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SUMMARY

Several aspects of the use of mathematical optim'ization

techniques in the des'ign of dig'ital filters are studied. In

the sense employed in this thesis "mathematical optimization

techniques" are those methods which have been developed for

finding m'injma of general functìons of several variables. The

case in which the variables are constrained to take only integer

values is among those cons'idered. "Dìgitaì filters"'include

those des'igned to satisfy a frequency domain specification, and

those generated as mathematical models of tjme-evolv'ing dynamic

processes.

The literature relating to previous such uses of

optimization is revjewed. It is shown that many of these

contributions may be p'laced'in a cons'istent, unifying framework

based on general features of the mathematical formulat'ion. A

number of generally-applicable aìgebraic relations are derived.

Several minor new techniques wh'ich streamline the application

of the general minimizing methods to dig'ital filter design are

i ntroduced .

A great many methods are available for" finding

unconstrained (local ) minima of general fr-rnctjons. Extensive

numerical experiments are performed with a select'ion of these

to study their relative effectiveness when applied to

representative dig'itaì fìlter design examples. The examples

include approximatìon prob'lerns in the frequency domain (both

magn'itude and group deìay responses) and in the time domajn.

Optimizatjon methods tested include those of second-derivative,

Gauss-Newton, quasi-Newton and conjugate gradìent type.

i

I
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This examination of the performance of optimization

methods is relevant to (ínter aLía) their use in speed-critical

on-line app]icat'ions. In a folìow-up study, an optimìzation

a'l gori thm has been imp] emented on fast, cheap, short-word'l ength

digita'l hardware. The suitability of such a system for on-line

system identjfication js studied. The work reported includes

the development of the computer itself as well as the algorithms.

The dísct'ete optinization problem assoc'iated with

choosing digital filter coefficients of a giuen uoz'dLength (and

so, quantized) is considered. A novel optimjzation procedure is

introduced and shown by numericaì experiment to have superior

effìciency to many previously-suggested methods, at least for

certain classes of Problem.

chapter one serves as a more detailed 'introduction to

the contents of this thesis.

I
I
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CHAPTER ONE

1 SCO PE AND ORGANIZATION OF THIS THESIS

1.1 Orqanization

In this thesis an exp'loration is made of several aspects

of the use of mathematical optimization techniques in the des'ign

of d'igital filters.

Three essentially separate studìes have been carried out.

For this reason the organization of the thesis 'is perhaps

slightly unconventional; in particular, no "central probìem"

can be immediately introduced; nor is there a final chapter

reporting "overalì conclusions". Each of the studies is reported

on in its own large chapter, with an introduction and a section

On "cOnclusions" included. ffre twin cornmOn threads running

thróugh the entjre work are dig'ita1 filterìng and the use of

mathemati ca'l optimi zation techniques.

The chapters referred to above are nunlbered five, six and

seven. The earlier chapters serve principally to jntroduce

terminology and notation and to review the literature relevant to

the topics to be discussed. Chapter four, however, addit'ionaìly

conta'ins some origi nal materi al whose presentation 'in that

chapter has a certain ìogica'l iustification.

Each of the studies has involved the generat'ion of a

large amount of computer code, ìn three programm'ing 'languages and

for three different machines. Inclus'ion of the complete printed

listings wouìd have more than trebled the s'ize of the thesjs

without serving any especiaì ly useful purpose. Accordingly'

virtually a1l of this r¡aterial has been omjtted; the corputer

programs are merely described where necessary per medium of flow-
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charts, algebraic relations and ordinary text. The one except'ion

is a short FQRTRAN subroutine presented as an appendix. This' an

implementation of what'is thought to be a novel algorithm, serves

as an example of several of the programming techniques.

some of the materìal of chapters six and seven has been

the subject of prior publicatìon. It seems to make little sense

to paraphrase these papers, and yet undesirable to break

cont'inu'ity by merely including reprints'in an appendix. Accord-

ingly, copies of these publ'ished papers are bound in at the

appropriate place in the body of the text.

7.2 Comparison of 0pti mi zat'ion Techni ques

A survey of the literature shows that many invest'igators

in the digital s'ignaì process'ing field have made use of what may

be termed "mathematical optimizat'ion techniques", taken (somewhat

restrict'ively) here to mean techniques for fjnding the (constrained

or unconstrajned) minimum value of a single function of Several

variabìes. Such technìques are many and varied, and they are of

such great generalìty that their detailed development could be

(and was) ìargeìy carried out by mathematicjans who did not need

to conside¡ expt'essly the details of any particular user'S

appl ication.

It is rare 'in the signal process'ing l iterature to find a

work comparing even a couple out of the wealth of opt'im'izatjon

techniques whích app'lied mathemat'icians have made ava'ilabl e'

Most authors have been content to use Standard versions of

genera'l minim'ization algorithms available at nlost large scientif ic

computer sites. This approach is just'ifiable because the maiority

of uses of the techniques have been in the contputer a'ided des'ign of

cligìta1 filters. Although the filters are used in high-speed
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real-time applications they are desígned in advance, off-line,

and considerations such as

a) the amount of computer time used in. the design,

and b) whether the iterative procedure would have converged

from a different starting point,

are not of centra'l importance. Obviously, though, a method

which offered a factor of 2 'improvement in execution time would

be worthwhile if the desìgn program were to be used extensive'ly.

Perhaps more 'important'ly, many of the same methods are

applicable to situations where digital filters are "des'igned"

in real time, that is to say, the filter coefficients are

required úo "adapt" to changes in the characteristics of the

signal being processed. l^lith the ever-increasing ava'ilabìl'ity

of computing power (including faster logìc together w'ith more

para'llelism of computation, at fast-reducing cost) the use of

optimization techniques is becoming feasible for more and more

demanding applicatjons. It seems desirable to compare some of

them in representative app'licatìons, from the point of view of

rel i abj ì i ty and rel ati ve execution speed .

Chapter five of this thes'is reports upon work done to

compare the performance of severa'l mathematícal optlmlzatlon

methods in determinìng the parameters of digitaì filters. The

"filters" considered include those designed to meet a pre-

ass'igned frequency-dornain "spec'ification" and those produced as

mathemati cal model s of time-evol v'i ng processes.

As preliminaries to this material, chapters two and

three discuss opt'imìzat'ion fundamental s and the nlathematical

bas'is of some optìm'izatl'on methods. The requìsite terminoìogy

and notation front the digìta1 filtering fìeld is 'introduced jn

chapter four.
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Extensive numerical comparisons of optimization techniques

are rare even in the general mathematical literature. Second-

derivative methods have been particularly neglected. The results

of chapter five may go some way towards remedying this deficiency.

Aìthough aì'l the test examples are (deliberately) taken from the

digital f iltering f ield it is l'ikely that some of the conclus'ions

regard'ing performance would be much more generally applicable.

1.3 General Alqebraic Develo pment of Opt imization in Diqital

Filter Design

As stated above, chapter four serves to 'introduce the

fundamentals of digita'l filtering. The ìiterature relating to

the uses of optimization in this field is also reviewed. This

literature survey is "taxonomic" in nature; it is shown that

much of the work may be classified according to general features

of the mathematical formulat'ion. Accordingly, a certain amount

of algebraic development is possible without fixing attention on

one particular filter des'ign problem. A number of general

equat'ions are derived. This approach of proceeding from the

genera'l to the more particular is believed to be origìnaì and of

some use in unifying a fragmented field.

Several minor new techniques which generaììy facilitate

the appìjcation of optimization to djgital filter des'ign are also

descri bed. In part'icul ar, a method for rev'iewi ng the pai ri ng of

real poles and zeros as the computatìon proceeds great'ly improves

rel iabil ity; this is l¡ecause it el jminates many sub-optimaì

"solutions" to which the procedure could otherwjse converge.

Efficient filter structures are derived for the calcula-

tion of the first and second derivatives requ'ired when treating

approximatìon problems in the time domajn.
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7.4 Fini te-Word I enqth Considerations\
The results of an optimization process of the type

considered thus far js a vector of optima'l parameters whose

values are essentially known with infinite precis'ion (although

of course thjs js limited in practice by the wordlength of the

computer used). Digital filters, however' are often implemented

as routines on 16-bit minicomputers, B-bit microprocessors' or

special-purpose pipelined hardware, and their coefficients are

restrjcted to take only discrete values, the "quantìzation"

being s'ignificant because of the short wordlength.

Chapter six is devoted to the matter of coefficient

quantization. The literature in this area treats three main

topics: filter structures, stat'istical analysis of wordlength

requirements, and discrete parameter optimìzation. The first two

of these topics are revíewed for comp'leteness, but in keep'ing

with the overall theme of the thesjs, the maìn emphasis'is on

the third. Rounding the infinite-precision "ideal " coefficients

to the nearest perm'iss'ible values usualìy does not produce the

opt'imal filter for a given wordlength, and the desìgn may be

improved by apply'ing some kind of "discrete optim'ization"

procedure. Many alternative methods have been suggested; the

relevant ljterature is surveyed. The technìques mostìy fa'll into

two categori es:

(a) Those which are in theory capabìe of seekìng a true optimum,

but which generally requjre vast amounts of computer time, and

(b) Heurist'ic procedures with l'ittle theoretical just'if ication and

little chance of fjnding the true optímum (although some may

find good sub-opt'ima1 solutions quìte efficiently).

A new method is proposed which is based on a. completely

novel approach. The procedure (involving a random search) is
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guided by substantial theoretical considerations and there ìs a

good probability of finding the true optimum (although'if it is

found there js no indication of opt'imality). Tests are performed

which indicate good effic'iency in finding a variety of useful

sub-optima'l filters as well. In this regard the new method is

probably superior to most other methods at least for certain

classes of problems.

1.5 A Hiqh-Speed Imolementation of Svstem Identification by

0pt imization Techniques

chapter seven deals with a study of the implementation on

fast, cheap, short-wordlength hardware of "system identification"

by a gradient-based mathematical opt'imizat'ion method.

The work reported includes the development (with others)

of the "General Arithmetic Signa'l Processor" (GASP) - a very fast

computer wjth architectural features which Suit it to a wide

variety of signal process'ing tasks.

The design of system identification software to run on

GASP is cliscussed. Th'is includes homomorph'ic (cepstral )

process'ing as well as an optimizatjon scheme for parameter

determjnation. Attention js focussed on "speech-ì ike" signa'ls'

with the a'im of identifying the parameters of a pole-zero

cascade-form model.

Results of tests of the system'identifjcation algorithm

are presented. Although some success is achieved, this approach

to system identification has serious shortcomings wh'ich wiII

probably restrict its applicabì'lity. These are discussed and

poss'ibl e remedi es are suggested.

Finally, the sujtabjl'ity of the machine GASP for such

uses js reviewed. The usefulness of many of its des'ign features



7

is confirmed. Several addjtions are Suggested which would improve

the machine whilst retaining 'its originaì concept.



CHAPTER TI^JO

2, OPTIMIZATION FUNDAMENTALS

2.1 General Nature of 0pt'imi zation

A large body of mathematical literature has been bujlt up

relat'ing to the problem of finding the minimum value of a general

function of N variables, and the particular values of the varjables

which produce such a minimum. The amount of effort which has gone

into such studies is justified by the fact that a great number of

prob'lems in engíneering design and in the estimation of the parameters

of mathematícaL models of physicaì processes may be cast in thìs form.

In the case of design, the function to be minimized may be the

monetary cost of an item or be a measure of sonre other undes'irable

attribute such as energy loss, or, usually, a su'itably weighted

combination of several such "undesirables". The N variables are the

free parameters which the designer is able to vary. In the case of

mathematical modeLLing, a model whose forrn has been determ'ined by some

process of art, or intuition, is left with N free numerical parameters.

These are then found by mìnimizing a function of them which in some

way quantifies the "closeness of fit" of the model 1¡the experìmenta11y

observed data.

In most cases of practìcal interest, all or at least some of

the "free" variabl es are restricted by some phys'ica'ì considerati on to

lie above or below some particular value, or within certain lim'its.

For example, the values of all inductors, capacitors and resjstors

in an electrical circuit must be positive. Such constnaínts do not

necessariiy appìy to the variables ìndependently of one another. As

an exarnple of a more compl'icated constraint, a second-order d'igital

filter having a transfer functíon expressed as
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H(z)
1+az + bz-

must be stable to be useful; this restricts the allowable values of

parameters a and b to a triangular region of the a-b plane.

Much more general classes of probìenrs have been stud'ied under

the heading "opt'imizat'ion", 'in part'icular the optimization of

fwtetionaLs jn which we seek to determine not on'ly the values of a set

of parameters but also the forrn of a function which will mjnimize some

quantity. However, in the fjeld of digital filter design much use has

been made of the (simpler) mìnization of a gjven function of N

variables, and this thesis will be confined to an exploration of

"optimization" in that sense.

2.2 Definitions and Terminolo

The folìow.ing, whjle not purportíng to be mathematical]y

rigorous, is a review of general optim'ization termjnology. Some of

the more standard mathematical terms used in the thesis and not

defined here are g'iven in appendix A.

The recognit'ion of the importance of constraints has led to

the formulation of what is usually termed the mathematícaL prognanuníng

probLem, formally stated as:

1

M'inimize

subject to

F( X)

Q¡(x ) > o r,2 Ml (2.r)

where X is the N-dimensional colunrn vector of parameters (arranged

in some arbìtrary order) and the M inequalitjes express the

constraints. The functjon F is termed the obiectíue 'fwtction.

If the constraints are not mutually contradictory, they defjne

a region of parameter space jn which a solutjon' jf it exists, must

i'ie. This region, v¡hich may be of finite or infin'ite extent, is the
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feasibLe region and any parameter vector within it is a feasibLe

soLution. If every convex linear comb'ination of every two feasible

solutions is itself a feasjble solution, the feasibìe reg'ion is

eonl)eû, a concept illustrated in figure 2.1.

Turning now to the objective function (and ignoring the

constraints) a LocaL mínìmwn of the function is any parameter vector

having a nejghbourhood within which every parameter vector yìelds a

function value greater than or equal to that at the local minimum

itself. If equal jty is excluded the point is a strong LoeaL minírm'tm.

Awñmodal path is a directed curve in parameter space along which the

function value decreases monoton'ical'ly. Such a path must either

terrninate al a local mjnimum or at least one component of the parameter

vector must diverge to infinity. If aLL unimodal paths terminate at

the same po'int the funct'ion is called rmimodnL, and necessari'ly has

on'ly one I ocal minimum.

Unimodal functjons are high desirable from the point of view of

minimization because most technìques seek local min'ima by some kind of

expìoratory procedure. For a unimodal function such a point must be

the gLobaZ (unconstrained) min'imunr. However, the presence of

constra'ints compl jcates the matter enortnous'ly. A eonstrained LoeaL

minim,m is a feas'ible solutjon with function value F, say, such that

there exists a neighbourhood within which every parameter vector whose

function value is less than F is infeasible. In other words' it js

either a (feasible) local minimum or it ìs a point at which one or more

constrajnts are binding and from which all un'imodal paths extend out of

the f easi b'l e regì on . F'i gure 2 .? shows that even i f the obj ecti ve

function js un'imodal there may be more than one constrajned local

mjnimum. Holvever, jf the function is unimodal and the (one) local

m'i nimum i s feasi bl e, then i t i s al so the g'lobal cons.trai ned mi ni mum.

In many pract'ica1 cases , un'imodal i ty i s vi rtual ly imposs j bl e to
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prove, and so jf the user seeks the global minimum he should attempt

to find a variety of local minima, or constrained local minima, and

choose the best among them. 0f course, it may'not be ìmportant to

find the globa'l minimum because a suboptimal solution to the problem

may be good enough, but this will depend on the appìication.

A more restrictive condition on a function than unimodality

is that of eonuesíty, neanìng that the function value at a point which

is a convex linear combination of any two points in parameter space,

is less than or equal to the weighted arithmetic mean of the

corresponding function values. In symboìs,

,F( aXl * (1 - a) xZ) < a r( xr) + (1 - a) r(xZ) Q.2)

for 0 ( a ( 1., and any Xl and xZ.

A convex function is necessariìy unimodal, but not v'ice versa. The

useful thing about convexity'is that if both the function and the

feasib'le region are convex, there is only one constrajned local

mi ni mum, i . e. the gl oba'l sol ut j on .

The above serves mainly to 'introduce some of the genera'l

optimization terms to be used from t'ime to time in this thesis. While

unimodalìty and more particuìar1y convexity are of some theoretical

importance, in most practical cases t^le are forced to work with functions

which are neither. However, one conclusion to be drawn from such a

survey of opt'imization fundamentals is that exp'loratory (local-minimum-

seek'ing) techniques are likely to be more successful if the obiective

function does not have a large number of such minima. Furthermore, if
the user has any freedom in the way ìn r,vhich the objective function is

defi ned, mul ti pl e mi n'ima shoul d not be del i berately ì ntroduced.
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2.3 Tvpes of Optimi zation Techniques

2.3.1 Li near ro amml n

. When both the obiective functjon and all the constraint

formulae (the Q., of (2.1)) are linear in the variable parameters the

problem is amenabìe to solution by the well-studied methods of linear

programmi ng.

A linear function (apart from a constant) if defined for all

values of the parameter vector X is not bounded below, and so the

existence of a finite optimum (nlinimum) depends basical'ly on the

constraints. The optimum in such cÍrcumstances always ìies on the

boundary of the feas'ible region, wh'ich is a convex po'lyhedron in

N-dimensional space.

Formulatjon of a problem as a linear program is desirable

because the methods of solution are highly standardised and efficient.

If a g'loba'l optimum ex'ists it is always found in a finite number of

steps, and very 'large nunrbers (thousands) of independent varjables

may be handl ed. Some types of di g'ita'l fi I ter desi gn probl ems have

been so treated and are mentioned in chapter four. This 'is mainly from

the point of view of completeness of the literature survey because

the remainder of this thesis will concentrate on problems not

admi tti ng of a I i near program formul ati on .

2.3 .2 Uncons trai n ed o ti mi zati on

Whilst the solut'ion of a linear program exjsts on'ly because of

the constraints, most classes of obiective function will have a

minimum (or several local minima) in their own right. ,A 
large number

of techniques for finding such minima have been developed, and these

are the type to be considered in most of this thesis. Chapter three

reviews such methods. It is sufficient here to mention that most are
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iterative methods, proceding step-by-step through parameter space 'in

such a way that the obiective function is decreased at each stage, in

the hope of converg'ing eventually to a local minìmum.

Unconstrained opt'imization is'important not because truìy

unconstrained problems are common but because various modificat'ions

allow the methods to be used for many practical constrained prob'lems

also. The principal types of modification are introduced in section

2.3.3.

There remains an important type of problem in which the

constraints are expressed by striet 'inequalities (rather than the

nonstríct inequalities of (2.1)). In such a case the only acceptable

solutions are,interíon points of the feasibìe reg'ion and so are true

unconstrained local minima of the objective function. Once such a

minimum has been approached suffÍc'iently close1y, the constraints

have no further bearing on the progress of the optimization algorithm.

This is exemp'lified by some of the dig'itaì filter design

problems to be considered. All the poles of the fjlter must lie

strictìy'inside the unit circle so that the free response actualìy

decays with time. The on'ly type of optinrum of interest is a true

local m'inimum of the objective functÍon (at a point interior to the

feasible region) and this may be found without considering the

constraints, provided that we begin our search procedure suffjciently

close to the wanted solution (or are lucky).

This approach to constraints, of ignorÍng them when there is a

reasonable probabiìity that the procedure will converge to a solution

which satjsfies them anyhow, will be called a TeLanation approach. The

computational algorithm should jnclude safeguards to prevent the search

procedure uselessly wandering around in the infeasible region, but this

may be a devjce as símple as re-starting frorn a new feasib'le point as

soon as a constraint is violated. More generally, some opportunìty ma¡r
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be given for a return to feasìbi'lity before such a restart.

2.3.3 Cons trai red Nonl i near 0 D ri m i zati on

tlhen p hys i ca'l cons i derati ons do not prev ent i nequal i ty

constraints from becoming equaljt'ies, there may be local opt'ima on the

boundaries of the feasible region as well as'in its interior. Such

problems may be tackled by two basic general methods, the feasible-

direction and penalty-function techn'iques.

1¡ith a feasible-direction technique, an unconstrained method

is used but if the search procedure encounters a constraint the

ordinary predicted (infeasible) step is not followed; rather some

useabLe ¡ensiiLe dLz.ection (one wh'ich allows a decrease of objective

function value while maintain'ing feasìbility) is computed. Several such

techniques have been suggested, a survey being given by Gottfried and

Wei sman ( 1973) , chapter 5.

In the case of linear constraints, the "gradient projection"

method is effective (Rosen, 1960). Any unconstrained method may be

used, starting from an interior feas'ibìe point. If the search causes a

constrai¡t (hyperp'lane) to be contacted, explorat'ion is made aLong the

constraint in the direction spec'ifìed by the projection of'the negatìve

grad'i ent onto the hyperp'l ane. I f f urther constra j nts are encountered

the grad'ient is projected onto the intersection of all b'inding

constraints, and so on, as long aS the negat'ive gradient direction

i tsel f remai ns i nfeasi bl e. The search w'i I I termi nate at a constrai ned

local minimum, either a vertex of the polyhedron formed by the constraint

hyperplanes or a po'int where the grad'ient'is normal to the intersection

of the binding constraints.

The gradient projection method may be used when the constraints

are nonljnear, by substjtuting proiect'ions on the hyperplane tangent to

a constraint. However, the resulting dìrection may be infeas'ible, and

i
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a'lthough there is a correction technique for returning to the feas'ible

region after such a step, the method is not very successful for non-

linear constraints (Gottfried and t,leisman, 1973).

Even when the minima sought are interior points of the feasible

region, gradient projection may be useful in avoiding some of the

forced re-starts of the simple relaxation method of section 2.3.2.

PenaLty-funetion techniques are of two kinds, both allowing the

use of an unmodified unconstrained algorithm. In an "exterior-po'int"

a'l gori thm the obi ecti ve functi on i s arti fi ci a'l ly augmented by a

"penalty" term whenever a constraint is violated, and the further the

point is into. the infeasible reg'ion the higher the penaìty. The

penalty ìs generated from a suitable simple formula satisfyìng this

condition and also alìowing the steepness of the penaìty "wa'll" to be

controlled by a parameter. The sequence of unconstrained optima found

with increasing va'lues of the penalty parameter, al1 'lying outsíd¿ the

feasible region, will tend in the limit to the true constrajned

minimum. Such a "sequential" mode of operation is normally necessary

because the immediate use of a very severe penaìty produces a sharp

va'lìey in the augmented obiect'ive function. Many unconstrained search

techniques have difficulties jn following such va'lìeys.

In "interior-point" penaìty function algorithms the search must

be started at a feasible point, and'is prevented from reaching a

constraint by augmenting the objective function with a barrier term

whjch increases without limit as the constraint is approached. Again

a sequence of unconstrained minima are found, in this case being ínside

the feas'ibì e region. In success'ive unconstrai ned sub-probl ems the

barrier is made steeper and more localized (closer to the constraìnt).

In such a way the true constrained local nlinimum is eventually

approached.

Penalty-functìon techniques are discussed in detail in a text
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by Fiacco and McCormick (1968).

There are other methods which are applicable to certain types of

nonlinear programming probl ems. These incl ude several I inearization

techniques which allow the problem to be solved as a sequence of l'inear

programs (Gottfried and þJeisman, 1973). They are not usuaì'ly

recommended when the nonlinearities are severe and are not considered

further in th'is thesi s.

2 .3.4 The uses of cal cu I us

The class'ical calculus is of course an optim'ization technique

in the sense that for unconstrained differentiable functions F( x), all

local minima will be among the solutions of the simultaneous algebraic

equati ons

AF 2 N (2.3)
I

(2.3) represents onìy the necessary conditions for a local minimum,

other possible solutions beìng local maxima, saddle points, and

hori zontal i nfl ecti on poì nts , and so 'i t i s necessary 'i n seeki ng a

minímum by classical methods to exp'lore the neighbourhood of each of

the cand'idate points. A particularly useful result is that if the
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is positive defìnite at such a po'int, the point is a strong local

mi ni mum.

Unfortunately, the complexity of the equations (2.3) is such

that the classical calculus is not a practical method for min'im'izing

most realistic objective functjons. It does, however, provide most of

the insights which have guided the formulation of the practica]

minimization methods 0f chapter three. In particular, although there

is no fundamental requirement that an obiective functjon be

differentiable at the minimum (or e'lsewhere), differentiability

great'ly a'ids in minimization and most successful a'lgorithms empìoy

gradient information expl ic'itìy. Al gorithms emp'loying al so the second

derivative (Hessian) matrix are usually even more efficient.

The presence of constraints greatly Íncreases the amount of

work necessary'in the classical approach, because the function must be

minimized on the boundaries of the feasìb]e region as well as withjn

it in order to find al1 possible mínima. Separate problems must be

solved with each constraint alone assumed binding (acting as an

equaìity), then each pair of constra'ints, and so on, up to each

combinat'ion of N constraints. (The ìmposition of more than N equalìty

constraints simultaneously leads to an overdetermined set of equations;

there is no feasibl e sol ution. ) These equaf ity-constra'ined probì ems

may be tackled in two waYs:

(a) If a constraint equat'ion may be solved for one variable in terms

of the others, the resulting expression may be subst'ituted jnto

the definition of F, result'ing'in a problem of reduced

dimensional ì ty but usually increased compl exity.

(b) The alternat'ive is the elegant method of Lagrange multipLiers

whj ch a'lways íncreases the d'itrensional i ty of the prob'lem but

usual 1y s'imp'l 'ifi es the sol ut'ion.

I f we wi sh to mi ni mi z e F( ^I, xZ *n) subj ect to equal 'i ty constrai nts

l
,t

lf^-
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^N) = i = l, 2 MQ.¡(xt , xz,

we form the Lagz'angían ftmction
f'l

r = F(x' x, *n) *.'1, u, Qi(*l, 12 ...r¡)

and proceed to find the stationary points of f in the (tl + N)-

dimensional space of all the x and U variables. A point so found is

a constrained 'local minimum of F if "C exhibits a minimum with

respect to each x variabìe and a maximum with respect to each p'

that is, a saddìe point.

(2.5) i

2.3.5 Int er ramml n

In many problems of practical interest the parameters are not

perm'ittecl to take on a continuum of values but are in some way quantìzed.

The digita'l filter design problems considered in this thesis are of this

type, and this matter is treated in some detail in chapter six. The

purpose of this section is to point out that there are some genera'l

methods for locating such quant'ized optima.

In the maiority of cases the allowed points are equally spaced

and some suitable scaling w'i11 cause the quantization to be expressed

as an integer requirement on some or all of the varjables. There'is

the obvious division into a.LL-integer and miæed-integer prOgramming

probl ems , both types bei ng of practi ca'l s'igni f i cance.

The case of the Lineay, programming problem with added ìnteger

constraints is the most h'ighìy deveìoped, and two general methods are

available. The "cutting plane" method of Gomory (1958) does not readily

gener"a'lize to nonlinear problems and even in the linear case appears

inferior to the "branch-and-bound" technique of Land and Doig (1960)

and modjfied by Dakin (1966). The latter technjque is not'intimately

bound up vrith linear progranming methods and nray be used for nonlinear
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problems, although it is not guaranteed to find the optimum unless the

objective function Ìs convex (Gottfried and Weisman, 1973, chapter 6).

The essence of the branch-and-bound appfoach is shown by two-

dimensional examp'le in figure 2.3. The prob'lem is first solved

ignorÍng the integer constraints, producing a solution at the po'int

X1 = 3.5, xZ = 3.3 with function value (say) 20.0. Since both xt and

x, must be integers at the final solution, we can exclude the region

3 ( x, ( 4 from consideration and re-solve the probìem in the two

disioint feasibìe regions x1 ( 3 and *l> 4. The optÍma'l solutions to

these two probìems will have function values greater than 20.0 (or else

the unconstrajned mjnimum would not have been where it was), and, 'if the

objective function is convex the minima will 11e on the region

boundayíes, thus satìsfying the integer constra'int on xr. tlJe assume the

function values to be 25.0 (point Jl) and 30.0 (po'int Jr). If only x,

were constra'ined to be an integer we would simply choose the smaller of

these two values as the final soiution. W'ith x, also constraìnedo we

proceed to split each sem'i-infinjte feasible reg'ion into two again (the

shaded regìons of figure 2.3, labelled A, B, C and D). Suppose we

elect next, to minim'ize the funct'ion over the region C (reasonable,

since this region is "nearest" to the smaller of the two known min'ima

so far). If the function is reasonably well-behaved we have a

significant probab'iì'ity of obta'ining as this minjmum the "corner" point,

labelled K' which satisfies the integer constrajnts on both x, and xr.

Suppose this happens, and that the functjon value js 28.0. t,.le are then

spared the trouble of searching the reg'ions A and D, because neìther

could yield a function value smaller than 30.0, and Kt is already

feasible and a better solution than this.

M'inimjzing over region B, we obtain point J, with value 26.8.

Th'is point has a fractjonal value for x, and so is not a feasìble

solution. But since the function value js below 28.0, region B may
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still contain a better solution than poìnt K' and so it is again spì'it

'into two subregions, xl > 5 (shown cross-hatched) and x, < 4 (which,

owing to the prior bound xr2 4, degenerates to the Line *1 = 4, xrÞ 3.

The branch-and-bound approach is thus one of tree-search. It is

aìso a reìaxat'ion method, in the sense that the integer constraints

never enter expì ici t'ly into the minimization sub-prob'lems, but are

rep'laced by ordinary'inequality constraints whjch lead to problerns with

a high probabil'ity of an integer solution. The possible feasible mjnima

obtainable from a given branch of the tree are always bounded in

function value by the solution of a less-constrained prob'lem associated

with that branch, and so whole tree branches may be abandoned when some

other feasible solution is better.

The method works best with convex obiective functions (and

particularly with linear programs) but may be applied to non-convex

functions wi th the prov'iso that the gì oba'l optimum wi l'l not necessarily

be found. If the feasibìe grid is of fine spacing relative to the size

of the 'irregul ari ti es i n the f uncti on contours (as wi th many d'i gi tal

fitter probl ems) thi s theoret'ical def iciency 'is not 'important, the

function being effectively "convex" over the entire region of interest.

As with most opt'im'ization methods, however, the requ'irement in computer

time increases dramatical'ly w'ith dimensionality. In chapter six of

this thesis a new method is introduced which, while lack'ing the

theoretjcal elegance of branch-and-bound, appears to be much more

pract'ical for the types of problems considered.



CHAPTER THREE

3. TECHNIQUES FOR UNCONSTRAINED NONLINEAR OPTIMIZATION

3. 1. General

l'le turn now to a review of the various types of algorithms

which have been proposed for finding unconstrained local minima

of nonlinear functions, and a description in some detail of

methods to be compared experimentaìly in chapter five of this

thesis. The utiì'ityof such methods is not limiteit to probìems

characterized by truLy unconstrained functions; in chapter two

it was pointed out that constrained problems may often be

treated as a sequence of unconstrained sub-prob'lems by the

penaìty-function technique, and there is also the possibility

of tz,ansforrning the Índependent variables so that the new var-

iables are unconstrained (Box, 1966; Powell, I972). Addit'ion-

ally, there is a class of methods based on Lagrange multipliers

(Powe'|1 , L972) .

Most techniques for the unconstrained problem are sequentiaL

in the sense that they start at some arbìtrary point'in para-

meter space, x (o), and proceed by a series of íteratíons to

generate points x (t ), *(z) , ... having successiveìy smaller

values of the objective functions F( x ). They thus seek LocaL

minima and unless the function is known to be unimodal there

is no guarantee of optimality. In practícaì cases, confidence

i n the optima'l 'i ty of the f i nal sol uti on may usual ìy be ì ncreased

by starting the procedure from a variety of different points.

Another approach to the problem involves generating trial points

at random, with or wíthout some capacity for "learning". (eott-

fried and l,Jeisman , 1973, Section 3.4). Such methods at^e not
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sequential and can in principle find global optima- however the

amount of computer time is usually prohibitive even when the

dimensionality is 1ow. Systematic grid-search procedures are

defeated even more rapidly by the problem of dimensionaìity.

3.2 Classification of SequentÍal Methods

In general, the more well-behaved a function is, the more

sophisticated can be the methods for minimizing it. l¡le denote

the ctass of functions with continuous rth derivatives as Cr.

If F e C', â method which makes use of gradient information

may be used, while if F e C2 there are useful methods employing

second derivatives. There are also those methods which employ

function values on1y, and which may be used with non-differentiable

functions, and in some cases with functions which are not even

continuous. These three types in fact constitute the primary

classifications of sequential unconstrained minimization techniques.

It is of course possible to use a "value only" technique on

a different'iable function, and this may be desirable if the gradient

evaluation would be very time-consumìng or if the analytic dif-

ferentiation is simply too compl'icated an algebraic task. In

such cases it may be desirable to use function evaluations spec-

ifical'ly to produce finite-difference approximations to the gradient

components, and the "value onìy" methods are further djvided into

those which do and do not do this.

In a s'imilar way, second derìvatives may be approximated by

differences of first derivatives. In this thesis all methods

employing at least fjrst derivative information are classified as

"gradient methods" and are discussed at sonte'length in Section 3.4.

The following section js devoted to "value only" methods.
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3.3 Methods EmPloyi ng Function Values Onlv

3.3.1 Gradi ent Approximati on

0f those methods which generate finite-difference approximations

to the gradient components, the best knbwn is that of Stewart (1967).

The obvious formula for the ith gradient components is

gi-*[F(x+h "i)-r(x)]
(3.1)

(3.2)

where ei is the ith unit yector. The main thrust of the

Stewart paper is to select the step'length h optimally, so that

the (Taylor Series) truncation error implied by (3'1) iust balances

the numerical cancellation eryor (caused by forming the difference

of two nearìy equal qualities). Qthen¡lise, the method has the

characteristics of the gradient method to which it is coupled (in

Stewart's case, the Fletcher'Powell method described in Sectjon

3.4.14).

3.3.2 Conjuq ate-Direction Methods

Another class of methods is based on tlle properties of

quadrat'ic functions. A set of non-zero N-vectors p (t),

p(t) p(N) are cal 1ed conjugate with respect to a given

positive-definite matrix A (or "A - conjugate") if

(i) T

o 
(j) 

= e foralli+ip A

Such vectors are necessarily linearìy independent. In the case

of a quadratic obiectiye function F(X ) the Hessian matrix H is

constant. If such a function is successive'ly minimized along

several (say k) H - coniugate directions' startjng front an

arbitrary point ¡ (o), then the final point found I ¡ (tt)¡ is
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the minimum of the functìon in the subspace defined by the

initial point and the k coniugate directions. A proof of this

is given by Fletcher (I972a).

Thi s theorem i mpì i es , i n parti cular, that the nrinitm'un

value of a quadratic function is found after exact linear searches

in all N coniugate directions.

Conjugate directions can be generated in a number of ways

without exp'lìcit knowledge of the Hessian matrix. A method

employing first derivatives is described in Section 3.4'13.

However, there is another technique which requires no gradient

evaluations and which forms the basis of the method of Powell

(.l964). If,S and S are two "paralle'l subspaces" generated by
T2

a set of linear]y 'independent vectors p (t), p ('), ... p (k)

andpointsx andx suchthatx lS (andx ÉS)and'121221
z and z are the points minimizing a quadratic function

L2
in S and S respectiveìy, then z' z is H-conjugate to

t22L t^
each of the p t. This is the "paraìleì subspace property"

and is illustrated in two dimensions in figure 3.1.

Powell's (1964) method obtajns conjugate directions for a

quadratic functjon, and hence finite termination' by v'irtue of

the para'l le'l subspace property. But i t j s a'lso capabl e of easy

extensjon beyo¡d N conjugate line searches and so tends to con-

verge to the minimum of a genera'l function. Consider tlrat at

the start of a given iteratjon (say, the kth) a set of N linear-

ly-independent vectors is defined. This set may initial'ly be

arry independent set, such as the un'it vectors. It is updated

by discarding one vector and calculating a new one at each

iteration in such a way that'it eventual'ly tends to a conjugate

set with respect to the Hessian evaluated at the minimum. We

denote the current set of vectors by p(t), p(t), p(N),
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Contours of quadratic function

f(x) = l, 1*-*g)TH (x-x') + const.
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FIGURE 3.1 Illustrat'inq the "Paral I el SubsDacê"
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(zz z1)TH p(1)
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and assume that the current parameter vector x (f-r) has

resulted from a line search (minimization) a'long p (N). (ro

start the process such a search is performed as a preliminary

step). The general kth iteration consists of the fol'lowing

procedure. A point z 
(k) is generated by starting from

point * (r-r) und making line searches (one-dimensional

minimizations) along each of the directions p (t)' p(')

p (N) in turn. The vector p (t) is then dis'carded, being

replaced by o 
(z), p (') is replaced by o 

(s), 
and so on'

and p(N) is repìaced by the new vector z (k) - x (k-1).

A line search is then performed along the new p (N), generating

poi nt x 
( k ) and comp'l eti ng the i terati on .

This method represents a phiìosophy which has often been

fruitful - methods which theoretica'lly minimize a quadratic

form in a finite. number of steps have been generalized so that

genera'l functìons can be handled. Convergence properties are

often excel lent.

There is one difficulty with the original form of Powell's

algorithm. The set of search vectors sometimes tends to become

linearly dependent, preventing the true min'imum being reached.

Powell's suggestion is to omit the replacement of a vector by

z (k) - x (k-1) if this would make the set "more" dependent.

There have also been other remedies suggestedrfor exarrpìe by

Zangwì'11 (1967) .

powel I 's method (among others ) i s cri ti cal 1y dependent on

the methocl used for the one-dimensional line searches, a matter which

is taken up in Section 3.5.
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3. 3.3 Direct Search Methods

The methods of Sections 3.3.1 and 3.3.2 emp'loy only function

values but in ways which depend on the propert'ies of differentiable

functions. A th'ird class of methods is based on the determination

of a good djrection in which to search merely by comparing the

function values at a set of points. None of these methods has

the theoretical e'legance of the gradient-based a'lgorithms' but

they do have the advantages of sinrpìicity and applicability to

functions which are not differentiable, or which are the result

of some physìcal measurement and therefore subject to random

error.

An obvious approach is to ninimize with respect to each

of the independent yariables in turn. The inmediate obiection,

as seen from figure 3.2, is that the method will proceed in

eyer-decreasing steps along a "Val1ey" (such as the major axis

of an elliptical contour system) unless such a va'lley happens to

be aligned with a coordinate direction. The practical direct-

search a'lgorithms are based on varìous methods for aligning the

dÍrection of progress with such local valleys.

In the pattern seaz.ch method of Hooke and Jeeves (190r) a

series of exploratory moves are made about the present base point

by increasing or decreas'ing each of the Variables in turrr by a

small amount (whjch need not be the same for each variable). Any

step which gives an improvement (decrease) in function value is

accepted, thus the method is sensitive to the order in which the

coordinates are enumerated. hlhen all variables have been so

treated, an attempt is made to eættapoLate to a fon¡lard point

which is twice as far from the ba.se point as the point found by

exploratiotr, it be'ing assumed that a good directjon has been
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roughly localized by the exploration. Hooke and Jeeves do

not require that this extrapo'lation itself succeed ìn decreasing

the function value, but allow a further series of exp'loratory

moves from the fon¡lard point in an attempt to do this. If

successful, the new point becomes the base point, and another

attempt is made to extrapolate from the previous base point

through the current one. Such pattern mo)es, if they are con-

tinually successful, have the property of growi.ng in size, and

the method is very efficient at following long, straight val'leys'

As soon as a pattern move fails, the forward po'int of the

exploration phase around the base point becomes the new base

point. when no move in any coordinate direction causes a

function decrease (and so no new base po'int can be generated)'

the si ze of the exploration steps is reduced. The entÍre

algorithm terminates when this step becomes smaller than some

preset sì ze.

The method of Rosenbrock (lgOO) also proceeds by exploratory

moves in a set of N mutually orthogonal directions, but these

are not the coordinate directions (except on the first iteration).

Exptoration can proceed in each of Ùhe directions a number of

times, a success for a gìven direction resultìng in a larger step

to be taken next time. t^lhen all direct'ìons fail, the overall

directìon of net progr.r, b..otnes the first direction to be used

on the next iteration, and the remaining N - 1 directions are

calculated by the Gram-Schmidt orthonormalìzation process'

The conceptually s'imple method suggested by Spendley, Hext

and Himsworth (1962) uses the properties of a regula'r simp'lex (a

set of N + 1 equid'istant poirrts in N-dimensional space). A new

simplex can be formed on any face of the old by the addition of

onìy one new poìnt, that wh'ich is the reflection of any vertex
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through the centroid of the remaining N. At each stage of

the process the uorst vertex is abandoned and replaced by

its reflection, except that.if the most recent point is the worst,

the next worst is used instead (to prevent continuous oscillation

between two simplexes). Eventually, with one yertex in the

vicinity of a local minimum, the Successive simplexes will tend

to rotate about this one "permanent" point - a signa'l to reduce

the simp'lex si ze. The a'lgori thm termi nates when this sÍ ze reaches

a preset minimum, or the function value is acceptab'ly smal'l at

al I verti ces.

In the method of Nelder and Mead (1965), the regularity of

the simpìexçs is abandoned so that acceleration steps (similar to

Hooke-Jeeves pattern moves) can be introduced. The simp'le re-

flection is onìy accepted if the resulting point is not a new

best or worst point. If a best point, the sÍmp'lex is expanded

in the supposed good direction and the dìstant yertex used if

it is better again. If the "reflection" point is the uorst'

a contraction of the simplex is made (affecting onìy the new

point). If the "contracted'r vertex is stiLL the worst, onìy the

best point of the existing simplex is retained and an overall

halving of simplex size is made. Convergence is assumed when

the variation jn function yalue is sufficìently small over all

points in the simPìex.

3.3.4 Soecial Methods for Sums of So uares

In many cases of practical interest the objective function

has the special form

M

I
m=l

F(x ) = frr'(x) (3.3)
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as in cases of least-squares curve fitting. Section 3.4.12

treats severa'l methods using first derivatives of the

individual functjons fr( x ) which exploit this special form.

There exist also methods which estimate these derivatives from

Values of the functions only. Qbviously, a formula Such aS

fr( X + a "l)
f (x)

m

a ( 3.4)

where ei is the ith unit vector, could be used, but there are

better ways which rely on the function values obtained on

previ ous i terati ons . 0nce found, the approximate deri vati ves

may be used in several ways, as wil] be outlined for analytic

derivatives in Section 3.4.I2.

The best known algorithms in this class are those of

PoweJl (1965), Barnes (1965), Broyden (1965), Peckham (1970)

and Powell (1970).

3.4 Gradient Methods

3.4.1 Introduction

A large class of methods for unconstrained minimization

(in fact, the majority of them) employ jterations which may

be expressed by the equations:

k) (k)1t<+r ) x *o( k( )x p (3.s)

and

A (k) (k) ( k)p =-$

where g (k) is the vector of first derivatives of the

objective function F, evaluated at x = x (k), that is

(3.6)
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and A (k)is 
some N x N matrix. The superscriþt (f<) refers to

Values preceding or used on the kth iteration. In what follows,

it will be omitted whenever the connectÍon with a particular

iteration is immaterial.

Equatìon (3.6) defines a seaz'ch dív'ection p in terms of

the gradient vector g and the matrix A , and (3.5) irnpìies

that the next estimate for the minimìzing parameter vector

" 
(k+r) i, d"r.rmined from x(k) by taking a step in the

djrection of p (k) 
and of 'length determined by the (scalar)

stepLength paranetno o(k) .

In this thesis the term "gradient method" will be taken to

include any method whose iterations may be expressed by (3.5)

and (3.6) regardless of whether the computational scheme itself

actually invo'lves equations of this form. The methods differ

in the ways'in which the matrix A and the step'length s âFê

chosen. Both first and second-derivative nethods are included

(second derivatives can enter via the matrix A ) and, indeed,

a "funct'ion value only" method cou'ld qualify if the values were

used expressiy to compute finite-difference approximations to

cJeri vatì ves to be used i n [3.6) .

3 .4.? Des cent Di recti ons

In using a gradient method, one aims to cause a reduction

in the value of the obiective function F at each step in the

hope that the sequence of iterates x(t), ¡(t), wi]l

thereby be forced to converge to a local minimunl of F. Most

nlethods restrict the matrix A to be positive definite, which

ensures that a function reduction nray be achieved for some

AF

âxs 
(k)T AF

ðxz
(3.7)

l
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positiue value of a, that is' that p is a descent direetíon.

The proof of this is straighffon,tard - since A is positive

definite, its inyerse A-1 exists and is itself positive

definite. Therefore, from [3.6),

p A ( 3.8)g1

Consider the (vector) Tayìor series expansion of F for a small

displacement ax from x , i.e.

F( x + 
^x 

) = f(x) + + L txT H AX + o (ltAX il3 (3.9)

where g and H are the gradient vector and Hessian matrix. If
the displacenent is in the direction Þ , i.e.

AX = qp

then this becomes

F( x + op) - F(x) = q gTP + u.ozrT H p +o(n¡) (3.10)

For sufficiently small ü¡ the first term on the right-hand-side

predominates, and substituting for p from [3.8),

F( x + op) - F(x) æ - ngT A-1g (s.rt)

Since A-l is posÍtive definite, the right-hand-side is negative

for positìve o, provìng that a function reduction is possib'le

if q. is smal'l enough. (Provided that g is not the zero vector,

gT¿ x
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in which case (3.6) would fail to generate a search direction

at alì).

3.4.3 Steepest Descent

The simp'lest gradient method takes A to be the identity

matrix I , that is, p is simp'ly equal to the negative

gradient - g In one variant of steepest descent' an

initiat guess is made for o, and the function evaluated.

If the function is not decreased, then s is halved (or multi-

plied by some other factor less than l) and the process re-

peated. Ultimate success is guaranteed (by the theorem of

Section 3.4,2), and the point iust found is taken as the

start point for the next iteration. In another version, called

"optìma]" steepest descent by Gottfried and Weisman (1973), the

value of a which minimizes F a'long the direction - g is

actua'lly found to a fair degree of precision.

At first sight a steepest descent method would seem to be

the most efficient way of achieving a decrease in the function

value, since (as the terminology impl'ies) the function decreases

most rap'idly in this direction. However, this optimality holds

only in a local (infinitesimal) sense, and the method is a

very poor g'loba'l strategy for minìmizing most functions of

practical importance. The principal reason is that the search

usually becomes trapped in a relatjve1y steep-sided "valley"

whose floor has a gradual slope towards one end (to use the tv¡o-

dimensionaj contour anaìogy). The steepest descent direction

from a point on the wall of such a valìey is almost perpend-

icular to the axis of the valley, and so the iterations will

zig-zag or ,'hemstitch" from one s'ide to the other wìth very

little forward pnogress (down the axis of the valley)'

J
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The "optimal" approach (Iocating the vaì'ley fIoor on

each iteration) is onìy a partial remedy (although it would

appear effectjve in a simple, straight, two-dimensional valley).

For one thing, the one-dimensional minimization is seldom carried

out to extreme accuracy (to avoid waste of computer time better

spent on more iterations), causing over or under-shoot with the

consequences that the next steepest descent direction still

has a large component across the vaììey. More importantly,

however, even if the dimensionaìity of the problem is onìy

moderately high, the opportunity for curvature of the contours

in many directions simultaneously forces most of the rn'inimìzing

steps to be,very short. The end result is the same; very

slow convergence.

The existence of such valleys is not at all uncommon; in

fact any local minimum of a function will lie in one, except

in the most unusual case that the function value depends almost

equally on each variable. Virtually every author who has trjed

the method reports the sarne disappointing convergence, for

example Marquardt (1963) and (for a digital filter design

probìem) Cadzow (tgZ6). The method js not much used alone

because of this very serious deficiency' a'lthough it is capable

of producìng 'large funct'ion decreases in the ear'ly iterations

far from t,he optimum, and is sometìmes resorted to aS a "re-Start"

step when another algopithm has bogged down for some reason.

3.4.4 The Newton ( or Newton-Raphson) t"tetho¿

The classical Newton method takes A a.s the Hessiarr matrix

of the objective function H (the matrix of second partÌa1

derivatives). It should be noted that p is not necessariìy

a descent directiott since H is not restrictecl to be posjtive

,{
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definite. Straightfortlard appll'cation of Newtonrs method may

then require a search in the negatÍve direction of p tO

secure a function decrease. However, ìn the neighbourhood of

a strong local minimum H is positive defin'ite, and under

such conditions Newton's method is an extreme'ly efficíent

(quadrati cal ]y convergent) process for fi ndj ng the mi ni mum.

As such, it is the prototype for all second-derivatÍve (and

most other) gradíent methods, which attempt to set A equal

to H (or" as cl ose an approxjmati on to H as possi b'le) once

this region of positive-definiteness has been located.

Newton's iteratìon rnay be derived from several viewpoints;

two being given below:

(i ) Vector GeneralÌzation of Newto n's Method For Findin a

roo a Func on

The well-known Newton-Raphson method for the ìterative

solution of f(x) = 0 is illustrated in figure 3.¡ (a). The

function value and gradient at ¡ = t(k) define the new iterate

accordi ng to the formul a

(k)
(k)

lr
,1, ,

{t

"(k+r) 
= x(k) _ 

[r+ ]
t(x ) (3. 12)

The rapid convergence which characterizes this iteration is

obvious in the geometrical illustration. Figure 3'3 (b)

illustrates a generalization where we are trying to find the

values of two independent variables x, and x, which produce

simultaneous zeros of two functions fr(xr, xr)and fr(xr, xr).

In other words, we want the intersection point of the two loci

f = 0 and f- = 0 in the (x., Xz) plane. Starting at an
7 2 .1. '

arbitrary point (*-(k), *-(k)¡ we generate a new point
12

1* 
(k+r), * (k+t), which would zero both funct'ions if the'1 ' 2

¡
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partial derivatives ¡r , ã* , ,f and çe remained constant

l2L2

at thei, *(k) uulues (note that this is also the process in-

volved in the one dimensional case' figure 3.3'(a)). The

equations to be satisfied are

^. (k) '. (k)

fr(k) + (xr(k+r) - *,(0,, 
î 

+ (*r(o*t, - *r,k)) 
d 

= Q
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af(k)

( 3. 13)

(3.15)

= o (3. i4)
I l

(k+t )

(k+t ) X F a2F
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ðX AX
2L

a2F
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which lead to

(k) af af
. (k)

-T (k)

X
r1

AX AXT2

X

af af
2 _L-

AX AX
l2

f
2

provided that the matrix inverse indicated exists. This has

the same form as (3.12), with vectors rep'lacing scalars and a

matrix inversion replacing the reciproca'l operation.

A necessary cond'i.tiOn for a local minimum of a function is

that all grad'ient components are simultaneousìy zero. Ident-

ifying the functions f, and f, of the previous discussion with

the gradient components S ana # , (3.15) becomes

L2-

(k)

fX I1I

2
X

2

X
-r (k) (k)

AF

AX
1

âF

I I AX
I

þ31_
äX âX

l2
X

z
X

2 AX
2

(3.16)
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or, in vector-matrix terms

x
(t<+t¡ k

(r )
g-t (k)

( 3. 17)

( 3. 18)

i
)(

X H

which is precìse'ly the same as (3.5) and (3.6) with A 
(k) = H 

(k)

and o(k) = 1. Analogous results hold for N dimensions. 0f

course, the order of partial differentiation is immaterial

for "ordinary" functions and so the Hessian matrix is symmetric.

The vanishing of the gradient vector is a necessary but not

suffícient conciì tion for a local min'imum - the uncritical use

of (3.17) may lead to convergence to a sad<lle point, or to a

local maximum (or divergence). However, if H is positive

definite at x (k), the second-degree Tay'lor series approx-

imation to F(X) in the neighbourhood of X 
(k) is a quadratic

form with a minimum, and (3.17) finds this mÍnjmum.

(i i ) Behaviour of the Newton Iteration on a Positive-Definite
Quadrati c Form

That Newton,s iterat'ion will find the stationary poÍnt of

a quadratic function in one step is obvious from the above

analysis, because for such a function the part'ial derivatives

in (3.13) and (3.L4) az,e constant for all x However, it ìs

interesting to consider the function F explicitly defined as

r(x)=b+r,(x-r )TH (x- r

1

)

which, if H

at X- r

is pos'itive definite, has a minimunl value of b

The gradient is given bY

s(k)=H(x(t)

and so from (3.8)

Í (3.le)
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p(k)=- H-tg(k)=.*(t) +f

(k)

(3.20)

( 3.21)

(3.22)

( 3.23)

and

*(k+r) - x(k) + p (k) r if a =f

The stationary point x = r is thus found in one step.

Examining the change in the function value given by (3.10)'

where all terms above second order now vanish, we have, as

a function of g'

¡F(a)=qgTp +L.d2 PT¡lP

=-qg
T H-t9 +%&gT H-Tlt H-1 I

T 1=-(q''.az)E gH

If H (and so H -l) is positive definite, the change in the

function is a z,eduetion for all 0 < q < 2 and is maximized when

I fnpl = fl- that is when o = 1, in which case the function re-
dCX, \-'I 

v t vrrv

duction is

^F 
= - ,. gT H-l g

Substitutìng for g from (3.19) gives

| = - 4( x- r )T nT H-tH( x- r )

=-Lz(x-r)TH(x-r)

and so from (3.18), the function is reduced to b, its minimum

yal ue.

(3.24)
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In practical cases of importance, the objective function

is not, of course, quadratic. However, close to a local minimum

a quadratic is a good approximation to "normal" functions, and

any mi ni mi zati on method wh'i ch converges s I owly when app'l i ed to

a quadratic function cannot be expected to do better on a

general function. For this reason,tests of algorithms using

quadratic functions are of considerable interest. Newton's

method, with its one-step quadratic termination, provides the

"benchmark", and another method cannot be rated "excellent"

unless it can minimize a quadratic form with an amount of labour

similar to one Newton iteration.

3.4.5 Practical Implementation of Newton's Method

Because of its quadratic convergence when the iterate is

near the minimum, Newton's method is extremely powerful and is

recommended by most authors (e.g. Murray (7972a)) in cases when

the required second derivatives can be calculated without too

much trouble. However, the following questions must be addressed

when considering an implementation:

(i) What should be done when the Hessjan matrix is not positive

definite? The various answers to this question form the basis

of the other second-derivative methods, discussed below. The

two cases of singularity (or near singularity, causing numerical

ill-conditioning even if H is actually posÍtive definite), and

indefiniteness, may or may not be considered separate'ly. One

possi bi 'l i ty for nons'ingu'lar but i ndefi ni te H i s to search the

negative direction of p if the positive fails. This usually

works,but there js little theoretical justifjcation forit and

better procedures are available. If H is near s'inguìar' steepest

descent may be used (as indeed it may be for indefinite l-l ).
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(Íi) What should be done when the gradient is close to zero?

If H is positive definite the answer is: stop, the problem is

solved. If H is indefinite and g exactly zero, then (3.8)

fails to generate a search direction - the process is trapped

at a saddle point. The likelihood of this happening seems

extremely small, and some such strategy as a small random

perturbation should cure it. However' some authors refer

to it, for example Gill and Murray, (1.974). They point out

that the availab'ility of second derivative information allows

identification of a direction of negat'iue eurvatuYe aìong

which the function will eventually decrease'

(iii¡ when H is positive definite, how should the steplength

be determined? Equation (3.17) indicates that c¿ should be

equal to unity, but the positive definiteness of l{ does not

guarantee that a function decrease will be achieved for this

value of cr. The actual behaviour of the function F may differ

significantly from that of the implied local quadratic approx*

imation. However, as the local minimum is approached the value

o = 1 becomes Very neariy optimal, and so the algorithm should

be coded So as to try e = 1 first and then proceed to smaller

values of a if necessarY.

3.4.6 Survev of Modifi ed Newton Alqorithms

Many authors have dìscussed schemes for the modification

of Newton's method to hanclle cases where H is indefinite or

singu'lar. Goldstein and Price (1967) and Dixon and Biggs (1970)

ìgnore the informatjon in the Hessian in such cases and use a

steepest-descent step. Goldfeld, Quandt, anC Trot'ter (1966) base

a method on the minimization (although in fact thejr paper deals

with the equivalent maximjzation problem) of the local quadratic
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approximation over a restricted region within which the approx-

imation is known to be adequate. Their method uses a (hyper)

spherícal region centred on the curyent jterate and demands

a complete eigensystem analysis of H A similar method of

Fletcher (1972) uses a hypercube region and requÍres solution

of a quadrati c program at each i terati on.

An interesting method of Botsaris and Jacobson (1976) uses

in place of (3.5) and (3.6) the iteration

, (k+r) 
=

X

,t)=

x(k)+ (k) ,t)

)x 
(k) +p (k) (x (k) t* (3.25)

(3.26)

g
( r) . (3.27)

t

*
where t^ is,selected to minimize F(X) along the ctø'ue given by

p(k) (x
where

(k) e-Ài
(k t (k)

)

p(k) (
N

I
-_t-- i. (k)

I

-1 r( k)
X u.

1
ui

r.(k) and u.(k) are the ith eigenvalue anc.l ith normalized

eigenvector of H 
(k), respectively. In the case of any

Ài = 0, the coefficient of ui ul it replaced by - t, its

timit as À., + 0. For t = -, the iterat'ion is just Newton's

method, and the authors try this particular value first, proceeciing

with the minimizat'ion over t only if the function value is not

decreased for t = -. As t tends toward zero the step p ( X 
(k),t)

tends to a small step in the steepest-descent direction, and so a

function reduction uiLL be obtained for some suitab'ly small

positive t. In this respect the nlethod is similar to that of

Marquardt (Section 3.4.8) which also generates a sequence of
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of "interpolations" between the Newton and steepest-descent

directions. when H 
(k) is nonsingular but indefinite (i.e.

r.(k) < 0 for some i), the value t = - is inappropriate ìn

(3.27), and Botsaris and Jacobson have used an "undamped

Greenstadt,' tria'l ((3.27 ) with t = - and all negative eigen-

values repìaced by their absolute values) before undertaking

the minimization over t.

None of the methods discussed above formal'ìy fit the

moclel of equations (3.5) and (3.6) in the sense that a search

direction p(k) is first determined, followed by selection of

a suitable o(k) 
"ttich 

determines a point in this díz'eetion.

Rather, Q is always unity and both the direction and ìength

of p are found by a univariate search over some parameter.

Some methods whi ch dp fit these equations are discussed 'in

the sections which follow.

It should be remarked that eigensystem ana'lysis is un-

desirable since it is relatively time-consuming and the storage

of eigenvectors requires a full N x N array. To be competitive,

such a method would need to be considerably more efficient (as

regards number of iterations requjred) than those methods not

requiring such ana'lysis. This supe¡ior efficiency does not

seem to be achievable (tnis thesis, Chapter five).

3.4.7 Greens tadt's l'lethod

Greenstadt (1967) considered the case when H is positive

definite but one eigenvaiue Ài ìs much smaller than the rest

(all e'igenvalues of a pos'itive definite matrix are positive).

The funct'ion then has a "Va1'ley" closely paralIeì to ut, the

eigenvector corresponding to l,r. Then, provided that the gradient
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g has at least a small component aLong the valley' the Newton

step is substantialìy along the valley, as desired, even when

x is some distance from the va'l'ley floor. However, if a

small perturbation shifts the small eigenvalue to be negatìve

(leaving the others reLatiueLy untouched even though changed by

comparable absolute amounts) the Newtonstep is reuersed, although

the best minimum-seeking direction is unchanged. Such reasoning

led Greenstadt to suggest that negative eigenvalues shou'ld be

replaced by their absolute Values in the determination of a

search direction, i.e.

lri
( k)(k) N

=.1
I =l

( 3. 28)A u{o) u{k) T

ui

The method requires the eigensystem anaìysis of H at each

iteration, but the inversion of A to obtain p from equation

(3.8) is simple because the eigenva'lues of A-1 are the reciprocaìs

of those of A, whereas the eigenvectors are the same. p can

therefore be comPuted from

TIu¡ 
-l 

n
N

I
1

p (3.2e)

The Greenstadt iteration is completed by some suitable line

search procedure (Section 3.5) to determjne an acceptable a

aìong p .

Murray (1,972a) suggests that if H is singu'lar (that is,

hassomel,r=0rsothat(3.29)isnotcomputable)thenthe

value 2t/',h""e t is the "relative machìne precision" be used

in place of l^il-t. He also suggests a scheme to dispense w'ith

the eigensystem analysis and so SaVe computer time when H is
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positive definite. In such a case the system of linear equations

(3.6), t',ith A = H , can be solved by the Cholesky decomposition

of H into the form

H LDL T

where L is a unjt lower triangular matrix and D is a diagonal

matrix. This is followed by two back-substitution steps ônd

a simple scaling by the diagonal elements of D to obtain p

This procedure is regarded (wilkinson (1965)) as being the

best method for solving symmetric systems when the matrix is

positive definjte. The method is numerically unstable when the

matrix is indefinite (and the Cholesky factors may not even

exist) but indefÍniteness js revealed by the occurrence of a

negative diagonal element of D during the attempted factor-

ization. Murray's suggestion, then' is to try the cholesky

decomposition of H and proceed with the back-sulrstitution steps

if it succeeds. Qthen¡rjse, as soon as indefiniteness is

apparent, the eigensystem analysis is performed and (3.29)

applied. With the eigensystem analysis taking about 18 times

the computer time necessary for Cholesky's method (3N3 as

against I/6 N3 + 0 (N2) ), there is a signìficant saving for

large N if H Ís positive definjte a reasonable proportion of

the time, and in the worst case a degradation of only 6%.

3.4.8 The Marqu ardt or Levenberq Method

Consicler an N by N symmetric matriX A, having eigenva'lues

Ài and corresponding eÍgenvectors ui, for I = L,2 N.

Then, by defin'itjon,

( 3. 30)
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A ri = Ài ui

Then, adding a mult'ip'le e of u i to both sides, we

get

( A+sl ) ui (r.' + s¡ ui

from which it may be seen that the matrix A+ Bl has the

same eigenvectors as A , and all eigenvalues shifted by an

amount ß. Hence, a positive definite matrix may be constructed

from any symmetric matrix by adding a positive amount ß,

greater than the absolute'ly largest negative eigenvalue, to

each of the diagonal elements. This forms the basis of several

disti nct minimization algorithms.

Firstly, a descent direction p may be determined from

an indefinite or singular Hessian H by adding some amount ß

to the diagonal elements which is sufficient to ensure positive

definiteness (and a reasonable condition number), that is' p

is determined by solving the linear equation system

( 3. 31)

(3.32)

(3.33)(H+s¡ ) p --s

The main difficuìty is that a suitable value of ß is not

known a priori. However, we may proceed as Murray (1972a)

suggested for Greenstadt's method, that is, attempt first the

Choìesky decomposition of H so that the Newton direction may

be used if H'is positive definite. If this fails, we then try

to performtheCholeskyfactorizationof ( H+ ßl ) for

some trial value of ß. If this succeeds, a direction p is found

(by back-substitut'ion) and the trial ß decreased by a fact.or of

(say) 2 so that a smaller value will be tried on the next iteration.
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If the factorizat'ion fails, ß is increased by some factor

(say 2 again) and the process repeated (with the exception

that the tri,al value passed to the next iteratjon is halved

onty if the factorization succeeds the first time). It has

been found in practice (this thesis) that more than three

trials of ß are seld'om required except perhaps on the first

few iterations when ß has not yet matched itself to the

eigenvaìue spectrum of H

Irlhen a descent direction p has been determined, a line

search (Section 3.5) is performed to find a point which re-

duces the function value. This method will be referred to

as "Marquardt with line search." It appears not to have been

investigated before, a'lthough experiments to be reported in

this thesis indicate that it performs better than most alter-

nati ves .

The method described above has the obiection that if

the value of ß tried happened to be only marg'inaì1y greater

than the absolute value of the most negative eigenvalue, the

matrix A + ß I could be so ill-conditioned that p could

fait to be a descent direction (due to numerical roundoff

error). Howcvcr, this situation is eas'i1y avoidecl by insisting

that the d'iagona'l elements of the D matrix be not only positive

but exceed some suitable smalì positive quantity.

A method which is related to "Marquardt with line search",

and much more widely appreciated, involves making the parameter

ß so large that not only is the matrix ( H + ß | ) posjtive

definite, but also that a function reduction is achieved at the

point ¡ (k+t) found from
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* (r+r) - x(k) - ( H(k) + u(t)l )-t (k)
( 3.34)g

In this way no line search is needed, but for every trial value

of ß which makes ( H + ol ) positive definite, we need to solve

a new system of N linear equations (by Cholesky, or othen¡¡ise)

and evaluate the function to see whether it is reduced. l,rle can,

as described above for the method with line search, use a "reason-

able" first trial value passed from the preceding 'iteration.

This method will be called the "true Marquardt" method' although

the original work by Marquardt (1963) added ß not to the diagonal

elements of H but to those of an "approx'imate H " which may

be derived from first derivative informatjon on'ly Ìn cases where

the objective function F is a sum of squares. This is considered

in Section 3.4.72. The method in fact dates from 1944, when

Levenberg was led to the same procedure by different reasoning.

The addition of an amount ß to each of the diagonal elements

of H , which at first may seem a rather arbitrary procedure,

has at least the theoretical iustification that as ß tends to

infinity, the matrix ( H + ß | ) tends to a multiple of the identity

matrix and so the displacement p(k) ( = 
^ 

(k+r) - X 
(k),

as found from (3.34)) becomes a small step in the steepest descent

direction. Marquardt's method thus shares with that of Botsaris

and Jacobson (Sect'ion 3.4.6) the characteristic that the line

search is rep'laced by a search for a function decrease along a

curue in parameter space. The curve in each case has the property

that it begins at the "Newton" point and spirals in towards the

,'base', point where it ìs tangential to the steepest descent

direction. A further simjlar methocl was pub'lished by Jones (1970)

in whjch the curve is given an arb'itrary (but plausible) analytic

fonn to enable successive trial points'to be generated by vector
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addition rather than by repeatedly solving systems of l'inear

equati ons .

The necessity to solve a system of equations for each

value of ß can be dispensed with Ín Marquadt's method, too,

as was pointed out both by Jones (1970) and by Bard (1970).

However, the alternative is a complete eigensystem analysis

of H , in order to calculate a trial displacement p(k)

from

o

Murray (I972a) points out that about 20 different values of ß

would be necessary for the method to represent a time saving,

and Marquardt's method norma'lly yields an acceptable point much

sooner than this.

Marquardt's method both with and wjthout lìne search

may also be modified in another way. In most cases the value

of the objective function will be much more sensitive to some

components of the parameter vector than to others, and the

components of the gradient vector and elements of the Hessian

matri x wi I I accordi ngìy vary greatly i n nagnì tude . Acld'i ng the

sØne anount to each d'iagonal element of H coulid concejvably

"swamp" some of the "true" elements whilst making only nrinimal

changes to others. Some elements of the dÍspìacement vector

could then be poorìy deternlined by the resul Ling equatiotts.

