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SUMMARY

Several aspects of the use of mathematical optimization
techniques in the design of digital filters are studied. 1In
the sense employed in this thesis "mathematical optimization
techniques" are those methods which have been developed for
finding minima of general functions of several variables. The
case in which the variables are constrained to take only integer
values is among those considered. "Digital filters" include
those designed to satisfy a frequency domain specification, and
those geperated as mathematical models of time-evolving dynamic
processes.

The literature relating to previous such uses of
optimization is reviewed. It is shown that many of these
contributions may be placed in a consistent, unifying framework
based on general features of the mathematical formulation. A
number of generally-applicable algebraic relations are derived.
Several minor new techniques which streamline the application
of the general minimizing methods to digital filter design are
introduced.

A great many methods are available for finding
unconstrained (local) minima of general functions. Extensive
numerical experiments are performed with a selection of these
to study their relative effectiveness when applied to
representative digital filter design examples. The examples
include approximation problems in the frequency domain (both
magnitude and group delay responses) and in the time domain.
Optimization methods tested include those of second-derivative,

Gauss-Newton, quasi-Newton and conjugate gradient type.
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This examination of the performance of optimization
methods is relevant to (inter alia) their use in speed-critical
on-line applications. In a follow-up study, an optimization
algorithm has been implemented on fast, cheap, short-wordlength
digital hardware. The suitability of such a system for on-line
system identification is studied. The work reported includes
the development of the computer itself as well as the algorithms.

The discrete optimization problem associated with
choosing digital filter coefficients of a given wordlength (and
so, quantized) is considered. A novel optimization procedure is
introduced and shown by numerical experiment to have superior
efficiency to many previously-suggested methods, at least for
certain classes of problem.

Chapter one serves as a more detailed introduction to

the contents of this thesis.
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CHAPTER ONE

1i SCOPE AND ORGANIZATION OF THIS THESIS

1.1 Organization

In this thesis an exploration is made of several aspects
of the use of mathematical optimization techniques in the design
of digital filters.

Three essentially separate studies have been carried out.
For this reason the organization of the thesis is perhaps
slightly unconventional; in particular, no "central problem"
can be immediately introduced; nor is there a final chapter
reporting "overall conclusions". Each of the studies is reported
on in its own large chapter, with an introduction and a section
on "conclusions" included. The twin common threads running
through the entire work are digital filtering and the use of
mathematical optimization techniques.

The chapters referred to above are numbered five, six and
seven. The earlier chapters serve principally to introduce
terminology and notation and to review the literature relevant to
the topics to be discussed. Chapter four, however, additionally
contains some original material whose presentation in that
chapter has a certain logical justification.

Fach of the studies has involved the generation of a
large amount of computer code, in three programming languages and
for three different machines. Inclusion of the complete printed
listings would have more than trebled the size of the thesis
without serving any especially useful purpose. Accordingly,
virtually all of this material has been omitted; the computer

programs are merely described where necessary per medium of flow-



charts, algebraic relations and ordinary text. The one exception
is a short FORTRAN subroutine presented as an appendix. This, an
imp]ementatibn of what is thought to be a novel algorithm, serves
as an example of several of'the programming techniques.

Some of the material of chapters six and seven has been
the subject of prior publication. It seems to make 1ittle sense
to paraphrase these papers, and yet undesirable to break
continuity by merely including reprints in an appendix. Accord-
ingly, copies of these published papers are bound in at the

appropriate place in the body of the text.

1.2 Comparison of Optimization Techniques

A survey of the literature shows that many investigators
in the digital signal processing field have made use of what may
be termed "mathematical optimization techniques", taken (somewhat
restrictively) here to mean techniques for finding the (constrained
or unconstrained) minimum value of a single function of several
variables. Such techniques are many and varied, and they are of
such great generality that their detailed development could be
(and was) largely carried out by mathematicians who did not need
to consider expressly the details of any particular user's
application.

It is rare in the signal processing literature to find a
work comparing even a couple out of the wealth of optimization
techniques which applied mathematicians have made available.

Most authors have been content to use standard versions of

general minimization algorithms available at most large scientific
computer sites. This approach is justifiable because the majority
of uses of the techniques have been in the computer aided design of

digital filters. Although the filters are used in high-speed



real-time applications they are designed in advance, off-line,
and considerations such as

a) the amount of computer time used in, the design,
and b) whether the iterative procedure would have converged

from a different starting point,

are not of central importance. Obviously, though, a method
which offered a factor of 2 improvement in execution time would
be worthwhile if the design program were to be used extensively.

Perhaps more importantly, many of the same methods are
applicable to situations where digital filters are "designed"
in real time, that is to say, the filter coefficients are
required to "adapt" to changes in the characteristics of the
signal being processed. With the ever-increasing availability
of computing power (including faster logic together with more
parallelism of computation, at fast-reducing cost) the use of
optimization techniques is becoming feasible for more and more
demanding applications. It seems desirable to compare some of
them in representative applications, from the point of view of
reliability and relative execution speed.

Chapter five of this thesis reports upon work done to
compare the performance of several mathematical optimization
methods in determining the parameters of digital filters. The
"filters" considered include those designed to meet a pre-
assigned frequency-domain "specification" and those produced as
mathematical models of time-evolving processes.

As preliminaries to this material, chapters two and
three discuss optimization fundamentals and the mathematical
basis of some optimization methods. The requisite terminology
and notation from the digital filtering field is introduced in

chapter four.



Extensive numerical comparisons of optimization techniques
are rare even in the general mathematical literature. Second-
derivative methods have been particularly neglected. The results
of chapter five may go some way towards remedying this deficiency.
Although all the test examples are (deliberately) taken from the
digital filtering field it is likely that some of the concliusions

regarding performance would be much more generally applicable.

1.3 General Algebraic Development of Optimization in Digital

Filter Design

As stated above, chapter four serves to introduce the
fundamenté]s of digital filtering. The literature relating to
the uses of optimization in this field is also reviewed. This
literature survey is "taxonomic" in nature; it is shown that
much of the work may be classified according to general features
of the mathematical formulation. Accordingly, a certain amount
of algebraic development is possible without fixing attention on
one particular filter design problem. A number of general
equations are derived. This approach of proceeding from the
general to the more particular is believed to be original and of
some use in unifying a fragmented field.

Several minor new techniques which generally facilitate
the application of optimization to digital filter design are also
described. In particular, a method for reviewing the pairing of
real poles and zeros as the computation proceeds greatly improves
reliability; this is because it eliminates many sub-optimal
"solutions" to which the procedure could otherwise converge.

Efficient filter structures are derived for the calcula-
tion of the first and second derivatives required when treating

approximation problems in the time domain.



1.4 Finite-Wordlength Considerations

n

The results of an optimization process of the type
considered thus far is a vector of optimal parameters whose
values are essentially known with infinite precision (although
of course this is limited in practice by the wordlength of the
computer used). Digital filters, however, are often implemented
as routines on 16-bit minicomputers, 8-bit microprocessors, or
special-purpose pipelined hardware, and their coefficients are
restricted to take only discrete values, the "quantization"
being significant because of the short wordlength.

Chapter six is devoted to the matter of coefficient
quantization. The literature in this area treats three main
topics: filter structures, statistical analysis of wordlength
requirements, and discrete parameter optimization. The first two
of these topics are reviewed for completeness, but in keeping
with the overall theme of the thesis, the main emphasis is on
the third. Rounding the 1nf1n1te—precﬁsion "ideal" coefficients
to the nearest permissible values usually does not produce the
optimal filter for a given wordlength, and the design may be
improved by applying some kind of "discrete optimization"
procedure. Many alternative methods have been suggested; the
relevant literature is surveyed. The techniques mostly fall into
two categories:

(a) Those which are in theory capable of seeking a true optimum,
but which generally require vast amounts of computer time, and

(b) Heuristic procedures with little theoretical justification and
little chance of finding the true optimum (although some may
find good sub-optimal solutions quite efficiently).

A new method is proposed which is based on a completely

novel approach. The procedure (involving a random search) is



guided by substantial theoretical considerations and there is a
good probability of finding the true optimum (although if it is
found there is no indication of optimality). Tests are performed
which indicate good efficiency in finding a variety of useful
sub-optimal filters as well. In this regard the new method is
probably superior to most other methods at least for certain

classes of problems.

1.5 A High-Speed Implementation of System Identification by

Optimization Techniques

Chapter seven deals with a study of the implementation on
fast, cheép, short-wordlength hardware of "system identification"
by a gradient-based mathematical optimization method.

The work reported includes the development (with others)
of the "General Arithmetic Signal Processor" (GASP) - a very fast
computer with architectural features which suit it to a wide
variety of signal processing tasks.

The design of system identification software to run on
GASP is discussed. This includes homomorphic (cepstral)
processing as well as an optimization scheme for parameter
determination. Attention is focussed on "speech-1ike" signals,
with the aim of identifying the parameters of a pole-zero
cascade-form model.

Results of tests of the system identification algorithm
are presented. Although some success is achieved, this approach
to system identification has serious shortcomings which will
probably restrict its applicability. These are discussed and
possible remedies are suggested.

Finally, the suitability of the machine GASP for such

uses is reviewed. The usefulness of many of its design features



ijs confirmed. Several additions are suggested which would improve

the machine whilst retaining its original concept.



CHAPTER TWO

A8 OPTIMIZATION FUNDAMENTALS

2.1 General Nature of Optimization

A large body of mathematical l1iterature has been built up
relating to the problem of finding the minimum value of a general
function of N variables, and the particular values of the variables
which produce such a minimum. The amount of effort which has gone
into such studies is justified by the fact that a great number of
problems in engineering design and in the estimation of the parameters
of mathematical models of physical processes may be cast in this form.

In the case of design, the function to be minimized may be the
monetary cost of an item or be a measure of some other undesirable
attribute such as energy Toss, or, usually, a suitably weighted
combination of several such "undesirables". The N variables are the
free parameters which the designer is able to vary. In the case of
mathematical modelling, a model whose form has been determined by some
process of art, or intuition, is left with N free numerical parameters.
These are then found by minimizing a function of them which in some
way quantifies the "closeness of fit" of the model tothe experimentally
observed data.

In most cases of practical interest, all or at least some of
the "free" variables are restricted by some physical consideration to
lie above or below some particular value, or within certain limits.
For example, the values of all inductors, capacitors and resistors
in an electrical circuit must be positive. Such constraints do not
necessarily apply to the variables independently of one another. As
an example of a more complicated constraint, a second-order digital

filter having a transfer function expressed as
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1
H(z) = =
1+az 1y bz'2

must be stable to be useful; this restricts the allowable values of
parameters a and b to a triangular region of the a-b plane.

Much more general classes of problems have been studied under
the heading "optimization", in particular the optimization of
functionals in which we seek to determine not only the values of a set
of parameters but also the form of a function which will minimize some
quantity. However, in the field of digital filter design much use has
been made of the (simpler) minization of a given function of N
variables, and this thesis will be confined to an exploration of

"optimization" in that sense.

2.2 Definitions and Terminology

The following, while not purporting to be mathematically
rigorous, is a review of general optimization terminology. Some of
the more standard mathematical terms used in the thesis and not
defined here are given in appendix A.

The recognition of the importance of constraints has led to
the formulation of what is usually termed the mathematical programming

problem, formally stated as:

Minimize F(x)

subject to Qi(x Yy =0 i=1,2 ... M (2.1)

where X is the N-dimensional column vector of parameters (arranged
in some arbitrary order) and the M inequalities express the
constraints. The function F is termed the objective function.

If the constraints are not mutually contradictory, they define
a region of parameter space in which a solution, if it exists, must

lie. This region, which may be of finite or infinite extent, is the
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feasible region and any parameter vector within it is a feasible
solution. If every convex linear combination of every two feasible
solutions is itself a feasible solution, the feasible region is
convex, a concept illustrated in figure 2.1.

Turning now to the objective function (and ignoring the
constraints) a Zocal minimum of the function is any parameter vector
having a neighbourhood within which every parameter vector yields a
function value greater than or equal to that at the Tocal minimum
jtself. If equality is excluded the point is a strong local minimum.

A wnimodal path is a directed curve in parameter space along which the
function value decreases monotonically. Such a path must either
terminate at a local minimum or at least one component of the parameter
vector must diverge to infinity. If aZl unimodal paths terminate at
the same point the function is called wnimodal, and necessarily has
only one local minimum.

Unimodal functions are high desirable from the point of view of
minimization because most techniques seek local minima by some kind of
exploratory procedure. For a unimodal function such a point must be
the global (unconstrained) minimum. However, the presence of
constraints complicates the matter enormously. A constrained local
minimum is a feasible solution with function value F, say, such that
there exists a neighbourhood within which every parameter vector whose
function value is less than F is infeasible. In other words, it is
either a (feasible) local minimum or it is a point at which one or more
constraints are binding and from which all unimodal paths extend out of
the feasible region. Figure 2.2 shows that even if the objective
function is unimodal there may be more than one constrained local
minimum. However, if the function is unimodal and the (one) Tocal
minimum is feasible, then it is also the global constrained minimum.

In many practical cases, unimodality is virtually impossible to
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prove, and so if the user seeks the global minimum he should attempt
to find a variety of local minima, or constrained local minima, and
choose the best among them. Of course, it may-not be important to
find the global minimum because a suboptimal solution to the problem
may be good enough, but this will depend on the application.

A more restrictive condition on a function than unimodality
is that of convexity, meaning that the function value at a point which
is a convex linear combination of any two points in parameter space,
is less than or equal to the weighted arithmetic mean of the

corresponding function values. In symbols,

F(axp+(1-a) X,) <aF(xy)+(1-a)F(x,) (2.2)

for 0<a<1l, and any X4 and Xop.
A convex function is necessarily unimodal, but not vice versa. The
useful thing about convexity is that if both the function and the
feasible region are convex, there is only one constrained local
minimum, i.e. the global solution.

The above serves mainly to introduce some of the general
optimization terms to be used from time to time in this thesis. While
unimodality and more particularly convexity are of some theoretical
importance, in most practical cases we are forced to work with functions
which are neither. However, one conclusion to be drawn from such a
survey of optimization fundamentals is that exploratory (local-minimum-
seeking) techniques are likely to be more successful if the objective
function does not have a Targe number of such minima. Furthermore, if
the user has any freedom in the way in which the objective function is

defined, multiple minima should not be deliberately introduced.
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2.3 Types of Optimization Techniques

2.3.1 Linear_programming

When both the objective function and all the constraint
formulae (the Qi of (2.1)) are linear in the variable parameters the
problem is amenable to solution by the well-studied methods of linear
programming.

A linear function (apart from a constant) if defined for all
values of the parameter vector X is not bounded below, and so the
existence of a finite optimum (minimum) depends basically on the
constraints. The optimum in such circumstances always lies on the
boundary of the feasible region, which is a convex polyhedron in
N-dimensional space.

Formulation of a problem as a linear program is desirable
because the methods of solution are highly standardised and efficient.
If a global optimum exists it is always found in a finite number of
steps, and very large numbers (thousands) of independent variables
may be handled. Some types of digital filter design problems have
been so treated and are mentioned in chapter four. This is mainly from
the point of view of completeness of the literature survey because
the remainder of this thesis will concentrate on problems not

admitting of a linear program formulation.

2.3.2 Unconstrained optimization

Whilst the solution of a linear program exists only because of
the constraints, most classes of objective function will have a
minimum (or several local minima) in their own right. A Targe number
of techniques for finding such minima have been developed, and these
are the type to be considered in most of this thesis. Chapter three

reviews such methods. It is sufficient here to mention that most are
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jterative methods, proceding step-by-step through parameter space in
such a way that the objective function is decreased at each stage, in
the hope of converging eventually to a local minimum.

Unconstrained optimization is 1mportant'not because truly
unconstrained problems are common but because various modifications
allow the methods to be used for many practical constrained problems
also. The principal types of modification are introduced in section
2.3.3.

There remains an important type of problem in which the
constraints are expressed by strict inequalities (rather than the
nonstrict inequalities of (2.1)). 1In such a case the only acceptable
solutions are.interior points of the feasible region and so are true
unconstrained local minima of the objective function. Once such a
minimum has been approached sufficiently closely, the constraints
have no further bearing on the progress of the optimization algorithm.

This is exemplified by some of the digital filter design
problems to be considered. All the poles of the filter must 1lie
strictly inside the unit circle so that the free response actually
decays with time. The only type of optimum of interest is a true
Tocal minimum of the objective function (at a point interior to the
feasible region) and this may be found without considering the
constraints, provided that we begin our search procedure sufficiently
close to the wanted solution (or are lucky).

This approach to constraints, of ignoring them when there is a

reasonable probability that the procedure will converge to a solution

which satisfies them anyhow, will be called a relaxation approach. The

computational algorithm should include safeguards to prevent the search
procedure uselessly wandering around in the infeasible region, but this

may be a device as simple as re-starting from a new feasible point as

soon as a constraint is violated. More generally, some opportunity may
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be given for a return to feasibility before such a restart.

2.3.3 Constraired Nonlinear Optimization

When physical considerations do not prevent inequality
constraints from becoming equalities, there may be local optima on the
boundaries of the feasible region as well as in its interior. Such
problems may be tackled by two basic general methods, the feasible-
direction and penalty-function techniques.

With a feasible-direction technique, an unconstrained method
is used but if the search procedure encounters a constraint the
ordinary predicted (infeasible) step is not followed; rather some
useable féasiéle direction (one which allows a decrease of objective
function value while maintaining feasibility) is computed. Several such
techniques have been suggested, a survey being given by Gottfried and
Weisman (1973), chapter 5.

In the case of linear constraints, the "gradient projection"
method is effective (Rosen, 1960). Any unconstrained method may be
used, starting from an interior feasible point. If the search causes a
constraint (hyperplane) to be contacted, exploration is made along the
constraint in the direction specified by the projection of the negative
gradient onto the hyperplane. If further constraints are encountered
the gradient is projected onto the intersection of all binding
constraints, and so on, as long as the negative gradient direction
itself remains infeasible. The search will terminate at a constrained
local minimum, either a vertex of the polyhedron formed by the constraint
hyperplanes or a point where the gradient is normal to the intersection
of the binding constraints.

