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SUMMARY

The movement of containers in the Australia-Europe
container shipping system is formulated as a network flow
model. Under the assumption that cargo requirements are
known, the minimization of the cost of the movement of the
containers and the total container inventory is expressed
as a minimum-cost network flow problem, with the variables
restricted t o take integral values. This is a two-
commodity problem because it is necessary to distinguish
two types of container - general, used for dry cargo, and
insulated, used primarily for refrigerated cargo but also
for dry cargo. Near-optimal solutions to the two-commodity
problem are obtained using an efficient heuristic method
which utilizes the structure of the problem and guarantees
integral solutions. Computer programs to implement the
heuristic solution pfocedure have been written and used\to
give realistic answers to many questions about the Australia-
Europe system. Several model applications using realistic
data are given.

For practical purposes, the heuristic procedure
provides a completely adequate integral solution to the
two—-commodity problem. But it is of theoretical interest
to examine the nature of the optimal solutions to the two-
commodity problem when the variables are not restricted to

take integral values. Certain classes of linear progranms

(iv)



have the property of always possessing an optimal solution
which is integral. This "integer property" is possessed
by one-commodity network flow problems, but in gzeneral the
optimal solutions to multi-commodity flow problems are non-
integral. In a number of special cases it is proved that
the two-commodity problem has an integer property. In fact
it is shown that there is a class of multi-commodity net-
work flow problems which may be converted to equivalent
one-commodity problems. However in general the two-
commodity problem has fractional optimal solutions.

Simple examples based on the Australia - Europe network are

given to demonstrate these theoretical aspectse

(v)



SIGNED STATEMENT

I hereby declare that this thesis
contains no material which has been accepted
for the award of any other degree or diploma
in any University and, to the best of my
knowledge and belief, it contains no material
previously published by another person, except
where due reference is made in the text of the

thesis.

K.J. Noble

(vi)



ACKNOWLEDGEMENTS

I am greatly indebted to my supervisor,

Professor R.B. Potts, for his encouragement and advice
during all stages of the development and presentation of
this thesis.

Chapter 2 of the thesis reports some of the results
of a project sponsored by the Australian Commonweal th
Department of Trade and Industry, amd I acknowledge the
continued interest and help of the officers of this
Department. A major portion of the data used was supplied
by Associated Container Transportation (Australia) Ltd.,
and Overseas Containers (Australia) Ltd., and these firms
were generous with their assistance in many ways.

I would like to thank the C.S.I.R.0., whose
financial support, in the form of a C.S5.I.R.0. Postgraduate
Studentship, made this work possible., Also my thanks are
due to Miss D.J. Potter for doing an excellent job of typing,
and Mrs. E. McDonough for running off copies. Finally, I
wish to express my gratitude to my wife Jenny for her
encouragement and understanding during the course of the

thesis,

(vii)



14
CHAPTER 1. INTRODUCTION |

During the past few years, shipping throughout the
world has undergone a dramatic change. In large part,
regular scheduled integrated container shipping services
have replaced the irregular and haphazard conventional
shipping services., While there is a considerable volume
of literature on economic aspects of containerisation [2],
[33], relatively few papers have applied the techniques of
operations research to specific problems concerned with
operational aspects of a container shipping system. The
Matson Navigation Company was one of the pioneers in the
containerisati on field, and the classic paper of Weldon
[49] is one of the earliest scientific papers in this area.
More recently, Matson have tackled the problem of schedul-
ing their freighter fleet [32], but they do not consider in
[32] the problem of determining container inventory and
empty container movements., The latter problem has been
considered for the Australia-Europe container shipping
system by Noble and Potts [31], and Chapter 2 of this thesis
is based on the material in [31].

The analysis in [31] is applicable to other contain-
er shipping systems, and also to similar problems in other
areas. For a containerised mail system, the problem of
determining optimal container inventory and routing has been

treated by Horn [20], who generalizes the work of Samuel and
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Ullmann [L43]. Several papers have considered the problem
of scheduling the movement of empty freight cars in a rail-
road system [5], [10], [11]. In each of these applica-
tions, the problem is formulated using the concept of net-
work flow, but the treatment in [31] differs from the others
by considering the flows of two different commodities on the
ne twork.

In the literature, many practical problems have been
formulated as multi-commodity flow problems on directed or
undirected networks, and many papers have considered vari-
ous theoretical aspects associated with such problems. A
comprehensive bibliography is given by Jewell in [28].

While very efficient algorithms exist for solving one-
commodity network flow problemes [9], the solution of multi-
commodity problems is considerably more difficult. Various
solution procedures have been proposed, among which are
those of Ford and Fulkerson [8], Jewell [28] and Saigal [u1],
but there appears to be a lack of computational experience
for all of them. The nature of the optimal solutions to
multi-commodity problems has been investigated by Jewell
[27], and other approaches include those of Bellmore et al
[4], Cremeans et al [6], Grinold [12], Haley [14]-[17],
Rothfarb and Frisch [34] - [36] and Sakarovitch [42].

Tomlin [47] and Jarvis [26] have related the proposal of

Ford and Fulkerson [8] to the decomposition method of
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Dantzig and Wolfe (ch.23, [7]).

A number of special results have been obtained for
two-commodity problems on undirected networks. Hu [21] -
[23] has proved a two-commodity max~flow min-cut theorem,
which is analogous to the one-commodity theorem of Ford and
Fulkerson [9], and various other results have been obtained
by Rothschild and Whinston [37] - [4O], Tang [LL] - [L6],
Arinal [1] and Hakimi [13]. Some computer times are given
in [L4O], but these are not very encouraging. In any case,
the special properties of two-commodity problems on un-
directed networks do not hold for directed networks. The
problem formulated in Chapter 2 of this thesis involves two-
commodity flow on a directed network.

Since this problem has a multi-stage structure, it
might be thought that use of Dantzig-Wolfe decomposition
[7] would provide an efficient solution method. Indeed
Bellmore et al have proposed a special decomposition algo-
rithm for a one-commodity multi-period problem [3]. But
in their problem, each stage is linked only to the immediate
ly preceding and succeeding stages, whereas in the Chapter 2
problem, the linkage of stages is far more complicated, ard
decomposition is far less palatable.

Fortunately, it has been possible to obtain near—-
optimal solutions to the Chapter 2 two-commodity problem

using an efficient heuristic procedure, which is described
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in section 2.5, In numerous applications of the network
flow model, the heuristic procedure has proved capable of
giving completely adequate solutions to the two-commodity
problem. Realistic applications from the Australia -
Europe container system are discussed.

Chapter 3 of the thesis is primarily concerned with
theoretical aspects of the two-commodity problem. In
particular, conditions are established under which the
optimal solution to the two-commodity problem is integral.
The results of Heller and Tompkins [18}, Hoffman and
Kruskal [19] and Veinott and Dantzig [L8] are used to
estadblish a class of two-commodity problems which have
integral optimal solutions. In general, the optimal
solution to the two-commodity problem is fractional, as
shown by Jewell [30]« Fractional examples based on the

Australia - Europe container network are given.
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CHAPTER 2. NETWORK FLOW MODEL QOF THE AUSTRALIA-EUROPE

CONTAINER SERVICE

2.1 Australia-Europe Container Shipping System

In March 1969, the two consortia Associated Contair
er Transportation (ACT) and Overseas Containers Ltd. (OCL)
inaugurated a container shipping service between the
United Kingdom and Australia. The service was designed
to provide a regular schedule of cellular container ships
with one port of call - Tilbury - in the UK, and three
ports of call - Sydney, Melbourne and Fremantle - in
Australia (Fig. 1). With a speed of about 22 knots, the
container ships complete a round voyage in about 70 days,

and adhere closely to the following schedule:

port npode day
leave Tilbury 1 1
arrive Fremantle 2 23
arrive Sydney 3 28
arrive Melbourne 5 33
arrive Fremantle 2 39
arrive Tilbury 1 62
leave Tilbury 1 T1e

It is a feature of container ship operations that the time

a ship spends in port is minimal - less than half a day in



FIGURE 4.

Australia~-Burope container shipping system.
represent Tilbury, Fremantle, Sydney, Brisbane, Melbourne

Nodes 1,2,3,&,5.5

and Adelaide respectively. The solid lines represent the
container ship movements. The dashed line from node 3 to
node Y represents a feedership service between Sydney and
Brisbane, and the dashéd line from node 5 to node 6 repre-
sents a raill service between Melbourne and Adelaide.
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Fremantle at each Southbound and Northbound call, about
three days in each of Sydney and Melbourne, and about nine
days at Tilbury.

As new ships have been phased into the service, the
frequency of sailings has been increased and in 1971 was
one every five or six days, with thirteen container ships
in operation. The original schedules have been modified
and now include several European ports of call, while often
the Northbound call at Fremantle is omitted.

The containers used in the service are mainly
standard 20 ft. x 8 ft. x 8 ft. containers of two types -
general containers used for dry cargo, and insulated
containers designed especially for refrigerated cargo (or
reefer cargo as it is commonly called) but used also for
dry cargo. Other types of containers are present in
insignificant numbers and will be ignored. Fach cellular
ship was designed to have a capacity of about 1300 contain-
ers, including about 350 insulated containers, although
subsequent modifications have enabled these capacities to
be increased.

In Australia, there are terminal facilities for
unloading and loading containers at Fremantle, Sydney and
Melbourne, where depots for packing and unpacking of
containers are also provided. In addition, Brisbane has

a terminal-depot served by a coastal feedership to Sydney,
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and Adelaide has a depot with a direct rail link to the
Melbourne terminal,

Empty containers can be stockpiled at terminals or
depots, and because there are local and international
imbalances in full container movements, interstockpile
empty container movements are required. Typical of these
movements of empty containers (empties) are: Sydney to UK
by container ship; Sydney to Brisbane by feedership; and
Melbourne to Adelaide by rail.

The service provided by the container ships -
regular, periodic sailings with few ports of call - is a
marked contrast to the conventional shipping service which
uses many ports of call in Australia and the UK and which
does not adhere to regular schedules. It is the basic
simplicity of the container service which makes it readily

amenable to mathematical and computer analysis.
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2.2 The Problem

This thesis is concerned with just one area of
operation of the container system - the problem of how
many containers there should be in the system and how the
containers should be moved. More precisely, the problem
considered is the minimization of the cost of the containepr
inventory anmd the movement of containers, under the assump-
tion that there are always sufficient empty containers on
hand for the packing of available cargo. Shortages are not
allowed,

As noted in section 2.1, there are two types of
container - general and insulated - and two broad classes
of cargo - dry and reefer. But some dry cargo is not
suitable for packing in insulated containers and so there
are actually three types of cargo:

type 1 cargo - must be packed in genersl containers;
type 2 cargo (reefer cargo) ~ must be packed in insulated
containers;
type 3 cargo - may be packed in either general or
insulated containers.

