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d'i ssertati on was to

IV

ABSTRACT

The fundamental ai m of the i nvest'i gati on described 'i n thì s

clarify two aspects associated with the use of

primit.ive varìables'in the fìnite element solution of the two-d'imensìonal

steady and incomPressible

knowì edge i n an attemPt

equati ons .

By der.iving the Navier-Stokes equatìons from first princìpìes
av.

it .is shown that terms contai n'ing the quantì ty -J- appear at several- a*'i

stages .i n the derì vati on . Trad'i t'i onal ly some of these have aì ways been

eliminated by making use of the incompress'ible Continuìty equation
ðV:
.'t = 0. 0thers however, have sometimes been el'iminated and sornetimes
,Xi
reta'ined, it being argued that because the solution method adopted is

âv+

approximate, the quant'ity 
*a 

wi I I not be i denti ca'l ly equal to zero

everywhere, and hence he continuity equat'ion should not be used to

el inl.inate the 
a\/ì 

terms. In order to determ'ine the eff ects of the
a*i

inclusion of these terms several versìons of the Nav'ier-Sbokes equations

are set up and the solutions of two two-dimensìonal v'iscous flow prob-

ìems are used to show that aìthough the dìfferent formulat'ions give

r.ise to essentì a'l 1y the same resul ts, they do not al I have the salne

abìlìty to converge, nor do they all produce the same quaìity soìutions

as Reynoìds number is increased.

When prim'it'ive varìables are used it has been shown that the order

of polynomì aì approx'irnat'i on f or the pressure shoul d be one I ess than

that for the veìocjty. Two finite elements that have commonly been

used w1th thi s type of mì xed i nterpol ati on are the Serend'i pi ty and the

Lagrangi an i soparametric el ements . I n order to determ'ine wh'ich 'i s the

optìmaì, a computer program for each of these elenlents in two dimens'ions

was set up and developed. The solut'ions of the same two vìscous flow

Navi er-Stokes equat'ions and

to sol ve the more general

then to use thi s

three-d'imensi onal
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problems mentioned earlier were then used to show that aìthough both

elements g'ive rise to almost identical results, the Lagrangian requires

considerab'ly more computation time and space to produce the same solutìon

and is therefore the lesser efficient.

By extendi ng the resul ts of the above 'i nvest'igat'ions to three

dimensions, a third computer program was developed and used to solve

several three-d'imensìonal viscous flow problems. Aìthough a comprehen-

sive study of these prob'lems was not carried out, and although some

questì ons sti I I remai n unanswered , i t has been shown that the prim'it'i ve

variables fìn'ite element method can be used successfully to solve the

steady and i ncompressi bl e three-d'imensi onal Navi er-Stokes equati ons.
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NOTATION

area of element 'i

posìt'ion of jth Gauss po'int

non-linear convect'ive stiffness matrìx

constants, equal to one or zero depending on formulat'ion

body force per unit mass ìn i direction

equiva'lent nodal force at node j 'in eìement i

Jocobian transformation matrix

determ'i nant of J acob'i an matri x

linear diffusive stiffness matrix

number of veloc'ity nodes per e'lement

number of pressure nodes per eìement

devel opment I ength for entrance fl ows

characteristic ìength used for non-dimensionalization

veìocity shape function for node j of element i

pressure shape function for node i of element i

number of elements in finite element meshes

number of Gauss points per coordinate direction

ith component of vector normal to element boundary

pressure, exact, approximate, nodal

excess pressure drop

matrix of finite element equation system

resi dual f unct'ions

Reynolds number

matrix of Jacob'ian fin'ite element equatìon system

surface of el ement i

tangent'ia'l surf ace or edge shear stress \

specified boundary stress component ìn ith d'irection

x component of veìocity, exact, approximate, nodal

n

ni

P'P*'P{¡

q
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V

v

characteristic velocity used for non-dimensionalization

volume of element i

y component of velocity, exact, approxìmate, nodal

specified velocity component in ith direction

weight for jth Gauss point

z component of velocity, exact, approximate and nodal

gìobaì coordinates

global coordinates of node j in element i

fluid density

coeff i ci ent of f I u'id vi scosi ty

vorti cì ty

stream function

Kroneker delta

coefficient of bulk viscosity

local coordinates

local coordinates of node j in eìement i

stress tensor, exact, approx'imate
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1. INTRODUCTION

In this introductory chapter the use of approximate numerical

sol ut'ion procedures f or sol v'ing probl ems 'in f I uì d mechani cs i s di scussed

b¡ief ìy. More specì f i ca1 
'ly, the cl ass of f I ow prob'l em that wi I I be

treated ìn this study, and the approach adopted to analyse'it are defined.

Fi nal ly, the a'ims and scope of thi s thesi s are set out and 'its overal I

ìayout brìefìy summarized.

ì . I Background

The equat'ions that are encountered in fluid mechanics are, in

genera'l , of such a nature that no closed-form solution 'is available.

In order to o'¡tuin answers to such problems it 'is therefore necessary

to resort to approx'imate solut'ion techn'iques. 0f the variety of approx'i-

mate methods introduced in the last several decades to solve flow

problems in general, the finite difference technìque has, unti'ì recently,

been the most commonly used. Since 1965 however, the finìte element

method, orig'inally deveìoped for application in the analysis of compìex

structural systems, has gradualìy replaced the finite difference method

and has been successful'ly applied to most areas of fluid mechanics.

Its success has been, i n part, due to i ts ab'i I 'ity to accommodate compì ex

boundary geometries, and to the fact that ìt is not restricted to

establ ì shi ng the sol ut'ion on'ly at po'ints on a reguì arly spaced gri d.

It also allows greater flexibiììty in the choìce of local approx'imat'ion.

The devel oprnent of the method 'i s wel I documented and Zi enki ewì cz (37 )

provi des a comprehensi ve I 'i st of ref erences ì n hi s revi elv of the

method.

The finite element method as'it applies to the solution of poten-

tial fIow fields was first descrìbed by Zienkiew'icz and Cheung (38)

'in 1965. Th'i s marked the beg'i nni ng of the use of f ì ni te el ements i n

the f i el d of f I u'id mechani cs . Si nce then the method has been v'igorous'ly
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exploìted, with research and application expandìng at an exponent'ial

rate. As a result, three major conferences on the use of fin'ite element

methods in flu'id mechanics have been held in the six years since 1974,

Several surveys w'ith the same theme, such as that published by Norrie

and de Vries QZ) in 1976, have also been made during this t'ime'

The maìn reason for thìs sudden increase'in interest in computa-

tional f lu'id dynamics 'is twofold. Firstly improvements ìn the numerical

model s, such as the 'i ntroducti on of the f in'ite el ement method, have

now made 'i t possì bl e to sol ve compl ex f I ow prob'ì ems f or wh'ich no cl osed-

form sol uti on exi sts and wh'ich are e'ither costìy or di f f i cul t to

determine expe¡imentally. Secondly, the introduction of improved com-

puter hardware, more eff ic'i ent both i n terms of cal cuì at'ing and access

speeds and storage capabilit'ies, has made the use of numerical simula-

tion poss'ible and more attractive to both the engineer, who is concerned

wìth cost-effectìve derivation of design data, and the scientist or

researcher who requ'ires a deeper understanding of fluid processes through

detai ì ed ana'lysi s .

The range of fluid mechan'ics problems to which the finite element

method has been app'l 'i ed i ncl ude potent'i a'l f I ow, vi scous f I ow, subsoni c ,

supersonic and transonic compressible flow, free surface and open channeì

flow and porous media flow. The equations govern'ing each of these types

of flows can be derived in terms of various sets of dependent variables

of whìch the follow1ng are the most frequent'ly encountered: the prìmitìve

variables such aS veloc'ity, pressure, temperature and density, the

veìocity potentiaì alone or with other varìables, and the stream func-

t.ion alone or with other variables such as vorticity. Depending on

the type of prob'lem to be solved' one approach may have advantages over

another, but i n general the cho'ice of approach 'i s usuaì ìy based on the

equat'ion system that the researcher prefers to handle and his famììiarity

wi th the techn'iques avai I abl e f or sol v'i ng 'it.
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The primìtìve variables approach has often been preferred because

not only are the boundary cond'itì ons more easi ly determ'ined and appl i ed ,

but al so because the sol ut'ion obta'ined i s 'in an immed'iately usabl e f orm.

I,Jhen the veìoc'ity potential , the stream function or the stream function

ancl vortìcity approaches are adopted, addìt'ional manipu'lation of the

f i ni te el ement resul ts 'i s requi red to obta'in the f I u'id ve'loci ty and

pressure f i el ds, the quant'it'ies most usef ul to the analyst. The use

of prìmìt'ive variables also leads to the lowest order governing differ-

enti al equati ons and thi s approach 'i s the onìy one that i s dì rect'ly

applicable to both two- and three-dimensional flows.

Although recently some consideration has been given to the solution

of some three-d'imensional prob'lems, in the ma'in the fin'ite element method

has been restricted to solv'ing two-dìmensional or plane flows. Probably

there are two reasons for this. F'irstly, most of the research effort

to date has been di rected towards ì nvesti gat'ing and understand'ing the

numerous aspects'involved in the appfication of the finite element method

to soì vì ng a bas'ic vì scous f I ow probl em, and thì s i s done most eas'i 1y

i n two dimensi ons . Secondly and perhaps more I 'ike'ly, the amount of

computing time and computer size requìred to perform even a moderately

si zed f ini te el ement ana'lys'i s of a three-dimensi onal f ì ow have, 'in the

past, prevented many researchers from proceedìng with such an ana'lysìs

s'impìy because these f aci I i ti es were not ava'i I abl e. However, wi th the

devel opment of computer technoì ogy progress'ing at such a h'igh rate,

coupìed with the knowledge we now have from comprehensìve two-dimensional

studies, thi s situation i s rapidìy chang'ing and research on a I arge

scale using the finite element method to solve general three-d'imensional

fìow problems will soon be possìble.

The common types of finite element methods that have been used

i n the past 'i ncl ude the cl assi cal vari at'ional , restri cted vari at'ional ,

Galerk'in, least squares and the gìobaì balance forms, with the first
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three being the most wìdely used. However, since it is often dìfficult

or even impossìbìe to construct the necessary funct'ionals, the two

variational methods are limìted in the'ir appl'icab'iìity, and although

they are still wìdeìy accepted the Galerkin method is becoming increasìng-

ly used, particuìarìy for non-lìnear probìems.

I n thi s study the Gal erki n fi ni te el ement method i s used

excìusìve1y to anaìyse both two- and three-dimensional steady, v'iscous

flows with the equations describing them expressed'in terms of the

primitive variables, velocity and pressure.

1.2 Aims and Scope of Thesis

The purpose of this thesis is threefold; firstìy to determ'ine

the optìmaì finite element formulation of four versions of the two-

dimens'ional Navier-Stokes equations, second'ly to determ'ine the more

efficìent of two two-dimensìonal quadriIateral finite elements, and

thirdìy to determine whether the results of the above two investigat'ions

can be extended to three dìmensions and be used successfuìly to obtain

the finite element solution of a typical three-dimensional viscous flow.

As mentioned earlier, the actual technique that was adopted for this

study i s the Gal erk'in f i n'ite el ement method, and a'lthough thì s procedure

has aìready been successfully applìed to the anaìysis of two-d'imensional

viscous flows, to the author's knowledge, it has never been used to

solve the more general three-dimensional probìem. In this study there-

fore, the Gal erki n f i n'ite el ement method i s used 'i n con junctì on tlì th

the primìtive variables approach to solve the steady two- and three-

dimensìonal Navier-Stokes equations describ'ing the fuììy contained flow

of a vìscous and'incompressible Newtonian fluid.

In their derivatìon from first princìples, ìt is shown that the

Navier-Stokes equations contain three terms, each of whìch contains

N
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r-11

0V,r

the quantìty #. Some of these terms have been tradit'ionally always- ãv:
el'iminated by using the incompressible Continuity equation # = 0,

l
lvh'i I e others have someti mes been retai ned and someti mes el 'imi nated .

In order to determine the effects of the'inclusion of each of these

terms, four vers'ions of the Navier-Stokes equations are set up.' These

range from the first in wh'ich all such terms are el'iminated to the fourth

in which all terms are retained and include the two which have trad'itìon-

ally been most favoured by previous researchers. As far as the author

can ascerta'in, no compari son has prev'iously been made to determi ne whi ch

of these versions leads to the best numerìcal solutìon, or which is

the most efficient in terms of computational effort. Therefore, in

order to ensure that the opt'ima1 vers'ion is used in the subsequent two-

and three-dimensional analyses, a formulation comparison is made usìng

the solutions of two independent two-d'imens'ional v'iscous flow problems.

The results of thìs formulat'ion comparison are presented and the optimaì

version of the Navier-Stokes equat'ions used 'in al'l subsequent work.

As .a result of investìgations carried out by prev'ious researchers,

which show that when primitìve variables are used, the order of inter-

poìation for the pressure should be one less than that for the velocìty,

a quadrati c vel oci ty and I i near pressure m'ixed 'i nterpol atì on i s used.

Two quad¡i I ateral f i ni te el ements capabl e of aì 'l 
ow'i ng the vel oci ty and

pressur'e to be approximated in this manner are the Serend'ip'ity and the

Lagrangian isoparametric elements. In two d'imensions these elements

have e'ight and nì ne nodes respecti vely, wh'i I e ì n three d'imensi ons they

have twenty and twenty-seven. Suggest'ions have been made by some

prev'ious researchers that of these two el ements, the Lagrang'ian 'is the

superi or . I n thì s thesi s these suggest'i ons are i nvest'igated by comparì ng

the sol uti ons of two i ndependent two-dimens'i onal v'i scous f I ow probì ems

obtained usìng the eight and the nine noded elements. Particular atten-

ti on 'i s pai d to the'ir respecti ve ab'i I i t'i es to represent accurately the

e

, '"1' L
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pressure fields. The results of this comparìson, together with the

ve'loc'ity and pressure fields obtained for both the two-dimensional flows

considered, are presented, and the three-dimens'ional element correspond-

ing to the more efficient of the two two-dimensjonal elements'is used

in the f i nal three-d'imensional anaìyses '

The sol uti ons requi red by the above two ì nvesti gati ons were

obtained by using two computer programs' one incorporating the eight

noded and the other the n'ine noded element, and both developed during

the course of this study. Aìso, in order to keep the total computìng

time to w-ithìn a reasonable lìmit and because solut'ions evaluated by

other researchers for these problems are most readì1y ava'ilable' the

same two flow problems are consìdered in both comparìsons.

The fin'ite element equations that are presented are formulated

in dimensionless form for a general three-dimens'ional viscous flow and

a general f i n'ite el ement . The two-d'imensi onal f i n'ite el ement equat'i ons

can be easi ìy obta'ined by dì sregard'i ng the th'ird monlentum equatì on and

el imì nat'ing al I terms i n the rema'ini ng three equati ons that are assoc-

i ated w'ith the thi rd coordi nate di rect'ion '

Hav.i ng determ'i ned , 'i n two d'imensi ons , the optì ma'l f ormu'l ati on

and the more efficient fìnite element, these results are used in three

dimensi ons 'i n an attempt to sol ve a typi cal three-d'imensi ona'l vi scous

flow. In order to do this, a thìrd computer program incorporat'ing the

Frontal solution procedure was wrìtten and developed' The results of

several three-dìmensìonal anaìyses together with a discuss'ion of each

of the two major problems that were encountered'in carrying them out

are presented. The second problem was eventually overcome but the first

which involved the necessity to specify addit'ional pressure boundary

condì t-ions bef ore a sol ut'ion can be obtai ned, requ'ires f urther i nvesti ga-

tion. Nevertheless, it is shown that the prim'itìve variables fìnite

element method can be used successfuì'ly to solve the steady and incom-

pressì b'le three-d'imens'ional Nav'ier-Stokes equat'ions ' Al I three-
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d.imensi onal sol uti ons that are presented 'i n th'i s thesi s were obtai ned

by supplying, where required, the additional pressure values. Full

deta-i I s of al I three-dimensional fl ows anaìysed have therefore been

included with specìaì care being taken over the prescribed boundary

condi tì ons .

t.3 Layout of Thesìs

Essent.ially, th'is thesis cons'ists of three bas'ic sect'ions compris-

i ng v.i scous f I ow and f i nì te el ement theory, numerical sol ut'ion detai I s

and the two- and three-dimensional results. At the start of each chapter,

a short ìntroductory discussion defines its purpose and contents. The

specific usagê and meaning of all symboìs and varìables encountered

i n al I chapters are def i ned i n the secti on ent'itl ed Notati on whì ch 'i s

found at the start of th'is thesis.

Chapter 2 is devoted entirely to g'iving a detailed account of

work carr.ied out prev'iously and which d'irectìy affects many of the

decisions made during this study. It is not intended, however, that

thìs chapter be a compìete survey of all work done in the field of com-

putatìona1 fluìd dynamics, since the amount of pubììshed material ìs

already very ìarge. 0nìy selected works have therefore been ìncluded.

where appììcable, after the relevant work of other researchers has been

presented, the approach or techn'ique adopted for this study is set out'

The Nav'ier-Stokes equat'ions describing a general three-dimensional

viscous flow are discussed'in the first section of chapter 3 and are

der.ived from first p¡incipìes in Appendìx A. Tensor notat'ion, 'in wh'ich

the summatìon convention holds for subscrìpted variables w'ith repeated

lower case indices, is used only in these two sections' Also in the

f .irst sect'ion of Chapter 3, the boundary condi ti ons that are most I i kely

to be encountered'in the problems to be solved are reviewed and these'



8

together wi th the govern'ing equat'ions are non-d'imensi onal 'ized and

expressed i n terms of a s'ing'le dimensi onl ess parameter, the Reynol ds

number. Fi na'lìy, the f our versi ons of the Nav'ier-Stokes equat'ions that
âV,

ari se because of the i ncl usi on of terms conta'ini ng the quantì tV tj are

set out and the reasons for these inclusions explained.

The f ì ni te el ement f ormul ati on of the govern'ing equat'ions i s set

out and d.iscussed in the second sêctìon of Chapter 3. The fin'ite element

equat.ions that are constructed are based on a general f i n'ite el ement

wh.ich i s capabì e of a]l owì ng the pressure to be 'interpol ated d'iff erently

if necessary, from the velocity. The mean'ing of the surface integraìs

that result as a consequence of the use of the Gauss theorem to reduce

the order of . d'if f erentì atì on, i s al so expl a'i ned . The rema'i nì ng two

parts of Chapter 3 deal first'ly w'ith the theory of the assembling process'

the techni que used to combi ne the equat'ions of i nd'iv'idual f ini te el ements

into one overalì global equat'ion system and secondìy, w'ith the mult'i-

dì mens.ional Newton-Raphson i terat'i ve sol uti on techn'i que, the method

adopted for so'lving this system. The general i-kth component of the

non-lìnear element "stiffness" matrix correspond'ing to the four versions

of the Navier-Stokes equat'ions ìs set out in full in the last sect'ion

of Chapter 3.

In Chapter 4, the cho'ice of ìnterpolat'ion for the veìoc'ity and

pressure variables is expìaìned and both the two- and three-dimensional

elements that have the abiIity to represent the requ'ired variations

are presented in detail. Since the elements chosen are isoparametric

and therefore cons'iderabìy more compl'icated than the s'impìer ord'inary

quadr.i I ateral and hexahedral el ements , a detai I ed descri pt'ion of the

required adjustments to the area and line integrals for two dimensions

and the volume and surface integra'ìs for three dimensions ìs included.

The eval uat'i on of these 'i ntegraì s 'i s done numeri caì ìy and ì s descri bed

in the second section of chapter 4. The remainder of chapter 4 'is
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devoted to discussìng the problems encountered in settìng up and deve'lop-

ìng the three computer programs written to analyse the selected two-

and three-dimensional v'iscous flows. A listìng of the three-dimensional

computer program is g'iven ìn Appendix B.

The results of the two comparisons, name'ly the comparison to

determi ne whi ch vers'ion of the Nav'ier-Stokes equatì ons I eads to the

most efficient finite element formulat'ion and the best solutìons, and

the compa¡ison made to determine wh'ich of the two elements, the Seren-

di p'ity or the Lagrang'i an, has the better characteri st'ics , are presented

in Chapter 5. The two two-dìmensional v'iscous flow probìems that are

used in both comparisons are the flow in the entrance region between

two semi -ì nf i n'ite para'l'leì pì ates and the reci rcul at'ing f 1ow i n a square

cav'ity. Care i s taken to ensure that compl ete deta'i I s of al I boundary

condit'ions, mesh configurations and other relevant aspects for each

problem are clearly presented so that all problems are fulìy defined

and readììy reproducable. The optìma'ì element type and the most effic-

ient version of the Navier-Stokes equations that are selected for use

in the three-djmensional analyses, and the reasons for choosing them

are presented in the discussion at the conclusion of each of the relevant

sections of Chapter 5.

Fina'lìy, ìn Chapter 6, the finite element method and the results

of the two-dimensional comparìsons are used in an attempt to find the

solutìon to some typicaì three-dimensional viscous flows. In all, three

flow probìems are cons'idered. The first is the fuì1y deveìoped flow

between two i nf i n'ite paral 1 el p'l ates , whì ch was prev'iously sol ved 'i n

two dirnensions. A second, more compìex probìem, namely the fuìly

deve'l oped f I ow 'i n a duct of arbi trary cross-sectì on, i s then attempted .

Si nce 'it i s not possì bì e to set up one general f ì n'ite el ement mesh for

a duct with an arbitrary cross-sectìon, a typica'l square duct is analysed.

In both cases 'it is shown that additional pressure data is required
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on the outer boundary of the flow before a correct solut'ion is obtained.

A detailed account of the ìnvestigation carried out ìn order to obtain

a fuller understand'ing of the nature of thìs d'ifficulty is given in

the fi nal sectì on of chapter 6 . The anaìysi s of a thi rd three-

dimens.ional v'i scous f I ow probl em, name'ly the devel opì n9 f I ow i n the

entrance region of a square duct, confirmed the find'ings of this inves-

tigat.ion. The results of this th'ird anaìys'is are also presented 'in

the final sectìon of Chapter 6. The other two sections of th'is chapter

are used to describe'in detail, firstly the reasons for the choice of

formulation and element type adopted for the three-dimensional anaìyses,

and secondly the meshes and boundary conditìons used to analyse the

part'icul ar f I ows .

A summary of alI conclus'ions arrìved at during the course of this

study, together with some concluding remarks concerning this thesis

and the direct'ion of probabìe future research in this field' are made

in the fìnal chapter.

In order to remove excessive deta'il from the main text, use is

made of four Appendices. The detaìls of Append'ix A are well known and

are included for completeness. A'l'istìng of the three-dimensìonal com-

puter program 'is given in Appendìx B, together w'ith data input details,

user instructìons and a bas'ic flow chart. Appendix C contains the

numerical values of the l'inear port'ion of the "st'iffness" matrìx for

a two-d'imensi onal el ernent of uni t wi dth and depth f or f ormul ati on B

and for each of the eìght and n'ine noded element types. it has been

'incl uded to enabl e f uture workers 'i n thi s f iel d to compare thei r

formulations with those 'in th'is study on a numerical level . F'inaì1y,

a comparìson of the results of two anaìyses of the Po'iseuille flow us'ing

the eight and the nine noded elements is made in Appendix D.
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2. LITERATURE SURVEY

In th.i s sect'i on the research ì nto the appl 'icati on of the varì ous

finite element methods to the solution of steady, incompressible and

vi scous f I ow probì ems i s revi ewed w'ith part'icul ar emphas'i s p'l aced on

the more recent developments. To fac'ilitate classìfication of the

approaches used by the researchers mentioned in this survey, the three

commonly used forms of the two-dimensional Navìer-Stokes equations are

di scussed f i rst. The sol utì on techni ques adopted for so'l vi ng the

resul ti ng equat'ions are then bri ef ly described. A more deta'i I ed dì s-

cuss'ion of all relevant material follows ìn the body of the thesis later.

As was mentioned prevìousìy, the two-d'imensional equat'ions

governing the flow of an incompressible viscous fluid can be expressed

in terms of three bas'ic sets of dependent variables. In terms of the

primi t'ive vari abl es , the two veì oc'ity components u and v and the

pressure p, these equat'ions, more commonly known as the Nav'ier-Stokes

equations, can be written as

au au I a2u a2u aP

u-+V =-(-+-)
ax ay Re ax' aY' ax

av av I atv a2v aP

u-+V-=-(-1-)
ax ay Re ax2 aY' aY

and
au av

-+--0ax ay

2.1.3

where non-d'imens'ional i zat'ion has been carried out wi th respect to a

reference ìength L and a reference velocity -v and where Re is the dimen-

sionless parameter, the Reynolds number, which ìs defined as

PvI
Qg=-

u

2.2

p and u are the flu'id dens'ity and v'iscosity respectìve1y. Introducing

the stream funct'ion U and the vort'icity to wh'ich are defined as



äy au
U- ô¡ ay

enables the equat'ions to be rewritten as

and

and

au
_ = U¡
ay

Aìü âul Aìt ðto

ay ax ax ay

a 
t,þ

aù

-= 
-V

AX

I a" à2u

-(- 
¡ 

-)Re axz ay'

12.

2.3.1

2.3.2

2.4.1

2.4.2
a2{,

=ü)
ax 2 ðy,

where equatìon,2.4.2 takes the place of the Cont'inuity equatìon which

is satisfied ìdenticaìly. If only the stream funct'ion'is'introduced

the governi ng equati ons f or a v'i scous f I ow can be reduced to the s'ingì e

fourth order differential equatjon

a{¡ aU A{, Aì|,¡ l

-.yz(-) 
--ÒV'(-) =- 12(V"tr) 2.5

ay ax ax ay Re

a2 'ð2

Whefe Y2 = +-
axt ay'

To date alI theoretical and numerical model1ing of incompressible v'iscous

flows have used one or other of these three forms of the Navier-Stokes

equati ons .

It will be noted that because of the inclus'ion of the inertia terms

the equations in each case are non-l'inear. It will also be noted that

as the Reyno'lds number i s i ncreased the dom'inance of these non-l'inear

terms al so 'increases. It 'is not surpri s'ing theref ore that because the

difficuìty of solv'ing a problem increases with the degree of non-

'li neari ty of its govern'ing equatì ons, most of the f ini te el ement

solutions presented to date are for low to moderate Reynolds numbers.

This appìies equaì1y to all three approaches described above. Also,
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although some consìderatjon has been g'iven to the finite element solution

of three-d'imens'ional probl ems, 'i n the mai n the f ini te el ement f ormul a-

tions have been for two-dimensional flows.

Finite element formulations based on each of the three forms of

the Navier-Stokes equations have been devised during the past ten years.

Wi th'i n the general context of the pri mì t'i ve varì abl es approach , several

schemes have been deveìoped. As noted by 0lson (24) and confirmed by

thi s revi ew, f ini te el ement methods us'i ng thi s approach f aì ì 'i nto three

basìc groups

(a) Integrated formulation tYPe

(b) Segregated formulation tYPe

and (c) Solenoidal velocity formulation type.

The integrated formulatìon type finite element methods in wh'ich

the velocity component and pressure fìelds are solved for simultaneousìy,

use e'ither a vari ational or a we'ighted res'idual approach . The f ormer

has the advantage of yielding a better understanding of the sign'ificance

of the equat'ions but ìts use 'in some cases is limited by the non-

existence of the required equìvalent varìat'ional functional. To date

most of the f ini te el ement work 'i n vi scous f I uì d dynam'ics has been

carried out usìng the prim'it'ive variables and integrated formulatìons,

w1th the Gal erkì n wei ghted res'idual approach be'i ng the most f avoured.

In his book, Zienkiewicz (36) presents the Galerkin finite element

formul at'ion of the Stokes and Conti nu'ity equat'ions whi ch are appl i cabl e

only to creep'i ng f I ows . The resul ti ng matrì x of equat'ion coef f ì c'ients

otherwise referred to as the element "st'iffness" matrix, was shown to

be unsymmetrical . Th'is was 'in contrast with element stìffness matrices

resuìting from similar formulations of structural problems, whìch are

aìways symmetrical. However, by a slight change in the theory presented

by Zìenkiewìcz, Yamada et al. (35) were able to show that element stiff-

ness symmetry could be retained. They also noted that, at least for
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Stokes flows the Galerkin approach produced the same formulat'ion of

the primìtive equat'ions as did the class'ical variational method.

Because the equations govern'ing creeping fIows are Iinear, the finite

el ement sol uti ons f or these probl ems are easi ìy obta'i ned and a 'l arge

number are readiìy available 'in the literature. However, because creep-

ing flows represent onìy a very restricted class of viscous f'low prob-

lems, 'in order to sol ve a more genera'l v'iscous f I ow, the more generaì

Nav'ier-Stokes equati ons must be cons'idered .

The next stage 'i n the devel opment of the f in'ite el ement method

as it applies to v'iscous fluid dynam'ics was therefore to solve the full

non-linear Navier-Stokes equations. In 1973, Tay'lor and Hood (30) 
'

foì lowing the ,same procedure as Zienk'iewicz, set up a Galerk'in f inite

el ement f ormul ati on f or the comp'lete two-d'imensì onal Nav'ier-Stokes equa-

tìons in terms of the primitive variables. They showed that solut'ions

could be obtained for the flow in a square cavity and around a cy'linder

with Reynolds numbers as high as 600 and 100 respective]y. In a sub-

sequent paper, Hood and Taylor (16) mod'ified their prev'ious theory to

include mixed interpolatìon and showed that when a prìmitive variables

formulation'is used the pressure fieìd approximation must be a po'lynomial

of one degree I ower than the approx'imati on of the veì oc'ity component

fields. This they argued, ensures that consistentìy accurate results

are obtained simultaneously for both ve'ìocity and pressure, and that

rig'id body modes are suppressed. They noted that poor accuracy had

been obtaìned by prev'ious researchers who had disregarded or had not

accounted for this fact ìn their formulations. Th'is was confirmed by

the subsequent studies of Kawahara et al. (19) and Tuann and 0lson ß2)'

both of whom used a Galerk'in integrated formulation and the same mìxed

interpo'latìon as Hood and Tayìor, nameìy a quadratic velocity and a

linear pressure approximatìon.
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Many other stud'ies have been carried out since these. Some of

the typical two-dimens'ional viscous flow probìems that have been solved

usi ng the Gal erk'i n 'i ntegrated f ormul ati on i n terms of the pri m'it'i ve

variables are the Poiseu'ille and Couette flows, the flow ìn a slider

bearìng, the flow in a square cav'ity, the flow past a circular cy'lìnder,

the flow over a backward facìng step, the developing flow in the entrance

reg.ion between two paral ì eì pì ates and the f I ow between two converg'ing

pìates. In almost all cases the Newton-Raphson ìterative method was

used to obtai n a sol uti on to the resu'lt'i ng non-l i near di screti zed

equation system which can be expressed generaì'ly as

{C(x) + K} I = I 2'6

where C and K , are respectì veìy the non-l i near convect'ive and the I 'inear

d.iff us'i ve sti ff ness matri ces , t the I oad vector resul tì ng f rom surf ace

stresses and spec'ifìed boundary quantitìes, and x the vector of unknown

nodal ve'loc'it'ies and pressures. in additìon to making the prob'ìem non-

linear, matrix C 'is also unsymmetrìc. Three other methods that have

been used ì n the past to sol ve equati on system 2.6 'incl ude two whi ch

make symmetrì c the coef f ì c'ient matri x by p'l aci ng ei ther al I or the

unsymmetric part of C(x).¡ evaluated for the prev'ious iteratìon step

on the rìght hand side as part of the load vector for the next'iterat'ion

and a thi rd wh'ich, I 'ike the Newton-Raphson method, reta'ins the unsym-

metric coefficient matrix and uses successive substitution to linearize

ir.
Garil'ing et al . (13 ) recent'ly compl eted a deta'i I ed comparì son

of these four methods and found the foì1owìng. Firstìy the methods

that solved the full unsymmetrìc equation system were far superior and

more generaì 'ly appì 'icabl e than theì r symmetric counterparts, and secondly,

of the unsymmetrìc algorithms, the Newton-Raphson procedure was clearìy

th9 most rapìdly convergent and therefore the nlost effìc'ient. From

these studies therefore, it appears essent'ial that, at least for the
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prim'it'ive variables approach the non-l inear unsymmetric effects be

retained in the coefficient matrix, and if max'imum efficiency is desired

the Newton-Raphson procedure be adopted.

The second type of pri m'i ti ve varì abl es fi ni te el ement method

i nvol ves a segreg ated f ormu I at'i on i n wh'i ch the vel oc'i ty and pres sure

are suff i cì ently uncoupì ed to al I ow the'ir al ternate sol ut'i on ì n an

iteratìve sequence. This approach was pìoneered by 0lson and Tuann

(24, 25, 32), and aìthough 'it has been used extensiveìy 'in f in'ite differ-

ences, it has rece'ived reìativeìy lìttle attention from finìte element

workers. The procedure 'involves the derivatìon of two restnicted func-

tionals, the first of which allows the pressure to be calculated 'if

the velocity js known and the second of which allows the reverse. The

Newton-Raphson method or any of i ts equì va'lents are no! needed i n thi s

procedure.

The main advantage of this method for fin'ite elements is that

the pressure interpolation can be of any order and independent of the

vel oci ty 'i nterpol ati on. Thi s 'i s 'important because the pressure accuracy

is often the limiting factor in the overall solution accuracy.

A'lthough some work has been done us'ing this method, many quest'ions

st'i I I rema'i n unanswered. For exampì e, how wel I 'i s conti nuì ty sat'i sf i ed

(since it is not built in as 'it is in the'integrated formulation), and

what are the convergence characteristics for th'is approach at higher

Reyno'lds numbers?

The third alternative for the primit'ive.variables finjte element

method 'invol ves the use of sol enoi dal veì ocì ty i nterpo'lat'ions; that

is, assumed veìocity fields which satisfy the Cont'inuity equat'ion

exactìy. By us'ing such interpoìations, the assumed velocity fìeld has

zero di vergence and hence the i ncompress'i bi I i ty constrai nt i s sat'i sf i ed

expìicitìy. Therefore the Cont'inuity equation is not required and by

el 'imi nati ng the pressure f rom the remaì nder of the equati on systetn onìy
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the veì oc'i ty components are retai ned as the dependent vari abl es.

Although the procedure appears simple, the construction of the solenoidal

field or null divergence finite element 'is very difficult. Further,

it appears al most 'impossi bl e to have both 'incompress'ibi ì i ty and compat-

'ibil'ity of velocìty satisfied s'imultaneousìy.

Fortin (12) was the first to make a sìgnifìcant contribut'ion to

th'is area and vras able to produce an equivaìent variational formulatìon

of the primitive system wìth incompress'ib'ility satisfied expìic'itìy.

Hutton (17) used the same theory as Fortin to analyse regions of flow

'in the vì ci ni ty of si nguì ar po'i nts on wal ì boundari es . However no

numerical results were presented in either case and, as with the seg-

regated formulation, it appears that much more research needs to be

done, part'icularìy into the characteristics and the effects of the use

of the null-d'ivergence but non-conformjng eìements.

Finite element formulations based on the derìved variables, stream

function V and vorticity o have arisen as a result of the des'ire to

avoid the difficulties inherent with the pressure variable. The main

di sadvantage of thi s approach 'i s that the vort'icì ty boundary condi ti on

is not known a priori, and therefore the stream funct'ion and the vor-

ticity cannot both be solved simultaneousìy. Nevertheless the finite

el ement work 'i n thì s area ì s st'i I I qu'ite extensi ve, wì th the analys'i s

of unsteady fìows tak'ing precedence over steady. Because 'ü and o cârìñot

be solved for s'imultaneousìy, the Newton-Raphson method is not practicaì.

The solutìon procedure that'is usuaì1y adopted is a calculation scheme

that al ternates between rl¡ and o . That i s, '1., 
'i s assumed known when

equat'ion 2.4.1 is to be solved and vice versa for 2.4-2.

Both the Gal erki n and restri cted vari at'i onal approaches have

commonly been used with the stream function and vortic'ity equatìons.

Baker (2) used the former to pred'ict the development in t'ime of imbedded

reg'ions of recjrculat'ing f low, while Cheng (B) and Tong (31) used the
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latter in an attempt to solve the flow in a channel with a contract'ion

and the flow around a cyìinder (two-d'imensional ) and a sphere (axì-

symmetric). In all cases good results were claimed even with the use

of the sìmplest t¡iangular elements. However, as was reported by 0'lson

(24), although consìderable progress has been made in this area, there

sti I I remai n many questi ons unanswered, partì cuì arly regardi ng the

stab'i I i ty and the accuracy of the adopted sol ut'ion schemes at hi gher

Reynolds numbers.

The only other approach that has been used 'in the f i n'ite el ement

modeìl'ing of the two-dimensional Navier-Stokes equat'ions'is based on

the f ourth order, bì harmon'ic type d'iff erenti al equati on 2.5, expressed

in terms of the stream funct'ion alone. The main work 'in this area has

been done by 0lson (23) who has used this approach to anaìyse the flow

around a cyl i nder and 'i n a constrì cted cyl i ndri ca'l tube w'ith Reyno'ìds

numbers up to 100. Few other researchers have adopted this approach,

perhaps because of their lack of fam'iliarity with the higher order

el ements 'it requi res. 0l son used a restri cted variati onal princì p'le

together with an l8 degree of freedom triangu'lar element which has the

stream funct'ion and all of ìts fìrst and second derìvatives as nodal

var.iabl es. He f ound that thi s produced good stab'il ì ty 'in the two-

d'imens'ional analyses but behaved re'lativeìy poorìy'in the ax'isymmetric

case.

0lson and Tuann (32, zil have compared the prìm'itive variables

and stream function approaches using variational methods and concluded

by saying that the stream function method is the least difficult and

perhaps the more accurate as app'li ed to the'ir partì cul ar test f I ows.

Tayìor and Hood (30) compared the prim'itive varìables and the stream

function-vorticity approaches us'ing Galerkin and concluded that the

prim'itive varìables method was the more efficient and the one most easiìy

extended to three dimensìons. From this review therefore 'it becomes
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ev.ident that f or the anaìysì s of two-d'imensi onal vi scous f I ows , no one

approach or formulation is considerably more advantageous than another.

Each has its advantages and its disadvantages, with the overall p'icture

remaining very complicated. As a result different peop'le have chosen

d'i fferent formul ati ons and thei r preferences have undoubtedìy been

influenced by their experiences and the availabiì'ity of certa'in aìgor-

ithms and computer packages.

In this study the author has elected to use primìt'ive variables

because thi s approach appears to be the most eas'i ìy extended to three

dì mensi ons , the Gal erk'i n we'i ghted resì dual method because thì s appears

to be the most generaì, and the Newton-Raphson'iteratìve method because

this has proven to be the most efficient solution techn'ique available.
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3. THEORY

Al I the theory that 'i s used during the course of thi s study 'is

presented in this chapter. It covers the derivation of the Navìer-

Stokes equati ons and the asssoc'iated boundary cond'iti ons, a di scuss'ion

of certain terms not normaìly jncluded'in these equations, the non-

dimensì onal i zati on of the equati ons and the boundary condi ti ons, the

construction of the primitìve variables fìnite element formulatìon,

a discussion of the assembly of ìnd'ividual element equatìon systems

into one globaì system and a discussion of the application of the Newton-

Raphson method to the solution of this system. Although much of this

theory is commonly accepted and well documented it has been repeated

here for the 'sake of compì eteness and to ma'intai n a cons'istent f orm

of presentatìon. Also certain aspects such as the process of assemb'ì'ing

the gìobal equation system and the appì'ication of the Newton-Raphson

method to its solution are not as well covered in the literature as

one would have expected. In these cases additional care has been taken

to ensure that their explanat'ions and discussions are as clear and

as conci se as poss'i bì e.

3.1 Governìng Equations and Boundary Conditions

In the study of v'iscous fluid mot'ion we are concerned wìth three

basi c I aws:

(a) Conservatìon of mass

(b) Newton's second law of motion

and (c) Conservat'ion of energy (the first law of thermodynamics).

The respectì ve equat'i ons that resul t f rom the appì'icati on of these

laws are the Cont'inuìty equation, the three components of the Momentum

equat1on and the Energy equat'ion. These equations are genera'lly expressed

in terms of the five bas'ic or primitive variables, the three components

of ve'loc'ity and the two thermodynarn'ic quant'iti es , pressure and tempera-

ture. In'incompressible flows, s'ince the densìty ìs constant the energy
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equatìon becomes uncoupled and if the temperature is assumed to remain

constant, ìt becomes redundant.

The general d'iff erent'ial equati ons govern'ing the steady and

i ncompress'i bl e f I ow of a v'i scous f I u'id at constant temperature and

expressed i n tensor notat'ion and i n terms of the vel oc'ity and stress

components are therefore as follows.

âo..
Jl = g (v

t*j

,uj

av.I
J

+ C, v.,
,*j 1

3.1

3.2and =0
âx.

J

where vi is the veìoc'ity of the flu'id in the xi d'irection' p 'is the

flu'id dens'ity, F.i is the body force per unit mass in the xt direction

and oij is the stress tensor. Equations 3.1 and 3.2 are the equat'ions

for the conservat'i on of momentum and mass respecti vely, and when

expressed only 'i n terms of ve'l oc'ity and pressure, are often ref erred

to as the Navier-Stokes and the Cont'inu'ity equat'ions. It w'ill be noted

that an additional term prefixed by the constant CZ and not generally

found i n the momentum equati on has been i ncl uded 'i n Equat'i on 3. I . The

sign'ificance of the'inclusion of thìs term and others s'imilar to'it

subsequentìy will be expla'ined at a later stage. It will suffice to

say that this term is a normal part of the momentum equat'ion which has

been traditionalìy a].ways eliminited by the use of the Continuìty equa-

t1on. Its orig'in 'i s expl ai ned i n Append'ix A where both Equati ons 3 . l

and 3.2 have been derived from first principles.

In order to obtain the commonìy used form of the Navier-Stokes

equat'i on i t i s necessary to wri te the momentum equati on ent'i rely i n

terms of the primit'ive variables, veloc'ity v., and pressure p. The stress-

strain rate relationsh'ip that was chosen to express the stress tensor

o,, found on the left hand side of equation 3.1 ìn terms of veloc'ity
1J

and pressure 'is
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6 3.3

where u is the first coefficient of v'iscosity, or simply the fluid

v'iscos'ity and oij it the Kronecker delta def ined as

oij = I if i = i
and u.ij=0 if ili

In general the fluid viscosity is temperature and to a lesser

extent, pressure dependent. In th'is study however, because 'it has

been assumed the fluid temperature is constant, and because the second-

ary pressure effects wìll be ignored, the viscos'ity w'iìl be constant.

The stress-str.aì n rate rel ati onsh'ip that resul ts i s therefore l'inear

and characteri sti c of Newton'i an fl ui ds.

The pressure, as 'it appears in equation 3.3 and 'in subsequent

references ìs, by definition, the negatìve mean of the three normal

stresses acting at any particular po'int. That is

I
p---ã"kk 3'4

It can easìly be verified that by using equation 3.3, the value of

equa'l to p prov'ided Ct equals one

the constant Cg is similar to the

one found'in the momentum equatìon and contaìning the constant CZ.

It i s normal ìy el'im'inated by the use of the Cont'inuì ty equat'ion and

does not genera'l'ìy appear i n the stress-strai n rate rel at'ionsh'ip.

The derì vati on of th'i s rel ati onsh'ip has al so been i ncl uded i n Appendi x

A 'in order to. exp'lain the origin of the term.

The necess'ity to define the pressure at any poìnt in a moving

fluìd 'in the above manner arìses from the fact that in establish'ing

equation 3.3 one requires a scalar quantìty, donated p for convenience,

that at any po'int 'is equal ì n al I di rect'ions, and i s anal ogous to the

stat'ic-flu'id pressure in the sense that it is a measure of the local

o..
rJ

,'ui t uj
u\-trj axi 3 rJ

1!r- o o

a*k ij
2--c
3
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.intensì ty of the " squeezi ng" of the f I u'id. It can eas'i 1y be shown that
'l

at any point å"ff ìs the average value of the normal components of stress

over the surface of a small sphere centred on that point. Thus the

quantity p defined by equat'ion 3.4 is a real parameter of the flu'id

system and i s accessi bl e to d'irect observat'ion.

Equation 3.3 can now be substituted ìnto equat'ion 3.1 to give,

â'v .

u( '¿x'j

2

3
C¡ ô..

1J

t'uk âp
) ô

ðx AX AX jJ k

a2 v

1J

=,,,iî -rr,, 
I 

-Fi) 3'5

The th.ird and fourth terms of th'is equation can be simplified as follows.

2--c
3

â'v
k

ðX ðXj

ax.
1

2

3J
ô

k
3

ca
ðx âX

k l k

since this term is non zero only when j = i,
? à2v.

= -lC^ 
'J

3 r ,*i t*j

because the extra subscript k is not necessary when i is the summat'ion

subscript within each equation, and

ap ap
6 ijt*j

since th'is term also 'is non zero only when i = i. By rewriting the
a av:

second term of equat'ion 3.5 as tE,\, 'it can be seen that the contin-

uity equation could be used to elimìnate it. However, because the

s.ignificance of the'inclusion of this term and the previous two s'im'ilar

to it are be1ng investìgated in this study, this term w'ill be prefìxed

by the constant c1 and retained in the govern'ing equat'ions.

Thus the f orm of the Navi er-Stokes equat'ion that w'il I be used

throughout thi s study 'is
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or rearranged 'is
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3.6

3
a *'i

p(vj zvi 't

l

u ä'v.,

- ( ' + (c
o ðX2 .'J

c
2

3
I 3

av.1+C
t*j

=V j z vi
âv.J -cI

ôX,
J

âV=

and'J=Q
t*j

The above equati ons of motì on requi re boundary cond'it'ions that

are mathematically tenable and also physicalìy real'istic. The two types

of boundary that wilì be encountered in this study are

( I ) sol id-fl uid i nterface

and (21 inlet or outlet regions.

The fluid-flu'id interface, which includes the free surface case if one

of the fluids has a relativity neg'ligibìe dens'ity, will not be considered

here si nce 'i t i s not d'irect'ly amenabl e to the sol uti on techni que chosen.

At the solid-flu'id interface it will be assumed that the fluid

takes on exactly the velocity of the sol'id; that is

utr.ì = uiror'

If, as will be the case in most of the prob'lems to be solved in this

study, the sol id at the i nterf ace 'is a stat'ionary and impermeabl e wal I ,

then on these sect'ions of the f I ow boundary the f I uid ve'ìocì ty wi I I

be zero in all coord'inate d'irectìons. In addit'ion, it w'ill be convenient

in many of the problems to limit the anaìys'is to a finite regìon through
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whi ch the f I ow passes . Th'i s 'i s permi ssi bl e provi ded the propert'ies

of the fIow at both the'inlet and outlet are specified. That is, at

the'inlet and outlet boundaries, the fluid pressure and e'ither the fluìd

ve1 oci ty or the vel ocì ty gradì ents must be known . l^lhere the vel oci ty

is known the boundary condìtion can be applied dìrectìy. However, if

only the velocìty gradìents are known, then these must be used ìn con-

junctìon with the pressure and equatìon 3.3 to establish the fluìd state

of 'stress in these regions. The fluid stress boundary cond'ition can

then be specìfied. If either the fluid pressure or the fluid veìoc'ity

(or the veìoc'ity gradients) is unknown at the inlet or outlet boundary

then a unique solution to the prob'lem cannot be found because the flow

is not totally,contaìned.

The above cond'itions may be expressed formally as

o
v 'l

-oo...rì, = l.
Jì J 1

on boundary Sv

on boundary ST

V'l
3.7

and

1

t

where Su. is the portion of the trtal boundary on which the ve'ìocity
^'lvi in the x., direction is prescribed, and tr., is the remainder of the

boundary on wh'ich the stress Ti ìn the "i d'irect'ion is specìfied and

on whi ch n j 'i s the i th component of the outward po'i nti ng normaì . Su.

* Sr. = S where S is the total boundary enclosing the flow be'ing ana'lysed.
'l

It is ìmportant to note that at every po'int on S either a velocìty or

stress component must be spec'ified in each coordìnate direction. This

fact will become more evìdent when the assembìy process is discussed

'in more detail later ìn Sectìon 3.3. It is not necessary, however'

that the portion of boundary on which a ve'locity is specified be the

same for each coord'inate d'irection. For examp'le, ìf u (the veìoc'ity

component 'in the x direct'ion) is spec'ified on boundary Su and v (the

vel oc'ity component 'i n the y di rect'i on ) i s speci f ied on boundary Sv ,

then S and S need not be co'i nci dent .UV S'imi ì arly for stresses; if T
v
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(a stress in the y direction) 'is spec'ified on boundarY Sr, and T, 'is

specified on boundary Srr, then tr, u^O tr, n. not be the same port'ion

of S.

Thus the system of d'if f erenti al equatì ons and boundary cond'iti ons

that descrìbe the steady flow of an'incompress'ible fluid through a region

V, on whose boundary S, forces as well as flow restrictions have been

imposed, and for whìch the body force per unit mass F.i is zero in all

d'irecti ons i s

a2v 'l
ap2

3

l.l

p

( + (c
I 3

I

p
C

AX, ax AX AX
1'l j

=uj
J

+ Crv'
av.

J

ax.
J

AV l

ðX

V

av.
J

\
0

i
o

u.i on boundary Sv

J

and

3.8.,l

3.8.2

3.8.3

over reg'ion V, w'ith boundary cond'it'ions

'i

and oii'ni = TT on boundary ST.i 3'8'4

Before proceeding any further, it is necessary to non-dimens'ional'ise

the above relatjonsh'ips so that dimensional probìems in subsequent

derived formulations and flow solutìons are not encountered. By select-

ìng a velocìty ü and ìength I characteristic of the flow to be anaìysed,

all variables in the governing equat'ions and boundary conditions can

be non-dimensi onal i sed or written i n d'imens'ionl ess or normal i sed f orm

by us'ing the f ol I owi ng transformati ons.

