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ABSTRACT

One of the fundamental questions in few and many-body physics
is to what extent are differences in the off-shell form of two particle
amplitudes observable in the properties of composite systems. This
question 1is particularly relevant in the field of pion-nucleus interactions
where short range properties of the pion-nucleon interaction are poorly

determined.

In this thesis we have studied two different problems to
examine the dependence of physically observable quantities of the pion-
nucleus many-body system on the off-shell behaviour of the pion-nucleon
amplitudes. In the first part of the thesis we investigate the possible
sources of off-shell dependence in the energy shift of the pion-deuteron
system. In the second part of the thesis we calculate the differential
scattering cross-section of the pion-carbon system using the second-order

optical potential.

A consistent off-shell behaviour of the pion-nucleon scattering
amplitude has been obtained from the Yamaguchi type separable potential
for the pion-nucleon interaction. This particular type of two-body

interaction also facilitates numerical calculations.

In Chapter II we provide different separable models for the
pion-nucleon interaction. The parameters of the interaction have been
determined from the experimental data. For the resonance (P33) and
absorption (P11) channels a simple Yamaguchi type interaction with energy
dependent strength has been used to fit appropriate experimental phase
shifts (uplto ~ 300 MeV), scattering lengths, the position of the resonance

and the position of the pole at the nucleon mass. The models for the



other pion-nucleon channels also fit the experimental phase shifts and

scattering lengths correctly.

By treating the strong interaction contribution as a
perturbation to the Coulomb interaction, the energy shift of the 18 level
of the pion-deuteron system has been calculated with the aid of the
Faddeev theory from the knowledge of the two-body pion-nucleon scattering
amplitudes, Having derived our exact -expression for the energy shift in
Chapter III, we have investigated critically the approximate nature of
Deser et al's formula, relating the energy shift to the pion-nucleus
scattering lemgth. Our calculation of the energy shift of the pion-
deuteron system demonstrates the importance of off-shell contributions due

to

1. the momentum distribution of the pionic wave function

and

2. the momentum variation of the pion-nucleon amplitude

at negative energies.

Deser et al assumed that these off-shell contributions were
negligible in their original calculation. Our results suggest that if
the experimental value of the energy shift is refined further, as seems
likely in the near future, extraction of the scattering length from the
energy shift will require a more careful treatment, taking account of the

corrections indicated by the present calculation.

In Chapter IV the second-order optical potential for the pion-
carbon system has been constructed in terms of the two-body pion-nucleon
scattering amplitude and the nucleon-nucleon correlation function in
order to investigate the effect of the nucleon-nucleon correlation in

pion-carbon scattering at intermediate energies. The main part of the



nucleon-nucleon correlation is generated by the strong and repulsive
nature of the short-range part of the nucleon-nucleon forces. The
dependence of the differential scattering cross—-section on the range
parametérs of the pion-nucleon interaction and-on the nucleon-nucleon
correlation length has been ekamined by using different sets of the

pion-nucleon interaction potentials and varying the correlation length.

We find that different correlation lengths alter the numerical
results only for the large angle scattering. The best fit is obtained
for unrealistic values of the correlation length. The implication of

this result is discussed in Section 4.8.

The differential cross-sections have been calculated from the
second-order optical potential using two sets of pion-nucleon interaction
potentials to check the off-shell dependence. We find that the scattering
cross—section is sensitive ( ~ 10 - 15% ) to the off-shell dependence
of the pion-nucleon scattering amplitudes and to the range parameters of
the pion-nucleon interaction for the different channels. However, it is
difficult to state to what extent the scattering cross-section depends

on the individual range parameters of the model.

Although the second-order optical potential gives a more
complete description of the microscopic processes, in our calculations
the addition of the second-order optical potential does not improve the
agreement of the theoretical results obtained from the first-—order
optical potential with the experimental data. The basic assumptions of
the model and possible results for this discrepancy are discussed in

the final sectiom.



STATEMENT

This thesis contains no material which has been
accepted for the award of any other degree or diploma in any
University, and, to the best of the candidate's knowledge and
belief, the thesis contains no material previously published or
written by any other person, except where due reference is made

in the test of the thesis.

v, Jr 15%)

M. N. Sinha Roy. 2.3




ACKNOWLEDGEMENTS

I wish to record my deep sense of gratitude to
Dr Lindsay R. Dodd, whose interest, guidance and
encouragement were invaluable throughout the course of this

work.

I am indebted to Dr Denis O'Brien for his

assistance and advice during the preparation of this thesis.

The financial assistance of a University Research

Grant between the years 1977 and 1981 is also gratefully

acknowledged.

I would also like to thank Prcfessor C., A. Hurst
for his encouragement and for his help in preparing this

manuscript.

The author is grateful to the Department of
Mathematical Physics, University of Adelaide for various help

and facilities.

T would also like to thank Mrs Patricia Coe for

accurate and neat typing.



ABSTRACT

STATEMENT

ACKNOWLEDGEMENTS

CHAPTER 1.

CHAPTER 2.

CHAPTER 3.

C 0O NT ENT S

Introduction

Separable Models for Pion-Nucleon
Interactions

2.1 Introduction

2.2 Determination of the pion-nucleon
form factors from the experimental
data

Three-Body Perturbatiwve Estimates of the
Energy Shift in the Pion-Deuteron Atom

3.1 Introduction
3.2 Theory

3.3 Evaluation of the first-crder
energy shift

3.4 Angular momentum reduction of
A ' E
ng 1, (e's ps E)

3.5 The specific form of the driving
term for a free exchange of a pion
and the multiple scattering
contributions

19

26

38

44

51

56

63



CONTENTS Continued......

CHAPTER 4.

3.6

3.7

Contribution from N-N re-scattering

Conclusion

Second-Order Optical Potential for the
Pion-Carbon System

4.1

4.2

4.3

4.4

4.5

4.6

4.7

4.8

Introduction

Formal theory of the optical
potential

Explicit expressions for the first-
and second-order optical potentials

Transformation of the pion-nucleon
scattering amplitude from pion-nucleon
co-ordinates to pion-nucleus
co—-ordinates

P33 and P11 channel interactions

The partial wave decomposition for the
first-order optical potential

The partial wave decomposition for the
second-order optical potential

Results and Discussion

65

66

78

84

90

94

96

99

101

109



— i =

CHAPTER 1

INTRODUCTION

The basic ingredient for the microscopic theories dealing with
pion-nucleus scattering is the two-body pion-nucleon.scattering amplitude
or t-matrix. This amplitude is a function of the three independent
variables; the initial and final momenta of the initial and final
scattering states and the total energy (E) of the system. We say that the
scattering amplitude is on-shell if both the magnitudes of the incident
(ki) and final (kf) momenta are equal to the momentum (kE) corresponding to

the total energy (E) of the system

k, = k; = Ik (=V2E), (i. 1)

i
where U 1s the reduced mass of the system. If one of the two momenta

is independent of the momentum kE, i.e.

ki & kE F#* kf or ki # kE = kf
then the amplitude is called half off-shell, and when both are independent

of the momentum kE’ i.e.

ki * kE # kf
the amplitude is said to be fully off-shell. For microscopic theory we
need both on-shell and off-shell amplitudes of the two-body scattering. The
physical relevance of the off-shell amplitude may be seen from the

following.

If nuclear scattering involving more than two particles is viewed

as a succession of two-body scatterings, then energy and momentum are not



necessarily conserved in any two-particle collision because momentum

can be transferred to the other particles. The virtual processes, where
energy and momentum are not conserved quantitiés, can only be described
by means of the off-shell scattering amplitudes or off-shell t-matrix
elements. These virtual processes have a very significant influence on
the physically observable quantities, such as the scattering length, cross-
section and energy-shift. Consequently, the knowledge of the off-shell
behaviour of the t-matrix is basic to the understanding of nuclear
scattering involving a many-particle system. The physically observable
quantities of the nuclear scattering depend not only on the on-shell t-
matrix elements, but also on the off-shell t-matrix elements. The total
contributions of these off—diagonal* elements are known as off-shell
contributions. Now, the effects of the off-shell two-body t-matrix are
more easily observable in an N-body system, so the three-body system ,
being the simplest one with N > 2, offers an unique opportunity to test

the importance of the off-shell contribution.

The two-body piocn-nucleon scattering data are fairly well-known
over a wide energy range from zero to 700 MeV, and as we shall discuss in
the next chapter, can be reproduced, more or less accurately, by a
variety of potential models. An advantage of the potential model approach
is that for a hermitian potential the corresponding scattering amplitude
satisfies the requirements of time reversal invariance and off-shell

unitarity.

It is well known that the Lippmann-Schwinger equation for
the two-body t-matrix embodies all the dynamics of the two-particle

scattering problem. At least formally this equation is adequate for the

The transition operator t is a matrix in the

momentum space. The on-shell elements of t are

the diagonal elements <white—the—off—shell—ones—are
i £ . . it g .y

S'(H(fat‘v-a (i-l) ”



treatment of two-particle scattering. The scattering cross-section

can be determined easily from the solution of this equation.

Unfortunately, this simple prescription ceases to apply when
three or more particles are prgsent because of the possibility of formation
of bound states. In two-particle scattering this causes no essential
difficulty because conservation of energy forbids the formation of bound
states. However, if there are three or more particles participating in
a process, then two or more may form a bound state while the rest of the
particles may go off separately. Because of this, the corresponding
Lippmann-Schwinger equation for the three-particle problem is not a well
behaved integ%al equation. More fundamentally, the difficulties in the
three-particle problem may be seen as arising from a situation in which
two of the particles interact while the third propagates through unmodified.
Mathematically, the unmodified propagation is given in terms of Dirac
delta functions which occur in the kernel of the three-body Lippmann-Schwinge:
integral equation. The presence of the delta functions makes the kernel
neither square integrable nor compact. However, Faddeev (1) showed.in
principle, how to write the three-body amplitude in terms of the off-sghell
two-body t-matrix. Faddeev's equations provide a good insight into the
physics of the problem, but the equations still do not admit an easy
numerical solution. Subsequently, the work of Mitra (2), Amado (3) and
Lovelace (4) demcnstrated that the solution of the Faddeev equations could
be greatly simplified by the assumption of separability for the two-
particle potential, but only at the expense of the physical interpretation,
because such potentials are non-local. By introducing the two-body
separable interaction we simplify the two-body interaction so that the
three-body problem can be solved exactly. From the point of view of the

three-body problem this approximation introduces two major simplifications:



(i) ' the two-body t-matrix for any partial wave can
be obtained and therefore one can construct the

three-body kernel easily;

(ii) the three-body equations with the separable inter-
action can be written in terms of the one-dimensional
integral equations for each three-body partial wave

and these can be easily solved numerically.

The recent studies (5) on the pion-deuteron problem in terms
of the Faddeev equations including pion-absorption and the pion-nucleon
resonance have shown quite good agreement with the experimental pion-
deuteron differential cross-section up to energy 240 MeV. Such calculations
are necessarily limited by the separable structure of the input potential
or the two-body t-matrix. The three-body picn-deutercn model
calculation includes the contributions from the nuclear-structure of the
deuteron and the effects of absorption and resonance on the multiple
scattering series of the pion-deuteron scattering. Afnan and Thomas (6)

have observed that the multiple scattering series diverges when the pion-

absorption channel is taken into account.

On the other hand’the results of pion-nucleus scattering
calculated in terms of the optical potential (7) contain information about
the many-body contributions such as the size cf the proton and neutron
distributions, the nucleon-nucleon correlations and the fermi motion of
the nucleons. The existence of the pion-nucleon resonance makes the pion-
nucleus scattering amplitude sensitive to the energy variation of the
pion-nucleus scattering. Without having a complete many-body theory it is
difficult to estimate the many-body contributions arising from the nuclear
matter to the pion-nucleon interaction inside the nucleus. Therefore the

agreement with the experimental data may not necessarily yield any



fundamental information about the basic pion-nucleon interaction.

Before constructing a model for the two-body t-matrix or
potential, we cannot avoid asking the questions: what guides us in our
search for the two-body interaction, and how can we incorporate as much of
the physical properties of the interaction as possible in a model
suitable for describing complex nuclear reactions ? For example, the
pion-nucleon and nucleon-nucleon interactions which are the building blocks
for all microscopic theories have some well known features, such as the
energy variation of the scattering amplitude, charge symmetry, saturation
character, the existence of resonances, nucleon-nucleon correlations, and
absorption processes. Any theoretical model we may use to describe a
particular process should ideally exhibit the corresponding features of
the basic interaction. In practice however, it may not be possible to
include all of them in any single model because the interaction is
necessarily quite complicated. It is also necessary to understand clearly
the relationship between the mathematical structure of the model in
question and the physical features of the two-body interaction at

different energies, which it seeks to describe.

The problem of constructing a realistic two-particle t-matrix
for the microscopic theories from the knowledge of the two-particle data
does not have a simple unique solution. Actually, several models may
reproduce two-body scattering data with varying precision. Each interaction
depends not only on fitting phase-shifts but also on assumptions about the
two-body off-shell behaviour of the model, so under these circumstances it
is not easy to decide how far the predictions of a given model may be
attributed to the nature of the interaction, as embodied in the potential,

or how far they depend on the approximations of the calculational technique.



Part of this ambiguity may be eliminated by considering the off-shell
behaviour of the models having similar on-shell properties (known as phase

equivalent models).

Theoretically the circumstances in which the off-shell effects
should be important can be appreciated by considering Beg's theorem (8).
The theorem states that : for fixed scatterers, if the projectile-
nucleon interaction range is finite and if the nucleons are separated by
at least twice the range of the projectile—nucleoﬁ range, then the nuclear
scattering amplitude will depend only on the on-shell projectile-nucleon

scattering amplitude.

To understand the implication of this theorem, let us assume

that :

(i) the nucleus consists of fixed scattering centres and the
respective co-ordinate of each scatterer is X This is the frozen

nucleus approximation;

(ii) the range (rﬂn) of the pion-nucleon interaction is
finite (0.3 < L. < 0.7 fm) and the interaction regions never overlap,

so that

\

V (r) = 0 for r T
™ ™

a]

and |x. - x.l > 2 .
i i mn

In this picture it is clear that between two successive scattering the
pion passes through a force free region where the momentum of the pion is
on-shell. This picture fits very well in the limit of low nuclear density

(9). However, in an actual nucleus the situation is more complex and



simple arguments above may be modified. We observe that :

(i) the energy binding the scattering nucleon to the
rest of the nucleus is one of the sources of the off-shell dependende
in the low-energy pion-nucleon scattering amplitude for the frozen

nucleus approximation;

(ii) inside the nucleus there exists a strong repulsive
nucleon-nucleon correlation when two nucleons come within the
correlation length rc( ~ 0.5 fm ). If the range L. is such that
T, > 2 rﬂn’ the pion-nucleon interaction regions will never overlap.
Thus the repulsive nucleon-nucleon correlations will reduce, if not annul
completely, the off-shell effects. Since a pion must interact with one
nucleon before it undergoes off-shell scattering with a second nucleon, it
seems that there is an intimate relation between the off-shell dependence

of the pion-nucleon t-matrix, the short range nucleon-nucleon correlations,

and the pion-nucleon interaction range;

(iii) for every local interaction there should be a well defined

range for the corresponding potential. For any practical calculation one
e

assumes thatApotential goes to zero beyond the interaction range. The
typical value of the nucleon-nucleon correlation length is about 0.4 to
0.5 fm and from the theoretical studies (10), the corresponding ranges
of the pion-aucleon interactions are about 0.3 to 0.7 fm. But there
are some ambiguities about the values of the pion-nucleon range (9). From
these standard values of the nucleon-nucleon and pion—nucleoﬁ ranges it
seems that Beg's theorem is not strictly applicable in the pion-nucleus
scattering. Nevertheless, it helps us to understand how the off-shell

contributions enter into any calculation and when the off-shell

contributions become unimportant,



The scattering of a pion by a free nucleon is completely
described by the on-shell values o%%;ion—nucleon t-matrix, ton (E; k, E),
but the pion-nucleus scattering also depends on'the off-shell values of
tn (k', k E ). These are not measurable in a two-body experiment, so the
off-shell dependence of trn (Eﬂ,.kp E ) will always introduce some
uncertainty into any calculation. But this knowledge about the off-shell
two-body t-matrix is equivalent to knowing the potential or the wave
function inside the scattering region. Therefore we may get in principle

more information about the two-body forces from the many-body experiment

than from the two-body experiment.

The relative merits of two phase equivalent models, having the
same on-shell properties but different off-shell behaviour , can be
assessed from the off-shell properties of their two-body t-matrices. The
exact off-shell behaviour of the pion-nucleon t-matrix is unknown since
a complete covariant theory of pion-nucleon scattering is yet to be
formulated. There are different ways to generate model two-body pion-
nucleon t-matrices,Several attempts (11) have also been made to develop a
covariant theory for the pion-nucleon scattering on the basis of the Bethe-
Salpeter's equation. In that approach the interaction potential becomes
non-local and energy dependent. It is very difficult to obtain the
numerical solution for the two-body pion-nucleon t-matrix (12). For non-
relativistic scattering we generally construct the two-body t-matrix from
the solution of the ordinary Lippmann-Schwinger equation with an energy
independent real interaction. Because of this simple choice of interaction

the corresponding scattering amplitude satisfies the unitarity condition.

For an accurate estimation of the off--shell contribution in the

pion-nucleus scattering, the precise information about the pion-nucleon range



is needed. It is possible to define an overall range of the pion-nucleon
interaction from the scattering data but to give an exact estimate of
the range is theoretically difficult, since we cannot construct a local
interaction potential for every possible interaction associated with the
pion-nucleon scattering at the various energies. Theoretically the range
of the interaction depends on the position of the nearest left hand cut of
lhe
the t-matrix. The location oleeft hand cut is determined by the mass of
the exchanged particle. Therefore,when we fit the parameters of the
potential model to reproduce the experimental data we basically approximate
this left hand structure (dynamical informatiom) of the t-matrix by a
finite number of poles or a finite cut and as a consequence of this

’

approximation we lose exact erossing symmetry.

It is not clear whether the potential model which approximates
the left hand structure of the scattering amplitude, is the best way to
construct the pion-nucleon potential. In recent years several attempts
have been made to derive the correct analytic structure of the P11 and P33
channel interactions. The P11l channel is responsible for the absorption
and the pion-nucleon resonance is in the P33 channel. A critical analysis
of the analytic structure of the pion-nucleon t-matrix has been considered

by Hamilton (10).

The Chew-Low (13) field theoretical model provides a
fundamental description of the P-wave pion-nucleon interaction. This model
can generate successfully the P33 resonance with the right energy and width,
But it is not very successful in describing the other P-wave interactions.

This may be due to the neglect of

(i) the recoil of the nucleon (which is the consequence of

the static limit approximation);
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(ii) the possible direct meson-meson interaction., The
neglect of the nucleon recoil makes the Chew-Low scattering amplitude
factorable which permits one to go from the off-shell scattering to

the on-shell scattering situation in a simple manner (14, 15).

The scattering amplitude in the lowest order, consists of two
distinct types of diagrams (or processes), (i). the diagram in which the
incident and final meson lines do not cross (direct scattering) with each
other; (ii) the diagram in which the initial and final lines cross with
each other (exchange scattering). To determine the appropriate off-shell
behaviour of the scattering amplitude we need to know the actual analytic
structure of the pion-nucleon t-matrix in the complex energy-plane.

The success of the Chew-Low model suggests that we consider its analytic
structure for the pion-nucleon scattering amplitude as correct and

appropriate,

According to Chew-Low theory, the pion nucleon transition

matrix has the following analytic structure:

(i) the scattering amplitude has a simple pole at E = 0
(corresponds to the crossed Born graph in the Chew-Low model), and it

goes to zero like 1/E for large E;

(ii) 4t has branch points and cuts along the real axis for

E > m and E < - m.s where m is the mass of the pion;

(iii) the amplitude satisfies:

(a) crossing symmetry which provides the connection
-between the process being studied and the potential

which determines it;

(b) reality (due to time reversality);
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, . +
(¢) unitarity ( t ij(E) tji(E) = 1) which provides
a basic constraint on the amplitude, 1i.e. conservation

of number of particles;

where 1 and j are the appropriate quantum numbers required to specify
the scattering process. These analytic properties provide the practical
basis for solving the pion-nucleon problem in the Chew-Low theory. We

also assume that the inelastic scattering cross-sections are small compared

to that of the elastic one (one meson-state approximation).

Therefore, when we construct a model to represent the pion-
nucleon scattering, we shall expect its analytic properties to be consistent

with that of the scattering amplitude obtained from the Chew-Low model.

Now we shall discuss briefly the analytic behaviour of the two-—
body pion-nucleon models available in the literature to describe the pion-
nucleus scattering and corresponding ranges obtained from those models. The
Chew-Low model predicts that the pion-nucleon range should be finite

(~ 0.3 fm ) for the P33 interaction.

