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of sointillation at the zenith are
removed by multiplication of the ratio

in (1) by a suitable faotory the correc-
tion has been disoussed in Seoction 3.2.3.
The multiplying factor oompensates, in
the azimuth—-average, for the depression
of the "anisotropic® scintillation depth
at the horiszon below the "isotropic"”
value, (see Figure (3.4)). The factor

to be used is determined, therefore,by
oalculating the extent of the depression
for a typical situation of illumination
from the horizon. In Adelaide, where

the dip angle is high (66°), this situs=
tion 1s the one in which the ray 1is
(approximately) perpendigular to the
field direction. Using this fact, and
noting that the extent of depression is
little affected by change of axial ratio,
(so that an infinite ratio may be assumed)
the correction faoctoris easily evaluated.
Its value is only weakly dependent on the

parameters of irregulerity heigh: and sisge

which are used in the calculation, and these

need be known only approximately. (Note, for
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example, at the southern horizon in Figure (3.4),
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that the factor only changes from 1.29

t0 1.3 as the radio frequency is changed
from 40 Mc/s to 20 Mo/g).

(111). the zenith angle ratio, corrected if necess-
ary, is compared with theoretiocal values
for isotropic irregularities at the estim-
ated heighte. Such values are available in
Figure (3.3). The three steps just described

are now applied to the data of Figures (8.1)

and (8.2)3
TABLE ‘8,1).
Summer, Autumn, Winter, Spring.
Zenith angle ratio 1.7 2 1.6 2.2
Corrected ratio 242 246 2.1 2,8
Radius T km, 3/4 1 3/4 1

The zenith angle ratioe obtained from the curves of
Figure (8.1) for night=time scintillations are given in the first
line of Table (8.1). It is found (Section 8.3.1) that night-time
irregularities exhibit anisotropy so these ratios must be
corrected. The correction factor appropriate to the experimental
corditions ie 1.29 (see above), and multiplication by it producee
the ratioe in the second line of the table. If the heightof
night=time irregularities is taken to be 300 km. (see Section 7.3

Figure (3.3) (which is drawn for a satellite at 1000 km, height,
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transmitting at 40 Mc/e) shows the appropriate values of the
characteristic radius T, to be those in the third line of
Table (8.1)).
| The accuracy of the met@od is not so high that the
variation of radius eeen in Tabie (8.1) can be accepted as a
seasonal oney the four values sﬁould be regarded as lndependent

estimates of the radius.

TABLE (8,2).

Summer. Autumn, Winter. Springe
Zenith angle ratio 2.2 244 1.7 1,5
Corrected ratio 249 3.1 242 2

The zenith angle ratios of the curves for day-time
scintillation (Figure (8.2)) are given in the firet line of
Table (8.2)¢ A correction factor of 1.3, which is appropriate
for irregularities of 0,5 kmi radius at a height of 100 kme, has
been applied to the ratios t; give the values in the second line
of the table.

Now, results reporteé in Section 8.3.1 indicate that
day-time irregularities are gnly weakly anisotropic, and it is
difficult to decide which of the ratios in Pable (8.2) are
applicable, The matter is not of great importance however,
because reference to the curves of Figure (3.3) for a height of

irregularities of 100 km. (see Section T.4), shows the ratios to

be typical of "far gone" conditions. Their values are so low
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that determinations of irregularity size canrot reasonably be

made. It can only be s2id that the radius T, is of value 0.5 km.
or lesg.,

8.2 The Ratio of Scintillation Depths on
Iwo Freguencies

The method described in Section 3+2.4 has been applied
to the determination of irregularity size.

Short lengths of 20 Mo/s and 40 Mo/s signal traces which
corresponded in time were analysed, and their scintillation
depths 8'20 and 3'40 respectively, were determined according
to the definition of equation (3.15). The ratios of scintilla=
tion depths, of the form (8'20/8'40), wers then plotted as
functione of the gzenith angle of the satellite to give Figures
(8.3) and (8.4). Figure (843) is derived from night-time passes
observed between 2100 hours and 0300 hours local timesy Figure
(8+4) represents day-time observations between 0900 hours and
1500 hours local time.

It was not usually feasible to determine the complete
zenith angle variation of the ratio of scintillation depthe
ftyom a single recording of a satellite pass. Severzl "“chains"
of points, which are shown in Figure (843), were obtzined from
individual observations but, most often, the acourate evaluation
of scintillation depth was hampered by the signal variations
arising from the Farsday effect, especially at 20 Hc/s3 the
points at which evaluations were made could not be chosen at

wille Becsuse of this, and to increase (relatively) the rumber

of points mssociated with small zenith angles (which pointe were
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found to be the most sensitive indicators of irregularity size),
determinations of scintillation depth were obtained from many
different records,

Within the scatter of the points in the diagrams, no
significant seasonal variation was found, and points appropriate
to all seasons have been plotted,

The indications of the method, in terms of irregularity
size, are similar to those of the previous section. The curve
drawn to follow the mean trend of the points in Figure (8.3)
takes a value slightly in excess of 2.5 at the zenith. Refer—
ence to Figures (3.5), which is drawn for appropriate conditione
of satellite height and radio frequency, and an irregularity
height of 300 km, showe this value to correspond to a radiue
Ty of 1 km, If the height of the irregularities is taken to
be 250 km., the theory of Section 3.2 shows the zenithal value
of the ratio of scintillation depths to be 2,25 for T = 0.75 km.
and 2,62 for T = 1 kme A value of z, lying between 0,75 km,
and 1 kme ie therefore indicated for night-time irregularities,
independient of whatever (reasonable) height is assigned to themn,

The points for day-time iyegularities in Figure (8.4)
again show a tendencgy towards "far gone" conditions. A curve
approvriate to irregularities at 100 kme. height, for which r,
has the value .45km, has been drawn (1t tekes a value of 2415

at the senith), end it appears to fit the experimental points.

It must be remembered, however, that the curves for all smaller

irregularities lie between the ourve and the theoretlcal lower
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1imit of 2.0, so an asccurate estimate of irregularity size
oennot be obtzined. An upper limit of about 0.5 kme can be
assigned to the sizej the zenithal value of the ratio of
scintillation depthe for r, = Oeb kme 18 2.4 and this value
is at the upper limit of variation of the experimental valuess

8.3 The Effects of Anisotropy of the Irregularities
8.3.1 Geperal Properties

No strongly marked effects which could be attributed
to anisotropy of the scattering irregularities were found in
an examination of the scintillation indices appropriate to
{1lumination in the direction of the geomagnetic field. Such
effects os are described below were probably masked by averag-
ing processee which were applied to the indices.

A distinoctive property was found, however, whéen a
selection was made of recordings of those passes in which the
ray passed within ten degrees of the field direction. Egpec~
ially marked examples are shown in Flate (1)s a sudden increace
of sciptillation depth and, sometimes, of scintillation rate
ocnurs, the event being symmetrically disposed about the time
of oclosest approach of the ray direction to that of the field.,
That the effeot iB associated with the field is indicated by
this symmetry, by an observed dependence of the intensity of
the effect on the closeness of approach, and by the almost
complete absence of such “"bursts" of scintillation in any

other part of the skye.
The behaviour eeen in such recordingsas those of

Plate (1) has not previoudy been reported in the literature,
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(2) Winimum sngle of a“proa,h of ray direction to field direction, 1.4
degrees, at 2230 0 on 5th June, 1965 20 Mc/s trace upper, 40 ‘c/s
trace lower. Time is marked in minutes, lccal time.

My

(p) Minimum angle of approach of ray dirsetion to field direction, 4.9
r'<a<<:r:r‘f-=€;s, at 2139.3 on 412th September, 1965. 140 Mc/s trace upper,
20 Me/s trace iower. Time is marked in minutes, local time.

¢ - e | 1A
Plate (1) Two examples of nrield-crossing" events cbserved at Adelalde.
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Singleton, Lynch and Thomas (1961) and Singh (private communica=

tion) have found a general increase of scintillation depth near
the direction of the geomagnetic field but do not report the
appearance of complete "field-crossing" events in single rocorde
ings. Singleston and Lynoch, who do not specify the radio fre=
quency at which their observations were made, found no inorease
of se¢intillation rate as the direction of the field was approached.
A study of 115 recordings (seleoted for passage of the
ray within ten degrees of the field direction) showed a diurnal
variation in the occurrence of "field-croesing" effects. It
is difficult to give a quantitative measure of this result
because many of the events, particularly those of the day-time,
consisted of no more than a brief appearance of shallow scintilla-
tion, at the time of close approach to the field, in an other—
wise non=-seintillating tracegy but, such events being taken ae
real, the following resulls were founds of 44 night=time record=
ings (takon between 1800 and 0600 hours, local time), only 9 showe
no "field-crossing" effect, and of 71 day-time observations, 46
showed no effect.
The relative lack of an effect during the day cannot
be associated with the generally lower level of day-time scin-
tillation depth for, as record (a ) of Plate (1) shows, a
"strong® event can occur in a non-saintillating (night=time)
trace. Nor, as consideration of Section 3.2.3 indicates, can
the lack be attributed to a change in the gemmetry of the

diffraction process. It must be taken that, while field-ariented
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anisotropy is the normal condition for night-time (F - region)

irregularities, dey=time (E = region) irregularities are only
very weakly field aligned,

An insufficient number of suitadble day-time recordings
was available for detalled study of the effects of animotropy.
Resul®ts obtained from night-time obsefvations are given in the
following sections.
8e3.2 Deductions from the Variation of Scintillation Depth

In determining the form of the variation of night-time
scintillation depth for directions near to that of the geomag-
netic field it was not usually possible, because of the path
taken by the satellite, to normalise resulte with zenithal
values of scintillation depth. The values used for normalisation
were, however, for ray directions within about 30° of the zenith
and removed by at least 30° from the field direction. So errors
arising from an incorrect choice of djrection for normalisation
are not greater than about 10 per cent (see Figures (3.4) and
(8.1)).

Larger errors occurred in the evaluation of the
scintillation depth used fpr normalisation. The scintillation
was of ten very shallow and its depth had to be determined by
eye rather than by calculation. In doubtful cases the depth
was consciously over-estimated so that an under—estimated value
of normalised scintillation depth for the near-field direction
resulted, Such a velue does not affect the final fiudings.

The normalised values, which were obtained from
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observations at 40 Mc/s, are plotted againet angular deviation
of the ray from the field direction, in Figure (8.5). GSeversl
“"ohains" of points were obtained from eingle observations
whieh, 1like record (b ) of ilate (i), had been recorded at a
sultably high chart ratey each of the other pointe was obtained
from a different pase.

