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SUMIVLARY.

I have used. the term talgebraic method.sr in a strict

sense and have only consj-dered alge'bras and, their
(algebraically) j-rred.ucible representations on vector. spaces

which are not end.oyred. with a topology. My aim has been to

d.ecide whether such method-s are sufficient for a mathematical

description of quantum mechanics.

Algebraic methods have two fund.amental lj.mitatiorìsr
(r) In an ir.reducible representation of an algebra on an

infinite d.i.mensional vector space over the cornplex fie1d.¡ j-t

is not necessarily true that the otrl-y operators which commute

wÌth al-l- the operators of the representation are multipJ-es of

the identity"

!O) There is no anal-ogue of the rrotation to principal. axest

theorem used. in Hllbert spaces.

These limitations d.ictated- my plan of attack, which consists

of the following etages.

(i) Investigate a mathematical theory of guantum rnechanics in

which each quantum system is characterised by its algebra of

observables.

(ii) Investj-gate eigenvalue problems whieh can be posed and.

solved algebraically.

The first stage occupÍes only the first two chapters.

(t ) Chapter 1 contains the arguments, based upon

physics, which support the postulate that an assoclative algebra

with involution, denoted AI, should. be associated with each

guantum system,

(Z) In chapter 2 T have shown that the algebra A* is

all that must be known. All questions concerning states of



the systent and the expectation values of its observables cän

be formulatecl in terms of A* itsel-f "

The second. stage, concerned vrith eigenval,ue problems

posed j-n terms of a pair of Lj.e algebras K < L and. various

ramifications, occupies the rest of the thesis.

3) D-iagona]. operators are rational funetions of tire

invariants of K. If X is an irreducible f,-mocLule which is
completel.y reducible into K-mod.ulesr then a diagonal operator

on X has a dia.gonal rnatrix and. its spectrum is determined by

the decomposition of X. I have employed the characterlstj.i:

id-entltj.es for the classical Lie algebras, derivecl by Br.acken

and Green (lgll ) an¿ Green (lgll), to pnesent a systematic

stud-y of diagonal operators.

(t+) Cod.ijrsonal operators are polynomials j.n the

elements of L with coefficients which are dÍagonal- operators,

When L = st(zrc), cod.iagonal operators on X have cod-iagonal

matrices. l. have deve1oped a spectral theory for codiagonal

operators jn this case and have ind.icated possible extensions

to other cases. The algebraic theony shows that the set of

Banach spaee completions of X can be d.ivided. into a finite

number of classes such that the spectrum of a codiagonal

operator is constant within each c1ass.

(f) Green anct Triffet (1g69) aeveloped a practical

method for calculating the spectra of perturbed forms of the

special function operators. I have shown that the propet'

mathematical- setting for th.eir work is algebraie.

(6) Chapter 6 contains three examples. The first two

exhj.bit the hypergeometric and Fuchsian differential operators

as diagonal and cod.iagonal operators respecti-veIyr so the

spectral theory of chapters 3, 4 and. 5 can be applled to these



operators. the last example j.s concerned. with the

decompositien of' an irred-ucible mod.ure for the pojncané Lie

algebra into irreducible mod-ul-es fon the Lorentz r,ie algebra"

It highlights the d"ifferences between the algebraie and.

analytic approaches to this problem.

Q) Chapten 7 contains a novel application of
algebraic method.s. To find. the analytic continuation of the

solutions of an ord-j-nary d.ifferential equatiorr with holomorphlc

coefficients, it is only neeessary to solve arr algebtêiç
elgenvalue problem.

(B) the final chapten is concerned with Wickts

eguation and provid"es an example in rel.ativistic guantum

mechanics where it is both burd-ensome and- unnecessary to treat
rel-ative coordinates and. momenta as observables. I have shown

that this is so by provlng that the Wick rotation can be

Justified. rigorously for this model_.
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CHAPTER 1 " TNTRODTJCTTON.

Suantum mechanics and. the theo::y of linear o ors

on Hilbert spaees are so intet'woven that it is d.ifficul-t to

imagine one without the other, Neverthelessr historically

their fusion is almost an accident. At the time when physicists

were struggl-ing toward-s quantum mechanicsr Hilbertr Hellinger

and. others happened to be cleveloping the theory of linear

lntegral equations and hernitian forms in an infinite nunber

of variab]es. Born knew of their work; conseguently' he

lncluded a chapter on the eigenvalues of hermitian forns in

the definj tive paper on guantum mechanicsr published in

collaboration with lleisenberg and Jorclan (1926), Von }treumann

(lglZ) developed. this materia] into a mathematically rigorous

framework for quantum mechanicsr but cast the algebraie

methods of matrlx mechanies into disrepute by showing (lgZg)

that infinlte matrices eould not ad-eguately represent unbound-ed-

operators on a Hilbent space.

Recent years have seen a revival of algebraic ideas

for guantum mechanics anil the publication of many systematic

studies of algebraic nethods¡ prompted. in eaeh case by the

successful- application of klnematical t"r¿ ayttamical- symmetry

groups to quantum mechanics. Notable amongst these publications

are the following:

(") the papers by Bied.enharn (lgll) and hie collaborators on

the construction of the irred-ucible representatlons of the semi-

simple Lie groups;

(¡) the papers of Moshinsky UgAA) and coll-aborators on the

application of algebraic method.s to rnany body problems;

(") Miller's (fge8) text which intertwines the theory of Lie
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algebras with that of the specÍa1 functions and his more recent

attempts witlr Kalnins (1975) to classify separabl-e partial

differentia-|. equations algebrai.cally"

More important than the symmetry groups have been thej.r Lie

algebras; in fact, only f or the sylnmetries of space ancl- time

d.oee the group appear to have any phygical significance" Lie

algebras, cornmutation rules and- representations are nowadays

lndispensable tools of the mathematical physlcist. Ho\¡rever ¡

like the matrix methods of Born, Heisenberg and- Jord.an, m.any of

the algebraic technigues are regarded. with suspicion and often

are only considered to be formall-y correct. In order to cl-aim

that work involving Lie algebras and. representations is rigorous

and. relevant to guantum mechanicsr an author muet ensure that

the operators of the representatlon are properly defined- orl â

Ililbert space ancl that the representation of the Lie algebra

can be integrated to a unitary representation of the simply

connected- T,1e group. Only rarely do mathematical physicists

perforn these steps to the satisfaction of a functional ana-Lyst.

Also common are papers in which the authors proceed. with formal

calcuÌationse €ven though their nesults clearly demand a

framework more general than the Hil-bert space theory. Here T

could mention the paper by Chakrabartj-r Levy-Nahas and- Seneor

?gAA) on the d-ecomposition of representations of the Poincaré

group into representatlons of the Lorentz group; they a1low

rself-ad.joj.ntr operators to have complex ei-genvalües. I think

there are two reasons why mathematical physicists have confidence

in such calculations and- show so little regard' for the fine

points of analysis.

(f ) The results obtained. by forrnal calculations are robviouslyr
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correct. Furthermore¡ experience has shown that all the
rusefulf formulae can be obtained j-n this way.

(Z) It is comnonly bel-j-eved, that any dr-rbious step of a formal
calculation can be justified by recourse to the general resul-ts

on linear operators on Ililbert spacee-.

In shortr the::e is a general confjd-ence that formal teclrnig¡es

are correct, that they can be preclsely fornurated- rvithin a

Ililbert space framework, and. that therein l-ies thei.r justific-
ati on.

T hol-d a d"ifferent view, based_ upon experience y¿ith

the second of the above points. r l¡elieve that the al-gebnaic

structure of quantum mechanics should stand al-one, rigorous]yr
and. that the topol-ogical structu::e, if ind.eed one is need-ed",

should be add.ed in a manner compatible with the algebraic
structure. Thusr I would reverse the usual order which begins

with the presentation of a Hilúert space of states and end,s

with the derivation of a certain algebra of sel-f-ad joint

operators. Sinilarly, the algebraic method.s employed in
guantun mechanics shoul-d not depend for their justification

upon von Neumannts theory. I hope to show that this view is
tenable.

Horvever, there is an important question whi.ch rnust

be answered- immediately. VIIliy shoul-d. quantum mechanics rest
upon an al-gebraic basis? Thls question is especially important

because von Neumannrs formulation of non-relativistj-c quantunr

mechanics is so succeesful. I can offer four reasons, the

first of which i.s sub jective.

(t) Algebraic rnethods are both el-egant and

constructive. Furthermore, the confidence that formal- calcul.-

ations can be justifled within von }Teumarurts frarnework is naive
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becauser even when a Justj-fieation can be founcL, the sÍmplicity

of the algebraic calculatj.onsr theÍr principal assetr is

destroyed" in the process.

(Z) Von Neumann postulated that the pure states of

a guantum system shoul-d- comprise a separable líilbert space and

that the o'bservables shoul-ri. be the self-adjoint oper.ators on

the space. Any two separable I{j-l-bert spaces are unitarily

equivalent and. so too are the sel-f-ad jolnt operators definecl

upon them. Thus, the states of any quantun system whatsoever

coul-d- be identifi.ed. with the sguare-integrable functions on the

real line, Al-ternatively, the lvave function of a hydrogerr atom

could- be expanded. in a series of wave functions for the

plutoniurn nucleusl Von Neumannts postulates are too general.

3) I will give another argument with the same

conclusion. Although a separable HiÌbert space has a.n

uncountable (Hamel-) basis, 1t is the closure of an irrner product

space of countabl-e <i.imension. Thus, the set of limit polnts¡

far from being a tsmallt set, adcls an uncountable number of

d.imensions. The important guestion is whether or not these

extra d.imensions are need,ed. fon physics. Equivalentlyr is there

an experiment which can d.istinguish between the states

T and-

mIoo

,ll

n= O n=O

where m is a large integer, lgnJ l" a complete orthonormal set

and. the serles converges? 0f course the ans\¡/er j-s rro. Howevert

in the mathematical theory the limit points are neede<L to ensure

that self-ad.joint operators can be reduced. to d.iagonal form. f
will later argue that this is so beeause we acLhere to a primitive

form of the correspondence principle and protest ignorance of

the true algebra of observables.

CQ
n.n ,!^CØn'n
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(4) Despite the generality of von T{eumannrs

pos'bulatesr they are often too rÍgid. An exanple will help

illustrate this point. Trnagine & systern of two particles of

equal mass whose momenta are P, and Pr. lVhen the partlcles åre

wid.ely separated-, p, and pn are observables and so must be

self-ad joint operatoFs n Consequently¡

P=P,.-paan.dP= P, P,

are al-so self-adjoint. There is little doubt that P shoul-c1

have real expectation values because P generates translations

between spatially separated" observers. However, p is

effectively un.observabl-e and. the¡e are many occasions j-n

relativistic quantum mechanies in which lt 1s more rtatural to

allov¡ the rel-ative energy to have imaginary values" The 6ol-u-tion

of TVick's (tg¡t+) eguatj.crn and- Euclid-ean fielcr theory are just

two instances. Another example which d.emonstrates tile

inflexibility of von Neumannfs axioms occurs in the theory of

Regge po1es. \[r|ren the angular momentum I assumes complex

values, the correspond.ing representations of S0(l) are not

unitary and the original Hilbert space is no longer approprl-ate.

It seems to me that von Neumannr s postulate that the

etates should comprise a Hilbert space serves iust one purpose:

the space of states is so large that it is always possibl-e to

find an orthonormal basis in which a given self-adjoint operator

1s diagonal. In bound- state probl-ems thls operator would. be the

Hamiltonian H; in scattering problems it would be the scattering

kernel, G V in common notatj.on. Once H has been recluced- to a
o

d.iagonal matrix, a sma11 number of opera.tors can be ldentifiedr

namely, operators which commute with H and- which acccunt for the

degeneracy of its eigenvalìles¡ and. operators which map vectors
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from one degenerate nultiplet to another. These are the

operators which seem important for physj-csr and, all the observ-

ables can be constructed. from thern" The nest of the sel_f-

adjoint operators are irrelevant for the physical systen under

discussion. For exampJ-er the magnetic moment operator of the

pl-utoniurn nucleus and. the Hamiltonian operator for hycLrogen

act upon the same ÏIllbert spacel Sjmil_ar rema::ks apply to
scattering processesâ von Neumann had. to choose such a large

class of robservablesr so1e1y to ensure that the true

observables could be constructed. within this claes. Thus, the

Hil-bert space and- the self-adjoint operators defined. upon it
provide a tuniverset within which the true states and- observables

must be found-.

These arguments indicate the alternative to r¡on

Neurnannrs theory and the principal difflculty that wi-11 be

encountered. in i.ts formulation.

The alternative j-s to postulate for each quantum

system its true algebra of observables, Thj.s is not such a

radical suggestion and. is certainly no more ar.bitrary than the

postulate which assigns a potential function or Lagrangian to

each system. In fact, from the point of view of the experimenter

this postulate could. be d.ecid.el-y advantageous. In his
d.iscussion of spectrum gener.ating algebrâs¡ Dothan (lglO)

remarked. that the constants which determine the structure of

such an algebra are directly related. to the observable spectr.u¡l

of statesr arid so woulcl. be an excel-l-ent ehoice for the set of

parameters to be d.etermined. from experiments. In contrast¡

the potential is empirically a poorly defined quantity, for it

is well knov¿n that the results of calculations with nuclear
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mod.els are insensitive to rather large variations in the

potent iaf.

llhis alternative p::esents a serious d.ifficulty.
lbe true algebra of observables¡ denoteci. A, is finitely
generated. and so its d-imension j-s cou-ntably infinite. If X is
a vector space which carries atl (algebraically) irred-ucible

representation of A, then the dimension of X will also be

countabl-e. Thus, if t is an observable, but is not represented.

by a d,iagonal matrix on X, then t mi.ght not have any eigen-

vectors in X. In particular, it will not always be possible

to find a nevr basis for X which d.iagonal-ises the matrÍx of tr,

even when this matrix is hermitian. Hence, if I accept the

alternative to von Neumannts theory, then I must also develop

a theory of eigenvalue problems on X vrhich is algebraic and.

d.oes not depend- upon a topology defined on X.

lfy aim 1s to investigate precisely these problems¡

the algebraic framework of quantum mechanics and algebraic

eigenvalue problêflsr and the plan of rny attack is roughly as

f ol-1ows.

(t) The rest of this intnod.uction wl1l be devoted. to ldentify-

ing a suitable candidate for the algebra A of observabl-es ii:r

guanturn mechanics, both relativistic and non-relativistic.

(Z) In chapter 2 I will assume that the algebra A has been

postulated and- I will investigate the relation between states

and- representaticns of A. My aim wil-I be to associate a left

ideal in A with each stater so the stud.y of the states of A

can be reduced- to a stud.y of the structure of A itself. Fon

this work I have borrowecl the Gelrfand--Naimark-Segal construc-

tion from the theory of C*-aJgebras, wj.th one important
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exception, I have not end.ovsed A with a topology.

3) Chapters 1, 4, 5 and. 6 a.re concerrled" v¡ith eigenvalue

problens which can be posed and- sol-ved al3ebraically. r have

consid.ered two types, 4fgg_qqal and. codjaF{c¡nal- operators, each

defined. in terms of a Lie algebra L and" a subalgebra K" For

d"iagonal- operators the problem of spectral ana.ì_ysis is
essentially that of decomposing an irred-ucible representation
of L into irred.uci.ble representations of K. Fot: cod_iagonal

operators the situation is far more compl-icated.

(h) Chapter 7 contains a novel- application of algebraic method.s.

r have argued. that j.t is only necessary to solve an alg-*_raiq

eigenvalue problem in ord-er to find the analytj c continuation

of a solution of an ordinary differential equation with
hoI-omorphic coefficients. This result 1s true quite generally¡

but it is only for the special functions of nathematical physics

that all- the steps can be completed. Accord"ing1yr T have

restricted. my d j-scussion to the special functions and., in
particular, to the hypergeometric function.
(¡) Chapter B, although the last in the thesis¡ is the source

of several id.eas. It is coneerned. lvj,th Wickts equation and.

proves that the Wick rotation is eo::rect, so it is of interest

for its own sake. The proof employs the monodromy group of'

Heunt s eguation and it was this proof which prompted. the ideas

of chapter 7. In ad-dition, Wickrs model is an instructive

exanpl-e vrhere it is both burdensome and unnecessary to treat

r.elatjve four-momenta as self-adjoin'b operators. This work has

already been published (n.M. OtBrien (lglS)).
trYhich algebras are appropriate for quantum mechanics?

ïn the last fifteen years d.ozens of suggestions have been mad.e:
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C'o-algebras r the Lie algebras of the Poi ncaré gror-lp, SO (4, t ) ,

SO(h'2), su(¡), U(6) x U(6) ' ' . I coulcl uot hope to survev

all these possibilities; Ìndeecl it l'¡ould- be irrel-eva.nt if I

did., for I nust seek a general cla,ss,of a.lgebras suitable for

quantum mechanícs and- not the algel¡ras need.ed. f or parti cular

problems. Consc¡guently I will divicle al.l the suggestions i.nto

three broad categories arrd exl,ract from each the poirrts that I

th.inl< are essential.
(f ) Von NeuÍranrr, Jord-an and- Vfigner (tg¡l+) suggested"

that the observables of a quantum system should" comprise a rea.l-

Jord.an a1gebra¡ âs ind-eecl d-o the sel-f-adjoint operators on a

Hilbert space, a.nd that the task of quantum mechanics sboulcl

be to fj.nd. its representatj-olfs, Tn this pioneerlng v¿ork, they

only consid-ered f inite dimensional- algebras of observablesr so

guestions of topology Tvere irrelevant. The modern version of

thelr work, promoted by Iìaag and T(astler (t164)r llfts this

restriction by demand.ing tþat the observables be the self-

adjoirit elements of a C*-a1.gebra, a topologica)- algebra of

uncountabl-y j-nfinite dimension.

From the point of view of arr algebraistr c{'-algebras

aggravate the difficultj.es of quantum mechanies; the observabl-es

are still too numerous ancl all- the useful observabl-esr such as

the llamiltonian and. momentumr âF€ excÌucled- because they are

unbounded. IIowever, there is on,e very beautifu] id-ea in the
iF

theory of C'"-algebras that I will borrow and- devel-op algebra:i-c*

a1ly j.n the next chapter" This idea is that every state of -uhe

qua.ntum mechanical system determines a representation of A via

a canonical prescription, and conversely. Thus, greater

flexibiì.ity is possible. tr'or exampler scattering states and
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bound- states can d.etermine entirely diffe::ent representa.tj,ons

of A.

(Z) The second suggestion is very elegant, but

dogged. u¿ith diffj-cul-tj,es. It is the suggeotion that the

symmetry of bhe space-time manifold may be coupl-ed with an

rj.nternalt syurmetry of the dynarnics in such a wây that the mass

(o* energy) spectrum is split and- accords with experjrnent'

Great hope was he1d. for this theory j.n the mjd-sixties v¿hen 1t

was thougirt that the Poincaré group and SU(¡) could- be comb.ined

into a s1ng1-e Lj-e group, whose mu-Ltiplets would accommoclate the

elementary particles, Hovrever, li{cGl-inn (t 964) and- OtRaif eartaigh

(lg6n) precipitated- a flood of 'no-go' theorens which for'bad.e

anything but trivial- couplings of these groups. Hegerfeld.t

and Ilennig (gAA) frave reviewed this whole field and have

conclud.ed that¡ âlthough the tno-got theorems d-o not absolutely

forbid. an explanation of mass sp1-itting with only finite

d.imensional- Lie groupsr they do make it seem imprclbable.

(:) Lastly, there is the proposal by Barut and-

Kleinert (lg6l) tnat the observables should generate a

tdynamical groupt, or the equivalent proposal by Dothan, Gel-l-

Ir{ann and. Ne'eman (1965) that the observables should lie in a

tspectrum generating algebrar. The idea here is that the states

of a guantum system at rest should span an irreflucible

representation of Some non-compact Lie group. The states for

a moving system are to be obtained- by boosts.

The first proposal is too general, but the second-

ancL third. are too rigid,, for they assert that finite dimen-

sional T,ie alge'trras al-one w111 suffice for a description of

qu.antum mechanics. The tno-got theorems show that this cannot

be so¡ However, it is clear from the original papers that the
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authors knew the lj.mitations of Lie algebras. For example,

Dothan (lglO) founcL that unless he generalised- the d.efinition

of stmcture constants, that is to sãVr unl-ess he abanrlonecl

the Lie algebra for a more general structuren the only system

with a flnite d.imensional spectrum generating algebra was a

set of harmonic oscillators.

There are three features common to all theor,ies of

this type.

(t) A fund-amental ro.l-e is played. by the Lie group

G^ of transformations between the coordinate frames of
-t(
eguivalent observers. Gn depend.s upon the model assumed for.

the empty unj-verse, and. for the l{ewtonian, Minkolvskj- and

cle Sitter moclels would- be the Galilei group, the Poincaré

group and SO(4r1), respeetivel-y. In each case Q* is a real¡

linear Lie group. To each el-ement in the real T-,ie algebra GO

of G,., there is an analogous variable in the cl.assical theory'
-.t(

Furthermore¡ apar:t from the electric charge, the elements of

Gn and combinations of them seem to be the only observables

to which the eorrespondence principle must apply. T wil.l

retur,n to this point l-ater.

(Z) For a system eonsi.sting of Just one free

elementary particler GO and its universal enveloping alp¡ebra,

denoted U(G*), are sufficient. To describe. interacting or

composite systems 1t is neeessary to introd.uce a further set

of variables, which I will d.enote \r and- its real-r âssociat-

ive enveloping algebra U (Kn) . I will assume that \ is a finite

set simply because that is the case in rnany examples, but it is

conceivable that K* could. be countabÌy infinite. lypicai

elements of K* might be the variables eorresponding to discrete
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t::ans:f ormations r such as par:ity, or the generators of SU (5) .

(¡) u(Gn) and U(Kn) must be coupl,ecl 'try ldentities,

that ls, u(Gn) and. u(Kn) must be embedcled in a larger realr

associative aleebra /ç such that certain specified. id,entiti.es

are satisfied.. These id-entities could take any formr trut

probably vrould be of Lj.e type

[g.rkr] = otri|j + nL^nkn, oL^L c Rr g¿ t GR, k^ u KR ,

of generallsed. Lie type in which the structure constants wottld"

be pol-ynonial-s j.n the invariants of U(G*) and. tl(X*)' or would-

involve anticommutators instead of conmutators"

Henceforth A will denote the conplexification of Apr

â,=An+iAR,

where the Sum i.s a direct Sum of rea] vector spaces and. the

product in A is to be d"efined. in the obvious way.

Flato anci- Sternheimer (lg6l) have pointed. out that

any mass formul-a can be obtained |f the envelopi.ng algebras of

the 1,ie algebras of the Polncaré group and SU(l) are coupled

by suitably chosen ictentities. They concl-ud.ed that frlrifinite

structuresrr are too arbitrary to be of any use. Their criti-cism

is justified if KR and" the identities which couple U(Gn) and

U(h) are postulated soIely to obtaln the correct mass formula

and without the support of phyêical reasons. llowever¡ I have

in mind. a different approach, based upon an idea that can be

found- in the thesis by Dr. A" J. Bracken (lglO) and also in the

work of' 'Iakabayasi (t168). Tfith each elenentary component of

the quant.,;n system must be associated a list of d.¡mamj-cal-

variables. Furthermore, certain algebrai.c identities must be

valicl within the associative a1-gebra D generated by the set of

all dynamical variables. Both the dynanical variables and the
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identities are ciraracteristj.c of the system being studied and

must be postulated. for that systen" For exampler Bracken

investigated a model in which the baryons r¡¿ere constructed. from
t three spin f obJects', each of whj,ch had as its dynamical

variabl-es a pair of four-vector operators

aÀ (k) (k)
t b

and. a set of Dirac matrices

7¡ ( k) r
L

^

1 Sk =3
oÉÀ=3

o

The identities satisfied. were

["^r k) ,b rt(L) ] = t6kLe¡, ,

["¡,'k) rvr(L) | = 2Bnu for k = 1,

and al l- other commutators were zero. The algebras U (Gn) and"

U (I{*) must be exhibited. as subalgebras of D and the id.entities

which couple U(Gn) and. U(Kn) are preeieely those inherited from

D. I hasten to add that the d"ynamleal variables need- not

themselves be obsei,vabler onl-y certain elements of U(GO) and-

u(Kn) are observable.

One property in particular seems essential for Ap;

it nust be possible to 1abel the basis vectors in any

irreduci.ble representation of \ bV the eigenval.ues of a ru]^!-g

number of elements of AR.

The points raised und-er (1) above require fu::ther

comnentr ârld I should. like to begin with an example.

In the Hamiltonian forrnulation of non-relativistic
quantum mechanicsr the interaction of two partlcles in a region

free of external force field-s is governed by the Ï{amiltonian
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ïn

P = D'
L'

Define

+P¿

L=Qx!

M-Íì¡*IIì¿

rf=9xP

t p

cL=9t

(.rgr - m,yr)/(nt + ne),

a (r,g t+mzgz)/ (rnr+mz), I.z ,

,

, I = 1 + gr + g¿ ,

r III = mlmr/(m1 + me) a

In these formulae t þLt 9t, tîLt s¿ respectively d'enote the

momentlunr coord-inate¡ IIÌâss and- spj'n of the ith particle'

the usual waYt

Þ2H=r
ñ

+ v(q, j)2g
2n

+

The operators IT, E, Q, J and. ì,rt satisfy the commutation relations

of the Lie algebra of a central extension of the Galilei group
t.

(ievy-Le¡l-ond. (lg6l)) and. generate the transfornations between

the coorclinate frames of d-lfferent inertial observers' The

invariants of thls Lie algebna alle

h ='-H - !' =9n n V(q.ri),
2\Í 2m

(,r - Q " E)2,

and- M - il¡ * III¿ '

Thusr &fr experiment whlch d.etermines the energy and angular

momentum of a bound state of the two particles in fact

d.etermines the irreducible representation of the Gal-ilei algebra

spanned. by the observab,les which describe the motion of the

2
J
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centre of mass. Alternativel-yr the energy and- angular

monentum of the bouncl state can be expressed entirely in terms

of the variables describing the motion of the centre of mass:

h=H-lt,
ñ

L = J - g x P .

It follows that H, P, Q, { and l'{ are always observables.

On the other hand., there is no neecl to maintajn

that the relative momentum p and. the relative coondinate g are

observables when the panticles are interacting, because these

variables cannot be measured.. T base thi.s assertion on the

fol-lowing angument. Any neasurement takes a finite time to

perform. Furthermorer the test probes of the apparatus occupy

a finite volume of Space. These facts are accountecl for 1n

classieal physics by assuming that the outcome of a measurement

is the average value of the measured quantity over the space-

time dur.ation of the experiment. Vlrtually by clefj.nition, the

measured. quantities in classical physics are constants of the

motion during the observation. Consider novl the relaiive

momentun p. g d-oes not commute with the Hamiltonian Il because

of the presence of the potentlal. Hence

g = i[H,p] + o.

How can a momentun tithich is varying with tlmer very rapidly

accord.ing to a semi-classical model, be measured? The

d.uration of the observation would- have to be so short that the

energy required. would. d-isintegrate the system. I think that B

eannot be measured. except when V = O and. the particl-es are

free. Similarty, å + O and- q is neither an observable nor a

measurable quantit;. no*".r"l, the average of P or q over a
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long peri.od. of tirne is measurable because it ls a eonstant of

the nlotion. The electron clouds described by chemists

corresponrl to this time average.

This observation is important. It shows that the

only observables in thie example (apart from e.l-ectric charge)

which have analogues in the classical theory are those

constructed. from H, E, tr, Q and. M. Hencer it is only to these

observabl-es that the correspond.ence principle need be applied.

ITow is the correspondence princj-pIe to be

incorporated. in the theory? Professor Green suggested that it

should be d.one as f oI1ows. Suppose that gr, ' t8, t* a

basis fon GO. Each of these quantities has a classical

counterpart and is observable. V/ith the product Er* j in the

classical theory should be associated the observable

i(øre, + *inr)

in the quantum theoryr with g,g,8,. should be associatecl
LJK

xsj + + aÞ fÎõ

The general rule is ihat

g g g

s .e, g.
J KL

crc'cf
õ.b.Òr

JLKf 
(ereren + B¿B

I
T

1

mT'

+ úc' øö,Þ.o rK L J
.).
LJk

g+

gg
LL

m2

g t
L L L L'Ir(t) T(e) t¡n)

where the sum is to be taken over all permutations of

[1, 2t . . . t mJ. The reason behlnd this proposal is that

the canonical equations of motionr

Ip
òL
unjj J

p
J

where

Iqj ,Hl = iq

È_L_
u å.r

,H] = i ,
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Ij òL qand. I{=-L+ dq.
J

,j

can be proved in a Lagrangian formulation of quantun mecharrics

if the Lagrangian L(q.rä.) is written i-n symmetrised f orm, but
JJ

not otherwise. 'Ihe observables are the completely symmetric

polynomial functions of Er, ' tgn.

there 1s a further cond-ition to be imposed. upon

observablesr narnely, their expectation val-ues must be real
(Oy"on(1962)), so it is neeessary to isol-ate those

representations of A* in which this condj tion is satisfied.

One class of such representatiorrsr which wil"l prove to be

sufficient, consl.sts of those which provid.e a representation

of A and. an involution * d.efined on A, wlth respeet to which

the observables are self-ad joint. The ori.gln of * is explalned

in the next few paragraphs.

Gn is a real Lie algebra. Constrt.rct its

complexification

G=G*+iGn,

and. d.efine

cr: G-+G
g+1g'r* g-ig' , Btg' e G*.

cr 1s an automorphism of G anil can be unlquély extended to an

automorphism of the envelopi-ng algebra of G, denoted. u(e).

(varadarajan (1 974a) ). Note that dz = 1

automorphj-sm of G is the map

P: G--+ G

gr_>-g .

. The principal anti-

It also can be uniquely extended to u(c) and. satj.sfies P2 = 1.
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(Varad-ara jan (t gZ4¡) ). cx and. B comrnute and thelr compos j.tion

is an involution on u(G), that is, an involutorial antl-

automorphism of U (c) . Def j.ne

+ : u(c)- u(c)

g r--> go. = (.r.É) (e).

With Just one further assumption, based. on physical

princlples, * is unigue. To see thls, suppose the oppositer

that T is another involution on U(e). Then

ã. = Ê.y

is an automorphism of G, and- ã2 = 1 because É and- y cornmute.

The real forms of G are cl.asslfled. by the involutive

automorphisms of G. Thusr the assertion of physics that the

partieular real form G* Benerates the transformations between

equivalent observers forces a = ã and so
*

f or ar1 g in u(c). 
Y(e) = g

U(C) is only a subalgebra of the complex associative

algebr.a

A=AR+iAR.

However, I will assume that * can be extend.ed to A. I will

also extend Professor Greenrg assertion and consid.er the

observables of the quantum system characterised by A to be the

symmetrised. polynom1als in the self-ad-joint generators of A.

there is a freedom in this extension of * to Ar but it is

precisely the type of freedom I have been seekÍng. For

example, certain elements of U(f) will be self-ad.joint in some

circumstances but skew-adjoi-nt in others.

Note also that q can be assigned a phyeical meaning.

In relativistic quantun mechanics cr provid.es a representation
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of cÌìarge conjugationr but in n.on-rel"ativistic quantum

mechanics cx, represents particle creation and. annihil-ation.

All these considerations are eummarisecl in the

f ol1.owing postulate.

Pos tulate.

With a gÍven quantum system can be associated a

finitely generated, complexr assoeiative algebra A. A contains

a subalgebra isomorphic to tl(G). The involution * on tl(G) can

be extended- to A and. the observabl.es are the symmetrised

polynonials j.n the self-ad joi.nt generators of A. ///
It is from this poirrt that the next chapter

continuesr but before I concJude this intnoduction I would

like to speculate upon the importairce of the ldea of continulty

for guantum mechanicg.

I have not assumed that the algebra of observables

is end"owed. with a topology¡ and possi.bly that immediately

d.ooms my work to failure. Nevertheless, to my knowledge¡

nobod.y has ever inquired how much (ot how fittl-e) of quantum

mechanics depend.s in an essential way upon the topological

assumptions. That is the task I have set myself. the polnt

at which the algebraic structures become unacceptable to the

reader is then the point at which a notion. of continuity

becomes essential.

Suppose that I could establieh a theory of quanturn

mechani cs without ever imposing a topol-ogy on the algebra of

observables. Wou]d. the theory so constructed. have any relevance

to physics? Eguivalentlyr how important is the notion of

continuity for quantum physics? There seem to be four quite

unrelated. uses for continuitY.
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(t ) Quantu.m theor'5' pred.icts the expectation values of

observables. It is unlikel-y that the equatj.ons which cle'berrnirre

the expectation values y¡j11 be able tc¡ be solveC" exactlyn so

apprîoximate values must be found. with a computer. Thus, a

metrie topology will- be need.ecl to provid.e an estimate of the

errors in the calcul-ated. expectation val,ues. Ilovlev-er, I do

not think that the topology need-eci. for this pu-rpose should

arise from quantum theory itself. For exampJ-e, Schrödinger's

eguatÍon for a wave fu.nction is a differential- equation with

associatecl bound.ary cond.itions, dictated by the requirement

of sguare-integrability" Its solutj.ons can be approximated.

with functions from a variety of topological functj.on spaces.

Hil-bert space may be very convenient, but it is not the only

candidate.

, (Z) The second- apptication of the notion of

continuity is more fund-amental. Any experiment is limited.

in accuracy, Thusr ârÌ experiment to discover the state þ of

a system will- merely isolate a rsmallt set of sta.tes, which

hopefully contains þ" The set of states so deiermined- coulcl

be interpretect as an open nei5¡hbourhood of þ. Thus, it

could be argued that subjecting a quantum system to a number

of observations automatically imposes a topology on the set

of states. 0f course, to obtaj.n a predictive theory it

woul-d. be necessary to impose mathematical-ly a topology on the

set of states¡ and later to argue that the t opent sets

d.etermined. by "*p""r*"nts woutd- be open in this topology.

(Haag and. I(astler (t 164) ).
There is another way to incorporate the limj-ted-

resolution of an experiment in the theory.

An observable r is a propertY of à mi cr oseopic



21 .

quantum system. Its expectation val-ue <r> represents a

measurabl-e property of the macroscot¡i c system conprlised by

the measuring appar,atus jn interactjon with the quan'ium systern"

X{ore preciselyr (r> is the average, over an ensemble of
j.rÌentica1 experimentsr of thjs property of the combined.

system" The mapping which takes each observa'ble r into its

expectation value <r> is the state of the quantum system.

Thusr the interaction between the micros:cc.:pic quanturn sJrstem

and. the macroscopic measuring apparatus cletermj.nes the state

of the quantum system" Prior to measurement, the state is

incleterminate "

Tn the mathematical theory, the calculation of' the

expectation value usually arnounts to forming a trace¡
(r) = trace (p"),

where p is call-eci. the density rnatrix. Ifencer the linç.gl

operator p represents the complex interaction between the

quanturn system anr1 the measuring apparatus" I elaim that the

limited resolution of the observation will be represented in

the mathematical theory if p has a fini'ue dimenslonal- range.

There is also a technical advantage to be gained- from such a

choice: trace (p") is al.ways wel-l d-efined because the

endomorphisrns with finite range fornl à two-sided ideal in the

ring of all endomorphisms of the vecior space.

ß) I be]ieve that the notion of causality is

intimately related to the continuity of scatterj.ng amplitudes

as funetj.ons of the space-tÍme or monentum variables. For

example, if a macroscopic particle were to d-isappear from one

polnt and- simultaneously reappear at anotherr the process

would Seem unreal-, for it wou}d. be both discontjnuous and,
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acausal. ragol-nitzer and stapp ?geg) rrave j.nves'bigated tj.rj.s

rnatter withj.n the framework of arral-ytic S-matrj,x theory" Ry

a series of ingenious arÉ¡r,tments, they conclucled. that a natural
def initj-on of lnac_rgsç_eIr.L<: causali.ty applied. to mlcrosco-pl_c

parti-c1es implied- ar:a1yticity of the scatterin¿4 amplitudes

in the FhJ¡sical, rep,ion" Thus, it appears tha'b conti.nuity,

and- hence a topolog¡r of sorne sort, nÍ"ght be necessar.y to

preserve the causal relation l¡etvreen events.

However, if the ilinkov¡ski structure of' space-time

fails at clistances of about 1O-t s centirnetres or l-ess, then

there is no reason to insist that microscopic particl-es should

satisfy any form of causality. Only macroscopic particles
neecl satisfy the principle of causality formul-ated- by

IagolniLzer and- Stappr and for these the scattering amp-l-:itucles

must be analytic.
(4) One cha.racteristic of a good. physici.st,

experimenta1 or theoretical-, is that he is abl-e to qu1ckly

red.uce a compJ-icated. situation to one which is simple, b¡r

ignoring forces whose effects are slight. Thj.s skill is

based. upon the assunption that small forces prod.uce sraall-

effects, and hence upon an intuitj.ve notion of continuity.

The reply to this ob jecti.on is that qr.rantum rnechanjcs

is essentially d.iscontinuous and an intuitive understancli.ng of'

the sub ject is an impossibility, because two iclentical q'uantum

systems in the same prepared- initial state can evc;fve to

different final states.

I am going to ad.opt a rather Quixotic attitucl-e and

choose to ignore the myriad, of pointers which shovr that

continuity and analytical methods are extremely useful, if not

essential¡ in the developrnent of quantu-m mechanics. I vrill-



d"evelop,

structure

without any use of

of observables and

23"

continui'by, a mathe-.matical

states that seems acceptable for

the purposes of quantum theory.

Note

lüost chapters have an appendix in which are gathereo

most of the theorer¡s and proof's. Hopefully¡ this has mad-e

the text nore read.able.
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CI]AIT]IR 2. },{ATT]EI,/iATIOA.T, ST]RUCl]URFI Otr QI]Âi$1II]}I tr{FJCT]ANICS "

l¡r the last chapter f postulatect that the

observables of a qr;auturn system could. be identif ied, vri.th the

symmetric tensors j.n en algebra A. Furthernore¡ ân involution
* coul.d- be d,efined on.A, and. v¡1th respect to *. the observables

were sel-f-ad.joint. I want to contj-nue the investiga.tion of

the mathematical- structure of qr-rantum mechanics based upon

this postulate with the aim of formulatl.ng all questions

concerning states ancl expectatlon values jn terms of the

algebra of observables.

