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SUMMARY

In the design of bubbling fluidized-bed reactors, a good understanding of the
bubbling phenomena is required. It has been well recognized that the bubble
hydrodynamics influence the solids mixing and segregation in the fluidized bed.
Although the mechanisms for solids mixing and segregation have been reasonably well
studied and characterized, detailed modelling and experimental verification of the
behaviour of the fluidized bed still remains a challenge. The key limitation lies in the
scarcity of experimental data on simultaneous characterization of bubble flow and solids
mixing.

In this study, novel techniques utilising digital image analysis have been developed
for quantitative measurement of bubbling phenomenon with the presence of both bubble
and dense phases in a two-dimensional fluidized bed.

The development of the experimental techniques for the measurement of the gas
bubble parameters, concentration of coloured solids tracer in homogeneous and binary
particle systems will be described. In addition, a unique experimental method for the
tracking of the larger and lighter particlegcirculating in the fluidized bed will also be
presented. The measurement and analysis methods are objective and fully automated,
hence, eliminat'u@ all subjective determination and tedious manual effort on data
acquisition and analysis.

In the study of the bubble hydrodynamics, distributions of bubble size, shape,
velocity in a two-dimensional bed have been measured for various bed heights, particle
sizes and operating conditions. In addition, pierced length and several size measures of
bubbles intercepted at an ‘imaginary’ probe in a thin two-dimensional fluidized bed were

measured. Prediction of bubble size from measurements on bubble pierced lengths
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using the geometrical probability approach and bubble shape assumptions has been
assessed and discussed. Measurement of the bubble size/shape, velocity and the angle
of rise also enable experimental assessment of the limitations of dual-tipped probes
commonly used in three-dimensional beds.

In the solids mixing study, the course of mixing of uniform solids in two-dimen-
sional bubbling fluidized beds has been followed. In this investigation, experimental
data have been obtained on the axial mixing of uniform solids. Oscillations in the
concentration response, resulting from the gross circulation of the solids, have been
observed experimentally. These oscillations become increasingly more prominent as
the bed particle size increases. These measurements have been used to evaluate the
three-phase counter-current back-mixing model. The bubble parameters required for
the model were obtained from independent experiments conducted as a part of this
investigation; the exchange coefficient, however, was found by parameter estimation
using the solids mixing data. With this choice of parameters, the counter-current flow
model has been found to predict the experimental trends reasonably well. The estimated
values for the exchange coefficient do not compare favourably with the predictions of
the models available in the literature. These models predict that the wake exchange

velocity
coefficient should increase with increase in the minimum fluidizationAof the bed particles.
Our results, on the other hand, show that the wake exchange coefficient increases with
Uo/U,y for Uy/U,, < 3 and the values, in this region, are independent of the particle size.

The technique used for the study of mixing of uniform particles was extended to
the study of segregation phenomenon resulting from size or density differences.
Unsteady material balance equations from the Gilibaro-Rowe (1974) and Yoshida (1980)
models for segregating fluidized beds were solved numerically. The possibility of the

formation of a defluidized layer at the bottom of the bed was taken into account.
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Comparison of model predictions with data indicated that though these models did reflect
some features of the experiment, the influence of the superficial velocity on the temporal
variation of the concentration at any specific height within the bed was not predicted.
In fact, a trend completely opposite to that predicted was observed experimentally. If
these models are to be used, then the segregation rate parameter must have a dependence
on superficial velocity substantially different to that currently available in the literature.
Further work in this direction is recommended. The influence of jetsam concentration
was not explored in this experimental study; such measurements are recommended as
well.

Some preliminary empirical relations were established for the movement of the
defluidized layer with time. In particular, a promising new indicator for segregation
propensity was proposed from analogy with vapour-liquid equilibrium data represen-
tation methods. Additional data are necessary before further generalization can be
attempted.

