi.es the differential equation

0U l?rs = -(Ilis)CsU . (3.23)

Thus, in this scheme, the temporal gauge fields are identifled with the Coulomb gauge

fields at time øs = ú0, whete ls is, as in the previous section, some arbitrary but fixed

instant in time. At later times the temporal gauge fields are'transported away'from their

Coulomb gauge equivalents.

In the Abelian case, the non-zero components of (3.21) reduce to

ro

A¿(r) = C¡(*) - ai I arCol r, x) . (J.24)
f6

I now construct the temporal gauge propagator in a manner consistent with the Dyson-

Wick expansion, as a time-ordered product of the vector fields

nlí o(r,y): 0(ro - yo)(A¿(r)t¡(ùl t 0(ao - ro)(A¡(ùA¿(r)) (8.25)

where the unordered (Wightman) functions are easily evaluated

ro go

(A;(r)A¡(y)l = (lc¿(r) - uî [ d.rcs(r,*)][c¡(y) - ðï I d,r' cs(r',y)]l
io 

xo go 
ú6

: (C;(r)C¡(y)) + Aîa I o, I d,r'lCs(r,x)Cs(r',y)) (3.26)
f6 ts

the 'mixed' terms vanishing as the one point functions (C¿(ø)) : g. In the standard

approach, C6 is not expanded in dynamic¿l flelds. Inserting (3.26) and its reversed function

into the ordered function (3.25), the various terms conspire, along with the fact that

the instantaneous propagator is itself unordered,, to return the original Coulomb gauge

propagator components. Thus

to Yo

D'o;'(r,ù : Dfr'"t(r - s) + aîôï I * I dr'n{;"t(r - rt,x- v) . (8.27)
ts ús

Each term in this expression involves a well-deflned Green's function; I can be confident

then that the procedure has successfully given an unambiguous propagator. Using well-

known momentum space representations of the individual terms[116] one finds:

nti*e çr,s¡ :, | ffi"-ik'(r-v) "+ 
(r,, * ffi)
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(3.30)

i ôîaii o,i o, | ffir'rc6(r-r')aik("-"' (#) . (3.28)

to fe

The first term here is clearly the propagator for the transverse radiation fieids, the

second involving only the non-dynamical terms. The second piece shall be the focus of

my attention, it being the longitudinal propagator I am interested in. Performing the

derivatives and integrations gives

oLr(n,u): -i I ffiffi!-uou'1*-v¡(e-iko,o 
. 

"-ikoto¡ç"it"ovo - "ikoto¡. (3.29)

This factorises, as expected, in a space and the important time part, the latter taking the

form:

IDxc(xo,yo):
(2")
d,lcs (e-iko,o - "-ikoto¡(eikouo - "ikotol

k3

where I now introduce the subscript I(C to indicate this is our candidate propagator.

Note that the integrand in this expression is well-defined at ks - 0. Performing the

energy-integration gives our result for the time part of the longitudinal propagator

Drcc(no,,yo) -- -ll2(lto - sol - lro - úol - lyo - úol) (3.31)

which is precisely the expression derived by GR, LMR and also by LSV

3.2.2 Connections with the CCM Result.

The question I primarily wish to address here is: Is the CCM result for D justifred by

the various approaches leading to propagator (3.31)?

Firstly, I wish to stress that expression (3.31) and the CCM result arc differenú. How-

ever there are values of (u¡, go) for which they can be made to match. GR have observed

that only in the regions

(xo,yo) >

(ro, Yo) <

does their (and my) propagator agree with the CCM result (2.48) if the arbitrary quantity

7 in the CCM expression is identified with the arbitrary time, lúsl. On the other hand

these two forms fot D disagree outside these regions; for rs ) ts ) go and Uo ) to ) ro

my result for the longitudinal propagator uanishes.

Now it is generally argued that if ús were chosen in the regions (3.32) then use of the

CCM propagator would be justified by this approach. Hence the desire to take úo ---+ f oo,

so that ú¡ will be in the regions (3.32) for all (ø0, go). But if the limit were to be taken

directly in the propagator then the factor D immediately diverges. The option generally
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adopted is to take úe to be large, in other words satisfying either of the conditions in

(3.32), but finite until the very end of a computation. In the context of the way in which

a propagator is used in perturbation theory, as a kernel operator, it would appear that

this implementation of the limit is also inadequate. In a typical calculation of, say, a

scattering amplitude one would be integrating over ¿// times ø¡ and !s, appearing in the

propagator. One cannot keep the fixed r¿.lue of ús both flnite and outside the infini,te

region of integration which must be the ca-se if one is to validly use the CCM propagator.

So one is left with the remaining action of taking, a priori, ú6 infinite in, say, the negative

time direction. In my parallel transport approach to an unambiguous temporal gauge

theoiy, this effectively means evaluating the integral

drtexpl-ilto(r - r')] (3.33)

but this integral is now ambiguous and I have thus failed again to obtain a fuliy regularised

theory 7 - There is no way to implement this limit.

Before moving on I point out that Slar-nov and Frolov (SF) [74] have given an alter-

native derivation of the CCM result within the context of functional integration, but not,

apparently, as the limit of the propagator incorporating the time factor (3.31). The start-

ing point of SF is to enforce Gauss'larv as a constraint on states (strongly) and imposing

the vanishing of the asymptotic transverse flelds, just as GR have demanded. The CCM

propagator was found by solving the cla-.sical equations of motion in the exact A6 : g

gauge in order to perform a (Gaussian) furctional integral. The interesting point here is

that the quantity 7 in the CCM expression occurs also in the SF formalism but, though

having the dimensions of 'length', is not easily interpreted as some arbitrary 'time', for

example fs. So, there may be an entirel.v diferent scenario in which the CCM propagator

is applicable in the perturbative temporal gauge theory.

3.2.3 Green's F\rnction Properties

Now I have to discuss the following issue. CCM give an argument in their work that the

propagator must satisfy the same differential equation as (2.a0) for the PV prescription:

@2larï)DccM(ro1eo) = -51*o- yo) . (3.34)

lThis integral can be made unambiguous by irtroducing modulating factors in the exponents with

opposite sign for each exponent. The resultant propagator in fact corresponds to the result in Steiner's

so/t temporal gauge [76], where Ae : 0 is recovered only in the limit of the regulator being taken to zero.

Thus taking the approach of parallel transport from the Coulomb gauge to the soft temporal gauge will

automatically generate the modulating terms to give the above integral meaning. Bec¿use this is not an

exact temporal gauge it is outside the scope of m-ç concern in this work.

r# j-Ï
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This was the basis on which they obtained their propagator; they solved (3.34) with the

result

Dccm(xo,ro¡: -f,lro - yol * a(øo + yo) +.,t (3.35)

where a and 7 remain unfixed by these considerations. Demanding Wilson loop consis-

tency fixes a to be *1 giving the final CCM result (2.48). However my propagator (3.31)

satisfies 
(az larl)Dxc(r6,,vo) = -6(ro - vo) * ó(æo - úo) . (3-g6)

One might argue that in the large ltsl limit, the second delta function term gives

no contribution, implying that the result (3.31) gives a propagator which is a Green's

function only, apparently, in this limit. However, as mentioned, there is no well-delined

way in which to take this limit.

The quandary, which the literature does not explicitly discuss, would appear to be

that the Green's function requirement on the propagator (and not completeness of the

gauge-fixing) forces one to seek to take this impossible limit lúsl --+ oo.

The subtlety that has not been stated clearly elsewhere is that associated with taking

the limit À ---+ 0 of the gauge parameter À in (3.1a).

Let us proceed with À I 0 fot the moment. Then the time dependent part D¡(rs ,yo;to)

of the longitudinal propagator satisfies (3.17). From (3.17), it is a simple matter to deduce

the À dependence of D¡,viz.

Ds(ro,yo;to) : Ds=o(xo, go;úo) t À (3.37)

where D¡=s is required to satisfy the equations

d(to-ús)D¡=¡-0 (3.38)

and

*r^=o(*o,Uotto) - 6(ro- ¿o) : -6(ro - yo) (3.39)
oto

corresponding to terms proportional to À-1 and those independent of À when (3.37) is

inserted into (3.17). Equation (3.38) is equivalent to the initia.l condition

D.r=o(ú0, go;úo) : 0 (3.40)

Now the À -* 0 limit is trivial: the time factor in the longitudinal propagator becomes

the quantity

D.r=o(ø0, Aoito) (3.41)

which is defined by the ) independent constraints (3.39) and (3.a0).
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The differential equation (3.39) is equivalent to (3.36). Furthermore my candidate

D¡6r vanishes for ro : to.t in agreement with (3.40). We conclude therefore

D.l=o(¿0, yo;to) = Dxc(ro,yo;to) . G.42)

3.3 Non-Abelian Theory

I now consider complications that arise in the context of a non-Abelian theory - in
particular those introduced by FP-ghosts. This exposition is primarily developed from
ideas in the unpublished thesis of Otto [120] who attempts to compute the pure YM two
loop renormalisation group beta function in the temporal gauge using the CCM result

for the time part (2.48). Though successful at the one loop level in obtaining the correct

result [100]

þ(gn)=-&+c,G) (3.48)

the computation fails at two loops, or order Så. One possible explanation raised in Otto's
work for this failure is the absence of FP ghosts in the computation. The question that
arises here is why ghosts should affect the two loop result and not that for one loop.

Howevet, my concern here is not so much for the beta function problem observed by Otto,
whose calculation remains unpublished and unverified, but rather on the general role Fp
ghosts play in this approach.

That FP ghosts can arise is evident if I follow the FP method more carefully for the

fully-fixed gauge conditions. The FP determinant is given by

o s II 6 (e As(rs,x;) ll a(ô¿ol¿(ro, x);
0o,x x

and this leads to the expression, in component form, for the implied Fp matrix

Mob - 6aby2 +sf"b.Ai(to,x)ô,. (3.45)

Now given that at ro = to the longitudinal fields vanish, this expression only generates

coupling between FP ghosts and the transverse gauge fields. For finite ú6, the ghosts

remain coupled!

The need to take úo * loo has been dismissed, but given that Ait(+-,x) = 0

it may seem that the ghosts will decouple in this limit. But I have already discussed

the dubiousness of the limiting argument as a justification for using the propagator with
(2.48). The question one is now faced with is: are FP ghosts necessary when using the

CCM propagator?

Does the Wilson loop offer any clues? In the Wilson loop computations with these

types of propagators, which have all been carried out with ts f,nite, ghosts have clearly

^Fl[A] 
= I (3.44)
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been unnecessary for the success of the exponentiation criterion. Indeed LMR [63] show

that incorporating ghosts consistent with (3.a5) does not affect the exponentiation: the

ghosts amount to a factor independent of the time-length of the loop contour which does

not contribute to the static potential. Thus the static Wilson loop is not sensitive to

the relevance or othe¡wise of these Coulomb-type ghosts to more general perturbative

computations, in particular the beta function computation attempted by Otto. The Wilson

loop offers no information on this question.

The most rigorous derivation of the CCM propagator is that of Slavnov and Frolov[74]

who obtain the CCM result, but do not address the question of ghost decoupling. In the

absence of further information, one can only conclude from the above concerns about the

limiting process that it is desirable to work a priori with ú6 finite using the propagator

with time part (3.31), with ghosts. To date, there has been no work beyond the static

Wilson loop employing these criteria.

3.4 Conclusions

To summarise the conclusions reached within the approach of fully-flxed temporal

gauge theories:

o The question of the ambiguity in the propagator in the temporal gauge may be

resolved by starting in a well-defined gauge such as the Coulomb gauge, and trans-

forming the propagator directly into the temporal gauge.

o This inevitably yields a result non-invariant under time translations - because the

time-slice from which one parallel transports remains in the formalism.

One must be cautious about limits with the initial time, ús:

o The non-Abelian theory does not force one to take the limit úo * too in order to

achieve a valid complete gauge fixing. But we¡e one to seek to employ the limit,

it cannot be taken immediately (when parallel transporting) nor in the propagator

itself.

o The approach of fully-flxing the gauge does not justify the use of the CCM propa-

gator. Thus, though there may be other derivations giving the CCM result[74], the

argument for the CCM result invoking the limit úo * too in (3.31) is not valid.

¡ In this context then, the general form for the propagator longitudinal time part

(3.31), as derived by GR, LSV, LMR and myself, should be used with ts kept finite.
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¡ The factor (3.31) is a Green's function of the equations of motion with the subsidiary

condition (3.4) properly taken into account.

o FP ghosts formally decouple in the FP determinant when úo : *oo based on the

argument that the asymptotic ttansverse garlge field vanishes. However, because

there is no well-defined way to employ this limit in computations, this does not
permit the exclusion of ghosts from a general computation. Thus in general one

should compute in this gauge with the propagator incorporating the factor (3.31)

and, FP ghosts, with ús kept finite.

One issue I have not taken into account are the problems that seem to be inherent in

the Coulomb gauge itself [121, 122] which might manifest themselves while the arbitrary
time ús is flnite. The other, which I have already mentioned, is that there may be an

aJ.ternate approach in which the ccM propagator is entirely varid [7a].

The final conclusion I wish to draw out in this context is that the non-translational

invariance and the presence of ghosts - though constituting a consistent approach to the

quantisation of YM theory in the temporal gauge - render the theory cumbersome, over-

whelm any advantage the naive temporal gauge might have presented, and make the task

of proving renormalisability intractable.

In the following chapters I therefore abandon this approach and pursue the alpha-

prescription as a possible method of dealing with the temporal gauge.



Chapter 4

The Atpha-Prescription

4.L fntroduction

The 'alpha-prescription', suggested by Landshotr [75], has been given scant attention in

the literature, a surprising fact given the stalled progress achieved by other prescriptions

in the temporal gauge. In the alpha prescription the regulated propagator takes the form

o",!,@:*-Lou*rîs,,-r#ffi *ffi ffi ;l(4.r)
The point at which the limit a --+ 0 is to be taken is a vexed question to which I shall

return.

The features of this propagator are several: first, it exactly fulfllls the condition for

a 'true' temporal gauge propagator, in that it is orthogonal to the gauge-field vector,

nt"Dr"(p) = 0 as an algebraicidentity. This is especially useful in Wilson ioop computa-

tions as I have discussed. In the next chapter I shall outline Landshoff's demonstration

that (a.1) satisfies the Wilson loop criterion without requiring the introduction of FP

ghost-fields. An important observation Landshoff notes is that keeping o non-zero until

the very end of the computation enabled dangerou If a terms to cancel, making the limit
a ---+ 0 safe, and leauing behind precisely those terms that gave the correct result.