However, before f start, f must establish two

conventions concerning terminol-og¡r . Tf A is an asEìociative

algebra, with id.entity efement, over a fjel-d tr' whose

characteristic is zero, I will simply refer to A as an algebra

over l'; that A ie associative and has an id-entity element wil-1

be implicit. I will dlstinguish non-associatjve algebras

lvith air adjective, such as Lie or Jordan, unless the meani.ng

is clear from the text. Secondfy, 1f A is an algebra

(associative, Lie¡ Jord-an¡ ' ) over a field Fr the

statement that tX is an A-modul-erwil1 al-ways impty that X is

a vector space over the sqn[e f j el-d F.

It is al-so rr¡ell to enumera.te the essential eler¡ents

in any theory of quantun mechanics.

Postul-ate 1. The mathematieal d.escription of any quan'r,um

systern must contain the following ob jects:

(t) a set B of observable guantities;

(Z) a set S of states of the system;

ß) a napping r,vhich assigns to each state It in S and each

observable b in B a real number <$rb>r whlch is to be

interpreted as the expectation val-ue of b vrhen the system j-s
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in the state þ;

(t+) a nule v¡hi.ch relates the observabl-es and states assigned

by different observers.

I have borrowed this postulate from Emch (1972) 
"

Ilov¿ever, he does not includ.e (4). The rure mentioned in (4)

contains aIl- the d.ynamical information about the quantum

system, for it relates the expectation values measured by

observers in the future to those measured by an observer in
the present.

l'his postulate d.efines the task; B, S and. the

mappings in (Z) and. (l+) must be id"entif ied. In the f ollorvi_ng

sections f will examine in turn each of these constituents of
quantum theory.

Observables.

The steps leadlng to the postulate of the last
chapter were these.

(1 ) Take the real Lie algebra G* of the symmetry group G* of

the empty universe.

(Z) Construct the complexification of G*:

G=G*+iGR.

3) Equip G with an lnvolution *¡

* : G--> G

g+ig't+ -B+-ig' , EsE' e GO.

Note that the elements of G which are sel-f'-ad.joint with
respect to thls involution have the form

iS t E eGR.

This j.s the origin of the mysterious i which lurks in quantum

mechanlcal formulae.
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(t+) Embed. U(C) in a compl-ex algebra A, whlch is finitel.y
generated^, and" extend. the involutj-on 'F from U(O) to A. This

extension need, not be unique; any arbitrariness is advantageous

because it increases the flexibility of the theory. The

algebra A and the embedding of U(e) must be postulated- fon

each quanturn sJStem"

(¡) Select a set of self-ad-joint generators of A which includes

a basis for GR. Denote this set

Iu b¡.
2

L

.rb
n

and construct the real subspace B of A epanned by the

symnetri sed. el-ernents

T
1Í

!
n ,bb b I Íì = 1t?tI

a L L'Ir(t) 'Ir ( ¿) rr(n)

where the summation 1s over all permutations of 11r2r, . .rmJ.

Postulate 2. The observables of the quantum systen

are the elements of B.

Note that every irredueibte B-module can be

embedd.ed uniquely in an irredueible A-moduler arrd that every

irred.ucibl-e A-mod.ule remains irreducible when consid-ered. as a
B-mod,ule. This ls so because the set [b, rbrr' ' . Or l

generates A. Conseguently, now that I have ldentified. B¡ I
can focus my attention on A.

It is worth emphaslsing that the eomposition of

the involution v.< wj.th P, the principal anti-automorphisn of

U(O), has a physical interpretation. It provides a

representation of charge conjugation in relativistic quantum

mechanies and particle creation ancl an¡rihilation in non-

relativi.stic quantum mechanics. In view of the CPî theorem¡

*B also represents the product of the parity and time-reversal
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operati orrs.

. Further requirements on A are necessaryr but these

are best introd-uced. through a discussion of the set of states.

I must pause to introd-uce a notational device.

ï\ihenever the existence of the involution lB on A is important

in an argumentr f will d.enote the algebra by A*; otherwiser I

will write just A.

Definition. X* is an .A.*-modu]-e 1f each of the

follor¡¡ing cond"itions holds.
*

(t ) X' is an A-mod.ule.
J.

(z) X' is an inner prod.uct space.

3) For all vectors x and- x' in X* and r in Ar
JÉ

(" -'-*rx') 
= (x.r nx') ,

is the inner product o. Xt'. ///

Thus,
*.I will extend- my notational- deviee to A and A -modules.

*)tif X is an A -mod.ule and I choose to neglect the inner
rkproduct on X , I wil-I write simply X.

are equivalent A*-mod.uleso

///

where (, )

* *
lef i.ni tion. X andY

written xo = Yo, if :

(t) X and Y are eqr,rivalent A-moclul-es¡ also written X ¡r Y;

(e) the nap r : X -=+ Y which establishes the above equivalence

eatisfies
(*r*') = (*rt') , for al-1 x and x' irt Xo,

where the inner prod.uct on the left is in Y* and. that on the
tright is in X .

S-]izl.æ,.

The proeess of observation removes the ind.etermirracy

from the state of the quantum system and., by repetition in an

experimental- ensemble, assigns to each observable j-ts
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expectation valueo îherefone, it is appropriate that each

state ø in s should. be represented as a mappi.ng of B into the

neal nunbersr in which the image of each observabre is its
expectation value in the state þz

ø : B-->R

b F-+ <þtb>.

ïtlhatever other" properties these real-varued functions on B

might have, it is reasonable to expect that they furfll the

fol-l-owing reguirements.

(t) The set of al-l- s'tates shourd rseparate the pointsr of B.

Thusr if a and b are two obsenvables vrhich have id.entical_

expectation val_ues in every state ót

1þtÐ.) = <þrb> for all ø in S,

then it shoul-cL follov¡ that a = b.
(z) Each state / shourd. be a real--va1ued. lineart function on B,

so that

<Ør Xb > = À<øtb > ¡ f or all real Àt

and <Sta+b2 = <þra) + 1þtb> .

(ft is remarkable that linear functions sufficee because each

state represents the compl-icated interaction between the

microseopic guantum system and. the macroscopic measuring

apparatus, )

3) The id-entity of B corresponds roughly to the proposition

that the quanturn slrstem exists. Thus,

<þt1> = 1 , for all / in S,

seems reasonable. Certainly it is harmless.

(4) Final1y, if b is any observable, the expectation value of
6z should be positive:

<þtb'> 
= 

O for all b i.n B.

The set of all real-vaIued. linear functions on B
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separates the points of B. The problem j.s whether the subsc-rt

of l-inear functions which sat1sfy conditions (l) anij. (4) atso

has this property. fn general it wil] n:t ano further
postuÌates are neeessary.

Let S denote the set of compJ-ex-va1ued, linear
functions on A v¡hich satisfy the forlowing conditions:
(o) <þri> = 1;
/.\ *\D/ <þra > = <þta> i

(") <þ.,a*a> à o.

rt is easy to see that ever4y such function, when restricted
to B' has the properties (z), (z) and (U) required. of a state.
Laten r will i<lentify the set s of'states wÍth a subset or ã,
but for the moment I wi1l reserve that d_ecislon.

If A 1s not a semisimple algebr"ar so that its
(Jacobson) rad"ical is a proper ideal of A, uou^ Ë itsel-f woulcl

not be large enough to separate the points of A. However, the

radical of A contains all those el-ements which are representecl

by zero in every irred"ucible representation of A. Such

elements are effectively unobservable and so have no relevance

for physics. The natural- remedy f or" this diff icurty is to
insistr âs a postulate, that A shoul-d be semieimple.

Unfortunately that assumption is not quite strong
enoughr because it only ensures that for any r in A there 1s

at least one irred.ucible representation of A in which the

representative of r is non-zero. r need. a simllar property

for irreducible representations of A*, and- so r must proceed

as f o1-l-ows.

The *-rad.ical of Ao i" the ideal-

a n*
*

,

Def ini'b i on.

X
["1. € A¡ aX = oJ
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ïuhere the intersection is taken over all- Írneduclble A*-
modules. If Qo = o, Ao is *:q_a-!qls!llp1e . ///

*
A contains aIl. those el.ements of A that are represented_ by

zero in every irred.ucible Almodule.
Postrllate ¡. The algebra A* must be *-semisimple.

ït is obvious that a *-sernis1rnp1.e algebra Ís
semisi.mple. Jacobson (lgSe) gi.ves sufficient con<i.itions for
the converse to be true; A should be a prlmitive ring with
non-zero socle. However, these conditions â.re too restnictive
and, will not always be satisfied. in praetice.

Postulate 3 disposes of the unobservable

observables and" ensures that Ë separatee the points of'A"
This 1s proved in d-etail- in theorem 1 of the appendix, but
the outline of the proof is qui-te elementary. Because A* is
a *-semisimple algebra¡ for any non-zero erement r 1n A* it
is possible to find an A*-modure x* and. a vector x 1n x*
such that

(x,rx) + o.

The formula

1Stà) = (xrax)/("rx), for all a in A,

defines a l-inear funetion in 3 which satisfies
<þtr> + O ,

^t*so S separates the points of A .
Postulate 3 is redundant when A is the universal

enveloping algebra of a complex Lle algebra L,

L = h + il,pr

and. the involution on A is d.efined by
tr: L-->L

1+i1'F-) -1+11' where 1r1' 6 h.
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Ilarish-Chandra (lgSo) rtas shown that the finite dimerrsional_

representations of L separate the points or u(r.), so that in
thls case A and B are certainl-y semisimpJ_e. However, this
d.oes not imply that the finite di¡nensional representations of

r!L have the same property" Tn fact, unless T,* is a compact

real- T,ie al-gebra, Lo does not have e.ny finite d-imensional

representations. lrTevertheless, the set of al_l_ L*-mod.uÌes ¡

incl-ud-lng the infinite dimensional ones, does separate the
points of IÌ(r,). This foll-ows from the Gel'fand-Raikov (lgl+s)

theorem for unitary irred.ucible representations of 1ocall_y

compact groups. tlnfortunately r do not have an algebralc
proof of this result.

Eveny irreduci'b1e representation of an algebra A
determines by a canonicaf prescription a maxirnal left icleal of
Ar and eonversely. r want to develop this result in the next
sectionr and. later to use it to formulate questions concerning
the states and expeetation values of the quantum system in
terms of the left ideals of its argebra of observables.

ati ,th C ofT
fn this sectlon A can d.enote any algebra oveï, a

field" F of characteristic zero.

An A-mod.ule X is cycl_ic 1f it contains a vector x

such that

X = Ax.

The vector x is caIled. a cyql:Lç__ttectoq.

If M is any (proper) feft id.ea1 in A, then a well
defined cyclic A-module can be assoeiated wlth M as follows.
Construct the factor veetor space

xNI = þ/\¡
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and equip X* with the product

a.(r + M) = ar + M for all ârr € A.

With this product, XM is a (left) A-rnodu).e ancl is
if and only if Iú is a maximal_ left ld.eal. XM is
canonicall-v ass ociated. with lf.

Nov¡ suppose that X 1s any cyclic A-mod.ule with
cyclic vector x. Define

M=[m€Al nx=O].
M fs a left ideal in A and from it may be constructecj. the A-

module

xl¡ = A/Yl '

X and- XOO are eguivalent A-modu1es"

These results are well_ known and can be found., for
example, i-n the text by varaclara jan (1974.). rn contrast, the

results which follow are, to my knovrled.p¡e¡ quJ_te t)êwo

It ls important to know when two left ideals M and

N lead. via the eanonical constructlon to eguivalent A-modu.ì-es.

I have found. that an equivalence r.elation ¡¿ can be d.efi.ned" on

the set of left id.eals of A, wlthout reference to the

associated. A-mod.ules¡ and in ord.er that x, and- x, should- be

eguivalent A-rnodul-es it 1s both necessary and sufficient that
Mâ'N.

Define a relation a{ on the set of left ideals of A

as fol-Iows. M is ln relation to N, written M s N, if elements

u and. v can be found" in A such that the following cond-itlons

are satisfied.:

Mu S N r üv=1 (mod M) ,

Nv S M r vu=1 (mod. N) .

Lernma 2 of the append.ix shows that ¡t is an eguivalence

irreducibl-e

the A-modul-e
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relation on the set of l-eft j-deaJ-s of A. Theorern J establishes

that XM o Xw if and only if M 4r N.

It is a d.ifficult task to find" all the inequivalent,

irred"ucible¡ cyclic A-moci.ules. It is al-so d.lfficult to find-

the set of a11 maximal ]-eft i.d-eals of A and to clivlde this

set into equivalence classes with respect to ! " However, in

some instances the second task 1s easier than the fi-nst. The

lmport of the foregoi.ng; resul-ts is that the two tasks are

equivalent.

If M and N are distinct naximal left ideal.s of A,

then

P=MRN

is afso a left ideal of Ar but is not maximal. Vilhrat is the

relation between the A-nodules XMr X* and X"? The ansvrer is

very simple and satisfying:

XpoXM@XN.

Theorem 5 contains an even stnonger resultr âIEo proved. in the

appendix.

Theorem 5. Suppose that [M, rMr, ' I i" a counta'ble

family of d.istinct maximal- feft ideal-s of A. Set

and construct the A-modules

¡o = A/\Io and. x

Then ///

Gel I f and.-Naimark-Sesal (cwS) Construction.

I want to be able to identify pure states with

certain maximal left id.eals of A. The key to thj-s

yo = I *,

A/\tl
LL

a

¡çoselX...t
L
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id-entiflcation is the GNS construction whlch associates with
A'each ø in S a certain left ideal of A.

For each þ in Ë, define

[m 6 Al <þ,m'T, = oJ.

M, is a left id-ea1 in A. The factor spaceI
xø = A/Mø

becomes a cyclic A-.mod.u1e with the product

a.(r + ['fø) = ar + Lll6 for all a and r in A.

the function / can be used to d-efine an inner product on X,

as f ol-Ìows:

(t + lvlrta + tø) = <Prb*a¡ for all arb e A.

Thus r 1þ¡à)=(l+M ¡à+M
øø

* .* *With this inner prod-uct, X,{ is a cyclÍc A -modul-e. X, is9-9 *canonically associated with d. FinalIy, X.{ is an irred"ucible'9
rf

A -module if and only if M-. is a naximal- left ideal of A.I
All these assertions are proved. in the append.ix.

Iet ñ denote the collection of cyclic A*-noclules.

Each þ in S d.eterrnines' a cyclic A*-module Xrtt in ñ. ConverselSr,I
*^tN

each X in R d.etermines a positive linear function þ in S by

1þtã) = (rrux)/(rr*), a € At

where x is the cyclic vector of X*. I want to show that ñ an¿

S can be identified, eguivalently, that I can d.efine a map

p, S ..*ñ
*ø+xø

which is bi- jective. However¡ firstly I must cheek that i¿ is

well d-ef ined. This cannot be so unless the chain

X*--+ d + x,*'9
closes upon itself. Thus, the function þt d.efined. in terms of

tø

)
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the i-nner product on x*, must lead via the canonical

eonstruction to the same A*-mod.ure. This 1s not the case.

Hoivever, theorem 11 of ilre appendix sholvs that x* and. x,*
a

a-re equivalent A*-mod.ulesr BO r can pr.oceed" as follows.
Firstly, r can divide fi. into d-is joj.nt cl-asses of equ j.valent

*
A -moclules, second.ry, r can clefine an equivalence relatlon
c¿ on. ß:

þ È ú if' and only if X
ø

The map p is then wel]. d-efined" ancl bi jectiveu prov.id.ed, r
id.entify equivalent elements in ñ an¿ Ë" rn loose terms¡

the existence of the bi jectior' p alrows rne to identify ñ and"

êua

When d.o two linear functions / and ,tl in Ë lead

via the canonical construction to equivalent A*-modules?

vrith the help of the results of the last sectlon on the

connection between left ideal-s of A and. A:nodu.les, r have

been abl-e to establish the following beautiful resul-t.
Defi.nition Let

* ,f

"(t '

a

(!
u lø 6gl M 1s a maximal ideal in AJ.

o þ

Theotem 1 6. Suppose þ and, (t are elements of S .
**¡Ëo

*ø and X, are equivalent A'-modul_es if and. only if there

exist elements u and v in A such that
1þtà) = </ru*au>,

*1þtà) = <úrv âv)r for all a 6 A.

This theorem provides an aLternative d.efinition of the

equivalence relation 1l on the set S .
o

///
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and,The situation is as f oll_ows. Suppoee that M

are rnaxinal- left id.eal-s of A. I have shown that

* s
X nx ,tl e+ þ vø

l, tt

l)
M

,l)

x
ø v

e=+ M r¿M
,l)

a
ø

I would. like to complete the dÍagram and. show that

"ø 
o*þ

or equivalently that

tø o*þ:à þoþ o

For an arbitrary complex algebra with invorution, this result
is rrot true. It fails because the commuting algebra of an

irred,ucible A-mod.ul-e X can contain rnore than just the scalar

multiples of the id,entity end.omorphism of X. In other words¡

it fails because Schurrs lemma does not holcl 1n the strong

form familj.ar from the theory of flnite dimensj.onal A-noclules.

This can be eìeen in the proof of theorem 17" Howeverr for the

algebras needed in quan.tum mechanics, it is possible to prove

an even strongen result, that

*þ = IvlX 

-à 
ø = X ¡

with just one further assurnption concerning A that ls extremely

weak and invariably satisfled. ln practice. . The argumerrt

proceeds as fol]ows. .

As A-modules t Xø and X" are identical beeause
*

Mø = MXr but as A -modules they possibly will not be so

because the inner product on X** 1s deflned by f whereas theI
lnner produet on Xr* is defined by X. The Lle aì-gebra G* has

a compact, real subal-gebra, namely,
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Kn = *o(lrR),

and so

u(r) <u(o) <A,
where K =- I(R + 1K*

denotes the complexification of K*. Every irrecìucible K*-
module is finite dimensional.

*red.ucible K -modu1e, and. as s
(lemma 16), so

X
þ

*X* can be regard.ed as a.
v

u-ch 1s conpleteJ-y recì.uc1ble

* *
= @ X.jr

r;*xx =?*r '

,

where each X.* ls an irreducible K*-module.
J

eompletely red.ucible,

*X" is also

Since X, = X.,r the two decornposltions into K-nodu_l-es can be9X
pJ-aced in correspond"ence. F\¡rthermore, thene is eesentiall_y

only one leay in which an inner prod.uct can be defined. on a

fin--L.Û: di$engional K-module in ord-er to obtain a K*-module¡

so it should not be surprising that þ = X fol1ovys"

There is an obvious flaw in this angument. Because
*_**þ is cornpì.eteIy red-ueible as a K--mod.u1e, every submod-ule

has a complementary submod.ule. I{ov¡ever, there is no guarantee
**that *ø eontains any irreducibLe K'-mod,ules. Alternativeiyr

*ùx,' might not satisfy the d-escending chaj.n condition on its K*-I
submod.ules. This difficulty can be overeome in two ways.

Firstlyr it is posslble to demand that A should- contaj-n a finÍte
set of elements which separate the basis of every irreducj-ble
A -modure; such a set is usually carled a set of labelling
operatons. This requlrement is very reasonable and is always
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satisfied- in practice. ÌIowever, I witl- foll-ov¡ the seconcL path,

because it j s sli¡¡htly more generalr ârlcl insist that x,tn can be
ç)

decomposed, into irretlucible K*-mod,u-les. This restri.ct:i on is
onl-y apparente because in p::actice X** would. be cot:rstructcct by-ç)
glueing together irreducible KnF-modul-es.

-EggtJfatç-ko x . 
{'. ry consi cLered as --*nø o ó 6 Sr when consjcLered as a K'-

module, is a countabl-e direct sum of ir¡.educible K*-mcd.ulee;,

each of which i-s necessaril-y finite dimelrsi.onal.

It is possible that this postu-ìate is redurclant; I hope t¡at
thi-s is the case. ]¡/ith the help of'postu-late 14 the announcecl

resul-t is provecl in theorem 17 
"

the chain is compl.ete"

<:=+ ø ,l)

X
t,

Thj.s resul-t j.s of fundamental importance because it shows that

the l-eft id.eal M, unic¿uely determines çó and the expectation

values of the observabl-es when the quantum system is in the

state þ. thus, o.uestions concerning states ancl expectation

val-ues ca¡t be i.nterpreted as guestions about the structure of

the algebra of c¡bservables.

lhere is one extra Ii-nk vyhich would round out the

theoryr afthough for practical purposes this link j.s not

essentia]. Given an ideal M ancl a l.ist of its properties, it
would be an advantage to be abl-e to decid.e whether or not ArlM

eould carry a *-repnesentation of A. Equivalently, what j_s the

condition on the feft id.eals of A which di.stinguishes tlrose of
the form M,, þ e Sf This is an unsol-ved problem, worthy ofç'
further research. I refer to Warner (lg7Z).

". i 
"'*

/U rr
nç,t

$
M. e l,{.þv
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At last I am in a position to id.entif'y the state,s of

the quantum syotem. Let S denote the convex hul1 of Sot þ e S

if and onl-y if

ø- f ¡, þ ,
L L

where þ

sati sfy

, ,þø ,

L- 1

are elements of S and the coefficients
o

^
¿
ta

2 n

À lot T
L

S is a subset or Ë beca.use Ë is also convex.

Postula-te 5. The s'!-,ate.s of the guantum system are the

points of S. the Bure_$'La:Les are the points of So.

. The set of states has a number of important

properties¡ Ìisted below but proved. in theorem 18 in the

appendix.

(t) S sepa:rates the points of A.

(Z) the points of So uru the extreme points of Sn

3) If ö t ' ' ' ,ó are distinct elements of S and.', 'n o

^
ìot I

L

1t

then

where the sum is a d.lrect Bum of A*-nodu1es.

In the usual version of quarrtum mechanicsr an

irreducible representation of the algebra of'observables 1s

always (unwittingly) chosen. Each observable is represented

by a self-adjolnt operaton on an inner-prod-uct spaee X. Each

state É is represented. by a vecton x, 1n X, The expectation

L L

^L
À.ó.'

L'Loø

***roo 
? 

*t, '

I
L

t



value of observable r in state þ is calculated from

1þtr> = (xfrrxO,).

Every vector of X is cyclicr because X is inred,ucible,

veetor x.,. which represents a state ,lt is the image of x
ul

some el-enent u in the al-gebra of observables:

xp=ux

1þtY) = (x

=(x

þ'

t'=*t)

¿+o.

t,

so the

uncler

1r p.
L

d.enotes the

Thus,

þ

{Ê

ru rux
I' )

= <þrvo*o, ,

and. so ,lt E þ. It follows that the states ernployed. in the

oniginal version of guantum mechanics comprise a slngle

equivalence class with reapect to s in So"

The comparison in the last paragraph is not quite

correct¡ because conventional guantum mechanics uses a Hifbert

space and. not merely an inner-prod.uct space. The inaccuraey

is unavoid.able because I have not endo,¡¡ed either A or S with a

topol-ogy.

Each impure state Ó is a generalisation of a d.ensity

matrix. To see thisr suppose that

þ* In.ø
L LL

¿

, À ìO' À = 1tT
L

LL

where each ø is a pure state. Now
L

15. tà) =' (*¿

where x. is the cyclie vector (t+t¡
L

rax.)r
L

, ) in x,o. Thus¡9L' 9L

d.enotes the orthogonal projection onto x.

representation afforded by X^*, then
,L

L
and. 1f z'
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<þ râ) = tr"ace (oror(u)).
L

d is then represented. by a d.ensity matrix p on X

p T
L

Lo
LL

t,'

ancl <ø tã) = trace (p o (")).

Note that p is the weighted srlm of a finite number of

projections and therefore has a f inlte d.j-mensional range.

Al. !erl_1g t_t_y e _ SU gge s t i c,TìÊ "

The formation of X* fnon the id.eal M is a well
deflned constr"uctive proced,ure. Tf I could identify dlrectly
those maximal ideals of A which lead via the canorrical

constructicln to A*-mod.ules, the lvhol-e proceciure woul-d. be

constructive, Unfortunately I eannot, so T must consid.er some

alternatives.
Firetlyr there is the d-irect approach. Families of

irreducible A-mod-ules can be constnucted. when A is the

enveloping algebra of a Lle algebra or a simple generalisation

of such an algebra. Essential to this construction is a finite
set of elements of A which separate the basis in every

irreducibl-e A-modul-e, ttrat is, a set of labelling operators.

The existence of such a set for representatj-ons of a semj.simple

compa.ct Lie algebra has been investigated by Bied.enharn (lg6l)

and by Gruber and OtRaifeartaigh (tg64)r but I an not sure

that their resulte hold for infinlte dimensi.onal¡ al-gebraically

ir¡educible representations of A. tr'rorn the family of

representations eonsiructed., those which aleo provide a

representation of the involution on A can be selected by

inspec ti on,
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Another interesting suggestionr mad.e b)' Professor

Green., is that the emphasis shoul-d be shifted from maximal to

mlnimal l-eft ideals of A. Suppose that the algebra A is
isomorphj.c to the complete ring of endomorphisms of a vector

sBace X. Let prJ d.enote the matrix whose only non-zero element

is equal to one and occurs in the ith *o* and Jth colunn.

Define tnace p. . = d. . ..LJ LJ

Let t'j = AP¿,A

be the two-sid,ed ideal in A generated by prj *rJ is a minimal

ideal, (Jacobson(1951c)). Note that

PtjPkt = t¡nPr,'

An arbitrary st,ate can be represented by the d"ensity matrix

€Ctp

p

ILrj

lo

p p rPi.j Lj

,

Lj

where
LL I

L

L
p I ,

L

and the sum is finite" The expectation value of an observable

r in this state is
(r) = trace (pr).

The trace is always well defined. beeause p has only a flnite
number of non-zero elements in any row or column. The nunber

p.. is the probability that the eystem will be found 1n the
LL

pure state p. ... LL

The snag in this argument is the supposition thab A

has rninimal- ideals. ff A is the enveloping algebra of a Lie

algébra, then, according to Jacobson (19>6a), A need. not be

primitive nor need. it have minimal left icj.ealsr and these are



precisely the corrcLi.tions tha t lnust be satisf iecl"

isornorphic to a densc'r ring of tr.ansf or,nations.

assumpti.on tliat A is bhe errvel.oping algeb::a of a

must be refaxeci- or maxirnal_ icLeals mus.b be used.

43"

if A is to Ì¡e

Either the

Lj e alge'bra

Re-l ation l'retl¡een 0bs cl'vers.

Âtl obser.'ver perceives space and. time as a contj-nuum
j.n which a]1 maeroscopic ob jects are embed-ded.. ìl¿ith cl.ocks

and l"aser bearns he is able to char.t arìy smal_l_ portion of th€

unj.verse. F'rom his atlas, consistlng of' aÌr his charts, he

can d,eeid.e LÌpon the geometry of the space-time continuun.

The coor"d:Lnates establ j shed tly an observer only

label- macroscopic objects¡ such as other obeervers and

experimental apparatus. Tt has long been accepted_ as a

principle of quantum meehanics that a quantum parti.cle carrnot

be assignecl a d-efinite position. More preciselyn a quantum

particle on1.¡r þss a clete¡minate position when the particle
interacts with a d.etector"r arid even then the rcoordiiratest

of 'r,lìe particle are rea.Lly those of the d,etector" rn short,
coord.inates onl,y have meaning in quantum theory when they are

used- to fabel observers and their measuring apparatus.

There seem to be only three reasonabl_e models for
the entlp-tg universe. These ar.e the Nev¡tonia,n, Mj-nkowslci and

de sitter mod-els. lvith each is associated. a symmetry group

$fi; respectj-veIy, the Galj-1ean group, the L'oincaré group and-

SO(hr1). (ft is interesting to note that only the Lie algebrar

of a central extension of the Galilean group contains

coordinates and- momenta¡ elements rvhich satisfy
p d ] = o.)

observers are

tt p ,l [p.,q. ]LJto [q. rq.LJJ LJL

The principJ-e of relativity asserts that two
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equlvalentr in the sense that they should formul-ate the sane

l-aws of dynamics¡ if their coordjnate axes are related. one to
another by a transformation tt'r gn. A Ìnore preeise formulation
is as fol-lows.

suppose that o' is an observer whose coorcì.inate axes are
obtained- fnom those of observer o by a transfonmation g
Both 0 and. o' conduet in their labonatories exper,iments

id-entical. ctruantum systems. rf o assigns the state (,, io
system and. measures an ohsenvable r¡ whereas o' assigns
and. measures t.', then

1n Êp.

on

the

I

<þrr> - 1þ' ,T'>
must hold if o and o' are to be equivalent observers.

The mathematieal formulation of the princlpre of
relativity is triviar. Each erement o" Ên induees a

transformation on the algebra of observables and, simul-taneously¡

a eontravariant transformation on its dual spaeer so that the

expectation val-ues ane maj-ntained. For example, in the usual
formulation of guantum mechanics, the transformatj-on g between

the coord.inate frames of O and_ O' induces

rr->r = ll l'Ugg
*

Iø'-tlOQ r---¡ g

,
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where u", is unitary, so it follows triviall_)r that
Ò

(ø'rr'o') = (orro).
If 0 is able to measure a certain observable r of the quanturn

system, then so should o'. rf this were not sor then o and

o' could. never be equivarent observers, Thusr all_ equivalent
observers must use the same algebra A* of observabres to
d.escribe a given quantum system. However, there is no need

to d.emand- that o ancl o' shou-rcl use the same basis for A*. All
that is necessary 1s that the transformation relating the1r
bases should be either an automorphism or anti-automorphisrn

*of A . Of these poËsi.bilj.ties I w11] only consi<i-er. the first.
Let ng: A-+A

denote the automorphism "f; corresponding to g.

The contravariant transformation of the states is
constructed as foll-ows. A is a vector space over c and the

states of A form a subspace of its cLual spaee A'. The

transpose of ,g j-s the map

tu A'-è A,

ú ,n neú A+c
â r---.-> <útrUa).

Thus ¡ <Ü tø.fa> foral.la€4.

Lemma 19 establ-ishes that r', is an automonphism of the vector
9

space S of states. Its inverse , (ng,¡ -l , is the contravarlant

transformation of the set of states]
Postul-ate 6. Aut (,qo), the group of automorph.isms of

1ßA 3 must carry a representation of e*:

9p -+ 
,o,ut (Ao)

gèT^.
èt

,n;t tà) =

r
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rf an observer 0 assigns p anrl r to a quantum system in his
l-aboratorvr then an obser-ver o', whose coorclinate axes are
obtained from those of o by à transformation g tt, gil, will
assign

þ' = (r*)-tó and. r' - rg*

to an identical- system in his laboratory. It foll-ows trivially
that

1ö' ,y'> = ,(og) -, lrrrgr,

= .prl, ,

so the principle of reÌatlvity is satisfied " ///
Fr.om where does the representation o- come? If

g . GRr then ad g is an inner derivation of Gn and exp(ad. g)

is an automorphism of G*. Define

exp g

Gn* Gn

B' r--> exp(ad. g)g'.

g

o'ú
a>

and

ø* can be trivlally extend.ed to u(G*) and. thence to u(a).
ad.d.i.tion, ng is a *-automorphism of U(G) because

C
e

. r*.+ ier) ') = r*(-C, + tUr)

= -r^(s ) +tsf

(ø*(e r*LEr))*, ror at-t- E,rEreG*.
The map

T i I = exP gr--> ng= exp(ad e)
pnovides a representation of the connected component of
the group of automor"phisms of U(C).

q,R

Postulate 7. The representation cr of G* on Rut(.0.*)

((e
,

fn

ir-(g )
É.2

must be an extension of the representation defined. above.

on
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The speciflcation of the extension of øn from U(O) to A will

be an integral part of the specificat:.oi of the algebra A

appropriate to the quantum systeur" Discrete symmetries muE¡t

be treated. ind.ividually.

Thls formulation of the principle of rel_atívity
avoid"s the question as to whether or not the irreducible

U(e)-mod.ules v¡hich occur ln the deeomposition of an irreducibl-e

A*-module can be integrated to provide representations o1' ÊR.

This is an important technical point, because questions of

integrability cannot be d.ecid.ed. within an al.gebraic theory"

On the other hand, exp(ad g) 1s wel-1 defined. as an

automorphism of U(G), because (ad g) is a finite d-imensional

matrix, and the problem of extending exp(ad e) from U(C) to
*A can be posed algebraically.

Once the representatlon ø has been speci.fied-¡ then

the temporal and spatlal d.evelopment of the system is known.

For example, if g represents a translation into the future,

and. if the d.ynarnics are invariant under reversal- of the sense

of timer then the expectation val-ue of an observable n aI a

later ti-me will be

<Øt o'*t )'

Sutn4ÉLrv.

I have suggested- the following mathenatical

otructure for quanturn mechanics, 'vt/ith any quantum system must

be associated the following objects:

(1) a complex algebra A which extend.s U(c),

u(c) < A i
(Z) an involution * on A which extends the natural involution
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on u(o);

3) a representatlon g- o¡ 9n on Aut(n*) which extends the

natural representation on U(c).

Each of these extenslons is specj.fic to the quantum system

and. must be postul-ated. for that system. Every maximal ideal

M in A d.etermines by a eanoni-cal prescription an ir-'reducibl e

A-module xLI. There is at most one way in which an inner
**

product can be defined on XrO so that XU is an A -rnodule.

When it is possible to d.o so¡ then a positive linear function

can be d.efined on A bY

1þrà) = (xrux)/(*r*) e à € At

wherex=1+M

is the canonically constructed. cyclic vector of' X*. ø ls â

pure state if M j.s a maximal left id.eaI; ø 1s an inpure state

if M is the intersection of a finlte number of maximal- id.eals.

If b e B < A is an observabl-e element of A, then <þrb> is its

expectation value when the system 1s 1n the state ø.

In shortr all the problemo of quantum meehanics

can be regarded- as problems concerning the structure of the

algebra of observabl-es.
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APPE}IDIX 2.
{<

Theorem 1. TfA is a *-semisimple algebra, then the
*l-inear functions in ß separate the points of A..

II_g-€, Suppoee a is any non-zero el-emen'b
¡F'l*

Because A is *-semisimpler there is an A'-module X

ofA

with

a

a

aX+ O.
There i-s a vector x in X for which

(x, ax) + o

If this were not sor a contrad-iction could" be obtained. as

follows. The polarisation identity shows that

l+(xray) = (* * yra(x + v))
(x - v,a(x v))

-i (x +1y, a (x +iv) )

+i. (x -iy, a (x -iv ) ) ,

so (xray) = O for all x and- y in X"

In particula.r,
(ayray) = O for all y in X.

Thus¡ ay = O ,

because the inner product is non-degenerate¡ and

a = O ,

contrary to assumption. Define

þ:A-+C
r Ê (xrrx)/(*'*).

Then, <þr1> = 1 ,

<þr'*) = 6õ t
*<þry r> I O r for all r in A.

Thus, Ø is a linear function in S which satisfies
<þta> * O

This proves that S separates the polnts of A*.
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r'emmLZ. write I\,f 4e N if l,{ and. N are proper l-ef't id.eals

of A and. elements u and v can be found in A with the follovring
properties:

l'Íu S N r üv = 1(mod. M),

l{v S },{ r vu = 1(mod. N).
4 is an equival.ence relation on the set of left i¿ears of A.

Pro-of (f,) Choose u = v = 1. Then M s l{ a¡d Bo .¿ is
reflexive.

(Z) Suppose 14 s lrr. Set

u' = \f ¡ V' = u .

Then

Nu' S M , u'v'= 1(mod N) ,

Mv' 5 N , v'r..' = 1(mod. M) .
Ilence N d M and. the relation Èr is symrnetric.

3) Suppose Ir,{ s N and- N c* P wÍth
Mu f N r r-rv = 1(mod Ìf) ,

Nv S M r v\t = 1(mod N) ,

Nr S P r rs = 1(mod N) ,

PsSN ¡ ÍjF=1(rnodP).
Then Mur. SP,

PsvSM.
Also (ur) (sv) = u(i (mod N) )v

= 1 (mod M)

(sv) (ur) = s (1 (mo¿ n) )r

= 1(mod P) .

Thusr lvl g P and the relation is transitive.

Theorem i.
of A. Construct

Suppose that M and. N are proper left id.eals
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xM = Ã/\l ar'd xN = A/N.

In ord.er that
v 

^1 
Y"M 'ld t

it is both necessary and. sufficient that

lvl sN c

fof uffi c i

To pnove the sufficl-ency of this condition I must

construct an isomorphi.sm of the vector spaces X¡,1 and X,o which

also intertwines the mod,ule operations, Since M e N, there

exist el-ements u and v 1n A such that

ì,4u S N r üv = 1(mod M) ,
Nv S M r vu = 1(mocl N) .

Define c. X**XU

a+ilT ¡-+ au+N .

o- is wel1 d.efined. because

fon all m in M.

Similarlyr define

a+m+M r+ au+mu+N = au+N

It is here that the property Mu S N is used.

r: \---->xM
a+N r+ av+M .

r is also r¡¡eIl d.efined. because Nv S I,l.

Now r.r(a+N) = ø(av+M)

= avu{-N

= a+N for all a in At

because vL1 = 1 (mod N).

Slnilarlyt

r.ø(a+lú) = r(au+N)

= auv+M

= a+M for a]-l a in Ar
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because uv = 1 (mod M).

ThUSToo.=1=Í.Tt

ø is an isomorphism of the vector spaces X, and Xr. All that

rena.ins to be shown is that ø intertwi.nes the mod.ule operations.

For all a and. b in Ar

(".) (¡+li,i) = ø(ab+-If)

= abu+N

= a(bu+N)

= (aø) (¡+l¡) .

Hencer XM and. X* ane equivalent A-rnodules.

Proof of negessj ty. Let r denote the isomorphism of X*

onto X*:

Í 2 X*-+ X*.

(f) Because (t+m) f" a non-zero vector of X, and" ø is lnjective,

o-(t+u) + N.

Thus, there exists an element u f N such that

r(t+¡lt) = ü*N.

Of course u is not uni que since u+n, n 6 Nr would sti1l
identify the coset u+N. Now

ø(a+lvl) = øa(f +U)

= ao (1+M)

= a (u+N)

= Aì.I+N .

The vitalr seconcl step 1n the above ehain uses the fact that c
intertwines the mod"ule operations on Xu, and Xr.

(Z) Because ø is inJectlve, if
ø(a+l{) = âü+N=Nt

that is, if au 6 Nr then a e 14. ConvenselVr if a € Mr then

au€NrgoMuSN.



