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SUMMARY

This thesis is concerned with two topics; standing \Maves on water of finite

and infinite depth and models of shear dispersion in channels and pipes.

In the first part standing waves are considered. A stable and accurate numer-

ical method for the calculation of the motion of an interface between two fluids is

used to calculate two-dimensional standing v¡aves on deep water. Extremely steep

standing waves are determined, significantly steeper than has been previously re-

ported. The peak crest acceleration is used as the determining parameter rather

than the \Mave steepness as the wave steepness is found to have a maximum short

of the most extreme wave. Profiles with crest accelerations up to gg% of gravity

are calculated and the shape of these extreme standing wave profiles are discussed.

The method is extended to water of finite depth and standing waves are

calculated. The effect of the harmonic resonances on the standing rvaves are in-

vestigated and some properties of finite depth standing v¡aves are presented.

The stability of the standing \Maves on deep water is examined and growth

rates of the unstable modes are calculated. It is found that all but very steep

standing lvaves are generally stable to harmonic perturbations. However, standing

waves in deep water are typically unstable to subharmonic perturbations via a

side-band type instability.

In the second part of this thesis shear dispersion in channels and pipes is con-

sidered. High order models of the longitudinal dispersion of a passive contaminant

in Poiseuille channel flow and Poiseuille pipe flow are derived and their validity

discussed. The derivation is done using centre manifold theory which provides a

systematic and consistent approach to calculating each successive approximation.

For the case of channel flow, models are also derived when the cross-section, flux

and diffusivity all vary; the resultant modifications to the advection velocity and

the effective dispersion coefrcient are calculated.

In the case of pipe flow, a stable, non-negative finite difference scheme is
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formulated which matches the evolution equation to a predetermined order. The

limitations imposed by this matching is investigated. The appropriate initial con-

dition to use for the Taylor model of shear dispersion in pipes is derived. It is shown

that the commonly used initial condition of simply taking the cross-sectional av-

erage is only a first approximation to the correct initial condition. In a similar

manner the correct boundary conditions to be used at the inlet and outlet of a

finite length pipe are derived. The modifications of the Taylor model to use for a

pipe with varying cross-section and varying flow properties is also studied.
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PART ONE

STANDING \MATER \MAVES

1



CHAPTER 1

INTRODUCTION

In this part a stable and accurate numerical method to calculate the motion

of an interface between two fluids is used to calculate two-dimensional standing

waves on both finite and infinite depth water. Extremely steep standing lvaves are

determined, significantly steeper than has been previously reported. The stability

of the standing lvaves is examined and growth rates of the unstable modes are

calculated. The majority of the work presented here has been published in Mercer

and Roberts (1992a). Extensions to the published work include calculations to

a higher crest acceleration using ¡'I - 256 mesh points and the calculation of

standing lvaves on water of a finite depth.

Two-dimensional standing lvaves at an interface of two fluids of different

densities are defined to be fluid motions that are periodic in both space and time.

It is this time dependence that makes the mathematical analysis of standing v¡aves

more difficult than that of steady wave motion. To date there is no formal proof

of the existence of standing waves although there are approximate solutions for

standing waves of small amplitude. The work of Amick and Toland (1g87) has

gone some way towards a formal proof but more work needs to be done in this

area. Standing waves occur in many physical situations. Reflection of a progressive

rvave will result in standing waves near the reflecting object. This is important in

applications such as standing waves at sea walls or at moored structures such as oil

platforms. Standing \Maves can also occur in confined areas such as mixing tanks or

road tankers where the sloshing of fluid can result in standing waves. Furthermore,

standing rvl/aves are a proto-type of complex time-dependent free-surface fl.ows,

and their simulation provides valuable experience for the simulation of directly

relevant time-dependent free-surface dynamics. It is therefore important to be

able to accurately calculate standing \4/aves.

In contrast to the progressive \¡¡ave case the limiting profile for standing
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'waves is not understood in any detail. Here I calculate standing wave profiles which

appear to be close to the limiting case and show that the profiles are of a different

shape than previously conjectured. The numerical approach is to directly simulate

the dynamics of standing \Maves and consequently it is also easy to investigate the

stability of the calculated vraves.

Standing waves in deep water were first studied by Rayleigh (1915) who cal-

culated a perturbation series to third order using the wave amplitude as the small

parameter. Penny and Price (1952) generalised this perturbation series approach

to fifth order. They noted that at no time is the interface ever flat. Saffman and

Yuen (1979) used a numerical method to investigate standing v¡aves although the

'v\¡aves they studied were not pure standing waves as they did not repeat exactly.

Aoki (1980) extended the perturbation series of Penny and Price to eighth order

correcting their algebraic error in the fifth order calculation. Schwartz and Whit-

ney (1981) used a conformal mapping method to simplify the perturbation series

which they then calculated lo 25th order for the infinite depth case. Rottman

(1982) calculated high order perturbation series solutions for the infinite depth

case allowing for different density ratios between the upper and lower fluids. Con-

siderably less work has been done for the case of standing'\Ã¡aves on an interface

where either fluid is of a finite depth. Tabjbakhsh and Keller (1960) calculated a

perturbation series to third order for free-surface standing waves in water of finite

depth. This work was generalised by Concus (1962) to include the effects of sur-

face tension. Goda (1967) extended the work of Tabjbakhsh and Keller to fourth

order and calculated the pressure field due to the standing \Maves. More recently,

Vanden-Broeck and Schwartz (1981) devised a numerical scheme for the calcula-

tion of standing rv\¡aves. Their method consists of truncating an infinite series for

the surface elevation and velocity potential and then using a collocation method to

obtain a system of nonlinear algebraic equations which can be solved using New-

ton's method. This method was used for both the finite and infinite depth cases
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but is inadequate for extreme waves due to the slow decay of the series coefficients.

A similar method was used by Tsai and Yue (1987) to calculate standing waves

in a circular basin. Marchant and Roberts (1987) calculated a perturbation series

to 35ÚD order for finite depth short-crested waves of which standing waves are a

limiting case.

Presented here is a stable and accurate numerical method for the calculation

of standing waves on the interface between two fluids of different densities. This

method is based on the semi-Lagrangian approach which has been used for periodic

rn¡aves by Longuet-Higgins and Cokelet (1976). Vinge and Brevig (1981) and Baker,

Merion and Orszag (1982) have also developed algorithms to numerically calculate

free-surface flows. Pullin (1982) used a similar algorithm to investigate some

of the instabilities that occur on an interface. More recently similar boundary-

integral methods have been extensively used in the calculation of many different

surface flow problems, for example the flow in front of and behind a moving barge,

Davidson (1990).

This part of the thesis is organised as follows. Chapter 2 deals with stand-

ing waves on deep water. The problem is formulated and the numerical scheme

described in detail. The results of the numerical method are presented and dis-

cussed with particular emphasis on extreme standing rvaves. A generalisation of

this to standing waves on water of finite depth is given in Chapter 3. A method

for determining the stability of standing waves is presented in Chapter 4 and the

stability of standing l¡/aves in infinite depth water to harmonic and subharmonic

perturbations are calculated.

Throughout this thesis figures are located at the end of each chapter for ease

of reference.

4



CHAPTER 2

EXTREME STANDING \MAVES ON DEEP \MATER

2.t A formulation of interfacial rnotion

z.L.L Derivation of equations

I consider the general two-dimensional motion, under the influence of gravity,

of a sharp interface between two fluids of different densities. All quantities relating

to the upper or lower fluid are denoted by the subscripts 2 and 1 respectively. Both

fluids are assumed to be inviscid and incompressible and the motion in each fluid

is assumed to be irrotational. Both fluids are considered to be confined in the

horizontal by two vertical plates and to extend indefinitely in the vertical. See

Figure 2.L for a schematic diagram of the interface.

Define Cartesian coordinates such that the ø-axis is along the undisturbed

interface and the y-axis is perpendicular to the undisturbed interface and in the

opposite direction to gravity. Following Roberts (19SBa) I non-dimensionalise by

scaling quantities with respect to the reference length Lf2r, the reference time

s(zr lL) -Pz lp, and the reference density p1. The lower fluid there-

fore has a scaled density of unity and I denote the scaled density of the upper fluid

Ørlpr) by p. Interfacial tension may be included in the formalism but this will

not be done here. The analysis is initially carried out for arbitrary p in the range

0 < p ( 1, but for clarity and comparison with previous results all the results

presented here will use the value of p which is appropriate for a free surface (that

it p - 0). Preliminary tests have shown that there is no visible difference in the

profiles for the air-water case (p : 0.001) and the free surface case (p : 0), th"

maximum difference being less than 0.L%. The effect of variations in p and surface

tension are areas of possible future research.

The numerical method I employ is that described by Roberts (1983a) for

periodic two-dimensional motion of an interface between two inviscid, irrotational,

incompressible and infinitely deep fluids, with modifications for the standing \,\¡ave

b



configuration. I will therefore use a similar notation to Roberts (1983a). Begin by

defining the operator

*: ft*o,'o, (2.1.1)

which gives the derivative following the motion of a particle of the lower fluid,

where q1 is the velocity in the lower fluid. On the interface we could follow an

arbitrary combination of the velocities of the upper and lower fluids but it is shown

in Roberts (1983a) that the algorithm is generally made numerically stable if a

particle in either fluid is followed but not a combination of both. This choice,

properly implemented, removes the need for error inducing smoothing techniques

as has been used in some numerical methods, see Longuet-Higgins and Cokelet

(1976) for example. Represent the interface parametrically by (X(f, t),Y(j,t))
where the wave is periodic in j with period N (later j will be chosen to be integral

in the discretisation) then, as it is required that the interface follows the motion

of the particles of the lower fluid on the interface, I obtain

AX Dr
E: Dt:ut

AY Dy
and U1 On s(¿), (2.r.2)

ôt DT

where

(ut, ur) : g1 r (2.1.3)

and .9(ú) denotes the interface. The motion is assumed irrotational so the velocities

can be expressed in terms of velocity potentials /1 and óz for the lower and upper

fluid respectively. The two fluids do not cross or separate which gives the constraint

oót
0n

ôó,
0n

on ,s(r), (2.1.4)

where n is a measure of distance normal to the interface. In the absence of surface

tension, continuity in the pressure across the interface gives

Pz: PT,

6
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where p1 and p2 are the pressures given by Bernoulli's Equation as

oót
Pt ôt

0ó,
t-p
t*p

N

(

(

)'-;",

) ' - 
!r"i'

p

p

+1

1

a¡ cot
z-zj

2

(2.1.6)

(2.1.e)

Pz ðt

in the lower and upper fluids respectively, where q2 is the velocity in the upper

fluid. Define

ó(j,t): ót - póz on ,9(¿), (2.1.7)

use (2.1.6) to rearrange (2.1.5) and obtain

aó 1. 1

ã : -(1 + p)Y + 5ú + dj - pat . ez. (2.1.s)

Equations (2.L.2) and (2.1.8) are formulae for calculating the time derivatives of

X(j,t), Y(j,t) and $(j,ú) from their values and the velocities of the fluids at the

interface. The remaining task is to flnd the velocities at the interface given values

for X, Y and $.

. 
Define the complex potential f (z) in the upper and lower fluid such that /1

and þ2 are the real part of f (z) in their respective domains. The function /(z) is
defined by a distribution of vortices on the interface. The vorticity strength per

unit j is to be given by oj and so using the periodicity of the motion the velocity

of the fluids can be written as

ar -i
=-:U-LU:-dz 4r t, )

dj,

where Z j : Xj + iYj. Let z tend to Z¡, from the upper or lower fluid and obtain

that the velocities at the interface are

@ u: 
-; 

fo* 
o'""' (ry) ot * h' (2 1 10)

where this integral is a Cauchy principle value integral, the negative alternative

gives the upper fluid's velocity and the positive the lower fluid's velocity and where

' is defined ", &.
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Calculatin E ff via the chain rule and taking the real part gives an equation

involving /', namely

øi:)o* ùot ++r,{',,= {r¡.",(ry)}r (2 111)

This is an integral equation for the vortex strength ø¡ given values of ój, X¡ and

Y¡ at any time. Once this is solved (2.1.10) can be used to calculate the velocities

of the fluid and then the time rate of change of. X¡, Y¡ and $¡ can be calculated

from equations (2.1.2) and (2.1.8).

2.L.2 Integral invariants

There are several integral properties of the flow that should remain invariant

with time provided the interface S(ú) remains intact; for instance the completion

of wave breaking is excluded. These integral invariants prove to be a very useful

check on the numerical procedure. I shall use the results given by Roberts (1983a)

for the kinetic energy ?(ú) and gravitational potential energy V(t). The total

energy, the sum of these energies is a conserved quantity. Also the mean vertical

position of the interface must be invariant, and should in fact be zero from the

definition of the reference axes. Also defined in Roberts (19S3a) is the average

volume flux across the interface which should be zero.

2.2 Tlne numerical method

2.2.1 Outline

There are essentially three parts to calculating standing wave profiles. The

first is to calculate the time derivatives of X j, Yj and /¡ at discrete points given

their values at any time, the second is to integrate these quantities forward in time,

and the third is to find a profile that replicates itself after an unknown period r
and hence is a standing wave profile. I consider the time integration of a finite

set of ordinary differential equations to be a solved problem and so use either the

NAG routine DO2CAF, which uses a variable-order variable-step Adams method to

integrate forward in time, or a Runge-Kutta method which was found to perform
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more reliably for the near extreme \ryaves.

2.2.2 Time and space derivatives

The first problem is then to accurately calculate the time derivatives given

in equations (2.1.2) and (2.1.8). The method of images is used to enforce the

boundary conditions on the vertical plates and the periodic extension of figure

2.1. The interface is discretised by defining .f{ mesh points per wavelength on the

interface, at integral values of j, and representing all functions by their values at

these mesh points. To calculate the time derivatives one must first evaluate the

integrals given in (2.1.10) and (2.1.11). These integrals are all periodic and hence

they can be accurately calculated (with an error which decreases exponentiaily

in I/) by simply summing the values of the integrand at the mesh points. The

integrand of the integral in (2.1.10) is singular at the point j : k. As described in

Roberts (1983a) this singularity can be removed by subtracting an integral which

has a value of. zeto and exactly the same singularity. Doing this I find the integrand

of this integral takes the value

z'lor -Z';
2o'u

zL
at j:lc (2.2.7)

At first glance the integrand of the integral in (2.1.11) appears to be singular as

well, but it can be shown that

*{rr."'(ry)}-.{4} as i-r,, (222)

and hence this integral is non-singular and is easily calculated.

Accurate spatial derivatives of all quantities are obtained by taking the fi-

nite Fourier transform of the quantities, differentiating this and then inverting

the Fourier transform. This is possible as all quantities are periodic plus, in some

instances, a known linear part which can be subtracted off before taking the trans-

form and then compensated for after the inversion. Throughout this problem N

is chosen as a powet of. 2 and hence fast Fourier transforms can be used, this

I



substantially reduces the computational effort required to calculate the spatial

derivatives.

The above describes a numerical scheme which enables the integration for-

ward in time of any given spatially periodic interfacial rvave profile between two

fluids. This has many applications some of which include rvave breaking and the

calculation of progressive interfacial waves of permanent form, see Roberts (1983a).

2.2.3 Standing wave conffguration

Due to the symmetry of standing wave profiles I insist that the interface be

symmetric about the vertical lines æ:trlt¡ where n is an integer. This symmetry

enables the number of mesh points to be reduced from .f{ t" # f 1 since f; - t
mesh points and their function values are obtained by reflection in the line c : zr.

The mesh points are chosen so that mesh points lie on the lines ø : 0 and ø : zr.

Rewriting the integral in equation (2.1.10) as a sum (as described above) and

allowing for the symmetry I obtain equations for the velocity of the lower fluid at

the interface at each mesh point

f+r
t a¡ cot

\i
)*ç

(u1 - iu1)u -2 ( 2 ( 2 )

¡L
2

D
j:l

a¡ col,
4¡r

(2.2.3)

The numerical scheme consists of solving (2.2.4) for the ø¡'s then finding the fluid

velocities at the interface at each mesh point ftorn (2.2.3) and the time derivatives

of the potential function from (2.1.S). It is therefore possible to integrate forward

j:o,i#k

, ak , ZIou 2o|_4_ z,; 
_4

Performing a similar analysis on equation (2.1.11) to obtain an equation involving

/' and ø¡, namely

o* - |{t * p)ox + +,:är",s {z¡.", (=t¡¡
(2.2.4)

- +å "* {'L ""' ("*) } . }s {4}
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in time any given interfacial profile which is bounded by walls at n :0 and t : T¡

and hence ascertain how it evolves. This has applications to the sloshing of fluids

in tanks and containers which is an area for subsequent research.