The gradient projection method may be used when the constraints
are nonlinear, by substituting projections on the hyperplane tangent to

a constraint. However, the resulting direction may be infeasible, and
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although there is a correction technique for returning to the feasible
region after such a step, the method is not very successful for non-
linear constraints (Gottfried and Weisman, 1973).

Even when the minima sought are interior points of the feasible
region, gradient projection may be useful in avoiding some of the
forced re-starts of the simple relaxation method of section 2.3.2.

Penalty-function techniques are of two kinds, both allowing the
use of an unmodified unconstrained algorithm. In an "exterior-point"
algorithm the objective function is artificially augmented by a
“penalty" term whenever a constraint is violated, and the further the
point is into the infeasible region the higher the penalty. The
penalty is generated from a suitable simple formula satisfying this
condition and also allowing the steepness of the penalty "wall" to be
controlled by a parameter. The sequence of unconstrained optima found
with increasing values of the penalty parameter, all lying outside the
feasible region, will tend in the 1imit to the true constrained
minimum. Such a "sequential" mode of operation is normally necessary
because the immediate use of a very severe penalty produces a sharp
valley in the augmented objective function. Many unconstrained search
techniques have difficulties in following such valleys.

In "interjor—point” penalty function algorithms the search must
be started at a feasible point, and is prevented from reaching a
constraint by augmenting the objective function with a barrier term
which increases without 1imit as the constraint is approached. Again
a sequence of unconstrained minima are found, in this case being <nside
the feasible region. In successive unconstrained sub-problems the
barrier is made steeper and more localized (closer to the constraint).
In such a way the true constrained local minimum is eventually
approached.

Penalty-function techniques are discussed in detail in a text
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by Fiacco and McCormick (1968).

There are other methods which are applicable to certain types of
nonlinear programming problems. These include several linearization
techniques which allow the problem to be solved as a sequence of linear
programs (Gottfried and Weisman, 1973). They are not usually
recommended when the nonlinearities are severe and are not considered

further in this thesis.

2.3.4 The uses of calculus

The classical calculus is of course an optimization technique
in the sense that for unconstrained differentiable functions F( X ), all

local minima will be among the solutions of the simultaneous algebraic

equations

3F  _ i=1,2...N. (2.3)

(2.3) represents only the necessary conditions for a Tocal minimum,
other possible solutions being local maxima, saddle points, and
horizontal inflection points, and so it is necessary in seeking a
minimum by classical methods to explore the neighbourhood of each of

the candidate points. A particularly useful result is that if the

Hessian matrix

0. 9°F 3°F L 22k |
2
axl ax18x2 BxlaxN
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js positive definite at such a point, the point is a strong local

minimum.

Unfortunately, the complexity of the equations (2.3) 1is such
that the classical calculus is not a practical method for minimizing
most realistic objective functions. It does, however, provide most of
the insights which have guided the formulation of the practical
minimization methods of chapter three. In particular, although there
is no fundamental requirement that an objective function be
differentiable at the minimum (or elsewhere), differentiability
greatly aids in minimization and most successful algorithms employ
gradient information explicitly. Algorithms employing also the second
derivative (Héssian) matrix are usually even more efficient.

The presence of constraints greatly increases the amount of
work necessary in the classical approach, because the function must be
minimized on the boundaries of the feasible region as well as within
it in order to find a1l possible minima. Separate problems must be
solved with each constraint alone assumed binding (acting as an
equality), then each pair of constraints, and so on, up to each
combination of N constraints. (The imposition of more than N equality
constraints simultaneously leads to an overdetermined set of equations;
there is no feasible solution.) These equality-constrained problems
may be tackled in two ways:

(a) If a constraint equation may be solved for one variable in terms
of the others, the resulting expression may be substituted into
the definition of F, resulting in a problem of reduced
dimensionality but usually increased complexity.

(b) The alternative is the elegant method of Lagrange multipliers
which always increases the dimensionality of the problem but
usually simplifies the solution.

If we wish to minimize F(xl, Xg ou xN) subject to equality constraints
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Qi(xl’ Xos «no xN) = 0 i=1,2 ... M

we form the Lagrangian function
M

L = F(xl, Xo oo xN) T Qi(xl’ Xy «oe xN) (2.5)

i=1

and proceed to find the stationary points of £ in the (N + M)-
dimensional space of all the x and u variables. A point so found is
a constrained local minimum of F if £ exhibits a minimum with
respect to each x variable and a maximum with respect to each u,

that is, a saddle point.

2.3.5 Integer programming

In many problems of practical interest the parameters are not
permitted to take on a continuum of values but are in some way quantized.
The digital f{lter design problems considered in this thesis are of this
type, and this matter is treated in some detail in chapter six. The
purpose of this section is to point out that there are some general
methods for locating such quantized optima.

In the majority of cases the allowed points are equally spaced
and some suitable scaling will cause the quantization to be expressed
as an integer requirement on some or all of the variables. There is
the obvious division into all-integer and mized-integer programming
problems, both types being of practical significance.

The case of the Zinear programming problem with added integer
constraints is the most highly developed, and two general methods are
available. The "cutting plane" method of Gomory (1958) does not readily
generalize to nonlinear problems and even in the linear case appears
inferior to the "branch-and-bound" technique of Land and Doig (1960)
and modified by Dakin (1966). The latter technique is not intimately

bound up with Tinear programming methods and may be used for nonlinear
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problems, although it is not guaranteed to find the optimum unless the
objective function is convex (Gottfried and Weisman, 1973, chapter 6).
The essence of the branch-and-bound approach is shown by two-
dimensional example in figure 2.3. The problem is first solved
ignoring the integer constraints, producing a solution at the point
Xq = 3.5, X = 3.3 with function value (say) 20.0. Since both X1 and
Xo must be integers at the final solution, we can exclude the region
3 < Xy < 4 from consideration and re-solve the problem in the two
disjoint feasible regions Xq < 3 and Xq > 4. The optimal solutions to
these two problems will have function values greater than 20.0 (or else
the unconstrained minimum would not have been where it was), and, if the
objective function is convex the minima will lie on the region
boundaries, thus satisfying the integer constraint on Xq- We assume the
function values to be 25.0 (point Jl) and 30.0 (point J2). If only X1
were constrained to be an integer we would simply choose the smaller of
these two values as the final solution. With Xo also constrained, we
proceed to split each semi-infinite feasible region into two again (the
shaded regions of figure 2.3, labelled A, B, C and D). Suppose we
elect next to minimize the function over the region C (reasonable,
since this region is "nearest" to the smaller of the two known minima
so far). If the function is reasonably well-behaved we have a
significant probability of obtaining as this minimum the "corner" point,
labelled Kl’ which satisfies the integer constraints on both Xq and Xo-
Suppose this happens, and that the function value is 28.0. We are then
spared the trouble of searching the regions A and D, because neither
could yield a function value smaller than 30.0, and K1 is already
feasible and a better solution than this.
Minimizing over region B, we obtain point J3 with value 26.8.
This point has a fractional value for Xq and so is not a feasible

solution. But since the function value is below 28.0, region B may
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still contain a better solution than point Kl’ and so it is again split
into two subregions, Xy 2 5 (shown cross-hatched) and Xy < 4 (which,
owing to the prior bound X4 > 4, degenerates to the line Xy = 4, Xo > 3.

The branch-and-bound approach is thus one of tree-search. It is
also a relaxation method, in the sense that the integer constraints
never enter explicitly into the minimization sub-problems, but are
repiaced by ordinary inequality constraints which lead to problems with
a high probability of an integer solution. The possible feasible minima
obtainable from a given branch of the tree are always bounded 1in
function value by the solution of a less-constrained problem associated
with that branch, and so whole tree branches may be abandoned when some
other feasib]é solution is better.

The method works best with convex objective functions (and
particularly with linear programs) but may be applied to non-convex
functions with the proviso that the global optimum will not necessarily
be found. If the feasible grid is of fine spacing relative to the size
of the irregularities in the function contours (as with many digital
filter problems) this theoretical deficiency is not important, the
function being effectively "convex" over the entire region of interest.
As with most optimization methods, however, the requirement in computer
time increases dramatically with dimensionality. In chapter six of
this thesis a new method is introduced which, while Tacking the
theoretical elegance of branch-and-bound, appears to be much more

practical for the types of problems considered.



CHAPTER THREE

3.  TECHNIQUES FOR UNCONSTRAINED NONLINEAR OPTIMIZATION

3.1. General

We turn now to a review of the various types of algorithms
which have been proposed for finding unconstrained Tocal minima
of nonlinear functions, and a description in some detail of
methods to be compared experimentally in chapter five of this
thesis. The utility of such methods is not limited to problems
characterized by truly unconstrained functions; in chapter two
it was pointed out that constrained problems may often be
treated as a sequence of unconstrained sub-problems by the
penalty-function technique, and there is also the possibility
of transforming the independent variables so that the new var-
iables are unconstrained (Box, 1966; Powell, 1972). Addition-
ally, there is a class of methods based on Lagrange multipliers
(Powell, 1972).

Most techniques for the unconstrained problem are sequential
in the sense that they start at some arbitrary point in para-
meter space, X (O), and proceed by a series of iterations to

x(l), X(Z), ... having successively smaller

generate points
values of the objective functions F(X). They thus seek Zocal
minima and unless the function is known to be unimodal there

is no guarantee of optimality. In practical cases, confidence
in the optimality of the final solution may usually be increased
by starting the procedure from a variety of different points.
Another approach to the problem involves generating trial points

at random, with or without some capacity for "learning". (Gott-

fried and Weisman , 1973, Section 3.4). Such methods are not
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sequential and can in principle find global optima - however the
amount of computer time is usually prohibitive even when the
dimensionality is Tow. Systematic grid-search procedures are

defeated even more rapidly by the problem of dimensionality.

3.2 Classification of Sequential Methods

In general, the more well-behaved a function is, the more
sophisticated can be the methods for minimizing it. We denote
the class of functions with continuous rth derivatives as C'.

If FeC', a method which makes use of gradient information

may be used, while if F ¢ C2 there are useful methods employing
second derivqtives. There are also those methods which employ
function values only, and which may be used with non-differentiable
functions, and in some cases with functions which are not even
continuous. These three types in fact constitute the primary
classifications of sequential unconstrained minimization techniques.

It is of course possible to use a "value only" technique on
a differentiable function, and this may be desirable if the gradient
evaluation would be very time-consuming or if the analytic dif-
ferentiation is simply too complicated an algebraic task. In
such cases it may be desirable to use function evaluations spec-
ifically to produce finite-difference approximations to the gradient
components, and the "value only" methods are further divided into
those which do and do not do this.

In a similar way, second derivatives may be approximated by
differences of first derivatives. In this thesis all methods
employing at least first derivative information are classified as
"gradient methods" and are discussed at some length in Section 3.4.

The following section is devoted to "value only" methods.



25

3.3 Methods Employing Function Values Only

3.3.1 Gradient Approximation

0f those methods which generate finite-difference approximations
to the gradiént components, the best known is that of Stewart (1967).

The obvious formula for the ith gradient components is

=

gy~ [FCX+h e;) - F(X)] (3.1)
where e, is the ith unit vector. The main thrust of the

Stewart paper is to select the step Tength h optimally, so that

the (Taylor series) truncation error implied by (3.1) just balances
the numerical cancellation error (caused by forming the difference

of two nearly equal qualities). Otherwise, the method has the
characteristics of the gradient method to which it is coupled (in
Stewart's case, the Fletcher-Powell method described in Section

3.4.14).

3.3.2 Conjugate-Direction Methods

Another class of methods is based on the properties of

. |
quadratic functions. A set of non-zero N-vectors p( ),

P(z) p(N) are called conjugate with respect to a given

positive-definite matrix A (or " A - conjugate") if
(i)' (4) Lt
p A p =0 for all i #J (3.2)

Such vectors are necessarily Tinearly independent. In the case
of a quadratic objective function F(X) the Hessian matrix H is
constant. If such a function is successively minimized along
several (say k) H - conjugate directions, starting from an

arbitrary point X (0), then the final point found ( X (k)) is
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the minimum of the function in the subspace defined by the
initial point and the k conjugate directions. A proof of this
is given by Fletcher (1972a).

This theorem implies, in particular, that the minimum
value of a quadratic function is found after exact linear searches
in all N conjugate directions.

Conjugate directions can be generated in a number of ways
without explicit knowledge of the Hessian matrix. A method
employing first derivatives is described in Section 3.4.13.
However, there is another technique which requires no gradient
evaluations and which forms the basis of the method of Powell
(1964). IfzS1 and %Zare two "parallel subspaces" generated by

o) @)K

a set of linearly independent vectors
and points X and X such that x ¢S (andX ¢ S ) and
1 2 1 2 2 1
z1 and z2 are the points minimizing a quadratic function
in Sl and Szrespective1y, then z2 - z is H-conjugate to

1
each of the pls. This is the "parallel subspace property"
and is illustrated in two dimensions in figure 3.1.

Powell's (1964) method obtains conjugate directions for a
quadratic function, and hence finite termination, by virtue of
the parallel subspace property. But it is also capable of easy
extension beyond N conjugate line searches and so tends to con-
verge to the minimum of a general function. Consider that at
the start of a given iteration (say, the kth) a set of N linear-
ly-independent vectors is defined. This set may initially be
any independent set, such as the unit vectors. It is updated
by discarding one vector and calculating a new one at each
iteration in such a way that it eventﬁa]]y tends to a conjugate
set with respect to the Hessian evaluated at the minimum. We

) G W

denote the current set of vectors by p p' s
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Contours of quadratic function
F(x) = % (x-xO)TH (x-xo) + const.

Xo p(l)
@ SRS
Xy p(1)
3 -

(z2 - zl)TH p(l) =0

FIGURE 3.1 Illustrating the "Parallel Subspace"

Conjugacy Property
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and assume that the current parameter vector X (k-1) has
resulted from a line search (minimization) along p (N). (To
start the process such a search is performed as a preliminary
step). The general kth iteration consists of the following
procedure. A point z (k) is generated by starting from
point X (k-1) and making Tine searches (one-dimensional
minimizations) along each of the directions p(l)’ p(z) -

p (N) in turn. The vector p(l) is then discarded, being

replaced by p (2), o] (2) is replaced by Pp (3), and so on,
(k) _ , (k-1)

(N)

and p(N) is replaced by the new vector =z
A line search is then performed along the new p » generating
point X(k) and completing the iteration.

This method represents a philosophy which has often been
fruitful - methods which theoretically minimize a quadratic
form in a finite number of steps have been generalized so that
general functions canlbe handled. Convergence properties are
often excellent.

There is one difficulty with the original form of Powell's
algorithm. The set of search vectors sometimes tends to become
linearly dependent, preventing the true minimum being reached.
Powell's suggestion is to omit the replacement of a vector by

z (k) _ (k-1) if this would make the set "more" dependent.
There have also been other remedies suggested, for example by
Zangwill (1967).

Powell's method (among others) is critically dependent on

the method used for the one-dimensional Tine searches, a matter which

is taken up in Section 3.5.
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3.3.3 Direct Search Methods

The methods of Sections 3.3.1 and 3.3.2 employ only function
values but in ways which depend on the properties of differentiable
functions. A third class of methods is based on the determination
of a good direction in which to search merely by comparing the
function values at a set of points. None of these methods has
the theoretical elegance of the gradient-based algorithms, but
they do have the advantages of simplicity and applicability to
functions which are not differentiable, or which are the result
of some physical measurement and therefore subject to random
error.

An obvious approach is to minimize with respect to each
of the independent variables in turn. The immediate objection,
as seen from figure 3.2, is that the method will proceed in
ever-decreasing steps along a "valley" (such as the major axis
of an elliptical contour system) unless such a valley happens to
be aligned with a coordinate direction. The practical direct-
search algorithms are based on various methods for aligning the
direction of progress with such Tocal valleys.

In the pattern search method of Hooke and Jeeves (1961) a
series of exploratory moves are made about the present base point
by increasing or decreasing each of the variables in turn by a
small amount (which need not be the same for each variable). Any
step which gives an improvement (decrease) in function value is
accepted, thus the method is sensitive to the order in which the
coordinates are enumerated. When all variables have been so
treated, an attempt is made to extrapolate to a forward point
which is twice as far from the base point as the point found by

exploration, it being assumed that a good direction has been



30

Xo 4

FIGURE 3.2 Illustrating the "Successive Variables"

Minimization Scheme
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roughly localized by the exploration. Hooke and Jeeves do
not require that this extrapolation itself succeed in decreasing
the function value, but allow a further series of exploratory
moves from the forward point in an attempt to do this. If
successful, the new point becomes the base point, and another
attempt is made to extrapolate from the previous base point
through the current one. Such pattern moves, if they are con-
tinually successful, have the property of growing in size, and
the method is very efficient at following long, straight valleys.

As soon as a pattern move fails, the forward point of the
exploration phase around the base point becomes the new base
point. When no move in any coordinate direction causes a
function decrease (and so no new base point can be generated),
the size of the exploration steps is reduced. The entire
algorithm terminates when this step becomes smaller than some
preset size.

The method of Rosenbrock (1960) also proceeds by exploratory
moves in a set of N mutually orthogonal directions, but these
are not the coordinate directions (except on the first iteration).
Exploration can proceed in each of the directions a number of
times, a success for a given direction resulting in a larger step
to be taken next time. When all directions fail, the overall
direction of net progres§ becomes the first direction to be used
on the next iteration, and the remaining N - 1 directions are
calculated by the Gram-Schmidt orthonormalization process.

The conceptually simple method suggested by Spendley, Hext
and Himsworth (1962) uses the properties of a regular simplex (a
set of N + 1 equidistant points in N-dimensional space). A new
simplex can be formed on any face of the old by the addition of

only one new point, that which is the reflection of any vertex
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through the centroid of the remaining N. At each stage of

the process the worst vertex is abandoned and replaced by

its reflection, except that if the most recent point is the worst,
the next worst is used instéad (to prevent continuous oscillation
between two simplexes). Eventually, with one vertex in the
vicinity of a local minimum, the successive simplexes will tend
to rotate about this one "permanent" point - a signal to reduce
the simplex size. The algorithm terminates when this size reaches
a preset minimum, or the function value is acceptably small at

all vertices.

