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I have used the term ‘'algebraic methods' in a strict
sense and have only considered algebras and their
(algebraically) irreducible representations on vector spaces
which are not endowed with a topology. My aim has been to
decide whether such methods are sufficient for a mathematical
description of gquantum mechanics.

Aigebraic methods have two fundamental limitations.
(a) In an irreducible representation of an algebra on an
infinite dimensional vector space over the complex field, it
is not necessarily true that the only operators which commute
with all the operators of the representation are multiples of
the identitye.

'rotation to principal axes'

(b) There is no analogue of the
fheorem used in Hilbert spaces.
These limitations dictated my plan of attack, which consists
of the following stages.
(i) Investigate a mathematical theory of quantum mechanics in
which each gquantum system is characterised by its algebra of
observables.
(ii) Investigate eigenvalue problems which can be posed and
solved algebraically.
The first stage occupies only the first two chapters.
(1) Chapter 1 contains the arguments, based upon
physics, which support the postulate that an associative algebra
with invelution, denoted A?, should be associated with each
gquantum system.

*
(2) In chapter 2 I have shown that the algebra A is

all that must be known. All questions concerning states of



the system and the expectation values of its observables can
be formulated in terms of A* itgelf.

The second stage, concerned with eigenvalue problems
posed in terms of a palir of Lie algebras K < L and various
ramifications, occupies the rest of the thesis.

(3) Diagonal operators are rational functions of the
invariants of K. If X is an irreducible L-module which is
completely reducible into K-modules, then a diagonal operator
on X has a diagonal matrix and its spectrum is determined by
the decomposition of X. I have employed the characteristic
identities for the classical Lie algebras, derived by Bracken
and Green (1971) and Green (1971), to present a systematic
study of diagonal operators.

(L) Codiagonal operators are polynomials in the

elements of L with coefficients which are diagonal operators.
When L = s1(2,C), codiagonal operators on X have codiagonal
matrices. 1 have developed a spectral theory for codiagonal
operators in this case and have indicated possible extensions
to other cases. The algebraic theory shows that the set of
Banach space completions of X can be divided into a finite
number of classes such that the spectrum of a codiagonal
operator is constant within each class.

(5) Green and Triffet (1969) developed a practical
method for calculating the spectra of perturbed forms of the
special function operators. I have shown that the proper
mathematical setting for their work is algebraic.

(6) Chapter 6 contains three examples. The first two
exhibit the hypergeometric and Fuchsian differential operators
ags diagonal and codiagonal operators respectively, so the

spectral theory of chapters 3, 4 and 5 can be applied to these



operators. The last example is concerned with the
decompositicn of' an irreducible module for the Poincaré Lie
algebra into irreducible modules for the Lorentz Lie algebra.
It highlights the differences between the algebraic and
analytic approaches to this problem.

(7) Chapter 7 contains a novel application of
algebraic methods. To find the gnalytic continuation of the
solutions of an ordinary differential equation with holomorphic
coefficients, it is only necessary to solve an algebraic
eigenvalue problem.

(8) The final chapter is concerned with Wick's
equation and provides an example in relativistic quantum
mechanics where it is both burdensome and unnecessary to treat
relative coordinates and momenta as observables. I have shown
tﬁat this is so by proving that the Wick rotation can be

justified rigorously for this model.
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CHAPTER 1. INTRODUCTION. ek

Quantum mechanics and the theory of linear éﬁéfators
on Hilbert spaces are so interwoven that it is difficult to
imagine one without the other. Nevertheless, historically
their fusion is almost an accident. At the time when physicists
were struggling towards guantum mechanics, Hilbert, Hellinger
and others happened to be developing the theory of linear
integral equations and hermitian forms in an infinite number
of variables. Born knew of their work; consequently, he
included a chapter on the eigenvalues of hermitian forms in
the definitive paper on guantum mechanics, published in
collaboration with Heisenberg and Jordan (1926). Von Neumann
(1932) developed this material into a mathematically rigorous
framework for gquantum mechanics, but cast the algebraic
methods of matrix mechanics into disrepute by showing (1929)
that infinite matrices could not adeqguately represent unbounded
operators on a Hilbert space.

Recent years have seen a revival of algebraic ideas
for guantum mechanics and the publication of many systematic
studies of algebraic methods, prompted in each case by the
successful application of kinematical éhd dynamical symmetry
groups to quantum mechanics. Notable amongst these publications
are the following:

(a) the papers by Biedenharn (1971) and his collaborators on

the construction of the irreducible representations of the semi-~
simple Lie groups;

(b) the papers of Moshinsky (1968) and collaborators on the
application of algebraic methods to many body problems;

(c) Miller’s (1968) text which intertwines the theory of Lie



2.
algebras with that of the special functions and his more recent
attempts with XKalnins (1975) to classify separable partial
differential equations algebraically.

More important than the symmetry groups have been their Lie
algebras; in fact, only for the symmetries of space and time
does the group appear to have any physical significance. Lie
algebras, commutation rules and representations are nowadays
indispensable tools of the mathematical physicist. However,
like the matrix metheds of Born, Heisenberg and Jordan, many of
the algebraic techniques are regarded with suspicion and often
are only considered to be formally correct. In order to claim
that work involving Lie algebras and representations is rigorous
and relevant to guantum mechanics, an author must ensure that
the operators of the representation are properly defined on a
Hilbert space and that the representation of the Lie algebra
can be integrated to a unitary representation of the simply
connected Lie group. Only rarely do mathematical physicists
perform these steps to the satisfaction of a funcetional analyste.
Also common are papers in which the authors proceed with formal
calculations, even though their results clearly demand a
framework more general than the Hilbert space theory. Here I
could mention the paper by Chakrabarti, Levy-Nahas and Seneor
(1968) on the decomposition of representations of the Poincaré
group into representations of the Lorentz group; they allow
'self-adjoint' operators to have complex eigenvalues. I think
there are two reasons why mathematical physicists have confidence
in such calculations and show so little regard for the fine
points of analysis.

(1) The results obtained by formal calculations are 'obviously'



correct. Furthermore, experience has shown that all the
'useful' formulae can be obtained in this way.

(2) It is commonly believed that any dubious step of a formal
calculation can be justified by recourse to the general results
on linear bperators on Hilbert spaces.

In short, there is a general confidence that formal techniques
are correct, that they can be precisely formulated within a
Hilbert space framework, and that therein lies their justific-
ation.

I hold a different view, based upon experience with
the second of the above points. I believe that the algebraic
structure of quantum mechanics should stand alone, rigorously,
and that the topological structure, if indeed one is needed,
should be added in a manner compatible with the algebraic
structure. Thus, I would reverse the usual order which begins
with the presentation of a Hilﬁert space of states and ends
with the derivation of a certain algebra of self-adjoint
operators. Similarly, the algebraic methods employed in
gquantum mechanics should not depend for their justification
upon von Neumann's theory. I hope to show that this view is
tenable.

However, there is an important question which must
be answered immediately. Why should quantum mechanics rest
upon an algebraic basis? This question is especially important
because von Neumann's formulation of non-relativistic gquantum
mechanics is so successful. I can offer four reasons, the
first of which is subjective.

(1) Algebraic methods are both elegant and
constructive. Furthermore, the confidence that formal calcul-

ations can be justified within von Neumann's framework is naive
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because, even when a justification can be found, the simplicity
of the algebraic calculations, their principal asset, is
destroyed in the process.

(2) Von Neumann postulated that the pure states of
a quantum system should comprise a separable Hilbert space and
that the observables should be the self-adjoint operators on
the space. Any two separable Hilbert spaces are unitarily
egquivalent and so too are the self-adjoint operators defined
upon them. Thus, the states of any quantum system whatsoever
could be identifiied with the square-integrable functions on the
real line., Alternatively, the wave function of a hydrogen atom
could be expanded in a series of wave functions for the

plutonium nucleus! Von Neumann's postulates are too general.
(3) I will give another argument with the same
conclusion. Although a separable Hilbert space has an
uncountable (Hamel) basis, it is the closure of an inner product
space of countable dimension. Thus, the set of limit points,
far from being a 'small' set, adds an uncountable nuﬁber of
dimensions. The important question is whether or not these

extra dimensions are needed for physics. Equivalently, is there

an experiment which can distinguish between the states

oo m
= e C
¢ Z quon and ¢ Z 2P
n=o n=o

where m is a large integer, {¢n} is a complete orthonormal set
and the series converges? Of course the answer 1s no. However,
in the mathematical theory the 1limit points are needed to ensure
that self-adjoint operators can be reduced to diagonal form. I
will later argue that this is so because we adhere to a primitive
form of the correspondence principle and protest ignorance of

the true algebra of observables.



(4) Despite the generality of von Neumann's
postulates,'they are often too rigid. An example will help
illustrate this point. Imagine a system of two particles of
equal mass whose momenta are p' and pz. When the particles are
widely separated, p’ and pz are observables and so must be

self-ad joint operators. Consequently,
P = P, + P, and p =D - P,

are also self-adjoint. There is 1little doubt that P should
have real expectation values because P generates translations
between spatially separated observers. However, p is
effectively unobservable and there are many occasions in
relativistic guantum mechanics in which it is more natural to
allow the relative energy to have imaginary values. The solution
of Wick's (195&) equation and Fuclidean field theory are just
two instances. Another example which demonstrates the
inflexibility of von Neumann's axioms occurs in the theory of
Regge poles. When the angular momentum 1 assumes complex
values, the corresponding representations of S0(3) are not
unitary and the original Hilbert space is no longer appropriate,

It seems to me that von Neumann's postulate that the
states should comprise a Hilbert space serves just one purpose:
thé space of states is so large that it is always possible to
find an orthonormal basis in which a given self-adjoint operator
is diagonal. In bound state problems this operator would be the
Hamiltonian H; in scattering problems it would be the scattering
kernel, GOV in common notation. Once H has been reduced to a
diagonal matrix, a small number of operstors can be identified,
namely, operators which commute with H and which account for the

degeneracy of its eigenvalues, and operators which map vectors



from one degenerate multiplet to another. These are the
operators which seem important for physics, and all the observ-
ables can be constructed from them. The rest of the self-
adjoint operators are irrelevant for the physical system under
discussion. For example, the magnetic moment operator of the
plutonium nucleus and the Hamiltonian operator for hydrogen
act upon the same Hilbert spacei: Similar remarks apply to
scattering processes. Von Neumann had to choose such a large
class of 'observables' solely to ensure that the true
observables could be constructed within this class. Thus, the
Hilbert space and the self-adjoint operators defined upon it
provide a 'universe' within which the true states and observables
must be found.

These arguments indicate the alternative to von
Neumann's theory and the principal difficulty that will be
encountered in its formulation.

The alternative is to postulate for each quantum
system its true algebra of observables. This is not such a
radical suggestion and is certainly no more arbitrary than the
postulate which assigns a potential function or Lagrangian to
each system. In fact, from the point of view of the experimenter
this postulate could be decidely advantageous. In his
discussion of spectrum generating algebras, Dothan (1970)
remarked that the constants which determine the structure of
such an algebra are directly related to the observable spectrum
of states, and so would be an excellent choice for the set of
parameters to be determined from experiments. In contrast,
the potential is empirically a poorly defined quantity, for it

is well known that the results of calculations with nuclear



models are insensitive to rather large variations in the
potential.

This alternative presents a serious difficulty.

The true algebra of observables, denoted A, is Tinitely
generated and so its dimension is countably infinite. If X is
a vector space which carries an (algebraically) irreducible
representation of A, then the dimension of X will also be
countable. Thus, if t is an observable, but is not represented
by a diagonal matrix on X, then t might not have any eigen-
vectors in X. In particular, it will not always be possible
to find a new basis for X which diagonalises the matrix of t,
éven when this matrix is hermitian. Hence, if I accept the
alternative to von Neumann's theory, then I must also develop
a theory of eigenvalue problems on X which is algebraic and
does not depend upon a topology defined on X.

My aim is to investigate precisely these problems,
the algebraic framework of guantum mechanics and algebraic
eigenvalue problems, and the plan of my attack is roughly as
follows.

(1) The rest of this introduction will be devoted to identify-
ing a suitable candidate for the algebra A of observables in
guantum mechanics, both relativistic and non-relativistice.

(2) In chapter 2 I will assume that the algebra A has been
postulated and I will investigate the relation between states
and representations of A. My aim will be to associate a left
ideal in A with each state, so the study of the states of A
can be reduced to a study of the structure of A itself. For
this work I have borrowed the Gel'fand-Naimark-Segal construc-

*‘
tion from the theory of C -algebras, with one important



exception, I have not endowed A with a topology.
(3) Chapters 3, L4, 5 and 6 are concerned with eigenvalue
problems which can be posed and solved alzebraically. I have

considered two types, diapgonal and codiagonal operators, each

defined in terms of a Lie algebra L and a subalgebra K. For
diagonal operators the problem of spectral analysis is
essentially that of decomposing an irreducible representation
of L into irreducible representations of K. For codiagonal
operators the situation is far more complicated.
(4) Chapter 7 contains a novel application of algebraic methods.
I have argued that it is only necessary to solve an algebraic
eigenvalue problem in order to find the analytic continuation
of a solution of an ordinary differential equation with
holomorphic coefficients. This result is true quité generally,
but it is only for the special functions of mathematical physics
that all the steps can be completed. Accordingly, I have
restricted my discussion to the special functions and, in
particular, to the hypergeometric function.
(5) Chapter 8, although the last in the thesis, is the source
of several ideas. It is concerned with Wick's equation and
proves that the Wick rotation is correct, so it is of interest
for its own sake. The proof employs the monodromy group of
Heun's equation and it was this proof which prompted the ideas
of chapter 7. In addition, Wick's model is an instructive
example where it is both burdensome and unnecessary to treat
relative four-momenta as self-adjoint operators. This work has
already been published (D.M. O'Brien (41975)).

Which algebras are appropriate for guantum mechanics?

In the last fifteen years dozens of suggestions have been made:
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C*—algebras, the Lie algebras of the Poincaré group, SO0(L,1),
so(L,2), SU(3), U(6) x U(6), * + + . I could not hope to survey
all these possibilities; indeed it would be irrelevant if I
did, for I must seek a general class\of algebras suitable for
guantum mechanics and not the algebras needed for particular
problems. Conseqguently I will divide all the suggestions into
three broad categories and extract from each the points that 1
think are essential.

(1) Von Neumann, Jordan and Wigner (1934) suggested
that the observables of a quantum system should comprise a real
Jordan algebra, as indeed do the self-adjoint operators on a
Hilbert space, and that the task of guantum mechanics should
be to find its representations. In this pioneering work, they
only considered finite dimensional algebras of obsérvables, 80
guestions of topology were irrelevant. The modern version of
their work, promoted by Haag and Kastler (1964), lifts this
restriction by demanding that the observables be the self-
ad joint elements of a C*—algebra, a topological algebra of
uncountably infinite dimensione.

From the point of view of an algebraist, C*—algebras
aggravate the difficulties of quantum mechanics; the observables
are still too numerous and all the useful observables, such as
the Hamiltonian and momentum, are excluded because they are
unbounded. However, there is one very beautiful idea in the
theory of C*—algebras that I will borrow and develop algebraic-
ally in the next chapter. This idea is that every state of the
gusntum mechanical system determines a representation of A via
a canonical prescription, and conversely. Thus, greater

flexibility is possible. For example, scattering states and
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bound states can determine entirely different representations
of A.

(2) The second suggestion is very elegant, but
dogged with difficulties. It is the suggestion that the
symmetry of the space-time manifold may be coupled with an
'"internal' symmetry of the dynamics in such a way that the mass
(or energy ) sPectrum is split and accords with experiment.
Great hope was held for this theory in the mid-sixties when it
was thought that the Poincaré group and SU(B) could be combined
into a single Lie group, whose multiplets would accommodate the
elementary particles. However, McGlinn (196L) and O'Raifeartaigh
(1965) precipitated a flood of 'no-go' theorems which forbade
anything but trivial couplings of these groups. Hegerfeldt
and Hennig (1968) have reviewed this whole field and have
concluded that, although the 'no-go' theorems do not absolutely
forbid an explanation of mass splitting with only finite
dimensional Lie groups, they do make it seem improbable.

(3) Lastly, there is the proposal by Barut and
Kleinert (1967) that the observables should generate a
'dynamical group', or the equivalent proposal by Dothan, Gell-
Mann and Ne'eman (1965) that the observables should lie in a
'spectrum generating algebra'. The idea here is that the states
of a quantum system at rest should span an irreducible
representation of some non-compact Lie group. The states for
a moving system are to be obtained by boosts.

The first proposal is too general, but the second
and third are too rigid, for they assert that finite dimen-
sional Lie algebras alone will suffice for a description of
guantum mechanics. The 'no-go' theorems show that this cannot

be so. However, it is clear from the original papers that the
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authors knew the limitations of Lie algebras. For example,
Dothan (1970) found that unless he generalised the definition
of structure constants, that is to say, unless he abandoned
the Lie algebra for a more general structure, the only system
with a finite dimensional spectrum generating algebra was a
set of harmonic oscillators.

There are three features common to all theories of
this type.

(1) A fundamental role is played by the Lie group
Gp of transformations between the coordinate frames of

equivalent observers. G, depends upon the model assumed for

R
the empty universe, and for the Newtonian, Minkowski and

de Sitter models would be the Galilei group, the Poincaré
group and SO(L,1), respectively. In each case G, is a real,
linear Lie group. To each element in the real Lie algebra GR

of G, there is an analogous varisble in the classical theory.

R
Furthermore, apart from the electric charge, the elements of

G,, and combinations of them seem to be the only observables

R
to which the correspondence principle must apply. I will
return to this point later.

(2) For a system consisting of Jjust one free
elementary particle, GR and its universal enveloping algebra,
denoted U(GR), are sufficient. To describe interacting or
composite systems it is necessary to introduce a further set
of varisbles, which I will denote KR’ and its real, associat-
ive enveloping algebra U(KR). I will assume that K, is a finite
set simply because that is the case in many examples, but it is

conceivable that XK. could be countably infinite. Typical

R

elements of K_ might be the variables corresponding to discrete

R
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transformations, such as parity, or the generators of sU(3).
(3) U(GR) and U(KR) must be coupled by identities,
that is, U(GR) and U(KR) must be embedded in a larger real,
associative algebra AR guch that certain specified identities
are satisfied. These identities could take any form, but
probably would be of Lie type

mjgj + o " , a leR, g, €0CG,,k €K, ,

k =
[gi’ m] ® im n im i R’ Tp R

i
of generalised Lie type in which the structure constants would
be polynomials in the invariants of U(GR) and U(KR), or would
involve anticommutators instead of commutators.

Henceforth A will denote the complexification of AR’

A = Ap + 1Ap
where the sum is a direct sum of real vector spaces and the
product in A is to be defined in the obvious way.

Flato and Sternheimer (1967) have pointed out that
any mass formula can be obtained if the enveloping algebras of
the Lie algebras of the Poincaré group and SU(3) are coupled
by suitably chosen identities. They concluded that "infinite
structures" are too arbitrary to be of any use. Their criticism
is justified if KR and the identities which couple U(GR) and
U(KR) are postulated solely to obtain the correct mass formula
and without the support of physical reasons. However, I have
in mind a different approach, based upon an idea that can be
found in the thesis by Dr. A. J. Bracken (1970) and also in the
work of Takabayasi (1968). With each elementary component of
the gquantum system must be associated a list of dynamical
variables. Furthermore, certain algebraic identities must be
valid within the associative algebra D generated by the set of

all dynamical variasbles. Both the dynamical variables and the
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identities are characteristic of the system being studied and
must be postulated for that system. For example, Bracken
investigated a model in which the baryons were constructed from

il

'three spin + objects', each of which had as its dynamical

variables a pair of four-vector operators

{k) (k)
a')\ b b'}\

and a set of Dirac matrices

1

(k)
n e (o anes

A
5
A
N

A
>
A
N

The identities satisfied were

[a) (Kb (1] = i gkl

y €y, *

(k) (L)}

{7% Y

M

2 for kK = 1
1 g%u ’

and all other commutators were zero. The algebras U(GR) and
U(KR) must be exhibited as subalgebras of D and the identities
which couple U(GR) and U(KR) are precisely those inherited from
D. I hasten to add that the dynamical variables need not
themselves be observable, only certain elements of U(GR) and
U(KR) are observable.

One property in particular seems essential for AR;
it must be possible to label the basis vectors in any
irreducible representation of AR by the eigenvalues of a finite
number of elements of AR'

The points raised under (1) above require further
comment, and I should like to begin with an example.

In the Hamiltonian formulation of non-relativistic
guantum mechanics, the interaction of two particles in a region

free of external force fields is governed by the Hamiltonian
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pi?  D2f .

1= om; T 2mp | Vi - %2’2)'
Define
P=p; + D> s P = (ng, - mt?_z)/(nh + Mz)
Q= (m,g,+m29__2)/(m,+m2), g =9 — 42 »
L = g X :._E ’ l = Q X p s
d=L+3J sy J =1+ 81+ 82
M=m + m; s M = m,mz/(m, + Mz) .