Kisslinger (16) first generalised the on-~-shell low energy pion-

nucleon t-matrix to approximate its off-shell behaviour and used the form

ty (k' k, B) = <K't E)| k>=a () +b (B) k'. k,

where E is the scattering energy, a (E) represents S-wave scattering
and the second term is related to the P-wave scattering. Using this model
different authors (17) have calculated the pion-nucleus optical potential
which is non-local in co-ordinate space and from which they have determined
the energy-shift and width of the pion-nucleus bound state problem. But
Kisslinger's model does not reproduce the resonant behaviour of the pion-

nucleon scattering amplitude and it is an essentially a zero range inter-
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action model which is unrealistic. The reason for these shortcomings
may be related to the inappropriate analytic properties of the model,
which is divergent linearly at the far off-shell region and has no

resonance structure,

One may again assume that the pion-nucleon t-matrix depends

on the momentum transfer g (k' = k) and has the form

' =
¢ &' k, E)

A

k't (@) k> =a@ +bE g

The corresponding potential in the co-ordinate space is generally known as
the Laplacian potential. This model also possesses the unwanted analytic
behaviour of Lhe Kisslinger potential and it is divergent quadratically
for large values of k and k' and gives unphysical zero-range pion-nucleon
interaction. At low energy both these models are good, but at higher
energy they are inferior to the separable models which we shall use to
describe the pion-nucleus scattering. For these singular, zero range inter-
actions, the pion-nucleon interaction potential overlaps completely with
the nucleon-nucleon potential, thereby inducing high unphysical off-shell
sensitivity for these two models. The corresponding optical potentials
also exhibit the unphysical behaviour.

Separable models are generally constructed elther from the
inverse scattering theory (18) or from fitting the parameters of a suppiied
form of the interaction (19). The separable interaction for each reaction
channel is determined from the experimental data corresponding to that
channel. Therefore, this model should reproduce the actual properties of
each channel for all values of the momentum, such as the resonance structure
in the P33 channel, the change of the sign of the pbhase shift in the P11
channel at ETT ~ 150 MeV. It also goes to zero smoothly for large values
of the momentum and predicts a finite range (0.3 to 0.7 fm) for the pion-

nucleon interaction. The analytic properties of the separable t-matrix are
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also consistent with that obtained from the Chew-Low model. However, a
one-term separable interaction (19) fails to reproduce the crossed Born
graph which has a pole at zero energy in the Chew-Low model for P-wave

interaction.

This consistency of the analytic properties of the separable
t-matrix means that the potential model provides a reasonable off-shell
extrapolation of the pion-nucleon t-matrix. The separable interaction
replaces the left hand cut of the pion-nucleon t-matrix by the double pole,.
But the structure of the model is non-unique and therefore its off-shell
behaviour is also non-unique. The off-shell behaviour of the
tﬂN(Ef, E) E)’ computed from the Yamaguchi (20) type form factor is
reasonable for the proper off-shell behaviour. Therefore Yamaguchi type
form factors have become our natural choice to represent the various pion-

nucleon interactions.

In this thesis we shall present the results of two different
calculations regarding the pion-nucleus scattering. The first problem is
to estimate the off-shell effects in the energy shifts of the pion-deuteron
system. The second problem is to calculate the differential cross—-section
of the pion-carbon system at intermediate energies using the optical
potential model. In the optical potential calculation we have included the
second-order term of the optical potential. To provide the basis for our
work we shall discuss in the next chapter some of the essential features of
the pion-nucleon interaction and present different separable models to

determine the various pion-nucleon reaction channels.

In Chapter TII we will consider the shift in the energy levels
of the pion-deuteron system (mesic atom) induced by the strong interaction.
A mesic atom is formed when a negative pion is captured in an atomic orbit.

The typical value of the Bohr radius (ap) of the mesic atom is
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_197.732
apg = —===—== fm I

where 2 1is the atomic number of the atom. Therefore the pion is well
inside the atomic electrons and has little overlap with the nucleus. The
mesic atom can be well represented by a hydrogenic type model. The pion

in the atomic orbit interacts with the nucleus via strong as well as
electromagnetic interactions, shifting and broadening the atomic levels of
the unperturbed atom. Different groups (17) have calculated level shifts
and widths of the various mesic atoms to determine the pion-nucleus
scattering length and absorption rate of the pion. The standard procedure
in this scheme is to prepare an optical potential to describe the inter-
action of the atomic pion with the nucleus. The eigenvalue of the Klein-
Gordon equation with this potential gives the shift and width. An extensive
theoretical study on the mesic atom was made on the basis of the optical
potential by Ericson-Ericson (17). The pionic atoms have also been studied
experimentaily over the whole periodic table by Backenstoss (21). It has
been observed that the resulting shifts and widths are small compared to the
atomic level spacing due to the Coulomb interaction. Their magnitudes
increase with increasing Z-value. For a given Z , lower levels show

greater shifts and widths.

However, the important point is that the effect of the strong
interaction relative to the level spacing is small and thus one may treat
the strong interaction contribution as a perturbation to the Coulomb inter-

action. The approximate Bohr energy of the mesic atom is

— _ 2
€ ( 3.7 Kev) Z°.

Information about the pion-nucleus strong interaction is
contained in the shifts and widths of the energy levels of the mesic atom.

Therefore it is necessary to develop a rigorous microscopic theory for the



energy shift calculation on the basis of the two-body pion-nucleon t-matrix
with suitable off-shell behaviour. The first attempt was made by Deser,
Goldberger, Baumann and Thirring* (22) to relate the pion-nucleus scattering
length (on-shell quantities) to its energy shift. They calculated the
energy shift of the pion-hydrogen system from the pion-nucleon scattering
length. A question which naturally arises is then how the energy shift
depends on the off-shell part of the plon-nucleon t-matrix ? To investigate
this problem we have calculated the energy shift with the aid of the

Faddeev theory from the knowledge of the two-body pion-nucleon t-matrix. It
has been shown that one can re-derive the formula of DGBT, relating the
energy shift to the scattering length, starting from our exact expression
for éhe energy shift. Their formula is widely used to calculate the
scattering length from the experimentally observed energy shift. However,
we note that they neglected the following important factors in thelr

calculation:
(1) the momentumn distribution of the pionic wave functionj

(ii) the momentum variation of the pion-nuclecn amplitude at

negative energies;

(iii) the overlap of the pion-nucleon and nucleon-nucleon

interaction potentials.

We have assessed separately the relative importance of these

contributions to the energy shift.

In Chapter IV we shall consider the pion-nucleus scattering in
terms of the optical potential. The exact optical potential contains all
possible contributions of the many-body scattering, namely, the fermi
motion of the nucleons, nucleon-nucleon correlations etc.. It also involves
the structure both of the nuclear target, through the nuclear form factor,
and of the elementary pion-nucleon interaction through its off-shell

* Future references to these authors are indicated by the
abbreviation DGET,
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dependence. Neither of these quantities can be determined in a model
independent way from the experimental data. No one has been able, to
date, to evaluate the complete form of the optiéal potential. In our
model calculation we have considered the. second-order term of the
optical potential to study the cafbon—pion scattering at the intermediate
energies. Once the optical potential is computed, we can calculate the
elastic pion-nucleus scattering cross—section by solving Lippmann-—
Schwinger equation. The main purpose of studying pion-nucleus scattering
in terms of the optical potential is to understand the importance of the
pion-nucleon resonance, absorption and fermi motion of the nucleons and

nucleon-nucleon correlations.

Until recently only the first-order optical potential has been
calculated for pion-nucleus scattering at intermediate energies. Landau
et al (7) calculated the first-order optical potential in momentum space
for pion-carbon scattering including fermi averaging and the angle
transformation (importance of the angle transformation was pointed out by
Mach (23)). Their work was the first improvement over the Kisslinger type
potential which is singular for large momentum. Their results are quite
good for the intermediate energies but not impressive for very low energies.
The elastic scattering cross-section has been over estimated to some extent
in the region below the resonance. Recently,Landau and Thomas (24) have
suggested that the apparent disagreement with the low energy data may be
reduced by a new choice of the effective pion-nucleon ccllision energy, 1i.e.

three-body energy choice.

In our calculation we have evaluated the contribution of the
second-order multiple scattering correction to the optical potential which

is generally called the second-order potential. We have followed the
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conventional multiple scattering theory of Kerman, McManus and Thalar (25)
and of Watson (26) in the pion-carbon nucleus to compute the optical
potential. Recently, Lee and Chakravorty (27) and Wakamatsu (28) have

also evaluated the second-order optical potential for the pion-Helium
scattering. Lee and Chakravorty (27) have calculated the nucleon-nucleon
correlation contribution in the second-order optical potential elaborate1y>
but Wakamatsu has also incorporated along with the nucleon-nucleon
correlation , the spin and iso-spin degrees of freedom of the pion-nucleon
amplitude explicitly. He has taken the pion-bound-nucleon t-matrix in
place of the standard free pion-nucleon t-matrix. He has concluded that

the contribution of the pion-bound-nucleon t-matrix is important particularly
when the incident pion is less energetic. This contribution is known as.

the binding correction.

However, in our model calculation we have discarded the binding
correction, since within the impulse approximatiocn, the difference between
a nucleon in a nucleus and a free nucleon, is negligible at the high energy.
Moreover the second-order optical potential not only includes the nucleon-
nucleon correlations, but it also accounts for the departure from the
coherent scattering. In coherent scattering the nucleus remains in its
ground state during the scattering period. The departure from it means that
the nucleus can go to a higher excited state during the collision and
finally returns back to the ground state. In calculating the first-and

second-order optical potential we have used:
(i) a spin and iso-spin averaged pion-nucleon t-matrix
for the S -and P -wave interactions, and
(ii) relativistic kinematics for the pion and nucleon. We

have derived two sets of separable form factors for the S-

and P -wave interactioms. We have also checked the
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importance of fermi motion of the nucleons. The
final results of this calculation are given in

Chapter IV.

Before the end of this Chapter, we believe that a few words
are in order to state briefly the current experimental information about
the pion-nucleus scattering at different energies. In early experimental
work the use of the pion as a probing projectile to study the nuclear
structure was not very successful. This was largely caused by the low
intensity of the pion beams, the poor energy resolution in comparison with
the conventional particles and the very small lifetime of the pion.
Therefore the’results and the conclusions of the early pion-nucleus
experiments were not conclusive. Consequently, the microscopic theory of
the pion-nucleus scattering was only tested qualitatively. But in recent
years the situation has changed greatly, mainly due to the availability
of the new experimental data. Very high intensity accelerators are now
being installed which have better particle counting systems with highly
sensitive detection facilities. Therefore the precise measurements of the
energy shift (30), angular distribution of the cross—-sections,
polarisation, differential cross-section (31) at below and above the
resonance energy are possible. Hence it would be interesting to estimate
theoretically the interplay of the various aspects of the two-body pion-
nucleon interaction, as mentioned earlier, gnd their effects on the

experimentally measured quantities (32).
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CHAPTER 1II

SEPARABLE MODELS FOR PION-NUCLEON INTERACTIONS

2.1 Introduction

In this chapter we will give a brief account of the nature of
the pion-nucleon interaction. Using the experimental pion-nucleon phase
shifts and scattering lengths, we construct separable models for the two-
body pion-nucleon t-matrices in the various reaction channels. These
t-matrices are required in the later chapters of the thesis to calculate
the energy shift in a pionic atom and to derive the optical potential for

pion-nucleus scattering at intermediate energies.

The 'phenomenological properties of the pion-nucleon interaction
are generally obtained from the study of the two-body pion-nucleon
scattering process over various energy ranges. The pion-nucleon cross-sectien
shows considerable energy variation. The most interesting phenomenon 1is
the P33 resonance at the pion lab. kinetic energy ETr ~ 180.0 MeV, with
orbital angular momentum 1 = 1, total iso~spin I = 3/2) and total
angular momentum of the pion-nucleon system J = 3/2. This resonant
channel dominates the pion-nucleus scattering in the intermediate energies
( ETr ~ 100 -~ 325 MeV). The energy dependence of the pion-nucleon
scattering is quite unlike the energy dependence of nucleon-nucleon
scattering, where the scattering cross-section decreases monotonically with
energy without resonances at intermediate energies. Furthermore, at low
energies (ETr < 50 MeV) the magnitudes of the differential cross-section
for nucleon-nucleon scattering is in barns, while that for the pion-nucleon
scattering is in millibarns, but at high energies both the scattering
cross—sections are in barns (32). Because of the existence of the P33
resonance, the pion-nucleon scattering amplitude exhibits both forward and

backward peaking of the elementary amplitude nicely.
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It is known (7) that the microscopic theory provides a better
description of pion-nucleus scattering than nucleon-nucleus scattering.
Forsr of the
This can be attributed to the[follow1ng properties of the pion and the

pion-nucleon interaction:

(i) the pion is the lightest of all hadroms, so the pion controls
the long range part of the nuclear force (range ~ mﬂ'l) and thus influence
strongly low energy nuclear scattering. The smallness of the pion mass
may be explained by chiral invariance (33), which also implies that the
low energy pion-nucleon interaction is very weak. This probably explains
the rapid convergence of the pion-nucleon multiple scattering series. On

abicrph'c~
the other hand the pion-nueleom—intersetion is very strong in the
Agasn  Lemdling o Supic LOnsesgeace
1ntermed1ahe energy regloaé so the pion is a good probe for studying the
distribution of the nuclear matter (in contrast to the electron, which
probes the distribution of the protons only);

(ii) the pion is a spinless, pseudo scalar particle (J"T = 0_)}
where J is the spin of the pion and T 1is its parity . The simpler
pion-nucleon spin structure 0x’s restricts the number of initial and
final states in any scattering process and simplifies the phase-shift
analysis considerably compared with nucleon-nucleon scattering., Moreover,

the spinflip part of the interaction may provide some information about

the nuclear spin densities;
(iii) since the pion is an iso-vector, it participates in single
and double charge exchange reactions, which can be used to investigate

the isobaric analog states of the nucleus;

(iv) the existence of the resonance at ET ~ 180.0 MeV. The
1

interaction of the P33 resonance with other nucleons in a pion-nucleus
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scattering can give insight into the nature of the strong interaction

as well as the contribution of the nuclear many-body scatterings;

(v) the absorption of a pion by two nucleons provides

information about the nucleon-nucleon correlations;

(vi) for the pion kinetic energy < 300 MeV the contributions

of D- and F-waves are negligible and may be discarded safely;

(vii) the pion-nucleon scattering lengths - (aﬂN) are very
small compared to the average separation between the nucleons
(a“N <! >~ 0.,05). Therefore the multiple scattering series will

converge rapidly. Hence it is possible to write the pion-nucleus

scattering in terms of the multiple scattering series at low energy 9.

In formulating a microscopic description of the interactions of
a pion with a nucleus the two-body pion-nucleon t-matrices for the
different reaction channels are the essential ingredients. The strength
and the range of the individual interaction potential for each channel are
determined from the experimental data at the various energies. We shall
now discuss several models of two-body pion-nucleon t-matrices, which
include different aspects of the pion-nucleon interaction mentioned earlier.
In order to simplify the comparison with experimental results we follow

the notation of Koltun (32) to represent the pion-nucleon elastic

scattering amplitude fﬂN (k', k, E) in terms of the rotationally invariant
amplitudes ;f' (h k, E ) with iso-spin (I) and total angular
11&&*/‘27
momentum (J) by
A
/
fogs k& B = T o % {[2 (H«E) (L + 1) FLh R £) ] P (kiR
EE— t ér 24- + fr sev N
- 1io0. E;[.f[k'k £) ._jf[kd,& E’).] F> (’ﬁ. k,/}
2L, 2.0-1 , 20+

(2.1.1)
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where n = k' xk and g is the spin of the nucleon. QI is the
projection operator on to a state with total iso-spin L. We will label

the channels of the pion-nucleon system by

o = & (2.1.2)

21, 28 + 1

so, for example, the S31 channel has L=0,1=+43/2 and J=1/2.
For the O-channel the partial waves amplitude f (k', k, E) on the
- o

energy-shell limit (k = k', E = E reads

)
fo (6 ks B = (ng exp(2i8) - 1)/2ik, (2.1.3)

where Ga is 'the real phase-shifts for the channel « and na <1 is

the corresponding inelasticity parameter. The value of

is the scattering length, from which it is possible to infer the attractive
+

or the repulsive nature of the basic two-body interaction. The effective

range theory predicts that the phase shifts at the low energy limit should

be related to the scattering iength by

Lim 29 + 1

_ 1
kK > 0 k cot Ga = —

o

’ (2.1.4)

L

where aa = aZI, 27 *

This low energy behaviour of the scattering
amplitude (value of the scattering amplitude at the zero energy is the
scattering length) is one of the criteria that the model two-body amplitude

should satisfy. For the elastic scattering (k' = k, Ek'= Ek), the

scattering amplitude and the t-matrix are

(k, k, E) = - (2m? [Eﬂ'l + E !

'
1ty (K kB

fﬂN

7L This onl true ovided ot F s known f the
9 4

(bt Fachion Aoty peof Ivwgpo 7t a bown o THrabe
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where E = kK* 4+ ER d = T .
ot m an EN VE + My are the pion and nucleon
relativistic energies. In the non-relativistic limit the energy factor

becomes simply the pion-nucleon reduced mass; m and my are the masses

of pion and nucleon respectively.

The two-body pion-nucleon t-matrix is generally computed from
the LippmannTSchwinger equation as a function of the two-body interaction
potential. The actual form of the pion-nucleon interaction is not
completely known, but both energy dependent and energy independent (18, 19)
Yamaguchi type separable interactions approximate reasonably the correct
low energy pion-nucleon interaction properties over a wide energy range
for the different partial waves. As mentioned earlier, the analytic
structure of tﬂN(k" k, E) predicted from the one term separable potential
is very similar to that obtained from the field theoretical model except

e

that this interaction cannot reproduce the contribution due thcrossed Born
term, which has a pole at E = 0 in the Chew-Low model. The separable
interaction preserves the unitarity but it violates crossing symmetry. For
the pion-nucleon and pion-nucleus scattering at intermediate energies
one might expect unitarity to be a more important restriction on the
scattering amplitude. The relatively large mass of the nucleon ensures
that crossing singularities are "far" away and hence (hopefully) not very
important. Moreover the ability to reproduce the on-shell pion-nucleon
data more or less correctly is a measure of the success of the separable
interaction. This interaction also preserves the off-shell unitarity and
generates a reasonable off-shell behavicur for the pion-nucleon t-matrix.
In fact)the separable approximation for the two-body interaction is exact

in the neighbourhood of a sharp resonance. An excellent example is the
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resonance in the P33 channel.

Before going further into the details of the calculations for the
separable models , we would like to discuss the range of the pion-nucleon
interactions for the S— and P-waves scattering. Knowledge about these
ranges is very important for the correct estimation of the off-shell
contribution in the pion-nucleus scattering. Theoretically, the range of
any interaction comnsists of the contributions coming from the different

processes involved in that interaction.

The S-wave part of the pion-nucleon scattering consists of the

three-types of interactions :

]

(i) the exchange of two-pion in the iso-spin zero state

(which is known as O-exchange, with range l/2m,IT ~ 0.7 fm);

(ii) the exchange of two-pion in the iso-spin 1 state

(which is known as p-exchange with a range l/5.l+m.Tr ~ 0.3 fm);

(iii) the hard core repulsive interaction.
At very low energy scattering, Hamilton (10) has shown theoretically that
the contributions of the O-exchange and the hard core repulsion cancel
each other. Therefore the S-wave interaction is mainly due to the exchange
of the p-meson and has an approximate range < 0.5 fm. The recent models
given by Thomas (19) for the S-wave interaction do not predict unambiguously
the exact range of the interaction because of the nonlocal structure of
the form factor. But his models can reproduce nicley the experimental data.
Similarly the models we have used in our calculations are not free from
this ambiguity (see Table 1l.), and they can alsc reproduce the phase shifts
and scattering lengths correctly. There is no centrifugal barrier to keep
the S-wave out from the central region of the interaction. Therefore the

S-wave scattering ampiitude is sensitive to the short range forces in the
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pion-nuclecn scattering. Because of the large cancellation of the iso-
scalar part of the S-wave scattering, an accurate determination of the
pion-nucleon scattering lengths is very important and the corresponding

off-shell correction should be significant for the S-wave scattering.

The situation for the P-wave is more complex since it is a
strong interaction channel compared to { = O channel. In addition to the
types of interactions necessary for the S-wave scattering, one should

also consider:

(1) the nucleon exchange contribution between pion and

nucleon interaction;

(11) the nucleon pole contribution;
(iii) the pion re-scattering contribution.

The importance of the re-scattering is to generate a resonance.

An approximate value of the range of any quasi-particle pion-
nucleon interaction with an angular momentum at the momentum p should

be

rﬂpr>e;

for the P33 resonance, we have £=1, p =300 MeV/c therefore
TN > 0.7 fm. The models of Landau et al (18) and Londergan et al (18)
predict the value of the range for the P33 interaction is about 0.8 fm.

