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"nolecules" should read "molecules'.
"expressions' should read "expression'.
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ABSTRACT

Binary diffusion coefficients have been determined
at 300.00 and 323.16 K over the pressure range 1 - 25
atmospheres for the systems N; + Ar, N; + O; and O; + Ar.
Ssimilar data is reported for the Ar + Kr system to a maximum
pressure of 10 atmospheres.

These results were obtained via the classical Loschmidt
technique; a mass spectrometric procedure being employed for
concentration measurements. To attain the greatest degree
of accuracy only systems with small excess thermodynamic
properties were studied. An analysis of possible sources
of error is given and where possible numerical estimations
are made.

A comparison of diffusion data obtained with the
classical Loschmidt technique and another method, developed
previously in this laboratory, is described. Concordance
between both methods is excellent.

The density dependence of the diffusion coefficient
is discussed with reference to the Enskog-Thorne result for
rigid spherical molecules. Poor agreement between the
experimental and predicted first density corrections was
observed. No improvement was achieved through the empirical

modification of the Enskog theory.
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CHAPTER I

INTRODUCTION

Over the past few decades numerous comparisons have
been made between theoretical results concerning the density
dependence of transport properties and the experimentally
observed dependence. To a large extent these comparisons
have involved the coefficients of viscosity and thermal
conductivity"a. In contrast, there exists a scarcity of
accurate diffusion measurements which can be employed for
similar purposes. Of the data available, the majority
pertain to measurements of tracer diffusion coefficients " H
in particular, the diffusion of radioactive tracers into
the isotopically normal gasesg'16 has been studied over a
wide range of pressures as an approximate means of deter-
mining the density dependence of self-diffusion. For the
case of diffusion in binary systems at concentrations other
than trace amounts, such data are even more rare; Sage and
co-workers?mz'have published diffusion coefficients for
CH4 + n - Cvﬂne' Berry and Koeller’? for Hi + Nz, CH4 + C2H6.
CH, + Nz and Nz + Csz , Islam and Stryland23 for CH, + Ar,
and De Paz et al-.' for the He + Ar and Ne + Ar systems.
However, the accuracy of these results:is probably no better
than +5%.

More recently Staker and Dunlopzs, and Bell et a1.'® have
reported binary diffusion data at 300K for sixteen gaseous

systems containing approximately 90% helium. Although the



maximum pressure at which measurements were performed was
only 9 atmospheres, important information concerning the
initial density dependence was obtained. Arora and Dunlop27
have since extended this work for the systems He + Ar,

He + Nz, He + O2 and He + Co, to pressures in the region
of 20 atmospheres and to a temperature of 323K. The experi-
mental technique used for these measurements’® was developed
in this laboratory and consists basically of monitoring the
concentration difference in a Loschmidt-type diffusion cel1®
with a precision thermistor bridge”. However, as this
technique has proved unsuccessful at elevated pressures for
systems which do not contain excess heliumzs, a different
experimental approach was employed in this study.

The method adopted still involved the use of a similar
type of cell, but is based on Loschmidt'saooriginal mathe-
matical analysis. In this case concentrations need only be
determined once, after an initial diffusion period; such
determinations were accomplished via the use of a mass spectro-
meter. Details of the relevant theory and experimental
procedures are outlined in Chapters III, IV and V. To
achieve optimum accuracy in the measured diffusion coefficients
it was necessary to restrict the systems studied to those which
possessed small excess thermodynamic properties. In Chapters
III and VI this limitation is shown to be especially important
at increased densities. Results obtained with the classical
Loschmidt and thermistor bridge techniques are compared in
Chapter VI.

Binary diffusion data for the systems N + Ar, N + 0

2 2

O2 + Ar and Ar + Kr ,to a maximum pressure of 25 atmospheres

14



and at temperatures of 300 and 323K, are reported in the
final chapter. These results are discussed in terms of the

Enskog theoryslof rigid spheres.
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CHAPTER I1

THE KINETIC THEORY OF GASES

2.1 Chapman-Enskog Theory of Dilute Gases

Calculation of transport properties from molecular
theory is most convenient for dilute gases composed of
monatomic particles. The rigorous kinetic theory of such
systems was developed independently by Chapman and Enskogl.
Since their treatment is rather involved and lengthy, only
a brief description of the basic assumptions and the results
for binary diffusion are given here.

The Chapman-Enskog theory is centred upon the procure-
ment of a solution for the single particle or first order
distribution function ﬁ (E' Yi't); this distribution
function is defined so that ﬁ(g,yi,t)df in is the probable
number of molecules of kind i with spatial coordinates in
the range dr about r and velocities in the range in about
v, at time t . A complete description of a dilute gas can
be obtained by relating the macroscopic fluxes through velocity
averages to the distribution function.

In order to determine ﬁ , the Boltzmann integro-
differential equation, which describes the variation of ﬁ
due to molecular interactions, must be solved. The Chapman-
Enskog approach to the solution of the Boltzmann equation is

essentially a perturbation method which involves expanding ﬁ

in a series about the equilibrium distribution,



A I AR IR AR A (2.1)
The first term, ﬂ(o), is simply the Maxwell-Boltzmann
equilibrium distribution function. When the expansion

(2.1) is truncated after the first correction term and
substituted into the Boltzmann equation, a linearised integro-
differential equation for ﬂ(l) results. The perturbation
is assumed proportional to the relevant transport gradient
and solved for by further expansions in terms of the mole-
cular velocities'®? . Finally, the transport coefficients
can be expressed as a ratio of two infinite determinants'
which in general cannot be solved exactly. However, numerical
values for the coefficients may be obtained by systematically
truncating the determinants. Two such approximation schemes
in common usage are the method of Chapman and Cowlingl and
that of Kihara’. The simplest truncation gives rise to the
first approximation of the transport coefficient, the next
gives the second approximation and so on.

The major assumptions inherent in the Chapman-Enskog
theory can be summarised as:-
(i) Molecular chaos.

In the derivation of the Boltzmann equation from the

Liouville equation2 it is necessary to assume that

for two particles prior to collision, and far enough

apart for molecular interactions to be ignored, there

are no correlations between v, and v, or between

~ ~

r and r, - This permits the second order distri-
bution function to be expressed as the product of the
two first order functions and hence a closed equation

is produced.



(ii)

(iii)

(iv)

(v)

(vi)

Binary collisions.

Again this assumption is inherent in the Boltzmann
equation and means that the results do not apply

where ternary and higher order collisions occur.
Therefore the theory is limited to dilute gases.

Small molecular size.

If the molecular dimensions are negligible when
compared with the mean free path, then the distri-
bution functions, ﬂ and % , for the colliding
molecules 1 and 2 can be evaluated at the same point

r in space.

Small mean free path.

When the dimensions of the gas container are large in
comparison to the mean free path, collisions with

the container walls can be neglected. At very low
pressures collisions with the walls predominate over
intermolecular collisions and the theory is in error.
Small perturbations.

The assumption of proportionality between the transport
fluxes and gradients is only valid for small depart-
ures from equilibrium. Under more extreme conditions,
for example shock waves, the third and higher terms of
Equation (2.1) may have to be considered.

Flastic collisions.

The theory is strictly pertinent to monatomic molecules.
Where molecules possess internal degrees of freedom,
kinetic energy may not be conserved during collisions.
However, as this does not greatly affect diffusion, the

theory can be applied to simple polyatomic molecules.



(vii) Classical mechanics.
The use of classical mechanics by Chapman and Enskog
restricts the theory to those situations where quantum
effects can be neglected. Quantum mechanical modif-
ications of the theoryl'2 are generally unimportant

except where hydrogen or helium are involved.

The failure of some of these assumptions at increased pressures
is discussed in the next section.

For a binary gas mixture the Chapman-Enskog result
for the diffusion coefficient, D12 , is to a first approx-

imation

Bro® ol (T ). (2.2)

12 12

nip, 1, = a(kT/2mu )

Here n denotes the number density of the mixture, T the

absolute temperature and u = mlmz/(ml+m2) the reduced

12
. - .
molecular mass. The reduced collision integral, Qi?n , 1s

a function of the reduced temperature sz = kT/t—:12 where

€ is the depth of the potential energy well; is

Q( 1,1)*
12 12

dependent upon the form of the intermolecular potential

function through the dynamics of a binary molecular collision.
Thus, a knowledge of the intermolecular potential function
permits calculation of the diffusion coefficient or vice versa,
measurements of the diffusion coefficient may yield information
concerning the potential function. The intermolecular distance

at which the interaction energy is zero is denoted by o, "

(1,1).*

. 4
Tabulations of le versus Trz have been performed for a

variety of potential functions.

10.



At the first approximation, the diffusion coefficient
is independent of composition and inversely proportional
to the number density. The former relation is changed with
the introduction of the higher approximations which may be

expressed in the form
k
g (2.3)

where k represents the degree of approximation. The

Chapman-Cowling second approximation may be written as

(2) _
£ = 1/(1 -1, (2.4)

where A12 is a function of molefractions, molecular masses,
molecular sizes and collision integrals; the Kihara expression

is of the form
£2) =1 4+ a7 . (2.5)
D 12

Explicit formulae for A12 and A;: can be found in most
relevant texts™’
The relationship between [D12]k and the experimentally

determined mutual diffusion coefficient 012 , which is defined

in the next chapter,is

D12 = lim [D”]k . (2.6)
k—>o0

Fortunately convergence of the approximation scheme is rapid

with the third and higher approximations being almost identical.

At moderate densities, Equation (2.6) is complicated by
the real nature of the gas systems and is considered further

in the next section.

11.



2.2 The Enskog Extension to Moderately Dense Gases

The first rigorous attempt at describing the density
dependence of transport properties was due to EnskogI who
considered an hypothetical gas composed of rigid spherical
nolecules with diameter o . This model permits the
mathematical simplifications arising from the neglection of
ternary and higher order collisions'”’ . Of the other

assumptions fundamental to the dilute gas theory only (i)

and (iii) (see §2.1) need reconsideration at moderate densities.

When gases are compressed the molecular size becomes
comparable with the average intermolecular separation and
assumption (iii) is invalidated. The finite size of molecules
has two effects, firstly, the collision frequency is altered
and secondly, there is a transfer of momentum and energy
across the finite distance which separates the centres of
the molecules during collision. However, as there is no
transfer of mass during collision the latter phenomenon is
unimportant in diffusion. To account for these effects,
Enskog incorporated in the Boltzmann equation a quantity Y,
representing the factor by which the collision frequency
differed from that of a gas composed of point particles.
Furthermore, the distribution functions of the colliding
molecules were distinguished by a distance ¢ 1in contrast
with assumption (iii).

The factor Y 1is identified with the equilibrium
radial distribution function for rigid spheres, evaluated
at an intermolecular distance of o . In this manner
correlations between molecular positions were assumed identical

to the equilibrium situation™ ® ; however, the molecular chaos

12,



assumption was retained for velocities. The equation of
state for a single component rigid sphere gas is related to

Y through

P = nkT(l + %ﬂnch). (2.7)

For self-diffusion, the Enskog solution of the modified

Boltzmann equation yields
nD = (nD)o/Y i (2.8)
where (nD)0 is the low density value and Y is defined by

_ 5 3
Y =1+ 13 nmo’ + ... . (2.9)

This result has been extended to binary mixtures by Thorne'
and to multicomponent mixtures by Tham and Gubbins’ . Thorne's

expressions for the binary diffusion coefficient is given by

nD = (nDlz)o/Y12 ’ (2.10)
with
B 2 [ 3( 011+40322 3 (49111022
Yu = S 3 nﬂlxlou(4011+4022 i X3922 4011+4022 T
(2.11)

In order that Equation (2.10) can be employed for comparison
with experimental data, the Thorne diffusion coefficient, Dlz,

must be related to the measured quantity D12 . The required

relation being7

(nD12 )/(nD12 ) = (E)SLnal/'aILnxl)T,P . (2.12)
where a, is the activity of component 1. An expression
for (anal/alnxl)TPI is given in Appendix I. Combination

of Equations (2.10) and (2.12) gives

13.



el |
(nDn)/(nD12 % = Y12 (E)Ilnal/a,anl)T’P . (2.13)
Expansion of this equation as a series in n yields
2
(nD , )/(nD ), =1+ Bn+ con’” o+ ..., (2.14)

where BD and CD are termed the first and second density
corrections to the dilute gas diffusion coefficient; the
first density correction is considered further in Chapter VII.

"' 5f the Enskog-Thorne results

Recent considerations®
have shown that they are inconsistent with the Onsager recip-
rocal relations. However, such discrepancies do not affect
the first density correction for isothermal diffusion. Van
Beijeren and Ernst'’ have reformulated the theory in terms of
a local-equilibrium radial distribution function which accounts
for spatial non-uniformities in the local number density. The

modified theory is consistent with the Onsager reciprocal

relations.

2.3 Rigorous Kinetic Theory of Dense Gases

A more general statistical mechanical theory of dense
gasesll has been developed from a set of integro-differential
equations obtained by integration of the Liouville equation.
This set of equations is known as the BBGKY hierachy after
Born, Bogoliubov, Green, Kirkwood and Yvon; the first equation
involves the first and second order distribution functions and
is similar in form to the Boltzmann equation. The theory
implies an expansion series, analogous to Equation (2.14), for
the transport coefficients. Successively higher order events

occurring between molecules determine the coefficients of the

14.



series. Because of the mathematical difficulties encountered,
exact formulae for the transport properties have proved
impossible to obtain without making approximations.

Curtiss and co-workers'?:'’ retained some of the Enskog
assumptions and derived expressions for the first density
corrections. Their treatment included the effects of
collisional transfer and three-body collisions for gases
obeying an arbitrary potential; effects due to bound pairs
of molecules were not considered. As the necessary inte-
grations13 have not been performed for binary systems, these
results could not be compared with the data obtained in this
study.