In these formulae, Pis Qis Mi, Si respectively denote the
momentum, coordinate, mass and spin of the ith particle. In
the usual way,

2

Jel

+ V(gs3)-

EIPU
Y
n
=

The operators H, P, @, J and M satisfy the commutation relations
of the Lie algebra of a central.extension of the Galilei group
(ievy—Leblond (1963)) and generate the transformations between
the coordinate frames of different inertial observers. The

invariants of this Lie algebra are

2 2
h ="H—§_=-_E__+V(q,j),
2M am ST
_:12-'- (Q-QXE)zs
and M =m; + mp o

Thus, an experiment which determines the energy and angular
momentum of a bound state of the two particles in fact
determines the irreducible representation of the Galilei algebra

spanned by the observables which describe the motion of the
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centre of mass. Alternatively, the energy and angular
momentum of the bound state can be expressed entirely in terms

of the variables describing the motion of the centre of mass:

2
h=H-Z,
oM
j=J3-axP.

J and M are always observables.

s

It follows that H, P, ©
On the other hand, there is no need to maintain
that the relative momentum p and the relative coordinate g are
observables when the particles are interacting, because these
variables cannot be measured. I base this assertion on the
following argument. Any measurement takes a finite time to
perform. Furthermore, thé test probes of the apparatus occupy
a finite volume of space. These facts are accounted for in
classical physics by assuming that the outcome of a measurement
igs the average value of the measured quantity over the space-
time duration of the experiment. Virtually by definition, the
measured gquantities in classical physics are constants of the
motion during the observation. Consider now the relative
momentum pe P does not commute with the Hamiltonian H because

of the presence of the potential. Hence

p = i[H,p] # O.
How can a momentum which is varying with time, very rapidly
according to a semi-classical model, be measured? The
duration of the observation would have to be so short that the
energy required would disintegrate the system. I think that P
cannot be measured except when V = O and the particles are

free., Similarly, é # O and g ig neither an observable nor a

measurable quantity. However, the average of p or q over a

-— -—



16.
long period of time is measurable because it is a constant of
the motion. The electron clouds described by chemists
correspond to this time average.

This observation is important. It shows that the
only observables in this example (apart from electric charge)
which have analogues in the classical theory are those
constructed from H, P, J, Q and M. Hence, it is only to these
observables that the correspondence principle need be applied.

How is the correspondence principle to be
incorporated in the theory? Professor Green suggested that it
should be done as follows. Suppose that g', g . ,gn is &
basis for GR’ Each of these quantities has a classical
counterpart and is observable. With the product gtgj in the

classical theory should be associated the observable

4 :
s(ee; + gjgi)
in the quantum theory, with g.gjgk should be associated
L

+gegg. +8L8.€6 +8.288. +EE8, +8E8.8, ).
ik j j ik J i

k=i k=i7] k—j

%(gigjgk

The general rule is that

g g g — 1 }i:g =g ’
‘§ m? & brer) b ‘T em)

where the sum is to be taken over all permutations of
{1, 2, * * * , m}. The reason behind this proposal is that

the canonical equations of motion,

. . oL
[Q.sH] = 1q, ] [P.’H] =1 ’
J J J qj
oL
where = =
Pj 34
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a, o
J

oo
=

a,
J

and H=-L + }:
()
J

can be proved in a Lagrangian formulation of quantum mechanics
if the Lagrangian L(qj,éj) is written in symmetrised form, but
not otherwise. The observables are the completely symmetric
polynomial functions of g1, CHEL ,gn.

There is a further condition to be imposed upon
observables, namely, their expectation values must be real
(Dyson(1962)), so it is necessary to isolate those
representations of AR in which this condition is satisfied.
One class of such representations, which will prove to be
sufficient, consists of those which provide a representation
of A and an involution #* defined on A, with respect to which
the observables are self-adjoint. The origin of * is explained
in the next few paragraphs.

GR is a real Lie algebra. Construct its
complexification

G =0p + iGq
and define
a: G—>G
g+ig'— g-ig® , g,g° € Gpe
o is an automorphism of G and can be uniquely extended to an
automorphism of the enveloping algebra of G, denoted U(G).

(Varadarajan (197h4a)). Note that ao? = 1. The principal anti-

automorphism of G is the map

g :G— G
Er—>—g o

It also can be uniquely extended to U(G) and satisfies B2 = 1.
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(Varadarajan (1974b)). o and B commute and their composition
is an involution on U(G), that is, an involutorial anti-
automorphism of U(G). Define
* 1 U(G)—> U(G)
gr—> g = (05)(2).

With just one further assumption, based on physical
principles, * is unique. To see this, suppose the opposite,
that y is another involution on U(G). Then

o = Bey
is an automorphism of G, and a2 = 1 because B and y commute.
The real forms of G are classified by the involutive
automorphisms of G. Thus, the assertion of physics that the
particular real form GR generates the transformations between

equivalent observers forces o = o and so

v(g) = g

for all g in U(G).

U(G) is only a subalgebra of the complex associative
algebra

A = Ap + iAp

However, I will assume that * can be extended to A. I will
also extend Professor CGreen's assertion and consider the
observables of the quantum system characterised by A to be the
symmetrised polynomials in the self-adjoint generators of A.
There is a freedom in this extension of * to A, but it is
precisely the type of freedom I have been seeking. For
example, certain elements of U(K) will be self-adjoint in some
circumstances but skew-adjoint in others.

Note also that a can be assigned a physical meaning.

In relativistic quantum mechanics a provides a representation
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of charge conjugation, but in non-relativistic quantum
mechanics o represents particle creation and annihilation.

All these considerations are summarised in the

following postulate.

Postulate.

With a given guantum system can be assocliated a
finitely generated, complex, associative algebra A. A contains
a subalgebra isomorphic to U(G). The involution * on U(G) can
be extended to A and the observables are the symmetrised
polynomials in the self-adjoint generators of A. ///

It is from this point that the next chapter
continues, but before I conclude this introduction I would
like to speculate upon the importance of the idea of continuity
for guantum mechanics.

I have not assumed that the algebra of observables
igs endowed with a topology, and possibly that immediately
dooms my work to failure. Nevertheless, to my knowledge,
nobody has ever inguired how much (or how little) of guantum
mechanics depends in an essential way upon the topological
assumptions. That is the task I have set myself. The point
at which the algebraic structures become unacceptable to the
reader is then the point at which a notion.of continuity
becomes essential.

Suppose that I could establish a theory of quantum
mechanics without ever imposing a topology on the algebra of
obgservables. Would the theory so constructed have any relevance
to physics? Equivalently, how important is the notion of
continuity for guantum physics? There seem to be four quite

unrelated uses for continuity.
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(1) Quantum theory predicts the expectation values of
observables. It is unlikely that the equations which determine
the expectation values will be sble to be solved exactly, so
approximate values must be found with a computer. Thus, a
metric topology will be needed to provide an estimate of the
errors in the calculated expectation values. However, I do
not think that the topology needed for this purpose should
arise from quantum theory itself. For example, Schrddinger's
equation for a wave function is a differential equation with
associated boundary conditions, dictated by the requirement
of' square-integrability. Its solutions can be approximated
with functions from a variety of topological function spaces.
Hilbert space may be very convenient, but it is not the only
candidate.

(2) The second application of the notion of
continuity is more fundamental. Any experiment is limited
in accuracy. Thus, an experiment to discover the state ¢ of
a system will merely isolate a 'small' set of states, which
hopefully contains ¢. The set of states so determined could
be interpreted as an open neighbourhood of ¢. Thus, it
could be argued that subjecting a quantum system to a number
of observations automatically imposes a topology on the set
of states. Of course, to obtain a predictive theory it
would be necessary to impose mathematically a topology on the
set of states, and later to argue that the 'open' sets
determined by expefiments would be open in this topology.
(Haag and Kastler (1964)).

There is another way to incorporate the limited
resolution of an experiment in the theory.

An observable r is a property of a microscopic
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guantum system. Its expectation value <r> represents a

measurable property of the macroscopic system comprised by

the measuring apparatus in interaction with the gquantum system.
More precisely, <r> is the average, over an ensemble of
identical experiments, of this property of the combined

system. The mapping which takes each observable r into its
expectation value <r> is the state of the guantum system.

Thus, the interaction between the microscopic guantum system
and the macroscopic measuring apparatus determines the state

of the guantum system. Prior to measurement, the state is
indeterminate.

In the mathematical theory, the calculation of the
expectation value usually amounts to forming a trace,

<r> = trace (pr),
where p is called the density matrix. Hence, the linear
operator p represents the complex interaction between the
guantum system and the measuring apparatus. I claim that the
limited resolution of the observation will be represented 1in
the mathematical theory if p has a finite dimensional range.
There is also a technical advantage to be gained from such a
choice: trace (pr) is always well defined because the
endomorphisms with finite range form a two-sided ideal in the
ring of all endomorphisms of the vector space.

(3) I believe that the notion of causality is
intimately related tc the continuity of scattering amplitudes
as functions of the space-time or momentum variables. For
example, if a macroscopic particle were to disappear from one
point and simultaneously reappear at another, the process

would seem unreal, for it would be both discontinuous and
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acausal. JIagolnitzer and Stapp (1969) have investigated this
matter within the framework of analytic S-matrix theory. Ry
a series of ingenious arguments, they concluded that a natural

definition of macroscopic causality applied to microscopic

particles implied analyticity of the scattering amplitudes
in the physical region. Thus, it appears that continuity,
and hence a topology of some sort, might be necessary to
preserve the causal relation between events.

However, if the Minkowski structure of space-time
fails at distances of about 107 '% centimetres or less, then
there is no reason to insist that microscopic particles should
satisfy any form of causality. Only macroscopic particles
need satisfy the principle of causality formulated by
Iagolnitzer and Stapp, and for these the scattering amplitudes
must be analytic.

(4) One characteristic of a good physicist,
experimental or theoretical, is that he is able to quickly
reduce a complicated situation to one which is simple, by
ignoring forces whose effects are slight. This skill is
based upon the assumption that small forces produce small
effects, and hence upon an intuitive notion of continuity.

The reply to this objection is that quantum mechanics
is essentially discontinuous and an intuitive understanding of
the subject is an impossibility, because two identical quantuml
systems in the same prepared initial state can evolve to
different final states.

I am going to adopt a rather Quixotic attitude and
choose to ignore the myriad of pointers which show that
continuity and analytical methods are extremely useful, if not

essential, in the development of gqguantum mechanics. I will
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develop, without any use of continuity, a mathematical
structure of observables and states that seems acceptable for

the purposes of quantum theory.

Most chapters have an appendix in which are gathered
most of the theorems and proof's. Hopefully, this has made

the text more readable.
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CHAPTER 2. MATHEMATICAL STRUCTURE OF QUANTUM MECHANICS.

In the last chapter I postulated that the
observables of a quantum system could be identifiied with the
symmetric tensors in an algebra A. HIurthermore, an involution
* could be defined on A and with respect to * the observables
were self-adjoint. I want to continue the investigation of
the mathematical structure of guantum mechanics based upon
this postulate with the aim of formulating all guestions
concerning states and expectation values in terms of the
algebra of observables.

However, before I start, I must establish two
conventiong concerning terminology. If A is an associative
algebra, with identity element, over a field F whose
characteristic is zero, I will simply refer to A as an algebra
over F; that A is associative and has an identity element will
be implicit. I will distinguish non-associative algebras
with an adjective, such as Lie or Jordan, unless the meaning
is clear from the text. Secondly, if A is an algebra
(associative, Lie, Jordan, * °* *+ ) over a field F, the
statement that 'X is an A-module' will always imply that X is
a vector space over the same fiela .

It is also well to enumerate the essential elements
in any theory of quantum mechanics.

Postulate 1. The mathematical description of any guantum

system must contain the following objects:

(1) a set B of observable guantities;

(2) a set S of states of the system;

(3) a mapping which assigns to each state ¢ in S and each
observable b in B a real number <¢,b>, which is to be

interpreted as the expectation value of b when the system is



in the state ¢;
(4) a rule which relates the observables and states assigned
by different observers.

I have borrowed this postulate from Emch (1972).
However, he does not include (4). The rule mentioned in ()
contains all the dynamical information about the quantum
system, for it relates the expectation values measured by
obgervers in the future to those measured by an observer in
the present.

This postulate defines the task; B, S and the
mappings in (3) and (4) must be identified. In the following
sections I will examine in turn each of these constituents of

quantum theory.

Observables.

The steps leading to the postulate of the last
chapter were these.

(1) Take the real Lie algebra GR of the symmetry group G, of

R
the empty universe.
(2) Construct the complexification of Gpt

G = GR + iGR.
(3) Equip G with an involution #*:

¥ 1 G—> G

g+ig’—> —g+ig” , g,8° € G

Note that the elements of G which are self-adjoint with

respect to this involution have the form
ig , g € GR.
This is the origin of the mysterious i which lurks in quantum

mechanical formulae.
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(4) Embed U(G) in a complex algebra A, which is finitely
generated, and extend the involuticn * from U(G) to A. This
extension need not be unigue; any arbitrariness is advantageous
because it increases the flexibility of the theory. The
algebra A and the embedding of U(G) must be postulated for
each quantum system,
(5) Select a set of self-adjoint generators of A which includes
a basis for G_. Denote this set

R

ibl’bz’ o :bni

and construct the real subspace B of A spanned by the

symmetrised elements

;ﬁ'l Zbi b. . 'b. ’ m = 1,2,° * )
— tweg) Pz Y (m)

where the summation is over all permutations of {1,2,* * -,m}.

Postulate 2. The observables of the guantum system

are the elements of B.

Note that every irreducible B-mocdule can be
embedded uniguely in an irreducible A-module, and that every
irreducible A-module remains irreducible when considered as a
B-module. This is so because the set {b',bz,' .« e bn}
generates A, Consequently, now that I have identified B, I
can focus my attention on A.

It is worth emphasising that the composition of
the involution * with B, the principal anti-automorphism of
U(G), has a physical interpretation. It provides a
representation of charge conjugation in relativistic quantum
mechanics and particle creation and annihilation in non-
relativistic gquantum mechanics. In view of the CPT theorem,

*3 also represents the product of the parity and time-reversal
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operations.

. Further requirements on A are necessary, but these
are best introduced through a discussion of the set of states.

I must pause to introduce a notational device.

Whenever the existence of the involution *‘ on A 1s important
in an argument, I will denote the algebra by A*; otherwise, 1
will write just A.

% #*
Definition. X dis an A ~module if each of the

following conditions holds.
(1) x* is an A-moaule.
(2) x* is an inner product space.
(3) For all vectors x and x° in x* and r in A,

(r*x,x') = (x,rx"),
where ( , ) is the inner product on x”. ///
I will extend my notational device to A and A*-modules. Thus,
if X* is an A*—module and I choose to neglect the inner
product on X*, I will write simply X.

* % *
Def'inition. X and Y are equivalent A -modules,

* *
written X =Y , if:
(1) X and Y are equivalent A-modules, also written X = Y;
(2) the map ¢ : X —> Y which establishes the above equivalence
satisfies
d ”, , . *
(oxy0x°) = (x,x") , for all x and x” in X ,

%
where the inner product on the left is in Y and that on the

*
right is in X . /77

States.
The process of observation removes the indeterminacy

from the state of the gquantum system and, by repetition in an

experimental ensemble, assigns to each observable its
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expectation value. Therefore, it is appropriate that each
state ¢ in 8 should be represented as a mapping of B into the
real numbers, in which the image of each observable is its
expectation value in the state ¢:

¢ : B—>R

b > <p,b>.
Whatever other properties these real-valued functions on B
might have, it is reasonable to expect that they fulfil the
following requirements.
(1) The set of all states should 'separate the points' of B.
Thus, if a and b are two observables which have identical
expectation values in every state ¢,
<¢psa> = <¢;b> Tfor all ¢ in S,
then it should follow that a = b.
(2) Each state ¢ should be a real-valued linear function on B,
so that
<PpsNb> = N<gp,b> , for all real A,

and <¢sa+b> <psa> + <pyb> .

il

(It is remarkable that linear functions suffice, because each
state represents the complicated interaction between the
microscopic guantum system and the macroscopic measuring
apparatus. )
(3) The identity of B corregsponds roughly to the proposition
that the quantum system exists. Thus,

<¢py1> =1, for all ¢ in S,
seems reasonable., Certainly it is harmless.
(4) Pinally, if b is any observable, the expectation value of
b? should be positive:

<$¢sb2> 2 0O for all b in B.

The set of all real-valued linear functions on B
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separates the points of B. The problem is whether the subset
of linear functions which satlsfy conditions (3) and (L) also
hag this property. In general it will no>t and further
postulates are necessary.

Let S denote the set of complex-valued linear

functions on A which satisfy the following conditions:

(a) <pyl> = 13
(b) <¢,a*> = <p,a> ;
(c) . <¢,a*a> z O,

It is easy to see that every such function, when restricted
to B, has the properties (2), (3) and (4) required of a state.
Later T will identify the set S of states with a subset of §,
but for the moment I will reserve that decision.

If A is not a semisimple algebra, so that its
(Jacobson) radical is a proper ideal of A, even S itself would
not be large enough to separate the points of A. However, the
radical of A contains all those elements which are represented
by zero in every irreducible representation of A. Such
elements are effectively unobservable and so have no relevance
for physics. The natural remedy for this difficulty is to
insist, as a postulate, that A should be semisimple.

Unfortunately that assumption is not guite strong
enough, because it only ensures that for any r in A there is
at least one irreducible representation of A in which the
representative of r is non-zero. I need a similar property
for irreducible representations of A*, and so I must proceed
as follows.

%
Definition. The #*-radical of A 1is the ideal

Q*=ﬂ* fala € A, aX = 0} ,
X
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%
where the intersection is taken over all irreducible A -~

* %
modules. If Q@ = 0, A is *—semisimple. ///

#

Q@ contains all those elements of A that are represented by
: %

zero in every irreducible A -module.

*®
Postulate 3. The algebra A must be *-gsemisimple.

It is obvious that a *-semisimple algebra is
semisimple. Jacobson (1956) gives sufficient conditions Tor
the converse to be true; A should be a primitive ring with
non-zero socle. However, these conditions are too restrictive
and will not always be satisfied in practice.

Postulate 3 disposes of the unobservable
Observables and ensures that g separates the points of A.
This is proved in detail in theorem 1 of the appendix, but
the cutline of the proof is gquite elementary. Because A* is
a *-semisimple algebra, for any non-zero element r in A* it
is possible to find an A*-module X* and a vector x in X*
such that

(x,rx) # O.
The formula
<p,as> = (x,8x)/(x,x), for all a in A,
defines a linear function in S which satisfies
<g,r> # 0 ,
8o § separates the points of A*.

Postulate 3 is redundant when A is the universal

enveloping algebra of a complex Lie algebra L,
L=1Lg + iLR,

and the involution on A is defined by
¥ : L—> L

1+i1°+~—> -1+11° where 1,1° ¢ LR'
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Harish-Chandra (1950) has shown that the finite dimensional
representations of L separate the points of U(L), so that in
this case A and B are certainly semisimple. However, this
does not imply that the finite dimensional representations of
L* have the same property. In fact, unless LR is a compact
real Lie algebra, L* does not have any finite dimensional
representations. Nevertheless, the set of all L*-modules,
including the infinite dimensional ones, does separate the
points of U(L). This follows from the Gel'fand-Raikov (1943)
theorem for unitary irreducible representations of locally
compact groups. Unfortunately I do not have an algebraic
proof of this result.

Every irreducible representation of an algebra A
determines by a canonical prescription a maximal left ideal of
A, and conversely. I want to develop this result in the next
section, and later to use it to formulate guestions concerning
the states and expectation values of the guantum system in
terms of the left ideals of its algebra of observables.

Representations and- the Calculus of Idesals.

In this section A can denote any algebra over a
field F of characteristic zero.
An A-module X is cyclic if it contains a vector x
such that
X = Ax.

The vector x is called a cyclic vector.

If M is any (proper) left ideal in A, then a well
defined cyclic A-module can be associated with M as follows.

Construct the factor vector space



and eqguip X,, with the product

M
a.(r + M) = ar + M for all a,r € A.

With this product, XM is a (1eft) A-module and is irreducible

if and only if M is a maximal left ideal. XM is the A-module

canonically associated with M.

Now suppose that X is any cyclic A-module with
cyclic vector x. Define
M= fme Al mx = 0}.
M is a left ideal in A and from it may be constructed the A-
module

Xy = A/M .

X and XM are equivalent A-modules.

These results are well known and can be found, for
example, in the text by Varadarajan (1974c). In contrast, the
results which follow are, to my knowledge, quite newe.

It is important to know when two left ideals M and
N lead via the canonical construction to equivalent A-modules.
I have found that an equivalence relation 2 can be defined on
the set of left ideals of A, without reference to the
associated A-modules, and in order that XM and XN should be
equivalent A-modules it is both necessary and sufficient that
M %N,

Define a relation ® on the set of lef't ideals of A
as follows. M is in relation to N, written M ® N, if elements
u and v can be found in A such that the following conditions
are satisfied:

Mu SN , uv=1(mod M) ,
Nv &M , vu=1(mod N) .