The corresponding value obtained from Hamilton's (10) and Hufner et al (3%)

calculations is ~ 0.7 fm and from Chew-Low model we get about ~ 0.35 fm.

The present uncertainties regarding the range of the interaction
and its off-shell behaviour encourages one to look for different models.
These models should give correct pion-nucleon scattering lengths and phase
shifts for the appropriate channel and a realistic pion-nucleon interacticn

1 This '« a reswtt Which  fbtoos Lrom  cAurat naockels | Seo

e N e £ [Ra¥ p&oe;— gl
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range. Otherwise they may induce spurious off-shell contributions in

the calculation of the pion-nucleus energy shift, scattering lengths and
differential cross-section. It may be important to note that use of a more
realistic and complicated two-body potential may not significantly improve
the results which have been obtained from much simpler and cruder models.
For example, the simple Amado model (35) for the neutron-deuteron

scattering can reproduce qualitatively almost all the interesting properties
of the scattering. Using a complicated realistic interaction (36) the
results have improved slightly but the amount of complication is enormously

high.

But at this stage of the pion-nucleus scattering one may try to
understand qualitatively the physics of the problem including different
phase equivalent models, containing the essential features of the pion-
nucleon scattering. However, to keep the calculation simple and transparent
we have chosen Yamaguchi type interaction with non-relativistic and
relativistic kinematics to generate various off-shell behaviour . The
estimation of possible off-shell effects in the energy shift of the pion-
deuteron system and the influence of resonance, absorption and fermi motion
in the pion-carbon scattering are our main points of interest.

2.2 Determination of the pion-nucleon form factor from the
experimental data

The Lippmann-Schwinger equation for the two-body pion-nucleon

system with the interaction potential v (p'p) takes the form
P o &P

dEH \)u (R'! EH) tOL (En’ P, E)

- (2.2.1)
B - E () - E (")

t(], (_E" P E) = \)(1 (_Rs' E_) + J ?

where EN and Eﬂ are the corresponding nucleon and pion intermediate
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kinetic energies and E+ = E + it 1is the scattering energy. The
scattering phase shift is related to the on-shell solution of the

Lippmann-Schwinger equation by

on .oo-1
= - i § i 2,2,2
t, (P P, E E (p) + Ey (P))= rrUﬁN(P)?;XP (18, (p)sind  (p), ( )
E. (p) Eg (P)
where u (P)- .
mw(P)=E ") * £y ()
The simplest non-local approximation to the two-body pion-nucleon
interaction is the separable interaction
’ = > < 2.2.4
vy 8y ” Mo < By ’ ( )
where
vV = m? - ImJ, my, o > Vo, <my, My, O | 2 (2.2.5)

where Aa is +1 or -1 according to the interaction being repulsive
and a = { g, S, J, L, m } 1labels the quantum numbers, such as angular
momentum, spin, total angular momentum, total iso-spin of the pair and

parity, necessary to denote the channel; my and m; are the

corresponding z-componentsof J and I respectively., For a model

dependent calculation one generally supplies some analytic form for the

(2.2.3)

form factor g, >, For the separable type interaction given in Equation

(2.2.4), the solution of the Lippmann-Schwinger equation may be written

in a closed form

o

for which the two--body propagator is

_ -1
g, ® = A

© pdp g, ()
- E - E

t (E) = l B, > COL-I (E) < g, (2.2.6)

= . (2.2.7)
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Here we have adopted the momentum normalization for the plane wave states,

so that
<p'lp> = &@"-p (2.2.8)
2 32
and E = g h (2.2.9)
P uﬂN

if the c.m. kinetic energy is non-relativistic, but

E. = Vp +n’ + VP (2.2.10)

p

if it is relativistic) - is the reduced mass of the pion-nucleon

system.

It is easier to work with R-matrix instead of t-matrix to
determine the parameters of the interaction (3 7). Since Ra(E) is
proportional to the inverse of pcot 6@’ it has no cut along the real
axis at least if the potential is suitably bounded and it is always real.

For the separable interaction Equation (2.2.5), the R-matrix becomes

- | -
Ra(E) = lga > r, (E) < gal 2 (2.2.11)

p’ dp g’ (P)
where T (B) = A"' -P (2.2.12)
o o E-E
P .

and P denotes the Cauchy principal value integral. The phase shifts

and ra'l(E) are related by

T (k) kg?(k)
tan § (E) = - i a (2.2.13)
- r (E)

where k 1is the on-shell centre of mass momentum of the pion-nucleon

system for the scattering energy

E = VE v * VI +nl . (2.2.14)
m

With the help of the Equations (2.1.4) and (2.2.13) one may write
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2 e 2 2
TR m uﬂN(k) k By (k) . b l p° dp 8, (p)

- 1. . .
o, a, E - Ep k~>0

(2.2.15)

Combining the Equations (2.2.13) and (2.2.15).together with experimental
phase shifts, one can easily determine the parameters of the potential for

a given channel. The pion-nucleon phase shifts over a wide range of
energies (0 to 700 MeV) are now available in the recent literature.

However, some of the phase shifts ma& be unreliable, in particular various
CERN data, as reported by Herndon et al (38) as well as the data of Almehed-
Lovelace (39). This has also been pointed out by Carter et al (40) in

’

their recent analysis of the phase-shifts data.

For the S11 and S31 channels we have considered the data of
Roper, Wright and Feld (R-W-F, 41) covering the range O to 700 MeV,
as well as the data of Carter et al (40). It is very easy to fit R-W-F

data to the different forms of the pion-nucleon interactions.

For the energy shift calculation, only S11 and S31 channels have
been considered and we have used non-relativistic kinematics. The

analytic forms for S11 and S31 channel interactions: are

S1 + ——S2 (2.2.16)

Boe 511,80 P T Frar TP+ o

Using these types of two-body interaction one may compute the phase shifts
(medel function § (E, A))from the Equation (2.2.13) and then use the methods
of least squares to fit the parameter A [ A (si1, sz, B1, B2) ] appearing
in the model function for the data 81, 82 .... 819 observed at the
energies E;, E; ....E1g. We chose the best fit A 3 the minimiser of

10
2 = 2 l
X is1

2
G 2 [ Q'j_ -4 (Eia A ], (2.2.17)
i



FIG 1

Theoretical phase shifts for the S11 and S31 pion-nucleon waves calculated

from the parameters of Table la (solid curves) and Table 1b (dashed curves)

respectively. Circles are the experimental points from Ref 41.
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where 01z is the variance of the ith observation. An initial
set of values of Ap have been supplied and then minimised the Equation

(2.2.17) with the algorithm of Marquardt (4la). The calculated values

of the parameters are given in Table 1 and the fit is shown in Figure 1.

In the case of optical potential calculations we have
considered s11, S31, P33, P31, P13 and P11l channels and used relativistic
kinematics for the pion and nucleon to fix the parameters of these
interactions, since we studied the pion-nucleus scattering at intermediate
energies. The reason for re-calculating the potentials for the pion-
nucleon interactions, although there are some models available in the
literature, is’that the kinematics of the other models are different from
ours, It is also not clear how one can incorporate the peculiar behaviour
of the Pll absorption channel for the separable Yamaguchi model type
interaction. Assuming a two-potential model (41b) we have been able
to reproduce the change of sign of the phage-shift at E1T ~ 150 MeV (lab)

energy. The analytic forms for the S- and P- wave pion-nucleon

interactions are :

(a) gOL:S“’s“(p) = (pz' i‘elg, + (sti pxz)-z (2.2.18)
(b) ga=311,sa1(p) ) ?;?,216:?3“. i (p’ iQEZ?S—' (2.2.15 )
(c) Bampssupaiiprs® = = f?‘gw +(_p"s"'2¥-}ie?_)7 (2.2.20)
(d) ga=P33,P31,P13(p) - (p’sigéiz)g i TﬁggiﬁészT' (22 i)

All of them have the correct low energy behaviour consistent with the
Equations(2.2;13) and (2.1.4) and we may calculate the appropriate model

phase shifts function ( ¢ (E, A )) for the respective channel and then



FIG, 2

Theoretical phase shifts for the S11, $31 P31 and P13 pion-nucleon waves
calculated from the parametersof Table 2a (solid curves) and Table 2b

(dashed curves) respectively. Circles are the experimental points from

Refs. (40, 41).
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follow the same technique as mentioned earlier to fix the strength, range
and scattering length. The phase shifts of R-W-F and Carter's et al. (40)
scattering lengths have been used to adjust the parameters. Thomas (19)

has also calculated the strengths and ranges of the pion-nucleon form
factors for the S- and P-wave scattering using semi-relativistic kinematics.
This is also one of the reasons why I have re-calculated again the
Yamaguchi type pion-nucleon interaction models using relativistic
kinematics for the pion and nucleon. The quality of the fit is given in

Figure 2 and potential parameters are presented in Table 2.

There are large uncertainties in the P-wave scattering phase-
shifts reported by the various groups (19). To illustrate these

uncertainties we mention the P13 phase shifts at various energies,

*

TABLE 3
g 1ab R-W-F CERN Salomon Bugg CERN
in MeV Theory (Kirsopp)
31 - .2 - .3
58 - .4 - .2 % .2 -.3 - §2
98 - .9 - .6 % .2 - .6 - .6
120 . | - .9%.13 -10 -1.11% .02 - .6
144 -1.5 -1.3%.3 1.4 1.7 .3 4.9
195 - 2.1 -24%.5 - 2.4 -2.4% .6 =-2.6
310 - 3.7 -4.6%* .8 - 4,0 -3.7% .4 -4.8

P11 channel interaction for the pion-nucleon scattering

To describe the pion-nucleon interaction in the P11 channel the two

term potential has been considered (41b)

(z)l (2.2.22)

b

_ ) ) ¢) .
Vo = [gu > A < g, I + Iga > Xz < 8

* This table has been taken from Ref. 19
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where o = { %, S, J, I } denotes the two-body P1ll channel quantum numbers,

A1,2 = +(-) according to the repulsive and attractive parts of the

potential and va is defined as before

vV = X M, M
Tyt

o >V <m m
Lo J’

I’ I’

In terms of the matrix notation va becomes

where | 8, > = VR o > 1,
2 x 0
and A= [, 0.

The corresponding two-body t-matrix may be written as
+ +
= > <
£, () g, > T, B <gy |y
for which the propagator is given by

+. -1 + -1
T, (E) = [ X' -<g |6 @) |g, > ]

(2.2.23)

(2.2.24)

(2.2.25)

(2.2.26)

(2.2.27)

(2.2.28)

=+ . i + .
Here Gd(E ) 1is the two-body Green's function and E  is the scattering

energy. The R-matrix on the energy-shell limit is related to the

scattering phase shifts, Equation (2.2.13). The appropriate expression for

the R-matrix in two-potential model is

R(E) = | g, > v, ® <g |
-1 P -1
where Ya(E) = [ A - <gy | Go (E) | £ ]

We may re-write Equation (2.2.29) explicitly as

(2.2.29)

(2.2.30)



FIG. 3

Theoretical phase shifts for the P11l pion-nucleon wave
calculated from the parametefs of Table 2a (dashed-dotted curve)
and Table 2b (dashed curve). The solid curve represents the

experimental points (Refs 40, 41).
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P (k) (A2~' = T22) + P(k) ¢(k) I,z
+ > () A - 131y

[C A7 = T A27h = T22) —(}12 ]
‘ 2

Ra(k’ k, E)

= - 1 .
= %—E_ﬂ;;?k)tan Ga(k) s : (2.2.31)

where 111=<wlcp|w>, 122=<¢]G0P|¢>, 112=2<¢|GOP|¢>

(o]

(2.2.32)

and GoP is the principal value part of the Green's function. The

experimental phase shift goes to zero at E1T ~ 150 MeV (lab). The

corresponding momentum is donated by ko (say). We may force this condition

by setting
R, (ko, ko E) = 0
i.e. W (ko) 2™t = Ta2) + W(ke) (ko) Tiz + ¢ (ko) (M1™' = T11) = O
ko) I | 2 S
or 5= = sy p(ko) I3z ) $* (ko) (A1 I11) (2.2.33)
Y(kg) ¥ (ko)

Combining Equations (2.2.31) and (2.2.33), it is now straightforward to

determine the other parameters of the interaction by the method of least

squares. The chosen analytic forms for l Y > and I é > are
P’ (2.2.34)
> = ______P—— (1) > = —— ) ol
v (p +B8.)? | (P +87)°

The fit is presented in Figure 3, and the parameters are given in Table 2(b).

W& now conclude this chapter by noting that one may also calculate
the pion-nucleon vertex function for an individual channel by the direct
solution of the inverse scattering problem (18). This is a very straight-
forward way to determine the potential for any channel where the phase

shifts are known for all energies. But one encounters two serious problems



- 34 -

in this method for the case of pion-nucleon scattering, namely :

(i) the phase shifts are noct known at all high energies;

(ii) at very high energies the inelastic pion production

channel opens.

However, Landau and Tabakin (18) used 'this technique to
determine the form factors appropriately, taking care of these two points.
Afterwards)a multichanpel separable model was introduced by Londergan et al
(18) to get rid of these two unwarranted features of the inverse
scattering technique. The two-body t-matrix derived by this method has the
same sort of o%f—shell behavicur to that of the t-matrix calculated from
the parameter fitting technique. In the parameter fitting method we get
a mixture of the attractive and repulsive Yamaguchi type interactions with
different strengths and ranges to describe the pion-nucleon interaction.
The pion-nucleon vertex functions obtained from the inverse scattering
technique are not convenient for Faddeev type calculations to study the
pion-nucleon scattering. We prefer to use Yamaguchi type form directly
for the pion-nucleon vertex, which makes the angular momentum reduction of
Faddeev's equations easier and also facilitates their numerical solution

greatly. The fall-off of the corresponding two-body t-matrix is smoother

compared to that obtained from inverse scattering theory for large momentum.
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TABLE 1 Results of the parameter search for the model pion-nucleon potentials. The inverse ranges o

- . 3 1 . - . .
are in fm !, the strengths s in (MeV/fm) * and scattering lengths a are in units fm.

The parameter set a(b) corresponds to the phase-shifts of R-W-F (Carter et al 40)

Set Channel Form factor Az S, S, o o a
S11 A'( 51 5 =12 ) 9.5945 1.5099 5.9576  2.3688 2.9026 2419
p2 + 0"12 P2 + 0(.22 . - . . o} . . o
a
S31 X ZS‘ = 282 =)  302.8913 1.0824 -,0815 3.6232 1.2594  -.1344
p T+ 0O p + Q2
S11 Y W A 9.218  -1.4012 6.4120 2.7508  3.1711  .2391
P+ p° + 02
b
Sa1 A 251 . S2 - ) 278.4231 1.0887 -.0811 3.5822 1,2382 -.1316
p- o+ 0 p + 02

'S11 (S31) channel interaction is attractive (repulsive).
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TABLE Za

RESULTS OF THE PARAMETER SEARCH FOR THE MODEL PION-NUCLEON POTENTIALS

3 2 -1
Channel S1 p 1 s2 p2 A am aN Ao~
(Theory) expt.

S811 33.920 22,865 . .0155  .599 - .0969 .17lmﬂ" .171mﬂ"' -
S31 1.112 2.730 - -12.330 7.1945 .1088 —.092mﬂ" —.092m_"" -
Pa1 -.0832 .325 - 3.988  2.140 9.1822 —.043mﬂ" -.oasmn" -
P33 4.078 3.332 ~-7.618 7.978 - .211»m,n" .21am“" L241
P13 -.0802 L3119 ~3.443 2.197 15.479 —.029mﬂ-] —.029m_"'! -
P11 2.463 3.650 -3.104 16.26] = —.056mﬂ'3 —.osemn‘-‘ -.0267

For the S-waves the parameters refer to Equation (2.2.18 )and for the Pi1, P13, P33 waves the parameters refer
to Equation (2.2.20) and for P;1 wave to Equation [4_5'_11 The square of the inverse ranges (R?) are in fm %,
the S-waves strengths are in fm-®. For the P31, P13 and P33 waves the strength Sz is in fw' and S Is in
fo-?. The P13 wave strengths are dimensionless. The parameter Ao for the P33 wave 1is in fm~? and for
the P13 wave it is dimensionless.



- 37 -

2b

TABLE 2

KESULTS OF 'THE PARAMETER SEARCH FOR THE MODEL PION-NUCLEON POTENTIALS

- =}
Channel S P e Sa2 F21 ! an N Ao
theory expt.

s11 4,893 14,186 .097 .305 - 3.804 .181mﬂ" .l71m1" =

531 5.491 21.282 - .023 .202 .0366 < .092mn'l - .092mﬂ'l -

P31 - .258 .555 -1.574 .971 3.118 - .043mﬂ'3 -.oaamﬂi3 -

P33 - 2.511 1.333 -4.,099 17.533 .214mﬂ" .2:qmﬂ" 4.131

P13 -.226 .44l ~1.657 .935 22.475 - .029m"'3 —.029m“—3 -

At = L40x107° , ,
P11 - 3.992 = 6.776 g™l = = 2.956 =.032m -.056m

For the S-waves the parameters refer to Equation (2.2.19

parameters refer to Equation ( 2.2:21 )

inverse ranges (3) are in fm %, the
dimensionless and S is in fm

the 11 channel.

The parameter

arul for P11 wave to
S-waves strengths are in fm-!. For P-waves the streangths S;
A3 is in Ed'  and Az~'  is dimensionless for

The parameters
A¢ for the P33 channel is in fm™ 2.

) and for the P31, P13, P33 waves the
Equation (2.2.34).

The square of the



CHAPTER III

THREE-BODY PERTURBATIVE ESTIMATES OF THE

ENERGY SHIFT IN THE PION-DEUTERON ATOM

3.1 Introduction

In this chapter we shall present our model based on three-body
perturbation theory to calculate directly the energy shift for the
K (’p - 'g) transition in the pionic-deuteron system without evaluating
the plon~deuteron scattering length by the usual multiple scattering
formalism. Theoreticallyjthe pionic deuterium system provides the simplest
example of a pion in an atomic orbit interacting with a complex nucleus,
exhibiting most of the phenomena relating to the pion-nucleus scattering
process. Alsé the deuteron's loosely bound nature makes a non-relativistic
three-body model appropriate for the problem and the well known structure
of the deuteron allows one to appraise the nuclear structure effects on

the pion-nucleon scattering series.

In a pimesic atom the bound pion interacts with the nucleus via
strong as well as electromagnetic interactions. The experimental observations
(21) show that the effects of the strong interaction on the Coulomb energy
levels are small compared with the spacing between levels. This shift
increases with the increase of the atomic number Z of the atom. The Bohr

*
radius of the mesic atom is

-1 200
ap =>(m1T Z o) o fm,

hence the pion is well ingide the atomic electrons and interacts with [he

nucleus directly. The Bohr energy is

E’ =-%m (za)? = (- 3.7 ReV) z*.

As the effect of the strong interaction is small one assumes that the

* m is the mass of the pion.
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strong interaction acts as a perturbation on the Coulomb interaction. The
ratio of the nuclear interaction distance to the mesic-atom Bohr radius
is

y3
ZA/
137 °?

%

mﬂ'1 )Y/ (2o mﬁ)'1 i

where o 1is the fine-structure constant, and A is the atomic weight.

The smallness of this ratio justifies the above assumption. These ideas
were first introduced by Deser, Goldberger, Baumann and Thiring (DGB T, 22)
who showed that the strong interaction shift of the atomic level is

related essenFially to the pion-nucleus scattering length (aﬁA) by the

expression

2

sE = (E ly =0 | ey, (3.1.1)
¥ _

2
0) I is the probability density for the atomic pion

where | wﬂ(r
being at the nucleus. We would like to emphasize that DGBT made the

following approximations in deriving this relation

(i) the pionic density p(r) 1is constant over
the nuclear volume;

(ii) the atomic binding energy is small relative
to the range of energy over which the pion-nucleus
amplitude varies;

(iii) the off-shell dependence of the pion-nucleon
amplitude is negligible.

We have investigated these approximations separately in Section 3.

Because of the weak mature of the pion-nucleon interaction,,
several attempts (5) have been made to calculate the pion-nucleus

scattering length (awé) in terms of the multiple scattering series in Ihe
LV <%



- 40 -

low energy limit. The pion-nucleon scattering amplitude may be

expressed as (32)

f'rr\] (-15':_k E) = fao (E!s k, E) +fi (E’" k, E) T .1

are )
where fo and flK the iso-scalar and iso-vector parts of the pion-nucleon

scattering amplitude and depend on the spin, iso-spin, momentum of the
pion before and after the collision; T and i are the iso-spin operators

of the pion and nucleon respectively.

