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ABSTRACT

Binary diffusion coefficients have been determined

at 300.00 and 323.16 K over the pressure range I 25

atmospheres for the systems Nz t Ar¡ N2 t Oz and Oz + Ar'

similar data is reported for the Ar + Kr system to a maximum

pressure of I0 atmosPheres.

These results were obtained via the classicat Loschmidt

technique; a mass spectrometric procedure being employed for

concentration measurements. To attain the greatest degree

of accuracy only systems with small excess thermodynamic

properties hrere studied. An analysis of possible sources

of error is given and where Possible numerical estimations

are made.

A comparison of diffusion data obtained with the

classical Loschmidt technique and another method, developed

previously in this laboratory, is described. concordance

between both methods is excellent-

The density dependence of the diffusion coefficient

is discussed with reference to the Enskog-Thorne result for

rigid spherical molecules. Poor agreement between the

experimental and predicted first density corrections $tas

observed. No improvement was achieved through the empirical

modification of the Enskog theory.
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CHAPTER I

INTRODUCTION

Over the past few decades numerous comparisons have

been made between theoretical results concerning the density

dependence of transport properties and the experimentally

observed dependence. To a large extent these comparisons

have involved the coefficients of viscosity and thermal

conductivit,yl'E. In contrast, there exists a scarcity of

accurate diffusion measurements which can be employed for

similar purposes. Of the data available, the majority

pertain to measurements of t¡ace¡ diffusion coefficient"*tt i

in particular, the diffusion of radioactive tracers into

the isotopically normal g."""t'tt has been studied over a

wide range of pressures as an approximate means of deter-

mining the densi-ty dependence of self-diffusion. For the

case of diffusion in binary systems at concentrations other

than trace amounts, such data are even more rare; Sage and

co-workers2o'2| have published diffusion coefficients for

CHn t n - C?Hrc , Berry and KoeILer'2 for H, * Nr, CHo * CrH. r

CH. * N, and N, * CrH. , Islam and Stryland2s for CHn + Ar,

and De Paz et r¡?t for the He + Ar and Ne + Ar systems.

However, the accuracy of these result,s is probably no better

than rst.
tlore recently Staker and Dunlop" , and BelI et "l !" have

reported binary diffusion data at 300K for sixteen gaseous

systems containing approximately 90t helium. Although the
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maximum pressure at which measurements Ì^tere performed was

only 9 atmospheres, important information concerning the

initial density dependence was obtained. Arora and Dunlop2T

have since extended this work for the systems He + Ar,

He * N, r He * O, and He + CO, to pressures in the region

of 20 atmospheres and to a temperature of 323K. The experi-

mental technique used for these measurements2E was developed

in this laboratory and consists basically of monitoring the

concentration difference in a Loschmidt-type diffusion cell2t

with a precision thermistor bridge2e. Howeverr âs this

technique has proved unsuccessful at elevated pressures for

systems which do not contaín excess helium2s , a different

experimental approach was employed in this study.

The method adopted still involved the use of a similar

type of ceII, but is based on Loschmidt's3o original mathe-

matical analysis. In this case concentrations need only be

determined once, after an initial diffusion period; such

determinations virere accomplished via the use of a mass spectro-

meter. Details of the relevant theory and experimental

procedures are outlined in Chapters III, IV and V. To

achieve optimum accuracy in the measured diffusion coefficients

it was necessary to restrict the systems studied to those which

possessed small excess thermodynamic properties. In Chapters

III and VI this limitation is shown to be especially important

at increased densities. Results obtained with the classical

Loschmidt and thermistor bridge techniques are comPared in

Chapter VI.

Binary diffusion data for the systems N, * Arr N, * Or,

O^ + Ar and Ar + Kr ,to a maximum pressure of 25 atmospheres
2
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and at temperatures of

final chapter. These

Enskog theory3r of rigid

323K, are reported in the

are discussed in terms of the

300 and

results

spheres.
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CHAPTER I I

THE KINETIC THEORY OF GÁSfS

2. I Chapnan-Enskog TheorU of Dilute 6ases

Calculation of Èransport properties from molecular

theory is most convenient for dilute gases composed of

monatomic particles. The rigorous kinetic theory of such

systems was developed independently by Chapman and Enskogr.

Since their treatment is rather involved and lengthy, only

a brief description of the basic assumptions and the results

for binary diffusion are given here.

The Chapman-Enskog theory is centred upon the procure-

ment of a solution for the single particle or first order

distribution function l, (y, v, ,t); this distribution

function is defined so that f ,(1,v. ,t)d5 dy, is the probable

number of molecules of kind i with spatS-al coordinates in

the range dr about I and velocities in the range dY, about

v. at time t . A complete description of a dilute gas can
-t
be obtained by relating the macroscopic fÌuxes through velocity

averages to the distribution function.

In order to determine l, , the Boltzmann integro-

differential equation, which describes the variation of f,

due to molecular interactions, must be solved. The Chapman-

Enskog approach to the solution of the Boltzmann equation is

essentially a perturbation rnethod which involves expanding f,

in a series about the equilibrium distribution,
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r ( o) (2.L)

The first term, f.( o) , is simply the Maxwell-Boltzmann

equilibrium distjrbrraron function. Vlhen the expansion

(2.1) is truncated after the first correction term and

substituted into the Boltzmann equation, a linearised integro-

differential equation for f.( t ) results. The perturbation

is assumed proportional to in" t.t.vant transport gradient

and solved for by further expansions in terms of the mole-

cular velociti""t" . Finally, the transport coefficients

can be expressed as a ratio of two infinite determinantsr

which in general cannot be solved exactly. However, numerical

values for the coefficients may be obtained by systematically

truncating the determinants. Two such approximation schemes

in common usage are the method of Chapman and Cowlingl and

that of Kihara3. The simplest truncation gives rise to the

first approximation of the transport coefficient, the next

gives the second approximation and so on.

The major assumptions inherent in the Chapman-Enskog

theory can be summarised as:-
(i) Molecular chaos.

In the derivation of the Boltzmann equation from the

Liouvilte equation2 it is necessary to assume that

for two particles prior to collision, and far enough

apart for molecular interactions to be ignored, there

are no correlations between y, and Y, or between

Í. and r- This permits the second order distri-
-l -2

bution function to be expressed as the product of the

two first order functions and hence a closed equation

is produced.

r
t

+f (1) + r(r\+
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( ii)

( iii)

( iv)

(v)

(vi¡

Binatg collisions.

Again this assumption is inherent in the Boltzmann

equation and means that the results do not apply

where ternary and higher order collisions occur.

Therefore the theory is limited to dilute gases.

SmalI nolecu-la¡ size.

If the molecular dimensions are negligible when

compared with the mean free path, then the distri-

bution functions, f, and f, , for the colliding

molecules I and 2 can be evaluated at the same point

: in space.

SmaJ I nean free path,

When the dimensions of the gas container are large in

comparison to the mean free path, collisions with

the container walls can be neglected. At very low

pressures collisions with the walls predominate over

intermolecular collisions and the theory is in error.

Smal 1 pertur batj ons.

The assumption of proportionality between the transport

fluxes and gradients is only valid for small depart-

ures from equilibrium. Under more extrerne conditions'

for example shock waves, the third and higher terms of

Equation (2.I1 may have to be considered.

flastic col I isions.

The theory is strictly pertinent to monatomic molecules.

Where molecules possess internal degrees of freedom'

kinetic energy may not be conserved during collisions.

Howeverr ês this does not greatly affect diffusion, the

theory can be apptied to simple polyatomic molecules-
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(vii)

The

CJassica I nechanics.

The use of classical mechanics by Chapman and Enskog

restricts the theory to those situations where quantum

effects can be neglected. Quantum mechanical modif-

ications of the theoryr'2 are generally unimportant

except where hydrogen or helium are involved.

of these assumptions at increased pressures

IS

for the diffusion

imation

failure of some

discussed in the

For a binary

next section.

gas mixture the

coefficient, D*

Chapman-Enskog result

, is to a first approx-

lwr/znrr, )k /ol, n\
lrl)rl (2.2)t[Dr, ], (T*'122

Here n denotes the number density of the mixture, T the

absolute temperature and Ur, = *r*, /(mr+mr) the reduced

molecular mass. The reduced collision integral, nlrt"" , is

a function of the reduced temperature Ti, = kT/e* where

.r, is the depth of the potential energy weII, n|rt"" is

dependent upon the form of the intermolecular potential

function through the dynamics of a binary molecular collj-sion.

Thus, a knowledge of the intermolecular potential function

permits calculation of the diffusion coefficient or vice versa,

measurements of the diffusion coefficient may yield information

concerning the potential function. The intermolecular distance

at which the interaction energy is zelo is denoted by otz -

Tabulations of nll"'' versus Ti, have been

variety of potential functions.

performeda for a
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At the first approximation, the diffusion coefficient
is independent of composition and inversely proportional

to the number densì-ty. The former relation is changed with
the introduction of the higher approximations which may be

expressed in the form

lD f ( k) (2.31
D

where k represents the degree of approximation. The

Chapman-Cowling second approximation may be written as

( 2) (2.4)f L/ (t
D

where A__ is a function of molefractions, molecular masses,t2

molecular sizes and collision integrals; the Kihara expression

is of the form

f< 2) A, (2.s)
D l2

,ln lD,, I ,

arr)'

+I

Explicit formulae for A* and L'r, can

relevant textsl'2 .

The relationship between [Dr, ]u

determined mutual diffusion coefficient
in the next chapter, is

be found in most

and the experimentally

Dr, , which is defined

D lim Io
k+- ,r l (2 .6)

2 k

Fortunatery convergence of the approximation scheme is rapid

with the third and higher approximations being almost identical.
At moderate densities, Equation (2.6) is complicated by

the real nature of the gas systems and is considered further
in the next section.
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2.2 The Enskog Extension to Moderatelg Dense Gases

The first rigorous attempt at describing the density
dependence of transport properties was due to Enskogr who

considered an hypotheticar gas composed of rigid sphericar
nolecules with diameter o This model permits the

mathematical simprifications arising from the neglection of

ternary and higher order collisiorr"t". of the other

assumptions fundamental to the dilute gas theory only (i)
and (iii) (see 52.1) need reconsideration at moderate densities.

When gases are compressed the molecular size becomes

comparable with the average intermolecular separation and

assumption (iii) is invalidated. The finite size of molecules

has two effects, firstly, the collision frequency is attered

and secondly, there is a transfer of momentum and energy

across the finite distance which separates the centres of

the molecules during collision. However, âs there is no

transfer of mass during collision the latter phenomenon is
unimportant in diffusion. To account for these effects,
Enskog incorporated in the Boltzmann equation a quantity Y,

representing the factor by which the collision frequency

differed from that of a gas composed of point particles.
Furthermore, the distribution functions of the colliding
molecules were distinguished by a distance o in contrast
with assumption (iii).

The factor Y is identified with the equitibriun
radial distribution function for rigid spheres, evaluated

at an intermolecular distance of o . In this manner

correlations between molecular positions were assumed identical
to the equilibrium situations'6 ; however, the molecular chaos
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assumption viras retained f or velocities. The equation of

state for a single component rigid sphere gas is related to

Y through

þr'o'vl .

! = , * # nno3

P = nkT(I + (2.7 I

For self-diffusion, the Enskog solution of the modified

Boltzmann equation yields

nD = (nD) /Y (2.8)
o

where (nD)o is the low density value and Y is definecl by

+ (2.e)

This result has been extended to binary mixtures by Thorner

and to multicomponent mixtures by Tham and Gubbins?. Thorners

expressions for the binary diffusion coefficient is given by

Y =I+ a¡¡*4022
4o¡¡14o22

4a t t*o zz
4o r r *4ozz

( 2.10)

( 2.11)

nD (nD ) o/Yr, ,
2 t2

with

2
3

nfi x , ";r(
t-

L

3
o*x

2
+

l2 22

In order that Equatíon (2.I0) can be employed for comparison

with experimental data, the Thorne diffusion coefficient, Dt2 ,

must be related to the measured quantity D' The required

relation being?

(n0 )/(no (âl,na, /àt"nx, )r,, r (2.L2)
l2 I 2

where a. is the activity of component 1. An expression
I

for (âÎ,na, /ðLnr r\ r,, is given in Appendix I. Combination

of Equations (2.I0) and (2.12) gives
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(n? )/(nD )o Y ( ð.Q,na
1
/ðLnx T,P (2.13)t2 t2 2

Expansion of this equation as a series in n yields

(nDrz¡/(nOr,)o = I + (2.14)

where Bo and Co are termed the first and second density
corrections to the dilute gas diffusion coefficient; the

first density correction is considered further in Chapter VfI.
Recent considerationss'to of the Enskog-Thorne results

have shown that they are inconsistent with the Onsager recip-
rocal relations. However, such discrepancies do not affect
the first density correction for isothermal diffusion. Van

Beijeren and Ernstro have reformulated the theory in terms of
a local-equilibrium radial distribution function which accounts

for spatial non-uniformities in the loca1 number density. The

modified theory is consistent with the Onsager reciprocal

relations.

2.3 Ri gorous Kinetic Theory of Dense Gases

A more general statistical mechanical Èheory of dense

g."."tt h.= been devetoped from a set of integro-differential
equations obtained by integration of the Liouvitle equation.

This set of equations is known as the BBGKY hierachy after
Born, Bogoliubov, Green, Kirkwood and Yvon; the first equation

involves the first and second order distribution functions and

is similar in form to the Boltzmann equation. The theory

implies an expansion series, analogous to Equation (2.LAI,, for
the transport coefficients. Successively higher order events

occurring between molecules determine the coefficients of the

++Bn
D

Cr.'
D
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series. Because of the mathematical difficulties encountered,

exact formulae for the transport properties have proved

impossible to obtain without making approximations.

Curtiss and co-worket"t'"t retained some of the Enskog

assumptions and derived expressions for t.he first density

corrections. Their treatment included the effects of

collisional transfer and three-body collj-sions for gases

obeying an arbitrary potential; effects due to bound pairs

of molecules were not considered. As the necessary inte-

grationsr3 have not been performed for binary systems, these

results could not be compared with the data obtained in this

study.

In a gas at high density, sequences of correlated

collisions can occur and hence molecular velocities may be

correlated over distances greater than the distance of

molecular interaction. Such deviations from molecular

chaos cause divergencel4'ló in some coefficients of the density

expansion. The expansion for a transport property, o , then

takes the form

u/ao I + Bop cJ' p' t-np + (2.1s)+ c[02 + ,

where p = na3 and a is the molecular diameter. Various

attempts6'r7!18 at fitting experimental data to an equation of

this type have been made, but no substantiative evidence

for the inclusion of the logarithmic term has been obtained.

