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STIMMARY

Ilre movement of containers ln the Australia-Europe

container shipping system is fornulated. as a network flow

noitel-. Und.er the assunption that cargo requirenente are

known, the nininization of the cost of the novement of the

contalrrers ard. the total container lnventorXr is expressecl

as a minlmun-cost network flow problern, with the variaþles

restricted. t o take integral values. This is a two-

conmoillty problem because it is necessary to d.istinguish

two t¡4pes of container - general, used. for ctry cargor and.

insulateil, used. prinarily for refrigerateil cargo but also

for d.ry cargo. Near-optinal solutions to the two-conmodlty

problem are oþtained using an efficient heuristic method.

whieh utilizes the structLrre of the problem a¡d. guarantees

integral solutions. Conpüter programs to implement the

heuristic solution procedure have been written a¡ld. used. to

Blve realistic answers to nargr questions about the Atrstralia-

E\rope system. Several mod.el applications using reali-etic

d.ata are given.

For practical purposesr the heuristic proceclure

provid.es a completely ad-equate integral solution to the

two-conmodity problen. But it is of theoretical interest

to examlne the natr¡re of the optlmal solutions to the two-

eonmod.ity problen when the variables ane not restricted. to

take integral values. Certain classes of linear prograns
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have the property of always possessing an optlmal solution

which is integral. This tflnteger propertyil is possessed.

by one-comnodity network flow pnoblems, but in gelæral the

optiural soluti ons to nr:J-ti-conmoitlty flow problems are non-

integral. In a nrrmþer of special cases it is proved. tlet
the two-commodity problem has an integer property. In fact

1t is shown that there 1s a class of multi-comnod.j-ty net'-

work flow problems which nay be converted. to eguÍvalent

one-conmotlity problens. However in general the trvo-

eomnoctity problem has fractional optinal solutions.

Sinple examples basecl on the Australia - Europe network are

given to d.ernonstrate these theoretical aspects.

(")



STGIIED STA1IEI(ENT

I hereby cleclare that this theeis

contains no material whlch has been accepted.

for the awarcl of an¡r other d.egree or cllpì.ona

in any University ancl, to the best of ny

knowled.ge ancl be1lef, it contains no naterial
previously publisheô þy another pensonr exce¡rt

where Oue reference is mad.e in the text of the

theÉis.

K l{oble

(vr)









3.

Dantzig and lVolfe (ch.23, [7] ).
A number of special results have been obtaj-ned. for

two-commod.ity problems on uncLirected. networks. Hu lZll ¡-

l23l has provecl a two-commod.lty ma:r-flow mj.n-cut t]reorem,

which 1s analogous to the one-conmodÍty theorem of Ford- ard.

Fulkerson [9] r ând. va-rious othen results have been obtained.

by Rothschild arul l'rlhinston l37l [4O], rane [Ll+] [Ue 1 ,

Arinal t1] ancl Hakimi 1131. Some computer times are given

in [4o], but these are not very encouraging. In argr case,

the qpecial properties of two-commod.ity problems on un-

d.irectecl networks d.o not hold. for d.irected. networ:ks. The

problen formulated. in Chapter 2 of this thesls lnvolves two-

commoClity flow on a clirected. network.

Slnce this problem has a multi-stage stnrcture, it
might be thought that use of Dantzig-ïVolfe d.ecomposition

17) would. provicle an efficient solution methoil. fnileed.

Bellnore et a1 have proposeit a specla3- decomposition algo-

rithm for a one-conmod.lty multi-period. problen [¡]. But

in their problen, each stage is linkect only to the lmneiLlate

ly preced.ing and. succeed.ing stages, trhereas in the Chapter 2

problen, the linkage of stages is far more complicatecl, ard'

d.ecomposltion is far less palatable.

FortunateLy, it has been possible to obtain near-

optimal sol-utÍons to the A},røpter 2 two-commod.lty problen

uslng an efficient heurlstic procedure, vhich is itescribed.
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in section 2.5. In nuner.ous appllcations of the network

flow mod.el, ttre heuristlc procedure has provecl capaþIe of

giving eonpletely aclequate solutions to the two-commod.ity

problen. Realistic applicatj.ons from the Australla -
Europe container system are d.iscussed..

Chapter 3 of the thesis is primarily concerned. with

theoretical aspects of the two-commod.lty problen. In
particular, conditions are established. under which the

optinal sol.utlon to the two-commod.ity problen is i-ntegral.

The results of HeLler and. Tompkins [1S], HoffÏran ancl

Kruskal [19] anit Veinott anil Darttzig [Ue1 are used- to

establish a c1ass of trrvo-commod.ity problems which have

integral- optinal solutiorrsr In genetal-, the optinal

solution to the two-commod.ity problem is fnactionalr âs

shor¡rn b¡r Jewell []O]. Fractlonal examples baseit on t'Tre

Australla - Europe eontainer network are givenr
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NETECR,K rrÏ,ovll MoDEI 0F TTIÐ AUSTR.AT,TA-EIIRoPE

CONTAINER SMVICE

2.1 Australia-Europe Container Shipplng Systen

In March 1969, the two consortia Associated. Contair

er Transportation (¿Ct) and. Overseas Containerg Ltd.. (OCi,)

inaugurated. a contalner shipping service between the

UniteiL Klngd-om and .{ustralia. The service was d.esigned.

to provid.e a regular schedule of cellular container ships

with one port of call - Tilbury - in the IJK' anil three

ports of call - Syd.ney, Melbourne and. Frenantle - 1n

Australia (3'ig. 1). t¡fith a speeit of about 22 lr;nots, the

contalner shlps complete a ror:nd. voyage in aþout 70 d.ayst

and- ailhere closely to the follovring schedule:

port

lilbury
Fremantle

Syd.ney

MeLbourne

Fremantle

Tilbury

Tilbury

nocLe

1

2

3

5

2

1

1

d-ay

1

23

28

53

39

6z

71.

It is a feature of contalner ship operations th.at the tine

a ship spend.s in port is minimal - less tÏ:an half a d.ay in
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Fremantle at each Southbor:¡ril and. Nort]rbound call' about

three days 1n each of Syd-ney and. Melbourne, anil about nine

d-ays at Til-bury.

As new ships Trave been phaseil into the servicer the

frequency of sailings has been increaseiL anil in 1971 ï¡as

one every flve or slx cl.ays, with thirteen container ships

in operationr The original schedules have been mocliflecl

and- now includ.e several European ports of callr while often

the Northbound ca]-l at Fremantle is omitted..

The containers useiL ln the service are mainly

stand.arit 2O ft. x I ft. x I ft. containers of t¡lvo t¡¡pes -
general contalners used. for cLry car'gor ard. insu3-ated-

containers d.esigned. especially for refrigerated- cargo (o"

reefer cargo as it j.s commonly ca1led.) but used. also for

d.ry cargo. Other ty¡res of containers are present in

insignlficant nr¡mbers and- will be ignorecl-. Each cellular

ship was d.esigned. to have a capacity of about 13OO contain-

ers, incl¿d.ing about J50 insulated. containers, although

sùbsequent mod.Ífieatlons have enableit these capacities to

be increased..

fn Australia, there are terninal facilitles for

unload.ing and. load-ing containers at Fremantler Syd.ney and.

Melbourne, where clepots for packing and. unpacking of

containers are also proviclecl. In ad.d.ition, Brlsbane has

a terminal-d.epot served. by a coasta-l- feed-ership to Syilneyt
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and. Ad.elaid.e has a d.epot Trith a d-irect rail lir¡k to the

Melþourne ter¡ninal.

Empty containers can be stocþiled. at terninals or

d.epots, anl because there are local. anl lnternational

imbalances in full containen movements, interstockpile

empty container novenents are requÍreCl. Ty¡rlcal of these

movements of ernpty containers (emptles) are: SycLney to IIK

by container ship; syd.ney to Brisbane by feectershi.p; and.

Melbourne to Ad-elaid.e bY râ11¡

The senvice provided by tlre container shlps -
regular, perioclic sailings with few ports of call is a

narked. contnast to the conventional shipping service which

uses many ports of call in Australia a¡rd. the IIK arxl whlch

d.oes not aähere to regular scheilules. It is the basic

slmplicity of tTre container servlce which makes it read'iIy

amenaþle to mathernatical ancl computer analysis.
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cteterulnlng empty container novenente for general ard'

insulated containers;

d.etermlning contalner inventory for general ard. insulat-
ed. containers.

fn the next sectlon it will þe shown that this problera mayr

be ex¡rresseÖ as a two-conmod.ity network flow problen.
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the container ship in port and. the other the container

stocþ11e. This d.etail helps to d.istingulsh þetween

containers which are loailed. anil unload.ecl. at a port anit those

which are slmply i-n transit.
To represent the ilynamic flow of contai.ners througfi-

out the network, it is necessary to attach to each link a

travel time. Because of the inTrerent regular period.ic

structure of the contalnsr service it i-s convenlent to

measure the travel time in units correspond.ing to the

interval between successlve ships. Thus a travel tine of

5 units for a weekly container service means a travel tine

of 3 weeks. For convenience of d.escrlption, 1t is assumecl

that the service is weekly.

Vfhen used. in reference to full container movements,

the term rrtravel timetf is interpreted. as follows' The

process involved. in send.ing cargo from Tilbury to Frenantle

(".y) is quite inflexlble, except that it may þe necessary

to choose whether to use a general or an insulated. contain-

€Fr A sultable ernpty container is taken fron the Tilbury

stocþile, j.s packect vrith the cargo, and. 1s loacled. on the

contalner ship at Tilbury. Tllhen the ship arrives at Fre-

mantle, the importecl nÈl container is unpackeil and. the re-

sultant empty is placed. on the tr'renantle stocþile. lkre

tj-me occupied. by the complete process 1s called. the iltravel

timert for the ftr1l contalner movement from Tilbury to
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trrremantle, ard. might be þ weeks conpared. with (""y) J weeks

for the Tilbury - Fremantle empty movenent.

The movement of containers over tine is representeil

as flow in a d.ynatric network. For example, tr'ig. 4 is the

1O-iveek clynamic version of Flg. 2, with links lllustrating

possible container movements. Since the travel tine for

fu1] containers from Tilbury to Fremantl-e 1s 5 weekst the

complete cLynamic version of the network contalns a link from

nod.e I in week 1 to nocle 2 Ln week 6, from noite 1 in week 2

to nod.e 2 ín week 7, ard. so on; these lir¡ks are shown as

soIid. lines in Fig. ,l+. similarly the travel tlme for

enpty contalners from Syd-ney to Brisbane i-s I week, anfl tfte

complete ilynamlc netlrork contains a lirrk from nod.e J in

week 1 to nocLe 4 in week 2, from nod.e J in week 2 to noil-e 4

in week J, a¡rcl So on; anct these links are shown as ilash'ed-

lines in Fig. 4. To al1ow for containers being held- at

Melbourne from week I to week !, there is a link (¿otteA

line) from nocte 5 in week 8 to nod.e 5 in week 9; ard the

CLotteil line from nocle 6 in week 4 to nod-e 6 1n week 5 allows

for contalners belng he1d. at Ad.elaid.e frorn week 4 to week þ'

Thus it is possible to represent as flows along links of the

d.ynamic network not onfy fuil and. enrpty container movementst

but also the ho1d.1ng of containers at stockpiles.