In the method of Nelder and Mead (1965), the regularity of
the simplexes is abandoned so that acceleration steps (similar to
Hooke-Jeeves pattern moves) can be introduced. The simple re-
flection is only accepted if the resulting point is not a new
best or worst point. If a best point, the simplex is expanded
in the supposed good direction and the distant vertex used if
it is better again. If the fref]ectionf point is the worst,

a contraction of the simplex is made (affecting only the new
point). If the "contracted" vertex is still the worst, only the
best point of the existing simplex is retained and an overall
halving of simplex size is made. Convergence is assumed when
the variation in function value is sufficiently small over all

points in the simplex.

3.3.4 Special Methods foy Sums of Squares

In many cases of practical interest the objective function

has the special form

M
F(x) =] f2(x) (3.3)
m=1
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as in cases of least-squares curve fitting. Section 3.4.12
treats several methods using first derivatives of the
individual functions ﬂn(x ) which exploit this special form.
There exist also methods which estimate these derivatives from

values of the functions only. Obviously, a formula such as

aﬂ“(x)= f(x+a e.) - f(x)

Bxi a

where e, is the ith unit vector, could be used, but there are
better ways which rely on the function values obtained on
previous iterations. Once found, the approximate derivatives
may be used in several ways, as will be outlined for analytic
derivatives in Section 3.4.12.

The best known algorithms in this class are those of
Powell (1965), Barnes (1965), Broyden (1965), Peckham (1970)
and Powell (1970).

3.4 Gradient Methods

3.4.1 Introduction
A large class of methods for unconstrained minimization
(in fact, the majority of them) employ iterations which may

be expressed by the equations:

L (k+) (k) , (0 K

X P

and
alk) oK) o _ g (k)

where ¢ (k) is the vector of first derivatives of the

objective function F, evaluated at x = X (k), that is

(3.4)



and A (k)is some N x N matrix. ~The superscript (k) refers to
yalues preceding or used on the kth iteration. In what follows,
it will be omitted whenever the connection with a particular
iteration is immaterial.

Equation (3.6) defines a search direction P in terms of
the gradient vector g and the matrix A , and (3.5) implies
that the next estimate for the minimizing parameter vector

X (k+1) is determined from Xx (k) by taking a step in the
direction of p (k) and of length determined by the (scalar)
steplength parameter d(k}.

In this thesis the term "gradient method" will be taken to
include any method whose iterations may be expressed by (3.5)
and (3.6) regardless of whether the computational scheme itself
actually involves equations of this form. The methods differ
in the ways in which the matrix A and the steplength o are
chosen. Both first and second-derivative methods are included
(second derivatives can enter via the matrix A ) and, indeed,
a "function value only" method could qualify if the values were

used expressly to compute finite-difference approximations to

derivatives to be used in (3.6).

3.4.2 Descent Directions

In using a gradient method, one aims to cause a reduction

in the value of the objective function F at each step in the

hope that the sequence of iterates X(l) x(z), oo will

thereby be forced to converge to a Tocal minimum of F. Most
methods restrict the matrix A to be positive definite, which

ensures that a function reduction may be achieved for some

(3.7)
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positive value of o, that is, that p 1is a descent direction.
The proof of this is straighfforward - since A is positive
definite, its inverse A~1 exists and is itself positive

definite. Therefore, from (3.6),

p=-Alg. (3.8)

Consider the (vector) Taylor series expansion of F for a small

displacement AX from X, i.e.

T

F( x + aX ) = F(x) + gTax + 5 Ax" H aXx +0 (lax U3 (3.9)

where g and H are the gradient yector and Hessian matrix. If

the displacement is in the direction p , i.e.
AX = oap
then this becomes
F(X+ap)-F(X)=a @'p +%a2p' H p +0(a?) (3.10)

For sufficiently small «, the first term on the right-hand-side

predominates, and substituting for p from (3.8),
= T -
F(X+0Lp)-F(X)~-ag Alg (3.11)

Since A"l 1is positive definite, the right-hand-side is negative
for positive o, proving that a function reduction is possible

if o is small enough. (Provided that g is not the zero vector,
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jn which case (3.6) would fail to generate a search direction

at all).

3.4.3 Steepest Descent

The simplest gradient method takes A to be the identity
matrix | , that is, p is simply equal to the negative
gradient -g . In one variant of steepest descent, an
initial guess is made for «, and the function evaluated.

If the function is not decreased, then o is halved (or multi-
plied by some other factor less than 1) and the process re-
peated. Ultimate success is guaranteed (by the theorem of
Section 3.4.2), and the point just found is taken‘a;_gge—
start point for the next iteration. In another version, called
"optimal" steepest descent by Gottfried and Weisman (1973), the
value of o which minimizes F along the direction -g 1is
actually found to a fair degree of precision.

At first sight a steepest descent method would seem to be
the most efficient way of achieving a decrease in the function
value, since (as the terminology implies) the function decreases
most rapidly in this direction. However, this optimality holds
only in a local (infinitesimal) sense, and the method is a
very poor global strategy for minimizing most functions of
practical importance. The principal reason is that the search
usually becomes trapped in a relatively steep-sided "valley"
whose floor has a gradual slope towards one end (to use the two-
dimensional contour analogy). The steepest descent direction
from a point on the wall of such a valley is almost perpend-
jcular to the axis of the valley, and so the iterations will
zig-zag or "hemstitch" from one side to the other with very

little forward progress (down the axis of the valley).
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The "optimal" approach (locating the valley floor on
each iteration) is only a partial remedy (although it would
appear effective in a simple, straight, two-dimensional valley).
For one thing, the one-dimensional minimizati&n is seldom carried
out to extreme accuracy (to avoid waste of computer time better
spent on more iterations), causing over or under-shoot with the
consequences that the next steepest descent direction still
has a large component across the valley. More importantly,
however, even if the dimensionality of the problem is only
moderately high, the opportunity for curvature of the contours
in many directions simultaneously forces most of the minimizing
steps to be-very short. The end result is the same; very
slow convergence.

The existence of such valleys is not at all uncommon; in
fact any local minimum of a function will lie in one, except
in the most unusual case that the function value depends almost
equally on each variable. Virtually every author who has tried
the method reports the same disappointing convergence, for
example Marquardt (1963) and (for a digital filter design
problem) Cadzow (1976). The method is not much used alone
because of this very serious deficiency, although it is capable
of producing large function decreases in the early iterations
far from the optimum, and is sometimes resorted to as a "re-start"

step when another algorithm has bogged down for some reason.

3.4.4 The Newton (or Newton-Raphson) Method

The classical Newton method takes A as the Hessian matrix
of the objective function H (the matrix of second partial
derivatives). It should be noted that p is not necessarily

a descent direction since H is not restricted to be positive
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definite. Straightforward application of Newton's method may ;h
then require a search in the negative direction of p to ,
secure a function decrease. However, in the neighbourhood of j
a strong local minimum H <s positive definite, and under né

such conditions Newton's method is an extremely efficient
(quadratically convergent) process for finding the minimum.
As such, it is the prototype for all second-derivative (and ,
most other) gradient methods, which attempt to set A equal
to H (or as close an approximation to H as possible) once
this region of positive-definiteness has been Tocated.

Newton's iteration may be derived from several viewpoints;
two being given below:

(1) Vector Generalization of Newton's Method For Finding a
Zero of a Function

The well-known Newton-Raphson method for the iterative

B 3

solution of f(x) = 0 is illustrated in figure 3.3 (a). The
function value and gradient at x = x(k) define the new iterate

according to the formula

(k)
) o (k) [{% ] £(x(k)y (3.12)

The rapid convergence which characterizes this iteration is
obvious in the geometrical illustration. Figure 3.3 (b)
illustrates a generalization where we are trying to find the
values of two independent variables x1 and X, which produce
simultaneous zeros of two functions f (x , x Jand f (x_, x ).
11 2 28 I 2
In other words, we want the intersection point of the two loci
fl =0and f =0 in the (x , Xz) plane. Starting at an

1
arbitrary point (x (k), xz(k)) we generate a new point

& (k+1)’ 5 (k+1))l
bl 2

which would zero both functions if the
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/f(‘_k), - £ (x{K)

ar(k)
———_ slope o

f(x) =0

x ¥
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/ (1 (k)

(a)

f(x)

e e k1) o (41))

(b)

FIGURE 3.3  Newton-Raphson Method for a Zero of a Function

(a) One dimension (b) Two dimensions
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afl afl afz of
axl s axz , axl and 5?2 remained constant

partial derivatives

at their x(k) values (note that this is also the process in-
volved in the one dimensional case, figure 3.3 (a)). The

equations to be satisfied are

(k) (k)
PO )k Ty ) () LA
1 1 1 X1 2 2 axz
ne (k) (k)
k
K Kt k), °f k K, °f
fz( ) 4 (xl (k+1) xl( ) 5§i- + (x2( 1) | xz( )) 3;2- =0

which lead to

R (N (Y 3”-1“" - (k)

provided that the matrix inverse indicated exists. This has

the same form as (3.12), with vectors replacing scalars and a

matrix inversion replacing the reciprocal operation.

A necessary condition for a local minimum of a function is

that all gradient components are simultaneously zero. Ident-

ifying the functions fl and f2 of the previous discussion with

the gradient components ggi and égi-, (3.15) becomes

1 2
(% ‘(k+1) Mx (k) '.azF §_2_-F__--l(k) -BF.(k)
1 1 3X 2 93X oX X
- N 1 2 1 1
a2F  _8%F oF
X X 3% o IX T
aX 9X 99X
2 2 ] 27 2 ax2

(3.13)

(3.14)

(3.15)

(3.16)



41

or, in vector-matrix terms

(k1) _ (k) - (k) (3.17)

which is precisely the same as (3.5) and (3.6) with A‘(k) = Pi(k)

and a(k) = 1. Analogous results hold for N dimensions. Of
course, the order of partial differentiation is immaterial

for "ordinary" functions and so the Hessian matrix is symmetric.
The vanishing of the gradient vector is a necessary but not
sufficient condition for a local minimum - the uncritical use

of (3.17) may lead to convergence to a saddle point, or to a
local maximum (or divergence). However, if H is positive
definite at X (k), the second-degree Taylor series approx-
jmation to F(X ) in the neighbourhood of X (k) is a quadratic
form with a minimum, and (3.17) finds this minimum.

(ii) Behaviour of the Newton Iteration on a Positive-Definite
Quadratic Form

That Newton's iteration will find the stationary point of
a quadratic function in one step is obvious from the above
analysis, because for such a function the partial derivatives
in (3.13) and (3.14) are constant for all X . However, it is

interesting to consider the function F explicitly defined as
F(x) =b+% (X -r) H(Xx-r) (3.18)

which, if H is positive definite, has a minimum value of b

at X = r . The gradient is given by

and so from (3.8)
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p(k)=_H_lg(k)=—'X(k) + r - (3.20)

and

Lk1) (k) (k)

p roif oK) =1 (3.21)

The stationary point X = r is thus found in one step.

Examining the change in the function value given by (3.10),
where all terms above second order now vanish, we have, as
a function of o,

ang +5a2 pl

AF (o) Hp

1n

-6 g’ Hlg+hilg HTHH g

~(a-%a2) g H™'g (3.22)

If H (and so H ~1) is positive definite, the change in the
function is a reduction for all 0 < o < 2 and is maximized when
é%—(AF) = 0, that is when o = 1, in which case the function re-

duction is
- 1L al H-2
AF=-%g H™d (3.23)
Substituting for g from (3.19) gives

5 (x-r ) H HHx-r)
5 (x-r) H(Ox-r1) (3.24)

-
n

1

and so from (3.18), the function is reduced to b, its minimum

value.
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In practical cases of importance, the objective function
is not, of course, quadratic. However, close to a local minimum
a quadratic is a good approximation to "normal" functions, and
any minimization method which converges s]ow]y'when applied to
a quadratic function cannot be expected to do better on a
general function. For this reason, tests of algorithms using
quadratic functions are of considerable interest. Newton's
method, with its one-step quadratic termination, provides the
"benchmark", and another method cannot be rated "excellent"
unless it can minimize a quadratic form with an amount of labour

similar to one Newton jteration.

3.4.5 Practical Implementation of Newton's Method

Because of its quadratic convergence when the iterate is
near the minimum, Newton's method is extremely powerful and is
recommended by most authors (e.g. Murray (1972a)) in cases when
the required second derivatives can be calculated without too
much trouble. However, the following questions must be addressed
when considering an implementation:

(i) What should be done when the Hessian matrix is not positive
definite? The various answers to this question form the basis

of the other second-derivative methods, discussed below. The

two cases of singularity (or near singularity, causing numerical
i11-conditioning even if H is actually positive definite), and
indefiniteness, may or may not be considered separately. One
possibility for nonsingular but indefinite H is to search the
negative direction of p if the positive fails. This usually
works, but there is little theoretical justification for it and
better procedures are available. If H is near singular, steepest

descent may be used (as indeed it may be for indefinite H ).
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(i1) What should be done when the gradient is close to zero?

If H is positive definite the answer is: stop, the problem is
solved. If H is indefinite and g exactly zero, then (3.8)
fails to generate a search direction - the process is trapped
at a saddle point. The likelihood of this happening seems
extremely small, and some such strategy as a small random
perturbation should cure it. However, some authors refer

to it, for example Gill and Murray, (1974). They point out
that the availability of second derivative information allows
identification of a direction of negative curvature along
which the function will eventually decrease.

(iii) When H is positive definite, how should the steplength
be determined? Equation (3.17) indicates that o should be
equal to unity, but the positive definiteness of H does not
guarantee that a function decrease will be achieved for this
value of «. The actual behaviour of the function F may differ
significantly from that of the implied local quadratic approx-
jmation. However, as the local minimum is approached the value
o = 1 becomes very nearly optimal, and so the algorithm should
be coded so as to try o = 1 first and then proceed to smaller

values of a if necessary.

3.4.6 Survey of Modified Newton Algorithms

Many authors have discussed schemes for the modification
of Newton's method to handle cases where H is indefinite or
singular. Goldstein and Price (1967) and Dixon and Biggs (1970)
ignore the information in the Hessian in such cases and use a
steepest-descent step. Goldfeld, Quandt, and Trotter (1966) base
a method on the minimization (although in fact their paper deals

with the equivalent maximization problem) of the local quadratic
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approximation over a restricted region within which the approx-
jmation is known to be adequate. Their method uses a (hyper)
spherical region centred on the current iterate and demands
a complete eigensystem analysis of H . A similar method of
Fletcher (1972) uses a hypercube region and requires solution
of a quadratic program at each iteration.

An interesting method of Botsaris and Jacobson (1976) uses

in place of (3.5) and (3.6) the iteration

L) ()

S p(k) (X(k), £") (3.25)

N :
where t 1is.selected to minimize F( X ) along the curve given by

(k)

X = X + p(-k) ( x (k), t) (3.26)

where
e (K)
e TR G0 3.27)

\jzl .Ai(k) Ui i g

oK)y (K 4

Ai(k) and ui(k) are the ith eigenvalue and ith normalized

eigenvector of Fl(k), respectively. In the case of any

Aj = 0, the coefficient of u; uI is replaced by - t, its

Timit as Ay > 0. For t = «, the iteration is just Newton's

method, and the authors try this particular value first, proceeding
with the minimization over t only if the function value is not
decreased for t = ». As t tends toward zero the step P (X(k),t)
tends to a small step in the steepest-descent direction, and so a
function reduction will be obtained for some suitably small
positive t. In this respect the method is similar to that of

Marquardt (Section 3.4.8) which also generates a sequence of
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of "interpo]ationsf between the Newton and steepest-descent
directions. When Pl(k) is nonsingular but indefinite (i.e.
Ai(k) < 0 for some i), the value t = = is inappropriate in
(3.27), and Botsaris and Jacobson have used an "undamped
Greenstadt" trial ((3.27) with t = «» and all negative eigen-
values replaced by their absolute values) before undertaking
the minimization over t.

None of the methods discussed above formally fit the
model of equations (3.5) and (3.6) in the sense that a search
direction p(k) is first determined, followed by selection of
a suitable a(k) which determines a point in this direction.
Rather, o i$ always unity and both the direction and length
of p are found by a univariate search over some parameter.
Some methods which do fit these equations are discussed in
the sections which follow.

It should be remarked that eigensystem analysis is un-
desirable since it is relatively time-consuming and the storage
of eigenvectors requires a full N x N array. To be competitive,
such a method would need to be considerably more efficient (as
regards number of iterations required) than those methods not
requiring such analysis. This superior efficiency does not

seem to be achievable (this thesis, Chapter five).

3.4.7 Greenstadt's Method

Greenstadt (1967) considered the case when H 1is positive
definite but one eigenvalue A is much smaller than the rest
(a1l eigenvalues of a positive definite matrix are positive).
The function then has a "valley" closely parallel to u., the

eigenvector corresponding to Aje Then, provided that the gradient
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g has at least a small component along the valley, the Newton
step is substantially along the valley, as desired, even when

X is some distance from the valley floor. However, if a
small perturbation shifts the small eigenvalue to be negative
(leaving the others relatively untouched even though changed by
comparable absolute amounts) the Newtonstep is reversed, although
the best minimum-seeking direction is unchanged. Such reasoning
led Greenstadt to suggest that negative eigenvalues should be
replaced by their absolute values in the determination of a

search direction, 1i.e.

A (K) -Z I (k) (k) ak) T (3.28)
1

The method requires the eigensystem analysis of H at each
iteration, but the inversion of A to obtain p from equation
(3.8) is simple because the eigenvalues of A"l are the reciprocals
of those of A , whereas the eigenvectors are the same. p can

therefore be computed from

2 % Uy U-iT g - (3.29)

The Greenstadt iteration is completed by some suitable line
search procedure (Section 3.5) to determine an acceptable o
along p .