Lemma 2 of the appendix shows that % is an equivalence
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relation on the set of left ideals of A. Theorem 3% establishes

that XM ~ X. if and only if M & N,

N
It ig a difficult task to find all the inequivalent,
irreducible, cyclic A-modules. It is also difficult to find
the set of all maximal left ideals of A and to divide this
set into equivalence classes with respect to ® . However, in
some instances the second task is easier than the first. The
import of the foregoing results is that the two tasks are
eguivalent.

If M and N are distinct maximal left ideals of A,
then

P=MNMNANN
is also a left ideal of A, but is not maximal. What is the
relation between the A-modules XM’ XN and XP? The answer is
very simple and satisfying:
XP o~ XM@ XN.

Theorem 5 contains an even stronger result, also proved in the
appendix.

Theorem 5. Suppose that iM:’Mz’ « + ¢« } is a countable

family of distinct maximal left ideals of A. Set
MO = N M,
i L
and construct the A-modules
X% = A/M© and X, = A/Mi.

o X, . /17

. L
L

Then e

R

Gel'fand-Naimark-Segal (GNS) Construction.

I want to be able to identify pure states with

certain maximal left ideals of A. The key to this
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identification is the GNS construction which associates with
each ¢ in S a certain left ideal of A.

For each ¢ in g, define

EN]
M¢ = {m e Al <¢,m m> = 0},

M¢ is a left ideal in A. The factor space

x¢ = A/M¢

becomes a cyclic A-module with the product

a.(r + M¢) = ar + M¢, for all a and r in A.

The function ¢ can be used to define an inner product on X¢
as follows:

%
(b + M¢,a + M¢) = <¢,b a> for all a,b € A.

Thus, <psa>

(1 + M¢,a + M¢).

% e %
With this inner product, X¢ is a cyclic A -module. X¢ is

&%
canonically associated with é. Finally, X¢ is an irreducible
%
A -module if and only if M¢ is a maximal left ideal of A.
All these assertions are proved in the appendixe.
~ %
Let R denote the collection of cyclic A -modules.
~ % % ~
Each ¢ in S determines a cyclic A -module X¢‘= in R. Conversely,
% ~ ~
each X 1in R determines a positive linear function ¢ in S by
<psa> = (x,ax)/(x,x) , a € A,

& ~
where x is the cyclic vector of X« I want to show that R and
§ can be identified, equivalently, that I can define a map

J7 § —R
%*
¢ —> X¢
which is bijective. However, firstly I must check that u is
well defined. This cannot be so unless the chain
* *
X ——> ¢‘——+-X¢

closes upon itself. Thus, the function ¢, defined in terms of



the inner product on X*, must lead via the canonical
construction to the same A*—module. This is not the case.
However, theorem 11 of the appendix shows that X* and X¢*
are equivalent A*-modules, so I can proceed as Tollows.
Firstly, I can divide ﬁ into disjoint classes of eguivalent
A*—modules. Secondly, I can define an equivalence relation
& on S
¢ y if and only if x¢* ~ X¢*.

The map 4 is then well defined and bijective, provided 1
identify equivalent elements in R and S. 1In loose terms,
the existence of the bijection u allows me to identify R and
g.

When do two linear functions ¢ and ¢ in S lead
via the canonical construction to equivalent A*—modules?
With the help of the results of the last section on the

connection between left ideals of A and A-modules, I have

been able to establish the following beautiful result.

Definition. Let
S = {¢ ¢ S| M¢ is a maximal ideal in A}.
o
Theorem 15. Suppose ¢ and ¢ are elements of S .

[a]
* * * )
X and X are equivalent A -modules if and only if there

¢ ¥

exist elements u and v in A such that

¥
<()[;,a> = <¢,u au >,

%
<psa> = <P,v av>, for all a € A. ///
This theorem provides an alternative definition of the

~N

equivalence relation ® on the set SO.
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The situation is as follows. Suppose that M¢ and

M¢ are maximal left ideals of A. I have shown that

X* y”ﬁ
g —ty = ¢

R & R

X¢ = M¢ g *

I would like to complete the diagram and show that

B %
X, X, -=>x.¢ Xy o

or equivalently that
~ M

¢ ¢

For an arbitrary complex algebra with involution, this result
is not true. It fails because the commuting salgebra of an
irreducible A-module X can contain more than just the scalar
multiples of the identity endomorphism of X. In other words,
it fails because Schur's lemma does not hold in the strong
form familiar from the theory of finite dimensional A-modules.
This can be seen in the proof of thecorem 17. However, for the
algebras needed in qguantum mechanics, it is possible to prove
an even stronger result, that
M¢ e MX = ¢ = X »

with just one further assumption concerning A that is extremely
weak and invariably satisfied in practice.- The argument
proceeds as follows.

As A-modules, X¢ and XX are identical because
M¢ = MX, but as A*—modules they possibly will not be so
because the inner product on X¢* is defined by ¢ whereas the
inner product on X * is defined by x« The Lie algebra GR has

X
a compact, real subalgebra, namely,



Kp = so(3,R),
and so
U(K) < U(G) <A,
where K ='KR + iKR

*
denotes the complexification of KR‘ Every irreducible K -
E
module is finite dimensional. X¢ can be regarded as a
&
reducible K -module, and as such is completely reducible

(lemma 16), so

X * X *
¢“€J“?j’

* % *
where each Xj is an irreducible K -module. XX is also
completely reducible,

* *

XX :?Xl, :

Since X¢ = XX’ the two decompogitions into K-modules can be
placed in correspondence. Furthermore, there is essentially
only one way in which an inner product can be defined on a

%
finite dimensional K-module in order to obtain a K -module,

so it should not be surprising that ¢ = x follows.

There is an obvious flaw in this argument. Because
X¢* is completely reducible as a K*—module, every submodule
has a complementary submodule. However, there is no guarantee
that X ¥ contains any irreducible K*~modu1és. Alternatively,

¢

X¢* might not satisfy the descending chain condition on its K*?
submodules. This difficulty can be overcome in two ways.
Firstly, it is possible to demand that A should contain a finite
set of elements which separate the basis of every irreducible

%
A -module; such a set is usually called a set of labelling

operators. This requirement is very reasonable and is always
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satisfied in practice. However, I will follow ilhe second path,
because it is slightly more general, and insist that X¢* can be
decomposed into irreducible K*—modules. This restriction is
only apparent, because in practice X¢* would be constructed by

P
glueing together irreducible K ~modules.

Postulate L. X¢*, ¢ € §, when considered as a K*~
module, is a countable direct sum of irreducible K*—modules,
each of which is necessarily finite dimensional.

It is possible that this postulate is redundant; 1 hope that
this is the case. With the help of postulate L the announced
result is proved in theorem 17.

The chain is complete.

x¢ '-“x(/J > ¢ %y

Xg S Xy ST Mg,
This result is of fundamental importance because it shows that
the lef't ideal M¢ uniqguely determines ¢ and the expectation
values of the observables when the guantum system is in the
state ¢. Thus, guestions concerning states and expectation
values can be interpreted as guestions about the structure of
the algebra of observables.

There is one extra link which would round out the
theory, although for practical purposes this link is not
essential. Given an ideal M and a list of its properties, it
would be an advantage to be able to decide whether or not A/M
could carry a *-representation of A. ZEquivalently, what is the
condition on the left ideals of A which distinguishes those of

the form M ¢ € §? This is an-unsolved rroblem, worthy of

¢’

further research. I refer to Warner (1972).
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At last I am in a position to identify the states of

the quantum system. ILet 8§ denote the convex hull of § ; ¢ € S

o
¢=i N

L=1

if and only if

where ¢',¢ y 0t ,¢n are elements of SO and the coefficients
2

satisfy

7\_ go, Z?\_:1o
L L

-~

nN
S is a subset of 8 because S is also convex.

Postulate hH. The states of the guantum system are the

points of 8. The pure states are the points of So-

The set of states has a number of important
properties, listed below but proved in theorem 18 in the
appendix.

(1) S separates the points of A.

(2) The points of 8 are the extreme points of S.
(o]

(3) 1r ¢', t ot ¢ are distinct elements of S and
0]
. > =
¢O_Z7\L¢i, )\L z 0, Z)\L 1,
i L
* *
then X m@ X 9
¢ . P,
(¢} L L

where the sum is a direct sum of A*—modules.

In the usual version of quantum mechanics, an
irreducible representation of the algebra of ‘observables is
always (unwittingly) chosen. Fach observable is represented
by a self-adjoint operator on an inner-product space X. Each

state ¢ is represented by a vector x¢ in X, The expectation
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value of observable r in state ¢ is calculated from
<psT> = (x¢,rx¢).
Every vector of X is cyclic, because X is irreducible, so the

vector x¢ which represents a state ¢ is the image of x¢ under

some element u in the algebra of observables:

Xy = uxy .
Thus, sr> = (X¢’PX¢)
= (x¢,u*rux¢)

= <¢,u*ru> ’
and so ¢ ® ¢. It follows that the states employed in the
original version of gquantum mechanics comprise a single
equivalence class with respect to & in SO.

The comparison in the last paragraph is not quite
correct, because conventional quantum mechanics uses a Hilbert
space and not merely an inner-product space. The inaccuracy
is unavoidable because I have not endowed either A or S with a
topology.

Each impure state ¢ is a generalisation of a density

matrix. To see this, suppose that

- > —
¢_Z7\i¢t 5 7\£ z 0, Z?xi_‘l,

i i

where each ¢L is a pure state. Now
<p.sa> = (X, ,ax,
¢L’ ( L’ L)’

* }
where x. is the cyclic vector (1+M¢ ) in X¢ « Thus, if P,
L . o
i

L

denotes the orthogonal projection onto x, and if ”L denotes the
*

representation afforded by X¢ s then
i
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]

<, ra> = trace (ptvi(a)).

¢ is then represented by a density matrix p on X¢,

P = Z%Lpi

7
and <p ,a> = trace (p 7 (a)).
Note that p is the weighted sum of a finite number of

projections and therefore has a finite dimensional rangee.

Alternative Suggestions.

The formation of XM from the ideal M is a well
defined constructive procedure. If I could identify directly
those maximal ideals of A which lead via the canonical
construction to A*-modules, the whole procedure would be
constructive, Unfortunately I cannot, so I must consider some
alternatives.

FPirstly, there is the direct approach. Families of
irreducible A-modules can be constructed when A is the
enveloping algebra of a Iie algebra or a simple generalisation
of such an algebra. Essential to this construction is a finite
set of elements of A which separate the basis in every
irreducible A~module, that is, a set of labelling operators.
The existence of such a set for representations of a semisimple
compasct Lie algebra has been investigated by Biedenharn (1963)
and by Gruber and O'Raifeartaigh (196L4), but I am not sure
that their results hold for infinite dimensional, algebraically
irreducible representations of A. From the family of
representations constructed, those which also provide a

representation of the involution on A can be selected by

inspection.
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Another interesting suggestion, made by Professor
Green, is that the emphasis should be ghif'ted from maximal to
minimal left ideals of A. Suppose that the algebra A is
isomorphic to the complete ring of endomorphisms of a vector
space X. Let pLj denote the matrix whose only non-zero element
h

is equal to one and occurs in the ith row and jt columne.

Define trace p,, = &, , .
Lj Lj
Let M.. = Ap, A
LJ LJ
be the two-sided ideal in A generated by pij' Mij is a minimal
ideal. (Jacobson(1951c)). Note that

PPk = %5kPuy

An arbitrary state can be represented by the density matrix
= € C
P X PPyt Py e

where p.. 20 , E:jp.. =1,
LL LL

and the sum is finite. The expectation value of an observable
r in this state is

<r> = trace (pr).
The trace is always well defined because p has only a finite
number of non-gzero elements in any row or column. The number

e is the probability that the system will be found in the

ii
tat .
pure state pii
The snag in this argument is the supposition that A
has minimal ideals. If A is the enveloping algebra of a Lie

algebra, then, according to Jacobson (1956a), A need not be

primitive nor need it have minimal left ideals, and these are
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precisely the conditions that must be satisfied if A is to be
isomorphic to a dense ring of transformations. Either the
assumption that A is the enveloping algebra of a Lie algebra

must be relaxed or maximal ideals must be used.

Relation between Observers,

An observer perceives space and time as a continuum
in which all macroscopic objects are embedded. With clocks
and laser beams he is able to chart any small portion of the
universe. From his atlas, consisting of all his charts, he
can decide upon the geometry of the space-time continuum.

The coordinates established by an observer only
label macroscopic objects, such as other ohservers and
experimental apparatus. It has long been accepted as a
principle of gquantum mechanics that a guantum particle carmot
be assigned a definite position. More precisely, a quantum
particle only has a determinate position when the particle
interacts with a detector, and even then the 'coordinates'
of the particle are really those of the detector. In short,
coordinates only have meaning in quantum theory when they are
used to label observers and their measuring apparatus.

There seem to be only three reasonable models for
the empty universe. These are the Newtonian, Minkowski and
de 3itter models. With each is associated a symmetry group
QR; respectively, the Galilean group, the Poincaré group and
SO(Ls;1). (It is interesting to note that only the Lie algebra
of a central extension of the Galilean group contains
coordinates and momenta, elements which satisfy

[p.sp. ] =0, [p,sa.]=¢6 , [a,+q.]1=0.)

i J A J LJ L J

The principle of relativity asserts that two observers are
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equivalent, in the sense that they should formulate the same
laws of dynamics, if their coordinate axes are related one to
another by a transformation in gR. A more precise formulation
is as follows. p———

Suppose that O is an observer whose coordinate axes are
obtained from those of observer O by a transformation g in QR'
Both O and 0’ conduct in their laboratories experiments on
identical quantum systems. If O assigns the state ¢ to the
system and measures an observable r, whereas O’ assigns ¢°
and measures r°, then
<psr> = <g yr’>

must hold if O and 0’ are to be equivalent observers.

The mathematical formulation of the principle of

relativity is trivial. Each element of G_ induces a

R
transformation on the algebra of observables and, simultaneously,
a contravariant transformation on its dual space, so that the
expectation values are maintained. For example, in the usual
formulation 6f gquantum mechanics, the transformation g between

the coordinate frames of O and O’ induces

r+—>»r’ = u.ru_ ,

Q'—ﬁ'é’:uéy
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where ug is unitary, so it follows trivially that

) (°,r°%°) = (2,rd),
If O is able to measure a certain observable r of the quantum
system, then so should 0°. If this were not 80y, then 0 and
0’ could never be equivalent observers. Thus, all equivalent
observers must use the same algebra A* of observables to
describe a given quantum system. However, there is no need
to demand that O and O’ should use the same basis for A*. All
that is necessary is that the transformation relating their
bases should be either an automorphism or anti-automorphism

%
of A« Of these possibilities I will only consider the first.

Let aé t A—> A

denote the automorphism of A corresponding to g

The contravariant transformation of the states is
constructed as follows. A is a vector space over C and the
states of A form a subspace of its dual space A°. The
transpose of oé is the map

rd

g

t AT——A°
1/ |—-—>0'é(/l t: A—> C

at+—> <w,aga>.

Thus, <aé¢,a> = <w,oéa> for all a € A,

Lemma 19 establishes that aé is an automorphism of the vector

space S of states. Its inverse, (aé)",is the contravariant

transformation of the set of states.

%
Postulate 6. Aut (A7), the group of automorphisms of

L
A > must carry a representation of QR:

ot Gy —> Aut (A")

Er—)O"g-
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If an observer O assigns ¢ and r to a guantum system in hig
laboratory, then an observer 0’y whose coordinate axes are
obtained from those of 0 by a transformation g in QR, will
assign

. N1 .
¢ -»(O’g) ¢ and r = 0T

to an identical system in his laboratory. It follows trivially

that
<psr’> = <(oé)"¢,¢§r>
= <Py>
so the principle of relativity is satisfied. /77

From where does the representation ¢ come? If

g € Gp, then ad g is an inner derivation of G, and exp(ad g)

R

is an automorphism of GR' Def'ine

g€ = exp g

and
g

: GR-——> GR
g’ +—— exp(ad g)g’.
o, can be trivially extended to U(GR) and thence to U(G). In

addition, T is a *-automorphism of U(G) because

i

7,( (8, + ig )7) 7p(-g, + 1g))

-crg(gi) + itrg(gz)

1l

* -
(0o (g +ig )) , for all g ,g €G_.
g ! 2 . 1 2 R
The map

Tt g=expg—>o, = exp(ad g)

provides a representation of the connected component of gR on
the group of automorphisms of U(G).

%*
Postulate 7. The representation o of QR on Aut(Ar)

must be an extension of the representation defined above.
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The specification of the extension of Ty from U(G) to A will

be an integral part of the specification of the algebra A
appropriate to the guantum system. Discrete symmetries must
be treated individually.

This formulation of the principle of relativity
avolds the question as to whether or not the irreducible
U(G)—modules which occur in the decomposition of an irreducible
A*—module can be integrated to provide representations of QR'
This is an important technical point, because gquestions of
integrability cannot be decided within an algebraic theory.
On the other hand, exp(ad g) is well defined as an
automorphism of U(G), because (ad g) is a finite dimensional
matrix, and the problem of extending exp(ad g) from U(G) to
A* can be posed algebraically.

Once the representation ¢ has been specified, then
the temporal and spatial development of the system is known.
For example, if g represents a translation into the future,
and if the dynamics are invariant under reversal of the sense
of time, then the expectation value of an observable r at a
later time will be

<@ 0, T>e

g

sSummary.

I have suggested the following mathematical
structure for guantum mechanics, With any guantum system must
be associated the following objects:

(1) a complex algebra A which extends U(G),
| U(g) < A ;

(2) an involution * on A which extends the natural involution
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on U(G);
(3) a representation o of G, on Aut(A*) which extends the
natural representation on U(G).
Rach of these extensions is specific to the quantum system
and must be postulated for that system. Every maximal ideal
M in A determines by a canonical prescription an irreducible
A-module XM. There is at most one way in which an inner
product can be defined on XM so that XM* is an A*—module.
When it is possible to do so, then a positive linear function
can be defined on A by

<g,a> (x,a%x)/(x,x) 5, a € A,

where x =1+ M
is the canonically constructed cyclic vector of Xy 9 is a
pure state if M is a maximal left ideal; ¢ is an impure state
if M is the intersection of a finite number of maximal ideals.
If b € B <A is an observable element of A, then <¢,b> is its
expectation valwe when the system is in the state ¢.

In short, all the problems of guantum mechanics
can be regarded as problems concerning the structure of the

algebra of observables.
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APPENDIX 2.
Theorem 1. It A* is a *-semisimple algebra, then the
linear functions in S separate the points of A*.
Froof Suppose a is any non-zero element of A*.
Because A* is *-gemisimple, there is an A*—module X* with
aX # 0 .
There is a vector x in X for which
(x,ax) # O .
If this were not so, a contradiction could be obtained as
follows. The polarisation identity shows that
L(x,ay) = (x + yra(x + y))
- (x - yalx - y))
~i(x +iy,a(x +iy))
#i(x -iy,a(x -iy)) ,
80 (x,ay) = O for all x and y in X.
In particular,

O for all y in X.

(ay,ay)
Thus, ay = 0 ,
because the inner product is non-degenerate, and
a =0,
contrary to assumption. Define
o) :‘A-——> C

r—> (x,rx)/(x:%).

Then, <¢s1> =1,
% L I—
<p,r > = <gyr> ,
%
<¢,r r> 20 , for all r in A.

Thus, ¢ is a linear function in S which satisfies
<¢psa> # O

. " ”
This proves that S separates the points of A . ///
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Lemma 2. Write M ® N if M and N are proper left ideals
of A and elements u and v can be found in A with the following

properties:

A

Mu £ N, uv 1 (mod M),

il

A

Nv

il

M, vu = 1(mod N).
® 1s an equivalence relation on the set of left ideals of A.
Proof (1) Choose u = v = 1. Then’M ~® M and so ¥ is

reflexive.

(2) Suppose M ® N. Set

Then

Nu” £M , u'v’ 1(mod N) ,

Mv” SN , v'u’ 1(mod M) .

symmetrice.

R
[N
w

Hence N &2 M and the relation

(3) Suppose M ®* N and N ® P with

Mu £ N , uv = 1(moa M) ,
Nv =M , vu=1(mod N) ,
Ne sP , rs = 1(mod N) ,
Ps s N , sr = 1(meod P) .
Then Mur = P ,
Psv = M .
Also (ur) (sv) = u(1(mod N))v
= 1(mod M)
(sv)(ur) = s(1(mod N))r
=‘1(modP) .
Thus, M ® P and the relation is transitive. ///
Theorem 3. Suppose that M and N are proper left ideals

of A. Construct



= A/M and X

N = .A./No

Xy

In order that
ry
Xy = Ay oo
it is both necessary and sufficient that
M N .