In fornulating the d.ynanlc netviork, some judgement

is need.ed. in interpreting container movements as occurring



WEEKS I ¿ 3

NODES

t . (T.¡lbury)

2,(Frernantle) O O O O O

3. (Sydney) a a

II7654 t0

o

o
\\ \

f . (8.¡sb.ne) O b
Þo

f.(Adeloide) O ..."ÞO.. >O - )O DO' ÞO 'ÞO""'D,Q" ""O""'ÞOv
8.[9IBLþ.

iO-perlod dynanlc verElon of Flg.2. 8c11è l1nee nepresent fi¡ll contalner movements, d'ashed' llnee
repÍeeent enpty contalner movemente, anrl dotted. llnee represent etoclcltol'cting at stocþ1Lee. Only
a fer ltnke are ghcrn.

b t) b 't) b13
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from one week to another ïreek, but the sensitivity of the

results to the asanmptions mad.e ca-n easily be tested., A

more accurate d.ay-to-cLay net,ivork would- be usef\rl for
problerns of d.etailed. contalner control, but would. be far
too complex for the applications consld.ered. here.

Contalner lnventory anct movement costs are

representeil in the d.ynanlc network by assigning costs to

the 1inks, and. cargo requirements are represented. by

assigning capacities to the frrll container movement 11nks

(ruff links). There is one set of costs ard. capacitles

for general containers, and. another set for insul-atect

containers.

lhe container lnventory cost reflects the weekly

cost of owning a container, and. so for example the unit
lnventory cost asslgned. to a link r¡'¡ith travel tine 5 weeks

is 5 tines the weekly inventory cost per container. Once

each link has been assigned. a unit inventory cost, the cost

on each empty movement link is increased þy the appropriate

unit empty movement cost. Thus in Fig. 4 the overall unit

cost (for general containers) assignecl to the Sytbrey-Bris-

bane empty movement link is the sum of the weekly inventory

cost per general container and. the unlt enpty movement cost

from Syd.ney to BrlsbâIl€¡ fhe overall unit costs assignecl

to ful1 links are d.eriveil similarly.
Associated. with each ful1 link in the dynamic net-
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work, there are three cargo quantities which are supposecl

known. These are the quantities of each of the three

types of cargo (see section 2.2) which must be moved. along

the ful-1 link. The flr1l lirìk is asslgneil a lower capaclty

for general eontainers which is equal to tlre quantlty of

t¡lpe 1 cargo, and. 1s assignecl a lower capacity for insulatecl

containers which is equal to the qgantity of tyPe 2 catgo.

But this Ís not sufficlent to ensure that tnge 3 cargo 1s

carried.. The latter is achievecl by constrainlng the total
flow of general and. ir¡sulateit containers on the full lirìk
to þe equal to the total amount of cargo (of all three

ty¡res) rvhich must be carried..

Non-negativlty of flows on links which represent

ernpty contalner movements and- the holcling of containers at

stocþiles is ensured by asslgning zeto lower capaeities

to these llnks.
thus the problem of minlnizing the cost of container

inventory and. movernents is representeit as the problem of

d.eterminlng ninimu:n-cost flows 1n ttre dynamlc networkt

subject to capacity restrlctions. This is a two-connoclity

network problen because there are two types of container.

ftre flow of these tr¡ro commod.iti.es is interd.epend.ent beeause

t¡æe l cargo may be packed. in either type of container.



be shown explicitly.
or k=Zt ard that
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2.4 Mathematlcal Foinulatlon

In the following list of the nathernatical notaüion

to be used, subscripts i,i take values 1r2r3t... âÍd'

refer to nod.es or stocþr11es i,i. The variable t"

taking values 1r2r3¡.., refers to the week numþer.

Ttre supenscrlpt k signlfies the two container t¡pest

k=1 for general ancl k=2 for insulated. containers. The

superscript k is also used. to signifv the three cargo

t¡ryes and. j-n this use on1y, k also takes the value 3.

No cor¡fusion should. arise, because ttre superscript 3 will-

Otherwise 1t 1s assumed. th^at k=1

means )r3r.

The following lnteger quantlties are assumed. glven:

afl(t) = nt-mber of container load-s of type k (k=1 ,2J)
cargo to be ôispatched. in week t from stocþi1e

1 to stocþiIe , (t )

SrJrtrJ = nrmber of weeks (travel tiure) for an enpty, fu1l

container movement from i to ; (Z)

crk = unit weekly inventory cost for containers

of ty¡re k ß)

Tr¡rô1¡ = unlt cost for moving an empty, full contalner

fromi to ¡ (a)

ur ¡ (t) - mafimirn nr¡mþer of emptles (genera-l + insulateil)

which can be cLispatchect in week t from

i to i. (¡)

k
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The folloning integer variables are to be iLetermined.:

"f ¡(t),ff ¡ (t) = îlütber of empty, fu11 contaj-ners of tyle k

to be d.ispatched in week t from i to i
(6)

nk(t) = total lnventory of containers of type k

in the system in week t (Z)

gf (t) = number of contalners of t¡¡pe k ad-d-ed- to

the system at stocþlle i 1n week t
(8)

C = total cost of contaj-ner inventory and- full
and. enpty movements. (g)

It is convenj-ent to interpret ef r(t) as the nr:mber

of containers of type k helil at stocþile i during week

t (after arrivals from and. iLepartures to other stockplles)

and. ta-ke Sr r = 1. the total nr-¡mber of containers in week

t is then glven by those he1d. at stocþ11es ar¡d those

moving enBty plus ttrose moving fqIl in week t" so tþat

(ro)nk(t) = E >
t'J T - , ?, P'tf ' 

( t-r) '+

Here the summa.tion i s taken over links of the d¡rnanic net-

worl< (such as in Fig. 4) with T varylng over the range

T=o to sr J-1 in the summation P, and. T varying over

the range r=O to tr l-1 in the summation P" The

summation in (tO) 1s reaitily interpreted. on the d-Jmamic

network as the sum over all l1nks ritrhich originate in week
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t or earlier and. terninate in week (t*t) or later.
The problem of ninimizing the total cost of

container flows in ttre d.Jrnarnic netrvork ca¡¡ be formulated-

as the following two-comnod.ity problen:

Minirnize C = ? ?t,?rtrref ¡(t) + ,?,tttrft(t) + cxknklt)Jlrr)

subject to

?teir(t) + rfr(t)i - ?t"f r(t-s1r) * rl'(t-t¡t) i = ef (.)1.,r)

frr (t) >

; 4rttl = ? "fr(t) + a?¡(t)

and. ttre aiLcLitional requirenent that all variables be

lntegers.

In obtaining the ob jectlve f¿nctlon (tt ), ln rrvhlch nk(t)

is given by (tO), the usual and. ad.equate assumptlon of

linear costs is mad.e.

In general each variable ef5(t) oecurs in nk(r)

for the values r=t to Í=t+sr J-1, and- each varlable

rfr(t) occurs in nk(r) for the values r=t to

7=t+t1 J-1 . lThen this is the case, substitqtion of (tO)

into (11) anit collection of terns in ef¡(t), rft(t) g:ives

(r)
( 14)

(t¡)

(re)
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t = ??t,lr(rrr * srJcrk)ef1(t) +,?l(ötl + trrak)rfl(t)l

= ?PI,?, 
(tt r+sr ro*)"f¡ (t)+,?,tr ¡o*rf ¡ (t) l*?,?, ar r>rf , (t)

where by vlrtue of (14), the night-hard term in the last
equation 1s a consta¡rt. So ninimizing C is equlvalent

to minimizirtg

cI = ?È[,?,"f, (t)ef¡ (t) + ,?,ul¡ 
(t)rfr (t) 1 (17)

where

"f ¡(t) = TrJ * srJdk (te)

and afr (t) = tr Jqk, (19)

îhe quantities gf(t) have been introduced prlncip-

a]ly to al1ow the possibillty of ad.d.ing containers to the

systeur to cope with a growth in container trad.e. In

pnactice containers are ad.cled- to the system every few

months (".V) a¡rd. then only at certain stoeþilesr so that

rnost of the gf (t) are zeto. In narSr applicatlons it has

been possible to set all the gf(t) equal to zato¡

Tltre constraint equation (t6) can be interpretecL ln

d.j-ff erent ways. For example , ul r ( t) couliL represent the

capacity of the stock¡rile at i anfl would. be ind.epenclent

of t unless changes 1n the stockpile were mad.e. Between

one port of cal-l i anil. the next port of call i, ur l(t)
couLd. represent the nurnber of empties which can be carrieÖ
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on the contalner ship on the 1eg i to i. The epace for

enpties on each 1eg could. be cal-culated. fron the given fi¡-lI

container flows and. the ship capacities. Although reefen

(typ" 2) cargo can þe carriecl only in certaln cells of the

ship, there is no restrlction on the placement of anptj-es.

In nany applicatlons of ttre moilel, it has been possible to'

ignore tlre ur I ( t) .
lhe above formulatlon cioes not specify lnitial

and- terminatlng corrlitions. For many applicationsr it is

convenient antl ad-equate to impose a cyclic bound'ary cond.i-

tion, as used. by Horn [eO]. One year is a natural cycle

perioil-. In general let

T = mrmber of weeks in the optimization perlocl. (ZO)

TLre variable t then assumes the va]ueS 1r2r... ¡T ard,

for example r ìrr I (-z) is taken equal to ur I ( T-2) ' The

cyclic bounclary cond.ition means, in effect, that the

T-periocl d.ynamic network is wrapped. around. a cyl1nd.er so

tinat weeks T and. 1 are ad.jacentr âs lndicated. in Fig'5'

lMhen the eyckic bound.ary conclltion 1s usecl, summation in

(lZ) over all values of t and' i gives

=O> > sf(t)r1
and so all the sf(t) are zê?oo
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F¡n¡|. nf prrloa J â-srort of Prrlec

4[SEE-5.
f-perlod d.ynanlc netrork rfth cycllc bo.r¡nåary-conflitlon'
ÑeiiórX caä tõ thought of as ðrârn on the surface of a
cyllrd,err so thai rãek T ls atliaeent to reek 1.

T-t 3 4
T I 2

1cbb 'tl
hC ÞO....DO..¡C ÞC " "O

ÞO "'ÞO ..ÞO....ÞO tO
T:l 3

4
T I 2
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For other applications, particularly in situations
of rapid. growth, a non-cycllc bound.ary cond.iti on j_s prefer-
able. Agaln the varlable t asgumes the values 1r2r...¡T
but it is tacitly assuned- in (to) and. (lz) that any vari.able

ef ¡(r) or ff tG) with T < 1 is suppressed. Then it
follows in (lZ) that

sf(i) = 3[ufr(r) + rf,(r) I

and. so

(r)sf
1

(r ).?ernk(t) =

= ? ?-Isft(r) + rf r(r)l

' = ,?, "fl (t) + ,?,tf' (t ) '

Thus from (tO) 1t foltows that

(zt)

Consequently when the non-cyc11c boundary condltion is useil,

the variables Sf(t), and possibly variables gf(t) for
t > 2, will be non-zeto.

Finaliy, in the non-cyclic case, (1S) and- (tg) must

be mod.ified. to r ead.