Murray (1972a) suggests that if H is singular (that is,
has some x; = 0,50 that (3.29) is not computable) then the
value Zt/z where t is the "relative machine precision" be used
in place of {Ail'l. He also suggests a scheme to dispense with

the eigensystem analysis and so save computer time when H is
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positive definite. In such a case the system of linear equations
(3.6), with A = H , can be solved by the Cholesky decomposition

of H into the form
B T
H = L DL (3.30)

where L is a unit lower triangular matrix and D is a diagonal
matrix. This is followed by two back-substitution steps and

a simple scaling by the diagonal elements of D to obtain p .
This procedure is regarded (Wilkinson (1965)) as being the

best method for solving symmetric systems when the matrix is
positive definite. The method is numerically unstable when the
matrix is indefinite (and the Cholesky factors may not even
exist) but indefiniteness is revealed by the occurrence of a
negative diagonal element of D during the attempted factor-
jzation. Murray's suggestion, then, is to try the Cholesky
decomposition of H and proceed with the back-substitution steps
if it succeeds. Otherwise, as soon as indefiniteness is
apparent, the eigensystem analysis is performed and (3.29)
applied. With the eigensystem analysis taking about 18 times
the computer time necessary for Cholesky's method (3N3 as
against 1/6 N3 + 0 (N2) ), there is a significant saving for
large N if H is positive definite a reasonable proportion of

the time, and in the worst case a degradation of only 6%.

3.4.8 The Marquardt or Levenberg Method

Consider an N by N symmetric matrix A, having eigenvalues
A and corresponding eigenvectors u., for i=1,2 ... N.

Then, by definition,



Au; = 1; u; (3.31)

Then, adding a multiple 8 of u; to both sides, we

get
(A+gl ) u,=(y+8) u; (3.32)

from which it may be seen that the matrix A+ 81 has the
same eigenvectors as A , and all eigenvalues shifted by an
amount 8. Hence, a positive definite matrix may be constructed
from any symmetric matrix by adding a positive amount 8,
greater than the absolutely largest negative eigenvalue, to
each of the diagonal elements. This forms the basis of several
distinct minimization algorithms.

Firstly, a descent direction p may be determined from
an indefinite or singular Hessian H by adding some amount B8
to the diagonal elements which is sufficient to ensure positive
definiteness (and a reasonable condition number), that is, p

is determined by solving the linear equation system

(H+gl ) p =-9 (3.33)

The main difficulty is that a suitable value of g is not

known a priori. However, we may proceed as'Murray (1972a)
suggested for Greenstadt's method, that is, attempt first the
Cholesky decomposition of H so that the Newton direction may

be used if H is positive definite. If this fails, we then try
to perform the Cholesky factorization of ( H + gl ) for

some trial value of g. If this succeeds, a direction p 1is found
(by back-substitution) and the trial g decreased by a factor of

(say) 2 so that a smaller value will be tried on the next iteration.
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If the factorization fails, B is increased by some factor
(say 2 again) and the process repeated (with the exception
that the tridl value passed to the next iteration is halved
only if the factorization succeeds the first time). It has
been found in practice (this thesis) that more than three
trials of g are seldom required except perhaps on the first
few iterations when g has not yet matched itself to the
eigenvalue spectrum of H

When a descent direction p has been determined, a line
search (Section 3.5) is performed to find a point which re-
duces the function value. This method will be referred to
as "Marquardt with line search." It appears not to have been
investigated before, although experiments to be reported in
this thesis indicate that it performs better than most alter-
natives.

The method described above has the objection that if
the value of B tried happened to be only marginally greater
than the absolute value of the most negative eigenvalue, the
matrix A+ gl could be so ill-conditioned that p could
fail to be a descent direction (due to numerical roundoff
error). However, this situation is easily avoided by insisting
that the diagonal elements of the D matrix be not only positive
but exceed some suitable small positive quantity.

A method which is related to "Marquardt with Tine search",
and much more widely appreciated, involves making the parameter
8 so large that not only is the matrix ( H + 81 ) positive
definite, but also fhat a function reduction is achieved at the

point X (k+1) found from
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x (k) o (k) (k) glk) (3.34)

In this way no line search is needed, but for every trial value
of 8 which makes ( H+ 81 ) positive definite, we need to solve
a new system of N linear equations (by Cholesky, or otherwise)
and evaluate the function to see whether it is reduced. We can,
as described above for the method with line search, use a "reason-
able" first trial value passed from the preceding iteration.
This method will be called the "true Marquardt" method, although
the original work by Marquardt (1963) added g not to the diagonal
elements of H but to those of an "approximate H " which may
be derived from first derivative information only in cases where
the objective function F is a sum of squares. This is considered
in Section 3.4.12. The method in fact dates from 1944, when
Levenberg was led to the same procedure by different reasoning.

The addition of an amount B to each of the diagonal elements
of H , which at first may seem a rather arbitrary procedure,
has at least the theoretical justification that as g tends to
infinity, the matrix ( H+ gl ) tends to a multiple of the identity
matrix and so the displacement p(k) (=X (k+1) - X (k),
as found from (3.34)) becomes a small step in the steepest descent
direction. Marquardt's method thus shares with that of Botsaris
and Jacobson (Section 3.4.6) the characteristic that the line
search is replaced by a search for a function decrease along a
curve in parameter space. The curve in each @se has the property
that it begins at the "Newton" point and spirals in towards the
"base" point where it is tangential to the steepest descent
direction. A further similar method was published by Jones (1970)
in which the curve is given an arbitrary (but plausible) analytic

form to enable successive trial points to be generated by vector
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addition rather than by repeatedly solving systems of Tinear
equations.

The necessity to solve a system of equations for each
value of B8 can be dispensed with in Marquadt'§ method, too,
as was pointed out both by Jones (1970) and by Bard (1970).
However, the alternative is a complete eigensystem analysis
p (k)

of H , in order to calculate a trial displacement

from

N
fWig) = | T 0k wgm 10 DT g

i=1 i i i (3.35)

Murray (1972a) points out that about 20 different values of g
would be necessary for the method to represent a time saving,
and Marquardt's method normally yields an acceptable point much
sooner than this.

Marquardt's method both with and without line search
may also be modified in another way. In most cases the value
of the objective function will be much more sensitive to some
components of the parameter vector than to others, and the
components of the gradient vector and elements of the Hessian
matrix will accordingly vary greatly in magnitude. Adding the
same amount to each diagonal element of H could conceivably
"swamp" some of the "true" elements whilst making only minimal
changes to others. Some elements of the displacement vector
could then be poorly determined by the resulting equations.
Accordingly, it is often recommended either that the quantity
added to diagonal element hjj be not g but slhjjl, or that
the problem first be re-scaled so that H has all diagonal

elements of magnitude unity. The latter course involves dividing
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the jth row and column of H by |hjj]’ simultaneous scaling
of both rows and columns being necessary to preserve symmetry.
Dividing the jth element of g by the same quantity compensates
for the row scaling, and column scaling is compensated for
(eventually) by dividing the jth element of p , as found, by
the same amount. Both of these approaches are equivalent in
the sense that the "search spiral" is no Tonger tangent to the
steepest descent direction as g »> =, but to a vector whose jth

component is - |-1. This essential difference in global

951h5
characteristics over the unmodified Marquardt method may or may
not be desirable, and in Chapter Five of this thesis the matter
is investigated numerically for certain problems.

A possible advantage to be gained from scaling is that
the numerical conditioning of the equations is Tikely to be
better because the elements vary less in magnitude. The eigen-
system analysis used in Greenstadt's method should also benefit
from scaling in that accuracy will be gained, although the sequence

of search directions will again be changed by the process. This

matter also is investigated in Chapter Five.

3.4.9 The Method of Gill and Murray

A method originally proposed by Murray (1972a) and later
explained in more detail by Gill and Murray (1974) takes the A
matrix of equation (3.6) to be equal to H+E , where E is
a diagonal matrix having non-negative elements, such that the
matrix A is positive definite. When H itself is positive
definite (and not nearly singular) then all elements of E are
zero. The method resembles that of Marquardt in that the diagonal
elements of H are perturbed but the method of achieving this

is quite different and does not require "trial" values of a parameter.
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As was mentioned in Section 3.4.7, a positive-definite
symmetric matrix H admits of a Cholesky decomposition (or

factorization)

xz
i
-

DL (3.36)
where L is a lower triangular matrix with unit diagonal elements,

and D is a diagonal matrix with positive diagonal elements.

Because the diagonal elements of D are positive, the factorization

could equally well be written

H =1L L' (3.37)
where N
Xy
L= LD™?
Denoting the elements of L as ]ij and those of H as hij’ and
equating elements in the kth column of (3.37) we have
)
2 =
i=1 ]k1 hkk (3.38)
and
k
121 ji ki T hjk j = k+l, k+2 ... N. (3.39)
Thus the elements of the matrix L may be found, one column
at a time beginning at k=1, from
k-1 ol
- 2

and
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]jk ) (hjk '121 ]ji ]ki)/]kk » J = k+tl, ... N

which are rearrangements of (3.38) and (3.39). If H is not
positive definite, the parethesized quantity in (3.40) will,
for some k, become negative, and the process cannot proceed.
However, if this does not happen, the factorization is num-
erically stable because the elements of t are bounded by
the diagonal elements of H , as expressed by (3.38).

In the method of Gill and Murray, a lower triangular
matrix t is generated from H in a manner which is a modifi-
cation of the above Cholesky process. Deliberate steps are
taken at each stage of the process to ensure progress and
numerical stability. The radicand in (3.40) is replaced by its
absolute value if it is negative, and, further, the value of ]kk
thus found is increased even more if necessary to ensure that
all the elements ]jk (found from (3.41)) are bounded by a pre-
assigned positive constant B.

In their paper, Gill and Murray show that such "tampering"
results in a lower triangular matrix t such that t C.T is
the true Cholesky factorization of a matrix H + E , where E s
a diagonal matrix whose elements are bounded. Further, they
derive an optimum value for the constant g which minimizes this
bound and at the same time ensures that the true Cholesky factors
of H are found (i.e. E 1is the zero matrix) whenever H is
sufficiently positive definite.

A search direction p is then computed from the usual
formula (3.6), which becomes

A A
LL p--g

(3.41)
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and the process is simply one of back-substitution (twice). A
line search is then performed, completing the iteration.

Although they suggest that convergence to a saddle point
is very unlikely, Gi11 and Murray also point out that their
process allows a direction of negative curvature 1o be identified
so that a function reduction may be achieved even in cases when
Igl = 0, and the formula (3.6) fails. The derivation is given
in the original paper. In practice, all that is required is
that the index, k, which gives the smallest “"radicand" in (3.40)
during the process be recorded. If H is indefinite, then p

found from

(3.42)

js a direction of negative curvature, where e, is the vector
with kth element unity and all the rest zero. In a practical
algorithm,this alternative formula would be used whenever H
were indefinite and lgl < e, for some preset threshold e.
The direction -p would then be used in place of p if ng > 0.
Matthews and Davies (1971) have proposed another method
based on the LU factorization of H by Gaussian elimination,
where L is a unit lower triangular matrix and U an upper
triangular matrix. During this process some of the diagonal

elements L%. will become negative if H is indefinite; the

’
authors propose to force them positive and thus generate the
factorization of a related positive definite matrix. Later
authors (e.g. Murray, 1972a) do not favour the method because it

is not numerically stable in general.
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3.4.10 The Method of Fletcher and Freeman

Fletcher and Freeman (1977) have proposed a method which,
in the case that H is indefinite, generates a search direction p
which is not only a descent direction but a]sd one of negative
curvature. In this, they follow a suggestion of Fiacco and
McCormick (1968). The rationale is that, if F(x) is bounded
below, the negative curvature must eventually change to positive
for some sufficiently large value of the steplength a. Fiacco
and McCormick argue that such a search is likely to lead, on the
next iteration, to a Hessian matrix with one fewer negative
eigenvalue. The method of Fiacco and McCormick was based on
the Cholesky factorization, which for indefinite matrices can
be unstable or even impossible. This objection is removed in
the later work, which relies on a stable matrix factorization
due to Bunch and Parlett (1971). These authors show that a

T can be constructed in a numerically stable

factorization L D L
manner, where L is unit lower triangular and D is block diagonal
having blocks which are 1 by 1 and/or 2 by 2 only. The factor-
jzation is not of the original symmetric indefinite matrix H but
of one which has been modified by symmetric row and column inter-
changes. When 2 by 2 blocks occur they are symmetric and can
be restricted to having negative determinants, that is, one
eigenvalue of each sign. Fletcher (1976) describes another strategy
for generating a factorization of this type which maintains
stability but allows a somewhat greater "rate of growth" of error,
to gain a substantial reduction in computer time.

In the minimization method of Fletcher and Freeman such a
factorizationis computed. If all blocks of D are 1 by 1 and

positive, the Hessian is positive definite and the factorization

is used to generate an ordinary Newton search direction. If
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there are any 2 by 2 blocks, or negative 1 by 1 blocks, a

direction of negative curvature t is generated from
L't = a | (3.43)

where the vector a has unit elements for those indices for
which D has negative 1 by 1 blocks and zero elements cor-
responding to positive 1 by 1 blocks. Where (i, i+l) corres-
pond to a 2 by 2 block of D, then [ai, ai+1iT is set equal
to the normalized eigenvector corresponding to the negative
eigenvalue of the D block. After unravelling the column
permutation’which occurred during factorization (that is,
making a compensating permutation to the elements of t ), the
scalar product g1-t is evaluated and tested, and the search
direction p set to t or -t as required to obtain a descent
direction.

Fletcher and Freeman recommend not that such a direction
be used whenever H is indefinite, but that it should alternate
with the use of a Newton-like step restricted to the subspace
of directions of positive curvature. This is because the
iterates could otherwise become restricted to a subspace and
so fail to converge to a minimum. A vector t within the

positive-curvature subspace is found from
LDL t=-g (3.44)

where D')"L is D with negative eigenvalues replaced by zero.
The descent direction p is found by permuting the elements
of t to unravel the permutation which occurred during factor-

ization.
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3.4.11 First-Derivative Methods

The foregoing sections have outlined most of the useful
gradient methods which employ second derivative (Hessian matrix)
information explicitly. They are, as a class, the most efficient
nonlinear minimization methods known because of the excellent
convergence properties of the basic underlying Newton-Raphsan
iteration. However, in many practical cases, the task of
analytically twice differentiating the objective function with
respect to each pair of variables, and then generating computer
code, is very intricate, time-consuming and error prone, and
many methods have been developed which avoid the need. Of course,
in cases such as the digital filter design considered in this
thesis the objection is largely removed because the differentiation
may be done (and carefully checked) once-and-for-all, hence, the
fairly complete survey of second-derivative methods in the preceding
sections. However, it is conceivable that a first-derivative
method (which requires more iterations) could be more efficient than
a second-derivative method (which requires more work per iteration).

First-derivative methods fall into three categories:

(a) those which generate some sort of approximation to the Hessian
matrix H or its inverse at each iteration,

(b)  those which employ several iterations (usually N) to simulate
the effect of one "Newton" iteration (conjugate gradient
methods), and

(c) those which use a matrix A which is updated at each iteration
and eventually becomes an approximation to the Hessian
(or inverse Hessian) i.e. the quasi-Newton or "modification”
methods.

The latter two types are considered in Sections 3.4.13 and
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3.4.14. Of type (a) there are those which generate approximations -
to second derivatives by differencing the first derivatives.

The idea is obvious - the art to choose a steplength which ¢
nicely balances the cancellation and truncation errors. One i
such algorithm is given by Gill and Murray (1974). There is
another important type which falls into category (a) and applies }
when the objective function is a sum of squares of other functions. )

This is now considered.

3.4.12 Special Methods for Sums of Squares, or "Gauss-Newton" Methods

Suppose that the objective function has the special form

M

F(x) =] f2(x) (3.45)
m=1

e

This is applicable to problems of curve fitting, system identi-
fication and digital filter design, where we seek to minimize

the sum of squared differences between model-derived and ex-
perimentally measured quantities, or "achieved" and "desired"
values. In such cases M could be greater than N. It is also
applicable to the problem of solving simultaneous nonlinear
equations, in which case M would be equal to N and the individual
fm would be the expressions required to be zero.

Differentiating (3.45),

2 f g= i® 1,2 N (3.46)
1

Ne~—=

BF
3X

i m=1

and
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which give expressions for the gradient g and Hessian H to

be used as in Newton's method. The special methods are based
on ignoring the second sum in the expression for the elements
of the Hessian, in the hope that it will be small compared with
the first. This is equivalent to approximating each of the
component functions fn# X ) by the first-order terms in its

W). The method is especially

Taylor series expansion about X
successful in the values of the "residuals" fm are zero at
the solution (as when solving non-linear equations) because
then the second sum does tend to zero, and Newton-T1ike con-
vergence is ultimately obtained.

The matrix whose elements are given by the first sum in

equation (3.47) may be written as 2 JTJ | where J is the M

by N Jacobian matrix, given by

af of of
1 __1 1
oX oX 8XN
1 2
J @ of of
- =21 =24
X X
fl 2 of
o
_M M
9X 9X
1 N
The matrix 2 J i J will also be denoted as R . Now

considering the quadratic form

(3.47)

(3.48)
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CyTaN(Jdy)
(Jy)(dy)

M

2
m§1 (Jy)2

pan)
1

which is obviously greater than or equal to zero, it is seen
that R is at least positive semidefinite. It must be positive
definite unless (Jy hn = 0 for all m with some non-zero vector

y ; that is unless the N columns of J are linearly dependent.
Hence, unless J fails to have full rank (N), the matrix R is
positive de%inite, and a descent direction may in principle always
be generated by choosing the matrix A of equation (3.6) to be
equal to R . However, it does not infrequently happen that R
becomes indefinite due to roundoff error, and practical algorithms
must take this into account.

The classical, or undamped, "Gauss-Newton" iteration uses

(3.5) and (3.6) with A=R and o = 1. It is not guaranteed to

converge because the approximations involved are not necessarily

valid for Targe step sizes, and the "damped Gauss-Newton" algorithm,

employing a line search to guarantee a function reduction, is
much more reliable.

