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ABSTRACT

The fundamental aim of the investigation described 1in this
dissertation was to clarify two aspects associated with the use of
primitive variables in the finite element solution of the two-dimensional
steady and incompressible Navier-Stokes equations and then to use this
knowledge in an attempt to solve the more general three-dimensional
equations.

By deriving the Navier-Stokes equations from first principles

av.
i

X
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stages in the derivation. Traditionally some of these have always been

jt is shown that terms containing the quantity appear at several

eliminated by making use of the incompressible Continuity equation
;;%==0. Othe}s however, have sometimes been eliminated and sometimes
retained, it being argued that because the solution method adopted is
approximate, the quantity ;;%- will not be identically equal to zero
everywhere, and hence the Continuity equation should not be used to
eliminate the ;;i terms. In order to determine the effects of the
inclusion of thesg terms several versions of the Navier-Stokes equations

are set up and the solutions of two two-dimensional viscous flow prob-
lems are used to show that although the different formulations give
rise to essentially the same results, they do not all have the same
ability to converge, nor do they all produce the same quality solutions
as Reynolds number is increased.

When primitive variables are used it has been shown that the order
of polynomial approximation for the pressure should be one less than
that for the velocity. Two finite elements that have commonly been
used with this type of mixed interpolation are the Serendipity and the
Lagrangian isoparametric elements. In order to determine which is the
optimal, a computer program for each of these elements in two dimensions

was set up and developed. The solutions of the same two viscous flow



problems mentioned earlier were then used to show that although both
elements give rise to almost identical results, the Lagrangian requires
considerably more computation time and space to produce the same solution
and is therefore the lesser efficient.

By extending the results of the above investigations to three
dimensions, a third computer program was developed and used to solve
several three-dimensional viscous flow problems. Although a comprehen-
sive study of these problems was not carried out, and although some
questions still remain unanswered, it has been shown that the primitive
variables finite element method can be used successfully to solve the

steady and incompressible three-dimensional Navier-Stokes equations.
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NOTATION

area of element i

position of jth Gauss point

non-linear convective stiffness matrix

constants, equal to one or zero depending on formulation
body force per unit mass in i direction

equivalent nodal force at node j in element i

Jocobian transformation matrix

determinant of Jacobian matrix

linear diffusive stiffness matrix

number of velocity nodes per element

number of pressure nodes per element

development length for entrance flows

characteristic length used for non-dimensionalization
velocity shape function for node j of element i
pressure shape function for node j of element i
number of elements in finite element meshes

number of Gauss points per coordinate direction

ith component of vector normal to element boundary
pressure, exact, approximate, nodal

excess pressure drop

matrix- of finite element equation system

residual functions

Reynolds number

matrix of Jacobian finite element equation system
surface of element i

tangential surface or edge shear stress

specified boundary stress component in ith direction

x component of velocity, exact, approximate, nodal
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ix

characteristic velocity used for non-dimensionalization
volume of element i

y component of velocity, exact, approximate, nodal
specified velocity component in ith direction

weight for jth Gauss point

z component of velocity, exact, approximate and nodal
global coordinates

global coordinates of node j in element i

fluid density

coefficient of fluid viscosity

vorticity

, stream function

Kroneker delta

coefficient of bulk viscosity

local coordinates

local coordinates of node j in element i

stress tensor, exact, approximate
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1. INTRODUCTION S A

In this introductory chapter the use of approximate numerical
solution procedures for solving problems in fluid mechanics is discussed
briefly. More specifically, the class of flow problem that will be
treated in this study, and the approach adopted to analyse it are defined.
Finally, the aims and scope of this thesis are set out and its overall

layout briefly summarized.

1.1  Background

The equations that are encountered in fluid mechanics are, in
general, of such a nature that no closed-form solution is available.
In order to obtain answers to such problems it is therefore necessary
to resort to approximate solution techniques. Of the variety of approxi-
mate methods introduced in the last several decades to solve flow
problems in general, the finite difference technique has, until recently,
been the most commonly used. Since 1965 however, the finite element
method, originally developed for application in the analysis of complex
structural systems, has gradually replaced the finite difference method
and has been successfully applied to most areas of fluid mechanics.
Its success has been, in part, due to its ability to accommodate complex
boundary geometries, and to the fact that it is not restricted to
establishing the solution only at points on a regularly spaced grid.
It also allows greater flexibility in the choice of local approximation.
The development of the method is well documented and Zienkiewicz (37 )
provides a comprehensive 1list of references in his review of the
method.

The finite element method as it applies to the solution of poten-
tial flow fields was first described by Zienkiewicz and Cheung (38)
in 1965. This marked the beginning of the use of finite elements in

the field of fluid mechanics. Since then the method has been vigorously



exploited, with research and application expanding at an exponential
rate. As a result, three major conferences on the use of finite element
methods in fluid mechanics have been held in the six years since 1974.
Several surveys with the same theme, such as that published by Norrie
and de Vries (22) in 1976, have also been made during this time.

The main reason for this sudden increase in interest in computa-
tional fluid dynamics is twofold. Firstly improvements in the numerical
models, such as the introduction of the finite element method, have
now made it possible to solve complex flow problems for which no closed-
form solution exists and which are either costly or difficult to
determine experimentally. Secondly, the introduction of improved com-
puter hardwarg, more efficient both in terms of calculating and access
speeds and storage capabilities, has made the use of numerical simula-
tion possible and more attractive to both the engineer, who is concerned
with cost-effective derivation of design data, and the scientist or
researcher who requires a deeper understanding of fluid processes through
detailed analysis.

The range of fluid mechanics problems to which the finite element
method has been applied include potential flow, viscous flow, subsonic,
supersonic and transonic compressible flow, free surface and open channel
flow and porous media flow. The equations governing each of these types
of flows can be derived in terms of various sets of dependent variables
of which the following are the most frequently encountered: the primitive
variables such as velocity, pressure, temperature and density, the
velocity potential alone or with other variables, and the stream func-
tion alone or with other variables such as vorticity. Depending on
the type of problem to be solved, one approach may have advantages over
another, but in general the choice of approach is usually based on the
equation system that the researcher prefers to handle and his familiarity

with the techniques available for solving it.



The primitive variables approach has often been preferred because
not only are the boundary conditions more easily determined and applied,
but also because the solution obtained is in an immediately usable form.
When the velocity potential, the stream function or the stream function
and vorticity approaches are adopted, additional manipulation of the
finite element results is required to obtain the fluid velocity and
pressure fields, the quantities most useful to the analyst. The use
of primitive variables also leads to the lowest order governing differ-
ential equations and this approach is the only one that is directly
applicable to both two- and three-dimensional flows.

Although recently some consideration has been given to the solution
of some three-dimensional problems, in the main the finite element method
has been restricted to solving two-dimensional or plane flows. Probably
there are two reasons for this. Firstly, most of the research effort
to date has been directed towards investigating and understanding the
numerous aspects involved in the application of the finite element method
to solving a basic viscous flow problem, and this is done most easily
in two dimensions. Secondly and perhaps more 1likely, the amount of
computing time and computer size required to perform even a moderately
sized finite element analysis of a three-dimensional flow have, in the
past, prevented many researchers from proceeding with such an analysis
simply because these facilities were not available. However, with the
development of computer technology progressing at such a high rate,
coupled with the knowledge we now have from comprehensive two-dimensional
studies, this situation is rapidly changing and research on a large
scale using the finite element method to solve general three-dimensional
flow problems will soon be possible.

The common types of finite element methods that have been used
in the past include the classical variational, restricted variational,

Galerkin, least squares and the global balance forms, with the first



three being the most widely used. However, since it 1is often difficult
or even impossible to construct the necessary functionals, the two
variational methods are limited in their applicability, and although
they are still widely accepted the Galerkin method is becoming increasing-
1y used, particularly for non-Tinear problems.

In this study the Galerkin finite element method 1is used
exclusively to analyse both two- and three-dimensional steady, viscous
flows with the equations describing them expressed in terms of the

primitive variables, velocity and pressure.

1.2 Aims and Scope of Thesis

The purbose of this thesis 1is threefold; firstly to determine
the optimal finite element formulation of four versions of the two-
dimensional Navier-Stokes equations, secondly to determine the more
efficient of two two-dimensional quadrilateral finite elements, and
thﬁrd]y to determine whether the results of the above two investigations
can be extended to three dimensions and be used successfully to obtain
the finite element solution of a typical three-dimensional viscous flow.
As mentioned earlier, the actual technique that was adopted for this
study is the Galerkin finite element method, and although this prpcedure
has already been successfully applied to the analysis of two-dimensional
viscous flows, to the author's knowledge, it has never been used to
solve the more general three-dimensional problem. In this study there-
fore, the Galerkin finite element method is used in conjunction with
the primitive variables approach to solve the steady two- and three-
dimensional Navier-Stokes equations describing the fully contained flow
of a viscous and incompressible Newtonian fluid.

In their derivation from first principles, it is shown that the

Navier-Stokes equations contain three terms, each of which contains
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the quantity 5¥; . Some of these terms have been traditionally always
i v,
eliminated by using the dincompressible Continuity equation 3}1 = 0,
- i

while others have sometimes been retained and sometimes eliminated.
In order to determine the effects of the inclusion of each of these
terms, four versions of the Navier-Stokes equations are set up.’ These
range from the first in which all such terms are eliminated to the fourth
in which all terms are retained and include the two which have tradition-
ally been most favoured by previous researchers. As far as the author
can ascertain, no comparison has previously been made to determine which
of these versions leads to the best numerical solution, or which is
the most efficient in terms of computational effort. Therefore, 1in
order to ensure that the optimal version is used in the subsequent two-
and three-dimensional analyses, a formulation comparison is made using
the solutions of two independent two-dimensional viscous flow problems.
The results of this formulation comparison are presented and the optimal
version of the Navier-Stokes equations used in all subsequent work.

As.a result of investigations carried out by previous researchers,
which show that when primitive variables are used, the order of inter-
polation for the pressure should be one less than that for the velocity,
a quadratic velocity and linear pressure mixed interpolation 1is used.
Two quadrilateral finite elements capable of allowing the velocity and
pressure to be approximated in this manner are the Serendipity and the
Lagrangian isoparametric elements. In two dimensions these elements
have eight and nine nodes respectively, while in three dimensions they
have twenty and twenty-seven. Suggestions have been made by some
previous researchers that of these two elements, the Lagrangian is the
superior. In this thesis these suggestions are investigated by comparing
the solutions of two independent two-dimensional viscous flow problems
obtained using the eight and the nine noded elements. Particular atten-

tion is paid to their respective abilities to represent accurately the



pressure fields. The results of this comparison, together with the
velocity and pressure fields obtained for both the two-dimensional flows
considered, are presented, and the three-dimensional element correspond-
ing to the more efficient of the two two-dimensional elements is used
in the final three-dimensional analyses.

The solutions required by the above two investigations were
obtained by using two computer programs, one incorporating the eight
noded and the other the nine noded element, and both developed during
the course of this study. Also, in order to keep the total computing
time to within a reasonable limit and because solutions evaluated by
other researchers for these problems are most readily available, the
same two flow problems are considered in both comparisons.

The finite element equations that are presented are formulated
in dimensionless form for a general three-dimensional viscous flow and
a general finite element. The two-dimensiona] finite element equations
can be easily obtained by disregarding the third momentum equation and
eliminating all terms in the remaining three equations that are assoc-
jated with the third coordinate direction.

Having determined, 1in two dimensions, the optimal formulation
and the more efficient finite element, these results are used in three
dimensions in an attempt to solve a typical three-dimensional viscous
flow. In order to do this, a third computer program incorporating the
Frontal solution procedure was written and developed. The results of
several three-dimensional analyses together with a discussion of each
of the two major problems that were encountered in carrying them out
are presented. The second problem was eventually overcome but the first
which dinvolved the necessity to specify additional pressure boundary
conditions before a solution can be obtained, requires further investiga-
tion.  Nevertheless, it is shown that the primitive variables finite
element method can be used successfully to solve the steady and incom-

pressib]é three-dimensional Navier-Stokes equations. A1l  three-



dimensional solutions that are presented in this thesis were obtained
by supplying, where required, the additional pressure values. Full
details of all three-dimensional flows analysed have therefore been
included with special care being taken over the prescribed boundary

conditions.

1.3 Layout of Thesis

Essentially, this thesis consists of three basic sections compris-
ing viscous flow and finite element theory, numerical solution details
and the two- and three-dimensional results. At the start of each chapter,
a short introductory discussion defines its purpose and contents. The
specific usagé and meaning of all symbols and variables encountered
in all chapters are defined in the section entitled Notation which is
found at the start of this thesis.

Chapter 2 is devoted entirely to giving a detailed account of
work carried out previously and which directly affects many of the
decisions made during this study. It is not intended, however, that
this chapter be a complete survey of all work done in the field of com-
putational fluid dynamics, since the amount of published material is
already very large. Only selected works have therefore been included.
Where applicable, after the relevant work of other researchers has been
presented, the approach or technique adopted for this study is set out.

The Navier-Stokes equations describing a general three-dimensional
viscous flow are discussed in the first section of Chapter 3 and are
derived from first principles in Appendix A. Tensor notation, in which
the summation convention holds for subscripted variables with repeated
lower case indices, is used only in these two sections. Also in the
first section of Chapter 3, the boundary conditions that are most likely

to be encountered in the problems to be solved are reviewed and these,



together with the governing equations are non-dimensionalized and
expressed in terms of a single dimensionless parameter, the Reynolds
number. Finally, the four versions of the Navier-Stokes equations that
arise because of the inclusion of terms containing the quantity ;;i are
set out and the reasons for these inclusions explained. 1

The finite element formulation of the governing equations is set
out and discussed in the second section of Chapter 3. The finite element
equations that are constructed are based on a general finite element
which is capable of allowing the pressure to be interpolated differently
if necessary, from the velocity. The meaning of the surface integrals
that result as a consequence of the use of the Gauss theorem to reduce
the order of differentiation, is also explained. The remaining two
parts of Chapter 3 deal firstly with the theory of the assembling process,
the technique used to combine the equations of individual finite elements
into one overall global equation system and secondly, with the multi-
dimensional Newton-Raphson iterative solution technique, the method
adopted for solving this system. The general j-kth component of the
non-linear element "stiffness" matrix corresponding to the four versions
of the Navier-Stokes equations is set out in full in the last section
of Chapter 3.

In Chapter 4, the choice of interpolation for the velocity and
pressure variables is explained and both the two- and three-dimensional
elements that have the ability to represent the required variations
are presented in detail. Since the elements chosen are isoparametric
and therefore considerably more comp}icated than the simpler ordinary
quadrilateral and hexahedral elements, a detailed description of the
required adjustments to the area and line integrals for two dimensions
and the volume and surface integrals for three dimensions is included.
The evaluation of these integrals is done numerically and 1is described

in the second section of Chapter 4. The remainder of Chapter 4 is



devoted to discussing the problems encountered in setting up and develop-
ing the three computer programs written to analyse the selected two-
and three-dimensional viscous flows. A listing of the three-dimensional
computer program is given in Appendix B.

The results of the two comparisons, namely the comparison to
determine which version of the Navier-Stokes equations leads to the
most efficient finite element formulation and the best solutions, and
the comparison made to determine which of the two elements, the Seren-
dipity or the Lagrangian, has the better characteristics, are presented
in Chapter 5. The two two-dimensional viscous flow problems that are
used in both comparisons are the flow in the entrance region between
two semi-infinite parallel plates and the recirculating flow in a square
cavity. Care is taken to ensure that complete details of all boundary
conditions, mesh configurations and other relevant aspects for each
problem are clearly presented so that all problems are fully defined
and readily reproducable. The optimal element type and the most effic-
ient version of the Navier-Stokes equations that are selected for use
in the three-dimensional analyses, and the reasons for choosing them
are presented in the discussion at the conclusion of each of the relevant
sections of Chapter 5.

Finally, in Chapter 6, the finite element method and the .results
of the two-dimensional comparisons are used in an attempt to find the
solution to some typical three-dimensional viscous flows. In all, three
flow problems are considered. The first is the fully developed flow
between two infinite parallel plates, which was previously solved in
two dimensions. A second, more complex problem, namely the fully
developed flow in a duct of arbitrary cross-section, is then attempted.
Since it is not possible to set up one general finite element mesh for
a duct with an arbitrary cross-section, a typical square duct is analysed.

In both cases it is shown that additional pressure data is required
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on the outer boundary of the flow before a correct solution is obtained.
A detailed account of the investigation carried out in order to obtain
a fuller understanding of the nature of this difficulty is given in
the final section of Chapter 6. The analysis of a third three-
dimensional viscous flow problem, namely the developing flow in the
entrance region of a square duct, confirmed the findings of this inves-
tigation. The results of this third analysis are also presented in
the final section of Chapter 6. The other two sections of this chapter
are used to describe in detail, firstly the reasons for the choice of
formulation and element type adopted for the three-dimensional analyses,
and secondly the meshes and boundary conditions used to analyse the
particular flows.

A summar; of all conclusions arrived at during the course of this
study, together with some concluding remarks concerning this thesis
and the direction of probable future research in this field, are made
in the final chapter.

In order to remove excessive detail from the main text, use is
made of four Appendices. The details of Appendix A are well known and
are included for completeness. A listing of the three-dimensional com-
puter program is given in Appendix B, together with data input details,
user instructions and a basic flow chart. Appendix C contains the
numerical values of the linear portion of the "stiffness" matrix for
a two-dimensional element of unit width and depth for formulation B
and for each of the eight and nine noded element types. It has been
included to enable future workers in this field to compare their
formulations with those in this study on a numerical level. Finally,
a comparison of the results of two analyses of the Poiseuille flow using

the eight and the nine noded elements is made in Appendix D.
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LITERATURE SURVEY
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2. LITERATURE SURVEY

In this section the research into the application of the various
finite element methods to the solution of steady, incompressible and
viscous flow problems is reviewed with particular emphasis placed on
the more recent developments. To facilitate classification of the
approaches used by the researchers mentioned in this survey, the three
commonly used forms of the two-dimensional Navier-Stokes equations are
discussed first. The solution techniques adopted for solving the
resulting equations are then briefly described. A more detailed dis-
cussion of all relevant material follows in the body of the thesis later.

As was mentioned previously, the two-dimensional equations
governing the flow of an incompressible viscous fluid can be expressed
in terms of three basic sets of dependent variables. 1In terms of the
primitive variables, the two velocity components u and v and the
pressure p, these equations, more commonly known as the Navier-Stokes

equations, can be written as

3u au 1 8%2u  ?%u ap

u_+v‘__=_.( + ) - — ‘ 2.1.1
X 3y Re ax* ay? ax
av av 1 32v  a?v ap

u___+v_..:__( + ) - — 2-]2
ax 3y Re ax?* ay? 3y

au  av

and —+ — =20 2.1.3
ax Ay -

where non-dimensionalization has been carried out with respect to a
reference length [ and a reference velocity v and where Re is the dimen-
sionless parameter, the Reynolds number, which is defined as
pvL
Re = — 2.2
H

o and u are the fluid density and viscosity respectively. Introducing

the stream function ¢ and the vorticity o which are defined as
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oy oY
- = U, —_—= =V 2.3.1
ay axX
LAY au
and w= — = — 2.3.2
IX 3y

enables the equations to be rewritten as

3P 9w Y dw 1 3%w 32w
_ —-— — = — + ) 2.4.1
y X  ax Yy Re ax%  ay?
A%y Azy

and + = W 2.4.2
ax? ay?

where equation 2.4.2 takes the place of the Continuity equation which
is satisfied identically. If only the stream function is introduced
the governing equations for a viscous flow can be reduced to the single

fourth order differential equation

ay 3y Y X)) 1
P V2 (—) - — e V2(—) = — v2(V?y) 2.5
3y 3x X 3y Re
92 22
where v2 = +
ax? ay?

To date all theoretical and numerical modelling of incompressible viscous
flows have used one or other of these three forms of the Navier-Stokes
equations.

It will be noted that because of the inclusion of the inertia terms
the equations in each case are non-linear. It will also be noted that
as the Reynolds number is increased the dominance of these non-linear
terms also increases. It is not surprising therefore that because the
difficulty of solving a problem increases with the degree of non-
linearity of its governing equations, most of the finite element
solutions presented to date are for low to moderate Reynolds numbers.

This applies equally to all three approaches described above. Also,
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although some consideration has been given to the finite element solution
of three-dimensional problems, in the main the finite element formula-
tions have been for two-dimensional flows.

Finite element formulations based on each of the three forms of
the Navier-Stokes equations have been devised during the past ten years.
Within the general context of the primitive variables approach, several
schemes have been developed. As noted by Olson (24) and confirmed by
this review, finite element methods using this approach fall into three
basic groups

(a) Integrated formulation type

(b) Segregated formulation type
and (c) Solenoidal velocity formulation type.

The integrated formulation type finite element methods in which
the velocity component and pressure fields are solved for simultaneously,
use either a variational or a weighted residual approach. The former
has the advantage of yielding a better understanding of the significance
of the equations but its use in some cases is limited by the non-
existence of the required equivalent variational functional. To date
most of the finite element work in viscous fluid dynamics has been
carried out using the primitive variables and integrated formulations,
with the Galerkin weighted reéidua1 approach being the most favoured.

In his book, Zienkiewicz (36) presents the Galerkin finite element
formulation of the Stokes and Continuity equations which are applicable
only to creeping flows. The resulting matrix of equation coefficients
otherwise referred to as the element "stiffness" matrix, was shown to
be unsymmetrical. This was in contrast with element stiffness matrices
resulting from similar formulations of structural problems, which are
always symmetrical. However, by a slight change in the theory presented
by Zienkiewicz, Yamada et al. (35) were able to show that element stiff-

ness symmetry could be retained. They also noted that, at least for
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Stokes flows the Galerkin approach produced the same formulation of
the primitive equations as did the classical variational method.
Because the equations governing creeping flows are linear, the finite
element solutions for these problems are easily obtained and a large
number are readily available in the literature. However, because creep-
ing flows represent only a very restricted class of viscous flow prob-
lems, in order to solve a more general viscous flow, the more general
Navier-Stokes equations must be considered.

The next stage in the development of the finite element method
as it applies to viscous fluid dynamics was therefore to solve the full
non-linear Navier-Stokes equations. In 1973, Taylor and Hood (30),
following the ,same procedure as Zienkiewicz, set up a Galerkin finite
element formulation for the complete two-dimensional Navier-Stokes equa-
tions in terms of the primitive variables. They showed that solutions
could be obtained for the flow in a square cavity and around a cylinder
with Reynolds numbers as high as 600 and 100 respectively. In a sub-
sequent paper, Hood and Taylor (16) modified their previous theory to
include mixed interpolation and showed that when a primitive variables
formulation is used the pressure field approximation must be a polynomial
of one degree lower than the approximation of the velocity component
fields. This they argued, ensures that consistently accurate results
are obtained simultaneously for both velocity and pressure, and that
rigid body modes are suppressed.  They noted that poor accuracy had
been obtained by previous researchers who had disregarded or had not
accounted for this fact in their formulations. This was confirmed by

the subsequent studies of Kawahara et al. (19) and Tuann and Olson (32),

both of whom used a Galerkin integrated formulation and the same mixed
interpolation as Hood and Taylor, namely a quadratic velocity and a

linear pressure approximation.
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Many other studies have been carried out since these. Some of
the typical two-dimensional viscous flow problems that have been solved
using the Galerkin integrated formulation in terms of the primitive
variables are the Poiseuille and Couette flows, the flow in a slider
bearing, the flow in a square cavity, the flow past a circular cylinder,
the flow over a backward facing step, the developing flow in the entrance
region between two parallel plates and the flow between two converging
plates. In almost all cases the Newton-Raphson iterative method was
used to obtain a solution to the resulting non-linear discretized
equation system which can be expressed generally as

{C(x) + Kyx =f 2.6
where Cand K, are respectively the non-linear convective and the lTinear
diffusive stiffness matrices, f the load vector resulting from surface
stresses and specified boundary quantities, and x the vector of unknown
nodal velocities and pressures. In addition to making the problem non-
linear, matrix C s also unsymmetric. Three other methods that have
been used in the past to solve equation system 2.6 include two which
make symmetric the coefficient matrix by placing either all or the
unsymmetric part of (2(5).5 evaluated for the previous iteration step
on the right hand side as part of the load vector for the next iteration
and a third which, 1like the Newton-Raphson method, retains the unsym-
metric coefficient matrix and uses successive substitution to linearize
it.

Gartling et al. (13) recently completed a detailed comparison
of these four methods and found the following. Firstly the methods
that solved the full unsymmetric equation system were far superior and
more generally applicable than their symmetric counterparts, and secondly,
of the unsymmetric algorithms, the Newton-Raphson procedure was clearly
the most rapidly convergent and therefore the most efficient. From

these studies therefore, it appears essential that, at least for the
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primitive variables approach the non-linear unsymmetric effects be
retained in the coefficient matrix,and if maximum efficiency is desired
the Newton-Raphson procedure be adopted.

The second type of primitive variables finite element method
involves a segregated formulation in which the velocity and pressure
are sufficiently uncoupled to allow their alternate solution 1in an
jterative sequence. This approach was pioneered by Olson and Tuann
(24, 25, 32),and although it has been used extensively in finite differ-
ences, it has received relatively little attention from finite element
workers. The procedure involves the derivation of two restricted func-
tionals, the first of which allows the pressure to be calculated if
the velocity ijs known and the second of which allows the reverse. The
Newton-Raphson method or any of its equivalents are not needed in this
procedure.

The main advantage of this method for finite elements is that
the pressure interpolation can be of any order and independent of the
velocity interpolation. This is important because the pressure accuracy
is often the limiting factor in the overall solution accuracy.

Although some work has been done using this method, many questions
still remain unanswered. For example, how well is continuity satisfied
(since it is not built in as it is in the integrated formulation), and
what are the convergence characteristics for this approach at higher
Reynolds numbers? |

The third alternative for the primitive variables finite element
method involves the use of solenoidal velocity interpolations; that
is, assumed velocity fields which satisfy the Continuity equation
exactly. By using such interpolations, the assumed velocity field has
zero divergence and hence the incompressibility constraint 1is satisfied
explicitly. Therefore the Continuity equation is not required and by

eliminating the pressure from the remainder of the equation system only
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the velocity components are retained as the dependent variables.
Although the procedure appears simple, the construction of the solenoidal
field or null divergence finite element is very difficult. Further,
it appears almost impossible to have both incompressibility and compat-
ibility of velocity satisfied simultaneously.

Fortin (12) was the first to make a significant contribution to
this area and was able to produce an equivalent variational formulation
of the primitive system with incompressibility satisfied explicitly.
Hutton (17) used the same theory as Fortin to analyse regions of flow
in the vicinity of singular points on wall boundaries. However no
numerical results were presented in either case and, as with the seg-
regated formulation, it appears that much more research needs to be
done, particularly into the characteristics and the effects of the use
of the null-divergence but non-conforming elements.

Finite element formulations based on the derived variables, stream
function v and vorticity o have arisen as a result of the desire to
avoid the difficulties inherent with the pressure variable. The main
disadvantage of this approach is that the vorticity boundary condition
is not known a priori, and therefore the stream function and the vor-
ticity cannot both be solved simultaneously. Nevertheless the finite
element work in this area is still quite extensive, with the analysis
of unsteady flows taking precedence over steady. Because v and w cannot
be solved for simultaneously, the Newton-Raphson method is not practicatl.
The solution procedure that is usually adopted is a calculation scheme
that alternates between ¥ and w. That is, ¥ 1is assumed known when
equation 2.4.1 is to be solved and vice versa for 2.4.2.

Both the Galerkin and restricted variational approachgs have
commonly been used with the stream function and vorticity equations.
Baker (2) used the former to predict the development in time of imbedded

regions of recirculating flow, while Cheng (8) and Tong (31) used the
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latter in an attempt to solve the flow in a channel with a contraction
and the flow around a cylinder (two-dimensional) and a sphere (axi-
symmetric). In all cases good results were claimed even with the use
of the simplest triangular elements. However, as was reported by Olson
(24), although considerable progress has been made in this area, there
still remain many questions unanswered, particularly regarding the
stability and the accuracy of the adopted solution schemes at higher
Reynolds numbers.

The only other approach that has been used in the finite element
mode1ling of the two-dimensional Navier-Stokes equations is based on
the fourth order, biharmonic type differential equation 2.5, expressed
in terms of the stream function alone. The main work in this area has
been done by Olson (23) who has used this approach to analyse the flow
around a cylinder and in a constricted cylindrical tube with Reynolds
numbers up to 100. Few other researchers have adopted this approach,
perhaps because of their lack of familiarity with the higher order
elements it requires. Olson used a restricted variational principle
together with an 18 degree of freedom triangular element which has the
stream function and all of its first and second derivatives as nodal
variables. He found that this produced good stability in the two-
dimensional analyses but behaved relatively poorly in the axisymmetric
case.

01son and Tuann (32, 25) have compared the primitive variables
and stream function approaches using variational methods and concluded
by saying that the stream function method 1is the least difficult and
perhaps the more accurate as applied to their particular test flows.
Taylor and Hood (30) compared the primitive variables and the stream
function-vorticity approaches using Galerkin and concluded that the
primitive variables method was the more efficient and the one most easily

extended to three dimensions. From this review therefore it becomes
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evident that for the analysis of two-dimensional viscous flows, no one
approach or formulation is considerably more advantageous than another.
Fach has its advantages and its disadvantages, with the overall picture
remaining very complicated. As a result different people have chosen
different formulations and their preferences have undoubtedly been
influenced by their experiences and the availability of certain algor-
ithms and computer packages.

In this study the author has elected to use primitive variables
because this approach appears to be the most easily extended to three
dimensions, the Galerkin weighted residual method because this appears
to be the most general, and the Newton-Raphson iterative method because

this has proven to be the most efficient solution technique available.
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3. THEORY

A1l the theory that is used during the course of this study is
presented in this chapter. It covers the derivation of the Navier-
Stokes equations and the asssociated boundary conditions, a discussion
of certain terms not normally included in these equations, the non-
dimensionalization of the equations and the boundary conditions, the
construction of the primitive variables finite element formulation,
a discussion of the assembly of individual element equation systems
into one global system and a discussion of the application of the Newton-
Raphson method to the solution of this system. Although much of this
theory is commonly accepted and well documented it has been repeated
here for the 'sake of completeness and to maintain a consistent form
of presentation. Also certain aspects such as the process of assembling
the global equation system and the application of the Newton-Raphson
method to its solution are not as well covered in the literature as
one would have expected. In these cases additional care has been taken
to ensure that their explanations and discussions are as clear and

as concise as possible.

3.1 Governing Equations and Boundary Conditions

In the study of viscous fluid motion we are concerned with three
basic laws:

(a) Conservation of mass

(b) Newton's second law of motion

and (c) Conservation of energy (the first law of thermodynamics).

The respective equations that result from the application of these
Jaws are the Continuity equation, the three components of the Momentum
equation and the Energy equation. These equations are generally expressed
in terms of the five basic or primitive variables, the three components
of velocity and the two thermodynamic quantities, pressure and tempera-

ture. In incompressible flows, since the density is constant the energy
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equation becomes uncoupled and if the temperature is assumed to remain
constant, it becomes redundant.

The general differential equations governing the steady and
incompressible flow of a wviscous fluid at constant temperature and
expressed in tensor notation and in terms of the velocity and stress

components are therefore as follows.

00.. av. av.
aX. . :
XJ BXJ 8XJ
CATAR
and —J -0 3.2
X
J

where v is the velocity of the fluid in the X5 direction, o is the

fluid density, F.

j is the body force per unit mass in the x; direction

and o.. is the stress tensor. Equations 3.1 and 3.2 are the equations

1J
for the conservation of momentum and mass respectively, and when
expressed only in terms of velocity and pressure, are often referred
to as the Navier-Stokes and the Continuity equations. It will be noted
that an additional term prefixed by the constant C2 and not generally
found in the momentum equation has been included in Equation 3.1. The
significance of the inclusion of this term and others similar to it
subsequently will be explained at a later stage. It will suffice to
say that this term is a normal part of the momentum equation which has
been traditionally always eliminited by the use of the Continuity equa-
tion. Its origin is explained in Appendix A where both Equations 3.1
and 3.2 have been derived from first principles.

In order to obtain the commonly used form of the Navier-Stokes
equation it 1is necessary to write the momentum equation entirely in
terms of the primitive variables, velocity Vs and pressure p. The stress-
strain rate relationship that was chosen to express the stress tensor

% § found on the left hand side of equation 3.1 in terms of velocity

and pressure is



22.

o mpl—t L - C e —)-p e, '
ij 3 71 L
axj 3 X, 3 axk

where u is the first coefficient of viscosity, or simply the fluid
viscosity and 61’3‘ is the Kronecker delta defined as

and Gij

0 if 1 #73]

In general the fluid viscosity is temperature and to a lesser
extent, pressure dependent. In this study however, because it has
been assumed the fluid temperature is constant, and because the second-
ary pressure effects will be ignored, the viscosity will be constant.
The stress-strain rate relationship that results is therefore linear
and charactem‘gtic of Newtonian fluids.

The pressure, as it appears in equation 3.3 and in subsequent
references is, by definition, the negative mean of the three normal
stresses acting at any particular point. That is

p = - 5— o\ K 3.4
It can easily be verified that by using equation 3.3, the value of
the sum - %{Uxx +o. +o__)is in fact equal to p provided C3 equals one

Yy ZZ
BvJ

or = = 0. The term containing the constant C3 is similar to the
J

one found in the momentum equation and containing the constant CZ'
It is normally eliminated by the use of the Continuity equation and
does not generally appear in the stress-strain rate relationship.
The derivation of this relationship has also been included in Appendix
A in order to explain the origin of the term.

The necessity to define the pressure at any point in a moving
fluid in the above manner arises from the fact that in establishing
equation 3.3 one requires a scalar quantity, donated p for convenience,
that at any point is equal in all directions, and is analogous to the

static-fluid pressure in the sense that it is a measure of the local
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intensity of the "squeezing" of the fluid. It can easily be shown that
at any point-%okk is the average value of the normal components of stress
over the surface of a small sphere centred on that point. Thus the
quantity p defined by equation 3.4 is a real parameter of the fluid
system and is accessible to direct observation.

Equation 3.3 can now be substituted into equation 3.1 to give,

32y, 32y, 2 azvk ap
u( L Jo- —C3 513 ) - — G'ij
2
ax ; axjaxi 3 3 X; 3 X 8xj
BV_.I 3V .
= o(ve —* +C, v, —3 -F.) <P
J X . 2 X . 1
J J

The third and fourth terms of this equation can be simplified as follows.
2 d 2 2

avk 2 8Vk
3 axj LR 3 3X5 A X

since this term is non zero only when j = 1,

because the extra subscript k is not necessary when j is the summation
subscript within each equation, and

ap ap
=— §,. = = —

1
X X .
j X3

since this term also is non zero only when j = i. By rewriting the
3 AV,

second term of equation 3.5 as Eif(gig) it can be seen that the Contin-
LI
uity equation could be used to eliminate it. However, because the

significance of the inclusion of this term and the previous two similar
to it are being investigated in this study, this term will be prefixed
by the constant C; and retained in the governing equations.

Thus the form of the Navier-Stokes equation that will be used

throughout this study 1is
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3y azv 2 a%v. ap
u( 1+C] J ___C3 J)..
2

X j axJ ax 3 ax; axj X5

v vV
= p(v. +C, v. —~ =~ F.)
2 1 1

axJ axj

or rearranged is

TR 2 azv 1 ap
2
p axX j 3 axi axj p X
avi avj
J J
V.
and ’ 34 -
39X
%

The above equations of motion require boundary conditions that
are mathematically tenable and also physically realistic. The two types
of boundary that will be encountered in this study are

(1)  solid-fluid interface
and (2) inlet or outlet regions.

The fluid-fluid interface, which includes the free surface case if one
of the fluids has a relativity negligible density, will not be considered
here since it is not directly amenable to the solution technique chosen.

At the solid-fluid interface it will be assumed that the fluid

takes on exactly the velocity of the solid; that is

If, as will be the case in most of the problems to be solved in this
study, the solid at the interface is a stationary and impermeable wall,
then on these sections of the flow boundary the fluid velocity will
be zero in all coordinate directions. In addition, it will be convenient

in many of the problems to limit the analysis to a finite region through
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which the flow passes. This is permissible provided the properties
of the flow at both the inlet and outlet are specified. That is, at
the inlet and outlet boundaries, the fluid pressure and either the fluid
velocity or the velocity gradients must be known. Where the velocity
is known the boundary condition can be applied directly. However, if
only the velocity gradients are known, then these must be used in con-
junction with the pressure and equation 3.3 to establish the fluid state
of ‘stress in these regions. The fluid stress boundary condition can
then be specified. If either the fluid pressure or the fluid velocity
(or the velocity gradients) s unknown at the inlet or ocutlet boundary
then a unique solution to the problem cannot be found because the flow
is not totally contained.
The above conditions may be expressed formally as
V; = Vg on boundary Sv_

i 3.7
and G...n, = TO on boundary ST

i

where Sv is the portion of the total boundary on which the velocity
i

v? in the X direction is prescribed, and ST is the remainder of the

_ i
boundary on which the stress T? in the X direction is specified and

on which nj is the jth component of the outward pointing normal. Sw
+ STi = S where S is the total boundary enclosing the flow being ana]yse;.
It is important to note that at every point on S either a velocity or
stress component must be specified in each coordinate direction. This
fact will become more evident when the assembly process is discussed
in more detail later in Section 3.3. It is not necessary, however,
that the portion of boundary on which a velocity is specified be the
same for each coordinate direction. For example, if u (the velocity
component in the x direction) is specified on boundary Su and v (the

velocity component in the y direction) 1is specified on boundary SV,

then Su and SV need not be coincident. Similarly for stresses; if Ty
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(a stress in the y direction) is specified on boundary ST and TZ is
z

specified on boundary S.TZ, then STy and STz need not be the same portion
of S.

Thus the system of differential equations and boundary conditions
that describe the steady flow of an incompressible fluid through a region
V, on whose boundary S, forces as well as flow restrictions have been

imposed, and for which the body force per unit mass F; is zero in all

directions is

u azvi 2 %y, 1 3p
— +(Cy - = C3) J ) - — —
2
P 9X 5 3 axiaxj P dXy
V. 9 V.
= V. _1 + sz'i —J- 3-8-]
J ax 3X.
J
V.
and —J -9 3.8.2
3X;

V; = Vg on boundary SV 3.8.3
i

_ 10
and | °ji'nj = Ti on boundary STi 3.8.4

Before proceeding any further, it is necessary to non-dimensionalise
the above relationships so that dimensional problems in subsequent
derived formulations and flow solutions are not encountered. By select-
ing a velocity v and length L characteristic of the flow to be analysed,
all variables in the governing equations and boundary conditions can
be non-dimensionalised or written in dimensionless or normalised form

by using the following transformations.

Length: X: = 3.9.1

Velocity: v! = 3.9.2

< pd
<i|= 2
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Pressure or Stress: p' = — or o%. = 1 3.9.3
pv? J o ov2
Equations 3.8.1-4 become
u 3%V, 2 a2y ap'
— L 4 (= Oy ——) - —
pvL ij 3 X} axj X3
av! av.
= v& —1 4 sz;-——l
vl
and — = 0
ax\
J
. - o0
with ¥ B g on boundary Svi
] = I0
and cji'nj Ti on boundary STi

The dash notation for dimensionless variables can now be dropped with

the understanding that all variables used from now on, unless otherwise

stated, have been

non-dimensionalised using relationships 3.9.1-3.

The final form of the governing equations that are to be used in this

study is therefore

1 azvi
2
Re X j
and
with
and
and where

2 3%V, ap
. —C3) -—J_‘) = ——
3 X, axj X
v, V.
= v 1y Covs _J 3.10.1
axJ axJ
av.
~_J - 9 3.10.2
axj
_ ., 0
Vi = Vj on boundary Svi 3.10.3
_ -0
oji'nj = Ti on boundary sTi 3.10.4
pvi
Re = — 3.10.5
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is the resulting dimensionless parameter known as the Reynolds number
and is the only quantity of importance affecting all laminar viscous
flows at constant temperature.

It should be pointed out that the characteristic quantities v
and [ that are chosen to non-dimensionalise the above equations for
a given problem, must both be unity when the equivalent dimensionless
problem is solved. For convenience, v and L are usually selected as
quantities that are independent of the sotution that is to be obtained
and that can be used regardless of the Reynolds number. For example,
in pipe flow, [ is chosen to be the pipe diameter rather than the pipe
length because the length of pipe that must be considered may depend
on the Reynolds number. The diameter of the pipe for a given problem
is usually known beforehand and in the equivalent dimensionless problem
is set to unity, thus fixing one of the dimensions of the flow geometry
for all Reynolds numbers. Similarly, v is usually chosen as one of the
velocities in the velocity boundary conditions which are also known
prior to solving a problem. For example, in pipe flow, v is usually
the entry velocity while for the flow around an object, v is the free
stream velocity. In all cases v and L are chosen in such a manner that
enables a flow of any Reynolds number to be solved without too many
changes to the boundary conditions or the flow geometry. The Reynolds
number therefore should be the only parameter that affects a given class
of flow problems.

The governing equations and boundary conditions have now been
set up and are in a form suitable for solving. They have been written
out in full below in order to show their full extent and complexity.
The assumptions that have been made in obtaining them are summarised
as follows. It is assumed that

(1)  the temperature of the fluid is uniform,

(2) the fluid density and visbosity are constant,

(3) the fluid is isotropic and Newtonian,
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(4) the flow is steady,
(5) the flow is laminar and continuous,
(6) the flow is fully contained (no free surfaces),

(7)  the fluid is not subject to body forces.