"fl(t) =TrJ + lmin(srJ,T-t+1)jo* (Zz)

arrit dfJ(t) = [min(t1 1¡T-t+t)]o*. ç23)

îhls is because links vrhlch originate in week t ard. term-

inate after week T lncur inventory costs only 1n weeks t
to [.
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2.5 Heuristic Solution

No efficient soluti.on techniques are known for
solving general two-commod.ity flow problems on large net-

works, but an heuristic procedure is available which

reduces the problem (lZ) (17) to two one-conmod.ity

problems. Each of these can be soLveil usi-ng an algorithn

such as the efficient out-of-k1lter algorithm Ig ].
There are two phases in tTre heuristic solution

procedure. In Phase I, tyTe 1 cargo and. general contaj-nens

are exclud-ed. and. attention focussed. on the ¡ilovement of

lnsulated. containers. .L11 of the type 2 catgo and. some of

the tfpe 3 cargo will be carried. in insulated. containers.

fn Phase If , the movement of general contalners is conslcl-

eredl- assumlng the Phase f insulatecl container novements.

the two phases of the her:rlstic procedure can be

clescriþed. mathematical-ly as folLows.

Phase I
Solve the followlng one-commod.ity problern:

Minimize ?[,?r.?¡(t)e?¡(t) +,?l*t r(t)r?r (t)J (2¿+)

subject to

]te? ¡ 
( t)+r? r (t) l-?["3t (t-s3 r )*rîr (t-ti r ) l=ef (t)

(25)

(26)

(27)
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where xr I ( t) = heuristic unit cost for d.lspatching

a ful] insulated- eontainer from i
to j in week t. (zg)

Phase II
Fix e?l(t), f?J(t), e?(t) at their Phase I values (which

will be integers t g ] ) and solve (lz)-(ll) to d.etermine

et¡(t), fll(t), gt(t). Note that (13) and (11+) simplify

to

rîr(t) = ? uf¡(t) + af¡(t) - r13(t)

ancL (15) and ?e) sirnplify to

o<

so t'hat Phase II also lnvol-ves solving a one-commod.ity

problem, and resul-ts 1n integer. values f or et I ( t) , ft J 
( t) ,

gt(t). The final soLution at the end. of Phase If is a

feaslble integer solution of the two-commod.ity problem

(tz)-( r7) .

Some choiees of the heuristic costs xt¡(t) may

result in near-optinal heurlstic solutions to t'Tre two-

corunod.ity problem. If the xr l(t) are chosen to þe large

positive numbers, the optirnal solution to PTrase f will h,ave

( almost surely) f? I ( t) = a7 , ( t) i. €. no true J cargo wiLl

be carried. in insulated. contain€fS. On the other hand.r if
the xr¡(t) are chosen to be large negative numbers' the

optimal sol-ution to Phase I will- have (alnrost surely)
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f?J(t) = a?¡(t) + af¡(t) i.e. all t¡æe J cargo witl be

carrleit in insulated. containers. These are two falrly '*

obvious heurlstlcs, but neither 1s partlcularly sultable

for the Australia-Europe system.

The cargo lmbal-ances in the Auetralia-Surope system

provlcte the motivation for the cholce of the heuristic costs

xrl(t). Australla exports nuch more reefen (typ" 2) cargo

than she lmports, a¡d. imports more d.ry (type 1, true 5)

cargo than she exports. Drring 1970 approxinate figures

per voyage T¡ere:

fnport Dry Carqo Reefer Cargo

Eunope-Australj-a 1 2OO 10

E:cport

Australla-Europe BOO 21O.

Virtuall-y all of the Australian d.ry export cargo is type 1

whi1e perhaps 5q" of her itry inport cargo 1s type 3. Thr¡s

for simplicì.ty the breakclown of d.ry eargo into true 1 ancl

type 5 w111 be assr¡:ned. to þe:

TSrpe 1 Trn¡e e

.Europe-.Australia 600 600

Australia-trhrope 8OO O.

If type 3 cargo is not packed. 1n Southþounil lnsulated. con-

tainers ¡ 21O-1O = 2OO insulated. containers travel South-

bound empty, and- because of the dry cargo imbalance,
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1200-800 = l+0O general containers must travel empty North-

bound.. But if all the type 3 cargo is packecl in South-

bound. insulated. containers rl+OO (=6O0+10-21O) nore insulated.

contalners reach Australla than are neecled for reefer

e:çorts. l+00 lnsulated. contalnens nust travel enpty

Northbound.; ancl since Australian t¡pe 1 exports exceecl

type 1 imports, 200(=80O-600) general contaj.ners must

travel empty Southbound.

TTrese empty movements in opposite dlrections are

wasteful - a gooil heuristic solution shoulil try to ellurinate

empty movements in one direction. Slnce the total Ar¡stra-

lian cargo import of 1210 is gteatet ttra¡r her e4port of

1010, there must be a net NortTrþourrd. flow of 2OO enpty

contalnens. Because insulatecL containers are about tWlce

as expensive as general containers, Eeneral- containers

should move ernpty Northbound.. Thus a gooCl heuristic is to

fill 2OO Southbound insulated. containers with type J cargo.

The remaining 1000 container load.s of Southbound. d.ry cargo

are packeil in general containers, af¡rcL 2OO(=1OOO-8OO) general

containers travel enpty Northþound..

lllh^at values shoul-d be assignecL the xr I ( t) to

achieve this heurlstic solution? For i an AustraÌian

port and. j a European port, Iet xr¡(t) be a large

positive numþer (or equivalently, set f?J(t) = a|t(t)).

For I a European port ard. J an. Australian port, choose
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xr I ( t) in the range

o < xrl(t) <

The iilea is to encourage insulated. containers to come to

Austral-ia full rather than enpty (hence xr I ( t) <

but not to the extent that they come to Austral.ia ful-1 and.

return to Europe empty.

This choice of heuristic costs xrl(t) has þeen

used. to compare the heuristic solutj-on to the exact optimal

solutlon for a three stocþile 24-week problen. The stock-

piles represented- were Tilbury, Syd.ney a¡d Melbourner ard.

cargo d. emand.s were based- on 1970 figures. The exact

optimal solution to the two-commod-ity problem was obtained.

using a llnear prograimlng package. (Even for this relat-
ively small example, the constraint matrix has 24O rows and.

4BO columns. ) The overall costs of contalner lnventory ar.ld

enpty movements were as follows:

. Heuris tic Solution *l ,9OZ,OOO

Optlmal Solution $l ,az5rooo.

Thus the heuristic solution 1s $77,OoO (a'oout )&) more

costly than the exact optinal solution.

The heuristic d.escribed. above works well for the

Austral-la - E¿rope system. In other container systemst

cl-ifferent heuristics rnay be required..
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2.6 Contalner Movement anit Cost Data

Container Flows

An analysis of historlcal d.ata over the perlod'

Febnrary-AugUst 1970 andl covering 20 voyages yield.ed' the

average fuLl container flows aniL naior enpty flows listecl

in Tables 1,2. Because these figUres relate to a compar-

atively short period. d.uring the growth of the contaj-ner

Service, tlrey should. not be taken as an irrd.icatlon of

later operatiorlsr In particular, the enpty movements were

at¡pical because 1n the period analygecl many contaln'ers

were being posltloneil 1n Australla for other trad'es.

More t¡r¡ricaIly, larger n¡mþers of containers woul-d be

returnecl empty to TilburY.

Tablelillustratest}recargolmbalancesforboth
ilry and- reefer cargo. Îlhe lmbalance at Melbourne, for

example, iS a net import of 90 contalner loaùs of clry'eargo

ancl a net e:T)ort of 1o7 container loacls of reefer câP$or

Taþ1e 2 shows the rnajor flows of enpty general containerso

lhere are no major flows of enpty insulated. containers

because they are inported. to Australla packed. vrlth cLry

Câf$Or

Shlp Capacitv for Emptv Containers

The shlp capacity for empty containers can be

calculatecl in the followlng way. Assume an raverager

shipÏ¡ithacapacityofl3oocontainersarrdcarryingthe
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TABLE {

AVERACÍE C¿RCO FTGITRES (COI'TATSER LOAÐS) Pm VOYA@

OVER. Pffi OD TEBRU¡RY - AT'GTJS T 1 97O.

Dry
Cargo

fmoort

Ti1.burXr-Syclney

Tilbury-Me.Lbounre

Tilbury-Ad.elaide

Tilbury-Brisbane

Tilbury-Fremantle

Export

Syctney-Tilbury

Melbourne-Tilbury

AcLeLaicLe-Tilbury

Brisbane-Tilbury

Fremantle-Tilbury

500

l+8o

65

85

80

Reefer
Cargo

20

110

20

20

50

2

3

1

I

I

1210

180

t9Q

7o

90

7o

I

800 220
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TASTJE 2

r[ÀJoR FroTÍs oF EMPSr GENERAT, CONTATNERS (¿Vm,¿.æ

NInIBER. PER VOYAGE) OV¡n PBrOD ESBRUARY-AUGIISIT '1970.

Link

8yclney-Tilbury

Melbourne-li1bury

Sydney-Brisþane

Melbourne-Ad.e1a iÖe

Ship 1eg

lilbury-Frenantle

FrenantJ.e-Syclney

Syd-ney-Me.lbourne

Melbounne-Fremantle

Fremantle-Tllbury

No. of fu11s
on boarcl

1210

1130

855

900

1020

Ship Capacity
for emptles

90

170

¿¡45

ll0O

280

Number

100

L¡o

5

5

îa3r,E 5

Srfrp clpAclry rOR EDTPTY ColttATNERS (usriw DATA IN TABLE 1)
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fi¡ll container load.s listed. ln Table 1 (except ttrat for

simpliclty we lgnore the import of any reefer cargo).

Calculate the number of full containers carried. on each

leg of the voyage and. hence d.educe the capacitles for
empties. The average shlp carries 1210 ful-l containers

on the lilbury-Fremantle 1eg and therefore 1210-80 - 1150

full- containers on tTre Fremantle-Syd.ney leg (tr'renantle

exports are loailed. when tùe shlp cal1s Nortbþouncl at

Frenantle). Ihe situation at Syd.ney is a J-ittle more

complicated.. The nr¡¡rber of fu11 contaj-ners ilischargecl 1s

JOO for Syclney and 85 for Brisbane and- the nr:mber loacled. 1s

180+20 = 2OO fron Syitney ard. 9Q+2O = 110 from Brisþane.

The number of full containers on the Syd.ney-Melbourne 1eg

1s therefore 1130-585+310 = 855. A similar calculation

gives 9OO firll- containers on the Melbourne-Frenantle 1eg

and. 1O2O ft¡]1 containers on the Fremantle-Îl1-bury 1eg.

These results are summarised. in laþ1e 3 together with the

shlp capacitles, ft vril1 be notecl that there is little

space for enpties on the Tilbury-Frenantle leg, for a 1oad.

factor exceeili-ng 9q" is achieved- on SoutÌrbound. voyages.

In the reverse d-irection, the loacl factor is nearly 8Ø..

Cost Data

Inventory costs ancl enpty movement costg are neecled.

as inputs to the mod.el, ard- the follov¡ing estimates (itt

Australian d.oll-ars) Tlrere used.:
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lnventory costs (p." week per container)

for general containers $¡
for insuLated. containers $tO

emntv movement costs (pr" contalner)

þetween argr two ports via container ship

between Melbourne and. Acl-elaid-e via ra1I

between Sydney and. Brisbane via feeiler ship

$+o

$¡o

$Bo.

There are alternative transport mod-es (e.g. raiJ-, feed-er

ship) betvreen ports 1n Australia but these are mueh nore

costly than the container shlp and- are used- on-ly in
emergencies.