If the matrix R is not positive definite, however, due
to roundoff error when J is close to being rank-deficient, even
this may fail. Accordingly, the standard method for least-
squares problems has come to be that of Marquardt (1963), already
discussed at Tength in Section 3.4.8. The difference between

the present method and the one of that section is that a positive
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value B is now added to the diagonal elements of R rather than
to those of the true Hessian H . B is increased to whatever
value necessary to make the iteration matrix positive definite
and produce a function reduction for o = 1. The process must
succeed for large enough B, because the step tends to a very
small one in the steepest descent direction. The value used
for g may usefully be passed to the next iteration as a first
trial value, as described in Section 3.4.8.

There will be an "optimum" value of 8 for each iteration
in the sense that the greatest reduction in the function value
will be achieved. Davies and Whitting (1971) have tried a
version of Marquardt's algorithm which seeks to use this value,
but conclude that the "damping" introduced is usually too
large, and more iterations are required than if the first value
of B to decrease the function is simply accepted.

The algorithm of Jones (1970) represents another means of
interpolating between the Gauss-Newton and steepest descent
directions.

Bard (1970) has conducted numerical experiments which
indicate that special methods for sums-of-squares perform better
than representatives of the quasi-Newton class, which ignore
this special form of the objective function. Nevertheless,
except when the residuals are zero at the solution or the component
functions are Tinear, there is no theoretical reason why they
should converge at a rapid rate. Theoretical work by Meyer (1970)
and McKeown (1975) suggests that the ultimate convergence rate of
Gauss-Newton and Marquardt-type algorithms is critically dependent

on the ratio t/w, where u is the smallest eigenvalue of R and
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t the (absolutely) Targest eigenvalue of the matrix S whose

elements are given by the second sum in (3.47), i.e.

|§| azfm
S.. =2 -
iJ me1 M axiaxj

(3.49)

Specifically, if x* denotes the minimizing parameter vector,

it is shown that for an wundamped Gauss-Newton algorithm

*

- (k)
tmlX L.t . 3.50
koo | UKy ° v S

If T < < yu,,convergence should be excellent, but if T > u
the undamped algorithm can diverge. McKeown goes on to report
computational experience with functions specifically designed to lead to
high t/u values, and shows that the specialized least-squares
algorithms become increasingly inferior to alternative methods
as this parameter increases.

Even so, the idea of obtaining partial Hessian information
( R) without explicitly calculating second derivatives is
attractive, and several workers have proposed schemes for
approximating the other ( S ) part of the H matrix to improve
convergence in the "large-residual" problems. These schemes
have involved updating an approximation to the S matrix from
iteration to iteration, in the manner of quasi-Newton methods.
The work of Dennis (1973), Biggs (1977) and Betts (1976) is
cited.

Davidon (1976) has suggested an interesting idea relating

not to the ultimate convergence of a least-squares algorithm
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but to its performance in the early iterations, far from the
optimum., The point is that not all of the M component functions
need to be evaluated in order to determine a useful descent
direction, especially if M >> N, and much computer time is
wasted in calculating information about the functions far from
the optimum, most of which is discarded shortly afterwards.
In his algorithm, only one component function is evaluated per
iteration although all are used in a complete cycle of M iterations.
The latest information is given most weight in determining the
search direction to be followed. The iterates ultimately fluctuate
around the optimum rather than converging to it; however, if
true converéence is required there is no reason why a switch
cannot be made to a "full-evaluation" algorithm,

In the remainder of this thesis, the term "Gauss-Newton
method" and the abbreviation "GN" will be used to refer to any

method (including Marquardt's) which is based on the R matrix.

3.4.13 Conjugate Gradient Algorithms

The matter of conjugacy of vectors was treated in Section
3.3.2 where it was mentioned that for a quadratic function the
minimum will be found in just N Tine searches in mutually H -
conjugate directions. When first derivatives are available it
is much simpier to generate conjugate directions than when they
are not. To show this, we define symbols for the changes to
parameter and gradient vectors which occur on the jth iteration,

viz.

S(J) = X (j+1) - X (J) = d.(J) p(J) (3_51)
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and

(3) o q(3%1) _

y g g () (3.52)

For a quadratic objective function, defined as in equation

(3.18), i.e.
F(X)=b+% (x-r) H(x-r) (3.18)
we have by differentiation
g =H(x-r) (3.53)
for any X , so that
y ) o el o )y o) T

(3)

along any vector p(J). We now assume that

(k)

for any step o

we want on the kth iteration to use a search vector p

which is H - conjugate to all of the preceding search vectors
p (j), j=1, 2 ... k-1, (where k is Tess than or equal to N).

That 1s, we want
p ) T pl@) oo 5o1, 2.0 ket (3.55)

Substituting for H p(J) from (3.54), the conjugacy condition

becomes

ROWEE vy =0 e, 2 Ll kel (3.56)
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or since a(j) is a scalar,simply
T .
UM N T B (3.57)

Hence, when dealing with a quadratic function a new direction
p(k) in which to search can be generated merely by ensuring
that it is orthogonal to the gradient-difference ( y ) vectors
resulting from the previous k-1 searches. |

The conjugate gradient method of Fletcher and Reeves
(1964) uses that component of the current negative gradient
- g (k) which satisfies the above condition, thus combining the

ideas of stéepest descent and conjugacy. Formally,
plk) = _ gkl gk (3.58)

where ()(k) is the symmetric orthogonal projection matrix which

annihilates y(l), y(z) e y(k'l) for k ¢ N. Equivalently,
so that the conjugate gradient method satisfies the formal
definition (3.6) of a "gradient method". However (3.59) is
not used in practice for computing p(k), rather (as is shown
for instance by Fletcher (1972)) it may be determined simply
as the sum of two vectors:
p (k) =-g (k) + B(k) p(k'l) (3.60)

(k)

where B is given by either of the formulae
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T T
(k) _ o (k-1) g(k)/y(k'l) p(k_l) (3.61)

y

or

i
(K - g7 gy glet)t g (ko) (3.62)

p(l) is taken simply as the steepest descent direction - g (1).
The formulae (3.60) to (3.62) may be used repeatedly, generating
more than N directions, so that the method may be used for general
(non-quadratic) functions. However, it usually seems preferable
to reset p to the steepest descent direction after N iterations.
(Fletcher, 1972). This explains the remark in Section (3.4.11)
that the conugate-gradient methods use N iterations (which would
minimize a quadratic function) to simulate the effect of one

(k)

Newton iteration( which would do Tikewise). Because each p
depends on the preceding |J(k-1), individual iterations are
dependent on information other than that which can be derived
at the present point X(k), a feature shared with the quasi-
Newton methods to be discussed in the next section, and which
places them apart from the gradient methods so far discussed.
While not usually considered as effective as quasi-
Newton methods, the conjugate-gradient algorithm possesses

what may be a useful advantage if N is very large - there is no

necessity to store any matrices.

3.4.14 Quasi-Newton Methods

In the class of methods known as "quasi-Newton" or

"modification" methods the matrix A of (3.6) is initially set
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to some arbitrary positive definite matrix (usually the unit
matrix) and updated from iteration to iteration in such a
way that it tends towards the Hessian matrix H as the solution
is approached. Only function value and first-derivative
information is used in determining the update. Positive definite-
ness of the A matrix is maintained during the procedure, so
that a descent direction is produced at each step.

The plausibility of such a procedure is again demonstrated
by appealing to the properties of quadratic (constant Hessian)

functions. From equation (3.54)
v(k) - Hs(K (3.63)

where y(k) and s(k) are the gradient and parameter vector
differences for some arbitrary step in parameter space (equations
(3.51), (3.52).) Since A 1is supposed to be an approximation
to H we would 1ike to force A to have the property expressed
by (3.63), i.e.

y (K)o p (k) g (k) (3.64)

(k) (k)

but since s and y are not known until after the kth
step this is not possible. However, the next approximation
can be forced to have such a property, i.e.

y (k) = p (k1) g (K) (3.65)

an equation known as the "quasi-Newton condition".
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Since A‘(k) is already some sort of approximation to
H , we don't want A(k+1) to differ too drastically, and

so we compute A(k+1) from an update formula
a k) o a (k) e (k) (3.66)

where C(k) is restricted to being a matrix of low rank
(usually 1 or 2) and further restricted so thaf A(kﬂ)
satisfies the Quasi-Newton condition. There is still some
freedom in the way in which the update matrix C(k) is chosen,
and herein 1lie the differences between a whole host of quasi-
Newton a]go'rithms.

An obvious disadvantage inherent in updating the matrix
A as discussed is that it is necessary to solve a set of
linear equations (3.6) at each step in order to determine p.
In practice, therefore, the information stored and updated
at each iteration is either an approximation to the inverse
Hessian H'1 or {(as Tong as symmetric updates only are used)
to the Cholesky factor L(k) such that L(k) L(k)T - A(k)'
Appropriate updating formulae analogous to (3.66) may be
derived in either case. If the inverse is recurred (as is
traditional) a matrix-vector multiplication only is required
to determine p and the updating formulae are simpler than
those for the factors, but Gill and Murray (1978) believe that
the alternative course (requiring two stages of back-substitution
to determine p ) is preferable because the maintenance of

positive-definiteness can be guaranteed in the update. It is

possible for roundoff error to cause the approximation to the
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inverse to become indefinite, in which case the only remedy
would be to reset A to the identity matrix, wasting useful
information.

We come now to a brief survey of particular update
formulae. Of those for which (:(k) is of rank 1,
Broyden (1965), Barnes (1965) and Pearson (1969) have considered
non-symmetric updates. If instead (:(k) is restricted to
being symmetric, there is only one possible formula, whose use
has been investigated by Davidon (1968), Murtagh and Sargent
(1970a) and Bard (1970).

We now introduce a new symbol 1'(k) for the kth approxima-
tion to the,inverse Hessian, that is

T (k) _ A(k)-l (3.67)

and the formula used in lieu of (3.6) to compute the search

vector p (k) is

p(k)=_ r (k) g(k) . (3.68)

The "symmetric rank one" (SR1) update formula is, in terms of

the inverse approximation,

(k) (k)7
T(k+;) _ T(k) A A (3.69)

MO

where

V(k) = T (k) y (k) S(k) (3.70)
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This scheme possesses the highly desirable property of finite
termination for quadratic functions without exact Tine searches
(Broyden, 1967) but unfortunately the unmodified formula is unstable
since there is no guarantee that successive A or T matrices
remain positive definite. Davidon (1968), Murtagh and Sargent
(1970a), and Bard (1970) all propose different strategies for
getting around this problem, with the result that the algorithm
remains competitive,.

(k+1)

Murtagh and Sargent show that T -is unlikely to

become indefinite if

v g (k)
o7 K

<0 (3.71)

v

and accordingly evaluate the expression on the left-hand-side
of (3.71) and require it to be less than some suitable small
negative quantity Gl,say - 1078, If the test fails, T is

updated not by the ordinary formula but by

(k) o (k)T
1) = (K C Y 3.72
T U v 0Ty (K) e

Murtagh and Sargent use this formula also in cases when
(]
v (k) y is too close to zero to enable (3.69) to be used

in a stable manner. They require that

i T

where 62 is again a suitable small quantity, say 1078. Even

when such tests are incorporated it can happen that p(k+l)

fails to be a descent direction, and a practical computer
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program must include such a test. The standard procedure in
the case of failure is to reset T to the identity matrix.
Many useful updates of rank 2 belong to the "single-

parameter family" defined by

T T
IR IO (CRCIMCILC
s(k) y(k) y(k) T(k) y(k)
e oK) Ky (k) (3.74)

where now

() 2 () ) g0 T )y ()

’
s(0T | (K)

\' ]

(3.75)

(k)

and p is arbitrary. If p(k) » 0 such algorithms are
theoretically stable if exact 1line searches are carried out,
since Broyden (1970) has proved that if 1'(k) is positive

1'(k+1) under such conditions. The case

definite then so is
p(k) = 0 gives the most famous of all gradient methods, the
DFP formula, of Davidon (1959) and Fletcher and Powell (1963).
This method has achieved much success, but a later update
known as the BFGS formula (after the initials-of its four in-
dependent discoverers, Broyden (1970), Fletcher (1970),
Goldfarb (1970) and Shanno (1970)) now seems preferable. This
is because the line search can usually be carried out with

fewer function evaluations (Gi11 and Murray, 1978). For

Bres, o) is given by

KON 1

(3.76)
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Useful surveys of quasi-Newton methods are given by
Broyden (1967), Broyden (1972) and Gill and Murray (1978) .
The Tast-named authors survey some more recent work, including
the use of an "optimally-conditioned" update (the use of a
value of p(k) in (3.74) which minimizes a bound on the
condition number of 1'(k+1)) and a method of Davidon (1975)
which requires no Tine searches. They conclude that numerical
evidence is not conclusive in favour of these fechniques

and continue to prefer BFGS on the grounds of simplicity.

3.5 Line Search Techniques

Most of the gradient methods (and the conjugate-direction
method of Section 3.3.2) require some form of search along a
Tine in parameter space. This is expressed by equation (3.5) -
a search direction p(k) has somehow been determined and a

(k)

value of a is required.

A1l methods require a(k) to be found 1in such a way that
F( X(k+1)) < F( x(k))which ensures that for "reasonable"
functions the sequence of iterates will converge to a local
minimum. This will be referred to as the "stability require-
ment". As was shown in Section 3.4.2, some sufficiently small
positive value of o will always suffice if the matrix A used
in (3.6) is positive definite. Thus the simplest form of line
search technique would consist simply of trying a likely value
for o and repeatedly decreasing this by a constant factor until
a function reduction was achieved. In the case of Newton methods
(when H is positive definite) and quasi-Newton methods, the
theoretical best value (derived by considering a quadratic function)

is o = 1.0, and this is often the value first tried.
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In theory many methods (e.g. the DFP method) require
"exact" line searches (that is, minimization of the function
along the line), to achieve their performance, and even in
other cases it seems intuitively desirable that the function
value be reduced as much as possible. Accordingly, practical
algorithms often include Tine minimization subroutines of
varying sophistication. The evaluation of these procedures
must rely largely on experiment because even for methods
theoretically requiring exact searches much success has been
had with much cruder (and therefore less time—consuming)searches.
This matter is taken up for representative digital filter
design applications in Chapter Five.

Although a large number of approaches to the problem of
localizing the minimum of a function of one variable (o) have
been tried in this context, there are really only two basic
methods. The first is capable of refining known bounds on the
minimum by comparing function values only. The disposition of
trial function evaluations to achieve this with least labour
give rise to the "Fibonacci" and "golden-ratio " techniques
(Gottfried and Weisman, 1973). In the second method, a simple
function with a minimum (such as a quadratic or a cubic) is
fitted through known o - F points. Such a fit may also utilize
evaluations of the gradient made along the line. This method
is usually more effective, and can even be used in an extra-
polation sense (i.e. before a "bracket" on the minimum is known).
Safeguards must be incorporated to ensure that extrapolations too
far outside a reasonable neighbourhood of known points are not
made. Such an algorithm is described by Gi11 and Murray (1978).

Some specific line search techniques are described and

computational experience is reported, in Chapter Five.
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3.6 Published Comparisons of Unconstrained Minimization Techniques

Extensive comparisons of the performance of minimization
techniques are rare in the Titerature. Most of the original
papers proposing a new technique compare it with at least one
other method, but the test functions used are rather restricted
and usually of low dimensionality. There is the added complication
that (especially if results from another's work are quoted) the
test conditions may not be uniform, particularly with regard
to convergence criteria. Such tests invariably tend to show
the "new" method in a good light.

To make matters worse, the criteria for comparing comp-
utational effort are by no means easy to define. Comparisons
of actual CP time are useless when different computers are used,
and execution time in any case will depend on the "cleverness"
of the programmer. "Complicated" subroutines written for
investigative purposes in particular may suffer from poor
coding. Some authors quote "number of function evaluations"
whilst others use "equivalent function evaluations" where a
gradient evaluation is often assumed to be equivalent to N
evaluations of the function. In many problems this will not be
even approximately true. Such measures of performance ignore
all computational overheads peculiar to the methods themselves,
for example, a Greenstadt method requiring an eigensystem
analysis at each iteration may be quite inefficient although it
appears good with regard to function evaluations.

Some methods (particularly Newton methods) may benefit
from a fortuitous choice of starting point, and most comparative
surveys have not attempted to average the performance of the

algorithms over a variety of starting points.
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Hopefully, some of the above objections are answered
for a restricted class of objective functions, the digital
filter problems, by the analysis of Chapter Fiye. The re-
mainder of this section is devoted to a brief look at some
comparative surveys appearing in the mathematical Titerature.

’ Box (1966) looked at eight methods as applied to five
"sum-of-squares" problems of 2, 3, 5, 10 and 20 dimensions.
Two of the methods are specialized sums-of-squares methods
(Powell (1965), requiring no gradient evaluations, and
Barnes (1965)). Of the remainder, four do not require der-
jvatives (Powell's 1964) conjugate direction method and three
direct-search methods), one is a conjugate gradient method
(Fletcher and Reeves, 1964) and one a quasi-Newton method
(Fletcher and Powell, 1963). The criterion used for comparison
was "equivalent function evaluations" with a gradient deter-
mination counting as N function evaluations. Several starting
points were used in each case.

Box concluded that the sums-of-squares methods are pre-
ferable for this type of problem, but in all cases the residuals
at the solution were zero so that the considerations of
McKeown (1965), as discussed in Section 3.4.12, do not apply.
0f the "general" methods the Fletcher-Powell method was superior
but Powell's derivative free (1964) method very competitive.
The conjugate-gradient technique was somewhat poorer but better
than most direct-search techniques. The Nelder-Mead (1965)
algorithm was the best of the direct-search methods tested,
being somewhat better than conjugate gradients for problems of
Tow dimensionality, but its performance in 20-dimensions was

quite poor.
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Bard (1970) again treated sums-of-squares (parameter
estimation) problems, employing methods which use analytic
first derivatives only. The test problems were more searching
than those of Box, some algorithms failing to produce acceptable
answeres in some cases. Dimensionality N was 3 to 10. Only
one starting point was used for each probliem.