Thus the problem consists of three inter-related

parts:
determining full container movements (essentially this
involves allocating type 3 cargo between general and

insulated containers);
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determining empty container movements for general and
insulated containers;

determining container inventory for general and insulat-

ed containers.
In the next section it will be shown that this problem may

be expressed as a two-commodity network flow problem.
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2.3 DNetwork for Container Movements

The movement of full and empty containers may be
represented as flow in a network of nodes and links; and
the efficient control of this movement may be expressed as
the problem of minimizing the cost of flow in this network.
The nodes of the network generally represent stockpiles for
containers, and the links of the network represent transport
modes between the stockpiles, When a container is packed
with export cargo, an empty container is consumed and a full
container is produced. Conversely, when an imported full
container is unpacked, a full container is consumed and an
empty container is produced. This production and consump-
tion of full and empty containers is assumed to occur only
at nodes of the network, and the containers (full or empty)
may be transported only along the network links.

The detail with which the network is chosen depends
on the uses to be made of the network model. For many
applications, it is adequate to regard each port of call as
a container stockpile, represented by a single node. Thus
in Pig. 2, node 5 represents the Melbourne stockpile while
the link from node 3 to node 1 represents the possibility
of a container movement from the Sydney stockpile to the
Tilbury stockpile. For other purposes, a more detailed
network, as indicated in Fig. 3, is necessary. Each port

of call is now represented by two nodes, one representing



FIGURE 2.

Australia-Europe container network. Nodes 1,2,3,4,5,6
represent container stockpiles at Tilbury, Fremantle,
Sydney, Brisbane, Melbourne and Adelaide respectively.
Links between nodes represent possible container mové-
ments (for clarity only a few links have been drawn).

. Gg (13)

FIGURE 3. | IS

Detailed Australia-Burope container network. Nodes
1,2,3,4,5,6 represent container stockpiles at Tilbury,
Fremantle, Sydney, Brisbane, Melbourne and Adelaide
respectively. Nodes 11,12,13,15 represent the container ship
in port at Tilbury, Fremantle, Sydney and Melbourne
respectively.
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the container ship in port and the other the container
stockpile. This detail helps to distinguish between
containers which are loaded and unloaded at a port and those
which are simply in transit.

To represent the dynamic flow of containers through-
out the network, it is necessary to attach to each link a
travel time. Because of the inherent regular periodic
structure of the container service it is convenient to
measure the travel time in units corresponding to the
interval between successive ships. Thus a travel time of
3 units for a weekly container service means a travel time
of 3 weeks. For convenience of description, it is assume§
that the service is weekly.

When used in reference to full container movements,
the term "“travel time" is interpreted as follows. The
process involved in sending cargo from Tilbury to Fremantle
(say) is quite inflexible, except that it may be necessary
to choose whether to use a general or an insulated contain-
€Tr. A suitable empty container is taken from the Tilbury
stockpile, is packed with the cargo, and is loaded on the
container ship at Tilbury. When the ship arrives at Fre-~
mantle, the imported full container is unpacked and the re-
sultant empty is placed on the Fremantle stockpile. The
time occupied by the complete process is called the "travel

time" for the full container movement from Tilbury to
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Fremantle, and might be 5 weeks compared with (say) 3 weeks

for the Tilbury - Fremantle empty movement.

The movement of containers over time is represented
as flow in a dynamic network. For example, Fig. L4 is the
10-week dynamic version of Fig. 2, with links illustrating
possible container movements. Since the travel time for
full containers from Tilbury to Fremantle is 5 weeks, the
complete dynamic version of the network contains a link from
node 41 in week 1 to node 2 in week 6, from node 1 in week 2
to node 2 in week 7, amd so on; these links are shown as
solid lines in Fig. 4. Similarly the travel time for
empty containers from Sydney to Brisbane is 1 week, and the
complete dynamic network contains a link from node 3 in
week 1 to node L4 in week 2, from node 3 in week 2 to node il
in week 3, and so onj; and these links are shown as dashed
lines in Fig. L. To allow for containers being held at
Melbourne from week 8 to week 9, there is a link (dotted
line) from node 5 in week 8 to node 5 in week 9; and the
dotted line from node 6 in week 4 to node 6 in week 5 allows
for containers being held at Adelaide from week L4 to week 5.
Thus it is possible to represent as flows along links of the
dynamic network not only fuil and enpty container movements,
but also the holding of containers at stockpiles.

In formulating the dynamic network, some judgement

is needed in interpreting container movements as occurring



WEEKS / 2 3 4 5] 6 7 8 9 /10

NODES

. (Tilbury) O O O O O

o(Fremantle) O O O O O

3. (Sydney) o\ Q\ o\\ 'Q\ O\ Q\ Q. Q\ O\ O
o) O D O O HL O B VL B O
5.(Melbourne)  (O)....-. oo oo oy ‘'oIN ORI QI Q)

5. (Adelaide) Opo)o ...... O o oIy ZORIE O XN "o DOE-;

FLGURE

10-period dynamic version of Fig.2. B8clid lines represent full container movements, dashed lines
represent empty container movements, and dotted lines represent stockholding at stockpiles. Only
a few 1linkes are shown.
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from one week to another week, but the sensitivity of the
results to the assumptions made can easily be tested. A
more accurate day-to-day network would be useful for
problems of detailed container control, but would be far
too complex for the applications considered here.

Container inventory and movement costs are
represented in the dynamic network by assigning costs to
the links, and cargo requirements are represented by
assigning capacities to the full container movement links
(full links). There is one set of costs and capacities
for general containers, and another set for insulated
containers,

The container inventory cost reflects the weekly
cost of owning a container, and so for example the unit
inventory cost assigned to a link with travel time 5 weeks
is 5 times the weekly inventory cost per container. Once
each 1link has been assigned a unit inventory cost, the cost
on each empty movement link is increased by the appropriate
unit empty movement cost. Thus in Fig. 4 the overall unit
cost (for general containers) assigned to the Sydney-Bris-
bane empty movement link is the sum of the weekly inventory
cost per general container and the unit empty movement cost
from Sydney to Brisbane, The overall unit costs assigned
to full links are derived similarly.

Associated with each full link in the dynamic net-
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work, there are three cargo quantities which are supposed
known., These are the quantities of each of the three
types of cargo (see section 2.2) which must be moved along
the full link. The full link is assigned a lower capacity
for general containers which is equal to the quantity of
type 1 cargo, and is assigned a lower capacity for insulated
containers which is equal to the gquantity of type 2 cargo.
But this is not sufficient to ensure that type 3 cargo is
carried, The latter is achieved by constraining the total
flow of general and insulated containers on the full link
to be equal to the total amount of cargo (of al1 three
types) which must be carried.

Non~negativity of flows on links which represent
empty container movements and the holding of containers at
stockpiles is ensured by assigning zero lower capacities
to these links.

Thus the problem of minimizing the cost of container
inventory and movements is represented as the problem of
determining minimum~cost flows in the dynamic network,
subject to capacity restrictions. This is a two-commodity
network problem because there are two types of container.
The flow of these two commodities is interdependent because

type 3 cargo may be packed in either type of container.
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2.4 Mathematical Formulation

In the following list of the mathematical notation
to be used, subscripts i, take values 1,2,3,..« and
refer to nodes or stockpiles 1i,j. The variable t,
taking values 1,2,3,... refers to the week number.

The superscript k signifies the two container types,

k=1 for general and k=2 for insulated containers. The
superscript k 1is also used to signify the three cargo
types and in this use only, k also takes the value 3.

No confusion should arise, because the superscript 3 will
be shown explicitly. Otherwise it is assumed that k=1

or k=2, ard that % means k2.

The following integer guantities are assumed given:

a¥y(t) = number of container loads of type k (x=1,2,3)
cargo to be dispatched in week t from stockpile
i to stockpile j (1)

Sy4,t1; = number of weeks (travel time) for an empty, full

container movement from i to (2)
ak = unit weekly inventory cost for containers
of type k (3)

Y13:8135 = un%t cost for moving an empty, full container
from i to (L)

uy 3(t) = maXimum number of empties (general + insulated)
which can be dispatched in week t from

i to je. (5)
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The following integer variables are to be determined:
ef;(t),£¥;(t) = number of empty, full containers of type k

to be dispatched in week t from i to J

(6)

nk(t) = total inventory of containers of type k
in the system in week t (7)
g¥(t) = number of containers of type k added to
the system at stockpile i 1in week t
(8)
C = total cost of container inventory and full
and empty movements. (9)

It is convenient to interpret ef;(t) as the number
of containers of type k held at stockpile 1 during week
t (after arrivals from and departures to other stockpiles)
and take s;; = 1. The total number of containers in week
t 1is then given by those held at stockpiles and those

moving empty plus those moving full in week t, so that
nk(t) = 123 > ef;(t-7) + 123 ?'f‘f_.,(t—'r). (10)
23 T s

Here the summation is taken over links of the dynamic net-
work (such as in Fige 4) with T varying over the range
7=0 to s13-1 in the summation ?, and T varying over
the range 7T=0 to t;4-1 in the summation ?'. The
summation in (10) is readily interpreted on the dynamic

network as the sum over all links which originate in week
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t or earlier and terminate in week (t+1) or later.
The problem of minimizing the total cost of
container flows in the dynamic network can be formulated

as the following two-commodity problem:

Minimize C = 3 %[1217138§3(t) + 12381jf¥3(t) + aknk(t)]

(11)

subject to

?{efj(t) + £5 ()} - =fef (t-syg) + £51(t-t54) ] = gt (t)
1 (12)

£,(t) = af;(t) (13)
2 £1(t) =3 af; () + afy(t) (11)
e¥s(t) = 0, gf(t) >0 (15)
% ef;(t) < uyy(t) (16)

and the additional requirement that all variables be
integers.

In obtaining the objective function (11), in which n¥*(t)
is given by (10), the usual and adequate assumption of
linear costs is made.

In general each variable ef;(t) occurs in n*(7)
for the values 7=t to 7=t+s;;-1, and each variable
£¥,(t) occurs in n*(7) for the values 7=t to
T=t+t;4-1. When this is the case, substitution of (10)

into (11) and collection of terms in ef;(t), £f;(t) gives
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C = %E[iEJ(YIJ + sygak)efy (t) + !23(311 + tygok) £ ()]

P 48 08)ek. (t)+ = t,akrE () ]+ = &, (oFK,(t
tk[i,j(Yij 3o%)ef;(t) R ky(t)] 22,0108 ky(t)

where by virtue of (14), the right-hand term in the last
equation is a constant. So minimizing C 1is equivalent

to minimizing

ol = %%[lzjcfj(t)efj(t) + 1zjd¥j(t)f¥3(t)] (17)

where
cky(t) = yij + sq40% (18)
and d!fj(t) =] tijak. (19)

The quantities gf(t) have been introduced princip-
ally to allow the possibility of adding containers to the
system to cope with a growth in container trade. In
practice containers are added to the system every few
months (say) and then only at certain stockpiles, so that
most of the gf(t) are zero. In many applications it has
been possible to set all the gf(t) equal to zero.