Comparison of Figure (8.5) with the 40 lMe/s curves of
Figure (3+4) shows that the axial ratios of the irregularities
under ohbservation are very large, & result which is immediately
obvious in such an observation as that of record (a ) (in
Plate (1)), where the normalised scintillation depth "along
the field" ie effectively infinilte, The scatter of the points
in the figure does not allow an accurate estimate to be made
of axial ratio (other than, that it exceeds 20), but the point
“of chief intersest is that the values indicated are greatly in’
excess of those found by spaced receiver methods (see Chapter 3j.
The disorepancy implies that it is not F - region
irregularities which are observed in a "field-crossing" event
but another type, poesibly the field=aligned "ducts" which are
observed with "top-side® satellite sounders (Lockwood and Petrie
(1963)). Existing at higher altitudes than the F - region and
being inbedded in a reglon of lowsr electron concentration, these
would not contribute to scintillation effects for most ray dir—
ectioney but viewed along their direction of elongation, they

may well produce effects which "swamp" those due to irregulari-

ties at lower levelse
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Abstract—The theory of the variation of the depth of amplitude scintillations with the zenith
angle of the source is considered, for radio waves received from a star or a satellite. It is assumed
that irregular phase fluctuations are impressed on the wave in travelling through the ionosphere,
and that the amplitude fluctuations develop by a diffraction process as the wave propagates in
the free space beneath the ionosphere. Two effects are produced by an increase in the zenith
angle of the source. The magnitude of the phase perturbations increases, because the thickness
of the ionosphere along the line of sight increases, and the geometry of the diffraction process
changes. Theoretical results are given, both for isotropic irregularities and for irregularities
elongated along the direction of the earth’s magnetic field. The advantages of observing simul-
taneously on two wavelengths are stressed. Some comparisons with available experimental data
are made, and suggestions are made for future experiments. Irregularities at different distances
from the observer are not equally effective in producing amplitude scintillations, and some
examples of the “weighting function” which determines their effectiveness are given. Various
measgures of “scintillation depth’ are discussed and related to each other.

1. INTRODTUCTION

MucH attention has recently been given to the fluctuations of radio waves from
stars and satellites imposed by their passage through irregularities in the iono-
sphere. These effects depend on the position of the source relative to the observer.
When the source is at a large zenith angle, the fluctuations are increased as com-
pared with observations made at the zenith under similar conditions. In this
paper the theory of the variation with zenith angle is considered, and the deduc-
tions which can be made from experimental observations of this variation are
discussed.

Only amplitude fluctuations will be considered because these are much easier
to observe than phase fluctuations, and many experimental observations are
available for comparison with the theory. IFor brevity, the amplitude fluctuations
will be called ““scintillations”. A precise measure of the amount of fluctuation will
be given in Section 4, and this will be called the “‘scintillation depth”.

In considering the fluctuations imposed on a wave in its passage through an
irregular medium there are two possible approaches. In the diffraction method
the medium is considered to be equivalent to a certain thin diffracting screen.
Because the absorption in the ionosphere is negligible for the frequencies normally
used for the observation of scintillations, this screen will produce across the
emerging wavefront variations of phase only, with no variations of amplitude.
As the wave propagates beyond the screen, fluctuations of amplitude begin to
develop, and this part of the problem is essentially a matter of diffraction theory.
In the alternative approach, which may be called the scattering method, the wave
at the observing point is considered to be the sum of the unscattered wave and
waves scattered by the irregularities in the medium. This type of theory has been

339
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used by WHEELON (1959); it is reasonably simple so long as the scattering is weak,
but becomes complicated when the scattering is strong. Both methods are equaily
valid and give identical results, as has been shown for a simple case by BooxEr
(1958).

In the present paper the diffraction method will be used. This is particularly
suitable for the consideration of the zenith angle variation because the problem
can be divided into two parts which are independent and which can be considered
separately. The first part of the problem concerns the way in which the phase
variations across the emerging wavefront vary with the angle of incidence of the
wave on the irregularities. The second part involves the way in which the geom-
etry of the diffraction process changes with the zenith angle of the source, due to
the change in the distance from the irregularities to the observer and, for waves
received from a satellite, the change in the distance from the source to the irregu-
larities.

The irregularities in the ionosphere which produce the fluctuations are believed
to be mainly in the F-region, at heights near 300 km, and are closely connected
with the phenomenon observed in ionospheric sounding known as spread-F echoes
(e.g. RYLE and HrwisH, 1950; Harrz, 1955; WRicHT, KOSTER and SKINNER,
1956; Brices, 1958; LAWRENCE, JESPERSON and LiAmB, 1961). When the source
is at large zenith angles, approaching 90°, it is possible that irregularities in the
E-region, at heights near 100 km, become important (Witp and RoBERTS, 1956;
Cuivers and DaAvIEs, 1962).

In order to illustrate the theory as it is developed, we shall need typical values
for the size and shape of the irregularities in the ionosphere. It was first shown
by SPENCER (1955) that the irregularities in the F-region are elongated along the
direction of the earth’s magnetic field. More extensive observations by JowEs
(1960) gave in more detail the sizes of the irregularities, measured in terms of the
separation at which the correlation function of the medium has fallen to one-half.
Typical values for these distances are 5km along the magnetic field, and 1 km
transverse to the field, with considerable variations on different occasions. The
same observations also show that, to a good approximation, the form of the cor-
relation function is Gaussian. These results were all obtained from observations
of the radio star Cassiopeia A made at Cambridge (52°N). There are no similar
detailed observations of the irregularities in the E-region. General considerations
suggest that they are probably not elongated, and that they may be smaller than
the irregularities in the F-region.

The general plan of the paper is as follows. Some geometrical results which
are needed in the theory are first obtained in Section 2. Then in Section 3 the
phase pattern on the emerging wavefront is related to the properties of the irregu-
lar medium. In Section 4 the diffraction aspects of the problem are discussed.
The actual results are given in Sections 5 and 6. Section 5 contains the results
which apply to observations of waves from a radio star, and Section 6 contains
the corresponding results which hold when the source is a satellite. In both cases
an approximation is first considered in which the irregularities are assumed iso-
tropic, and afterwards the effects of elongation along the magnetic field are dis-
cussed. The ratio of the scintillation depth on two wavelengths is calculated, and
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the advantages of observing simultaneously on two wavelengths are stressed. In
Section 7 the “weighing function” which determines the effectiveness of irregu-
larities at different distances from the observer is considered. This is important
in connection with the determination of the heights of the irregularities by various
methods. Finally, in Section 8 we consider various measures of the scintillation
depth which have been used, and the way they are related to the quantity calcu-
lated in the theory.

2. Tue GEOMETRY OF THE PROBLEM

Figure 1 illustrates the geometry of the problem, for observations of signals
from a satellite. (For observations of a radio star the source is, of course, at
infinity, but otherwise the diagram is the same). It is assumed that the orbit of

s .
atellite path

—
" —

Iz

! rregulurin'es

Fig. 1. The geometry of the problem,when the source is a satellite.
For & radio star, H and z, are infinite.

the satellite is such that the height H may be taken as constant for the range of
zenith angles 6 involved. The irregularities are assumed to be confined to a layer
at a height %, and the thickness of the layer Ak is assumed to be small compared
with the height. The angle of incidence of the waves on the layer is ¢, and z; and z,
are the distances of the irregularities from the observer and the source respectively.
Then ¢, z,, and z, are related to the zenith angle 6 by the following expressions

i =sin"! {R,sin /(R, + h)} (1)
z, = (Ry2cos? 0 + 2R + h?)Y/2 — B cos § (2)
2y — (R, c0s2 0 + 2R,H + H2VE — (R2cos? 0 + 2Reh + B2)V2,  (3)

where R, is the radius of the earth.

3
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For waves received from a radio star, equations (1) and (2) still apply, but H
and z, are infinite.

It should be noted that effects due to refraction by the regular ionized layers
are neglected. At the frequencies normally used these effects are likely to be very
small, except possibly for zenith angles which approach 90°.

3. TaE RELATION OF THE PHASE PATTERN IN THE EMERGING WAVEFRONT
TO THE PROPERTIES OF THE IRREGULARITIES IN THE MEDIUM

3.1. The distribution of electron density

In order to develop the theory it is necessary to make some assumptions about
the form of the three dimensional correlation function of the electron density in
the ionosphere.

The simplest mathematical representation which fits the observations is the
assumption that surfaces of equal correlation have the form of ellipsoids of revo-
lution with their long axes along the direction of the magnetic field and that the
variation of the correlation function along any radius is Gaussian. The correlation
function of electron density N is therefore taken to be

pwtrs) =exp| T, ] )

ro2  (ary)?

where r and s are a pair of cylindrical coordinates such that s is measured along
the magnetic field and  perpendicular to the field. The quantity r, measures the
distance at which the correlation falls to 1/e in a direction transverse to the field,
and ar, the corresponding distance along the field. The ‘“‘axial ratio” is «.

An irregular medium of this type can be thought of as built up by the super-
position of electron clouds or “blobs’ in a random arrangement (RATCLIFFE, 1956).
The correlation function of each blob will be the same as that for the medium as
a whole. Since the convolution of a Gaussian function with itself is another
Gaussian function, but of width V2 times that of the original, it follows that an
individual blob must have an excess electron density given by

72 s2
7o2[2 (arg

AN(r,s) = AN, exp [ (5)
where AN is the excess electron density at the centre. If a large number of blobs
of this type are assembled in random positions the correlation function of the
resulting irregular medium will have the form of equation (4).

In experimental observations it is common to measure the distance at which

the correlation falls to 1/e (or sometimes to one-half) and to quote this as the

“size” of a typical irregularity in the medium. This ignores the factor of V2
mentioned above. However this is largely a matter of definition and in order to
follow the practice which has become accepted we will not make this distinction
in the present paper. Thus the phrase “size of a single irregularity’ is taken to
mean “‘distance at which the correlation falls to 1/¢”.
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3.2. Propagation of a wave through the medium

Scintillation observations are most often made on short wavelengths for which
the refractive index u deviates only slightly from unity. For this case we can write

A2 N

20

p—1l=— (6)

where 1 is the wavelength of the radiation and r, is the classical radius of the
electron. The deviation of y from the mean is tl en
A?r,

2

Ap = — =2 AN, (7)
where AN is the deviation of N from the mean.

The phase change in travelling a distance I in the medium, relative to the phase
change in travelling the same distance in a uniform medium with the same mean
electron density, is

o
Aud
é AL pdl
14
—y f AN dl. (8)
0

As the refractive index differs only slightly from unity deviation of the rays
will be very small and it is sufficient, in a determination of the phase pattern in
the emerging wavefront, to perform the integration of equation (8) along straight
lines in the medium. In a sense the three-dimensional medium is “projected” on
to a plane normal to the direction of wave propagation.