To simplify things I consider the i, j components of the propagator for the case ?) =
(1,0,0,0) again. In the alpha prescription the propagator becomes:

D¿¡(p)=hþ,i+'#ñh] e2)

Computing the longitudinal part of the propagator reveals that, unlike the prescriptions

considered in the last chapter, the factorisation between the space and time dependences

no longer occurs. Also, the Fourier transform with respect to the momentum po contains

a term of the form
PiPi 1 

--ol'o_.yol
lpl, + o" 2o" 

-'-u Yv' (4'3)

43
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and one sees the negative power of alpha that is a consequence of the energy (fo) ittt"gt.-
tion. So there is the potential for pathologies to arise in taking the limit a ---+ 0.

This result conveys yet more information: firstly, that the dimension of o is that of

mass, and secondly that the coordinate space two-point Green's function is in itself ill-

defined in the limit a ---+ 0. There is no gaurantee that Green's functions in general will

be well defined in this limit, and that, if the alpha prescription is a valid prescription, one

should only expect safe limit properties as pertaining to physical or gauge independent

quantities - such as the S-matrix, or the Wilson loop. To expand on this point a little
more: the expectation should be that for nonzero a a quantity computed with the alpha

prescription would not itself constitute the gauge independent result. Rather, that once

the (hopefully safe)limit a * 0 is performed the correct physical result should be restored.

4.2 A Derivation of the Alpha-Prescription

In seeking a derivation for the alpha prescription the first option that must be dismissed

is interpreting the alpha prescription in the sense of di,stributionsl27l. The result (4.3)

contradicts this possibility for which one would expect that the limit a -* 0 should be

viable in the Fourier transform of the momentum space propagator.

It is clear then that the parameter c must appear in the Lagrangian from the outset.

Steiner's derivation [76] is in this vein: he introduces a modification of the temporal gauge,

the soft temporal gauge, where /.s no longer vanishes but is proportional to a. In this

derivation, the final propagator, though bearing the appropriate denominator (p.n)' +
o'(r')', does not retain the same tensor structures as the form given by Landshoffand so

does not exactly satisfy ,rD,"(p) = 0. Certainly in the limit a--- 0 the temporal gauge

is restored, but it is not clear that at the quantum level this approach will reproduce the

success of the alpha prescription, for example, in the Wilson loop.

Indeed any legitimate, gauge-fixing condition imposed on Yang-Mills theory is a priori
ruled out by the Cheng-Tsai theorem [68, 69, 70], which cannot accomodate the tensor

structure nrn, in the propagator.

A recent preprint by Milgram[123] suggests that the prescription can be obtained by

including a 'damping' tetm into the Lagrangian , l:,ke a2 A2 . But this generates an a2 in

place of the normal Feynman prescription for the p2 : 0 pole, and it is known that having

the same parameter in both Feynman and spurious prescriptions does not give the correct

result for the Wilson loop[12a].

Thus the answer to the origin of this prescription is available only outside the famiìiar

structure of Yang-Mills f gauge-fixing in the Lagrangian.
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With these considerations in mind I introduce the following path-integral formulation

of the generating functional of Green's functions for an 'extended' gauge-theory:

zlJl= w loa"*v;, I d,ar[Ly¡a+L.+J.A] (4.4)

where Lv¡,t is the usual Yang-Mills Lagrangian density, and the additional Lagrangian

density is

L*:_(Ilz)o"b,I{fn,,",,(ffi¡Dob,,,7çU",n,,Fl,,,,.(4'5)
Herc D"rb denotes the covariant derivative on the gauge group deflned in the second

chapter. By Ifib I mean the 'inverse' of the covariant derivative contracted with the gallge-

vector, namely (n-D"u)-', which I shall expand perturbatively in the coupling constant,

g:

K".b : 6"b(tln.ô) + sf"'b(rln.ô)". A'(rln.a) + ... . (4.6)

I am being rather cavalier in my treatment of the Iln.Ô factors. A careful treatment of

this does give rise to some subtleties but I shall come to these later.

The other unusual quantity appearing in the alpha Lagrangian is the colour trace (?r)

of tlre sçluare of the covariant derivative, suitably normalised by fab6aå : N2 - 1 in the

adjoint representation:

rr(D\l@'- t): tr * (cr(G)l@'- Ð).q' . Ø.7)

I observe a number of features in the extra Lagrangian term. For the bare Lagrangian

Lo the limit a - 0 is safe and it vanishes in that limit, restoring the original YM theory.

The extra term breaks Lorentz invariance (via the presence of the gauge-vector nr). But,

again, in the limit a ---+ 0 the Lorentz symmetry is restored. One may hope that the

quantised theory will respect this behaviour. The gauge-invariance of the extended theory

also means I can apply the Faddeev-Popov procedure to fix the gauge and extract Feynman

rules, and I shall fix in a non-covariant gauge. However, at this point there might be a

concern that the operator Kfiå involves an infi,nite number of gluon vertices, and moreover,

with a knowledge of the infamous history of the propagator problem in these gauges in

mind, the more alarming feature of (Iln.ô) factors (or in momentum space, Ilp'")
reappearing in perturbative Green's functions. Have I attempted to 'prescript' these poles

in the propagator, only to bring them back in, unprescripted, in the vertices? I shall

show that the virtues of the alpha-presciption will enable one to overcome this particular

problem.

I fix the gauge by following the method in chapter 2: introduce into the functional

measure of (a.a) the delta function

6(n. A" - C") (4.8)
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and integrate over C" with a sharp Gaussian weight. The standard Faddeev-Popov pro-

cedure indicates that FP ghosts decouple. This conclusion is actually correct, as will be

shown later. Thus the FP method gives an effective Lagrangian

L"JJ : Lvv * L, - (ll2^)("' A)' . (4.e)

I shall be interested in the limit ) -* 0

4.2.L Propagator

I extract the kinetic operator in (4.9), go to momentum space, and invert the resulting

quantity and I arrive at the gauge-fleld propagator:

nflb,(r) : ffø*'åffiffi . t%ffi + ^##t (4 10)

Now one may register concern at the continued appearance of a 1l@.n)2 term here

unprescripted. Were one made of sterner stuff and wished to pursue ca,lculations with ,\

non-zero, this problem could be easily surmounted by employing a non-local gauge-flxing

Lagrangian,

LsJ = (tl2\)n . A"l1 - or(n ), l@ . 0)2ln . A". (4.11)

Inverting the quadratic part with this yields the same alpha-propagator with the À term
prescripted with the denominator, (p.n)2 + a2(n2¡2. The ghost structure is now different

but I shall discuss the decoupìing even in this case a little later. Nonetheless, my intention
is to take À -* 0 and upon doing so I obtain the precise form of the alpha-prescription

from (4.10).

4.2.2 New Vertrces

The YM Lagrangian yields the usual 3-gluon and 4-gluon vertices. The specfically

non-Abelian parts of the alpha Lagrangian demand new vertices in the theory. Of course,

as far as generating the alpha prescription in the propagator is concerned these vertices are

unimportant, and nor is the enforced gauge invariance. However, it would seem remark-

able that a gauge-invariant additional term to the quadratic part suffices to generate an

unambiguolls propagator - and this gauge invariance (or BRST invariance once the gauge

fixing term is introduced) may be a useful property to maintain in the non-Abelian theory,
particularly to enable derivation of identities that may guide a proof of renormalisability

at higher orders in perturbation theory. A question to be asked is: what price has to be

paid for retaining BRST invariance? Does the retention of the symmetry force additional
complications that may overwhelm any positive advantages in maintaining the symmetry?
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The new vertices implicit in the alpha Lagrangian (a.5) fall into two groups. In the

flrst instance I concentrate on the structure in the alpha-Lagrangian:

D"b'I{f;nu Ffi, (4.12)

which itself yields two types of terms, aside from that which directÌy contributes to the

propagator. There is the term arising from the structure factor in the covariant derivative,

and the first Abelian term from the field-strength tensor:

¡abd ¡dv ç6bc ln . ô)npôrAi (4.13)

wlrich clearly reduces, assuming that n-0 f n.ô -- l, to an antisymmetric quantity multiplìed

by a symmetric piece, and a summation over colour indices; the quantity vanishes. Now

the subtleties I have alluded to are connected with the naivety of this argument - but I
defer this for the present.

What this leaves for non-propagator contributions from here are terms with an n,
sitting in the resultant Feynman rule for a vertex. In any diagram this vertex attaching

to a propagator of an internal gluon line wili kill off most terms via the property of the

alpha-prescription that nPDrv(p) = O. If I make the restriction to S-matrix elements,

characterised by the property that Feynman graphs contain gluon propagators in erternal

legs, then all such diagrams built with these vertices are seen to decouple.

It should be said that the ordering ofoperators in (a.5) is non-unique as far as deriving

the alpha-prescription is concerned. However, it is the unique property of the form given

here that these (the most unpleasant) extra vertices decouple from unamputated S-mat¡ix

amplitudes.

The second type of vertex arises from the second non-local operator in (4.5). I am

forced to actually extract the Feynman rule corresponding to this interaction part. In
fact, there are also an infinite number of these, corresponding to an expansion of the

operator in the coupling constant, g. Indeed, these give rise to gluon vertices involving

4,6,8..etc. gluons. I illustrate the structure of these vertices by examining the lowest order

contribution - a four gluon vertex indicated in figure (4.1).

After extracting the term quartic in the gauge-field, and symmetrising, I can write in

momentum space:

Cz(G)
(¡r, - 1)

vi!;l@, Ç, k, r) - -ia2 n2 sz 16"b6'd(gp,Ucs,rpl * gsplpp,q,l) + cyclic perms.f

(4.14)

where, in the interest of compactness, f introduce the notation:

[A,B]= AB + AB (4.15)
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Q,b,vp,a,u

r,d,À kc,P

Figure 4.1: The lowest order new vertex for a non-zero: a four vertex

and

pp = ppl(p2 + o2n2)2 . (4.16)

The lorvest order diagram that can be constructed from this graph is a non-vanishing

tadpole graph. Scaling arguments reveal the truncated graph to be proportional to a2. It

remains to be seen whether this is sustained when inserted into the static Wilson loop or

whether, after the limit a -- 0 - if permissible - is taken, contributions survive rvhich may

be inconsistent with gauge-invariance.

4.2.3 Comments on BRST Quantisation

By virtue of the gauge invariance in the unfixed alpha Lagrangian a BRST approach

to the quantisation of the theory may be taken. In particular it is possible to compute the

conserved BRST charge consistent with the Lagrangian (a.5). Schematically this would

give the form QpM + a?q where Ql"¡i" the contribution arising from the specific alpha

dependent term in the Lagrangian. Using this quantity the physical states of the Hilbert

space may be defined as those annihilated by this charge [17] and I postulate that such

states would transform into the physical states of the pure YM theory in the limit o --+ Q,

where the charge 8E1r¡ itseU vanishes. Further properties such as Lorentz invariance in the

physical space rnay be demonstrated.

I have been content to outline this program schematically as the complications of

the new vertices, and the subtleties described below cause one to question whether this

approach to the alpha prescription is appropriate within the parameters outlined at the

very start - of determining an unambiguous YM theory in the temporal gauge which

minimises the presence of additional fields and complications, and this would include the

new vertices. Thus the BRST quantisation of the theory with (a.5) has not been pursued

in any detail.



4.2, A DERIVATION OF THE ALPHA.PRESCRIPTION 49

4.2.4 Subtleties

To turn now to the complications implicit in the non-local operator lln.0. This

quantity implies an integral operator involving some kernel, rc:

r+i
f,l@o,") = J dtn(t - cs)/(r, x) (4-17)

where I now use the specific representatr.rl", the gauge-v ector nr- (1,0,0,0), and the

kernel must satisfy the Green's function condition that

a
â"(t -ro): ó(ú- 16). (4.18)

This plays its role in the factor in the alpha-Lagrangian (4.5):

0'(lln.ô)nqF*, (4.19)

(I ignore for the moment gauge group indices). When the freld strength tensor is expanded

one can see that there are terms where the non-local operator acts on n - A, which will

be eliminated in the gauge-condition, so these do not concern us. The significant term in

(4.le) is

a*.ao¡,(r). (4.20)
do

Treating this naively earlier I set frôo to one, irrespective of the choice of kernel, rc. But in

fact writing this with (4.17) and using integration by parts to truly act with the derivative

on the kernel, one sees that one is left with a surface term depending on the value of the

field A¿(c) at tirne plus or minus infinity. Indeed choosing

n(r): 0(r) (4.21)

where d is the usual Heaviside step function being 0 for negative values and 1 for positive,

one sees that the value of the gauge-field at plus inflnity is involved. I cannot ignore it. I
find an extra term appearing in the kinetic term that I had previously ignored involving

0¿A;(æ,x) (4.22)

Thus insofar as ignoring this term amounts to generating the alpha-prescription, a

fully fired gauge has been implicit all along - defined by the two gauge conditions that

were the concern of the last chapter:

As : 0 (4.23)

â¡,4';(oo,x) : 0. (4-24)
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The difference here is that the second equation in (a.2a) is not implemented as the limit
of some time úe ---+ too. Rather the subsidiary condition is taken a priori at time infinity.
Here it is permissible to take time infinity immediately as the subsequent propagator does

not diverge; the arbitrary time ús has not been invoked at any stage of the analysis and

thus the propagator does not depend on such a parameter. The reason why no time
translational invariance is introduced rests on just this point: the boundary condition at
ú0 : oo has been applied from the start and the non-zero alpha renders quantities well
defined in this limit - unlike the ambiguous quantity (3.33). In other words, integrals have

been regulated within the temporal gauge rather than by breaking the temporal gauge

condition as in Steiner's approach [26].

The recognition of the subtlety in 1lô6 has potentially severe consequences - the intro-
duction of yet more vertices. This problem can be minimised by staying with the choice

of the kernel as a theta-function; this choice now only affects the form of the theory in
the 'alpha-sector'; the YM vertices are unaffected by this choice. Since the hope is that in
the limit a ---+ 0 the non-YM sector drops out, the specific choice of rc is irrelevant, except

that it is this choice that gives the alpha-prescription.