Ne twork Consid-erati ons

For a proper representaiion of shiP capacitles g!

empty movement eosts, tþ d.etail- in the network illustrated-

1n Fig. 3 is necessârlr

Consiiler Fig. 2. The movement by container ship

of emp+,y contaltrers from Syd.ney (nod.e 3) to lilbury (nod.e 1)

may be represented. as flor¡r along the lin]'c (lrl). But this

movement, actually occurs via lúelbo'¿rne and. Fremantle and. is

subject to empty capaclty restrictions on the three ship

legs: Syd.ney-lûelbourne, [tefbourne-Fremantle, Fremantle-

lilbr:ry. so to represent ship capacities it is simplest

to consid.er the Syd.ney-lilbury empty movement as flow along

the link (ZrS), followecl. by flow along the ]-ink (5rZ),

followed- by flovr along the link (Zrl). But then the Fig.2
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netrvork is inad.equate because ttre Sydney-Tilbury empty move-

ment costis not the sr¡n of the Syd-ney-Melbourner Melbourne-

Fremantle and. Freurantle-Tilbury ernpty movement costs.

In fact the $40 unit cost for any port to port

transport of a¡ enpty contalner is conprlsed. of a loaclihg

charge of $ZO at the origin port and. a¡r unload.lng charge

of $ZO at the d.estination port. Thus in Flg. 5 links

such as (trtt), (3r13) representing loa¿ing an¿ unloatting

are ascribed. unit costs of $e0 while links such as (llrlS)

representing sea legs are given zeto costs. TTre Syùney-

Tilbury elapty movement is rqpresented. as flow along the

links (3113), (3r15), (5,t2), (lz,ll) and' (tt,t), and

lncurs the correct cost of $.l+0.
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2.7 Comouten Proerams

Courputer programs to inplement the heuristic solu-

tion procedure d.escribecl in sec'bion 2.5 }:rave been written

for the University of Ad.elaid.e CDC 6400 coroputer; ard'

compu'r,er runs have been cond.ucted. using a remote termlnal

in ttre Mathematics Department. The out-of-kilter algor-

ithn is used. to solve þoth the Phase f and. Phase II ore-

conmod.i ty network probl€ns r

An important feature of the out-of-kilter algorithn

is ttrat it nay irse the optinal solution to a problem as a

gooct starting point for a new problem in wh-1ch onJ-y tink
costs and lirrk capaclties are altered. from ttre original
problem. If onJ-y cost and capacity alterations are

involvecl, a Phase I solution may be used. as a good. starting
point for a new Phase f problem, and. similarly for Phase fI.
Consequently it is possible to make rapid investigations of

the sensitivity of the heuristic solution to variations in
empty novement costs

lnventory costs

available cargo

ship capacitles

aniL also to variations in the heurlstlc costs tÏremselves.

T'lre sane is true when the network geograplSr is altered by

deleting nod.es and. 1inks. For a nod.e may be d.eleted by

d.eleting all the links rvhlch originate or terminate at that
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nod.e; and. the d.eletion of links may effectively be

accomplishecL by asslgning them upper anil lorer capacities

of ze?o|

The computer prograns also a11ow the network

geography to be alterecl by add.i¿g nod.es and. linksr or by

changing travel tines for existing ]ir¡l<s; then a previousLy

obtaineil optlnal solution cannot be used..

The great value of the heuristic method. - as

imp3-emented by the computer programs - is the speed. with

whlch it oþtains a near-optimal solutlon to the two-

comurod.ity problem. 0n1y about two minutes of central

Broeessor (Cp) time are neefleil to oþtain the heurj-stie

solution to a 52 we$5 problem; ar¡] very l1ttle tirne is

required to test the sensiti-vity of this soluti-on to varia-

tions in most of tþe input parametêPSo The speeil of the

heurj-stic nethod., and. the convenience provid-ed- by th'e

remote term1nal, have allowecl aS many aS 30 computer runs

in a single clay. In a1lr over 2OO procluctlon runs

involving a total CP time of only a few hours - have been

conductecl.

Ttre heurlstlc metfrod. involves d-eterninlng Phase I

anct Phase II optimal solutions, but provid.es only a near-

optlmal solution to the two-cornnod.ity problen. If computer

tine coulcl be greatly reilucefl by terninating Phase I anfl

Phase II with sub-optimal solutions which providted. a
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satisfactory two-corornoðity solution, it ÌYould. be reasonable

to ask whether it was worthwh.il.e to d.eterruine .9!-$!4!
Phase I and. Phase II eolutions. However, as noted. abovet

these optinal eolutions are obtained. so rapld.ly tJrat

earli.er ternination neecl not be conslÖered..
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2.8 Moilel Applications

The netv¡ork fJ.ow mod.eJ- has been appJ-ieil success-

ful1y to answer many questions about the Australia-Europe

system. Extensive d.iscussions with the container compan-

ies have shounr that ttre noiLel gives realistic ansÏYers

concerning container inventory and. ernpty movement patterns.

Furthermore, use of ttre mod.el has given consid.erable in-

slght into the operation of th.e container system. This

insight has enableil the author to obtain reasonably

ad.equate ansu/ers to many questions by performing simple

hand. caleulations.

Some of the nod.el applications wiJ-l now be

consld.erecì-.

Empty Container Movement Patterns

the rnoiLel has been used- to cletermine empty contai-n-

er movement patterns for the Australla-Europe System' In

section 2.5, it was suggested. that there should' be no

significant movement of ernpty insulateil containers þetween

Australia and- Europe, and. that ttrere should. be a consid-en-

able movement of empty general containers Northbound..

Table \ summarises the resul-ts of a computer run using

estimates of containeriseil cargo for 1910. The empty

movement trend-s are aS expecteil. Movements of enpty

lnsulateit containers are negligible, but movements of

enpty general containers are consid-erab1e" Syd'neyr a



TABT.,E 4

SUMMARY RESIILÎS TCIR RT'N q¡' COMPUTER IIROGRA¡Í

IISING 1970 C.êRC'O ESTIMATES

General
Contalners

1Urz5o

$6oorooo

40.

Insìrlatecl
Containers

4,150

$t o rooo

negLigible

Container InventorY

Cost of Ernpty Movements

Average TÍeek1Y EmPtY

Movements:

Syd.ney - EilburY

Syclney - Melbourne

Sydney - Fremantle

Melbourne - Ad-elaid.e

Syclney - Brisþane

160

65

l+o

35

10

tl

lf

il

n





TAsLE 5

COST COMPARISON BETWMN EEI'RISTIC 9OLUÎION

Al[D SOI,UTION ME|RE NO ERY C¿RC'O ]S PACKED

IN INSI]Lq.IED CONTAINM.S

Heuristic
Solution

1l+r25O

J+,150

ï3 1562¡ 5Oo

Ç2rO75rOO0

$600,ooo

$10,ooo

42.

No Dry Cargo
In Insulatecl

Gontainers

16,95Q

4,10q

it+,23h 5oo

$2, o5o,ooo

$zt+o,ooo

$+;o,ooo

Contaj-ner InventorY

Genera]-

Insulatåd

Container fnventorY Cost

(ror 50 Weeks)

General

Insufatect

Enpty Movement Cost

Genera].

Insulated.

fota]. Cost fie ,247,5oo q7 ,457 ¡ 500
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2V/o. Once the 29" level is reached., there 1s sufficlent

d.ry cargo to paek all Souttrbound. insulated. containers, ard'

there is no firrther cost improvement¡

Scnsi f.Jrrì t-r¡ tn Coct anri Tro¡r¡e] Time Data

Iable 5 lllustrates what proves to be a very

significant feature of the cost structure of the contalner

flows in the Australla-Europe system. The inventory costs

are very much greater, in total, than the costs of noving

empties. This helps simplify the analysis of cllfferent

situations anit suggests., for exarnpler that the container

flow patterns d.o not d.eperrcl sensitively on the assumecl

unit costs, a fael, whÍch can be verified. read.ily.

At any one time, only a sma11 fraction of the

total container inventory 1s moving empty. Consequently

the container inventory iÊ fairly inse¡rsltive to changes

in empty movement travel times. On the other hand., if

average travel tlnes for fu11 containers are increaseil from

eight weeks to nine, the container j-nventory i-nereases by

almost one eighth.

Other Apolications

Typica1 of some of the questi ons wirich the nod-eI

has answered., but which wil] not be d.iscussecl herer are

the following:
(l) I{hat savings would. accrue if the container

consortla poolecl containers?
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I r"1]- /

( it')

(")

)'l) I '
Shoir1d. containers which rould. otherwise

þe travelling empty around. the Australian
cõast be useil to carry ilomestic cargo?

When shor¡liL ad.ditional containers be

injected. into the systæm to cope with a

growth 1n trad.e?

Tlhat stocks of containers shor:J-ct be helcl

at stockpiles to meet unexpecteil clenand.s?

What woulit be the effects on container flows

1n Australia if inJ-and- stocþiles were

establishec[?
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MATHEMATICAL ASPECÍT¡ OF THE TWO-COMIilODTIY

PROBI,EIü

"r5, ?t,?,"fr (t)efr (t)+,?,ufr (t)rfr (t)1

7teil 
(t)+rfrçt) 3-|["lt (t-s¡ r )+r5t (t-tr r) i

= Ì "5,(r-rrr)-? 
af 3(t)

> rfr(t) = af1(t)

ef 5(t) à o, rf l(t) >/ o

3.1 Ttre [\ro-Comnod.itY Problem

Ttre two-commod.ity problem which is conslilered. in

this chapter is a slightly slmpllfied version of the

problem (tZ)-(tZ) in section 2.1+. 1,wo simplificatlons ate

mad.e. Firstly, ttre constnaint ?e) , representing shlp

capacì.tles, 1s onitted-. Second.ly, tle variaþles gl(t)

are all set to zego, except when a non-cyclic bounclary

cond-ltion is used-. In this case, tþe variables gf(t)

are al-lovrect to be roo-zêro, but all othen gf (t) are set

to ze?o, and. the notation is simplified. by d.efining

ef r(o) = gf (t).

llhen these sinplificatlons are nad..e, together with

the change of varlaþle rf l(t) to rf¡(t) + a[l(t)' t'he

following two-commoctlty problem results:

Minimlze

subject to

(2e)

(l,0)

3t)
Gz)
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and. the add.itional requirement that all variables þe

integers.

f'he dual. linear progran, obtained- þy assigning

nultlpliers nl(t) to (:o¡ and nultipliers otI(t) to

3t), j.s:

Maxi-mize 
".3rt??t? 

*!,(t-t¡rr-ì "*¡(t) løf (t)l

r >,¡Tr[ " alror,(t)l 3l)----1, 
J

sub j ect to
?rf (t) - r!(t+s1 ¡) <

ø{(t) - zrf(t+t,r) + o, l(t) < af r(t) ßs)

?rf ( t) , ar l ( t) unrestrictecl. ße)

As in secti on 2.1]], t assì,lmes the values 1r2r " ' ¡T

ancl when the non-cyclic þound.ary cond.ltion is usedl, vari-

ables with tirne quantity T < 'l or T > T are suppresseclt

except efr (o). In the non-cyclic case, there is an

ad.d.itlonal ctual constralnt associated' with the variable

ef1(o):

-?rf(1) ( o, Gl)

anil the link costs cf ¡ ( t) and' ¿f I ( t) are given bv

(ZZ) arrcl (23). When the cyclic bound.ary cond-ition is used''

cf3(t) arrl dfJ(t) are given bv (ta) and (tg)'

Forsomepurposes'itisconvenlenttorepresent
the two-commodity problem (zg)-32) ard its àual (lÐ-31)
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i.n matrix forn âs follows:

Minimize clel + dllf1 + c2e2 + dzfz
dddædddd

subJect to

(,a)

ßg)

(t+o)

(t+t ¡

(+z¡

(4¡)

(lrl+)

(¿+¡)

(l+e )

(l+z)

(l+s)

Maxinize

subJect to

T,

rn (;s) (be¡,

g* = [af¡(t) I

ESt+Fgt =-Fal

BÊ'+3Í'=-Faz

.gt + !' =3e

St>p , E'>9., 9'>9., !'à9'
gL(-FZr) *f(-rgr) +gg"

zr-tE,
d

+0<cl1
NP

N

+A<d2
Èd

zrlF

rrzE

t2F

na , I unrestricted-.,

gk = luf ¡ (t) ], €t = frf , (t) I anit

a?e column vectors; and. g* = ["fl (t) i,

È* = t¿f¡(t)J, ßk = [rrf(t)J and. 0 = ¡orr(t)l are row

vectors. E anct F are matri.ces associated. wlth the

ctynaroie rretwork on which ttre container flows are occurrlng.