Proof of sufficiency.

To prove the sufficiency of this condition I must

" and XN which

also intertwines the module operations. Since M & N, there

construct an isomorphism of the vector spaces X

exist elements u and v in A such that

Mau €N , uv = 41(mod M) ,
Nv =M , vu = 1(mod N) .
Define o XM——>- XN

a+Mr—> au+N .
o is weli defined because
a+m+M —— auv+mu+N = au+N
for all m in M. It is here that the property Mu £ N is used.
Similarly, define

T XN———§-XM

a+N +—> av+M .

T is also well defined because Nv £ M.

Now o.7(a+N) = o(av+M)
= avu+N
= a+N for all a in A,
because vu = 1(mod N).
Similarly,
T.0(a+M) = 7(au+N)
= auv+M

= a+M for all a in A,
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It

because uv = 1(mod M).

Thus Teo = 1 = 0T

o is an isomorphism of the vector spaces XM and XN. All that
remains to be shown is that o intertwines the module operationse.
For all a and b in A,

(oa) (b+M) = o(ab+M)

1}

abu+N

a(bu+N)

(ac) (b+M) .

Hence, XM and XN are equivalent A-modules.

Proof of necegssity. Let o denote the isomorphism of X

M
onto XN:

o XM———e—XN.
(1) Because (1+M) is a non-zero vector of Xy and o is injective,
o(1+M) # N.
Thus, there exists an element u ¢ N such that
o(1+M) = u+N.
Of course u is not unigue since u+n, n € N, would still
identify the coset u+N. Now

a(a;M) oz (1+M)

il

ac(1+M)

a (u+NN)

au+N .

The vital, second step in the above chain uses the fact that o
intertwines the module operations on XM and XN.
(2) Because o is injective, if

o(a+M) = au+N = N,

that is, if au € N, then a ¢ M. Conversely, if a € M, then

au € N, so Mu = N.
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(3) Because ¢ is surjective, there must exist a cosst (v+M) in
XM such that
o(v+M) = vusN = 14N,
Since (1+N) is a non-zero vector of Xg» vV ¢ M. Thus,

vu = 1(mod N).
(4) Define g T Xy Xy,
a+N+—— avi+M.
7 will only be well defined provided nv € M for all n ¢ N.
Otherwise two different representations of the same coset (a+N)
would lead to different images. Now,
o(av+M) = avu+N
=a+N .
In particular, a € N if and only if av € M because o is

injective. Thus,

Nv = M

and 7 is well defined.

(5) 0. T(a+N) = o(av+M)
= avu+N
= a+N

Thus, OeT = 1,

Since o is known to be bijective,

T=o0"",
(7.0) (a+M) = 7(au+N)
= auv+M .
Choose a = 1.
(T.0) (14M) = uv+M
= 1+M ,
80 uv = 1(mod M) .

(6) I have found u and v in A such that
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Mu N , uv = 1(moda M) ,

Nv =M , wvu = 1(mod N) .
This shows that M & N. ///
Lemma L. Suppose that M is a maximal left ideal of A

1
and that M! is any other left ideal, subject only to the

condition M! ¢ M . Set
1

MO=M1nM,

X0 = A/MO ,
X' = A/M!,
X = A/M .
! 1
Then X0 o x, e X',

the sum being a direct sum of A-modules.

Proof Let N =M + M,
1

1

Because M' ¢ M , there is an element m' in M' which does not

1
belong to M « Conseguently, M 1is properly contained in the
1 1

ideal N:

M < N < A.
1

Since M' is a maximgl ideal, it follows that N = A. Hence,

every element a in A can be expressed

a=m+m!' , m € M’, m! ¢ M! ,
1 )

though this decomposition will not be unique. Thus,

(a+M%) = (m'+M°) + (m7+M°).
Set Y' = M1/M° and Y!' = M'/M°,

Clearly, X° = Y' + Y.

I want to demonstrate that this sum is direct. Suppose that

a + MO ¢ Y'/\ Y .
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s WM €M ,
1 H 1

i
=2
+
=
(o]

Then a + M°
and a + M° = m? + M9 , m! € M!' .,

Subtract the second equation from the first. This shows that

mo - m! e M° ,
But M° < u'
so mo - m! € M' ,
which implies that mo€ Mo,
Thus, mo€ M,fW M! = M©
and a+M°=m’+M°=M°.'
Therefore, Y1f\ Y' =0 .

Y' and Y'are A-submodules of X°%. This is easy to see because

M,and M! are left ideals of A:

a(m’ + M%) am + M° < Y1 y

1
a{m! + M°) = am! + M° < Y! .

Hence, X0 = Y' ®Y',

where the direct sum is not merely of the vector spaces Y and
]
Y! but also of the whole module structures.

Now X°/Y' £Y! and X°/Y! ® Yo
But

X°/Y? = (A/MO)/(I‘JIl/I\'IO) 2 A/M =X
and

Xo/y1 (A/M°)/(M?/M9) = A/M! = X! .,

Thus Y X gnda ¥ = X!
1 1

i

This establishes the result, that
x°’-¥x,@x’ " ///
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Theorem 5.
Suppose that {M ,M , * * *} is a countable family
12

of distinct maximal left ideals of A. Set

Construct the A-modules X° = A/M© and X, = A/M. . Then
i

XO = @ Xi .

P2
Proof. Let the index i take the values 0, 1, 2, ¢ =+« * ,
Set Mt = N . .
g J
Then Mt o= mttrN\ .
i+

Construct also the A-modules

Xt = a/Mt .

Since Mi+ is a maximal left ideal of A, the previous lemma
1

can be applied to decompose xts

xt xt+r |
I~ Xi.+1 @

By induction,

X« @ X, . /!
12y *
* .
Lemma 6. Ir X* is an irreducible A -module, then X is
an irreducible A-module.,
Proof (Trivial). Suppose that X had a proper A-submodule

Y. Then

aY £ Y for all a in A.
Let Y* denote Y equipped with the inner product inherited from
X*. Choose any two vectors y and y° from Y*. Because y and

* % *
vy’ are also vectors of X and X is an A -module,

(vray°) = (a ¥sy°).
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%
But this is precisely the condition to be satisfied if Y is

* *
to be an A -submodule of X , so Y must be trivial. /7

Lemma 7 (Schwartz). . I have only included this lemma

in order to stress that it is true in inner product spaces as
well as Hilbert spaces.

£ 3
If ¢ € S, then for all a and b in A

* ” %
| <¢ya b>|% S <p,a a><p,b b> .
Proof

* * * A *
<gs (a=Nb) (a-Mb)> = <g,a a>-h<p,b a>-A<psa b>+AA<@sb b> 2 O.

%
Ir <¢sdD b> # O,
* *
set N = <gsb a>/<¢,b b>.
* % *
Then <psa a> 2z |<g,a b>|2/<p,b b>
*
as required. However, if <¢,b D> = 0O,

then a contradiction is obtained for a suitable value of A

&
unless <¢ya b> = 0. In either case,

% %* *
<gsa a><g,b b> 2 |[<g,a b>|2. /7

Lemma 8. Suppose that
* % ‘
M¢ = imEA l<¢,m m> = O}\o

M¢ has an alternative presentation,

* * ) *
{meA |<¢,a m> = O for all a in A .

M = =
¢
M¢ is a left ideal.
* I3 * ]
Proof If <¢ya m> = O for all a in A +then certainly .

%
<¢om m> = O. Since
® O, % *
| <¢ya m>|2 = <p,a ad><g,m m>,

* * *
if <¢ym m> = O, then <¢,a m> = 0 for all a in A .
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Thus, the two presentations of M¢ are equivalent. From the
*
gsecond presentation it is clear that M¢ is a subspace of A .

Choose any m in M, and consider rm, reA.

¢
* * %
<pya (rm)> = <¢,(r a) m> = 0, for all a in A.
Thus, rmeM¢ and M¢ is a left ideal. ///
*® ) *
Lemma 9. X¢ is a cyclic A -module for

. nS
each ¢ in S.
Proof. Since M¢ is a left ideal of A, x¢ = A/M¢ is a

cyclic A~-module. If I can show that the inner product on X

¢

satisfies
((r+M¢),a(s+M¢)) = (a*(r+M¢),(s+M¢))

* % *
for all a, r and s in A , then X will be an A -module. Now

o)
((P+M¢),a(s+M¢)) e (r+M¢,as+M¢)
= <¢,r*as>

*
= <¢,(a r) s>

( FraM sl )
= \a r+ 3+

"

%
= (a (r+M s+M .
% *
Thus, X¢ is an A -module. /77
* . *

Lemma 10. X¢ is an irreducible A -module
if and only if X, is an irreducible A-module. ZEquivalently,

¢

£
X¢ is irreducible if and only if M¢ is a maximal left ideal
of A.
Proof From lemma 6 it follows that X¢ is an irreducible

% %
A-module if X¢ is an irreducible A -module. The converse is

trivial. X¢ can be equipped with the inner product derived
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from ¢, and if X, is irreducible so too is the space X, with

¢ ¢
its inner product. Finally, X¢ is irreducible if and only if
M¢ is a maximal left ideasl of A. ///
* * .
Theorem 11. Suppose X and Y are cyclic J

modules with c¢yclic vectors x and y. If
(x,ax) = (y,ay) for all a in A,
then X* o Y*.
Proof Define oc: X—>Y
rx —ry, for all r in A.
Because y is a cyclic vector, o is surjective. o is also
injective for the following reason. If rx # O but ry = O, then

0 # (rx,rx) = (x,r*rx)

-
(ysr ry)

(ry,ry)

i

=0,
a contradiction. ¢ also intertwines the module operations in

X and Y:

(oa) (rx) o(arx)

= ary

= a(ry)

= (a0) (rx) .

Finally, for all r and s in A,

(ry,sy) = (rox,soy)
= (orx,osy) .
By assumption
(y,r*sy) = (x,r*sx)

S0 (PX’SX) = (OTX,O—SX) ®
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* * *
Thus; X and Y are equivalent A -modules. ///

Lemma 12 Suppose that ¢ is a linear
function in § for which M¢ is a maximal left ideal of A.
Define ¢ by |

<YPya> = <¢,u*au> for all aeA,

where u ¢ M

¢

and u is normalised so that
s
<psu u> = 1.
(1) ¢ is also a linear function in S.
(2) There exists an element v in A such that

&
<p,a> = <PY,v av> for all acA,

where v¢gM
¢y
and v is normalised so that
%
<P, v v> = 1.

(3) The left ideals M, and M, are eqguivalent,
¢ Y

My & My
with My SMy 5 uv o= 1 (mod M¢),
M¢v < My » VO o= 1 (mod M¢).

% * %
(L) X¢ and X¢ are equivalent, irreducible A -modules.
Proof (1) This step is trivial.

EY
<Psl1> = <pyu uy = 1,

* * *®
<pra > = <pyu a u>

*
<¢su au>

<¢’a>’

<¢,(au)*(au)> = 0,

*
<Psa a>
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(2) Since
L% *
<psa a> = <gy(au) (au)> , for all aeA,
it follows that
a€M¢ if and only if au€M¢.

In particular,

Because M¢ is a maximal left ideal of A, X¢ is an
irreducible A-module, and so every vector of X¢ is cyclic,.
Thus, there is an element v in A such that
viu + M =1 + M,.
(w+ My) ¢
Hence, vu = 1(mod M¢).

* : * %
<Y,V av> = <p,u v avu
Suppose that vu =1 + m, m € M¢.
* *
Then <P,v avs = <@g, (1+m )a(1+m) >
*
= <¢,a+m a>
*
= <¢sa> + <psa m>

= <¢,a>o

Also v ¢ M¢ because vu ¢ M¢.

%
Finally, <Pyv V> = <Pyl1> = 1.
(3) I have already established that

Mwu s M¢ sy vu = 1(mod Mg);

so I must now show that

=
<
A
=
=
n

1(mod M,).
(mod M,
Since
* *
<psa a> = <P, (av) (av)> , for all aeA,
it follows that

aeM¢ if and only if aveMw.
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In particular,

M¢v s M¢.

<¢,(uv—1)*(uv—1)> = <¢,u*(uv—1)*(uv—1)u>.

Now (uv = 1)u = uvu - u
= O(mod M ,).
(modt 1)
¥
Hence, <Py (uv-1) (uv-1)> = 0
and so uv = 1(mod M¢).

The conditions established show that M¢ o M¢.

theorem 3 shows that X, and X
¢’ . ¢ o

are equivalent A-modules. ‘Furthermore, the isomorphism which

(4) Because Mlljg M

intertwines X, and X, is
g ¢
oc: X, —X
] ¢
a+M¢»—+>au+M¢ .

T will now show that

(a(r+M¢),a(s+M¢)) = (r+M¢,s+M¢)

for all r and s in A, where the inner product on the left is

in X¢ but on the right is in X¢.

(G(P+M¢),U(S+M¢)) (ru+M¢,su+M¢)

* %
= <¢,u r su>

*
<Psr 8>

(r+Mw,s+M¢).

% * % :
Thus, X and X are equivalent A -modules. Because M¢ is a

Y ¢

% *
maximal left ideal, X¢ is irreducible. XW obviously is also

irreducible. ///
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Definition, Let
nJ
S = {¢ €8] M¢ is a maximal ideal in A}.
(o]
Define a relation ¢ on S as follows. ¢ is in relation to ¢,
o

written ¢ ¥ ¢, if
o
<fsa> = <gpyu au> , for all ach,

where ) u g M¢

and u is normalised so that

’ *
<¢’u u> = 1.

Lemma 13. % is an equivalence relation on S .
- (o]
Proof (1) ¢ is reflexive because ¢ ¥ ¢ with u = 1.

(2) Suppose ¢ ¥ ¢. In the last lemma it was

shown that an element v could be found with the following

properties:
*
<¢,a> = <¢,v av> Tor all ae€A,
v g M ,
. v
<P ,v v> =1 .
Thus, $ = ¢

and so & is symmetric.
(3) If ¢ ® ¢ and ¢ ® x, with

*
<psa> = <p,u au>

*
and <Pya> = <XyI ars> ,
%

then <pra> = <x, (ur) a(ur)> for all aeh,
where ur ¢ My

* .
and <xy (ur) (ur)s> = <g,1> =1 .
Hence, ¥ is transitive. ///

%
Lemma 1l. If x¢ ~ Xw , then ¢ = ¢.
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o %*
Proof Because X¢ & X¢ » there exists an isomorphism
oc: X, —>»X
Y] ¢
which intertwines the A-modules X¢ and X¢ and which also

satisfies
for all r and s in A. Define u and v, respectively modulo

M¢ and M¢, by

0(1+Mw) = u+M¢
vf’(1+M¢) = v+M¢.
Because ¢ intertwines X¢ and X¢,
V(a+M¢) = (aa)(1+M¢)
= (ac)(1+M,)
¢
= a(u+M¢)
= au+M¢ sy for all acA.
Similarly,
w”(a+M¢) = av+Mw s, for all a€A.
Now <Psa> = ( (1 + M¢)’ (a,+,M¢))

= (o(1 + M¢),U(a + MW))
. ( (u + M¢)! (au"‘ M¢))

B <¢,u*au>.
In identical fashion,
<psa> = <¢,v*av>. ///
Note that the irreducibility of X¢* and X¢* was not

needed in the proof of this lemma.

Theorem 15. Suppose ¢ and ¢ are linear




functions in 8 . Then
o

x,*2x e gy
X, 2 X, <=M, ¥M,.
¢ Y ¢ ¢
Proof. The theorem is a trivial consequence of theorem
3 and lemmas 12 and 1l4. /S
* * %
Lemma 16. Suppose that X is an A -module. X is
completely reducible.
* - *
Proof. Suppose that Y 1is a proper A -submodule

%
of X . Define

*
vt - fx € X [ (x,y) O for all y € Y}.

Choose any x € YL. Since ay € Y for all y ¢ Y,

(2%, y).

0 = (x,ay)

% *
Thus, a x € YL for all a € A. Because A = A, it follows that

AY s YY",
. * 4
Since X =Y®@Y,
*
X 1is completely reducible. /17
Theorem 17. Suppose that M¢ and M¢ are maximal left

ideals of A. Then
M'—‘-’M:go
g 5 My =y
A stronger result is also true,

M¢=MX=>¢

i

Xe

There are shorter proofs of this theorem than the
one given below, but I chose this one because it demonstrates
the difficulties that arise because Schur's lemma does not
imply that the commuting algebra of an irreducible A-module
consists only of scalars.

Proof. Because M¢ o M¢, there exist elements u

and v in A such that
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Mv £M u = 1(mod M
¢ g v ( 0 ¢)’
Mu =M uv = 1(mod M,).
. * *
Define <xy8> = <P,v av>/<y,v v> for all a € A.

Thus, a € MX if and only if av ¢ M¢.

Now, if av € M¢, then avu € M¢ and so a € M¢. Thus, av € M¢

if and only if a € M¢.

Consequently,
M——-—Mo
¢ 29

By assumption M¢ is a maximal lef't ideal, so
¢ = X .

Thus, I need only investigate whether

M

R
&

or the stronger result,

M, =M = = Ye
é X ¢ X
Set M=M,=M
: ¢ X
¢ %

On the module X there are defined two inner products,

%
(a + My,b + M)¢ = <¢sa b>

%
and (a + M,b + M)X <Xsa D>

and hermitian conjugation with respect to each of these
provides a representation of the involution on A. Since A
has a countable basis, so too has X. Choose a basis
fx =1+ Mx ,x, 00 ]

for X which is orthonormal with respect to the first inner
product;

(x,5x.) =6 ..

A R ij

*
Choose any r in A. The matrices of r and r on X are fixed by
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the basis.

X, .-:ZI‘__X, )
J ij i

* %
Now (r xj,xk)¢ = 2{:(rinL’Xk)¢
i
- %
=7r .
kJj
Similarly, (xj,rxk)¢ = Z{:(Xj,rbkxb)¢
i
=Dr °
jk

* .
Thus, the matrix of r 1is the hermitian conjugate of the matrix

of r, Jjust as would have been expected. Since the matrices of

« e
r and r are both column-finite, this proves that they are

row-finite as well.

The basis vectors will not be orthonormal with

respect to the second inner product. In fact,

(xl'.,Xj)X = gtj,

where the array (g_j) satisfies
L

gtj

but in general need be neither row nor column-finite. A

= g.,.»
JU

calculation similar to the one above shows that

[
r = r
Z i.jgi.k Zgji Lk
L

i

The matrix of r is fixed by the basis and does not depend upon
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the inner product defined on X.
- %
Thus, r,, = r
ij Ji
as before. Hence,

I‘ = 1" [
2{: jt8ik zz:gji Lk

i i
The summations here are well defined because the matrix of r
is both row and column-finite.
The matrix (gtj) commutes with all the matrices of

the representation. If it follows that (gtj) is diagonal,

g, . =g.0. .
ij i ij

in particular a multiple of the identity, then

must hold because
= < 1>:1o
(X1’X1)x X s

It would then follow that
X LrX = (x 4rx for all r € A
( " ')¢ ( 1’ I)X 9
and so
KPyP> = <KXyI'>
as required.

If A contains a finite set of elements whose matrices
geparate the basis of X, then it is trivial to show that (gij)
must be diagonal. However, since I know that

U(K) < u(ag) < A,
where K is the complexification of K, = so(3,R) < Gps T will
proceed as follows.
% .
According to postulate 4, X can be decomposed into
. * )
irreducible K —modules, each of finite dimension;
* *
X :=GB)% .
J
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Furthermore, the irreducible K*—modules occuring in this
decomposition are orthogonal with respect to both inner
products on X. Thus, if
{y'9y29 i * 0 |
is a basis adapted to the decomposition of X*, with

(yt’yj)¢ = §ij ’

(yi’yj)x gij ’

then the matrix g = (gij) can be decomposed similarly,
8=@8j’
J

where each gj is a finite dimensional matrix. Since gj is an
endomorphism of Xj* and commutes with U(K) on Xj*, it follows
that gj must be a multiple of the identity endomorphism of Xj*.