Reconsidering the full alpha-Lagrangian I find that the lowest order Feynman rule
(again, there are an infinite number) arises from the structure-constant terms in the co-

variant derivative factor, acting on the non-local û - o2n2 factor in the middle, giving a
term in the Lagrangian:

- (Ilz)grfabc¡ab'|ct¡c4i"t,o{Uffir)A;'A.j,r,o' (4.25)

where

A?u''": AÍ(oo,x) . (4.26)

But now recall the result used in the last chapter: that the transverse fields ,Afl "
vanish at time loo. This, together with vanishing of the longitudinal part implicit in the
complete gauge-flxing condition, mean that indeed A7''" vanishes, and this last set of
vertices do not contribute.

One is still left with the infinite set of new vertices which includes (4.14). As mentioned,

this has an overall factor of a2 and one can only hope that this and the higher order
corrections will only give vanishing contributions to at leastthe static Wilson loop.

4.2.5 FP Ghosts

I conclude this section with a further analysis of the ghost structure. I have men-

tioned that implementing the Faddeev-Popov method with the gauge invariant extended
system (a.a) the standard ghosts can be seen to decouple in the Lagrangian itself using
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the arguments presented in chapter 2 for the homogeneous case, which is strictly all I am

concerned with in this work. However, even in the inhomogeneous case the arguments

presented in chapter 2 apply. Firstly, if the theory with gauge fixing Lagrangian (4.11)

were pursued the argument used by [a0] for the planar gauge would apply here with appro-

priate modification. Frenkel's approach[lO2] to the theory with gauge fixing Lagrangian

-(tlZÀ)(n'A)2 but 
^ 

# 0 might seem problematic. Recall that here one carries the ghosts

into the perturbative formalism and argues the decoupling on the basis of integrals that

vanish in dimensional regularisation. But the method I have used to generate the alpha

prescription in the galrge field propagator has not correspondingly given meaning to the

p.n = 0 pole in the ghost propagator. This is as it should be. Recall that the ghosts

arise from a BRST variation in the gauge fi,xing term and. not in the gauge invariant (thus

BRST invariant) part. In this theory I have generated the alpha prescription not by intro-

ducing alpha into the gauge fixing but by modifying the original gauge invariant theory in

?, gauge invariant way. Thus the fact that a prescription has been generated in the gauge

field propagator should not (and does not) correspondingly generate a prescription for the

ghosts - because the gauge fixing Lagrangian remains unchanged in tlie alpha prescription.

Frenkel's argument for ghost decoupling may be seen to still apply by noting that ghosts

really matter only if they contribute to loops. Hence any prescription which gives zero in

dimensional regularisation for all loops will correspond to a decoupling of the ghosts.

But the subtleties noted in inverting ôs also have a potentially more serious impact on

the homogeneous case. The ghosts that seem to be carried in this formalism for the alpha

prescription are the Coulomb ghosts at infinity. Here too in fact there is no problem:

because the boundary condition ( .2a) at infinity is not being implemented as a limit

of ús -- *oo the argument for decoupling of these Coulomb ghosts discussed in the last

chapter would apply in this case.

Thus the alpha prescription is indeed a ghost free approach to the temporal gauge,

although, in this derivation, the insistence of BRST invariance for nonzero alpha introduces

other complications that may outweigh this positive feature.

4.3 A Local Approach

The excessive complications encountered in the last section may be avoided in the

approach to the derivation of the alpha prescription taken by Przeszowski in [125]. In this

last section of this chapter I shall review his approach and follow it in the next chapter

with my work checking the recovery of Poincare invariance of the Abelian theory.

The sources of unnecessary complexity in the last section were: the retention of gauge
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invariance, and the use of the nonlocal operator (" - 0)-'in the Lagrangian itself. Przes-

zowski surmounts the latter by introducing an additional scalar field, denoted by Q@),

which couples to the gauge field. Though Przeszowski deals solely with the Abelian theory

I shall begin with a non-Abelian version of his theory, before outlining Przeszowski's work

with the Abelian theory in a Dirac Hamiltonian approach.

4.3.1 NonAbelian Formulation

In this case, the Lagrangian may be written in the local form:

L - -It"r'ri, - )arq"are" + )t'eneo - ^tare" A", + B" At . (4.27)

This theory corresponds to the gauge field sector coupling, via a derivative coupling of
strength 7, to a Klein-Gordon field Q - which carries a Lie group index - of mass 7.
This quantity becomes the parameter regulating the gauge fleld propagator, which, when

analytically continued to -ia, generates the alpha prescription.

This theory is not gauge invariant. So there is no reason for the inclusion of the

temporal gauge fixing term via the multiplier fleld B"(r) except that I precisely intend

to investigate the hypothesis that the limit 7 * 0 generates, unambiguously, results

corresponding to YM theory in the temporal gauge. Of course, if this Lagrangian does

give a consistent S-matrix theory the limit -l - 0 may only be well-deflned in gauge

independent quantities.

The Feynman rules could be formulated to include the usual rules for the YM sector,

and additional rules corresponding to the Q field propagator - just the propagator for a
Klein-Gordon field of mass 7 - and a Q -,4 propagator derived from the mixing term in
(4.27). Alternately, in the path integral formalism, where the measure of the generating

functional now inclu des a functional integrati on DQ ,I may perform this Gaussian integral

and derive Feynman rules for the theory purely in terrns of the YM sector. This produces

a term in the effective Lagrangian of the form

QApAi)@ + t\-'00'Ai) (4.28)

Ignoring the extra terms in (a.5) put in to maintain gauge invariance, and dropping terms

proportional to n ' A, the result is precisely the expression (a.28) in the temporal gauge

with 72 : -e2. Thus I indeed extract the alpha prescription in this formulation, after

continuing 1 ---+ -is, but with no new self-coupled vertices for the gauge fleld, nor sub-

tleties arising from inverting the operator n.ô. On the other hand the theory no longer

obeys any manifest symmetry in the Lagrangian (not even a modified BRST symmetry).

1

,
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So the task of dealing with the theory at higher orders of perturbation theory becomes

difrcult if not impossible.

In addition, because of the breaking of BRST invariance in this approach, I no longer

have available the elegant approach of [17] to deal with the question of redundant states

in the Hilbert space of the theory and the implementation of the Gauss law. This forces

us to deal with an explicitly Hamiltonian approach to the theory, in particular using

the Dirac constraint algorithm outlined in the second chapter. Unfortunately here the

Hamilton equations of motion for the non-Abelian theory remain an obstacle to tackling

these questions. For that reason I confi.ne the remaining discussion to the free Abelian

theory contained in Lagrangian (4.27) as considered by Przeszowski.

4.3.2 FYee Theory and Method of Constraints

So I restrict the analysis to the local Lagrangian:

L : -LFw Fr, - ïurrur, +|tre, - toreA," t BAo

Ô¿r;1-B+1þtA*f,40)

As

(4.2s)

with Fp, now just the Maxwell field strength tensor.

Przeszowski has given the Dirac constraint analysis for this system [125]. I reproduce

the essential features of it here. With conjugate momenta to all the field variables defined

in the usual way, the full system of primary and secondary constraints (all second class)

is given by

,h : lrs

,þz = TB

,þe

,þa

(4.30)

(4.31)

(4.32)

(4.33)

and the inverse of the Poisson Bracket matrix of these constraints is given by

c-r(n,y):

0001
0 0 7-'t'
0 -1 0 0

-1 j2 o o

6(3)(x _ y) . (4.34)

It is useful to note that the naive Poisson Bracket approach to the theory suffices when

calculating Poisson Brackets between functionals of the independent coordinates (A¡,r¿)

and (Q, zrq). The above matrix of constraints has the property that any corrections to the

Dirac Brackets for such quantities will vanish. Thus for the most part one is permitted to
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use just the ordinary Poisson Brackets based on the deflnition in appendix A

{u,,} = I o" ¿h#i, h#ø. h#;ø - rarm, (4 35)

The Dirac constraint analysis eventually leads to a reduced Hamiltonian density

'17 : rl2(tr;)2 - t lzçtrq)' + tP@'A¡)' - tlz(te - ô;A¿)' - Ll2@ie)2 . (4.J6)

The canonical commutator structure for the A¿ ar'd Q fields and their conjugate momenta

follow - after transposing Dirac Brackets into equal time commutators. More importantly

working now with the reduced Hamiltonian and Dirac brackets one derives the following

Hamilton equations of motion:

llz LA¡tô;(tQ-ô¡A¡)

- LQ + tQQ - ô¡A¡)'Ìte

A¿:
a=

llz

1tQ -

(4.37)

(4.38)

(4.3e)

(4.40)

The Dirac brackets for the field operators Q(ø) and A;(r) can be taken to equal-time

commutators to give the standard results

[A¡(t,x),r( j(t,y)) = -ts¿¡O@çx - y¡ (4.4t)

ÍQ(t,*),ra(t,y)) = ¿6(s)(x-y). (4.42)

Przeszowski computes the arbitrary time commutators by first rewritirrg these expressions

in terms of the fleld variables only

l;.,çt,*¡,,q¡Q,v)] = -is¿¡6(elg- y¡ (4.4s)

[0{t, "), QQ,v)] : -¿6(3)(x - y) (4.44)

EA¿ = 0;(tQ - ô¡A¡) (4.45)

trQ : -t1Q-ô¡A). (4.46)

It is clear that the task is complicated by the coupled modes. So the independent degrees

of freedom should be found and this can be facilitated by the orthogonal decomposition

tn: (n,,- ?) ot - Yoi 
d,o- AT * *o Ø.47)

(although the scalar fleld / here differs from that used in the last chapter by the operator

A-1) and introducing new scalar fields X and Y

y = Gn¡-r¡" (-r, - o)-',' (tó+ nq¡ (4.48)

x = (-r'-o)-'''@-tØ. (4.4s)
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The old fields are related to these by

(4.50)

(4.51)

(4.52)

(4.53)

EY

-i d(r - s)

0
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(4.54)

(4.55)

ó

a

: (-r, - o)-''' (-L)'/, ((-n;'r, x - f)
: (-r, - o)-',' (rr" -(-n)'/,y) .

I now ignore the transverse sector, A!,for which the theory is quite standard and concen-

trate herein on the scalar fields X and Y. These now satisfy decoupled wave equations

0

0

and have nonzero equal-time commutators:

(,0'* ,') x

["(ro, x), *(øs, y)]

l"(ro, x), r(ro, y)]

¿6(3)(x _ v)
_¿5(3)(x _ y)

In terms of the new field variables the reduced Hamiltonian density may be rewritten

AS

u = 
ruraTl' 

+ j@na7Y - )rtY - 
rr{ann' 

+ lr{xf * t*' (4.b6)

where the four independent degrees of freedom enter explicitly. The negative sign associ-

ated with the field Y in the commutation relations and the Hamiltonian suggest it has a

ghost-like nature.

Przeszowski then goes on to solve the equations of motion for each independent mode,

using the approach to QED outlined by Nakanishi in [a]. From this he succeeds in finally

computing the arbitrary time commutators for the scalar fields:

lY(n),Y(y)l:
lY(*), x(y)l :
lx(r), x(y)) :

(4.57)

(4.58)

(4.5e)_.sint(z_o - yo)5(3)(x _ y)
.Y

with commutators between X or Y and the transverse gauge field vanishing. The function

d(, - y) is defined by the three dimensional Fourier integral

r
d,(x)=i Jdrß)kik+-"-ik'x¡"ik'x (4.60)

with

df(k\ d3k.)=ffip (4.61)

and ks : lkl. The unusual form of the commutator for the field X is a consequence of

peculiar equation of motion, (4.53), it satisfies. The solutions for X and Y permit Fock
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space decompositions for the fields which are written:

.qT@) = larg¡(o7qu¡"-nn"¡artçk¡eik.,) Ø.62)

y(*) = | arçr¡(uçu¡"-n*" +ót(k)eiÀ'') i+.or)

x(*) = | orrtlr/E(c(k)e-*.t, 
"-h(xs-ts).ik'x

+ ct(k¡¿iÀoro "it(ro-ts).-ik.x) Ø.64)

Then the operators 
"T(k), "TI(k), ó(k), bt(k), 

"(k) ana cj(t<) sarisfy rhe commutarion

relations

þIfr.l, "rtt{n)] : a.Jor1t< - p; (4.65)

[a1r¡, a(p¡] = -¿.(r - p) (4.66)

þft), "(n)] = ¿t(L - p) (4.67)

with all other commutators vanishing, ór(k - p¡ : (Zr)32lkló3(k - p) and 6fi : s;¡ -t
kikjllkl2. So a vacuum state can be consistently selected with the operators aflt;, A1t)

and c(k) interpreted as annihilation operators:

""1t<¡¡o¡ 
: o (4.68)

ó(k)lo) = o (4.6e)

c(k)10) : 0 (4.70)

and l0) is the Fock vacuum, while conjugate quantities correspond to creation operators.

The 'ghost' interpretation of the field Y, is reinforced by its abnormal commutation rela-

tions for its creation and annihilation operators.

Substituting these resu-lts into equation (a.56) Przeszowski finds the normal ordered

Hamiitonian

H = I 0", :rt¡l(x),: I ar:*r¡ 
[tr.t þItlr.l "TG)

- ót(k)ö(k)) + r"t{r.)"(k)] . Ølr)
Przeszowski observes that the complete Hilbert space of states generated by the Fock

operators has an indefinite metric. Thus only a subspace of the states correspond to
physical, probability conserving states. The question is can this subspace be uniquely

defined such that the Gauss law will a.lso be implemented for the 'candidate' physical

photons?

It transpires that the choice of the subspace is not unique here. Przeszowski begins

by demanding that the Gauss law be satisfied for the candidate physical states in a wea¡
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sense (as defined in chapter two). Thus he imposes

(phystl0¿Fs;(æ)lphys) : g (4.72)

for any time. This can be reexpressed in the form

a¿.+!+)ç*¡1phys):6î)@)lphys) = 0 (4.TJ)

where (*) denotes the positive frequency part of fields. As a consequence of the specific

time dependences on X and Y, this condition may apply at arbitrary tirnes only if

v(+)(ze, x)lphysl - ¡(+)(16, x)lpå,ys) : 0 (4.74)

or, in terms of the Fock operators,

c(k)lphys):b(k)lphys) :0. (4.75)

I shall denote the Hilbert space defined by these conditions as II, whose state vectors are

lphy").Thus, in H, the field Q satisfies

qft)@o,x)lpävs) = o (4.76)

giving it a zero expectation value between physical state vectors.