In a gas at high density, sequences of correlated
collisions can occur and hence molecular velocities may be
correlated over distances greater than the distance of
molecular interaction. Such deviations from molecular
chaos cause divergencem'16 in some coefficients of the density
expansion. The expansion for a transport property, o , then

takes the form

a/ag = 1 + Byp + C&p2 + C&'pzlnp tounn (2.15)

where p = na’ and a is the molecular diameter. Various

attemptsﬁ’”’18

at fitting experimental data to an equation of
this type have been made, but no substantiative evidence

for the inclusion of the logarithmic term has been obtained.

As the diffusion coefficients measured in this work could be

adequately described by an equation linear in n , Equation

(2.15) is considered no further.

15.
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CHAPTER III

BASIS OF EXPERIMENTAL METHOD

3.1 Introduction

Diffusion may be defined as that process whereby a
relative flow of components is caused by the presence of a
potential gradient. While this gradient may manifest
itself in a variety of forms, that which arises solely from
a difference in concentration is of interest here. This
type of diffusion is termed ordinary diffusion.

Although diffusion is generally a three-dimensional
process, the present discussion is simplified by considering
the flow of matter in a single dimension. Because the
relationships between the component fluxes and the concen-
tration gradients causing them are of central importance in
any experimental observation of diffusion, a brief outline of
the major flow equations is given below. This discussion
is strictly pertinent to those systems where isothermal
conditions exist. However, it must be realised that the
transport of matter produces a flow of energy and thus
temperature gradients; this phenomenon is known as the
Dufour effect' and its consequences will be neglected for

the moment.



3.2 Flow Equations and Frames of Reference

Most mathematical analyses of diffusion experiments
begin with the statement that the rate of mass transfer is
proportional to the relevant concentration gradient. This
was first formulated by Fick’ in 1855 and is generally known
as Fick's first law of diffusion. In order to make use of
this law in a definitive manner, it is necessary to specify
a frame of reference in which measurements can be based and
also to show that Fick's law is applicable in this frame.
Experimental observations are commonly based on a reference
frame defined by the diffusion cel11? whereas the phenomeno-
logical flow equations*s are discussed in terms of more
general reference frames. Specifically the volume-fixed
frame, defined as that reference frame moving with the same
velocity as the local centre of volume, is of importanceis
in experimental situations.

If the local flux of component i in a binary system
is denoted by J, and defined as the number of moles of i
crossing unit area normal to the direction of diffusion in
unit time, then the relationship between the fluxes in the

volume-fixed frame is

2
I v, (3, = 0. (3.1)

i=1
Here Vi represents the partial molar volume of species i
and the subscript V on (Ji) implies that each flux is
measured with respect to the volume frame of reference.

The mathematical statement of Fick's first law for a

binary system is

19.
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(3,), = = (D), (3C, /3z), (i =1,2), (3.2)

where Ci is the concentration of component i expressed in

moles per unit volume, the proportionality constant, (D, )

i'v !

is the diffusion coefficient and 2z specifies the direction
of diffusion. By combining Equations (3.1) and (3.2) with

the thermodynamic relation

2
) CVv =1, (3.3)
i=1
it is possible to show that
(D), = (D), = (O ), , (3.4)
where (Diz)v is the mutual diffusion coefficient.
3.3 The Cell Frame of Reference

Diffusion in real fluids is often complicated by volume
changes which cause the system to experience a bulk flow. The
volume-fixed reference frame cannot therefore be considered
stationary7 with respect tc the cell frame. If u, . denotes

the relative velocity of the two frames and (Ji)C is the

flux of component i in the cell frame, then the relationship

between the two fluxes4 is
(J.), = (J, ), + Cu (i=1,2). (3.5)

Kirkwood et al.® have shown that expressions for U, .

can be obtained from the equation

2
(du, /3z), =~ ] V [3(3,),/3z] , (3.6)

i =1



21,

using the technique of integration by parts in conjunction

with the particular boundary conditions defined by the diffusion

cell geometry. For the immediate purpose these boundary
conditions need only be specified as; at z = 0
(3,)y, = (3), =0 (i=1,2), (3.7a)
and
U,e = 0. (3.7b)

These relationships correspond to the physical restriction of
the cell being closed at 2z = 0.

Following further the procedure of Kirkwood et al.,
Equation (3.5) can be expressed for component 1 as

z = (D ) 2
_ aC v 12’v (3C A
(JI)C - (Dnz)v( 3;)_ CII (aci) c v ( 3;) g (3.8)
0 2 2

Thus, if Fick's first law is to be applied in the cell
frame of reference then the integral appearing in Equation

(3.8) must vanish; the necessary condition being
(3V /3C,) =0 . (3.9)

This condition is always applicable to real gaseous
systems in the low density limit, whereas at greater densities
restrictions on the nature of the systems chosen for study
must be imposed if Equation (3.9) is to remain valid.

To determine the type of restriction, the virial equation
of state® may be employed to evaluate the concentration depend-
ence of the partial molar volumes (Appendix I). When this
is done and third and higher virial coefficients are neglected,

the result may be expressed as
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- 3—
(BVl/BCl) = - 4BEC2/C v, - (3.10)

Here C 1is the total molar concentration and BE is the

excess second volume virial coefficient defined by
= - L
B B 2(Bll +B,). (3.11)

Comparison of Equations (3.9) and (3.10) implies that

for moderate densities the restrictive condition is
B. = 0. (3.12)

In the situation where the partial molar volumes are
concentration dependent, the integral in Equation (3.8) may
still be neglected4 by considering only small concentration
gradients. However, for reasons discussed later, this
procedure will not be adopted and it is necessary,therefore,
to invoke the restriction specified by Equation (3.12) in

order to obtain the relation

(3), = - (0,,),(3C, /32), (i = 1,2). (3.13)

Although direct application of Equation (3.13) is
possible under steady state cohditionsa, it is generally
made use of in conjunction with the pertinent equations of
continuitys. These latter relations describe the conserv-
ation of mass for each component and for those systems in

which no chemical reactions occur, may be expressed as

[B(Ji)c/'()z]t = - (BCi/Bt)z (i =1,2). (3.14)
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Combining Equations (3.13) and (3.14) yields the

partial differential equation

BCi 5 aC,
(“a?) - [E(Dn W)]t 5= Butle R
where the subscript V has been omitted from (Dl2)V for
simplicity. This equation, commonly referred to as Fick's

second law, takes the more convenient form
— 2 2 CO—
(Bci/at)z = Dlz(a Ci/az )t (i = 1,2), (3.16)

when the diffusion coefficient is independent of concentration.
In the special case where Dlz is a linear function

of concentration, Ljunggren9 has shown that to.a first approx-

imation the diffusion coefficient may be considered constant

with a value corresponding to that of the mean concentration

of the experiment.

3.4 Restricted Diffusion

In order to obtain an expression for the concentration
distribution, Ci(z,t) , from Equation (3.16) it is necessary
to define certain experimental conditions. For this purpose,
the diffusion vessel will be considered to take the form of
a closed tube with a uniform cross section and a finite length,
L. If the upper and lower extremities of the cell are
specified by the coordinates z = 0 and =z = { respectively,
then the boundary conditions mentioned previously can be stated

in full as

BCI(O,t)/Bz = BCi(Q,t)/az =0 . (3.17)
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The solution of Equation (3.16) subject to (3.17) is

B 0 10
the Fourier series

[o.0]
C. (z,t) = ) A cos(nﬂz/IL)exp(—nZWZD12 t/2%), (3.18)
n=0
where the coefficients, An , are related to the initial
concentration distribution. This relationship permits the

diffusion coefficient to be obtained from an analysis of the

position and time dependence of the component concentrations.

3.5 The Classical Loschmidt Technique

Of the various experimental methods that have been
developed to study gaseous diffusion, one of the first to
be reported was due to Loschmidt'' in 1870. The technique
is based upon the formation of an initial sharp boundary
between two gas mixtures enclosed within a cell similar to
that outlined above. Defining the boundary position as
z = b and with reference to component 1, the initial experi-

mental conditions may be stated as

C/(0) b<z<2
c, (z,0) = { 9 . (3.19)
Cl(O) 0 <z <b
Here C:(O) and CT(O) are the initial wniform concentrations
in the upper and lower compartments.
The Fourier coefficients of Equation (3.18) can then
be determined from'’
Y
R, = (1/%) J Cl(z,t)dz, (3.20a)
(1]

Q
An = (2/2) I Cl(z,t)cos(nnz/k)dz (n =2 1). (3.20Db)

0
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Evaluation of these integrals yields

A, = [b/z]cf(O) + [(z-b)/z]cj(O) = 6.' (3.21a)
A = - Zﬁgl sin(ntb/%) (n > 1). (3.21b)

Here El is the concentration of component 1 averaged over
the compartmental volumes and ACl is the initial concentration

difference:
u Q
AC, = Cl(O) - CI(O). (3.22)
Substitution of Equations (3.21) in Equation (3.18)
yields

= _ 2AC, ?

Cl(z,t) 1 T

I
(@]

a exp(—nzﬂZD12 t/2%), (3.23a)
n=1

with

nmz

(‘E‘) (n > 1). (3.23b)

o
I

1 . (nﬂb)
= sin|{——] cos
n n '
In a classical Loschmidt experiment the normal procedure
is to isolate the two compartments about the position 2z = b
at some time , t , before complete mixing has occurred.
Expressions for the average concentration in each compartment

at this time can be obtained by integrating Equations (3.23)

over the length of each compartment, viz.,

«c'> = [ c (z,t)d (3.24a)
1 - —bJ 1 Z, Z, .
b

o

iy 1 (°
<C1> 5 J Cl(z,t)dz. (3.24Db)
0
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Hence,
u — o~ 2AC12, o 2.2 2
<C/>=C + TTeDT ngl g exp(-n®n?D  t/2%), (3.25a)
R _ = _ 2AC L ¢ I s
<¢ > = C, —7pqr—n§1 g exp(-n’m Dlzt/l ), (3.25Db)
with
g, = o7 sin®(nmb/%) (n > 1). (3.26)

These equations assume a much simpler form when b = /2.

In this case the quantity £ , defined as

<C:> - <Cf>
£ = 7 ' (3.27)

<c'> + <C >

1 1
can be related to Dl2 through
- 44C, v 1 _ 2,2 2
£ =2 ] Gmrnyz expl-(2n+) ?nD, £/0%]. (3.28)
m°Cy; n=0

If it is further assumed that initially each compartment
contains a pure component, then Equations (3.2la) and (3.22)

reduce to

@]
I

¥ C (0), (3.29a)

AC

1

c! (0). (3.29b)
Substituting into Equation (3.28) gives

£ =5 ¥ L 5 exp[—(2n+l)2nZD12 t/02]. (3.30)

mz L (2n+l)

Thus, combination of the above expression with Equation

(3.27) permits D12 to be calculated from the experimental

g L
quantities <C:>, <C,>, t and %.
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3.6 The Continuous Analysis Method

It is possible to utilise Equation (3.18) in a different
manner to that described above by considering variations in
concentration only at certain positions within the cell’ .

* 1% have recently reported a similar

Dunlop and co-workers'

technique whereby concentration differences are monitored as

a function of time. Their method is similar to that developed

by Harned'® in order to study diffusion in electrolyte solutions.
The form of the equation on which the method is based

can be derived simply from Equation (3.18) by evaluating

Cl(z,t) at z = /6 and 5/6. Then by forming the

difference
ACI(t) = Cl(2/6,t) - CI(52/6,t), (3.31)

it is possible to show

2Dt 25120t
ACl(t) - A; exp(— ——ET——) - A; exp(— ___ET__") + wsa
(3.32)
Here the coefficients A; are related to those of Equation

(3.18) by
Al = /?An (n > 1) . (3.33)

For large values of time the second and higher order terms
in Equation (3.32) become negligible. Thus by measuring
the concentration difference or a property proportional to it,
as a function of time, the diffusion coefficient can be deter-

mined.



A comparison of the experimental results obtained with

the two techniques discussed above is given in Chapter VI.
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CHAPTER IV

CXPERIMENTAL APPARATUS AND PROCEDURE

4.1 Introduction

The solution of Fick's second law given in the previous
chapter is based, in part, upon certain geometrical properties
of the diffusion cell. In addition to these requirements,
the cell must possess the ability to confine gases at elevated
pressures, Special experimental procedures were also found
to be necessary at these pressures. Particular reference is
made to these aspects of cell design and experimental technique
in the ensuing discussion. The manner in which Equations (3.27)
and (3.30) are employed to calculate the diffusion coefficient

will also be considered.

4.2 Cell Description

A diagram outlining the important features of the
diffusion cell is shown in Figure 4.1. It is similar in

» 2

design to cells previously employed in this' and other
laboratoriesa_6, and consists basically of two symmetrical
sections or halves, joined together about a common pivot.
Each half is comprised of a cylinder, closed at one end and
attached to a disk in an off-centre position at the other.

Both cylinders were constructed from a single stainless steel

tube which had been honed out so that its internal diameter
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was constant to better than 0.001 cm. The discrepancy between
the diameters of the cylinders and the connecting holes in

the disks was also of this order of magnitude. Correspond-
ingly, the variation in cross-sectional area over the length

of the diffusion channel was less than 0.07%. The two disks,
also manufactured from stainless steel, were 22.6 cm in
diameter and 6.2 cm thick. They were clamped together by
means of a spring system connected to a rod placed through
their centres.