Wave

90°-¥

b3

Fig. 2. This illustrates a single “blob”, elongated along the magnetic field H,,.

The cylindrical co-ordinates 7, s are such that Os is in the direction of the field.

The Cartesian co-ordinates z, y, z are such that the wave advances in the
nogative z direction, and H, is in the (y, z) plane at an angle y to Oz.
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In order to carry out the integration of phase for incidence in an arbitrary
direction we use the coordinate system shown in Fig. 2. Here a Cartesian system
of axes (0, w,y, z) is shown in addition to the cylindrical system (O, r, s). The
Cartesian axes are such that the wave advances in the negative z-direction. The
(0, y, z) plane contains the magnetic field vector H, which is in the (O, s) direction
at an angle p to (O, 2).

Elementary geometry leads to the relations

82 = (y sinyp + 2z cos p)?
r? = a2 + (y cos p — z sin p)? (9)
between the coordinates of the two systems of axes.

3.3. The correlation function of phase

To derive the correlation function of phase in the emerging wavefront we
consider the wave travelling towards O to be incident on the typical blob described
by AN(r,s) of equation (5), centred at O. Substituting equations (9) into
equation (5) gives the distribution AN(z, y, z) and from equation (8) we find

22 Y2

1
= —9r A 2 LI}
bz, y) = —rA Noexp[ T 7_02/2(003 p 4 —3 Sin 1/’)}

* f+ ) li Zyz (1 1 ) : 22 ( n? —l— 1 ’ )jl d
exp | —--|1 — —|)sinycosy — sin — COS z.
P 762/2 o? v v 7022 LR v

— 00

A guitable change of variable and an integration of the typef e~ dt gives

/7—7 AN gar, l: x? y>
-7 ex
N 2 “ (a?sin®yp 4 cos? )2 P ro2[2  (ry2/2)(a?sin?y +-cos?y

The variation in the phase pattern over the (z, ¥) plane is given by the expo-
nential terms in this expression. If now a number of such phase patterns are
superimposed in random positions in the (z, y) plane (corresponding to random
occurrence of blobs throughout the medium), the correlation function of the
resulting pattern is the same as that for one alone. The latter has the same form

d(z y

as the distribution $(x, ) apart from the factors V2 discussed previously. Thus
the correlation function py(&, #) of the phase is given by

Y — x| & n?
Pels: 1) Pl ro?2 1 H{a?sin®y + cos?y
52 1]2
= 10
P [ ro?  (Bro (o)
where B = («? sin? p +- cos? )12, (11)

These results show that the phase pattern is anisotropic, the contours of equal
correlation being ellipses with an axial ratio of B which is related to the axial
ratio of the blobs by equation (11). The smaller dimension of the phase irregu-
larities (i.e. the distance at which correlation falls to 1/e measured along the minor
axes of the ellipses) is 7y, the same as that for the three dimensional correlation
function of the medium.
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3.4. The root mean square fluctuation of phase

We now proceed to a calculation of the root mean square deviation of phase
produced by an extended irregular medium.
CHERNOV (1960) has shown that

Ap)? ®
$o? = am ! /1’2‘) L. f_m p,(0, 0, ¥) di, (12)
where ¢, is the root mean square deviation of phase produced in a wave which
travels a distance L through the medium in the z-direction, and p,(0, O, {) is
the correlation function of refractive index u in the z-direction.

In the present problem we consider a wave incident at an angle ¢ on a layer
of irregularities of thickness Ak (see Fig. 1). The length of its path through the
layer is then

L = Ah sec .

From the simple relationship between y and N (equation (6)) it is clear that
the three-dimensional correlation function of refractive index, p,(r, s), has exactly
the same form as that for electron density, py(r, s)(equation (4)). Employing
again the equations (9) to give p,(§, %, {) in the (O, z, y, z) frame, we have, on
equating &, 5 to zero

2 1
p.(0, 0, ) = exp |:— foz(sinz P+ = cos? q))]
Substituting the values of p,(0, O, {) and L into equation (12), and using the
expression
4, 2

‘s
Au)? = —= (AN)?
(Au) e (AN)
derived from equation (7) ,we have

by = w2 (AZ\{2 Ah aryseci)1/2 . (13)
(«? sin? p + cos? yp)l/*

In applying this result, the only factors which will vary with zenith angle are
¢ and p. Since the irregularities are assumed to have similar statistical properties
everywhere, the factors AN2, Ak, «, and r, will all be independent of zenith angle,
and in considering relative zenith angle variations these constants may be omitted.
For observations on a single wavelength the factor 1 could also be omitted. Since,
however, we shall sometimes wish to consider the ratio of scintillation depth on
two different wavelengths it is necessary to retain this 4 in the expression. The
simplified expression which is actually used in the calculations is therefore the
following

o oC A(sec 3)V/2(a? sin?y + cos? y)~1/4, (14)

It may be noted that for the special case of isotropic irregularities, this reduces
to
$o oC A(sec 1)1/2, (15)
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The expressions (10) and (13) are generalizations to the case of an anisotropic
medium of expressions given by BraMLEY (1954) and RaTcLirre (1956) for an
isotropic medium.

4. Tar DirrracTiON THEORY

The way in which amplitude fluctuations appear, and increase as the wave
travels beyond the irregularities, has been considered by Hewisu (1952), WAGNER
(1962b) and MERrcIER (1962). The work of Hrwism and WAeNER applies to a
“one dimensional” phase screen in which variations exist only in one direction.
This is unrealistic when applied to the actual ionosphere, and we shall use the
results of MERCIER, who considered a two-dimensional phase screen. In MERCIER’S
theory the irregular phase variations are assumed to be isotropic, and to have
a Gaussian correlation function. Thus the correlation function of phase is of the
form

pe(é, 1) = exp {—(& + 77)[re?}, (16)

which is a special case of equation (10). The source of radiation is assumed to be
at infinity, and so the results apply directly to the case of a radio star. We shall
later show how they can be modified to apply to waves from a satellite. For the
present, it should be noted that z, as used by MERCIER, is to be taken as equal
to z, (see Section 2), i.e. it is the distance from the screen to the observer.

The quantity calculated as a measure of the scintillation depth is

4 2)2
P G , (17)
(R?)?

where R is the amplitude of the wave. In his Fig, 1, MERCIER shows how S2 varies
with V/2zfr,. We prefer to plot S as a function Az[ry?, since the curves then have
a linear portion near the origin, which shows that § is proportional to z in this
region. The quantity S will be adopted as a precise measure of the scintillation
depth throughout the present paper. (The relation of S to other possible measures
of the scintillation depth is discussed in Section 8.) The replotted curves are
shown in Fig. 3. The different curves correspond to different values of ¢, the
root-mean-square phase deviation.

We shall refer to the region near the origin, where 8 oc 2z, as the “near zone”,
Further from the screen the curves reach a limiting value, so that S no longer
increases as the wave travels further. We shall refer to this region, where § is
independent of z, as the “far zone”. The change over from the near zone to the
far zone occurs when Az/r? ~ 1. MERCIER has shown that the limiting value of
S, far from the screen, is given by

8 = {1 — exp (—2¢ ). (18)

The curves of Fig. 1 were obtained by computation using an electronic com-
puter, and there is, in general, no simple analytical expression for them. If,
however, ¢, is small there is a useful analytical approximation as follows

S _ '\/E ¢0(1 + 7T27'04)-—1/2

(19)
47%:2
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The limiting value of S far from the screen is, according to this approximation,
equal to V2 Po-

In Fig. 3 the form of the approximate expression (19) is shown by the dotted
curves. It will be seen that the approximation is very good for values of ¢, up to
0-5 rad and reasonably good up to 0-71 rad. To this approximation, S is propor-
tional to ¢, and this leads to a great simp
with zenith angle is then independent of
will be used, and not the exact curves of
lating zenith angle variations by the use
depend upon the value of ¢, assumed, so that no general results can be given.

=14 rod
12 — 0d
4] =l rod
] #,=07! rad
S
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05
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o2

[¢] 0 20 ¥0
Az2/rd

Fig. 3. The scintillation depth S, as a function of Azfry? for an isotropic phase
screen. The dotted curves represent the approximation of equation (19).

The theory of MERCIER applies only to isotropic irregularities. In general the
phase pattern over the wavefront will be anisotropic and will have a correlation
function of the form of equation (10) rather than (16). For this case P. W. JAMES
(private communication) has shown that equation (19) must be replaced by

S = V2¢{1 — (cos u, 60 wy)'/® cos F(uy -+ wy) 12, (20)

where tan 4, = 2Az[nry?, and tan u, = 222/ o2
This function depends only on two parameters, the quantity Az/re?, and B,
the axial ratio of the phase pattern. Thus we may write

S = VQ¢OF(% , ﬁ). (21)

In Fig. 4 the quantity F = (§/ V/2¢,) is plotted as a function of Az[ry?, for
different values of p. The curve for 8 = 1 has, of course, the same shape as the
curves of Fig. 3 when ¢, is small. As f increases, there is a progressive change in
the curves, but they quickly tend to a limiting form, and the curve for § = 5 is
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very nearly the same as the limiting curve for B — oo. This limit corresponds
to diffraction by a “one-dimensional” screen, in which the phase varies in one
soon as the anisotropy is appreciable,
the smaller dimension r, of the phase
larger dimension gr,,.
ce at infinity. It can easily be shown,
carried out for a source at infinity can

08

06

04

o2

- S
o} 4 &6 8 0 2 14 le 18

Az /ru2

Fig. 4. The function F = §/(V2 $o) as a function of Azfry% for an anisotropic
phase screen. The curves are for different values of the axial ratio f-

be extended to apply to a source at a finite distance by redefining z as follows

1 1 1

- =— 4 (22)

22y 2z,
where 2, and z, are the distances of the observer from the screen and the source
from the screen respectively. For this result to hold, the angles of diffraction
must be small. This condition is well satisfied, as the angles of diffraction are

for the calculation of the zenith angle variation of the scintillation depth, both
for radio stars and satellites. It should be noted that because the approximate



On the variation of radio star and satellite scintillations with zenith angle 349

equations (19) and (20) are used, the results will apply only when the scintillation
effects are not too severe (i.e. ¢, < 0-7 rad). The shorter the wavelength, the
more likely it will be that this condition will hold.