As the diffusion coefficients measured in this work could be

adequately described by an equation linear in n , Equation

(2.15) is considered no further;
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CHAPTER III

BÁS.TS OF EXPERIMENTAL METHOD

3.1 Inttoduction

Diffusion may be defined as that process whereby a

re.lative flow of components is caused by the presence of a

potential gradient. -w*hile this gradient may manifest

itself in a variety of forms, that which arises solely from

a difference in concentration is of interest here. This

type of diffusion is termed ordinaîg diffusion.

Although diffusion is generally a three-dimensional

process, the present discussion is simplified by considering

the flow of matter in a singte dimension. Because the

relationships between the component fluxes and the concen-

tration gradients causing them are of central importance in

any experimental observation of diffusion, a brief outline of

the major flow eguatjons is given below. This discussion

is strictly pertinent to those systems where isothermal

conditions exist. liowever, it must be realised that the

transport of matter produces a flow of energy and thus

temperature gradients; this phenomenon is known as the

Dufour effectl and its conseguences will be neglected for

the moment.
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3.2 Flow Eguations and Ftames of Refetence

Most mathematical analyses of diffusion experiments

begin with the statement that the rate of mass transfer is
proportional to the relevant concentration graclient. This

bras first formulated by Fick2 in 1855 and is generally known

as Fickrs first law of diffusion. In order to make use of

this law in a definitive manner, ít is necessary to specify

a frane of reference in which measurements can be based and

also to show that Fickrs law is applicable in this frame.

Experimental observations are commonly based on a reference

frame defined by the diffusion ce1l3 whereas the phenomeno-

logical flow equations4s are discussed in terms of more

general reference frames. Specifically the volune-fixed

frame, defined as that reference frame moving with the same

velocity as the local centre of volume, is of importances'ó

in experimental situations.
If the local flux of component i in a binary system

is denoted by J, and defined as the number of moles of i
crossing unit area normal to the direction of diffusion in
unit time, then the relationship between the fluxes in the

volume-fixed frame is
2

I V. t¡.ll
0. (3.1)v

I

Here V. represents the partial molar volume of species i
and the subscript V on (J, ) implies that each flux is
measured with respect to the volume frame of reference.

The mathematical statement of Fickrs first law for a

binary system is
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(Ji (D¡ (ðC, /ðzl , (i I,2) , (3.2)v

where c, is the concentration of component i expressed in
moles per uni-t vorume, the proportionarity constant, (D, ), ,

is the cliffusion coefficient and z specifies the direction
of diffusion. By combining Equations (3.r) and (3.21 with
the thermodynamic relation

I (3.3)

it is possible to show that

(o v (D
2

(D )v , (3.4)

where (0,-)-. is the mutual diffusion coefficient.- t2'v

3. 3 The CeI I Frame of Refetence

Diffusion in ¡eal fruids is often compricated by vorume

changes which cause the system to experience a bulk flow. The

volume-fixed reference frame cannot therefore be considered

stationaryT with respect to the cell frame. rf uvc denotes

the relative velocity of the two frames and (J, )" is the

flux of component i in the cell frame, then the retationship
between the two fluxesa is

(.r

)v

2

Icüþ¡¡
¡ =l

2v

(Jr)rr*C,tu" (i=L,2).

have shown that expressions for üu"

equation

2

T

c (3.5)

Kirkwood

can be obtained

et al. 4

from the

I

( âuvc /ðz) t V. Iâ(Jr )v/Azlt, (3.6)
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using the technique of integration by parts in conjunction

with the particular boundary conditions defined by the diffusion
ceII geometry. For the immediate purpose these boundary

conditions need only be specified asr at z = 0

J ) (J,)" = 0 (i = L,2\, ( 3.7a)v

and

uvc = 0. (3.7b)

These relationships correspond to the physical restriction of

the cell being closed at z = 0.

Following further the procedure of Kirkwood et al. t

Equation (3.5) can be expressed for component I as

)- '' f'
o

('r, )t((J, )" âCr
ðz

( avl ,/acl )

(o,rl,
âCr
âx )

dx. (3.8)
V

22
c

Thus, if Fickrs fírst law is to be applied in the cell
frame of reference then the integral appearing in Equation

(3.8) must vanish; the necessary condition being

=0 (3.e)

This condition is always applicable to reaJ gaseous

sgstems in the low density limit, whereas at greater densities

restrictions on the nature of the systems chosen for study

must be imposed if Equation (3.9) is to remain valid.
To determine the type of restriction, the virial eguation

of states may be employed to evaluate the concentration depend-

ence of the partial molar volumes (Appendix I). V'fhen this
is done and third and higher virial coefficients are neglected,

the result may be expressed as
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( âvr ,/acl )

Here C is the total molar concentration and B" is the

excess second volume virial coefficient defined by

L, (B +

4BEc2 /ctÍ,

2
B

2
BB

E

(3.10)

( 3. 11)

(3. 12)

(3.13)

(3.14)

lt 2

Comparison of Equations (3.9) and (3.10) implies that

for moderate densities the restrictive condition is

B
E

In the situation where the partial molar volumes are

concentration dependent, the integral in Equation (3.8) may

stiII be neglecteda by considering only small concentration

gradients. [iowever, for reasons discussed later, this

procedure will not be adopted and it is necessary'therefore,

to invoke the restriction specified by Equation (3.L2) in

order to obtain the relation

(J ) (Dn)rn(âc. /àz), (i I,2\ .

Although direct application of Equation (3.f3) is

possible under steady state conditions3, it is generatly

made use of in conjunction with the pertinent eguations of
5continuitg' . These latter relations describe the conserv-

ation of mass for each component and for those systems in

which no chemical reactions occur, may be expressed as

0

c

[ð(Ji )./ã27 .
(ðc. /ðE) , (i r,2) .
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Combining Equations (3.13) and (3.I4) yields the

partial differential equation

(i 1,2) ,

where the subscript V has been omitted. from

simplicity. This equation, commonly referred

second law, takes the more convenient form

(o

[r](',,þ)],

l2 v

to as

for

Fick I s

(3.1s)

(3.16)

)

(àc. /ðt), = Dr, (ð2c. /ðz2l t (i I,2l ,

when the diffusion coefficient is independent of concentration.

In the special case where 0r, is a linea¡ function

of concentration, Ljunggt"rr' has shown that to a first approx-

imation the diffusion coefficient may be considered constant

with a value corresponding to that of the mean concentration

of the experiment.

3.4 Âestri cted Diffusion

In order to obtain an expression for the concentration

distribution, Ci (z,t) , from Equation (3.f6) it is necessary

to define certain experimental conditions. For this purpose,

the diffusion vessel will be considered to take the form of

a closed tube with a uniform cross section and a finite length,

9" If the upper and lower extremities of the cell are

specified by the coordinates z = 0 and z = .Q, respectively,

then the boundary conditions mentioned previously can be stated

in fulI as

ðci ( o,t) /òz âc (9.,L) /ðz 0 (3.17)
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The solution of Equation (3.16) subject to (3.17) is

the Fourier seriesto

oo

A
n

n=O

where the coefficients, An , are related to the initial

concentration distribution. This relationship permits the

diffusion coefficient to be obtained from an analysis of the

position and time dependence of the component concentrations.

3.5 The CJassjcaJ Loschnidt Technigue

Of the various experimental methods that have been

developed to study gaseous diffusíon, one of the first to

be reported was due to Loschmidtrt in 1870. The technique

is based upon the formation of an initial sharp boundary

between two gas mixtures encl-osed within a cell similar to

that outlined above. Defining the boundary position as

z = b and with reference to component l, the initial experi-

mental conditions may be stated as

C, (z,t)
I I

A
0

(0)

(0)

cos(nrz/9")exp(-nzn2D' E¡L2), (3.18)

b< 9"

C, (z ,0) (3.re)
0< b

Here cï (0) and cf tO) are the initial uniforn concentrations

in the upper and lower compartments.

The Fourier coefficients of Equation (3.I8) can then

be determined fromt'

={:å
I

z

z

I'
o

t2

J "r 
(z,E)cos(nnz/Î")ð.2 (n Þ 1). (3.20b)

o

(L/ !,',) c (z,L\dz, (3.20a)
I

A
n

(2/ e")



Evaluation of these integrals yietds

e
A

o lb/ e.)c (0) + t ( f,-b) / e-lci (o)

I
=-S]-Dn

/nnz\
"o=\-f/

(n)I).
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(3.2Ia)

(3.21b)

(3.23b)

õ

A # sin (nnb,/.e,) (nÞI).
n

Here C. is the concentration of component I averaged overI

the compartmental volumes and AC, is the initial concentration

difference:

Âc, = ci (o) e
c (0). (3 .22')I

yields

with

Substitution of Equations ( 3 . 21) in Equat.ion ( 3 . ]e )

C (z,Ll õ 2^c r exp(-n2rz7' t¡9,2¡, (3.23a)
I n

a
n

a
æ

I
-tn

1

lo
J
b

1T

nnb
T

In a classical Loschmidt experiment the normal procedure

is to isolate the two compartments about the position z = b

at some time , t , before complete mixing has occurred.

Expressions for the average concentration in each compartment

at this time can be obtained by integrating Equations (3.23)

over the length of each compartment, viz.,

I c (z ,Ll dz, (3.24a)
.e,-b

c

.ci ,

.cr, = * I'
0

(z,t) ð,2. (3.24b)



Hence,

f

can be related to D through

26.

exp( -n2T'Í20* L¡L2¡, (3.25a)

exp(-n2nzDrrE¡1"2¡, (3.25b)

(3.27 \
<ct> +

exp [- (2n+t) 'n'D r" x/9.2] . (3.28)

(3.29a)

(3 .29b)

<c +
I isn

n=l
c

i e,,
=l

<ct >
I

2LCtL
nz 1L_b)

2AC | 9"

TlTh
ccI

I

with

= # sin2 (nrb/e.) (n>I). (3.26)

These equations assume a much simpler form when þ = 9,/2.

In this case the quantity f , defined as

I

q

clI
9.<c
I

- 4AC, I
(2n+L) ztt'-c, n o

2

æ

I

Îf it is further assumed that initially each compartment

contains a pure component, then Equations (3.2Ia) and (3.221

reduce to

= L ci (o),

^
= ci (0).

Substituting into Equation (3.28) gives

c
I_

I
T2

c

c

o

@

¡
I

(2n+L, z exp [ - ( 2n+I) 'n'D ,, L/ r,2 ] . (3.30)

Thus, combination of the above expression with Equation

(3.27) permits 0r, to be calculated from the experimental

quantities ."ï t , .Cqru, t and 9..
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3.6 The Continuous Analysis Method

It is possible to utilise Equation (3.18) in a different
manner to that described above by considering variations in
concentration only at certain posi tions within the cell3 .

Dunlop and co-workersr3 -16 have recently reported a similar
technique whereby concentration di ffe¡ences are monitored as

a function of time. Their method is similar to that developed

by Flarnedlt in order to study diffusion in electrolyte solutions.

The form of the equation on which the method is based

can be derived simply from Equation (3.18) by evaluating

Cr(z,Ll at z = 9-/6 and 5f"/6. Then by forming the

difference

AC (r) c (L/6,8) c (59"/6,t| , (3.3r)
I

it is possible to show

)-A;
AC (r) A ,

"n(-
25nzD tt2

Lz
e exp +

Here the coefficients A' are related to those of Equation
n

(3.18) by

A,
n

ßa (nÞ1)

(3.32)

(3.33)

For large values of time the second and higher order terms

in Equation (3.32) become negligible. Thus by measuring

the concentration difference or a property proportional to it,
as a function of time, the diffusion coefficient can be deter-

mined.
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A comparison of the experimental results obtained with

the two techniques discussed above j-s given in Chapter VI.
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CHAPTER IV

TXPTIIIMENTAL APPAIIATUS AND PROCEDURE

4. 1 Inttoduction

The solution of Eick's second law given in the previous

chapter ís based, in part, upon certain geometrical properties

of the diffusion ce11. In addition to these requirements,

the cell must possess the ability to confine gases at elevated

pressures. Special experimental procedures were also found

to be necessary at these pressures. Particular reference is

made to these aspects of cell design and experimental technique

in the ensuing discussion. The manner in which Equations (3.27)

and (3.30) are employed to calculate the diffusion coefficient

wilI also be considered.

4.2 CeI 1 Desc¡ iption

A diagram outlining the important features of the

diffusion cell is shown in Figure 4.I. It is similar in

design to cells previously employed in thisr'2 and other

laboratoriest -u , and consists basically of two symmetrical

sections or halves, joined together about a common pivot.

Each half is comprised of a cylinder, closed at one end and

attached to a disk in an off-centre position at the other.

Both cylinders were constructed from a single stainless steel

tube which had been honed out so that its internal diameter
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-

Loschni dt-tgpe cel I

T, inlet and outlet

r, viton 0-tiflg, | ,

-I

in section; S, springs,

vents, I, lapped surfaces,

lead 0-ring.

Figure 4.1
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$tas constant to óetter than 0.001 cm. The discrepancy between

the diameters of the cylinders and the connecting hores in
the disks \^ras also of this order of magnitude. correspond-

ingly, the variation in cross-sectional area over the length

of the diffusion channer was less than 0.07s. The two disks,
also manufactured from stainless stee1, were 22.6 cm in
diameter and 6.2 cm thick. They were clamped together by

means of a spring system connected to a rod placed through

their centres.

One problem associated with cells of this type is their
susceptibility to leaks, particularly in the region of the

interface between the cerr halves. As a first precaution

against such an occurrence, the mating surfaces of the disks

v/ere rapped against an opticarly flat stainless steel plate
and against each other. A second safeguard consisted of two

viton O-rings inserted between the disks into circular grooves

concentric with the pivot. As the openings of the diffusion
channel- brere contained within the annulus defined by the

O-rings, external gas leaks hrere prevented. Before joining

the disks together, a thin layer of Apiezon T-grease was

applied to each surface to provide a vacuum seal and to aid

Iubricatj-on. Finallyr €rrr intimate contact between the disks
\^ras ensured by employing a set of springs capable of exerting
forces as great as 200 kN.

Other regions of the cell where a possibility of gas

leakage exists are the ends of the diffusion channel and the

connections between the cylinders and disks. The former

sections v¡ere sealed with the aid of read o-rings placed in



34.

circular v-shaped grooves, whire each of the ratter was sealed

by the insertion of a viton O-ring into an annular groove

which had been cut in the end of the tube. proper design of
these grooves enabled the elimination of alt free space

between adjoining surfaces. To determine the success of
these precautionary measures the cell was filted with nitrogen

to a pressure of 20 atmospheres and isolated for 67 hours.

over this period of time the pressure r^ras found to decrease

by only 0.I43.