Length: 3.9.1

vl't

X
I

i
xi
-=
L
V.'l
-:_

V

Vel oci ty: 3.9.2
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3.9.3

3. t 0.l

3. t 0.2

3. ì 0.3

3. r 0.4

Pf,"

Equations 3.8.1 -4 become
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"ji'nj on bourtdary ST

r*j

and

wi th

and

wi th

0

o
V

I

i

- -,o- l. 'land
i

The dash notation for dimensionless variables can now be dropped with

the understandìng that all variables used from now on, unìess otherwise

stated, have been non-dimensi onal i sed usi ng rel ati onshi ps 3 ' 9 ' I -3 '

The final form of the governing equatìons that are to be used in thìs

study i s therefore

I a2v=( '+(c
Re t*'j

2 ä2v ap
)

I 3
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3
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and
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=uj zvi
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J

t*j
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o
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PiI
ftg=-

u

'l

1

and where

Ti on boundary ST

3. 10. 5
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is the resulting dimensionless parameter known as the Reynolds number

and is the onìy quant'ity of importance affecting all lam'inar viscous

flows at constant temperature.

It shoul d be po'inted out that the characterì st'ic quanti tì es v

and I tf¡at are chosen to non-dimensionalìse the above equations for

a g'iven problem, must both be un'ity when the equiva'lent dimensionless

problem is solved. For convenience, v and t are usuaì'ly selected as

quant'ities that are independent of the solution that is to be obtained

and that can be used regardless of the Reynolds number. For example,

in pipe f1ow, I is chosen to be the pìpe diameter rather than the p'ipe

length because the'length of pipe that must be considered may depend

on the ReynoìÇs number. The dìameter of the p'ipe for a given problem

i s usuaì 1y known bef orehand and 'in the equì va'lent dimensi onl ess prob'lem

is set to unity, thus fixing one of the dimensions of the flow geometry

for all Reynolds numbers. Sìmi'larly, ü is usualìy chosen as one of the

vel oci t'ies i n the vel oc'ity boundary condi ti ons whi ch are al so known

prior to so'lving a problem. For exampìe, in pipe flow, ü is usuaì1y

the entry veìocity while for the flow around an obiect, -v is the free

stream velocity. In all cases v and I are chosen in such a manner that

enables a flow of any Reynolds number to be solved without too many

changes to the boundary conditions or the fìow geometry. The Reynolds

number therefore should be the onìy parameter that affects a g'iven class

of flow problems.

The governing equations and boundary conditìons have now been

set up and are 'in a f orm su'itabl e f or soì v'i ng . They have been written

out in full below 'in order to show their full extent and compìex'ity.

The assumpt'ions that have been made in obtaìning them are summarised

as follows. It'is assumed that

(l ) the temperature of the f lu'id is uniform,

(Ð the flu'id dens'ity and visðos'ity are constant,

(3) the flu'id is 'isotropic and Newton'ian,
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(4)

(5)

(6)

(7)

the flow is steady,

the fIow is Iamìnar and cont'inuous,

the flow is fu'lly contained (no free surfaces),

the fluid is not subiect to body forces.
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equat'ions are f ormul ated i n terms of the f in'ite

i s necessary to expl a'in the reasons f or reta'ini ng
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av.
the terms containing the constants Cl, CZ and C, and the quant'itv J.

" t*j
Unti I recent'ly, ì t has been customary to use the Cont'inuì ty equat'ion

wherever poss'ibì e 'in the momentum equati on to el ìmi nate al I terms con-
ovi

taining the quantitv =J. Some researchers however argued that because" o*j

thejr method of solving the governing equations is approximate, the
ôV.

quant'ity 
4 

'is not exactìy zero everywhere and theref ore cannot be

used to elimìnate certa'in of the v'iscous terms in the momentum equation.

These addi t'ional v'i scous terms were theref ore retai ned i n the govern'i ng

equat'ions. Recently the author and others carried this argument further

and appl'ied it to certa'in acceleration terms (18). These were then also

retai ned. Fi nal ly 'i n th'i s study, al I terms that contai n the quantì ty
âv=

J, i ncl udì ng, an addi ti onal v'i scous one, have been i ncl uded and pref i xed
oÃ.

J
by a constant whose value is either one or zero depending on whether

the term 'i s to be retai ned or el 'imi nated . The vari ous approaches that

have trad'iti onal 'ly been used can thus be compared and the'ir rel ati ve

merits confirmed.

By sett'ing Cl = CZ = C3 = 0, no terms conta'ining

and the govern'ing equations reduce to

av.
J

t*j are retai ned

I a'zv.' ap AV 't
=uj

Re AX
J

2 t*i AX
J Formulation A

av.J- -̂u
t*j

The finite element formulatìon based upon these equat'ions will be sub-

sequently referred to as "formulation 4".

The governing equations for "formulation 8", obtained by sett'ing

I
c =landC

2
=c

3
=0are
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This is perhaps the most commonìy used form of the Navier-Stokes equat'ion

si nce the phys'ical 'i nterpretat'ion of al I terms that resul t 'i n the f inì te

element formulat'ion based on these equations is well known. The addìt-

ional term'is referred to as a "ViScouS term" because, Iike the term
'l

prefixed by nt in the equations governing formulation A, it is the result

of the inclusion in the equat'ions of motion of stresses that

because of the,v'iscous nature of the f lu'ids considered.

The equat'ions govern'ing "f ormul ati on C" , Cl = CZ = I and C

are
I ô'v. a2v.

t '1 , J

Re t*'j ,*i t*j

a2v. a2v.
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and "formulation D", C ca I are
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Formul at'ion D
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The addi t'i onal term i n the equati ons govern'i ng f ormul ati on C, of ten

referred to as an acceleration or inertia term because ìt results from

the ri ght hand s ì de of the equat'i on of moti on F = rTt. â, and the extra

vi scous term i n the equat'ions govern'i ng f ormul ati on D have, to the

author's knowledge, tradit'ionaììy always been omitted. The first arises

from changes i n momentum assoc'i ated wì th the I ack of sat'isf acti on of

the Cont'i nu'i ty equati on, i nherent 'i n an approx'imate method of sol ut'i on
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such as the finite element method. The second results from the fact

that the approximated pressure ì s not the same as the negat'ive

mean d'irect stress as calculated from the approx'imated ve'locìty field

if this term is omitted. By definition, the pressure at any point in

the flow is the negative mean of the three normal stresses at that po'int

regardless of whether the fields are exact or approx'imate, or whether

the Cont'i nuì ty equati on i s sati sf i ed exactly or not. Usi ng the non-

dimensìonal'ised form of equat'ion 3.3, it can be shown that if the ternl

contaìnìng C, is omitted then

1 2l
Pd.fn = -ãok,k=ãR.uk,k* P

Therefore if ,Cont'inuity 'is not sat'isfied exactly, âS 'is assumed in

formulat'ion D, the pressure'in the flow is not the same as the p appear-

ing in the equatìons governing that flow. To ensure that it does, the

term conta'inì ng C a must be i ncl uded. Formul at'ion D theref ore has

retained all terms that have at one stage or another been eliminated

by making use of the Continuity equat'ion. It shou'ld be pointed out

at this stage that'if the finite element approxìmat'ion happens to coin-

cide with the exact solution, all the terms containìng the constants

Cì, CZ and C, will vanish'leaving the Navier-Stokes and the Continuìty

equati ons unchanged. It 'is al so 'important to note that the boundary

conditions for all four formulations are the same and given by 3.ì1.5

and 6.
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3.2 Equation Formulation in Terms of Finite Eìements

The exact sol ut'ion to any v'i scous f I ow probì em 'i s attai ned when

the solutìon {u(x,y,z),v(x,y,z),w(x)y)z)'p(* ,Y,z) } sat'isfìes the governing

equatìons at every point w'ithin the flow domair V, and the boundary

condi ti ons at every poi nt on the f 1 ow boundary S . Th'i s s'i tuatì on how-

ever occurs onìy in a handful of elementary probìems and the exact

solut.ion to a general v'iscous flow problem is as yet impossible to find,

simpìy because of the comp'lex nature of the governing partìal differen-

tial equations and their boundary conditìons, and the limitat'ions of

known methods for soìving such equations exactly. It has therefore

been necessary to resort to approx'imat'ion or numerical techniques in

order to find,some form of approxìmate solut'ion. 0f these techniques'

the finite element method has proved to be the most versat'ile, both

'in the fìeld of fluid dynamics and in the fìeld of structural

and stress anaìys'is where it was first applìed. Its w'idespread use

however, has only come about wìth the recent introductìon of the faster

and rel atì ve'ìy ì arge new generati on di g'itaì computers . The f ì ni te

element method is used exclusively throughout th'is study and is descrìbed

i n deta'i I bel ow.

Let the flow domain over which the governing equations must be

satisfìed, be divided into N. similar non-overlapp'ing subdivisìons other-

wise known as finite elements or simpìy elements. The elements should

be simì I ar onìy to the extent that they have the same number of edges

or faces. It should be noted that the elements need not necessarily

have th'i s restri cti on, but 'it does simpl 'ify the f ormul ati on and the

computer programm'ing without too much loss of generaììty. Assume that

each el ement has the same number of nodes 'interna'l'ly and per edge or

face, so that the total number per element ìs K. Assume that any two

adjacent elements both contaìn the whole of the common face or edge

and that all nodes on this face or edge are common to both elements.
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¡4'ith the geometry of each element and the positions of its K nodes thus

fixed, ìt'is then possibìe to set up for each element, K polynomíal

f unct.ions i n terms of x, y and z, subsequent'ly ref erred to as shape

funct'ions and denoted N.,r(x,U,z), w'ith the characterist'ic that for any

el ement i ,

, N.¡¡ (x,v, z ¡ = I at the ¡th node

= 0 at the other K-l nodes 3 '12

Any functìon o(¡,y,2) operative'in the regìon defined as element i, can

now be expressed approx'imateìy ìn terms of its values at the K nodal

points of element j by using the shape functions. tf oijis the value of

o(x,y,z) at the jth node of element 'i , then with'in element i,
t(T,y,z) = o{(x,v,z)

where 0 N (x,y, z ) 3.13ij 1J

The function oi has the exact value of o at the K nodes but elsewhere

withìn element i'it'is only an approximation, the degree of which depends

on the shape functions and therefore on the number and position of the

nodes. It ìs ev'ident that as K increases the order of the polynomiaì

shape funct'ions also ìncreases and with.them the number of po'ints at which

of equals o exactly.

This method of approx'imating a function can now be applied to the

required solution {u(x,y,z),v(x,y,z),w(x,y'z),p(x,!,2)} of the governing

Nav.ier-stokes and continuity equations. By express'ing the unkown

sol uti on f uncti ons 'i n terms of the'ir unknown val ues at K poi nts wi thi n

a series of elements comprising the flow domain V, the task of finding

the overal I sol ut'ion i s reduced to one of f indi ng 'its numerical val ue

at a finite number of discrete poìnts. With'in each element the

individual approx'imatìons, which are obta'ined by'interpolation using

the el ement, s shape f uncti ons, are then comb'ined i n a pi ecew'ise f ashi on

to g.ive the overal I approx'imate sol uti on at al I poi nts i n v . some

elements on S, the boundary of V, w'ill have nodes at which the veìoc'ity

o{(x'Y'z)
K

I
j=l
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and pressure has been specìfied. For these elements, the approx'imation

for velocity and pressure is summed only over those nodes at which the

sol uti on i s unknown.

The three components of veìocity and the pressure can be expressed

approximateìy withjn any element i as follows.

u(x,y,z) = u{(x,v,z) =

K'

¡]r 'ii 
Nì,(x'Y'z)

uii Nir(x,Y,z)

ti i Nì, (x,Y, z )

where , ij, uij and *ij are the unknown values of the three ve'ìocity

at the i th velocity node (i=l , K'), and p.,, 'is the unknown

v(x,y,z) = vf (x,J,z) =

w(x,y,z) = w{(x,y,z) =

and p(x,y,z) = pf (x,V,z) =

components

value of the pressure of the j
i. The K' velocity and K"

fol I ows.

3.t4.1

3.14.2

3. 14. 3

3. I 4.4

th pressure node (j=1, K"), in element

pressure shape functions are defined as

K'
Ij=l

K'
Ij=l

KU

¡]r 
Pi¡ Ni¡ (x'Y'z)

N:.rJ
(x,y,z) = I

=0

Ni'r(x,y,z') = 1

at the jth node

at the other K'-l velocity nodes,

at the jth node

3.15.1

and

- 0 at the other K"-l pressure nodes. 3.15.2

In these approximations the summations for the velocìty components and

for the pressure are taken over d'ifferent numbers of nodes to enable

the pressure, ìf necessary, to have a d'ifferent order of approximatìon

from that of the veloc'ity components. in fact, sìnce in the governing

equati ons the h i ghest order of di f f erentì at'i on of the pressure 'i s one

less than the highest order of differentiat'ion of velocìty, the pressure

'is given a lower order of approximatjon than the ve'ìocity components.

Therefore K"'is less than K', and as a result, within each element all

nodes are used in the approxìmat'ion of the velocity components but onìy
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a given subset of the same nodes is used in the pressure approximation.

The max'imum number of nodes per el ement i s ( = K' . An al ternat'i ve

arrangement would be to set up two fin'ite element subdivìsions or meshes,

over the same flow domain, one for the velocity approx'imation and the

second conta'ining elements with less nodes for the pressure approxima-

tion. However this approach would require cons'iderable add'itional effort

both in setting up the extra finite element mesh and'in the solutìon

procedure, and ìs therefore not often used.

Havi ng constructed an approx'imate f unct'ion f or each component

of velocity and the pressure within each element of the flow domain,

four residual functions can be set up by substitut'ing the approx'imations

3.14..l-4 into the governìng equations 3.ll.l-4.

I a2ut a2ut azu*
=-(( l+ 1+ 1) +(C

Re ôx' ay' azz
) (t"T * 

t'uT 
* "*T ,) _ 

toi

ax' ax ay âx âz ax

2

R il

and R

ì a'zwI atwl a'wT 2

Ri3 = *,,;}-;} 
*--J) * (cr 

ãrr)

avï avT
(uT '+vf '+wT'-"r ax "l ay 1

av*t) - c
az

aw* aw*
(uî --t + v{ -- + w{lax'ay

'uT*tuT*'*T
âx ay az

( 
,'rT * ,'uT 

* 
t'*T,) 

_ 
tpi

az ax az ày az' az

,UT
+ wi ) ¡.16.3

3.16.1

aw*.I
*
ì

*l ) g .16.2
az

r*T

au*
-{ui J + v1

i4

,,tï, -cz('î*.'îï.'tT'
--c

I 3
3

2(ui

wi

I a"vf a'vT a'vT 2

R=^=-(( '+ '+ ') +(C.,--C2) (t¿ Re ax' ay' az' ' 3 w

t'rT t"uT ,"*T \\ aPi

ayax ày" ay az aY

au*1+v
AX

av*l+v
ay

awt,
1,l

ruT
cz( **T

AX ayaz ðz

3.I6.4

An indìcation of the accuracy of the approximate solution can now be

obtained by examin'ing these four resìdual funct'ions. If all four

residuals are zero at all poìnts with'in each element, then the exact

solution has been obta'ined. In generaì however, a trial approx'imate
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solution as is described by equations 3.14.1-4' will not result in

residuals that are identically zero everywhere. Therefore the best

approximate solution that can be set up is the one whose nodal values

of veloc'ity ancl pressure 'in some average sense, reduces the residual

functions to a least value within each element. An obvìous way

of achieving this is to make use of the fact that if the function R(x,!,2)

is'identicaìly equal to zero everywhere in a volume Vi, then

,f l^l(x,!,z) R(x,y,z) dV = 0 3'17
l/i

for all funct'ions |^J. Converse'ly, by using a finite number of ììnearly

independent functions I,.l, equat'ion 3.17 can be used to ensure that the

four res'idual,functions are zero at least in an average sense over each

el ement. Theref ore by us'i ng 3K' + K" ì i nearly i ndependent f unct'ions,

equation 3.17 can be used to generate suffic'ient simultaneous equations

to solve for the 3K'unknown veìocity and K" unknown pressure values

at the nodes of each element. This process'is known as the weighted

resi dual method and W are the we'ighti ng f uncti ons . The Gal erk'i n method

of weighted residuals leads in generaì to the best approximate solution

and is therefore the one chosen for this study. In this part'icular

process the weighting functions are coincident with the ìinearly 'inde-

pendent shape functions used in the approximations for velocity and

pressure. Two types of shape functions are used in these approximations

and both are theref ore used as wei ghti ng f unct'ions . The requ'i red 3K'

+ K" simultaneous equations for element 'i are:

ul*'',¡(x'v'z) 
Ril dV = o

u{ 
*'i¡(x'v'z¡ R',, dv = o

u{*''ii(*'Y'z) 
R',, dv = o

u{ 
t"i¡(*'v'z) R''o dv = o

for j=1, .. K'

3.18. I

3. ì 8.2

3. I8.3

iwhere V i s the vol ume of el ement i .

for j=l, K 3. I 8.4
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Th'i s now compl etes the bas'ic theory beh'i nd the f i ni te el ement

+
f ormul ati on of the Navi er-Stokes and Conì nu'ity equat'ions . Al I that

remains to be done'is to substitute equations 3.14.1-4 into 3.16.1-4

and these into 3..l8.1-4, rearrange and solve the resuìting set of non-

linear s'imultaneous equatìons to obtain the required nodal values of

ve1oc'ity and pressure. The fin'ite element equatìons as they presently

stand have been written out 'in full below.

N:.
1J

N:.
1J

I a 
2uf a'uT a'uT

{-(( '+ '+ ')+ (C

Re ax' ay' az'
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3.19. I

3.19.?

)I dv = o

3.1 9.3
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1
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-+vAX
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for ¡=1,..K"

ay"

aw*1*
ay

*
i wi wtt wf+

and 3.19.4

V i

where the appr"oximate functions u{, uT, *T and p{ are g'iven by equations

N',1 .
1J

aut avï awf
{ -'t + 

.1 
+ ]}dV = 0

ax ay az

3.14. I -4.
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In order to enable the stress boundary conditìons to be incor-

porated 'in the fìnite element equations and to facilitate subsequent

'integral transf ormat'ions (expl ai ned 'in Secti on 4. I ) , 'it i s necessary

to reduce by one order all second order velocity and first order pressure

derivat'ives 'in equat'ions 3. 19. I -3. Thi s can be done by f i rst appìy'ing

the product rule of dìfferentìation to each of the first three terms

of these equations and then rearrang'ing so that

f a 1 auf auT 2 auI avI awT

I {N.i r(-(( 
-1 * -r) - c?( 

-1 + 1 + lll - pî)}
J ax 'JR. ax ax 3'ax ay ãz

V
1

a I avT auT a

tN.l ,(-( r+ '))Ì +-tN.i,JReax ay az I

a I aul a

- {(c,-l)- N.! = '}+ - t(c
ax ' R. rJ ax ay

I awt âu*
(-(l+ r))Ì 

dv
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+
a

j

I+ -l )_ N:.rJ )
a vt
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aNt.'rJ

.ay
ì
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Re
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az Re
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c
I aNl . aut aNl . avT

I r 'lJ -l 
+ ]J l +"lR.';; ay ax

aN: . ðv* aN: . awT
* -'1J -l + rJ 1r_
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)t dv = o
¿z

and
a uT a vI awl.

{ 
-'t 

+ I + l}dV = 0 for ¡='¡ ,..K"

and 3 corresponding to the Y and

out in full here. However theY

3.20.4
ax ay ãz

V

For obv'ious reasons equations 3.20.2

z directìons, have not been written

can be obtaìned in a s'im'ilar manner.

I



40

By usi ng the non-di mensì onal 'i sed form of the stress tensor g'iven by

equation 3.3, that is

I avT avT 2 avf,
o.*.= (-1 + J-:Cgorrj)-p*ôi. 3-21
ij - 

Re 'axj axi s -'lJ axk ' lJ

the three terms in the first 'integral in each of equat'ions 3-20-l to

3 can be rewr.itten in terms of stress components. The Gauss Divergence

Th eorum can then be app'l ì ed to the f irst two vol ume 'integraì s ì n each

of these equatì ons to reduce them to surf ace 'integra'l s . The resu'ìti ng

equatìons are:
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I
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where Si is the surface area of element i, and (nr,nr,n, ) is 'its unit

outward po'int'ing normal vector ,

and where 'ir Nìr' w*
1

K'

rlruir 
Nìr'

K'
=l

k=ì
*ir Nìt

K'
uT= I
' k=ì

K'
I

k=l
and pi

uT=

Pit Nit for i=l, ..Ne

The 3K' + K" equat'ions that are thus produced can now be set up

for each of the N. elements in the flow domain. The equat'ions are non-

linear because certain of their terms contain products of summat'ions

wh'ich when expanded produce the full range of cross products of all

the nodal velocity components in each element. It is th'is non-lìnearity,

characterì sti c of vi scous f I ows w'ith moderate to h'igh Reyno'lds numbers

that causes convergence probìems and makes the obtaìn'ing of a good

approximate solution difficult. For flows with low Reynolds numbers

the relative ìmportance on the non-linear terms, often referred to also

as the acceleration terms, ìs considerab'ly less. If these terms are

omitted the solut'ion of the result'ing simultaneous equations is easiìy

obtai nabl e, but the cl ass of probì ems that can be sol ved i s very
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restrìcted. In this proiect all l'inear and non-linear terms in the

Navier-stokes equations will be retained.

The si gnì f i cance of the ri ght hand s'ide surf ace i ntegra'l s that

have resul ted as a consequence of the app'l 'icat'ion of the Dì vergence

Theorem can be expla'ined as follows. If any eìement'i of the flow domain

is'isolated from the remainder of the flow, the fluid within this element

will continue to move as it did when'it was part of the whole, provided

the stresses requì red to ma'intai n ì ts equ'i I i bri um are appì ì ed to the

surface of the element. These surface stresses can then be rep'laced

by a set' of equ'i va'lent poi nt f orces acti ng i n each of the three co-

ord'inate d'irectì ons and at each of the nodes on the boundary of the

element. The value of these equivalent nodal forces is found by ensuring

that the rate of work done by the surface stresses ìs equa'l to that

done by the po'int forces when an arbitrary increment is appìied to each

of the nodal velocity components of the element. For examp'le, ìf the

ve'loc'ity ìn the x direction at node i is incremented by orj to

,.ij * ôuj, the increment ìn ve'loc'ity in the x d'irect'ion at any other

poìnt in the element is N.ij ouj. The rate of work done by the surface

stresses when ouris applied is therefore

"r ou. T. dSJ ]X
3.23.1

S
1

where Ti* is the stress in the x direct'ion on the surface of element

i and is given by

Nl.rJ

Ti* = (o** n, * oy* ny * or* nr)on boundary of element i

The rate of work done by the equivaìent nodal force, Fij, in the x

direct'ion at node j ìs
F.. ôu. 3.23.2]JX J

"r
+ o n*ì¡ on+

X
nyx vs.i

Therefore F ijx ôu j ôu.
J

(o.XX zx z )¿s
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or F.. =lJX .f t't'
S.

1

o( or* nr)+on+
X yx n

v
dS 3.24ij zx

A sim'ilar argument can be applied to each of the other two coordinate

d'irectì ons. The right hand si de surf ace 'integraì s conta'ini ng the stress

components are theref ore s'imp'ly the equ'i va1 ent poì nt f orces whose

effect is the same as that of the distributed surface stresses. The

remai nì ng surf ace 'integral occurri ng on'ly i n formul at'ion A and contai ni ng

the veìocity grad'ients, has no phys'ical significance of importance and

ìn most cases can be made to vanish by su'itable choìce of boundary con-

di ti ons._

It will be noticed that if node j is an internal node then the

surface integiaìs of the ith equat'ion in each of equat'ions 3.22.1-3

w'ill be zero s'ince on the boundary of element i, Nì, is everywhere zero.

Furthermore, it appears that the value of the stress components at each

point on the surface of each element must be known beforehand so that

the surface'integraìs may be evaluated to enable the system of equations

to be solved. This will not be the case however, and it will be shown

i n the f ol I owi ng secti on that by mak'i ng a real 'i sti c assumpti on about

the continuity of the pressure and the velocity gradients across element

ì nterf aces, only the surf ace 'i ntegra'l s i n equat'ions that correspond

to nodes on the outer surface of the whole flow doma'in need be retained.

In most cases the boundary conditions of the problem w'ill then suppìy

suffic'ient informatìon to enable the surface ìntegrals to be evaluated

or eliminated.

It shoul d be ment'ioned at thi s po'int that when the phrase "equa-

tions correspond'ing to node k" is used, all that is implied is that

the equat'ions 'in quest'ion have been wei ghted by the shape f uncti ons

N'.,0 or N'lO , and that the surf ace stress ì ntegral s contaì nì ng the stress

tensor components are the equivalent po'int forces acting at that node.

It does not'impìy that the equations were derived at that node or that

they are valid only at that node.
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3.3 Assembìy of Global Simuìtaneous Finite Element Equation System

Equat'ions 3.?2.1-4 could now be solved for each element'indiv'id-

ua'ì ly wi thout f urther manì puì at'ion, prov'ided the val ue of the ri ght

hand side surface integrals can be evaluated for each of the 3K'momentum

equat'ions. To do th'is the velocìty grad'ients as well as the pressure

variations on the surface Sì of each element must be known. Since this

imp'lìes that the solution should be known before the equatìons can be

solved, thìs approach is not very useful. A better technique, and one

wh'ich 'is unìversa'lly used in the fìnite element method, ìs the one in

whi ch the equat'ions correspondi ng to nodes common to ne'ighbouri ng

el ements are added 'i n such a way as to enabl e the surf ace 'integraì s

of the momentun equations to cancel each other. This el'iminates the

necessity of evaluating these 'integraìs for all momentum equatìons except

those correspond'ing to nodes on the boundary of the flow domain. At

these nodes, either the fluid velocìty or its stress state must be

spec'ified. This 'is why it was emphasized 'in Sect'ion 3.1 that at every

poìnt on the flow boundary e'ither the veìocìty or the stress components

must be known f or each coordi nate di recti on. If the veì oc'ity 'is gi ven,

then the equations corresponding to the veloc'ity at these nodes become

redundant and there is no need to evaluate the surface integrals. If

the stress is specifìed, then the surface integraìs can be evaluated

without further ado.

In order to explaìn the process of assembling the equat'ions for

each element into one global equation system, ìt will be necessary to

refer to the d'iagrams'in Fìgure 3.1 which, for the sake of convenience,

show only a two-d'imensional element arrangement rather than the more

general three-dimensional one. Each of the four dìagrams shows a typìcal

node pos'it'ioni ng ì n a general el ement mesh and each case w'i I I be con-

sidered indìvidually as follows.
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Figue 3..l Typ'ical I'lodal Posit'ionings. (a) internal edge, (b) 'internal
corner, (c) boundary edge, (d) boundary corner.
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Cons'ider d'iagram a i n Fì gure 3.I show'ing a typi caì i nternal edge.

Let this edge, common to elements'i and (i+l) be called edge A. All

nodes on edge A, except the two corner nodes will have assoc'iated

veìoc'ity shape functions in both elements i and ('i+l ) that are zero

everywhere except a'long the common edge A. This means that'if (a) the

values of the shape functions Nlf and Nii*t)lare the same at al'l poìnts

on edge A, and (b) the value of the veìocìty grad'ients and pressure

a'long edge A in element i is the same as the'ir value a'long edge A in

element (ì+l ), then for the x d'irection'

,f*i o 
( o**n* + oyxny )er i dS + .[ nii+l )t (o*rn* * oy*ny)el ('i*l )ds

S S
1 ì+ì

I Nìrfor*n* * oy*ny).',',os + I Nii*r )l(o**n* * oy*ny)el (i*l )dS
edge A edge A

/ *ik(o**nx * oy*ny)erids I N (o n + o n ) ..dSyx y'e llik XX

edge A

=0
and for the y direct'ion,

edge A

I I rii*r lì(oxyn* * oyyny)et (i*l )dS
si Si*t

=0

where the k 
th node of el ement i coi nc'ides wi th the lth

('i+l ) and l'ies on edge A. By the same argument

node of el ement

I 'ik
aut

( ]n
AX

S S 'i+l

X

N'i¡(o*rn* + oyyny ).', 'tds +

3.25 . I

3.25.2

3.26 . I

N n ) ..dS +y'e l1 / *ti+r )r r5n* . f.r)er (i*r )dSX

ì

and I
S

0

N
k

I
'i ) dS+

v el'i / *t i+r )r t5n* * ï, ^r'er (i+r )ds

i+lS'i

= Q 3.26.2

The change 'in s'ign results from the f act that the outward facing normal

vector for element ('i+l) aìong edge A is of the same magn'itude âs, but

'in the oppos'ite direction to the outurard fac'ing normaì vector for element
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.i. By adding the momentum equatìons corresponding to node k of element

.i i n the x and y di recti ons , to the equat'ions correspondi ng to node

I of el ement (.i+l ) , the above combi nati ons of surface i ntegral s are

obtained. By us'ing the argument presented above the right hand sìdes

of the combined equatìons can then be reduced to zero. Th'is process

can be appl'ied to the momentum as well as the Ùontinuity equations

correspond'i ng to a'l 1 " non-corner" nodes on al I 'i nternaì edges .

A sim.il ar but s'l'ightly more i nvol ved argument can be app'li ed to

the momentum equat'ions correspondi ng to any 'internal corner node that

belongs to three or more elements. consider diagram b in Fìgure 3.1

showing a typìca'l internal corner node shared by four elements, i, j+1,

i+2, and i+3., Let the four edges common to the four paìrs of adiacent

elements be called edges A to D. The veìoc'ity shape functions in these

four elements for the corner node are zero everywhere except a'ìong the

common edges A to D. If at all po'ints along these edges (a) the shape

functions for neighbouring elements have the same value, and (b) the

val ue of the vel oci ty grad'ients and pressure f or adi acent el ements 'i s

the same, then for the x direct'ion'

,[*i o 
(o 

*" n* * oy*ny).lidS - I Nii*l )t 
(oxxnx * oy*ny)eì (i+l )ds

S s.i

)

ì

+ I
S

Nii*z)*(o *rn* * 
oy*ny)el (i*z)dS - I Nii*g)n (o**n* * oy*ny)et(i*s)d:

S
l i+3

I N (o n +o nik X

edge D

X yx v elì dS+
edge A

dS+
ge
I XX

n* * oy*ny )eì ( 'i +2 )ds

edge C

I Nìk(o**n* * oy*ny)elids
X

I Nii*r)r(o**nx * oy*ny)el(ì*t)ds * I Nii*r)r(ox*nx

edge A

* oy*ny 
)

+

+

eBd9e

el ('i+l )
Nii* z)*(o

Bed

I Nii*z)r(o**n* * oy*ny)el(ì*2)dS * I Nii*g)o(o*rn,

geed c

* oy*ny)el ('i+3,dS + I Nii*¡)n(o*^n* * oy*ny)el (i*a)dS
edge D
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S
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edge A
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3.27 .1

3.28.ì

I Nii*r)l(oxxnx * oy^ny)et(i*l)dS - T
ge

n
X

Nii*z)r(o**
Bedge
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where the kth nocle of element i, the lth node of element ('i+l), the

*th node of element (i+2) and the nth node of element (i+3) are all

coincident with the corner node at the right hand end of edge D. Also

by the same argument

T yny)ul(i+z)ds + I *i¡+3)n(o*vn*

* 5n ) ..dS +X a* y'et1
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3.28.?

3 .29 .2.1

s'i*z

ðv*l+-n
ayy

+
X

dS 0

S i+3

) el (i+3)

Thus by add'ing the momentum equatìons 'in the x and y d'irect'ions corres-

pond'ing to node k of element ì, node I of element (i+l), node m of

element (.i+2) and node n of element (i+3) the combined right hand

side of the resultant equat'ion reduces to zero. This process can

be applied to the momentum and Contìnuity equations corresponding

to all corner nodes not on the boundary of the flow domain. Although

the above case considered four elements neìghbouring the corner node,

.it can easìly, be verified that any number of elements greater than

or equal to three, can be treated by the same process'

The surf ace 'i ntegral s 'i n the equat'ions correspondì ng to nodes

on the boundary of the f I ow domai n cannot be so easi'ly el'irili nated.

Consider a typ'icaì element i wìth one s'ide, called edge A, on the

boundary of the flow domain as shown ìn diagram c of F'igure 3'I'

The momentum equations corresponding to any node on this edge have

right hand s'ides given bY

I
S

si

where the kth node of element 'i

corner" node then Nìf is zero

the above 'integraì s reduce to
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edge A
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ay ay
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Nothing further needs to be done wìth these since they can now easily

be either evaluated .if the velocity grad'ients and pressure (stress

tensor components ) are spec'if i ed, or el i m'i nated i f the vel ocì ty i s

specified since the corresponding equat'ions then become redundant'

Finaììy if the kth node of element'i is a corner node on the

boundary of the flow domain and coincides with the lth node of element

(i+l) as shown in d.iagram d in F'igure 3.1, then the shape funct'ions

Nif and Nti+l)l w'ill be zero everywhere except on the boundary edges

A and B and on the common edge C . If at al I po'ints a'long edge C

(a) the shape funct'ions for element ì and (i+l) have the same value,

and (b) the value of the veìocìty grad'ients and pressure for element

i is the same as the'ir value for element i+1, then for the x directìon
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edge A
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The resultìng boundary 'integrals can again be either evaluated

or el'imi nated and no f urther man'i puì at'ion 'i s requi red. Thus the ri ght

hand s.ides of the equat'ions produced by addi ng the momentum equati ons

in the x and y directions correspondìng to node k of element i to those

correspond'i ng to node I of el ement ( 'i+l ) , can be reduced to boundary

ìntegraìs that are easiìy handled. This result can be extended to apply
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to the momentum equat'ions correspond'ing to any boundary corner node

that belongs to two or more elements.

From the above discussion it can be seen that the evaluat'ion of

the surf ace 'i ntegral s on the ri ght hand si de of the momentum equat'ions

correspondi ng to any node can be avoi ded by add'ing al I the respect'ive

el ement equatì ons correspond'ing to that node. Th'is f act f orms the basi s

for the assembly process. Although onìy the two-dimens'ional case has

been presented here, it can easi'ly be shown that similar results are

obtainable 'in three dimensions. It should also be noted that aìthough

the el ement contì nui ty equat'ions have no surf ace 'integraì s on the'ir

¡ight hand sides, the above assembly process is equaì1y appl'icable to

them. F'i na'l ìy, al I equati ons correspondi ng to nodes that I i e wi th'i n

an element's volume and not on'its surface also have no surface'integra'ls

on thei r ¡ight hand si des. These equat'ions need no speci a'l assembly

process and can s'imp'ly be ìncluded 'in the globaì equat'ion system.

The actual assembìy process can therefore be described as follows.

The node for which the global equatìons are to be asssembled'is selected,

the element equatìons for all elements to wh'ich that node belongs are

examined, and the three momentum and one continuìty equations correspond-

ing to that node wìthin each of these equat'ion sub-systems are extracted.

By respectively add'ing these equations, the three globaì momentum and

one globa'l continuìty equatìons corresponding to the selected node are

then obtai ned. Before the el ement equati ons are combi ned i t 'i s

necessary to ensure that they are all expressed'in terms of the same

coordinate system. If not, suitable transformat'ions must be applied

so that the globaì equations are all expressed'in terms of one gìobaì

coordinate system.

The first two steps towards obta'ining a finite element solution

are now established. F'irstìy the 3K'+ K" equations for each element

at element level are set up and secondìy the gìobal equation system

is assembled so that, if Nv and *p are the numbers of veìoc'ity and
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pressure nodes respectively, within the flow domain, a system of 3Nu

+ N^ simul taneous non-l i near equat'ions now rema'ins to be sol ved . Bef ore
IJ

proceeding to the solution of these equations however,'it is necessary

to say somethìng about the continu'ity of velocity, pressure and ve'locity

grad'ients across el ement 'i nterf aces . Two major assumptì ons wi th regard

to the conti nu'ity of these quant'iti es were made during the above d'is-

cuss'ion expì ai n'i ng the assembly process. Fi rstly i t was assumed that

any node on an edge common to two elements had associated velocity shape

f uncti ons 'i n the two el ements, that have the same val ue at al I po'ints

on the comon edge. For this assumpt'ion to be true it is necessary that

the ve'loc'ity shape funct'ions be defined un'iquely a'long each edge of

al l el ements. , Therefore on'ly unì que f uncti ons f 
i j that sat'isfy the

condi ti ons

f=-. = I at node jrJ

= 0 at all other nodes in element ì,

can be used as velocity shape functions. Such functìons ensure con-

tjnuity of the velocity variables across element 'interfaces.

Secondìy, it was .assumed that the stress aìong any edge common

to two elements is the same in both elements; that'is, that the veloc'ity

gradients and pressure are continuous across element interfaces. By

choosing suitable pressure shape functions the pressure cont'inuìty can

be ensured. HoWeVer, 'it i s not so easy to guarantee cont'inuì ty of

velocity gradients between elements. To achieve this, additional sìope

parameters must be 'introduced and veìocity shape functions that ensure

conti nu'ity of vel oc'ity gradi ents as wel I as ve1 oci ty must be f ound.

The dìfficu'lty encountered, firstly in establishing a fin'ite element

with the above characterìstics, and secondly in solving the resulting

equati on system whi ch wi I I 'i ncrease cons'iderably i n si ze, makes th'i s

condì ti on very d'iff i cul t to sat'i sfy. As a resul t, i n th'i s study only

elements capabìe of ensuring ve'locìty and pressure continuity will be

used. Aìthough th'is is contrary to what 'is assumed when the assembìy
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process is used, to carry the jdea of ve'locìty gradient continuìty any

further" would be a majorinvest'igation 'in itself . Therefore no further

cons'iderati on i s gi ven to 'it 'in thi s thesi s except to say that thi s

contradi ct'ion coul d be a source of error and 'i nstabi 'l 'ity and theref ore

should be invest'igated in future work.

3.4 Solution of Global Simultaneous Equation System

The f i rst two steps towards obtai n'i ng a f i n'ite el ement sol ut'ion

to a general viscous flow problem are now comp'ìeted. That is, the Navier-

Stokes equat'ions have been formulated in terms of the finite element

procedure, and the gìobaì simultaneous non-linear equat'ion system has

been constructed. The final two steps w'ill now be dìscussed in th'is

sectì on. The f i rst i s the i ncorporati on of the boundary cond'it'ions,

and the second, the solut'ion of the final equatìon system resu'lting

in the requ'ired values of velocity components and pressure at all nodes

'in the f I ow domai n.

The boundary condi t'ions are very easì ly i ncorporated 'in the equa-

t'ion system which, once assembled, contains equations of two types.

The first, correspond'ing to varìables at nodes in the interìor of the

flow domain, all have zero right hand sides, while the second, corres-

ponding to variables at nodes on the outer boundary of the flow domain,

al I have surf ace i ntegra'l s on thei r rì ght hand s'ides. 0nly equati ons

of the second type are normalìy affected by the appìicat'ion of the boun-

dary conditions. If a velocity component or the pressure is specified

at a boundary node the global equat'ion corresponding to that variable

is not required and therefore elimìnated from the equation system.

The effect of the specifìcation is'imposed on the remainder of the system

by subtracting from the right hand side of each of the other equat'ions,

the product of the value of the variable and the coeffìc'ient of the

I i near term correspondi ng to that variabl e 'in each equat'ion. The
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non-linear terms are modified by substituting the specìfied variable

'into each equatì on and coì I ect'ing I i ke terms . If the val ue of the

variable is zero, all terms that contain that variable in each equation

are simply el'imjnated. It should be noted that variables at nodes other

than the ones on the outer boundary of the flow domaìn may be specified

in the boundary conditions of a problem. The inclusion of these

specificat'ions is identical to that for variables at nodes on the outer

boundary of the flow except that in these cases, equatìons of the first
type are i nvol ved.

The other type of boundary condition, namely the specificatìon

of the stress components and the veloc'ity gradients in a g'iven d'irection

i s even more eas'i'ly 'incorporated. The val ues of the stress components

and the velocity grad'ients are s'imp1y subst'ituted in the surface

integraìs on the right hand sides of the rema'ining type two equations

and the'integrals evaluated. 0nce this is done, the night hand sides

of all equat'ions should be known, and the number of non-linear gìobal

equati ons 'i n the system shoul d equa'l the number of unknown nodal

veloc'ity components and pressures. The equations are now ready to be

sol ved.

The method that has been recommended by the majority of prev'ious

researchers f or soì v'ing the resu'lti ng non-l ì near s'imul taneous equat'ion

system and the one that was therefore chosen for this study,'is the

lvlulti-dìmensional Newton-Raphson Iterative Solution Scheme. It can

be described basica'lìy as a technìque for finding the solution to a

system of non-l'inear equat'ions by sol vi ng a number of success'ive rel ated

linear systems. That is, the problem is changed from soìving one non-

l'inear to several I i near systems of equat'ions.

To explaìn the procedure, consìder a system of n non-linear equa-

t'ions expressed in terms of n unknowns ð = (x.,, ,xr, ...., *n) and gìven

by
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ft(x) = 0 fori=l , n 3.31

A second system of equations can now be constructed by dìfferen-

ti at'ing each of the equati ons ì n the f i rst system w'ith respect to each

of the n unknowns, and using these derivatives as the coefficients of

n terms in the corresponding equat'ions in the second system. Since

the init'ial equation system'is non-linear, the above derivatives are

not necessarily constant and therefore the second equatìon system 'is

also non-linear. However by adopt'ing an iterative approach in which

an approxìmate sol ut'ion, ei ther an i ni t'i al guess or the sol uti on f rom

the prevìous 'iteration, is used to evaluate the derivative coefficients,

the second system of equations can be linearized and solved by the usual

methods to giye an ìmproved approx'imate solution. Th'is procedure can

be conveniently expressed in the equation for the mth iteration of the

Newton-Raphson method

n

I
j=l

.:rr (xm) o*T*t = -f i 
(Im) fo¡i=l , n

and for m=0, ... M

eval uated for x=xfr

3.32

3.33. Iwhere ,rrr(xm) =#
J

t., (xm) i s the value of the equations when x=xffi 3.33.2

and o*T*t - rT*t - ri 3.33.3

where xm = (x[,x!, *T) is an estimate of the solut'ion, e'ither an

initial guess when m=0 or the solution from the prev'ious iteration,

and xm*l- t*T*t,*ä*t, ... *T*t ) is the new est'imate of the solut'ion.

It will be noted that at each iterat'ion o *'n*l , the change 'in the

unknowns is evaluated rather than the unknowns themselves. To start

the procedure an'inìtìal est'imate Io of the solution is made with Io
usuaì'ly being selected as the null vector. At each subsequent step

a new set of equation coefficients Jr., (I*) are evaluated based upon
rJ

the solution of the prev'ious step and a change to the previous estimate
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of the solution is calculated. When this change becomes sufficient'ly

smal I the requ'ired sol uti on 'i s obtai ned and the process stopped. The

matrix conta'ining the derivative coefficients J*. (xm) is common'ly knownrJ '-

as the Jacob'i an Matrix and to avo'id conf usi on ì n the f oì 'low'ing pages ,

the system of equations that has Jr., (xm) as'its coefficients at the
rJ

rth iterative step of the Newton-Raphson method, will be subsequently

referred to as the corresponding Jacobìan system of equations.

This technìque'is dìrectìy appìicable to the solving of the equa-

tions derived in Section 3.2 and assembled ìn Section 3.3. However,

rather than assembl e the el ement equat'i ons before constructì ng the

globa'l Jacobian equation system'it has been found more econom'ical and

easier to program ìf Jacob'ian equation systems are constructed for each

element at element level and these then assembled in the usual manner.

S'ince the assemb'ìy process simply 'invol ves the addi t'ion of el ement equa-

tions, it can easily be shown that the resultant globaì Jacobian system

'is the same i n both cases, si nce the deri vat'ives of a sum of equat'ions

is identical to the sum of the derivatìves of the indiv'idual equations.

This alternatìve approach however, presents a s'light difficulty when

the velocity components or pressure are specìfied in the boundary con-

di ti ons si nce the equatì ons that are actuaì'ly sol ved i n each 'iterati on

are expressed i n tenns of the changes to the unknown nodal parameters

rather than ìn terms of the nodal parameters themselves. However by

ì ettì ng the f i rst est'imate of the sol ut'ion be zero f or al I vari abl es

and by appìy'ing, durì ng the f ì rst 'iterat'ion, boundary cond'iti ons that

state that the changes in the spec'ified variables equal the value of

the va¡iables themselves, then the results of the first'iteration can

be made to give the requ'ired values for the specified velocity compon-

ents and pressures. In all subsequent iterations, s'ince only changes

to alI variables are calculated, by ensuring that alI changes to the

specified veloc'ity components and pressures are zero, the specified

variables will retain their correct values when the procedure ends.
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The Newton-Raphson method can therefore be used successfully to obta'in

a sol uti on to the general non-l i near s'imul taneous equati on system

resuì ti ng from the f i n'i te el ement formul ati on of the Navi er-Stokes

equati ons .

To conclude this chapter alI that remains to be done'is firstìy

to set up the jkth component of the matrix of coeffic'ients Ri of the

equations for element 'i, and secondly to derive and set up the ikth

component of the matri x of coef f ic'ients S.i of the Jacobi an equatì ons

for element i. The full matrix R., can be obtaìned by extractìng the

coeffic'ients of the 3K' + K" variable terms from the 3K'+ K" simultan-

eous equat'ions produced when the approxìmat'ions given by equations

3.14.1-4 are,subst'ituted'into equations 3.22.1-4. Since the number

of pressure nodes per element K" is less than the number of velocity

nodes K', it is not poss'ible to set up the general ikth component of

Ri, because the number of equations corresponding to the ith node of

element'i 'is either three, 'if ìt 'is a velocìty node on1y, or fourif

it i s a pressure node as wel I . To overcome thi s, addì ti onal cont'i nu'ity

equat'ions consi st'i ng of al I zeros and correspondì ng to ve'loc'ity nodes

that are not also pressure nodes, are introduced. To rema'in consistent,

additional zero pressure terms must also be introduced'into all equations.

The simpìest way of doing this is to set up a continu'ity equation and

a pressure term correspond'ing to all K' veìocity nodes and then set

¡lij =0 or Nif=0 everywhere whenever j or k corresponds to a velocity

node that'is not a pressure node as well. This results in a system

of 4K' equations of whìch Kr-Krr are all zero. The general ikth sub-

matri x of R .i f or el ement i 'i s theref ore :
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To derì ve the Jacob'i an equati ons f or el ement 'i, the el ement equati ons

must be d'ifferentiated wìth respect to alI variables appearing in them.

The four ith ulement equatìons can be rewritten as:
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0n closer exam'ination it wiII be noticed that the submatrix

tS.¡J¡f is in fact equal to the sum of the submatrix [R¡J¡f and the

diagonal matrix given by
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4. FINITE ELEMENT AND COMPUTER PROGRAM DETAILS

The discussion concerning the first phase of th'is study is now

compìeted. That is, the fluid dynamics of a generaì viscous flow have

been presented and the governìng Nav'ier-Stokes and Continuity equations

have been derived. The finite element formulation of these equatìons

has been discussed and the techniques chosen to construct and solve

the non-l ì near s'imu'ltaneous equati on system have been suì tably adapted

and descnibed. The second phase of this study involved the select'ion

of suitable two- and three-dimensional finite elements and an appropriate

numeri cal 'integrat'ion scheme that coul d be used to sati sf actori ìy model

the particular flow problems that were to be investigated. Details

of the finite'elements are g'iven in'the first section of thìs chapter,

while a description of the integrat'ion technìque is g'iven in the second.

Fi nal 'ly, a number of f i n'ite el ement computer programs were devel oped

and some of the di ff i cul t'ies encountered i n so doi ng are d'i scussed ì n

the I ast secti on.

4..l Isoparametric Finite Eìements

The first major decision that must be made whenever the fin'ite

element method is chosen to model a part'icular prob'lem, concerns the

select'ion of element type and the associated order of parameter approxima-

t'ion that w'i I I be empì oyed. It has been shown by Hood and Tayì or (.l6 )

that in modell'ing a vìscous flow, the results obtained when the order

of interpolat'ion for both the velocity and pressure is the same, are

cons'iderably inferior, especial'ìy the pressure, to those obta'ined when

the velocity ìnterpolation ìs one order higher than that for the pressure.

The exp'l anati on they presented was based on a cons'iderati on of error

consistency of the two coupled equations, Momentum and Continu'ity, for

two unknowns, velocìty and pressure. A mixed interpo'ìation method of

the type described by Hood and Tayìor was used exclus'iveìy'in thìs study
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and, i n anti ci pati on of th'i s, the f i ni te el ement equati ons g'i ven by

3.?2.1-4 were arranged So that the number of pressure nodes could, 'if

necessary, be different from the number of velocity nodes in each element.

The actual order of the interpoìat'ion used was the quadratic

vel ocì ty and I 'i near pressure combi nati on. The cubì c ve1 oci ty and quad-

rat'ic pressure approach, oF any of the higher interpoìation methods

have the obvìous advantage of requ'iring fewer elements to represent

the same flow, but results of prev'ious investigations indicated that

they do not I ead to sol uti ons that are sì gni f i cant'ly 'improved . The

linear veìocìty and constant pressure approach was the on'ly other possi-

bil'ity. However an element having this interpoìation fac'i1ìty' by

its very nature, can have only one pressure node located internalìy,

usuaììy at the centroid. Therefore, because it has no pressure nodes

on 'its edges, 'it cannot ensure cont'inuìty of the pressure variable,

a condition that 'is assumed satisfied whenever the assembly process

is used to construct the global simultaneous equation system.