One problem associated with cells of this type is their
susceptibility to leaks, particularly in the region of the
interface between the cell halves. As a first precaution
against such an occurrence, the mating surfaces of the disks
were lapped against an optically flat stainless steel plate
and against each other. A second safeguard consisted of two
viton O-rings inserted between the disks into circular grooves
concentric with the pivot. As the openings of the diffusion
channel were contained within the annulus defined by the
O-rings, external gas leaks were prevented. Before joining
the disks together, a thin layer of Apiezon T-grease was
applied to each surface to provide a vacuum seal and to aid
lubrication. Finally, an intimate contact between the disks
was ensured by employing a set of springs capable of exerting
forces as great as 200 kN,

Other regions of the cell where a possibility of gas
leakage exists are the ends of the diffusion channel and the
connections between the cylinders and disks. The former

sections were sealed with the aid of lead O-rings placed in



circular v-shaped grooves, while each of the latter was sealed
by the insertion of a viton O-ring into an annular groove
which had been cut in the end of the tube. Proper design of
these grooves enabled the elimination of all free space
between adjoining surfaces. To determine the success of
these precautionary measures the cell was filled with nitrogen
to a pressure of 20 atmospheres and isolated for 67 hours.
Over this period of time the pressure was found to decrease

by only 0.14%.

Since the magnitude of the relaxation time for a
Loschmidt cell is dependent upon the cell length, as well as
the diffusion coefficient, it was found necessary to manu-
facture three different pairs of cylinders. By interchanging
these pairs, the cell length could be varied thus overcoming
the problem of inordinately long diffusion periods. The
lengths and internal diameters of these cells are summarised

in Table 4.1.

Table 4.1

Dimensions of the Diffusion Cell

Cell Lengtha Internal
designation (cm) diameter (cm)
Cl 122.83 2.891
C2 60.00 2.890
C3 40.00 2.890

The uncertainty in each length was

believed to be less than 0.005 cm.

34.



Great care was taken in the construction of each pair
of cylinders to ensure that the cells were symmetrical about
the interface. The actual position of this boundary as
measured from the end of the lower compartment, and the ratio
of the lower to upper compartmental volumes, RV , are given
in Table 4.2, A maximum error of 0.1% was estimated for the

values of Rv and 0.005 cm for the boundary positions.

Table 4.2

Dimensions of the Cell Compartments

Cell Boundary R
designation position (cm) %
Cl 61.41 1.000
Cc2 30.00 1.000
C3 20.00 1.000

The cell was suspended vertically in a water bath
containing 500 litres of water; the lower half of the cell
being held fixed in position. By rotating the upper section,
with the assistance of a differential spur gear and pinion,

the cell compartments could be aligned or separated. In

this manner it was possible to form an initial boundary between

the gases contained within the cell halves. When the compart-

ments were fully separated, they were each positioned over a

vent through which gases could be introduced or removed. The
cell vents were connected to the external apparatus, comprising

gas cylinders, vacuum system and pressure gauges, by a manifold

constructed from stainless steel tubing.

35.



36.

4.3 Experimental Procedure

All experiments were performed by filling each evacuated
cell compartment with a pure gas and then aligning the cell
when thermal equilibrium had been attained. Diffusion was
allowed to proceed for a measured period of time, t , before
separating the compartments. During the filling procedure,
the problem of an internal gas leak, via the interface, became
significant whenever a large pressure gradient existed between
the cell halves. This problem was solved by alternately adding
gas to each compartment so that the pressure difference became
progressively less as the final pressure was approached. The
last additions of gas were monitored very carefully to make
certain that the final compartmental pressures were the same.
Gravitational stability was maintained during diffusion by
always filling the lower compartment with the more dense gas.

Pressure measurements were made using a series of Texas
Instruments Bourdon-tube gauges. Two of the Bourdon-tubes
consisted of quartz spirals and were intended for use over
pressure ranges of 0 to 1 and 0 to 14 atmospheres. Another
tube, of aluminium, was employed for measurements between 13
and 30 atmospheres. The two high pressure gauges were
calibrated against a dead weight tester (Bell and Howell,
type 6-201-0001 primary pressure standard) in this laboratory.
These calibrations were reproducible to within 0.03% and
were corrected to account for the difference between the local
gravitational acceleration7 (9.79724 ms 2) and the standard
value (9.80665 ms—z); the accuracy of the dead weight tester

was stated as being better than 0.025%. The low pressure tube



was calibrated against a similar pressure standard at the
Ion Diffusion Unit, Research School of Physical Sciences,
Australian National University.

The period of time during which diffusion occurred

. . . . 8
was chosen to be in the region of an optimum time , t 7

opt
defined by

= 92 /p2
topt = e/ D12 i (4.1)

This diffusion time minimises the effect of certain experi-
mental errors on the derived value of D12 and is discussed
in more detail in Chapter VI. Optimum times for all experi-
ments were greater than 7000 seconds. As the alignment and
separation of the compartments required a finite interval of
time, this diffusion period was uncertain to the extent of 6
seconds.

After the optimum period of time had elapsed, the
compartments were rotated into a position where they were
separated from each other but were not in communication with
the vents. The cell was left in this configuration until
the compartmental concentrations became uniform. A period
of approximately 3tw1 was necessary for this mixing to
occur (see Appendix IT). The vents, which still contained
the original component gases, were then evacuated before
rotating the compartments further. During evacuation, any
internal leak between each compartment and vent was unimportant
because the two mixtures were uniform in concentration.

Throughout all experiments, the temperature of the
thermostat bath was controlled to within *0.005K with an

on-off mercury-toluene relay9 . Mercury-in-glass thermometers,
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which had been calibrated against a platinum resistance

thermometer, were used to monitor the bath temperature.

4.4 Calculation of the Diffusion Coefficient

Slightly different forms of Equations (3.27) and (3.30)
were used to calculate 012 .
Equation (3.30) was simplified by neglecting the

second and higher order terms which amount to no more than

0.004% of the first term when t = topt . Thus
£ = 38 exp(-n2D_ t/2?%) (4.2)
T2 P 12 ° °

Final compartmental concentrations were analysed in

terms of the component molefractions, P These could be
converted to the concentrations, C, appearing in Equation
(3.27), by utilising the virial equation of state. The necessary

relationship being
C. = x P/ZmRT (i =1,2) . (4.3)

i

Here P, T and R denote the pressure, absolute temperature

and gas constant, respectively, and z_ is the virial expansion:
Z =1+4+B'" P+ ... ; (4.4)
m m

B; is the second pressure virial coefficient which is defined

for a binary mixture as

2
z x. x. B'. . (4.5)

Substitution of Equation (4.3) in (3.27) yields, after several

manipulations,



Q 2
£ = [<x:>ZQ = <xl>Zu]/[<x:l>ZQ + <x >Z1, (4.6)

L .
where <x?> and <x > are the final upper and lower mole-
fractions, respectively; Zu and Z, are the corresponding
values of 72 .
m

The combination of Equations (4.2) and (4.6) enables
D12 to be determined from <xr>, <xf>, t, P, £ and the virial
coefficient data. In order that these two equations be

consistent, the component 1 referred to in the latter equation

always denotes the lighter of the two components.

4.5 Mass Balance Relationship

In the absence of any leaks the total mass of each
component must remain constant throughout all experiments.
Thus it is possible to compare the amount of each component
present initially, with the amount present at the end of the
experiment. A convenient way of performing this comparison
is to consider the mean molefraction, ;1’ which can be
calculated from the initial conditions and also from the final
analysed concentrations.

When the initial conditions are considered, ;1 can

be expressed as

X, = V,ct(0)/(V,C"(0) + V,C,(0)). (4.7)

1

Here V  and Vy denote the upper and lower compartment
volumes. Simplifying this expression with the aid of Equation

(4.3), one obtains

x = z,/(%, + R, 2 ), (4.8)

39.
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where
zZ, =1+B P+ ... (i=1,2), (4.9a)
and

\

R, = VQ/Vu . (4.9b)

For the second type of calculation, the mean mole-

fraction is represented as ;l(exp) and is derived in a

similar fashion to Equation (4.8). The resulting expression
is
u L
<x >% + <x >7Z R
= (exp) - 1 ? 1 u' v (4 10)
X Z, + Z R . .
u Vv

While agreement between ;1 and ;l(exp) does not in
itself signify a successful experiment, disagreement does imply
an unsuccessful experiment. When comparing these values a
discrepancy arising from the expected maximum experimental
errors in <x:> and <xf> must be allowed for. The magnitudes
of such errors are discussed in Chapter V.

For the purpose of summarising the comparison of ;1(exp)
and ;1 over a range of pressures, Equation (4.8) was expanded
as a Taylor series in P:

RV(B;z—B' )

11
(T4R,)?

x, = (L+R,) 7 +

P + aaw & (4.11)

When R, is close to unity the above expression can be simplified,
without introducing any significant error, by substituting % for

2 .
Rv/(l+Rv) i That is

X = (1+Rv)"l

r r
) + %(B22 = Bll JP + cee e (4.12)
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Another consequence of such values of Rv is that to a good

approximation, Equation (4.

x, (exp)

If the values of ;l(exp)

the form

10) may be written as

?
<x:>zﬂ + <x >Z

= 7, + 2 . (4.13)
u

are then fitted to an equation of

xl(exp) =a + alP ’ (4.14)

the derived constants, a,

predicted values (1+Ry)

and a s can be compared with the

1 ’ - ’
and -é(Bzz Bll ) .
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CHAPTER V

CONCENTRATION ANALYSIS

5.1 Introduction

Determination of the diffusion coefficient, using the
method described in Chapter IV, depends ultimately upon being
able to measure the final compartmental concentrations. For
this purpose a mass spectrometric technique was adopted, in
preference to a method employed previously in this 1aboratoryl’2
which exploited the difference between the thermal conduct-
ivities of the component gases. This choice made it possible
to study those systems in which the component masses differed
but the thermal conductivity difference was negligible. In
particular, it was anticipated that the mass spectrometer
would eventually be employed in studies of isotopic systems.

The experimental method briefly referred to at the end
of Chapter III has been implemented by using thermistors to
monitor the thermal conductivity differencel, and thus the
concentration difference between the cell positions £/6 and
5%/6. Although this method and the classical Loschmidt
technique cannot be classified as being truly independent,
the use of the mass spectrometer in the latter helps minimise
the similarities between them. Comparison of the results

obtained with both procedures is them somewhat more meaningful.
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5.2 The Mass Spectrometer

All analyses were performed with a Micromass MM6 mass
spectrometer which is based upon a 6 cm, 90° deflection sector.
Ions were formed by bombardment with electrons from a thoriated-
iridium filament; the electron energies were fixed at 70 ev.
The mass spectrum was scanned by varying the current through
the deflecting electromagnet. Fixed ion-accelerating voltages
of 700 and 350 volts were employed for the mass ranges 2-50
and 2-100 amu respectively.

Because the spectrometer was used primarily for
quantitative measurements on mixtures whose component masses
differed significantly, the sensitivity of the instrument
was of more importance than its resolution. The resolving
section therefore consisted of a set of slits, 0.1 cm in
width, which optimised the sensitivity at the expense of
resolution. As a further consequence the component peaks
were flat-topped, thus facilitating the measurement of their
heights.

The mass spectrometer vacuum system consisted of a
polyphenyl ether o0il diffusion pump and a two-stage rotary
pump. A cold trap was employed, but only to act as a
baffle. A butterfly valve, through which had been drilled
a small hole, was inserted between the diffusion pump and
cold trap. During each analysis this valve was closed and
the system pumped through the hole. The resulting decrease
in pumping speed caused an approximate ten-fold increase in
pressure and an associated increase in ion current magnitude.

This arrangement also acted as a choke which decreased the
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effect of any pumping speed variations. After an analysis

was completed the valve was opened in order to effectively

pump out the spectrometer. Pressures of 10 ’ torr were
attainable with the valve open and 10 ® - 10 % torr with it
closed.

Ion currents were detected with a single Faraday
plate collector connected to a VG-Micromass CA2 chopper
amplifier. The input stage of the latter consisted of a
10'! ohm resistor and varactor diode bridge amplifier which
possessed a stability similar to that of a vibrating reed
amplifier3. Output from the chopper amplifier was fed to
a 3490A Hewlett-Packard digital voltmeter interfaced to a
9810A HP programmable calculator. In this way an arbitrary
number of peak height measurements, each requiring 0.270

seconds, could be summed and the average obtained.

5.3 Sample Introduction System

Any mass spectrometric analysis of the relative abund-
ance of components within a mixture is complicated by the
problem of relating the component proportions in the ion-
ization region to those in the parent sample“'s . In the
case of gaseous mixtures, this problem arises because of the
nature of the gas flow from the sample reservoir,through a
constriction of some type, to the ionization chamber. If
the sample pressure is so low that the mean free path of the
molecules is large when compared with the constriction
dimensions, then the flow of gas through the constriction is

termed molecular Flow' . Here the flow of each component is
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inversely proportional to the square root of its mass and
hence mass discrimination or fractionation occurs in this
region. This type of sample introduction system is known
as a molecular leak. Since the flow through the spectro-
meter is also molecular, the ratio of the component partial
pressures in the ionization chamber is the same as that in
the sample container when a steady state flow has been attained.
However, the major disadvantage of the molecular leak is the
fractionation at the constriction which causes the relative
concentrations in a finite sample reservoir to change with
time. Consequently a different type of inlet system, the
viscous leak, was adopted.

The viscous leak differs from the molecular leak in
two aspects. Firstly, a long thin capillary tube is placed
between the sample reservoir and constriction and,secondly,
the use of larger sample pressures permits viscous flow
through the capillary. Although fractionation still occurs
at the constriction, where viscous flow blends into molecular
flow, its effect on the sample concentration can be minimised
by a certain choice’ of capillary and reservoir dimensions.

Kistemaker7, and Halsted and Nier®' have derived
equations which approximate the flow of a binary gas mixture
through a viscous leak. The important results of their work
can be summarised as:-

(i) Long narrow capillaries and small constrictions produce
the largest fractionation, however, capillaries of

such dimensions also reduce the effect of back

diffusion on the sample concentration.



(ii) Before any measurements can be made a certain period
of time must be allowed for the attainment of steady
state flow.

(iii) It is important to ensure that sample pressures are
identical when comparing different analyses.

(iv) The sample reservoir should preferably have a volume

greater than 100 cm®.