1 3%u  3*u  d%u 2 a%u 3%v 3%w ap
— + + )+ (Cq - =Cg) + + )) - —
Re ax% ay? az? 3 ax2  ax 3y  ax a3z 3x
au au au U v aw 3.11.1
= (U—+ VvV —+w—) + CZ(U —t U —+Uu—)
3ax ay 3z ax ay 3z
1 a’v  a?fv 2ty 2 3%y a?v 3w ap
— ({ + + ) + (€ - =C3) + + )) - —
Re ax2 3y? az? 3 ay ax dy? 3y 2z ay
3V aV av au 3V aw 3.11.2
=Uu—tv—tw—)+Cv—rtv—t+v—)
ax 3y 3z ax 3y 3z
1 3%w 3w 3w 2 3zu 3%y 37w ap
— (( + + )+ (Cy - =€3) ( + + )) - —
Re ax* ay* az? 3 3z ax 9z a3y  az? 3z
oW W aw au v aw 3.11.3
= (u—+v——+w—)+C2(w——+w—+w—)
ax ay az ax ay 3z

su Vv oW
and —+ —+— =0 3.11.4
ax 3y 32

with boundary conditions: u = u® on boundary Su
v =10 on boundary SV 3.11.5
w=w on boundary Sw
LU %xx"x * oyxny'”zxnz = Ti on boundary ST
X
oxynx 5 0yyny+°zynz - T; on boundary ST 3.11.6
o Ny * ayzny-mzznZ = T; on boundary STZ

Before these equations are formulated in terms of the finite

element method it is necessary to explain the reasons for retaining
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V.
it}
BXJ'.
Until recently, it has been customary to use the Continuity equation

the terms containing the constants C], C2 and C3 and the quantity

wherever possible in the momentum equation to eliminate all terms con-

av .
J

taining the quantity L Some researchers however argued that because
J
their method of solving the governing equations is approximate, the
v .
quantity Eig' is not exactly zero everywhere and therefore cannot be

used to eliminate certain of the viscous terms in the momentum equation.
These additional viscous terms were therefore retained in the governing

equations. Recently the author and others carried this argument further

and applied it to certain acceleration terms (18). These were then also

retained. Finally in this study, all terms that contain the quantity
v,
J

x> including:an additional viscous one, have been included and prefixed

by a constant whose value is either one or zero depending on whether
the term is to be retained or eliminated. The various approaches that
have traditionally been used can thus be compared and their relative

merits confirmed.

v,
By setting C] = C2 = C3 = 0, no terms containingsii are retained
J

and the governing equations reduce to

1 8%v, ap A

Formulation A

The finite element formulation based upon these equations will be sub-
sequently referred to as "formulation A".
The governing equations for “"formulation B", obtained by setting

C] = 1 and C2 = C3 = 0 are
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avj Formulation B

This is perhaps the most commonly used form of the Navier-Stokes equation
since the physical interpretation of all terms that result in the finite
element formulation based on these equations is well known. The addit-
jonal term is referred to as a "viscous term" because, like the term

prefixed by ﬁ% in the equations governing formulation A, it is the result

of the inclusion in the equations of motion of stresses that occur

because of the viscous nature of the fluids considered.

bl

The equations governing "formulation C", C] = C2 = 1 and C3 =0
are
1 9%y, 3?v. ap v, v,
— L J)_ =Vj—1+v1'_J
L ; . ; . X .
Re 8x i ax1 axJ X5 axJ xJ
V. Formulation C
—d =
X .
J
and "formulation D", C] - C2 = C3 =1 are
1 8%y, a2y, 2 3%, ap v, av.
— 1+ J - _ ‘])- -_—Vj_1+v1____.:]_
2
Re 3x j axi axj 3 X axj X4 axj axj
v, Formulation D
_Jd - 9
X s

The additional term in the equations governing formulation C, often
referred to as an acceleration or inertia term because it results from
the right hand side of the equation of motion F = m.a, and the extra
viscous term 1in the equations governing formulation D have, to the
author's knowledge, traditionally always been omitted. The first arises
from changes in momentum associated with the lack of satisfaction of

the Continuity equation, inherent in an approximate method of solution
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such as the finite element method. The second results from the fact
that the approximated pressure is not the same as the negative
mean direct stress as calculated from the approximated velocity field
if this term is omitted. By definition, the pressure at any point in
the flow is the negative mean of the three normal stresses at that point
regardless of whether the fields are exact or approximate, or whether
the Continuity equation is satisfied exactly or not. Using the non-
dimensionalised form of equation 3.3, it can be shown that if the term
containing C3 is omitted then
1 2 1

-—0c = ==l + p
3 k,k 3 Re K,k

Pdefn
Therefore if Continuity dis not satisfied exactly, as is assumed in
formulation D, the pressure in the flow is not the same as the p appear-
ing in the equations governing that flow. To ensure that it does, the
term containing C3 must be included. Formulation D therefore has
retained all terms that have at one stage or another been eliminated
by making use of the Continuity equation. It should be pointed out
at this stage that if the finite element approximation happens to coin-
cide with the exact solution, all the terms containing the constants

C C2 and C3 will vanish leaving the Navier-Stokes and the Continuity

'l’
equations wunchanged. It is also important to note that the boundary
conditions for all four formulations are the same and given by 3.11.5

and 6.
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3.2 Equation Formulation in Terms of Finite Elements

The exact solution to any viscous flow problem is attained when
the solution {u(x,y,z),v(x,y,z),w(x,y,z),p{x,y,z)} satisfies the governing
equations at every point within the flow domain V, and the boundary
conditions at every point on the flow boundary S. This situation how-
ever occurs only in a handful of elementary problems and the exact
solution to a general viscous flow problem is as yet impossible to find,
simply because of the complex nature of the governing partial differen-
tial equations and their boundary conditions, and the limitations of
known methods for solving such equations exactly. It has therefore
been necessary to resort to approximation or numerical techniques in
order to find.some form of approximate solution. Of these techniques,
the finite element method has proved to be the most versatile, both
in the field of fluid dynamics and in the field of structural
and stress analysis where it was first applied. Its widespread use
however, has only come about with the recent introduction of the faster
and relatively large new generation digital computers. The finite
element method is used exclusively throughout this study and is described
in detail below.

Let the flow domain over which the governing equations must be
satisfied, be divided into Ne similar non-overlapping subdivisions other-
wise known as finite elements or simply elements. The elements should
be similar only to the extent that they have the same number of edges
or faces. It should be noted that the elements need not necessarily
have this restriction, but it does simplify the formulation and the
computer programming without too much Tloss of generality. Assume that
each element has the same number of nodes internally and per edge or
face, so that the total number per element is K. Assume that any two
adjacent elements both contain the whole of the common face or edge

and that all nodes on this face or edge are common to both elements.
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With the geometry of each element and the positions of its K nodes thus
fixed, it dis then possible to set up for each element, K polynomial
functions in terms of x, y and z, subsequently referred to as shape
funcfions and denoted Nij(x,y,z), with the characteristic that for any
element 1,

1 at the jth

Nij(x,y,z) node

=0 at the other K-1 nodes 3.12
Any function &(x,y,z) operative in the region defined as element i, can
now be expressed approximately in terms of its values at the K nodal
points of element i by using the shape functions. If Qijis the value of

o(x,y,z) at the jth

node of element i, then within element i,
°(>§,y,z) - °’;(x,y,z)
K

where ¥ (x,y,2) = jz} Qij Nij(x,y,z) 3.13
The function ®§ has the exact value of ® at the K nodes but elsewhere
within element i it is only an approximation, the degree of which depends
on the shape functions and therefore on the number and position of the
nodes. It is evident that as K increases the order of the polynomial
shape functions also increases and with them the number of points at which
°$ equals @ exactly.

This method of approximating a function can now be applied to the
required solution {u(x,y,2),v(x,y,z),wix,y,z),p(x,y,z)} of the governing
Navier-Stokes and Continuity equations. By expressing the unkown
solution functions in terms of their unknown values at K points within
a series of elements comprising the flow domain V, the task of finding
the overall solution is reduced to one of finding its numerical value
at a finite number of discrete points. Within each element the
individual approximations, which are obtained by interpolation using
the element's shape functions, are then combined in a piecewise fashion

to give the overall approximate solution at all points in V. Some

elements on S, the boundary of V, will have nodes at which the velocity
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and pressure has been specified. For these elements, the approximation
for velocity and pressure is summed only over those nodes at which the
solution is unknown.

The three components of velocity and the pressure can be expressed

approximately within any element i as follows.

: K!'
u(x,y,z) cfu?(x,y,z) = jzl Uy 5 N%j(x,y,z) 3.14.1
KI
~ * = [}
vix,y,z) —-vi(x,y,z) jz] Vi3 Nij(x,y,z) 3.14.2
KI
~ wk - 1
wix,y,z) = wi(x,y,z) jE] Wij Nij(x,y,z) 3.14.3
Kll
~ n¥%* = 1
and p{x,y,z) = pi(x,y,z) jzl P Nij(x,y,z) 3.14.4
where u iy Vij and Wij are the unknown values of the three velocity

components at the jth

velocity node (j=1, .. K'), and P 5 is the unknown
value of the pressure of the jth pressure node (j=1, .. K"), in element

i.  The K' velocity and K" pressure shape functions are defined as

follows.
N%j(x,y,z) = 1 at the jth node
= 0 at the other K'-1 velocity nodes, 3.15.1
th

and qu(x,y,z) 1 at the j~ node

0 at the other K"-1 pressure nodes. 3.15.2
In these approximations the summations for the velocity components and
for the pressure are taken over different numbers of nodes to enable
the pressure, if necessary, to have a different order of approximation
from that of the velocity components. 1In fact, since in the governing
equations the highest order of differentiation of the pressure is one
less than the highest order of differentiation of velocity, the pressure
is given a lower order of approximation than the velocity components.
Therefore K" is less than K', and as a result, within each element all

nodes are used in the approximation of the velocity components but only
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a given subset of the same nodes is used in the pressure approximation.
The maximum number of nodes per element is K = K'. An alternative
arrangement would be to set up two finite element subdivisions or meshes,
over the same flow domain, one for the velocity approximation and the
second containing elements with less nodes for the pressure approxima-
tion. However this approach would require considerable additional effort
both in setting up the extra finite element mesh and in the solution
procedure, and is therefore not often used.

Having constructed an approximate function for each component
of velocity and the pressure within each element of the flow domain,
four residual functions can be set up by substituting the approximations

3.14.1-4 into the governing equations 3.11.1-4.

1 azug azuﬁ azu? 2 azu? azvﬁ azw$ ap?
Re ax? ay? az? 3 3x? 3x 3y 3x 9z 3 X
au? au¥ au? au? av? aw?
_(u~_)ic + V:)ic + w’{ ) - Cz(u-_{lr — 4 uj’if —_— ¢ u‘%‘ ) 3.16.1
X ay 3z ax 3y az
1 azv? azvﬁ azvq 2 azuﬁ azv$ azw$ ap?
R12 = (( + + ) + (C-l = - C3) ( + + )) .
Re ax? 3y 2 9z 3 3y ax ay? 9y 98z 3y
av? vy av? au? av# aw?
“(uF — + vE—— ol —) - Clvi — 4 v —+ V] —)  3.16.2
ax ay 3z ax 3y 3z
1 azwﬁ azwﬁ azw§ 2 azuﬁ azv$ azwﬁ ap?
Rig = — (( + + ) + (€ - =C3) + + )) -
Re ax? ay? az? 3 3z 3x 9z 3y 3z? 3z
aw? aw* aw$) au§ av¥ aw?
-(u? _ Vﬁ 4 Wf = CZ(W? =+ Wf —_— w? —) 3.16.3
ax ay az X ay 3z
au¥ av? aw?
and R1.4 = + + 3.16.4
ax ay 3z

An indication of the accuracy of the approximate solution can now be
obtained by examining these four residual functions. If all four
residuals are zero at all points within each element, then the exact

solution has been obtained. In general however, a trial approximate
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solution as is described by equations 3.14.1-4, will not result in
residuals that are identically zero everywhere. Therefore the best
approximate solution that can be set up is the one whose nodal values

of velocity and pressure in some average sense, reduces the residual

functions to a least value within each element. An obvious way

of achieving this is to make use of the fact that if the function R(x,y,z)
is identically equal to zero everywhere in a volume Vi’ then

S Hix,y,z) R(x,y,z) dV =0 3.17
V.

i

for all functions W. Conversely, by using a finite number of Tinearly
independent functions W, equation 3.17 can be used to ensure that the
four residual functions are zero at least in an average sense over each
element. Therefore by using 3K' + K" linearly independent functions,
equation 3.17 can be used to generate sufficient simultaneous equations
to solve for the 3K' unknown velocity and K" unknown pressure values
at the nodes of each element. This process is known as the weighted
residual method and W are the weighting functions. The Galerkin method
of weighted residuals leads in general to the best approximate solution
and is therefore the one chosen for this study. In this particular
process the weighting functions are coincident with the linearly inde-
pendent shape functions used in the approximations for velocity and
pressure. Two types of shape functions are used in these approximations

and both are therefore used as weighting functions. The required 3K'

+ K" simultaneous equations for element i are:

VfN'U-(x,y,z) Ryq dV = 0 3.18.1
.i

SN .(x,y,2) Ry dV = 0 for j=1, .. K' 3.18.2
v iJ i2

.i

;

fN“ij(x,y,z) Riq dV =0 for j=1, .. K" 3.18.4
V.

i

where Vi is the volume of element i.
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This now completes the basic theory behind the finite element
formulation of the Navier-Stokes and Co%inuity equations. A1l that
remains to be done is to substitute equations 3.14.1-4 into 3.16.1-4
and these into 3.18.1-4, rearrange and solve the resulting set of non-
linear simultaneous equations to obtain the required nodal values of
velocity and pressure. The finite element equations as they presently

stand have been written out in full below.

1  a%u¥ azuf azux 2 azu: azv$ 3%w¥ ap?
N%-{-——(( + + ) + (C1 - C3) ( + + )) -
J Re ax? ay? az? 3 ax? Ix 3y  Ix 9z ax
V.
1 au¥ au* au¥ au¥ av¥ awy
“(uF — 4 v W —) - Coluy — + u¥ —+ uf —)3 dvV =0
ax ay 3z ax 3y 3z
for j=1,..K' 3.19.1
1 azv¥ azv$ azvﬁ 2 azu¢ azv$ azwﬁ apt
N: . {— (( + + ) + (C1 - —-C3) ( + + )) - —
J Re ax? ay? az? 3 3y ax  ay? 3y az 3y
V.
1 av¥ av? avf au¥ av? aw?
-(u¥ +vE— + wh —) - Cy(v¥ + vy v —)1r dv =0
ax ay 3z X 3y 3z
for j=1,..K' 3.19.2
1wy a%wh 3 %w¥ 2 3Zu¥ azv? azwﬁ 3p¥
NE s (L —L ¢ —1) + (€ - = Cg) (——+ + —1) -
J Re ax? ay? az? 3 3z ax 9z 3y az? 3z
Vi aw¥ aw} aw? au¥ vy aw#
-(uy — + v¥ +wy —) - Colwh — + wi +wh—)1 dV =0
ax 3y 3z ax 3y 3z
for j=1,..K' 3.19.3
au? av? aw?
and - N o + + }dv = 0 for j=1,..K" 3.19.4
Jax 3y ez

where the approximate functions u?, v?, w? and p? are given by equations

3.14.1-4.
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In order to enable the stress boundary conditions to be incor-
porated in the finite element equations and to facilitate subsequent
integral transformations (explained in Section 4.1), it is necessary
to reduce by one order all second order velocity and first order pressure
derivatives in equations 3.19.1-3. This can be done by first applying
the product rule of differentiation to each of the first three terms

of these equations and then rearranging so that

quy  au¥ 2 Ju¥  Avr  dwx ‘
—{N (——+—l)——c3( L+ —)) - pE))
1J Re 1

ax X 3 IX 3y 9z
1 av¥* au* 3 1 aw* au*
+ {N1' (L I — N D)
ay J Re 3ax y 3z J Re ax 9z
fal ’
| 2 1 8u$ ) 1 avi
+ | —{(C]-l) N: P+ — {(C 1—1)—— Ni; —3
Y. X Re 9 ax ay Re 13 ax
i
1 3w 1 aN'. au¥ aN'. au* aN!. au*
)
+%{H4L—W —Ty dv 1;4 y_ 1, 1, 11
3z Re 1 IxX Vs Re ax ax 3y 1y 3z 9z
3 ,
1 9N!. au* aN! . av¥* aN! . aw* ya 1 aN' au*
' C]——-{ (NI T IR E I R —-C] o ij 1
Re ax 9x ay ax 39z ax 3 Re 3X 3AX
aN!. av¥ aN! . aw* aN! . au¥ au¥ au¥x
PR 1 I A I IR, N pt + N A (u¥ LR L w?-——l)
ax  dy ax 9z ax J ax ay 2z
au¥ av? aw*
+C2(u$——l+u?f—+u* ~— )1 dv=0
X ay 9z
for j=1,..K' 3.20.1
au* av¥ aw*
and - | Ni—+ L1+ _Tydv =0 for j=1,..K" 3.20.4
W 3y 9z
V.

1

For obvious reasons equations 3.20.2 and 3 corresponding to the y and
z directions, have not been written out in full here. However they

can be obtained in a similar manner.
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By using the non-dimensionalised form of the stress tensor given by
equation 3.3, that is

2 1 avy avg 2 vy

%j = E; (;;; + ;;; -.g Cs Gij';;;) = p*Gij 3.21
the three terms in the first integral in each of equations 3.20.1 to
3 can be rewritten in terms of stress components. The Gauss Divergence
Theorum can then be applied to the first two volume integrals in each

of these equations to reduce them to surface integrals. The resulting

equations are:

1 *
1 aNij aui ij i ij

aN'. au¥* aN! . au¥ aN!. au¥* aN! . av¥ aN! . aw¥
N1J u? N u C] N u3 N1J v N1J W

— + + Y} + —{ + +
Re ax ox, 9y ay 9z az Re 3ax ax dy ax 9z  3x
V. ' ‘ .
1 2 T aN!. au¥ aN!. av¥ ONI. 3w¥ aN:. au¥
S LS T I I R R S O I p¥ + N%.{(uﬁ-——l
3 2Re ax ax ax oy ax oz X J ax
du¥ au¥’ < au¥ YoavE aw?
#vr —L e wr —1) + Cpluf — + up — + uf —)3 AV
ay 3z X ay 9z
= ! * * ek
Nij ok n, * oyxny + ozxnz} ds
Si 1 au? av? aw?
+ (Ci-1)— N!.{—'n_+ —n_ +—n_} dS for j=1,..K' 3.22.1
§[ L Re 9 ax % ax Y oax Z
1‘
aN!. avx  aN!. av¥  aN!. dv¥ C:  aN'. au¥  AN!. av¥  3N!. dwk
}[_L PRI R P IR S N iy R I A SR I S AP i
Re ax 3x y ay 3z 3z Re ax 23y 9y dy az 3y
V.
1 2 1 oN!. 3u¥ aN!. av¥ aN!. aw?¥ oN! . av¥
'—C3+{ 1) L 1] 1, 1] 1y - 1J p;‘+N;{(u:‘—l
3 °Re 3y 3y ay ay 9z 3y J ax
av¥ av¥ u¥ av*{ aw*{
svt L L)+ CylvE — 4 vE— ¢ vE )} Y
ay 97 X L ay 8z

it

| * *
éj.Nij {o;ynX + Uyyny + Uzynz} ds

i 1 aux ay¥ 3w1_!lf

f(c]-n— Ny 5 ¢ v o+ —'n + n 1ds for j=1,..K' 3.22.2
S,

1

+

Re ay * ay Y ay

}

}
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1 aN! . aw* oN! .aw* aN! .aw¥ C aN! .au* aN' aN!. aw*
PRt R St F s NP P R Bt Aol RO It 457 1+_13_}
Re X 98X 3y ay 3z 9z Re ax az dy 9z 3z 9z
V.
1 1 * 1 * ] * 1 *
) aN! .3y aN! . aw% aN. aw
JBo AN, T T TS ey ey —
3 3 Re 9z 3x 3z 3y 3z 3z 3z T ax
awk aw¥ au¥ av? aw?
wvt Loy )+ Cylwr — 4 wE — ¢ W —)) Y
dy T 5z aX 3y 9z
= * * *
j'N Lok on Tely ¥ o n,}ds
1 1 au§ av? aw?
+ f —1—N' {—mn_ + n_ o+ n } ds for j=1,..K' 3.22.3
X ez Y ez
* V¥ aw*
and -fN'.‘.{ VT4 _1ydv =0 for j=1,..K" 3.22.4
W, 3y oz
where Si is the surface area of element i, and (nX y,nz ) is its unit
outward pointing normal vector,
K' K K'
and where u* = J us, NYp, o vr= Tove Nio,oowk= fowe Ni
i k=1 ik ik T ke ik ik Tk ik ik
KI
* = n s =
and p? kz] Pik Nik for i=1, ..N,

The 3K' + K" equations that are thus produced can now be set up
for each of the N, elements in the flow domain. The equations are non-
linear because certain of their terms contain products of summations
which when expanded produce the full range of cross products of all
the nodal velocity components in each element. It is this non-Tinearity,
characteristic of viscous flows with moderate to high Reynolds numbers
that causes convergence problems and makes the obtaining of a good
approximate solution difficult. For flows with Tow Reynolds numbers
the relative importance on the non-linear terms, often referred to also
as the acceleration terms, is considerably less. If these terms are
omitted the solution of the resulting simultaneous equations is easily

obtainable, but the class of problems that can be solved is very
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restricted. In this project all Tlinear and non-linear terms in the

Navier-Stokes equations will be retained.

The significance of the right hand side surface integrals that
have resulted as a consequence of the application of the Divergence
Theorem can be explained as follows. If any element i of the flow domain
is isolated from the remainder of the flow, the fluid within this element
will continue to move as it did when it was part of the whole, provided
the stresses required to maintain its equilibrium are applied to the
surface of the element. These surface stresses can then be replaced
by a set” of equivalent point forces acting in each of the three co-
ordinate directions and at each of the nodes on the boundary of the
element. The value of these equivalent nodal forces is found by ensuring
that the rate of work done by the surface stresses is equal to that
done by the point forces when an arbitrary increment is applied to each
of the nodal velocity components of the element. For example, if the
velocity in the x direction at node j is incremented by 6uj to
uij' + suj, the dincrement in velocity in the x direction at any other
point in the element is N%j 6uj. The rate of work done by the surface
stresses when cujis app]ied is therefore

Sf Ni s suy Ty, dS 3.23.1

i
where Tix ijs the stress in the x direction on the surface of element

i and is given by

ix - (°xx Ny * ny ny t 92x nz)on boundary of element i
The rate of work done by the equivalent nodal force , Fijx in the x
direction at node j is
F.. 8u. 3.23.2
LV

Therefore Fijx Guj = 54.Nij su. (o n,+ o, N+ o, nz) ds
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or Fijx = SJ‘N'” (Oxx g B G, T + o nZ) ds 3.24

?
A similar argument can be applied to each of the other two coordinate
directions. The right hand side surface integrals containing the stress
components are therefore simply the equivalent point forces whose
effect is the same as that of the distributed surface stresses. The
remaining surface integral occurring only in formulation A and containing
the velocity gradients, has no physical significance of importance and
in most cases can be made to vanish by suitable choice of boundary con-
ditions.

It will be noticed that if node j is an internal node then the

th equation in each of equations 3.22.1-3

surface 1ntegfals of the j
will be zero since on the boundary of element i, N%j is everywhere zero.
Furthermore, it appears that the value of the stress components at each
point on the surface of each element must be known beforehand so that
the surface integrals may be evaluated to enable the system of equations
to be solved. This will not be the case however, and it will be shown
in the following section that by making a realistic assumption about
the continuity of the pressure and the velocity gradients across element
interfaces, only the surface integrals in equations that correspond
to nodes on the outer surface of the whole flow domain need be retained.
In most cases the boundary conditions of the problem will then supply
sufficient information to enable the surface integrals to be evaluated
or eliminated.

It should be mentioned at this point that when the phrase "equa-
tions corresponding to node k" is used, all that is implied is that
the equations in question have been weighted by the shape functions
NHk or N%k , and that the surface stress integrals containing the stress
tensor components are the equivalent point forces acting at that node.
It does not imply that the equations were derived at that node or that

they are valid only at that node.
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3.3 Assembly of Global Simultaneous Finite Element Equation System

Equations 3.22.1-4 could now be solved for each element individ-
ually without further manipulation, provided the value of the right
hand side surface integrals can be evaluated for each of the 3K' momentum
equations. To do this the velocity gradients as well as the pressure
variations on the surface Si of each element must be known. Since this
implies that the solution should be known before the equations can be
solved, this approach is not very useful. A better technique, and one
which is universally used in the finite element method, is the one in
which the equations corresponding to nodes common to neighbouring
elements are added in such a way as to enable the surface integrals
of the momentun equations to cancel each other. This eliminates the
necessity of evaluating these integrals for all momentum equations except
those corresponding to nodes on the boundary of the flow domain. At
these nodes, either the fluid velocity or 1its stress state must be
specified. This is why it was emphasized in Section 3.1 that at every
point on the flow boundary either the velocity or the stress components
must be known for each coordinate direction. If the velocity is given,
then the equations corresponding to the velocity at these nodes become
redundant and there is no need to evaluate the surface integrals. If
the stress is specified, then the surface integrals can be evaluated
without further ado.

In order to explain the process of assembling the equations for
each element into one global equation system, it will be necessary to
refer to the diagrams in Figure 3.1 which, for the sake of convenience,
show only a two-dimensional element arrangement rather than the more
general three-dimensional one. Each of the four diagrams shows a typical
node positioning in a general element mesh and each case will be con-

sidered individually as follows.
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Figue 3.1 Typical Nodal Positionings. (a) internal edge, (b) internal
corner, (c) boundary edge, (d) boundary corner.
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Consider diagram a in Figure 3.1 showing a typical internal edge.
Let this edge, common to elements i and (i+1) be called edge A. All
nodes on edge A, except the two corner nodes will have associated
velocity shape functions in both elements i and (i+1) that are zero
everywhere except along the common edge A. This means that if (a) the
values of the shape functions N'1.k and N( +1) are the same at all points
on edge A, and (b) the value of the velocity gradients and pressure
along edge A in element i is the same as their value along edge A in

element (i+1), then for the x direction,

fN1k(°xx x * %yx y eh fN(H] c’xxnx * °yxny)e1(1'+1)ds
1+]
- f N1k( xx"x %yx y)ehdS * f N(1+1) (o xx'x ¥ cyxny)el(iﬂ)dS
edge A edge A
f N%k(oxxnx * yx _y eh .[ Nj k(CI x yxny)eh d>
edge A edge A
= 0 3.25.1
and for the y direction,
fN k(°xynx toyyhy Je14d f Nii+1) 1(° n * y)e](1+1) S
s (0 3.25.2
where the kth node of element i coincides with the 1th node of element

(i+1) and lies on edge A. By the same argument

f au’_’.lc 3v’1" au* av*
Nik('a_n x y eh fN 1+1)1( +—mn )e1(1'+1)ds
S X ax
i 1+]
3.26.1
f au* avf; f av’{ .
N k("_n 2y y eh N(1+1 ay ny)e](iﬂ)ds
1+1
= 0 3.26.2

The change in sign results from the fact that the outward facing normal
vector for element (i+1) along edge A is of the same magnitude as, but

in the opposite direction to the outward facing normal vector for element
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i. By adding the momentum equations corresponding to node k of element
i in the x and y directions, to the equations corresponding to node
1 of element (i+1), the above combinations of surface integrals are
obtained. By using the argument presented above the right hand sides
of the combined equations can then be reduced to zero. This process
can be applied to the momentum as well as the Continuity equations
corresponding to all “"non-corner" nodes on all internal edges.

A similar but slightly more involved argument can be applied to
the momentum equations corresponding to any internal corner node that
belongs to three or more elements. Consider diagram b in Figure 3.1
showing a typical internal corner node shared by four elements, i, i+l,
i+2, and i+3., Let the four edges common to the four pairs of adjacent
elements be called edges A to D. The velocity shape functions in these
four elements for the corner node are zero everywhere except along the
common edges A to D. If at all points along these edges (a) the shape
functions for neighbouring elements have the same value, and (b) the
value of the velocity gradients and pressure for adjacent elements is

the same, then for the x direction,
_[N k( xx te yX y)ehdS u fN|1+1 1(Uxxnx K oyxny)el(iﬂ)dS
S;
j

fN(1+2 m( xx'x * yx y)e](1+2 S8 fN(1+3)n( xx"x oyxny)e1(1'+3)df

1 1+3

f Nikloxxx + oyxlly Je14 ,/ Nikloxxx nyny)eh'ds
edge D edge A

-[ Nh””(cxxnx v oyxn)’)el(iﬂ)ds ¥ ./ Niiﬂ)](oxx X
edge A edge B

+ 0 n .
yx y)e1(1'+1)ds * f N(1'+2)m(°xxnx i O),!Xn)'/)(ﬂ(1'+2)dS
edge B

f Mis2)mloxxx * oyxyler(is2)® f Nii+3)n 0d'x
edge C edge C

¥ y)e1(1+3)dS ¥ [ Nii+3)n(°xxnx * (’yxny)el(1+3)dS
edge D
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[ Ni (o ny ¥ 9yxNy )oq4d f NEie)1 Oxxx "yxny)el(iﬂ)dS
edge D edge A

f Nii+])1(°xxnx Oyx y)e1 §41)95 f N(1+2)m xx"x
edge A edge B

yxny)el(1'+2)dS N f Nii+'2)m(°xx"x +—°yxny)e1(i+2)ds
edge B

f Ni1'+3)n(°xxnx * 0yxn)/)e1(1'+3)dS+ f Nii+3)n(oxxnx
edge C edge C
)

o) ds =0 3.27.1

Tyxy'e (i+3)¢ f Nik Loy Toyxy
edge D

eli

and for the y direction
fN1k %y et yy y)ehds * fNiiﬂ)](oxynx i 0yyn,y)e1(1'+1)dS

/ (i+2) m xy x ' Uy,yny)e1(1'+2)ds * _/Nzi+3)n(°xynx

Si+3
%yy y)e](i+3) = 0 3.21.2
where the kth node of element i, the ]th node of element (i+1), the
mth node of element (i+2) and the nth node of element (i+3) are all

coincident with the corner node at the right hand end of edge D. Also

by the same argument

au* av’; au* av*
fN1k —n La— y eh IN i+1) * )e1(1‘+1)ds
au* av¢1+1 au*
fN(1+2 aan ¥ —gny)e](wz st / (i+3)n' %
' 1+3
aw{r
axr&)e](i+3)ds 0 3.28.1
% [ auf av;c
fN -—-—-ﬂ +——-—y)e-|_|ds ) N(_H_-l)-]( yn +'—y—ny)e](.‘+")d

S, 5i41
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ayk V¥ u*

+ i (—1n + —i—n ) . ds + /N'. (—ln
‘/f (i+2)m ay X 3y y'el(i+2) (i+3)n ay X
S1'+2 S1’+3
av?
+ = 0 3.28.2

—N ) q(:.2ydS
ay Y el(i+3)

Thus by adding the momentum equations in the x and y directions corres-
ponding to node k of element i, node 1 of element (i+1), node m of
element (i+2) and node n of element (i+3) the combined right hand
side of the resultant equation reduces to zero. This process can
be applied to the momentum and Continuity equations corresponding
to all corner nodes not on the boundary of the flow domain. Although
the above case considered four elements neighbouring the corner node,
it can easily, be verified that any number of elements greater than
or equal to three, can be treated by the same process.

The surface integrals in the equations corresponding to nodes
on the boundary of the flow domain cannot be so easily eliminated.
Consider a typical element i with one side, called edge A, on the
boundary of the flow domain as shown in diagram ¢ of Figure 3.1.
The momentum equations corresponding to any node on this edge have

right hand sides given by

au? av?
.jfﬁik(oxxnx + nyny)elids + Nik(;;_nx + ;;—ny)elids 3.29.1.1
S. S.
1 1 au1 Bv$
and ‘)(hik(cxynx + nyny)elids + Nik(;;_nx + ;;_ny)e11ds 3.29.1.2
Si Si

where the kth

node of element i lies on edge A. If node k is a "non-
corner" node then N%k is zero everywhere except along edge A, and
the above integrals reduce to

/ au¥ av¥
edge A edge A 9

au? av?
and ./.Nik(oxynx + gyyny)elids + ,/ﬂ Nik(_—_nX +.;;_ny)e]1ds 3.29.2.2

edge A edge A
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Nothing further needs to be done with these since they can now easily
be either evaluated if the velocity gradients and pressure (stress
tensor components) are specified, or eliminated if the velocity is
specified since the corresponding equations then become redundant.

th node of element i is a corner node on the

th

Finally if the k
boundary of the flow domain and coincides with the 1 node of element
(i+1) as shown in diagram d in Figure 3.1, then the shape functions
N1!k and Niiﬂ)] will be zero everywhere except on the boundary edges
A and B and on the common edge C. If at all points along edge C
(a) the shape functions for element i and (i+1) have the same value,

and (b) the value of the velocity gradients and pressure for element

i is the same as their value for element i+1, then for the x direction

au’1¥ av*
fN CxMx yx y)ehdS * fNik(;_nx i f N (1+1) Ny
S X ax
i au? av’{ 1+1
+ o Ve (1195 * Nt e ®
Si41
1
N'lk xx"x ¥ yx y eh e f %xx""x K yxny)el"lds
edge A ‘ edge C
au’1!< av?l‘ au* av%‘
u ik(;nx Ny eh Nik ax ny)eh'dS
edge A : edge
¥ f N{i+1)1 %% * Oy y)e1(1+])dS ¥ f NE341)1 0
edge C edge B
au? av?
t ot et ) Nt e ®
: edge C -
f au? av’;
" BN(1+1)1(;"X Py e (i) ®
edge
- f N:ik(wxxnx * oyxny)eﬁds * _/ N%k(oxxnx * oyxny)elids
edge A edge C
f au¥ vy au’ av¥
+ N1k(ax —n_ + _a;_ny)eﬁds + / Nik(a—x—nx + ;X—ny)ends
edge A edge C
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B f i Loy * TyxMy Je14d f Nii 1 %Gxx * oryxny)el(iH)dS
edge C edge B
au$ avﬁ au# av$
. kit ?ny)e1ids £ f Vi T —yer(ian®
edge C edge B
f N1!k %xx"x yX y)eh ) f Nz1+1)1(°xxnx * 0yx y)e](1+1)ds
edge A edge B
auf avf au? av¥
¥ N1k(;;_nx ¥ ax ny)ehdS * N(1+1)1(ax Ny * ; ny)e1(1+1)dS
edge A .edge B
3.30.1

and for the y direction

f du¥ av¥
fN:Ik(UXynx + yy y)e*l.lds + N_lk( y n + Tn )e-|1ds + fN(.i+])](0xynX
S ;

i+l

i au* av¥
+o,n) —’ )
yy y el(i+1) (1+1)‘i y e1(1+1)
1+1
f N%k(oxynx * Uyyny)eh'ds ¥ f Nziﬂ)](oxynx * 0yyny)e1(1'+1)
edge A edge B
au? av? au? av?
o Nl g ds o Ny (T e e ®
edge A Y Y edge B y 9y

dsS

3.30.2

The resulting boundary integrals can again be either evaluated
or eliminated and no further manipulation is required. Thus the right
hand sides of the equations produced by adding the momentum equations
in the x and y directions corresponding to node k of element i to those
corresponding to node 1 of element (i+1), can be reduced to boundary

integrals that are easily handled. This result can be extended to apply
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to the momentum equations corresponding to any boundary corner node
that belongs to two or more elements.

From the above discussion it can be seen that the evaluation of
the surface integrals on the right hand side of the momentum equations
corresponding to any node can be avoided by adding all the respective
element equations corresponding to that node. This fact forms the basis
for the assembly process. Although only the two-dimensional case has
been presented here, it can easily be shown that similar results are
obtainable in three dimensions. It should also be noted that although
the element continuity equations have no surface integrals on their
right hand sides, the above assembly process is equally applicable to
them. Fina]]y, all equations corresponding to nodes that 1lie within
an element's volume and not on its surface also have no surface integrals
on their right hand sides. These equations need no special assembly
process and can simply be included in the global equation system.
The actual assembly prdcess can therefore be described as follows.
The node for which the global equations are to be asssembled is selected,
the element equations for all elements to which that node belongs are
examined, and the three momentum and one continuity equations correspond-
ing to that node within each of these equation sub-systems are extracted.
By respectively adding these equations, the three global momentum and
one global continuity eqguations corresponding to the selected node are
then obtained. Before the element equations are combined it s
necessary to ensure that they are all expressed in terms of the same
coordinate system. If not, suitable transformations must be applied
so that the global equations are all expressed in terms of one global
coordinate system.

The first two steps towards obtaining a finite element solution
are now established. Firstly the 3K' + K" equations for each element
at element level are set up and secondly the global equation system

is assembled so that, if NV and Np are the numbers of velocity and
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pressure nodes respectively, within the flow domain, a system of 3Nv
+ Np simultaneous non-linear equations now remains to be solved. Before
proceeding to the solution of these equations however, it is necessary
to say something about the continuity of velocity, pressure and velocity
gradients across element interfaces. Two major assumptions with regard
to the continuity of these quantities were made during the above dis-
cussion explaining the assembly process. Firstly it was assumed that
any node on an edge common to two elements had associated velocity shape
functions in the two elements, that have the same value at all points
on the comon edge. For this assumption to be true it is necessary that
the velocity shape functions be defined uniquely along each edge of
all elements., Therefore only unique functions fij that satisfy the
conditions

fij = 1 at node j

= 0 at all other nodes in element i,

can be used as velocity shape functions. Such functions ensure con-
tinuity of the velocity variables across element interfaces.

Secondly, it was ’assumed that the stress along any edge common
to two elements is the same in both elements; that is, that the velocity
gradients and pressure are continuous across element interfaces. By
choosing suitable pressure shape functions the pressure continuity can
be ensured. However, it 1is not so easy to guarantee continuity of
velocity gradients between elements. To achieve this, additional slope
parameters must be introduced and velocity shape functions that ensure
continuity of velocity gradients as well as velocity must be found.

The difficulty encountered, firstly in establishing a finite element
with the above characteristics, and secondly in solving the resulting
equation system which will increase considerably in size, makes this
condition very difficult to satisfy. As a result, in this study only
elements capable of ensuring velocity and pressure continuity will be

used. Although this is contrary to what is assumed when the assembly
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process is used, to carry the idea of velocity gradient continuity any
further would be a major investigation in itself. Therefore no further
consideration is given to it in this thesis except to say that this
contradiction could be a source of error and instability and therefore

should be investigated in future work.

3.4 Solution of Global Simultaneous Equation System

The first two steps towards obtaining a finite element solution
to a general viscous flow problem are now completed. That is, the Navier-
Stokes equations have been formulated in terms of the finite element
procedure, and the global simultaneous non-linear equation system has
been constructed. The final two steps will now be discussed in this
section. The first 1is the incorporation of the boundary conditions,
and the second, the solution of the final equation system resulting
in the required values of velocity components and pressure at all nodes
in the flow domain.

The boundary conditions are very easily incorporated in the equa-
tion system which, once assembled, contains equations of two types.
The first, corresponding to variables at nodes in the interior of the
flow domain, all have zero right hand sides, while the second, corres-
ponding to variables at nodes on the outer boundary of the flow domain,
all have surface integrals on their right hand sides. Only equations
of the second type are normally affected by the application of the boun-
dary conditions. If a velocity component or the pressure is specified
at a boundary node the global equation corresponding to that variable
is not required and therefore eliminated from the equation system.
The effect of the specification is imposed on the remainder of the system
by subtracting from the right hand side of each of the other equations,
the product of the value of the variable and the coefficient of the

linear term corresponding to that variable 1in each equation. The
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non-linear terms are modified by substituting thel specified variable
into each equation and collecting like terms. If the value of the
variable is zero, all terms that contain that variable in each equation
are simply eliminated. It should be noted that variables at nodes other
than the ones on the outer bouédary of the flow domain may be specified
in the boundary conditions of a problem. The idnclusion of these
specifications is identical to that for variables at nodes on the outer
boundary of the flow except that in these cases, equations of the first
type are involved.

The other type of boundary condition, namely the specification
of the stress components and the velocity gradients in a given direction
is even more easily incorporated. The values of the stress components
and the velocity gradients are simply substituted in the surface
integrals on the right hand sides of the remaining type two equations
and the integrals evaluated. Once this is done, the right hand sides
of all equations should be known, and the number of non-Tinear global
equations in the system should equal the number of unknown nodal
velocity components and pressures. The equations are now ready to be
solved.

The method that has been recommended by the majority of previous
researchers for solving the resulting non-linear simultaneous equation
system and the one that was therefore chosen for this study, is the
Multi-dimensional Newton-Raphson Iterative Solution Scheme. It can
be described basically as a technique for finding the solution to a
system of non-linear equations by solving a number of successive related
linear systems. That is, the problem is changed from solving one non-
linear to several linear systems of equations.

To explain the procedure, consider a system of n non-linear equa-

tions expressed in terms of n unknowns x = (Xy5Xps ....s X,) and given

by
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fi{x) = 0 fori=l, ... n 3.31

A second system of equations can now be constructed by differen-
tiating each of the equations in the first system with respect to each
of the n unknowns, and using these derivatives as the coefficients of
n terms in the corresponding equations in the second system. Since
the initial equation system is non-linear, the above derivatives are
not necessarily constant and therefore the second equation system is
also non-linear. However by adopting an iterative approach in which
an approximate solution, either an initial guess or the solution from
the previous iteration, is used to evaluate the derivative coefficients,
the second system of equations can be linearized and solved by the usual
methods to give an improved approximate solution. This procedure can

th

be conveniently expressed in the equation for the m iteration of the

Newton-Raphson method

n
m m+l m .
) Jij(§ ) 8X5 = -f.(x7) for i=1, ... n 81432
J=1
and for m=0, ... M
| oo ofi(x) m
where Jij(§ ) = ~— evaluated for x=x 3.33.1
X .
%3
fi(im) is the value of the equations when §=§m 3.33.2
m+1 m+1 m
X, = X. - X 3.33.
and xJ xJ xJ 3.3
where §m = (xq],xg, . xm) is an estimate of the solution, either an

initial guess when m=0 or the solution from the previous iteration,

ml (x']n+1 xm+] xm+]) is the new estijmate of the solution.

sXp s eee Xp
It will be noted that at each iteration § X

and x
m+1, the change in the
unknowns is evaluated rather than the unknowns themselves. To start
the procedure an initial estimate 50 of the solution is made with 50
usually being selected as the null vector. At each subsequent step
a new set of equation coefficients J.. (§m) are evaluated based upon

J
the solution of the previous step and a change to the previous estimate
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of the solution is calculated. When this change becomes sufficiently
small the required solution is obtained and the process stopped. The
matrix containing the derivative coefficients Jij (xm) is commonly known

-~

as the Jacobian Matrix and to avoid confusion in the following pages,

the system of equations that has Jij (x™) as its coefficients at the

mth iterative step of the Newton-Raphson method, will be subsequently
referred to as the corresponding Jacobian system of equations.

This technique is directly applicable to the solving of the equa-
tions derived in Section 3.2 and assembled in Section 3.3. However,
rather than assemble the element equations before constructing the
global Jacobian equation system it has been found more economical and
easier to program if Jacobian equation systems are constructed for each
element at element level and these then assembled in the usual manner.
Since the assembly process simply involves the addition of element equa-
tions, it can easily be shown that the resultant global Jacobian system
is the same in both cases, since the derivatives of a sum of equations
is identical to the sum of the derivatives of the individual equations.
This alternative approach however, presents a slight difficulty when
the velocity components or pressure are specified in the boundary con-
ditions since the equations that are actually solved in each iteration
are expressed in terms of the changes to the unknown nodal parameters
rather than in terms of the nodal parameters themselves. However by
letting the first estimate of the solution be zero for all variables
and by applying, during the first iteration, boundary conditions that
state that the changes in the specified variables equal the value of
the variables themselves, then the results of the first iteration can
be made to give the required values for the specified velocity compon-
ents and pressures. In all subsequent iterations, since only changes
to all variables are calculated, by ensuring that all changes to the
specified velocity components and pressures are zero, the specified

variables will retain their correct values when the procedure ends.
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The Newton -Raphson method can therefore be used successfully to obtain
a solution to the general non-linear simultaneous equation system
resulting from the finite element formulation of the Navier-Stokes
equations.

To conclude this chapter all that remains to be done is firstly
to set up the jkth component of the matrix of coefficients Ri of the
equations for element i, and secondly to derive and set up the jkt
component of the matrix of coefficients Si of the Jacobian equations
for element i. The full matrix Ri can be obtained by extracting the
coefficients of the 3K' + K" variable terms from the 3K' + K" simultan-
eous equations produced when the approximations given by equations
3.14.1-4 are substituted into equations 3.22.1-4. Since the number
of pressure nodes per element K" is less than the number of velocity
nodes K', it is not possible to set up the general jkth component of

th

R., because the number of equations corresponding to the j

js node of

element i is either three, if it 1is a velocity node only, or four if
it is a pressure node as well. To overcome this, additional continuity
equations consisting of all zeros and corresponding to velocity nodes
that are not also pressure nodes, are introduced. To remain consistent,
additional zero pressure terms must also be introduced into all equations.
The simplest way of doing this is to set up a continuity equation and
a pressure term corresponding to all K' velocity nodes and then set
N$j=0 or Ngk=0 everywhere whenever j or k corresponds to a velocity
node that 1is not a pressure node as well. This results in a system

h

of 4K' equations of which K'-K" are all zero. The general jﬁ: sub-

matrix of Ri for element i is therefore:

h
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To derive the Jacobian equations for element i, the element equations
must be differentiated with respect to all variables appearing in them.