In two dimens'ions the number of nodes requ'ired f or a compl ete

interpoìat1on of the nth order can be found from Pascal's Triangle,

that i s

l
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From the above it can be seen that a complete linear pressure and quad-

rat'ic vel oci ty i nterpol ati on requì res f our unknown pressure and n'ine

unknown ve'locìty nodal parameters and therefore four pressure and nine

velocity nodes per element respect'iveìy. The nodal arrangements for

a triangular and a quadriIateral two-dimensional element with compìete

quadrati c vel oci ty and I 'inear pressure, mi xed 'i nterpo'l at'i on f aci I i tì es

are shown i n Fi gure 4. I . The vel oc'ity nodes are i ndi cated by a c'ircl e

and the pressure nodes by a cross. It can therefore be seen that the

number of nodes requ'ired i n the tri angul ar el ement 'i s ten, whi I e f or

the quadrilateral 'it ìs nine. By using an incomp'lete velocity interpola-

t'ion however, the total number of nodes'in either elenent can be reduced.

The s'ingì e i n!ernal node of the quadril ateral el ement can be om'itted

by removìng the *2yZ term from the compìete quadratìc 'interpolation,

thereby reclucing the number of nodes to eight. If the same thing ìs

done to the triangu'lar el ement, al I three 'internal vel oc'ity nodes must

be removed. Thi s 'i s done by omi tti ng f rom the compì ete quadrati c 'i nter-

po'lation the *2y, *2y2 and *t? terms. This however, only reduces the

number of nodes to seven,and it becomes ev'ident that the quadrilateral

element w'ith eìther eight or nine nodes should be the best one to use

wìth the quadratic velocìty and lìnear pressure'interpoìations. it

was therefore decided to use both quadrilateral elements and to carry

out a comparìson to determine the relative merits of each. A comparison

simi I ar to th'i s, w'ith the resul ts f avouri ng the e'ight nod ed el ement,

was previously performed by F'ìetcher (ll) who used the Galerkin approach

to solve an incompressìble inv'iscid flow. 0n the other hand, Bercovier

and Engeìman ( 3) who also solved an incompressible inviscid flow, con-

cluded that the nine noded element was somewhat better than the eight

noded. The technique they used was not the Galerk'in method but a var-

'iational finite element approach with a penalization of the Cont'inuity

equat'ion and the consequent el im'inat'ion f rom the system of the pressure
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(a) ten noded triangle ( b) ni ne noded quadri I ateral

(c) seven noded trìangle (d) eight noded quadrilateral

Typical Tri angu'lar and Quadri I ateral Two-dìmensional F'inite
E"lbments, (a)- and (b)'wìth complete linear pressure and

ãomplete- quadrat'ic veìocìty interpolations: (c) and (d)

w.ith compì ete I i near pressure but 'i ncompì ete quadrat'ic
vel oc'ity ì nterpol ati ons .

Figure 4.1
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variable. The viscous flow results they presented were obtaìned using

only the n'ine noded element. In this study however, the results of

two vi scous f I ow probì ems, obta'ined us'ing f ì rstly the e'ight and then

the nine noded elements, are compared and presented in Chapter 5.

The number of pressure and velocity nodes on each side of both

of these el ements 'i s two and three respect'ively. Thi s al I ows a unì que

linear pressure and quadratìc velocity variation to be described on

all edges of each element. These two cond'itions ensure that the con-

tìnuity of both pressure and veìocity across all element'interfaces

i s mai nta'ined. The cont'i nu'ity of ve'l ocì ty gradi ents however, cannot

be guaranteed by either of the above two elements.

The two,elements selected above are more commonly known as the

ei ght noded Serend'ipì ty and the n'ine noded Langrangi an ì soparametric

quadri I ateral el ements. The advantage of these over the standard

tri angul ar and rectangu'ì ar two-d'imens'ional el ements ì s 'in thei r abi ì'ity

to represent the relativeìy complex geometries most likely to be encoun-

tered in real flow problems. The term "'isoparametrìc" ìs used to

descrj be el ements that have the'ir geometry expressed 'in terms of the

same set of shape functions used to describe the varìations ìn the fields

they are beìng used to represent. S'ince it may be necessary in some

cases to handl e curved fl ow boundari es, the I ì near pressure shape

functions, wh'ich can uniqueìy describe onìy a linear variation, are

i nadequate. The quadrat'ic vel oc'ity shape f unct'i ons must theref ore be

used to represent the geometry of the elements.

Figure 4.2 shows a typical e'ight and nine noded element w'ith curved

edges. It also shows two coordìnate systems, nameìy the gìobaì cartesìan

x and y system and a local curv'ilinear { and n system. The second system

is introduced to facìljtate the setting up of the shape functjons and

their derivatives and is such that t and n are either +l or -l on the

edges of each element. More precìsely, given that each element is
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def .ined by 'l 'i stì ng i n a cl ockwi se f ash'ion, f i rstly the node numbers

on its four edges, starting with a corner node, and then any'internal

nodes, then n=l on the first edge, ¿=-1 on the second': r=-l on the third

and t=l on the last. For example, if the nine noded element in Figure

4.2 is defined as "123456789", then n=l on edge I23, ¿ =-1 on edge 345'

n=-l on edge 567 and E=1 on edge 78.l. Node f is an internal node.

Fi gure 4.3 shows the same el ements as shown 'i n Fì gure 4.2 but

this t'ime with the t and n âs the cartesìan coodinate system' In this

system the lìnear and quadratìc shape functìons are easi'ly constructed.

For any eight noded Serendip'ity element i, the quadrat'ic veloc'ity shape

functions are:

and

where

and

and

and

are:

4.1

to = Ëti¡
4.2n = nn.o rJ

(E ij, nij ) are the coordinates of node j in the € and n system'

N.ij = å(t+Ëo)('l+no)(e o+no-l)

Nìj = È r-Ë2)(1+no)

N',i.
1J

tri¡

Nìj = å(t+eo)(l-n2)

N:.
1J

= â(l+Eo) €o(l+no )no

for ¡=1,3,5 and 7

for ¡=2 and 6

for ¡=4 and 8

for ¡=1,3,5 and 7

for ¡=2,4,6 and B

for ¡=1,3,5 and 7

for i=2 and 6

for ¡=4 and B

for ¡=9

and given in Figure 4.3.

The linear pressure shape functions are:

= å(l+Eo)(t+no)

-0

where to,ro and (ei¡,ni¡) are as defined above' S'imììarìy, for any

n j ne noded Lagrang'i an el ement i , the quadrat'ic vel oc'ity shape f unct'ions

4.3

= å(l-

= å(l+

E2)(r+no)no

rto (l-n2)E 0

and

tli¡

nì¡

N:.rJ = (l-E2)(l-n2) 4.4
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The linear pressure shape funct'ions are:

and

= å(l+Eo) (l+no) for ¡=1,3,5 and 7

- 0 for ¡=2,4,6,8 and 9

-1
= [J]'

tli¡

tl i¡
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4.5

where Eo,no and (tij'n.ij) are as defined above'

It must be borne'in mind at all times that the shape functions

g'iven above are expressed in terms of the local curvilinear coordinates

t and n. Therefore only derivat'ives of these shape funct'ions with res-

pect to the coordinates { and 1 may be taken. However, ìn Chapter

3 'it was found that the matrices tRi I and [S-tJ had components that con-

tained terms with first derivatives of the shape functions with respect

to the g'lobal cartes'ian coord'inates x and y (for two dìmensìons). There-

fore a transformat'ion of the above derivatìves between the two ccord'inate

systems is required and can be set up by making use of the chain rule

of part'i aì di f f erent'i atì on . That i s

and

a a ax a ay

-=--+--aq ax ag ay aq

A a aX â AY

........._=........._- L--

ðn AX An Ay An

4.6.1

wh'ich in matrix form becomes

ax ay a

at AE AE AX
.4.6.2= [J]

ax ay

ân ân ân ay

where tJl 'is the transformatìon Jacobian and should not be confused

w'ith the Jacobian equat'ion system referred to prev'iously in Section

3.4.

By i nvert'ing the Jacobi an

a

AX at

a

a

a

;

a

ay

a

aa

ay ân

4.7



and by evaìuating the derivatives with respect to the local coord'inates

q and n any derivative wìth respect to the globaì coordinates x and

y can be found.

To obtain the Jacobìan matrix a relatìonsh'ip between the two co-

ord'inate systems must be set up. This can be done by usìng the isopara-

metric property of the elements chosen. That is, the geometry, the

x and y coord'i nates of any po'i nt i nsi de el ement i , can be def i ned usi ng

the same shape functions that were used for the velocity interpolation.

Therefore

N
1J '*i j

4.8

and Yi =, .1, Nì¡ 'Yi ¡J- |

where K' is eight for the Serend'ipity element and nine for the Lagrang'ian

element and (xi¡,vi¡ ) are the coordinates of node i in the gìobaì x

and y system. These two f uncti ons descri be the mapp'i ng of any po'i nt

(f ,n ) 'in the curv'ilinear system to the po'int (x,y) 'in the cartes'ian

coordinate system. Therefore

K'
xi = .l-

J= I

K'

aN jr'
aE

tNì r'

xir vir
*-,2 I ¡z

xi¡' Yi¡4'
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4.9..|

t¡ ]=
K'

15Ni¡''i¡l
ag

K'

'{,],

'{,!; Nì¡ vi¡}

at

an

K'

1åNì¡ Yi¡l

i

an

*ij l

tNìz

J
N

which expands to

aN il
aE

,NìI

at

,N iz
â¡ ân ân

4.9 .2
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Thus all quantities within the integraìs in the matrices tRil

and tsil can be transformed and expressed'in terms of the E and n co-

ordinates. Then by chang'ing the limits of ìntegratìon ìn al'l integrals'

each can be evaluated'in the { and n system. The element of area dAi

i s transf ormed by the f ol I owi ng rel atì onsh'ip

dAi = det J., dEdn 4.10

Th.is can be verified by any text on the finite element method (36).

A typical integral in terms of x and y, say

âNl.
1J

;

aN:,
1K

tNìr

T
A.i

AX

)dA

becomes

ÏT

ay

,Nì 
T

ay

ì

aNìj ,Nìr 
* 

t*ìj
ax ax ay

det J.i dcdn

-t -l

expressed only'in terms of Ë and n. All that remains to be done now

i s to eval uate these 'i ntegra'ì s and set up the el ement equati ons . Hovl-

ever, bef ore the el ement equat'i ons are compl ete the'ir ri ght hand si de

surface integrals must be evaluated. It should be remembered that only

surface'integraìs for equations that correspond to nodes on the outer

boundary of the flow domain need to be evaluated.

To demonstrate the transformation needed to put these surface

integra'ls 'into a form that is easiìy evaluated, consìder a typica'l boun-

dary element wìth a normal and tangential shear stress applìed to the

edge that coincìdes with the portion of the outer boundary of the flow

domaì n on whì ch stresses are app'ì 'ied. Fi gure 4.4 shows such an el ement.

Let the edge on wh'ich the stresses are appl i ed be cal 1ed edge A. S'i nce

the vel oci ty i s al I owed, at most, a quadrat'ic vari at'ion i n any eì ement,

then the stresses can only vary linearìy a'long any element edge. There-

fore the normal stress p and the shear stress s need only be specified

at the two corner nodes of edge A and the l'inear pressure shape functions
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i nterpoì ati on
between s-, and
s2.

p - ììnear interPolat'ion
between Pl and P,

v

P1

tangent vector
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taE t ðE'

local coordinates
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aE
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Ea

Typicaì Boundary Element with Appìied Normal and Tangen'Lial

Shear Stress ComPonents, P and s.

edge A
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Figure 4.4
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can then be used to'interpolate between these two points. It will be

noted that the normal and tangenti al shear stress components have been

used 'instead of the x and y conponents. This is because in most real

flow problems, on the stress boundary 'it is usual'ly the normal and shear

stresses rather than the x and y components that are known.

It can easily be shown that the vector wìth components

ay ax
(-, - 

-)ân ân

is normal to the line E = constant at any po'int with'in an

element, wh'ile the vector wìth components

4.1I .l

ì soparametri c

ay ax
4.11 .2)

at at

is normal to tfr. l'ine rì = constant. These vectors are directed outward

fromthe element on the edges E =1 and n =l and into the element on the

edges 6=-ì and n=-1. Sìm'iìarly, it can be shown that at any point withìn

an isoparametric element, the vector with components

ax ay
(-, 

-) 
4 '12 '1

ân ân

is tangent'ial to the line Ë = constant whìle the vector with components

ax ay
(-, 

-) 
4 '12 '2at aE

is tangent'ia1 to the line n = constant. The directions of these tangen-

t'ial vectors is a'lways in the posit'ive g dìrect'ion for those tangent

to n = constant and in the positìve n d'irection for those tangent to

t = constant. Remembering that the Jacobian and its 'inverse matnix

are
ax ay ay ay

IJ] =
-'t I

and [J] = 

-
det JAF

AX

aE

ay AX

ân ân ôn aE

then ìt can be seen that the above normal vectors can be obtained from

the columns of tJl-l multiplìed by det J while the tangential vectors

ân

AX

at
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can be obtained from the rows of

terms of t and n.

tion i s
ay AX

- s-
aE

-p-
âE

wh'ile ìn the y d'irectìon 'it is
ax ay

p- - s-
A E AE

It should be pointed

d'irected outwards f rom

aìways directed in a

,

F'igure 4 .4. Theref ore

¡lr saY

edge A

ì
becomes

I

IJ], alt of which are exPressed in

4.13.1

Thus at any poìnt along edge A, î=l and the stress in the x direc-

4.13 .2

out that the pos'itì ve normal stress i s al ways

the element and the positìve shear stress 'is

clockwìse sense around the element as shown in

a typi cal i ntegral expres sed 'i n terms of x and

I N.ì¡ {o**n* * or*nrt Ot

tli¡
ay ax

{-p-- s-} d6
at a6

-l

expressed entìre'ly in terms of I and n.

Everythi ng that has been d'iscussed so f ar i n thi s sect'ion can

easi'ly be extended to three d'imensions and f or thi s reason a f ul I d'is-

cussi on of the three-dimens'ional el ements w'i I I not be 9ì ven. The detaì I s

however must be presented to complete th'is section'

The three-d'imensi onal hexahedral el ement used i n thi s study 'is

the twenty noded Serencl'i pì ty i soparametri c el ement wh'ich i s capabl e

of allow.ing a complete linear pressure interpolation but only an incom-

pl ete quadrati c ì nterpol at'i on f or ve'l oci ty, the terms omi tted beì ng

*2y2, *2r2, y222, x'r'r, *2yr2, *y2r2 ona 13y2,2' The twenty-seven noded

Lagrang'ian i soparametri c hexahedral el ement whi ch has comp'lete quadrat'ic

and l.inear interpolat'ions for veloc'ity and pressure respect'ive'ly, was
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not used in this study. Th'is is because, unlike in two d'imens'ions where

the Lagrang'ian element onìy has one node more than the Serendipìty and

theref ore coul d be used i n an ana'lys'i s wi thout the need of too much

extra computer space, in three dimensions it has seven nodes more.

The computer space requ'ired by the twenty-seven noded Lagrangian element

would have been as high as 2à times that needed by the Serend'ipity and

for thi s reason was not used. More w'il I be sai d about thi s 'in Chapter

6. Desp'ite thìs the details of this element have been included here

for the sake of completeness.

As can be seen from F'igure 4.5 the number of pressure nodes on

each face of both three-dimensional elements is four. This allows an

exact I i near pressure vari at'ion to be described un'iquely on al I f aces.

For the Langrang'ian el ement the number of vel oc'ity nodes per f ace 'is

n'ine. Thi s al I ows an exact quadratì c vel ocì ty vari at'ion to be descri bed

uniqueìy also. The Serendip'ity eìement however only has eight veìocity

nodes per f ace. As a consequence only an 'incompl ete but st'il I unì que

veìocìty variation can be described on each face. Therefore for both

elements, continu'ity of both velocjty and pressure is ensured.

The shape functions 'in the curvil'inear t, n and I coordinate

system, which is shown and defined in F'igure 4.6, are as follows. For

the twenty noded Serendipity element i, the quadrat'ic velocìty shape

funct'ions are:

N r5+ ro-2 )

for ¡=1 ,3,5,7,13,15'17 and l9

for j=4,8,16 and, 20

f or j =2,6,14 and l8

for j=9,10,1.l and l2 4.14

$t r* ro) ( l+no) ( l+ eo) ( eo+ij

and N

à,t-e2)(ì+no)(1+ ro)

å(l+eo)(l-n2)(ì+eo)

å(l+eo)(l+noltl-ll

Nì¡

tlì¡

'rJ

where E = E.t..o ]J

no = n.nij

fo = f.fijand 4..l5
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and (tij, nij.., ,ij) are the coordinates of node i in the E,n ôrìd

r system, and gi ven i n F'igure 4.6.

The linear pressure shape functions are:

ij = *,''+ro) ( l*no) ( l+6o¡N

and Ni¡ = 0

where Eo, ro, Eo, and (Eij'nij, aij) are as defined above.

f or ¡=1 ,3,5 ,7 ,13,1 5 
' 
I 7 and I 9

for ¡=2,4,6,8,9,10,1 1,12,14,

16,18 and 20 4.16

Lagrang'i an el ement 'i , the

f or j +l ,3, 5,7 ,19 ,21 ,23

and 25

for ¡=4 ,8,22 and 26

for ¡=2,6,20 and 24

for ¡=10,12,.'4 and l6

for ¡=11 and l5

for ¡=13 and 17

for ¡=9 and 27

for ¡=19 4.17

Similarly, for any twenty-seven noded

quadratic veìocìty shape functions are:

ni¡ I ]tr*'o¡ to(l+no¡no(1+ro) ro

N.ïj,= ào- e2) (l+no¡ 5(t+ro) eo

Nij = å(t+eo¡ to(l-n2)(l+ro) eo

Nij = å ( 1+ s ¡ Eo('l+ 5) no( t- e2)

Nij = å(t+ro¡to1

Nij = å(l-s2)(l+

Nij = å(l-s2)(t-

r -n2) (t-ez)

no l-cz)
(l + eo¡ ,o

no)

n2)

and Iti¡ = (l-s2)(l-n2)( l-c2l



The linear pressure shape funct'ions are:

tlij = {tt*to)(l+no)(1+ro) for j=l 
'3 '5'7 '1g'21'23 and 25
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for ¡=2,4,6,8,10 ...17,18,20,22,

24 and 26 4.18

4.ì9

and N =Qj

where Eor rìor Ço ârd (6ij, nij,çij) are as defined above.

The three-d'imensional Jacobian matrix ìs

AX ãz

lJl =
ag aE

ax ay àz

ân ân 0n

ax ay az

ae aq ae

quadrati cand by u s'i ng the

geometry, that is

veìocity shape functions to describe the

xi

ll

i

ay

aE

K'

¡lr 
Nìi'ii

Ji

and zi

Nì¡ vi¡
K'
Tj=l 4.20

4.21

K'

¡lr 
Nii 'ii

the Jacobian can be exPanded to:

[J] =

¡

ilaNtNi 
r

aNir<,

at

tNìr'

ân

aN 'iK'

aq

tNir
ag

aN:.'tl

ân

al'1j.,

ân

tNìr

xir Yir zit

xi2 Yì z ziz

xi¡qr Vi(r z.iK'

ae ar aç
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!,rhere K' i s 20 f or the Serend'i p'ity el ement and 2l f or the Lagrang'i an,

and (xìj, yij, tij) are the coord'inates of node j'in the gìobaì x, y

and z system. Therefore

at

J] -l 4.22
ðn

ae

As f or two dimens'ions an el ement of vol ume dV.t i n the x, y and z system

can be expressed in the E, n and Ë system by us'ing

dVi = det Ji d6d¡d6 4'23

Thus all intelrals 'in the matrices tRi I and tS.il can be rewritten 'in

the form lll

I I .,ft(E,n'r) dEdndr

-l -l -l
by changing the I im'its of the integratìon.

The I ast thi ng that must be i ncl uded ì n thi s sect'ion 'is the trans-

formation of the surface 'integrals in each equatìon corresponding to

a node on the portion of the outer boundary of the flow on which stresses

can be specified. As for two dimensions, stresses may have at most a

linear variat'ion. Therefore on any element face the normal stress and

the two shear stress components need on'ìy be specified at the four corner

nodes and the l'inear pressure shape funct'ions can then be used to inter-

polate between these points.

Cons'ider Figure 4.7 which shows a normal stress p and two shear

stresses r l and tZ appì'ied to f ace A of a typ'ica1 boundary hexahedral

element. The positive directions of appìied normal and shear stresses

are shown in F'igure 4.8. It can be shown that at any po'int with'in an

isoparametric element the vector with components

a

AX

a

ay

a

ãz

â

t
â

a
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i lterpot ati on
between s,

s, ,
'15

and s

3

z

X

faceA(l=l)

p - l'inearinterPo-
I at'ion between P.t t,
Pl 5, Pl 7 und Pl 9'

Pls

normal vector
,àv az az av az ax ax az
t!---:*aE ãn aE an' aE än âE ân'

ax ay _ _a_y- 3Itðt Ðn ôt ðn'

tangent'iaì vector

rÐX Ay âZrtant ant an'

tangenti aì vector

rðX AY âZttat' at' at'

s, - lìnear
ì nterpoì ati on
between s, ,

'13
s, , S, and

'r5 '17
tt,n'

tz
7

2 ì9

I ocal coord'inates
(t, rr l)

Typì ca'l Boundary El ement wjth Appì i ed Normal and Tangentì al
Sñear S tress Cornponents , P, s.i and st .

fluid stress
boundary

7

Pll face A
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vector w'ith components

ax ay az

-t -tag aE
)

ag

i s tangentì al to the 'l i ne n

ax ay az
(_, 

-, -)ân Ðn ðn

9ì.

4.24.1

4.24.?

4.24.3

4.25 .1

= constant, e = constant while the vector

4.25.2

ay az az ay az ax ax az ax ay ay ax
t 

- -,ðn ô6 ân ðÇ ân ð6 Ðn âÉ Ðn â6 ân ðÇ
(

is normal to the plane t = constant wh'ile the vector

ay az az ðy az ax ax az ax ay ay ax
(--
aÉ ag aq at ae aE aÇ àE aE at ae aE

i s normal to the pl ane n = constant and the vector

èy az az ay az ax ax az ax ây ay ax

- 
- -,ag ân aE An aE An at An AE ân ãE ân

ìs normal to the plane 6 = constant. These vectors are directed outward

from the element on the faces t =1, n=l and Ë =l and into the element

on the faces E=-1, n =-l and ç=-1. Sim'iìarìy it can be shown that the

is tangent'ial to the lìne q = constant, r = constant and the vector

ax ay az
( , -, 

-) 
4'25'3

ar àe aÇ

is tangent'ial to the line E - constant, n = constant. The d'irections

of these tangential vectors ur: aìways in the pos'itive e direction for

the first, posit'ive n dìrection for the second and the pos'it'ive ç direc-

t.ion for the third. It can again be found that the above normal

vectors can be obta'ined f rom the col umns of the 'inverse Jacob'ian matri x

mult.ipfied by det J, whjIe the tangent vectors can be obtained from the

rows of the Jacobian matrix itself.

ThusatanypointonfaceA,E=landthestressìnthexdirec-
tion'is



ay àz az ay
p( tr(

ât ân 0t ân

in the y direction 'it 'is

AZ AX AX Az

p( tr(
âE ân âE ân

and 'in the z d'irect'ion it is

AX

-)aq

AX

S
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4.26 .1

4.26 .2

4.26.3

+
2 ân

ay ay

)+s2(
aE ân

p( ) - s., (-) + s, (-)
' aE ' anâE ân ðE Ðn

Thus any surfacejntegral expressed'in terms of x, y and z, say

I
S

ax ay ay az ¿z az

ll
ay az az ay AX

tr( sz
ât ân AE An aE

Nì 
¡ 
{o"*n* +o

xnyv
dSo r*nr\+

ì

becomes

AX

(-)t ds dn
ân

-l -l

expressed entire'ly in terms of t, n and r.

It should be noted that although the rows and columns of the Jacobjan

mat¡ix and its inverse produce vectors that are respect'ive'ly, tangent and

normal to the surface of an element, the magnitude of these vectors, for

the purpose of calculatìng the x, y and z components of stress are not

always correct. In two dimens'ions this is not so. Howevelin three

dimensions, the tangentiaì vectors, as obta'ined from the rows of the

Jacob'i an matri x I ead to 'i ncorrect equi vaì ent nodal f orces . 0n the other

hand, the normal vectors, as obta'ined from the columns of the inverse

Jacobian multipìied by det J have the correct dìrect'ion as well as the

correct magn'itude. Theref ore, 'i n order to obtai n the correct equi vaì ent

nodal force components when shear stresses are involved, at each poìnt

on the element's stress boundary (surface) one must fìrst normal'ize the
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tangentiaì vectors and then scale them according to the magn'itude of the

normal vector at that po'int. In thi s way the tangenti a'l vectors wi I l

have the correct d'i rect'i ons and magni tudes sui tabl e f or evaì uatÍ ng the

equi val ent nodal f orces wi thout f urther sca'l 'ing . The caps on the shear

stress terms ìn equations 4.26.1-3 indicate that they have been adiusted

in th'is manner and that they differ in magnitude from the correspond'ing

components in vectors 4.25.1-3.



4.2 Numerical Integration Details

Hav'ing selected an element type and defined associated quadratic

and l'inear shape functions, the 'integra'ls in the coefficìents and on

the night hand s'ides of the element equatìons were transformed by making

use of the'isoparametric property of the element chosen and a change

in integratìon ì'imits, to integral s over a simp'ler geometric shape but

wìth ìntegrands that are complex ratÍonal funct'ions of the local co-

ordi nates. ,, The exact eval uati on of these transformed ì ntegral s i s

d'ifficult even when regular rectangular or brick elements, for which

the Jacob'ian matrix is constant, are used. In these cases, and more

so whentelements w'ith curved edges or faces are used, the evaluation

of these 'integraì s can on'ly be done by computerif a numeri cal ì ntegra-

ti on techn'ique i s empl oyed .

In general , numerical integration of a function of one variable

E involves the evaluat'ion of the integrand f(r) at n Gauss poìnts E=aj,

j=l , n, mul ti p'ly'i ng these val ues by the correspondi ng prescri bed

numbers or weights w, and summing the n results. That is

l

94.

f( s) dE 4.27

I

The particular form of numerical 'integration used in th'is study 'is the

Gauss quadrature or numerical 'integration. This ìs the most accurate

of the quadrature formulae 'in ordìnary use ß6). In this method the

values of 6 at the n points at which the integrand'is to be evaluated

and n we'ights are chosen so that a polynomial of order less than or equal

to 2n-1 can be integrated exactly. Therefore if f(e)'is any polynomiaì

it can aìways be evaluated exactly by tak'ing a sufficientìy ìarge number

of Gauss poìnts, n. However it f(E) is not a poìynomiaì, it must first
be approximated by one, the order of which depends on the closeness

of fit requ'ired (onìy w'ithin the limits of integrat'ion), and then the

\n
cr I w. f(a.)

j=lJJ
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number of Gauss po'ints can be decided. In thìs case, numerical integra-

tion does not produce the exact value of the ''integral .

The doubl e and tri p'le 'integraì s of f unctì ons of more than one

variable can be evaluated ìn the same manner. Thus

lll

III f(t,n,e) dEd¡dç

-l -l -l

II
-l -l

I

I f(r ,6) de by treat'ing r as constantw

nn
Iw; I

j=l ,' i =ì
n

n

I
i =l

n

Ij=l

wi f (6., ,n,r) dnde by treat'ing n and 4 as constants

nn
I wi .l_ w.i f(ui n¡,r¡)

j=l J i=l ¡
wk

n

I
i =l

1 1 J

-l
n

I
k=l

n

I
k=l

3
n

I
I =l

*ì*j*k f (e ., ,nj,Lk)

4.28.1

4.28.2

4.28.3wl f(81,n1,(1 )

The integra'ls that were produced after the transformation from

the x, y and z System to the E, n ând r have the requ'ired limits for

the nume¡ical 'integrat'ion, but the'integrand'is in genera'l not a simpìe

polynomial functìon. Thìs is because the Jacobian matrix used ìn the

transf ormat'ion has components that can be f unct'ions of E , n ônd e .

Theref ore i ts 'inverse, whi ch i s used to transf orm the deri vat'ives, con-

ta'ins the factor -t where detJ ìs also a funct'ion of E, n and e.
0etJ

Therefore all the derjvatives also contain thìs factor and by examin'ing

the ìntegrals in the matrices IRi] and ISi], 'it w'ill be seen that when

transformed, the resulting integrands have quotients of two poìynom'ials

i n the I i near port'ion and a s'impl e polynomi af in the non-l i near.
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In th'is study it was dec'ided to use n=3 Gauss points per coordinate

direction in order to evaluate these integrals numericalìy. Th'is results

in nine and twenty-seven Gauss poìnts in two- and three-dimensìonal

el ements respecti ve'ly. It al I ows a polynomi a'l of order 5 i n terms of

,,n, n and E to be eval uated exact'ly. Three Gauss po'ints per di recti on

were also used to evaluate numerically the surface integrals. Fìgure

4.9 shows the pos'iti on of the 3x3 Gauss po'i nts i n the two-di mensi onal

quadri I ateral el ement wh'i I e Tabl e 4.1 I i sts the we'ights associ ated w'ith

each poìnt. The three-dimensional arrangement of Gauss points in a

typ'ical hexahedral element ìs dìfficult to present and has not been

included. However Table 4.1 can also be used to define the location

and the we'ights of each Gauss point in a three-d'imensional element.

Recentìy it has been advocated by some .researchers (l I ) that

reduced i ntegrat'i on, that i s, usi ng I ess Gauss poi nts than woul d

normally be employed, leads to improved solutions. Th'is aspect, although

important si nce a consi derabl e amount of computat'ion time i s saved 'if

fewer Gauss points are used, was not'investigated in this study.
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1

I

*i6jrì ni

5
9
I
9
5
9

a

0

a

2

3

a

0 0

-a -a -a

€ 0.77459 66692 41483where a =

tr 3

I *i f (E.i )(q) dq

f( E,n) dgdn

i
3

I
i l

3

¡lr"i*¡ 
f(ui 'n¡ )

3

¡11*i*¡*t 
f( si 'n¡ ' r¡)

33
II

i=l j=

-lr-l r r

I I ftrc,n,E) 
dEdndr=

-l -l -r

Tabìe 4.ì Positions of Gauss Points

and Assoc'iated I'le'ights for n=3
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4.3 Some Important Computer Programming Aspects

Having established the theoretical background for the selected

model'ling and solutìon procedures, the final step in this study was

to obtain a solution to a general two- and three-d'imensional viscous

flow probìem. A ìarge amount of time was spent in th'is section of the

research because the development and debuggìng of the computer programs

that were set up to find these solut'ions was a slow process. In all, four

programs were written and developed, debugged and tested. The two two-

d'imensional programs differed only'in the type of element ìncorporated.

Program CR2DVFB used the e'ight noded Serendi p'ity ì soparametri c el ement,

while program CR2DVFg the nine noded Lagrangian element. The two three-

d'imensional packages both used the twenty noded Serendip'ity element

but the second, program CR3DVF2'incorporated an add'itìonal out of core

storage facilìty in the solution rout'ine that enabled it to handle prob-

lems with a larger number of nodes and elements. It was written because

it was found that program CR3DVFI could solve a probìem with a fin'ite

element mesh no bigger than three elements by three elements in cross-

sect'ion. Even this required the full core capacity avaìlable in the

Cyber '173, and as a result program CR2DVFI was l'ittle used. It is ìmpor-

tant to mention at this stage that all programs were written to be as

econom'ical 'i n terms of core requ'i rements as possi bl e, al though at t'imes

a loss of computìng efficiency resulted. Typicaì'ly, a two-dimensional

problem with 150 elements and 500 nodes would requ'ire approx'imateìy

75,000 g words of central memory and sol utì on t'imes 'i n the reg'i on of

150 central processor seconds periteration. 0n the other hand, a three-

dìmensìonal problem with 40 elements and 300 nodes and solved us'ing

program CR3DVFZ would requìre .l30,0008 central memory words and 800

central processor seconds peliterati on. The above f igures are only

approximate and are ìargeìy dependent on the configuratìon of the finìte

element mesh used.
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The first two-dimensional program written, CR3DVF8, was based

on and followed closely the lines of one written earl'ier by Yeo for

two-d'imensional stress anaìysis and described in detail in the book

by Cheung and Yeo (9 ) . It 'incorporates the eì ght noded 'isoparametri c

element and the welI known and efficient solution techn'ique, the Front

Solver. Program CRZDVFS however differed from the one written by Yeo

(called ISOP) in three major areas. Firstly, a mixed'interpoìat'ion

was included ìn program CRZDVFB resuìtìng in a variable number of un-

knowns per node, either two or three rather than just two as in ISOP.

Second'ly, the global stiffness matrix resulting front a vìscous flow

probl em, unl i ke that f or an el asti c'ity probl em, 'is always unsymmetri cal .

This means thgt the full matnix rather than just the half above and

including the ìead'Ìng diagonal , must be stored and used at all t'imes.

Th'ird1y, because a viscous fìow problem has equations that are non-linear,

an iterative solution procedure had to be'incorporated in program CR2DVFB.

The structure of CR2DVFB and the three subsequent programs consi sts

of a master maì n program supported by a number of spec'i al i zed subrout'i nes

to which control is transferred as the need arises. The subprograms

perf orm the bas'ic tasks of accepti ng and checki ng the 'i nput data,

evaì uat'ing the Frontaì sol uti on parameters, setti ng up the el ement equa-

ti ons and thei r rì ght hand si des, assembl 'i ng and soì vi ng the gl oba'l

equati on system and f ina'l 'ly, checki ng the sol uti on at each i terat'ion

for convergence. A flow chart showing the bas'ic layout of the four

programs is given in Appendìx B. In setting up program CR2DVF8, several

problems were encountered. A d'iscussion of two of the more troublesome

now fol I ows.

The first problem found and probably the most ted'ious to solve

was the i ncorporat'ion of the mi xed i nterpol at'ion f or vel oc'ity and

pressure. This affected all areas of the program since the number of

unknowns per node, now dependent on the node type, is referred to in



almost every subroutine. It was original'ly intended to treat a

alike. This could be done by setting up a zero equation correspond'ing

to the pressure variable at all mìdsìde nodes where the onìy unknowns

are the two velocity components. Minor probìems occurrìng when the

solution procedure encountered a zero equat'ion could be overcome and

a sol ut1on wi th a meani ng'l ess zero pressure at al I mì ds'ide nodes coul d

be obta'ined .

However, after a short calculat'ion, it was found that over half

the nodes 'in a typìcal two-dimensìonal mesh are midside nodes. Thìs

meant that i f a mesh w'ith 600 nodes was used , over 300 zero equat'ions

correspond'ing to pressure and not contributìng to the solution, would

be processed , I ì ke normal non-zero equat'ions each 'iterati on. The

add'i ti onal core and execut'i on ti me requi red to i ncorporate mi xed i nter-

poìation in this fash'ion were unacceptabìe. Th'is d'ifficulty !vas

fina1ìy overcome by including in the program at every relevant point

a f aci ì'ity f or adjust'ing the number of vari abl es f or a m'idsi de node

from three to two. This added a considerable number of lines to each

subrout'i ne and was parti cuì arly ted'ious to i mp'l ement .

The other major problem encountered occurred during the testìng

of CR2DVF8, when it was found that very small and very ìarge numbers

were bei ng comb'i ned 'i n the sol uti on procedure, wi th the consequent I oss

of accuracy due to round'ing off . The 'l arge and smal I numbers appeared

as a consequence of the technìque adopted for incorporating spec'ified

vari abl es, and because the gì obaì C onti nu'ity equati ons correspond'ing

to nodes wìth a pressure unknown have no pressure dependence and there-

fore have a zero on the I ead'ing d'i agonal of the gl obaì sti ff ness matrix.

Whenever a variable is specified in the boundary cond'itìons, a large

number, for example 1010, is added to the coefficient correspond'ing

to that variable in the equation correspond'ing to that var.iable. As

can be seen from the example in Figure 4.10, after suff icient reduct'ion
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,¿leading di agonal

ì..a+1010 b . .quat'ion(a) correspondingto
a spec'if ied vel oci tY

d 0 e ... a Pressure equation (b)
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OD
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Figure 4.I0 Example of Loss of Information Resulting from Computer
Round-Off.
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cycles of the Gaussian el'iminatìon process, which forms the basis of

the Front Solver, numbers of the order of l0-l0appear on the ìeading

diagonaì in the Continuìty equat'ions. When the turn comes for these

equations to be used in the reduction eliminatìon process, p'ivots (lead-

ing diagona'l coefficients) of order l0-l0 are used and, as is shown ìn

Figure 4.10, round-off errors are introduced as a result. It'is 'impor-

tant to stress that this s'ituatìon would not have occurred if the

Conti nui ty equat'ion was a "true" equati on conta'ini ng a pressure depend-

ent term as well as the velocity component terms.

To overcome this prob'lem the Front Solver had to be modìfied as

follows. Firstly 'in any reduction step, instead of using the first

fuììy assemb'le! equation found in a search from the top of the gìobaì

sti ff ness mat¡ix as the equat'i on to be el i mi nated , a search 'i s made

of al I the f ul ìy assembl ed equat'ions currently ì n the gl obal st'if f ness

matrix, and the one with the largest ìeadìng diagonal coefficient is

used . Thi s resul ted 'in the Conti nui ty equat'ions, al I contai ni ng pi vots

of the order of I 0 -l0 , rema'ini ng i n the gì obal sti ff ness matrix unt'i I

no other equatìon could be used. The same prob'lem then occurred when

these equatìons were used. A second modìfication was then made so that,

rather than assemb'l 'ing the equati ons of each el ement one at a t'ime and

at each stage eliminating all fully assembled equations, the equations

for as many elements as poss'ibìe are assembled in the given working

area, and when this is done, only sufficìent fuì1y assembled equat'ions

are el'imi nated as wi I I enabl e the equat'ions of the next el ement to be

assembled. Thus at all stages as many fuììy assembled equatìons as

poss'ible are present in the gìobaì stiffness matrix.

This however still did not prevent the last equations from havìng

very smal I I ead'ing dì agona'l coef f i ci ents . The probl em was f inal 'ly sol ved

by, in addition to the above two mod'ificat'ions, further changing the

solution procedure so that at each reduction stage, when the working



t 04.

area has as many f uì 'ly assembl ed equati ons i n 'it as possi b'le, rather

than simply chosing the fully assembled equation with the largest p'ivot,

a pair of fully assembled equat'ions are added and this combined equatìon

used. The equations added must produce the p'ivot w'ith the largest mag-

nitude and onìy fuì'ly assembled equations for unspecifìed variables

can be cons'idered. This elimìnated the round-off errors and program

CR2DVFB then started produc'ing the required solutions.

Program CR2DVF9 ìs identìcal to program CRZDVFB with the exception

of the el ement type used. The n'ine noded Lagrangi an 'isoparametri c

el ement 'i ncorporated 'i n CR2DVF9 has one i nternal node more than the

Serendip'ity element. There is no pressure variable assocìated with

th'i s addi ti onal node and the two veì oci ty equati ons correspond'i ng to

it have no surface ìntegrals on their right hand sides. Thus once the

element equation system has been constructed, the two velocity equations

correspond'ing to the internal node can be eliminated from it, thereby

reduc'ing the number of element equatìons to 24, the same number as for

the eight noded element. Program CR2DVF9 is therefore identical to

program CR2DVFS except in the subroutines that set up the element equa-

tions where a pre-assembly reduction is performed, and in the back-

subst'itution subroutine where the two equations per element are used

to calculate the two velocity components at each mid-element node.

The three-dìmens'i onal program CR3DVFI ì s di rectly anaì ogous to

CR2DVFB. It uses the twenty noded Serendipìty element and incorporates

the same mod'if icati ons to the sol uti on rout'i ne as i n programs CR2DVFS

and CR2DVF9. It therefore needs no further discuss'ion other than to

say that it is cons'iderabìy longer and more complex than the correspond-

'ing two-dimensional program. A ììstìng of this three-dimens'ional

program'is not included because of space Iim'itations. However a f istìng

of CR3DVF2 which incorporates an out of core storage facility in the

Front Solver and is the more v'iable of the two, is gìven ìn Append'ix

B.
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The out of core solution technique ìs essentìaì1y a process ìn

which two disc files are used to store the globaì equatìons during the

assembìy and reduct'ion procedures. At any reduction step onìy a small

portion of the global equat'ions are in core at any one time. l.Ihen

requìred, groups of equations are read from one disc file into core,

mani pu'l ated, and when they are no 'l onger needed, are written f rom core

to the second file. Th'is process of readìng from one file and writing

to the othelis very time consuming, but since the storage capacìty

of a disc file is very 1arge, the only l'im'it'in size of problem that

can be handled by this techn'ique ìs the in-core work'ing space. In

the limit, one equat'ion is read and written at each read-write step.

However, the f ront w'idth f or a probì em requi ri ng thi s extreme f ac'i I'ity

must be in excess of 2000, a very large prob'lem even'in three dimens'ions.

This now compìetes the d'iscussion on the computer programs. How-

ever, bef ore proceedi ng to the presentat'i on of resul ts, 'it was con-

sidered necessary to ìnclude in this thes'is the numerical values of

the stiffness matrix for at least one particular element. Therefore

in Appendix C,the stiffness matrices for a two-dimensional, eight and

nine noded, one unit square elenent have been set out 'in full. The

24x24 and 27x27 element stiffness matrices have been evaluated us'ing

formulatìon B and programs CRZDVFB and CRZDVF9. l.lith these, future

researchers will be able to check whether the computer programs used

i n thi s study operated correct'ly, and w'i I I have some def i n'ite numeri cal

values with which to check the operation of their programs.
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5. RESULTS OF ANALYSES AND COMPARISONS IN TI^IO DIMENSIONS

In developing a possible new numerical scheme for solvìng the

Navier-stokes equatìons or in improving an exìst'ing approach, previous

researchers have used a variety of viscous flow probìems on which to

test and demonstrate the advantages of theìr proposals. Besides the

s'impìer Poiseujlle. and Couette flows, two other v'iscous flow problems

that have been traditionalìy used, are the flow'in the entrance region

between two semi-'infinite paraì1el pìates and the recirculating flow

i n a square cav'ity, both of wh'ich have no known exact cl osed-f orm

sol uti on. I n th'i s chapter, al I aspects concernì ng the fi ni te el ement

anaìysìs of each of these two flows, incìuding detaìled discussions

on boundary cbndjt'ions and mesh configuratìons, are set out, and the

results from these anaìyses used, fìrst1y in a comparison to determ'ine

the opt'imal formulation of the Navier-Stokes equatìons, and secondìy

in a comparison to determìne the more effìcient of the two two-dìmensional

finite elements consìdered. Because the number of ìengthy computer

runs required for each problem and the amount of results'involved is

so large, it was decided to use onìy the above two flow problems in

both the formulation and the element comparisons. These two flows are

of sufficiently d'ifferent characte¡ to justify one drawing the conclusion

that any trend dispìayed in the results of both these flows may be con-

sidered typicaì of any two-d'imens'ional v'iscous fìow probìem.

5.1 Computatìonal Test Program Details

In order to carry out a conclusive comparison of the fin'ite element

formulations of the four versions of the Navier-Stokes equatìons, both

the entrance flow problem and the cavity fìow problem were used. Howeven

before a full scale test program for each of these flows was undertaken,

some preliminary tests on the Poiseuille flow were carried out to ensure

that the computer programs written were in fact operat'ing correctly.
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It was duri ng these i n'it'i al tests that a f undamental dì ff erence ì n the

performance of the eight and nìne noded isoparametrìc elements became

evìdent. Deta'ils of the tests and the solutions obtained are given

in Append'ix D, but the more important aspects are repeated in the follow-

'ing paragraph .

Essentially,'it was found that when the eight noded element was

used, the exact sol ut'ion to the Poi seu'i I I e f I ow was obtai ned only i f
the el ements 'i n the mesh were rectangul ar i n shape. l^lhen trapezo'idaì

or generaì quadri I ateral el ements were i ncl uded, the veì oc'i ty, and

espec'i al ìy the pressure f i el ds obtaì ned, were cons'iderably 'i n error.

However when the nine noded element was employed, the exact solut'ion

was obta'ined,regardìess of which element shapes were used. This

behav'iour was f ound to occur w'ith al I four f i ni te el ement f ormul ati ons

of the Nav'ier-Stokes equat'ions and i t was theref ore concl uded that i t
was not due to a f ormul ati on eff ect. Its exp'l anatì on was f i nal 'ly f ound

to lie in the choìce of quadratic 'interpolatìon funct'ion used to des-

cri be the veì oc'ity varì at'ion w'ith'in each el ement. As was mentì oned

in Chapter 4, the eìght noded Serend'ipity element has veìocity shape

f uncti ons that resul t i n an i ncompl ete quadrat'ic vel ocì ty i nterpo'ì ati on.

0n the other hand, the n'ine noded Lagrangì an el ement ì s capabl e of g'iv'ing

a compì ete quadratì c i nterpol ati on f or veì oci ty. Al though th'i s bas'ic

di ff erence di d not seem very s'igni f i cant i ni ti al 1y, 'it was f ound, as

i s shown 'i n Appendi X D, that 'if a quadrati c vel oci ty vari ati on i s

imposed on a trapezo'ida'l el ement by spef i cyì ng i ts exact val ue at al I

the nodes, the funct'ion describ'ing the veìocìty variation at any po'int

w'ithi n the el ement and obtai ned by us'ing the correspondi ng shape f unc-

ti ons, 'i s exact i f the Lagrangì an el ement i s used, but substanti a'l'ly

in error when the Serendìpìty element is empìoyed. As a result, since

the Galerkin finìte element procedure ìs essentìalìy a minim'ization

of a total error or residual in an'integrated average sense, when the
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ei ght noded el ement i s used, errors resu'lti ng f rom 'its i nab'i 'l i ty to

represent exactìy velocìty variat'ions of the type descrìbed above are dis-

tributed across each element and throughout the variables. Thus even

though the pressure may have been interpolated exactly ìn its own sense,

in an overall element and subsequentìy global approximat'ion, considerabìe

ìoss of accuracy can occur when trapezoidal or general quadrilateral

eight noded Serendipìty isoparametric elements are used.

I'li th the above f i ndi ngs 'i n mi nd, a seri es of computer runs f or

the comparìson of formulations A to D were p'lanned and carried out on

both the entrance f I ow and the cavi ty f 'l ow probl ems . I n order to avo'i d

prob'lems associ ated wì th i nadequac'ies 'i n i nterpol at'ion, two f i n'ite

element meshes,, one for the entrance flow,ENFLMl and the other for the

cavity flow, CAVFLMI were constructed entirely of rectangular elements.

This was done to enable e'ither the eight or the nìne noded element to

be used w'ithout I oss of accuracy. S'i nce 'it was ant'ic'i pated that the

nìne noded Lagrangìan element would requ'ire consìderably more computer

storage and execut'i on time, and si nce the number of computer runs

requi red was qu'ite substanti al , i t was deci ded to use only the e'ight

noded Serendipity element in this first series of tests. However, to

ensure that the above decis'ion was in fact correct, spot checks were

made by rerunnì ng several of the tests us'ing the n'ine noded el ement.

Table 5.1 shows the runs that were carried out for each of the two

problems. The sing'le asterisk 'indicates that the eìght noded Serend'ip'ity

element was used while the double asterìsk 'ind'icates that both the eight

noded Serendip'ity and the nine noded Lagrangian elements were used.

The results obtained from these runs are used in Section 5.4 to deter-

mine the most effìcient and most accurate of the formulat'ions A to D.



t 09.

Formul ati on

DA

(a) Re

ì

200

500

I 000

2000

I

I

I

I

I

I

I

I

I

I

*

*

*

*

*

*

**

*

**

**

**

**

**

*

*

*

** **

**

cB

Formul ati on
(b) Re

I
.l00

400

ì 000

2000

*

*

**

**

**

**

**

*

*

*

*

** ** **

*

*

*

*

*

*

Table 5.1 Computer Runs Carried out (a) on mesh

ENFLMI for the entrance flow probìem, and

(b) on mesh CAVFLMI for the cavìty flow

problem, ìn Computational Test Series l.

A cB D



I 10.

tli th the f i rst seri es of runs comp'ì eted and the compari son per-

formed, a second serìes of computat'ional tests for the comparison

of the ei ght and nì ne noded el ements was p'ì anned and undertaken.

In order to verify that the eight noded element was in fact as accurate

as the nine noded when all elements in a mesh are rectangu'lar, the

first part of thìs second serìes involved usìng meshes ENFLMI and

CAVFLMI agaìn. For the second part 'it was necessary to construct

two add'itional meshes, ENFLM2 for the entrance flow and CAVFLMZ for

the cav'ity flow, both incorporatìng trapezoidal as well as rectangular

elements. The results of this second series of tests are presented

i n Sect'ion 5 .5 'in whi ch the more eff eci ent el ement 'i s determi ned.