3) Because ø is surjective, there must exist a coset

XM such that

53"

(v+M) in

ø(v+M) = vü-FN = 1+N.

Slnce (t+tl) is a non-zeto vector of XN, v f M. Thusr

vrl = 1 (mod N) '
(4) Define r , \--* \

a+Nr-> aV+M.

r will only be well defi.ned provided. nv e l/l forall n 6 N.

0therwise two different representations of the sanle coset (a+"N)

woul-d lead to d"ifferent images. Now,

ø(av+lr{) = avu-¡N

a+N .

In partì-cuIar, a e N 1f and only if av e M because ø is
j-n;iective. Thus r

Nv SM

and r is well deflned.

(¡) ø.r(a+N) = ø(av+M)

= aVu+N

= a+N

Thust Í.7 = 1.

Since ø Ís knovrn to be biJective,

T=O'-1.

(r.n) (a+M) = r(au+N)

= auV+M .

Choose a = 1.

(r"n) (t+¡¡) = uv+M

= 1+M ,

8o gv = 1 (mod 11) .

(6) I have found. u and- v in A such that
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MuSN

Nv SM

This shovrs that M ./ N.

Lemma h.

and that Mt

condition Mt

Then

belong to M .
I

1d.eal N:

a - m +m' ,
t

Suppose that M is a maximal left id.eal of A
,

is any other left idealr srlbject only to the

+M. Set
l

Mo=MtnM ,
I

Xo = A/Ifo '
Xt = A/\It ,

x =A/Ir 't1

¡o c.X @lxt
,

ConsequentlVr M, is properly contaj.ned 1n the

t,

o,

uv = 1(mod. If )

vrl = 1(mod N)

,

the sum beirrg a direct sum of A-moduleê.

If_oqf T,et N ='M + lt{1.
I

{ U , there is an element ml in Mt which does not
,

Because Mt

M <N<.A'.
t

Since M is a maximal ldeal, it follows that N = A. Hencet
I

every element a in A can be expressed

m e lÍ , tnl e Mt ,
,l

though thls d.econposition will not be unique. Thus,

(a+Mo) = (rn r-Mo) + (mt+Mo).
l

Set Y =M/lúoand.Yt =Mt/Iqo.,t

Clearlyr Xo = Y + Yf,
,

I want to demonstrate that this sum is direct. Suppose that

a+ ¡¡o.YrnYt .
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Then

and.

Thus

a+¡4o=ffl +Mo

a+Mo=ml+Mo

I m 614,t

mt 6 [4'

,

a

Subtract the seeond. equation from the first. This shoy'rs that

r, - mt e Mo .

But yo < Mt

so *' - mt e Mt '
which impl1es that m e Mt o

I

Thuse tA e M fì Mt = ¡¡o
tt

and a + Mo = m + ì{o = ¡i4o .
,

Therefore, 
"rA 

Yr = O .

Y and Ytare A-submod.ules of Xo.
I

M ancl Mt are left id-eals of A:
,

This is easy to see because

a(m
I

a(mt

+Mo)=am

+Mo)=am

<Y ,
I

<Yf .1

+ Ilo

+ I\ro

Hencer Xo = Y @Y' ,
I

where the direct sum is not merely of the vector spaces Y

yl but also of the whole module structulr€so

Now Xo/Y 3¿Yt ana xo/ut Y Y .,,

But

xo/v (M¡,to)/(vt /Mo) e A/\4 X

and-

Xo/Yt

and

= (a/m") / (¡tt' /tlo) x A/¡¡'
yt cX andy gXt

It

aX

This establishes the result¡ that

xocrx e)xt
I

///



Suppose that IM, rMr, .

of di-stinct maxima] left id.eals of A.

Mo= n M .
ù lr L

Construct the A-mod-ules yo = A/Mo and X

¡o= @ X
fìr

56.

J i" a countable family

Set

Let the ind.ex i

A/M Thena
L

take the val-ues O, I ,
n M. .

j>¿ J

M¿ = Mù*rA M

L

a
L

2, a

LM

Then

y' are also vectore of X* and X

a
i,+ I

Construet also the A-mod"ules

Sinee [1

x¿ = A/ML .

is a maxirnal left ideal of Ar the previous lemma

@ Xt+r a

i,* I

can be applied" to decompose Xi:

¡i' cr X
L+t

*Let Y

*. Ghoose any two vectors y and. y' from Y Because y and"

By ind.uctionn

///

Lemma 6. If X* 1s arÌ lrreducible A*-module, then X is
an lrned.ucible A-modu1e.

Proof (Trlviat). Suppose that X had. a proper A-submod-u1e

Y. Then

Xos X@
¿l L

aY 5 Y for' all a ln A.

d.enote Y equipped- with the inner pnod,uct lnherited. from
*

x a

rls *1s an A -mod-ulet

(uoyrY').(yr^y') =
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But thls Is prectsely the condj.tion to be satisfied if y*
.t(*to be an A -submodule of X r so Y must be trivj.al.

Lemma 7 (Schrv¡rr"tz) I have only 1nc1ud.ed thÍs lemma

1S

a

a

Pqoo!

in order to stress that it is true in inner product spaces as

well as Hilbert spaceS.

If ø e Ë, then for^ al-l- a and, b jn A*

***
lrþru b>lt s <þra'a></rb'b>.

<É, (a-Àb) o(u-xu) 
> = <þran*r--À.ørb*a>-À<Éra*b r*IÀ"prbob, = o.

*
<érb b> + o,

rl. *\ = <þrb a>/<çrb b>.

l.çruoor¡,¡<f5rb*b>
*<þrb b> = Ot

then a contrad.ietion is obtained. for a suitable val-ue of 
^,*unless <þsa b> = O. fn either câse¡

<þra*a><6rb*b> ì l rþrutnrl'.

Lemma B Suppose that

If

set

Then <þra*a7 à

as required. However, lf

)

- *. *
[meA'lrþrÍì Ír) = o].

M has an alternative presentation,

M, =a

*ø

ø

M is a left ideal
ø

Proof If
*

<þrm fl) = O.

*if <þrm llt) = Ot

[meA*lróruor, = o for all a in A
*

**<þra D) = O for a.lf a in A then certainly

Since
.*{€*
l rl,r^ m>l e s <þra'a)<þrln rn)r

,i*
then <þra ß) :. O for all a ln A o
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thus, the two presentations of M, are equival-ent. From the

second. preseirtation it is clear that Mr is a subspace of A*.I
Choose any m in M, and. consider FIIIr r€A'.

* !..*
<þra"(rm) ¡ = ,þ, (r-a) "m> = o' for all a in A.

Thus, rmeld, and. M, is a left ideal . ///'99

!e-@.il,.
each ø in ß.

Proof. Since 1\,f

cyclic A-modul-e.

sati sfi es

þ is a feft 1d.ea.l. of A, *ø = Mll,f is a

If I can shovr that the inner prod.uct on X

* f
X is a cyclic A -mod"ule for

þ

*
) ' 

(s+M),a(s+M )) (a (r+M ))
þ ø

**wil-f be an A -modu1e. Now

þ

( (r+M
ø þ

*fon all ãt r and. s in A then Xt
ø

( (r+M )ra(s+ltl )) (rr-M 1 as+M
þ ø ø

*
)

ø

= <órT as >

-**<þ'(a r) s>

.*(a r+M , S+Mr)

ø)' 
(s+M,(a

ø

(n+ì{ )).
*

Thusr
,f

1s an A -mod.ule.

Lemma 10"

Proof

A-mod.ul-e if X

///

X,* 1s an irred.ucible A*-mod.ul-eI

v"ø

1f and- only if X, is an irred.ucible A-modu1e. Equivalentlyr
**ø is irreducible if and only if M, is a maximal left Íd-eal

of A.

From lemma 6 it follows that X , is an i-rred.ucibleI/ß*
, is an irredueible A -mod.ule. The converse isI

can be equipped with the inner product d.erived.trivial. X
þ
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fnom þ' and. if X, is lrred-ucible so too is tlLe sBace X, vrith

its in¡rer pr:d.uet. Final.ly, Xþ is j r.,red,ucibl e if and only if

OOø is a naxÍmal- left ideal of A. ///

theonem 11 a
**

Suppose X and. Y are cyclic ,'

mod.ul-es with cyclic vectors x and y, If
(xrax) = (yruy) for all a in A,

*then X

Proof Defi ne F. X-+Y

rx êryr for all r in A"

Because y is a cyclic vector, ø ls surJective. ø is also

lnjective for the following reason. If rx + O but rv = O, then

o + (rx, rx) = (*, " 
o**)

*Vrr rY( )

a contracliction.

X and Y:

Finally¡ for a1l r and. s ln A¡

(*Y 
' "Y) =

By assumption

(y, 
" 

ouv) 
=

(rx, sx) =

=O,
ø also intertwines the module operations in

(øa) (rx) = ø(arx)

= arY

= a (ry)

= (ao-) (rx)

(*v' 
"v )

(or*, søy)

(^*, øsy)

(*, 
"ou*)

(n**røsx)

a

so o
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* *

*

rt¡

Thusr X and Y are equivalent A -modules "

Ï,emma 12.
^,function in S for which M,I

Define t/ bV

1þtà) = (Øru*au> for all aeAr

where u IIfø

and. u is normalised so that
(fru*u> = 1.

(f ) ,tt is al.so a linean function in S.

(Z-) there exists an element v in A such that

1þta) = <þrv*av> for all aeAr

where v Ê *ú

and v i-s normalieed so that

<þ'vot" = 1'

ß) The left id.eals M, and Mp are equivalent,

Suppose that ø is a Ìjnear

is a maximal left i<Leal of A.

!g M.Itr4,
vr

t

with *po = *ø r ìrv = 1(mod !ñp),

Mør = t/ r vrì - 1 (mod tø) .

are equivaJ-ent¡ irred.uclbl-e A*-mod.uL.es.

(t ) This step 1s trivial.
<þr1> = (f,ru*u¡ = 1,

(h) *þ
Proof

and x,
vl

¡S rÈ 4.

= (/ru au)

= <þ ra),

*
<þra a> = <Ø, (ar) o(.o) , > o.
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(z) slnce

<ú rao", = </, (au) o(rlr) , , f or all aeA¡

1t follows that

aeM, if and only 1f aueMr.

In particular,

Múo = *ø.

Because hf , is a maximal left id.eal of Ar 
"þ 

is an

irneducible A-mod.ule, and so every vector" of X, is cycì-ic.

Thusr there 1s an el-ement v in A such that

v(u + 
"ø) = 1 + *þ.

Heneer vu = 1(mod. tø).

*:1.*
<,lJrv âv) = </ru v avu>

Suppose that y¿ =,1 * lnr m 6 M
ø'

Then <,þ ,v*.r , = <þ, (1 +n*) a ( t +n) >

*
1þta+n a)

= <þta) + <Éra*m>

= (þtA).

ÂIso v / lfú because vu f ttr.

Finally¡ l<þrv*v7 = <þr1> = 1.

ß) I have already established. that

Múr="ø r vu=1(modMp),

60 I must now show that

Mþ, = *ú r uv = 1(mod tø).

Since

<þrao", = <,/, (av) o("*r), , for all aeAr

1t follows that

aeM
ø

if and. only 1f aveM ,lt'



In particular,

* *
Thus ¡ ,,t,

þ
and. X

maximal teft ideal¡ X

l rred.uc ib Ie .

Ir4rv = t,/.

<ú, (uv-1 )o(o.r-1) > = <Ør u (uv-1 )

62.

(uv-1 )u>.

Because M, is a

obviousl-y is al-so

///

* *

Now

<,1' (uv-1 )
:E

(uv-1 )> = o

uv = 1(rnod. Il

Hence,

and. so
'!
).

The cond"ltions established" show that Mþ c \tlþ.

(4) Because Mts \4ø, theorem J shows that *V and X,

are eguivalent A-nod.u1es. 'Furthermore, the isomonphism which

intertwines X, and. X, is

r ? *t-*ó

a+M, r+au+M, .

I wlll now show that
(ø(r+M*) 

'r(s+M4,) ) = (r+M4 s+My,)

for all r and. s in A, where the inner prod.uct on the left is
in X, but on the right is 1n Xr.

(o-(r+Mç,) ,c(s+Mç,) ) = (ru+M6, su+Mp)

**
= (/ru r gu>

(lt.t 1)u = uvu - u

= o (mocl *ø) .

*
= <úrr S>

= (r+M*, s+Mr)

are eguivalent A*-modu1es.

þ

* ls irred.ucible. X
ú

*



S = Íø. Ë | u, is a maxj.mal id-eal in A].
o tt - ' P

DefÍne a relation e on S as foIlows. ,! is in nelation to þt
o

written r/ g þt if

ltlt tà) = .pro*au> ,

where u Ê Mþ

Definition. Let

and.

then

where

and

Hencer 19 is transi-tive.
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for all ael^t

and. u is normalised so that
*

<Órv ü) = 1'

! is an equivalence relation on So.

Proof (t) ! is refl-exive because þ! Éwith u = 1'

(Z) Suppose 4r v ø. In the fast lemma it was

shown that an el-ement v could be found. with the followlng

pioperties:
*

1þ2a> = 1þcv aY> for all aeLt

vî*t,
:*

<úrt{ v) = 1 .

Thus, þ Y þ

-dand so = is symmetrie.

ß) If þ e / and çe Xt with
*4!tã) = (Pru au)

for aIl- aey'^t

ù+
<þra> - 1/2T ar> ,

<tra> <x, (ur) *a(ur) 
>

ur IllY

<X, (ur) o(o") > = <þr1> = I

6 Y tlr.rf xø'f' t xl,*, thenLemma th.

///
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o' *,r,-*þ
which intertwlnes the A-modules X

satlsfies
,l)

þ

Because o- intertwines X and. X
ø'þ

64.

, there exists an isomorphism

and. X and. which also
þ

þ'

ø(a+M (øa) (t+m )
e ú

(aø) (t +tvt )

Because *þ* o *úo

(o-(r+M4,), ø(s+Mg,)) = (r+Mg,, s+M4,)

for all r anc1 s in A. Defi.ne u and v, respectively mod.ulo

\llf anô" lúft by

o-(l+Uf) = u+triI,

o-_r (1+M ) = v+I4

)

,t)

- a(u+M
ø

= au+tr4 for all a€4.
þ

)

Similarlyt

Now

o'-t (a+M r) = av+lI,

(þ¡à)= ( (t +

r for a1Ì ¿6.A'.

(a+M
þ
))

(n(t + M ) , o-(a 'r- M ))
þ tþ

Nrp) ,

( (**M (au+ M ))) t
ø

*<þru â11)¡

ø

In id.entical fashion¡
¿

1þtã) = <ùrv*tt>.

Note that the lrred.ucibility of X,I
needed. in the proof of thls lemma.

* *
and. ,,t, was not

Suppose I and. tlt aee Ìinear
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o"14 pa ú

'tf*þ= *þ €t*ø o ,r,1,.

lroof. The theorem is a triviat conseguenee of theorem

3 and- lemmas 12 and- 111. ///
Lernma 16. Suppose that X* is an A*-module. X* is
conpletely reducible.

Proof . Suppose that Y* is a proper A*-submod-ule

functions in S a Then
o

*ofX Definea

ChooseanyxeY f 
e x*1.(*,v) = oforally€Yl.
SinceayeYforall-y6Yr

o - (*r"y) = (uo*ry).

,lr

rS .L

=Y@Y,

Suppose that M and, M
ø

*,x,'sxe'tt

I
I-

Thus,
*laxeY

AY

Since X
*X is completely red.ucible.

Theorem 17.

*for all a 6 A. Because A A it follows that,
I < t¡t¿a

///

ar?e maximal- left
,þ

ideals of A. Then

*øotú: ø*,!.

A stronger result is also truer

Mø = tt"- þ = X.

There are shorter proofe of this theorem than the

one given below, but I ehose this one because it d.emonstrates

the d.ifflcul-ties that arise because Schurrs lemma does not

imply that the commuting algebra of an lrreducj-ble A-module

consists only of sealars.

. Because M ^ 
4 lú.,,, there exist elements u9V'

and v 1n A such that
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*øt = t/, r vr.1 = 1 (moa mt) '
t{rt s Iúø ¡ uv = 1(moa tu,).

Define 1/et_.) = <þrvouur/rtrv*v> for all a 6 A.

Thus, a , MX 1f and only if av e Mf.

Norv, if av e Mpt then avu e M, and. so a , *ó. Thusr âv , *,1,

ili and. only if a . Mø.

Consequently¡

Mø = Mx'

By assumption M, is a maximal left ldealr so

,lr t X.
Thusr ï need. only invest.igate whether

Mø=M*==ç/clX¡

* the stronger result

Mø = lv1, :=à É = /.

Set M=Mø=MX

and. X=Xø=XX.

On the nod.ule X there are defj-ned two inner products¡

(a + ìl¡b + M)ø <$ra*b7

and. (a + Mrb + g)X ,Yr^obr,

and hermitlan conjugation with reepect to each of these

provides a representation of the involution on A. Since A

has a countable basisr so too has X. Choose a basis

[*, = 1+Mr*rr*", I

for X whj.ch is orthonormal with respect to the first inner

product;

(*rr*j) 
þ = urr.

Choose any r in A. The matrices of r and r * on X are fixed bY
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the basis,

Now

L

r

r

*
¡

kJ

I
L

r
)-

¿

I
L

I
L

(xSimi Ia.r1y,
kJ

J

ø

rx

fX= x

x

,
J LL J

r* tÊ

a

(* n*
J k

J

Eij'

L

¡X ) (", 
T", ,* x) ø

(*-r"tx*i)ørIX )
ø

I

oI jk
*Thusr the matrix of r is the hermitian conjugate of the matrix

of r¡ just as woul-d have been expected. Since the matrices of
-*r and. r are both column-finiter this proves that they are

now-finite as lvell.
The basls vectors will not be orthonormal with

respect to the second inner prod.uct. In fact,
(*rr*r),

) satlsfieswhere the array (S
Lj

g
LJ

but in general need. be neither row nor column-finite. A

calculation similar to the one above shows that

k I
L

j LK
r

8..t
JL

rT
L

g
L

oö
r*

j LL

The matrix of r is fixed by the basis and, does not depend upon
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the inner product d"efined on X.

Thus, F o 
=Lj

as before. Hence¡

T
L

r ,

r tÕ 9..r..
JL LK

jL

I
L

o
LJ kL

The summations here are well defi"ned. because the matrix of r
is both row and. colurnn-finite.

The matrix (g. .) comrnutes with al-l the matrices of
LJ

the representation. If it follows that (g, .) i" d.iagorral¡
LJ

j

ln particular a nultlpte of the identity, then

8, = 1

must hold because

= g.d..
L LJL

g ,

(*rr*r)

ft would. then follov¡ that
(x, 

' 
rx, )

and so

= 1/¡'l) ='l .

(*, r**, ), f or alJ- r € Ar

x

ø

<þer.) = 1X¡r>

as required..

If A contains a finite set of el.ements whose matrices

separate the basj-s of X, then it is trivial to show thrat (e..)
LJ

must be d.iagonal, However, since f know that

u(x) <u(s) (4,
where K is the complexification of K* = so(lrn) . GRr I will
proceed. as f olIo'¡¡s,

According to postulate 4r X* can be d.ecomposed into
irreducible K*-modulesr each of finite d.imension;

rß*x =?*, '
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Furthermore, the irred.ucible K*-modures occuring 1n this
deeomposition are orthogonal with respect to both inner
prod,ucts on X. Thus, if

Í.Y ,rv,, l

is a basis adapted. to the d.eeompositi.on of X*, wj.th

(rr'vr)ø = or, ,

(y.,y.)-. = g.. ,L J A LJ

then the matrix g = (g ) can be decomposed. slmilarly,¿j

I = @ 8.r
.iJ

where each g- is a finite d.imensional matrix. slnce g. is an

end.omorphism of x.* and. commutes with u(K) on x.*, it lorrowsJj
that g. must be a multlple of the identity end,omorphism of x.J-J- This establishes that g is a d.iagonal matrix
relative to the basis Ly rry r, ' l, but g need- not be so in
the basis [*_ r*-, ' ' ' l. However¡ fon every complex À,l2
(g - ).) lies in the centraliser of the irred,ucible A*-mod.ule

X*. Schurts lemrna states that the centraliser 1s a d.ivision

ring, so (g - À) must either be invertible or be zero. Because

g has an eigenvector in x¡ v, fon example, the first posslbility
must be d.i-scarded and so g = À. The cond.itlon that

<þr17 = <Y217 = 1

forces g to be the id.entity matrix¡ so ø = X as required.. ///
Theofem 18. (t,) The set *o of pure states separates the

points of A.

(Z) The points of S are the extreme points of S.

*
a

states. If
3) Suppose þ r, þ rr.

o

' ,þ
n

are dlstinct pure
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þ ) I.d. )
Lt LL

L

\ À. =1,LL
L

o

where À.
L

È O and.

then *þ

separate the points of A.

(z) Choose any û

wlth

*

a

eS , lOt
o

eS I must show thatr if

^r@ 
x

L

*

L
0

þ

o

þgÍ. (t ) The proof is j.d-entical with the proof of

theorem 1 because the lrreduci-ble .A.*-modules suffice to

a
o o

Lo ^
ø

= ør = .

"t, "n
¿

ø

"to

L

tto

þo = oL

nI
L=l

L

ø À.
LL

nfÀ.
/-t L

L-T

SM

)
= l,

=þthen øo a
n

Becauge

and. both À and <ø
*l

râ &> are positlve for each it

n
¡l\-*.þora a> = À, ^r 

<þ. ra a>

L=l

L L

ll
o

Thus r ø
o

L

Since þ eS t is a maximal left id.eaI. Thereforer
o

þ

M,
9oo

By theorem 17r

M

,

a

i = 1t 2t I Il.
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' tÓn areß) Because the pure states QrrØ

d.istlnctr it follows from theorem 17 that M

are also distinet. Now

2

ø
,Mþ , ,M

þ
n2

M

Accorci.ing to theorem 5,

where the sum is a direct sum of A-modules.

(r+M
ø þ

<ø ex S>
o

M, =I
o

þ
L

þr'

n
L

*roo 
? "

O

r S+M
o

)
o

*
x te@X

ø þ

n *
) 

^. 
<ó.tr s>

/-) L'L
L=l

nI
t= t

ø^
(r+M r AtM ) a

L þ
L L

*
Thus r

Sr.æt-
(r )

t - O. Then

,
ov L

where the sum is now a direct sum of A*-modules.

Lemrna 14. If ng is an automorphism of A*, then r!
automorphlsm of tte vector space S.

///

is an

The proof can be broken lnto four simple stages.

ø* is an automorphism of A'. Suppose that

a*

<artrâ,)=<Úrcfa>= O, foral1 a€At
which inpli-es ,ll = O because ng 1s an automorphism of A.

Hencer ø1 is injective. Now Jrppo"u ó is an arbitrary linear'e
funetion on A. Define ü by

<þt8) = <óto.[ta>, for all a 6 A.

Thus, <útr*b> = <þrb>

where 
-"= 

nEO o
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Therefore ó - r:-t,g

is sur¡ectivl.This shows that r[

(z) It 1s trivj.al- to verify that
o-á.S s S,

because ng is an automorphism of A.* so I need. only show that

o

,

%s
Choose any ø e S and define

1þta) = <þtrlta> for alt a 6 A.g

r/ also lies in Ë. However¡ as 1n part (t ),

ø=r*ú,
so r'- is a sur jective mapping of S.UÞ

3) Because ,g is an automorphism of A¡ the image

and- preimage undercg of ui""u maximal id.eal of A ane also
maximal. Thus, 1f ftf, is maximal, then so too 1s *,1r, where

,þ=ngø.

Consequently, r'* is an autorornia"r of So.

(4; The extension to S, the convex hutt of Sor

is now trivial. ///

G\J
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CT]API'ER 3 DTAGOT.:ÍÄT, OP]IRATORS .

I Speetrum generating algebras' (Sc¡) were j-ntro-

d-uced by Dothanr Gel]-Mann and" Ne'eman (lg6S) itt an attempt to

provide an algebraic description of quantum systems. The

iclea has proved- useful and the ljterature on SGA is vofuminoÌ.ls.

Every paBer on the subjeet purports to be algebraict but in

fact contains a mixture of algebraic and. analytic concepts

which cannot easily be cj.isentangl-ed,. Because the framework

for quantum mechanics suggested in chapter 2 accommodates

spectrum generating algebras quite naturallyr in this chapter

I wil-I try to unravel the tangle. Thus, I will try to give

a precise account of the purely algebraic structures present

in the theory of spectrum generating algebrâs.

Suppose that t is a linear operator defined' on an

irrfinite dimensional vector space X. To find. the eigenvalues

of t is generally a difficult task. If it is known that t

commutes with a Lie algebra Kt

[t'r] = o ,

the task is somewhat simplified, because the eigenvectors of

t d.i.vide into degenerate multlpletsr each of which carr'ies

an irred.ucible representation of K. Tf all these mul-tiplets

span a single irreducible representation of a larger Lie

algebra L, which eontains K as a subaì-gebra¡.and if

[t,r,] s r, ,

then the calculation of the spectrun of t is trivial. L is

calIed a spectrum generating algebra for t; K is the symnetry

algebra of t. To find- K and L and to express t in terms of

the elements of the enveloping algebra of L are the aims of

the theory of spectrum generating algebrâs.

The operator t is usually the Hamiltonian, and so is
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a function of several coordinates ancl conjugate nornenta. The

deter,mination of K ancl L is then a cliff icult matter. Pl'ofessor

Green has suggested that the coordinates and mornenta which

appear in the Hamiltonian have dubious physical signifi.cancet

whereas the algebras K and L are d.irectly related to the

observabfe spectrum of states. Therefore, he proposed that

the operator t shoul-d be d,eflned. cLirectly in terms of the

algebras K and L. I whol-eheartedly agree with this approach'

and, the d-iagonal and codiagonal operator.s of this and foll-owing

chapters represent the logical- d.evelopment of thj-s idea"

Diagonal operators are extremely simpler âs the name

implies. In l.oose terms, t is a cliagonal operator if t is a

function of the invariants of the Lie algebra K. When t acts

upon a spaee X, which carries an irreducible representation

of L, t wil-1 be representeô by a d.iagonal matrix; henee the

name. If X d.ecomposes lnto irreducible representatlons of K,

then the spectrum of t is constant on each such representation.

flo flnd the whol-e spectrum of t, it is only necessary to find

the mul-tiplicity with vrhich any representation of K occurs in

the decomposition of X. Finally, if t is a diagonal operator

defined in terms of the algebras K and Lr then K is the

symmetry algebra for t and L is a spectrum generating al-gebra.

Although these j-d.eas are quite elementary and. familiar

to most mathematical physicj-sts¡ their logical development

within a strictly algebraic framework is not trivial.

The codiagonal operators treated. in later chapters

are far more compÌicated than the elementary diagonal operators.
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The Lie Al-sebras K and L.

',/Vhat properties should be required- of K and" L in

general? From a survey of the literature on spectrum generating

algebras, two poi-nts emerge.

(t ) The algebras which arj-se are subalgebras of the red-uetiver

but not semi-simple, Lie algebra gt(nrC).

(Z) Loosely speaking, L d.ecomposes into the subalgebra K and a

subspace i'rhose elements shift the eigenvalues of the invariants

of K.

If the algebra K is to account fully for the d-egeneracy in the

spectrum of t, then a third. requirement can be added to the list.

ß) Any irreducible representation of L, which is completely

reducible when restricted to K, must not contain in its decompos*'

ition any irred.uclble representation of K more than once.

To fulfil these requirements, I will choose K and- L in

the following way.

Let aÛ.d.enote the n x n matrix whose only non-zero
J

element 1s equal to one and occurs at the intersection of the

.th - .thi "" row and j "" column. The set

lrt., 1 5i,i s nJ
J

is a basis for the Lie algebra g1(nrC). The conmutation rules

are
LalLat ^k,a 6k 6L ak a

J Lj
All the cl-assical Lie algebras are subalgebras of g1(nrC). To

fix upon notation, I want to exhibit their bases explicitly in

terms of the basis for g1(nrC).

(u) s1(n,C). The elements

I
k

a /n , 1 S i'J 5 n ,

L JL

k
6L= aLb

Jjj
L k

k mustspan s1(nr0). To obtain a b'asis, one of the elements b
k
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r. . = a
LJ

Define
L - ajj S i, j S n .

that

O+1
-1 0

+g

, I
L

It is a trivial rnatter to verifY
+ r

L

, 1Si<

LL
t

KLjd6r
LK J LLL

njkdIrrjr**r] r a

kJ

r. .
LJ

nrC)

O+1
-1 0

a

O+1
-1 'O

I/ühen n i.s even, d-efine the n x n matrix

( )
ag jL

a

and. the following quantities

s. = g-.ak. + g..ak, ,¿i "Lk i -ik L

where summation over k is understood. Then

SLL kjgr;"ri+gi r"; rg;t"ir[s. .rs, . ]LJ KL

and, the set

["¿J , I i s i snl

is a basis for sp(nrO).

sp(nrc) is a subalgebra of sp(n+2rc), whose basis is

the set

["¿j, 1 s i s J ln+21,.

There is a Lie algebra of (n+f ) x (n+1 ) natrices which lies

between sp(nr6) and sp(n+ZrC). Its basis is the set

["¿j, 1 s i s J s n+1 J'

Thls Lie algebra is not semi-sirnple¡ since "*; , commutes with

all the other basis elementsr nor is it derived from a symplectic

bilinear form, but I will st11l d-enote it sp(n+1 'C)' Thus
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sp(nrC) < sp(n+ 1 ,C) < sP (n+ZrC).

. For each positive integer n' the aì-gebras gl(nrO),

sI(nrC), so(nrC), sp(nrC) can be def ined.. The basis elements of

each of these algebras can be assembled into an n x n matrÍxr

which I shall s1mp1y call !!e uctri-x of,-l¡e--Li-e-a-1gçþIq.

Thus a = (^¿.) for gl(nrc) ,
J

r = (t. . ) for so(nrC) ,
LJ

s = ("..) for sp(nrC) '!J
and. b = (¡¿.) = a (trace a) /n for sr(n,C) .

J
The real f orms of so(nrC) and- sp(nrC) can be constructed-

in a similar way by the introduction of a real metric h.- on

91(nrR) . rf h is symmetric, then the elernents
Lj

h a h a k
L

if n 1s even and h
LK j jk

k

span a real form of so(nrC) r but,

symmetricr then

h ak +h ak--Lk- i ik L

span a real form of sp(nrQ). However¡ oVer the compÌex field,

h can be reduced to either d. . or g. - so T have not forsaken'^Lj ¿J -LJ,

generality by assurning these forms,

I will choose L from the list

g1(n+1 ,C), s1(n'+1 ,C), so(n+'1 ,C), sp(n+1 ,C),

and require K to be the subalgebra of L whose matrix is obtained

frorn the matrix of L by deletion of the last row and col-umn. I

shall refer to this choiee of L and K as the standard ehoice.

This description of L and. K is not as eumbersome as it mlght at

first appear. l,{atrices over the enveloping algebras of K and L

are essential in the solution of eigenvalue problems concerned

with diagonal operators. It is then quite natural to think of

the basis of the Lie algebra arrayed in a matrix.

is skelv-
¿j
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The reason why T have chosen K and L in this manner is

that condition (l) is satisfied. That is the content of the

following theorem.

Theorern 1. Make the standard choice for L and K. Suppose

that X 1s an irred.ucible L-modul-e and- that Xt eonsidered as a

K-mod,u1-e, is cornpletel-y reducibl-e. Then any irreducibl-e K-

modul-e ean occur at most once in the decornposition of X" ///

The proof of this theorem will emerge as a subsid,iary

result from thls chapter, whose main purpose is to Survey the

techniques of spectral analysis and their applications to

d-iagonal operators.

There is a technical advantage in the assunptj.on that

K and. L should be reductive Lie algebras over the complex fi-eld;

for such Lie algebras, the theorems on weightsr so important

in the construction of fj-nite d.imensional mod-ulesr can be

extended to infinlte d.irnensional mod-ul-es. For completerÌess,

T have listed these theorems below.

suppose that L is a reductive Lie algebra over c ancl

that X is an L-mod-ule, T,et H cLenote a Cartan subalgebra of L,

and 1et L d.enote the subspace of L spanned by root vectors
+

corresponding to positive roots. A linear function on H,

P: H-*Cr

is caIled

such that

a weieht of X if there is a non-zero vector x in X

hx

x is cal.l-ed, the

x is caIled a vector of

Theorem (Harish-Chandra

p(h)x , for all h in H.

v¡eiqht vector with wei ght p. If , in add-itiont

L [=O t+

maximum weieht þ,

(tgrl)). r,êt x be

of maximum weight

an irred.ucibl-e L-

p. then :mod.ule with a vector xe
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the vector xo is uni.que to lvithin a normalisation factor;

the r,veights of' 'X are of the form

p n d.,

where each ncx j s a non-negative integer and the summation is

over the simple roots of L;

3) every weight appears with a fj.nite multiplÍcity, p with

multiBlicity equal to one;

(¿{) X = + X-, vrhere ø is a rveight of X and
Ur

Xn= [x e X l tt* =o-(h)x for all h in H J. ///
Theorem (Harish-Chandra (lg}l)) . Let p : H --+ C be any l-inear

funeti on on H. There exists an irreducible L-module with

maxirnum weight p. Two j.rreducible L-mod.u1es Xr and X"r with

maxirnum weights pt and Pzt ar¡e eguivalent if and only if

pt = pe. ///
From this resul-t it is clear thatr if an infinite

dimensj-onal, irred.ucible L-rnodule has a vector of maximum

weight, then the module is uniquely labelled by that weight.

Theorem (U. Cartan, Harish-Chandra).

(t ) Every finlte d.imensionalr irreducibl-e L-module has a

rnaximum weight lvhich is both d.ominant and integral.
(Z) Every irreduei.ble L-mod.ule with a maximum welght that is

d.ominant and. integral 1s finite dimensional. ///
the preference shown for maxj-mum weights is not

essential. Sinilar theorems show that an irred.ucible mod-u1e

with a vecton of mi-nimum weight is uniguely labeI1ed by that

weight. It is sometimes even possible to separate the Cartan

subal.gebra H into two parts and- to find mod.ulee labell.ed by a

weight whlch is a maximum for one part of H and a minimum fon

the other.

I
d.

ct
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Not all the Lie a1-pSebras which arise in physics are

over the complex fie]d. For example, the Lie algebnas of the

Lorentz and Poincaré groups are real Lie algebras" Conseguent1ys

my assumption that K and L should represent complex Lie algebras

probably seems too strong. However, the limitation i-ntrod.uced

by thi-s assumption is only apparent. This follows from the

theorem presented. below and, ultimately, from the d-efinition of

(algebrai.c) irreducibilitY.

Theorem 5" Suppose that L is a red-uctive T,i.e al-gebra over

the compl-ex fiel-d and that lÞ is a real form of L'

(t ) Tf XR is an irred-uclbl-e \-mod-u1er then

X=XR+iXn

is an irred-ucible L-modu1e. The sum indicateÔ is a direct sum

of real vector spaces and the module product on X is defined by

(a + ib). (x + fv) = (ax -by) + i(tx +ay)r

for all a and b in L* and all x and y in XO.

(Z) If X is an lrred.ucible L-moduler then X can be decomposed

X=h+iXR,
where X* is an irreducible \-modu1e. Furthermoret XR is

unigue to within equivalence of \-modu1es.

ß) Suppos" XR and X*' are two irreducible \-modules'
Construct the L-modules

X = X* + iXR and- X' = ht + th"

rhen x and x' are equivalent L-mooules 1f and only if xR and'

XR' are equlvalent L*-rnodules' ///

Theorem 5 summarises lernmas 2r3 and l1 of the appendix'

This result is well known for finite d.imensional

L and. L*-modules. The point I want to stress is that it

remains tnue for lnflnite d,imensional L and \-moduleer
provid.ed. these mod.ules are algebraically irreduclble' For
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representations of a Lie al-gebra. on a Banach spacet several

notions of irreci.ucibility are possible. If one of these j.s

substituted for algebraic irreducibilityr theorem 5 will no

longer be true generally¡ unless further cond-itions are plaeed-

upon the representatj ons involved.

Although theorem 5 can be proved quite easilyt it has

Some impOrtant consequences. For example, lvhen theorems 1 and'

5 aYe combined, the following result is obtalned.

Theonem 6. SuPPose that:

(t) I and K have been chosen j-n the stand"ard- tivay;

(Z) Ln is any real form of. L;

ß) Kn is a real form of K such that Kn t h;
(¿+) Xn is an irreclucible L*-moduler which¡ when considered' as a

KU-moduler is completely red-ucibIe.
- Then any irred-ucibJ-e K*-mod.ule can occur at most once

in the d.ecomposition of X*. ///

A further example of the lmpontance of theorem 5 will-

be given in chapter 6. The example is concerned wj-th the

eonstruction of irred-ucible representatj-ons of the Polncaré

Lie algebra.

@.
suppose,that L is a reductive Lie algebra over c and

that K is a subaÌgebra of L.

An irnedueible L-modul-e x-is K-r:¡-r-te. 1f the following

conditions hold..

(f ) The mod-u1e X is completely red.ucible into finite d'imensional-'

irreducible K-mod.u1es.

(Z) Each irreducible K-module in thls decomposition occurs only

a finite number of times.

ß) X h¡as a veetor of maximum weight.



82.

K-finite L-mod"ules are not the only possible L-modules.

For example¡ âfl L-nodule need. not have a vector of maximum weight

nor need. it be d.ecom¡losable¡ and, even if these cond'itions were

satisfied, inf inite d^j-mensional l(-mod.ules coul-d occur in the

d-ecomposition. IIowever, they are appropriate ln a d'iscussion of

algebraic eigenvalue problems, because the spectr:urn of any cliag-

onal operator on such a mod-uJe is bound.ed. either above or below

and. the mul-tipllcity of each eigenvatue j-s finite.

Bouwer (tge g) nas investigated. irred-ucible mod-ul-es

for simple Lie algebras that have neither a maximum nor a

minimum weight. Instead he assumed- the existence of a weight p

with the fol-lowing Properties;
(t ) the mul-tiplicitY of P was one;

(Z) for a subset of the simple roots¡

p+mct

tvas a weight for every integer m, posltive or negative;

ß) for the remaining simPle roots¡

p+q

was ne\¡er a weight.