In terms of the single scattering approximation, the pion-

nucleus transjition operator (T-matrix) at low energy may be written as

A
Ty = E @ (3.1.2)
where t () = - @2m Y Enr + Enf . (3.1.3)
TN _—ﬂE/r'E//) TN

A small correction due to the P-wave scattering should be taken into
account in this term. The pion-nucleus scattering length under this

approximation is then given by (32)

m
1+ m /m,)
iﬁ_ (Afo + (N -2)fy1). (3.1.4)
(1 + mﬂ/AmN)

In particular, for the pion-deuteron system, we have

m_ -+
0 2 O
a = S (———— ) (ap + 2a3). (3.1.5)
md
3 mN + m,n_/2
The mass factor arises from the transformation to the c., m, co-—

ordinates of pion-deuteron. ai and a3 are the pion-nucleon scattering
lengths corresponding to iso-spin 1/2 and 3/2 respectively. Soft pion
theory (42) predicts that the iso-scalar combination (a; + 2a3) should

be zero. Recent theoretical estimates (43) are in close agreement with
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the prediction.

As a result of this small value of the iso-scalar part,
the corrections due to off-shell contribution become important in pion-
deuteron scattering. Hence one may question Qhether Equation (371.1%
which is essentially an on-shell approximation,is sufficiently accurate
to eyaluate a g from the experimentally observed energy shift. The aim
of this chapter is to appraise the sensitivity of the energy shift to the
off-shell dependence of the pion—nucieon amplitude and the momentum
distribution of the atomic wave function, using a form of three-body
perturbation theory which avoids the intermediate step of calculating
the scattering length. Furthermore, proper treatment of the unitarity
correction (44, 45% generated due to the three-body kinematics and the
associated off-energy shell variation of the pion-nucleon amplitude in
the negative energies appearing in the individual terms of the multiple
scattering series,is essential if an accurate evaluation of the pion-deuteron
energy shift is desired. These considerations should also be taken into
account for the correct evaluation of the pion-deuteron scattering length.
Faldt (46) pointed out the importance of treating corrections to the
simple impulse approximation consistently, taking all terms to a given order
in the pion-nucleon scattering length into consideration. He has shown-
that for a loosely bound system the impulse approximation is quite good
because of the mutual cancellation of the binding correction in the first
three terms of the multiple scattering series. An excellent review of
this problem has recently been given by Thomas and Landau (47). One of
the ways to study the sensitivity of the experimentally observed quantities
associated with pion-deuteron sysgem to the off-shell variations of the

pion-nucleon amplitudes is te solve the Faddeev equations which sum the
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multiple scattering series to all orders. Although off-shell
contributions are successfully incorporated in the Faddeev calculations,
it is difficult to discuss their magnitudes in comparison with the
estimates obtained from the multiple scattering series, since individual
multiple scattering terms are not usually singled out explicitly. There
is also the practical problem of repeating lengthy numerical calculations
to test the sensitivity of the computed results to input amplitudes with

different off-shell properties.

Our method of calculating the energy shift is based on the
formal reduction of the three-body problem to an equivalent two-body
problem with ;n effective potential acting between the pion and deuteron
c., m, In this respect our method is similar to the calculation of
energy shift in pionic atoms with heavier nuclei in terms of the optical
potential (17) prepared from an assumed phenomenological form of the
pion-nucleon interaction and nuclear form factor. Since the pion-nucleon
range is relatively small in comparison with the nuclear size, the
nuclear form factor is a sharply peaked function in momentum space,
relative to the two-body pion-nucleon amplitude, and this suppresses
partially the off-shell differences of the phase equivalent potentials.
Moreover, the optical potential may show unphysical off-shell contributicns

to the energy shift if the pion-nucleon interaction has an unrealistic

range.

But in our method the effective interacticn is not
phenomenological in the sense of the potential used by Ericson and
Ericson (17), but it has been determined from the pion-nucleon amplitude.
The essential feature of our derivation of the energy shift is the
comparison of the actual three-body problem with a solvable model three-

body problem with & displaced Coulomb interaction. The difference between
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the true effective potential which includes the strong interaction between
pion and nucleons and the effective potential of the comparison problem
which gives unperturbed Coulomb energy levels may then be treated by
simple perturbation theory. When. the resulting first-and higher-order
expressions for the energy shift are expanded in terms of the pion-nucleon
amplitude, terms similar to those occurring in ° the multiple scattering
expansion of the pion-deuteron scattering length are obtained. However,
the perturbation expansion is expectéd to converge more rapidly due to

the presence of different energy denominators in the intermediate states.

In the light of the calculations of a g mentioned abo?e,it is
important to ask whether higher order terms in the perturbative approach
can be neglected and whether in fact they might affect our observation
about the role of the off-shell effects in the single scattering
contribution to the energy shift. In this chapter we give estimates of
higher order terms and confirm the relative importance of the off-shell
correction to the DGBT's formula. In Section 2, our expression for the
energy shift is derived and the various approximations needed to re~derive
DGBT's formula have been cousidered. The first-order energy shift is
evaluated in Section 3, using specific separable parametrizations of the
pion-nucleon amplitudes. Only the S11 and S31 channels have been
considered. We have also calculated the typical values of the weight
function Fna,d(Ra) corresponding to Equations (3.3.13) and (3.3.16) for
different values of P, to examine the importance of the momentum spread
of the atomic wave function and off-shell dependence of the pion-nucleon
t-matrix in these two channels. In Section 4, we derive the rotationally
invariant deriving terms which are required to solve Faddeev-type equations

to estimate the contributions of the multiple scattering part to the first-
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order energy shift and the results have been described in Section 5. The
values obtained for the total first-order shift are compared with those
obtained from neglecting the off-shell dependence of the pion-nucleon
amplitude and the momentum distribution of the bound pion. The numerical
results are summarised in Table 7. Unlike the first-order shift, the
second-order shift allows nucleon-nucleon re-scattering to occur in the
intermediate states. 1In the calculations of the pion-deuteron scattering
length, such process play an important role. Therefore in Section 6 we
have determined an upper bound for the magnitude of the second-order shift
and show it is reasonably small compared with the values calculated for the
first order sgift. Finally, the implications of the various approximations

for the calculation of the energy shift are discussed and conclusions

offered.

3.2 Theory

The three-body hamiltonian, describing the interaction of a
negative pion bound in an atomic orbit with the deuteron nucleus,is given

by

H = Hy + V,n_ + Vnp N (3.2.1)

Here H, is the total kinetic energy of the system, vnp is the
potential binding the proton and neutron in the deuteron ¢d and VTT

is the interaction between the pion and the constituents of the deuteron.
The non-relativistic elastic scattering amplitude for the negative pion

from the bound state of the deuteron is given by

T(E) = Vﬂ + VﬂG(E) VTr " (3.2.2)

where G(E) = (E-H)"' is the full Green's function. To obtain a well-

behaved integral equation satisfied by T(E), we write
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G(E)

I

Gi [1+v GE) ] I(3.2.3a)

and G(E)

I

G2 [ 1+ VTr G(E) ] , (3.2.3b)

3 -1
where G(E) = (E-Hy - Vﬂ)’1 and G;(E) = (E - Hy - Vnp) are the

operators acting in the three-particle space. Combining Equations (3.2.2)

and (3.2.3b) we get
T(E) = V_ + V. G2(E) T(E). (3.2.4)

This integral equation has a singular kernel (48). Introducing Equation

(3.2.3a) into Equation (3.2.2) we have
= . 5
T(E) V“ + Vﬂ G, (E) Vﬂ + V“ G, (E) Vnp G(E) Vﬁ. (3.2.5)

Replacing G(E) from Equation (3.2.5) with the aid of Equation (3.2.3b)

yields the appropriate integral equation for T(E), i.e.
T(E) = Tﬂ(E) + T Go (E) tnp(E) Go(E) T(E), (3.2.6)

where tnp and TTr are the standard . transition operators for
the interactions vnp and Vﬂ_ and Go 1is the three-body free-Green's

-1
operator Go = (E - Hp).

Assuming a separable type interaction between neutron and proton

system

vnp=-x|fd><fd>, (3.2.7)

we may reduce Equation (3.2.6) to an equivalent two-body problem, Following
Dodd and Strobel (48), the three-body transition operator corresponding to
Equation (3.2.7) may be written in a form which separates out the

dependence of the kinetic energy of the pion

tp® = 1 fg> h2(E) Go(B) h7(E) <f  |. (3.2.8)
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Here the caret indicates that the operator acts only in the subspace
spanned by the kets[£_>, p being the momentum of the pion relative to

the c¢-. me of the proton and neutron.

~Y N
Explicitly, h? and Gy are defined by

- 2
<pfqlGel-eq4 5g) Gu(® [fp' >

AL ) .
<p @ | p>=<plp> I 313 > 1%,
and

~ 2 -1
<plG® | p>=<p|lp>(E+e-55) (3.2.9)

where €4 is the binding energy of the deuteron and

v - m (m.n + mp)

(m.,,T +m + mp)
Substitution of (3.2.8) into (3.2.6), yields the Lippmann-Schwinger equation

T = V + VG T, (3.2.10)
for an equivalent two-body operator

T = h/2<fd|GoTGo|fd>h6, (3.2.11)

for pion-deuteron scattering with an effective potential

~1

3 y
<fd[GoTnGo|fd>h. (3.2.12)

1
3

V = h

On the energy shell limit, p’ = 2M(E + Ed) = p'? the scattering

amplitude is related to the effective two-body operator

<pr | T |[p> = <p' oy [T®] p oy >

~

so that the evaluation of T(E) on-shell yields the physical amplitude.

Let us now consider a similar situation where the pion interacts
only with the Coulomb field of the deuteron with its charge concentrated at

its centre of mass. Following the above procedure with VTr replaced by
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the Coulomb potential vco’ we find an equivalent two-body amplitude

™ = VvV + V G T, (3.2.13)
generated by the effective potential
g i Lo 35
Vo=t <fy | Go t.° Go | f4>10% (3.2.14)

where tco is the two-body Coulomb t—matrix'corresponding to vc?'

The model problem described by Equations (3.2.13) and (3.2.14)
is exactly solvable,since the internal motion of the deuteron and the
motion of the pion are independent. The ground state of the model problem
is well repreéented by hydrogenic type wave functions. The corresponding
ground state energy is Eﬂo = - €~ € where o is the Coulomb binding
energy of the pion with the deuteron considered as a point charge.

The ground state wave function I&ﬂ > of the actual three-body
problem with ground state energy ETr and the model three-body ground state

A
|wﬂ° > with the ground state energy Eﬂ? satisfy the homogeneous equations

o)

a - ao (E.) \AJ) ly > = o, (3.2.15)

a2l Y

and 1 - Eo (Eﬂ") V) lwﬂ" > =0. ' (3.2.16)

A
The model ground state wave function !¢ﬂ? > 1is constructed from the

usual Coulomb wave function Iwﬂo > (48)

>, (3.2.17)

We consider the discrete part of the spectrum of the exact three-body
hamiltonian (i.e. perturbed problem) corresponding to the scattering
Equation (3.2.10) as non-degenerate. In fact, we have only one discrete

state with energy eigen value Eﬂ. In general there is also a continuum
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part of the spectrum, but we are only concerned with computing the
perturbation of the simple discrete state in this calculation. The exact

three-body ground state wave function

%im|¢“> -+ |1pﬁ°>,
AV—+o

where A V is the perturbing potential and lWﬂ? > 1is the unperturbed wave

function (i.e. model wave function) .

The energy shift is defined as

Ao A ol
<y’ lav]y >
AE =E -E’ = — - . (3.2.18)
T <p® |y >
» i m

The next step is to obtain the solution of the perturbed three-body ground
. N A
state wave function l wﬂ > in terms of the model wave function l wﬂo > .

We may re-write the Equation (3.2.15) as

A

(Ho +V - E) |1pﬂ_> = 0
~ o A 3 A_I\ _ 0 ~
or Mo +V -E) | ¥ >= (V -V+E ) | v, >

(AE - m';) | @ﬁ >. (3.2.19)

The homogeneous part of Equation (3.2.19) gives the solution of the
unperturbed problem which is known to be the ordinary hydrogenic type

wave function. The required solution of the perturbed problem is

| v > = H,Tro > 4+ Qo — (AE - AV) | U
Hy = ETT 4 V°
(3.2.20)
and (Hy + V) | 1,.'{“0 > = E“" | ¢ﬂ° >, (3.2.21)
where Q is the projection operator 1 - | wﬂ? > < w“? . The structure

of the ground state energy shift is

AE = <y ® | AV | w® >+ <y | av Qo < (AE - BV) | v > (3.2.22)
Hy - E + V
T
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~

As the perturbative potential AV =V - Vv is very weak, the series will
converge rapidly and can be solved in principle by iteration. The
successive terms of the iteration are labelled by the number of powers of

AV that are retained.

The first-order energy shift is

1 ~ ~ ~
pEC ) 2 <p® | av | vl > (3.2.23)
1l m
Similarly the first-order correction to ] wﬂ > reads
i{f)l’)>= |f;3°>+ Q A\Azl'ﬁ)°> (3.2.24)
) T = E® +V )
m
The second-order energy shift is given by
¢y _ 7o ST G
AE = <y | av |y >
_ l\o ~ Q ~ /I\O
= <y | AV (14 — M) v >
Ho—Eﬂ°+V°
= <P ® | Aav Yl >+ <yl | AV Q - AC’I{J\;"
4 " Y Ho"‘EﬂO‘FVO i

(3.2.25)

Combining Equations (3.2.12) and (3.2.14) together with the Equation

(3.2.17) the first-order energy shift is given by

1
AE()=<w1T°fd|Go(T1T—tC°)G0 Ifdlpﬂ" >; (3.2.26)

The interaction of the pion and deuteron may be expressed as

the sum of the separate pion-proton and pion-neutron interactions

Therefore the plon-deuteron elastic transition operator Tﬂ satisfies
the coupled equations

o .
T = Too + Toy o (3.2.27)

where [ﬂp = tﬂp + tﬂp Go Tﬂn’
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and

T = t + t Go T : (3.2.28b)
mm ™ ™ mp

T1T = tTm + t,np +t Go tﬂp + tﬂp Go tm + .. (3.2.29)

The first-order energy shift may be split into the single scattering

contribution and the higher order re—scattering contribution of the pion

from the nucleons without break up of the deuteron in the intermediate

state 1 . 1 1
R I & VIR (3.2.30)
s h
with AE(1)=<¢°f | Go ( £+ ¢ -t %) G |y f, > (3.2.31)
s m ' d 0 mp- . Tn c 0 n'd " et

»

The Coulomb scattering contribution between the pion and the proton may
be eliminated partially by introducing the Coulomb t-matrix t, in the
plon-proton subsystem

1
AES()=<1j)“°fd|Go(t1Tp+tﬂn—tc) G0|¢ﬂ° fd>

0 ] y [
+ <y’ fyl G Ceo-t) Go |9, fg > (3.2.32)

The first term of the r.h.s. of Equation (3.2.30 gives the energy shift
due to the strong interaction and the second term is the electromagnetic
correction due to the finite gize and polarizability of the deuteron.

The magnitude of this correction is small and has been ignored.

Tt should be noted that in the first-order energy shift
calculation there is no contribution from intermediate N-N re-scattering,
since break up and recombination of deuteron occur only in initial
and final stateg. However, the second-and higher-order terms in the
expansion of the energy shift in powers of the perturbing potential

”~ ~

AV =V - V°

, obtained by iterating Equation (3.2.20) contain the effects

of N-N re-scattering, and these will be considered in Section 6.
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3.3 Evaluation of the first-order energy shift

The evaluation of the first-order energy shift of Equation
(3.2.31) is simplified by neglecting the Coulomﬂ interaction in the
multiple scattering terms of Equation (3.2.29) and assuming iso-spin
invariance. The operator Tﬂ_ may then be split into two parts,
T_n = Tﬂl + Tﬂz according to which of the identical nucleons labelled by
1 or 2 interacts last with the pion. If P is“the operator which

exchanges the observables of the nucleons PTﬂé = TﬂlP, the first—order

energy shift may be expressed as

1
AES() = 2<y®f ] 60Ty Go |50 > (3.3.1)

where '].‘,"1 may be determined by

= -1
T\ to +t Go P70 T P. (3.3.2)

To evaluate the energy shift from Equation (3.3.1) we introduce a simple

geparable potential, acting in the Hilbert space of the three particle,

for the interactin? pion-nucleon pair. The corresponding two-body t-matrix

acting in three-particle space is

: 2
t (E)=2Jd3pxlk,g1,n st (8 -EL) <2
M1 nd na o a, M na’ P1s nOL l,
2
@q, | 8 (q)
where @ = X - [ - - ny o -L— " (3.3.3)
o “ E - E(q,)
and

SAER BRI A

ol

- - ~nuel
Here }na is the strength of the pion-nucleon form factor gna (Sa)’.ga
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is the momentum of the spectator particle (a), T (E) dis propagator
o

of the quasi-particle and n, represents all other quantum numbers
required to specify the three-particle state . The explitic structure

of the three-particle state is (49)

| Ana. Py» 0y > < | Ana, Py» (.I.‘a(ﬂ-a 3o S, I (1, 1)1 My >

—_—

We generally couple the pair total angular momentum Ty to spectator spin
ia to get the channel spin §a which is then added td the orbital
angular momentum La of the spectator with respect to the pair c. m. to
obtain the total angular momentum J and its z-component M. Similarly,
the pair iso—s?in E& is coupled to the free particle iso-spin ia to
obtain total iso-spin I and its z-component MI of the three-particie
state. This coupling scheme is called channel coupling. In this model
calculation we have considered iso-spin 1/2 and 3/2 channels of the pion-

nucleon system only. The specific forms of the pion-nucleon interaction

potential have been given in table 1 in Chapter IT.

Substituting Equations (3.3.2) and (3.3.3) into Equation (3.3.1)

the first-order energy shift contribution is

1
AE()=22J
n
o

?

o ,d (py) Tna(-Eﬂ— 70 Fna,d(Ba) 4 Py

a
(3.3.43
. - _-.0 0
with Fna,d(g) <)\na,p,na|Go( ) L' fy> (3.3.5)
and the multiple scattering contribution is
p?.
1 B 0
INASRERE > IF (pe) T E® - 57 ) A (Pos Pys — Eq )
d ~ (_ !—.’ s
h nong sTig B ng i 2M nB,na,_B o

T (~E.° YT 4y @ o d (3.3.6)
n- 2M a* %Py Py ¢ Pg° N
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The amplitude A (o E ) satisfies the standard form of the

s P
nB,na R’ ~a?

Faddeev equations with separable potentials,

(pg» P> E)
Ng»Ny B’na-B e

, p.s E)&p_,
(RY 2y ) Py

Y Y Y Y 7o
(3.3.7)
where B, . (EB’ Ea’ E) = < An s Pgs Mg | Go(E)P | A, p, n > s
8" B na —Q o
(3.3.8)

describes the exchange of pion between quasi-particles.

The sensitivity of the energy shift on the off-shell dependence
of the pion-nucleon t-matrix and the momentum distribution of the atomic

wave function can be studied from the momentum dependence of Fn d(Ea)'
a’

The ground state wave function for the model pion-deuteron system in the

momentum space reads

-3, .
P = e’ Iel I @ &r, (3.3.9)
where % - r/a
po@) = (ma’) Ce °, (3.3.10)
2
and ao = 'm? 5= 193,73 fm is the Bohr radius of the pion~-deuteron atom.
e
m

An elementary integration yields

= ¥
2/ 2 ao , (3.3.11)
™ (1 + a02 q2)2

¥ (@

N §
i)

and PO =0 = (T ao) (3.3.12)
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The explicit expression of the weight function F ‘ (Ba) is
na,d

g, (k+up) f, (g +Ab v ®

ol 3
F (Ec) = = [ dk (3.3.13)
n_,d 0 2 : 2 fo- ’

o. E.+ P, /2M + (k + yp )* /2m

where in terms of the nucleon mass My and the pion mass m the

reduced masses M and m are
M =lq§mN + mﬂ)/(ZmN + mﬂ), m = my mﬂ/(mN + mﬂ), (3.3.14)

and the parameters A and Y are

A= mN/(mN+mN‘), o= mﬂ/(mN+mﬂ).