This egtablishes that g is a diagonal matrix
relative to the basis [y’,yz, -+ + }, but g need not be so in
the basis {xi,xz, * + + }. However, for every complex A,
(g - N\) lies in the centraliser of the irreducible A -module
X*; Schur's lemma states that the centraliser is a division
ring, so (g - A) must either be invertible or be zero. Because
g has an eigenvector in X, y1 for example, the first possibility
must be discarded and so g = Ne The condition that

<Psl> = <x15> = 1

forces g to be the identity matrix, so ¢ = x as required. ///

Theorem 18. (1) The set So of pure states separates the
points of A.
(2) The points of So are the extreme points of S.
(3) Suppose ¢1,¢2,' . - ,¢n are distinct pure

states. If



where %i 2 0O and E:‘Ai =1,
L
then x.F x ¥
e o .
¢ Oy
[o] L L
Proof. (1) The proof is identical with the proof of

o%:
theorem 1 because the irreducible A -modules suffice to

separate the points of A.
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(2) Choose any ¢ € S . I must show that, if
(o]

with
n
S 20 =
4, €8 4N ,in 1,
i=1
then — - . ¢ - 5
¢o ¢, ¢n
n
* %
Because <¢o,a a> = Ej'ki<¢£,a a>
]

* L]
and both A, and <¢L,a a> are positive for each i,
L

M = n M [
¢o A ¢£
Thus, M = M, .
¢o ¢i.
Since ¢ € So, M¢ is a maximal left ideal. Therefore,
0
o
M = M, o
¢o ¢L
By theorem 17,
¢ = ¢ ? 1= 1’ 2’ g ’no
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(3) Because the pure states ¢ ,¢ , * * * ,¢ are
172 n
distinet, it follows from theorem 417 that M¢ ,M¢ 3 -,M¢
1 2 n
are also distinct. Now
M¢ = (\M¢ .
0 i i
According to theorem 5,
X rPDX,,
¢o ] ¢L
where the sum is a direct sum of A-modules.
*
o
o 0
A < N
= r s
i ¢I'.’ >
L=1
n
= AN (r+M s+M s
E: L( .’ ¢ )
= i i
* %
Thus, X¢ '.!@X¢ ’
o L i
%
where the sum is now a direct sum of A -modules., /7
* 2 e
Lemma 19. ir aé is an automorphism of A , then aé is an
automorphism of the vector space S.
Proof. The proof can be broken into four simple stages.

(1) aé is an automorphism of A’. Suppose that

‘4 = 0., Then
0é¢

<aé¢,a> =:<¢,aéa> =0, for all a € A,

which implies ¢ = O because aé is an automorphism of A.

Hence, aé is injective. Now suppose ¢ is an arbitrary linear

function on A. Define ¢ by

<ysa> = <¢s0-'a> , for all a € A.

g
Thus, <¢,aéb> = <¢yb>
where a =

ogb .
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Therefore ¢ = aé¢ .

This shows that o is surjective.

g
(2) It is trivial to verify that

Y "~
aés s S,

*
because oé is an automorphism of A, so I need only show that

—

A}

me

0'§=

Choose any ¢ € S and define

<Yra> = <¢,aé4a> for all a € A.

—_

¢ also lies in §. However, as in part (1),
= O"
) gw ’

~
so aé is a surjective mapping of S.

(3) Because Oy is an automorphism of A, the image

and preimage under aé of every maximal ideal of A are also

maximal. Thus, if M¢ is maximal, then so too is M¢’ where
=0 ¢ .
¢ §¢

Consequently, oé is an automorphism of So.

(4) The extension to S, the convex hull of SO,

is now trivial. /77



CHAPTER 3. DIAGOMAL OPERATORS.

'Spectrum generating algebras' (SGA) were intro-
duced by Dothan, Gell-Mann and Ne eman (1965) in an attempt to
provide an algebraic description of gquantum systems. The
idea has proved useful and the literature on SGA is voluminous.
Every paper on the subject purports to be algebraic, but in
fact contains a mixture of algebraic and analytic concepts
which cannot easily be disentangled. Because the framework
for gquantum mechanics suggested in chapter 2 accommodates
spectrum generating algebras quite naturally, in this chapter
I will try to unravel the ﬁangle. Thus, I will try to give
a precise account of the purely algebraic structures present
in the theory of spectrum generating algebras.

Suppose that t is a linear operator defined on an
infinite dimensional vector space X. To find the eigenvalues
of t is generally a difficult task. If it is known that t
commutes with a Lie algebra K,

[t,x] =0,
the task is somewhat simplified, because the eigenvectors of
t divide into degenerate multiplets, each of which carries
an irreducible representation of K. If all these multiplets
span a single irreducible representation of a larger Lie
algebra L, which contains K as a subalgebra, and if

[t,L] = L,
then the calculation of the spectrum of t is trivial. L is
called a spectrum generating algebra for t; K is the symmetry
algebra of t. To find K and L and to express t in terms of
the elements of the enveloping algebra of L are the aims of
the theory of spectrum generating algebras.

The operator t is usually the Hamiltonian, and so is
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a function of several coordinates and conjugate momenta. The
determination of X and L is then a difficult matter. Professor
Green has suggested that the coordinates and momenta which
appear in the Hamiltonian have dubious physical significance,
whereas the algebras K and L are directly related to the

observable spectrum of states. Therefore, he proposed that

the operator t should be defined directly in terms of the
algebras K and L. I wholeheartedly agree with this approach,
and the diagonal and codiagonal operators of this and following
chapters represent the logical development of this idea.

Diagonal operators are extremely simple, as the name
implies. In loose terms, t is a diagonal operator if t is a
function of the invariants of the Lie algebra K. When t acts
upon a space X, which carries an irreducible representation
of L, t will be represented by a diagonal matrix; hence the
name. If X decomposes into irreducible representations of K,
then the spectrum of t is constant on each such representation.
To find the whole spectrum of t, it is only necessary to find
the multiplicity with which any representation of X occurs in
the decomposition of X. PFinally, if t is a diagonal operator
defined in terms of the algebras K and L, then K is the
symmetry algebra for t and L is a spectrum generating algebra.

Although these ideas are quite elementary and familiar

to most mathematical physicists, their logical development
within a strictly algebraic framework is not trivial.

The codiagonal operators treated in later chapters

are far more complicated than the elementary diagonal operators.



The Lie Algebras K and L.

What properties should be required of X and L in
general? From a survey of the literature on spectrum generating
algebras, two points emerge.

(1) The algebras which arise are subalgebras of the reductive,
but not semi-simple, Lie algebra gl(n,C)-

(2) Loosely speaking, L decomposes into the subalgebra K and a
subspace whose elements shift the eigenvalues of the invariants
of X,

If the algebra K is to account fully for the degeneracy in the
spectrum of t, then a third requirement can be added to the list.
(3) Any irreducible representation of L, which is completely
reducible when restricted to X, must not contain in its decompos~-
ition any irreducible representation of K more than once.

To fulfil these requirements, I will choose K and L in
the following way.

Let aL‘denote the n x n matrix whose only non-zero

J
element is equal to one and occurs at the intersection of the

ith row and jth column. The set
iai'_’ 1 51, §n}
is a basis for the Lie algebra gl(n,C). The commutation rules

are
i k k oL L k

a a = ¢% a - &t af ,

[y 2 Ju A
A1l the classical Lie algebras are subalgebras of gl(n,C). To
fix upon notation, I want to exhibit their bases explicitly in
terms of the basis for gl(n,C).
(a) s1(n,C). The elements

bi.=ai.“6‘i‘zak /n, 1§i,j§n’
J J J - k

span s1(n,C). To obtain a basis, one of the elements bkk must
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be omitted.

(b) so(n,C). Define

r =at -al , 1 =i,j=n.
Lj J i
It is a trivial matter to verify that

r T =4 r - 4§ r §d r - § r
[ ij’ ", Jk LL ikt T %L ki L kJ
The set
fr.. s, 1 5i<jsnj
LJ
is a basis for so(n,C) .
(e) sp(n,C). When n is even, define the n x n matrix
. -
0 +1
-1 0
o 1
-1 °0
(s, ) = :
0 +1
-1 0
I -
and the following quantities
k k
S . a + a
ij - Bkt €21 ?

where summation over k is understood. Then

s P S
AT TR TR

S, .»8 = -
[ ij’ kL] gj

8 + s
Lj ki ) kj
and the set

j £ nj

IA
-
A

(.

1
isij ’ .
is a basis for sp(n,C).
sp(n,C) is a subalgebra of sp(n+2,C), whose basis is

the set

HA

is 1 £i 3 £ n+2}.

. o7
i
There is a Lie algebra of (n+1) x (n+1) matrices which lies

between sp(n,C) and sp(n+2,C). Its basis is the set

fs. ., 1 51is3<ns1i.
LJ
This Lie algebra is not semi-simple, since s”+A+1 commutes with

all the other basis elements, nor is it derived from a symplectic

bilinear form, but I will still denote it sp(n+1,C). Thus
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sp(n,C) < sp(n+1,C) < sp(n+2,C).
For each positive integer n, the algebras gl(n,C),
s1(n,C), so(n,C), sp(n,C) can be defined. The basis elements of
each of these algebras can be assembled into an n x n matrix,

which I shall simply call the matrix of the Lie algebra.

Thus a = (at.) for gl(n,C) ,
J

L
I

(Pij) for so(n,C) ,
s = (Sij) for sp(n,C) ,
and b = (bi_) - a - (trace a) /n for s1(n,C) .
The reai forms of so(n,C) and sp(n,C) can be constructed

in a similar way by the introduction of a real metric h , on
LJ
gl(n,R). If h , is symmetric, then the elements
LJ
n ak - n ak
ik j Jjk i
span a real form of so(n,C), but, if n is even and hijis skew—
symmetric, then

ok k
h - + h_=a
ik 5T Tk
span a real form of sp(n,C). However, over the complex field,

hij can be reduced to either &Lj or gtj, so I have not forsaken
generality by assuming these forms.
I will choose L from the list
gl(n+1,C), sl(n+1,C), so(n+1,C), sp(n+1,C),
and require K to be the subalgebra of L whose matrix is obtained

from the matrix of L by deletion of the last row and column. I

shall refer to this choice of L and K as the standard choice.

This description of L and K is not as cumbersome as it might at
first appear. Matrices over the enveloping algebras of K and L
are essential in the solution of eigenvalue problems concerned
with diagonal operators. It is then gquite natural to think of

the basis of the Lie algebra arrayed in a matrix.
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The reason why I have chosen K and L in this manner is
that condition (3) is satisfied. That is the content of the
following theorem.
Theorem 1. Make the standard choice for L and K. Suppose
that X is an irreducible L-module and that X, considered as a
K-module, is completely reducible. Then any irreducible K-
module can occur at most once in the decomposition of X. ///

The proof of this theorem will emerge as a subsidiary
result from this chapter, whose main purpose is to survey the
techniques of spectral analysis and their applications to
diagonal operators.

There is a technﬁcal advantage in the assumption that
K and L should be reductive Lie algebras over the complex field;
for such Lie algebras, the theorems on weights, so important
in the construction of finite dimensional modules, can be
extended to infinite dimensional modules. For completeness,
I have listed these theorems below,.

Suppose that L is a reductive Lie algebra over C and
that X is an L-module. Let H denote a Cartan subalgebra of L,
and let L+ denote the subspace of L spanned by root vectors
corresponding to positive roots. A linear function on H,

p: H—>C,

js called a weight of X if there is a non-zero vector x in X

such that
hx = p(h)x , for all h in H.

x is called the weight vector with weight p. If, in addition,

L+X=O,

x is called a vector of maximum weight p.

Theorem (Harish-~Chandra (1951)). Let X be an irreducible L-

module with a vector xo of maximum weight p. Then :
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(1) the vector x, is unique to within a normalisation factor;

(2) the weights of X are of the form

p—-znaa,
0

where each n, is a non-negative integer and the summation is
over the simple roots of L;
(3) every weight appears with a finite multiplicity, p with
multiplicity equal to one;
(L) X = + X, » where o is a weight of X and

O_xa_z fx € X | hx = o(h)x for all h in H }. ///
Theorem (Harish-Chandra (1951)). Let p : H—>C be any linear
function on H., There exists an irreducible L-module with
maximum weight p. Two irreducible L-modules X; and X,, with
maximum weights p; and psy; are eguivalent if and only if
P1 = Pze ///

From this result it is clear that, if an infinite
dimensional, irreducible L-module has a vector of maximum
weight, then the module is uniquely labelled by that weight.
Theorem (K. Cartan, Harish-Chandra).
(1) Every finite dimensional, irreducible L-module has a
maximum weight which is both dominant and integral.
(2) Every irreducible L-module with a maximum weight that is
dominant and integral is finite dimensional. ///
The preference shown for maximum weights is not

essential., Similar theorems show that an irreducible module
with a vector of minimum weight is uniquely labelled by that
weight. It is sometimes even possible to separate the Cartan
subalgebra H into two parts and to find modules labelled by a
weight which is a maximum for one part of H and a minimum for

the other.
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Not all the Lie algebras which arise in physics are
over the complex field. For example, the Lie algebras of the
Lorentz and Poincaré groups are real Lie algebras. Consequentlys
my assumption that K and L should represent complex Lie algebras
probably seems too strong. However, the limitation introduced
by this assumption is only apparent. This follows from the
theorem presented below and, ultimately, from the definition of
(algebraic) irreducibility.
Theorem 5. Suppose that L is a reductive Lie algebra over
the complex field and that LR is a real form of L.

(1) 1f X

R is an 1rredu01b1§ LR—module, then

X = Xp + iXh

is an irreducible L-module. The sum indicated is a direct sum

of real vector spaces and the module product on X is defined by
(a2 + ib). (x + iy) = (ax -by) + i(bx +ay),

for all a and b in LR and all x and y in XR'

(2) If X is an irreducible L-module, then X can be decomposed

X:X.R+iXR,

where XR is an irreducible LR—module. Furthermore, XR is

unique to within equivalence of LR—modules.

(3) Suppose Xp and X ’ are two irreducible LR—modules.

R
Construct the L-modules

X:XR+1XR and X =XR-+1XR._
Then X and X° are eguivalent L-modules if and only if XR and

X.’ are equivalent LR-modules. ///

R
Theorem 5 summarises lemmas 2,3 and ly of the appendix.

This result is well known for finite dimensional
L and LR-modules. The point I want to stress is that it
remains true for infinite dimensional L and LR—modules,

provided these modules are algebraically irreducible. ZFor
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representations of a Lie algebra on a Banach space, several
notions of irreducibility are possible. If one of these is
substituted for algebraic irreducibility, theorem 5 will no
longer be true generally, unless further conditions are placed
upon the representations involved.

Although theorem 5 can be proved quite easily, it has
some important conseqguences. Kor example, when theorems 1 and
5 are combined, the following result is obtailned.

Theorem 6. Suppose that:

(1) L and K have been chosen in the standard way;

(2) Ly is any real form of Lj

(3) Kp is = real form of K such that Ky < Los

(L) Xﬁ is an irreducible LR-module, which, when considered as a
KR-ﬁodule, is completely reducible.

Then any irreducible KR—module can occur at most once
in the decomposition of XR. /)

A further exahple of the importance of theorem 5 will
be given in chapter 6. The example is concerned with the
construction of irreducible representations of the Poincaré
Lie algebra.

K-finite L-modules.

Suppose that L is a reductive Lie algebra over C and
that K is a subalgebra of L.

An irreducible L-module X is K-finite if the following
conditions hold.
(1) The module X is completely reducible into finite dimensional,
irreducible K-modules.
(2) Each irreducible K-module in this decomposition occurs only
a finite number of times.

(3) X has a vector of maximum weight.
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K-finite L-modules are not the only possible L-modules.
For example, an L-module need not have a vector of maximum weight
nor need it be decomposable, and, even if these conditions were
satisfied, infinite dimensional K-modules could occur in the
decomposition. However, they are appropriate in a discussion of
algebraic eigenvalue problems, because the spectrum of any diag-
onal operator on such a module is bounded either above or below
and the multiplicity of each eigenvalue is finite.

Bouwer (1968) has investigated irreducible modules
for simple Lie algebras that have neither a maximum nor a
minimum weight. Instead he assumed the existence of a weight p
with the following properties;

(1) the multiplicity of p was one;
(2) for a subset of the simple roots,

£ + mo
was a weight for every integer m, positive or negative;
(3) for the remaining simple roots,

P+ o
wags never a weighte.
Bouwer found that, with certain other minor assumptions, p
labelled the irreducible module. Similarly, the techniques
devised by Green can be extended to such modules. However, for
the applicafions T have in mind, modules with a highest weight
will suffice.

Schur's lemma can be sharpened for an irreducible L-
module X which is K-finite, a result with important consequencese.
1et 7 denote the representation afforded by X and suppose that t
is an endomorphism of X which commutes with (L),

[t, w(L)] = O.

Schur's lemma states that the set of endomorphisms with this
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property is a division ring. The lemma does not state that t
must be a scalar multiple of the identity; that result is only
true generally when X is finite dimensional and complex or when
X is a complex Banach space and the representation is topologic-
ally irreducible. Nevertheless, because X is K-finite, t must
be a scalar multiple of the identity on X. The proof of this
assertion is quite simple. It is obvious that t commutes with
W(K)9 :
[t, w(K)] = 0.
This identity must hold on any irreducible K-submodule Y of X.
Since Y is finite dimensional and complex, Schur's lemma implies
that t is a scalar multiple of the identity on Y,

ty = vy » for all y in Y.

Now (t - A) commutes with 7(L) on X, and so must either be non-
singular or zero, because the set of such endomorphisms of X is
a division ring. The first possibility cannot occur because
(t = N\) vanishes on Y. Hence,

tx = N , for all x in X.

Diagonal Operators and the Algebraic Eigenvalue Problem.

Suppose that L and K have been chosen in the standard
way. Let U(L) and U(K) denote the universal enveloping algebras
of L and K.

The matrix a of K satisfies a polynomial identity of

degree n,

a + c'an“’ +**+c=0,
n
in which the coefficients are elements of Z(K), the centre of

U(K). The existence of such an identity was proved by Lehrer-

Ilamed (1956); the coefficients in the identities for the

classical Lie algebras were derived by Bracken and Green (1971)
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and Green (1971). It is important to stress that this identity
holds within the algebra of matrices over U(K) and is not
peculiar to certain representations of K. Equivalently, the
identity is true in every representation of K.
Weyl (19%9) and Harish-Chandra (1951) have shown that
Z(K) is a finitely generated subalgebra of U(K). One set of
generators for Z(K) is
Ist = trace (at) , 1 =i £nl,
though not all bf its elements need be independent. The
traces of higher powers of a can always be expressed in terms
of this set as a consequence of thé polynomial identity. Thus,
7(K) = Cls ,8 5 * * * 48 ] »
12 n
where I have used the common notation for a POlynomial ring
over C, which can be found, for example, in the text by
Jacobson (1951). Because Z{(K) is an integral domain, it can
be embedded in its field of guotients. This field has a

minimal extension field E in which the polynomial

splits into linear factors,

:I:a

(x—lt)',l € E.

L

i

L=1

I will call E the splitting field for K. Because c, involves
L

only s 48 4+ « <48, and s, appears linearly, s, can be expressed
1 L L

2 L
as a polynomial in 1 ,1 ,* * ',1n. Hence, every point of E is a
1 2
rational function of the roots 1 ,1 , °* * ° ,1n, the
17 2

coefficients being chosen from the complex field C;

E=C(_l,l,".,l)o
- n

Of course, not all of the roots need be linearly independent

over C.



End(Y) U(X) E

Let X denote a K-finite L-module and suppose that Y
igs an irreducible K-submodule of X. As a vector space, ¥ 1is
finite dimensional and comblex, so Schur's lemma implies that
every element of Z(K) reduces to a multiple of the identity on
Y. In particular,

cy=7vY s v, €C,
i i i

for all y in Ye Let Ay * * * N denote the roots in C of the
1 n

egquation
x4y oy x4 - o4y x4+ v = 0.
1 n-1 n
There is a natural action of E on Y, If f(lt, ¢ e ,ln)
ig a rational function of 1, * ° * ,1 1in E, define
1 n

£(1, -+ ,1 )y = £(N 5 © 0 LN )y
1 n ! n
for all y in Y. Since
where each Yv ig a finite-dimensional, irreducible K-module,
the action of E can be extended to X by the simple definition
eX:&)eY,, eeEo
v v
Green and Bracken have shown that %',' ) ',%n determine
the components of the highest weight of ¥, and éohvérsely. 1t

also seems clear from their work that infinite dimensional,

irreducible K-modules can be labelled in a similar way and that
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the matrix a, its polynomial identity and its 'eigenvalues'
1', g = = ’ln will be essential to the study of K and its rep-
resentations. Consequently, it is necessary to extend U(K) so
that it contains E. More precisely, I must extend the field
over which U(K) is defined from C to E. This step is not
trivial because E contains certain elements of U(K). Never-—
theless, in the appendix I have shown how to construct an
algebra U(K) over E which contains an isomorphic copy of U(K)
and which observes all the necessary identities. It is with

this algebra that I shall henceforth work.

The polynomial identity can be factorised in U(X):

n
ﬂ(a-l_)=0.
i=1 L
For all the classical Lie algebras, the roots 11, a e s ’1n are

distinct elements of E, though they are not necessérily linearly

independent over C. The matrices

n

(a-1)/ (1 -1)
J t J

0
I
i—

J
are mutually annihilating projection matrices which provide a
resolution of the identity, since

PP, = §. .p.

Lj~ i »

}: pi 9
L
nd a = 1 o
@ Z 1Py
i

It is not difficult to verify these assertions.

1

il

Similar considerations apply to L as well as K.
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Definition. Suppose that X is a K-finite L-module. A

diagonal operator on X is an element of E acting on X.

Note that the labels which specify the irreducible L-
module X play the role of boundary conditions for a diagonal
operator on X.