Because the corresponding mathematical results cannot generally

be used in an a priori fashion to calculate the actual behav-
iour of such a leak, a process of calibration with mixtures
of known composition was employed.

The viscous leak supplied by the spectrometer manu-
facturer consisted of a stainless steel capillary 90 cm in
length, 0.015 cm in diameter, with a crimping device attached
to the spectrometer end. A sample reservoir of approximately
1200 cm?® in volume was connected to the other end of the
capillary. The flow rate against atmospheric pressure was
nominally set at 0.02 cm®/min, giving an analyser pressure of
lOf“ torr when pumped at 2 litre/sec. Sample pressures were
in the region 150 - 200 torr and were monitored by means of
a Schlumberger transducer or a Texas Instruments pressure
gauge. During the time required to analyse a gas mixture the

sample pressure changed by less than 0.3%.

5.4 Concentration Determination

Calibration of the mass spectrometer with standard
mixtures is further necessitated when the relationship between

the component ion current and concentration in the ion source
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is considered. One must assume that for a given sample
concentration, the ion current ratio is proportional to the

ratio of concentrations in the sample gasg, that is
Iz/Il o B(xz/xl). (5.1)

Here x, denote the sample gas molefractions and Ii the ion
currents. f depends upon factors® such as the character-
istics of the leak system, the difference in ionization
probabilities of the components, the difference between the
collection yields of the ion beams and any nonlinearity
possibly inherent in the amplifying system. As the peak
heights are measured in terms of an amplified voltage, hi .
which is proportional to Ii , Equation (5.1) may be employed

in the form

x2/xl = Sr(hz/hl)' (5.2)

where S, is termed an "apparent sensitivity ratio" and is
similar to the mass spectrometer bias referred to by Walton
and Cameron'® . Accordingly, S, is treated as a charact-
eristic of the mass spectrometer and inlet system and must

be determined by calibration.

All analyses involved the measurement of the peak
heights of both gases until their ratio remained constant to
better than 0.1% for at least three pairs of averages. Each
average consisted of 500 individual measurements requiring
approximately 135 seconds to complete. The period of time
necessary for the peak height ratio to attain this measure

of constancy depended upon the nature of the system. For the



binary combinations of N, O, and Ar it was in the region
90 - 110 minutes and for the system Ar + Kr it was approx-
imately 140 minutes.

Individual peak heights were corrected for the presence
of small background peaks measured prior to admitting a gas
sample. A memory effect’ was noticeable for those systems
which contained either O2 or Kr. In these cases the
background attained a constant magnitude only after allowing
a gas sample to flow through the spectrometer for at least
30 minutes. Thus the practice of priming the mass spectro-
meter with a mixture containing those components that were
to be analysed was adopted.

Analyses of unknown mixtures and calibrations were
performed in identical fashions. After measurements were
completed on one mixture the spectrometer and sample reservoir
were pumped out and the background measured again, before the
introduction of the next mixture. Peak heights for all
systems studied varied between 1 and 4 volts depending on the
relative concentrations. The zero of the amplifier was
adjusted to give an average value of less than 10 * volts and
was checked between each pair of peak height measurements.

Before Equation (5.2) can be used in order to calculate
X, from measurements of (hz/hl), it is necessary to determine
how Sr depends on concentration. Such an investigation,
whereby a series of mixtures with known compositions were
analysed, was performed for the N, + Ar system. The
results of these experiments are summarised in Table 5.1 and

Figure 5.1. It was observed that over the concentration range
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Table 5.1"

Mass Spectrometer Calibrations for N2 + Ar

Calibration A Calibration B Calibration C
X2 Sr X2 Sr x2 Sl’
0.3814 0.5864 0.3814 0.5855 0.4357 0.5863
0.5866 0.5857 0.6222 0.5886
0.5865 0.5857 0.7752 0.5907
0.4357 0.5874 0.5874 0.5893 0.5911
0.5878 0.7752 0.5933
0.5874 0.5910
0.5908
0.5907
0.6222 0.5907
0.7752 0.5947
0.5946
intercept 0.5787 intercept 0.5782 intercept 0.5803
slope 0.0204 slope 0.0192 slope 0.0136
ave.dev. *0.05% ave.dev. +0.03% ave.dev. +0.04%

In each case Sr was fitted to a linear function of
X, - The intercept at x, = 0, the slope and the

average deviation of the experimental points from

each straight line are also listed in the table.
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Figure 5.1:

Apparent sensitivity ratios, Sr, versus x,

for the N2 + Ar system; GD, calibration A,
(), calibration B,C), calibration C.

Duplicate and triplicate points are not

indicated in the figure.
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studied, Sr could be adequately described by a linear
function of molefraction; a result similar to that reported
by Walton and Cameron'’ for the *%Ne + *’ne system. Thus
when calibrating the mass spectrometer, at least two mixtures
with different compositions should be used.

Inspection of Figure 5.1 also shows that the three
calibrations illustrated differ by an amount greater than
the experimental precision. Such variations from day to day
are typicalll of an electron impact ionization source.

For systems other than N2 + Ar , the linear depend-
ence of S was assumed. This is not an unreasonable approx-
imation if at least one of the calibration mixtures has a
molefraction in the neighbourhood of that which is to be
measured. Furthermore, since two mixtures must be analysed
in order to obtain a value of D12 , it is logical to perform
one calibration at a molefraction close to <x:> and the
other at a molefraction close to <xf$ . Once the two values

of S, have been determined, the constants a and b appear-

ing in
§ = ax, + b, (5.3)
can be evaluated. Then, by employing this equation in
e
conjunction with Equation (5.2), values of <x:> and = 2

can be calculated from the corresponding peak height ratio
measurements. In these calculations it is more convenient

to use a rearranged form of Equation (5.2):

x, = [1+s (hz/hl)]—l , (5.4)

and adopt an iterative method of solution.
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5.5 Calibration Mixtures

To remove the need for accurate measurements of volume,
pressure and virial coefficient data, calibration mixtures
were prepared by weight. A balance (Voland Corp. U.S.A.,
model HCE 10 equal arm mass comparator) capable of weighing
a mass of 10 kg with a sensitivity of #0.001g was employed
for this purpose.

Gas mixtures were prepared in Matheson size 6 cylinders
which had previously been evacuated and baked out. The
external surfaces of these cylinders were chrome-plated to
prevent oxidation.

All weighings were performed against a tare and the
appropriate buoyancy corrections made. The final concentration
of any mixture, although calculated from the actual masses of
the gases, could be crudely controlled by monitoring the pressure
from the source cylinders. For the majority of mixtures at
least 20g of each component were weighed; the maximum error
in such weights being less than 0.005g. The effect of these

errors on the value of X can be estimated from

dX1 < dm1 dmz
———x1 = X2 m, X2 m, ’ (5.5)
where m; and m; denote the masses of the two components.
If mixtures are prepared so as to have molefractions near
0.65 and 0.35, then
dxy <2 x 107% (5.6a)
X1 1x,=0.65
and
dx =y
=2X1 < 3 x 10 . (5.6b)
1

x1=0.35



These values of molefraction correspond approximately to
L
<x'> and <x >.

5.6 Errors in Concentration Determination

Consider the case where a molefraction, X, has to
be measured. Two calibrations are performed, one at a mole-

. c . .
fraction, x, ., in the region of «x .

An estimation of the experimental error in x, ~ can
be made by differentiating Equation (5.4). This yields
das
dxi| r| d(hz/h,)
—| < — + e " 5.7
X1 X2 S, X2 |™(hy/hy) ( )
Similarly, it is possible to derive from Equations(5.2) and
(5.5) the expression
c
dSr d(hz/hl)c . dml dm2 (5.8)
S: (hz/hr)c 1 m,
where S: and (h2/h1)c pertain to xi . The peak height

ratios were accurate to approximately 0.1% while the uncertain-
ties in m; and m, have been discussed above. Substitution
of these values into Equation (5.8) gives

as’

< 0.0015. (5.9)
SC
T

This error can be related to that in Sr by expressing Equation

(5.3) as

s = sj +alx, = x ). (5.10)
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If xj is chosen so that |x - le < 0.05, then

dSr

g < 0.002, (5.11)
and thus

dx1

o < 0.003 X, . (5.12)

Applying this final relationship to the quantities <x:> and

2 .
<xl> gives

d<x. >
s < 0.001 , (5.13a)
1
d<xf>
7 < 0.002 . (5.13b)
<x >

These predictions can be tested by using the data
given in Table 5.1. If two of the points from each set of
calibrations are used to define Sr » then the others can be
treated as mixtures of unknown composition and their mole-
fractions calculated. The average discrepancy between the
molefractions determined by weighing and those determined by
mass spectrometric analysis is 0.07%.

As further evidence, a Loschmidt experiment was simu-
lated by preparing four N, + Ar mixtures; two of which
would be used for calibration purposes while the other pair
would be substituted for the cell compartment mixtures. These
results, summarised in Tables 5.2 and 5.3, vindicate Equations

(5.13a) and (5.13b).



d
Table 5.2

Loschmidt Experiment Simulation: Calibration

0.3046 0.5927

0.7120 0.5901 -6.38x10 3 0.5946

The quantities a and b refer to

those of Equation (5.3).

Table 5.3°

Loschmidt Experiment Simulation: Analysis

(hz/hl) xl(measurea) x:(actual)
"upper compartment” 0.8565 0.6641 0.6643
"lower compartment” 3.356 0.3346 0.3349

xl(actual) is the value of molefraction determined
by weighing while xl(measured) is that calculated

from the mass spectrometric analysis.
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Finally, inspection of the raw experimental data
tabulated in the appendices reveals that when experiments are
analysed in duplicate, the discrepancies between the measured
molefractions are less than the values specified by Equations

(5.13).
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CHAPTER VI

EXPERIMENTAL ACCURACY

6.1 Introduction

The effect of any uncertainty in the experimental
quantities used in calculating the diffusion coefficient
can be estimated quite readily by differentiating Equation
(4.2). That is

ds g2 af

dab
Pz <2 |G+ ||+ e || - (6.1)

12

Other types of errors caused by factors such as the Dufour
effect, heat-of-mixing and a concentration dependent diff-
usion coefficierit are more:difficult to determine; these
will be considered in a more general fashion. A comparison
of the experimental techniques employed in this laboratory

is given at the end of the chapter.

6.2 Errors in f

It will be shown that the major contribution to
error in D12 arises from that in £f; however, this error
can be reduced by selecting the diffusion period which
minimisesl (8012/8f). This value of time is the optimum
value referred to in Chapter IV. When t > t  the

opt

relationship (6.1l) simplifies to
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’dplz

12

< 2 ’%i + |‘15| + |E) . (6.2)

Another type of optimum diffusion period has been discussed

by Tordai’ but it is applicable only when the approximation
£=1-40 t/2mn" , (6.3)

is valid. That is, for small values of t . It is also

evident that the relative error in f is decreased by the

use of the maximum initial concentration difference in each
Loschmidt experiment.

The uncertainty in £ is primarily dependent upon
€rrors in <x:> and <xf> and to a certain extent upon
errors in the virial coefficient data. Neglection of third
and higher order virial coefficients introduced no significant
uncertainty. The second virial coefficient data used’ were
believed accurate to within #2x10 ° atm ' while the mole-
fraction errors have been estimated (§5.6). Consequently,
an error propagation analysis of Equation (4.6) yields for

the maximum cumulative error in f :

‘%? < 0.005; P < 25 atm. (6.4)

6.3 Cell Dimensions

The accuracy with which the cell dimensions could
be measured is given in §4.2. Although the cell length is
the only cell dimension that enters directly into the
equations employed to calculate D12 , these equations are
based upon the assumptions of uniform cross-sectional area

and symmetry about the interface.
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The uncertainty in the total length of the cell can
be related to that in D12 through the first term of
Equation (6.2); for the largest of the cells used this
error is insignificant, while for the smallest it can amount
to an error of 0.025% in the diffusion coefficient.

To determine the effect of a discrepancy, ¢ , between
the boundary position and z = £/2, it is convenient to write

Equations (3.25) in the form

<c)> = C (6) + z_f’g—a Y(8), (6.5a)
<> =T (8) - par 1(6) . (6.5b)
Here
I(s) = 255 7 — sinz(-nz—“ + E%S—)exp(—nz'nzvn t/22), (6.6a)
am1
and
T, (8) = %IC'(0) + C, (0)] - AC, 8/2 . (6.6b)

Hence the correct expression for £ is
_ [4225(0) [ = 8282 (8) 1"
£ [WMZCI () + " gsz| - G )

Expanding f as a Taylor series in § gives

f = fo + 2fo(l - fo)(G/g) + s ’ (6.8a)
where
—_ 8 2 2 u >
£, = =7 exp (-m D12 t/%°) ; t topt i (6.8b)

Thus the relative error produced in assuming cell symmetry,

that is, equating £ and fo , is approximately 2(1 - fo)d/l.



Since |8| < 0.005 cm, this contributes no more than 0.02%

to the uncertainty in D12 .

The extent of the inaccuracy introduced by a non-
uniform cross-sectional area is difficult to ascertain.
However, if reasonable care is taken with the construction

of the cell this error should be minimal.
6.4 Alignment and Isolation of the Cell Compartments:
Error in t

As a consequence of the method of cell alignment and

isolation, certain experimental conditions lack the complete

definition necessary for the solution of the diffusion equation.

Such complications can be summarised as:-
(i) What particular stages during the opening and closing
mark the limits of the diffusion period?
(ii) Uncertainty in the form of the initial boundary in
that it is not a perfectly sharp horizontal boundary.
" A similar uncertainty is introduced when the compart-
ments are separated.
(iii) The actual physical movement of one compartment with
respect to the other may cause turbulent mixing.