"

The value of the atomic wave function of the pion at the c. m. of lhe

deuteron

P’ (x=0) = Tf#)ﬂ"/z. JIPTTO (k) ¢k (3.3.15)

can be extracted from F d(Ea) since the atomic bound state wave
b

function of the pion falls off much more rapidly in momentum space than

the deuteron on pion-nucleon vertex function, and under this approximation

we get
3 —
Fna,d(ga) =y " (z=0) (2m 2gnm(u 2 fq4 By (3.3.16)
with _ paz U2 poez -
fq @) = (Eﬂ° & oy 8 ——) 4 (p,) - (3.3.17)

Since the argument of the pion-nucleon form factor contains the mass ratio
U~ 1/7, a more adhoc approximation is to neglect the momentum dependence

of F arising from the pion-nucleon vertex compared with that of the

na,d

deuteron vertex fd' Also by dropping €. from Eﬂ°(€ﬂ<< €d) in the

denominator of Equation (3.3.17), the object fa becomes the exact

deuteron bound state ¢d and we get the simplest expression for



- 55 —

Fn ,d(Poc) ?
o

. 3
Y2
F = (2m \ =
na,d(-Ba) @em’ y (=0 g“a(O)- 04 (y) - (3.3.18)
We have presented in Tables4-5 the typical values of the weight function

Fn ad(Ba)’ corresponding to the channels S11 and S31, obtained from the
o

Equations (3.3.13) and (3.3.16) for different values of Py The

important conclusion from these tabulated values of Fn K| is that the
3
Qo

momentum variation of Fn d arising from that of the pion-nucleon form
bl

factor and the atomic wave function is quite significant and should be

taken into account properly for the evaluation of the energy shift. We

also observe from the Tables 4-5 and Figures 4-5, that the values of Fn P
a’

for small values of Px corresponding to the Equation (3.3.16)

are always greater than those obtained from the Equations (3.3.13).

With the approximation (3.3.16) the first-crder energy shift due

to the single scattering becomes
/

1 2 .
e )= emt e @=o | fd3 p, T4 (2
p2
<qu|tﬂ1(nEw°—2;)luEa> (3.3.19)

The deuteron nuclear form factor ¢a2(p) is a sharply peaked function
in the momentum space compared with the picn-nucleon t-matrix since the
size of the deuteron nucleus is appreciably larger ( ~ 4.0 fm ) than
pion-nucleon interaction range ( ~ <' .7 fm). Therefore we may assume
that the pion-nucleon amplitude is a slowly varying function of the off-
shell energy - E;)— QGZIZM over the momentum variation of the ¢d2(2a)

and may replace the pion-nucleon amplitude by its value at the zero energy,
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i.e. scattering length approximation. Under this approximation the
integral over P, in Equation (3.3.19) is just the normalization integral
for the deuteron bound state and the energy shift is related to the iso-

scalar combination of the pion-nucleon scattering lengths

¢y _o2m N 2 4
AE, = | v, =0 |*(Fa1+35as). (3.3.20)

This is the DGBT's formula relating the energy shift to the scattering
length. We may consider the Equation (3.3.4) as the off-shell
generalization of the DGBT's formula. The uncertain energy dependence of
the actual pion-nucleon amplitude for the negative energies makes the
approximatioésleading to Equation (3.3.20) difficult to justify. We
have calculated the pion-nucleon scattering amplitude f (0, 0, -E) for
the negative energies, to show its off-shell dependence in the S11 and S31
channels (see Table 6). The off-shell contributions to the energy shift
due to the pion-nucleon interaction is generated mainly from the negative
energy dependence of the two-body pion-nucleon t-matrix. In relating the
energy shift in terms of the pion-nucleus scattering amplitude, DGBT
»cgTg;:;ieggiyzigézgézbthis negative energy dependence of the two-body
scattering amplitude. To test these approximations;calculated values of

the energy shifts defined by the Equations (3.3.4), (3.3.19) and (3.3.20)

have been compared. The calculated shifts are presented in Table 7.

3.4 The Angular Momentum Reduction of An n (p, p, E)
B’ a

To solve Equations (3.3.7) it is necessary to write them in
the rotationally invariant form in the angular momentum and iso-spin space.
The rotationally invariant amplitude is written in terms of the channel
coupling scheme as mentioned earlier. In this coupling scheme we couple

the total angular momentum of the interacting pair to the spectater
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particle's spin to get the channel spin. Then we couple the channel

spin to the angular momentum of the free particle relative to the

pair c. m. to obtain the total angular momentum of the system. The main

advantage of using the channel coupling scheme is that we can determine

the total parity of the reaction easily. Similarly)the iso-spin of the
ke

interacting pair is coupled tq(free particle's iso-spin to get the total

iso-spin of the system. The total angular momentum and iso-spin are the

constants of motion. Let us define our notations:

(i) Jq(ma), iB(mB) and JV(mY) are the individual spin

(z-component) of the particles o, B and Y respectively;

(ii) la(ku) is the relative angular momentum (z-component)
of the interacting pair (0);
(iii)

+ 3., = is the total spin (z-component) of

ig v = Sa (o)
the interacting pair (o);
(iv) &a +s, = la(mu) is the total angular momentum (z-

component) of the pair (o)

(v) gy ia = §a(2a) is the total spin (z-component) of

the channel;

(vi) La(Mu) is the relative angular momentum (z-component)
of the free-particle relative to ¢, m, . co-ordinate of

the pair (o);

(vii) La + §a = J(M) 1is the total angular momentum (z-component)

of the three-particle state.

Under this coupling scheme the scattering amplitude
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1 = . 3 >

A“B’“a(R , 2 B) = (g mg> Jgmgs 275 M Al 5, @, gmys Bs 1
= X < iz myg» leiB I IMI ><im,, im, l IMI >
Imy, SB EB, LB MB

J M, S ZT,L M
a o o

<Fy my, 3gm, | Sy Ty > <Ly My, S ® | o >
<3 Mg» Jgmg | S Zg > <Tg Mg, S T | >
¥ J I

~ (") A (p', P, E) Y (), (3.4.1)
LB’MB g Ty, Loy,

JI s JI S
where A ,naf(p', p, E) = <LB’SB’JB’lB’nB’p'l T P TUPE SO WS I S

B

The Clebsch-Gordon co-efficients and spherical harmonics are defined

according to reference (50).

Here na contains all other discrete quantum numbers, i.e. parity
of the individual particle and the quasi-particles, required to specify
completely the corresponding three-particle state. Similarly we can also

write the corresponding rotationally invariant form of the driving term

in Equation (3.3.8) in terms of BJI

(p', p, E). The invariant amplitude
n,,n
B0 e
JI hy
An a is independent of M because o%(Wigner—Eckart theorem and also
B’ o
diagonal since the hamiltonian commutes with (J, Jz). Substituting Equation

(3.4.1) and the corresponding expression for Bn n into Equation (3.3.7)
B’ a
and using crthogonality relations for the vector coupling co-efficient and

spherical harmonics, it is easy to prove that the amplitude Ail (p', p, E)
B’

satisfies the one-dimensional integral equation

JI Ji
A n (P': P E) = Bn -
g2y, B’

JI
(pl’ P E) + % rq||2dq|| Bn 0 (P‘, qn’ E)
o Y0

B>y
_ 4 It
Tn e ZM) An ,N
Y Yoo

(", p, E). (3.4.2)
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JI
This is the appropriate form for the evaluation of An 0 numerically.
B’ o
For every value of the total angular momentum J there will be a set of

coupled equations. To solve these equations we supply Bi In (p', p, E)
. g7y

and TW which are determined from the knowledge of the separable two-body
jnteraction. In our model calculation it is relatively simple to solve
Equation (3.4.2) since the energy variable E = - Eﬂo is below the
threshold. Therefore no logarithmic singularity will appear from the
kernel and the equations are non-singular. We replace the integral by the

discrete sum and the matrix inversion method is used to obtain the

numerical solution.

Now, we shall determine the rationally invariant structure of
the driving term. To achieve this end we shall follow closely the steps
given in References (51) and (52). The rotationally invariant form of

the driving term is
J "2 . N
s , E) =J 2 < s 3 G. > < i g >
Ng ™, (PB B 2 I Joa | %8 Igg > Iy | *aa
[¢3

< g Ags 550 | Fp Wy > <8 Ays 80, | Gy my > < dg Mg Jgmg | S % >

<]

3 z > < > >a i<d 1 b2 >
o Mo 3oy, [ 5, Z, Ly Mg, Sg Zg | oM Ly My Sq Zg | am

L n ., P > . (3.4.3)

<A, s Mgy Loy mg, g | Go (E) P | A, M o Ty Py

n o
B a
The summation includes all angular momentum projections. The

object <A, MB, LB, ng» Pg | 6o (B) P | A, M, L, m > is written

8 . o’ o’ o’ Py,

as (51)

< ) >
Ano’ MB, LB’ nBa PB | Go (E) P l Anaa Ma, Ld’ nus pa
o]
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"~ A * A
= J dp, dpg dpg dpg YLB,MB(pB) %> B3 "8 | 3 a'g>
12 12
Pg 98

= 2 jl-. ' 1
2UB ZU.Kf < Py Yy -l Ana’ Py nq g YLa’Mu (pa) ’

A

(E -

(3.4.4)

where 'uB is the reduced mass of the particle B and the pair (a + v);
uYa is the reduced mass of the pair (o + y). The form factors are

written as

A

_ 3
Byt o | Ry o Bl P > T (g T 2'0) By ) Va0

(3.4.5)

The relative momentum g, can be expressed in terms of the free momentum

P, and BB of the interacting particles as

9 = Pgt PRy 9T 7 By T Pples

where

Py = mB/(m8 + mY), pB ma/(ma + mY), (3.4.6)

and ms mB and mY are the masses of the particles o, B, and Y respectively.

Using the identity given in Reference (53) one can write the spherical harmonics

Yza’xa(qa) in terms of the spherical harmonics Ya,ma(pa) and Yb,mb(PB)
i . b (28, + 1)1 X
99 @ Yza,xa(qa) 8o b | (2a + 1)1 (2b + 1)1 }

b
am, b my a

a b ~ A
(pypy) ~ Pg Ya,m (p,) Yb,mb(ps) <am_, bm [, A, > (3.4.7)

The partial wave decomposition of the product of form factors and Green's

function is
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-9 % 1

qB g (g,) 7 3 2 q og_ (q))
n, 38 E“zpa 2pB ~ (B, T 2g) n, 0
m n 2
6 ]B mY
= 4r x5, FF B) Y. * (5 Y, () (3.4.8)
4'” £M FnB’na (PB, Pa, ) £M pB LM P(X. 1 U
where
1 -2 % -2
. L 0’8 &, | (g) By (a)) g, © B
F (P,P,E)=—' dx - 3 Ll )2
Ng,0, B’ Yo 2 ), ) 25 {p, + Pg
= Py, /2nh - PB-' mB. 2m
Y
(3.4.9)
Here x 1is the cosine of the angle between the unit vectors p, and
- L . ) . i
P, F (p,»> P., E) contains all the dynamics of the interaction.
B nB,nu B o

Now combining the Equations (3.4.3) to (3.4.8) and using the following

(22, + 122 + 1) (L + 1) 7%

relations
(1) )
Y'Q'Ile (P) YQ'Z)mZ(p) - Ll?’l [
21 %2 L 2
( 0 o o )« mi

(ii) Equations (2.20) and (3.21) of the
of the Reference (55), we may re-derive

invariant driving term as

vV 4m
o L * ~
n, M ) YL,M (p) (3.4.10)

Reference (54) or Equation (25.3)

the final expression for the

J . 2 2
B (p,> P.s E) = (L -9 )p B pya T FE (pgs> P> E)
nB,na R o nB,na a B L nB,na B ¢)
2& lB
~ £, a, b a-b

where
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AL A

N

~f a. b Rl\ ~ A A ~ e A A A2
’ > - i 3 L
AnBs“a ) "2, %5 L Sy 85 o Jg %0 %5 ¢ o
l/n
ot B° L8 + 1) 1 + 1) 1/(2a) L (@) (24 - 2a) 1 (25 - W)Y
A AN 2 o .
x T f any (5% S f o Sa S I
f AA
Ja JB JY ¥
54, Qa QB sB
1] i £
L, LB f Za 28 f ANL Lsg A L, N
A'Y A & 4 QB_b A o o o o o o
A f-ab N
Za-a b A j’a RB—b A
o o © 1-0 ) o
R=—J+La+LB+SOL+SB+ju+j8+sa+28—ja, (3.4,12)
where £ =+ 2041 .
The 3j, 6j and 9j symbols are defined according to Edmonds (50).

Following Ord-Smith we can define 12j symbol.

This complicated structure

of the driving term was first derived by Stingle and Rinat (52) for the

neutron-deuteron scattering.

given.

The iso-spin contribution can be determined separately.

In their reference more detailed steps are

corresponding contribution to the invariant driving term is

<[(1Y,ia)“i'BiB]1| [(iS,iY)_ia,ia]I>

i +1

(=)o

where i
—Q
for the pair (B + v).

S$31 channels.

The
- ~on i i 1
g+ 21 i I By o , (3.4.13)
i I i
o B
and E& is the iso-spin

is the iso-spin for the particle O ;

For our calculation we have considered only S11 and

For the S-wave pion-deuteron scattering the total angular
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momentum J is 1 and the total parity of the system is - 1 and the

total iso-spin I = 1.

3.5 The Specific Form of the Driving Term for a Free Exchange

of a Pion and the Multiple Scattering Contributions

Following Stingle and Rinat we have also coupled the spin of
the exchanged particle last to determine the appropriate form of the
driving term for our calculation. The exact form of the rotationally
jnvariant Born term will be simplified greatly because the pion has spin
, zero. When.one of the angular momenta is zero the 127 symbol reduces to
the 9j symbols or two 6j symbols (56). For a free exchange of a pion the

’

value of the 12j symbol becomes

j. S, S; 3
R 5(igs 59 85U, 8)
jd, f jB (o] = A ~
. 2 Q' . SU. S8
a ‘a B 7B
-j_Ot SOI. j()‘.
>4
8, f % (3.5.1)
g Sg g

We now substitute this value into the general expression to obtain the
total contribution from the angular momentum part for a free exchange of

a pion between the quasi-particles

~ L,a,b _ RS © 4 4 2= o~ e s
A“B’“a = (1) 8, %5 8, 85 3, I 85 8, Lol bg
b 4
. paa 0g { (22, + 1! (2% + 1)1/(2a)t (2b)! (28, - 2a)!

(22B - 2b)! }1/2

AN AN ‘ . ) ) — :
> Lf AN] Sa 5 f Jo %0 Yo Lo T8 f
AN 8 s, L, Ly J A AL

o B B - 3
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L

aSLBf A£LB A.c.La
a ﬁs—b A o o o o o o©
la—a b A

o o o (3.5.2)

(o] (o] o

2& a p» N { a f,-DbA

Finally, the specific form of the driving term for a free exchange of

a pion is

2 L
JI B 8 o L
anna (PB’ pg, E) = { (l - (SnB’nu) PO" pB E»Pns’na(ps, pO‘,’ E)
QIOL 28 ~ L a-b - =
X aio bzo AnB’na (Pa/PB) } ¢ (1, igs 1a) (3.5.3)

The Equation (3.5.3) reduces to a very simple form for our calculation
Ihe

since 1a = 1, =0; L, = Lu = 0, The values ofx 3j, 6j and 9j's have

B B

been determined from Rotenberg et al's (54) manual. Combining the Equations

(3.5.3) and (3.4.2) we can solve AnJ ﬁ by standard matrix inversion
B’ a
method. Now, introducing the solutions of A g i into Equatioms (3.4.1)
ng,n,
and then using Equation (3.3.6) it is straightforward to evaluate the
higher-order re-scattering contributions. The multiple scattering

contributions to the first—order energy shift has been evaluated for the

parameter sets a and b of Table 1 in Chapter IIL. For the parameter

¢) 2
h .24

|l

are - 1.28 eV to -
M)

eV respectively. The corresponding values of AEh ’ when we neglect the

sets a and b the calculated values of AE

momentum spread of the pionic wave function from the weight function
Fn d,Equation (3.3.16), are - 1.42 eV to - 1.37 eV. Finally the
a’

scattering length approximation is made by using Equation (3.3.18) for the

A . 1 - Y 7 -
factor an’d and replacing Aanoc (r's b, ETr ) by the zero energy oOn
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1
shell value A (o, o, —Eﬂ?).The values of AEh( ) obtained under

n, ,N

B’ a
this approximation are - 1.12 eV to - 1.07 eV for the parameter sets
a and "b. We note that off-shell corrections are also significant in
the multiple scattering contribution to the first-order energy shift.

The calculated values of the total first-order shift AE and its

components under the various approximations are summarized in Table 7.

3.6 Contribution from N--N Re-Scattering

Nucleon-nucleon scattering does not occur in the first-order
energy shift of our theory but it appears only in the second and higher
~ N A
orders of the perturbation 6 V =V - V. Terms involving nucleon-nucleon
re-scattering are however not negligible in calculations of the pion-
deuteron scattering length using the multiple scattering series. Therefore

it seems desirable to estimate the gsecond-order shift to confirm the

validity of our approach.

From Equations (3.2.22) the second order shift is given by

N ~ ~ "N - N "~

i 1 0
2 <P | s vy > <y Psv|vp® >
Aa$) = = m ﬂo 1 it > (3.6.1)
i - %
1#0 Er ~Ep
where we have introduced a complete set of states | wﬂl > with

energies EW? of the model problem. These states are simply related to

; i .
the usual atomic states | wﬂ > of the pion bound to the c¢. m. of

N . /\_l/ . '] .
the deuteron by |Wﬂl >=h"? (Eﬁl) Iwﬂl > and have energies Enl =-g4 -

Eﬂl where Eﬂlisthe Coulomb binding energy of the pion. The second-order

energy shift should be small since the matrix elements

<A S AA ~ i = 0 T _ n ~ i >
A R ol ey -ty G| fy> (B.6.2)
are of the order of ~ eV and the energy denominators, ETT0 - E,nl =

i 0

eﬂ - eﬂ , are of the order ~ KeV.



- 66 -

Replacing Eﬂ1 by EﬂlJ the energy of the first excited

state of the model pion-deuteron system and using closure, we have the
standard bound
A 2

|AE(2)|<"—1""_—{<¢ol(6;})2lwﬂo>_<w,n-olévllp,n.o>}'

(3.6.3)

To estimate the second-order shift we have evaluated the right hand side

of Equation (3.6.3) in the single scattering approximation for § V.

A A
O >h < + t
(8 V) =h deGo(tﬂ1+t.,T2)Golfd fd|G°_(tm 2
A
Golfd>h2
R 0 p2 0 pz
= < - - - - R
WP <f g | Go (ep +ep) Go (=EF —eg =g t, (=B = 55)
i
> h* .6.
Go (£ +t )G0|fd hZ. (3.6.4)
With the parameter set a, we obtained the bound 0.17 eV and for set
b, 0.15 eV. These estimates seem to confirm the rapid convergence of

the perturbation series.

Moreover, the modification of the unperturbed atomic state by

the strong interaction is given to first order by

~ ~ 1 Ai A . Al;[\)0>'
lv, > = v > + 2 =5
& i w0 Egt - ES

The admixture of excited Coulomb states is small, since

A . ~ AO>~ A 11_10 ~
P l’)’”1 | 6 v | wﬁ eV and E1T E KeV.
3.7 Conclusions

From Table 7, the calculated first-order energy shift, which

includes multiple scattering of the pion on the nucleus is - 3.68 eV to
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- 3.55 eV depending on the parameterization of the pion-nucleon

interaction. The agreement between the calculated and present experimental
+ 1.6

e
- 2.0

shift would increase slightly if we include (i) charge exchange type

measured shift ( - 4.8 V) is quite good. The calculated energy-

reaction T p > ™an ; (ii) P-wave contributions; we shall give rough
estimates of these contributions later on. It is however important to

note that because of the large cancellation in the iso-scalar part of the
pion-nucleon scattering length, the first-order energy shift obtained from
the exact expression Equation (3.3.4) is - 1,12 eV greater than that
obtained from the scattering length approximation of DGBT., Equation (3.1.1).
We interpret this contribution as the off-shell correction to the energy
shift. When we neglect the momentum spread of the pionic wave function

from the energy shift calculation the absolute valuesof the shifts for Sli
and S31 channels become larger compared to thoseobtained from the exact

evaluation of the corresponding energy shifts. This fact can be understood

from the tabulated values of the weight function Fn d(pa) for the

b

respective channels. Similarly)the energy shifts obtained from the
scattering length approximation for the S11 (S31) channel is greater
(smaller) than that obtained from the Equation (3.3.16). This point can be
explained from Figure 6 of the S11 and S31 channel propagators. From these
sets of results we have been able to demonstrate the sensitivity of the
energy shift to the momentum spread of the pion wave function and off-
shall dependence of the pion-nucleon t-matrix. These factors have been
ignored in DGBT's calculation. The importance of the off-shell behaviour
of the pion-nucleon amplitude in the single scattering approximation which

was previously noted in our earlier work (57) persists when the total
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first~order shift is evaluated. The results of the Table 7 are slightly
different from those of our published paper. There was one programming
error in our earlier calculation (57). Bugg et al (43) have re-—calculated
the pion-nucleon scattering lengths from the low energy pion-nucleon angular
distribution data using dispersion theory. They have found that the
magnitude of the iso-scalar part of the pion-nucleon scattering length

is really very small (a, + 2a3 = - 0.014 mﬂ'l). To determine the pion-
deuteron scattering length, Bailey et al (30) have measured experimentally
the strong interaction shift (AE]j? of the 'S 1level of the pion-
deuteron system. Their method provides a check on the theoretical results
obtained for pion-deuteron scattering at low energy. They derived the

pion-deuteron scattering length following DGBT's formula

a .y = 2o AEl / 4El
S S

where ag 1is the pionic Bohr radius. They obtained

AR, o~ - 4.8 11

6
'Js -~ 2.0 ev ,

The pion-deuteron scattering length can be written as

h + .031 .
rd md - 0.073_ 024 fm (experimental),

[}
I
W
(=]
+
o
1l

0 =mTT+mN
md mN + m,n/2

The contribution of the higher order re-scattering (aﬁd) of the pion to

where a ( %- a; + %— az).

the pion-deuteron scattering length was first evaluated by
Kolybasov and Kudryavtsev (KK; 5) summing the multiple scatter scattering

series. They obtained a ~ ~ 047 to~ .037 fm. Afnan and Thomas(fé)

md
¥ h
estimated a g with the aid of Faddeev theory and found ag " - .036 Im
The calculation of Kwon (58) provides an estimate of ah about

md
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~ - 0.045 fm. Recently authors Galimzianov et al (59) have calculated
the energy shift and pion-deuteron scattering length from a variational
technique and obtained the scattering length - 0.083 fm, and the energy
shift - 6.09 eV. Therefore, the_experimental measurement of the energy
shift is of urgent interest. Unfortunately, the inherent error in

Bailey et al's measurement of energy shift is too high to make any
conclusive prediction. The fundamental importance of an accurate

experimental determination of the energy shift is two fold :

(i) it will give independently, a bound on the pion-—
deuteron scattering length not relying on the

approximations of the dispersion theory;

(ii) it will also provide a check to the convergence
of a graph summing method in strong interaction of
KK (5) and it will also assess the reliability of

precise Faddeev calculations.