The problem of standing vraves is to calculate a profile which replicates itself

after an unknown period r; two approaches v¡ere used. The first was to fix the

fluid to be stationary at time ú : 0 and then half a period later, t : r l2,the fluid

must be stationary again. This gives ". + f 1 equations

ó¡(r 12) : s 1 (2.2.5)

to be solved for the I + z unknowns Yt, . . . ,Yry+, and period r. This approach

could conceivably give rise to an asymmetric solution, one where the profile at

the half-period is not the mirror image of the initial; however this was never

observed to happen. The second approach was to start with a stationary profile

and integrate for a quarter period, t : r 14, and insist that the profile then be

symmetric (about x : r l2) and the velocity profile be asymmetric. This approach

'was: more efficient as I only integrated for half the time; ensured the standing wave

v¡as symmetric; and made it easier to vary the spacing of the vortices on the free-

surface as I could insist on a symmetric and numerically desirable point spacing

at the quarter-period. This approach gives l/ equations

2tr(i - I

JV

2 +1,J

x¿(r 12) : ¡r
Y(" /z) : Yry+z_i? lz)

ó{r 12) : -óry+z_¿G 12)

+ a.ir,{11$:Ð ) i:2,...,+
¡'I

, ,4
¡rz:I.....-+1, ,4

(2.2.6)

in -ll*l unknowns xzr... rx+rYtr-..rYry+r, and r. The parameter B is used to

control the mesh point distribution. For B : 0 the mesh points are equispaced in r
al, t : r f 4 and for positive B the mesh points are clustered. nearer the walls. This

was found to be useful as a higher point concentration near the walls meant the

wave profile and its dynamics could be determined more reliably. This is because
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the most extreme dynamics occur near the walls especially when the wave is at its

most extreme shape.

In previous research the wave steepness, defined as half the crest to trough

height, is the determining parameter and thereby specifies the necessary additional

equation. For waves not near the limiting profile this was found to be adequate and

results in agreement to others (Schwartz and Whitney (1981), Rottman (1982))

were obtained. However, the wave steepness attains a maximum short of the

limiting profile, and so I choose to use the initial crest acceleration, ,4.",

0ut
at -4" at ú:0,r:0, (2.2.7)

as the determining parameter. Note that the acceleration due to gravity has been

scaled to 1. The introduction of the crest acceleration parameter rather than

the usual \I¡ave steepness parameter enables the calculation of more extreme wave

profiles than previously possible.

This system of nonlinear algebraic equation is solved by a generalisation

of Newton's method as given by Powell (1972). As an initial estimate for small

acceleration I use the linear standing \ryave solution (a cosine profile) and then for

subsequent estimates, as the crest acceleration is increased, I use an appropriate

extrapolation of the previously determined profiles.

The reason for choosing the above approach is that it involves relatively few

nonlinear equations, namely T + z or .ll * 1 of them, hence making the method

reasonably fast and reliable. The time integration is done via the NAG routine

DO2CAF for waves not near the limiting profile. For waves near the limiting

profile a Runge-Kutta method was found to perform better. Using this approach

it is also easy to study the stability of the standing wave profiles. More complicated

aperiodic flows and simulations may be calculated with only minor alterations to

the basic algorithm.
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2.3 Results

2.3.L Accuracy and integral invariants

The case of standing \Maves in infinite depth has been studied using a variety

of methods. Penny and Price, Aoki, Schwartz and Whitney and Rottman have

used a perturbation series approach to calculate the standing wave profile, the

latter two calculating their series to high orders and using Padé approximants to

sum the resultant series. Using the method described above I am able to calculate

more extreme profiles than any of these previous methods. These previous results

provide a useful check on this numerical procedure for the less extreme waves and

were found to agree with the method used here.

For small crest accelerations a small number of points, N : 16 or 82, is

sufficient to calculate the standing wave profile accurately. It is only when more

extreme rü/aves with large initial crest accelerations are calculated that I need to

increase the number of points. For consistency all results given here will use .ðÍ :
64 unless stated otherwise. Calculations using Il : 16, 32 were performed on a

Pyramid 9820 and a Sun 3160. The .l/ : 64 and -l[ : 128 calculations were carried

out on a SPARCstation 1* and using the F\rjitsu VP100 of the Australian National

University Supercomputer Facility. I[ : 256 calculations vrere carried out using

a suite of SPARCstation 1* working in parallel using the C-Linda programming

system. Calculations using Il : 128 and l/ : 256 were in general only used for

very extreme profiles and as a check on the profiles determined with I¡/ : 64.

Where possible the profiles rvr¡ere calculated with different number of mesh

points per wavelength to detect any discretisation or integration errors. All profiles

were found to be consistent. Profiles up to A.:0.9700 were calculated with both

-l/ : 64 and N : 128. However very extreme profiles could only be calculated

with a large number of mesh points due to the more complex nature of the profile

shape and the motion involved. Profiles with a crest acceleration in the range

0.9700 to 0.9800 were calculated using l[ : 128 and .lV : 256 and those with a

13



crest a,cceleration above 0.9800 using l[ : 256 only. As a check on these extreme

profiles various different mesh point distributions and integration time steps were

used to determine if the discretisation was affecting the shape of the standing

'wave profiles calculated. The point distribution \Mas determined by the parameter

B defined in (2.2.6). Using N : 128 for B ranging from 0 to 0.25 the extreme

profiles differed by no more than 0.01470 and the period by less than 0.007% (a

value of B :0.25 corresponds to approximately twice as many points near the

initial crest of the wave as compared to B - 0). For the extreme rvaves where

a Runge-Kutta method. was used for the time integration, time steps ,u,n*ing

between 0.005 and 0.04 were used to independently calculate the profiles. The

largest difference found was 0.003% for the profile and 0.002% for the period. All

profiles were found to be consistent and I am confident the profiles are accurate

to at least four significant digits.

The integral invariants are a further measure of the accuracy of the numer-

ical approximation and hence an indicator of the accuracy of the standing v¡ave

profile calculated. I was able to accurately calculate profiles with an initial crest

acceleration of up lo A" : 0.9900, that is 99.070 of gravity. Up to this value of

A" lhe largest error in the integral invariants was 4.1 x 10-10 which compares

well with the integration tolerance used. I am therefore confident that the time

integration is performed accurately and contributes little error to the calculations.

The solution to the nonlinear equations was considered to have converged

when the sum of the squares of the residuals was less than 1 x 10-16. In all

cases considered the sum of the squares of the residues was considerably less than

this. Thus the profiles calculated here replicate themselves after a period ¡ with

a negligible relative error of less than 10-8, and hence they form standing waves.

2.3.2 Properties of steep standing waves

Shown in Figure 2.2 is a plot of the wave steepness, ä, versus the crest accel-

eration. The important feature to note is that there is a maximum'wave steepness,
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h :0.6202 at Ac :0.9264, which is short of the most extreme profile. This would

explain why previous perturbation methods using the wave steepness as the per-

turbation parameter (e.g. Schwartz and Whitney) could not obtain convergence

past h æ 0.62. Previous estimates of the maximum wave steepness are therefore

not a reliable estimator of the most extreme lvave due to the non-monotonic na-

ture of the wave steepness. Extreme standing waves should be referred to in terms

of the crest acceleration, the crest angle or the crest curvature rather than the

'wave steepness as has been done previously. As the crest acceleration increases

the crest height above the mean level also increases, but very slowly for large crest

accelerations, while the downwards displacement at the trough attains a maxi-

mum aL A.: 0.8464 and then decreases as the crest acceleration increases. This

is possible because as the crest acceleration increases the crest becomes sharper

and narrower. This is highlighted by Figure 2.3 which is a plot of two profiles with

the same wave steepness, å : 0.6163, but very different shapes. The solid line is

the most extreme (reliable) profile calculated with .4" : 0.9900, and the dashed

Iine a less extreme profile with A" : 0.8870. Due to the sharper crest in the more

extreme profile it is lower than the less extreme profile over the range æ æ 0.05 to

r 
^r 

0.86 and higher elsewhere. The overall effect of this is for the more extreme

profile to have less fluid above the mean level than the less extreme profile and

hence is a lower energy solution. Figure 2.4 is a plot of the total energy versus

the crest acceleration. There is a maximum in the energy, E*o, : 0.07725 at

A. :0.8886 (h : 0.6167), a wave steepness which is just less than the maximum.

Figure 2.5 shows the period of the standing wave profiles minus 2n versus ,4.".

The period has a maximum of. Tr,"o" : 2r *0.2605 at A. :0.8893 corresponding to

a vrave steepness of. h :0.6168. This is the same maximum Schwartz and \Mhitney

found using a perturbation series approach. The period appears to have only a

single extremum; this is in contrast with the steady progressive wave case where

there is a succession of maxima and minima as the highest wave is approached.
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Profiles up to the limiting profile would need to be calculated to verify this.

2.3.3 Extrerne profiles

The most extreme profile I have calculated, that shown in Figure 2.3 as the

solid line, has some interesting features to note. This profile has qualitative simi-

larities with Taylor's (1953a) experimental findings close to the physical instability

he found in the \'üave profile (his figures 16 and 17 in particular). Quantitatively

these profiles differ due to the presence of surface tension, the difficulties of exper-

imental work and the fact that Taylor's experiments were carried out in a finite

depth tank (see 03.2.4 for a discussion of the changes to the extreme profile due to

a finite depth lower fluid). As first noted by Schwartz and \Mhitney standing wave

profiles above a certain wave steepness have more than one inflexion point. The

plot of the surface inclination for the most extreme wave calculated, the solid line

in Figure 2.6, clearly shows this. For this extreme profile there are 5 local maxima

in the surface inclination (with an indication of more developing at higher A").

The maximum inclination of 0 :50.4o occurs at n :0.0273. As the crest accel-

eration is increased the number of inflexion points in the surface profile increases.

The surface inclination for both ,4." : 0.2284 (h : 0.2000) and A" : 0.b$g0

(h:0.4000) have one maximumwhereas for A.:0.8870 (h:0.6f03) there are

two local maxima in the surface inclination.

The shape of the limiting free surface standing wave profile, conjectured to be

the profile having an initial crest acceleration equivalent to that of gravity, A" : I,
has been of interest for many years. Previous workers, Schwartz and Whitney for

example, have conjectured that the limiting profile has a cusped crest with an

enclosed crest angle of g0o, although no formal proof exists to verify this. The

work of Saffman and Yuen (1979) put the conjecture of a 90o crest angle in some

doubt but their conclusions'$/ere unclear as they did not consider pure standing

\Maves. They used two different approximations; firstly they prescribed an external

pressure to an initially flat surface for a finite time before allowing the wave to
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oscillate freely and secondly they used the fifth order expansions due to Penny and

Price. Neither of these approximations repeated exactly and hence are not pure

standing v/aves. The calculations performed here are in some respects a refinement

of the work of Saffman and Yuen as I calculate numerically pure standing waves

that repeat every period. My calculations indicate that the limiting profile is not a

simple shape with an enclosed crest angle of g0'. As mentioned earlier there seems

to be an increasing number of inflexion points in the profile as the crest acceleration

is increased. Figure 2.7 is a plot of the maximum surface inclination versus the

initial crest acceleration; note that a surface inclination of 45o corresponds to an

enclosed angle of g0o. Clearly the maximum surface inclination does not tend to

45o as A" tends to 1. Extrapolating the graph to A.: 1 (the dashed line in Figure

2.7) I obtain a surface inclination between 60o and 65' which correspond,s to an

enclosed crest angle between 50o and 60". However, the shape of the curve in

Figure 2.7 suggests that this extrapolation is at best only indicative. Indeed it is
conceivable that there is a maximum value for A.less than 1 and standing u¡aves

with even larger surface inclinations than calculated here may exist. Previous

estimates of the enclosed crest angle have extrapolated from considerably lower

crest accelerations, at best from the wave steepness maximum at A":0.9264, and

hence have been erroneous in their estimates.

I have not yet been able to calculate standing wave profiles with a crest

acceleration significantly larger than 0.9900 with sufficient degree of accuracy.

The inability of a finite number of mesh points to accurately describe the sharp

crest and the computational expense in increasing the number of mesh points

being the limiting factors. The exact nature of the limiting profile is still an open

question that needs addressing in the future. What is clear is that the limiting
profile is not a simple curve with a sharply peaked crest. The increasing number

of inflexion points in the profiles as the crest acceleration increases leads me to

believe that the limiting profile has a complicated structure probably with many
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small corrugations in the profile near the crest. The determination of the limiting

profile is an obvious area of further research. Although the method has only been

used here to calculate free-surface standing waves it has been formulated for an

arbitrary density ratio in the range 0 ( p < 1. This method could therefore be

used to calculate standing waves for other density ratios thereby clarifying and

extending previous results in this area marry of which have been inconclusive, for

example see Rottman (1982).

2.3.4 lJniqueness

Another consideration when calculating standing rvaves is whether the pro-

files calculated are unique and, if not, where are the other solution branches.

Resonant interactions are known to lead to multiple solutions in water waves.

Short-crested waves, in which standing rvr¡aves appear as a limiting case, were

studied by Roberts (1983b) and many harmonic resonances \¡/ere found. These

resonant interactions give rise to zero divisors in a perturbation series approach

which can be largely bypassed by using Padé summation. Linearly, deep-water

standing lÃ¡aves resonate with an infinite number of harmonics, cos(n2r) cos(nf).

Schwartz and \Mhitney avoided zero-divisors by requiring that the secular terms in

their series expansions be suppressed and then Padé summation lvas used to sum

the resultant series. Rottman showed that even with suppression of the secular

terms in the work of Schwartz and Whitney multiple solutions exist in the free-

surface case although no examples were given. Combination waves such as those

studied by Chen and Saffman (1979) in steady gravity-capillary v/aves could occur

for standing waves but I saw no sign of them. In all the calculations of standing

v¡aves I performed I had no difficulty following the reported solution branch up

lo A": 0.9900. Globally, alternative profiles with the same crest acceleration do

exist; the scaling analysis used later in Chapter 4 is a simple example of how to con-

struct a profile that will have a crest acceleration equivalent to a different profile.

The question that remains is: are there bifurcations that give rise to local multiple
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solutions? Fþom the superharmonic analysis given in $4.2 I obtain, in Figures 4.1a

and 4.1b, plots of the eigenfrequency of the modes versus the crest acceleration.

Local bifurcations in the solution are possible when the eigenfrequency of a par-

ticular mode passes through zero. Over the range of waveheights considered there

are two resolved mode-pairs (mode 4 and mode 24) thal have an eigenfrequency

passing through zero. The mode 4 crossing is at the energy maximum and leads to

an instability which is discussed in Chapter 4. No multiple solutions were observed

in the vicinity of the mode 24 crossing. This does not say that bifurcations do not

exist though. Harmonic stability calculations for larger crest accelerations than

that calculated in Chapter 4 may well indicate the existence of local bifurcations.

This is an area of further research. Chapter 4 also includes a subharmonic stabil-

ity analysis which shows the existence of subharmonic bifurcations. Th is will be

discussed in $4.3.

2.4 Conclusion and further work

2.4.L Conclusion

The wave steepness of the standing wave profiles was found to have a maxi-

mum value short of the most extreme profile which explains why previous methods

based on the wave steepness have been unable to obtain solutions close to the ex-

treme profiles calculated and presented here. Previous attempts at estimating the

limiting profile have incorrectly used wave steepnesses past this maximum and

have hence been erroneous in their prediction of the limiting profile. By using the

initial crest acceleration as the determining factor I have been able to accurately

obtain standing wave profiles with an initial crest acceleration up to ggTo that of.

gravity. This leads to new conjectures on the shape and dynamics of the limiting
profile.