Accordingly, it is often recommended either that the quantity

added to diagona'l element h' be not ß but ßlhjjl'or that

the problem first be re-scaled so that H has all diagonal

el ements of magni tude uni ty. The I atter course j nvol t'es di vi d'i ng

i¡rII
Lt=t

p(k)(ß) = - (À(k) + s)-r u
I

(k)

i
(k)u (3.35)
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the jth row and column of H bY lh l, simultaneous scaling

JJ

of both rows and columns being necessary to preserve symmetry.

Dividing the jth e]ement of g by the same quantity compensates

for the row scaling, and column scaling is compensated for

(eventua'lly) by dividing the ith element of p , as found, by

the same amount. Both of these approaches are equivalent in

the sense that the "search sp'iralr' is no'longer tangent to the

steepest descent d'irection aS ß -+ -, but to a vector whose ith

component -s - gjlh¡¡l-t. This essential difference in global

characteristics over the unmodified Marquardt method may or may

not be desirable, and in Chapter Five of th'is thesis the matter

is investigated numerically for certain problems.

A possible advantage to be gained from scaling is that

the numeri caì condi ti oni ng of the equati ons i s I i keìy to be

better because the elements vary less in magnítude. The eigen-

system analysis used in Greenstadt's method should also benefit

from scaling in that accuracy wiì'l be gained, although the sequence

of search directjons t^till again be changed by the process. This

matter also is investigated in Chapter Five.

3.4.9 The Method of Gi 1 I and Murray

A method originally proposed by tlurray (197?a) and later

exp'lained ìn more detail by Gìtl and Murray (797a\ takes the A

matrix of equation (3,6) to be equal to H+E , where E is

a diagonal matrix having non-negative elements, such that the

matrix A is positive definite. when H itself is positive

definite (and not near'ly s'ingular) then all elements of E are

zero. The method resembles that of Marquardt in that the di.a.gonaL

elements of H are perturbed but the method of achieving this

is quite clifferent and does not requìre "trial" values of a parameter.
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' As was mentioned in Section 3.4.7, a positive-definite

symmetric matrix H admits of a Cholesky decomposition (or

factori zati on )

where

D
,2

H LD

where L is a lower triangular matrix with unit diagona'l elements,

and D is a diagona'l matrix with positive diagonal elements.

Because the diagonal elements of D are positive, the factorization

could equally well be written

LT

, and

(3.36)

(3.37)

( 3. 38)

(3.se)

irL

L

H

L

Denoting the elements of L as lt, and those of H as ht,

equating eìements in the kth column of (3.37) we have

k

I
I , I ki' = hkk

and

Jr ki

Thus the elements of the matrix

at a time begjnning at k=1,from

h.,
JK

j = k+1, k+Z N.
k

I
i=1

t 1

L

k-r
I

i=I

may be found, one column

2 (3.40)

and

1 kk = (h kk- Iti 7-
'2



1 =(h
k-t-I
i=t

1 I
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)tt ,j=k+l, N ( 3.41)jk jk ji ki kk

which are rearrangements of (3.38) and (3.39). If H is rnt

posit'ive definite, the' parethesized quantity in (3.40) wilì,

for some k, become negative, and the process cannot proceed.

However, if this does not happen, the factorization is num-

ericalìy stabìe because the elements of L are bounded by

the diagonaì elements of H , as expressed by ('3.38).

In the method of Gill and Murray, d lower triangular
^matrix L is generated from H in a manner which is a modifi-

catÍon of the above Cholesky process. Deliberate steps are

taken at eaeh stage of the process to ensure progress and

numerical stability. The radicand in (3.a0) is repla.ced by its

absolute value if it is negative, and, further, the value of IOO

thus found is increased even more if necessary to ensure that

aLL the elements ljk (found from (3.41)) are bounded by a pre-

assigned pos'iti ve constant ß.

In their paper, Gill and Murray show that such "tampering"

^^^results jn a lower trianguìar matrix L such that L L T is

the true Cho'lesky factorizat'ion of a matrjx H + E, where E is

a d'iagonal matrix whose elements are bouncled. Further, they

derive an optimum value for the constant ß which mjnìmizes this

bound and at the same time ensures that the true Cholesky factors

of H are found (i.e. E is the zero matrix) whenever H is

sufficiently positive definite.

A search djrection p is then computed from the usual

fornrula (3.6), which becomes

L L ' P = -g
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Ðb

and the process is simply one of back-substitution (twice). A

line search is then performed, compìeting the iterat'ion.

Although they suggest that convergence to a saddle pojnt

is very unlikely, Gill and Murray also point out that thejr

process allows a direction of negatíoe cutttature to be identified

so that a function reduction may be achieved even in cases when

llgll = 0, and the formula (3.6) fajls. The derivation is given

in the origínaì paper. In pract'ice, all that is required is

that the index, k, which gives the smallest "radicand" in (3.40)

during the process be recorded. If H is indefinite, then p

found from

e

is a direction of negative curvature, where eO is the vector

with kth element un'ity and all the rest zero. In a practicaì

algorithmrth'is alternative formula would be used whenever H

were i ndefi ni te and llgll 4 E r for some preset threshol cl e.

The direction -p would then be used in p'lace of p ir gTp > 0.

Nlatthews and tlavies (1971) have proposed another method

based on the L U factori zatj on of H by Gauss i an el i m'i nati on '

where L is a unit lower trianguiar matrix and u an upper

triangular matrix. During this process some of the diagonal

elements u.,., wi'11 become negative if t{ is jndefinite; the

authors propose to force them positive and thus generate the

factori zati on of a rel ated posi t'i ve defi ni te nratri x. Later

authors (e.g.Murray, L972a) do not favour the method because it

ìs not nunlericai'ly stable 'in general .

Llp (3.42)
k
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3.4. 10 The Method of Fletcher and Freeman

Fletcher and Freeman (1977) have proposed a method which,

in the case that H is indefinite, generates a search direction p

which is not on'ly a descent direction but atso one of negative

curvature. In this, they follow a suggestion of Fiacco and

McCormick (1968). The rationale is that, if F( x ) is bounded

below, the negative curvature must eventually change to posit'ive

for some sufficiently 'large value of the steplength a. Fiacco

and McCormick argue that such a search is likely to lead, on the

next iteration, to a Hess'ian matrix with one fewer negative

eigenvaìue. The method of Fiacco and McCormick was based on

the Cholesky factorization, which for indefinite matrices can

be unstable or even impossible. This objection is removed in

the later work, which relies on a stable matrix factorization

due to Bunch and Parlett (1971). These authors show that a

factorization L D LT can be constructed jn a nunlericaì1y stable

manner, where L is unit lower triangular and D is bLock diagorw.L

having btocks wh'ich are 1 by 1 and/or 2 by 2 onìy. The factor-

ization is not of the origina'l symmetrìc indefinite matrix H but

of one which has been modified by symmetric rovu and column inter-

changes. When 2 by 2 blocks occur they are symmetric and can

be restricted to having negat'ive determinants, that ìs, one

eigenvalue of each s'ign. Fletcher (I976) describes another strategy

for generat'i ng a factori zat j on of thi s type wh'i ch mai ntai ns

stability but allows a somewhat greater "rate of growth" Of error,

to gain a substant'ial reduction'in computer tjme.

In the minimization method of Fletcher and Freeman Such a

factorization'is cornputed. If al j blocks of D are 1 by 1 and

pos'i ti ve , the Hessi an i s posi t'i ve def i ni te and the factori zatj on

'is used to generate an ordinary Newton search direction. If
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there are any 2 by 2 blocks, or negative 1 by 1 blocks, a

directÍon of negative curvature t is generated from

L

where the vector a has unit elements for those indices for

which D has negative 1 by 1 blocks and zero elements cor-

responding to positive L by 1 blocks. Where (i, i+t) corres-

pond to a 2 by 2 block of D, then [ai, ui*rlT is set equal

to the normalized eigenvector corresponding to the negative

eigenvaìue of the D block. After unravellìng the column

permutation,which occurred during factorization (that is'

making a compensat'ing permutation to the elements of t ), the

scalanproduct gTt is evaluated and tested, and the search

direction p set to t or -t as requìred to obtain a descent

di rectÍ on.

Fletcher and Freeman recomrnend not that such a direction

be used üheneuer H is indefinite, but that it should alternate

with the use of a Newton-l'ike step restricted to the subspace

of directions of positive curvature. This is because the

iterates could otherwise become restricted to a subspace and

so fail to converge to a minimum. A vector t within the

positive-curvature subspace is found from

where D.)F i s D wi th negat'i ve ei genval ues repl aced by zero.

The clescent direct'ion p is found by permuting the elements

of t to unravel the permutation which occurred during factor-

i zati on.

T ( 3. 43)at

D+Ltt=-gL ( 3.44)
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3.4.11 First-Derivative Methods

The foregoing sections have outlined most of the useful

grad'ient methods which employ second derivative (Hessian matrix)

information explicitly. They are, as a class, the most efficient

nonlinear minimization methods known because of the excellent

convergence properties of the basic underlyìng Newton-Raphsan

iteration. However, in many pract'ical cases, the task of

ana'lyti cal 1y twi ce di f ferenti at'i ng the obiect j üe f uncti on rvi th

respect to each pair of variables, and then generating computer

code, is very intricate, time-consuming and error prone, and

many methods have been developed which avoid the need. 0f couì se'

in cases su'ch as the d j g'ital fi I ter desi gn cons'idered in thi s

thesis the objection is large'ly removed because the differentiatiott

may be done (and careful'ly checked) once-and-for-all, hence, the

fairly complete survey of second-derivative nlethods in the precedìng

sections. However, it is conceivable that a first-derivative

method (which requires more iterations) could be more efficjent than

a second-der j vati ve method (whi ch requi res more work peri terati on ) .

First-derivative nrethods fall into three categories:

(a) those which generate some sort of approximation to the Hessian

matrix H or .its irrverse at each 'iteratiotl,

(b) those which employ several iterations (usually N) to sinrulate

the effect of one "Newton" 'iteration (coniugate gradient

methods), and

(c) those which use a matrix A which is updated at each iteration

and eventually becomes an approximation to the Hessjan

(or inverse Hessjan) i.e. the quasi-Newton or "modification"

methods.

The latter two types are cons'idered 'in SecL'ions 3"4.13 and

.t

,t

È

¡

¡

{
;

'¡

I
t.

i

I

i

Í

{,



60

3.4.14. 0f type (a) there are those which generate approximations

to second derivatives by differencing the first derivatives.

The ìdea is obvious - the art to choose a step'length which

nicely balances the cancellation and truncation errors. One

such algorithm is given by Gill and Murray (197a). There is

another important typ'e which falls 'into category (a) and appìies

when the objectjve funct'ion is a sum of squares of other functions.

This is now considered.

3.4.L2 Special Methods for Sums of Squares . or "Gauss-Newton " Methods

J

,{

rìþ'

I

I
,t

t
{

'f
t
t.

I

I

I

Suppose that the obiective function has the speciaì form

M

F(x) = ¡ fñ (x) (3.45)
m=I

m

m Ax.l

I
I'

1i

ru
T.'

This is applicable to problems of curve fitting, system ident'i-

fication and digitaì filter design, where we seek to minimize

the sum of squared differences between model-derived and ex-

perimentaì1y measured quantities, ol" "achieved" and "desired"

values. In such cases M could be greater than N. It is also

applicable to the problem of solving simultaneous nonlinear

equations, in wh'ich case M would be equa] to N and the individual

f, wou'ld be the express'ions required to be zero.

Di fferent'iati ng (3. 45 ) ,

af
*=ÏzrI m=r

'l
t 2N1 (3.46)

and
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i

tt'

à2F t-
J=

1,
l,

2 N ( 3.47)
âX AX

af
I

â*N

2 N
I
I
I
,t.

t
(

'l

I
I
I

!

ì

I

i j

which give expressions for the gradient g and Hessjan H to

be used as in Newton's method. The spec'iaì methods are based

on ignoring the second sum 'in the expression for the elements

of the Hessìan, jn the hope that it will be smal'l compared with

the first. This is equivalent to approximating each of the

component functions f*( x) by the first-order terms in 'its
(k)

Tay'lor seri es expans i on about x The method 'is especial ly

successful in the values of the "residuals" f* are zero at

the solution (as when solving non-'linear equations) because

then the second sum does tend to zero, and Newton-l j ke con-

vergence is ultimateìy obtained.

The matrix whose elements are given by the first sum in

equation (3.47) rnay be wrÍtten as Z JT J , where J is the fvl

by N Jacobian matrix, g'iven by

,1

å'¡

ft

J

af
l

AX
t

ðf
l

AX
2

âf
2

AX
2

(3.48)âf
J

âx
I

âf
M

AX
I

af
__ß_
ã*N

The matrix 2 .l T ¿ will also be denoted as R

cons i de r"i ng th e q ua dra ti c fo rm
ri
I.

Now
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J )v
)(.¡ v)

,t

F
Q= rT( J 

T

=( yTJT I

= (Jy)T(Jy)
I

I

ü
rì

i

I
I

I

I

I

t ¡v)ñ

which is obviously greater than or equal to zero, it is seen

that R is at least positive semidefinite. It must be posjtive

definite unless ( Jy )m = 0 for all m with some non-zero vector

y ; that is unless the N columns of J are linearly dependent.

Hence, unless J fails to have full rank (N), the matrix R js

positive definite, and a descent direction may in principìe always

be generated by choosing the matrix A of equation (3.6) to be

equaì to R . However, it does not jnfrequent'ly happen that R

becomes indefinite due to roundoff error, and practicaì algorithms

must take this into account.

The classical, or undamped, "Gauss-Newton" iteration uses

(3.S) and (3.6) with A=R and cr = 1. It is not guaranteed to

converge because the approximations involved are not necessarily

valid for large step sizes, and the "damped Gauss-Newton" a'lgorithm,

employìng a line search to guarantee a function reduction, is

much more rel iabl e.

If the matrix R is not positive defjnite, however, due

to roundoff eror when J is close to being rank-deficient, even

this may fail. Accordingly, the sta.ndard method for least-

squares probìems has come to be that of Marquardt (1963), already

discussed at length jn Section 3.4.8. The difference between

the present nrethod and the one of that section is that a positjve

I

M

I
m=
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va]ue ß is now added to the diagonal elements of R rather than

to those of the true Hessian H ß is increased to whatever

value necessary to make the iteration matrix positive definite

and produce a function reduction for cr = 1. The process must

succeed for I arge enough ß, because the step tends to a very

small one in the steepest descent direction. The value used

for ß may useful'ly be passed to the next iteration as a first
trial va'lue, as described in Section 3.4.8.

There will be an "opt'imum" value of ß for each iteration

in the sense that the greatest reduction in the function value

will be achieved. Davies and hlhitting (7977) have tried a

version of Marquardt's algorithm which seeks to use this vaìue,

but conclude that the "damping" jntroduced is usualìy too

large, and more iterations are required than if the first value

of ß to decrease the function is simply accepted.

The algorithm of Jones (1970) represents another means of

interpolating between the Gauss-Newton and steepest descent

di rections.

Bard (1970) has conducted numerical experiments which

indicate that special methods for sums-of-squares perform better

than rcprcscntat'ivcs of thc quasi-Newton class, which ignorc

this special form of the objective function. Nevertheless,

except when the residuals are zero at the solution or the component

functions are iinear, there is no theoretical reason why they

should converge at a rapid rate. Theoretical work by Meyer (19i0)

and McKeown (1975) suggests that the ultimate convergence rate of

Gauss-Newton and Marquardt*type algorithrns is crÌt'ically dependent

on the ratio r/u, where u is the smallest eigenvaìue of R and

i
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r the (absolutely) largest eigenvalue of the matrix S whose

elements are given by the second sum in (3.47 ), i.e.

ìJ 2l
m=I

(3. 4e )

M

s

Specifically, if xtF denotes the minimi ìng parameter vector,

it is shown that for an mdatnped Gauss-Newton algorìthm

lim il x (k)
{ r/u (3.50)

k* ll "(k-t 
)- x's il

If t < < !,,convergence should be excellent, but if r > p

the undamped aì gori thm can di verge. McKeown goes on to report

cotnputational experience with functions specìfically designed to lead to

high t/u values, and shows that the specialized least-squares

algorithms become increasing'ly inferior to alternative methods

as this parameter increases.

Even so, the idea of obtaining partia'l Hessian'information

( R ) without expììcitly calculating second derivatives is

attractive, and several workers have proposed schemes for

approximat'ing the other ( S ) part of the !-l matrix to improve

convergence in the "large-residual" problems. These schemes

have involved updating an approximation to the S matrix from

iteration to iterat'ion, in the manner of quasî-Newton methods.

The work of Dennis (tgZS), Biggs (1977) and Betts (1976) is

ci ted.

Davidon (L976) has suggested an interest'ing idea rel at'ing

not to the ultimate convergence of a least-squares algorithm

ì3
x



65

but to its performance in the early iterations, far from the

optimum. The po'int is that not all of the M component functions

need to be evaluated in order to determine a useful descent

direction, especialìy'if M >> N, and much computer time is

wasted in calculating information about the functions far from

the optimum, most of whjch is discarded short'ly afterwards.

In his aìgorithm, only one component function is evaluated per

jteration although all are used'in a complete cycle of M iterat'ions.

The 'latest informatìon is given most weight in determining the

search direction to be followed. The iterates ultimately fluctuate

around the optimum rather than converging to it; however, if
true convergence is required there is no reason why a switch

cannot be made to a "fulj-evaluation" aìgorithm.

In the remainder of this thesis, the term "Gauss-Newton

method" and the abbrevjation "GN" will be used to refer to any

method (inc'luding Marquardt's) which is based on the R matrix.

3.4.13 Conjuqate Gradient Alqorithms

The matter of eonjugacA of vectors was treated 'in Section

3.3.2 where it was nrerrtjoned that for a quadratic function the

minimum will be found ìn just N line searches in mutual'ly H -

conjugate directions. When first derivatives are avajlable it
is much simp'ler to generate conjugate dìrections than when they

are not. To show this, we define symbols for the changes to

parameter and gradient vectors u¡hich occur on the jth iteratìon,

viz.

s (i) = ¡ (j+r) _ x (i) = *(i) B
h) (3.51)
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and

y (i) = n(j*t) _ s(i)

For a quadratic objective function, defined as in equation

(3.18), i.e.

TF(x)=b+r"(X-r) H(x-r)

we have by differentiation

g = H( x - r )

for any X , so that

¡-l u(i) = o(i)H e(i)

(3.52)

(3.18)

(3.53)

y (i) (3.54)

for any step o(i) a'l ong dna vector p (i). we now assume that

we want on the kth iteration to use a search vector p 
(k)

which is þl - conjugate to a'll of the preceding search vectors

p (i) , i=1,2 k-1, (where k is less than or equal to N).

That I s, we want

p(i )H
T)(

p k

Substitut'ing for l{ p

beconres

= Q j=\, 2.... k-1

from (3.54), the conjugacy conditíon
(i )

(3.55)

(k)r ( v(i) )=0 j=7,2 k-lp (3.56)
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(i)
Ol" Slnce cr i s a scal ar, simply

(k) T
y(i) = Q j=I,Z k-lp

Hence, when dealing with a quadratic function a new direction

p(k) in which to search can be generated merely by ensurìng

that it is orthogonal to the gradient-difference ( V ) vectors

resulting from the previous k-1 searches.

The conjugate gradìent method of Fletcher and Reeves

(1964) uses that component of the current negative gradient

- g (k) *f,ich satísfies the above condition, thus combining the

ideas of ståepest descent and coniugacy. Forma'|1y,

a (k)
g

(k)p (k)

(r.sz1

( 3.58)

( 3.5e )

where o (k)

annihilates

is the symmetric orthogonal projection matrix which

,(t), y(2) r(k-t) for k -< N. Equivaìentìy,

o (k) g
(k)

so that the conjugate gradient method satisfies the formal

defìnition (3.6) of a "gradient method". However (:.Sg) is

not used 'in practice for computing p (k), rather (as is shourn

for instance by Fletcher (L972)) it may be determined simpìy

as the sum of two vectors:

p (k) = _ g (k) -r- ß
(k) p ( k- r )

kp

where Ê
(k) is gìven by either of the formulae

( 3.60 )



ß(k)

ß(k)

(k-r ) (k) (t<-r 1
(k-r )

T
g /v

68

T
p

Tk-1 ) (k-r )g

v (3.61)

(3.62)

or

tg((k)
gs (k)T

o(t) is taken simp'ly as the steepest descent direction - g (t).

The formulae (3.60) to (3.62) ma.v be used repeatedly, generating

more than N directions, so that the method may be used for genenal

(non-quadratic) functions. However, it usua'lly seems preferable

to reset p to the steepest descent direct'ion after N iterations.

(F'letcher, iglZ). This explains the remark in Section (3.4.11)

that the conjugate-gradient methods use N iterations (which would

minimize a quadrat'ic funct'ion) to sinrulate the effect of one

Newton iteration( which would do l'ikewise). Because each p (k)

depends on the preceding o 
(k-t), individual iterations are

dependent on ínformation other than that which can be derived

at the present po'int *(k), a feature shared with the quasi-

Newton methods to be discussed in the next section, and whìch

p'laces them apart from the gradient methods so far discussed.

l^Jhile not usually considered as effective as quasi-

Newton methods, the conjugate-gradient algorithm possesses

what may be a useful advantage if N is very large - there is no

necess'ity to store any matrices.

3.4.74 Quasi-Newton Methods

In the class of methods known as "quasi-Newton" or

"mocli tication" lrethods the nlatrix A of (3.0) is initially set
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to some arbitrary posit'ive defin'ite matrix (usualìy the unit

matrix) and updnted from iteration to iteration in such a

way that it tends towards the Hessian matrix H as the solutÌon

is approached. 0nly function value and first-derivatjve

information is used in determin'ing the update. Positive definite-

ness of the A matrix is maintained during the procedure, so

that a descent dìrection is produced at each step.

The plausibiìity of such a procedure is aga'in demonstrated

by appealing to the properties of quadrat'ic (constant Hessìan)

functions. From equation (3.54)

y(k) = ¡ u(k)

(k)where y and are the gradient and parameter vector

differences for some arbitrary step in parameter space (equations

(3.51), (3.52). ) Since A ìs supposed to be an approximat'ion

to H we would like to force A to have the property expressed

by (3.63), i.e.

y (k) = 4(r) s (k)

s(k)

(3.63)

(3. 64 )

but since s(k) and y(k) u.. not knou¡n until aftez, the kth

step this is not possible. However, the neæt approxinlation

can be forced to have such a property, i.e.

y(k) = ¡(t+t) s(k)

an equation known as the "quasi-Nervton conditjon"

(3.65)
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Since A 
(k) is already some sort of approximation to

H , we don't want ¡ (t+t) to ¿iffer too drastically, and

so !{e compute 4 (t+t) f.ot an update formula

o(k+r) - A(k) +c(k) (3.66)

where c(k) is restricted to being a mat.ix of low rank

(usualìy 1 or 2) and further restricted so thai o(t<+t)

satisfies the Quasi-Newton condition. There is still some

freedom in the way in which the update matrix C(k) is chosen,

and herein lie the differences between a vlhole host of quasì-

Xllewton a't go ri thms.

An obvious disadvantage inherent 'in updating the matrix

A as discussed is that it is necessary to solve a set of

linear equat'ions (3.6) at each step in order to determine B.

In practÍce, therefore, the jnformation stored and updated

at each iteration is either an approximation to the ínuev'se

Hessian H-1 or (as long as symmetric updates only are used)

to the cholesky factor L(k) such that L(k) L(k)T = A(k)'
Appropriate updating formulae analogous to (3.66) may be

derived in eithcr case. If the i,nuarsa is recurred (as 'is

tradit'ional) a matrix-vector multiplication only is requ'ired

to determine p and the updating formuìae are simpler than

those for the factors, but Gill and Murray (1978) believe that

the alternatjve course (requ'iring two stages of back-substitution

to determine p ) 'is preferable because the maintenance of

positive-definiteness can be guaranteed in the update. It is

possible for roundoff error to cause the approximation to the



inverse to become indefinite, in which case the only remedy

would be to reset A to the identity matrix, wasting usefu'l

i n formati on .

l,le come now to a brief survey of particular update

formulae. 0f those for which C(k) js of rank 1,

Broyden (1965), Barnes (1965) and Pearson (1969) have considered

non-symmetrìc updates. If instead C 
(k) is restricted to

being symmetric, there is only one possible formu'la, whose use

has been investigated by Davìdon (1968), Murtagh and Sargent

(1970a) and Bard (1970).

hle now introduce a new symbol T 
(k) for the kth approxìma-

tion to lhe ,ínuev,sø Hessi an ' that i s

(k) (L)-r
A

and the formula used in lieu of (3.6) to compute the search

vector p (k) is

7T

p(k) = - r(k) s(k)

The "symmetric rank one" (SRl) update formula ìs, in terms of

the inverse approximation,

T (3.67)

(k+t ¡ - (k) v(k) v (k)T

(3.68 )

(3.6e)T T
k

vv 
(k)T )

) k )s

where

v k r (k)
v

(k)
( 3. 70)
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This scheme possesses the highìy des'irable property of finjte

termination for quadratic functions without exact line searches

(Broyden, 1967) but unfortunateiy the unmodified formula is unstable

since there is no guarantee that successive A or T matrices

remain positive definite. Davidon (1968), Murtagh and Sargent

(tgZOa), and Bard (1gZO) all propose different strategies for

getting around this problem, with the result that the algorithm

remaim competitjve.

Murtagh and Sargent show that T (f+t¡ is unlike'ly to

become i ndef i n'i te i f

T
v (k) (k)

<0 (3. 71 )
g

(k)
v v

and accordingly evaluate the expression on the left-hand-sjde

of (3.71) and require it to be less than some suitabìe small

negative quant'itY ôrrsay - 10-8. If the test fails, T is

updated not by the ordinary formuìa but by

T
k(

v (k) v (k)T

T
(k+t ¡ = T T

v (t) v (k)

Murtagh and Sargent use this fornlula also in cases when

v (k) Ty 
is too close to zero to enable (3.69) to be used

in a stable manner. They require that

(s.tz)

(3.73)v
(k) l2o

2

where ô, is agaìn a sujtable small quantity, say 10-8: Even

when such tests are ìncorporated it can happen that O 
(k+t)

fails to be a descent direction, and a prac'bical computer

I v(t)r v (k)T v (k)
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program must include such a test. The standard procedure in

the case of failure is to reset T to the identity matrix.

Many useful updates of v,ank 2 belong to the "single-

parameter family" defined by

, (t<+r) _ T 
(k) s(k) s(k)T r (k) y (k) y (k)T r (k)

+
T T

k (k)
v

(k) (k) k
v T

(k) (k) (k) T
*p v v

where now

(k)
s 

(k) y (k)T r (k) y (k)
T v

k

ana o(k) is arbitrary. If o(o) > 0 such a]gorìthms are

theoretjcally stable if exact line searches are carried out,

since Broyden (1970) has proved that if T(k) is posìtive

defínite then so is 1(t+t) ,nd.. such conditìons. The case

p(k) = 0 Sives the most famous of all grad'ient methods, the

DFP formula, of Davidon (1959) and Fletcher and Powell (1963).

This method has achieved much success, but a later update

known as the BFGS formula (after the initíals,of its four in-

dependent discoverers, Broyden (1970), Fletcher (1970),

Goldfar"b (1970) and Shanno (1970)) now seems preferable. This

ís because the line search can usual'ly be carried out with

fewer function eva'luations (Gill and Murray, 1978). For

nres, o(k) ìs given by

L

)(
vs )

v (k) k )

(3.74)

(3.75)

vs(k)T )

v 
(k)T y (k)

e(k)
v

(k)
(3.76)
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Useful surveys of quasì-Newton methods are given by

Broyden (1967), Broyden (tglZ) and Gill and Murray (1978) .

The last-named authors survey some more recent work, incìuding

the use of an "optimal'ly-conditioned" update (the use of a

value of p(k) in (3.74) which minimizes a bound on the

condition number of 1 
(t<+r) ) un¿ a method of Dav'idon (19i5)

which requires no line searches. They conclude that numerical

evidence is not cc¡nclusive in favour of these iechniques

and continue to prefer BFGS on the grounds of simpf icity.

3.5 Line Search Techniques

Most of the grad'ient methods (and the conjugate-direction

method of Section 3.3.2) requ'ire some form of search along a

line in parameter space. Thjs is expressed by equation (3.5)

a search direction p(k) has somehow been determined and a

value or o(k) is required.

All methods requ'ire o(k) to be found'in such a way that

F( * (k+r)) 
.. ,( x 

(k)¡ *rrich ensures that for "reasonable"

functions the sequence of iterates will converge to a local

mjnimum. This w'ill be referred to as the "stabi'lity require-

ment". As was shown 'in Section 3.4.2, some sufficìentìy small

posìt'ive value of a vrilì always suffice if the matrix l1 used

jn (3.6) is pos'itive definite. Thus the simpìest form of ljne

search technique would consist s'imp1y of trying a like'ly value

for a and repeatedly decreas'ing th'is by a constant factor until

a function reduction was achieved. In the case of Newton methods

(when H is positive definite) and quasì-Newton methods, the

theoretical lrest va]ue (derived by considering a quadratìc functìon)

is o, = 1.0, and this is often the value first tried.
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In theory many nrethods (e.g. the DFP method) requ'ire

"exact" line searches (tnat is, minjmization of the function

along the line), to achieve their performance, and even in

other cases it seems intu'itiveìy desirable that the function

value be reduced as much as possible. Accordjngly, practical

algorithnrs often include Iine minirnizat'ion subroutines of

varyíng sophistication. The evaluation of these procedures

must rely largeìy on experiment because even for methods

theoretically requiríng exact searches much success has been

had with much cruder (and therefore less time-consuming)searches"

Thi s matteri s taken up for representati ve d'i g'ita'l fi I ter

design applìcations in Chapter Five.

Although a large number of approaches to the prob'lem of

localìzing the minimum of a functjon of one variable (o) have

been tried'in this context, there are really onìy two basic

methods. The first is capabìe of refining known bounds on the

min'imum by comparing function val ues on'ly. The disposition of

trial function evaluations to achieve this with least labour

g'ive rise to the "Fibonacci" and "golden-ratio " techniques

(Gottfried a"nd Weisman , 1,973). In the second method, a s'irnple

function w'ith a minimum (such as a quadratic or a cubic) is

fjtted through known o - F po'ints. Such a fÍt may also utiljze

evaluations of the gradient made a'long the line. This method

is usualìy more effective, and can even l¡e used in an extra-

polation sense (i.e.before a "bracket" on the minimum is known).

Safeguards nrust be incorporated to ensure that extrapolat'ions too

far outside a reasonable neighbourhood of known po'ints are not

made " Such an a'l gori thm i s descri bed by G'i1 
'l and Murray ( 1978) .

Some specific ljne search techniques are described and

computational experience is reporteo, ìn Chapter Fjve.



76
3.6 Published Conrparisons of Unconstra ined Minimization Techniques

Extensive comparisons of the performance of minimizati:on

techniques are rare in the literature. Most of the original

papers proposing a new technique compare Ít with at least one

other method, but the test functíons used are rather restricted

and usually of low dimensiona'lity. There is the added complication

that (especjally if results from another's work are quoted) the

test conditions may not be uniform, part'icu'lar1y w'ith regard

to convergence criteria. Such tests invariably tend to show

the "new" method in a good 'light.

To make matters worse, the crìter"ia for comparÌng comp-

utational effort are by no means easy to define. Comparisons

of actual CP time are useless when different computers are used,

and execution tirne in any case will depend on the "cleverness"

of the programmer. "Comp'li catedrr subrout'ines wri tten for

investigative purposes in particular may suffer from poor

coding. Some authors quote "nunlber of function evaluations"

whilst others use "equivalent function evaluations" where a

grad'ient evaluation is often assumed to be equivaìent to N

evaluations of the functjon. In many problems this will not be

even approximately true. Such measures of performance ignore

all computational overheads peculiar to the methods themselves,

for example, a Greenstadt method requiring an eigensystem

ana'lysi s at each i teratì on may be qui te i nef fi ci ent a'l though i t

appears good with regard to function evaluations.

Some methods (partjcularly Newton me't,hods) may benefit

from a fortujtous choice of starting point, and most comparative

surveys have not attempted to average the performance o'F the

a'l gori thnrs over a vari ety of s tarti ng poi nts .
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Hopeful'ly, some of the above objections are answered

for a restricted class of obiective functions, the digital

filter problems, by the analysis of Chapter Five- The re-

mainder of this section is devoted to a brief look at some

comparative surveys appearing in the mathematical literature.

Box (1966) looked at eight methods as app'lied to five

"sum-of-squares" problems of 2, 3, 5, 10 and 20 dimensions.

Two of the methods are specialized sums-of-squares methods

(Powell (1965), requiring no gradient evaluations, and

Barnes (1965)). 0f the remainder, four do not requ'ire der-

ivatives (Powell's 1964) conjugate direction method and three

direct-searöh methods), one is a conjugate gradient method

(Fletcher and Reeves, 1964) and one a quasi-Newton method

(Fletcher and Powell, 1963). The criterion used for comparison

was "equivalent function evaluations" with a gradient deter-

mination counting as N functjon evaluations. Several starting

points were used in each case.

Box concluded that the sums-of-squares methods are pre-

ferabìe for this type of problem, but in all cases the residuals

at the solution were zero so that the considerations of

McKeown (1965), as discussed in Section 3.4.I?, do not apply.

0f the "general" methods the Fletcher-Powell method was superior

but Powell's derivative free (1964) nlethod very competitive.

The conjugate-gradient technique was somewhat poorer but better

than most direct-search techniques. The Nelder-Mead (1965)

aìgo¡ithm was the best of the direct-search methods tested,

be'ing somewhat better than conjugate gradients for probletns of

low dirnensjonality, but its performance in 20-djmensions was

qu'i te poor.
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Bard (1970) again treated sums-of-squares (parameter

estimation) problems, employing methods which use anaìytic

first derivatives only. The test problems were more searching

than those of Box, some algorithms failing to produce acceptable

ansv,¡eres in some cases. Dimensionality N uras 3 to 10. Only

one starting point was used for each problem.

Algorithms tested were the damped Gauss-Newton and true

Marquardt (which are specifically for sums-of-squares),

the Davidon-Fletcher-Powell (Ofn¡ method, and the symmetric

rank-one (SR1) quasi-Newton method with a) the Hessian approx-

imation carried and b) the inverse Hessian approximation carried.

Several schémes for line search, finding the minimum to various

degrees of accuracy, uJere carefully defined and tested.

Algonithms were ranked first'ly in terms of robustness

(smallest number of failures) and secondarily ìn terms of number

of "equivalent function evaluations". The conclusion was that

the sums-of-squares methods are significantly superior for this

type of problem. In the case of the damped Gauss-Newton method,

excessive effort to locate the minimum was uniustified but it

was beneficial to try an additional value of o. rather than

just accept, the first which met the stabi'lity criterion.

The SR1 algorithm was significant'ly better than DFP, and

Bard attributed this to the former's not requiring accurate

line searches to achieve quadratic termination. For both algorithms

a "moderate" effort in determ'in'ing a step 'length was worthwhile

(more effort for DFP).

Bard's versions of the sRl algorithm are rather unusual.

In one case he replaces the eigenvaìues of the approximate Hessjall
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with their absolute values to ensure a descent direction

folìowing Greenstadt (7967), which coujd be a very time-

consunring procedure. In another version he simply reverses

the search direction if necessary, making no effort to retain

positive-definiteness of the matrix. Howeyer, Murtagh and

Sargent (1970b) a'lso compared various (more orthodox) versions

of SR1 with DFP and again found it usualìy superior.

Himmelblau (Ig72) attempted a "un'iform" evaluation of a

number of methods on problems of up to five dimensions only.

The uniformity is in the sense that convergence criteria (in

terms of relative changes to parameters, function value and

gradient noÉm) are the same in each case, and comparison is

in terms of computer time (on the same machine) so that matrix

algebra and other overheads are included as well as function

evaluation time. HÍmmelblau's preference is for the algorithrn

of Fletcher (1970) which switches between the DFP and BFGS

updates depending on the result of a simp'le test, and wh'ich does

not require line searches, but he did not test BFGS alone. Tbe

DFP and Broyden (1965) non-symmetric rank one algorithms were

ranked "very good" but the accurate line searches used made

then considerably slower than Fletcher's method. Powell's

(1964) algorithm was the best of those not employ'ing derivatives,

ranking considerably h'igher than Stewart's (1967) and direct-

search technìques.

Sargent and Sebastian (I972) studied the performance of

some gradient algorithms for "classic" test problenrs of up

to four variables" They found that the pertormance of the DFP

algorithm uniforrnìy improves as the accuracy requirement on'Lhe

linear search is relaæed, at least down to e = 0.1. However,
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replacement by a mere stabiìity test led to faiLuz,e on three

out of the five problems. Both BFGS and SR1 performed well

with a süability test, and better in this mode than vlhen line

minimization was attempted. However, both outperformed DFP

even in minimization mode. 0n their evidence, the BFGS update

is margina'lly better than SRl.

The Fletcher-Reeves (1964) algorithm was also tested by

Sargent and Sebastian, who found it inferior to DFP, supposedìy

due to greater accuracy requirements in the line search (e = 0.01

seemed optimum) and to loss of information in the periodjc re-

s tarts .

The general conclusions to be drawn fronl the literature

seem to be that:

a. Special'ised sums-of-squares methods should be used if
app'licable (but McKeown (fg6S) shows that functions can

be consbructecj f,or wh'ich this conclusion does not hold.)

b. Gradi ent-based nlethods are generaì 'ly 
s uperi or to d'i rect-

search methods. The Powell (1964) and Stewart (1967)

a'lgorithms which s'inrulate gradient methods are the best of

those not requìring anaiytic derivatives, but they are not

as good as those that do use t.hem.

c. 0f methods using'f,irst derivatives, QUôSi-Newton algorithms

are superíor to conjugate - gradients, and those for which

a stability test. can safely replace line nlinimization are

the best of the quasi-Newton class.

However, tests have been on restricted classes o'fl probìems,

mainly of low dimensìona1ìty, and the above conclusion may not

be general. As for second-derivatjve methods, r,,¡lr jch appear to

otfer signifjcant theoretical benefi'bs, the present author

l<nows of no cornprehensìve numerical cornparisons either wjth each

other or rel atjrre to the other cl asses of al gori thm.
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CHAPTER FOUR

4 APPL I CATI ON OF OPTIMIZATION METHODS TO DIGITAL FILTER DESIGN
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4.1 Introduction

The aim of t.his chapter is twofold. Firstly there is a

survey of the d'ig'ita1 signal processing ìiterature to identify

areas in which mathematical opt'imization methods have been used.

An attempt is made to achieve some phÍlosophìca1 unificatjon of

this field by grouping published works according to general

features of their mathetnatical formulation.

Much of the work reviewed is not dealt with in deta'il

beyond that necessary to pìace it in the above context. How-

ever, other material provides the framework w'ithin which various

mathematical optimization methods are to be compared (in chapter

five). And so the second obiective of th'is chapter is the

development, in some detail, of the mathematics involved jn

these app'l ì cations. Some ori gi nal i ty i s cl aimed for thi s

development. Although the mathematics involved is no more than

analytjc differentiation and elenlentary algebra, it is bel ieved

that the generaLi.ty of the derivation is new. In contrasl;'

most published work has fixed attention on ã, paz'ticuLar type

of filter desìgn problem before embarking upon the mathernatjcaj

devel opment.

A'lthough some generality is claimed for the mathematical

development, it 'is al so necessary to atternpt to iusti'ty the

y,estricti.Deness of the types of problem chosen for detailed

development here and 'for compu'Ler study 'in chapter five. In

I
tiì

Ë
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particular, attention is given mainly to sum-of-squares (SS)

objective functions and to digita] filters which are real'ized

as a cascade of second-order sections. 0f course, some

restriction of scope has been necessary becauie of the limited

time available for the study and because this thesis would

otherwise be too unwieldy. And both SS functions and cascade

filters have been much treated in the literature which may

in itself be enough to iustjfy further study. However, I

believe that there are some more part'icular iustjfications

for the continued use of cascade filters and SS obiective

functions. More details are given later, in particular in

sectíons 4.,3.3 and 4 .4.2.

An appreciation of the remainder of this thesis

requires some familìarity with the fundamentals of digital

filtering. Such material is presented in several textbooks,

for example,in Bogner and Constantinides (1975), and'it js

hard'ly useful to repeat it here. However, section 4.3 deals

with elementary material, for the sake of introducing notatìon

and terminology, to iustìfy the emphasis of following sections,

and, hopefully, to add to the clarity of the exposjtjon.

The matter of diserete optimization of digital filter
coefficients (determ'ination of the best, or at least of "good",

coefficients of a g'iven wordlength) is of interest in this

thesis and a sizeable amount of literature has addressed this

prob'lem. However, a survey of this area js deferred to chapter

six - in the present chapter and the next we are concerned

with deternrining "jdeal" values of coefficients as though

they were not subject to quantization.
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4.2 Area of app'l i cabi I i ty of optimi zati on l4ethods

As mentioned in chapter 2, the technique of mathematical

optimization is extreme'ly general and can in princip'le be

applied to the parameter - determínatìon phase of almost any

des'ign or system modelling problem. The distínction between

"design" and "modelling" is unimportant - the mathematical

formu'lation is similar regardless of whether we want a machine

to do something (perhaps at minimum cost) or iust require a

mathematical model (however artificial) which provides a

concise descriptíon of an observed process.

As used in this thesis (and in most hitherto published

works), optimization is useful only in determjn'ing the most

appropriate uaLues of the paz,øneters of a design or of a mode'l ,

once the forrn of that model has been decided upon. The matter

of arriving at such a fown, which will achieve the machine

design objectives on the one hand, or enable a "sufficiently

accurate" correspondence between the model and the measured

process on the other, is still 'large'ly an art. Very ìittle
progress has apparently been made in automating thìs phase

of the process. However, in the matter of electrical network

design, Director and Rohrer (tg0ga) have extended the concept

of parameter optimizatjon in an interestjng way. The partial

derivatives of the performance criterion (objective functìon)

are calculated with respect to certajn non-eæistent circujt

elements. If such figures seem to indicate that signìficant

benefits would accrue, the network 'is alIowed to "grow" a

new element.
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It woulcl seem that a sjmilar approach could be taken

in dig.ital f il ter design. However, the ma'in business of

this thes'is is the comparison of optjmization techniques

themsejves,andsuchcomparisonisreadilydonewithin

the framework of the more prosaìc "convent'ional" uses of

parameter opt.imization. It is perhaps more correct to speak

of ,,system identìfication" rather than "des'ign" or "modelling"'

The princjpa1 requ'irement for the use of an optimiza-

tion technique is that we can compute, for any given values

ofthevariableparameters,thevalueofsomeobjective

function that is a suitable measure of the desìrab'if ity of

the design,or the closeness of fit of the model'

Manycontmonsigna.lprocessingtasksfitnatural.ly

into th.is mould; for example inverse filtering (or linear

prediction) requires the minimization of the energy in an

error si gnal . llowever, the general mathemat'ical opt'imi za-

tion techniques are iterative jn nature (and each iteration

usually requ'ires much computation), and so their use has

not been much advocated for processing sìgna'ls such as speech

in real time. This situatjon may change, however, as small

cl.ig.ital processors wi th more speed and/or more paral I el'ism

become avaìlable. The great generality of the opt-'imjzation

techniques could allow the use of dynamic models whose para-

meters could not be estimated any other way'

Todate'mostuseofopt,imìzatìonfors.igna.|pro-

cess.ing has been in the cles'ign of digital filters. If a

filter is not requ'ired to ada.pt to changes ìn the character-

is.bjcs of the sìgnal with tirne, it may be desjgned once-and-

¡--

I
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for-a]1, with the help of a general-purpose digital computer.

In this case the computation time'is not of centraf importance,

and not surp¡isìng]y most researchers have simply made use of

the standard pre-programmed vers'ions of optimization sub-

routines available at most scientific computer sites. But

aga'in, if the fjlter is required to be adaptìve, the time

efficiency of the rnethod used to evaluate its parameters

becomes 'important. Th j s prov'ides the mai n moLi vat jon for

the present compa¡ison of optimìzatìon methods 'in the signa'l

processing context.

4.3. Diq'ital Filters

4.3.1 General,

The type of "digital filter" to be considered is the

usual linear discrete-time system 'in which an output sequence

of numbers'úi, i = 0,7,2,... is produced element-by-element,

by l'inearly comb'ining past output values and past and present

values of an input sequence uj, i = 0,I,2.... In symbols

V + omui 
-m

ßnuj -n )

= c[lJ ++ o, ui -t1

(orv.i-r

o

-' 3 r'i '.,t 
* + (4.1)

(+.2¡

and the o,'s and ß'S are real numbers. 'l"he z-tz'ansfonn of

the causal real-valued sequence ui is defined as a functìon

of a complex variable z, viz.

U(z) = u tUZ-I+U z-2+
T2o

hlith a corresponding definition for the z-transform of the
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output sequence V(z) it fol lows from (+.1) ttrat

a *az'l+ -m+ zomv(z)
ûfzT -n = H(21 (+.1)

(4.4)

1 + ß z-r + ... +
I

Ên z

The digita'l fìlter is completely characterized by this ex-

press'ion for its tvØtsfer frmction H(z), and it may be

reaLízed by the oonfiguratìon of figure 4.1' which directly

imp'lements equat'ion (4.1). As in equation (q.Z) the openaton

z-1 has the meaning of "unit de1ay".

4.3.2 Finite Impulse Response Filters

There 'is an important specia'l form of I'inear digital

filter in whjch there is no feedback of past outputs. The

difference equatìon (q.t) reduces to the convolution sum

V i * orri-, * ... * o*ui-*

and an obvious 'implementation is the tz,qnsuersaL filter of

figure 4.2. The impu'lse response is of fin'ite duration (m + 1)

and is given simply by the coefficiettts themselves.

Simple fon¡s of such fjnite-impulse-response (FIR)

filters have been in use sjnce'long before the advent of

digita'l computers, an example being the "moving-average"

smoothing of time series data, where m could be, Säy, 4 and

d- = o = cf, = cr = cf, = r,/. In the frequency domain this isol.z345
a crude low-pass filter. Since the 'impulse response of such

a d'igìtal filter js related to a set ot (* ä 
t) co'nplex-

valued samples in the frequency domai.n via the Discrete

o
uct i
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Fourier Transform (DFT), it follows that arbitrariìy complìcated

frequency domain objectives may be met by such a fìlter provided

that m is made ìarge enough. (In fact if m is large the con-

vo'lution (4.4) is usually ímpLemented by using the DFT; the

amount of computation is thereby reduced but the fiìtering

action 'is exactly equivalent to (a.a) ).

The simpìe specification of a set of frequency samp'les

and use of the inverse DFT to gêt oo, ol cr* is not the

whole story in the design of FIR filters, because the frequency

response may not be acceptable bek¡een the sampìes. There

are several methods for Ímproving the design' some ìnvolving

optìmization techniques, and these are mentioned in section

4.5. The straightfonvard use of general nonlinear optìmization

methods (in which every filter coefficient 'is a variabìe para-

meter) is inappropriate for FIR filters because m'is usual'ly

too large (typically several hundred) and because alternative

methods are more efficjent. Accord'ing'ly, the remajnder of

sect'ion 4.3 relates to useful filters for which the number of

coefficjents is snlaller and alternative design procedures

'less satisfactory, that is the recursíve or infinite impuìse

response (lIR) filters.

4.3.3 Infinite Impul se Response Fi I ters

IIR dig'itaì filters are often preferred over FIR filters,

princìpa'l'ly because they are more efficient for many appì'íca-

tions (in terms of number of arithmetic operations per output

samp'le). They rnay be espec'ia1ly efficient as models of real

phys'ica1 phenomena, such as speech, which are usually con-

sidered as the forced response of sorne system possessing ìts
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own resonances (poles). A'lthough an FIR filter can approximate

any impulse response the requirred length may be excessive, and

an IIR filter model (possessing poìes) is likely to correspond

much more closely with the real physical system.

To offset this fundamental advantage are a number of

di sadvantages, fori nstance :

a. IIR filters can be unstable, and any design

procedure must include stab'ility checks.

b. Coefficient sensitivity (quantization) problems

are much more serious than with FIR filters.

c. Low-l evel I imi t cyc'l es and overf I ow osci I I ati ons

, are possible.

d. Noise introduced by finite word'length arithmetic

is more significant.

e. There is no simple method for ensuring a design

with linear phase ('if an IIR filter had all its

po'les on lhe unit circle the phase uouLd be

I inear, but such a f i'lter would not normal ìy fuì fi 1

a useful funct'ion).

f. There are no specia'l eìegant technìques for

producing des'igns to arbitrary specifjcat'ions.

Optimizat'ion methods are necessary, and further-

more the design pr'ob1em is inherently nonlìnear,

so that linear programming is not applicable in

a straightforward way (but it has been appiied -

section 4.6.2).

None of these d'ifficult'ies is insurmountable and IIR

filters are often used. Design may be tackled in the frequency

domain (section 4.6) or the tjme domain (section 4.7).
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4.3.4 Real izatì ons of IIR Diqital Fi I ters

Equat jon (4.3) may be manipu'lated in several ways to

yield algebraic forms suggesting rea'lizations of IIR filters

apart from the direct form of figure 4.1. Tirus, by factor-

izing the numerator and denominator polynomials in (a.3) into

quadratìc factors and arbitrarj]y pairing them off, we have

K z-1 + b1+a z'2
H(z) = ¡ T1 k k (4.5)ok=tl + c z-r+d z¿

k k

and the corresponding cascade reaLì.zatíon of figure 4.3.

(If n I m,or íf n or in is odd, the expression (4.5) is still

valid but some of the coefficients are zero).

By expanding (+.3) as a sum of part'ial fractions' we

have

K

H(z) = Yo *. I
K=

y¡ + 6O z-t
(4.6)

k k
z-2

and the corresponding paraLLeL v'eaLization of figure 4.4.

There are other possible realizations based on ex-

pansìon of (+.g) in continued fractions. If we wished to use

complex arithmetjc we could also fjnd cascade and parallel

forms based on the lìnear (first degree) factors of the de-

nominator of (4.3).

If the coeffic'ients involved in these filters are

specified to very high accuracy, then for the sante input

sequence all realizations will produce the sante output sequence.

Howeverin practice the coefficients must be represented as

binary numbers (fixed or floating-point) of a certain word-

t1+c z-L+d
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length and the "ideal" coefficients cannot be used. Chapter

6 of this thesis addresses the probìem of choosing an opt'imal

combination of fixed-word'length coefficients. In the present

context I wish merely to mention that quantìzation of the

coefficients has a greater (deleterious) effect with some

realizations than with others.

What'is important js the sensitivity of the posìtions

of the poles and zeros (the zeros of the denominator and

numerator of (4.3), respectively) to small changes in the

coeffjcients. In thìs respect the direct form (figure 4.1,

or the eanoníc equivaìent shown in figure 4.5, involving the

smallest possible number of delays) in wh'ich the poles anC

zeros are'determ'ined as zeros of hÍgh-order poìynomials, can

be especially bad. (Nationa'l Physical Laboratory, 1961'

pp se-60).

In the cascade realizat'ion individual poles and zeros

depend only on two coefficients, and are onìy moderateìy

sensitive functions of them. This form is often used for

general-purpose digital filtering. In add'ition, the positions

of both po'les and zeros are easy to calculate when the co-

efficients are known, and this can be 'important during the

app'lication of an optimization method of design. Firstly'it

is easy to check that poles do not wander outsìde the unjt

circle lzl = 1, resulting in unstable (and so, useless)

filters, and secondly, atld more subt'ly, there 'is the matter

of root paÍring, to be explored in sect'ion 4.9.?-,

The para11el form has sirnÍlar pole coefficient

sensit'ivity properties to the cascade fom, and is sometimes

used, al though probably I ess of terr. A'l thourgh the pol es are
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easy to calculate, the positjons of the zeros are not obv'ious

and direct design by optim'ization is not as convenient as

with the cascade form. 0f course, a parallel-programmed

filter could be derived from one in cascade form as a second

phase of the design procedure, if such a filter were needed.

hJith any of the foregoing reaìizations, the sensìtivity

of pole (or zero) posit'ions to coefficient changes js not

independent of the positjons of the poles themselves. In

other words, for any given coefficient wordlength some reg'ions

of the z-p'lane are richer in possìble po'le pos'itioñs than

others. Consider a single second-order section, the basic

building glock for the cascade-form filter of figure 4.3,

and a coefficjent quantization coarseness q = 2-9. All possible

pole locations are shown in figure 4.6, from which it'is ob-

vious that if we wanted a po'le in the vicinity of z = *.1 we

would have to settle for a very poor approximatjon. These

are precisely the regions of interest for narrol-band low-pass

and high-pass filters, and several configurations have been

suggested which have more appropriate poie distributjons.

Examp'les are the coupled form of Rader and Gold (1967) shown

wíth its possib]e poles (q = Z-=)¡n figure 4.7, and a circuit

proposed by Avenhaus (1.972) shown in figure 4.8. These (and

other) forms are important and would be used in critical

applications. However, they are not relevant in the ear'ly

stages of the design when the problems of wordlength are not

be'ing cons'idered. They are used in a cascade conf jguratìon and

would be designed by a diserete optimization procedure (chapt.er

6) after the 'ideal coeffìcjents for an "ordjnary" cascade

realization had been found.
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FIGURE 4.8 Avenhaus (tglZa) "Circuit C" Second-0rder Filter Section
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At this stage it js fitting to point out that there

are many al gebrai c schemes , not i nvol v'ing genera'l optim'izatjon

techn.iques, for generating digital fjlters as models of dy-

namic processes. ExampleS are the generatioh of an all-po'le

mode'l for speech by 'linear predicti on (Makhouì , 1975) ,

Shanks'(1967) system 'identificat'ion method, and the iterative

algorìthms of Steiglitz and McBride (1965) and Evans and Fischl

(1973). Although there are exceptions (notab'ly those dealing

with "lattice" filter structures), the maiority of these

techniques produce the coefficjents of a digital filter in

&Lz,eet form; consequently if the po'le and zero positjons are

the desired output all computatÍons must be done to high

accùracy and, furthermore, an accurate (and jterative and

therefore somewhat time-consumìng) process will be necessary to

find the second-order'factors of the high-order polynomials. Both

of these requ.irements are unfortunate, particu]ar]y if we

want to perform the computations in real time on a short

wordlength min'i comPuter.

Thus it may be worth sacrificing some of the elegance

of the algebraíc techniques and using a "cruder" optim'iz-ation

method to y'ield a cascade-form model directly, from which

po'le and zero positions are then easily found.

In summary, the realization of a recursive digitaì

filter as a cascade of second order sections as'in equat'ion

4.5 and figure 4.3, is a highly des'irable form to consider

in coniunction with opt'imization studies. This is both be-

cause it is often used'in its own right, and because the

locations of both poles and zeros are readily determined from

jt. Opt'imization technìques for des'ign may need to jnclude

frequent conrputat'ion of poles and zeros. Specia'l filter con-
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figurations which are good from the poínt of view of coefficient

quantìzation are readily derived from the cascade form. For these

reasons 'it is this form which is considered in most of this thes'is.

4.4 General Formulations of the Approximatíon Problem

4.4.1 Formulatìon A - Many Constrajnts

l^le consjder now how the prob'lem of designing a digital

filter to meet a specification can be put into a form suitable for

the appljcation of optimization techniques. To be specific we

first consider that the spec'ificatíon is on the magnitude of the

frequency rêsponse, but some of the theory is very general and

applies to almost any problem of filter design by opt'imization.

A type of filter often required js the low-pass filter.
The ideal "brickwall" characteristic of figure 4.9 (a) represents

what we would like such a filter to do, that is pass unchanged

any sinusoidal signal with a frequency less than 0p and block

comp'letely such a signal with a greater frequency. l^lhether the

filter causes phase changes to signa'ls within its passband may

or may not be relevant. In most cases it would be, and a

partìcularly sought-after characteristic is that of linear phase -

phase lag rìsìng linearly with frequency. Such a filter inrposes

a constant delay on a1l signa'ls and so does not distort the wave-

shape of any s'igna1 with'in its passband. in the present example

phase is ignored. (It may be possible to ensure a desirable

phase characteristic by techniques 'independent of the "magn'itude"

desiçrn). llere as in all parts of this thesis the frequency axis

is cons'idered to run from 0 to n and the frequency varìabie has

the symbol 0, and the direct'interpretation as the polar angle in

¿

ä
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in the z plane. ê = 2n corresponds to the sampling frequency

Fs (Hertz).

No real filter can achieve the ideal magnitude charac-

teristic, and more realistic specifjcations allow variation

between certain limìts, say 1 - ôr to 1 + ô, Ín the passband

and 0 to ô in the stopband. In addÍtion, a transition band
2

is allowed; the stop band edge is above the passband edge.

Within the transition band the formal requireme.nt would usually

be 0 to 1 + ô , but in fact most filters can readi'ly ensure a
I

monotonic characteristic w'ithin this region. These features are

shown in figure 4.9 (b). The values of ô, and o, may be equiv-

alentìy specÌfied in decibels as allowable passband rìppìe and

minÍmum stop band attenuation.

The maximum number of extrema possible in the magnitude

characteristíc 'is dependent on the complexity of the digital

filter, and is of the same order as the number of coefficients.

Thus by evaluating the response at a sufficiently dense set of

frequencìes, 0m, m= I,2 M it can be ascertained whether

or not a given filter meets the specifjcation without fear that

there could be undetected sharp error peaks between the frequency

samples chosen.

[-et us suppose that a set of M frequencies {er, rTt = 1,2...M}

is chosen such that 0r.0p for m. [,,0p.0r. e, for n, ( r { Lr,

and o, ) 0, for .t, < m s M. The o* are not necessari'ly evenìy

spaced but are distributed such that coverage of the frequency

scale is "reasonably" uniform. Suppose also that the N "designabLe

parameters" of the filter are placed Ín arbitrary order to form

a parameter uector x The form of the fi I ter has not as yet

been specifìed, and the elements of X could be, among others

J
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(a) the o and ß coeffìcients of a direct-form IIR filter

as shown in figure 4.1(N = m + n + 1)

(b) the a, b, c and d coeffic'ients (and possib'ly Ao) of a

cascade form filter, as 'in figure 4.3 or equatÍon

(4.5) (N = 4k or 4k + 1)

(c) the transversal f i I ter tap ga'ins cro . . .(rm shown

in figure 4.2, that js, the values of the impu'lse

response samples of an FIR filter (N = m + 1)

(d) some or all of the frequency response samples of

an FIR fjlter, that is, values of the DFT of the

impu'l se response sequence (N . m + 1) (If only

some of the frequency samples are ìncluded it is

because the others are cons'idered fixed, a prìori

see section 4.5).

Whatever the form of the fjlter, there will be a formula

(of greater or 'less compìex'ity) for the magnitude response

at any partÍcular frequency as a function of the elements

of x We use the symbols A,n ( x) for the response at

0 = 0, and B ( X , O) for the response for any 0. The

nequirement "meet the specification" may be expressed by 'Lhe

set of mathematical constraints

,t

Èf

II

I
f,
'{

I

I
I

I

I

i

t,
fl I

B (x) < 1+ ô

m<,c
I

f, <m<øl2

and o
2

(4.7)
m t

B* (X) . ô m > .Q,m22

(There 'is the very minor point that the specification could still ,

be violated at some frequency between those included jn the set i"

{0r, m = I,2...M}. But since the varjatjon of B ( x,0) is "smooth"

I
this wjll not happen if we set ô sìightly below the actual
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specified values and use a well-d'istributed set {0m, ffi = t, 2...M},

and M >> N. This matter will not be considered further.)

The formulation of a set of constraints goes part of the

way towards casting the design probìem in a form suitable for an

optimization technique. But we do not yet have an obiect'ive

function to minimize. There are a number of possibilitìes:

(a) In general it will not be known at the outset whether

a filter of a part'icular complexity is capab'le of

meeting the spec'ificatjon at all. However, if the

values of 6, and ô, are relaxed (increased) sufficient-

ly, it certain'ly wi 1ì be. A su'itable approach is to

augment the parameter vector to include alto o, and

ô as additional elements. Constraint equat'ions (4.7)
2

still apply but the ô's are now uariabLes. tle define

the objective function to be a suitable linear combina-

tion of 6, and ôr, for example

i

t

¡
li¡

F.

¡

I
{

I
1l

i
I

l
I

I

i

F (x*¡ = g ò
2

+ (4.8)
I

where x* is used in place of x to indicate that the

parameter vector includes u, and ôr. The optím'ization

probìem becomes: mjnimize (4.8) subiect to constraints

(4.7) and the adclit'ional constraints that or r 0

ô ) 0. Assuming that this can be done, we obtaín mini-
2

mum achievable values for ô, and or. If neither is

below its specified value the compìexity of the fjlter
must be increased. If (say) ô, met the spec. with

some margin but ôr was too large, we could repeat the

procedure w'ith ô, weighted more heavì1y than 6, in the

linear conrbination (4.8).
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This second option is similar to the first. The

parameter vector is augmented by 6, on1y, and 6,

is defined as k6, where k is a constant equal to

the ratio of the specified values, ôrlôr. The

obiectjve function is simPlY ôr.

ô (or ô ) can be held fiæed at some value less than
2I

or equal to its specified value and the remainìng ô

minimized. In this case there may be no solution to

the constrained minimization problem. If so, the

procedure gives no jndication of how closeìy the spec.

was approached and this method is accordingìy not as

useful in the "expìoratory" phase of desìgn as (a) or

(b)'.

If we know that the specificatjon eqn be met, we

could think in terms of "ìmproving" the filter in some

sense. l^le could minimize ð1 for a given ô, as in (c)

above (tlrat is, obtain minimum passband ripple for a

given stopband attenuation) or vice versa. 0r we could

attempt to decrease the width of the transition band,

by keeping ô- and e- fixed (at the'ir specified values)-I 2

and minimizjng (say) a linear combination of the e*( x)

values iust below the stopband edge, e.g.

F( x) = Bu (x) + Bu _r( x) + Au _r(x) (4.e)

I

( c)

(d)

2 2 2

The methods iust discussed in reìation to a lowpass

filter generalìze to an arbitrary magnitude specificatjon of the

type shown in figure 4.10, where Vt(o) and YU(o) represent lower

and upper lim'its. As before v¡e define a set of frequencìes 0r,

m = 1,2.. M, and obtain corresponding limìts Yr,n and Yr, for

each m. If we now define tanget vesponses Y, and toLerances 6^
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Y^ = ," (Ytn' * Yun,)

ô* = u, (YUm - YLm)

(4.10)

and

(+. tt)

we can express the specification by the constraints

y, - ufn . eln (x) . Y* * ô, m = 1, 2..þ1 (4.I2)

To obtain a minimjzation problem t,úe fix all the Y, values and

possib'ly some of the ôr, regard the remaining ô't u, variables

(in addition to the elements of x ) and minim'ize a linear

combinat'ion of the variable ô's. If lhe fiæed ô* vaìues are

realistìc there wil'l be a solution, and we have merely to check

that the values of the variable ô's thus found are smaller than

the corresponding va'lues found from (4.11).

It will now be apparent also that the specification

can iust as easily relate to some frequency-dependent quant'ity

other than the magnitude response, for example the phase, or

the logarithm of the magnitude response. The difference will

be in the formula for calculatìng Ar( x ). The abscissa in

figure 4.10 does not even need to be frequency - we could be

tryjng to match the first M samples of the'impulse response

of some system (aìthough in this case the filter being de-

signed would not be an FIR filter, because such an approxima-

tion problem would be trivial).
The formulation of the d'igìtal fi lter approx'imation

problem as described above, in terms of genera'lly simple ob-

jective functions and a great rnany (often 2M) constra'ints wjll
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be referred to as "Formulation 4". We have so far assumed

tacitìy that the solution of such a min'imization problem ìs

pract'ical . In fact, the only case when this is ordinari'ly

true is that in which the functions B*( x) are linear in all

the variablesxn, n = t,2..N and the probìem is thus one in

linear programm'ing. This js the sìtuation jn several approaches

to the design of FIR filters and herein lies its main uti'lity
(section 4.5). A generalization to IIR filter design of

'Formulation A' is that of Rabiner, Graham and Helms (1974)

mentioned further in section 4.6.2.

An obvious advantage in formulating the approximation

probìem as'one in linear programm'ing 'is that if a solution

exists it is globalìy optimal and standard methods are guaran-

teed to converge to it in a finìte nunlber of operatìons. In

pract'ice the "dual simplex" method js used (ìn preference to the

ordinary simpìex method) because there are significantly more

constraints than variables. There are also some disadvantages,

to be mentioned in connection with the survey of published work

in sections 4.5 and 4.6. Certain nonLinear" formulation A

problems of low dimensionality may be amenable to a method of

Bandler and Charalambous (1974).

4.4.2 Formulation B - Unconstrained 0 imi zati on

For a 'lowpass filter the specification of upper and

'lower limits on the varjabi'lity of the magn'itude response vja

the parameters ô, and ô, 'is probably reasonably reaiistic,
since it serves the purpose of ìsolatíng the filter design

f ronr the 1 i kely rather i ntangi b'l e spec'i f i cation for the per-

formance of a signaì process'ing system as a whole. We know
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that we want to block high frequencies - the particular value

for minimum stopband attenuat'ion may be somewhat arb'itrary

but at least it al'lows the application of mathemat'ics to the

problem. such logic would apply also to bandpass, h'ighpass

and bandstop filters.

However, for fì I ters w'ith I ess straightforward

characteristics we are un'likely to have rigìd specifications for

upper and lower l'imit functions YU and Vt(o) as illustrated in

figure 4.10. we are much more likely to have a single target

response function Y(O) or even a set of discrete target res-

ponses {Y,n(e), m = 1, 2...M. } The aim is to make a f ilter of a

Specified comp'lexity match such a response "as well as possible".

An exampìe of such a requ'irement is a spectral shaping fiìter

to produce a certain vowel sound 'in a speech synthesizer. hle

want to adjust the coeffic'ients of a low-order filter to provide

a reasonable fit to a very irregu'lar magn'itude spectrum obtained

by the spectral anaìys'is of rea'l spoken vowels. The test of

acceptabil'ity of the des'ign is not whether the difference be-

tween achieved and target frequency responses is everywhere

less than some particular amount, but'is based on listen'ing to

the actual sound Produced.

Rigid constra'ints may thus be quìte foreign to m.QUâ

filter des.ign (and particularly systenr nodelljng) problems.