Recently Beer et al (30) are trying to determine the energy shift of
the pion-deuteron system to an accuracy + 0.2 eV using better experimental

arrangements. This accurate result will give a or the energy shift to

md
an accuracy required to test the importance of the theoretical calculation.
Nevertheless, it would not be possible to separate out the off-shell

contributions from the pion-deuteron scattering length if we use DGBT's

formula to determine it.

The estimates of charge exchange and P-wave scattering to the
energy shift can be fixed up in the following way. The contribution of
the charge exchange scattering to the pion-deuteron scattering length is
approximately (60) |

<! = ~ - -1
a. = a-p-+Tn (<r >d)aﬂg TP .009 6m”‘T
7id 1T
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The total P-wave contribution is ~ 0.006mﬂ'1 (60). The net contribution
of these two processes in the energy shift calculation will be ~-1.12 eV.
If we now add these contributions to the calculated energy -shift, tﬁe
total energy shift becomes - 4.80 eV to - 4.67 eV. We believe this

is the appropriate result for the energy shift (theoretical).

The width of the 'S 1level transition is very small (9) which
implies that the absorption contribution will be negligible. Although
the P-wave contribution is very important in pion-nucleus scattering it
has a minor effect on AE(I), as the pion orbits are large compared with
the nucleus radius and a pion in a relative S-state to the nucleus,the
S-wave interaction dominates. We also confirm that the iterative solution

of A J I converges rapidly as might be expected from the weakness of

n n
B’ o

the pion-nucleon interaction (the second iteration gives matrix elements

to an accuracy of better than ~ 8%) .

It appears from our calculations that the correction to the
first-order shift from N-N re-scattering in intermediate states is small
and insensitive to the choice of the pion-nucleon form factor. On the
other hand, in/multiple scattering calculations of ard nucleon-nucleon
scattering makes an appreciable contribution. To understand this apparent
discrepancy it is necessary to consider carefully the differences between
the present perturbative approach and the usual treatments. If Equation
(3.2.10) is iterated, the terms of the usual multiple scattering series
are obtained. However, we have not attempted to solve Equation (3.2.10)
by calculating terms in the series solution, which would be the analogous
procedure to that of the usual scattering length calculations. Instead

using perturbative theory we have compared the solution of this equation with

the solution of the Equation (3.2.13) which describes the solvable three-~
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body problem where the plon interacts with the deuteron only through the

Coulomb potential at its ¢C. M. Thus, although the higher-order terms

in the perturbation ¢ G = G - §° include re-scattering of two nucleons ,
the effect of these terms cannot be compared directly with the multiple
scattering terms associated with the iterative solution of Equation (3.2.13)

which may converge slowly. In particular, the energy denominators of the

b
perturbative series are much larger than the intermediate propagators

in the multiple scattering expansion,

A necessary restriction on the form of the interaction in the
present theory is separability of the nucleon-nucleon amplitude, which
was introduced in order to reduce the three-body problem to an equivalent
two-body problem. The form of the pion-nucleon interaction is, however ,

quite general. We can also use different types of pion-nucleon interaction

potentials in our calculation.

Finally, we observe that the theoretical estimates of the energy
shifpjbased either on the multiple scattering expansion, the Faddeev
equations or the present perturbative theory are in reasonable agreement
with experimental results. Indeed the naive impulse approximation gives
a quite good estimate of the shift,for the reasons discussed by Faldt (45).
Nevertheless, our work does show that if the experimental value is refined
further, as seems likely in the near future, theoretical analyses will
require a more careful treatment of the relationship between the energy
shift and the scattering length. Both the momentum spread of the pionic
wave function and the overall off-shell dependence of the pion-nucleon

amplitude should be taken into account properly.
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Fig. 4a Plots of the weight function FSll,d(p) with the

parameter set a of Table 1.
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P Equation (3.3.13) Equation (3.3.16)

C%é%feﬁ MeV% anz M_eV;5 Frna/2
o

0.0 4512 x 107° .5143 x 1072
.1 .3816 x 107? .4314 x 107?
2 .2575 x 1072 - .2890 x 107?
.3 .1675 x 1072 .1840 x 1072
A o .1102 x 1072 .1198 x 1072
.5 .0751 x 1072 .0811 x 1072
.6 .0529 x 1072 .0568 x 1072
:7 .0384 x 1072 .0410 x 1072
.8 .0285 x 107* .0304 x 1077
.9 .0216 x 1072 .0230 x .07?

1.0 .01667 x 1072 .0177 x 1072

TABLE 4a The values of the weight function lFSll d(p)‘
b

for the parameter set a of Table 1.



Fig. 4b  Plots of the weight funmction Fg., 4(p) with the
9

parameter set a of Table 1.
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P Equation (3.3%13) Equation (3.3.16)
(Migf?) MevE T/ eV Fm!”
0.0 .3196 x 1073 .3644 x 1073

1 .2708 x 1073 .3057 x 1073

.2 .1843 x 1073 .2049 x 1073
.3 .1191 x 107° .1306 x 1073
A .0784 x 1073 .0849 x 1073
.5 .0535 x 1073 .0577 x 107
.6 .0378 x 10°° .0405 x 107°
.7 .0275 x 1073 .0291 x 107
.8 .0204 x 1073 .0217 x 107
.9 .0155 x 1073 .0165 x 107?
1.0 .0120 x 1073 .0127 x 1073

TABLE 4b The values of the weight function lF531 d(P)|
H

for the parameter set a.of Table 1.



Fig. 5& Plots of the weight function FSll d('p) with the
b

parameter set b of Table 1.
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5 ﬁgggt.iogma(f.il‘.l& f{g;gtig;% (3.3.16)
(MeVfe) En! '
0 L4644 x 1072 .5313 x 107?
il .3942 x 1072 4457 x 1072
o2 2681 x 1072 .2985 x 1072
o3 .1731 x 1072 .1901 x 107?
4 .1138 x 107% .1238 x 1072
.5 .0776 x 1072 .08379 x 1077
.6 .05469 x 107° .058751 x 1072
.7 .0396 x 1072 L0424 x 1072
.8 .0294 x 1072 .0314 x 1072
.9 .0223 x 1072 .02377 x 107?
1.0 .0172 x 1072 .0182 x 107°
TABLE 50  The values of the weight function [FSll,de)I for

the parameter set b.of Table 1.



Fsgd (P) (MeV”2 Fm”2)

Fig. 5b Plots of the weight function F831 d(p) with the
9 .

parameter set b of Table 1.
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Equation (3.3.13) Equatign (3.3.16)

bty pun WV T ol

0 .3261 x 1073 .3727 x 1073
sl .2769 x 1073 .3126 x 1073
o2 .1885 x 1073 .2095 x 107°
.3 | .1218 x 107% 1325 x 107°
4 .08028 x 1077 .0871 x 107°
.5 .0548 x 1073 .0590 x 107°
.6 .0387 x 1073 0414 x 107°
57 .0281 x 10°° .0300 x 107°
.8 .02097 x 1073 .0222 x 107°
.9 .0159 x 107° 0169 x 107°
1.0 .0123 x 107° .01302 x 107°
TABLE 5b for

The values of the weight functioan831 d(P”
3
the parameter set b-.of Table 1.
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E 100, 0, -B) (fm)  f3(o0, 0, -E) (fm)
(MeV)
0 «24191 - .13409
3.0 .19275 - .20999
6.0 .186889 -~ .24887
9.0 .18390 - .27897
12.0 .18202 - .30410
15,0 ’ .18069 - .32586
18.0 .17969 - .34513
21.0 .17891 - .36244
24.0 .17828 - .37818
TABLE 6 The off-shell dependence of the 811 and

S$31 channel pion-nucleon amplitudes
calculated from the parameter set a. where
fi1 and f3 are the amplitudes for the
channel S11 and S31 respectively.
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FIG. 6

The propagators of the S11 and S31 channel interaction for the

different values of E.



parameter set a parameter set b

. ; 1 N1y 1 ] 1 1 1 1
A€ ) Ag$) Ae() e )" AapC ) AeC)
S11 + 12.33 + 11.69 + 9,80 12.14 11.55 9.66
S31 - 13.66 - 14,49 - 12,22 - 13.38 - 14.19 ~ 11.97
) SsC - 1.33 - 2.80 - 2.40 - 1.24 - 2.64 - 2.31
™~
™~
! MSC - 1,12 ~ 1.42 - 1.28 - 1.07 ~ 1.37 - 1.24
TABLE 7 First-order energy shift in eV for the pion-nucleon parameter sets a and b

given in Table 1, Chapter II. The total first-order shift AE( 7 is the sum of the
single scattering contribution (SSC) of Equation 3.3.4, consisting of contributiens
from the S11 and SF) pion-nucleon channe}g, and tpg’multiple.scattering contribution
(MSC) of Equation 3.3.6. The values AEC ¥nd  AECT)” are approximate shifts ohtained
by neglecting'the momentum spread of the pion bound state and additionally in the
case of AK( Y, the momentum dependence of the pion-nuclegn amplitude. '



CHAPTER IV

SECOND-ORDER OPTICAL POTENTIAL FOR THE PION-CARBON SYSTEM

4.1 Introduction

In this chapter we shall study the interaction of the pion
with the carbon nucleus at intermediate energies by using an optical
potential constructed from the two-body pion-nucleon interaction and the
nuclear form factor. When this optical potential is introduced into the
two-body Schrodinger equation, the solution of the equation correctly
describes the multiple scattering of the pion from the various nucleons
in the nucleus. We shall introduce some fundamental approximations to
convert this many-body problem into an effective two-body pion-nucleus
problem, In particular, the nucleus can be considered as "frozen" by
means of the closure approximation on intermediate nuclear states. Then
one calculates the pion scattering amplitude from a set of spatially fixed
nucleons and averages these amplitudes over the nuclear form factor to
determine the pion-nucleus scattering amplitude, Immediately one can make
some corrections to this picture such as

(i) the two-body pion-nucleon amplitude used as input
for the calculation may be fermi averaged;

(ii) the two-body pion-nucleon amplitude may be evaluated
at a shifted energy to take partial account of the nucleon binding or
the proper kinematics of the problem (61).
These two corrections are important since the pion-nucleon cross-section
is very sensitive to the energy variation at intermediate energies. Again
the existence of the pion-nucleon resonance has made the pion-nucleus
scattering amplitude sensitive to the energy-variation of the pion-nucleon

scattering amplitudes.
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For the evaluation of the optical potential in our calculation,
we shall use this'frozen"nucleus approximation. Otherwise the numerical
calculations are too complicated to manage. But it is clear that this
approximation neglects the nuclear dynamics during the intermediate stages
of‘the scattering process and it is also difficult to give any precise

estimate of the error incurred by this approximation.

Unlike the first-order optical potential which is the product
of the two-body pion-nucleon scattering amplitude and nuclear form factor,
the second-order optical potential depends also on the pair correlation

functions. In fact there are three types of pair correlations, viz.

r

(i) Centre-of-mass correlation due to the recoil of the

nucleus during the scattering;

(ii) Pauli correlation because of the anti-symmetrization

of nuclear wavefunctions;

(iii) The short-range dynamical correlation because of the

nucleon-nucleon interaction.

The contributions of the first two-type correlations are small and have
been neglected in our study. To include the short-range dynamical
correlation we assume that the short-range part of the two-nucleon relative
wave function of the independent particle model should be modified. This
is achieved by suitably approximating the intrinsic two-body density
function p (ri, r2), which is the probability of observing a nucleon

at point 1r; if another nucleon is located at rj 27).

The questions we would like to consider in our study of the

pion-carbon system are the following:

For Pas reacon we chinnok be Snre. fob & (Cgnifreent
part  of the  off cthatl ppendtace n hot  dicear Aed 4y

Ml"‘a hl s ~p/se * { mahs i -
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(i) What are the effects of including the second -
order optical potential in the calculation of the differential cross-

section ?

(ii) How does the differential cross-section change if we

vary the nucleon-nucleon correlation length ?

(iii) 1Is the scattering cross-section sensitive to the off-

shell behaviour of the two-body pion-nucleon t-matrix ?

Our calculation also confirms the observed (7, 27, 28) downward shift

in the peak of the total cross-section of the pion-carbon scattering at
intermediate energies. To answer these questions, we need information
about the basic pion-nucleon and nucleon-nucleon interactions which are

the building blocks for any pion-nucleus microscopic theory. As mentioned
earlier, we have constructed separable models for the two-body interactions
from the experimental data at different energies for all significant pion-

nucleon reaction channels.

There are many models of pion-nucleus scattering, both above and
below the resonance region. One of the more successful uses the multiple
scattering theory of Watson (26) to write down the pion-nucleus optical
potential in terms of the basic two-body interactions. Because it is
better to use a theory valid over a wide energy region, rather than to
simply extrapolate from either high or low energy models, we shall make
physically reasonable approximations to consider the effects of the
complicated nuclear structure of the target on our construction of the pion-

nucleus optical potential.

In principle, we could try to solve the many-body Schrgdinger

equation for the pion-nucleus system, subject to the appropriate boundary
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conditions, to determine the scattering amplitude. In practice this

would be a very difficult procedure, since excited intermediate states are
involved and the many-body effects caused by the target nucleus are poorly
understood. However, we are primarily interested in the elastic scattering
of pions by the nucleus, and this is basically a two-body reaction, even
though the internal degrees of freedom of the target nucleus can be excited
during the scattering process. Most of the nuclear structure effects can
be included in the optical potential,. We shall construct an approximate
optical potential by using only pért of the bound state information, such as
nuclear density and nucleon-nucleon correlation functions. The aims in
this chapter are

)

(1) to calculate the first-order optical potential U

and the second-order optical potential U( ) using the general Kerman-

McManus-Thaler (KMT, 25) formulation;
)

(ii) to evaluate the differential cross-sectionsfrom U
M) *) : i

and U + U to estimate the importance of the nucleon-nucleon
correlation;

(iii) to investigate systematically the off-shell
dependence of the differential scattering cross-section using two sets of
phase-equivalent potentials for the pion-nucleon interactiond)-
One of the important reasons to include the second-order optical potential

in this calculation is the following. The contributions of the multiple
scattering of pions from the carbon nucleus are significant at intermediate
energies. The sum of all single pion-nucleon scatterings contributes
60(T n) + 60(m p) to the total cross-section, which is about twice the

calculated cross-section at resonance (7).

Therefore, the double and higher order microscopic re-scattering processes
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should be included and they actually cancel the large contribution
obtained from the single scattering approximation. The first-order optical

potential includes only the contributions of the single scattering

processes. The solution of the Lippmann-Schwinger equation with U(l) + U(z)
includes a larger class of microscopic processes than those contained in
the solution obtained from the first-order optical potential only. In
principle the solution of the Lippmann-Schwinger equation with the second-

order optical potential should give better results.

From the studies of Landau et al {7), Lee and Chakravorty (27)
Wakamatsu (28) and Garcilazo (29) on pion-nucleus scattering at different
energies, it ié clear that the first-order optical potential is quite
adequate for the qualitative description of the pion-nucleus elastic
scattering at and above the resonance energy. The results are also consistent
for the elastic differential-scattering cross-sectionsat small to moderate
angles. It is also clear from their studies that at large angle scattering
the differential cross-sections are very small and the momentum transfer
is large, so the second-order optical potential should probably be included
in the calculation. The success of the first-order optical potential model
at intermediate energies is mainly due to the strong absorption in the
resonance region, which actually makes the theoretical results to some
extent model-independent (61). Below the resonance energy, where the
effects of resonance are very weak, the predictions of these models are not
as good, possibly because the models fail to take account of the inelastic
contribution . When the kinetic energy of the pion is too low to excite
the nucleus, the only source of inelasticity is associated with true
absorption of pions, so the correct representation of the P11l channel,

in which the absorption takes place, is very important. In practice the
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optical potential model can only take absorption into account in a gross
manner. For a better description of the real absorption one should look
for a field theoretic approach. The optical potential calculated from the
field theoretic approach shows some problemsregarding the convergence of
the higher -order terms of the optical poteqtial series (62, 63). In our
calculations we have considered two different models to represent the P11

interaction.

In Section 4.2, we introduce our work with a brief account of
the formal theory of the optical potential, following the approach of
Feshbach, Gal and Hufner (FGH, 64) and Joachin (65). Next, in Section 4.3,
we derive explicit formulae for the first-and second-order optical potentials.
Following Landau et al (7), we shall express in Section 4.4, the pion-
nucleon amplitudes in the reference frame of the centre of mass of the pion-
nucleus system. These transformations are not unique. In Section 4.5 we
shall present the separable model interactions for the P33 and P11l channels,
The partial wave decompositions for the first-and second-order optical
potentials are given in Sections 4.6 and 4.7 respectively. We solve the
Lippmann-Schwinger equation for the reaction matrix Rg (k! k, E) using
the technique of Noyes and Kowalski(66) to determine the pion-nucleus

differential scattering cross-sections.

Finally, in Section 4.8, we shall discuss the results of the
differential scattering cross-sectionsevaluated from U(l) and U(l) + U(z)
to examine the importance of the mnuclecn-nucleon correlations, and the off-
shell dependence of the cross-section will be appraised using two sets of
pion-nucleon interaction potentials. Recently Lee and Chakravorty (27) and
Wakamatsu (28) have calculated the second-order optical potential for the
pion-Helium nucleus and subsequently have determined the pion-Helium

differential cross-sections at different energies and scattering angles.

Their models representing the pion-nucleon interactions are quite different
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from those we have used in our calculations. They have also included

the nucleon-nucleon correlation term and the contribution of the binding
correction. Lee and Chakravorty have examined the influence of the |
variation of the P33 channel range parameter in pion-Helium scattering.
Their calculational steps are also different from ours. Moreover our
parameterizations for all pion-nucleon interaction channels are very
consistent with the experimental results. We have investigated the pion-
carbon scattering using two sets of phase equivalent potentials. The P11
channel has been included to compute the second-order optical potential.
This channel contribution has not been considered in earlier calculatiomns

(27, 28).

4,2 Formal Theory for the Optical Potential

Watson's theory (26) of multiple scattering leads to a simple
description of pion-nucleus scattering. The effects of all complicated
interactions between the pion and target nucleus can be incorporated into an
optical potential, through which the incident particle propagates. Once
the optical potential has been determined, the scattering problem reduces
to a one-body problem, namely, the scattering of a particle by a potential.
However, the cost of this dramatic reduction from a many-body to a one-body
problem is the introduction of a complex, non-local optical potential,
whose determination is necessarily difficult. Therefore we must in practice

work with an approximate model for the optical potential.

Following KMT (25 and 65), we may write the total hamiltonian of

the system, made up of the incident pion and target nucleus, as

H=Ho +V, Ho =H +K , (4.2.1)

where HN and K stand for the hamiltonian of the target nucleus and

kinetic energy of the incident pion, respectively. The potential V,
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which may be considered as a perturbation, is the sum of all primary
{nteractions betweern the pion and the nucleons of the nucleus.