Bouwer found, that, with certain other mlnor assumptiofls¡ p

Iabel1ed the irreducible mod.ule. sinil-arly, the technigues

devised- by Green can be extended to such modules' llowever, for

the applj-cations I have in mind, modules with a hlghest weight

wilf suf f i-ce.

Schurts lemma can be sharpened. for an irreducible L-

module x which is K-finite, a resu]t wj-th important conseguences.

T,et rr denote the representation afford.ed. by X and- suppose that t

is an endomorphism of X which commutes wit¡r zr(L)t

[t, r(r)] = o.

Schurrs lernma states that the set of endornorphisms with thj-s
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property is a dj.vision ring. The lemma d,oes not state that t

must be a scalar multiple of the identity; that nesult is only

true general-ly when X is finite d.imensional and. complex or when

)f is a complex Banach space and the representation is topol.ogi-c-

all¡r irreducible, Nevertheless, because X.is K-finitet t must

be a scal-ar multiple of the id-entity on X. The proof of this

assertion is quite simple. rt is obvious that t commutes with

îr(K) ,

[t, ?r(K)] = o.

This id.entity must hold. on any irrertucible K-submod.ule Y of x.

Since y is finite d-imensional and complex¡ Schurrs l-emma implies

that t is a scalar multiple of the identity on Yt

ty=lV, forallYinY.

Now,(t - À) commutes with fr(L) on X.¡ and. so must either be non-

singular or zero, because the set of such endomorphj-sns of X i s

a d.ivlsion ring. The first possibllity cannot occur because

(t = ¡,) vanj-shes on Y, Hence¡

tx=Àx¡ forallxinK.

DiaEona I Onerators and the AlEebraic E i senvalue Problem.

Suppose that L and K have l.¡een chosen in the standard

way, Let U(f,) and U(N) d.enote the universal- enveloping a1-gebras

of L and K.

The matrix a of K satisfies a polynomial id.entity of

d.egree n¡

a +ealn
in which the eoefficients are-erements of n(x), the centre of
u (K). The existence of such an identity was proved by Lehrer-
rlamed (lgs6); the coefficients in the id.entities for the

classical Lie algebras were d.erived. by Bracken and Green (lgll)

n
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ancl Green (1971). It is important to stress that this identity

hol-ds withln the algebra of nlatrices over U(f) and is not

peculiar to certain reprecentations of K. Equivalently, tlre

id-entÍty is tr:ue in every representation of K.

Weyl (1939) an¿ Harish-Chand.ra (lgSl ) frave shown that

Z(N) is a finitely generated subalgebra of u(x). One set of

generators for r(x) is

["r, = trace (o¿), I f i s nl¡

though not al-l of its elements need be ind.epenclent" The

traces of higher powers of a can al-ways be expressed in terms

of this set as a consequence of th.e polynomÍaI iclentity. Thus,

z(x) = C["rrBrr. . ' ,sni t

where I have used the common notation for a polynomial ring

over C, which can be found, for example, j-n the text by

Jacobson (1951). Because z(t<) is an integral domain, lt can

be embed.d.ed. in its field of quotients. This fiel-d. has a

nininal- extension fiel-d- E in which the polynomial

xn+cxn-l+'+c
ln

splits into linear factors,

1 €8.1. )
L

,
L

f w111 call- E the splittinE fiel-d" for K.

only s ¡s t. . .¡s. and. s. appears linearly¡ s. can be
'zLLLas a pol.ynomial in I 11 ,' ' 'rI . Hencer êv€rV point

12n
ratÍonal function of the noots 1 ,1 t ' 11 ¡ the

t2n
coefficients being chosen from the complex field C;

E = CII ,1 t ' ' ' ,1 ) .',- 2- n

Because c. involves
L

express ed

ofEisa

Of course, not all of the roots need. be linearly independent

over C.
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C

Ena(v) u (t<) E

l,et X d.enote a K-finite L-module and. suppose tltat Y

is an inred-ucible K-submodule of X. As a vector spacer Y is

finite dimensional and. complexr so Schurrs lemma implies that

every element of Z(f) red.uces to a multiple of the identi.ty on

Y. In partieular,

for all y in Y.

e quat i on

y. € c ,
L

,}. denote the roots in C of the
n

xo x+y o+ a

"¿V = TiY ,
LetÀr "

I

There is a natural action of E on Y.

is a rational function of 1rr '

f(l , '1 )y=f(À'-rnt
for all- y in Y. Since

n

rff(1 ¡.
,

I Ín E, d.efine
n

'À )v ,
n

'tn)
,

Y --.@ Y.. ," -î u

where each Y is a finite-dj-mensionalr irreducible K-modulet
v

the action of E ean be extend.ed to X by the sirnple definition

eX=(ÐeY--, ee E.
vv

Green and. Bracken have shown that Àr,' ' ' ,X, deternine

the components of the hlghest weight of Yr ârld conversely' It

also seems clear from thelr work that infinite dimensionalt

irred.ucibl-e K-mod.ules can be Iabelled. in a similar way and- that
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the matrix a, its polynomial id-entity and its reigenvaluesr

1 s ' ,I will be essential to the stud.y of K and its rep-
tn

resentations. Conseguently, it is necessar;' to extend. U(t<) so

that it contains E. More pneciselyr I must extend- the field.

over which U(t<) is defined from C to E. This step is not

trivial- because E contains certain elements of U (X) . Never-

thel-ess, in the append.ix I have shown how to construct an

algebra U@ over E which eontains an isomorphic copy of u(K)

and which obsenves al-l the necessary identities. It is with

this algebna that ï sh.all henceforth work.

The polynomial j.dentity can be factorised in Û-@:

a =O.
L

For all the classical Lie algebras, the roots Ir, ' r1r. are

d.istinct elements of E, though they are not necessarily linearly

ind-ependent over C. The matrices

n

p.. = fJ t" tr) / (1¿ t;)
, 

,=,

are mutually annihilating projection matrices which provid.e a

resolution of the identityr since

1. )
L

,fP

IT:.tr
(

p. p.
LJ

1

a

6 Btl L'

T
L

T p

p

1

L t

and- a
L L

¿

It is not difficult to verify these assertions.

Simllar consid.erations apply to L as well as K.
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Suppose that X is a K-finite T,-moclule. A

d.iagopa,l*operAtor on X is an element of E acting on X'

Note that the lai¡els which specify the irreducible L-

module X play the role of boundary cond.itions for a cliagonal

operator on X.

Note afso the restrictions plaedd upon the eigenval.ues

of the labelling operators in the application to quantum physics.

An inner prod.uct must be definecl on X and. one of the real forms

of L must be represented by skew-symmetric operators on X.

Ulhen this real form \ is the compact real form of L' all the

l-abels will- be real and quantised. Vfhen L* has one non-compact

basis element, one 1abe1 may be purely imaginary and. unguantised-.

When L* has two non-compact basis eÌements, two labels may be

complex conjugates of one another and may be unquantisedt and

so ono

Since every el-ement of E is a rational functiont with

complex coefficients, of 1 ,l the spectrum of any, ,
n

diagonal operator can be found once the Spectra of Ir, ' ,Ln

are knowrr. Furthermorer on any irreducible K-submod-ule of X,

the eigenvalues À,, ' ,X, of 1 r ' 11, are simply relatecl

to the components of the highest weight of the submod'ul-e' In

fact, once it is known which K-submodules occur in the decompos-

ition of X, and. with what multiplicitles they occur, the spectra

of 1 , ' ' ' 11 are effectivelY known'
ln

Thus, the stucly of diagonal operators can be resolved

into the following stePs.

(1 ) Classify and- construct all flnite dinensional K-modules'

This is a relatively s1mple problem and 1ts solution is well

knoln.
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(Z) Classj-fy tÌ:ose infinj te*climensional-, irreduclble L-lnoclul-es

lvhich have a vector of hÍghest weight. Thjs is an easy ta.sk

because the hi.ghest welght j.tself provj-des à un:i.que 1abel1ing of

the module.

(:) Decj-cte which irreci.ucibte L-modutes are K-finite" In contrast

this pr:oblem j-s dj.fficult. Howeverr it can be resol.ved, lv-ì th the

help of ttre characterjstic lcÌentities derived by Professor Green

and Dr. A. J. Bracken.

(4) .po" a given K-finite L*module X¡ d-etermine vvhich irreclucible

K-mod-u]es occur in the d-ecomposition of X and- al-so the respective

multiplicities.
(f) Final1y, from the results obtainecl in (4), ded-uce the spectra

of I t , ,I on X ancl hence the spectrum of any given diagona-L
ln

operator on X.

For any pair K and. L, chosen in the standard' lvayr a1l

these probl-ems can be solved-. Howeverr aì-though the method of

proof is similan for al.l- pairs K and L, it j-s not so similar

that al-1 cases can be treatecl simultaneously. This difficult'''

is al<in to the one encountered- in the theory of the special-

lrrnctions, where, despite the similarities betv¿een the special

f¡nctions, they must be treated separately. Consequently, I wil-ì-

only show how to solve the problems for one case, namely,

K = gl(n,C) < g1(n+1 ,C) = T,.

truc of -finite n+1 od.u1e

In this section, the foll-owing notation v¡il-1 be in

force.
(r ) x wit.t. denote a g1(n+1 ,C)-module that is g1(n'c)-finite.

(z) m t . ¡rn_. will d.enote the roots of the characteristic
, n+,

identity for gI(n+1 rC). Recause X is 81(nrC)-finitet each m.

reduces to a multiple of the id-entity on X:

l.
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*r* = þL* ¡ lf,r, C, for all x in X.

ß) Simil-ar]y, 1r, ' ,In wi]1 denote the roots of the

characteristj-c identity for 91(nrC)" Thusr on every irreducible

el(nrC)-submod.ule Y,

l.rV-À¿YrX¿€C'

for a1.1 y in Y. Of course the eigenvalue À. will- depend u'oon

the submodule Y.

(l+) For brevity I will use the_ notation

1= (r t ' ' ' ,1 ) , m = (t, ' ' '"ril-,-) ,' ,- n ' t- n+t

l = (À,, . ' ,Xn) , U. = (Ur,

(¡) ¡ç will- denote the vector of highest weight in X. It is not
o

difficult to verify that this vreight is

(r, -n, þr: n+ 1r ' " ,lrn*r) '
Thus, al,x = (tt. + i - n - 1)x^ , 1 S 1 É n+1 ILo ¿ o

and. rù.* = o , 1s i < ¡ S n+1 .
Jo

(6) Similarly¡ if Y is an irreducible g1(nrC)-subrnod-u]e of X

and.

l-.y = 
^¿y 

, 1 S i S n ,

for all y in Y, then the highest welght of Y is

(¡, n + 1,I^ n + 2, ,nr)'t'2
and. the vector yo with thls weight satisfies

a¿

and au

(Z) tr'ina1Iy¡

.vLO

.vJo

(À¿ +1-n)y ,1SiÉn,
o

=Or1Éi<jSno
the spectral proJections for the matz'ix a of g1(nrg)

will be d.enoted bY

p
TTll(a 1.)/ (r.
!'r J L

, 15i5no1 )
L j

J

Roman lndices will lie 1n the range 1r2r "'rII. when an

lndex is repeated.r summation over that index will be und-erstood.
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Def ine

b¿k = *in*,(nu)¿,
It is easy to verify that

and b = an*1.(nu)j, a
LK

"rrot =,btk1aj.¡ + 1)

and

Define

ai b aib ( 1)
k J

a n+t LKb

satisf'y

a

J kL L

Since ai. = I + 1 +
Jr2

the a.bove formulae indicate that btk

tjotk =,b¿L(lj + orr)
1b =b (t 6 )j ¿,( ¿k' j jk'

'+1
n

a.nd b

,

LK

,

a

This statement is true, but its proof is d.iffj-cul-tr so I refer

the matter to the paper by Green (1971).

From the very d-efinition of xo as the vector of highest

weight in X', it fol-lows that

aJ x = o.
.n+ I O

It is then guite easy to show that

btkx

]ok=

o
o

a
L

Obviouslyr' bkx = O .
o

bk is a rmixed invariantt, fon, although it eommutes

with all elements of 91(nrC), it cannot be expressed as a rational

funct-ion of 1. However, by an exceed.ingly tedious calculationt

which will be j-Ilustrated later by an example, bk can be expressed-

as a rational. function of 1 and- m. If À and p are respectlvely

the eigenvalues of l- and m on the vecton *o of highest weightt

then the conditions

on*o =. Q

yield. n polynomial eguations between À ancl þt

çk(T,p) = o .
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Beeause X is a e1(nrC)-f1nite g1(n+1 ,C)-modute¡ the

veetor x of highest weight in X'must lie 1n sone -f-!nite-o-
dimensional, irred.ucibl-e g1(nrC)-subrnodule of X. rùurthemore, this
submodul-e will be labelIed- by the eigenvalue À of I on xo. Irr

general, the finite d.lmensj.onal, irreducible gf(nrC)-mod.u1es are

labe1-1ed by integers À t ' ' 'rtr which satisfytn
xrtÀr>'

Thus, the assumption that X. is g1(nrC)-finÍte places the fol-lorv-

ing restraj-nts on À and. ¡,1:

(t) À,, ' ,Àn must be in'begers;

(z) 
^ 

>¡, >'
t2n

(¡) À and. p must satisfy the polynomial equations

çk(\rp.)= o, l skS¡.

An alternativer and more profitabler interpretation is that the

irred.ucible 91(n+1 ,C)-module¡ labelled" by lt, can only be gl(nrC)-

finite v¡hen the polynomial equations in (Z) have a solution À

which satisfies cond.itions (t ) and. (Z).

Tn a similar manner, conditions can be formulated u:rcler

which X has a vecto¡. ,o of ninimum weight. From the d-efinition

of such a vector,

o.j o

ft is not dlffi-cult to ehow that
b z. - O.Lk o

Define b* =aL^rb¿k.
Obvious}y, bkro = O,

b is a rmixed. invari-antr and can be expressed" as a
k

rational function of l and n. If ¡..'is the eigenvalue of 1on the

vecton z of lowest weìghtr then the cond.itions
o

zafr* |

bzRo o
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y1e1d n polynornial equations between À' and ¡'l¡

en(X"ø) = o '
If x is irneducibler then each of the d.ifferences

'L = l, nr'
must be an integer.

Again there 1s a more profitable interpretation of

these results. suppose that p 1s given and that À is a

solution of the equations

,klxrù = o ' 1 5 k 5 n'

Construct the lattice in Rn whose points have the form

u = (vrrvr, ' ,rr) ,

where eaCh component of v is an integer. Two points v and v'

are ad.iacent in this lattice if v - v' has only one non-zero

component and- this component is equal to t1 . A pa-t-h from ihe

origin to u is a finite sequence

[o =r(t)rr(z)r. . . ¡v(m) =vl
in which each point, is adjacent to the next. The point u is

conn^ecl_q@ 1f¡ there is a path from the origin to v

such that

I k
(¡, - v(L) ,p) + o,

lSicm

1=kÉnt o

Let D d.enote the sul¡set of the lattiee connected to the origin

and 1et K^_r, , 6 Dr denote the irred.ucible g1(nrC)-module

labelled by (¡. - v). Define

X= @ x^-, '
ueD

suppose for the moment that it is possible to convert x into an
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irred_ucible 91(nr-1 ,C)-modu1e. It is cÌear frorn the construction

of X that X is completely reducible into irreducible eI(nrC)-

mod-ul-es anci" that each occurs onJ-y once. \Mlen the numbers

À ,X , ' rÀ are integers and' satisfy
12n

n,txr>'
x is g1(n,C)-finite.

.Theonlysurvivingproblemistoshowthatthe
reducible gf(nrC)-module X can be converted into an lrreducible

g1(n+.1 ,C)--module. GeIrf'and. and. Cetl,in (lg>O) found a solution

f or f inite d.imensional g1(n+1 , C)-rnod.ules; only tr j-vial

moòifications are reguired f or the lnf1nite d-inensional case.

For all x in Xr d.efine

aÈt J( = (m + m + ' + Ill 1- 1 ' -1- - n)x'
n+, I 2 n+l | 2 n

The d.ifficulty is to define the action of ao* t, and a¿

X in a way consistent with the commutation relations.
n+

on
t*,

Si.nce

a lam t ,an .f
NLL

aL=lttrãD]tn+l n n+l

and an have been d.efined¡ a
n+,

these fgrmulae.

n+ 
' and at can be

L

The basis vectors of Xn-, can be represented' by the

tableaux of lntegers
l-u

and-

onee afr* |

,n
defined. by

À-u

n+l

^

where À -u >^
tt

^ tt

¿^-u >"":"lÀ >À-v

n n

À
ll-l ll *l

ìÀ -u
n-l ll-1 n*rn-l n

tt
À-u

22

I ll-l

tn-t 2 2

aaaaaaa

aaaaaaa

À-v,l-t n-l

À
2 It 22

a

an'
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The entries of tfre mth row from the bottom are the eigenvalues

of the roots of the characteristic identity of ef(mrQ) on the

basis vector, Thus, this ts egsentially the Iabel1ing scheme

devised. by Gel-rfand and- Cetlin. Now,

an =aj tnn*l n*t j

aJ I
k

n*t
(p )n

k .t

Similarl.y, an* t

À-u ""'^-u,tn

:bnk.

fr-, À-u
I t t.....'
IL À,,

À'u ..À -? +'1 '"À -ultRRnn

I
k

T
k

n
b.

nk

bnk raises the eigenvalue of 1* bV +1 r þut leaves unchanged the

eigenval.ues of tJ, i + k. Furthermore, bnk commutes with the

labelling operators for the subalgebras

el-(t'c) <gl(z,c) < :'<g1(n-1 ,c).
Thus ¡

n n

bnk
À It

Simll-arlyr

À-U.....À-Uttn

cx
k

tl

À -u "}, -v.-1"À -uttRKn
aaaa' À

I
n n

b
nk

ll

The coeffici.ents d. anð" P must be d.etermined as functi ons of
k k

f 
" 

'^, 
,'^" 

"1

p
k TÀ

sub ject to the following cond-itions.
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(t) ok and. Fn must vanish whenever the vector on the right is

without meaning. tr'or examPle, if
L -u .. ' ..l -uttn n

^ tt

j-s the vector of highest weight in Xr then

ct.

f' 
''^, 

::^"-"1
O.

k

(z) an and. an*r must satisfY on X
n*t n

lun*' n r àf,rnr ] = an+t,1+1,n n .

These constraints lead. to a set of f\rnctional eguations for ok

and Þn which have many solutions in general. Howevent the

g1(n+1 ,C)-modules correspond.ing to the d-ifferent solutions are

eguivalent. The solutions found. by Gelrfand ancL Cetlin in the

flnite dj.mensional case can be applied egually well herer So

the task of constructing the eI(n+1 ,C)-rnodules Ís completed'.

1 I o c

The construction of irred.ucible sf (Z¡C)-modules

which are g1(1 rC)-flnite 1s a trivlal matter. Nevertheless

this exarnple is partieu]arly lmportant, because the theory of

the simple sPeetrum nests upon it'

The matrix of sr(ZrC) is

b = à - åtrace(a)

J

c

tTt ,-u' ,)
a2

I

at

-tG,
2
_a2
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and. satisfies the identitY
lÞ2-bs=o?

where s =*(2=r- ",t)

and. u¿ = trace a¿ , i = 1r2.

The: centre of the enveloping algebra of sf(ZrC) is generated' by

s and hence is the polyrromial algebra C[s]. The extension fjel-d

E in whlch the characterlstic ldentity spì-its is constructed- as

fol-Jows. Firstly¡ €nbed C[s] in its field of quotients F = C(s)'

Secondty¡ construct the polynomial algebra l'[x] in one ind-eterm-

inate x and the principal ideal J in n[x] generated by

x2x-s.

Flnallyr d.efine

E = Fl"l / J .

For the proof that E is a field I refer to Jacobson (l95la) '

Set I=X*J.

Then !2 1 s=O

and (¡ 1)(b+1 1)= o'

Hence the characteristic id.entity can be factorised 1n U and the

general technigues outl-j-nec1 in the text can be applied.

However, for thls simple example there ls a more d'irect

approach. Define

h =t(a' a2-),
t2

à = al
2

e =a2 .
t

The set [hre+re-J is a basis for sr(ztc) and' the Lie prod'ucts

are

[hre*l = t ê+ , [e*re-J = 2h .

Furthermorer s = hz + +("*u- + e-e*),

so s is Just the well known Casim]r element for sf (Z,C)'

,

The



g1(1rc) subalgebra of sr(zrc)

basis Ih l.
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is one d,imensional and. has for its

Every g'1(1rC)-fi-n:.te s1(ZrC)-mod.ule X is isomorphic to

the space S of terminating seguences. hre* and, e_ then have the

matrix representati ons

h=

p
tr1y2

p-3 ô"+ ,etd.4

o d.1

o d.z
odg

0

o
Êto

Ê¿o
þsoI

where pt o( p € C. The commutation relations
k

Irr rê+

are satisfied no natter what values are assigned. to d

However, the third. relation is only satisfied. j.f

,
k

]=!o*

and B a

k k

p =k(Zp+ 1-k), k>1.
k

The vector

is the vector of highest weight in S. The corresponding vrei-ght¡

a l-inear functional- on H = [ftJ, is
p: H--êC

hr--* P.

The mod-ule X has a vector z of Jowest weight if
e-z =O.

This can only be so if Pk vanishes for some k, in which case

2p + { = k and. the representation is k-d.imensional. These are

of course the familiar finite dimensional sf(ZrC)-mod-ules.

lvhen (Zp + 1) is not a positive integer, okþk never vanishes and

X ls irred.ucible.

ct
k

g

1

o

9

:



The theony devel-oped. by llarish-Chand.ra sholvs

hlghest weight p uniquely l.abel-s the sf(erC)-module.

in this example it is so simple that 1t is worthwhile

this fact. Suppose that

98.

that the

However r

to verify

h

d.4

p
F1

p-2
r3

d.1
O d.2

o
þto

þzo
þso

n,

aCe=eC.

a

d2
o, llr'

".= 

L

ß,,
,lpi

"-= 

L

al¡
,od3

o

O
pio

d.g
o

,

a

a

,)

orþu=k(2p+ 1-k) =";P;
are tv¡o irreducible representations of sf(Z'C) with the same

maximum weight. Set

v
I v

2 v 1

and reguire

Thus r

Since Pk anð" P,i

lrreducible ¡

k

vt3 ,
I

p v p v a

k k+t k k

never vanish because the representations are

Now

vk+l /y p; / pk.
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o qtTt o qîyz

o dzYz
o dsTs and e'e+

o qâvs

o aZYa ace+

Because
k k

,
a 

^a=d-lJk'kOL

x(rtnf k / tii)= Ct,

k

p

vd.
k

= okTk-r, '
and. so "u* = ";" 

.

It is trivial that ch = hc. Thus, the representations are

e quivalent.

Example 2 " s1(2.-C) < sf (3, C)..

The purpose of thj-s exa.mple is to ill-ustrate the steps

1n the generaJ- progranme for the construction of gl(n+1 rC)-

modul-es that are gf (nrC)-finite. Roman ind.ices wil-l take the

values 1 and 2, Greek ind.ices the values 112 and- J. Tfhen an

index is repeated.r summation over the ind.ex will- be und.erstoocl.

(i ) Generator a o f the centre of the envelonins afgebre.

s.te,c)

2

5

st(3,e)
L t

t

êt =aþ

u-a'paS

S

s

L

uL .uj .
JL

uL aj akjkL

uvà'vã 
u2

3

v
và

C
p

6S
2

{- l-o2p (¡" s")
2

These generators may be expressed. as symmetric functions of the

noots of the characteristic identÍ-ty.



s1(2,C)

=1+1-1l2
S

al(5"C)

= H *lll *Í1 -3
123

= m (m -2) + m (m -2) + m
ll 22

1 (r -1 ) + r- (r -1 ),l 22

Pro jecti.on operators.

t
t

1 00.

(rn -2) + 1
ö3

t = m (ro -1 )t + m (m -1)n + n (m -1 )t
5

1 61,

tl

-mm,2

22 33

(z)

j j

j j

)+t2+3s
I

2 J t

L6L )/ (t
J 2

+

mm mm
23 5t

1)
2

f)

(tr-s,)"

(p ¡i = (t¿

= ("¿

)/ (t
t

(p )¿
2

ß) Baising-a¡ê -lqtqef-l-Dg operallry "

b¿k = aJ (p,)¿., bk = "u.otns'-,(- .i L

brn : *"J(n*)ir, o,. = aL 
uorn

(L) Ìli,xed. invariants.
bk and On commute with the basis of ef(zrC).

straight-forward.e but exceed.ingly ted'ious calculation,

can be expressed in terms of 1r, Lr, ",, ", and' f ,'t,

For example¡

6bt = lzt ,
5 (t, _.

3s (r-r ) - 3t (1+1^)- 2' 2' 2 2

, 
(t,-", ) + (3s ,-2t ,) 

(l+3t,) +

t

a

Bya

they

t,

+3r(t-s)'2lt

o
3

)(t -s

ss _js s l/(t _t ) .
I I 2- I 2

These expressions are very complicated.¡ yet when wrltten 1n

terms of I and m they beeome remarkabl-y simple.

¡k = (_)r,*rçk(t,n)/(t I )
,2

1)b

l2?

2k
(-)¡,*rrn(t,n)/(t,



Itil "
\pt(r,m)=(rn -1 -r)(m -r -1 )(rn -r )*(m -1 -1 )(nr -1 -1 ) +'t't2t3llt52

(m -1 -1) (m -1 -1 )

.).

,32

g'(L,m)=(rn -1 -1 )(m -1 -1 )(rn -1 )+(m -1 -t)(m -1 -1 ) +
122232225t

(m -1 -1 )(rn -1 -1 )tt5t

I (t,*)=(m -1 ) (m -r ) (* -r

,

,)tt213l

a (r,r)=(m -t )(* -l- )(m -r )'2 I 2 2 2 3 2
a

(¡) Suppose that the gfjrC)-module X has a vector xo of highest

weight and. that À and- p ar'e the ei.genvalues of 1 and- m on thls

veetor. Then À and. ¡l must satlsfY

çk(:l.rp) = o r k =1r2.
Sim_ilarlyr if X has a veetor zoof lolest weight and. }r' ls the

eigenvalue of I on z , then À' must satisfy
o

p.(1"ø) = o r k = 1t2..K

(6) Construction of sl-(2, CÞlinite .

One solutlon of the equations

çk(xrù = o , k = 1r2,

1S au1
22

I will construet the irred.ucible g1(lrC)-module 1n which the

labets of the irred.ucible gl(2rC)-submod.ules are connected- to

(À rÀ ) in the sense defined in the text. This mod.ule will only't2

be gl(2rÇ)-fini_te if 
^, 

and À, are integers vrhich satisfy

À >^ tt2
and p

2
are integers which satisfY

p o

oPr equivalentlyr if p

>11
2



The points of the array D in

the origin. Let Xn-, d-enote

gl-(2rC)-module with highest

(^ 1
,

and construct

102.

The ArraY D.

(p -p -1 ,o)
l2

,v ) plane are connected to

d"imensional, irred"ucible
2

finite

v

o

a

o

aJx=
3

xinX.
Àl-ul

K

X= @
veD

weight

,^
2

xÀ-, o

2

a

a

oa

a

o

a

c

o

v

the

the

(v

)v v ,
2

Define

for all

a5
2

[,

(m +m +m
2

1 -2)x1 ,

) (x -u -,c-1 )
5tl

2

l-u-1
1l

5 t

A basis for X consists of the vectors
\

Xt-ut\, v € Dr Àl.-yt 7 K Z \r-vu
/

where rc is the eigenvalue of at on the vector. Define
I

À-u À-u
ll 2

\ -v 'l-t ) (l -u -¡.r

K

^2

+(l -u -¡z )

t12

225

tl K

À-u À-u-1
22 /(l-r-À+u)l tt2

and

K 2
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a2
)

À-u À v
1 2

3 tc

I-u
tl

l, -u +1
22

tc

}'-u+1'tt À-u
2 )l /(x-u-À+u).1122+(¡.¿ -l +u -1 ),tl K

Wlth these definitlons¡ X Ís an lrreducible eL(lrC)-

module that is e]-(zrC)-finite. Its hfghest weight is

(p -zrtt -1 ,þ ). Note that when ¡.1- is an integer and'"t 2 3' 3

þ' ' þ' ' 
þ" '

X is. one of the familiar finite d.lmensional g1(5rC)-mod.ufes.
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APPENÐT

In lemmas 2, 3 and 4 which fol1ow, the following

notation will be in force. L wi]l- denote a reductive tie

algebra over the complex field and. Io will be a real form of L'

Thusr . L = h + iln ,

where the sum is a d-irect sum of vector spaces over R. U(L)

anO U(L*) will respectively denote the unj-versal envel-oping

algebras of L and \: A similar d,econrposition obviously hol-d's

for U(L):

u(l)=u(r,*)+iu(LR).
Suppose Xn is an'I*-mod-ule. Construct

X=XR+iXR

and define a product, denoted by juxtapositj-ont süch that

L x X 4X by

(t * ib) (* * iv) = (ax - bY) + i(bx + aV),

where a¡b e l,n and, xry . XR. \ryith this productt X i's an

L-moöu1e.

Lemma 2. Suppo.se X = XR + i\: X is an irred'ucible L-'module

if and only if X-R is an irreducible L*-mod'ule.

Proof (triviat) (t ) Suppose that Y* is a proper L*-submodule of

XR. Then (Yn * iv*)is a proper T,-submodule of X'

(Z) Suppose that Y is a proper L-submod'ule

of x. Because X can be decomposed into real' and irnaglnary

partsr so too can Y. Thust

Y=YR+iYR.

Yn is a proPer L*-submod-u1e of X*

Lenma 1. supBose that xR and x*' atlâe two irred'ucible

L*-mod-u1es, Constr"uct the L-mod-u1es

X = X* + iXR and X' = X*' + iXR"
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andThen X and X'are equivalent l,-nodules if and. only jf

XR' are equivalent \-modul-es o

pr,gof (t) If xR ancl Xr'are equivalent Lo-modulest

is an isomorphism o*r

tRt xR+ \"
which intertwines the rnodule operations on x* and x*'.

Define úz X-4X'

x+iy * tR" + iø*Y , where xrY e \.
ø i.s clearly an isomorphism of the vector Spaces X ancl X'.

there

I'urthermorê ¡

((r * :.¡)ø) (x + iv) '= (a * ib) (ø*x + iø*v)

= a(ø*x) - t(o-*v) + i(u(ø*x) + a(ø*v))

= ø*(ax - bY) + iø*(bx + aY)

= o-((a + ib) (x + iv))

= (ø(u + ib)) (x + iY).

Thus, X and X' are equivalent L-modules'

(z) If x and x' are equivalent L-modules, there is

an isornorPhisn Ft

Í: XèX',

which intertwines the module operations on X and X'. Choose

any vector x in x*. xR can be considered to be an irred'ucible

U(4)-mod.u1e. Every vector of Xþ, in particular x¡ is cyclic'

Thus t

XR = u(i,")x

Let y = o-x. The vector y can be decomposed

y = x'í ix,,, where x" x" e \'.
Since x is non-ze1o and ø is injective¡ y ls also non-zerot ancl

hence one of x' and. x" must be non- zero. I will Suppose K' to

be non- zero. A similar proof can be devised in the öther case.

XR, is an irred.ucible U(tn)-mod.uler so x' is a cyclic vector.
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Thus r

XR' = u(tO)x'

Define the maP

rRt Xn'+ Xn

ax't--¡ ax¡ where a e Ïl(rn) '

(i) 
"R 

j_s sur jective because x is a cyclic vector for xR.

(li) îR is inJective. To show thjst suppose ax = o' Then

ø(ax) = O. Because ø intertvrines the module operations on X

and X' , a (o-x) = O. Thus,

aY= a:l-'+ i-a-x" = O.

Because xR' and- ixR are linear"ly i.ndepend.ent over the real

f iel-d , àx' = ax" = O. Thus , TR is injective'

(iii-) "R 
intertwines the module operations on X*and XR"

(TRb) (t"') = r*(uax')

= bax

= b(z*(ax'))

= (ur*) (r*') .

Thus, XR and XO' are equivalent L*-modules' ///

l,emma l+. If x is an irreducible L*moduler then x can be

decomposed.

X=XR+i**,

where x, is an irred.ucible I,*-mod-ule. Furthermol€r xn is

unique to within equivalence of l¡-modules'

proof Consider X as an irreducible U(t)-module. Every

vector x in X is eYclicr so

X = U (T,)x.

Def ine XR = tt (f,*)x.

It is clear that xn is an \-module. Furthermore, since

u(L) = u(tR) + lu(h)'
it follows that
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x = \ +. 1IÞ,

The i¡'reducibllity of x* for-Iows from remma z.
If X = 5'* i5 is another decomposition of X, then

and { must be eguivalerrt. This is a consequence of
lemma 3" ///

xn

Construction of the ebr.a

Both E and, u(tt) are infinite d,Ímensional algebras
over C. Construct the vector space

T = E €)rr(K).
Wj th the product

( T
L

e. e:LJ)
uI @u@e

L jL )(I
J

ILj

/5
tju

L
u

""¿ @ r,I
L

j

where e

over C.

L
, @', e E and u., u' e U(x), T is an associatlve algebraJLJ
T can be consid"ered to be an algebra over E by d.eflning

I
L

e e( @ a
L

However, there are identities which are not satisfied
ln T. Since

z(K) = E n u(K),
every element of Z(t<) has two presentatiorìs¡ one as an element
of E and the other as an erement of u(tt), so it ls important to
coupre E and u(K) so that the presentatj-ons are equal. This may

be done as follows. Let

e.(r) = s.(1 ,rI ,, ' ' . ,1r)

be the symmetric polynomial which expresses

"¿ = trace aL e z(r), I s I s n¡
ln tenms of 1r, rr, ' ' ' ,rn in E. construct the two-sided id.ea1
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J generated by

1@s.-s.(1)øt ,1sisn.
SÍnce these eLements lie in the centre of T,

J=+ (t @u, s.(t)øt¡r.
L

Define the factor algebra

ilaK)' = r/ J.

Finallyr let p denote the naturat embeclding or u(r) in T,

I : u(t<)-+ t
üÊ- 1 @u,

anð- r denote the canonical proJection of T orrto t-(Iil,
îr : T -+fGI

t r-> tr.J .

Ï,êfiDa 5 The map

(t = rr.g : u (x ) -> UïÎ'I
ut-}1 8u + J

is a monomorphism.

Prgof- rt is obvious that ü is a morphism of algebrâsr
so all that must be shown io that ú 1s injective. suppose the

contraryr that there exists an element u in u(x) such that

ú(") - o'
that is, 1 @u € J.

Then 1 @u - It1 @s¿ (r) @ 1)ts
L L

I
J

L

L

(
Jj ue
)'L

@



u ru ,
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I r" thewhere the elements e, , lle in It and. tLJ

basjs of standard monomial.s j.n U(K).

1@u - @

Jacot¡son( 1962)).

e (r) øo

I

(

I,
Lj

JLLjj Suse ) a
L L j

since s, is a pol-ynonnial in the elements of Kr s.'n. and u.L _ L j j
are linearly independ.ent elements of u(r)" Hence, the terrns

of the sum can never be colrectecl irrto the f orm 1 @ u. This

shows that 1 @ u cannot lie in l, and so r/ must be lnjective.

///
the impora ol ilris lernma is that U(K) can be

id,entified with Íts image in ü@). r need a similar result
which al1ows E to be ld.entlfled wlth 1ts image j.n ú-CK). Let
cr d.enote the map

T. E->T

êÊe@1.

T,enma 6-. The map

D =1r.Ú | E-+Ú]¡1)
eêe@1+ J

is a monomorphism.

Proof Again it is obvious that p is a morphism of
algebrasr so r need. only prove that p 1s injective. The kernel

of p 1s an ldeal 1n E. Because E 1s a fierd, j-ts only ideals
are trivial. Thus,

kerP=OorE.
If I can show that 1 @ 1 does not l_ie in J, so that

p(1)=1€>t+J*o,
then p must be injective. This is trivial beeause 1 @ 1 is
one of the el-ements 1@ur u e u(t<)r ârrd the last lemna showed.

that none of these ever lies in J. ///
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C'tIÄPilEIì lr. CODIAGOIIAL OP¡]RATORS.

Algebraic methocl"s !/ere all- that I needed to f incl the

spectrum of eigenvalues of a d-i agorral. operator" Ei on an f,-moclule

X because f lcnew from the very d-efinition of X that X containecl

a basis consisting of eigerrvectors of So In contrastn if: t is

an arbitrary finear operator on X', then X need. not contain any

eigenvectors of t, but there wil-l- possibly be extensj-ons of'X

which ci-o. One such extension is the completion of X v¡ith respecl:

to the metr.ic topology d-efined- on X by a norm" Inrleedr Von

Neumarrnr s postul-ate that the states of a cluantum system shoulcl

comprlse a separable Hilber.t space sjmply ensureË that the axes

of the space can be rotated. so that any glven self-adjoitrt

operator is d-iagonal. However, the extension from X to its

cornpletion with respect to a norm is not the only possj.bility,

ancl in this chapter I want to shov¿ that for a certain cl-ass of

operators on X, again connected" v'¡ith the Lie algebras l, arrd Ke

there is a nore elegant proced.ure that is essentialì-y a1-gebraic.

I want to freely ma.nipulate inflnite matrices, but

since mistrust of such matrices lingers ft'om the work of von

Neumann (lSZ9), I must firstly dispell this taboo. Conseguentlyt

there is an introd.uctony section v¡hich deals briefly with the

algebr:a of col-umn-fjnite matrices and its subalgebra of row and-

co]umn-finite matric€Sr I should" remark that I came to the

conclusion that these llratrices u/ere appropriate for quantum

mechanics in my o\¡/n round--about way. I later found. that Jacobson

(lgnm) had given a beautiful aceount of infinite d-j-nensional

vector spaces and the algebra of column-finite matrices. Ilis

work should. be a prerequisite for any course on topoì.ogica1

spaces for it establ-ishes the limits of the algebraic theory and

thereby d.efines the role to be played by a norm.
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lnfirrite lJlatri-ces .