This js fortunate s'ince the constraint formulation (formulation

A) was seen above to be mathematically tractable only when the

constrained function g ( X, e) was linear jn the elements of

X. We go on nor^r to djscuss a much more genera'l'ly applicable

formulation (fonnulation B) wh'ich allows the use of nonlinear

unconstrained optimization techniques.



The first step is as before, to select a reasonable

set of frequencies {or, ffi = 1, 2..1't1} to cover the range

0 < e < n. To be general , right from the stArt, and a]'low

time domain approaches also, the o* couid (instead of

frequencies) be instants of time. If we want our filter to

match a target impulse response there is no question of

seLeetion in the time domain - in this case

m

F( x) = I

111

= (¡¡ - 1) T

M

0 (4.13)

where T js the samp'l'ing period (= 1/F.). If we are trying

to derjve ãn inverse filter by minimizing an error signaì

the range of time indices may be different.

The target response at o = o* is again written Yn,

and the actual response of the filter A*( x ). In principle

we want to make all the djfferences B*(X) - Y; small in

magnitude, sÍmultaneous'ly, and think therefore of defining

objective functions such as the "sum of squares"

2(er(x) - Y*) (4.14)
m=I

and the "max'imum modulus"

F(x)= *å* {¡an,{ *) _ t*l}

and m'inimizjng these with respect to the parameter vector X

The occurrence of an even powey (2) in (4.i4) and the modulus

in (+.tS) ensure that both positìve and negative deviabions

from the ideal cause an increase in F.

(4.15)
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The "minimax criterion",using (4.15), tends to produce

an equiripp]e type of approximatjon and is hjghly compat'ible

with the type of speci f icat'ion cons jdered 'in section 4.4.1.

Unfortunate'ly 'it does not allow the use of pöwerful grad'ient

technjques for mjnimization because the partiaì derivatives

of the obiective functjon (4.15) are not contjnuous. As x

is varied, F( x) exhibits cusps as the position of maximum

lBr - Y*l changes from one value of m to another.

The "least squares criterion", us'ing (4.14), has the

characteristic that fajrly large deviatìons often result for

some m in order to keep the maioz'ity of deviations small.

The ripple,s in the error function are seldom of equal magnitude

so that the criterion is not in tune wìth rigid "upper and

lower" specifications. The least squares crjterion is, how-

ever, the easiest to handle mathematically, admitt'ing the

use of the specia'l techn'iques of sections 3.3.4 and 3.4.12 as

well as ordinary gradient methods and ('in many cases) second

derjvative methods. If the "target response" itself is not

accurately determined (as when it is obta'ined by measurement

of a real physical process, which may include noise) then

the characteristic of the least squares criterion to ignore

isolated points for the sake of an overall smoothing, may be

a decided advantage.

A third possibility is a "least pth" criterion, with

the obiective function defined bY

M

2p
F( X) = (ar( x) - Y*)I

m=l

where p is an integer greater than 1. The even potÀ/er still
ensures jncreasing cotttributions front deviations of both

(4.16)
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signs. The motivation for us'ing such a function is that ìarge

deviations are penalized more heavi'ly than with the least

squares criterion, and as p ìs increased the solution becomes

ever closer to the minimax (Deczky (1973) , p 76). For a

suitably large value of p a good approximation to the minimax

solution is obtained while maintaining continuity of the partia'l

derivatives of F and so allowing gradient methods to be used.

In practice, minimization is normal'ly carried'out for a sequence

of values of p such as p = t,2,5,10 because for the higher

values the ol:jectjve function is 1ikely to be wel] behaved only

over a restricted region around the solution and a good starting

point will' be required.

Unfortunately, although first-derivative gradient methods

may be used fair]y readi'ly w'ith the least pth criterion, the

sums-of-squares and second-derivative methods become quite un-

wieldy. This matter will be mentioned further in sectíon 4.4.4.

In this thesis the least squares approach is emphasìzed

because of the wide varíety of optimization methods which may

be used in its solution. Additionally, as discussed above, the

resulting fi'ìter may for many applications be just as good as

that produced by any other method.

4.4.3 Least-Squares Development of Formulation B

In section 4.4.2 we discussed the characteristics of

three possible mjnimization criteria and stated that the least-

squares criterion was mathematically the most tractable. In

this section 'it is deveìoped further but still without any

restriction on the type of filter response to be optim'ized.

Equat'ion (4.14) does not represent the most general type

of sum-of-squares objective function. F'irstly, it is possible
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to weight some sampìes more heavily than others. This may

be desirable to force a good fit around sharp peaks in a

magnitude spectrum, for example. Thus, making the general

definition for the obiective function (as in equation 3.45)

M

F(x)= J f;2(x) (4.17)
m=] m

we may define

rr( x) =l{
m

(a*( x) - Yr) (+. ta¡

where the'weight factors wm are arbitrary. This will be

called "formulation BL". It is directìy applicable to tirne-

domain prob'lêffisrfor example to the mjnimization of the energy

in an error sequence (when it becomes even simpler because

all Ym = 0). If (say) a cascade-form d'igita] filter is

being designed to match a target impuìse response, the

overall gain constant Ao in equation (4.5) can be set equa'l

to the zero-time target samp'le, or sÍmpler still to unity,

and the target Ímpulse response normalized to have a unit

zero-time value. The first sample is then automatically

matched and an objective function is defined by (4.17) and

(4.18) including only the later sampìes. Ao does not have to

be included in the parameter vector - ìt is simply ignored.

If we were trying to match a frequency doma'in

magnitude response we could include Ao in the parameter vector

and use formulation Bi (4.18). But it is better not to do

thís, for two reasons. An alternat'ive formulation allows

the optimal ga i n to be cal cul ated ana'lyti ca 1 1y, reduc'ing by
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one the djmensionality of the parameter vector and thus aiding

the optim'ization algorithm. The second reason for preferring

the alternative formulation becomes apparent when we consider

discrete optimization of the filter coefficients. The actual

value of the gain is irrelevant because we are really interested

only in the shape of the magnitude response curve. Ad-hoc

scaling of data will usual'ly be done at several places in the

system via A/D and D/A conversion and (cl'ig jtai ly) to mainta jn

precisjon and to avoid regìster overflow). If the gajn factor

is included in the parameter vector and cannot be calculated

optimally for any g'iven values of the filter coeffjcients,

it becomes' impossible to compare the merits of discrete designs

on the basis of shape; the objective functjon (4.18) unreason-

ab'ly penalizes dev'iations from a fiæed LeueL.

Thus jn pìace of (4.18) we make the definition

fm( x¡ = wn,(9 er( x) - Yr) (+. ts ¡

where q is a factor which scales all the B, values up or

down (together)in such a way that the fit is opt'imal for any

g'iven x q is thus a functjon of X but not of m. Any

frequency-independent gain factor in a model (e.9. Ao in

(+.S¡ ) can be ignored because it automaticaìly becornes incorp-

orated into q. This will be called "fornlulation 82". To

determ'ine the value of q for a given X we minimize F (defined

by (q.fi ) and (4.19) ) considered as a function of q aìone.
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dF
Aq

2f
m

df*
ìq-'I

M

I
m-

=2L ç(a e* - Y*) *n,' B,
M

m=I

=2q W
m

M

I
m=

2g
m

Yt2W-m

M2_21 Bm (4.20)

(4.2r)

It

Equating this expression to zero we get

m=

M

n,l, ï'"r e,n( x )

q( x ) =

,ï, 
**'ar( x )'

Formulation 82 Ís applicable whenever the precìse

value of an overall multip'licative constant is unimportant;

for instance it relates as well to a squar"ed magnitude

response. Further development to obtain formulae for der-

ivatives is necessary if we intend to use a gradient method

to minimjze F. In what follows the notation wil'l be simplified
M

by using just I to mean I and (as in 4.20) by dropping the
m=I

expl'icit dependence of B, and q on X

The values of the individual f* are found by first
calculating q from (4.21) and substÍtut'ing this into (4.19).

If we want to use amebhod of the Gauss-Newton type we require

ufro þ for all m and for all i (that is, the Jacobian matrix).axi

Differentiating (+.tg) we get
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where 
fr 

must of course by found by differentiat'ion of

(4.21), that is

+=,,,'(+q*B*ft)

(l*r'ar')tl*r'v, ffl - z ([w*za*yrltl*r'a,n trl
(lq2a*2)2

_?g_

(4.22¡

(4.23)

(3.46)

(+.2+7

âX
I

To use an ordinary first-derjvative gradient method we require

iust the values of #. for all i. We could proceed from
'l

formula (3.a6) to compute

aF = a r + âft
ô*i 'L 'maxi

but this requires more work than is necessary. Instead,

foìlowing Steigf itz (1970), we substitute (4.19) into (q.V)

defining a new but equal objective funct'ion F* whose depend-

ence on q is explicit, i.e.

F*( x, q) = I 1,, (q B,n( x ) - Y*),

By the usual formula for the total derivative

aF aF* aF*l-ð*i â*i âq
_?.e_
Ax.

1

(4.25)

Because q ìs selected opt'imal ly (bV a.21), we have



q = ÐFl,
âti

=lzw^z(qBr-Y*)t+

âB* oB*

= zqz I **' ur t,i - zq I **t Yr ãË

If we wish to use a second-derivative method we need the

complete Hessian matrìx

we could proceed from (3.47)

in turn requires that (4.23) be differentiated to get

It is easier to proceed by differentiating (q'ZS),

r$ï = ri (ffi . ;o-r*, . 4*r'-i - #ft'

, ð2F* aq , aF: a2q -+ ãì-ã\ ã{. rî- ãx¡5
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and so simpìY
rtr*ot = 0
aq

ð2Fo

ãF (4,26)

(4.27)

(4.28)

ax.iaxj

* a2F* âg .r- aF.- jg- . ,='Q. * -n'F*- qãq 4" ãq tçao.'{- -5õ:r _?e_ _?s_
â x. ðxi

(4.2s)

aF*
ASat n ¡q- is zero so that the third and fifth terms vanish, and

the computation of

(4.20) we have
"ift 

is unnecessarv. Bv djfferentìating
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Iw282¿rmm

ârB*

(4.30)

(+.sz¡

and the other terms in (4.29) are readily calculated as

a âF*
( ),*j AX I

_â
AX

(zqz l, **'B*
ä B,n

AX i

+ zq2 I **'8,

2q I''2Y,n+,
J

=zq2l*# ax.
1

âBm ABm

t*j
AX AXI J

t rB,
- zq l. *rtY* 

"n-

â2F* _ â ,âF*,
æç- \ 

\iq /

=ù(zIw*zem(oa*-Y*))

= uh (zq I *r'B*' - z I w*28, Y*)

âB_ AB,

=4ql**'Br#-zlw*zvrff
IJ

(4.31)

and

Hence, substituting (4.23), (4.30), (4.31) and (q.lZ) into

(+.Zg) and s'imp'ì'ifying gives a final expression for

a2-F To further simp'lify the notation we introduce
ax, âx,

the fol 'lowi ng def i n j ti ons :



Ayy = I "r'Yr'
AyB=[w*2Y*8,

ABB = I *r'B,n'
ABPyi=l"rtYr#
'i
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i = 1, 2..N

i = 1.,2..N

j = 1, 2..N

(4.33)

AB
mPBi = I *r'B

-rJ¿

max 'l

AB âB
Pij = I*,o'dd

Qvi w*

rtq,n
Qgjj = I *r'Bn.

âx.' Ax,

hle now have the simplified formu'lae

Q = Arr/A*

and

(4.34)

(4. 35 )

(4.36)

âo
Pyi - Zq Pei

â*i AB

which we simplify further to tí/Agg, defining

ti = Pyi - 2q Pgi

Express'ions for the function value and derivatives are now

F=Ayy-qAyg (4.37)

n, = fr = zqzP'i - 2q Pyi (+. se¡
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hij = #{T = zer(Qsij * Pij) - 2q Qyij 155
Age

(4. 3e )

t\
l, f

tÈ

If the Gauss-Newton matrix 'is required, ìts (i,j)th element

is given by

rij = 2O2Pr, + 2
¡-,.BB

(pyipyj - q(psipyj * psjpyi) ) (4.40)

The general approach for evaluating function values

and derivatives is now clear, and it is basicalìy independent

of the type of response to be optimized. Some or all of

the sums i,n (4.33) must be accumulated for m = L , 2...M, and

for fair'ly 'large M (compared with N) tfris forms the bulk of

the computation. Actual evaluation of the elements of the

gradient vector and Gauss-Newton or Hessian matrices ìs then

straightforward (equations (+.SZ) to (+.+O))and is independent

of M. A "function value only" method requires accumulation

of Ar' AyB and A* on1y, a first-derivative gradjent method

requ'ires P' and Pr.' in additr'on, a Gauss-Newton method Pi j
also, and a second derivative method, Qyi, and QUi¡ as wel'l

as the rest. The type of response being ont'imized has not

entered into any of the above, but of course it determ'ines

the form of the functjons Br, + .rO #r.
As the optim'ization procedure approaches the solution

the values of the gradient components g., become small, and

there is a problem with numerical cancellation 'in determinìng

them from (+.Se). If the fit of the model to the target

response is very good there js a simjlar problem ìn calculatìng

F from (+.Sl¡. The alternative is to calculate the individual
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ðf

f, and 
{ 

ana evaluate the sums jn (+.tz) and (3.46). How-

ever, much more computation is then involved. The experience

of the present author (working w'ith 60-bit floating-point

arithmetic) is that adequate convergence is usual'ly obtained

before cancellation becomes important.

"Formulation 82" as developed above is useful when

there is an arbitrary multip'lìcative gain constant. If, how-

ever, the specificatìon had related to theLogaritVLn of the

magnitude spectrum the arbitrary constant would be additíue.

Another similar situation arises if we are trying to produce

a linear phase characterìstjc. An equivaìent requirement is

constant gi"oup delay (phase slope), and this is usua]]y

easier to handle because group delay expressions are simpìer

than those for phase. An addit'ive constant may be introduced

(optimally) because it is the fLatness of the group delay

response that is important, not the precise value of de1ay.

This leads to "formulation 83" in which we define

fm(x) = *, (ar(x) - Ym - q)

and (4.I7 ) still applies. As before we find q by equating

to zero the derjvative of the objective function considered

as a function of q a'lone, j.e.

F(x) = F*(X,Q) = wr2(er( x) - Ym - q)2
I

M

I
m=

( 4.41)

(4.42)

,t

Èt^

I

I
it

f;

Ii
I

I

I

I
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I

-t
i
¿

Èt

T

t'

I
u

t
't

,l

ï
t
l
I

I

i

aF* - ^âq-- - t w*2(a*(x) - Ym - 9) = o

n.,l, 
tn''(er(x) - Yr)

M

T
m= I

M

M

(4.44)

(4.43 )

Pi¡ = I *rn

z(e -Y)': m m'

, "t '-tu

wt2

m=1

âB
i=1, 2..N

m

AX l

i=L, 2..N

j=1, 2..N

I

I'Je again drop the limits on the sums and the expìicit depend-

ence of q and B, on X to simplify the notation, and make

the following definitions

*t 2

Pri

2

I
wm

AX

l^J

A

A

Yr)2(Bm -

I

I

Yr) tBt

Bm

= I wm2(

ð

w2
mI

I

Þ.=
'21

9t¡= I

â*i u*j

B
m

âB
rilì/ax.' ax,

I W
m

â28
Q,ij= I.ñ æt

m
Yw2(

m

values of F( x) and its first derivatives are readily found

in terms of these quantities

F=lwm2(Bm-ym-q)2

= I u/m2 (Bm - yr)t - 2q I r.vr2(Bm - y*) + É I *r,

-2q A +qzln1=fl
2 I

(+.+s)
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I2[
,.i

þ

f'

f

t

but, from (4.43),

and so

and (4.45) simplifies to

q2W=qA
I

F=A -qA
2 I

=2Pri-2gPri

l
q=A/t'J (4. +o)

(+. qt)

(4.48)

(4.4e)

(+.+t)

I
't

{
t
ri

I
1'

I

I

I

I

Since we have forced # = 0, we have

?F=âF*=eTq= ti= z Lwn2(Bm - ym - q)
AB

m

6Ç

= z Lwr2(B* - Yr) + zq I "r, *

Ì

I

l

If the elements of the Gauss-Newton matrix are required,

we proceed as fol'lows

f*=*r(Bm-Ym-q)

= l^, (
m

Now sínce
ftr

,t,
ðxi

âf
m

,*j

(4.50)

(4.51)'ij='Iã+

we can expand using (4.50) as
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% ¡g-,, ,'Bt -"ii = 2 L wn2 ,ir., axr,\ax, +,

=zL*,,++ zft I,,,,.'+

Ðq

,"j
aB

Iwm2ti-rfr 4t*,n'

i
t

ti'

-2

,i
i
Â

(
i

t
t
I

=l(P rJ rj
P-.IJ-r Pii

PP##'rP

P ll-ïf- +

=l(P (4.52 ))ij

where we have substituted

P
_?3_
âti

as is obvious by differentiating (4.43). In this formulation

it is easy to obtain an expression trr ã{h , by twice

differentiating, thus

'liT (4.53)

0..'1'tJ-T- (+.sq)

Because of the simplicity of this expression it is straight-

forward to calculate the full Hessian matrix using (3.a7).

Thus we augment the terms g'iven bV (a.52) by the amount

a2faF¡m? L fm ç'ç; , which js equa'l to



2lwm2(Bm-Y,-Q,,ft ftl
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a2B
m

a28
m=zlwr2(B*-Yr) zq I *,ñaxi âxj axi àxj

= , ?rrj - 2q Qttj

2

2Q Ai Í j +
2qQ iij l^l

+PI**'(Bm-Yr)+4*t,,'o

1

l^J

=t(Qzij-oQtt¡)

t^l

The fina] expression for the (i,j)th element of the Hessian,

by adding (a.52) and (+.SS), is

(+.ss¡

(4.56 )

1

hij = ft=, (Pij +"+ Qzij qQrij)

Hence, in the case of an additive constant the procedure is

similar to that of a multipl'icative constant, that is, sums-

of-products are accumulated (equations (4.44)) and the values

of functions and derivatìvesare then found from a set of

equations not invo'lvin9 M, i.e. (4.46), (4.49), (4.49), (4.52)

and (4.56).

Having developed formulations 82 and 83 are far as

possible without specifying the type of response to be optim-

ized, v{e now return to derive similar expressions for form-

ulat'ion BL. These are much simp'ler, and we can make use of

I

I
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some of the shorthand symbols for sums-of-products introduced

in (4.44). From (4.18)

fr=w*(B*-Yr)

so that the function is given bY

r = Irr2(Br - Yr), = o,

For the gradient components

(+. te)

(4. 57 )

^F âf
-il.l'-Tc+ m

âx. Lç'mâx.
ll

=lzwr2(B*-Yr)+= rr^
for the Gauss-Newton matrix

(4.58 )

(+. sg )

,ij=tr4r+

=l2wnz =2P

and for the Hessian

=2P +ij

ij

I ztþm
a2f

m

AX axI J

= z pij * I z **r(Bm - tr) #r&

=2P +2 Qzij1J

This completesthe general development of the least-squares

version of formu'lation B.

(4.60)

I

!.
I

i
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4.4.4 The Least pth Error Criterion

lr'le now return to the least pth error criterion to

indicate why it is often more difficult to use than least

squares, particularly with Gauss-Newton and second derivative

methods.

hlith the formulation analogous to "formulation 81",

that is with no additive or multiplìcative gain value Q,

the sÍtuation is still tractable. For simplicity, weight

factors are all assumed to be unity. Equation (+.10) may be

re-written to set F in the form of a sum-of-squares,j.e.

F(x) =
M

I
m=

(+.ot)trz( x )

ãf
m

âx.
1

'p-' 
âBt. âB*

I

where

The gradient components are

fm( x)= (Bm(x)- Yr)P (4.62)

(4.63)

gi =\ 2fLm

The element of the Gauss-Newton matrix R are

= L zp (Bm - Ym)2P-t +

af af

'ij = I'riti

= I. zp2 (Bm - ym)
,*j

1
AX

(4. 64 )
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and those of the Hess'ian matrix H are

hij = I 2f, *Th* .ij

a2B

= l. zp (Bm - ym)2p-t ffi

axi àxj

The complication arjses when an optimaì gain term q

must be allowed for, as with formulations 82 and 83. Con-

síder the case of an additive gain term, so that the obiectjve

function F is given by

F(x) = F*( x,q) = I (Bm - Y, - q)'p (4.66)

The optima'l value of q is again indicated by settitn Ë
to zero, i.e.

- zp l. (Bm - Y, - Q)2P-t = o

(4. 65 )

(4.67 )

For p >1, (4,67) cannot be reduced to an explicit expression

for q. Rather, it provides a polynomia'l equation of degree

(2p - 1) in q. For example, if p = 2, we have the cubic

equati on

q3+aq2+bq *c=0 (4.68)
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where

a=-3lMI(Bm-Ym)
b = + 3/M I (Bm- ym)2

c=-tlMi(Bm-ym)3

There are two methods which may be used to find the value

of q. Fi rst'ly, the coeffi cients of the po'lynomial may be

evaluated through equations such as (4.69) and Newton's

(iterative) method then used to obtain the solution. For-

tunately, an adequate initial estimate for this process is

usual ly obta'inabl e by setting p = I and sol ving (4.67)

analyticaUV (the optimaì "least squares" value of q.)

The second method for obtaining q, which may be considerab'ly

more practical when p is ìarge, invoìves evaluating F for

a number of trial values of q. That is, a one-dimens'ional

search is performed to locate the minimum. Thìs search may

be of the "golden ratio" or"polynomial interpoìatíon" type,

as discussed in section 3.5. The 'least-squares solution for

q again prov'ides a starting point.

l.lhen the optimal va]ue of q has been calculated, the

components of the gradient vector are readily found, for

(4.6e)

(4.70)^ _àF _aF*-'aF*ãqei -\-\'ðq ãE

Aga'in, # has been forced to vanish, so that

si = ffi = l. zp (Bm - Y, - Q)2-P-'
âB

m (+.zt¡
âX

1

First-derivative gradient methods are thus stiil practicaì
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wjth the least pth error criterion when there is an additive

gain term q. The main complication attending the use of p> 1

is the necessity for an iterative procedure to obtain the

appropriate value of q. Second-derivative (and Gauss-Newton)

methods, however, become vastly more compìicated, and increas-

ingly so as p increases. For example,the elements of the

Hessian matrjx are found by differentÍating (4.70), which

gi ves

L _ a2 F* , â2F* aq , ô2F* âq , a2F* ôq _?.g_nii = ry\ * aqax, ã*j. ãr1{- tõ-rã-i4

to'ft+ 2aQ ft. q'z ft+ b ft- q ** uî= o

(4.72)

The derivativesof F* are all easiìy computable; the trouble

is wjth terms such as *, because equat'ion (+.ol) does not
l

provide an explicÍt formu'la for q. With much labour, all the

values required are available. Again taking the case p = 2

as an examp'le, and different'iating (4.68) with respect to

x.
I

(4.73)

whence

rift-qü-tr
_?s_
ã*i 3q2 + 2aq + 5

where + , S un¿ *- , may in turn be found by d'ifferent-,* j o*i .t

iating expressions (4.69).

The complexìty of all the abol,e expressions and the

(4.7 4)
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attendent computational load would seem to make second-de¡iv-

ative and Gauss-Newton methods unattractjve in coniunction

with the 'least pth criterion. This is not to say that

experiment would necessarily show that they were not worth-

whi'le. However, in the comparisons reported in this thesis

I have preferred to concentrate on the simpìer least squares

cri teri on .

4 5 Desiqn of Fin ite Impulse Response Diqital Filters

Optimìzation techniques, and in part'icular linear

programming, have proven very usefu'l in the des'ign of FIR

filters. 'In this section is a brief survey of the relevant

I i terature.

We wish to design a filter havíng an 'impulse response

of length N samples, denoted ho, hr, hN-r, from a

frequency-domain specification of magnitude and phase. The

use of N in this section is traditional, and not to be confused

with its use in this thesis to denote dimens'ionality of the

parameter vector. An obvjous procedure is to santpLe the

frequency response at N frequencies (unìformly spaced around

the unit cjrcle, and symmetric about zero frequency) and obtain

an impulse response using the inverse discrete Fourier trans-

form (IDFT). 0f course, the real part of the frequency response

must be specifìed as an even functjon and the imag'inary part

as an odd funct'ion, in order to obtain a real impulse response.

F'igure 4.11 (after Lockhart , '1.975) shows the frequency response

of a lowpass filter designed in this manner, with N = 30 and

all the passband samples set to the satne value and all other
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samples to zero. The achieved response is exact at each of

the sampling frequencjes but shows unacceptable deviations

in between, particularìy ìn the v'icinity of the discontin-

uity (passband edge).

One approach to improving this situation is to
multiply the impulse response by a uindou ftmction. The

effect in the frequency domain is to convolve the curve in

figure 4.11 with the Fourier transform of the window, and with

a good choice of window this can result in smoothing of the

ripples (but with an unavoidable widening of the transition

band). Tlis approach does not expressly involve optim'ization

techniques and will not be considered further.

The second method, due originalìy to Gold and Jordan

(1969) and improved by Rabìner, Gold and McGonegaì (1970),

recognises in advance that the transition band wìll have to

be reasonabìy w'ide in order to produce low ripple in pass-

and stopbands. Accordingly, one or more frequency samples

are aLLocated to the transit'ion band and their values are

taken as the variables in an optimization procedure. The

frequency samples in pass- and stopbands are fixed, as before,

and in the final design there will still be an exact fit at

these frequencies. The beauty of the procedure arises because

the magnitude response (at any given frequency) is a Lineay,

function of the vari abl e f requency sanrp'les , and formul ation A

(sect'ion 4.4.1) can be appl ìed. As discussed in that section,

the frequency response must be evaluated at a sufficjently

dense set of frequenc'ies to ensure that the spec'ifications

on pass- and stopband ripple are met. Interpolation factors

of 16:1 (naUiner, Gold and McGonega'|, 1970) and B:1 (Rabiner,
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lg72) between the DFT frequency samp'les have been suggested'

If we considered that on]y one transition coefficient were

variable, we could plot the magnitude response at each of

the (interpolated) frequencies in the stopband, and obtain

the linear variation shown 'in figure 4.12. The lowest point

on the upper envelope of all these curves defines that value

of the coeffjcient which minimizes the maximum stopband

magnitude response (ripple). This envelope (darkened jn

f.igure 4.I2) bounds a convex region, and so a search proced-

ure which follows a descent path along the envelope must

find the global solution. The situatjon generalizes to the

case of several variable transition coefficients, the lines

of figure 4.12 becoming hyperplanes. If there are M variable

transition coefficients the globa'l solution will be determined

bytheintersectionofM+]'hyperp'lanes'implyingequal

maximum ripple values at M + 1 different frequencies. Rabjner'

Gold and McGonegal (1970) (apparent'ly not realizing the

applicabilìty of linear programming to this problem) devised

a search procedure whjch was capable of converging to such

a vertex in the (M + 1) - dimensional space. They obtajned

very useful results for ljnear phase lowpass and bandpass

filters and for wideband differentiators using this techn'ique.

The disadvantages are that there is no control on the ripple

in the passband (although there seems no reason why it could

not be incorporated) and that the search procedure is very

time-consum.ing (compared wjth I jnear progranming). The

computer t'ime requirement grows exponent'ia]ly with M, and

the authors found that M = 4 was the maximum reasonably

attaì nabl e 
"
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The linear programm'ing approach to this problem of

frequency-samp'ling design was presented by Rabiner (Ig7Z).

The method is essential'ly that of 'formulation A' prev'iousìy

described in this thesis. The formula describing the linear

dependence of the magnitude response on the values of var-

iabìe frequency samp'les had been given by Rabiner and Schafer

(1971) for linear-phase filters. l^lith no constraint on the

inband ripple, and the objective function defìned as ô, (tne

peak stopband ripple), the linear program solution would be

the same as that of the older search procedure. The previously

noted equality of stopband ripple max'ima at M + 1 distinct

frequencies is readily interpreted as the usual linear prog-

ramming pnincipìe, that at the solution p constraints become

equalíties, where p is the number of independent variables.

In this case p is M + 1, being M transition samples and one

rippìe value (ur). Rabiner (1,912) instead chose to constrain

also the passband ripple to a particuìar value, and obtained

curves depicting the tradeoff relatÍons between ô, and ô,

for Iinear-phase, lowpass FIR filters of vary'ing bandwidths,

assuming three transition coefficients variable.

The technique of linear programming is sufficientìy
powerful to handle many more variables than the few used in

typìcaì frequency-sampling designs. Thus in principìe we can

allow all of the frequency samp'les to be variable, obtaining

solutions with a ìarge number of equal ripp]e maxima which

in fact come very close to the opt'imum filters in the minimax

sense. The magnitude frequency response is also a linear

function of the impulse response coefficients themselves (and
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is related more s'imply to them than to the frequency samples),

so that the linear program may a'lternatively be set up in

terms of coefficients. This technique was pioneered by Cavin,

Ray and Rhyne (1969). Rabiner, in his 1972 paper, designs

linear-phase lowpass filters with up to 99 variable coefficients

using this method. (Only 50 coefficients are independent var-

iables because the linear-phase requirement is met by forcing

symmetry on the 'impulse response.) He also applies the

process to wideband differentiators with 32 coefficients. In

this case the impu'lse response is restricted to be antisymmetric

about its mid-point to guarantee the pureìy imaginary frequency

response expected of a different'iator (where a constant delay

necessary for realizability is ignored). The linearly-rising

magnitude response can readily be approximated in an equi¡ipp]e

absolute or equÍrìpp1e reìative error sense.

Rabiner a'lso gives an examp'le of a 'lowpass filter whose

time-domain (step response) rippìe is constrained jn addition

to the frequency domain ripp'le. This js possible because the

step response, too, js a linear function of the filter coeffic-

ients. The lìnear programming approach has also been exterrded

to the design of two-d'imensíonal FIR filters by Hu (tgZt).

Linear programming has thus become fjrtnly establ'ished as a

design tooi for FIR dig'ital filters, and a wide variety of

tradeoff opportun'ities is avajIable within the standard "form-

ulation A" framework.

Nonl'inear optinlization techniques have also found

applìcation'in the fìeld of FIR filter design. Herrnrann (19i0)

sets up equations which explicitly force the passband and stop-

band ripp'le to exhibit a certain number of extrenla of a pre-
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assigned value. This set of nonlinear equations is then sojved

by a suitable iterative technique to yield the values of the

impulse response coefficjents. Suitable solution techniques

inc'lude those which minimize the sum of squares of residuals,

such as the damped Gauss-Newton and Marquardt methods (section

3.4.72). (Herrmann's paper does not identify the method orig-

inally used.) These methods ultimately achieve quadratic

convergence in this case because the residuals are all zero

at the solution (see 3.4.72).

To illustrate this use of nonlinear optimization for

FIR filters in more detail, we consider the case of a linear

phase filter of length N, an odd number. To achieve the

linear phase the impu'lse response is synrmetrica'l about its

centre samp'le, and so there are on'ly L# independent co-

efficients. The magnitude response S(o) is given by

S(o) = lH(exp(je) )l

=þ + 2h cos ne
o n

and we can readily evaluate its derjvative a'lso, as

sin no )

The conditions for the ripp'le to exhibit an extremum of the

correct magnitude at a partÍcular frequency on are that

(ru-r )/z
T

n=l
(+. zs ¡

(4.76)
(tt-r )72I (-znh
n!, ' l'ì
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s(e )=1to
L I depending on whether

oo is in passband or
s topband

or

(4.77)

and

=Q
=e ñ

t,Je suppose that there are L such "interior" extrema at fre-

quencies as yet undetermined, but related through 2L equatÍons

of the form (4.75) and (4.76). In addition we require S(0) = I t ô,

and S(n) = ô2 giving two more equations frorn (4.75) (EquatÍon

(4.76) ìs automatically satisfied for e = 0 and e = n). l,le

thus have 2L + 2 equat'ions tn 5l + L unknowns, and for a

unique, exact solution these must be equal. Thus we have

S(ou) = ô,

0

do
dS

l=

With values of ô, and ô2 fixed a priori, the only remaín'ing

freedom in the design is the allocation of a certain number of

tfre Lf extrema to the passband and the remainder to the

stopband. There are thus only a fjnite number of these

"equirìpple" filters for a given o, and 6r. The passband and

stopband edges are not directly controllable by this technique

and they are unl'ikely to meet an arbi trary spec'if ication

exactly. They are, however, opt'imal approximations in the

minimax sense over the pass- and stopbands actua'l1y attained.

In this respect the l'inear programming designs of Rabiner

(1972) are sìightly sub-optima1, having one ripp'le fewer than

(q.za)
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the theoretical maximum. This difference is insignificant

ìn practice, however, and both design methods are of con-

siderable use. The nonlinear equation approach is reported to

be somewhat superior in computer time requirements (Rabiner,

te72) .

Further work on optìmaì minimax approximations for

linear phase FIR filters has been reported by Hofstetter,

Oppenheim and Siegeì (1971) and by Parks and McClellan (1972).

Both methods employ polynomial interpo'lation techniques and

are considerably more time-efficient than those using standard

linear and nonlinear optimìzation techniques as discussed.

The procedure of Hofstetter et. al. generates the same filters
as does the Hermann technique. The more generaì method of

Parks and McClellan can obtain the optìmum filter for any

specified band edges, producing the Hofstetter designs as

speci al cases.

The methods of Athanassopou'los and Kaiser (19i0) using

an unconstrained mjnimization algorithm are applicable to FIR

design but are more usefully discussed in relat'ion to IIR
filters, as in the next section.

4.6 Desiglt ol lqlìnite Impulse Response Filters in the
Frequency Domain

4.6.1 Genqral

When an IIR filter is to be designed to meet spec'i-

ficatÍons of the lowpass, bandpass, highpass or band stop type,

w'ith phase response neg'lected, two methods are avai I abl e whì ch

do not employ opt'imization techniques. The first involves

transformatjon of a classical (contÍnuous) filter desjgn using
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the bìl'inear transformation, which maps the left hand half

of the s (Laplace variable) pìane onto the interior of the

unit circle in the z pìane. The second method allows a

direct approx'imation in the z plane. These techniques are

discussed in Bogner and Constantinides (tglS), chapters

4 and 5 respectively, but since optim'izatìon techniques are

not employed they wiil not be cons'idered further.

When the specified magn'itude response is not of the

classical form (often referred to ìn the literature as

"p'iecewi se-constant" , al though th'is term woul d seem to i ncl ude

also multiband filters, which are certainly not anenable to

classical'techniques) some kind of optim'ization approach ìs

necessary. Methods employ'ing both "formulation A" (mu1ti-

constraint) and "formulation B" (essential'ly unconstrained)

have been suggested, and published formulation A approaches

have used both linear and nonlinear programming.

4.6.2 "Formulation A" Approaches

The linear programming approach was apparently first
proposed for IIR digital fjlters by Thajcha¡rape¡g and Rayner

(1973), building on the work of Matthews, Davìs, McKee, Cav'in

and Sibbles (1963) for continuous fiIters. The orig'inaì

Thajchayapong and Rayner paper appìied the technique to a

'lowpass filter clesign and showed that the results were very

similar to a Chebyshev design obta'ined by classicaj methods.

In a later paper (1974) they suggested that the technique

was appìicable to an arbitrary magnitude response and gave a

wjdeband d'ifferentiator example. These authors consídered

specìfications of the "upper and lower limit" variety. Rab'iner,

i

,l

¡

il

fl
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Graham and Helms (1.974) employed similar techniques to obtain

the optimum minimax approximati ott to a g'iven arbi trary target

function Y(e).

To arrange the approximatîon problem into a form

amenable to linear programîing, Rabiner et. al. work with a

high-order polynomìa'l and with the square of the magnitude

response. Both of these features are unfortunate because

they mean that al'l computations must be carried out to extreme

accuracy (the former because of the usual coefficient sensit-

ivity probìem w'ith polynomials, and the latter because it doubles

the precis'ion with which response quant'ities must be compared

- a to'lerance of 10-s on the magnitude response is equivalent

to 10-I0 on squared magnitude). Rab'iner et. al. find that

these factors linit the usefullness of the method where hjgh-

order, sharp cutoff and close-tolerance filters are concerned.

The amount of computer time js also qu'ite high (with double-

precision arjthmetic) and would be mugh higher if the precis'ion

were extended.

The approach of Rabiner et. al. is as follows. The

magnitude-squared function of a djgital filter, M(e), may be

eval uated as

I
ltì

P

M(o) = [r,',H(z-r)] r=.rp(jo) (4 "7s)

Substjtut'ing for H(z) from (4.3), we get

m

H(z)H(z-1) = (.1
l=o

.m
oit-t)(.l ,*i ) lt I *, r-i )( I u,r*i )

i=o ' j=o u
(4. Bo )

it

.t

't
tr'

I

I

t't

,f

I
1

I

I

i

where ß o
1

J=O

(x,
J
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suitable constants c.' and d.t (sums of products

., and o., terms) this becomes

(z- +z+i

j

Èþ-Defi n i ng

of the o

mc 4 I c.o i!, 1

1

ri
I

{

Ìt
1

I

)

H(z)H(z-t) (4.81)

(+.ss)

(4.84)

m

il =1
1+ d * t*i)i (r-i

and putting z= exp (je ) , or equi val ent'ly

+i+z 2 cos ie

v're get

(4 .82 )z-i

- o(e)

c+
o

m

I 2 ci cos io
iì tl(e)

D-(-oI
t'l( e )

1+
nlz
l=1

dj cos io

If the achjeved response is to match the target response

Y(e)to withjn a tolerance o(o)' we have

Constraining D(o) to be always pos'itive (as it in fact is for

a real fi lter) ure can multiply through in (4.84) and so obtain

the set of constraints

N(o) - D(el [vtol
N(e) + ¡1s1 [vtul

- N(e) -' 0

- D(o){ 0

0

0

+ o(ul <

o (r)] < ( 4.85 )

',e

1
which are Líne(ü, in the unknowns c and d i' and which must
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be satisfied by any filter meeting the specifícat'ion' C'learly

we can satisfy a modified set of constraìnts

't
ù

,,t

¡ìþ

I'

I

I

I

-q<0

* [tn. 
* u*]

* [t' - o*l

-Nm

N -D
m

N
m

+D

-q<0
-Q-.0

D, -Q-<0

(4.86)

for some (suitably large, non-negative) value of the

auxiliary variable q, where the N*, Dm, Y* and 6r denote

t'l(o), o(eì, Y(o) and ô(o) evaìuated at the mth of a suitablv

dense set of discrete frequencies , 0m. If there 'is a

solution to (4.86) such that g = 0, then constraints (4.85)

are approximate]y satisfied also. The procedure, then, is to

solve the linear program defined by constraints (4.86), with

the obiective function F = q.

If the solut.ion has q = 0, then the spec. can be met.

If the design obiective is to approximate the response Y(o)

as closely as possible in weighted minimax sense, that is

with the error function achieving the maximum number of extrema'

of amplitude k e(o), for some specified function e(o) and as

small a value of k as possible, we can defjne

ôr=k.(o*) m=1,2..F1 (+.sz¡

for some trial value of k, and solve the linear program' If

then q = 0, we can decrease k; if q >0 we can increase k, and

eventually converge to the optimum solution. Rabjner et. al.

suggest a "bjnary search" such that the new value of k is taken
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as the geonretric mean of the previous k and a known upper or

lower'limit. Initial l'imits are chosen conservatively, and

modified according to the result of each trial.
The results of the procedure are the opt'ima1 values

of the c., and d., coeffìcients in (4.81). The numerator and

denominator polynomial s are then independently factorized.

The roots so obta'ined include all the poles.and zeros of the

desired filter but also thejr inverses (reflections in the unit

circle l=l = 1),and only ha'lf the number must be retained. The poles

netained must be those'inside the unjt c'ircìe,for stabi'lìty. The

choice for zeros js arbitrary, but choosing as for the poles yie'lds

the minimum phase filter. (lf zeros are paì red on the unit circle,
one of each pair Ís retajned). The final stage of the design would

be to pair the retained po]es and zeros to give the coefficients of
a cascade+form real i zation.

A formulation A (multiconstraint) approach 'involving

nonlinear optimìzat'ion has been taken by Athanassopoulos and

Kaiser (1970). Their method is capable of work'ing with any

form of d'igìta1 fjlter (e.g. cascade, or FIR) and any type

of frequency response (e.g. magnitude or group delay). An

error function is defined as

f( x,o) = B(x,o) - Y(e) (4.88)

or, more prec'isely, is defjned at discrete frequencies as

l

fm(x) = Br(x) - Ym m = 1, 2..1\. (4 .8e )

fach fr( x) js required to be a differentiable function
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of each x' which would not be true for example at any fre-

quency for which the achieved magnitude response were zero.

Thus if the filter is expected to have zeros on the unit

circle it may be better to work with the magnitude squared

function, which is everywhere differentiable.

The error samples are required to lje between certain

'limits, that is,

Lr*f* m = 1r 2...M

where L, and U* are positive quantities. As in the linear

programming approach previousìy discussed, we can formulate

a correspondíng reLa,red set of constraints

-' um (4. eo )

(4. e1)m = 1, 2...1!.

which wjll a'lways be satisfied for a suffic'iently'large

positive val ue of k. If we can find a fi I ter satisfy'ing

(4.91) with 0 < k < 1, then the original specification is

sati s fi ed.

The method of Athanassopou'los and Kaiser is an interior-

point pena'lty function approach and so uses an unconstrained

minimization algorithm repeatedly. The objective function is

defined as

kU*-fr20
kL*+f^V0

m

rM

F(x,k) =lç+ I
m=1

( r
fm( x)KU

m

+ (+.oz¡
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where the initial value of x represents as good a guess as

possible, and k is selected large enough to satisfy (a.91)

with some margin. The pena'lty parameter r is chosen so that

the largest term within the sum js of the same size as k.

Any suitable unconstrained technique is then applied to find

minimizing values of x and k. As with any interior point

method the steps taken during the unconstrained minimizat'ion

must be checked to ensure that the barriers are not jumped,

i.e. the denominators 'in (4,92) must remain pos'itive.

If the value of k so found is less than 1 the process

may be stopped. However, if it is not, F is then reduced by

some reasónable factor (say 3) and the minimization repeated.

As this process is continued the minimizing value of k event-

ua'l'ly changes little from iteration to interation and the

correspond'ing filter represent5 at least a local optimum

(whÍ ch may or may not sati sfy the speci fì cat'ion (4.90) , de-

pending on whether r< I f l.
This method has the advantages over the ljnear approach

of beìng ab'le to design (say) a cascade-form filter directìy and

of having ìess stringent requirements on arithmet'ic precision,

but it shares with most nonlinear programning probìems a

generalìy non-convex obiective function, and consequentìy there

is no guarantee that the solution found is the gìoba'l optimum.

4.6. 3 " Formul ati on B" Approaches

Many papers have been pubì'ished referring to uses of

"formulation 8", in conjunct'ion with an unconstraìned optimization

algorithm to design IIR digr'tal filters in the frequency domain.
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The method is conceptually simp'le, and has been descrìbed in

section 4.4.2. It can be appìied to any form of filter and

any type of response. A solution, represent'ing at least a

local optimum in the space of des'ignab'le parameters, is usually

obtained with one application of an unconstra'ined minimization

aìgorithm(c.f. several applicat'ions for the foregoing penalty-

function method). The prob'lem is not truly unconstrained be-

cause for stability all poles must lie inside the unit circle.

However, all local optima are guaranteed to be interior points

of the feasible regÍon (sectìon 2.3,2), and all constraints

are eventua'lly ignored (when the approximation is so good

that succéeding iterates remain feasible). 0n early iterations

it may be sufficient to test the result of each predicted

step for' stabiìity and reduce the step length if necessary.

If the phase (or group delay) response is not of interest,

infeasible iterates may even be accepted, because any poìes

hav'ing lrl ,1 may subsequently be reflected'inside the unit

circle with no change to the magn'itude response (other than

an irrelevant constant factor.) These and other matters are

dealt with more fully in sect'ion 4.8.

Steig'litz (tgZO) p'ioneered the technique, design'ing

low-order cascade-form filters to .Fit target magnitude functions

on1y. A least-squares criterjon and the Davidon-Fletcher-

Powel I ( DFP) al gorì thm were used ( Fl etcher and Powel I , 1963) .

In a paper (tglz), and more ful]y in his thesis (1973), Deczky

extended the appìicatìon to the desìgn of a'll-pass group

delay equaìizers, filters with specìfied group de'lay, and those

with simultaneous specifications on both magnjtude and group

de]ay. The DFP algorithm was appf ied to a least pth obiective
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function. Deczky's filters were of cascade form, but he chose

to use the poìar coordinates of poles and zeros as the iteration

parameters rather than the coefficients themselves. This has

the advantage of simp'l'ifying some of the exp'ressions (particularly

for the derivatives of group delay) but the disadvantage that

the exact numbers of real and comp'ìex poles and zeros must be

prescribed in advance. Maria and Fahmy (1974) also used the

ìeast pth criterion, but iterated the filter coefficients to

avoid the a priopi divjsion of poles and zeros into real and

complex pairs. They used the classical Newton-Raphson iteratjon,

obtaining very rapid convergence and apparentìy experiencing no

(al gori th¡r'ic) stabi ì i ty probl ems.

Bandler and Bardakiian (1973) also treated the magn'i-

tude response optÍmizat'ion prob'lem, using the least pth error

criterion w'ith very large va'lues of p (of the order of thousands).

They compared the performance (execution speed) of the DFP

algorìthm w'ith that of Fletcher's (tgZO) quasi-Newton method,

reporting considerabìy better performance for the latter.

(Chapter five of this thesis reports simÍlar findings for

least squares prob'lems. )

Balakrishnan and Rajappan (1974) treated the magn'i-

tude response approximation prob'lem in terms of the coefficients

of a parallel-form filter, and compared the execution speed of

the DFP and Fletcher-Reeves (1964) conjugate gradient algorithms.

Better performance was obtained from the former.

King and Condon (iSZa1 also used the DFP algorithm and

the cascade realiz.rtion, with simultaneous spec'ifications of

magnitude and phase.

0f the authors ci ted, Ste'i gì Í tz, Bal akrj shnan and Rajappan '
King and Condon, and Bandler and Bardakjian allowed unstable
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poles to appear during the process, and then reflected them

inside the unit circle. For reasons to be discussed 'in section

4.8 further iterat'ions are then normal ly requi red to obta'in

the (locaì1y) optimal stable solution. Deczky, and Maria and

Fahmy, modified their min'imization algorithms to ensure that

on'ly feasibl e steps were taken. Another, al ternat'ive, approach

invol ving transformation of uariabLes was suggested by Jull'ien

and Sid-Ahmed (1974). The stable region of ú¡e t p'lane (i.e.

the interior of the un'it circle) is mapped to the left half

of an auxilìary i. plane via a bilinear transformation

(4. e3)

and expressions derived for the frequency response in terms of

poìes defined by the cartesian coordinates of that plane, À*

and lr. The new stabiìity constraint À*.0 may be satìsfied

whitst us'ing an unconstra'ined minimizat'ion algorithm by choos'ing

as variables r{ and Àr, where 
^* 

= - ÀT'. The expressions for

magnìtude response and its derivatjves in terms of L| and l,

are shown to be acceptably sìmp'le and the authors report rapid

convergence using the method.

4.6.4 Formul ae for F uen -Doma'in Res nses and Their
er VA ves

In section 4.4.3, general expressions were derived for

"formulat'ion B" objective functjons and the assocjated grad'ient

vectors and Gauss-Nevlton and Hessian matrices. There' the type

of response being optimjzed was left unspecjfied. In this

section we clerìve the expressions for the following frequency-

doma'in responses (and derivatjves), approprjate to a cascade-
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form filter - (a) magnitude, (b) magnitude squared, (c) log

magnitude, and (d) group delay. Expressions for derivatives

of phase response become very compìicated and the problem

of optimiz'ing phase is better treated via group deìay.

The independent variables have been chosen as the

fi I ter coeffi ci ents themsel ves .

(a) Maqn itude Response

Steig'litz (i970) derives expressions for the magnitude

response and its derivatives with respect to the filter coeffic-

i ents , 'invo'l vi ng compl ex ari thmeti c. Here we deri ve al ternati ve

expressiohs employ'ing rea'ì arithmetic only.

hle assume a cascade-form filter having transfer funct'ion

rT
H(z)

(= 1 + ak z--L + bk ,-'
(4.e4)

KN

z-l+d 7-21+Ck k

k*t

KN

T-T*, (z)
k=I N

Ko

rT

(4.e5)

D (z)
k

k=1

Formally, then,ì we are considering a cascade of K*

"numerator sections" and KO "denominator sections" a'lthough

in practice as many such sectjons as poss'ible would be

paired to form biquadratic sections as shown in figure 4.3,

minimizing the storage requirements. The magnitude squared

response at frequency 0m 'is g'iven by
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M,n = lH (exp (jor))12 (4. e6 )

(4.e7 )

(4. e8)

(4. ee )

where

Tmk = Re {NO(z)}z + Irn {N¡(z)}22=exp (j.m)

= (1 + ak cos 0n' * bk cos 2e*)2 * (ak sin 0* + bk sin 2er)2

= 1 t uk'n bk'* 2a¡ (1 + b¡) cos em + 2b¡ cos 2or (4'100)

and, similarly

Umk= 1+ck2 *dkt+zck (f+aO) cos om+2dkcos 20* (4.101)

The quantity under consideration at present is the magn'itude

response at the mth frequency, i.e.

Bn,' = (tr)" (4.102)

and so its derìvatÍve w'ith respect to the ith fjlter parameter

is given by
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M
m

. :âM-/z mq (4.103)

(4.10s)

â
1 (4.104)qE

For example, if *i = aO, then

and so

âMt

âuk

rt, 
= 

B, (ao + (1 + bo) cos er)

Ðuk Tmk

Making the following definitions

SArk = at + (1 + b¡) cos om

SB*k = bk * uk cos em + cos 2 om

Sc*k = - (ck + (t + d*) cos er)

SDrk = - (dt + dk cos o* + cos 2 o,n

we have as expressions for the first derivatives:

ô

aak

âBtq- B* SBrk
i-Ïi¡-

'mk

B* Scrk
-qk-
Br SDrk

a%

âck

âBt

"dk

)

(4. 106 )

(4. 107 )

9m

um
k

(4.108)



If second derivatives are ..ÅPtÞ,, they are readily found by

di fferentiati ng express'ions (4.108) , obtaini ng the fol I owj ng resu'l ts:

â28
m

ry
B

# (rmk - sRrr')

å (tr* - ssrkr)
'mk

a2B
m

ry

-
'mk

B
m

B
m

(T. coso -S'mK m
S

Amk Bmk )

a2B
m

ry
,rB,

ry
dzg

mãm
a2B

m

w (- u

w (-umk+3Sr*¡2)

B
m +3S 2

Dmk )mk

U cosomKm(
B

m

B S S

mj mk

BS S

Br SAri sgrk

Tmj Tmk

+3S S
Cmk Dmk

ilk

jlr

all j,k

all j,k

)
çk=

Amk

aa âa
J k

a2B
mqq

a2B
mw

a2B
m

ryq

T U
mj mk

BS S

CmkAmjm

Amjm Dmk

B
m

T T
mJ mk

i/k

all j,k

all j,k

ifk

S Sgmj Cmk

T U
mJ mk

B
m Dmk

S S
Bmj

Trj U

a2B
m m

S

rrli

B

mk

S

mk

Cmk

âc . âc,JK

a2Bm B* Sc*j Surk

acj ad
k

Utj Umk ilk

(4.10e)
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Br sn*¡ }tf ilk

un'j
(4.10e)

U
mk

(b) Maqni tude Sq uared Response

In this case' we have B* = M* of the prev'ious section

(onty B* changes its definition - all other symbo'ls are used

in theìr previous context). Formuìae for first derivatives

are obtajned as by-products of the preceding analysis, and those

for second derivatives follow with little extra effort. In

summary, we have

M* (+.tto)

â 2 S
Amk

I
mk

2 M* sBrk

Tmk

B,n =

B* M
m

2M*
â tk umk

âuk

âBt

q=
âBr 

-

(4.111)
S

Cmk

AB
n1

-=
ad,

K

a?Bm

ããr
2t4

m

-
lmk

,rB*
ãr

2 M,n

MK

u,B,n 2 M,n cos o,

wil- mk

,tB,n 2M,njscrk' r\ã* = q* tlil-- - "

(4.i12)



t,B*
ãar

aaj âa 
k

,tB*w
trB,n

2Mt
q*

2M*r 4S S
Cmk Dmk - cos o* )
umk

rrB* 4 Mn S s
Amk

4 M,n SArj Sg*k

T

4 S
Cmk

ilk

ilt<

all j,k

all j,k

ilk

all j,k

all j,k

ilk

ilk

mkmj

T

S

mkmj

M*

mj k
aaj âck

ârB,nw
a2B

m
4Mt S S

Bmj Bmkw -T.
mJ

4M
m

ezB
m

ryq
urB*

ãc ac
J

urj

Tmk

S S
Bmj Cmk

T
mJ

umk

k

a2B 4Mm :m tt,o¡ toql
ilkacradO

,, B*

ãil.aã-JK

4 Mt

U
mk

S S
DmkDnrj

umj umk

The importance of the magn'itude squared function is that jt

is differentiable (and twice djfferentjable) at frequencies

where it is zero. This does not apply to the magnìtude (and

ìog magnitude) functions. Sharp cut-off digital filters are

usually designed with zeros on the unit ciicle. In a design

(4.1r2\
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by optimìzation this is ensured by fixing bk = 1 in some

numerator sections, and varying only the aO according to

the algorithm. In such cases, zeros often move so close

to the frequencies of specification (o*) tfrat TrO becomes

nearìy zero, and the evaluation of derivatives of the mag-

nitude response is unrel iable or impossible. The magnitude

squared response 'is sti I I usaLrl e , al though not al 1 of equat jons

(+.ttt) and (4.II2) can be appìied. Excessively smaìl values

of T*O must be trapped by the computer aìgorithm and derivatjves

evaluated after factoring Tmk out of the expression for Mr.

(c) Loq Ma qni tude Response

In some cases 'it may be more natural to fÍt a model

to a desjred or a measured spectrum represented on a log-

ari thmi c magn'i tude scal e than on a I i near scal e. An examp'le

would be a model for a speech sound, because the ear appears

to have a roughly logarithmic response. Mathematically' this

has the desirable effect of greatly simpf ifying the second-

derivative matrix. llJe choose to define

Bn' = 'log. (M*) (4.113)

because the resultìng expressions are s'implest. If the

target response were specified 'in some other 'logarithmic

units (e.g. decibels), scaling by some constant factor would

be required.

From (4,97) and (4.113)

'' oge ( U*k )

KN

_r_L
k-r

Bt

KD

''eee (Trk) - 
r,l,

(4. i14)
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Therefore

and similarly

âa T

a (T*r)

]F
umk

âB* âa
k

k mk

ðBtq
ðtk

âBtq

(4. 115 )

Btö 2S

2S

Cmk

Dmk

Because the first derivatives are functions of the coefficients

of one seetíon onLy, most of the second derivatiVes are zero.

The Hessian matrix H 'is thus equal to the Gauss-Newton matrix

R except for the elements on the majn diagonal and some of

the el ements on the inrmedi ate]y adiacent diagona'ls (assuming

that the parameters are ordered such that bO fo'lìows an and

dO follows cO, for all k). The addjtjonal labour necessary

to compute H (involving of the order of N operations) is

small compared with that a'lready expended in obtainÍng R

(of order N2 operations), so that there may be a better case

for adopting a Newton method when optim'izing the log magni-

tude response than in the other problems so far considered.

Formal expressions for second derivatives are:

::

,rB* Z(Tmk-2SBmk2)

2(T 2S 2)
Amkmk

T Z

mk

T
mk

¿

(4.116)
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2 (Tmk cos om - 2 SA*k Sgrt )

-2(Umk-2Scmk2)
z

k

-2S

I

t

I

'1I
..t

¡þ

I

$'rt

,,

ù

i
I'

)
I

I-l

.,

ut

_ Z (Urt 2 )Dmk

umk'

â28
m

wd
ârB,w
trB*

ãõm

a2B
m¡ffiJK

- 2 (U*O cos u^ - 2 SC*k Sork )

,rB,m
,rB,nw

ttB*

ryE
trB,nw
ttBtw

=Q ilk

=Q jlf

(4.116)

(4.118)

u.z
MK

= Q all i,k

Group Delay ResponSq

The group delay function of a digita'l filter is defined

.(e) = - # { ars (H(exp io))} (4.117)

Defining H (z) = ü-{+, Deczky (1969) has shown that

(d)

as

where

t( e) = i{e - i(z)

I

I

z'

x(z) = N(7-r) o(z)
iJ

u(4.11e)

and

zl = exp (je) (4.120)
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For the cascade-form dìgital filter' we have

'1I
J

.rl

þ

¡'
t'

.l:

&
't

,,

¡
I
I
I
I

I'I

N(z) =TTtl+ao/
k=t

D(z) =
k=l

KN

KD

t-T (1 + co z-l + do z-2)

I + un z-2)

T1 (1 + co r-I

and

which lead to

x(2,) =

KN

T1 (1 + a bk ¿2) +d z-2

(4.rzt)

(4.122)

(4.123)

KD

k=t
)

rl,

7*
k=t

considering an arbitrary function which is a product of

several factors, for instance

F(x) = ¡1t¡ B(x) c(x)

then

so that

dF&

I
F

AB
dc
Ax

+AC dB
ffi

in (4.123), we get

i
k=t

KD z-2+ Zdk z-3

I
k=1

k k

(4.r24\

+ec$f;

1dB 1dA+ 
--Bdx Adx

(4.125)

(4.t26)

I

I

+dC
¡x

1

e
dF
dx

Applying this reasoning to the product

KN l.
k

ti
1Uk

+C +
k

(4.r27)
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-t
I

,{

ÞKN akz+2bOz2 Ko z-7 + 2d
'z-z

I
k=I l.+a z+b 22

k

c
k k (4. 128).I

k=I
k

1+c z-I + d 7_¿
k k I

Substitutìng z = cos O + i sine and solving for the real

part, we get

KN , * ak 1t + SUO) cos e + 2bO cos 2ouk' * 2bk
.(o) = I 1+a z +b ¿ +Za (r + bf)coso*zbk cos 2o

k=t

KD

T
k=I

k k k

co2+ 2do ' * ck (t + 3do) cos o + 2dk cos 2o

1 + ck2 * dk, + 2i¡ (t + dO) cos e + 2d¡ cos 2e

Defining

Vmk = uk' * 2bO2 + aO (1 + 3bt)

and

(4.12e)

+2b cos 2o
(4.130)

cos e
m k m

Wmk = "k, 
* ZdOz + cO (f + Sd,.) cos 0m + 2d¡ cos 20* (4.131)

we have then, in terms of T*O and UrO a'lready defined'

KN

I
k=I

V
Ko
F
)

k=IÇ;
mk

hf,
MKr.
MK

Bn, = t(or) (4.t32)

As in the case of the]og magnitude response, the expression

for group delay is the sum of several terms, each term involv-

ing the coefficients of only one (numerator or denominator)

section. Hence, each expression for a first derivative con-

tains the coeffic'ients of one section only, and all second

derivatives are zero except those with respect to two co-

effic'ients of a s'ingl e sectjon.
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Makìng the definitions:

RB*k

Rcrk

ac
U

mk

RArk = # = Zuk+ (1 + 3bo) cos om

ðvrk

Ð

âwrk

= # = 4dk + 3òo cos em + 2 cos 2o*Rnnt

= 4bk + 3ak cos em + 2 cos 20,
(4.133)

=2c +
kk

= 
Trk RArk - 2 v*k sA*k

T,2,
MK

T RBrnk-2v*ksBrk
mk

T 2
mk

a urk Rc*k + 2 ldmk s

(1+3d )cose
m

the expressions for first derivatives become

âBtq
ôB*q
Bt

Cmk

(4.134)

k 2

Dmk

Ðd k 9,2
MK

and those for the nonzero second derivatives

ðBr urk RD*k +2 Sl^l ,
MK

a28
m

3ak
= ft # (v*k * 2RArk sRrr.) - # vrk sA*kt

- 4 2 ,r, roD c \r I rr c z- Ç - ffi tumk * 2RBrk ssrt ) - # vrk sBrk
urB*

ry

(4. 135 )

I

I
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fu = ïP # (v*o cos u* * RA*k SB*k * Rs** sRnk)

SA,nk SBrk

l

trB*
ãc?d

+

-3coso
U

mk

vmk

t,B*q # (wmk - 2Rc*k Sc**) ,# w*k sc*kt

,rBn'

mr = #. # (wmk - 2Ro*k Snr*) # wrk SD*k'

m - 
# 

(w*o cos ,,n - Rc*k Sork - RorL Scrt )

wmk S S
Cmk Dmk

(e)

(4.135)

All-Pass Grou Equaì i zers

An approach often taken (for example, bY Deczky (1973))

to the simultaneous approxìmation of magnitude and group

de]ay response involves the use of the so-ca11ed aLL-pass

filter. A digital filter is designed by any suitable method to

achieve the spec'ified rnagnitude response, without at th'is

stage paying attention to group de1ay. This filter ìs then

cascaded wjth another, an aìì-pass, whose parameters are chosen

to optimize the group delay response of the overall cascade

filter without having any effect on the magnitude'

The resultìng filter may be sub-optimal wìth respect

to an overal'l specification on both magnitude and group delay'

but the spl.ittjng of the design process into tvro stages affords

a great simplification. in addition, if the ìmportance of

approx'imati ng the prescri bed magni tucle response versus that of

o De'laY
I
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group detay can be appropriate'ly quant'ified (weighted), the

al1-pass design affords a good starting point for an overall

parameter optimi zati on .

The most conÍnon obiective as regards group de'lay is

that it be constant within the passband (s), and an al'l-pass

fi'lter des'i gned w'ith th'is aim i s caì I ed an equaLízex .

A]ì-pass filters may be realized in many ways, in-

c'luding the cascade of second-order sectjons'shown in figure

4.3. In this case the speciaì all-pass property is ensured

by fixed relations between the numerator and denominator

coefficients. tde choose here to describe such a fjlter by

the equation

ck

q 1

{
z'K z-r +1+

H(r) = TJ
k=l 1 * ok z-I + dkr-,

That it has no frequency-dependent effect on the magnitude

response is readiìy seen by considering iust the kth section,

and its magnitude squared response M(e), i.e.

(+. trol

M(e) = H(z ) H(z-1 ) z=exp (je)

1+c ,+I*d L+cI
dkt-'

k kz Oz-l + dOz'z*2

1

V

!+Çkz-t+dkz-2 1+ckz+dOzz z=exp (ie )

(4. 137 )

The group delay response follows by substìtuting K* = KO = K

and ao = ckld¡ and bo = 1/dk into (q.:zg). After lengthy

algebraic reduction, we get



x.6 6

K

i
=1

2(1-dk 2+ck(1-dk)coso)
r(o) =

k 1 + ck2 * dk * 2ôk(t + dO) cos o + 2dO

k
cos ot

cos 0

cos 2o

(+. t:a¡

(4.l40)

As wìth any digitaì filter, the two po'les P, , P, of

a second-order alì-pass section (which are either both real

or a complex coniugate pair) must lje inside the unit circìe,

for stabitiry. The two zeros appear at 
t 

uto 
ü..0 

so are

outside the unit circle. In group delay optÍmization, stab'iìity

checks are necessary during the process because there is no

opportunity later to reflect unstabìe poles inside the un'it

circle aé may be done in magnitude optimizat'ion. The above

characterization of the al'l-pass in terms of its denominator

coeffícients.k, dk (rather than its numerator coeffic'ients)

simpìjfies a computer program because the stability check is

the same as w'ith "ordi nary" sections.

Formulae for derivatives of group delay response

with respect to the designable parameters, ek, do are ob-

tained by differentjating (4.138). Aga'in, becaus. B* = t(o*)

is the sum of contributors from indiviclual sections, the inter-

section second derivatives will be zero. Making the definitions

Xmk = 2 (7 - dk'* cO(1 - dO) cos e*) (4.13e)

and

=H=r(1 -da )tmk

QDn,

aX
MK

ãã-k
2rk

m
4dL

k

and emp'ìoying a'lso symbols defined 'in (4.100)' (4.101) and

(4.L07), the expressions for the mth spot group delay response
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and its nonvanishing first and second derívatives become:

K

ik
m

0B =T (
X,

MK

çk
(4.141)

(4.r42)

m I

a B* urk Qcrk * 2xrk Sc*k

Urk'âc
k

and

u*k Qo*k * 2xrk sDrk

Umk2

+ = 
#(zQc,nr. 

Scrk - x*k) * # x*k Scrk'

'ð2

ac* ad 
O

m
B -2coso

U
MK

m 2 (Qcrt SDrk * Qo*k Sc*k - xmk cos o*)

q-% x*k Sc'nk SDtk

+ q'.k"

+

4. 143)

4.7 Des i qn of Infinite Impulse Response Diqital Filters in
the Time Domain

4.7.I Review of the Literature

The prob'lem considered in this sectjon has, over the

last 15 years, appeared in several different guises. Steigf itz

and McBride (1965), Schulz (1968), and Miller (1973), among others,

"B* -4 z

4+ = ffi 
- # (2 Qo*t So*k - x*t) * # xmk SD'nkt
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cons'ider the probìem of identifying the parameters of a model

for some physical plant whose behav'iour is to be controlled.

It is assumed that (discrete-time samples of) 'input and output

signa'ls are available over a certain period of time. The

problem is to find the parameters of a model wh'ich produce

the "best" approx'imation to the gìven output sequence when fed

wi th the g'iven i nPut sequence.

Other authors, such as Brophy and Salazar (1974) and

Cadzow (ßlA) consider synthesizing an IIR digitaì filter to

approximate a given inrpulse response. (This is clearly a less

general form of the system identjfjcation problem, where the

input sequence is iust an ìmpuìse at t = 0)' They point out

that even if the orig'inal specification were on magn'itude and

phase in the fz'equency domain' a suitable target impulse

response sequence coul d be produced from th'i s by one of the

standard methods for FIR filter design. Cadzow shows that as

the length of the target sequence becomes large, least squares

cri teri a i n time and f req uency domai ns become i ndi st'ingu'i sab'l e

in terms of the models produced. Brophy and Salazar díscuss

several reasons for regarding the time domain as "the more

natural domain" for IIR fiìter synthesis. Firstly, the com-

putation of the time response and its derivatives requires

nothing more than additions and multipl'icat'ions (that is,

digital filtering operatjons) whereas frequency domain

responses are comp'licated functions of the coefficients taking

much computer time to evaluate (for example, the phase function

requ'ires the arctangent). Secondly, good jnitial approxìmatìons

are ava'ilable for the coeffic'ients when working 'in the t'ime

clomain, using procedures such as those of Shanks (rcU ) and



16$
Kalman (1953) which involve only the solution of linear equa-

tions. The fact that magnitude and phase responses are optim-

ized inseparably, and over the ent'ire range of frequency, is

a mixed blessing. The programming is greatìy simplified thereby'

but strìngent specjfications may faj1 to be met at certain

critical frequencies. However, as Brophy and Salazar point

out, the result of time domain optimization prov'ides an excellent

starting po'int for a frequency-domaìn optimization to obtain

a final fit.
steiglitz (1977) generates a pole-zero model for a

speech s'ignal by f i tting an I IR f il ter model to a minimutn-phase

vocal tract 'impul Se response esti mate obtai ned by homomorph'ic

processing. (A similar probìem is dealt with in chapter seven

of th'is thesis).