The four jth element equations can be rewritten as:

K' 1 2 aN!. aN! aN!. oN! aN! . aN!
Eg1= J[— f{(1+c - —Cy) ig Tk, T ik A3 Ky gy

k=1 Re L 3 X X 3y dy 3z 9z ik
Y
*__1_ " aNij aN;k ] E-C aN1!j aN;k} v aN'. aN1'k
Re L 3y  ax 3 ) IX 3y
v

2 aNi, N aN! K' K aN!
) ij ik _ iJ e il
P T f Nig VPl + b X{/ Mk

3 ax 9z

3X k=1 1=1 3 X
N, Vi N: N Vi
aN.: 3 aN!
+ CoNi 5 —f'l\l%]) dv.uy, + f(N' NIy a—‘y] + €y N a;k NI dv.vg,
Vi
o Ny LT . )
~/’(N1J ik —;;— + Cop N2 —;;— 1]) dv‘wik}uil] - surface integrals =
V.

i

K' 1 aN'. aN! 2 aN!. aN! 1 aN!. aN!
Eq2= } [— d/ﬂ{CI 1J LI —C 1J 1k} dV'uik + ——.}P{ 1J ik

3

k=1 Re 3x  dy 3 y  dXx Re 3X 98X
V. V.
i i
2 aN!. aN: aN' aN: 1 aN! . aN!
TN RIS L S S f{c] K
3 3y 3y 3z 9z ! Re 3z 9y
Vi
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3 3 3y 8z ik ay e 1k k=1 1=1 13 ik 3xX
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K' 1 aN!. aN! 2 aN! . aN: 1 aN!. aN!
Eq3= ] [— f{c1 TA3 Tk e, MKy gy, + _f{c] i3 ik
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aNsy

aN‘
Eq 4 = z[ f{N“ — 3Ky qv.u; ~f{N*.' _ Ky vy,
- ik 1 3y ik

Vi

f BN'
{NY } dv.w,, 1= 0
57 ik

The following differentiations must now be carried out in order to set

up [s;1.
3Eq 1 3kq 1 3Eq 1 3kq 1
Uim Nim Mim Pim
3kq 2 _ 3fq 2 3kq 2 3kq 2
Mim Vim Mim Pim
oEq 3 3Eq 3 3kq 3 3kq 3
Mim Vim M Pim
3kq 4 3kq 4 3kq 4 3kq 4
T Win Wim Pim
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On closer examination it will be noticed that the submatrix
[Si]jk is in fact equal to the sum of the submatrix [Ri']jk and the

diagonal matrix given by

fa. (1 0 o0 o | av
jk
0 1 0 O
0 0 1 0
0 0 0 1
L J
aN%k K' K!' aN%]
where Ajk = N1.j = L (Ni1ui1) +C, Nij e ]E] ( - ui1)
aN! K' K' 3N
: ik | - il
+ N3 ay ]E] (Njqvip) + Cp NisNgy ]E] ( - Viq)
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Therefore for formulations A and B (C2=0)
K' aN! N} aN!
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4. FINITE ELEMENT AND COMPUTER PROGRAM DETAILS

The discussion concerning the first phase of this study is now
completed. That 1is, the fluid dynamics of a general viscous flow have
been presented and the governing Navier-Stokes and Continuity equations
have been derived. The finite element formulation of these equations
has been discussed and the techniques chosen to construct and solve
the non-linear simultaneous equation system have been suitably adapted
and described. The second phase of this study involved the selection
of suitable two- and three-dimensional finite elements and an appropriate
numerical integration scheme that could be used to satisfactorily model
the particular flow problems that were to be investigated. Details
of the finite elements are given 1; the first section of this chapter,
while a description of the integration technique is given in the second.
Finally, a number of finite element computer programs were developed
and some of the difficulties encountered in so doing are discussed in

the last section.

4.1 Isoparametric Finite Elements

The first major decision that must be made whenever the finite
element method is chosen to model a particular problem, concerns the
selection of element type and the associated order of parameter approxima-
tion that will be employed. It has been shown by Hood and Taylor (16)
that in modelling a viscous flow, the results obtained when the order
of interpolation for both the velocity and pressure is the same, are
considerably inferior, especially the pressure, to those obtained when
the velocity interpolation is one order higher than that for the pressure.
The explanation they presented was based on a consideration of error
consistency of the two coupled equations, Momentum and Continuity, for
two unknowns, velocity and pressure. A mixed interpolation method of

the type described by Hood and Taylor was used exclusively in this study
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and, in anticipation of this, the finite element equations given by
3.22.1-4 were arranged so that the number of pressure nodes could, if
necessary, be different from the number of velocity nodes in each element.

The actual order of the interpolation used was the quadratic
velocity and linear pressure combination. The cubic velocity and quad-
ratic pressure approach, or any of the higher interpolation methods
have the obvious advantage of requiring fewer elements to represent
the same flow, but results of previous investigations indicated that
they do not lead to solutions that are significantly improved. The
linear velocity and constant pressure approach was the only other possi-
bility. However an element having this interpolation facility, by
its very nature, can have only one pressure node located internally,
usually at the centroid. Therefore, because it has no pressure nodes
on its edges, it cannot ensure continuity of the pressure variable,
a condition that is assumed satisfied whenever the assembly process
is used to construct the global simultaneous equation system.

In two dimensions the number of nodes required for a complete

th

interpolation of the n~ order can be found from Pascal's Triangle,

that is

16 terms




AR

From the above it can be seen that a complete linear pressure and quad-
ratic velocity interpolation requires four unknown pressure and nine
unknown velocity nodal parameters and -therefore four pressure and nine
velocity nodes per element respectively. The nodal arrangements for
a triangular and a quadrilateral two-dimensional element with complete
quadratic velocity and Tinear pressure, mixed interpolation facilities
are shown in Figure 4.1. The velocity nodes are indicated by a circle
and the pressure nodes by a cross. It can therefore be seen that the
number of nodes required in the triangular element is ten, while for
the quadrilateral it is nine. By using an incomplete velocity interpola-
tion however, the total number of nodes in either element can be reduced.
The single internal node of the quadrilateral element can be omitted

by removing the x2y2

term from the complete quadratic interpolation,
thereby reducing the number of nodes to eight. If the same thing is
done to the triangular element, all three internal velocity nodes must
be removed. This is done by omitting from the complete quadratic inter-

polation the xzy, x2y2 2

and xy“ terms. This however, only reduces the
number of nodes to seven,and it becomes evident that the quadrilateral
element with either eight or nine nodes should be the best one to use
with the quadratic velocity and linear pressure interpolations. It
was therefore decided to use both quadrilateral elements and to carry
out a comparison to determine the relative merits of each. A comparison
similar to this, with the results favouring the eight noded element,
was previously performed by Fletcher (11) who used the Galerkin approach
to solve an incompressible inviscid flow. On the other hand, Bercovier
and Engelman ( 3) who also solved an incompressible inviscid flow, con-
cluded that the nine noded element was somewhat better than the eight
noded. The technique they used was not the Galerkin method but a var-

jational finite element approach with a penalization of the Continuity

equation and the consequent elimination from the system of the pressure
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Figure 4.1

(a) ten noded triangle (b) nine noded quadrilateral

(c) seven noded triangle (d) eight noded quadrilateral

Typical Triangular and Quadrilateral Two-dimensional Finite
Elements, (a) and (b) with complete linear pressure and
complete quadratic velocity interpolations, (c) and (d)
with complete Tlinear pressure but incomplete quadratic
velocity interpolations.
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variable. The viscous flow results they presented were obtained using
only the nine noded element. In this study however, the results of
~two viscous flow problems, obtained using firstly the eight and then
the nine noded elements, are compared and presented in Chapter 5.

The number of pressure and velocity nodes on each side of both
of these elements is two and three respectively. This allows a unique
linear pressure and quadratic velocity variation to be described on
all edges of each element. These two conditions ensure that the con-
tinuity of both pressure and velocity across all element interfaces
is maintained. The continuity of velocity gradients however, cannot
be guaranteed by either of the above two elements.

The two, elements selected above are more commonly known as the
eight noded Serendipity and the nine noded Langrangian isoparametric
quadrilateral elements. The advantage of these over the standard
triangular and rectangular two-dimensional elements is in their ability
to represent the relatively complex geometries most likely to be encoun-
tered in real flow problems. The term "“isoparametric" is used to
describe elements that have their geometry expressed in terms of the
same set of shape functions used to describe the variations in the fields
they are being used to represent. Since it may be necessary in some
cases to handle curved flow boundaries, the linear pressure shape
functions, which can uniquely describe only a linear variation, are
inadequate.  The quadratic velocity shape functions must therefore be
used to represent the geometry of the elements.

Figure 4.2 shows a typical eight and nine noded element with curved
edges. It also shows two coordinate systems, namely the global cartesian
x and y system and a local curvilinear £ and n system. The second system
is introduced to facilitate the setting up of the shape functions and
their derivatives and is such that ¢ and n are either +1 or -1 on the

edges of each element. More precisely, given that each element 1is
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3 (a)

(b)

Figure 4.2 Typical (a) Eight Noded Serendipity and (b) Nine Noded
Lagrangian Isoparametric Elements.
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defined by 1listing in a clockwise fashion, firstly the node numbers
on its four edges, starting with a corner node, and then any internal
nodes, then n=1 on the first edge, £=-1 on the second, n=-1 on the third
and £=1 on the last. For example, if the nine noded element in Figure
4.2 is defined as "123456789", then n=1 on edge 123, £=-1 on edge 345,
n=-1 on edge 567 and g=1 on edge 781. Node 9 is an internal node.

Figure 4.3 shows the same elements as shown in Figure 4.2 but
this time with the & and n as the cartesian coodinate system. In this
system the linear and quadratic shape functions are easily constructed.
For any eight noded Serendipity element i,the quadratic velocity shape

functions are:

1 = 1 - =
N: 4(1+$0)(1+n0)(50+n0 1) for j=1,3,5 and 7

1J
V- 1(1-£2 .
Nij = 3(1-¢ )(1+no) for j=2 and 6
and Ny = (1) (1-0°) for j=4 and 8 4.1
where £Eg = ssij
_ 4.2

and Ny = "nij
and (g i nij) are the coordinates of node j in the & and n system,

and given in Figure 4.3.

The Tinear pressure shape functions are:

n 1 L
Nij 4(1+-%Q(1+n0) for j=1,3,5 and 7

and Nij e

o

for j=2,4,6 and 8 4.3

where Eqn and (gij ’”1j) are as defined above. Similarly, for any

0
nine noded Lagrangian element i, the quadratic velocity shape functions

are:
N%j = %(1+50)£O(1+n0)n0 for j=1,3,5 and 7
Ny = 201650 (Tengdng for j=2 and 6
N%j = %(1+go)go(1-n2) for j=4 and 8
and N, = (1-62) (1-00) for =9 4.4

1J
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6(0,-1) 7(1,-1)

O— -0
£
O e
8(1,0)
O— O— O
3(-1,1) 2(0,1) 1(1,1)
v,
(a)

5(-1,-1) 6(0,-1)

) O
g 9(0,0) ) £
_ ( ) 2=
4(-1,0) T8(1,0)
O 0
n

(b)

Figure 4.3 Parent (a) Eight Noded Serendipity and (b) Nine Noded
Lagrangian Elements with & and n as Cartesian Coordinates.
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The linear pressure shape functions are:

N%j %(1+€0)(1+n0) for j=1,3,5 and 7

and =0 for j=2,4,6,8 and 9 4.5

Nij

where £ ,n_and (& ) are as defined above.

0*"o i3° M

It must be borne in mind at all times that the shape functions
given above are expressed in terms of the local curvilinear coordinates
£ and n. Therefore only derivatives of these shape functions with res-
pect to the coordinates ¢ and ® may be taken. However, in Chapter
3 it was found that the matrices [Ri] and [Si] had components that con-
tained terms with first derivatives of the shape functions with respect
to the global cartesian coordinates x and y (for two dimensions). There-
fore a transformation of the above derivatives between the two ccordinate

systems is required and can be set up by making use of the chain rule

of partial differentiation. That is

] 9 ax 3 oy

— T ————  — —

9t 9x of oy 3¢

and — 4.6.1

it
+

which in matrix form becomes

3 (ax ay ], 9 9
ae | | ae o | | ox ax
= = [J] . 4.6.2
3 ax ay 3
an an ay

| dn on _| Yy

[=*]

where [J] is the transformation Jacobian and should not be confused
with the Jacobian equation system referred to previously in Section
3.4.

By inverting the Jacobian
3 3

B 2
o 47" 4.7

ay an
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and by evaluating the derivatives with respect to the Tlocal coordinates
£ and n any derivative with respect to the global coordinates x and
y can be found.

To obtain the Jacobian matrix a relationship between the two co-
ordinate systems must be set up. This can be done by using the isopara-

metric property of the elements chosen. That is, the geometry, the
x and y coordinates of any point inside element i, can be defined using

the same shape functions that were used for the velocity interpolation.

Therefore
Kl
X: = b Ni..X:.
i 5T ijrtig
5. 4.8
and y: = N:..Y. s
i 321 ij™vij

where K' is eight for the Serendipity element and nine for the Lagrangian

element and (x ’yij ) are the coordinates of node j in the global x

1J
and y system.

(£,n)

These two functions describe the mapping of any point

in the curvilinear system to the point (x,y) in the cartesian

coordinate system. Therefore
- K K" ]
.| = ) [ . FPU VI
[9;] {jg Njge%ish {jz] N3 5 ¥sg)
9% 9t 4.9.1
K K'
d ! ) 3 !
{jz] Ni5 %i5} {.51 Nis 5
| an an i
which expands to - 1l
~ = 1 Y
| My N2 Mk X2 Yi2
g £]a 12
1 1 ] 4.9-2
N MNig Mig:
an an an
L *ik' ik
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Thus all quantities within the integrals in the matrices [Ri ]
and [Si] can be transformed and expressed in terms of the & and n co-
ordinates. Then by changing the 1imits of integration in all integrals,
each can be evaluated in the £ and n system. The element of area dA;
is transformed by the following relationship

dAi = det J, dedn 4.10
This can be verified by any text on the finite element method (36).

A typical integral in terms of x and y, say

sN!. aN! aN! . aN!
./1 ij ik & 1 1k} dA

X X ay  ay
A.
!
becomes 1 1
’ aN!. aN! aN!. aN!
— ko, _1J 1k}det J; dedn
ax  9x ay dy
-1 -1

expressed only in terms of £ and n. All that remains to be done now
is to evaluate these integrals and set up the element equations. How-
ever, before the element equations are complete their right hand side
surface integrals must be evaluated. It should be remembered that only
surface integrals for equations that correspond to nodes on the outer
boundary of the flow domain need to be evaluated.

To demonstrate the transformation needed to put these surface
integrals into a form that is easily evaluated, consider a typical boun-
dary element with a normal and tangential shear stress applied to the
edge that coincides with the portion of the outer boundary of the flow
domain on which stresses are applied. Figure 4.4 shows such an element.
Let the edge on which the stresses are applied be called edge A. Since
the velocity is allowed, at most, a quadratic variation in any element,
then the stresses can only vary linearly along any element edge. There-
fore the normal stress p and the shear stress s need only be specified

at the two corner nodes of edge A and the Tinear pressure shape functions
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p - linear interpolation
between p, and P3

s - linear
interpolation
between s] and

52.

fluid stress boundary

normal vector

_ 9y X
(~=F s 57)

tangent vector ot

3X ay

1)

edge A (n

local coordinates
(g , 1)

Figure 4.4 Typical Boundary Element with Applied Normal and Tangential
Shear Stress Components, p and s.
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can then be used to interpolate between these two points. It will be
noted that the normal and tangential shear stress components have been
used instead of the x and y components. This is because in most real
flow problems, on the stress boundary it is usually the normal and shear
stresses rather than the x and y components that are known.
It can easily be shown that the vector with components
3y ax
(—, - —) 4.11.1
an an

is normal to the line & = constant at any point within an isoparametric

element, while the vector with components

ay X
(- — —) 4.11.2
3 9dE

s

is normal to the line n = constant. These vectors are directed outward
fromthe element on the edges £ =1 and n =1 and into the element on the
edges £=-1 and n=-1. Similarly, it can be shown that at any point within

an isoparametric element, the vector with components

(—, —) 4.12.1

is tangential to the line & = constant while the vector with components
ax ay

(—, —) 4.12.2
9E 3L

is tangential to the 1ine n = constant. The directions of these tangen-
tial vectors is always in the positive & direction for those tangent

to n = constant and in the positive n direction for those tangent to

£ = constant. Remembering that the Jacobian and 1its inverse matrix
are . _ -
ax oy | -1 1 3y 3y
(] = | — —|and [J] = — i
9L 3¢k det J an 3¢
ax dy ax X
| 9n an_ L an aE |

then it can be seen that the above normal vectors can be obtained from

the colums of [J]7! multiplied by det J while the tangential vectors
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can be obtained from the rows of [J], all of which are expressed in
terms of & and n.
Thus at any point along edge A, n=1 and the stress in the x direc-
tion is
3y ax
-p— - S — 4.13.1
AL g

while in the y direction it is
ax 3y
p— - S — 4.13.2
AE 3L
It should be pointed out that the positive normal stress is always
directed outwards from the element and the positive shear stress is

always directed in a clockwise sense around the element as shown in

Figure 4.4. %herefore a typical integral expressed in terms of x and

Yy say
N,'ij{oxxnx + oyxny} ds
edge A
becomes !
f ay X
N:.f-p — - s —1 dg
1 5E 9E
-1

expressed entirely in terms of § and n.

Everything that has been discussed so far 1in this section can
easily be extended to three dimensions and for this reason a full dis-
cussion of the three-dimensional elements will not be given. The details
however must be presented to complete this section.

The three-dimensional hexahedral element used in this study is
the twenty noded Serendipity isoparametric element which 1is capable
of allowing a complete linear pressure interpolation but only an incom-
plete quadratic interpolation for velocity, the terms omitted being
xzy% xzz% yzz% xzyzz, xzyzz, xyzz2 and xzyzzz. The twenty-seven noded

Lagrangian isoparametric hexahedral element which has complete quadratic

and linear interpolations for velocity and pressure respectively, was
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not used in this study. This is because, unlike in two dimensions where
the Lagrangian element only has one node more than the Serendipity and
therefore could be used in an analysis without the need of too much
extra computer space, in three dimensions it has seven nodes more.
The computer space required by the twenty-seven noded Lagrangian element
would have been as high as 2% times that needed by the Serendipity and
for this reason was not used. More will be said about this in Chapter
6. Despite this the details of this element have been included here
for the sake of compieteness.

As can be seen from Figure 4.5 the number of pressure nodes on
each face of both three-dimensional elements is four. This allows an
exact linear pressure variation to be described uniquely on all faces.
For the Langrangian element the number of velocity nodes per face 1is
nine. This allows an exact quadratic velocity variation to be described
uniquely also. The Serendipity element however only has eight velocity
nodes per face. As a consequence only an incomplete but still unique
velocity variation can be described on each face. Therefore for both
elements, continuity of both velocity and pressure is ensured.

The shape functions in the curvilinear &, n and § coordinate
system, which is shown and defined in Figure 4.6, are as follows. For
the twenty noded Serendipity element 1, the quadratic velocity shape

functions are:

A _
Nij = §(1+EO)(1+n0)(1+co)(€o+rb+co 2)
for 3=1,3,5,7,13,15,17 and 19

Ny | %(1—52)(1+n0)(1+c0) for j=4,8,16 and, 20

Ny %(1+Eo)(1-n2)(1+co) for §=2,6,14 and 18
and JH %(1+£0)(1+n0)(1—c2) for 5=9,10,11 and 12 4.14
where EO =n & Eij

no . n.n_ij
and £o = §.854; 4.15
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(a)

(b)

Figure 4.5 Typical (a) Twenty Noded Serendipity and (b) Twenty-seven
Noded Lagrangian Isoparametric Elements.
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Figure 4.6 Parent (a) Twenty Noded Serendipity and (b) Twenty-
Seven Noded Lagrangian Elements with £, nand zas
Cartesian Coordinates.
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and ( £ Niss ;ij) are the coordinates of node j in the &, n and

> il
r system, and given in Figure 4.6.

The linear pressure shape functions are:

w _ 1 .
Nij = g-(1+g0)(1+n0)(1+;0) for j=1,3,5,7,13,15,17 and 19
and N?j =0 for j=2,4,6,8,9,10,11,12,14,
16,18 and 20 4.16
where Eo’ nys &g and (Eij’ "ij’ Cij) are as defined above.

Similarly, for any twenty-seven noded Lagrangian element i, the

quadratic velocity shape functions are:

1 - ] 3 =
Nij = §(1+€0)Eo(1+n0)n0(1+c0)c for j#1,3,5,7,19,21,23

4]
and 25

Ny .= 10-2)(en ) n (14e )z, for §=4,8,22 and 26

Ny = %(1+§0)§0(1-n2)(1+c0)c0 for §=2,6,20 and 24

Ny = %(1+go)go(1+q0)no(1-c2) for j=10,12,14 and 16
NI, = 3(1+€ )E (1-02) (1-¢) for j=11 and 15

ij = 2 0 et !
N%j = %(1-52)(1+n0)n0(1-c2) for j=13 and 17
Ny = 3(1-2) (1-n2) (T4 ) 2, for j=9 and 27
and Ny = (1-£2) (1-22) (1-£2) for §=18 4.17
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The linear pressure shape functions are:

Ny =-%(1+50)(1+n0)(1+;0) for 3=1,3,5,7,19,21,23 and 25
and Ny = O for 3=2,4,6,8,10 ...17,18,20,22,
24 and 26 4,18

where E> Mos So and (gij’ "ij’cij) are as defined above.

The three-dimensional Jacobian matrix is

- -3

X oy 9Z
= — = —
9L & 2t
X Sy 9z
— s — 4,19
oan an an
ax ay 9z

14 24 9z

and by using the quadratic velocity shape functions to describe the

geometry, that is

>
]
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the Jacobian can be expanded to:
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where K' is 20 for the Serendipity element and 27 for the Lagrangian,

and (x ) are the coordinates of node j in the global x, y

1\]’ .Y.le Z'IJ
and z system. Therefore

oe 2

X 9L

3 -1 J
_ = [J] = 4.22
ay om

]

9z L

As for two dimensions an element of volume dViin the x, y and z system
can be expressed in the & n and ¢ system by using

dv;, = det J; dedndg 4.23
Thus all integrals in the matrices [Ri] and [Si] can be rewritten in

the form

1 1 1
/fff(s,n,c) dednde

-1 -1 -1
by changing the 1imits of the integration.

The last thing that must be included in this section is the trans-
formation of the surface integrals 1in each equation corresponding to
a node on the portion of the outer boundary of the flow on which stresses
can be specified. As for two dimensions, stresses may have at most a
linear variation. Therefore on any element face the normal stress and
the two shear stress components need only be specified at the four corner
nodes and the linear pressure shape functions can then be used to inter-
polate between these points.

Consider Figure 4.7 which shows a normal stress p and two shear
stresses S and Sy applied to face A of a typical boundary hexahedral
element. The positive directions of applied normal and shear stresses
are shown in Figure 4.8. It can be shown that at any point within an

isoparametric element the vector with components
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Figure 4.7 Typical Boundary Element with Applied Normal and Tangential
Shear Stress Components, p, S5 and So-
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3y 9z 9Z Yy 9z B3X axX 9z 23X 9y 3y ax
(—— —— —— - ——y — — =~ — —) 4.24.1
an 9L an 9% on 9L an 9z 9n 9L an 9zr

is normal to the plane £ = constant while the vector
dy 3z 3z 3y 9z 8x  3X 3z dx 3y Y X
(——— - - —— - ——y —— = — —]) 4.24.2
3z 9E 3¢ 9E ar dE 3y 9L dr 3 3L 3L
is normal to the plane n = constant and the vector
3y 9z 3z 9y 8z X  9IX 3Z 33X 38y Yy AKX
(— — - — ) —— - ——y —— = — —]) 4,24.3
3 9n 9f 3an 3E 9n 9E 8n 9& 9n 3E 9n
is normal to the plane ¢ = constant. These vectors are directed outward
from the element on the faces £ =1, n=1 and ¢ =1 and into the element

on the faces £=-1, n=-1 and ¢=-1. Similarly it can be shown that the

vector with components

ax 3y 9z
(—, ] '_) 4.25-]
ot 9E ag

is tangential to the 1ine n = constant, 7 = constant while the vector

X ay 9z
(—, —s —) 4.25.2
an an an

is tangential to the 1ine ¢ = constant, ¢ = constant and the vector
X oy ez

(-~ — —) 4.25.3

ag 3t 3T
is tangential to the line & = constant, n = constant. The directions
of these tangential vectors are always in the positive & direction for
the first, positive n directioﬁ for the second and the positive ¢ direc-
tion for the third. It can again be found that the above normal
vectors can be obtained from the columns of the inverse Jacobian matrix
multiplied by det J, while the tangent vectors can be obtained from the
rows of the Jacobian matrix itself.

Thus at any point on face A, ¢ =1 and the stress in the x direc-

tion 1is
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A A
dy 39z 9z vy X X
p(_— - “—_) - S'I(—) + 52(_} 4.26.1
9t an 9t an 9t an
in the y direction it is
A A
9z 3xX  IX 9z oy y
pl— — = — —) = s57(—) + s,{—) 4,26.2
9t 9n 9f o9n XS an
and in the z direction it is
A A
ax 3y dy 9z 9z az
ple— — = — —) = s7(=) + s,(—) 4.26.3
9E 3n 9E an 12 an

Thus any surface integral expressed in terms of x, y and z, say

fNij{oxxnx + nyn_y + ozxnz} ds
S5

becomes
AN

] dy 3z 3z dy ax 5;
f[{p(——— - m———) = 5 =) - 52(—)} dg dn
3E 3an  3E an g an
-1 -1
expressed entirely in terms of €, n and ¢.

It should be noted that although the rows and columns of the Jacobian
matrix and its inverse produce vectors that are respectively, tangent and
normal to the surface of an element, the magnitude of these vectors, for
the purpose of calculating the x, y and z components of stress are not
always correct. In two dimensions this is not so. However in three
dimensions, the tangential vectors, as obtained from the rows of the
Jacobian matrix lead to incorrect equivalent nodal forces. On the other
hand, the normal vectors, as obtained from the columns of the inverse
Jacobian multiplied by det J have the correct direction as well as the
correct magnitude. Therefore, in order to obtain the correct equivalent
nodal force components when shear stresses are involved, at each point

on the element's stress boundary (surface) one must first normalize the
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tangential vectors and then scale them according to the magnitude of the
normal vector at that point. In this way the tangential vectors will
have the correct directions and magnitudes suitable for evaluating the
equivalent nodal forces without further scaling. The caps dn the shear
stress terms in equations 4.26.1-3 indicate that they have been adjusted
in this manner and that they differ in magnitude from the corresponding

components in vectors 4.25.1-3.
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4.2 Numerical Integration Details

Having selected an element type and defined associated quadratic
and linear shape functions, the integrals in the coefficients and on
the right hand sides of the element equations were transformed by making
use of the isoparametric property of the element chosen and a change
in integration limits, to integrals over a simpler geometric shape but
with integrands that are complex rational functions of the local co-
ordinates.. The exact evaluation of these transformed integrals is
difficult even when regular rectangular or brick elements, for which
the Jacobian matrix is constant, are used. In these cases, and more
so when'elements with curved edges or faces are used, the evaluation
of these integrals can only be done by computer if a numerical integra-
tion technique is employed.

In general, numerical integration of a function of one variable
£ involves the evaluation of the integrand f(t) at n Gauss points £=a,,
j=1, ... n, multiplying these values by the corresponding prescribed

numbers or weights W and summing the n results. That is
1
n
ff(g) de = 1 w; fla,) 4.27
-1

The particular form of numerical integration used in this study is the
Gauss quadrature or numerical integration. This is the most accurate
of the quadrature formulae in ordinary use (36). In this method the
values of & at the n points at which the integrand is to be evaluated
and n weights are chosen so that a polynomial of order less than or equal
to 2n-1 can be integrated exactly. Therefore if f(t) is any polynomial
it can always be evaluated exactly by taking a sufficiently large number
of Gauss points, n.  However if f(g) is not a polynomial, it must first
be approximated by one, the order of which depends on the closeness

of fit required (only within the 1limits of integration), and then the
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number of Gauss points can be decided. In this case,numerical integra-
tion does not produce the exact value of the integral.
The double and triple integrals of functions of more than one

variable can be evaluated in the same manner. Thus

T 11

]//f(iansc) dedndg

-1 -1 -1

1 1
n

= /f ¥ W, f(E,]-,n,c) dndz by treating n and ¢ as constants
i=1

-1 -1
1

n n
= / ) Wj I v f(gi’“j’C) dz by treating ¢ as constant
j .

ji=1 , =1
-1
n n n
= T ow I ow. T ow flesnigy) 4.28.1
k1 Kgsp dan TR
n n n v
= ] ) I owowaw, flEs,n.57,) 4.28.2
I I T
3
n
= ]z W-l f(E],n];C]) 4.28.3
=1

The integrals that were produced after the transformation from
the x, y and z System to the ¢, n and ¢ have the required 1limits for
the numerical integration, but the integrand is in general not a simple
polynomial function. This is because the Jacobian matrix used in the
transformation has components that can be functions of £, n and «z.
Therefore its inverse, which is used to transform the derivatives, con-
tains the factor —d% where detd is also a function of g, n and .
Therefore all the derivatives also contain this factor and by examining
the integrals in the matrices [Ri] and [Si]’ it will be seen that when

transformed, the resulting integrands have quotients of two polynomials

in the Tlinear portion and a simple polynomial in the non-Tinear.
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In this study it was decided to use n=3 Gauss points per coordinate
direction in order to evaluate these integrals numerically. This results
in nine and twenty-seven Gauss points in two- and three-dimensional
elements respectively. It allows a polynomial of order 5 in terms of
E, n and t to be evaluated exactly. Three Gauss points per direction
were also used to evaluate numerically the surface integrals. Figure
4.9 shows the position of thé 3x3 Gauss points in the two-dimensional
quadrilateral element while Table 4.1 lists the weights associated with
each point. The three-dimensional arrangement of Gauss points 1in a
typical hexahedral element 1is difficult to present and has not been
included. However Table 4.1 can also be used to define the location
and the weights of each Gauss point in a three-dimensional element.

Recently it has been advocated by some researchers (11) that
reduced integration, that 1is, using less Gauss points than would
normally be employed, leads to improved solutions. This aspect, although
jmportant since a considerable amount of computation fime is saved if

fewer Gauss points are used, was not investigated in this study.
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4.3 Some Important Computer Programming Aspects

Having established the theoretical background for the selected
mode1ling and solution procedures, the final step in this study was
to obtain a solution to a general two- and three-dimensional viscous
flow problem. A large amount of time was spent in this section of the
research because the development and debugging of the computer programs
that were set up to find these solutions was a slow process. In all, four
programs were written and developed, debugged and tested. The two two-
dimensional programs differed only in the type of element incorporated.
Program CR2DVF8 used the eight noded Serendipity isoparametric element,
while program CR2DVF9 the nine noded Lagrangian element. The two three-
dimensional packages both used the twenty noded Serendipity element
but the second, program CR3DVF2 incorporated an additional out of core
storage facility in the solution routine that enabled it to handle prob-
lems with a larger number of nodes and elements. It was written because
jt was found that program CR3DVF1 could solve a problem with a finite
element mesh no bigger than three elements by three elements in cross-
section. Even this required the full core capacity available in the
Cyber 173, and as a result program CR2DVF1 was 1ittle used. It is impor-
tant to mention at this stage that all programs were written to be as
economical in terms of core requirements as possible, although at times
a loss of computing efficiency resulted. Typically, a two-dimensional
problem with 150 elements and 500 nodes would require approximately
75,0008 words of central memory and solution times in the region of
150 central processor seconds per iteration. On the other hand, a three-
dimensional problem with 40 elements and 300 nodes and solved using
program CR3DVF2 would require 130,0008 central memory words and 800
central processor seconds per iteration. The above figures are only
approximate and are largely dependent on the configuration of the finite

element mesh used.
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The first two-dimensional program written, CR3DVF8, was based
on and followed closely the 1lines of one written earlier by Yeo for
two-dimensional stress analysis and described in detail in the book
by Cheung and Yeo (9). It incorporates the eight noded isoparametric
element and the well known and efficient solution technique, the Front
Solver. Program CR2DVF8 however differed from the one written by Yeo
(called ISOP) 1in three major areas. Firstly, a mixed interpolation
was included in program CR2DVF8 resulting in a variable number of un-
knowns per node, either two or three rather than just two as in ISOP.
Secondly, the global stiffness matrix resulting from a viscous flow
problem, unlike that for an elasticity problem, is always unsymmetrical.
This means that the full matrix rather than just the half above and
including the leading diagonal, must be stored and used at all times.
Thirdly, because a viscous flow problem has equations that are non-linear,
an iterative solution procedure had to be incorporated in program CRZ2DVFS.

The structure of CR2DVF8 and the three subsequent programs consists
of a master main program supported by a number of specialized subroutines
to which control is transferred as the need arises. The subprograms
perform the basic tasks of accepting and checking the input data,
evaluating the Frontal solution parameters, setting up the element equa-
tions and their right hand sides, assembling and solving the global
equation system and finally, checking the solution at each iteration
for convergence. A flow chart showing the basic layout of the four
programs is given in Appendix B. In setting up program CR2DVF8, several
problems were encountered. A discussion of two of the more troublesome
now follows.

The first problem found and probably the most tedious to solve
was the incorporation of the mixed interpolation for velocity and
pressure. This affected all areas of the program since the number of

unknowns per node, now dependent on the node type, is referred to in
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almost every subroutine. It was originally intended to treat éfﬁ;nodeé
alike. This could be done by setting up a zero equation corresponding
to the pressure variable at all midside nodes where the only unknowns
are the two velocity components. Minor problems occurring when the
solution procedure encountered a zero equation could be overcome and
a solution with a meaningless zero pressure at all midside nodes could
be obtained.

However, after a short calculation, it was found that over half
the nodes in a typical two-dimensional mesh are midside nodes. This
meant that if a mesh with 600 nodes was used, over 300 zero equations
corresponding to pressure and not contributing to the solution, would
be processed ,1ike normal non-zero equations each iteration. The
additional core and execution time required to incorporate mixed inter-
polation in this fashion were unacceptable. This difficulty was
finally overcome by including in the program at every relevant point
a facility for adjusting the number of variables for a midside node
from three to two. This added a considerable number of Tines to each
subroutine and was particularly tedious to implement.

The other major problem encountered occurred during the testing
of CR2DVF8, when it was found that very small and very large numbers
were being combined in the solution procedure, with the consequent loss
of accuracy due to rounding off. The large and small numbers appeared
as a consequence of the technique adopted for incorporating specified
variables, and because the global Continuity equations corresponding
to nodes with a pressure unknown have no pressure dependence and there-
fore have a zero on the leading diagonal of the global stiffness matrix.
Whenever a variable is specified in the boundary conditions, a large
number, for example 1010, is added to the coefficient corresponding
to that variable in the equation corresponding to that variable. As

can be seen from the example in Figure 4.10, after sufficient reduction
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s <:Jeading diagonal

10 equation (a) corresponding to

i ) ¢ * a specified velocity
d 0 e ... a pressure equation (b)
£ h equation (c) corresponding to

g ~ * an unknown velocity
~
~
by round-off, equation system reduces to

100 b ¢ ... (a)
d 0 e ... (b)
f g h ... (c)

after reduction using equation (a) system is
10

10 b c ... (@)
0 abx10710 e-cdx10710 ... (b))
0 g-bfx10'0 n-fex107'0 L. (c")

by round-off, equation system reduces to

1010 b c ... (a)
0 —dbx10710 e .. (b")
0 g h oo (")

after reduction using equation (b') system is

1010 b c ... (a)
0 ~dbx10™10 e .. (b")
0 0o . h+%%x1010 .. (e

by round-off, equation system reduces to
10

10 b c ... (a)
-10 all coefficients in equation
0 -dbx10 e oo (b') (c% have been over-ridden by
eg. 110 1010 terms and lost due to
0 0 x10 ... (¢") round-off.

Figure 4.10 Example of Loss of Information Resulting from Computer
Round-0ff.
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cycles of the Gaussian elimination process, which forms the basis of

the Front Solver, numbers of the order of 10710

appear on the leading
diagonal in the Continuity equations. When the turn comes for these
equations to be used in the reduction elimination process, pivots (lead-

10 .re used and, as is shown in

ing diagonal coefficients) of order 10
Figure 4.10, round-off errors are introduced as a result. It is impor-
tant to stress that this situation would not have occurred if the
Continuity equation was a "true" equation containing a pressure depend-
ent term as well as the velocity component terms.

To overcome this problem the Front Solver had to be modified as
follows. Firstly in any reduction step, instead of using the first
fully assembled equation found in a search from the top of the global
stiffness matrix as the equation to be eliminated, a search is made
of all the fully assembled equations currently in the global stiffness
matrix, and the one with the largest leading diagonal coefficient is
used. This resulted in the Continuity equations, all containing pivots

of the order of 10 19

, remaining in the global stiffness matrix until
no other equation could be used. The same problem then occurred when
these equations were used. A second modification was then made so that,
rather than assembling the equations of each element one at a time and
at each stage eliminating all fully assembled equations, the equations
for as many elements as possible are assembled in the given working
area, and when this is done, only sufficient fully assembled equations
are eliminated as will enable the equations of the next element to be
assembled. Thus at all stages as many fully assembled equations as
possible are present in the global stiffness matrix.

This however still did not prevent the last equations from having
very small leading diagonal coefficients. The problem was finally solved
by, in addition to the above two modifications, further changing the

solution procedure so that at each reduction stage, when the working
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area has as many fully assembled equations in it as possible, rather
than simply chosing the fully assembled equation with the largest pivot,
a pair of fully assembled equations are added and this combined equation
used. The equations added must produce the pivot with the largest mag-
nitude and only fully assembled equations for unspecified variables
can be considered. This eliminated the round-off errors and program
CR2DVF8 then started producing the required solutions.

Program CR2DVF9 is identical to program CR2DVF8 with the exception
of the element type used. The nine noded Lagrangian isoparametric
element incorporated in CR2DVF9 has one internal node more than the
Serendipity element. There is no pressure variable associated with
this additional node and the two velocity equations corresponding to
it have no surface integrals on their right hand sides. Thus once the
element equation system has been constructed, the two velocity equations
corresponding to the internal node can be eliminated from it, thereby
reducing the number of element equations to 24, the same number as for
the eight noded element. Program CR2DVF9 1is therefore identical to
program CR2DVF8 except in the subroutines that set up the element equa-
tions where a pre-assembly reduction is performed, and in the back-
substitution subroutine where the two equations per element are used
to calculate the two velocity components at each mid-element node.

The three-dimensional program CR3DVF1 is directly analogous to
CR2DVF8. It uses the twenty noded Serendipity element and incorporates
the same modifications to the solution routine as in programs CR2DVF8
and CR2DVF9. It therefore needs no further discussion other than to
say that it is considerably longer and more complex than the correspond-
ing two-dimensional program. A Tlisting of this three-dimensional
program is not included because of space limitations. However a listing
of CR3DVF2 which incorporates an out of core storage facility in the
Front Solver and is the more viable of the two, is given in Appendix

B.
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The out of core solution technique is essentially a process in
which two disc files are used to store the global equations during the
assembly and reduction procedures. At any reduction step only a small
portion of the global equations are in core at any one time. When
required, groups of equations are read from one disc file into core,
manipulated, and when they are no longer needed, are written from core
to the second file. This process of reading from one file and writing
to the other is vefy time consuming, but since the storage capacity
of a disc file is very large, the only Tlimit in size of problem that
can be handled by this technique is the in-core working space. In
the 1limit, one equation is read and written at each read-write step.
However, the front width for a problem requiring this extreme facility
must be in excess of 2000, a very large problem even in three dimensions.

This now completes the discussion on the computer programs. How-
ever, before proceeding to the presentation of results, it was con-
sidered necessary to include in this thesis the numerical values of
the stiffness matrix for at least one particular element. Therefore
in Appendix C, the stiffness matrices for a two-dimensional, eight and
nine noded, one unit square element have been set out in full. The
24x24 and 27x27 element stiffness matrices have been evaluated using
formulation B and programs CR2DVF8 and CR2DVF9. With these, future
researchers will be able to check whether the computer programs used
in this study operated correctly, and will have some definite numerical

values with which to check the operation of their programs.
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5. RESULTS OF ANALYSES AND COMPARISONS IN TWO DIMENSIONS

In developing a possible new numerical scheme for solving the
Navier-Stokes equations or in improving an existing approach, previous
researchers have used a variety of viscous flow problems on which to
test and demonstrate the advantages of their proposals. Besides the
simpler Poiseuille and Couette flows, two other viscous flow problems
that have been traditionally used, are the flow in the entrance region
between two semi-infinite parallel plates and the recirculating flow
in a square cavity, both of which have no known exact closed-form
solution. In this chapter, all aspects concerning the finite element
analysis of each of these two flows, including detailed discussions
on boundary conditions and mesh configurations, are set out, and the
results from these analyses used, firstly in a comparison to determine
the optimal formulation of the Navier-Stokes equations, and secondly
in a comparison to determine the more efficient of the two two-dimensional
finite elements considered. Because the number of 1lengthy computer
runs required for each problem and the amount of results involved is
so large, it was decided to use only the above two flow problems in
both the formulation and the element comparisons. These two flows are
of sufficiently different character to justify one drawing the conclusion
that any trend displayed in the results of both these flows may be con-

sidered typical of any two-dimensional viscous flow problem.

5.1 Computational Test Program Details

In order to carry out a conclusive comparison of the finite element
formulations of the four versions of the Navier-Stokes equations, both
the entrance flow problem and the cavity flow problem were used. Howeven
before a full scale test program for each of these flows was undertaken,
some preliminary tests on the Poiseuille flow were carried out to ensure

that the computer programs written were in fact operating correctly.
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It was during these initial tests that a fundamental difference in the
performance of the eight and nine noded isoparametric elements became
evident. Details of the tests and the solutions obtained are given
in Appendix D, but the more important aspects are repeated in the follow-
ing paragraph.

Essentially, it was found that when the eight noded element was
used, the exact solution to the Poiseuille flow was obtained only if
the elements in the mesh were rectangular in shape. When trapezoidal
or general quadrilateral elements were included, the velocity, and
especially the pressure fields obtained, were considerably in error.
However when the nine noded element was employed, the exact solution
was obtained regardless of which element shapes were used. This
behaviour was found to occur with all four finite element formulations
of the Navier-Stokes equations and it was therefore concluded that it
was not due to a formulation effect. Its explanation was finally found
to lie in the choice of quadratic interpolation function used to des-
cribe the velocity variation within each element. As was mentioned
in Chapter 4, the eight noded Serendipity element has velocity shape
functions that result in an incomplete quadratic velocity interpolation.
On the other hand, the nine noded Lagrangian element is capable of giving
a complete quadratic interpolation for velocity. Although this basic
difference did not seem very significant initially, it was found, as
is shown 1in Appendix D, that if a quadratic velocity variation is
imposed on a trapezoidal element by speficying its exact value at all
the nodes, the function describing the velocity variation at any point
within the element and obtained by using the corresponding shape func-
tions, is exact if the Lagrangian element is used, but substantially
in error when the Serendipity element is employed. As a result, since
the Galerkin finite element procedure is essentially a minimization

of a total error or residual in an integrated average sense, when the
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eight noded element is used, errors resulting from its inability to
represent exactly velocity variations of the type described above are dis-
tributed across each element and throughout the variables. Thus even
though the pressure may have been interpolated exactly in its own sense,
in an overall element and subsequently global approximation, considerable
loss of accuracy can occur when trapezoidal or general quadrilateral
eight noded Serendipity isoparametric elements are used.