5. THE ZENITH ANGLE VARIATION FOR RADIO STAR
SCINTILLATIONS
5.1. Isotropic irregularities

It is useful to consider isotropic irregularities first in order to illustrate the
general nature of the results. The difficulty in dealing with anisotropic field-aligned
irregularities is that the geometry of the earth’s magnetic field is different for each
observing station and each radio star, so that only special cases can be worked
out. For isotropic irregularities, however, general curves for the variation with
zenith angle can be given. For irregularities in the F-region, the assumption of
isotropy is a serious oversimplification, as will be shown later. It may be a reason-
able assumption, however, for irregularities in the H-region.

In order to calculate the variation of the scintillation depth S with zenith
angle, equations (15) and (19) are combined to give

2 4\ —1/2
wro)

4722

S oc A(szec 15)1/2(1 + (23)
The variation of ¢+ and z; with zenith angle 6 is given by equations (1) and (2).
The family of curves shown in Fig. 5 illustrates the results. These curves apply
to irregularities at a height of 300 km, and each curve is for a different value of
the parameter A/r,2. The value of this quantity determines the distance at which
the near zone goes over into the far zone. If A/ry? is very small, the observer is
situated in the near zone for all zenith angles. Equation (23) shows that § is then
proportional to z,(sec7)1/2. Since z; and see ¢ both increase with zenith angle,
there is a large increase in scintillation depth as the zenith angle increases. If
Alro? is larger, observations are made entirely in the far zone, § is independent of
zy, and only the (sec 4)V/2 factor remains. The zenith angle variation is therefore
much reduced. For intermediate values of 1/r,? there is a change over from near
zone conditions to far zone conditions as the zenith angle increases.

It has sometimes been suggested that the form of the zenith angle variation
might be used to determine the height of the irregularities. The present results
show that in general this is not possible, because the curves depend so much on
the value of the parameter A/r 2. This has not been realized previously, because
the assumption has usually been made that the observer is situated in the near
zone, so that the zenith angle variation is given by z,(sec ¢)1/2. This depends only
on the height of the irregularities (from (1) and (2)) and is independent of 1 and #,,.
However, the assumption that observations are made in the near zone is not
justified for the wavelengths normally used. The diffraction process is governed
mainly by the smaller dimension of the irregularities (Section 4), and a reason-
able estimate of r, would be 1 km, for irregularities in the F-region. Thus if 1 =
8 m, we have Az/r 2 = 1 for z = 1256 km. Thus, if the irregularities are at heights
near 300 km, it is more nearly true to say that observations are made entirely in
the far zone. It is only for very short wavelengths (of the order of 0-3 m for this
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example) that observations will be made in the near zone for all zenith angles.
At these short wavelengths, scintillation effects will probably be too small to
measure except at zenith angles approaching 90°, and here the E-region is likely
to take over from the F-region. It seems unlikely, therefore, that the height of
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Fig. 5. The scintillation depth S (normalized to unity at the zenith) as a function

of zenith angle, for radio star scintillations. Irregularities at a height of 300 km.
The curves are for different values of the parameter A/ry? (km™1).

the irregularities in the F-region can be determined from observations of the
zenith angle variation. Also the effects due to anisotropy are important, and this
introduces yet another variable.

The only previous work on the zenith angle variation in which the transition
to far zone conditions is included appears to be that of Waanmr (1962a),
which applies to a ““one-dimensional” system of irregularities, such that the elec-
tron density varies in one direction only. However, the importance of the size of
the irregularities (£, in WAGNER’s notation) was not emphasized. Figs. 3, 4, 5
and 9 of WAGNER’s paper must have been calculated for some particular value of
&, and some particular wavelength; the values used are not stated. The curves
would be greatly changed by small variations of &), and it is impossible to deter-
mine the height of the irregularities by this method.
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Tt is of interest to consider some recent results obtained by CHIVERS and DAVIES
(1962) on 1390 Mc/s (A = 0-22 m). They observed the variation of the scintillation
depth over the range of zenith angles 50° to 86° for the radio sources in Cygnus
and Cassiopeia. The observed variation was compared with theoretical curves
based on the assumption that observations were made in the near zone, and the
conclusion was reached that the irregularities were at a height of 100 km. Now
with r, = 1 km their assumption is justified for this short wavelength. However,
there is some uncertainty about the value of r, which should be used at the level
of the E-region, and so it is of interest to examine the results in more detail, in
order to see whether the appropriate value of 7, can be determined. It should
first be noted that the height cannot be very different from 100 km. Any greater
height will not give a sufficiently large variation with zenith angle for any value
of ry. Tt is true that the irregularities could, in prineiple, be lower than 100 km,
and the value of r, could be adjusted to fit the observations. However, it is ex-
tremely unlikely that there would be sufficient ionization below about 90 km to
produce any effects. Thus the range of possible heights is extremely limited, and
must be close to 100 km. We therefore accept this height, and ask what limitations
can be placed on the value of r,. Figure 6 shows curves of the zenith angle vari-
ation calculated from equation (23), with 7 = 100 km and A = 0-22 m, for various
values of r,. These curves have been normalized to pass through the same point
at § = 70°. The experimental points, similarly normalized, are also shown. It
will be seen that », cannot be less than 0-3 km.

5.2. Anisotropic irregularities

In general the anisotropy of the irregularities is important, and must be included
in the calculation. The scintillation depth then depends on the angle between
the line of sight and the magnetic field, so that it is not a function of zenith angle
alone, but depends also on the azimuth angle of the source. As the earth rotates
the zenith angle and the azimuth angle of a radio star are continually changing.
Since there is a unique relation between the two angles, the scintillation depth
may be regarded as a function of either angle. The variation can be worked out
for any particular source from the results already given, if the geometry of the
magnetic field is known.

In order to simplify the discussion, we shall consider only a source which is
circumpolar, and instead of working out complete zenith angle curves we shall
consider only the ratio of the scintillation depth at lower transit to the scintillation
depth at upper transit. The main effects of anisotropy are illustrated by con-
sidering this ratio, and since it is a single number, the effects of changing the
various parameters can be illustrated without the need to reproduce a very large
number of complete curves.

In order to calculate this “zenith angle ratio” for any particular source, the
values of the following quantities must first be decided: the height of the irregu-
larities, the value of 7, and the value of the axial ratio «. The first step is to
determine the angle ¢ between the line of sight and the magnetic field at upper
and lower transit. The field is that in the vicinity of the irregularities, and may
be obtained from one of the standard approximations to the earth’s field. Then
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the axial ratio f of the phase pattern can be determined for upper and lower
transit from equation (11). The two values of z, are found from equation (2).
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Fig. 6. Zenith angle curves Cmrvers and DavIes’ obser-
vations on 1390 Mc/s. The rities is taken as 100 km, and

the cur alues of r,.

The zenith angle ratio is then found from equation (21) which gives
‘_S: _ P Fldzy[re% B)
S boF (Izy[re?, B)
where the values S, ¢,, 8, z, refer to upper transit and the values S, éo's B, 2,
to lower transit. The ratio ¢,'/é, is found from equation (14). In numerical work

the curves of Fig. 4 may be used to find the values of the function F.
As a large amount of data is available for the source Cassiopeia A observed at

(24)
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Cambridge (52°N) on a frequency of 38 Mc/s, the results will be illustrated by
considering this example. The source is circumpolar, and the zenith angle has
values of 6° and 70° at upper and lower transit. In Fig. 7 the calculated zenith
angle ratio is plotted as a function of r,. Four curves are shown. The dotted
curves are for isotropic irregularities (« = f = 1), and for heights of 200 km and
400 km. The solid curves are for anisotropic irregularities with an axial ratio of
5 and for the same two heights. The effect of the anisotropy is seen to be very
important. For example, if the irregularities are at a height of 200 km, the zenith
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Fig. 7. The ratio of scintillation depth at lower transit to scintillation depth at

upper transit for the source Cassiopeia A observed at Cambridge on 38 Mc/s.

The solid curves are for anisotropic irregularities with an axial ratio of 5, and
the dotted curves for isotropic irregularities.

angle ratio is 4-0 for isotropic irregularities, but only 2-65 for anisotropic irregu-
larities with « = 5. The reason for this is easy to see when the particular geometry
for this source is considered in relation to the direction of the magnetic field. At
lower transit the line of sight to the source is approximately transverse to the
field in the F-region, so that the irregularities are viewed ‘“‘broadside-on”. At
upper transit, the irregularities are viewed more nearly “end-on’ and so the phase
deviation is increased (equation (14)). This effect produces a variation in the
opposite sense to the usual zenith angle variation, and so reduces the zenith angle
ratio. This effect has been discussed by Lirrre, REm, STILTNER and MERRITT
(1962), in connection with observations of the same source made in Alaska. There
the irregularities are viewed almost exactly “end-on’ at upper transit, and the
zenith angle variation is almost completely removed.

Experimental values of the zenith angle ratio have been determined from the
Cambridge observations, and may be compared with the theoretical results shown
in Fig. 7. It is necessary to use a whole year’s data to determine the zenith angle
variation, in order to remove the solar time variation. The procedure adopted
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was to obtain monthly mean curves of the diurnal variation, and to average these
in sidereal time by displacing each curve two hours relative to the preceding one.
From the resulting variation with sidereal time, the variation with zenith angle
can be found, since the zenith angle is a function of sidereal time. Values of the
zenith angle ratio determined in this way are shown in Table 1. There is some
evidence for a systematic variation with the solar cycle.

Table 1
Year 1950 1953 1954 1955 1956 1957 1958 1959 1960 1961

Zenith
angle ratio 3-8 2-6 2-3 2:7 27 2-3 2-1 2-8 3-3 3-8

Figure 7 shows that for the most probable values rq = 1 km and « = 5, the
calculated zenith angle ratio is only of the crder of 1-25, which is much less than
the values observed. It seems unlikely that these values of rj and o can be grea ly
in error since they were determined by other experiments made at Cambridge,
using the same source and the same frequency. It therefore seems that the dis-
crepancy is real, and that the observed zenith angle variation is influenced by some
other effect. The most probable explanation is that the degree of irregularity of
the F-region increases with latitude. For large zenith angles, the line of sight
intersects the F-region well north of Cambridge, so that the zenith angle ratio
would be increased by such an effect. A similar latitude variation has been suggested
for different reasons by CHIVERS (1960) who observed the same source at Jodrell
Bank.

A point which should be mentioned here is that the Cassiopeia A source has
an appreciable angular diameter, and this has the cffcot of reducing the scintil
lation depth (Briees, 1961). This reduction is largest when the irregularities are
far from the observer, and so the effect tends to reduce the normal zenith angle
variation. An approximate correction for this effect was made in evaluating the
ratios given in Table 1.

5.3. The ratio of the scintillation depths for two wavelengths

We have shown that a direct comparison of the theory with observations is

difficult. To obtain a zenith angle variation, the source must be observed for a
year, so that solar time and irregular variations can be eliminated. Also, the effect
of latitude variations is uncertain. All these difficulties arise from variations of
the degree of irregularity of the ionosphere, and hence of ¢,, with time and space.