In the work of all the authors cited so far in this

section, the dìrect form of the filter is derived. The potentìaì

of optimizat'ion methods to derive a cascade (or parallel) filter

and so avo j d the numeri cal preci s'ion probl ems assoc'iated wi th

the direct form has not as yet been realized. Steiglitz and

McBride (tqos), Schulz (tgoa), Miller (1973), Evans and Fischl

(1973) and Ste'igl itz (1977 ) use spec'ia'l iteratjons (not gerreraì

minjmization methods) wh'ich are appf icable only to the direct

form. Brophy and Salazar (I974) try steepest-descent and DFP

methods, concluding that a few iteratjons of steepest descent

usually provides a useful improvetrent from a good starting

point, and that the extra comp'lexity of DFP is not worthwhile.

However, Cadzow (1976) found the usual disappointìng converg-

ence of the steepest descent rnethod, and h'igh1y recommends

the damped Gauss-Newton or "l ìnearjzation" al go¡ithm. His
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test of a second-derivative (Newton) method was unsuccessful,

but considering that no provision was made to handle an

indefinite Hessian this is not surprising.

In another paper, Bertran (1975) also obta'ins good

results from the damped Gauss-Newton method, again for a

di rect-form fi I ter.

The reason for the concentration on the direct form

i s presumably that good i ni ti al approx'imations 'in thi s form

are available via the methods of Shanks and Kalman, or by

Pade approximant techniques (Burrus and Parks (1970), Hastings-

James and Mehra (1977)). However, if the posit'ions of the

poìes and zeros are to be determined, a factorization of a

high-order polynomiaì becomes necessary anyway, and this

may as wel'l be performed on the initial approximat'ion (before

the optimization) as afterwards.

Jackson and Wood (1978) poìnt the way towards the

direct formulation of an IIR model in cascade form. Their

work treats the Línear predictíon prob'lem, that js, the filter
generated by the procedure 'is an FIR filter whose parameters

are such as to minimiTq the energy in the output sequence.

They depart from the usual practice of employing a direct

form filter, and are thus forced to use opt'imizatìon tech-

niques to determine the parameters. In the case of linear

prediction th'is is a great sacrifice because there are very

efficient non-iterative sol ution methods available when us'ing

the direct form filter. However, for IIR model'ling, iterative

methods are needed anyhow. The chief value of the Jackson

and l,lood paper in this context is that auxil'iary filters for

generating gradient sequences Were derivedn and these generalize
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nice'ly to the case where the derived fjlter has poles as well

as zeros. This matter is taken up in the next sectjon.

All the foregoing work has used a least-squares

criterion in the t'ime domain, that is, a function of the form

F(x) =

M

I
m=

-Y\2m'
(B,n( x )w

m
(4. 144)

I

is miminized, where B, and Y, are the achieúed and target

output samples at the mth time instant. This is an exampìe

of ,,formulation 81" of section 4.4.3. In princip1e it would

be possible instead to adopt formulation A - that is, force

each le*' - Yrl to satisfy a constraint. A pena'lty-funct'ion

approach (simjlar to that outljned jn section 4.6.2) was

proposed for continuous time domain approximation by Athanass-

opoulos, Schoeffler and Waren (tgO6), but apparentìy this

has not been used for dígitaL filters in the time domain.

The formulatìon B approach would seem simpler, and nlore

meani ngfu'l i n most practi ca'l cases .

4.7.2 Computational Sc hemes for Gradient Sequences

As was pointed out ìn section 4.4.3, an appropriate

formulation for time domain optimization is "formulation BL".

The approprìate expressions for the obiectjve function and

its derivatives are (4.17), (4.18), (4.57), (4.58) ' (4.59) 
'

(4.60) and ( 4.44). In the time,domain, the elernental achieved

responses Bm( X ) are the output samples themselves, when l;he

fiIter with parameters X is driven with some spec'ified

Sequence (which in many cases of prac'b'ica'l interest would be

just an impulse at t = 0). As (4.44) shows, we need the first



deri vati ves
âBm( x )

äX

T? 7,

for each parameter x., and each time index
1

m, and to use a Newton method we require also the second de¡i-
aza*( x )

vatives ñtr. It turns out that all such quantìt'ies can

be generated very conven'ient'ly as the output sequences of

digital filterswhich are very closely related to the filter

under consideration. Those sum-of-products,expressions in

(4.44) jnvolv'ing derivatives are then interpreted as zero-1ag

cross-correlations between the appropriate (we'ighted) sequences'

To show this we consider a "primary" d'igital filter,

characterised by a particular topology and a vector of para-

meters x , exhi bì t'ing an impul se reponse h*( x ) for

m = 0, 1', We allow the filter to be driven wìth a certain

sequence u*( m = 0, 1, ) and obtain an output sequence

v,n (m = 0, 1, ...), which is of course a funct'ion of x

If U(z), V(2, x ) and H(2, x ) are the z transforms of the

u: v and h sequences, then

V(2, x ) = H(2, x ) u(z) (4.145)

and the output samples themselves can 'in principle be found

from the z-transform inversion formula

v*( x) 1

# z*-r H(2, x ) u(z) dz (4. i46)
2r j

where the contour integral is evaluated over any c'losed path

enclos'ing all the poìes of V(2, X ). The unit c'ircJe suf'fices

for any stable v sequence and th'is cond'ition will be true

for any usef ul f .i I ter. The requì red (f i rst or secottd )

derivatives of vr( x) may be found by different'iating (4.146)'
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and the differentìatjon and contour integration operations may

be interchanged since they are with respect to totally dif-

ferent variables. Thus we have

av (x)
m

AX i f m-t
z u(z) dz . (4.r47)

This is of the same form as (4.146), and shdws that deriv-

atives of the output time samples of the p¡imary fìlter with

respect to any parameter xi are obtained s'imp]y as the out-

put sequence of a filter with transfer function 4tÐ '

driven *iy, tn. same input sequence. Second derivatives are

exactly ana'logous.

considerin particul ar a cascade-form fil ter with K*

second-order numerator sections and KO second-order denomjn-

ator sections, having transfer function

Ao

KN

T-T (1 +akr-t*brr-')
H(z) =

k=t (4.148)
Ko

fi(1 +c
k=1

-1
kz

+d )
_2

z
k

Then, by d'ifferentiation, we obtain the transfer functions of

these gradient filters, for example

KN

ooit TT (1 + aoz-t * bkt-')
k=i

klì

TT
k=l

so that the gradient sequence with respect to the ith a

coeffjcient 'is obtained by pass'ing the input sequence through

(4.i4e)
Ku

(1+coz-r+doz-2
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aLL but the ith numeratoz' section, and then delaying the

sequenee by one sanrpLe. ro. $f$ the expression is the
I au

same except that z-2 replaces z-1, so that.the 
d

âv

sequence is the same as the # sequence but d'eLayed by
ooi

one mo?e satnpLe

Since the primary and gradient filters have so much

in common, it is useful (especjally for a ìarge number of

numerator sections) to avoid the dupl ication. By muìtipìy-

ing the top and bottom of the right-hand side of (4.149)

by 1 + uit'' + biz-z, we get

= H(z) z-t 1 (4.150)
1+a z-Ì+bI

z-2
1

so that all grad'ient components with respect to numerator

parameters (a's and b's) can be found by passing the output

of the primary filter through a paraì'le1 set of recursjve

sections in the manner shown in figure 4.13. Each recursjve

section effective]y cancels one pair of zeros of H(z) and

at the same t'ime prov'ides the required delay. Unfortunateìy

the usefulness of this scheme would seenl limited to transfer

functions H(z) wh'ich are minimum phase, because otherwise at

least one of the recursive sections 'is unstable. Although

the unstable poles are theoreticalìy cancelled perfect'ly by

the zeros ìn H(z), there would probably be se¡ious error

bu¡ildup in the grad'ient sequences due to the use of finjte

precision arithmetjc.

D'ifferenti al j ng (4. i48) wi th respect to c., and d.'

yì e'l ds
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= - H(z) z-r

1

1 + ci z-r + dir''

respecti ve'ly:

(4.151)

(4.152)

and

aH(¿- - H(z\ z-2ôoi 1+ ciz-L + d'z-z

so that these gradient sequences' too, are generated by

simp'le recursive sections fol'lowing the primary filter as

in figure 4.14. The difference from the scheme of figure

4.13 is that the output of the primary filter is negated,

and that the added sections do not cancel zeros of H(z)

but, ratîer, repeat its Poles.

Second-derivative sequences are formal'ly derived by

differentiating expressions like (4.149) once more. If all

zeros are mìnimum-phase, they can be efficiently computed by

post-filtering the first-derivat'ive sequences with yet an-

other second-order section. The operations jnvolved are

summarized below, where we use the shorthand expressions

H(.), R*,(.) and *of(') to indicate filtering bv H(z),

1+a z-I+b
and 1

""'1+ckzi *Ç'
1

z'
k k

v, = H(ur)

ôV
m

âuk

-2 RttL

= z-l RNk (vm)

âvt
ab, L

K

AV
m

-=-

(vm)

(vm)
ac

k
z-r R

DK

(4.153)
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The listing of a FORTRAN subroutine which computes the

objective function value, the gradient vector, the Gauss-

Newton matrix and the Hessian matrìx according to the

princ'iples of this section'is g'iven in Appendix B.

4.8 Telleqen's Theorem and the Adioint Fil ter

The theorem of Tellegen (tgSZ) provides a very general,

computat'ionally efficient way to generate the first- derivative

(or "sensit'ivity") vector of a network transfer function wjth

respect to the network elements. This provides the basjs of

a method for the design by optimizatjon of electrical net-

works in'the frequency domain (Oirector and Rohrer, 1969a)

and in the t'ime domain (Director and Rohrer, 1969b).

This work for conventl'onal electrical networks was ex-

tended to signaL-fLow networks (of which digital filters are

an example) by Fettweis (1971c) and by Sevìora and Sablatash

(1971). Although the results are valíd for a very genera'l

class of signa'l-fìow networks, it appears that when the

filter being considered is a cascade of second order sections

the approach offers no advantages over the methods aì ready

descrjbed. This matter will be explored below.

The cascade-form digitaì filter shown in block-d'iagram

form in fìgure 4.15 (a) may alternat'ively be represented as

the signal-fìow network of figure 4.15 (b). Such a network

is made up of nodes (represented by numbered circles) and

bv,anehes (representecl by di rected 'l 'ines ) . Each node i s

considered to have a sígnal uaLue whìch flows outwards into

any branch lvhose'input is connected to that node. The s'ignal
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value is the sum of all the signals flowing out of those

branches whjch are directed into the g'iven node. Each

branch has a transfer function which together with the

branch ìnput determ'ines the branch output. In the present

case each branch transfer function is either a constant

multiplier or the unit delay operator z-1.

The aQjoint of a gìven signal-flow network is the

network obtained by reversing every branch. For example,

figure 4.16 (a) is the adioint of figure 4.15 (b). This

network may easily be translated back into the block- 
.

diagram form of figure 4.L6 (b). Fettwejs (tgZtc) proves
,

that a signal-flow network and its adjoint are inber'-reeip-

noeal, which in the case of sing'le-input sÍngle-output net-

works means that they have ident'ical transfer functions.

Thus the filters of figures 4.15 and 4.16 are alternative

realizatjons for the same filtering actìon.

Fettweis (1971c) also proves an important result re-

lating to the sensitivity of an overall network transfer

function to the value of any 'individua'l branch transfer

function, which may be stated as follows. Consider a

signal-fIow network, refet'red to as the "primary" network,

whose nodes are numbered 1, 2, N, the input node hav'ing

some number A and the out.put node number B. Assume that

some node C is connected to another node D by one (and only

one) branch wìth transfer functÍon o, with the branch dir-

ected from C to D. A transfer function may be calculated

for the signal path from the 'input node A to any node; in

particular let that from input to output be denoted HO, and

that to node C be HOr. Consider now the adioint network.

The nodes reta'in their nunibering but now node B'is the input

i
,{

ù?^

I

f
ò,

fl I



183
and node A the output. A branch of transfer function ü now

operates on the signal at node D to produce an input to node

C instead of vice versa. Denoting transfer functions ín the

aþjoint netuoyk by primed quantities, the result of Fettweis

is that

fr tHorl *' HAc H'BD

(The inter-reciprocity result is of course expressed by

¡11 H
BA AB

considerìng the steady-state frequency-domain case, iust

one complete ana'lysìs of the primary filter at each fre-

quency would produce a'|1 the compìex numbert HAi for

i = 7,2 N, and one analysis of the ajojnt filter would

produce the numbers H'gi, i = 1,2 ... N. All sens'itiv'ity

components could then be found from (4.154) by muìtiplying

the appropri ate quanti ti es , wi th no formal di fferenti ation

Of analytíc expressions being required.

We now return to the example shown jn figures (4.15)

and (4. 16) , and emp'loy the notat'ion for transfer functions

jntroduced above. Accordingly, the transfer function of

the entjre filter it Ho, (or H'no). We observe that a

multipì.ier branch of value ar js directed from node 2 to

node 4 in the prìmary filter, and from (4.154) can calculate

i ts sensi ti vi ty comPonents as :

J

,{

¡r

$,

p

lt
I

I
{

'I

ï
t
t,

I

I

I

)

(4. 154)

(4.155)

I

âH no _
Aa

I
H H,

no 94
(4. r 56)
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Sjmilarly, the sensitiv'ities for the other multipìiers

of section 1 are I

-l)9 = -
âd

H H'
91

The transfer function values requ'ired from the a&ioínt analysjs

H, and,H' are those of the whole of section 2 and of the
94 91

entire cascade filter respectjve]y. Thus no special adio'int

analysis is actual'ly needed - analysís of the appropriate

filter secti ons in the prinary foz'm generates the same values.

hlhat has been shown for the example of two cascaded

second-order sections obviously extends to any number. That

is, any sensitivity may be found by muìtiplying the transfer

function of a cascade of cornpLeúe sections by a transfer

function of the form of t H or I H From the s'ignal-
02 03

flow diagram of figure 4.15 (b) we cì ear'ly have

-tz'

âH
,09 - Hto, 03

âH

tit= - þl

t
ãH

H'
94

H'
02 9I

L+cz-L+dz-2
I1

z'
L+cz-I+dz'z

03

(4.157)

(4.158)

I

H

H

(z)
02

and

0

L

J
(z) = (4. 15e )
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To quote formulae for the sensitivjties with respect to the

muìtiplieri in a general cascade filter of K sectjons, we

define for the kth section

H*O(z)=1*ukt-t+bkz'z

and

HOO(z) = 1 * rk-'+ dkz-2

so that the overall transfer function H(z) is

(4.160)

(4.161)

K

k=tH(z)

fln*o (z)

(4. 162 )
K

JlHoo (z)

k=t

and the transfer functions which constitute the sensitivities

are

K

fl Hnoo(')

k=I
kli z-l

Fr-jTÐK

flHoo(z)
k=I
kli

(4. 163)

flH*o(z)
K

k=I
kli

K

flHoo(z)
k=t
kli
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K

¡H*o(z) z-l
k=I ç¡aac

J ¡f Hoo(z)
K

k=I
(4. 163)

K

IT H (z)
NK

k=l
K

--2rrÐ-
TJ HDk(z)

k=t

The foregoing analysis via Tellegen's theorem and the

adjoint digitaì filter has merely succeeded in deriving the

same gradient filters aS were found for time-domain gradient

sequences in Section 4.7.2. The expressions (4.t6S) are

no more (and no'less) than what wouid be obtained by direct

differentiation of the z-transform expression (4.162). Thus

the adjoint method seems to offer no computat'ional advantages

in either the time or the frequency domain for the type of

fi I ters be'ing consi dered.

4.9 S ecial Considerations in Di ital Filter Desì
m zat 0n

4.9.1 Stability of Filters

As mentioned in Section 4.6.3, it is not necessary

to consider the stability of the digìta1 filter at every

stage of the optim'izat'ion process when the magnitude frequency

response alone is of interest. Th'is js because the magnjtude

response shape is unchanged if a complex conjugate pole pair
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al z = r exp (t iO) is rep'laced by a paÍr at z = r-l exp (t iO)

or a real po'le at z = p is replaced by one at z = p-r' A

constant gaìn factor associated with th'is v'oot reflection is

irrelevant because it automatical'ly becomes incorporated Ínto

the parameter q in formulation 82 or 83 (Section 4.4.3).

Stabì'lity of the filter can be guaranteed by performing re-

flections for poles whjch are outside the unit circle. How-

ever, 'it may not be sufficient to do this iust once at the

end of opt'imizat'ion - see Section 4.9.2. A similar situation

exists with respect to zeros - if a minimum phase design

is desjred thjs may easily be guaranteed by reflecting out-

ly'ing zeros i ns i de the uni t ci rcl e al so .

For other classes of djgital filter des'ign, that is,

time domain desìgn or frequency domain design in whjch phase

or group delay response ìs. cons'idered as wel'l as magnitude,

poles must always remain 'insìde the unit circle. For a cas-

cade-form filter this translates to a requirement for the cO

and do coefficjents of each section k to remain within a

triangular region of the'ir plane' as shov',n in figure 4.17.

The region above the parabola dk= Z cO2 corresponds to a

complex conjugate pair of poles and the remainder of the

triangle to real poles. The stabilìty of the section is

readi'ly checked without actually eva'luatìng the poles - that

is, the filter is stable jf, for every denomjnator section,

d <1
k

and 1+ck+dkt0 (4.164 )

1-c +d >0
k kand

During the app'l i cation of a gradient method of optim'izati on ,
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the subroutine wh'ich eval uates the obiect'ive function i s

normally ca]led on two d'istinct occasions. The first'

whìch occurs once per iteration, js the maìn call to evaluate

the gradient vector (and possi'b]y also the Hessian or Gauss-

Newton matrix) in order to determ'ine a search direction p

in parameter space. The values of cO and dO (for some

arbitrary section k) prevaiìing at this cal'l may be as shown

by .(¿), O(¿) in figure 4.18. (The supersc¡ipt (j) represents

the iteration number), The search direct'ion p(i) p.oi..ts

as a senri-infinite l'ine segment in the (cO, d¡) plane, along

which rhe po.int (.[i*t), ¿o(j+t)) *ust eventually ìie. The

second occasion on which the function subroutine is called'

returning(usua'lly) only the function value itself, is in

making trials for the new parameter vector * (j+r) and the

(cO, d¡) proiections of all such trial vectors must also

lie along the line. If the first trial step'length c[ v'iolates

the stabiljty requirement 'in any sectjon (readily checked

from (4.164)I no attempt is made actually to evaluate the

function value. Rather, the trial a is either repeatedly

reduced by some constant factor (figure 4.18) until stabil'ity

'is gained jn all sections, o12 the necessary reduction factor

is calculated for each section (a matter of simple geometry)

and a value Of g used which satisfies the most st¡ingent of

these requirements by some small margin. In this way it can

be guaranteed that the stabi'l'ity constraints are not violated

by the new parameter vector x (i+t). 0f course, the value

o(i) actual'ly employed may be smaller than the upper bound

arising from filter stabi'lity considerat'ions, because there ìs

a necess'ity to Secure a function decrease at each 'iteration
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(the aLgorithnic "stability" condition). There poss'ibìy is

also an approx'imate line mìnimization requ'irement, depending

on the method in use.

If the design is being performed 'in the time domajn

and recurs'ive sections are in use for comput'ing gradients

(sect.i on 4,7 .2) the coeffic'ients of the numerator sections

must be constrained in a simi'lar way'

In many cases, restricting the step length as described

above is sufficjent to ensure convergence to a local min'imum

which is an jnterior point of the feasib'le regìon. This is

particu]arly true when matching a decaying 'impuìse response

in the !ìme domain, because paranleter vectors iust inside

the stabif ity boundary cause slowly-decaying time sequences

with a consequent bad fit of the later time samp'les and a

high object'ive function value. The search directjon a¡ising

from a point near the stabiìity boundary is most like'ly to

be directed back jnto the feas'ible regìon'

It can happen, however (particuìar'ly w'ith group delay

designs) tfrat successive iterates converge to a po'int on a

stabi'lÍty boundary which is not even a constrained local

minimum (ìn the sense that the gradient vector is normal to

the constraint.) In such cases a "feas'ible d'irection technìque"

such as gradient proiectjon (section 2.3.3) may occasiona'l1y

succeed in returning the search to the interior of the feasible

regìon. However, it may also terminate at a point on the

stability boundary, ancl in such a case the only remedy would

be to re-start the search from a different feasible start'ing

point. In the work to be reported in chapter Fìve, the added

compljcation of gradierrt projection is avoided. A search'is

abandoned (and a new starting poìnt used) before enlbarkjng on
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the jth interation whenever the vector x 

(i) is within a

certain small distance (0.001) of any stabif ity boundary.

For each k, a thin strip iust inside the boundary of the

triangular reg'ion of figure 4.18 js thus unavailable to the

search procedure. The iteration parameter vector is allowed

to enter such a st¡ip, but so]ely for the purpose of detect'ing

the termination condition. Thìs procedure has the theoretical

objection that part of the feasible region becomes inaccessible'

but few practìcal filters would have such coefficients anyway'

4.9.2 Avo'idance of Fal se Local Minima

As ,wi th most practical nonl inear mjnimization problems 
'

we are not dealing with a convex objective function and so

there is no guarantee that the procedure will converge to

the best local minimum. However, because the obiective fun-

tjon has a special form it is possible to pred'ict the exist-

ence of certain types of bad minima and modify the procedure

to avoid them. Experience (reported in Chapter Fjve) has

shown that with the a'lgorithms sujtably modified it is possible

to reach the (presumably) global opt'imum from a very wide

range of startjng points in well'posed digital filter design

probl ems .

With any multi-sectjon (cascade) filter there are at

least as many local minima as there are permutations of the

order of the sections. llolvever, th'is iS not important, as all

these sol utions are equa'l'ly good (sectjon orderjng to optimize

dynamic range or noise performance'is a separate topic to be

considered only after the theoretjcal solution has been found)'

steiglìtz (1970) noted the appearnce of one type of un-

desirable local minjmum whjle treat'ing the problem of magn'itude
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response optim'ization. He allowed poles and zeros to move to

any position in the z-plane during the 'iterat'ion process be-

cause stab.i'lity (and minimum phase) could eventually be re-

stored by reflecting roots with \tl t l to the inside of the

unit circle, w'ith no change to the obiective function. In

one example (involving one po'le pair and one zero pair) the

iteratjVe process conVerged to a "Solution" with pole-zero

configuration as in figure 4.19 (a). The two real poles are

a'lmost exact reciprocals of each other, and after inversion

lie side by side as 'in figure 4.19(b). However, this solution

is no'longer a local minimum of the obiective function - the

value cán be reduced by continuing the iterations, during

which time the two real poìes become a complex conjugate pair

(figure a.19(c).

In Ste'iglitz's exampie the pole reflection to restore

stability provided the mechanism that brought the po'les to-

gether on the real ax'is allowìng them to go compìex, and it

may well have been that many iterations would have been saved

if the s'ituation had been recognìsed earlier (i.e. w'ithout wa'iting

for convergence the first t'ime). However, this phenomenon is

not really connected with stability, but is a general prob'lem

with real roots. This is because each second-order section

determines üno roots. If there are more than two real roots

they may have become paired into sectjons in any combination'

without affecting the filter transfer funct'ion. Real roots

have the opportun'ity to go comp'lex only if they are paired

together in the same section. There is thus the possibility of

local minima of the type shown'in figure 4.20 (a). Even though

al'l poìes are inside the unit circle the configurat'ion is sub-

optima'l and can be'improved by changing the pairing from (A,B and
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( a ) at original local minimum

( b ) after pole ref'lect'ion

( c ) after further iterations

FIGURE 4. 19 Pol e-Zero Confi u rati ons

le with 1 Pole Pair and 1 Zero Pair

lrl=l

z pl ane

lr,l = l

z pìane

Itl = l

Examp

X = pole; o = zero
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z pl ane

sectíon 1 section 2

a ) at orìginal local minimum

z pl ane

section 2

section 1

( b ) after changing pairing and continuing iterations

FIGURE 4.20 Pol e-Zero Confj urati ons

Example wìth 2 Pole Pa'irs and L Zero Pair

(

D

BX

X = poìe; o = zero
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C,D) to (A,D and B,C). After more 'iterations the situation

shown in figure 4.20 (b) results.

Changing the pole and zero pairing does not always resu'lt

in real roots becomjng complex. However, experìence has shown

that when two poles (or zeros) are driven close together on

the real axis that this usual'ly occurs. Furthermore, the

close approach of two real roots is a necessara prelude to

their goìng complex. This suggeststhe following scheme for

avoiding thìs type of undesirable local minimum and simultan-

eously ensuring the ultimate stabjlity of the filter, when

optimi zi ng a magni tude response on'ly.

At'the start of each 'iteration:

a. Compute the pos'itions of alì po'les from the known values

of cO and dO for each k = 7, 2 KD.

b. For any complex conjugate poles rk exp (t iOO) which

have rO > 1, re-compute new values of cO and dk to correspond

to rO-i u*p (t ióf) (that is, reflect poìes jnside unit circle).

c. Leave unchanged the cO and dO corresponding to comp'lex

coniugate poles with rO < L.

d. Rep'lace any rea'l poles hav'ing lrl > 1 with thejr reciprocals,

and place all real poles in a "pool" where they lose their

connection with a particular section (k value).

e. Sort alì poìes 'in the poof into increasing order, SâY

Pr, Pr... P¡, and compute the d'istances between adiacent poles

9i = Pi+r - P¡ i = r, ? "' J - 1 (4'165)

as shown i n fj gure 4.2 1 (a ) .

f. Pair the two closest poles (tfrat ìs pj and p j+1 where
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z pl ane

I'l 1

91 92 93

q1

(new value)

P¡ P+ p

92

(=old qO)

95

93
(=otd q5)

'94

(a) after reflecting unstab'le poìes if any

z pl ane

I'l 1

pI P2 P3 P4

i

L

I

i

I

I
I

l

i

( b ) after removi ng cl osest pai r and re-'index'ing

FIGURE 4.21 Real Pole Confiqurations duri nq Pa'irinq Procedure
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qj. Qi for all i) and calculate corresponding new values of

cO and dO for one of the values of k which was "vacated" when

the poìes were pooled.

g. Remove the paired poles from the pool and (if they were

not the first or last two jn the pool) compute the one new

distance value p5+z - P¡-r, and re-index the p and q values

(figure 4.21 (b) ).
Repeat steps f and g untì1 only two po'les remain, then pair

those to form the last remaining section. In this way real

poles become paired as soon as they are driven sufficiently

close together, gìv'ing them the opportunity to go complex as

Soon as,possible. The ent'ire procedure is repeated for zeros.

When dealing with a time domain or group delay specification'

it is not possible to reflect poìes and zeros inside the unit

circle with no change to the obiective function. Po'le positions

must be controlled so that they do not wander across the unit

.circle, and if we are trying to match a min'imum-phase time

sequence using recurs'ive sections to generate the gradients

(section 4.7.2) so must the zero positions. However, the

procedure for pairing real roots is still relevant.

If any root reflection is performed or any change made

to root pairing, the gradient vector and l-lessian matrix will

be affected (even though the value of the obiective funcb'ion

is not changed). It follows that second-derivative and Gauss-

Newton gradient methods (which re-calculate the iteration

matrix A afresh at every interat'ion) have a fundamental

advantage over the quasi-Newton and coniugate-grad'ient algorithms

when used in these problems. W'ith a quas'i-Newton method, the

matrix A (k) carried from the kth iteration should be pos'itìve
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definite and so will still lead to a descent direction in

iteration (t< + t) even if the parameter vectoris permuted.

However, its usefulness aS an approximation to the new Hessian

is questionable and it may be better to reset A to the 'identity

matrix. This leads to the ídea of revising root pairing only

after a certain number of iteratÍons, to allow the quasi-Newton

method a chance to operate. This matter is invest'igated ex-

perimental'lY in ChaPter Five.



CHAPTER FIVE

5. COMPARATIVE TESTS OF OPT IMIZATION ALGORITHMS

5.1 Introduction

The purpose of thìs chapter is to report the results of

numerical tests of various unconstrained min'imization algorithms

as appì i ed to typi cal di g'i ta'l fi I ter dei'i gn probl ems . The em-

phas'is is on the relative performance of the algopithms them-

selves rather than on the util'ity of the resulting designs.

The examples were chosen to be reasonably representative of

the types of probìems met'in practice' so that the conclusions

of this chapter might be a useful guide to the select'ion of a

minirni zation al gori thm.

For simp'licity, all of the computer routines were prog-

rammed in FQRTRAN and run on a'large, general purpose computer

(a cDC Cyber 173) via an interactive remote têrmjnal. Attempts

have been made to evaluate the algorithms on the basis of re-

liabjìity and execution speed. Some care has been taken to avo'id

obvious ineffic'iences in cod'ing in the frequent'ly-called sub-

rout'ines (such as those for function, gradient and Hessian eval-

uat.ion, and for line searches) so that some meaning rnay be

attached to speed comparisons. However, jt 'is realized that in

the adaptation of an algorithm to a real-time system modellìng

app'licatjon (on a minicomputer or array processor), advantage

would be taken of special machine features and the economies

of assembly-language programm'ing, and some algorìthms would

benefjt more than others. AccordinglY, results of comparisons

i n F0RTRAN neecl to be 'interpreted wi th such qua'li fi cat'ions borne

i rr mi nd.
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5.2 A General -Purpose Tes t Proqram

5.2.1 Features of Pro ram

A general-purpose driver program was written to fac'ilitate

the comparison of many types of gradient-based minimizatìon

algor.ithms appì'ied to "formulation B" digìta'l filter design

problems. The program deals with filters of the cascade form'

A simpìifjed flow diagram is shown in figure 5.1. The princ'ipal

features are:

a. Algorithms of the quasi-Newton, conjugate gradient, true

Marquardt, Gauss-Newton and second-derivative types may be

tested using the same driver program, by load'ing different

functional subrout'ines and selecting the appropriate flow paths

at run tÍme. "True Marquardt" refers to the type of method

which uses no ljne search; the diagona'l elements of the A

matrjx are increased until the step with a = 1 yields a function

Value decrease. Thus a dummy "line search" subroutine (never

called) is loaded in thìs case; a dummy "Marquardt" subroutine

i s I oaded othen¡ri se .

b. Various combinations of search direction strategies (e.g.

npdified Nervton methods) and line search techniques may be

tested by loading different "DIREC" and "LINE" subroutines.

c. Function, gradient and Hessian evaluation 'is performed by

a subroutine, so that the same driver program is directly usable

for magnitude, log magnitude and magnitude squared response

optim'ization. Furthermore,'logical switches are set in the

drjver program so that the subroutine evaluates only the funct'ion

Value when called from a LINE routine, and does not evaluate the

TR (= Z J rJ ) nratrix or the l-l matrìx unless the nlethod in

J
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Simplified Flow Chart of General Tes t Proqram
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use calls for it.
d. Further 'logical switches bypass the root reflection sequences

and also allow allpass filter sections to be treated. This makes

the program suitable also for tjme domain and group delay opt'im-

i zati on tests .

e. In order to test the abiììty of the various methods to

converge from wide'ly differing starting points, a number of runs

are made (as specified in terminal dialogue), wìth randomized

starting points. The generation of starting po'irtts is considered

in sections 5.2.2 and 5.2.3.

f. The amount of detail printed out ìs selectable at run time'

The extremegare: a Sunmary printed at the end of execution

giv'ing number of iterations' etc. for each run (starting point)

and averages over all runs; and detailed examination of each step

during a line search. The more detailed prìntouts greatìy aided

debugging and select'ion of parameters when experience w'ith the

algorithms was limited. Examp'les of printouts are given as

figures 5.2 (summary) and 5.3 (moderately detailed) '

5.2.2 Generation of Random Startinq Points, Method 1..

Although 'in many practical cases a reasonably good starting

estimate would be avaìlable, it was thought advisable to test

the abiIity of optimization aìgorithms to converge from arb'itrary

(sta¡le) guesses for the parameter vector. This procedure is

relevant from several points of view:

a. It gi ves a feel for the quat i ty (cl oseness ttl the ul t'imate

soìut'ion) requìred in the init'ial guess, 'if convergence to a g'iven

solution is to be virtually guaranteed. Thus it ajds in gaugìng

the amount of effort necessary'in arrivìng at such a guess. This

¡^-

I
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may have implications for the applìcation of optimization to

real-time system identification problems, for example.

b. In off-line applications, the use of several arbitrary

startjng po'ints can often replace any informed initial guess

procedure. This is in fact how the solutions were discovered

in the test problems to be discussed. If the obiective function

has several local min'ima, the use of a w'ide variety of start'ing

points usually succeeds in uncovering them (mosi of them?)

allowjng the best to be chosen. Such a precaution would be

mandatory in a real design situation.

c. 0ccas j ona'l 1y , sol utions occur wh'ich appear to be very good

in the sensé of having a'low obiective function value, but which

on examination have some unacceptable feature. An example is

quoted in section 5.11, in which the algorithm caused a very

high-Q pole to be placed in a "transition" band because the

target response had been inadequately specified. The use of a

wide variety of starting po'ints is useful in discovering any

such inadequac'ies in the definìtion of the obiective function'

cl. In the context of the testing of algorithms (as opposed

to their use in a real des'ign case), the use of arbitrary start'ing

points allorvs the'ir performance to be averaged over regions of

parameter space whi ch present vary'ing degrees of "di ff icu]ty" .

This reduces the possibility that a given algorithm could seem

comparatively good (or bad) simply due to a fortuitous choice

of starting Poìnt.

Sìnce the cascacle real'ization js used, it js s'imp1e to

generate random posìt'ions for each pair of po]es and zeros'independ-

ent1y. In practÌce it has been found that divergence of the

algo¡ithm is common if poles and zeros are initialìy close to

the unit circle. The response curves of such filters would have
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major features (peaks and troughs) which are'likeìy to be very

different from those of the response being approximated. Con-

vergence is much more likely if the inìtial trial filter response

is relatively "featureless". AccordinglY, in the scheme fina]1y

adopted, the a and b (or c and d) coefficients of each section

are randomly se'lected so that the points generated are restricted

to a smaller triangle within the "stability triang]e", and

uniformly spread therejn (figure 5.+ (a) ).

The computer system FORTRAN l'ibrary provÍdes a random

number generator outputt'ing unìformly - distributed random numbers

between 0 and 1. Two calls are made to this rout'ine for each
)

filter section, returnìng numbers rr and rr. The a (or c) co-

efficient is fjrst evaluated from r, and the b (or d) coefficient

then generated using the a value and the randon number r, (wh'ich

is assumed to be independent of rr). tlle consider first the case

of r > 0.5. since the probabiljt.y that r > 0.5 is 0.5 and we
t"I

want a > 0 in 50% of cases' we specify that t,. t 0'5 is to generate

some a > 0. Further, we assume that a is to be related to r,

in a monotone increasing sense. The portion of the allowed triangle

for a > 0 is shown again in figure 5.4 (b). l^le denote any particular

value of a as a' and the value of r, whjch is related to it as rr'.

For a unìform spread of starting po'ints, the ratio of the atea of

the shaded trapezoid in figure 5.4 (b) to the total area of the

triangìe must be equaì to the probab'ifitV that r, is less than rr'

(given that it is greater than 0.5). Thus

a'(1_.6 - a!+ % ''2
t.z, -e-= 2 (r; - 0.5) (5.1)

or a'2 - 3.2 a'+ s.!z (.i - o.s) = o (5.2)
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from which

a' = 1.6 (t -Æ-(i. - rJ¡
I

(the alternative solution of the quadrat'ic equation is in-

admi ssi bl e ) . By symmetry , we can deal w'ith rr< 0.5 by repl aci ng

a with - a and 1 - t, with r, in (5.3), and dropping the primes,

giving, finaììy,

a=1.6(1 -'U(1 -r))

(5.3)

r > 0.5
I

I

(5.4)

a=1.6(q-1) r < 0.5

This relationship is graphed in figure 5.a (c).

Now that a has been found b is constrained to lie be-

tween 1.6 - lul and 1.6 (figure 5.4 (a)) can can be generated

uniformly within this range by the formula

b = 1.6 - r (1.6 - lul) (5.s)
2

5.2.3 Generation of Random Startinq Points, Method 2

The procedure of section 5.2.2 has been used when the

widest variety of random starting po'ints is desired. However,

with some examp'les (to Ue djscussed) it was found necessary to

restrict the start'ing points to a smaller region of parameter

space. This is to ensure convergence in a sufficiently large

number of cases for the results to be meaningfuì1y averaged.

In these cases, the N-dimensional ana'logue of a "rectang-

uìar region" jn the space of designab'le parameters js used as

the allowable start'ing regìon. For each parameter (say x.t) a

"centre value" p¡ and a "maximurl deviat'ion" q., are specified
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in ternrinal dialogue. A ranclom number r., (between 0 and 1) is

generated and the value of x., calculated from

*i = Pi * 2qi (ri - 0.5)

Direction Routines (OlnEC subroutine)5.3 Search

Various second-derivatjve methods and various quasi-Newton

and conjugate gradient methods were tested by 'loading different

versions of subroutine DIREC. These are distinguìshed by mnemonic

names. A summary of these Ílames appears in table 5.1. The

essential features of these methods have been descnibed in Chapter

three; the following notes prov'ide, for completeness' some further

finer detai I .

5.3. 1 Second-Deri vative Methods

All second-derivative methods generate the search vector p

from the formula

Ap = - g

where g is the grad'ient vector of the obiective function and

the matrix A ìs set equaì to the Hessian matrix l'l whenever

that is positive definite. The djfferences between methods

occur when H is not positìve definite. Any of these methods

may also be used wjth the Gauss-Newton matrix R in place of

H ; ìn which case the method takes care of the few instances

when R is indefÌnite due to roundoff error.

(5.6)

(5.7)
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TABLE 5.1 Abbreviations for Methods of Search Direction Calculation

Mnemoni c Name Descri ption

GR-S

GR-U

MQ-S

MQ-U

GM

FF

DFP

BFGS

sR1

SRl-M

CG.A

CG-B

Greenstadt with scaled matrix

Greenstadt with unscaled matrix

Marquardt (l ine search) wi th scal ed matrj x

Marquardt (line search) with unscaled matrix

Gi ì ì -Murray

Fl etcher - Freeman

Davi don-Fl etcher-Powel I

Broyden - Fl etche r-Gol d farb-Shanno

Synrnetric Rank-1, no positive definiteness test

Synmetric Rank-1, Murtagh and Sargent

Conjugate gradient, formula A

Conjugate gradient, formula B
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a. GR-S - Scal ed version of Greenstadt alqorìthm - see section

3.4.7. The Hessian matrix is first scaled to have diagona'l

elements of unjt magnitude (section 3.4.8). Cholesky factorization is

attenrpted and jf successful the factors are used to solve (5'7) for

p 0therwise, the e'igenvalues of H are found and each

ri rep'laced with max th-1, 10-10] and p found from (3.29).
1

The row cyclic Jacobi method has been used to find eigenvaìues

and eigenvectors.

b. GR-U - Unscaled vers i on of Greenstadt alqorithm - see section

3.4 .7. As for GR-S , wi th the pre-sca'lì ng omi tted '

c. MQ-S - Scal ed vers'ion of Ma rouardt al qo rithm with line search -

see section 3.4.8. The Hessjan matrix is scaled to have diagonaì

elements of unit magnitude. Cholesky factorizatìon is attempted

and if successful the factors are used to solve (5.7) for p

Otherwise an amount ß is added to all diagonal elements and factor-

ization again attempted. This process if repeated for values of

ß increased by a factor of 4 each time until Cholesky factorizatjon

succeeds. The value of ß used is passed to the next iteration,

except that if the first value of ß was successful' 0'25ß is passed'

The first value of ß tried (at the first occurrence of an'indefinite

l-l ) is 0.003.

d. MQ-U - Unscaled version of Marquardt al qorithm with line searc h-

see sect'ion 3.4.8. As for MQ-S , wi th the pre-scaì jng omi tted .

e. GM - The method of Gi 1 I and Murrav

The rnethod is as outlined in section 3.4.9. A direction of negat'ive

curvature is used if the Hessian is'indefinite and the Eucl'idean

norm of the grad'ient vector is less than I0-2.

f. FF - The method of Fletcher and Freeman - see section 3.4.10"

The l-less'ian matri¡ i s factorized using the pivoting strategy of
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Fletcher (1976). The subroutine MA29B, obtained from the Harwell

subroutine library (AERE Han¡rell, Didcot, Berks., U.K.) has been

used, but a modification was necessary to force all 2 by 2 pivots

to have one eìgenva'lue of each sign. The "gro*tÌ'' factor" used

is 4.0.

For positive definite H the ordinary 'rNewton" direction

(eq 5.7) is used. For singular H , the following types of

search vectors are employed 'in alternate cases: (a) a descent

direction of zero curvature and (b) a "Newton" direction restricted

to the subspace of directions of positive curvature. The matrix

is taken as "singular" u,hen subroutine MA29B returns the para-

meter IRANK,less than N. For non-singular but indefinite l-l '
the folìowing types of search vectors are employed in alternate

cases:

a. a direction of negative curvature (sectjon 3.4.10)

b. a "Newton" dìrection restricted to the subspace of

djrections of positive curvature.

5.3.2 Qua s'i-Newton Methods

For al1 quasi-Newton methods tested (see section 3.4.14) the

inverse Hessian approximation T is carried from iteration

to jteration, and it is initialized to the identity matrix. 0n

all but the first iteration T is fjrst updated (based on the

results of the last ìterat'ion) and the search direction then

cal cul ated from

P =' Tg '

both of these actions occurring within the DIREC subroutine.

Vers'ions are

(a) DFP - the Davi don-Fl etcher- Powel I u date

(5.8)



(b )

(c)

(d )

or
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BFGS the Brovden- Fl etcher-Gol dfarb-Shanno update

SR1 - the etric rank one u ate

SR1-M - the s ric rank one u date Murta

I . 10-t

h and Sa nt 1970
VETS

The difference between sRl and sRl-M is as follows. hlith

sR1 the update formu'lae (3.69) and (3.70) are used at every

iteration. The inner product of the result'ing search dìrection and

the gradient pT g is then evaluated. If this value is greater

than or equal to zero (indicating that p is not a descent direction)

p is rep'laced by - g and the matrix T is reset to the identity

matri x.

blith the sR1-M algorithm the tests of Murtagh and sargent

are employed as described in section 3.4.1.4. That is, the scalars

vT y, uT u and uTg are evaluated at each iteration.

If it happens that either

uT vuTy (5.e)

-yl 
g-, - lo-s ,lT;

then T is updated according to equat'ion (3.72) in place of

(3.69). In other respects the procedure is as for SR1. If P

fails to be a descent djrection, T is reset to I and p is

taken as - g

5.3. 3 Coniuqa te Gradi ent Methods

Two versìons of a "Fletcher-Reeves" conjugate grad'ient

a'lgo¡ithm (section 3.4.13) have been tested. In each of these'

the search direction P is calculated from (3.60), except that

(5.10)
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p is reset to - E after every cycle of N iteratjons. The

difference between the two versions is in the formula for the

scalar ß to be used in (3.60):

CG.A:

CG-B:

Ê calculated from equation (3.62)

B calculated from equation (3.61).

5.4 Line Search Routines LINE subroutin

The matter of the determination of a suìtable steplength o

along the selected direction p was discussed briefly jn section

3.5. Various steplength algorithms have been tested (íncorporated

into versìohs of subroutine LINE) and are outlined below. Each

aìgorithm employs some form of seareh jn the one - dimens'ional

space which results when c is considered as a variable. In

the outlines which follow the following notat'ion wjll be employed:

o general symbol for independent variable

F(a) objective funct,ion value for an arbitrary value of c,

kth iteration assumed. (strictly, F( x (k) * o p(k)))
*

value of o ultimatelY used

value of a first tried

o

of

ot
Ì subsequent val ues of cx to be tried

u

d:0

first acceptabLe value of a (i.e. first value for

whjch a functjon value decrease is obtained;

¡ (os) . F(0)).

rcr three particular values of a, 'in increasing order.

0

ct
s

123

S

u

slope at origin I = dlop- at * = o)

curvature at origin ( = -ff'P at cr = 0)
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some of the algorithms considered make use of the sLope s

(the projection of the grad'ient aìong p at o = 0) to predict

an initial trial step'length a* and are universally applicable

because the gradient is known in all the methods consìdered'

Qthers use also the euruatuye ât cr = 0 and So are onìy applicable

to second-derivatjve methods (because the curvature can be

calculated only when the Hessian matrix js known). Mnemonic

names g'iven to versions of subroutine LINE are defined in

table 5.2.

a. FAV-CF First accegtable value - constant factor reduction

Theva]ueofof=1(thetheoreticalbestvalueforNewton

ancl quasi-Ñewton methods) js trjed first. If a function value

decrease is achieved, exìt, otherlvise success'ive1y reduce a

by a factor of 0.6 until there is a decrease in value.

uadrati cb. FAV-Q I First acc abl val ue - reduction
n e at on

Try a, = 1. If

a new cr bY fitt'ing a

o = 0 and a = L, and

( = ot) is chosen as

or 0.2 ci'r, r,thi chever

and the formula for c, is then

ot = max {0.2 u

the function value does not decrease,predict

quadrat'ic to the known function values at

the slope s = Í5 at o = 0. The new cr

the po'int which minimizes this quadratic,

'is the larger. The value of s is found from

s= gT p (5 . 11)

(5.12)
,*?t

Ìf'F(0) -F(cr¡)+crfS

If F(crr) . f(0), exit. 0therwjse set of = ot and predì6¿ another

ot by (5.12). Continue until the function value is less than F(0).
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(b) Methods using curvature aìong the line to predict an init'ial
try ar.

TABLE 5.2 Abbreviations for Line Search Methods

,l

I

j

ü
Ðì
¡r

fl

ti

DescriptionMnemoni c
Name

First acceptable value, constant reduction factor

First acceptable value, quadratiçinterpolation

0ne additional try, quadratic interpolation

Progressive quadratic interpolatjon

Locate mi nimum w'i thi n tol erance e

FAV-CF

FAV.QI

AT-QI

PQI

LM

(a) Methods ìgnoring curvature along the line, and takingo, = 1

as initial try.

First acceptable value, constant factor, curvature

First acceptabìe value, cubic interpolation
when possibìe, curvature

0ne additional try, cubìc ìnterpolation,
curvature

Progressive quadratic interpolatìon, curvature

FAV-CF-C

FAV-CI -C

AT.CI.C

PQr -C
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,t

Èt^

I

I
'l

t
I

'I

Ìt
i

I

i

c. AT-QI 0ne addìtional try-q uadrati c interpolation

Proceed as for FAV-QI, but when a function value decrease

is first recorded (at say o = crs) fìnd the val'ue of c' (a¿) which

minim'izes the quadratic fitted to F(0), F(trr) and s, i 'e'

,a a{sctt=re

If a, < 0 or ot, 1.5 or, set of = 1.5 or' If lot < 0.05 cr

*
exit wìth a^ = oS, because a function evaluation at a, would be

vi rtual 'ly dup'l 'icat j ng work aì ready done at o = *s . Qthen¡i se '

evaluate F(o*) and take o* = of or a,* = os, whichever yields the
,v

lower function value.

d. PQI Proqress i ve interpo lation with quadratics

Proceed as for AT-QI, until a value of a which gìves a

function reductìon ("s) is found and a prediction c, is made.

If lcrr - crrl < 0.04 c, ând o, = 1.0, exit, because the quadrat'ic

prediction has jndicated that the ideal "Newton" step 'is close

to optinrum. This avoids needless function evaluatjons close to

convergence when the method ìs behaving as a classjcal Newton-

Raphson aìgorithrn. If la, - orl < 0.04 cr, but o, 11, set

of = 1.04 a, or 0.96 a, according to whether ot t os 0r of < crs

respect'ive'ly. Eval uate F(a¡) . we now have the s jtuation of

figure 5.5 (a), (U), (c) or (d) depending on the relative values

of ar, ot, F(crr) and F(or). The distance la, - crl is always at

least 0.04 crr. A funct'ion evaluation is then made at a third

point cru, an equaì distance in the direction whìch would appear

to clecrease the funct'ion. All possible outcomes are also shown

in figure 5.5. l,Je now re-jtldex the o values âs orro, und o,

(5.13)

- crs ^t5

t

fi,;

#
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FIGURE 5.5 Possible Dis t'ions of First Three Trial Values of crpos'l
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and Correspondinq Function Values. P0I Routine
rJ

*
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(for increasing o) and, making a further distinction on the

basis of relative sìopes, defined by

l
,{

Þ

i

F(02 ) - F(o., )

)
I

I

,l

t
'I

'I

Ti
I

I

I

i

2

s=

s=
F(0q

I

2

I2
cc

(5.14)

(5.i5)
) - F(o,)

o -c
3

have five possibilitjes as shown in figure 5.6. Case (c)

is the ideal, where we know that a minimum has been bracketed,

and we proceed to predict that minimizing value of a by

fitting a quadratic to the three points' In cases (a) and

(d) a quadrat'ic is stil I f itted, but the min jmizing val ue of cr

may be outside the jnterval (or, or). If it does, the interval

of interest is moved in the appropriate direction by making a

further function eval uation at the predicted mjnimum (or at a

default poìnt 2., o, - !.7 u, (upward) or 2.7 u, - 1.7 a,

(downward) 'in cases when the predicted minimum 'is further away).

In cases (b) and (e) a fitted quadratic would have a maximum

instead of a mjnimum, and is of no use. In these cases a

further evaluation is made at ,o, - o, (case (b) ) or 2cr, - o,

(case (e)) to re-define the three point interval.

The process of interval re-definition (deleting one po'int

each time) is continued unt'il the predicted min jmttm of the

quadratic is within the three point interval (or "iust outside"

that is, coinc'idl'ng with cr, o. o, to wjthin 2% of or). A

final function evaluation is then made at the predicted point

except when jt cojnc'ides with o, , o, o, cr, to with'in 2% of ur.

The best value of o tried during the entire process js taken

*
aS c)¿

J

$



F

225
F

0 d

o1 o2 cI'3

(a) r(ar) t r(ot) > F(o¡)

*1 dz o3

(b) r(crr) t r(oz¡ > r(cr.3)

lsrl < ls2l

or oz o3

(e) r(cr1) . r(oz¡ < r(crr)

lsll > ls2l

lsrl > ls2l
F

CX

or oz 03

(c) r(ot) > r(ar) and F(oz) * r(crt)

OR r(cr,r) , r(oz) and r(cr2) < r(ot)

F

ol, ct

ol oz o3

(d) r(ar) < F(crz¡ < r(at)

lsrl < ls2l

5.6 Possible Dispositions of Three Ad.iacentT I GURE

Function Evaluatjons, PQI Routine

l
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To recap'itul ate, the basi c phi'losophy of the PQI I'ine

search routine js that a three-point interval is first

established and then sljd along the cr âXis (by deleting the

upper or lower po'int at each step) until the true funct'iotl

minimum in the one-dimens'ional (o) space is either "bracketed"

or pred-icted to be "Very close" to one of the interval bounds.

A quadratic js fitted to the three known points (when possibìe)

to aid in defining useful bounds for the nev', interval. How-

ever, safeguards are employed to avoid using severe extra-

poì at'ions , wh'i ch are I i kely to be unrel j abl e . Further safe-

guards are,incorporated to avoid evaluation of the functjon

at very closely neighboring po'ints, which would represent

wasteful dupl icatjon.

e. LM-Locate minimum within tolerance e.

A routine has been written wh'ich allows the posit'ion of

the one-djmens'ional minimum to be found to any desired tolerance.

It will not be described here'in complete detail because the

experimental work has indicated that such accurate line searches

are never advantageous.

The LM routine proceeds as for PQI up to the stage that a

function value reduction is ach jeved and a three-po'int 'interval

established (except that exit ts not nlade if "Newton-type" con-

vergence seems l'ikely). The three-poìnt interval is (if nec-

essary) then sl icl in the d'irect'ion of decreasing function val ue

until a bracket is established (tnat is, the function has been

evaluated at three points and the middle one has the lowest

value). This procedure is d'ifferent from PQI in that quadratic

extrapolatìons are not used to defjne the new hìghest or lowest

poìnt of the interval. Rather, the new evaluatìon is made at. a

I
I
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"reasonable" distance from the previous extreme point. An

"acceleration factor" is used to ensure that the size of the

interval grows with success'ive steps, thus avoiding the situation

where progress could consist of many tìny steps, with a great

waste of computer t'ime. The procedure is illustrated in figure

5.7. A larger acceleration factor (2.0) is used in the upward

direction than jn the downward direction (1.5).

When a bracket has been established, quadrat'ic interpolation

is used to predict the position of the minimum, at which point

another funct'ion evaluation is made. One of the extreme points of

the interval is then discarded, result'ing in a new three-point

i nterval whi ch i s narrower than the ori g'inal and st'il I brackets

the minimum. The process of interpolat'ion and interval refine-

ment is repeated until the interval width is less than a specified

tolerance e.

During the expans'ion phase tests are made to ensure that the

interval does not grow downwards pastcr= 0 or upwards past any

previously-tried value. In such a case, the appropriate lìm'it'ing

value would be used instead (a bracket would necessariìy be

established), and the program would proceed to the refinement

phase.

f. FAV-CF-c l#.H#g!;!i**r.lr. 
- constant factor reduction -

The method is as for FAV-CF in that successive reductions

of o are by a constant factor (0.6) and the first function

value decrease is accepted. However, the initial value ct

tried is not necessarily unity but is based on the s'lope s and

curvature u at o = 0. The chief motivation for this and other

methods employing curvature is that it may be benefic'ial to the

Fletcher-Freeman algorithm in whjch negative-curvature search

d j rect jons are especi a'l 
'ìy f requent. Methods (such as FAV-QI ,
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AT-QI and PQI) employ'ing a quadratic fit at o = 0 are at a

theoretical disadvantage because such a quadratic has positive

curvature and is unlikely to be a good model when u < 0. The

strategy follows Fletcher and Freeman's (1977 ) outline, but the

mathematics was'derived independentìy. The value of s

(= å5 at a = 0) is calculated from (5.11) and the curvature u

e {J, at c, = o) from

u= pHÞ
T (5.16)

(5.17)

The action taken by FAV-CF-C to determine the trjal va'lue ot

depends upón the manner in which p was calculated in the DIRTC

subroutine, as fol I ows:

(1) If H 'is posìtive definite, and p accordingly found usìng

H p = - g, then a, = 1.0. (This value is identical to

that which woulcl be predicted by fitting a quadratic to F(0),

s and u, for such a quadratic is

f (o) = '4 ua2 a so + F(0)

which has its statjonary value at o = - s/u. Substitut'ing

H p = -g into (5.16) gives u = - pT g - - s).

(2) If H is jndefinite and p is found as a "Newton" direction

in the subspace of directions of postive curvature (FF only)'

then again c, = - s/u = 1.0.

(3) If p'is found usìng FF, as a negatìve curvature direction,

the value crf is found (as described by Fletcher and Freeman)
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by fitt.ing a quartíe polynornial accord'ing to the foìlowjng

cri teri a :

(i) the function value, slope and curvature of the quartìc

are equal to the known values for the function'itself at

cr = 0.

(ii) the quartic attains a maximum at q = - s/u (which is

< 0), and

(iii) the quartic attains a minimum for some o = of (t 0)

and the value of this minimum is less than F(0) by a pre-

assigned "target" amount T.

This is shown in figure 5.8. The target is injtially set to

half of the function value, and rev'iséd after every Newton

(positive curvature) step to equal the latest reduction

achieved or half the current function value, wh'ichever is the

smal I er.

The quartìc polynomiaì only has the form shown 'in fìgure

5.8 if

T > _ rr¡rr rr/u (s.lg)

and Ín such a case the value of crt is g'iven by

2
CT

16/ g (s/u) - 4 (T/u) - '/, (s/u) (5. 1e )f

If (5.18) ìs not satisfied, then a, = s/u is used instead.

(4) If p is generated by FF as a descent direction.of zero

curvature, a cttbic'is fìtted such that the function va]ue,

slope ancl curvature are matched at u = 0 and the specified

target function reduction is achìeved by the cubic, giving

the formula:



7,3L

f (cr)

f
f'
f'

(o) = F(o)
(o)=s(<
(o)=u(<

I
0
0

)
)
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/

/

\
\
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FIGURE 5.8 rti c Fit to Predict cr

of

N ati ve Curvature Case

quartic f(o)

T

I
f (crç) F(o) -T

0
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of = - 1.5 T/s (5.20)

(5) If any DIREC subroutine other than FF (tfre fletcher-

Freeman method)is used and H is not positive defin'ite, the

sign of the curvature u 'is not known in advance, but it may

still be found us'ing (5.16). Methods simjlar to those in (3)

and (4) above are used, orif u > 0, of is taken as - s/u

However,'in contrast to the FF method, the methods of Greenstadt,

Marquardt and Giì1-Murray types calculate the search direction

p from the equation

Ap=-g (5.7)

where the matrix A is st'ill related to the Hessian ¡{ ' even

when H js indefinite. In partjcular, the components of p are

scaled such that it is expected that the optimum value of o

will not be vast'ly different from unity (with FF there is no

such indjcation). Since there is no theoretical reason to be-

lieve that the value of predicted by "target functjon reductiorr"

is espec'ially reìiable, it is only used when it is less than

2.O.Otherw'ise, the default value of = 2.0 is used instead.

g FAV-CI-C - First acce table value - Reduct'ion cubi c

nterpo atjon, curvature cons ered.

Initial a, seìection is as for FAV-CF-C The functjon js eval-

uated at o = cxf , and'if the function value F(o¡) ìs not less

than F(0), an attempt is made to pred'ict a good point for

further evaluatjon by fitting a cubic polynomial to the func-

t'iOn ValUe, slOpe and cuz,uatuz.e at q = 0 and the knoWn functiOn

value at cr = a, The equation of this cubic ìs
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f(o) = F(0) + so + 1-" uuz + do3

where the formula for d is

r("t )- F(0) - Sof -%vofz

(5 .21 )

(5.22)

( 5.23)

d= Jof

and the value of o which corresponds to the minimizìng

stationary po'int of the cubic (ar) is given by

u sd-u
0 6d

The value of cr, cannot be ca'lculated from (5.23) when d " 0, and

this is the case when the parameter vector is close to con-

vergence and the function behaves very much like a quadrat'ic.

Hence, if the numerator in (5.22) is less in absolute value

than lO.Ol so¡1, equation (5.23) is not used - rather, a quad-

ratic interpoìation (as for FAV-QI) is made, ignoring the curva-

ture, As with FAV-QI, if o, < 0.2 cr, 0.2 of is used instead.

The interpo'lation process ìs continued until a function value

decrease is achìeved.

AT-CI-C - One additional t - cubic inte olation -

t

h
cu ature cons d

An initial functjon value decrease'is obtained (at o = o,)

as for FAV-CI-C. Then, usìng o, rather than crr, (5.22) is

evaluated and a prediction CI1; made from (5.23) if d is ìarge

enough (see above) or from (5.13) otherwise. If l"t - or1.0.04 cr,
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no extra evaluation is made but othenvise F(crr) ìs found and

a* set equal to cr, oF cr* Whichever yie'lds the lower Value.

1 I-C - Pro rESSl VE uadrati c i nte olation - initial
e rva cu 'tc n o a 0n curva ure

con s re
b

c, ând of are found as for AT-CI-C. The minimum function

value along p js then local'ized usjng quadratjc interpolation

as for PQI.

5.5 General Abbreviations

In reporting on the performance of the various mjnimizat'ion

methods tested it'is convenient to refer to them by shorthand

names. Tables 5.1 and 5.2 have summarized such mnemonics for

search directjon and stepìength algorithms. In what follows'

some additional abbreviations w'ill also be used. These are

listed in Table 5.3.

5.6 F rther Cons'iderat'ions in the A I icat'ion of Minimization
r t S

5.6.1 Symmetry of Matrices

All matrices jnvolved in the mÍnjmization a'lgorithms are

symmetric. Accord'ingly, it was decjded at the outset that only

the upper triangle would be calculated and stored. Subroutines

for matrjx-vector multiplication, Cholesky factorizatjon, and

so on, were specially written to handie matrices jn this form.

In this way some economy of storage and savings'in computer time

were achieved, at the cost of sì ight'ìy more comp'lex subscript

cal cul atj ons. In parti cul ar, the subrouti nes which cal cul ate

the Hess jan and Gauss-l'lewton matrices are bel'ieved to be part-

icularìy efficient (considering that they are written in a high-

level language) part'ìy for this reason.

q0A
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TM-U-N

TM.S-N

GN

QN

CG

SD

TM

7,35

Descri pti on

Gauss-Newton methods (in general)

Quasi-Newton (matrix update) methods
(in general )

Conjugate gradient methods (in general)

Second derivative methods (in general)

True Marquardt (no line search) methods
( in general )

True Marquardt (no line search), unscaled
matrix, full Hessian (Newton) version

True Marquardt (no line search), scaled
matrix, ful I Hess'ian (Newton) vers jon

True Marquardt (no l'ine search), unscaled
matrix, Gauss-Newton version

TM-U-G

TM-S-G True Marquardt (no line search), scaled
matrix, Gauss-Newton version

TABLE 5.3 Mi s cel I aneous Abbrevi at'ions used for

Optimization Methods
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5.6.2 Impl i cati ons of Root Re fl ecti on and Pa'i ri nq

As discussed in Section 4.9, many sub-optimal local

minima may be elìminated from consideration by allowjng root

reflect'ion and pa'iring during the appf icat'ion of a mìnimization

process. In the case of an SD or a GN algorithm thìs process

'is unlikely to have anJdeleterjous effect on the convergence

of the a'lgorithm itself because the H or R matrix is

ca'lcul ated afresh at each interatìon. However, w'ith other

methods, informat'ion js carried from one iteration to the next

(in a matrix with QN, and in a vector with CG methods). If

root reflectjon or a change in the pairing of real roots occurs,

the correspondence of the elements of the parameter vector wjth

the actual filter coeffjcients is changed, and so this inform-

ation becomes useless, and the process must be re-started with

a steepest descent step. If such re-starts are too frequent

the algorithm w'i'lì not have a chance to achjeve jts theoretical

convergence performance but w'ill tend to behave like a steepest

descent method. There is thus the possibility of improv'ing

performance by al I owi ng refl ecti on and pa'irì ng on'ly after every

NO iterations, where NO is some smalì integer. The matter is

considered later in coniunction with specific exampìes.

5.6. 3 S ecial Line Search Methods for Con u ate - Gradient
qor thms

There is a special problem in the jmp'lementat'ion of the

line m'inimjzation, or stepìength deternlination, wjth CG methods.

This is that the formulae used provide no jndicat'ion of the

order of magnitude of the step'length cr to be used at each iterat'ion.

This is to be contrasted with the sìtuatjon with SD, GN and QN

methods where it'is known that the ideal stepìength is unity
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close to convergence. Moreover cx = I will usually be of the

r.ight order with sD and GN methods even in reg'ions remote

from convergence (although with QN methods this need not be

so fol ì ow'ing the resetti ng of the matri x to I ) .

If one of the "ord'inary" line search routines of Section

5.4 is used with a CG method (or a QN method following a

reset) and o = I happens to be far too large, then many

functjon evaluations will be wasted âs cr is gradually reduced

in the search for an "acceptable" value. 0n the other hand,'if

c = I is too small, and a FAV or AT search is used, a step

far shorter than the optimum would be used result'ing'in a'large

increase in the number of iterations. The PQI and LM searches

would find the correct steplength but would empìoy an excess'ive

number of evaluat'ions in doing so.

Accordingly, a further set of LINE subroutjnes were written,

identical with FAV-CF, FAV-QI, AT-QI and PQI except that the

"first acceptab'le value" crr'is passed to the next iteratjon to

be used as the first trial. If, however, the first trial is

"acceptable" on any iteration, then 1.6 times this value is

passecl on, providing a mechanism whereby cr can "grow outwards"

as well as shrink. These subroutines are referred to as the

"o pôsS" versions (in contrast to "ü = I" versions).

Tests w'ith QN methods have shown that rra, pâsS" seems

aìways to be inferior to "o = ']", â¡1Y benefit fol'lowìng matrix

resets apparent'ly be'ing outweì ghted by the appropri ateness of

a = I when the T matrix has become a good approxìmation to the

inverse Hessian. AccordìnglY, in the results to be reported,

"o = l" is always used with QN methods.

hlith CG methods, "o pass" is sometimes better and sonletjmes

not. The matter is further djscussed in conjunctjon with specific
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5.7 The Exa mol es^ and Me thods of Assessment

six examples related to digitaì filter des'ign have been

treated in a considerable amount of detail. Many different

gradient-based optim'ization aìgorìthms have been appf ied to

each probìem. Although some general aspects of filter design

by optimization are mentjoned in the preliminary discussjon

of each example, the relat'ive performance of the aìgo¡ithms is

the primary concern here.

Aì gor.i thms are cri tì ci sed fi rstly j n terms of rel i ab'i 
'l 'i ty.

This is ìargely a quaìitative matter and comments appear both

in the sectjons relat'ing to individual examples, and in Section

5.14 (deal ing w'ith overal'l impressions) .

The second criterion of performance is the amount of

comput'ing effort. In most cases thís is measured as the time

taken for the evaluatjon of the obiectjve function and its

derivatjves only, with all overheads (such as matrix algebra)

i gnored. Th'is course was adopted becatlse:

a. it seems, even 'in problems w'ith only six variables,

that function evaluation t-tme does dominate the

total computer tjme. In the more realistic prob'lems

(of 12,14 and 20 variables) thjs is an even better

assumPtion.

b. the generaì purpose test program performs many

tasks besides the optìm'izat'ion 'itsel f , such as

generation of random starting points and collection

of statist'ics. This, and the fact that there u/ere

often runs which failed to converge, makes the

"total execution time" an unrealiable measure.
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In some of the mathematÍcal literature relating to

comparisons of opt'imization methods (see section 3.6) 'it has

been assumed that the evaluation of the gradient of a function

of N variables requires N times the effort of a function

evaluation above. The same reasoning, presumably, would assign

a factor of LrN (tl + t) to a Hessian evaluation, this being the

number of independent elements of H hl'ith general aìgebraicaìly-

defìned functions in whjch the variable appear in "random"

combinat'ions, this may be approx'imately true, but even then the

'like'ly occurrence of common sub-expressions in the formulae for

the derivatives is'ignored. l,.lith the very "regular" objective

functions of the dig'ita'l filter desìgn problems, gradient and

Hessian evaluation can be performed far more efficiently than

this.