Przeszowski verifles that, with this choice of the physical Hilbert space, the Hamilto-

nian is indeed positive definite and has only contributions from two transverse modes

(phys'lrlphys) = / arlr;¡r.¡ þhy"'l ("ltçu¡"!çL<)) lpnys) . (4.77)

Moteovet, the occupation number operator tr[ which can be written in momenturr space

AS

N = ldr(k) þItfr.l,Itk) + öt(k)ó(k) - ct(k)c(k)) Ø.TB)

also obtains positive definite matrix elements in IIp,

(phys'lNlphysl = | aryu¡ þhys,lalt(k)a!(k)lehys) (4.Ts)

This is signifrcant because, unlike covariant gauge QED, there are choices of the candidate

physical space for which positive definiteness applies for the Hamiltonian but not for the

number operator.

Thus Przeszowski obtains a free dynamical system which contains only two photons

as the physical excitations which satisfy the Gauss law - even for a non-zero 7 parameter.

That this occurs without requiring taking the limit 7 = -icr --' 0 is quite remarkable and

probably should not be expected for the interacting theory. This is not to say that the



58 CHAPTER 4. THE ALPHA-PRESCRIPTION

limit 7 --+ 0 is unnecessary in the free theory; I shall show in the next chapter that the

limit is required in order to satisfy Poincare invariance in the physical space as defined

above.

I complete this chapter by verifying that the alpha prescription does indeed arise from

this approach. This is most simply done by using the Fock expansions (4.62), (4.64) and

(4.63)' and the commutation relations (4.66) and (a.67) to compute time ordered vacuum

expectation values for the field products SQ, QQ and þQ and thus deriving propagators

for the longitudinal gauge freld A! a,nd Q. The results Przeszowski gives are

QtrA!@)Al(ùlo) ,lffirikþ-v)E+_r#

-, 1ffi"-ik(x-s)

-, 1ffi"-;k(r-v)

1-
pz

k2o + a2
(4.80)

(olrQ@)Q(s)lo)
kzo-k2¡ie

k;a
k2o-k2¡ie

1

(0 rA!(r)Q(y) o) : 1

k2o¡az'

(4.81)

(4.82)

The result for the longitudinal propagator can be combined with the standard transverse

result to give for the momentum space result of the full propagator

7/h;k, 1\
w +i( (r;; + ÑæTæ) (4'83)

This indeed is the alpha prescription (a.2).In deriving these expressions Przeszowski has

continued 1 ---+ -ia in denominators of the form k'o-l' *ie. With this, the ie is dropped

as it ceases to be necessary: the poles are now off the real frs axis and the deformation

in the contour induced by the ie becomes superfluous. Observe also that in this approach

the Feynman ie arises in an entirely natural and correct way - no identification between e

and a or 7 needs to be imposed as occurs in the derivation in [128].

In the next chapter I turn to further tests ofthe consistency ofthe alpha prescription in
the Wilson loop and, in the context of this derivation, the recovery of Poincare invariance

in the physical Hilbert space, Ho.



Chapter 5

The \Milson Loop and Poincare

Invariance

5.1 The Wilson Loop

As has been emphasised in the first two chapters, the most effective check for prescrip-

tions in the temporal gauge is the rectangular Wilson loop as discussed in section 2.5. I

shall first outline the key steps taken in Landshoff's calculation of the Wilson loop in the

alpha prescription [75], before completing the proof of exponentiation in showing tadpole

diagrams do not contribute. In the first part of the discussion I shall not discuss algebraic

steps in any details - some of the tricks used by Landshoff will also be used in the second

part.

5.1.1 Landshoff's Computation

The integral which plays a large role in computations in the alpha prescription is the

time Fourier transform of the factor 1l(k3+ c2) which is (L12a)exp[-aløsl] and in the

limit of small a gives
1

,(tl"-lrol). (5.1)

Landshoff denotes this quantity by /(us).

To order 92 the exponentiation follows rather simply. The result from the lowest order

diagrams is proportional to

r(r) - r(0): rl2 6.2)

and this guarantees the exponentiation to this order.

The key step in proving that the alpha prescription does not violate the exponentiation

property of the Wilson loop at the next order is to show that no terms proportional to

59
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Figure 5.1: Diagrams contributing to the correct exponentiating behaviour of the loop -

dashed [nes indicate Å,.;À'¡ terms from the propagator.

Cr(G)C2(R)gaTz occur, where ? is the time length of the rectangular contour. It turns
out (see the tadpole discussion) that the terms from the propagator that cont¡ibute to the

cor¡ect large ? behaviour of the loop are those with k;k¡. These diagrams are given in

figure (5.1) and are responsible fo¡ the desired C2(R)2gaT2 contributions to (2.46).

The violating terms, with the product of the trvo Casimir's, arise from diagrams with
a three-gluon vertex inside the loop as indicated by figure (b.2).

By explicit caJculation, Landshoff demonstrates that ?2 cont¡ibutions drop out by di-

rect cancellation of terms in different diagrams: the cancellation generally occured between

a diagram with the trvo ends of the gauge propagator attached to opposite sides of the
Wilson loop and and the same diagram but with the propagator ends attached to the same

side. In particular, terms with pathological factors I f a and I f a2 cancelled permitting the
ümit a -' 0 to be taken safely.

The final step taken by Landshoff was to show that the alpha prescription correctly
reproduces the finite terms in (2.46) [near in ? but with factors C2(G)C2(R). Here Land-
shof demonstrated that the alpha prescription gives the same result as the PV prescription

which, as shown in [53], generates the co¡rect result for such terms. Once again, the ks

integrations generated a 1/o term which cancelled between d-iagrams "where only one side

of the Wilson rectangle is involved" [75].

Thus with these steps Landshoff was able to correctly reproduce the static potential
(2'46) and at the same time demonstrate how a computation in the alpha prescription can
work in a gauge independent quantity. The important step to this end was expanding for

\

I
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Figure 5.2: Diagrams witlì C2(CJ)C2@)7'2 factors that could violate the !\¡ilson loop

exponentiation. The rvavy line denotes the full propagator.

small a in expressions and finding that divergences at c = 0 cancelled betrveen diagranrs.

The remaining results were either independent of c - and these terms contained the correct

gauge independent result - or of order a or higher, which vanished in the limit.

5.L.2 Tadpole Contributions

It is generally true that massless tadpole diagrams vanish in dimensional regularisation.

Horvever because the a in the Landshoff propagator has the dimensions of massr it is not

automatically true that such contributions vanish for the alpha-prescription, for finite a.

Thus the above demonstration of Wilson loop exponentiation is incomplete unless one can

show that the tadpoles do indeed give no extra contributions. Unlike the computation

of Landshoff, in this calculation I shall use a manifestly covariant formalism throughout

rather than deal rvith the ij components.

For the computation of these contributions both the UV-finite and UV-divergent parts

of the truncated tadpole graph - flgure (5.3) - are needed. Now I have computed the resuÌt

for the tadpole using methods I discuss in the next chapter. Nyeo [126] has also computed

this result but I süghtly disagree with his result. For this computation though it suffices

to give a schematic form for the result, and I postpone discussion of the above issue for

the next chapter.

I thus may write for the truncated tadpole graph in the dimensional regularisation
lThis is iÎ n2 : 1. Of course keeping zr2 general but timelike the statement is that orÆã hus the

dimensions of mass. This wi-ll be discussed again in chapter 6.

I
,

I
I
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/Lt
p Pv

Figure 5.3: The tadpole graph

Figure 5.4: Tadpole diagram contributions to the Wilson loop

scheme

ri!,@ = (a2¡2u-s6"bc2(G)[A(r)gr, * B(Q)nrn,]x@) (5.3)

and this general form is consistent with both my result, to be discussed in the next chapter,

and Nyeo's result [126]. Here, A and B are finite, non-zero functions of the number of
space-time dimensions. The function ¡(o) contains sums and products of Euler gamma

functions wherein the UV d-ivergence is concentrated as a simple pole in € = 2 - u.
When this expression is inserted into the Wilson loop diagrams, the second term does not
contribute since the gauge-vector, Trpt exactly annihilates the external gluon propagator
legs which themselves attach to the ,rungs' of the Wilson loop.

There are three diagrams to consider, given in figure (5.a). These can be summed

together to give the result, after performing the Wilson loop contour integrations,

w¿ = (a2¡(2.-s) n4C2(R)C2(G)A(a)y(u) x

bo
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d,2'p sin2(r3l)
[1 - exp( - i por)]nl@) n rz(n) (5.4)(2n) pZ

It suffices to concentrate on the ps integration which reduces to a combination of three

terms

63

çaz¡(z--s\¡ye-pw"
p23 p2slpl2

(5.5)-7+2 (no + to¡1ro - io) (po + icr)z(po - io)'

Here, n2 has been set to 1 and the overall factor of (az¡(z'-3) has been retained as it is

this dependence which is important.

The Cauchy Residue theorem may be used to evaluate the energy integral if the contour

is completed in the upper half complex f?0 plane for ? < 0, and the lower half plane for

T > 0. For large l"l the residues from the Feynman pole do not contribute (this is the also

the reason why, in the frrst part, I am able to isolate contributions from the k¿k¡ terms).

So the first term gives no contribution. The second term gives

þ¿\(2--t) G#"p[l - exp(-alrl)] . (5.6)

Now I can expand in small € :2- ar using the well known result ø' - 1+¿ln ¿-f .... The

first term (5.6) is proportional to a. The second is proportional to alna which vanishes

as o ---+ 0. Thus it is safe to take a to zero before the three-momentum integration, giving

zero (presuming that is also safe to take the limit in the third term). A similarly vanishing

contribution is included in the result of the third integration in (5.5). What remains finally

is

-2i(a27Q.-sl ... .Í3 lP-|'? -.- lrrlTlexp(-ol"l) - e - erp(-rl"l)l . (5.2)
(2i,a)s(lpl2 + C-2)2

Now one can expand the exponentials for small a and observe that most terms are of order

a or higher or involve quantities such as a ln a once the expansion in ¿ is performed. It
is safe to take the limit a --+ 0 for these. There are then just two terms ünear in l?l but

involving factors (o')-'. But these are equal in magnitude and opposite in sign. They

cancel exactly. Indeed this cancellation is quite signiflcant for simple scaling arguments

would not have detected its occurence. Thus in the limit a r 0 the tadpole contributions

vanish, and the exponentiation holds for the alpha prescription.

5.2 Poincare Invariance

In the last chapter I outlined the approach taken by Przeszowski in deriving the alpha

prescription [125]. The key advantage of the generalised Hamiltonian approach taken
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there is that it permits discrimination between the redundant and physical parts of the

Hilbert space. It was shown that the definition of the physical space was consistent with
the implementation of the Gauss Law as a weak condition between physical states. I now

wish to check that this choice of the physical space is also consistent with the restoration

of Poincare invariance of the quantum states.

Given the problems in completing the derivation of the prescription for the non-Abelian

interacting theory, mostly generated by the breaking of BRST invariance in the non-

Abelian generalisation of Przeszowski's Lagrangiat, (4.27), the following analysis shall be

for the Abelian theory only - though I shall show that even here things become complex.

5.2.1 A First Attempt

In what follows it shall be useful to define a new variable

z=tQ-ó (5.8)

where Q and / are the scalar fields used in Przeszowski's derivation of the alpha prescrip-

tion discussed in the last chapter. Proceeding with the theory given by Lagrangian (4.2g)

I construct the energy-momentum tensor in the usual way,

Tt"' - ô'A"(ALIô(0rA")) + A"Q@LlA@rQ)) - st""L. (5.9)

From this I obtain the generator of time translations

,o: I ËxTss(r) (b.10)

as just the reduced Hamiltonian, namely the canonical Hamiltonian with the constraints

imposed

HR: I o",tlr",)' -r;-ù, + j{anaù, -}ra,oy - Tt ,. (5.11)

The generator of space translations is found to be

P, = [ Ër(-r¡,ô;At, t nqL¿e) ." J ,-r¡,d;A¡ * rqö¿Q). (5.12)

With these results it is a simple matter to check that, using the Buler-Lagrange equations

of motion

ïrFr'-.yA'QlBn'= 0 (5.1J)

aQ+t2Q+.tôrA, : o (5.14)

that the total divergence of the energy-momentum tensor vanishes:

ÔrTP' = 0 (5.15)



5.2. POINCARE INVARIANCE

For the angular-momentum tensor

JvTtrup _ Tppr, _ Tlppnp + (ALIA@pA,))Ao _ (ALIA@pAr))A, (5.16)

(the non-appearance of Q terms except via the energy-momentum tensor is because Q is

a spin-zero field) one obtains

Mttvq - TþPr, - TP, rP - Ft", AP ¡ fuo AY (5.17)

Calculating the total four-divergence of this expression, again using the Euler-Lagrange

equations, gives

ôrMu'ø= B(nP A' - n'AP). (5.18)

Using the third constraint relating B,G andrq,,(4.33),this can be rewritten as

7r/r4u'o : Z(nP A' - n'AP). (5.19)

Now observe that the variable Z I have defined is directly related to the quantity X and

so has its orvn Fock decomposition in terms of the fields c and ct. So between states

in the physical Hilbert space IIp, Z vanishes ensuring, as desired, that in this space the

right-hand side of the above expression is zero. So far so good.

For the generators of Lorentz rotations and boosts

65

IMp, = d,3rMsp,

I obtain the following explicit expressions

IMo; d,3rf(-r¡ô¡Ak * rq1¿Q)xs -'llpr¿l

0

: _gt¡ Ps

=0
: 9;jPr - g¿rPj

: -M¿¡ * | a3r[(n;r¡ - r¡x;)Z I r;A¡ - n¡A¿]

: 9;¡Mo* - g¿kMoi

: gilMjk t on¡M¡ I g*¿Mu I gilM¡;

Mij

The generators satisfy the following bracket algebra

(5.20)

(5.2t)

(5.22)

: I O"rrr-r¡0¡A¡, ¡rqð¡Q)r;* þr¡0;A¡- rqô¿Q)r¡ lr¿Aj - n¡A¿l

= pt_ 
| d3rr¿Z

{P, P"}

{Po, Mo¿}

{P;, Mo¡}

{Po, M;¡}

{P;, M¡*}

{Mo;, Mo¡}

{Ms¿, M¡*}

{M;¡,Mnt}

(5.23)

(5.24)

(5.25)

(5.26)

(5.27)

(5.28)

(5.2e)

(5.30)
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Clearly in all but anomalous expression (5.28) the violation of the Poincare Lie alge-

bra is connected with the Lorentz non-invariant expression that appears in the angular-

momentum conservation expressior,lQ - /. The problem with (5.28) is the absence from

the final result of the terms

I a3xpr¿l¡ - r¡A¿)
J

hence they are added and taken away to enable one to wúte M¿¡ in the result. It is evident

that in (5.28) the correct Poincare algebra is not satisfled in Ho.