Bunde4 has considered problem (i) for a Loschmidt cell
with rectangular cross-section. He has shown that the correct
zero time can be taken as that instant when the compartments
are half aligned. This result is contingent upon the assump-
tions of constant alignment velocity and constant mass flux
during the period of alignment. For a cell of circular cross-

section and by similar reasoning, the zero time corresponds
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to approximately 42% alignment. Since the isolation of the
compartments can be treated in an analogous fashion and is
in fact a complementary situation, timing may be commenced
at any point during alignment as long as it is concluded at
the same point during isolation.

The undefined nature of the initial boundary is a
result of the horizontal concentration gradients formed
during compartment alignment. Because this perturbation
decays with times, the concentration distribution must approach
that described by Equations (3.23). However, the exact zero
time of this distribution is uncertain. Similarly, any
initial turbulence, which results in a transport of mass
additional to the normal diffusion process, can be treated as
causing inaccuracy in t A Again, analogous arguments may
be employed for the separation of the compartments. As the
neglection of such effects should have greater bearing on
experiments of short duration, indirect evidence concerning
the significance of any consequent error can be obtained by
comparing the results of experiments with different diffusion
times. For this comparison it is important to ensure that
the magnitudes of any other experimental errors remain constant
in relation to the different values of t . Hence, optimum
diffusion periods were still used but were varied by altering
the cell length. Inspection of the results summarised in
Table 6.1 reveals no evident trend in PD12 with respect to
variations in t . Therefore the supposition that this type

of error is relatively insignificant seems reasonable.



Effect of Duration

Table 6.1

on Observed Diffusion Cloefficient

System L P t PDyz _
(cm) (atm) (s) (atm cm?s 1)

N, + Ar 122.83 4.001 29520 0.2032
60.00 4.001 7140 0.2031
122.83 6.001 45000 0.2031
60.00 6.004 11160 0.2029

N; + 0O, 60.00 15.975 26880 0.2160
40.00 15.977 12000 0.2162
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Boyd et al.® have also studied the behaviour of the
initial boundary using a cell made of Lucite and an optical
schlieren apparatus. No evidence of turbulence was discovered
but the boundary was found to possess a degree of obliqueness
which was dependent upon the alignment velocity. This latter
effect, however, soon disappeared once the compartments were
completely aligned.

For the purpose of making a crude estimation of such
errors in t , the intervals of time required to open and

close the cell were treated as the sole source of uncertainty,

that is
]%}| < 0.001 . (6.9)
6.5 Concentration Dependent Diffusion Coefficient

When the diffusion coefficient does depend upon

concentration, the correct form of Fick's second law is

(3c, /3t) = Dlz(azci/azz) + (avlz/aci)(aci/az)z. (6.10)

AS yet, no analytical solution of this equation for the case

of a Loschmidt cell has been proposed. This inevitably leads

to the use of approximations which reduce the magnitude of

the second term of Equation (6.10) with respect to the first.
The measured composition dependences of D12 at one

atmosphere and 300K, for all but one of the systems studied,

are given in Table 6.2. These results were best represented

by a linear function of molefraction, viz.,

p =79°

- 7 (1 + axz) ; (6.11)



Data for the N; + Ar system were taken from reference 7,
Ar + Kr from reference 8, while the O0; + Ar data were
obtained using a two-bulb apparatus9 and experimental method

described elsewhere.lo

Table 6.2

Composition Dependence of D12 at 300K

System Y, ax10? Av. Dev.’
(cm?s™ 1) (%)

N, + Ar 0.2034 4.1 +0.04

Ar + Kr 0.1404 2.6 +0.05

O, + Ar 0.2037 2.5 +0.02

® These figures represent the average percent-
age deviation of the experimental points

from the least-square line.

It can be seen that for these three systems the
maximum variation of D12 with concentration is about 0.4%.
For the other system of interest, N; + 0O;; theoretical
calculations'’ predict that the composition dependence is
even less. ‘Given the small extent of this dependence and
noting the result of Ljunggren mentioned in §3.3, it is

reasonable to assume the simplest form of Fick's second law.
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6.6 Pressure and Temperature

The temperature of the thermostat bath could be

measured to within *0.002K; temperature variations during
the diffusion period were never greater than 0.005K. On
this basis alone, any resultant inaccuracy in 012 is
negligible.

Another point of interest in relation to temperature
variations is the effect of convection within the cell.
However, in this instance, the temperature control was
considered good enough to preclude significant convection.

Pressure measurements were accurate to approximately
0.06%. Consequently, an error of similar magnitude is
introduced into the quantity PD12 in addition to the other
errors inherent in the diffusion coefficient. For the
product nD12 , the number density, n , can be calculated

from P using
n = P/zka F (6.12)

and is uncertain to the extent of about 0.1%. The precision
with which pressures could be reproduced is also of import-
ance in ensuring a negligible difference between the initial
compartmental pressures. Calibration of the pressure gauges
indicated that the reproducibility of the gauge reading was
better than 0.03%.

Although the pressure and temperature could be deter-
mined within well defined limits, various non-ideality and
kinetic phenomena may cause deviations from isothermal and

isobaric conditions. The temperature of a diffusing gas
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mixture is disturbed by both the heat-of-mixing and the Dufour
effect. The former is due to the real nature of the gas
system and its magnitude, at moderate densities, can be

approximated by”

it o= 2x x,P[B, - T(dB_/AT)] . (6.13)

Here ﬁE is the excess molar enthalpy of mixing and B, has
been defined previously (Equation (3.11)). Even though the
heat-of-mixing increases with pressure and is maximised when
pure gases mix, estimations based on the above egquation show
that #® is extremely small for the systems N, + O,, N, + Ar,
O, + Ar and Ar + Kr. The Dufour effect refers to the
transient temperature difference produced by a concentration
gradient and can be regarded as the inverse of thermal diff-
usion. In general, the magnitude of the temperature differ-

3,14
! and

ence is small when the component masses are comparablel
can be further reduced by a suitable choice of cell dimensions.’
That is, if the cross-sectional area of the cell is small, the
temperature gradients are rapidly dissipated by conduction to
the cell walls. As ‘a function of pressufe, Mason et al.' have
observed that the maximﬁm temperature difference increases with
P whereas the rate at which it decays decreases. Thus any
inaccuracy caused by the Dufour effect should be more pronounced
at higher pressures.

The mixing of real gases within a vessel of fixed volume
can also result in pressure changes. Obviously this must create
uncertainty in the value of D12 which varies approximately with

the inverse of P . Another consequence is the invalidation

of Fick's first law in the cell frame of reference. The size



of the pressure change, APmix , is again a function of B,

(see Appendix I); example calculations of APmix for the
mixing of two pure components in a Loschmidt-type cell are
given in Table 6.3. These data indicate that APmIx is

generally of the order of the error in P .

Table 6.3"
Pressure-of-mixing at 300K and X = 0.5
System P APmix /Pmax
(atm) (%)
N2, + Ar 25 -0.03
N2 + O 25 0.01
0; + Ar 25 0.07
Ar + Kr 10 0.09
‘p refers to the maximum pressure at which

max

diffusion experiments were performed.

A further pressure gradient may arise during diffusion
because of a difference in the average molecular velocities'® .
However such gradients are negligible except for the case of

diffusion within a capillary.

6.7 Comparison with other Experimental Results

The other experimental method extensively employed for
gaseous diffusion studies in this laboratory, namely the cont-

inuous analysis or thermistor bridge method, has been well
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documented elsewhere'’ . Briefly, it consists of monitoring
the difference in resistance, AR(t) , of the two thermistors
until complete mixing has occurred. Assuming AR is propor-

tional to ACl , then
AR(t) = A’ exp(-m?D  t/%%) + AR(x), (6.14)

where AR(«) is the difference in resistance at equilibrium
(c.f. Equation (3.32)). If AR(t) is measured at regular
intervals of time, then D12 can be determined via a curve
fitting procedure. Diffusion coefficients at pressures of
one atmosphere or less have been measured for a large number
of binary gas systems with this method; an experimental
precision of sometimes better than 0.1% but never worse than
0.2% has been obtained'® .

An initial comparison of the two techniques using the
N, + Ar system and a Loschmidt cell specifically designed for
the thermistor method'’ is summarised in Table 6.4. The
thermistors were left in the cell during the classical type
experiments; lower pressures were used in the thermistor
experiments so as to permit convenient relaxation times.
Agreement between the two sets of data is excellent.

Classical Loschmidt experiments performed in the cell
manufactured for this study also yielded a value of 0.2037
atm cm’s~ ' for PDlz. Other comparative data for different
systems and temperatures are listed in Table 6.5.

While the thermistor bridge method is only a variation
upon the Loschmidt technique, there are some important diff-
erences between it and the classical method. Most signif-

icantly, the thermistor method is relatively insensitive to



Table 6.4"

71.

Comparison of Classical Loschmidt and Thermistor Bridge

Techniques for N2 + Ar at 300K and

Classical Loschmidt

X = 0.5
1

Thermistor Bridge

P PDI2 P PDlz
(atm) (atm cm?s” 1) (atm) (atm cm?s ')
0.9459 0.2036 0.2139 0.2036
0.9675 0.2036 0.4255 0.2036
0.9549 0.2039 0.2361 0.2039
0.9560 0.2036 0.5002 0.2038
0.9904 0.2040 0.5002 0.2037
0.9468 0.2037
0.9510 0.2035

"The cell used was 117.34 cm in length.

Table 6.5

Further Comparison between Classical and

Thermistor Bridge Methods

Classical Loschmidt

Thermistor Bridge

1

System T P012 PD12
(K) (atm cm?s !) (atm cm?s 1)
N; + Ar 323.16 0.2323 0.2325 (20)
0, + Ar 300.00 0.2037 0.2039
Ar + Kr 300.00 0.1406 0.1405 (8)
323.16 0.1612 0.1615 (8)
All diffusion coefficients were measured at x = 0.5

and near 1 atm;

where thermistor results are taken from

literature reference is given in brackets.



the form of the initial conditions. This is because measure-
ments of AR(t) are not commenced until some time after
alignment of the cell compartments. Therefore any initial
perturbations that may exist have time to decay and the
coefficient A', in equation (6.14), will be ultimately
independent of t . Although in this situation A’ is
unknown, only its constancy is mandatory for thermistor
experiments. Evidence for this hypothesis was obtained by
performing N; + Ar thermistor bridge experiments in which
an initial pressure difference was purposefully created.
Values of PD12 were calculated using the average or final

pressure, P , defined by

P = (P + Py). (6.15)

Inspection of Table 6.6 reveals no noticeable discrepancy
between these data and the results of equal-pressure exper-
iments. Thus the concordance between the thermistor and
classical methods lends support to the assumptions concerning
the initial.conditions of the latter technique.

Furthermore, as the thermistors themselves are
extremely sensitive to temperature changes, the Dufour effect
and heat-of-mixing are more likely to cause inaccuracy in
the thermistor bridge method. However, no such disturbances
were detectable at pressures near one atmosphere and hence
the agreement between this method and the classical Loschmidt

technique is even more encouraging.
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Table 6.6

N2 + Ar Thermistor Experiments with Initial

Pressure Difference AP

X, P AP/P PD PD ,
(atm) (2) (atm cm?s 1) (atm cm?s 1)
0.476 0.2100 -10 0.2037 0.2038
0.524 0.2100 10 0.2037 0.2038
0.550 0.2000 20 0.2037 0.2038
0.575 0.2000 30 0.2035 0.2037

* Results of equal-pressure experiments taken from data

of Table 6.2.

It was not possible to compare the two experimental
procedures at higher pressures because the thermistor method
fails for systems other than those containing excess helium'’ .
The exact reasons for this failure have not been determined
but may lie in the increased magnitudes of the Dufour and
heat-of-mixing effects, or be due to an increase in free
convection from the thermistors”'

For the purpose of comparison with the results of
other workers, the correlation fﬁnction of Marrero and Mason’’
has been used to predict values of PD12 for the relevant
systems. These predictions along with the present experi-

mental results are given in Table 6.7.



Table 6.7

Camparison with Other Results

Predicted value® Classical Loschmidt

System PD12 PD12 A
(T=300K, x, =0.5) (atm cm?s ') (atm cm?s !) (%)
N, + Ar 0.198 (3%) 0.2037 +2.9
N2 + O3 0.211 (3%) 0.2192 +3.9
0, + Ar 0.195 (3%) 0.2037 +4.5
Ar + Kr 0.140 (1%) 0.1406 +0.4

aFigures in brackets represent the quoted uncertainties.

The small discrepancy between the diffusion coefficients for
Ar + Kr 1is particularly pleasing in that the experimental
determinations upon which the correlation function is based
are much more accurate’’ in this case.

In summary, the accumulation of those errors that
have been numerically estimated in the foregoing discussion
gives rise to a possible maximum uncertainty of +0.7% in
PD _ . This compares favourably with the average experi-

12

mental precision of #0.2%.
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CHAPTER VII

EXPERIMENTAL DENSITY DEPENDENCE

7.1 Introduction

All numerical results derived from individual classical
Loschmidt experiments are tabulated in Appendix III (Tables
IT1.3-9); the second virial coefficients required for
calculations of Dlz, n and ;l(exp) are listed in Tables
IITI.1 and III.2.

Before entering into a discussion of the density
dependence of the diffusion coefficient the variation of
El(exp) with P is examined in the context of Equations
(4.12) and (4.14). In the latter sections of the chapter,
the experimental dependence of nD12 on n is compared with

both the Enskog-Thorne result for rigid spheres and an empirical

modification of the theory.

7.2 Pressure Dependence of ;l(exp)

As stated in §4.5, comparison of ;1 and ;l(exp)

serves as a negative indication of the success of an experi-

ment. Given the possible maximum errors in <x:>, <x€>, &
and R, then §l(exp) should be accurate to within +0.16%.
Values of the average discrepancy, Aave » and the average

absolute discrepancy, |A] , between §1 and §1(exp) are

awe

given in Table 7.1. These data all lie within the expected
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error in ;l(exp); the negative Awe values could possibly
be attributed to a small consistent error in the determinations

Q . )
of <x:> and <x, > or Rv being slightly greater than unity.