In the work which follows, the speed comparisons rest on

experìmentally-determ'ined execution times for F alone, for F

p'lusg,Fplus g plus R,andforFp'lusgplus H

Table 5.4 ljsts the nlain characteristics of the examp'les and

al so g'ives these experimental t'imes. The time for eval uation

of function alone js quoted in milljseconds; that for the various

classes of derivatjve evaluation'is expressed as a factor to be

applied to th'is base figure. For each method and each exampìe

the "total labour" is computed by applying the appropriate

factor from thjs table, and then reduced to a figure for "relative

labour", whjch is the total labour expressed relative to that

requ'ired by the MQ-U method with AT-QI ljne search, for the same

exampìe. This part'icular method js taken as the datum because

in all examples 'it is the best, or close to the best, method

tested.
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E

F

c

D

B

A
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bÞ

TABLE 5.4 Details of Test Ex ampl es and Functi on Eval uati on T'imes
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5.8 Ex le A - Lo Ma i tude Res 0ns e

5. 8. I General

The target 'log magnìtude response is specified at l5

frequencies as detailed in Table 5.5. All we'ight factors

are unìty. The digitaì filter has one second-order feed-

forward (numerator) section and two second-order feedback

(denom'inator) sections. There are thus two zeros and four

poles. All six coefficients are var"iabìe. i.e. N = 6.

Deta'ij s of the optìmum I east squares sol ution are gì ven 'in

Table 5.6, and the achjeved response ís plotted (together

with the target points) in figure 5.9.

Extensive tests were made of a variety of gradient-

based optimization methods for obtaining this solution.

The problem is too simple to be realìy representative of those

met 'in pract'ice, but it served usefully to val'idate most

features of the general test program. For each method tested,

th'irty randonr starting po'ints were used, generated in the

manner described in Section 5.2.2. Convergence was deemed to

have occurred when (a) all components of the gradìent were

less than 10-3, and (b) al'l components of the last p (change)

vector were less than 10-3.

5.8.2 Second-Derivative Methods

The results obtained for the cases where a line search

is used and the 'in j ti al tr j al val ue of cr i s uni ty are summarj zed

in Tables 5.7 to 5.10. Convergence to the optimal solution is

obtained from every startjng point in every case, and it js

beljeved that there'is only thjs one stable, mìnimum phase

solution yielding a local niinjmum of the objective funct'ion in

I
,1

d
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Minimum objective function value 2.790295 x 10-

TABLE 5.6 Solution for Exam le A

I
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I

.rt

Àr

.ll

i
I

t't
rì

N

I
I.

!

t

I

i

I

I

I

I

1

Secti on
Number

Num.
or

Den.
Coeffi ci ents Comments

1 N

a = 0.057164

b = -0.368090

Two real zeros,

-0.635959, 0.578795

2 D

L-

d=

0.770L69

0.444873

Comptex coniugate pole Pain

z = 0.666988 exp (tj 2.186274)

3 D

c = -0.507832

d = 0.627021

Comp'lex coniugate pol e Pai r

z = 0.791847 exp (tj I.244367)

tl
'u
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LINE SEARCH METHOD

o
ill-u=
o

GR-S

GR.U

SEARCH

DI RECTION
METHOD

MQ-S

MQ.U

FF

TABLE 5.7 Example A. Second-deri vati ve methods

Avera e Number of Iterations

Note: For an exp'lanation of abbreviations used, see Tables 5.1 (page 215)and 5.2 (page 22I)
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TABLE 5.8 Example A. Second-deri vati ve methods

Av eraqe Number of Auxiiiarv Function Evaluations

5

19.1 27.5 38.0 49.5 54.2

16.3 16.4 L7.9 27.7 .38.9 47.9 53.4

13.9 t2.8 t7 .2 32.4 45 .4

41.4 29.7 28.8 43.9 54.4 65.3 72-L

23.L 43 .? 51.3 62.4 75 .0

63.461 .1

38 .0

24 -0

17 .9

49.0 53.4L2.3 11.6 15.6 27 .7

19. 1

15 .5
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LINE SEARCH METHOD

mol e A. Second-deri vati ve methods

o
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o
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SEARCH

DIRECTION
METHOD
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GR-U

MQ.S

MQ-U

FF

Ð\t
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--?

GM

Rel ati ve Labour ) Soent 'in Function Eval uati on(CP time

t.27 t.zo 1.C9 1.15 1.30 1.47

L.23 1.23 1 .05 1. 15 t .32 I '42 7 '52

1.03 1.05 1.00 1.11 t.26 t'42 1'50

1.39 1.58 l.7I l.Bs 1.91

7.44 1.41 t.zg 1.56 1.65 1'80 2'0L

1 .53

L.42 1.70 l.7l
1 . 11 1 .L2 1 .06 1.24

1.85 1.65

(Best method = 1.00)
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TABLE 5.10

Averaoe Number o

3.7

6.0

7.7 5.3
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3.4
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3.6
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4.3

3.5
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5.5

4.3

3.4
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3.7
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6.1

4.1

5.0

4.5

4.4

4.9

8.7

5.8

5.9

6.0

9.2

7.3

6.5

5.8

4.9

6.4
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this problem.

In the tables the line search methods are ordered from

left to right in terms of increasing amount of effort spent ìn

locating the minimum a'long the line. As expected, the average

number of iterations required decreases as the accuracy of the

line search improves (Table 5.7). However, there ìs virtually

no improvement in go'ing from PQI to LM or from any reduction

in the parameter e jn the LM algorithm. Moreover' PQI offers

only a slight improvement over AT-QI. However, a sígnìficant

benefit is gained from one add'itional quadratíc ìnterpolation

after the first function reduct'ion is achieved.(AT-QI versus

FAV-QI). The FAV-CF algorithm seems v'irtually as good as

FAV-QI, although the reduction factor used (0.6) is mere'ly a

guess as to an appropriate value.

The number of iterations 'is not of course an adequate

measure of the relat'ive effic'iency of the methods because

accurate l'ine searches require many more "auxìl'iary" function

evaluatjons (fìgures for this example appear in Table 5.8,

being averages per startjng point over the 30 starting points).

When this js taken into account, the improvement offered by

AT-QI over FAV-QI is not as spectacular, although it is still
just worthwhile. PQI becomes worse than AT-QI, and LM ìs

quite uncompetit'ive. Table 5.9 rates the algorithms in terms

of the total CP time expended 'in eval uating the function and

its derivatives (relat'ive to the best algorithm tested, given

a val ue of I .00) .

0n the basis of this example it is not possible to

justify the added complexity of PQI (or LM). The sl'ighly sinrpler

FAV algorìthms are very nearly as good as the best line search

aìgorithm, AT-QI. These conclusions are independent of the method

used to determine a search direction.
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coming now to the matter of search djrection algorìthms,

Table 5.9 indicates that the substantja'ìly more comp'lex GM

and FF methods perform s'ignìficantly worse than Marquardt and

Greenstadt methods and are not therefore worthwh'ile. This

would seem to be due to some'infe¡iority of these methods of

search djrection determination themselves (rather than some

subtle interaction w'ith the line search method) because they

are also inferiolin terms of number of iterations, whatever

line search is used (ta¡le 5.7). Sjnce all second-derivatìve

methods use the same direction when the Hessian matrix is

posit'ive definite,'it is more illuminat'ing to consider iust

the "pre-Newton" j terati ons , i . e. those i terat'i ons befoz'e H

becomes positive defjnite and remains So. These numbers are

tabulated in Table 5.10. In particular, the conjecture of

Fletcher and Freeman (1977 ) tfrat their method should force

the search jnto the dornain of posit'ive definiteness sooner

(because it uses descent directjons of negative curvature)

is not borne out by this digital filter example.

In terms of any of the measures used thus far there is

little to choose between the Greenstadt and Marquardt methods.

However, Greenstadt requires a complete eigensystem analys'is

at every iteration for which H 'is indefinite, and thjs

substantially h'igher "overhead" leads to a decided preference

for Marquardt. Using the AT-QI ljne search, functjon, gradient

and lless'ian evaluation accounts for 63% and 66% of the total

computer tjme for MQ-S and MQ-U methods respectively, but only

47% for GR-S and GR-U.

MQ-U perforns slight'ly but consistentìy better than MQ-S.

Thus it seems that the characteristic of the search direction

to approach the steepest descent djrection as the Marquardt para-
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meter becomes large (in the unscaled case) has a beneficial

effect outweighing any jmproved numerical condit'ioning due to

scaling. This is not surprising considering that the d'imen-

sionality of the problem is only 6, and the computat'ions are

being performed in 60-bjt floating point.

The matter of the use of curvature information to a'id

the line search is next considered. Table 5.11 lists the

relative amounts of labour (Cp time) for each line search method

empl oy'ing curvature. These fi gures may be di rec'bly conpared

with those of Table 5.9. Table 5.11 shows that aga'in the AT

line searches are better than the ìess complex FAV and more

complex PQI versjons. FAV-CI-C shows some superìority over

FAV-CF-C, wh'ich was not evident jn the figures for FAV-QI vs.

FAV-CF. Thus it seems that curvature information is of some

use in predicting an acceptable value of c once an ìn'itial

trial has been made.

Table 5.12 'is a rearrangement of certa'in of the data of

Tables 5.9 and 5..l I designed to dispìay any s'ignìficant dif-

ferences in performance between curvature and non-curvature

algorithms. Section (a) of th'is table seenls to jndjcate that

curvature jnfornration is not a particularly useful aid in

pred'ictìng an initial trial value for o. In part'icular, its

use does not aid the FF algorithrn, even though the scheme

used is that suggested by Fletcher and Freeman (1977) in

describ'ing the'ir method. However, sectjon (b) of Tab'le 5.12

shows that the cubic interpolation made possible when the curva-

ture at q = 0 is known generaìly prov'ides a bettev'predìction

than quadnatic interpoìation after one trial evaluation has

aìready been made (as was also mentioned above). This probabl¡,
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1.11

t.r2

1 .03 1 .85

1 .70

t.44
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holds also for the interpoìatjon for an addit'ional try (tabte

5.12 section (c)). Curvature information is not used by the

PQI-C algo¡ithm beyond the stage of the "first addjtjonal try"

so that there are no additional conclusions to be drawn from

Table 5.12 section (d).

An alternative procedure, that of igno¡ing curvature and

using the "a pasS" searcheS of Section 5.6.3, was also jnvesti-

gated. In no case did this produce better results than simply

taking o, = 1.0, either in terms of number of iteratjons or

total labour. For example, using the AT-QI line search, per-

formance degradat'ions in terms of total labour were:

for MQ-U

for GM

for FF

1.00 to 1.17

1. 39 to 2 .00

I.29 to I.70

Two other second-derìvative algorithms were tested, namely,

the true Marquardt with scaled and unscaled mat¡ices, TM-s-N

and TM-U-N. Results are summarized ìn Table 5.13. The un-

scaled a'lgorithm is sl ightly better. Comparìson with the

tables for ljne search algorìthms shows that each TM method

is v'irtually identical ìn performance to the corresponding

FAV line search Marquardt method, and thus slìghtly worse than

the AT search. Use of a true Marquardt method avoids the need

for a l'ine search, but because (on the average) more sets of

linear equations must be solved, the edge ìn efficiency'lies

wj th the I 'ine search al gori thm



7,55

TABLE 5.13 Exampl e A. Results for True Marouardt

S eco nd-deri vati ve al qorithms

TM-S-N TM-U-N
Compare wi th

tabl e

Average number of

i terati ons
11.0 10.1 5.7

Average number of

pre-Newton i terations
6.2 4.8 5.10

Average number of

auxi I i ary functi on eval uati ons
L2 .6 11 .8 5.8

Average I abour

(CP time)
7.t2 1.03 5.9
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5.8. 3 Gauss-Newton Methods

The term Gauss-Newton (GN) 'is applied in this chapter

to any method using the R (2 ¡ T ¿ ) matrix'in place of

the Hessìan H Methods tested included both true Marquardt

and line search methods. Although the matrjx R is theoretical'ly

always positive definite (Section 3.4.L2) ' some means 'is required

to guarantee a descent direction in those cases when it becomes

indefin'ite due to roundoff error. True Marquardt does thjs

automatica'lly by bìas'ing the step towards the steepest descent

direction, and this has proved to be the most robust algorithm.

To test line search algorithms two approaches were taken - GR-S

and MQ-S. ',In both cases the a'lgorithm occasjonally failed to

converge, the reason being that the descent direction produced

was nearly orthogonal to the grad'ient vector and very smal'l steps

were taken until the algorithm ran into the preset iteration limit

Results obtajned are summarized in Table 5.14, being averages

over the same 30 starting points used w'ith the SD methods. Values

for the "labour" are again d'irectly comparable with those of

Table 5.9.

As wjth sD methods the AT ljne search js the best. However,

wjth GN methods all line search algorìthms are outperformed by

true Marquardt, both in terms of reliab'ility and efficiency.

The TM algorithms are on a par with the best SD methocls tested

and so it would seem on the basjs of this one examp'le that the

evaluation of second derivatives is not worthwhile.
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5.8.4 0uasi-Newton and Con uqate Gradient Methods.t

The results of tests of QN and CG algorithms on

example A are summarized in Tables 5.15 to 5.I7. All

performed real'iab'ly, converging to the optimal solution in al l

30 cases. Reflectìon of poles and zeros in the unit circle,

and changes to the pairing of real roots (sectìon 4.9) were

allowed at eue?y iteration (i.e. Np = l) because tests with

the DFP algorithm (with AT search) showed that. values of NO

of 2,3 and 6 were jnferjor to Np = l. Whenever such a

change occurred, the process was re-started with steepest

descent (for the QN methods, T was reset to I ). With

regard to labour, the comparison of Tables 5.17 and 5.9, say,

may be s'lightly unfa'ir on the QN methods because they require

only a matrix-vector multiplìcation to determine p whereas

SD methods require solution of linear equations. Moreover, CG

methods require only vector add'ition. Such overheads do not

show in the tables wh'ich are for functjon evaluation only.

However, ìt is felt that the main util'ity of (simple) example

A is jn pred'icting performance'in more compl'icated cases, when

func'tion evaluation will certainìy dominate the computer time.

The most obvious result is that even the best QN method

(efGs rvith AT-QI search) is cons'iderably inferior to the true

Marquardt GN algorjthms and the best SD methods (1.58 as opposed

to values of 1.00 and better). CG methods are much less effjc'ient

aga'in, noneyie'lding a 'labour factor of less than 3.00.

The AT-QI line search ìs again the best for every QN and

CG method tried. This is somewhat surpris'ing, especia'ììy for

the CG methods, because, theoretìcal1y, "exact" line searches

are necded to obtain coniugacy. In theory the DFP algorithm

also needs exact ljne searches although other workers (e.9.
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Sargent and Sebastian, 1972) have also found good performance

with cruder search methods.

The best QN methods are BFGS and SRl-M,, and there seems

little to choose between the two. SR1-M ìs always better than

SRl, indicating that the safeguards of Murtagh and Sargent are

indeed worthwhile. The DFP algorithn achieves the same performance

as BFGS and SRI-M when "exact" line searches are used (LM w'ith

e = 0.01 ), but a'lthough aìl three get better as the I'ine search

accuracy is relaxed, DFP does not benefit as much as the other

two.

The much improved performance of FAV-QI over FAV-CF is

presumably,due to the greater number of function evaluations

needed to obtain an acceptab'ìe cr in the early iterationsror

following a matrix resetrwhen cr = 1ìs a poor approximat'ion

(in this example, much too large). QI, which allows o to shrink

by a factor of 0.2 (Sectìon 5.4) w'ill reach an appropriate small

value 'long before CF (which uses 0.6).

There seems little to choose between the two CG update

formulae A and B. All results quoted for CG methods use the "a

pass" search technìque whìch, for this example, proved more

efficient than taking cr = l. This was in spite of the need for

substantially fewer iteratjons wjth q = I in FAV and AT aìgorìthms

(42.6 vs 54.8 for FAV-QI and 29.5 vs 4i.4 for AT-QI, both with

CG-A). This represents possibly a serious deficiency of the cr-pass

a'lgori thm used. Presumab'ly cr was requ'ired to grow outwards at a

greater rate than that provjded for by the adaptation factor of

1.6, result'ing in many shorter-than-optìmum steps. It would

seem that a ìarger adaptation factor may be better, but this is

likely to be probìem-dependent. Sjnce CG methods have proved to

be the least efficient methods tested (with later, more compìex

;
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examples, extremely inefficient) this matter has not been

explored further. As expected, the number of iterations

required with the PQI search'is virtually the sane for "o-

pass" and "o=1" variants, because the optimum step'length is

located accurately with both. The cr-pass method is consìderab'ly

more efficjent (3.2L vs 3.85 in labour) because of the better

first trial.

5.8. s 0veral I Con cl us i on s - Examp'l e A

The best algorithm tested was MQ-U with AT-CI-C line

search, that is, a second-derivative method employing curvature

information to predict an injtial value of c for the line search

and to allow cubic interpolatíon rather than quadratic. It is

probable that a sl'ight ìmprovement could be gained by using

the curvature on'ly for cubi c interpo'lation, and taking an in jtial

a of unity.

However, it seems scarcely worthwhjle to evaluate second-

derivatives at all, because the TM-GN a]gorithms (which do not

require them) perform virtually as well. TM-GN aìgorithms are

signifìcantly better than GN wjth line search, both in reliabiìity

and effjciency.

If any line search algorìthm is used, the AT search js

recommen ded.

Quasi-Newton and particularly conjugate gradient methods

are inferior in speed performance to the other classes, although

they appear to be equalìy re'l iable.

The foregoing extensive analysis of this rather s'imp'le

example was undertaken for a number of reasons. F'irstìy, many

of the computer runs were performed durìng the development of

the test program itself, when a realistic yet simpìe and well-
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behaved test problem which did not require excessìve computer

time was needed. Second'ly, the averaging of the figures over

a fairly ìarge number of starting points (30) creates some

confidence that the small differences in performance observed

are more than iust coincidental. They should thus generalize

(at 'least quaì i tati vely) to more comp'lex probl ems . Study of

examp'le A then prov'ides a "feel" for the kinds of tests that

could prove ìllumjnating when app'lied to other prob'lems. It

must be emphasjzed, though, that some of the conclusions drawn

so far are modjfied in the'light of experience with later examples.

5.9 ExampleB-Lo q Maqni tude Re spon s e

5.9.1 General

Example B presents a much more difficu'lt problem than

example A. The log magnitude response 'is specified at 30 fre-

quenc'ies and has the Chebyshev" form shown in Figure 5.10. The

actual values used are in Table 5.18. Once agaìn a least squares

approximation'is sought, with all weight factors set to unity.

The approximating filter is a cascade of second-order sectjons,

hav'ing three pole pa'irs and three zero pairs. All filter
coefficients are variable, so that the djmensional'ity of the

opt'imization prob'lem (N) is 12.

Since only the (loS) magnitude response is of interest,

stabiì'ity constraints are easily deaìt with by the process of

root reflection described in Section 4.9.1. Thjs, together

with the process of real root paìr'ing (Sect'ion 4.9.2) el inrinates

many'locaì nrin'ima of the obiective functjon. However, during

the course of testing, two distjnct local mininla were uncovered.

The "good" sol ution has an objecti ve funct'ion val ue of 7 .7447 x

10-3 and coefficients as detailed'in Table 5.19. The "bad"
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Pa'ir
number

Num.
or

Den.
Coeffic'ients Comments

1 N

a = -0.491600

þ = 0.469985

Compl ex conjugate zero Pa'ir

r = 0.685555, 0 = !1..273536

2 N

a = -1 .735203

þ = 0.761976

Comp'l ex coni u gat e z ero Pa ì r

r = 0.872912, 0 = 10.110365

3 N

a = -0.350289

b = -0 .6Il79L

Real zeros

= 0.976685z
1

= -Q.626396, z 2

4 D

c = '1.281080

d = 0.583310

Complex conjugate Poìe Pair

r = 0.763747, 0 = !0.575940

5 D

L-

d=

0.717921

0.476657

Compìex coniugate Pole Pair

r = 0.645490j 0 = t2.160489

6 D

c = -1 .9L4682

d = 0.9i5758

Real poì es

Pl = 0.930068 o PZ = 0.984614

TABLE 5.19 ExamPl e B "Good" sol uti on
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Pai r
number

Num.
0r

Den.
Coeffi ci ents Comments

I N

a = -0.413849

þ = 0.455574

Compl ex coniugate zero Pa'ir

r = 0.674962, 0 = !I.259207

2 N

a = -1 .727317

þ = 0.746987

Comp'lex conjugate zero PaÍr

r = 0.864284, 0 = t0.038050

3 N

d-

þ=

!.6t7394

0.617587

Real zeros

,! = -0.617899, ,Z = -0'999495

4 D

c = -1.283316

d = 0.599666

Compl ex coni ugate pol e Pa'i r

r = 0.77438I, 0 = t0.594180

5 D

c = 0.736115

d = 0.429021

Compl ex coni u gat e po'l e Pa i r

r = 0.654997, 0 = !2.167504

6 D

c

d

0 .031565

-0 .967 452

Real pol es

PL = 0.967935, PZ = -0'999500

TABL E 5.20 Exampl e B "Bad" solution
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solutjon, havìng a funct'ion value of 5.4184 x 10-2, is detailed

in Table 5.20. The obvious deficiency 'is that one real pole

almost exactly canceìs a real zeYo, and so two degrees of

freedom are effectively wasted. Figure 5.10 shows the

inferior spectraì fit resulting.

It is somewhat surpris'ing (and fortunate) that there

seem to be onìy two local mjnima in th'is compìjcated twelve-

dimensional problem. It is still possible to generate start'ing

po'ints at random (in the manner of Section 5.2.2) with a good

chance of convergence to the optimaì solution.

The tests performed were not as comprehensjve as those

for example A, owing mainìy to the much greater computer t'ime

requ'ired. For each algorithm tested, only ten (random) startìng

points were used, and the statistical reliabi'l'ity of the results

is further reduced because averaging was done onìy over those

runs wh'ich converged to the "good" solution. However, some

interestjng poìnts emerge.

5.9 2 Second-Derivative Methods

The results obtained for the SD methods are summarized

in Tables 5.2I to 5.?5. Blank positions 'ind'icate that the

test was not run. The figures for "total Iabour" (CP tjme)

are again relat'ive to the MQ-U algorithm with AT-QI search

(tf¡is'is not the best method for example B, but it was adopted

as the datum for uniformity w'ith other examples).

The interpretation of the results for this example is greatly

comp'ljcated by the fact that convergence was not obtained from

all starting pojnts. For exampìe, FAV-CF seems vastly superior

to FAV-QI for the GM method (56 pre-Newton iterations versus 78)
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SEARCH

DIRECTION
METHOD

GR-S

GR-U

MQ.S

MQ-U

FF

Ì\9
{e

GM

6

I

9

9

6

10

5

I

9

9

5

10

4

5

10

10

8

6

5

9

9

7

6

6

10

10

3

7

6

7

I

10

8

9

4

7

10

4

7

9

9

I

9

5

9

Number of runs conve ln to lt d" sol ution out of 10
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A e number of iterations
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66
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73
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69
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73
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TABLE 5.23 e B Second-deri vative methods

f "Pre-Newton" iterationsoe number o

B9 51 43 43

56 46 41

61 57 46 48

57 59 51 45

7t 76 77 46

93 79 63 62

52 56 42

40

56 67 47 44

43

56

55

44

4258 64 51

56 78 59

59 66 62

Avera



!D
¡4
I

C)

-{I
C)
I
c)

I
C)

I
C)

(f}nru=
O!

D
,1

TI

IÞ

'ft

I
C)
TI

LINE SEARCH METHOD

I
C)-ft
I

C)

TM-U-N z I29

TM-S-N: 134

TABLE 5.24 Exarnple B. Second-deri vati ve methods

Avera qe er of Auxiliary Function EvaluationsNumb

SEARCH
DIRECTION

METHOD

GR.S

GR-U

MQ-S

MQ-U

FF

¿\9
-{
C^,GM

274 126 176 282

t37 175 278

148 105 158 291

t29 110 163 276

268 198 28r 314

?74 163 205 353

153 t28 ls8

148

138 t20 156 293 343

r37 tzL 165 278 326

362 257 275 410

304 166 236 378
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TABLE 5.25 Second-deri vati ve methods

Dent i n Functi on Eval uatì'on

Examol e B.

TM.U-N:

TM-S.N:

1.16

1.22

1..52 0.91 0.94 1.08

t.02 0.95 1.05

1.03 0.9s 0.96 1.16

0.95 0.96 0.96 1.10

r.28 1 .33 1 .43 1. 15

1.54 r.29 1.14 1.39

0.93 1.00 0.89

0 .85

0.97 1.10 0.95 1.10 1.19

1.00 i.OB 1.00 1.06 1.14

I.24 1 .38 r.24 1 .38

r.23 1. 14 r.23 1 .35

Rel ative Labour (CP time S
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but the difference'is due mainly to the fact that only starts

3, 4, 5 and 10 converged for FAV-CF whereas only starts

2,6 and 9 djd so for FAV-QI. l¡lith the GR-S method, starts

I,2,3 and 7 converged for both FAV-CF-C and FAC-QI-C ('in

similar numbers of ìterations) but FAV-CF-C looks much worse

in the tables merely because a further start also converged,

taking 226 iterations to do so. in all cases, those runs whjch

miSSed the "goodrr solutiOn conVerged to the "bad" solution, and

so the a'lgorithms themselves can stiII be regarded as reliable.

lrlith these provi sos regard'ing 'interpretation ' the

folìowing conclusions are drawn:

(a) The AT-QI line search 'is still marg'ina'l'ly the best of

those not using curvature. l-lowever' FAV-CF 'is virtualìy

as good. The added complexity of PQI and LM 'is not

justified. The performance of FAV-QI seems poor reìat'ive

to that of FAV-CF, but thjs'is probab'ly not statist'icalìy

s'ign'ificant. (Considering the MQ-U algorìthm (for which

all starts converged), FAV-QI requìres I2l/BI = L49

auxi I ì ary function eval uatì ons per iteration whereas FAV-CF

needs I37/72 = 1.90, so that the incorporation of slope

informat'ion ís stil I useful in pred'ictìng the mjnimum

in the line searches. The poorer performance of FAV-QI

is then entirely due to the greater number of iter.ations.)

The jntroduction of curvature information does not markedly

affect the figures. The djfferences 'in performance

figures for all ljne searches are small anyway, so that

aga'in AT-QI can be recommended (or FAV-CF, because of even

greater sinrpl'i ci ty) .

(b) Regarding methods for determ'ining the search direct'ion,

the two Greenstadt methods seem s'lìght1y better than Marquardt,
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wjth GM and FF s'ignificant'ìy worse aga'in. Marquardt

would still be recommended, however, because of

Greenstadt's requ'irement for eigensystem analysis,

which becomes increasingìy time consum'ing as djmension-

a1 ity increases.

For example, the total CP times (for 10 start'ing points)

using the AT-QI search were 108s for MQ-S and 173s for

GR-S. Adm'ittedly, the row cyc'lic Jacobi method used for

eigensystem analysis is much inferìor to others such as

Househol der's method (bJi I kinson, I 960) . Neverthel ess,

the Marquardt method would still have the edge 'in effic-

iency, as wel l as being much simp'ler to 'implement. There

are no s'igni fi cant d'ifferences in performance between

sca'led and unscal ed al gori thms .

(c) The true Marquardt methods are again s'imple and rel'iabl e,

but significant'ly inferior in performance to the best

I ine search al gorithms.

5.9.3 Gauss-Newton l"!ethods

Results for the GN methods are summarized in Table 5.26.

The true Marquardt GN methods are comparable jn efficiency w'ith

the best SD ljne search algopithms whereas the line search GN

methods generally are not. This finding is in accordance w'ith

that of example A. In fact, in the present exampìe, TM-U-G

seems significantly better than any SD algorìthm and it would be

tempt'ing to recommend 'it for genera'l use. However, the study

has revealed one further very ìmportant feature. This is d'iscussed

bel ow.

In the running of GN tests, ljmits were placed on both

the number of iterations (250) and auxi'l'iary evaluations (1200).
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5/e 5/e

94

527

7 /r0 6/70 6/r0

106 69 75 66

590 325 770 151
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0f those runs which did not converge, the true Marquædt runs

always ran into the iteratjon limit whereas the line search

tests ran into the evaluation limit. 0ne reason for the latter

failure 'is that found 'in conjunctjon wjth example A, viz., a

search vectoris calculated whjch is almost orthogonal to the

grad'ient, resu'l ti ng i n very smal I steps . Th'is probl em surfaces

regardìess of whether the search is wjthin the "capture area"

of the "good solution" or the "bad solution". However, there

is another fundamental problem assocjated wjth the convergence

of any GN method to the "bad" solut'ion; that prob'lem el ucidated

by McKeown (1975) and discussed in Section 3.4.i2 of this thesis.

In the context of the present example, jt seems that the matrix
TR ( = 2 J' J ) used in GN methods is at the bad soLu'bion

an insufficiently good approximatìon to the Hessian H to

allow Newton-like convergence. Under such conditions even true

Marquardt GN methods can perform very poorly. In the test of

TM-S-G, one of the failing runs had approached the "bad" solutjon

very cìosely after 250 iterations and three still exhibited vast'ly

greater funct'ion values. l.lith TM-U-G the numbers were respectively

two and two.

This behaviour contrasts wjth the good convergence of the

GN methods to the "good" solut'ion (where the residuals are much

smaller) and of the true Newton (SD) methods to both solutions

(for SD methods the sizes of res'iduals do not rnatter). The

"McKeown paraneter" ,/^ (Section 3.4.12) was calculated as 9.2 x 103

at the "qood" solution and 7.9 x 109 at the "bad" solutjonrand

convergence probìems could certainly be expected in the latter

case.

Thus'it seems that unless there is good reason to believe
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that the residuals uiLL be small (that is, that the optìnral

filter will ach'ieve the desired response to a high degree of

accuracy), it is most risky to rely on a GN method. A second-

derjvatjve method would be much tnore reliable for generaì

purpose use.

5.9.4 0uasi-Newton and Con.iuqate Gradient Methods

Several tests of quasi-Newton methods were run on example

B. When root reflectjon and pairìng changes were allowed at

every iteratjon ('i.e.Np = 1), convergence was never obtained,

the frequent resets not allowing any build-up of Hessjan information

in the itefation matrix. In fact, reaì root pairing was changed

at almost every iteration, so that the convergence would be only

steepest-descent I i ke.

Setting Nn = 20 produced the results summarized in Table
P

5.27. The algorithms for the ntost part converge reìiabìy, although

all except SRI-M w'ith FAV-QI and DFP failed with one particular

start'ing poìnt. This was mereìy because "convergence" occurred to

a "solution" with badly-paired real roots after only 14 iterations;

that is, before pairing had been checked. The very s'imple remedy

would be to check the pairing at any "solution" and contjnue if
necessary. In the three cases where DFP failed to converge, the

test was stopped at 600 jterations. The function value was de-

creasing steadiìy but very sìow1y.

BFGS shows a sl ight superìority 'in performance over SRI-M,

with DFP beìng eas'ily the worst. Sjnce BFGS comes well within

a factor of 2 of the efficiency of SD methods, ìt couìd be re-

commended as a worthwhile alternative if tirne ìs not critical and

the calculation of second derivatives is considered too laborious

to program. in partjcular, 'it would be preferable to TM-U-G
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* to "good" solution, out of 10.

TABLE 5.27 Examoie B. 0uasi-Newton Methods

Pairing and Reflection Allowed Every 20 Iterations
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234 20t 265 232 444

42r 540 467 605 t077
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because of the convergence problems of the latter.

BFGS with AT-QI was also tested with two other variants.

First'ly, No was reduced to 10 (from 20) with no degradation of

performance. SecondlY, with Np = 10, the exi st'ing 'iterat'ion

matrix was retained even if reflection or a pairing change had

occurred, (but was reset to I whenever the process fajled to

produce a descent direct'ion). In this case, the labour figure

increased from 1.57 to 1.58, confirmìng the intuitive predic-

tion that the information ìn the matrix would be useless after

such a parameter "shuffle", and the matrix accordingly shou'ld

be re-init'ial'ized.

Tests of CG a'lgorithms were not encouraging. The CG-A

method with the AT-QI "o-pôSS" line search (and resets to

steepest descent after every 12 iterations) was run to 600

iterations from each of nine start'ing points. In no case was

the solution even remote'ìy approached, the obiectjve function

value always remaining above 10-1. Since it was suspected

(from example A) that the ¡'o-pâsS" techn'ique coul d I ead to

under-estimation of the step'length with AT-QI, with an excessive

number of iterations being required, five runs using AT-QI and

four us'ing PQI were performed usíng the "o = 1" trial. All

ran to the limit of 600 iterat'ions without the convergence

criterion being met, although in four cases (AT-QI) and three

cases (PQI) a "reasonable" solution having a sma'ller F value

than the so-called "bad" min'imum had been obtajned. However,

the number of function evaluat'ions required was of the order

of 4000 for AT and 5000 for PQI, wh'ich 'is gross'ìy excess'ive

when compared wi th other methods.

',1

,t

it'

I
{Ìrj
:rl

fl
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5.10 Example C - An All-Pass Gro up De I av Eoual izer

5. 10. 1 General

This example concerns the desìgn of an all-pass equalìzing

filter to be cascaded with an el'l'iptic'low-pass filter of order

4. The passband js e = 0 to 0.5n and the stopband is 0 = 0.6n to n.

If the 1ow-pass is realized as a cascacle of two second-order

recursive sections (as in equation 4.5 and figure 4.3)'its co-

efficients are as in Table 5.28 and'its magnitude and group

delay responses are shown in Figure 5.11 and 5.12 respectiveìy.

The group delay distortion (deviation from flatness) with'in the

passband il about 8T seconds. This example is due to Deczky

( 1e73) .

The equaìjzer to be des'igned consists of three cascaded

a1ì-pass sections. A least-squares obiective functjon is used,

together with twenty-one nonunjformly distributecl frequency

sampìe po'ints, generated in accordance with the formula

i
1t.,=2sln (

ni
4õ-

',1

,t

È-

I

I
{

'l

I
I

I

I

I

J

tr
fr
f'

0 ) i = 0, 1r... 20 (5.24)

At each of these po'ints the "des'ired" group de'lay, ìs specified

as zero, although any constant value would have served just as

well because the problem js an example of "formulatjon 83"

(Section 4.4.2) in which the sVnpe of the response curve 'is optím'ized

rather than the actual level. The group delay resulting after

equalizatjon is also shown in Figure 5.12. The reasons for the

use of a non-uniform frequency set are:

(a) that the number of points per cycle of the error functjon

is approximately constant and

(b) that there are proportionate'ly more points in the fnequency
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= 1.62178

= 1.0

= -Q.403133

= Q.233280

= Q.718956

= 1.0

= Q.051401

= 0.797295

a1

bt

t1

d1

Section 2

a2

b2

,2

d2

TABLE 5.28 Coeff i ci ents for El I 'i Pt'i c Low- pas s
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= -Q.869æ0

- 1.67975s

= -Q.5L7748

= Q.595325d3

a3

b3

ca

a4

b4

c4

d4

Section 4

Section 5

¿t-
f,

b-
5

c5

d-
5

TABLE 5.29 Coefficients of Group Delay Equal i zer

to be Cascaded with Low-pass Filter of Tab le 5.28
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region where the delay distortion tends to be large,

'i .e. near the passband edge.

Deczky (19i3) recommends at least 10 poìnts per error cycle

(i.e. 35 points jn this examp'le) but it was found experimental'ly

that 2i- and 40- point sets produced almost indistinguishab'le

results. Deczky has des'igned one-and four- sect'ion equaì'izers

using a least pth obiective function with p = 5, and a DFP

optim'ization aìgorithm. In the present work, however, only a

least squares solution was sought because of the ready app'lica-

bility of SD and GN methods in this case. A second-order all-

pass sectjon has two independent designable parameters, so that

the d'imensi,onality of th'is problern is 6. To simp'lify stabi'lity

checking, the denominator coefficjents cO and dO (for the kth

sect'ion) are taken as the'independent varia.bles, the numerator

coefficjents being obtained through the relations:

aO = c¡/d¡

b = lld k

(s. 25 )

(s.zo)
k

The optimaì coefficients of the equa'lizer are g'iven in Table

5.29. The minjmum value of the obiectjve function 'is 12.BI8l7.

Three other local minjma, having funct'ion values between 30

and 40, were obtaìned very occasionalìy. Convergence of the

optimìzation process was deemed to have occurred when all

gradient components and alì components of the p vector were

absolutely less than 0.001. Reflection of poìes and zeros jn

the unit cjrcle js not a val'id procedure as it was for the

examples jnvolving'log magnitude response, and so stab'ility

constraints must be specjfical'ly cons'idered during the course of
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each jteratjon. When 

'the random starting points were generated

in accordance w'ith Section 5.2,2, nany runs had to be abandoned

because a constraint was encountered, as no provision had

been made to handle such a situation. This Ís not surprising,

but nor is it a serious objection to the use of such methods

for the design of equalizers because convergence úas obtained

in quite a large proportion of cases. What it does mean js that

for a meaningful comparison of the convergence,properties of

different algorithms, a more localized set of starting poìnts

is required. Accordingly, the randomization method of Section

5.2.3 was used, with all c coefficjents having a "centre value"

of -0.7 and a "maxjmum deviation" of 1.0, and d coeffjcients

usìng 0.5 (centre) and 0.4 (deviation). F'igure 5.13 shows the

al lowed starting region as wel I as the locat'ions of the opt'ima'ì

coefficjents. Forty such starting poìnts were used in the

tests. 0f these, eight violated a stabi'l'ity constraint and so

were abandoned inmed'iate1y. 0f the rema'in'ing thìrty-two, an

average of twenty led to convergence to the optimal solution.

Although with every method tested there were some starting

points which d'id not lead to convergence, the averaging of

results over those starts which did converge 'is perhaps more

meaningfu'l with this example than with examp'le B. This is

because sone pantícuLar startjng por'nts (about 15) led to

convergence in almost all test runs, whereas others (about 8)

did so'infrequentiy or never.

5. 10.2 Second-Derivati ve Methods

The results obtained for SD methods are summarized in

Tables 5.30 to 5.34. As wjth prevìous examples, MQ-U with

AT-QI search ìs g'iven the base "labour" value,1.00.
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TABLE 5.31 Example C. Second-derivative methods

Averaqe number of iterations

10.110.89.7

t0.2

10.914.8

11.4 r0.7

r?.7 12.0

13.9 r2.2

9.5

14.1 14.7 12.3 r1,.2

11.8 12.5 11.4 10.5

rI.2 11.9 10.s

12.3 72.4 10.2

15. 9 r3.2

t2.4 13. 5 t2.0
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Average Number of Pre-Newton Iterations
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Averaqe Number of Auxiliarv Function Evaluations

22.4

25.3

16.5

17.0

45.4

40. 1

25.7

t7 .t 24.3

15.1 2t.818.4 16.2 21.0 38. 5

19. 1 L6.7 79..2 37 .8

20.0 19 .7 25.L 49 .2

19. 0 L7 .9 23.3 49 .l

20.6 26.1

26.0 20.1

23.5



TABLE 5.34

LINE SEARCH METHOD

t.23
1 .34

Second-derivati ve methods
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TI

I
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-{I
C)

I
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'fl

I
C)

I
C)

'9Ð

GR-S

GR-U

MQ-S
SEARCH

DIRECTION
METHOD

T\9
c.o
tÞ

MQ.U

GM

FF

TM-U-N:

TM-S-N:

Exampl e C.

)

0".96 I .00.

0.88 0.89

1,04 1100.

0.82 0.84

L.Lz 1.19. 1,08 1,15

0.99- 0.. 98 0,9.5. 1 .09-

L.02

a .9-4 0. 83 0.,95

L.O7 1 .09- 1 .0.0 I;I7

1 .0.1

0.,86 0-.97

1.01 1 .05

0.9.6

0.88 0..91

Relative Labour (CP time S Den t in Function Evaìuation
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In the matter of comparisons between line search methods,

Tables 5.31 and 5.32 indicate that the nunrber of iterations

decreases as the accuracy of the l'ine search is improved.

However, as expected, the number of auxiliary evaluations Ín-

creases (Table 5.33). From Table 5.34, the AT-QI search again

represents the optimum from the point of v'iew of total labour.

The use of curvature information appears to be marginally

benefjcial, saving about L0% of the labour in the FAV algorithms,

but somewhat less in AT algorithms.

The order of preference for search direct'ion algorithms

would appear to p'lace the two GR methods fjrst, followed by GM,

then MQ-U and FF together, with MQ-S last. However, examìnation

of Table 5.30 shows that MQ-S converges in s'ignificantly more

cases than the others. Thus jt could be that the averag'ing makes

it appear worse sìmply because it converges from several "dif-

ficult" start'ing points for which the others fail. To test this

hypothesis the averages were re-computed (for the AT-QI runs)

over those 15 start'ing points wh'ich produced convergence with

euerA method. Results are presented 'in Table 5.35, from which

it is seen that MQ-S js actual'ly performing as we'lì as MQ-U and

FF. However, â sììght advantage remains with GM, and GR-U and

GR-S are still the best. In thìs exampìe GM and FF are shown

in a better I ight than in previous exampìes. Further dìscussion

is deferred to Sect'ion 5. i4.

As wìth examples A and B, the true Marquardt SD methods are

considerably less effi cient than the best I jne search al gorìthms.

5.10.3 Gauss-Newton Methods

Tests were macle of both tnre Marquardt and I jne search GN

methods. Results are presented in Table 5.36. The findings are

at varjance with those for earl Íer exampìes 'in that the l'ine
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TABLE 5.35 Example C

Performance of various SD methods with AT-QI ljne search

Averaqes over 15 identical starti nq oo'ints

Method
Average No. of

I terati ons
Average No. of

Auxi I iary Eval uations
Rel ati ve
Labour

GR-S

GR.U

MQ-S

MQ-U

GM

FF

9.7

9.8

' 11.3

tL.7

10.1

11.1

18. 9

18. 3

20.7

22.1

2r.7

23.6

0. 83

0.83

0.96

1.00

0.89

0.98
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TABLE 5.36 Example C

Gauss-Newton Methods

METHOD
C'

I

=I

=l-

C5
I

v,
I

=F

o
=lr>s<
= t¡-

=attcrF
=<

Number of
Starts Converging

Average Number
of Iterations

Average Number
of Auxj 1 iary

Function Eval uations

Relative Labour
(cf. Table 5.34)

13 16 L9- 20

13. 9 15. 9 15. 1 12.7

25.8 24.9 20.8 24.r

0. 85 0. 93 0.86 0.79
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search methods seem to be at I east as good as the TM methods.

All cases of non-convergence were due to a constraints beìng

encountered, rather than to the near-orthogonaf ity of gradient

and search direction or to the excessive size of the res'iduals

In terms of total labour all methods tested rated some-

what better than the SD methods.

5.10.4 Quasi-Newton and Conjugate-Gradient Methods

The results obtained for QN and CG methods are sumnlarized

in Tables 5.37 to 5.40. The CG methods enrployed the "q = 1"

search varìants, wh'ich for this problem were more efficient than

"c-pass". Jhis was because, for AT-QI search, the number of

iterations was much smaller (77.9 vs 200.3 wjth CG-A) a'lthough

marginaìly more auxif iary evaluatjons were required (548 vs 426).

This confirms the finding with example A that underest'imation

of steplength can severeìy cripple the "a-pôSS" strategy with

AT searches, although "a-pasS'r would presumably be advantageous

almost aìways with a PQI search. In any case, the results

indicate that even very careful tunìng would be un'like'ly to make

a CG method competitive with the other classes of algorithm.

Turning attention now to the QN methods, the BFGS and

SR1-M techniques are again significantly better than DFP. The

FAV-QI line search seems to be virtually as good as AT-QI, with

PQI again not being worthwh'ile. (However, the AT search at

least is needed to get the best performance from DFP). FAV-CF

is inferjor to FAV-QI although the number of iteratíons is

smal I er. Thi s , presumab'ly, 'is due to the greater number of

evaluations needed to obtain an acceptable value of q followìng

a matrix reset. The same effect was seen with examp'le A.
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LINE SEARCH METHOD

Np=1

54.9 67.3 28.8 22.0

26.L 26 .5 24 .6 2I.9 24.9

26 .3 27 .2 22.7 23.r

L2r.7 77 .9 77 .5 78.5

L07 .2 65.6 67 .5 65.9
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DIRECTION SRl-M
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C¡9

e

TABLE 5.38 Example C. Quasi-Newton and Conjuqate Gradient Methods

Averaqe Number of Iterations
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LINE SEARCH METHOD

Example C. Quasi-Newton and Conj te Gradient Methods

Average Number of Auxiliary Function Evaluations
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847 .7 548.2 664.9 551.3

718.8 452.8 573.7 454.4



LINE SEARCH METHOD

Np=1
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TABLE 5.40 Example C. Quasi-Newton and Conjuqate Gradi.ent Methods

Relative Labour (Cp time) in Function Evaluation
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Restricting root paìring changes to every sixth iteration

made virtual'ly no difference.

The best QN methods require about twice.the functjon

eval uation time of the best SD and GN methods.

5.11 Exa leD-Simultaneous0 timization of Ma ude and
u

5.11.1 GeEra'l

The low-pass filter and group delay equaljzer whose

des'ign was considered in Section 5.10 has an overall comp'lexity

of five biquadratic sections, or equivalently ten po'les and

ten zeros, 'involving twenty coefficients. The technique of

using only two sect'ions to shape the magn'itude response and

appending an aìl-pass group delay equalizer is convenient, but

by no means represents the best that can be done with a filter
of such complexìty. This section deals with the optímizatíon

of an objective function which includes contributions from both

magnitude and group deìay responses, aììowìng all twenty co-

efficients to vary independently. In a problem of such comp-

'lexity a I arge number of I ocal minima could be expect,ed. No

attempt has been made to find the globally optimal solution,

but only to seek a loca'l improvement, taking the alì-pass

sol ut'ion as a starting point.

The art in the formulation of such problems is in select-

ing relative weights such that errors in the group de'lay response

are traded off realistically against magnjtude response errors.

S'ince in the present case the chief concern js wjth the per-

formance of optìmization algorithms, no attempt was made to

|^

'l
(

I
t

I

I

i
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automate the choice of weights. Rather, they were selected on

a tri al -and-error bas i s .

l,,lith example C, the original filter considered was a

two-section low-pass fjlter des'igned by the transformation of

a "classical" s-plane design. In order to allow the use of

optimìzation techniques throughout the present study, a

similar filter was desìgned by reformulat'ing the specificatjon

as a least squares prob'lem. In antìcipation of improved per-

formance in the final desìgn, the opportunity was taken at the

outset to reduce the w'idth of the transjtion band slightly, so

that the passband is now defined by o = 0 to 1.57 and the stopband

by o = 1.86 to n. A two-section low-pass filter (with zeros con-

strained to lie on the unit circle) was des'igned by least squares

magnitude opt'imizat'ion (wi th unit weights) over the following set

if 42 non-uniformly distributed frequenc'ies:

(a) Passband (specified magnitude = 1.0)

nioi = 1.57 sin Tù
i = 0, l, 20

l

(5.27)

(b) Stopband (specified magnitude = 0.0)

ozt*i = 1r - (n - 1.86 ) sin f;| 'i =0, l, 20. (5.28)

The reason for the use of a non-uniform frequency set is the

same as w'ith exampìe C. The filter coefficients found are

detailed jn column A of Table 5.41 (Sect'ions 1 and 2). The

magnitude response is shown 'in Figure 5.14. This js close'ly

comparable with the response of the el'liptic filter of Figure

5.11, and shows that with a suitable chojce of frequency set a
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TABLE 5.41 Examp'l e D. Coef f j cì e¡¡tr {qligi¡3t

Secti on
Number

Coeffi c i ent

(A)
Two-section I owpass fj I ter
with three-section group

deì ay equal i zer

(B)

0ptimi zed
Fi I ter

1 a

b

c

d

r.662506

1.0

-0.3428260

0.2087280

1 .498160

0. 908732

-0.728966

0 .5607 47

2 a

b

c

d

0.6742920

1.0

0 . 061 14800

0.7942t40

-2.019779

1 .839906

-r.097762

0. 5435060

0.618187

0 .97 17 63

0.204273

0.857456

3 a

b

c

d

-2.206958

2.249604

-I.I47933

0. 514874

4 a

b

c

d

-2.670584

L.886287

-r.4rs789

0. 5301420

-2.986846

2.368466

-I.372330

0.492890

5 a

b

c

d

-0.8661150

1.695815

-0. 5107370

0. 5896870

-0 . 88981 9

2.022727

-0.202822

0.645425

F 19. 53 F r.285544

and 0ptimi zed Fi I ters
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Lowpass Filter. Desiqned by Least-s qu ares 0oti mi zati on

(4z-point nonuniform discrete frequency set)

1

0

0.6

0.2

8

4

o'0
+)
c(t¡
ct
E

(l,

+,
rõ
(l,
I

\



3$?
least squares design can achieve a response which is close to

equi rippl e. The group de'lay response of th'i s f i I ter i s shown

in Figure 5.15, together with the group delay resulting after

cascading a three-section all-pass equaìizer designed by a

unjt-weighted least squares optìrnizatjon over the passband

frequency set. The coefficients of the equalizer also appear

in column A of Table 5.41 (Sections 3,4 and 5). The co-

efficients of the resuitìng five-section filtei constitute the

starting parameter vector for the simultaneous magn'itude and

group del ay optr'm'izat j on .

By trial-and-error it was determined that a reasonable

error tradeoff was obtained when all magnìtude response

weight factors were taken as 8.0 (that is, at each of the 42

frequencies of equations (5.27) and (5.28)) and a1ì group delay

weights were taken as 1.0 (at the passband frequencies of

(5.27 ) only). In fact, with these values the final magnitude

response Ís slightly better than that of the original filter
while the group de'lay distortion in the passband is greatly

reduced. Fjnal response curves are presented as F'igures b.16

and 5.17, and coefficients in column B of rable 5.41. Different

tradeoffs may be made by suitable adjustment of weight factors.

There is one further comp'lication in the definition of

th'is problern. when the optimìzation was attempted exact'ry as

stated above, a soìution was obta'ined which appeared to fit
the specification very well indeed. However, it happened that

an extremely'light'ly damped pole pair had been placed in the so-

called "transitìon" band where no target response had been

specìfied. This of course renders the structure useless as a

low-pass filter. Accord'ing'ly, the objectìve function was modifjed



t-J

^l.à

>

-

----

\

@

OæorÞl\)
group delay ( TfoCSIp'lttmu

-n
G)c
F
r1I

3
(tr

O@>

C¡9

co

rTIx
9J

=o
J

lD

P

c)
-5o
o
g
(D
J

OJ

Ð
rD
tn
g
o
U\
(D

o
-+l

-b r\)
J. I
r lJ)
c+lD(D()
-5(+

J.

oo+t5
9)r^=
J>

-Ov(O
Þr5tn(lJ.t9r(+

U'' C(D()o-
-o 9) (DcorgrrDO¿o!
J. c+
N=J.
cÐJ.=-5 c+ J.

5N
(D

OJÀ
I,Jt -blDJ.
C)J
c+ c+J.lD
o5
5

o-
(5

c+
OJ
J

-h-
rD
-oc
lD
5
c)

-Þ
o-

tt
U'

-r1

J

<+
lD
-5
a.t1



309

1

{

0.6

-0

_0.2--

(u
E
{J

çq,
rú
E

(l)

+)
rú
(u
!

4

0.5 1.0 1.5

FIGURE 5.16 Example D. Simul taneous Maqn itude and Group Delay

0ptimi zati on. Maqn'itude Response at Fi nal Sol uti on

2 0 2.5 3.0
d'igi taì frequency (rad)



FIGURE 5.17 Exampl e D. S

3X.t

imultaneous Maqnitude and Group Delav

2

/

0

frequ
(ra

ne cy
d

d'ig'ita1

t--
t{-
o
vl
(u

è
+t
5
E

(õ

(u
!
o
Jo
l-
cI)

1.5

10

B

6

4

2

0

2

0.5

0ptimìzati on. Grou p Del a.y Res Þon se at Final Solution



311
by the addition of pìausible target magnjtude values at five

po'ints in the transi t'ion band, as fol lows :

e = 1.61

o = 1.66

Q = I.7I

o = I.76

s = 1.81

mag = 0.95

mag = 0.80

mag = 0.51.

mag = 0.24

mag = 0.08

The weight factors appl'ied at these frequenci6were also 8.0.

It is in fact when the object'ive function is augmented in this

manner that,the results of Fìgures 5.16 and 5.I7, and Table 5.41,

are obta'ined.

This matter just discussed illustrates a difficu]ty which

often surfaces when complete design automation is atternpted.

If the objective functjon is badly formulated, the results

obtained can be quite misìeadìng. In the design of filters
such as this, the optimizatíon should probabìy be considered

just as one phase of a human-machine interact'ive process.

5.11.2 Re_sul ts

A representative selection of solution methods were

applied to the 20-dimensional simultaneous optim'ization problem.

All except CG methods converged to the same solut.ion, whjch

had an associated function value of 1.28s544, as comparecl with

19.53 for the aì ì -pass equal i zed fi I ter. Convergence was

deemed to have occurred when al I components of both E and p

were I ess than 10-3. The cG nrethods r.Jere run to 600 i terations

wjthout the convergence criterion being met, but the function

value had been reduced to r.3zr (for the AT-QI seanch) and to
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L.287 (for the PQI search) w'ith al I coeffic jents being quite

close to the optima'l values. No real roots and so no pairing

changes occurred with any method

The results are presented in Table 5.42. Since for

this probìem only one starting point was used with each method,

the performance could be evaluated both in terms of function

evaluation tjme and total execution time. As the figures of

Table 5.42 show, the evaluation time swamps the "overheads" so

that the ranking of the algorithms is virtually the same with

either measure. The one exception ìs, predictabìy, the

Greenstadt SD method, whi ch requi red ei gensystem analys'is (usirrg

more effort'than all other operatìons comb'ined).

As with other examples the comput'ing "labour" is quoted

relative to that of the MQ-U SD method with AT-QI line search,

which was the third best method tested. The somewhat better

performance of MQ-U wj th PQI was due to the need for two fewer

iterations,and is probably fortuitous. Other SD methods were

also efficient, as wouìd be expected from the results for

earlier examp'ìes. GM and FF methods, which are again worse than

MQ-U, rate better in terms of total time than of evaluatjon time

because they always require only orre matrix factorizatìon per

iteration. hlith MQ-U (AT-QI) an average of 1.3 factorizatjons

per iterations had to be abandoned after the matrices were proven

indefinite.

The performance of GN methods is 'interesting. The line

search version (MQ-U wjth AT-QI) was much more effjcient than

any other method tested, suggesting that in thìs exampìe there

are no probl ems assocj ated wi th I arge res idual s . However,

TM-s-G was disappointing and the performance of rM-u-G was appa1lìng

Further investigat'ion (usìng the detailed printout facjl ities of
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r.73
1 .36
1 .61
r.44

27
2L
25
23

L62
235

10. 1

14.7

Functi on
Eval uation Time

Actual (s) Relative*

17.
14.
13.
14.
16.
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4
5
6
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0
B
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4
6
4
4
7

3.49
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2.32

20
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1 .85
L.42
1. 69
1.51

155
228

10.8
15.8

No. of
I terati ons

No. of
Pre-Newton
Iterat'ions

No. of
Auxi 1 i ary

Eval uations

18
15
13
15
i6
2I
18
T6

I
8
8
11
10
16
10

9

32
30
50
35
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61
24
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22
140
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56
357

79

189
68
65
82
69
67
7I

4r6
484
524
294
200
304
223

600
600

L2LO
2949

Method

(a) SD methods

MQ-U, FAV-CF
MQ-U, AT-QI
MQ-U,
GR-U,
Gi'4,

FF,
TM

TM

PQI
AT-QI
AT-QI
AT-Qi

-U-N
-5-r\

(b) GN methods

MQ-U, AT-Qi
TM-U-G
Tt,l-s-G

(c) QN methods

DFP, AT-QI
DFP, PQI
DFP, LM (

BFGS, FAV
BFGS, AT-
BFGS, PQI

^- I
L-L

-cF
QI

0 )

sR1-M, AT-Qi

(d) CG methods

CG-A, AT-QI, cr-pass
CG-4, PQI, cx-pass

Cr9
ts-L
C,L,

* reiative to values for SD method MQ-U, AT-QI.

TABLE 5.42 Results of 0ptimization Tests, Example D
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the general test program) showed that in fact the fast "Newton-

like" convergence rate had not materialized with any of the

GN algorithms. The initial performance of all methods was

good, the functìon value being reduced below 1.30'in 11

iterations with both TM methods and in 9 iterations by MQ-U

w'ith AT-QI. However, the subsequent convergence to the m'in'i-

mum was onìy at a "steepest-descent" rate. With both TM

methods a non-zero val ue of the Marquardt parameter was

needed to gain a function decrease rjght up to the final

'iteration. l^lith the I ine search versìon the expected "ideal"

steplength cr = I was seldom acceptable. Progress towards the

minimum was, in all three cases by an 'ineffjcient "zlg-zag"

path. Thus it seems that the l'ine search algorithm was able

to meet the convergence criterjon after only 22 iterations

so'le'ly through good ìuck.

The "McKeown parameter t/u (see Section 3 .4.I2) at the

optìma'ì sol uti on was cal cul ated as 2 .0 x 103. Al though w'ith

example B (Sectìon 5.9) a value somewhat larger than thjs

(g.Z x 103) did not seem to lead to convergence problems,

the value js in the range for which McKeown (.l975) has observed

poor performance.

The findings of this sectjon confirm that GN methods have

an unfortunate unrel jable characteristic which is s'ign'ifìcant

in practìce.

The best QN method (BFGS) again came within a factor of

1.5 of the time performance of the best SD method, be'ing

slightly better than SR1-M and much better than DFP. AT-QI

was the best Iine search with BFGS, wh'ile DFP benefited from

the more accurate PQI search.

The CG methods can be said to have produced an acceptable
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solution, but thejr execution t'ime requirement nrakes them

uncompetiti ve.

5.12 Examp'le E - Time Domain, Synthet'ic Signal

5.12.1 General..

This exampìe and the next deal with the synthesis of a

di g'ital fi I ter to match a gi ven target irnpul se response ,

as was considered in Section 4.7. As such a process may have

appì ì cation to real -time system i dentj fi cat'ion probl ems , the

time efficiency of the optimìzation methods is of perhaps

greater imp'ortance here than when applìed to off-ljne filter
"design" problems.

For example E the target impulse response was obtained

by exc'it'ing a two-zero four-poìe digital fil ter (whose para-

meters are given'in Table 5.43, columns (A) and (B)) wjth a

unit impu'lse. The filter output was then corrupted by the

addition of a small-ampìitude noise-like component which

consisted of a fixed amount of 0.01 which was added to or

subtracted from individual output sampìes on a "random" basjs.

The result'ing target response of 31 points' duration js listed

in Table 5.44. The optimization process used a unit-weighted

least-squares"formulation 81" criterion appf ied. to samples

2 to 31. The model fitted had the same confÍguratìon and the

same comp'lexity as the generator, and so N = 6, and a very

good fìt is expected.

Thirty starting poìnts viere used, generated in accordance

with Sec'bion 5.2.2; that is, the poles and zeros were 'initially

placed at "random" locations wjthjn the unit circle. The
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TABLE 5.43 Details of Generati S tem A B

and Solution (C) for Exampl e E

(A)
Pol es and zeros

of signaì

(B)
Coefficients used

to generate sìgnaì

(c)
Coefficients found
(solution vector)

Two real zeros

'r = -o'63597L

z2 = +0.578804

a = 0.057167

b = -0.368103

a = 0.058279

b = -0.36227I

Compìex conjugate Pole
pal r

r = 0.666980

þ = t2.I86282

c = 0.770168

d' = Q.444862

c = 0.769033

6f = 0.445077

Complex conjugáte pole
Pair

l' = 0.93

0 = tl -244369

C = =0.596430

d = 0.864900

c

d

-0. 595955

0.865345
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TABLE 5.44 Tarqet Impulse Response for Exampl e E
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derivatives of the objective function were calculated by

employìng the recursive filter structures derived in Section

4.7.2, and so zeros (as well as poles) had to be constra'ined

to lie inside the unit circle during the ent'ire optimization

process. As expected, the need to observe constra'ints led

to many instances of failure to converge, but there was a

sufficient number of successes to allow the relative per-

formance of the aìgorithnrs to be evaluated.

The opt'imal coeffjcients are listed in Table 5.43 column

(C). The slight differences between these and the generator

coefficients are due to the effect of the additive no'ise.

The minimum, value of the objective funct'ion vras 2.145424 x 10-4.

Convergence was deemed to have occurred when al 1 components

of the p vector became less than 10-3, wÍth the Euclidean

norm of the g vector also being ìess than 10-3.

5.72 . Z Second-Deri vat'i ve Methods

The results obtained for SD methods are presented in

Tables 5.45 to 5.48. Many of the conclusions to be drawn are

similar to those of earlìer examples, and only the more important

will be r"epeated here. The MQ-U and MQ-S approaches agaìn

outperform thejr compet'itors. The two GR methods and GM rank

second (although GM would be more effjcìent due to lower over-

heads), while FF js a rather poor last. Interestjngly, Table

5.45 indicates that the most efficient (MQ) algorithms aìso

converge more often (particularly when compared wìth GM). A

possib'le explanation for this runs as follows. We may consjder

that each local minimum of any objective function has a "capture

area", which is that regìon of parameter space whose points may be
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connected to that local mjnimum by paths which are entirely

"downhilI." In other words, it is the set of points from

wh jch a steepest-descent process ernploying infìnitesimaì'ly

short steps would be expected to converge. Owing to the

nature of the present problem, the fairly smaìl dimensiona'lìty,

and the very good fit of the filter model at the optimal

solution, it seems reasonable that the capture area of the

g'loba1 optimum 'is rather large; in fact, probabìy a1ì of the

30 starting points are w'ithin it. If there are any other

local minima the'ir capture areas are l'ikely to be relatÍveìy

small. Although any search method emp'loying finíte steps has

the ab'ility to overstep a ridge, thus leaving one capture

area for another, and although th'is may occasiona'l1y be bene-

ficial, it seems intuitively desirable that th'is should not

happen very often. The bias towards the steepest-descent

direction introduced'in the MQ methods is likeìy to lead to

less ridge-jumping than more arbitrary descent direct'ions,

particu'lar'ly those of the GM method. If it is given that the

startjng poìnts are with'in the capture area of the opt'ima1

solution, then the MQ methods should converge more often (or,

rather, dìverge Less often).

With all SD line-search methods the AT-QI search is the

best. The use of curvature information to predict a step-

ìength 'is not worthwhile. The true Marquardt methods are

reliable (as the above reasoning concerning "capture area"

would predict), but are again not as effícient as the best

line search methods.

F^

,i
,

I
l

)

I

t,
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5.12.3 Gauss-Newton Ì,lethods

Results for GN methods are in Table 5.49. The true

Marquardt methods are much more rel'iable and more efficient

than the line search variants. As usual, the TM methods

outperform even the best SD methods by a signìficant margin.

0f course, in th'is probìem the optima'l model Ís so good

that there are no convergence problems associated with large

res'idual s. The "McKeown factor" i s only 0.9185, ind'icat'ing

that even the classical undamped Gauss-Newton algorithm would

probably converge. An interesting departure from earlier

findings 'is that the line search algorithns seem to benefit

from the added accuracy of the PQI search.

5.72.4 Quasi-Newton and Conjugate Gradient Methods

Results for QN and CG methods are in Tables 5.50 to

5.53. The CG aìgorithms used the "c = I" variants which proved

more efficient than "cr-pass" for the AT search. No CG method

approached the QN or other methods in efficiency.

The BFGS and SRI-M methods (with AT-QI or FAV-QI) were

for th'is example only slightly less efficjent than the SD

algoríthms. However, all QN methods seem to d'iverge more

often than the TM and MQ-U SD algorithms, perhaps due to "ridge-

jump'ing" with overly Iarge steepest-descent steps on early

i terations.

l
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5. 13 E.xampl e F - T jnre Domain , N-atural Signal

5.13.1 General Discussion

Examp'le F íl I ustrates the use of t'ime-domain optimì zation

in the pole-zero modelling of a "natural" s'ignal, that is, one

not necessarily fitting any digìta1 filter model. The target

impuìse response consists of a minimum-phase estjmate of the

human vocal tract ìmpul se response during an utterance of the

nasal consonant/m/. The curve was produced by homomorphìc

processing of the speech signal (to Ue discussed 'in Chapter

Seven) and is shown in Fjgure 5.18. The work reported here

does not reþresent a serious attempt to generate real'istic

models for speech sounds. The target response derived from

speech merely provides a conven jent examp'le of a signa'l not

derived from a sìmp'le known model .

The first choice to be resolved concerns the compìexity

(number of poles and zeros) of the model to be fìttecl. Any

serious attempt to automate the system modelling process would

have to develop criteria for mak'ing such a selection, and thìs

would jnvolve an analysis of the adequacy of the model for its
intended purpose. In the case of speech this may jnvolve

such matters as the intel lig'i bi1 ity of speech re-synthesized

using the model. As the majn object here is the comparison of

optimization methods, a trial-and-error approach was adopted

using v'isual comparison of achieved and target impuìse responses.

Figures 5.19 to 5.21 repeat the target irnpu'lse response

of Figure 5.18 (po'ints not shown were zero-weighted in optìrn'izing)

and show the fits obtained with severaì simple models. In F'igure

5.19 the very obvíous low frequency damped oscjllation is well

modelled by a poìe pa'ir, but the model has insufficjent complexity
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to match the complicated behaviour of the early sarnp'les. The

oscillatory behaviour of alternate sampìes which persists

up to (and beyond) samp'le 120 is due to a very 'light'ly 
damped

pole on the negat'ive real ax'is. Its occurrence'is annoying

because such behaviour is not a characteristic of the signal

being modelled. It is a case of a bad cho'ice of model ìead'ing

to quitc strange rcsults, which unfortunate'ly often happens

wi th optimi zation techn i ques . Fi gure 5 .20 i I I us trates the

effect of adding another pair of zeros and 'including nlore

samp'les in the time jndex range 25 - 40 in the spec'ification.