In fact when the cyclic bound-ary conclition is used.t

the matrix [n f] is the nod.e-link incicLence matrix of the

dynamic networlc. (See Appenclix for d.eflnitlons alul results
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which are used. in ttrre foJ-lowing d.iscussion. ) E and' F

are the node-link i-ncid.ence matrlces of the subnetworks

(of ttre d.ynamic network) which compri-se only the enpty

11nks, and. only the fitll linksr respectively.
lÄlren the non-cyclic bound.arY cond.ition 1s used., the

natrlx [E F] is not stnlctly a nocle-link inciilence matrixt

þecause Some columns contain just one non-zero entry. The

co1r:mns correspording to variaþles ef r (O) contain a -1

(tut no +1 ); arrl the cofu¡¡nns corresponcLing to variables

ef ¡ ( t) for t+s1 ¡>T, anit ff J 
( t) for t+t1 1>T¡ contain

a +1 (uut no -1 ). Here the natrix [E F] is essentialLy

the natrlx whlch remains when one rou¡ of a nod'e-link

incid.ence matrlx is d.eleted..

Ihe constraints (lg) (+z¡ may be written in the

form 4f, = þ, [, > 9 witÏt

dIEFOOI
A= loonr I

Lo r o r_J

(where I is a unit matri-x, anct O is a zero natrix)

e1

fL
e2

f2,

(+g)

[, (æ¡



49.

ancl þ
P

-Fa1
-tr'aP

g'
a $t)

The matrix A anit the vector þ are integral, aru} the

vecton f, is required. to be integral.

Leruna 1

Let E ard. F be arbitrary matrices (not necessarily

nod.e-Ilnlc incid.errce matrices) and- let the matrix A

be given by (l+g). lhen the rows of A are linearly

ind.e¡renlent (¿.i.) 1f and. onty if the rows of E are

1,.i.

Proof of Iremma 1

(i) Suppose that the rows of E are L.L, Then bE = I
inpJ-les b = I'
Now if

t¡,' Àz À"rf Ë ä s gl = te e e el

l-o r o rJ
this gives b"E = O (r'vhich implies br = 9)

|1F+|s=o
|zE=o (whichlnPlies þ=9)
¡nf +|s =O

and. consequently 1,1 = b" = bg = 9.
Ihe rows of A are I.i.
(li) Suppose that E has linearly ctepend.ent (¿.d.) rows.

Then there exlsts b I I such that bF = 9' Now
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tb ¡ - ¡F] 1s a non-zero vector and.

lo o o ol.Lp ¡ir d èr

^
IX

ff the rows of E are 1.d., the rows of A are 1,.d.

thus if Â has L.!. rowsr E has l.i. rows. *
lMren the cyclic bound.ary cond.itlon is used-r the

nod.e-lirì} incld-ence matrix E has 4.d. roïrsr âS d-oes the

natritc [E F], and. so by Lemma 1 the matrix A T¡as [.d.

rows. But 1n nost practical situations, the network of

empty links is cotul.ectecl, ancl So ïyhen any row of [E F] is

d.eleted, the remaining rows of E, and. of [E F] r are L.i,

Henceforth Ít 1s assumeil tlrat E ard- [E F] represent these

L.i. rows. Then the natrj-x A cLefineo. by (4g) has l'.i,

rows. In the non-cyclic case, the matrix E has t'.L.

rows and. it is not necessal5r to ilelete a redunclant row¡
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3,2 Inteqer Property Theorems

In the last section, the constraints of the two-

commoðity problen were expressed. 1n the form Aü = þr X, > 9
and. the optimal vector X, u¡as required. to be 1ntegra1. It

is well-known (ch.7r,[Z]) that a problem vr¡ith the con-

straints Áü = þ, [ > I has an optlnal solution at one of

the extreme points of the convex set

y (4,þ) = [¿, Aü

Consequently this section investigates cond.itions on an

arbitrary integral matrlx A in orcler that the extreme

polnts of Y (Ar!) are integral..

Definition 1 (Integer Property)

An integral natrlx A is said- to have the åg!9gg
proBerty (1.p.) if and. only if the extreme points of

g(Arþ) are lntegral for all þ e ß(A), where

ø(¡) = tþ : þ 1ntegra1, Aü = þ is soluble].

As noted by Hu (p.125, [24J), various Papers have d.eterninpd-

conclitions on a matrix 1n ord.er ttrat an lnteger property

holcls. Itrese conctitlons w111 be examinecL shortly.

For the present, assume that the rows of A are l.i.

Then Dant,zig (ch.7, l7)) tras shown trrat there is a one-to-

one correspond.enee between extreme polnts arrd. basic feasible

soLutions of Y(Arþ) ' so that

tb [, > 91.
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[Nt¿ 1s an extreme poi.nt of v(¡'rþ) J

= B-tÞ > I for some þasis B

f,p = 9Ì'
(rr A has r(¿.i.)roìrrsra@þfrom A isany P(r

nonslngular submatrix of A. )

Using the above result, Veinott and. Dantzig [48] have

d.eriveil necessary arts sufflcient conctitions in oriLer that

tfìe matrix A has the i.p. Their result nay be statedl

as follows:
Theorem I (Veinott ancl Dant zie)

Let A be an integral matrix which has 1,.i. I¡olffsr

Ðre matrlx A has the i.p. if and' only 1f

every basis B fron A has il-et B = t1 . (52)

Using Theorem 1 , the above authors hrere able to provicle a

sinple prcof of an important theorem first proved. by

Iloffman and. Krrrskal llgl.
Theorem 2 (Uoffnan ancl- Kruskal)

Let A þe an integral natrix (not necessarlly with

t.i. rows).

lh.e extreme Points of the set

*.y"(t,þ) = [¿,¿¿<þ,t>9J
are lntegral for all integral þ if and' onJ-y 1f

A 1s totallY unlmoilular,

where
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Definition 2 (rotatty unimodular)

d.eterminant *1 r -1 or O.

Note that the set involved. in Theorem 2 is

A matrix A is said- to be totallv unlnoclular if
and. only if every square subnatrix of A has

vo (¿,Þ) anit

not y(Arþ), and. so Theorem 2 d.oes not give necessary ard'

sufficient cond.itions for A to have the integer property

of Deflnltlon 1. On the other hand., 1t is easy to see

that the eond.ition that A is totally unimodular is

sufflcient (uut not necessary) for A to have the i.pr

Theorem 3

let A þe an integral matrj.x (not necessarily with

l.i. rows).

For A to have the i.p. it ls sr¡fficient (tut

not necessary) that A is totally unimodular.

Proof of Theorem a

(i) I,et the rank of A be r, ard. let [e'þ'] ¡" r

tni. rows chosen from [A þ], where þ e ø(¿). Then

y(gt rþ') = y(Arl) and. so these sets have the sarne extneme

points. Since A is totally unimodular by h¡rpothesist so

is A' and- in particular every basis from At has d-eter-

mlnant J1. By Theoren 1, Ar has the i.p' i'€' tlre

extreme points of y(A'rþ') are integral.

Thus the extreme polnts of y(Arþ) are integral for

arbitrary þ e ß(A), and. so A has the i.p'



(rl) The matrlx

5\.
has [.i. rows ancl. d.et A=1 ç

fo

Trrith

A - lzyl
By Theorem 1, A. has the i-.p., but clearly A is not

tota]-ly unimodular. the condition that A is totally
unimod.ular is not necessary for A to have the i.p. #

Necessary and. suffÍcient cond.itions for an integral

matrix A with ¿.d.. routs to have the i.p. have been

d.erived.. These conilitions are shortly stated. as Theorem 4r

but flrst several preparatory lemmas are required-.

Lemma 2

Let A be an ux n integral matrix Yri th rarrk

Then there exists an rxm integral rnatrix U

d.et U = !1 such that

UA

where the (integraf) matrix ¿r has r rows, whicTr

are L .í.
Proof of tenna 2

A theorem in linear algebra lZSl states that any rxn

integral natrlx A of rank r can be put 1n the form

A_\DW

where V is an rxm integral matrlx with d.et V - 11 ' Ti¡

is an rxn integral matrix with d.et Tf - t1, Ðd D 1s

an trxn non-negative integral cliagonal matrix with rIoD-

zero d.iagonal elements dr"rdzzr. .'ed¡¡. f t follows that



trtr)).
d.et U = !1, æ4U = V- t is an rxm integral- matrlx nith

that DIÍ is of the requireal form

#

Lemma 1

Let

]-et

that

A þe an rxn integra1 matrix urith rank r, anr[

U be argr rxm nonsingular integral matrix such

uA = [å']
where the integral roatrix A¿ has ! rowsr whi-ch are

l' .L.

Let

nß(A) = tuþ ! Þ€ ß(A)J

anct 1e t
ßo(A') = [þo : Þo = , Þ' . e(¿') J.

[nen (i) uß(A) S ßo (.q');

(ii) rr det g=11, uß(A) -ß6(l').

Broof of Lemna 1

First note that since A' has l.i. routs, At ¿ = þ' is

soluble for all lntegral þt , ancl so

ß(A') = [þ' : þ' integral].

(r) tet be ß(A).

Then for some vector f,t A{ = þ' and. so UA¿; = IJb
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liz.

viz. 4g = ttþo, where

But if d.et U - tl , Ü"
integral. ConsequentlY

together with (l) inplies

Lenna h

and. so

þo € ßo (A' ).
1s lntegral ancl so ttÞo is

It']r = e.

l

$t)

Since U aniL þ are integralr IQ is integral' and by

$l) is of the forn

where Þ' is integral.

Thus Ts(A) S ßo(l').
( ir) ret þ' = ß(A' ) .

fhen for some vector f,,t

Consequently Ilþ e go (A') .

4r v=bl

u-1 tå']r = r'[Ë']

þo

t"þo =b where þe ø(n)r or

= Ifþ. lhus if d.et U = 11, ßo(A') g Uø(l) which

tm(A) =ßo(¿'). *

Let A, U and. A, satisfy the cond.itions of lremma J.

ghen (Í) For any þ e ø(¿) there exists þ' = ß(A' )

sueh that Y(erÞ) = Y(Ar,þ') .

(ri) rf d.et u - t1, for argr þ' . ß(A') there

exists þ e ß(A) such that s(Arþ) = 9(¿',þ')
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Proof of Lemma h

(i) By Lenma J, if þ e ß(A) there exists Þ' . ß(A')

such that

Slnce U is nonsingular,

ub

y(¿,þ)=l¿:Ag=þ,t>9J

=t¿:UAt=Ubrf,>9j

= rs , [å'-1, = lå'l, r > el
- -l 

I N I¡-J

= t¿ : Arf, = þ,, t > gl

= y(At ,bt ).