Suppose that X 1s a vector space over a fiel-d- F of

characteristie zeror ancl that the (namet) basls of X, d"enotecl

X

is countably infinite. Every vector of X may be represented

aS a l-inear combination of a finite number of basi-s vectors:

I f x , s 6F,
k

where the number of non-zero coefficients is finlte. the map

which associates with x the seguence

f
2

j_s ?ìn isomorphism of x onto the space s comprised. by al1 finite

seguences of el-ements of F.-

If t : X ----> X is an endomorphism of Xt then

tx = \ T x t T. € F ,---L 
L., kL k kL

k

where the number of summands on the right is necessarily finite.

thus r

,Ix t ,
2

k kk

ç
Cs

t I
E

€I
KL

L
x

L
f kKL

xT ,
L

where onee again the nurnber of Suhmands in each Sum is finite'

The matrix of coefficients k .) is call'ed the matrix of t
' kL'

relative to the basis [x ¡x t ' ' ' J of X. It is uniquely
t2

d-etermined by t. (r )isa column-finite matrix , that is to
KL

sâVr the number of non-zero entries in any column of ('f r) i"

finj-te. Conversely¡ every col-umn-finite matrix over F
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d.etermines an endomorphisrn t of X according to the formula

ab ove.

The set of all column-finite matrices over F, with

the operations of matrix acldition and- matrix multiplicati.on,

forms an associative algebra over F. The only point worth

noting in the proof of this assertion is that the prod-uct of

two col-umn-f inite matric€sr (onr) and. (, nr) i" al-ways v'¿e1l--

defined" and again column-fi.nite, because the number of non-

zeto terms in the sum

TLj
is finite. It is a simple matter to verify that, if s and. t
are two end.omorphisms of X whose matrices are (rnr) ana (rU),
then the matrices of s+t and- st are

ÚTkj jL

)jL) and-T q
kJKL

+( Í T
Lk

respectively. Thusr the algebra of endomorphisms of X is

isomorphic v¡ith the al.gebra of column-finite matrices over F.

For comparison, suppose that X now represents a

separable Hilbert space. The Hamel basis of X 1s nov/ uneount-

ably infiniten ancl the orthonornal basisr although countablet

only spans (algebraically) a dense eubspace of X. îhe infinite

matrixr relative to the orthonormal basis, of an unbound,ed-

operator t on X d.oes not provide a representation of t unless

the d.onain of t is also specified. For exampler aII the self-

adjoint extensions of a symmetric operator t wil-l have the same

matrix elements with respect to an orthonormal basis chosen from

the d.omain of t. The representation of unbound.ed. operators by

lnfinite matrices is fraught with difficulties which cannot
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occu.r in the algebraic theorY.

the infinite matrices which arise in many problems

of quantum mechanics and. spectral analysis are not only column-

finite but are al.s o row-finite , that is to sayr the number of

non- zero entries in any row is finite. This fact is ignored'

in texts which attempt to establish a rigorous theory of quantum

mechanics on Hil-bert spaces. Nevertheless, T bel-ieve that the

justj.ficationofmanSloftheformaltechniquesused.i-nguantu.rn

nechanics can be found- i-n thi-s fact.

The row and column-finite matrices form a $ubalgebra

of the algebra of column-finite matrices. The simplest

examples of natriees of thj.s type are the codiagonal matrices

o

and the block d.iagonal matrices

o

o

o ao
a

o
It is not d.ifficult to see that the mos t general natrix has a

swathe of entries along the d-iagonal

a
a

and. so is a type of generalised band- matrix. For this reasont

and also for brevify, I wilI cal-Ì an infinite dimensional' row

and. column-finiie natnÍx a band matrix.

Each band. matrix is an endomorphism of S, the space
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of terminatj.ne se quences of elements of the fiel.d F" S can be

embed.d.ed in a much larger universal space Sr the algebraic

corn'p-l-etion of S , comprised by al-I sequences of elements of F.

The important property of a band- matrlx is that it can be

uniquely extend.ed. from an end.omorphism of S to an end,omorph:ism

of 5. Suppose that (rnr) i" a band. matrix and € is a vector

in S. Set

T
L

çKL
T€;= a

L

The expression f or €; has a well--def ineil- meaning even when the

column vector f has an infinite nunrber of non-zero components.

This is so because (rUr) i" row-finite and hence the numben of

non-zero terms in the summation on the right is always finite.

Thus, (rn) can be unambiguously extended. to an endomorphism

of S. The extension is clearly unigue. The isomorphism which

maps S onto X can also be extencled in a natural way to an

isomorphism or õ onto 1. Here 1, the al-eebraic eompletion of Xt

is the space of all formal series of elements of X,

I
k

where the sequence f need. no longer terminate. The endomorphism

t of X which corresponds to (r,.) has been extend-ed to an' kL'
endomorphism T of 1. the name rformal seriegt suggests that

the elements of t have d"ubious mathematical- value. This is

not sor for i is mere1y an isomorphic copy of S.

The need. for such extensions v¡i-1l be clear in later

sections¡ but for the moment may be illustrated- by a simple

ex.ample. Suppose (rUr) is a trid.iagonal matrix on S¡

xS kk ,
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pd

v
2

g.

v p
32

p

CX

v

2

5

3
k ur)

,

in which

þxyx+ o for k=1'213, '.
Tt is easy to see that the only terminating sequence which

sa.tisfies the eigen-equation

, k = 1r2t3,
L.

is the triviat seguence, whose elements are all equal to zero.

Whereas S does not contain any solutions of the eigen-eo.uation,

5 contains them aI1. To select partieular eigenvectors, I

will l-ater define, in an algebraic manner, bound"ary conclitions

on E. Note that if S were embed-ded. in a Banach spacer the

cond.ition that each eigenvector shoul-d. have a flnite norm

would serve the same Purpose.

Codiaeonal Operat,ors o

Throughout the rest of this chapter, I vtill use the

following notation.

(t ) L will denote one of the classical Lie algebras

eI(nr-1 ,C) r sf (n+1 ,C) r so(n+1 ,C) r sl¡(ni'1 'C) ,

and K wil-I denote the largest subalgebra of L chosen from the

1i st

eI(n,C) r s1(trC), so(nrC) r sP(trC).

Thig Íe the choice for I and. K that I eaIled. the stand-ard-

choice in the last chapter. ("p(trC) for odd. n v¿as also

ç
tl 'ur€, - n fr, ,



116.

elements of L with coefficients n¡hi.ch are diagonal- operators qn

X, Becau-se X is I(-finlter every d-iagonal operator on X has a

cliagonal matrix. Furthermorer the el-ements of L have band

matr,ices which must be obtainecL during the construction of X.

It j-s an elementary step to cornbine the-'re matrices to find

the (bana) natrix of any codiagonal operator orr X. Tn pari;icuiar',

when L = sl(ZrC), a. codiagonal operator is represen'bed- by a

codiagonal matrix; hence the name.

The aim of this chapter j-s to investigate the spectrum

of a cod.iagonal- operator t on X. fn advance I shor,rl,d point oì.1*r,

that the spectrum of t on X is usually empty, on 1, the algebraic

completion of X, the spectrum is usualJ-y the whol-e comple>l pl-ane,

and. on intermed.iate extensions of X the spectrum tjes somewlrere

between these extremes. The investiga-tion of the spectrum of t

more properJ-y consists of the following problems.

(t ) Because the matrix of t ls a band ntatrix, the

d.omain of t can be extend.ed. fronl X to l, and hence to any subspace

X' such that

d-ef ined. there. )

(Z) X wilÌ be a li-finite L-noclule

(¡) FlnalJ ye tTre splitting f 1eld.

A cod iagona.l operator

Let

U¡

fact

for

ive character of the spectrum of i.',

I found. the concept of a

of inf inite d.imension.

of I( wi l-.1- be denoted. E.

on X is â pol-ynomial in the

X<X'(X.

t,'d-enote the extension of t to X'. If X'is invariant under

tiren it is guite in ord-er to ask for the spectrum of t'. fn

this is the first problem in the stucl¡r of the spectrum of t:

eyery subspace X', invariant und.er t', d.etermine the qualitat-

snectral chain for t very
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useful in the case T., = st(ZrC), and- I suspect that its utilì-ty is

not limited. to this case. Suppose 'bhat

lxy t Y : oJ

is a family of L-submod-ul-es of I for wtrich

xrxprxy<1, (i1Y.

A flnite chain of subsPaces

X X
vv

<X
2

v
b

whereO=Y SY <o ' 2 b 'b+t

is a spectral chain for t if t has the same spectrum onrro and'

X" for al-l 7 in the range

To S Y 1 To+t ' 
O É a S b '

In loose terms, the spectrum of t is a step function on a spectral

chain; 1t is constant until X" reaches a critical si-ze and- then 1t

jumps to a new levef.

I can rephrase the first problem concerning the

spectrun of t. Find. a spectral chain for t and d-etermine the

qualitative nature of the spectrum of t on each component of the

chain.

(Z) The second problem ls more specific. Given a eub-

space X', invariant under t' and- satisfying

x <x'<1 ,

how can the speetnum of L' be calcul-ated in practice?

These are d.ifficult problems¡ and only in the case of

the sirnple spectrumr where L = sf(ZrC), am I able to give a

conplete sol-ution. Aceordinglyr I will treat this case in d'etail

and tnen ind.icate hovr the scope of the id-eas may be extend'ed''
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Simple Spec trum n f, = sf (2 r C ) .

module

fn this section, X wÍIl denote an j.rred.uciirle sf (erC)-

of infinite dimension which has a vector *, of highest

weight p.

ively by

A basis for X consists of' the vectors deflned. r'ecurs-

x = "_*k / Ên , k = 1r2t ,

where Íp
then

k

p
p-1

p-2
P:3

ktt

I i" an arbitrary seguence of non-zero complex numbers.

hx (p+1 k)x k'

xk k+t

ex+ R+t k

p =k(2p+. 1-k)+o

t

k

k
ex

x

p

d.

d.2
o d.¡

0

,
k

where
k

The matrices of hr e and e_ are
+

q a

k

h= ,
Oc5

oe d4 oêt

o
Pto

Pro
þso

C

ofX can obviously be ldentifled with the space S of sequences

complex numbers which have but a finite number of non-zero

eomponents.

It is convenient to use unit etep operators

and- d.

in place of e. and e on S.
+

Thus r

and e

o
10

10
1

o1
o1

o1d*=

=d-ue =üd.+ ++ ,
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C¡ þt

vvhere u

and t (rr) € E.
L

Ift ( r')

d"2

oLs

L=-m

,fori=O,

rfori<O,

and. u

p2
p 3

+

Both u and. u can be considered. to be functions of h since

o*t_ - (p * h)(p + 1 - h) .

+

The obvj.ous choices for r* and u_ are

o+=p+handu_=p+1-h,

but these are not the only possibilites. fn general I wj"ll- all-ow

ut to be rational functions of h. The reason fon this choice

is that such functions comprise the splitting field. E for

er (t ,c) , that is,
E - C(rr) .

_ The nost general codiagonal operator on S is a

polynomial in e* 2 ê_ and h with coefficients in E. Equivalently,
it may be taken as a polynomial in d.'.-, d-_ and h with similar
eoefficients" Such a polynomial can ¿rlways be brought to the

form

+_U- f LL
( r')d.t ,

. d.L
whered. =l +

LI t. d -t

T.
LI T

L 2 ¡-mSi5n,

then

L
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Tot Tt z
\\T*ti Toz
\\

T-z t T-t z
\\, T_22

.-

Tzs

Tts

Tos

Tnn* t

Tz¿

Tt¿

o

LU-

¿k+¿
L= t,- k

t T ç

\\

,

,-, 
^f

m <k.

\T-t s

T-4 s

Tzs

,

T-mt

o

so t is a codiagonal matrix,,vith n diagonals above and m below

the main diagonal

TVhen n = O, the matrix of t 1s upper triangular and'

the d.iagonal elements of t are the eigenvalues of t on X' This

case is trivialr so I will exclude it and always assume that

m = 1.

Suppose that f is an eigenvector of t in S:

tf=^f XeC, 5 e Gua

The componentg of f must satisfy the following equatiolrs.

Ë
T 9,..=Àf, , 1Sk¿<m'

K+L K

i,k+¿ k+¿ k
L=-m

The equations for k > m constitute a recurrence

relation for the components of €t which I will call the

recurrence relatlon ass oc iated. with t. Its solutions can be

classified. bY the value of

lim sup I €,1'/ k ,
KK

according to theorems developed by Poincará and Perront and on

the basis of this classification a spectral chain for t can be



1?-1.

constructed.. tLim supt properly bel.ongs to the realm of

analysis, but its onl-y use here will be in the definltion of a

chairr of subspaces of S"

. The equations for 1 s k É m foll-ow from the require-

ment that S should have a vector of maximum weight.

I Ìrave assumed. that the coefficients t. (n) are

rational functions of h. Consequentlyt

t. (rt) =. p¿ (h) + r. (h),

where p. (h) i= a pol-ynomial and- r. (h) i" a rational function,
*¿' - L

whose numerator is of ]ov,'er d-egree in h than its denominator'

Let

1

sufficientlY highr tr

Define e¿

max degree P

-mSi sn
(rt) .

L

I want to exclude the case ]n which 1 is equal to zegor and' for

doing so I have three reasorlS.

(f ) Al.l- the codiagonal operators which occur in quantum mechanics

satisfy the cond.ition I > O'

(Z) \Mren 1 = O, the bound.ary conditions which determine each

eigenvalue of t depend. upon that eigenvalue, so the eigenvalue

problem is no longer linear.

(¡) For most purposes' t may be replaced by

tr = q(h)t ,

where q(h) is a polynomial in h.. If the degree of g is

will satisfY the cond-ition 1 >

to be the coeff icient of hl in P, (f')'
L

The

chara.c teristic polynorni.al- of the recurrence relation aSsociated'

wlth t is the PolYnonial

t v yeC.L(
L

L=-n

Its importance is elear from the fol]ov'¡ing theonem¡ which is a
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minor extension of a result flrst proved by Perron (l9Zl ) .

Theorçm (PerronJ. T,et T r, ' ' ' r 7O be the distinct moduli of the

roots of the eguation

Ë L
YL of

ord.ered- so that

o s Tr . T, <

The possibllity yb = oo orrlV arises when en

number of roots whose mod-uli are all equal

L=-m

,

+m

S-.
b

=O.
toy

Let m be the
q.

Thus¡a
o,

2
+mm =lJì+n.+

Provided that
b

+ o , k ì 1,T
-mk

the recurrence relation has a fundamental system of sol-utions

which falI lnto b cl-asses¡ such that¡ for sol-utions of the "th
class and. their llnear combinatiorls¡

rimsup le.l'/k=T . ///
r-+- 

'-K

For any assigned- value of Àr there are (n+m) liriearly

independ-ent solutions of the recurrence relation associated with

t, but there will- in general be on1,y n ind.epend^ent sol-utj.ons of

the eigen-equations of t. To see thls¡ simply assign arbi'trary

val-ues to € , ' ,€n and. compute En*rr€n+r, ; ' ' from the
-l -n tlr

equations recursivel-y. Not every solution of the recurrence

rel-ation will lead to a solution of the eigen-equations of tt

but the same elassiflcatlon scheme may be used for both.

Tvith the help of.Perronts theorem, I can no\¡i construct

a spectral chain for t.

For each posj.tive real number þ, d-efine the following

subspace of S:
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t
p

S €cs Sl rime'
k+oo n/Pn = oJ, p > o.

Nov¡ d.eflne

and

ft sP
F>v

Y =O 'S tv

cua
o,

with the understand.ing that q

osy
2

it is clean that

n sB, 1sasb,

=Sify=æ.Since'b
' ' ' < Y. Í - t

b

>yp

b

s<s <s <. <S <(1
b2

Finallyr let t" and. tr, 1 S a S b, denote the extensions of t from

S to S, and S", respectively. The flrst two 1emmas of the

appendix show that each spaee S" is invariant under t" and that a

vector f lies ln S if and only if
v

lim sup
k

Sy.

I assert that the chain of submodules given above is

a spectral chain for t, that is, the sBectrum of t", on S" 1s

constant on each of the lntervals

o'SY<Y t'l

y ly <
o Q,r,

TaSY'

Note that I have assumed. that T, > O and yb ( æ¡ iVhen these

conditions are not satisfied only trivial mod.ifications are

reguired.. îhe proof of this assertion is very simple'

(t)rr o sT<y,,
the space S, cannot eontain any solutions of the recurrence

relati-on associated. with t. Consequently, if t and- t" have any

elgenvectors they must lie in S and- the spectra of t and t,

l€ ul'/ 
r



nìust be id.entical- because the restriction of t

124'

to S is precisely

1S

(t) e C .

v
t.
(z) lf Tosy(To*,r 1sa(b,

S, can only contain those soluiions of the recurrenee relation

whtch alread.y l-ie in So. Thus, lo and. t" have the same spectra.

ß) Firrally, if yb S y 
'

then S^. contains every solution of the recurrence reJ-ationr andr
so tlre specbra of ,o and t, are id-entical.

The spectrum of t on S in general will be empty, fo:r

rareJ-y wil-1 it be posslble to satisfy the recurrence relation

associated with t with a sequence which terminates.

The space S contains m linearly ind-ependent solutions
I

of the recurrence relation, denoted

€(,t) ' 1 s i s m o

:Jt
Thus, the general solution of the recurrence relation in S

nl

g(t)
Ë

) c(t)t; j,:, ,rl

Now¡ j.f g{ t )

j=l

1s to be a solu'r;ion of the eigen-eguations of I',

the constants ,(.r) must be chosen so that the rboundary cond.itj.onst
J

Ë
TÊ

LK.1-L

(t)
k+L ^f

(t) , l Sksm,
k

î.=t-k

are also satisfied. Because these equations are homogeneoust

there are (m 1 ) constants to be chosen So that m linear
,

equations are satisfied..
(1) ',Vhen ^, 

1 = il + i , i = O ,

the elgen-equations of t wil-l have a solutlon which contains i

arbitrary parameters for every value of X. Thus, the Spectrum

of t will be the whole complex plane and. every point wil-I be
,
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J-fold degenerate.

Q) li/hen m 1 < m, the situation is more interesti-ng. Al.though
,

the boundary cond-itions to be satisfied outnumber the parameters

to be varied, for certain values of À there may sti11 be

solutions in S r. Some id.ea of how these eigenvalues wouId. be

d-istributed. throughout the complex plane can be obtaj-ned as

follows. l,et g. (^). denote the deterninant of the inflnite

matrj-x obtained from (t 
^) 

by deletion of the ith row and the

first column. Infinite determinants a.re usually not wel-1

d_efined, but, by the insertion of .factors to ensure convergêrrcor

g. (À) can be made into an entire function of À. The eigenval-ues
L

of t will then be the zeros of the entire function

Ë
L=o

(-)Lr. s., (À)
-L I L'Ì I

,

and conseguently will comprlse at nost a countable subset of the

complex plane. thus, in this second. case, the Spectrum of t,

wil-1 consist of a d-iscrete set of eigenvahl€sr

The spectrum of to, 2 S a S b, can be treated in a

similar manner' There are m solutions of the recurrence

relation which lie in S

ø

but not in S These are denoted
ø a-, a

ËJ"" 1sjsm a
a

The most general solution of the recurrence rçlation in So is

g( a) rl
J

(c) s( c)

There are m conditions to be satisfied. 1f ç(a) is to be not only

a solution of the recurïtence relation but also a solution of the

whole system of eigen-equations for t. ITowever, there are now

m +m + '+m 1
12a

a



constants to vary in order

of t clearly includ.es the
d

the spectrum of

a-l

m +m + '+m '1 <m,
12c¿

t will be cliscreter but once
a

to find such

spectrum of

126.

solution. The spectrum

. So long as

j ì o'

Tnn+,

a

t

m+m+'+mtza 1 = ]n +- it

the spectrum of to will- cover. the whol-e complex pl-ane and will-

d.epend upon j arbitrary parameters.

PerrontS theonem is only appl-icable if' the numbers

T , k ì 1, are al_l_ non-ze1o. when this is not the caser the
-mk

anal-ysiS presented. above is. inad.eguate. Howevel:, when m = I t

the most common situation, there j-s a simple rerned-y for this

d.ifficufty. Let j denote the largest integer for which

T = O. Such an integer can always be found because t . (it)-rj - -,
is a rational function of h. The matrix for t is decomposable:

Tot . 
_Tt z

T-t t Toz. \ T-t zt aT*l -t , oJ Ttj+t
Toj+t
T*t j+ t

the j x j bJ-ock of t can be red.uced to its Jord-an canonical fo¡:m

in the usual way. Thusr t has J eigenvalues on St though Some

of these eigenvalues may be degenerate. A recurrence reÌation

is associated with the lower-block'of tt Perronts theorem is

applicabler anCL subspaces

S < Sr ( Se < '

can be defined as before. However, the difference in this case

is that the spectrum of lo on So consj.sts of the whole complex

planer €Veî when a = 1. This 1S easy to see. Choose any À 1n

o
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C and construct a solutlon of the recurrence relatj.on in So.

ThiS fixes the :omponents c ç ' t ' of f. The remalningoj*r't jnrt
components must be chosen to satisfy the following eq.uations.

ol-À Ttz Tj-tj
, J-2J

€t
c92

rjj+t

fj. The vector € is an

eigenval-ue À- Thus r the

complex plane.

I have onlY

problem

Problems of the type

where both t and- s are

similarly.

Norm Compl-etion of X.

-_--o

r^t j-t "oJ-tr fj

Tnn+t o fjt-t

€ jn,

eigenvector of.

sBectrum of t

t with the prescribed
o,

consists of the whole
d

discussed the conventional eigenvalue

tx Àx

C

rn-j*t n*t

Provided. these equations are linearly independ-entr âS generally

will be the case, there will be a unigue solution for ft t 't

Ttj+t

a

tx=Àsx,
eodiagonal operators on X, ean be treated

x, b
Each of the subspaces X , has been defined
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as the intersection of the kernels of a famil-y of bound.ary

f,unctionals on 1. There are other ways by which particular

subspaces of Ï may be isol-ated, and. by far the most important

employs a norm d-efined on X. This sectÍon examines the spectrum

of t on the completion of X with respect to such a norm.

Suppose that I'I is a norm defined on X:

l'l : x----àR+

xÐ l*l o ,

f wil-l require only one special property of this norm¡ that the

following limjt should exist and. be d-ifferent from zero,

lim l*,: I / l*, l= 1/v* o,
k+oo '(-rt 

K

wherer âs usualr [x. I denotes the Hamel basis of X. This j.s ak'
weak restriction, since in most examples 1". I = 1 for all k.' k'
Let î d-enote the cornpletion of X wlth respect to the netric

topology d-efined. on X by the norm.

The matrix of t is a band" matrix, so tile domain of

t can certainly be extended. to all of 1. However, in general t

w111 not l-eave Î invariant. In facte only when t j.s continuous

with respect to the topology ot I ""r, 
t be extended to an

endomorphism or 1. There wj-1l be a maximal extensio., î of t

whose d.omain Yr necessanily d.ense tn î, satisfies

xsY.î
and is specified. by

Y=[xrîl t*.îJ.
I will seek eigenvectors of î in Î as absolutely

convergent series
oo

k=,

To d.ecide the guestion of convergence of such seriesr I will

Ie aX
kk
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thuse the k root test; the series converges absolutely if

timsuplfn**l'/r = o<1
k

and. diverges j-f 0 > 1. I w111 ignore the case in v¡hich

and the test fails. Since
I liminf lx,, l/ l*¡, 1 slimlnf l*r7'/t,

k k*t' k' k k'

10

S 1im sup lx
k

S lin sup
k

<y.

, Yb s oo

t/x

t/t x

k

k
l**n,

andr by assumption,

. Ifun l*,;,-l / l*,, I = 1/v,
k -+ oo K't'l K

the series will converge absolutely if
,/xlirn sup lf

k

The numbers

o s y '<
,2

k

partition the positive real axis.
(t ) If o < y , T, r then none of the solutions of the recurrence

relation leads to an absolutely convergent series. Consequently,

neither t nor 1 ftrs any eigenvectors, other than those ln X.

(Z) Suppose that

To s y . To+, , 1 É a < b .

V[hen ! = y the tth root test failsr so I will exclude this case
a

and. suppose that the strict inequalities hold. Every eigenvector

of t- in X has coefficients which satisfyøA

Iim sup l€nl'/k = ,o ,
k

and so the series corresponding to these solutions are absolutely

convergent with respect to the norm l'l. Conver'se1y¡ if
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oo

{=

]1m sup I f
k

lt/u s v <v

kk
x

k=l

is an absolutely convergent series in X whleh corresponds to an

eigenvector or 1, then

k a*r t

So x is al.so an eigenvector of t o. Thus , t o a.nd t have identical

epectra.

ß) Flnal1y, if yb < y 1 æ, t every sol-ution of the recurrence

relation leads to an absolutely convergent series, So once again

t ana t have id.entical spectra.b-
This result has two important lmplications. Firstlyt

nothing of the spectrum ie lost if the algebralc extension to is

employed instead. of the topological extens:-on î. t^ has for its
a

d.omain the whole of Xo¡ whereas the domain of l is only a dense

subspace of 1, so to is d.efinitely the easier operator to handle.

Fon the second conseguencer suppose that l'l' is any other norln

on X for which

rimlx l'/ l*,, 1 =1/y' #O,
k êoo k+t

that Î' is the completlon of X with respect to the norm I ' | ',

and. that î'1s the maxirnal extension of t or, î'. If y and. y'

lie in the same range, then the eigenvalue spectra of î anO î'

are identical-, Thls result is not so obvlous if the algebraie

formulation of the problem is not developed before the analyiica-I

version because this rescaling of the basis vectors changes the

boundaries or 1.
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If this theorY of codiagonal

consistent and of any plractical user the

operator should not depend" upon the basis

requirement can be formulated. as fol-1ows.

,
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operators is to be

spectrum of a codiagonal

chosen for X. Thls

Suppose that u is any

any codiagonal operatorautomorphism of the vector space X. For

t on Xr construct

E¡ = utu-f .

If t has an eigenvector in Xt

tx=ÀxexcXrÀeC,

then ux is an eigenvector o¡e s wj th the same eigenvalue¡ since

s(ux) = utü-tux = X(u"). .

SimilarJ-y, if s has an eigenvector in Xr then so too has t.

There is no d.ifficulty in thls argUment because u is an auto-

morphism of X, so ux and. u-lx are well d'efined for all x in X'

Now suppose that N' 1s an L-module which lies between X and T,

x < x' < 1 ,

and let s" t" u'be the extensions to x' of 8¡ t and- u. These

extensions exist because the matrices of Sr t and- u are bancl

natricês. lwo problems arise.

(f ) There is no guarantee that X' shoul-d be invariant under u',

even though X is invariant under u. For examplet Suppose that

L = sf(ZrC) and S' is the subspace of S comprise¿ by sequences

which satisfy
11m E

kìæ
v

y2

o p>0.pk
k

If 1l= y3 ¡wherey>B ,
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then

and. it is cJea.r that
"5

( vkç
k

lim
k --->"o

€ nQ/Ðk

need not vanish.

(Z) Even 1f u'd-oes leave X'invariant, the extension u'need

not be non-singu).ar. Once again an example will make this point

clear. Suppose L, X and X' are aa in the last exampler but that

p-2
P-2

p-2
u- a

It 1s easy to verify that u is non-eingplar on X. Howevert the

seguence with

f,, = (P/ùk

certainly lies 1n X' and

t'5 = O' r

Tt appears that there are too many automorphisms

of X and. that it is too strong to lnsist that s' and' t' should

always have id.entieal spectna. I wi]I moderate the demand' as

follolvs" Define a K-automorphism of X to be an automorphism of

X which lies in the enveloping algebra of K, considered as an

algebra over E. This is the algebra I ealled Îl(Kf in the last

chapten. ft is clear that,

u'x' 5 x'
for any K-automorphism u. Furthermore, because X can be conpletely
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d"ecomposed. into irred.ucible I(-modules of finite dimension, it

seems reasonable that u' should be non-si.ngular on X'. This is

indeed the ease and has the i.mmed.iate consequence that the spectra

of S' and. t,' are identical. The proof is very simple, but can be

found in the append-ix.

tr'or conparison, I want to sketch the proced-ure that

is fo-Ll-owed when X is embedded in a topological vector space.

Suppose that l.l is a norm on X and. that î i." the completion of X

with respect to this norm. Let u d.enote an automorphism of X.

Only when both u and u-t are bounded, on X can u be extended to an

autornorphism û of both the algebraic and topological structures

of î. If ê an¿ î are the maximal- extensions of s and tr then

generally ê an¿ î will only have equal spectra when û 1s an

automorphism of L

An example will illustrate the dj-fference between the

algebraic and topotoglcal approaches. Suppose that X is an

sf(ZrC)-module with highest weight p. Define a norm on X by

l'l : x >'R+

T
k

I
k

k

and let 1d-enote the completion of X wlth respect to this IroFIIl'

Set

1

2

til = (p*1-h)

It ie clear that u is a g1(1 rç)-automorphisn of X. However'

u is not bounde<j. on Xr so û certainly is not a continuous

automorphism of X' thus¡ although

çs x € lç ,
kk

3
4 a
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f = (fk) = (r.-t)

could l¡e an eigenvector of an opera'bor. 1,

eigenvector or ûîrî-r because uf, É î.

ûf 
"ould. 

not be an

Trunca.tion of Cocj j-agonal X,la.trices.

Through Perront s theorem, I was able to describe

qualitatively the spectrum of t on each of the subspaces of the

chain

<S <cr
, 2 b

Howeve::, Perronrs theorem gave no indication how the eigenrral.ues

of t on S could. be found. in practice. A theorem proved byaø
.4Poincarér and its generalisation by Perronr shot¡¡ how to solve

this problem in most eases, but not af]. The idea is very. simple'

f satlsfies the recurrence relation

t T
LK+L k+L =Àfut kÈm'€

L--m

where

lim
k --+æ

rlm 5
k-+oo

/€ =T¡k+t k

,. n/ur = (-)le . .

If

then y must satisfy the equation

Ë
o,

L=-m

that is, y must be a root of the characteristic equatlon of the

recurrence relation. The numbers Yr, ' ' ' ,Tb, introd-uced. earliert

were the distinct mod.uli of the roots of thls equation. thusr

lvl =Yo,

Lvc
L
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for Eome value of ar arld

l-im
k -+oo

lf**,/€rl

c

L=-m

lB I
2

T a
ø

Therefore¡ the solution f is a vector in the subspace So' An

approximate solution of the eigen-eguations can be found' as

foIlows. choose a large positive integer i. Define

= €k '

= ,*€j

Ë

5k

t-ojt-k

J=kl1

k>o.t

Ë

g

Beeause € ¡*,/€ x--è rt

' shoul-d be a good. approximation to f. Tl/hen f' 1s substituted for

, the infinite set of eigen-eguations collapses to a j x i

matrix eigenvalue problem. The eigenvalues of this finlte matrix

yield approximations to the f lrst j elgenval-ues of I o.
-. The dlfficulty with this scheme is that it hinges

upon the assumPtion that the limit
,-rr"m Ç ¡¡ rl Ç 

¡,k+ oo

exists for every solution of the recurrence relati.on. Poi¡car6

(rgg¡) nas given a set of'condi'i;ions which are sufficient for

this to be true. Perron (tgtO) fras shown by numerous counter

examples that it is very dlffj.cult to clevise better cond'itions

than those of Poincará.

Poinc arát s Theorem. Suppose that P ,þ , ß are the
m+n

roots of the characteristic equati-on
2

l

and. that

lp

L
PL=o

lp
rn+ n



If f, is any solution of the recurrence relation

Ë

x+,/€ n

T € nn, = Àf,, 'LK+L
L=-n

then the l1mit
lim ç

k --+æ

exists and- is equal to one of the numbers Frr?n, ' ' ' 
'Þ^+.n'

Perron t s modification. Suppose that the coefficient T-^k,

k 11, never vanishes and. that. the other cond.itions of Poincarets

theorem are fulfi1led. then the recurrence rel-ation possesses

m + n fundamental solutlons flt) which satisfy

lim t(L)/€(L) - p., 1 S i S m+n.
,,;'- 

tk+t"k '¿

I found. a minor extension of thi.s result for the

partieular case r * rl = 3. It 1s included in the append'ixt but

I will not bother with it here. Instead I will assume that the

mod.uli of the roots of the characteristic equation are distinct

ancl that T never vanishes.
-nK

Suppose that f, is an eigenvector of to but not of

t lhen

c=t

136 "

a

a-l

Ë€= ,(cl E(c) , n(o) + O.

c-,

Now¡ lim €, /€, = Ij.n
k -+* K't n k --*JË ,'"'€ll',/sl,'') d n(") €."'/sla'j f

c=l

p
a

,

since l")/e['' =Oifc(8.rlin €
k *Þoo

I explained previously that the spectrum of ao 1s discrete if
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m +m + m
d2

+ 1<m.

In this câs€¡

*¿=1rlSi5rn+ll,

Ê,o the spectra of t,, . tt^ are diserete, but every comBlex

number is an eigenvarlue of ln+L with multi.plicity i if 1 s i É n'

The j-nf inite set of eguations for the eigenvalues of I o,

1 5 a 5 m, can be red.uced- to a finite set, suitabte for calculat-

ion, by the aPProxÍmation

fJ* = BIs¡ , k > 1"
k

The eigenvalue probl-em for each to was d'efined without

recourse to topology. The practical sol-ution of the eigenvalue

problem¡ however, must uge Some notion of approximation, and hence

problems of convergence arise. Numerical analysis is inescapable

in the construction of practì-cal solutions. In the theory of

guantum mechanicsr I belleve it should be possible to imitate thjs

arrangement. The basic eg¡ations should rest upon algebraic

foundations; a norm and a notion of convergence should' only be

added. when numbers are required. from the computer'

General- Codiasonal. Operators

Thed.efinltionofacod-iagonaloperatorisquite

general. It appl.ies for any standarcl choice of T, and K and any

K-finite L-mod.ule X. VtIhat is peculiar to the case T, = sf(ZtC) is

that the spectrum of a codiagonal operator can be eharacterised

so completely and. calcul-ated- so easily. The increase ín

complexity j-ncurred. in passing to more general codiagonal

operators is of tþe same ord-er as that in passing from ordinary

to partial d.ifferential equations. Consequently, T cannot give
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an adeguate account of the Spectrtrm of a general codj agonal

operator. Instead- f wil.l sketch the aims of the theory and'

indicate where the d.ifficulties al"ise.

- The Pfan of attack is 'Lhis.

(f ) Given a codiagonal operator t on X, find- the matrix of t"

(Z) Exten¿ the clomai-n of ¿efirrition of t from X to Ï"

Ø) Suppose t' d.enotes the extensi on of t to a subspace Y" , where

x<x'<1,
Identify those su-bspaces X' wh.j-ch are j'nvariant under l' and'

ded.uce the character of the spectl'um of t,'o This perhaps cor-rld-

involve the eonstruction of^ a spectral chain for t"

(4) Devise a practical met¡od. by w¡ich the spectrum of t' cân be

ca1culated.. Ìlquivalent:l-y, given ar bounda.ry condition on

truncate the matrix of t Êio that the bounclary cond'j-tion

sati sfied..

The first stage of this plan is quite elenentary. The

matrices of al-1 the e]ements of L ancl E are knov/n, and. t is simpl-y

a polynom1al in the elements of L with coefficients chosen from Il'

Thesecond.stageisalsotrivialandeanbecarriecl

out rio matter what choice is mad.e for T,. The matrix of t is

alwa,ysaband-matrixand-thisensuresthattcanbeextend-edfrom

XtoÏ"
At the tlrird stage the d-ifficulties begin' It was

PerrontS theorem on lineat' d-ifference equations which enabl-ed the

corrstru.c't ion of a spectral chain fon t in the case L - sl(Z,C)'

In tire generaì- case, the eigen-ecluaticn for t leads to p-afl.-jj1f,

difference equ.atioflse for which there is no analogue of Perronts

theorem. The theorem that is need-ed woulfl have to classify the

soÌutions of a l-inear partial difference equatì-on accord-ing to

tÐ

1S
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the asymptotic behaviour of the solutiofl.s. Littte seems to be

known about this matter.

The difficulty i.n the last stage is similar" It was

Poincaréts theorem on difference eguations which suggested the

method by which a codiagonal matrix could be truncated in accord-

ance with the bound"ary conditions imposed on S. Again, there j-s

not a generalisation of Poincaráts theorem for part j-a1 d.iff erence

equati ons o

I think these d.iffieul.ties could. be overcome for any

cod.iagonal operator whose matrix 1s of the type I cal-l a

cod.iasonal block matrix. Such a matrix is a natural generalis-

ation of a cod.iagonal matrix ancl arises as folIows. Suppose that

the K-submodules of X are ord.ered, perhaps accord.ing to d.imension.

Corresponding to this d.ecomposition of Xr a cod-iagonal block

matrix t would- have n diagonals of blocks above the main d.iagonal

of blocks and m below. Thue, the matrix sholvn vlould be a

tnidiagonal bl-ock matrix.

t would map trre kth block of X into the linear span of the blocks

between the (tr - rn)th a.ra the (t * rr)th. Cod-iagonal matrices of

course would be a special ease j.n which all the blocks were one

d,imensional.
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AEBìN!Iå.]*.

Lemma '1 . For any y ì O, S", is invariant under the action of

L and E.

lroof To establish the result, I need- only show that t"

1s invariant und.er t'(ft)r e* and ê-2 where f (it) is a rgj-iQlal

function of h"

SuPPosef,6S^,. Thent
T

lim €,/pk =OforaL:.B>Y.
k-)oo K

If (S*) had a subsequence such that
t/xLin l5

k.-too
L

Lzp t
k

L

then

lim € k/ Bk
k +co

could- not vanlsh. Thus, for sufficiently large kt

tl
ts*l'/k/P s n <

(t) I,et f (rr) denote a ratlonal functlon of h'

(r(n)5)u = t(P + ', - x)fr ' k à 1'

Now¡ for large values of k¡

lr(p * 1 - k)e rl/Ok s lr(p * t - t<)lnk'

Since q 1 1¡

1im (r(p * 1

k +oo
- k) €)/Ok = o

Hencer for all B >

pr(n)f e s ,

from which it follows that

f) k
(u*(z) =q k

g
k+r

r(r')ç e s, .
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(u-f)¡*, = Pr€n ' k > 1'

Both ok and' F n are rational frrncti ons of k¡ so a pnoof

similar to the one above can be used. to show that

and-

and.

Lemma 2.

and- so

Since

so

"*f t sy

usye_6

Ê5 € S if' and. onIY if
v

, /x É lolim.sup le*l /

l'/r = o s lo
Proof (t ) Suppose that

lim sup I f
k

Thenr for all P ) T¡

1im sup I 6
k

Thusr for large vaÌues of k,

k

r/pnl'/r = o/P <

l€*/oxl'/r's o/p < I

le/okl s (o/P)k.