It should be noted that in all tests carried out in the second series,

onìy the optimal f ormul at'ion determ'ined i n the f ì rst compari son was

used. Tabl e 5 . 2 shows the computat'ional tests perf ormed 'i n th'i s seri es .
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5.2 Entrance Flow Problem Details

As 'i s suggested by i ts name, thì s cl assi cal f l ui d mechan'ics prob-

Iem'involves the predictìon at various cross-sections downstream of

the entrance edge, of the velocity and pressure profì1es of a fluid

ente¡ing a channel f ormed by two semi -'inf ì ni te paraì ì e'ì p1 ates , spaced

a distance d apart. It is a well known fact that beyond a critìcal

di stance f rom the entrance edge, f ul I f I ow deve'l opment 'i s real'i zed and

the parabo'lic velocity and constant pressure profiìes, characteristic

of the poiseuille flow, obta'ined. The fact that th'is distance, which

is Reynoìds number dependent and often referred to as the development

l ength, can be a s'igni f ì cant f ract'ion of the channel l ength, makes i ts

determ'i nati on 'a matter of cons'i derabl e practì cal ì mportance . Fi gure

5.1 shows all the essential details requ'ired to define the two-dimensìonal

entrance f1ow problem. However, before proceeding into a detailed dis-

cussion of the fìn'ite element anaìys'is of th'is prob'lem, 'it is worthwhile

'looki ng brì ef 1y at some of the more 'important advances made by previ ous

workers .in an attempt to solve the entrance flow problem.

Since obtaìnìng an exact analyticaì solution to this problem is

not possib1e, various approxìmate solutions, mostly invo'lv'ing some form

of boundary ì ayer approx'imat'ion, have been presented si nce as earìy

as 1934. Schl'ichting (2") considered the entrance flow probìem and

used seri es expans'ions near to and f ar f rom the entrance, 'in a vel oci ty

profile matching procedure. Van Dyke (33) later improved Schlichting's

solution near the entrance edge by using an upstream expansion whose

f i rst approxi mat'i on i s the 'l eadì ng edge sol ut'i on of the f I ow past a

semi-jnfinìte flat p1ate. Many other analytical approximatìons, too

numerous to mention here but well documented by Van Dyke (33), have

been used in an effort to accurate'ly model this prob'ìem, but the greatest

advance took place when the finite difference method was used. The

most frequently cited work in this area was performed by Bodoia and
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gsterle (4 ). who app'lied the finìte difference method to the soìvìng

of the boundary layer equations for the entrance probìem. However,

it was not until several years later that the finìte difference techn'ique

y¡as f i na'l1y used to successf u'lly sol ve the f ul I Navi er-Stokes equati ons.

Brandt and Gìllis (5 ) and Morihara and Cheng (Zl), whose results are

used for comparison in this thesis, have obtained stable numerical

solut1ons to the entrance probìem for Reynolds numbers based on the

channel width as high as 2000. On'ly recently has the finìte element

method been applied to the solutìon of thìs prob'lem (lB, 29).

The entrance flow prob'lem as it 'is defined in F'igure 5..|' must

firstìy be rendered dimens'ionless before the non-d'imens'ional form of

the Navier-Stokes equatìons can be used to fìnd its solution. The

characteristic velocity and length chosen to do thìs are the inlet

ve1 oc'ity v and the channel wi dth d, respectì ve'ly. The Reyno'lds number

that appears i n the govern'i ng equatì ons i s therefore defi ned as

R. = oud, and the detaì I s def i ni ng the correspond'ing d'imensi onl ess
u-

prob'lem 'i n wh'ich symmetry has been used to reduce the f I ow doma'i n to

the upper half channel, are shown in Figure 5.2.

In applying the fin'ite element method to the solutjon of the

entrance f low problem, it was 'immed'iately real ìzed that the f inite

element mesh, that'is, the arrangement of elements chosen to represent

the flow, should'incorporate re'latìveìy small elements close to the

channel wal I at the entrance edge. Th'i s enabl es the I arge ve]oci ty

gradÍ ents occurring there as a resul t of the 'i nl et ve'loc'ity chang'i ng

from unity to approximately zero over a.very short distance, tO be

represented accurateìy. It was anti ci pated that rel atì vely smal I

elements would also be needed adjacent to the wall for a considerable

distance downstream of the entrance edge. Thìs'is due to the fact that

'in viscous flows the effects of viscosity are usually confined to regions

adjacent to solìd boundaries and commonly known as boundary layers,
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the thickness of which generaììy decreases as Reynolds number increases

and ins1de wh'ich most of the s'ignificant veloc'ity gradients can be found.

In the entrance flow probìem, a boundary layer of zero thickness at

the start of the channel wall and 'increasing graduaìly to half the

channel wìdth at approximately one development length downstream, can

be found along both walls of the channel. In order to adequate'ly

represent the ì arge ve1 oci ty gradi ents that occuLi n these reg'i ons ,

at least one, and preferably two, ìayers of elements should be pìaced

along the wall and withìn a boundary ìayer's th'ickness from'it. It

i s obv'ious that as the Reynol ds number of the f I ow i s 'increased and

the thickness of the boundary layer at any g'iven cross-section decreases'

the size of these wall elements can become very small, especìa1ly c'lose

to the entrance edge.

From the above 'it can be seen that in order to construct an

efficient fin'ite element mesh capable of adequately representìng the

f I ui d mot'ion at any poi nt aì ong the wal I , an estimate of the th'ickness

of the boundary layer that exists there, must be obtained. As a fìrst

approxìmation, the solution to the flow around a sem'i-infin'ite flat

pìate'immersed'in a flu'id moving paralleì to'its axìs, can be used.

A short investigatjon ìnto some of the analyticaì studies previously

carried out on this probìem, such as those performed by Davis (10),

reveal ed that the behav'iour of the f I ui d around the p'l ate can be ade-

quately described by the well known Blasius solution, an excellent

description of which has been presented by Rosenhead (?6) in his book

on laminar boundary 'layers. However, th'is solut'ion 'is onìy of l'im'ited

use sìnce it is not valid within a small region at the lead'ing edge

of the p'late. It is in this reg'ion that the size of element is most

c¡iti cal . Improvements to the Bl asi us sol uti on ì n the vi c'in'ity of the

ìead'ing edge have recentìy been proposed; however the exact behaviour

of the fluid in thjs region is stìll not fuì'ly understood and its math-
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emati cal modeì f i ng sti I I not compl ete. As a consequence 'it was dec'ided

to carry this 'investigation no further and to fìx the sìze of the

smal I est el ement i n the wal I -l ead'ing edge corner of the mesh at 0.1%

of the channel w'idth, th'is figure be'ing selected so that, wìth a suitable

grad'ing of elements from this corner out, a mesh with a reasonable

number of elements resulted.

In order to be able to use the properties of a fuì'ìy developed

Poi seu'il I e f I ow as boundary condì t'ions at the downstream end, the f i ni te

element mesh must extend to a sect'ion at least one development length

downstream of the entrance edge. Sìnce the development ìength LD is

Reyno'lds number dependent and gìven approximateìy for Reynolds numbers

greater than I 00 by

LO = k Re 5..|

where k, previously determined by other researchers and compared by

Brandt and Gillis (5), ranges from 0.040 to 0.048,'it ìs obvious that

a different mesh length would be required for each Reynolds number to

be consi dered. To avoi d havi ng to mod'ify the'ir meshes f or each change

in Reynolds number, previous researchers scaled the x coordinate in

such a way that allowed full flow development always to be attaìned

within the length of one mesh. In this study however, scal'ing ìs not

used. Rather ì t was dec'ided to construct one mesh su'itabl e f or sol vi ng

a f I ow w'ith Reynoì ds number equa'ì to 2000, and then to use thi s mesh

to solve all other f lows w'ith Reynolds numbers less than th'is value.

The resuì ti ng meSh, 'incorporatì ng only rectangu'lar el ements, j s

shown in detail in Figure 5.3 and will subsequently be referred to as

mesh ENFLMI . It i s 200x0.5 'i n overal I si ze and conta'ins 541 nodes

defin'ing 16? elements which range in s'ize from 0.001x0.001 to 0.3x.l00.

The f i n'ite el ement sol uti ons of the entrance f ì ow probl em obta'i ned wi th

this mesh are used in both the comparison of formulations A to D and

i n the comparì son of the performance of the ei ght and n'i ne noded
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isoparametric elements. Because of the fact that onìy rectanguìar

elements are used in mesh ENFLMI, the grading results'in elements with

aspect ratios of .l00,000 to I downstream and close to the wall and I

to 300 at the entrance edge and near the centreline. The finite element

equat'ions for these elements will therefore contain coefficients whose

magnitude'is as much as five orders ìarger than the magnìtude of others

in the same equations. As a result'it was feared that, due to round-

off errors, 'instabi I i ti es woul d ari se 'in the sol uti on process l eadi ng

to solutions that are substantially in error, especìalìy for flows with

Reynol ds numbers approachi ng 2000. However on cl oseri nvesti gatì on

i t was real 'ized that i n the reg'i ons occup'i ed by these el ements , the

ve'loc'ity compqnents and the pressure have only very smal I vari ati ons

and therefore would not be adverse'ly affected by using elements with

such h'igh aspect ratios. It was dec'ided to use on'ìy rectangular elements

in mesh ENFLMI, not on'ly because this would enable the eight noded

Serendipity element to be used without loss of accuracy (see Sect'ion

5. I ) , but al so because th'i s resul ts i n sol uti ons that are eval uated

at poi nts on stra'ight I i nes al ong and across the channel . Thi s great'ly

facil'itates the pìotting of veloc'ity and pressure profiles since the

solutjons obtajned from the finite element analyses can be used direct'ly

without having to resort to interpolation.

In order to complete the second comparison, name'ly the comparison

to determine the more efficient of the two elements invest'igated,

a second mesh ENFLMz, the deta'i I s of whì ch are g'iven i n F'igure 5 .4,

was constructed for the entrance flow problem. Thìs second mesh has

the same overal I di mens'i ons as the f irst, but 'i s composed of trapezoi dal

as well as rectanguìar elements. It contains 410 nodes and ll9 elements,

anci because the trapezo'idal elements can be used to achieve a su'itable

element grad'ing much more effectìvely, the aspect ratio of the downstream

wall elements is reduced to 500 to I, while that of the elements at
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the entrance edge near the centreline is reduced to I to 60. It should

be pointed out that when the nine noded Lagrangian element is used,

the number of nodes i n both meshes ENFLMI and ENFLMZ 'i s 'increased by

the number of elements, since each element then contains one extra

internal node. Table 5.3 summarizes alI the essential deta'iIs of the

meshes used to solve the entrance flow probìem.

The onìy th'ing that now rema'ins to be di scussed i n thi s secti on

is the boundary conditions that were used ìn the finite element analyses

of this prob'lem. As was stated earlier, for a solution to be obtainable,

either the veloc'ity component or the corresponding stress tensor com-

ponent must be spec'ified in each d'irectjon at every node on the boundary

of the f I ow doma'i n. The f o'l ì owì ng boundary cond'iti ons, a summary of

whi ch 'i s shown i n Fì gure 5 .5, are suff i c'ient and necessary to enabl e

the comect sol ut'ion to be obtai ned at al l Reynol ds numbers consì dered.

Edges A to D referred to'in the folìowìng discussion, are defined in

Figure 5.5.

Aì ong edge A the f I u'id vel oci ty mu-st be zero i n both di recti ons

since this is a solid boundary. Therefore at all nodes on edge A,

u=0 (x directi on) )I s.z
and v=0 (y direction) )

S'ince edge B is coincident with the centrelìne and therefore the

line of symmetry of the flow, the shear stress component oyx paral'lel,

and the velocity component normal to th'is edge must both be zero. There-

fore at all nodes on edge B,

XX
Íì *o nX YXY

since the vector normal to edge B has compon-oyx

ents n*=0 and nr=ì. Therefore,

= 0 (x direction)

(y direction)

ú

onXXX

v=0

+o n
yx

and

v 5.3
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ENFLM2

NE

**p

NNu

NN

NP

NV

NE

BNE

162

190

54.|

541

190

I,oB2

1,272

60

66 ,000

9NE

162

t90

703

703

ì90
.l,406

I,596

60

74,600

ì19

146

4.l0

410

146

820

966

60

63,000

9NE

ll9
146

529

529

ì46

I,058

1,204

60

70,200

q

FI^l

FL BI I B

BNE

ENFLMI

Table 5.3 Deta'il s of ['4eshes and E]ements Used

to Solve the Entrance Flow Problem.

(t"lE = number of el ements, NN p = number of pressure nodes, NNu =

number of veìocity nodes, NN'= total number of nodes, NP = number

of pressure equatìons, NV = number of veìocity equations, *tO =

total number of equati ons , FW = snal I est maxj mum front w'i dth of

mesh, and FL = field length or number of computer storage words

required to solve the problem.)
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By ensuring that the f i ni te el ement mesh 'i s of suf f i c'ient ì ength

to allow the flow to be fulìy developed at outlet, the properties of

a Poiseuille flow can be used as boundary condit'ions aìong edge C.

In the direction para'lìe1 to the flow either a velocìty or a stress

type boundary condition can be appìied, s'ince both are known for a fuììy

developed Po'iseu'ille flow. In using the former however, the veìocity

at each node must be calculated, whereas if the stress boundary con-

dition is used, since the normal stress ìs constant across the channel

for a fully deveìoped flow, on'ly one value needs to be evaluated. The

latter was therefore chosen for thìs probìem. Also for a fully developed

flow, the flu'id moves paralleì to the channel walls and at a rate that

is constant algng the channel. Therefore at all nodes on edge C,

XX X
+o nyxy
since the vector normal to edge C has compon-

ents [x = I and \

o
XX

= 0.

I au2auav
3
(- + 

-)) 
- P bY equat'ion 3.21

Reax3 ax ay

Therefore, o

--p
= constant, arb'itrariìy set to zero.

....n.,+o....rì..=0 (xdirection)xxx yxy

v=0 (ydirection)
5.4

The value of the pressure at outlet is arb'itrarily set to zero

to sirrpl'ify the boundary conditìons. By setting it at any other value po

sôy, the pressure field for the whole flow is simpìy either ra'ised or

lowered by the same amoun¿ po. Because of this property of the equations

the pressure needs onìy to be specified at one node, for example, at

the corner of edges B and C, to fix a datum relative to wh'ich the

pressure at any other node is evaluated.

o

= - (2 - - - c

and
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The selectìon of the boundary conditions that would most accurateìy

model the flow at the inlet edge D presented the most difficulties.

Since not all the veloc'ity gradients and the pressure can be predìcted

a priori in this reg'ion, the stress boundary conditìon cannot be used.

Therefore all the veìoc'ity components must be specified on edge D.

By assum'i ng that the f I ui d moves paral 'le1 to the channel wal I at the

inlet edge, the transverse velocìty component at all nodes on edge D,

can be set to zero. The fìrst attempt at solv'ing the entrance flow

problem used a fin'ite element mesh whose inlet boundary coincided with

the start of the channel. The fluid was g'iven a velocity of one paralìel

to the channel walls at all nodes on this edge except for the one at

the wal I where the veì oc'ity was spec'if ì ed to be zero. The resul t'i ng

specif ied 'inlet velocity prof i'le is as shown ìn Figure 5.6(a), the hump

result'ing from the quadratic interpolation used on the sìdes of any

el ement w'ith three nodes per s'ide. The sol ut'ion that was obtai ned

resulted ìn veloc'ity profiìes at sections downStream of the inlet edge,

that also have humps close to the wall. A typ'icaì profile is shown

i n F'igure 5 .6 (b ) . When sol ut'ions f or the same probì em pub'l i shed by

other researchers (4, 28, 33) us'ing boundary layer approximations were

examined, it was found that no humps existed ìn theìr profìles of the

ve'l oc'ity component paral I e'ì to the channel . I t was theref ore thought

that the above inlet boundary veloc'ity specification had imposed a false

velocity profile at inlet and that its effects had been carried down-

stream to the other velocity profiles.

To overcome this,'it was decided to apply the uniform inlet

velocìty profiìe one layer of elements before the start of the channel.

The veìoc'ity immed'iately in front of the wall therefore,went from one

through 0.75 to zero at the start of the wall, over a w'idth of one

element, âS can be seen in Fìgure 5.7. The solut'ion obtained using

this inlet boundary condition contradicted the above idea s'ince the
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resulting veloc'ity profi'les st'ill contained a hump close to the wall.

After f urtheri nvesti gati ons i t was f ound that thi s curi ous f eature

of the velocity profiles had in fact been reported by other researchers

in this field. Abarbanel and co-workers (l) and all the researchers

who had sol ved thi s probl em usi ng the ful I Nav'i er-Stokes equati ons

i nstead of the s'impl er boundary ì ayer approxi mat'ions , had recorded

similar ve'locity profììes regardìess of whether the fìn'ite difference

or the fin'ite element method had been used. It was therefore realized

that the Iocal naxima occurrìng in the ve'locity profiIes were a real

characteristic of the entrance flow prob'ìem and that when the boundary

ìayer equations were used this feature was not represented and there-

fore not observed. In order to avo'id adverseìy aff ect'ing the true

velocity profi'les by'imposing an'inlet boundary condition that has a

hump 'i n ì t as wel I , 'it was deci ded to use the second i nl et boundary

condition for subsequent runs of this problem. The thickness of the

additional ìayer of elements was fixed at 0.1% of the channel wìdth

on both meshes ENFLMI and ENFLM2, so that for all Reynolds numbers con-

sidered, the elements at the'inlet edge and adiacent to the start of

the wall have a width to depth ratio of l. If scaì'ing of the x co-

ordi nate had been used as was suggested earl'ielin th'is secti on, the

width of the addìtional 'inlet layer of elements would become variable.

To avoi d 'i ntroduci ng addi tì onal unknown eff ects due to changes 'i n the

appìied veloc'ity gradient 'immed'iately in front of the start of the waì1,

this technìque was not adopted. Therefore, for all nodes on edge D,

u=l (xdirection)

except at the node immediateìy ahead of the wall where = 0.75, I - -¡ 5.5
and v=0 (ydirect'ion) !

It shoul d be po'inted out that the f I ow prob'l em that i s actual ly

be'ing solved when the above boundary cond'it'ions are employed, is the

flow in the entrance regìon in one bay between two semi-'infinite flat
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plates in an infinite series of such p'lates, as shown 'in F'igure 5.8.

This is because ìt is assumed 'in the selected inlet boundary condit'ions

that the transverse vel oc'ity component v i s zero at al I the nodes 'i n

front of the start of the wall. To avoid hav'ing to make th'is assumptìon

one must have some knowledge of the stresses that exist in this region.

However since 'it is impossib'le to know these a priori, some estimate

of the velocity fìeld must be made, and as a result the above assumption

was adopted.

The on'ly other matter that should be discussed in this section

concerns onìy f ormul ati on A. S'ince thi s i s the on'ly f ormul atì on i n

whìch Cl=0,'it'is the onìy formulation that has a second surface'integral

that must be qvaluated on the outer boundary of the flow domain. Along

all edges of the entrance region on which the velocity components are

specified, the second surface integral is not required since the corres-

pond'i ng equat'ion s do not apply. However on edges B and C i n the x

d'irection, a stress boundary condìtion ìs specified and therefore, for

formulat'ion A, surface integrals of the form

f I au av

/,r,_,, * {; 
r* *; ny } ds

si

must be evaluated there. However,on edge B the normal vector component

nx= 0 andv= 0, wh'ile on edge C,nr= 0 andff = 0. Therefore this

i ntegra'l 'i s zero on both edges B and C and as a resul t does not have

to be evaluated anywhere. For the entrance flow problem then, with boun-

dary cond'itions as gìven above, the second surface integral associated

with formulation A only, is not required to be evaluated at any po'int

on the outer boundary of the f low doma'in.
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5.3 Cavity Fìow Problem Details

In order to verify the trends that become apparent in the anaìyses

and solutions of the entrance flow problem, a second class'ical fluid

mechanìcs probìem, namely the rec'irculat'ing flow in a square cavity,

'is used. The cavity flow problem involves the prediction of the velocity

and pressure fields that occur w'ith'in a flu'id contained in an infinite

square cross-sect'ion cavity of dimensions DxD and forced to move by

the constant lateral mot'ion of one of the four walls. Fìgure 5.9 shows

the real three-d'imensional flow that ìs beìng studìed as well as the

simpì er two-dimensi onal arrangement that w'il I actua'l'ly be used to model

it. As was the case with the entrance flow, no exact anaìytica] solution

exists for this flow problem, and therefore all solutions pubf ished

to date involve some form of approximatìon. However, because there

are no'inlet or outlet boundaries, this flow probìem is somewhat s'impìer

to model than the entrance flow and consequently has sometimes been

preferred by previous researchers.

In the I ast twenty years most of the work that has been done on

the cavity flow problem has involved using either the finite difference

or the finite element method. A major contribution to the better under-

standìng not onìy of the cav'ity flow but also of separated eddies in

general, was made by Burggraf ( 6 ), who used the finite difference tech-

nique to solve the full llavier-Stokes equations. Approximate'ly a decade

later, Tuann and 0lson (32) published a report in which the cavity fìow

problem was used to study the advantages and disadvantages of various

finite element solution methods. A comparison of theìr results with

those of Burggraf, revealed that both the finite difference and the

f ì n'ite el ement methods were capabl e of accurately model 
'l 'ing th'i s f I ow.

More recently, Bercovier and Engelman ( 3 ) , i nvestigat'ing the d'ifference

'in perf ormance ab'i I i t'ies of the e'ight and ni ne noded f i ni te el ements

of the pena'l'izat'ion type, al so used the cav'ity f I ow probì em to demon-
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Figure 5.9 Cavìty Flow Problem Details.
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strate the usefulness of their proposaìs. It can therefore be seen

that, just like the entrance flow, the cavity fìow problem has ìn the

past been a popuì ar test case. For thì s reason and because 'it 'i s so

very different jn nature from the entrance flow, it was chosen as the

second flow problem with wh'ich to confirm the results of the two

formul atì on and el ement compari sons.

The actual two-d'imensjonal flow problem that ìs shown in Fìgure

5.9 is non-dimensionalìzed by us'ing the velocìty of the movìng wall

V, and the dimens'ion of the cav'ity D as the characterist'ic veìocìty

and ìength respectively. The Reyno'lds number is therefore defined as

Re = + and deta'ils of the dimensionless problem are given in Fìgure
u

5.t0.

With the experìence gained from the analys'is of the entrance flow

probl em, the construct'ion of the two f i n'ite el ement meshes requi red

for thi s probì em was greatly s'impì'if ì ed. It was agai n real i zed that

boundary layers would exist on all the solid boundaries, but no means

by which to estimate the'ir thickness was found. By examinìng previousìy

publ i shed sol ut'ions 'it was al so real i zed that probì ems assocì ated wi th

si ngu'l ari ti es i n ve'loc'ity woul d occur at nodes i n the two corners next

to the moving wall. This ìs because at both corners the fluìd velocity

must be zero si nce i t 'is next to a stat'ionary wal I whi I e at the same

time it should be one since it 'is next to a mov'ing wa'll. To overcome

thi s probl em and 'i n order to adequately represent the I arge ve'loc'ity

grad'ients that occur i n the boundary I ayers, si gni f i cant'ly smal I er

elements are used adjacent to all four walls. 0n the bottom boundary

however, the el ements are not as smal I as on the movi ng wa'll s'ince i t
was anticipated that the veìocity grad'ients there, although st'ill sig-

ni fi cant, woul d not be as 'l arge. Thi s was I ater conf i rmed. The si ze

of the smal I est el ements I ocated i n the two top corners was 0,1% of

the cav'ity w'idth, and wì th a moderate el ement gradi ng f rom both these
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corners, mesh CAVFLMI, composed ent'ireìy of rectangular elements, was

constructed.

Mesh CAVFLMI conta'ins I I 33 nodes and 352 el ements rangi ng 'i n s'ize

from 0.001x0.001 in the top corners to 0.lx0.l in the centre of the

mesh. As with the entrance flow, the solutions of the cav'ity fìow prob-

lem obtained with CAVFLMI are used in both the formulation as well as

the element comparisons. A second mesh labelled CAVFLMz, sim'ilar to

CAVFLMI but contaìnìng trapezoidaì as well as rectanguìar e'lements,

was also constructed. It contains 709 nodes and 210 elements and was

set up to complete the second comparison. Figures 5.ll and 5.12 give

the comp'lete details of the element 'layout for CAVFLMI and CAVFLM2 while

Table 5.4 sumryarizes all the essentìal details of both the meshes used

to solve the cavity flow problem. S'ince the cavity fìow prob'lem contains

no inlet or outlet boundary, the two meshes constructed are su'itable

for solving cavity flows with any Reynolds number. However it was

anti ci pated that ì nstab'i I i ti es woul d ari se as Reynoì ds number i s

increased and it was therefore dec'ided to limit it to 2000. in both

meshes a relatively fine arrangement of elements lvas retained 'in the

centre of the mesh to enable the vortex centre to be accurately located.

The boundary conditions that are required in order to obtain the

sol ut'ion to the cavì ty f I ow probl em are gi ven i n F'igure 5. 13. At al I

nodes on edges B, C and D, which are defined in Figure 5..l3, the fluid

veloc'ity must be zero ìn both directions since these edges coìncide

with stationary sol'id boundaries. Edge A on the other hand coincides

wi th the mov'i ng wal I and theref ore at al I nodes on edge A, the f I u'i d

veì ocì ty must be one i n the x di rect'i on and zero i n the y. The 
.only

other aspect of the boundary cond'itions used that should be mentioned

at this stage 'is that the actual velocity specification at the nodes

on edge A and close to the corners, is as shown in F'igure 5.14(a).

This avoids the decelerations and accelerations in the flow close to
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CAVFLMI CAVFLM2

NN

NE

p

NNu

NN

NP

NV

Ntq

Fl,'l

FL

352

391

I ,.l33

I,133

391

2,266

2,657

95

I 20,50oB

352

391

1,485

1,485

391

2,970

3,361

95

1 36, 1 008

210

250

709

709

250

I,4.l8

I,668

95

l07,loo8

9NE

210

250

919

919

250

.l,838

2,088

95

1 1 7,500
8

BNE BNE9NE

Table 5.4 Details of meshes and elements used

to sol ve the c av'i ty f I ow prob'l em.

(tlE = number of elements, NNp = number of pressure nodes, NNu

number of veìocity nodes, NN = total number of nodes, NP = numbe

of pressure equations, NV = number of veìocity equat'ions, *tO =

total number of equations, Fhl = smallest maximum front w'idth of

mesh, and FL = field length or number of computer storage words

requ'ired to solve the problem. )

r
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the downstream and upstream corners that woul d ari se 'if the vel oc'ity

normally specìfied and shown jn Figure 5.14(b) were used. Finally'

since all boundary conditions are of the velocìty type, none of the

surface ìntegrals need to be evaluated. All that is required is that

the pressure be specified at one node to define the datum. To be con-

sistent wìth that done by previous workers, the pressure ìs specified

as zero at the node located in the middle of edge C.

1

I

I

I
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5.4 Results of Formulation Comparison

As was shown in Sect'ion 3.1, several different versions of the

Nav'ier-Stokes equat'ions can be obtained by either us'ing or not using

the 'incompressi bl e Conti nui ty equatì on to el im'inate certai n of the vi s-

cous and acceleration terms that are a normal part of the Nav'ier-Stokes

equatìons. The four vprsions that have been selected for this comparison

are set out again below and briefìy described so that the differences

in each may be kept in mind as the companison ìs made.

Formulation A, which has prev'iousìy been used by Taylor and Hood

( 30 ), Yamada et al. ( 35 ), Kawahara et al. (.|9) and several others,

involves the complete elìminat'ion of all terms conta'in'ing the quantìty
av=

-J ut a factor. As a direct consequence, the fin'ite element equatìons,*j
for th'is formulation contain two surface integrals rather than the usual

one. However, as was seen earlier in thìs chapter, the ad{'itionaì

surface integral can usua'lly be eliminated by a careful consideratìon

of the quant'iti es 'i nvol ved on the outer boundary of the f I ow domai n.

Where el im'inat'ion i s not possi b'l e, and thi s may occur only on that por-

tion of the outer boundary of a flow on which the fluid's stress state

is spec'ified, the second surface integraì can a'lways be evaluated since

all the ve'locity gradìents are known and there the direction of the

normal can always be calculated. Nevertheless th'is second surface

i ntegral , whetherit can be el imì nated or not, i ntroduces an addi ti onal

inconven'ience that does not occur with any of the other formulations.

The equations for formulation A are the s'implest of all the formulat'ions

and contain only one viscous and one acceleration term. They are,

l

Re

, tu.i ap avi

rt'j axi j

tuj

t*j
and =Q

uj
ax
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Formul ati on B has been used by Hutton i7 ), Zienki ewi cz (36, 37 ) ,

Tuann and 0l son ( 25 , 32) , and several others al so. It 'i nvol ves the

retentìon of an additional vìscous term and because of this, its finjte
el ement equat'ions do not contai n the second surf ace i ntegra'l . Thi s

is also true for formulations C and D, both of whìch retain the same

extra viscous term. The equations for formulatìon B are,

I

Re

a'v. a2v.
( 1+ J

,*tj axi axj

ap av
) uj

t*i AX
J

1

and
av.

J

t*j
0

Fr)rmulatjon C, recently proposed by Hutton et al. (.ì8), has equa-

tions which 'include a second acceleration term as well as the second

viscous term, and to the author's knowledge, has not prevìously been

used. Because the additional term for this formulatjon is non-linear,

it was antìcipated that when formulation C ìs used, it would requìre

a greater number of iterat'ions of the Newton-Raphson method to attain

the given convergence limits, especialìy at higher Reynoìds numbers

when the non-l'inear accel erati on terms predomì nate. The equat'ions f or

formulation C are,

a2v AV t av.
J

Re ax2
j *uì

AX
J J

and
av.

J

'l atv. aD
. Jì-,-r-=V

ax.iaxj a*i t*j

0
ax.

J

The I ast formul at'i on, namely formul ati on D, has equatì ons that

'incl ude both the extra v'i scous and accel erati on terms of f ormul at'ion

C, as well as a thìrd v'iscous term. This formulation, as far as the

author can ascertain, has never been proposed before and has been

'incl uded 'i n thi s compan'i son because by retai ni ng the extra vì scous term,

'it 'is the only f ormul ati on i n whi ch the varì abl e I abel I ed "p" represents
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exactly the pressure 'in a v'iscous f I ow, regardl ess of whether the Con-

tìnu'ity equation has been satisfied exactly or not. This was done by

incìudìng in the fluid stress-strain rate relat'ionsh'ip, a viscous term
av.

containing the quantìtV # that enables either the exact or the approx-
J

imated pressure to be 'ident'icaì ìy equaì to the negati ve mean of the

three exact or appÈox'imated normal stresses at any poì nt 'i n a vi scous

fìow. The equat'ions for formulation D are,

I a'v=

-( '+
Re t*'j

2 a2v,

3 ax.' ax,

AV l
V +vj

AX
J

ap av.
J

ax.
J

a*i

AV

and J

ex.
J

0

I n order to deterrni ne most ef f ecti ve'ly whi ch 'i s the opti mal

formulatìon, both the computationaì efficiency as well as the com-

putational accuracy of each is examined. A measure of the computat'ional

eff i ci ency of a f ormul ati on can be obta'ined by exam'ini ng the amount

of computer storage and executi on t'ime requ'ired f or a sol uti on to be

found when that formulat'ion is used. However, since the only difference

between the formulations is an addìtional term or two in the finite

element equations, with the remainder of the solution procedure being

the same, the computer storage needed to obtain a solution'is almost

the same for all formulations. Therefore only the computation t'ime

can be used to gauge the relative efficiency of each formulat'ion. From

the first few computer runs, it was found that the execution t'imes

observed were almost dìrectly proportionaì to the number of iterat'ions

needed to arrìve at a solution that satisfied the set convergence l'imits.

Therefore by 1ooking at the number of iterations requ'ired to obtain

a fulìy converged so'ìution for each flow with a range of Reynolds numbers

and us'ing each of the four formulations, the one which is computationalìy

most efficient can eas'ily be selected. l,l'ith th'is ìn mjnd, the runs
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in test series'l specified in Table 5.1(a) for the entrance flow and

5.1(b) for the cavity flow were executed and the number of iterat'ions

and execution t'imes requ'ired by each are listed ìn Table 5.5. For all

formul at'ions and 'i n al I f I ows consi dered, f uì 1 convergence was assumed

to have been attained when the root mean square of the adjustments cal-

culated at the end of each iteratìon, became less than 0.1% of the root

mean square of the newly adjusted nodal values of velocity and pressure.

From Table 5.5 some interesting points about the performance of

the various formulations can be observed. However to fully apprec'iate

these, someth'i ng must be sa'id about the process by wh'ich the sol uti ons

are obtai ned . Si nce the Navi er-Stokes equat'ions, and theref ore the

correspondìng finite element equations are non-l'inear, the Newton-Raphson

iterati ve sol uti on procedure was used to sol ve the resul t'ing equat'ion

system. In order to start th'is procedure, an'in'itial guess ìs required.

The ìn'it'ial guess may be 'identically zero everywhere or it may be any

approximation of the ve'locity and pressure fields be'ing evaluated.

However if the 'initial guess is not sufficiently close to the solution

being sought, either the wrong solutìon'is obtained or a large number

of ì terati ons 'i s requ'ired to obtai n the correct sol utì on or no sol uti on

at all can be found. The degree of non-linearity of the equat'ion system

governs how cl ose the i ni t'ial guess must be to the correct sol ut'ion

before the Newton-Raphson method can be used effect'iveìy to find the

correct solution.

In this study 'it was decided to use an 'initìal guess that is
'ident'ica'ì1y equal to zero everywhere for both the entrance and the cavity

flow probìems. This was done'in order to avoid having to estimate the

veloçity and pressure fìelds for each flow and so that none of the

formulations would be inadvertently advantaged by the fields chosen

to start the solution procedure. Because of this it was ant'icìpated

that 'if the same i ni t'i al guess i s used, as Reyno'ìds numberi ncreases
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Formul atì on
(a) Re

1

200

500

I 000

2000

A

2 (222')

4 (4s6)

5 (s74)

6 (68e)

7 (808)

B

2 Q22)

4 (456)

5 (575 )

6 (6e2)

7 (805)

2 Q23)

4 (456)

5 (576)

6 (6e0)

6+3 *

2 (2?3)

4 (460)

s (578)

6 (6e5)

6+3 *

D

Formul atì on
(b) Re

I

100

400

I 000

2000

2 (738)

3 (ilr3)

6 (2232)

6+3+4 *

l3+5 *

B

2 (740)

3 (rr5)

6 (2236)

6+3+4 *

l3+5 *

c

2 (740)

3 (ilrs)

6 (2237')

6+3+4 *

l3+4+4 **

2 ,744)

3 (ilr7)

6 (2240)

6+3+4 *

I 3+4+ **

DA

Table 5.5 Number of iterat'ions and 'in brackets execution

times for (a) the entrance flow and (b) the cavity flow

at varìous Reynolds numbers for test series l.
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and the dom'inance of the non-linear terms also increases, the correct

solution would become cons'iderabìy more difficult to obtain and even-

tuaìly'impossìble to find. Thìs fact is clear'ly confirmed by the results

given'in Table 5.5 and part'icu'larly by those for the cavìty flow problem.

For both flow prob'lems and for all formulations, it can be observed

that as the Reynolds numbelis'increased, the number of iterations needed

to obtain a fuìly converged solution also 'increases. However, for some

tests carrìed out, a fully converged solutìon was not obta'ined. The

tests in which this occurred are marked in Table 5.5 with either one

or two asterisks. In these cases it was observed that convergence was

taki ng pì ace 'in the f irst two or three 'iterati ons but thereafter the

root mean squared value of the adjustments steadì1y increased rather

than continue decreasìng. It was also found that this occurred only

for flows with the higher Reynolds numbers and more frequently for

formul atì ons C and D. Af ter some cons'iderati on i t was real'ized that

the reason for th'is 'is the increase in non-linearity of the equat'ions

describ'ing these cases. Firstly, the increase'in Reynolds number causes

the rati o of non-l 'inear accel erati on terms to I i near v'i scous terms to

increase and secondly, when formulat'ions C and D are used, the equatìons

contain additional non-linear accelerat'ion terms. As a consequence,

the zero i n'it'i al guess i n these cases, i s no ì onger cl ose enough to

the correct solut'ion for the Newton-Raphson method to guanantee conver-

gence on to the correct solution. The inclusion of the add'itional non-

l'inear accel erat'ion terms i n the equati ons f or f ormul ati ons C and D

therefore clearìy dìsadvantage the computationaì efficìency of these

two f ormul at'ions.

In order to confirm for all cases in which convergence to the

correct solution from a zero initial guess dìd not occur, that the

correct sol uti on can sti I I be obta'i ned i f the 'i n'iti al guess i s cl ose

enough to 'i t, al I tests marked wi th ei ther one or two asteri sks 'i n
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Table 5.5 were rerun using the solut'ion to the same flow but with a

lower Reyno'lds number as the initial guess. For the entrance flow

probìem, ìt can be seen from Table 5.5 that when formulations C and

D are used, convergence on to the correct sol uti on f rom a zero 'ini t'ial

guess fajled to occur only when Reynolds number was equaì to 2000.

By rerunnìng these two tests using the solution evaluated with the same

formul at'ion but at Reynol ds number equal to .l000 as the i nì t'i al guess,

convergence to the correct solution was obtained 'in three iterations

in both cases. The numbers 6+3 that are given in Table 5.5(a) therefore

ìndicate that six ìterat'ions were requ'ired to solve the flow with Rey-

nol ds number equal to I 000 and that a f urther three 'iterat'i ons were

needed to find,the solut'ion at Reynolds number equaì to 2000.

For the cav'ity f I ow probl em the si tuati on i s cons'iderably worse.

Convergence f rom a zero 'i ni t'i al guess was obtai ned f or al I f ormul ati ons

onìy for flows with Reynoìds numbers up to 400. In order to obtain

the solution to the flow with Reynolds number equal to 1000, the solution

to the same flow but with Reynolds number equal to 400 was used. This

initial guess however was still not close enough and ìt was necessary

to firstly solve a flow with Reynolds number equal to 600 starting w'ith

the Reynoìds number equals 400 solution, and then to use th'is as the

starting point to find the solution when Reynolds number equals 1000.

For all formulations an additional three 'iterat'ions were needed to obta'in

the sol uti on at Reynoì ds number equaì s 600 and an addì ti onal four

iterat'ions to obtai n the sol ut'ion at Reynoì ds number equaì s .l000. 
The

numbers in Table 5.5(b) therefore are 6+3+4 for all four formulations.

A difference in the performance of the various formulations was

agaìn observed when the solut'ion to the cavity flow problem with Reyno'lds

number equal to 2000 was attempted. l,lith formulatìons A and B, the

Reynol ds number equal s I 000 sol ut'i on was used as the 'i n'iti al guess and

f ul I convergence was attai ned af ter an add'it'ional f i ve i terat'i ons .



ì 49.

However, when the same init'ial guess was used wìth formulations C and

D, convergence dì d not take pì ace, i ndi cat'i ng that the Reyno'lds number

equals 1000 solutìon'is not sufficiently close to the correct one for

these two f ormul ati ons. The tests 'in whi ch th'is happened are marked

with two asterisks ìn Table 5.5(b). In order to obtain the solution

for these cases an additional run per formulation with Reynoìds number

equals 1500 and starting w'ith the Reynoìds number equaìs .l000 solution

was carried out. The results of these runs were then used as the initìal
guesses for the tests w'ith Reynolds number equal to 2000. However,

al though f ormul at'ion C resul ted i n a converged sol uti on, the Reyno'lds

number equals .l500 solut'ion was still not close enough to the required

one for formulation D. At this point it was dec'ided not to carry out

any further runs for the cav'ity flow using formulat'ion D since the

genera'l behavi our of the vari ous formul ati ons was al ready evi dent.

Thus, except for the above case, solutìons to all flows us'ing each

formul at'ion were eval uated and the total number of iterat'ions requi red

by each recorded in Table 5.5.

From the above discussion and the results in Table 5.5, several

poì nts can be noted. Fi rst'ly, ât I ow and moderate Reyno'l ds numbers

aìl formulations appear to be equalìy efficient in terms of computat'ional

ef f ort needed to obta'i n a sol ut'ion . They al I requi re the same number

of iterations and use almost ident'ical amounts of computer time, the

small increase for formulations B, C and D beìng due to the addìtional

terms having to be evaluated 'in each iteration. Secondìy, as Reynoìds

numberincreases the effic'iency decreases. That 'is, more 'iterations

are needed to find a solution and as a result the computer t'ime requ'ired

increases. This trend ìs disp'layed by all formulat'ions. Third'ìy, and

most 'importantly, s'i nce thi s i s the f i rst i nd'icat'i on that some of the

formulations may not be able to perform as well as the others, at higher

Reyno'lds numbers, formuìations C and D appear to be less versatile than
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formul ati ons A and B, requi ri ng more overal 'l computat'i on t'ime to obtaì n

the same solutìon. Thìs is because they require the init'ial guess to

be much cl oser to the sol ut'i on bei ng sought and consequent'ly need to

have additional runs executed 'in order to achieve this. Thus, aìthough

the above di scussì on does not prove concl us'ively whi ch f ormul atì on 'i s

best, i t does show that f ormul at'ions C and D are cons'iderably di sadvan-

taged by the ì ncl usion of the addi ti onal Çont'i nu'ity terms.

The second criterion that is used to dec'ide which 'is the optimal

formul at'ion 'i s the quaì i ty of the sol ut'ion eval uated, sì nce 'i n addi tì on

to being the most efficient, the optima'l formulation must also be the

one that results in the h'ighest computational accuracy. In order to

determine which formulation'is best able to do this, the solutions

obtai ned i n each of the test runs descrì bed earl ì er i n th'i s sect'ion

are exami ned and compared. Th'is j s done by p'lotti ng a'long certai n

sect'ions, the vari at'ions of the veì oc'ity and pressure f i el ds cal cul ated

for each Reynoìds number and flow probìem and usìng each of the four

forr¡ul atì ons.

For the entrance flow probìern the followìng graphs are pìotted:

the variat'ions of the x component of veì oc'ity aì ong the I i nes V=0.1

and V=0.5 (tfre centreline) and the variation of the pressure aìong the

line V=0.5. The variations of the x component of veìocìty and the

pressure along the l'ine x=0.5 for the cav'ity flow probìem are also

p'lotted. These five sets of graphs are shown in Figures 5.15 to 5.19,

(a) to (e). In each graph the solutions obtained for a given Reynolds

number and us'ing each of the four formulations, are pìotted on the same

set of axes. By doì ng th'is the f ormul at'ion that resul ts ì n the hi ghest

computati onal accuracy can easì ly be f ound. It wì I I be noted that 'in

all graphs, the ìogarìbhnr of the x or y coord'inate ìs used rather than

the x or y coordi nate i tsel f . Thi s mode of presentatì on \^,as chosen

because ìt represents the most convenient way of showìng clearly the
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vari ati ons 'i n the regi ons chosen, espec'i a1 ly where very smal I el ements

are used. if the conventional method of presentatìon had been used,

a loss of information would have occurred since the po'ints on the graphs

corresponding to nodes in these reg'ions would be so close together as

to make them useless for comparìng the various formulation accuracies.

It wi I I al so be noted that the pressure f or the entrance f 'low prob'l em

lis plotted ut TZ Re.p rather than simply p. Thìs was done so that the

same pressure ax'is could be used for all Reynolds numbers, otherwìse

a 0 to 200 scale would have been needed for the Reyno'lds number equaìs

I flow while for the Reynolds number equaìs 2000 flow, a considerably

smaller 0 to 0.2 full scale range would have been requ'ired.

From thg velocity and pressure pìots described above, several

po'ints can be noted. Fìrstly, for the entrance flow probìem, all form-

ul ati ons resul t i n i dent'ical sol ut'ions f or both the vel oci ty and pressure

f i el ds when Reynoì ds numberi s bel ow about 500. The p'l ots are smooth

wi th I 'i i tl e or no spatì aì osci I I ati ons and agree wel I wi th sol ut'ions

previousìy pubììshed. A more precise comparìson with existing known

numerì cal sol uti ons i s made i n Sect'i on 5 .6. Secondly, at h'igher Reyno'lds

numbers and partìcularìy at Re=2000, Iarge ampf itude spat'ial osciIIations

appear ìn the ve'locìty and pressure fields for all formulations. The

severi ty of these osc'i I I at'ions 'i ncreases wi th Reynol ds number so that

at 2000 the maximum amplitudes of oscil lat'ions in the veìoc'ity f ields

produced by formulat'ions A to D are approx'imately 5%, 2%, 8% and 12%

respecti vely of the ful 1y deve'l oped centrel i ne vel oci ty of ì .5. Oscì I I a-

tions in the pressure fields however are not as severe, the maximum

amplitude obtained w'ith formulation D being about 2% of the inlet centre-

ìine pressure. Thirdìy, at all Reynolds numbers considered, formulat'ion

B consistentìy gives the best solution for both the velocity and pressure

fields. The spatìal oscillatìons that do occur are always the least

severe and lie well wìthin the acceptabìe l'im'its, even at Re=2000, which
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i s the maximum val ue cons'idered i n thi s study. Formul at'ions A, C and

D however do not perform as well and at Re=2000, produce osc'illations

that are unacceptabìe. From the analyses of the entrance fìow problem

therefore ìt can be seen that formulat'ion B results in s'ign'ificantìy

h'igher computational accuracy over a considerably larger range of Rey-

nolds numbers. In fact, by examining the rate of increase of oscillation

amp'l i tude as Reynoì ds numbeli ncreases, one can see that f ormul ati on

B would probably give acceptable results at Re=3000 and poss'ibìy even

at 4000 prov'id'ing the 'l ength of the f i ni te el ement mesh i s sui tably

adj u sted

t'li th the cavi ty f ì ow probl em the si tuati on i s sì i ght'ly d'if f erent.

Firstìy, ôt a;ll Reyno'lds numbers considered up to the maximum 2000,

all formulations result ìn ve'loc'ity and pressure varìat'ions that are

smooth w'ith spati a'l osci I I ati on amp'l i tudes never exceed'ing more than

5% of the vel oc'ity and pressure val ues at the centrel 'i ne of the movi ng

wal I . Secondly, when osci I I ati ons do occur, ma'in'ly at Re=2000, f ormul a-

t'ion C produces the ì argest ampì i tudes both 'i n the vel oc'ity and pressure

fields. It should be noted at this po'int that no convergent solution

was obtai ned w'ith f ormul at'ion D at Reynol ds number equaì s 2000. Lastly,

from Figures 5.lB and 5.19, it can be seen that formulation B produces

solutìons that are consi stentìy and s'ign'if icantìy d'ifferent from those

produced by formuìations A, C and D. It can also be seen that at least

for Reynoìds numbers below 400, the solution obtaìned using formulations

A, C and D are ìdent'ical. Above 400 a variety of solutions are obtained,

all w'ith the same basìc shape but dìffering by up to 5% in the velocity

variat'ion around the central eddy and by up to 18% in the pressure

variat'ion near the mov'ing wall. In order to determine the most accurate

formul ati on, a compari son i s made wì th known ex'isti ng numeri cal sol ut'ions.

However, the two most frequently cited publ'ished numerical solutions

that are used for thjs comparison differ so much between themselves
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that a conclusìve choice of the formulation that is best able to solve

the cavity flow prob'lem cannot be made. Nevertheless for the sake of

compl eteness, thì s compari son 'i s sti I I shown i n Secti on 5.6.

In Summary therefore, W€ see that using both criteria, namely

the computat'ional effìciency and computational accuracy to compare the

four formulations, B has proven to be the optìmal one' requiring the

I east total computat'i ona'l eff ort to obtaì n the most acceptabì e sol uti on

over the wi desb range of Reyno'lds numbers . Theref ore f ormul ati on B 'i s

now used in the element comparison and finally in the subsequent three-

d'imensional analyses.

5.5 Results of Eìement Comparìson

During the early part of th'is study it was found that various

finite elements have, in the past, been used to model viscous flow

probìems. It was also found that a whole vaniety of comparisons had

been made to show that one particular element was better than another.

Most of these comparisons were conclus'ive and the results accepted by

a majority of the workers ìn this area. Recentìy, cla'ims that the two-

dimensional e'ight noded Serendipity element is superior to the n'ine

noded Lagrang'ian element and vìce versa have also appeared. However

the proof of one element's superìority over the other has never been

concl usi veìy establ i shed si nce a comparì son of the'i r performance i n

modelì'ing viscous flow problems has'never been made. In order to clarify

th'is contradiction then, at least for the two vìscous flows considered

in this study, the present comparison was undertaken and carried out.

The second reason for carrying out th'is comparison was to observe

the dìfferences'in performance of the e'ight and nine noded elements

when thei r shapes 'i n a f in'ite el ement mesh are e'ither only rectanguì ar

or trapezoìdal as well as rectangular. It was anticipated that when

on'ly rectangu'l ar el ements are used, both el ement types woul d be equal ìy
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capable of modelìing a viscous flow. When trapezoida'l as well as rec-

tangular elements are used however, it Was expected, foì1owìng the

results shown in Appendix D, that the nine noded element would produce

more accurate solutions. For thìs reason, in the previous formulation

compari son, i n whi ch the eì ght noded Serend'ip'ity el ement was used

exclusive'ly, only rectangular elements were incorporated in the meshes,

thus avoiding, hopefuììy, additional problems associated w'ith differences

.in element performance. The present comparison should therefore confìrm

thi s assumpt'ion and val ì date,, the resul ts obta'i ned 'i n the prev'ious sec-

ti on.

In order to keep i n m'ind, as the compari son 'is made, the

differences and similarities between the Serend'ip'ity and Lagrang'ian

el ements , the essent'i al deta'i l s of each wi l l nolv be bri ef ly descri bed

again.T F'irstly and most ìmportantìy, the Lagrangian element is capabìe
/, .,

of reþresentì ng a compl ete I i near pressure as wel I as a compì ete

qtradrati c vel oc'ity vari at'ion i n each coordì nate di recti on . The Seren-

di pi ty el ement, on the other hand, 'i s capab'l e of represent'i ng ì n each

coordi nate d'irect'ion, a compl ete I i near pressure but on'ìy an i ncompì ete

quadrat'ic veloc'ity variation, the highest order term beìng the one

omitted. Secondly,'in two dimens'ions, the Lagrangian element has nine

nodes, eìght of whìch are the same as the eìght of the Serendip'ity

el ement, wh'i 
'le the ni nth i s I ocated at the 'i ntersecti on poì nt of the

two I i nes jo'in'ing the m'idpo'ints of the oppos'ite edges of the el ement.