5.2.2 Reduced Lagrangian Approach

Przeszowski[127] has offered a way out of the dilemma just noted. Here his suggestion

is to start with the reduced Lagrangian density, denoted .C4, where the temporal gauge

condition is implemented from the start. So far I have been happy to use the Lagrangian

in which the gauge condition is generated by an extra term in the Lagrangian - either

with a Lagrange multiplier field explicitly present or integrated out. But there is nothing

sacrosanct about this approach - it merely enables an elegant covariant implementation of

the gauge. In this case, the difference between the reduced Lagrangian and the original

form used (4.29) Ieads to a total divergence when computing the Euler-Lagrange equations

and so, at this level, there is no physical consequence in adopting this starting point; indeed

for the latter it is clear that there are some defrnitely unphysical consequences.

Following Przeszowski, I adopt the following Lagrangian to repeat the above analysis:

Ln = jara,artn +

+LraoQanQ + (5.31)

With this Lagrangian one obtains the 00 components of the energy-momentum tensor

roo - Àr#:* AW - sooLa (b.s2)

which differs from the original expression (5.11):

?00 = un t aolf,n nai ai - |a¡a, ao - ual (5.33)

Observe in this expression the total divergence alluded to above and thus one concludes

that in computing the Hamiltonian, which involves integrating over x, the extra term will

not contribute.

This energy tensor still satisfles the correct conservation relation as evidenced by the

identity

ôoToo = -ï¡Tio (5.34)
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where now the momentum density ?t0 is given by

Tio : -r¡(0i A¡ - ô¡A') * re(T'e + t A') (5.35)

However, now the canonical energy momentum tensor is not symmetric. Reversing the

indices one obtains a different result:

Toi = -r¡Ti A¡ I rqT'Q (5.36)

which is the expression derived in the naive approach so the space translation generator

also remains unchanged in the reduced Lagrangian approach. The assymmetry does not

violate the conservation relation

\sToi = -ô*Tki

where the result for the space components of the energy-momentum tensor is

Tki : ail.¡1ôk,t¡ - ô¡Ar) + ai@ke + t,q\ - sikLn .

(5.37)

(5.38)

Next Przeszowski gives the Poincare generators based on the new angular momentum

tensor. With the reduced Lagrangian density the only significant change is in the Lorentz

boost generator which becomes

I (5.3e)M d}rfToiuo -'lln*i + Aizl

I{Mo¡(t), Mo¡(t)} : - M¿j Í d,3r(x;A¡ -x¡A¡)(t,x)2(t,x). (5.41)

o;

for which he finds the surprising result that the generator is not time-independent:

#*'= la3,I2. (5.40)

Przeszowski notes the significance of this: for this generator one may calculate Poisson

(Dirac) brackets only for equal time. Of cburse, as one would have hoped, between physical

states the quantity on the right hand side vanishes - so in the space Ho time independence

is recovered. The other generators remain time independent at the operator level thus

their Poisson brackets are valid in general. At equal time, then, he obtains the Poisson

bracket relation to replace (5.28)

The Poincare algebra is recovered when one takes this expression between physical states.

Another suggestion of Przeszowski[l27] is to introduce an additional modification of

the boost generator such that the new choice regains time independence. However for this

choice the bracket relation between two boosts retains an anomalous term even between

physical states. In the limit 7 --+ 0 the anomaly safely vanishes. On the other hand I shall
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show below that further properties of the physical free theory are also recovered in this

limit using the approach just outlined. There thus appears to be no a pr'i,ori reason to
choose this second modification over the theory based on the reduced Lagrangian alone.

For this reason I do not outline this additional aspect of Przeszowski's work, but continue

with Przeszowski's original suggestion.

5.2.3 tansformations of the Fields

Under the Lorentz transformations, the 'canonical'fields Q and ,4¿ transform as follows:

{A¡(n), P;) : 0¿A¡(r) (5.42)

{Q@),P;}: ô¿Q@) (5.4s)

{A¡(r),Mr"} = (rrô, - r"ôr)A¡(x)l s¡"¡A, _ 9u¡A, (5.44)

{Q@),Mu"} : (*r0, - r,?r)Q@). (b.45)

This is consistent with expectations.

5.2.4 Mapping of Physical Space

The final task is to check that Poincare transformations map the physical Hilbert space

Ho into itself. States in the space transform under the translations P,

lphy"l-- U(a)lphysl (5.46)

where

u(a)=exp(-iPPar). (5.47)

Under Lorentz transformalions Mp.u the states transform according to

lphy")--+ exp(-idp'Mr,)lphys) . (5.48)

For infinitesmal transformations these criteria simplify into requiring that Prlphysl and

Mr)phys) are 'physical', in other words that they themselves are annihilated by the Fock

operators ó and c.

Beginning with time-translations, the simplest way to proceed is to use the expression

for the Hamiltonian in terms of the Fock space operators. The normal ordered expression

is

po: 
ldr(k)ilkl(¿ftqr.;"f1r.; - ór(k)ó(k)) + r,r(r)"(k)l (s.4e)

where once again dl(k) = (d3kl(2r)3X1/2lkl). Consider now the commutator of the Fock

operators ó(k) and c(k) with the generator P6:

[ó(k),Po] = lkló(k) (5.50)
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[c(k), Ps] : 7c(k) . (5.51)

Acting with this commutator on the candidate physical states lphyt) € Ho will annihilate

them. In other words, the time-translated states are annihilated by ó(k) and c(k) and

thus by the above criteria are in IIo themselves.

For space translations I derive for the momentum space expansion of the normal or-

dered generator

,o: I dîg)k¿lalt1r.;"f1r.¡-åt(k)ó(k)+ct(r)c1r<¡1. (5.52)

The ãrgument is identical here - the commutator between the generator and the fictitious

field Fock operators are proportional to the operators themselves and thus annihilate the

physical states.

It is clear that much tedious algebra can be avoided with the case of the boost and

rotation operators by noticing that the only place where the above arguments would fail is

when in Ms¿ and M¿¡ Ifrnd operators ö and c multiplying the transverse photon operators,

al . fo ilIustrate the significance of this statement of the problem, consider the possibility

that there is a term appearing in M¡", of the form

xtlt¡of1t ¡ (5.53)

where a(k) generically denotes the Fock operators ó and c. Then the commutator of X with

the generator yields a term with a transverse photon annihilation operator at momentum

k. Acting with this on a physical state of -l{ transverse photons will yield a state which is

a sum of I{ - 1 photon states. Such a state clearly does not vanish.

The analysis for the boost generator is somewhat more tedious, so I consider it before

the rotations. The first thing to observe is that lor 1 non-zero there are indeed mixing

terms. However the coefficients in this case involve 'l or 7rlz for which it is evidently safe to

take the limit. For this reason I do not write down the full expression but disregard these

otherwise cumbersome contributions. Note that in this computation I am dealing with a

physical quantity - and thus it is entirely within the 'philosophy' established above, in the

Wilson loop analysis, to take the limit 7 (or a) -' 0. Taking the limit also, single-handedly,

eliminates much of the surviving time-dependence.

I thus obtain, for the momentum space expansion of the normal ordered boost gener-

ator, the expression

69

I ("#) "îG)- ót(k) (*'#) u,u,Mo;

) "rul] *,o I ffir,"t1r;c1*¡ (5.54)
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In writing this expression I have kept one of the 7-dependent terms, despite having taken

'l "-+ 0 for the other terms, in order to show the role the c-particles play in the boost

generator. The last term simply reveals the 7-independent part of the boosts' time-

dependence. This form is consistent with my earlier observation that the time-dependent

part vanishes in the physical sector of Hilbert space.

I should also mention that in the full expression there are terms with dependence on

the arbitrary time, ú¡ which arise from the Fock space expansion of the field X, (4.64).

These multiply the product of fields ctlt<¡c1t<;; so they do not contribute between physical

states. Indeed it is the plesence of the time ús which is the original cause of the time

dependence outside the physical space: the time dependence in (5.39) from the piece

r6?s¿ would normally cancel with other terms generated by derivatives ôl\hi acting on

fro : lkl in an expontial, dropping a factor r0 - but here ús not ø¡ multiplies &s in the

exponent of the Fock expansion (4.64) of X.
For completeness I give the explìcit momentum expansion for the normal ordered

rotation generator Mij. I obtain

Mij : uf¡ + u!, + u;, (5.55)

where the terms represent the contribution to the boosts from the transverse photons, the

ó particles and the c particles. The photon term is

Mi¡ =, | ffi,t"T t k) (u,# - r,#),TG)

- (.i t1L¡o,r1r¡ - "r'tqr.;of1r.¡)1 (5.s6)

where we see the standard orbital and spin angular momentum terms displayed. The

fictitious fields give the contributions:

u!¡ -, 1ffi,|,,,u,(*,h-
'l#,þ'rur(r,#-*

aki
á(k) (5.57)

ô
k¡

0
j 
atd ) "rur] (5.58)tulf¡ =

In this case no mixed 1c,T t"rms occur - they cancel out - but mixed å - ¿ terms do

occur and retain a time dependence arising from the exponentials in the field operator

expansion. These terms have coefficients of 1L/2 or 73lr. Tho. in the limit 7 --+ 0 they

vanish. Alternately in the physical space they and their commutator with themselves

vanish in the physical subspace. Thus Ho is invariant under rotations.

I note that all the formulae given for the momentum expansions of the generators in
the physical space in the limit 7 -* 0 are consistent with the results given for quantised

electromagnetism in various works such as [99, 116]. Thus the theory described bv the
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Przeszowski Q-Lagrangian does satisfy Poincare invariance in the limit 7 -* 0, and the

true degrees offreedom of quantised electromagnetism can be recovered consistently; the

alpha prescription does generate a physical theory in the Abelian temporal gauge.
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Chapter 6

LJV-Divergences tn thea

Atpha-Prescription

6.1 Introduction

It is the issue of non-local UV divergences in Green's functions which continues to frus-

trate the demonstration that the generalised LM prescription in non-light-cone gauges is

consistent with a renormalisable quantum field theory of gauge-interactions[78,80]. Given

the problems I have outlined in the second and third chapters with the PV prescription

and the non-translational propagator approach, it would seem that the only remaining

way forward in the temporal gauge is the alpha prescription. Whether it too is plagued

by the problems that beset the LM prescription is the concern of this chapter.

Of course the question of the derivation of the prescription does influence the renor-

malisation problem. The position reached at the end of chapter 4 indicates that either new

vertices must be included in order to maintain BRST invariance with the alpha prescrip-

tion, or BRST invariance must be sacrificed altogether while a + 0. k shall transpire that

the renormalisation is best done for a # 0, and that this will require BRST non-invariant

counterterms. Of course the invariance is ultimately useful to proceed to higher loops via

Slavnov-Taylor identities. At present there seems no way around this diffculty but it shall

be possible to make some conclusions about the renormalisability despite this sacrifice.

Thus in the computations presented in this chapter the BRST non-invariance for a + 0

will be accepted and no account shall be taken of the new vertices discussed in chapter 4.

6.2 Feynman Integrals in the Alpha Prescription

Feynman graphs will generally involve a product of two or more gauge boson prop-

73
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agators. In noncovariant gauges characterised by the conditior n. A : 0 this generally

involves integrands with products of noncovariant 'denominators':

1

(q' 
")Í(q - p) ' nl

(6.1)

where g is the integration variable and of course a prescription must be provided for

the poles implicit in this expression. In order to simplify such Feynman integrations a

useful tool invoked, for example with the PV and LM prescriptions, is a decomposition

formula which enables the product to be split and the integral decomposed into more

simple expressions involving a single noncovariant denominator.

Unlike the PV prescription and one form of the LM prescription (that given by Man-

delstam [43]), the alpha prescription involves a basic denominator that is now quadratic

in the momenta: (q.n)' + o'(n')'. So double denominators become significantly more

complex. It is also crucial to treat a in an algebraic manner. For these reasons, though

one is forced to deal with signifrcantly more terms in any given computation, I have chosen

to use a partial fractions expansion as the basis for a decomposition formula in the alpha

prescription. So for a single 'Landshoff denominator', I use the expansion

(q.n)2 + a2

and for a double denominator,

1

I
(q.n - icr) (q." + ia)

1 1
(6.2)

1 1 1 1

lk."), + orl[((q - p) .n)2 + a2l 4a2 q.n I ia (q - p)'n * ia
1

p.n
1 1

)p.n t 2ia q.n I ia (q - p).n - ia
11

q-n - ia (q - p).n * ia
1+_(p. n'

1 1

q.n - ia (q - p).n - ia )l . (6.3)

This then reduces the problem toHere the (n2)2 factor has been absorbed into a2.

computing Feynman integrals of the form

Irrrr...r. : f
dr,q Çur8 llpn (6.4)(2n)"- (q, + zq.p - L)"(q.n t icr)

where, unlike the Feynman ie implicit in this expression, a is to be treated as a finite

non-zero quantity and maintained as such throughout all integrations.

Most authors dealing with Feynman integrals in noncovariant gauges usually proceed

now by employing an exponential parametrisation [90]. Here I prefer to use the more

conventional tool of Feynman parametrisation. To that end I adopt the techniques used
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in the paper by Konestchny [12S] with the proviso of non-zero, finite a. To review this I

consider the integral

I(a,b)= | o"n|2 +2p-q- L+ie)-"(q.n¡ia)-b. (6.5)

The covariant denominator in this expression and in (6.a) is generally the result of combin-

ing various massive and massless covariant denominators, in this case using the standard

Feynman method. I now combine the denominators in the integrand and obtain

I(a,b)= ffffi I 0",lo' a**"-'{r - r)b-lx (6.6)

[(qt + 2p. q - L)r i q. n(I- r) + ier ] ia(1. - r)l-"-a

and, for nonzero r the momentum integral may be written as

I o"nlrn*r*n';;')' -L-(n+n!-3)'+ø] (6'7)

where T: e * û(1- ø)/r. Now I can perform the momentum integration using standard

dimensionally regularised integrals [129] - either by incorporating the i,r¡in a complex mass

and using Minkowski space integrals, or by performing a Wick rotation as Konetschny does.