Finally, a specific aspect of bubbling beds which has important significance,
especially in the area of coal combustior, has been investigated. In bubbling fluidized
bed combustion, large coal particles - comprising about 1% of the total bed inventory -
are fluidized along with smaller sulphur-sorbent particles. The density of the coal
particles is less than that of the bed particles. This combination of the concentration,
size and density for coal and bed particles results in the setting up of circulation pattern
for the coal particles. The motion of a larger and lighter particle circulating in a fluidized
bed has been determined. The larger particle was found to move downward near the
wall region and travel up in the central core of the fluidized bed in a jerky manner. The

characteristic particle velocities in both regions have been measured. The present



experimental technique enables, for the first time, the determination of the phase resi-
dence probability of the particlegassociating with the dense phase. A simple model has

been proposed for the prediction of this quantity as a function of excess gas velocity.



Chapter 1
INTRODUCTION

The first large-scale, commerically significant fluidized bed commenced smooth
operation in 1926. The process, known as the Winkler gas generator, involved the
gasification of powdered coal. The Winkler gas generator may be considered inefficient
by today’s standards because of its high oxygen consumption and its large carbon loss
through entrainment.

The application of fluidized bed technology to commercial processes has grown
phenomenally over the decades since the Winklér gas generator was state-of-the-art.
Examples of current commerical applications are in the production of ethylene, alkyl
chloride, phthalic anhydride and polypropylene. Processes using fluidized bed tech-
nology include catalytic cracking; catalytic reforming and coking; coal drying; com-
bustion and gasification; calcination and nuclear fuel preparation.

It is well known that gas flow in excess of that required to maintain minimum
fluidization conditions flows through the bed in the form of gas pockets or bubbles.

These bubbles are responsible for the behaviour of the fluidized bed in terms of its



mixing, heat/mass transfer and reactant conversion capabilities. Consequently, much
research has been directed towards linking the behaviour of bubbles to the performance
of a fluidized bed.

A bubbling fluidized bed is a two-phase reactor. In the study of the hydrodynamics
of such beds, most experimental techniques reported in the literature measure the
characteristics of one of the phases in isolation of the other. For example, several probes
have been developed which measure only bubble characteristics. Solids mixing studies,
on the other hand, are ofter carried out by sectioning slumped beds or monitoring the
movement of tracer particles - such studies ignore bubble behaviour.

It would be preferable, if possible, to study the behaviour of the bubble and solid
phases simultaneously - unwarranted assumptions could then be avoided. Currently, the
only possibility in this direction is the use of two-dimensional (or thin) beds made of
transparent walls which permit non-intrusive and direct viewing of what is happening
inside.

Suchbeds have been used very often in the past to obtain qualitative and quantitative
information on bubble characteristics. However, photographic techniques employed to
extract quantitative information on bubbles are laborious and require subjective inter-
pretation in the delineation of bubble-solid phase boundaries. The labour-intensive effort
reduces the motivation for obtaining sufficient data for making reasonable statistical
inferences.

Two-dimensional beds have also been used to study the influence of bubble motion
on the motion of solids in the bed. The aim of these studies was to obtain an understanding
of the underlying mechanisms. Extraction of quntitative information has remained

extremely difficult especially under freely bubbling conditions.



In this research, novel, non-intrusive digital image analysis methods have been
developed and used to study the behaviour of bubbles and solid phases in two-dimen-
sional beds. These procedures provide several key advantages which make them
extremely attractive for simultaneous measurements of the two phases. A high level of
automationisintroduced into the acquisition, processing and analysis of digitized images.
The laborious manual effort and consequent tedium of previous studies have been
dramatically alleviated. Automation of the analysis procedure means that a large number
of images are captured for any data set. This should improve the statistical accuracy of
any ensemble estimates produced. The use of these techniques also improves the
reliability of delineation of the phase boundaries as edge detection is objective and
consistent.

In the research reported in this thesis, digital image analysis techniques have been
used on two-dimensional fluidized beds to tackle the following problems :

* measurement of bubble size distributions;

« evaluation of geometrical probability methods for interpretation of pierced length

signals obtained from dual-tipped subme:rsible probes frequently employed for

bubble characterization in three-dimensional beds;

* evaluation of the influence of non-vertical bubble rise on the interpretation

methods, and designs, of submersible probes used in three-dimensionsal fluidized

beds;

* measurement and interpretation of tracer concentration profiles in fluidized beds

of uniform particles;

* measurement and interpretation of jetsam concentration profiles in segregating

binary fluidized beds; and



» tracking of a larger and lighter (or ‘active’) particle in fluidized beds of smaller

and heavier particles.