(if) Ihe proof is sirnilar to (i). #

Iheoren l¿

Iret A be an rxrl lntegral matrix with rank îe ar¡fl

l_e t u be any nxm nonsingular integral natrix such

that

uA = [å'] (¡u)

where the integral ¡natrÍx At has r rows, whlch are

l.i,
llren (i) for A to have the i,p. it is sufficient

that N has the i.P.
(if ) ff d.et U = !1, for A to have the i.p. it

is necessar1r that A' has the i.P.
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Proof of Theor-em L

(f) If A' has the i.p., the extreme points of
y(lt ,3t ) are integral for all Þt . ß(A'). By Lenma 4,

for each ¡ e n(¿.) there exists b' e ß(At) such that

Y(Arþ) = Y(At ,þ' ) .

Thus the extreme points of 9(Arþ) are integral for all
b e g(¿). The natrix A has the 1.p.

(ii) If A has the i.p,, âd d.et U - 11 ' a slmilar

proof to (i) shovus that Lr has the i.p. #

lheorem l.r shows how to convert a ¡natrlx A with

l.d. rows lnto an associateil matrix A/ whlch has [.i.

rows and. to which the theorem of Veinott and Dantzlg

(Iheoren 1) may be applied.. By Lemma 2, there exlsts an.

lntegral matrlx U with tlet U = t1 suctr that (¡l+) hold.s,

anct then A has the i.p. if and. only if every basis from

¡t has d.etermlnant t1. For exanPle, the natrix

$s)

has ¿ .d.. rows, Novt le t the na trix U be

so that d.et U = *1 , and. note that

A - lzz)

1l
2Ju=l-!

[¿ ¿].
l-1 1ll 221= L-t 2)L3 3)UA

By Theoren 4, A has the i.p. if and. only if the natrix
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A, = [1 1]

has the i.p. Since At Ïras the i.p. by Theorem 1, A

has the i .p.

iflhen (54) hold-s and. A has the i.p., it d.oes not

necessarlly follow that ¡t has the i.p. if d.et V f !1 .

Fon example if ¿. is given by (SS) and.

oU=LI

bdl22l= Lo oluA = [-r s]lzz7

l2

so that clet U - 2, then

and. A' = 12 Zl d.oes not Ìrave the 1.p.

A nurober of sufficient conilltions for a natri-x to

be totally unlmodular (and hence to have the i.p.) have

þeen given by Hoffman and. Kruskal in [19f. OnIy the

follix¡ing theoreur provecl by Hofflnan in the append.ix of

Heller and. Tompkins [18] is given here:

Theorem 5 (ttelter anö Îompkins)

A matrix A is totally unimodular 1f the following

four corrd.itions are satisfleiL:
(u) Every column contalns at most two non-zero

entrie s;

(u) Every entry is ortl;
The matrix A can be partitioned into two d.isjoint

sets of rolvs fr,L anct nz such that:
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(") If a column of A contains two non-zeto entrles

and. both have the same sign, then one is 1n itl
ancL one is j.n frzi

(¿) If a co¡¡nn of A contains two non-ze?o entries

ancl they are of opposite sign, then both are in

fr,L or both in ft2.

Theorem 5 is true even, if one of the sets ftt-rftz is empty.

In the appenilix of Hell-er and- Tompklns [1S]' Gale

has proved. an interesting converse resqlt to Theorem þ"

Hls result 1s that if a natrix A satlsfi-es cond.ition ("),

then in ord.er that A is totally unimod.ular, cond.itions

(t), (") ancl (¿) ârê 49gg34y.
In the followÍng sectionsr some of the above

theorems are used. to investigate conÖitions und.er whlch

the two-commodity matrix A clefinecl by (¿+g) has the i.p.
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3.3 llo-Commod.itv Fractional Exanples

I|he constral.nte of a one-com¡nodity netwonk pnoblen

nay be written in the form

A# - þ, 3 < [ < g

where A 1e a nocte-link incid.ence matrlx. Slnce a nod.e-

link incid.ence natrlx satisfies the cond.itions of Theoren 5

where nl 1s tt¡e whole natrixr A is totally unimodulan.

The well-known integrality property of one-cou¡roctity net-

work problems follor¡Ye [9].
In general, multi-commod-ity network flow problems

have fractional solutions, even thougþ all the link

capacitieÊ are integral. Ford. ard. Fulkerson have glven a

three-conmod.lty fractional- example (p.17' [g]), ad Figure 6

deptcts a two-commodity exanple d.ue to Jewell [501. fhe

variaþle ï¡ rePrçSents the amount of flow from orlgin k

to destinatlon k' (t=1 ,2). -L11 l-lnlce are glven Jolnt

upper capacities of 1 1.e. llnk capaclties are integral.

The naximrrm two-conmotlity flow (vrayz) fs 1| and ls

achieved. by send.ing å unit of connod.ity 1 along each of t}re

chains (1 ,3r516rt+r1') ancl (l ,t17 r8rl*r1t ), and å unlt of

conmoèl ty 2 along the chain (Z r5 16 ,7 ,8 ,2t ) .

Jewellts exanple is rrot in t¡re same mathematlcal

form (4g) (lf ¡ as the two-commodity problern fornulated.

in section J.1, but it ls not d.ifficult to nod'ify h1s

example to procluee a fractional exarnple of the fom
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f

V2

V?

ú

EEBE.6.
Jerellr e tro-conmod.lty fractlonal eranple
À11 Ilr¡XE have Jolnt upper capaqltleg^ of
The naxl¡n¡¡n tto-connod.lty flou lvr+vs) ls

l.
tå.
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(l+g) (5t). This erample ls shown in Figurê 7. the

lines wlth double arrorvs repreeent flrll ]lr¡ke, while the

lines wlth singJ-e arrowg represent errpty Links. The gub-

network conprisl,ng iust the empty l1nks (t r4) , (2J), e)+)
(5rl) is a connected. rretwork. the nod-e-link lncid-ence

uratnlx [E F] 1sl

empty links
( t ,l+) (z,t) (2,4) (l,t)

f\rll links
(t ,z) (l,t¡ (+,1)

nod.es

Choose a?, - 2t a|t = ale = 1, a?g = 2 and- all other

af ¡ = o. vthen the rectund.ant row l+ 1s cleleted, the two-

co¡u¡nod.ity matrix A ctefined. by (l+g) and. the vector þ

defined. by (lt) are given bY:

44t*tt* * t

o
0

-11.

-1
o
1

o

1

-1
o
0

-1
0
1

0

o
1

o
-1

o
1

-1
0

1

0
o

-1

1

2
3
4

0
o1
o-1

o-1 1

I 0-1
010

-1
o
1

o
o

-1

-1
o
1

o-1 1

1 0-1
010

I1

o
0
a

o
0
o
1

0
-1

2
1

2

b
't0
o1
o-1

11

11

$e)

A- ,
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llr¡e llnee
tÌre llnes

wltlr
rl t¡r

ôouble arrows represent fl¡J.J' U¡¡ks, and
eingle arrore repreeent enpty llnks.

node l+
lr l(t,o)

lzl
1*,t

node 5

nod,e 1

(åro)

E[!ü@;9,.
Representatlgn of tÌre tro-con¡nod.lty probleo (¡e ) and. lte
eolutlon (57) fon the 8i9.7 netvork.

(r å,0)

¡

)
I
t

nod,e )( ,t

2

t(rå
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of each con^mod.ity may not be conserved. at all nod.es of tlæ

network. If the number of unlts of commoðfty k (lt=t re)

created. at nod.e i f.s þf , nod.e i is assignect the

oritered. pair of nu¡nbers btrþ?¡ fn the exa.nple (tø),

comrnoctity 1 flow is conaqrved. at every nod.e. But 1 unit

of commod.lty 2 is created. at node 1 (i.e. b? = +1 ), anil 1

unit of cornmod.ity 2 is d.estroyed. at nod.e 3 (i-.e. bA - -1 ).
Thus in Figure 8, norte 1 is asslgned the ord.ered. pair of

numbens 0r+1 and nod.e J tTre pair Or-1 . Nod.es 2 and l+

ane not assigrred. pairs of nr¡mbers, 1t being ur¡d-erstood.

that the flow of each conmod.lty is conservecl at þoth these

nod.es. Fina11y, if (f ,i) i" a flr1l linkr it is necess-

ary to j.nd.icate that the two-commodity flLow (fttrf?¡)

must satisfy
ftl+r?t=a15.

This ie achieved. by asslgning to each fu1l link (iri) tfre

nr¡mþer f .? I J. Ihus 1n Figure 8, the fir1l links (1 ,Z),

ßrl) and. (l+ril are asslgned the numbers l.zl, [t ] arrl

[Zl respectively.

Since a two-commodlty problem with the matlrematlcal

form (+g) (¡t ) nay have a fractlonal solutlon, 1t would.

be expeeteit tlrat ttie two-cornmoclity problern (Zg)-ØZ) woulcl

have a fractlonal solutlon in general. However 1n the

following section it is shoryn that und.er certain clrcurn-

stanceg ttre solution of (29) ßZ) will be integral.
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3.1+ Steaclv-State SoLutlons

ltre two-comrnodity problem (zg)-ßz) i-s a multf-
perlod.. problen, since t takes values 1r2r... ¡T. The

steaùv-state vereion of (zg)-32'l is:

Mininize

subject to

?t,?,cf ref r *,?ruf ¡rf ¡l

Slef r+rf ,l-?[el1+rf1J = ?"5r-?"lt

(¡g)

(60)

(6r )?ff¡ = al I

efl à o, rfl > (62)

Slnce ef r = O in a steady-state system, ttre summations

in (Sg) arrd. (60) are taken over ¡ I i. The costs 
"f ¡,

ancl ¿f ¡ are given by

"l¡ = Tr ¡ + sr tqk (Ø)

and.

dfl = trJdk, (61+)

where it is assuned. that Tr ¡ >

trJ >

fn this section 1t is shown that for certain

netwæk conflgr:ratl ons, tþê two-commoclity steacly-state

problen 1U9¡-(6t+) has integral optinal solutlone. fn fact

arþi trary costs 
"f I and- ¿l ¡ ane alloweil'
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SfÍlwa tnal¡nì'l a Sf-aqdrr-SLqf,a Pr.rrlr'l am

A very macroscoplc model of the Australia-E\rrope

system night involve just two stocþiles, one representlng

Australia, the other E\rrope. lhe resultant two stocþlle
stead.y-state problen nay be solvecl falrly read.ily by hand

calculatlons, ar¡d. the solution afforÖs lnslght lnto some of

the factors affecting container movement patterns in the

Australia-Ðurope system. I'irst ttre tlvo stocþiIe stead.y-

state problen and. 1ts itual are form¡Iatecl, ancl then the

complete solution is obtained. and. interpretetl with reference

to t,lre Australia-E\rrope systen.

Vfhen the reclund.ant equation for stockpile 2 ls

omitted., the two stocþile steacly-state problen read.g:

Mlnlnlze ¡t cf 
"ef 

,+itf 2r\2+c\, e[r+d."k.fåt ] (68)

subject to
ef 

"+f[ ,-e|r-f|, - a\t-al2 G6)

> flo = â9._ Gl)rr - - a?''