With the above findings in mind, a series of computer runs for
the comparison of formulations A to D were planned and carried out on
both the entrance flow and the cavity flow problems. In order to avoid
problems associated with inadequacies 1in interpolation, two finite
element meshes, one for the entrance flow,ENFLM1 and the other for the
cavity flow, CAVFLM1 were constructed entirely of rectangular elements.
This was done to enable either the eight or the nine noded element to
be used without loss of accuracy. Since it was anticipated that the
nine noded Lagrangian element would require considerably more computer
storage and execution time, and since the number of computer runs
required was quite substantial, it was decided to use only the eight
noded Serendipity element in this first series of tests. However, to
ensure that the above decision was in fact correct, spot checks were
made by rerunning several of the tests using the nine noded element.
Table 5.1 shows the runs that were carried out for each of the two
problems. The single asterisk indicates that the eight noded Serendipity
element was used while the double asterisk indicates that both the eight
noded Serendipity and the nine noded Lagrangian elements were used.
The results obtained from these runs are used in Section 5.4 to deter-

mine the most efficient and most accurate of the formulations A to D.
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With the first series of runs completed and the comparison per-
formed, a second series of computational tests for the comparison
of the eight and nine noded elements was planned and undertaken.
In order to verify that the eight noded element was in fact as accurate
as the nine noded when all elements in a mesh are rectangular, the
first part of this second series involved using meshes ENFLM1 and
CAVFLM1 again. For the second part it was necessary to construct
two additional meshes, ENFLM2 for the entrance flow and CAVFLMZ for
the cavity flow, both incorporating trapezoidal as well as rectangular
elements. The results of this second series of tests are presented
in Section 5.5 1in which the more effecient element is determined.
It should be qoted that in all tests carried out in the second series,
only the optimal formulation determined in the first comparison was

used. Table 5.2 shows the computational tests performed in this series.
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(a)

' 8NE ' ONE

(b)

i ENFLMI i ENFLM2 ENFLMI | ENFLM2 |
1 * i * * { * |
200 | * { * | * * {
I 500 ; 4 I * { * * %
{ 1000 { * ; = % N * i
; 2000 I * : i I * } * {
| | | 1 | 1
‘ | 8NE { INE |
i T caveLm | cAvFLM2 CAVFLMI CAVFLM2 I

1 * * * *
100 | * I * * * 1
400 { * I * * | * {
1000 I * } * * I * %
| 2000 i * i x \ * % * E

Table 5.2 Computer Runs Carried out (a) on
the entrance flow problem, and
(b) on the cavity flow
problem, in Computational Test Series 2.
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5.2 Entrance Flow Problem Details

As is suggested by its name, this classical fluid mechanics prob-
lem involves the prediction at various cross-sections downstream of
the entrance edge, of the velocity and pressure profiles of a fluid
entering a channel formed by two semi-infinite parallel plates, spaced
a distance d apart. It is a well known fact that beyond a critical
distance from the entrance edge, full flow development is realized and
the parabolic velocity and constant pressure profiles, characteristic
of the Poiseuille flow, obtained. The fact that this distance, which
js Reynolds number dependent and often referred to as the development
length, can be a significant fraction of the channel length, makes its
determination ‘a matter of considerable practical importance. Figure
5.1 shows all the essential details required to define the two-dimensional
entrance flow problem. However, before proceeding into a detailed dis-
cussion of the finite element analysis of this problem, it is worthwhile
looking briefly at some of the more important advances made by previous
workers in an attempt to solve the entrance flow problem.

Since obtaining an exact analytical solution to this problem 1is
not possible, various approximate solutions, mostly involving some form
of boundary layer approximation, have been presented since as early
as 1934. Schlichting (2s) considered the entrance flow problem and
used series expansions near to and far from the entrance, in a velocity
profile matching procedure. Van Dyke (33) later improved Schlichting's
solution near the entrance edge by using an upstream expansion whose
first approximation is the leading edge solution of the flow past a
semi-infinite flat plate. Many other analytical approximations, too
numerous to mention here but well documented by Van Dyke (33), have
been used in an effort to accurately model this problem, but the greatest
advance took place when the finite difference method was used. The

most frequently cited work in this area was performed by Bodoia and
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Osterle (4) who applied the finite difference method to the solving
of the boundary layer equations for the entrance problem. However,
it was not until several years later that the finite difference technique
was finally used to successfully solve the full Navier-Stokes equations.
Brandt and Gillis (5) and Morihara and Cheng (21), whose results are
used for comparison in this thesis, have obtained stable numerical
solutions to the entrance problem for Reynolds numbers based on the
channel width as high as 2000. Only recently has the finite element
method been applied to the solution of this problem (18, 29).

The entrance flow problem as it is defined in Figure 5.1, must
firstly be rendered dimensionless before the non-dimensional form of
the Navier-Stokes equations can be used to find its solution. The
characteristic velocity and length chosen to do this are the inlet
velocity v and the channel wjdth d, respectively. The Reynolds number
that appears in the governing equations 1is therefore defined as

Re = pzd, and the details defining the corresponding dimensionless

problem in which symmetry has been used to reduce the flow domain to
the upper half channel, are shown in Figure 5.2.

In applying the finite element method to the solution of the
entrance flow problem, it was immediately realized that the finite
element mesh, that is, the arrangement of elements chosen to represent
the flow, should incorporate relatively small elements close to the
channel wall at the entrance edge. This enables the large velocity
gradients occurring there as a result of the inlet velocity changing
from unity to approximately zero over a very short distance, to be
represented accurately. It was anticipated that relatively small
elements would also be needed adjacent to the wall for a considerable
distance downstream of the entrance edge. This is due to the fact that
in viscous flows the effects of viscosity are usually confined to regions

adjacent to solid boundaries and commonly known as boundary layers,
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the thickness of which generally decreases as Reynolds number 1increases
and inside which most of the significant velocity gradients can be found.
In the entrance flow problem, a boundary layer of zero thickness at
the start of the channel wall and dncreasing gradually to half the
channel width at approximately one development Tength downstream, can
be found along both walls of the channel. In order to adequately
represent the large velocity gradients that occur in these regions,
at least one, and preferably two, layers of elements should be placed
along the wall and within a boundary layer's thickness from it. It
is obvious that as the Reynolds number of the flow is increased and
the thickness of the boundary layer at any given cross-section decreases,
the size of these wall elements can become very small, especially close
to the entrance edge.

From the above it can be seen that in order to construct an
efficient finite element mesh capable of adequately representing the
fluid motion at any point along the wall, an estimate of the thickness
of the boundary layer that exists there, must be obtained. As a first
approximation, the solution to the flow around a semi-infinite flat
plate immersed in a fluid moving parallel to its axis, can be used.
A short investigation into some of the analytical studies previously
carried out on this problem, such as those performed by Davis (10),
revealed that the behaviour of the fluid around the plate can be ade-
quately described by the well known Blasius solution, an excellent
description of which has been presented by Rosenhead (26) 1in his book
on laminar boundary layers. However, this solution is only of Timited
use since it is not valid within a small region at the leading edge
of the plate. It is in this region that the size of element is most
critical. Improvements to the Blasius solution in the vicinity of the
leading edge have recently been proposed; however the exact behaviour

of the fluid in this region is still not fully understood and its math-
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ematical modelling still not complete. As a consequence it was decided
to carry this investigation no further and to fix the size of the
smallest element in the wall-leading edge corner of the mesh at 0.1%
of the channel width, this figure being selected so that, with a suitable
grading of elements from this corner out, a mesh with a reasonable
number of elements resulted.

In order to be able to use the properties of a fully developed
Poiseuille flow as boundary conditions at the downstream end, the finite
element mesh must extend to a section at least one development length
downstream of the entrance edge. Since the development Tlength LD is
Reynolds number dependent and given approximately for Reynolds numbers
greater than 100 by

LD = k Re 5.1
where k, previously determined by other researchers and compared by
Brandt and Gillis (5), ranges from 0.040 to 0.048, it is obvious that
a different mesh length would be required for each Reynolds number to
be considered. To avoid having to modify their meshes for each change
in Reynolds number, previous researchers scaled the x coordinate in
such a way that allowed full flow development always to be attained
within the length of one mesh. In this study however, scaling is not
used. Rather it was decided to construct one mesh suitable for solving
a flow with Reynolds number equal to 2000, and then to use this mesh
to solve all other flows with Reynolds numbers less than this value.

The resulting mesh, incorporating only rectangular elements, 1is
shown in detail in Figure 5.3 and will subsequently be referred to as
mesh ENFLM1. It is 200x0.5 in overall size and contains 541 nodes
defining 162 elements which range in size from 0.001x0.001 to 0.3x100.
The finite element solutions of the entrance flow problem obtained with
this mesh are used in both the comparison of formulations A to D and

in the comparison of the performance of the eight and nine noded
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isoparametric elements. Because of the fact that only rectangular
elements are used in mesh ENFLM1, the grading results in elements with
aspect ratios of 100,000 to 1 downstream and close to the wall and 1
to 300 at the entrance edge and near the centreline. The finite element
equations for these elements will therefore contain coefficients whose
magnitude is as much as five orders larger than the magnitude of others
in the same equations. As a result it was feared that, due to round-
off errors, instabilities would arise in the solution process leading
to solutions that are substantially in error, especially for flows with
Reynolds numbers approaching 2000. However on closer investigation
it was realized that 1in the regions occupied by these elements, the
velocity components and the pressure have only very small variations
and therefore would not be adversely affected by using elements with
such high aspect ratios. It was decided to use only rectangular elements
in mesh ENFLM1, not only because this would enable the eight noded
Serendipity element to be used without loss of accuracy (see Section
5.1), but also because this results in solutions that are evaluated
at points on straight lines along and across the channel. This greatly
facilitates the plotting of velocity and pressure profiles since the
solutions obtained from the finite element analyses can be used directly
without having to resort to interpolation.

In order to complete the second comparison, namely the comparison
to determine the more efficient of the two elements investigated,
a second mesh ENFLM2, the details of which are given in Figure 5.4,
was constructed for the entrance flow problem. This second mesh has
the same overall dimensions as the first, but is composed of trapezoidal
as well as rectangular elements. It contains 410 nodes and 119 elements,
and because the trapezoidal elements can be used to achieve a suitable
element grading much more effectively, the aspect ratio of the downstream

wall elements 1is reduced to 500 to 1, while that of the elements at
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the entrance edge near the centreline is reduced to 1 to 60. It should
be pointed out that when the nine noded Lagrangian element is used,
the number of nodes in both meshes ENFLM1 and ENFLM2 is increased by
the number of elements, since each element then contains one extra
internal node. Table 5.3 summarizes all the essential details of the
meshes used to solve the entrance flow problem.

The only thing that now remains to be discussed in this section
is the boundary conditions that were used in the finite element analyses
of this problem. As was stated earlier, for a solution to be obtainable,
either the velocity component or the corresponding stress tensor com-
ponent must be specified in each direction at every node on the boundary
of the flow domain. The following boundary conditions, a summary of
which is shown in Figure 5.5, are sufficient and necessary to enable
the correct solution to be obtained at all Reynolds numbers considered.
Edges A to D referred to in the following discussion, are defined in
Figure 5.5.

Along edge A the fluid velocity must be zero in both directions
since this is a solid boundary. Therefore at all nodes on edge A,

u=0 (x direction)
5.2
and v=0 (y direction)

Since edge B is coincident with the centreline and therefore the
line of symmetry of the flow, the shear stress component % vx parallel,
and the velocity component normal to this edge must both be zero. There-
fore at all nodes on edge B,

Tex'x F oyxny
= °yx since the vector normal to edge B has compon-
ents nx=0 and ny=]. Therefore,
o oyxny = 0 (x direction) o
and v=0 (y direction)
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ENFLM ENFLM2 I
8NE ONE SNE  9NE {
|
NE 162 162 | 119 119 |
I I
NNp | 190 190 | 146 | 146 |
I | |
NNV = 541 703 | 410 | 529 |
| | |
} NN } 541 I 703 | 410 | 529 |
| I |

I NP i 190 | 190 | 146 | 146
I I | I

{ NV { 1,082 | 1,406 | 820 | 1,058
I | I |
i NEq i 1,272 | 1,596 | 966 | 1,204 |
' | | I I
1 FW { 60 } 60 | 60 | 60 |
I | |
{ FL } . 66,0004 { 74,6008 { 63,0008 I 70,2008 1

Table 5.3 Details of Meshes and Elements Used
to Solve the Entrance Flow Problem.

(NE = number of elements, NNp = number of pressure nodes, NNv =
number of velocity nodes, NN = total number of nodes, NP = number
of pressure equations, NV = number of velocity equations, NEq =
total number of equations, FW = smallest maximum front width of
mesh, and FL = field length or number of computer storage words

required to solve the problem.)
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By ensuring that the finite element mesh is of sufficient length
to allow the flow to be fully developed at outlet, the properties of
a Poiseuille flow can be used as boundary conditions along edge C.
In the direction parallel to the flow either a velocity or a stress
type boundary condition can be applied, since both are known for a fully
developed Poiseuille flow. In using the former however, the velocity
at each node must be calculated, whereas if the stress boundary con-
dition is used, since the normal stress is constant across the channel
for a fully developed flow, only one value needs to be evaluated. The
latter was therefore chosen for this problem. Also for a fully developed
flow, the fluid moves parallel to the channel walls and at a rate that

is constant along the channel. Therefore at all nodes on edge C,

o N 4+ 0 N
XX X yxXy

= O since the vector normal to edge C has compon-
ents = 1 and ny = 0.
1 au 2 au  av
=— (2 — - - C3(—+—)) - p by equation 3.21
Re ax 3 X 3y
=-p

= constant, arbitrarily set to zero.

Therefore, °xxnx + nyny =0 (x direction)

5.4
and v=0 : (y direction)

The value of the pressure at outlet is arbitrarily set to zero
to simplify the boundary conditions. By setting it at any other value Po
say, the pressure field for the whole flow is simply either raised or
lowered by the same amount Py Because of this property of the equations
the pressure needs only to be specified at one node, for example, at
the corner of edges B and C, to fix a datum relative to which the

pressure at any other node is evaluated.
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The selection of the boundary conditions that would most accurately
model the flow at the inlet edge D presented the most difficulties.
Since not all the velocity gradients and the pressure can be predicted

a priori in this region, the stress boundary condition cannot be used.
Therefore all the velocity components must be specified on edge D.
By assuming that the fluid moves parallel to the channel wall at the
inlet edge, the transverse velocity component at all nodes on edge D,
can be set to zero. The first attempt at solving the entrance flow
problem used a finite element mesh whose inlet boundary coincided with
the start of the channel. The fluid was given a velocity of one parallel
to the channel walls at all nodes on this edge except for the one at
the wall where the velocity was specified to be zero. The resulting
specified inlet velocity profile is as shown in Figure 5.6(a), the hump

resulting from the quadratic dinterpolation used on the sides of any

element with three nodes per side. The solution that was obtained
resulted in velocity profiles at sections downstream of the inlet edge,
that also have humps close to the wall. A typical profile is shown
in Figure 5.6(b). When solutions for the same problem published by
other researchers (4, 28, 33) using boundary layer approximations were
examined, it was found that no humps existed in their profiles of the
velocity component parallel to the channel. It was therefore thought
that the above inlet boundary velocity specification had imposed a false
velocity profile at inlet and that its effects had been carried down-
stream to the other velocity profiles.

To overcome this, it was decided to apply the uniform inlet
velocity profile one layer of elements before the start of the channel.
The velocity immediately in front of the wall therefore, went from one
through 0.75 to zero at the start of the wall, over a width of one
element, as can be seen in Figure 5.7. The solution obtained using

this inlet boundary condition contradicted the above idea since the
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resulting velocity profiles still contained a hump close to the wall.
After further investigations it was found that this curious feature
of the velocity profiles had in fact been reported by other researchers
in this field. Abarbanel and co-workers (1) and all the researchers
who had solved this problem using the full Navier-Stokes equations
instead of the simpler boundary Tlayer approximations, had recorded
similar velocity profiles regardless of whether the finite difference
or the finite element method had been used. It was therefore realized
that the local maxima occurring in the velocity profiles were a real
characteristic of the entrance flow problem and that when the boundary
layer equations were used this feature was not represented and there-
fore not obsgrved. In order to avoid adversely affecting the true
velocity profiles by imposing an inlet boundary condition that has a
hump in it as well, it was decided to use the second inlet boundary
condition for subsequent runs of this problem. The thickness of the
additional Tlayer of elements was fixed at 0.1% of the channel width
on both meshes ENFLM1 and ENFLM2, so that for all Reynolds numbers con-
sidered, the elements at the inlet edge and adjacent to the start of
the wall have a width to depth ratio of 1. If scaling of the x co-
ordinate had been used as was suggested earlier in this section, the
width of the additional inlet layer of elements would become variable.
To avoid introducing additional unknown effects due to changes in the
applied velocity gradient immediately in front of the start of the wall,

this technique was not adopted. Therefore, for all nodes on edge D,

u=1 (x direction)
except at the node immediately ahead of the wall where = 0.75,
: 5.5
and v=20 (y direction)

It should be pointed out that the flow problem that is actually
being solved when the above boundary conditions are employed, is the

flow in the entrance region in one bay between two semi-infinite flat
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plates in an infinite series of such plates, as shown in Figure 5.8.
This is because it is assumed in the selected inlet boundary conditions
that the transverse velocity component v is zero at all the nodes in
front of the start of the wall. To avoid having to make this assumption
one must have some knowledge of the stresses that exist in this region.
However since it is impossible to know these a priori, some estimate
of the velocity field must be made, and as a result the above assumption
was adopted.

The only other matter that should be discussed in this section
concerns only formulation A. Since this is the only formulation in
which C]=0, jt is the only formulation that has a second surface integral
that must be evaluated on the outer boundary of the flow domain. Along
all edges of the entrance region on which the velocity components are
specified, the second surface integral is not required since the corres-
ponding equations do not apply. However on edges B and C in the x
direction, a stress boundary condition is specified and therefore, for

formulation A, surface integrals of the form

J{ 1 su v }
(C<-1) —§{—n_ + —n_tdsS
1 Re{ ax X ax Y

S5

must be evaluated there. However,on edge B the normal vector component

n,= 0 and v = 0, while on edge C,nh = 0 and %; = 0. Therefore this

X y

integral is zero on both edges B and C and as a result does not have
to be evaluated anywhere. For the entrance flow problem then, with boun-
dary conditions as given above, the second surface integral associated
with formulation A only, is not required to be evaluated at any point

on the outer boundary of the flow domain.
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5.3 Cavity Flow Problem Details

In order to verify the trends that become apparent in the analyses
and solutions of the entrance flow problem, a second classical fluid
mechanics problem, namely the recirculating flow in a square cavity,
js used. The cavity flow problem involves the prediction of the velocity
and pressure fields that occur within a fluid contained in an infinite
square cross-section cavity of dimensions DxD and forced to move by
the constant lateral motion of one of the four walls. Figure 5.9 shows
the real three-dimensional flow that is being studied as well as the
simpler two-dimensional arrangement that will actually be used to model
jt. As was the case with the entrance flow, no exact analytical solution
exists for this flow problem, and therefore all solutions published
to date involve some form of approximation. However, because there
are no inlet or outlet boundaries, this flow problem is somewhat simpler
to model than the entrance flow and consequently has sometimes been
preferred by previous researchers.

In the last twenty years most of the work that has been done on
the cavity flow problem has involved using either the finite difference
or the finite element method. A major contribution to the better under-
standing not only of the cavity flow but also of separated eddies in
general, was made by Burggraf ( 6), who used the finite difference tech-
nique to solve the full Navier-Stokes equations. Approximately a decade
later, Tuann and Olson (32) published a report in which the cavity flow
problem was used to study the advantages and disadvantages of various
finite element solution methods. A comparison of their results with
those of Burggraf, revealed that both the finite difference and the
finite element methods were capable of accurately modelling this flow.
More recently, Bercovier and Engelman ( 3), investigating the difference
in performance abilities of the eight and nine noded finite elements

of the penalization type, also used the cavity flow problem to demon-
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strate the usefulness of their proposals. It can therefore be seen
that, just like the entrance flow, the cavity flow problem has in the
past been a popular test case. For this reason and because it is so
very different in nature from the entrance flow, it was chosen as the
second flow problem with which to confirm the results of the two
formulation and element comparisons.

The actual two-dimensional flow problem that is shown in Figure
5.9 is non-dimensionalized by using the velocity of the moving wall
V, and the dimension of the cavity D as the characteristic velocity
and length respectively. The Reynolds number 1is therefore defined as
Re = -3%9 and details of the dimensionless problem are given in Figure
5.10.

With the experience gained from the analysis of the entrance flow
problem, the construction of the two finite element meshes required
for this problem was greatly simplified. It was again realized that
boundary layers would exist on all the solid boundaries, but no means
by which to estimate their thickness was found. By examining previously
published solutions it was also realized that problems associated with
singularities in velocity would occur at nodes in the two corners next
to the moving wall. This is because at both corners the fluid velocity
must be zero since it is next to a stationary wall while at the same
time it should be one since it is next to a moving wall. To overcome
this problem and in order to adequately represent the Targe velocity
gradients that occur 1in the boundary layers, significantly smaller
elements are used adjacent to all four walls. On the bottom boundary
however, the elements are not as small as on the moving wall since it
was anticipated that the velocity gradients there, although still sig-
nificant, would not be as large. This was later confirmed. The size

of the smallest elements located in the two top corners was 0.1% of

the cavity width, and with a moderate element grading from both these
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corners, mesh CAVFLM1, composed entirely of rectangular elements, was
constructed.

Mesh CAVFLM1 contains 1133 nodes and 352 elements ranging in size
from 0.001x0.001 in the top corners to 0.1x0.1 in the centre of the
mesh. As with the entrance flow, the solutions of the cavity flow prob-
lem obtained with CAVFLM1 are used in both the formulation as well as
the element comparisons. A second mesh labelled CAVFLM2, similar to
CAVFLM1 but containing trapezoidal as well as rectangular elements,
was also constructed. It contains 709 nodes and 210 elements and was
set up to complete the second comparison. Figures 5.11 and 5.12 give
the complete details of the element layout for CAVFLMI and CAVFLMZ while
Table 5.4 summarizes all the essential details of both the meshes used
to solve the cavity flow problem. Since the cavity flow problem contains
no inlet or outlet boundary, the two meshes constructed are suitable
for solving cavity flows with any Reynolds number. However it was
anticipated that dnstabilities would arise as Reynolds number fs
increased and it was therefore decided to limit it to 2000. In both
meshes a relatively fine arrangement of elements was retained in the
centre of the mesh to enable the vortex centre to be accurately located.

The boundary conditions that are required in order to obtain the
solution to the cavity flow problem are given in Figure 5.13. At all
nodes on edges B, C and D, which are defined in Figure 5.13, the fluid
velocity must be zero in both directions since these edges coincide
with stationary solid boundaries. Edge A on the other hand coincides
with the moving wall and therefore at all nodes on edge A, the fluid
velocity must be one in the x direction and zero in the y. The only
other aspect of the boundary conditions used that should be mentioned
at this stage is that the actual velocity specification at the nodes
on edge A and close to the corners, is as shown in Figure 5.14(a).

This avoids the decelerations and accelerations in the flow close to
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| CAVFLMI ; CAVFLM2 }
I 8NE ONE 8NE INE
|
| NE 352 l 352 210 | 210 |

NNp 391 391 250 250 1
| I | I | I
| NNv | 1,133 | 1,485 | 709 | 919 |
I | | I | I
| NN | 1,133 | 1,485 I 709 l 919 |
| I I I | |
| NP | 391 | 391 l 250 | 250 !
I I I | I I
| NV | 2,266 | 2,970 I 1,418 | 1,838 |
| | I I I I
| NEq | 2,657 | 3,361 | 1,668 | 2,088 |
I | | I | I
| FW | 95 I 95 | 95 ] 95 |
I l I I I I
I FL E 120,5008 ! 136,1008 E 107,1008 = 117,5008 }

Table 5.4 Details of meshes and elements used
to solve the cavity flow problem.

(NE = number of elements, NNp = number of pressure nodes, NNv =
number of velocity nodes, NN = total number of nodes, NP = number
of pressure equations, NV = number of velocity equations, NEq =
total number of equations, FW = smallest maximum front width of
mesh, and FL = field length or number of computer storage words

required to solve the problem.)
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the downstream and upstream corners that would arise if the velocity
normally specified and shown in Figure 5.14(b) were used. Finally,
since all boundary conditions are of the velocity type, none of the
surface integrals need to be evaluated. A1l that is required is that
the pressure be épecified at one node to define the datum. To be con-
sistent with that done by previous workers, the pressure is specified

as zero at the node located in the middle of edge C.
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5.4 Results of Formulation Comparison

As was shown in Section 3.1, several different versions of the
Navier-Stokes equations can be obtained by either using or not using
the incompressible Continuity equation to eliminate certain of the vis-
cous and acceleration terms that are a normal part of the Navier-Stokes
equations. The four versions that have been selected for this comparison
are set out again below and briefly described so that the differences
in each may be kept in mind as the comparison is made.

Formulation A, which has previously been used by Taylor and Hood
(30), Yamada et al. (35), Kawahara et al. (19) and several others,

involves the complete elimination of all terms containing the quantity

av.

—3§% as a factor. As a direct consequence, the finite element equations

for this formu]ation contain two surface integrals rather than the usual
one. However, as was seen earlier in this chapter, the additional
surface integral can usually be eliminated by a careful consideration
of the quantities involved on the outer boundary of the flow domain.
Where elimination is not possible, and this may occur only on that por-
tion of the outer boundary of a flow on which the fluid's stress state
is specified, the second surface integral can always be evaluated since
all the velocity gradients are known and there the direction of the
normal can always be calculated. Nevertheless this second surface
integral, whether it can be eliminated or not, introduces an additional
inconvenience that does not occur with any of the other formulations.
The equations for formulation A are the simplest of all the formulations

and contain only one viscous and one acceleration term. They are,

1 3%vi  9p av,
— —.-.-.-.-.:VJ___.
Re ax2, X s X
i ¥ %
av.
and ~Jd -9

X.
93
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Formulation B has been used by Hutton (17), Zienkiewicz (36, 37),
Tuann and Olson (25, 32), and several others also. It involves the
retention of an additional viscous term and because of this, its finite
element equations do not contain the second surface integral. This
is also true for formulations C and D, both of which retain the same

extra viscous term. The equations for formulation B are,

SR RS A = v, ol
2
Re X j axiaxj ax_i axj
v,
and —J4 =0
X .
X3

Formulation C, recently proposed by Hutton et al. (18), has equa-

tions which include a second acceleration term as well as the second
viscous term, and to the author's knowledge, has not previously been
used. Because the additional term for this formulation is non-linear,
it was anticipated that when formulation C is used, it would require
a greater number of iterations of the Newton-Raphson method to attain
the given convergence 1limits, especially at higher Reynolds numbers
when the non-Tinear acceleration terms predominate. The equations for

formulation C are,

1 32y 3zv ap v, av
s froend 4 J ) - = k4 Vi —
2
Re ax j ax1axj ax1 axJ axJ
3V,
and —J =0
X .
J

The 1last formulation, namely formulation D, has equations that
include both the extra viscous and acceleration terms of formulation
C, as well as a third viscous term. This formulation, as tar as the
author can ascertain, has never been proposed before and has been
included in this comparison because by retaining the extra viscous term,

it is the only formulation in which the variable labelled "p" represents
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exactly the pressure in a viscous flow, regardless of whether the Con-
tinuity equation has been satisfied exactly or not. This was done by
including in the fluid stress-strain rate relationship, a viscous term

av.
containing the quantity J that enables either the exact or the approx-

X,
imated pressure to be identically equal to the negative mean of the
three exact or approximated normal stresses at any point in a viscous

flow. The equations for formulation D are,

1 3%y, 3?v, 2 32y, ap v, v,
2' - . . .
Re ax i axiaxj 3 ax1axJ ax1 axJ axJ
V.
and —3 =0
X,
J

In order to determine most effectively which is the optimal
formulation, both the computational efficiency as well as the com-
putational accuracy of each is examined. A measure of the computational
efficiency of a formulation can be obtained by examining the amount
of computer storage and execution time required for a solution to be
found when that formulation is used. However, since the only difference
between the formulations is an additional term or two in the finite
element equations, with the remainder of the solution procedure being
the same, the computer storage needed to obtain a solution is almost
the same for all formulations. Therefore only the computation time
can be used to gauge the relative efficiency of each formulation. From
the first few computer runs, it was found that the execution times
observed were almost directly proportional to the number of iterations
needed to arrive at a solution that satisfied the set convergence Timits.
Therefore by looking at the number of iterations required to obtain
a fully converged solution for each flow with a range of Reynolds numbers
and using each of the four formulations, the one which is computationally

most efficient can easily be selected. With this in mind, the runs
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in test series 1 specified in Table 5.1(a) for the entrance flow and
5.1(b) for the cavity flow were executed and the number of iterations
and execution times required by each are listed in Table 5.5. For all
formulations and in all flows considered, full convergence was assumed
to have been attained when the root mean square of the adjustments cal-
culated at the end of each iteration, became less than 0.1% of the root
mean square of the newly adjusted nodal values of velocity and pressure.

From Table 5.5 some interesting points about the performance of
the various formulations can be observed. However to fully appreciate
these, something must be said about the process by which the solutions
are obtained. Since the Navier-Stokes equations, and therefore the
corresponding finite element equations are non-linear, the Newton-Raphson
iterative solution procedure was used to solve the resulting equation
system. In order to start this procedure, an initial guess is required.
The initial guess may be identically zero everywhere or it may be any
approximation of the velocity and pressure fields being evaluated.
However 1if the initial gquess is not sufficiently close to the solution
being sought, either the wrong solution is obtained or a large number
of iterations is required to obtain the correct solution or no solution
at all can be found. The degree of non-linearity of the equation system
governs how close the initial guess must be to the correct solution
before the Newton-Raphson method can be used effectively to find the
correct solution.

In this study it was decided to use an initial quess that is
identically equal to zero everywhere for both the entrance and the cavity
flow problems. This was done in order to avoid having to estimate the
velocity and pressure fields for each flow and so that none of the
formulations would be inadvertently advantaged by the fields chosen
to start the solution procedure. Because of this it was anticipated

that if the same initial guess is used, as Reynolds number increases
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(b)
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Formulation

Re
A B C D
| 1 2 (222) | 2 (222) | 2 (223) } 2 (223)
} 200 | 4 (456) } 4 (456) } 4 (456) { 4 (460)
I 500 | 5 (574) I 5 (575) { 5 (576) i 5 (578)
I 1000 | 6 (689) } 6 (692) % 6 (690) 1 6 (695)
i 2000 i 7 (808) E 7 (805) E 6+3 * E 6+3 ¥
{ re } Formulation
A | B | c | D
l 1T | 2 (738) { 2 (740) } 2 (740) 1 2 (744) }
100 ‘ 3 (1113) I 3 (1115) } 3 (1115) = 3 (1117) %
| 400 } 6 (2232) : 6 (2236) } 6 (2237) I 6 (2240) :
1000 i 6+3+4 * } 6+3+4 * } 6+3+4 * ; 6+3+4 * I
2000 l{ 1345 * i 1345 * I| 134444 ** i 1344+ *x E

Table 5.5 Number of iterations and in brackets execution

times for (a) the entrance flow and (b) the cavity flow

at various Reynolds numbers for test series 1.
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and the dominance of the non-linear terms also increases, the correct
solution would become considerably more difficult to obtain and even-
tually impossible to find. This fact is clearly confirmed by the results
given in Table 5.5 and particularly by those for the cavity flow problem.

For both flow problems and for all formulations, it can be observed
that as the Reynolds number is increased, the number of iterations needed
to obtain a fully converged solution also increases. However, for some
tests carried out, a fully converged solution was not obtained. The
tests in which this occurred are marked in Table 5.5 with either one
or two asterisks. In these cases it was observed that convergence was
taking place in the first two or three iterations but thereafter the
root mean squared value of the adjustments steadily increased rather
than continue decreasing. It was also found that this occurred only
for flows with the higher Reynolds numbers and more frequently for
formulations C and D. After some consideration it was realized that
the reason for this is the increase in non-linearity of the equations
describing these cases. Firstly, the increase in Reynolds number causes
the ratio of non-linear acceleration terms to linear viscous terms to
increase and secondly, when formulations C and D are used, the equations
contain additional non-linear acceleration terms. As a consequence,
the zero initial guess in these cases, is no longer close enough to
the correct solution for the Newton-Raphson method to guarantee conver-
gence on to the correct solution. The inclusion of the additional non-
linear acceleration terms in the equations for formulations C and D
therefore clearly disadvantage the computational efficiency of these
two formulations.

In order to confirm for all cases 1in which convergence to the
correct solution from a zero initial guess did not occur, that the
correct solution can still be obtained if the initial guess is close

enough to it, all tests marked with either one or two asterisks in
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Table 5.5 were rerun using the solution to the same flow but with a
lower Reynolds number as the initial gquess. For the entrance flow
problem, it can be seen from Table 5.5 that when formulations C and
D are used, convergence on to the correct solution from a zero initial
guess failed to occur only when Reynolds number was equal to 2000.
By rerunning these two tests using the solution evaluated with the same
formulation but at Reynolds number equal to 1000 as the initial guess,
convergence to the correct solution was obtained in three iterations
in both cases. The numbers 6+3 that are given in Table 5.5(a) therefore
indicate that six iterations were required to solve the flow with Rey-
nolds number equal to 1000 and that a further three iterations were
needed to find,the solution at Reynolds number equal to 2000.

For the cavity flow problem the situation is considerably worse.
Convergence from a zero initial guess was obtained for all formulations
only for flows with Reynolds numbers up to 400. In order to obtain
the solution to the flow with Reynolds number equal to 1000, the solution
to the same flow but with Reynolds number equal to 400 was used. This
initial guess however was still not close enough and it was necessary
to firstly solve a flow with Reynolds number equal to 600 starting with
the Reynolds number equals 400 solution, and then to use this as the
starting point to find the solution when Reynolds number equals 1000.
For all formulations an additional three iterations were needed to obtain
the solution at Reynolds number equals 600 and an additional four
iterations to obtain the solution at Reynolds number equals 1000. The
numbers in Table 5.5(b) therefore are 6+3+4 for all four formulations.

A difference in the performance of the various formulations was
again observed when the solution to the cavity flow problem with Reynolds
number equal to 2000 was attempted. With formulations A and B, the
Reynolds number equals 1000 solution was used as the initial gquess and

full convergence was attained after an additional five iterations.



149,

However, when the same initial guess was used with formulations C and
D, convergence did not take place, indicating that the Reynolds number
equals 1000 solution is not sufficiently close to the correct one for
these two formulations. The tests in which this happened are marked
with two asterisks in Table 5.5(b). In order to obtain the solution
for these cases an additional run per formulation with Reynolds number
equals 1500 and starting with the Reynolds number equals 1000 solution
was carried out. The results of these runs were then used as the initial
guesses for the tests with Reynolds number equal to 2000. However,
although formulation C resulted in a converged solution, the Reynolds
number equals 1500 solution was still not close enough to the required
one for formulation D. At this point it was decided not to carry out
any further runs for the cavity flow using formulation D since the
general behaviour of the various formulations was already evident.
Thus, except for the above case, solutions to all flows using each
formulation were evaluated and the total number of iterations required
by each recorded in Table 5.5.

From the above discussion and the results in Table 5.5, several
points can be noted. Firstly, at low and moderate Reynolds numbers
all formulations appear to be equally efficient in terms of computational
effort needed to obtain a solution. They all require the same number
of iterations and use almost identical amounts of computer time, the
small increase for formulations B, C and D being due to the additional
terms having to be evaluated in each iteration. Secondly, as Reynolds
number increases the efficiency decreases. That is, more iterations
are needed to find a solution and as a result the computer time required
increases. This trend is displayed by all formulations. Thirdly, and
most importantly, since this 1is the first indication that some of the
formulations may not be able to perform as well as the others, at higher

Reynolds numbers, formulations C and D appear to be less versatile than
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formulations A and B, requiring more overall computation time to obtain
the same solution. This 1is because they require the initial guess to
be much closer to the solution being sought and consequently need to
have additional runs executed in order to achieve this. Thus, although
the above discussion does not prove conclusively which formulation is
best, it does show that formulations C and D are considerably disadvan-
taged by the inclusion of the additional Continuity terms.

The second criterion that is used to decide which is the optimal
formulation is the quality of the solution evaluated, since in addition
to being the most efficient, the optimal formulation must also be the
one that results in the highest computational accuracy. In order to
determine which formuiation is best able to do this, the solutions
obtained in each of the test runs described earlier in this section
are examined and compared. This is done by plotting along certain
sections, the variations of the velocity and pressure fields calculated
for each Reynolds number and flow problem and using each of the four
formulations.

For the entrance flow problem the following graphs are plotted:
the variations of the x component of velocity along the 1lines y=0.1
and y=0.5 (the centreline) and the variation of the pressure along the
line y=0.5. The variations of the x component of velocity and the
pressure along the line x=0.5 for the cavity flow problem are also
plotted. These five sets of graphs are shown in Figures 5.15 to 5.19,
(a) to (e). 1In each graph the solutions obtained for a given Reynolds
number and using each of the four formulations, are plotted on the same
set of axes. By doing this the formulation that results in the highest
computational accuracy can easily be found. It will be noted that in
all graphs, the logarithm of the x or y coordinate is used rather than
the x or y coordinate itself. This mode of presentation was chosen

because it represents the most convenient way of showing clearly the
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variations in the regions chosen, especially where very small elements
are used. If the conventional method of presentation had been used,
a loss of information would have occurred since the points on the graphs
corresponding to nodes in these regions would be so close together as
to make them useless for comparing the various formulation accuracies.
It will also be noted that the pressure for the entrance flow problem
is plotted as T%' Re.p rather than simply p. This was done so that the
same pressure axis could be used for all Reynolds numbers, otherwise
a 0 to 200 scale would have been needed for the Reynolds number equals
1 flow while for the Reynolds number equals 2000 flow, a considerably
smaller 0 to 0.2 full scale range would have been required.

From thg velocity and pressure plots described above, several
points can be noted. Firstly, for the entrance flow problem, all form-
ulations result in identical solutions for both the velocity and pressure
fields when Reynolds number is below about 500. The plots are smooth
with 1iitle or no spatial oscillations and agree well with solutions
previously published. A more precise comparison with existing known
numerical solutions is made in Section 5.6. Secondly, at higher Reynolds
numbers and particularly at Re=2000, large amplitude spatial oscillations
appear in the velocity and pressure fields for all formulations. The
severity of these oscillations increases with Reynolds number so that
at 2000 the maximum amplitudes of oscillations in the velocity fields
produced by formulations A to D are approximately 5%, 2%, 8% and 12%
respectively of the fully developed centreline velocity of 1.5. Oscilla-
tions in the pressure fields however are not as severe, the maximum
amplitude obtained with formulation D being about 2% of the inlet centre-
line pressure. Thirdly, at all Reynolds numbers considered, formulation
B consistently gives the best solution for both the velocity and pressure
fields. The spatial oscillations that do occur are always the least

severe and lie well within the acceptable limits, even at Re=2000, which
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is the maximum value considered in this study. Formulations A, C and
D however do not perform as well and at Re=2000, produce oscillations
that are unacceptable. From the analyses of the entrance flow problem
therefore it can be seen that formulation B results in significantly
higher computational accuracy over a considerably larger range of Rey-
nolds numbers. In fact, by examining the rate of increase of oscillation
amplitude as Reynolds number increases, one can see that formulation
B would probably give acceptable results at Re=3000 and possibly even
at 4000 providing the 1length of the finite element mesh is suitably
adjusted.

With the cavity flow problem the situation is slightly different.
Firstly, at all Reynolds numbers considered up to the maximum 2000,
all formulations result in velocity and pressure variations that are
smooth with spatial oscillation amplitudes never exceeding more than
5% of the velocity and pressure values at the centreline of the moving
wall. Secondly, when oscillations do occur, mainly at Re=2000, formula-
tion C produces the largest amplitudes both in the velocity and pressure
fields. It should be noted at this point that no convergent solution
was obtained with formulation D at Reynolds number equals 2000. Lastly,
from Figures 5.18 and 5.19, it can be seen that formulation B produces
solutions that are consistently and significantly different from those
produced by formulations A, C and D. It can also be seen that at least
for Reynolds numbers below 400, the solution obtained using formulations
A, C and D are identical. Above 400 a variety of solutions are obtained,
all with the same basic shape but differing by up to 5% in the velocity
variation around the central eddy and by up to 18% in the pressure
variation near the moving wall. In order to determine the most accurate
formulation, a comparison is made with known existing numerical solutions.
However, the two most frequently cited published numerical solutions

that are used for this comparison differ so much between themselves
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that a conclusive choice of the formulation that is best able to solve
the cavity flow problem cannot be made. Nevertheless for the sake of
completeness, this comparison is still shown in Section 5.6.

In summary therefore, we see that using both criteria, namely
the computational efficiency and computational accuracy to compare the
four formulations, B has proven to be the optimal one, requiring the
least total computational effort to obtain the most acceptable solution
over the widest range of Reynolds numbers. Therefore formulation B is
now used in the element comparison and finally in the subsequent three-

dimensional analyses.

5.5 Results of Element Comparison

During the early part of this study it was found that various
finite elements have, in the past, been used to model viscous flow
problems. It was also found that a whole variety of comparisons had
been made to show that one particular element was better than another.
Most of these comparisons were conclusive and the results accepted by
a majority of the workers in this area. Recently, claims that the two-
dimensional eight noded Serendipity element is superior to the nine
noded Lagrangian element and vice versa have also appeared. However
the proof of one element's superiority over the other has never been
conclusively established since a comparison of their performance in
modelling viscous flow problems has never been made. In order to clarify
this contradiction then, at least for the two viscous flows considered
in this study, the present comparison was undertaken and carried out.

The second reason for carrying out this comparison was to observe
the differences in performance of the eight and nine noded elements
when their shapes in a finite element mesh are either only rectangular
or trapezoidal as well as rectangular. It was anticipated that when

only rectangular elements are used, both element types would be equally
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capable of modelling a viscous flow. When trapezoidal as well as rec-
tangular elements are used however, it was expected, following the
results shown in Appendix D, that the nine noded element would produce
more accurate solutions. For this reason, in the previous formulation
comparison, in which the eight noded Serendipity element was used
exclusively, only rectangular elements were incorporated in the meshes,
" thus avoiding, hopefully, additional problems associated with differences
in element performance. The present comparison should therefore confirm
this assumption and validate the results obtained in the previous sec-
tion.

In order to keep in mind, as the comparison is made, the
differences and similarities between the Serendipity and Lagrangian
elements, the essential details of each will now be briefly described
aqain./ Firstly and most importantly, the Lagrangian element is capable
og rebresenting a complete linear pressure as well as a complete
quadratic velocity variation in each coordinate direction. The Seren-
dipity element, on the other hand, is capable of representing in each
coordinate direction, a complete linear pressure but only an incomplete
quadratic velocity variation, the highest order term being the one
omitted. Secondly, in two dimensions, the Lagrangian element has nine
nodes, eight of which are the same as the eight of the Serendipity
element, while the ninth is located at the intersection point of the
two lines joining the midpoints of the opposite edges of the element.
It should be pointed out that this point does not coincide with the
centroid of the element when a trapezoidal shape is used. Thirdly,
both the elements are isoparametric and both are capable of ensuring
continuity of velocity and pressure across element interfaces. However,
neither can ensure that the first derivative of either the velocity

or pressure will also be continuous across element boundaries.
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In order to determine conclusively which of the two elements,
if either, is the most economical and which leads to the best solution,
the same criteria that were used in the formulation comparison can again
be applied in this case. Therefore, the computational efficiéncy can
be simply determined by examining the amount of computer time and storage
needed to obtain the same solution when each element type is used, and
an estimate of the computational accuracy can be obtained by looking
at the variations of the velocity and pressure fields along certain
cross-sections. To this end, the runs for test series 2, set out in
Table 5.2(a) for the entrance flow problem and (b) for the cavity flow
problem, were carried out and the results, detailed below, obtained.

Table 5.6 shows the number of iterations and, in brackets, the
execution times for each run, while Table 5.7 gives the average execution
time per iteration and the computer storage required by each mesh in
the four parts of the test series. It should be noted that unlike the
formulation comparison in which all formulations required the same
amount of computer storage, in this comparison the nine noded element
needs additional storage both to hold the slightly longer computer
program and to run the problems. Consequently, both the execution times
as well as the computer storage requirements should be kept in mind
when the more efficient element is selected. It should also be pointed
out that the same convergence criterion that was used for the formula-
tion comparison test runs is also used in this test series and that
formulation B, the most efficient and accurate of the four considered
in the previous section, is used in all runs.