In the literature reservations have been expressed regarding the use of two-di-
mensional beds to obtain quantitative information applicable to large beds. In a sense,
the same objection can be raised against the frequently used small diameter cylidrical
beds since they are likely to slug even for comparatively low excess gas velocities.
Whether the measurements made in the two-dimensional beds apply quantitatively to
large scale beds can be debated. Nevertheless, the studies made relating to the calibration
of submersible probes will be of assistance in developing improved submersible probe
designs. Bubble properties measured in the two-dimesional bed are used in the inter-
pretation of data on solids mixing and segregation. In principle, this offers an opportunity
to evaluate the detailed models for the behaviour of solids in fluidized beds reported in
the literature.

In Chapter 2 a brief literature review is presented for the topics examined in the
research programme. Much has been published about fluidized beds in the past four
decades and many excellent reviews are available. The emphasis in this chapter has
been placed on providing a summary in tabular form; the reviews have been referred to
for details.

Details of the experimental apparatus and procedures employed are provided in
Chapter 3. The configurations of the imaging hardware used in the measurements are
described. The principles of the algorithms developed for the measurements made are
also presented.

Results relating to the bubble phase, measurements as well as theory, are given and

discussed in Chapter 4.



Chapter 5 presents the experimental and theoretical results on the behaviour of
solids in fluidized beds.
Conclusions from this work and recommendations for further work are outlined in

Chapter 6.



Chapter 2
LITERATURE REVIEW

Much has been written about bubbling fluidization in the past four decades. It is
not proposed to review the entire literature in this section. This would be ambitious and,
in view of the several excellent reviews on this important subject, unnecessary. The
literature review presented here, therefore, provides what might be termed as introductory
notes and remarks which form the basis for the research; reviews available in the literature

have been referred to for details.

2.1 BUBBLE SIZE DISTRIBUTIONS

Bubble characteristics strongly influence the hydrodynamics of fluidized beds
and determine the performance of fluidized bed reactors and combustors. The extent
of gas-solid mixing, heat and mass transfer as well as conversion are governed by
the number, size and motion of bubbles passing through the bed. In a bubbling bed,
bubbles rise from the distributor in swarm and grow in size as they travel up the bed.
The principal mechanism of growth is bubble coalescence. Earlier researchers (Y asui
and Johanson, 1958; Kato and Yen, 1969; Geldart, 1969; Chiba et al., 1973; Mori
and Wen, 1975; Darton et al., 1977; Rowe, 1976) attempted v leseribe the process

of bubble growth and proposed a variety of semi-empirical correlations for the



estimation of variation of the mean bubble diameter with bed height. Very few
workers (Chiba, et al. 1975; Rowe and Yocono, 1975; Burgess and Calderbank, 1975;
Werther, 1974; Sung and Burgess, 1987; Glicksman, et al,, 1987) have reported the
longitudinal as well as lateral distribution of bubble sizes. In a detailed design of a
fluidized bed reactor or combustor, the importance of the lateral distribution of the
bubble sizes should not be overlooked.

Recently, mathematical models based on the population balance approach to

describe bubble growth in fluidized beds have been developed (Argyriou, 1971; Shah
et al., 1977, Agarwal, 1985, 1987; Fox and Fan, 1987).
In particular, analytic expressions were derived for the distribution of key bubble
characteristics such as velocity, diameter and volume by Agarwal (1985). However,
verification of these models has been seriously disadvantaged by the lack of relevant
experimental data.