Since the magnitude of the relaxation time for a

Loschmidt cel-I is dependent upon the cerr lengthr âs werr as

the diffusion coefficient, it was found necessary to manu-

facture three different pairs of cylinders. By interchanging

these pairs, the cel-l length courd be varied thus overcoming

the problem of inordinately long diffusion periods. The

Iengths and internal diameters of these ceLls are summarised

in Table 4.1.

Table 4.1

Dinensions of the Diffusion Cell

CeII
designation

Length"
(cm)

Internal
diameter (cm)

ct
c2

c3

L22.83

60.00

40.00

2.89L

2.890

2.890

a The uncertainty in each length was

believed to be less than 0.005 cm.
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Great care was taken in the construction of each pair

of cylinders to ensure that the cells $rere symmetrical about

the interface. The actual position of this boundary as

measured from the end of the lower compartment, and the ratio

of the lower to upper compartmental volumes, Rv ' are given

in Table 4.2. A maximum error of 0.1E was estimated for the

values of R-- and 0.005 cm for the boundary positions.v

Table 4.2

Dinension s of the Cel I Conpattnents

CeIl
designation

Boundary
position (cm) Rv

CI

c2

c3

61. 41

30.00

20.00

r.000

1.000

1.000

The cell was suspended vertically in a water bath

containing 500 litres of water; the lower half of the cell

being held fixed in position. By rotating the upper section'

with the assistance of a differential spur gear and pinion'

the cell compartments could be aligned or separated. In

this manner it was possible to form an initial boundary between

the gases contained within the cell halves. When the compart-

ments vrere fully separated, they $tere each positioned over a

vent through which gases could be introduced or removed. The

ceII vents were connected to the external apparatus, comprising

gas cylinders, vacuum system and pressure gauges, bY a manifold

constructed from stainless steel tubing.
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4.3 Experinental Proceduze

AI1 experiments r^tere performed by filling each evacuated

cell compartment with a pure gas and then aligning the cell
when thermal equilibrium had been attained. Diffusion was

allowed to proceed for a measured period of time, t , before

separating the compartments. During the filling procedure,

the problem of an internal gas leak, via the interface, became

significant whenever a large pressure gradient existed between

the cell halves. This problem was solved by 
" 
lternatelg adding

gas to each compartment so that the pressure difference became

progressively less as the final pressure was approached. The

last additions of gas were monitored very carefully to make

certain that the f inal compartmental pressures lrrere the same.

Gravitational stability was maintained during diffusion by

always filling the lower compartment with the more dense gas.

Pressure measurements Ì^rere made using a series of Texas

Instruments Bourdon-tube gauges. Two of the Bourdon-tubes

consisted of quartz spirals and were intended for use over

pressure ranges of 0 to I and 0 to L4 atmospheres. Another

tube, of aluminium, Ì^ras employed for measurements between 13

and 30 atmospheres. The two high pressure gauges $¡ere

calibrated against a dead weight tester (8e11 and HoweII,

type 6-201-0001 primary pressure standard) in this laboratory.

These calibrations were reproducible to within 0.03t and

were corrected to account for the difference between the local
gravitational acceleration? (g.79724 ms-21 and the standard

value (9.80665 ms 2); the accuracy of the dead weight tester
was stated as being better than 0.025t. The low pressure tube
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was calibrated against a similar pressure standard at the

Ion Diffusion Unit, Research School of Physical Sciences,

Australian National University.

The period of time during which diffusion occurred

rÁ/as chosen to be in the region of an optinun time8, t opl'

defined by

topt = Lz/rfLDn (4.1)

This diffusion time minimises the effect of certain experi-

mental errors on the derived value of D' and is discussed

in more detail in ChapÈer VI. Optimum times for all experi-

ments were greater than 7000 seconds. As the alignment and

separation of the compartments required a finite interval of

time, this diffusion period was uncertain to the extent of !6

seconds.

After the optimum period of time had elapsed, the

compartments were rotated into a position where they were

separated from each other but were not in communication with

the vents. The cell was left in this configurat.ion until

the compartmental concentrations became uniform. A period

of approximately 3aoo, t,'tas necessary for this mixing to

occur (see Appendix II). The vents, whích still contained

the original component gases, hrere then evacuated before

rotating the compartments further. During evacuation, any

internal leak between each compartment and vent was unimportant

because the two mixtures were uniform in concentration.

Throughout aII experiments, the temperature of the

thermostat bath was controlled to within t0.005K with an

on-off mercury'toluene relaye . I{ercury-in-glass thermometers,
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which had been calibrated against a platinum resistance

the bath temperature.thermometer, \^/ere used to monitor

4.4 Calculation of the Diffusion Coefficient

Slightly different forms of Equations (3-27) and (3.30)

rÀrere used to calculate Dn

Equation (3.30) was simplified by neglecting the

second

0.0048

and higher order terms which

of the first term when L > L

amount

opt

to no more

Thus

than

f

Final compartmental concentrations Ì^rere analysed in

terms of the component molefractions, Xi . These could be

converted to the concentrations, Ci , appearing in Equation

(3.27), by utilising the virial equation of state. The necessary

relationship being

å ""n 
(-tt'D ," E/ !,2 | . (4.2)

(4.3)c, = 'i P/z

Here Pt T and R denote the

and gas constant, respectively,

l, = I

absolute temperature

is the virial exPansion:

RT (i I,2)

pressure,

and Z
m

+B,P+
m

(4 .4)

(4.s)

B' is the second pressure virial coefficient which is defined

for a binary mixture as

2

i
I

B
2

i xx B.'.rJm

Substitution of Equation (4.3) in (3.27) yields, after several

manipulations,

I
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f. [<x
u

I
z9 .rorrr,) / l<r" >zg ."1 t zul ,+ (4.6)

where a"u,
I

fractions,

values of

volumes.

(4.3) , one

respectively;

z.

Simplifying

obtains

ZandZ
u I

and ,rQ > are the final
I

upper and lower mole-

are the corresponding

ftre co^Uination of Equations (4.2) and (4.6) enables

Dr" to be determined from .*ï t, ,rqrr, t, P,1, and the virial
coefficient data. In order that these two equations be

consistent, the component 1 referred to in the latter equation

always denotes the Jighter of the two components.

4.5 Mass Ba,lance Relationship

In the absence of any leaks the total mass of each

component must remain constant throughout all experiments.

Thus it is possible to compare the amount of each component

present initially, with the amount present at the end of the

experiment. A convenient way of performing this comparison

is to consider the mean molefraction, lr, which can be

calculated from the initial conditions and also from the final

analysed concentrations.

lVhen the initial conditions are considered, 7, can

be expressed as

x = v,,ci (o) / (v"ci (o) ,o"l(o) ) . (4.7)+

Flere V,, and VQ denote the upper and lower compartment

this expression with the aid of Equation

)z+zx /(z R,,,
22

(4.8)
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where

z t+B

and

For the second type

fraction is represented as

similar fashion to Equation

li
(i L,2l ,

Ru V
e

of calculation, the mean mole-

i, (exn) and is derived in a

The resulting expression

+P

P+

(4.9a)

(4.eb)

(4.r1)

/vu

(4.8).

l-s

I, {exn)
(¡ >Z + Ru

(4.r0)2

z
e

Ru

I{hile agreement between ,, and x, (exp) does not in

itself signify a successful experiment, disagreement does imply

an unsuccessful experiment. When comparing these values a

discrepancy arising from the expected maximum experimental

errors in ."Ït and .rl, must be allowed for. The magnitudesl1

of such errors are discussed in Chapter V.

For the purpose of summarising the comparison of i, {exn)

and Xt over a range of pressures, Equation (4.8) was expanded

as a Taylor series in P:

u

9.1v >Z
1

z+
u

x -l(I+Rv) ' +

htrhen R is closev

without introducing

Rv/(l+Rv)2 That

to unity the above expression can be simplified,

any significant error, by substituting \ for

is

x
1

+ , +( l+Rv )
-l \(s22

B l1 )P (4.l-2)
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Another consequence of such values of R, is that to a good

approximation, Equation (4.10) may be written as

ar'rZQ + .rlrz,
x , (exp)

the derived const.ants, âo

predicted values (l+Rv) -1
â1, can be compared with the

h(Bi, - Bí, ).

z +Z
L u

(4.r3)

(4.I4)

rf the values of i, (exn) are then fitted to an equation of

the form

i, (exn) =a +aP ,I

and

and
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CHAPTER V

CO NC E NTRAT I O N ANALTS.TS

5.1 fntroduction

Determination of the diffusion coefficient, using the
method described in chapter rv, depends ultimatery upon being

able to measure the finar compartmental concentrations. For

this purpose a mass spectrometric technique \^ras adopted, in
preference to a method emproyed previously in this laboratory"'
which exploited the difference between the thermal conduct-

ivities of the component gases. This choice made it possible
to study those systems in which the component masses differed
but the thermar conductivity difference vras negtigible. rn
particular, it was anticipated that the mass spectrometer

would eventually be employed in studies of isotopic systems.

The experimental method briefly referred to at the end

of chapter rrr has been impremented by using thermistors to
monitor the thermat conductivity differencêr, and thus the

concentration difference between the cetl positions g,/6 and

59"/6. Arthough this method and the classical Loschmidt

technique cannot be crassified as being truly independent,

the use of the mass spectrometer in the ratter helps minimise

the simirarities between them. comparison of the resurts
obtained with both procedures is them somewhat more meaningful.
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5.2 The Mass Spectronetet

Atl analyses were performed with a Micromass MM6 mass

spectrometer which is based upon a 6 cm, 90o deflection sector.

Ions hrere formed by bombardment with electrons from a thoriated-
iridium filament; the electron energies r^rere fixed at 70 ev.

The mass spectrum was scanned by varying the current through

the deflecting electromagnet. Fixed ion-accelerating voltages

of 700 and 350 volts were employed for the mass ranges 2-50

and 2-100 amu respectively.

Because the spectrometer was used primarily for
quantitative measurements on mixtures whose component masses

differed significantly, the sensitivity of the instrument

\¡/as of more importance than its resolution. The resolving

section therefore consisted of a set of slits, 0.1 cm in
width, which optimised the sensitivity at the expense of

resolution. As a further consequence the component peaks

were flat-topped, thus facilitating the measurement of their
heights.

The mass spectrometer vacuum system consisted of a

polyphenyi, ether oil diffusion pump and a two-stage rotary
pump. A cold trap was employed, but only to act as a

baffle. A butterfly valve, through which had been drilled
a small hole, vras inserted between the diffusion pump and

cold trap. During each analysis this valve was closed and

the system pumped through the hole. The resulting decrease

in pumping speed caused an approximate ten-fo1d increase in
pressure and an associated increase in ion current magnitude.

This arrangement also acted as a choke which decreased the
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effect of any pumping speed variations. After an analysis
hras completed the varve was opened in order to effectivery
pump out the spectrometer. pressures of 1o-7 torr r^rere

attainabre with the valve open and 10-6 10-s torr with it
closed.

ron currents were detected with a single Faraday

prate corrector connected to a vG-Micromass cA2 chopper

amplifier. The input stage of the latter consisted of a

10lr ohm resistor and varactor diode bridge amplifier which
possessed a stability similar to that of a vibrating reed

3amplr-tr.er . output from the chopper amprifier was fed to
a 34904 Hewlett-Packard digitat voltmeter interfaced to a

98104 HP programmable calcurator. rn this way an arbitrary
number <¡f peak height measurements, each requiring 0.270

seconds, coul-d be summed and the average obtained.

5.3 SanpJe Introduction Sgstem

Any mass spectrometric analysis of the relative abund-

ance of components within a mixture is compricated by the
problem of relating the cornponent proportions in the ion-
ization region to those in the par-ent sampleo" . rn the
case of gaseous mixtures, this probrem arises because of the
nature of the gas frow from the sampre reservoir,through a

constriction of some type, to the ionization chamber. rf
the sampre pressure is so row that the mean free path of the
molecules is large when compared with the constriction
dimensions, then the flow of gas through the constriction is
termed nolecular flor" . Here the frow of each component is
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inversely proportional- to the square root of its mass and

hence /nass disc¡inination or fractionation occurs in this
region. This type of sample introduction system is known

as a moleculat leak. Since the flow through the spectro-
meter is also molecular, the ratio of the component partial
pressures in the ionization chamber is the s¿rme as that in
the sample container when a steady state flow has been attained.
However, the major disadvantage of the morecular leak is the

fractionation at the constrictíon which causes the relative
concentrations in a finite sample reservoir to change with
time. Consequently a different type of intet system, the
yi s co us I eak, \^ras adopted .

The viscous leak differs from the molecular leak in
two aspects. Firstly, a long thin capiltary tube is placed

between the sample reservoir and constriction andrsecondly,

the use of larger sample pressures permits yjscous flow

through the capirlary. Although fractionation still occurs

at the constriction, where viscous flow blends into molecular

flow, its effect on the sample concentration can be minimised

by a certain choice' of capillary and reservoir dimensions.

Kistemakêt7 , and Halsted and NierE have derived

equations which approximate the flow of a binary gas mixture

through a viscous leak. The important results of their work

can be summarised as:-
(i) Long narrow capillaries and small constrictions produce

the largest fractionation, however, capillaries of
such dimensions also reduce the effect of back

diffusion on the sample concentration.
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(ii¡ Before any measurements can be made a certain period

of time must be allowed for the attainment of steady

state flow.
(iii) rt is important to ensure that sampre pressures are

identical when comparing different analyses.

(iv) The sample reservoir should preferably have a volume

greater than 100 cms.

Because the corresponding mathematical results cannot generally

be used in an a prioti fashion to calcurate the actuar behav-

iour of such a leak, a process of calibration with mixtures

of known composition was employed.

The viscous leak supplied by the spectrometer manu-

facturer consisted of a stainress steel capilrary 90 cm in
length, 0.0I5 cm in diameter, with a crimping device attached

to the spectrometer end. A sampre reservoir of approximately

I2O0 cm3 in volume was connected to the other end of the

capilrary. The frow rate against atmospheric pressure was

nominalry set at o.o2 cm37min, giving an analyser pressure of

1O-'' torr when pumped at 2 LíLre/sec. Sample pressures were

in the region I50 200 torr and were monitored by means of
a schrumberger transducer or a Texas rnstruments pressure

gauge. During the time required to analyse a gas mixture the

sample pressure changed by less than 0.3t.