The constraint eguation (16) can be interpreted in
different ways. For example, u;;(t) could represent the
capacity of the stockpile at 1 and would be independent
of t unless changes in the stockpile were made. Between
one port of call i and the next port of call j, ug 5(t)

could represent the number of empties which can be carried
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on the container ship on the leg i to Jj. The space for

empties on each leg could be calculated from the given full
container flows and the ship capacities. Although reefer
(type 2) cargo can be carried only in certain cells of the

ship, there is no restriction on the placement of empties.

In meny applications of the model, it has been possible to
ignore the wujyj(t).

The sbove formulation does not specify initial

and terminating conditions. For many applications, it is
convenient and adequate to impose a cyclic boundary condi=
tion, as used by Horn [20]. One year is a natural cycle

period. In general let
T = number of weeks in the optimization period. (20)

The variable + then assumes the values 1,2,...,T and,
for example, wug;(-2) is taken equal to u; 4(T-2).  The
cyclic boundary condition means, in effect, that the
T-period dynamic network is wrapped around a cylinder so
that weeks T and 1 are adjacent, as indicated in Fig.5.
When the cyckic boundary condition is used, summation in

(12) over all values of t and 1 gives

and so all the g¥(t) are zero.



1%:) 4%:) \4t:) ‘\ﬂt:) \at:) 4%:)
T=1 = , 3 4
o / /
Finish of peried _» B ot of pariod
FIGURE 5.

T~-period dynamic network with cyelic boundary condition.
Network can be thought of as drawn on the surface of a
cylinder, so that week T is adjacent to week 1.



2.

For other applications, particularly in situations
of rapid growth, a non-cyclic boundary condition is prefer-
able. Again the variable t assumes the values 1,2,¢..,T
but it is tacitly assumed in (10) and (12) that any variable
ef;(7) or £§;(v) with 7 < 1 1is suppressed. Then it

follows in (12) that

gf(1) = §2e¥;(1) + £fy(1)}

and so

2 gf(1) =3 §,1¢¥;(1) + 5501}

s ef,(1 = (1),
12y %J( ) + 12y 13( )

Thus from (10) it follows that
n¥(1) =3 gf(1). (21)

Consequently when the non-cyclic boundary condition is used,
the variables gf(1), and possibly variables gf(t) for
t 2 2, will be non-zero.

Finally, in the non-cyclic case, (18) and (19) must

be modified to read

cky(t) = vy + {min(s;;,T-t+1) jok (22)
and afy(t) = fmin(t;,,T-t+1) lak. (23)
This is because links which originate in week t and term;
inate after week T incur inventory costs only in weeks t

to T.
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2.5 Heuristic Solution

No efficient solution technigues are known for
solving general two—-commodity flow problems on large net-
works, but an heuristic procedure is available which
reduces the problem (12) - (17) to two one-commodity
problems., Each of these can be solved using an algorithm
such as the efficient out~-of-kilter algorithm [9 ].

There are two phases in the heuristic solution
procedure. In Phase I, type 1 cargo and general containers
are excluded and attention focussed on the movement of
insulated containers. All of the type 2 cargo and some of
the type 3 cargo will be carried in insulated containers.
In Phase II, the movement of general containers is consid-
ered assuming the Phase I insulated container movements.

The two phases of the heuristic procedure can be
described mathematically as follows.

Phase T
Solve the following one-commodity problem:

Minimize :&[izjcfj(t)e?j(t) + 1zj:\:,:,(t)ffj(t)] (24)

subject to
§{e?a(t)+f?3(t)}—§£e§1(t-s,1)+f§1(t-tji)}=g?(t)
(25)
a?;(t) < £35(t) < af;(t) + af,(t) (26)
0 < efy(t) < ury(t),gf(t) >0 (27)
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where Xx;;(t) = heuristic unit cost for dispatching

a full insulated container from 1

to j in week t. (28)
Phase II
Fix ef;(t), f3;(t), g7(t) at their Phase I values (which
will be integers [9 ]) and solve (12)-(17) to determine
et;(t), £t,(t), gt(t). Note that (13) and (14) simplify
to

£13(t) = 2 afy(t) + afy(t) - £F,(¢)

and (15) and (16) simplify to

o)

n

ety (t) < uyy(t) - ef4(t), at(t) >0

so that Phase II also involves solving a one-commodity
problem, and results in integer values for e},;(t), £1;(t),
gt(t). The final solution at the end of Phase II is a
feasible integer solution of the two-commodity problem
(12)-(17).

Some choices of the heuristic costs xlj(t) may
result in near-optimal heuristic solutions to the two-
commodity problem. If the x;4(t) are chosen to be large
positive numbers, the optimal solution to Phase I will have
(almost surely) f£%;(t) = af;(t) i.e. no type 3 cargo will
be carried in insulated containers. On the other hand, if
the xlj(t) are chosen to be large negative numbers, the

optimal solution to Phase I will have (almost surely)
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£3,(t) = af,(t) + af;(t) i.e. all type 3 cargo will be
carried in insulated containers. These are two fairly :
obvious heuristics, but neither is particularly suitable
for the Australia-Europe system.

The cargo imbalances in the Australia-Europe system
provide the motivation for the choice of the heuristic costs
xy3(t)s Australia exports much more reefer (type 2) cargo
than she imports, and imports more dry (type 1, type 3)

cargo than she exports. During 1970 approximate figures

per voyage were:

Import Dry Cargo Reefer Cargo
Europe-Australia 1200 10
Export
Australia-Europe 800 210.

Virtually all of the Australian dry export cargo is type 1
while perhaps 50% of her dry import cargo is type 3.  Thus
for simplicity the breakdown of dry cargo into type 1 and
type 3 will be assumed to be:
Type 1 Type 3
‘Europe-Australia 600 600

Austral ia-Europe 800 0.

If type 3 cargo is not packed in Southbound insulated con-
tainers, 210-10 = 200 insulated containers travel South-

bound empty, and because of the dry cargo imbalance,
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1200-800 = 40O general containers must travel empty North-
bound. But if all the type 3 cargo is packed in South-
bound insulated containers,400(=600+10-210) more insulated
containers reach Australia than are needed for reefer
exports. 40O insulated containers must travel empty
Northbound; and since Australian type 1 exports exceed
type 1 imports, 200(=800-600) general contsiners must
travel empty Southbound.

These empty movements in opposite directions are
wasteful - a good heuristic solution should try to eliminate
empty movements in one direction. Since the total Austra-
lian cargo import of 1210 is greater than her export of
1010, there must be a net Northbound flow of 200 empty
containers. Because insulated containers are about twice
as expensive as general containers, general containers
should move empty Northbound. Thus a good heuristic is to
£ill 200 Southbound insulated containers with type 3 cargo.
The remaining 1000 container loads of Southbound dry cargo
are packed in general containers, and 200(:1000-800) general
containers travel empty Northbound.

What values should be assigned the xy4(t) to
achieve this heuristic solution? For i an Australian
port and j a European port, let =x;;(t) be a large
positive number (or equivalently, set ff;(t) = afy(t))e.

For i a European port amd j an . Australian port, choose
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xy;(t) in the range
0 < x4(t) < cFy(t).

The idea is to encourage insulated containers to come to
Australia full rather than empty (hence x;4(t) < cFy(t)),
but not to the extent that they come to Australia full and
return to Europe empty.

This choice of heuristic costs xy4(t) has been
used to compare the heuristic solution to the exact optimal
solution for a three stockpile 24-week problem. The stock-
piles represented were Tilbury, Sydney and Melbourne, and
cargo d emands were based on 1970 figures. The exact
optimal solution to the two-commodity problem was obtained
using a linear programming package. (Even for this relat-
ively small example, the constraint matrix has 240 rows and
1,80 columns.) The overall costs of container inventory and

empty movements were as follows:

Heuristic Solution $1,902,000

Optimal Solution $1,825,000.

Thus the heuristic solution is $77,000 (about %) more
costly than the exact optimal solution.

The heuristic described above works well for the
Australia - Burope system. In other container systems,

different heuristics may be required.
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2.6 Container Movement and Cost Data

Container Flows

An analysis of historical data over the period
February-August 1970 and covering 20 voyages yielded the
average full container flows and major empty flows listed
in Tables 1,2. Because these figures relate to a compar-
atively short period during the growth of the container
service, they should not be taken as an indication of
later operations. In particular, the empty movements were
atypical because in the period analysed many containers
were being positioned in Australia for other trades.

More typically, larger numbers of containers would be
returned empty to Tilbury.

Table 1 illustrates the cargo imbalances for both
dry and reefer cargo. The imbalance at Melbourne, for
example, is a net import of 90 container loads of dry-cargo
and a net export of 107 container loads of reefer cargo.
Table 2 shows the major flows of empty general containers.
There are no major flows of empty insulated containers
because they are imported to Austpalia packed with dry
cargos.

Ship Capacity for Empty Containers

The ship capacity for empty containers can be
calculated in the following way. Assume an ‘average'

ship with a capacity of 1300 containers and carrying the
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TABLE 1
AVERAGE CARGO FIGURES (CONTAINER LOADS) PER VOYAGE
OVER PERIOD FEBRUARY -~ AUGUST 1970.

Dry Reefer
Cargo Cargo
Import
Tilbury-Sydney 500 2
Tilbury-Melbourne 480 3
Tilbury-Adelaide 65 1
Tilbury-Brishbane 85 1
Tilbury-Fremantle 80 1
1210 8
Export
Sydney-Tilbury 180 20
Melbourne-Tilbury 390 10
Adelaide-Tilbury 70 20
Brisbane-Tilbury 90 20
Fremantle-Tilbury 70 50

800 220
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TABLE 2
MAJOR FLOWS OF EMPTY GENERAL CONTAINERS (AVERAGE
NUMBER PER VOYAGE) OVER PERIOD FEBRUARY-AUGUST 1970.