Several experimental techniques have been employed for the measurement of
bubble parameters. The work has been conducted in either two- or three-dimensional
beds. In general, the measurement techniqués can be classified into two catagories
depending on the nature of the sensors contacting the bubble phase. Miniature
capacitance/resistance probes (Burgess and Calderbank, 1975; Geldart and Kelsey,
1972; Werther and Molerus, 1973a, b), optical probes (Glicksman et al., 1987) and
static pressure probes (Atkinson and Clark, 1988) are classified as internal sensors.
Such sensors make direct contact with the bubbles. The intrusive nature of these
submersible probes is expected to alter the local fluidization conditions. Moreover,
the characterization of the bubble sizes and shapes from the measurement of the
bubble pierced lengths requires extensive data interpretation and calibration. External

sensors include the X-ray (Rowe and Everett, 1972), y-ray (Weimer et al., 1985),



laser (Sung and Burgess, 1987) and photographic methods(Chiba etal., 1975; Saxena
et al.,, 1984). All except for X-ray and 7y-ray techniques are performed in two-di-
mensional beds. These techniques provide good visual observation thereby
improving qualitative understanding of bubble behaviour. Unfortunately, the
collection of quantitative data necessitates subsequent frame-by-frame analysis of
the images. This can be time consuming and laborious. A brief summary adapted
from Cheremisinoff (1986) of the experimental techniques is presented in Table 2.1.
The need for an automated technique which permits rapid collection of reliable data
on bubble is evident.

In this research digital image analysis methods have been developed for
measuring bubble size distributions. The tasks of data collection and analysis have

been automated. Large sample sizes enable more accurate statistical analysis.



TABLE 2.1. SUMMARY OF BUBBLE HYDRODYNAMIC MEASUREMENT TECHNIQUES

General measure- | Detailed measure-|  Distribution of Sensor installa- Disadvantages / Difficulties Advantages Reference
ment basis ment basis mean tion
Photographic Sull photography | no External to test 1. only provides record of wall | 1. very simple equip- Rowe (1971)
section conditions ment
2. requires large number of stills | 2. nondisturbing flow
to obtain size distribution field
Cine photography | yes (size, shape, and | same 1. same as for still photography | 1. same as still pho- Rowe (1971)
(high speed (>80 | rise velocity) 2. data abstraction tedious tography

frames/s) and
related photo-
graphic methods)

3. errors in data abstraction-sub-
jective

4. high-quality photographs
needed for
automatiac/semi-automatic data
abstraction

5. depth of field and special
lighting arrangement to be con-
sidered

X-rays X-ray detection yes (size and shape) | External to test 1. difficult to use in large beds | 1. can scan over column | Rowe and Partridge
through vessel section 2. penetration limitation of 0.15 } height (1965), Rowe and Ever-
walls cm 2. nondisturbing to flow | ett (1972), Rowe (1971)
3. high cost field
4, best resolution of data limited
to single jet bubbling phenom-
ena
Optical Light obscuraction | yes (equivalent size, { External to test 1. uses absolute intensity 1. nondisturbing to Yasui and Johanson
(detector counting | rise velocity section Or in situ measurement some flow fields (1958), Yoshida et al.
of nonobscured 2. problems of coincidence and (1978a)
light ray) also edge effects
lasers 3. assumes spherical bubbles -

inaccuracies in size




TABLE 2.1. SUMMARY OF BUBBLE HYDRODYNAMIC MEASUREMENT TECHNIQUES (continued)

General measure- | Detailed measure-| Distribution of Sensor installa- Disadvantages / Difficulties Advantages Reference
ment basis ment basis mean tion
Fibre optics yes (equivalent size, | in situ 1. same as light transmission 1. same Okhi and Shirai (1978)
rise velocity 2. limited to low temperature
measurements - material prob-
lem (LED and photocell, epoxy
resin, etc, selection)
Pressure fluctu- | Uses pressure dif- | no (mean size, rise | Sensor exposed to | 1. difficult to calibrate 1. nondisturbing to flow | Littman and Homolka
ations ference between velocity for slugging | flow at wall 2. signal analysis most reliable | field (1970)

bubble and
emulsion phases

beds only)

for slugging beds

3. no information on bubble
shape

4. no information on spatial dis-
tribution of bubbles across col-
umn

2. simple technique/low
cost

3. can provide slug rise
velocity and av slug
length by cross-correla-
tion of transducer sig-
nals over column height
4, provides qualitative
identification of fluidiz-
ing regime and quanti-
tative data on dominant
bed frequency