It shoul d be poi nted out that thi s poi nt does not co'inc'ide wi th the

centro'id of the element when a trapezoidal shape is used. Thirdly'

both the elements are 'isoparametrìc and both are capable of ensuring

cont'inuìty of velocity and pressure across element interfaces. However,

ne'ither can ensure that the first derivatìve of e'ither the veìocity

or pressure w'il I al so be cont'inuous across el ement boundari es.
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In order to determine conclusively which of the two eìements,

i f ei ther, i s the most econom'i cal and whi ch I eads to the best sol ut'i on ,

the same criteria that were used in the formulation comparison can again

be appìied 'in this case. Therefore, the computationaì efficiency can

be simply determìned by examin'ing the amount of computer t'ime and storage

needed to obtain the same solution when each element type is used, and

an estimate of the computationaì accuracy can be obtained by ìook'ing

at the variations of the veìoc'ity and pressure fields aìong certain

cross-sect'ions. To thi s end, the runs for test seri es 2, set out 'in

Table 5.2(a) for the entrance flow problem and (b) for the cavìty flow

probìem, were carried out and the results, detailed below, obtained.

Tabl e 5 .,6 shows the number of i terati ons and, 'i n brackets, the

execution times for each run, while Table 5.7 gìves the average execut'ion

time per iteration and the computer storage requ'ired by each mesh in

the four parts of the test series. It should be noted that unlìke the

formulat'ion comparison in which alI formulations required the same

arnount of computer storage, ìn th'is comparison the nine noded element

needs additional storage both to hold the sìightìy ìonger computer

program and to run the prob'lems. Consequentìy, both the execut'ion times

as well as the computer storage requirements should be kept in m'ind

when the more efficìent element is selected. It should also be pointed

out that the same convergence criterion that was used for the formula-

ti on compari son test runs 'i s al so used 'i n thi s test series and that

formulation B, the most effìcient and accurate of the four considered

i n the previ ous sect'ion, i s used 'i n al I runs.

From Tables 5.6 and 5.7 the following points can be noted. First'ly,

the same number of iterati ons 'i s requ'ired to obtai n a f ul ìy converged

solution regard'less of which element type is used. This is true for

all tests with the exception of a few in which it appears that when

the nine noded element is used, an additional iteratìon'is needed to
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(a) BNE 9NE

Re

l

200

500

I 000

2000

2 (222)

4 (456)

5 (s75)

6 (6e2)

7 (805)

2 (r6r)

4 (332)

s (4r7)

6 (505)

B (67e)

2 (300)

4 (606)

5 (758)

6 (er2)

7 (r066)

2 (218)

4 (44r )

5 (554)

6 (668)

7 (78r )

ENFLMI ENFLM2ENFLMIENFLMZ I

(b) BNE 9NE

Re

l

100

400

I 000

2000

2 (740)

3 (ilr5)

6 (2236)

6+3+4 *

l3+5 *

2 (42e)

3 (6s3)

6 (r320)

6+3+3 *

I 2+6+3 *

2 (eOe)

4 (r805)

7 (3r7r)

7+3+4 *

l4+5 *

2 (53r )

4 (r06e)

7 (rBBr )

7+3+4 *

l4+5 *

CAVFLI'll CAVFLMICAVFLM2 I cnvrluz

Table 5.6 Number of iterations and 'in brackets execution

times for (a) the entrance flow and (b) the cavity f]ow

at various Reynolds numbers for test series 2.
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9NE 8NE
Mesh

ENFLMI

ENFLM2

CAVFLMI

CAVFLM2

ì t.4. I

83.2

371.4

217 .4

t5t.5

I 10.6

452.9

267.2

66000

63000

I 20500

ì 07t 00

74600

70200

I 361 00

I I 7500

Execution Time

8NE

Computer Storage

9NE

Table 5.7 Average executive time periteration in
central processor seconds and computer storage in

octal words required by each mesh in test series 2.
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arrive at the required solution. However this trend is not suffic'ientìy

pronounced to prove that the nine noded element is less efficient than

the e'ight. In fact, as can be seen from Table 5.6(a) (at Re=2000) in

one of the tests the eight noded element required one iterat'ion more

than the nine noded element. Second'ly, it can be seen that for the

entrance f I ow probì em, the resul ts 'i ndi cate that the zero 'i ni ti al guess

i s suf f i c'ient'ly cl ose to the requ'ired sol ut'ion to enabl e i t to be

evaluated for the whole Reynolds number range considered. However,

with the cavìty flow problem for Reynoìdsnumbers above 400, as was the

case in the formulation comparison, add'itional runs had to be executed

i n order to obtai n an 'i ni ti al guess that was suf f i c'ient'ly cl ose. The

number of addi ti onal 'i teratì ons requi red by these prel ì m'i nary runs i s

shown in Table 5.6(b), the asterisks ìnd'icating the tests for wh'ich

add'iti onal runs were requ'ired. Tabl e 5 .6 ( b ) al so shows that th'i s probl em

was common to both the e'ight and n'i ne noded el ements, 'i nd'icatì ng once

agai n that ne'ither of the two el ements i s sì gn'if i cantìy more computa-

ti onal ly ef f i c'ient.

The thi rd po'int, that can be noted f rom Tabl e 5.7, i s the 'increase

i n computat'ion time periterati on and computer storage requi red when

the ni ne noded el ement ì s used. It had been ant'ic'i pated that these

would'increase because of the greater number of nodes to be treated

and therefore the greater number of equations to be solved. This

i ncrease 'in the number of equat'ions i s a di rect consequence of the

decision to use the same meshes and number of elements for the nine

noded element tests as were used for the eìght noded element tests.

If , on the other hand, 'it had been dec'ided to keep the number of nodes

constant in the various sets of tests, then firstly, new meshes would

have had to be set up for the n'ine noded element, secondly the number

of elements would have been cons'iderabìy ìess in these alternatìve meshes

and th'ird1y, the el ement si ze di str"'ibut'ion 'i n them woul d have been
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sìgnificantly d'ifferent,'introduc'ing additional complicat'ions ìn the

fo'l ì ow'ing computati onaì accuracy compari son. Theref ore 'it was deci ded

to use the same meshes with the same number of elements and to let the

number of nodes increase accord'ingly. However, in order to compare more

fairly the computational efficìency of each element, and in order to

overcome the problem of the variable number of nodes, Tabìe 5.8 is set

up. In thìs table are listed the execution times per iteration per

node and from these values it can be seen that both the eìght and nine

noded elements result'in almost ìdentical values for each of the meshes

used. From this and the points noted above, the on'ly conclusion that

can be drawn is that the Serendipity and Lagrang'ian elements both appear

to be equally. effic'ient in terms of computer requìrements when used

to model two-dimensìonal viscous flows. Nevertheless, ìf a choice must

be made, the Serend'ipity element must be selected, sìmpìy because of

the slightìy shorter and less compìex program required and therefore

the smaller amount of computer storage needed to hold and execute it.

This sav'ing in storage however is still only marginal.

The computatì ona'l accuracy of the e'ight noded Serendi p'ity and

the n'ine noded Lagrang'i an el ements can be compared by exam'ini ng the

veìocity component and pressure variations aìong the same cross-sect'ions

that were used in the formulat'ion comparison. These are the variatjons

of the x component of veìocity along Y=0'l and the centreline Y=0'5

and the variation of pressure along Y=0.5 for the entrance flow problem,

and the variations of the x component of velocity and the pressure both

aìong the centreline x=0.5 for the cavìty flow probìem. The plots of

these variat'ions are gi ven i n F'igures 5.20 to 5.24 (a) to (e ) respect-

'ively. in each graph a logarithmic x or y axis has aga'in been used

for the same reasons described earlier. Also, in each graph the four

solutions obtained with the two meshes and the two element ty.pes are

plotted for each Reyno'lds number, on the same set of axes. In this
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9NE8NEMesh

ENFLMl

ENFLM2

CAVFLMI

CAVFLM2

0. 2l

0.20

0.33

0.3.l

0.22

0. 2l

0.30

0.29
I

Table 5.8 Average execution

time per iteration per node

in central processor seconds.
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v,,ay not only can the performances of the two elements be compared, but

the effects on these performances of changes 'in the mesh confìgurat'ions

can al so be observed. l^l'ith thi s i n m'i nd, f rom F'igures 5 .20-5 .24 the

first and most s'ignìficant fact that can be noted ìs that for any par-

ti cul ar mesh, whethelit conta'ins only rectangul ar el ements or not,

the e'ight noded Serend'ipity and the n'ine noded Lagrangian elements both

result ìn almost identical solutions. Th'is is true for both the entrance

flow and the cavity flow probìems and for the pressure as well as the

velocity fields. It had been claìmed by some previous researchers that

the nine noded element would give improved pressure field solutions.

However,there was no evidence of this in any of the flow cases consìdered

in this companison. In fact, with the entrance flow problem at Reynolds

number equals 2000, both elements produce the same pressure field but

the Lagrangi an el ement resul ts i n a consi derably i nferì or vel oci ty

solution. the osciIIations that occur at Re=2000 in the veloc'ity fields

are consistently worse for the Lagrangian element than they are for

the Serend'ipi ty.

I n add'itì on to the above , the f o'l 1 owì ng po'i nts may al so be noted .

First'ly for the entrance flow problem. At low Reynoìds numbers, up

to 1000 at least, exactìy the same solut'ion is obtained regardìess of

which mesh or element type'is used. This can be seen from Figures 5.20

to 5.22 (a) to (d). For these Reynolds numbers also, no osc'illations

are ev'ident i n ei ther the vel oc'ity or the pressure vari at'i ons . At Rey-

nolds number equals 2000 however, a slight difference in the performance

of the two element types and the two meshes ENFLMI and ENFLM2 becomes

apparent. In the veloc'ity field we see that along the centreline Y=0.5,

the e'ight noded el ement consi stently resul ts 'in a variati on that has

the smallest ampl'itude oscillations. This is equaìly true for both

meshes. Along the line Y=0.1 however, it can be seen that with mesh

ENFLMI, the eight noded element again produces the best solution but



?12.

with mesh ENFLM2, the better results are produced, at least in the up-

stream regi on, when the n'ine noded el ement 'is used. In the downstream

portìon of the entrance flow however, the nine noded element solut'ion

becomes steadi'ìy worse, equaì I ì ng that obta'i ned wi th the ei ght noded

element at the exit. Regarding the pressure fields, little can be said

about them si nce at al I Reynol ds numbers i nc'l ud'i ng 2000, the same

pressure variation is obta'ined with both meshes and with either element

type.

Ì,J'ith the cav'ity f I ow probl em the s'ituatì on i s si m'i I ar but some

of the results obtained were not as expected. That'is, the differences

i n sol ut'ions obta'ined wi th the vari ous meshes and el ement types were

not the same as those observed for the entrance fìow prob'lem. At Rey-

nolds numbers below 400, both element types and both meshes CAVFLMI

and CAVFLMz produce 'identi cal sol ut'ions . Even at Re=1000 the I argest

d'ifference in solutions is never more than 2% of the maximum for the

velocity variat'ion and 4% for the pressure. However at Reynolds number

equa'ls 2000, as can be seen from Figures 5.23 and 5.24 (e), the solutions

obtai ned usì ng mesh CAVFLMI di f f er by as much as 10% 'i n the veì oc'ity

and 17%'in the pressure from those obtaìned with mesh CAVFLM2, regard-

less of which eìement type 'is used. This behaviour in the cav'ity flow

problem was also observed to a lesser extent in the formulation com-

pari son. A possi b'ì e expl anatì on f orit 'i s that the ì arger number of

small elements close to the moving edge in mesh CAVFLMI has the effect

of sl'ightìy ìncreas'ing the fluid stiffness in th'is region at higher

Reynolds numbers, thereby resultìng'in the lower circulatory veìocity

for the eddy that can be seen for mesh CAVFLMI in F'igures 5.23 (d) and

(e). The same expìanation can be used to account for the dìfferences

observed 'i n the f ormul ati on compari son sol ut'ions . There, by ì ntroduci ng

add'itional terms'in the varjous formulations, the total flu'id st'iffness

is slìghtìy changed with the effect of eìther sì'ight'ly'increasìng or
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s'l i ghtìy decreasì ng the eddy veì oci ty. Th j s change i n edd¡z ve'l oc'ity

can then be used to expl ai n the ì arge di f f erences that occuri n the

pressure profììes. Since the eddy circulatory ve'ìoc'ity is sìightìy

different for the various flows, the vortex centre ìs in a slight'ly

different pos'it'ion. As a result the line x=0.5 along whìch the pressure

prof i 'l es are pì otted, 'i s a varyi ng di stance f ro¡r the vortex centre.

Therefore the value of the overalì pressure field along x=0.5 changes

by an amount which is very small when viewed wìth respect to the whole

pressure field, but considerabìy larger when viewed only in relation

to the pressure along x=0.5, since the pressures aìong x=0.5 are

relative'ly very small. Thus a'lthough F'igure 5.24(e) shows as much as

17% difference,'in the pressure variations obtained with the two meshes,

when the whole pressure field is taken into account this d'ifference

becomes negf igi bl e.

The results of this comparison are therefore quite clear. Neither

the e'i ght noded Serendi pì ty nor the ni ne noded Lagrangi an el ement

produces sign'ificantly better results. The eight noded element gives

veì oci ty sol uti ons at h'igher Reynoì ds numbers that can be cons'idered

margìnaììy better but the ìmprovement is on'ly sìight. Therefore, as

a result of this comparison, and tak'ing into account both the computa-

tional effic'iency d'iscussed earl'ier, as well as the qual'ity of solution

produced, i t can onìy be concl uded that the e'ight noded Serendi p'ity

and the nìne noded Lagrang'ian elements are equally capable of modelìing

a steady v'iscous flow. It can also be concluded that the use of non-

rectangu'l ar el ements 'i n the meshes represent'ing such f I ows has neg'l 'igi b'l e

effect on thei r abì'lì ty to accurately represent the f I u'id moti on and

that trapezoidal and genera'l quadrìIateral elements can be confidently

used to vary mesh ref i nements i n reg'i ons of parti cul ali nterest wi thout

I oss of accuracy. Th'i s conf i rms the assumptì on made 'i n Sectì on 5 .4

about the excl us'ive use of the e'ight noded Serendi pi ty el ement 'i n the

formulation comparìson and comp'letely valìdates the results found there.
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5.6 Presentation of Entrance and Cavity Flow Problem Resuìts and Com-

parìson w'ith Other Published Solutions

Thi s secti on has been 'incl uded to compì ete the two-d'imens'ional

analyses. It serves two purposes: firstly, to compare with exist'ing

known solutions the two-dimensional results of the entrance flow and

cavi ty f I ow probì ems obtaì ned u s'i ng the opt'imaì f ormul atì on and el ement

type, thereby verifying that the solut'ions t,hus evaluated are 'in fact

the same as those currently accepted as correct, and secondly, to present

a more compìete set of solutions than is currently avaìlable for both

the entrance and cavity flow problems over a w'ider range of Reynolds

numbers. Although solutions to both these flows have already been

obta'ined and pubìished by other researchers with Reynolds numbers as hìgh

as 2000, the resul ts are rare'ly presented wi th suff i c'ient i nformat'ion

to make them very useful . In th'is section therefore, care has been

taken in the presentatìon of the solutions to ensure that the maximum

usef ul ness can be derived f rom them by f uture workers 'i nvol ved w'ith

these two flows. Also, of the published solutions to the entrance and

cavity f 'low prob'ìems of whìch the author is aware, only a smal I percent-

age have been obta'ined usìng the same approach adopted in this study;

that ìs, the Galerkin finite element solutìon procedure. Most other

workers have used either the fìn'ite d'ifference techn'ique or one of the

other f i n'ite el ement approaches . 0f the f ew us'i ng the Gal erkì n method,

to the author's knowledge none has presented solut'ions to either the

entrance or the cavìty flow probìem with Reyno'ìds numbers h'igher than

400. In th'is section, compìete solut'ions to both the entrance and the

cavity flow problems are set out for Reynolds numbers up to and'includ'ing

2000. All solutìons presented have been obtained using forrnulation

B of the two-cl'imensi onal Navi er-Stokes equat'ions, the e'ight noded Seren-

dipìty 'isoparametric element and the meshes ENFLMI and CAVFLMI incor-

porat'ing only rectangu'ì ar el ements. These meshes were chosen ì n
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preference to ENFLM2 and CAVFLM2 because the solut'ions that are obtained

are evaluated at nodes on a reguìar rectanguìar grid. This enables

the vari atìon of vel oc'ity and pressure a'long speci f ic cross-secti ons

to be pl otted d'irectly wi thout hav'i ng to resort to 'i nterpol at'i on w'ith'in

e'lements, as woul d have been the case had the sol uti ons obta'ined wì th

the I atter two meshes been used.

In order to make the presentat'ion of results as concise and as

useful as possìble, the follow'ing important aspects of the two flows

are exami ned. F'irstìy for the entrance f l ow prob'lem,

(a) the variation of the x component of velocity along V=0.5

and y=0. I ,

(b) the,development ìength to Reynoìds number rat'io,

(c) the veloc'ity profiìes across the channel and the location

and magn'itude of the local maxìma,

(d) the variatìon of pressure along y=0.5 and Y=0.1,

and (e) the excess pressure drop aìong y=0.5, Y=0.2 and Y=0.1,

are cons'i dered at Reynoì ds number equaì s 'l , 200, 500, I 000 and 2000.

For the cav'ity f low probìem,

(a) the varìation of the x component of velocity a'long x=0.5,

(b) the velocity vector field,
(c) the pressure contours,

and (d ) the posi t'i on of the vortex centre w'i I I be consi dered at Rey-

nolds number equaìs 'l , 100, 400, 1000 and 2000. Where they are ava'ilable,

solut'ions calculated by other researchers are p'lotted or tabulated along-

side the results obtained during the present study for both flows.

These are those produced by Mori hara and Cheng (21 ) and Brandt and Gi I I i s

(5) us'ing the finite d'ifference technique and by Hutton et al . (18) us'ing

the fin'ite element method for the entrance flow problem, and those by

Burggraf ( 6) usìng the finite difference techn'ique and by Tuann and

0lson (32) and Bercovìer and Enge]man (3) using the finite element method

for the cavìty flow probìem.
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Consider firstly the entrance flow. The most common'ly considered

aspect of thi s probl em ì s the vari at'i on of the x component of vel oc'ity

al ong the centrel 'ine y=0.5 . The vel oc'ity prof i I e al ong th'i s I ong'itudi nal

secti on i s part'icul arly i mportant because ì t can be used to determ'i ne

the development length of the flow. Since the velocity aìong the ìong-

'itudi nal sect j on y=0 .5 ì s the I ast to attai n 'i ts f u1 ìy devel oped down-

stream value of 1.5; it can be used to estimate the po'int at which the

transverse vel oc'ity prof ì'le becomes exactly paraboì ì c and the f I ow i n

the channel becomes fu1ìy developed. Tradit'ionalìy, it has been assurned

that the fl ow becomes ful ly deveì oped when the centrel'i ne veì oci ty

reaches 99% of its asymptotic value of 1.5. The pos'ition at which this

occurs is labelled x gg% and is more commonìy referred to as the develop-

ment length of the flow. By plottìng the variation of veloc'ity aìong

y=0.5 as is done ìn F'igures 5.25(a)-(e) , xgg% can be determined for

eachReynoì ds number. It w'i I I be noti ced that the hori zontal axi s 'i n

these figures'ìs labelled x/Re. Thìs is usualìy done to eliminate the

dependency of the profìles on Reynoìds number. By doing this it 'is

found that as Reynolds number becomes very I arge, the vani ati on of

velocity along y=0.5 approaches a lìmit and this l'inl'it is very close

to that predicted by Schlichting using boundary'layer theory for large

Reynoì ds numbers. Thi s can eas'i 
'ly be veri f ied by pl ott'i ng the I ongi -

tudinal veloc.ity profiles aìong y=0.5 for the varìous Reynolds numbers

on the same set of axes as that used to plot the profile predicted by

Schl'ichting. Thìs however, has not been done here because a very good

comparison of this type has aìready been done both by Morihara and

Cheng (2,l ) and by Brandt and Gì I l'is (5 ) .

Also 'in F'igures 5.25(b), (c) and (e), a comparìson is made at

Reyno'lds number equals 200, 500 and 2000 with the correspond'ing solutions

obtained by other researchers. In the first two cases agreement 'is

excellent for all values of x/Re. At Re=2000 however, there ìs a slìght
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dìscrepancy between the results of the present work and those computed

by Morihara and Cheng (21 ), but the difference is less than 4%. From

this comparìson it can be concluded that the fin'ite difference and finìte

element methods both produce essentìally the same veloc'ity field when

used to solve the entrance flow problem over a w'ide range of Reynoìds

numbers. It should be pointed out at th'is stage that the work done

by both Morihara and Cheng (21) and Brandt and Gillis (5) was based on

a channel width of 2. Therefore, in order to compare their solutions

with those obtained in this study the horizontal axis of their profiles

lvas scaled down by a factor of 2, thereby halving the true w'idth of

the channel be'ing modelled. The onìy finìte element solution of the

entrance flow,prob'lem that was found was that computed by Hutton et

al. (18). However only Reynolds number equaìs 20 and 200 were considered,

and a comparison at hìgher Reynoìds numbers wìth a solution obta'ìned

using the f in'ite element method could not be made.

By exam'in'ing F'igures 5.25(a) to (e) tne point at whjch the ve'loc'ity

profiles reach 99% of the fuììy developed value can be found. From

these values'it can be seen that the development length xgg%, varìes

from 0.583 at Reynolds number equals I to 77.0 at Reyno'lds number equaìs

2000. Th'i s compares w'ith 0.641 and 85 . 5 computed by Mori hara and Cheng

( 2 I ). Table 5.9(a) gives the development length obtained durìng the

present study as well as those calculated by Morihara and Cheng (21 )

and Brandt and Gillis (5) over the range of Reynolds numbers from I

to 2000. Table 5.9(b) shows the development ìength computed by various

other researchers at the 'large Reynolds number I im'it. The results of

these comparisons show that the development length for 'large, 
medium

and ìow Reynoìds numbers computed in this study are consistently between

5 and 15% lower than those calculated by previous researchers. It should

be remembered when cons'idering these results, that the present study

'is the only one in the comparison in which the finite element method
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22.4
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0.0456

0.0448

Re

I

200

500

I 000

2000

0.583

7.9

I9.5

39.0

77 .0

0.583

0.0395

0.0390

0.0390

0.0385

0.651

9 .04

85.8

0.65ì

0.0452

0.0429

(b) Researcher

Present work (28)

Schl ichtì ng ( 28)

Mori hara et al . ( Zl )

Bodoia et al. (4)

Brandt et al. (5)

*gg%/R"

0.0380

0.0400

0.0423

0.0440

0.0442

Table 5.9 Development lengths at Re=l to 2000 and

at the large Reynolds number limit.
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is used. All the others used the fìnite difference method and either

the boundary layer approxìmation or some other linearization of the

Navier-Stokes equations. This difference 'in solution technique could

theref ore exp'l ai n why the devel opment I ength to Reynoì ds number rat'io

calculated in this study differs from those calculated by the prev'ious

researchers mentioned in Tables 5.9(a) and (b). Also, because the s'lope

of the profì1es is very small 'in the v'icinìty of xgg%, ìarge errors

can easì ìy be 'incurred when determ'i ni ng xgg% especì a'l ìy i f the prof i ì es

contain some small oscillations. A d'ifference of l0% then becomes less

sìgn'ificant when v'iewed in th'is ììght.

The variation of the x component of velocity has also been pìotted

a'long the lo4gitudinal section V=0.1, in F'igures 5.26(a)-(e). From

these figures it can be seen that ut *gg%, the velocity in the x direc-

ti on i s very c'lose to 'its f ul 1y devel oped val ue of 0. 54. Thi s conf i rms

the assumpt'ion that the whole transverse profile of velocity becomes

"acceptabìy" parabolic when the centrelìne velocity reaches I.485 or

99% of its fulìy deveìoped value. The other po'int that should be

commented upon is the fact that for Reynolds numbers equa'l to 500,1000

and 2000, the profiìes shown in Fìgures 5.26(c), (d) and (e) are very

si mi I ar. I n f act, they are 'identi cal except i n the regi on where x/Re

is less than about 0.02. The same thìng was observed in the profiles

a'long J=0.5. Thi s i s agaì n 'in agreement wi th the resul ts of Schl i cht'ing

(28) who concluded that asReynoìds number becomes 'large, for large values

of x/Re the veìoc'ity fìeld approaches a fimìting surface. For smalI

values of x/Re, that 'is close to the I eading edge of f lows w'ith I arge

Reyno'l ds numbers , boundary I ayer theory 'i s not val i d and the 'l i mi ti ng

surf ace predì cted by Sch'l i cht'i ng (28 ) does not appìy. Th'i s 'i s conf i rmed

by the resul ts 'i n F'igures 5 .25 and 5 . 26 whi ch show that f or val ues of

x/Re above 0.02, the profi 1 es approach a I im'i t as Reynol ds number

ìncreases, but for x/Re close to zero, s'ignificant changes in the pro-

files still occur even at Reynoìds number as high as 2000.
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A djscussìon of the entrance flow prob'lem would not be compìete

without ìncluding some mention of the variatìon of the x component of

veloc.ity along various sections across the channel. These transverse

ve'locity profiìes are shown'in F'igures 5.27(a)-(e) for Reynoìds numbers

l, 200, 500, 1000 and 2000, and for x=0.001, 0.002, 0.005, 0.01, 0.02,

0.05, 0.1, 0.2,0.5, 1.0, 2.0,5.0, 10.0, 20.0, 50.0, 100.0 and 200'0'

It will be noted that for small values of x, each profile contains a

I ocal m'inimum on the centrel'ine y=9.5 and a I ocal maximum I ocated cl ose

to each of the two channel walls. The presence of these local maxima

has been reported by every prev'ious researcher ìnvolved with the entrance

flow probìem except those who used some form of boundary layer approxima-

t.ion. As a r;esu'lt, some conf usi on arose as to the true nature of the

entrance flow solutìon. Abarbanel et al. (l ), us'ing the finite dìffer-

ence method to solve.the complete Navìer-Stokes equations, have presented

evi dence i nd'icati ng the strong possì b'i I i ty that the humps are i n f act

an intrinsic part of the exact solution. This therefore indicates that

boundary ì ayer theory 'i s not capabl e of al'lowi ng a true representat'ion

to be made of the flow close to the entrance edge and in the vicinity

of the channel walls. The results of thìs study reinforce this and

d.ispel any suggest'ion that the humps are due to i nherent i nadequac'ies

in the solution techn'ique, be 'it the fin'ite difference or the fìnite

el ement method.

The commonly accepted physicaì expìanatìon for the presence of

these humps close to the walls in the upstream port'ion of the entrance

region is as follows. hlith the flu'id coming to a sudden standstill

at the start of the channel walls, fluid somewhere else must be acceler-

ated in order to conserve mass flow across the entrance section. The

particles of flu'id most lìke'ìy to experience th'is accelerat'ion first

are those closest to the flu'id that has already been stopped. Therefore,

because the flow acceleration does not instantaneously reach the centre-
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line, a local 'increase in the velocity takes place close to the waììs,

and the humps observed ìn the velocity profiles close to the entrance

edge result. Also, because the fluid'is slowed down so rapidìy at the

start of the channel wal I s, 'ì arge I ocal shear stresses and pressune

grad'ients are experienced by the fIuid there. The shear stresses,

directed upstream and towards the centreline, have the effect of slow'ing

down more fluid away from the walls and of pushìng it towards the

centreline. The pressure gradients have a similar effect, accelerating

the dispìaced fluìd downstream and also towards the centreline. The

final result 'is that the local maxima occur further and further away

from the walls as the fluid moves downstream, so that at the end of

the entrance region the two max'ima, one eìther s'ide of the centrel ine,

have merged to produce the s'ingle max'imum of the ful'ly developed para-

bolic profi'le. Table 5.10(a) shows the location of the local maximum

at various transverse sect'ions in the top half of the channel for the

five Reynolds numbers 1,200,500,1000 and 2000. Table 5.10(b) gives

the magnì tudes of these nlax'ima. The posi t'ions and magn'itudes of the

I ocal maxi ma have been cal cul ated by quadrat'i c 'i nterpol ati on al ong the

el ement boundari es co'inci dent w'ith the cross-secti ons concerned. Tabl e

5..l0(c) shows a comparìson of the positions and magn'itudes of the local

maxi ma obtai ned i n th'i s study f or Reynol ds number equa'l s 500 w'ith the

resul ts of Brandt and G'i I I i s (5 ) .

From Table 5.10(b) it can be seen that for each Reynoìds number

the magnitude of the local maxima increases to a peak value, falls

sl'ightìy and then conti nue,s to rì se to i ts max'imum of I .5 at the down-

stream exit. Morihara and Cheng (Zl ) observed that the peak value was

h'ighest at Reynolds number equaìs 200. In this study however it was

found to reach a max'imum val ue of 1 .22 at Reyno'lds number equa'ls 1000.

The comparison of results at Reyno'lds number equaìs 500 shown ìn Table

5.10(c) indicates quìte satisfactory agreement wìth the finite d'ifference
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0.042
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0.112
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0.329

0.399

0.425

0.494

0.497

0.5

Reynoìds number

0.003

0.004

0.007

0.0.l 2

0.01 7

0.034

0.053

0.078

0. 130

0.224

0.323

0.420

0.471

0.494
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0.5

2000I 000500200I
a

x=a

Table 5.10(a) Distance from wall of local maxima at

various cross-sections x=a and for various Reynolds numbers.
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a

Reynol ds number

l.ll9
1.149

I .154

1 .172

1.188

I .179

1 .177

I .163

1.129

1.149

1.182

I .309

l.4ll
1.491

ì.498
1.501

1.5

0.001

0.002

0.005

0.01

0.02

0.05

0..|

0.2

0.5

I

2

5

l0
20

50

t00

200

1.092

1.076

I .090

I .088

1.099

1.093

1.109

1 .214

1.468

I .506

1.5

1.5

1.5

ì.5
1.5

t.5
1.5

1.106

I .123

I .132

1.142

1.169

1.199

l.lB2
1.187

1.166

l.l9l
1.294

1.44]

1.494

1.5

t.5
1.5

1.5

l.l28
t.168
1.186

1.192

1.204

1 .221

1.167

I .158

t.ll4
l.ll4
I .l48
1 .217

t.307
1.417

1.496

1.499

I .502

2000

1 .154

1.169

1 .177

l.l83
1.184

t.145

l.ll0
I ..l28

I .086

1.094

l.l0l
I .128

1.207

1.299

1.452

1.484

I .505

I

x=a

Table 5.10(b) Magn'itude of local max'ima at varìous

cross-sections x=a and for various Reynolds numbers.
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a
Brandt et al . (5 )

1.169

1.163

1.156

I .l5l
I .148

1.142

I .l5l
l .l68
1.189

1.223

1.256
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Present study
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1.1?9
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0.420

t.l82 0.323

x=a

X

v

Table 5.10(c) A comparison of the results obtained during the present

study with those produced by Brandt and Gillis (5) and Reynolds number

equals 500; uc = the centreline velocjty, umax = the maximum veloc'ity
'in the x d'irect'ion along section x=a and yumax = the d'istance from the

the wall at whi.h ,*u* occurs.
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results of Brandt and G'illis (5). The magnitudes of the local max'ima

at the various sections cons'idered show a maximum d'ifference of 2%.

However the locat'ions of the maxima calculated in this study differ

considerabìy from those evaluated by (5). The'ir dìstance from the wall

on any sectìon x=a is consìstent'ly greaterin thìs study than it is

in solut'ions produced by (5). This implies that the local maxima reach

the centrel'ine in a shorter dìstance from the entrance than that

pred'icted by Brandt and Gillis (5), and that consequentìy the develop-

ment ìength 'is shorter. This verifies the results presented earlier

in this section, namely that the development length to Reynolds number

rat'io eval uated i n th'i s study 'i s about 10% I ower than that f ound by

Brandt and Gillis (5).

The variation of pressure along the ìong'itudinal sectìons Y=0.5

and y=0.1 for the five Reynolds numbers considered ìs plotted in Figures

5.28(a) and (b). From these graphs ìt can be seen that the pressure

varies 'l 'inearly aì ong most of the channel w'ith the gradi ents cl ose to

the entrance edge decreasing sl'ightìy for low Reynolds numbers and

increas'ing quite sìgnifìcant'ìy for h'igh Reynoìds numbers. The slope

of the l'inear portion tr -flRe for all Reynolds numbers and corresponds

to the pressure grad'ient exi sti ng i n a f u'l ly devel oped f I ow. The

increase 'in pressure close to the entrance edge and more apparently

cl ose to the wal I s f or hi gher Reynoì ds numbers 'i s produced by the rap'id

slow'ing down of the flu'id in this region and ìs cons'istent with the

development of overshoots 'in the veloc'ity profi'les discussed earlier.

It will also be notìced that for all Reyno'lds numbers considered except

Re=l the pressure gradìents are always negative. The flow with Reynolds

number equals ì has a small reg'ion close to the entrance and on the

centrel i ne i n whi ch adverse pos'it'ive pressure gradi ents deveì op. Th'i s

characterjstic of low Reynoìds number flows was also reported by Morìhara

and Cheng ( 2l) who observed its presence in a flow w'ith Reynolds number

equals 20. Th'is prompted a closer examination of the pressure fields
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for flows with higher Reyno'lds numbers and as expected, regìons of

adverse pressure grad'ients were found in all flows. However the extent

of these zones is greatly reduced at high Reynolds numbers and on'ly

bareìy evident at Re=2000. Also the magnitude of the maximum pos'it'ive

gradients ìs only a small fract'ion of the magnitude of the maximum nega-

t'ive gradients. The reason for the existence of these adverse pressure

gradients has not been satisfactorìly expìaìned, a'lthough Marihara and

Cheng (21 ) suggest that they are probab'ly due to the fact that the inlet

ve'loc'ity profiìe is forced to be uniform. They also suggest that it
is questionable whether in a real flow under steady state conditions

a uniform velocity profììe as spec'ifìed in the boundary conditions can

be mai ntai ned., A sati sf actory answer to thi s questi on w'i I I onìy be

obta'ined when more 'i nf ormati on concerni ng the true nature of the i nl et

ve'loci ty prof il e becomes avai I abl e. Unti I then the assumpt'ion that

the entrance ve'loci ty 'i s uni f orm 'i s the best that can be made w'ith the

information avaì I able.

In order to compare the pressure results of this study with those

of Brandt and G'illis (5), a quantity referred to by them as "the excess

pressure drop" has been evaluated at various sectìons across the channel

and 'is tabulated ìn Table 5.ll (a) for various Reynolds numbers. From

Table 5.ll(b), in which a comparison is made at Reynolds number equa'ls

200 and 500, ìt can be seen that agreement is quite good, the ìargest

d'ifference being 5%. The excess pressure drop is defined by (5 ) as

,l
q(y) = rim{p(o,y) - - Re x - p(x,y¡ }

x*- 
( 

12

and can be consìdered as the difference between the actual pressure

at the end of the entrance reg'ion and the pressure that would have been

there had the pressure varied 'lìnearly from its entrance value with
la sìope of -', Re. q(y) ìs essent'ìa'ìly the pressure distribution needed

at the entrance edge to maìntajn the input flow as spec'ified. The term
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(a) Reynolds number
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(b) Present study Brandt et al. (5 )
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0.389
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Table 5.ll Excess pressure drop for various

Reyno'lds numbers .
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"excess" refers to the fact that the pressure drops at a faster rate
l

than tiRe close to the entrance.

Thì s compl etes the presentati on of the entrance fl ow probl em

sol uti ons.

For the cav'ity f I ow probl em the vari at'ions of the x component

of veìocity along the centreline x=0.5 for Reynolds numbers l, 100,

400, 1000 and 2000 are pl otted i n F'igures 5 . 29 ( a) to (e ) respecti ve'ly.

Where possìble, sim'ilar profì'les produced by Burggraf (6 ) and Bercov'ier

and Engeìman (¡) are also plotted in these fìgures. From thìs comparison

of profÍìes it can be seen that a s'ign'if icant difference exi sts between

the results of th'is study and those of other researchers. At 'low Rey-

nolds numbers,the dìfference 'is least noticeable and agreement between

solutions ìs quite acceptabìe. However as Reynoìds number increases,

the difference between the various profiles also'increases, S0 much

so that at Re=1000, the profì'ìe produced by Bercovier and Engeìman (3)

differs from the one obta'ined in this study by as much as 12% of the

maxi mum movi ng waì 
'ì vel oci ty . I t 'i s 'important to note that the prof i ì es

produced by (3) and (6) also differ signìfìcantly between themselves.

The reason for these di fferences between the varì ous sol ut'i ons i s

d'iff icul t to determi ne. Most ì 'i kely i t ari ses as a consequence of the

different solut'ion techn'iques and mesh point spacings chosen by the

researchers, sìnce these are the only quantit'ies which have varied 'in

the three studies compared. This is supported by the results of the

previ ous f ormul ati on and el ement compari sons 'i n whi ch 'it was observed

that changes in equation formulation and mesh configuratìon both produced

significant changes in the numerical values of the veloc'ity aìong x=0.5.

Because the ìnformation concerning the cavìty flow problem that'is

current'ly available is lim'ited and not conclusive, it is not possible

to determ'ine which solutìon is in fact closest to the exact. Therefore

no further comment wìll be made in this section about the accuracy of

the various solutions compared.
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From the results of the various studies it can be seen that

aìthough the actual values of the x component of veloc'ity along x=0.5

d'if f er qu'ite substant'i aì ìy, the shapes of the prof i I es are very simi 'l ar.

At low Reyno'lds numbers the profiles show that fluid partìcles'at various

dì stances f rom the vortex centre travel w'ith d'iff erent angul ar vel oci ti es.

This means that viscous shear stresses must exist at all points 'in the

f I ow and that the vortex i s essentì a1 
'ly v'i scous i n nature. No boundary

ìayers are discern'ible. At hìgher Reynoìds numbers the central portion

of the correspond'ing prof i 
'le becomes I i near i ndi cati ng that at I east

ì n the vi ci ni ty of the vortex centre al I f I ui d part'ic'l es move wi th the

same angular ve'locìty. As a result there are no vìscous shear stresses

'in this regìon and the core of the vortex ìs inv'iscid in character.

The extent of the i nv'i sc'id core i ncreases wi th Reynol ds number. At

Re=2000 it covers approximateìy 80% of the total cav'ity area. The

renlainderis taken up by the boundary ìayers wh'ich exist on all four

walls and in which are confined all the viscous effects. The nature

of this flow ìs therefore consistent with that of all v'iscous flows.

The viscous effects are aìways confined to re'latively narrow regìons

called boundary layers and the th'ickness of these boundary layers always

decreases as Reynolds number increases.

In order to see more cìearly the shape of the vortex and how it
changes with increas'ing Reynoìds numbers, the veìocity vector field

for each of the five Reyno'lds number flows considered has been plotted

in Figures 5.30(a) to (e). Figure 5.30(a) shows the vortex for the

flow with Reynoìds number equal to l. The vortex centre 'is located

on the centrel'ine and rel at'ively cl ose to the mov'ing wal I . The bul k

of the vortex ìs located 'in the top 70% of the cav'ity and the fluid
'in the lower and bottom corner regìons undergoes reìatìvely little otî

no motìon. As Reynoìds number increases, a sh'ift of the vortex centre

becomes cl ear'ly evì dent, f i rst i n the downstream di rect'ion and then
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tovuards the centre of the cavity. Table 5.12 compares the locatìons

of the vortex centre computed in this study for the five Reynolds numbers

with simìlar results by Bercovier and Engelman (3), Burggraf (6 ) and

Tuann and 0lson (32). The agreement between solutions is quìte accept-

able with the maximum difference being 4%. This indicates that the

vortex centre I ocati on i s much I ess sens'iti ve to the cho'ice of sol uti on

procedure than were the centreline velocity profiles discussed earlier.

The change in shape of the vortex with increasing Reyno'lds numbers is

also clearly visible in Figures 5.30(a) to (e). At low Reynoìds numbers

the vortex is oval in shape, occupying only the upper reg'ions of the

cavity, but by Re='|000'it has become almost circular and extends through-

out the cav'ity.

An ìnteresting feature of the cavity flow is the growth of

secondary vortices in the two bottom corners and the downstream top

corner of the cavity. At low Reyno'lds numbers no secondary eddies were

observed 'in the velocity fìelds calculated in this study. Burggraf

(6) however stated that they should be present at all Reynolds numbers.

Upon cl oser exami nati on of the Re=l f I ow th'is v^ras f ound to be true but

the extent of these secondary eddies was neglìgìble compared to the

size of the main vortex. At Reyno'lds number equals 400 the two bottom

corner vorti ces are cl ear'ìy def i ned and extend to approx'imateìy 5% of

the cavity s'ize on the upstream wall and 30% on the downstream wall.

The thi rd secondary vortex on the top downstream wal I corner onìy appears

at Reynolds number equaìs 2000, at wh'ich value the bottom two eddies

have grown to 15% and 40% respectìve'ly. The presence of these secondary

vort'ices i s the ma'in f actor preventi ng the centre of the ma'in vortex

from reaching the centre of the cavity.

The final set of results that w'ill be presented for the cavìty

flow problem'is the contour plots of the pressure fields. These are

shown 'in F'igures 5.31 (a) to (e) for Reynoìds numbers l, 100, 400' 1000



Re

1

100

400

I 000

2000

Present
Study

( 0. 502,

( 0.609,

( 0.547 ,

( 0.529,

(0.523,

0. 248 )

0. 283 )

0.396 )

0. 432 )

0.444 )

( 0.62 ,

(0.57 ,

( 0. 54,

0.27)

0.39 )

0.44)

(0.6.l,

(0. 56,

0.26 )

0.37)

(0.63,

( 0. 55,

258.

0.28)

0.40)

Bercovi er
et al . (3)

Burggraf
(6)

Tuann et al.
(32T--

Table 5.12 Coordinates of the centre point (!=O)

of the main vortex at various Reynolds numbers.
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Figure 5.31(c) Pressure Contour Plot for Re -- 400.
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Figure 5.31(d) Pressure Contour Plot for Re = 1000.
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Figure 5.31(e) Pressure Contour Plot for Re = 2000.
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and 2000 respect'ively. The pressure contour pìots obtained by other

researchers match those of th'i s study qu'ite sat'i sf actori 1y. Howeveq

the magnitude of the pressure at the vortex centre varies wide'ly between

researchers. The reason for th'is is partìy due to the fact that differ-

ent zero pressure reference po'ints were used. Where the same pressure

datum was adopted, however, the various stud'ies have all still produced

vortex centre pressures that are very different. The pressure results

that have been presented here therefore have not been compared w'ith

any of the other pub'ìished solutions.

Thi s compl etes the presentat'ion of the two-dimens'ional resul ts

and the two-dimensional analyses.
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6. ANALAYSES IN THREE DIMENSIONS

Having compìeted the first two stages of this study, name'ly the

determìnation of the optìmaì finite element formulation of the Navier-

Stokes equat'ions and the determinatìon of the more suitable of the two

quadrì I ateral i soparametrì c el ements consi dered 'i n two di mens'i ons , the

final part of the research was undertaken. This involved the extension

to three dimensì ons, of the fi ndi ngs of the above two-d'imensi onal

analyses, and then an investigation to determìne the suìtabiì'ity of

th'is proposed arrangement for solving a generaì three-dimensional v'iscous

f I ow prob'ì em. Thi s chapteri s used to present and d'iscuss al I aspects

of thìs final stage of the research program. The finite element equa-

t'ions and thè ì soparametric el ement that were used 'in the three-

dimens'ional anaìyses are described in Sect'ion 6.1. Sections 6.2 and

6.3 give full deta'ils of first'ly, the fìow problems considered including

al I mesh conf igurati ons and boundary cond'iti ons used, and second'ly,

the resul ts of the analyses of these probì ems, i ncl ud'ing a d'iscussi on

of the difficulties encountered ìn solv'ing them.

O.t Extension of Two-dimensional Comparisons Results to Three Dìmen-

si ons

In Section 5.4 it was shown that, in two dimensions, formulation

B of the Nav'ier-Stokes equat'ions i s the most eff i ci ent and accurate of

the four formulatìons considered. By assumjng that the four formula-

ti ons have simi I ar characterì sti cs i n three dimens'ions, 'it was dec'ided

to use formulation B of the three-dimensional Navier-Stokes equat'ions

exclusively in th'is final sect'ion of the research. Therefore the finìte

element equations, at element level, that are used 'in the three-

dimensional anaìyses are:
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where

ui

vi

h,i

pi

K'
I

k=l
Nìruik

uik
K'

-r-L
k=l

K'
I

k=l

K"
I

k=l

N ik

*ir Nìt

and pif NiO fori='l , Ne

where N !O and Nìf. are the vel oc'ity and pressure shape f uncti ons at node

k, uik, uìk, w.ik and pir are the unknown nodal values for the x, y and

z components of ve'l oc'ity and the pressure at node k i n el ement ì and

K' and K" are the number of velocity and pressure nodes respect'ively

'in the three-dimensional finite element chosen to represent the three-

dimensional fluid motion.

In Section 5.5'ii vúas shown that the Serend'ipity and Lagrangian

elements are both equal ly su'itable f or the ana'lysi s of two-dimensional

viscous flows. For three-dimensional flows however, it was decided

to use the twenty noded Serendipity element rather than the twenty-seven

noded Lagrangian. This is because it was real'ized that in three d'imen-

sions, the Lagrangian element would need a much larger field length to hold

and execute 'its program than was f ound 'in the two-dinlens'ional analyses.

The reason'is qu'ite sìmple. In two dìmensions the Lagrangian element

has only one add'iti onal i nternal node. At el ement I evel the two veì oc'ity

equat'ions corresponding to th'is node, there being no pressure equation

at an internal node, are el'im'inated us'ing the Gaussian elimination pro-

cedure. The reduced stiffness matrix for a Lagrangian element then

becomes the s ame s ì ze as that f or an 'i denti cal Serendi pi ty e'ì ement ,

that is 20xZC. Consequently, the overall front wjdth of a probìem

is the same regardless of which element is used.
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In three d'imensìons however, the Lagrangian element has six

addi ti onal m'id-f ace nodes and one add'iti onal 'internal node. Correspond-

ing to each of these nodes arethree velocity equat'ions onìy, since there

ìs no pressure equation corresponding to internal or mid-face nodes.

Therefore, at element level the three veloc'ity equations correspond'ing

to the internal node can be reduced out, but the three equations corres-

ponding to each of the six mìd-face nodes must rema'in in the element

equation system. As a consequence,the reduced element stiffness matrix

f or a Lagrangi an el ement remai ns much 'l arger than that f or an 'identi cal

Serendìpity element. In fact, its size is 86x86 compared with 68x68,

an increase of 60%. Also, as a result of not be'ing able to eliminate

the equatìons,corresponding to the m'id-face nodes, the front width of

a problem would also be significantly higher when the Lagrang'ian element

is used. This is 'illustrated by the example ìn Figure 6.1 in wh'ich

is shown a three-dimens'ional mesh with a three element by three element

cross-section. If the twenty noded Serend'ipity element is used the

front wìdth would equal 196 in contrast wìth 244'if the twenty-seven

noded Lagrangian is used. Therefore, s'ince it was antìcipated that

computer storage woul d I im'it the sì ze of f in'ite el ement mesh that can

be employed even w'ith the more efficient program CR3DVF2, the twenty

noded Serend'ipì ty el ement was used excl usi ve'ly i n al I the three-

d'imensional analyses.
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O n odes correspond'i ng to whi ch are three veì oc'ity and one pressure

equat'ions ( same f or both Serend'i pi ty and Lagrang'i an el ements ) .

Twenty two nodes, e'ighty eìght equations.

o nodes corresponding to which are three veloc'ity equatìons onìy

(same for both elements).

Thirty sìx nodes, one hundred and e'ight equations.

x nodes correspondì ng to whi ch are three veì oci ty equat'ions on'ly

(Lagrangì an el ement only) .

Si xteen nodes , f orty ei ght equat'ions .

Figure 6.,l Typicaì Three-dimensional Fìnite Element Mesh.
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6.2 Details of Three-dimensionaì Flow Problems

In th'i s f i nal sect'ion of the research, ôñ attempt was made to

sol ve three di ff erent three-d'imensì onal v'i scous f I ow prob'l ems , each

one reì at'ive'ly more compl ex than the previ ous . The f irst of these

involved the evaluation of the veloc'ity and pressure fields in a fluid

movi ng between two i nfi ni te paral ì el pì ates under the actì on of a

pressure gradìent; that is, the Poiseuille flow in three d'imensions.

This problem was used prìmarily to check and test the operation of the

three-dìmensional computer package CR3DVF2. The actual dìmensionless

probl em that was sol ved was set up by non-d'imens'ional i zi ng the origì nal

probìem us'ing the distance between the pìates, d, and the mean cross-

secti onal ve'ì oCi ty, v . The resul t'ing Reynol ds number i s

pv¿
Re

l.l

Several planes of symmetry were also used to reduce the region to be

anaìysed to the smal I est poss'i b'l e. The dimens'ionl ess f I ow that was

actuaì ìy sol ved extended one unì t 'in the di recti on of the pressure

gradient and half a unit in the other two perpendicular direct'ions.