Link Number
Sydney-~Tilbury 100
Melbourne-Tilbury Lo
Sydney-Brisbane 5
Melbourne-Adelaide 5

TABLE 3

SHIP CAPACITY FOR EMPTY CONTAINERS (USING DATA IN TABLE 1)

Ship leg No. of fulls Ship Capaci ty
on board for empties
Tilbury-Fremantle 1210 901
Fremantle-Sydney 1130 170
Sydney-Melbourne 855 uhys5
Melbourne-Fremantle 900 L00

Fremantle-Tilbury 1020 280
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full container loads listed in Table 1 (except that for

simplicity we ignore the import of any reefer cargo).
Calculate the number of full containers carried on each
leg of the voyage and hence deduce the capacities for
empties. The average ship carries 1210 full containers
on the Tilbury-Fremantle leg and therefore 1210-80 = 1130
full containers on the Fremantle-Sydney leg (Fremantle

exports are loaded when the ship calls Northbound at

Fremantle). The situation at Sydney is a little more
complicated. The number of full containers discharged is
500 for Sydney and 85 for Brisbane and the number loaded is
180420 = 200 from Sydney and 90+20 = 110 from Brisbane.
The number of full containers on the Sydney-Melbourne leg
is therefore 14130-585+310 = 855. A similar calculation
gives 900 full containers on the Melbourne-Fremantle leg
and 1020 full containers on the Fremantle-Tilbury leg.
These results are summarised in Table 3 together with the
ship capacities. It will be noted that there is little
space for empties on the Tilbury-Fremantle leg, for a load
factor exceeding 90% is achieved on Southbound voyages.
In the reverse direction, the load factor is nearly 8%
Cost Data

Inventory costs and empty movement costs are needed
as inputs to the model, and the following estimates (in

Australian dollars) were used:
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inventory costs (per week per container)

for general containers $5
for insulated containers $10

empty movement costs (per container)

between any two ports via container ship $40
between Melbourne and Adelaide via rail $30

between Sydney and Brisbane via feeder ship $80.

There are alternative transport modes (e.g. rail, feeder
ship) between ports in Australia but these are much more
costly than the container ship and are used only in
emergencies.

Network Considerations

For a proper representation of ship capacities and
empty movement costs, the detail in the network illustrated
in Fige 3 is necessarye.

Consider Fige. 2. The movement by container ship
of empty containers from Sydney (node 3) to Tilbury (node 1)
may be represented as flow along the link (3,1). But this
movement actually occurs via Melbourne and Fremantle and is
subject to empty capacity restrictions on the three ship
legs: Sydney-Melbourne, Melbourne-Fremantle, Fremantle-
Tilbury. So to represent ship capacities it is simplest
to consider the Sydney-Tilbury empty movement as flow along
the link (3,5), followed by flow along the link (5,2),

followed by flow along the link (2,1). But then the Fig.2
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network is inadequate because the Sydney-Tilbury empty move-
ment costis not the sum of the Sydney-Melbourne, Melbourne-
Fremantle and Fremantle-Tilbury empty movement costs.

In fact the $40 unit cost for any port to port
transport of an empty container is comprised of a loading
charge of $20 at the origin port and an unloading charge
of $20 at the destination port. Thus in Fig. 3 links
such as (1,11), (3,13) representing loading and unloading
are ascribed unit costs of $20 while links such as (13,15)
representing sea legs are given zero costs. The Sydney-
Tilbury empty movement is represented as flow along the
links (3,13), (13,15), (15,12), (12,11) and (11,1), and

ineurs the correct cost of $40.
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2.7 Computer Programs

Computer programs to implement the heuristic solu-
tion procedure described in section 2.5 have been written
for the University of Adelaide CDC 6400 computer; and
computer runs have been conducted using a remote terminal
in the Mathematics Department. The out-of-kilter algor-
ithm is used to solve both the Phase I and Phase II one-
commodity network problems.

An important feature of the out-of-kilter algorithm
is that it may uise the optimal solution to a problem as a
good starting point for a new problem in which only link
costs and link capacities are altered from the original
problem. If only cost and capacity alterations are
involved, a Phase I solution may be used as a good starting
point for a new Phase I problem, and similarly for Phase II.
Consequently it is possible to make rapid investigations of
the sensitivity of the heuristic solution to variations in

empty movement costs

inventory costs

available cargo

ship capacities
and also to variations in the heuristic costs themselves.
The same is true when the network geography is altered by
deleting nodes and links. For a node may be deleted by

deleting all the links which originate or terminate at that
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node; and the deletion of links may effectively be
accomplished by assigning them upper and lower capacities
of zero.

The computer programs also allow the network
geography to be altered by adding nodes and links, or by
changing travel times for existing links; then a previously
obtained optimal solution cannot be used.

The great value of the heuristic method - as
implemented by the computer programs - is the speed with
which it obtains a near-optimal solution to the two-
commodity problem. Only about two minutes of central
processor (CP) time are needed to obtain the heuristic
solution to a 52 week problem; and very little time is
required to test the sensitivity of this solution to varia-
tions in most of the input parameters. The speed of the
heuristic method, and the convenience provided by the
remote terminal, have allowed as many as 30 computer runs
in a single day. In all, over 200 production runs -
involving a total CP time of only a few hours -~ have been
conducted.

The heuristic method involves determining Phase I
and Phase II optimal solutions, but provides only a near-
optimal solution to the two-commodity problem. If computer
time could be greatly reduced by terminating Phase I and

Phase II with sub-optimal solutions which provided &
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satisfactory two-commodity solution, it would be reasonable
to ask whether it was worthwhile to determine optimal
Phase I and Phase II solutions. However, as noted above,
these optimal solutions are obtained so rapidly that

earlier termination need not be considered.
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2.8 Model Applications

The network flow model has been applied success-
fully to answer many questions about the Australia-Europe
system. Extensive discussions with the container compan-
ies have shown that the model gives realistic answers
concerning container inventory and empty movement patterns.
Furthermore, use of the model has given considerable in-
sight into the operation of the container system. This
insight has enabled the author to obtain reasonably
adequate answers to many questions by performing simple
hand calculations.

Some of the model applications will now be
considered.

Empty Container Movement Patterns

The model has been used to determine empty contain-
er movement patterns for the Australia~Europe system. In
section 2.5, it was suggested that there should be no
significant movement of empty insulated containers between
Australia and Europe, and that there should be a consider-
able movement of empty general containers Northbound.
Table 4 summarises the results of a computer run using
estimates of containerised cargo for 1970. The empty
movement trends are as expected. Movements of empty
insulated containers are negligible, but movements of

empty general containers are considerable. Sydney, a



Lo,

TABLE L4
SUMMARY RESULTS FOR RUN OF COMPUTER PROGRAM
USING 1970 CARGO ESTIMATES

General Insulated
Containers Containers
Container Inventory 14,250 4,150
Cost of Empty Movements $600,000 $10,000
Average Weekly Empty
Movements:
Sydney - Tilbury 160 negligible
Sydney -~ Melbourne 65 "
Sydney - Fremantle Lo 2
Melbourne - Adelaide 35 i

Sydney - Brisbane 10 it
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large producer of empties, supplies Brisbane, Melbourne
and Fremantle with the empties they consume, and the
remainder are returned to Tilbury. Empties from
Melbourne satisfy the Adelaide demand.
Packing Dry Cargo in Insulated Containers

The model has also been used to compare the
heuristic solution obtained above with the solution which
results when no dry cargo is Packed in insulated contain-
erse If the same ship capacities (of 1300 containers)
are assumed in each case, then in the latter case there
is essentially no feasible solution. Even when the
effect of ship capacities is removed entirely, the compar-
ison is dramatic. The results are shown in Table 5 ami
indicate an increase in total cost from $6.25m. to $7.46m.
Note that the insulated container inventory decreases
slightly when insulated containers are not packed with dry
cargo, because then insulated containers travel to Australia
empty rather than full. (The travel time for an empty is
less than the "travel time" for a full container.) But
the general container inventory and empty movement costs
increase markedly.

The variation in total cost with the rercentage of
dry cargo which is suitable for Packing in insulated
containers has been determined by the model. The total

cost varies from $7.46m. to $6.25m. over the range O% to
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TABLE 5
COST COMPARISON BETWEEN HEURISTIC SOLUTION
AND SOLUTION WHERE NO DRY CARGO IS PACKED
IN INSULATED CONTAINERS

No Dry Cargo

Heuristic In Insulated
Solution Containers
Container Inventory
General 14,250 16,950
Insulated 4,150 4,100
Container Inventory Cost
(For 50 Weeks)
General $3,562,500 34,237,500
Insulated $2,075,000 $2,050,000
Empty Movement Cost
General $600,000 $740,000
Insulated $10,000 $4130,000

Total Cost $6,247,500 87,457,500
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2%%. Once the 25% level is reached, there is sufficient

dfy cargo to pack all Southbound insulated containers, and
there is no further cost improvement.

Sensitivity to Cost and Travel Time Data

Table 5 illustrates what proves to be a very
significant feature of the cost structure of the container
flows in the Australia-Europe system. The inventory costs
are very much greater, in total, than the costs of moving
empties. This helps simplify the analysis of different
situations and suggests, for example, that the container
flow patterns do not depend sensitively on the assumed
unit costs, a fact which can be verified readily.

At any one time, only a small fraction of the
total container inventory is moving empty. Consequently
the container inventory is fairly insensitive to changes
in empty movement travel times. On the other hand, if
average travel times for full containers are increased from
eight weeks to nine, the container inventory increases by
almost one eighth.

Other Applications

Typical of some of the questions which the model
has answered, but which will not be discussed here, are
the following:

(i) What savings would accrue if the container

consortia pooled containers?



(ii)

(iii)

(iv)

(v)

e

Should containers which would otherwise

be travelling empty around the Australian

coast be used to carry domestic cargo?

When should additional containers be
injected into the system to cope with a
growth in trade?

What stocks of containers should be held

at stockpiles to meet unexpected demands?
What would be the effects on container flows
in Australia if inland stockpiles were

established?
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CHAPTER 3. MATHEMATICAL ASPECTS OF THE TWO-COMMODITY

PROBLEM

3,4 The Two-Commodity Problem

The two-commodity problem which is considered in
this chapter is a slightly simplified version of the
problem (12)=(17) in section 2.4. Two simplifications are
made. Firstly, the constraint (16), representing ship
capacities, is omitted. Secondly, the variables gf(t)
are all set to zero, except when a non-cyclic boundary
condition is used. In this case, the variables gf(1)
are allowed to be non-zero, but all other gf(t) are set

to zero, and the notation is simplified by defining

efy(0) = gf(1).

When these simplifications are made, together with
the change of variable ff;(t) to ff;(t) + afs(t), the

following two-commodity problem results:
Minimize Sy %[1230¥j(t)efj(t)+123d¥1(t)f¥j(t)] (29)

subject to

§{e¥3(t)+f¥;(t)3-§{e§1(t~sai)+f§1(t—t;1)3

? aﬁi(tthi)-? a¥ ;(t) (30)

]
b
L

Qe
—
ct
~r
[}

af 3 (t) (31)

(]
in
e
—~
o
~r
A\

0, £f;(t) = 0 (32)
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and the additional requirement that all vafiables be
integers.
The dual linear program, obtained by assigning
maltipliers #%(t) to (30) and multipliers 6y3(t) to
(31), is:

Maximize Bo2,[3B3 afs(t-t50)-3 afy(t) ri(e)]
+ 202:[ 3 af3014(%)] (33)

subject to

af(t) - w§(t+syy) < cfy(t) (3L4)
mf(t) = w5(t+tyy) + 614(t) < af;(t) (35)
w§(t), 0;;(t) unrestricted. (36)

As in section 2.4, t assumes the values 1,2,¢+4,T
and when the non-cyclic boundary condition is used, vari-
ables with time quantity 7 < 1 or 7 > T are suppressed,
except e¥,(0). In the non-cyclic case, there is an
additional dual constraint associated with the variable
ef;(0):

-rf(1) < 0, (37)

and the 1link costs c¥f;(t) and df;(t) are given by
(22) and (23). When the cyclic boundary condition is used,
cki(t) amd af;(t) are given by (18) and (19).