The low-frequency oscillation and the behaviour at samples 1

to 6 are well modelled, and the spurious real,axis poìe has

disappeared, but the fit at samples 7 to t2 in particular could

be improved. Figure 5.21 shows the effect of increasing the

weighting on the early samples (2 to 11) to 5.0, which'is to

force this part of the response to be modelled by a comp'lex

pole pa'ir. The resulting fìt ìs good in this reg'ion, but the

pole pair is very'lightly damped and its effect persists to

much later tjmes where it has no correspondence w'ith any chara-

cteri stic of the real si gna'l .

Several attempts to find other models failed becaLtse non-

minimum phase zeros were called for. Since the gradìent computatjon

scheme used requires zeros to remajn minjmum phase, the optimiza-

tion runs had to be abandoned whenever the zeros were driven into

the unit circle. This could be a major failjng of thjs method

for model'ling genera'l sìgnals (even when, as in the present

ìnstance, they are known to arise from minimum-phase considerations).

For this reason, it js recomÌlended that a genera'l-purpose program
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should use the alternative (but more tjme-consuming) schenle

for gradient calculation. This was derived in Sect'ion 4.7,

and'involves omitting one filter section for each gradìent

component rather than canceliing ìts effect witn an appended

recurs'i ve secti on .

5.13.2 Probl em Definition

Figure 5.22 shows the impulse response of the model

fina'lly selected for the studjes of opt'imìzation methods.

There are 5 zero paìrs and two po'le pairs. One pole pa'ir

adequately models the susta'ined osci'l'latory aspects of the

si gnal whi l,st the zeros and the second po'l e paì r (a1 'l compl ex

apart from one pair of zeros) look after the shaping for 1ow

time index.

The dimensional ity of thìs opt'im'ization problem (N) is

14. In a trial involving 17 starting points generated in the

random fashion of Section 5.2.2, four cases of convergence to

the opt'imal solution were recorded, and the remajnder of the

runs were abandoned when the mÍnimum-phase constraint was en-

countered. Thjs illustrates that it is feasjble to generate

such model s from arbì trary start'ing po'ints . However, i t
shows also that th'is would not be a robust techn'ique for on-

'line app'lications. To compare the optimizatíon a'lgorìthms it
was decided to use a set of starting points in the near vicin'ity

of the optìmal solution. This may not be unreasonable because

in many applications a good estimate may be ava'ilable from an

earlier "frame" of data or by usìng a method such as Shanks'

(1967) or Kalnan's (1958). In any case it should not upset the

conclusions regarding the convergence of algorithms. Nìne stable
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(and mìnimum phase) starting points were in fact used, generated

as descríbed in Section 5.2.3. "Centre values" of parameters

were those at the solution. AlI "maxinlum devjations" were

0.05 except that the coeff ic'ients determin'ing the I i ghtly-
\

damped poles (r = 0.982, 0 = 0.079) were g'iven maximum deviations

of 0.002.

The value of the objective function at the solution was

4.03. Convergence was deemed to have occurred when al1 components

of g and p vectors were less than 10-3.

5.13.3 Re_sul t.s

The r'esults obta'ined are presented jn Table 5.54, and

are much as would be expected from earlier sections. All algorithms

converged in all cases except for one case of fajlure with GR

and FF SD methods and three with GM. Thus MQ-U seems the most

robust, and GM the least robust, of the SD methods, confÍrming

the findings with example E. MQ-U is also the most efficient

of the SD methods, three different line search variants giving

closely comparable figures.

The GN methods tested (Ootn TM and I ine search) are "Newton-

like"'in behaviour and so surpass the SD methods in effic'iency

by a considerable margin.

The time requirements of the best QN methods (AFGS and

SR1-M with AT-QI) aga'in hover around 130% relative to the MQ-U

SD method. QN methods are thus quìte an attract'ive alternative

to SD methods. In fact, if the more compl'icated scheme for

derjvat'ive calculatjon (to allow for nonminjmum phase zeros) were

necessary, the SD methods would suffer disproportionately, and

it is likely that QN methods would become more effr'cient.
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TABLE 5.54 Results of Optimization Tests, Example F

l

Method
Number

Converg'in
(out of 9

g

)

Average
No. of

I terat'i ons

Average Average
No. of No. of

Pre-Newton Auxiìiary
Iterat'ions Eval uati ons

Rel ati ve
Labour

(a) SD methods

MQ-U, FAV-CF

MQ-U, AT-Qr

MQ-U, PQI

GR-U, AT-QI

cM, AT-QI

FF, AT-QI

TM-U -N

TM-S-N

( b) GN methods

MQ-U, AT-QI\
MQ-U, PQI

TM-U.G

TM-S-G

(c) QN methods

DFP, AT-QI

DFP, PQI

BFGS, AT-QI

BFGS, PQI

sR1-M, AT-QI

9

9

9

I
6

B

9

9

10 .4

10.1

9.2

13. 1

14.2

14 .8

11.3

10 .8

4.8

4.0
3.8

5.6

5.7

7.9

5.4

5.3

11.

L6.

28.

28.

33.

33.

16.

20.

2

9

7

0

5

6

8

1

0

1

1

1

1

1

1

1

.98

.00

.02

.35

.48

.54

.10

.09

9

9

9

9

10.1

9.3

11 .6

11 .3

L2.2

22.2

TI.7

11.4

0.62

0 .66

0.69

0.67

9

9

9

9

9

50.3

25.7

28.0

2s.8
29.2

115 .0

148. 1

94.9

t44.6

93. B

1 .90

1 .69

1 .31

t.67
t.32
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No tests of CG methods were performed w'ith this example.

5. 14 0veral I Concl usions Rega rdinq 0ptimization Methods

Many findings relating to the relative performance of the

opt'imìzation methods tested have already been reported. Many

of these are unìformly valid over the entire spectrum of

fìlter design examples. In addition, some phenomena have

occurred frequently enough to suggest general guidelines for

the selection of an opt'inrìzation aìgorithm:

(a) if the best speed performance 'is truìy important,

together with reliabjlity, it does appear to be

worthí^rhile evaluating second derivatives, at least in

frequency-domai n prob'l ems.

(b) the best SD method to use is probably one of the MQ-U

type with line search. This has consistently performed

better than other alternatives. In several examples

where several start'ing po'ints were used (8, E and F) ,

MQ-U achjeved convergence where others fa'iled, owing

to its bias towards the steepest descent direct'ion.

In additjon to relíability, MQ-U has shown a speed

advantage. Algorithms of the Greenstadt type have

sometimes appeared better (examples B, C) jn terms of

function evaluation time alone, but thejr requ'irement for

e'igensystem analysis would still put them at a d'isadvantage.

And in examples A and D GR methods were no better than MQ-U,

and in E and F they were worse. GM and FF methods were

almost aìways worse in speed, and often sign'ificantly less

reliable. GM and FF have the advantage of requìr'ing only

l
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one matrix factorization per iteration' but MQ-U

can be programmed effic'iently enough that other factors

are more'important. MQ-S was compared with MQ-U in

four examples. In three (4, C and f), Uq-U was more

efficient and in the fourth the result was inconclusive.

It is worth mentioning again that the MQ-U method as

tested passes the successful value of the Marquardt

parameter ß on to the next iterat'ion, except that if
the first value trìed succeeded in producing a positive

definite matriX, 0.25 tjmes th'is value is passed. Within

an iteration, Ê is multiplied by 4.0 whenever H + ß I

is indefin'ite. These updating factors are merely guesses,

and it may be possìble to obtain even better performance

by selecting alternative values.

(c) The line search method which performed consistently best

with SD algorithms was AT-QI. That is, it seems worth

making one additional prediction for a min'imizìng vaìue

of a when the fjrst acceptable value has been found,

but not worth going to a more accurate line search.

Whether there'is any benefit from us'ing curvature

informat'ion at cr = 0 to aid the line search is uncertain,

but if so it is sure to be small. An analysis of some

tests with example A suggests that the best poìicy may

be to try a = I first, and then to use the curvature

jnformation to enable cubíc rather than quadratic

interpo'lation for the additionaì try, or to contjnue the

search for an acceptab'le value of o if still necessary.

The use of Fletcher and Freeman's (I977 ) "target functjon

reduction" and quartic polynomiaì does not seem to be

worthwhile.
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If for some reason it is desired to use a very s'imple

l'ine search with an SD method, FAV-CF with a reductjon

factor of about 0.6 performs almost as well as AT-QI.

(d) True Marquardt SD methods are also reliable and avojd

the need for any I jne search. However, they 'incur a

speed pena'ìty of about l0 - 20% (for TM-U-N) compared

with the best lÍne search methods in terms of function

evaluation alone, and also have hìgher overheads due

to the need to solve several sets of linear equations

peliteratìon. TM-U-N was better than TM-S-N jn

four out of s'ix examples.

(e) Gauss-Newton methods have achieved the h'ighest speeds

of all. In all cases except examp'le C, the TM versions

are more efficient than the line search variants, and

the necessary solution of more linear equat'ions would

be worthwhile. In addition, the line search methods

lack robustness, a fail ure mode invol v'ing sma'l'ì steps

almost orthogonal to the grad'ient being observed w'ith

examples A and B.

However, a most serious defect 'is present wjth all the

GN nrethods , 'in that the exi stence of non-zero resi dual s

at the solutjon can 'in quite routìne probìems (seen in

exampì es B and D) cause the convergence rate to be

extremely poor. The unfortunate conclusion ìs that the

"traditional" GN methods described in this chapter shou.ld

not be used, except possìbly in cases of a known good

fit between model and target response, As mentjoned in

Section 3.4.I2, however, there have been attempts to over-

come this problem by combining the best features of GN and
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QN methods (e.9. Dennis, 1973). Use of such a method

couLd be advantageous.

(f) The best quasi-Newton methods have been consistently

(but not vastly) slower than the SD methods. Except

with exampìe C, the BFGS matrix update was the best,

being marginaìly better than SRI-M. Both BFGS and

SR1-M were always clearly superior to the simpler SR1

and the very wìde'ly-used DRP methods. The best line

search method to use with BFGS is either FAV-QI or

AT-QI. Although FAV-CF r's an acceptable alternat'ive

to AT-QI with SD methods, ìt should not be used with

QN methods because (exampìes A, C, D and E) it can

lead to an excessive number of function evaluations on

early iterations far from convergence.

The efficiency of BFGS wìth AT-QI was worse than that

of MQ-U w'ith AT-QI by a factor of about 1.4 to 1.6 in

the frequency domain examp'les (A,B,C,D) and only 1.1

to 1.3 in time domain exampìes (f,f). These figures

are for function evaluatìon t'ime aìone, and oueraLL

figures would p'lace the QN method in a slighìy better

f ight because of substantially lower overheads per

jteratjon. The lower tjme penaìties seen with time-

domain examples are a direct result of the substantial

time needed to generate second-derjvative sequences.

As ment'ioned in conjunction with exampìe F, the scheme

which was used for this (involving the cancellìng of a

zero pair by a pole paír) may not be sufficìently general

' for many problems, wh'ich requìre the treatment of non-

minimum phase zeros. Because second-clerivative computation

usìng the alternative, general, scheme would be much more
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time-consuming again, it seems that QN (gfGS) methods

would in fact be the most t'ime-efficient for such time-

doma'in problems.

(g) In the ìmpìementation of QN methods where "root reflection"

and/or reviews of real root pa'iring are requíred, the

matrìx should be reset to the identr'ty after any such

change. For problems of low d'imensìona'l ìty (6, example A)

it seemed rnargìnaì1y better to allow reflection and

pairing at every iteration, but in more compìex (and

realistjc) pr"obìems it is definitely necessary to allow

them only at less frequent intervals, perhaps every N

jterations (example B).

(h) The conjugategradient methods are not competitive.

(i) Example C, the optimization of the all-pass group delay

equal'izer, provides most of the exceptions to the genera'l

findings. l^J'ith the SD methods, MQ-S converges more

often than MQ-U, the FF method performs as well as MQ,

and the GM method is even better. The line-search GN

methods are as good as the TM variants. Wjth QN methods,

SRl-M is poss'ibìy better than BFGS. l,lhether these results

are fortuitous or whether there is something unusual about

the obiective function when the parameters are the coefficjents

of all-pass sections, 'is'not clear. However, none of the

effects 'is sufficiently major to inval jdate the general

fìndings.

The conclusions to be drawn from this study may be summarized

more terseìy, jn the form of recommendatjons regarding the choice

of optimìzation algorìthm. The algorithms recommended are MQ-U

with AT-QI or FAV-CF (a second-derivative method) and BFGS wjth

AT-QI or FAV-QI (a quasi-Newion method).
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Ihe SD method is neconmended fon fz,equency-domain pz'obLems.

However, if the added complex'ity'involved in programming the

second derivatjve evaluation 'is regarded seriously, the QN

method could be used instead, wjth a speed penaìty factor

considerably less than 2.

In the time-domain problems studied the SD method was

agaìn more effjcient (but only very slightly) than the QN

method. It is, however, antic'ipated that the "short-cut"

procedure used for first and second derivative evaluat'ion wjll

prove insuffjc'iently general for realistíc time domain problems.

hlith a more general method for derivative evaluation the QN

method would become more efficient than the SD method; it is

therefore recommended.



CHAPTER SIX

6 FINITE-WORDLENGTH DIGITAL FILTER DESIGN

6. 1 Introduct'ion
In any implementation of a digita'l filter there is a

necessity to represent l¡oth data and coefficjents as words with a

certain (finite) number of bits. The effect of data quant'ization

is (roughly speakìng) that noise is added to the desired filter
output, whjle coefficient quantization causes the frequency response

(and impulse response) to ¿iffer from what the designer would like.

The two phenomena are almost entireìy separate, although Bogner

(tgll ) has considered a tradeoff in which response accuracy is

gained at the expense of a further added noise component. The

coefficients are dithered (that is, random'ly, or systematical'ly,

caused to assume two or more values at different times) so that

in an "average" sense the coefficient can be thought to possess

some desirable intermediate value.

The study of finite-r¡rordìength effects is important for a

number of reasons. Finite precision is Ínherent in any d'igital

representation. However, when a d'igita'l fil ter is imp'lemented on

a generaì-purpose mainframe computer with no real-time requirement

the conputations are performed with suffic'ient accuracy that the

bad effects are usually neglig'ible. The considerations of short

wordlength arise mostìy in coniunction with high-speed dedicated

equipment, which coul d be a general-purpose m'in'i - or micro-

computer, or (in the hìghest speed app'lications) digita'l hardware

specì a'l ly bui I t for the purpose. t¡Jhen us ing, say, a 16-bi t
minicomputer with a hardv¡are 16 by 16-bít mult'ipìier the quest'ion

may be simply whether 16-b'it arithrnetic'is sufficiently accurate

to real i ze the fi I ter adequate'ly. I f , however, the mul ti pf icati ons
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had to be performed with a softt^rare shift-and-add sequence, there

would be a time advantage in shortening the coefficient wordlength

because this would reduce the number of passes through the shìft-

and-add loop. If execution time vrere critical it would be

desirable to determine lhe shortesú wordlength which iust allowed

the filter to meet its specification. In the case of speciaì-

purpose hardware the money cost (particularly of multipliers but

also of other components) r,¡ould also be reduced a'long with data

and coefficient wordlengths.

This chapter concentrates on the matter of coefficient

quantization, which provides scope for the appìication of a type

of optimi2ation technique, namely, the mjnimization of a function

of several variables under integer constraints on the varíables.

However, there is a problem resulting from data quantization to

which another kind of optimization has been applied; namely,

what is the best ov,der,íng of sect'íons in a cascade form implenten-

tation of a digitaì filter? This matter is mentioned briefìy in

Section 6.2.

Research on the design of digitaì filters which must be

implemented with short coefficient wordlengths has taken two main

thrusts. The f i rs t i s the devel opment of fi lter stz,uctu.res such

that the response is littje affected by small changes to the

coefficients, and thus by the inevitable quantization. The

second is the development of aLgorithunic techníques for

determining:

a) the particular set of coefficients of a given wordlength

(to Ue used with a filter of a given structure) to best approximate

a desired objective, or
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b) the smallest coeffÍcient vuordlength(s) which will allow a

fi I ter of a gi ven structure to nreet a spec'i fi cation, and the

appropriate values of the coefficíents.

It is the algorithmic area which is of most interest here

because the techniques may be termed "mathemat'ical opt'imization

methods." Their use is not usualìy confined to any particular

filter structure. llevertheless, the attainment of a sufficiently

good filter response may require both a good structure and a good

discrete optimization scheme, and so the matter of fijter structures

is treated, in Section 6.3. In addition, there has been some

useful ana'lytic work relating to coefficient quantizat'ion; this

is revÍewed in Section 6.4.

Section 6.5 reviews some of the techniques which have

been advocated for discrete coefficient optirnization. Section 6.6

deals with a new approach to the probìem, previousìy introduced in

pubìications by this author (smittr, 1977, 1979). Both of these

papers are reproduced as part of Section 6.6, and further

ampìifying discussion is presented.

6.2 0ptimization.and Data Quantizat'ion

Revjews of the effects of data quantization are given by

Oppenheim and l'Jeinstein (1972) and by Claasen, Mecklebrauker and

Peek ( 1,976). The prì nci paì arì thmeti c operati ons i n a di gi tal

fiì ter are mui tiplication by a constant (coefficient) and additÍon.

The exact product of an m-bit data word and a b-bit coefficient

requires m + b bits for its representation. If this product u¡ere

then multipìied by another b-bit coefficient, ¡¡ + 2b bits woulcl

be required. Hence, 'if the fil ter contains recursive elements,

the required wordlength grows withcut limjt. There is thus a

need to quant'ize (trurncate or round) the results of multipìicatìons,
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and this introduces a flucbuating unvtanted component superimposed

on the "i deal " si gnal , This has tlstlal ly been model led as an

addi tì ve random noi se source fo l'lorving the mul ti pl i er.

The effect of the ad.&Ltíoræ cepends in a major way on

whether fixed or floating-point arithnretic is being used. In

fixed-point, two numbers may be added without incurring any error'

provided bhat the result is not loo large to be representabje in

the given numlrer of bits, ie., provided the reg'istc'r does not

ouerfLou:. The avojdance of overflow in pure fixed-point filters

requires that the input signal level be kept belour some limit'

and So the dynønic range of the filter is considerably restricted.

The lo\Arer'limit for the input level is of course set when the

input quant'ization noise due to digital down - scaling or to A/D

conversion becomes intolerable.

When floating-point arÍthmetic is used, dynamic range

considerations are usualìy unimportant due to the large range of

numbers representabje. HoweVer, rounding occurs frequentìy in the

floating-point additions, and is a further source of noise.

When a high-order digita'l filter is impìemented in fjxed-

point in the cascade form, overflcl,v must be controlled at all

internal nodes and the noìse-to-signaì ratio at the filter

output simultaneously kept within reasonable bounds. This has

imp'l i cati ons re'l ating to the ondering of the fi rst - or secon d-

order sections, and the pairing (or allocation of poìes and

zeros to individual sections). The use of floating-po'int

arithmetic can render such considerations of nlinor importance

(Qppenheim and Weinstein, 1972), but d'igitaì filters are often
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implemented in fixed point for hardware simplic'ity or increased

operating speed, or because a fixed-point mini or micro-computer

is used. The optimization of section assigntnent (ordering and

pairing) has thus received considerable attention.

It is possìble to prescribe a l'imit for the input signa'l

level such that overflow is prevented in the worst case (Oppenheìm

and l.leinstein, 1972). However, such a procedure ís normally

unduly conservative, and gives a very poor ut'ilization of the

available number of bits with a consequentìy high output noise-

to-signal ratio. It is usually considered better to allow the

possibility of overflow in a small number of cases, but steps are

then required to prevent the occurrence of self-sustaining

ouerfloa oseíLLations, The use of saturation arithnletic

(representing an overflowed result by the largest poss'ible

number) is ordinarily sufficient.

Jackson (1970a) devises reasonable dynamic range

constraints based on Lp norms of the input signa'l and the system

transfer function. (fne Lp norm of a signal x(n) is defined as

lx(f ) lP¿r)1/P (6.1)

where X(f) is the Fourier transform of x(n), and fs is the samp'ling

frequency). In the context of a cascade form filter, for a g'iven

assignment and a gìven choice of norm (i.e., value of p) there

will be an optimum set of scaling coefficients, one to be

associated wìth each section, to optimize the overall noise

performance. Jackson (1970b) gives expressions for t.he output

ll*llo = t i, 
"f ;'
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noise variance when such scaling is taken into account. Based on

these expressions and considerable experimental evidence he then

gives "rules of thumb" for deciding on good assignments for a

given filter. Regarding choice of norm, Oppenheim and Weinstein

(7972) state that constraining the p = - norm of the scaled

transfer funct'ions to intermediate nodes is appropriate when the

input signa'l is narrow-band, whereas the choice p = 2 app'lies to

wide-band signals.

The use of optimization procedures to obta'in good

assignments began when HwanS (ßlq) showed that the generation

of output'noise could be considered as a stagewise process. The

method of dynønie pvogoanrnírg (Gottfried and Weisman, 1973, Ch. 8)

is thus applicable to the generat'ion of an optimal assignment.

Hwang provides an exampìe to illustrate thìs technìque.

Liu and Peled (tgZS) point to the rapid increase in

computation time which must occur as dynam'ic programm'ing is app'lied

to filters with larger numbers of sections. For example, the

expression for the output noise variance must be evaluated 125

times for four sections, but 1695 times for five sectjons, the

eval ua ti on i nvol vi ng compl ex contourintegral s . Li u an d Pel ed

suggest a "heuristic" optimization procedure which, they

demonstrate, produces assignments which are "near optimum" and

involve only a small fraction of the labour of the dynamic

programming approach. Incidentaì1y, they demonstrate the genera'l

effectiveness of Jackson's rules, but show that their own procedure

usually finds somewhat better solutions.

Liu and Peled beg'in their optimization procedure by

generating a random ordering for the po'les and another for the
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zeros. They then proceed to explore a set of assignnrents.which

may be considered to constitute a "neighbourhood" of this

particu'lar assignment. In particular, they leave the zero

ordering fixed and ìnterchange aìl possible pairs of poìe sections,

evaluating the output noise variance for each of these assìgnments.

The process is repeated for a pre-assigned nunlber M of random

orderings, and the best assignment found during the whole process

is usecl. The authors find that M = 5 is sufficient for rnany low-

order filters, recommending M = 10 for a filter with 11 sections.

Liu and Peled leave open the question of whether the even

simp'ler iourse of evaluating the output nojse for an equivalent

number of purely random assignments would have been more or'less

effective than their exploratory method. However, they do show

that procedures based on random search can be more useful in

practice than more formal mathematical methods (in tnis case,

dynamic programming) which can guarantee findjng a true optimum'

but only with unrealistic amounts of computer time. A similar

situation holds with respect to the coeffic'ient quantization

problem, to be discussed.

6.3 Filter Structures and Coeffic ient Sensitivitv

6. 3. 1 Introducti on

The necessity to use finite wordlength representations

for coefficients causes the performance of the filter to differ

from that of a related (but unachievable) "ideal" filter. In

this sense the "ideal" filter is that which would result if the

lengths of all coeffìcient words could be allowed to tend to

infini ty. It does not imp'ly that such a fi I ter achieves exactly



353
some desired frequency response (for this may be impossjble for a

filter with a finite nwnber of coefficients), but it does irrpìy

that the po'les and zeros may be positioned with infinite precisjon

in the places suggested by the design procedure. In most cases,

filters which are both des'igned and implemented in floating-point

ari thnreti c on computers rvith a "'large" wordl ength, SôY 60 bì ts,

will have a performance almost indistinguìshable from the ideal.

In particular, optim'ization procedures of the type considered in

earlier parts of this thesis, when implemented on a generaì

purpose mainfrarne cornputer, may be consi dered to produce the

i deal fi I ter coefficients.

Because the positions of the po'les and zeros of the filter

are functions of the coefficients, the need to use finite-wordìength

coefficients implies that the po'les and zeros may be sited only at

certain positions in the z-p'lane. For a given fÍlter structure

and a given wordlength the possibìe poles (and zeros) may be

plotted as the intersection points of some grid in the z-p1ane.

When the "ìdeal" poles and zeros are superimposed they are most

unlikeìy to line up exactly wìth grid po'ints, and accordingly they

must be approæimatedby a set of poìes and zeros which az,e on the

gri d.

An obvious strategy is to positjon a pole (zero) at the

rpay,est grid point to each ideal pole (zero). An even simpler

method is to round off the ideal coeffieienú values to the nearest

realizable figures, without even computìng poìe and zero positìons.

l,Jhether these procedures (which may or may not produce the same

filter) are adequate,depends on the stringency of the origina]

specification, and on the djsiances by which the poles and zeros
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have to shift in the process. For ang filter structure and arLy

wordlength the possibilìty exists that some filter othev,than one

produced by rounding will have a better response, and in fact this

is virtualìy always true. Methods for finding such filters are

the subject of later sections of this chapter. The present section

reviews a relevant but largely independent area, the matter of

designing filter structures whose pole (zero) grids are suitabìy

fine in the vicinity of the ideal poles (zeros). Use of a

structure which is good in this regard obviously reduces the bad

effects of coefficient quantization by reducing the magnitude of

poìe-zero displacements. It may even render any discrete

optimiruúion method unnecessary, but normal'ly the selection of a

good structure and the use of an optím'ization technique compìement

each other in the design of a good short-wordlength filter.

Much of the work relating to filter structures and

coefficient quant'ization has concentrated on the complex poìes of

second-order resonators. The attention to second-order sections

is justified by the fact that higher-order IIR filters are usually

built by paraììel or cascade connections of such sections. In

other words, each pair of complex conjugate poles is impìemented

by a separate section. The reason for this lies itself r¡rith the

coeffic'ient quantization problem, as it is wejl known that the

sensitivity of the roots of a polynomìal to its coefficients

usualìy increases wìth the degree of the polynomial (e.9. tlational

Physical Laboratory, 1961). The matter was first rnentioned in the

digital filtering context by Kaiser (1965). Cornp\en poles have

been emphasjzed because it is selectiue fjlters (those r^rith well-

defined passbands and stopbands) vrhose response is most likely to

be seriously upset by sma'll coeffjcient changes, and these filters
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norma'l1y employ comPlex Poìes.

Figure 6.1 (a) shovrs the ordinary d'irect impìementation

of a second-order resonator. In terms of the two coefficients c

and d,'its transfer function is

1 (6.2)
t+cz-r+dz-z

If the values of the coeffic'ients are such that there are complex

poìes, these poles occur aS a complex coniugate pair of radius r

and anglê t0, where

c =-2r cos 0 (6.3)

H(z) =

and d=12 (6.4)

Thus for a given value of d the possible po'les lie on a circle of

radius /T, and for a given c they lie on a strajght line parallel

to the ìmaginary axis with abscissa -cl2. If, for example" c and

d are to be represented as binary numbers with three fractional

bits, all possible poles with posit'ive imaginary parts are shown

in figure 6.1 (b), readily recognised as the intersection points

of the loci derived above. For smaller quantization steps there

will of course be more positions, but their density wi'11 still
fol lor,,l the genera'l pattern apparent in fi gure 6.1 (b) . There is

a sparsÌty of possible poles towards the centre of the unit circle'

but thìs is not very serìous because the response of a filter is

seldom much affected by snlall changes to poles in thìs region.

l^lhat is more important is the lack of allowable po]es near the

po'ints z = + L and - 1, because these are regions of specia'l

Ímportance for narrow-band lowpass and h'ighpass filters respectively.
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6.3.2 Speciaì Structures for Second-order Resonators

Several filter structures have been proposed which have

po'le gri ds more approprí ate for real i z'ing such fi I ters. Avenhaus

(tglZa) derived two structures which have a unífonn density of

possible po'le positions over the entire stable region of the z-

plane. One of these (his "circujt C") is shown with its pole grid

in figure 6.2. As with the direct-form second-order section, two

zeros may be implemented in addìtion to the poles; their

positioning is independent of that of the poles and has the same

distribution. The complete structure has been shown in figure

4.8 (page 99). The structure ìs aanonie in the sense that on'ly

two delay elements (storage locations) are requ'ired, but eight

multip'liers (in addition to a trivial multiplìcation by 2) are

needed as opposed to only four for the di rect form.

Rader and Gold (1967) proposed a circuit, shown in

figure 6.3(a), which has come to be known as the "coupled

resonator." This structure imp'lements a complex conjugate pair

of poìes r exp (t¡O). If the output is taken at Y1, there is also

a single real zero at z= rcos 0 which is cìearly not independent

of the poies. If the output is taken at Yz there is no fjnite

zero, but the filter introduces a un'it sampìe delay and a non-

unit ga'in factor r sin 6. since the actual coeffic'ients empìoyed

are r cos O and r sin q, the possible pole positions lie on a

rectanguìar grid as shown in figure 6.3(b), and have twice the

density of the Avenhaus "C" structure for the same wordlength.

The "D" structure of Avenhaus (tglZa) provìdes the same

poìe distribution as the coup'led resonator and also alloivs the

irnpì ementati on of an i ndependent pai r of zeros. 'lhe coup'led
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form and both of the Avenhaus structures require four multipliers

(for poìes only) as opposed to two for the direct forrn, but the

coefficient memoru requirements are no greater because each

coefficient is used twice (with a possìble sign change).

Regarding the roundoff noise performance of such circuits,

Oppenheim and l^leinstein (1972) quote results indicating that the

coup]'ed resonator may be superior to the direct form when r is

close to 1 and Q near 0" or 180', which is the situation in whjch

it is likely to be used. There appears to have been no anaìysis

of the noise performance of Avenhaus' circuits.

The use of a filter structure which has a uniform grid

of allou¡able pole positions is simple in concept, but it is not

necessarily the best way to provide a dense net of pole positions

in a given region of the z-pìane. Avenhaus (tglZa) has derived

a structure for which there are many poles near the unit circle

for small angìes 0, which is a useful distribution for narrow-

band low-pass filters. Furthermore, this structure is canonic

with respect to the multipliers (that is, requires only üvo

multiplications per output sampìe) as well as with respect to

delay elements. The circuit given by Avenhaus (his "circuit E")

is shown 'in figure 6.a(a) and includes one further multiplier

to allow the implementation of a pair of zeros on the unit c'irc'le,

as is usua] with selective filters. This filter could also be

imp'lemented in its adjoint form, as in figure 6.4(b).

The transfer function of the Avenhaus t structure is

H(z) = [- (dr +2) z--r +z-2

L+(er -2)z- t + (l-er * ere o).-"
(6.s)
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so that the compìex po'le pa'irs r exp (tiO) are given by

-2r cos Ô = er -2 (0'0)

and r^ = 1 - êr * êr €o (6.7)

The abscissa of either pole, x, is given by r cos Q, so that from

(6.6)

x=l-%et (6.8)

The square of the ordinate is

f = 'Ê sìn2ç = ¿ -(r cos O)
2

= t-€r * er €o - 0-4e)2
,n

or f = cr es - Þ. ey2 (O.S¡

It is convenient (with hind sight) to determine the radius s of a

circle centered at (1-s,0) on which the poìes lie. The upper half

of th'is circle is shown in figure 6.5(a). By Pythagoras' thecrem

s^ =y^ +tx-(l-s)l' (o.ro¡

and substitutìng the known expression for x and fwe get

s = eo (6.11)

Thus the allowed po'le positions when the coefficients are quantized

are determined by the intersections of equally-spaced lines parallel

to the imaginary axis (with abscissa 1 -1 et) and circles tangent to

the unit circle at z = 1 * j o, with radius e¡. All allowed poles

with positive imaginary part are shovrn in figure 6.S(b) for a

quant'ization step q = 2-3. For a complete coverage of the unit

circle the range of coefficjents is 0 to +4 for er âhd 0 to +1for

€0. However, since this particular filter structure is l'ike'ly to

be used to realize lightly-damped poles with small ang'les, both

coeffic'ients can reasonably be restricted to the range 0 to l.
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Rahman and Fahmy (1975) have proposed another structure,

shown in figure 6.6, which has the same distribution as Avenhaus'

E circuit. tlith the configuratìon shown, a general pair of zeros

may a'lso be impl emented.

For appìications other than narrow-band ìow-pass filters

it may be desjrable to provide a dense pole grid in other reg'ions

of the z-plane. Structures similar to those above are available

for narrow-band high-pass filters. Avenhaus (tglZa) has also

suggested a circuit suitable for narrow-band band-pass filters'

in which the positions of poles and zeros are not independent.

It provìdes a high density of possibìe poìe positions near the

unit circle and in the vicinity of the zeros.

6.3. 3 Structures for FIR Fi I ters

The structure of ìinear-phase FIR filters has also received

some attention from the point of view of coefficient quantization.

The "traditional" transversal realization has zeros which are

determined by the coefficients of a high-order po'lynomial, and it

is these coefficients themselves which are subject to quantization.

Herrmann and Schüssìer (1970) suggested instead a cascade

realization whose elemental building bìocks are of fourth order.

Such a filter has suffficient flexib'iljty to pìace zeros on or

off the unit circle and yet maintain the linear phase property.

The zeros are likely to be less sensitive functions of the

coefficients than with the transversal form because of the lower

degree of polynomi al s i nvol ved.

6 . 3.4 tllave Di gi ta I Fi I tery

A quite distinct approach to digita'l filtering is embodjed

in the taue &igital fiLters, introduced by Fettwe'is (1971a,b).
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Such filters have consjderable advantages, related mainìy to the'ir

coefficient quantization properties. !,lave digitaì filters are

digital s'ignal-flow networks which'imitate in structure the

classical inductance-capacitance (LC) filters of ladder or lattice

type. LC ladder filters possess very good coefficient sensitivity

properties, and because of the close element-by-element

correspondence the digital realizations were expected to have

similar desirable properties under coefficient quantization. That

this is true uras illustrated with the example of a seventh-order

Chebyshev 'low-pass fjlter by Crochiere (L972). This filter was

impìemented (for several different widths of the pass band) as a

digital ladder structure, as an ordinary cascade-form recursive

filter, and as a cascade-form filter in which the poìes were

impìemented by coupled resonators. In all cases the coefficients

were binary floating-point numbers with the rnantissas rounded off

to various numbers of bits. Crochiere used as a measure of the

response degradation under quantization a "reìative error"

quantity; the increase ìn pass band magn'itude response error

relative to the pass band ripple specified for the ideal des'ign.

UJhen the pass band edge frequency 0p was 0.25, all three

structures perfornred almost equal'ly weì I under quantizatjon. As

0p was reduced the coupled form filter began to show some

superiority over the direct form (as would be expected from our

earlier description of the z-p1ane poìe grids). The ladder

structure, however, was sign'ificantly better than either cascade

structure; at 0P =0.01 and a design pass band ripp'le vajue of

0.? dB, about 7 fewer bits r,lere needed than with the coupled-form

(and 9 feler than with the direct form) to achieve the same
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re'lative error. It was also observed that the number of bits

requìred in the ladder filter for a given relative error was

virtually independent of 0p. In a wave d'igital filter the poìe

positions depend on aLL coefficients so that it is difficult to

describe the sensitivity properties by a pole grid pattern as has

been done for other structures.

Wave digitaì Lattice filters were introduced by Fettweis

et aL. (1974). They require in general feurer multipliers than

ladder fÍlters and have even better passband sensitivíty properties,

but like their analog counterparts have high coefficient

sensitivìty in the stopband (trlegener, 1978). However, there are

many different ways to achÌeve the (d'igital) realization of the

tattice reactances, and i'legener (1978) has shown that, by taking

advantage of this variety and by using a discrete optimÍzatjon

scheme, short-wordlength digital lattice filters are often

possible.

6.4 Ana'lytic Approaches to the Coefficient I'lord-ìength Problem

6.4,1- General

The development of structures having dense pole

distributions in the vicinity of the ideal po'les represents a

constructive, or synthetie, approach to the finite-wordlength

coefficient problem. Several other authors have taken instead

an anaLytzlc approach; that is, urith a particular fjlter structure

assumed, they have attempted to determine the minimum wordlength

necessary to keep the degradation in filter performance within

reasonable limìts.

S'ince the z-plane coordinates of any po'le (or zero) can
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be expressed in terms of some or all of the filter coefficients,

it is obviously possible to derive (by partial differentiation)

expressions for the small changes to those coordinates which

would result from small changes to the coefficients. For example,

for the second-order resonator lvhose transfer function is given

bv (6.2) and whose (complex) poìes are r exp (ti0), we have

1ar= t ^d 
(6.12)

and

^o=zFlh¡dac+z7+an-o^d (6.13)

which are expressions accurate to the first order in small

quantitiôs. Similar expressions were derived by Rader and Gold

(1967) and by Mitra and Shen¡rood (1974).

6 .4.2 l,,lorst- Case Des i gn Approach

Mitra and Shen¡¡ood (1974) suggest a worst-case des'ign

approach for arriving at a coefficient wordlength which will

guarantee that pole (zero) displacements are suitably bounded.

Returning to the example of the last paragraph, and assuning

particular tolerances for both radial and angular po'le positions,

namely

larl < nt

l¡ol < Õr
Ì (6. 14)

equat'ion (6.12) provides an upper bound on the allowable change

to the d coefficient, that is

I ¡ ¿l < 2r Rr. (6.15)

Equation (6.13) can also prov'ide bounds on the changes to both

coefficients if it is assumed that the allowable angle change

or is apportioned equally between Ac and Âd, namely
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llcl. rsinþ ol

l¡dl. 12 tan{ oI (6.16)

A sufficient vrordlength for each coefficient may then be quoted

by requ'iring that one half of its quantizatjon step size satisfy

the most stringent 'inequaì jty (6.15 or 6.16) for that coeffic'ient.

There are several objections to the approach outlined

above. First'ly, there is no guide as to the magnitude of po'le

displacement (in either the r or the Q direction) rvhjch should be

considered "acceptable", because there is noth'ing relating this

to the filter response in either the time or the frequency domain.

Secondly, tt't. wordl ength estimates rv j I I normal ly be unduly

pessimistic. This is both because the contributions to poìe

disp'lacement due to the individual coefficients need not add in

the sane direction, and because quantization will often perturb

a coefficient by much less than one half of the step size. Because

each pole pair is treated individuaìly, there is of course no

recognition that the bad effects of disp'lacing one pair cou'ld

be partiaì'ly compensated for by moving another. The discrete

optimizat'ion procedures of section 6.5 allow the designer to

benefit from such effects, and usuaìly result jn the saving of

several bits.

6.4.3 Statj stical Approaches

Knowles and 0'lcayto (1968) , while not express'ly tak'ing

any advantage of mutual ly-compensat'ing pole displacements (r,rhich

would requìre an opt'imization method), presented a more soundìy-

based anaìysis of coefficient quantizat'ion effects. The
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perturbatíons to coefficients due to quantization are taken to

be statisticaL in nature, and their effects are related to a

simple measure of frequency domain performance.

At the most basic level, the assumption that the rounding

of coefficients produces errors which may be characterized

statisticalìy is obviously untrue, because for any given filter
and wordlength the rounded coefficients are quite detenninate.

However, the method has ìn pract'ice led to realistic wordlength

estimates, probably because it provides a mechanism for aueragíng

the bad effects of the coefficient errors. Such averaging would

normal'ly, provi de a closer description of a real situation than

would the pessjmistic assumption that errors add in the worst

possible way.

Denot'ing the transfer" functions of the ideal filter and

of a finite-word'length realization as H- (z) and H(z) respectively,

Knowles and 0lcayto define a mean-square conue?gence eriterion

) - H-lejwT¡ ¡z* (6. 17)

This provides a measure of the departure of the performance of

the finite wordìength filter from that of the ideal in terms of

the overall effect on the frequency response. Assuming that the

quantization error in each filter coefficient is a random variable

with a uniform distribution between - %q and +,eq, and that the

errors in d'ifferent coefficients are statistically independent,

the authors are able to derive expressions for the erpected uaLue

.o*t > for filters in direct and paralìe] form. (Here q'is the

quant'ization step size, assumed the sane for each coefficient).

q appears only as a s'imple scalìng factor, so that once < ouf,

has been found for some wordlength it may very s'imp'ly be found

2
w

o h l.+ lH('iwr
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for any other.

To confirm their analysis, Knowles and 0lcayto conrputed

the actual value of o*2 for a 22nd-order bandstop filter for

several coefficient wordlengths, using both direct and paraìle]

progranming. Their predícted values correspond closely with those

observed for wordlengths greater than 39 bits (d'irect form) and 10

bits (para'lleì form). [.lith B and fewer bits in the parallel-form

the va'lues of o*2 were somewhat tess than the expected values,

apparently due to the breakdown of the assumption that the effects

of coeffi cient rounding conb'ine statistica'l'ly. This is not

surprisi4g for such severe quant'izations.

The method of Knowles and 0lcayto may be used as a design

tool (to predict the necessary coefficient wordlength) if an

estimate is available of the maximum allowable value of o*t. The

authors suggest that q be selected such that 3/1-l*t; is less than

the maximum tolerable magnitude response error at any frequency.

Unfortunate'ly the method is not appìicable to fìlters in cascade

form.

Avenhaus (7972b) presented another statistical method for

estímating a sufficient wordlength. He criticises the overall

frequency-domain measure ú,.r? used by Knowles and 0ìcayto because,

for selective filters, it faiìs to express the stringent

attenuation requìrements in the stop band (s). He prefers to

treat the performance at each frequency separateìy. Considerìng

a statistical ensemble of filters (the ensemble whose coefficients

are independent and uniform'ly distributed within !4q of the ideal

values), Avenhaus derives a "statistical wordlength function",
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which is that wordlength which allows 95% of the members of the

ensemble to meet the filter specification at a particular

frequency. The maximurn (over al I frequenci,es) of the wordlength

function is then taken as an estimate of the minimum wordlength

necessary for the fi I ter.

Avenhaus observed that the maximum value of the statistical

wordlength function wÍthin the stopband was likely to differ

consÍderab'ly from that in the passband. In other words, the

wordlength requÌred for the filter was like'ly to be determined

by the coefficient sensitivity in eíther the passband oz' the

stop ban9, *ith the filter response in the "other" band being

very ìittle different from the "ideal". Crochiere (tgZS) pointed

out that this effect was 'likely to result in wastage of bits.

Typical specifications for a selective filter quote a maxjmum

pass-band ripple 5,, and a minimum stop band attenuation (which

may equiva'lently be expressed as a maximum stop-band "ripple,'

6r). The order of the filter must be high enough to meet these

requirements, and since it is normalìy taken as the next hìgher

integer it is usual for the "ideal" fiIter to meet both

specifications with some margin. In fact, to allow for

coeffjcient quantization, there must be such a marg'in. For want

of a better criterion, traditional ideal desìgns have often been

such that passband and stopband specificatjons are met with equaL

margin. crochiere suggested instead that the ideal parameter

values be selected to equaìize the maxima of the statistical

wordìength function in the passband and in the stopband. He

proposed two algorithms for doing this and illustrated thejr use

with the example of an e'l'liptìc'low-pass filter. Both are in
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fact iterative optimization nlethods in a space of low dimension-

ality; the first uses two parameters, being the achieved pass-

and stopband ripple maxima; the second uses four parameters,

allowing variation also in band edge frequenc'ies.

The equalization of statistical wordlength function ís

not guaranteed to result in a saving of bits but it js likeìy

to do so. Croch'iere has observed improvemerits of 1to 3 bits jn

the actual wordlength required, and this is still with s'imp'le

coefficient rounding. Crochiere further conjectured that his

statistically-optimized ideal filters may provide superior

starting'points for discrete optimization by search techniques.

This has been confirmed by Kwan (1979).

6.5 Discrete Optimizat'ion of Digital Filter Coefficients

6.5.1 General

Simpler statistical methods for predìcting the wordlength

requirement are useful as an intermediate stage in the design of

a filter; the stage following the determínation (by optimizatìon

or otherwise) of the ideal coefficients. Crochiere's procedure

may be thought of instead as a way to incorporate a penalty for

short lvordlength into the objective function to be minimized by

the ideal design. liowever, the estimates of the actual wordlength

requirement are usual'ly still pessimistic, although less so than

those derived by worst-case analyses. Rounding of all coefficients

very seldom produces the "best" fiIter of a given wordlength, and

discrete parameter optimization can often result in the saving

of several bits. Avenhaus (797?b) gave a spec'ific example, an
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eighth-order bandpass filter, realized in cascade form. A

worst-case design procedure suggests that 14 bits would be

necessary for the coefficients, while his stat'istìcal method

reduces this to 12.5 bits. In the event, the specifications

could just be met by coefficients of L1 bits when simp'le rounding

was employed. After application of an opt'imization process it
transpired that 8 bits were sufficient.

Many different procedures have been proposed for carry'ing

out the discrete coefficient optimization, and those known to

this author are reviewed in this section. In sectìon 6.6 a new

method is proposed which is thought to have sot¡e advantages. At

the oubåt it should be remarked that the term "optimization" is

son¡ething of a misnomer in this context, because most of the

methods cannot specifically seek the gìobaì discrete optimurn, even

in some restrÍcted reg'ion where the continuous function is known

to be unimodal. Their aim is to improve the coeffÍcient set as

found by roundìng the ideal values by as great a margin as

possib'le, within reasonable constra'ints on computer time. If the

discrete optimum is found there is no indication of its optimaìity.

The question arises as to what function, of lvhat varÍables,

is to be minimi zed (or reduced) . The s'impìest case, conceptua'lly,

is the case where the ideal coefficients have themselves been

found as a result of the continuous minimizatìon of some objectjve

function, and it is known in advance that all coefficients are to

be represented with some particular wordlength. In such a case,

the original objective function is still taken as a true measure

of the merit of the fjlter. The finite-wordìength requirement

has however, modjfied the feasible region so that it now consists
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only of the jntersection points of a grid in the N-dimensional

parameter space. A feasible po'int is sought rvhich minimizes (or

at least has a low value of) the objective function. The

objective function value of the ideal fjlter of course provides

a I ower bound on the val ue achi evabl e by the f i ni te-rvord'length

filter, and the value associated with rounded coefficients is an

upper bound. l.Jhen the probìem is cast in this form it becomes

purely one of mathematical optimization, âhV obvious connection

with digitaì fjltering being lost. Most of the methods proposed

do fall into this category, and so they cou'ld have appìication to

other, unreìated, problems.

The same "general" methods may be app'lied in an attempt

to wLn'Lmize the coeffic'ient wordlength by performing a series of

discrete opt'imizations with d'iffering numbers assumed for the

wordlength. The optìma] objective function value will be a

monotone decreasìng function of wordlength, a'lthough not

necessarily strictZy monotone. This is because all feasible

solutions for a given wordlength are also feasib'le solutions for

all greater wordlengths. The wordlength minimization process

requ'ires a judgement to be made that one "opt'ima'|" fil ter is

acceptabìe but that the one of the next lolen wordlength is not.

With many object'ive funct'ions there is no natural value which

separates acceptability from unacceptability, and so the final

filter is seldom "optimaì" in any rigorous sense, quite apart

from any shortcomings in the discrete minìmization procedure

itself. Indeed, the objective function itse'lf may not reflect

the true ajms of the designer of the filter. Nevertheìess,

min'imjzation procedures, and, further, djscrete mìnimizatÍon

f
{
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procedures, are useful because they do produce effective djgitaì

filters of suitably small wordlength.

6,5.2 Inteqer Proq ramminq Approaches

Discrete optimization procedures of the "generaì" type

referred to above are those of Avenhaus (I97I, 7972b), Steiglitz

(lglt), Suk and Mitra (tglz), Charalambous and Best (1974), Kwan

(tglg), Kodek (1980) and the present author (Smith, 1977, 1979,

and section 6.6 of this thesis). Because the connection with

dig'ita'l filters is superfluous to the discussion of these methods,

the "coefficients" wiII be referred to by the term more widely

used in optìmization literature, "parameters". Furthermore, it
will be assumed that all parameters have been scaled up by a factor

equaì to the quantìzation step size so that the feasible solutions

are those for whÍch alì parameters assume ínteg¿¡ values.

Charalambous and Best (1974) appìied the branch-and-bound

integer programm'ing approach, which was outlined in section 2.3.5

of this thesis. This is a true "optimizat'ion" procedure in the

sense that finding the g'lobal minimum is guaranteed if the

objective function is convex. In the case of a differentiable

objective function (as arises from a least squares or ìeast pth

criterion, but not from a minimax criterion), the functíon will

be well-behaved jn a neighborhood of the continuous local

minimum. In fact, it will c'losely resemble a quadratic function

in I'l variables, vrhich accounts for the success of most of the

grad'ient methods for continuous optimìzation dealt with in

earlier parts of thìs thesis. In the case of the digìta'l filter
problem the quantìzation stepsjze is often smajl enouqh that the

J

il

Þ

I

I
+

t
'1

ï
I
I

i

I

I



3?B
region in which the function is well-behaved (closely quadratic,

and therefore convex) extends outwards to many times the feasible

mesh size. This inplíes that the branch-and-bound aoproach is

almost certain to find the true discrete optimaì parameter vector.

However, the method is extremeìy t'ime-corlsurn'ing because an

inequa'l'ity-constrained N-d'imensional cont'inuous optimization is

requ'ired at each branch point in the tree search. The constraints

are linear, and Charalambous and Best take advantage of an efficient

feasjble-direction method to solve the sub-prob'lems. Nevertheless,

they report that (working with an IBM 360/75) CP times of 43,42,

35 and 31 seconds were required for the entire tree search, in

problems with only five parameters. The approach would certain'ly

be unrea'listic in terms of computer time'if the number of parameters

were significantly greater than this. Kodek (tSAO¡ appljed branch-

and-bound to FIR fìlter design with up to 40 parameters and reported

using "huge" amounts of computer time, although he did not quote

fi gures .

The methods of Avenhaus (tglt, I972b), stei glitz (1971),

Suk and Mitra (1972) and Kwan (1979) are similar in that some

form of search is applied in the discrete parameter space. tlo

continuous re-optimizations are appìied, result'ing in a great

saving of computer time when compared with branch-and-bound. All

function evaluations are made with feasible ('integer) values of

the parameters. Al though this inrp'lìes that almos't al I of the

computer time is spent in testing parameter vectors which are

candidates for the optimum, it means that onìy rudimentary

advantage ma.y be taken of the well-behaved nature of the function.

In the opin'ion of the present author, this is a great sacrifice,

and this belìef provided the motjvation to develop the method of
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section 6.6. HowevL'r, discrete search methods do not rely on

differentiabi'lity, and so are applicable also to maximum modulus

objecti ve functions.

Three basic types of search have been proposed. These are

a) the enumerat'ive search, b) tfre uni vari ate search, and c) the

random search. The first is conceptually very simpìe; trials are

made of all possible (feasible) parameter vectors within a

restricted region of parameter space. Either alì parameters may

be varied, or some may be held fixed (that is, the enumerative

search region may be restricted to a sub space). In theory, the

gìobal optimum may always be found b-v such a search, but to tackle

the compìete problem by this method alone is prohibitive in terms

of computer time. For instance, in the first example of

Charalambous and Best (1974) (tne ¿ifferentiator, rvith ltl = 5 and

q = 6) two of the optimal coefficients tvere removed from the

rounded values by four quant'ization steps. To perform an

exhaustive search out to that distance in all directions from the

"rounded" parameter vector would require 9 s, or 59049, function

eva'luations, and there is still no guarantee of optimaì'ity.

Hence, when an enumerative search is used it is usually

concentrated in a sensitive subspace and is onìy begun vrhen

another techn'ique has reached an impasse.

The second type of search is the "univariate search", ô

term introduced by Avenhaus (1971). The search begins at a

feasjble parameter vector, for examp'le, that produced by

rounding the coefficjents. One parameter is then perturbed by

some integer (often 1). If the function value decreases, the

step ìs accepted and the search is continued from the new point.
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If the move fails,a further trial is made by perturbing the same

parameter in the opposite direction. This process is repeated

for al'l other parameters in turn, wìth any improvements being

accepted. The search terminates when eventuallyÌtcycles through

all parameters without any improvement being recorded, except that

if the original step'length r^/ere greater than unity, some further

improvement could be sought with a reduced steplength. The pure

univariate search reaches an impasse, when no unit step in any

direction produces a decrease in the function value. Such discy,ete

LocaL nrinima can be very numerous and often qu'ite poor in terms

of function value. Point A in figure 6.7 is an example of such

a discrete minìmum in tlvo dimensions. A univarÍate search

reaching this point vrould terminate and so the true discrete

optimum (point B) wouìd not be found.

Because of the inadequacy of the univariate search by

itself, several embellishments have been suggested, or may be

worth trying:

(a) Theprocess may be repeated from several starting points,

thus producing a variety of discrete local minima frorn lvhich the

best may be selected. The starting points could be generated at

random, or some of the unfavourab'le poìnts arising in the search

coul d be used (Avenhaus , I972b) .

(b) Because ìmprovements are accepted whenever they are encountered,

the progress of the search is sensitive to the order in which the

parameters are enumerated. A variety of candidate solutions could

be produced with different random shufflings of the integers 1, 2

. N. (Steigf irz, I97t).
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(c) I'lhen a local minimum is found from whi ch the uni variate

search cannot escape, the power of the local search may be

increased. For instance, the parameters may be perturbed in

pairs instead of singly (Steiglitz, 1971), or an enumerature

search may be performed over a hypercube centred on the point 'in

question. Avenhaus (tglZï) used such a search,restricted to the

subspace of the four most sensit'ive parameters, the 'length of an

edge of the cube being 2. Note that neither of these strategies

(which, in tno dimensions, are equivalent) would yie]d an improve-

ment from point A in figure 6.7.

The algorithm of Steigìitz (tglt) in fact uses the

univariate search as a component in a larger strategy, t¡hich'is

a generaìization of the pattern search method of Hooke and Jeeves

(tg6t) to a discrete space. The univariate search is used in an

exp'loratory phase about a base point. It is not necessariìy

carried to completion, but only until all parameters have been

perturbed once. Steiglitz has used an ord'inary univariate search,

but prefers a modified search ("TI^,O-OPT"). Should any parameter

fail to improve the function when perturbed alone, simultaneous

perturbations are made to that parameter and each succeeding

parameter, untiì either an improvement results or all parameters

have been exhausted. The parameters are shuffled into a new

random order each time the exp'loratory search is used. t'lhen this

expìoration is finished an attempt is made to gain further

improvement by extrapolating from the base point to an equaì

distance on the other side of the "fonvard" po'int (the finaì

point of the explorator,v phase). The ratjonale for this "pattern

move" is as for the originaì Hooke-Jeeves method, i.e. 'it is



383
assumed that the exploration has discovered a good directjon for

progress. In the Steiglitz algorithm the new point is still
feasible, and is taken as the starting point for another

exploration. Should this phase y'ie'ld a lower function value than

the forward point, the pattern move is deenred successful and an

attempt is made to extrapolate even further. This provides for

rapid acceleration v¡henever a very good search dìrection has been

i denti fied. t¡lhen a second or subsequent pattern move fai ìs ,

retreat is made to the last successful exp'loratory pattern. If
the first attempt at a pattern move fails, the entire process is

repeated from the best point using a smaller steplength.

In contrast to the originaì Hooke-Jeeves algor ithm for a

continuous space, the stepìength cannot be reduced indefinite'ly,

and the process eventually terminates at a discrete local

minimum which may st'i1ì be qu'ite unfavourable in terms of function

value. Steiglitz emphasized the necessity for re-startíng the

process several times, using d'ifferent seeds for the random

number generator whjch determines the parameter ordering. In

this way a variety of candidate solutions are produced, from

which the best may be selected. He ajso found that large initial
stepìengths tended to produce poor local optima, and that the

most effective initial value was 2, or even 1, which is the

smal lest possible val ue.

The accelerat'ion capability of the Steigìitz algorithm

wouìd appear to g'ive it the ability to converge from points remote

from the final optimum. However, in such a mode it is most

unìike'ly to be better for locat'ing the approximate reg'ion of the
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solution than one of the efficient gradient-based (continuous)

methods. In fact, Steiglitz does not use it in this way. In

each of his quoted examp'les the process was begun by rounding

the coefficients at the continuous optimum. In practice, the

discrete optimum wi1ì usually lie within a few unit steps of

this point, and so it is diffjcult to see that successive

pattern moves couìd succeed very often. The acceleratjon feature

is therefore probably large'ly superfluous. Such success as the

Steìglitz method has achieved, is probabìy attributable to the

occasional determination of a good search direction through the

use of TWO-0PT.

l^legener (1978) has also used a discrete search method

based on the Hooke-Jeeves pattern search, in conjunction with

wave di gi tal I atti ce fi I ters.

The algorithm of Kwan (1979) represents another attempt

to combine the univariate search with an enumerative search in

a subspace. As with the Steigììtz method, the parameters are

shuffled into a random order for the univariate search, so that

different seeds for the random number generator wiìì lead to a

variety of solutions. The univariate search incorporates also

a "successful move scheme"; if any (single parameter) step

reduces the function value, a further step in the same direction

is tried before proceeding to the next parameter. The objective

functions used by Kwan are deríved from rjgid specifications on

maximum passband ripp'le and minimum stopband attenuation, and have

the property that filters having this value less than L are

acceptabìe,while those having a greater value are not. Hence,

the univariate search is stopped as soon as an acceptable
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parameter Vector is found, and the rvhole procedure repeated to

try to find an acceptable fjlter with the next shorter vlordlength.

If, however, no acceptable filter is located by the univariate

search, an enumeratjve search is tried in a region within the

subspace of the three most sens'itive parameters. (the trials

associated with the preceding un'ivariate search enable the

parameters to be rough'ly placed in order of sensitivity). If

this also fails, the three parameters are given the best values

found and a search performed in the subspace of the next three

parameters. This sequence is continued if necessary untìl all

parameters have been varied. Kwan recogn'izes that the search

could stjll be trapped at a poor ìocaì minimum, and so he allows

successively shorter wordlengths to be investigated untjl failure

to produce an acceptabìe filter occurs twice running.

Kwan has also demonstrated the usefulness of Crochiere's

(1975) "statistical wordlength equaìization". In each of three

examples (elliptic ìowpass filters), Kwan's algorithm found

acceptab'le fiìters of g-bit wordlength when equalization ulas

empl oyed i n arri vi ng at the i deal coeffi cients. lnli thout equaì -

ization, no so'lutions were found for fetver than 10 bi ts. The

validity of Crochiere's idea ìs thus established vrhen used in

con j un cti on vli th an opt'imi zati on procedure, as wel I as wi th

simpìe rounding. However, the 9-bit solutions still eæist

regardìess of the starting po'int for the search, and so'it may

be considered a shortcoming of Kr,van's algorithm that it did not

find them.

The third bas'ic type of search'in discrete space is the

random search. This is not to be confused tvith methods such as
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Steigìitz's which merely random'ize parameter ordering to allow

a variety of so1utions to be found by otherwise determjnistic

searches. In the simplest applicatìon trial points could be

generated at random within a givøtregion as an alternative to a

straight enumerative search. There would then be no guarantee

of finding the optimum but there would usualìy be a good

probability of finding a "reasonable" solution with far fewer

evaluations than needed for the enumeratíve search. There is

scope for adaptation in such a random search; for examp'le, the

probabi'lity density function could be made non-unjform with a

peak centred on the best point found so far.

Suk and Mitra (1972) describe one approach to a random

search, which operates in two phases. In the first phase, tria'l

steps are made from the current best point by perturbing each

parameter by 0, +h or -h, urhere the three possibilìties are

randomly selected and equalìy probable. Any improvements found

are accepted (the centre po'int for the search is re-defined).

The stepsize h is jnitiaìly set to some yaìue Ho, and if no

improvements are recorded after a certain number of evaluatìons

it is reduced by 1. This process continues until h is reduced

to some preset value Hr, when the second phase begins. This is

a random search with all po'ints uithín the hypercube of edge

length 2H,, be'ing equally probable. Again, ôry improvements

re-define the centre point of the hypercube.

There appear to be several weaknesses in the method as

origina'lly described by Suk and Mitra. In phase one, they

require that eÐerA possibLe step be tested with a given value
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of h before the stepsize is reduced. As the number of

possibitities ìs 3N, it is an unrealistic requirement in a space

of even moderate dimensionalìty due not only to time but to the

size of the look-up table necessary to record whÍch steps have

been tested. A sìmiìar requirement that the second-phase

hypercube searches be exhaustive (and begin afresh whenever an

improvement is found), is even less realistic, because the number

of points to be tested is (2Hr+t)N, un even larger number if Hr >1.

Additionally, it is not obvious that the search would eper

terminate with any gi ven a'l gorithmi c " random" number generator.

fn fact, Suk and Mitra performed the searches onìy in a

subspace with N = 2. The procedure is then manageab'le but not

very polverful. Such success as they achieved seems due to the

large number of parameter vectors which are substantiaììy better

than the "rounded" vector, in the example's that they chose.

Improved solutÍons are therefore quite easy to find, even with

a bad method. In no case reported was the true discrete

optimum found.

Random search methods in general have the advantage of

being insensitive to major irregularjties in the contours of

the objective function. They may thus be the most suitable

methods for jnteger optimization problems in which such

i megu'lari tes occur over di stances smal l er than the feasi ble

grid size. However, when this is not the case (as seems true

for most digitaì filter problems), methods which include some

means of discovering good directìons in which to move in

parameter space, woul d usual'ly be more efficient. 0f such

methods there are those which perforn evaluations onìy at
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feasib'le points, and that of SteÍ glttz (w'ith TI^IO-OPT) may be

close to optimal. However, if the obiective function is

differentiable the method to be discussed in section 6.6 is

applicable, and should be even better.

6. 5. 3 Successi ve Dì screti zati on Approaches

All of the methods for discrete coeffic'ient optimization

considered up to this poìnt have been of the general "integer

progranrning" variety; the design of the algorithm is based on

the genera'l behaviour of functions, and the connectjon with

dig'ital filtering is largeìy incidental. In contrast, several

other r.thodt have been proposed in which this connection is

kept to the fore.

The methods of Boite, Dubois and Leich (1974) and Brglez

(1978) are similar in that parameters are rounded off one or two

at a tíme, and a continuous optimization of the remaining

parameters is then performed in the reduced-dimensional space

resulting. Boite et aL. consider cascade-form selective

digita'l filters in which all zeros arr on the unit cÍrcle, and

treat only the magnitude response. The transfer function is

then

K 1+a z-L + z-2
kH(z) = AO 'tÍ

k=l 1 + c z-l + d
(6.18)

2
k kz

The authors observe that the sensitiv'ity of the magnítude

response to parameter changes is much smaller in the stopband

than ín the passband. (A sìmilar effect was found by Avenhaus

(1972b) in hìs derivation of statistícal wordlength functions).

Their first step, then, is to round off all numerator coefficients
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uk (*¡'ich determine the stopband zeros) to the nearest allowable

values and re-optimize the ck and dk coeffjcients in the

continuous 2K-dimensional space. The discrete optimization

procedure proper then begins. One denominator coefficient

(ck or dk, for some k) 'is rounded off and the remainder re-

optimized Ín continuous space. Boite et aL. claim that the

stopband magnitude characteristic is little changed during this

process, so that the objective function may possibly be

evaluated on a passband frequency set only. The cycle of rounding

and continuous re-optimization is repeated until all coefficients

have been "discretized". Coefficients are rounded off in

decreasing order of sensitivity.

The procedure of Brgìez (1978) is more involved, but more

general in that it is applicable to filters with arbitrary

poìe-zero distributions (not only to piecewìse-constant magnitude

characteristics). The filters considered are of the cascade form,

with transfer function

H(z) = AO

1 + akz-L + bkz-2
(6.le)

1 + ckz-r + dOz-2

K

T
k=1

Both of the coefficients which determine a poìe or zero paìr

are discretized simultaneously (that is, either ak and bk, o. tk

and dk, for some k). l1owever, they are not merely rounded off

to the nearest allowable vaìues for a gÍven wordlength. Assuming

that ak and bk are selected for discretization, several (up to 16)

discrete pairs in the (ak, OL) pìane are selected for trial. These

pairs are the feasible po'ints which form some neighborhood of the

current continuous optìmaì pair (uk, bk), such as the four nearest
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points plus the twelve additional po'ints surrounding those four

(as shown in figure 6.8). The coefficients ak and bt u.. fixed

at some or all of these points in turn and a continuous re-

optimization of al I remain'ing coeffic'ients is performed for each

trial. The (ak, bL) pair which gives rise to the smallest

objective function value Ís accepted and a new paìr is then selected

for discretization. A variety of rules may be applied to deüermine

which of the neighborhood points to try, since trying them all

would require excessive computer time. First'ly ("r'uìe 1") the

objectìve functjon may be evaluated for each point (without

contjnuous re-optimization of the remain'ing' coefficÍents)and any

desired number (say 3) selected on the basis of lowest value.

This rule involves substantial computation but Brglez regards it
as essential for arriving at the best possible solution. A

simpler alternative is to evaluate the coordinates of the

relevant pole or zero for each djscrete coefficient pair, and

select those for which the pole (zero) perturbation from the

ideal is least. Brgìez (his "rule 2") has used not the actual

pole perturbation but the ehanqe to the dLstance betr¡¡een the

pole and some "critícaì" poìnt on the unit circle, such as a

band edge, for a selective filter. A third, and even simpìer,

alternat'ive is to use just the nearest coefficient grid point

(i.e., roundjng), or the nearest tr^ro (or more).

Brglez considered two criteria for deciding the order of

coefficient pairs to be d'iscretized. Again, he regarded a

fair'ly complex rule as being essentiaì to obtain the best results,

with arbitrary poìe-zero distributjons. The objectìve function

value ìs calculated (as for "rule 1" above) for a1ì points in
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the discrete neighborhood set for every possible pole and zero

pair. Then for each such pair the four lowest values of

objective function found are averaged, and the po'le or zero pa'ir

with the highest average is chosen to be discretized next. A

simpler rule is sufficient for selective (p'iece-wise constant)

filters. The numerator coeffjcients (connected v¡'ith the zeros)

are dÍscretized first, and in increasing order of the distance

of the zero from the nrid-band frequency (zero for lowpass filters,

n for highpass, and the arithmetic or geometric mean for bandpass

filters). Denomjnator coeffic'ients are then discretized, in

increasing order of the distance of the relevant pole from the

unit circle. Brglez found that both criteria y'ielded identical

res u'l ts wi th typi cal sel ecti ve f i I ters .

A final step is suggested by Brgìez to further improve

the filter. This is an enumerative search over all combinations

of discrete coefficients which vJere considered during the

process. If, say, only 2 feasible coefficient pa'irs were tried

at each stage, the total number of combinatìons would be 22K, and

the enumerative search may be a practical proposition.