From Tables 5.6 and 5.7 the following points can be noted. Firstly,
the same number of diterations is required to obtain a fully converged
solution regardless of which element type is used. This 1is true for
all tests with the exception of a few in which it appears that when

the nine noded element is used, an additional iteration is needed to
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| 8NE | ONE |
Re |
[ ENFLM [ EnFLM2 ENFLM1 ENFLM2 |
l | |
| 1 | 2(222) | 206 | 21(300) | 2 (218) |
| | | | |
| 200 I 4 (456) | 4 (332) | 4 (606) 4 (441) |
| l |
500 | 5 (575) | 5 (417) | 51(758) | 5 (554) |
| i | |
i 1000 | 61(692) | 6(505) | 6 (912) 6 (668) |
| | | |
| 2000 | 7 (805) | 8(679) | 7 (1066) 7 (781) |
| | l | | |
[ { 8NE | 9NE
| e |
1 CAVFLM1 | CAVFLM2 | CAVFLM1 |  CAVFLM?
| i [ |
i 1 2 (740) | 2 (429) | 2 (909) | 2 (531)
| | |
I 00 | 3(1115) | 3(653) | 4 (1805) | 4 (1069)
| | | |
| 400 | 6 (2236) | 6 (1320) | 7 (3171) | 7 (1881)
| | | | |
| 1000 | 643+4 * | 6+3+3 * | 7+43+4 * | T+3+4 %
| | o | |
} 2000 | 13+5  * | 124643 * | 1445  * | 1445 *
| | | |

Table 5.6 Number of iterations and in brackets execution

times for (a) the entrance flow and (b) the cavity flow

at various Reynolds numbers for test series 2.
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Execution Time

Computer Storage

CAVFLM2

|

i. Mesh

| 8NE 9NE 8NE 9NE

| | | | '

| ENFLMT | 4.1 | 151.5 | 66000 | 74600
| | | | |

| ENFLMZ | 83.2 | 110.6 | 63000 | 70200
| | | | |

| CAVELM1 |  371.4 |  452.9 | 120500 | 136100
| | | | |

| } 217.4 |  267.2 | 107100 | 117500
| | | |

Table 5.7 Average executive time per iteration in

central processor seconds and computer storage in

octal words required by each mesh in test series 2.



183.

arrive at the required solution. However this trend is not sufficiently
pronounced to prove that the nine noded element is less efficient than
the eight. In fact, as can be seen from Table 5.6(a) (at Re=2000) in
one of the tests the eight noded element required one iteration more
than the nine noded element. Secondly, it can be seen that for the
entrance flow problem, the results indicate that the zero initial guess
is sufficiently close to the required solution to enable it to be
evaluated for the whole Reynolds number range considered. However,
with the cavity flow problem for Reynolds numbers above 400, as was the
case in the formulation comparison, additional runs had to be executed
in order to obtain an initial guess that was sufficiently close. The
number of additional iterations required by these preliminary runs is
shown in Table 5.6(b), the asterisks indicating the tests for which
additional runs were required. Table 5.6(b) also shows that this problem
was common to both the eight and nine noded elements, indicating once
again that neither of the two elements is significantly more computa-
tionally efficient.

The third point, that can be noted from Table 5.7, is the increase
in computation time per iteration and computer storage required when
the nine noded element is used. It had been anticipated that these
would increase because of the greater number of nodes to be treated
and therefore the greater number of equations to be solved.  This
increase in the number of equations is a direct consequence of the
decision to use the same meshes and number of elements for the nine
noded element tests as were used for the eight noded element tests.
If, on the other hand, it had been decided to keep the number of nodes
constant in the various sets of tests, then firstly, new meshes would
have had to be set up for the nine noded element, secondly the number
of elements would have been considerably less in these alternative meshes

and thirdly, the element size distribution in them would have been
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significantly different, dintroducing additional complications in the
following computational accuracy comparison. Therefore it was decided
to use the same meshes with the same number of elements and to let the
number of nodes increase accordingly. However, in order to compare more
fairly the computational efficiency of each element, and in order to
overcome the problem of the variable number of nodes, Table 5.8 is set
up. In this table are listed the execution times per iteration per
node and from these values it can be seen that both the eight and nine
noded elements result in almost identical values for each of the meshes
used. From this and the points noted above, the only conclusion that
can be drawn is that the Serendipity and Lagrangian elements both appear
to be equally, efficient in terms of computer requirements when used
to model two-dimensional viscous flows. Nevertheless, if a choice must
be made, the Serendipity element must be selected, simply because of
the slightly shorter and less complex program required and therefore
the smaller amount of computer storage needed to hold and execute it.
This saving in storage however is still only marginal.

The computational accuracy of the eight noded Serendipity and
the nine noded Lagrangian elements can be compared by examining the
velocity component and pressure variations along the same cross-sections
that were used in the formulation comparison. These are the variations
of the x component of velocity along y=0.1 and the centreline y=0.5
and the variation of pressure along y=0.5 for the entrance flow problem,
and the variations of the x component of velocity and the pressure both
along the centreline x=0.5 for the cavity flow problem. The plots of
these variations are given in Figures 5.20 to 5.24 (a) to (e) respect-
ively. In each graph a logarithmic x or y axis has again been used
for the same reasons described earlier. Also, in each graph the four
solutions obtained with the two meshes and the two element types are

plotted for each Reynolds number, on the same set of axes. In this



} Mesh 8NE ONE
} ENFLM1 0.21 I 0.22
I ENFLM2 | 0.20 I 0.21
I CAVFLMI } 0.33 I 0.30
i CAVFLM2 i 0.31 i 0.29

Table 5.8 Average execution

time per iteration per node

in central processor seconds.
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way not only can the performances of the two elements be compared, but
the effects on these performances of changes in the mesh configurations
can also be observed. With this in mind, from Figures 5.20-5.24 the
first and most significant fact that can be noted is that for any par-
ticular mesh, whether it contains only rectangular elements or not,
the eight noded Serendipity and the nine noded Lagrangian elements both
result in almost identical solutions. This is true for both the entrance
flow and the cavity flow problems and for the pressure as well as the
velocity fields. It had been claimed by some previous researchers that
the nine noded element would give improved pressure field solutions.
However, there was no evidence of this in any of the flow cases considered
in this comparison. In fact, with the entrance flow problem at Reynolds
number equals 2000, both elements produce the same pressure field but
the Lagrangian element results in a considerably inferior velocity
solution. the oscillations that occur at Re=2000 in the velocity fields
are consistently worse for the Lagrangian element than they are for
the Serendipity.

In addition to the above, the following points may also be noted.
Firstly for the entrance flow problem. At low Reynolds numbers, up
to 1000 at least, exactly the same solution is obtained regardless of
which mesh or element type is used. This can be seen from Figures 5.20
to 5.22 (a) to (d). For these Reynolds numbers also, no oscillations
are evident in either the velocity or the pressure variations. At Rey-
nolds number equals 2000 however, a slight difference in the performance
of the two element types and the two meshes ENFLM1 and ENFLMZ becomes
apparent. In the velocity field we see that along the centreline y=0.5,
the eight noded element consistently results in a variation that has
the smallest amplitude oscillations. This is equally true for both
meshes. Along the line y=0.1 however, it can be seen that with mesh

ENFLM1, the eight noded element again produces the best solution but
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with mesh ENFLM2, the better results are produced, at least in the up-
stream region, when the nine noded element is used. In the downstream
portion of the entrance flow however, the nine noded element solution
becomes steadily worse, equalling that obtained with the eight noded
element at the exit. Regarding the pressure fields, little can be said
about them since at all Reynolds numbers including 2000, the same
pressure variation is obtained with both meshes and with either element
type.

With the cavity flow problem the situation is similar but some
of the results obtained were not as expected. That is, the differences
in solutions obtained with the various meshes and element types were
not the same as those observed for the entrance flow problem. At Rey-
nolds numbers} below 400, both element types and both meshes CAVFLMI
and CAVFLM2 produce identical solutions. Even at Re=1000 the largest
difference in solutions 1is never more than 2% of the maximum for the
velocity variation and 4% for the pressure. However at Reynolds number
equals 2000, as can be seen from Figures 5.23 and 5.24 (e), the solutions
obtained using mesh CAVFLM1 differ by as much as 10% in the velocity
and 17% in the pressure from those obtained with mesh CAVFLM2, regard-
less of which element type is used. This behaviour in the cavity flow
problem was also observed to a lesser extent in the formulation  com-
parison. A possible explanation for it is that the Tlarger number of
small elements close to the moving edge in mesh CAVFLMI has the effect
of slightly idincreasing the fluid stiffness in this region at higher
Reynolds numbers, thereby resulting in the lower circulatory velocity
for the eddy that can be seen for mesh CAVFLM! in Figures 5.23 (d) and
(e). The same explanation can be used to account for the differences
observed in the formulation comparison solutions. There, by introducing
additional terms in the various formulations, the total fluid stiffness

is slightly changed with the effect of either slightly increasing or
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slightly decreasing the eddy velocity. This change in eddy velocity
can then be used to explain the large differences that occur in the
pressure profiles. Since the eddy circulatory velocity 1is slightly
different for the various flows, the vortex centre is in a slightly
different position. As a result the line x=0.5 along which the pressure
profiles are plotted, is a varying distance from the vortex centre.
Therefore the value of the overall pressure field along x=0.5 changes
by an amount which is very small when viewed with respect to the whole
pressure field, but considerably 1argér when viewed only 1in relation
to the pressure along x=0.5, since the pressures along x=0.5 are
re]afive]y very small. Thus although Figure 5.24(e) shows as much as
17% difference, in the pressure variations obtained with the two meshes,
when the whole pressure field 1is taken into account this difference
becomes negligible.

The results of this comparison are therefore quite clear. Neither
the eight noded Serendipity nor the nine noded Lagrangian element
produces significantly better results. The eight noded element gives
velocity solutions at higher Reynolds numbers that can be considered
marginally better but the improvement is only slight. Therefore, as
a result of this comparison, and taking into account both the computa-
tional efficiency discussed earlier, as well as the quality of solution
produced, it can only be concluded that the eight noded Serendipity
and the nine noded Lagrangian elements are equally capable of modelling
a steady viscous flow. It can also be concluded that the use of non-
rectangular elements in the meshes representing such flows has negligible
effect on their ability to accurately represent the fluid motion and
that trapezoidal and general quadrilateral elements can be confidently
used to vary mesh refinements in regions of particular interest without,
loss of accuracy. This confirms the assumption made in Section 5.4
about the exclusive use of the eight noded Serendipity element in the

formulation comparison and completely validates the results found there.
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5.6 Presentation of Entrance and Cavity Flow Problem Results and Com-

parison with Other Published Solutions

This section has been included to complete the two-dimensional
analyses. It serves two purposes: firstly, to compare with existing
known solutions the two-dimensional results of the entrance flow and
cavity flow problems obtained usingthe optimal formulation and element
type, thereby verifying that the solutions thus eva]uated are in fact
the same as those currently accepted as correct, and secondly, to present
a more complete set of solutions than is currently available for both
the entrance and cavity flow problems over a wider range of Reynolds
numbers. Although solutions to both these flows have already been
obtained and published by other researchers with Reynolds numbers as high
as 2000, the results are rarely presented with sufficient information
to make them very useful. In this section therefore, care has been
taken in the presentation of the solutions to ensure that the maximum
usefulness can be derived from them by future workers involved with
these two flows. Also, of the published solutions to the entrance and
cavity flow problems of which the author is aware, only a small percent-
age have been obtained using the same approach adopted in this study;
that is, the Galerkin finite element solution procedure. Most other
workers have used either the finite difference technique or one of the
other finite element approaches. Of the few using the Galerkin method,
to the author's knowledge none has presented solutions to either the
entrance or the cavity flow problem with Reynolds numbers higher than
400. In this section, complete solutions to both the entrance and the
cavity flow problems are set out for Reynolds numbers up to and including
2000. A11 solutions presented have been obtained using formulation
B of the two-dimensional Navier-Stokes equations, the eight noded Seren-
dipity isoparametric element and the meshes ENFLM1 and CAVFLM1 incor-

porating only rectangular elements. These meshes were chosen in
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preference to ENFLM2 and CAVFLM2 because the solutions that are obtained
are evaluated at nodes on a regular rectangular grid. This enables
the variation of velocity and pressure along specific cross-sections
to be plotted directly without having to resort to interpolation within
elements, as would have been the case had the solutions obtained with
the latter two meshes been used.

In order to make the presentation of results as concise and as
useful as possible, the following important aspects of the two flows
are examined. Firstly for the entrance flow problem,

(a) the variation of the x component of velocity along y=0.5
and y=0.1,

(b) the development length to Reynolds number ratio,

(c) the velocity profiles across the channel and the location
and magnitude of the local maxima,

(d) the variation of pressure along y=0.5 and y=0.1,
and (e) the excess pressure drop along y=0.5, y=0.2 and y=0.1,
are considered at Reynolds number equals 1, 200, 500, 1000 and 2000.
For the cavity flow problem,

(a) the variation of the x component of velocity along x=0.5,

(b) the velocity vector field,

(c) the pressure contours,
and (d) the position of the vortex centre will be considered at Rey-
nolds number equals 1, 100, 400, 1000 and 2000. Where they are available,
solutions calculated by other researchers are plotted or tabulated along-
side the results obtained during the present study for both flows.
These are those produced by Morihara and Cheng (21) and Brandt and Gillis
(5) using the finite difference technique and by Hutton et al.(18) using
the finite element method for the entrance flow problem, and those by
Burggraf (6) using the finite difference technique and by Tuann and
Olson (32) and Bercovier and Engelman (3) using the finite element method

for the cavity flow problem.
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Consider firstly the entrance flow. The most commonly considered
aspect of this problem is the variation of the x component of velocity
a]ong the centreline y=0.5. The velocity profile along this longitudinal
section is particularly important because it can be used to determine
the development length of the flow. Since the velocity along the long-
jtudinal section y=0.5 is the last to attain its fully developed down-
stream value of 1.5; it can be used to estimate the point at which the
transverse velocity profile becomes exactly parabolic and the flow 1in
the channel becomes fully developed. Traditionally, it has been assumed
that the flow becomes fully developed when the centreline velocity
reaches 99% of its asymptotic value of 1.5. The position at which this
occurs is Tlabelled X 999, and is more commonly referred to as the develop-
ment length of the flow. By plotting the variation of velocity along
y=0.5 as is done in Figures 5.25(a)-(e), Xggy Can be determined for
eachReynolds number. It will be noticed that the horizontal axis in
these figures is labelled x/Re. This is usually done to eliminate the
dependency of the profiles on Reynolds number. By doing this it is
found that as Reynolds number becomes very large, the variation of
velocity along y=0.5 approaches a 1imit and this limit is very close
to that predicted by Schlichting using boundary layer theory for large
Reynolds numbers. This can easily be verified by plotting the longi-
tudinal velocity profiles along y=0.5 for the various Reynolds numbers
on the same set of axes as that used to plot the profile predicted by
Schlichting. This however, has not been done here because a very good
comparison of this type has already been done both by Morihara and
Cheng (21) and by Brandt and Gillis (5).

Also in Figures 5.25(b), (c) and (e), a comparison is made at
Reynolds number equals 200, 500 and 2000 with the corresponding solutions
obtained by other researchers. In the first two cases agreement is

excellent for all values of x/Re. At Re=2000 however, there is a slight
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discrepancy between the results of the present work and those computed
by Morihara and Cheng (21), but the difference is less than 4%. From
this comparison it can be concluded that the finite difference and finite
element methods both produce essentially the same velocity field when
used to solve the entrance flow problem over a wide range of Reynolds
numbers. It should be pointed out at this stage that the work done
by both Morihara and Cheng (21) and Brandt and Gillis (5) was based on
a channel width of 2. Therefore, in order to compare their solutions
with those obtained in this study the horizontal axis of their profiles
was scaled down by a factor of 2, thereby halving the true width of
the channel being modelled. The only finite e1ement solution of the
entrance flow  problem that was found was that computed by Hutton et
al. (18). However only Reynolds number equals 20 and 200 were considered,
and a comparison at higher Reynolds numbers with a solution obtained
using the finite element method could not be made.

By examining Figures 5.25(a) to (e) the point at which the velocity
profiles reach 99% of the fully developed value can be found. From
these values it can be seen that the development length X 999 » varies
from 0.583 at Reynolds number equals 1 to 77.0 at Reynolds number equals
2000. This compares with 0.641 and 85.5 computed by Morihara and Cheng
(21). Table 5.9(a) gives the development length obtained during the
present study as well as those calculated by Morihara and Cheng (21 )
and Brandt and Gi]]i§ (5) over the range of Reynolds numbers from 1
to 2000. Table 5.9(b) shows the development length computed by various
other researchers at the large Reynolds number 1imit. The results of
these comparisons show that the development 1length for large, medium
and low Reynolds numbers computed in this study are consistently between
5 and 15% lower than those calculated by previous researchers. It should
be remembered when considering these results, that the present study

is the only one in the comparison in which the finite element method
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| I | . |
(a) | Present Study I Mor1h?;?)et al. | Brand%set al.
e X I X I Xaao/RE I I /Re |
99% | Xggy/R | 99% | 9% | X97% | X979,
[ | | | | |
1 0.583 | 0.583 0.651 | 0.651 | - | - |
| I I | | |
200 7.9 | 0.0395 | 9.04 I 0.0452 | 12 | 0.0456 |
I | | | | | |
| 500 19.5 | 0.0390 | - | = 22.4 | 0.0448 |
I I I | I
| 1000 | 39.0 | 0.0390 | - | - I - - I
| I | | | I
2000 | 77.0 | 0.0385 | 85.8 | 0.0429 - | - |
I l I | | I I
(b) } Researcher xgg%/Re |
|
Present work (28) 0.0380 I
I I
| Schlichting (28) 0.0400 |
I
Morihara et al. (21) 0.0423 |
|
| Bodoia et al. (4) | 0.0440 |
| _ I
Brandt et al. (5) 0.0442 |
| |

Table 5.9 Development lengths at Re=1 to 2000 and
at the large Reynolds number Timit.
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is used. A1l the others used the finite difference method and either
the boundary layer approximation or some other Tlinearization of the
Navier-Stokes equations. This difference in solution technique could
therefore explain why the development length to Reynolds number ratio
calculated in this study differs from those calculated by the previous
researchers mentioned in Tables 5.9(a) and (b). Also, because the slope
of the profiles is very small in the vicinity of Xggy large errors
can easily be incurred when determining X999, especially if the profiles
contain some small oscillations. A difference of 10% then becomes less
significant when viewed in this light.

The variation of the x component of velocity has also been plotted
along the longitudinal section y=0.1, in Figures 5.26(a)-(e).  From
these figures it can be seen that at X 999> the velocity in the x direc-
tion is very close to its fully developed value of 0.54. This confirms
the assumption that the whole transverse profile of velocity becomes
"acceptably" parabolic when the centreline velocity reaches 1.485 or
99% of its fully developed value. The other point that should be
commented upon is the fact that for Reynolds numbers equal to 500, 1000
and 2000, the profiles shown in Figures 5.26(c), (d)} and (e) are very
similar. In fact, they are identical except in the region where x/Re
is less than about 0.02. The same thing was observed in the profiles
along y=0.5. This is again in agreement with the results of Schlichting
(28) who concluded that asReynolds number becomes large, for large values
of x/Re the velocity field approaches a limiting surface. For small
values of x/Re, that is close to the leading edge of flows with large
Reynolds numbers, boundary layer theory is not valid and the limiting
surface predicted by Schlichting (28) does not apply. This is confirmed
by the results in Figures 5.25 and 5.26 which show that for values of
x/Re above 0.02, the profiles approach a 1limit as Reynolds number
increases, but for x/Re close to zero, significant changes in the pro-

files still occur even at Reynolds number as high as 2000.
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A discussion of the entrance flow problem would not be complete
without including some mention of the variation of the x component of
velocity along various sections across the channel. These transverse
velocity profiles are shown in Figures 5.27(a)-(e) for Reynolds numbers
1, 200, 500, 1000 and 2000, and for x=0.001, 0.002, 0.005, 0.01, 0.02Z,
0.05, 0.1, 0.2, 0.5, 1.0, 2.0, 5.0, 10.0, 20.0, 50.0, 100.0 and 200.0.
It will be noted that for small values of x, each profile contains a
local minimum on the centreline y=0.5 and a local maximum located close
to each of the two channel walls. The presence of these Tocal maxima
has been reported by every previous researcher involved with the entrance
flow problem except those who used some form of boundary layer approxima-
tion. As a result, some confusion arose as to the true nature of the
entrance flow solution. Abarbanel et al. (1), using the finite differ-
ence method to solve the complete Navier-Stokes equations, have presented
evidence indicating the strong possibility that the humps are in fact
an intrinsic part of the exact solution. This therefore indicates that
boundary layer theory is not capable of allowing a true representation
to be made of the flow close to the entrance edge and in the vicinity
of the channe1'wa11s. The results of this study reinforce this and
dispel any suggestion that the humps are due to inherent inadequacies
in the solution technique, be it the finite difference or the finite
element method.

The commonly accepted physical explanation for the presence of
these humps close to the walls in the upstream portion of the entrance
region is as follows. With the fluid coming to a sudden standstill
at the start of the channel walls, fluid somewhere else must be acceler-
ated in order to conserve mass flow across the entrance section. The
particles of fluid most 1likely to experience this acceleration first
are those closest to the fluid that has already been stopped. Therefore,

because the flow acceleration does not instantaneously reach the centre-
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line, a local increase in the velocity takes place close to the walls,
and the humps observed in the velocity profiles close to the entrance
edge result. Also, because the fluid is slowed down so rapidly at the
start of the channel walls, large local shear stresses and pressure
gradients are experienced by the fluid there. The shear stresses,
directed upstream and towards the centreline, have the effect of slowing
down more fluid away from the walls and of pushing it towards the
centreline. The pressure gradients have a similar effect, accelerating
the displaced fluid downstream and also towards the centreline. The
final result is that the local maxima occur further and further away
from the walls as the fluid moves downstream, so that at the end of
the entrance region the two maxima, one either side of the centreline,
have merged to produce the single maximum of the fully developed para-
bolic profile. Table 5.10(a) shows the Tlocation of the local maximum
at various transverse sections in the top half of the channel for the
five Reynolds numbers 1, 200, 500, 1000 and 2000. Table 5.10(b) gives
the magnitudes of these maxima. The positions and magnitudes of the
local maxima have been calculated by quadratic interpolation along the
element boundaries coincident with the cross-sections concerned. Table
5.10(c) shows a comparison of the positions and magnitudes of the local
maxima obtained in this study for Reynolds number equals 500 with the
results of Brandt and Gillis (5).

From Table 5.10(b) it can be seen that for each Reynolds number
the magnitude of the local maxima increases to a peak value, falls
slightly and then continues to rise to its maximum of 1.5 at the down-
stream exit. Morihara and Cheng (21) observed that the peak value was
highest at Reynolds number equals 200. In this study however it was
found to reach a maximum value of 1.22 at Reynolds number equals 1000.
The comparison of results at Reynolds number equals 500 shown in Table

5.10(c) indicates quite satisfactory agreement with the finite difference
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Reynolds number

] 200 500 1000 2000
0.001 0.004 0.004 0.003 0.003 0.002
0.002 0.005 0.004 0.004 0.004 0.003
0.005 0.009 0.008 0.007 0.006 0.005
0.00 | 0.017 | 0.015 | 0.012 | 0.009 | 0.008
0.02 | o0.037 | o0.026 | 0.017 | o0.015 | o.012
0.05 | o0.082 | o0.081 | 0.03 | o0.026 | 0.021
0.1 | 0.6 | 0.0 | o0.053 | o0.080 | 0.031
0.2 | o0.396 | o.114a | o0.078 | o0.060 | 0.0
0.5 | o0.80 | o0.187 | o0.130 | o0.103 | o0.075
1 | o5 | o.310 | o0.224 | o0.150 | o0.12
2 | 0.5 | o0.409 | 0.323 | o0.247 | 0.157
5 | 05 | o0.475 | o0.420 | o0.388 | 0.329

10 | 0.5 | o0.499 | o0.amm | o0.427 | 0.399
20 | o5 | 0.5 | o0.49a | o0.469 | o0.425
50 | o5 | o5 | o0.499 | 0.497 | 0.49
100 | o5 | o5 | o5 | o5 | o0.497
200 ‘ 0.5 ] 0.5 | 0.5 | 0.5 ’ 0.5
X=a
rd
7
¢
!y

Table 5.10(a)

Distance from wall of local maxima at

various cross-sections x=a and for various Reynolds numbers.
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Reynolds number

Table 5.10(b)
cross-sections x=a and for various Reynolds numbers.

Magnitude of local maxima at various

| | |
| | |
} o } 200 l 500 | 1000 2000 |
I 0.001 { 1.092 i 1.106 I 1.119 i 1.128 { 1.154 i
‘ 0.002 | 1.076 | 1.123 I 1.149 ‘ 1.168 1.169 1
| 0.005 | 1.000 | 1.132 | 1.154 | 1.186 | 1.177 |
| o.01 | qv.0ss | toae | vz | o192 | 183 |
| 0.0 | t.00e | 1169 | 1188 | 1.204 1.184 |
| 005 | 1003 | taree | 1a79 | 1.2 1.145 |
| 0.1 | 00 | ovase | | ovaer |0 |
| 0.2 | v | 187 | 163 | 1.8 1.128 |
| 0.5 | qes | 166 | 1129 | 1114 1.086 |
| | oasos | v | ovase |o1mae | viovs |
| 2 | a5 | v20a | ovase | o1 | 100 |
| s | v | vaam | o109 | o127 | 1128 |
10 | s | vaaea | e | 1307 | 1.207 |

20 | as | 15 | 1am | ova7 | 1.299

50 | 15 | 15 | 1.4 | 1.496 | 1.452
100 95 | 1 | 1o | 1.a99 | 1.48a |

200 | 1.5 | 1.5 1 1.5 | 1.502 ] 1.505

x=a
S
: ¢
Yy
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| Brandt et al. (5) Present study I
a -

\ Ue Unax yumax Ue Umax yumax
0.05 | 1.001 | 1.169 | 0.030 | 71.001 . -
0.1 1.003 | 1.163 | o0.048 | 1.002 | 1.177 | 0.053

| 0.5 | 1.007 | 1.156 | o0.061 | 1.002 | - .

| 0.2 | 1.1 | 1081 | o072 | 1013 | 1163 | o.078 |

| 025 | 1.017 | 1.148 | o0.082 | - | -« | - |
0.5 | 1.088 | 1142 | 0123 | 1039 | 1129 | 0.130 |
1.0 | 100 | 1151 | o0.s0 | 1.092 | 1.149 | 0.204 |
1.5 | 135 | 168 | o0.225 | 1021 |- | = |
2.0 162 | 1.189 | o.260 | 1151 | 1.182 | o0.323 |
3.0 von | ot.e2s | ooums |- |- . ]
4.0 | 1.252 | 1.286 | 0.370 | - | - |- |
5.0 1.288 ‘ 1.288 l 0.435 | 1.280 | 1.309 | 0.420 |

X=a
/ X
- .
¢
Vy

Table 5.10(c) A comparison of the results obtained during the present
study with those produced by Brandt and Gillis (5) and Reynolds number

equals 500; u. = the centreline velocity, u = the maximum velocity

c max
in the x direction along section x=a and Ypax = the distance from the

the wall at which Uoax occurs.
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results of Brandt and Gillis (5). The magnitudes of the local maxima
at the various sections considered show a maximum difference of 2%.
However the locations of the maxima calculated in this study differ
considerably from those evaluated by (5). Their distance from the wall
on any section x=a is consistently greater in this study than it is
in solutions produced by (5). This implies that the local maxima reach
the centreline 1in a shorter distance from the entrance than that
predicted by Brandt and Gillis (5), and that consequently the develop-
ment length is shorter. This verifies the results presented earlier
in this section, namely that the development length to Reynolds number
ratio evaluated in this study is about 10% lower than that found by
érandt and Gi]]is (5).

The variation of pressure along the longitudinal sections y=0.5
and y=0.1 for the five Reynolds numbers considered is plotted in Figures
5.28(a) and (b). From these graphs it can be seen that the pressure
varies linearly along most of the channel with the gradients close to
the entrance edge decreasing slightly for 1low Reynolds numbers and
increasing quite significantly for high Reynolds numbers. The slope
of the Tinear portion is —T%-Re for all Reynolds numbers and corresponds
to the pressure gradient existing in a fully developed flow. The
jncrease in pressure close to the entrance edge and more apparently
close to the walls for higher Reynolds numbers is produced by the rapid
slowing down of the fluid in this region and is consistent with the
development of overshoots in the velocity profiles discussed earlier.
It will also be noticed that for all Reynolds numbers considered except
Re=1 the pressure gradients are always negative. The flow with Reynolds
number equals 1 has a small region close to the entrance and on the
centreline in which adverse positive pressure gradients develop. This
characteristic of low Reynolds number flows was also reported by Morihara
and Cheng (21) who observed its presence in a flow with Reynolds number

equals 20. This prompted a closer examination of the pressure fields
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for flows with higher Reynolds numbers and as expected, regions of
adverse pressure gradients were found in ali flows. However the extent
of these zones 1is greatly reduced at high Reynolds numbers and only
barely evident at Re=2000. Also the magnitude of the maximum positive
gradients is only a small fraction of the magnitude of the maximum nega-
tive gradients. The reason for the existence of these adverse pressure
gradients has not been satisfactorily explained, although Marihara and
Cheng (21) suggest that they are probably due to the fact that the inlet
velocity profile is forced to be uniform. They also suggest that it
is questionable whether in a real flow under steady state conditions
a uniform velocity profile as specified in the boundary conditions can
be maintained.} A satisfactory answer to this question will only be
obtained when more information concerning the true nature of the inlet
velocity profile becomes available. Until then the assumption that
the entrance velocity is uniform is the best that can be made with the
information available.

In order to compare the pressure results of this study with those
of Brandt and Gillis (5), a quantity referred to by them as "the excess
pressure drop" has been evaluated at various sections across the channel
and is tabulated in Table 5.11(a) for various Reynolds numbers. From
Table 5.11(b), in which a comparison is made at Reynolds number equals
200 and 500, it can be seen that agreement is quite good, the largest
difference being 5%. The excess pressure drop is defined by (5) as

1

qly) = Hm{p(my)--—-Rex —pbgy)}
12

X+o0
and can be considered as the difference between the actual pressure
at the end of the entrance region and the pressure that would have been
there had the pressure varied linearly from its entrance value with
a slope of T%—Re. gqly) is essentially the pressure distribution needed

at the entrance edge to maintain the input flow as specified. The term



(a)

244,

Reynolds number

Y | 1 } 200 500 1000 | 2000
0.5 } _4.78 I 0.272 | 0.29 0.309 { 0.320 |
o2 | 019 | 0332 | o332 | o0.334 | o0.337 |

| oa | 1004 | o | 0393 | 0375 | o0.364 |

| o005 | 2735 | o585 | o077 | o0.am | o.e02 |
| 002 | so.58 | o913 | o.664 | o0.558 | o0.484 |

‘ 0.01 189.5 1.451 ‘ 0.927 ’ 0.720 [ 0.592 |
0.005 | 385.0 2412 | 1.331 | 0.959 | 0.742 |

| 0.002 = | 5297 | 2.8 | 188 | .08 |

| 0.001 - 8.896 | 3.084 | 2.310 | 1.481 |
| 0 i 10.32 ' 4.450 ’ 2.520 l 1.576 |

(b)

I Present study Brandt et al. (5)
y
Re=200 500 Re=200 500
0.5 0.272 0.296 0.288 0.308
0.2 0.332 0.332 0.342 0.337
0.1 0.435 0.393 0.434 0.389
0.05 0.585 0.477 0.589 0.474
Table 5.11 Excess pressure drop for various

Reynolds numbers.
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"excess" refers to the fact that the pressure drops at a faster rate

1
than-TzReclose to the entrance.

This completes the presentation of the entrance flow problem
solutions.

For the cavity flow problem the variations of the x component
of velocity along the centreline x=0.5 for Reynolds numbers 1, 100,
400, 1000 and 2000 are plotted in Figures 5.29(a) to (e) respectively.
Where possible, similar profiles produced by Burggraf (6) and Bercovier
and Engelman (3) are also plotted in these figures. From this comparison
of profiles it can be seen that a significant difference exists between
the results of this study and those of other researchers. At low Rey-
nolds numbers -the difference 1is least noticeable and agreement between
solutions is quite acceptable. However as Reynolds number increases,
the difference between the various profiles also increases, so much
" so that at Re=1000, the profile produced by Bercovier and Engelman (3)
differs from the one obtained in this study by as much as 12% of the
maximum moving wall velocity. It is important to note that the profiles
produced by (3) and (6) also differ significantly between-themselves.
The reason for these differences between the various solutions is
difficult to determine. Most likely it arises as a consequence of the
different solution techniques and mesh point spacings chosen by the
researchers, since these are the only quantities which have varied in
the three studies compared. This is supported by the results of the
previous formulation and element comparisons in which it was observed
that changes in equation formulation and mesh configuration both produced
significant changes in the numerical values of the velocity along x=0.5.
Because the information concerning the cavity flow problem that is
currently available is limited and not conclusive, it is not possible
to determine which solution is in fact closest to the exact. Therefore
no further comment will be made in this section about the accuracy of

the various solutions compared.
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Figure 5.29(a) Variation of u Along x=0.5 for the Cavity
Flow Problem at Re = 1.

246.



247.

u on
-0.5 0 0.5 1.0 x=0.5
| 1 3 -
4,

o present study

+ Burggraf (6)

x Bercovier et al. (3)

Yy

Figure 5.29(b)

Variation of u Along x=0.5 for the Cavity
Flow Problem at Re = 100.
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Variation of u Along x=0.5 for the Cavity
Flow Problem at Re = 400.



249.

-0.5 0 0.5

o present study

x Bercovier et al. (3)

Figure 5.29(d) Variation of u Along x=0.5 for the Cavity
Flow Problem at Re = 1000.
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From the results of the various studies it can be seen that
although the actual values of the x component of velocity along x=0.5
differ quite substantially, the shapes of the profiles are very similar.
At Tow Reynolds numbers the profiles show that fluid particles at various
distances from the vortex centre travel with different angular velocities.
This means that viscous shear stresses must exist at all points in the
flow and that the vortex is essentially viscous in nature. No boundary
layers are discernible. At higher Reynolds numbers the central portion
of the corresponding profile becomes Tlinear indicating that at least
in the vicinity of the vortex centre all fluid particles move with the
same angular velocity. As a result there are no viscous shear stresses
in this region and the core of the vortex is inviscid in character.
The extent of the inviscid core increases with Reynolds number. At
Re=2000 it covers approximately 80% of the total cavity area. The
remainder is taken up by the boundary layers which exist on all four
walls and in which are confined all the viscous effects. The nature
of this flow 1is therefore consistent with that of all viscous flows.
The viscous effects are always confined to relatively narrow regions
called boundary layers and the thickness of these boundary layers always
decreases as Reynolds number increases.

In order to see more clearly the shape of the vortex and how it
changes with dincreasing Reynolds numbers, the velocity vector field
for each of the five Reynolds number flows considered has been plotted
in Figures 5.30(a) to (e). Figure 5.30(a) shows the vortex for the
flow with Reynolds number equal to 1. The vortex centre is located
on the centreline and relatively close to the moving wall. The bulk
of the vortex is located in the top 70% of the cavity and the fluid
in the Tlower and bottom corner regions undergoes relatively Tlittle or
no motion. As Reynolds number increases, a shift of the vortex centre

becomes clearly evident, first in the downstream direction and then
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towards the centre of the cavity. Table 5.12 compares the locations
of the vortex centre computed in this study for the five Reynolds numbers
with similar results by Bercovier and Engelman (3), Burggraf (6) and
Tuann and Olson (32). The agreement between solutions is quite accept-
able with the maximum difference being 4%. This dindicates that the
vortex centre location is much less sensitive to the choice of solution
procedure than were the centreline velocity profiles discussed earlier.
The change in shape of the vortex with increasing Reynolds numbers fis
also clearly visible in Figures 5.30(a) to (e). At low Reynolds numbers
the vortex is oval in shape, occupying only the upper regions of the
cavity, but by Re=1000 it has become almost circular and extends through-
out the cavity.

An interesting feature of the cavity flow is the growth of
secondary vortices in the two bottom corners and the downstream top
corner of the cavity. At low Reynolds numbers no secondary eddies were
observed in the velocity fields calculated in this study. Burggraf
(6) however stated that they should be present at all Reynolds numbers.
Upon closer examination of the Re=1 flow this was found to be true but
the extent of these secondary eddies was negligible compared to the
size of the main vortex. At Reynolds number equals 400 the two bottom
corner vortices are clearly defined and extend to approximately 5% of
the cavity size on the upstream wall and 30% on the downstream wall.
The third secondary vortex on the top downstream wall corner only appears
at Reynolds number equals 2000, at which value the bottom two eddies
have grown to 15% and 40% respectively. The presence of these secondary
vortices is the main factor preventing the centre of the main vortex
from reaching the centre of the cavity.

The final set of results that will be presented for the cavity
flow problem is the contour plots of the pressure fields. These are

shown in Figures 5.31(a) to (e) for Reynolds numbers 1, 100, 400, 1000



(0.523, 0.444)

{ % Present Bercovier Burggraf Tuann et al.
| Re | Study et al. (3) 6) | (32) |
I I I I I
| 1| (0.502, 0.248) | - - | = |
I I | I | I
| IOO~{ (0.609, 0.283) | (0.62, 0.27) (0.61, 0.26) | (0.63, 0.28) |
| | |
400 | (0.547, 0.396) | (0.57, 0.39) | (0.56, 0.37) | (0.55, 0.40) I

| I | |

1000 | (0.529, 0.432) | (0.54, 0.44) | - | = |
| I I I I
2000 | I - I - | " |
I | I | I

Table 5.12 Coordinates of the centre point (y=0)
of the main vortex at various Reynolds numbers.
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0.18 ¢

Figure 5.31(b) Pressure Contour Plot for Re = 100.
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3.1

Figure 5.31(c) Pressure Contour Plot for Re = 400.
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Figure 5.31(d) Pressure Contour Plot for Re = 1000.
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Figure 5.31(e) Pressure Contour Plot for Re = 2000.
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and 2000 respectively. The pressure contour plots obtained by other
researchers match those of this study quite satisfactorily. However
the magnitude of the pressure at the vortex centre varies widely between
researchers. The reason for this is partly due to the fact that differ-
ent zero pressure reference points were used. Where the same pressure
datum was adopted, however, the various studies have all still produced
vortex centre pressures that are very different. The pressure results
that have been presented here therefore have not been compared with
any of the other published solutions.

This completes the presentation of the two-dimensional results

and the two-dimensional analyses.
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6. ANALAYSES IN THREE DIMENSIONS

Having completed the first two stages of this study, namely the
determination of the optimal finite element formulation of the Navier-
Stokes equations and the determination of the more suitable of the two
quadrilateral isoparametric elements considered in two dimensions, the
final part of the research was undertaken. This involved the extension
to three dimensions, of the findings of the above two-dimensional
analyses, and then an investigation to determine the suitability of
this proposed arrangement for solving a general three-dimensional viscous
flow problem. This chapter is used to present and discuss all aspects
of this final stage of the research program. The finite element equa-
tions and the isoparametric element that were used in the three-
dimensional analyses are described in Section 6.1. Sections 6.2 and
6.3 give full details of firstly, the flow problems considered including
all mesh configurations and boundary conditions used, and secondly,
the results of the analyses of these problems, including a discussion

of the difficulties encountered in solving them.

6.1 Extension of Two-dimensional Comparisons Results to Three Dimen-

sions

In Section 5.4 it was shown that, in two dimensions, formulation
B of the Navier-Stokes equations is the most efficient and accurate of
the four formulations considered. By assuming that the four formula-
tions have similar characteristics in three dimensions, it was decided
to use formulation B of the three-dimensional Navier-Stokes equations
exclusively in this final section of the research. Therefore the finite
element equations, at element Tlevel, that are used in the three-

dimensional analyses are:
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where
K
upo= LYk N
K
ok ik N
K
o= L vk Nk
K
and pt¥ = kZ] Pi N5k for i=1, ... Ne

where N;k and N;k are the velocity and pressure shape functions at node
k, Ui Ve Wik and P; are the unknown nodal values for the x, y and
z components gf velocity and the pressure at node k in element i and
K' and K" are the number of velocity and pressure nodes respectively
in the three-dimensional finite element chosen to represent the three-
dimensional fluid motion.

In Section 5.5 it was shown that the Serendipity and Lagrangian
elements are both equally suitable for the analysis of two-dimensional
viscous flows. For three-dimensional flows however, it was decided
to use the twenty noded Serendipity element rather than the twenty-seven
noded Lagrangian. This is because it was realized that in three dimen-
sions, the Lagrangian element would need a much larger field length to hold
and execute its program than was found in the two-dimensional analyses.
The reason is quite simple. In two dimensions thé Lagrangian element
has only one additional internal node. At element level the two velocity
equations corresponding to this node, there being no pressure equation
at an internal node, are eliminated using the Gaussian elimination pro-
cedure. The reduced stiffness matrix for a Lagrangian element then
becomes the same size as that for an identical Serendipity element,
that is 20x20. Consequently, the overall front width of a problem

is the same regardless of which element is used.
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In three dimensions however, the Lagrangian element has six
additional mid-face nodes and one additional internal node. Correspond-
ing to each of these nodes are three velocity equations only, since there
is no pressure equation corresponding to internal or mid-face nodes.
Therefore, at element level the three velocity equations corresponding
to the internal node can be reduced out, but the three equations corres-
ponding to each of the six mid-face nodes must remain in the element
equation system. As a consequence, the reduced element stiffness matrix
for a Lagrangian element remains much larger than that for an identical
Serendipity element. In fact, its size is 86x86 compared with 68x68,
an increase of 60%. Also, as a result of not being able to eliminate
the equations :corresponding to the mid-face nodes, the front width of
a problem would also be significantly higher when the Lagrangian element
is used. This 1is illustrated by the example in Figure 6.1 in which
js shown a three-dimensional mesh with a three element by three element
cross-section. If the twenty noded Serendipity element is used the
front width would equal 196 in contrast with 244 if the twenty-seven
noded Lagrangian is used. Therefore, since it was anticipated that
computer storage would 1imit the size of finite element mesh that can
be employed even with the more efficient program CR3DVF2, the twenty
noded Serendipity element was used exclusively in all the three-

dimensional analyses.
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< 3 Tayers of elements

. () /
»
L
' 0
3 elements

O nodes corresponding to which are three velocity and one pressure
equations (same for both Serendipity and Lagrangian elements).
Twenty two nodes, eighty eight equations.

¢ nodes corresponding to which are three velocity equations only
(same for both elements).

Thirty six nodes, one hundred and eight equations.

x nodes corresponding to which are three velocity equations only

(Lagrangian element only).

Sixteen nodes, forty eight equations.

Figure 6.1 Typical Three-dimensional Finite Element Mesh.
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6.2 Details of Three-dimensional Flow Problems

In this final section of the research, an attempt was made to
solve three different three-dimensional viscous flow problems, each
one relatively more complex than the previous. The first of these
involved the evaluation of the velocity and pressure fields in a fluid
moving between two infinite parallel plates under the action of a
pressure gradient; that is, the Poiseuille flow in three dimensions.
This problem was used primarily to check and test the operation of the
three-dimensional computer package CR3DVF2.  The actual dimensionless
problem that was solved was set up by non-dimensionalizing the original
problem using the distance between the plates, d, and the mean cross-
sectional velocity, v. The resulting Reynolds number 1is

pvd

!
Several planes of symmetry were also used to reduce the region to be
analysed to the smallest possible. The dimensionless flow that was
actually solved extended one unit 1in the direction of the pressure
gradient and half a unit in the other two perpendicular directions.

The second flow problem to be treated was the fully developed
flow in a duct of arbitrary cross-section and moving under the action
of a pressure gradient. However, because the geometry of the flow region
had to be defined beforehand in order to construct a finite element
mesh for it, the shape of the duct had to be fixed. The cross-section
that was finally selected was square with the width and depth of the
duct both equal to a. Symmetry about the vertical and horizontal mid-
planes was used to reduce the flow region to be analysed to a quarter
of the duct cross-section. The problem was then non-dimensionalized
by using the width of the duct, a, and the mean cross-sectional velocity
v, as the characteristic length and velocity respectively. The resulting

Reynolds number is
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As with the first flow problem, the actual dimensionless flow that was
solved extended one unit in the direction of the pressure gradient and
half a unit in the other two perpendicular directions.