Now the ratio of the scintillation depths on two wavelengths is independent
of ¢y, provided it does not exceed about 0-7 rad. This suggests that many of the
difficulties would be removed if we used this ratio rather than the value on a single
wavelength. This ratio will still vary with zenith angle, but this variation is due
solely to the changing geometry of the diffraction process. From the observational
point of view, the use of this ratio would appear to have great advantages. Since
it would be no longer necessary to average large amounts of data, the scintillation
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depth 8§ could be evaluated accurately from its definition (17), thus avoiding the
use of a semi-empirical “scintillation index’ (se2 Section 8). A zenith angle curve
could be obtained in 12 hr. The condition that ¢, is small could always be met
by observing on sufficiently short wavelengths.

The use of this ratio also eliminates the main effect of anisotropy of the irregu-
larities. As explained in Section 5.2, this arises from the fact that the irregulacities
are viewed in different aspects at different zenith angles, thus changing the phase
deviation ¢, This effect is therefore removed by using the ratio on two wave-
lengths. Some effect of anisotropy remains due to the difference between the
various curves of Fig. 4, since these control the subsequent diffraction process.
However the differences between these curves are not large, and so, to quite a
good approximation, we can take the irregularities to be isotropic.

Let the scintillation depth be S(4,) for a wavelength 4, and S(4,) for a wave-
length 4,. Then from (23) we have

S(Zl) }'1( 7.‘.27-04 )—1/2 ( 7.’.27-04 )1/2
DA 6 L 14 270 ) 25
80y i\ T i T i (25)

The variation of this ratio with zenith angle is shown in Fig. 8 for irregularities
at a height of 300 km, and for wavelengths 4, = 7-5 m, 1, = 3-75 m (40 Mc/s and
80 Mec/s). Each curve is for a different value of rj, and it will be seen that the
variation is very sensitive to the value of this parameter. If r, is very small,
observations are made entirely in the far zone, and for this limiting case (25) gives

S(h) Ay

far zone),
SUg) 3y | )

If r, is very large observations are made entirely in the near zone, and for this

cafe
S(iy) (A_)
72

(near zone).

In the present example the curves tend to a limit of 2 when 7 is small, and 4 when
7o 18 large. For intermediate values of 7, there is a change over from the near zone
to the far zone as the zenith angle increases, and the curves cross over from one
limit to the other.

The detailed shapes of the curves depend on both the value of »; and on the
height of the irregularities. This was investigated by calculating curves for other
values of the height, but these are not reproduced here. It was found that vari-
ations of % produced a family of curves rather similar in form to the family of
Fig. 8, so that it is not possible to determine both 7, and A. However, variations
of r produce much larger changes in the curves than variations in . For example,
a variation of 4 from 200 km to 400 km produces about the same effect as a change
of 74 by +15 per cent. The method therefore appears to offer a simple means
for determining r,. Since the irregularities almost certainly lie in the range 200-
400 km, at any rate for zenith angles less than 70°, the curves of Fig. 8 can be
used, and the resulting error in 7, will not be more than 415 per cent. For the



356 B. H. Bricas and I. A. PARKIN

collection of statistical data on variations of r, this is quite adequate, in view of
the large variations which may be expected from one occasion to another.
It should be emphasized that the curves of Fig. 8 apply strictly to isotropic
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Fig. 8. The ratio of the scintillation depth on 40 Mc/s to the scintillation depth
on 80 Mc/s as a function of zenith angle. The curves apply to observations of a
radio star, and for irregularities at a height of 300 km.

irregularities, but will be a close approximation even if the irregularities are an-
isotropic. In the latter case, the value of r, which is determined is, of course, the
smaller dimension. Also the curves of Fig. 8 will apply, to a close approximation,
for any radio star observed at any latitude.
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6. THE ZENITH ANGLE VARIATION WHEN THE SOURCE IS A
SATELLITE
6.1. Isotropic irregularities

Again it is useful to consider isotropic irregularities first for purposes of illus-
tration, though the results cannot be expected to be more than a rough approxi-
mation when the irregularities are in the F-region.

For isotropic irregularities, the scintillation depth is a function of the zenith
angle alone, and is independent of the azimuth angle of the satellite. Universal
curves can be given which will apply at any latitude. The calculation is similar
to that for a radio star; the only difference is that in equation (19) we must write
2 = 2,25/(2, + #,) instead of z = z,. This gives, when combined with (15)

w2y + 2y U2

26
4722,%2,2 (26)

S oc A(sec i)1/2|:1 +

The factors which vary with the zenith angle 0 are ¢, z, and z, (equations (1), (2)
and (3)). The family of curves shown in Fig. 9 illustrates the nature of the results.
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Fig. 9. The scintillation depth § (normalized to unity at the zenith) as a function of
zenith angle, when the source is a satellito at a height of 1000 km. Irregularities at
a height of 300 km. The curves are for different values of the parameter A/ry? (km™).

These curves are for a satellite at a height of 1000 km, and irregularities at a
height of 300 km. The quantity A/r,? is used as a parameter, so that the effect on
the zenith angle curve of changing either 4 or r, can be seen. The curves are
similar to those for radio star scintillations (Fig. 5), but different in detail because
z, and z, vary differently with 0.

SineLETON and LynNcm (1962a) gave theoretical zenith angle curves for
observations of Explorer VII made on a frequency of 20 Mc/s. These do not

4
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agree with equation (26), and we believe that they are incorrect. No allowance
was made for the fact that the source is at a finite distance, nor for the fact that,
at the wavelength concerned, the observer is situated in the far zone. The curves
given by SiNcLETON and Ly~Ncu would, in fact, be correct for observations of a
radio star if the observer were situated in the near zone.

6.2. Anisotropic irregularities

If the irregularities are anisotropic, and field-aligned, the scintillation depth
depends not only on the zenith angle, but also on the azimuth angle. During a
passage of a satellite past the observing station, the zenith angle and the azimuth
angle vary in some particular way, and the geometry of each passage is different.
It is not possible to investigate the variation of scintillation depth during a single
passage, because some averaging procedure is necessary to remove the effects of
a possible patchy distribution of irregularities in the horizontal plane. It would
be possible to regard the scintillation depth as a function of the two variables,
zenith angle and azimuth angle, and to average a large number of observations
in such a way that this function was determined. The theoretical form of this
function could be determined for any particular observing station from the equa-
tions already given, together with the known geometry of the magnetic field.
However, this would be a very elaborate procedure, and it is preferable to use a
simpler approach.

Following SiNeLETON and Lywom (1962b) we shall simplify the problem by
considering only times when the satellite crosses the magnetic meridian plane.
It will cross this plane at different zenith angles on different occasions, and the
variation with zenith angle for these occasions will show the maximum possible
influence of the anisotropy of the irregularities. This is because the irregularities
will be viewed exactly “end-on” when the angle of incidence is equal to the com-
plement of the dip angle. In order to calculate the zenith angle variation in the
magnetic meridian plane we proceed as follows. For any particular zenith angle,
the angle v between the line of sight and the magnetic field can be found. The
value of ¢, and the axial ratio of the phase pattern on the emerging wavefront
can then be found from equations (14) and (11). Then either equation (20) or the
curves of Fig. 4 can be used to determine the scintillation depth, remembering
that z in equation (20) must be taken equal to 2,2,/(z; + 2,) where z; and z, are
functions of the zenith angle given by equations (2) and (3). This procedure is
then repeated for each value of zenith angle.

As an example of the nature of the results, Fig. 10 shows the curves which
apply to observations of the Explorer VII satellite made at Brisbane on a fre-
quency of 20 Mcfs. These can be compared with the observations made by
SiveLETON and Lywonm (1962b, Fig. 1). In the actual observations, the height
of the satellite was variable, but we have taken a mean height of 820 km. The
irregularities were assumed to be at a height of 300 km. Their smaller dimension
7o was assumed to be 1km, and curves are shown for values of the axial ratio «
of 1, 2-5, 5, 10, 15 and 20. It will be seen that there is a marked peak in the curves
at a zenith angle of 33° towards the North, when the irregularities are viewed
“end-on”. This peak is superimposed on the normal zenith angle variation. The
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normalizing procedure used in the observations removed this variation, but showed
clearly the peak at 33°N. The amplitude and width of the observed peak can be
compared with the theoretical curves, and this comparison shows that there is
agreement if the axial ratio « is of the order of 10.

SingLETON and LyNom (1962b) gave a different explanation of this effect,
based on specular reflection from field-aligned irregularities, following a similar

Relative scintillation depth

90 80 70 60 50 40 30 20 10 [0} 10 20 30 40 50 60 70 80 SO
South Zenith angle, deg, North

Fig. 10. The zenith angle variation in the magnetic meridian plane for scintil-
lations of the signals from the satellite Explorer VII on 20 Me/s, observed at
Brigbane. The curves are for different values of the axial ratio «, and for irregu-
larities at a height of 300 km. The curves are normalized to unity at the zenith.

suggestion of RusH and Corin (1958) for radio star scintillations. It does not
appear to be necessary to invoke a special mechanism of this type, since, as we
have shown, the effect is readily explained on the basis of the general diffraction
approach used throughout the present paper. So long as the influence of the
medium is weak, either a scattering theory or a diffraction theory must include
all effects if fully worked out. The specular reflection idea appears convincing
if sharply bounded irregularities are assumed. If, however, more realistic irregu-
larities with gradual boundaries are considered, the “reflection” process is seen to
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be no more than a process of gradual refraction, which will occur whether the
irregularities are isotropic or anisotropic.

MawDSLEY (1960) has suggested that the most favourable condition for for-
ward scattering by field-aligned irregularities is when the incident radiation is
normal to the field lines rather than along them. This is in direct conflict with
the results of our calculations and we believe that the suggestion is erroneous.
Tt is true that the scattered radiation is confined more closely to the forward
direction when the irregularities are viewed ‘“broadside-on”. The scintillation
depth, however, depends only on the ratio of the total scattered power to the
power remaining in the unscattered wave, and is independent of the angular dis-
gribution of the scattered power. The total scattered power is a maximum when
the irregularities are viewed “end-on”, because the phase deviation is then a maxi-
mum. The angular distribution controls the scale of the pattern formed on the
ground, which is, on the average, larger when the irregularities are viewed ‘‘broad-
side-on’’, because the angular spectrum of the scattered radiation is then narrower.