Note also the restrictions placed upon the eigenvalues
of the labelling operators in the application to quantum physics.
An inner product must be defined on X and one of the real forms
of L must be represented by skew-symmetric operators on X.

When this real form LR is the compact real form of L, all the
labels will be real and quantised. VWhen LR has one non-compact
basis element, one label may be purely imaginary and unguantised.
When LR has two non-compact basis elements, two labels may be
complex conjugates of one another and may be ungquantised, and
SO on.

Since every element of E is a rational function, with
complex coefficients, of 1’, ¢ %0 ,1n, the spectrum of any
diagonal operator can be found once the spectra of 1,, <t ,ln
are known. PFurthermore, on any irreducible K—submodule'of X,
the eigenvalues %1, e e ,%n of 1;, <o ,1n.are simply related
to the components of the highest weight of the submodule. In
fact, once it is known which K-submodules occur in the decompos-—
ition of X, and with what multiplicities they occur, the spectra
of 1;, $ e ,ln are effectively known.

Thus, the study of diagonal operators can be resolved
into the following steps.

(1) Classify and construct all finite dimensional K-modules.

This is a relatively simple problem and its solution is well

known.
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(2) Classify those infinite-~dimensional, irreducible L-modules
which have a vector of highest weight. This is an easy task
because the highest weight itself provides a unique labelling of
the module.
(3) Decide which irreducible L-modules are K-finite. In contrast
this problem is difficult. However, 1t can be resolved with the
help of the characteristic identities derived by Professor Green
and Dr. A. J. Bracken.
(4) For a given K-finite L-module X, determine which irreducible
K-modules occur in the decomposition of X and also the respective
multiplicities.
(5) Finally, from the results obtained in (L), deduce the spectra
of 11, L ,1n on X and hence the spectrum of any giyen diagonal
operator on X.

For any pair K and L, chogen in the standard way, all
these problems can be solved. However, although the method of
proof is similar for all pairs K and L, it is not so similar
that all cases can be treated simultaneously. This difficulty
iz akin to the one encountered in the theory of the special
~functions, where, despite the similarities between the special .
functions, they must be treated separately. Consequently, 1 will
only show how to solve the problems for one case, namely,

K = g1(n,C) < gl(n+1,C) = L.

Construction of gl(n,C)-finite gl(n+1,C)-modules.

In this section, the following notation will be in

force.

(1) X will denote a gl(n+1,C)-module that is gl(n,C)-finite.

(2) m, * * * sm will denote the roots of the characteristic
1 n+ 1

jdentity for gl{(n+1,C). Because X is gl(n,C)-finite, each m,

reduces to a multiple of the identity on X:
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m X = Mtx N ui € C, for all x in X.
(3) Similarly, 1,, SRR ’1n will denote the roots of the
characteristic identity for gi(n,C). Thus, on every irreducible
gl(n,C)-submodule Y,

lty =:%£y s %L e C,

for all y in Y. Of course the eigenvalue %i will depend upon
the submodule Y.

(4) For brevity I will use the notation

(m1, * ",mn+') s

7\=(7\!';;,7\)’N—"*(#!;"’Nf)°
1 n 1 n+ 1
(5) x will denote the vector of highest weight in X. It is not
0

l=(1,".?1)’m
1 n

difficult to verify that this weight is

(L -n, p =n+1, K1 ) .
1 2 n+ 1
Thus, atl.x = (¢, +i-n-1)x , 1 £1 5 ntl,
. L O L (o]
and a"jxo=0,1§i<j§n+1.

(6) Similarly, if Y is an irreducible gl(n,C)-submodule of X
and
1iy = %Ly y 1 =1 =n,
for all y in Y, then the highest weight of Y is
(N —n+1, N =n+2, " ,N)
1 2 n

and the vector yo with this weight satisfies -

A

at.y = (%i + i - n)yO sy 1 ign,

t O

A

and aly =0, 15i<j
j%o
(7) Finally, the spectral projections for the metrix a of gl(n,C)

n .

will be denoted by

A
o
A
s
.

pisﬂ(a-lj)/(li—lj)’ 1

Jj=1i

Roman indices will lie in the range 1,2,°°*,n. When an

index is repeated, summation over that index will be understood,
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Define

|

bi'k = aj L and b
n+1(pk) i Lk

al*t1 Jo.
| j(pk)t
It is easy to verify that
ajjbik =:b£k(ajj + 1)
and
al b =1 Jo - 1) .
i ik ik(aj )
Since al =1 +1 ++ ¢+ 41 - 4n(n-1),
J 1 2 _ n
the above formulae indicate that bLk and bik satisfy
1 pik o pik(l, 4 4,
j (J Jk) ,
b l - 6\ .
Lk( J jk)

1>
This statement is true, but its proof is difficult, so I refer

]

Jj ik

the matter to the paper by Green (1971).
From the very definition of Xo as the vector of highest
weight in X, it follows that
aj x = 0.
N+ 1 0
It is then quite easy to show that

[o}
Define bk = a”*'tbbk.
Obviously, bkx =0 .

bk is a 'mixed invariant', for, although it commutes
with all elements of gl(n,C), it cannot be expressed as a rational
function of 1. However, by an exceedingly tedious calculation,
which will be illustrated later by an example, bk can be expréssed
as a rational function of 1 and m. If N and u are respectively
the eigenvalues of 1 and m on the vector xo of highest weight,
then the conditions

bkx =0
o

yield n polynomial equations between N and u,

¢k(—}\,u) =0 .
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Because X is a gl(n,C)-finite gl(n+1,C)-module, the
vector Xo of highest weight in X must lie in some finite-
dimensional, irreducible gl(n,C)-submodule of X. Furthemore, this
submodule will be labelled by the eigenvalue N of 1 on xo. In
general, the finite dimensional, irreducible gl(n,C)-modules are
labelled by integers %,, . ',%n which satigfy

x’ > %2'> ot %n .
Thus, the assumption that X is gil(n,C)-finite places the follow-
ing restraints on A and u:
(1) Nt ,Kn must be integers;
(2) x1 > %2 >t 0> %n 5
(3) N and p must satisfy the polynomial equations
ok(Nypu) =0, 1 5k £n.

An alternative, and more profitable, interpretation is that the
irreducible gl(n+1,C)-module, labelled by p, can only be gl(n,C)-
finite when the polynomial equations in (3) have a solution A
which satisfies conditions (1) and (2).

In a similar manner, conditions can be formulated under
which X has a vector z of minimum weight. From the definition

0
of such a vector,

n+1'z = O.
. J o
It is not difficult to show that

a

-b. Z ZO¢
;k o]
Defin b =at b, .
© k= % i ik
Obviously, bz = 0.
k o

bkis a 'mixed invariant' and can be expressed as a
rational function of 1 and me If N° 1is the eigenvalue of 1 on the
vector z of lowest weight, then the conditions

(o]

. o
bkZo
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yield n polynomial equations between N and u,
Sok(%”/'l‘) =0 .

If X is irreducible, then each of the differences

must be an integere.
Again there is a more profitable interpretation of

these results. Suppose that g is given and that AN is a
golution of the equations

oK(Mop) = 0, 1 Sk S n.
Construct the lattice in R” whose points have the form

v = (v1,v2, « - e ,vn) ’
where each component of v 1is an integer. Two points v and v’
are adjacent in this lattice if v - v’ has only one non-zero
component and this component is equal to *1. A path from the

origin to v is a finite sequence

(0 = p(1),p(2), « « o jplm = o]
in which each point is adjacent to the next. The point v is

connected to the origin if there is a path from the origin to v

such that
1

A

. i<m
o, (N-vHu) ¢ 0, { 1,

A

k

A

n .
Let D denote the subset of the lattice connected to the origin
and let Xy ., V € D, denote the irreducible gl(n,C)-module

labelled by (N - v). Define

X:@X_ o
veD bV

Suppose for the moment that it is possible to convert X into an
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jrreducible gl(n+1,C)-module. It is clear from the construction
of X that X is completely reducible into irreducible gl(n,C)-
modules and that each occurs only once. When the numbers
%1,%2, ¢ e e ,kn are integers and satisfy

x, > %2 >t > %n ’
X is gl(n,C)-finite.

The only surviving problem is to show that the
reducible gl(n,C)-module X can be converted into an irreducible
g1l(n+1,C)~module. Gel'fand and Cetlin (1950) found a solution
for finite dimensional gl(n+1,C)-modules; only trivial
modifications are required for the infinite dimensional case.

For all x in X, define

a™! x=(m +m + * ° ° +m -1 -1
1

el * * —l b n)X.
] n+ 1 1 2 n+ 1 n

2

The difficulty is to define the action of a1 and ain+: on

X in a way consistent with the commutation rélations. Since

amtt = [a™ 1 Lan ]
i n~ i
and at = [al ,a”
ne 1 nom
once a™ ! and a” have been defined, a™ ! and a' can be
n n+ 1 i n+ 1

defined‘by these formulae.
The basis vectors of X, ., can be represented by the

tableaux of integers

7\ - 7\ - o9 e a0 0 e 'A -1) 7\ -
1 2 2 ner  n-i "0 Un
RN x
1n-—1 N=1N-1
A
11
where N -v >N PN =V >ttt EN -V >A 2N -V,
1 1 1N=1 2 2 n-i n-1 R—~1N-1 n n

A > A 2N .
12 11 22
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The entries of the mth

row from the bottom are the eigenvalues
of the roots of the characteristic identity of gl(m,C) on the
basis vector. Thus, this is essentially the labelling scheme

devised by Gel'fand and Cetlin. Now,

afl = aj CS‘n

n+ nty  j
J n
al . (p,) 1

k

1l

pnk,

Similarly,

o]
i

k
ntg b,
nk
P
bk raises the eigenvalue of 1k by +1, but leaves unchanged the
eigenvalues of 1., j # k. Purthermore, bk commutes with the
: J

labelling operators for the subalgebras

g1(1,C0) < g1(2,C) <+ + + < gl(n-1,C).

Thus,
AN=-v AN -V N =y e A =V N =V A=V 41N~V
(| n n T 1 n n 11 n n
'bnk aaaaa = - . % 8 8 v 0 s
k
A N N
11 11 11
Similarly,
N=v s N~V No=Y aheeE) =P N=v N -V =N =V
11 n n | n n 11 ko ko n n
bnk - ﬁk
A A A

The coefficients o and ﬁk must be determined as functions of

'}\_v coo.o'}\ -]
1 1 n n

LI I

11

gubject to the following conditions.



(1) o,

without meaning. For example, if

and ﬁk must vanish whenever the vector on the right is

‘)\_v -.ou-’}\_v
1 1 n n

@« 8 b b e

A
11

is the vector of highest weight in X, then

7\_1,‘.....}\ s
a = Oe

(2) a” and a1’ must satisfy on X
n+1 n

[af*1 , af ] = anti - a .,
n n+1 n+i n

These constraints lead to a set of functional equations for ak
andlﬁk which have many solutions in general. However, the
gl(n+1,C)-modules corresponding to the different solutions are
equivalent. The solutions found by Gel'fand and Cetlin in the
finite dimensional case can be applied equally well here, soO

the task of constructing the gl(n+1,C)—modu1es is completed.

Example 1. @1(1,C) < 81(2,C).

The construction of irreducible sl1(2,C)-modules
which are gl(1,C)-finite is a trivial matter. Nevertheless
this example is particularly important, because the theory of

the simple spectrum rests upon it.

The matrix of s1(2,C) is

b = a - strace(a)

2

2 _i(g! -aZ2
& g 5 ] 2)

1(a?! -a2 ) al
1 2
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and satisfies the identity
b2 -b -8 =0,

where s = ¥(2s - 8,2)
2

and Si = trace ai , 1 = 1,2,

The centre of the enveloping algebra of s1(2,C) is generated by
s and hence is the polynomial algebra C[s]. The extension field
£ in which the characteristic identity splits is constructed as
follows. Firstly, embed C[s] in its field of quotients F = C(s).
Secondly, construct the polynomial algebra F[x] in one indeterm-
inate x and the principal ideal J in F[x] generated by

2

X — X = 5 o

Finally, define

E="r[x]/J.

For the proof that E is a field I refer to Jacobson (1951a).

Set 1l =x + J .
Then 12 -1 -8 =20
and (b - 1)(p +1-1) =0.

Hence the characteristic identity can be factorised in E and the
general techniques outlined in the text can be applied.
However, for this simple example there is a more direct

approach. Define

h = '127(9-' - a? ) )
T 2
e = a’ 9
+ 2
e =a? .

- 1
The set {h,e+,e_} is a basis for s1(2,C) and the Lie products

are

I+

[h,ei] = ei ? [e+’e_] = 2h °

Furthermore, s = h? + %(e+e_ + e_e+) i

so s is just the well known Casimir element for s1(2,C). The
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g1(1,C) subalgebra of s1(2,C) is one dimensional and has for its
basis {h}.

Every gl(1,C)-finite 81(2,C)-module X is isomorphic to
the space S of terminating sequences. h,e+ and e_ then have the

matrix representations
™

o) 0 of] 0
=1 0 a, 510
p—'2 0 Oz BZO
h = p—? ) e+ ] O ?4. s e_ = ﬁs.o .
- J -~ o - J

where p» al, ﬁk € Co The commutation relations
’ 3

[h,ei] =t e,

are gatisfied no matter what values are assigned to ak and ﬁk.
However, the third relation is only satisfied if

otk,Bk=k(2p+1—k), k z21.
- 9

The vector £ =

st OO

L J
is the vector of highest weight in S. The corresponding weight,

a linear functional on H = {h}, is
p : H—>C
h|_‘—> po

The module X has a vector z of lowest weight if

This can only be so if ﬂk vanishes for some X, in which case

2p + 1 = k and the representation is k-dimensional. These are
of course the familiar finite dimensional s1(2,C)-modules.

When (20 + 1) is not a positive integer, akﬁk never vanishes and

X is irreducible.
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The theory developed by Harish-Chandra shows that the

highest weight p uniguely labels the s1(2,C)-module. However,
in this example it is so simple that it is worthwhile to verify

this fact. Suppose that

r =
o)
foudl
p=2 )
h = p—3 = h" .,
C CL .
r~ "\ -ﬁ
0 Oy 0 a; '
O oz ) 0 S2_,
e,= O as y € = &5 - ’
+ 0 Ot4 + 0 Oy
. "o . T
B ] o A
£10 B10,
B20 ) B20
€ _= ﬂso y €_= BSO ’
L T L )

= k(2 1 - k) = a B’
o« B, (20 + ) B
are two irreducible representations of s1(2,C) with the same

maximum weight. Set

- -
yl
'Y2
C = ’Ys . ’ ')’1 =1 ’
— , . -
and require ce_ = €_C .
Thus’ ﬁk’yk_'_' = ﬁk’yk ®

Since ﬁk and B; never vanish because the representations are

irreducible,

Y /Yk=ﬁ;/ﬁk-

k+1
Now



" h 5
O ayyy 0 oYz
O azve O asvs
ce, = 0 axys and ec 0 a3v4 :
- . - "
Because o = a’'B’
kﬁk kﬁk ?
x = Q ’
R k(vk+lﬁk / ﬂk)
= %Yk
and so ce =¢e°C .
+ +
It is trivial that ¢h = hc. Thus, the representations are
equivalent.
Example 2. g£1(2,C) < g1(3,C).

The purpose of this example is to illustrate the steps
in the general programme for the construction of gl(n+1,C)-
modules that are gl(n,C)-finite., Roman indices will take the

values 1 and 2, Greek indices the values 1,2 and 3. When an

index is repeated, summation over the index will be understood.

(1) Generators of the centre of the enveloping algebra.

£1(2,0)

8. = aii t’ = aﬂﬂ

82 = aijaji t2 = aubavu

s = a‘JaJkakL g = auvavaaap
=8, + %s'(jsz -8 - sf)

These generators may be expressed as symmetric functions of the

roots of the characteristic identity.
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£1(2,0) g1(3,C)
s =1 4+1 -1 t =m+m +m =3
1 T 2 1 1 2 3
s. =1 (1 - . - = - - -
s 1( 11) . 12(12 1) tz__n”(m’ 20 mz(mz 2) + ms(ms 2) + 1
t =m (m-1)2 +m (m -1)2 +m (m -1)%
3 11 2 2 3 3
-mm - mm - mm
1 2 2 3 3 1

(2) Projection operators.

(p,)ij - (aij - 12€Lj)/(1, - 1)

A j— A -
(a ; 16 j)/(lz ;1)

]

(p ),
B

(3) Raising and lowering operators.

bi'k . aj (p )i’_, bk = a3,b"'k
3 k" § : L

b,
ik

il
Ii

at b. .
3 L

3 J b
a j(pk) i K n

(4) Mixed invariants.

bk and b, commute with the basis of gl(2,C). By a
straight-forward, but exceedingly tedious calculation, they

can be expressed in terms of 1 , 1 , 5 s © and t , t , t .
1 2 1 2 1 2 3

For example,
6b1 = {2t - 3s (1-1 ) - 3t (141 ) + (t -s )® + 31 _(t -s )% -
3 2 2 2 2 T 1 2 1 1
3(t -8 )(t -8 ) + t2 + 38 (t -s ) + (3s -2t )(1431 ) +
1 1 2 2 1 1 1 1 . 1 1 2
g2 -3s s }/(1-1) .
1 1 2 1 2
These expressions are very complicated, yet when written in
terms of 1 and m they become remarkably simple.

bk = (_)k+1¢k(l,m)/(1' - 12)

b = (—)k+'¢k(1,m)/(1, - 12)



¢'(1,m):(m1—l’-1)(m2—11-1)(m3—11)+(m,—1,—1)(m3-12—1) +

(m2“12—1)(m3-12—j> ’

¢2(l,m):(m1—12-1)(m2—12—1)(m3—12)+(m2—12~1)(m3—1'—1) +

(m1—1,—1)(m3—11—1) 3
o (Lm)=(n -1 J(n -1 )(n 1) ,
¢2(l,m):(m1—12)(mz—lz)(ms—lz) .

(5) Suppose that the gl(3,C)-module X has a vector x of highest
weight and that N and g are the eigenvalues of 1 and m on this
vector. Then N and u must satisfy

ok(p) =0, k =1,2.
Similarly, if X has a vector zoof lowest weight and N° is the
eigenvalue of 1 on Z s then A" must satisfy

p, (Nsp) =0, k=1,2.

(6) Construction of gl(2,C)-finite modules.

One solution of the equations
¢k(%’u) =0, k=1,2

is N o=u -1 4 N =p =-1.

1 1 2 2
I will construct the irreducible gl(3,C)-module in which the
labels of the irreducible gl(2,C)-submodules are connected to
(%',% ) in the sense defined in the text. This module will only
2

be gl(2,C)-finite if N and N are integers which satisfy
1 2
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L [ ) [ ] [ 4 L]
The Array D.
[ [} L4 e &
§ °o e ° ¢ (p -p =1,0)
12

o
o
L]

¥

.
_
v
1

The points of the array D in the (v’,v ) plane are connected to
' 2
the origin. Let X%rv denote the finite dimensional, irreducible
g1(2,C)~module with highest weight
(N =v =1, N -V )
1 1 2 2
and construct

XZ @ X_ L)
veD AV
Def'ine

a3x=(m +m +m -1 -1 -2)x,
3 1 2 3 1 2

for all x in X. A basis for X consists of the vectors

-V N2~V
K

where Kk is the eigenvalue of a’t on the vector. Define

N -V NN -V
1 1 2 2

K

a3
2

A =-v -1 N =V
1 1 2 2

- [(?\ cv = YN =y = V(N =y 1)
1 1 2 1 1 3 1 1

N v A -v -1
1o 2 2

+(N -v - )
2 2 3 K

],/ (%’-v’—%2+v2)

and
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N~V N -V
az 1 1 2 2
3| K

: : . N =V N -V +1
=|:(/.a—?\+v ) =N v 1) (k=N 4V ) 2 2
1 2 2 2 2 2 2 2

1 1
K

N =V +1 N -v
+(p -N+v =) P! £ F :]/ (N =v =N +v ).
11 P 1 1 2 2

With these definitions, X is an irreducible gl(3,C)-
module that is g1(2,C)-finite. Its highest weight is
(u’—z,u2—1,u$). Note that when By is an integer and
B> B> B

1 3
X is one of the familiar finite dimensional gl(3,C)-modules.
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APPENDIX 3.

In lemmas 2, 3 and 4 which follow, the following
notation will be in force. L will denote a reductive Lie
algebra over the complex field and LR Will be a real form of L.
Thus, L= Ly o+ ilg,
where the sum is a direct sum of vector spaces over R. U(L)
and U(LR) will respectively denote the universal enveloping
algebras of L and LRf A similar decomposition obviously holds
for U(L):

u(L) = U(LR) + iU(LR).
Sgppose XR is an~LR—modu1e. Construct
X = XR + iXR
and define a product, denoted by Jjuxtaposition, such that
L x X—>X by
(a + ib) (x + iy) = (ax - by) + i(bx + ay) s

where a,b € LR and x,y € X . With this product, X is an

R
L-module.
Lemma_ 2. Suppose X = XR + iXR. X is an irreducible L-module

if and only if X, is an irreducible LR—module.