For both the first and the second flow problem considered, exact
analytical solutions were known and were readily available. The accuracy
of the numerical solutions obtained in this study for these two problems
could therefore be very easily determined and assessed. The third flow
problem that was analysed however was considerably more complicated
than the previous two and did not have a known exact analytical solution.
It involved the calculation of the velocity and pressure fields in a
developing flow in the entrance region of a square duct, with width
and depth equal to a. The velocity distribution at the entrance face
was specified to be constant and equal to v, while the normal stress
at the exit face was specified to be equal to the outlet pressure which
was. conveniently assumed to be uniformly zero. The velocities at the
entrance and exit faces were further constrained so that the fluid
entered and left the duct parallel to its axis. The same planes of
symmetry that were used in the previous problem were again used in this
case and the region of flow that was to be analysed was reduced to the
same quarter duct. Non-dimensionalizing was also carried out in the
same fashion and the Reyno]ds number for this flow was defined as

pva

Rez_
H

The actual dimensionless problem that was solved again extended one
unit in the direction of the duct and half a unit in the other two per-
pendicular directions, with the dimensionless inlet velocity equalling

one.
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Because an estimate of the required development length for a duct
of this type was not available, it was decided to use a mesh of unit
length and to start with Reynolds number equal to 1. At this low value
of Re it was anticipated that a length of one would be adequate to enable
the square duct flow to become fully developed by the time it reached
the exit face. Since the fully developed velocity profile for a square
duct was also not known, it was assumed that the flow became fully
developed when the axial velocity along the axis of the duct reached
99% of its asymptotic value. Having obtained a solution at this Reynolds
number, it would then be possible to estimate the maximum value of Re
that could be treated with the same unit length mesh.

From the above discussion it can be seen that the region of flow
that is analysed in each of the three problems is of the same size.
This was arranged so that several different meshes could be used to
analyse each of the flows without having to redefine the mesh geometry
or the element and nodal configurations. Figure 6.2 shows the five meshes
and the number of elements and nodes that were used to solve the above
flow problems. Meshes M1, M2, M3 and M4 were used to solve the Poise-
uille flow, meshes M3 and M4 were used to analyse the fully developed
square duct flow and mesh M5 was used to solve the developing flow in
the entrance region of a square duct. The only one of these meshes
that needs any further comment is M5. In setting up this mesh for the
developing duct flow, the same aspects of the flow that were taken
into account when meshes ENFLM1 and ENFLM2 were constructed for the
two-dimensional entrance flow, were again considered here. Accordingly,
a thin layer of elements was located at the entrance face and next to
the two walls in the quarter duct. This arrangement of elements enabled
the uniform inlet velocity profile to be specified sufficiently close
to the start of the duct and allowed the boundary layers which exist

on the duct walls, to be represented as accurately as possible. Only
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Figure 6.2 Details of Meshes M1, M2, M3, M4 and M5.
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a 3x3x4 element mesh was used for the analysis of the developing duct
flow because any additional elements would have made the problem too
large for it to be solved relatively quickly with the computing facil-
ities available for this study;

It will be noted that all five meshes are composed entirely of
regular rectangular-sided "“brick" elements. Apart from the fact that
this arrangement is the simplest to set up and the easiest to visualize,
the main reason that only this type of element was used is because the
Serendipity element interpolation was chosen for the three-dimensional
analyses. In two dimensions it was found that non-rectangular elements
led to small but existent errors when the Serendipity element was used,
but gave the exact solution when rectangular elements were used. Assum-
ing the behaviour 1is analogous in three dimensions, then because the
Serendipity rather than the Lagrangian element interpolation was to
be used, all meshes were composed entirely of regular rectangular-sided
elements so as to minimize any error associated with the incomplete
quadratic velocity interpolation inherent in the Serendipity element.

The boundary conditions that were applied in each of the three
problems regardless of which mesh was used, are shown in detail in Figure
6.3. It will be noticed that in all three cases the pressure is
specified at one node, it being anticipated that this is all that is
required to enable the pressure field to be evaluated. With these boun-
dary conditions and the five finite element meshes, several runs were
carried out and the results of these runs are described and discussed

in the next section.
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Figure 6.3 Boundary Conditions for (a) Poiseuille Flow, (b) Square
Duct Flow and (c) Developing Square Duct Flow.
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6.3 Results of Three-Dimensional Analyses

It was anticipated even before the three-dimensional work was
commenced that the finite element analysis of a three-dimensional viscous
flow problem would require a considerable amount of time and effort,
both in setting up the problem and then in solving it. As a result,
the flow problem chosen to check that the three-dimensional computer
program CR3DVF2 was operating satisfactorily had to be sufficiently
simple to enable the necessary tests to be performed as efficiently
as possible. The three-dimensional flow problem that was selected for
this purpose was the Poiseuille flow in three dimensions and the finite
element meshes used to solve it were M1, M2, M3 and M4 as defined in

Section 6.2 The exact general solution to this flow is:

u(x,y,z) = 0 6.2.1
vix,y,z) =0 6.2.2
dp
wix,y,z) = - 3 Re — y(1-y) 6.2.3
dz
dp
and p(x,y,2) = py + — 2 6.2.4
d
‘ dp  py - P
where — = ———
dz L

The values of p, and p, were defined in the boundary conditions as being
equal to 0 and 12 respectively, while the Reynolds number and the length
of channel L were conveniently chosen as 1. The particular solution

to this Poiseuille flow is then

u(x,y,z) =0 6.3.1
vix,y,z) = 0 6.3.2
wix,y,z) = 6y(1-y) 6.3.3
and p(x,y,z) = 12(1-z) 6.3.4

The following discussion gives a detailed account of the computer
program checks carried out using this flow, the results obtained and

any conclusions drawn from them.
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The analysis of the Poiseuille flow in three dimensions was carried
out systematically starting firstly with the single element mesh Ml
and finishing with the 18 element mesh M4. The first test, incorporating
the boundary conditions given in Figure 6.3(a) successfully evaluated
the required velocity field but produced a pressure field that was
obviously wrong. As a consequence, the computer program was carefully
examined in order to find the reason for the erroneous pressure field.
During this examination the equation system for the Poiseuille flow
and M1 was printed out and inspected at various stages of its reduction.
It was then that the cause of the errors in the pressure field became
evident. The computer program proved to be operating correctly, but
the equation system it was trying to solve was unexpectedly found to
be singular; that is, it contained equations that were composed entirely
of other equations in the same system. The boundary conditions were
then immediately rechecked to ensure that they were sufficient to
uniquely define the flow and to prevent any "free-body" variations
appearing in the solutions. Having verified that the boundary conditions
were adequate, the equation system was then solved manually. In so
doing it was discovered that the redundancy in the equation system was
brought about primarily by the fact that the pressure equations, derived
from the equation of Continuity, have no pressure dependence. From Figure
6.4(a) which shows a typical layout of the matrix of elementcoefficients
of the finite e]emenf equations for a general viscous flow, it can be
seen that the bottom right hand submatrix D is composed entirely of
zeros. If the number of velocity equations corresponding to unknown
nodal velocity components is a, and the number of pressure equations
is b, then a unique solution to this equation system exists only if
a >b. In the first test run the number of velocity and pressure equa-
tions was 12 and 7 respectively. Therefore a unique solution should

have been found. However, upon closer examination of the equation system
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it was observed that the pressure coefficients in the velocity equations,
that is submatrix B, had a rank of 6 instead of the expected 7. This
meant that of the 12 velocity equations, six had 1linearly dependent
pressure coefficients that could be reduced to zero by suitable equation
manipulation. Figure 6.4(b) shows the original and the modified equation
system layout and clearly demonstrates why the system of equations for
the first test run was not uniquely solvable.

Having located the problem, an attempt was made to explain it.
However, because of the complexity of the equation system, even for
only one element, a precise explanation was not found. The most Tikely
reason, and this was confirmed by subsequent test runs, was the coarse-
ness of the mesh used to analyse the flow. Because only one element
was used in mesh M1, the ratio of pressure to velocity equations is
high, causing submatrix D, as shown in Figure 6.4(a) to occupy an
unusually large portion of the overall matrix of coefficients. As the
mesh is refined and more and more elements are incorporated in it how-
ever, the ratio of pressure to velocity equations drops. For meshes
M1 to M4 the ratio changes from 0.583 to 0.500 to 0.292 to 0.237. The
1ikelihood that the rank of submatrix B (axb) is less than b, the number
of pressure equations, is therefore greatly reduced by increasing the
number of elements in the mesh. That is, the likelihood of the overall
equation system being_singu1ar is reduced by increasing the mesh refine-
ment.

Before the second test run was attempted, it was decided to check
whether the singular equation system of test run one did in fact have

the required velocity and pressure fields as one of its infinite number

of solutions. In order to do this it was necessary to remove the
singularity from the equation system. This could be done in either
of two ways. The first involved introducing into the system an

additional equation corresponding to one of the zero specified variables.
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However, this could only be done where sufficient information about
the surface stress state of the flow in the vicinity of the proposed
variable was available to enable the evaluation of its equation's right
hand side surface integrals. Fortunately, with the Poiseuille flow
the surface stresses at any point are easily calculated and the
additional equation can be dintroduced without too much difficulty.
With a more complex flow problem, however, this approach might not have
been so easily implemented. By introducing an additional equation the
rank of submatrix B is increased by one, the ratio of pressure to vel-
ocity equations is reduced and the equation system made solvabie. It
should also be noted that it is possible that the new equation also
has linearly dependent pressure coefficients, in which case the rank
of B does not change and the equation system remains singular.

" The alternative method of removing the singularity from the equa-
tion system involved eliminating one of the redundant equations by
specifying in the boundary conditions the value of the variable it
corresponds to. If one of the velocity equations was eliminated it
would be necessary to specify the value of the corresponding nodal
velocity component. If on the other hand, one of the pressure equations
was eliminated, the pressure would have to be specified at more than
‘the one point needed to define the pressure datum. It should be noted that
if a velocity equation is eliminated, the rank of submatrix B does not
change and the equation system remains singular. However, if a pressure
equation is eliminated, although the rank of B still does not increase,
the value that it should have for the equation system to be solvable
is reduced to the required value. Also, by eliminating a pressure equa-
tion the ratio of pressure to velocity equations is decreased, where-
as if a velocity equation had been eliminated the ratio would have

increased, thereby making the system less 1ikely to be solvable.



283.

Therefore to remove the singularity from the equation system of
test run one, either an additional velocity equation could be introduced
or a pressure equation could be eliminated. To verify this, both
approaches were tried and both led to the required exact velocity and
pressure fields. The latter however was much simpler to implement since
it did not necessitate the evaluation of surfaces stresses in the
vicinity of the variables concerned but simply the specification of
an add%tiona] nodal pressure. The point at which the additional nodal
pressure was specified was found to be irrelevant and in all cases the
exact solution resulted. This exercise therefore confirmed that the
equation system for test run one, although singular, had the exact
velocity and pressure fields of the Poiseuille flow as one Iof its
infinite number of solutions.

The second test run for the Poiseuille flow used mesh M2 and
behaved similarly to test run one. Using the boundary conditions exactly
as given in Figure 6.3(a) the velocity field that was produced was exact
but the pressure field was considerably in error. Upon examining the
equation system for this test case it was found that, although a solution
should have been obtainable since the number of velocity and pressure
equations was 22 and 11 respectively, the rank of submatrix B was 10
instead of the required 11; that is one less than that needed for the
system to be solvable. Therefore as for the first test run, because
the ratio of pressure to velocity equations was high, 0.5, the equation
system was again singular.

In order to check that this second equation system had the required
velocity and pressure fields as one of its infinite number of solutions,
the same techniques that had been used for test run one were again
applied. By specifying the pressure at one additional node the solution
obtained had the exact velocity and the exact pressure fields. The

point at which the additional nodal pressure was specified was again
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found to be irrelevant. The exact solution was also obtained when either
of several zero specified velocity components were released provided
sufficient information about the surface stresses in the vicinity of
these variables was supplied to the program. Both these approaches
confirmed that the equation system for the second test run also con-
tained the exact velocity and pressure fields of the Poiseuille flow
as one of its infinite number of solutions.

Un]ike the first two test runs for the Poiseuille flow, the third
using mesh M3 and the fourth with M4 and both incorporating the boundary
conditions exactly as defined in Figure 6.3(a), both produced the exact
Poiseuille flow velocity and pressure fields without requiring the
additioné] pressure specification. For the third test the ratio of
pressure to velocity equations was 0.292 while for the fourth test it
was 0.237. This result therefore confirmed what had been suggested
earlier, namely that provided the number of velocity equations in the
overall equation system for a given flow problem is sufficiently larger
than the number of pressure equations, then the system should have a
unique solution and that solution should be obtainable using a Gaussian
reduction and elimination procedure.

Because the Poiseuille flow has no transverse velocity components
and because the longitudinal derivative of the axial velocity component
~is zero, the equations governing this flow are linear; that is, the
acceleration or inertia terms are identically equal to zero everywhere.
As a result, only the first iteration was required in each of the four
test runs for this flow. The computer storage and the execution times
required by CR3DVF2 to carry out this one iteration in each of the four
tests have been Tisted in Table 6.1. Also given in this table are the
front widths, the execution times per node and the actual physical
computer time that the execution of each of these tests required. The

unusually high values of physical computer time occur as a result of
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Mesh M1 M2 M3 M4
No. of elements 1 2 8 18
No. of nodes 20 32 81 152
Field length
foctal wordsy 72,0008 72,7008 74,3008 111,4008
Execution time
(CP seconds) 28.1 55.0 203 459
Front width 68 68 112 176
Execution time
per node 1.41 1.72 2.51 3.02
Physical time
A TGas) 9.68 20.0 54.3 110

Table 6.1 Details of the four test runs on

the three-dimensional Poiseuille flow.
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the in and out of core solution technique incorporated in CR3DVF2 and
essential if equation systems with even moderate front widths are to
be solved. Since the transfer of information from disc to core and
from core to disc is essentially carried out by peripheral processors,
the construction of the Front solver as it is in CR3DVF2 makes this
program very peripheral processor orientated requiring relatively small
amounts of central processor time but quite substantial amounts

of physical machine time.

By the time the four test runs on the Poiseuille flow were com-
pleted, most of the errors in the program had been corrected. The
program was then ready for testing on a more complex probiem. The second
three-dimensional viscous flow problem to be treated in this study was
the fully developed flow in a square duct. The exact general solution
to the fully developed flow in a rectangular duct with a width to depth

ratio of r according to White (34) is:

ulx,y,z) =0 6.4.1
vix,y,z) =0 6.4.2
i-1
8 e (-1
w(x,y,z) = - — Re — ) [————-——
m? dz i=1,3,5 i?
6.4.3
{ cosh im(y-})
1- . cos im(x - %)]
cosh 1%5 }
dp
and p(x,y,z) = pp+— 2 6.4.4
dz
dp p, - P
where — = 2 1
dz L

The values of Po and py were defined in the boundary conditions as being
equal to 0 and 10 respectively, while the Reynolds number and the length
of duct L were conveniently chosen as 1. Since the duct was square,
r was also equal to 1. The particular solution to this duct flow is

therefore:



287.

ulx,y,z) =0 | 6.5.1
vix,y,z) =0 ) 6.5.2
i-1
0 = (12
W(X:,Y3Z) = —
1 §=1,3,5- 1
6.5.3
cosh in(y-3)
{1- o } cos 1n(x-%)]
cosh —-
2
and p(x,y,z) = 10(1-2) 6.5.4

Figure 6.5 shows the numerical values of w(x,y,z) over a quarter duct
cross-section at values of x and y spaced 0.1 apart. The meshes used
to analyse the fully developed square duct flow were M3 and M4. Meshes
M1 and M2 were not used because in both these cases the boundary con-
ditions as  shown in Figure 6.3(b) resulted in an equation system in
which b, the number of pressure equations, exceeded the number of vel-
ocity equations a. Since a unique solution cannot be found when b>a
these two meshes were not considered.

Having set up from the boundary conditions the necessary input
data for meshes M3 and M4, the two runs were performed and two numerical
solutions for the fully developed square duct flow were obtained. When
these solutions were inspected, however, it was observed that a situation
similar to that which had occurred with the first two test runs for
the Poiseuille flow had again developed. In both cases the velocity
field that was obtained gave excellent agreement with the exact solution
but the pressure field was obviously wrong. It was therefore antici-
pated that the equation systems in both cases were singular. Because
of the large number of variables involved in these runs it was impossible
to examine the two equation systems manually as was done with the Pois-
euille flow. Therefore to check if some of the equations in these
systems were redundant, it was decided to rerun the two tests and at

each reduction step, to print out the elimination equation's Teading
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Figure 6.5 Exact Numerical Values of w(x,y,z) Over
Quarter Duct Cross-Section.
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diagonal coefficient and its right hand side. This was done because
if any of the equations in either system were redundant after a finite
number of reduction steps, all the coefficients in these equations would
be reduced to zero. Actually, they would remain very small numbers
because of round-off errors in the computer. Nevertheless, because
the computer program CR3DVF2 had been written to select the equation
with the largest magnitude leading diagonal coefficient at each reduction
step, all redundant equations with the very small leading diagonal co-
efficients would remain in the system until the end of the reduction
procedure. Therefore by printing out the leading diagonal coefficients
and the right hand sides, the presence of any redundant equations could
easily be detected simply by looking at the last few values printed
out. When this was done with the two duct flow runs it was found that

18

in both cases the last coefficient was of the order of 10 '~ while all

the previous coefficients were of the order of 10—7 or greater. This
proved that one equation in both systems was redundant and explained
why the pressure fields produced by the two runs were wrong. However
it disproved what had been found previously with the Poiseuille flow.

The first step taken in an attempt to understand the reason for
this peculiar behaviour was to check and see if by eliminating the one
redundant pressure equation, the correct pressure field could be
obtained. To do this the pressure was specified at one additional point
in both meshes and the two tests rerun. Both tests then produced the
required pressure field as well as the correct velocity field. This
confirmed that the equation systems had the required velocity and
pressure fields as one of their many solutions.

Several other reruns of these two tests were also carried out,
each one with a different pair of points at which the pressure was

specified. From these runs it was found that the correct pressure field

resulted when the pressure was specified at points on opposite ends
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of the duct, but when the two points at which the pressure was specified
were on the same end, that is either on the inlet face or on the exit
face, the pressure field produced was in error. This further confused
rather than clarified the situation, and it now appeared that knowledge
of the pressure gradient was necessary before the correct pressure field
could be evaluated. This therefore suggested that the two equation systems
were singular, not because of the approximations involved in the finite
element modelling of such three-dimensional flows, but because sufficient
information regarding the pressure gradients as well as the pressure
had not been supplied to the program. Conclusive proof for this however
was not found. Therefore, despite numerous attempts to explain why
the additional, pressure information was needed, a satisfactory reason
could not be found. As a consequence,it was decided to leave this flow
problem and proceed to the last of the three-dimensional viscous flow
problems. However before this is done, the velocity fields obtained
with meshes M3 and M4 and the additional pressure information are com-
pared with the exact solution for a square duct. Figure 6.6 shows the
values of w(x,y,z), both calculated and exact. Since both meshes
produced the exact x and y components of velocity, namely u(x,y,z)
v(x,y,z) = 0, and the exact pressure field p(x,y,z) = 10(1-z), these
have not been tabulated.

One point that should be made before commencing the discussion
of the third three-dimensional flow problem, concerns both the Poiseuille
flow and the fully developed duct flow. For these flows the x and y
components of velocity are zero. Consequently the Continuity equation

and the momentum equations for the three directions are

ap

=0 6.6.1
ax
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Figure 6.6 Exact and Calculated Values of Axial Component of

Velocity for Fully Developed Duct Flow.
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-
— =0 6.6.2
y
1 32w 3w ap
= + ) -— =0 6.6.3
Re 9x? ay? az
w
and — =0 6.6.4
3z

These indicate that the pressure is a function only of z. Further,
since w does not vary with z it follows that the velocity and pressure
fields can be evaluated independently of each other. For this reason
when the equation systems for the Poiseuille flow and the duct flow
were singular, the velocity fields that resulted were not wrong as were
the pressure fields. That is, the fact that the pressure fields were
in error did not necessarily imply that the resulting velocity fields
would also be wrong.

Finally, as with the Poiseuille flow the governing equations for
the fully developed square duct flow are linear. Therefore only the
first iteration was needed in all runs. The execution details for these
runs were identical to those for the Poiseuille flow and can be
found in Table 6.1.

The last three-dimensional viscous flow problem that was con-
sidered in this study is the developing flow in the entrance region
of a square duct. This problem does not have a known exact analytical
solution and to the best of the author's knowledge has not previously
been solved numerically using the finite element method. It has however
receijved considerable attention from researchers, initially using approx-
imate linearization methods to simplify the equations of motion and
more recently using the finite difference method to solve one of the
many proposed simplfied forms of the non-linear Navier-Stokes equations.

Han (15) used the lineary boundary layer approximation to evaluate the
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axial velocity and pressure fields downstream of an initial entry region.
The square duct flow and the flow between two infinite parallel plates
were two limiting cases treated. More recent investigations such as
those by Carlson and Hornbeck (7) and by Rubin et al. (27), have centred
on the numerical solutions to the finite difference representations
of the equations of motion including some of the non-linear terms.
Invariably however, in all studies examined to date, some form of
approximation has always been used in setting up the governing equations
and, as far as the author can ascertain, this study is the first in
which an attempt has been made to solve the developing flow in a square
duct using the complete Navier-Stokes equations.

Apart from theoretical and numerical modelling, the only other
approach available for the investigation of a viscous flow is by experi-
ment. However, because of the difficulties involved in measuring fluid
velocities in a real flow, experimental data on most flows is usually
very scarce. Nevertheless, Goldstein and Kreid (14) were able to measure
precisely the fluid velocity in the entrance region and in the fully
developed region of a square duct. As a consequence, in the past their
results have often been used as the basis of comparisons to determine
the accuracy of various numerical solutions.

The analysis of the developing duct flow was carried out using
the boundary conditions exactly as shown in Figure 6.3(c) and with a
special mesh M5 constructed with additional elements close to the walls
and the inlet face. However, because this study was concerned primarily
with checking the suitability of the Galerkin finite element method
as it applies to the solution of three-dimensional viscous flow problems
as opposed to actually analysing in detail a particular three-dimensional
flow, mesh M5 was kept sufficiently simple and relatively coarse to
enable several test runs to be carried out without excessive strain

on the computing facilities available for this study. As a result mesh
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M5 was composed of 36 elements and 264 nodes. It had a minimum front
width of 196 and required 126,0008 words of central memory and 900 cen-
tral processor seconds per iteration to arrive at a solution. In order
to keep the number of iterations to a minimum, the Reynolds number was
chosen as one. The flow corresponding to this value was found, from
previous work, to require a development length of approximately 0.75.
Therefore mesh M5, with an overall length of 1.01, was quite adequate
for analysing this flow.

As with the two-dimensional entrance flow, the development length
for a square duct was defined as the distance from the start of the
duct to the point at which the axial velocity component on the centre-
line reached 99% of its fully developed value. In order to calculate
the theoretical value of this fully developed centreline velocity, it
was necessary to use equation 6.5.3 which gives the exact variation
of the fully developed axial velocity surface over the duct cross-
sectional area for a pressure gradient_gg equal to -10. By integrating
this axial velocity variation over the area of the duct cross-section,
a nett mass flux of 0.3515 was obtained. Since for the developing duct
flow problem the nett mass flux prescribed at the inlet face was 1,
downstream of the point at which the flow first becomes fully developed,
by the law of conservation of mass, the nett mass flux must also be
1. Therefore the pressure gradient in this region must be

1

(-10) = -28.45
0.3515

and the fully developed centreline velocity must, by equation 6.5.3

be

-28.45
0.7367 = 2.096
-10 -

Therefore the duct flow can be considered fully developed when the
centreline velocity reaches 2.075 and the pressure gradient becomes

-28.45.



295.

Having completed the preliminary work, the input data for mesh
M5 was set up and the program run. However, because of the large amount
of computing time required by each iteration, and because it was desir-
able to avoid wasteful computing of this magnitude, the program was
terminated after completion of the first iteration so that the solution
could be checked. When this was done it was found that, as with the
previous two flows, the velocity field appeared to be correct but the
pressure field was obviously wrong. In anticipation of this happening,
and so that the equation system for the developing duct flow could be
investigated, during the first run the leading diagonal coefficient
and the right hand side of the eliminated equation was printed out at
each reduction step. When these values were examined it was once again
found that one equation was redundant and the equation system indeter-
minate by one degree. The boundary conditions and the input data were
rechecked but by this time, it was realized that the problem was much.more
fundamental than a simple oversight in the boundary specifications.
In fact it was very similar to a problem reported by earlier researchers
jnvestigating the use of mixed or common interpolation for the velocity
and pressure variables. Hood and Taylor (16) found that in certain
circumstances the solutions obtained for two-dimensional viscous flow
problems contained accurate velocity fields but the associated pressures
were subject to inaccuracies. They then went on to prove, at least
qualitatively, that the problem was due to the choice of interpolation
for the velocity and pressure variables. More precisely, they showed
that the correct pressure field was produced when the pressure inter-
polation polynomial was one degree less than that for the velocity.
The arguments they put forward to support this hold equally well 1in
three dimensions as in two. Therefore, although no mention was made
of it earlier in this chapter, it was assumed that in three dimensions
a pressure interpolation with one degree less than the velocity inter-

polation polynomial would be preferable to anything else.
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Because of the amount of work involved in checking the effect
of a change of interpolation on the pressure solution, this line of
investigation was not carried any further. In preference it was decided
to try to remove the singularity from the developing duct flow equation
system and to proceed, if possible, to obtain a solution. However,
because this flow was maintained by a specified inlet flow rather than
by a specified pressure gradient as were the previous two flows, this
was not as simple as it first appeared. The fluid stress state was
not known at any of the nodes where a specified velocity component could
be released and the pressure was not known at any of the upstream nodes
at which the additional pressure could be specified. Therefore, without
additional information regarding either the surface stress field or
the pressure field, a solution to this problem could not be obtained.

As a last resort it was decided to estimate the pressure on the
centreline at the inlet face by using the pressure gradient calculated
above for a fully developed duct flow, and the excess pressure drop
reported by Carlson and Hornbeck (7). Several runs were then carried
out, each limited to one iteration and with the inlet centreline pressure
varying from 28 to 80. From these runs it was observed that the
velocity field that resulted was almost totally independent of the value
given to the inlet centreline pressure. In fact the velocity field
was almost identical to that which resulted from the singular equation
system. The difference was less than 1% at all nodes. This confirmed
that for 1low Reynolds number flows in which the non-linear terms are
least important, the velocity and pressure fields are once again almost
seperable. Soine interdependence remains however, due to the existence
of transverse velocity components. The variation of the velocity compon-
ent, w(x,y,z) along the centreline and plotted in Fiqure 6.7, gives a
development length to Reynolds number ratio similar to that of previous
researchers. The pressure field that was obtained when the additional

pressure was specified at the inlet
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centreline also appeared to be almost independent of the inlet pressure
value specified. When plotted as in Figure 6.8, the pressure along the
centreline showed the expected behaviour with the slope converging to the
fully developed pressure gradient at the outlet. However, although the
general behaviour of the centreline pressure is as expected, it is
evident from Figure 6.8 that the evaluated pressure field has an erron-
eous oscillatory component. This component is relatively small along the
centreline, but closer to the walls becomes so large that it completely
overrides the true pressure variations there. This anomoly was found to
occur both when the equation system was singular as well as when the
singularity was removed by specifying an additional nodal pressure. This
was contrary tg that which had been found earlier in the investigations
of the Poiseuille and the square duct flows, and despite numerous
attempts to overcome it, no satisfactory explanation could be arrived at.

During the last stages of the writing up of this thesis however,
some work currently being done by Gresho et al. (39) on spurious pressure
nodes was brought to the author's attention. In this work it was
reported that pressure behaviour similar to that described above had also
been found in two dimensions when certain elements were used. The
Serendipity and the Lagrangian elements with quadratic velocity and
linear pressure mixed interpolation were shown to be free of such
spurious oscillatory pressure modes in two dimensions but it was
suggested that this would not necessarily be the case in three dimen-
sions.

Their explanation was based on the theory that when the velocity
boundary conditions are incorporated in the finite element equation
system, additional constraints are imposed on the velocities on the
flow boundary resulting in one or more redundant equations. The pressure

solutions obtained from such redundant equation systems

then contained so-called spurious ‘“checkerboard" modes superimposed
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on the true pressure. By filtering off these unwanted modes or by
suppressing them by additional pressure specifications, the correct
pressure could be evaluated. Unfortunately, because there was insuffic-
jent time to test this theory which appears very feasible, it had to
be left as a suggestion for future research. Nevertheless, the results
of the three-dimensional test runs show that the finite element method
can be used successfully to solve a general three-dimensional viscous

flow problem.



CHAPTER 7

SUMMARY, CONCLUSIONS AND RECOMMENDATIONS
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1.  SUMMARY, CONCLUSIONS AND RECOMMENDATIONS

Numerical solutions for the Navier-Stokes equations governing
both two- and three-dimensional viscous flows have been obtained.
The equations were expressed in terms of the primitive variables
velocity and pressure, and the method employed to solve them was the
finite element procgdure incorporating the Galerkin method as the
appropriate weighted residual technique. The Newton-Raphson iterative
method and the Frontal Solution technique, built into four computer
programs, were used to solve the resulting system of non-linear simul-
taneous equations.

Within the context of the two-dimensional primitive variables
approach, four related versions of the Navier-Stokes equations were

formulated, each version including a differing number of terms contain-

3_u+_3_\i)
X 3y

have always been eliminated from the momentum equations by use of

ing the quantity ( Certain of these terms, historically,
the Continuity equation. In this study, a comparison of the four
formulations was carried out using the solutions for the two-dimensional
entrance flow and square cavity flow problems. It was thereby shown
that although none of the formulations had pronounced advantages,
formulation B, the most commonly used by previous researchers, was
slightly more efficient both in terms of computational effort required
to obtain a solution, and in the quality of the solution produced.

At low Reynolds numbers all formulations performed equally well,
requiring the same number of iterations to obtain a fully converged
solution and all producing identical numerical values of velocity
and pressure. At high Reynolds numbers however, formulations C and
D did not perform as well as the other two. More iterations were
required to obtain a converged solution, the quality of the solution

was not as high and the initial guess to start the Newton-Raphson
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iterative procedure had to be much closer to the required solution
for convergence to take place. Although formulation A did not produce
as good a quality solution as did formulation B, its efficiency was
just as high. However, this formulation had the added difficulty
of having an extra surface integral of velocity gradients on the right
hand side of its momentum equations. In this study both problems
solved were such that the evaluation of these surface integrals could
be avoided by making use of the boundary conditions. In a general
viscous flow problem however, this may not always be the case and
it may be necessary to have prior knowledge of the velocity gradients
on the stress boundaries of the flow before formulation A can be used
to solve it. As a result of the above findings, formulation B was
used in all subsequent two- and three-dimensional work.

In the second part of the two-dimensional study the entrance flow
and the cavity flow problems were again used to compare solutions
obtained by firstly using eight noded Serendipity and then nine noded
Lagrangian elements with quadratic velocity and linear pressure
representations. The results of this comparison show that the advan-
tages gained by using the nine noded element, namely a complete
quadratic velocity interpolation, did not warrant the additional com-
puter time and space required to obtain solutions that were no better
than those obtained using the eight noded Serendipity element with
an incomplete velocity interpolation. This, it was found, applied
equally to any shape quadrilateral element, rectangular or not. It
was therefore concluded in Chapter 5 that the Serendipity element
would be the more economical and less difficult to incorporate in
a computer package than the Lagrangian element and that by doing so,
no loss of accuracy would result. A more comprehensive summary and

discussion of the results and conclusions drawn from the two-dimensional
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computer studies was presented in Sections 5.5 and 5.6 and will not
be repeated here.

By extending the results of the two-dimensional studies to three
dimensions, formulation B of the three-dimensional Navier-Stokes
equations and the three-dimensional twenty noded Serendipity element
were used to model three three-dimensional viscous flow problems.
They were the fully developed flow between two parallel plates and
in a square duct and the developing flow in a square duct. It was
thereby shown that provided a sufficiently large computer facility
is available, the Galerkin finite element method using primitive
variables can be employed to solve a general three-dimensional steady
viscous flow problem. However in order to do so, it was found that
additional pressure boundary conditions must be specified. If this
was not done the resulting equation system was shown to be singular
and a unique solution not obtainable. The exact nature of this res-
triction was not discovered and must therefore be Tleft for future
research. However it was found that solutions could be obtained when
a pressure gradient was defined by the pressure boundary conditions
rather than simply a pressure datum. In all three cases analysed
in Chapter 6, a nodal pressure value at the entry and exit had to
be included in the input data before the equation system became non
singular and solvable.

As was stated in Chapter 1, the aims of this study were firstly
to determine the optimal two-dimensional finite element formulation
of the Navier-Stokes equations, secondly to determine the more efficient
of two quadrilateral Tlinear pressure and quadratic velocity finite
elements, and thirdly to see whether the results of these investiga-
tions could be extended to three dimensions and used to obtain a

solution to a typical three-dimensional viscous flow. The theoretical
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and numerical model developed in Chapters 3 and 4 and the results
and conclusions drawn from the studies in Chapters 5 and 6, have ful-
filled this objective. This is not to say that the task is complete
or that the viscous flow problem is solved. On the contrary, much
remains to be gained from future research.

Among the numerous questions that ha;e arisen during the course
of this study and that must be answered before the understanding of
the primitive variables finite element analysis of steady viscous
flows is complete, are:

(a) whether reduced integration can be used to produce the same
or better results with less computational effort,

(b) whether the use of elements that do not permit continuity
of velocity gradients across element interfaces produces stability,
convergence or other problems when it is assumed in the assembly process
that the same elements are capable of permitting stress continuity,

(c) why additional pressure boundary conditions are required when
the primitive variables Galerkin finite element method is wused to
solve three-dimensional viscous flows,

(d) whether the use of higher order elements and interpolations
is desirable,
and (e) the development of more efficient solution algorithms for
three-dimensional problems.

It is clear that the finite element analysis of three-dimensional
viscous flows will expand with the increased availability of faster
and larger computers. It is therefore hoped that the areas investigated
and the results obtained in this study will prove useful in the develop-
ment of a better technique for the analysis and evaluation of viscous

fluid flows.
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APPENDIX A

Derivation of Conservation of Momentum Equation

In applying Newton's second law to fluid motion, it is necessary
to consider a fixed quantity of fluid matter or system that maintains
its identity as it undergoes changes in position and conditions imposed
on it by the surrounding flow. To this end let the surfaces S] enclose
a quantity of moving fluid at some time t and 52 enclose the same system
at a later time, t + st. Also let the three regions defined by the

surfaces S] and S, be V v

2 1°
If we define MV to be the total linear momentum in a given direc-

o, and Vg as shown in Figure Al.

fion of the fluid in the volume V, then assuming that the flow is steady,
the momentum éf the above system is MV] + MV2 at time t and MV2 + MV3
at time t + st. The change in momentum during the time st in the given
direction is therefore MV3 - MV] which equals the net flow of momentum
out of the surface S]. Thus the rate of change of momentum in a given
direction of an arbitrary quantity of fluid in a steady flow equals
the net rate at which momentum flows out of the surface containing it
(any inflow taken as negative outflow).

To facilitate the derivation of the momentum equation consider
the steady flow of an dincompressible fluid through an element sxsysz
céntred on a point P with coordinates (x,y,z) as shown in Figure A2.
Let the fluid density (constant for incompressible fluids) be p, at all
points in. the flow and at P let the fluid velocity be vi(x,y,z) in
the x j direction (i.e. u, v and w in the x, y and z directions res-
pectively) and the stress tensor be g (x,ysz). Consider initially
the x direction. By using Newton's second law of motion one may state
that the rate of change of momen£um in the x direction of the fluid passing
through the element equals the sum of the body and surface forces acting
on the element 1in  the x direction. Then by applying the argument

presented above, the rate of change of momentum in the x direction
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of the fluid in the volume &sxs8ysz may be replaced by the rate at which
momentum in the x direction is carried out of the element's surfaces.
Thus, to set up the incompressible momentum equation for the x direction
it is necessary to derive expressions for the rate of flow of momentum
in the x direction out of the element, and for the sum of the body and
surface forces acting on the element in the x direction. Since the
flow is steady these forces are constant with respect to time.

The first of these two expressions can be set up by considering
the flow through the element in a time st. Throughout this time, since
the flow is assumed to be steady and incompressible, at each of the
six faces (1) 1234, (2) 5678, (3) 4378, (4) 1265, (5) 3267 and (6) 4158,

the momentum per unit volume in the x direction is:

U 8x au  6x
plut — —), plu-— —),
ax 2 ox 2
au sy u &y
olut — —), olu-— —),
y 2 y 2
au &z au &6z
olut — —), polu-— —).
3z 2 9z 2 Al.1

Similarly, the outward normal velocity at each of the six faces is:

ouU 68X ou 8X
(u'l"—'_‘)s ‘(U"—-—),
X 2 X 2
v sy av 8y
(v + —— ), -(v - — —),
y 2 y 2
Iw 8z oW 62
(w+ ——), -(w - — —). Al.2
3z 2 3z 2

In the same time &t, the total momentum in the x direction flowing out

of the element is therefore:



au 8x au 8x
{olu + — —)(u + — —) st
X 2 X 2
au 8x au &x
-plu - — —){u - — —) &t} sysz
ax 2 ax 2
au Sy av S8y
+ {p(lu + — —) (v + — —) st
3y 2 ay 2
au oy v Sy
-plu - — —)(v - — —) &ty 6x62
3y 2 ay 2
au ¢z ow 6z
+{p(u + — —)(w + — —) &t
3z 2 9z 2
au 6z ow 6z
-plu - — —){w - — —) st} sxsy
2z 2 9z 2
And simplifying becomes:
au au v au
p{lu—+u—) +(u—+v—)
ax ax 3y ay
ow au
+ (U — + w —)}exsysz st
3z 92
au au au
=pf{{lu—+v—+w—)
ax 3y 3z
au v aw

+ Uu(— + — + —)}8x8yéz st
ax a3y oz

ou v,

= plv, — + u —%

J X, ax

J J

)6x8ysz &t
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Al1.4

Thus the rate at which momentum in the x direction is carried out of

the element is:

au Vv .

p(Vj —t+uy ) EX8YSZ

oxX. X .
j %3

The second expression,

the sum of. the body and surface forces

acting on the element in the x direction, can be set up as follows.

On each of the six element faces the stress tensor component that acts
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in the x direction is:

30XX X aoxx 86X
(°xx + —), -(oxx - —)>
X 2 X 2
( aoyx sy aoyx sy
g X ) ) -(oyx —'-) ’
Y 3y 2 dy 2
aUZX §Z a“zx Y4
(o_. + —)and -(o__ - S Al1.6
L 3z 2 . 93z 2

N

where c-jis a stress component acting at a point in space in the positive
jth direction and on a plane whose norma]lpoints in the positivei
direction. The positive direction of the nine stress components is

shown in Figure A3.

The total force acting on the element in the x direction is there-

fore: ’

3o 8% 30 68X

o, + Lo (o, - XX __)}sysz
X 2 X 2
30 sy 90 sy

+{o . YX 7y - (¢ = & YX " yysxsz
y 3y 2 y y 2
do_ 62 3g__ 8z

+{(0ZX X - (OZX - 2K ))sxey + oF, 6x8ysz Al

93z 2 3z 2

where the last term is the part contributed by the body force per unit

mass F.(x,y,z) at point P.

By simplifying, the total force becomes:

e 90 90

(X _YX 42Xy sxeyez + oF, 6x8ysz
X ay 3z
ao.x
= SX8ysz + pFX 8Xx8ysz A1.8
axj

Thus the general momentum equation for the x direction is:
au av. '

D(Vj —+u “——'J‘) 'GXG_YSZ
GXJ ‘3Xj
30, ;
- __JX
= oxoyéz + pF_ Sxé8ysz
aX X

J
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Figure A3 Positive Directions of Nine Three-dimensional
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au av. g.
je. olv. — +u—3y = 39X 4 oF
I ax X ax .
J J J
90 . 3u av.
ie. —3 = pv;—+u—1-F) A1.9.1
aX . I ax., ax. X
J J J
) V.
As 1is traditionally done the term u- ﬂl is now set to zero by

making use of the steady incompressible Continuity equation. In this
study however this term will be prefixed by a constant C3 whose value
is either zero or one depending on whether the term is to be discarded
,or retained. Thus the effects of the inclusion of this term can be
investigated by simply changing the value of C3 from zero to one.

By applying the same arguments to the y and z directions, one

can obtain the’remaining two momentuin equations.

80 . v V.
_JY . p(vj _ C3 v _J - Fy) A1.9.2
X X . X .

X X X
90 . aw v .

JZ - D(V- —_—+ C3 w __g_ - F ) A1.9.3
3 . J ax. . -

XJ J J

The three equations for the x, y and z directions can now be combined
and expressed in tensor notation form to give the general steady and
incompressible Navier-Stokes equation.

90 .. av. 9V,

Jl:p(v.—1+C3 _i_J-F.) A1.10

J 1
oX . oX . oX .
X %3 %

Derivation of Conservation of Mass Equation

The law of conservation of mass states that the rate of change
of the total mass of a given quantity of fluid (system) must be zero
as the system moves within the remainder of the flow. By employing
techniques similar to those used in the derivation of the momentum equa-
tion, the Continuity equation can be set up as follows. As defined

previously, let the surfaces S] and 52 enclose the same quantity of
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fluid at times t and t + st, and let the volumes V1, V2 and V3 be the
three regions bounded by S] and 52 (see Figure Al). If we define my
to be the total mass of the fluid in the volume V, then assuming that
the flow is steady, the mass of the above system is mv] + mV2 at time
t and mV2 + mv3 at time t + st. The change in the total mass during
the time st is therefore mv3 - mV] which equals the net flow of mass
out of the surface S]. Thus the rate of change of the mass of an arbit-
rary volume of fluid in a steady flow equals the net rate at which mass
flows out of the surface containing it.

An/expression for this rate can be derived by considering the
steady flow of an incompressible fluid through the element sxsysz des-
cribed earlier and shown in Figure A2 in a time s&t. During this time,

at each of the six faces of the element, the outward normal velocity

is:

U 6X u 68X

(u+ ——), -(u-——),
X 2 X 2
av Sy v &y

(v +——), -(v-——),
y 2 ay 2
w 6z w 8z

(w+ — —) and -(w - — —). A1.11
oz 2 3z 2

Since the fluid density is constant, in a time st the mass flowing out

of the element is therefore:

U & u &
tolu + — —) st - o(u - — —) stlsysz

X 2 x 2
W &y av 8y

+ {plv + — —) st - plv - — —) st}éxsz
y 2 3y 2
W 62 aw 62

+ {plw + ——) st - p(w - — —) stresxsz A1.12
9z 2 9z 2

And simplifying, becomes:
U v aw
ol— + — + —) sxsysz st
X 3y oz
'()V_i
TP sxsysz st A1.13

BX_i
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Thus the rate at which mass is carried out of the element is:
p —— SX8yéz A1.14
X
!
By the law of conservation of mass this rate must always be zero. The

steady and incompressible Continuity equation is therefore:

AV

p-——l §x8ysz = 0
X,
j
av.
i.e. _Xl =0 A1.15
BX_i

s
Derivation of Stress Strain-Rate Relationship for a Newtonian Fluid

The genera] form of the stress tensor %45 was first suggested by
Stokes who derived it on the basis of three assumptions. He assumed
that

(a) the fluid is continuous and that the stress tensor is at most
a linear function of the strain rate,

(b) the fluid 1is isotropic, that is its properties are indepen-
dent of direction,
and  (c) when the strain rate is zero the deformation law must reduce
to the hydrostatic pressure condition O = -p 855 where 61j is the
Kronecker delta function.

The process of idinternal friction occurs in a fluid only when
adjacent fluid particles move with different velocities; that is, when
there is relative motion between them. Therefore 933 must be dependent
on the spatial derivatives of velocity. If the velocity gradients are

small, we may assume that only the first derivatives are involved and

by assumption (a) above, that o.. is a linear function of these first

iJ
av.
derivatives. There can be no terms in 933 independent of 3;% since
J
by assumption (c) above, o must reduce to the hydrostatic pressure

1J
condition when the fluid velocity is spatially constant. Also the same
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condition must prevail when the whole fluid is in uniform rotation since
it is clear that in such motion no internal friction occurs in the fluid.
It can easily be shown that the sum

av,  av,

14, _J A1.16

vanishes when the fluid is in a state of uniform rotation. According
to Reference 20, the most general tensor satisfying the above condition
is

v, AV, v

-0..=a(._‘+_i)+b_s1..-pa.. A1.17

J 1
axj X Xy

where a and b are independent of the velocity. In making this statement,
use is made of’assumption (b) above.