Algorithms tested were the damped Gauss-Newton and true
Marquardt (which are specifically for sums—of—sﬁuares),
the Davidon-Fletcher-Powell (DFP) method, and the symmetric
rank-one (SR1) quasi-Newton method with a) the Hessian approx-
jmation carried and b) the inverse Hessian approximation carried.
Several schemes for line search, finding the minimum to various
degrees of accuracy, were carefully defined and tested.

Algorithms were ranked firstly in terms of robustness
(smallest number of failures) and secondarily in terms of number
of "equivalent function evaluations". The conclusion was that
the sums-of-squares methods are significantly superior for this
type of problem. In the case of the damped Gauss-Newton method,
excessive effort to locate the minimum was unjustified but it
was beneficial to try an additional value of o rather than
just accept the first which met the stability criterion.

The SR1 algorithm was significantly better than DFP, and
Bard attributed this to the former's not requiring accurate
line searches to achieve quadratic termination. For both algorithms
a "moderate" effort in determining a step Tength was worthwhile
(more effort for DFP).

Bard's versions of the SR1 algorithm are rather unusual.

In one case he replaces the eigenvalues of the approximate Hessian
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with their absolute values to ensure a descent direction
following Greenstadt (1967), which could be a very time-
consuming procedure. In another version he simply reverses
the search direction if necessary, making no effort to retain
positive-definiteness of the matrix. However, Murtagh and
Sargent (1970b) also compared various (more orthodox) versions
of SR1 with DFP and again found it usually superior.

Himmelblau (1972) attempted a "uniform" evaluation of a
number of methods on problems of up to five dimensions only.
The uniformity is in the sense that convergence criteria (in
terms of relative changes to parameters, function value and
gradient norm) are the same in each case, and comparison is
in terms of computer time (on the same machine) so that matrix
algebra and other overheads are included as well as function
evaluation time. Himmelblau's preference is for the algorithm
of Fletcher (1970) which switches between the DFP and BFGS
updates depending on the result of a simple test, and which does
not require line searches, but he did not test BFGS alone. The
DFP and Broyden (1965) non-symmetric rank one algorithms were
ranked "very good" but the accurate line searches used made
then considerably slower than Fletcher's method. Powell's
(1964) algorithm was the best of those not employing derivatives,
ranking considerably higher than Stewart's (1967) and direct-
search techniques.

Sargent and Sebastian (1972) studied the performance of
some gradient algorithms for '"classic" test problems of up
to four variables., They found that the performance of the DFP
algorithm uniformly improves as the accuracy requirement on the

linear search is relaxed, at Teast down to e = 0.1. However,
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replacement by a mere stability test Ted to failure on three

out of the five problems. Both BFGS and SR1 performed well

with a stability test, and better in this mode than when Tine

minimization was attempted. However, both outberformed DFP

even in minimization mode. On their evidence, the BFGS update

is marginally better than SR1.

The Fletcher-Reeves (1964) algorithm was also tested by
Sargent and Sebastian, who found it inferior to DFP, supposedly
due to greater accuracy requirements in the line search (e = 0.01
seemed optimum) and to loss of information in the periodic re-
starts.

The general conclusions to be drawn from the literature
seem to be that:

a. Specialised sums-of-squares methods should be used if
applicable (but McKeown (1965) shows that functions can
be constructed for which this conclusion does not hold.)

b. Gradient-based methods are generally superior to direct-
search methods. The Powell (1964) and Stewart (1967)
algorithms which simulate gradient methods are the best of
those not requiring analytic derivatives, but they are not
as good as those that do use them.

c. Of methods using first derivatives, quasi-Newton algorithms
are superior to conjugate - gradients, and those for which
a stability test can safely replace line minimization are
the best of the quasi-Newton class.

However, tests have been on restricted classes of problems,
mainly of low dimensionality, and the above conclusion may not
be general. As for second-derivative methods, which appear to
offer significant theoretical benefits, the present author
knows of no comprehensive numerical comparisons either with each

other or relative to the other classes of algorithm.

’
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CHAPTER FOUR

4. APPLICATION OF OPTIMIZATION METHODS TO DIGITAL FILTER DESIGN

4.1 Introduction

The aim of this chapter is twofold. Firstly there is a
survey of the digital signal processing literature to identify
areas in which mathematical optimization methods have been used.
An attempt is made to achieve some philosophical unification of
this field by grouping published works according to general
features of their mathematical formulation.

Much of the work reviewed is not dealt with in detail
beyond that necessary to place it in the above context. How-
ever, other material provides the framework within which various
mathematical optimization methods are to be compared (in chapter
five). And so the second objective of this chapter is the
development, in some detail, of the mathematics involved in
these applications. Some originality is claimed for this
development. Although the mathematics involved is noc more than
analytic differentiation and elementary algebra, it is believed
that the generality of the derivation is new. In contrast,
most published work has fixed attention on a particular type
of filter design problem before embarking upon the mathematical
development.

Although some generality is claimed for the mathematical
development, it is also necessary to attempt to justify the
restrictiveness of the types of problem chosen for detailed

development here and for computer study in chapter five. 1In

e
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particular, attention is given mainly to sum-of-squares (SS)
objective functions and to digital filters which are realized
as a cascade of second-order sections. Of course, some
restriction of scope has been necessary because of the limited
time available for the study and because this thesis would
otherwise be too unwieldy. And both SS functions and cascade
filters have been much treated in the literature which may

in itself be enough to justify further study. However, I
believe that there are some more particular justifications
for the continued use of cascade filters and SS objective
functions. More details are given later, in particular in
sections 4.3.3 and 4.4.2.

An appreciation of the remainder of this thesis
requires some familiarity with the fundamentals of digital
filtering. Such material is presented in several textbooks,
for example,in Bogner and Constantinides (1975), and it is
hardly useful to repeat it here. However, section 4.3 deals
with elementary material, for the sake of introducing notation
and terminology, to justify the emphasis of following sections,
and, hopefully, to add to the clarity of the exposition.

The matter of discrete optimization of digital filter
coefficients (determination of the best, or at least of "good",
coefficients of a given wordlength) is of interest in this

thesis and a sizeable amount of literature has addressed this

problem. However, a survey of this area is deferred to chapter

six - in the present chapter and the next we are concerned
with determining "ideal" values of coefficients as though

they were not subject to quantization.
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4.2 Area of applicability of optimization Methods

As mentioned in chapter 2, the technique of mathematical
optimization is extremely general and can in principle be
applied to the parameter - determination phase of almost any
design or system modelling problem. The distinction between
"design" and "modelling" is unimportant - the mathematical
formulation is similar regardless of whether we want a machine
to do something (perhaps at minimum cost) or just require a
mathematical model (however artificial) which provides a
concise description of an observed process.

As used in this thesis (and in most hitherto published
works), optimization is useful only in determining the most
appropriate values of the parameters of a design or of a model,
once the form of that model has been decided upon. The matter
of arriving at such a form, which will achieve the machine
design objectives on the one hand, or enable a "sufficiently
accurate" correspondence between the model and the measured
process on the other, is still largely an art. Very little
progress has apparently been made in automating this phase
of the process. However, in the matter of electrical network
design, Director and Rohrer (1969a) have extended the concept
of parameter optimization in an interesting way. The partial
derivatives of the -performance—criterion (objective function)
are calculated with respect to certain non-existent circuit
elements. If such figures seem to indicate that significant
benefits would accrue, the network is allowed to "grow" a

new element.
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It would seem that a similar approach could be taken
in digital filter design. However, the main business of
this thesis is the comparison of optimization techniques
themselves, and such comparison is readily done within
the framework of the more prosaic "conventional" uses of

parameter optimization. It is perhaps more correct to speak

of "system identification" rather than "design" or "modelling".

The principal requirement for the use of an optimiza-
tion technique is that we can compute, for any given values
of the variable parameters, the value of some objective
function that is a suitable measure of the desirability of
the design or the closeness of fit of the model.

Many common signal processing tasks fit naturally
into this mould; for example inverse filtering (or linear
prediction) requires the minimization of the energy in an
error signal. However, the general mathematical optimiza-
tion techniques are iterative in nature (and each iteration
usually requires much computation), and so their use has
not been much advocated for processing signals such as speech
in real time. This situation may change, however, as small
digital processors with more speed and/or more parallelism
become available. The great generality of the optimization
techniques could allow the use of dynamic models whose para-
meters could not be estimated any other way.

To date, most use of optimization for sighal pro-
cessing has been in the design of digital filters. 1If a
filter is not required to adapt to changes in the character-

istics of the signal with time, it may be designed once-and-
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for-all, with the help of a general-purpose digital computer.
In this case the computation time is not of central importance,
and not surprisingly most researchers have simply made use of
the standard pre-programmed versions of optimization sub-
routines available at most scientific computer sites. But
again, if the filter is required to be adaptive, the time
efficiency of the method used to evaluate its parameters
becomes important. This provides the main motivation for

the present comparison of optimization methods in the signal
processing context.

4.3. Digital Filters

4.3.1 General

The type of "digital filter" to be considered is the
usual linear discrete-time system in which an output sequence
of numbersvi, i=0,1,2,... is produced element-by-element,

by linearly combining past output values and past and present

values of an input sequence Uss i=0,1,2.... . In symbols
L= .+ R P .
Vi T %oUy T e Ui %t -m
- .k R - 3 )
(81V1-1 82V1—2 an1nn) (4.1)

and the o'S and g'S are real numbers. The z-transform of
the causal real-valued sequence uj is defined as a function

of a complex variable z, viz.

With a corresponding definition for the z-transform of the
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output sequence V(z) it follows from (4.1) that

V(z) % + alz_l t oo Hog 2
U(z)

- = = H(z) (4.3)
1+6121+ oo B Z

The digital filter is completely characterized by this ex-
pression for its transfer function H(z), and it may be
realized by the configuration of figure 4.1, which directly
implements equation (4.1). As in equation (4.2) the operator

z~1 has the meaning of "unit delay".

4,3.2 Finite Impulse Response Filters
There is an important special form of linear digital
filter in which there is no feedback of past outputs. The

difference equation (4.1) reduces to the convolution sum

Cca U faus , te.. Foau .
Vi T aus b e U o s o (4.4)

and an obvious implementation is the transversal filter of
figure 4.2. The impulse response is of finite duration (m + 1)
and is given simply by the coefficients themselves.

Simple forms of such finite-impulse-response (FIR)
filters have been in use since long before the advent of
digital computers, an example being the "moving-average"
smoothing of time series data, where m could be, say, 4 and

¢ T o =Ta To T
0 1 2 3 Ly

a crude Tow-pass filter. Since the impulse response of such
(m_+_ 1)
2

14. In the frequency domain this is

a digital filter is related to a set of compliex-

valued samples in the frequency domain via the Discrete
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Fourier Transform (DFT), it follows that arbitrarily complicated
frequency domain objectives may be met by such a filter provided
that m is made large enough. (In fact if m is large the con-
volution (4.4) 1is usually <mplemented by using the DFT; the
amount of computation is thereby reduced but the filtering
action is exactly equivalent to (4.4) ).

The simple specification of a set of frequency samples
and use of the inverse DFT to get a s al cee O is not the
whole story in the design of FIR filters, because the frequency
response may not be acceptable between the samples. There
are several methods for improving the design, some involving
optimization techniques, and these are mentioned in section
4.5, The ;traightforward use of general nonlinear optimization
methods (in which every filter coefficient is a variable para-
meter) is inappropriate for FIR filters because m is usually
too large (typically several hundred) and because alternative
methods are more efficient. Accordingly, the remainder of
section 4.3 relates to useful filters for which the number of
coefficients is smaller and alternative design procedures
less satisfactory, that is the recursive or infinite impulse

response (IIR) filters.

4.3.3 Infinite Impulse Response Filters

IIR digital filters are often preferred over FIR filters,
principally because they are more efficient for many applica-
tions (in terms of number of arithmetic operations per output
sample). They may be especially efficient as models of real
physical phenomena, such as speech, which are usually con-

sidered as the forced response of some system possessing its
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own resonances (poles). Although an FIR filter can approximate

any impulse response the required length may be excessive, and

an IIR filter model (possessing poles) is 1ikely to correspond

much more closely with the real physical system.

To offset this fundamental advantage are a number of

disadvantages, for instance:

a.

IIR filters can be unstable, and any design
procedure must include stability checks.
Coefficient sensitivity (quantization) problems
are much more serious than with FIR filters.
Low-level 1imit cycles and overflow oscillations
are possible.

Noise introduced by finite wordlength arithmetic
is more significant.

There is no simple method for ensuring a design
with linear phase (if an IIR filter had all its
poles on the unit circle the phase would be
linear, but such a filter would not normally fulfil
a useful function).

There are no special elegant techniques for
producing designs to arbitrary specifications.
Optimization methods are necessary, and further-
more the design problem is inherently nonlinear,
so that linear programming is not applicable in
a straightforward way (but it has been applied -
section 4.6.2).

None of these difficulties is insurmountable and IIR

filters are often used. Design may be tackled in the frequency

domain (section 4.6) or the time domain (section 4.7).
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4,3.4 Realizations of IIR Digital Filters

Equation (4.3) may be manipulated in several ways to
yield algebraic forms suggesting realizations of IIR filters
apart from the direct form of figure 4.1. Thus, by factor-
izing the numerator and denominator polynomials in (4.3) into

quadratic factors and arbitrarily pairing them off, we have

K - -
vy @ + 10 w2
H(z) = A T T—% : (4.5)

= -1 -2
k=11 + ozt dK z

and the corresponding cascade realization of figure 4.3.
(If n # mor if n or-m is odd, the expression (4.5) is still
valid but some of the coefficients are zero).

By expanding (4.3) as a sum of partial fractions, we
have
Koy + 8 27!

H(z) = v_+
° kzl 1+ €y z-1l + dk 272

(4.6)

and the corresponding parallel realization of figure 4.4.

There are other possible realizations based on ex-
pansion of (4.3) in continued fractions. If we wished to use
complex arithmetic we could also find cascade and parallel
forms based on the linear (first degree) factors of the de-
nominator of (4.3).

If the coefficients involved in these filters are
specified to very high accuracy, then for the same input
sequence all realizations will produce the same output sequence.
However in practice the coefficients must be represented as

binary numbers (fixed or floating-point) of a certain word-
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length and the "ideal" coefficients cannot be used. Chapter
6 of this thesis addresses the problem of choosing an optimal
combination of fixed-wordlength coefficients. In the present
context I wish merely to mention that quantization of the
coefffcients has a greater (deleterious) effect with some
realizations than with others.

What is important is the sensitivity of the positions
of the poles and zeros (the zeros of the denominator and
numerator of (4.3), respectively) to small changes in the
coefficients. In this respect the direct form (figure 4.1,
or the canonic equivalent shown in figure 4.5, involving the
smallest possible number of delays) in which the poles and
zeros are determined as zeros of high-order polynomials, can
be especially bad. (National Physical Laboratory, 1961,
pp 59-60).

In the cascade realization individual poles and zeros
depend only on two coefficients, and are only moderately
sensitive functions of them. This form is often used for
general-purpose digital filtering. In addition, the positions
of both poles and zeros are easy to calculate when the co-
efficients are known, and this can be important during the
application of an optimization method of design. Firstly it
is easy to check that poles do not wander outside the unit
circle [z| = 1, resulting in unstable (and so, useless)
filters, and secondly, and more subtly, there is the matter
of root pairing, to be explored in section 4.9.2.

The parallel form has similar pole coefficient
sensitivity properties to the cascade form, and is sometimes

used, although probably less often. Although the poles are
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easy to calculate, the positions of the zeros are not obvious
and direct design by optimization is not as convenient as
with the cascade form. Of course, a parallel-programmed
filter could be derived from one in cascade form as a second
phase of the design procedure, if such a filter were needed.
With any of the foregoing realizations, the sensitivity
of pole (or zero) positions to coefficient changes is not
independent of the positions of the poles themselves. In
other words, for any given coefficient wordlength some regions
of the z-plane are richer in possible pole positions than
others. Consider a single second-order section, the basic
building q1ock for the cascade-form filter of figure 4.3,
and a coefficient quantization coarseness q = 2=%, A1l possible
pole locations are shown in figure 4.6, from which it is ob-
vious that if we wanted a pole in the vicinity of z = + 1 we
would have to settle for a very poor approximation. These
are precisely the regions of interest for narrow-band low-pass
and high-pass filters, and several configurations have been
suggested which have more appropriate pole distributions.
Examples are the coupled form of Rader and Gold (1967) shown
with its possible poles (q = 27°)in figure 4.7, and a circuit
proposed by Avenhaus (1972) shown in figure 4.8. These (and
other) forms are important and would be used in critical
applications. However, they are not relevant in the early
stages of the design when the problems of wordlength are not
being considered. They are used in a cascade configuration and
would be designed by a discrete optimization procedure (chapter
6) after the ideal coefficients for an "ordinary" cascade

realization had been found.
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FIGURE 4.8 Avenhaus (1972a) "Circuit C" Second-Order Filter Section
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At this stage it is fitting to point out that there
are many algebraic schemes, not involving general optimization
techniques, for generating digital filters as models of dy-
namic processes. Examples are the generation of an all-pole
model for speech by linear prediction (Makhoul, 1975),
Shanks' (1967) system identification method, and the iterative
algorithms of Steiglitz and McBride (1965) and Evans and Fischl
(1973). Although there are exceptions (notably those dealing

with "lattice" filter structures), the majority of these
techniques produce the coefficients of a digital filter in

divect form; consequently if the pole and zero positions are

the desired output all computations must be done to high

accuracy énd, furthermore, an accurate (and iterative and
therefore somewhat time-consuming) process will be necessary to
find the second-order-factors of the high-order polynomials. Both
of these requirements are unfortunate, particularly if we

want to perform the computations in real time on a short
wordlength minicomputer.

Thus it may be worth sacrificing some of the elegance
of the algebraic techniques and using a "cruder" optimization
method to yield a cascade-form model directly, from which
pole and zero positions are then easily found.

In summary, the realization of a recursive digita1
filter as a cascade of second order sections as in equation
4.5 and figure 4.3, is a highly desirable form to consider
in conjunction with optimization studies. This is both be-
cause it is often used in its own right, and because the
locations of both poles and zeros are readily determined from
it. Optimization techniques for design may need to include

frequent computation of poles and zeros. Special filter con-



figurations which are good from the point of view of coefficient =
quantization are readily derived from the cascade form. For these

reasons it is this form which is considered in most of this thesis.