Table 7.1°
Average Discrepancies between ;1 and ;l(exp)

System T AL |81,
(K) (%) (%)

N, + Ar 300.00 -0.07 0.07
323.16 -0.06 0.06

N, + 0O, 300.00 -0.12 0.11
323.16 -0.08 0.08

O, + Ar 300.00 -0.02 0.03
Ar + Kr 300.00 -0.03 0.06
323.16 -0.04 0.06

a - -
A = xl(exp) - X, .

For each system and temperature the ;l(exp) data were

fitted to an equation similar in form to (4.14), viz.,

xl(exp) =a + alP ’ (7.1)
and the comparisons
_ -1
a 6 = (1 + R,) " (7.2a)
=1 7 — r
a —/5(B22 Bll ) . (7.2b)

made on the basis of arguments outlined in §4.5. Least-squares



Table 7.2: ;l{exp) versus P , Data for Equation (7.1)

System T a, 10* Error® 10*a, 10* Error® 10* std.Dev.°
() (atm™ ') (atm™ 1)

N, + Ar 300.00 0.4996 + 1.3 -1.14 + 0.10 2.6
323.16 0.4998 + 3.1 - 1.09 + 0.24 2.6

N, + 0, 300.00 0.4996 + 1.3 - 1.27 + 0.09 2.2
323.16 0.4995 + 2.7 - 0.97 + 0.21 2.2

O, + Ar 300.00 0.4998 + 0.8 0.09 + 0.08 1.1

Ar + Kr 300.00 0.5001 + 3.7 - 4.26 + 0.73 2.9
323.16 0.499%6 + 3.6 - 2.42 + 0.67 2.5

Errors in a, and a quoted to 95% confidence limits.

Standard deviation of ;l(exp) values.

"6L



parameters for Equation (7.1) are listed in Table 7.2 and the
variation of ;l(exp) with P illustrated in Figures 7.1
and 7.2.

Table 7.3 contains a series of R, values .calculated
from Equation (7.2a); these are in good agreement with the
value 1.000 t+ 0.001 determined from measurements of the cell

dimensions.

Table 7.3
Values of Rv Calculated from a,
System (g) Rv
N, + Ar 300.00 1.0016+0.0005
323.16 1.0008+£0.0012
N, + O, 300.00 1.0016+0.0005
323.16 1.0020+0.0011
0, + Ar 300.00 1.0008+0.0003
Ar + Kr 300.00 0.9996+0.0015
323.16 1.0016+0.0014
Comparison of a  with %(B,, - B;l) is summarised
in Table 7.4. In order to determine the likely uncertainty
in !z(Bz’2 - B;l) , errors in the B& data were taken from
the literature.' Inspection of this table shows that the

two quantities agree within the limits of their mutual

uncertainties.

80.
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Figure 7.1: Pressure dependence of ;1(exp) for the Nz + Ar and Nz + 0, systems;
C), 300.00K, GD, 323.16K. Multiplicate points are not indicated in the
Figure.
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Table 7.4
Comparison of a with z}(Bz'2 - B;l)
System T 10* a, 10* [% (B3, =B, )]
(K) (atm™ ') (atm™ ')

N, + Ar 300.00 -1.14+0.1 -1.16+0.1

323.16 -1.09+0.2 -1.03+0.1
N, + 0O, 300.00 -1.27+0.1 -1.15+0.2

323.16 -0.97+0.2 -1.06+0.2
O; + Ar 300.00 0.0910.1 -0.04+0.2
Ar + Kr 300.00 ~-4.26x0.7 -3.54+0.2

323.16 -2.42+0.7 -2.90+0.2

7.3 Density Dependence Results

Experimental diffusion data are summarised here in

terms of the equations

PD

12

(PD, ), (1 + 6P), (7.3)
and

nD12

Il

(nDn % (1 + BDn) . (7.4)

These relationships were found to reproduce the data within

r 0,

the experimental precision. The coefficients (PDlz)o

(nD12 ) and B along with their respective errors are

0
given in Tables 7.5 and 7.6. All errors quoted apply to a

95% confidence limit. Figures 7.3 - 6 illustrate graphically

the dependence of nD12 on n .

83.



Table 7.5: Least-square Parameters for Equation (7.3)

System T (PD 5 )0 10* Error 10* 8 10* Error 10* std. Dev.
(K) (atm cm2s 1) (atm cm?s 1) (atm !) (atm !) (atm cm?s™ 1)
N, + Ar 300.00 0.2038 + 1.0 - 9.16 + 0.4 1.9
323.16 0.2325 + 3.3 - 6.84 + 1.2 2.9
N2 + O, 300.00 0.2194 + 1.1 - 9.43 + 0.4 1.8
323.16 0.2501 + 3.6 - 6.48 + 1.1 2.9
0O, + Ar 300.00 0.2038 + 1.9 -10.1 + 0.9 2.6
Ar + Kr 300.00 0.1409 + 2.3 -21.9 + 3.2 1.8
323.16 -0.1614 + 2.8 -20.6 * 3.3 2.0

“P8



Table 7.6: Least-square Parameters for Equation (7.4)

System T 1072% (nDy; )o 10" 2® Error 10%° B/ 102° Error Std. Dev.
(K) S mTlsTh (m's™ 1) (m®) (m*) (m~*s™ 1)

N, + Ar 300.00 4,987 + 2.4 - 2.08 £ 0.1 4.7
323.16 5.279 + 7.6 - 2.00 + 0.2 6.5

N, + O; 300.00 5.368 + 2.7 - 2.22 * 0.2 4.7
323.16 5.680 + 7.5 - 1.85 + 0.2 6.4

02 + Ar 300.00 4.987 + 4.5 - 1.53 + 0.3 6.3

Ar + Kr 300.00 3.447 + 5.7 - 3.31 + 1.3 4.6
323.16 3.666 * 6.1 - 4.54 + 1.4 4.2
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Equations of higher order in n and P were
considered, but no significant improvement in the standard
deviation of the fit was observed. In addition, the
coefficients of n? and P? were insignificant in comparison
with their standard deviations.

The Ar + Kr system was studied only to a pressure of
10 atmospheres for two reasons, firstly, lack of sufficient
krypton and secondly, the results of experiments at higher
pressures would probably be inaccurate due to the larger
value of B, for this system. With regard to the former
of these reasons, it should be noted that the procedure
employed in admitting gases to the diffusion cell (see §4.3)

caused quite large volumes of gas to be wasted.

7.4 Comparison with Enskog-Thorne Theory

In order to compare the experimental BD values with
those predicted by the rigid spheres theory, it is necessary
to expand Equation (2.13) as a series in n and make use
of the result derived in Appendix I for (85Lnal-/i)5Lnxl)T'P ;

viz.,

(Bﬂ,nal/alnxl)T._P =1 - 4xl.x2kTBP':- + g o (7.5)

This yields

_ po_m 3 3
BD = 4xl xszBE 6(x1011 512 + X,0,, 521 ). (7.6)

where

Ei} = (oii + 40jj )/(cii + Ojj ) (i # J) B (7.7)



Now, if the rigid spheres expression for the second virial

o N 2
coefficient” :

¢ _ 2 3
Bij = 3ﬂ0” /kT , (7.8)

is employed to evaluate Bé , then

g +x03£

B =T o)
X1x2( 1 12 2 22

D

)
(7.9)

2 m 3
- + =
1 022) (011 O22) 6(x1011 21

where Bﬁs denotes the first density correction for the
rigid spheres model.

Calculations of BES cannot be performed until some
estimation of o0¢,;;, and o0,; is made; for this purpose,
a scheme which involved identifying the dilute gas diffusion
coefficient with that of a gas composed of rigid spheres was
adopted. In other words, the first approximation to the

. . . 2
rigid spheres diffusion coefficient, which is defined as

RS -2

P[Dlz]1 = 0.002628([T (M1+M2)/2M1M2] O, ¢ (7.10)

was equated with (PDIZ% ) In this manner, values of o0,
were obtained for the N, + Ar , N; + O and O; + Ar systems.
Each of these quantities can be related to the particular o

and 029 by
012 = %(0y1 + 022) . (7.11)

Hence, it is possible to derive a set of three linear equations

involving the three o.. for N;, O and Ar . The solution
of this set of equations is given in Table 7.7; this table
also includes a value of o for Kr which could be calcul-

ii

ated using Equations (7.10) and (7.11) once the Ar value

had been determined.
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Table 7.7

Rigid Spheres Diameters from (PD12 % Data

Gas 300.00K 323.16K"
O“ 0“
(nm) (nm)
N, 0.3441 0.3411
0, 0.3311 0.3275
Ar 0.3394 0.3358
Kr 0.3876 0.3814

®For the 02 + Ar system at this
temperature’ , (PDy12 ) = 0.2329 atm cm?s !

was used for these calculations.

Substitution of these ., data into Equation (7.9)
yields the Bgs results listed in Table 7.8; the experi-
mental BD values are repeated in this table for comparison.

It can be seen that the agreement between BD and

B'® is very poor; at best the rigid spheres model predicts

D
the correct sign for BD and mirrors the larger magnitude

of B, in the Ar + Kr systen.

7.5 Modified Enskog Theory

The Modified Enskog Theory (MET) is an empirical
extension of the rigid spheres theory to account for the

real nature of fluids. It was first proposed by Enskog4

912,



Table 7.8
RS
BD Calculations
System T 10% Bgs 10*° BD
(K) (m”) (m’)
N, + Ar 300.00 - 5.22 - 2.08
323.16 - 5.07 - 2.00
N, + O, 300.00 - 5.03 - 2.22
323.16 - 4.88 - 1.85
0, + Ar 300.00 - 4,93 - 1.53
Ar + Kr 300.00 - 6.19 - 3.31
323.16 - 5.95 - 4.54

and has been used with relative success’ ® in predicting the
behaviour of the coefficients of viscosity and thermal
conductivity to quite large densities.

Basically, the modification consists of replacing the

pressure in the rigid spheres equation of state (Equation (2.7))

with the thermal pressure, T(BP/BT)V, that is™’

) =1l oy, (7.12)
A \Y/
where

_ 2 3

This substitution is rigorous for a gas composed of rigid
spherical molecules as the internal pressure, (Bﬁ/BG%. , 1s
zZero. For real fluids the quantity (V/R)(BP/BT)V in

Equation (7.12) can be evaluated using the experimental

93.



94.

equation of state data; for example, if the virial expansion

is employed, then

V(5P 1 dB il ac
§(§T>V g(B + THT> + €;<c + Taf) + vee o (7.18)

i
H
+

Combination of Equations (7.12) and (7.14) yields

boY/ﬁ = i(B + TQE) +lj;(c + ng) + in . (7.15)
T dT ~2 dT

Now, as the transport coefficients must approach the dilute
gas values in the low density limit, it is possible to

. 2
write

b =B. + T(dBii /dT) . (7.16)

0 ii

EFF

Therefore, an effective rigid sphere diameter, o,  can be

calculated for each temperature according to

o) = (3b /2mN )7 . (7.17)

11

The results of such calculations are summarised in

EFF

Table 7.9. An estimation of the uncertainty in o

deduced from the error' in Bii , 1s also given.

In computing the corresponding BEET values it is
logical to include the real activity factor as derived from
experimental Bé data. Inspection of Table 7.10 again
reveals a significant discrepancy between the measured B
and the predicted BEET values.

The disparity between BD and Bgm‘ for the present
systems is much worse than that reported previouslylmllfor a

number of binary systems containing helium. As suggested

by Arora and Dunloplz, this difference can be explained by



Table 7.9

Effective Rigid Spheres Diameters

Gas 300.00K 323.16K

EFF EFF

g, . N

11 11

(nm) (nm)
N, 0.352(+0.03) 0.348(+0.03)
0; 0.322(+0.03) 0.331(+0.03)
Ar 0.334(+0.03) 0.330(+0.03)
Kr 0.378(20.02) 0.375(+0.02)

Table 7.10°

Comparisan of BD and BgET
System T 10%° BgET 10*° B,
(K) (m®) (m’)
N, Ar 300.00 -5.18+0.2 -2.08%0.1
323.16 -5.06+0.2 -2.00+0.2
N, 0, 300.00 -5.05+0.2 -2.22+0.2
323.16 -5.25+0.2 -1.85+0.2
0, Ar 300.00 -4.87+0.2 -1.53+0.3
Ar Kr 300.00 -6.68+0.1 -3.31#1.3
323.16 -6.29+0.1 ~4.54+1.4

a . , ME
Error in calculation of BD

. . EFF
uncertainty 1in 9.,

T

’
and BE

estimated from the

95.
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expressing Equation (7.6) in the form
B, =B, + B, , (7.18)

where the activity contribution to BD is given by

- = v
BD = 4x1 x, kTBE ) (7.19a)

and the Thorne expression for the kinetic contribution is

T e [ 3 3
BD - 6(x|011 g12 + %2 022 E‘21 ). (7.19Db)
a a
If the measured B and B, are denoted by (BD)exp and
(BD)exp ; then an experimental quantity (BI))exp can be
derived from
B = (B - (B 7.20
( D)exp - ( D)exp ( D)exp ’ ( - )

and compared directly with calculations based on Equation
(7.19b) . This type of correlation yields no extra inform-
ation for the systems studied here because the (B;)eﬂa values
are quite small in magnitude. However, for the systems con-
taining helium, (B';))exp génerally contributes to the extent
of 50% or more to (BD)”p ; hence the reason why the MET
results are found to agree with (BD)exp to better than +10%.
In contrast, the disagreement between :(Bz)“p and B; is
conspicuous.12

The failure of the Enskog-Thorne theory and its empirical
extension is not surprising when the simplicity of the rigid
sphere model is considered. Of the assumptions inherent in
the theory, neglection of the following are most questionable:

ternary and higher order collisions, attractive intermolecular

forces, and velocity correlations. Although some attempts to
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account for the first two of these phenomena have been reportedla'ls
the results are only applicable to single component systems or
binary systems at trace concentrations. It is also unfortunate
that the theoretical expressions of Bennett and Curtiss'® which
partially account for the effects of three-body collisions

have not been numerically evaluated for binary systems.