5.4 Concenttati on Detetnination

Calibration of the mass spectrometer with standard

mixtures is further necessitated when the relationship between

the component ion current and concentration in the ion source
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is considered. One must assurne that for a given sample

concentration, the ion current ratio is proportional to the

ratio of concentrations in the sample gase, that is

(s.1)

Here ,t denote the sample gas molefractions and I, the ion

currents. ß depends upon factor:se such as the character-

istics of the leak system, the difference in ionization
probabilities of the components, the difference between the

collection yields of the ion beams and any nonlinearity
possibly inherent in the amplifying system. As the peak

heights are measured in terms of an amplified voltager h, ,

which is proportional to I, , Equation (5.f) may be employed

in the form

T/T2' I
g(xr/xrlc

(5.2)

where S, is termed an "apparent sensitivity ratio" and is
similar to the mass spectrometer bias referred to by !{a1ton

and Camerorrto . Accordingly, S, is treated as a charact-

eristic of the mass spectrometer and inlet system and must

be determined by calibration.
All analyses involved the measurement of the peak

heights of both gases until their ¡atjo remained constant to

bette¡ than 0.1t for at least three pairs of averages. Each

average consisted of 500 individual measurements requiring
approximately 135 seconds to complete. The period of time

necessary for the peak height ratio to attaín this measure

of constancy depended upon the nature of the system. For the

x /x2' I
s, (h2 /}lr) ,
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binary combínations of Nz, O, and Ar it was in the region

90 110 minutes and for the system Ar + Kr it was approx-

imately 140 minutes.

Individual peak heights were corrected for the presence

of sma1l background peaks measured prior to admitting a gas

sample. A nenorg effecte was noticeable for those systems

which contained either O, or Kr. In these cases the

background attained a constant magnitude only after allowing

a gas sample to flow through the spectrometer for at least

30 minutes. Thus the practice of priming the mass spectro-

meter with a mixture containing those components that virere

to be analysed was adopted.

Analyses of unknown mixtures and calibrations were

performed in identical fashions. After measurements $rere

completed on one mixture the spectrometer and sample reservoir

were pumped out and the background measured again, before the

introduction of the next mixture. Peak heights for all

systems studied varied between t and 4 volts depending on the

relative concentrations. The zero of the amplifier was

adjusted to give an average value of less than I0-'' volts and

\^/as checked between each pair of peak height measurements.

Before Equation (5.21 can be used in order to calculate

*, from measurements of (h2/ll.rl, it is necessary to determine

how S, depends on concentration. Such an investigation,
whereby a series of mixtures with known compositions were

analysed, \^/as performed for the N, + Ar system. The

results of these experiments are summarised in Table 5.1 and

Figure 5.I. It was observed that over the concentration range
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Table 5.1 a

Mass Spectroneter Calibratjons for N + Ar
2

Calibration A

x

Calibration B

S xxS

Calibration C

S
r222 I

0.3814

0 .4357

0.5874

0.6222
o .77 52

intercept
slope
ave. dev.

0.5864
0. s866

0.5865
0.5874
0.5878
0.5910
0.5908
0. s907

0.5907
0.5947
0.5946

0.5787
0.0204
r0.058

0.38r4

0.5874
0.77s2

intercept
slope
ave . dev.

0.s85s
0.5857
0.5857
0.5893
0. s933

o .57 82

0.0192
r0.038

0 .435?
0.6222
0.7752

intercept
slope
ave. dev.

0.5863
0.5886
0. s907

0.5911

0. s803

0.0136
t0.04t

In each case S, was fitted to a linear function of

Xz. The intercept at *2 = 0, the slope and the

average deviation of the experimental points from

each straight line are also listed in the table.
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studied, S, could be adequately described by a Iinear
function of morefraction i a result similar to that reported
by walton and cameronro for the '\" + "N" system. Thus

when calibrating the mass spectrometer, ât least two mixtures
with different compositions shoul_d be used.

rnspection of Figure 5.1 also shows that the three
calibrations irlustrated differ by an amount greater than

the experimental precision. such variations from day to day

are typicarrt of an electron impact ionization source.

For systems other than N, + Ar , the linear depend-

ence of s. $¡as assumed. This is not an unreasonable approx-

imation if at least one of the caribration mixtures has a

molefraction in the neighbourhood of that which is to be

measured. Furthermore, since two mixtures must be analysed

in ord"er to obtain a varue of D r, , it is rogicar to perform

one calibration at a molefraction close to ."i t and the

other at a morefraction crose to ,r\, . once the two varuesI

of s, have been determined, the constants a and b appear-

ing in

s
¡ =ax , * b' (5.3)

can be evaluated. Then, by employing this equation in
conjunction with Eguation (5.21, values of ."ï, and .rlt
can be calculated from the corresponding peak height ratio
measurements. rn these calculations it is more convenient

to use a rearranged form of Equation (5.2) z

tr + S
¡

(h2 /:hr) l'rx

and adopt an iterative method of solution.

(s.4)
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5.5 Cali bration Mixtures

To remove the need for accurate measurements of volume,

pressure and virial coefficient data, calibration mixtures

were prepared by weight. A balance (Voland Corp. U.S.A.,

model HCE 10 equal arm mass comparator) capable of weighing

a mass of 10 kg with a sensitivity of !0.0019 was employed

for this purpose.

Gas mixtures hrere prepared in Matheson síze 6 cylinders

which had previously been evacuated and baked out. The

external surfaces of these cylinders r^/ere chrome-plated to

prevent oxidation.

e1I weighings r¡rere performed against a tare and the

appropriate buoyancy corrections made. The final concentration

of any mixture, although calculated from the actual masses of

the gases, could be crudely controlled by monitoring the pressure

from the source cylinders. For the majority of mixtures at

least 209 of each component were weighed; the maximum error
in such weights being less than 0.0059. The effecÈ of these

errors on the value of ,, can be estimated from

l*l *,,1+l *,.'l#l

ldxr Il-l <ZxI0r,
x1=0.65

, ( s. s)

( 5.6a)

where rr1 and rr2 oenote the masses of the two components.

If mixtures are prepared so as to have molefractions near

0.65 and 0.35, then

and

l*l xr=0.35
<3x10 lt ( s. 6b)
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These values of molefraction correspond approximately to
u-21y > and 1y >.
tl

5.6 f¡¡ors in Concenttation Detetnination

Consider the case r^rhere a molef raction , x | , has to

be measured. Two calibrations are performed, one at a mole-
.cfractionr xl , in the region of *,

An estimation of the experimental error in ,, can

be made by differentiating Equation (5.¿). This yields

la"' Il"' I

<xz
dS

f

Þ
I

¿ (hz /hr) 
"

+ x2 (s.7)

Similarly, it is possible to derive from Equations(5.2) and

(5.5) the expression

dm

m
I dm

2

m
2

< 0.0015.

This error can be related to that in S

(5.3) as

(s.8)

(5.e)

by expressing Equation

+ +/hh
2 c

where s" and (h2/hr). pertain to ": . The peak height

ratios were accurate to approximately 0.It while the uncertain-

ties in m¡ and ft2 have been discussed above. Substitution

of these values into Equation (5.8) gives

ds"

S"
I

S
1

S" + a(xr ; 
"; ) ( s. r0)



If x

and thus

c

I
is chosen so that l r, I . 0.05, thenx
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( s. rr)

(s.r2)

( 5. 13a)

( 5.13b)

< 0.o02,

< 0.003 x

< 0.001

< 0.002

la"' I

I ,.' I
2

Applying this final- relationship to the quantities .ri t and
e.rr, gives

t*t
-ad<x >

I---r--
1y>

I

These predictions can be tested by using the data

given in Table 5.1. If two of the points from each set of

calibrations are used. to define S, , then the others can be

treated as mixtures of unknown composition and their mole-

fractions calculated. The average dj-screpancy between the

molefractions determined by weighing and those determined by

mass spectrometric analysis is 0.07S.

As further evidence, a Loschmidt experiment was simu-

lated by preparing four Nz + Ar mixtures; two of which

would be used for calibration purposes while the other pair

would be substituted for the ceII compartment mixtures. These

results, summarised in Tables 5.2 and 5.3, vindicate Equations

( 5. I3a) and ( 5.13b) .
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dTable 5.2

Loschnidt Expetinen ¿ Si nulation.. Ca lihration

xl aS
f

b

0.3046

0.7L20

o.5927

0.5901 -6.38x10-3 0.5946

d The quantities a and b refer to

those of Equation (5.3).

Table 5 3'

Loschnidt Experinent Simulation : AnaJgsis

(h2 /rj.tl x (measured) x ( actual)

"upper
ttlo\nler

compartmentrl

compartment'

0.8565

3.356

0.664r

0.3346

0.6643

0.3349

x, (actual) is the value of molefraction determined

by weighing while x, (measured) is that calculated

from the mass spectrometric analysis.
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Finally, inspection of the raw experimental data

tabulated in the appendices reveals that when experiments are

analysed in dupljcate, the discrepancies between the measured

molefractions are iess than the values specified by Equations

(s.13).
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CHAPTER VI

EXPERIMENTAL ACCURACY

6.I Introduction

The effect of any uncertainty in the experimental

quantities used in calculating the diffusion coefficient

can be estimated quite readily by differentiating Equation

(4.2') . That is

lao r, ¡lEt +dl,
L

dfTdt
t + (6.1)

Other types of errors caused by factors such as the Dufour

effect, heat-of-mixing and a concentration dependent diff-

usion coefficient are more,difficult to determine; these

wiII be considered in a more general fashion. A comparison

of the experimental techniques employed in this laboratory

is given at the end of the chapter.

6.2 Errors in f

It will be shown that the major contribution to

error in D arises from that in f¡ however, this error
l2

can be reduced by selecting the diffusion period which
Iminimises' (àD tz /àfl . This value of time is the optimum

value referred to in Chapter IV. When L > top, , the

relationship (6.f) simplifies to
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9"
+ l.lfl (6.2)

(6.3)

(6.4)

d.e, dr
t

Another type of optimum diffusion period has been discussed

by Tordai2 but it is applicable only when the approximation

f = 1 4(DtzL/9"2t)% ,

is valid. That is, for small values of t . It is also

evident that the relative error in f is decreased by the

use of the maximum i nitial concentration difference in each

Loschmidt experiment.

The uncertainty in f is primarily dependent upon

errors in .*ï, and ."f t and to a certain extent upon

errors in the virial coefficient data. Neglection of third
and higher order virial coefficients introduced no significant
uncertainty. The second virial coefficient data used3 were

believed accurate to within t2xIO s atm-l while the mote-

fraction errors have been estimated (95.6). Consequently,

an error propagation analysis of Equation (4.6) yields for

the maximum cumulative error in f :

dfE < 0.005; P < 25 atm.

6.3 CeI 1 Dinen sions

The accuracy with which the cell dímensions could

be measured is given in 54.2. Although the cell length is
the only ceII dimension that enters directly into the

equations employed to calculate Dr, , these equations are

based upon the assumptions of uniform cross-sectional area

and symmetry about the interface.



The uncertainty in the total length of the cell can

be related to that in D 

' 
through the first term of

Equation (6.2¡; for the largest of the cells used this

error is insignificant, while for the smallest it can amount

to an error of 0.025t in the diffusion coefficient.

To determine the effect of a discrepancy, 6 , between

the boundary position and z = L/2, it is convenient to write

Equations (3.25) in the form

61.

( 6. 5a)

( 6. sb)

(6.6a)

( 6.6b)

(6.7)

( 6. 8a)

u
c

e
c I

c

õ

Here

and

where

irol = + ",ï, ;þ sin'(T . )""n 
(-n2n 2D," t79.2) ,

nnô-T

+

Flence the correct expression for f is

(ô) = åtci (o) cf tol t 
^ct6/L

õ

c
I- t ][ze, ror

Expanding f as a Taylor series in ô gives

f - fo + 2fo(L + ,

tÞ topt
(6.8b)

Thus the relative error produced in assuming cell symmetry,

that is, equating f and fo , is approximatety 2 (I f o) 6/ t- -

f = å exp ( -rzD rr E/ L')
o
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since lôl <

to the uncertainty in D*

The extent of the inaccuracy introduced by a non-

uniform cross-sectionar area is difficult to ascertain.
However, if reasonabre care is taken with the construction
of the ceII this error should be mini_mal.

Alignnent and Isoiation of the Cell Conpartments

Ertot in t

As a consequence of the method of cell alignment and

isoration, certain experimental conditions rack the complete

definition necessary for the solution of the diffusion equation.

Such complications can be summarj_sed as: -
(i) lrlhat particular stages during the opening and closing

mark the limits of the diffusion period?

(ii) Uncertainty in the form of the initial boundary in
that it is not a perfectly sharp horizontal boundary.

A similar uncertainty is introduced when the compart-

ments are separated.

(iii) The actual physical movement of one compartment with
respect to the other may cause turbulent mixing.

Bundea has considered problem (i) for a Loschmidt cell
with rectangular cross-section. He has shown that the correct
zero time can be taken as that instant when the compartments

are half arigned. This resurt is contingent upon the assump-

tions of constant arignment verocity and constant mass flux
during the period of arignment. For a cerr of circular cross-
section and by similar reasoning, the zero time corresponds
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to approximatery 422 alignment. since the isolation of the

compartments can be treated in an analogous fashion and is
in fact a compl.ementarg situation, timing may be commenced

at any point during alignment as rong as it is concluded at
the same point during isolation.

The undefined nature of the initial boundary is a

resurt of the horizontal concentration gradients formed

during compartment arignment. Because this perturbation
decays with times, the concentration distribution must approach

that described by Equations (3.23) . However, the exact zero

time of this distribution is uncertain. Similar1y, any

initiar turbulence, which resurts in a transport of mass

additionar to the normal diffusion process, can be treated as

causing inaccuracy in t .2'4 Again, analogous arguments may

be emproyed for the separation of the compartments. As the

neglection of such effects shourd have greater bearing on

experiments of short duration, indirect evidence concerning

the significance of any consequent error can be obtained by

comparing the results of experiments with different diffusion
times. For this comparison it is important to ensure that
the magnitudes of any other experimental errors remain constant

in relation to the differenÈ values of t . Hence, optimum

diffusion periods $rere still used but were varied by altering
Èhe celr length. rnspection of the resurts summarised in
Table 6.1 reveals no evident trend in pD' with respect to
varj-ations in t . Therefore the supposition that this type

of error is relativety insignificant seems reasonable.
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Tab 1e 6. I

Effect of Duration on 0ôse¡ved Diffusion Coefficient

System t"
( cm)

P
(atm¡

t
(s)

PD tz
(atm cmz s- r )

N2+Ar

Nz lOz

L22.83
60.00

L22.83
60.00

60.00
40.00

4.001
4.001

6.001
6.004

15.97s
L5.977

29520
7 L40

4 5000

r1160

26890
12 000

0.2032
0.2031

0.203r
0.2029

0.2160
0.2L62
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Boyd et "1.6 have also studied the behaviour of the

initial boundary using a ceIl made of Lucite and an optical
schlieren apparatus. No evidence of turbulence r^ras discovered

but the boundary was found to possess a degree of obliqueness

which was dependent upon the alignment velocity. This latter
effect, however, soon disappeared once the compartments were

completely aligned.