The second flow prob'lem to be treated was the fuìly deveìoped

f I ow 'i n a duct of arb'itrary cross-sect'ion and movi ng under the act'ion

of a pressure gradient. However, because the geometry of the flow region

had to be defined beforehand in order to construct a fin'ite element

mesh for it, the shape of the duct had to be fixed. The cross-section

that was final'ly selected was square with the width and depth of the

duct both equa'l to a. Symmetry about the vert'ical and hori zontal mi d-

planes was used to reduce the flow region to be ana'lysed to a quarter

of the duct cross-section. The problem was then non-d'imensìonalìzed

by using the width of the duct, a, and the mean cross-sectional ve'loc'ity

i, as the characteristìc length and velocity respect'ive1y. The resuìting

Reyno'lds number is
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pva
ftg =-

p

As with the first f'low problem, the actual dimensìonless flow that was

sol ved extended one uni t 'i n the d'irect'ion of the pressure gradi ent and

half a unìt 'in the other two perpendicular directions.

For both the first and the second flow problem cons'idered, exact

ana'lytìcal solutìons were known and were readily avaìlable. The accuracy

of the numerical solutions obtained in this study for these two prob'lems

could therefore be very easily determined and assessed. The third flow

probì em that was analysed however was consi derab'ly more compl 'icated

than the prev'ious two and did not have a known exact analyt'icaì solution.

It'involved t,he calculatìon of the veloc'ity and pressure fields in a

devel op'i ng f I ow 'i n the entrance regi on of a square duct, wi th wi dth

and depth equal to a. The velocìty d'istribut'ion at the entrance face

was specìfied to be constant and equaì to ü, wh'ile the normal stress

at the exit face was spec'ifìed to be equaì to the outlet pressure wh'ich

was. conven'iently assumed to be un'if ormìy zero. The vel oci ti es at the

entrance and ex'it f aces were f urther constra'i ned so that the f I ui d

entered and left the duct paraììel to its axis. The same p'lanes of

symmetry that were used in the prevìous probìem were again used in this

case and the reg'ion of flow that was to be analysed was reduced to the

same quarter duct. Non-dìmens'ionaì ì z'ing was al so carrì ed out 'in the

same fash'ion and the Reynolds number for this flow was defined as

Püa
Qg=-

u

The actual dimensionless probìem that was solved agaìn extended one

unit in the direct'ion of the duct and half a unit in the other two per-

pendicular directions, with the dimens'ionless ìnlet veloc'ity equalì'ing

one.
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Because an estimate of the requìred development'length for a duct

of this type was not available, it was decided to use a mesh of unìt

length and to start wìth Reynolds number equaì to l. At th'is low value

of Re it was ant'icipated that a length of one would be adequate to enable

the square duct flow to become fully developed by the t'ime ìt reached

the ex'it face. Since the fu1'ly developed velocity profile for a square

duct was also not known, ìt was assumed that the flow became fuì]y

deveì oped when the axi al ve'loc'ity aì ong the axi s of the duct reached

99% of its asymptotic value. Having obtaìned a solut'ion at this Reynolds

nurnber, 'it would then be possibìe to estimate the maximum value of Re

that could be treated w'ith the same un'it 'length mesh.

From th., above di scuss'ion i t can be seen that the reg'ion of f I ow

that'is anaìysed in each of the three probìems is of the same size.

This was arranged so that several d'ifferent meshes could be used to

ana'lyse each of the f I ows wi thout hav'i ng to redef i ne the mesh geometry

or the element and nodal configurations. Fìgure 6.2 shows the five meshes

and the number of elements and nodes that were used to solve the above

f I olv prob'l ems . Meshes Ml , 112, M3 and M4 were used to sol ve the Poi se-

u'il I e f I ow, meshes M3 and M4 v,Jere used to analyse the f u1ìy devel oped

square duct flow and mesh M5 was used to solve the developing flow in

the entrance region of a square duct. The only one of these meshes

that needs any further comment'is M5. In setting up thìs mesh for the

developing duct flow, the same aspects of the flow that were taken

into account when meshes ENFLMI and ENFLMz were constructed for the

two-dimensional entrance flow, were again considered here. AccordinglY,

a th'in ìayer of elements was located at the entrance face and next to

the two lvalls ìn the quarter duct. Th'is arrangement of elements enabled

the un'if orm i nl et vel oci ty prof i 'l e to be spec'if i ed suff ici entìy cl ose

to the start of the duct and allowed the boundary layers which ex'ist

on the duct walls, to be represented as accurately as poss'ibìe. 0nly
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a 3x3x4 element mesh was used for the anaìysìs of the develop'ing duct

flow because any add'itional elements would have made the problem too

ì arge f or i t to be sol ved reì ati veìy qu'ickìy wi th the comput'i ng f aci I -

i t'i es avai I abl e f or thi s study .

It wilì be noted that all five meshes are composed entìreìy of

regu'lar rectangu'lar-sided "brick" elements. Apart from the fact that

this arrangement is the s'implest to set up and the easiest to visualìze,

the mai n reason that on'ly thì s type of el ement was used 'i s because the

Serendipity element interpolat'ion was chosen for the three-dìmensional

analyses. In two dimensions it was found that non-rectangular elements

I ed to smal I but exi stent errors when the Serend'i p'ity el ement was used,

but gave the exact solution when rectangular elements were used. Assum-

i ng the behav'iouri s anal ogous i n three di mensi ons , then because the

Serendì p'ity rather than the Lagrangi an el ement i nterpoì at'ion lvas to

be used, al I meshes were composed ent'ireìy of regul ar rectanguì ar-s'ided

el ements so as to m'i n'im'i ze any error assoc'i ated wi th the i ncompl ete

quadratic velocity interpoìation inherent ìn the Serend'ipity element.

The boundary condìtions that were appl'ied in each of the three

prob'lems regardless of which mesh was used, are shown in detail in Figure

6.3. It wi I I be not'iced that i n al I three cases the pressure 'i s

spec'if ied at one node, it beìng anticipated that th'is i s al I that i s

required to enable the pressure field to be evaluated. With these boun-

dary condit'ions and the fìve finite element meshes, several runs were

carried out and the results of these runs are described and discussed

in the next section.
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Figure 6.3 Boundary Condìt'ions for (a) Poiseuille Flow, (b) Square
Duct Flow and (c) Develop'ing Square Duct Flow.
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6.3 Resuìts of Three-Dimensìonal Analyses

It was anti c'ipated even bef ore the three-dimens'ional work was

commenced that the finjte element anaìys'is of a three-dimens'ional v'iscous

fìow problem would require a considerable amount of t'ime and effort,

both 'i n settì ng up the prob'l em and then i n soì vi ng i t. As a resul t,

the flow problem chosen to check that the three-dimens'ional computer

program CR3DVFz was operati ng sat'isf actori'ly had to be suff i ci entìy

simple to enable the necessary tests to be performed as efficientìy

as poss'ible. The three-dimensional flow problem that was selected for

this purpose was the Po'iseu'ille flow 'in three d'imensions and the f inite

el ement meshes used to sol ve j t were Ml , l'12, M3 and M4 as def i ned 'i n

Sect'ion 6.2 The exact genera'l sol ut'ion to th'i s f I ow i s:

u(x,y,z) - 0

v(x,y,z) = o
dp

w(x,y,z) =-à *u*

dp
p(x,y,z) =Pl**z

y(l -y)

6.2.1

6..2.2

6.2.3

6.2.4and

. dp po-pt
wnere - = 

-
dzL

The values sf p o and p., were defined in the boundary cond'itions as beìng

equaì to 0 and 12 respectìvely, wh'ile the Reynolds number and the length

of channel L were conven'iently chosen as I . The part'icul ar sol uti on

to th'is Po'iseuille flow'is then

u(x,y,z) - 0 6'3'l

v(x,Y,z) = Q 6'3'2

w(x,y,z) = 6y(l-y) 6.3.3

and p(x,y,z) = l2(l-z) 6.3.4

The f oì I ow'ing d'iscussi on gi ves a detai I ed account of the computer

program checks carried out using this flow, the results obta'ined and

any concìusions drawn from them.
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The anaìysis of the Poiseu'ille flow in three dimensions was carried

out systemat'icaì ly start'ing f i rst'ìy wi th the sì ngì e el ement mesh Ml

and finìshing with the lB element mesh M4. The first test,'incorporating

the boundary conditions given in F'igure 6.3(a) successfully evaluated

the required velocity field but produced a pressure field that was

obviously wrong. As a consequence, the computer program was carefulìy

examined in order to find the reason for the erroneous pressure field.

During th'is examination the equation system for the Poiseuille flow

and Ml was printed out and inspected at various stages of its reduction.

It was then that the cause of the errors'in the pressure field became

evident. The computer program proved to be operating correctly, but

the equatìon gystem it was trying to solve was unexpectedly found to

be si ngul ar; that i s, 'it conta'ined equati ons that were composed enti rely

of other equat'i ons 'i n the same system. The boundary condi ti ons were

then immediately rechecked to ensure that they were sufficient to

uniquely define the fIow and to prevent any "free-body" variations

appearing ìn the solutions. Having verifìed that the boundary condit'ions

were adequate, the equation system was then solved manualìy. In so

doing ìt was discovered that the redundancy in the equat'ion system was

brought about prìmarily by the fact that the pressure equations, derived

from the equation of Cont'inuity, have no pressure dependence. From Figure

6.4(a) which shows a typical 'layout of the matrix of elementcoefficients

of the f in'ite element equatìons for a general viscous flow, it can be

seen that the bottom ri ght hand submatrix D 'is composed ent'ire'ly of

zeros. If the number of velocity equat'ions corresponding to unknown

nodal ve]ocity components is a, and the number of pressure equations

'is b, then a un'ique sol uti on to th'i s equat'ion system exi sts onìy 'if

a ) b. In the first test run the number of velocìty and pressure equa-

ti ons was 12 and 7 respecti vely. Theref ore a un'ique sol ut'ion shoul d

have been found. However, upon closer exam'ination of the equation system
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it was observed that the pressure coefficients in the velocity equations,

that 'is submatrix B, had a rank of 6 'instead of the expected 7. This

meant that of the 12 veì oci ty equat'ions, si x had 'l i nearly dependent

pressure coeff icients that could be reduced to zero by su'itable equat'ion

man'ipu'lat'ion. Figure 6.4(b) shows the orig'ina'l and the modified equat'ion

system ìayout and c'learly demonstrates why the system of equations for

the first test run was not uniquely solvable.

Hav'ing located the probìem, an attempt was made to expìain it.

However, because of the compì ex'ity of the equat'ion system, even f or

only one element, a precise explanation was not found. The most lìkeìy

reason, and th'is was confirmed by subsequent test runs, was the coarse-

ness of the mesh used to ana'lyse the f I ow. Because only one el ement

was used in mesh Ml, the ratio of pressure to veìocity equations is

high, causing submatriX D, as shown 'in Figure 6.4(a) to occupy an

unusuaì1y ìarge portìon of the overall matrix of coefficients. As the

mesh is refined and more and more elements are ìncorporated in it how-

ever, the rat'io of pressure to veì oci ty equat'ions drops . For meshes

Ml to M4 the rat'io changes from 0.583 to 0.500 to 0.292 to 0.237 . The

ììkelihood that the rank of submatrix B (axb) is less than b, the number

of pressure equations, is therefore greatly reduced by increasing the

number of el ements 'i n the mesh. That i s, the I 'ikel i hood of the overal I

equati on system be'ing si nguì ar i s reduced by 'increas'ing the mesh ref ì ne-

ment.

Before the second test run was attempted, it was decided to check

whether the s'inguìar equation system of test run one did in fact have

the requ'ired veìoc'ity and pressure f ields as one of its infin'ite number

of sol ut'ions . I n order to do th'i s i t was necessary to remove the

s'ingu'l arity f rom the equati on system. Thi s coul d be done i n e'ither

of two ways. The fì rst i nvol ved i ntroduc'i ng i nto the system an

add'it'i onal equat'i on correspondi ng to one of the zero spec'if i ed vari abl es .
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However, this could onìy be done where sufficient informatìon about

the surface stress state of the flow in the vicin'ity of the proposed

varì abl e was avai I abl e to enabl e the eval uat'ion of ì ts equat'ion' s ri ght

hand side surface ìntegraìs. Fortunate'ly, with the Poìseuille flow

the surface stresses at any poì nt are easi ly cal cul ated and the

addi t'ional equat'ion can be i ntroduced w'ithout too much di ff i cu'ìty.

t,lith a more complex flow problem, however, this approach m'ight not have

been so eas'i1y impl emented. By i ntroduci ng an addi tì onal equat'ion the

rank of submatrix B'is'increased by one, the ratio of pressure to vel-

ocity equatìons is reduced and the equat'ion system made solvable. It

should also be noted that ìt is possible that the new êquat'ion also

has I ì nearìy dependent pressure coef f i ci ents , 'i n wh'ich case the rank

of B does not change and the equat'ion system rema'ins singular.
' 
The al ternat'ive method of removi ng the s'ingul ari ty f rom the equa-

ti on system i nvol ved el 'imi nat'i ng one of the redundant equati ons by

spec'ify'i ng 'i n the boundary condi ti ons the val ue of the varì abl e ì t

corresponds to. If one of the veloc'ity equations was eliminated it

woul d be necessary to spec'ify the val ue of the correspond'ing nodal

velocity component. If on the other hand, one of the pressure equations

was elìminated, the pressure would have to be specifìed at more than

the one po'int needed to define the pressure datum. It should be noted tha'"

if a veloc'ity equatìon ìs elimìnated, the rank of submatrix B does not

change and the equation system remaìns sìngular. However, 'if a pressure

equat'ion'is eliminated, although the rank of B still does not increase,

the value that it should have for the equation system to be solvable

is reduced to the required value. Also, by eìiminat'ing a pressure equa-

t'ion the rat'io of pressure to vel oc'ity equati ons i s decreased, where -

as if a velocìty equatìon had been eliminated the ratio would have

increased, thereby making the system less f ikeìy to be solvable.
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Therefore to remove the singuìarity from the equation system of

test run one, e'ither an addi ti onal vel oc'ity equati on coul d be 'i ntroduced

or a pressure equation could be eliminated. To verify th'is' both

approaches were tried and both led to the requ'ired exact veìocity and

pressure fields. The Iatter however was much simp'ler to impìement since

it did not necess'itate the evaluation of surfaces stresses in the

v.icinity of the varìables concerned but s'imply the specìficat'ion of

an addi ti onal nodal pressure. The poi nt at wh'ich the addi t'i onal nodal

pressure was specified was found to be'irrelevant and in alI cases the

exact solution resulted. This exercise therefore confirmed that the

equation system for test run one, aìthough singular, had the exact

veìocìty and.pressure fields of the Poiseuille flow as one of ìts

infinite number of solutions.

The second test run f or the Poi seui I I e f I ow used mesh l'12 and

behaved sim1larly to test run one. Usìng the boundary cond'itions exactly

as given in F'igure 6.3(a) the veloc'ity fìeld that was produced was exact

but the pressure field was cons'iderab'ly 'in error. Upon examin'ing the

equation system for th'is test case it was found that, although a solutjon

shoul d have been obta'inabl e si nce the number of veì oc'ity and pressure

equations was 22 and ll respectiveìy, the rank of submatrix B was l0

instead of the required ll; that'is one less than that needed for the

system to be solvable. Therefore as for the first test run, because

the rati o of pressure to vel oci ty equat'ionS was hì gh, 0.5, the equat'ion

system was aga'in singular.

In order to check that thìs second equation system had the required

veì oc'ity and pressure f iel ds as one of i ts i nf i ni te number of sol ut'ions ,

the same techn'iques that had been used for test run one were again

appììed. By spec'ifying the pressure at one additional node the solution

obta1ned had the exact velocity and the exact pressure fields. The

poi nt at whi ch the addi'ui onal nodal pressure was specì f i ed was aga'i n
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found to be'irrelevant. The exact solution was also obtained when either

of several zero specìfied veìocity components were released provided

suff i ci ent 'i nf ormat'ion about the surf ace stresses 'i n the vì c'in'ity of

these variables was suppìied to the program. Both these approaches

confìrmed that the equation system for the second test run also con-

tained the exact velocìty and pressure fields of the Poiseu'ille flow

as one of its 'infinite number of solutions.

Unlike the first two test runs for the Poiseuille flow, the th'ird

usìng mesh M3 and the fourth with M4 and both incorporat'ing the boundary

conditions exactìy as defined in Figure 6.3(a), both produced the exact

Poiseuille flow veloc'ity and pressure fields without requìr'ing the

addi ti onal pressure spec'if icati on. For the thi rd test the rat'io of

pressure to veìocity equations was 0.292 while for the fourth test it
was 0.237. This result therefore confirmed what had been suggested

ear'lier, nameìy that provided the number of veìocìty equations in the

overal ì equatì on system f or a gì ven f 'low prob'ì em 'i s suff i ci ently 'l arger

than the number of pressure equations, then the system should have a

uni que sol ut'ion and that sol ut'ion shoul d be obtai nabl e us'i ng a Gaussì an

reduction and elimination procedure.

Because the Poiseuille flow has no transverse velocìty components

and because the ì ong'itud'inal deri vati ve of the axi al vel oc'ity component

'is zero, the equat'ions governìng this flow are linear; that is, the

accel erati on or i nert'i a terms are 'identi cal ly equal to zero everywhere.

As a resul t, on'ly the f irst i terati on was requ'ired i n each of the f our

test runs f or thi s f I ow. The coinputer storage and the execut'ion times

requ'ired by CR3DVF2 to carry out thì s one i terat'ion i n each of the f our

tests lrave been listed in Table 6.1. Also g'iven in th'is table are the

front widths, the. execution times per node and the actual phys'ical

computer time that the execution of each of these tests required. The

unusual 1y h'igh val ues of phys'ica'l computer time occur as a resul t of
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No. of elements

No. of nodes

Field length
(octal words)

Execution time
(CP seconds)

Front w'idth

Executi on t'ime
per node

Phys'ica1 time
(mi nutes )

I

20

72, ooog

28.1

68

l.4l

9 .68

2

32

72,700g

55.0

68

r.72

20.0

B

BI

74,300

203

112

2.51

54.3

l8
152

lll,400

459

176

3.02

lì0

B 8

Table 6.1 Details of the four test runs on

the three-dimensional Poiseuille flow.

Mesh M4M3t42M]



the in and out of core solution techn'ique incorporated in CR3DVF2 and

essent i al i f equati on systems w'ith even moderate f ront w'idths are to

be sol ved. S'i nce the transf er of i nf ormat'ion f rom d'i sc to core and

from core to di sc 'i s essenti a'l ìy carri ed out by peripheraì processors,

the construction of the Front solver as it is in CR3DVF2 makes this

program very peripheral processor orientated requiring relat'ively smalI

amounts of central processor time but qu'ite substantìal amounts

of physì cal mach'ine time.

By the time the four test runs on the Poiseuille flow were com-

pleted, most of the errors in the program had been corrected. The

program was then ready for testing on a more comp'lex problem. The second

three-d'imensi onal vi scous f I ow probl em to be treated 'in thi s study was

the f ul ly deveì oped f I ow 'i n a square duct. The exact general sol ut'ion

to the fully developed flow in a rectangular duct with a width to depth

rati o of r accordi ng to Whi te ( 34 ) 'i s :

u(x,y,z) = 0 6.4.1

v(x,y,z) = Q 6.4.2

(-l )

j -l-2-
4dP@

= --Re- I
lt3 dz i=],3,5 .i3

6 .4.3
cosh in(y-å)

w(x,y, z )
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6.4.4

l-
cosh lIr

2

dp
and p(x,y,z) =pl**

-ì

I cos in{x - å) |{

z

dp
¡¡þg¡s -dz

Po-Pl
L

The values of po and p., were defined in the boundary condit'ions as be'ing

equa'l to 0 and l0 respect'iveìy, while the Reynolds number and the length

of duct L were convenientìy chosen as l. Since the duct was square,

r was also equaì to l. The particular solution to th'is duct flow is

therefore:



u(x,y,z) = Q

v(x,y,z) = 0

40@
w(x,y,z) =- I

II3 i=l,3r5

cosh i n(y-å )

I cos ìn(x-¡¡

( -l )

i -l-T
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6.5. l

6.5.2

6.s.3
t I

l- ]II
?

cos h

and p(x,y,z) = l0(l-z) 6'5'4

Figure 6.5 shows the numerical values of w(x,y,z) over a quarter duct

cross-section at values of x and y spaced 0.1 apart. The meshes used

to anaìyse the fully developed square duct flow were M3 and M4. Meshes

Ml and MZ were not used because in both these cases the boundary con-

ditions as shown ìn F'igure 6.3(b) resulted'in an equation system in

which b, the number of pressure equations, exceeded the number of vel-

oc.ity equati ons a. Si nce a un'ique sol uti on cannot be f ound when b> a

these two meshes were not considered.

Hav'ing set up f rom the boundary condi ti ons the necessary 'i nput

data for meshes M3 and M4, the two runs were performed and two numerical

solutions for the fully developed square duct flow were obtained. When

these solutjons were ìnspected, however,'it was observed that a situation

s.imi I ar to that whi ch had occurred w'i th the f i rst two test runs f or

the po'iseuille flow had aga'in developed. In both cases the veloc'ity

field that was obtained gave excellent agreement wìth the exact solution

but the pressure fìeld was obv'iousìy wrong. It was therefore antici-

pated that the equat'ion systems in both cases were singular. Because

of the large number of variables'involved'in these runs'it was impossìbìe

to examìne the two equat'ion systems manually as was done with the Pois-

euille flow. Therefore to check if some of the equat'ions in these

systems were redundant, it was decided to rerun the two tests and at

each reducti on step, to print out the el'imi nat'ion equatì on's I ead'ing

{
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40æ
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diagonal coefficient and 'its right hand side. This was done because

if any of the equatìons in either system were redundant after a fin'ite

number of reduct'ion steps, alI the coefficients in these equations would

be reduced to zero. Actual'ly, they would remain very small numbers

because of round-off errors in the computer. Nevertheless, because

the computer program CR3DVF2 had been written to select the equation

wi th the ì argest magni tude I ead'ing di agona'l coef f i ci ent at each reducti on

step, al I redundant equat'ions wi th the very smal I 'leadi ng di agonal co-

efficìents would remain in the system until the end of the reduction

procedure. Therefore by prìnting out the ìeading diagonal coefficients

and the right hand s'ides, the presence of any redundant equatìons could

eas'ily -be detected simpìy by 'looking at the last few values prìnted

out. When th'is was done with the two duct flow runs 'it was found that

'in both cases the I ast coeff ic'ient was of the order of I0-.l8 wh'i I e al I

the prevì ous coeff i c'ients were of the order of I 0-7 or greater. Th'i s

proved that one equatìon in both systems was redundant and explained

why the pressure fields produced by the two runs were wrong. However

'it d'isproved what had been found prev'iously wìth the Poìseuille flow.

The first step taken in an attempt to understand the reason for

thi s pecu'l 'i ar behav'i our was to check and see ì f by el i m'i natì ng the one

redundant pressure equati on, the correct pressure fi el d coul d be

obta'ined . To do th'i s the pressure was spec'if ì ed at one add'iti onal po'i nt

in both meshes and the two tests rerun. Both tests then produced the

requ'ired pressure field as well as the correct velocity field. This

conf ì rmed that the equat'ion systems had the requi red ve'loci ty and

pressure fields as one of the'ir many solutions.

Several other reruns of these two tests were also carried out,

each one wi th a d'if f erent pa'ir of poi nts at whi ch the pressure was

spec'ified. From these runs it was found that the correct pressure field

resulted when the pressure was specified at po'ints on opposite ends
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of the duct, but when the two po'ints at wh'ich the pnessure was specìfied

were on the same end, that is either on the inlet face or on the exit

face, the pressure field produced was 'in error. This further confused

rather than clarified the situation, and it now appeared that knowledge

of the pressure gradient was necessary before the correct pressure field

could be evaluated. This therefore suggested that the two equat'ion systems

were singuìar, not because of the approxìmatìons'involved in the fin'ite

element modellìng of such three-dìmensional flows, but because sufficient

information regarding the pressure grad'ients as well as the pressure

had not been supplied to the program. Conclusive proof for this however

was not found. Therefore, despìte numerous attempts to explain why

the addit'ional, pressure information was needed, a satisfactory reason

could not be found. As a consequence,ìt was decided to leave this flow

probl em and proceed to the I ast of the three-dì mens'ional v'i scous f I ow

probì ems . However bef ore thi s i s done, the ve'loci ty f i el ds obta'i ned

wi th meshes M3 and M4 and the addi ti onal pressure 'i nf ormat'ion are com-

pared with the exact solution for a square duct. Figure 6.6 shows the

values of w(x,y,z), both calculated and exact. Since both meshes

produced the exact x and y components of velocity, name'ly u(x,y,z) =

v(x,y,z) = 0, and the exact pressure field p(x,y,z) = l0(l-z), these

have not been tabulated.

one po'i nt that shoul d be made bef ore commenci ng the di scuss'ion

of the thìrd three-dimens'ional flow problem, concerns both the Poiseuille

flow and the fu'l'ly developed duct flow. For these flows the x and y

components of ve'loci ty are zero. Consequently the Cont'inuì ty equat'ion

and the momentum equations for the three directìons are

ap

AX

=0 6.6.1
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These indicate that the pressure is a function on'ly of z. Further,

since w does not vary with z it follows that the veìocity and pressure

fields can be evaluated 'independentìy of each other. For this reason

when the equat'ion systems for the Poiseuille flow and the duct flow

were singular, the velocity fie'lds that resulted were not wrong as were

the pressure fields. That ìs, the fact that the pressure fields were

'in error did not necessari'ly imply that the resuìting ve'loc'ity fields

would also be wrong.

F'inalìy, as with the Poìseuille flow the governing equatìons for

the fulìy deveìoped square duct flow are l'inear. Therefore onìy the

first'iteration was needed in all runs. The execution details for these

runs were ident'ical to those for the Po'iseuille flow and can be

found in Table 6.1 .

The last three-dìmens'ional viscous flow problem that was con-

sidered 'in this study 'is the developing flow ìn the entrance region

of a square duct. This probìem does not have a known exact analyt'ica1

solution and to the best of the author's knowìedge has not prevìously

been solved numericalìy using the finite element method. It has however

received considerable attention from researchers, ìnitially using approx-

imate linearization methods to sìmplìfy the equat'ions of mot'ion and

more recently usìng the finite difference method to solve one of the

many proposed simp'lfied forns of the non-linear Navier-Stokes equations.

Han (15) used the ììneary boundary ìayer approximat'ion to evaluate the

(
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axial velocìty and pressure fields downstream of an initìal entry reg'ion.

The square duct flow and the flow between two infinite paralìeì plates

were two ì im'it'ing cases treated. More recent i nvest'igati ons such as

those by Carlson and Hornbeck (7) and by Rub'in et al. (27), have centred

on the numeri cal sol uti ons to the f i n'ite d'if f erence representati ons

of the equations of motion ìncìuding some of the non-linear terms.

Invari ably however, i n al I studi es exami ned to date, some form of

approx'imat'ion has aìways been used in setting up the governìng equat'ions

and, as far as the author can ascerta'in, this study is the first in

whi ch an attempt has been made to sol ve the cievel op'i ng f I ow i n a square

duct us'ing the comp'lete Navi er-Stokes equat'ions.

Apart from theoretical and numerical modelling, the only other

approach available for the invest'igation of a viscous flow is by experi-

ment. However, because of the d'if f i cul tì es 'i nvol ved 'i n measuri ng f I ui d

velocities'in a real flow, experìmental data on most flows is usually

very scarce. Nevertheless, Goldstein and Kreid (.l4) were able to measure

precise'ly the fluid velocity in the entrance region and ìn the fully

deveìoped regìon of a square duct. As a consequence, in the past the'ir

results have often been used as the bas'is of companisons to determine

the accuracy of various numerical solut'ions.

The ana'lysi s of the devel opi ng duct f I ow was carri ed out us'ing

the boundary cond'it'ions exactìy as shown in Figure 6.3(c) and with a

specia'l mesh M5 constructed w'ith additional elements close to the walls

and the inlet face. However, because this study was concerned primariìy

w'ith check'ing the su'itabiì'ity of the Galerkin finìte element method

as i t appl 'ies to the sol ut'i on of three-di mens'i onal vi scous f 1ow probì ems

as opposed to actually anaìysing in detaiì a particular three-dimens'ional

flow, mesh 145 was kept sufficientìy s'impìe and relat'ive'ly coarse to

enable several test runs to be carried out without excessive stra'in

on the computing facjlities avaìlable for this study. As a result niesh
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M5 was composed of 36 elements and 264 nodes. It had a min'imum front

width of 196 and required 126,000g words of central memory and 900 cen-

tra'l processor seconds per ìteratìon to arrive at a solutìon. In order

to keep the number of iterations to a minimum, the Reynolds number was

chosen as one. The flow correspondìng to this value was found, from

prev'ious work , to requi re a devel opment ì ength of approxìmate'ly 0.75 .

Therefore mesh M5, with an overall ìength of 1.01, was quite adequate

for anaìysing this flow.

As wìth the two-dimens'ional entrance flow, the development length

for a square duct was defined as the d'istance from the start of the

duct to the po'int at whi ch the ax'i al vel oci ty component on the centre-

line reached 9,9% of its ful'ly developed value. In order to calculate

the theoretical value of thìs fu'lly developed centrel'ine ve'locity, it

was necessary to use equatìon 6.5.3 which gives the exact variat'ion

of the fuì'ìy deveìoped ax'ial veìocity surface over the duct cross-

sect'ional area f or a pressure grad'ient j| equa'l to -10. By 'integrat'ing

this ax'ial ve'locìty variat'ion over the area of the duct cross-section,

a nett mass flux of 0.3515 was obtained. S'ince for the developìng duct

flow probìem the nett mass flux prescribed at the'inlet face was l,
downstream of the point at wh'ich the flow first becomes fully deveìoped,

by the law of conservation of mass, the nett mass flux must also be

l. Therefore the pressure gradient ìn th'is region must be

I
( -10) = -28.45

and the fully deveìoped centreline veìoc'ity must, by equation 6.5.3

be

-28.45
0.7367 = 2.096

-10

Therefore the duct

centrel ì ne ve'locì ty

-28.45.

0.351 5

f I ow can be cons'idered

reaches 2.075 and the

f uì'ly deve'loped when the

pressure grad'ient becomes
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Havi ng comp'l eted the pre'l 'imi nary work, the 'i nput data f or mesh

M5 was set up and the program run. However, because of the ìarge amount

of computi ng t'ime requ'ired by each i terati on, and because i t was des'ir-

abl e to avoi d wastef ul comput'i ng of thi s magn'itude, the program was

terminated after completion of the first'iteration so that the solutìon

coul d be checked . When th'i s was done 'it was f ound that, as wi th the

previous two flows, the veloc'ity field appeared to be correct but the

pressure field was obviousìy wrong. In antic'ipatìon of this happen'ing'

and so that the equat'ion system for the developing duct flow could be

i nvesti gated, during the f i rst run the I ead'ing di agonaì coef f i c'ient

and the ri ght hand si de of the el 'imi nated equat'ion was pri nted out at

each reductìon, step. When these values were examined it was once again

found that one equatìon was redundant and the equation system'indeter-

minate by one degree. The boundary conditions and the input data were

rechecked but by this time, 'it was real'ized that the problem was much.more

fundamental than a si nrpl e overs'i ght 'i n the boundary speci f i cat'ions .

In fact'it was very similar to a problem reported by earlier researchers

'invest'igating the use of mixed or common'interpoìation for the velocity

and pressure variables. Hood and Taylor (16) found that'in certain

circumstances the solutions obta'ined for two-dìmensional viscous flow

problems contained accurate veloc'ity fìe1ds but the associated pressures

were subject to inaccuracies. They then went on to prove, at least

quaìitat'ively, that the probìem was due to the choice of interpolation

for the veloc'ity and pressure variables. More precìseìy, they showed

that the correct pressure field was produced when the pressure inter-

pol at'ion po'lynomi a1 was one degree I ess than that f or the veì ocity.

The arguments they put f orward to support th'i s hol d equal 
'ly 

wel I i n

three dìmens'ions as in two. Therefore, a'lthough no mention was made

of it earlier in this chapter, it was assumed that'in three dimensìons

a pressure ìnterpolat'ion with one degree less than the ve'locity inter-

polation polynom'ial would be preferable to anything else.
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Because of the amount of work i nvol ved i n check'i ng the effect

of a change of interpolation on the pressure solution, th'is line of

invest'igation was not carried any further. In preference it was decided

to try to remove the singularity from the developing duct fìow equat'ion

system and to proceed, ìf possible, to obtain a solutìon. However,

because this flow was ma'intaìned by a spec'if ied inlet flow rather than

by a specì f ì ed pressure grad'ient as were the prev'ious two f I ows , thi s

was not as simpìe as'it first appeared. The fluid stress state r^ras

not known at any of the nodes where a specìfied velocity component could

be released and the pressure was not known at any of the upstream nodes

at wh'ich the additjonal pressure could be spec'if ied. Therefore, w'ithout

additional 'information regarding either the surface stress field or

the pressure f i e'ld, a sol ut'ion to thi s probì em coul d not be obtai ned .

As a last resort it was decided to est'imate the pressure on the

centrel i ne at the i nl et f ace by us'ing the pressure grad'ient cal cul ated

above for a fully deveìoped duct flow, and the excess pressure drop

reported by Carlson and Hornbeck (7). Several runs were then carried

out, each lim'ited to one iteration and wìth the inlet centrel'ine pressure

varying from 28 to 80. From these runs 'it was observed that the

velocity fieìd that resulted was almost totally independent of the value

g'iven to the 'inlet centreline pressure. In fact the veloc'ity field

vvas almost ident'ical to that wh'ich resulted from the s'ingular equat'ion

system. The difference was less than 1% at all nodes. Th'is confirmed

that f or I ow Reynoì ds number f I ovrs i n whi ch the non-l'inear terms are

least important, the veloc'ity and pressure fields are once again almos'"

seperable. Soi¡e interdependence remains holever, due to the existence

of transverse velocity cornponents. The variation of the veloc'ity cornpon-

ent, w(x,y,z) aìong the centrel'ine and plotted in Figure 6.7, g'ives a

development 'length to Reynoìds number ratìo similar to that of prev'ious

researchers. The pressure field that was 'obtained when the additional

pressure was spec'if ied at the i nl et
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centreline also appeared to be almost ìndependent of the ìnlet pressure

val ue spec'if i ed. l^lhen pl otted as ì n Fì gure 6 .8, the pressure al ong the

centrel'ine showed the expected behav'iour with the sìope converging to the

fuììy developed pressure gradient at the outlet. However, ôlthough the

generaì behav'iour of the centrel i ne pressure i s as expected, ì t 'i s

ev'ident from Figure 6.8 that the evaluated pressure field has an erron-

eous osci I ì atory component. Thi s component 'is rel ati ve'ly smal'l al ong the

centreline, but closer to the walls becomes so ìarge that it compìetely

overrides the true pressure variat'ions there. Th'is anomoly was found to

occur both when the equatìon system was singular as well as when the

singu'larìty was removed by specifying an addìtional nodal pressure. This

was contrary to that whi ch had been found earl'ier i n the i nvesti gat'ions

of the Poi seui I I e and the square duct fl ows, and despi te numerous

attempts to overcome 'it, no satisfactory explanat'ion could be arrived at.

During the Iast stages of the writing up of this thes'is however,

some work currentìy being done by Gresho et al. (gg) on spurious pressure

nodes was brought to the author's attent'ion. In th'is work 'it was

reported that pressure behaviour sìmilar to that described above had also

been found in two dimensions when certain elements were used. The

Serendipity and the Lagrangian elements with quadratìc veloc'ity and

I i near pressure mi xed i nterpo'l at'ion were shown to be f ree of such

spuri ous osci I I atory pressure modes 'i n two dì mensi ons but i t was

suggested that th'is woul d not necessari'ly be the case 'in three dimen-

si ons .

Their exp'lanatìon was based on the theory that when the velocity

boundary conditions are incorporated in the fìnite element equation

system, addit'ional constra'ints are imposed on the velocities on the

flow boundary resuìting in one or more redundant equations. The pressure

sol ut'ions obtai ned f rom such redundant equat'i on systems

then contai ned so-cal I ed spuri ous "checkerboard" modes superì mposed
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on the true pressure. By filtering off these unwanted modes or by

suppressing them by additional pressure specifications, the correct

pressure could be evaluated. Unfortunately, because there was insuffic-

ient t'ime to test this theory which appears very feasible, it had to

be left as a suggestion for future research. Nevertheless, the results

of the three-dimensional test runs show that the finite element method

can be used successf u'l 'ly to sol ve a generaì three-dimensi onal vi scous

flow probìem.



CHAPTER 7

SUMMARY, CONCLUSIONS AND RECOMMENDATIONS



301 .

I. SUMMARY, CONCLUSIONS AND RECOMMENDATIONS

Numeri cal sol uti ons for the Navi er-Stokes equati ons governì ng

both two- and three-dimensi onal vi scous fl ows have been obtai ned.

The equat'i ons were expressed i n terms of the primì ti ve vari abl es

veìocity and pressure, and the method emp'loyed to solve them was the

finite element procedure incorporating the Galerkin method as the

appropriate weighted residual technique. The Newton-Raphson iterative

method and the Frontal Solution technique, built 'into four computer

programs, were used to solve the resuìting system of non-linear s'imul-

taneous equat'ions.

¡¡i thi n the context of the two-di mensi onal pri m'i ti ve vari abl es

approach, four related versions of the Navier-Stokes equations were

formulated, each version inc'luding a differing number of terms contaìn-

ing the quant'ity (# - fr1. Certain of these terms, historically,

have always been eliminated from the momentum equat'ions by use of

the Continuity equation. In this study, a comparison of the four

formulations was carried out using the solutions for the two-dimens'ional

entrance flow and square cavity flow probìems. It was thereby shown

that aì though none of the formul at'i ons had pronounced advantages,

f ormul ati on B, the most common'ly used by previ ous researchers , l{as

sl i ghtìy more ef f ic'ient both i n terms of computati onal eff ort requ'ired

to obtajn a solution, and'in the quafity of the solution produced.

At low Reynolds numbers all formulations performed equaììy well,

requi ri ng the same number of iterat'ions to obta'in a f uì ly converged

sol ut'ion and al I produci ng 'identi cal numerì cal val ues of vel oci ty

and pressure. At h'igh Reynoìds numbers however, formuìatìons C and

D did not perform as well as the other two. More iterations were

requì red to obta'i n a converged soì ut'i on , the quaì 'ity of the sol ut'ion

1aas not as h'igh and the initìal guess to start the Newton-Raphson
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iterative procedure had to be much closer to the required solut'ion

for convergence to take place. Although formulation A did not produce

as good a qualìty solution as did formulation B, its efficiency was

just as high. However, th'is formulation had the added difficuìty

of having an extra surface integral of velocity grad'ients on the right

hand s'ide of its momentum equat'ions. In th'is study both probìems

solved were such that the evaluation of these surface'integrals could

be avoìded by making use of the boundary conditions. In a generaì

viscous flow problem however, thiS may not always be the case and

it may be necessary to have prior knowledge of the velocìty gradients

on the stress boundarìes of the flow before formulatìon A can be used

to solve it. As a result of the above findings, formulation B was

used in all subsequent two- and three-dimensional work.

In the second part of the two-dimens'ional study the entrance flow

and the cavity flow problems were again used to compare solutions

obtained by f irstly us'ing eìght noded Serend'ipìty and then nine noded

Lagrangi an el ements wi th quadrati c vel oci ty and I i near pressure

representations. The results of this comparìson show that the advan-

tages ga'ined by us'ing the ni ne noded el ement, name'ly a compl ete

quadrati c vel oc'ity i nterpol at'ion, di d not warrant the addi ti onal com-

puter time and space requ'ired to obtaìn solutions that were no better

than those obtained using the eight noded Serend'ipity element with

an i ncomp'ìete vel oc'ity 'i nterpol ati on. Th'i s, 'it was f ound , appl i ed

equaì ìy to any shape quadri I ater"al el ement, rectangu'lar or not. It

was therefore concluded in Chapter 5 that the Serend'ipity element

woul d be the more econom'ical and I ess di ff i cul t to 'incorporate i n

a computer package than the Lagrangian element and that by do'ing so,

no loss of accuracy would result. A more comprehens'ive summary and

discuss'ion of the results and conclus'ions drawn from the two-dimensional
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computer studi es was presented 'i n Sect'ions 5 .5 and 5.6 and wi I I nor

be repeated here.

By extendìng the results of the two-dimensional stud'ies to three

dimens'ions, f ormul ati on B of the three-dimens'ional Nav'ier-Stokes

equat'ions and the three-dimensional twenty noded Serendipity element

b,ere used to model three three-dimensìonal v'iscous flow probìems.

They were the fuììy developed flow between two paral'le1 plates and

in a square duct and the develop'ing flow in a square duct. It was

thereby shown that provi ded a suff ic'i ent'ly 'l arge computer f aci ì i ty

is avaìlab'le, the Galerkin finite element method using primitìve

variables can be employed to solve a general three-dimens'ional steady

viscous flow probìem. However in order to do so, it was found that

addi ti onal pressure boundary cond'iti ons must be spec'if i ed . If thì s

was not done the resuìting equatìon system was shown to be s'inguìar

and a un'ique sol ut'ion not obtaì nabl e. The exact nature of thi s res-

triction was not d'iscovered and must therefore be Iefb for future

research. However it was found that solut'ions could be obtained when

a pressure grad'ient was defined by the pressure boundary conditìons

rather than simply a pressure datum. In all three cases ana'lysed

in Chapter 6, a nodal pressure value at the entry and exit had to

be'included in the input data before the equation system became non

s'ingul ar and sol vabl e.

As was stated ìn Chapter l, the aims of thìs study were fìrstìy

to determine the opt'ima'l two-dimensional fìnite element formulat'ion

of the Nav'ier-Stokes equations, secondly to determine the more efficient

of two quadrilateral linear pressure and quadratìc velocity finite

elements, and thirdly to see whether the results of these invest'iga-

ti ons coul d be extended to three di mens'i ons and used to obta'i n a

solution to a typ'ical three-dimensional viscous flow. The theoretical
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and numerical model deve'loped in Chapters 3 and 4 and the results

and conclusìons drawn from the studies in Chapters 5 and 6, have ful-

filled th'is objective. Th'is is not to say that the task is complete

or that the viscous flow problem is solved. 0n the contrary, much

remains to be gained from future research.

Among the numerous questions that have arisen during the course

of this study and that must be answered before the understanding of

the prìmitive variables finìte element anaìys'is of steady viscous

fìows is complete, are:

(a) whether reduced integration can be used to produce the same

or better results with less computational effort,

(b) whether the use of elements that do not perm'it continuity

of velocity gradients across element interfaces produces stabil'ity,

convergence or other problems when'it ìs assumed'in the assembly process

that the same elements are capable of permitt'ing stress cont'inuity'

(c ) why addi t'ional pressure boundary cond'iti ons are requi red when

the prim'itive variables Galerkin finite element method is used to

solve three-d'imensional viscous flows,

(d) whether the use of higher order elements and interpolations

'i s desi rabl e,

and (e) the development of more efficient solut'ion algorithms for

three-dimensi onal prob'l ems.

It is clear that the finite element anaìysìs of three-dimensional

viscous flows wìll expand with the increased ava'ilab'ility of faster

and larger computers. it 'is therefore hoped that the areas investigated

and the results obtained'in this study wi'll prove useful in the deveìop-

ment of a better technique for the anaìys'is and evaluation of vìscous

flu'id flows.



A

APPENDICES

Derivat'ion of Momentum and Mass Conservation Equations and Stress-

Strain Rate Relationshìp

Three-dìmensional Computer Program Details

Eìement Stiffness, Numerical Values for lxl Element

Soì uti on, of Poi seu'i I I e Fì ow Usi ng E'ight and Ni ne Noded El ements

B

c

D



305.

APPENDIX A

Derivation of Conservation of Momentum Equation

In appìying Newton's second law to fluìd motion, it ìs necessary

to consìder a fixed quantity of fluid matter or system that maintains

i ts i dentì ty as i t undergoes changes i n posi ti on and condi t'i ons 'imposed

on ìt by the surrounding flow. To this end let the surfaces S.t enclose

a quant'ity of moving fluìd at some t'ime t and S, enclose the same system

at a later t'ime, t + ôt. Also let the three regìons defined by the

surfaces S., and S, be V-, , V, and V, as shown in Figure A1 .

If we define lrl' to be the total linear momentum ìn a gìven direc-

tion of the flu'id'in the volume V, then assuming that the flow is steady,

the montentum of the above system ìs My., * MVZ at tìrne ¡ ¿nd MV2 * MV3

at time t + ôt. The change in momenturn during the t'ime of in the gìven

d'irection is therefore My, - tU., which equals the net flov¡ of momentum

out of the surface S.,. Thus the rate of change of momentum in a given

direction of an arbìtrary quantìty of fluid in a steady flow equals

the net rate at wh'ich momentunr f I ows out of the surf ace conta'i ni ng 'it

(any inflow taken as negative outflow).

To facilitate the derivatìon of the momentum equation cons'ider

the steady flow of an incompressible fluid through an element ôxôyôz

centred on a poìnt P with coord'inates (x,y, z) as shown 'in Figure A2'

Let the fluid density (constant for incompressible fluids) be p at all

poìnts in. the flow and at P let the flu'id velocity be v., (x,y,z) ìn

the x i direction (i.e. u, v and w in the x, y and z directions res-

pectìvely) and the stress tensor be oi j (x,y,z). Cons'ider ìn'itia11y

the x d'irecti on. By usi ng Newton' s second I aul of rnoti on one may state

that the rate of change of momentum'in the x direction of the flu'id passìng

through the elernent equaìs the sum of the body and surface forces acting

on the el ement i n the x di rec'b'ion. Then by apply'ing the argurnent

presented above, the rate of change of momentunr in the x d'irection
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of the flu'id in the volume ôx6yôz may be rep'laced by the rate at wh'ich

momentum ìn the x dìrect'ion ìs carried out of the element's surfaces.

Thusn to set up the 'i ncompress'ibl e momentum equati on f or the x di rect'ion

it ìs necessary to derive expressions for the rate of flow of momentum

in the x direct'ion out of the element, and for the sum of the body and

surf ace f orces acti ng on the el ement 'i n the x di rect'ion. Sì nce the

flow is steady these forces are constant with respect to time.

The first of these two express'ions can be set up by considering

the flow through the element in a t'ime ôt. Throughout th'is time, since

the f I ow 'i s assumed to be steady and 'incompressi bl e, at each of the

six faces (l) 1?34, (?) 5678, (3) 4378, (4) 1265, (5) 3267 and (6) 4158,

the momentum p"^r un'it volurne in the x direct'ion ìs:

au

p(u + 
-ay

au ôx
p(u + 

- -)axz
au ôx

p(u - 
- -)axz
au 6y

p(u - - -)ay2
au ôz

p(u - - -)à22

au 6x
-(u - - -) ,

axz
av ôy

-(v - 
--),ay2

AW ôZ
-(w - 

- -).azz

ôy

2
)

âu 62
p(u + 

- -)¿zz

au ôx
(u + 

- -¡,axz

av ôy
(v + 

-- ),
ay2

AW ôZ
(w + --1,azz

Al .l

Similarly, the outward normal velocity at each of the sìx faces'is:

At .2

In the same time rt, the total momentum in the x d'irect'ion flow'ing out

of the element is therefore:



au ôx au ôx
{p(u + 

--)(u 
+ 

--¡ 
6t

ax?axz

au ôy av ôy
+{p(u+--)(v+--) ot

ayZ ayz

au 6z aw ôz
+{p(u+--)(w+--¡ ôt

à22 azz

au ôx au ôx
-p(u - --)(u - --) otÌ ôyôz

ax?axz
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Ar .3

au ôy aV 6y
-p(u - --)(v 

- 
--) 

ôtl ôxôz
ay7 ayz

au ôz aw ôz

-p(u - 
- -)(w 

- 
- -) 

6t) 6xôy
, azZ azz

And simp'l ify'ing becomes:

au au av au
pt(u-+u-) +(u-+v-)

ax ax ay ay

AW au
+(u-+w-))ôxôyôzôt

az az

au au au

=p{(u-+V-+w-)
ax ay az

au av aw
+u(-+-+-)Ìoxoyozot

ax ay az

a u âv.
= p(vi 

- 
+ u J)ôx6yôz 6t Al.4

" ,*j ,*j

Thus the rate at vrh'ich momentum ì n the x di rect'ion i s carri ed out of

the el ement i s:

au av.
o(vr-*u J) ôxôyôz Al .5

" t*j ,*j

The second expression, the sum of the body and surface forces

actìng on the element ìn the x direction, can be set up as follows.

0n each of the six elernent faces the stress tensor component that acts



in the x direction 'is:

309.

Al .6

At .7

âo ôX
4 XX-¡, -(o

axz
âo ôV

* v* -), 
-(o

ay2
âs ôZ

+ zx 
-) 

and -(o
azz

âo 6X
XX

o
XX

(o'yx

xx ax 2

âo ôYyx\

- (o

- (o

yx

yx

ay

âo ôz

2

zx
)( ozx zxazz

\
Where o.,r'is a stress component act'ing at a poìnt in Space in the posìtive

j th di rect'i on and on a pì ane whose normal poi nts i n the posi t'i ve it h

direct'ion. T.he pos'it'ive direction of the nine stress components ìs

shown 'in Figure 43.

The total force acting on the element in the x d'irectìon is there-

fore: '

{(ox

+ {(oyx

+ t(o zx

J

âo 6XXXr+-_,
axz

âo 6V

* Y* -)
ay2

âo ôzzx\+--,
¿22

âo öX
XX

)toye z
XX ax2

âo ôV
YX i)Ì o*ot
ay2

âo ôZ
( - zx 

-)] 
oxoy + oF* exoyoz

zx azz
g

where the last term is the part contributed by the body force per un'it

mass Fr(x,y,z) at point P.