The result has the form

I(a,b): (-1¡"+a¿ o.4"+a-.1(!-i-b--y) [1 ¿rrzo+t-r-2u¡1- ,)b-'[M(n)]u-a-t. (6.8)I a r(r)T(Ð Jo 
*-* \

The function M is given by

M(x) = 4(L + p2)* + 4(p. n - ia)r(t- z) + n27t - *¡2 . (6.e)

Having completed the momentum integral I have taken e ---+ 0 as one conventionally does

in one loop covariant integrals.

Konetschny then exploits the factorisabilily of M -

M(r) = n2(I - ur)(r - ar) (6.10)

where u,)u are given by

,,,,t) =l"'-r@.n-ia+21(p.n- ia)2 -n2(p2 + D)t/21l@.n-ic.) (6.11)

- and the properties of the Appel function[130] F1 in order to eventually write the result

in terms of the Gauss hypergeometric function[131], 2F1. The result in this case for I(a,b)

t(2A)
r(ø)r(c) (r')-'(2)-24+1(p. n - i,a)-2Ax (6.12)

L+p2
P?.

ls

I (a, b) : (- 1¡"+a¿ Tu+t/2

zFt A, B;C;l -
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where

A = atbf2-u (6.13)

B : "t(b+t)12_u
C = a+b+712-u

andp2":(p.n-ia)2fn2.
Similar results can be obtained for (6.a) and for the purposes of the results to one loop

presented in the next section I computed these integrals up to the case of four Lorentz

indices, that is rtp to I¡,.rÀp. These results are among those presented in appendix B.

Turning to one loop order diagrams and the types of covariant denominators that will
appear, for massless diagrams involving, say, a gauge boson we have

1

q"(q- kY (6'14)

so that, combining denominators à la Feynman with parameter y, we must make the

following replacement in the above form (6.13) .

-yk2 (6.15)

-akp

For diagrams with a massive fermion the corresponding covariant part of the denominator

will have the form
1

q2[(q-k)z-*21 (6.16)

and the replacement in (6.13) is

-y(k, - *r)

-Ukp .

(6.17)

The crucial observation to be made here is that in the argument for the hypergeometric

function in (6.13) one has the factor

(yk .n + io) (6.18)

for some power ø. Because one is treating o as a finite parameter, rather than as an

infinitesmal, one is not at liberty to factor the parameter y out of this expression in order

to perform the parameter integrals, otherwise algebraic consistency is lost.

The complexity of the computation is now manifest. In order to obtain both UV finite
and infinite parts of integrals and diagrams the task devolves to computing Feynman pa-

rameter integrals over the hypergeometric functions. In some cases, as in the computation

L

Pp

L

Pp
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of the tadpole diagram, the hypergeometrics reduce to ordinary Euler gamma functions

rendering it easy to extract both finite and divergent parts. To proceed further is a signifi-

cantly arduous task which I have not pursued beyond qualitative veriflcation that negative

powers of the parameter a do arise from these integrals. Hence the limit c -- 0 must not

be taken even at the completion of individual momentum integrals. But this is no surprise

as I showed in the last chapter that even for entire diagrams relevant for the Wilson loop

the limit was unsafe. I should expect that in the computation of loop amplitudes the limit

should not be taken until individual graphs have been summed into a gauge independent

quantity.

Because the primary question I wish to investigate in this work is whether the alpha

prescription avoids the nonlocal momentum problems besetting the LM prescription, it

suffices in this work to consider just the UV divergent parts. Thus I have been content to

extract the infinite parts of integrals as u --+ 2.

Once these parts are obtained for the individual integrals with denominators (q.niicr)
they can be recombined via quite tedious algebra into the decomposition formulae (6.2)

and (6.3).

6.2.L Other ticks

As mentioned, I have only computed integrals up to the case of four Lorentz indices.

However in the graphs I consider below integrals are required with five and even six

Lorentz components - a nasty property ofthe above noted fact that the alpha prescription

denominator is quadratic. Nonetheless, the integrals I have computed suffice to generate

all other required divergent parts. Thus, though integrals with five or six powers of

momentum in the numerator could be derived from first principles this necessitates a

massive number of permutations of all free indices.

A simple trick I have used has been to exploit the specific form of integrals actually

appearing in diagrams which involve factors in the numerator such as powers of (q. n)2.

Such expressions may be reduced by using the substitution

(q . n)' * [(q .ù2 + o'(n')'] - Ío'(n')'l (6.1e)

and then algebraically cancelling corresponding factors in the denominator. The resulting

expression is then an integral with four or fewer factors of momentum in the numerator

for which the results up to Ip,vÀp ma! be used. Note that this does not invoke delicate

properties of distributions, and is thus an entirely safe procedure. Similarly, integrands

with powers of (q2) in the numerator may be simplified by cancelling in the denominator

- which the Feynman ie permits.
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p p

Figure 6.1: The gauge boson self-energy diagram.

A list of divergent parts of integrals used in the computations of the next section, is

presented in appendix B.

6.3 UV Divergent Parts of Diagrams

In the alpha-prescription I find the following expression for the gluon self-energy (figure

(6.1)) UV divergeut part

-^r . ig26"bC2(G).11, " 2 .ilii(ù=ffi[f(n's,,_PpP,)_-¡a'(sn,¿o¡,,*7nun,)).(6'20)

Of course, as discussed in chapter 5, the tadpole cont¡ibution cannot be a priori
neglected. I obtain for the UV divergent part

ri!(n\ _ is26:bC2(G)2 )¡^ .)

t'u\,, I6r¿eÎfi-a'f2n"9,,,I npn,f ' (6'21)

In the last chapter I alluded to a disagreement between my resuìt and that of Nyeo

[126]. Nyeoobtains, as2u-414forthecoefficient of nzg¡", andthe nrnrtermhasthe
opposite sign to that in my result. My analysis suggests that both these differences arise

from a single sign error in Nyeo's tadpole computations. As far as the discussion that
follows is concerned this issue is not particularly signiflcant.

The sum of (6.20) and (6.21) represents the divergent part of the one-loop gluonic

two-point function (figure (6.2))

ci!,@) = ffi8[]]{f0* - ppp,) - 2..2(n2s,, r 2n,n,)) . (6.22)

Note the lack of gauge or BRST invariance in (6.22);it does not satisfy the naive Ward

identity

nþGu,(P): g ' (6.23)

In light of the results of the chapter 4 this is entirely expected: without additional vertices

in the theory, the alpha prescription does not arise from a BRST invariant theory lg1,l21l.

b

v

o

¡I
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't l2 + 1t2
( 1-toop )

Figure 6.2: The gauge boson two-point function to one loop

Figure 6.3: The fermion self energy to one loop.

On the other hand, the expression for the self-energy is far simpler than previous

expressions derived fo¡ the LM, or generalised LM prescriptions. Moreover, it is purely

local in the external momentum, a feature not shared by the result in the LM prescriptions.

Turning to the matter fields now: the fermion-loop contribution to the two point

function does not involve an integration over the gauge-boson propagator. Indeed, it

yields the usual transverse term thus modifying only the coefficient of the transverse piece

in the above expression. I thus omit any discussion of this contribution.

The fermion self-energy divergent part (figure [6.3]) is evaluated

- E;¡(p): #:õþc,(R)lú . (6.24)

In fact, this is made up from two terms

(-ú + am) t 4(ú - m) :3ú (6.25)

the flrst being the familiar expression arising from the Feynman gauge piece in the gauge

boson propagator, and the second being directly proportional to a contribution which van-

ishes, by the Dirac equation, for on-shell fermions when externa^l lines are included. Thus,

the surprising appearance of mass independence in the full expression is only spurious.

pp
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Figure 6.4: The fermion-boson vertex to one loop order

The one-loop correction to the fermion-boson vertex has two parts: a QÐD-like piece

and a strictly non-Abeüan contribution involving the non-Abelian three-gluon vertex (fig-

ure [6.a]). For the first, one obtains

rfJ; = 1nr,rflffi¡rlc,ç¡-rcz(R)l (6.26)

and for the second

í:l; = w,rÐtu#aelc,çc¡. (6.27)

For clarity, the tree-level Feynman ¡ule fo¡ the vertex has been written as a separate factor
in these expressions for the amplitude. Summing these gives the divergent part of the full
one-loop correction to the fermion-gauge-boson vertex

}i,¡=ør,rÐ#a[-3c,(n)] . (6.28)

These expressions are extremely attractive for a number of reasons: they are indepen-

dent of gauge-related quantities such as a or n, and there are no non-local dependences

on the external momentum. Indeed, to one loop the divergence in the fermion-gauge-

boson vertex is momentum independent. Once again, these features are not shared by the
corresponding results in the generalised LM prescription[42].

Unlike the gauge-boson two point correction, these expressions do satisfy the naive

Ward identity relating fermion self-energy to the vertex parts

(k - p)'Lr(t',p) : -t(Ë) + E(p) (6.2e)

where Â and E (with no gauge group indices) are related to the original amplitudes by

li;¡ : gTi¡Lt, (6.30)

- Ð;¡(p) : E(p)6;¡. (6.31)
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6.4 Renormalisation

6.4.1 General Considerations

Before embarking on the renormalisation itself I frrst consider the mass dimensions of

the various quantities that have been implicit in the alpha prescripted propagator (4.1).

Maintaining n2 > 0 my previous statement that o has mass dimensionality one must

be altered. Adopting the notation di,m(Q) to denote the mass dimensionality of sorne

quantity Q, one finds

d,im@Jn\: t (6.32)

Now there is a certain amount of freedom in choosing the dimensions of o and z individ-

ually. For example if the gauge parameter À is taken to be dimensionless then d.im(n) = I
and o is also dimensionless. In what follows however there is no need to make such a

specific choice.

The other issue is that of power counting. The explicit computations outlined in the

previous sections verify that naive power counting is valid to one loop for the two-point

corrections considered; the UV divergences obtained are consistent with expectations based

on the counting of momenta in the integrals. At this stage no proof of the general validity

of naive power counting exists for Feynman integrals with the alpha prescription. The

reason why one should not in general expect this is because in the Feynman integrals the

denominatot (p. n)2 + o'(r')" arises. In some directions in momentum space this scales

ltke p2 for high momenta, but not in the directions in which p . n is constant (for example

if n, - (1,0,0,0) and pp = (Do,q v), for fixed o6 and v, where q is the scaling variable).

Nevertheless, for the specific case of my one loop results naive power counting works.

Moreover, the divergences are polynomial in the external momentum. This means that I

can introduce, at the one loop level, counterterms that are polynomial in the frelds and

derivatives. If one assunl,es that this is sustained at all orders then one can write down the

general form of counterterms appearing in the Lagrangian, to any loop order. The first

types of counterterm that will appear are those of the same form as the original terms in the

bare Lagrangian. These enable removal of divergences by multiplicative renormalisation.

The second types, which do not correspond with terms in the original Lagrangian will

remove divergences subtractiveþ. Thus power counting and the dimensionlessness of the

action give for these counterterms

f.c - (at/*¡a-ogtnl (6.33)

Here D is the operator dimension æ OLD) counting the number of fields and derivatives in

the operator. By the assumption of power counting D < 4. I take OLo) tobe homogeneous
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in n, (namely, independent of scaling of nr).

Generally if these counterterms are treated as vertex insertions in Feynman graphs,

they will generate new counterterms at the next order in perturbation theory. Will there

be a finite or infinite number of these? In (6.33) the factor (al*¡+-n plays the role

of a coupling constant - with positiue mass dimension. Renormalisability to a^11 orders in
perturbation theory is indeed guaranteed[132].

Other issues such as the breaking of BRST invariance implicit in (6.33) and the case

D : 2 shall be discussed below.

6.4.2 Counterterms

I now deduce the speciflc forms of counterterms necessary to cancel divergences in the

fermion and gluon two-point functions and the fermion-gluon vertex to one loop order.

Beginning with the fermionic sector where matters are quite simple. The coupling-

constant, fermion-freld and mass renormalisation constants for const¡ucting counterterms

are simple to write down in the MS scheme:

ztF:t+ffiscr(R)le

zz=r*ffittr(R)le

z*-,-ffittr(R)le (6.36)

where, as usual, e = 2 - c¿. These are consistent with the naive Slavnov-Taylor form for
the Ward identity discussed in the previous section

(6.34)

(6.35)

Ztp: Zz (6.37)

For the gauge-field ."n6¡palisation matters are complicated by the non-transverse term
in the gluon self-energy result. Introducing the usual field renormalisation constant, 23,

defined by

zs:7-,n'\=l"c'(G)lffiL t -l 
(6.3s)

will eliminate the transverse part of the divergence.

For the longitudinal part one is now forced to resort to a counterterm consistent with
(6.33) as neither the Yang-Mills Lagrangian nor the alpha (ot 8) Lagrangian of chapter
4 give a term of the appropriate form to cancel the divergence in (6.22). To one loop my
result for the counterterm Lagrangian is

¿(a) 
one-toon 

= ,, ,!'*u"r\) (n, A, + 2(n . A)r) . (6.39)" 
'no'' 

6 \'- -- ' -\
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If divergences at higher orders remain polynomial in the external momenta then to higher

orders the counterterm can be written as

Lg) : o2(21n2 A2 + zz(n . A)") (6.40)

for appropriate (infinite) renormalisation constants 21 and. 22. It is clear that the two

terms in this expression are consistent with the general form (6.33) for the case D :2.
This counterterm may be implemented in one of two ways (as opposed to the cases

where D > 2): either by including it in a new kinetic term and generating a new propagator

for diagrams, or by inserting it as a two-point vertex of order g2pat each loop order in 1PI

graphs in perturbation theory. The latter course is related to the former in that the new

propagator will be the consequence of an infinite sum of a geometric series of insertions;

the first method truncates the series implicit in the second approach.

Following the course of defining a new propagator is undesirable. Consider flrst that

this situation is similar to that found in massive QED/QCD, where a mass term in the

Lagrangian M2ApAp is is seen to generate aterm proportional top*prf p2M2 in the cor-

rected propagator. The difficulty that arises here is that power counting is lost in the

propagator and the theory is not manifestly renormalisable[132]. In the alpha prescrip-

tion, aln2 behaves precisely like a mass and the same danger is apparent. The danger of

nonrenormalisability is however avoided by truncating the series as stated above. The sec-

ond reason defining a new propagator in order to introduce the counterterm is undesirable

is because the object of fundamental concern in this work is precisely the Landshoff form

of the propagator (a.1); it would merely obscure matters to follow the course of deflning

a new propagator.