? rå, = aÊl (6S)

with all varlables required. to þe ron-rrêgat1ve.

The d.ua1 linear progr€m, obtainecl by assigning rnultipliers

rÍk, ltz, ïzt to (66), (67), (68) respectivelS is:
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Maxinize

subject to

eTe = a|t+a|r-at z-darz

4L a3.L2 uLz

e|t=0

f|t = a}t

îrL = c|z

7tz = 01z-ctz

["?" orr+af ,or, * ?( 
a9raÍ.r)t*f

If<
{Ê < e|t

rk+7r, 4 dI"

<rk+ïzt < ct["

(6e)

(zo¡

rJt)

Qz¡

with the variaþles rf , 7tz, 7zt unrestricteCl.

In the following, assume wlthout J-oss of g enerality

that q2 à qL and- a?t a?z > O. rn the AustraÌia-Europe

system, this correspord.s to assuming that comnod.lties 1 ,2

represent general, insulated. container.s respectivelyr arll

that stoekpiles 1 12 teptesent Europe, Australla respectively

Lemma 5

-

TVhen q,2 )- u,L, a7,t a?, >

att + a|t-ate-a?,r>o (J3)

an optimal solution to (65) Qz¡ is:

e?, = aÇra|z
î?r-o
e}t=0

f?t-o
T2 - c7,

7zt - d|t+c!r.
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Proof of lemma 6

81nce c{l anil df I are given by (61) and. (64)' 1t is
easy to verlfy that tbe aþove relations give prinal and. dua]

feasible soJ.utlons whieh have ttre sane obJeetive va1ue.

tr'ron tfre Dr¡ality ltreorern of Linear Progranmf¡g (ch.6r [7] )

1t follows that the solutions sre optfuaal. *
Lemina 6

lflhen qz > dL, a|t aflz > O and.

a|t + a}t. - aï.r - u8." < (zl+)

ancl

öâ"" c?z >

an optinal solution to (65) - Qz) is:

QE)

eïz =O eflz-a|ra|"z
fL, = alz f7, = O

e*t = at ,+afr-afr-aB t "Et = O

f,bt = alr fÇt = 0

rrt = -cLzL Ía = c|z

Ttz - d{ z+ctt ïzt = d|rc|t.

Lemma 6 may be proved. in the sane tJray as Lenma !.

T.cmma -7

lflhen q2 2 qL, a},- a|t > 0 anil

a|t + a}t aï.2 a?, < o

and.

ü." c?z < dlz + c|t Qe)
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an optinal solution to (65I - (68) is:
e|z =0 e?z=a?r-a7z-n

fï, = al2-m f7, = rl

e|t - atz+a?z-a|t-a|t-m e|t = O

fLrt = a|t fZ, = O

where ß = min I^?r ra|ra|'z raLz+a?z-a|"-aB. Ì.

An optirnal solution to (69) Qz) is:
m = agL2

rrt t tz = c?z

?zt = då .--cbto" = Ö? '-c?'
m = tt-a?z

-c$

Tt _ _c|t

|Lz = dt z+cbt

m = ale+al z-a|'--a|r

rfr = d|"-diz-e|t
7zt = d|rc|t

Tt' = dt r-d?z+cïz rrz = cïz

ot, = d? z-c?, ozt = d|L+dtz-d?2*c!2.

T,emm¿ 7 may be proved. 1n the same way as Lemma 5.

In tlre Australia-Europe system (with stocþ1les

112 representlng Errrope, Australia respectlvely), tTre

constraint (ll) in lemma 5 corresponcls to the assumBtion

that Australia erports more type 1 and. t¡rue 3 catgo than

she lnports. Thus Lenma 5 consid.ers a case of no Practic-
a1 interest in ttre Australia-Europe systen. I¡f Lemnas 6

and. 7, the realistic constralnt (Zl+) replaces (13).
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Essentia1ly onJ-y two cases arlse:
(f) It i6 4 worthwhile to pack type 3 cargo in lnsulated.

containers Ìshen (l>) holds (r.,emma 6);

(li) It is worthwhile to pack tJîpe 3 cargo irr insulatecl

contalners when Qe¡ hold.s (Lemna 7).

Note that 1n view of (Ø) ard. (64), the eonstraint (lS)

read.s

t.'zo,z (Trz+sr.d') >

1.ê.
(trz-sr z)az 2 Ttzryzr+(t, z+.ezr)ot . (ll)

The relation (ll) holils only when t]re ir¡sulateiL container

j-nventory cost is very expensive relative to the cost of

empty mOvements and. the gerenal contalner inventory cost.

On the basis of the data given in chapter 2, it is reason-

able to take

srz - spr = l+ (weefs)

tr, = 6 (weet<s)

Ttz = ^(zr = l+O (¿onars)

and. q! = J (Aoffars per week).

Then (ll) hold.s only v¡ten

d2 )- 65 (¿ollars per week).

In fact the insulateil container inventory cost is only 10

d.ollars per week, ard. so the constraint (lø¡ is realistic

for the Australia - Europe system and- Lemma 7 is applicable.
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0n the basis of the approximate figures per voyage

given in section 2.5, it is easy to see that in Lemna /,
m = alt-a|2. For a!2=alz=6)Or aâr=8OOr aflr=O, a!2=1O and

a|t - 21O, so that

m = min[600, 210-10, 600+600-soo-oj

nin[600, 2oo, 4oo¡

= 2O0.

Thus tlre Lemrna 7 solution with m = afifa?z correspond.s to

the heuristic solution suggested. in secti.on 2.5.

It should. be notecl that the optimal solutlon to the

two stoekpile two-commodity steaily-state problen - as given

by Lemrnas Jr6 anð- J - is always integral. Ina later part

of this section, it is shown that the tvvo stocþiIe problem

is just a special case from a general class of nulti-
comnod.ity steaily-state problems which have integral optimal

so]-utlons.

Ihree Stoekpil-e Steaily-State Problem

In the most general three stockpile steady-state

problen, the rretwork is that d.epictecl in Figure 9. For

such a problem, it 1s shoÌvn that the two-conmodity matrix A

defined. by (+g) is totally unimoôrlar, and. consequently the

three stocþl1e steady-state problen has integral optimal

sol-utions.

fn Figure 9, the nod.e-l-irrk incid.ence matrlces of the

subnetworks comprising empty links and- fu11 links respeet-
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FIOI'RE 9

-

a

Seùrork for genæal th¡ee etocþlle steacl¡r-state pnoblcn.
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i.vely, are itlentical ard. given by

links
1

nocles

I
0
t

-l1_1E = F = Lo o

a

-1
1

o

o

-1
1

o

1

-1

-1
o

I

1

2

3

1

-1
o

(ft is convenient here not to oriLer the links lexicograph-

ically. )

Tlhen the rectuncla¡rt row correspondlng to nod.e 5 is cleleteclt

the matrlces E and. F are given bY

o01
1-1-1 l1

1
a (za)

Theoren 6

Tihen tlre natrices ErF are given by (Zg), the natrlx

A ilefined. bY

Í-p r o o-jA=loonrl
L o r o rl

is totallY unimodular.

Proof of Theoren 6

The matrix A is totally unirnodular if ar¡d. only if the

natrix ¿r d.efined. bY

A,
--lEr,oo I

=loosrl
l_ o r'o r¿J

is totally unimoò¡lar, where
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It

o
o
0
o
0
I

o
o
0
0
1

0

o
o
0
1

0
0

00
10
o-1oo
00
00

-1
0
o
o
o
o a

(wote that AI is obtainect from A by nultiplying two rows

of A by -1. This d.oes not change the d.eterminants of

any sçluare submatricesr except perhaps for sign'') ft :-s

now prov'ed. by lnduction that if A¡ is all.y h(k submatrix

of A' , then d.et A¡. = t1¡O.

Clearly d.et A" = tl rO since ever1¡ element of ¿r

is t1rO. Nov¡ assume that clet Ar<-1 - 11rO for every

(t -t ) x (i.-t ) submatrix Ar- r of A' , and- J-et Ar be

any b(k submatrix of A/, If any column (or a¡y rovr) of

A¡ is all zeros, d-et A¡ = o' rf any column (or any row)

of A¡ contains just one non-zeto, then expand. d.et A¡ by

that eo}¡nn (or row) ancl obtain d-et A¡ = t1 d'et A¡-1

wh.ere A*-r is the cofactor of the non-zero eni;ry, and. has

d.eterminarrttl,obyhJrpothesis.Thusitmaybeassumed.
that

every column ard. every row of A¡ contains
0g)

at least two non-zel"o entries.

consequently, the columns of E correspond.ing to t'Ïre

empty links (l ,l), (3,1), (zrl) and- (lrz) are not present

in A*, and. Ak is a submatrix of



1

2
3
l+

-5
6
7I
9

10

Ha
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9 10 11 12 13 1lL+ 15 16

1001
o 1-1 -1

t

1

-1 1

Note that columns 1-6 and, 9-14 of Hl each contain exactly

two non-zero entries of opposite signr while eoLr:mns Jr\el5t
16 each contain three [on-zero entries.

Since Ar satj-sfies (lg) , if collr¡rn 5 of H1 is involveil

in Ar, then so is the correspond.ing colr:mn 11 , and. si-mi.Iar-

1y for colr:mns l+ and, 12, 5 anl 13, 6 and. th.

It is now convenlent to d.eflne

n(l*) = [i : Ar involves row i of Hti

v(l*) = t¡ : Ar involves colt¡nn i of Hr. J

an¿t to let î, (Ar), 6r(Ar) Clenote the complements of the

sets n(A¡), ø(&). Then because of the symmetry of Ht,

there are essentially just flve cases to consld.er"

(") n(er) ¿ î.1 ,Zr3r4J 1.e. Ak involves (at least)

rows 1rlr3rl+ of H1. TTren sinee Ar satisfies (lg), ttre

sr¡m of all roÌvs I for which

ie n(Ar) ar,ö 1< 1( 8,

i s ze?o, and. so d.et A¡ = 0.

I
-1

1

67
o1

-1 -1

1231+ 5

1-1 1-1 0
11001

1

1

1

I
1-
0

-1

1

1

1

1 1

11

11
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(t) n(Ak) ¿ tt,zJl and n'(A¡) 2 [¿+J.

In ttrie case, Ar d.oes not involve colu.mns 51619110r13r14

and. rows /r8 of IL and. so A¡ is a submatrix of

1

2
n -3tLz-5

6
9

10

1

1

1

2 3l+ 7

-1 1-1 1

1 0 0-1

-1

811121516
-1

1

1-1 1-1
-1

I
1

11

(ao)

1

1

a

Now if 6(Ak) ¿ [3r4r11 '121, then slnce cor,3 + col.l.r' =

co1.11 + co7-.12, d.et A¡ = 0. Otherwlse suppose t'hat

coLr¡mns 4 ard. 12 are not involvecl 1n Ak. Then when row 1

of A¡ is re¡rlaced. by the sum of all rows 1 for which

i e n(Ar) and í { l3r9,1o J,

d.et A¡ is unalterecl, a¡:d.. the new roÌv 'l has alL zeros,

except for a -1 in the colunn 11 position. So det A¡- t1 x

clet A¡-1 and. tþe inductlve h¡4lothesis gives d.et A¡ = t1eQn

(") r(Ak) ¿ [i Jl and rt (Ak) ¿ tz,4l.
fn this case, A* is a submatrix of

3l+7811 12 15 16

1-1 1-1
1-1
t

1

1 -1
I
3

Hs = j
6
9

10

-1
1

I
1

I
I a
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But the matrix Hs 1s totally uninodular, for when row 9

is nul-tiplied by -1 , every co}:¡on contains two non-zeros

of opposite s5-gn, and. theornem ! applies. So in this case

too, d.et A¡ = t1¡0.
(a) ß(Ak)L lzâj ard r'(Ar)Z It,4J.