2.4.2 F\rrther work

The exact nature of the limiting standing wave profile is clearly an area

still open to further research. Although the numerical method used here cannot
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be used to determine the limiting profile (due to the supposed singularity at the

initial crest) it has certainly given insights into the limiting profile and reopened

this area of study. Further work is necessary to fully understand the dynamics of

the standing waves in this extreme case.

Using this method it is possible to determine standing waves with different

density ratios between the two fluids. I expect this would clarify some previous

work in this area which used a perturbation series approach to the problem and

were inconclusive for some density ratios.

The numerical method used here has wider application than just studying

standing rvaves. Aperiodic motion such as the sloshing of fluids in a tank can

be studied by directly simulating the fluid dynamics. Also as an idealisation of

the forced response of a water tank, periodically excited standing waves can be

studied' These forced standing waves can exhibit chaotic behaviour in much the

same lvay as a forced pendulum does, Tsai ef øÍ (1990). It is expected that this

method could be used to model this behaviour.

The method can easily be adapted to study axisymmetric free-surface prob-

lems including axisymmetric free-surface standing v/aves and. waves generated by

a circular wavemaker. Extensions to the work of Tsai and Yue (1987) are expected

to be possible in much the same manner as extensions lvere possible to the work

of Vanden-Broeck and Schwartz (1981) for the two-dimensional case.

In Chapter 3 this method is extended to calculate standing waves on water

of a finite depth and in Chapter 4 the stability of deep water standing waves is

discussed.
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Figure 2.2: 'Wave steepness, lz, versus initial crest acceleration, ,4.", showing the

maximum of. h:0.6202 at A":0.9264.
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Figure 2.3: Two profiles with the same wave steepness, /¿ : 0.6163, but different

crest accelerations, A" :0.9900 and r4." :0.gg]0 ( - - - - ).
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Figure 2.5: Period of the standing r¡¡aves is r : 2n i T where ? is plotted as a

function of the initial crest acceleration, showing the maximum. of ? : 0.2605 at

A. :0.8893 (/z : 9.616t¡.
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CHAPTER 3

STANDING \MAVES ON .WATER OF FINITE DEPTH

3.1 Formulation and numerical method

3.1.1 Outline

The accurate calculation of the motion of a finite depth fluid has many prac-

tical uses. For example the sloshing of a fluid in a mixing tank or road tanker. Here

I will use a generalisation of the method described in $2.1 and $2.2 to determine

the motion of an interface between two fluids. The lower fluid being constrained

by two vertical plates and a flat bottom and the upper fluid constrained by the

same two vertical plates but of an infinite vertical extend above the interface. This

general method is then used to calculate standing rv\¡aves on water of finite depth.

The method is formulated for an arbitrary density ratio between the fluids (p) but

results are only presented for the free surface case (p: 0).

3.L.2 Finite depth changes

The same frame of reference as used in Chapter 2 is used here. The flat

bottom is defined to be a depth d from the undisturbed interface (the r-axis).

The bottom is a rigid impermeable boundary and hence we require the additional

constraint that there is no flow through the boundary y - -d. This is incorporated

into the scheme described in Chapter 2 using the method of images by including

vortices below U : -d which are the mirror image of those above U : -d. This

forces the bottom (A : -d) to be an impermeable boundary. The same imaging

as used in Chapter 2 fot the side walls is also used here. See Figure 3.1 for a

schematic diagram of the vortices and their images. The analysis follows exactly

that used in Chapter 2 except for the inclusion of the additional image vortices.

For this finite depth case equation (2.1.10) is modified to be

(#) r: 
-; 

l* ",l'"' (ry) - ** ('=t-)] t + h,(8 1 1)

where this integral is a Cauchy principle value integral, the negative alternative

gives the upper fluid's velocity and the positive the lower fluid's velocity. The
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overbars denote complex conjugation. Equation (2.1.11) becomes

N

o,r:*1" øjs - Z| cotZt¡ cot ( 2 )
Z¡ - Z¡ *2i

2
\o¡J (3.1.2)

(3.1.3)

(3.1.4)

1
+ ,(1+ o)o*

Discretising (3.1.1) and (3.1.2) as described in $2.2 and allowing for the

singularity a,t j : k, I obtain an equation for the velocity of the lower fluid particles

on the interface to be
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To determine the motion of a fluid interface where the fluid is bounded by

the vertical walls r : 0,, t : 7r and the rigid bottoÍTL ! : -d, solve (8.1.4) for

the vortex strength ø¡ and then substitute into (3.1.3) to calculate the surface
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velocities. Equations (2.1.2) and (2.1.8) can then be used to integrate forward in

time and determine how the profile evolves. Exactly the same method as used in

Chapter 2 is then used to calculate standing waves on finite depth water.

3.2 Results

3.2.L Accuracy and integral invariants

For consistency all results presented here were calculated using 64 mesh

points per wavelength unless stated otherwise. All calculations were carried out on

a SPARCstation 1*. As described in $2.3.1 for the infinite depth standing waves,

a variety of integration time steps and point distributions v¡ere used to ascertain

any discretisatiop or integration errors. For integration time steps between 0.02

and 0.08 and point distribution parameter B between 0 (points equispaced at the

quarter period) and 0.25 the profiles \¡vere found to be consistent.

The integral invariants described in 92.7.2 were used as a further measure

of the accuracy of the standing wave profiles calculated. For all the different

depths and crest accelerations used the largest error in the integral invariants was

2.5 x 10-6. Most errors in the integral invariants were considerably less than

this. The integral invariants are a good measure of the accuracy of the time

integration and so I am confident there is little contribution to the error from the

time integration. Better accuracy can be obtained by increasing the number of

mesh points, but this comes at the expenses of increased computational time.

3.2.2 Comparison to previous methods

The work of Vanden-Broeck and Schwartz (1981) provides a useful check

on the coding of the method presented here. Table 3.1 shows values of. wf as for

d: 3.0 with N :8,16,32,64 for various waveheights from 0.1 to 0.27 where ø is

the frequency of the wave and øs is defined by

,3: tanh(d) (3.2.1)

and is the frequency of the corresponding linear rvr/ave. Also included in Table 3.1
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a¡e the results of Va¡den-Broeck a¡d Schq'a¡Lz for JV : 8,12,16 s-here M is the

order of truncation of tbeir summations.

The present method has converged to ûve decimal places for all the ralues

of the waveheight considered u'hereas Va¡den-Bropck and Schwartzts results have

converged to four decimal places for l¿ < 0.2 and to three decimal places for

h > 0.2. The close agreement with the results of \¡a¡rden-Broeck a:rd Schs,artz

a.ud the convergence of the method presented here indicate that the method is

indeed coded correctly a¡d accurately calculates sta^nding waves.

Present Method Vanden-Broeck & Schwartz

h N:8 N:16 N 32 N:64 M:8 M:l-2 M:16
0.1

0.15

0.2

0.25

0.27

0.99878

0.99725

0.99514

0.99248

0.99126

0.99877

0.99724

0.99512

0.99243

0.99121

0.99876

0.99724

0.99512

0.99243

0.99120

0.99876

0.99724

0.99512

0.99243

0.99120

0.99877

0.99727

0.99520

0.99262

0.99143

0.99876

0.99724

0.99511

0.99241

0.99117

0.99876

0.99722

0.99505

0.99228

0.99096

Table 3.1: Values of af us for 0.1 < h < 0.27 and aarious N comTtaríng the

presenl rnethod, lo lhe work ol \land.en-Broeck and, Schwartz. 
¡.

3.2.3 l{armonic resonances

As first noted by Tadjbalhsh a¡d I(eller (1960) there are certain depths at
q'hich the linear theory does not have a unique solution. This is due to harmonic

resonance betu'een the fundamental rn'ave and its higher harmonics. This ¡r'as

extended by Marchant a¡d Roberts (1987) to the case of short<rested u,aves in
finite depth of u'hich sta:rding l\,aves are a limiting case. I u,ill use the notation of

\{archant and Roberts and so the resonarce due to the (rn, n)th harmonic

(3.2.2)sin(nzrul ) "o, 1,'' ¡ 
99{S'
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occurs at depths given by

ntanh(nd): *2 tanh(d) (3.2.3)

where n't,rn aîe integers, such that their sum is even and rz 1m2. As first argued

by Concus (1964) and extended to short-crested waves by Marchant and Roberts

(1987) the set of depths defined in (3.2.3) is everywhere dense in (0, oo). Therefore

any perturbation series based on the harmonics will have an everyu¡here zero radius

of convergence. Due to these harmonic resonances the standing wave profile is

not unique but, as described in Roberts (1981), the "distance" between different

solution branches in the region of the resonance is typically very small being of

the order o¡ ¿max(rn,')/3 where å is the waveheight. Most of these resonances are

therefore extremely weak and do not affect the numerical method outlined here

for the calculation of standing \¡/aves in finite depth. The dominant resonances

and hence the the ones where multiple solutions are most likely to be observed

are ones for which m and n are small; for instance (3, 5), (9,7), (4, 6), (4, 8) which

correspond to the depths d,:0.624,1.040, 0.386, 0.550. The depths at which these

harmonic resonances occur are derived from the linear theory and hence are only

accurate for small \I¡ave amplitudes. For larger wave amplitudes the harmonic

resonances still exists but the depths at which they occur will differ from that

predicted by the linear theory.

The effect of the harmonic resonance can be seen in some of the wave prop-

erties, for instance the frequency orwave energy. Figure 3.2 is a plot of the scaled

frequency, e/uo, for various fixed crest accelerations, A.:0.0b,0.10, 0.lb,0.20,

0.25 versus the depth d. The depths at which the dominant harmonic resonances

occur for the linear theory are also plotted. For small crest accelerations (and hence

small waveheights) the "width" of the influence of the harmonic resonance is very

small and hence only the strong harmonic resonances have any noticeable effect;

for instance the effect of the (3,5) harmonic resonance can be seen for A" : 0.05

and the (4, 10) and (3, 5) for A. :0.10. For larger crest accelerations the harmonic
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resonance has a wider effect and becomes quite noticeable, for instance the (3,7)

and (4,10) for A. : 0.15; the (4,74) and (3,7) for A. : 0.20 and A" : 0.25. I

was unable to follow solution branches lower in depth than those shown in Figure

3.2 for a fixed crest acceleration, the jump across the resonance \r¡as too large to

use the previous depth solution as a useful estimate for a lower depth. Instead,

to complete the calculation of profiles in both the depth and crest acceleration

parameter ranges, it was necessary to choose a depth, calculate the profile for a

small crest acceleration (say A, : 0.05) which will not differ much from the linear

theory and then use this as an estimate to increase the crest acceleration. This too

is subject to a similar problem as that encountered for a fixed crest acceleration

and variable depth as the depths at which harmonic resonances occur are not fixed

but vary with the crest accelerations, although in general this method has a lot

fewer resonances to contend with. Figure 3.3 is a plot of the scaled frequency,

ul,'so, versus the crest acceleratiot, A", for fixed depths d,:0.562, 0.693,0.799,

L.204,2.207, æ. Note that a similar scaling for the depth as used by Cokelet

(L977) has been used here: hence e-d :0.57,0.50,0.45,0.30,0.11,0. The graph

fot d : 0.562 has two solution branches in the range A. : 0.17 to 0.2g which

is due to the (5,13) resonance which occurs at a depth d, : 0.577 in the linear

theory. The graphs for the other depths shown may well have similar features but

the resonances are too weak to have a noticeable effect.

Due to these harmonic resonances there is not necessarily a unique profile

for a given value of the parameters. For example, Figure 3.4 show plots of two

different profiles for the same depth d, : 0.562 with the same crest acceleration

A. :0.18. This is in the range mentioned previously where the influence of the

(5,13) harmonic resonance is felt, the effect of the harmonic resonance is obvious

in the dashed profile.

3.2.4 Properties

As shown in Figure 3.2 the general trend for small crest accelerations, ignor-
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ing any local effects due to harmonic resonances, is that for a given crest accelera-

tion the scaled frequency of a standing wave increases as the depth decreases. This

is not true for large crest accelerations though, as is shown in Figure 3.3 where

for large crest accelerations (that is crest accelerations near unity) the scaled fre-

quency for the infinite depth case is greater than that for d : 2.207. Indeed, as

expected, for relatively deep water there is little difference in the infinite depth

profiles and the deep water profiles until the crest acceleration is near that due to

gravity, for example the plots of the scaled frequency for the infinite depth case

and d :2.207 differ very little for A" ( 0.7, it is only for A" > 0.7 that there is any

appreciable difference. This is a further reason why the work of Taylor (1953a)

incorrectly predicted the maximum waveheight for infinite depth standing waves.

He was using a finite depth tank with a depth in the present non-dimensional

units of approximately d,:1.48. For extreme standing v/aves this finite depth will

have an effect on the standing wave profile.

An interesting feature to note is that for crest accelerations near unity (when

it was possible to calculate standing wave profiles with large crest accelerations for

the given depth) each plot of.uf us has an extremum. For crest accelerations near

these frequency extrema there are also energy maxima in a similar manner to the

infinite depth case. From the theory of Saffman (1985) it is expected that these

finite depth standing \il'aves would have instabilities associated with these energy

maxima (see Chapter 4 for a discussion on the stability of standing waves in deep

water).

To second order Tabjbakhsh and Keller found that there is a critical depth,

d* x 1.07, such that "for depths greater than d*, the fluid behaves like a soft

spring, its free vibration frequency decreasing with increasing amplitude. For

depths shallower than d*, the fluid behaves like a hard spring, its free vibration

increasing with increasing amplitude." Using the high order perturbation series of

Marchant and Roberts (1987) an improvement on this was found to be d* æ 1.0b8,
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Marchant (1988). Although this is valid in the limit as the waveheight, and hence

the crest acceleration, tends to zero, there is no single depth at which the behaviour

of the frequency changes for all waveheights (crest accelerations). From Figure 3.2,

for crest accelerations in the range A":0.05 to 0.15, this critical depth is in the

range d : 0.96 to 1.01. This is in agreement with the experimental work of Virnig

ef ø/ (1988) who found, once their work is non-dimensionalised in the manner used

here, that the critical depth occurred in the range 0.907 to L.027. Their inability to

obtain frequency response curves within this range could be due to the relatively

strong (3,7) and (4,12) harmonic resonances that occur at depths predicted by

the linear theory of. d:1.040 and 0.973 respectively.

Now choosing a particular depth, d : 0.562, I will report on some of the

specific properties of the standing wave profiles in this depth. Figure 3.5 is a plot

of the standing lvr/ave profiles for four different crest accelerations, A":0.20, 0.40,

0.60, 0.80, for the fundamental wave, that is the profiles that are least affected by

the harmonic resonances. As the crest acceleration increases the crests heighten

and steepen and the troughs broaden. Similar to the infinite depth case the most

extreme profile calculated at this depth with a crest acceleration A":0.95, has a

humped appearance and a complex structure. The intricacies of which are evident

in Figure 3.6a a plot of the standing wave profile and Figure 3.6b a plot of the

corresponding surface inclination. The profile can be divided in roughly three

sections, a definite steep sharp crest for 0 ( z < 0.25, a broad hump for 0.25 <

n < L.25 and a wide trough for 1.25 1 n 1n. The broad hump and the trough have

a very detailed structure with the trough having a local maxima. This detailed

structure is necessary to obtain the correct crest shape at the half period.

This standing wave profile maintains a definite crest as the wave moves across

the tank. This is shown in Figure 3.7 which is a plot of surface particle trajectories

from ú : 0 to t : r 12. The surface particles which are initially between the crest

and the trough rise and fall and are moved across the tank as the crest moves
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through. This is clearly seen in Figures 3.8 which are plots of the velocity field

for ú : rf20,2rf20,...,,9rf20. For times near the quarter period there is a

pronounced central crest moving across the tank with an almost constant velocity

in a vertical cross-section below the crest. It is only near the half period where

the effect of the side wall forces this crest to rise and there is a pronounced vertical

velocity near the wall. This phenomenon of a pronounced crest moving across the

tank becomes more pronounced as the depth decreases. In the limit as the depth

approaches zero the standing wave can be interpreted as simply a solitary wave

bouncing between two walls.