6.3. The ratio of the scintillation depth for two wavelengths

As for radio star scintillations, the ratio of the scintillation depths for two
wavelengths is independent of ¢,, and this leads to a considerable simplification.
It is no longer necessary to average a large number of observations in order to
remove the influence of the patchy distribution of the irregularities. Variations
with latitude, and the main effects of anisotropy are also eliminated (see Section
5.3).

The expression for the ratio S(4,)/S(1,) is the same as equation (25) except
that z, is replaced by z,2,/(z; + 25). As an illustration we have chosen param-
eters appropriate to the forthcoming “S66 Polar Beacon lonosphere Satellite”
(BouRDEAU, 1962). This will transmit unmodulated signals on 20 Mec/s and 40 Mc/s,
two frequencies which would be very suitable for observations of this type. The
height of the satellite will be 1000 km. The curves of Fig. 11 show how the ratio
of the seintillation depths on the two frequencies would vary with zenith angle,
for different values of r,. The irregularities are assumed to be at a height of 300 km.

In using this method, the variation of S with time would be determined for
both frequencies during a passage of the satellite. From the orbital data, the vari-
ation of the zenith angle with time would be determined, and the ratio of the
scintillation depths would be plotted against zenith angle. This would lead to a
value of r,, the smaller dimension of the irregularities. Although the curves of
Fig. 11 are exact only for irregularities at 300 km, the error in r, will be less than
+15 per cent provided the irregularities are in the range 200-400 km. Obser-
vations of this type would appear to be very valuable, especially if carried out over
a wide range of latitudes, since little is known about the way the size of the irregu-
larities varies with latitude.

It is possible to obtain an independent estimate of the size of the irregularities
from the rtate of scintillation (SinerLETON and LyNcH, 1962b). However, this
method depends rather critically on the height assumed for the irregularities. A
combination of both methods may enable the height to be determined.
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7. Tag WrrenTiNG FuNcTioN

Irregularities at different distances are not equally effective in producing am-
plitude scintillations. In this Section we consider the nature of the ‘‘weighting

40
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16=0-5 km
2:0
o] 10 20 30 40 50 60 70 80 0

Zenith angle, deg.

Fig. 11. The ratio of the scintillation depth on 20 Mc/s to the scintillation depth
on 40 Me/s as a function of zenith angle, when the source is a satellite at a height
of 1000 km. Irregularities at 300 km.

function” which determines the effectiveness of irregularities at different distances.
For simplicity, only the case of isotropic irregularities is considered.

If waves are received from a radio star, the scintillation depth is given by
equation (19) where z = z,; is the distance of the irregularities from the observer.
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If we imagine the same irregularities to be placed in different positions along the
line of sight, ¢, will be constant, and the variation with z, gives the weighting
function. Thus the weighting function is given by the curves of Fig. 3. Irregu-
larities very close to the observer (z; small) are ineffective in producing amplitude
scintillations; they produce only phase scintillations. As z, increases, the weight-
ing function increases, but finally becomes constant for irregularities at a large
distance from the observer.

If waves are received from a satellite, the situation is rather more complicated,
since z is now to be put equal to 2,2,/(2; + 2,). Thisis zeroif z; = 0 or 2z, = 0, s0
that irregularities very close to the observer or very close to the satellite produce
only phase scintillations. The maximum value of z occurs when z, = z,, so that
the most effective irregularities for the production of amplitude scintillations are
those situated half-way between the observer and the satellite. Again, if we imag-
ine the same irregularities to be placed in different positions along the line of sight,
¢, will be constant, and the weighting function is obtained by substituting z =
2129/(21 -+ 2,) into equation (19). The resulting expression may be regarded as a
function of z, since (2; + 2,) is constant, and equal to the distance of the satellite
from the observer. Figure 12 shows the weighting function, regarded as a function
of zy, for a satellite at a distance of 1000 km. The quantity A/ry? is used as a
parameter.

It is important to consider the possible influence of this weighting function in
any method for determining the height of the irregularities. If the satellite is so
low in height that it actually passes through the irregularities, they will appear to
be at a mean height rather less than that of the satellite, because the weighting
function is always zero at the satellite itself. For satellites as high as 1000 km the
effect is not likely to be serious, because the weighting function has a long flat
portion in the range of heights where irregularities are likely to exist (Fig. 12).

8. Tur RELATIONSHIP BETWEEN VARIOUS MEASURES OF
THE SCINTILLATION DEPTH

Several different measures of scintillation depth have been used in observations
of radio star and satellite scintillations. The results of the theoretical calculations
made in the present paper cannot be compared directly with experimental data
unless the relationship between these various measures is known.

When radic waves are received from a satellite, the deflection of the recorder
is normally proportional to the amplitude of the wave. It is therefore convenient
to use a measure of the scintillation depth which depends on the deviation of the
amplitude from the mean amplitude, divided by the mean amplitude. Two meas-
ures are possible, as the mean deviation, or the root-mean-square deviation may

be used. These measures will be denoted by §; and §,. They are defined as follows

8, = lrfe — R, (27)

A (28)
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In the observation of radio star scintillations, the deflection of the recorder is
usually proportional to the received power, i.e. to R2. It is therefore natural to
use a measure of the scintillation depth which depends on the deviation of the

1000

Km.

500

[¢] 05 0 5
Weighting function, orbitrary units

Fig. 12. The “weighting function” which determines the effectiveness of irregu-
larities at different distances from the observer. The source is assurmed to be at &
distance of 1000 km. The curves are for different values of A/ry? (km™).

power from the mean power, divided by the mean power. Again two measures
are possible, 83 and §,, defined by equations analogous to equations (27) and (28),
as follows

1

85 — ‘E; (29)
1 —_—Y1/2

8= {(R2 — R2)2} . (30)
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It is easily shown that S, is the same as the measure § used throughout the present
paper (cf. equation (17)).

If the probability distribution of R were known, it would be possible to relate
8., 8, S, and 8, theoretically. Unfortunately the probability distribution is not,
in general, known. MEercIER (1962) has shown that far from a random phase
screen, when the amplitude fluctuations are fully developed, the distribution of E
is one of the “Rice curves” (Ricm, 1945). Limiting cases of these curves are a
“displaced Gaussian” distribution (when the phase deviation is small) and a
Rayleigh distribution (when the phase deviation is large). We are not aware of
any similar caleulations of the probability distribution of R which apply close to
the screen. It is therefore undesirable to make any assumptions about the form
of the distribution. The values taken by §,, §,, §; and S, for the limiting case of
a Rayleigh distribution are, however, of interest, and these are given in Table 2.

Table 2
Measure Sy S, S Sy =8
Value for a
Rayleigh distribution 0-42 0-52 0-73 1-00

In the absence of definite knowledge of the distribution of R, the safest pro-
cedure is to investigate the relation between the various measures experimentally,
by evaluating each of them for sample records. Other workers have used this
method for particular cases. For example, LAWRENCE ¢t al. (1961) evaluated S,
and 8,2 from sample records of radio star scintillations. The results were given in
the form of a graph of §; against S,2, using logarithmic scales for both axes. If
the results are replotted as a graph of §, against §, with linear scales, it is found
that S, is quite accurately proportional to §,. The maximum observed values of
8, and S, are those expected for a Rayleigh distribution. Also LirTLE ef al. (1962)
have shown that, for all but the largest values of scintillation depth, §; is pro-
portional to §;. These results strongly suggest that all four measures are propor-
tional to each other, within the limits of experimental error. If thisisso we might
expect the relations between them to be determined by the values which they take
for a Rayleigh distribution, which suggests semi-empirical relationships of the form

S, = 0-428,, (31)
S, = 0-528,, (32)
Sy = 0-738,. (33)

These results relate the measures S, S,, §; to the measure §, =8 which is used
throughout the present paper.

In order to test further the relations (31) to (33) some records of the Transit
4A satellite obtained at Adelaide have been analysed. The frequency was 54 Mc/s.
Each sample record contained about 50 fading maxima, and about 150 readings
of amplitude were taken at equally spaced time intervals. The quantities S;, S,
8, and 8, were calculated for each sample. The results are shown in Fig. 13(a),
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(b), (c), in which 8, 8, and 8; are plotted against §,. The straight lines represent
the linear relationships given by equations (31) to (33). It will be seen that the
experimental points lie quite close to these lines.

These results show that it is permissible to assume that the four measures of
scintillation depth are proportional to each other. It follows that when only rela-
tive values are required, it does not matter which measure is used. This is fortu-
nate, since it simplifies the interpretation of earlier work. If absolute values are
needed it is necessary to convert the measure used to the one which is calculated
in the theory. In future work, it would be desirable to standardize on the use of
S, since this is most easily calculated in the diffraction theory.

Sz Sy
04 04
o2 o2 o2
o] 02 04 o6 oB 0 0 02 o4 (025 [o2:] 0 O o2 o4 o6 [o2:] KO
Sa Sa S,

Fig. 13(a),(b),(¢). Observed values of the quantities S;, S,, Sy plotted against S,, which
is the measure of scintillation depth used throughout the paper. The relationships
given by equations (31) to (33) are shown by the straight lines.

When very large numbers of records are to be analysed, it has been common:
to use a “scintillation index”, assigned to each sample of record by visual inspec-
tion, without actual measurement. When this is done, it is very desirable to ‘‘stand-
ardize’ the index by relating it to one of the quantities S, S,, S; or 8, (preferably
8,). This can be done by analysing some sample records by the exact method,
and plotting the “index’ against the actual value of scintillation depth. MERCIER
(1962) has shown that the scintillation index used by the Cambridge workers,
which has a scale 0-5, is proportional to §,. The index used by workers at Jodrell
Bank is determined “by assessing visually the mean peak to peak amplitude of
the fluctuations ... (which is) ... then converted into a percentage of the esti-
mated source intensity’’ (CHIVERS, 1960). The term “amplitude” is apparently
used here in the sense of “amplitude on the chart”, and since the record is one of
intensity, the index should be proportional to 8,;. SiNeLETON and Lywcu (1962)
define their scintillation index, used for satellite observations, as the amplitude of
the signal fluctuations, divided by the mean signal level. This should be propor-
tional to S;.

In Sections (5) and (6) we compared the various observations with the calcu-
lated results, without commenting on the measure used. This is now seen to be
justified, since only relative values of scintillation depth were used.
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Comments on the Paper by J. D. Lawrence and J. D. Martin,
‘Diurnal, Seasonal, Latitudinal, and Height Variations
of Satellite Scintillation’

B. H. Brices axDp I. A. PARKIN

Department of Physics, University of Adelaide
Adelaide, South Australia

In their paper Lawrence and Martin [1964]
make the statement (which they attribute to
us) that the maximum scintillation depth will
be observed when the satellite’s distance from
the observer is twice the distance of the ir-
regularities from the observer. The statement
in this form is not true, and it is not the state-
ment we made.