For some purposes, it is convenient to represent

the two-commodity problem (29)-(32) anmd its dual (33)-(37)



L7

in matrix form as follows:

Minimize cle? + difl + c2e® + ¢°*f* (38)
subject to

E et + F f2 = -Fa! (39)

E e® + F £? = -Fa® (L40)

£ + =g (L1)

g*>Q, £'Q, £°>Q, I*»Q. (L2)

Maximize w1(-Fa!) + 7°(-Fa®) + g &° (43)
subject to

T E < ct (4k)

TiF + 0 <4t (u5)

T2E < ¢? (L46)

7°F + 0 < @ (47)

7t, 7%, § unrestricted. (48)

In (38) - (48), ef = {ef;(t)}, £F = {£f;(t)} and

~

faf;(t)] are column vectors; and ¢c* = fef ()3,

o
[
1l

d* = {af;(t)}, 7* = fwf(t)} and g = {6,;(t)} are row
vectors. E and F are matrices associated with the
dynamic network on which the container flows are occurringe.
In fact when the cyclic boundary condition is used,
the matrix [E F] is the node-link incidence matrix of the

dynamic network. (See Appendix for definitions and results
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which are used in the following discussion.) E and F
are the node-link incidence matrices of the subnetworks
(of the dynamic network) which comprise only the empty
links, and only the full links, respectively.

When the non-cyclic boundary condition is used, the
matrix [E F] is not strictly a node-link incidence matrix,
because some columns contain just one non-zero entry. The
columns corresponding to varisbles ef;(0) contain a -1
(but no +1); and the columns corresponding to variables
ef;(t) for t+sy;>T, and ffy(t) for t+t;y>T, contain
a +1 (but no =1). Here the matrix [E F] is essentially
the matrix which remains when one row of a node-link
incidence matrix is deleted.

The constraints (39) - (42) may be written in the
form Ay =Db, y 2 Q with

2 J334] »

(where I is & unit matrix, and O is a zero matrix)

oo
HoH
ol o
HYO

el

£1

=% (50)
o

o =
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_ng
and P e -ng . (51)

a3
~

The matrix A and the vector b are integral, and the

vector y 1s required to be integral.

Lemma 1
Let E and F be arbitrary matrices (not necessarily
node-link incidence matrices) and let the matrix A
be given by (49). Then the rows of A are linearly
independent (f.i.) if and only if the rows of E are

L.i.

Proof of Lemma 1

(i) Suppose that the rows of E are {.i. Then 2NE =0

~

implies ) = 0.

Now if
[21 Do D) EFoo:l =000l
OOEF
0IOI
this gives ME =0 (which implies ) = Q)
MF + ds =0
NeE =0 (which implies s = Q)
2eF + he =0
and consequently Ay = Ne = p3 = Q.

The rows of A are {f.i.
(ii) Suppose that E has linearly dependent (¢.d.) rows.

Then there exists )\ # 0 such that 7E = Q. Now
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[A A - AF] 1is a non-zero vector and

[2 2 -?»FJ[EFOOJ =[2 290l

OOEF

0OIOTI
If the rows of E are {.d., the rows of A are L.d.
Thus if A has l.i. rows, E has (.i. vrows. #

When the cyclic boundary condition is used, the
node-link incidence matrix E has ¢.d. rows, as does the
matrix [E F], and so by Lemma 1 the matrix A has {.d.
TOowWS. But in most practical situations, the network of
empty links is connected, and so when any row of [E F] is
deleted, the remaining rows of E, and of [EF], are (L.i.
Henceforth it is assumed that B and [E F] represent these
t.i. rows. Then the matrix A defined by (L49) has {.i,

TOWS. In the non-cyclic case, the matrix E has (£{.1.

rows and it is not necessary to delete a redundant row.
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362 Integer Property Theorems

In the last section, the constraints of the two-
commodity problem were expressed in the form Ay =Db, y = 0
and the optimal vector y was required to be integral. It
is well-krown (ch.7,{7]) that a problem with the con-

straints Ay = Db, y > 0 has an optimal solution at one of

the extreme points of the convex set

y(a,2) = {g: Ay =R, g > 0l
Consequently this section investigates conditions on an

arbitrary integral matrix A in order that the extreme

points of Y(A,b) are integral.

Definition 1 (Integer Property)

An integral matrix A is said to have the integer
property (i.p.) if and only if the extreme points of -
y(a,b) are integral for all be 8(A), where

8(A) = fb : b integral, Ay = b is solublei.

As noted by Hu (p.125, [24]), various papers have determined
conditions on a matrix in order that an integer property
holds. These conditions will be examined shortly.

For the present, assume that the rows of A are Leioe
Then Dantzig (c¢h.7, [7]) has shown that there is a one-to-
one correspondence between extreme points and basic feasible

solutions of Y(A,b), so that
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{y:y 1is an extreme point of ¥Y(A,b)]

LB
= {yiy = , where yp = B°1

LN

-] g for some basis

l.

(If A has r (Z.i.) rows, a basis from A is any rxr

0 W

from A, In =

nonsingular submatrix of A.)
Using the above result, Veinott and Dantzig [U48] have
derived necessary anl sufficient conditions in order that
the matrix A has the 1i.pe. Their result may be stated
as follows:
Theorem 1 (Veinott and Dantzig)

Let A be an integral matrix which has £f.l1. TOWSe

The matrix A has the i.p. if and only if

every basis B from A has det B = *1, (52)

Using Theorem 1, the above authors were able to provide a
simple proof of an important theorem first proved by
Hoffman and Kruskal [19].
Theorem 2 (Hoffman and Kruskal)

Let A be an integral matrix (not necessarily with

t.i. TOWS).

The extreme points of the set
%
v'(a,) = fyiag < bs g > Q)

are integral for all integral D if and only if
A is totally unimodular,

where
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Definition 2 (Totally Unimodular)

—_——

A matrix A is said to be totally unimodular if

and only if every square submatrix of A has

determinant +1, -1 or O.
Note that the set involved in Theorem 2 is y*(A,g) and
not y(A,E), and so Theorem 2 does not give necessary and
sufficient conditions for A to have the integer property
of Definition 1. On the other hand, it is easy to see
that the condition that A is totally unimodular is
sufficient (but not necessary) for A to have the i.pe
Theorem 3

Let A be an integral matrix (not necessarily with

L.i. TOWS).

For A to have the i.p. it is sufficient (but

not necessary) that A is totally unimodular.

Proof of Theorem 3

(i) Let the rank of A be r, and let [A'D'] be r
t.i. rows chosen from [A b], where be #(A). Then
y(A’,b’) =Y(A,b) and so these sets have the same extreme
points. Since A is totally unimodular by hypothesis, so
is A’ and in particular every basis from A’ has deter-
minant Z*1. By Theorem 41, A’ has the i.p. 1i.e. the
extreme points of Y(A’,b’) are integral.

Thus the extreme points of y(A,B) are integral for

arbitrary be #(A), and so A has the 1i.p.
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(ii) The matrix A = [jg % has {e.i. rows and det A=1,

By Theorem 4, A has the i.p., but clearly A 1is not
totally unimodular. The condition that A 1is totally
unimodular is not necessary for A to have the 1i.p. #
Necessary and sufficient conditions for an integral

matrix A with £{.d. rows to have the i.p. have been
derived. These conditions are shortly stated as Theorem U,
but first several preparatory lemmas are required.
Lemma 2

Let A be an mxn integral matrix with rank r.

Then there exists an mxm integral matrix U with

det U = 1 such that

o THT

where the (integral) matrix A’ has r rows, which
are L.i.

Proof of L.emma 2

A theorem in linear algebra [25] states that any mxn

integral matrix A of rank r can be put in the form
A = VDW

where V is an mxm integral matrix with det V = %4, W
is an mnxn integral matrix with det W = *1, and D 1is
an mxn non-negative integral diagonal matrix with non-

zero diagonal elements @d,,,d55,e0e50rre It follows that
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U=V-t is an mxm integral matrix with det U = ¥1, and

that DW is of the required form

[&].

Let A be an mxn integral matrix with rank r, and

Lemma

let U be any mxm nonsingular integral matrix such

that
AI
=10

where the integral matrix A’ has r rows, which are

f.1.
Let

Us(A) = {Ub : be 8(A)}
and let

Bo (AY) = [bo [ ] b’ e 8(4a’) 1.

Then (i) UB(A) C 8,(A!);

(ii) If det U = 1, UB(A) = B,(A!).
Proof of Lemma 3

First note that since A’ has (f.i. rows, A’y =D’ is

soluble for all integral b', and so
(A7) = {b' :+ b’ integralj.

(1) Let be a(4).

Then for some vector y, Ay =D, and so UAy

25
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!
viz. [g ].Y = Ub. (53)
8ince U and b are integral, Ub 1is integral, and by

K

b s

(53) is of the form

where b’ is integral. Consequently Ube Bo(AT).
Thus UB(A) C Bo (A7)
(i1) Let Db’ e a(A').

Then for some vector ¥y, A’y =Db’ and so

! b’
o (83w ]3]
viz. Ay = U-b,, where Do € Bo (AT) e
But if det U = #1, U-? is integral and so U %b, is
integral. Consequently U b, =b where be a(4), or
bo = Ub. Thus if det U = %1, Bo(A’) C Us(A) which
together with (i) implies UB(A) = Bo(A'). #
Lemma L
Let A, U and A’ satisfy the conditions of Lemma 3.
Then (i) For any be ®(A) there exists D' e B(A")
such that Y(A,b) = ¥y(a’,b').
(i1) If det U = *1, for any b’ e 8(A’) there
exists be ®(A) such that Y(A,B) = ¥(A’,p"]
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Proof of Lemma 4

(1) By Lemma 3, if be 8(A) there exists b’ e 3(A')

']
Ub = g .

Since U is nonsingular,

such that

y(ap) = [y : Ay =D, x> 0}
= {y + UAy = Uk, g > O}
il E’
=£x=[‘3_'z=[9 x> 9

Y(Af,b%).