For the purpose of making a crude estimation of such

errors in t , the intervals of time required to open and

close the ceII were treated as the sole source of uncertainty,

that is

(6.e)

6.5 Concentration Dependent Diffusion Coefficient

dt
t

When the diffusion

concentration, the correct

coefficient does depend upon

form of Fickrs second law is

( aci ,/at) ( â'c, /à22\ (ðD n /àc. ) (ðci /àz) 2. ( 6 . ro )+

As yet, no analytical solution of this equation for the case

of a Loschmidt ceII has been proposed. This inevitably leads

to the use of approximations which reduce the magnitude of

the second term of Equation (6.f0) with respect to the first.

The measured composition dependences of D' at one

atmosphere and 300K, for all but one of the systems studied,

are given in Table 6.2. These results were best represented

by a linear function of molefraction, viz.,

+

D

D ax
2

ooI 2l21
(r ( 6. rr)
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Data for the Nz + Ar system Ìirere taken

Ar + Kr from reference 8, while the 02

obtained using a two-bulb apparatuse and

described elsewhere. to

Tab le 6. 2

Conposjtjon Dependence of D at 300K

System 0 ax10 3D ,.2

from reference 7,

+ Ar data \rrere

experimental method

t2

b

(cm2 5- t ¡

Av. Dev

(8)

2.6

2.5

oTh."" figures represent the average percent-

age deviation of the experimental points

from the least-square 1ine.

It can be seen that for these three systems the

maximum variation of D' with concentration is about 0.4t.
For the other system of interest, Nz * Oz¡ theoretical
calculationslr predict that the composition dependence is
even less. 'Given the smal1 extent of this dependence and

noting the result of Ljunggren mentioned in 53.3, it is
reasonable to assume the simplest form of Fick's second law.

Nz+Ar

Ar+Kr

Oz+Ar

0.2034

0. 1404

0.2037

4.L 10.04

10.05

10.02



6.6 P¡'essure and Tenpe¡atu¡e

The temperature of the thermostat bath could be

measured to within t0.002K; temperature variations during

the diffusion period were never greater than 10.005K. On

this basis aloner any resultant inaccuracy in D* is
negligible.

Another point of interest in relation to temperature

variations is the effect of convection within the ceII.
However, in this instance, the temperature control was

considered good enough to preclude significant convection.

Pressure measurements were accurate to approximately

0.06*. Consequentlyr ên error of similar magnitude is
introduced into the quantity PD' in addition to the other

errors inherent in the diffusion coefficient. For the

product n0 _, the number density, n , can be calculated-t2

from P using

P / znkT

67.

(6.12)n=

and is uncertain to the extent of about 0.18. The precision

with which pressures could be reproduced is also of import-

ance in ensuring a negligible difference between the initial
compartmental pressures. Calibration of the pressure gauges

indicated that the reproducibility of the gauge reading was

better than 0.033.

Although the pressure and temperature could be deter-

mined within weII defined limits, various non-ideality and

kinetic phenomena may cause deviations from isothermal and

isobaric conditions. The temperature of a diffusing gas
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mixture

effect.

is disturbed by

The former is

both the heat-of-mixing and the Dufour

due to the real nature of the gas

besystem and its magnitude,

approximated byl2

at moderate densities, can

fr" = 2r,*rP[BB T(dBE/dr)I (6.13)

Here fr" is the excess molar enthalpy of mixing and B" has

been defined previously (Equation (3.11)). Even though the

heat-of-mixing increases with pressure and is maximised when

pure gases mix, estimations based on the above equation show

that fiu is extremely small for the systems N2 * 02¡ N2 + Ar'

02 + Ar and Ar + Kr. the Dufour effect refers to the

transient temperature difference produced by a concentration

gradient and can be regarded as the inverse of thermal diff-

usion. In general, the magnitude of the temperature differ-

ence is smalt when the component masses are comparablett' t o and

can be further reduced by a suitable choice of cell dimension=.t

That is, if the cross-sectional area of the cell is smallr the

temperature gradients are rapidly dissipated by conduction to

the cell walls. As a function of pressure, Mason et 
".1 

.rt have

observed that the maximum temperature difference increases with

P whereas the rate at which it decays decreases. Thus any

inaccuracy caused by the Dufour effect should be more pronounced

at higher pressures.

The mixing of real gases within a vessel of fixed vol,ume

can also result in pressure changes. Obviously this must create

uncertainty in the value of O* which varies approximately with

the inverse of P . Another consequence is the invalidation

of Fick's first law in the ceIl frame of reference. The size
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of the pressure change, AP_i* , is again a function of

(see Appendix I); example calculations of AP.¡* for

mixing of two pure components in a Loschmidt-type cell

given in Table 6.3. These data indicate that APrt*

generally of the order of the error in P

aTable 6.3

P¡essu-re -of -nixing at 300K and x- = 0.5
I

B
D

the

are

is

System P
max

(atm)
/Pmix' max

(r)
AP

Nz

Nz

Oz

Ar

25

25

25

IO

+Ar

*oz
+Ar

+Kr

-0.03

0.01

0.07

0 .09

" 
"-"* 

refers to the maximum pressure at which

dif fusion experiments r^rere perf ormed.

A further pressure gradient may arise during diffusion

molecular velocitiesró .because of a difference in the average

However such gradients are negligible

diffusion within a capillary.

except for the case of

6.7 Conparison with other Expetimental Results

The other experimental method extensively employed for

gaseous diffusion studies in this laboratory, namely the cont-

inuous analysis or thermistor bridge method, has been well
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documented elsewhererT . BriefIy, it
the difference in resistance, 

^R(t)
until conplete mixing has occurred.

tional to AC then

consists

, of the

Assuming

of monitoring

two thermistors

^R 
is propor-

t'

AR(r) exp(-n'o' t/L') + aR1-¡,A, (6.14)

where an1*¡ is the difference in resistance at equiribrium
(c. f. Equation (3.32) ) . If AR(t) is measured at ¡e gutar

interyals of time, then O' can be determined via a curve

fitting procedure. Diffusion coefficients at pressures of
one atmosphere or less have been measured for a large number

of binary gas systems with this method; an experimental

precision of sometimes better than 0. rB but never worse than

O.2Z has been obtainedrE .

An initial comparison of the two techniques using the

Nz + Ar system and a Loschmidt cell specifically designed for
the thermistor methodf is summarised in Table 6.4. The

thermistors ri/ere left in the cert during the crassical type

experiments; lower pressures hrere used in the thermistor

experiments so as to permit convenient relaxation times.

Agreement between the two sets of data is excellent.
Classical Loschmidt experiments performed in the cell

manufactured for this study also yielded a value of 0.2037

atm cmts-t for POrr. Other comparative data for different
systems and temperatures are listed in Table 6.5.

Vühile the thermistor bridge method is only a variation
upon the Loschmidt technique, there are some important diff-
erences between it and the classical method. Most signif-
icantly, the thermistor method is retatively insensitive to
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a

Compa¡json of Classjcal
Techniques fo, N,

Table 6.4

Loschni dt and
+ Ar at 300K

Thetnistor
and x = 0

I

Bridge
.5

Classical

P

(atm)

Loschmidt

PO t2
(atm cmzs I)

Thermistor Bridge

PD
t2

(atm cm2 s-
P

(atm) )

0.94s9

0.9675

0.9549

0.9560

0.9904

0.9468

0.9sr0

0.2036

0.2036

0.2039

0.2036

0.2040

o.2037

0.203s

0.2L39

0 .4255

0.236L

0. s002

0.5002

0.2036

0.2036

0.2039

0.2038

0.2037

The cell used was 117.34 cm in length.

Table 6.5^

Futther Conparjson between Classical and
Thernisto¡ Bridge Methods

System T

(K)

C1assicaI Loschmidt
PO l2

(atm cmz s- I )

Thermistor Bridge
PO

t2
(atm cmt s- 1)

N2 +Ar

Oz+Ar

Ar+Kr

323.L6

300.00

300 .00

323.L6

0.2323

0.2037

0.1406

0.r6L2

0.2325

0.2039

0.1405

0.1615

(20)

(8)

( 8)

uAtl diffusion coefficients hrere measured at ,, = 0.5

and near t
Iiteratuie

atm; where thermistor results are taken from

reference is given in brackets.
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the form of the initial conditions. This is because measure-

ments of AR(t) are not commencecl untir some time after
arignment of the cell compartments. Therefore any initial
perturbations that may exist have time to decay and the

coefficient A', in equation (6.14), will be ultimatety
independent of t Atthough in this situation A' is
unknown, onry its constancy is mandatory for thermistor
experiments. Evidence for this hypothesis was obtained by

performing N2 + Ar thermistor bridge experiments in which

än initial pressure difference was purposefuì-ry created.
varues of Po' were calcurated using the average or finar
pressure, Þ,definedby

'4e r)P+Þ ( 6. rs)ù

rnspection of Table 6.6 revears no noticeabre discrepancy

þetween these data and the resul-ts of equal-pressure exper-

iments. Thus the concordance between the thermistor and

classicar methods rends support to the assumptions concerning

the initial conditj-ons of the 1atter technique.

Furthermore, as the thermistors themselves are

extremely sensitive to temperature changes, the Dufour effect
and heat-of-mixing are more Iikely to cause inaccuracy in
the thermistor bridge method. However, no such disturbances

hrere detectable at pressures near one atmosphere and hence

the agreement between this method and the classical Loschmidt

technique is even more encouraging.
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Table 6.6

Nz + Ar Thernistor Experinents with Initial
P¡essu¡e Diffetence LP

a
PDPx

(atm)
LP /P
(8)

-po
t2

(atm cmz s
I l2-1) (atm cmrs-t)

0.476

0.524

0.550

0.575

0.2100

0.2r00

0.2000

0.2000

-10

10

20

30

0.2037

0.2037

0.2037

0.2035

0.2038

0.2038

0.2038

o.2037

u Results of equal-pressure experiments taken from data

of Table 6.2.

It was not possible to compare the two experimental

procedures at higher pressures because the thermistor method

fails for systems other than those containing excess heliumlT .

The exact reasons for this failure have not been determined

but may lie in the increased magnitudes of the Dufour and

heat-of-mixing effects, ot be due to an increase in free

convection from the thermistot=" .

For the purpose of comparison with the results of

other workers, the correlation function of Marrero and Mason2'

has been used to predict values of PD' for the relevant

systems. These predictions along with the present experi-

mental results are given in Table 6.7 .
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Table 6.7

Conparison with 0ther ÂesuJts

System
(T=300K,x, =0.5)

Predicted value"
PO

t2
(atm cm's- I 

)

Classical Loschmidt
PO

(atm cm
t2
2s-t)

A

(r)

Nz

Nz

Oz

Ar

+Ar

*Oz

+Ar

+Kr

0.198

O.2LL

0. 195

0.140

(3r)

(33)

(3r)

(18)

0.2037

0.2L92

0.2037

0.1406

+2.9

+3 .9

+4.5

+0.4

uFigures in brackets represent the quoted uncertainties.

The small discrepancy between the diffusion coeffj-cients for
Ar * Kr is particularly pleasing in that the experimental

determinations upon which the correlation function is based

are much more accurate'" in this case.

In summary, the accumulation of those errors that
have been numerically estimated in the foregoing discussion

gives rise to a possíþIe maximum uncertainty of !0.7 t in
PD-^ . This compares favourably with the average experi-t2

mental precision of I0.2t.



75.

I

REFERENCES

D.P. Shoemaker and C.W. Garland, Experinents in

Phgsical Chenistrg, IvlcGraw-Hill (I974l .

L. Tordai, Brit. J. App. phys. I 329 (1950).

J.H Dymond and E.B. Smith , The viria.l coe f f icjents

of gases, Clarendon Press (1969).

R.E. Bunde, llniv. l(isconsin lúayal Resea¡ch Lab.

Report No. CI\,I-850 (1955) .

ù Ljunggren, Ark. Keni. 24 L (1965) .

2

3

4

5

6.

10.

P.S

M.A

J.O

C.A. Boyd, N. Stein,

J. Chen Phgs.

V. Steingrimsson and V'f.F. Rumpel,

re s48 (r9s1).

7

I

9

P.S. Arora,

and

673

I.R. Shankland, T.N. Bell, M.A.

P.J. Dunlop, Rev. 5ci. fnstrum.

(r9771 .

Yabsley

48

P.S. Arora, P.J

Lette¡s

Carson and P.J. Dunlop, Chen. Phys.

s4 LL1 (1978) .

Arora, H.L. Robjohns and P.J. Dunlop, Phgsica

(in press).

Yabsley and P.J. Dunlop, Phgsica 854 160 (L976).

Hirschfelder, C.F. Curtiss and R.B. Bird,
Molecular Theorg of Gases and Liquids, (4th

printing) Wiley (1967) ,

II.



76.

L2. Ivl. Knoester, K.W. Taconis and J.J.M. Beenakker,

Physica 33 389 (L967).

r3. K Clusius and L. lrlaldmann, Die Naturryiss. 30

7II (L942).

14. L. Miller, Z. Naturfo¡scl¡. 4a 262 (1949).

15. E.A. Mason, L

Phys.

Miller and T.H. Spurling, J. Chen.

47 L669 (1967).

r6. K.P. McCarty and E.A. Mason, Phys. Fluids 3 908 (1960).

L7. Staker and P.J. Dunlop, Chen. Phgs. Lette¡s 42

4I9 (1976), and references cited therein.

Dunlop, private communication.

Staker, M.A. Yabsley, J.M. Symons and P.J. Dunlop,

J. C. S . Faradag f¡ans. / 70 825 (L97 4l .

Arora, H.L. Robjohns, I.R. Shankland and

P.J. Dunlop , Chen. Phys. Letters 59 479 (l-978) .

Staker, P.J. Dunlop, K.R. Harris and T.N.8e11,

Chen. Phgs. Lette¡s 32 561 (1975).

Marrero and E.A. Mason, J. Phgs. Chen. Ref. Data

r 3 (L972) .

r8.

r9.

20.

2r.

22.

G. R.

P.J.

G. R.

P. S.

G.R.

T. R.



77.

CHAPTER VT I

EXPERIMENTAL DENSITY DEPENDENCE

7.1 fnttoduction

AIt numerical results derived from individual classical

Loschmidt experiments are tabulated in Appendix III (Tab1es

III.3 - 9); the second virial coefficients required for

calculations of 0r" , n and i, (exn) are listed in Tables

III.I and llf.2.

Before entering into a discussion of

dependence of, the diffusion coefficient the

the density

variation of

of Equations

of the chapter,

l, (exp¡ with P is examined in the context

(4.L2) and (4.14). In the latter sections

the experimental dependence of nD' on n is compared with

both the Enskog-Thorne result for rigid spheres and an empirical

modification of the theory.