Electromagnetic
waves

Y- raystransmissio
n

no (mean bed voi-
dage)

External to test
section

1. uses absolute intensity
measurement

2. sphericalbubble assumption
applied to mean voidage
measurement in obtaining size
3. does not provide rise velocity
4. costly

1. simple arrangement
2. nondisturbing to flow
field

Wiemer (1985)

0T
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2.2 CONVERSION OF BUBBLE PIERCED
LENGTH TO BUBBLE SIZE

Submersible probes are effective tools for the study and measurement of the
local properties of multiphase systems. Probes based on the local variation of the
electrical properties (for example, capacitance and resistance), transmission/disper-
sion of electromagnetic waves (for example, fiber-optic, laser, X-rays) and the
hydrostatic pressure (pneumatic) have been described in the literature, Table 2.1.

In bubbling fluidized beds, these probes have been used to detect the char-
acteristics of gas bubbles. The emphasis has been on the determination of a mean
bubble size though it is clear that bubble coalescence produces distributions in size
both laterally as well as vertically. This mean size is then used in the determination
of the extent of heat/mass transfer and chemical reaction (Kunii and Levenspiel,
1969). The simple dual-tip probe measures only the pierced length of a bubble. The
mean bubble size is generally assumed to be proportional to the mean value of pierced
length measured by the probe; representative rexamples are given in Table 2.2. Since
the probes do not always intersect the bubble at its centre, the distribution of bubble
sizes can not be deduced simply from the pierced length distribution (Werther, 1974a,
b; Clark and Turton, 1988). The development of more sophisticated models for
heat/mass transfer and chemical reaction will require inclusion of details of bubble
size distributions. Itis clear that novel probe designs or more sophisticated methods
for interpretation of dual-tip probe signals will be necessary to generate the required

information on bubble size distributions.



14

Probes with multiple tips or sensors to detect and reject the bubbles whose
central axes are not vertically aligned with the probe have been developed (Burgess
and Calderbank, 1975; Sung and Burgess, 1987). The optimal design and the bubble
selection algorithm for such probes, however, requires knowledge of the shape of the
bubbles. Any particular design would be unable to cope with the possibility of
different bubbles having different shapes. Alternatively, Atkinson and Clark (1988)

have developed a selection algorithm based on the fact that the coefficient

2.2.1)

of bubble rise velocity, Ug, will be minimum for the bubbles which rise centrally past
the probe, where y is the pierced length in equation (2.2.1). The a priori choice of
a minimum coefficient applicable to all bubble shapes and sizes, however, appears
to be difficult.

Geometrical probability (Kendall and Moran, 1963) concepts offer an elegant
solution to the conversion of the distribution of pierced lengths to that of bubble sizes.
This possibility has been explored in some depth by Werther (1974a, b) and, more
recently, by Clark and Turton (1988). Both works assume horizontally uniform
bubbling and a uniform shape for the entire bubble population. In Werther’s model
the bubbles were assumed to be ellipsoids characterised by a vertical diameter and a
constant aspect ratio; Clark and Turton permit the bubble populations to have other
shapes. These methods, however, presume that the entire bubble population is
characterised only in terms of a single size measure - the horizontal dimension, d;,
of individual bubbles. Only a spherical shape is completely specified by one single
size variable; at least one other size characteristic is required for all other bubble

shapes. Consequently, though Clark and Turton tabulated results for several bubble
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shapes, additional size parameters (for example, the aspect ratio as used by Werther)
would have to be specified for generating a solution. Experimental data are necessary
for the determination of these parameters. The major limitation in developing and
refining procedures for the transformation of the measured pierced length to bubble
size remains the lack of an experimental technique for the verification of the proposed
methods.