3.3 Conclusion and further work

3.3.I- Conclusion

The method outlined in Chapter 2 has been extended to allow for a finite

depth lower fluid. Standing tv\¡aves on water have been calculated for various depths

and over a range of crest accelerations. Particular attention has been paid to

harmonic resonances and how these affect the standing wave profile. Multiple

solutions were found to exist near the resonant depths.

3.3.2 Further work

An obvious area for extensions to this work is to calculate standing waves in

shallower fluids than that considered here and to calculate more extreme profiles.

To accurately model these more extreme cases the number of mesh points used

needs to be increased which can become computationally expensive if implemented

over a wide parameter range. As mentioned in Chapter 2 for standing waves on

infinite depth water, different density ratios and surface tension effects could also

be included.

Further analysis is possible in the vicinity of the depths at which harmonic

resonances occur to fully investigate the behaviour of the standing waves near

these resonances and how they effect the stability of the standing rvr¡aves.
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Figure 3.1: A schematic representation of the vortices and their images in the

side walls (ø :0, zr) and the bottom (y - -d).
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CHAPTER 4

THE STABILITY OF STANDING \MAVES ON DEEP \MATER

4.1 General method

4.L.L Introduction

The stability of travelling water rryaves has been extensively studied.

Longuet-Higgins (1978a, 1978b) analysed numerically both the harmonic and sub-

harmonic stability from the exact water wave equations. Although the analysis is

restricted to discrete perturbatiorr lvavenumbers it does have the advantage that

it uses the exact equations. Crawford et al (7987) used an approximation due to

Zakharov (1968) to study the stability of weakly nonlinear lvaves. Mclean (1932)

used a numerical method based on a truncation of the Fourier modes to investi-

gate the stability of Stokes waves in infinite depth water. Since then much has

been done in the field of stability of travelling waves, see Tanaka (1985), Saffman

(1985), Mackay and Saffman (1986) and Kharif and Ramamonjiarisoa (1988, 1990)

for just some of the more recent contributions in this area. In contrast, very lit-

tle has been done on the stability of two-dimensional standing \Maves. Okamura

(1984) calculated the instability of weakly nonlinear standing waves using tlne Za-

kharov equation which is only valid for small amplitude standing waves. Here I

will analyse the two-dimensional stability of standing lr¡aves in infi,nite depth water

numerically for both harmonic and subharmonic stability.

One method of analysing the stability is to perturb the standing wave, inte-

grate forward in time and observe how each perturbation affects the fluid motion.

This is done systematically using a semi-analytic approach which is valid for small

disturbances of the standing \Mave.

4.L.2 The stability analysis

The standing wave profiles satisfy a nonlinear system of differential equations

which can be written abstractly as

âg 
- nrr..'t

ã : //(u), (4.1.1)
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where g comprises the unknowns ¡, y and / and where.Â,/ is a known nonlinear

operator (its numerical approximation is described in the earlier chapters). To

investigate the behaviour of perturbations to the known numerically-calculated

exactly periodic solution g" begin by defining

(4.1.2)

where u' is a small perturbation. Substitute this into (4.1.1), linearising, and using

the fact that g" satisfies (4.1.1) exactly to obtain

H :'co" (4'1'3)

where .C is the Jacobian of. N with respect to g. This is a system of linear dif-

ferential equations, with time dependent but periodic coefficients contained in ,C,

governing the evolution of any perturbation g'. Their behaviour will describe the

dynamics of all motion which is nearly the standing waves.

Now use Floquet theory to determine how the perturbations develop in time

(for an elementary introduction see Bender and Orszag (1978) 511.8). Let gl(ú) be

a complete set of linearly independent solutions to (4.1.3). The general solution

to (a.1.3) can be written as a linear combination of these linearly independent

solutions, namely

s'(r): f "nul(r) (4.r.4)
i

After one period r these linearly independent solutions at time ú * r must be able

to be written as a linear combination of the solutions at time ú, that is

s;(¿+"): D a¿¡e'¡(t). (4.1.5)
J

The matrix then formed from the coefficients o¿ij¡ J : lo¡¡1, governs the evolution

of all perturbations and so the eigenvalues of. J gives the growth/decay multipliers

of the perturbations and the eigenvectors corresponding to the unstable eigenvalues

will give the unstable modes. If. p,¿is the ith eigenvalue of .7 then

g:u"+u',

. log /r¿.\x- )
T
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is the average growth rate of the ith eigenmode. Thus it is easy to determine the

growth and decay of the perturbations to the standing \Mave: if the real part of

À¿ is positive then the perturbations gro\M exponentially in time and hence are

unstable; if it is zero then the perturbations are purely oscillatory; and if it is

negative then the perturbations decay exponentially.

By defining the linearly independent solutions of (4.1.3) to be such that they

are proportional to delta functions at time ú : 0, that is

(sl(o))¡ - ,6¿j, (4.r.7)

where e is a small number, then each column of the matrix I is found to be

1 (sl("))r,A¿kd: - (4.1.8)
e

where ui(r) is found by numerically integrating (4.1.1) for one period starting with

the perturbation given by (a.1.7).

4.2 }Iarrnonic stability

Using the above method the harmonic stability of the previously calculated

fundamental waves is investigated. It is ascertained whether or not the standing

\Mave profile is stable or unstable to perturbations with a length scale the same as

or less than the wavelength of the fundamental standing wave.

For all wave profiles with a crest acceleration less than 0.8886 (h :0.6167)

no harmonic instabilities were found. That is not to say they do not exist though,

there may well be bubbles of instability for A. 10.8886 but the range of crest

accelerations is expected to be narrow and the growth rates small. See Mackay

and Saffman (L986), their crossing (ii), for a discussion of this type of instability

for travelling waves. A more detailed investigation in the vicinity of any eigenvalue

crossings would need to be performed to ascertain the exact nature and strength of

any such instability. At A": 0.8886 there is a resonance between the fundamental

wave and mode 4 harmonic leading to an instability. See Figures 4.1a (low modes)
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and 4.1b (high modes) for plots of the eigenfrequency of each mode ( the imaginary

part of l¿) versus the crest acceleration. The onset of this instability occurs at the

energy maximum found earlier. This instability is expected as, from the theory of

Saffman (1985), there will be an instability at the energy extrema.

Both -l[ : 64 and -ll : 128 were used for the stability analysis. For all

but large crest accelerations both the -l/ : 64 and .l/ : t28 calculations v¡ere

in agreement. For large crest accelerations there were discrepancies between the

calculations for the very high modes. Although the linearisation assumption of the

analysis is still valid for large crest accelerations, as there are only small perturba-

tions to the standing \¡/ave profile, for large crest accelerations the nonlinearity of

the wave profile and the inability of a finite number of mesh points to accurately

describe the wave profile leads to some computational error in the high modes. For

large crest accelerations the /V : 128 results were used and checked using N : 256

calculations for specific crest accelerations. The stability analysis was stopped at

A. : 0.92 due to discrepancies in the -l/ : 128 and .l/ : 256 calculations. To

perform a stability analysis for larger crest accelerations l/ : 256 would have to

be used and checked using.lú : 512. Clearly a different method for calculating the

dynamics and stability of standing l'vaves is needed close to the limiting profile.

4.3 Subharmonic stability

4.3.L General analysis

Here the stability of standing waves to perturbations with a horizontal scale

greater than the wavelength of the fundamental wave is investigated - the subhar-

monic stability. There exists precisely similar standing rvr¡aves to those calculated

in the previous section in which the waveheight and length are each reduced by

a factor of rn and the period by a factor of 1fi,. I use n¿ suitably scaled profiles

over [0,2n] and perform precisely the same numerical analysis as for harmonic

stability. This enables the determination of how small perturbations can interact

among neighbouring waves and lead to instabilities. Using this analysis it is pos-
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sible to calculate the stability of waves to perturbations which have a length scale

up to rn times that of the base wave. This technique is similar to that used by

Longuet-Higgins (1978b) when studying the subharmonic stability of progressive

gravity waves.

4.3.2 Side-band instabilities

Choosing m : 8 scaled replicas of the original profile, each with a wavelength

åto of the original, it is possible to stud.y perturbations with a length scale up to

8 times the wavelength of the fundamental \r¡ave. All calculations were performed

with 64 mesh points per 8 scaled wavelengths for all wave steepnesses considered.

That is 64 mesh points over [0,2ø'] which has 8 waves each with a wavelength åto

of the original. They were checked using 32 mesh points and for specific wave

steepnesses using 128 mesh points per 8 scaled wavelengths. Plotted in Figures

4.2a ar,d 4.2b is the eigenfrequency of each mode versus the wave steepness. Figure

4.2a shows the long wavelength modes, the low wavenumber modes, labelled 1-

15 and Figure 4.2b shows the shorter wavelength modes, the high wavenumber

modes, labelled 16-31. The labelling is similar to Longuet-Higgins (1978b) Figure

5, where for example mode 7 corresponds to a perturbation with a wavelength

(817)'h of the fundamental wavelength. Figure 4.3 shows the real part of .\¿, the

average growth rate of each of the unstable modes, versus å, the wave steepness.

Af h : 0.093 modes 7 and 9 coalesce to form an unstable mode which, with

increasing \Mave steepness, restabilises at å : 0.382. Similarly modes 6 and 10

coalesce at h : 0.199 as do modes 5 and 11 at å : 0.335. There is evidence

that the (6, 10) instability will restabilise, as the (7,9) instability does, since the

growth rate of the instability has reached its maximum for the wave steepnesses

calculated here. The destabilisation of modes 7 and 9 near h:0.43 is discussed

later. These three instabilities are all side-band instabilities resulting from the

interaction of the base wave, mode rn:8, with modes m L 1., where I is integral.

It is expected that for higher wave steepness more of these side-band instabilities
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will occur. For example the eigenfrequencies of modes 4 and L2 are nearing as the

v¡ave steepness is increasing and these will probably coalesce to form an unstable

mode for a wave steepness higher than that examined here. The unstable region,

resulting from these side-band instabilities, is shown in Figure 4.2a as the shaded

region. The small amplitude shape could be given some asymptotic analysis. For

any given'wave steepness there appears to always be some unstable subharmonic

mode.

4.3.3 Other instabilities

A different instability from this side-band instability is evident in the coa-

lescence of modes 14 and 22. This gives rise to a short lived (in wave steepness)

instability with an overall growth rate lower than the side-band instabilities. The

(74,22) instability is a resonant triad interaction due to the integral linear combi-

nation of the mode numbers, 8+ 14 - 22, coinciding with the same linear combina-

tion of the eigenfrequencies. This is a relatively strong instability. There are many

apparent crossings of eigenfrequencies not all of which lead to instability. These

crossings fall into the three categories as defined by MacKay and Saffman (1986):

avoided crossings where the eigenfrequencies do not actually cross but avoid each

other; bubbles of instability where the eigenvalues coalesce and move off the imag-

inary axis resulting in an instability; and crossings that do not interact. The exact

nature of all the crossings here could be determined using the signature method

as described by MacKay and Saffman. Some of the crossings may well be bubbles

of instability but the range of wave steepnesses that they are unstable over must

be very narro\¡/ except for the shown (74,22) bubble instability. The side-band

instability is the dominant instability for all wave steepnesses considered.

4.3.4 Accuracy of calculations

Also plotted in Figure 4.2b arc the eigenfrequencies for modes 2 and 3 from

the harmonic stability analysis. These modes correspond to modes 16 : 2 x

8 and 24 : 3 x 8 respectively for the subharmonic stability analysis. For the
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harmonic stability analysis 64 mesh points per wavelength were used whereas for

this subharmonic stability analysis 8 mesh points per scaled wavelength were used.

Therefore the subharmonic stability analysis is subject to a larger computational

error than that found in the harmonic stability analysis as the wave profile is less

well represented when using this fewer number of points. The discrepancy of the

subharmonic mode 24 ar'd the harmonic mode 3 for large steepnesses is a measure

of this error. The computational error manifests itself as a non-physical instability

in the short wavelength (high wavenumber) modes which is apparent in figure

4.2b. As the wave steepness is increased these high modes become unstable after

their eigenfrequencies go to zero. The lower modes are still accurate even though

there is this computational error leading to high mode instability. The maximum

difference in the eigenfrequency of the subharmonic mode 16 and the harmonic

mode 2 is less lhan0.2Tofor h:0.5. All modes less than 16 are well represented

by this analysis for all the steepnesses considered. An exception to this is in the

brief interaction of mode 25 with mode 7 near h : 0.43. This is thought to be due

to computational error in mode 25 enabling it to interact with modes 7 and 9 and

is not a physical destabilisation of modes 7 or 9. These modes restabilise once the

eigenfrequency of mode 25 has reached zero.

Calculation lvas stopped at h : 0.53 due to the poor resolution of higher

Ivaves when using 8 mesh points per scaled wavelength. To calculate the subhar-

monic stability of higher (more extreme) profiles more mesh points would need

to be used to accurately represent the 8 scaled replica profiles used over l},2trl.
Computational power was a limiting factor here. These calculations were checked

using 128 mesh points for specific 'u/ave steepnesses and found to be consistent.

Shown on figure 4.3 are the growth rates of the corresponding unstable modes

using l/ : 128, h :0.25.
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4.4 Conclusion and further work

4.4.L Conclusion

The stability of standing waves to both harmonic and subharmonic pertur-

bations was discussed, There are similarities between the stability of standing

Ìvaves and that of progressive waves. Both are stable to harmonic perturbations

except for steep waves, with possible narrow bubbles of instability and both are

unstable to subharmonic perturbations. In accordance with the theory of Saffman

(1985) there is a harmonic instability at the energy maximum. For any given wave

steepness there is always some unstable subharmonic mode. In general the growth

rate of the instability increases as the wave steepness increases.

4.4.2 Further work

An obvious area for extension is to increase the number of mesh points

used over [0,211, thereby reducing the computational errors in both the harmonic

and subharmonic stability analyses. This of course comes at the expense of an

increase in computational effort. For the subharmonic case increasing the number

of mesh points used allows two areas of extension. Firstly, the same number

of scaled replicas can be used (rn : 8 in this case) with more points used per

replica enabling the subharmonic stability of more extreme standing waves to be

determined. The second is to increase the number of replicas used and therefore

allowing more modes and their interactions to be calculated. It is expected that

more of the side-band instabilities would be found and probably more interactions

like the (14,22) instability. Using the signature method of Mackay and Saffman

(1986) and a more detailed analysis near the eigenvalue crossings, the type of

crossing could be determined. \Mhether they are avoided crossings or bubbles of

instability would be of interest.

It would be straightforward to use this method to calculate the stability of

standing waves on water of a finite depth as calculated in Chapter 3, the major

constraints being the large parameter space and computational time. It is expected
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that standing waves on finite depth water would exhibit similar properties to

standing \'/aves on infrnite depth water but modified by the resonant depths. A

stability analysis near the depths at which the dominant harmonic resonances

occur may well give new insight into the dynamics of the standing waves near

these resonant depths.

The stability analysis used here is restricted to two-dimensional perturba-

tions. In a similar manner to travelling vraves, Mclean (1982), it is expected that

the dominant instability for extreme standing \,'r'aves would be three-dimensional.

The experimental work of Taylor (1953a), his figures 19 and 20 in particular, cer-

tainly suggests that this is the case. A three-dimensional stability analysis of the

extreme standing waves would need to be performed to clarify the nature of any

instabilities and to determine the associated growth rates.
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CHAPTER 5

INTRODUCTION

In this second part of this thesis I will consider the dispersion of a passive

contaminant in channels and pipes. The majority of the work presented here has

been published in Mercer and Roberts (1990) for the channel case and presented

in Mercer and Roberts (1992b, 7992c) for the pipe case. When a contaminant

is first released into a channel or pipe it spreads across the channel or pipe and

is advected downstream at the different rates of the velocity profile. This en-

sures that the distribution of contaminant is soon relatively smooth. Once the

contaminant has reached a smooth state downstream of the pollutant source its

concentration evolves relatively slowly. The long-term evolution of a passive con-

taminant released into a straight channel or pipe will eventually be governed by an

appropriate advection-diffusion equation, where the effective diffusion coefficient

is obtained from the addition of the longitudinal dispersion and shear dispersion

coefficients. This slow evolution is precisely the type of situation to which centre

manifold theory may be applied. I will not provide a synopsis of centre manifold

theory here, see Carr (1981) for an excellent introduction.