We did show [Briggs and Parkin, 19637 that,
if the phase deviation introduced by the irreg-
ularities is less than one radian, the scintillation
depth is a monotonically increasing funetion of
the quantity Z* = Z, Z./(Z. + Z.), where
Z, is the distance from the observer to the ir-
regularities, and Z, is the distance from the
irregularities to the satellite. Thus, if the dis-
tance of the satellite from the observer is re-
garded as fixed (say Z, + Z, = H), and if
Z, is regarded as being variable, the scintillations
depth will be a maximum when Z* is a maxi-
mum, and this occurs when Z; = 24H. In this
case, the observer and the satellite are regarded
as fixed, and irregularities are considered to be
placed at varying positions between the two.
It is then true that the maximum scintillation
depth occurs when the irregularities are half-
way between the observer and the satellite.

This, however, is not the problem considered
by Lawrence and Martin. They are concerned
with a case in which the irregularities are fixed
m position and the satellite’s distance changes;
ie., Z, is fixed and H is variable. For these
conditions, Z' has no maximum; it increases
monotonically from zero when H = Z, to in-

finity when H tends to infinity. The scintilla-
tion depth therefore also increases monotonically
as the distance of the satellite increases. Thus
the maximum which they observed for a certain
distance of the satellite (their Figure 4) cannot
be explained along these lines.

A possible explanation could be suggested
if the phase deviation introduced by the irregu-
larities is greater than one radian. As Mercier
[1962] has shown, the scintillation depth is
then no longer a monotonically increasing
function of Z*, but first increases to a maximum
and then decreases, eventually becoming con-
stant (see our Figure 3). This fits qualitatively
the form of variation obtained by the authors.
The peak at a certain value of Z* can be re-
garded as a kind of rough ‘focusing’ produced
by the ionospheric irregularities acting as
‘lenses.” At the frequency used (20 Me/s) it is
quite likely that the phase deviation would
exceed one radian on many occasions.
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The Study of Ionospheric Irregularities by the
Use of Signals from Satellites

B. H. BRIGGS & I. A. PARKIN*

ABSTRACT

A survey is made of the information about ionospheric irregularities
which can be obtained by the study of the scintillation of radio waves received
from satellites. Special consideration is given to experimental methods,
both existing and proposed, which give quantitative information about the
size and shape of the irregularities and about the height and the thickness of
the layer in which they are situated.

1. INTRODUCTION

‘blobs’ of increased or diminished electron density are usually found at all levels

and with a wide variety of sizes. Perhaps the most prominent irregularities
of all, with the largest deviation of electron density from the mean, are those often
present in the F-region which cause ‘spread-F’ echoes and scintillations of radio
stars. They are observed to be elongated with their long axes in the direction of the
earth’s magnetic field. They occur mainly at night.

Recently it has become possible to study these irregularities by new methods, based
on the use of artificial satellites carrying radio transmitters. Thus ‘spread-F’ has
been observed above the maximum of the F-region by the Alouette ‘ topside sounder ’.
Other methods make use of radio signals transmitted right through the F-region from a
satellite to the ground. In optical terminology we may speak of the irregularities as
forming a kind of random ° diffracting screen’ which produces over the ground a random
* difffaction pattern’ when °illuminated’ from above by the radio wave. . This pat-
tern can be observed in various ways by radio receivers on the ground. In the present
paper we shall discuss observations of this type, and the deductions which can be made
from them.

The diffraction pattern will be in motion over the ground, due to the motion of the
satellite, and so a receiver on the ground will record a fluctuating signal strength. By
analogy with the scintillation of radio stars, these fluctuations are usually known as
‘ scintillations ’. The ‘ scintillation depth ’ can be measured by calculating, for example,
the root-mean-square deviation of the signal from its mean value, and expressing this as
a percentage of the mean signal amplitude.

The rapid fluctuations or scintillations must be distinguished from other fluctua-
tions, usually much slower, due to the Faraday effect. Fig. 1 shows a typical record
in which both effects can be seen. The Faraday effect (rotation of the plane of polari-
zation) produces the slow changes of amplitude; it will be discussed in more detail
shortly.

THE degree of ionization of the ionosphere is far from uniform. Irregularities or

Manuscript veceived on 29 April 1964.
*Department of Physics, University of Adelaide, South Australia.
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TRANSIT 54 Mc/s 2147, 7/9/62

\¢

; WW
Fig. 1 — Recording of the signal strength received from the satellite Transit IVA on 54 Mc/s. Two
in antiphase at the two aerials. The fast fluctuations

Let us now consider the diffracting screen formed by the ionospheric irregularities
in more detail. Satellite transmissions are usually at high frequencies, in the range
20-300 Mc/s. At these frequencies the refractive index of the ionosphere is only slightly
less than unity, and refraction of the waves can usually be neglected. Nevertheless,
because of the presence of the irregularities the ‘ optical thickness’ will vary with posi-
tion and a wave will emerge from the lower side of the ionosphere with random varia-
tions of phase across its wavefront. Amplitude variations will be negligible because
there is no appreciable absorption of waves of these frequencies in passing through the
ionosphere. Thus we may call the diffracting screen a ‘ phase screen’ in contrast to
an ‘ amplitude screen ’, which would be a screen which modified the amplitude but not
the phase of a wave passing through it.

If the diffraction pattern formed on the ground by the phase screen were also a
‘ phase pattern ’ it would be difficult to observe. However, it can be shown by diffrac-
tion theory that amplitude fluctuations will appear, and will increase in depth as the
wave propagates downwards through the free space between the ionosphere and the
ground. The theory of this effect has been considered by Mercier (1962), Wagner (1962)
and others. Thus over the ground a pattern is formed with fluctuations of both phase
and amplitude, but usually only the amplitude fluctuations are recorded.

It is now necessary to discuss the Faraday effect in more detail in order to show
that it can be neglected as a cause of the fast scintillations. It can be shown that the
plane of polarization of a plane-polarized wave rotates as the wave travels through an
ionized gas in the presence of a magnetic field, unless the propagation is exactly at
right angles to the field. The total angle of rotation depends on the angle to the field
and the total number of electrons contained in a column along the ray path. As both
these quantities vary as the satellite passes over an observing station, a continuous
rotation of the plane of polarization occurs. The voltage induced in a dipole receiving
aerial therefore shows periodic fluctuations as shown in Fig. 1. Now if, due to the
motion of the satellite, the ray happens to pass through a cloud of increased electron
density, the Faraday rotation angle will suddenly increase. If the ray passes through
a region of decreased demsity, the rotation angle will decrease. Therefore, when the
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)RTHOGONAL DIPOLES

dipoles at right angles were used. The slow variations are due to Faraday rotation and are
or ‘ scintillations’ are in phase at the two aerials.

ionosphere contains irregularities, there should be a rapid ‘ flicker * of the plane of polari-
zation in addition to the rotation. When the wave is received on a dipole, this flicker in
angle would be converted to an amplitude fluctuation. Thus in principle, the Faraday
effect could cause amplitude scintillations, and it may be asked whether this effect might
not account for part or all of the amplitude fluctuations which are observed.

While this flicker phenomenon must occur, calculations show that it would be
extremely small in most practical cases (probably less than 1 degree), and would there-
fore make no appreciable contribution to the amplitude fluctuations. This can be con-
firmed experimentally by using two dipoles at right angles. If Faraday flicker were
appreciable, the signal on one dipole should decrease whenever the signal on the other
increases. On the other hand, true variations of amplitude of the downcoming wave
would have the same sign for both aerials. The records shown in Fig. 1 were obtained
using crossed dipoles, and it can be seen that there is close and detailed agreement
between the fast fluctuations. This shows that the Faraday effect cannot be important
as a cause of scintillations. '

We are justified, then, in supposing that the diffraction process outlined earlier is
the main cause of the amplitude fluctuations, and we shall now consider what can be
deduced from observations of these fluctuations. The objective is to find out as much
as possible about the irregularities which cause the effects. We wish to know, for
example, their size, shape and height above the ground, and whether they exist uni-
formly over a large region of the earth, oi are distributed in patches. Relatively simple
observations using a small number of radio receivers can give this type of information,
if the records are analysed by suitable statistical methods.

' Before we discuss these methods it is necessary to consider how the ‘size’ and
“shape ’ of the irregularities are to be specified. Since they are irregular, definitions of
a statistical type are needed. Further, we must keep the number of parameters to be
determined as small as possible, or we shall find that we have too many unknowns.
Considerations of this type, together with the known elongation along the earth’s
magnetic field, suggest that an ‘ average’ irregularity or ‘ blob’ may be taken to have
the form of an ellipsoid of revolution with its long axis along the field and with a
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variation of electron density along any radius of the form of a Gaussian error function.
The error function has the advantage that it contains only a single variable parameter,
the value of which specifies the ‘size’ of the irregularity. The use of this function
may perhaps be justified on the ground that any irregularity will tend to approximate
to this form after some diffusion has taken place.

We assume, then, that the excess electron density AN of a typical blob is given
by

r? S5
AN(r,s) = AN, exp[—m—w] ...(1)
where » and. s are a pair of cylindrical co-ordinates such that s is measured along the
local magnetic field direction and 7 perpendicular to the field. The quantity 7,/4/2
measures the distance transverse to the field at which AN falls to 1/e of its maximum
value AN,. Similarly, ar/y/2 measures the corresponding distance along the field.
The  axial ratio’ is therefore «, which is assumed to be greater than 1.

It can be shown (Ratcliffe, 1956) that if a large number of blobs of the above form
are distributed at random so as to build up an irregular medium, then this medium will
have an ‘ auto-correlation function’ py(r, s) given by

entr) =exp [ — 7% — L] - 2)

75 (arg)?

[The factors of 2 are introduced in (1) for convenience, so that they disappear in (2).]

S .
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\
) [/ =
e {tg!,‘:i & HFLT M .-3:!%::}.1.5:::%:?2::5:5
e I H e -‘.h’:l-iﬂ;j oA
h
9 1
0 1

Fig. 2 — A satellite at a height H travels with velocity V over a layer of irregularities at a height h.
STO represents a radio ray travelling from the satellite at S to a recciver at O. Irregularitics are
impressed on the wavefront near the point I
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With these definitions the problem of specifying the ‘size’ and ‘shape’ of the
irregularities is reduced to the determination of the value of 7, (the ‘size’ transverse
to the field) and « (the axial ratio). We now consider some possible observations
which enable these quantities to be found.