7. 2 Pre.ssu¡e Dependence of x, ( exp )

As stated in 54.5, comparison of

as a negative indication of the

; and
I

success of an

(exP¡

experi-
."ï r , Br'i

r0.168.

x, (exp) are

the expected

x

serves

ment.

and Rrn

Given the possible maximum errors in ."1 ,,

, then I, {exn) should be accurate to within

Values of the average discrepancy, Â"* , and the average

absolute discrepancy, lol"* , between ;r and

given in Table 7.1. These data aII lie within
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error l_n I, (exe) ; values
ave

error in

slightly

be attributed to
-uot 12¡ > and 121

I

the negative A

small consistent

or R-. beingv

could possibly

thc determinations

greater than unity.

a

r
I

7.1^TabIe

Avetage Discrepancies between , and xr(exp)

System T

(K) ^
lol","

(r)
ave
(*)

Nz+Ar

N2 +.oz

02+Ar

Ar+Kr

300.00

323.L6

300.00

323.L6

300.00

300.00

323.16

-0.07

-0.06

-0.L2

-0.08

-0.02

-0.03

-0.04

0. 07

0 .06

0.1r

0.08

0.03

0. 06

0.06

A x, (exp) x

For each system and temperature

fitted to an equation similar in form

the x, (exp) data were

to (4.L4), viz.,

and the comparisons

x, (exp) a
o

+aP
I

(7.1)

(7 .2al

(7 .2b)

-1

1l

,

made on the basis of arguments outlined in 54.5. Least-seuarês



Table 7.2: x- ( exp,l ye¡sus P
I Data for Eguation ( 7.1 )t

System

Nz +Ar

N2 *Oz

02+Ar

Ar*Kr

T

(K)

300.00

323.L6

300.00

323.L6

300.00

300.00

323.L6

0.4996

0.4998

0.4996

0 .4995

0.4998

0 .500r

o.4996

t 1.3

r 3.1

t 1.3

! 2.7

t 0.8

! 3.7

I 3.6

10ha1

(atm-t,

1.14

r.09

L.27

0.97

0.09

4.26

2.42

! 0.10

! 0.24

I 0.09

! 0.2L

t 0.08

t 0.73

! 0.67

êg lO" Errorb lo" Errorb
(atm- I 

)

lo4 std.Dev."

2.6

2.6

2.2

2.2

r.1
2.9

2.5

b

c

Errors in a and aol

Standard deviation of

quoted to 95t confidence limits.

, (exP) values.x

\¡
to
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parameters for Equation (7.1) are listed in Table 7.2 and the

variation of I, (exn) with P illustrated in Figures 7.I

and 7.2.

Table 7 .3 contains a series of R., valueg 'calculated
from Equation (7.2a1; these are in good agreement with the

value 1.000 t 0.00I determined from measurements of the cell

dimensions.

Table 7.3

/al ues of Calculated fron a
o

RvSystem

Rv

T
(K)

Nz+Ar

N2 1.Oz

Oz + Ar

Ar+Kr

300.00

323.L6

300.00

323.L6

300.00

300 .00

323.16

1.00r6!0.0005

1.0008r0.0012

r.001610.0005

1.0020r0.00r1

1.000810.0003

0.9996t0.0015

r.0016r0 .0014

Comparison of â, with 'aßi,,,

in Table 7.4. In order to determine the like1y uncertainty

in ,,(B:2 - B;1 ) , errors in the B,', data were taken from

the literature.r Inspection of this tabte shows that the

two quantities agree within the lim.its of their mutual

uncertainties.
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Table 7.4

Conpa¡json of r, with t(B', B')
ll -

System T

(K)

l0'* â 1

(atm- t,
10'- lrr (Bíz -Bír ) ]

(atm- I )

N2+Ar

N2fOz

Oz+Ar

ArfKr

300.00

323 .16

300.00

323. I6

300.00

300.00

323.1-6

-1.14 t0 .1

-I.09 !0 .2

-L.2710 . r

-0.97!0.2

0.09r0.1

-4 .2610.7

-2.42!0 .7

-1.1610.1

-1.0310.1

-1.15t0.2

-1 .0 6t0 .2

-0 .04 !0 .2

-3.54!0.2

-2.90!0.2

7.3 Density Dependence Resu-I ts

Experimental diffusion data are sunìmarised here in

terms of the equations

PD (Po (r + 0P),
t2 t2 o

and

nD (n2-r) (f +Bon)

These relationships r{ere found to reproduce the data within

the experímental precision. The coefficients (PDtz )o , 0 ,

(tDr, )o and Bo along with their respective errors are

given in Tables 7.5 and 7.6. AIl errors quoted apply to a

95t confidence limit.
the dependence of nD

(7.3)

(7 .41

Figures 7.3 6 illustrate graphically

onn

2

l2



TabIe 7.5: teast-sguare Paramete¡s fot Eguation ( 7.3 )

System

Nz +Ar

N2 +Oz

Oz+Ar

Ar+Kr

,1 (PD tzlo
(atm crn2 s- I )

0.2038

0.2325

0.2194

0.250r

0.2038

0. 1409

0.1614

IO" Error
(atm cmzs- t 

)

104 e

(aun- t ¡

104 Error
(atm- t ¡

Io4 std. Dev.
(aün cm2 s- I )(K)

300 .00

323.L6

300.00

323.L6

300.00

300.00

323.L6

r 1.0

! 3.3

r 1.1.

r 3.6

r 1.9

r 2.3

! 2.8

9 .16

6.84

9 .43

6 .48

-10 .1

-2L.9

-20.6

t 0.4

! L.2

r 0.4

r 1.1

I 0.9

+ 3.2

r 3.3

1.9

2.9

1.8

2.9

2.6

r.8

2.0

oo
À



Tabie 7 .6: Least-sguare Parame te¡s fot Equation ( 7 .4 )

System

N2 +Ar

N2 +Oz

Oz+Ar

Ar+Kr

T

(K)

300.00

323.16

300 .00

323.L6

300.00

300 .00

323.L6

l0-20 (nDrz )o

(m-ls-l)
10-23

(m

Error
ls-l)

1o2s B

(m3 )

D
Io2e Error

(m3 )

10-23 std. Dev.
(m-t5-t¡

4.2

4.987

5.279

s.368

5.680

4.987

3 .447

3.666

+

+

2.

7.

2.

7.

4.

5.

6.

.7

.5

.7

.4

.3

.6

4

6

4

6

6

4

I
2

2

2

3

3

4

4

6

7

5

5

7

I

2.08

2.00

2.22

t. 85

1.53

3.31

4.54

+

+

+

+

+

+

+

0

0

0

0

0

I
I

+

+

+

+

+

@
Ul
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Equations of higher order in n and p r^/ere

considered, but no significant improvement in the standard

deviation of the fit was observed. rn addition, the
coefficients of n2 and p2 were insignificant in comparison

with their standard deviations.

The Ar + Kr system was studied onry to a pressure of
r0 atmospheres for two reasons, firstly, lack of sufficient
krypton and secondry, the resurts of experiments at higher
pressures would probabry be inaccurate due to the larger
varue of B" for this system. with regard to the former

of these reasons, it shourd be noted that the procedure

employed in admitting gases to the diffusion cell (see 94.3)

caused quite large volumes of gas to be wasted.

7.4 Conparison with Enskoq-Thorne Theorg

In order to compare the experimental

those predicted by the rigid spheres theory,
to expand Equation (2.13) as a series in n

This yields

Bo values with

it is necessary

and make use

of the result derived in Appendix I for (â[na- /ðL"nx,
viz.,

(ð[na, /à0"nxr), , 1 TBI
E

t

B
D

4x x KT

4xxkl2

x
'!t

6
,

E
B o

+

E + x o'12 2

T'P

(7. s)

r) (7 .6)FI 2 l1 22

E

where

iI (o,, + 4o,,)/(oii * o¡¡ ) (i I j) (7.7)
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Nohr, if the rigid spheres expression for the second virial
coefficient2 :

B, 3

ij o ij t/kÎ2
5It

is employed to evaluate B; then,

(7.8)

(7 .el

(7.r0)

RS

D
B T"', (o r, -orr) 2 (or, *o r, )

Plo 0 . oo 2628 [13 (Mr +M2) /2r,ttrvrl% o r]

TT, 3- 5 {', o,, Ë *xot E'12 2 22 '21

where B:t denotes the first density correction for the
D

rigid spheres mode1.

Calcutations of U:t cannot be performed until some

estimation of orr and ozz is made¡ for this purpose,

a scheme which involved identifying the dilute gas diffusion
coefficient with that of a gas composed of rigid spheres was

adopted. In other words, the first approximation to the

tigid spheres diffusion coefficient, which is defined as2

RS
t

21

vras equateo wiÈh (n0rrL . In this manner, values of Õn

were obtaiñed for the N2 + Ar , Nz t Oz and Oz + Ar systems.

Each of these quantities can be related to the particular orr

and azz by

atz L(orr + dzzl (7. rr)

Hence, it is possible to derive a set of three linear equations

involving the three o,, for Nz, Oz end Ar . The solution
of this set of equations is given in Table 7 .7 ¡ this table
also includes a value of o,, for Kr which could be calcul-
ated using Equations (7.f0) and (7.11) once the Ar value

had been determined.
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TabIe 7.7

Riqid Spheres Diamete.rs fron (pD )o D ata
t2

Gas 300.00K 323.r6K"
o

( nm) ( nm)

o

Nz

O2

Ar

Kr

0.344L

0 .3311

0.3394

0.3876

0.3411

0.3275

0.3358

0.38r4

" For the Oz + Ar system at this
temperature3, (PDv)o = 0.2329 atm cm2s-l

was used for these calculations.

Substitution of these o,, data into Equation (7.9)

yierds the 
";t 

results listed in Table 7.8¡ the experi-
mental Bo values are repeated in this tabre for comparison.

It can be seen that the agreement between Bo and
_tì,sBo l-s very poor; at best the rigid spheres model predicts
the co::rect sign for Bo and mirrors the larger magnitude

of Bo in the Ar + Kr system.

7.5 Modified Enskog Theory

The Modified Enskog Theory (MET) is an empirical
extension of the rigid spheres theory to account for the

real nature of fluids. rt was first proposed by Enskoga
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Table 7.8

RS
ß Calculations

D

System T

(K)

lo'e 
":t

1o2e B
D

)( m (mt

l{z + Ar

N2 *Oz

Oz+Ar

Ar+Kr

300.00

323.16

300.00

323.16

300.00

300.00

323.16

5.22

5.07

5.03

4.88

4.93

6.19

s.95

2.08

2.00

2.22

1.85

I.53

3.31

4 .54

and has been used with relative rrr"""="t't in predicting the

behaviour of the coefficients of viscosity and thermal

conductivity to quite large densities.
BasicalIy, the modification consists of replacing the

pressure in the rigid spheres equation of state (Equation (2.7))

with the thermal pressure, T(âP/âT)ü, that is''n

ü/ ae
R\ãT =l+bo (7 .L2)

where

This substitution is rigorous for a gas composed of rigid
spherical molecules as the internal pressure, (AÛ7afr¡, , is
zero. For real fluids the quantity tülnl (àe7t1)û in

Equation (7.L2) can be evaluated using the experimental

Y
ü),

b =?rNo30 J o ii

f
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equation of state clata i for example , íf the virial expansion

is employed, then

(7 . 14)

Combination of Equations (7.L2) and (7.I4) yields

X(H), = r . 
+(" 

.'uË) . å(" .'åF) +

boY/V =

Now, as the transport coefficients must approach the dirute
gas values in the low density limit, it is possible to
write2

bo = B,i + T(dB. I /dT) .

;(" 
. 

'åå) 
. 

å(" 
. 

'åÊ) 
+ (7. rs)

(7.16)

(7 .L7)

Therefore, an effective rigid sphere diameter,

calculated for each temperature accordJ_ng to

EFF
lt

o can be

EFF
ll

rl 3o ( 3bo ,/2nNo )

The results of such calculations are summarised in
Table 7 .9. An estimation of the uncertainty in o:."" ,

deduced from the "rror' in Br, , is also given. 
"

In computing the corresponding 
"Ï"t 

values it is
rogicar to include the tear. activity factor as derived from

experimental B; data. Inspection of Table 7.10 again

revears a significant discrepancy between the measured Bo

and the predicted BÏut values.
D

The disparity between Bo and 
"l"t 

for the present

systems is nuch u/orse than that reported previouslyto"t for a

number of binary systems containing helium. As suggested

by Arora and Dunlopr2 , this difference can be explained by
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Table 7.9

Effective Riqid Spheres Diameters

Gas 300.00K 323.16K

o
EFF
ll

( nm)

EFF
o..

tl
( nm)

Nz

Oz

Ar

Kr

0 . 352 ( r0.03 )

0.322(r0.03)

0.334(t0.03)

0.378(r0.02)

0.348 (r0.03)

0.331(t0.03)

0.330(r0.03)

0.375 (t0.02)

TabIe 7.10"

Conpa¡json of Bo and B

T lo2 e 
BI'ET

D

(K)

MET

D

System 1o2e B
(*t )

Dj
m

N2+Ar

N2 * Oz

Oz+Ar

Ar*Kr

300.00

323.L6

300.00

323.16

300.00

300.00

323.16

-5.I8!0.2

-5.0 6!0 .2

-5.0510.2

-5.25!0.2

-4 .87 lO .2

-6.68t0.1

-6.2910.1

-2.0810. I

-2.22!.0.2

-1.85t0.2

-1.5310.3

-3 .3It1.3

-4.54rI.4

2-2.00r0

o Error in calculation of B

uncertainty in o:."" andti

]VTET

D

B ,
E

estimated from the



expressing Equation (7.6) in the form

where the activity contribution to Bo i" given by

B+B =BuDD

k
2

a
B

D

x+x
1I

6B

T

D

96.

(7.18)

(7.19a)

(7.1eb)

4x x TB,
E fI

and the Thorne expression for the kinetic contribution is

T J 3

If the measured

(Bo)u*o , then an

derived from

ll 2
o 22

experimental quantity (B

B
D

and B: are denoted by (Bl)

o F E,, \D 2

T

and
exp

can be)D ex p

("1)"*o = (Bo)"*o - (B;)"*p, (7.20)

and compared directly with calculations based on Equation

(7.19b) . This type of correlation yields no extra inform-

ation fcr the systems studied here because the (B;) values
exp

are quite small in magnitude. However, for the systems con-

taining helium, (B;)"*e generally contributes to the extent

of 50t or more to (Bo)"*o ; hence the reason why the MET

results are found to agree with (Bo)"*o to better than 110å.

In contrast, the disagreement between tgll and B: isD' exp D

,t2conspr_cuous.