(o/p)k > g as k--à oor

l-im €k/Pk =0,
,(-+ oo

5tt"'
(z) Suppose that

Iin*sup l€rl'/x=o>y.

L

There exists a subsequence (5
k

) such that
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t-in lS*.1'/u,= o .

¿--> oo L

If þ is chosen so that 0 > P ) Tt then

lim lç, /Pkil'/rr= o/P )1'
¿+ oo KL

Thus, for large val-ues of it

l€k./pktl'/kt
L

2r7,

where 0/P Z r¡ > 1.

Hence t lç /Êktl = nkL -- 
* .

k
L

The seguence (€*/øk) cannot approach zero because it has a

subseguence which diverges to infinity. Henee

€lÉp
and. so

///€dsv a

Lemma 3. Suppose that:

(t) u ls a K-automorPhi-sm of X;

(z) X' is an L-submodule of I with X < K' < l;

(¡) t and E = utu-t are codiagonal operators on X;

(4) t' and s' denote the extensions of t and' s to X' '

Then t' and s' have the same spectrum of eigenvalu€sr

proo,f Because X' j-s an T,-submodule of 1 and u e Ú-@J,

uX'SX'.

X is K-finiter so

X =@X
k

where each x.. is an irredueible K-submodule of x of finite
K

dimeÌrsion. Since u e t(x),
u=@ü, ,

KK

,
k
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where u. is an automorphism of X.. Because the matrj.x of u is"k - k

block diagonaj-, the extension u' of u to X' is non-Singularn

that is, g'Íe an automorphism of X'. Thus, s'anfl t'have

the same eigenvalÌles ¡ ///

Recurrence Relations.

The codiagonal natrices which oecllr nost frequently

in practical problems are tridiagonal. The recurrence relation

associated- vuith such a matrix has the form

T-rk-r€n-, + 'ox€x + T,k€k*, = Mn'

and the characteristic eduation is a guad-ratlct

+ e /y=o"
o --t

Perron and- Poincaré assumed that e, * Or so both roots of the

guadratic were finite. Unfortunatel¡r, this cond-ition is not

always satisfled. in practicer so in the lemmas below I have

shown how this restrietlon may be removed.

!*3, Suppose that (o,) and. (p,) are two soo-'€rces¡.KK

neither of which converges to zeror but for which

Ìin a þ, = On

k+ æ k k

Then there exist two functions n and n on the set N of natural-

nunberg ¡

m : N-+N , n: N+N

krêm r krâE,¡- "'k , k

with the following ProPerties:

(r ) m(N) 
^ 

n(n) = þ, m(w) u n(N) - N;

(p ) ¡otrr converge to zeto.

Cy+e
I

) ,
k

(z) the subseguences (a
m ,k
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Prsof (1) Suppose that (ot) d-oes not have a subsequence

which converges to zero. Then

lim inf l"tl = y ) O,
k

and sor for all but a finite number of values of k,
q. p | ': vl7

k

///

kk

Thus t (Pk) must converge to zero, cont:rary to assumption.

(z) Extract from ("u) the subseguence (cr- ) which converges to*k

z,ero in such a way that the remaj-ning sequence does not have

ze?o amongst its set of limit points. Let n be the

complementary functÍon of mr that is rk covers only those

integers missed. by mk. ,onn d.oes not have a subsequence

whieh converges to zero. Thug, ^

I1m inf | ø
k

n,
K
l= 6 >o,

and so lim lp I = O .
k nk

It follows fnom the very definition of n that

m(N)¡ n(tt) = þ,

m(N)Vn(n) =N.

lggel'
which satisfy

Suppose that (Vk) arrd. (d*) are two sequences

lim
k+æ

Tr*r(Tr o6u) )

and.

Then lin y
k+oo k

Iim 6 = 6 + O.
k->oo k

exists and. is equal to either d on O.

thatr gf 1im yk = y exists,
k

od)

Proof It is clear

VQ t

then
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so l= dorO.
All I nust do is establish that the limit does exj.st. $uppoee

th.e contrary, that l-im yk d.oes not exist. Define

(or) nor (Po

k = Tk*r, Êx = Yt 6r'

) ls a convergent seguence, but

Iim ønßr = O.

Howeverr âCCording to lemma 4, there are subçeguences (or, ) and
R

(p ) which converge to ze"o. AIso,
n,

K

m (N) Â n(u) = / and' m(N) U n(n) = N'

Define a subsequence of (t,,) as folows. For each mu e (m*)t

let ñ* Ue the smalfest element of ("t) which exceed-s *k. Such

an element must exist because both of the sequences (tU) and-

) diverge to infinlty. Define

n =ñ 1ekk

cr

Neither

( n
k

('r )

n
L

;
I

n

k*z;
I

n

m

m

m
k k+t n n

+ k*z L+¿L

kkk

Note that ñ* à m*.

Thls implies that the seqLlence (ñn)

of distinct integersr for otherwise¡

bounded. Now¡

q. >o,

contains an infinite number

(m ) would have to be
k

ao

However ¡

so

T
'nu

---> O.v-nk
6

n.
K

n
k

---+ O.

p
-> 

o,

n *¡
k

n
k

The seguence (d,r) ls convergent, so
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----> ô + o.
k

Thus, v -+8+o.n k

I have found. a convergent sequence (V ) wlth two limitsr an
nk

impossibility. The onl-y alternative is that lim T,, exists. ///
KK

Now consid.er the difference equation of seconcl orcler

d_
n

Define

Tt
-t k-t'k-t

ro 
¿k

+T ,
S

ok

(-)1 ("

+T t' tk*t'k+t

d. x) /ttl
LO

If
k k

LK

and (. = Iim (-.,..
L k--+oo L R

In these formul-ae, l is the least poìAter of k for which one of

thelimitsf.isnon-zero.Thecharacteristicequationis
L

+e /y= o.C y+c
o -l

When C = O, there ls only one (finite) solutlon,
I

y = -c r/ro,
which I will- assume to be non-zeror for otherwise the problern

1s trivlal" I want to show that even in this degenerate câs€¡

Poi.ncarérs theoren is st111 applicable.

Theorem 6. Suppose that (5 ) ln any solution of the
k

recurrence relation abov€. Then

lim €
k+oo

/€k+r k

exists and. is equal to either y or *cor the two roots of the

characteristlc equati on.

Irocf e -tk-r€n-, 
* fotft + C,k*, €n*, - o'

€n-r€k *to* ,gk -rc,k*, -0.
€k €rn, L,¡,-, €u*, c-,k-,

Then



147.

Set

Now

and.

Thus r

f /€ dv t /c

c

k k-t k k ok -t k-t

/c =O
k+ -l k- I -l

vk+t k

I

\
ok /c-rk_,n-Ço/Ç_, = 1/v t o.

(v I )-> o

and

The last lemma shov¡s that l-im Y
k

l/y or O. Hence,

k

d +1/y.
k

exists and is equal to elther

=yOfoo.

k

lim
k+oo
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CHAPTER 5, CODIAGONAL PERTURBATIONS.

In the preceding chapters I assumed that the algebras

L and K were shown from the outset. Ei-genval-ue problems

lvhich arise in practice are rarely so simple, and often

considera.bl-e ingenuity is requlred to uncover the algebras

L and K. Green and Triffet G969) devised a technique for

this purpose which works for a number of operators closely

rel-ated to the special function operators. Their work has

one disadvantage; they assumed that the operator s under

investigatlon was a self-adioint operator on a Hilbert space,

and at several points in their paper the faet seemed crucial.

My aim in this chapter is to show that this is not so, and

that the ideas of Green and Triffet can be developed

rigorousty within an algebraic framev¡ork without any refer-

ence to Hilbert spaces.

The boson calculus was developed because the formalism

of annihilation and creation operators provi-ded such an

elegant solution of the harmonic oscillator problem. Tt is

based upon a collection of'operators Pr¡P2r...:Þ*: QtrQz,

...,e which satisfy
'tm

[n'orl [e,,orl 0,ln,,orl 0, i j'ô

and so provÍ-des a general framework for the study of any

system with just m degreeS of freedom. Most linear operators

which arise in non-relativistic quantum mechanics can be

expressed in terms of bosons. For example, âflV l1near

partial differential equation 1n m variables is a function of

the m conjugate pairs ,r, #.. Lohe and Hurst (fgZl) have
a

shown that presentations of all of the classical Lie algebras
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can be found amongst the cl-ass of operators constructed from

bosons and ¡rodified bosons. I want to consider the opposite

problem. Given an operator s, constructed from bosons, is

there a Lie algebra L which contains s in its envelopi-ng

algebra? of course, 1fl a theory which stressed algebraic

considerations, âS perhaps quantum mechanics should, this

problem of discoveri-ng L and K woul-d never arise, for those

algebras woul-d be part of the data in the theory'

LetBdenotetheLiealgebraover'Cwithbasis

{1, Pr¡ Þz¡ Þ*, Qr r Q,z 't t Q*] '

in which the only non-zero Lie products are

I P' ql] ô al

The

the

U(B)

the

universaf enveloPing algebra of

boson al-eebra. UnfortunatelY,

hold much interest for PhYsics;

os cillator Hamiltonian

B, denoted U(B), is

very few elements of

I can onlY think of

I or2 + rÐi'rr', ,i'c.
l_

There is clearly a need for a larger algebra baseO on B.

In the appendix I have shown how to construct a suitable

algebra. It is denoted D and consists of all polynomials i-n

p of the form

"o=C(q),I
k

ktr.P '

where I have used the common notation
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P = (PrrP2'... rP*),

q = (qlrQ25... rQ*),

k = (kr rk, k*),

kt kz
and Pt Þz

The coefficients âr are chosen from the fiel-d of rational

functions of q. This field is denoted C(q). D l-ooks and

behaves like the algebra of all- (forma1) partial di-fferential-

operators with coefficients \^Ihich are rational- functions of

q. However, I want to stress that D is constructed alge-

braically from U(B) and that D is independent of any parti-

cular representation of P and q.

suppose that s is a fixed element of D with degree d

inp

k
"n'c(q) 'ar.P

k
Dm.,m

kp

s=
lr <d

where Itl kt*lr-z+. . . +km

Green and Triffet observed that, under favourable

stances, it was possible to find elements rr t 12¡

in D such that
j

I srr 1 r m +r 1<j <n,

circum-

Ynt

l i=l

I srr T

i

i=1

a al j+1

n

n
tr.m.rln

where the coefficients *ij were polynomials in s over c

In practice, s was of the second degree in p and

rr r Tz t rn were of the first, so the coefficients

were at most linear in s. The first steps of the plan

m.rl
l-aid



by Green and Triffet to determlne the eigenvalues of
].s.]..

Þ \l-n

assumed dlstinct,

of the matrlx

solne

and

n=

representation) were these.

(1) Find the eigenvalues fr,f2,...r:-.n,

the corresponding eigenvectors vl r. . . ,vn

(mr, );

mv.I
l-<i<n.l-.v..t- r-

Both the

(2)

eigenvalues and eigenvectors might depend upon s

Construct

"jrj i, 1<i<n,w.
l_ Ij

where tj i is the

verify that

jth component of v.. It is then easy to

SW
l- = *i(s+1r), 1(ì-(n,

so that w. is a shift oPerator for s.
l-

Green and Trlffet stated that s was a sel-f-adjoint

operator on a Hilbert space. However, they manipulated s as

freely as a finite matrix, and in extracting the roots of the

characteristic equation of m formed various algebraic

functions of s. f attempted to give a precise account of

their techniques, but in So doing encountered sever¿f

problems. I took p,q and s to be differential operators on

the Hilbert space L2(IrU), where I was an open region of

Rm and u a measure on I. The problems were these '

(1) Green and Triffet regarded the self-adioint s as a

function of the skew-adjoint p and self-adjoint q' However,

this is not always possibl-e. For example' suppose that the

H1l-bert space Ís the space of Lebesgue square-integrable

functionson(0r-)andthatsisaself-adjointextensionof
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the symmetric operator s r defined by

sl cl{0,"") c (0r"")
o

r(x) ô.2
ãx , * x' . n#U] tr*l ,

t-

where C;(0,-) is the space of infinitely differentiabl-e

functions which vanish outside a compact subset of (0r*)'

The operator

clCo,-) ê cl{0,-)

r(x) '+ þ*rt"l

pl

in skew-symmetric, but it is wel-I known that it does not have

any skew-adjoint extensions (Dunford and Schwartz G963))'

Thus, s is self-adjoint, but p can never be skew-adjoint.

(2) The only escape from this dilemma j-s to require

merely that p should be skew-symmetric and s symmetric.

However, thi-s also results in an impasse. consider the

example above once again. The differential equation

(_ {, + x2 * i(¿}rllr(*) = tir(x)
t qx- x )

j+r
has two solutions which near the origin behave l-ike x

-ìand x t. If

-3/2 < i < L/2,

both of these solutions are square-integrable, the deficiency

spaces of sr are non-trivial, and St has an uncountable

number of self-adjoint extensions. Thus, the differential

equation has an eigenvector in the Hilbert space with any

prescribed comp]-ex eigenvalue. This is not the type of

operator Green and Triffet .wanted to consider; they required
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that the eigenvalues of s should form an increasing sequence'

(Note that the case i=O (S-v¡aves) of lmportance to physics

is contained within the above range of i')

( 3) It appears that s cannot be considered to be a

fu.nction of p and q; the expression for s in terms of p and

q merely defines the action of s on el-ements of its domain'

but the d,omain must be specified independently. A symmetric

operator may have an uncountable number of self-adioint

extenslons'andtheselectionofjustoneoftheseisan

unwanted freedom in the theorY '

(4)ConstructaspectralrepresentationofS.ThisWas

only a probl-em because Green and Triffet occasionally applied

their technique to operators which were not self-adjoint'

Despitethesedifficulties,Ididmanagetopresenta

rigorousaccountlnHi]-bertSpaceofthemainpointsofthe

work of Green and Tri-ffet, but the complexity of my resul-ts

seemed contrary to the refreshing simplicity of their approach'

I felt that somewhere I had missed the whofe point' Indeed I

had. Myrerrortwas to regard prq and s as operators on a

Hilbert space; once I discarded the topological structure of

the spaee, most of the irrel-evant complexities vanished with

it. I later realised that I coul-d discard the Þlege as we1],

and that most of the resul-ts of Green and Triffet ïIere not

dependent upon the representation of p and q as operators '

ït is this truly ãlgebraic verslon that I will present here.

The ring of polynomia]-s in s with complex coefficients,

denoted C [s], is an i-ntegral domain. It can be embedded in

its flel-d of quotients C(s). The matrix m is a matrix over

this fiel-d and its characteristic polynomial can be calcul-ated

in the usual way:
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l-
€c [s] .

split into l-1near

al-gebraic extension field

eE

c

In general, the polynomial wilf not

factors over C(s), but there is an

E of C(s) in which it does sPlit:

n
det (m-1) (_)"Tl (1-1* ),

i=l r 1.
t-

It is not difficul-t to construct E; for the details I refer

to Jacobson (f951a). In the examples treated by Green and

Triffet, one of the coefficients ci involves s linearly;

hence, s can be expresse.d aS a symmetric polynomial in the

roots 1r ,f z ¡. . . tln and so

E = C(Ir r1-zr...r1r).

Thus, E is a transcendental extension field of C

c [s]

c (s) E=C(Lt,Lzr"'r1r,)

c

A

Let A denote the subalgebra of D generated by the set

{ 1rr L tY2 >. . . ,rrrrS}.

Slnce s maps A lnto itself by commutatlon, I will focus
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attention on A and neglect the rest of D. If a is any

element of A and b any el-ement of c [s] , then the products

ab and ba are wel-l- defined; they are simply the products

1n A. I want to extend this product so that ab and ba

are wel-I defined even when b is chosen from E. To do this

I must construct an algebra A which contains isomorphic

copies of A and E which intersect in the copy of c [s] . This

construction is almost identical with the construction of

UCKJ in chapter 3, so I wil-l not repeat the d.etail-s' Although

the structures required seem complicated, it is comforting to

know that forma] cal-cul-ati-ons according to the elementary

rules of algebra always give the correct answers. Many

fami-l-iar structures are actually no less complicated. For

example, who bothers to think that az. Te-pne-sents an equivalence

class in the set of ordered pairs of integers? Il is also

worth stressing that I have not yet committed myself to a

representation of A or E by operators, but, once that step

is taken, every product will become an operator product.

I will assume that the roots 1rr"'r1r, are distinct

elements of E. Define the proiection matrices

T-T (m-1 i) / (1 ' -lj ) ,
j+ i rk.

l_
1<icn.

Tt is easy to verifY that

k k
a )

ô..k..rl L'

k.
l-

n
I

i=1

n
ï t.r,L.l-I

i=I

1,

and

=m



Let r= (rrrrzr.,,rrn) and construct the row vectors

u.
a

rk
I

Then srk rk
l_I

( sr-rs )k.

rmk l-

= u.1.
l- l_

[s rurl

= u. (s+li), 1(i(n.

Is6.

a linear

functions

S

Thus,

function of p

of q. [srrr]

with coefficients

can be written

SU
l-

These are the commutation rel-ations sought by Green and

Trif fet, They are ident j-ties in the algebra A and hol-d in

every representation of A. Tn particular, their validity i-s

not restricted to representations of A on Híl-bert spaces.

In only very few cases is it possible to find rtr...rn.

Green and Triffet found that, when there is only one coordinate

q and one momentum p, s must correspond to one of the special

function operators, n must equal three, and r'3 reduces to a

multiple of the identity in D. I want to consider this case

in some detail-.

Suppose that

s = azÞz + ârp + â0, areC(q).

If rr is a rational function of Qr then

which are

[s,rr] is
rational

[srrtl crr + T2

where 0 1s

Simi larly ,

a complex

[s rrz] is

number and Y2 is the rremainderr.

a quadratic polynomial in P, so
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lsrrz ] = rr(ßs+y) + ôrz + r"3¡

where 9r\ rô are complex numbers and 13 is the remainder.

I will- assume that

[srr¡ ] = 0.

Thus, [srr] = rfl,

where r = (rrrrrrrs)

and
m=(m

c[ ßs+Y
1ô
01

Oì

sl
)rJ

It j-s interesting to note that s can only be factorised

exactly in the sense of fnfeld arrd HulI (1951) when l"r¡r,z

and 1"g can be found with these properti-es. The only proof

of this laet consists of a case by case verifi-cation. A

general proof woufd be of great Value, for it would lead to a

more precise definition of the class of operators for which

the factorisation method works. I failed to find such a proof.

The characteristic equation of the matrlx m is

1 [12- (a+ô ) 1+o¿ô-ßt-Y] 0

I¡lhen ß=0, m is simply a matrj-x over C and the splitting field

of its characteristic polynomial is C itsel-f. This case is

tr1vial, so I will excl-ude it. Let E denote the algebraic

extension field of C(s) in which the characteristic polynomial

splits into linear factors. Thus,

1(1-1r ) (1-1, ) O, where 1¡¡12r13 = OeE.

Set

and define

u (cr+ô)/2, v = (c¿-6)/Z'
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Since

Furthermore,

SO

( 4u'r,t -v2 -y) /ß

( 2uh+v ) ( 2uh-v )
u-v

1

h h( 1r -tz) /p.

1¡*12 2r,

1r p(1+2h) and Iz u(r-zn).

m=

s=

u+v
1

0

f

0

0

0

The projection matrices are defined by

k
l_

(m-1 j) / (r. -1, ) ;TT
l+r

thelr calculation in this case is trivlal.

k¡
(¡r+2ph) (v+2uh)

U+2uh
1

- ( ¡r+2ph) ( v+2uh ) (v-2uh )

-(p+2ph) (v-2uh)

- (v-2uh)

0

0

0

,

4u'rr ( 1+2h )

kz (h) kr (-h),

k3 (h)

000
000

-1 u+v u2 ( 4tr2-t)

u2 (4r¡2-r)

Defi-ne

f* rr (ut2ph) (vt2uh) + rz (ut2uh) * ra.

It ls easy to verifY that
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ST r ( s+ut2uh) .t +

Thus,

h'"* = r* [(h t frt fr,' ß
4-[

2

+ l)

I wil-l- assume that ß = 4U; this condi-tion is satisfied in

all the examples discussed by Green and Triffet. Consequently'

h'" * = r* (ht1)' .

Fina11y, set

b = a."(r + h (ht1) );+ + +

then

hb.+ b lrrt1).

I r

+

By a direct but tedious cal-culation, it is possible to

show that b_b* is a polynomial- in h with complex coefficients:

b_b* = f (h).

The product b in the reverse order can then be caleulated

quite easily as follows.

= f(h)b

= þ f (k-1).

Thus, 0

+b-

b b.b+

Since Ã :-s free of divisors of zero '

b.b+- = f (h-1).
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I have constructed an algebra Ã with the following

properties.

(1) Ã contains the subalgebra of D generated by the

set {1rrLt:t"2>r3rs}.

(2) Ã also contains the field C(h) and

s = uh2 -\(v2+y)/v.

(3) There are elements b* of Ã which satisfy

hb, = br(ht1)

and. hence

"bt - b+(s+ut2uh). .

Also b_b* = f (h) and = f (h-1).

I want to find. representations of A. This is a

surprisÍngly easy task, for I will show that every representa-

tion of s1(2rC) can be extended to a representation af A.

Define

c, (rr)¡,1'r and e b c (h),

where c*(h) are rational functions of h which are to be

chosen so that

[e,re ] = 21,:.

Now, e+ê_ = g(h)

and ê_€+ = g(h+1),

wher"e g(h) = f(rr_r)c*(rr)c_(h).

bb+

ê+

The commutatlon relatlon witl be satlsfied provlded g(h) is



a solution of the following functional- equation:

s(h) e(h+r) 2h

One solution is

161-.

s(h ) ( p+h) ( p+1-h) r

v¡here p iS an arbitrarily chosen complex number. fn the

appendix I have shown f,hat this is the only sol-ution that is

a rational function of h. I wil-l now alfow c*(h) to be a:ny

rational- functi-ons of h which fulfil the condi-tion

c, (h)c (h)
I

(p+h) (p+1-h)/f (h-1).

The elements hrê+ sati-sfY

[hre*l = tu=, [e*re_l 2h,

and so form a basis for the Lie algebra s1(2,C). The

el-ements 1rrr >T2 >t3 rhr an¿ hence al-1 of Ã, can be expressed

in terms of hre+. Consequently, to find the representations

of Ã, I need only find representations of s1(2,C) in which

the following identitY holds:

( p+h) ( p+1-h) .e.e+

Before discussing the representations of A, I want to

remark on the representati-ons of c(h). The field c(h)

consj-sts of rational functions of h with complex coefficients.

Every function a(fi) in C(h) is lnvertible in the sense

that there is another function t-t(rt) which satisfies

a(h)._t(r,) I = u-t(h)a(h).
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then

i-s

the

an sl(2rC)-module with a vector of

matrix of h on X is

iQ 01

0 crz

L('2.

highest weight P r

0

ßr o

p-1

p-2

It is quite possibl-e that the matrix of a f unctlon a(h ) will-

have a finite number of zeTo eigenvalues. Thus, although

a(h) is invertible in C(h), its matrix representation

would not be an automorphism of x. I will- admit this

possi-bility. Note that a simil-ar situation occurs in the

field of rational- functions of a complex vari-able; every such

function is invertible within the field, but may have a

finite number of poles in the complex plane '

suppose that x is an lrreducible sl(2,C)-module of

infinite dimension.

(1) If X has neither a vector of highest nor l-owest

weight, then the eigenvalues of h form a doubly infinite

Seguence. The eigenvalues of s can be deduced immediately

from those of h. This case is not very interesting.

(2) Suppose instead that X has a veetor xr of highest

weight p i

hxr PXr,

€,xr
I

0

The matrices of hre* are

,ê+ e=

p-2 0 os 320
a

h

p

p-1

a
a

,

ßs
a.
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where or. ßr. k(2p+1-k), k I12r" "

Thus, e+e_ = (p+rr) ( p+1-h) 
'

AS required. The eigenvalues of s on X are

u(p-k+1)2 a.\(v2 +y ) /v, k Ir2r.."

The spectrum of h, and hence of S, depends upon the l-abel- p

of the representation. \¡lhen s represents a differential-

operator, it j-s easy to see that changing the label of the

irreducibl-e representation amounts to changing the boundary

conditions applied to si This is a general feature of the

algebraic theory of eigenvalue problems: representation l-abels

play the same role for di-agonal operators aS boundary condit-

ions do for differential operators. Despite these general

remarks, certain values of p Seem to be distinguished, not

algebraically but ana1ytically. They are the roots of the

equation

f(p) = o.

lrlhen p assumes one of these exceptional- values and s 1S

represented by a differential operator connected with one of

the special functions, the eigenfunctj-ons of S are precisely

those branches of the special function which arise most

naturally in the classical theory and do not involve linear

combinations of those branches, as might be expected.

(3) The case in which X has a vector of l-owest weight

1s very sj-milar to the case above.

(4) x cannot have a vector of highest weight and a

vector of lowest weight because X is irreducible and of

lnflnite dimension.



I have di-scussed onlY

laid by Green and Triffet.

the remaining two will- not

(3) Find the matrices of

to a basis of eigenvectors

(4) Construct the matrix

of s:

t

L64.

the first two stages in the Plan

tr'ortunatetY, the discussion of

be so long. Their ai-ms were these.

the shift operators b*, relative

of h.

of any t codì-agonal perturbati-onr

+ t (h )b
a

+
-t_

o 01

0 a,z b ßr 0

T
i=1

¡lt. (rr)
+t_

n
I

i=l
to(h)

Truncate the matrix of t after j rows and cofumns. The

eigenvalues of the i xi matrlx will approximate, in some

sense, the first j eigenvalues of t-

Green and Triffet assumed that srrl ,Y2sng w€I"ê self-

adjoint operators on a Hil-berrt space, but in stages (1) and

(2) made little use ofthÍs fact. However, in the final stages

they appeared to use Èhe self:adjointness in a futtdamental way.

Suppose that X is an irreducible s1(2rC)-module with a vector

of highest weight p. The matrices of h, b+ on X are

0

h

p

p-1

p-2

b+= tt t

0 c[3 ß20
a

O

ße

a

where orßr = f(P-k), k = ar2,3,.-.,

and f is the polynomial computed earlier. To fix ok and ßk

separately, and not just fix the product, Green and Triffet

found a rel-ation betv¡een b- and the adj oint of b* which

provided a second equation j-nvolving ok ancl ßk. They obtained
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this relation by using the self-adjointness of s. Wlth the

matrices of t¡ and b*r they were abl-e to find the matrix of

any codiagonat perturbation t, which they truncated and

diagonalised to find approximations to the first few eigen-

values of t.

The tcodiagonal perturbationst are codiagonal- operators

on X. In the l-ast chapter I showed that the spectrum of I

on X, the completion of X with respect to a norm, is the same

aS the spectrum of one of the extensions t. on Xa. tr'urther-

more, the spectra of t^ and ut.u-l """ 
id'entical- of u is

a g1(1,C)-automorphism of X. Every such automorphism is a

rational function of h, and so has a diagonal matrix' How-

ever, a diagonal matrlx is all Lhat is needed to change, by

similarity transformation, any given matrix representation of

b+ into any other. Thus, Green and Trj-ffet had no need to

single out a particular representation of b* i all equivalent

representations lead to the same Spectrum for t. Consequently,

the Hilbert space and the self-adjointness properties were

irrelevant.
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APPENDIX 5,

Cons truction of the Algebra D.

, The ring of polynomials in q with complex coefficients,

denoted C [q] , is an integral domain. Every element of U(B)

can be wrltten in the form

arec [q] '

Construct the set of all ordered pairs

p I t a*0

I
k

katP '

ukT
k

(l a*pk,a)

( k
)a

in which the first element lies in U(B) and the second in C [q] ,

and define two ordered pairs to be in the relation r', written

(I bkpk,b) ,

[oaon
k

Iabonk.
k

k
t-r

,r, i-s an equivalence retation. The only facts needed to prove

this are that C tq I is commutative and that U(B) is free of

zero divisors. Partition the set of all ordered pairs into

disjoint equivalence classes v¡ith respect to ¡,. Let D denote

the set of equivalence classes and I (u-Ito)Pk denote the
k

class which contains a*0. The sum and Product

on D can now be deflned in the obvious way and it is a trivial

matter to verify that they are singL.e vatued compositions in

(I
k

k\aLP tã)'

D

The map
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ad pi : Ctql+ Ctql

a lpr,al

is a derivation of C tql and can be extended uniquely to a

derivation of C(q). To see this 1s quite easy. Because

1e clql ,

[lt,1l = o'

If ad pi j-s to be a derivation of C(q), then

lprraa-rl = ¿[Pira-1] + [Pr,ala-1

ln, , 1l

0

-1Thus, lPr,a -1 - -1= -a -[p.,a]a' - r-l

and the extension of ad pi to C(q), and hence to all of D,

is uniquely determined.

Solu tion of the Functional- Equation.

Suppose that gr (fr) and gz (h) both satisfy the same

functional equation;

er(h)-gt(n+1)=2h,

g2 (h) - 92 (n+t) = 2:n.

set d(h) = sr (h) - ez (h) .

Then d(h) d(h+l) = 0.

If I require |nat 8r and 8z should be rational functions

of h, then the onlY solution for d is
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d p(p+1) r P€C,

and so any two ratlonal solutions of the functional equation

can only differ by a constant. One solution is

Br(hr) = h(1-h).

Hence, the most general rational solutj-on is

s(h) ( p+h) ( p+l-h), P€C.

The condition that g should be ratlonal can be

weakened. tr'or example, it is sufficlent to requlre that g

should be entire. Howevlr, for my purposes rational

functions suffice.
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CHAPTER 6. EXAMPLES

This chapter contains two examples. The first is

concerned with s1(2,C)-modules and exhibrts the hyper-

geometric and Fuchsian operators as diagonal and codiagonal

operators, respectively. The second example shows how

irreducible representations of the Poincaré Lie algebra can

be constructed from irreducj-b1e representations of the Lorentz

Lie algebra.

In addition to these examples, I have incl-uded a short

list of common presentations of a pair of conjugate opera.tors

p and q on a vector "på"" x. No doubt this material- is

familiar to all, but for me it was an important step to real--

ise tlnat p and q could be

was not a Banach space.

defined everyv¡here on X provided X

Presentations ofpandq

Suppose that P and

space X over the comPlex

q are endomorPhisms of a vector

field C, and that

[p,q] 1

X cannot be a Banach space, because the only endomorphisms of

a Banach space are necessarily bounded and it is well- known

that the commutation relatj-on cannot be satisfied by bouncled

operators. (Putnam (f967)). In particular, X cannot be a

Hilbert space. There are several- easily constructed presenta-

tions of the operators p and q listed below, and throughout

the thesis the symbols p and q may be taken to sband for

any of these. Note that the space X must either be infiniie

dimensional or trivial, for, if lt were of finite dlmension,
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( 1) Suppose

in some open

as follows:

0 = trace

X is the vector

region D of the

lp, ql dim X

space of

complex

functions holomorPhic

planc. Define P and q

ë

p .: X -+ X

f (z) '+
df , \
6-r\2 ) t

X+X
r(z) + zr(z).

q

Note that (I-q) is invertible whenever À is a point in the

complement of D.

(2) This second presentation of the conjugate operators p

andqisveryusefulfordifferentialoperators,suchas

the hypergeometric operator, whose eigenfunctions have regu-

lar singularities. p and q are once again the operations

of differentiation with respect to z and multiplication by

z, but the functions on which they act are defined over

rdoubl-e loopst. (Doubl-e loops date to Pochhammer (1889) who

used them in the construction of integral representations of

hypergeometric functions. )

zg I



17 r.

The double loop contour l- around points zr ând 22 is a

smooth contour which commences from a point Zs, distinct

from z¡ and 22 s loops zt and 22, loops z1 and zz

again, but in the opposite sense, and finally returns to zo.

Let X denote the vector space of functions holomorphic on the

contour I and. unaffected by analytic continuation around t'

X naturally incl-udes al-l- funclions hol-omorphic in a convex

region containing the d.oubl-e 1oop, but x also incl-udes certain

functions with branch points at z¡ and 22. For want of a

better name, I have termed the space X the space of periodic

functions on the d.ouble 1oop. The operator (À-q) is invertible

so long as À does not lie on 1.

(3) Suppose X to be the vector

terminate after a finite number

to be the infinite matrices

0 clr

space of all sequences which

of terms. Define P and q

0

p 0crz

0

t q ßr 0

k, k

ß20

f

c[3

a o

a

a

a

oL ß:.

ßs

!,2 ,3,

a

where the numbers ok and ßk are constrained by

(4) Yet another examPle

operators. Let X be the

the complex variabl-e z-

exhibits p and

vector space of

Define

q as difference

entire functions of

p X-> X

f (z) r+ f (z+I) ,
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q X+X
f (z) r+ zf (z-I) .

Example 1

The Hvpergeometric 0perator

I wil-l use the general

initiallYequation, derived

hypergeometric

(1885):

form of the

by Papperitz

ld
dz

3

I
.a= I

1-o ß

I ( r-z t ) ( z' z z) ( z- r, > ffi,
a ].

+ z-2.
t_

ctßr (zt-zz) (zt-zs) (zr-zs) (zz-zt) o¿sßs (zt-zt) (zs-zz)
+ u z3z +

Z-z t z-zz z-zs

'e(z) 0

with
(a +ß 1

Ì+

3

I
i=1 a a

The slngular pointq, which are assumed to be distinct, 11-e at

z|'z2lZ3.Theexponentsadoptedbythetwolinearlyindepend_

ent solutj-ons near any one of the singular pointsr sâV'í'are

cf,. and ß*. The variables ni and 0i will denote the sum
aI

and difference of the exPonents,

n
t_

cr. *ßi, e.
I

=c[ ß
a a

Fina11y,

(0rr0zr0s).

Let P denote the space of periodic functions on the

doubleJ-ooparoundi-Tandi.2ldefinedintheprevious

n

0

(nrrnzrrte),
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section. The hypergeometric operator s(0) ' a l-inear map

from P to P which depends upon 0, is defined as foll-ows:

s(o) P.+ P

e(z) è os(z) ,

where

1-n
o= L-a

k(nr'-or')

zt-zt z z-zz-

ry

z-z ( z-z

-2")
z-z t zs-zz - '-u(\22 -o 12 )

)' d.2

ð,2't + l3

I
i=I z-z.

I

d
dz

a

z-z zz-z t) + a-+(n32-032).
z-zz zs-zt

s( o) which

The parameter n vrill be'supposed given and fixed, but 0 will

be allowed to vary freely over C3. bihen 0r and 02 are fixed,

the eigenvalues of s(0) are the vafues of Os'/\ for which

the kernef of s(0), denoted ker s(0), is non-trivial'

occasj-onalty I wil-1 use a simple extension of this idea and

consider a (generalised) eigenvalue of s(0) to be any value

of 0 in c3 for which ker s(0) is non-trivial. The general-

ised eigenvalues will be seen to lie on surfaces in Ct ,

eigensurfaces. The conventional eigenval-uesr corresponding

to fixed 0r and 02, Iie at the points of intersection of the

eigensurfaces with a line through (0r,02,0) paralle1 to the

0 g axis.

Although I have defined s(o) as a d.ifferential

operator, s(O) yields to the algebraic methods developed

in the ]-ast chapter. Consequently, for the moment I will

ignore the space P and deduce the properties of

depend only on the commutation relation

ld/ dz 'zi 1
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dependenceFor brevlty I will wrlte s for s(e) unless the

of s upon 0 is partlcularly important.

Define

f¡ 2

12=4 (nz-nr),

t

fs o r'- o z' .

By straight-forward calculation it may be verified that

[srrr] (t+nr)rr r rz

[srrz] = rr (4s-rls'+Or') + (l-nt)rz * r¡r

[s,rs] 0

[srr] = rilrThus,

where

and

If

m=

r=

1*n s

1

0

(rrrr'ztrs)

4s+0 r'-ttr'
1_n s

1

0

0

0

In the extension field E, s ls glven by

s = h2 or"/4,

and the eigenvalues of m are

1 t 2],a, 0

r = rr(tt2fr)(nsJ2h) + rz(Itzh) * ra,
+

then h'"r. = r*(rrtl)2.



Thus, = h+(ht1),

= a.r(r**h- r"*(ht1) ).

I7s.

elements of the

could proceed

However, irl

and the onlY

where b+

where

hlith this notation,

hb +

Tedious calculation shows that

bb f (h),
+

f(h) (zrr+1-0 r-02 ) (2h+1-01*02 ) (2rr+t+0 r-02 ) (2rr+t+01+02 ) .

Final-Iy, set c = (errez), where +'1
-+ te,

I
i = 1r2.

f (h) ( 2fr+1+e 1 0 1*e z0 z) .T_I
e

The quantities hrr+, and so oh, are

algebra Ã constructed in the last chapter'

as I did there and find representatlons of

this case, s is a differential operator on

solutions of the differential equation

oe(z) 0

all

I

.Êt

prt

which are of importance are those which lie in P. Thus,

solutions of the eigen-equation of s must satisfy a boundary

condition, namely, the condition for admission to P. The

parameters which label- the irreduci-ble representations of Ã

play in the algebraic theory the same role as the boundary

conditj-ons i-mposed on the solutions of the differential

equation. Thus, I must determine those representations of A

in which the boundary conditions dictated by P are satj-sfied.

Near z¡ the hypergeometric equation has two linearly
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independent solutions f which behave l-ike
1B

f (z-z t) ßr

fro'

fto (z-2, )ot, rß t

provlded (c¿r-ßr ) is not an integer. Simil-arÌy, near 22 t

there are tv¡o sofutions f 2a, l rg wit

f (z-z r)o' , f (z'zr) Bz

2a 2g

provlded (az-ßz) is not

are linearlY related bY

f
1c[

an integer. The two sets of solutions

analytic contj-nuation :

u.) f+- ++ 2a,

f (¡ u) f
rß -+ 2ß

The entries of the matrix depend only

solutj-on of the differential equation

terms of either set of solutions,

E

upon 0. An arbitrary

can be represented in

is a periodic function

zz if and onlY if one

za and Erg is zero. Tn

cfb q f r f
10 Ic[ 1ß rß

E f +E f
2a 2a 2g 2g

It is not difficult to show that

on the doubl-e looP about z¡ and

of Ero and Eß is zeYo and one of

other words t I must have a definite exponent both at 21

and at zz, The eigensurfaces of s(0) are those surfaces

in C3 on which one of the entries vanishes in the matrix

above. There are four famil-ies of eigensurfaces of s(0);

the family l-abelted by Ê = (er rer), where E, = t1, contains

al_l those surf aces in C3 on which o, ( 0) vani-shes. The

+

Cb
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func-functj-ons urr(O) are wel-l known and invofve only f

(Abramowitz and Stegun (1968))' ur"(0) vanishestions.

whenever

er0r + ez}z t 0s + (2k-1) 0, k Ir2 r ' ' ' ' ,

so these planes are the eigensurfaces of s(0)'

The zeros of the PolYnomial f(P) are

p
L̂

= -Lr(er 0 r*e2 02*1).