6.5.4 Minimization of a Function of i'lordlengths

The optimization methods considered so far in'this

section all have in common the characterjstic that the objective

function is a measure of the deviation of the actual filter
response from some desired response. In the case of spectrum

shaping filters the id.eal (infinìte wordlength) design wì11

usually have itself been produced by a (continuous) optimization

process, and the objective function used in that process serves
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during the dìscretizatjon phase too. This type of filter is

also characterized by having no particular function value which

separates "acceptabiììty" from "non-acceptabì1ity", so that the

designer must make an a postez'ior'í decision regarding the

wordìength to use after he sees the best that can be achieved

for each wordlength. 0n the other hand, a typical piecewise-

constant (or "brick wall ") filter usual'ly has rigid specifjcations

on passband ripp'le and stopband attenuation. The ideal design

may or may not be produced by opt'imization but in any case an

objective function (usual'ly of the "maximum-modulus" type) may

easily be defined for use in the discretization phase. In this

case, some partÍcular value of the function corresponds to the

specification being met with zero margìn, so that a true minítm.tm-

uordlength solution exists. However, the methods for wordlength

minimization considered up to this point proceed stagewìse, with

some particular wordlength being assumed at each stage. The.

solution eventualìy found satisfies the constraint of equa'lity

of all coeffÍcient wordlengths. In the case of very-high-speed

hardr^rare digital fiiters, there may be no need to include such

a constraint; if each coeffjcient had to have its own dedicated

multip'lier there would be a cost benefit in using the smallest

satisfactory wordlength for each individual coefficient. Bandler,

Bardakjian and Chen (1975) have considered this problem. The

magnitude response of the filter does not appear in the equatÍon

defining the objective function; rather, the magnitude at each

frequency is constz,ained by the spec'ifications. The objectìve

function is a function of the coefficient wordlengths (such as

their sum). This is minjmized subject to integer constraints on

the wordlengths and on the (scaled) coefficients, and to inequa'lity

constraints on the frequency response (at a reasonab'ly dense set
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of spot frequenc'ies). The method of Bandler et aL. is

classifiable as a "formulation A" approach (as defined jn

chapter four of this thesis) whereas all others consjdered are

"formulation 8". The Bandler et aL. nethod is applicable only

when the response has rigid upper and lower specifications, which

in practìce usually includes only se'lective ("brick waì1") filters.
The method uses a technique of Bandler and Charalambous (1974)

to transform the continuous constrained minimjzation problem

into an unconstrained problem, and Fletcher's (tglO) quasi-

Newton method to solve the latter. Discretization is performed

by a branch-and-bound search. Because of its complexity th'is

method is un'likeìy to be practicaì except for filters lvith a

very small number of coefficients; the authors quote

computat'ion times of up to 5 min. for five coefficients. The

usuaì problern of increasing dímensionaljty is compounded in this

approach because the parameter vector contains the wordlengths

in addition to the coefficients themselves.

6.5.5 Interactive Approach for Ve ny Severe Quantization

In order to compìete this survey of methods for discrete

optimization of digìta'l filter coefficients, it ís worth

mentioning one more. Hadjifotjou and Appìeby (1976) have

proposed a direct graphical technique appljcable when the

quantization js very coarse. The ideal pole and zero positions

Ín the z-plane are computed and overlaid on the grìd of allowable

poles (zeros). An interactive computer system incorporating

graphics is suggested as the ídeal envjronment. S'ince with

very severe quantjzation none of the poìes (or zeros) ar e
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likeìy to wander by many steps from the ideaì values,

candidate pole (zero) posit'ions can be readily picked manuaìly.

The computer system would include also a faciìity for displaying

graphicaì]y the achieved response after such a selection to

enable the designer to evaluate the results. The authors

further propose that the four candidate po]es nearest to each

ídeal pole be tried Ín turn, and the best one (in terms of a

maximum moduìus error criterion) kept when moving on to

discretize a new poìe (zero). This courd usefully be automated,

so that an interactive implernentation, though desirable, is not

strÍct'ly essential . This procedure is obvious'ly app'licable to

any of the specia'l filter structures considered in section 6.3

(apart from wave digitaì filters); the d'ifference is in the grid

of aìlowable poìes (zeros) on which the ideal points are overlaid.

6.5.6 Summary

In summary, a great many methods have been proposed for
the discrete coefficient optimization problem. They range from

generaì integer progranming techniques which are virtual]y
guaranteed to find the true optimum for a given worcllength (but

which require vast amounts of computer tíme), to those in whjch

coefficients are rûunded off one-at-a-tÌme or by simpìe searches

in two-dimensional subspaces. The latter methods are usualìy

guided by "reasonable" assumptions regarding the response

behaviour of dÍgital filters.

The most practical methods seem to be of intermediate

complexity, involving some kind of randomized search procedure.

There is no guarantee of finct'ing the true optimum, but a

variety of "slightly sub-optimal" solutions can usually be found
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in a reasonable time. Randomization is essential to ensure that

the procedure does not become trapped at a poor local minimum,

but some kind of a "learning" or "direction-finding" search is

probabìy preferable to a pure random search. In the remainder

of this chapter, a new method of this type is considered.

6.6 A New Method for Discrete Coefficient 0ptimization

6.6.1 Published Presentations

A new method for the coefficient optimization probìem

was introduced by this author at a conference (Smith , 1977) and

later described more fully in a paper (Smith, 1979). Both

items (to Ue referred to briefly as the 1977 paper and the 1979

paper) are reproduced as the next few pages of this thesis.
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The essential features of the new method have been

expounded in most detail in the 1979 paper. The 1977 paper has

been reproduced here also because it is the first publ'ication of

the method and because the emphasis ìs slightly different. The

remaining parts of section 6.6 are to further clarify certain

po'ints and to place the new method in the overall framelork

established in this chapter.

6.6.2 Basic PhiIosophy - Comparison with Other Methods

The aim of the new method is to attempt to expìojt the

vrell-behaved (and further, quadratic) nature of the objective

function'which, at least in theory, prevails near the

continuous minimum(Rrovided that the function is twice

differentiable). For this approach to be fruitful the quadratic

approximation would have to be valid over a region'including a

ìarge number of feasible (integer) sol ut'ions and preferab'ly

including the true discrete optimum. Intuitiveìy, this

assumpt'ion will become more valid with increasing wordlength,

because the feasible mesh size is continuaìly refined while the

contours of the objective function on which the mesh ìs super-

imposed remain the same. However, for long wordlengths discrete

parameter optimization is largely superfìuous. The theory of

(Taylor series) function approximation has guided the formulation

of the method, but it is erperimen¿ rvhich indicates that it
is indeed valid for usefuìly short lrordlengths.

No previous'ly-publ ished methods have so di rectly cons j dered

the behaviour of the objective function in a region of space

surrounding the continuous opt'imum. Branch-and-bound methods
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use the wel I -behaved nature of the function imp'li ci t'ly; they

usually succeed because the function is convex in a nejghborhood

of the continuous optimum.

0n the other hand, search methods rvhich rely only on

feasible evaluations (such as those of Avenhaus (Ig7Zb) and

Steiglitz (tglt) ) virtually ignore the well-behaved nature

altogether. They are essentially unable to discover andadequate]y

to use, information about the manner of variation of the function,

except when remote from the (continuous) optimum. To see why this

should be so, consider the folìowing intuitive argument:

In a sense, the feasible mesh is aìways too coarse for a

unívariate search, regardless of the wordlength. As may be seen

from figure 2 of the 1979 paper (for exampìe), if a discrete

optimum exists and is separated from the continuous optimum by

several quantization steps, and the function is quadratic, then

the contours must be elongated. This is a two-climensional

exampìe, but in prob'lems of higher dimensionality the contours

must stíll be elongated at least in some directions, because

otherwise the discrete and continuous optima would be closer.

It follows that many univariate steps from points near the long

axis (or axes) of the contour system r,vil'l ',jump over,' the

contour axis, and for this reason many of these points wì'll be

discrete local minima. Roughly speaking, the more elongated the

contours, the more local minima there will be, and the smaller

the likelihood that a univariate search method will ever reach

the true discrete optimum. This is not to say that the

unjvariate search methocls are not usefu], but they are useful

because many of the subopi;imaL vectors yìeld adequate designs, not

because the true optimum ìs usually found.
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The above intuitive objection is based on elongated

contours, and wouìd be removed ìf they were not elongated.

However, since the sensitivity of the filter response to each

coefficient is usually quite different, such a situation vrould

be exceptional. Furthermore, it is just the situation in whjch

discrete optimization would be of least value, because the

rounded sol ution woul d be qu'ite reasonable, i f not opt'imal .

There is no problem with contour-jumping with the new

method. The procedure is not reaìly a "search", but a sequence

of random trials. Discrete local minima go unrecognized as

such and, cause no special problems. In fact, the efficiency of

the subsequent computation is probably increased as each better

one is found, because the bounding contour shrjnks. The

discovery of the discrete optimum is a matter of chance, but

with the new method the probability of finding Ít is not

reduced by the presence of 'large numbers of subopt'imal local

mi n ima.

6.6.3 Area of Applicability

It has been mentioned that the new method requires the

objective functjon to be differentiable. Since the Hessian

matrix is used, it must actually be twice differentiable. A

further requi nement is that the cont'inuous optimum have been

located to a fairly high degree of accuracy, because this

determines the origin of aìì the search vectors and is of

central importance. The method is thus ideally suited to

problems (for example, the "formulation B" approximation of an

arbitrary magnitude response) which use a least sqt;ares or
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least pth error criterion and a quadratical'ly-convergent

gradient method for minimization.

The method is not directly appìicable to filters (usually

of the "bri ckwal I " variety) which have been des'igned vi a the

bilinear transformat'ion of a classical s-plane design or by

mÍnimizing a maximum modulus obiective function. This may seem

a very severe limitation, but there are ways to refonnulate the

approximation problem to take advantage of the new optimization

method. rdhat is required'is that a suitable differentiable

objective function be formulated, and that the existing jdeal

design be modified sljghtly (if necessary) to minimize the new

function. Construction of the function is a trial-and-error

process, but with experience Ít is readi'ly possible to "concoct"

functions for rvhich the minimizing design is very little
different from the original design. The function could be of

least pth form to maintain a close simulation of the original

minimax objective, but with a good se'lection of the discrete

frequency set on which the function is defined, a sum-of-squares

functjon could serve just as well. An example was seen in

chapter fi ve, exampì e D, for whi ch a I eas t-squares-opt'ima'ì fi I ter

cìose'ly similar to an existing e1'liptic filter was produced. One

guiding principìe in this work is that there should be an

approximate'ly equal number of frequency samples per cycìe of

the response error function.

In using such a "secondary" objective function with the

discrete minimization aìgorithm it is tacìtìy assumed that

"good" discrete solutions of the secondary probìem are also

good so'lutions of the original aporoximation prob'lem. It is
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thought that'in many cases this would be true, but this is a

matter of conjecture. A further "hybrid" approach may also be

worth try'ing in cases for which a maximum modulus objective

function is defined. The secondary (differentiable) function

cou'ld be used to detennine the search di rections and to pred'ict

the value of the maximum useful radial distance dru*. However,

the results of the trials at feasible points would be sifted on

the basis of the maximum modulus function.

6.6.4 Adequacy of the Quadrati c Approx'imati on

Assum'ing that a differentiable objectjve function is

defíned,,the success of the new method in finding the discrete

optimum (and to a lesser extent, in findìng good suboptimal

discrete soìutions) wou'ld seem to be dependent on the quadrat'ic

approximation's being adequate out to distances of several units

from the continuous optimum. All of the examp'les for which

Charalambous and Besf (L974) quoted branch-and-bound results

were repeated using the new method, and in all cases the optimum

was found. This provides an indirect indication that the approach

is val i d.

More direct verifjcation of the quadratic nature of the

funct'ion may be shown by actua'l eval uatjon along ìines which

pass through the continuous optimum. Figure 6.9 shows an example

for the design by'least squares of a single-section wide band

differentiator. This is simjlar to example 1 of the 1979 paper,

except that the dimensionality is reduced to 4 by choosing the

ga'in factor optimally for any gìven values of the coefficients.

(the gain is not constrained to take an integer vaìue). The
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distance is measured'in multip'les of the quantìzatjon step size

for 8-bit coefficients('i ..., Six fract'ional bits). In this

examp'le the discrete optimum has coefficients u ='23/64,

6 = '4r/u4, c = s3/a4 and d = 6/ 64, an object'ive function val ue

of 2.934 x 10-4, and is located at a (Euclidean) d'istance of

3.429 uni ts from the continuous optimum. F'igure 6.9 shows the

actual variation of the function along a line ioining the

contjnuous and discrete optima, and extended 'in both directions

(solid curve). The dashed curve is the quadratic function found

from equation (9) of the 1979 paper. It can be seen that the

two curves correspond quite closely out to several un'it radii.

Although the "quadratic approximation" provides the basis

for the development of the present method, and although the

approximation has been shown by examp'le to hold fairìy c]oseìy

over a usefully large region, it should be mentioned that the

a'lgorithm includes several features which counteract the effect

of errors in this approx'imation. Fi rst1y, regarding the angu'lar

distributjon of search vectors; the information in the Hessian

matrix is merely used to bias the probability density function,

not to restrict the choice of vectors. Thus no regÍon of the

space is excluded from the search, and the lower the value of

the bias exponent (q) the less reliance ìs pìaced on the

quadratic approx'imati on.

The assumpt'ion of quadratic variatjon of the function

with radial distance'is used in another way; in the determina-

tion of d*ur, the distance to rvhich it is expected that a vector

shoul d be fol I owed ì n order to f I ush out any 'li ke'ly candi date

discrete solut'ions. tlov¡ever, this calculation is not based on
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the Hessian matrix but on an actual evaluation of the function

at a finite distance L from the continuous optimum. (L is equa'l

to the distance to the "rounded" feasible solution). dmax is

thus derived from a quadratic fit over a finite region of (one

dimensional) space, calculated afresh for each search vector,

and the error will usually be smalìer than that resuìting front

the truncated Tay'lor series.

A further feature makes errors in dtu* luss ìmportant.

A factor g is introduced by rvhich the predicted dmax is increased

before it is used. Thus all radial searches are carried ouü,vards

to a somewhat greater distance than that predicted to be

necessary. In all the work reported this value g has been

taken as 1.1, but in some probìems it may be advantageous to

make it larger. The price to pay for so gaining immunity from

approximation errors is in increased computer time, because more

trials will be made per vector.

6.6.5 Calculation of the Hessian Matrix H

In the examples reported in the 1979 paper the continuous

mjnimization was performed by Powell's (1964) process using the

value of the function on'ly (no derivatives). The Hessian matrix

was then calculated by a finite-difference (perturbat'ion)

technique aga'in involving function value only. The success of

the method indicates that such a procedure is adequate, although

it is necessary to introduce a safeguard against the appearance

of negative eigenvalues, as desribed in section V of the 1979

paper.

In that paper i t was al so rnentioned that the ei genva'lues

and eigenvectors of H could be more easily and accurately found
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from the positive-definite approximation to H-r which is

available after convergence of the Davidon-Fletcher-Powell

algorithm, if that had been used instead. The same of course

appìies to any quasi-Newton method. A third alternative would

be to calculate H di rect'ly from the ana'lytic expressions derived

in chapter four of this thesis. Thìs is unlike'ly to be

significantly superior to the use of the quasi-llewton iteration

matrix, and if a quasi-Newton method had been used the

additional programming to calculate H would not be justified.

However, H coul d readi]y be cal cul ated di rectly i f a second-

derivatiye minimization routine were in use.

6.6.6 Selection of the Bias Exponent q

The search vectors are computed as random, but biassed,

linear combinations of the N eigenvectors of H , according to

equator (10) of the 1979 paper. A singìe parameter (an exponent)

q has been used to control the amount of bias towards eigenvectors

correspondìng to small eigenvalues. This method of biassing has

been chosen because of its simpf icity, and it seems effective,

but it may be that other strategies could be developed which

would improve the angu'lar d'istribution of vectors.

There is probably no value of 
_q 

rvh'ich is optimal for al I

problems. Generally, values less than L seenl appropriate

because the eigenvalues of H usually vary over several orders

of magn'itude and it seems ill-advised to concentrate the search

in just one djrection, especially if the true optinlum is sought.

However, it is quite likeìy that substantial improvements over

the "rounded" solution would be produced very quìck1y by searching

just the subspace of one or two "sensitive" eigenvectors. This

would improve the efficìency of any subsequent, less concentrated,
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search, because the area explored shrinks w'ith every improved

solution. Hence, it is thought that q should begin 'large 
and

become smaller. A useful measure of the appropniateness of the

value of q is the proportion of vectors which are abandoned

after the first exploratory evaluation. If there are too many

of these, computer time is obviousìy being wasted. If there

are too few, or none, it could be that the search is too

concentrated and is ignoring regions of the space where the

solution could lie. If the purpose of the search is the

discovery of the true optimum, it is recommended that q be set

such that a steady proportion of about 20% of "abandoned"

vectors is being produced. This "fine-toothed-comb" phase of

the search should follow an introductony phase with a 'larger

value of q, whose purpose is to shrink the bounding contour

quick'ly. Such a strategy shoul d incråase the I ikel ihood of

finding the discrete optimum. However, there is no guarantee

of finding it; if ín fact it is found there is no indication of

opti maì i ty.

In the more realistic situation where all that is desired

is an "almost optimum" discrete parameter vector, the fine

search may not be required at aì1, because the value of the

objective function at the continuous optimum prov'ides a knovln

lower bound on possible discrete solutions. If the procedure

is impìemented on an interactive computer system, with a pause

after each improved solution found, the designer can read.iìy

make the decision to stop or to continue.
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6.6.7 Selection of Radial Steplength s

The intent of the radial search method is that a discrete

parameter vector be tested as a candidate solution if a search

vector passes "close" to it (ttrat is, enters the unit cell of

which it is the centre). To impìement this wìthout undue

computational burden, it is necessary that the radial vector

be expìored in an outlvard directjon in a stepwise fashion and

the trial feasibìe points be generated by rounding off alì

parameters at each step. If the steplength r^rere too'large, many

trial points could be missed. 0n the other hand, if the steps

were min,ute, many success'ive steps would lead to trials at the

same point. At first sight it would seem important to optimize

the choice of s; it would also seem that the opt'imum value

wou'ld depend on dimensionality, perhaps varying as /N- (because

/f is the maximum corner-to-corner distance of the un'it

hypercube). Hou¡ever, it is probably far better to use a value

of s small enough that trials are vÍrtually never missed (say

0.1), and buÍld in a test to prevent a re-trial whenever second

and subsequent steps round off to a discrete point which has

aìready been tested. Quite small steps are justjfiable because

the computer time involved in the radial step ca'lculations is

negligibìe compared with that for a function evaluation.

6.6.8 Storaqe of Previousl y- tri ed Sol ut'ions

It is obviousìy wasteful of computer time to perform

several function evaluations at the same po'int. In the context

of a single search vector it is very easy to prevent this (as

explained above) because'it is onìy necessary to test that the
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rounded coordinates do not dupìicate those Last tried. Horvever,

to extend the safeguard aga'inst repetition to aLL vectors, a

lookup table is requ'ired, containing the coordinates of po'ints

aìready tried. The feature produces a net saving provided that

successful table searches do occur, and do so sufficient]y often

that the average time spent in table searching is ìess than the

time necessary for a new function evaluation.

For a given probìem (and a given yalue of q) there will
be an optimum table size (beyond which new entries shourd not

be added). Furthennore, the ord.er of entries in the tabre is

important; there will be more likelihood of repeated evaluation

at points close to the continuous optimum (because the search

vectors will be less widely spread) and at points in the sub-

space of the sensitive eigenvectors (because more search vectors

will explore this reg'ion). Such entries should occur earLy in

the table to decrease the average search tíme. Fortunately, this

may be ensured in an approximate sense by searclring the table in

the order in which it was created.

The matter of optimum table sízes has not been studied

extensiveìy, but several observations may be made. Firstly, it
does seem to be worthwhile to store at least the first few

points tried. secondly, it may be a sensible strategy to allow

the table to grow without limit (except that imposed by the

computer memory) but periodica]ly to adjust the proport.ion

searched, and to determine this by monitoring the success rate.

Such dynamic optimization of the algorithm coulcl readiìy be

carried out automatical 1y.
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The di screte opt'imi zatj on problem has a very useful

characteristic which enables the "previous trials" table to be

implemented in a very efficient manner, from the point of view

of memory requ'irements as well as search time. The discrete

optimum wilì seldom lie more than a few unit steps djstant from

the "rounded" djscrete parameter vector, in any coord'inate

direction. Thus any point tried may be represented by a vector

of small integers (to be added to the rounded vector as a base).

If a range of, say,116 units is allowed, then only five bits

are required per coordinate. If, for exampìe, a 6C-bit

computer is used, all the information for a given point may be

packed into a sing'le computer word urhen the dimensionality is

less than 1.3. Two words lvould allow problems with N up to 24.

The table search requires onìy equality comparisons which are

easily done over the entire lvord or words, with no unpacking

requì red.

6.6. 9 Mul ti modal i ty

Alt of the foregoing discussion has imp'l'icit'ly assumed

that the discrete optimum lies in a small region surrounding

the conttnuous opt'imum. However, i f the objecti ve function is

not unimodal it is of course poss'ible that the discrete

optimum is assoc'iated with one of the suboptimal (continuous)

local minima. Thus if several local minima have been found in

the continuous domain it rnay be necessary to repeat the radial

random search for each one. In such cases it is advantageous

to begin with the best local minimum, because as soon as a

discrete solutjon js found with a bwer objective function value

I
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than a suboptimal local minimum, it becomes unnecessary to

perform the search about that minimum. No discrete solution

found in such a search could possibìy be better than that one

al ready found.

In all practical cases for which multjmodality has been

observed by this author, one local minimum has been so clearìy

superior that onìy one d'iscrete search has. been necessary.

6.6.10 Constraints

Several remarks were made in the 1979 paper regarding

i nequaì i,ty contrai nts , such as the f il ter stab j I i ty requi rernent.

Firstìy, the continuous optimum could easiiy l'ie just inside

the boundary of the feasible region and it could happen that

search vectors cross the constraint boundary. This need cause

no speciaì problems when optimizing filters (particularìy 'in

the cascade form), because it is easy to test for constraint

violation and simpìy to abandon the search vector after the

infeasible region is entered.

Further remarks were made about the difficulties

associated with constraints which are binding at the

continuous opt'imum. In such a case some of the fi rst part'iaì

derivatives of the objective function are nonzero, and the

quadratic approximation is not valid. Two suggestions were

made to get around the problem - a penaìty function approach

and an enumerative search. It is nor^/ real ized that a situation

ìike this will not normally occur with stabilìty constraints,

because the continuous mìnima of ínterest are alurays interjor

to the feas'ibìe region (see section 2.3.2). However, there may
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in some cases be constraints on the coefficients which arise

from other considerations. As an examp'le, consider the alì-pass

group deìay equalizer of example C in chapter five. The ideal

(infin'ite precis'ion) filter found by continuous optimization had

several coeffic'ients which were greater than 2.0, but only

slightly so. The representation of the value 2.0 (or any

greater value less than 4.0) requires an extra bit, so that it
may be beneficial to seek instead a solution for which all

coefficients are constrained to be less than 2.0. The

continuous opt'imum would then involve binding constraints and

one or other of the modified solution methods would be

necess ary.

6.7 Surnma ry

In this chapter the wide field of fìnite-wordlength digìtal

filter design has been revielved. The matter of quantization of

the data was touched on briefly in section 6.2 and indicated as

an area for the application of a type of opt'imization method.

The amelioration of the problems arising from coeffícient

quantization has seen much fruitful application of optimization

ideas. Published work in this area has been reviewed in section

6.5. Sections 6.3 and 6.4 were not specifically connected with

optimization but served to introduce further ideas relevant to

coeffi cient quanti zati on.

In section 6.6 a new method for coefficient optimization

was dealt with. This had been previousìy introduced in published

papers (reproduced in that section). It is thought to be superior

in many ways to alternative methods which have been proposed.

In the latter part of sectiotr 6.6 some further discussion re'lating

to the new method was presented.



CHAPTER SEVEN

A HIGH-SPEED IMPLEMENTATION OF SYSTEM IDENTIFICATiON BY OPTIMIZATION

TECHNI QUES

7.1 Introduction

This chapter differs somewhat in flavour from the preced'ing

ones. Its purpose is to illustrate (by means of an example) some

of the considerat'ions involved in the implementation of system

identification by optimization techniques using fast, cheap, short-

wordlength digital hardware. The work to be described includes

the development of both the hard¡¡are and the software.

At varíous places in this thesis reference has been made

to the poss'ible application of optimization techniques to real-

time system identification problems. In a typical application,

the output s'ignal from some physícaì system would be sampìed

and digitized, and stored in a memory. The concurrent írryut to

the system could be a special test signa'l or the signal occurring

during normal operation. If it were the latter, and if jt were

available to a sensor, it lvouìd also be sampied, digit.ized and

stored. Digita'l processing wou'ld then be performed, w.ith the

stored time sequence(s) as input data. The aim of the process'ing

wouì d be to i denti fy the oararneters of a " di gi ta] fi I ter" model

of the system under study; that is, to fjnd appropriate values

of the parameters such that the filter model, when fed with the

known or measured input sequence, would produce in some sense

an approximation to the observed output sequence. The forrn of

the model normally lvou'ld be decided in advance, and lvould be

based on whatever u/as known about the physicar principles on

which the system operated.



4,23
The principal use of such processing is in keeping track

of the parameters of a system (or, rather, of its model ) when the

system characteristics are changing with time. The usual

assumption necessary with system identification algorithms is

that the characteristics do not change appreciab'ly over the time

necessary to accumuìate sequences which are long enough for

reliable ana'lysis (the ¡røne time); however, wjth many signaìs

of interest (speech, for example) the changes are sufficient'ly

rapid that data must be accumulated continuously and analysed in

contiguous or even overlapping frames. This means that if changes

to the system are to be followed in real time, the processing

must be performed in at least the same time as (and concurrently

with) the accumulation of the next frame.

Real-time system identification ís desirable for many

different app'lications. l,lhen the signa'l is soeech (i.e. when

the system being identified is the human speech production

apparatus) possibìe appìications are in compressed-bandwidth

tel ephony (the mode'l parameters can be di gi ta'l ly encoded wi th

far fewer bits than the signaì itseìf), in talker verifÍcation,

and in automatic speech recognítion (for verbal entry of

computer commands, for example). If the system were some

controlled "plant" (e.g. an industrial process) whose parameters

were liable to change with time, the system identification would

be a necessary component of the overall control strategy.

Requirements for very hígh speed in system identification

greatly ínfluence the choice of the computer hardr¡rare and the

compìex'ity of the algorithms which may be considered for the task.

The other major factor is cost. Seldom would a ìarge mainframe

'l
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computer be available for dedícated operation; on -line system

identification is much more 'likely to be mini- or micro-computer

based. Long-wordlength floating-point arithmetic (having high

precision and iarge dynami c range) may not be avai lable (or^ring

to cost) or may have to be avoided (because it is too slow).

A study has been done of the implementation on fast, cheap,

short-wordlength computer hardware of system identìfication by a

gradient-based mathematical optimization method. The computer

used is the "General Arithmetic Signal Processor" (GASP), built

in the Department of Electrical Engineering at The University of

Adelaide during the years 1974-7978. In addition to writing the

programs for the optimizatjon study, I have, during my peniod of

Ph.D. candidature, made major contributions to the design, testing

and documentation of the hardulare and "firmware" of this machine.

Further details are gìven in Section 7.2.

An initial aim of the study reported here, to produce a

system to perform useful ana'lysis of speech sÍgnaìs by optimization

in real time, has not been realized. However, the study is still
of interest because:

a) It goes some vlay tov¡ards indicating the order of hardware

speed up (through increased paralellìsm and/or improvements

in ìog'ic speed) requ'ired to bring such speech processing

within reach.

b) The system as developed may be useful for less demanding

(slower) system i denti fi cation problems.

c) It represents the onìy attempt known to the author to

imp'lement a soph jsticated gradient-based optinri zation

aìgorithm on such a machine.
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Most previous optimization studies ('including those of earlier

parts of this thesis) have used the high-precision, floating

point capabijitjes of 1arge, general purpose mainframes.

Conversely, attempts to make fìlters (or system models) which

adapt to changes ìn signal characteristics ín real time, usually

employ ìess sophisticated opt'imization technìques (e.g. variants

of steepest descent). The present work shows that it is indeed

possible to impìement matrix arjthmetic and the other operatìons

necessary for more sophisticated aìgorithms on simple short-word-

length hardware, and to do so in an efficient manner.

The study is incomplete. No examples of useful app'lication

can be quoted. llor are the computation times observed (with test

signaìs) necessariìy a rel'iable indication of what may be achieved.

Speedups may possibly be gained from re-design of sections of the

software, and certain'ly by minor changes to the machine's hardv¡are.

In further developing a system of the type discussed here,

considerabìe advantage could be taken of more up-to-date

microelectronic technology, including LSI and VLSI. The existing

machine, GASP, has some interesting architectural features which

could usefully be incorporated 'into a future version, and the

present study has shown that there are also ways in which it
could be substantially improved. Specific comments along these

lines are made in Section 7.9.
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7.2 The General Arithmeti c Si qn al Processor (GASP)

7.2.1 Descri ption of the Machìne

GASP ís a flexible, programmable s'ignaì processor'

incorporating several novel features particularly w'ith regard to

data paths and the organjzation of the arithmetic sect'ion. It

was built in the Department of Electrical Eng'ineerìng at the

University of Adelaide in the years 7974 to 1978. The technoìogy

is predominantly Shottky-clamped bipolar int'egrated circuit'log'ic

at small and medium-scale levels of integration (SSI and llSI).

Most of the original design of the machine rvas carried out

by Dr. J.A.V. Rogers. He was able to supervise the wiring and

testjng of most of the arithmetic section and data memory and to

produce detailed circujt diagrams for the construction of the

control section before he left the project (and the University)

in June, 7976. Subsequent work on the machine was performed by

B.D. Ackland (who designed and built the cache program memory

system) and by D.S. Fensom and myself (who together built and

tested the remainder of the hardvlare, and wrote system "firmware"

(assembler, 'loader, etc. ) and applications software.

The machine as fjnal'ly commissioned is described by Fensom,

Smith and Ackland (7979) in a papen reproduced as the next few pages

of this thesis. Substantial re-des'ign of certain parts of the

machine already built by Dr. Rogers was found to be necessary; they

proved inadequate when the machine uras tested as a v¡hole. Although

much of this work was done in co-operation w'ith D.S. Fensom (and

some was done entireìy by him), I claim certajn aspects as being

whol'ly or substantjal ly my ot'rn work. These are I isted in Section

7 .2.2.
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7.2.2 Specìfic Contributions of the Author

My spec'ific contributions to the haróvare, firmware and

documentatl'on of GASP are listed below. The type of ìnvolvement

i s i nd'i cated by 'letter codes , as fol I ows :

0: Ori g'i natÍ on of concept

D: Detai I ed Ci rcui t des i 9n

BT: Building and testing

SR: Substantial re:desígn

SD: Software desi gn

P: Programming and debugging

(1)

(21

Radjx-4 fìoating point hardware (D, BT)

The normalizer/shifter (a sub-processor running under

i ts ovrn cl ock control ) ( D, BT)

Data memory control logic (SR, BT)

Indexed and bit-reversed addressing (0,D, BT)

Store instructions for counters (to enable re-use in

inner loops) (0,D, BT)

Interface to the host NOVA minicomputer (jncluding both

programned transfers and direct-memory access). I/O

protocoì des ì 9n. (D, BT)

Dig'ital-to-analog converter (0,D, BT)

Real time clock (0,D, BT)

Instruct'ion decoder (SR, BT)

GASP Relocatable Linking Loader (0, SD, P)

GASP Library Directory Editor (0, SD, P)."Library Directories"

are disc files searched by the loader program to determine

the locations of the relocatable binaries required to be

linked.

(3)

(4)

(5 )

(6)

(7)

(B)

(e)

(10)

(11)



(12)

(13)

( t+¡
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GASP 0verlay Editor (for examin'ing and modi fy'ing portìons

of object programs and program memory dumps) (0,SD, P)

GASP "Executi ve" Operat'ing System (0, SD, P). A short

(320s word) program, GEX, is rêsident in GASP lower

program memory at all times during normaj operation; user

programs are loaded in the address space above this. A

suite of short NOVA programs (which are invoked by console

commands or by FORTRAN or machine language calls) enable

interruption of any GASP user program (returning control

to GEX) and then interaction with GtX to perform various

functions incl uding:

a) ,examination and modifying of any location in program

memory.

b) dumping of any portion of program or data memory to a

(NOVA) disc file, or to the console.

c) loading of a nerr/ GASP overlay (user program) from a

disc file.
d) starting GASP program execution at any address.

e) examining the contents of selected GASP registers at

the time of the last user-programmed breakpo'int (that

is, deliberate return to GtX).

f) re-starting GASP execution at the address foììowing

such a breakpoint.

The executive operating system provides both flexible

run-time control of GASP and comprehensive program

debugging facilities.

Utility program PGF (0, SD, P)

This program provides facilities for conversion of numeric
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portions of GASP dump files to decimal format for printout,

and also al'lows plotting of such information on a flat-bed

pìotter or graphics dispìay tenninal (primariìy a

debugging aid).

The GASP Simulator GSIM (0, SD, P). GSIM is a NOVA software

simulation of GASP. It enables debuggìng of GASP program

segments without actualìy using GASP (limited to program

segments not involving GASP/NOVA interaction).

The "GASP Utiìity Package" (0, SD, P). A unified framework

has been established within whjch GASP may be used as a

high-speed signal processing peripheral to NOVA, performing

cot*on well-defined tasks (such as autocorrelation

calculations and Fast Fourier Transforms (FFT) ). Users

do not need to be GASP progranïners, and use the machine

through sìmpìe F0RTRAN cails. The present facilities
of the package involve mainly the FFT: however, any

proficient GASP programmer could expand the facilities
within the established framework, which handles data

transfers, error codes etc.

( 16 )
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7.3 Aims and Ove rall Description of Study

7.3.1 General

The initial ajm of this study was the exploration of the

use of optimization methods in formulating poìe-zero models of

speech. As much advantage as possible was to be taken of the

fast processíng facilities of GASP.

The "core" of such a processing program has been developed

and tested. However, results are presented here on'ly for a much-

sîmplified synthetic test signal with some speech-ìike features.

Successful app'lication to real speech would involve much further

program derlelopment to overcome a number of difficulties, vrhich

are alluded to in Section 7.8. In addition, the speed performance

is inadequate to enable speech model'ling in real time. It is

ìikeìy that such real-time processing wilì remain out of reach

except perhaps with the development of very sophisticated speciaì

purpose processors empìoying a much greater degree of hardware

paraìlelism.

7.3.2 Speech and Speech Models

Very much success has been achieved with aLL-poLe models

for speech, obtained by ìinear prediction methods (Markel and

Gray, 1976). Although the effects of (a) radiation at the ìips

and (b) the finite-duration gìottal excitation pu'lse for voiced

speech in theory require zeros for their representation, a total

of 3 or 4 poLes (over and above those necessary to represent

vocal tract resonances) seems to serve just as well (naUiner and

Schafer, 1978, p. 419). However, for nasaL speech (the consonants

/n/, /n/ and /1/, and the nasalized vowels which precede or follow
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them), and for some unvoiced speech, zeros are considered to be

much more s'ignificant perceptuaì1y (Flanagan , 1972). An al1-poìe

model can still approximate the spectra'l characteristics to an

arbitrary degree of accuracy, but the number of poles requìred

may be quite large (Makhoul, 1975). This is undesirable from a

data compression poìnt of view, and several workers have

investigated techniques for the more general poLe-zero modeì'ling.

As mentioned in section 7.1, system identificatìon normally

requires knowledge of both input and output signaìs. However, in

the case of speech, only the "output" (tne recorded speech waveform)

is available. Linear prediction has the property of matchjng the

spectral eiunlope of a signal without being sensitive to fine

structure caused (e.9.) by periodic excitation (Makhoul, 1975)

and so it may be directly appìied to an arbitrari'ly chosen segntent

of speech. However, identification of individual poles and zeros

requires either (a) frequency-domain methods in which a model is

fitted to some "smoothed" version of the speech spectrum, or (b)

some method for estimating the notional "'impuìse response" of the

overall excitation-vocaì tract-radiation system. 0live (1971)

has used an optimization method to model speech in the frequency

domain, althouqh he cons'idered only an all-pole model. In

principle. the optimization methods considered in section 4.6 for.

maqnitude-only design of IIR digitaì filters are appìicable. (It
is normalìy considered unnecessary to preserve phase ìnformation

in models for speech, owing to the relat'ive phase insensit'ivity

of the ear (Flanagan, 1972).)

The time-domaín methods fall into two classes:

(a) those using pitch-synchronous ana'lys'is (vojced speech only) and

(b) those est'imating an impulse response by homomorphic decon-
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vol utì on . Stei 91 i tz an d Di cki nson (1977) gi ve an exarnp'l e of

po'le-zero model'ling by pitch-synchronous means, but point

out that such a procedure is very difficult to automate

because no satisfactory means for locating the instant of

glottal openìng has been devised.

7.3.3 Homomorphic Processing and Speech Modeììing

Homomorphic processing (Oppenhein et àL. 1968) provides

a means for "deconvolving" the periodic (or white noise)

excitation and the filtering system which (notiona'lly) shapes the

spectrum of the speech signaì. In the most genera'l form, the

"complex cepstrum" (ttre inverse Fourier transform of the comp'lex

logarithm of the Fourier transfornr) of a sampled speech segment

is computed. The compìex cepstrum is a yeaL sequence because of

the Hermitian symmetry of the Fourier transform of a real

sequence. Because the effects of the excitation and the filter
are combined by conuolution in the time domain, they are muLtiplied

in the spectrum and so are addLtiue in the ìogarithmic spectrum

and in the complex cepstrum. Furthermore, since the filter
determines the s'lorrrìy-varying spectra'l enueLope i ts effect appears

at lolv values of the cepstral independent variable (called the

quefrency). Periodic, or random, excitation causes fine structuz.e

in the spectrum and therefore appears at high quefrency. l"his

disjoint nature of the opstral contributions allows ready

separation of the two components by means of a "window" rvh.ich

selects onìy h'igh, or onìy low, quefrency va'lues,

Since preservation of phase information is unnecessary

in nrost speech appìications, it is usual to use ('instead of the
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complex cepstrum) a sequence called simp'ly the cepsttun. In

place of the complex iogarithm, only the (real) logarithm of

the magnitude of the s'igna'l spectrum is computed, greatìy

simp'lifying the calculatjons. The cepstrum found in this way

is an euen sequence; in fact (naUiner and Schafer, 1978) it is

equa'l to the even part of the comp'lex cepstrum, and is equaì'ly

useful in deconvolving the signaì components. From the low-

quefrency part of the cepstrum an estimate can be made of the

filter impulse response; the magnitude spectrum of the signaì

is preserved (in smoothed form) in this estimate, but since phase

information has been lost some paz,tiatLar phase must be assumed.

It is usual to assume mínímwn phase since thjs is easy (Section

7.4.4) and corresponds most near'ly to the phase of real speech

(Oppenheim, 1969).

In the computation of the cepstrum, the Fourier transform

operations are usualìy approxímated by Discrete Fourier transforms.

This has the effect of introducing some alias'ing in the cepstrum,

but this can normally be kept urithin reasonable limits by using

a DFT of ìength 512 or more (naUiner and Schafer,7978, p.365).

Time domain techniques for pole-zero modelling of speech

employíng the homomorphi ca'lly deri ved impuìse response est'imate

have been consi dered by Kopec et aL. (1977), by Stei g'li tz (1.977) ,

and by Cann and Steig'litz (19i8). l4odels have been produced in

the form of a ratio of two high-order polynom'ials (of order

about 10) because there are effective non-iterative means for

estimating the parameters of models in this form. Kopec et aL.

considered such a model as their final form, whjle Steìglitz

(1,977) suggested that substantial improvement of the parameter
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values could be gaìned by severaì iterations of the Steigìitz-

McBride (1965) "iterative prefiItering" technique.

7.3.4 Features o f the Present Aporoach

The foregoing two sections have provided some background

in speech modelìing techniques. The technique of homomorphic

deconvolution appears most promising because it avoids the need

for pitch synchronization and is equally applicable to unvoiced

speech. Following the homomorphic processing, the fitting of a

model could be done in either the time or the frequency domaìn

because both a smoothed log spectrum and an impulse response

estimate are available.

Optimization techniques do not appear to have been used

in this appìication because they are iteratÍve and therefore

time-consuming. However, Steigljtz (1,977) found that

substantiai improvement to a poìe-zero model could result from

application of an iterative technique. 0ptimization techniques

should also be useful in this regard (perhaps more so, as they

can express'ly seek a reduction in a sum-of-squares error measure,

a function not obviousìy performed by Steig'litzr s rriteratj ve

prefiltering"), and it is possible that they may be no less

effÍcient computationalìy. Other possìble advantages of the

generai opti m'i zati on approach are :

(a) The model may be formulated other than in direct (rational

po'lynonlial ) form. For example, the cascade form nray be

desirable from the point of view of efficient speech cocling,

since Ít has better quantization properties.

I
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(b) It is possible to use the model parameters from one frame

as starting va'lues in the computation for the next frame.

This may be more efficient than using one of the non-

iterative approaches, and convergence may often be obtained

in a few i terati ons because speech parameters are 'li ke'ly to

change little from frame to frame.

It is still necessary to decide whether to employ the

optimization method in the time or the frequency domain. In the

present study a time-doma'in approach was investigated. This

allows the value of the objective function and its derívatives

to be computed by stra'ight fonrrard djgital f iltering operations

(Section 4.7) which are readily implemented on GASp. (However,

this is not to say that an optimization of (say) log magnitude

couìd not be implemented and rvould not be more efficient or more

robust. This question is not answered here). A second reason

for adoptÍng a time domain approach is that a minimum-phase

impulse response estimate may be derived directly from the

cepstrum by a recurrence relation, which (at least when

imp'lemented on GASP) is more efficient than the DFT which is

necessary to obtain a smoothed log spectrum. This computational

process is discussed in section 7.4, and it is believed that

this is the first suggestion of using this well-known recurrence

relation for this purpose; both the onigina] "homomorphic

vocoder" of 0ppenheim (1969) and the recent system of cann and

Steigìitz (1978) use the alternative system of DFT - comp'lex

exponential - DFT. A third reason for the use of a time-donrain

approach is that it Ís not necessary to include a variable gain

factor during the optimization, because the ',target', impulse
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response can readily be normajized to have a unit first sample.

The general features of the present approach to pole-

zero modell'ing may be summarized as follows:

(a) A signa'l segment is chosen without regard to the location

of pitch pu'lses. It is windovred and its short-time

magnitude spectrum calculated by means of an FFT algorithm.

The logarithm of the magnitude spectruryis then found and

the cepstrum computed from this by an inverse FFT.

(b) A minimum-phase ìmpulse response is conrputed from the low-

quefrency samples of the cepstrum by means discussed ìn

Sect;ion 7.4.4. Th'is sequence is denoted Ym, fl -- 0,I,2

M (M being some suitable value), is normalized such that

Y0 = 1, and is referrcd to as the "target" sequence. Steps

a) and b) are together referred to as the "deconvolution

phase".

(c) The parameters of a cascade-form digital filter are found

by an opt'imÍzation method in such a Ì,/ay as to minimize the

sum of squares of differences between the target sequence

and the impulse response of the model filter Br, m = 0,L,.

M. That is, the object jve funct'ion F i s defined by

M

F=X
m=1

Y)2
m'

(B (7.1)
m

(where the lower limit of the summation ìs 1 since

Bo = Yo = l automatica'l'ly). The parameter values used to

start the optimizatjon procedure are taken from the

preceding frame. No alternative means for generat'ing

starting values has been incorporated; it is a serious
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omission and much lvork needs to be done in this area. The

matter is further discussed in Sectìon 7.8.2.

7.4 The Deconvolution Phase

7.4.1 Data Pre- 0ces s'l no

The deconvolution processing for each frame of data is

handled by GASP subroutine DCONV, whjch in turn calls other

subroutines to perform the manjpulations associated with the

Fast Fourier Transform (FFT). Each data frame, of 256 samples,

is transferred (in the test cases) from a disc file to a buffer

in NOVA core memory, whence it is accessed by GASP, using (NOVA)

direct memory access. The frame ìength, representing 25.6 ms

of speech data sampled at 10 kHz, is somewhat shorter than that

customarily empìoyed for homomorphic analysis (Oppenheim, 1969)

in which at least two pitch periods must be'included to allot¡r

pitch determjnation by location of a cepstral peak. However, it
is sufficient with the test s'igna'ls used (Secti on 7.7), and in

any case it is capable of easy extension because DCONV simpìy

fills out the data segment to 512 samp'les by appending zeros.

There are two data pre-processing opt'ions avaÌlable in DCONV -

either the mean value of the segment may be calculated and

subtracted out, or the si gna'l may be f irst dj fferenced (that is,

pre-emphasized w'ith a filter of the fonn 1 - z-t). Following this,

the signaì segnent is multipliecl by a Hamming rvindow (of length

256 poínts) and filled out to 572 samples with zeros. Fixed-

point operat'ions are employed in de-meaning (tne gZ-¡it ALU

allowing exact accumulation of the sunr of all i6-bit data values

with no possibility of overflorv) and in pre-emphasis. However,
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the 32-bit words output from the windowing stage ar€ nonnalized

to retain maximum precision in 16 bits before storage in data

memory. A further pass over the data is then made, aììgning all

values to a common exponent. A block floating-point

representation results; the data at this stage has a full-word

representation of maximum accuracy even ìf the raw data was of

low level and utilized the 16-bit NOVA wordlength poorlv. The

use of GASP's limited floating-point hardware capability jn this

way is very useful in avoiding the scaling problem (that is, the

necessity both to retain precision and avoid overflow). It
involves shifting words left (to normalize) and then right (to

re-afign) and so there is a time penaìty when compared with a

pure fixed-point'imp'lementation. However, the shifting is

hardware-controlled rather than programmed and can run in paralleì

with both program activity and data memory access (the normalizer/

shifter is an Índependent processor). In addit'ion, the data may

be stored in contiguous locations in data memory aìlow'ing

maximum use to be taken of autoincrementing pointers. Such

block floating-point operations are thus quite efficient. Another

exampìe is considered in Section 7.5.3(a).

In a real appl'ication (such as a vocoder) the necessary

measure of signa'l level would be made at the data pre-processìng

stage. In the remainder of the processing the data representation

is "centralized" to minimize the chance of floating point over

or underflow; the actuaì signaì level is ignored.

7.4.2 Fast Fourier Transform and Associated Operatjons

The windowed data sequence of 512 real-valued samples is

transformed to a short-time spectrum (of resolution about 20 Hz,
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assuming 10 kHz samp'ling) using a subroutine, FFT8, which

performs the 256 (complex) point Fast Fourier Transform (FFT).

Several well-known auxiliary data manipulations (Coates, 1975)

are also performed to allow this "basic" FFT routine to be used

with a reaj sequence of twice the length. l'Jhen the spectrum

has been calculated, the magnitude squared (surn-of-squares of

real and imaginary parts, considered sampìe-by-sample) is

computed and the ìogarithm of each of the resuìting 257 sampìes

evaluated as described in Section 7.4.3. Further data

manipulations are then made and FFTB called again (at a different

entry point, so that the intserse FFI is computed) in order to

calculate the 257-point non-negative quefrency part of the

ceps trum.

The "auxiliary manipulations" requíred are of a "vector"

nature in the sense that the same operations are required on a

large number of pairs of operands. They are also in-p1ace

operations - the resu'lts may ovenvrite the operands in storage

(except for some minor end-point anomalies vrhich require a feur

words of temporary storage). The computations are according'ly

organized to use a sìngle 512-word array in data memory and to

take advantage of autoincrementíng pointers in "pipeìinìng" the

operations. Unfortunateìy, some array eìements must be fetched

in decz,easing order of address, and GASP possesses no autode-

crementing pointer faciìity (one could usefully be incorporated).

Time must therefore be spent in repeated'ly re-loading data

pointers. However, rather than us'ing the ALU to caLcuLate

values for the po'inters (which would be both slow and difficult,
since it is set up to perform the data arìthmetic) the pointer

load values aye. themseLues fetched from an auxilÍary data
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memory array (of 128 words) which is accessed in autojncrementing

fashjon. Use of this area of data memory is avoided by al'l

other sections of the program and it needs to be set up once on'ly,

before processing begins.

Extensive use is also made of the block fìoating-point

representation as described in Section 7,4.I, both in the FFT

routine itself and in the auxiliary data manipuìations. The

arithmetic elements (ALU and sum-of-products unit) may be used

essentialìy in fixed-point mode since all data have a common

exponent; however, the block pre-alignment guarantees high-

precision working with absence of overflorv.

FFTB is a decjmation-in-time a'lgorithm (Coates, 1975) and

prior to its use the 256 compìex-valued samples must be shuffled

into bit-reversed order of addresses. Idealìy, this would be

achieved with an autoincrementing data memory pointer whose

contents urere interpreted in bit reversed order. However, the

original design of GASP did not specifically call for efficiency

in impìementing the FFT; there is no such pointer and to

provi de one eas i'ly woul d have i nvol ved the sacri fi ce of a

useful "ordinary" pointer. It was simp'ler to incorporate bit-
reversed addressing for p?ogrtn memory affays by aì'lotnling

reverse interpretation of an index regìster, and this has been

incorporated into the machine. Data must therefore be

buffered in program memory (a somewhat inefficient operation),

but justifiable since such nanipulat'ions take onìy a few

percent of the total execution time of FFT8.

The values of sines and cosines required jn the FFT

computation are held in a program memory ìookup table, l.lhich
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is readily accessed in an indexed addressing mode. The index

register doubles as a loop counteri a singìe instructíon (a

conditional jump) both updates this and tests for completion of

the program loop. Three quadrants of the sine function,

tabulated at an interval of r/128 are included, and so no

appeals to symmetry are needed in accessing the table,

simp'lifying the program and improving execution speed. Shorter

tables, at tabulatíon intervals of n/32 and r/B are also

inc'luded, taking little extra space but improving the efficiency

of the early stages of the 8-pass FFT. GASP has a fairìy large

program Lnemory (gf ) and fairìy large 'lookup tables may readì'ly

be used with most programs in the interests of execution speed.

The later passes of the decimation-in-time FFT are fairìy

well suited to GASP implementation since standardised operatìons

are required on sizeable "batches" of operands whích may be

fetched using autoincrementíng data pointers (Coates, 7975,

p. 111). However, on earlier passes data pointer ìoad

operations take up an appreciable fraction of total computation

time. Economy could be achieved here if data pointers whjch

automaticaììy incremented by 4, 8 or even 16 were available.

As they are not, the pointer re-loading ìs unavoidable, but

considerable use of ìookup tables reduces the amount of

associ ated cal cul ation requi red.

Beyond the incorporation of a bit-reversed index reg'ister,

GASP has no faci I ities whi ch are spec'ifi cal'ly desi gned for

efficiency in performing FFT's,and it cannot be expected to

match "hardware FFT processors" in executíon speed. llevertheless,
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most features of GASP can be used to some adyantage, and a

reasonably efficient algorithm results. The matter of speed

is considered further in Section 7.9.

7.4.3 Logarithms

A 257-point magnitude squared spectrum results after the

first application of the FFT algorithm; the operation % log.

must be performed on each of these values. Since, however,

ìogarithms to different bases are simply related by a constant

factor, the GASP program could be arranged to work to any base,

with the,appropriate factor (inc'luding the %) applied at the

end. Since GASP uses a radíx-4 exponent representation, it is

natural that the central routine use the base 4. Onìy

normalized, positive mantissas need be considered (since

operands may be pre-normalized). The value of the operand's

exponent'is ignored for most of the processing, and then added

as an integer to the value found for the ìogarithm of the

mantissa.

The method selected for the calculatÍon of ìogarithms was

the summation of a chebyshev series by the recurrence relation

(National Physical Laboratory, 1961, p. 77). The range of

normalized mantissas to be considered is 2.0 to 8.0(-), but since

logu Qx) = log+ (x) + r, (7.2)

on'ly the range 2.0 to 4.0(- ) requi res representation by t.he

series, returning a positive, fractiona'l ìogarìthm in the range

0.5 to 1.0(-). (0perands in the range 4.0 to 8.0(-) are first
shifted right one place and ! is added to the result at the end.)
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It is desired that the ìogarìthm of ana noflnalized (positive)

number be representable in a single 16-bit fixed-point word;

the (integer) characterjstic requìres the 
.leading 

four bits,

hence it is pointless to use a Chebyshev series which calculates

the result to more accuracy than 2-12. Thus it is feasible to

use 16-bit fixed-point arithmetic in comput'ing the recurrence

relation, and this is certainìy desirable from the point of

view of speed. Simulation on a NOVA mìnicompuber (testing every

possible operand) has shown that the use of a five-term series

never gives any errors greater than t 1 in the least significant

bit (2-t2). Furthermore, the use of more terms gìves no

improvement, unless more precjsion is used in the arithmetic.

A five-term series thus gives the most accurate "simple" routine.

However, the simulatjon also showed that a four term series

never gave any errors greater than t2 LSB. Since this is

substantia'l1y faster in execution, the four-term series was

adopte d.

7.4.4 Calculation of Target Impulse Response

As mentioned in Section 7.3.3, the cepstrum of a signaì

is an alternate representation of the magnitude spectrum of the

signal; it is an even sequence, and is equai to the even part

of the cornpLeæ cepstnwn (which itself retains both the

magn'itude and phase spectra of the orig'inaì signal ). A

variety of complex cepstra may be constructed from a given

(even ) ceps trum by add'ing arbi trary od.cl funetions to it;
signals reconstructed from such compìex cepstra (wh'ich is in
generaì possible by the sequence DFT - compìex exponential

IDFT) all have the same magnítude spectrum. In speech model'ling
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and synthesis applications phase is not considered to be of

central importance and a variety of methods of estimating an

impulse response from a cepstrum may be considered.

The simplest odd function is that which is identìcally

zero. If thjs is added to the cepstrum (i.e., the comolex

cepstrum set equal to the cepstrum) a zero-phase impu'lse

response is reconstructed. An alternative is to force the

complex cepstrum Xn,' to be zero for fi<0, that js to define xm

in tenns of the cepstrum C,n by the formula:

m<0X
m

,X

o
x*
x

m

0

c

2

0

o
c*

( 7.3)
1gm-<ll
m>N

c

c

The upper limit of the cepstraì "rvindow" N. must be at least

ìow enough to remove the effect of the excitation. The lower

the value used, the more "smoothing" is applied to the spectrum;

typical values for speech app'lications are 30 to 60 - in the

present study N. = 48 was used. The impuìse response

constructed from x*, generated according to (7.3), is

"minìmum phase" (may be thought of as arising from a "filter"
with all poles and zeros inside the unit circle). Tests by

Oppenheim ( tg0g ) shor^r that mi ni mum-phase speech syn thes i s 'is

usual'ly preferable perceptua'lìy to zero-phase and other

a I terna ti ves .

Oppenhein et aL. (1968) have alsoshown that the impulse

response Y, is for minimum phase systems related recursively

to the complex cepstrum X, by
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Y

Yt

o
exp (xo)

m
1

k=L

(7.4)

1_
m

kx Ym-k
m>o (7.s)

k

In the GASP context this relation may be used to calculate the

elements of Y,n considerably more efficìently than the alternative

scheme involving two more FFT's, since (Z.S) can be programned

as a fixed-point sum-of-products operation.

The approach taken is as follows. The overall signal

level is irrelevant since the data has been normalized anyholv

(Section 7.4.1). Thus there is no benefit in calculating the

initial sampìe Yo by (7.4) - some convenient fixed-point value

may instead simply be assumed. The value used must be small

enough for there to be no overflow in the sum-of-products unit

in computing any of the remaining terms by (7.5). It is also

used as the "unit impulse" during the optimizat'ion phase (Section

( Z. S. g) and mus t be smal l enough to prevent overfl or^r at that

stage as well. However, selection of an unnecessarì'ly smalì

value would lead to loss of arithmetic precis'ion. In the tests

to be reported a suitable value for impulse height (given the

symboì IMPI) has simpìy been selected by trial and error.

In (7.5) each term of the complex cepstrum xO aìlvays

appears multipìied by its quefrency index k, and there is no need

to perform this mul ti pì'ication repeatedly. AccordinglV, an

"associated cepstrum functìon" yo (equal to kx¡) is computed

from the cepstrum at the outset, according to
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Yk 2kcO k=7.,2 Nc (t.a¡

and stored in d.ecy,easing order in a data memory array. The value

IMPI is pìaced in the lowest address of a second array. The two

operands for each step of the sum-of-products operatìon of (7.5)

are fetched, one from each array, using two autoincrementing data

pointers. The scheme is the same for each impu'lse response term

Ym; only the initial data pointer load woÉds and the loop count

must be changed. The reciprocal l/m is taken from a program

memory ìookup table and multipì'ied by the accumulated sum. The

result is then pìaced in the next h'igher impulse reponse array

I ocati on', compl eti ng the step.

The scheme may be used to calculate a "target" impulse

response of any desired duration, independently of the value

Nq asSumed for the cepstral window. The duration M is selected

to encompass a substantial portion of the total signa'l energy.

7.5 The Optimization Phase

7 .5.t Choi ce of Opti mi zati on Al gori thm

The optimization algorithm chosen for implementation v¡as

a true Marqua rdt method. A I ogì ca'l sv¡i tch i n the program al I or^rs

selection of either the Hessian matrix H or the Gauss-Newton

matrix R

The studies of chapter five have suggested several reasons

why a true Marquardt method 'is probab]y an i nappropriate choi ce

for real-tjme systern identification by time-domain optinrjzat.ion

methods. These may be sumrnarized briefìy as follows:
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a) If the Gauss-Newton (GN) variant (i.e., the R matrix)

is used, fast "Newton-like" ultimate convergence is unlikeìy

unless the fit between the model and target 'impulse responses

is very good. Such a good fit could hardly be expected in

genera'l vri th natural si gnals.

b) If instead the second-derivative (Sn) variant is used, there

should be no convergence prob'lems due to ìarge residuals.

However, as seen with example F of chapter five, the

"economjcal" method of calculat'ing first and second

derivatives may not be sufficiently genera'l due to the

requirement that zeros remain minimum phase during the

entire process. This can be a problem even when the 'impu'lse

response being modelled is minimum phase (as is guaranteed

by deriving it by homomorphic processing). If the more

general method of derivative calculation is necessary, it
has been shown that second-derivative methods are like'ly to

be less time-effjcient than quasi-Nev¡ton methods.

c) True l4arquardt SD methods are usually less efficient than

line search SD methods.

llowever, the decision to implement a true Marquardt

aìgorithm was taken before the results of chapter fjve were

available. The chief motivation lvas that it was unnecessary

to program any line search routine. In the light of the results

of chapter five this js of little concern, because simple line

searches perform wel I . However, prograrnming of ã cornplicated

line search (such as PQI) wouìd have been extremely intricate

in GASP assemb'ly language.
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One point in favour of the method adopted is that it is

easy to study the performance differences between the SD and

GN variants when operating on the same classes of signal. In

cases for which the GN method does converge at a "[,lewton" rate,

it is likeìy to be the fastest method avaiìable (chapter five).

7.5.2 r lementation - Main Pro ram

A simp'lified flow diagram of the portion of the main

program following the determination of the target impulse

response js shown in figure 7.1. Calls are made to a number of

subroutines, the functions of which are briefìy discussed in

Section 7.5.3. Several other po'ints relating to the main

program require clarification; lower case letters in brackets

in figure 7.1 refer to the fo'llowing notes:

a) CMARQ is the first value of the Marquardt parameter to be

tried at each iteration. At the start it is set to some

suitable small value FMARQ.

b) The "starting values" for the filter (model) coefficients

could be obtained by time domain regression methods (Shanks,

1967; Kalman, l-958; Steigìitz, 7977) but a polynomiaì

rooting routine would also be required to find the

coefficients of the cascade-form filter. Another possibìe

approach could be based on peak picking in the cepstral'ly-

smoothed 1og spectrum. However, one of the chief

motivations for trying optimization approaches to the system

identification probìem is that convergence in a given frame

may often require on'ly a few iterations beeause the coefficients

found for the prece&Lng fnøne dre a cLose appnoæimation.



SUBROUTINE
S ECDR
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SUBROUTI NE

EGEN
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MGEN

Initial ize Marquardt parameter
CMARQ <- FIIIARQ (note a)

Put starting coefficients into "active"
coeffi ci ent array

AC0EF(I) <- BCOEF(I) ,I=1,2...N
(note b)

Calculate objective function value FVAL

and make it the "base" value
(CALL EGEN)
BFVAL <. FVAL

Calculate first derivatìve sequences
(cRl-t- csEQ)

method ?

SD

Cal cu I ate s econd deri vat'i ve
sequences and the el ements

of the S matrìx
(CALL SECDR)

Cal cul ate gradi ent vector GRAD

and Gauss-Newton matrix R

(cnll MGEN)

SD

thod?

Define A matrix as equaì to
R matrix

n(t) * n(I) ,I=1,2...NM47
(note c)

Define A matrix as
the Hessi an

by adding R and S

A(I) * R(I)+s(I)
, I=1,2. . .NMAT ( note c)

Scal e A matrix and GRAD vector
such that smallest exponent is equal to

XREF (note d)
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Attempt Cholesky factorization
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BMARQ <- CMARQ

Cholesky fact.
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(CALL BACKSB)
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Update base coefficients
and base function value

BCOEF(I) * ACoEF(I) ,I=1,2...N
BFVAL <- FVAL

Test stoppìng criteria (note i)
(a) is iteration limjt reached?
(b) does function value have largest

( negati ve) exponent ( 178) ?
(c) does most recent change to function

val ue have exponent 176 ?
(d) are all components of most recent

P (change) vector less than a preset
thres hol d val ue?

END

PROC ESS I NG
FLAGA ?

Reduce CMARQ if possìb'le
CMARQ <- max {CMARQ*DNFAC,

FMARQ}

Use successful BMARQ

as CMARQ

CI'{ARQ <- BIvIARQ

Use smallest value for CMA

CMARQ <- FIi4ARQ

Simplified Flow Chart of Main Program - Optìmjzation Phase
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Hence, in the tests to be reported, the coefficients from

the preceding frame were used. The first frame of course

requi res spec'ial treatment, but in the tests it was not

necessary to consjder this because known correct coefficient

values could be introduced to start the procedure (Section

7.7). Coefficients are transferred into an "active" array

in GASP data memory (ACOEF) whence they are used by the

speed-optimized d'igital fiìtering routine in EGEN.

c) The matrices involved are symmetric. Storage and computa-

tion time ar€ saved by calcuìating only the upper triangìe

(inoluding the main diagonaì). The number of elements in

each matrix (NMAT) is then äl(ru+t) where N is the number

of variable coefficients.

d) Assuming that the Marquardt parameter is zero, the trial

coefficient vector * (t) is calculated from

i

I

t.

*(t) = )((b) + p

x(b) is the current "base" vector (BC0EF) and the p

vector is found from

(7.7)

AP = -g , (7.8)

g being the gradient vector (called GRAD in figure 7.1)

and A the iteration matrix (which is equal to H or R ).

From (7.8), p wouìd be unchanged by scaling all elements

of A and g by the same amount. At the step labelled (d),

the exponents of the A and g elements are all moved up

or down by the same amount (so that the smallest exponent

has some value XREF). This is done to minimize the chance
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of fa'ilure in the Cholesky factorization routine GCHQL and

the back-substitutjon routine BACKSB due to floating-point

overfI ow.

e) A 3-value variable FLAGA is used to record whether a non-zero

value of Marquardt parameter BMARQ r'vas requ'ired on a given

iteratjon, and, if so, l,¡hether the first value tried (IMARQ)

¡¡as successful jn reducjng the obiective function (block

squared error). If BMARQ = 0 was effective, the first non-

zero value to be tríed next tìme, CllARQ, is reset to the

smallest possible value, FMARQ. If BI4ARQ = CMARQ was

effectjve, IMARQ is reduced by some suitable factor DNFAC

(say 0.5) for next tirne. If BMARQ > CMARQ was required,

CMARQ is set to BI4ARQ.

f) l¡lhenever a value of BI'IARQ (i.e. ß) is unsuccessful (due

either to the failure of A + ß I to be positÍve

definite or to the trial coefficients' y'ie'lding a higher

error value), BI4ARQ is increased by some factor UPFAC (say

2.0) . Thjs process 'is conti nued i f necessary unti I BMARQ

reaches some preset jimit, in vlhjch case convergence for

the frame is assumed.

g) When a set of trial coefficients (ACQEF) have been calculated

a test is performed oll each pa'ir to ensure that the filter
is stable and minimum phase before attempting to calculatc

the objective function value.

h) If the function value does not change, convergence is

assumed. The nornal situation'in rvhich this exit is taken

is that 'in rvhich the components of p are too smal I to make

i

1
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any difference when added to the base coefficients (which

are represented as 16-bit fjxed poìnt numbers).

i) Convergence ís deemed to have occurred if all the components

of the p vector were smaller than a certain amount (e.9.

that necessary to change the coefficients by t4 LSB), or jf

the change to the function value, or the function value itseìf,

had the most negative possible exponent.(since further

iterations would probably be pointless because of floating-

point underflow). Exit is also made if a preset iteratjon

limit is reached.

7.5. 3 Organization of Subroutines

(a) EGEN

The purposesof subroutine EGEN are to calculate the error

sequence t*, , = 7,2 M, which js the term-by-term difference

between the target and model impulse response sequences, and the

objectjve function value FVAL, equa'l to the sum of the squares

of the error sampìes. It is called at the "base" point and at

every trial po'int duri ng each i terati on .

The target impu'lse response Y, is already stored for the

current frame. The first action 'in EGEN is to calculate the

filter impulse response B, using the currently active set of

coefficients which have been pìaced 'in array ACOEF. For speed,

this calculation is performed in fixed po'int (using a subroutine

CASCA, which assumes ihe coefficients and the state variables to

be placed in data memory in a certain rvay rnrhich takes maxjrnum

advantage of the autoincrementíng data pointers). Scal'ing to

make the impulse response cornparabìe lvith Y, is performed by

using the same input impuìse height IMPI as was used in the
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calculation of Y,¡ (Section 7.4.4). Arithnetic overflow js

possible in the digital filtering routìne. If it occurs, an

error exit is made. In practice, the value IMPI must be kept

small enough that the error exit is never taken; this is

determi ned experimental ly.

For maximum accuracy, the objective function value is

accumulated using b'lock floating point. Using three autoincrem-

enting data pointers, the corresponding vaìues of Bn' and Yr are

fetched, differenced, squared, normalized (for maximum prec'ision)

and stored back into data memory. As the squares are stored

their exponents are scrutjnized and the smallest one recorded

(XSMALL). A second pass is then made through the stored values.

After each is fetched, it is aligned to have exponent (XSMALL-3)

by right shifting in the (32-bit) normalizer/shifter, and then

routed to the ALU to be added to the current partial sum. The

alignment to (XSMALL-3) ensures six leading guard digìts and

prevents ALU overflow (guaranteed if M < 64).