The failure of the Enskog-Thorne theory and its empirical
extension is not surprising when the simplicity Of the rigid
sphere model is considered. Of the assumptions inherent in
the theory, neglection of the following are most questionable:

ternary and higher order collisions, attractive intermolecular

forces, and velocity correlations. Atthough some attempts to
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account for the first two of these phenomena have been reportedr3' rs

the results are only applicabre to singre component systems or
binary systems at trace concentrations. It is also unfortunate
that the theoretical expressions of Bennett and Curtisstt which

partialry account for the effects of three-body collisions
have not been numericarry evaruated for binary systems.

7.6 Tenpetature Dependence of

one of the other aims of this project was to investigate
the temperature dependence of Bo while it was anticipated
that Bo could be measured over the range 275-325R, this
did not eventuate because at the lower temperature it proved

impossible to arign or separate the cerr compartments in a

time insignificant in relation to the diffusion period. A

variety of Apiezon vacuum greases r^rere used in the hope of
overcoming the increased friction between the prates, but to
no avail. The obvious solution to this problem, namely,

releasing the tension in the springs, Ied to a failure in
the abirity of the cell to sustain pressures greater than 5

atmospheres. consequentry, experiments were performed at the

temperatures 300.00 and 323.I6K.

Over this restricted temperature range no statjstjeallg
significant variation in Bo for the N2 * Ar¡ N2 * Oz and

Ar + Kr systems was observed (see Table 7.6) . As an initial
experiment at 20 atmospheres and 323.16K for oz + Ar indicated
a similar result, measurements on this system were discontinued.

These results cannot be used to imply that Bo is independent

of T, but show that a much larger temperature range is necessary

before any variation in Bo becomes apparent.

B
D
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APPENDIX I

Thermo dqnanic Relationsl¡jps

(i) Activity factor, (â.tna, /àLrxt) r" p

If the virial equation of state is used to describe

a binary gas mixture then the Gibbs free energy, G , of
the mixture is given byl

G
o

+ RT v. [n (P/Po ) +v +RT v
2

¡ u

2

¡

2

i

nx9"

2

I
i =r

+
2

P

2

I 2

Here v. denotes the
I

the chemical potential

standard pressure i B,r,

virial coefficients of

analogous manner to B

G v +RT

Iãr

number of moles

of i in its
and C the

tn

the mixture.

vl z

v (c .B
m m

of component i

standard state;

second and third

C is defined
m

m
BP+v+ (r.1)

(r.2)

I

o
u

P the
o

volume

lnt

Ln an

2

I
i =1

+v l,nx +RT v. .Q,n (P/Po)

'r'i'n c, , *

Equation (I.1) can be expressed in terms of the pressure

virial coefficients as

2c=tmU
i=

2

¡
o

u.
I

2

I

P

2

I v. c'
-lm

i =1

2

I u B'PLinl
i =l

1

2

I
2

I
k= 1

2+RT + änr (r.3)
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The

from

v.
I

chemical potential of component i , ui can be obtai

ui=ui

ur=ul

+ àRT 3 -2C' P

f

2

2

-8, P+
m

(r.4)

the above equation by differentiation with respect to

at constant T, P and v that is
J f i

o l2* RTl,nx. + RT.Q,n (P/Po) + RTI2 i
' j =r

2

i
=l

B;21 '

8.,
Ijx

lø;, *z*1"; 
]n

¡ + øx)rc;2-c;" ]n'

2

I x. xuC
k= 1

2

ijk

With reference to component 1, rearrangement of this equation

grves

o 4 RTf,nx I + RTl,n (P/P ) +RT +
o

+ äRT c +3 12 (2c -c f r ... ,
r1l 2 E1 E2

where

(r.s)

(I.6a)

(r.6b)

(r.6c)

+

1
3

t
5

B'
E

ci'

ci,

1
B 122

(8,' 11

c ,
tt2 2C t

111

( c + 2C'

+ C' ),222

222c ,
t22

o
.Q,na .0na + lnx +

,
lll

Therefore the logarithm of the activity of component I'

.Q,na, r j-s

n"n(P /P o
+ B +2x

1l
t.

L

e ,) tc;r-c;, I ]e'

B; P+

+12 t

L

,
111

n x: (2c;, -c;2 ) +c +

where "l is the activity of 1 in the standard
I

state.

yieldsDifferentiation of [na, with respect to .[,nx,

(r.7)
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(â.0na, /ðLnrr)r,, I

+

It follows that

3x x (3x, -I) Cj, (3x r-l-l Ci,

4x x B'P +t2E

2
+ P +

(r.e)

. (r.r0)

(r.11)

(r.r2)

,
2

(r.8)

which is the required relationship.

(ii) Concentration dependence of V

An expression for the partial molar volume of species

1, Ç, , in a binary mixture can be obtained from Equation (I.5)

using the well known relationship:

(àvt / rn) r,,, ( àvrlâv

I

V IPT ,2

Hence

["' +2x2
L rl 2

+IV
RTI
T-t

["í,, *t,l ectr, -ci,, )
3

2

B,
E

P+

+ + I
í,ln'ci, -ci,x6

(ðV, /ðx, ) r, ,, = 4x RTB,
E

(ðV, /ðx, ),,,

RT

2

(3x, -l) Cj, +(3x, -1) C", P+t

L

+

6x
2

Considering only the first term of this expression, that is

B"4x
2

,

which when combined with

V
2

2
(ðxr/ äC, )r,, = L/(Cr+C2l (r.13)



yields

Therefore

where

where P

Equating

T

( avr /acl ) r,P

v

is the pressure

(av ac 4* r"r/ lC, +Cr)' I ,P

103.

(r.14)

( r. 15)

(r.16)

(r.17)

(r.18)

(r.19)

4C B c
2

+
2

v3

2E

c cc

( i ii ) Pressure-of -mixing , AP,,,i *

Consider a Loschmidt celI consisting of two compart-

ments with identical volumes V ; each compartment initially

contains a binary gas mixture, composed of the same species,

at pressure P. If ",, and xg denote the molefractions

of component t in the upper and lower compartments respectively,

then the total number of moles of gas in the cell is given by

v
t dt

After complete mixing has occurred, the total number of moles

is

( PVIRT) [ z"-r +rg

mix
tot 2PnV/z^RT,

mix
to t

at equilibrium.

yields

6 (1 Ç B

-l
)

,
m/P

-l
L

where

vtot and v

P
m

Ç L, (z
u

+z

P) -t

(r.20)



A Taylor series exPansion of P^/P in P gives

104.

( r. 21)

(r_ .22)

(f_.231

(I.24a)

(r.24b)

P/P
nl

+

u * xg) '

Bd)lP +

Now, if the molefraction of the mixture is approximated by

x = 4(xm

then

where

and

AP,,,r* /P = 41Lx)2 B;

1

AP =P P
mtx

Ax = ,,, xQ

REFERENCES

A.D. Buckingham, The taws and Applicatjons of

Thetmodynanics, Pergamon Press (1964) '
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APPENDIX II

Mixing Tine Estj mation

Upon separation of the

the concentration distríbution

with þ = L/2, viz.,

(z,t )opt

cell compartments at time top,

is given by Equations (3.23)

+[e-'cos (trz/e.) - + "-t.o= (3rz/e.) +...1.
(rr.1)

cos ( 2nrz/ l") exp (- 4n2 r'D ,, L' / 9,2 ) . Gr .2)

õc

Now if one considers for example, the isolated lower compartment,

then this equation represents the initial concentration distri-

bution in a closed tube with length 9-/2. The solution of

the diffusion equation in this case is analogous to Equation

(3.18) and is of the form

x (z,L') iA

Here C has
I

time scale t'

the difference

n
n=O

been replaced by

is defined by:

x for conveni-ence

t' = 0 = t - t
and the

Formírrg

ô(t') x (9./2,L') x (o,t'), (rr.3)
I

and substituting Equation (I1.2) gives for large values of t' '

exp ( -4tt2D * L' / Y-') .

opt

ô(t') = 2A I
(rr.4)

by

To evaluate A r, Equation (II.I) can be approximated



x (z ro)
12-t
2rN e cos ( rz/ 9'l ,

106.

(rr.s)

(rr.6)

(rr.7)

( II.8a)

( rr. 8b)

1

and substituted in

A, = 4/9'

(c. f. Equation (3.20b) ) .

Thus

minations of and 121

x (z,O) cos ( 2nz/ l') dz ,r 2

o

ô(t')

When $ = 0 the concentration is uniform throughout

the compartment; however, a value of 10-6 for ô is

insignificant in comparison to the uncertainty in the deter-
[t . Therefore ifI

t' > 3 .05 (9,2 /t¡2o n L

then

6 (r') < 10-6

In other words a period of approximately 3too, is necessary

to attain a uniform composition in the cell- compartments.

* +# exp (-t-4n'O r, t' /n'l .

I

I

I

u(x>
I
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APPENDIX III

Losehnidt Experiment Data

Data relevant to the calculation of x, (exp) , pO* and

nD.^ are summarised in the following tables. second virialt2

coefficient data necessary for such carcurations are given

in Tables III.I and IÍ.I.2¡ literature from which the virial
coefficients are taken is cited in these tables. Actua1

experimental results are contained in Tables ITI.3-9.
AIt symbols have been defined in the text but are repeated

here for convenience.

CI

c3

c2

1y

1y

PD

n

u >:
I
e >:
I

(exp):

t2

t2

Loschmidt cell of length I22.83 cm.

Loschmidt cell of length 60.00 cm.

Loschmidt cell of length 40.00 cm.

Pressure (atm) .

Diffusion period(s).

Molefraction of component 1 in upper compartment.

Molefraction of component 1 in lower compartment.

Mean molefraction of component 1 calculated

according to Equation (4.13).

Product of pressure and diffusion coefficient
(atm cm2 s-l ) .

Number density of mixture at ;l (m-3 "IO-" ) .

Product of number density and diffusion coefficient
(*-t =-t r10-to ) .

P

t

x

nO



108.

Where experiments have

set of data is denoted

been analysed in duplicate the second

bv (*).



109.

Table III.l

Second ViriaI Coefficients for the Pute Gases

4Gas T
(K)

10 Bt,

(atm

Reference

N 300.00

323.L6

300.00

323.L6

300.00

323. 16

300.00

323.16

1.70

0. 10

6.30

4.32

6.34

4.22

20.5

15. I

(1)

(r)

(r)

(r)

(1)

(1)

(1)

(1)

2

o
2

Ar

Kr



110.

Table III.2

Interaction Second Virial Coefficients

System T
(K)

l04 g t
t2

-l(atm ')
Reference

22

N *Ar
2

N+O

O *Ar
2

Ar+Kr

300.00

323.L6

300.00

323.L6

300.00

300.00

323.L6

4.27

2.26

3.94

1.93"

5.70

11. 6

8.86

(2,31

(2,3)

(4)

(s)

(2)

(2t

a Estimation based on assuming same temperature

dependence as Bi, for N, + Ar.



Table III.3.. toschnidt Expetiment Data for N + Ar at 3000.00K
2

Ce11

CI
CI
CI
c1
c1

c1
cl
cl
CI
c1

c1

c1

c1

c2

c2

CI
c1(*)
c2

c1

1.000
1. 000

r. 000

r. 000

1. 000

1.000
1. 000

1.000
1. 999

1. 998

2.999
2.999
4.001
4.001
5.003
6.001
6.001
6.004
7 .002

7200

7200

7 500

7500

7 500

7 500

7 500

7 s00

15 000

150 00

22s00

22s00

29520

7l-40

9000

4 s000

45000

11160

52 500

0.6556
0.6546
0.6486
0.6484
0.6486
0.6488
0.6490
0.6494
0.6488
0.6484
0 " 6493

0.6480
0 .6sL2
0.6490
0.6479
0.6482
0.6477
0.6432
0.6490

0.3445
0.3444
0.3s0s
0.3505
0.3502
0.3s02
0.3506
0.3s07
0.3505
0.3502
0"3504
0.3500
0.3473
0.3492
0.3s0r
0.3492
0.3490
0.355r
0.3492

0.5000
0.4995
0.4996
o .4994
0 .4994
0.499s
0.4998
0.5000
0 .4996
0 .4993
o .4998
0 .4989
0 .4992
0.4991
0.4989
0.4986
0.4983.

0.499r
0.4991

0.2034
0.2038
0.2038
0.2039
0.2035
0.2034
0.2037
0.2036
0.2035
0.2034
0.2033
0.2036
o.2032
0.203r
0.2029
0.2030
0.203r
0.2029
0.2027

2.448
2.448
2.448
2.448
2.448
2.448
2.448
2.448
4.894
4.893
7 .347
7 .345
9.805
9.80s

L2.266
14.7I8
14.7r8
L4.724
L7 .L79

4.978
4.988
4.987
4.989
4.981
4.978
4.985
4.982
4.983
4.980
4.981
4.987
4.979
4.977
4.973
4.979
4.982
4.976
4.97 4

t2nDn
u4y >
I

tP 17 x, (exp) PO t2

F
H
H



Table III.5 (cont.)

Ce11 P
eu x (exp) PD nD

cr(*)
c2

CI
c1(*)
c2

c2

c3

c3

c3

c3

c3

c3

c3

c3

c3

c3
c3

c3

c3

7 .OO2

8.006
8. s03

8.503
9.004

10.005
11.008
12.006
13.008
r4.011
r5.007
r6.0rI
17 .01r
18.011
19.016
20.007
21. 009

22.}LL
2L.965

t

52500

L4460
63780

63780

16089

18000

8820

9 660

l0 500

11100

r2180
12900

L37 40

14s80

Is360
16500

17040

17880

l-7820

(¡

0.6485
0 .647 9

0.6488
0.6490
0.6490
0.6485
0 .6477
0.6473
0.6470
0.6498
0.6459
0.6472
0 .6469
0.6467
0.6473
0.6441
0.6462
0 .6459
0.6463

0.3490
0.3503
0.3483
0.3483
0.3478
0.3488
0.3488
0.3493
0.3498
0.3467
0.3499
0.3487
0.3488
0.3489
0.3487
0.3515
0.3483
0.3486
0.3480

0 .4987
0.4990
0.4985
0.4986
0.4983
0.4985
0.4981
0.4982
0.4983
0.4981
0 .497 I
0.4977
0 .4977
0 .497 6

0 .4978
0 .497 6

0.4970
0.4970
0.4969

t2

0.2028
0.2024
0.2020
0.2019
0.20L9
0.20L7
0.20r6
0.20L4
0.20r5
0.2011
0.2010
0.2008
0.2006
0.2004
0.2004
0.2003
0.1998
0 .2000
0. r99s

n

L7 .L79
L9 .652
20 .87 5

20.875
22.LL0
24.577
27 .0s2
29.5\6
31.993
34 .47 4

36.939
39 .427

4r.906
44.388
46.884
49.347
sr.839
54.334
54.220

4.976
4.967
4.959
4.957
4.958
4.954
4.954
4.952
4.955
4.949
4.949
4.946
4.943
4.939
4.942
4.939
4.93L
4.936
4.925

(¡
t2

H
H
N)



Table III.3 (cont.)