The other issue to be dealt with is that of the breaking of BRST invariance for non-zero

a in the new counterterm (6.39) or more generally in the counterterms (6.33). Because

the gauge-dependent divergences found are proportional to a2 it might seem reasonable

to take the limit a ---+ 0 before the limit 2a ---+ 4, provided it is done in gauge independent

objects for which we should expect, if the theory is consistent, the limit a ---+ 0 to be

viable. In the Wilson loop computation it was possible to take the limit a --+ 0 for the

sum of all diagrams before 2a --+ 4. What was occurring in that calculation, had one been

explicit in dealing with the divergences in the loop, was that after the first limit (which

had no singular behaviour) one would have been left with divergences in the Wilson loop

amplitude which were alpha independent and which could be absorbed in the coupling

constant renormalisation [1 1 1].

Howevet, the legitimacy of the limit a -* 0 in all gauge independent quantities is a

formidable question in its own right and the ideal approach would be to disentangle it from
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the renormalisation problem. The introduction of the BRST non-invariant counterterm

enables the one-loop renormalisation now for a l0 and so facilitates this disentangling of
problems to one loop order at least.

The price to be paid for this unravelling of two problems is that, alluded to before,

of characterising divergences at the higher loop level via Slavnov-Taylor or equivalent

BRST identities. In admitting the counterterm structure (6.39) such a tool is surrendered.

Moreover, for non-zero a unitarity would be violated for the non-Abelian theory. And the
verification that the limit a ---+ 0 restores unitarity is a long way off.

At one loop, nevertheless, the renormalisation of the fermion-gluon vertex and the
fermion and gluon propagators is now complete.



Chapter 7

Conclusions The Alpha-

Prescription

7.L Results

I have discussed in depth two approaches to a well-defined YM theory in the temporal

gauge in perturbation theory. The former, based on fully-fixing the remaining gauge de-

grees of freedom, invokes complications which undermine any usefulness that the temporal

gauge might present.

I have therefore focussed in greater detail on the second approach - that of the alpha

prescription.

I may conclude that it is possible to derive the exact alpha prescription based on a

Lagrangian theory. The two forms this may take presented in this work involve either a

BRST invariant Lagrangian in the temporal gauge which necessarily generates an infinite

number of, well-defined, vertices that must be included in the Feynman rules, or a BRST

non-invariant theory which nonetheless simplifies the number of additional rules required

in perturbative calculations.

The generation of a new four gluon vertex rule in the first derivation has not been

checked in the static Wilson loop, which Landshof shows to be consistent with the prescrip-

tion provided the regulating parameter is kept non-zero until all diagrams are summed.

Landshoff's work omits any reference to tadpole graphs which are not necessarily zero lor
non-zeto alpha. But I have shown in this work that these aJso do not contribute to the

Wilson loop in the limit a -' 0. Also in this approach to the derivation I have outlined

how the BRST quantisation could proceed for the complete non-Abelian theory - but the

presence of the new vertices again causes one to question whether this is a satisfactory ap-

proach to the temporal gauge; though FP ghosts are shown to decouple, the new vertices
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again overcomplicate the theory.

In the BR,ST non-inva,riant a,pproa,ch, rlue to Przeszowski, I outlinecl his Hamiltonian

approach to the quantisation which becomes difficult to solve in the interacting theory.

Thus limiting myself to the free Abelian theory I reviewed Przeszowski's work showing that

in a subspace of the indefinite metric Hilbert space it is possible to recover the physical

requirements of the positivity of the Hamiltonian and number operator and the weak

implementation of the Gauss law. I discussed my joint work with him demonstrating the

recovery of Poincare invariance in the limit a * 0 in the same subspace of physical states.

In particular, this subspace does map into itself under space-time translations, rotations

and Lorentz boosts.

Finally I initiated work on renormalising YM theory in the temporal gauge using the

alpha prescription. I developed techniques for performing Feynman integrals for loop am-

plitudes in this prescription, and used these results in computing the ultraviolet divergent

parts of the gluon self-energ¡ the fermion self-energy and the fermion-gluon vertex to one

loop. These results were seen to be eminently more simple than corresponding results

in the most seriously considered alternative prescription in the literature thus far - the

generalised Leibbrandt-Mandelstam prescription.

The renormalisation constants for the fermion and gauge boson fields, the mass and

coupling constant were computed. A counterterm, which is not BRST invariant, was con-

structed to remove the longitudinal divergence in the gauge field two-point function. Thus

the renormalisation of the gluon and fermion propagators and the fermion-gluon vertex

was demonstrated at the one loop level. This renormalisation was achieved, moreover, for

non-zero a. Dimensional arguments and the assumption of power counting, valid at least

for the graphs considered so fat, dictated the general form for these BRST non-invariant

counterterms. Introducing these as vertex insertions at the next loop order was shown to

be consistent with a renormalisable theory.

7.2 Outlook

Most of the problems that arise directly from this work rest on two outstanding diffi-

culties for their resolution:

o The completion of the Hamiltonian quantisation for the full interacting theory.

Knowing the full Hilbert space in light of this would show that the temporal gauge is

a physically consistent and unambiguous theory, from which the unphysical degrees of

freedom - such as Faddeev-Popov ghosts - have decoupled. Thus, turning to the goals
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estab[shed in the opening chapter, the fulfillment of conditions (1) and (2) rest on the

completion of this work.

¡ The verification that the limit c ---+ 0 is permissible for, at least, a]|, gauge independent

observables.

Condition (a) in chapter 1 is tied to the completion of this task, but also invokes the re-

quirement that, upon taking the limit, the gauge-independent amplitude for an observable

results. In the absence of any elegant method, one appears forced to check this for all

conceivable gauge independent observables. The root of this problem is that conventional

field theoretic work is based on Green's functionò as the primary constructs of the theory.

The limit a -* 0 is ill-defined at the level of the coordinate space Green's functions. The

check that the higher order vertices implicit in my derivation do not affect the physical

theory involves the limit. This involves two subsidiary questions: whether the new vertices

spoil gauge-independence in observables, and whether divergences arising from them ruin

renormalisabiìity. The demonstration of unitarity of the S-matrix as o ---+ 0 (condition (3)

of chapter 1) is, of course, intimately tied into these questions, and no work has been done

in this respect.

Another question is what form will divergences arising from the three-gluon and four-

gluon vertices at one loop take? Is naive power counting sustained in integrals with

the Landshoff denominator? This would secure the renormalisability to all orders in

perturbation theory on the basis of general arguments. The explicit demonstr_ation of

renormalisibility is hindered by the numerous places where BRST non-invariant terms

have been added into the Lagrangian - either to derive the alpha prescription, or to
renormalise.

Numerous outstanding difficulties remain. Nonetheless, the work presented in this

thesis suggets the alpha prescription is a way forward for a physically consistent, and

renormalisable theory of the Yang-Mills field in the temporal gauge. That the final form

this theory will take is not much simpler than the theory in covariant gauges seems an

unavoidable conclusion. Immo id,, quod aiunt, auribus teneo lupum narn neque quomodo a

me amittam, inuenio: neque, uti retineam sc'i,or.

llndeed it is as they say, I have got a wolf by the ears; How to loose him f¡om me I don't see, how to
hold him I can't tell. Terentius, Phormia3,2,2l.
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Appendix A

Conventions and Rules

4.1 Metric Conventions

The foilowing conventions - largely adopted from Itzykson and Zuber [99] - have been

used for the metric tensor

gþ' : gp, =

10 0

0 -1 0

00 -1
00 0

0

0

0

-1

(A.1)

where derivatives with respect to contravariant (cp) or covariant (rr) coordinates are

written in the form

At' : l-L : A.- (4.2)

AP= 0r, '

Repeated Lorentz (Greek) or spatial (Latin) indices indicate summation

A.B: A*B'- A*B*- T¡",APB" - gp'ArBr: AoBo -A.B : AoBo - AiBi (A.3)

where a boldface letter represents a three-vector and the Latin index tuns over (7,2,9).

The three dimensional gradient operator is denoted

v: (âr, ô2,0s): (ôi) : (-rt) (A.4)

The Laplacian operator is written throughout in either of a number of ways:

Y2=ð;ô¿=A=-ô.0; (4.5)

and the d'Alembertian operator is then

s - 0P0¡": A3-v2:03- L. (4.6)
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p

With these metric conventions we adopt the following definition of the Poisson bracket

for a theory with a vector field ,4, and a scalar field /:

{u,u} = I o" ¿#t#b h#ø. h *"frõ - errø, (A z)

4.2 Feynman Rules for Yang-Mills Theory

As mentioned at the beginning of this work, the conventions of Muta [100] have been

adopted for the Feynman rules, with appropriate modifications to the propagator for

working in an axial gauge. Because ghost-decoupling is a sought for aspect of the rvork

FP ghost Feynman rules are not given.

¡ Gauge Field Propagator:

Figure ,{.1: Gauge Field Propagator

oi!,@t= #d,,(p) (A.8)

where dr,(r) is the appropriate facto¡ for either the bare axial gauge propagator

(no prescription) or with the alpha prescription - see the main body of the text for

details.

o Quark Propagator:

l_ l

Figure A'.2: Quark Propagator

s'í(p): , 6" ,, (4.9)(*- ú)
whete, in this context, the indices (i, j) denote the components of the representation

matrices of the gauge group SU(N).
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¡ Three Gluon Vertex:
"l u1

P1

p2

a2 a.-
Jv2 u3

91

Figure 4.3: Th¡ee Gluon Vertex

- ig foßzu Ígrrrr(p, - pz)p, * gurr"(p, - ps)p, I 9p"pt(pt - p)rrl . (4.10)

o Four Gluon Ve¡tex:
ur uI a u4

u2 v2 u3

Figure 4.4: Four Gluon Vertex

-g2Í(1"'"t" J:o2oto - fo'tolo J:o''n',o) gururgu"un* (4.11)

(fo,o2a fqolo - J:47a4ø.f"""t") gnptgpzpt * (f"røt" t"1o2ø _ !:oro2o l:oro.1") grrurgu"ur)

o Fermion-Gluon Vertex:
a u

j

Figure 4.5: Fermion-Gluon Vertex

gtpTi¡ (A.12)

l

o Gluon Loop:

+1ffi6'bs" (A.13)
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P

Figure .A.6: Gluon Loop

a
b

u
V

d

B

].

j P

Figure 4.7: Quark Loop

o Quark Loop:

(4.14)

whe¡e a and B are spinor indices

o Symmetry Factors: The gauge boson loop and tadpole diagrams both have symmetry
factors of llQ\ = Il2.

A-3 Feynman Rules for static'wilson Loop Amplitudes

The above rules apply for diagrams within the loop amplitude. Extra rules are required

in order to 'attach'the diagram to the rectangular loop.

o Gluon Attaches to Horizontal Rungs
*l

v

-+lffit"n"o

1/2

v

-T/2
L/2 *J t./2 -L/2

(àl (b)

Figure 4.8: Gluon Attached to Horizontal Rungs: (a) Lower, (b) Upper

(o) 
I!'r,0,"o3!,Gr /z,xsiuo,y) (A.15)
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î-L/2(ó) J",, a4Dfl\(uo,v;Tf 2,4)

¡ Gluon Attaches to Vertical Rungs:

(A.16)

T/2

*o

!y
v

"o

-T /2
-L/2 L/2

(a) (fr)

Figure 4.9: Gluon Attached to Vertical Rungs: (a) Left, (b) Right

1/2

r-r/2(o) l_, axsDï,[fuo,tixs,-Lf 2) (4.17)
Jr 12

(ó) ['lt. orooSur(ro, Ll2;ao,y) (,,\.18)
J _T/2

In the temporal gauge these last two rules are unnecessary as Dop = D ¡,s = 0. That

is, such diagrams rvill vanish.

o Group Factors: As well as the above rules, a representation matrix ?" is present

at each vertex between the gluon and the loop contour. These matrices must be

multiplied in the order in which they attach to the loop in the direction of the

oriented contour. The trace of the resulting matrix in the final amplitude must be

taken. For order 92 diagrams the trace generates an overall 'Abelian' factor:

Tr[T"T\6"b : Cz(R) (A.19)

where the ó"ö comes from the single propagator in the diagram.

A useful rule for simplifying the sum of double propagator diagrams such as those

in figure [4.10] may be de¡ived from the properties of the gauge group algebra.

This diagram involves the expression

Tr[T"TbT'Td1¡6"b6.d1, + 6""6bdIz + 6"d6b"h] (A.20)

where 12 is always the integral corresponding to the 'crossed-propagator'diagram.

Afte¡ some group algebra, the expression can be rewritten as

c2(R)2lh i rz * h) - rl2c2(R)cz(G)rz (A.21)

whe¡e the first term here is the pure Abelian cont¡ibution to second order, and the

second is the strictly non-Abelian contribution. Thus the non-Abelian contribution

arises purely in terms of the crossed diagram (2).
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c d c c

(r) (2) (3)

Figure 4.10: Double Propagator Diagrams: (1) * (2) + (3).

dd

babab a



Feynrnan Integrals

Appendix B

To simplify expressions the following notations have been introduced

I
1612(2 - u)

8.1 Integrals with Linear Noncovariant Denominator.

The following integrals complement the results given by Konetschny [128] who deals

with zero or one Lorentz indices - that is, zero or one momenta in the numerator of the

integrand - and has the equivalent of the parametet a = 0. Here I keep o nonzero and

give results up to four momenta in the numerator.