(ii) The proof is similar to (i). #

Theorem L
Let A be sn mxn integral matrix with rank r, and
let U 'be any mxm nonsingular integral matrix such

that

UA = [é"] (54)

where the integral matrix A’ has r rows, which are
Loie
Then (i) For A to have the i.p. it is sufficient
that A’ has the 1i.pe.
(ii) If det U = *1, for A to have the 1i.p. it

is necessary that A’ has the i.p.
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Proof of Theorem L

(i) If A’ has the i.p., the extreme points of
y(A’,b') are integral for all b’ e #(A’). By Lemma L,
for each be ®(A) there exists Db’ e #(A’) such that
Yy(A,b) = y(Ar,b").
Thus the extreme points of Y(A,b) are integral for all
be 8(4). The matrix A has the 1i.p.
(ii) If A has the i.p., amd det U = *1, a similar
proof to (i) shows that A’ has the i.p. #

Theorem 4 shows how to convert a matrix A with
t.d., rows into an associated matrix A’ which has {£.1.
rows and to which the theorem of Veinott and Dantzig
(Theorem 1) may be applied. By Lemma 2, there exists an
integral matrix U with det U = *¥1 such that (54) holds,
and then A has the i.p. if and only if every basis from

A’ has determinant *1. For example, the matrix

a-[22 (55)

has (.d. rows. Now let the matrix U Dbe

_ -1 1
o= 4]
so that det U = +1, and note that

wm=[ 320058 - [4al.

By Theorem 4, A has the i.p. if and only if the matrix
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Al = [ 1]

has the 1i.p. Since A! has the 1i.p. by Theorem 1, A
has the 1i.p.

When (54) holds and A has the 1i.p., it does not
necessarily follow that A’ has the i.p. if det U £ *1.

For example if A is given by (55) and

v- 3 9]

so that det U = 2, then

w=[18][22]-[52]

and A’ = [2 2] does not have the 1i.p.

A number of sufficient conditions for a matrix to
be totally unimodular (and hence to have the i.p.) have
been given by Hoffman and Kruskal in [19]. Only the
following theorem proved by Hoffman in the appendix of
Heller and Tompkins [18] is given here:

Theorem 5 (Heller and Tompkins)
A matrix A is totally unimodular if the following
four conditions are satisfied:
(a) Every column contains at most two non-zero
entries;
(b) Every entry is 0,*1;
The matrix A can be partitioned into two disjoint

sets of rows R, and R; such that:
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(¢c) If a column of A contains two non-zero entries

and both have the same sign, then one is in R,
and one is in Rz;
(d) If a colunmn of A contains two non-zero entries
and they are of opposite sign, then both are in
R, or both in Rz.
Theorem 5 is true even if one of the sets ®,,R; 1is emptye.
In the appendix of Heller and Tompkins [18], Gale
has proved an interesting converse result to Theorem 5.
His result is that if a matrix A satisfies condition (a),
then in order that A is totally unimodular, conditions
(b), (c¢) and (d) are necessary.
In the following sections, some of the above
theorems are used to investigate conditions under which

the two-commodity matrix A defined by (49) has the 1i.pe
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3«3 Two-Commodity Fractional Examples

The constraints of a one-commodity network problem

may be written in the form

Ay =%, L<gsy
where A 1s a node-link incidence matrix. Since a node-
link incidence matrix satisfies the conditions of Theorem 5
where ®, 1is the whole matrix, A is totally unimodular.
The well-known integrality property of one-commodity net-
work problems follows [9].

In general, multi-commodity network flow problems
have fractional solutions, even though all the link
capacities arelintegral. Ford and Fulkerson have given a
three-commodity fractional example (p.17, [9]), and Figure 6
depiéts a two-commodity example due to Jewell [30].  The
variable v¥ represents the amount of flow from origin k
to destination Xk’ (k=1,2). All links are given joint
upper capacities of 1 i.e. link capacities are integral.
The maximum two-commodity flow (vi4v?) is 1% and is
achieved by sending # unit of commodity 1 along each of the
chains (1,3,5,6,4,1!) anda (1,3,7,8,4,1?), and % unit of
commodity 2 along the chain (2,5,6,7,8,2').

Jewell's example is not in the same mathematical
form (49) - (51) as the two-commodity problem formulated
in section 3.1, but it is not difficult to modify his

example to produce a fractional example of the form
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FIGURE 6.

Jewell's two-commodity fractional example.
All 1links have joint upper capacities of 1.
The maximum two-commodity flow (vis+v2) is 1%.
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(4L9) - (51). This example is shown in Figure 7. The

lines with double arrows represent full links, while the
lines with single arrows represent empty links. The sub-
network comprising just the empty links (1,4), (2,3), (2,4)
(3,1) is a connected network. The node-link incidence

matrix [E F] is:

empty links full 1links
(1,4) (2,3) (2,u4) (3,1) (1,2) (3,1) (L,3)

1 1 o o -1 1 -1 0

2| o0 1 1 0 -1 o 0
nodes 3 0 -1 0 1 0 1 -

L| - o -1 0 o o0 1.

Choose a%, = 2, a%, = af, =1, a3 = 2 and all other
a¥y; = O. When the redundant row 4 is deleted, the two-
commodity matrix A defined by (L4L9) and the vector D

defined by (51) are given by:

$ & B » $ & % 2 *
1 0 0-1 1-1 0 u 0
0 1 1 0-1 0 O 0
0-1 0 1 0 1 -1 0
10 0-9 1-1 0 1
A = 0 1 1 0-1 00|, p=|0
0-1 0 1 0 1 -1 ~ -1
1 1 2
1 1 .
1 1 2

(56)
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FIGURE 7.

Tne lines with double arrows represent full links, and
the lines with single arrows represent empty links.

FIGURE 8.

Representation of the two-commodity problem (56) and its
solution (57) for the Fig.7 network.



65.

where the elements of A not shown in (56) are all zeros.

The matrix A in (56) does not have the integer
property, for when the asterisked columns are chosen to
form a basis B it is found that det B = 2, and so
A does not satisfy condition (52) of Theorem 1. When b
is given by (56), the basic feasible solution corresponding
to the basis B is

[0,0,1%,%,1%,1,1%,%,%,0,0,%,0,4] (57)
where the variebles at zero level are non-basic. It is
possible to choose the link costs cf; and df; such
that this basic feasible solution minimizes the two-
commodity network flow cost. When the link costs are

[1,1,2,1,1,1,1,2,2,3,2,2,2,2] (58)
the solution (57) minimizes the network cost, and the
minimum cost is 11%. Since the link costs (58) are
integral, and the minimum cost is 11%, it is clear that any

other optimal solution to this problem must be fractional.

In fact (57) is the unique minimum cost solution.

Figure 8 represents the problem (56) and its
solution (57) on the network. If ef, is the flow of
commodity k (k=1,2) on the empty link (i,j), this two-
commodity flow is represented on the network as the ordered
pair of numbers (e}, ,ef;) attached to the link (i,j).
Similarly the ordered pair of mubers (£{;,f%4) represents
the two-commodity flow on the full link (i,j). The flow
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of each commodity may not be conserved at all nodes of the
network. If the number of units of commodity k (k=1,2)
created at node i 1is b§¥, node i is assigned the
ordered pair of numbers b},b%. In the example (56),
comnodity 1 flow is conserved at every node. But 1 unit
of commodity 2 is created at node 1 (i.e. b? = +1), and 1
unit of commodity 2 is destroyed at node 3 (i.e. 1bE = =1).
Thus in Figure 8, node 1 is assigned the ordered pair of
numbers O,+1 and node 3 the pair O0,-1. Nodes 2 and 4
are not assigned pairs of numbers, it being understood
that the flow of each commodity is conserved at both these
nodes. Finally, if (i,j) is a full link, it is necess-
ary to indicate that the two-commodity flow (f},f%;)
must satisfy

ft; + £%5 = ai ;.
This is achieved by assigning to each full 1link (i,Jj) - the
number {afy;}. Thus in Figure 8, the full links (1,2),
(3,1) and (L4,3) are assigned the numbers {2}, {1} and
{2} respectively.

Since a two-commodity problem with the mathematical
form (49) - (51) may have a fractional solution, it would
be expected that the two-commodity problem (29)-(32) would
have a fractional solution in general. However in the
following section it is shown that under certain circum-

stances the solution of (29) - (32) will be integral.
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3.4 Steady-State Solutions
The two-commodity problem (29)-(32) is a multi-

period problem, since t takes values 1,2,ee4,Ts The
steady-state version of (29)-(32) is:

Minimize E[i?chjefj + 2 af,f%,] (59)
subject to

?{e¥3+f§13-2{e§1+f§1} = §a§x—2a¥; (60)

§f¥j = af; (61)

ef; 2 0, £y > 0. (62)

Since e¥; = 0 1in a steady-state system, the summations
in (59) and (60) are taken over j # i. The costs cfy

and df; are given by

Y13 + sp0* (63)

CII{J
and

dfy = ty50k, (64)

where it is assumed that yy;3 > 0, a* > 0O and
tiy > 813 > O

In this section it is shown that for certain
network configurations, the two-commodity steady-state

problem (59)-(64) has integral optimal solutions. In fact

arbitrary costs cf; and df; are allowed.
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Two Stockpile Steady-State Problem

A very macroscopic model of the Australia-BEurope
system might involve just two stockpiles, one representing
Australia, the other Europe. The resultant two stockpile
steady-state problem may be solved fairly readily by hand
calculations, and the solution affords insight into some of
the factors affecting container movement patterns in the
Australia-Europe system. First the two stockpile steady-
state problem and its dual are formulated, and then the
complete solution is obtained and interpreted with reference
to the Australia-Burope system.

When the redundant equation for stockpile 2 is

omitted, the two stockpile steady-state problem reads:

Minimize E[c§2e§2+d§2f§2+cg1e§1+d§1f§1] (65)
subject to

ek o+l -k, -r5, = af,-af, (66)

3 £k, = ad, (67)

z f5, = &, (68)

with all variables required to be non-negative.
The dual linear program, obtained by assigning multipliers

T, 6,2, 02, to (66), (67), (68) respectively, is:
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Maxinize [ad,0,q+83,05, + g(agi-aﬁz)wk]

subject to
™ < ck, (69)
- < ck, (70)
m4+0,, < Af (71)
~r*+02, < df4 (72)

with the variables #%, 6,2, 024 unrestricted.