By considering the shear flow between two parallel plates moving
relative to each other as shown in Figure A4, it can easily be verified
that

a=qu A1.18
where u is the property of the fluid which relates the stress applied
to the top plate and the velocity gradient produced in the fluid, and
defiﬁed as

n = — A1.19

The other constant b, is indeﬁendent of u, is usually given the symbol
X and is customarily called the coefficient of bulk viscosity since
it is associated only with volume expansion. Therefore

V. 3V. av
o =r(— +—J) + aK s -poe.. A1.20

Equation A1.20 as it stands is not in an immediately usable form
since A has not been defined. In order to clarify the quantity x» it

is necessary to examine more closely the pressure variable. By
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definition the pressure is the average compressive stress on an element

of fluid. Using equation A1.20 therefore

2 v
pressure = p - (A + — u) 5= Al1.21
3 k

Thus the pressure in a deforming fluid is equal to the thermodynamic

v
quantity p only if x = - 2‘1or _ & e 0. In an incompressible fluid the
3 Xy

latter is true and equation A1.20 has only two terms and is immediately

v,
usable. If however ax“ is not equal to zero, as might be the case in
k
a finite element approximation sense, then the problem can only be
resolved by setting A = '%}h

Thus the stress strain rate relationship for this study must be

written as
v, v, 2 v
i J k
6., = pl—+ —~-—-C, 6,. —) - p 8. Al.22
ij 3 71 ij
axj axi 3 axk
2 )
or oij = p(vi,j + Vj,i —-g C3 Gij Vk,k) -p Gij A1.23

where C 5, which can have the value 1 or 0, has been included so that
v
the term it prefixes can be either included if it is assumed that 3;5
k

is not identically equal to zero everywhere or excluded if it is.
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Three-dimensional Computer Program Details

Basic flow chart for CR3DVF2

input data

check data

evaluate frontal
solution parameters

set up element equations

and right hand sides (from b.c.s)

No

assemble as many element
equations as possible

incorporate specified
variables (from b.c.s)

equations to be assembled

reduce out as many equations
as is needed for next element's

equations

No

of all elements
assembled

Yes

reduce remainder
of system

back substitute
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PROGRAM

318.

CR3DVF2 (INPUT=65,0UTPUT=65, TAPE5=INPUT, TAPE6=0UTPUT, TAPE2,

1 TAPE4=0,TAPE20=0,TAPE21=0,TAPE3)

PROGRAM
IN A 3D

CR3DVF CALCULATES THE VELOCITY AND PRESSURE DISTRIBUTIONS
VISCOUS FLOW ASSUMING QUADRATIC VELOCITY AND LINEAR

PRESSURE VARIATIONS AND USING THE 20-NODED ISOPARAMETRIC ELEMENT

AND THE

GALERKIN METHOD OF WEIGHTED RESIDUALS

ALL VARIABLES WILL BE DEFINED IN THE SUBROUTINE IN WHICH THEY
FIRST APPEAR

HREXXERRER

aaoaoaaQn

i

MAXIT
MAXNW
MAXSS
MAXND
MAXNS
MAXLD
MAXNW=15
MAXSS=MA
MAXND=50
MAXLD=12

ENTER COMMON BLOCK HERE REXRRRRLRER

MAXIMUM NUMBER OF ITERATIONS ALLOWED

MAXIMUM SIZE OF PROBLEM THAT CAN BE HANDLED BY PROGRAM
MAXIMUM SIZE OF STRUCTURAL STIFFNESS MATRIX AVAILABLE
MAXIMUM NUMBER OF EQUATIONS IN CORE AT ONE TIME

MAXIMUM NUMBER OF STRUCTURAL STIFFNESS MATRIX SUBDIVISIONS
MAXIMUM SIZE OF VECTOR LDEST IN PREFNT

0

XNW

8

MAXNS=MAXNW/MAXND

REWIND 3

L20=20
L21=21

TAPES 20

AND 21 ARE USED TO HOLD THE TOTAL STRUCTURAL STIFFNESS

MATRIX WHILE IT IS MANIPULATED

REWIND L20
REWIND L21

INPUT DATA FOR PROBLEM

CALL INDAT

CHECK INPUT DATA

CALL CHKPLT

CALCULAT
CALL PRE
INITIALI
DO 1 I=1

bo 2 J=1
ADSPL (I,

CONTINUE
CONTINUE

ITERATE

E MAXIMUM FRONT WIDTH FOR PROBLEM
FNT (ADSPL ,MAXLD)

ZE SOLUTION VECTOR

,MAXNOD

,NVABZ
J)=0.0

UNTIL CONVERGENCE IS ACHIEVED

CALL REMARK(3HONE)
DO 3 ITER=1,MAXIT

CALCULATE ELEMENT STIFFNESS MATRICES AND STORE ON TAPE 4

CALL STIFN

ENDFILE

L
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c INITIALIZE STRUCTURAL STIFFNESS MATRIX AND RIGHT HAND SIDE FORCE
c VECTOR

DO 5 J=1,MAXNW
DO 6 I=1,MAXND
SS(I,J)=0.0

6 CONTINUE
SRS(J)=0.0

5 CONTINUE

c INITIALIZE TAPES 20 AND 21

DO 9 I=1,MAXNS
BUFFER OUT (L20,1) (SS(1,1),SS(MAXND,MAXNW))
IF(UNIT(L20)) 4,7,8
4 CONTINUE
BUFFER OUT (L21,1) (SS(1,1),SS(MAXND,MAXNW))
IF(UNIT(L21)) 9,7,8
9 CONTINUE
ENDFILE 20
ENDFILE 21

REWIND L20
REWIND L21 :
BUFFER IN (L20,1) (SS(1,1),SS(MAXND,MAXNW))
IF(UNIT(L20)) 10,7,8

10 CONTINUE

KS=1

KF=MAXND
C REDUCE EQUATIONS TO UPPER TRIANGULAR FORM USING MODIFIED
C FRONTAL SOLUTION TECHNIQUE

CALL REMARK (3HTWO)
CALL ASMBLE

C CALCULATE ADJUSTED NODAL PARAMETERS

CALL REMARK (SHTHREE)
CALL BAKSUB

CALL REMARK (4HFOUR)
3 CONTINUE

WRITE(3) MAXNOD,MAXNEL,RE,ADSPL
ENDFILE 3
STOP

7 STOP "1 EOF ENCOUNTERED IN BUFFER IN OR OUT"
8 STOP "1 PATITY ERROR IN BUFFER IN OR OUT"

END

SUBROUTINE INDAT
C SUBROUTINE INDAT ACCEPTS ALL DATA REQUIRED TO SOLVE A FLOW PROBLEM
RRXXEERLRR ENTER COMMON BLOCK HERE RREXNEEREHX

DIMENSION HEAD(9)

c NNODZ = NUMBER OF NODES PER ELEMENT
NNODZ =20

c MAXNEL = MAXIMUM NUMBER OF ELEMENTS

c MAXNOD = MAXIMUM NODE NUMBER



anaon

aaa

100
102

103
104

200
201

300

301
302

MAXDIS = MAXIMUM NUMBER OF SPECIFIED NON-ZERO VARTABLES

MAXNDZ = MAXIMUM NUMBER OF SPECIFIED ZERO (EARTHED) VARIABLES
MAXPRS = MAXIMUM NUMBER OF NODES AT WHICH A PRESSURE IS SPECIFIED
MAXSHR = MAXIMUM NUMBER OF NODES AT WHICH A SHEAR IS SPECIFIED

WRITE(6,2000)
READ(5,1001) ICODE,NCODE
WRITE(6,1000) ICODE,NCODE

IF ICODE = 99, NO MORE DATA ACCEPTED

IF(ICODE.NE.99) GO TO 3
WRITE(6,2013)

RETURN

CONTINUE

GOTO(100,200,300,400,500,700),ICODE
READ IN HEADINGS (NCODE = 01)

GOTO(101,103),NCODE
WRITE(6,2001)

READ(5,1002) ICODE,NCODE,HEAD
IF(ICODE.NE.O) GO TO 2
WRITE(6,1003) HEAD

GO TO 102

READ IN PROGRAM PARAMETERS (NCODE = 02)
MAXIT = MAXIMUM NUMBER OF ITERATIONS ALLOWED
NFORM = FORMULATION NUMBER

WRITE(6,2014)

READ(5,1012) ICODE,NCODE, (NW(I),I=1,2)
IF(ICODE.NE.O) GO TO 2

MAXIT=NW(1)

NFORM=NW(2)

WRITE(6,1013) MAXIT,NFORM

GO TO 104

READ IN FLOW PROPERTIES (ICODE = 02)
RE IS THE REYNOLDS NUMBER OF THE FLOW

WRITE(6,2002)

READ(5,1004) ICODE,NCODE,NMAT,A
IF(ICODE.NE.O) GO TO 2

RE=A

WRITE(6,1005) NMAT,RE

GO TO 201

READ IN COORDINATES (ICODE = 03)
GO T0(301,303),NCODE
CARTESIAN COORDINATES (NCODE = 01)

WRITE(6,2003)

READ(5,1004) ICODE,NCODE,NIC,COX,COY,COZ
IF (ICODE.NE.0) GO TO 2

WRITE(6,1005) NIC,COX,COY,COZ

CORD(NIC, 1)=COX

CORD(NIC,2)=COY

CORD(NIC, 3)=C0Z

GO TO 302

CYLINDRICAL COORDINATES (NCODE = 02)

320.
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303
304

400

401

403

4oz

4oy
405

500

501
502

506

507

503
504

oC 1 .

ANG IS DEFINED BY THE RIGHT HANDED SYSTEM

WRITE(6,2004)

READ(5,1004) ICODE,NCODE,NIC,RAD,ANG,COZ,COCX,COCY,COCZ
IF(ICODE.NE.0) GO TO 2

WRITE(6,1005) NIC,RAD,ANG,COZ,COCX,COCY,COCZ
A1=0.0174532925%ANG

CORD(NIC, 1)=RAD*COS(A1)+COCX
CORD(NIC,2)=RAD*SIN(A1)+COCY

CORD(NIC, 3)=C0Z+COCZ

GO TO 304

READ IN ELEMENT DEFINITIONS (ICODE = O4)

WRITE(6,2005)

NEL=0

NEL=NEL+1

READ(5, 1006) ICODE,NCODE, (NW(I),I=1,12)
IF(ICODE.NE.O) GO TO 402

READ(5,1006) ICODE,NCODE, (NW(I),I=13,NNODZ)
DO 403 I=1,NNODZ

LDEF(NEL,I)=NW(I)

CONTINUE

WRITE(6,1007) NEL, (LDEF(NEL,I),I=1,NNODZ)
MAXNEL=NEL

GO TO 401

DO 405 NEL=1,MAXNEL

DO 404 LNOD=1,NNODZ
IF(MAXNOD,LT.LDEF(NEL,LNOD)) MAXNOD=LDEF(NEL,LNOD)
CONTINUE

CONTINUE

GO TO 2

READ IN FLOW CONSTRAINT DATA (ICODE = 05)

NCOUNT=0
GO T0(501,503),NCODE

NON-ZERO SPECIFIED VELOCITIES AND PRESSURES (NCODE = 01)

WRITE(6,2006)

NCOUNT=NCOUNT+1

READ(5,1008) ICODE,NCODE, (NW(I),I=1,5),(CW(I),I=1,4)
IF(ICODE.NE.O) GO TO 2

DO 506 I=1,5

NDISP(NCOUNT,I)=NW(I)

CONTINUE

DO 507 I=1,4

DISP(NCOUNT,I)=CW(I)

CONTINUE

WRITE(6,1009) (NDISP(NCOUNT,I),I=1,5),(DISP(NCOUNT,I),I=1,4)
MAXDIS=NCOUNT

GO TO 502

ZERO-SPECIFIED VELOCITIES AND PRESSURES (NCODE = 02)

WRITE(6,2007)

READ(5,1010) ICODE,NCODE,NFIXU,NFIXV,NFIXW,NFIXP,(NW(I),I=1,14)
IF(ICODE.NE.OQ) GO TO 2

WRITE(6,1011) NFIXU,NFIXV,NFIXW,NFIXP,(NW(I),I=1,14)

DO 505 I=1,14

IF(NW(I).EQ.0) GO TO 504

NCOUNT=NCOUNT+1

NDISPZ(NCOUNT, 1)=NFIXU

NDISPZ(NCOUNT,2)=NFIXV
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505

700

701
702

703
704

1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1017
1018

2000
2001
2002
2003
2004
2005
2006
2007
2010
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NDISPZ(NCOUNT,3)=NFIXW
NDISPZ(NCOUNT,4)=NFIXP
NDISPZ(NCOUNT,5)=NW(I)
MAXNDZ=NCOUNT

CONTINUE

GO TO 504

READ IN SPECIFIED SIDE STRESS DATA (ICODE = 07)

NCOUNT=0
GO TO0(701,703),NCODE

SIDE PRESSURE (NCODE = 01)
PRESSURE IS ASSUMED POSITIVE IF IT ACTS ONTO THE SIDE

WRITE(6,2010)

NCOUNT=NCOUNT+1

READ(5,1017) ICODE,NCODE,N,A1
IF(ICODE,.NE.O) GO TO 2

NPRES(NCOUNT)=N

PRES(NCOUNT)=A1

WRITE(6,1018) NPRES(NCOUNT),PRES(NCOUNT)
MAXPRS=NCOUNT

GO TO 702

SIDE SHEAR STRESS (NCODE = 02)

WRITE(6,2011)

NCOUNT=NCOUNT+1

READ(5,1017) ICODE,NCODE,N,A1,A2

IF(ICODE.NE.0) GO TO 2

NSHEAR (NCOUNT) =N

SHEAR(NCOUNT, 1)=A1

SHEAR(NCOUNT,2)=A2

WRITE(6,1018) NSHEAR(NCOUNT), (SHEAR(NCOUNT,I),I=1,2)
MAXSHR=NCOUNT

GO TO TOY4

FORMAT(1X,2I2)

FORMAT(212)

FORMAT(2I2,1X,9A8)

FORMAT(6X, 9A8)

FORMAT(ZI2 1X,15,6E10.3)
FORMAT(6X, 15 6£10. 3)
FORMAT(2I2 6x 1215)

FORMAT(6X, 2115)

FORMAT(ZIZ 1X,411,1X,15,5X,4E10.3)
FORMAT(6X, 411 1%, 15 5x 4E10. 3)
FORMAT(212 1%, u11 1x 1415)
FORMAT(6X, u11 1%, 1u15)
FORMAT(ZIZ 1X, 1215)

FORMAT (6X, 215)

FORMAT(2IZ 1X,15,3E10.3)
FORMAT(6X, 15 3E1O 3)

FORMAT(1H1)

FORMAT(2X , THHEADING)

FORMAT (2X , 15HREYNOLDS NUMBER)

FORMAT (2%, 27HNODAL CARTESIAN COORDINATES)
FORMAT (2%, 29HNODAL CYLINDRICAL COORDINATES)
FORMAT(&X T9HELEMENT DEFINIT IONS)

FORMAT (2X ,28HNON-ZERO SPECIFIED VARIABLES)
FORMAT(2X ,24HZERO SPECIFIED VARIABLES)
FORMAT(2X,?8HAPPLIED SIDE NORMAL STRESSES)
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2011 FORMAT(2X,27HAPPLIED SIDE SHEAR STRESSES)
2013 FORMAT(2X,13HDATA COMPLETE)
2014 FORMAT(2X,34HPROGRAM PARAMETERS MAXIT AND NFORM)

END
SUBROUTINE CHKPLT

SUBROUTINE CHKPLT CHECKS INPUT DATA FOR OBVIOUS ERRORS
AR R ENTER COMMON BLOCK HERE RERREERRER

CHECK FOR ANY UNDEFINED NODAL COORDINATES AND CALCULATE THE
COORDINATES OF UNDEFINED MIDSIDE NODES

WRITE(6,1000)
DO 1 NEL=1,MAXNEL
DO 2 NOD=1,NNODZ
NIC=LDEF (NEL,NOD)
COX=CORD(NIC,1)
COY=CORD(NIC,2)
C0Z=CORD(NIC, 3)
DO 3 I=1,12
N2=INT2(I)
IF(NOD.EQ.N2) GO TO 4
3 CONTINUE
IF(COX.EQ.0.0.AND.COY.EQ.0.0.AND.COZ.EQ.0.0) WRITE(6,1001) NIC
GO TO 2
4 CONTINUE ‘
IF(COX.NE.0.0.0R.COY.NE.0.0.0R.COZ.NE.0.0) GO TO 2
N1=INT1(I)
N3=INT3(I)
NIC1=LDEF(NEL,N1)
NIC3=LDEF(NEL,N3)
CORD(NIC, 1)=(CORD(NIC1,1)+CORD(NIC3,1))¥0.5
CORD(NIC,2)=(CORD(NIC1,2)+CORD(NIC3,2))*0.5
CORD(NIC,3)=(CORD(NIC1,3)+CORD(NIC3,3))¥0.5
2 CONTINUE
1 CONTINUE

CHECK ELEMENT DEFINITIONS

DO 5 NELI=1,MAXNEL
DO 6 I=1,12
NODI=INT2(I)
N1=INT1(I)
N2=INT3(I)
NIC1=LDEF(NELI,N1)
NIC2=LDEF(NELI,NODI)
NIC3=LDEF(NELI,N2)
DO 7 NELJ=1,MAXNEL
DO 8 J=1,12
NODJ=INT2(J)
NIC5=LDEF(NELJ,NODJ)
IF(NIC5.NE.NIC2) GO TO 8
N3=INT1(J)
NU=INT3(J)
NICU=LDEF (NELJ,N3)
NIC6=LDEF(NELJ,NU4)
IF(NIC1.EQ.NICL.AND.NIC3.EQ.NIC6) GO TO 8
IF(NIC1.EQ.NIC6.AND.NIC3.EQ.NIC4) GO TO 8
WRITE(6,1002) NELI,NELJ,NIC2
8 CONTINUE
7 CONTINUE
6 CONTINUE
5 CONTINUE
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1000 FORMAT(1H1,///)
1001 FORMAT(5X, 19HCOORDINATES OF NODE,I5,18H ARE (0.0,0.0,0.0))
1002 FORMAT(5X,35HELEMENT DEFINITION ERRORS ELEMENTS 215,5H NODE,I5)

RETURN

END

SUBROUTINE PREFNT(LDEST,MAXLD)
C SUBROUTINE PREFNT CALCULATES THE MAXIMUM FRONT WIDTH NEEDED BY
C CR3DVF TO SOLVE THE FLOW PROBLEM
HURERLRERE ENTER COMMON BLOCK HERE ERERNBRENN

DIMENSION LDEST(MAXLD)
NVABZ NUMBER OF VARIABLES PER NODE

MVABZ NUMBER OF VARIABLES PER ELEMENT

MAXFW MAXIMUM FRONT WIDTH ENCOUNTERED IN PROBLEM

IF MAXFW EXCEEDS MAXNW ALL MATRIX SIZES MUST BE ADJUSTED
NVABZ=4

MVABZ=NVABZ¥*NNODZ

QO

INITIALIZE HEADING VECTOR NW
IF NW(I)=0 COLUMN I CAN ACCEPT A NEW NODAL VARIABLE

Qo

MAXNW1=MAXNW+50
DO 1 I=1,MAXNW1
NW(I)=0

1 CONTINUE

SET LDEST(NIC) EQUAL TO THE NUMBER OF THE ELEMENT IN WHICH NODE
NIC APPEARS FOR THE LAST TIME
SET LFRST(NIC) EQUAL TO THE NUMBER OF THE ELEMENT IN WHICH NODE
NIC APPEARS FOR THE FIRST TIME

QOO0

DO 2 NEL=1,MAXNEL

DO 3 I=1,NNODZ

NIC=LDEF (NEL,I)

LDEST(NIC)=NEL

IF (LFRST(NIC).EQ.0) LFRST(NIC)=NEL
3 CONTINUE
2 CONTINUE

c CHANGE THE SIGN OF LDEF(NEL,I) FOR ELEMENTS NEL IN WHICH NODE
c NUMBER I APPEARS FOR THE LAST TIME

DO 5 NIC=1,MAXNOD
NEL=LDEST(NIC)
DO 6 I=1,NNODZ
IF(LDEF (NEL,I).NE.NIC) GO TO 6
LDEF(NEL,I)=-NIC
LDEST(NIC)=0
GO TO 5

6 CONTINUE

5 CONTINUE

c CALCULATE MAXFW

DO 7 NEL=1,MAXNEL
DO 8 I=1,NNODZ
N1=IABS(LDEF(NEL,I))
DO 9 J=1,NVABZ

. DO 10 K=1,12
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IF(I.NE.INT2(K)) GO TO 10
IF(J.EQ.NVABZ) GO TO 9
GO TO 15

10 CONTINUE

15 CONTINUE
NVAB=(N1-1)%NVABZ+J
IF(LDEST(NVAB).NE.O) GO TO 8
DO 11 K=1,MAXNW1
IF(NW(K) .NE.O) GO TO 11
NW(K)=NVAB
LDEST(NVAB)=K
IF(MAXFW.LT.K) MAXFW=K
GO TO 9

11 CONTINUE
WRITE(6,999) MAXNW1
STOP1

9 CONTINUE

8 CONTINUE

DO 12 I=1,NNODZ
NIC=LDEF(NEL,I)
N1=IABS(LDEF(NEL,I))
IF(NIC.GT.0) GO TO 12
DO 13 J=1,NVABZ
DO 14, K=1,12
IF(I.NE.INT2(K)) GO TO 14
IF(J.EQ.NVABZ) GO TO 13
GO TO 16

14 CONTINUE

16 CONTINUE
NVAB=(N1-1)*NVABZ+J
K=LDEST(NVAB)
NW(K)=0

13 CONTINUE

12 CONTINUE

7 CONTINUE
WRITE(6,1001) NVABZ
WRITE(6,1002) NNODZ
WRITE(6,1003) MVABZ
WRITE(6,1004) MAXNEL
WRITE(6,1005) MAXNOD
WRITE(6,1006) MAXFW,MAXNW
WRITE(6,1007) MAXNS
WRITE(6,1008) MAXNW,MAXND
WRITE(6,1009) NFORM

STOP IF MAXNW IS EXCEEDED

IF (MAXFW.LE .MAXNW)RETURN
WRITE(6,1000) MAXFW
STOP2

999 FORMAT(45H1INSUFFICIENT ROOM TO CALCULATE FRONT WIDTH
1 21HINCREASE MAXNW TO 50+,I3)

1000 FORMAT(55H1MAXIMUM FRONT WIDTH DURING PREFNT EXCEEDS SIZE OF SS
1 18HINCREASE MAXNW TO ,I5)

1001 FORMAT(///,5%,30HNUMBER OF VARIABLES PER NODE =,I5,5X,
130HWITH ONE LESS AT MIDSIDE NODES)

1002 FORMAT(/,5X%,29HNUMBER OF NODES PER ELEMENT =,I5)

1003 FORMAT(/,5X,33HNUMBER OF VARIABLES PER ELEMENT =,I5,5X,
150HINCLUDING 12 MIDSIDE VARIABLES THAT ARE NEVER USED,/)

1004 FORMAT(/,5X,28HMAXIMUM NUMBER OF ELEMENTS =,I5)

1005 FORMAT(/,5X,25HMAXIMUM NUMBER OF NODES =,I5,/)

1006 FORMAT(/,5X,21HMAXIMUM FRONT WIDTH =,I5,5X,
11THSHOULD NOT EXCEED,15,/)



1007

1008
1009
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FORMAT(/,5X,69HMAXIMUM NUMBER OF SUBDIVISIONS IN TOTAL STRUCTURAL

1STIFFNESS MATRIX =,I5)

FORMAT(/,5X,35HMAXIMUM SIZE OF EACH SUBDIVISION IS,I5,2H X,I5,/)
FORMAT(/,5X, 1T4HFORMULATION = ,15,/////)

END
SUBROUTINE STIFN

SUBROUTINE STIFN SETS UP THE ELEMENT STIFFNESS MATRIX FOR EACH
ELEMENT AT EACH ITERATION STEP

ERBERXREXE ENTER COMMON BLOCK HERE (222X 21224

1000

8

1
#

DIMENSION R{(80,80)
EQUIVALENCE (R(1,1),8S8(1,1))

REWIND Y4

NRULE = NUMBER OF INTEGRATION POINTS PER DIMENSION
NRULE=3

DO 1 NEL =1,MAXNEL

WRITE(6,1000) NEL
FORMAT (5X , *ELEMENT#*,13)

INITIALIZE LINEAR AND NON-LINEAR STIFFNESS MATRICES AND RIGHT
HAND SIDE FORCE VECTOR

DO 2 I=1,MVABZ
DO 3 J=1,MVABZ
S(1,J)=0.0
R(I,J)=0.0
CONTINUE
RS(I)=0.0
CONTINUE

SET UP ELEMENT VARIABLES

DO 4 J=1,NNODZ
NIC=IABS(LDEF(NEL,J))
X(J)=CORD(NIC,1)
Y(J)=CORD(NIC,2)
Z(J)=CORD(NIC, 3)
ELDISP(J,1)=ADSPL(NIC, 1)
ELDISP(J,2)=ADSPL(NIC,2)
ELDISP(J,3)=ADSPL(NIC,3)
ELDISP(J,4)=ADSPL(NIC,4)
CONTINUE

EVALUATE STIFFNESS MATRIX COMPONENTS

DO 6 JA=1,NRULE
XL=VECTLC(JA&)
WX=WTFUN(JA)

DO 7 JB=1,NRULE
YL=VECTLC(JB)
WY=WTFUN(JB)

DO 8 JC=1,NRULE
ZL=VECTLC(JC)
WZ=WTFUN(JC)
CALL JACOB(0)
CALL MULT1
CONTINUE
CONTINUE
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6 CONTINUE

CALL MULTZ2
CALL MULT3

C EVALUATE RIGHT HAND SIDE FORCE VECTOR COMPONENTS

IF(MAXPRS.NE.0) CALL PRES1
IF(MAXSHR.NE.O) CALL SHEAR1

C STORE ON TAPE 4 EACH ELEMENT STIFFNESS AND FORCE ARRAYS

BUFFER OUT (4,1) (RS(1),RS(80))
IF(UNIT(4)) 5,10,11

5 CONTINUE
BUFFER OUT (4,1) (s(1,1),S(80,80))
IF(UNIT(4)) 1,10,11

1 CONTINUE
C NSTOP IS SET TO ZERO IN SUBROUTINE JACOB IF ERRORS ARISE IN ANY
C ELEMENT GEOMETRY

9 IF(NSTOP.EQ.0) RETURN
STOP3

10 STOP "2 EOF ENCOUNTERED IN BUFFER IN OR OUT"
11 STOP "2 PARITY ERROR IN BUFFER IN OR OUT"

END
SUBROUTINE JACOB(I1)

c SUBROUTINE JACOB CALCULATES THE VALUES OF THE SHAPE FUNCTIONS,
c THEIR FIRST DERIVATIVES AND THE JACOBIAN AT EACH GAUSS POINT

REREXRREXE ENTER COMMON BLOCK HERE REERXIEREER
C INITIALIZE THE JACOBIAN ARRAY
DO 1 I=1,9
CW(I)=0.0
1 CONTINUE
SHP1 AND SHP2 ARE THE LINEAR AND NON-LINEAR SHAPE FUNCTIONS

DX DY AND DZ ARE THE FIRST DERIVATIVES OF SHP1 WITH RESPECT
TO THE LOCAL COORDINATES

[eXeXe]

AU=XL¥XL
A5=YL *¥YL
A6=ZL¥ZL
DO 2 I=1,NNODZ
A1=XL¥XX(I)
A2=YL#YY(I)
A3=ZL¥Z7Z(I)
G0 To0(10,30,10,20,10,30,10,20,40,40,
1 40,4%0,10,30,10,20,10,30,10,20),I

10 DX(I)=0.125%(1+h25%(1+A3)*(2*A1+A2+A3-1)*XX(I)
DY(I)=0.125%(1+A1)*(1+A3)*¥(A1+2%A2+A3-1)*YY(I)
DZ(I)=0.125%(1+A1)%(1+A2) ¥ (A1+A2+2%¥A3=-1)*ZZ(1)
SHP1(I)=0.125%(1+A1)*(1+A2) ¥ (1+A3) ¥ (A1+A2+A3-2)
SHP2(I)=0.125%(1+A1)*¥(1+A2)*¥(1+A3)
GO TO 3

20 DX(I)=-0.5*XL*¥(1+A2)¥(1+A3)
DY(I)=0.25¥YY(I)¥(1-AU)*(1+A3)
DZ(I)=0.25%ZZ(I)*(1-A4)*¥(1+A2)

, SHP1(I)=0.25%(1-A4)%(1+42)%*(1+A3)
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SHP2(I)=0.0

GO TO 3
DX(I)=0.25%XX(I)*(1-A5)¥(1+A3)
DY(I)=-0.5%YL*¥(1+A1)¥(1+A3)
DZ(I)=0.25%ZZ(I)*(1-A5)*¥(1+A1)
SHP1(I)=0.25%(1+A1)%(1-A5)*(1+A3)
SHP2(I)=0.0

GO TO 3
DX(I)=0.25#XX(I)*¥(1-A6)*(1+A2)
DY(I)=0.25*%YY(I)*¥(1-A6)%(1+A1)
DZ(I)=-0.5%ZL*¥(1+A1)*¥(1+A2)
SHP1(I)=0.25%(1+A1)*(1+A2)%¥(1-46)
SHP2(I)=0.0

CONTINUE

SET UP THE 9 COMPONENTS OF THE JACOBIAN MATRIX J

CW(1)=CW(1)+DX(I)*X(I)
CW(2)=CW(2)+DX(I)¥*¥Y(I)
CW(3)=CW(3)+DX(I)*Z(I)
CW(L)=CW(U)+DY(I)*X(I)
CW(5)=CW(5)+DY(I)¥Y(I)
CW(6)=CW(6)+DY(I)*Z(I)
CW(T)=CW(T)+DZ(I)¥X(I)
CW(8)=CW(8)+DZ(I)¥Y(I)
CW(9)=CW(9)+DZ(I)*Z(I)
CONTINUE

EVALUATE THE DETERMINANT OF J

DETJ=CW(1)*(CW(5)*¥CW(9)-CW(8)*CW(6) )+
CW(2)%(CW(T)*CW(6)-CW(L)*CW(9))+
CW(3)*(CW(L)®CW(8)-CW(T)*CW(5))

IF THE DETERMINANT OF J IS ZERO OR NEGATIVE SET NSTOP TO 1 AND
EXECUTION WILL TERMINATE IN SUBROUTINE STIFN

IF(DETJ.GT.0.0) GO TO 4
WRITE(6,1000) NEL,DETJ
NSTOP=1

CONTINUE

INVERT J

RDETJ=1.0/DETJ

AW(1)=(CW(5)*¥CW(9)-CW(6)¥CW(8))*RDETJ
AW(2)=(CW(3)%CW(8)-CH(2)¥CW(9))*RDETJ
AW(3)=(CW(2)*CW(6)-CW(3)*CW(5))*RDETJ
AW(U)=(CW(6)#CW(T)-CW(L)*CW(9))*RDETJ
AW(5)=(CW(1)%¥CW(9)~-CW(3)#CW(7))*RDETJ
AW(6)=(CW(3)¥CW(H4)-CW(1)*¥CW(6))¥RDETJ
AW(T)=(CW(L)®*CW(8)-CW(5)%CW(T7))¥RDETJ
AW(8)=(CW(2)¥CW(T7)-CW(1)¥CW(8))*RDETJ
AW(9)=(CW(1)*CW(5)-CW(2)*¥CW(4))*RDETJ

IF SUBROUTINE JACOB IS CALLED FROM PRES2 OR SHEAR2 I1=1
NO FURTHER CALCULATION NEEDED IN JACOB

IF(I1.EQ.1) RETURN
SET UP DERIVATIVES WITH RESPECT TO GLOBAL COORDINATES
DO 5 I=1,NNODZ

DXI=DX(I)
DYI=DY(I)
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DZI=DZ(I)

DX(I)=AW(1)*DXI+AW(2)¥DYI+AW(3)*DZI
DY(I)=AW(Y4)*DXI+AW(5)¥DYI+AW(6)*DZI
DZ(I)=AW(T7)*DXI+AW(8)*DYI+AW(9)*DZI

5 CONTINUE
RETURN
1000 FORMAT(//,5X,28 HNEGATIVE OR ZERO DETERMINENT,/,5X,8HELEMENT ,I5,
1 12H DETERMINENT 2X,E10.3)
END

SUBROUTINE MULT1

SUBROUTINE MULT1 EVALUATES THE INTEGRALS OF ALL THE CROSS PRODUCTS
OF DERIVATIVES OF THE SHAPE FUNCTIONS BY NUMERICAL INTEGRATION

0 3% 3 % % 3 3 % % * ENTER COMMON BLOCK HERE (X2 X222 2 L]

it

DIMENSION R(80,80)
EQUIVALENCE (R(1 1),85(1,1))

WAIT=WX*WY*WZ¥*DETJ
DO 1 I=1,NNODZ
DXI=DX (I)*WAIT
DYI=DY(I)¥*WAIT
DZI=DZ(I)*WAIT
SHP1I=SHP1(I)*WAIT
SHP2I=SHP2(I)¥WAIT
II=(I-1)*NVABZ

DO 2 J=1,NNODZ
DXJ=DX(J)

DYJ=DY (J)
DZJ=DZ(J)
SHP1J=SHP1(J)
SHP2J=SHP2(J)
JJ=(J-1)*¥NVABZ

EVALUATE INTEGRALS FOR THE LINEAR STIFFNESS S

S(II+1,JJ+1)=S(II+1,JJ+1)+DXI¥DXJ
S(II+1,Jd+2)=S(II+1,JJ+2)+DYI¥DXJ
S(II+1, JJ+3) S(II+1, JJ+3)+DZI*DXJ
S(II+1,JJ+4)=S(II+1, JJ+H)+DXI*DYJ
S(II+2,JJ+1)=S(II+2,JJ+1)+DYI*DYJ
S(II+2,JJ+2)=3(11+2,JJ+2)+DZI*DYJ
S(II+2,JJ+3)=S(II+2,JJ+3)+DXI*DZJ
S(II+2,JJ+4)=S(11+2,JJ+U)+DYI¥DZJ
S(II+3,JdJ+1)=S(1I+3,JJ+1)+DZI*DZJ
S(II+3,JJ+2)=S(I1I+3,JJ+2)+DXI#*SHP2J
S(II+3,JJ+3)=S(II+3,JJ+3)+DYI#SHP2J
S(II+3,JJ+4)=S(I1I+3,JJ+4)+DZI*SHP2J
S(IT+4,JJ+1)=S(II+Y4,JJ+1)+DXJ¥SHP2I
S(II+Y4,JJ+2)=S(II+4,JJ+2)+DYJ*SHP2I
S(II+4,JdJ+3)=S(II+l, JJ+3)+DZJ*SHP21

EVALUATE THE INTEGRALS FOR THE NON-LINEAR STIFFNESS R

DO 3 K=1,NNODZ

DXK=DX(K)

DYK=DY(K)

DZK=DZ(K)

SHP1K=SHP 1(K)
R(II+1,JJ+1)=R(II+1,JJ+1)+SHP1I¥SHP1J¥DXK*ELDISP(K,1)
R(II+1,JdJ+2)=R(II+1, JJ+2)+SHP1I*SHP1J*DXK*ELDISP(K 2)
R(II+1,JJ+3)=R(II+1, JJ+3)+SHP1I*SHP1J*DXK*ELDISP(K 3)
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R(II+1,JJ+4)=R(II+1,JJ+4)+SHP1I*SHP1J*DYK*ELDISP(K,1)
R(II+2,JJ+1)=R(II+2,JJ+1)+SHP1I#SHP1J*DYK*ELDISP(K,2)
R(II+2,JJ+2)=R(II+2,JJ+2)+SHP1I%SHP1J*DYK*ELDISP(K,3)
R(II+2,JJ+3)=R(II+2,JJ+3)+SHP1I#SHP1J*DZK*ELDISP(K, 1)
R(II+2,JJ+L)=R(II+2,JJ+l)+SHP1I*SHP1J#*DZK*ELDISP(K,2)
R(II+3,JJ+1)=R(II+3,JJ+1)+SHP1I#SHP1J#DZK*ELDISP(K,3)
R(II+3,JJ+2)=R(II+3,JJ+2)+SHP1I#SHP1K#DXJ*ELDISP (K, 1)
R(II+3,JJ+3)=R(II+3,JJ+3)+SHP1I#SHP1K¥*DYJ*ELDISP(K,2)
R(II+3,JJ+L)=R(II+3,JJ+4)+SHP1I*SHP1K*DZJ*ELDISP(K,3)
CONTINUE

CONTINUE

CONTINUE

RETURN

END
SUBROUTINE MULT2

( SUBROUTINE MULTZ2 COMBINES THE INDIVIDUAL INTEGRALS FROM MULT1 TO
C GIVE THE COMPONENTS OF THE ELEMENT STIFFNESS MATRIX S AND THE

C MATRIX OF COEFFICIENTS OF THE ORIGINAL EQUATIONS

RERERRRRNE ENTER COMMON BLOCK HERE 3 %08 W E N ®

i

"DIMENSION R(80,80)

EQUIVALENCE (R(1,1),8S(1,1))

DO 1 I=1,NNODZ
II=(I-1)*NVABZ
DO 2 J=1,NNODZ
JJ=(J-1)*NVABZ
S1=S(II+1,Jd+1)
S2=S(II+1,JdJd+2)
S3=S(II+1,JJ+3)
SU=S(II+1,JJ+4)
S5=8(II+2,JJ+1)
S6=S(II+2,JJ+2)
S7=S(II+2,JJ+3)
S8=S(II+2,JJ+4)
S9=S(II+3,JJd+1)
S10=S(II+3,JJ+2)
S11=S(II+3,dJ+3)
S12=S(II+3,JJ+l)
S13=S(II+4,JJ+1)
S1B=S(II+4,JJ+2)
S15=S(II+k,JJ+3)

R1=R(II+1,JJ+1)
R2=R(II+1,JJ+2)
R3=R(II+1,JJ+3)
RY=R(II+1,JJ+U)
R5=R(II+2,JJ+1)
R6=R(II+2,JJ+2)
R7=R(II+2,JJ+3)
R8=R(II+2,JJ+1)
R9=R(II+3,JJ+1)
RR=R(II+3,JJ+2)+R(II+3,dJ+3)+R(II+3,JJ+l)

R(II+1,JJ+1)=(2%31+55+39)/RE+(R1)
R(II+1,JJ+2)=(S2)/RE+(RU)
R(II+1,JJ+3)=(83)/RE+(RT)
R(II+1,JJ+4)==810
R(II+2,JJ+1)=(S4)/RE+(R2)
R(II+2,JJ+2)=(S1+2#35+S9)/RE+(R5)
R(II+2,JJ+3)=(S6)/RE+(R8)
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R(II+2,JJ+U4)=-S11
R(II+3,JJd+1)=(ST)/RE+(R3)
R(II+3,JJ+2)=(S8)/RE+(R6)
R(II+3,JJ+3)=(S1+35+2%59)/RE+(R9)
R(II+3,JJ+l4)==-812
R(II+l4,Jd+1)=-813
R(II+4,JJ+2)=-S14
R(II+l,JJ+3)==S15

S(II+1,JJ+1)=R(II+1,JJ+1)+RR
S(IT+1,JJ+2)=R(II+1,Jd+2)
S(II+1,JJ+3)=R(II+1,dJ+3)
S(II+1,JJ+4)=-S10
S(I1I+42,dJ+1)=R(II+2,JJ+1)
S(II+2,JJ+2)=R(I1II1+2,JJ+2)+RR
S(II+2,JJ+3)=R(I1I+2,JJ+3)
S(II+2,Jd+4)=-511
S(II+3,JJ+1)=R(II+3,JJ+1)
S(II+3,JJ+2)=R(II+3,Jd+2)
S(II+3,JJ+3)=R(II+3,JJ+3)+RR
S(II+3,JJ+U)=-3812
S(II+4,JJ+1)=-513
S(II+4,JJ+2)=-S1Y4
S(II+4,JJ+3)==-S15

CONTINUE
CONTINUE
RETURN

END
SUBROUTINE MULT3

SUBROUTINE MULT3 CALCULATES THE VALUES OF THE RIGHT HAND SIDES OF
THE ORIGINAL EQUATIONS USING THE NODAL VALUES OF VELOCITY AND
PRESSURE FROM THE PREVIOUS ITERATION. IF THE RIGHT HAND SIDES ARE
ALL ZERO THE EXACT SOLUTION HAS BEEN FOUND

BERRRRNURR ENTER COMMON BLOCK HERE RERRERRARR

C
C

= MNw =

DIMENSION R(80,80)
EQUIVALENCE (R(1,1),S8(1,1))

DO 1 I=1,NNODZ
II=(I-1)*NVABZ
NIC=IABS(LDEF(NEL,I))
DO 2 J=1,NNODZ
JJ=(J-1)¥NVABZ

DO 3 K=1,NVABZ

DO 4 L=1,NVABZ
RS(II+K)=RS(II+K)+R(II+K,JJ+L)*ELDISP(J,L)
CONTINUE

CONTINUE

CONTINUE

CONTINUE

RETURN

END
SUBROUTINE PRES1

SUBROUTINE PRES1 FINDS THE FACES THAT HAVE A PRESSURE APPLIED ON
THEM

FURRRELNER ENTER COMMON BLOCK HERE RHRERRRRE®N

i

DIMENSION IP(20)
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it

LOGICAL IP

N=0

DO 1 I=1,NNODZ
P(I)=0.0
IP(I)=.FALSE.
CONTINUE

DO 2 J=1,MAXPRS
NOD=NPRES(J)
DO 3 I=1,NNODZ

IF(IABS(LDEF(NEL,I)).NE.NOD) GO TO 3

P(I)=PRES(J)
N=N+1
IP(I)=.TRUE.
GO TO 2
CONTINUE
CONTINUE

IF(N.LT.4) RETURN

IF(IP(13) .AND.IP(15).AND.IP(17).AND.IP(19)) 1)
3).AND,IP( 5).AND.IP(17)) 2)
3).AND.IP(15).AND,IP(13)) 3)
3).AND.IP( 5).AND,IP( 7)) CALL PRES2(Y4)
9)) 5)

9)) 6)

IF(IP(15) .AND.IP(
IF(IP( 1) .AND.IP(
IF(IP( 1) AND.IP(
IF(IP(13).AND.IP(
IF(IP( T7).AND,IP(
RETURN

END

SUBROUTINE PRES2(I1)

1) JAND.IP( 7).AND.IP(1
5).AND.IP(17).AND,IP(1

33 .