Cell P

c3

c3

c3

c3

c3

22.963
23.013
23.960
24.950
24.948

t

186 60

r866 0

L9440

20160

20280

(¡

0.3481
0.3481
0.3477
o .347 6

0.3480

I
I
I 2

NDnx x (exp) PD
t I

0.4968
o .497 2

0 .4967
0 .497 4

0.4969

0. 1995

0.1995
0.1994
0.1995
0.1993

56 .7 06

56.826
59.L92
61.663
61.658

t2

4.925
4.927
4.926
4.931
4.925

0.6461
0.6468
0.6462
o .647 6

0.6464

P
ts(,



Table III.4: Loschnidt Expetiment Data for N, + Ar at 323.16K

,rQCelI P t <x: > <xl > x- (exp) PD. n nD ---.1 --I _l .___9, _ t2 t2

c1

c1
c2

c2

c2

c2

c2

c2

c3

c3

c3

c3

c3

c3

c3

c3

c3

c3

2.00r
3.001
5.001
6.004
7.005
8.004
9.007

r0.003
11.010
12.006
13.004
14.011
15.011
16.007
17.006
r8.006
19.007
20.016

13 200

19860

7 860

9480

1104 0

12 600

r4220
15780

7740

8460

9 180

9840

10800

112 80

12000

L27 20

13500

L4520

0.6488
0.6480
0.6492
0 .647I
0.6480
0.6484
0.6485
0 .647 4

0.6481
0.6472
0 .647 0

0.6480
0.6436
0.6473
0 .647 L

0.6469
0.6463
0.6430

0.3515
0.3s09
0.3496
0.3505
0.3s00
0.3498
0.3499
0.3495
0.3497
0.3501
0.3496
0.3489
0.3518
0.3494
0.3492
0.3495
0.3496
0.3529

0.5001
0 .4994
0.4989
0.4991
0 .4989
0.4990
0.4991
0.4984
0 .4987
0.4985
0.4981
0.4983
0 .497 6

0 .4982
0.4980
0.4980
0.4978
0.4978

0.2326
0.2318
0.23L6
0.2316
0 .23L4
0. 2313

0.2307
0.2312
0.2304
0.2308
0.2300
0.2300
0.2298
0.230r
0.2299
0.2301
0.2292
0.2295

4 .547
6.82L

rL.37 2

13.654
1s.935
18. 211

20 .497

22 .7 69

25.067
27 .340
29 .6l-8
3L.920
34.206
36.483
38.768
41. 058

43.348
45.66r

5.285
5.267
5.265
5.267
5.264
5.263
5 .250
5.262
5.245
5 .256
5.238
5 .24r
5.237
5.245
5.240
5.247
5.228
5.236

ts
H
Þ



Table III. 5.' Loschnidt Experinent Data f ot Nr, * 0, at 300.00K

CeIl

c1

c1

c1

CI
c1

CI
c1

c1

c1

c2

C2

c2

c2

c2

c2

c2

c2

c2
c2

c2

P

1.000
1.000
r.001
1. 000

I.999
2.000
3.000
4 .002
4.001
5 .002
5.001
6.001
6.003
7.003
7.003
8.004
8.004
9.004
9.003

10.004

7 260

7 200

7 200

7380

14340

14400

2I240
287 40

28560

8340

8340

r00 20

10020

117 00

117 00

133 80

13 440

15060

1512 0

168 00

1y

0 .6434
0.6430
0.6432
0 .639 4

0 .6440
0.6435
0.6460
0 .6444
0. 6451

0.6481
0.6480
o .647 9

0.6483
0 .6482
0.6478
0.6480
0.6475
0.6479
0.6473
0.6470

2

0.3s66
0.3552
0.3s50
0.3586
0.3543
0.3548
0.3522
0.3545
0.3536
0.3497
0.3502
0.3498
0.3498
0.349s
0.3495
0.349r
0.3499
0.3491
0.3496
0.3494

0.5000
0.4991
0.4991
0.4990
0.499r
0.4992
0.4991
0 .4994
0 .4993
0.4989
0.4990
0.4988

0.4990
0.4988
0.4986
0.4985
0.4986
0.4985
0.4983
0.4981

0.2189
0 .2L9 4

0.2194
0.2192
0.2190
0.2189
0.2189
0.2188
0.2189
0.2183
0.2189
0.2183
0.2181
0.2r78
0.2180
0.2I7 4

0.2I75
0.2r7 4

0.2173
0 .2L7 4

2.448
2.447
2.449
2.448
4.895
4. 898

7 .348
9.806
9.805

t2.262
12 .26I
L4 .7I8
L4.7 2L

17 .L82
17 . r81
L9.646
l-9.646
22.L08
22.L07
24 .57 4

5.357
5.370
5.370
5.365
5.363
s.360
5.361
5.362
5.365
5.352
5.366
5.353
5.349
5.343
s.349
s.337
5.337
5.338
5.336
5.339

xt u

I x (exp) PD1 t2 ND t2n

H
P(¡



Table III.5 (cont.)

9
Ce11

c2

c2

c2

c2

c2

c2

c2

c2

c2

c2 (*)
c3

c2

c2 (*)
c2

c2 (*)
c2

c2 (*)
c2

c2 (*)

P

I0.005
r1.004
L2.006
L2.987
r2.988
13 . 993

L3 .97 9

14.979
L5.97 5

15.97 5

L5.977
L6 .97 2

16 .97 2

L7.972
17 .97 2

18.968
18.968
r8.967
18.967

t

16800

18480

20160

2r840
2r840
23520

23580

25200

26880

26880

12000

28620

28620

30360

30360

32100

32100

3 2100

3 2100

nD
l2n121

u

I
1y > x, (exp) PD

0 .647 4

o .647 4

0.647 4

0 .647 0

0 .647 5

0.6472
0.6472
0.6472
0 .647 4

0 .647 4

0.6464
0.6465
0.6464
0.6465
0.6467
0.6461
0.6460
0.6459
0,6465

I

0.3496
0.3495
0.3494
0.3489
0.3488
0.3489
0.3493
0.3486
0.3484
0.3484
0.349r
0.3483
0.3482
0.3482
0.3485
0.3482
0.3484
0.3482
0.3483

0.4984
0.4984
0.4983
0 .4978
0.4980
0 .497 9

0.4981
0 .4978
0 .4977

0.4977
0 .497 6

0.4972
0 .497 L

0 .497 2

0.497 4

0 .497 0

0 .497 0

0.4968
0 .497 2

t2

0.2L73
0 .2L7 2

0 .2I7 2

0.2L67
0.2L64
0.2L67
0.2164
0.2163
0.2160
0.2160
0.2162
0.2160
0.2L59
0.215s
0.2L57
0.2l-54
0.2L56
0.2154
0. 21s3

24.57 6

27.040
29 .5Ls
31.940
3r.943
34.428
34.394
36.869
39.336
39.336
39.341
41.808
41.808
44.289
44.289
46 .7 63

46 .7 63

46 .7 60

46.7 60

s.339
5.339
5.340
5.329
5.32L
5.331
5.323
5.324
5.319
5.318
5.323
5.32r
5.3I8
5.310
5.314
5.3II
5.31s
5.31r
5.307

ts
F
or



Tabie III.5 (cont.)

Ce11 P

c3

c2

c2 (*)
c3

c2

c2 (*)

20.965
2L.964
2r.964
23.455
24.950
24.950

t

15780

37 260

37 260

17 640

42300

42300

{y
I

0.6463
0.6454
0. 6460

0.6460
0.6464
0.6463

0.3480
0.3478
0.3479
0.3472
0.3475
0 .347 4

0.4969
0.4964
0.4967
0.4964
0.4967
0 .4966

2

0 . 2151

0.2r50
0.2148
0.2147
0.2L45
0.2L44

n

sL.7 28

54.2L5
54.2r5
57.930
61. 66 0

61.660

nD t2

5.306
5.308
5.302
5.303
5.301
5.297

gu x (exp) PO(¡
1 1 I

ts
P\¡



Table III.6: Loschnidt Experinent Data for N, + 0 at 323.16K

17 u I
x (exp)CeIl xtP

CI
ct
c2

c2

c2

c2

c3

c3

c3

c3

c3

c3

c3

c3

c3

c3

2.00r
3.002
5.003
6.002
7.003

10.004
11.005
12.005
13.003
14.004
15.007
16.006
17.004
r8.003
19.003
20.008

12240

18360

7380

8820

10260

14880

7 200

7860

8520

918 0

I014 0

10s00

11r6 0

r1940
L2480

13 140

0.6484
0.6483
0.6466
0.6473
0.648r
0 .6456
0 .6477

0.647L
0.6469
0.6468
0 .6423
0 .6462
0.6470
0.6448
0 .6467

0 .647 5

0.3503
0.3501
0.3s14
0.350s
0.3500
0.3sls
0.3498
0.3502
0.3493
0.3498
0.3538
0.3494
0.3491
0.3504
0.3493
0.3488

0.4993
0 .4992
0.4990
0.4989
0.4990
0.4985
0 .4987
0.4985
0.4980
0.4982
0.4979
0 .497 6

0 .497 9

0 .497 4

0.4978
0.4980

PD t2

0.2497
0.2497
0.2495
0.249I
0.2489
0.2484
0.2480
0.2486
0 .247 6

0.2482
0 .247 6

0 .247 9

0 .247 r
0.2472
0 .247 4

0.2465

n

4.546
6.822

LL.377
13.651
1s.930
22.77 2

25.057
27 .340
29 .619
31.908
34.L99
36.483
38.768
4r.0s5
43.343
45.647

nD
L2

5 .673
5.674
5.67 4

5.665
5 .662
5. 654

5 .647
5.661
5.641
5.6s4
5 .642
5.651
5.634
5.638
5 .643
5 .623

F
H
æ



Table III.7: Loschnidt Experinent Data for 0, + Ar at 300.00K

u 9.

x ( exp) PD nDCe11 P l2t2xxt n

CI
c1

c1

c1

c1

cl
c2

c2

c2

c2

c2

c2

c2

c3

c3

c3

c3

c3

c3

c3

t. 000

1.000
0.999
2.000
3.000
3.000
4.001
5.002
5.003
6.003
7.004
7.005
8.004
9.004
9.007

r0.008
r0.006
11.005
13.005
15.009

7500

7 500

7 500

15000

22500

22500
7 200

8940

8940

10800

I2540
L2540

L4460

7 200

7 200

8400

8580

8880

10 560

L2T2O

0.6488
0.6490
0.6489
0.6492
0.6485
0.6498
0.6499
0.6490
0.6500
0.6s01
0.6489
0.6496
0.6495
0.6426
0.6398
0.6485
0.6478
0.6493

0.3505
0.3s06
0.35r1
0.350s
0.3504
0.3506
0.35r0
0.3498
0.3497
0.3s06
0.3496

0.3500
0.3510
0.3502
0.3502
0 .357 2

0.3599
0.3513
0.3518
0.3509

0.4998
0.4998
0 .4999
0 .4997

0 .4997

0 .4999
0 .4997

0.4998
0.4998
0.4998
0.4998
0.500r
0 .4999
0.4999
0.4998
0.4999
0.4998
0.4999
0.4998
0.5001

0.2035
0. 203 5

0.2040
0. 2036

0. 2035

0. 2035

0.2030
0.2028
0.2027
0.2025
0 .202r
0 .2025
0.202L
0.2019
0.2020
0.2015
0.2009
0.20r5
0.2011
0.2007

2.449
2.448
2.447
4.899

7 .354
7 .354
9.813

12.277
L2.280
L4.7 44

I7 .zLT
L7 .2r4
19.683
22.L54
22.L62
24.640
24.638
27 .Lr3
32 .082
37.072

4.982
4.983
4.994
4.987
4.988
4.988
4.980
4.977
4.975
4.973
4 .967
4.977
4.969
4.967
4.97L
4.962
4.948
4.965
4.960
4.956

0.649r
0.649L

ts
ts
r.O



Table III.7 (cont. )

Cell P
r
Ix PD t2

nD l2

c3

c3

c3

c3

c3

17.010
19.010
21.009
23.007
25.OL7

t

13 680

L5420

17 040

L87 20

20400

1y u

t

0.6498
0.6491
0.6491
0.6490
0.6490

0.3503
0.3511
0.3506
0.3507
0.3506

x (exp)

0.500r
0.500r
0 .4999
0 .4998
0.5000

0.2007
0.200r
0.1996
0. 1991

0. 1987

n

42.069
47.075
52 .092
57.119
62.L90

4 .964
4.954
4.950
4.944
4.939

F
No



Table III.8: Loschnidt Experinent Data for At + Kr at 300.00K

ulcerl P t .ri r .ri r i, (exn) PD n n nD n

CI
CI
CI
c1

c1

c2

c2

c3

c3

I. OOI

1.000
1.000
2 .002
2.002
4.003
6.004
8.003

10.006

r0860
10860

10860

20940

2r780
r0380
15600

9240
LL520

0.6495
0.6488
0.6488
0.6550
0 .6483

0.6484
0.6487
0.6478
0.6482

0.3502
0.3503
0.3504
0.3445
0.3504
0.3479
0.3475
0.3458
0.3442

0.4998
0.4995
0 .4995
0 .4997

0.4993
0.4980
o.4979
0 .4965
0 .4959

0. 1404

0.r406
0.1406
0.1404
0.1406
0.1394
0.1390
0.1384
0.1379

2.45L
2.450
2.450
4.911
4.910
9.848

14.808
19.794
24.8L5

3 .439
3 .443
3 .446
3 .444
3.450
3.430
3 .428
3.424
3.42r

F
N
H



Tabte III.9: Loschnidt Experiment Data fot Ar + Kt at 323 ' 16K

9. NDnCelI

c1
c1

c1

c1

c2

c2

c3

c3

P

r. 000

0.999
2.00I
2.000
4.000
6.004
8.00r

10.004

0.6485
0.6483
0.6495
0.649L
0.6490
0.6490
0.6491
0.6s03

121 > I, (exe) PD l2t

0.3493
0.3490
0.3487
0.3472
0.3461
0.3452

0.4996
0 .4992
0 .4993
0.4990
0 .49e7
0 .497 9

0 .497 4

0 .497 5

0.1614
0.1611
0. r608
0.1606
0.1599
0.1595
0.I586
0. 1583

2.27 3

2.272
4.554
4.552
9.L22

l-3.7L9
r8.319
22.953

t2

3 .669
3 .662
3.659
3.655
3 .646
3 .644
3.633
3 .632

I

9480

9480

r8900
189 00

9060

r3s60
8040

10020

0.3507
0.3502

H
N
N
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