By s'imp'l 'ifyi ng, the total f orce becomes :

âo ðo âo
( xx + YX + zx) ôxôyôz * oFx 6xôyô z

ax ay az

âo.
= JX ôxrsvr\z * oF r\xôvô7 Al .8

"i 
ôxôYôz * oFx ôxôYöz

Thus the genera'l momentum equation for the x direction 'is:

p(v
au av.

-+,.-J) 
6xôyôz

axj .t*j

Ao.
JX ôxôyôz +

ax.
J

I
I
¡

I

I
ì

]

i

!

ioF* ôx 6y ôz
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-1[t*j
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I

ax.
J

au

-+ 
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t*j
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av.
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ttj
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âo.

= JX+pF
t*j
av.

J -cI

t*j
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Al .9. I

Al .9 .2

Al .9.3

Al .ì0

As i s trad'it'iona1 1y done the term , þ 'i s nor,,, set to zero bytj
mak'i ng u se of the steady 

' 'i ncompressì bl e Conti nui ty equat'i on . I n thi s

study however thìs term will be prefixed by a constant C, whose value

is either zero or one depend'ing on whether the term is to be discarded

Ãr retaj ned. Thus the effects of the i ncl us'ion of thi s term can be

investigated by simpìy changìng the value of C, from zero to one.

By apply'ing the same arguments to the y and z d'irecti ons, one

can obtai n the' remai n'i ng two momentuin equat'i on s .

ðo.
Jy = p(v

,*j

âo.
Jz = p(v

a
XJ

ôV,
w J-F

t*j

J 3

J z

The three equatìons for the x, y and z d'irections can now be combined

and expressed 'i n tensor notati on f orm to g'i ve the general steady and

incompressible Navier-Stokes equation.

= p(v c3 ui i)J

av.1*
t*j

av.J-ç
I

ax.
J

Derivation of Conservation of Mass Equation

The law of conservation of mass states that the rate of change

of bhe total mass of a g'iven quanti ty of f I u'id ( system) must be zero

as the system moves within the remainder of the flow. By employìng

technì ques s i m'i I ar to those used ì n the deri vat'i on of the momentutn equa-

ti on, the Cont'inuì ty equat'ion can be set up as f ol I ows. As def ì ned

prevìously, let the surfaces Sl and SZ enclose the same quantìty of
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fluid at tìmes t and t + öt, and let the volumes Vl, V, and V, be the

three regìons bounded by Sl and SZ (see Figure Al). If we define mV

to be the total mass of the fluid in the volume V, then assuming that

the flow ìs steady, the mass of the above system is my., * tvz at time

t and *VZ * rV3 at t'ime t + ot. The change 'in the total mass during

the time ôt is therefore my, - mVl whìch equa'ls the net flow of mass

out of the surface Sl. Thus the rate of change of the mass of an arbit-

rary voìume of flu'id ìn a steady flow equaìs the net rate at whìch mass

flows out of the surface containing it.
Arlexpression for this rate can be derived by considerìng the

steady flow of an'incompressible fluid through the element ôxôy6z des-

crìbed earlìer. and shown in Fìgure A2 in a time ôt. During this time,

at each of the six faces of the element, the outward normal veìocìty

is:

a'u ôx au ôx
(u + 

--¡, 
-(u - --),ax? ax?

av 6y av ôy
(v+--¡, -(v---),

ay7 ayz
âw $2 aw ôz

(w+--¡ and-(w---) .

az7 azZ
Al .il

Since the fluid density is constant, in a time ôt the mass flow'ing out

of the element 'is therefore:
au ð( au ôK

{p(u + - -) ôt - p(u - 
- -) 

ot }oyoz
ax?axz

av ôy av ôy
+ {p(v + 

- -) ot - p(v - - -) 
ot}oxoz

ay7 ayz
aw ôz aw ôz

+ {p(w + 
- -) ot - p(w - - -) ot}oxoz
az7 azZ

Al .12

And simpl i fy'ing, becomes:
au av aw

p(-+-+-) oxoyoz ot
ax ay az

_ruj- p- ôXôyôz otax'i L Al .r3



Thus the rate at which mass is carried out of the element'is:

3t 3.

Ar.14
ÐV=

p rôxôyôz
â*i

By the law of conservat'ion of mass this rate must aìways be zero. The

steady and i ncompressi bl e Cont'i nu'ity equati on ì s theref ore:

ðV=

o 'ôxô¡lôz=o
ax.l

1.e
tui 

= 0 Al.l5

,/ 
t^i

Derivation of Stress Strain-Rate Relationshìp for a Newtonian Fluid

The general

vrho derived

form of the stress tensor o.,, [r/as first suggested by

it on the basis of three assumptions. He assumedStokes

that

(a) tl're flu'id is continuous and that the stress tensoris at most

a linear function of the strain rate,

(b) the flu'id is ìsotrop'ic, that is its properties are'indepen-

dent of d'irect'ion,

and (c) when the strain rate is zero the deformat'ion law must reduce

to the hydrostat'ic pressure condi t'ion ".ij -D ô. .. where o. . i s the' rJ- lJ
Kronecker delta functìon.

The process of internal friction occurs in a fluid only when

adjacent fluid part'icìes rnove w'ith different velocit'ies; that is, when

there is relative motjon betleen them. Therefore oij must be dependent

on'bhe spatiaì derivat,ives of velocìty. If the veìocity gradìents are

srnal I , wê rnay assume that only the f irst ,leri vati ves are i nvol ver.i and

by assumptìon (a) above, that oij is a l.inear function of these first
derivatives. There can be no terms in oij independent of ff ,in..

Jby assumptìon (c) above, o.ij must reduce to the hydrostatic pressure

condi t'ion when the f I ui d veì ocì ty 'i s spatì aì 1y constant. Al so the same
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condìtion must prevaìl when the whole flu'id is in uniform rotat'ion s'ince

it is clear that'in such motion no internal friction occurs'in the fluid.

It can easi'ly be shown that the sum

ev. av.I + J Al ..16

t*j axi

van'ishes when the fluid js in a state of unjform rotat'ion. Accord'ing

to Ref erence 20, the most generaì tensor sat'isfy'ing the above cond'iti on

is
âV.

=a( l+
t*j

where a anci b are ìndependent of the velocity.

use is made of'assumption (b) above.

By cons'ideri ng the shear f I ow between

rel ati ve to each other as shown 'i n Fi gure 44,

that

I n mak'i ng thì s statement,

av. av,J) * b K 0..
;ñ'.0*otr-Poii

o'ij

where u 'is

to the top

defined as

cr,
1J

a = u Al .lB

the property of the fluid which relates the stress applied

pì ate and the vel oc'ity gradi ent produced 'i n the f I uì d , and

At.17

two paral 'le'l pl ates mov'i ng

ìt can easily be verìfied

Al .19

Al .20

oyx
F = au

(-)
ay

The other constant b, is 'independent of È¡ i s usual ly g'iven the symboì

À and ìs customarily called the coeff icient of bulk v'iscos'ity since

it is associated onìy with volume expans'ion. Therefore

av.
=p( I *

,*j
) + xl! o

a*k
.. - D ô..]J ' ]J

av.
J

a*'i

Equat'ion Al .20 as i t stands ì s not 'in an immedi ately usabl e f orm

since ¡, has not been defined. In order to clarify the quantìty ¡, it

i s necessary to exam'i ne more cl osely the pressure vari abl e. By
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definition the pressure ìs the average compressive stress on an element

of f I ui d. Usi ng equat'ion Al . 20 theref ore

pressure
2

p - (r + - u)
3

written as

auk

q Al .21

Thus the pressure in a deformìng fluid is equal to the thermodynam'ic

quantity p only if | = -3-t. 
+ 

= 0. In an ìncompressible flujd the

ì atter i s true and equat'ion Al .20 has only two terms and i s i mmed'i ately

usable. If howeve, $ t, not equaì to zero, as m'ight be the case in
oxk

a fìnite element approxìmation sense, then the probìem can onìy be

resolved by setting I = -3r.
Thus the stress strai n rate rel ati onsh'ip f or th'i s study must be

o u ô 41.22

2

or o'ij = u(vì,j * uj,'i 
ã ', 

oi j uk,k) - p ôij Al '23

where C3, whìch can have the value I or 0, has been included so that

the term 'it prefìxes can be either included if it 'is assumed tfrat $oxk

is not identicaìly equaì to zero everywhere or excluded if it ìs.

, 
tui 

'uj
t*j ari

av,
.. K) - o ô..lJ a*k ' ]J

2--c
3

jI 3
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APPENDIX B

Three-d'imensional Computer Program Detaiìs

Basic flow chart for CR3DVF2
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pRocRAM CR3DVF2 (tNpUt=65 , OUTPUT=65 , TAPE5=INPUT, TAPE6=OUTPUT, TAPE2,
1 TAPE4=O, TAPE2O=0' TAPE21 =0, TAPE3 )

PROGRAM CR3DVF CALCULATES THE VELOCITY AND PRESSURE DISTRIBUTIONS
IN A 3D VISCOUS FLO}I ASSUMING QUADRATIC VELOCITY AND LINEAR
PRESSURE VAR]ATIONS AND USTNG THE 20,NODED ISOPARAI"ÍETRIC ELEMENT
AND THE GALERKIN METHOD OF I.¡EIGHTED RESIDUALS

ALL VARIABLES WILL BE DEFINED IN THE SUBROUTINE IN WHICH THEY
FIRST APPEAR

ENTER COMMON BLOCK HERE

MAXIT = MAXIMUM NUMBER OF ITERATIONS ALLOI'IED
MAXNI.¡ = MAXIMUM SIZE OF PROBLEM TFIAT CAN BE HANDLED BY PROGRAM

MAXSS = MAXIMUM SIZE OF STRUCTURAL STIFFNESS MATRIX AVAILABLE
MAXND = MAXIMUM NUMBER OF EQUATIONS TN CORE AT ONE TIME
MAXNS = MAX]MUM NUMBER OF STRUCTURAL STIFFNESS MATRIX SUBDIVISIONS
MAXLD = MAXIMUM SIZB OF VECTOR LDEST IN PREFNT
MAXNl,l= 150
MAXSS=MAXNW
MAXND=50
MAXLD=128
MAXNS=MAXNW/MAXND
REIIIND 3

LZO=20
L21=21

TAPES 20 AND 21 ARE USED TO HOLD THE TOTAL STRUCTURAL STIFFNESS
MATRIX WHILE IT IS MANIPULATED

RE}TIND L2O
RE}¡IND L21

INPUT DATA FOR PROBLEM

CALL INDAT

CHECK INPUT DATA

CALL CHKPLT

CALCULATE MAXIMUM FRONT }TIDTH FOR PROBLEM

CALL PnEFNT (ADSPL,MAXLD )

INITIALIZE SOLUTION VECTOR

D0 1 I=1,MAXNOD
D0 2 J=1,NVABZ
ADSPL(I,J)=0.0

2 CONTINUE
1 CONTINUE

C ITERATE UNT]L CONVERGENCE IS ACHIEVED

CALL REMARK(3HONE)
D0 3 ITER=1,MAXIT

CALCULATE ELEMENT STIFFNESS MATRICES AND STORE ON TAPE 4

CALL STIFN
ENDFILE 4

c
c
c
c
c
c

c
c

c

c

c

c

c

tl



c
c

3r 9.

INITIALIZE STRUCTURAL STIFFNESS MATRIX AND RIGHT HAND SIDE FORCE
VECTOR

D0 5 J=1,MAXNI,{
D0 6 I=1,MAXND
sS(r,J)=o.o

6 col¡rrNue
SRS(J)=0.0

5 CONTINUE

C INITIALIZE TAPES 20 AND 21

D0 9 I=1,MAXNS
BUFFER OUT (L2O
IF(UNIT(L20)) 4

4 cor¡rn¡ue

) (ss(1 , 1 ) , SS (MAXND ,MAXNW) )1

7 I
BUFFER oUT (121 , 1 ) (SS( 1

IF (UNIT (L21)) 9 ,7 ,8
9 CONTINUE

ENDFILE 20
ENDFILE 21

, 1 ), SS (1,ßX¡¡O,MAXN!,I) )

c
c

NEIJIND L2O
REWIND L21
BUFFER rN (L20, 1 ) (SS(1, 1 ),SS(¡tnXl¡O,MAXN!¡))
rF(uNrr(L2o)) 10,7,8

1O CONTINUE
KS= 1

KF=MAXND

REDUCE EQUATIONS TO UPPER TNIANGULAR FORM USING MODIFIED
FRONTAL SOLUTION TECHNIQUE

CALL REMARK(3HTWO)
CALL ASMBLE

C CALCULATE ADJUSTED NODAL PARAMETERS

CALL REMARK(5HTHREE)
CALL BAKSUB

CALL REMARK(4HFOUR)
3 CONTINUE

l,tRrrE( 3 ) MAXNoD,MAXNEL, RE, ADSPL
ENDFILE 3
STOP

7 STOP II1 EOF ENCOUNTERED IN BUFFER IN OR OUTII
8 STOP '' 1 PATITY ERROR IN BUFFER IN OR OUT'I

END
SUBROUTINE INDAT

C SUBROUTINE INDAT ACCEPTS ALL DATA REQUIRED TO SOLVE A FLOVü PROBLEM

ENTER COMMON BLOCK HERE ttt ** t¡* r ***

DIMBNSION HEAD(9)

NNODZ = NUMBER OF NODES PER ELEMENT
NN0DZ=20

MAXNEL = }4AXIMUM NUMBER OF ELEMENTS
MAXNOD = MAXIMUM NODE NUMBER

c

c
c
1f
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MAXDIS = MAXIMUM NUMBEN OF SPECIFIED NON-ZERO VARIABLES
MAXNDZ = MAXIMUM NUMBER OF SPECIF]ED ZERO (NRNIHEO) VARIABLES
MAXPRS = MAXIMUM NUMBER OF NODES AT WHICH A PRESSURE IS SPECIFIED
MAXSHN = MAXIMUM NUMBER OF NODES AT WHICH A SHEAR IS SPECIFIED

c
c
c
c

c
c
c

c
c

wRrrE(6,2000)
1 READ(5,1001 ) TCODE,NCoDE
2 hrRrrE(6,1000 ) rcooe,NCODE

C IF ICODE = 99, N0 MORE DATA ACCEPTED

TF(ICODE.NE.99) GO TO 3
lùRrrE( 6,2013)
RETURN

3 CONTINUE

G0T0( 100,200, 300,400,500, 700 ), rcoDE

READ IN HEADINGS (nCODn = 01 )

100 G0T0( 101 , 103 ) , r¡corn
101 !,tRITE(6,2001)
102 READ (5,\OOZ) TCOte,NCoDE,HEAD

rF(rcODE.NE.0) co ro e
IùRrTE(6,1003) Hg¡D
G0 TO 102

c

READ IN PROGRAM PARAI.IETERS (NCODE = 02)
MAXIT = MAXIMUM NUMBER OF ITERATIONS ALLOI'IED
NFORM = FORMULATION NUMBER

103 lrRrrE(6,2014)
104 READ(5, 1012) TCODE,NCODE, (NW(r),r=1,2)

IF(ICODE.NE.O) GO TO 2
}4AXIT=NW( 1 )
NFORI4=NW( 2 )
wRrrE(6, 101 3 ) MAXTT,NFoRM
G0 T0 104

READ IN FLOW PROPERT]ES (TCOON = 02)
NE IS THE REYNOLDS NUMBER OF THE FLO}I

200 wRrTE(6,2002)
201 READ ( 5 , 1 004 ) rCO¡e, NCODE, NMAT, A

rF(rcODE.NE.o) co ro e
RE=A
wRrrE(6, 1005 ) nr.lAr,nn
G0 T0 201

C READ IN COORDINATES (ICODE = 03)

300 Go ro(301,303),¡¡co¡n

C CARTESIAN COORDINÀTES (NCODE = 01 )

301 WRrrE(6,ZOO3)
302 READ(5, 1004) rCO¡n,NCODE,NrC,COX,CoY,C0Z

rF(rc0DE.NE.0) co ro e
}{RrrE(6, 1005 ) l\lrc, cox, coY,coz
CORD (Nrc
CORD (NIC
CORD (NIC
G0 T0 30

, 1)=
,2)=
,3)=
2

COX
c0Y
coz

c
It

CYLINDRICAL COORDINATES (I'ICOO¡ = 02)



c
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c ANG IS DEFINED BY THE RIGHT HANDED SYSÎEM

303 t{Rr rE ( 6 , 2004 )
304 READ(5, tOO4) ICOO¡,NCoDE,NTC,RAD,ANG,COZ,CoCX,CoCY,CoCZ

rF(rcoDE.NE.o) co ro e
wnrte(6, 1005 ) ¡¡rc,RAD,ANG,coz,cocx,cocY,cocz
A1 =0.0174532925*ANG
CoRD(Nrc, 1 )=RADxCos (41 )+COCX
CoRD (NIc, 2 ) =RAD*STN ( A1 )+CoCY
CORD(Nrc ¡3)=COZ+CICZ
c0 T0 304

READ IN ELEMENT DEFINITIONS (ICODE = 04)

400 I^IRrrE(6,2005)
NEL=0

401 NEL=NEL+I
READ(5,1006 ) rcoD¡,NcoDE, (¡¡w(l) ,I=1,12)
rF(rcoDE.NE.0) co ro 4oz
READ(5, 1006) rCOtn,NC0DE, (NW(r),r=13,NNoDZ)
D0 403 I=1,NNoDZ
LDEF(NEL,I)=N!rl(I)

403 CONTINUE
I,¡RrrE(6, 1007 ) Hel, (l¡np(unl,r),r=1,NNoDz)
MAXNEL=NEL
G0 T0 401

402 D0 405 l¡nl=1,MAXNEL
DO 404 LNOD=1,NNODZ
rF(MAXNoD. LT.LDEF(Nnl,,LNoD) ) ¡ßXÌ¡o0=LDEF(NEL,LNoD)

404 CONTINUE
405 CONTINUE

GOTO2

C READ IN FLOI^¡ CONSTRAINT DATA (ICODE = 05)

500 NCOUNT=O
G0 T0( 501 

' 
503 ) , t'tCODn

C NON-ZERO SPECIFIED VELOCITIES AND PRESSURES (I¡COOE = 01 )

501 ÍrRrTE(6,2006)
502 NC0UNT=NCOUNT+1

READ(5, 1008 ) rCOle,NCODE, (Nlt(r),r=1,5), (CI^¡(r),r=1,4)
rF(rc0DE.NE.0) co ro e
D0 506 I=1,5
NDISP (NCOUNT, I ) =NI,i( I )

506 CONTINUE
D0 507 I=1,4
DrSP(NcoUNT, r)=CW(r)

507 CONTINUE
ltRrrE( 6, 1 009 ) (¡¡0rsp (¡¡coul¡r ¡ r ), r= 1, 5 ), (orsp (NcouNT, r ), r= 1, 4 )
I,IAXDIS=NC0UNT
G0 T0 502

ZERO-SPECIFIED VELOCITIES AND PRESSURES (UCOON = 02)

503 l,IRrrE(6,2007)
504 READ ( 5,'l 0 1 0 ) ICODE, NCoDE, NFTXU, NFTXV, NFTXW, NFTXP, (NW( r ), I= 1, 1 4 )

rF(rcODE.NE.0) co ro e
tùRrrE(6, 101 1 ) NFTXU,NFTXV,NFTX!ù,NFrXP, (¡¡W(t),r=1, 14)
D0 505 I=1,14
rF (Nl,¡( r ) . EQ .0 ) c0 T0 504
NC0UNT=NC0UNT+1
NDTSPZ (¡tCOU¡¡r, 1 ) =NFTXU
NDISPZ (NCOUNT,2 ) =NFIXV

c

#



3Z?

C READ IN SPECIFIED SIDE STRESS DATA (rCOne = 07)

700 NCOUNT=O
co ro(701,703),NcoDE

C SIDE PRESSURE (NCODE = 01 )
C PRESSURE TS ASSUMED POSITIVE IF IT ACTS ONTO THE SIDE

701 WRrrE(6,2010)
702 NCOUNT=NCOUNT+1

nEAD(5, 1017 ) rCoDE, NCoDE,N,Al
rF(rcODE.NE.o) co ro e
NPRES (NCOUNT ) =NpRES(NC0U¡1)=A1

NDTSPZ(NCOUNT,3
NDTSPZ (NCOUNT, 4
NDTSPZ (NCOUNT, 5
MAXNDZ=NCOUNT

505 CONTINUE
c0 T0 504

WRITE(
MAXPRS
GO TO

=NFIXW
=NFIXP
=NW(I )

8 ) NPRES(NCOUNT),PRES(NCOUNT)
NT

6,101
=NC0U
702

C SIDE SHEAR STRESS (NCODE = 02)

ÍtnrrE( 6,2011)
NC0UNT=NCOUNT+1
READ(5, 1017 ) rCoDE,NCODE,N,A1 ,42
rF(rc0DE.NE.0) co ro e
NSHEAR (NCOUNT ) =N
SHEAR(NCouNT,'l )=41
SHEAR(l¡COUI¡r ,2)=A2
tlRrrE(6, 1018 ) ¡¡sHBnn(NCOUNT), (SUeln(NCOUHr,r),r=1,2)
ì4AXSHR=NC0UNT
G0 T0 704

703
704

1 000
1001
1 002
1003
100 4
1005
100 6
1 007
1008
1009
1010
101 1

1012
1013
1017
1018

2000
200 1

2002
2003
2004
2005
2006
2007
201 0

#

FORMAT
FORMAT
FORMAT
FORMAT
FORMAT
FORMAT
FORMAT
FORMAT
FORMAl
FORMAT
FORMAT
FORMAT
FORMAT
FORMAT
FORMAT
FORMAT

6x,2115)
2r2,lX,1+
6x,41 1 , 1

2r2,1X,4
6x,41 1 , 1

2r2,1X ,2
6x,2r5)
2r2,1N,r

1X,2r2)
212)
212,1X, 9A8 )
6x. 9A8 )
2r2,1X,r5,6E10.3)
6x,r5,6E10.3)
2r2,6N,12f5)

(
(
(
(
(

(
(
(
(
(
(
(
(
(
(

(

(
(
(
(

(
(
(

11, 1

X, I5
11,1
X, 14
15)

x,15,5x,4810.3)
,5X,4810.3)
x,14r5)
15)

10.3)5'3n

FORMAT
FORMAT
FORMAT
FORMAT
FORMAT
FORMAT
FORMAT
FORMAT(
FORMAT(

6x,15,3E',I0.3)

1H1)



2A11 FORMAT (2X,ZTHAPPLTED SrDE SHEAR STRESSES)
201 3 FORMAT(2X, l3HDATA COMPLETE)
2014 FORMAT(2X,34HPROGRAM PARA¡,IETERS MAXrT AND NFoRM)

323.

NIC

c
c

END
SUBROUTINE CHKPLT

C SUBROUTINE CHKPLT CHECKS INPUT DATA FOR OBVIOUS ERRORS

It**t***t* ENTER CoMMoN BLOCK HERE *t***r***t

CHECK FOR ANY UNDEFINED NODAL COORDINATES AND CALCULATE THE
COORDINATES OF UNDEFINED MIDSIDE NODES

tüRrrE(6,looo)
D0 1 NEL=1,MAXNEL
D0 2 N0D=1,NNODZ
NIC=LDEF (NEL , NOD )
COX=ÇQ¡¡(NIC, 1 )
COY=96¡¡1NIC,2)
coZ=CORD (nrc, 3 )
D0 3 I=1,12
N2=t¡¡12111
IF(NOD.EQ.N2) GO TO 4

3 CONTIÑUE
rF ( cox. EQ. o. o. AND. coY . EQ. 0. 0. AND .coz.EQ. 0. 0 ) lÙRrrE ( 6, 1 00 1 )
GOTO2

4 CONTINUE
rF( cox. NE. 0. o. oR. coY. NE. o. 0. oR. coz. NE. o. o ) Go ro 2
N1=INT1 (I)
N3=INT3 ( I )
NICl =LDEF(
NIC3=LDEF (
coRD(Nrc, 1

coRD (Nrc , 2
coRD (Nrc , 3

2 CONTINUE
1 CONTINUE

C CHECK ELEMENT DEFINITIONS

D0 5 NELI=1,MAXNEL
D0 6 I=1,
N0DI=INT2
N1=INT1 (I
N2=INT3 ( I
NIC 1 =LDEF
NIC2=LDEF
NIC3=LDEF (l¡SLt , NZ )
D0 7 NELJ=1,MAXNEL
D0 I J=1,12
NODJ=INT2 (J )
NIC5=LDEF (I'IUI,.i , NODJ )
IF(NIC5.NE.NICz) GO TO 8
N3=INT1 (J
N4=INT3 (J
NIC4=LDEF
NIC6=LDEF
IF(NIC1.E
TF(NIC1.E
wRrrE(6,1I co¡¡rruun

7 CONTINUE
6 CONTINUE
5 CONTINUE

NEL
NEL

,N'l)
,N3)
CORD (Nrc1 , 1

c0RD(Nrc1,2
coRD(Nrc1,3

)+CORD (NIC
)+CORD (NIC
)+c0RD (Nrc

3,1))*0.5
3,2 ) ) *0.5
3,3))x0.5

)= (
)= (

)= (

2
T

1

(

)
)
(
(

)

NELI,Nl )
NELI , NoDr )

)
)
(
(
NELJ , N3 )
NELJ , N4 )
. NIC4. AND. NIC3 . EQ. NIC6
. NTC6. AND . N]C3. EQ. NIC4
02) NELT,NELJ,NTC2

)
)

T08
T08

GO

GO

tþ

O

a
0



1000 FoRMAT(1H1,///)
1OO1 FORMAT(5X, igttCOOn¡TNATES OF NODE,r5,18H ARE (0.0,0.0,0.0))
1002 FORMAT(5X,3¡Hel,pUeNT DEFINITION ERRoRS, ELEMENTS,2I5,5H NODE,15)

324

RETURN

END
suBRouTrNE PREFNT (LDBSr,MAXLD )

SUBROUTINE PREFNT CALCULATES THE MAXIMUM FRONT I.¡IDTH NEEDED BY
CR3DVF TO SOLVE THE FLOI{ PROBLEM

ENTER CO}O,ÍON BLOCK HERE

DIMENSION LDEST(MAXLD)

NVABZ = NUMBER OF VARIABLES PER NODE
MVABZ = NUMBER OF VARIABLES PER ELEMENT
MAXFW = MAX]MUM FRONT hIIDTH ENCOUNTERED IN PROBLEM
IF MAXFW EXCEEDS MAXNI,.I ALL MATRIX SIZES MUST BE ADJUSTED
NVABZ=4
MVABZ=NVABZ *NN0DZ

INITIALTZE HEADING VECTOR NV{

IF N}I(I)=O COLUMN I CAN ACCEPT A NEW NODAL VARIABLE

c
c

c
c
c
c

c
c

MAXNIù1 =MAXNW+50
D0 1 I=1,MAXNWI
N!ù(I )=0
CONTINUE

c
c
c
c

SET LDEST(NIC) EQUAL TO THE NUMBER OF THE ELEMENT IN }IHICH NODE
NIC APPEARS FOR THE LAST TIME
SET LFRST(N]C) EQUAL TO THE NUMBER OF THE ELEMENT IN I.IHICH NODE
NIC APPEARS FOR THE FIRST TIME

D0 2 NEL=1 
'MAXNELD0 3 I=1,NNODZ

NIC=LDEF(NEL,I)
LDEST(NIC ) =NEL
IF(LFRST(N]C) .EQ.O)

3 CONTINUE
2 CONTINUE

LFRST (NIC ) =NEL

CHANGE THE SIGN OF LDEF(NEL,I) FOR ELEMENTS NEL IN }¡HICH NODE

NUMBER ] APPEARS FOR THE LAST TIME

D0 5 NIC=1,MAXNOD
NEL=LDEST (N]C )
D0 6 I=1,NNODZ
IF(LDEF(llnl,r).NE.NrC) Go r0 6
LDEF(NEL,r)=-NrC
LDEST(NIC)=0
c0105

6 courruue
5 CONTINUE

C CALCULATE MAXF}I

D0 7 NEL=1,MAXNEL
D0 I I=1,NNODZ
N1=IABS(LDEF(NEL,I))
D0 9 J=1,NVABZ
D0 10 K=1,12

c
c

#
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IF(I.NE.INT2(K)) OO TO 1O

IF(J.EQ.NVABZ) GO TO 9
c0 T0 15

1O CONTINUE
15 CONTINUE

NVAB=(NI-I )*wVA¡Z+.¡
rF(LDEST(¡¡VnS).¡¡n.0) G0 T0 I
D0 11 K=1,MAXNW1
IF(NW(K).NE.0) CO tO I I
Nt^¡(K ) =NVAB
LDEST (I¡VRB ) =T
IF(MAXF! . LT. K) }4AXF}I=K
GOTO9

1 1 CONTINUE
I.tRrrE( 6,999 ) t"fAxNI.Il
STOPl

9 CONTINUE
8 CONTINUE

D0 12 I=1,NNODZ
NIC=LDEF(NEL, I)
N 1 =rABS (l,Onr (NEL, I ) )
IF(NIC.GT.O) GO TO 12
D0 13 J=1,NVABZ
D0 14 ,K=1r12
IF(I.NE.INT2(K)) GO TO 14
rF(J.EQ.NVABZ) Go ro 13
c0 T0 16

14 CONTINUE
16 CONTINUE

NVAB= (N 1- 1 ) *t'lVlgZ+J
K=LDEST (NVAB )
N!ü(K ) =0

13 CONTINUE
12 CONTINUE
7 CONTINUE

WRITE(
I'lRITE (

WRITE(
}'IRITE (
T'¡RITE(
T^¡RITE(
WRITE(
WRITE(
WRITE(

6, 1001 )
6,1o02)
6,1003)
6,1004)
6,1005)
6,1006)
6,1007)
6,1oo8)
6, 1oog )

NVABZ
NNODZ
MVABZ
MAXNEL
MAXNOD
MAXFI¡, MAXNVT

MAXNS
MAXNtr'I, MAXND
NFONM

C STOP IF MAXN}'¡ IS EXCEEDED

IF ( MAXFW. LE .MAXNT{ ) RETURN
ltRrTE(6,1000) urxFw
STOP2

999 FORMAT(45H1]NSUFFICIENT ROOM TO CALCULATE FRONT I.¡IDTH
1 2IHINCREASE MAXNI'I T0 50+,13)

lOOO FORMAT(55H1MAXIMUM FRONT WIDTH DURING PREFNT EXCEEDS SIZE OF SS
1 18Hr¡¡CneRSE MAXNW T0 ,r5)

1001 FORMAT(///,5X,30HNUMBER 0F VARIABLES PER NODE =,15,5X¡
l3OHWITH ONE LESS AT MIDSIDE NODES)

1002 FORMAT(/,5X,29HNUÌ'ÍBER 0F NODES PER ELEME¡1 =,15)
1003 FORMAT(/,5X,33HNUMBER 0F VARIABLES PER ELEMENT =,15,5X,

l5OHrNCLUDrNc 12 MTDSTDE VARTABLES THAT ARE NEVER USED,/)
1OO4 FORMAl(/,5X,28HMAXIMUM NUMBER OF ELEMENTS =,15)
1005 FORMAT(/,5X,25til4AXrMUM NUMBER 0F NODES =,r-5,/)
1006 FORMAT(/,5X,z1til,tAxrMUM FRONT WIDTH =,r5,5X¡

117HSHOULD NOT EXCEED,T5,/)
+



1007 FoRMAT(/,5X,69HMAXrMUM NUMBER OF SUBDMSIoNS IN ToTAL STRUCTURAL
lSTIFFNESS MATRTX =, I5 )

1OO8 FONMLT(/ ,5X,35HMAXIMUM SIZE OF EACH SUBDIVTSION IS,f5,2H N.,f5,/)
1OO9 FORMAT(/,5X; I4HFoRMULATrON =,15,/// //)

326.

END
SUBROUTINE STIFN

SUBROUTINE STIFN SETS UP THE ELEMENT STIFFNESS MATRIX FOR EACH
ELEMENT AT EACH ITERATION STEP

c
c

l*****Irl* ENTER CoMMoN BLoCK HERE

DIMENSTON R(80,80)
EQUTVALENCE (R(1, 1 ),SS( 1, 1 ))

REWIND 4

t*r**t*rtl

c NRULE = NUMBER OF INTEGRATION POINTS PER DIMENSION
NRULE=l

D0 1 NEL =1,MAXNEL

htRrrE(6,1ooo) nnl
1000 FoRMAT( 5X, |åELEMENTT¡, 13 )

C INITIALIZE LINEAR AND NON-LINEAR STIFFNESS MATNICES AND RIGHT
C HAND SIDE FORCE VECTOR

D0 2 I=1,MVABZ
D0 3 J=1,MVABZ
s(r,J)=0.0
R(r,J)=o.o

3 CONTINUE
RS(r)=0.0

2 CONTINUE

C SET UP ELEMENT VARIABLES

ELDISP (J
ELDISP ( J
ELDISP (J
ELDISP (J

4 CONTINUE

D0 4 J=1,
NIC=IABS (
x (J ) =CORD
T(J)=CORD
Z (J ) =CORD

NNODZ
LDEF(NEL,J))
(Nrc,1)
(¡uc, z)
(urc,3¡
1 )=ADSPL(NIC
2 ) =ADSPL (NIC
3 ) =ADSPL (NIC
4 ) =ADSPL (NIC

1)
2)
3)
4)

c EVALUAÎE STTFFNESS MATRIX COMPONENTS

D0 6 JA=1,NRULE
XL=VECTLC (JA )
tlX=l,tTFUN ( JA )
D0 7 JB=1,NRULE
YL =VECTLC ( JB )
WY=WTFUN (JB)
D0 8 JC=1,NRULE
ZL=VECTLC ( JC )
lÍZ =W1PU¡ 1t a,
CALL JACOB(O)
CALL MULTl

8 CONTINUE
7 CONTINUE

It
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c

6 CONTINUE

CALL MULT2
CALL MULT3

EVALUATE RIGHT HAND SIDE FORCE VECTOR COMPONENTS

C STORE ON TAPE 4 EACH ELEI"IENT STIFFNESS AND FORCE ARRAYS

BUFFER OUT (4,1) (RS(1),RS(80))
rF(uNrr(4)) 5,10,11

5 CONTINUE
BUFFER OUT (4,1) (S(1,1),S(80,80))
rF(uNrr(4)) 1,10,11

1 CONTINUE

NSTOP ]S SET TO ZERO IN SUBROUTINE JACOB IF ERRORS ARISE IN ANY

ELEMENT GEOMETRY

9 TF(NSTOP.EQ.O) RETURN
STOP3

10 STOP 'I2 EOF ENCOUNTERED IN BUFFER IN OR

11 STOP I'2 PARTTY ERROR IN BUFFER IN OR OU

END
SUBROUTINE JACOB(I1 )

SUBROUTINE JACOB CALCULATES THE VALUES OF THE SHAPE FUNCTIONS,
THEIR FIRST DERIVATIVES AND THE JACOBIAN AT EACH GAUSS POINT

*t***t***tå ENTER CoMMON BLoCK HERE ** t* * ** *lt

C INTTIALIZE THE JACOBIAN ARRAY

c
C

c
c

c
c
c

IF(MAXPRS.NE.O
IF ( MAXSHR. NE . O

) CIU, PRES1
) CII,I, SHEARI

¡,t )*( 1+42)*
1+41)*(1+42

OUTII
Ttl

D0 1 I=1,9
ç¡¡(1)=0.0

1 CONTINUE

SHPl AND SHP2 ARE THE LINEAR AND NON-LINEAR SHAPE FUNCTIONS
DX DY AND DZ ARE THE FIRST DERIVATIVES OF SHP1 }¡ITH NESPECT

TO THB LOCAL COORDINATES

A4=XL*XL
A5=YL *YL
A6=ZL*ZL
D0 2 I=1,NNODZ
t1=XL*XX(I)
A2=YL*YY ( I )
L3=ZYx771t¡
G0 10(10,30,

1

1O DX(I
DY(I

10,30,
10,20 ,*( 1+43
x(1+43

Dz(I)=
SHP 1 (T
SHP2 (I
GO TO

20 DX(I )=-0.5nXL*( l+tZ)*( 1+43)
Dy(r )=0. 25*yy (r ) * ( 1 -A4 ) * ( 1+A3)
DZ(r ) =O.25xzz(r ) * ( 1 -44 ) * ( 1 +42 )
SHP 1 (I )=0. 25¡t( 1 -44 )* ( t+le)* ( 1+43 )

,20 ,40 ,40 ,
.30.10,20),r
(Zx tt +Az+t 3-1 ),ÊXX ( I )
( A 1+2 ¡rA2+A3_ 1 ) nYY ( t )
(41+42+2x43-1 ) xzz(r)
) * ( 1 +A3 ) * (11+A2+A3-2 )

)=
)=

o,40 ,
.125x
.125*
.125x
=0 .12
=0 .12

4
0
0
0
)
)

3

10'
10,
(l+
(l+
(t*
5*(
5n(

20
30
A?-

A1

,

t
)
)

10
10
)*
)rË

1+41 )*( 1+42)s( 1+43)

#
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sHP2(I)=0.0
GOTO3

30 Dx(I)=0.25xXX(I)*(
DY(I)=-0.5*YL*( 1+A

1-45)*(1+43)
1)*(1+43)
1-45)*(1+41)
)rç(1-A5)*(1+A3)

4o DX(I)=0. 25*XX(I )*( 1 -46 )*( 1+42)
OY(I)=0.25*YY (I)* ( 1-46 )*( 1+41 )
OZ(I)=-0 .sxzLx ( 1+41 )x( 1+42)
SHPl (I)=0.25tt( l+ll )*( t+le)*( 1-46)
sHP2(I)=0.0

3 CONTINUE

C SET UP THE 9 COMPONENTS OF THE JACOBIAN MATRIX J

= Cl,,l ( 9
2 CONTINUE

C EVALUATE THE DETERMINANT OF J

DZ ( I ) =0 .25xZZ ( r ) * (
SHPl (I)=0.25x( t+¡,1
SHP2(I)=0.0
GOTO3

5)*
7)*
4)*

CW

Cl^l

Cirl

c!¡
C!,I

cl1I

c!.I
clt
cl.¡

TJ=DE

C1'l

cvt
cI,1I

clI
cl.¡
cl.I
chr
ct'I

(1)
(2)
(3)
(4)
(5)
(6)
(7)
(8)
(e)

CI^¡

cvr
cI.¡
Cl¡
cl.I
c!i
CÍ¡
CW

cl.I

1

2
3
4
5
6
l

B

(
(
(
(
(
(
(
(

)+DX(I)*X(I)
)+DX(I)ttY(I)
)+DX(r)*z(r)
)+DY(I)*X(I)
)+DY(r)*Y(r)
)+DY(I)nZ(I)
)+DZ(I)r(X(I)
)+DZ(I)*Y(I)
)+DZ(I)*Z(I)

-ct.¡
-Cl'¡
-chr

IF THE DETERMINANT OF J IS ZERO OR NEGATIVE SET NSTOP TO 1 AND

EXECUTION WILL TERMINATE IN SUBROUTINE STIFN

IF(DETJ.GT.O.O) GO TO 4
v{RrrE(6, looo ) nnl,DETJ
NSTOP= 1

4 CONTINUE

c INVERÎ J

1

(1)*(
(2)*(
(3)*(

(
(
(

g)*
4)*
7)*

(e)
(6)
(8)

(6))+
(9))+
(5))

CW

Cl,l
ctJ2

c
c

RD
A!'l
A!,I
AW

AW

AW

AW

AW

AW

AW

) -cw
) -cw
) -cw
) -cl¡
) -cw
) -ct¡
) -ct"¡
) -cw
) -cv¡

*cl.I(
Ircl.¡(
*c}{(
xcI/J(
*ChI(

ETJ= 1

( 1 )= (
(2)=(
(3)= (
(4)= (
(5)= (
(6)= (
(7)=(
(8)= (
(9)=(

. O/DETJ
cl,](5)*ci^i(9
clt(3)*c!'t(8
cl^J(2):tcltl(6
fl'¡(6)xcw(7
cl'¡( 1 )*cI,¡(9
cl\l(3)xc}l(4
ct¡(4)*cü(8
cv'r(2)*ctll(7
chr(1)*c!'I(5

(6)
(2)
(3)
(4)
(3)
(1)
(5)
(1)
(2)

lÉ

*
*
lÍ

CW

Cl'l
cv{
Cl'¡

8))
e))
5))
e))
7))
6))
7))
8))
4))

*RDETJ
*RDETJ
ITRDETJ
IÉRDETJ
*RDETJ
If RDETJ
If RDETJ
If RDETJ
*RDETJ

c
c

IF SUBROUTINE JACOB IS CALLED FROM PRES2 0R SHEAR2 I1=1
NO FURTHER CALCULATION NEEDED IN JACOB

rF(r1.EQ.1) nnrun¡¡

C SET UP DERIVATIVES hIITH RESPECT TO GLOBAL COORDINATES

D0 5 I=1,NNODZ
DXI=DX ( I )
DYI=DY(I)

l¡
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I+AW(
I+Alt(
I+AI,i(

DX
DX
DX

I=DZ(I)
(I)=ÀW(1 )*
(I)=A!,I(4)*
11¡=lw(T )*

DZ
DX
DY
DZ

2 ) *DYr+Avf
5 ) *¡Yt+Rw
I )*DYI+AW

(3)
(6)
(e)

*DZ1
*DZI
*DZT

5 CONTINUE
RETURN

10oo FOnMAT(/ /,5X,2BHNEGATM 0R ZERO DETERMINENT,/,5X,8HELEMENT,I5,
1 12H DETERM]NENT,2X,E',l0.3)

c
c

END
SUBROUTINE MULTl

SUBROUTINE MULTI EVALUATES THE INTEGRALS OF ALL THE CROSS PRODUCTS

OF DERIVATIVES OF THE SHAPE FUNCTIONS BT NUMERICAL INTEGRATION

t*lt**n*** ENTER CoMMoN BLoCK HERE ***l*l****

DIMENSION R(80,80)
EQUTVALENCE (R(1,1 ),SS(1,1 ))

I.lAlT =WX*!üYnWZ*DETJ
D0 1 I=1,NNODZ
DXI=DX(I)XWRTT
DYI=DY(f)xwnff
DZT=DZ(I ) *WAIT
SHPlI=SHP1 (I)*WAIT
SHP2l=SHP2(I)*}'IATT
Ir=(r-1)*¡¡vRgz
DO 2 J=1,NNODZ
DXJ=DX (J )
DYJ=DY (J )
DZJ=DZ(J)
SHPlJ=SHP1 (J)
SHP2J=SHP2 ( J )
JJ= (.¡-1 ) x¡¡Vl¡Z

C EVALUATE INTEGRALS FON THE LINEAR STIFFNESS S

s(tl+l ,JJ+1 )=s(rr+1 ,JJ+1 )+DXI*DXJ
s(ll+t, JJ+2) =s (rr+1, JJ+2)+DYr*DXJ
s(lr+1, JJ+3 )=s ( rr+t, JJ+l )+DZT*DXJ
s(rl+1, JJ+4 ) =s (II+1, JJ+4 )+DXT*DYJ
S(rI+2, JJ+1 )=S (II+2, JJ+1 )+DYI*DYJ
S (Il+2, J J +2) =S ( II+2, J J +2)+DZI*DYJ
s (lr+z , JJ+3 ) =s ( II+2 , JJ+l )+DXI *DZJ
S ( tl+z , JJ+4 ) =s ( rr+2 , JJ+4 ) +DYr *DZJ
S(rI+3, JJ+1 )=S(rr+3, JJ+1 )+DZT*DZJ
S (II+3, J J +2) =S ( rr+3, J J +2)+DXI*SHP2J
S ( II+3 , JJ+l ) =S ( rr+3 , JJ+3 ) +DYr *SHP2J
s (rr+3 , JJ+4 ) =s ( rr+3 , JJ+4 ) +DZr*sHP2J
s (ll+4, JJ+1 )=s (rr+4, JJ+1 )+DXJ*SHP2r
s ( rr+4, J J +2) =s ( lt+4, J J +2)+DYJi*SHP2I
s(II+4, JJ+3 ) =S ( tt+4, JJ+3 )+DZJ*SHP2I

C EVALUATE THE INTEGRALS FOR THE NON-L]NEAR STIFFNESS R

D0 3 K=1
DXK=DX (K
DYK=DY (K
DZK=DZ (K

DZNNO

SHP 1 K=SHP 1 (K )
n ( ll+ t, JJ+1 ) =R (rr+ 1, JJ+1 ) +SHP 1 r*sHP 1 J*DXK*ELDrSP
n ( ll+1, J J +2) =R ( rr+t, J J +2) +sHP 1 r*SHP 1 JttDXK*ELDTSP
R (rr+1, JJ+l )=R (rr+1, JJ+3 )+sHP 1 rrrsHPl JIDXKIIELDTSP

(K,1)
(K,2)
(r'3)

#
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(
(
(
(
(
(

R
R

R
R

R
R
R
R
R
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II+1 , JJ+4
IL+2 rJJ+1
II+2 rJJ+2
I,I+2 rJJ+J
II+2 , JJ+4
II+l, JJ+1
II+J rJJ+2
II+J , JJ+l

( rr+3 , JJ+4
CONTINUE
CONT]NUE
CONTINUE

RETURN

END
SUBROUTINE MULT2

SUBROUTINE MULT2 COI'IBINES THE IND]VIDUAL INTEGNALS FROM MULTl TO
GIVE THE COMPONENTS OF THE ELEMENT STIFFNESS MATRIX S AND THE
MATRIX OF COEFFICIENTS OF THE ORIGINAL EQUATIONS

ENTER COMMON BLOCK HERE

DIMENSION R(80,BO)
EQUTVALENCE (R( 1 ,1 ) ,SS( 1 ,1 ) )

D0 1 I=1,NNODZ
II=(1-1)*¡¡VR3Z
D0 2 J=1,NNODZ
JJ= (.¡-1 ):t¡¡Vl¡Z
s1=S(rr+1 ,JJ+1 )
52=S(II+1 ,JJ+2)
S3=S(rr+1,JJ+l)
S4=S(II+1,JJ+4)
S5=S (rr+2 , JJ+1 )
56=S(II+2,JJ+2)
s7=S ( rr+2 , JJ+l )
S8=$ ( II+2 ,JJ+4 )
59=s (rr+3 , JJ+1 )
S10=S(ft+3,JJ+2)
S11=S(tf+3,JJ+3)
s12=S(rr+3,JJ+4)
s13=S(rr+4,JJ+1 )
S14=S(lr+4, JJ+2)
S15=S (lr+4, JJ+3 )

=R(II+1,JJ+1 )

=R(rI+1 ,JJ+2)
=R(II+1,JJ+3)
=R(rI+1,JJ+4)
=R (Il+2 , JJ+1 )

=R 
( II+2 , JJ+2 )

=R ( rr+2 , JJ+3 )

=R (rr+2, JJ+4
=R(II+3,JJ+1
=R(ll+3,JJ+Z )+R (rr+3, JJ+3 )+R (rr+3, JJ+4 )

II+1, JJ+4 )+SHP 1 I*SHP1 JTTDYK*ELDISP (
I.I+Z,JJ+1 )+SHP 1 r*ÉSHP 1 J'XDYK*ELDTSP (

I,I+2,JJ+2 )+SHP 1 Il(SHP 1 J *DYK|ELDISP (

I1+2 ,JJ+3 )+SHP 1 IIÊSHP 1J*DZK*ELDISP (

II+2 ,JJ+4 )+SHP 1 I*SHP 1 J*DZK*ELDISP (
II+l , JJ+1 ) +SHP 1 I|åSHP 1 J;ÊDZK*ELDISP (

II+l , JJ+2 )+SHP 1 I*SHP 1 K*DXJ*ELDISP (

II+l , JJ+3 )+SHP 1 IitSHP'lKrÊDYJnELDISP (

II+1, JJ+4 )+SHP 1 I*SHP 1 Kr(DZJ*ELDISP (

K,1)
K 12)
K,3 )
K,1)
K 12)
K,3 )
K,1)
Kr2)
K,3 )

)=R(
)=R(
)=R(
)=R (
)=R (
)=R (
)=R(
)=R(
)=R(

3
2
1

c
c
c

n1
R2
R3
n4
R5
R6
R7
R8
R9
RR

)
)

n (Ir+t , JJ+1 ) = (2*S 1 +S5+S9 ) /RE+ (R 1 )
R(II+1, JJ+2)= (sz)/ne+ (n4)
R (u+t , JJ+l ) = (s3 ) /nn+ (n7 )
n(lr+t , JJ+4 )=-s1o
R (rr+2, JJ+1 ) = (s4 )Zne+(ne)
n (tl+2, JJ +2) = (sl +2*s5+s9 ) /nn+ (n¡ )
R (rr+e , JJ+l ) = (s6 ) /RE+ (RB )

#
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R

R
R

R
R

R

R

R

(
(
(
(
(
(
(
(

(
(
(
(
(
(
(
(
(
(
(
(
(
(
(

II+2,JJ+4)=-S11
rl+l,JJ+1 )= (s7 )/nE+(R3)
II+3, JJ+2)= (SB )/RE+ (R6 )
II+3, JJ+3 ) = (S 1 +S5+2*S9 ) /RE+ (R9 )
II+l,JJ+4)=-S12
II+4,JJ+1)=-S13
II+4, JJ+2)=-S14
II+4, JJ+3 )=-S15

)=
)=
)=
)=
)=
)=
)=
)=
)=
)=
)=
)=
)=
)=
)=

s
S
S
S
s
S
S
S
S
s
S
s
cù
s
S

II+1 , JJ+1
II+1,JJ+2
II+1 , JJ+l
II+1,JJ+4
II+2 , JJ+1
ÍI+2,JJ+2
II+2, JJ+l
II+2 , JJ+4
II+l , JJ+1
II+l , JJ+2
II+3 , JJ+3
II+3 , JJ+4
II+4 , JJ+1
II+4 , JJ+2
II+4 , JJ+l