A

v = 2 v, (4.2.2)
i

The initial and final asymptotic states of the target nucleus plus the

incident pion satisfy

Ho ¢a - Eaq)a
(4.2.3)
H()q)b = Ebd)b 3
where
ei K.R
¢a = @a’ Ea Yﬁ =0 wo’ ET (Il,'gl’ =B gﬁ;""EA’ EA)’
(4.2, 4a)
and
JLKLR
%5 = %b,x', v, =0 Yo, y_,_E(El’ 15 L2, S25eer Ly 8y)-
(4.2, 4b)

We have assumed that there are A elementary scatterers inside the
nucleus and Y1, L2, -+-¢ I, are their spatial and s1, 825 +++ S are

their spin co-ordinates respectively. The target nucleus initially has

momentum K, spin V., and bound state wave function 1l . The

- -T O _\lT

corresponding quantities in the final state are XK', v'T, and VY o
- - o L7

R is the centre-of-mass co-ordinate and 0] and ¢ are

- a’_l_(_,_\i'n— ba_lf-_' s_\_)__.n-

the wave functions for the incident and scattered pion with momenta Kk

and k' respectively. The initial and final energies of the system are

K2
ETr(k) + €9 +-2—MT

t=
I

(4.2.5)

/2
— ) 1 Pl
b hﬂ(k)+eo+2MT ,

st
1
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where €y 1is the internal ground state energy, MT is the mass of

the target and ETr is the pion kinetic energy.
The pion-nucleus scattering state (wa+) is given by (65)

+ il £
- ——V .
Va =% * E -H Ya
a (o]

(4.2.6)

. . + . . .
This many-body scattering state wa contains information about all
processes between the pion and target nucleus. In fact the complete
B - + ] e . . .
scattering solution wa embodies the description of elastic, inelastic

absorption, and production reactions.

The elastic scattering component of the total many-body scattering

+
state (wa ) is

+ _ +
q)e’a_ H-O wa [y (4.2.7)
where we define 1Ily to be the projection operator on the state wo v_*
"T
= < 4.2,
I Z | s, g 2 Wy gl |15 (4.2.8)
=T -T ~1
The elastic scattering state w;+a satisfies the integral equation
3
+ 1
- w2
L . ¢, + e ¢ (4.2.9)
a o

where T, is the corresponding elastic scattering component of the total

scattering operator T,

We now define an operator F which reconstructs the total

scattering state out of its elastic scattering component by

U] = Fy : (4.2.10)
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Multiplying by the operator Ilj from the left of Equation (4.2.6) and

using Equation (4.2.7), we have

+ 1 me +
s + v (4.2.11)
we:a ¢a B -H opt we,a i
a o
where ¥ + +
Vopt 1be,a o VF we,a
or
& < >
Vopt o|lvr | o>, (4.2.12)
> =
with | o Yo,
-T
For an explicit representation of the optical potential g' , we must
opt '

know the exact structure of the operator F. Combining Equations (4.2.6),

(4.2.10) and (4.2.11) we write

o+ + 1 ~ +
F wesa - lpe:a h E - H VOpt lpe,a
a o
1 +
T ET CH YT Ve,
a o
+ 1 I + 1 +
= e — V F + VF
lPe,a E t_q 0 lPe,a E - H 1pe,a
a o .
- {1t QT VEY YT (4.2.13)
E -H €,a
a o
Therefore
_ 1
F=1+ E'—q:—-——};“- (1 - Ip) V F. (4.2.14)
a

On combining Equations(4.2.12) and (4.2.14), we obtain the general form

of the optical potential

Y =<0 |vlo>+<o0 |v—gt L-T)v]|o>
opt E - H
a (o]
1 1 ~TM) V| 0>+
+<OIV'——+——(1—H0)V-—:—-‘-—(1 0) "R
E " -H E." -H

a g a 2 (4.2.15)
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v in the optical

The appearance of the pion-nucleus potential V = i

M B

potential is a great obstacle teo its practical applications. Our
intention is to re-write Equation (4.2.15) in terms of the two-body

t-matrix. To achieve this aim, we introduce an auxiliary equation

1
- v, + v, ——— (1 - T) T, ; 4.2.16
Tj MRS Ea+ - H, ( o) T ( )

and the operator F, in terms of Watson's equation, 1is

1
= 1 + Yy — -1 T.F. ) .2-17
F Y . -® (1 0) R (4 )
a )
with
1 A
F = 1+ 1 - ) T,F . (4.2.18)
i E:: H k(a&J) =1 o7 kK

Introducing Equation (4.2.17) into the definition of F din Equation (4.2.14)

we write

=1+E'—.;_-1“‘"T(1-H0)V
a.- o)

>

1 1
+ (1 - T,V 1 - To).Z, T.F,. (4.2.19
E;frl - 0 E;¢’:"ﬁ;‘( 0)J=l 555 ( )

Now, it is easy to see that

éTF % +%(T YF, + 2 (F 1)
L = V. . = . . : P
733 i TR TR M WA= T R
v+é '__,_, (1 ]T)TF
jJE - ]
a 0
: 2 : (1 - o)
p) ,, ———— (1 -To) 1
j k@ P1IE,; - H Kk
A 1 A
= V+2 v, 1 - Tp) Z F
jVJ W( °)k=lTkk’

= VF (4.2.20)
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where the Equations(4.2.16) and (4.2.18) have been used to derive
Equation (4.2.20). It is straightforward to show from Equations (4.2.19)

and (4.2.20) that

1 il

= 1 - Tg)Vv 1 +—— (1 - 11
F=1+ i‘,_-l-_—-ﬁ— ( )V { E+ - H ( 4)VF}
a 0 e
1
= 1+ ETT (1 - Ilg)VF . (4.2.21)
a (o]

Equation (4.2.21) explains thechoice of the auxiliary Equation (4.2.16).
Substitution of Equation (4.2.20) into the definition of the optical

potential, in Equation (4.2.12) yields

~ A
=<0 Z 1T.F, 0> . 4,2.22
opt | j 313 l (4 )

Now, Equation (4.2.22) is exact. But the coupled equations satisfied
by Fj are very complicated, because the Green's function and the
scattering operator '% are many-body operators and carry information about

the structure of the target nucleus. We assume in our calculation that

(i) the pion-nucleon scattering matrix may be equated
with that for scattering on the unbound nucleon tj (i.e. dimpulse

approximation) and

(ii) the energy transferred to the target at any stage during
the multiple scattering process is negligible compared with the incident

energy.

As mentioned earlier, the second approximation strongly influences the

whole calculation.
On the basis of these assumptions we may set

=ty (4.2.23)

T,
J
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and the equation for the optical potential becomes

V =<0|Z¢t.F, o>, (4.2.24)
opt i 3 3
with
1 s e
FJ =1 + m— k%$:])l (1 - Iyp) thk. (4.2.25)
(o]

The validity of the first approximation is justifiable, if the energy of
the incident particle is much greater than the average target particle
binding energy. It is a quite good approximation for the pion-nucleus
scattering at intermediate energies. We may imagine the pion to be
scattered at 5 point with very high velocity, while the shock wave carrying
the nuclear excitation will proceed from the same point at a2 much lower
velocity. Before the meson reaches its next interaction point it will
overrun the nuclear excitation and will find the medium again in its
ground state., Therefore we may omit the effects of nuclear excitation from
the argument of t-matrices ( 26 . In this derivation, the incident
particle is not identical with the bound target particles, but this
condition may be relaxed with little modification to the structure of the
optical potential equation (67).

4,3 Explicit Expressions for the First-and Second-Order Optical
Potentials

Following the method of Feshbach - Gal and Hufner (FGH, 64) or
re-arranging the Equation (4.2.24) slightly the first-and second-order

optical potentials may be written as
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s - 1@ + 1 ® 4.3.1)
where (1) 1 A
vt JE) = (Aa-1 <w°’\')T s Z e, (wo) I \po,\_)T > (4.3.2)
and
1OV @) = (a-1)? [ v g2, <V, ,ole o) = )
KAD) i%j 0,V 1 o) % -Kﬂ:E;ﬁo tj(wo)lwo’yT >
1 g | 1 1A
- <‘p ; = 1 :
O’YTI A 3 tj(wﬂ)lwo,\) > E_‘{_——k—ﬂ;-g—"-‘:;];; <wo,2T| A? ti(wO)IPO,yT >J
' (4.3.3)

We use the closure approximation for the evaluation of the second-order
optical potential. In fact we replace the original energy denominator
+ + - =
E - -, -1 by an average value E - - ¢ - U which is
Kp=€5- 05,5 % g Koy o
independent of the intermediate nuclear states (27, 64). The term € is

the mean nuclear excitation energy and ﬁg is the average optical

potential operator. Kn i lhr prow kinelic  ensrgy opere .

The free pion-nucleon operator tj (wg) = LN (wg) 1is defined

by

tj (wo) = v + v 1

i3 wel mk, Ky
where KN is the nucleon kinetic energy operatcr and o 1s the pion-
nucleon scattering energy. The choice of Wo is model dependent and
arbitrary to some extent. Our particular choice is presented in
Section 4.4,
Let us now focus on the first-order optical potential given in

Equation (4.3.2). The spin-flip and spin-isospin flip parts of the two-
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body pion-nucleon scattering amplitude do not contribute to the pion-
nucleus optical potential for nuclei with zero total spin. ‘The pion-

nucleus scattering process is represented by the following diagram.

~

uil

~ -L< _k_‘

FIG. 7

For the elastic scattering of a pion from a nucleus, the standard form

of the first-order optical potential is

’

<k 1 v9® | k>

. (-1 5 J dk.dk'.8 (k +k, ~k"-k",)
3 = =3 =3 = =

dr, dr', e 9 e i R r.'.r.,) <k', k',|t. (wWo)lk, k, >
J =i =3 p(._J >_J) ~ "‘jl j ( 0)|_, _j >

(4.3.4)

where

\Y

2 * .
p(gj, r,) = J by (r,, rz... r,) wo’dT(gj,_gz....zA) drz...dr,.

(4.3.5)

k. and k:j are the momenta of the j th nucleon of the target nucleus

before and after the collision. After integration with respect to Eﬁj

Equation (4.3.4) becomes

- i ki, (r-x'1) i(k-k"). r"a
J dk; dr; dr'y e e o(r1, r'1)

(A-1)
(2m)?

<k', ki-g |t o) |k, ki> (4.3.6)
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where g = k' - k is the momentum transferred b& the pion in scattering
from momentum k to momentum k'. We now introduce a crucial assumption,
namely that we ignore the dependence of the pion-nucleon scattering
amplitude on k;, the momentum of the struck nucleon. This implies that
the kinetic energy of the target nucleon is negligible compared with

that of the incident pion so we may extract

<k', ki -q | t (wo) | k, ki >

from the integral sign and evaluate it at some average nucleon momentum,
ki = ko (~k/A). This procedure is known as the factorization

approximation. The momentum k; then appears only in the factor

exp( - ikj.(xr - r')) so the integration with respect to k; yields

(2m?® § (x1 - ",

and Equation (4.3.4) becomes
CE v Ry oD < - g |t @0 [k > [are ot
= (A-1) <k', ko - g |t o) | k, ko > p(@). (4.3.7)

Equation (4.3.7) may be generalised and for any nuclear state'jws)

1
gr KT F Ty o) [y, Lk
,"T

=F, <k', ko -q |t (W) |k, ke >, (4.3.8)

Bso

where is the appropriate nuclear form factor., For Gaussian type

¥ .0

nuclear ground state wave functions, the appropriate value of ko 1is

|=

q (A-1)

l’:_o = - 'X + '——-'A— . (4.3.9)

The first—order optical potential in terms of the neutron and proton
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t-matrices for a spherically symmetric nucleus becomes

<k v @ | x>

(A1) p(@) <k', ko - g |t (W) + = t1T (wo) | k, ko >

A1) p(@ <k' ko - g |GD £ o) + (BN 6, ) [k ke >,

(4.3.10)

where we have written the pion-nucleon t-matrices in terms of the iso-

spin 1/2 and 3/2 components.

4,4 Transformation of the Pion-Nucleon Scattering Amplitude from
Pion-Nucleon Co-ordinates to Pion-Nucleus Co-ordinates

The frame of reference for the Equation (4.3.10) is the frame
attached to the centre-of-mass of the pion-nucleus system, and so the two-
body pion-nucleon amplitudes appearing in the equations must be expressed
in these co-ordinates. The experimental data for the pion-nucleon
scattering are usually given in the frame attached to the centre-of-mass
(c,m. ) of the pion-nucleon system, so we need the transformation relating
the amplitudes in these two frames. There is a difficulty here. The on-
shell amplitudes are translationally invariant, because energy and
momentum are conserved in the reaction, and so the transformation is
uniquely determined by Poincarelinvariance. For the off-shell amplitudes,
translation invariance is lost and it is not clear whether the
transformation between the frames is unique or whether any non-uniqueness
has observable effects., We will simply extend the transformation from on-

shell to off-shell amplitudes.

If we assume Lorentz invariance of the transition probabilities,

the required transformation is (37)

<k'ko -q |t W) |k, ke > =v <k' |t @) | k>, (4.4.1)
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where Ef and K are the relative momenta in the pion-nucleon c.m,

system and wWwe is the on-shell pion-nucleon scattering energy in the

pion-nucleus c.m. system. Thus, following Landau et al ( 7 )

Wo = Eﬂ(ko) + EN(ko/A) s
where ETT =/ ko2 + mTT2 s EN(ko) = ko? + Il'LN2 . (4.4.2)

Because the square of the total centre-of-mass energy is invariant, we

may relate the corresponding on-shell energy Bo and the on-shell momentum

K¢ 1in the pion-nucleon c.m. system by
e G2 o= : B
s+ w? = (B (o) + Egka))
—_ 1 2 _ 2 __:1-__'2
= (Eﬂ(ko) + EN(KQ/A)) ko (1 A) . (4.4.3)

For on-shell scattering Y 1is given by

Y = Eﬂko) ENGCO)/E,”(ko) EN(ko/A), (4.4.4)

and the appropriate off-shell generalizaticn of vy is

Eﬂ(}c) Eﬂ(x') EN(K') EN(K') 2

y = ¢ ; gcomes) < (4.4.5)
E,"(k) Eﬂ(k ) EN(k/A) EN(k /A)

We shall use Equation (4.4.3) to determine the pion-nucleon off-shell

momenta, k' and k from the corresponding off--shell values k' and k

in the pion-nucleus centre of mass system.

Simiarly the invariance of the square of the four momentum

dnitial final, , .
T - P )° suggests the appropriate transformation

transfer t =(P
relating the scattering angles in the c¢c.m, of the pion-nucleon system and

the pion-nucleus system. For on-shell scattering, we have

2 2 2
2 -k k
cos B = S0 4 =0 o508
Ul

N K6 K0 mnucleus S (4.4.6)

A corresponding off-shell generalizaticn is
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Eﬂ(ld) EN(K) - Eﬂ(k) Eﬂ(k')

cos eﬂN = e
+ %ig' cos e'rrnucleus
or Pz(cos eﬂN) = Pz(é + b cos eﬂnucleus
= 2'22 dogr P (cos 6Trnucl'eus). (4.4.7)

Therefore it is clear from Equation (4.4.7) that the P-wave scattering in the
/

pion-nucleon c.m. influences -6 = 0, 1 waves of the pion-nucleon
scattering amplitude related to the pion-nucleus c.m. frame. The values

of the co-efficient d for different values of {f and {' are given

!
in Table 8 .

TABLE 8 (Ref 7)

The Angle transformation Coefficients dQR' for Legendre Polynomials

L
. \\\\ 3 0 1 2

0 1 0 0
1 a b 0
2 (3a®+b* -1) 3ab b2
—’M
4
4.5 P33 and P11 channel interactions

We present here two simple separable models to describe
accurately the on-shell data, namely the phase shifts and the scattering
lengths of the P33 and Pll channel interacticns. First we shall consider

the P33 channel.

It is very important to reproduce the resonance channel
accurately for the calculation of pion-nucleus scattering. Assuming Breit-
Wigner type form for resonance amplitude, one may well approximate the

P33 channel in the neighbourhood of the resonance. But the Breit-Wigner
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FIG. 9

Theoretical phase shifts for the P33 pion-nucleon wave calculated
from the parameters of Table 2a (dashed curve) and Table 2b (dashed-dotted

curve). The solid curve represents the experimental points (Refs 40, 41).
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form does not give a good representation of the amplitude when the

scattering energy is away from the resonance.

In this channel the pion-nucleon interaction proceeds by P-wave
coupling to A disobar. Fig 8 represents the picn-nucleon amplitude

in the P33 channel

N / il
N P,
- o O
N N
FIG, 8

The model interaction corresponding to the first diagram on right hand

’

side in Fig. 8 , 18

/ AY
V(' P) = AE) V(") Vo (p), (4.5.1)
Ao
where A(E) = ———— (4.5.2)
According to Equation. (2.2.11) the reaction matrix is

vy (k) ¥, ()

k', k, E) = 4.5.3
R,Q,( ) Y, ® ( )
and
) 1 q2 V,le (Q)

Here mA2 may be interpreted as the square of the isobar mass. By making
the strength of the model interaction energy-dependent, we have been able
to include the basic form of the interaction obtained from the field

theoretic approach (68). The unknown parameter m.A2 of the model can be

eliminated by the condition

Y, (B>E) =0, (4.5.5)

where Er determines the position of the resonance (experimental data). On

combining Equations (4.5.5) and (4.5.4) together with Equation (4.5.3) we
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obtain
v (k") V, (k)
R, (k', k, B) = LRSS Mg
Y, (E)
where , ® 4 B
E? - E? gt dq Vy (q) q dq V, (q)
Y, (E) = r + P lm % - P l ).
£ Ao E_ - E(@) E - E(@)
2 I 2. _
o B SN Er R T S 49" (4.5.6)
Now we shall follow our usual technique of Section 2 ¥y, to fix up the

parameters of the model interaction from the phase shifts and scattering

length. The chosen forms of the potential

’

2

Si1 P LTI ST 4.5.7
@ v R 5.72)
p (P (p* +B1)? (p* + B82*)’
. ORI e ¢ Sk (4.5.7b)
P = T = e
2 (@ +8:) (p? +82°)°
The calculated values of the parameters are given in Table 2 and

the fit is diéplayed in Fig 9 -

For the P11l channel interaction, the scattering amplitude has a
pole when the scattering energy becomes equal to the mass of the proton,
to account for the emission and absorption of a pion. The phase shift
of this charmel also changes its sign at Eo ™ 150.0 MeV (lab). One of

the simple and economic ways to include these two features is to sec

 Ey - E
A = —E__-_l;lop)\o' _ (4.5.8)

Here, the parameter mg can be eliminated by
E - = 4.,5.8
Yg( mp) 0o . ( )

where mp is the mass of the proton. The appropriate reaction matrix

for this channel is



- 99 -

v, &) Vv, (k)
o (&' k, E) = 2 = (E;E_) P (4.5.10)
1§}

R

where

%

Ay E-m q2 dq V, (q)
- __ P - l ' L
YpQ: (E) )\0 + (EO mp) mp —_ E(q)

¢ Vi (¢ dq

= o = Pl E - E(q)
The chosen form for Vl (p) is
S1p S2 p
v - + 5 (4.5.11)
A (P> + B1?) (p* + B2%) l

The parameters of the interaction have been determined from the knowledge

of the phase shifts and scattering length (41, 43) following the earlier

technique of Section 2.2. The values of the parameters are
presented in Table 2a and the corresponding fit is given in Fig 3
In our earlier model given in Section 2.2 for this channel, we have

been able to reproduce only the phase shifts. A relativistic generalisation

of the present model has been given by Schwarz et al (68).

To incorporate partially the contributions of the fermi motion
of the nucleus we shall replace the propagators of the two-body t-matrix

of every channel in this calculatiocn by

2

sz = J a3 P I (0 (B) l szI (Gu), (4.5.12)

where ¢(p) 1is the nuclear ground state wave function.

4,6 The Partial Wave Decomposition for the First-Order Optical
Potential

The first-order optical potential, Equation (4.3.10) is the
product of the two-body pion-nucleon scattering amplitude ( t1TN (wg)) and

‘the nuclear form factor p(q). The separable models for the two-body

~

scattering amplitudes th
I

{wo ) for all significant pion-nucleon inter-

actions have been determined from the experimental pion-nucleon scattering
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data. We determine tTTN (wo) (which is in the pion-nucleus centre-of-

mass system) from the knowledge of t1TN (;o) by means of the

transformation in Eguation (4.4.1).