Centre manifold theory, and the related invariant manifold theory, have been

used in a variety of other areas in mechanics including: the instabilities and chaos

which occur in Couette-Taylor fl.ow, see Chossat and Iooss (1985) and Laure and

Demay (1988); the dynamics of convection, see Roberts (1991a); the dynamics

of viscous fluid flow, see Chang and Chen (1936), Chang (1939), Hwang and

Chang (1989) and Renardy (1989); the analysis of the Kuramoto-Sivashinsky

equation which is used to model flame fronts, directional solidification and weak

two-dimensional turbulence, see Armbruster et aI. (19s9), Foias et aL (198b,

1988) and Oats and Roberts (1992); elasticity of beams and rigid bodies, see

Mielke (1988, 1991) and Roberts (1992) to name but a few of the many and varied

applications of this theory.
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Initially for both the channel and pipe cases I will derive high order models

of the longitudinal dispersion of a passive contaminant in Poiseuille flow using cen-

tre manifold theory. Similar approximations for either the channel or pipe cases

can be obtained by using the integral moments, see Aris (1956), or an asymp-

totic series analysis, as given by Chatwin (1970). A multiple scales approach has

been used by Pagitsas, Nadim and Brenner (1986) while Gupta and Bhattacharya

(1983) used a probabilistic approach. More recently Stokes and Barton (1990)

used an eigenvalue method incorporating Laplace and Fourier transforms. One

advantage of this centre manifold approach is the ease with which these high order

approximations are derived, as once the problem has been formulated in a centre

manifold framework it is a purely mechanistic process to obtain approximations

to any desired order of accuracy - Iimited only by computational po',¡/er.

In Chapter 6 shear dispersion in channels is considered. I study the disper-

sion of a contaminant in a two-dimensional channel and so the governing equation

is the two-dimensional advection-diffusion equation. The two-dimensional chan-

nel serves as a model of the depth-averaged equations for dispersion in flowing

water bodies that are relatively shallow, such as flow in rivers or estuaries. The

basic assumption is that the solution is slowly varying in æ, that is, the small

parameter of the problem is 010æ or, equivalently, the wavenumber k. I derive

a 24th order model for the evolution of the mean concentration of contaminant

and indicate the range of validity of the approximation by showing the sequence

of asymptotic approximations actually converge.

One of the powers of this centre manifold approach is the ease with which

generalisations can be incorporated into the centre manifold framework. I consider

the problem of dispersion in a varying channel flow with a plane Poiseuille velocity

profile (which is appropriate if the diffusion of momentum is signifrcantly faster

than the diffusion of contaminant, and in any case serves as a model for other

velocity profiles). I let the sides of the channel be a slowly varying function along

63



the stream, the flux of the fluid be a slowly varying function of time and the

diffusivity be a slowly varying function of both space and time. The effects of the

space- and time-variable diffusivity can be used to model swirl flow associated

with bends in channels and pipes or areas of turbulence. I investigate the effect

that such varying flow properties have upon the asymptotic equation describing the

long-term dispersion of the contaminant. In particular I address the outstanding

problem, as noted by Chatwin and Allen (1985), of what modifications should be

made to the advection-diffusion equation when the cross-sectional area and fl.ow

properties are not constant. By rewriting the evolution equation in a conservative

form the memory effect of the dispersion process is also highlighted.

Chapter 7 is concerned with shear dispersion in pipes. The initial analy-

sis is similar to the channel case except the three-dimensional non-axisymmetric

advection-diffusion equation is used with an axisymmetric Poiseuille velocity pro-

file. Again a,24th order model is derived and its validity is discussed. A quantita-

tive limit of resolution for high order Taylor models of shear dispersion in pipes is

derived.

I formulate a conservative, non-negative finite difference scheme which

matches the evolution equation to a predetermined order of accuracy. The limi-

tations imposed on such a numerical scheme by considering the higher order ap-

proximations to the evolution equation are discussed.

The appropriate initial condition to be used for the Taylor model of shear

dispersion in a pipe is determined within a centre manifold framework. The com-

monly used initial condition, which consists of simply taking the cross-sectional

average of the exact initial condition, is shown to be just a first approximation to

the correct initial condition. Corrections are found which have to be used so that

the model partial differential equation accurately models the evolution of the exact

solution. Using the correct initial condition it is possible to predict the observed

phenomena of centroid displacement and variance deficit. This was previously not
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possible within the Taylor model.

Centre manifold theory also provides a framework for the derivation of

asymptotically correct boundary conditions for these simplified models of disper-

sion. I calculate the appropriate inlet and outlet boundary conditions for a pipe of

finite length. The outlet boundary condition is compatible with the exit boundary

condition derived by Smith (1988). These boundary conditions at the inlet and

outlet may be derived such that the solution of the model differential equation is

consistent with the exact solution to an arbitrarily high order of accuracy.

In a similar marlner as in Chapter 6 for the channel case, I generalise within

the centre manifold framework to include a slowly varying pipe radius along the

stream and a flux which varies slowly with time. These generalisations are easily

incorporated into the centre manifold framework whereas previous methods cannot

accommodate such generalisations. The resultant modifications to the advection

velocity and effective dispersion coefficient are calculated.
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CHAPTER 6

SHEAR DISPERSION IN CHANNELS

6.1 Constant cross-section

6.1.1 Formulation

I begin by studying the dispersion of solute in a constant width channel

which has boundaries given by y : *ó. See Figure 6.1 for a schematic diagram.

As the starting point for the analysis take the two-dimensional advection-diffusion

equation

H *o.(q") - v .(rcVc). (6.1.1)

Here rc is the diffusivity (assumed constant in this section but this restriction will

Iater be relaxed), c is the concentration of solute and q is a given velocity profile.

The fluid is assumed incompressible and the advection velocity is taken to be solely

in the the ø direction (along the channel) but varying with y (across the channel);

that is, the velocity field is

q: u(v)i. (6.1.2)

This is subject to the condition that there is no flux of solute through the bound-

aries which for a straight channel just gives

0c
aa 

:0 on u : tb. (6.1.3)

By noting that the dominant mechanism of cross-channel diffusion in equa-

tion (6.1.1) is represented by the 02cf 0y2 term I can rewrite equation (6.1.1) in

the form

- 0" ,,0" 02cLt: o, ¡ "(a) a* - " a*r, (6'1'4)

where ,C is the operator defined by

L": oa:;. (6.1.5)
oa'

As is well known (Taylor (1953b)), the combined effects of advection and

diffusion smooth the concentration c until it reaches a stage where it is nearly
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constant across the channel at any station ø and slowly varying along the channel.

The concentration then evolves relatively slowly as the contaminant spreads along

the channel while maintaining a state of near constant concentration across the

channel. This is a relatively simple state of the full system and a good measure of

the detailed distribution of the contaminant is simply its cross-sectionally averaged

concentration. Thus the long term evolution of the contaminant is primarily given

by the evolution of this averaged concentration. This is precisely the sort of

situation to which centre manifold theory may be applied, see Carr (1981).

6.L.2 The rigorous centre manifold approach

Centre manifold theory cannot yet be applied both rigorously and directly

to the above equations. However, if I take the Fourier transform of the equations

with respect to o, then the state of having only slow variations with respect to r
corresponds to small wavenumber k. The wavenumber thus turns out to be the

small parameter in this problem.

Taking the Fourier transform of (6.1.a) and denoting transformed quantities

by ^ Ifind
aê'Lê: fi +;*"ço)ô+ rck2ê,. (6.1.6)

Now I am only interested in small wavenumbers k, that is, slowly varying solutions

so I adjoin the equation
ak-at : o (6'1'7)

to equation (6.1.6). This allows the application of centre manifold theory to the

system (6.1.6) and (6.1.7) by treating the terms frê and Ie2ê as "nonlinear" terms.

It has been shown, Mercer and Roberts (1990) $2.1, that this system is

now in a form where centre manifold theory can be applied directly. Rather

than follow this rigorous approach I choose not to transform to Fourier space.

Hence the following derivation is not directly rigorous though it can be made so

by transforming into Fourier space. The benefit of not transforming into Fourier

space is that I will always deal with familiar physical variables and it can be more
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easily generalised to cope with practical complexities which are discussed in later

sections.

From Mercer and Roberts (1990) the centre manifold is reached exponentially

quickly in a time which is estimated by the least negative eigenvalue of ,C which

ir 7 - t<,r21(4b2). Therefore the state of balance of being on the centre manifold

is attained in a cross-channel diffusion tirr'e b2 f rc.

6.1.3 The formal centre manifold approach

Applying the formal centre manifold procedure, see Roberts (1988), I assume

that the concentration c may be described by

c: Vly,Cl,

where C is the cross-sectionally averaged concentration of solute and its evolution

in time, and indirectly that of c, is described by

.:Vla,Cl - Ë ,,{ùffi
n=O X:ctcl -Ën:l

(6.1.8)

(6.1.e)

anc
9n (6.1.10)

#:"r,
In (6.1.8) and (6.1.9) the square brackets are used to denote a functional de-

pendence in ø upon not only the argument C but also upon its slow derivatives

with respect to ø. For example G[C] indicates that G depends upon C,1Cf 0u,

02Cf 0æ2,....

I substitute the asymptotic expansion

such that
0nn

into (6.1.4) and equating all terms of the same order obtain the sequence of equa-

tions
Lus-0

Lut-uohlu(A)uo
(6.1.11)

tun - Dun-rn, 4- u(y)ur-t - KUn-2t n : 2,8,. . .

2:l
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Observe that the expansion in (6.1.10) is linear in C, this is consistent as the orig-

inal problem (6.1.1)-(6.1.3) is linear. If there were nonlinear reactions involving

the contaminant, for instance chemical reactions, then the asymptotic expansions

would have to be of a more general form.

Solving the first equation of (6.1.11), subject to the boundary conditions, I

obtain

uo : l-. (6.1.12)

Substituting (6.1.12) into the second equation of (6.1.11) I obtain the equation

Lu1 : 9t -l u(y). (6.1.13)

Integrating this across the channel and using the boundary conditions ff : 0 on

U: Ib I find

gt: -U, (6.1.14)

where [/ is the cross-sectionally averaged advection velocity.

Substituting this into (6.1.8) and (6.1.9) I then obtain the first approximation

c(t,y,t) : c(n,t) where # * r# : o. (6.1.1b)

The evolution of C is thus governed by just the simple advection equation giving

that the cross-sectionally averaged concentration advects with the mean velocity of

the fluid flow. This is of course the commonly used first approximation for channel

flows of this type. One of the failings of the pure advection model (6.1.15) is that

it is structurally unstable; that is any small change to the equation may (in time)

produce a large change to the solution. Taylor (1953b) derived an appropriate

diffusive correction to (6.1.15) via heuristic arguments to obtain a structurally

stable approximation.

To proceed further by the centre manifold approach it is simply a matter of

solving the equations (6.1.11) in succession, using the boundary conditions and the

additional constraint that the cross-sectional averages of the urr's must be zero (for
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n : 1¡2,. . .). The right-hand side of (6.1.11) incorporates all the other physical

mechanisms of the full problem. These interact through the hierarchy of the

equations and hence the heuristic arguments of Taylor are not needed in deriving

this approximation. It is simpler to calculate the higher order approximations if I

fix upon a particular velocity profile. As a simple model for actual velocity profiles

that occur in rivers and channels I will choose the plane Poiseuille flow

u(y) : T, f, - Y'), (6.1.16)

where Y : V lb is a nondimensional distance from the mid-channel. Proceeding as

prescribed above I find successive asymptotic contributions to V and G by solving

(6.1.11) and obtain

ub2,D1 : --- (trv4 - 3oY2 + 7)- 720rc \

2U2b2t.r:K+- ' 105rc
(6.1.17)

u2b4
u2 : ,ffi (ozrr8 - 2940Y6 + 3570Y4 - 1020Y2 - 29) .

So to second order I find that the evolution of the mean concentration is approxi-

mated by

X - -uc' + (^ *'!!) c". (6.1.18)

Comparing these to the work of Smith (1931) in his Section 8 where he studies

shear dispersion of plane Poiseuille flow between plates of separation 2d,I see that

these second order approximations are exactly the ones he derives in his equations

(8.8) and (8.9) for the shape function and dispersion coefficient. The functions

"t(A) and u2(y) given in (6.1.17) show how the details of the concentration distri-

bution are modified by the large-scale gradients along the channel.

6.L.4 High order approximations

I now wish to ascertain the range of validity of the approximations for

Poiseuille flow and determine whether or not a finite truncation of the evolu-

tion equation is justified. This is relevant as (6.1.18) is frequently used to predict
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contaminant dispersion in rivers and channels. It is therefore important to be able

to estimate over what length-scale such truncation of the full equations is valid.

The evolution equation can be written in the form

X : -uX* o#.åË A,(bP.)'#, (6.1.1e)

where

D: rc+2+!,, (6.1.20)' 105rc '

is the effective dispersion coefficient, the -A.r,'s are the numerical coeffi.cients ob-

tained from the gr,'s, and P" - Ubln is a Peclet number. This is a higher order

Taylor model of shear dispersion. It has been derived by a number of workers, but

usually in a more complicated form involving time dependent coefficients, see Gill

and Sankarasubramanian (1970, 1971) and De Gance and Johns (1978) for exam-

ple. The time-dependent coefficients appearing in the above papers are primarily

needed to predict physical features in the dispersion which, from a centre manifold

point of view, can be predicted by supplying the evolution equation (6.1.19) with

the appropriate initial condition. This will not be discussed here, see Mercer and

Roberts (1990) $2.3 for a detailed discussion of the appropriate initial condition

for the Taylor model of dispersion in channels. The initial condition for models of

dispersion in pipes is discussed in Chapter 7.

Taking the Fourier transform of this equation with respecl, to æ I obtain

ac/oo\
# : ( -u;n + D(iÐ2 * #>, A,(p.;r,q'I c, (6.1.21)'Ú\n=B/

where ô i. th" Fourier transform of. C. \Mhat is of interest is the convergence or

otherwise of the porü¡er series with coefficients An. If. this power series is divergent

then I will have shown that a finite truncation of the evolution equation can at

best be an asymptotic description of the evolution of the system. Alternatively, if
the power series converges then the evolution equation (6.1.19) is convergent for

sufficiently smooth distributions of contaminant and hence a useful approximation

77



to the evolution can be obtain by truncating this equation at some finite order.

Also, from the radius of convergence, some idea of the length-scale in which the

original assumption, that S i. " "small quantity", is valid can be obtained.

Calculating the coeffi.cients ,4.,, up to the 24th order, using the computer

algebra package REDUCE, I find that they approximately follow the pattern of

signs f + - - + + - - ... which indicates that the radius limiting singularity is

close to the imaginary axis. The first seven coefficients are

As:2.3088 x 10-4,

A+: -2.8416 x 1'0-5,

As: -1.0523 x 10-6,

Aa :8.3626 x 10-8,

Az :5.6525 x 10-e,

Ae: -2.7333 x 10-10,

As: -3.1659 x 10-11.

By examining a model function whose power series has a similar behaviour, and

hence a similar singularity, it is possible to determine the position in the complex

(ik)-plane of the corrvergence limiting singularity. The details of this are described

in the appendix of Mercer and Roberts (1990). Figures 6.2(a), (b) show the results

of this comparison. From these plots the radius of convergence in tlne (ikbP")-plane

is .R" : 11.8 and the angle from the real axis of the conjugate pair of singularities

is d : +82'.

The power series (6.1.21) will converge if the only non-zero Fourier compo-

nents satisfy

lbP.kl 1R.. (6.I.22)

Recognizing that k is equivalent to 2tr lL where .t is a typical small longitudinal

length in the original problem rearrange (6.L.22) to obtain

LrT=( P"
b.

1.9
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So, provided the smallest longitudinal length-scale of the problem satisfies (6.1.23),

the asymptotic series (6.1.19) is convergent and a finite truncation of this equation

is justified. It should be noted that because the convergence limiting singularity is

in the complex plane it has no direct physical significance to the original problem.

Also, the convergence of the series does not guarantee that a given truncation of

(6.1.19) will lead to a concentration that is always nonnegative.