7.6 Temperature Dependence of BD

One of the other aims of this project was to investigate
the temperature dependence of BD . While it was anticipated
that B could be measured over the range 275-325K, this
did not eventuate because at the lower temperature it proved
impossible to align or separate the cell compartments in a
time insignificant in relation to the diffusion period. A
variety of Apiezon vacuum greases were used in the hope of
overcoming the increased friction between the plates, but to
no avail. The obvious solution to this problem, namely,
releasing the tension in the springs, led to a failure in
the ability of the cell to sustain pressures greater than 5
atmospheres. Consequently, experiments were performed at the
temperatures 300.00 and 323.16K.

Over this restricted temperature range no statistically
sigpifjcant variation in BD for the N; + Ar, N; + 0, and
Ar + Kr systems was observed (see Table 7.6). As an initial
experiment at 20 atmospheres and 323.16K for O, + Ar indicated
a similar result, measurements on this system were discontinued.
These results cannot be used to imply that BD is independent
of T, but show that a much larger temperature range is necessary

before any variation in B becomes apparent.
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APPENDIX 1

Thermodynamic Relationships

(1) Activity factor, (Bknal/alnxl)T o

If the virial equation of state is used to describe
a binary gas mixture then the Gibbs free energy, G , of

the mixture is given by1

2 2 2
0
G = Zl v, 1+ RT Zl v, 4nx, + RT iz v, an(P/P ) +
i= i= =1
2 1 2 2 2
+ ‘z Y B P+ som I v (C -B )P" + ... . (I.1)

i=1 i=1

. 0
Here v, genotes the number of moles of component i ; M
1

the chemical potential of i in its standard state; Po the

standard pressure; B and C_~ the second and third volume
virial coefficients of the mixture. C_ is defined in an

analogous manner to B, viz.,

2
) x; X x Ciy (I.2)

Equation (I.1l) can be expressed in terms of the pressure
virial coefficients as

2 2 2
G= ) wvu +RT ] v &nx + RT ] v, 4n(P/P ) +
=1 = i=1
2 2
+RT ) VvB'P+ %RT J v.C’' P + ... . (I.3)
221 i ni i =1



The chemical potential of component i , M, s can be obtain

from the above equation by differentiation with respect to

v, at constant T, P and iji , that is
0 2
- ’ _n’
W, = u + RT&nx, + RTAn(P/P ) + RT[ngl x; B/ Bm]P +
2 2 2
+ %RT[B Z g xjkai'jk —ZCL]P + ... . (I.4)

j=1 k=1

With reference to component 1, rearrangement of this equation

gives
u. = 1’ + RTnx. + RTAn(P/P ) + RT[B' +2x B’ 1P +
1 Hy 1 0 L1 2 E
r 2 r - r 3 14 - (4 2
+ %RT[Cm+3x2(2CEl CE2)+6x2(CE2 CEI)]P + ...,
(1.5)
where
B’ = B’ - (B’ + B’ ) (I.6a)
E 12 2711 22 ' ! ‘
cr =c’ - X’ +c’) (I.6b)
El 112 3 111 222 7! °
c’ =c' - X' o+ 20 ) (I.6c)
E2 122 37111 222 ' " ¢

Therefore the logarithm of the activity of component 1,

Qnal, is

_ Y r 2 .y
SLnal = JLna| + JLnxl + Rn(P/Po) + [Bll+2x2BE]P +

’ 2 ’ ’ 3 ’ ’ 2
+ %[Clu +3x2(2CEl—CE2) + 6x2(CE2_CE1)]P + ...,
(1.7)

where a? is the activity of 1 in the standard state.

Differentiation of 4na, with respect to JLnx1 yields
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(Bknal/alnxl)T,P =1 - 4x1x2BEP +

— . r - r 2
3x|x2[(3xl l)CEl + (3x2 l)CEz ]P + s .

(I.8)

which is the required relationship.

(ii) Concentration dependence of §1

An expression for the partial molar volume of species

1, vV, in a binary mixture can be obtained from Equation (I.5)

using the well known relationship:

(2)111/E)P)T’Vi = (E)V/B\)IJT’P’U2 =V, . (I.9)

Hence

’ 2 ro_pr 3 ' 2 1
% [cm +3x, (2C! -C! ) + 6x, (Cl -C/ )]P e (1.10)

It follows that

(BVI/BXI)T’PI = - 4x2RTBE +

- 6x2RT[(3xl—l)Cl;1 +(3x2—l)CE2 ]P + e
(I.11)

Considering only the first term of this expression, that is

(3VI/BXI)TJ’= - 4x, B (I.12)

E r

which when combined with

2—
(E)xl/BCl)T,P l/(C1+C2) v, (I.13)



yields
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-— 2—
(8Vl/8Cl)TJ,ﬁ - 4x2BE/(C1+C2) v, . (r.14)

Therefore

— 3—
(BVI/BCI)TJ,= - 4C2BE/C vV, (I.15)

where

c=cC +C_ . (I.16)

(iii) Pressure-of-mixing, APmix

Consider a Loschmidt cell consisting of two compart-
ments with identical volumes V ; each compartment initially
contains a binary gas mixture, composed of the same species,

at pressure P. If X and Xg denote the molefractions

of component 1 in the upper and lower compartments respectively,

then the total number of moles of gas in the cell is given by

v o= (PV/RT)[z:l

tot L

After complete mixing has occurred, the total number of moles
is

mix

+z '] . (1.17)

Y = 2PmV/szT, (I1.18)

t ot

where Pm is the pressure at equilibrium.

: mix .
Equating Voot and Voot vields

-1

Pm/P = (1l - ¢ B; P) , (I.19)

where

C o= k(z + oz ), (I.20)
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A Taylor series expansion of Pm/P in P gives

P/P=l+[Br:|-%(Bl:+BQ’)]P+... . (I.21)

m

Now, if the molefraction of the mixture is approximated by

X = %(X + XQ) ’ (I.22)
m u
then
2,
. /P = % (Ax) BE P+ ... (I.23)
where
AP, G =P =P, (I.24a)
mix m
and
Ax = x = Xq - (I.24Db)
u
REFERENCES
1. A.D. Buckingham, The Laws and Applications of

Thermodynamics, Pergamon Press (1964) .
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APPENDIX II

Mixing Time Estimation

Upon separation of the cell compartments at time tbm ’

the concentration distribution is given by Equations (3.23)

with b = /2, viz.,

) =C, = Z-A—,"g—l—[e_lcos('rrz/k) - = e ’cos(3mz/L) + ...1.

Cl(z'top 1

Wl

t

(II1.1)

Now if one considers for example, the isolated lower compartment,
then this equation represents the initial concentration distri-
bution in a closed tube with length /2. The solution of

the diffusion equation in this case is analogous to Equation

(3.18) and is of the form

xl(z,t’) = ¥ A cos(2mrz/JL)exp(—4nzTrZD12 t’/2%). (II.2)
n=0

Here Cl has been replaced by X for convenience and the

time scale t’ is defined by: t' =0 = t = topt K Forming

the difference
S(t’) = xl(2/2,t') > xl(O,t’), (IT.3)
and substituting Equation (II.2) gives for large values of t' ,
§(t’') = - 2 A exp(—41r2012 t'/82). (I1.4)

To evaluate Al, Equation (II.l) can be approximated

by
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1 —
x, (2,00 ~ 2 = 2 ™" cos(rz/2), (II.5)
and substituted in
22
Al = 4/% J xl(z,O)cos(an/R)dz, (II.6)
0
(c.f. Equation (3.20b)).
Thus
’ ~16 2 [ 2
S(t’) = InZ exp(-1-4m D12 t'/L°) . (I1.7)

When 6 = 0 the concentration is uniform throughout
the compartment; however, a value of 10 ¢ for & is

insignificant in comparison to the uncertainty in the deter-

minations of <x:> and <xf> ) Therefore if
t’ > 3.05(L%/7%D ), (I1.8a)
then
s(t') <10 ¢ (I1.8b)

In other words a period of approximately 3topt is necessary

to attain a uniform composition in the cell compartments.
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APPENDIX III

Loschmidt Experiment Data

Data relevant to the calculation of ;l(exp), PP, and

nDI2 are summarised in the following tables. Second virial
coefficient data necessary for such calculations are given

in Tables III.1 and III.2; 1literature from which the virial
coefficients are taken is cited in these tables. Actual
experimental results are contained in Tables III.3-9.

All symbols have been defined in the text but are repeated

here for convenience.

Cl : Loschmidt cell of length 122.83 cm.

Cc2 : Loschmidt cell of length 60.00 cm.

C3 : Loschmidt cell of length 40.00 cm.

p : Pressure (atm).

t : Diffusion period(s).

<x:> : Molefraction of component 1 in upper compartment.

<xf> : Molefraction of component 1 in lower compartment.

;l(exp): Mean molefraction of component 1 calculated
according to Equation (4.13).

PD12 : Product of pressure and diffusion coefficient
(atm cm’ s_l).

n : Number density of mixture at ;l(m—3Xl0_2s).

nD : Product of number density and diffusion coefficient

12
-1 =1 =20

(m s " x10 ) -
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Where experiments have been analysed in duplicate the second

set of data is denoted by (*).



Table III.!1

Second Virial Coefficients for the Pure Gases

Gas T 10* B/, Reference
(K) (atm™)

N2 300.00 -1.70 (1)
323.16 - 0.10 (1)

O2 300.00 - 6.30 (1)
323.16 - 4,32 (1)

Ar 300.00 - 6.34 (1)
323.16 - 4.22 (1)

Kr 300.00 - 20.5 (1)
323.16 ~ 15.8 (1)

109.



Table III.2

Interaction Second Virial Coefficients

System T 104Bl’2 Reference
(K) (atm)
N2+Ar 300.00 - 4.27 (2,3)
323.16 - 2.26 (2,3)
N_+0 300.00 - 3.94 (4)
323.16 - 1.93°
0, +Ar 300.00 - 5.70 (5)
Ar+Kr 300.00 - 11.6 (2)
323.16 - 8.86 (2)

Estimation based on

dependence as B;z

assuming same temperature

for N2 + Ar.

1l0.



Table III.3:

Loschmidt Experiment Data for N

2

+

Ar at 3000.00K

Cell p t L= <xf> ;l(exp) PD12 n nD12
Cl 1.000 7200 0.6556 0.3445 0.5000 0.2034 2.448 4.978
Cl 1.000 7200 0.6546 0.3444 0.4995 0.2038 2.448 4.988
Cl 1.000 7500 0.6486 0.3505 0.4996 0.2038 2.448 4.987
Cl 1.000 7500 0.6484 0.3505 0.4994 0.2039 2.448 4.989
Cl 1.000 7500 0.6486 0.3502 0.4994 0.2035 2.4438 4.981
Cl 1.000 7500 0.6488 0.3502 0.4995 0.2034 2.448 4.978
Cl 1.000 7500 0.6490 0.3506 0.4998 0.2037 2.448 4.985
Cl 1.000 7500 0.6494 0.3507 0.5000 0.2036 2.448 4.982
Cl 1.999 15000 0.6488 0.3505 0.4996 0.2035 4.894 4.983
Cl 1.998 15000 0.6484 0.3502 0.4993 0.2034 4.893 4.980
C1l 2.999 22500 0.6493 0.3504 0.4998 0.2033 7.347 4.981
Cl 2.999 22500 0.6480 0.3500 0.4989 0.2036 7.345 4.987
Cl 4.001 29520 0.6512 0.3473 0.4992 0.2032 9.805 4.979
C2 4.001 7140 0.6490 0.3492 0.4991 0.2031 9.805 4.977
C2 5.003 9000 0.6479 0.3501 0.4989 0.2029 12.266 4.973
Cl 6.001 45000 0.6482 0.3492 0.4986 0.2030 14.718 4.979
Cl(*) 6.001 45000 0.6477 0.3490 0.4983 0.2031 14.718 4,982
Cc2 6.004 11160 0.6432 0.3551 0.4991 0.2029 14.724 4.976
Cl 7.002 52500 0.6490 0.3492 0.4991 0.2027 17.179 4.974

"TTT



Table III.3 (cont.)

Cell t <x:> <xf> ;l(exp) PD12 n nD12
Cl(¥*) 7.002 52500 0.6485 0.3490 0.4987 0.2028 17.179 4.976
C2 8.006 14460 0.6479 0.3503 0.4990 0.2024 19.652 4.967
Cl 8.503 63780 0.6488 0.3483 0.4985 0.2020 20.875 4.959
Cl(*) 8.503 63780 0.6490 0.3483 0.4986 0.2019 20.875 4.957
Cc2 9.004 16089 0.6490 0.3478 0.4983 0.2019 22.110 4.958
C2 10.005 18000 0.6485 0.3488 0.4985 0.2017 24.577 4.954
C3 11.008 8820 0.6477 0.3488 0.4981 0.2016 27.052 4,954
C3 12.006 9660 0.6473 0.3493 0.4982 0.2014 29.516 4.952
C3 13.008 10500 0.6470 0.3498 0.4983 0.2015 31.993 4.955
Cc3 14.011 11100 0.6498 0.3467 0.4981 0.2011 34.474 4.949
C3 15.007 12180 0.6459 0.3499 0.4978 0.2010 36.939 4.949
C3 16.011 12900 0.6472 0.3487 0.4977 0.2008 39.427 4.946
C3 17.011 13740 0.6469 0.3488 0.4977 0.2006 41.906 4,943
C3 18.011 14580 0.6467 0.3489 0.4976 0.2004 44,388 4.939
C3 19.016 15360 0.6473 0.3487 0.4978 0.2004 46.884 4.942
C3 20.007 16500 0.6441 0.3515 0.4976 0.2003 49.347 4.939
C3 21.009 17040 0.6462 0.3483 0.4970 0.1998 51.839 4.931
C3 22.011 17880 0.6459 0.3486 0.4970 0.2000 54.334 4.936
Cc3 21.965 17820 0.6463 0.3480 0.4969 0.1995 54.220 4.925

CTIT



Table III.3 (cont.)