Let Xe denote the irreducibte s1(2'C) - module with

highest weight P s. I will assume that 2p r+1 is not a non-

negativeinteger,SoXeisinfinitedimensiona]-.The

elgenvalues of

2:n+ 0g

on Xs are

-(er0r+,er02ro3 + (2k-1))' k I12r."'

Since s = L,*(2h+e.) (Zfr-0s),

the eigensurfaces of s(0)

er0r+ez0z + 03 + (2k-1)

on X
¿̂

are

rt is cl_ear that r can give two equivalent descriptions

of s(0) and its spectrum. Firstly, I can regard "(e) as a

differential operator, and insist that the only acceptable

solutions of the differential equation

oe(z) 0

0, k t12r"'

are those with exponents lr(nr*er0r) and"z(nr+ezêz) al 21 and
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z2t respectively. Secondly, I can exhibit s(0) as an

element of the algebra A and construct a representatlon

of Ã on the sl(2rC)-module Xe üIith highest weight pe '

The algebraic version of the boundary condition imposed by

Pisthars(0)mustberepresentedonthereducible

modu]e

X = @ Xe.

e

The matrices of h and X have the famil-iar
c

0

ßr o

Bzo

ßg

b+ on

form

h

p o or
e

ok

p-1
e

b+ oqz btt

o-2,e
a

o 03

e o

a

k

I will choose

a

a

a

in which the entries and ßk must be so chosen Lhat

bb f (h-1) = II(2h-1*Ê r'0 r*e z'02) '
Ël

Equivalent 1Y ,

= 16k(k*e rO r ) (k*e 20. ) (k*e 1 0 1*e zAz), k l12r"'

The choice of ok and ß

condi-tion is satisf ied.

is [uite arbitrarY Provided thj-s

ok

ot ßL

= 4(t<+e r0 r ) (k*s r0 ¡*e z0z)

and

gk = 4to(t+t zoz).
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Thus,

where

and d

u=

clI

9,2

ßr

ßz

01

ct3

ßg

01

and b du '

( 2rr-t-e r 0 r-e z0 z)( 2fi-f-e r 0 r*e z0 z)

(2h-1*e ¡ 0 r-e z8 z)( 2n-l+e r 0 r*e z0 z)

b
+ =ud++

u=
+

,

t

d+

,
01

0

10
10

1

b+ ulere defj-ned j-n terms of Y¡ rY2,Ts and h' It is

a simple matter to invert the defining equations to find that

f1 = (t*(Zfr+f)-r +b_( lh-:-)-r) (4fr)-t - (0r2 -0r')(4rr'-1)-r

and

12 = (u*(zrr+r)-t (2h-ns) - b_ (2h-1)-r(zrr+n3)) (4h)-1

+ (or'-o r')(1*ns) (4h'-1)-1 .
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If the denominators

h, ( 2hl1)

are to be wetl defined automorphisms of xe, the numbers

0, llz must not be eigenvalues of h on xe. Equivalently,

zPe+1

must not be a non-negative integer. This condition is

satisfied because I assumed X, to be infinÍte dimensional

and irreducible. The matrices of 1'1 and Yz are both i¡ri-

diagonal on Xr. fn terms of h and d+,

f¡ = v(zrr-r)a* + vo(h) + d- v(t-zrr),

fz = w(2h-r)d+ + wo(h) + d- w(1-2h),

where

( a-e ,0 , -ez0 cL- È- 0 *e 0v(a) = 2

vo(rr)

w(a )

wo (h)

(8r'-or')/(4h'-1),

= (a-t-ne)v(a),

= -(1+n3)vo(h).

Thus, the differential oPerators

1

and

lz 4

have tridiagonal matrices on Xe.

I will now turn to a cl-ass of codiagonal operators on

X
e

(z-z r) (z-zr)-11r:zrT- *, + (n'-nr )
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o erators with R ul-ar Sin ularities

The codiagonal operators I have chosen for thÍs

examplecorrespondtoordinarydifferentialequationsv¡hich

have only regular singul-arities in the complex plane ' These

equationswi]-]-appearlaterinthethesis.Theirimportance

restsuponlhefollowingfact:everylinear'ordinary

differentiaf equation with rationat coefficients can be

obtained from a mem'oer of this cl-ass by confluence of singular

points.(Ince(:1926)).Ishoulda]-sopointoutthat

Erdélyi (1944) nas given a technique for representing Heun

functions ln terms of coirvergent series of hypergeometrie

functionsrandhistechniquewillbeseenheretobethe

analytic version of an algebrai-c method'

The differential- equation is

m

il (z-z
i=1 i,td2

m

T+
d
dzd7 i=1

+ a(z) + Àb(z)

The singul-ar points are zL 'z2 t'"'zm and possibly the point

at infinity. The finite singularities are all regular, and

the exponents of the solutlon nean any one' say zít are oi

and ßi. a(z) and n(z) are polynomials in z' As for

the hypergeometric equation, set

t(z) 0, m > 2

n ß and ß I]-

Àistheeigenvaluetobesought.Iwillrequiresolutions

of the dif ferential equation to have exponent s t-'(¡ 1+e 101)

and %(nz*e z 0 z ) at zt and z2 t respectively ' This is

ct.
II

o¿.
a

e.
a+



the boundarY condj-tion.

of generalitY that z1

There is an elementarY

a consid.erabl-e simPlification

Suppose that

r(z) = g(z)

g satisfies the same equation

ßs, ßq r. . . , ßm must be set equal-

replaced bY another PolYnomial

Finally, I can assume without

and 22 are both real.

7.82.

1os s

transformation whlch l-eads to

in the dj-fferential equation'

(z-zi) Þi

as f, excePt that

to zero and a(r) must be

c(z). The boundarY con-

are identical-. It is in

use the differential- equation'

3

m

]I
I

ditions imPosed on f

thls second form that

and g

I wil-l

Let P denote the vector space

on the double loop which encircl-es zt

encl-oses nor passes through any of the

of periodic functions

and 22, but neither

other singular Points.

Define

where

and

s(e) : P+ P

e(z)è os(z),

o= 6 + t-u(ñrr-Orr)

o (z-z r) (z-zr) ð.2
-dî--z

1-n r
z-z t

].-r,
z-zz+( +

+ a.4(rtr2-0r2) * t<, (nz' -o z2 )z-zt

s(0) is the hypergeometric operator with

zr,zz ând @. The variable

î ¡ satisfies

ñt and 0s

Zt-Zz

singularities at

are sPurious;

nr * nz * ns 1,
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and 0g

appear.

terms of

is arbitrary; they onl-y appear in order to dis-

The Fuchsl an differential operator is defined in

s. Define

r(À) P+P

B( z )** "rg(z)

where

k'

span the irreducible sI(2rC)-module

the operators

s = h2 - 032/4,

r-1 = 2(z-z)/(zt-zz) - 1

+ c(z) + À¡(z)

Xe. The matrices of

b - (nz-nr )

and ?z are tri-

is a Pol-Ynomial in

m

T= iI
i=3

rl¡_(z-2.)f4õ + I' I i=3 +(z-zt)(z-""rb)
Both of the differential- equations

Tg=0 and og=0

haveregularsingularpointsatztandz2'Furthermore'
the exponents at these points. are the same for the two

eQuations. Thus, the boundary conditions imposed on

solutions of the first equation can also be imposed on

sol-utions of the second. If this is done, the functions in

the kernel of s(0), denoted

{x I12r''']k

t

and ?2 4
z-z I (z-z

z t-zz

are known on X.i s is diagonalr rl

d.iagonal. The t perturbed t operator t
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s, rr and Y2e so it i-s a trivial matter to compute

the codiagonal- matrix of t.

Toconstructaspectralchainfort'Imustfindthe

roots of the characteristic equation of the recurrence

relation associated with t. To do this requires several

steps.

(1) s is diagonat and, asymptotically, the kth diagonal

element of s is k2 - I will write

1

Sfu

k2

to indicate that these matrices are asymptotically equal'

(2) rr is tridiagonal and

1

1

Since (z-zi) = '-"((21-22)11 * zvrz2-Zz r) , 1<i(ITt,

T
N eu(zt-zz ) (v+Vi ) ,

4

9

0 1

0

1 1

0

1

0

t_

z-z

where

(3) Similarly,

yi = 2(zt*22-2z r) / (zt-zz) .
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0

1

1

0-2
Y2tu

2 0 -3

30

(4) t has a codiagonal matrix. The characteristic equation

of the recurrence rel-ation associated with t has the

form

IrrYi=o;
t-

Çí i-s the asymptotic value of the sequence in the i

diagonal of t. The term

m

rh
I

domÍnates the matrix of t and alone determines the

characterj-stic equation because, relative tothis term, the

other terms are asymptotically equal to zero-

(5) In the first section of the appendix, I have shown

that the characteristic equation reduces to the follovring:

m

4 o TJ (z-z ,)
L

.l-= J

Tl (y + vi + r/"()
I=J

0

The roots are the solution of

y*Vi+I/\= 0, 3<i<m.

It 1s a simple matter to substi-tute the expression for yi

to find that the 2(m-2) roots are
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Yit 2(22 -Z ¡-22+l , í-2, Z.-Z¡
I- ) / (z t-zz) .

]-

It is interesting that these only depend upon the locations

of the singular Points.
(6) In order to construct a spectral chain for t, I only

need to ltnov¡ the roots of the characteristic equation.

However, to calculate the spectrum of f , I must be abl-e

to truncate the infinite set of equati-ons to a finite set,

and only when the modulj- of the roots are all distinct do I

know how this can be done. Consequently, in the appendix I

have sought conditions on the locatlons of the singular

points v¡hich are necessary and sufficient for the moduli of

the roots to be distinct. The most useful resul-t i-s the

followi-ng. If all the singular points are real, then the

moduli- of the roots are distinct if and only if 21 and 22

are adjacent. I will assume that this is so.

If the degrees of the polynomials n(z) and e(z) do

not exceed (m-2 ), then the order of the recurrence

relation is equal to the order of its characteristic equation,

and Poincaréts theorem is applicable. When the recurrence

relation has a higher order, I believe that a modified form

of Polncarérs theorem could be applied, but I have only been

able to prove this in very simpte circumstances '

Let

o ( Yr <'lz < t \z(m-2) < oo

be the moduli of the roots of the characteristic

As in chapter 4, l-et X" denote the subspace of

prised by sequences which sati-sfy

equation.

Í com-
e
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lim E

k-'oo
0. /gk

K

forall ß>Ya, a=

the sprectrum of t"

can be truncated to a

boundary condition on

1r. .. , 2(m-2). Provided a < m-2

on X i-s discrete. The matrix
a

finite matrix, in accordance with

X", bY setting

,

oft

the

and,1n this formula,

n can be chosen

are the values of

matrlx equation

the root whose modulus is Ya

The first n eigenvalues of

whlch the (truncated) finite

ß a
is

wi11.

for

tat a

À

t(tr)x = 0

has a non-trivial solut10n. There are well established

methods for solvlng such equations'
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Bxample 2. Poincaré Modules.

I have included this example as a warning to show L¡]tat

the analytical and algebraic approaches'to some probfems

are not equivalent and that it is not always possible to

choose the best of both methods.

I

Lorentz

Po and

will use the

groups are

L-. Their_R

Finally, P and L

L_R

fol-lowing notation. The Poincaré and

real- Lie groups so I will denote them

real Lie algebras are P* and LR.

will denote the complexifj-cations of

into
group

P* and LR.

Each unitary irreducible representation of the Poincaré

group P* is labeIled by the values of the mass m, the

spin s and the sign of the energy. such a representation

is denoted

D(mrsrt).

The decomposition of the representation D(mrsr*)

unitary irreducible representations of the Lorenlz

was derived by Joos (7962) and takes the form

D(mrsr*)
-s
@ dpI k,ip]

where Ikrip] is the notation introduced by Naimark (1964)

for the unitary j-rreducibl-e representations of LR. These

are analytical statements; the unitary irreducibl-e repre-

sentations of P* are classified, one is assumed to be

given and this one is dissected.

In the algebraic approach, the order of these steps is

o

S

I
k-



189.

reversed. Irreducibl-e so(3)-modules are known. These

can be glued together to form irreducible L*-modul-es.

(Gel'fand and Ponomarev (1968)) It i-s also possible to glue

together L*-modules to form an irreducible P*-module with

any preassigned val-ues of the mass and spin. The algebraistsl

plani-stosynthesiseratherthananalySeP*-modules.

However, the two programmes are not equivalent, at

teast in any obvious sense. To see why this is so it j.s

necessary to examine the direct integral decomposition more

c1osely. ft wil-1 suffice to examlne just one term

dpl l< ,ip] ,

since the direct summation over k is well understood'

æ

I
o

Let HO denote the Hilbert sPace

unitary irreducible representation of

I kri0] , and construct

UH
p>o

Let F denote the set of all functions

f : Io,-)-> V

pF+ r(p)eH

which carries tÏle

L- labe1l-ed_R

V p

p

Each such function maps p into a vector in Hp ' Define

lrl' :(
l
o

dplr(p)13 ,

denotes the norm on H and set5
p p

{rerl lrl' < -}.
where l'I

H
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It ls the Hil-bert space H that carries the direct

integral representati on

dpl tr, ip] .

The

and

operators of this representation on H, denoted n(g)

defined weakly, are

no(c), g€Ln,

o

n (e)

(g) are the operators of the representation of

andp

i
.luo
o

where II
p

LrR onH

(n(c) r) ( p) (g)r(p) for all feH
p

The point I want to stress is that the elements of

H are functions from I or-) to v, so it is not correct

to consider the representation space" Hp as subspaces of

H. (Onfy with the help of a rigged Hil-bert space and

distributions outside H is it possible to view nO as a

subspace of H. ) This conflicts with the algebra|c approach

where the L*'modules are actually embed.ded in the P*-modu1e.

There is a serious difficulty here. suppose values

are prescribed for m and s. The representati-on

D(mrsr*) of P* can be decomposed into a direct integral

of unitary irreducible representations of LR. However, it

1s also possible to construct an algebraically irreducible

P*-modu1e, with the same values for m and s, as the

countable direct sum of algebraically irreducible L*-modules.

The difficulty is that it is nob possible to embed each

I
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L -module in a Hil-bert space which carries a unitary
R

representation of LR. chakrabarti, Levy-Nahas and seneor

(1968) notlced this difficulty but faifed to resolve it, so

they only claimecl that the1r' resul-ts were formally correct'

They did not seem to realize that their resul-ts were rigor-

ously correct in an algebraic framev¡oric and that the repre-

sentations they had constructed were algebraica]ly irreducible

representations of P*, not unitary topologically irreducjbl-e

representations of PR. MacDowel-l and Roskj-es (f972) dis-

missed the work of chakrabarti et a1. with the observation

that the basis vectors they had employed lay outside the

domain of the momentum operators, which are necessarily

unbounded in a unitary representation of PR' This

observation is correct but j-rrelevant , for it does not help

to establ-ish the connection between the algebraically

irreducibl-e representations of P* and the topologically

irreducibl-e unitary representations of P* with the same

mass and spin.

I do not intend to speculate upon this connection

because more research is stilt needed. Instead I will 0ut-

line the steps in the construction of (algebraically)

irreducibfe P*-modules, since this ill-ustrates the general

methods of chapter 3 and does not seem to be widely knorvn'

since every irreducibl-e P*-modu1.e provi-des an irreducibl-e

p-module and vice versa, I can without foss of generality

deal only with the complex Lie algebra P'

p is a ten dlmensional Lie algebra over c with basj-s.

{"¡.u = -"uÀ, PÀ, 1(À,u<4}
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and Lle products

I r^urPul

I P¡,nul

ô¡.,uÞÀ ô ÀuPu ,

lrlur"vpl = ôpu"Àp - ôÀu"uo * ôputuÀ - ôpÀ"uu,

0

The Ispin vectorr in U(P) is

S
À

t¿e-?D- ÀUvp Uv'P

The centre of U(P) is the subalgebra generated by the

set

{1,plPl,s^s^}.

The anti-symmetric matrix

?= (r ) tÀ

wlth entries from U(L), satisfies a fourth order poly-

nomlal identity (Bracken and Green (L97 f) ) :

(r-1) | (Ira-zoz) (r-1)2 + h( o2(I+14o2)-ou ) 0,

o = trace ? 1
where ].

U(L) can be embedded isomorphically in an algebra UCLT

in which the polynomial identÍ-ty can be factorised,

(r-1-kr ) (r-1+kr ) (r-l-kz ) (r-1+k2 ) 0,

u

az = z(kr'+kr2-I),so that

O4 = 2(kt'(kr 2-r) * kz'(:Kr2-1) ).
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Eaeh irreducibLe U GT-module provides an irreducibl-e

U(L)-module, and vice Versa. Furthermore, each irreducible

U-(L)-modu1e in which kr and kz are represented by scalar

multi_ples of the identity is uniquely labe]led by these

val-ue s .

The procedure by which irreducible P-modules may be

constructed is now very similar to that given in chapter 3

for gl(n+lrC)-modules, so I will only l-ist the steps.

( 1) Set

ks = -kr and k'f

so that the polynomial identity can be written

4

-lKz,

T-Tf r-1-k, )
i=I

ei = TJ(r-l-k.)/(k.-lr-j) '' j+ i

0.

Deflne

i=1r 2 ,3 r\ .

It is easy to verifY that

i'

(2) Construct the reigenvectorsr of r'

e.e.f-l ô..e..rl L'

1=[e
i

k,e..
IIr=l

i

These satisfY

(oi)¡ = Pu(ei)uÀ.
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(nr)^(*lu-kio^u) = o,

kr(nr)¡ = (nr)^(kr-ôrr.*6rr),

kz(ni)¡ = (nr)^(kz-ôrr*ôrn)'

(3) Construct the tmixed invariantsr

i=1, 2 ,3 ,4 .d.
a

p¡.Pu(ei),rr t

Their calculation is tedious but straight-forward.

resul-t is

and

(4)

tabelled

module

The

(-)ir-rm, (X. +s ) (ki-s-1) / (kt'-ir-r') .

The constants m and s are the mass and spin; they can

be assi-gned arbitrary values, real or complex, but f wil-l-

assume that (Zs+t) is an integer. Furthermore,

P¡P¡x = -m'x

and "À"À* = m2s(s+1)x

for every vector x in x, the irreducibl-e P-modul-e that

will be constructed.

d.
a

Let X(k,c) denote the irreducible L-module

I krc] in Nai-markt s nota'r,ion. Construct the

X I x(k,ip*n),
-s(k(s
-o(n(æ

where the sum is direct and p is a fixed constant ' The
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action of p¡ can be defined on X. tr'or example, the

matrj-x elements for P¡ given by Chakrabarti et 41. will-

suffi-ce. Hence X 1s a P-module. pÀ rr.aps the L-module

X(krip*n) into the four show ln the diagram below, and

only rrhen the pofynomial d, vanishes Ls the corresponding

transition impeded.

X(k,ip+n+f)

dq

dr x(k,ip+n)x(k-1,ip+n)

d1 and d3

dz and da

P-rnodu1e.

d3 X(k+1, ip+n)

dz

X(k,ip+n-1)

vanish when k1 = ts, but, if P is real'

never vanish. Thus, X is an irreduclble

The modules X(k,ip*n), n*0, can never be integrated

to unitary representations of LR. How are these non-unitary

representations to be interpreted? Prof. Green suggests

that the same set of generators for L* cannot be used in

every irreducible representation occurring 1n the decomposition

of x. For example, if Ô is a scalar wave functi-on, then

pf9 has tspinf associated with the i-ndex À and so belongs

to a (reducibl-e ) representation with generators

"ru + 
").u,

where "ÀU 
accounts for this sPin.

The existence of these algebraically lrreducible
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P*,-module5 poses two problems. The unitary irreduclble

representatlon D(m, s r*) and the algebraically constructed

representation have the same values for the maSS and Spin'

In what sense, if âov¡ are they equivalent? secondly, Íf

they are inequlvalent, whì-ch is needed 1n quantum physics?
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APPENDIX 6

Derivation of the Characteristic Equation

The term which dominates the matrix of t is

m m

4 " Tl (z-z.) q' 4A T-T !u(zt-22,\ (v+yi),
i=3 - i=3

01
101

where

Proof . l¡lhen

it 1s true for

v=

(tl )rr =

101

1

Since o is diagonal, the coefficients in the characteristic

equation are determined by the matrix

m

p(v) = Tl (v+Yi)'
I=J

since yi commutes with v, this product can be expanded

as an ordinary product to obtain

P(v)

The coefficients here will depend upon V¡ ¡Va r. . . rV*i their

calculation is trivial. The matrix elements of vj are

computed in the following l-emma

Lemma 1.

m-2
Ij=o

)vo¿ j

l
i r-j+rr(L)'6 1>

k

j=1,

j < j

i=0

the result is trivial. Assume that

. Then,
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j+1 =l

1

(vl ) rr n>j +1(v ) trrr'kn

liI
I i=0

ô* r-j+2i
ô
o
1

j
a

n-j-t+zi*ôt

)
j
i

( ,r-l-*ôtX )n*1

J

I (ôr n- j+ r+2i) (rr)í=0

l
I 6 ( ôo

j+r+i
i=l

j
i-1(

i=0 k n- j - L+2i

+6n-j-1 k n+j+Ì
)
i n-j-1*2i( (1)

n-j - L+2i

k

k n-j -L+2i

ôu

ôoô*

+ Ò + ))l
i-r(

i=I

j
I ( )+n-j-r n+j+1 + ô

j+1
ii=1

ôk
j+1

=I
i=0

j+r
( )n-j-I+2i l-

Thus, the result is true for all i

The matrix p(v) can now be found easily.

(p(v) )*,
m-2
I

j=o

l
I ôu L-j+2i t 1>m-2.J

I
( )q,.

l i=0

Define çr =

value of k.

are constant

of k. )

(p(v))r k+', -(m-2) <1<

(Since the elements on

after the first m or

(m-2), for some large

any diagonal of p(v)

so , Çf is i-ndePendent

eL TJ
i=o

ô

The characteristic equation of

m-2
I 6rY

1=_ (m_2 )

j
q

m-2
I

j =o
( )r j-2i t_

the difference equation is

t
0



199.

This equation can be rearranged:

(y+I/r)

m

l

= Tl (y+y .+I/y) .

a=J

distinct modul-i if and.onlY if

j oÍning z¡ and 22.

m-2
L1

j=o J

Modul-i of the Roots.

Lemma 2. The roots Y of the characteristic equation haveil
z. does not lie on the line

l-

Proof Yit = %('v, t '6:4)

(1) The roots are equal, and hence have equal moduli,

if and only if

vr2-4 = t6(zí-zt)(zi-zz)/(zt-zz)2 = o'

This can only be so if ,i=rr orui='r, so the result

is trivial in this case.

(2) Suppose then that

ff'r.---E o+i$*o and yi = Y+iô.

2Thus,

and

CI

Requi-re that the roots have equal moduli:

l(cr-v) + r(ß-ô)l l(c¿+y) + ilg+ô)1.

Equlvalently, ay + Bô 0
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andI will- show that this can only be so if one of yi

6:4 is real- and the other is purely imaginary'

If o*o, multiply the l-ast equation by ct':

yo¿2 + ô(oß) =o

Then

and so

Thus, Vi

so that

y(cl2+62) = o,

y=oand$=o.

is imaginary and 63 is real. If 0=o,

q4 is imaginary, then

ßô = o,

from which it follows that ô=0

By assumPtion, z¡ and 22

i-n which one of

yi = 2(ztrzz- 2zr)/(zt-zz)

and

/ (z t-z z)

and that yi is real.

are real. The onlY way

z is real and
t_

{ Zz.

Z.-Zta-

can be real and the other imaginary is if

satisfies

4 Z --Zc
l--

///

I now want to investigate whether it is possible for

yit and Yi+, i*i, to have equal moduli' Note that the

t signs need not correspond. A necessary and sufficient

condition for

lvr*l

z.
l-

lv jr
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is that

Yit

which can easilY be reduced lo

cos 0 vivj r
a

lrr*l

0

v

lvr-l '

t

Y j t'

i+ j .

cos

vj

3<i<m.

]-

)

EquivalentlY,

cos 0
4 ((r r+rz-22 ,) (zr+22-22 ')Zt-zz

+ Zt-2.-t_ Zc-Z,-l- z t-z )
Zc-Z,-l

Lemma 3. Suppose that all the singular points are real.

If z¡ and zz are ad.jacent, then the moduli of the roots

of the characteristic equation are aLl distinct'

Proof . Accordi-ng to lemma 2'

I need only show that

satisfy

for any choi-ce of
I

z

Sol-ve for y

cos 0, defined above, does not

1<cos0<+1

4(riz+Yj2)-2YiYj O + cos2ç '- 16 = 0.

+

and z.
J

cos

J

4Vj = Vrcos0 t yi

Since both yi and Yj are rea1,

(cos'þ-t6) (vrt-4) > 0.



Furthermore, 0 is a real- angle so

cos2q - 16 <

and v.2-11 < o.

(z í-z t) (z i-z z)

lvr*l + lvirl ror all i+i.

Therefore,

Thfs implies that zí lies between 21 and 22 e contrary

to assumption. Hence,

202.



SPECTRAL FIJNCTTON AND ANALYTIC

203.

CONTINUATION
CHAPTER 7. THE

SupPose that K is a subalgebra of a

and that X is an irreducibl-e L-modul-e'

Lie algebra L

The aim of

following questions.
spe etral analysis of X is to answer the

(1) Is X completely reducible as a K-module?

(2)Ifso,withwhatmultiplicitydoeseachirreducib].e

K-modufe occur in X?

(3)Otherwiserwhichindecomposabl-eK-modul-esoccurinX

There are two important circumstances in which X is

alwayscompletelyreducibfe.ThefirstariseswhenLis

areductiveLiealgebraover.candXisfinitedimen-

sional. The second arises when X is a K-finite

L-modul-e. Ineachof these casesr the second problem can

usually be sol-ved quite readily with the techniques gi-ven

in earlier chapters. As usual, when L represents

s1(2,C),alttheproblemsaretrivial'Iwillusethis

casetointrod-ucethespectralfunctionanditsconnection

with analYtic contj-nuation'

Take

matrix of

diagonal;

a finite dlmensional

the element h of the

s1(2,C)-module X. The

Cartan subalgêbra is

m

m-1
h

t
m-2

-m



where m is either an integer of half an odd integer.

function

2m

O(À) = det(h-À) = TJ (m-j--À)
l_ =o

204.

The

is an entire function of À which vanishes whenever l' is

an eigenvalue of h. In more sophisticated terms' 0(À)

vanishes whenever À is the highest weight of a

g1(1rC)-submodule of X. Apart from a scaling ractor' 0(À)

is unique.

Now suppose that X is an infinite dimensional,

irreducible s1(2,C)-module with highest weight p. The

matrix of h on X is

p

h
p-1

p-2

Define the spectral function 0 (f) of X to be the entire

function of À, of lowest possible order and type, whose

zeros are the highest weights of the g1(1,C)-submodules of

X. The exponent of convergence of the eigenvalues of h

is equal to unity. Thus, the spectral function O(À) is

the canonical- product

@

)e À/ ( p-k+1 )

k=1 p-k+1
Àö(À) = TT (r

(Note. The definitions of order, type and exponent of



205.

convergence are those given by Titchmarsh (1939).) Since

I assumed x to be irreducible, the highest weight p can

never be a non-negative integer or hal-f-integer, so

(p-f+f) never vanishes and the product is well defined.

This infinite product can be evaluated quite easily:

0(À) = exp(o).) r(-p)/rçÀ-p),

where I
k=I

t

and "¡ is Eul-erts constant. ff the assumption that X

should be irreducible is relaxed, then 0(I) will- have a

simple pole when p is a non-negative integer '

rn this example, 0(À) is simply the 'determinantr of

(n-l¡. This definition can be extended. If

TT (h-Ài),
i=l

m)1,
m

s=

then define the determlnant of s to be

dets= T-T 0(Ài).
l-=I

m

Thus, dets= Jlaet (h-Ài).
i=l

Tt is not dlfficult to generalise the definition of

a spectral function to include the cases where L is

other than s1(2rC). Suppose that L is a reductive Lie

algebra over C and that X is a K-finite L-module. If

the Cartan subalgebra of K has dimension n, then the

hlghest welght of any irreducible K-submodule of X has
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n components. Furthermore, these components uniquely

l-abel that K-module. The spectral functions of X are

n entire functi-ons Qr(f),...,0rr(tr) of the complex

varj-abl-e | = ( À r, ).rr) , of lowest possibl-e order and

type, with the fo1-lovrlng property. A point À in Ct is

a simultaneous zero of 0r(À),...,0,.(tr) of order k 1f

and only if the irreducible K-module label-Ied by (Àrr...,Àr)

occurs exactly k times in the decomposition of X.

I have only given this definition for completeness;

I will not use it in the sequel.

It is cl-ear that the calcul-atlon of the spectral

function for an sl(2,C)-module X is a trivia] matter.

However, in the rest of this chapter I want to show that it

hãs a non-trivial consequence, connected with analytic

continuation. The result is this. Suppose that s ís a

diagonal operator on X which can also be represented by

an ordlnary differential operator with analytic coefficients,

together with bounclary conditlons imposed at twc points in

the complex plane. Generally it is quite easy to construct

solutions of the differential- equatlon 1n the vicinity of

one of the boundary points, but it ls quite difficult to

analytically continue the sol-utions into the vicinity of

the other point. However, once the spectral function of X

is known, the analytic continuation is trivial. Some

remarks concerning this assertion are needed.

There is a sense 1n which every operator s, whose

spectrum of eigenvalues is simple, bounded bel-ow and count-

ab1e, can be exhlbited as a diagonal- operator on an
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s1(2rC)-module. Because of the assumed properties, the

eigenvalues of s can be arranged in a sequence

{Yr, k = I12r. ... }.

There i-s a uniqueì-y determined entire function

which interpolates the points of this sequence.

g(k) = yk

gofY

Thus,

Let X

{x*, k

denote the vector space spanned by the eigenvectors

= Ir2r... Ì of s. On X define

h: X+X

(p-k+1)xr, pe0,*k*

e X+X

*k * ok-rxk-r'

X+X

+

e

*k * ßkxk+r'

where ok and ßk are chosen to satisfy

oLßL = k(2P+1-k).

Flna11y, define the operator g(p-h+1) by

g(P-h+l):X+X

*k * g(t)xr.

It is clear that s = g(p-h+l) on X' so that (l-oosely)

s is a diagonal operator. The Lle algebra s](2,C) matches

the qualitative characteristics of the'spectrum of s ' a

contOrtion g(p-h+1) of the operator h reproduces the
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spectrum of s. Al-most any diflferentia.l- operator of the

second order will have a simple spectrum of eigenvalues, if

onl-y they form a discrete set. This is so because the

multiplicity of any eigenvalue can at most equal two, the

number of linearly independent sol-utions of the differential

equation, and j-n practice wil] equal one, because only one

sol.ution of the equati-on witl ful-fil- the boundary conditions.

For these operators then, the algebra which matches the

quatitative aspects of the spectrum is sl(2,C).

The difficulty, of course ' is that the ej-genvalues of

s are not known in advance, and, even if they were, the

function g could not always be obtained in cl-osed form.

It turns out in fact that the only ordinary differentlal-

operators which can usefu-11y be represented as diagonal

operators are the speciat function operators. Nevertheless,

it is a beautiful resul-t that the analytic continuation of

a Special function can be deduced once the operator is glven

as a diagonal operator.

There are two procedures which occur in the theory of

eaeh of the special functions of mathematical- physics.

Both deal with the differential equation satisfied by the

special function. The first j-s the construction of a

representation of the general solution of the equation in

regi-ons vrhich inelude one singuJ-arity of the equation and

no other. This involves the constructi-on in each of these

regions of a l-ocal basis for the vector space of solutions

of the equation, and is usual1¡r achi-eved through the develop-

ment of a set of independent solutions in (asymptotic)

series which converge only in that reglon. The second is
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the determination of the connecting matrices which refate

the severaf local- bases of the vector space of solutions.

Once the l-ocal bases and the connecting natrices have been

found, the analytj-c structure of the special function is

known and, for practical purposes, the theory is complete.

The first step is relatively simple, and can be executed

not only for the special functions but also for the sol-utions

of most linear differentlal equations v¡hose coefficients

are holomorphi c aT, all but a finite number of points. The

second step is difficult. In fact, the reason why the

special functions are special is preclsely tlnat both steps

of the progralnme can be completed for these functions.

rn the next sections I will- examine iust one of the

special functions, the hypergeometric function. My aim lvil-l-

be to show that the connecting matrices for this function

are known once the operator is exhibited as a d|agonal

operator. I stress that simifar resul-ts hold for all- the

other special functions. The central i-dea, that the spectral

function determines the connecting matrj-ces, can be extended

to more difficul-t ordinary differentiaf equations. However,

the results are incomplete because, âS I have already

potnted out, it is as difficutt to represent an arbitrary

differential operator as a di-agonal operator as it is to

determine the analytic structure of its eigensolutions.

Consequently, I have omitted them. AI1 I wil-1 say is t}:rat

many differenti-af operators can be represented as codiagonal

operators, and so a finite number of their eigenvalues can

be calculated on a computer. From these eigenvalues it is

possible to cal-culate approximately the monodromy group of



the differential equation.

The hypergeometric operator s ( 0 ) is the diagonal

operator

s = h2 - \os2

On the s1(2,C)-module Xe, the dete::minant of s is the

functlon

det s = det(]n-'.20s) det(h+rr0s) = 0(er0r,e z0z,0a),

f 1+0 +0
where 6(0rr0zr0e) f +0 r+0 zt0 s r

=t1

r+ z-o z

2L0.

+

I assert that the four functions,

0(er0rrez0zr0s), 2te.
a t I 1 t

ane essenti-alJ-y the four elements of the matrix connecting

the hypergeometric functi-ons constructed near zt lo those

constructed near Zz. To prove the asserti-on I must examine

the analytical aspects of the problem. For a short ti-me I

will consj-der a differential equation with an arbitrary

number of regular singularities in ordet' to decide upon

which parameters the connecting matrices may depend. I

believe that these results on an old topic are new.

Differential E q uati on s with ReEular Singulariti-es

The hypergeometric differential- equatlon has three

regular si-ngular points. It is a speci-al case of the

following equation:

2 cx; ßr
ß( )

LiÍ'-",-ßi)(#.*q L. 1-cr
l_ I

(z-z
I

2 0
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When the parameters oi,Bi r\ii 1 < i ( ITl, satlsfy

[ (r-crr-ßr) = 2,
I

IttI

I
i

Iv
i

= 0,

oißi'L
i

Y .2.'t- L

= 2L oißirL,
I

the points zt,. . .zm are the only singularities of the

equation and al-l are regular. In place of the variabfes

*i and ßi, T will often use

ni = oi+ß. and 0.
t- ¡_

ß

Near any one of the singular points, say 'í, two sol-utlons

with exponents oi and ßi can be developed in convergent

series. Riemannrs notatlon for the hypergeometric function

ean be extended to denote the general sol-ution of this

equatlon:

2.2.ÌI

ct
a

Z¡

ßr

z z.
I

ot1 - 0

m

m z -D
Yi

ß I

Yi

P z

ß
m

Yr - Ym

Choose a Point z tlnat is not collinear with any
o

pair of singular points and cut the plane as shown in the

diagram.
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z z3

z7

z
m

0.
L

Zg

Near the singularlty ,i, two solutlons with exponents

and ßi can be developed in convergent power series.

and frß denote these solutions:Let f io

f icr

f iß

The dlsadvantage of these serles is that whenever 0, is

an lnteger, otherr than zero, the coefflcients in one of them

are undefined. To remedy this, d€flne

cio(z) = fio( z)/t (1+oi)

and

e,uQ) fiß( z) /r ( 1-ei) .

These series are well defined for all val-ues of 0. . Ïn

fact they are Very well behaved, âs can be Seen from the

fo1low1ng lemma.

(z-z i) 
0i (.**iruo (z-z i)k ),

æ

= (z-zilßi (t**lr.o*( r-rr)k)
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functionsLemma 1

of of

thanother

' A resuft of

e(z) developed

singular point,

The functions 9io and

order at most equal- to

zit

q. ^ are entire
"1þ

one, for all values of z '
uniformly.

0,

for which they converge

this type is well- known

in serles about a Point

any solution

which is not a

for

z
o

provided that the I initial- values I

g(zo) and g' (zo)

are entire functions of 0 of order at most equal to one.

(Hit_t_e (7969)). I have.not seen a publ-ished proof of this

result when g(z) is developed in serles about a singular

point. The proof is not difficul-t, but is rather long, so

T wil_] omj-t it. The solutions gic, and 8iß are rinearly

dependent if and only if 0i is an integer' Set

cr'a)i

[il1
The components of g_i may be analytically continued

throughout the cut plane. fn particular, they may be

continued into the domain of definition of gi near z..

Provided O. is not an integer, the components of g- will-
I -" Þ-*, -J

be lì-nearly independent, so the continuation of g' which

I still denote Ëi, can be expressed in terms of gj

E. = U,.8.Ya a l:l

The matrix tij is independent of z, but could con-

celvably depend upon the locations of the singular points

z! ¡.... ,zm and the parameters ok,ß* and Yk, l<klm'
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thewhlch appear in

appendix I have

u. - may dePend
L)

(1) the

(2) the

singular

( 3) the

the differential equation. However, j-n

shown that the only varj-ables upon which

are the foì-lowing:

exponent differences 0* = cx'r-ß*;

independent cross ratios Xr r. . . ,Xn of the

points;

variab les

6k t ( +.n f , ) (, o- r- z y.) ( yn +'-" ( 1- or- U o r rl o 
( t- a r- ß r ) / ( z x- z r) )

a 1-u(1-0 ') (, +z k+1 k-rk k+I k-I k

where it is understood that zm+r = z¡ and 'o = '^

Thus, if 0 (orr...'o^),

Ç (Çtr...,4*),

and X (Xr r. . . ,Xr.,),

thcn u =u ( 6,0, x) .al rl

The reason why these variab]es are distinguished' is that

they are the invariants of the transformations which leave

the form of the differential equatlon unchanged.