CALL PRES2(
CALL PRES2(
CALL PRES2(

CALL PRES2(
CALL PRES2(

SUBROUTINE PRES2 EVALUATES THE ORIENTATIONS OF THE FACES AT THE

NINE GAUSS POINTS ON EACH FACE

Go T0(1,2,3,4,5,6),I1

WZ=-1.0

ZL=1.0

GO TO 7

WZ=1.0

ZL=-1.0

DO 8 JA=1,NRULE
WX=WTFUN(JA)
XL=VECTLC(JA)
DO 9 JB=1,NRULE
WY=WTFUN(JB)
YL=VECTLC(JB)
CALL JACOB(1)
CALL PRES3(3,6,9)
CONTINUE
CONTINUE

RETURN

WY==1.0

YL=1.0

GO TO 10

WY=1.0

YL=-1.0

DO 11 JA=1,NRULE
WX=WTFUN(JA)
XL=VECTLC (JA)

DO 12 JB=1,NRULE
WZ=WTFUN(JB)
ZL=VECTLC(JB)

ENTER COMMON BLOCK HERE

RERFENRNKEXX
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CALL JACOB(1)
CALL PRES3(2,5,8)
12 CONTINUE
11 CONTINUE
RETURN

3 WX=-1.0
XL=1.0
GO TO 13

6 WX=1.0
XL=-1.0

13 DO 14 JA=1,NRULE
WY=WTFUN(JA)
YL=VECTLC(JA)
DO 15 JB=1,NRULE
WZ=WTFUN (JB)
ZL=VECTLC(JB)
CALL JACOB(1)
CALL PRES3(1,4,7)

15 CONTINUE

14 CONTINUE
RETURN

END
SUBROUTINE PRES3(I1,I2,I3)

SUBROUTINE PRES3 EVALUATES THE X Y AND Z COMPONENTS OF THE FACE
PRESSURE AT THE NINE GAUSS POINTS ON EACH FACE AND THEN USES
NUMERICAL INTEGRATION TO CALCULATE THE X Y AND Z COMPONENTS OF
THE EQUIVALENT NODAL FORCES

aQaaQaa

RERERENERR ENTER COMMON BLOCK HERE REERXREHREE

APRES=0.0

DO 1 I=1,NNODZ

APRES=APRES+P(I)¥SHP2(I)
1 CONTINUE

WAIT=WX¥WY¥WZ¥APRES*DETJ

M=0
DO 2 I=1,NNODZ
SHPI=SHP1(I)*WAIT
RS(M+1)=RS(M+1)-SHPI*AW(I1)
RS (M+2 )=RS (M+2 )-SHPI*AW(I2)
RS (M+3)=RS (M+3)-SHPI*AW(I3)
M=M+NVABZ

2 CONTINUE
RETURN

END
SUBROUTINE SHEAR1

c SUBROUTINE SHEAR1 FINDS THE FACES THAT HAVE A SHEAR STRESS APPLIED
c ON THEM

FRkRRNRNRN ENTER COMMON BLOCK HERE RERERAXRXX

DIMENSION IS(20)
LOGICAL IS

N=0

DO 1 I=1,NNODZ
SH1(I)=0.0
SH2(1)=0.0



IS(I)=.FALSE.
CONTINUE

DO 2 J=1,MAXSHR
NOD=NSHEAR(J)

DO 3 I=1,NNODZ
IF(IABS(LDEF(NEL,I)).NE,NOD) GO TO 3
SH1(I)=SHEAR(J,1)
SH2(I)=SHEAR(J,2)
N=N+1
IS(I)=.TRUE.

GO TO 2

CONTINUE

CONTINUE

IF(N,LT.4) RETURN

IF(IS(13).AND.IS(15).AND.IS(17).AND.IS(19
IF(IS(15).AND,.IS( 3).AND.IS( 5).AND.IS(17
IF(IS( 1).AND.IS( 3).AND.IS(15).AND.IS(13
IF(IS( 1).AND.IS( 3).AND.IS( 5).AND.IS( 7
IF(IS(13).AND.IS( 1).AND.IS( 7).AND.IS(19
IF(IS( T).AND.IS( 5).AND.IS(17).AND.IS(19

RETURN

END )
SUBROUTINE SHEAR2(I1)

)) CALL
)) CALL
)) CALL
)) CALL
)) CALL
)) CALL

SHEAR2 (

1
2
3
SHEAR2 (4
5
SHEAR2(6

334.

SUBROUTINE SHEAR2 EVALUATES THE ORIENTATIONS OF THE FACES AT THE

c
c NINE GAUSS POINTS ON EACH FACE
REEEEREERE ENTER COMMON BLOCK HERE

it

Go T10(1,2,3,4,5,6),I1

WZ=-1.0

ZL=1.0

GO TO 7

Wz=1.0

ZL=-1.0

DO 8 JA=1,NRULE
WX=WTFUN(JA)
XL=VECTLC(JA)
DO 9 JB=1,NRULE
WY=WTFUN(JB)
YL=VECTLC(JB)
CALL JACOB(1)
CALL SHEAR3(3,6,9,4,5,6,1,2,3)
CONTINUE
CONTINUE

RETURN

WY=-1.0

YL=1.0

GO TO 10

WY=1.0

YL=-1.0

DO 11 JA=1,NRULE
WX=WTFUN (JA)
XL=VECTLC(JA)

DO 12 JB=1,NRULE
WZ=WTFUN(JB)
ZL=VECTLC(JB)
CALL JACOB(1)
CALL SHEAR3(2,5,8,1,2,3,7,8,9)

RRXEREREER
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CONTINUE
CONTINUE
RETURN

WX=-=1.0

XL=1.0

GO TO 13

WX=1.0

XL=-1.0

DO 14 JA=1,NRULE
WY=WTFUN(JA)
YL=VECTLC(JA)

DO 15 JB=1,NRULE
WZ=WTFUN(JB)
ZL=VECTLC(JB)
CALL JACOB(1)
CALL SHEAR3(1,4,7,7,8,9,4,5,6)
CONTINUE
CONTINUE

RETURN

END
SUBROUTINE SHEAR3(I1,I2,I3,I4,15,16,17,18,19)

SUBROUTINE SHEAR3 EVALUATES THE X Y AND Z COMPONENTS OF THE FACE
SHEAR STRESS AT THE NINE GAUSS POINTS ON EACH FACE AND THEN USES
NUMERICAL INTEGRATION TO CALCULATE THE X Y AND Z COMPONENTS OF
THE EQUIVALENT NODAL FORCES

EREXFURERR ENTER COMMON BLOCK HERE RERRERXRER

ASHR1=0.0

ASHR2=0.,0

DO 1 I=1,NNODZ
ASHR1=ASHR1+SH1(I)*SHP2(I)
ASHR2=ASHR2+SH2 (I )*SHP2(I)
CONTINUE

A1=SQRT (AW(I1)*AW(I1)+AW(I2)¥AW(I2)+AW(I3)¥AW(I3) ) *DETJI*WX*WY *WZ
A2=SQRT(CW(I4)*CW(IU)+CW(I5)*¥CW(I5)+CW(I6)¥CW(I6))
A3=SQRT(CW(IT7)*CW(IT7)+CW(I8)*CW(I8)+CW(I9)*CW(I9))

WAIT1=ASHR1¥A1/A2
WAIT2=ASHR2¥A1/A3

M=0

DO 2 I=1,NNODZ
RS(M+1)=RS(M+1)~-SHP1(I)*WAIT1%¥CW(IL4)+SHP1(I)*WAIT2*CW(IT)
RS(M+2)=RS(M+2)-SHP1(I)*WAIT1*¥CW(I5)+SHP2(I)*WAIT2¥CW(I8)
RS (M+3)=RS(M+3)-SHP1(I)*¥*WAIT1#CW(I6)+SHP2(I)*WAIT2*¥CW(I9)
M=M+NVABZ

CONTINUE

RETURN

END
SUBROUTINE ASMBLE

SUBROUTINE ASMBLE ASSEMBLES THE ELEMENT STIFFNESS MATRIX INTO THE
GLOBAL ARRAY

KRRRFXXNNSE ENTER COMMON BLOCK HERE FRREXNEXAN

i

REWIND 2
REWIND 4
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30

33
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INITIALIZE HEADING VECTOR NW

DO 1 I=1,MAXNW
NW(I)=0
CONTINUE
NUMEQ=0

INITIALIZE STORAGE CONTROL VARIABLES MZM AND NZN

MZM=0
NZN=0

INTRODUCE ELEMENTS ONE AT A TIME

DO 2 NEL=1,MAXNEL

BUFFER IN (4,1) (RS(1),RS(80))
IF(UNIT(4)) 30,31,32

CONTINUE

BUFFER IN (4,1) (sS(1,1),3(80,80))

FOR EACH NEW ELEMENT CALCULATE THE NUMBER OF NEW VARIABLES THAT
WILL BE INTRODUCED WHEN THE ELEMENT IS ASSEMBLED IN SS

N=0

DO 3 I=1,NNODZ
NIC=IABS(LDEF(NEL,I))

DO 4 J=1,NVABZ

DO 5 K=1,12
IF(I.NE.INT2(K)) GO TO 5
IF(J.EQ.NVABZ) GO TO 4
GO TO 24

CONTINUE

CONTINUE

IF (LFRST(NIC).LT.NEL) N=N+1
CONTINUE

CONTINUE

CALCULATE THE NUMBER OF VACANT POSITIONS IN THE SS MATRIX

DO 6 I=1,MAXNW
IF (NW(I).EQ.0) N=N+1
CONTINUE

IF(UNIT(4)) 33,31,32
CONTINUE

REDUCE OUT THE REQUIRED NUMBER OF EQUATIONS IF THERE IS
INSUFFICIENT ROOM IN SS FOR THE NEXT ELEMENT TO BE ASSEMBLED

M=68-N
IF(N.LT.68) CALL FRONT(M)

SET UP THE VARIABLE DESTINATION VECTOR NELDES AND THE HEADING
VECTOR NW

DO 7 I=1,NNODZ
NIC=IABS(LDEF(NEL,I))

DO 8 J=1,NVABZ

DO 9 K=1,12
IF(I.NE.INT2(K)) GO TO 9
IF(J.EQ.NVABZ) GO TO 8
GO TO 25

CONTINUE

CONTINUE
N1=(I-1)*NVABZ+J
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27

17
16
14
13

34

29

337.

NVAB=(NIC-1)*NVABZ+J
IF(LFRST(NIC).GE.NEL) GO TO 10
DO 11 K=1,MAXNW

IF(NW(K) .NE.NVAB) GO TO 11
NELDES(N1)=K

GO TO 8

CONTINUE

CONTINUE

DO 12 K=1,MAXNW
IF(NW(X).NE,0) GO TO 12
NELDES(N1)=K
NW(K)=NVAB

GO TO 8

CONTINUE

CONTINUE

CONTINUE

ASSEMBLE THE NEW ELEMENT

DO 29 KK=1,MAXNS

DO 13 I=1,NNODZ

DO 14 II=1,NVABZ

DO 15 K=1,12

IF(I.NE.INT2(K)) GO TO 15

IF(II.EQ.NVABZ) GO TO 14

GO TO 26

CONTINUE

CONTINUE

N1=(I-1)*NVABZ+II

ISTRST=NELDES(N1)

IELEMT=N1

IF(KK.EQ.1) SRS(ISTRST)=SRS(ISTRST)+RS(IELEMT)
ISTRST=ISTRST-KS+1
IF(ISTRST.LT.1.0R.ISTRST.GT.MAXND) GO TO 14
DO 16 J=1,NNODZ

DO 17 JJ=1,NVABZ

DO 18 K=1,12

IF(J.NE.INT2(K)) GO TO 18

IF(JJ.EQ.NVABZ) GO TO 17

GO TO 27

CONTINUE

CONTINUE

N1=(J-1)*NVABZ+JJ

JSTRST=NELDES(N1)

JELEMT=N1 :
SS(ISTRST,JSTRST)=SS(ISTRST,JSTRST)+S (IELEMT,JELEMT)
CONTINUE

CONTINUE

CONTINUE

CONTINUE

BUFFER OUT (L21,1) (SS(1,1),SS(MAXND,MAXNW))
IF(UNIT(L21)) 34,31,32

CONTINUE

IF(KK.EQ.MAXNS) GO TO 29

BUFFER IN (L20,1) (8S(1,1),SS(MAXND,MAXNW))
KS=KS+MAXND

KF=KF+MAXND

IF(UNIT(L20)) 29,31,32

CONTINUE

CALL RESET

CHANGE THE SIGN OF THE HEADING VECTOR NW FOR ANY VARIABLE THAT
CAN NOW BE REDUCED OUT OF THE EQUATION SYSTEM
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DO 19 I=1,NNODZ
NIC=LDEF (NEL,I)
N1=IABS(LDEF(NEL,I))
IF(NIC.GT.0) GO TO 19
DO 20 J=1,NVABZ

DO 21 K=1,12
IF(I.NE.INT2(K)) GO TO 21
IF(J.EQ.NVABZ) GO TO 20
GO TO 28

CONTINUE

CONTINUE
NVAB=(N1-1)*NVABZ+J

DO 22 K=1,MAXNW

IF (NW(K) .NE.NVAB) GO TO 22
NW(K)=-NW(K)

GO TO 20

CONTINUE

CONTINUE

CONTINUE

CONTINUE

REDUCE OUT ALL THE REMAINING EQUATIONS ONCE ALL THE ELEMENTS
HAVE BEEN ASSEMBLED

N=0

DO 23 K=1,MAXNW
IF(NW(K).NE.0) N=N+1
CONTINUE

CALL FRONT(N)
RETURN

STOP "3 EOF ENCOUNTERED IN BUFFER IN OR OUT"
STOP "3 PARITY ERROR IN BUFFER IN OR QUT"

END
SUBRQUTINE FRONT(MREQ)

SUBROUTINE FRONT REDUCES THE EQUATION SYSTEM TO UPPER TRIANGULAR
FORM USING THE GAUSS REDUCTION TECHNIQUE

B HRFRAD ENTER COMMON BLOCK HERE RERERHRNER

QOO0

it

MAXREQ = MAXIMUM SIZE OF STORAGE VECTOR FOR REDUCED EQUATIONS

IF MAXREQ IS EXCEEDED REDUCED EQUATIONS STORED ON TAPE 2

LIV IS THE NUMBER OF THE EQUATION THAT IS TO BE USED IN THE
REDUCTION PROCESS

NUMEQ IS THE TOTAL NUMBER OF SIMULTANEOUS EQUATIONS IN THE PROBLEM

MAXREQ=1000
MAXLREQ=200
NUMEQ=NUMEQ+MREQ

DO 1 IEQ=1,MREQ
IND=0

INITIALIZE HEADING VECTOR LIMITS

NSNW=1
NFNW=MAXNW

ADJUST HEADING VECTOR LIMITS
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3

IF(NW(NSNW).NE.O) GO TO U4
NSNW=NSNW+1

GO TO 3

IF(NW(NFNW).NE.O) GO TO 5
NFNW=NFNW-1

GO TO 4

CONTINUE

FIND THE VARIABLE WHOSE EQUATION LIV HAS THE LARGEST PIVOT

339.

ONLY VARIABLES THAT CORRESPOND TO NODES THAT CAN BE REDUCED OUT

NEED BE CONSIDERED

AMAX=0.0

DO 2 K=NSNW,NFNW

IF (NW(K).GE.0) GO TO 2
IF(K.GT.KF) CALL CHECK(K)
N1=K~-KS+1
IF(ABS(SS(N1,K)).LE.AMAX) GO TO 2
AMAX=ABS(SS(N1,K))

LIV=K

DO 19 I=NSNW,NFNW
STEQ(I)=SS(N1,I)

CONTINUE

CONTINUE

CALL RESET

NVAB=IABS(NW(LIV))
N1=(NVAB-1)/NVABZ
NUMVAB=NVAB-N1¥NVABZ
NIC=N1+1

LOC=NVAB

FIND AN EQUATION LIN THAT CAN BE ADDED TO EQUATION LIV SO THAT THE

LARGEST ABSOLUTE VALUE OF PIVOT IS OBTAINED

ONLY EQUATIONS THAT CORRESPOND TO VARIABLES THAT ARE FREE AND FOR

NODES THAT CAN BE REDUCED OUT NEED BE CONSIDERED

BMAX=0.0

LIN=0

DO 12 I=NSNW,NFNW
IF(NW(I).GE.0) GO TO 12
IF(I.EQ.LIV) GO TO 12
IF(I.GT.KF) CALL CHECK(I)
N1=I-KS+1
SUM=SS(N1,LIV)+STEQ(LIV)
IF(ABS(SUM).LE,ABS(BMAX)) GO TO 12
N=IABS(NW(I))

N1=(N-1)/NVABZ

N2=N-N1%¥NVABZ

N1=N1+1

DO 15 J=1,MAXDIS
IF(N1.NE.NDISP(J,5)) GO TO 15
IF (NDISP(J,N2).EQ.1) GO TO 12
GO TO 16

CONTINUE

CONTINUE

DO 17 J=1,MAXNDZ
IF(N1,NE.NDISPZ(J,5)) GO TO 17
IF(NDISPZ(J,N2).EQ.1) GO TO 12
GO TO 18

CONTINUE

CONTINUE

BMAX=SUM

LIN=I
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12 CONTINUE
CALL RESET

IF(LIN.EQ.0) GO TO 14
CALL CHECK(LIN)
N1=LIN-KS+1
DO 13 I=NSNW,NFNW
STEQ(I)=STEQ(I)+SS(N1,I)
13 CONTINUE
SRS(LIV)=SRS(LIV)+SRS(LIN)
CALL RESET
14 CONTINUE

C CHECK IF THERE IS SUFFICIENT ROOM ON BUFFER FOR THE NEXT EQUATION
C IF NOT WRITE STORED EQUATIONS TO TAPE 2 AND RESET STORAGE CONTROL
C VARIABLES TO ZERO

IF((NZN~NSNW+NFNW+1) .LT.MAXREQ.AND. (MZM+4) .LT.MAXLREQ) GO TO 6

WRITE(2) MZM,NZN,REQ,LREQ

MZM=0

NZN=0

6 CONTINUE

C ADJUST THE RHS IF THE NODE IS TO HAVE SPECIFIED VARIABLES

CALL PRECON

PIVOT=STEQ(LIV)

WRITE(6,1000) PIVOT,NIC,LOC,SRS(LIV)
1000 FORMAT(5X,E13.6,2I7,E13.6)

N1=NZN

STORE EQUATION LIV AND ITS RHS ON BUFFER AND SET THE CORRESPONDING
POSITIONS IN THE GLOBAL STIFFNESS MATRIX, RHS VECTOR AND THE
HEADING VECTOR TO ZERO

aon

CALL CHECK(LIV)
DO 7 I=NSNW,NFNW
NZN=NZN+1
K1=LIV-KS+1
REQ(NZN)=STEQ(I)
SS(K1,1)=0.0

7 CONTINUE
NZN=NZN+1
REQ(NZN)=SRS(LIV)
SRS(LIV)=0.0
NW(LIV)=0
CALL RESET

c REDUCE REMAINING EQUATIONS

IF(IND.EQ.1) GO TO 11
DO 8 I=NSNW,NFNW
IF(NW(I).EQ.0) GO TO 8
IF(I.GT.KF) CALL CHECK(I)
K1=I-KS+1
FACT=SS(K1,LIV)/PIVOT
N2=N1-NSNW+1
DO 9 J=NSNW,NFNW
SS(K1,J)=SS(K1,J)-FACT¥*REQ(N2+J)
9 CONTINUE
SRS(I)=SRS(I)-FACT*REQ(NZN)
SS(K1,LIV)=0.0
8 CONTINUE
CALL RESET
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CONTINUE
MAKE COLUMN LIV ZERO

IF(IND.NE.1) GO TO 21

DO 10 I=NSNW,NFNW
IF(I.GT.KF) CALL CHECK(I)
K1=I-KS+1

SS(K1,LIV)=0.0

CONTINUE

CALL RESET

CONTINUE

STORE HEADING VECTOR LIMITS LIV AND LOC FOR LATER USE IN THE BACK
SUBSTITUTION PROCESS

LREQ (MZM+1)=NSNW
LREQ(MZM+2 ) =NFNW
LREQ(MZM+3)=LIV
LREQ (MZM+4 )=L0OC
MZM=MZM+4

CONTINUE
RETURN

END
SUBROUTINE RESET

SUBROUTINE RESET RESETS TAPES 20 AND 21 AT THEIR STARTS AND PUTS
THE FIRST SUBDIVISION OF THE STRUCTURAL STIFFNESS MATRIX BACK
INTO SS

RRERRRRERS ENTER COMMON BLOCK HERE I3 TYTIT 2"

it

1

CONTINUE

IF(KS.EQ.1) RETURN

IF(KF.GE ,MAXNW) GO TO 2

BUFFER OUT (L21,1) (SS(1,1),SS(MAXND,MAXNW))
IF (UNIT(L21)) 3,4,5

CONTINUE

BUFFER IN (L20,1) (Ss(1,1),SS(MAXND,MAXNW))
IF (UNIT(L20)) 6,4,5

CONTINUE

KS=KS+MAXND

KF=KF+MAXND

GO TO 1

CONTINUE

BUFFER OUT (L21,1) (SS(1,1), SS(MAXND MAXNW))
IF(UNIT(L21)) T,4,5

CONTINUE

REWIND L20

REWIND L21

L=L21

L21=L20

L20=L

BUFFER IN (L20,1) (S3(1,1),SS(MAXND,MAXNW))
IF(UNIT(L20)) 8,4,5

CONTINUE

KS=1

KF=MAXND

RETURN

STOP "4 EOF ENCOUNTERED IN BUFFER IN OR OUT"
STOP "4 PARITY ERROR IN BUFFER IN OR OUT"
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END
SUBROUTINE PRECON

SUBROUTINE PRECON ADJUSTS THE STIFFNESS AND THE RHS VECTOR TO
INCORPORATE SPECIFIED ZERO AND NON-ZERO NODAL VARIABLES

ERRURRERER ENTER COMMON BLOCK HERE RERRERRERER

C
c

IF(MAXDIS.EQ.0) GO TO 1
ASSEMBLE NON-ZERO SPECIFIED VARIABLES AND MODIFY THE RHS VECTOR

DO 2 I=1,MAXDIS
IF(NIC.NE.NDISP(I,5)) GO TO 2
DO 3 J=1,NVABZ
IF(NDISP(I,J).EQ.0) GO TO 3
IF(J.NE.NUMVAB) GO TO 3
DSP=~DISP(I,J)

AFTER THE FIRST ITERATION ALL SPECIFIED ZERO OR NON-ZERO VARIABLES
MUST BE SET TO ZERO

IF(ITER.GT.1) DSP=0.0

DO 4 K=NSNW,NFNW

IF(K.GT.KF) CALL CHECK(K)
N1=K-KS+1
SRS(K)=SRS(K)-DSP*SS(N1,LIV)
CONTINUE

STEQ(LIV)=1.0E+10

CALL RESET

IND=1

RETURN

CONTINUE
CONTINUE

CONTINUE
IF (MAXNDZ.EQ.0) RETURN

ASSEMBLE ZERO SPECIFIED VARIABLES

DO 5 I=1,MAXNDZ
IF(NIC.NE.NDISPZ(I,5)) GO TO 5
DO 6 J=1,NVABZ
IF(NDISPZ(I,J).EQ.0) GO TO 6
IF(J.NE.NUMVAB) GO TO 6
STEQ(LIV)=1.0E+10

IND=1

RETURN

CONTINUE
CONTINUE
RETURN

END
SUBROUTINE CHECK(N)

SUBROUTINE CHECK ENTERS THE SUBDIVISION OF THE STRUCTURAL
STIFFNESS MATRIX WHICH CONTAINS EQUATION N INTO SS

HEERUANNXS ENTER COMMON BLOCK HERE RRRRBAERER

#

1 CONTINUE
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IF(KF.GE.N) RETURN
BUFFER OUT (L21,1) (8S(1,1),SS(MAXND,MAXNW))
IF(UNIT(L21)) 2,3,4
2 CONTINUE
BUFFER IN (L20,1) (SS(1,1),SS(MAXND,MAXNW))
IF(UNIT(L20)) 5,3,4
5 CONTINUE
KS=KS+MAXND
KF=KF+MAXND
GO TO 1

3 STOP "5 EOF ENCOUNTERED IN BUFFER IN OR OUT"
4 STOP "5 PARITY ERROR IN BUFFER IN OR OUT"

END
SUBROUTINE BAKSUB
C SUBROUTINE BAKSUB USES THE EQUATIONS REDUCED TO TRIANGULAR FORM
C AND THE PROCESS OF BACK SUBSTITUTION TO OBTAIN THE NODAL
C VELOCITIES AND PRESSURES
303 3% 3% % % % %% ENTER COMMON BLOCK HERE 36 5 36 46 % % 3% % #
TOT=0.0
ERROR=0.0

DO 1 I=1,NUMEQ
IF(NZN.NE,0) GO TO 5

C READ STORED EQUATIONS FROM TAPE 2

BACKSPACE 2
READ(2) MZM,NZN,REQ,LREQ
BACKSPACE 2

5 CONTINUE

MZM=MZM-4
NSNW=LREQ(MZM+1)
NFNW=LREQ (MZM+2)
LIV=LREQ(MZM+3)
LOC=LREQ(MZM+4)

c SET UP EQUATION PARAMETERS

GASH=REQ(NZN)
PIVOT=REQ(NZN-NFNW-1+LIV)
REQ(NZN-NFNW-1+LIV)=0.0
N2=NZN-NFNW-2+NSNW
NZN=N2

C BACKSUBSTITUTE KNOWN VARIABLES

DO 6 J=NSNW,NFNW

N2=N2+1

GASH=GASH~-SRS(J)*REQ(N2)
6 CONTINUE

SRS(LIV)=GASH/PIVOT
N1=(LOC~1)/NVABZ
NUMVAB=LOC-N 1¥NVABZ
NIC=N1+1
ADS=GASH/PIVOT

c REASSIGN SPECIFIED NODAL VARIABLES
it
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c
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CALL POSTCN
MODIFY PREVIOUS ITERATIONS SOLUTION BY CALCULATED NEW ADJUSTMENTS

ADSPL (NIC,NUMVAB)=ADSPL(NIC,NUMVAB)-ADS
TOT=TOT+ADSPL (NIC,NUMVAB)*ADSPL (NIC,NUMVAB)
ERROR=ERROR+ADS¥ADS

1 CONTINUE
EVALUATE CONVERGENCE PARAMETERS

WRITE(6,999) ITER

TOT=SQRT (TOT/NUMEQ)

ERROR=SQRT (ERROR/NUMEQ)

IF (ERROR/TOT.LE.1,0E~03) ITER=MAXIT

WRITE OUT FINAL SOLUTION

IF (ITER.NE.MAXIT) GO TO 2
WRITE(6,1000)
DO 7 I=1,MAXNOD
WRITE(6,1001) I,(ADSPL(I,J),J=1,NVABZ)
7 CONTINUE
2 CONTINUE
WRITE(6,1002) ERROR,TOT, (ERROR/TOT)
RETURN

999 FORMAT(/////,5X,THITER = ,I3)
1000 FORMAT(1H1,///,5X,30HNODAL VELOCITIES AND PRESSURES,/,
15X , Y4HNODE, 8X , 6HX-VEL ,9X,6HY-VEL ,9X,6HZ-VEL ,8X,8HPRESSURE)
1001 FORMAT(4X,I5,4(5X,F10.5))
1002 FORMAT(//,5X,36HMEAN SQUARED VALUE OF ADJUSTMENTS = ,E10.3,/,
1 5X,43HMEAN SQUARED VALUE OF ADJUSTED VARIABLES = ,E10.3,/,
1 5X,35HRATIO OF ADJUSTMENTS TO ADJUSTED = ,E10.3,/)

END
SUBROUTINE POSTCN

SUBROUTINE POSTCN REASSIGNS THE CORRECT SPECIFIED VALUE TO NODAL
VARIABLES WHOSE VALUES WERE ORIGINALLY KNOWN

HEEXRERERER ENTER COMMON BLOCK HERE RREEXNXREE

IF(MAXDIS.EQ.0) GO TO 1
REASSIGN NON-~ZERO SPECIFIED VARIABLES

DO 2 I=1,MAXDIS
IF(NIC.NE.NDISP(I,5)) GO TO 2
DO 3 J=1,NVABZ
IF(NDISP(I,J).EQ.0) GO TO 3
IF(J.NE,NUMVAB) GO TO 3
DSP=-DISP(I1,J)

IF(ITER.GT.1) DSP=0.0

ADS=DSP

SRS(LIV)=DSP

RETURN

CONTINUE
CONTINUE
CONTINUE
IF(MAXNDZ,.EQ.0) RETURN

=MNw

REASSIGN ZERO SPECIFIED VARIABLES
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DO 4 I=1,MAXNDZ

IF(NIC. NE. NDISPZ(I,5)) GO TO &4
DO 5 J=1,NVABZ

IF(NDISPZ(I J).EQ.0) GO TO 5
IF(J.NE. NUMVAB) GO TO 5
ADS=0.0

SRS(LIV)=0.0

RETURN

CONTINUE
CONTINUE
RETURN

END
BLOCK DATA

RERERRERAS ENTER COMMON BLOCK HERE RERERRERES

DATA INT1/1,3, 5,7,1,3 5,7,13,15,17,19/
DATA INT2/2.14.6.8.9.10,11,12,14,16,18,20/
DATA INT3/3.5.7.1,13,15,17,19,15,17,19,13/

DATA XX/1.0,1.0,1.0,0,0,-1.0,-1.0,-1.0,0.0,1.0,1.0,
1 ",100 _1 .0,1-0’1.0,1.0,0-0,-1.0,-100"‘100,000/
DATA YY/-1.0,0.0,1.0,1.0,1.0,0.0,-1.0,-1.0,-1.0,1.0,
1 1.0,-1.0,-1.0,0.0,1.0,1,0,1.0,0.0,-1.0,-1.0/
DATA 2Z/-1.0,-1.0,-1.0,-1.0,-1.0,-1.0,-1.0,-1.0,0.0,0.0,
1 0.0,0.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0/
DATA VECTLC/-0.77459666924148,0.0,0.77459666924148/
DATA WTFUN/0.55555555555556,0,88888888888889,0.55555555555556/
END
RERFHERRR COMMON BLOCK HERREXEXER

COMMON MAXNEL,MAXNOD,NNODZ,NVABZ ,MAXFW,MAXNW,MAXDIS,MAXNDZ ,MAXND
COMMON MAXPRS,MAXSHR,NRULE,MAXSS,MAXREQ,MAXIT,NFORM, ADS,MAXNS
COMMON ITER RE,XL YL,ZL,WX,WY, wz DETJ, PIUOT NSTOP NUMVAB NUMEQ
COMMON MZM, NZN NSNw Nwa NEL NIC LIV, MVABZ IND L20 L21, KS KF
COMMON ADSPL(32 u), conn(32 3) LFHST(32)

COMMON DISP (8,43 ,NDISP(8,5),NDISPZ(32,5)

COMMON NPRES(B) PRES(B) NSHEAR (8) SHEAR(S 2)

COMMON NW(200), s&s(xso) SS(50, 1505 STEQ(150)

COMMON LDEF(2, 20)

COMMON AW(9), cw(9) X(20),¥(20),z(20),DX(20),DY(20),DZ(20)
COMMON NELDES(SO) SHP1(20) SHP2(20)

COMMON P(20), SH1(20) SH2(20)

COMMON ELDISP(ZO Ly, s(80 80),RS(80),REQ(1000),LREQ(200)
COMMON/CR1/INT1(12) INT2(12) INT3(12) XX(20), YY(20) 2Z(20)
COMMON/CRZ/VECTLC(3) WTFUN(3)



Typical input data for program

11
12
1
21
1
31
1
3
5
7
13
15
17
19
25
27
29
3]
41
51
0001
52
1110
1100
1100
61
1
3
5
7
25
27
29
31
99 0

POISEUILLE FLOW
MESH 2

REYNOLDS NUMBER IS 1.

ODOO0OODOOOOOOO00O o

OOO0OOOOO0O

2

. 100E+01

.000E+0Q0
.500E+00
.500E+Q0
.000E+00
.000E+00
.500E+00
.500E+00
.000E+00
.000E+00
.500E+00
.500E+00
.000E+00

1 2
13 14
13 14
25 26

29
1 2
4 5

28 29

.120E+02
. 120E+02
.120E+02
. 120E+02
.000E+00
.000E+00
.000E+00
.000E+00

OO ODODOOOOO

.000E+00
. 000E+00
.500E+00
.500E+00
.000E+00
.000E+00
.500E+00
.500E+00
.000E+00
.000E+00
.500E+00
.500E+00

3 4
15 16
15 16
27 28

.000E+00

3 9
6 7
30 31

346.

CR3DVFZ2.

OO0 O0OO0OOCOOCOOOO0O

Heading 5X,9A8

Program parameters MAXIT and NFORM 5X,215
Reynolds number 5X,I15,E10.3

Nodal Cartesian coordinates

.000E+00 5X,I15,3E10.3
.000E+00

.000E+0Q0

.000E+00

.500E+00

.500E+00

.500E+00

.500E+00

.100E+01

.100E+01

.100E+01 Element
.100E+01 Element definitions

10X,1215/10X,8I5
5 6 7 8 9 10 11 12
17 18 19 20
17 18 19 20 21 22 23 24
29 30 31 32
Non-zero specified variables 5X,4I1,X,4E10.

.000E+00 0.000E+00

Zero specified variables 5X,411,X,1415
10 13 14 15 21 22 25 26 27
8 11 12 16 17 18 19 20 23 .
32

Applied side normal stresses 5X,I15,E10.3

Data complete
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APPENDIX C

Element Stiffness, Numerical Values for 1x1 Element

The numerical values of the element stiffness matrix for a 1x1
square eight noded Serendipity element and for a 1x1 square nine noded
Lagrangian element have been calculated using programs CR2DVF8 and

CR2DVF9 respectively and formulation B, and are as follows.



180

312 -308 146 -104 138 -172 124 -136 85 -100 15 -20 35 -20 -15 20 35 -5 -10 10
-308 736 -308 0o -172 224 -172 0 20 0 -20 -80 -20 0 20 80 | -40 40 20 -20
146 -308 312 -136 124 -172 138 -104 -15 100 -85 -20 15 20 -35 20 5 -35 -10 10
-104 0 -136 512 -136 0 -104 -32 -20 -80 100 0 -100 80 20 0| -3 -30 -30 -30
138 -172 124 -136 312 -308 146 -104 35 -20 -15 20 85 -100 15 -20 10 -10 -35 5
-172 224 -172 0 -308 736 -308 0 -20 0 20 80 20 0 -20 -80 | -20 20 40 -40
126 -172 138 -104 146  -308 312 -136 15 20 -35 20 - -15 100 -85 -20 10 -10 -5 35
-136 0 -104 -32  -104 0 -136 512 | -100 80 20 0 -20 -80 100 0 30 30 30 30
85 20 -15 -20 35 -20 15 -100 312 -136 124 -172 138 -104 146 -308 35 10 -10 -5
-100 0 100 -80 -20 0 20 80 | -136 512 -136 0 -104 -32 -104 0 30 30 30 30
15 =20 -85 100 -15 20 -35 20 124 -136 312 -308 146  -104 138 -172 10 35 -5 -10
-20 -80 -20 0 20 80 20 0| -172 0 -308 736 -308 0 -172 224 | =20 -40 40 20
35 -20 15 -100 85 20 -15 -20 138 -104 146 -308 312 -136 126 -172 10 5 -35 -10
-20 0 20 80 -100 0 100 -80 | -104 -32 -104 0 -136 512 -136 0} -3 -30 -30 -30
-15 20 -35 20 15 -20 -85 100 146 -104 138 -172 124 -136 312 -308 5 10 -10 -35
20 80 20 0 -20 -80 -20 0 | -308 0 -172 224 -172 0 -308 736 | -40 -20 20 40
35 -40 5 -30 10 -20 10 30 35 30 10 -20 10 =30 5 -40 0 0 0 0
-5 40 -35 -30 -10 20 -10 30 10 30 35 -40 5 -30 10 -20 0 0 0 0
-10 20 -10 -30 -35 40 -5 30 -10 30 -5 40 -35 -30 -10 20 0 0 0 0
10 -20 10 -30 5 -40 35 30 -5 30 -10 20 -10 -30 -35 40 0 0 0- 0

Stiffness matrix for a 1x1 eight noded element and formulation B

"8ve



—i— 168 -100 2 24 -6 36 -20 -8 -96 45 -60 15 20 -5 20 -15 60 -80 25 5 0 0
180 -100 480 -100 -96 36 -32 36 -96 -128 60 0 -60 -80 20 0 -20 80 0 -20 20 0 0
2 -100 168 -8 -20 36 -6 24 -96 -15 60 -45 -60 15 -20 5 -20 80 -5 -25 0 0
24 -96 -8 576 -8 -96 24 32 -448 20 -80 60 0 -60 80 -20 0 0 -10 -50 -50 -10
-6 36 -20 -8 168 -100 2 24 -96 -5 20 -15 60 45 -60 15 20 -80 0 0 -25 -5
36 -32 36 -96 -100 480 -100 -96 -128 20 0 -20 80 60 0 -60 -80 0 0 0 20 -20
-20 36 -6 24 2 -100 168 -8 -96 15 -20 5 -20- -15 60 -45 -60 80 0 0 5 25
-8 -96 24 32 24 -96 -8 576  -448 -60 80 -20 0 20 -80 60 0 0 50 10 10 50
-96 -128 -96 -448 -96 -128 -96 -448 1536 -80 0 80 0 -80 0 80 0 0 -40 40 40 -40
45 60 -15 20 -5 20 15 -60 -80 168 -8 -20 36 -6 24 2 -100 -96 25 0 0 5
-60 0 60 -80 20 0 -20 80 0 -8 576 -8 -96 24 32 24 -96 -448 50 50 10 10
15 -60 -45 60 -15 -20 5 -20 80 -20 -8 168 -100 2 24 -6 36 -96 0 25 5 0
20 -80 -60 0 60 80 -20 0 0 36 -96 -100 480 -100 -96 36 -32 -128 0 -20 20 0
-5 20 15 -60 45 60 -15 20 -80 -6 24 2 -100 168 -8 -20 36 -96 0 -5 -25 0
20 0 -20 80 -60 0 60 -80 0 24 32 24 -96 -8 576 -8 -96 448 -10 -10 -50 -50
-15 -20 5 -20 15 -60 =45 60 80 2 24 -6 36 -20 -8 168 -100 -96 -5 0 0 -25
60 80 -20 0 20 -80 -60 0 0 |-100 -96 36 -32 36 -96 -100 480 -128 -20 0 0 20
-80 0 80 0 -80 0 80 0 0 -96 -448 -96 -128 -96 448 -96 -128 1536 -40 -40 40 40
25 -20 -5 -10 0 0 0 50 -40 25 50 0 0 0 -10 -5 -20 -40 0 0 0 0
5 20 -25 -50 0 0 0 10 40 0 50 25 -20 -5 -10 0 0 -40 0 0 0 0

0 0 0 -50 -25 20 5 10 40 0 10 5 20 -25 -50 0 0 40 0 0 0 0

0 0 0 -10 -5 -20 25 50 -40 5 10 0 0 0 -50 -25 20 40 0 0 0 0

Stiffness matrix for a 1x1 nine noded element and formulation B

12
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APPENDIX D

Solution of Poiseuille Flow using Eight and Nine Noded Elements

The Poiseuille flow is the steady flow that occurs between two
parallel infinite flat plates spaced at a distance of one unit apart,
as a result of the application of a constant pressure gradient. The
actual three-dimensional flow and its more common two-dimensional
representation are shown in Figure D1. Almost all researchers in numer-
jcal viscous fluid dynamics at one stage or another, use this flow
problem as a test case during the development of their particular

solution technique. The exact solution for the Poiseuille flow is:

dp
u{x,y) = - 2 Re — y(1-y) D1.1
dx
vix,y) = 0 D1.2
dp do py7py
and p(x,y) = py + — x where — = —— D1.3
dx dx L

In this study the Poiseuille flow was solved initially using the eight
noded Serendipity element and a regular rectangular arrangement of
elements in the various meshes. Figure D2 shows the meshes and the
actual numerical values of the boundary conditions used. The solutions
obtained using each of the meshes 1 to 3 correspond exactly with the
values calculated from equations D1, as expected.

In order to investigate as fully as possible all aspects of the
solution of the Poiseuille flow using the Galerkin finite element method
and the eight noded Serendipity element, various changes to the geometry
of the elements in mesh 2 were made and the problem was rerun. Firstly,
the regularity of the rectangular elements was altered so that long
thin and short wide elements were incorporated, thus destroying the
symmetry of the element arrangement. The results obtained again corres-

pond exactly with the exact analytical solution. Secondly, the shape
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Figure D1 (a) Actual Three-dimensional Poiseuille Flow, and
(b) Two-dimensional Representation.
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Figure D2 Details of iMeshes 1, 2 and 3.
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of the elements was changed from rectangular to arbitrary quadrilateral
by relocating the central node slightly off centre as shown in Figure
D3. In this case the solution obtained differed by varying amounts
from the exact solution in both the x and y components of velocity and
in the pressure. Although the differences are quite small, they still
caused concern since it had been expected that the exact solution would
be obtained. This 1is because it had been anticipated that the eight
noded Serendipity element would be quite capable of representing exactly
the velocity variation which is at most quadratic and the pressure
variation which is at most linear.

When the nine noded Lagrangian element was used to solve the
Poiseuille flow, the same results were obtained with all meshes except
2C. In this case, whereas the Serendipity element had given sltightly
erroneous results, the Lagrangian element gave the exact solution for
both the velocity components as well as the pressure. The results
obtained using mesh 2C and the eight and nine noded elements are given
in Table D1. From this table it can be seen that the eight noded element
produces quite good results with errors no larger than 1% but that the
Lagrangian element produces the exact solution. This finding prompted
a closer investigation into the relative abilities of the eight and
nine noded elements to represent a quadratic velocity variation when
the element shape is non rectangular. To this end, an arbitrary quadri-
lateral was set up, the details of which are given in Figure D4(a),
and a quadratic velocity variation given by

u(x,y) = 2y(4-y) D2
was imposed on it by specifying its exact value at all the nodes. Then
by using the shape functions of firstly the Serendipity element and
secondly the Lagrangian element, two expressions for the variation of
u at any point within the element were set up. The two expressions

are:
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Figure D4 Typical Elements (a) General Quadrilateral,
(b) Trapezoidal, and (c) Rectangular.
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u8(s,n) =8+ E+ 26m - 3n -£%2- 5n% - 3En? + g2%n D3

and ug(E,n) = 7.5+ £+ 2tn - 3n - 0.52 - 4.5n2 - 3gn?

+ E%2n - 0.5g%n? . D4
where x = 1.756 - 1.25¢ - 0.75n + 0.25&n
D5
and y = 1.5+ 0.5 - 1.5n - 0.5¢&n

Since these functions are expressed in terms of the local coordinates
g and n and the transformation back to x and y is complicated, it is
easier to use the transformation from xland y to £ and n to rewrite
u{x,y) = 2y(4-y) in terms of & and n. Therefore u(x,y) = 2y(4-y) becomes
u(g,n) = 7.5 + £ + 26n - 3n - 0.5¢% - 4.5n%- 3gn?
+ £%n - 0.5g%n? - D6
It can now be seen that ug(g,n) is identical to u(g,n) while ug(g,n)
differs from it by
0.5 - 0.5% - 0.5n% + 0.5¢%n?
D7
= 0.5(1-g2)(1-7%)

Since this difference is equal to zero when & = %1 or n= %] we see that
u8( g,n) represents u(g,n) exactly only on the boundary of the element
where £= +1 or n= *1. Within the element however, the error can be
quite significant, in this case as high as 6.7%. Therefore the Seren-
dipity element is not able to represent exactly a quadratic variation
in the velocity when the element shape is a general quadrilateral.
On the other hand, ug(g,n) being identically equal to u(g,n) indicates
that the Lagrangian element can represent a quadratic velocity variation

adequately regardless of what shape the element is.
The above process can be repeated for a trapezoidal and finally

a rectangular element as shown in Figures D4(b) and (c). The expressions

obtained for the trapezoidal element are:

U8(E,n) =8 - - 2En - 3n - £%2-51% + 3gn? + E%n D8
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ug(E,n) =7.5-&-2En - 3n - 0.5% - 4.5n% + 3¢gn?
+ &2n - 0.5¢%n? D9

and u(g,n) = 7.5 - E - 2En - 3n - 0.5¢% - 4.5n* + 3gn?
+ £2n - 0.5¢%n? D10

while the expressions obtained for the rectangular element are:

Us(g,ﬂ) = 8 = 8T]2 ) D]]
UQ(E’n) . 8 h 8“2 D]Z
and u(g,n) = 8 - 8n? D13

From all the above we see that ug(E,n) is always equal to u(g,n).
Therefore the Lagrangian element is capable of representing a quadratic
velocity variation exactly regardless of which element shape is used.
On the other hand, ug(g,n) is only equal to u(g ,n) when the element
is rectangular. Therefore the Serendipity element 1is capable of
representing a quadratic velocity variation exactly only when the element
shape is rectangular. For this reason therefore it was found that when
the eight noded element was used to solve the Poiseuille flow with mesh
2C, the solution obtained was slightly wrong; Qhereas when the nine
noded element was used it corresponded exactly with the exact solution.

The last point that should be mentioned here is that, although
it'is only the velocity representation that is inadequate when non rec-
tangular elements are used, it 1is found that the resulting pressure
field, which is linear and should be adequately handled by both the
Serendipity and the Lagrangian elements, also contains errors. The
reason for this is that the Galerkin finite element method is a process
in which integral rather than discrete quantities are considered. As
a consequence, inadequacies in the representation of one variable
produces errors not only in that variable but also in all the other

variables to which it is connected by the governing equation system.
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