R
Proof (Trivial) (1) Suppose that Y, is a proper Ip-submodule of

XR.

Then(YR + iYR)is a proper L-submodule of X.

(2) Suppose that Y is a proper L-submodule
of X. Because X can be decomtosed into real.and imaginary
parts, so too can Y. Thus,

Y = Y, + 1Y

R R®
YR is a proper LR—submodule of XR' /77
Lemma 3. Suppose that XR and XR are two irreducible

LR—modules. Construct the L-modules

»

X:XR+iX_R and X :XR +1XR_o
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Then X and X’ are equivalent L-modules if and only if XR and
XR are equivalent LR—modules.

Proof (1) 1f X, and X_° are equivalent L

R R R—modules, there

is an isomorphism 0R
G’R: XR———)XR ’

which intertwines the module operations on XR and XR‘.

Define oco: X — X’
X+1y —> URX + iahy s Where X,y € XR.
o is clearly an isomorphism of the vector spaces X and X“.

Farthermore,

((a + ib)o) (x + iy)

H

(a + ib) (ohx + iUPY)

i

a(vhx) - b(ahy) + i(b(URX) + a(oﬁy))

ah(ax - by) + 10§(bx + ay)

i

i

o((a + ib) (x + iy))
= (o(a + ib)) (x + iy).
Thus, X and X’ are equivalent L-modules.

(2) If X and X’ are equivalent L-modules, there is
an isomorphism o0,
o X—>X7,
which intertwines the module operations on X and X*. Choose

any vector x in XR. XR can be considered to be an irreducible

U(LR)—module. Every vector of Xﬁ, in particular x, is cyclic.

Thus,

Let y = ox. The vector y can be decomposed

AN

y = x4 ix"’, where x", X € XR'.
Since x is non-zero and ¢ is injective, y is also non-zero, and

4

hence one of x° and x°° must be non-zero. I will suppose x° to
be non-zero. A similar proof can be devised in the other case.

XR* is an irreducible U(LR)—module, so x° is a cyclic vector.
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Thus,
XR' = U(LR)X'
Define the map
TR: XR ———%>Xﬁ
ax’+—3 ax, where a € U(LR).
(i) TR is surjective because x is a cyclic vector for Xpe
(ii) TR is injective. To show this, suppose ax = O. Then
U(ax) - 0. Because ¢ intertwines the module operations on X
and X’, a(ox) = 0. Thus,
ay = ax’ + iax” " = O.
Because XR' and iXé are linearly independent over the real
field, ax’ = ax" " = O. Thﬁs, TR is injective.

(iid) TR intertwines the module operations on Xpand XR’.

(Thb) (ax’) = TR(baX )

= bax

= b(TR(aX ))

= (b7R> (ax’).

Thus, Xp and X" are equivalent Lp-modules. ///
Lemma L. If X is an irreducible L-module, then X can be
decomposed
X = XR + 1XR,

where XR ig an irreducible LR—module. Furthermore, XR is
unique to within equivalence of Iﬁ;modules.
Proof Consider X as an irreducible U(L)-module. Every

vector x in X is c¢yclic, so

X = U(L)x.
Define Xg = U(LR)X.
It is clear that XR is an LR—module. Turthermore, since

U(L) = 0(Lg) + 10(Tp),

it follows that
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X=XR 4 lXR.

The irreducibility of XR follows from lemma 2.
If X = X§~+ iXﬁ is another decomposition of X, then
XR and Xﬁ must be equivalent. This is a conseguence of

lemma 3. /1

Construction of the Algebra U(K).

Both E and U(K) are infinite dimensional algebras
over C. Construct the vector space
T = E®U(K).
With the product

<EQ6%LXEef®uO= %eﬁf®muf,
L L y J J 4 Ly L J
i f ij

where e, e} € Eand u, u? € U(K), T is an associative algebra
L J

over C. T can be considered to be an algebra over E by defining

e(Z ei ®u£> = Zeei ®u£ .

L i

However, there are identities which are not satisfied

in T. Since
Z(XK) = E NU(X),

every element of Z(K) has two rresentations, one as an element
of E and the other as an element of U(K), so it is important to
couple E and U(K) so that the presentations are equal. This may
be done as follows. Let

S.(l) = S.(l sL 5 0 0,1 )
t L 1 2 n

be the symmetric polynomial which expresses
8, = trace at € Z(K), 1 =1 s n,

in terms of 1 , 1 , ¢+ + - »1 in E. Construct the two-sided ideal
1 2 n
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J generated by

1®s£—s£(l)®1 , 1 21 £n,

S8ince these elements lie in the centre of T,

T+ (1®@s, -5, (1) ®1)I.

L

Define the factor algebra
U(x) = 7/J.
Finally, let ¢ denote the natural embedding of U(X) in T,
 :+ U(R)—>T
ur—— 1 ® u,
and 7 denote the canonigal projection of T onto U(K),
7 : T —>U(K)

t H t+J °

Lemma 5. The map
o = mep : U(K)—> T(K)
ur—> 1 Qu + J

is & monomorphism.
Proof It is obvious that ¢ is a morphism of algebras,
so all that must be shown is that ¢ is injective. Suppose the
contrary, that there exists an element u in U(K) such that

¢(u) = o,
that is, 1 ®u ¢ J.

Then 1 ®@u

Il

Y (les, -5, ()1t

i

Z(1 ®s - Si(l) ® 1~)<Z ®1 ®uj>,
i

Il

J
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where the elements e, lie in E and {u ,u , * * + } is the
LJ 2
basis of standard monomials in U(K). (Jacobson(1962)).

1®u = E (e, ®s.u,_~e s (1) ®u)).
Lj L J Lj i J
£

Since s, 1s a polynomial in the elements of X, s. u
i i

., and u,

J J

are linearly independent elements of U(K). Hence, the terms

of the sum can never be collected into the form 1 ® u. This

shows that 1 ® u cannot lie in J, and so ¢ must be injective.
/17

The import of this lemma is that U(K) can be

identified with its imaée in U(X). I need a similar result

which allows E to be identified with its image in U(K). Let

o- denote the map

oc: E—>T

er—>e @1,

Lemma 6. The map
D = T.O ¢ E-——%-ﬁTKT
e—>e ®1 + J
is a monomorphisme.
Proof Again it is obvious that p is a morphism of
algebras, so I need only prove that p is injective. The kernel
of p is an ideal in E. Because E is a field, its only ideals
are trivial. Thus,
ker p = O or E.
If T can show that 1 ® 1 does not lie in J, so that
p(1) =1 ®1 + J # 0,
then p must be injective. This is trivial because 1 ® 1 is
one of the elements 1 @u, u ¢ U(K), and the last lemma showed

that none of these ever lies in J. ///
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CHAPTER L. CODIAGONAL OPERATORS.

Algebraic methods were all that I needed to find the
spectrum of eigenvalues of a diagonal operator s on an L-module
X because I knew from the very definition of X that X contained
a basis consisting of eigenvectors of s. In contrast, if t is
an arbitrary linear operator on X, then X need not contain any
eigenvectors of t, but there will possibly be extensions of X
which do. One such extension is the completion of X with respect
to the metric topology defined on X by a norm. Indeed, von
Neumann's postulate that the states of a quantum system should
comprise a separable Hilbert space simply ensures that the axes
of the space can be rotated so that any given gself-adjoint
operator is diagonal. However, the extension from X to its
completion with respect to a norm is not the only possibilitys,
and in this chapter I want to show that for a certain class of
operators on X, again connected with the Lie algebras L and XK,
there is a more elegant procedure that is essentially algebraic.,

I want to freely manipulate infinite matrices, but
since mistrust of such matrices lingers from the work of von
Neumann (1929), I must firstly dispell this taboo. Consequently,
there is an introductory section which deals briefly with the
algebra of column-finite matrices and its subalgebra of row and
column-finite matrices. I should remark that I came to the
conclusion that these matrices were appropriate for quantum
mechanics in my own round-about way. 1 later found that Jacobson
(1951b) had given a beautiful account of infinite dimensional
vector spaces and the algebra of column-finite matrices. His
work should be a prerequisite for any course on topological
spaces for it establishes the limits of the algebraic theory and

thereby defines the role to be played by a norm.
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Infinite Matrices.

Suppose that X is a vector space over a field F of
characteristic zero, and that the (Hamel) basis of X, denoted
fx sx 5 * ¢},
172
is countably infinite. BEvery vector of X may be represented

as a linear combination of a finite number of basis vectors:

X pg=t F
Z % » S, €F
p

where the number of non-zero coefficients is finite. The map

which associates with x the sequence
r )

1

2

s = " m l{h

is an isomorphism of X onto %hedspace S comprised by all finite
sequences of elements of F.

If t : X—>X is an endomorphism of X, then

where the number of summands on the right is necessarily finite.

v Zfl,xl, = szTkak ’

L kl

Thus,

where once again the number of summands in each sum is finite.

The matrix of coefficients (7 L) is called the matrix of t

k
relative to the basis {x ,x , * * * } of X. It is uniguely
1772

determined by t. (TkL) is a column-finite matrix, that is to
say, the number of non-zero entries in any column of (TkL) is

finite. Conversely, every column-finite matrix over F
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determines an endomorphism t of X according to the formula
above.

The set of all column-finite matrices over F, with
the operations of matrix addition and matrix multiplication,
forms an associative algebra over F. The only point worth
noting in the proof of this assertion is that the product of
two column-finite matrices, (akb) and (TkL) is always well-

defined and again column-finite, because the number of non-

o T,
Z-. kj Jt

J

zero terms in the sum

ig finite. It is a simple matter to verify that, if s and t

are two endomorphisms of X whose matrices are (U%L) and (T L)’

k
then the matrices of s+t and st are

—_—
(OkL + TkL) and ( ZL;UkJTjL>
. J

respectively. Thus, the algebra of endomorphisms of X is
isomorphic with the algebra of column-~finite matrices over F.

For comparison, suppose that X now represents a
separable Hilbert space. The Hamel basis of X is now uncount-
ably infinite, and the orthonormal basis, although countable,
only spans (algebraically) a dense subspace of X. The infinite
matrix, relative to the orthonormal basis, of an unbounded
operator t on X does not provide a representation of t unless
the domain of t is also specified. For example, all the self-
adjoint extensions of a symmetric operator t will have the same
matrix elements with respect to an orthonormal basis chosen from
the domain of t. The representation of unbounded operators by

infinite matrices is fraught with difficulties which cannot
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occur in the algebraic theory.
The infinite matrices which arise in many problems
of gquantum mechanics and spectral analysis are not only column-

finite but are also row-finite, that is to say, the number of

non-zero entries in any row is finite. This fact 1is ignored
in texts which attempt to sstablish a rigorous theory of quantum
mechanics on Hilbert spaces. Nevertheless, T believe that the
justification of many of the formal technigues used in gquantum
mechanics can be found in this fact.

The row and column-finite matrices form a subalgebra
of the algebra of column-finite matrices. The simplest

examples of matrices of this type are the codiagonal matrices

\\\

| ©

It is not difficult to see that the most general matrix has a

swathe of entries along the diagonal

e J
and so is a type of generalised band matrix. For this reason,

and also for brevity, I will call an infinite dimensional, row

and column-finite matrix a band matrix.

Fach band matrix is an endomorphism of 8, the space
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of terminating sequences of elements of the field F. S can be

embedded in a much larger universal space S, the algebraic

completion of S, comprised by all sequences of elements of F,

The important property of a band matrix is that it can be
unigquely extended from an endomorphism of S to an endomorphism
of §. Suppose that (TkL) is a band matrix and § is a vector

in 8. Set

The expression for §; has a well-defined meaning even when the

column vector £ has an infinite number of non-zero components.

This 1s so because (TkL) ig row-finite and hence the number of
non-zero terms in the summation on the right is always finite.
Thus, (TkL) can be unambiguously extended to an endomorphism
of S. The extension is clearly unigque. The isomorphism which
maps S onto X can also be extended in a natural way to an

isomorphism of S onto X. Here X, the algebraic_completion of Xy

is the space of all formal series of elements of X,

Z FET
k

where the sequence £ need no longer terminate. The endomorphism
t of X which corres;onds to (TkL) has been extended to an
endomorphism T of X. The name 'formal series' suggests that
the elements of X have dubious mathematical value. This is
not so, for X is merely an isomorphic copy of 8.

The need for such extensions will be clear in later

sections, but for the moment may be illustrated by a simple

example. Suppose (TkL) is a tridiagonal matrix on S,



[« 5 4
1 1
y o B
1 2 2
( ) y.2 a:s ﬁs
T =
ki y oot ’
3
in which - ~
ﬂk'yk # 0 for k = 1,2,3, -

It is easy to see that the only terminating sequence which

satisfies the eigen-equation

ZTkaL =7\§k s k = 1,2,3, ° *
L.

is the trivial sequence, whose elements are all equal to zero.
Whereas S does not contain any solutions of the eigen-equation,
S contains them all. To select particular eigenvectors, I
will later define, in an algebraic manner, boundary conditions
on S. Note that if S were embedded in a Banach space, the
condition that each eigenvector should have a finite norm

would serve the same purpose.

Codiagonal Operators.

Throughout the rest of this chapter, I will use the
following notation.
(1) L will denote one of the classical Lie algebras

gl(n+1,C) , s1(n+1,C) , so(n+1,C) , sp(n+1,C) ,
and K will denote the largest subalgebra of L chosen from the
list
gl(n,C) , s1(n,C) , so(n,C) , sp(n,C) .

This is the choice for L and K that I called the standard

choice in the last chapter. (sp(n,C) for odd n was also
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defined there.)
(2) X will be a K-finite L-module of infinite dimension.
(3) Finally, the splitting field of K will be denoted E.

A codiagonal operator on X is a polynomial in the

elements of L with coefficients which are diagonal operators on
X. Because X is K-finite, every diagonal operator on X has a
diagonal matrix. Furthermore, the elements of L have band
matrices which must be obtained during the construction of X.

It is an elementary step to combine these matrices to find

the (band) matrix of any codiagonal operator on X, In particular,
when L = s1(2,C), a codiagonal operator is represented by a
codiagonal matrix; hence the name.

The aim of this chapter is to investigate the spectrum
of a codiagonal operator t on X. In advance I should pocint out
that the spectrum of t on X is usually empty, on ?, the algebraic
completion of X, the spectrum is usually the whole complex plane,
and on intermediate extensions of X the spectrum liés somewhere
between these extremes. The investigation of the spectrum of t
more properly consists of the following problems.

(1) Because the matrix of t is a band matrix, the
domain of t can be extended from X to X, and hence to any subspace
X such that

X <X < X
Let t° denote the extension of t to X°. If X° is invariant under
t°, then it is quite in order to ask for the spectrum of t°. In
fact this is the first problem in the study of the spectrum of +t:
for every subspace X, invariant under t°, determine the qualitat-
ive character of the spectrum of t°..

I found the concept of a spectral chain for t very
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useful in the case L = s1(2,C), and I suspect that its utility is
not limited to this case. Suppose that
y» ¥ 20}

is a family of L-gubmodules of X for which

ix

< < < X B < Ve
xxﬁxy,/v

A finite chain of subspaces

X <X <ot <X o

Y' 72 Yb

A

where O = ¥

Yy <y < * * <y =Yy = o
o 1 2

b

is a spectral chain for t if t has the same spectrum on Xy and

a
Xy for all ¢ in the range

IA

< <
ya g v < ya+‘ s O = & b .

In loose terms, the spectrum of t is a step function on a spectral
chain; it is constant until Xy reaches a critical size and then 1t
jumps to a new level.

I can rephrase the first problem concerning the
spectrum of t. Find a spectral chain for t and determine the
gqualitative nature of the spectrum of t on each component of the
chain.,

(2) The second problem is more specific. Given a sub-
space X°, invariant under t° and satisfying

X <X <X,
how can the spectrum of t’ be calculated in practice?

These are difficult problems, and only in the case of
the simple spectrum, where L = s1(2,C), am I able to give a
complete solution. Accordingly, I will treat this case in detail

and then indicate how the scope of the ideas may be extended.
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L

s1(2,C).

In this section, X will denote an irreducible sl1(2,C)-

Simple Spectrum.

module of infinite dimension which has a vector x of highest
1

weight p.

ively by

where {ﬁk} is an arbitrary sequence of non-zero complex numbers.

X

A basis for X consists of

k+1

e__Xk / ﬁk 9 k = 1,2,

the vectors defined recurs-

Then
hx ] 1 - k)x
K (o + ) K’
e X B X
= P
"FXk'*'l B akxk ’
where akﬁk =k(2p+1 - k) #0.
The matrices of h, e and e€_ are
r p '1 r-o a' = r“o
p=1 0 a, B0
p=2 0 as B 20
h = I 0oy .= CEY
L- ’ v - ’ - L

X can obviously be identified with the space S of sequences of

complex numbers which have but a finite number of non-zero

components,

It is convenient to use unit step operators

in place of e,

-
0

1
01
01

L

N

and e_ on S.

e
+

-

Thus,

ud and e =
+ + -

and d_

~

0
1

o)
1

0
1

-
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roc1 (ﬂl
¥ B2
where u, = %5 and u_ = Ps .
.. J - ' .J
Both u, and u_ can be considered to be functions of h since

uwu_ = (p+ h)(p+1 -"h) .

The obvious choices for u+ and u are

1 =

B p+handu =p+ 1 -h,

but these are not the only possibilites. In general I will allow

u, to be rational functions of h. The reason for this choice
is that such functions comprise the splitting field E for
gl(1,C), that is,

E = C(h) .
The most general codiagonal operator on S 1is a

and h with coefficients in E. ZEquivalently,

polynomial in e _, €_
it may be taken as a polynomial in d+, d_ and h with similar

coefficients. Such a polynomial can always be brought to the

}T diti(h) i

i=-m

form

t =

o,

where 4, =

d+'L , for i 2
|

d_’i s for 1 < 0,

and tt(h) € E.

~ n
T,
L1 T
If t (h) = ve g y, -m$isn,
L .
- J

then
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Tor Ti2 T23 ' ¢ ‘ Tnnti

so t is a codiagonal matrix with n diagonals above and m below

the main diagonal.
When m = O, the matrix of t is upper triangular and
the diagonal elements of t are the eigenvalues of t on X. This

case is trivial, so I will exclude it and always assume that

v

m 1e

Suppose that £ is an eigenvector of t in S:
t§=}\§’7\60’§6-§.

The components of & must satisfy the following equations.

T = 1 kK Sm
i ik+£§k+i, )\fk ) )

==k

T - m <& k.
2 krikrr T 7

L==m

A

The equations for k > m constitute a recurrence
relation for the components of &, which I will call the

recurrence relation associated with t. Its solutions can be

classified by the value of

.
1im sup | €17k
. K

according to theorems developed by Poincaré and Perron, and on

the basis of this classification a spectral chain for t can be
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constructed. 'Lim sup' properly belongs to the realm of
analysis, but its only use here will be in the definition of a
chain of subspaces of S.

The equations for 1 £ k £ m follow from the require-
ment that S should have a vector of maximum weight.

I have assumed that the coefficients ti(h) are
rational functions of h. Consequently,

£ (n) = p, () + v, (n),

where p.(h) is a polynomial and r (h) is a rational function,
i i

whose numerator is of lower degree in h than its denominator.

Let

1 = max degree p. (h).
-m<isn t

I want to exclude the case in which 1 is equal to zero, and for
doing so I have three reasons.
(1) A1l the codiagonal operators which occur in quantum mechaniqs
satisfy the condition 1 > O,
(2) When 1 = O, the boundary conditions which determine each
eigenvalue of t depend upon that eigenvalue, so the eigenvalue
problem is no longer linear.
(3) For most purposes, t may be replaced by
t' = a(h)t ,

where g(h) is a polynomial in h.. If the degrge of q is
sufficiently high, t' will satisfy the condition 1 > O.

Define Ci to be the coefficient of nt in pi(h). The

charscteristic polynomial of the recurrence relation associated

with t is the polynomial

E? C_yt s, 7 € G
3 L

L=-m

Its importance is clear from the following theorem, which is a



122,
minor extension of a result first proved by Perron (1921).
Theorem (Perron).Let Yoottty be the distinct moduli of the

roots of the egquation

ordered so that

IA

0O = < < & =2 g <
yl 72 yb-r Yb

The possibility yb = o Only arises when Cn = 0. Let ma be the
number of roots whose moduli are all equal to ya. Thus;,
m 4+ m + * * ° + mb =m + N .

Provided that

the recurrence relation has a fundamental system of solutions
which fall into b classes, such that, for solutions of the ath

class and their linear combinations,

1lim sup |§k|,/k =7 ///

k —> oo ¢
For any assigned value of ‘A, there are (n+m) linearly
independent solutions of the recurrence relation associated with
t, but there will in general be only n independent solutiong of
the eigen-equations of t. To see this, simply assign arbitrary

ols - + - from the

1 t s e nd co te
values to §', ,§n a compute & o

n+i
equations recursively. Not every solution of'the recurrence
relation will lead to a solution of the eigen-eguations of t,
but the same classification scheme may be used for both.