2. VARIATIONS WITH ZENITH ANGLE

As a satellite passes over an observing station, its zenith angle 0 is continually
changing (see Fig. 2). When 0 is large the thickness of the irregular layer intercepted
by the ray SIO from the satellite is increased. This leads to increased phase fluctuations
across the emerging wavefront. Also, when 0 is large theré is a greater distance IO for
amplitude fluctuations to build up as the wave travels to the receiver at O. For both
reasons the depth of the amiplitude scintillations would be expected to increase with
increasing zenith angle. Further, it may happen that for some value of 0 the ray SIO
is along the direction of the earth’s magnetic field. The wave then travels along the
“long axis’ of the ellipsoidal irregularities, and this produces the maxirnum possible
phase deviations. Especially strong scintillations would therefore be expected when-
ever the satellite is viewed in the direction of the magnetic field. This ‘ aspect-sensitive ’
effect will be more marked the greater the axial ratio «.

These effects can be worked out quantitatively (Briggs and Parkin, 1963) and
some of the results are shown in Fig. 3. Fig. 3(a) shows the variation of scintillation
depth with zenith angle in the magnetic meridian plane for observations of the proposed
Beacon Satellite S66 made at Adelaide: The peak at an angle of about 25 from® the

(a)

wn
I

£~
1

Ll
I

N

Normalized Scintillation Depth

90° 60° 30° 0° 30° o 90"
SOUTH Zenlth Angle NORTH

Fig. 3(a}, (bj and (c) — The zenith angle variation of scintillation depth in the magnetic meridian plane

for observations of a satellite at a height of 1000 km., when the layer of irregularities is at a height

of 300 km. The parameter T, is taken to be 1 km., and curves are plotted for different values of axial

ratio x. The frequency is 20 Mc/s. (a) Adelaide (dip angle = 667), (b) Calcutta (dip angle = 27°),
{c} Sonth India (dip angle = 0). The curves are normalized to the same value at the zenith.
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(b)

(8,4

R

)

Normalized Scintillation Depth

90° §0° 30° 0° 30° 60° 90°
0 {
Sl Zenith Angle N
Fig. 3(b)

zenith occurs when the radio wave travels along the direction of the magnetic field in
the ionosphere. Fig. 3(b) shows similar curves for Calcutta. Here the peak has moved
out to a much larger zenith-angle because of the smaller value of magnetic dip. The
combination of the peak and the normal zenith angle effect results in particularly large
values of scintillation depth when the satellite is far to the south. TFig 3(c) shows the
curves expected for an observing site in southern India, close to the magnetic equator.
Here, as would be expected, there is symmetry around the zenith. It would be useful
to verify these results by observations made at stations at different Jatitudes. So far,
the. only observations reporting such effects are those of Singleton and Lynch (1962)
made at Brisbane.

Of course, a satellite will not normally move in the plane of the magnetic meridian.
However, it is possible to select times when it crosses this plane, and it will do so at
different zenith angles on different occasions. By combining such results, a mean curve
can be obtained for comparison with theoretical curves like those of Fig. 3.

One method for determining the ‘ size ’ of the irregularities (7,) is to observe scintil-
lations on two frequencies simultaneously. Tor example, the S66 satellite will provide
signals on 20 and 40 Mc/s. The ratio of the scintillation depths depends mainly on 7,
as shown in Fig. 4, and is more or less independent of the angle to the magnetic field.
The variation shown in Fig. 4 can be obtained for a single transit of the satellite, and so
1, can be found by fitting the observed ratios to one of the curves.

3. DETERMINATION OF THE HEIGHT OF THE IRREGULARITIES

We assume that the irregularities are situated at a mean height of % and that the
thickness of the layer A% is small compared with % (Fig. 2). The problem now is to

/
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(c)
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Fig. 3(c)

determine /%, and if possible also A%, from observations made with a number of receivers
on the ground.

In one simple method the ray SIO is considered as an optical lever which is instan-
taneously ‘ pivoted’ at I within the irregular layer. The motion of the diffraction
pattern over the ground at O is due principally to rotation of this lever as the satellite S
moves, with smaller and usually negligible contributions from movements of the layer tself.

The wvelocity of the pattern arising in this way is given by ;

—h
W == ﬂ.v ...(3)
for a satellite moving with velocity V' near the zenith.

Frihagen and Troim (1960) have made use of this result. They arranged two
receivers at a known separation along the path of a satellite so that the diffraction
pattern moved parallel to the line joining the receivers. Following the Mitra method
(Mitra, 1949), they determined the time delay between the occurrence of a recognizable
signal ‘ shape ’ at the two receivers and deduced from it the drift velocity of the pattern.
This and a knowledge of the altitude and velocity of the satellite enabled them to find
the height of the irregular region which they put at about 350 km.

In the analysis of their records Frihagen and Troim found a considerable spread in
the values deduced for pattern velocity on any one occasion. Such a spread is due, in
the main, to the finite thickness of the irregular layer, the higher parts of the layer
contributing to the ground pattern, a structure which moves with a greater speed than
that due to the lower parts. The differential form

HV

Av = ——_(m)—zAh .4
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Fig. 4 — The ratio of the scintillation -depth on 20 Mc/s. to the scintillation depth on 40 Mc/s. as &
function of zenith angle, when the source is a satellite at a height of 1000 km. The irregularities are
assumed to be at 300 km., but the curves are not very sensitive to the height assumed
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derived from the previous equation, permits an estimate of the layer thickness A% to be
made when the spread in pattern velocity Av is known.

A rigorous treatment of these methods is to be found in the correlation analysis of
Briggs, Phillips and Shinn (1950) and Phillips and Spencer- (1955). There well-defined
measures of the mean pattern velocity and the velocity spread are determined accurately
from the cross-correlation functions of records taken at three spaced receiving points.
James (1962) has related these measures theoretically to the height and thickness of the
irregular region. His results have not yet been applied in practice.

4, INFORMATION OBTAINED BY FOURIER METHODS

We have seen in Section 2 that the parameters 7, and « can be determined from the
behaviour of the scintillation depth with zenith angle. It is reasonable to expect, in a
different approach to the evaluation of these parameters, that the diffraction image on
the ground will have spatial dimensions closely related to those of the irregularities.
A brief consideration of the diffraction process will outline this relationship.

It will be necessary to define two more correlation functions. The two-dimensional
correlation function of the phase variation which appears across a wavefront emerging
from the irregular region will be denoted by g ¢(z, 7). At the radio frequencies which
concern us the phase deviation at any point is proportional to the integrated electron
density along the ray through that point. It follows that the phase fluctuations re-
present ‘ projections ’ of the electron density irregularities onto the wavefront and in the
same sense the two-dimensional function p d’(E-*’ n) is the projection of the three-dimen-
sional function py(r, s) defined in Section 1. py(#, #) has elliptical contours whose shape
and dimensions are directly related to the corresponding characteristics of ox(r, $)
(Briggs and Parkin, 1963).

At the ground we define the correlation function p4(g, 7) which describes the spatial
behaviour of the two-dimensional pattern of signal amplitude. The ‘shape’ of this
function is that of a typical structure in the amplitude pattern.

Fourier transformation of the functions 94,(2, n) and py(¢, m) gives the power
spectra of the variations they describe. Wg(vy, v,) and W (v, v,) are respectively
the spatial power spectra of the emerging phase pattern and the ground amplitude
pattern.

The relationship between py(€, 1) and its “image’ ¢ 4(£, m) depends upon the extent
to which any sinusoidal phase component is reproduced as a corresponding ‘amplitude
component when the wave has travelled to the ground.

This aspect of diffraction theory has been treated by Bowhill (1961). For a screen
which produces a shallow irregular fluctuation of phase in a wave, the two power spectra
are related by

W a(vy, va) = Wy, va) Sinz[IIzk(v§+vg)] ...(5)

where z is the distance from the diffracting screen to the plane in which the amplitude
pattern is examined.

Application of this result to scattering by a screen of the typeé defined by our
function py(7, s) leads to an analytic expression for p4(%, n) which can be written in terms
of 7, and «. Without quoting the expression we can say that the characteristic
contour (at the 1/e level) of the function p,(%, 7) is approximately elliptical. Its spatial
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dimensions do not differ by more than a factor of two from those of the corresponding
contour of py(g, 7).

In practice P4(E, 1) is determined from records of signal amplitude taken at spaced
receivers. In the correlation analysis of Briggs, Phillips and Shinn (1950), three such
records are used. The assumption is made that p,(¥, n) has elliptical contours and the
semi-minor axis, the axial ratio and the orientation of the major axis of the charac-
teristic ellipse are found. The first two of these parameters we know to be related to
7o and «. The last, the orientation of the axis, will give information on the field aligned
nature of the irregularities.

The possibility of another interesting experiment arises from a consideration of
Eq. (5). The function

E\, 2, vy, v5) = sin? [II2A(v] +-v2)] ...(6)

which modifies the power spectrum of the phase fluctuations has circular symmetry and
distinctive zeroes at radii given by

@23V = (nja)2, n=0,1,2 (7

From a determination of P4(¢, n) over the ground using a large number of receivers,
it should be possible by Fourier transformation to obtain enough information to fix the
zeroes of (A, 2, v, v;). The use of Eq. (7) will then provide a value of z correspond-
ing to the height of the irregular region. This should of course agree with the value
determined by the method of Section 3.

The results which have been given in this section are only applicable to diffraction
by a thin phase screen. The theoretical problem of diffraction by a thick irregular screen
has been considered by Tatarski (1961) and Budden (1964).

5. OTHER METHODS

The irregular regions in the ionosphere which cause scintillations often seem to be
of limited horizontal extent. Satellite methods are particularly suitable for locating
localized ‘ patches ’ of irregularities. It is also possible to determine the sizes and heights
of the patches. In this type of observation, the time of omnset and cessation of scintil-
lation is observed at several stations separated by a few hundred kilometres. Then by
triangulation it is possible to locate the positions in space of the ‘ edges ’ of the irregular
regions.

The results of observations of this type seem to show that there is a well-defined
boundary at about 54° magnetic latitude, such that irregularities always exist to the
poleward side of the boundary and are continuous. On the equatorial side of the
boundary, however, irregularities tend to occur in discrete regions with north-south
dimensions of a few hundred kilometres, and east-west dimensions probably in excess
of 1000 km. (Munro, 1963). The latter results are in agreement with the observed sizes
of patches of irregularities which cause spread-IF echoes (Briggs, 1958).

CONCLUSION

A number of methods have been described which enable useful information about
ionospheric irregularities to be obtained by observing the scintillations of radio signa ls
received from satellites. From the experimeéntal point of view the methods are simple,
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as they require no more than a number of radio receivers and chart or film recorders.
It would be useful to carry out such observations at many places on the earth.

= b el e
i b W= OO

(=Y
(=2}
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