In the following, assume without loss of generality
that o® » at and a%, - a%, > O. In the Australia-Europe
system, this corresponds to assuming that commodities 1,2
represent general, insulated containers respectively, and
that stockpiles 1,2 represent Burope, Australia respectively
Lemma

When o® > at, a%Z, - a3, > 0 and
aj, + aj, - aj, - 832 >0 (73)

an optimal solution to (65) - (72) is:

etz = aj,+ad,-al -aj, e, = a3,-ai,
i, = ai, fi2 = 0

ez, =0 ey = 0

f3, = 8, 3, = 0O

T = cip T = cf;

N 1
612 = diz-Ciz 01 = Ak +Cigze
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Proof of Lemma 5

Since cf; and d¥; are given by (63) and (64), it is
easy to verify that the above relations give primal and dual
feasible solutions which have the same objective value.
From the Duality Theorem of Linear Programming (ch.6, [7])
it follows that the solutions are optimal. #
Lemma 6

When «2® > at, ag, - a%, > 0 and

a3, + ad, - ajp - a3z < O (74)
and

dﬁz - 022 ? d&_z + 0%1 (75)

an optimal solution to (65) - (72) is:

etz = 0 ef, = ag;-af,
iz = ai: 3. =0

ed, = a} +afz-al,-al, 23, =0

T3, = ad, g, = O

7 = —C%i e = cﬁz

612 = diz+cd, 021 = d%%-céi'

Lemma 6 may be proved in the same way as Lemma 5.

Lemma 7
When of > at, a%, - a%2; 2 0 and
aj, + ad, - ajp - ajz <O
and

a3, - cf, < di, + ci, (76)
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an optimal solution to (65) - (68) is:

etz = 0 efz = af,-af.-m
fiz = ajz-m 2, = m
es, = a}p+alp-ai,-a%,-m e, =0
i, = ad, f2, =0

= mi 3 2
where m = min{al,,af,-8%z,a}.+23.-2d,-22, ],

An optimal solution to (69) - (72) is:

_ a3
m=2a2
_ 2 _
Tl = _0%1 = = C?_g
— A2 2 — el
612 = dfo~Cipn 624 = d35-c}y

3 2 _ 32 _ .
1”1 -_— —C%i 1T = dl 2 dg’_z C&i
6,2 = diz+ch, 021 = ds1—C34

-_ nal 3 - -3
m = aj.+afp-aj,-aj,

S
||

di.-dfq+ciz T = cia
612 = d§2-c%, 624 = a3, +d1p-dFz+CEae

Lemma 7 may be proved in the same way as Lemma 5.

In the Australia-Burope system (with stockpiles
1,2 representing Europe, Australia respectively), the
constraint (73) in Lemma 5 corresponds to the assumption
that Australia exports more type 1 and type 3 cargo than
she imports. Thus Lemma 5 considers a case of no practic-
al interest in the Australia-Europe system. In Lemmas 6

and 7, the realistic constraint (74) replaces (73).
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Essentially only two cases arise:
(i) It is pot worthwhile to pack type 3 cargo in insulated
containers when (75) holds (Lemma 6);
(ii) It is worthwhile to pack type 3 cargo in insulated
containers when (76) holds (Lemma 7).
Note that in view of (63) and (64), the constraint (75)
reads

t,20% = (Y12+8450%) > tip0t + (Yzq+82,0%)

(tyig=8,12)02 2 Y12+Y21+(t12+521)a1- (77)

The relation (77) holds only when the insulated container
inventory cost is very expensive relative to the cost of
empty movements and the general container inventory cost.
On the basis of the data given in chapter 2, it is reason-
able to take
812 = Sgq = L4 (weeks)
t,2 = 6 (weeks)
Yiz = Yza = 4O (dollars)
and at = 5 (dollars per week).
Then (77) holds only when
«2 > 65 (dollars per week).
In fact the insulated container inventory cost is only 10
dollars per week, and so the constraint (76) is realistic

for the Australia - Europe system and Lemma 7 is applicable.
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On the basis of the approximate figures per voyage
given in section 2.5, it is easy to see that in Lemma 7,
m = ag,-a%,. For a};=a},=600, a},=800, af,=0, a%,=10 and
ag, = 210, so that

m = min{600, 210-10, 600+600-800-0}

min{600, 200, 40O}

= 200,
Thus the Lemma 7 solution with m = ag,-a%, corresponds to
the heuristic solution suggested in section 2.5.

It should be noted that the optimal solution to the
two stockpile two-commodity steady-state problem - as given
by Lemmas 5,6 and 7 - is always integral. Ina later part
of this section, it is shown that the two stockpile problem
is just a special case from a general class of multi-
commodity steady-state problems which have integral optimal
solutions.

Three Stockpile Steady-State Problem

In the most general three stockpile steady-state
problem, the network is that depicted in Figure 9. For
such a problem, it is shown that the two-commodity matrix A
defined by (L49) is totally unimodular, and consequently the
three stockpile steady-state problem has integral optimal
solutions.

In Figure 9, the node-link incidence mstrices of the

subnetworks comprising empty links and full links respect-
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FIGURE Q.

Network for general three stockpile steady-state problem.
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ively, are identical and given by

links
| (1,3) (3,1) (2,3) (3.2) (4.2) (2.1)
1 1 -1 ] 0 1 -1
nodes 2 0] 0] 1 -1 -1 1
3| -1 1 -1 1 0 0, &

(It is convenient here not to order the links lexicograph-
ically.)
When the redundant row corresponding to node 3 is deleted,

the matrices E and F are given by

o _T1-1 0 0 1 -1
E-F-[o 0 1 -1 -1 1:]' (78)

Theorem 6

When the matrices E,F are given by (78), the matrix

J

The matrix A is totally unimodular if and only if the

A defined by

EFO
A=} 00E
0OIO

is totally unimodular.

HHYHO

Proof of Theorem 6

matrix A’ defined by

EFO0O
A/ = | OOETF
0 I'0 I’

is totally unimodular, where
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CO~000
C~000O0
-~ 00000

OCOOO0CO—
0000 -—~0
00O~ 00

(Note that A’ is obtained from A by multiplying two rows
of A by -1. This does not change the determinants of
any square submatrices, except perhaps for sign.) It is
now proved by induction that if Agx 1is any kxk submatrix
of A/, then det A = ¥1,0.

Clearly det A, = *¥1,0 since every element of Al
is £1,0. Now assume that det A¢., = *¥1,0 for every
(k=1) x (k-1) submatrix A¢., of A’, and let Ax De
any lxk submatrix of A', If any column (or any row) of
A, is all zeros, det Ay = O. If any column (or any row)
of Ay contains just one non-zero, then expand det Ax Dby
that column (or row) and obtain det Ax = *1 det Ax.,
where Ax., 1s the cofactor of the non-zero entry, and has
determinant *1,0 Dy hypothesis. Thus it may be assumed
that

every column and every row of Ay contains

at least two non-zero entries. (79)
Consequently, the columns of E corresponding to the
empty links (1,3), (3,1), (2,3) and (3,2) are not present

in Ay, and Ax 1is a submatrix of
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1 2 3 4 5 6 7 8 910 11 12 13 14 15 16
1[1-1 1-14 0 0 1 -1
2 /-1 1 0 0 1 -1-1 1
3 1 -4 1-14 0 0 1 -1
L -1 1 0 0 1 -1-1 1
Hy =5 -1 -1
7 ~1 =1
9 1 1
10 | 1 1 sy

Note that columns 1-6 and 9-14 of H,; each contain exactly
two non-zero entries of opposite sign, while columns 7,8,15,
16 each contain three non-zero entries.

Since A, satisfies (79), if column 3 of H; is involved
in Ag, then so is the corresponding column 11, and similar-
ly for columns 4 and 12, 5 amd 13, 6 and 14.

It is now convenient to define

®R(Ac) = {1 ¢ Ay involves row i of H,]

€(Ac) = {j * Ax involves column j of H,]

and to let R’(Ax), ¢/(A¢) denote the complements of the
sets R(Ac), 4(Ax). Then because of the symmetry of H,,
there are essentially just five cases to consider.

(a) ®(A¢) 2 {1,2,3,4) i.e. A¢ involves (at least)
rows 1,2,3,4 of H,. Then since Ay, satisfies (79), the

sum of all rows i for which
iec ®(A¢) amd 1 < 1i<38,

is zero, and so det Ay = O.
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(b) R(&)2 {1,2,3] and R'(A) 2 {ul.
In this case, Ay does not involve columns 5,6,9,10,13,14

and rows 7,8 of H, and so Ay 1is a submatrix of

1 2 3 4 7 811 12 15 16

1 11 41 1 -1 .
o ]-1 1 0 0-1 1
4 =1 1 -1
H, =§ » _ (80)
6 1 1
9 4 1
10 | 1 1] .

Now if ¢(A¢) 2 {3,4,11,12}, then since col.3 + col.l4 =
col.11 + col.12, det Ay = O. Otherwise suppose that
columns 4 and 12 are not involved in Ag. Then when row 1

of Ay 1is replaced by the sum of all rows i for which
ie #(A¢) and iéd {3,9,101,

det Ay is unaltered, and the new row 1 has all zeros,

except for a -1 in the column 11 position. So det A= 1 x

det Ay., and the inductive hypothesis gives det Ay = *1,0.
(c) ®R(&) 2 {1,3} and R/(A¢) 2 {2,41.

In this case, Ay 1is a submatrix of

3 L 7 8111215 16
[1-1 1 g
1 -1 1 =1
-1 -1

O\Ww T W =
-
-
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But the matrix H; is totally unimodular, for when row 9

is multiplied by -1, every column contains two non-zeros
of opposite sign, and Theorem 5 applies. So in this case
too, det Ay = *1,0.

(a) ®(A¢) 2 {2,3] amd R/(Ax) 2 {1,4].
When it is remembered that Ay, satisfies (79), considera-

tion of (80) shows that in this case Ay must be precisely

the matrix

7 8 15 16

But the sum of the first two columns of H, equals the
sum of the last two columns, and so det H, = O.

(e) ®'(ax) 2 {3,4}.
Consideration of (80) shows that Ay must be a 2x2 sub-

matrix of the matrix

7 8
171 =1 1 -1
2 [-1 1 -1 11,

and hence det Ay = O.
This completes the inductive proof that A/, and hence A,

is totally unimodular. #
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Four Stockpile Steady~State Problem

In section 3.3, a four stockpile problem (Figure 8)
was given which has a unique fractional optimal solution.
Thus in general, two-commodity steady-state problems in-
volving four or more stockpiles have fractional optimal
solutions.

A Special Class of Steady-State Problems

It is now shown that there is a special class of
steady-state problems which have integral optimal solutions.
For any problem in the class, .the subnetwork of full 1inks
is assumed to have the following property:

there is a distinguished node in the

network such that every full link (81)

either originates or terminates at this node.

If it is assumed that the distinguished node is node 1, and
the redundant equation corresponding to node 1 is omitted,

any problem in the class may be formulated as follows:

Minimize E[izjc§3e§3 + ?{dlfif‘{1+d§1f§1}] (82)

sub ject to

£, -f5y + ? efy - ? ek, = a%; - af, (83)
% £f, = ai, (84)
z £ = af, (85)

with all variables required to be non-negativee.
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In (82) - (85), i takes values 2,3,..s and in (82) and
(83) the summations are taken over the values Jj=1,2,3,¢e0 &
Theorem 7
The two-commodity problem (82) - (85) is equivalent
to a one-commodity problem, and hence has integral
optimal solutions.