8.1.1 Complete Integrals

I begin with integrals for which the complete results have been determined - divergent

and UV convergent parts. The result for no Lorentz indices is given in chapter 6 in 6.13,

and the notation developed there will be used here - with the additional simplification of

writing (p.n- ia) as p.nin the result. This is to avoid confusing ain the prescription

for the p- n pole with the exponents o and B in the integrand of the expressions below.

o Two Lorentz Indices:

[q.n]r:(q.n)r+or(n\2

Tlpr....tr*l : symmetri,se T u.r.t. indices þr, ..., þn

no: d",!
' {rn¡"

(8.1)

(8.2)

(8.3)

(8.4)
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where the ?(r) denote the following tensor structures:

Tf,i,) : 9u, Tf,2,) : prp, (8.6)

T[3,) : pU"n,) Tf,n) = nrn,

and the functions ,9 are given by:

s{t)(o, þ;r,p) ='(-rt,!,if-t 4a*B-u-3/2(n2)a-u-r72p. n)-Q.+B-2u-2)(4o)-

.. r(o + p - u - r)t(2a + p - 2u - 2)

" (B.z)

x 2F1(a+ * - a - r,"* * - 0) - )t'* þ - a -T,t -
p2+L-E- )

s[')@, þ;,,p) =
;( -'t\oI9"' r,'' r.... 4o+9 -. ¡nz¡o-. (zp . n¡-Qo+9 -2.¡

(4tr )' \

.. f(o+B-u)r(2a+þ-2u)"@
x 2F1(a + t - a,a * * -, + );. + p -, + !;t - 

o' 

O-:t,

i(-t¡"+o
(4n)'

sj')(o, þ;r,p) 4at B -u -1. / 2 (nz ¡a 
-. - r 

12p 
. n¡- Qo+ B -2u -t)

X r(a)r(B)r(2a*2þ-2r)

x 2F1(a + g -, - :," * g - o);0 + p -, + jt -

f(c* B-u)1(2a+p-2u-I )r(É + t)

l(o

p2+L
P,r

(8.8)

(B.e)

)

i,(-t¡"+o
(4n)'

s\')(o, þ;r,p) na+Þ-u-t (vz¡a-.-z (2p . n)-Qa+0-2u-z)

I(o+ þ-r)r 2a*þ-2u-z)r@+
X

o Three Lorentz Indices:

I

t(B)t(za*28-2u)

x 2F1(a + * - u - r,"* * - u - |t, * þ - u +|;t -
p2+L

p2r )

6

(8.10)

Dq {Ip.%vÇ^

q +2p.q-L+ir).(q.nIia = D,r9^fp;sj')(", o;r,p) (B.11)
j:7

where we now have the six tensor structures:

,!"!,)^: 9[¡ruPs]

r[t)^: Pt"P,Ps

rl'.u,)^: Pþnvnsl

T[',)^ : 9[¡",ns]

Tf,4,) = p¡¡"p,nt1

T[u,)^ = ntrnun^

(8.r2)
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The six ,Sjt) uru'

sÍt)(", þ;r,p) = -l)a+p a*B-u-z/z 
1oz¡a-u-r (2p . n)-Qa+0-2u-2)
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(8.13)X

Øn
l(o* þ-u-I f 2atþ-2w-2

I(a)r(2a+2P-2u-2

i(- 1
aIþ*7

x 2F1(a + * - a - r," * t - e - f,," * B - a - T,t -

sj')(o, þ;r,p) : ¡( 
, |)Ï!P +"+p-u-2 (n2)a-u-z (2p . n¡-Qo+ß-2.-z)(4tr)' \

.. f(o + P - u - 1.)t(2a + P - 2u - 3)t(B ¡ t)
^

x 2F1(a + * -, -1," * * - e -1;a + B - u - T,t -

p2+L
p2r

p2+L
P,r

p2+L
P,I

(8.14)

(8.15)

(8.16)

)

)

sjt)(", þ;r,p) : d + P - u (n2 )d 
-. (2p . n)- (2 d + P -2@)

(4n)'

X
f(o+ þ-r) 2atB-2a

I(a)r(2c*28-2u)

x 2F1(a + * - a,oI * -, +|;,+ P -, +rr;, - o' *7.t,

slt)(", þ;r,p) : -1)a+B+l a*Þ-u-t lzçn27a-u-t (2p . n¡-Q"tB-2t't-t\
(

A

(4n)'
.. r(o + P - u)t(2a + P - 2u - r)t(þ + t)x r@)r(p)r(2a + 2p - 2,)

ß | ß I n2+L.
x 2F1(a + ; -, - r,o t t - a;a + þ - a * ri, -'-E-)

sÍt)(o, þ;r,p) =
:/ r \a-l-641'¿\-L) " ¡afB-u-l¡^2¡a-u-2¡n^. ^,t-(2a!B-Zu-2)

-+

(4tr), 
rlnz¡a-u-z(2P'")-l

sá')(o, þ;r,p) : n(-r'r]Ï!,1*' 
4a+B-u-3/2 (nz¡a-.-s r2p . n)-Qo+B-2u-3)(4r)'

.. f(o + P - u)t(2a + P - 2u - 3)t(þ + 3)

^ r1"¡rçB¡rqz" ¡ zB - zr¡

x 2F1(a + t -, -T," * t - u -1;c* B - u + 
rr;r - )

(8.18)
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. Four Lorentz Indices

f
I or :frg^,1p¡sja)@,þ;,,p). (8.1e)

There are now nine possible tensor structures to deal with this, and nine correspond-

ing coefficient functior,, ^91n). This is the most complex integral necessary for the

calculations in this work.

-11)t )r'\o : 9[pv9sp]

rl"1)^o: 9l¡rvP\npl

Tl"u,)s, : P¡tPuP\Pp

Tl"l,)^r: Plp.PvnÀnpl

Tl",n)^o = npnun^np

^(21t ir';.p = 9l¡rvPÀPpl

TÍ4r) = g[¡"rnsnpl

T[6r)^p = P[¡rPvP\np)

TÍ8,)^o = P¡¡"n,nsnr1

(8.20)

s\n) (o, þ; r, p)
(-1 oIþ

.. f(o + P - u - 2)t(2a + p - 2u - 4)
^

x 2F1(a + + - a - 2,," * * - a - |,' * B - a -T,, -

s[n)@, þ;r,p)
i(-l)*+B+L a*ß-u-z/2 

7nz¡a-u-r (2p . n)-Qa+p-2u-2)

_À

(4n)'

(a"
l(a* þ-r-I) 2a* þ -2u -2)

a+g -u-3 çn2¡o-u-z (2p . n¡-ea*p -zu-a) (8.21)

1

-11alB-u-S

p2+L
P,L

p2+L-E-

)

X

X

X

I(a)r 2a*2þ-2u-2)

x 2F1(a * * - a - r," * * - u - ),* * B - u - ï,, - fft
(8.22)

sÍn)(o, þ;r,p)
i(-1¡"+8"1

4n)'
a+9-u-2 

çr2¡a-u-z (2p . n)-Qa*?-zu-z¡

l(o + B - u- 1)l(2o + B - 2a - 3)r(É + t)
I(a)r(B)I(2a-r 2þ - 2u - 2)

x 2F1(a + t-, -1," * * - u -1;a+ B - u - i,, - ffl
(8.23)

sln)@, þ;r,p)
i(-t¡"+o+

/ z 
7rz ¡o 

-. -3 (2p . n¡- Qa t B -2u - 4)
(4o)'

f(o+þ-r-r) t(2atþ-2u-+)r@+z)
r(a)r(B)r(2a I2þ - 2u - 2)

)x 2F1(a * * - u - 2,"* * - u -|,* * þ - u -lt, -
(8.24)



8.1. INTEGRALS WITH LINEAR NONCOUARIAN? DENOMINATOR.

p"+L
P'r

p'+ L
Pzt

99

(8.25)

(8.26)

sÍ')(o, þ;,,p) : o(;))Ïio 
norÞ-u1nz¡a-,(zp. n)-Qa*Þ-z-)(4o)- \

., I(o+þ-u)1(2a+þ-2a)
^ f(,,q(2"+2p-2r)

.aß11x 2I'1(a l t, - a,o * ; - u I r;a + {J -, * r;I -

x 2F1(a * | -, - ;," * * - uia + P -, +|l -

sán)(o, þ; r, p) : ¿(;rr)TIP 
+a*g-u-t/zçrz¡a-..-t (zp . n)-Qa+ø-2u-r)

(4n)-

., I(o + B - u)1(2a + P - 2u - r)t(B ¡ r)
^ \"D(p)r(2" + 2p - 2r)

)

)

sln)@,þ;r,p) =
i(-t¡"+o

na + 9 -u -7 (vz ¡a 
-. -z ç2p . n)- Qo + P -2, -2)

.. l(o + P - u)t(za + P - 2u - 2)t(B + 2)

^ r(")r(p)r(2a + zp - 2r)
ß A I ^ 1 p"+L,

x 2F1(a + ; - u - I," + ; - u - r;a + B - a + r;t -'-T)

sÁn)(o, þ;r,p) :
i(-t¡"+o a * 9 - u -z / z 

çnz ¡a 
-u -s (2p . n)- Qa + 0 -2u -3)

(4n

4r

(8.27)

(8.28)

.. f(o + P - u)r(2a + P -2c..' - s)f(B 1 3)

^ t1"¡rqB¡rlz'. ¡ zB - zr¡

x 2F1(a * t -, - T," * t - a -r; a + B - a +);r -'ff1

sán)(a, þ; r, p) : u(;PÏl! 
^o*p-u-2 

(nz¡o-,-n(2p . n¡-Qare-zu-+)(4r)'
., r(o + B - u)t(2a + P - 2u - 4)t(B ¡ 4)
^ \ùr@D(2" + 2p - 2r)

x 2F1(a * * - u - 2," * * - u - |,, * B - u + 
rr;r 

- Çl
(8.2e)

8.L.2 UV Divergent Parts

I now give the divergent parts ofthe basic noncovariant integrals used in deriving results

for the alpha prescription. The parameter a has been kept finite, so these complement the
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results given in the appendices of the review by Leibbrandt [90]. Pole or divergent parts

of integrals are now assumed from herein.

o Massless Integrals

Ioo q2(q - p) q.n t ia) =p.#Plg,,* ffi- \n,n,tr

(8.30)

(8.31)

(8.32)

(8.33)

(8.34)

9,
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8.7. INTEGRALS WITH LINEAR NONCOYARIANT DENOMINATOR.

I Dq ÇpÇuQx{
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o Massive Integrals:
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: Same as result f or m: 0. (8.38)

(B.3e)

(8.40)

npnun^np

(n')"

The following integral is useful for the non-Abelian correction to the fermion-gluon

vertex:

+4(
p-n

3!

The results for integrals with the same denominator as in the integrand of this expression,

but fewer momenta in the numerator vanish - consistent with power-counting. AII of these

results have more general applicability than the alpha prescription.
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8.2.L Massless Integrals
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These integrals suffice to generate all other required divergent parts using the reducing

methods discussed in the main body of this work. One observes that replacing the mass

by zero introduces no IR divergences, thus divergent parts are the same as those for the

corresponding massless integrals.
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ERRATA

ed bY "guananteed"'

e rePlaced bY "irreParable"'

zeszowskitt.

Page10,para.3,line10:..safegaurding,,shouldbereplacedby..safeguarding''.
page 15, after equation (2.15): replace entire line with "where 4 is given by (2'a)' Jp is a'

c-numberSourceforthegaugefield,andxard.Iarea-numbersoulcesforthefermion'''
page 16, Iast para., line 5: after "dimensional regularisation[lO2]'" insert sentence "of

course then, in any regularisation scheme other than dimensional ghosts do not decouple

for the inhomogeneous axial gauge'" '

Page 17, para,.  ,line 5: between ..the BRST transformations are a'' and ..subset of the

gauge transformations" insert "(global)" '

Page 18, section 2'Arhrre 2: delete comma in "define' by"'

Pagelg,equations(2.28)and(2.29):insertbrackets..(',and..)',arotrndtheoperatorsum

Dib(t)r!(r) + srhoT"'þ' ,,1

Page32,equation(3.3):..r_g,,indenominatorshouldbereplacedby..x_}
Page 34, equation (3'13): "ll2u should be r:placed by "t"'

Pa,ge 37, equation (3'31): uLl2" should be replaced by "å"'

Pa,ge 44rline 6: "gautantee" should be replaced by "guarantee"'

Page44,para.5,line2:..accomodate,,should'bereplacedby..accommodate''.
Page 45, equation (4'7): insert factor 92 in second term'

Page45, secondlast para.,line 11: "'prescript'" should' be replaced by "prescribe"' Next

line: "unprescripted" should be replaced by "unprescribed" '

page 46, two lines after equation (4-10): "unprescripted" should be replaced by "un-

prescribed,,. Two lines after equation (a.11): "prescripted" should be replaced by "pre-

scribed".

Page46,section4.2.2:..speclically''shouldbereplacedby..specifically''.

Page46,section4.2.2,line4:..andnol''shouldbereplacedby..andso''.
Page 50, line 7: "invariance" should be replaced by "noninvariance"'

PageS4,equation(a.36):allfactors..l/2''shouldbereplacedby..}''.
Page 57, after equation (4.76): between ..and has,, and. ..only contributions'' insert ..(un-

surprisinglY)".

Page 62, after equation (5.3): replace line with "where the number of space-time dimen-

sions is continued from four to 2a- The general form (5'3) is consistent with both my

result, to be discussed in the next chaptet"''

Page 63, two lines before section 5.3: "occutence" should be replaced by "occullence"'

page 66,line 3: delete the sentence "The problem with "' in the result'"' (The sentence

onlyconfusesandtheintend'edmeaningcontributesnothingextra).
page 67, second line after equation (5.36): "assymmetry" should be replaced by "asym-

metrYtt.

PageT3,endoff.rstpara.:ad.d..ThespecificproblemthegeneralisedLMprescription

1
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sufÏers of ¡elevance he¡e is trrat of nonloca.l momentum dependence. Green,s functionsin the temporal gauge with LM prescription suffer f¡om terms with externa.l momentumdependence t/(p'")'Now in the light cone gauge these consistently occur with a factorn' so that the unamputated graphs vanish and the renormalisation is viable[4g]. In thetemporal gauge this does not occur and so no renormalisation program has been developed

;ïr:Ï: It"t"' 
The question is wherher wirh the alpha prescriprion maters are any

Page 76, after equations (6.14), (6.16) and (6.1?): "(6.13)" shourd be repraced by ,.(6.r2),,.
Page 85, para' J, line 4: derete commas in "number of, we'-defined,,,.
Page 87, last para., line 2: ,,suggets,,should 

be replaced by ,,suggests,,.
Page 93, equation (4.21): ,,1/2" should be replaced by ,,å,,.
Page 100, line 2: "herein" should be replaced by ,,hereon,,.

eference [96]: should be replaced by "A.c. Kato'iatis, R.J. crewther, ,propaga_
Fully-Fixed remporal Gauge', Aderaide university prepr.irt ADp_92_1g6/T1i6.
to Nuclear physics 8.".
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