Such block floating point operations are common Ín GASP programs

as already mentjoned in Section 7.4.I. Severaì passes through

the data are needed but the paralleiism of data memory, program

memory, and arithmetic unit operation renders the scheme tíme-

efficient, especia'l'ly i f arrays are contiguous and data pointers

do not require reloading. The provis'ion of a 4-bit exponent

with every word allows track to be kept of the true magn'itude

even though a numbelis stored in left-shifted (normalized) form

to maintain prec'ision. The floating-point provis'ion is thus of

considerable value even though there is no hardrvare for general

floating point additions and subtractions.
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(b) csEQ

Subroutine GSEQ calculates a gradient sequence of length

M for the "numerator" and the "denominatori' of each second order

section whose coefficients are varíable. This'is perfornred by

filtering the stored primary sequence B, with an additional

recursive second-order section, as shown in figures 4.13 and

4.14. Accordjngly the filter is required to be minimum phase

(as well as stable). S'ince the gradient sequence with respect

to a given b (or d) coefficient is merely a delayed version of

the corresponding a (or c) sequence (Section 4.7.2) , on]y one

sequence,needs to be calculated and stored for each pair of

coefficients. GSEQ performs the calculation by an efficient

fixed point fi'ltering routine. As with EGEN, arithmetic overflow

is possible and leads to an error return. However, this too may

be avoided by suitably scaling the original ìmpulse height IltlPI.

(b) MGEN

Subroutine MGEN calculates the gradient vectör GRAD and

the Gauss-Newton matrix R The formulae for the j th gradient

element g¡ and the (i,k)th matrix element rjk are

sj

and rjt

J

ABm ðBm

,\ ã-k

ô
"m ðx

M
1

m=1

M

t
m=1

ðBm (7 .e)

(z.to)

where x, and xk represent the i th and kth variable coefficient

resoectivel v. (strict]y soeak'ing, each sum shoul d be mul tip'lied

by 2, but this factor cancels out v¡hen p is calculated using

(Z.S¡ and so there is no need to introduce it). The error
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sequence êm, ffi = 7,2 . M (calculated in subroutine EGEN)

and gradìent sequenc.s .?9T , Íì = 1, 2 . Mi j = 1,2 N' dxj
(calculated in subroutine GSEQ) were developed by fìxed-point

filtering operations and are stored in data memory arrays with

a common exponent. There js thus no need to pre-af ign indjvidual

operands when accumulating the sums in equations (7.9) and (7.10),

and full advantage'is taken of GASP's efficient design for such

sum-of-products operatÍ ons.

As mentioned in Section 7.5.2, only the upper triangìe of

the R matrix is calcuìated and stored and so the total number

of gradient and matrix elements is %N2+ 3/zN. However, the

gradient sequenc. PPP for any section k differs from the
abk

,.qu.n.u $ only by beíng delayed by one sample (with a zeroodk

element jnserted as the first sampìe). Thus

M

T

m=1.

ðBm ðBmq auf

ðBm âBmmt ãEk
âBm

âuj
ðBrn

âuk
(7.tt)

tç1
\-

m=1

for any two sections j and k. There is no need to accumurate

rhe sum i 39m âBm

m=l ,rr. m- separateìy provi ded that the penul timate

partial sum as well as the final result is recorded whenaccumulatíng
M
1

m=1
Similar remarks apply 'if a¡ is repìaced by cj and/or

b¡ is rep'laced Uy dj. The total number of sums-of-products

which must be accumulated by MGEN (including those for gradient

components) is then ontv $ + 5N

4

Gradient and matrix elements are normarized before storage

to gain maxjmum accuracy in the solution of linear equations to

fol I ow.
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( d) SECDR

Subroutjne SECDR is called only íf the second-derivative

version of the algorithm is being used. Its function is to
calculate the matrix S which must be added to the Gauss-l{ewton

matrix R to obtain the Hessian matrix H As derived in Section

4.4.3, the (j,k) th element of S is

sjr
M

x
m=1

êm a2 Bm (t.tz¡
âx¡ ðx¡

(where as in subroutine MGEN, â Scale factor 2 is omitted for

simpìicity). The second-derivative sequences are developed by

further fixed-point recursive filtering of the stored first-
derivative sequences, as outlined in Sectjon 4.7.2. The

accumulation of the sums (7.L2) is interspersed with the filtering

operation to avoid having to store tne $'+ f distinct second-

derivative sequences, which lvould (for realistic N and M) require

more data memory than that avaílable.

The elements of S are stored in normalized form. l.lhen R

and S are later added (in the main program), indivjdual pairs of

elements are added using genera'l fìoating point operations.

(e) GCHOL

Subroutine GCHOL'implements the Cholesky factorization of

thematrix A+ßl intotheform L D LT(whereLisa
unit lower triangular matrix and D is a diagonaì matrix) as

discussed in Section 3.4.7. Since L has unjt diagonal elements

they clo not need to be stored; the remajnder of its lower triangìe

(Ztt 1N - 1) elements) is calculated column-by-column but stored
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row-by-row. The row-wise storage allows the use of autoincrem-

enting data pointers When "older" L elements must be re-fetched

for use in calcu'lating later elements (equations (3.40) and

(3.41)). The diagonal elements of D are stored in another

array. The occurrence of a negative element in D indicates

that A +ß | is not posit'ive definite and so the factorÍzation

cannot proceed. In practice, each element of D is tested

immediateìy it is calculated to ensure that it is greater than

a certain small positive quantity. If the test fails, GCHOL

returns control ímn'ediately to the main program (at a di fferent

address from the nonnal return) to allow a jump to the sequence

which inéreases ß (BMARQ).

Floating-point operations are used throughout subroutine

GCH0L to gain maximum accuracy. If exponent underflow is

detected the number is forced to zero. GCH0L itself calìs two

other subroutínes; NEGSUM to accumulate a floating-po'int sum

of products and RECIP to calculate the reciproca'ls requ'ired by

equation (3.41). GASP has no hardr¡are divider; the use of the

successi ve approximations reg'ister woul d al low a recíproca'l to

be found but it would need 17 multip'lications and comparisons to

obtafn a result accurate to the last bit. Subroutine RECIP uses

Newton's method and allows the reciprocal to be found (wjth the

last two bits uncertain) in an average of six multip'lications.

The precise number of multiplications depends on the operand..

The initial guess for Newton's method is taken from a 24-word

'lookup table and based on the 5 most significant bits of the

ope ran d.
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(f) BACKSB

Subroutine BACKSB comp'letes the solution of the linear

equations to find the p vector (equation 7.8), using the Cholesky

factors L and D as found by GCHOL. The actions required amount

to two operations of back-substitution and a scaling by the

elements of D . The necessity to diuide by the d'iagonal elements

of D is avoided by storing instead their reciprocaìs.

As in subroutine GCH0L, floating-point operations of full
generaìity are used throughout for the sake of accuracy.

7.6 Test ResuJts - Exact Target-Model Fit

In order to perform a simple test of the operation of the

optimization part of the program, the homomorphic processíng

section was bypassed and a target impulse response produced us'ing

a cascade-form dig'itaì filter having four poles and two zeros.

The parameters of this generating filter are given in table 7.1,

columns A and B. The first 50 sampìes of the impu'lse response

were used as the target. This is shown in figure 7.2. The model

to be fitted had the same compìexity as the generator, and startìng

values for the parameters as given jn table 7.1,, columns C and D.

Good convergence was expected with both the SD and Gl{

methods because the residuals (and the objective function value)

at the solution are zero. This is borne out by figure 7.3, which

is a plot of objectjve function value (on a ìogarithmic scale)

against iteration number. The process was terminated as soon as

the function value required the 'largest possible GASP exponent

(17e) for its representation - equivalent to a log value of 3.01
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(A)

Generatinq Fi I ter

Coeffi ci ents

(B) (c) (D)

" Initial T r-y" F'il ter

Root Locations Coeffi cients Root Locations

ôt = -1.718445

br = 0.864929

cr = -1.272766

dr = 0.809998

c2 = -Q.099976

dz = -Q.559998

Compìex zeros

r = 0.93

ú = t22.5"

Compìex poles

r = 0.90

ú = t45"

Real poles

Pr= Q.3

Pz= '0.7

Compìex zeros

r = 0.866

d = t30o

Complex poles

r = 0.707

ú = t45"

Real poles

Pr= 0.707

Qz= -0.707

ôr = -1.5
br = 0.75

Cr -1.0
dr = 0.5

0.0

-0 .5

Cz

dz

TABLT 7.1 "Generator" and "lnitial T " Coefficients and Root Locat'ions

- Test of Section 7.6
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FIGURE 7.2 Tarqet Impulse Response -

Test of Section 7.6
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on the scale of figure 7.3. Five iterations were needed with the

GN method and eight with the SD method. "Newton-like" convergence

(ttrat is, success of the trial parameter vector obtained usìng a

zero Marquardt parameter) was evident on the last three iterations

(with GN) and the last four (with SD).

The Euclidean distance from the correct solution (in the

six-dimensional parameter space) was also evaluated after each

iteration. This is shown (also on a logarìthmic scale) in figure

7.4. The distance is quoted in terms of the least-signifìcant-bit

in the fixed-point representation used for the coefficients; for

example, gn ordinate of ro in figure 7.4 corresponds to a

distance (square root of the sum of squares of component djstances)

of 10 LSB, or (as a decirnal number) 0.000610.

7.7 Test Results - Time-va ryÍnq Synthê tic Siqnal

This section reports the results of a more complicated

program test using a synthetic, quasi-periodic, "speech-ljke"

signal. The situation is stilì quite artificial because the

signal ìs generated us'ing a digital filter of the same complexity

as the model to be fitted, and is cons'iderably simpìer than real-

world sìgnals (such as speech). Nevertheless, there are some

"speech-ìike" features in this test, which demonstrates the

validity of the homomorphìc processing phase of the program as

well as the ability of the Marquardt algorithm to track changes

in signaì parameters wíth time.

The test signaì usedvas 10,000 sampìes in length, and was

generated by driving a cascade-form dig'ital filter havìng six

poles and two zeros with a periodic train of impulses. An
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impu'lse was iniected every 100 sampì es. Al I po'les and zeros

remained as compìex coniugate paìrs, but their radÍi and angìes

were varied in the piecewise-linear fashion sholvn in figures 7.5

and 7.6 . Parameters t^,ere updated at every sampl e.

The s'igna'l was anaìysed in 39 contiguous frames of 256

samples each (the final 16 sampìes of the signaì urere ìgnored).

For each frame the 256 signaì samp'les r¡,ere Hamming windowed and

then 256 zero-valued samples u/ere appended, and the cepstrum of

the resuìting 512-poìnt real-valued sequence was computed. This

was truncated to the 48'low-quefrency values, from which a 125-

sample taÉget impuìse response r,,ras computed using the recurrence

relation (Section 7.4.4). The true trlarquardt optimization

procedure was then emp'loyed, using the parameters found for the

last frame as initial trial values. The values which were correct

at the first sígna'l samp'le were fed in as the initial try for

frane 1.

Parameter values found for each frame are shovln in figures

7.7 and 7.8, in which the "true" parameter trajectories are repeated

for comparison. The resultìng spot values are posítioned on the

time axis at the centre of the relevant frame. In no frarne did

there appear to be any convergence probìem due to large residuals,

and the Gauss-Net¡ton nlethod produced results identical to the

second-derivative method (to within the p'lotting accuracy).

Genera'l'ly, the GN method requ'ired fewer jterations and less time

than the SD rnethod, as is apparent from table 7.2, which Ijsts

details for the first ten frames. Average numbers of iteratíons

over all 39 frames were 7.05 (sD) and 6.05 (GN). Times quoted in

,i

i

Í
fl
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Frame No. No of Iterations

Averages '

(a) Second-derivati ve method

Frame llo. No of Iterations

Averages

(b) Gauss-Newton method

Numbers of Iterations and Total Frame

l

t0

1

2

3

4

5

6

7

I
9

I
2

3

4

5

6

7

I
9

Total time (ms)

158

166

134

156

137

169

223

245

145

256

779

Total time (ms)

172

t20

116

130

151

1.42

142

178

723

119

139

10

7

5

5

5

5

I
10

l0
5

10

7.0

8

3

4

4

7

4

I
9

5

4

5.6

TABLE 7.2

Execution times - S theti c Si nal Fi t 10 frames onl
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table 7.2 include the time taken to transfer the data from NOVA

memory as vrell as to do the homomorphic processing and the

optimization. Table 7.3 gives a breakdown of the time taken by

various parts of the program. All measured values are averaged

over several frames, but jn most cases the frame-to-frame

variabiìity was on'ly in the third decimal p1ace.

The operation of the homomorphic processing phase of the

program is illustrated by example in figure 7.9 which shorvs

waveforms and spectra for a representative frame (frame 2). In

(c), the "pitch peak" at samp'le number 100 (which 'is due to the

periodic çxcitation) is clearìy visible. Features at higher

quefrency indices are due to the aliasing which is unavoídable

when the DFT is used to compute the cepstrum (0ppenheim and Schfer,

1975, pp. 480-531). Figure 7.9 (d) and (e) show the ìow-quefrency

parts of the comp'lex cepstrum (x¡1) and the "associated cepstrum

function" Ym (mxm) respectively. The zero-quefrency sample (urhich

determines only the overall signal level) is omitted. Figure 7.9

(f) shows the minimum-phase 'impulse response estjmate, derived by

recurrence from samples 1-48 of Ym. Finally, figure 7.9 (g)

and (h) show the signal 1og spectrum (with peaks at the pítch

harmonics) and the ìog spectrum derived by re-transforming the

cepstrum of figure 7.9 (d). The smoothing expected from

homomorphic processing is well illustrated, and the frequencies

of the three poìes and the zero are quite obvious.
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Program Segment

Get data from llOVA, de-mean, window

Calculate cepstrum

Calculate target impulse response

Calculate error sequence and object'ive
function val ue

Calculate gradient sequences, gradient
vector and Gauss-Newton matrix

Calcuìate gradient sequences,
gradient vector and Hessian matrix

Solution of linear equations
(compìete Cholesky factorization and
back-s ubsti tuti on )

*

Ti me (ms ) Number of frames
used in averag'ing

3

6

5

6

*

10

10

6

6 different values of BMARQ, all in frame #1

1. 835

44. 90

4.035

1.721

3.299

7.454

1. 368

AB 7.3 Timin

s yn th et'i c signal

Length of cepstrum window = 48

Impulse response duration considered (M) = I25

Number of parameters (N) = $.

Tests - Homomo hic and timization Pro ram usln



480

(a) datasegment

( b ) windowed data segment

( c ) complex cepstrufi Xrr m = 0,1, 256.

( d ) low-quefrency part of compìex cepstrum
(samp'les 1 to 48)

FIGURE 7.9 Representative Analy si s for Synthet'ic Si qnal

Frame 2 (continued on next page)
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( e ) Associated cepstrum functìon y*

( = m x x, ) (samPles 1 to 48)

( f ) Minimum-phase Impulse Response Estimate

( 125 samp'l es )
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7.8 Discussion

7.8.1. Resumé of Precedinq Sections

A consjderable amount of effort has been put into (a) tne

development of fast signaì processing hardvrare (the GASP processor),

and (b) t¡¡e design of software to utilize the machine for

identification of the parameters of speech-like signals. The

signaì is partitjoned into contiguous frames'of 256 samples. For

each frame the processing is organized into two distjnct phases:

a) the effect of the quasi-periodic excitation is removed by

homomorphic processing. The output of this phase is the impulse

response dequence of a minimum-phase system having a smooth

approximation to the magnìtude spectrum of the signal. (In a

real application the value of the "pitch" would also be of

interest; this is derived from the location of the high-quefrency

peak in the cepstrum.)

b) a parametric model of the s'ignaì is then developed by

iteratively adjusting the paranreters for a best least-squares

match of the impuìse response of the model and the "target"

response resulting from phase (a). That is, optinization is

performed in the time domain, and the process is an example of

"formulation B1" of chapter four. Two opt'imization methods are

selectable - true l'larquardt SD and GN rnethods.

The algorithm has been successfulìy applied to a

synthet'ic test signal with time-varying parameters (Sect'i on 7.7).

This test has demonstrated the algorithm's abjlity to track quite

rap'id changes in si gna'l parameters (e.9. the rapì d vari atjon in

the frequency of poìe pai r =/n-I between frames ZB and 32,

figure 7.7). It was also able to handre satisfactorily the close
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approach of two po'les in frequency (pules numbered f2 and

in figure 7 .7, at frames 24-26).

+3

7.8.2 Limitations and Deficiencies

The foregoing sections of th'is chapter have demonstrated

by example sonìe of the considerations relevant to the app'lication

of optinlization techniques to system identification using short

wordlength digital hardware. It must be emphasized, however,

that the test resuìts pertaìn to a highly artificial situation.

Much additjonal program development, would be necessary to obtain

satisfactory operation t^r'ith substantìalìy more generaì (and

realistic) signa'ls.

The hardl'rare, the program and the tests of Sections 7.7

are deficient or insufficient'ly generaì in several ways. Sone of

these are qu'ite minor but others are thought to be far-reaching

and may severely limit (or at best, greatly complicate) t¡¡e

application of the system modelling techniques considered. These

matters have not been studied in sufficient detail that they may

be discussed at ìength here. The matters of execution speed and

the suitability of the GASP hardware for its task are treated in

Sections 7.8.3 and 7.9. Apart from this, the folìowing

observations are made:

(a) Nature of the Signal

In generat'ing the test signaì of Sectjon 7.7, a tru'ly

periodic excjtation was used, and al'l poles and zeros remained

compìex and minimum phase at all times. Howeyer, none of these

features is thought to be seriously I Ímiting. rrJith regard to
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the nature of the excitation, the homonrorph'ic processing

technique has been shovrn to be successfur in estimating a

system impu'lse response when the excìtation is only approximate/y

periodic, and'indeed when it js noise-like, as in unvoiced speech

(Rabiner and Schafer, Ig7g, p. 370).

The method of estimating the impulse response from the

cepstrum (Section 7.4.4) guarantees a minimum-phase model

regard]ess of the signa'l itself. The present optim.ization

aìgorithm (whose gradíent computation scheme fits it only for
minimum-phase systems) is thus adequate (theoret.ically) even when

signal zeios occur outside the z-prane unit circle. There is

reason to believe, however, that some difficuìty may be experienced

if zeros occur eLose to the unit circle (see (c) below).

The occurrence of roots on the real axis was avoided in

the test signaì, for simp'licity. However, the imp'lementation of
the root pairing idea of section 4.9.2 should allolv real roots to
be handled without serious difficulty beyond the intricacies of
the programmìng.

(b) Model Form and 0pti mi za tion Startinq Point

Probab'ly the most serious imped'iments to successful

automatic pole-zero modelling of real-world signals are related
to the selection of a form for the model and to the determination

of parameter values to start the optimization process.

If it is assumed that a rational z-transform model is
adequate the question of form becomes one of how many poles and

how many zeros to include. The study of exanrp'le F in chapter
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five illustrates some difficulties v¡hjch can arise. For example,

f igure 5. 19 (page 332) 'il I ustrates the response of a mode'ì having

a ì i ghtly-damped pol e on the negatì ve real ax'is. Thì s poì e i s

obviously not characterjstic of the actual signal; it occurs in

the least-squares "solution" because the assumed number of poles

and zeros was a poor choice for modelìing that signal. In addition,

models were postuìated for which no minimizing parameter vector

meeting minimum-phase constraints could be found at al'1, even

though the target impulse response v,as itself minimum phase.

Similar difficulties have been encountered when attempting to

mode'l real speech using the GASP program.

The above considerations imp'ly that some automatjc means

for selecting the complexity of the model must be devised. Since

this "compìexity" may change from frame to frame the technìque of

beginning the optim'izat'ion process from the "sol ution" for the

preceding frame may not always be adequate. An automatic means

for starting-point selection is also requìred (as indeed it
would be for lhe ffu,st frame in any case).

The two matters are like'ly to be intimately reìated. It
is feìt intuit'iveìy that frequency-domain analysis offers the

most promise - some form of peak and trough picking in the

cepstral'ly-smoothed log spectrum would be involved. A further

technique (Christensen et aL., 1976) based on peak-picking ìn

the second-difference function of this spectrum may also be

considered. Time domain regression methods (those of Shanks

(1967), Kalman (1958) and the Padé approxìmant technique of

Brophy and Salazar (L973) ) a'lso enable parameter estimatjon once

the form of the model has been decided, but have the serious
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complicatjon that a polynomial rooting routine is required to

translate the model to the cascade form. This may be espec'ial'ly

difficult with a short wordlength implementatjon.

(c) General i ty of Gradient Computations

The "short" method of grad'ient sequence calculation

proposed in Section 4.7.2 has been incorporated into the GASP

optim'ization program. This computational scheme does not permit

zeros to wa¡der outsjde the unit circle during optimization, but

it was thought initia'lly to be adequate because the target

impuìse response is guaranteed to be minimum phase (Section 7.4.4).

However, in attempts to model real speech signals fajlure of the

optimization algorithm was often observed because the constraint

on zero positions was encountered. llhether this node of failure

can aìways be avoided by an appropriate choice for the degree of

the poìe-zero model is not clear.

However, if the "generaì" method for calculat'ion of

gradient sequences were to prove necessary, the evaluation of

seeond derivatives v¡ould become most unwieìdy, and a first-
derivative quasi-Newton optimization method would be more

appropriate than the Marquardt methods.

7.8.3 Speed

As apparent from table 7.2, frame processing times of

100-200 ms were observed w'ith 6 po1es, 2 zeros, and a target

impulse response duration of i25 samp'les. It is obv'ious that

real-time processing power for speech has not been attained,

especia]ly as (a) a 6-pole Z-zero model is certainly too simpìe

for real speech, and (b) the resolutjon of the difficulties
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discussed ìn Section 7.8.2, if possible at all, will resuìt in a

further time penalty. For a reasonably good parametric represen-

tation of speech, it ìs genera'lìy accepted'that a neur parameter

set is required every 10-20 ms (Rabiner and Schafer, 1978), so

that the present GASP implementatjon falls short of real time by

a factor of at least 10. However, because advantage is taken of

parallelism in the operation of program memory, data memory, and

the various elements of the arithmetic section, because of the

incorporation of a hardlvare sum-of-products unit and a hardurare

normalizer/shifter, and because of the use of a judicious mix of

fixed-point, blcick float'ing-point and pure floating-point

computation, the'impìementation js still considerab'ly more

efficient than the equivalent operation on a conventional m'ini-

computer. Some real-time system identification problems which

are less tjme-critical than soeech anaìysis may thus be

facilitated by such a system.

The GASP program is probabìy cìose to being as efficient

as possible gìven the basic algorithm and the hardware available

(except that if attention were given to the scaling problem, a

fixed point FFT could be programmed which would be satisfactory,

and faster). The most obvious u/ay of ìmprovìng speed vlould be

to incorporate more hardware para'llelism. In this regard,

several additions could be made to a future version of GASP,

without sìgnificant'ly changing the concept. This is discussed

further in Section 7.9. Apart from this, several other more

aìgorithm-specific observations may be made:

a) The "deconvolution phase" and the "optìmization ph,ase" are

independent of each otlier, and could run in paral'le1 on two
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different processors (the optimization being one frame

behind). Alternatively, the FFT's could be greatly speeded

up by using a p'ipelined FFT processor (Gol d and Bia1ly,

le73).

b) The "opt'imjzation phase" could usefully expìoit a bank of

hardware digital filters which would run in para'lìel to

compute the gradient sequences.

c) The calculation of the emor sequence and objective function

value may be performed several times within each iteration.

A very fast hardware digital filter having a multiplier

dedicated to each coefficient would be of significant value

in speeding up this step, vrhich constitutes a large proportion

of the total computation.

d) If a second-derivative method is reta'ined, the necessity to

solve linear equations should be reduced to once per

iteration, by using a line search method in place of true

Ma rq ua rdt.

7,9 Suggested Improvements to GASP

The majn architectural features of the GASP processor

have been outlined in the paper reproduced in Sectton 7.2.7.

The processor is a conventional stored-program dig'ita'l computer

in the sense that a single stream of instructjons from memory is

executed in a serial manner. Program ìooping and branching ìs

allowed by the incorporation of faìrly conventional conditional

jump instructions. l-lourever, GASP d'iffers from conventional
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computers in the complete absence of any az'ithnetic instructions

as such. In their place is the MQV'instruction' a flexible data

routing instruction which causes the simultaneous transfer of

two 20-bit words from any of a variety of sources to any of a

variety of destinat'ions. "Arithmetic" is performed by virtue of

the fact that some of the "dest'inations" are latches t¿lhich feed

operands to arithmetic units, while some of.the "sources" are

the outputs of those units. The arithmetìc units themselves are

either combìnational logic interconnections requÍr'ing no

sequencing for their internal operation (e.g. the ALU), or are

clock-control led sub-systems whose operation is initiated

automatjca]ìy by operand I atching (e. g. the normal i zerlshi f ter) .

In either case, some parallelism of data processing is achieved

because the pnogrØn may proceed immediateìy to the next

instruction - no waiting is necessary unless a MOV instruction is

calling for a result from a unit whose operation is not finished.

The normal rate for processing of successìve MOV instructions

(with no waiting) is one per 90 ns.

The data memory, too, has its own internal controller,

and its operatíons run in paralìeì both w'ith program activity

and with each of the arithmetic units. Data memory input and

output ports are dedicated hardware registers; simply ordinary

"sources" and "destinations" which may be addressed normaì1y by

the MOV instruction. For exampìe, a word may be I'IOV'd at any

time to an'input port provided that the data memory controller

has handled the storage of the last such word.

Orderìy operation of the whole system is ensured by

prov'idÍng a "busy" fì ag for each source and each data memory
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input port; if the relevant flag ís set a MOV instruction waits.

By exercising care in the sequenc'ing of instruct'ions, the

programmer can usualìy keep such dead time.to a minimum. Tuo

data busses (and the simultaneous routing capability of the MOV

instruction) are incorporated for several reasons:

a) Both 16-bit operands for a multiplicatìon may be routed

( usual]y from data memory) at the same time. This is

important in maximizìng throughput jn the very important sum-

of-products operation. (The multipìication rate achieved is

slíghtly better than 4 per us.)

b) 32-bi,t (double precision) numbers may have both halves MOV'd

sjmultaneously, making double precision arithmetic virtuaììy

as fast as sing'le precision.

c) tJith care in program design, tb/o independent 16 or 20 bit

numbers may often be routed s'imul taneous'ly, saving

instructions (and so, time).

The optimization study reported jn this chapter has

confirmed the usefulness of all the features mentioned above, as

well as of the fast sum-of-products unit and the limited hardware

floating-poìnt capability. However, in several ways the

arithmetic section of the machine is not as porverfu'l or as

flexible as it could be. Much improvement would result from

providing more "arithmetjc" hard¡Jare (together rvith more "sources"

and "destinatÍons" for the MOV instruction). Such modifications

would'involve no change to the concept of the machine, although

it would be necessary to increase the wordlength frorn Z0 to 24

bi ts to al I ow the l40v 'instructi on to address 16, rather than 8,



491

sources and destinat'ions for each bus, and so the suggestions are

not relevant to the presently built version of the machine. The

extra bits could also be used to some advantage in sorne of the

non-MOV instructions. For data representation the exponent could

perhaps be increased to I bjts and the radix dropped to 2. No

speed pena'lty would be incurred by incorporating additional anith-

metic hardulare; all units would continue to operate asynchron-

ousìy and in parallel. Some examp'les of additions thought to be

useful are given below.

a) General Purpo se Reqisters

At the core of many signa'l processing operations is a

short 'loop during whose execution some small number of

intermediate results must be stored. To use data memory for

this purpose may be inefficient because data pointer load and

select instructions are required. In many practical cq-ses the

normalizer/shifter (N/S) has been used as a temporary register;

it may be set in a "shift" mode but wjth a zero shift count.

Aìternativeìy, the ALU may be arranged to propagate its inout

I latch contents (say) direct to its output by setting ADD mode

and clearing the other (J) operand. Holever, such ploys are

artificial, they'increase program complexity, and may not be

possible at all if the ALU and N/S are in use as such. The

inclusion of a few (perhaps 2 or 4) general reg'isters would be

simpìe and very usefuì. However, if made necessary by

addressing constraintso these registers could conceivably double

as the input latches for other additional units.
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b) Second ALU

c)

The existing 32-bit ALU has four modes (ADD, SUBTRACT,

0R and COMPARE). In some routines, repeated switch'ing

between modes has been necessary, an inefficiency which

could be avoided by having t\,^/o ALU's, with one set to each

mode. In addition, two ALU's operating in parallel would

greatly simp'lÍfy certain routines v¡hich previousìy required

temporary storage of results iust to free the ALU. Looos

requiring both data memory address calculations and data

arithmetic provide an obvious example.

Conipl ex t'4ul tí pl i er

Provision of a unit for the fast evaluation of the

product of two complex numbers would greatly improve GASP's

performance in the Fast Fourier Transform. This would

involve four 16-bit by 16-bit multipììers operat'ing in

paralìe'|. When GASP was built such a unìt would have

accounted for a large proportion of the total cost and

complexity (the existing GASP multip'lier uses 32 4-bit by

2-bi t r¡ul ti pì i er dev'i ces ) , but 16-bi t by 16-bi t devi ces

have since appeared, at reasonab'le prices.

d) Second l{ormal'izer/Shifter (N/S)

The use of the N/S for block floating-point

operations has been mentioned in Sections 7.4.1 and 7.5.3.

In panticular, al'ignment of all elements of a data memory

array to a conmon exponent is often necessary. The

inverse operat'ion is tlre normalizat'ion of 32-bit words

prior to storing the more-significant half in data memory.
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These operations are efficient in the sense that program

and data memory operations run in parallel with the shift'ing.

However, i f program 'loops are s imp'le and shi fts of more than

a few pìaces are requ'ired, the N/S performance I imits the

achieved speed. Alternate routing to ü¡o normalizer/shifters

could s'ignificantly speed th'is operation.

A second N/S would also accelerate (and simplify)

program loops which require the use of (say) both alignment

and normalization.

Another deficiency of GASP is lack of flexibi'lity in data

memory ac'cess. The autoincrementing data pointers are extremely

valuable, because arrays can often be stored in the order in

which they are needed. However, this is not always the case; a

bit-reversed pointer would be useful for the FFT, and autodecrem-

enting poìnters could be useful'in a great many cases. For some

purposes it would be advantageous to access alternate words, or

perhaps every fourth word of an array. Considerable generality

would be gained by using fast adders rather than counters for

the data pointers. The increment at each access could then be

any arbitrary (regìster-hel d) amount.

.Finally, although the data memory ìs fulìy exercised

durìng many "tight" program loops, there is much time during

execution of the average program when it is idle. This rvould

provide an opportunity for the host computer to send or receive

data on a "direct memory access" (Dl4A) basis, instead of such

transfers having to be (gRsp) program controlled. Because GASp

program and data memories are enti rely separate, no sìclw.ing

I

I

t
U
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t
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down of GASP by "cycle steaìing" is necessary; interprocessor

communications would run in a low-priority background mode and

the completion of a block transfer would bä signalled by a flag

accessible to GASP's conditional iump logic.
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APPENDIX A

GENERAL MATI-IEMATICAL TERMiNOLOGY

1. The concepts of ueetor and matriæ are emp'loyed in thìs

thesis in the usual sense (of línear algebra). A ueetov, x is an

ordered N-tuple of real numbers (x' xr, ... x*) where the x.,

(i = L,2, ... N) are referred to as the conrponents. The components

are considered to be arranged as a eoLu¡rm so that the usual rules of

matrix multiplicatjon may be applied. A square matrix A is a two-

dimensional (say N by N) array of real numbers, and'its generaì
,

component (ith row, kth column) is denoted a¡k.

¡

'.{

F

¡
l'

:1.

¡l,li
',]

{

I
¡

I

I

I

2. A Linear combination of a set of vectors X

is any vector y wh'ich may be expressed as

1
x2' xM

$

F

Y = c1 X!*rZXZ*...*cM XM

where the c, , cZ, c, are real numbers (scaLars). (The operations

of mult'iplication by the scalars and add'ition are performed on each

cornponent). Such a set of vectors is LinearLy independent if the

only linear combination of them which is equaì to the zero vector is

that for which all the scalars cI, cZ cM are zero. A linear

combination of two vectors

v .1 xI*12x2

is a conueæ eombinal;ion 'if 0 < c (landc +c - 1.
1 1 2

3. The Euclídean norm of a vector y is the rea1, non-negative

number (denoted ll V ll ) computed from the formula
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,{

iÞ--2llvll = *uz *...+yN
1

i
fhe EueLidean dístance between tvlo vectors x and y is the norm of

the difference vector, i.e. ll t - y ll . A neighbouthood of a vector

y 'is the set of all vectors x such that ll t - V ll <. for some

positìve number e.

4. The term subspace is used here in the sense of the set of

all vectors y such that y is the sum of a part'icular vector q

and an arbìtrary linear combination of M linearly independent

vectors Xl, XZ, X M. The subspace i s a hyperpLane 1f

M = N-1 (the analog of a plane in "ordinary" space). A poLyhed'ron

in N-dimensional space is a closed regìon bounded by hyperplanes.

5. A vector u and a (generalìy, comp'lex) number À satisfy'ing

the vector equation

Au Àu

are respectively called an eigenueetor and the corresponding

eigenuaLu¿ of the (tl Ov n ) square matrix A. The max'imum poss'ibl e

number of distinct eigenvaìues of a given matrix is N. The matrices

consjdered in thìs thesis are synrnetríc (tfiat is, ark = a¡¡ for all

j and k) and for such matrices all e'igenvalues are v'eaL. A

symmetric matrix A is positíue definíte if the scalar quantìty
Tx 'A x is greater than zero for all nonzero vectors x

tquivalently, all eigenvalues are greater than zero. If both

positive and negatìve eigenvaìues exist the matrix A is called

indefinite and 
^T 

A x can take both positive and negat'ive values,

dependìng on x. zez,o eigenvalues appear if and only if the N

columns of A are linearly dependent. The number of nonzero eigen-

I

I

lü,
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values is equal to the maximum number of linear'ly independent

columns, also called the rank of the matrix. A matrix with rank

less than N is called singaLar.

6. The process of determin'ing eigenvalues and eigenvectors is

referred to in this thesis as eígensystem anaLysis. Numerical

difficult'ies associated wjth matrix manipulations are often

significant if there is a large spread in the magnitudes of the

eigenvalues. A measure frequently used is the eondítion nwnbez,,

defined for a pos'itive definite symmetric matrix as the ratio of

the I argest to the smal I est ei genva'lue.
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APPENDIX B

FORTRAN SUBROUTINI TO EVALUATE THE OBJECTIVE FUNCTION AND

ITS DERIVATIVIS FOR TIME DOMAIN ( T¡.IpuI-sE RESPONSE) OpTIMIZATION
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c
c
c
c

F'tJT CLJRF{FN'I VAl...tJIg; ilF f:',lliAME'Il,.l:tf:ì ]:N'f0 Í]tif:'l l:ÜN 'fAllrl..l:::lì

ANn ZEfiO $TATII VAIiIôLtl.-[::f] TN I:Il.-'Tl:ilt f:iÏMt-ll...A'f1 Üi'{.

IF(IRL.G'r.Ml.[(l-.)Gü'r0 ] 01.

I Rl-F'= I RL+'1.
GAIN=J. .0
N=,0
[lCI J.0 li=.L v Nl:i

GCI T0 ( J.1. :, f.i,lv J.3r 14) v 
.f 

l"i)
1? N=N*1

CA ( lt ) ='F AliVli.C ( i-{ )

GO T0 lJ.
J.3 N=N{'J.

CB(N)=FAlîV[.C(N)
G0 TO l.l.

14 N-N*?
cA ( l\ ) =F'AltvË.cl( N-'1 )

c[r ( li ) =F'AIi\r[:.c ( N )

11 STJ.(K)='0'0
ST3(fr)=0.0

TESI F0R,SìTAItïl-.1.'fY
IF UNti'I11tiL.[iv tifi.Ttjl-'(N t-ìÊr'lf,'l:::'-1.i¡ Ëìl'll:l E.$l]=J..li?
[rI$ALLOt^J i']0NMTNTÌ.'fLJH F'l-lrôf:ìl:i [;'11..'ll::Fif:ì Étl-.$(] IitrfiAtJ{:iE
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40

A 1=CIt ( l{ )
A?=1. .'l []A ( l{ ) {'Éì1.

A3=1 . -'CA ( l( )'t'AJ.
IF ( Al. , l-.T .Q i99.r\9 99. Al.ll.t. A1ì. GT. l. ' E'-/.r. Aí'l[1. Aì]. (ll'. J. . [.""Cr )

* G0 'r0 J.0

IF(.NOT.SHIJRATI)[ìO TT] 4O

IF ( Al .l-'l-, l. ,0. ANII. All. G I' ,0. O. AN[r.43.0J'' 0.0 ) (ì0 1'0 1.0

GAIN=- 1 .0
ESR= I . 089
IF(SUJGTiAIT)tì0'r0 100
TJRTT[:(?v'ìJ.)
FCIRMAT(* t:il::{1t.JE:ST FOII GliAI.rlEN'f FRüÌ-f LINÍi1'rîlll-.1::: [rÏl-]'[::F{*)
ItO 10ó I=l.vllF'
GFTAI|(I)=0.0
ES(1".-E $G
00 T0 100
CONTTNUE:

c
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c
c
c
c
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c
c
C

CALCLJL.A'IE: I MF'LJl.. 5ìE F(EqFÜ N q[: Ol:: l'11-)l r[:.1.- Ë ]: l-l'fi:It

!ìI""J..0
[10 71. I=l.r]ltl-.
Il0 7? l("=.1. I Nlì
Sì T'N =,$ l.

rF( TT|.i),1.r.0)0ü'r(l 73

NtJMEIÌAT0l't f:ìl:i[)T'1.[)i'l ( Z[::lt0 l:'¡tr.l.l:i )

SI=,!ìT"l'CA ( li ) X{$'f l. ( N ) 4 f)lj ( li ) *lì f'^? ( li )

tìCI T(:1 74

c
Ç

c
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c
c

[lF-N0M I NAT0FI 5l:CT:L Üì',1 ( F'il1..r: I:'rì l l'¡ )

STN=!ì'ì'N-[;A( li ) XLì I]. ( t\ ) -Clt(li) *Í:ì ì;l (li )

S I =S'IN
ST?(lr)=STl.(li)
ST1(N)=STN
CONT T NUF.

R$FL11¡,::$l'
IF ( . N0'I. fìt^JliLitil:' ) lìEtìF' ( l' ) ::[i ]
SI=0.0
CONT T NUË-

CALCtJt..Al.Ë l.0T.At_. {:ìeLtAt:iE.Ir [:[itil]t{

500
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n0 ?1 I=Lrl'{t
J=MF(I)
FU=RSF'|.- (..J ) -Y i ï )

FM(I)".|-:V*tlT(l.)
EStl=E{:ìtl'l'Ë'VÍ(l- M ( Ï )

21 CONTINLJII
IF(St¡üllAIr)ü0'rü 1.00

c
C * *** *** * * * I()k * * X * X l(
c
c
c
c

cALCUI-Ai'E: IMF'tJr-.5F: lil:i:ìF',[)Nfiìtifi (Jl::

F0R ALL VAR l. Atrl,.E. 5Ec)'ì- l. t)¡lfi

NST=O
tlO 76 N-1rNSì
IF( 11l.i) .fifl. 1 )GLì'f0 76
$1=0.0
S?-0. O

F,REFIX SìËLtLtENüE trTTt_t rtr ZE:tìü tj:.it[i GIiÉrtr].8N.ì_ t¡JfiT n 0f( [l

NST=N5ìT* 1

I F ( NSìt' , G'r . H[ì ]:R ) 0Ll t0 l. 011
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IF(IT(N).1.T,0)G0'r0 7'7

NUMERATC]R fìEC]']:ON

Ir0 75 ï=LrLFil-
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NSìT=NSi'f * 1

IF ( NfìT . 0l , H[.ì:1. li ) t;0 T0 ] 0:l
GIR(N!ì'l )-51.
S?=S 1

S L =SiTN
73 CI]NT T NUE

G0 't0 7â

IrEl'lOH l: NA'f 0Ëi !ìHC r l: ClÌ{
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C

c
CALCLILA] H {.ìRAIII EN'T üT}MI}CINI::N {:ì

NF'R=- I
N=0
Ir0 ?2 lt= 1 r N-$

IF(Mli),8.n, l. )G0 Tll ?1l

NFR=NF'Rt I
G0 T0 (tl]r13 t?4t?5) Y.l'V(lr)

A OR C ONLY VARTAT{I'..I:

?3 NGR=NF'Ft* :I Fil.-fr'l'?
N=N* 1

CA!...L XC0RJ. (FMv(l.tFi(Nt'ìli ) v{iìliill't(N) )

GO TO ??.

c
c E 0R [r 0Nl...Y vARIAF.tl*[::
c

24 NGR=NFRX1.liL-F'+1
N=N* 1

CALL XCURl. (FHrGl.R(N[il"l) vGliAI.t(N) )
GO TO ?2,

c
C Et0TH F'AliAl"lE:1'ER$ VAII:l.AI'r1...8.

c
?5 NGR=NF'R* I RL.F +?

N=Nt?
CALL- XCt)|l1. (FMrGIR(Ntlli ) vLìIiAIr(N- l' ) )

CALL XCOlil (l-'MrGIft ( Nt.ìR-t ) riìl1tll.t( ì'{) )

?2 CONTINLJE
I F ( StJl{EgiS ) tiO "l'0 l. 0O

c
c**x**x*x**x*xxxxx* t.'AtiIIAl.. l{E.liìSì.1,r\i.,1 liï:ilt.j:l.lil::.11 )lrH*}l(t(l(***)t/{xì<xx*rr**
c
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C ( J TRANSF'OSìE .J ) MA'TT{ ]:X
c

NF R=- l.

I H=0
[r0 31 li= I r NS

IF( IV(l\) .l-:tl. I )ü0't0 31.

NF'R=NF'R* 1

Kf't= ' F'Al.-$t-- .
G0 T0 (J1 r1\.rlr3'5v..{4) I TV (lt')

C

c
c

C

c
c

A 0R C ONI-.Y VARIÉìItL-lI

c
C
c

3? NGf{ 1 =t'lF Fi * l: fil..F {':il
ASSI:GN :îJ.'1i) l'(Sit{

G0 l'0 fiO

33 NGRl=:|.ll::'l{+l:llL. l}'l J

ASSTGN :51 'TO IiÍìN
Gtl T0 ìlc)

B 0R tr (:)i'll- Y VñF(TAIIl...l:

(l



c
c

B0TH FARAME:l L-:liS vAl:i1.Âlrl. l:

34 NGR 1 =N[:'lìX ]: ttLf!4'1l
AS$IGN 3ii TLI Nlll¡l
GO T0 50

35 l(B= ' TRUI-. ,
NGR 1 =Nf¡FiX l: l:i1..l-:'{'l.

A$SIGN 31 'f0 
Kf:ìt^l

GO TO 50
31 CONTINI'E

I F ( StJNL.l^J'r ) ü(.) T0 I00
c
c**x*t(**x<****(*;**)t()k* F LII-l- l'lt:$f:ì l: AN

c
c
c

5û2

tt H il t.J :t [i [:: [r 41 l('ñ * ]k )i{ I( ;'l{ )F 4{ l( )ß )|1 * * Ñ,t r,: l( )k )|( t(

t'E:tii'lt:ì I'0 FIt0[rt.,0[:: f:l.J1...1.. l-lIfisÏrlN

IJY

c
c
c

CALCULATË 5EüNNI] [I[:Fi T VLtrT Ï V[i.

G?(1)=0.0
G?(2)=0.0
IH=1
I NC=N
NG?= I RL+?
NF R=- I

RUN THT{OLJIìH TI-IE FTLTER SEC'I'TT)}.ISì ( TI.ITI[:X N )

nO 51 l{=J. r it{S
GO TO (51 v85rLlSrU.l2) v'tU(l()
N1=IM*1
G0 T0 53
N 1= I i'l{'?
N2= IM4'l: Ni:+'1.
NF'R-Nl-'l'i l':L

irGS'l-=NF l:i* .1. lì l-.F' + I

RUN T'HRflUül-l iìE:(:)ll.(lNtì N tlNtJAtiIr (INIt[::X 1...)

CALCULA'l'E: It.ll:. fì11{:)(:)l.l11 I.rl::[(l:Vràl'].V[:. l'Ii'lf:: f]L:fltJ[::Ni]l: ((i):l)

FILTERING Tl{E l(l'l-l {:ìI'{}lil:[r {ìriiìi:r.l:l,.NT'sl:(1t.J[::Nülii t,li.Tll 'f'11l:::

LTH SUT{F.]:LI.F:R

D0 5? L=li r NS
rF( rvil.-) .F-t¡' 1 )C'iO l'0 :l:,1

IF( l.-. hlQ.l{, ANft.IT'( li ) . l.;Q. I ) Lit.l l'U $:,1

S1=0.0
S2=0.0
IF( I'l-(t..) .1.T.0)lì0 rn 54

LTH 5Hü1 .1:llN :tS NLlMF.l:(A'l(.)lì ( Il:::[til [rrl]'l:i )

[t0 55 T-].rl.ltl
STN=tìIR ( liliSl'{'I ) -t)A ( 1.. ) I(li1.*'CIJ ( 1.. ) *'$:,1

G?(I*3)-ÍiJ.
5?=S 1

55 SL=,STN
G0 T0 ';,ó

1-Tl-l SE:CTl:t)N I$ [rlll'l0M].NÉrTtl[t (F'01..,Ë l:rA]'[l)

54 [10 57 ]::J. v'l'[il-
sTN=- ( ri :[ li ( l(Gf:ì]"{" .1, )'l iìA ( t. ) tk f:ì 1. i (]lJ ( 1.. )''i( s;.1 )

G2 ( ï{'2 ) -51
S?=S 1.

57 Sl.=STN
IF ( 1.. NE:. N ) GO TI] 5I:
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a7

53

c
c
c
c
c
c

c
c
c

c
c
c



c
c
c

IrCItJttl*E Tt':liMSì F0R l\--l-. r¡ rr r$u0fi, ¡r or.r r: NA T 0n

c
c
c
c
c

[r0 I;tJ .t-3rNÛ.:.1
58 G?( I )-G2( I ) l-tlil( l. )

6A

B2

ó5

B6

tJ4

VEtITOR CONTR0I-. 0tl'l' I [] ÎìËF'ARA'f t:: C0l1lI
FIJIT THE IV(li) v l.V(1..) C(lMIrl.i{ill 1.(.)Nfiì 1'{l
HESSjI.AN MATt:tIX :[N[rt::X ilAt...üt.Jt_A I'.t:(]NÍì

CAt..l.- XCOF{l. ( F i'i v (.ìil ( lil ) I VAl.- J. )

CAL..L XCCltil. ( FM v {:ì.'ì v V¡\1..1ì )

FIEçìS ( N l. ) -l-lli(ìfi ( i.l l. ) { VË',1.. I
HESS ( N! ) -l'lE.f;S ( Nl:t )'l'Vrìl...il
N 1=N 1'1 1
N?=N"-ì* 1

G0 1'0 5;,1

FOTH IN l'rr A :l'N l-

1l [:: 0 t.J l: i'l t; l::: f;
(ì 1 l,ÌFl.]',[:Y

c
c
c

5ó IVF=3*l:V( l\ ) +'IV (L.)'-7
G0 T0 (â1.t&'.?. ró3ró4 t65tl,(¡v67 t$li] vC¡9) r l.UIJ

BnTH IN N v frfiTll 1.N 1..

¿''9 CAI-I. XCOtiJ. ( F:'M r Lì1l (.J ) I Vrâl.. l. )
CAL.L.. XCORJ. ( F'M v G1? ( 11) I Vrtrl..^-'ì )

CAI-L XC0R l. ( F'il r Gll r VÉrl-3 )

IF(1.-. NE:.li)t-ì0 l't) f'ì1.

l"lES$ ( IM ) =t{Hfi5i ( I i'l )'l VAl..1.

HES$( TM.ll. ) =,!'lEfiìfiì ( IM l'1. ) l'VAl. :il

HE:SS ( IÌ"1+TN{l )'"|.'18.55 ( IM l l.Nt.')'t'VÉil .f
G0 1'0 5?

81 l-lE9!ì ( N1. )=tl[:$fì ( NI )'t'V41...1.

HES$ ( N l. + l. )'=FlF.fì$ ( N 1.4'1. ) 'f'Vrì1.. .l
l-l[i5$ ( ll? ) ='l-lË.f]5 ( N1,l ) I VÊìl-:'l
l{Ë5çi ( N! l'J. ) ='l-lE.!ifiì ( N:;l l'1. ) l'VËr1..3

N J. =l,l l. *?
N?=Ni?-l'î
GO Tü 5?

ttOTH IN Nv Ë :l:N l-
c
c
c

c
c
c

c
c
c

c
c
c

67 CAI-.|".. XC0li l. ( FÌ'1 I Lì? ( 3 ) I UAL J. )

CAL.l.- XtlüRL ( FM r (.'il'l ( í,1 ) v VAl.? )
GO TCI $1I

[t IN tu fjoTl{ TN 1...

66 üALL XCORJ. (F'l'lv [ì].i? (11) v VAl"-J. )

CALl.- XC0Rl. ( Fl'i I t.ìll v ÇAl.ll )

83 l-lEtìSi (Nl. ) =l-llllì5 ( Nl )'l'UAl. 1.

l-lE:S$ ( N1'l'1 ) :=:l"ll:Íìfì ( N I'l l. )'t'VAl.;l
N 1=N l.'t ?
GO TO 5?

[r IN li, B IN l-.

üAt-L- xc0rr I ( Fll r G? v vAl-. l. )
IF(1.. .Nl:i.K)(ìl) T0 [i4
l-lË$S ( IÌl ) =lJll$fl ( l:l'1 )'l'Vlll.-J.
GC) TO 5?
l-lËSf:ì ( N 1. ) -l lEfifï ( N l. ) +'VAl.- l.

N L -N 1.'{'1.

ti(l l'(.) i:t:il



c
c
c

ft IN trv A l:N L

64 CALL XCOtl J. ( [lM I Lìll ( 1l ) I VAL ]. )
GO TO 84

A IN 1,, Ir0l.l.l IN L.

ó.1 CA[-L XC0ft l. ( FH I Cì.11 ( 3 ) v VAl...1 )

CAL.I... XCCIF(1. ( F l'l t G? ( ? ) I UAl.-? )

GO TO B:]

504

c
c
c

c
c
c

A IN hrr t¡ ].N 1...

6? CAL.L XCtlRl (FMrG?(?) rVAl-1. )

GO TO 84
c
C A IN Kr A IN l-
c

6I CALL XC0R l. ( FM I G? ( l3 ) v VAL- l' )
rr: ( L. NE. hi ) G0 'r0 84
G0 T0 8ó

5? CONT T NIJIl
c
c
C UF'trATE l-'0INTEII l'U [r1:A$(.]NAl-. l::1..|:il'1liN1'nF ]lfi:Sì$ (.1"M)

C ANTI TTSî TNI]REMENI'F'(-)Ii NHXT'T']:MI::: (]:NC)
c

G0 T0 (51. v91 r9:[ t9i'!) t.tV(li)
9I I M= I i''l{'Ï N[)

INC=TNC-1
G0 1'0 51

9? I M= I Ì'1+ T l',lü{' I }'lC-' I
I NC- I NC-'"1

51 CONT T NUE:

l OO RET'URN
c
cx*xt(xx**)+{*}kxx{***xt(sx*tr;*H)l{x*t(*x**.*x***fI*.**'*,$**)icfi:,firt*.'|{*:*rl{*;Jr.,ß*#*¡l.;t ¡(

c
C EXTENtTEIT RANtiL. (lË' ilü l.-00f¡ ..,l.rt) 31... ' f:OFi CAL-Ct.,l..Al'.1:t.iN

C 0F J TRrlN:ilsoSE -J HA'ì-l-l:l X

c RUN THRÜLlCl-l t'iECll:01'{5ì rjliOl'i li l'ü N{:i

c
50 LF'R=NF'R-l

fl0 3/-¡ l-.==livN$
rF( rvil...) .E[l' I )G0 Tilï5()
I.F,Fi=LF.R+J.
IF ( Ntt ) Cìn Ttl 3Íl
GU T0 (36t3'7r38rJr¡') I TV(L)

c
C A ClFi C ONI..Y UÄFi:l.,qltl.[:
c

J7 NGF(1=t_.F,lilt( l: Rl...F, I .:l
I l'1 =" I H'l' l.
CALL. XC0l;i:l ( l¡lï' r G :t li ( N(iìli 1 ) v ti I li ( Nül'i;l ) v l'll:Si[ì ( ]: l'f ) )

Gt'l T0 3ó
c
c B oR [r 0Nl.Y vAriÏAFL..l::
c

3B Ntìl-i?=l-l-'li*.1 lil..f]-1. l.

l.M=ÏHll.
CALl-. XCnli;l(tJ'Iytìt.li(NCIfil ) vti:l.l'i(¡'l(:il:i;l) vllllf:i$ì(Tì"i) )

l'rE=. FALSE.
G0 T0 3ó



c
C

c

c
c
c
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ITOTH PARAMI: E:R!ì VIIl:(.I, ABI..E:

39 Il''l=IM*?
NGlt?::xL F'RI( I. F(l-F'l 1ì

cÉìl_L xc0R3 ( trll' I $ I li ( NGrl l. ) y (ì 1: li ( Nüìfi:l ) y l'lf:-fìsì ( Ï Ì"i'- I ) )
CALL. XC0R?(tJ'l y[ì:1.[i(NGl:i] ) yi.ì:l.li(Nt.ìl:(i]-:L ) yl-lËliiÍ:ì( l.¡"i) )

36 CONT'Ï NUE
G0 Tü l'r$ìt^J I ( 31. Y 35 )

ERR0F( l-'1E$SAGti:S;

101
104
10?

103
105

tJRI T E ( i'l r .l03 ) H :l: f(t..

sìT0F'
t^,1{Il'Ë:(?r:1.O5)
G0 T0 1.04
F0FMAI(rr MAX Tfll:' l:iEl:ìl:' 1..[::i.ltìTl-l F'l::[ìl,fT'r'IE:li :l.i:ì >i<y Ïli)
F0RMAl'(X tiËiÉri.rTE:i',lT' ÏMFl.Jl-r;[: I([::!;l:1i]N$l: IJl...0tìl( l::t-ll'-1"'t)

ENTI
SUNRT]tJ'T I NE XCOIî l. ( Al: r /\..1 r UÊtl.- )

[rIMËNSr0N AI ( 1 ), ir..J( 1 )

coHM0N/t:0N1"/Nl:r
coMM0N,/t:RE:Cl,/Ml: ( l. )
VAL=O.0
[10 ?1 'I=lvNF
J=MF(I)
vAL=-VAL.'| A:1. ( r ) Ì(A-J ( -l )

21 CONI'I NUÊ.

UAL=VAL{'VAL
RETLJRN
trNrt
SUItRLtU'r T NH XCtll:iil ( A r r l\ -J l. r A.J Ll v V'11... )

I¡IMENSITJN AI ( l. ) rA.'J1( l. ) rAJi.l( l. )

C0MM0N/'CUNT,/NF
coHM0N./FFiEtì,/M[: ( ]. )
VA[--0.0
tr0 ?1, l.-1rNF
J=MF'( I )

UAL-VA|...{'AI ( I )XA.-ll ( 
", ) *4..J?('.J )

?1 CONTTNUE:
Vfil-:::Çf¡1. l VAl...

RETURI.I
ENIt
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NOTATI ON

-t
uk coeffi ci ent of z in numerator, kth filter section.

As gain factor in cascade-form IIR d'igital filter.
A1

sums-of-products, formulation 83.
A2

sums-of-products, formul ation 82.

general N by N matrix; approximation to Hessian,
quasi-Newton method.

bk coefficient of z-2 jn numerator, kth filter sect'ion.

g( x, 0) genera'l response function, type unspecified.

B*( x ) achieved value of mth component funct'ion.

.k coefficient of z-t in denominator, kth filter section.

cm mth samp'le of cepstrum.

C (k) 
update matrix for A (k), 

quasi-Newton method.

dru*

ds

d1

d2

dk

D(0)

D(z)

oo(z)

D
m

coefficients 'in special -purpose second-order filter
sections.

coefficient of z-2 in denominator, kth filter section.

maxinrum radial distance for discrete solution search.

function derived from denominator of transfer function

.I( = 1 + ckz )

( = D(om) )

+ dkz -2



D

50?
diagonaì matrix, Cholesky factor;
block diagona'l matrix, Bunch-Parlett factor.

coefficients in specìa1-purpose second-order
f i I ter s ect,i ons .

ith unit vector (dimension N)

diagonal matrix, GiII-Murray method.

random step s'ize, Suk and M'itra method.

ith sample of fiIter impulse response.

component of H (Hessian) in ith row, ith column.

z-transform of h., (fjtter transfer function).

cube edge sizes, Suk and Mjtra method.

Hessian matrix of obiective function.

index for general component of N-djmensional vector.

N by N i dent'i ty matri x.

index for column of matrix; generaf index.

total number of real po1 es or zeros.

€9

ê1

ei
E

fr( x ) mth component of SS objectÍve function.

f(x) obiective function.

F*( x ,q) obj ecti ve functi on wi th expl i c'i t dependence
on gain factor q.

F, sámpl i ng frequencY ( Hz) .

g safety factor for dru*.

ith component of g (gradient).

grad'ient vector.

o.
"l
g

h

h.
1

hij

H(z)

Ho

H1

H

t

j

J



J
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Jacobjan matrix (t'¡ ¡y N) of least-squares
objective function.

a constant; index for generaì second-order section.

function derìved from numerator of transfer function.

N.

k

( k)

lr
l2

I 
i j

L

K

(superscript) values used at, or prevaìl'ing before,
the kth iteration.

totai number of sections in cascade-form IIR
d'igìtal filter.
number of denominator sections.K

D

KN number of numerator secti ons.

index of lowest discrete frequency in transition band.

index of highest discrete frequency'in transition band.

^component of L, ith row, ith column.

distance from "contìnuous optimum" to its rounded
equ i vaì ent.

lower lim'it of error at mth frequency.

Lagrangian function.

unit lower triangular matrix, Cholesky factor or
Bunch-Parlett factor.

lower triangular matrix, Cholesky "square-root" factor.

u(e )

Index for general component funct'ion with SS obiective
function; index for generaì djscrete frequency.

number of component functions; number of discrete
frequencìes; number of variable transition-band samp'les.

magnitude-squared response of digita'l filter.
( = M(om) )M

m

I'l dimensjon of parameter vector; duration of impu'lse
response, FIR dìgìta'ì filter.

-L
m

r,

L

L

m

M

N(0)

N(z)
\
I

upper quefrency I jmjt of cepstral window.
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tl o(z )

1_2(=1+akz +bOz-)
( = N(or) )

number of iterat'ions between root reflections and
pai ring changes.

exponent jn least-pth objective functjon.

real po1 es

'i th component of p (search di recti on )

sums-of-products, formulation 82.

sum -of-products, formulations 82 and 83.

'sums-of -products, formu'lati on 83.

sums-of-products, formulation 82.

sums-of-products, formul atì on 83.

(=2(1-dt)coso*)
(=-4dt -2cOcos0*)

symmetric orthogona'l projection matrix.

pena'lty factor; radius of compl ex pol e in z-pl ane

radius of complex pole, kth fjlter sectjon.

component of R (Gauss-Newton matrix) ìn'ith row,
jth column.

N
m

N p

2p

Pr'P"

P.¡

Bi

Yi

ij
ri

P

P

P

P

P

)

21

p search direction vector.

q optimal gain term or factor; auxi'liary variable for
linear program; random search bias exponent.

Q1,Q2 distances between real Poìes

Qi ( x ) > 0 generaì inequal Íty constraint.

Qi(x) = 0 general equal'ity constraint.

Qsij

Qyij

Qrij

Qz.ij

Qcrt

Qork

o

r

tk

tij



Rl

RA,nk

RB*k
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tolerance on pole position in radial direction.

(=2uk+(f+3bO)cosor)
( = 4bO + 3ak cos 0m + 2 cos 20m )

(=2ck+(1 +3dO) cosor)
( = 4dk + 3ck cos om + 2 cos Ze, )

parameter vector which minimizes quadratic form

Gauss-Newton matrix ( = 2JTJ )

stepìength in radial random search.

magn'itude response of d'igital f il ter.

subspaces generated by po'ints X 1, X2 Fespêctiveìy
,respect'ively and a linearìy independent set of vectors.

(=ak+(1+bO)cos0n,)
( = bk + ak cos 0m + 2 cos 20, )

(=-(.k*(t+dO)cosor))
( = - (dt * ck cos om + cos 2o*) )

parameter change, kth iteration 1 ¡(k+t¡ - x

Hessian correctjon matrix ( R + S = H )

auxiliary variablé, Botsaris & Jacobson method.

( = Pyi - 2q Pei , formulation 82)

sampì'ing 'interval .

(superscript) denotes matrix transpose.

( = 1 * uk, + bk + ZaO 1t + bO) cos em + 2bO cos 20, )

direct'ion of negat'ive curvature of F( x ).

approximat'i on to i nverse Hessi an , quasi -Newton method.

'ith sample of filter input sequence.

z-transform of ur.

upper lìmit of error at mth frequency.

Rct

RDt

k

k

1

R

s

s(0)

SA*k

sBrk

Scrk

sD*k

s (k)

S

t
ri
T

T

Tmk

t

T

SI

S2

u.I

u(z)

(k)

U
m



U,
MK

ui
U

V.I

v(z)

vmk

v
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( = 1 *.k, * dk, + ZcO 1t + dO) cos 0,, + 2dO cos 20* )

ith normal ized eìgenvector of H .

upper triangu'ì ar matrix.

i th samp'ì e of f i l ter output sequence.

z-transform of v., .

( = ak2 + 2bO2 + aO (t + 3bO) cos 0* + 2bO cos 20n, )

auxi I i ary vector, quasi -Newton method.

weÍght factor for mth component function.

sum-of-products , formul ati on 83.

(, = ,k' + 2dO2 + cO [1 + 3d¡) cos 0,n + 2dO cos 20

ith component of X (parameter vector).

mth sample of complex cePstrum.

( = 2 (t - drt *.k (1 - dt) cos om ))

1O norm of signaì x

vector of parameters.

augmented vector of parameters.

target function for general response.

lower limit functìon for general response.

upper lim'it function for general response.

target value for mth component function;
target value at mth djscrete frequency.

lower response ljmit at mth discrete frequency.

upper response limit at mth discrete frequency.

arbitrary vector (dimension N).

grad'ient change, kth interation (g(k+1) - g(k)

V',
m

t^l

l^l ,
MK

)

xil

X
m

xmk

llxll p

x

x*

Y(0 )

vr(o)

vu(o)

Ym

Y
Lm

Unr
Y

I
v

(k)



0

zl

z2

stepl ength.

CIgr0l , ... Ol¡¡ feedforward coefficients in direct-form
dig'ital filter.

ß Marquardt (Levenberg) parameter; bound in G'iìì-Murray
matrix factorìzation.

ß0,ßr ßn feedback coeffic'ients in direct-form dig'ita1
fi I ter.

, gain term in parallel-form IIR digìtaì filter.

z

YO

ô1

ô2

ôk

ô
m

^x

e(0)

512
complex variable for sampìed-data transform.

parameter vectors minimizing F( x ) in subspaces
S1 and 52 resPectìve1Y.

passband ripp'le tolerance; small negative quantity.

stopband ripple tolerance; small positjve quantity.

second numerator coefficient in kth section of
para'l lel-form IIR dig'ita'l filter.
response tolerance at mth d'iscrete frequency.

smal I change to x .

arbitrary funct'ion of e defined on 0 < 0 < r'

arb'itrary smal I posi t'ive number.

d'ig'i ta'l f requency var j abl e (pol ar angl e) .

mth discrete frequencY.

passband edge (dìgìtal) frequency-

stopband edge (d'igital ) frequency.

Y¡ first numerator coeffic'ient in kth section of
parallel-form IIR digital filter.

Ym mth sample of "assoc'iated cepstrum function" ( = 2m c, )

c

0

ot

0
p

0
S



T
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auxi I i ary compl ex vari abl e.

ith eigenva'lue of H .
I

À
x

À
v

cartesian coordinates of À plane.

Àr* coordinate ( À* (r * 2) )
X

u

u¡

p

'tI
i

¡f

Àr

t
t'

{'{
.,
1l

I
I
)

I

I'I

,'

smallest eìgenvaìue of R.

i th Lagrange mul ti pì i er.

parameterin quasi-Newton rank-Z family.

argument (ang'le) of compìex po1e.

phase response of dig'ital fjlter.
angìe of complex pole in Lst or 2nd quadrant,
kth filter sect'ion.

tolerance on pole position in Q direction.

ttl(z-t) D(z))auxi'l'iary function for group
ay calculation.

ow mean-square convergence criterion in frequency domain.

T absol utely 'largest ei genvaì ue of S .

group delay response of digital filter.r(0 )

2

0

0(0 )

0k

6l

I

I

x(z) (=
del

t:,1
&
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LIST OF ABBREVIATIONS

Although they are introduced as they occur in the text,

the abbreviations used in this thesis are for convenience

summarized below. Omitted from the list are the special

mnemonic codes for search direction and line search algorithms,

which appearin Tabl es 5.1 (page 215) and 5.2 (page 221)

respect'ive1y.

AlD

ALU

BFGS

CG

CP

DlA

DFP

DFT

FF

FFT

FIR

GASP

GM

GN

GR

IDFT

IIR

r/0

LC

LSB

analog-to-digi taì (conversion)

arithmetic and logic unit

Broyden-Fl etcher-Goldfarb-Shanno (optjmi zation method)

conjugate gradient (optimization method)

central processor

digi tal -to-anal og (conversion )

Davidon-Fletcher-Powel I (opt'imization method)

discrete Fourier transform

Fletcher-Freeman (pptimization method)

fast Fourier transform

finite impuìse response (d'igita'l filter)
"General Arithmetic Signal Processor"

Gill -Murray (optìmization method)

Gauss-Newton (optimi zation method)

Greenstadt (optimi zat'ion method)

inverse discrete Fourier transform

infinite impulse response (digital fjlter)
i nput/output

'i nductance-ca pac i tance

least signìficant bit
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I arge scal e 'i ntegrati on

Marquardt (optim'i zation method)

medium scale integration

normal izerlshifter

quasi-Newton (optimi zat'ion method)

second derivative (optimization method)

symmetric rank one

sum of squares

small scale integration

true l'4arquardt (optimization method)

very ìarge scaìe integration

i:

it

Þ-
LSI

MQ

MSI

N/S

QN

SD

SR1

SS

SSI

TM

VLS I

I.f'

t'

{

j
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