For the approximations to be valid, flows with large Peclet number need

to vary over a large length-scale. The smaller the Peclet number, the faster the

solution can evolve over the same length of channel. The limitation given by

(6.1.23) should be recognized by practitioners working in the field of contaminant

dispersion. A quølitafiue version of this limitation has been known for a long time,

see Taylor (1953b, 1954). However, this is the first quanti,tatiue estimate for the

length-scales in this sort of problem. For length-scales not satisfying (6.1.23), a

finite truncation of the evolution equation does not necessarily model features of

the contaminant dispersion. Care must be taken when considering these types of

dispersion problems that the resolved length-scales are not too small.

6.2 Varying properties

6.2.L The asymptotic scheme

As noted by Chatwin (1980) the often used Taylor approximation for disper-

sion problems does not hold when the channel is not of a constant cross-section.

I will systematically derive approximate equations that are valid when the cross-

section, flux and diffusivity all vary. This centre manifold approach thus provides

the methodology to appropriately model dispersion with such variations, an out-

standing problem according to Chatwin and Allen (1935).

\Mhereas previously the sides of the channel were parallel, I will now let them

b" y - +ó(r) where ó(r) is a slowly varying function of r; that is, a derivative of

ó with respect to u is also considered to be a "small quantity". The flow flux is

allowed to be a slowly varying function of time and hence a derivative of the flux
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with respect to f is likewise considered to be a "small quantity". The prevrous

restriction of constant diffusivity rc is also relaxed, and rc is now considered a slowly

varying function of space and time, although constant across the channel. These

are collectively called "variations in the media", as in essence they are variations in

the coefficients of the problem. I am interested in the effect that such variations in

the media have upon the centre manifold and the evolution on it, and hence in the

effect of such variations upon the long-term dispersion of the contaminant. I will

primarily restrict my attention to the effect the media variations have upon the

mean advection and shear dispersion of the contaminant as these are the dominant

processes modelled in many applications.

The dispersion of a contaminant in an estuary is one example where the

effects of the varying media are very important. An estuary has a varying cross-

section due to the widening or narrowing of the estuary. Tidal fluctuations also

introduce a flux variation which will alter the dispersion of any contaminant.

Changes in the velocity of the flow also alters the local turbulence which will

in turn alter the turbulent diffusivity. To be able to accurately model dispersion

of a contaminant in an estuary all these factors should be taken into account. Here

I derive the necessary approximations to be used for the case of channel fl.ow; in

practical calculations the overall approach will be the same, it will just be the

details which will differ.

To simplify the analysis I choose to exclude the longitudinal diffusion terms

and retain only the cross-stream diffusion term represented in equation (6.1.1) by

"#. The velocity profile is no longer solely longitudinal, but has a transverse

component due to the efiect of the varying width of the channel. I will consider

quasi-Poiseuille flow in the channel, the stream function for the velocity profiie is

given by

r'(¿)
4

(6.2.1)rþ: (ar - r3) ,

where f(ú) is the flux of the advecting fluid, and Y : ylb(r) is a scaled cross-
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stream coordinate. For the case of a constant width channel and constant flux,

this reduces to exactly the plane Poiseuille flow considered in the previous section

with the flux .F :2Ub.

Equation (6.1.1) now becomes

(6.2.2)

\Mhere .C is again defined by (6.1.5) and u and o are the velocity components in,

respectively, the r and g directions, which from the stream function are

(t -v') SFbl
4l 

- -- 4b
(r-r') . (6.2.3)

In the general case, where longitudinal diffusion is included, the boundary condi-

tion would be
ãc

A,, 
:0 on A : Ib(x), (6.2.4)

where n is the outward normal to the boundary. However, since I have chosen

to ignore the u component of diffusion in order to conserve contaminant, the

boundary condition remains (6.1.3).

As I am dealing with quantities assumed to be varying slowly in space and

time, I now assume that $ and f; are "small quantities". I apply the centre

manifold ansatz (6.1.8) and (6.1.9) including the variations in the media, and seek

an asymptotic approximation of the form

c:vla,cl - Ë v.la,cl such rhar X : Glcl -Ë "",",. 
(6.2.b)

n:0 - n:l

In these asymptotic sums each term V" and G' contains all the terms of order n;

that is, it contains all terms that have a total of precisely n space-time derivatives.

Substituting (6.2.5) into the governing equation (6.2.2) and equating terms

of the same order, I obtain the system of equations

LVo :0

LVn :ä#c' +,avl* *"T n:1,2,...,, (6'2'6)

t:

^0c0c0cLc: at+" a**'u,

3,Fu: 
4b
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where # i" a Frechet derivative which depends not only on C but also its deriva-

tives with respect to r. These equations can be solved in succession to obtain Vn

and G' to any desired order.

6.2.2 Correction to the advection velocity

Solving these equations for the first correction I obtain the centre manifold

to be

c-Vo +Vt +V2

- c - *Qrn^ -BoYz +T)ct

- * (oz',8 - BZ8'vd + 7770y4 - 6e00v2 + L2rr) c'
-¿

- ,-*t (z16 - to5y4 + r47y2 - gr) c'
Ê2

- ,fu* (azsvg - 2s40r'6 + 3570r'4 - to2or'2 - 29) c"

b2

K

FbÈ-_t- 2*'

(6.2.7)

(6.2.8)

(6.2.e)

where

and

and where differentiation with respect to time is denoted by an overdot and spatial

derivatives by a prime. r is a cross-channel diffusion time and { is a downstream

advection distance in a cross-channel diffusion time. These two quantities are

the basic variables of shear dispersion and most of the results will be expressed

in terms of them. The first two terms and the last term of (6.2.7) are just the

non-varying terms calculated in Section 6.1. The effects of the variations in the

media on the concentration of the contaminant can be seen in the third and fourth

terms of the right-hand side of (6.2.7).

The evolution of the cross-sectionally averaged concentration along this cen-

tre manifold is found to be given by

AC

At -Gr+G2

: -fic'+ ffic" +l
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where Flzb : U the cross-sectionally averaged velocity. This equation can be

rewritten as

(6.2.10)

Here the main effect which the varying cross-section and diffusivity has upon

the advection of the cross-sectionally averaged concentration can be seen. (This

provides information on how the averaged concentration of the contaminant evolves

along the channel, but in its present form does not directly indicate how the actual

contaminant material is evolving. This is treated in Section 6.2.4 where I consider

the conservative form of the equations and investigate how the density of the

contaminant evolves along the channel.) The advection velocity, U : (fr, is

modified by the factor (1- (21105)€') : [1 - (F/105)(bl n)'l1, so that if the channel

is slowly widening downstream then the effective advection velocity is less than

the local mean velocity; and if it is slowly narrowing then the effective advection

velocity is higher than the local mean. However, this is a little misleading as in

Section 6.2.4 the opposite effect in the conservative form of the evolution equation

is observed.

The effect of varying diffusivity is opposite to this; for example, if the cross-

stream diffusivity rc is increasing along the channel then the effective advection

velocity is heightened. This may be expected, since an increasing longitudinal

diffusivity will spread the front of any contaminant pulse faster and hence heighten

the average velocity of the contaminant. No time variation in the flux of the

advecting fluid will affect the evolution to this order.

6.2.3 Correction to the dispersion coefficient

Changes to the shear dispersion coefficient, and higher order corrections to

the advection velocity, can be obtained by calculating the next correction to the
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evolution, namely G3. On doing this I obtain

X - -f [t - fte' * #(ss (e'(r"s ')')' -4(€(')'+ ss1"e¡')] c'

. # lt. # (nr(¿lr)' -T€' - 11r(rogo')] c" + ffi;c"'.
(6.2.11)

From this it can be seen that the evolution on the centre manifold has been further

refined, with the effects of the varying flux and diffusivity evident in the advection

velocity of the mean concentration and the shear dispersion coefficient through

their dependence upon the derivatives of ( and r. To this order the local shear

dispersion coefficient, which to leading order is Z(2 lnfr, is lessened if the channel

is widening and heightened if the channel is narrowing. This effect occurs in all the

shear dispersion coefficients which I have found and may be explained as follows:

in a narrowing channel, for example, consider a line release of contaminant at

the left end of a length of channel. If there were no cross-stream diffusion then

the contaminant near the bank travels slowly, stays near the left end for a long

time, experiences a slower net velocity there when compared to a channel of the

same average width, and hence lingers at the left longer (in this comparison). The

converse is true for the contaminant released near the channel centre. Hence, the

concentration in the tails of the contaminant distribution is higher, and thus the

shear dispersion coefficient is larger than that for a straight channel.

Once again the effect of the variable diffusivity, this time on the effective

diffusion coeffi,cient, is opposite to that of the breadth variations. This can be

seen to be reasonable by again considering a line release in a straight channel

where the cross-stream diffusivity n(xrt) decreases downstream. Over a shear-

dispersion time-scale r and length-scale ( the contaminant cloud, especially in the

initial stages, experiences more of the larger K near the release than the smaller

rc downstream. Thus the shear dispersion, which is inversely proportional to the

cross-stream diffusivity rc, is lessened if rc is decreasing.

Time variations also have an effect upon the coefficients of the evolution
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equation (6.2.11) but it is difficult to explain, from a physical point of view, how

these arise. The only term in the advection velocity which depends upon time

variations is in the form (ri)', and so there is no effect unless the time variations

also occur in conjunction with downstream variations. However, the shear dis-

persion coefficient has an adjustment proportional to -(l"g()', and so the shear

dispersion is lessened if the diffusivity rc is decreasing in time or if the flux ,t'

is increasing. Since the shear dispersion is predominantly proportional lo Fz f rc,

this indicates that it is the earlier values of ,F(t) and rc(t) which are important in

determining the shear dispersion at any given time. This "memory effect" will be

discussed further in Section 6.2.5.

Higher order corrections to the above equations can be calculated, the only

difficulty being the enormous complexity of the algebra involved. The above anal-

ysis reinforces that { and r are fundamental meastlres of the local shear dispersion.

This is expected since these represent the basic mechanisms of cross-channel dif-

fusion and down-stream advection which combine to give the shear dispersion.

6.2.4 The asymptotic equation in conservative form

Here I rewrite the evolution equation in a conservative form, which can

always be done as the total amount of contaminant is a conserved quantity. Hence

its one-dimensional density

C :2bC, (6.2.12)

must satisfy a conservation equation

0, (6.2.13)

where .F is the total flux of contaminant past any given cross-section. The evo-

lution of this one-dimensional density gives how the contaminant pulse evolves

rather than the cross-sectionally averaged concentration of the contaminant. This

is a more relevant quantity in many physical circumstances. The formulation as a

conservative equation also provides a further check on the algebra.

ac
At

+
AF
A.
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Upon multiplying (6.2.11) by 2b and rearranging I find the flux is

r :l ['- #" (:)' - #(n,rr',' -  t(2(rosr)t,

F 'l\'\lr g.2.r4)_ +s\(€r, ), _ B3(tog Ð," \; ) )1"
_ z (, 1., 1 I ,_ 4 ('r,,t

10b r L'+ ro¡ 
(3€'- 4t(r'- 33{(log€)')l c' - Tfãic"'

It can be seen from this how the various coefficients of the flux of the contaminant

at any given point depends upon the varying media. More simply, to second order

F :(r (t - *"u') c - +{r', (6.2.1b)
\ 105 ) 105¡

where U : Fl2b. Hence the variations in the channel width affect the one-

dimensional density in the opposite manner to that of the cross-sectional average

C. If the channel is widening, then U is decreasing and the advection velocity of

the one-dimensional density is heightened. Both the cross-sectionally averaged

concentration and the one-dimensional density are commonly used quantities in

channel flows. One must therefore be careful to always define which measure one

is dealing with when considering channel flows in varying-width channels.

The correction to the dispersion coefficient in the conservative formulation

is qualitatively the same as in the previous non-conservative formulation.

6.2.6 Mernory effect

An intrinsic feature of dispersion in channels with varying properties is the

memory effect of the dispersion process as discussed by Smith (19S3). Consider

the case when the only variations occur in the flux with respect to time. The shear

dispersion coefficient and its correction, given in conservative form by (6.2.14), can

be rewritten to the same order of accuracy as

t /r, rl\ ,
* lï -#): #t{(¿- rtro)t2 ' (6'2'16)

This shows the memory effect of the dispersion process-the effective dispersion

coefficient at time ú is equivalent to the uncorrected dispersion coefficient at the
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earlier time of t - r 170. The effect is similar for a varying channel. Allowing

for all the variations in the media, from (6.2.15) the first-order correction to the

advection velocity, U(r,t) : Ëlr, of the one-dimensional density can be rewritten

AS

Ë-_ 2 ,/É\'-,, )
r 105' \r/ Ifu€u' - tJ(* - 2t1705't) (6'2'17)

to the same order of accuracy. So the corrected advection velocity at position r

along the channel is equivalent to the uncorrected advection velocity a distance

2{.1105 upstream from this position.

6.3 Conclusion and further work

6.3.1 Conclusion

This centre manifold approach to shear dispersion has the advantage that

the derivation of successive approximations is purely mechanistic once the original

approximation has been deduced, and there is no need to resort to heuristic argu-

ments to calculate higher order approximations. This approach has some rigorous

support (see Carr (1931)) although, for simplicity and clarity, the rigorous deriva-

tion is not included here. I have calculated the approximations to high order and

shown that they converge by comparing their behaviour to that of a model func-

tion. From this convergence a quantitative estimate for the minimum resolvable

length-scale has been obtained.

The application of centre manifold theory to the problem of shear dispersion

in channels also provides a systematic and consistent method for investigating

the problem of varying cross-sectional area. This was identified by Chatwin and

Allen (1985) as an outstanding problem in shear dispersion. In particular I have

addressed what changes should be made to the advection-diffusion equation when

the cross-sectional area is varying. The usual Taylor model is not valid in this case

and so nervl/ approximations have been determined for this and other situations of

immense practical interest, such as varying flux and varying diffusivity.
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6.3.2 Further work

More complex physical processes, such as decaying contaminant, meander-

ing, chemical reactions or other nonlinearities, can be incorporated within the

centre manifold framework. The only alteration needed to accommodate these

changes is to incorporate the terms in the right-hand side of (6.2.6) which rep-

resent the dynamics of the processes. This again shows the power of the centre

manifold approach - generalisations or extensions are easily incorporated once

the original problem has been formulated.
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CHAPTER 7

SHEAR DISPERSION IN PIPES

7.1 Constant cross-section

7.L.L Formulation

The analysis of shear dispersion in a circular pipe follows closely the analysis

for shear dispersion in a channel presented in Chapter 6. I start by analysing

the dispersion of contaminant in a straight circular pipe of constant radius a.

See Figure 7.1 for a schematic diagram. The governing equation is the three

dimensional advection-diffusion equation

H*".(q"):!.(rcVc). (7.1.1)

Here rc is the diffusivity, c(n,r,0,,t) is the concentration of contaminant and q is

a given velocity profile. The fluid is assumed incompressible and the advection

velocity is taken to be solely in the the c direction (along the pipe) but varying

radially, that is the velocity field is

q : u(r)i, (7.I.2)

where i is a unit vector in the direction of the r-axis. This is subject to no flux of

contaminant through the pipe walls which gives

0c
A, 

:0 on r : o,. (7.1.3)

To simplify the analysis it is necessary to choose a velocity profile. I consider

an axisymmetric Poiseuille flow given by

u(r) : 2U (t - R'), (7'7'4)

where R : r la is a non-dimensional radius. In cylindrical coordinates the govern-

ing equation (7.1.1), upon placing the dominant mechanism of cross-pipe diffusion

on the left-hand side, becomes

^ ôc , ,0c 02cLc: At+"(ù,o-"a*r, (7.1.5)
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where .C is the operator defined by

n:*l*(,#)*"ï# 0c;-:0
OT,

such that

t4)

olÌ r: Q,, (7.1.6)

(7.1.7)

The operator I has one zero eigenvalue and infinitely many other eigenvalues all

of which are strictly negative and given by

and n:0,, 1

where F¿n, i : tr2r...) T7.: 0,1,2r... are the roots of J'"(p,): 0 and 2nf n is

the period of the d dependence. These eigenvalues have corresponding eigenmodes

cos(n9)J. (Rp¿.). If it were not for the "nonlinear" right-hand side terms in (7.1.5)

all the modes would decay exponentially quickly to zero,leaving the contaminant

field to be constant across the pipe. Within the context of centre manifold theory,

by including the "nonlinear" right-hand side there is still exponential decay but

onto the centre manifold. This centre manifold is reached exponentially quickly in

a time which is estimated via the least negative eigenvalue of /. For the axisym-

metric case (n:0) this eigenvalue ir Tto : -14.684o/o2, which was recognized

by Taylor (1953b) and expressed in his equation (15). For the non-axisymmetric

case (n > 0) the least negative eigenvalue is given by 7tt : -3.3900o1o'.4 non-

axisymmetric mode has the slowest decay (by . factor of 4) and hence dominates

the evolution to the centre manifold.