4.4 General Formulations of the Approximation Problem

4.4.1 Formulation A - Many Constraints

We consider now how the problem of designing a digital
filter to meet a specification can be put into a form suitable for
the application of optimization techniques. To be specific we
first consider that the specification is on the magnitude of the
frequency résponse, but some of the theory is very general and
applies to almost any problem of filter design by optimization.

A type of filter often required is the Tow-pass filter.
The ideal "brickwall" characteristic of figure 4.9 (a) represents
what we would like such a filter to do, that is pass unchanged
any sinusoidal signal with a frequency less than 8p and block
completely such a signal with a greater frequency. "Whether the
filter causes phase changes to signals within its passband may
or may not be relevant. 1In most cases it would be, and a
particularly sought-after characteristic is that of linear phase -
phase lag rising linearly with frequency. Such a filter imposes
a constant delay on all signals and so does not distort the wave-
shape of any signal within its passband. In the present example
phase is ignored. (It may be possible to ensure a desirable
phase characteristic by techniques independent of the "magnitude"
design). Here as in all parts of this thesis the frequency axis
is considered to run from O to 7 and the frequency variable has

the symbol 6, and the direct interpretation as the polar angle 1in
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in the z plane. & = 2m corresponds to the sampling frequency !
Fs (Hertz).

No real filter can achieve the ideal magnitude charac-

y
\
teristic, and more realistic specifications allow variation é

between certain limits, say 1 - 61 to 1 + 61 in the passband
and 0 to 62 in the stopband. In addition, a transition band 4
is allowed; the stop band edge is above the passband edge.
Within the transition band the formal requiremgnt would usualiy ;
be 0 to 1 + 61, but in fact most filters can readily ensure a

monotonic characteristic within this region. These features are

shown in figure 4.9 (b). The values of 61 and 62 may be equiv-

alently specified in decibels as allowable passband ripple and

minimum stoé band attenuation.

The maximum number of extrema possible in the magnitude

e,

characteristic is dependent on the complexity of the digital
filter, and is of the same order as the number of coefficients.
Thus by evaluating the response at a sufficiently dense set of
frequencies, B> M= 1,2 ... M it can be ascertained whether
or not a given filter meets the specification without fear that
there could be undetected sharp error peaks between the frequency
samples chosen.

Let us suppose that a set of M frequencies {em, m=1,2...M}
is chosen such that e, < ep for m < g, ep <0 <6 for 21 $ms 22,
and em'>-es for 22 <mg M., The em are not necessarily evenly
spaced but are distributed such that coverage of the frequency
scale is "reasonably" uniform. Suppose also that the N "designable
parameters" of the filter are placed in arbitrary order to form

a parameter vector X . The form of the filter has not as yet

been specified, and the elements of X could be, among others
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(b)
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(of greater or Tess complexity) for the magnitude response
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the o and B coefficients of a direct-form IIR filter
as shown in figure 4.1(N =m + n +-1)

the a, b, c and d coefficients (and possibly Ao) of a
cascade form filter, as in figure 4.3 or equation
(4.5) (N = 4k or 4k + 1)

the transversal filter tap gains R - shown

in figure 4.2, that is, the values of the impulse
response samples of an FIR filter (N = m + 1)

some or all of the frequency response samples of

an FIR filter, that is, values of the DFT of the
impulse response sequence (N<m + 1)(If only

some of the frequency samples are included it is

because the others are considered fixed, a priori -

see section 4.5).

Whatever the form of the filter, there will be a formula

at any particular frequency as a function of the elements

of

6

requirement "meet the specification" may be expressed by the

X . We use the symbols Bm ( X) for the response at

o and B ( X , 6) for the response for any 6. The

set of mathematical constraints

1-386 B X)<1+¢§ 2
1<m() X m <

Bnl( X) <1+ 61 L <mg 2

B, (x) < 62 m> %

(There is the very minor point that the specification could still

be violated at some frequency between those included in the set

{9

this will not happen if we set 61 and 62 slightly below the actual

m)

m=1, 2...M}. But since the variation of B ( X , 6) is "smoot

N

ey
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specified values and use a well-distributed set {em, m=1, 2,,.M},
and M >> N. This matter will not be considered further.)

The formulation of a set of constraints goes part of the
way towards casting the design problem in a form suitable for an
optimization technique. But we do not yet have an objective
function to minimize. There are a number of possibilities:

(a) In general it will not be known at the outset whether

a filter of a particular complexity is capable of

meeting the specification at all. However, if the

values of ﬁ and 52 are relaxed (increased) sufficient-
1y, it certainly will be. A suitable approach is to
aug@ent the parameter vector to include also 61 and

52 as additional elements. Constraint equations (4.7)

still apply but the §'S are now variables. MWe define

the objective function to be a suitable linear combina-

tion of Gland 62, for example

F (X*) = 51 + s, (4.8)

where X* 1is used in place of X to indicate that the
parameter vector includes 51 and 62. The optimization
problem becomes: minimize (4.8) subject to constraints
(4.7) and the additional constraints that 61 >0

62 > 0. Assuming that this can be done, we obtain mini-
mum achievable values for 61 and 62. If neither is
below its specified value the complexity of the filter
must be increased. If (say) 62 met the spec. with

some margin but 81 was too large, we could repeat the

procedure with 61 weighted more heavily than 52 in the

linear combination (4.8).
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This second option is similar to the first. The
parameter vector is augmented by 61 only, and 62

is defined as k61 where k is a constant equal to

the ratio of the specified values, 62/61. The
objective function is simply 61.

62 (or 61) can be held fixed at some value less than
or equal to its specified value and the remaining ¢
minimized. In this case there may be no solution to
the constrained minimization problem. If so, the
procedure gives no indication of how closely the spec.
was approached and this method is accordingly not as
useful in the "exploratory" phase of design as (a) or
(b).

If we know that the specification can be met, we

could think in terms of "improving" the filter in some
sense. We could minimize 61 for a given 62 as in (c)
above (that is, obtain minimum passband ripple for a
given stopband attenuation) or vice versa. Or we could
attempt to decrease the width of the transition band,
by keeping 61 and 62 fixed (at their specified values)
and minimizing (say) a linear combination of the an X)

values just below the stopband edge, e.g.

F(x) =8, (x)+8, (Xx)+B, _
2 2 2

(Xx) (4.9)

2

The methods just discussed in relation to a lowpass

filter generalize to an arbitrary magnitude specification of the

type shown in figure 4.10, where YL(e) and YU(e) represent Tower

and upper limits. As before we define a set of frequencies 6>

m:

each m.

. M, and obtain corresponding Timits YLm and YUm for

If we now define target responses Ym and tolerances S
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\ Magnitude

frequency

[} T

FIGURE 4.10 Arbitrary Magnitude Response Specification
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by
Ym =1 (YLm + YUm) (4.10)
and
8, = 5 (YUm - YLm) (4.11)
we can express the specification by the constraints
Ym - 6m < Bm (x) < Ym + 8 m=1, 2..M (4.12)

To obtain a minimization problem we fix all the Ym values and
possibly some of the Gm’ regard the remaining 6'5 as variables
(in addition to the elements of X ) and minimize a linear
combination of the variable Gls. If the fixed Gm values are
realistic there will be a solution, and we have merely to check
that the values of the variable & S thus found are smaller than
the corresponding values found from (4.11).

It will now be apparent also that the specification
can just as easily relate to some frequency-dependent quantity
other than the magnitude response, for example the phase, or
the Togarithm of the magnitude response. The difference will
be in the formula for calculating B"# X ). The abscissa in
figure 4.10 does not even need to be frequency - we could be
trying to match the first M samples of the impulse response
of some system (although in this case the filter being de-
signed would not be an FIR filter, because such an approxima-
tion problem would be trivial).

The formulation of the digital filter approximation

problem as described above, in terms of generally simple ob-

jective functions and a great many (often 2M) constraints will
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be referred to as "Formulation A". We have so far assumed
tacitly that the solution of such a minimization problem is
practical. In fact, the only case when this is ordinarily

true is that in which the functions Bm( X) are linear in all

the variab1esxn, n=1,2..N and the problem is thus one in
linear programming. This is the situation in several approaches
to the design of FIR filters and herein Ties its main utility
(section 4.5)., A generalization to IIR filter design of
'Formulation A' is that of Rabiner, Graham and Helms (1974)
mentioned further in section 4.6.2.

An obvious advantage in formulating the approximation
problem as one in linear programming is that if a solution
exists it is globally optimal and standard methods are guaran-
teed to converge to it in a finite number of operations. In
practice the "dual simplex" method is used (in preference to the
ordinary simplex method) because there are significantly more
constraints than variables. There are also some disadvantages,
to be mentioned in connection with the survey of published work
in sections 4.5 and 4.6. Certain nonlinear formulation A
problems of low dimensionality may be amenable to a method of

Bandler and Charalambous (1974).

4.4.2  Formulation B - Unconstrained Optimization

For a lowpass filter the specification of upper and
Tower Timits on the variability of the magnitude response via
the parameters 61 and 62 is probably reasonably realistic,
since it serves the purpose of isolating the filter design
from the likely rather intangible specification for the per-

formance of a signal processing system as a whole. We know
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that we want to block high frequencies - the particular value
for minimum stopband attenuation may be somewhat arbitrary
but at least it allows the application of mathematics to the
problem. Such Togic would apply also to bandpass, highpass
and bandstop filters.
However, for filters with less straightforward
characteristics we are unlikely to have rigid specifications for
upper and lower 1imit functions YU and YL(e) as illustrated in
figure 4.10. We are much more Tikely to have a single target
response function Y(e) or even a set of discrete target res-
ponses {Ym(e), m=1, 2...M.} The aim is to make a filter of a
specified complexity match such a response “as well as possible".
An example of such a requirement is a spectral shaping filter
to produce a certain vowel sound in a speech synthesizer. We
want to adjust the coefficients of a Tow-order filter to provide
a reasonable fit to a very irregular magnitude spectrum obtained
by the spectral analysis of real spoken vowels. The test of
acceptability of the design is not whether the difference be-
tween achieved and target frequency responses is everywhere
less than some particular amount, but is based on Tistening to
the actual sound produced.
Rigid constraints may thus be quite foreign to many
filter design (and particularly system modelling) problems.
This is fortunate since the constraint formulation (formulation
A) was seen above to be mathematically tractable only when the
constrained function B ( X, ¢) was linear in the elements of

X . We go on now to discuss a much more generally applicable
formulation (formulation B) which allows the use of nonlinear

unconstrained optimization techniques.
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The first step is as before, to select a reasonable
set of frequencies {em, m= 1, 2..M} to cover the range
0 <8 <m. To be general, right from the start, and allow
time domain approaches also, the o, could (instead of
frequencies) be instants of time. If we want our filter to
match a target impulse response there is no question of

gelection in the time domain - in this case
em =m-1)T (4.13)

where T is the sampling period (= 1/FS). If we are trying
to derive an inverse filter by minimizing an error signal
the range of time indices may be different.

The target response at ¢ = O is again written Ym
and the actual response of the filter Bm( X). In principle
we want to make all the differences qn(x) - Yo small in
magnitude, simultaneously, and think therefore of defining

objective functions such as the "sum of squares"

M 2
F(x) = 0 (B, (x)-Yp,) (4.14)
m=1
and the "maximum modulus"
F(X) = max { } (4.15)
o 1B (x) - Y

and minimizing these with respect to the parameter vector X
The occurrence of an even power (2) in (4.14) and the modulus
in (4.15) ensure that both positive and negative deviations

from the ideal cause an increase in F.
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The "minimax criterion",using (4.15), tends to produce
an equiripple type of approximation and is highly compatible
with the type of specification considered in section 4.4.1.
Unfortunately it does not allow the use of pbwerfu] gradient
techniques for minimization because the partial derivatives
of the objective function (4.15) are not continuous. As X
is varied, F( x) exhibits cusps as the position of maximum
[Bm - Y| changes from one value of m to another.

The "least squares criterion", using (4.14), has the
characteristic that fairly large deviations often result for
some m in order to keep the majority of deviations small.
The ripples in the error function are seldom of equal magnitude
so that the criterion is not in tune with rigid "upper and
lower" specifications. The least squares criterion is, how-
ever, the easiest to handle mathematically, admitting the
use of the special techniques of sections 3.3.4 and 3.4.12 as
well as ordinary gradient methods and (in many cases) second
derivative methods. If the "target response" itself is not
accurately determined (as when it is obtained by measurement
of a real physical process, which may include noise) then
the characteristic of the Teast squares criterion to ignore
isolated points for the sake of an overall smoothing, may be
a decided advantage.

A third possibility is a "least pth" criterion, with

the objective function defined by
F(x)= 1 (B (x)-Y)?P (4.16)

where p is an integer greater than 1. The even power still

ensures increasing contributions from deviations of both
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signs. The motivation for using such a function is that large
deviations are penalized more heavily than with the least
squares criterion, and as p is increased the solution becomes
ever closer to the minimax (Deczky (1973), p 76). For a
suitably large value of p a good approximation to the minimax
solution is obtained while maintaining continuity of the partial
derivatives of F and so allowing gradient methods to be used.

In practice, minimization is normally carried out for a sequence
of values of p such as p =1, 2, 5, 10 because for the higher
values the objective function is 1ikely to be well behaved only
over a restricted region around the solution and a good starting
point will be required.

Unfortunately, although first-derivative gradient methods
may be used fairly readily with the least pth criterion, the
sums-of-squares and second-derivative methods become quite un-
wieldy. This matter will be mentioned further in section 4.4.4.

In this thesis the least squares approach is emphasized
because of the wide variety of optimization methods which may
be used in its solution. Additionally, as discussed above, the
resulting filter may for many applications be just as good as

that produced by any other method.

4.4.3 Least-Squares Development of Formulation B

In section 4.4.2 we discussed the characteristics of
three possible minimization criteria and stated that the least-
squares criterion was mathematically the most tractable. 1In
this section it is developed further but still without any
restriction on the type of filter response to be optimized.

Equation (4.14) does not represent the most general type

of sum-of-squares objective function. Firstly, it is possible
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to weight some samples more heavily than others. This may
be desirable to force a good fit around sharp peaks in a
magnitude spectrum, for example. Thus, making the general
definition for the objective function (as in equation 3.45)

M

F(x)= 1 f2(x) (4.17)
m=1

we may define

ﬂn(x) =W (Bm(x) - Ym) (4.18)
where the 'weight factors W, are arbitrary. This will be
called "formulation B1". It is directly applicable to time-
domain problems,for example to the minimization of the energy
in an error sequence (when it becomes even simpler because
all Ym = 0). If (say) a cascade-form digital filter is

being designed to match a target impulse response, the
overall gain constant A0 in equation (4.5) can be set equal
to the zero-time target sample, or simpler still to unity,
and the target impulse response normalized to have a unit
zero-time value. The first sample is then automatically
matched and an objective function is defined by (4.17) and
(4.18) including only the later samples. Ao does not have to
be included in the parameter vector - it is simply ignored.

If we were trying to match a frequency domain
magnitude response we could include Ao in the parameter vector
and use formulation Bl (4.18). But it is better not to do
this, for two reasons. An alternative formulation allows

the optimal gain to be calculated analytically, reducing by
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one the dimensionality of the parameter vector and thus aiding
the optimization algorithm. The second reason for preferring
the alternative formulation becomes apparent when we consider
discrete optimization of the filter coefficients. The actual
value of the gain is irrelevant because we are really interested
only in the shape of the magnitude response curve. Ad-hoc
scaling of data will usually be done at several places in the
system via A/D and D/A conversion and (digitally) to maintain
precision and to avoid register overflow). If the gain factor
is included in the parameter vector and cannot be calculated
optimally for any given values of the filter coefficients,

it becomes’ impossible to compare the merits of discrete designs
on the basis of shape; the objective function (4.18) unreason-
ably penalizes deviations from a fixed level.

Thus in place of (4.18) we make the definition

f(X) = w (a8 (X)-V) (4.19)

where q is a factor which scales all the Bm va]ues up or

down (together)in such a way that the fit is optimal for any
given X . q is thus a function of X but not of m. Any
frequency-independent gain factor in a model (e.g. Ao in

(4.5) ) can be ignored because it automatically becomes incorp-
orated into gq. This will be called "formulation B2". To
determine the value of q for a given X we minimize F (defined

by (4.17) and (4.19) ) considered as a function of q alone.



M
) “h(q By - Ym) Y Ba
1

m:
" 2 N 2
=2q w2B 2 -2 w2 B Y (4.20)
mey mom mzl m "m m
Equating this expression to zero we get
g 2
m21m1Ym Pl X
q( X) = » (4.21)
2
mzlmem(x)

Formulation B2 1is applicable whenever the precise
value of an overall multiplicative constant is unimportant;
for instance it relates as well to a squared magnitude
response. Further development to obtain formulae for der-
ivatives is necessary if we intend to use a gradient method
to minimize F. In what follows the notation will be simplified
by using just j} to mean % and (as in 4.20) by dropping the

m=1
explicit dependence of Bm and g on X .

The values of the individual fm are found by first
calculating q from (4.21) and substituting this into (4.19).
If we want to use amethod of the Gauss-Newton type we require

Sl

8X_i

also for a1l m and for all i (that is, the Jacobian matrix).

Differentiating (4.19) we get
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of
_m._ 3
3X; " (axi m ox ) (4.22)

where i must of course by found by differentiation of
axi

(4.21), that is

9B
2 2 m
ZW BmYm)(sz Bm ax.)

(Lw,28,2) (2w,
3q _
X,
1 ZW ZB 2)

m3X

(4.23)

To use an ordinary first-derivative gradient method we require
just the vg]ues of ggl-for all i. We could proceed from

.i
formula (3.46) to compute

AL .oy M (3.46)

but this requires more work than is necessary. Instead,
following Steiglitz (1970), we substitute (4.19) into (4.17)
defining a new but equal objective function F* whose depend-
ence on q is explicit, i.e.