In this work, digital image analysis techniques have been used for the simul-
taneous measurement of the pierced length, maximum horizontal and vertical
dimensions, circumference and cross-sectional area forindividual bubbles that would
be intercepted at a probe in the two-dimensional bed for several operating conditions.
Computer based data acquisition and analysis have permitted large number of
measurements enabling statistically more reliable inferences. Theoretical results are
obtained in terms of the local bubble size density functions so that, in principle,
non-uniformity in bubbling can also be taken into account. The theory is adapted for
application to thin two-dimensional beds. Several assumptions regarding the shape
of bubbles in gas fluid beds have been made in the literature. The experimental data
on pierced lengths along with assumed bubble shapes are used in the theory to predict
the distributions of the horizontal and vertical dimensions, equivalent diameter and
circumference of the bubbles. These predictions are then compared with the

experimentally obtained data.
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TABLE 2.2. RELATIONSHIP BETWEEN AVERAGE BUBBLE PIERCED

LENGTH AND DIAMETER

Reference Expression Comments
Gunn et al (1985) - 4y 1. Ellipsoidal bubble with a=0.813.
E" o 2. Integrated over all possible y due to
_ - ffect.
~ 141y off-center effect
_ 1 (%W
=— dx
Y dy .Lz,,fz Y
Rowe et al (1981) d, =120y 1. Spherical bubble with bubble wake
volume, equals 1/3 bubble volume
Chan et al (1987) d; =143y 1. Equivalent bubble diameter.
2. Determined from the average bubble
pierced length and bubble rise velocity.
Weimer et al (1985) ’ 4_ 1. Spherical bubble.
B Tty 2. Integrated over all possible y.
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2.3 INFLUENCE OF THE ANGLE OF BUBBLE
RISE ON THE INTERPRETATION OF SUB-
MERSIBLE PROBE SIGNALS

Submerged probes have been used extensively for the study of local bubbling
characteristics in three-dimensional gas fluidized beds, Table 2.1; however, several
limitations remain in the interpretation of signals recorded from such probes.

Dual-tipped probes have been used most often. There are two limitations
specific to such probes. Firstly, the axis of the probe need hot be aligned with the
axes of the rising bubbles; consequently, these probes measure the pierced length
rather than the diameter of the bubble. Geometrical probability has been advanced
as a possible method for converting the measured distributions of pierced lengths to
those of bubble diameters, section 2.2. Secondly, the signal interpretation procedures
employed for dual-element probes also assume that the bubbles rise vertically past
the probe. However, observations made in two-dimensional beds show that the rising
bubbles follow an intricate pattern, influenced by other bubbles in the vicinity as well
as the local solids flow. The implication of non-vertical bubble rise on the
measurement of bubble characteristics using two-element submerged probes does
not appear to have been examined though Gunn and Al-Doori (1987) have reported
limited measurements for the angle of bubble rise in a two-dimensional fluidized bed
(glass ballotini : 5 x 10 m; U, = 0.3 m/s) operated at 1.7 U,

Three-element probes have been used (Burgess et al., 1981; Chiba et al., 1975;
Sung and Burgess, 1987) in two-dimensional beds and five-element probes by

Burgess and Calderbank (1975) in three-dimensional beds. The additional elements
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were included todetect and reject non-vertically rising bubbles. Though the collection
and processing of signals from such probes is more complex in comparison with
two-element probe signal analysis, the availability of digital processing systems
ensures that this task can be accomplished. However, the influence of the selection
methods on the statistics of bubble populations does not appear to have been
investigated.

In this work, it is first shown theoretically that the discrepancy between the
actual and inferred (assuming vertically rising bubbles) velocity can be quite sub-
stantial depending on the angle of bubble incidence at a dual-tipped probe and the
distance of the bubble center from the probe. Digital image analysis methods have
then been developed to measure the velocity and the angle of bubble rise. Further,
the data collected using image analysis methods were analysed to determine whether
the rejection of the non-vertically rising bubbles leads to discrepancies between the
actual bubble characteristics and those measured by multiple-element probes.
Simultaneous measurements afforded by image analysis permit the determination of
therelationships between the bubble size/shapé and velocity. Additional experiments
have been performed to compare such relationships for bubble swarms in a freely
bubbling fluidized bed with those for single bubbles and bubble chains injected in

an incipiently fluidized bed.
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2.4 MIXING OF UNIFORM SOLIDS

It is well recognized that the mixing of solids in gas fluidized beds 1s induced
by the motion of bubbles: solids, in the form of bubble wakes, are carried up by
bubbles, and the dense phase solids are simultaneously displaced downwards else-
where. Periodic disposal and replenishment of wake fragments as the bubble rises
through the bed also occur (Rowe et al., 1965).