In a similar manner to the analysis of shear dispersion in a channel in Chap-

ter 6, I do not follow the more rigorous approach of Mercer and Roberts (1990)

by choosing not to transform the problem into Fourier space. Hence the follow-

ing derivation is not directly rigorous - it can be made so by transforming into

Fourier space. I now apply the centre manifold procedure by assuming that the

concentration c may be described by

c : Vlr,0;Cl

'Yin: -" (+)" for 21
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where C(rrt) is the cross-sectionally averaged concentration of contaminant and

its evolution in time, and indirectly that of c through (7.1.8), is described by

AC

a, 
: Glc| (7.1.e)

I seek the asymptotic solution of (7.1.5) in the form

a"c
0nn

c: vlr,o;cl - lu*þ,0) such that
oo

n:o

Arl oo

I : Glc) -Ðn"
¡l:l

a"c
)rn -

(7.1.10)

(7.7.72)

Upon this substitution and equating coefficients of terms involving ffi t obtain

the system of equations

Lus-0

Lu1:uo7t*u(r)us
_ (7.1.11)

Lun :Du,,-o g¿ + u(r)un-t - KUn-2 n :2,3 " '
l:1

Solving these in succession I obtain the centre manifold to be

c -c *# ?z + 6R2 - sR ) c'

* #(gr - 180.R2 + 800.R4 - 200.R6 + 45Rs) c't
(J3 a6* ffi(too + 490R2 - 3185,R4 + 4900.R6 - sb0.R8

+ 1246B10 - L75RL2)C"' + ...

Observe that with the axisymmetric velocity profile (7 .1.4) the centre manifold has

no d dependence and hence in the long-term the dispersion will be axisymmetric.

The evolution of the cross-sectionally averaged concentration along this centre

manifold is, to the first three orders, given by

# : -uc, * (rc * D)c,, - #r,,,,, (2.1.18)

where

o:ur1=o'. ( T.r.r4)48rc'
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These are precisely the approximations obtained by Chatwin (1970) in his equa-

tions (4.1). Just one part of the power of this centre manifold approach is the ease

with which these and higher order approximations can be calculated.

Calculating higher order corrections to equation (7.1.13) and rewriting the

resultant equation in the form

aC 
- -fra'ttt(o- 

oo

at:-uu f (rc+ D)C".# 
.D__rA*€"# 

(7.1.15)

where €:t|azln is the downstream advection distance in a cross-pipe diffusion

time r : a2 /rc,I find the first five of the coefñcients (r4.,") are

As: -3.472L x 10-4,

A+: -1.5888 x 10-5,

As:1.1755 x 10-6, (7.1.16)

Aa :4.9257 x 10-s,

Az:-3.6895x10-e.

Using REDUCE I calculate the coefficients up to the 24th order and find that the

numerical coefficients approximately follow the pattern of signs + + - - + + - -
.... Using the method outlined in the Appendix of Mercer and Roberts (1990) I

obtain the generalised Domb-Sykes plots shown in Figure 7.2(a), (b). Figure7.2(a)

indicates that the radius of convergence (in Fourier space) of the series in (7.1.15)

is .R" : 13.8/€. Furthermore, from Figure 7.2(b),, the angle from the real axis of

the convergence limiting singularity is d : +106'. This places the singularity at

the position (-3.9, +13.2) in the complex (ifr()-plane which is in agreement with

the branch point found by Stokes and Barton (1990). Also, the predicted nature of

the singularity from Figure 7.2(a) is u : 0.521which is close to the expected value

of u :7f 2, appropriate for the expected square root behaviour at a branch point

($7'5 in Bender and Orszag (1978)). The convergence of this series implies that

some finite truncation of the evolution equation will give a useful approximation
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to the evolution of the cross-sectionally averaged concentration, but only if the

resolved wave-length scales satisfy

2n€ ( U""\t, --ru 
= l"*). (7.7.77)

The importance of this result is that it is quantitative. Taylor (1954) argued that

L > (14, his equation (26), and then suggested that Þ would be satisfied if a ratio

of 10 : 1 existed between the two sides, that is, if. L > 2.5(. However, I have shown

that a length-scale approximately one-fifth of this is the actual quantitative limit

of resolution for high order Taylor models of shear dispersion in a pipe.

I have used centre manifold theory to derive the well known approximations

of Taylor and others as well as high order approximations to the problem of con-

taminant dispersion in straight pipes. The important question of the validity of

a finite truncation of the evolution equations, as used by all workers in this field,

has been answered and a minimal length scale where the equations are still valid

has been calculated. As well as being supported theoretically (Carr (1981)) the

validity of this centre manifold approach is also shown by its agreement with other

workers such as Stokes and Barton (1990), Smith (1931) and Chatwin (1970).

7.2 A finite difference numerical scheme

7.2.1 Developrnent

The area of numerical solutions to the pipe dispersion problem is not a new

one. Many workers have devoted much time in efforts to accurately calculate con-

taminant concentratiòns at both small and large times after release (see Barton

and Stokes (1990), Chikwendu (1986), Smith (19s7) to name but a few). To ac-

curately model the dispersion process it is important that the numerical scheme

matches the evolution equation to a similar order - there is no point in using a

high order evolution equation if the numerical scheme is only accurate to a low or-

der. The aim here is to demonstrate a nerr\¡ method of determining an explicit finite

difference scheme that matches the evolution equation to a predetermined ord.er
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of accuracy, guarantees non-negativity of the mean concentration and is stable.

I also investigate the limitations imposed upon the space-time resolution of the

numerical scheme when constructing high order approximations to the evolution

equation.

To develop the finite difference scheme denote the mean concentration at

any time C(æ,t) : C(i ô'x,nAt) by Ci wherc Ar is the spatial step and Aú is the

time step. I wish to find an explicit .l/ time-level finite difference scheme with "I
spatial points: y'l upstream and .t downstream of the current spatial position. An

example which is used is drawn in Figure 7.3. The numerical integration scheme

is thus NK
ci:D t bî:ci_-i" (7.2.1)

nt:l j,=_L

where the coefficients óf are to be determined. To guarantee non-negativity of

the concentration it is sufficient that all the bi arc non-negative provided the

initial conditions are non-negative. Since the evolution equation is conservative,

so will the numerical scheme, which in conjunction with the non-negativity ensures

boundedness and thus guarantees stability. I aim to choose the óf 's to satisfy this

non-negativity, and to match the evolution equation (7.1.15) to some order of

accuracy so that the numerical scheme has the same asymptotic behaviour as the

exact system.

For simplicity, and since it is typically small compared to Dffi,I choose

to ignore the downstream diffusion tenn rc{$ in (7.1.15). Substituting C(r,f) o<

exp(sú * ikn) I obtain the dispersion relation

s:-(Jire +D(iÐ2*+i A^(ik().. (2.2.2)a. 
n_:s

Since the general solution of the evolution equation (7.1.15) will be a linear super-

position of the Fourier modes exp(sú * ikr) I want the numerical scheme to match

the relation (7.2.2) as accurately as possible. I substitute the corresponding form

Ci: Sn"ikaxi e.2.8)
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into equation (7.2.1) and divide by À'eiea"r to obtain that the numerical disper-

sion relation will satisfy

b ¡-n'"-ilcani' (7.2.4)
J

Using the fact that

I : e"aú (7.2.5)

where s is the desired function of k given by (7.2.2) I can rewrite the right-hand

side of (7.2.4) as a power series in wavenumber k where the coefficients are linear

combinations of the áf 's. That is

tt
¡tt jt

1
fT

1:I ibi
oo

P=O

keTD,,
nj

(7.2.6)

where the dni are known from the above analysis and I need to determine the bi

to satisfy this equation to some order of accuracy in wavenumber k. For any given

space and time steps, Aæ and Aú, and any given desired order of accuracy this

becomes the straightforward linear programming task of finding a feasible solution

fo (7.2.6) subject to the non-negativity constraint. In terms of the cross-stream

diffusion time, r : a2 /rc, and the corresponding advection distance, € - (f a2 f n,

I determine values for L,x l( and Lt f r such that a conservative finite difference

scheme can be constructed to a predetermined order of accuracy. Figures 7.4 (a),,

(b), (") and (d) show the regions in the (L" I Ë, Lt lr) plane where feasible solutions

could be found for order 2, 3, 4 and 5 methods respectively with .lü : 3, J : 4,

L : L and y'l : 2 as shown in Figure 7.3. For an order 2 truncation (the usual

Taylor model) the region of feasible solutions is relatively large. Hence a stable,

non-negative, finite difference scheme could be easily formulated. The order 3

truncation only marginally reduces the feasible region. For the fourth and fifth

order truncations of the evolution equation the feasible region in (Lnl(,Ltlr)
space is greatly reduced and hence care must be taken when formulating a finite
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difference scheme to accurately select the space and time steps so as to ensure a

conservative and non-negative scheme. Even though it is desirable to accurately

model the dynamics of the dispersion process by including higher order derivative

terms in the model equation this comes at a price. The feasible region is greatly

reduced and hence the flexibility of the method is reduced. That is not to say that

the higher derivative terms should not be included, just that greater care much be

taken when formulating the numerical scheme.

It is curious but pleasing that the minimum wavelength resolved by a high

order numerical scheme, L x 0.2( to 0.4(, is similar to the minimum wavelength

resolved by the centre manifold model, L x 0.45(.

7.2.2 Results

Figure 7.5 shows a plot of the mean concentration, C, versus ø for the order

2 approximation (Taylor) and order 5 approximation at various times after a unit

pulse release of contaminant al r :0. For the order 5 approximation the markedly

non-Gaussian shape of the profi.le for small to medium times is obvious and for

larger times it has a similar shape to the order 2 approximation once the higher

order derivative terms are no longer dominant.

By increasing the number of spatial points (increasing ..I and hence /( and .D)

the feasible region can be substantially increased, especially for the higher order

approximations. Figures 7.6 (a), (b), (") and (d) show the feasible regions in

(L" lí Lt lr) space for order 2, 3,, 4 and 5 methods respectivety with 3 temporal

levels (l[:3) as before and 6 spatial points (.I:6),3 upstream (K :3) and 2

downstream (tr : 2). Comparing these to Figures 7.4 (a), (b), (") and (d) in which

only 4 spatial points were used, it is clear that the feasible region has increased,

particularly for the higher order methods (order 4 and 5). This enlargement of the

feasible region is due to increased flexibility in approximating the higher derivative

terms when using more spatial points. This increase comes at the expense of an

increase in the size of the linear programming problem due to the addition spatial
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points. The finite difference scheme can be tailored to suit the problem at hand

by altering the number of spatial points and finding a feasible solution for given

spatial and temporal steps.

7.3 Appropriate initial condition

7.3.L Introduction

Here I determine the appropriate initial condition to be used for the Taylor

model of shear dispersion in a pipe. The theory of centre manifolds, see Carr

and Muncaster (1983), states that for any exact solution of (7.1.1)-(7.1.3) (pro-

vided that it is sufficiently close to the origin) there exists a solution on the centre

manifold that is approached exponeniially quickly. Thus for a given initial condi-

tion of the exact problem c(x,r,,d,0): cs(r,r,á) there exists an initial condition

C(æ,0) : Co(x) of (7.1.15) such that the model equation solution is approached

exponentially quickly by the exact solution. The obvious choice of Cs(ø) is to

take the cross-sectionally average of c6(ø,r,á) since C(r,t) is defined to be the

cross-sectional average of. c(r,r,0,t). As described in Mercer and Roberts (1990)

for the channel case and subsequently by Young and Jones (1991) for the pipe

case this leads to errors which do not decay. It is possible to eliminate these errors

through refining the choice of Co(n) by considering the dynamics near the centre

manifold.

7,3.2 Analysis

By transforming to Fourier space it is possible to rigorously derive the ap-

propriate initial condition. The full details for the channel case are given in Mercer

and Roberts (1990), $2 and will not be repeated here. To proceed for the pipe case

a similar analysis is used with allowances for the different geometry. The method

consists of projecting a given initial condition onto the centre manifold so that the

long-term behaviour on the centre manifold matches that of the exact solution

with the given initial condition (see Roberts (1989)). Furthermore, this matching

is attained exponentially quickly in time.
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On performing the analysis I obtain an expression for Co in terms of c6 and

the urrts,

(å,,,",#)'"0:Z#(em) , (zB1)

where the overbar denotes the cross-sectional average. Expanding this in the

"small" parameter $ and truncating at second order I obtain

a,_\ a2 /_ ('_\
co : co + tu ("1"0-.) + ar, (Ðrzo - ù^ ). (7.3.2)

From this it can be seen that the usual, and at first inspection the obvious, initial

condition for the Taylor model, that Co :6, is just the leading approximation

to the correct initial condition, the first few asymptotic terms of which are given

above. The initial condition can be calculated more accurately by retaining more

terms in the expansion of (7.3.1), the only complication being the algebra involved.

This agreement holds to the order of the truncation of the asymptotic sums. It

has been shown, by Mercer and Roberts (1990) for the channel case and recently

by Young and Jones (1991) for the pipe case, that it is possible, by prescribing

the correct initial conditions, to predict the observed phenomena of centroid dis-

placement and variance deficit present in shear dispersion. This is not possible

using the Taylor model with the usual leading order approximation of using the

cross-sectional average as the initial condition; setting Co : c¡ assures only that

the total contaminant is correct. Higher order corrections to the Taylor model

used in conjunction with the appropriate initial condition enables shear dispersion

processes to be modelled more accurately; for example, the þ term in (7.3.2)

ensures that the centroid displacement is correctly predicted, while th" # terms

ensure that the variance deficit is correct. This is contrary to the conclusions

of Frankel and Brenner (1989) "that no systematic irnptovement in the asymp-

totic order of approximation is possible through the incorporation of higher-order

gradient terms into the model constitutive equation". Indeed the centre mani-

fold approach used here provides this systematic improvement provided the initial
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condition and the higher order gradient terms are both modelled appropriately

7,4. Lppropriate boundary conditions

7.4.L Introduction

The Taylor model of shear dispersion holds in the interior of a pipe when the

contaminant concentration is nearly smooth across the pipe and slowly varying

along the pipe. In general the Taylor model need not apply at the ends of the

pipe, ø : 0 (inlet) and x : L (outlet), where end effects may cause transition

"boundary layerst' to occur. The question that then arises is: what are the bound-

ary conditions at the inlet and outlet to be used with the Taylor model, and its

higher order generalisations, so that the solution of the model accurately predicts

the exact solution. A similar problem was studied by Smith (19SS) and Roberts

(1991b) for the shear dispersion of contaminants in channels. The centre manifold

approach used by Roberts (1991b) will be used here to determine the appropri-

ate boundary conditions. The approach is to apply centre manifold theory to the

"evolution" in the spatial coordinate r, with slow time variations being regarded

as a perturbative effect.