With the help of Perron's theorem, I can now construct
a spectral chain for t.

For each positive real number B, define the following

subspace of S:
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sP - jgeF | lim §k/ﬁk = 0}, B8 > 0.

Now define

Szmsﬁ, 'Ygo,

Y B>y
and
Sa=ﬂsﬁ,1§a§b,
B>y,
with the understanding that §, = S if Y, = oo Since
< o e o g
0O s y: < ye < < yb © 9
it is clear that
S <8 <8 <+ =+ <8 =8g.
1 2 b

b, denote the extensions of t from

A

Finally, let ty and ta’ 1 £ a

S to Sy and Sa’ respectively. The first two lemmas of the

appendix show that each space SY is invariant under ty and that a

vector § lies in Sy if and only if

B /K <

lim sup |& | Sy .
k
k -
I assert that the chain of submodules given above is

a spectral chain for t, that is, the spectrum of %, on SY is
A

constant on each of' the intervals

o
A

Y < Y, ’

<
1A

v <y » 1 £a<b,
ati

Y .

<
A

Note that I have assumed that y, > 0 and Yb < wes When these
conditions are not satisfied only trivial modifications are
required. The proof of this assertion is very simple.

(1) 1If 0 =y<vy »

the space Sy cannot contain any solutions of the recurrence
relation associated with t. Consequently, if t and ty have any

eigenvectors they must lie in S and the spectra of t and ty
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must be identical because the restriction of ty to S is precisely
t.

(2) 1f y Sy<vy, 5 1 s5ac<b,
a , ati

SY can only contgin those solutions of the recurrence relation
which already lie in Sa. Thus, ta and ty have the same spectra.
(3) Finally, if Y, vy,

then Sy contains every solution of the recurrence relation, and
so the spectra of tb and ty are identical.

The spectrum of t on S in general will be empty, for
rarely will it be possible to satisfy the recurrence relation
associated with t with a sequence which terminates.

The space S’ contains m’ linearly independent solutions

of the recurrence relation, denoted

g1, 15jsm .
=

Thus, the general soclution of the recurrence relation in S1 is

m
gl1) - yn;nf;:) ’ ,7;1) e C .
> e

J=t

Now, if &£(!) is to be a solution of the eigen-equations of %,

the constants nf') must be chosen so that the 'boundary conditions'
J

(1) _ (1) <k =
i TokriShri = k] "o

i=1-k
are also satisfied. Because these equations are homogeneous,
there are (m' - 1) constants to be chosen so that m linear
equations are satisfied.
(1) When mo - 1 =m+3Js J 20,
the eigen-equations of t will have a solution which contains J

arbitrary parameters for every value of A. Thus, the spectrum

of t will be the whole complex plane and every point will be
1
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j-fold degenerate.
(2) When m-1<m, the situation is more interesting. Although
the boundary conditions to be satisfied outnumber the parameters
to be varied, for certain values of A there may still be
solutions in S’. Some idea of how these eigenvalues would be
distributed throughout the complex plane can be obtained as
follows. Let gi(%)‘denote the determinant of the infinite
matrix obtained from (t - A) by deletion of the ith row and the
first column. Infinite determinants are usually not well
defined, but, by the insertion of factors to ensure convergence,
gt(%) can be mgde into an entire function of h. The eigenvalues

of t will then be the zeros of the entire function

i'(—)iT—irgH:(?\) ’

i=o
and consequently will comprise at most a countable subset of the
complex plane. Thus, in this second case, the spectrum of t1
will consist of a discrete set of eigenvalues.
The spectrum of ta, 2 £a £b, can be treated in a
similar manner. There are ma solutions of the recurrence

relation which lie in Sa but not in S . These are denoted

A

m .

(a) 1 € 4
E} ? . a

The most general solution of the recurrence relation in Sa is

m
(a) _ (c) gs(c)
£ inj 5
c=1 j=t

There are m conditions to be satisfied if §(a) is to be not only
a solution of the recurrence relation but alsc a solution of the
whole system of eigen-equations for t. However, there are now

m +m + ° ° ° +m -1
1 2 a
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constants to vary in order to find such a solution. The spectrum
of ta clearly includes the spectrum of t « S0 long as

a-—1

m +m + - * 4+ m -1 <m,
1 2 a

the spectrum of ta will be discrete, but once

m +m + ° * °*+m -1 =m+ Jy, J 2O,
1 2 a

the spectrum of ta will cover the whole complex plane and will
depend upon j arbitrary parameters.

Perron's theorem is only applicable if the numbers
T;mk’ k 21, are all non-zero. When this is not the case, the
analysis presented above is inadequate. However, when m = 1,

the most common situation, there is a simple remedy for this

difficulty. Let j denote the largest integer for which

T e 0. Such an integer can always be found because t (h)
. -1
is a rational function of h. The matrix for t is decomposable:
—
1
To; T2 ' * * g Tnn+1
T~ ' ~—
T-:'ll TOZ
'r—l 2\
t = == - .
T.1j-1 Toj Trj+1
o Toj+1
~__ J
T"lj+1\

The j x j block of t can be reduced to its dJordan canonical form
in the usual way. Thus, t has J eigenvalues on S, though some
of these eigenvalues may be degenerate. A recurrence relation
igs associated with the lower block of t, Perron's theorem is
applicable, and subspaces

S <S; <S, < * " <8 £8
can be defined as before. However, the difference in this case
is that the spectrum of ta on S consists of the whole complex

a .
plane, even when a = 1. This 1s easy to see. Choose any A in
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C and construct a solution of the recurrence relation in § .

a

This fi Y & 3
s xes the zomponents §3+1’§j+2’

components must be chosen to satisfy the following eguations.

« +» +» of £« The remaining

8 i B
To1=N Tz . . e Tjet]j &1
Tt Toz—N Tj-2j Ea
\ ~ - .
o e, e '
\ "
Tmij-1 Toj=N £y
L - — -
= A R
Tjj+’ . . . Tnn-{-’ O §j+1
] | \\ ' X
Trj+1 Tp—j+1n+r  ° ° Ej+n
1 -] ] j

Provided these equations are linearly independent, as generally
will be the case, there will be a unique solution for Ers " %y
&jo The vector é is an eigenvector of ta with the prescribed
eigenvalue A. Thus, the spectrum of ta consists of the whole
complex plane.

I have only discussed the conventional eigenvalue
problem

tx

&

Problems of the type
tx = Nsx
where both t and s are codiagonal operators on X, can be treated

gimilarly.

Norm Completion of X,

Each of the subspaces X', o @ 8 ,Xb has been defined
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as the intersection of the kernels of a family of boundary
functionals on X. There are other ways by which particular
subspaces of X may be isolated, and by far the most important
employs a norm defined on X. This section examines the spectrum
of t on the completion of X with respect to such a norm.

Suppose that |°] is a norm defined on X:
|| : x—>Rr"
x —> |x| .
I will require only one special property of this norm, that the
following limit should exist and be different from zero,

1im |x - | / 1x | = 1/v # 0,
Kk —> 00 k+1 k

where, as usual, {xkl denotes the Hamel basis of X. This is a
weak restriction, since in most examples lxkl = 1 for all k.
Let X denote the completion of X with respect to the metric
topology defined on X by the norm.
The matrix of t is a band matrix, so the domain of
t can certainly be extended to all of ?. However, in general t
will not leave ﬁ invariant. In fact, only when t is continuous
with respect to the topology on i can t be extended to an
e
endomorphism of X, There will be a maximal extension % of &
e
whose domain Y, necessarily dense in X, satisfies
Pa
X 2Y <X
and is specified by
A N
Y={xeX]| txeX}l

Pa
I will seek eigenvectors of % in X as absolutely

X = Z.okak .

k=1

convergent series

To decide the gquestion of convergence of such series, I will
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th .
use the k root test; the series converges absolutely if

1
1lim sup |€ x | /k =0 <1
= Kk

and diverges if 6 > 1. I will ignore the case in which 6 = 1

and the test fails. Since

-

A .

_ , 1
lim inf ka+,l / lxkl lim inf | x /k

I
k k .

A

1
lim sup |x | /k
K k

L/ Ix |

S 1lim su X
P I k+1 k

k
and, by assumption,

1lim |x
k —> oo

A lxkl = 1/? ’

k.+1|
the series will converge absolutely if

1
1lim sup |& | /k <Y .
K k

The numbers

A

O sy <y <* * * vy
1 2 . b

partition the positive real axis.
(1) IfF 0 < v < v, then none of the solutions of the recurrence
relation leads to an absolutely convergent series. Conseqguently,
neither t nor % has any eigenvectors, other than those in X.
(2) Suppose that

v Sy <y sy 1 fa<b.

a at

i root test fails, so I will exclude this case

When v = ya the k
and suppose that the strict inequalities hold. Every eigenvector
of' ta in Xa has coefficients which satisfy

1
1lim sup |&, | /K <y
K k a

and so the series corresponding to these solutions are absolutely

convergent with respect to the norm |*|. Conversely, if
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J

_00

X = X
ngk
k=1

is an absolutely convergent series in X which corresponds to an

eigenvector of %, then
1
1lim sup |€&, | /k <
K k

<
Y ya+1 ’

It

so x is also an eigenvector of ta. Thus, ta and % have identical
spectra.

(3) Finally, if yb < Y < w, 5 every solution of the recurrence
relation leads to an absolutely convergent series, so once again
tb and % have identical spectra.

This result has two important implications. Firstly,
nothing of the spectrum is lost if the algebraic extension ta is
employed instead of the topological extension %. ta has for its
domain the whole of Xa, whereas the domain of % is only a dense
subspace of §; so ta is definitely the easier operator to handle.

For the second consequence, suppose that |*|” is any other norm

on X for which

’/|X'=1/’Y':#O,

k+1 k

lim |x
k —> oo

that X° is the completion of X with respect to the norm |17,

and that t° is the maximal extension of t on X, If 0% and v’

lie in the same range, then the eigenvalue spectra of f ana T°
are identical. This result is not so obvious if the algebraic
formulation of the problem is not developed before the analytical

version because this rescaling of the basis vectors changes the

boundaries of ﬁ.
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Algebraic and Topological Equivalence.

If this theory of codiagonal operators is to be
consistent and of any practical use, the spectrum of a codiagonal
operator should not depend upon the basis chosen for X. This
requirement can be formulated as follows. OSuppose that u is any

automorphism of the vector space X. For any codiagonal operator

t on X, construct
g8 = utu~'.
If t has an eigenvector in X,
tx = Nx , x € X, Ne€ G,
then ux is an eigenvector of s with the same elgenvalue, since
/ s(ux) = utu~'ux = AN (ux).
Similarly, if s has an eigenvector in X, then so too has t.
There is no difficulty in this argument because u is an auto-
morphism of X, so ux and u-!'x are well defined for all x in X.
Now suppose that X° is an L-module which lies between X and X,
X <X <X,
and let s°, t°, u° be the extensions to X° of s, t and u. These
extensions exist because the matrices of s, t and u are band
matrices. Two problems arise.
(1) There is no guarantee that X’ should be invariant under u’,
even though X is invariant under u. For example, suppose that
L = s1(2,C) and 8’ is the subspace of S comprised by seguences
which satisfy
1im §k/,8k=0, B > O.

k—¥»

™ -

It u = v3 , where y > B ,




then
ug = (v¢))
and it is clear that

lim §k(v/ﬁ)k

k —>o0
need not vanish.
(2) Even if u’ does leave X’ invariant, the extension u’ need
not be non-singular. Once again an example will make this point

clear. Suppose L, X and X° are as in the last example, but that

- %
B -2
B -2
B -2
u = L . L
- J

It is easy to verify that u is non-singular on X. However, the

sequence with

(B/2)*

§k
certainly lies in X and

u'§ O. i

It appears that there are too many automorphisms
of X and that it is too strong to insist that s’ and t’ should
always have identical spectra. I will moderate the demand as

follows. Define a K—automorphism of X to be an automorphism of

X which lies in the enveloping algebra of K, considered as an
algebra over E. This is the algebra I called U(X) in the last
chapter. It is clear that

u’x® £ X°

for any K-automorphism u. Furthermore, because X can be completely
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decomposed into irreducible K-modules of finite dimension, it
seems reasonable that U’ should be non-singular on X°. This is
indeed the case and has the immediate conseqguence that the spectra
of s and t° are identical. The proof is very simple, but can be
found in the appendix.

For comparison, I want to sketch the procedure that
is followed when X is embedded in a topological vector space.
Suppose that |*]| is a norm on X and that % is the completion of X
with respect to this norm. Let u denote an automorphism of X.
Only when both u and u~! are bounded on X can u be extended to an
automorphism {1 of both the algebraic and topological structures

A

PaY
of X If s and % are the maximal extensions of s and t, then

will only have equal spectra when 4 is an

>

generally € and
automorphism of ﬁ.

| An example will illﬁstrate the difference between the
algebraic and topological approaches. Suppose that X is an
s1(2,C)-module with highest weight p. Define a norm on X by

-] + X — > gt

) sxe—>) 161
k k

and let i denote the completion of X with respect to this norm.

Set =
j

u:(p+1—h)= Ll» .

. -

It is clear that u is a gl(1,C)-automorphism of X. However,
u is not bounded on X, so 2 certainly is not a continuous

A
automorphism of X, Thus, although
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£=(g) = (x7)

could be an eigenvector of an operator %, ﬁ§ could not be an

. ANA e
eigenvector of utu~! because uf ¢ X.

Truncation of Codiagonal Matrices.

Through Perron's theorem, I was able to describe
gqualitatively the spectrum of t on each of the subspaces of the

chain

IA

S <8 <8 <+ * <8 Ss.

1 2 _ b
However, Perron's theorem gave no indication how the eigenvalues
of ta on Sa could be found in practice. A theorem proved by
Poincaré, and its generalisation by Perron, show how to solve

this problem in most cases, but not all. The idea is very simple.

§ satisfies the recurrence relation

a,
T = N k z2m
Z LhriShrn T 6k ’
L=-m
where
1m 7, /K = (-)NC .
# =% oo ik 12
if lim &, /6, =7
i =50 B8 k+1" Tk

then y must satisfy the equation

n
Z C.')’L = 0,
i

i=-m
that is, y must be a root of the characteristic equation of the
recurrence relation. The numbers y,, (I ',yb, introduced earlier,

were the distinct moduli of the roots bf'this equation. Thus,

'Yl = Ya ’
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for some value of a, and

lim |€&
k —> oo

/§kl = v,

k+1
Therefore, the solution & is a vector in the subspace S . An
bt a

approximate solution of the eigen—-equations can be found as

follows. Choose a large positive integer j. Define

‘ = 2k 2
§k fk s J 1
: = yke k > O.
Citk J
Because §k+:/§k — Yy

&’ should be a good approximation to &« When £’ is substituted for

&y the infinite set of eigeh—equations collapses to a J x J
;atrix eigenvalue problem. The eigenvalues of this finite matrix
yield approximations to the first j eigenvalues of ta.

The difficulty with this scheme is that it hinges

upon the assumption that the limit

1lim §k+1/§k

k—>» o
exists for every solution of the recurrence relation. Poincareé
(1885) has given a set of conditions which are gsufficient for
this to be true. Perron (1910) has shown by numerous counter
examples that it is very difficult to devise better conditions

than those of Poincaré.

Poincaré's Theorem. Suppose that ﬁ’,ﬁ c " ",ﬁm+n are the
2

roots of the characteristic eguation

and that
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If £ is any solution of the recurrence relation

T =
}i ktiSkrr = ok

f==~m
then the 1limit
1im &, /€
K ——3n00 k+t1" Tk
exists and is equal to one of the numbers ﬁ,,ﬂz, o ’ﬁm+n'
Perron's modification, Suppose that the coefficient T oK

k 2 1, never vanishes and that the other conditions of Poincare's
theorem are fulfilled. Then the recurrence relation possesses

m + n fundamental solutioné §(i) which satisfy

1im “’/g‘” =B, 1 =1 =mn.
k—>» o

T found a minor extension of this result for the
particular case m + n = 3. It is included in the appendix, but
I will not bother with it here. Instead I will assume that the
moduli of the roots of the characteristic equation are distinct
and that T_ ., never vanishes.

Suppose that é ig an eigenvector of ta but not of

t e Then
a-1

f___}j n(C)é:(C) ) n(a) 4+ O.

c=1

a
-1
Now, lim §k+1/§ = 1]mm<§i n(c)géii/f(a)> <§; n(C)§£C)/§£a)>
c=1

k —> oo
= ﬁa ’
since lim §‘°)/§‘“J = 0 if ¢ < a.
k >0

I explained previously that the spectrum of ta is discrete if
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m +m + °* * * +m ~- 1 <me
1 2 a
In this case,
mi =1, 1 €31 Em+n ,
so the spectra of t , = « * ,t are discrete, but every complex
1 m

number is an eigenvalue of tm+i with multiplicity 1 if 1 £ i = n.
The infinite set of equations for the eigenvalues of ta,

41 £a £m, can be reduced to a finite set, suitable for calculat-
ion, by the approximation

€ ik

v

=BZ§j , k 21.

The eigenvalue problem for each ta was defined without
recourse to topology. The practical solution of the eigenvalue
problem, however, must use some notion of approximation, and hence
problems of convergence arise. Numerical analysis is inescapable
in the construction of practical solutions. In the theory of
guantum mechanics, 1 believe it should be possible to imitate this
arrangement. The basic equations should rest upon algebraic

foundations; a norm and a notion of convergence should only be

added when numbers are required from the computer.

General Codiagonal Operators,

The definition of a codiagonal operator is guite
general. It applies for any standard choice of L and K and any
K-finite L-module X. What is peculiar to the case L = s1(2,C) is
that the spectrum of a codiagonal operator can be characterised
so completely and calculated so easily. The increase in
complexity incurred in passing to more general codiagonal
operators is of the same order as that in passing from ordinary

to partial differential equations. Consequently, I cannot give
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an adequate account of the spectrum of a general codiagonal
| operator. Instead T will sketch the aimg of the theory and
indicate where the difficulties arise.

The plan of attack 1s this.

(1) Given a codiagonal operator t on X, find the matrix of t.

(2) Extend the domain of definition of t from X to p

(3) Suppose t° denotes the extension of t to a subspace X", where
X < X° <X,

Identify those subspaces X° which are invariant under t’ and

deduce the character of the spectrum of t°. This perhaps could

involve the construction of. a spectral chain for t.

(4) Devise a practical method by which the spectrum of t° can be

calculated. Rquivalently, given a boundary condition on S,

truncate the matrix of t so that the boundary condition is

satisfied.

The first stage of this plan is quite elementary. The
matrices of all the elements of L and E are known, and t is simply
a polynomial in the elements of L with coefficients chosen from E.

The second stage is also trivial and can be carried
out no matter what choice is made for L. The matrix of t is
always a band matrix and this ensures that t can be extended from
X to Xe

At the third stage the difficulties begin. It was
Perron's theorem on linear difference equations which enabled the
construction of a spectral chain for t in the case L = s1(2,C).

In the general case, the eigen-eqguaticn for t leads to partial
difference equations, for which there igs no analogue of Perron's
theorem. The theorem that is needed would have to classify the

solutions of a linear partial difference equation according to
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the asymptotic behaviour of the solutions. Little seems to be
known about this matter.

The difficulty in the last stage is similar. It was

Poincaré's theorem on difference equations which suggested the
method by which a codiagonal matrix could be truncated in accord-
ance with the boundary conditions imposed on S. Again, there is
not a generalisation of Poincaré's theorem for partial difference
equations.

I think these difficulties could be overcome for any
codiagonal operator whose matrix is of the type I call a

codiagonal block matrix. Such a matrix is a natural generalis-

ation of a codiagonal matrix and arises as follows. Suppose that
the K~gubmodules of X are ordered, perhaps according to dimension.
Corresponding to this decomposition of X, a codiagonal block
matrix t would have n diagonals of blocks above the main diagonal
of blocks and m below. Thus, the matrix shown would be a

tridiagonal block matrix.

s g

UL

\
NI N

Vs
\ \

"
\

-

-t

t would map the kth block of X into the linear span of the blocks
between the (k - m)th and the (k + n)th. Codiagonal matrices of
course would be a special case in which all the blocks were one

dimensional.



1L0.

APPENDIX L.

Lemma 1. For any 7y 2 0O, SY is invariant under the action of
L and E.
Proof To establish the result, I need only show that Sy
is invariant under f£(h), e, and e_, where f(h) is a rational
function of he.

Suppose é’e SY' Then,

lim §&
k —> oo

k/ﬁk =0 for all B > 7.

If (§k) had a subsequence such that

lim €, I'/M 2 B8 ,

k.—>x i
L
then
1in & /B
k — oo k

could not vanish. Thus, for sufficiently large k,
1
g1/ /8 s 0 < 1.
(1) Let f£(h) denote a rational function of h.

(£(m)8),