Thematrix'ijhasasymmetrywhichlhavenotyet

employed.Thecomponentsofgia'reinterchangedbythe

interchange of oi and ßi. This requires that the rows

of u,. shoul-d be interchanged when the sign of 0i is
rl

reversed. Similarlyo the col-umns of *ij must be inter-

changedwhenthesignof'jisreversed.Thus,ifthe

-22 )\/(z -z )
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entry in the first row and second column of tij is

u(Oir0.r.),

where the dot stands for all the other variables upon which

u may depend, then

u(oi,-ej,') u(oi,oj,')

r.t(-oir-o j r') u(-oi,o j,')

u.1l

I¡lhen 0.
)

is not an integer, the matrix u.r_l
is given

by

u.al (Ëi,åi ' ,1Ëj,83' )-t

8io

8iß

o'Ioißo'lÞ icl

(}tr'i ß

-cl 
Iojo

_CJ îojß ojcr

(eroBjg-ejo'8jß) -1
t

where, each function on the right is to be evaluated al some

fixed point zo, distinct from the singular points. The

prime denotes differentiation. The entries of the matrices

are entire functions of o, of order at most equal to one t

so the entries in the product of the matri-ces share this

property. The denominalot, the \'rlronskian of 8jo and

Bjß, has simple poles whenever Uj is an integer' How-

ever, 1f T define

u
av.

a +e
)

the poles of the f functions cancel with the zeros of

the denominator of tij, so tij 1s an entire function of

0 and its order also does not exceed one. I have verified

,
-e.

J
T)
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that atl- these assertions are correct,

results are self-evident and the proofs

the proofs.

but because the

are tedious, I omit

The Hyperg eometric Equation.

In the case of the hyperg,eometrlc equation, the

situation is partlcularly simple. I\lith only three singular

points , it is impossibl-e to form any cross ratios. Further-

more, bêcuase the parameters YrrYz ând Ys must satisfy

three l-inear conditions, they can be el-iminated in favour

of 0 r r 0z ând 0 g . Thus, the connecting matrices tij

must be functions of 0 alone:

u. = u..(o).--al r-l

The hypergeometric operator s(0) is defined in the

previous chapter. rt acts on P, the vector space of

periodic functions on the double loop I about 21 and 22.

Consequently, eigenfunctions of s(0) are solutions of the

hypergeometric equation which are unaffected by analytic

continuation around 1. It is not difficult to show that

the condition of period.icity on I is only satisfied by

hypergeometric functions which have a definite exponent at

both z¡ and 22. In other words, the (generalised) eigen-

values of s(0) are the zeros of the elements of the matrix

11t2r and the correspond.ence between these sets is one-to-one'

If 0 is a z.ero of

u(er0rrez0zr0s), c
a

then one branch of the hypergeometric function has exponents
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'..(rrt*e101) and l.(\z+ezoz)

at 21 and zzt respectively' and hence 0 must lie on

an eigensurface in the family labelled by e = (e t rer).

Conversely, if e is any point of this eigensurface, then

the branch of the hypergeometri-c function with exponent

r.(nt+s r 0 l ) at 21 must al-so have exponent %(nz*ez1 z) aL

22¡ and So u(er0rrez0zr0s) must vanish. Furthermore, the

multiplicities of eigenvalues and zeros are equal. This is

easily shown by convertlng the differential equation to an

j-ntegral equation, in which case the elements of lrtz are

the Fredholm determinants .

On the sl(2,C)-module Xe,

operator and its eigensurfaces,

preceding chaPter, are

Êr0l +

Consequently, I

u(er0rrez0zr0s)

I note in

s(e) on Xrt

€z0z Ì 0s + (zk-1-) = 0, k=1r2r... .

can identify the surfaces on which

vanishes with these Planes.

particular one simple eigensolution of

s(0) is a diagonal

found algebraicallY in the

y01(1-v)0',f (z)

vwhere

and

z-z s zt-zz

1 + 0l + 0z t 0s 0

z-z z -z

That this 1s an eigensolution is only a matter for verifi-

cation. It corresponds to the trivial sol-ution
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F(arb;c;y) 1

of Gausst hypergeometric equation when one exponent al

infinity vanishes. If f is developed in powers of

(z-zt) , the leading term is (z=2, )ot, so

8to = f/r(1+0r).

Similarly, Eza = f/r(1+02).

Thus, when 1 + 01 + ê2 t 0s = 0,

. t(1+02)8ro = ¡ffi ê2a'

u(0rr-0zr0s)

u(0lr0zr0g) 0.

The determinant of s on xe, e = (1r1), is

¡(1+02)
f-( 1+E;ISO

and

f 1+0 +0 2

*0r*02* 3 T + r*02-0(0rr0z,0a) T 3

o is an entire function of 0 s, but as a function of

Q = (0rr0zt0s) fras double poles whenever

0r + 02 = (2k-1),

However, the factor

õ-( o) = t tr'( r.-.(!*0r+02+e s ) ) l(>'(1+01 'F0z-0, ) )l -1

is an entire function of 0, of order at most one, which

vanishes on the eigensurfaces of s(0) on Xe' The

function

+ 0

k = Ir2,

00
1

u e

-Øz
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is entÌre and has precisely the same zeros with the salne

multipliciti-es, so the ratio of the two is entlre and never

vanishes. Therefore , it must take the form

exp(r(0))

where Y 1s entire. Thus,

0 e f 1+0 f -0 = exp(r(0)).
u orrozrog

Since the ratio has order one at most, r(0) must simply

be a l-inear f unction of 0:

r(0) = c*cr0¡{-c202*ca03.

Both u(e) and o(e) are unchanged when the sign of 0g

is reversed, so cg = 0. The constants crct and cz are

uniquely determj-ned by the val-ues of u(0rr-02,0g) and

O(otr-oz,0e) when

1 + 0r + 0z t 03 = 0'

In fact, when this is the case,

1
O(gtr-0zr0s) r(1+ or)r(- 0z)

and

0

u(0r,-02,0s)
r-(r-o;)T1Eã)

Thus, cr = cz = cg = O and exp (r(0)) = -1,
T 1+0 -02f

+ 1* 2 0e

f 1-0 z ) r

*0 1*02- 3

3

SO u(0lr0zr0s) T

1*0r+02+ r
0

+0 i+e z-0 s
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The analytie continuation of 8to

is

into the vicinity of 22

t) 2d,

f lcr

t 1+0 f
8to f 7¿ 1*0 r-02*0 a r 1*0 1-0 z-0 s

+
f 1-e f 0

T 1.*0 1+02+ +0 r* z-0 s
8zB'

J f

Hence,

t rcr
f(1+0r)r(-02)

+
f 1+0 0

f 1*01+02+03 f 1+ 1+ 2- 3

in agreement with the cl-assical resul-t.

From this long cal-culatlon I can draw the following

interesting concl-usion. The classical- problem connected

with the hypergeometri-c function was to find the analytic

continuation of each of its branches throughout the compl-ex

p1ane. The algebraic problem is to exhibit the hyper-

geometric operator as a di-agonal operator on an sl(2rC)-

module. The solution of the algebralc problem and the

subsequent construction of the spectral function solves the

classical problem, apart from some j-nessential analytical

complications.

f t ,ß'
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APPENDIX 7.

Invariant Parameters.

It is well known that there are two transformations

which map the equation with regular singularities lnto

another of the same type (fnce (1-926) ). I'rlhat I will do i-s

show that there are certaj-n combinatiotrs of the parameters

of the equation which are unchanged by these transformations.

Lemma 2,

the form

If the P-function is multiplied by a factor of

c[

,

another P-function is produced. In fact,

q z.
I

cx, 1
a

t
i

and yi = yi + L.(1-or-Urrrlr,t-"r-ß¡) /(z'-zr)

I =PP

z.
a

ß!'l-

z t

ß
l_

Yi

where (ôir-ôrr)o

ßi = ßi + (ôir-ôrr)cr

The proof of this result is tedious, uninteresting

and omitted. I'"s importance is this.

Y

c¿i = oi +
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* Þ,(1-oi-ßr) .l- (l-oj-ßi ) /(zr-zr),
J+a

It is clear that ô, 0 and zr t 22 r. . ' 1 '^ are

I st
a

I
a

ßi

Deflne ô.
a Yi

$ = (ôrr62e...r6*),

n = (nlrr1zt...rl*),

Q = (0rr8zr...r0*).

lndependent variables which are unchanged by the trans-

formation. Combinations such as

0.
l_

and

are also lnvariant, but slnce

I
i

=l
i

( 1-o, ) 2

and

I ", = ",L(cr.+9.¡ 
* 

'"\(crr-ßr)ia

I
i

= \(m-2) + ,-" 0 i,

these are dependent upon e. ô, 0 and zr ¡22 t' ' ' 52^ is

the largest set of independent invariants '

Lemma 3. If zt az*b
= cz*d'

z
l_

and ad - bc * 0,
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then z.
I

ß
t_

P
a

ßi

zt

rl
t_

ô:
l-

o¿.
l_

ô.
l-

c[

P z t

where 6:
t_

{ôr(c z,*d,) - '-.c(1-oi') } /(-czi+a) .

Lemma 4. zirzjrzy are any three distinct singular

points,

ïf

then

tkl- z | (, 
;,- ri ) ô i 1'+(1- 0 i' ) ( z 

J* " i-2 z i) j / ( zj -',1 )

= .{(, j-ri)(zy-2. )ô í * þu(r-or') ( z.*zo-2zt)}/(z j-"o)

To prove these lemmas, like lemma 2 , once the answer is

known, requires only very tedious straight-forward

calcu]-ation. \,rlithout fore-knowledge of the result required,

they are not so easy to establish.

The quantities invariant under a linear fractional-

transformati-on of the independent variabl-e are:

(1) n and o;

(2) the collection X (Xr , Xz t.. . ,Xn) of indePendent

cross ratios of the singular poi-nts;

t(z¡-ri) (zk-zi) ôi + '4(1-0i') (z 'tzn-Zz r)\ / (zt-zo) ,(3) e ijk

where for each value of i, the indices i and k must

be chosen so that
i + i + k + 1.
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6ít. may be constructed from 6tjn

relations

(z r-z r) (z . -zo)

Ç ijk

(rrr* +tu(1-ur')]

ikj

m+I ,L and

by means of the

,u(1_-0 
r 

t 
) itk'

("

and

e

(z i-z r) (z r-zo)

so Lrju and 6it. are not independent quantities' Set

e {(z i+t-z i) (z i-r-zr) ô, + Lu( 1-0i' ) (, í*L*, i-fzz r)} /

(rr*r-z .-r),

I

where it

Finally,

is understood that

set

z z=z
o m

e (6rrÇ2t...r6*).

The variables 6rfìr0rX form a complete set of invariants

under this seconcl type of transformation. However, only

Ç r8 and x are invariant und.er transformatlons of the

dependent variable described previously, so these consti-tute

a compl_ete set of invariants when both types of trans-

formations are considered.

Functional Dependen ce of the Connecting Matrices.

The sol-utions at ,í and ,j are related by the

matrix u. .:r_l

sl = tij8j

I want to show that tij can only depend upon 6r0 and X.



225.

F1rst1y, multiply both sides of the equation above by

to obtain

set

o¿ ctz-z z-z
k

z-z
Ct) ij z-zI

dzt -bz = --:;i1;,

u
k

I
úojI

The components of gi satisfy the differential equation

with only regular singular points. The components of

("::")" s. sati_sfy a similar equatlon excepr that the
l'-" r)
exponents at ,k are increased by o and those at 'L
are decreased by o. The same matrix tij relates the

branches at ,i and ,) for both of those di-fferential

equations . Since kr I and cL are arbi-trary, ti j can

only depend upon the invarlants of this transformation'

Secondly, in the equation

åi (z) = tijåj (z),

ad-b c* 0 .

dzl-b
J.z.=

t-

and ôi = {öi( -czt +a)+>.c(1-0r')}/(ez. +d) .

Ei(z) can be considered as a function of the pri-med

variables and as such satisfies the Fuchsian differential

equation with primed parameters' Once agaÍn, the same
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matri-x u relates the branches at zl
I

to those at zr.
)ij

Hence, üij may only depend upon the invariants of trans-

formations of thls tYPe.

Together these results imply that *ij may only

depend upon the exponent differences 0, the independent

cross ratios X of the singular points, and the parameters

u u (6,0,X).rl ij

Ç
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CHAPTER B. IMAGINARY RELATIVE TIME?

I have argued the case for algebraic methods for quantum

mechanics and the eigenvalue problems which arise therefrom.

In the last chapter I inferred that even anal-yti-c continuation

could be reduced to algebraic te::ms. Algebraic methods are

obviously powerful, but it might be argued that an algebrai-c

formulation of quantum mechanics is too free, because it

lacks the restrictions imposed by a topological structure.

In this chapter I want to discuss iust one freedom of the

algebraic theory, the freedom to regard the rel-ative energy

and relative time coordinates of two particleS aS imaginary

quantities . My aim will be to show that, not onl-y is this

freedom not unwanted but that it is advantageous and, sur-

prisingly, not necessarily incompatible with the usual for:mu-

latlon of rel-ativistic quantum mechanics.

In chapter 3 I demonstrated that an irreducibfe

representation of a complex Lie algebra L remained irreducible

when restricted to one of its real forms L*i conversely,

e\rery irreducible representation of L* could be uniquely

extended to an irreducible representation of L. The complex

Lie algebra so(4rC) has two important real forms; the

Lorentz Lie algebra so(3,1) and the compact real- form

so( 4 rn) . Thus., âD irreducible representation of so( 3 r 1)

can be extended to so(4rC) and then restricted to so(4,R);

the resulting representation is irreducibl-e. The process

can be reversed.

so(4 ,c)

so(3,1) so(4,n)
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Algebraicalty, there is littl-e difference between irreducible

representations of so(4rR) and so(3,1). Analyticalfy this

is not So. Quantum physics demands unitary representations

of the Lorentz group S0(3,1) and these cannot be obtained

by analytic continuation from the unitary representations of

SO(4,R). This is obvious because the unitary, irreducibl-e

representations of SO( 4 rR) aYe finlte dimensional, 'hrhereas

none of the finite dimensional- representations of SO(3,1)

1s unitary. Thus, it is the requirement of unitarity of the

representati-ons that disti-nguishes between SO ( 3, 1) and

so(4,R).

(I bel-ieve that the demand for unltary representations

of the Lie group can be rel-axed. lÉ-representations of the

enveloping algebra of the Lie algebra, equipped with an

involution *, should suffice. In fact, this is precisely

the structure studied by most physicists. hlhêther or not

these lc- representations of the afgebra are integrable to

unitary representations of the group can be decided by

Nel-sonrs theorem. (Nel-soä (1959) ). l{hether or not they need

to be integrated depends upon the framework adopted for quan-

tum mechanics. )

The rel-ative angular momentum of two spinless particl-es

l_s

1 i(x^nu-xupr), o(À, p(3,
Àu

where *À and p^ are respectively the relative coordinates

and momenta of the particl-es. The six independent components

of the angular momentum provide a basis for so(311). The

transformation from so(3r1) to so(4,R) is easy to effect;

simply multiply the relative time and energy by 1. Thus,
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k i (xrp^-x*p, ) , 1(1, m(4,
1m

where x¡r ix o and P,+ l_oo ¡

is a basis for so(4rn). Consequently, the question raised

because there is so littl-e difference algebraically between

representations of so(3,1) and. so(4rn) is whether or not

the relatlve time and energy variabl-e can take imaginary

values.

The momentum (or angular momentum) of the centre of

mass of a system of partì-cles is measurable; it generates

the translati-on (rotation) from the coordinate frame of the

observer to the centre-of-mass frAme of the system. Measur-

able quantities are real, so I think it is inescapable that

the total four-momentum should be a Minkowski four-vector.

It is not so obvious that relative momenta are observables;

in ract, in chapter 1 T argued that they are not. Hence,

it is conceivable that relative timê and energy could be

imaginary oI, equivatently, that the relative coordinates

and momenta could be Eucl-idean four-vectors.

How am I to test such a hypothesis? I need a solubl-e

model in relativistic quantum mechanics which can be Solved

in two wayg, the relative momenta being treated as Euclidean

four-vectors in one and as Minkowski- four-vectors in the

other. A suitable model- is l¡lickrs model for the interaction

of two spinless partlcles by the exchange of spinless

rphotons'. lrlick (1954) proposed. bhe model in :-95)+ and showed

that the equations could be red.uced to a single ordinary

differential equation, if the relative energy of the trn¡o

particles coul-d assume imaginary values. In 1957 Green (f957)
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found tlnat l,riickts model- coul-d be solved without this

assumption. However, Greenrs solutj-ons appeared to differ

from l¡lickts al fow energies, and this discrepancy remained

unexplained for fourteen years. In I97L I proved that the

discrepancy is only apparent and that the resul-ts found by

Green and Wick are equivalent. Thus, in lrlickrs model- the

relative momentum can be regarded aS a Euclidean four-vector

and I suspect that this is a general feature of relativistic

quantum mechanics.

Not only does this probl-em have i-mportant implications

for physies, it is also interesting mathematically. The

work of Green and. inlick can be represented as f oll-ows. Both

of them derived the same ordinary differential equation, a

Special case of Heunrs equation. 1^/ick applied boundary

cOnditions at two points a and b and sought eigenvalues

and eigenfuncti-ons of the boundary value problem. Green did

likewise, but imposed his boundary conditions at points b

and c. The question raised is whether the boundary

conditions at a and b determine the salne eigenvalues as

the boundary conditions at b and c.

Green and Biswas (1972) have recently shown that I¡lickrs

equation in the centre-of-mass coordinates can be transformed

so that it is invariant under SO(3r1). This rinternal

Lorentz groupt is a symmetry of the interaction and is

independent of the kinematical Lorent z grovp. The analyti-c

continuation from SO( 3,1) to S0( 4,R) is essentially the

transformation from real- to imaginary time made by hlick.

't¡rlick I s Eouatlon

The Bethe-Salpeter (1951) equation describes in a
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relativisti-c fashion the quantum mechanics of two particles

whi-ch are bound one to another by the exchange of a third

particle. \¡/hen alt three particles are spinJ-ess, the

rl-adder approximationt to the Bethe-Salpeter equation is

[0.åt 
'-^7[o-ål ' -m

iÀ
¡'zI vrnl

The symbols in this equation have the following meanings.

m and u are the masses of the bound and the exchanged

particles, respectively. P is the totat four-momentum of

the system and p is the relative four-momentum of the bound

particles. V(p) is the *u.ru function for the whole system'

Finally, À is the coupling constant, whose magnitude deter-

mines the strength of the i-nteraction. In general this

equation is too difficuft to sol-ve.

Vüick (1954) made two important contributions to the

theory. The first was his suggestion that the relative

energy po could assume imaginary values and that the contour

of integration over ks could be rotated from the real- to the

imaginary axis. This is the tl¡Iick rotationr. Its validity

clearly depends upon the analytic properti-es of the vüave

function. Wickts second contribution was to propose a set

of approximations for the Bethe-Salpeter equation which

rendered this equati-on so1uble, and yet not so si-mple that

all the relativistic features were obliterated. These

approximati-ons were that the bound particles shoul-d be spin-

l_ess , that the exchanged partj-cIes shoutd be both massfess

and spinless, and tha.t the bound state coul-d be adequately

represented by the ladder Feynman diagram'

It is questionabl-e whether ì¡'li-ckts model has any connection
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with physj-cs, for the assumption that the exchanged particles

have neither mass nor spin excludes all- real- particles.

Nevertheless, applications have been found. For example,

Biswas (1958) used \,rlickts equalion in a composite model- for

K-mesons; Nakanishi (f969) lists many others. However, the

value of lriickrs equation li-es not in its applications, but

rather in the fact Lhat it is the only soluble example of

the Bethe-Salpeter equation. ft is hoped that the relativ-

istic aspects of its solutions, namely, the appearance of

a new quantum number and the possibility of imaginary tj-me

and energy, are not peculiar to the model, but are general

features of the Bethe-Salpeter equation.

There is a definite advantage to be gained by allowÍng

imaginary values for Þo and ks, so that

P+ ip o and k,+ iPo

are real-. The bil-inear product

(p-k,p-k ) (po-ko), (p-k)'

ls indefinite when po and ks are real-, but is negative

definite when p4 and k,* are reaI. I¡Iick found that the

integral equation was amenabl-e to standard mathematical

techniques once po and ks v'Iere assi-gned imagi-nary va]ues.

To accomplish this change from the Minkowski to the Eucl-idean

metric on space-time, Wick needed to prove three facts :

(1) that the wave function V(p) was analytic in the upper

and lower hal-ves of the complex plane of the varj-able po,

and could be analytically continued from one region to the

other;
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(2) that the contour of integrati-on over ke could be

rotated from the real- to the imaginary axis without encounter-

i-ng any singularities of the integrand;

(3) that the contri-butions to the integral from the quarter

circles at infinity in the ks-plane were zero, or,

equivalently, that Y(k) approached zero as rapidly as ko-2

when k0 approached infinity along any ray in the first or

third quadrants of the ks-Plane.

lirlick formul-ated stability conditions for the bound particles

and found that these were sufficient to establish points

(1) and (2) concerning tþe wave function. However, he was

forced to assume the validity of (3). Wick reduced the four-

dimensional integral equati-on to an ordinary differential

operator. He deduced that, ãf a given centre-of-mass energy'

bound states could only occur if the coupling constant

assumed one of a countably infinite set of values, and that

these values were the eigenvalues of the differentj-af

operator.

Green (f957 ) discovered that it was not necessary to

rotate the contour of integration in order to find sol-utions

of lrlickts equation. He replaced the integral equation by a

partial differential equation with associated boundary

conditions and d.emonstrated that an i-ngenious bipol-ar co-

ordinate transformation rendered the partial di-fferential

equation separable. Green al-so found that the permissible

values of the coupling eonstant were the eigenvalues of an

ordinary differential operator, which differs from the

operator derived by \alick.

To reconcj-Ie the two studies, and hence to justify
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!,lickis assumption (3), it must be shown that the two ordi-nary

differential operators have the same spectrum. The solution

of this problem is here resolved into two stages. Firstly,

I wil-l reduce the two differential equations to the same

form, so that the operators differ only in the boundary con-

ditions. secondly, I wil.l show that sol-utions which fulfil-

one set of boundary conditions al-so ful-fil- the other set, and

vice versa. I need only consi-der the case of particl'es of

equal- mass, since Cutkosky (fgf+) has shown that the equations

for unequal masses can be reduced to the former case.

I would like to mention some numerical results which I

find interesting, even though they are somewhat irrelevant'

The eigenvalues of i¡liekrs equation are the eigenvalues of a

tridiagonal matrix. The difficulty is that Green and I¡lick

derived different matrices. For large energies it is easy

to verify numerically that the two matrlces have the Same

eigenvalues. However, in the non-relativistic limit, the

matrices are inordinately 1arge, often 1Os x 1Ou, and the

numerical- techniques, which invol-ve iteration of recurrence

relations, become unreliabl-e. Nevertheless, the two matrices

do seem to have the same eigenval-ues, though to obtain the

same accuracy ]¡rllckts matrix must be much larger than Greenrs'

The most interesting point is that for neither matrix does

the lowest eigenvaÌue agree with the value predicted from

Balmerts formula, âs l¡lick claj-med it shoufd. The discrepancy

is of the same order as \', the square of the coupling

constant.

hlickt s Dlfferential OPerator.

It wou]d be point'less lf I were to re-derive all of
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(1)

(2)

T
r-22 )d2

d¿2
2(n-t) zg_

dz
n(n-1)

T
e(z) 0À

+ -a*az

with boundarY conditions

s( t1)

z + -2.

0

In this equation, the parameter a is given by

a = E2/m',

À is the coupling constant, and n is an integral quantum

number. E is one half of the total energy in the centre-of-

mass frame and is supposed fixed. Thus, for bound states,

a < 1

The allowable val-ues of the coupling constant À are sought

as eigenvalues.

Equation (1) is invariant under the transformation

The theory of Sturm-Liouvil-Ie asserts that the eigenvalues

are simple. Thus, the eigensolutions must ha.ve definite

parity, for otherwise, e(z) and 8(-z) woufd be independent

elgensolutions with the same eigenvalue. The boundary con-

ditions (2) may be rePlaced bY

s(o) = s(1) 0

for odd solutions of (1)' and bY

dg
dz

(o) = s(1)

for even solutions. Define

0



and f(x)

The function f(x) satisfies the following differential

equation, a particular case of Heunts equation (nraélyi

(a955) ) :

(r-z' ) 
- 1x=

À-n2 x-a
x x-1 x-a

lim
X-'co

l-im ( x-1)
x+1

= *%'s( ( r- ux)\) .
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( 3)

(4)

(6)

d2
dï (*. #)å;,** + r( x) 0

The boundary conditions to be satisfied by an roddr solution

of (3), that is, a sol-utlon (3) derj-ved from an odd sol-utiotr

of (1), are

-Lnx r( x) 0

and f(1) = o (5)

'Evenf solutions of equation (3) must al-so satisfy (4) but,

instead of (5), they must satisfY

+df ^.:--U
dx

Greent s Differential OPerator.

In the centre of mass frame, wickfs equation can be

written

t(p o+E )' -p' -^'lt(p o-E )' -p' -^'1 v (p ) ¡z
iÀ

I
dqkY(k)
fp,Tfz:Te

Green reduced the integral equation to a differential equatlon

as follows. Set

o(p) l-À
¡.
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Then tro(p) = 4¡,v(p)

and so

t(po+E)'-p'-^'l t(po-E)'-p'-m'l tro(p) = 4Ào(p). (7)

The boundary conditions which supplement the differentj-aL

equatlon are that:

(1) O(p) should be boundecl near the origin;

(2) p2O(p) should be bounded for a1l p.

Green found that (7) was separable if the following

coordinate transformations were made. FirstIY, represent p

in polar coordinates:

pr=qsin0cosô,

pz = q sin 0 sin 0,

Ps=qcOS0t

so that D

Secondly, introduce bipolar coordinates in the (po,q) plane:

set c2=m2 E2>O

and define

q 22

Po = c sina/
q = c sin$/

( cos 0, - cos

(cos cr - cos

ß),

ß).

(Note that these are not the usual bipolar coordinates which

can be found in the handbook on special functions by Magnus,

oberhettinger and soni (1966). To obtaln their bipolar

coordinates, c and c¿ must be replaced by imaginary quantities' )

The ranges
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-oo < pO ( -, q > 0

are covered, if cr and ß are restricted to the triangular

region

-n < 0 4 ,rrr l"l < ß ( n

In the new variables, the differential equation for 0 becomes

This equation has separable sol-utions:

q0 = u(o)v( ß)Yr_*( 0,0)

where u( a) and v(3) satisfy

dE2
+ n2 t#fr,]v(ß) =0 ( B)d2

and

d2
do,

+n2+ )t/m2 u(cx,) = 0 (e)

(B sinq-c coscr) (E sincx,*c ccso, [*, - Ë-ffi] rntl = ÀqÕ.

a-costc¿

The boundary conditions to be imposed upon the soluti-ons

u(o) and v(ß) of the separated equation have caused some

confusion, so I will examine thispoint carefully.

The varj-ab1es s and ß are restricted to the trlangular

region

2

-rT < cr . nr l"l < ß < n

ß

Tf (x
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consequently, the boundary conditions shoufd be applled on

the perimeter of the triangle. Green did not do this ' Instead

he applied conditions on the perimeter of the rectangl-e

_fi < 0 ¡ lIr

0<ß<lt

The condlti-ons were that:

(1) u(cr) should be a bounded, periodie function of cr with

period 2t¡;

(2) v(ß) /sin ß should be bounded, periodic function of ß

with Peri-od r.

These conditions were derived by substituting the differential-

equation in the integral equation and then integrating by

parts.

There is a difficulty here. A former Ph.D student at

Ade1aide, L.H.D. Reeves (1962),found that the periodic

boundary conditions did not rigorously fo11ow by the technique

Green had used. The reason for this is easily understood'

l,lhen the integral equation is written in t.erms of the bipolar

coordinates, it has the form

Y(s,ß)

where the kernel k is an elementary functj-on of clrß, ot and

ßr, whose detailed form is of no importance for this argument'

Because the range of integration over 0t depends upon ßt, the

integral equation, unl-ike the differential equation, cannot

be separated. Reeves did not assert that Greents boundary

conditlons on the rectangle were' incorrect, but only that they

,Tf

= À l'
)
o

ßr

d.ß' I uo,k(a,ß,0',ß')V(a',ß'),
)

_ßt
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did not follow from the integral equation by the steps Green

outflned. Reeves attempted to find boundary conditions

appropriate to the triangular region, but failed. His

solutlon to the dilemma was to I rotate t s to a purely

imaginary quantity iõrõ real-. Under this mapping, equiva-

lent in fact to lrlick's rotation of the contour of integration,

the triangular regÍ-on coul-d be replaced by a r,ectangular

region

-æ < C[ < -, 0 < ß < T

The varlabl-es in the in.tegral equation coufd then be separated

easilY.

The point Reeves missed was that the periodic boundary

conditions used bY Green i^rere sufficient to ensui'e that

O(p) shou]d be bounded near the origin and that p'O(n)

should be bounded for all p. Also, these conditions on 0

were sufficient to ensure that Y, given by

4ÀY(p) = BÕ(p),

vras an acceptable solution of Vrlickts integral equation' It

is not difficult to verify these assertions'

Greents Separabl-e sol-utions of I¡rlickrs equation are

correct. So too are l'rlickrs, provided ib is possible to

justify \¡lickts assumption that the contour of lntegration

over ke can be rotated from the real- to the j-maginary

ax1s. However, the answers obtained by Green and i¡lick seem

to be inequivalent, so the validity of \¡lickts assumption

concerning the asymptotic behaviour of the wave function is

in doubt.



Green produced the equation (9), to be

bounded, periodic functions with period 2r '

24I.

satisfied by

Tf

odd,

and so,

but if u(o) is even'

and so,

2x=cos c[

f(x) = u(arcos x

u(o) 0

f( 1) t

\
) ,

then f(x) also satisfies equation (3). The condition that

u(o) shoul-d be ¡ounOe¿ requires that u(o) shoul-d vanish

as rapidly as (cos2s.-a) near cos2g = a, for otherwise u(o,)

would contain a factor log (cos'a-a). (Such a factor would

confound the.definÍtion. of periodicity!) tr'or the function

f(x), this implies that

and

The

f

lim r(x) /(x-a) < æ.

x-)a

second boundary condition on f also depends upon whether

is derived from an even or an odd function. If u(cl) is

(10)

( 11)

(12)

0

$$ror

l-im ( x- 1)t
x+1

0

df
0dx

The various boundary conditions imposed on solutions

of (3) are summarised in the tab1e.
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x=a x=1 x=æ

tEvenr solutions

t Oddt solutions

Ìrlickt s conditions.

Greenrs conditions.

I wil-l- show that any solution of (3) which satisfies the

boundary conditions at x = 1 and x = æ has an analytic

continuation which satisfies the boundary condi-tion aI x = a'

conversely, if the boundary condltions at x = a and x = 1

are satisfied, then the analytic continuation satisfies the

boundary condj-tion at infinity. The work of Erdélyi (1944)

on the representation of Heun functions aS convergent series

of hypergeometric functions can be used to solve this probl-em'

There is, however, a simpJ-er sofution which uses only

elementary properties of Heun functions '

Heun Functions.

Heunrs equation is the second-order

equation lvith just four singular polnts,

regular. In its general form

differential

all of which are

I id
x-x

1-o ß

t

x(cr+ ß,*-cx,r ß r-02 ßz-crs ß s )-
dx

1

,!,I

ß+
4
I cr.

L
].=I

+ r( x) 0
(x-xr ) (x-xz ) (x-xs

with t
2,

lim f(x),/x
xÐco

Ln =Q

il

rim(x-1)
x+1

t-, df--Í_
dx =Q

f( 1) 0

firn f(x)/(x-a)<-
x+a

the si-ngularities lie at x 1 ¡ x2 ,X 3 and xu @ t and the
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parameters may be assumed to satisfy

Re (cr ß )>.0 for
I I

Solutions of Heunrs equation are represented g1obal1y by

i = I,213r4.

X1 XZ X3 Xt+ = æ

P (l1 d2 Ot3 G4 (13)

ßr ßz ße ß,*

a simpl-e extension of the notation j-nvented by Rj-emann for

solutions of the hypergeometric equati-on. The entrie" oi

and ßi bel-ow a given ti are the exponents of the two

independent branches which can be developed in series near

x. . For certain value5 of the parameter e, two branches of
]-

the P-function may become linearly dependent; such

exceptional solutions are called Heun functions. In this

Section it is Shovrn that for certain cases of Heunrs

equation, one of which is equation (3), there are Heun

functions which adopt definite exponents at not just two

singular points but instead at al-1 four.

suppose that it is possibl-e to choose one exponent at

each si.nguÌar point so that the sum of the four chosen is an

lnteger. ff the difference of the exponents at any si.ngular

point is an lnteger, suppose in addition that the exponent

with the larger real part has been chosen. For clarity of

argument, I will- assume that exponents ctt >d2 tc[3 rct¡ have

been chosen and that

c,¡+0,2+c[3+cB4 m, (14)

t
x

hrhere m is an integer. Let f (x) denote a Heun functj-on



with exponents

let 1 denote

point x6 and

points xr and
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cr3 and o4 at x3 and xq respectively. Final-J-y,

simple closed contour which conmences at some

encircles in a positive sense the singular

Xz.

d-

--*Þ-

x3

t\

x4!

xg

The analytic continuation of f(x) from xs around 1

produces the same effeci as continuation of f(x) around a

simil-ar contour which encircles x3 ând x4 in the opposi-te

sense. This is readil-y seen if the compactified plane is

projected onto the Riemann sphere. The l-atter conti-nuation

replaces f(x) by

exp( -Zri(a3tou ) )f (x) .

By the assumpt j-on ( 14 ) ,

exp( -Z¡ri(og+a,* ) ) exp(Zri(cl1+o2)).

Thus, continuation of f(x) from xo around I maps f(x)

into

exp( 2ni (0 1*cr,2 ) ) f ( x) .

A sufficient condition for this to be true is that f(x)

should have exponents or and a,z at x1 and xz respectively.

l¡lhen the dif ference of the exponents at one of these points,

say x2, is an integer, this condition is also necessal"y.

The details of the proof of this assertion are messy so I
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w111 not give them, but the result can easily be understood'

The branch of the P-function (13) with exponent ßz aL x2

contains a term with a factor 1og( x-xz) whenever uz-ßz is

a non-negative integer. The assumption that f(x) depends

upon this branch, and hence that f(x) also contalns a term

with a logarithmic factor, is impossi-b]e to reconcil-e with

the result that continuation of f(x) around I merely

multiplies f(x) by the factor exp(?ri(a¡+cr,2)). Thus,

when the condition (14) hotds and either (ot-ßr) or (ar-Br)

is an integer, the Heun function with exponents oÙs and cr4

at x3 and x4 al-so adopts exponents cI1 and d2 at X1 and

Xz.

Application to Wick I s Equation.

Equation

the solutions

of i{ickr s

exponent

at x = 1.

(3)

of

isa

whi ch

particul-ar case of Heunts equation,

in Rlemannt s notation are

1oo

'.. '4n x

0 _lzrr

P

a

1

0

0

7,-'2

0

The boundary conditi-ons aþ x = 1, to be Satisfied respectively

by toddr and tevenr solutions of equatlon (3), are fulfilled

if and only if the roddt solutions have exponent az2 àrld the

revenr solutions have exponent o at x = 1. The conditi-on

at infinity imposed by hlick requires f(x) to have exponent

Lzyr aL infinity. Thus, the l oddt and I event eigensoluti-ons

boundary value problem are Heun functions with

Lzyr at infinity and exponents r-2 and 0 respectively

The condition at x = a lmposed by Green requires



f(x) to have exPonent

Greents boundarY value

1at
problem

an roddr

Ifn

x=a, so

are also
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the eigensol-utions of

Heun functions.

Suppose

boundary value

f(x) is

prob lem.

eigensolution of hlick I s

is even, then

a4+1*a4tÞrrt

is an integer and,, since the dj-fference of the exponents at

x = a is an lnteger, it fol-lows from the a.rgument of the

preceding sectj-on that f (x) has exponents

Þr, 1, L., 
".n

at O, a, 1, -, respective1Y.

Thus, f(x) satisfies the boundary condition at x = a

and so j-s an eÍgensolution of Greenrs boundary val-ue probl-em'

This argument can be reversed because the difference of the

exponents at infinity is also an integer. consequently'

f (x) is an eigensolutj-on of one operator if and only if

it is an eigensolutlon of the other. The Salne conclusion

applles in bhe other cases ' corresponding to the other

possible choices of parity for the eigensolution and n.

Conclusions.

I have shown that the analytic continuation of an eigen-

solution of Wickfs differential operator satisfies the

differential equation and boundary conditions which together.

compromise Greenr s differential operator, and vice versa'

The spectra of the operators are identical-. consequently,

trlickf s âpproach, which employs the contour-rotation, is

equivalent to Greenrs which does not. Hence, the use of the
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contour rotation is justified j-n this mode1.

The proof of the equivalence rests upon a fortuitous

combination of exponents in Heunrs equation, which permits

the boundary conditions at one pair of singular points to

be transferred to equivalent boundary conditions at another

pair. It is most certainly not a general feature of Heun

functions that they adopt a definite exponent at each of

the four singular points. In fact, the argument can be

reversed to imply that the contour rotation is only possible

because l,rlickrs equation leads to such a special case of

Heunts equation. It coul-d be argued that the unusual trick

needed to justify the rotatj-on is a reflection of the

special nature of \,rlick I s model and that the possibility of

the Vrlick rotation only arises for solutions of lrlickts

equation. However, an alternative and broader view is that

in any fundamental process the lnternal or relative momenta

can be treated as Eucfidean four-vectors or, equival-ently,

that the rel-ative times may be taken to be imaginary. If

this view is accepted, âs is done for example in Euclidean

field theory, then it is not at all surprlsing that the

rotation can be justified.

In algebraic terms, the implication of this result is

that non-unitary representations of Lie Sroups may have a

role to play in quantum mechanics.
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