Vfhen i t is renpmberect that A¡ satisfies (lg) , consid.era-

tlon of (AO) shows tþat 1n this case Ar must be precisely

the matrix

81516
1

I
1 1

But tTre sr¡m of the f irst two coh¡mns of H4 equals the

sum of the last two col-umns, arxl so d.et H. = 0.

(") n, (Ar) 2 [j,4j.
Conslderatlon of (gO) shows that A¡ must be a *2 sub-

matrix of the natrix

and. hence d.et A¡ = O.

Thls completes the ind.uctive proof that A' , and hence A'

is totally unimod.ular. *

7

2l
3lel

10 L
H4

1

1

1

a

1r
2L-

1

1

1

I
-1 I1l'

27
-1 I
1-1
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Four Stockpile Stead.v-State Probl-@

In section 3.1, a four stocþiIe problem (fi.g¡rre B)

was glven which has a unique fractlonal optimal solution.

Thus in general, two-commod.lty steady-state problens ln-
volving four or more stocþiles have fractlorral optimal

solutl ofis r

I ^ ^^ ^+ ê*a^,:lrr-Q*a*a Ðna blem^ 
ô.^^^i ^'l ê

It is now shovrn that there is a special class of

steaily-state problens whlch have integral optlnal solutions"

For any problem in the cIass, the subnetvrork of fir1l 1lnks

1s assumed- to have the foll-oïYing property:

there is a d.lstinguished- nod-e in the

network such that every firll link (81 )

elther origlnates or terminates at this nod-e.

ff it is assumeit that the clistingujjsheiL nod.e is nod.e 1, and'

the red.unclant equation correspond.ì-ng to nod.e 1 1s omltteilt

ar¡y problem in the class may be formulated- as follows:

Minimize

subject to

?t,?r.fr"Tr * ?laf"rfr+dIrrIr J] (sz)

al r ß3)flr-fär + ? efl
J

? "tr = â?r

ì "5r
al

( s4)

? r[' a?r (s5)

with all variables requlrecl. to be non-negative.
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In (AZ) (S5), i takes values 2eJ7..i and. in (Se) and.

(sl) the summations are taken over the values i=1 ,2e32... .

Theorem 7

The two-commod.ity problem (gZ) (85) 1s equivalent

to a one-comrnod.ity problem, and. hence has integral

optimal solutj-orlsir

Proof of TTreorem 7

Replace the constraint (S4) by ttre equivalent constraint

-? rt:. = -a?1 (s6)

and sum equations (Sl), (85) and- (86) over i (ror

i - 2 13 r. . .) and. over k. ltris ylelcls

? ?(et,-eIr) = ? ?("är-af:.) * ?(a!1-at1)

or ??(eIr-ef.) =??(af.-a[r) *?(a!r-a!1)' (87)

rhe problem (ez), (85), (s5), (86) and (87) is a one-

conrnod.lty network flow problen which 1s equlvalent to the

two-commod.ity problem (AZ) (85), Each variable

efl, ff' ffr occurs in just two of the equations (81)'

(S5) (87) an¿ has coefficient +1 in one equation and. -1

in the otTrer. *
Figr:re 10 ileplcts a simple three stocþi1e example

for which the subnetwork of nr1l links has property (8t ) t

and. Figure 11 shows the equivalent one-commodity network

flow problem. In Figure 11 it is assumed' that



est

alLlL2

glllgEplg.

l{etrork for rhlch everTr
or ternlnates at nod,e l.

fi¡ll 1lnts origlnates

82.

eås

e$ e3t

eI e?c

fto €2Ltz

oo"-"o*oôlty ""r*ffinroblen rhlch f.s egulvalent
to tro-connoâtty problm- on Flg.lO netrork.
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tf=aÍr-afr
b = F ? ("1,.-"Ir) * ? (aÎl-a?r)'

and. that the number assigned- to each nod.e is the number of

units of flow created. at that nod.e.

In ttre problen (gz) (S5) ' k takes values 1e2.

Theorern 7 generalizes to ttre K-commod.ity problem where k

takes values 1 ,2r... ¡K in (ge), (81) and. where (81+) and.

(85) are replaeed. by

= K 'k ^K+1àk=l lTr = ât:_

s K ¡.k ^K+1)k=1 Îit = ârl .

Note that the two stocþile problen solved' in

temmas D-7 is a speclal case of (gZ) (85), but the most

general form of the th'ee stockpile steacly-state problem is

not. In fact while it is true that the general two-

conmod.ity three stockpile- problen hae lntegral optlmal

solutions (as proved. in T?reorem 6), the corresponillng

jþree,-commod.ity problem d.oes not. Flgure 12 shows a

three-commoclity example whlch is sinilar to the example of

Ford. ard. Fulkerson (nentioneit 1n secti on 3'3) ' Set

ctr=dâs=dår=1
c|s = dgt = d?z = 1

clr=d?z=dla=1

an¿ 1et all otlrer cll, df ¡ be large positive integ€rs¡

Then the unique minimum cost solution is shoÏYn on the



8¿+.

(o,åro)
( 0,o, å)

G roro )

FIGTNE 12

-

a

(o rtrt)

å, å'o ) (* 
'o

I

Thnee etooþlle thrree-connodity fnactlonal example.
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Flgure 12 tætwork, and the nlnimr¡n cost ts l+å"

In tlre Australla - Europe container systemr there

was originally just one European port of call - lilbury -
and. tTrere were several Australian ports of cal-l. fn that

system, all full container movenents either originated. or

terninatecl at Tllbury ard. consequently the resultant

stead.y-state container network possessed. the property (gt ).
However 1n the ¡nesent Australla - E\rope system, there are

several E\rropean ports of call a¡rd several Australian ports

of call. The property (81) cloes not applJr, and. 1n general

the tlro-commod.ity stead¡r-state problern has fractional
optimal solutions.
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5,5 lfiu1ti-Peri ocl Soluti ons

In this seetlon 1t is shorirn that in general the

optimal sol-utlon of the two-commod.ity multi-per1od. problem

çzS) 3z) is fraetional, even when ttre corresponding

stead¡r-state problem has an lntegral optimal solution.
Ehe exanples given here are based. on realistic travel times

and. costs for the Australia - Europe system, but involve

rather s1mpl1fied. versions of the container network. It
has been posslble to obtaln optirnal sol-utions to these

rather sinple two-commodity multi-perlod. problems fairly
reailily using a linear programming package.

Figure 1J d.epicts a two stockpile multi-period.

problem anct its fractional optfunal solution. As in
section 3.4, stockpiles 112 represent Europer Australia

respectlvely ar¡d. 1t is assumed that

srz=ser= 4(weeks)

tr, = tzt = 6 (weeks)
( 88)

ytz = n(zr = 40 (aottars)

dL. = 5, dz = 10 (d.o[ars per week).

Note tlnat the link costs are integral, and the ninimum cost

1s 332+, so that any alternatlve optimal solutions are a-lso

fractiona]-.

rn the Figure 1J example, twe 3 cargo is sent from

stocþlle 1 to stockpile 2, LÐ9 from stockpile 2 to stock-

pile 1. Tn the example shown in Figure 14' there is no
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tlæe 3 cargo from stocic¡rÍle 2 to stocþ1le 1. lhis

corres¡pond.s to the situation in the Australj-a - Europe

system, where there 1s virtually no tlæe J catgo from

Australia to Er-rrope. In Figure 14 the ninlmr¡n-cost

solution 1s again fractlorral, and. the rninimr¡-n cost is 517+.

Figure 15 shows an example whlch is sinllar to the

Figure l\ example, but lnvolves three stockplles. Stock-

piles 1r2r3 represent [iIbury, Syd.ney anil Melbourne

respectlvely. fn ad.d.ition to the travel times ard. costs

given by (SS), it is assumed. that

szs = 1 (week)

trs = 7, tsr = 6 (weeks)

Tze = 40 (aottars).

Note that there is no tlæe J cargo from elther Sydney or

Melbourne to Tllbury. The mininu.m-cost solutlon is
fraetional, and the ninimum cost is 5925.

Thus where a steady-state problen has integral

optimal solutions, the corresponding multi-period. problen

may Trave f ractl onal oBtlinal soluti orIS r 0n the other hand.t

the examples given 1n Figures 13, 14, 15 clo not involve

reaListlc cargo movements (aftfrough travel times and. cOsts

a?e ?ealistlc). Itlhrile the examples strow that in general

the optimal solution of a nulti-period. problern is fraction-

â1, it may easily happen that for a particr¡lar set of cargo

movements, the optirnal- solution is integral.
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This thesis has formulated and. solved. a practical.

problen anising in a contalner shlpping system. The

problen of ileterninlng container lnventory and. movements

in the Au,stralla-Europe systen has been formulated. as a

two-connod.ity network flow moclel, wlth the variables

required. to take lntegral val ues. The d.if ficultles
inlrerent in solving large two-commoÔlty flow problems have

been avolilecl by using an efflcient heuristic proceilure

which obtalns near-optimal soluti oIIS¡ Computer progralns

have been unritten to implement the heurlstlc proceclure and.

used- to obtaln realistic answers to many practical question

about the Australia - Europe container shipping system.

The mod-el has tle ad.vantage that it may reac[11y be

generalized, to consid.er systems involving more tlran two

container t¡pes, altl.ough it is not clear that the result-

ant multl-commocLity florru problem couId. be solved. efflcientl,
by heuristic means. Ï[hi]-e it has been assumed- in the

nod.el ilescriptlon that the baslc unit of time is one week,

the formulation allows any time unit. Tlrlth a basic time

unit of a day, the mod.el migþt prove useful in answering

d.etaileÖ questions of short-term container control.

Perhaps the najor lirnitation of the nod.el is that

it is detenministlc. In ttris respect the mod.el is less

general than that of Horn IeO], who a11ows probabilistic
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rt has alread.y þeen noted. that the introd.uctlon of

containerisation into the field. of shlpping transportation

has resultecl in considerable system sirnplification. While

it is true tflat a network flow approach cou1d. be usect to

mod.el the movement of containers by irregular transport

mod.es, the formuLatlon of section 2.4 rel-ies upon tlr

basic periocticity of the various transport mod.es between

stocþiIes. ft r¡vould. seem that the þasic sinplicity of

the contalnerj-satlon system should allow a profitable

stud.y of other problems to be und.ertaken. Thus in

conclusion, it is suggestecl that the introcluctlon of

contai nerisation has opened. up a nevl field. for the applica-

tion of operations research techniques to significant

practical problems.
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+1 is !, t originates at n1

-1 if ¿ J terminates at D.1

O otherrylse.

Itrus eacTr column of a nod.e-Iink incld.ence matrix contains
just two non-zero entries, which are +1 and. -1.

The r"ows of a nod.e-link incid.ence matrix are J-inearly

depencLent because if tlæ rows are Et, !2, t. .. e f,n then

l¿ + fo *r ..'F 13- = O.
d¿dpd¿è

rhe nod.e-link inciclence natrix of a connectect network with
n noctes has rank (n-1 ). rf an¡r row of such a matrix 1s

d-eleteil., the remaining (n-t) rows are Ij.nearly ind.epenclent
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