7.4.2 Entry condition

As in $7.2 I choose to ignore the downstream diffusion term rcS since

typically n K D and so equation (7.1.1) may be written

,,0c LA / 0c\ t02c 0culr) aæ: o; u\, u)t "* a':, - A (7.4.1)

Assuming initially that there is no contaminant in the pipe and taking the Laplace

transform of this equation I obtain

A¿, K I A / 0¿\ K r A2ð 1

a* 
: 6; u \, u ) + ,,4Ò ," Ao' - u¡rne, (7.4.2)

where transformed quantities are denoted by - and the Laplace transform is defined

by

i@) : [* f þ)"-o, ¿r. (7.4.r)
Jo
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Equation (7.4.2) takes the form of an evolution equation with r as the "time-

like" variable. The true time is represented by the parameler p and, provided ihe

conditions at the pipe entrance are not rapidly varying in time, the parameter p

will be small, hence the third term in the right-hand side of (7.4.2) can be thought

of as a small perturbation term. This can be incorporated within the framework

of centre manifold theory by adjoining the evolution equation

0 (7.4.4)

"Linearly", the evolution (in the time-like variable r) from the entry of the pipe

to the interior is governedby Q.a.a) and

0p
0a

Að, K 7A / ô¿\ K 7A2ð,_l-_lr_
0r - u(r) r 0r \' 0r ) ' u(r) 12 002

s.t. On T': o, (7.4.5)

For the axisymmetric case the operator on the right-hand side of (7.a.5) has

a discrete spectrum, ) : 0, -o10r -o¿20¡ -o30r _o¿40¡ '. . where the a¿s are

the eigenvalues of a Sturm-Louiville problem obtained numerically via the NAG

routine DO2KDF to be 410 : 12.8398/(, o¿2o :41.9309/€: oB0 :87.08341€,

o¿4o : 748.26821{ efc. For the non-axisymmetric case (cos(nd) variations for

,o > 0) the least negative eigenvalue is ): -a¿t1: -4.1,6051e (for n : 1). Apply-

ing centre manifold theory, Carr (1981), I deduce that for sufficiently small p and

for all "initial" conditions, ð,: ð0(r,0) at r:0, the system will evolve exponen-

tially quickly to the smooth centre manifold parameterised by p and Õ, wherc C

is the cross-sectional average of ð. This exponential approach is dominated by the

slowest linear transient, that is, it is roughly like exp(-c1rru ) for the axisymmetric

(, : 0) and non-axisymmetric (n :1) cases. Applying similar methods to that

used in $7.1 I find the centre manifold to be

ð,:ö-:ez+6R2-sra)nc
24

12 (7.4.6)
+ rr¡æ (tt - r20R2 +270R4 -200R6 +4bA8) prc +...
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on which the evolution takes place according to

,X : -pÕ + *irn'c - fto'c +... (7.4.7)

and (7.4.4), where r is the cross-pipe diffusion time as defined earlier. Equations

(7.4.6) and (7.4.7) model the slow spatial evolution into the interior of the pipe in

the presence of slow time variations. Since these represent the same class of slowly-

varying distributions the above expressions can also be obtained by reversion of

(7.1.15) (without the nC't term) and substitution into (7.1.12). The question that

must now be answered is: what is the appropriate value of. Õ to be used at r : 0

for (7.4.7) so that (7.4.6) will accurately match the exact solution of Q.a.2) in the

interior of the pipe. This is a similar problem to that addressed in $7.3 but here

the "time-like" variable is r and the "initial condition" is the entry condition.

Applying a similar method to that used in $7.3 I find the Laplace transform of the

correct "initial condition" to be ClO; : d0 where

(t + fr" *#o'. ) 
(rÕ0 :ñ + el-F + p2uwño+'.., (2.4.s)

where ðo(r,0) is the Laplace transform of the prescribed distribution of contami-

nant across the pipe entrance and where

,.1)r:ått _ 4R2+2R4)

+z (7.4.9)
,)2:''r, (s + ooaz - 240R4 + 200,R6 - 45.R8) .

The dominant term is just lhat tlCo : uðo which is the expected heuristic bound-

ary condition, that the inlet flux of contaminant in the model and the full problem

are the same, which is often used in shear dispersion problems. In a similar manner

to the initial condition in $7.3, there are corrections to this intuitive boundary con-

dition that must be made to ensure that the partial differential equation matches

the exact solution when there are time dependencies present; these time depen-

dencies are represented by the terms involving p. Since the corrections involve
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terms in p, upon taking the inverse Laplace transform of (7.a.S) I find that there

is a memory effect involved. To first order in p I have, in a similar manner to

Roberts (1991b)

u co Q) - T exp (-48t I r) * u,co - T V* - T "*o, --48t I r)urnt{ (7.4.10)

where the convolution * is defined by /(t) * g(t): Il f(Òg(t - r)dr. Due to the

convolution with exp(-48ú/r) the boundary condition exhibits a memory of earlier

conditions at the entry. The memory decays exponentially on the time-scale of

cross-pipe diffusion. Higher order corrections to (7.4.10) may readily be found

from (7.4.8).

7.4.2 Exit condition

To perform a similar analysis at the exit I consider the evolution from r : L

into the interior of the pipe in the negative r-direction. Therefore -r is the

"time-like" variable and in a similar manner to $7.4.1 the equations governing the

evolution from the exit of the pipe to the interior is

0æ

ôp
u(r) r 0r

s.t

0r
0

(7.4.11)

and ð is finite at r : 0. By analogy with $7.4.1 the "linear" operator on the

right-hand side has a discrete spectrum of eigenvalues, namely the negative of

those in $7.4.1, and hence are all non-negative. Since there are no exponentially

decaying modes there is no condition arising from the dynamics of the exact system

to indicate how the interior solution and the exit condition are to be matched -
the smooth interior distribution holds all the way to the exit. Physically this is

expected as (in the absence of along pipe diffusion) the end condition at r : L

should have no influence upstream. It is the exponential decay in the the evolution

far upstream which produces a smoothly varying interior solution right up to the

exit.

Oc K LA / 0¿\ K !A2ð, 1('a/ - ,4ù,, ao, 
+ qÒPð' on r: o,
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However, the Taylor model, namely

ôc uy + Dry, ( 7.4.12)E: or or'

has a terrn D{S that introduces an upstream diffusion into the model which is not

in the exact dynamics. This is allowable since this equation was derived with the

assumption of a sufficiently smooth cross-stream averaged concentration C(nrt)

such that the downstream advection dominates. \Mhat I do find though is that this

term introduces into the model the possibility of exponential transients upstream

of the exit which have no physical meaning and must therefore be suppressed.

This gives the necessary boundary condition to be used at the exil r : L.

Taking the Laplace transform of. (7.4.72) I obtain

,# - rX - pc :0. (7.4.18)

This is an evolution equation in the "time-like" variable r. For small p the solu-

tions correspond to the slowly varying centre manifold. But for the small p there

are two types of solutions of the form eÀ': one with \ : -pf U trpzl(48U)+..-,
and one with )z :48lGU)+plU -rp2l(48U)+.... Only the frrst of these is

slowly varying and hence corresponds to the desired interior solution. Near the

exit the unphysical solution e^"' decays exponentially into the interior of the pipe.

This gives the possibility of rapid transients near the exit of the pipe which are

unphysical and must therefore be eliminated. Hence I require that

#: ),1Õ: -fie *o#Õ, g.4.r4)

which to the same order in p may be written to the same order of accuracy as

AC Up
C (7.4.15)0x U2 -f Dp

On taking the inverse Laplace transform I deduce the exit condition

DAC - -rI exp(-48t lr) . X0æ
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which must hold at the exit æ : L. This equation is similar to equation

Smith (1988). Again, due to the convolution, there is a memory effect of earlier

conditions at the exit. It is only for very slow variations in time, that is on a

time-scale t Þ r¡ that I obtain the exit condition to be ffi æ 0 which is the often

used approximation.

In summary, the second order Taylor model of shear dispersion in a pipe

should be solved with the entry condition (7.4.10) and the exit condition (7.4.16)

to ensure that the model partial differential equation is accurate and consistent

with the exact solution. If higher order models of shear dispersion are used then

a similar analysis to that used above will yield an extra boundary condition for

each order retained (see Roberts (1991b) for an example of this in the third order

model of shear dispersion in a channel).

7.5 Varying radius pipe with time dependent flow

7.5.L fntroduction

As noted by Chatwin (1980) the often used Taylor approximation for disper-

sion problems should not be used when the pipe is not of a constant cross-section.

Here I extend the analysis of shear dispersion in a pipe to allow for a varying

pipe radius and a varying flux of the fluid. This centre manifold approach thus

provides the methodology to appropriately model dispersion with such variations,

an outstanding problem according to Chatwin and Allen (1985). The case of a

varying pipe radius has,applications in many areas of contaminant dispersion, such

as: fl.ow through constrictions in pipes which can alter the dispersion of some pol-

lutant in the pipe; or flow in arteries which are of a variable cross-section. The

flow in arteries would also affected by variations in the flux of the blood which can

alter the dispersion of material in the blood.

7.ó.2 General analysis

I consider the radius of a pipe to be given by r : ø(ø) where a(r) is a slowly

varying function and hence its derivatives are small. I take the diffusivity to be
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constant in space and time so that the boundary condition becomes

on

Assuming the flow in the pipe to be quasi-Poiseuille, the axisymmetric stream

function is given by

,þ: lS) (zn2 - n4) , (7.ó.2)' 2¡r \ 't'

where .F.(ú) is the flux of the advecting fluid, which for a constant flux reduces

to .F : [Jra2. The assumption of a parabolic velocity profile is valid provided

the Reynolds number of the flow is small enough and the Peclet number large

enough. The case presented here of a slowly varying pipe with a parabolic profile

and longitudinal diffusivity included is a realisable one, and hence experiments

may be able to verify the results presented here.

Equation (7.1.1) now becomes

#-o'#:o r: a(r).

^ 0c 0c ôc ô2ct": art"a**uôr-"a*r'

u:4(r-n') ; u:'#(n-n')

c: Vlr,0;Cl - \V.¡r,e;C1 such that
:Q

X : Glcl -Ë ""'",

(7.5.1)

(7.5.3)

'Where 
,C is the cross-pipe diffusion operator defined in $7.1.1 and z and u are the

velocity components in the axial and radial directions respectively, which from the

stream function are

(7.5.4)

Applying centre manifold theory, as described in Chapter 6, I assume the concen-

tration c may be described by

(7.5.5)
n:t

where all the terms with a total of n space-time derivatives (i.e. of "ord.er" n) are

grouped into quantities with superscript n. Upon substitution I obtain the system
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of equations

LVo:o s.t. #:oonr:ø
LVr:vro *v\G'*"# +r# s.t. T:o on r:¿

LVn : vn-'\+ É >u;;:# *,T +,+ - .u'Yu; 
(7'5'6)

l:7 p:0

, ïvn ,ïvn-zs.t. A; : o' A* o'n r : o, n :2,3,4,. ..

Here, as before, the shear dispersion dynamics fundamentally occur on a time

scale ¡ : a2ln and over a length of pipe €: Flrn The results are presented

accordingly; however, the presence of a downstream diffusivity causes some terms

to necessarily involve rc explicitly. Note that the longitudinal variations in the pipe

radius only affects r, and that the time variations in the fluid flux only affects (

(rc is assumed constant).

7.5.3 Correction to the advection velocity

Equations (7.5.6) are solved in succession to give the centre manifold and

the evolution of the cross-sectionally averaged concentration along this centre

manifold. To second order I obtain the centre manifold to be

c-Vo +Vr +v2

- 
/1 t 

È "-l: u r h?r+6R2 -BRn)c'-+(t-zn2)c'
, (loe r|t2 ,- ^. ^,* -r_ä (z _ z+a2 + 18.R4 _ 4R6) c, (7.5.7)

rF
+ ù (z - z+n2 + 18.R4 - 4R6) c'

S2

* ,*, (gt - 180,R2 + 800.R4 - 40R6 + 45R8) c" ,

and the evolution of the cross-sectionally averaged concentration along this centre

manifold is given by

^n .- v I vot

f Í - ",.* ,,'f ". l# + *]c"
(7.5.8)
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Observe that the effective advection velocity of the cross-sectionally averaged con-

centration (the local mean velocity U : €1") is lessened if the pipe is widening

and heightened if ihe pipe is narrowing. Interestingly, this effect is proportional to

the diffusivity rc, and so is negligible in many practical situations. This is in direct

contrast to the channel flow case as described in Chapter 6 where there is a first

order change to the advection velocity even when the mechanism of longitudinal

diffusion is omitted.

7.ó.4 Correction to the dispersion coefficient

By calculating the evolution equation to the next order I can determine how

the shear dispersion coefficient,, D = (2f+8r, is altered by the varying flux and

the varying pipe radius and I can determine the next correction to the advection

velocity of the mean concentration of contaminant. To third order the evolution

equation can be written as

(t * fre 
z(!osr)" * #c"') - rc(rog ,r']"

(t - å*,rogr)'- fr"1r"r€)') + o]"" - #""'
(7.5.e)

The shear dispersion coefficient is lessened if the pipe is widening downstream

or if the flux is increasing in time. Variations in the flux, with respect to time,

only affect the advection velocity in conjunction with spatial variations, due to the

ir' term, in a similar manner to the channel flow case see equations (6.2.L1) and

(6.2.74) in Chapter 6.

7.6.5 The asymptotic equation in conservative form

Since the total amount of contaminant is a conserved quantity its one-

dimensional density

C: ra2C, (z.b.lo)

must satisfy a conservation equation

ac
at +

AF
A.
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where .F is the total flux of contaminant past any given cross-section. Multiplying

(7.5.9) by ra2 and rearranging I find the flux is given by

.r_ Ê
ç

;I
e'

(t * fir.sr)'-
e'
720

(log r)" -
S2

90
(losr)" - ,rolrr'') - ,.C.* "r'),

4U (t - år,rogr)'- fr"1r"*€)') + 'lr,* #r*r,,
(7.5.72)

So the variations in the pipe radius affect the advection velocity of the one-

dimensional density in a different manner to that of the cross-sectionally averaged

concentration. Here, for negligible downstream diffusivity o r 0, there is a signif-

icant first-order correction to the advection velocity, namely å(togr)', while for

the cross-sectionally averaged concentration there is none, as seen in (7.5.9).

The dispersion coefficient is decreased in a similar manner in both formula-

tions which is similar to the channel flow case described in Chapter 6.

7.6 Conclusion and further work

7.6.L Conclusion

A formal centre manifold procedure has been adapted to the problem of shear

dispersion in pipes. The results obtained are consistent with other methods. As

in the case of shear dispersion in channels, this centre manifold approach has the

advantage that the derivation of successive approximations is purely mechanistic

once the original approximation has been calculated and there is no need to resort

to heuristic arguments to calculate higher order approximations as is needed in

some other methods. A quantitative estimate for the minimum resolved length-

scale has also been determined.

I have presented a nervl¡ method for the calculation of a conservative finite

difference scheme which matches the evolution equation to a predetermined order

of accuracy. As the order of the evolution equation is increased the feasible region

for such a finite difference scheme is substantially reduced. In contrast to this, as

the number of spatial points is increased the feasible region is increased. Hence, if
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modelling shear dispersion using a high order evolution equation great care must

be taken in choosing the time and spatial steps so as to guarantee a stable non-

negative scheme.

The commonly used initial conditions for shear dispersion, simply taking

the cross-sectional average, has been shown to be the first approximation to the

correct initial condition which, when correctly implemented, greatly improves the

Taylor model of shear dispersion. The phenomena of centroid displacement and

variance deficit can be resolved if higher order approximations to the evolution

equation and the correct initial conditions are used.

In a similar manner the correct entry condition has been derived so that

the model accurately predicts the slowly varying and smooth interior contaminant

distribution. The correct exit condition has also been derived by considering the

dynamics of the Taylor model near the exit.

One of the powerful properties of centre manifold theory in this application

to shear dispersion is the ease with which generalisations of the analysis to varying

geometries and varying flow properties may be handled. I have derived a consistent

and systematic method for tackling the problem, as identified by Chatwin and

Allen (1985), of what changes must be made to the evolution equation for the

mean concentration when the pipe has a varying cross-sectional area and varying

flow properties.

Centre manifold theory provides a consistent basis for the formation of ac-

curate models complete with evolution equation, initial conditions and boundary

conditions, even in the presence of physical inhomogeneities.

7.6.2 Further work

As with shear dispersion in channels further physical effects, such as a de-

caying contaminant, chemical reactions, and other nonlinearities, can be easily

incorporated within the centre manifold framework. Although numerical schemes

for the calculation of shear dispersion in pipes have been extensively studied this

106



is still an area open to further development. A method that incorporates not only

a high order evolution equation of shear dispersion but also the appropriate initial

condition and boundary conditions is still do be developed. By incorporating all

these factors a more accurate model of dispersion processes should be able to be

determined.
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