Cell P t <x:> <xf> x, (exp) PO, n nd ,
C3 22.963 18660 0.6461 0.3481 0.4968 0.1995 56.706 4,925
C3 23.013 18660 0.6468 0.3481 0.4972 0.1995 56.826 4.927
C3 23.960 19440 0.6462 0.3477 0.4967 0.1994 59.192 4.926
C3 24.950 20160 0.6476 0.3476 0.4974 0.1995 61.663 4.931
C3 24.948 20280 0.6464 0.3480 0.4969 0.1993 61.658 4.925

TETT



Table III.4:

Loschmidt Experiment Data for N

2

+

Ar at 323.16K

Cell P t <x.> x> x_ (exp) PD n nD
1 1 1 12 12

Cl 2.001 13200 0.6488 0.3515 0.5001 0.2326 4.547 5.285
Cl 3.001 19860 0.6480 0.3509 0.4994 0.2318 6.821 5.267
Cc2 5.001 7860 0.6482 0.3496 0.4989 0.2316 11.372 5.265
C2 6.004 9480 0.6478 0.3505 0.4991 0.2316 13.654 5.267
C2 7.005 11040 0.6480 0.3500 0.4989 0.2314 15.935 5.264
C2 8.004 12600 0.6484 0.3498 0.4990 0.2313 18.211 5.263
Cc2 9.007 14220 0.6485 0.3499 0.4991 0.2307 20.497 5.250
c2 10.003 15780 0.6474 0.3495 0.4984 0.2312 22.769 5.262
C3 11.010 7740 0.6481 0.3497 0.4987 0.2304 25.067 5.245
C3 12.006 8460 0.6472 0.3501 0.4985 0.2308 27.340 5.256
C3 13.004 9180 0.6470 0.3496 0.4981 0.2300 29.618 5.238
C3 14.011 9840 0.6480 0.3489 0.4983 0.2300 31.920 5.241
C3 15.011 10800 0.6436 0.3518 0.4976 0.2298 34.206 5.237
C3 16.007 11280 0.6473 0.3494 0.4982 0.2301 36.483 5.245
C3 17.006 12000 0.6471 0.3492 0.4980 0.2299 38.768 5.240
C3 18.006 12720 0.6469 0.3495 0.4980 0.2301 41.058 5.247
C3 19.007 13500 0.6463 0.3496 0.4978 0.2292 43.348 5.228
C3 20.016 14520 0.6430 0.3529 0.4978 0.2295 45.661 5.236

PIT



Table III.5: Loschmidt Experiment Data for N2 + 02 at 300.00K

Cell P t <x?> <xf> §l(exp) PD12 n nD12
Cl 1.000 7260 0.6434 0.3566 0.5000 0.2189 2.448 5.357
Cl 1.000 7200 0.6430 0.3552 0.4991 0.2194 2.447 5.370
Cl 1.001 7200 0.6432 0.3550 0.4991 0.2194 2.449 5.370
Cl 1.000 7380 0.6394 0.3586 0.4990 0.2192 2.448 5.365
Cl 1.999 14340 0.6440 0.3543 0.4991 0.2190 4,895 5.363
Cl 2.000 14400 0.6435 0.3548 0.4992 0.2189 4.898 5.360
Cl 3.000 21240 0.6460 0.3522 0.4991 0.2189 7.348 5.361
C1 4.002 28740 0.6444 0.3545 0.4994 0.2188 9.806 5.362
C1l 4.001 28560 0.6451 0.3536 0.4993 0.2189 9.805 5.365
C2 5.002 8340 0.6481 0.3497 0.4989 0.2183 12.262 5.352
C2 5.001 8340 0.6480 0.3502 0.4990 0.2189 12.261 5.366
Cc2 6.001 10020 0.6479 0.3498 0.4988 0.2183 14.718 5.353
C2 6.003 10020 0.6483 0.3498 0.4990 0.2181 14.721 5.349
C2 7.003 11700 0.6482 0.3495 0.4988 0.2178 17.182 5.343
C2 7.003 11700 0.6478 0.3495 0.4986 0.2180 17.181 5.349
C2 8.004 13380 0.6480 0.3491 0.4985 0.2174 19.646 5.337
C2 8.004 13440 0.6475 0.3499 0.4986 0.2175 19.646 5.337
C2 9.004 15060 0.6479 0.3491 0.4985 0.2174 22,108 5.338
C2 9.003 15120 0.6473 0.3496 0.4983 0.2173 22,107 5.336
C2 10.004 16800 0.6470 0.3494 0.4981 0.2174 24.574 5.339
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Table III.5 (cont.)

Cell P t <xl:> <xf> ;1 (exp) PD , n nD
Cc2 10.005 16800 0.6474 0.3496 0.4984 0.2173 24.576 5.339
C2 11.004 18480 0.6474 0.3495 0.4984 0.2172 27.040 5.339
Cc2 12.006 20160 0.6474 0.3494 0.4983 0.2172 29.515 5.340
Cc2 12.987 21840 0.6470 0.3489 0.4978 0.2167 31.940 5.329
C2 12.988 21840 0.6475 0.3488 0.4980 0.2164 31.943 5.321
Cc2 13.993 23520 0.6472 0.3489 0.4979 0.2167 34.428 5.331
Cc2 13.979 23580 0.6472 0.3493 0.4981 0.2164 34.394 5.323
C2 14.979 25200 0.6472 0.3486 0.4978 0.2163 36.869 5.324
C2 15.975 26880 0.6474 0.3484 0.4977 0.2160 39.336 5.319
C2(*) 15.975 26880 0.6474 0.3484 0.4977 0.2160 39.336 5.318
C3 15.977 12000 0.6464 0.3491 0.4976 0.2162 39.341 5.323
c2 16.972 28620 0.6465 0.3483 0.4972 0.2160 41.808 5.321
C2(*) 16.972 28620 0.6464 0.3482 0.4971 0.2159 41.808 5.318
Cc2 17.972 30360 0.6465 0.3482 0.4972 0.2155 44,289 5.310
C2(%*) 17.972 30360 0.6467 0.3485 0.4974 0.2157 44,289 5.314
Cc2 18.968 32100 0.6461 0.3482 0.4970 0.2154 46.763 5.311
C2(*) 18.968 32100 0.6460 0.3484 0.4970 0.2156 46.763 5.315
C2 18.967 32100 0.6459 0.3482 0.4968 0.2154 46.760 5.311
C2(*) 18.967 32100 00,6465 0.3483 0.4972 0.2153 46.760 5.307
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Table III.S5 (cont.)

Cell P t <xl:> <xf> >_<1 (exp) PO, n nd ,
C3 20.965 15780 0.6463 0.3480 0.4969 0.2151 51.728 5.306
C2 21.964 37260 0.6454 0.3478 0.4964 0.2150 54,215 5.308
C2(*) 21.964 37260 0.6460 0.3479 0.4967 0.2148 54.215 5.302
C3 23.455 17640 0.6460 0.3472 0.4964 0.2147 57.930 5.303
C2 24.950 42300 0.6464 0.3475 0.4967 0.2145 61.660 5.301
C2(*) 24,950 42300 0.6463 0.3474 0.4966 0.2144 61.660 5.297

LTI



Table III.6: Loschmidt Experiment Data for N2 + 02 at 323.16K
Cell P t <x. > <x2> x_ (exp) PD n nD
1 1 1 12 12

Cl 2.001 12240 0.6484 0.3503 0.4993 0.2497 4.546 5.673
C1l 3.002 18360 0.6483 0.3501 0.4992 0.2497 6.822 5.674
C2 5.003 7380 0.6466 0.3514 0.4990 0.2495 11.377 5.674
Cc2 6.002 8820 0.6473 0.3505 0.4989 0.2491 13.651 5.665
C2 7.003 10260 0.6481 0.3500 0.4990 0.2489 15.930 5.662
C2 10.004 14880 0.6456 0.3515 0.4985 0.2484 22.772 5.654
C3 11.005 7200 0.6477 0.3498 0.4987 0.2480 25.057 5.647
C3 12.005 7860 0.6471 0.3502 0.4985 0.2486 27.340 5.661
C3 13.003 8520 0.6469 0.3493 0.4980 0.2476 29.619 5.641
C3 14.004 9180 0.6468 0.3498 0.4982 0.2482 31.908 5.654
C3 15.007 10140 0.6423 0.3538 0.4979 0.2476 34.199 5.642
C3 16.006 10500 0.6462 0.3494 0.4976 0.2479 36.483 5.651
C3 17.004 11160 0.6470 0.3491 0.4979 0.2471 38.768 5.634
C3 18.003 11940 0.6448 0.3504 0.4974 0.2472 41.055 5.638
C3 19.003 12480 0.6467 0.3493 0.4978 0.2474 43.343 5.643
C3 20.008 13140 0.6475 0.3488 0.4980 0.2465 45.647 5.623

"BTT



Table III.7:

Loschmidt Experiment Data for O

+ Ar at 300.00K

2

2

Cell P t <x:> S R ;l(exp) PD12 n nD12
Cl 1.000 7500 0.6491 0.3505 0.4998 0.2035 2.449 4.982
Cl 1.000 7500 0.6491 0.3506 0.4998 0.2035 2.448 4,983
Cl 0.999 7500 0.6488 0.3511 0.4999 0.2040 2.447 4.994
Cl 2.000 15000 0.6490 0.3505 0.4997 0.2036 4.899 4,987
Cl 3.000 22500 0.6489 0.3504 0.4997 0.2035 7.354 4,988
Cl 3.000 22500 0.6492 0.3506 0.4999 0.2035 7.354 4.988
C2 4.001 7200 0.6485 0.3510 0.4997 0.2030 9.813 4,980
c2 5.002 8940 0.6498 0.3498 0.4998 0.2028 12.277 4.977
C2 5.003 8940 0.6499 0.3497 0.4998 0.2027 12.280 4.975
C2 6.003 10800 0.6490 0.3506 0.4998 0.2025 14.744 4.973
Cc2 7.004 12540 0.6500 0.3496 0.4998 0.2021 17.211 4,967
Cc2 7.005 12540 0.6501 0.3500 0.5001 0.2025 17.214 4.977
C2 8.004 14460 0.6489 0.3510 0.4999 0.2021 19.683 4.969
C3 9.004 7200 0.6496 0.3502 0.4999 0.2019 22.154 4.967
C3 9.007 7200 0.6495 0.3502 0.4998 0.2020 22.162 4.971
C3 10.008 8400 0.6426 0.3572 0.4999 0.2015 24.640 4.962
C3 10.006 8580 0.6398 0.3599 0.4998 0.2009 24.638 4,948
C3 11.005 8880 0.6485 0.3513 0.4999 0.2015 27.113 4.965
C3 13.005 10560 0.6478 0.3518 0.4998 0.2011 32.082 4.960
C3 15.009 12120 0.6493 0.3509 0.5001 0.2007 37.072 4.956
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Table III.7 (cont.)

Cell P t <x:> <xf> §l(exp) PD , n nd ,
C3 17.010 13680 0.6498 0.3503 0.5001 0.2007 42.069 4.964
C3 19.010 15420 0.6491 0.3511 0.5001 0.2001 47.075 4,954
C3 21.009 17040 0.6491 0.3506 0.4999 0.1996 52.092 4,950
C3 23.007 18720 0.6490 0.3507 0.4998 0.1991 57.119 4,944
C3 25.017 20400 0.6490 0.3506 0.5000 0.1987 62.190 4.939
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Table III.8: Loschmidt Experiment Data for Ar + Kr at 300.00K

Cell P t <x:> <xf> ;l(exp) P012 n nD12
Cl 1.001 10860 0.6495 0.3502 0.4998 0.1404 2.451 3.439
Cl 1.000 10860 0.6488 0.3503 0.4995 0.1406 2.450 3.443
Cl 1.000 10860 0.6488 0.3504 0.4995 0.1406 2.450 3.446
Cl 2.002 20940 0.6550 0.3445 0.4997 0.1404 4.911 3.444
Cl 2.002 21780 0.6483 0.3504 0.4993 0.1406 4.910 3.450
C2 4,003 10380 0.6484 0.3479 0.4980 0.1394 9.848 3.430
Cc2 6.004 15600 0.6487 0.3475 0.4979 0.1390 14.808 3.428
C3 8.003 9240 0.6478 0.3458 0.4965 0.1384 19.794 3.424
C3 10.006 11520 0.6482 0.3442 0.4959 0.1379 24.815 3.421
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Table III.9: Loschmidt Experiment Data for Ar + Kr at 323.16K

Cell P t <xT> <xf> ;l(exp) PO, n nD12
Cl 1.000 9480 0.6485 0.3507 0.4996 0.1614 2.273 3.669
Cl 0.999 9480 0.6483 0.3502 0.4992 0.1611 2.272 3.662
Cl 2.001 18900 0.6495 0.3493 0.4993 0.1608 4,554 3.659
Cl 2.000 18900 0.6491 0.3490 0.4990 0.1606 4,552 3.655
C2 4.000 9060 0.6490 0.3487 0.4987 0.1599 9.122 3.646
C2 6.004 13560 0.6490 0.3472 0.4979 0.1595 13.719 3.644
C3 8.001 8040 0.6491 0.3461 0.4974 0.1586 18.319 3.633
C3 10.004 10020 0.6503 0.3452 0.4975 0.1583 22.953 3.632
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