The standard form for the spin averaged two-body t-matrix, in
the pion-nucleon centre-of-mass frame, for a definite iso-spin channel
is given by

~

—<E.' l tﬂi(ao) iE_>

A
~
rt
e
£
o
-’
~
v
1

Tty k, @) By(k'e ©) > (4.6.1)

= %, G+ oty

where & and j are the orbital angular momentum of that channel and
its total angular momentum respectively. With the help of Equation (4.4.7)

we may write

P (k', K = P §! = 2 .
g ¢ ) p (cos 0 =% 0 dp) o Pyy (€08 Oppyeteys?
(4.6.2)

The nuclear form factor p(q) in terms of partial waves reads

pk* - k) = p(ﬂ) = % (2241 ) pl(k', k) Pk(k" k) . (4.6.3)
The Fourier transform of the nuclear form factor is given by

il 1gq. ¢ 3 .

p(Q) = Tz'.ﬁ')'?v e p(£) d'r (*’-'L.D.z#)
where o(x) = po) [ 1 +a (%)2] exp( - 'r*/a’) ] (4.6.5)
and a = (A-4)/6.

The parameter a is determined from the electron scattering data.
The explicit expression for pg(k‘, k) 1is
: _ exp (%) _ 4+1)
pl(k , k) 7+ 30, (¢ 2+30-20x) (2 l)lR(Z)

+ 202 (21, (2) + (@ryig, D 1
(4.5.6)
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where z = .S5kk'a’; x = .25(K*+ k'?*)a?

and il(z) is a modified spherical Bessel function of the first kind
( 69 ). If we now combine Equation (4.3.10) together with the
Equations (4.6.1) — (4.6.6), we obtain the partial wave expansion for

the first-order optical potential in the pion-nucleus centre of mass

frame,

<k W® k> =7 @+ UL(I)(k', K, B) B, (k'. ), (4.6.7)
where :

0O w6 B - DT, QU+ DG+ e ]

Xy dzz' pon (K7, k).{-gﬁ- ;2? (', & wo) + é%%@ ;ézz ("> Kk Wo) } *

E 1is the scattering energy. This is the final expression for the first-
order optical potential for L th pion-nucleus partial wave, The angle
transformation factor dgg' mixes the pion-nucleon partial waves into

each pion—nucleus partial wave (7). As a consequence the P33 resonance
will contribute to every pion-nucleus scattering state. To keep the
calculation transparent we have considered only S- and P-wave pion-nucleon

scattering states. Now we shall concentrate on the second-order optical

potential

i The Partial wave Decomposition for the Second-Order Optical

Introducing Equation (4.3.8) into Equation (4.3.3) we may re-write

2
the second-order optical potential U( ) in the form
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<k | U(z)(E)'l k>

- (A—l)2 J d E" d Elll <l{_" .P_O'_(,l_' ItﬂN (wo)l l(_”’ Rol > C(If.'- _1.(."’ 1_{-lll - l{_)

+ = = Iy '
k' | @ -Tok -To) | KM > <k™, po-g e o) | K, py >

(4.7.1)
L
where q=k" -k, po =~ K-+'ﬂ—zx—— , q' =k' -Kk", (4.7.23
S U
bo = - % + oA and
_ M
C(q1, 92) =P (41> q92) - P (q1) p(q2) _ (4.7.3)

is the two—pafticle correlation function in momentum space.

On the basis of earlier arguments we shall assume that the average
nuclear fluctuation from the ground state is small during the
propagation of the pion, and the average optical potential operator may be

approximated by (27, 64).

1
Up = <1_<.o | U() (E) | __k_o > 9 (4.7.4)
where ko 1is the incident momentum.

The mean nuclear excitation energy (¢ ) has been neglected in

our calculation. Therefore the propagator in the Equation (4.7.1) becomes
+ ] |
<-1£" l (E - T, - lR”I>'
. - s i _
= 8§ (K" -k") (BE-TUo -V m? + k% - M,;'+ k") & (4.7.5)
- - m

Substitution of Equation (4.7.5) into Equation (4.7.1) yields
<t 1 v9® | k>
- DT |k <k patog gy o) | K" po>
Clk' - K", K" - <k", po-g [ty (wo) | k, po > x

b UL nenn £ UL +mné%°AL fL&L&AﬁJ*° .
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-1

(E+_ -ﬁ’_o N mﬂ2 + k" - v MT2'+ k" ) . (4.7.6)

2
The term p( ) (g2, q1) 1is the momentum representation of the two-nucleon

density function

2
(r1, r2....1,) ]
T

) |
p- “(r2, r1) = drs...dr, | wo "

iqi. 1,

ig2. r2 2
p( )(52, ri) e i

) _
and P (42, q1) = | dr1 drp e

If the nucleons inside the nucleus move independent of each other then

the two-nucleon density function is simply the product of two single-
particle densities. Consequently the second-order optical potential
vanishes completely. Thus the second-order optical potential depends on
the nucleon-nucleon correlations inside the nucleus. We have considered only
the short-range dynamical correlation in our calculation, which occurs
because of the comparatively strong and repulsive character of the short-
range part of the nucleon-nucleon forces which are connected to the shell
model wavefunction through the G-matrix (64, 70). To accoﬁnt for this
correlation one should modify the intrinsic two-nucleon density function
suitably. There is no direct experimental evidence about

the shape of the two-nucleon correlation function. We assume that the
two-nucleon density function becomes zero if the relative separation
between the two nucleons is less than the hard core radius and the product
of two single-particle densities for large relative separation. A

particular model which fulfils these criteria is

2
o) (z2, £1) = Coplzn) p(x) (L4 G| x1-22 | D]+ (47.D
The constant C¢ is determined by the normalization condition
Jdp dra p (xi1, r2) = 1.

However, it can be shown that the constant Cg is very close to one (64).
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The function G( I ry - Iz I ) is only non-vanishing when the two
nucleons come within a distance less than the correlation length.
Therefore it may be reasonable to assume that the function G( |£; -I | )
is effective over a region much smaller than the dimension of the nucleus.

Thus we take
p(ry) p(x2) 6( lr2 - £ = p? (%(x1 + xr2)) G( lx2 - 11 1)
- (4.7.8)

With the help of Equations(4.7.7) andA(4.7.8) the Fourier transform of

the two-nucleon correlation function can be re-written

i (qu. r1 + qz2. r2)
C(ﬂ_ls 32) o J dE_l d_r_’Z e p(£1) p(EZ)G(l_El - £2|)
i(q1.r1 + q2. I2)
= J dry drz e o> (s(xry + r2))
x 6(lrz - 1D (4.7.9)

In terms of the relative and centre-of-mass co-ordinates, Equation 4.7.9)

reads
ik' - K.(R+ D)
GOk -k K- k) = | o dm e -
LA - LR - 3)
X e - -
Ii+rs
x Pt (=5 6 |ty - 2 |
' ktk!
i (k' -k.R S -5
= JdEdRe p"(R) e ¢( |z} )
) L
= pt -k G - =), (4.7.10)

where



!
[
o
Ut

|

N L4
rn=R+5,r2=R-7%,
(2) i(_].i"‘_l:(_) .E
pr (k' - k) = { e P (R) dR (4.7.11)
and ktk'
.].<_+.k_' - i(_lg" -5 )
G(K" - ) = I e 6( |x|) dr (4.7.12)

Substitution of Equation (4.7.10) in the second-order optical potential

Vo

yields

cr | v® e > - @t o -0

Ly 1 "
Idh" Gk - =) <K'y po' = q| gy (wo) 7, po >

-1

e — e T =
* E-Tp -V b + K" — Viug + k") <K', po - q |t k, po >

(4.7.13)

To proceed further we need a model for the correlation function. For

this calculation, a gaussian type correlation function has been considered.

_rz/zz
G( [E|)=-e & (4.7.14)

The parameter £ is the correlation length.
c
k'+k
The corresponding structure of G(k" - Pim_) in momentum

representation 1s

E'Hi N L Ve 2
G(K" - — )=-—(S—) exp( - o (K*+ % (K +k?*)))
v exp( - x cos 0) exp( z cos 6)) exp( y cos 82),
]
where x =2 gk , y=o04akk", 2 =0 K'k', o= %B’
A ol ~ ~ ~ Pl l
0y = K", k , B, =k".k, 6=k kB =7: (4.7.15)
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and so,
' (2) - o = (2) ' " ' 2 3
<k'ut T® [ kv=p (K -R) A K, B (A-1) (4.7.16)
where - k'+k , , :
A (k' k) = J dk" 6( K" - =) <k', po - a'[t; (o) | k", po>

-1

x(E ~ Uy - Vi T+ 1™ T VoM K ) <K', pomgle ol ks po > .

(4.7.17)

For the evaluation of the second—order optical potential we have used

the closure approximation and the fixed scatterer approximation which

make the pion-nucleon t-matrix dependent only on the pion momentum. To
incorporate the fermi motion of the nucleons we have replaced the two-body
propagator lel (Bo) by the fermi averaged quantity, Equation (4.5.12),
After some angular momentum algebra, the partial wave decomposition of

the second-order optical potential can be written as

A

<k' !U(z)(E) |k > =2 (2L+1) U (2)(1{' k, E) P (Q'- k)
- . L L ’ 3 L :

2 2
v, Oar, kB = @0 SYCINCE

' N ' n
L &', 1 A, 0 (]

pX
m,n fn

(4.7.18)

The term fn(k‘, k) is related to the square of the nuclear form factor

and

A "N

Ak', © S AGRE Ak, B) Py(k', ), (4.7.19)

& 2
SHEEE ~a (K™ 4 (EHK))

e 1 . 1 IT_ 3/2 1o n2
By(k', k) = = s () dk" K" e
[¢]
2 Gty k) T, (', k% B0) Yales ©) €y K", K, 00)
2,81, E'- Uy -V m,"2 + K - "]M,rj + k'"?
2'3’2'10

ho O 16y 3, (D 5 () cg (R, 21, Loy Ly m M) (4.7.20)
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A A ~ ~ A A 2
and Ca(SL, 2,1, ,Q,s, Q;q, n,A) =(2, 2,1 2;3 R,n,n A)
2 %1 % AZ . n A 8P
I P N S I OO B (4.7.21)
o o
where ?2 and ?21 are the appropriate spin and iso-spin averaged pion-

nucleon t-matrices., The terms vYi(k', k") and vy2(k", K) will be determined
from the transformation (4.4.1). There will be a great simplification in
evaluation of Equation (4.7. 20) since we have considered only S5- and P-wave

pion-nucleon scattering. Because of the angle transformation factor (dlﬂ')

A

the possible values of £ and &1 are only o and 1. Here & 1is V28 + 1

We substitutedthe resulting matrix element of the optical

potential

U k', k) = UL(I) &', k) +0.C ) &', k) for (4.7.22)

L L

the integral equation satisfied by the reaction matrix RL(k', k, E)

UL (k', k") R'L(k"’ k, E) k||2
RL(k', k, E) = UL(k', k) + P r dk"
B -Vm? + k" - W2 o+ k"™
m T
(4.7.23)
and obtained
U, (k, k)
= L 4.7.24)
RL(k ’ k’ E) = U. (k , k") i (k"; E)k"z'dk" . ( -
1+ .|| =t L
RN e TN

This ecuation suggests how one might recover the on-shell reaction matrix

RL from the function fL. The function fL satisfies
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U ", k)

f -
UL (k, k)

(kll . E)

) e2 f }L (x", q, E) fL (q, E) dq (4.7.25)

whose kernel AL (", q, E) is

2 U (k", k)-U (k, @)
K" = __q___ L L
O T

- K", Q) ]

(4.7.26)
Equation (4.7.19) is a well-behaved non-singular Fredholm integral

equation when E > 0. TFor positive E, the denominator goes to zero when

q2 + E, but at the same time the numerator in the square bracket also

approaches zero. Consequently A’L is continuous in the neighbourhood of

’

¢ > E. We converted Equation (4.7.25) to a system of linear equations

and determined f numerically by matrix inversion technique.

L

Once we have obtained f the phase shifts of the pion-nucleus

L,

scattering may be computed from

iizk Eﬂ(k) ET(k)

z R (k, k, E), (4.7.2D)
(1;,’T + ET)

tan GL:

where

E (k) = \/'mﬂ2 +k* and E (k) = V]MTQ + k.

The pion-nucleus centre of mass of scattering amplitude for a definite

scattering angle ©

16,0 4 8, (1)

f() = fi 2L+ 1) 8 P (cos ©) (4.7.28)

k

The corresponding differential cross-section for the elastic pion-scattering
is given by

d 2
229 |5 ey |

In this model calculation we have ignored the effects of Coulomb interaction

in the optical potential,
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4.8 Results and Discussion

In this section we shall discuss our results on the pion-carbon
differential cross-sections calculated from the first-and second-order
optical potentials at intermediate energies, assessing the importance of
the nucleon-nucleon correlation, P33 resonance, fermi motion and the off-

shell dependence.

Two sets of phase-~equivalent pion-nucleon interaction potentials
for S11, S31, P11, P13, P31 and P33 channels have been considered to
examine the off-shell dependence of the scattering cross-section. The
parameters of these interactions are given in Table 2. The importance
of the second-order optical potential, di.e. the contribution of the
nucleon-nucleon correlation has been presented in Fig 10. The
calculated values of the differential scattering cross-sectionsfor the
parameter sets ( 2a ) and ( 2b ) are displayed in the Figs 12a - 12b
respectively. The solid and dash and dash-dot curves in Fig 10 represent
the corresponding values of the differential cross-sections obtained from
experiment, U(l) and U(l) + U(z) respectively. Our results are slightly
larger in magnitude than the experimental results (10-20%). To
incorporate partially the contribution of the fermi motion we have used the
fermi averaged values of the appropriate propagators (of Equation (4.5.12))
for two-body t-matrices. From FiglD it is clear that the second-order
optical potential induces a small additive contribution to the results of
the first-order optical potential calculation at intermediate energies.
The calculations of Lee and Chakravorty (27) and Wakamatsu (28) also suggest
a similar conclusion. But they have noted in addition that at low energies
ETr <75 MeV , the second-order optical potential reduces slightly the
forward scattering cross-sections. Therefore we may conclude that the

inclusion of the second-order optical potential dces mot improve the

numerical results, But in principle, it should have given a better fit to
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the experimental data since the second-order optical potential contains a

more complete description of the microscopic processes.

To examine the dependence of the cross-section on the nucleon-
nucleon correlation length (KC), we have computed the differential cross-
sections for U(l) + U(z) using different values of 'ec in our model
correlation function and the results are displayed in Fig 11. It has been
found for a given set (say set a) of the pion-nucleon interactiomsand at a
particular energy (Eﬂ ~ 180 MeV) when .&C is changed from 0.46 - 0.86 fm
that the angular distribution for large angles becomesflatter. This
conclusion remains unchanged when ETr takes different values. The
different correlation lengths alter the numerical results only for large
angle scattering, The best fit is obtained when the second-order optical
potential is minimum. This is equivalent to assuming that the effect of
correlation is vanishing, di.e. the correlation length should be
ninimum. In other words, the modification of the intrinsic two-nucleon
density function is very small. This observation contradicts one of the

important theoretical conclusions of nuclear matter calculations which

suggests that the correlation length is non-vanishing ( ~ hard core radius ).

Next, we have tried to investigate the following properties of

the differentcial cross-section :

(i) It s sensitivity to the of f~shell behaviour
of the pion-nucleon t-matrices at different energies;

(ii) The change in the off-shell contribution induced by

using different form factors and interaction ranges
for the pion-nucleon interactionj.

With regard to (i), the differential cross-sections have been
1 2
calculated from U( ) + U( ) using the parameter sets (a) and (b) for the

pion-nucleon interactions respectively. The results are presented in Fig 12.
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It seems that the results are not very sensitive to the detailed

structure of the off-shell variations of the pion-nucleon t-matrices.

The theoretical results do, however, depend on how the P33 channel inter-
action is approximated. The overall difference in the theoretical results
calculated from these two sets of parameters is about ~ 15%. Without
considering phase-equivalent interactions, Lee and Chakravorty (27) in

their calculation on pion-Helium scattering have varied the range of the

P33 channel interaction. Their observations are not dissimilar to our own.
Actually one should use phase-equivalent potentials to examine this
sensitivity. Otherwise, the variation of the range parameters only
misrepresents the basic interaction, since the pion-nucleon interaction ranges
are different for different channels. Another difficulty in discriminating
between off-shell contributions of different models is that the nuclear form
factor is a strongly peaked function in momentum space compared with the
pion-nucleon t-matrices. Consequently, it suppresses a large portion of

the off-shell contributions of any particular two-body interaction (7).

To understand the second point of the preceding page, we proceed
as follows. From Fig 12 we see that the results obtained from two sets of
potentials depend on the off-shell behaviour of the two-body interactiomns,
In fact, thé nature of the interactions is different and the range parameters
are also quite different for every channel., Therefore, we conclude that
the scattering cross-section is sensitive to the off-shell behaviour of
the pion-nucleon t-matrices and the range parameters of the pion-nucleon
interaction for the different channels. However, it is difficult to state
to what extent the scattering cross-section depends on the individual range
parameters in this model calculation. To obtain a better fit. to the

experimental data for individual channels wa have increased the number of
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parameters and this in turn forbids us to make unambiguous estimates of the
off-shell contributions coming from the range parameters. Although model
interactions with higher rank separable potentials may give better overall
numerical results, it is not clear whether one learns anything more about
the basic features of the two-particle interactions. The numerical results
can be improved to some extent by varying the range parameters, nucleon-
nucleon correlation function, correlation length and using different types
of model potentials for the pion-nucleon interactions. However, very good
agreement with the experimental results for both the forward and backward
scattering does not seem possible. This is understandable, since we have
made several simplifications which could lead to significant changes in the

results, viz.

(i) fixed scatterer approximation, This appears intuitively to
be a good approximation for intermediate pion-nucleus scattering (c¢f argument
on page 90 ). Nevertheless, it suppresses any possible role for nuclear
dynamics and minimizes off-shell contributions. The nucleons are static in
a™rozen'mucleus. Therefore the velocity operator ij for the j th nucleon

in the Heisenberg picture is related to the intermediate nuclear hamiltonian

(Hy) by
ij = i [HN’ xj ]
2
and < ¢y | ijz |¢9 > = % (En - Eo)zl < o | xj i ¢n > l )
where (EE - HN) [ ¢n >=0, (Eo - Ho) | do > = 0.

The frozen nucleus approximation demands En = EO for all intermediate

states, i.e. all nuclear excitation energies are zero (9);
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(ii) the neglect of the contribution of-the medium on the
two~body scattering amplitude. This is generally known as the local

field correction and it is quite significant (62);

(iii) approximate description of the pion absorption. We have

not considered the influence of delta ( A(1236 MeV)) propagation;
(iv) difficulty in considering recoil effects;

(v) overestimates of multiple scattering contributions (47).

Further, we may improve the theoretical results slightly by

making the following more straightforward corrections :

’

(i) coulomb correction;

(ii) a more realistic nuclear form factor and nucleon-
nucleon correlation function.

However, our observations agree well with those of Lee and Chakravorty ( 27 )
and Wakamatsw ( 28 ) obtained from their calculations on pion-Helium
scattering. Wakamatsu has incorporated the contribution of binding
correction, This model calculation shows that at intermediate energies

the second-order term in fact overestimates the differential scattering
cross—sections from the corresponding experimental data, and fails to give

a fully convincing fit to the data, Therefore as a first step in testiang
the optical potential model approach to pion-nucleus scattering it is
necessary to include the most accurate possible input informatiomn. The
separable model interactions used in our calculation are quite good and they
consistently reflect the dynamics of the different channels. The P11
channel interaction has not been considered previously in computing the

second-order optical potential., Clearly one should take more rigorous
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account of the contributions of the fermi motion and the Pauli blocking
in terms of an effective pion-nucleon interaction. We also note that

the differential scattering cross-sections at large angles (Gc o > 90°),

QINOY N

calculated from U are roughly 2- 3times greater than the

data. We have not included them in any diagrams (71).

In general we believe that one can understand qualitatively
some of the aspects of the pion-nucleus scattering in terms of the
optical potential at intermediate energies. As suggested by some authors
(62, 63) a more rigorous theoretical approach, which includes, appropriately
the various many-body contributions, appears necessary for a more

adequate description of pion-nucleus scattering.



FIG, 10 "

The effects of the nucleon-nucleon correlation on the pion-
carbon elastic differential cross-sections. The differential
cross-sectionscalculated from U(l) (dashed curves) and

U(l)+ U(z) (dash-dotted curves) are compared. The experimental
data (solid curves) are from Ref 31, The parameters of the pion-

nucleon interaction potentials are given in Table 2a. The value

of the correlation length (lc) is .46 fm.
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FIG, 11

The elastic differential cross-sections for the plon-carbon

'

1 2
scattering calculated from U( ) + U( ) for Qc = ,46 fm
(solid curves) and Qc = .86 fm (dashed curves) are compared.

The parameters of the pion-nucleon interactions are given in

Table 2a.
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FIG. 12

The elastic differential cross-sectionsfor pilon-carbon scattering
calculéted from U(l) + U(z) by using the parameters of pion-
nucleon interactions from Table 2a (solid curves) and Table 2b
(dashed curves) are compared. The chosen value of the correlation

length (Qc) is .46 fm.
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