FE(x, q) =] %2 (a8 (x)-Y)2 (4.24)

By the usual formula for the total derivative

oF _ oF* , aF* ag

axi axi oq axi

(4.25)

Because q is selected optimally (by 4.21), we have
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aft 0 and so simply
oq
oF F*
el (4.26)
i i
: : aBm
=32 W (q B, - Ym) q 52;— (4.27)
BB BB

= 292 ) W 2 B, Bx -2q7) W 2y (4.28)

mBX

If we wish to use a second-derivative method we need the

F ;
EE_SEF'fOF all i and j. Again,

J 2
o¢f
we could proceed from (3.47) but would need 5§73§7-which

complete Hessian matrix

in turn requires that (4.23) be differentiated to get

_3%q_

T It is easier to proceed by differentiating (4.25),
i

32F _ 3 (aF*+ aF* 29y

axiaxj axj axi aq ax

3 (3F* | 3F* B3q
(G + )
axJ 3q “ax; - 3q X,

. _8%Fx_ 3%F* 3q  3aF* d%g
BXjax;  8dxy 9Xy © 3Q BX{3X;

92F* oq |, dF* 3q _ 32%q 22F* 3q 9g
+ axiaq axj k 3q axj 3X13Xj + 3G7 axj 3 (4.29)

*
Again %;r-is sero so that the third and fifth terms vanish, and
2
the computation of Sigé%—'1s unnecessary. By differentiating
J

(4.20)we have
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—— 2p 2
qu 2 z i Bm

and the other terms in (4.29) are readily calculated as

_9%F* d (aF*)
BXy0X Xy axy
5 ) 5 9B
= _9_ (942 __m_ _alll
X (292 T wyBp 5, - 29 L w®Vyy 5
9B B 2
34B
=2q2 T w2y 2q2 ¥y 2B °m_
maxX; 3 mom e
LN
* . 3%B
N 2 m
29 ] Y Yo 39X ;

and

92F* _ 3 (aF*)

9Q9X.  oX: ‘9
q j j q

9
= SRE.(Z X szBm (q B - Ym) )

= .9 oR 2 _ 2
B (29 ] Wi B 2} W B Ym)

oB

X BBm ) N
=4q ] Wi By 5?3-- 2] " Ym 325

Hence, substituting (4.23), (4.30), (4.31) and (4.32) into

(4.29) and simplifying gives a final expression for

22F_
BX.i 3Xj

the following definitions:

To further simplify the notation we introduce

(4.30)

(4.31)

(4.32)
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= 2y 2
Ayy = Lw Yy N
- 2
AYB z " Ym Bm
. 2p 2
ABB z " Bm
oB
= 2y ..M
PYi z Y Ym axi
2 3B >i=1, 2..N
Ppi = ) W B ———
B1 m m ax1 p
p =2w2ﬂ.3fm 3
ij m 3X; 3y > (4.33)
X 2 Bzﬁm
Qusin= ) W Y e i=1,2..N
Yij m o m axiaxj \
328\“ j= 1, 2..N
Q45= L Win’By 5XToxs
J i 7] ) ./
We now have the simplified formulae
q = AYB/ABB (4.34)
and
aq _ Pyi - 29 Ppy
vt A (4.35)
i BB

which we simplify further to tT/ABB’ defining

ti = Pys 2q PBi (4.36)
Expressions for the function value and derivatives are now

=3~ oq2p . -
9; 292Pp. - 2q Py, (4.38)
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= L = 292 - } J
'IJ ax_iaxj 2q (QB'ij i P'IJ) 2C| QY'IJ ABB (4.39)

If the Gauss-Newton matrix is required, its (i,j)th element

is given by

) ;
= 242 £ -
ri; 2q Pij + ABB (PYiPYj q(PBiPYj + PBjPYi) ) (4.40)

The general approach for evaluating function values
and derivatives is now clear, and it is basically independent
of the type of response to be optimized. Some or all of
the sums in (4.33) must be accumulated for m = 1, 2...M, and
for fairly large M (compared with N) this forms the bulk of
the computation. Actual evaluation of the elements of the
gradient vector and Gauss-Newton or Hessian matrices is then
straightforward (equations (4.37) to (4.40))and is independent
of M. A “function value only" method requires accumulation
of AYY’ AYB and ABB only, a first-derivative gradient method

requires PYi and P,. in addition, a Gauss-Newton method P,.

Bi iJ

also, and a second derivative method, QYij and QBij as well
as the rest. The type of response being optimized has not

entered into any of the above, but of cg;rse it determines
3B 3B
m

the form of the functions B, %, and 50X

J

As the optimization procedure approaches the solution
the values of the gradient components 95 become small, and
there is a problem with numerical cancellation in determining
them from (4.38). If the fit of the model to the target
response is very good there is a similar problem in calculating

F from (4.37). The alternative is to calculate the individual
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f, and sig-and evaluate the sums in (4.17) and (3.46). How-
ever, muc; more computation is then involved. The experience
of the present author (working with 60-bit floating-point
arithmetic) is that adequate convergence is usually obtained
before cancellation becomes important.

"Formulation B2" as developed above is useful when
there is an arbitrary multiplicative gain constant. If, how-
ever, the specification had related to the Zogarithm of the
magnitude spectrum the arbitrary constant would be additive.
Another similar situation arises if we are trying to produce
a linear phase characteristic. An equivalent requirement is
constant group delay (phase slope), and this is usually
easier to handle because group delay expressions are simpler
than those for phase. An additive constant may be introduced
(optimally) because it is the flatness of the group delay

response that is important, not the precise value of delay.

This leads to "formulation B3" in which we define
f(x) =, (B,(x)-Y -aq) (4.41)

and (4.17) still applies. As before we find q by equating
to zero the derivative of the objective function considered

as a function of q alone, i.e.

F(X) = F*(X,q) =

) -wmz(BnK X) - Yo - q)? (4.42)

1

N1
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L w28 (x) - Y)

- q(X) - =1

.
mzl m

(4.43)

We again drop the Tlimits on the sums and the explicit depend-

ence of q and Bm on X ‘to simplify the notation, and make

the following definitions

=
n

=
I

=
1}

1}

=]
!

L W
L ow,2(B - v

) sz(Bm - Ym)2

5
w2 oom
m BX_i
2 - _m
L vy (B = i) 3%
P w2 oom o
m 3X_i BXJ-
32B
R
X .
X3
2 ) m
z wm (Bm Ym )-3X 3XJ~

ri=1, 2..N

i=1, 2..N
j=1, 2..N

\

S (4.44)

Values of F( X) and its first derivatives are readily found

in terms of

-1
]

these quantities

) sz (Bm " q)?

) wm2 (Bm - Ym)2 - 297 wmz(Bm - Ym) + q?}:wmz

A -29 A +q2 W
2 1

(4.45)
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but, from (4.43),

= A /W
q 1/
and so
2 =g A
q q )

and (4.45) simplifies to

*
Since we have forced %;r-= 0, we have

3B
BF _ aF* _ 2(R -V - ) _m
Xs - 95 2] i (Bm Ym q) aX;

) aBm ) aBm
=2] “m (Bm - Ym) 3?;" 2q ) Y 5?;

= 2P 20 Py
If the elements of the Gauss-Newton matrix are required,
we proceed as follows

fn = W (Bp - Y - a)

N TR
* axi m axi axi

Now since
of of
ro.=27 _m _m
ij axi axj

we can expand using (4.50) as

(4.46)

(4.47)

(4.48)

(4.49)

(4.41)

(4.50)

(4.51)

;ﬁ(»— .

T = W L. — R, ,_'m,_ e '_
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9 3B
- 2 m 3q m _ 9
i 2] " (axi axi)(axj axj)

-?r ———

e

9B 9B 3B !
=2JweN_T_>23 7,20 é
_ m axi ax‘j axi m axj \
-2 EEL_Z W 2 aBm + 2 99 99 z w2 5
X - m 9X. IXs OXa m ;
1 1 J iV
P P_. P.P
= .11 . 11 _1J
2 (P1J W PlJ W P11 * W W W)
Plipl.
=2 (P, - ——) (4.52)
1] W
where we hhve substituted
3q Pli I
. W (4.53) |t

as is obvious by differentiating (4.43). In this formulation

2
it is easy to obtain an expression for 5%—%§—~, by twice
LB i)

differentiating, thus

Q

92q  _ “1ij

Because of the simplicity of this expression it is straight-
forward to calculate the full Hessian matrix using (3.47).

Thus we augment the terms given by (4.52) by the amount

52f
2y f —0_
m axiaxj

» which is equal to
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R I
BX_iBXJ. EXiBXj

2(g_ -
2 L w?(B - Y,

a?—Bm , 328m
= 2 - SR |
2 z wm (Bm Ym) axiax. 2q z Wm BXiBXJ.

2Qy 5 29 Q. ..
J 2 11) 2
T L vy (B = Vi) + W ) i
2 Q.. A 29 Qi W
- - - M | 11]
=2 Q45 - 29 Qyy R
=2 (Qz'ij - q Ql'ij) (4.55)

The final expression for the (i,j)th element of the Hessian,

by adding (4.52) and (4.55), is

P

P .
_ _9%F  _ _o1iajd
i " axax; - 2 P +

21j
Hence, in the case of an additive constant the procedure is
similar to that of a multiplicative constant, thaf is, sums-
of-products are accumulated (equations (4.44)) and the values
of functions and derivativesare then found from a set of
equations not involving M, i.e. (4.46), (4.48), (4.49), (4.52)
and (4.56).

Having developed formulations B2 and B3 are far as -
possible without specifying the type of response to be optim-
ized, we now return to derive similar expressions for form-

ulation Bl. These are much simpler, and we can make use of
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some of the shorthand symbols for sums-of-products inhtroduced

in (4.44). From (4.18)

fm = wm(Bm -Y

)

m
so that the function is given by
= 2 - 2 =
F ZWm (Bm Ym) A2

For the gradient components

: of
oF z m
——— 2f —
axi m axi
Z 2( )'aBm
=)2w4B -Y)=—=2P
, m ‘"m m axi 2i
for the Gauss-Newton matrix
of »of
rig = L2 5%, %,
177
oB_ oB
=22w2.ﬂ£'..__ﬂ=2p”
moAx; oX; ij
and for the Hessian
2f
a2F 3 m
« 2P+ T 2 f oreeomdl
ij Bxiaxj ij m axiaxj
) aZBm
= Lo+ - —_—
g P1J z 2 " (Bm Ym) axiaxj

=2P,.+20Q

1] 21j

This completesthe general development of the least-squares

version of formulation B.

(4.18)

(4.57)

(4.58)

(4.59)

(4.60)
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4.4,4 The Least pth Error Criterion

We now return to the least pth error criterion to
indicate why it is often more difficult to use than least
squares, particularly with Gauss-Newton and second derivative
methods.

With the formulation analogous to "formulation B1",
that is with no additive or multiplicative gain value g,
the situation is still tractable. For simplicity, weight
factors are all assumed to be unity. Equation (4.16) may be

re-written to set F in the form of a sum-of-squares,i.e.

M
F(x) = ) fmz(x) (4.61)
m=1
where
= - p
fa(Xx) = (B (X) - Y) (4.62)
The gradient components are
_F(X) _ m
% = o T L T w,
i i
aB
N 2p-1 "m
=) 2p (Bm - Ym) 5% . (4.63)

The element of the Gauss-Newton matrix R are

m afm
ST vl v
aB_ 3B
2p-2
= 2 - R
L2p? (B - Y )T (4.64)
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and those of the Hessian matrix H are

2f

hij - z me axiax * P1J

32B

=Y 2 (B - Y )*P! -
=12 ( m-om 3X. 0X <
1]

9B 9B
2p-2 ""m _m

+ z (45- Zﬁ(Bm - Ym) —3—)?1—3—)(‘]_ . (4.65)

The complication arises when an optimal gain term q
must be allowed for, as with formulations B2 and B3. Con-
sider the case of an additive gain term, so that the objective

function F is given by
* 2p
F(X) = F*(X,q) = ] (B - Y - q) (4.66)

*
The optimal value of q is again indicated by setting %%r

to zero, i.e.
2p-1
-2p ] (B - Y -q) P =0 (4.67)

For p >1, (4.67) cannot be reduced to an explicit expression
for q. Rather, it provides a polynomial equation of degree
(2p - 1) in q. For example, if p = 2, we have the cubic

equation

g3 +ag2 +bqg +c=0 (4.68)
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where
a=-3M]j (Bm - Ym)
b=+ 3/M] (B, - V)2
c=- 1M (B -Y)3

There are two methods which may be used to find the value
of q. Firstly, the coefficients of the polynomial may be
evaluated through equations such as (4.69) and Newton's
(iterative) method then used to obtain the solution.
tunately, an adequate initial estimate for this process is
usually obtainable by setting p = 1 and solving (4.67)

analytically (the optimal "least squares" value of q.)

(4.69)

The second method for obtaining q, which may be considerably

more practical when p is large, involves evaluating F for

a number of trial values of q. That is, a one-dimensional

search is performed to locate the minimum. This search may

be of the "golden ratio" or'polynomial interpolation’ type,

as discussed in section 3.5. The Teast-squares solution for

q again provides a starting point.

When the optimal value of q has been calculated, the

components of the gradient vector are readily found, for

- 8F _ 3F* . 3F* agq
9 Xy Ay 9q 28X,

Again, %;;- has been forced to vanish, so that

. oB
- oF* _ _ 2p-1
9; © Bx; L 2p (B, Y = @)

First-derivative gradient methods are thus still practical

el
X,

1

(4.70)

- (4.71)
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with the least pth error criterion when there is an additive
gain term q. The main complication attending the use of p>1
is the necessity for an iterative procedure to obtain the
appropriate value of q. Second-derivative (and Gauss-Newton)
methods, however, become vastly more complicated, and increas-
ingly so as p increases. For example,the elements of the
Hessian matrix are found by differentiating (4.70), which

gives

. 2Fr , B2 bg , 92X 0, 2%Fx Bg 2g
hij - axiaxj * ECERS axj * aqaxj 8% i 3q2 9% BxJ (4.72)

The derivativesof F* are all easily computable; the trouble
is with terms such as SiL" because equation (4.67) does not
provide an explicit formu]a for q. With much labour, all the
values required are available. Again taking the case p = 2

as an example, and differentiating (4.68) with respect to

X;
2 99 29 2 0a_ _£L. I
3q 3, t2aq o-+ q ax + b +q = ax i ax; 0 (4.73)
whence
3a ab 3C
¢ 2. oC
3 _ B ' AX, X
X 3q2 + 2aq + b (4.74)
where gg%—, g%L-and ggl-, may in turn be found by different-
i i i

jating expressions (4.69).

The complexity of all the above expressions and the
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attendent computational load would seem to make second-deriv-
ative and Gauss-Newton methods unattractive in conjunction
with the least pth criterion. This is not to say that
experiment would necessarily show that they were not worth-
while. However, in the comparisons reported in this thesis

I have preferred to concentrate on the simpler least squares

criterion.

4.5 Design of Finite Impulse Response Digital Filters

Optimization techniques, and in particular linear
programming, have proven very useful in the design of FIR
filters. 'In this section is a brief survey of the relevant
literature.

We wish to design a filter having an impulse response
of length N samples, denoted ho’ hl, ..... hN-1’ from a
frequency-domain specification of magnitude and phase. The
use of N in this section is traditional, and not to be confused
with its use in this thesis to denote dimensionality of the
parameter vector. An obvious procedure is to sample the
frequency response at N frequencies (uniformly spaced around
the unit circle, and symmetric about zero frequency) and obtain
an impulse response using the inverse discrete Fourier trans-
form (IDFT). Of course, the real part of the frequency response
must be specified as an even function and the imaginary part
as an odd function, in order to obtain a real impulse response.
Figure 4.11 (after Lockhart, 1975) shows the frequency response
of a Towpass filter designed in this manner, with N = 30 and

all the passband samples set to the same value and all other
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samples to zero. The achieved response is exact at each of
the sampling frequencies but shows unacceptable deviations
in between, particularly in the vicinity of the discontin-
uity (passband edge).

One approach to improving this situation is to
multiply the impulse response by a window function. The
effect in the frequency domain is to convolve the curve in
figure 4.11 with the Fourier transform of the window, and with
a good choice of window this can result in smoothing of the
ripples (but with an unavoidable widening of the transition
band). This approach does not expressly involve optimization
techniques and will not be considered further.

The second method, due originally to Gold and Jordan
(1969) and improved by Rabiner, Gold and McGonegal (1970),
recognises in advance that the transition band will have to
be reasonably wide in order to produce Tow ripple in pass-
and stopbands. Accordingly, one or more frequency samples
are allocated to the transition band and their values are
taken as the variables in an optimization procedure. The
frequency samples in pass- and stopbands are fixed, as before,
and in the final design there will still be an exact fit at
these frequencies. The beauty of the procedure arises because
the magnitude response (at any given frequency) is a linear
function of the variable frequency samples, and formulation A
(section 4.4.1) can be applied. As discussed in that section,
the frequency response must be evaluated at a sufficiently
dense set of frequencies to ensure that the specifications
on pass- and stopband vripple are met. Interpolation factors

of 16:1 (Rabiner, Gold and McGonegal, 1970) and 8:1 (Rabiner,
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1972) between the DFT frequency samples have been suggested.
If we considered that only one transition coefficient were
variable, we could plot the magnitude response at each of

the (interpolated) frequencies in the stopband, and obtain

the linear variation shown in figure 4.12. The lowest point
on the upper envelope of all these curves defines that value
of the coefficient which minimizes the maximum stopband
magnitude response (ripple). This envelope (darkened in
figure 4.12) bounds a convex region, and so a search proced-
ure which follows a descent path along the envelope must

find the global solution. The situation generalizes to the
case of several variable transition coefficients, the Tines

of figure'4.12 becoming hyperplanes. If there are M variable
transition coefficients the global solution will be determined
by the intersection of M + 1 hyperplanes, implying equal
maximum ripple values at M + 1 different frequencies. Rabiner,
Gold and McGonegal (1970) (apparently not realizing the
applicability of linear programming