Proof of Theorem 7

Replace the constraint (84) by the equivalent constraint
'E £f, = -al, (86)

and sum equations (83), (85) and (86) over i (for

i =2,3,e.s) and over k. This yields

E %(3%1'651) = % %(a{i-a§1) + ?(321—3?1)

or 3 3(eki-eky) =3 B(afa-aky) + Bate-ai)e  (87)

The problem (82), (83), (85), (86) and (87) 1is a one-
commodity network flow problem which is equivalent to the
two-commodity problem (82) - (85). Each variable
ef;, £5,, £, occurs in just two of the equations (83),
(85) - (87) and has coefficient +1 in one equation and -1
in the other. #

Figure 10 depicts a simple three stockpile example
for which the subnetwork of full links has property (81),
and Figure 11 shows the equivalent one-commodity network

flow problem. In Figure 11 it is assumed that
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FIGURE 10.

Network for which every full 1link originates
or terminates at node 1.

FIGURE 41.

One-commodity network flow problem which is equivalent
to two-commodity problem. on Fig.10 network.
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vf = af, - af,

b = % ? (af,-aky) + ? (af,-221),

and that the number assigned to each node is the number of
units of flow created at that node.

In the problem (82) - (85), k takes values 1,2.
Theorem 7 generalizes to the K-commodity problem where k
takes values 1,2,...,K in (82), (83) and where (84) and
(85) are replaced by

K K+1
k= £§, = 8y

K K+1
Dg=1 f§1 = 849 e

Note that the two stockpile problem solved in
Lemmas 5-7 is a special case of (82) - (85), but the most
general form of the three stockpile steady-state problem is
note. In fact while it is true that the general two-
commodity three stockpile problem has integral optimal
solutions (as proved in Theorem 6), the corresponding
three-commodity problem does note Figure 12 shows a
three-commodity example which is similar to the example of

Ford and Fulkerson (mentioned in section 3.3) Set

1 _ _ —
cip = diz =43, =1
2 _ — A2 —
cg; = d§; = df, = 1
3 _ 33 _ A3 =
c§, = df, = dzs = 1

and let all other cf;, df; be large positive integers.

Then the unigue minimum cost solution is shown on the
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(0009%) :

(0,%,%)

(£,0,0)

FIGURE 12.

Three stockpile three~commodity fractional example,
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Figure 12 network, and the minimum cost is L.

In the Australia - Europe container system, there
was originally just one European port of call - Tilbury -
and there were several Australian ports of call. In that
system, all full container movements either originated or
terminated at Tilbury and consequently the resultant
steady-state container network possessed the property (81).
However in the present Australia - Europe system, there are
several European ports of call and several Australian ports
of call. The property (81) does not apply, and in general
the two-commodity steady-state problem has fractional

optimal solutions.
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3¢5 Multi-Period Solutions

In this section it is shown that in general the
optimal solution of the two-commodity multi-period problem
(29) - (32) is fractional, even when the corresponding
steady-state problem has an integral optimal solution.

The examples given here are based on realistic travel times
and costs for the Australia - Burope system, but involve
rather simplified versions of the container network. It
has been possible to obtain optimal solutions to these
rather simple two-commodity multi-period problems fairly
readily using a linear programming package.

Figure 13 depicts a two stockpile multi-period
problem and its ffaotional optimal solution. As in
section 3.4, stockpiles 1,2 represent Burope, Australia
respectively and it is assumed that

Sy2 = Sg4 = L (weeks)
typ = tay = 6 (weeks)

(88)
LO (dollars)

Yaz = Y21
at = 5, a? = 10 (dollars per week).
Note that the link costs are integral, and the minimum cost
is 332%, so that any alternative optimal solutions are also
fractional.
In the Figure 13 example, type 3 cargo is sent from
stockpile 1 to stockpile 2, and from stockpile 2 to stock-

pile 1. In the example shown in Figure 14, there is no
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FIGURE 13.

Two stockpile two-commodity multi-period fractional example.
(Only those links on which non-zero flow occurs are shown. )

(1,1)
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FPIGURE L.

*8e

Two stockpile two-commodity multi-period fractional example.
No type 3 cargo from stockpile 2 to stockpile 1,
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type 3 cargo from stockpile 2 to stockpile 1. This

corresponds to the situation in the Australia - Europe
system, where there is virtually no type 3 cargo from
Australia to Europe. In Figure 14 the minimum~cost
solution is again fractional, and the minimum cost is 517%.
Figure 15 shows an example which is similar to the
Figure 14 example, but involves three stockpiles. Stock~-
piles 1,2,3 represent Tilbury, Sydney and Melbourne
respectively. In addition to the travel times and costs

given by (88), it is assumed that

Ses = 1 (week)
t,g = 7, tz; = 6 (weeks)
Y23 = 4O (dollars).

Note that there is no type 3 cargo from either Sydney or
Melbourne to Tilbury. The minimum-cost solution is
fractional, and the minimum cost is 592%.

Thus where a steady-state problem has integral
optimal solutions, the corresponding multi-period problem
may have fractional optimal solutions. On the other hand,
the examples given in Figures 13, 14, 15 do not involve
realistic cargo movements (although travel times and costs
are realistic). While the examples show that in general
the optimal solution of a multi-period problem is fraction-
al, it may easily happen that for a particular set of cargo

movements, the optimal solution is integral.
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FIGURE 15.

Three stockpile two-commodity multi-period fractional example.
No type 3 cargo from stockpiles 2,3 to stockpile 1.

006
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CHAPTER L. CONCLUSION

This thesis has formulated and solved a practical
problem arising in a contalner shipping system. The
problem of determining container inventory and movements
in the Australia-Europe system has been formulated as a
two-commod ity network flow model, with the variables
required to take integral values. The difficulties
inherent in solving large two-commodity flow problems have
been avoided by using an efficient heuristic procedure
which obtains near-optimal solutions. Computer programs
have been written to implement the heuristic procedure and
used to obtain realistic answers to many practical gquestion
gbout the Australia - Europe container shipping system.

The model has the advantage that it may readily be
generalized to consider systems involving more than two
container types, although it is not clear that the result-
ant multi-commodity flow problem could be solved efficientl
by heuristic means. While it has been assumed in the
model description that the basic unit of time is one week,
the formulation allows any time unit. With a basic time
unit of a day, the model might prove useful in answering
detailed questions of short-term container control.

Perhaps the major limitation of the model is that
it is deterministic. In this respect the model is less

general than that of Horn [20], who allows probabilistic
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cargo demands, But for a container shipping system, it is
difficult to obtain cargo estimates and almost impossible to
obtain meaningful probability density functions representing
cargo demands. On the macroscopic scale at which the
model operates, it seems preferable to use deterministic
cargo demands, and to conduct sensitivity analyses to
investigate the effects of cargo variations. As noted in
section 2.7, such analyses may be conducted very rapidly
using the heuristic solution procedure. In any case, the
introduction of probabilistic cargo demands into even a
one-commodity model of the Austraslia - Europe container
system cannot be handled in the elegant fashion of Horn,
since different assumptions are involved. The principal
differences in Horn's paper are the assumption that there
is an alternative (expensive) non-container mode which may
be used if necessary to carry some cargo (the "cargo" is
mail in the system considered by Horn), and the assumption
of equal travel times for full and empty containers.

While the heuristic procedure provides a near-
optimal solution of the two-commodity problem, one ares
for future work would be to program an algorithm to obtain
the optimal solution. It would be interesting to compare
the application of the various approaches suggested in the
literature to this problem. Jewell's generalized out-of-

kilter approach [29] would seem to be particularly suitable.
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Whichever approach was employed, the heuristic procedure
could be used to provide a good starting point. In fact
it is not clear that intelligent application of a large-
scale linear programming Package might not provide an
efficient means of solution. The two~commodity matrix
is very sparse and suited for a package based oh the
revised simplex algorithm, using the product form of the
inverse (ch.9, [7]).

But even if the optimal solution to the two =
commodity problem could be obtained reasonably quickly
using one of these methods, there would still remain the
problem of non-integral solutions. Chapter 3 of the
thesis has shown that in general the optimal solution to
the two-commodity problem will be non-integral. It does
seem possible that under restrictive conditions on cargo
imbalances and costs (which might be satisfied in the
Australia - Burope system), a class of two-commodity multi-
veriod problems with integral optimal solutions could be
established, anmd this is another direction in which
further research could proceed. However for all practical
purposes, the problem of solving the two-commodity problem
may be considered finished, since the heuristic procedure
Provides completely realistic and adequate integral

solutions,
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It has already been noted that the introduction of
containerisation into the field of shipping transportation
has resulted in considerable system simplification. While
it is true that a network flow approach could be used to
model the movement of containers by irregular transport
modes, the formulation of section 2.4 relies upon the
basic periodicity of the various transport modes between
stockpiles. It would seem that the basic simplicity of
the containerisation system should allow a profitable
study of other problems to be undertaken. Thus in
conclusion, it is suggested that the introduction of
contal nerisation has opened up a new field for the applica-
tion of operations research techniques to gignificant

practical problems.
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APPENDIX., DEFINITIONS AND RESULTS FROM NETWORK THEORY

A directed network [N;L] consists of a finite set N of
unordered elements called nodes, and a set I of ordered

vairs of elements of N called links.

A subnetwork of [N;L] is a directed network [N ;L]

such that N C N amd L/ C L.

If (ny,ngz) € L, the link (n,,n,) is said to originate
at the node 1n, and terminate at the node n,.

A path between nodes n, and n, is a sequence
ni,ti,nz,ta,....,nr_i,tr_i,nr

of distinct nodes ny(i = 1,2,...,r) and distinct links

£,(i = 1,2,0ee,7-1) such that

Ly (n19n1+1) € L

or £, (ny,4,n4) € Le

A directed network is connected if there is a path between

every pair of nodes in the network.

Suppose that a network [N;L] comprises n nodes and ¢

links. The node~link incidence matrix associated with
[N;L] is an m¢ matrix where the element in the row
corresponding to node n; and in the column corresponding

to link £y 1is
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+1 1is ¢4 originates at mn,
-1 if ¢; terminates at mn
0O otherwise.
Thus each column of a node-link incidence matrix contains

Just two non-zero entries, which are +1 and -1.
The rows of a node-link incidence matrix are linearly
dependent because if the rows are r,, Is,..e., P, then
"~ e ~
Ei + 22 +eo00t £I‘ = 9.
The node-~link incidence matrix of a connected network with

n nodes has rank (n-1). If any row of such a matrix is

deleted, the remaining (n-1) rows are linearly independent
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