R(
R(
R(

II+1,JJ+1 )+RR
II+1,JJ+2)
II+1,JJ+3)

-s'10
R (II+2 , JJ+1
R(Ir+2,JJ+2
R(rr+2,JJ+l
-s1 1

)
)
)
+RR

R (rr+3 , JJ+1 )
R(II+3,JJ+2)
R (rr+3 , JJ+3 )+RR
-s 12
-s 13
-s 14
-s 15

c
c
c
c

2 CONTINUE
1 CONTINUE

RETURN

4 CONTINUE
3 CONTINUE
2 CONTINUE
1 CONTINUE

RETURN

It********* ENTER COMMoN BLoCK HERE

DTMENSION IP(20)

END
SUBROUTINE MULT3

SUBROUTINE MULT3 CALCULATES THE VALUES OF THE RIGHT HAND SIDES OF

THE ORIGINAL EQUATIONS USING THE NODAL VALUES OF VELOCITY AND

PRESSURE FROM THE PREVIOUS ITERATION. IF THE RIGHT HAND SIDES ARE
ALL ZERO THE EXACT SOLUTION HAS BEEN FOUND

ENTER COMMON BLOCK HERE

DIMENSION R(80
EQUIVALENCE (N

BO

),ss(1,1))
D0 1 I=1'NNODZ
II=(1-1 )*NVABZ
Nrc=IABS (LDEF (llel, r ) )
D0 2 J=1,NNODZ
JJ= (¡-1 ) *¡¡Vlgz
D0 3 K=1,NVABZ
D0 4 L='I,NVABZ
RS(II+K) =RS (II+K)+R (II+K, JJ+L ) *ELDISP (J, L)

c
c

END
SUBROUTINE PRESl

SUBROUTINE PRESl FINDS THE FACES THAT HAVE A PNESSURE APPLIED ON

THEM

#
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LOGICAL IP
N=0
D0 1 I=1,NNODZ
P (r )=0 .0
IP(I)=.FALSE.
CONTINUE

D0 2 J=1,MAXPRS
NOD=NPRES ( J )
D0 3 I=1,NNODZ
rF(rABS (l,t¡p (Nnl, r ) ) . NE. NoD )
P(r)=PRES(J)
N=N+1
IP(I)=.TRUE.
GOTO2

3 CONTINUE
2 CONTINUE

IF
IF
IF
IF
IF
IF
IF

GOTO3

(H.lr.4) netunN
(rP ( 13 ) .¡¡to. rP( 1 5 ) .AND. rP
(IP( 15).AND.IP( 3).AND. IP
(IP( 1).AND.IP( 3).AND.IP(rP( 1).AND.rP( 3).AND.rP
(IP( 13).AND. IP( 1 ) .AND. IP
(IP( 7).AND.IP( 5).AND.IP

(1)
(2)
(3)
(4)
(5)
(6)

(1e))
(17))
(13))
( 7))
(1e))
(1e))

(17)
( 5)
(15)
( 5)( 7)
(17)

.AND.IP

. AND. IP

.AND.IP

. AND. IP

.AND. IP

.AND. IP

CALL
CALL
CALL
CALL
CALL
CALL

PRES2
PRES2
PRES2
PRES2
PRES2
PRES2

c
c

RETURN

END
SUBROUTINE PRE52(I1 )

SUBROUTTNE PRES2 EVALUATES THE ORIENTATIONS OF THE FACES AT THE
NINE GAUSS POINTS ON EACH FACE

i**tt*r**n ENTER CoMMoN BLoCK HERE ti **tt* ** * *

Go ro(1,2,3,415,6),ll

1 lüZ=-1.0
ZL=1.0
GOTOT

4 wz=1.0
ZL=-1.0

7 D0 B JA=1,NRULE
!üX=lüTFUN ( JA )
XL=VECTLC ( JA )
D0 9 JB=1,NRULE
VJY=l,lTFUN(JB)
YL=VECTLC ( JB )
CALL JACOB(1 )
CALL PRES3(3,6,9)

9 CONTINUE
8 CONTINUE

NElURN

2 lÍY=-1 .0
YL= 1 .0
G0 T0 10

5 WY=1.0
YL=-1.0

10 D0 11 JA=1,NRULE
T.IX=WTFUN ( JA )
XL=VECTLC (JA)
D0 12 JB=1,NRULE
WZ=IITFUN ( JB )
ZI,=VECTLC ( JB)

#
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END
suBRouTrNE PRE53 (t1, tZ, t3¡

SUBROUTINE PRES3 EVALUATES THE X Y AND Z COMPONENTS OF THE FACE

PRESSURE AT THE NINE GAUSS POINTS ON EACH FACB AND THEN USES

NUMERICAL INTEGRATION TO CALCULATE THE X Y AND Z COMPONENTS OF

THE EQUIVALENT NODAL FORCES

tttt****** ENTER CoMMoN BLoCK HERE *t*t******

c
c
c
c

CALL JACOB( 1 )
CALL PnES3(2,5,8)

12 CONTINUE
11 CONTINUE

NETUNN

3 llX=-1 .0
XL= 1 .0
c0 T0 13

6 }¡x=1.0
XL=-1.0

13 D0 14 JA=1,NRULE
Wr=WTFUN ( JA )
YL=VECTLC ( JA )
D0 15 JB=1,NRULE
tlZ=WTFUN (JB)
ZL=VECTLC ( JB)
CALL JACOB( 1 )
CALL PnES3(1,4,7)

15 CONTINUE
14 CONTINUE

NETURN

APRES=0.0
DO 1 I=1,NNODZ
fiPfif,9=APRES+P (I ) *SHP2 (I )

1 CONTINUE

c
c

I,lA IT =WX 
* I'lY * UIZ * APRES *DET J

M=0
D0 2 I=1,NNODZ
SHPI=SHP1(I)*!,IAIT
RS(M+1 )=RS(M+1 )-SHPr*AW(r1 )
RS (M+2 )=RS (M+2 ) -SHPI*AW(I2 )
RS (M+3 ) =nS (M+3 ) -SHPI IÊAI'J ( I3 )
M=M+NVABZ

2 CONTINUE
RETURN

END
SUBROUTINE SHEARl

SUBROUTINE SHEAR1 FINDS THE FACES THAT HAVE A SHEAR STRESS APPLIED
ON THEM

ENTER COMMON BLOCK HERE

DTMENSION IS(20)
LOGICAL ]S
N=0
DO 1 I=1,NNODZ
sH1(I)=0.0
SHz(r)=0.0

tI

***t *t* rÈåt *
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IS(I)=.FALSE.
1 CONTINUE

D0 2 J=1,MAXSHR
N0D=NSHEAR(J)
D0 3 I=1,NNODZ
IF(IABS (LDEF (NEL
sH1 (I)=SHEAR(J,1
SH2(I)=SHEAR(J,2
N=N+1
IS(I)=.TRUE.
GOTO2

3 CONTINUE
2 CONTINUE

I)).NE.NOD) GO TO 3t
)
)

IF
IF
IF
IF
IF
IF

N.
IS
IS
IS
IS
IS

(
(
(
(
(
(

LT.
(13
(15
(l
(l
( 13

4) RETURN
).Rl¡1.IS(15
).AND.]S( 3
) .n¡¡¡. rs ( 3
) .AND. IS ( 3
).AND.IS( 1

).AND.IS( 5

.AND. IS ( 17

.AND.TS( 5

.AND.IS(15

.AND.IS( 5

.AND.IS( 7

.AND.IS(17

.AND. IS

.AND. IS

.AND. IS

.AND. IS

.AND. IS

.AND. IS ( 1

SHEAR2
SHEAR2
SHEAR2
SHEAR2
SHEAR2
SHEAR2 (

(l
(t
(l
(
(l

)
)
)
)
)
)

)
)
)
)
)
)

9
7
3
7
9
9

CALL
CALL
CALL
CALL
CALL
CALL

)
)
)
)
)
)

1

2
3
4
5
6

(
(
(
(
(

IF(IS( 7
RETURN

c
c

END
SUBROUTINE SHEAR2(I1 )

SUBROUTINE SHEAR2 EVALUATES THE ORIENTATIONS OF THE FACES AT THE
NINE GAUSS POINTS ON EACH FACE

**** *t*t * * ENTER COMMON BLOCK HERE tt i* *****r

Go ro(1,2,3,4,5,6),tt
1 WZ=-1.0

ZL=1.0
GOTOT

4 wz=1.0
ZL=-1.0

7 D0 I JA=1,NRULE
WX=W1P¡¡ I tO,
XL=VECTLC ( JA )
D0 9 JB=1,NRULE
WY=V{TFUN (JB)
YL=VECTLC ( JB )
CALL JACOB( 1 )
CALL SHEAR3(3, 6,9,4,5,6,1,2,3)

9 CONTINUE
B CONTINUE

RETUNN

2 lfY=-1 .0
YL=1.0
G0 T0 10

! !{Y=1 .0
YL=-1.0

10 D0 11 JA=1,NRULE
I'lX=W1PIJ¡ 1t^,
XL=VECTLC ( JA )
DO 12 JB=1,NRULE
WZ=WTFUN (JB)
ZL=VECTLC(JB)
CALL JACOB( 1 )
CALL SHEAR3(2, 5,8, 1,2,3,7,8,9)

#
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12 CONTÏNUE
1 1 CONTINUE

NETURN

I ffi=-'|.0
XL= 1 .0
c0 T0 13

6 t¡x=t.o
XL=- 1 .0

13 D0 14 JA=1,NRULE
tlY =I'ITFUN ( JA )
YL=VECTLC (JA)
D0 15 JB=1,NRULE
WZ=}ITFUN ( JB )
ZL=VECTLC (JB)
CALL JACOB(1 )
CALL SHEAR3( 1, 4,7,7, 8,9,4,5,6)

15 CONTINUE
14 CONTINUE

RETURN

END
suBRourrNE SHEAR3(tt, tz,r3, r4, 15, r6,17, r8,19)

SUBROUTTNE SHEAR3 EVALUATES THE X Y AND Z COMPONENTS OF THE FACE
SHEAR STRESS AT THE NINE GAUSS POINTS ON EACH FACE AND THEN USES
NUMERICAL INTEGRATION TO CALCULATE THE X Y AND Z COMPONENTS OF

THE EQUIVALENT NODAL FORCES

ENTER COMMON BLOCK HERE *t** * ** ***

ASHR 1 =0 .0
ASHR2=0.0
D0 1 I=1,NNODZ
ASHRl =ASHR 1+SH 1 ( I ) *SHP2 (I )
ASHR2=ASHR2+SH2 (I ) *SHP2 (I )

1 CONTINUE

A 1 =SeRT ( AI,¡ ( r 1 ) * AI^¡ ( r 1 ) +A}'I ( r 2 ) *Avr ( r 2 ) +Alr ( I 3 ) *A!,r ( I
A2 =SQRT ( CW ( r 4 ) * CW ( I 4 ) +Cll ( r 5 ) rÊ C!,¡ ( I 5 ) +Ctrr ( I 6 ) * CW ( r
A3=SQRT ( CW ( 17 ) t Clf ( r 7 ) +C!'t ( r 8 ) * CW ( r I ) +CW ( r 9 ) * CW ( r

ÏíAIT1=ASHR1xA1/A2
I'lAIT2=ASHR2*A 1 /43

3))
6))
e))

*DETJ*ÌJXTWY*WZ

M=0
D0 2 I=1,NNODZ
RS(M+1 )=RS (M+1 ) -SHp 1 ( r )*I^lArT 1 *CW(r 4 )
RS(M+2 )=RS (M+2 )-Sttp1 (r ) *llArr 1 xç1{(r5 )
RS (M+3 )=RS (M+3 ) -Ssp 1 (r ) *WA]T 1 *CW( 16 )
M=M+NVABZ

2 CONTINUE
RETURN

+sHP 1 ( r ) *!,tArr2ncl\r ( 17 )
+SHP2 ( f ) xmrtZxCl,l ( I I )
+sHP2 (r ) xWtrre*cl'l( r9 )

c
c

END
SUBROUTINE ASMBLE

SUBROUTINE ASMBLE ASSEMBLES THE ELEMENT STIFFNESS MATRIX INTO THE
GLOBAL ARRAY

f tt*tÊ *ttß***

NEWIN
RE!,IIN

D2
D4

#

ENTER COMMON BLOCK HERB ü* ** tt *** **
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C INIÎIALIZE HEADING VECTOR NT.J

C INITIALIZE STORAGE CONTROL VARIABLES MZM AND NZN

MZM=0
NZN=0

C INTRODUCE ELEMENTS ONE AT A TIME

D0 2 NEL=1,MAXNEL
BUFFER rN (4,1) (RS(1),RS(80))
rF(uNrr(4)) 30,31 ,32

30 CONTINUB
BUFFER rN (4,1) (S(1,1),S(80,80))

C FOR EACH NEW ELEMENT CALCULATE THE NUMBER OF NEW VARIABLES THAT
C }IILL BE INTRODUCED I.IHEN THE ELEMENT TS ASSEMBLED IN SS

IF
GO

5 CONTINUE
24 CONÎINUE

IF(LFRST (NIC ) .LT. NEL) N=N+1
4 CONTINUE
3 CONTINUE

C CALCULATE THE NUMBER OF VACANT POSITIONS IN THE SS MATRIX

D0 1 I=1 
'MAXNWNlrl(I)=0

1 CONTINUE
NUMEQ=0

D0 6 I=1,MAXNI,í
rF(Nl.I(r).Eo.o) N=N+1

6 CONTINUE

rF(uNrr(4) ) 33,31 ,32
33 CONTINUE

D0 7 I=1,NNODZ
NIC=IABS (1,¡nr (NEL, I ) )
D0 8 J=1,NVABZ
D0 9 K=1,12
IF(I.NE.]NT2(K)) GO TO 9
IF(J.EQ.NVABZ) GO TO B

G0 T0 25
9 CONTINUE

25 CONTINUE
N 1 = 

( r- 1 ) *l¡Vlgz+¿

0N=
DO
NI
DO
DO
IF

3 I=1'NNODZ
C=IABS(1,¡Pr(NEL,I))
4 J=1,NVABZ
5 K=1,12

(I.NE.]NT2(K)) GO TO 5
(J.EQ.NVABZ) GO TO 4
TO 24

c
c

c
c

NEDUCE OUT THE REQUIRED NIJMBER OF EQUATIONS IF THBRE IS
INSUFFICIENT BOOM IN SS FOR THE NEXT ELEMENT TO BE ASSEMBLED

M=68-N
rF(N.1T.68 ) C¡r.r, FRoNT(M)

SET UP THE VARIABLE DESTINATION VECTOR NELDES AND THE HEADING
VECTOR NI.J

#
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NVAB= (l\JrC-l ) *¡¡vA¡z+J
IF(LFRST(NIC).GE.NEL) CO TO IO
D0 11 K=1,MAXNW
IF(N!¡(K).NE.NVAB) GO TO 11

NELDES(N 1 )=K
GOTOS

1 1 CONTINUE
1O CONTINUE

D0 12 K=1,MAXNW
rF(NW(K).1¡n.0) G0 T0 12
NELDES(N 1 )=K
NI,¡(K ) =NVAB
GOTOS

12 CONTINUE
B CONT]NUE
7 CONTINUB

C ASSEMBLE THE NE!,I ELEMENT

DO 29 KK=1,MAXNS
DO 13 I=1,NNODZ
D0 14 II=1'NVABZ
DO 15 K=1,12
IF(I.NE.INT2(K)) GO TO 15
IF(II.EQ.NVABZ) CO TO I4
G0 T0 26

15 CONTINUE
26 CONTINUE

N1 =(l-1 )*UVRgZ+tl
ISTRST=NELDES(N1 )
IELEMT=N 1

IF(KK.EQ. 1 ) SNS(ISTRST)=SRS(ISTRST)+RS(IELEMT)
ISTRST=ISTRST-KS+ 1

IF(ISTRST.LT. l.OR.ISTRST.GT.MAXND) GO TO 14

D0 16 J=1,NNODZ
D0 17 JJ=1,NVABZ
D0 18 K=1,12
IF(J.NB.INT2(K) ) GO TO 18
IF(JJ.EQ.NVABZ) GO TO 17
G0 T0 27

18 CONTINUE
27 CONTINUE

N1 = ( J-1 ) xt'lvAez+JJ
¡51¡5f=NELDES(N1 )
JELEMT=N 1

islisrnSr, JSTRST ) =SS (IsrnST, JSTRST)+S (IELEMT, JELEMT)
17 CONTINUB
16 CONTINUE
14 CONTINUE
13 CONTINUE

BUFFER OUT (L21,1) (SS(1, 1 ),SS(MAXND,MAXNW))
rF(urrrr(L21 ) ) 34, 31,32

34 CONTINUE
IF(KK.EQ.MAXNS) GO TO 29
BUFFER rN (L20,1) (SS(1,1 ),SS(MAXND,MAXNI'I))
KS=KS+MAXND
KF=l(F+MAXND
rF (uNtr (L2o ) ) 29 ,31 ,32

29 CONTINUE

CALL RESET

CHANGE THE S]GN OF THE HEADING VECTOR NI^I FOR ANY VARIABLE THAT

CAN NOW BE REDUCED OUT OF THE EQUATION SYSTEM
C

c
4t



338

D0 19 I=1,NNODZ
NIC=LDEF(NEL,I)
N1=rABS(l¡nn(NEL,I))
IF(NIC.GT.O) GO TO 19
D0 20 J=1,NVABZ
DO 21 K=1,12
IF(I.NE.INT2(K)) GO TO 21
IF(J.EQ.NVABZ) CO tO ZO

G0 T0 28
21 CONTINUE
28 CONTINUE

NVAB= (N 1-1 )*NVABZ+J

DO 22 K=1,MAXNI{
IF(NV'I(K).NE.NVAB) GO TO 22
N}l(K ) =-NW(K)
G0 T0 20

22 CONTINUE
20 CONTINUE
19 CONTTNUE

2 CONTINUE

REDUCE OUT ALL THE REMAINING EQUATIONS ONCE ALL THE ELEMENTS
HAVE BEEN ASSEMBLED

N=0
DO 23 K=1,MAXNW
rF(Nl.I(K).NE.o) ¡l=N+1

23 CONTINUE
CALL FRONT(N)
NBTURN

31 STOP II3 EOF ENCOUNTERED IN BUFFER IN OR OUTII

32 STOP II3 PARITY ERROR IN BUFFER IN OR OUTII

END
SUBROUTINE FRONT(MREQ)

SUBROUTINE FRONT REDUCES THE EQUATION SYSTEM TO UPPER TRIANGULAR
FORM USING THE GAUSS REDUCTION TECHNIQUE

ENTER COMMoN BLoCK HERE ***åt*r****

MAXREQ = MAXIMUM SIZE OF STORAGE VECTOR FOR REDUCED EQUATIONS
TF MAXREQ IS EXCEEDED REDUCED EQUATIONS STORED ON TAPE 2
LIV IS THE NUMBER OF THE EQUATION THAT ]S TO BE USED IN THE
NEDUCTION PROCESS
NUMBQ IS THE TOTAL NUI'ÍBER OF SIMULTANEOUS EQUATIONS IN THE PROBLEM

MAXREQ= 1 000
¡44f,1ff[Q=200
NUMEQ=NUMEQ+MREQ

D0 1 IEQ=1,MREQ
IND=0

C INITIALIZE HEADING VECTOR LIMITS

NSNW= 1

NFNtrr=MAXNll

c
c

c
c

c
c
c
c
c

c

#

ADJUST HEADING VECTOR LIMITS
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3 rF(NW(NSNW).NE.o) Go ro 4
NSNW=NSNW+1
GOTO3

4 IF(NI.¡(NFNW).NE.O) GO TO 5
NFNl,t=NFNVI_1
GOTO4

5 CONTINUE

FIND lHE VARIABLE WHOSE EQUATION LIV HAS THE LARGEST PIVOT
ONLY VARIABLES TFIAT CORRESPOND TO NODES THAT CAN BE REDUCED OUT

NEED BE CONSIDERED

AMAX=0 .0
D0 2 K=NSNlf ,NFNW
rF(Nhr(K).cn.0) G0 T0 2
IF(K.GT.KF) CALL CHECK(K)
N 1 =K-KS+1
rF(ABS(SS(N1,K) ) .LE.AMAX) Go ro 2
AMAX=ABS (SS (N 1 , K) )
LIV=K
D0 19 I=NSNW,NFNI'I
STEQ(I)=SS(N1,I)

19 CONTINUE
2 CONTINUE

CALL .,RESET

NVAB=IABS(NI.¡(L]V) )
N1=(¡v¡3-1 )/NVABZ
NUMVAB =NVAB-N 1 T6NVABZ

NIC=N1+1
L0C=NVAB

FIND AN EQUATION LIN THAT CAN BE ADDED TO EQUATION LIV SO THAT THE
LARGEST ABSOLUTE VALUE OF PIVOT IS OBTAINED
ONLY EQUATIONS THAT CORRESPOND TO VARIABLES THAT ARE FREE AND FOR

NODES THAT CAN BE REDUCED OUT NEED BE CONSIDENED

BMAX=0 .0
LIN=0
D0 12 I=NSNW,NFNVI
IF(N!,I(I).GE.O) GO TO 12
IF(I.EQ.LIV) GO 1O 12
IF(I.GT.KF) CALL CHECK(I)
N 1 =I-KS+ 1

suM=ss (N 1, Lrv )+srEQ(Lrv )
IF(ABS(SUM).LE.ABS(BMAX) ) CO TO IE
N=IABS(Nl'f(I))
N1=(N.1 )/NVABZ
N2=N-N 1 *NVABZ
N1=N1+1
D0 15 J=1,MAXDIS
rF(N1.NE.ND]SP(¿,¡)) Go ro 15
rF(NDTSP(J,N2).8Q.1) Go ro 12
G0 T0 16

15 CONTINUE
16 CONTINUE

c
c
c
c

D0 17 J=1,MAXNDZ
rF(N1.NB. NDTSPZ(J ,5
rF(NDTSPZ(J,N2) .EQ.
G0 T0 18

17 CONTINUE
18 CONTINUE

BMAX=SUM
LIN=I

))
1)

c0 T0 17
G0 T0 12

#



c
c
c

c
c
c
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12 CONTTNUE
CALL NESET

IF(LTN.EQ.O) GO TO 14
CALL CHECK(LIN)
N 1 =LIN-KS+ 1

D0 13 I=NSNl,l,NFNW
SÎEQ ( I ) =STEQ ( I ) +SS (N 1 , I )

13 CONTINUE
SRS (Lrv ) =SRS (lrv ) +snS (LrN )
CALL RESET

14 CONTINUE

CHECK IF THERE IS SUFFICIENT ROOM ON BUFFER FOR THE NEXT EQUATION
IF NOT I'IRITE STORED EQUATIONS TO TAPE 2 AND RESET STORAGE CONTROL
VARIABLES TO ZERO

IF( (NZN-NSNW+NFNI'I+1).LT.MAXREQ.AND. (MZM+A ) .LT.MAXLREQ) GO TO 6
I,JRrTE(2 ) UZt'l, NZN, REQ, LREQ
MZM=0
NZN=0

6 CONTINUE

C ADJUST THE RHS TF THE NODE IS TO HAVE SPECIFIED VARIABLES

CALL PRECON

PIVOT=STEA (LIV )
t,IRrTE(6, 1000) prvot,Nrc,Loc,sRS(Lrv)

1000 FoRMAT(5X,E13. 6,2f7,813. 6)
N 1 =NZN

CALL CHECK(LIV)
D0 7 I=NSNVI,NFNW
NZN=NZN+1
K 1 =LIV-KS+1
REQ (NZN)=STEQ(I )
SS(K1 ,I)=0.0

7 CONTINUE
NZN=NZN+1
REQ (NZN ) =SRS (LIV )
SRS (LIV ) =0 .0
NI,l(LIV)=0
CALL RESET

REDUCE NEMAINING EQUATIONS

IF(IND.EQ.1) GO TO 11
D0 B l=l¡sNtf,NFNw
rF(Nr¡¡(r).nq.0) G0 T0 I
IF(I.GT.KF) CALL CHECK(I)
K1 =I-KS+1
FACT=SS (K 1 , LIV ) /PIVoT
N2=N 1-NSNll+1
D0 9 J=NSNI^I,NFNW
ss (K1, J ) =SS (t<t,.1 ) -FACT*RBQ (N2+J)

9 CONTINUE
SRS ( I ) =SRS (T ) -T'ACT*REQ (NZN )
SS(K1,LIV)=0.0I cot'ltruun
CALL RESET

STORE EQUATION LIV AND ITS RHS ON BUFFER AND SET THE CORRESPONDING
POSITIONS IN THE GLOBAL STIFFNESS MATRIX, RHS VECTOR AND THE
HEADING VECTOR TO ZERO

c

tl
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1 1 CONTINUE

C MAKE COLUMN LIV ZERO

IF(IND.NE.1) GO TO 21
D0 10 I=NSNLI,NFNI{
IF(I.GT.KF) CALL CHECK(I )
K1 =I-KS+1
ss(K1 ,Lrv)=0.0

1O CONTINUE
CALL RESET

21 CONTINUE

C STORE HEADING VECTOR LIMITS LIV AND LOC FOR LATER USE IN THE BACK
C SUBSTITUTION PROCESS

LREQ(MZM+1 )=NSNW
LREQ (MZM+2 ) =NFNW
LREQ (Ì,12M+3 ) =LIV
LREQ (MZM+4 ) =LoC
MZM=MZM+4

1 CONTINUE
RETURN

END
SUBROUTINE RESET

SUBROUTINE RESET RESETS TAPES 20 AND 21 AT THEIR STARTS AND PUTS
THE FIRST SUBDIVISION OF THE STNUCTURAL STIFFNESS MATRIX BACK
INTO SS

*t*t *ttl**n ENTER COMMON BLOCK HERE **********

c
c
c

1 CONTINUE
IF(KS.EA.1 ) RETURN
IF(KF.GE.MAXN}I) GO

BUFFER oUT (L21,1 )
IF(UNIT(L21)) 3,4,5

3 CONTINUE
BUFFER IN (IEO,
IF (UNIT (L20 ) ) 6

6 CONTINUE
KS=KS+MAXND
KF=KF+MAXND
GOTOl

(ss( 1 ,1 ) ,ss(MAXND,MAXNW) )

1) (SS( 1 ,1) ,SS(UAXI¡D,MAXNW) )

,4,5

T02

2 CONTINUE
BUFFER OUT (L21,1) (SS(1, 1 ),SS(MAXND,MAXNI.I))
rF (uNrr (L21)) 7 ,4 ,5

7 CONTINUE
REI,IIND L20
REhTIND L21
L=L21
L21=L20
L20=L
BUFFER rN (L20,1) (SS(1, 1),SS(U¡X¡¡D,MAXNW))
IF(UNIT(L20)) 8,4,5I coNrrNue
KS= 1

KF=MAXND
RETURN

4 STOP 'I4 EOF ENCOUNTERED IN BUFFER TN OR OUT'I
5 STOP ''4 PARITY ERROR IN BUFFER IN OR OUT'I

#
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END
SUBROUTINE PRECON

SUBROUTINE PNECON ADJUSTS THE STIFFNESS AND THE RHS VECTOR TO

INCORPORATE SPECIFIED ZERO AND NON-ZERO NODAL VARIABLES

t******tlr ENTER COMMON BLoCK HERE tl***t***l

IF(MAXDIS.EQ.O) GO TO 1

C ASSEMBLE NON-ZERO SPECIFIED VARTABLES AND MODIFY THE RHS VECTOR

D0 2 I=1,MAXDIS
rF(Nrc.NE.NDrSP(r,5)) Go ro 2
D0 3 J='I,NVABZ
IF(NDTSP(r,J).EQ.o) Go ro 3
TF(J.NE.NUMVAB) GO TO 3
DSP=-DISP(I,J)

AFTER THE FINST ITERATION ALL SPECIFIED ZERO OR NON-ZERO VARIABLES
MUST BE SET TO ZERO

IF(ITER.GT.1 ) OSP=O.O

D0 4 K=NSNI^I'NFNI'¡
IF(K.GT.KF) CRI,I, CHECK(K)
N 1 =K-KS+1
sns (K ) =sRS (x ) -osp¡tss (N 1, Lrv )

4 CONTINUE
STEQ(LIV)=1.08+10
CALL RESET
IND= 1

RETURN

3 CONTINUE
2 CONTINUE

1 CONTINUE
IF(MAXNDZ.EQ.O) NETUNN

C ASSEI'ÍBLE ZERO SPECIFIED VARIABLES

D0 5 I=1,MAXNDZ
rF (Nrc. NE. NDISPZ(I ,5 ) ) Go r0 5
D0 6 J=1,NVABZ
rF(NDTSPZ(r,J).EQ.o) Go r0 6
IF(J.NE.NUMVAB) GO TO 6
STEQ(LIV)= 1.0E+10
IND= 1

RETURN

6 CONTINUE
5 CONTINUE

RETURN

c
c

END
SUBROUTINE CHECK(N)

SUBROUTINE CHECK ENTERS THE SUBDIVISION OF THE STRUCTURAL
STIFFNESS MATRIX WHICH CONTAINS EQUATION N INTO SS

ll
1 CONTINUE

ENTER COI-ß,ION BLOCK HERE
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IF(KF.GE.N) RETURN
BUFFEn oUT (L21,1 )
rF(uNrr(L21) ) 2,3,4

2 CONTINUE
BUFFER rN (120,1 ) (

rF(uNrr(L2o)) 5,3,4
5 CONTINUE

KS=KS+MAXND
KF=KF+MAXND
GOTOl

(ss( 1 ,1) ,ss(u.nxuo,MAXNI^¡) )

ss( 1, 1 ),ss(l¡¡xtlo,MAXNI^I) )

STOP N5 EOF ENCOUNTERED IN BUFFER IN OR OUTN

STOP 'I5 PARITY ERROR IN BUFFER IN OR OUTII

END
SUBROUTINE BAKSUB

SUBROUTINE BAKSUB USES THE EQUATTONS REDUCED TO TRIANGULAR FORM

AND THE PROCESS OF BACK SUBSÎITUTION TO OBTAIN THE NODAL
VELOCITIES AND PRESSURES

*t***t*lt** ENTER CoMMoN BLoCK HERE

3
4

c
c
c

T0T=0
ERROR
D0 1

IF(NZ

.0
c0.0
I=1r
N.NE

NUMEQ
.0) G0 To 5

c

C READ STORED EQUATIONS FROM TAPE 2

BACKSPACE 2
READ(2) t'lZ¡¡,NZN,REQ, LREQ
BACKSPACE 2

5 CONTINUE

MZM=MZM-4
¡$ffi=LREQ(ttZ¡l+t )
¡ptrl!'t=LREQ (MZM+2 )
LIV=LREQ (¡lZl,t+3 )
LOC=LREQ(MZM+4 )

SET UP EQUATION PARAI'IETERS

GASH=REQ (NZN )
PIVOT =REQ (NZN.NFNW- 1 +LIV )
nEQ ( NZN-NFN!,¡- 1 ..1,f 1/ ) = 0 . 0
N2=NZN-NFNW-2+NSN!,I
NZN=N2

C BACKSUBSTITUTE KNOI'IN VARIABLES

D0 6 J=NSNW,NFNW
N2=N2+1
GASH=GASH-SRS ( J ) *REQ (N2 )

6 CONTINUB

SRS(LIV ) =GASH/PTVOT
N1=(Loc-1 )/NVABZ
NUMVAB=L0C-N 1 *NVABZ
NIC=N 1 + 1

ADS=GASH/PIV0T

REASSIGN SPECIFIED NODAL VARIABLESc

#
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CALL POSTCN

C MODIFY PREVIOUS ITERATIONS SOLUTION BY CALCULATED NEVI ADJUSTMENTS

ADSPL (nrC, HUMV¡B) =ADSPL (tttC, NUMVAB ) -¡OS
TOT=TOT+ADSPL (NIC, NUMVAB) *ADSPL (IITC, NUMVAB )
ERR0R=ERR0R+ADS *ADS

1 CONTINUE

C EVALUATE CONVERGENCE PARAI,ÍETERS

l{RrrE(6,999) rrrn
T0T=SQRT ( T0T /NUMEQ )
ERROR=SQRT ( ERROR /NUMEA )
rF (ERRoR/Tor. LE. 1 . oE-03 ) ITER=MAXIT

999
1 000

1

1001
't002

1

1

C T{NITE OUT FINAL SOLUTION

IF(ITER.NE.MAXIT) CO tO Z
wRrrE(6, looo)
D0 7 I=1,MAXNOD
l{RrrE(6,lool ) r, (lDspt (r,J) ,J=1,NVABZ)

7 CONTINUE
2 CONTIÑUE

!¡RrrE(6, 1002 ) nnnon, Tor, (ERRoR/ToT)

END
SUBROUTINE POSTCN

SUBROUTINE POSTCN REASSIGNS THE CORRECT SPECIFIED VALUE TO NODÂL
VARIABLES WHOSE VALUES WERE ORIGINALLY KNO!.IN

ENTER CoMMON BLoCK HERE *l**r***t*

IF(MAXDIS.EQ.O) CO TO I

C REASSIGN NON.ZERO SPECIFIED VARIABLES

D0 2 I=1,MAXDIS
rF(Nrc.NE.NDISP(r,5)) Go ro 2
D0 3 J=1,NVABZ
rF(NDTSP(r,J).EQ.o) Go r0 3
IF(J.NE.NUMVAB) GO TO 3
DSP=-DISP(I,J)
IF(rTER.GÎ. 1 ) OSp=0.0
ADS=DSP
5¡5 (¡l\I ) =DSP
RETURN

3 CONTÏNUE
2 CONTINUE
1 CONTINUE

IF(MAXNDZ.EQ. O) NETUNN

RETURN

FORMAT(// / / /,5X,7HITER =,I3)
FonMAT(1tr1, / / /,5X,30HN0DAL VELoCTTTES AND PnESSURES,/,
5X , 4HNODE , 8X , 6HX-VEL , 9X , 6HY-VEL , 9X , 6HZ-VEL , 8X , SHPRESSURE )
FORMAT(4X, r5, 4 ( 5X, r1 0. 5 ) )
FORMAT( //,5X,36tmnln SQUARED VALUE 0F ADJUSTMENTS = ,810.3,/,

5X,43HMEAN SQUARED VALUE 0F ADJUSTED VARIABLES = ,E'10.3,/,
¡X,3¡HnAUO OF ADJUSTMENTS T0 ADJUSTED = ,810.3,/)

c
c

c
#

REASSIGN ZERO SPECIFTED VARIABLES
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DO 4 I='I,MAXNDZ
rF(Nrc.NE.NDrSPZ(r,5)) Go ro 4
DO 5 J=1.NVABZ
IF(NDISPZ(I,J).EQ.O) GO TO 5
IF(J.NE.NUMVAB) GO TO 5
ADS=O.0
sRS(LrV)=0.0
RETURN

5 CONTINUE
4 CONTINUE

RETURN

END
BLOCK DATA

ENTER COMMON BLOCK HERE

DATA INTl/1,3,5,
DATA rNT2 /2,4 ,6 ,
DATA INT3 /3,5,7 ,

COMMON
COMMON
COMMON
c0t'û40N
COMMON
COMMON
COMMON
COMMON
CoMMoN LDEF( 2,20)
coMMoN AW(9),CW(9),X(20),Y
COMMON NELDES(BO ),SHP1 (20)
coMMoN P(20 ),SH1 ( 20),5H2(2
coMMoN ELDTSP(20, 4),S(80, B

CoMMoN /cR 1 /rNT 1 (12) , rNT2 ( 1

CoMMON /cR 2 /VECTLC( 3 ), }¡TFUN

),2(zo),Dx(20 ),¡v(zo ),Dz(20)
P2(20)

RS(80 ),REQ( 1 ooo ), LREQ(20o )
rNT3 ( 12),XX(20 ),TT (20 ), ZZQj)

7,19/
6,18,
17,19

5,
4,
15

7,1 1315r7 r13,
8,9,10r11 ,12,
1 r13 r15,17 ,19

20/
,13/

1.0,1.0,
-1.0,0.0/
-1 .0, 1 .0,
.0,-1.0/
-1 .0,o.oro
1.0/

, 1.0, 1.0,0.0,-1.0r-1.0,-1.0,0.0
, - 1 . 0 , 1 . 0 , 1 . 0 , 1 . 0 , 0 . 0 , - 1 . 0 r - 1 . 0
o,o.o, 1.0, 1.0, 1.0,0.0,-1.0,-1.0
-1.0,-1 .0,0.0, 1.0, 1.0, 1.0,0.0,-
o,-1 .0,-1 .0,-1.0,-1.0,-1.0r-1 .o
0.0, 1.0r1.0, 1.0, 1.0, 1.0, 1.0, 1.0

DATA XXl1.0
1 -:1.0
DATA YYl.1.
1 1.0,
DATA ZZl-1.1 o.o,

0,

DATA VECTLC/-0.77459666924 1 48, 0. 0, 0.7745966 6924148 /
DATA WTFUN / O . 5555555555555 6, O . 88 8 8 I 8 8 I 88 I 8 8 9, O . 55555555555556 /
END

COMMON BLOCK Itt *tt*t*r

MAXNEL,MAXNoD, NNoDZ, NVABZ 
'MAXFW ' 

MAXNI'I' MAXDIS 
'MAXNDZ ' 

MAXND

MAXPRS,MAXSHR, NRULE,MAXSSTMAXREQ,MAXIT, NFORM, ADS,MAXI{S

(zo

'SH0)
0),
2),
(3)

lI



Typicaì input data for program CR3DVFZ.

ll Head'ing 5X,948
POISEUILLE FLOI.I

MESH 2
REYNOLDS NUMBER IS I.O

Program parameters MAXIT and NFORM 5X'2I5
12
I 0..l00E+01

l2
21

3l

346.

Reynol ds number 5X, I5, El 0.3

Nodal Cartes'i an coordì nates
0.000E+00 5X,I5,3E10.3
0 .000E+00
0.000E+00
0 .000E+00
0.500E+00
0. 500E+00
0.500E+00
0.500E+00
0 . I 00E+0,l
0 . I 00E+01
0 . I 00E+0.l El ement
0.100E+01 Element defìnitions

l0x, I 2r5/10X,8I5
5 6 7 8 9 l0 l1 12

17 l8 l9 20
17 lB 19 20 21 22 23 24
29 30 31 32

Non-zero specìfied variables 5X'4Il 'X'4E10
0.000E+00 0.000E+00

Zero specified vari ables 5X,4Il ,X'.l415
l0 13 l4 l5 21 22 25 ?6 27

81112161718192023i
32

Applied side normal stresses 5X'I5'E10.3

Data compl ete

z

21
25

27

28

4l

I 0.000E+00
3 0.500E+00
5 0.500E+00
7 0.000E+00

I 3 0.000E+00
ì 5 0. 500E+00
l7 0.500E+00
l9 0.000E+00
25 0.000E+00
27 0.500E+00
29 0.500E+00
3l 0.000E+00

l2
13 l4
13 l4
25 26

0 .000E+00
0.000E+00
0.500E+00
0. 500E+00
0.000E+00
0. 000E+00
0. 500E+00
0. 500E+00
0. 000E+00
0 .000E+00
0.500E+00
0. 500E+00

34
t5 16
l5 16
27 28

0.000E+00

39
67

30 3l

5ì
52

000.1 29

I 0.120E+02
3 0.120E+02
5 0.1?0E+02
7 0.120E+02

25 0.000E+00
27 0.000E+00
29 0.000E+00
3l 0.000E+00

ìtì0
I 100
I 

.l00

I
4

28

?
5

29
6 I

990

26
l3

5

v

I

ìl
17

23

29
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APPENDIX C

Element Stiffness, Numerical Vaìues for lxl Element

The numerical values of the element stìffness matrix for a lxl

square eight noded Serendipity element and for a lxl square nine noded

Lagrangì an element have been calcul ated using programs CR2DVFS and

CRZDVF9 respectively and formulation B, and are as follows.
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Solution of Poiseuiìle Flow using Eight and Nine Noded Elements

The Poìseuille flow is the steady flow that occurs between two

paralleì infinìte flat plates spaced at a d'istance of one unit apart,

as a resul t of the app'l 'icati on of a constant pressure gradi ent . The

actual three-dimensi onal fl ow and 'i ts more common two-dìmensi onal

representation are shown 'in Figure Dl. Almost all researchers in numer-

ical viscous flu'id dynamics at one stage or another, use this flow

probl em as a test case duri ng the devel opment of thei r parti cul ar

solution technique. The exact solution for the Poìseu'ille flow'is:

dp
u(x,y) = - å Re-y(l-y) 0l .l

dx

v(x,y) = o Dl .2

APPENDIX D

and
dp

P(x,y) -pl**
dp

¡ wþsrs -dx

Pz-Pl
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Dl .3
L

In this study the Poiseuille flow was solved initialìy us'ing the eight

noded Serend'i p'ity el ement and a regul ar rectangul ar arrangement of

elements in the various meshes. Figure DZ shows the meshes and the

actual numerical values of the boundary condìtions used. The solutions

obtained using each of the meshes I to 3 correspond exactly wìth the

values calculated from equatìons Dl, as expected.

In order to investigate as fully as poss'ibìe all aspects of the

solution of the Po'iseu'ilIe fIow using the Galerk'in finite element method

and the e'ight noded Serend'ipi ty el ement, vari ous changes to the geometry

of the elements in mesh 2 were made and the probìem was rerun. Firstly'

the reguìarity of the rectangular elements was altered so that long

thin and short wide elements were incorporated, thus destroy'ing the

symmetry of the element arrangement. The results obtained agaìn corres-

pond exactìy w'ith the exact ana'lytì cal sol uti on. Secondly, the shape
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of the elements was changed from rectangular to arbitrary quadrilateral

by re'locat'ing the central node sì'ightly off centre as shown i n Fi gure

D3. In th'is case the solut'ion obtained d'iffered by varying amounts

from the exact solution in both the x and y components of veloc'ity and

i n the pressure. Al though the d'iff erences are qu'ite smal I , they st'i I l

caused concern since it had been expected that the exact solution would

be obtained. This is because it had been anticìpated that the eight

noded Serendi pi ty el emen'ù woul d be qu'ite capabì e of representi ng exactìy

the vel oci ty vari ati on wh'i ch ì s at most quadrati c and the pressure

vari ati on whi ch 'i s at most I 'inear.

When the nine noded Lagrangian element was used to solve the

Po'i seu'i I I e f ì oy, the same resul ts were obtai ned w'ith al I meshes except

2C. In this case, whereas the Serend'ipity element had g'iven sf ightly

erroneous results, the Lagrang'ian element gave the exact solution for

both the velocity components as well as the pressure. The results

obta'ined us'ing mesh 2C and the e'ight and ni ne noded el ements are g'iven

in Table Dl. From this table it can be seen that the e'ight noded element

produces qu'ite good results with errors no larger than 1% but that the

Lagrang'ian element produces the exact solution. This finding prompted

a cl oser i nvesti gat'ion ì nto the rel at'ive abi I i ti es of the ei ght and

nine noded elements to represent a quadratic veloc'ity variation when

the el ement shape i s non rectangul ar. To th'i s end, an arb'itrary quadri -

lateral was set up, the details of wh'ich are g'iven in Fìgure D4(a),

and a quadrati c vel oc'ity vari atìon gi ven by

u(x,y) = 2y(4-y) Dz

was i mposed on 'it by speci fy'i ng 'i ts exact val ue at al I the nodes . Then

by us'ing the shape functjons of fìrstly the Serendipity element and

secondly the Lagrangian element, two expressìons for the variation of

u at any poìnt within the element were set up. The two expressions

are:



JJ't.

r U=0
I v=0

X

P¡=ì2 P2=o

---+ .e

mesh 2A

mesh 28

mesh 2C

P2rO =JXXt 
v=o

{
oxx=Pl

V -0

0.5

0.5

0..6

v

0

0

0.ì 1.9

0

1.? 0.8

lRe = 2.0

l

Figure D3 Details of l\4eshes 24, 28 and 2C.



Coord s

5

5

Vel oci ty

BNE

.0005

.0002

.0005

.0003

Vel ocì ty

v

1.125
1.260
I .125
I .500
1.485
r.440
I .485
I.s00
1.125
0.960
1.125

.r96

. 196

.046

.046

355.

Press

I 2.000

6.000

0

I 2.000

4.800

0

I 2.000

6 .000

0

9NE

Node

6
7
B

9
l0
ll
1?
l3
t4
l5
l6

17
t8
l9
20
21

22
23
24
25

.25

.3

.25

.5

.55

.6

.275

.275

.775

.775

x

1 .124
I .258
1 .126
I .501

.484

.444

.483

.499

.125

.957

Pres s

I 2 .000

5.949

O.IBB

12.015

4.8.l 4

-0.095

I I .958

5.963

0. 197

XvX v

0
0.5
I
1.5
2

0
1.1
2

0
0.6
1.2
1.6
2
0
ì.1
2

0
0
I
I
2
0
I
0
l

I
2
3
4
5

0
0
0
0
0

I
l
I
I
I
0
0
0
0

0
0
0
0
0

l
I
l
I
I
0
I

0
0
0
0
0

0
0
0
0
0

0

0
0
0
0

0
0
0
0
0

0
0
0
0
0

0
0
0
0
0
0
0
0
0

0
0
0
0
0
0
0
0
0
0
0

.55

.5

.75

.8

.75 125
000

0
-0

0
0
0

-0
-0

0
0

-0
0

0
0
0
0
0
0
0
0
0
0
0

.55

.55

.55

0
0
0
0
0
l
I
I
I.55

Tabl e Dt Sol uti on to Poi seu'i I I e f I ow obta'i ned usi ng mesh 2C

and the e'ight and nine noded Serendipìty and Lagrang'ian elements.
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ug(E,n) =8+ E+?En-3n-8"-5n'-3En2*t2n D3

and ur(t,n) = 7.5 + E + ZEn - 3n - 0.5E2 - 4.5n' - 3En2

* E"n - 0.5E'nt D4

where x = I .75 - 1.25E _ 0.75n + 0.25En IlD5
and V = 1.5 + 0.5t - l.Sn - 0.5tn )

Since these functions are expressed in terms of the local coordinates

g and n and the transf ormati on back to x and y i s comp'l 'icated, 'it 'i s

easier to use the transformation from x and y to E and n to rewrite

u(x,y) = 2y(4-y) in terms of E and n. Therefore u(x,y) = Zy(a-y) becomes

u(E,n) = 7.5 + E ¡ ZEn - 3n - 0.5t2 - 4.5n'- 3gn"

* E'n - 0 .5E'n2 D6

It can now be, seen that u9(t,n ) is identical to u(6,n) while ur(e,n)

differs from it by

0.5 - 0.58'? - 0.5n' + 0.5E2n2 
Dl

= Q.5(l-E")(l-tr')

Since this dìfference 'is equal to zero when q = tl or n = tl we see that

ur( e,n) represents u(t,n) exactìy only on the boundary of the element

where t- tl or n = tl; Ì^l'ithin the element however, the error can be

quite signìf icant, ì n thi s case as h'igh as 6.7%. Therefore the Seren-

di p'ity el ement 'i s not abl e to represent exact'ly a quadrati c vari at'ion

in the veloc'ity when the element shape is a general quadrilateral.

0n the other hand, u 
n( € ,n ) bei ng i dent'ical 'ly equa'l to u (q ,n ) 'indi cates

that the Lagrangìan element can represent a quadratic velocìty variation

adequateìy regardless of what shape the element is.

The above process can be repeated for a trapezo'ida1 and finally

a rectangular element as shown in Figures D4(b) and (c). The expressìons

obtained for the trapezoidal element are:

ur(e,n) - B - e - Zen - 3n - E'- 5n' + 3tn2 * E2n D8
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ug(E,n) = 7.5 - E - ZEn'3n - 0.5E' '4.5n',+ 36n',

* E2n - 0.562n' D9

and u(E,n) = 7.5 - E - TEn - 3n - 0.5q' - 4.5n2 + 3En2

* E'n - 0.5g"n' DlO

while the expressions obtained for the rectangu'lar element are:

ug(E,n)=8-8n'. Dll

ug(q,n)=B-8n', D12

and u(g,n)=B-8n', Dl3

From all the above we see that u9(t,n) 'is aìways equa'l to u(t ,n ).

Therefore the Lagrang'ian el ement i s capab'le of represent'ing a quadrati c

ve'loci ty vari ati on exactly regardl ess of whi ch el ement shape 'i s used.

0n the other hand, ur(t,n) 'is only equal to u(E,n) when the element

i s rectangu'l ar. Therefore the Serendi pi ty el ement i s capabl e of

representing a quadratic veloc'ity variation exactly only when the element

shape'is rectanguìar. For this reason therefore it was found that when

the eight noded element was used to solve the Poiseuille flow with mesh

2C, the solut'ion obtained was sììghtìy *rong, whereas when the nine

noded element was used it corresponded exactìy w'ith the exact solution.

The last po'int that should be mentioned here ìs that, aìthough

it.is on'ly the velocìty representat'ion that is ìnadequate when non rec-

tangular elements are used, it is found that the resuìt'ing pressure

f j el d, whi ch i s I 'inear and shoul d be adequate'ly handl ed by both the

Serendipìty and the Lagrang'ian elements, also conta'ins errors. The

reason for thjs 'is that the Galerk'in finite element method is a process

in which integra'l rather than discrete quantities are considered. As

a consequence, 'inadequaci es ì n the representat'ion of one varì abl e

produces errors not onìy in that variable but also in all the other

variables to wh'ich it is connected by the govern'ing equation system.
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