Various mathematical models have been proposed in the literature represent the
solids mixing phenomena in terms of (Verloop et al., 1968):

- a combination of perfect mixing, short-circuiting, piston flow and the like;

» a combination of a number of perfect mixers,

» diffusivity or mixing coefficient;

- circulation patterns; and

« existence of different layers with different flow characteristics.

Models in the first two categories do notrecognize the physical behaviour of fluidized
beds; the parameters obtained from data fitting may, then, be of limited value. Based
on the observation of periodic disposal and replenishment of wake fragments, solids
motion has been characterized by diffusivity or mixing coefficients; a strong
advantage of this approach is the ease in applying available mathematical results for
data interpretation. Oscillations measured in tracer experiments (de Groot, 1967),
however, limit the applicability of this model. Two- and three-phase counter-current
back-mixing models require numerical solution of hyperbolic partial differential
equations; their assessment and determination of model parameters are limited by

the scarcity of experimental data on simultaneous characterization of bubble flow
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and solids mixing. These issues have been discussed in several reviews (Kunii and
Levenspiel, 1969; Potter, 1971; van Deemter, 1985); a summary of representative
studies is given in Table 2.3.

Two approaches have been employed to follow solids movement in a fluidized
bed experimentally (Bellgardt and Werther, 1986):

» local investigation of the motion of individual particles; and

» gross behaviour of solids mixing using tracer techniques.
For such experiments, the tracer particles must possess a distinctive property which
enables measurement of their motion (for the first approach) or concentration (for
the second approach). The first approach has most often relied on the use of radio-
active particle particles. Investigations on the gross mixing behaviour have employed
several types of tracer particles including

» radio-active (May, 1959);

» coloured (Sutherland, 1961; Singh et al., 1972);

» magnetic (Sutherland, 1961; Avidan and Yerushalmi, 1985);

» chemically different (Talmor and Benenati, 1963; Berruti et al., 1986);

* subliming (for lateral mixing : Bellgardt and Werther, 1986); and

* heated (Lewis et al., 1962; Valenzuela and Glicksman, 1984).
In general, the first four techniques can only be used for a single short transient
experiment after which the bed must be sectioned for analysis, or in the case of
radio-active tracer, allowed to decay. Data collection and analysis from sectioning
of a slumped bed is generally laborious. Further, for rapid solids mixing rates, the
results may be distorted during the bed slumping transient. In an interesting variation,
Avidan and Yerushalmi (1985) used magnetic particles as tracer and measured their

inductance. This technique and those based on subliming or heated tracer particles
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permit more continuous data collection; however, additional analysis or assumptions
are required to relate the measurements (for example, inductance or temperature
profiles) with tracer concentrations. Moreover, such measurements may yield only
local data on the variation of tracer concentration with time. Interpretation of the
local response data requires care since model parameters determined from data fitting
may not accurately reflect mixing characteristics at other locations in the bed. An
ideal measurement technique would, therefore, possess the following characteristics
: (a) a fast response; (b) ability to measure the tracer concentration while the bed is
fluidized (without the need of slumping); and (c) ability to measure, simultaneously,
the mixing behaviour at different locations in the bed to enable unambiguous
determination of model parameters.

In this work digital image analysis have been used to follow the course of axial
mixing of uniform solid particles. This technique satisfies the three criteria suggested
above; however, it is applicable only to two-dimensional fluidized beds. The
experimental data obtained for a range of operating conditions have been used to

evaluate the three-phase counter-current back-mixing model (Gwyn et al., 1970).
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TABLE 2.3. A REVIEW OF THE STUDIES ON MIXING OF UNIFORM SOLIDS (continued)

Reference

Experimental

Theoretical model

Technique

Results

Ishida and Wen (1973)

« bubble assemblage model
» steady state solution

Kozanoglu and Levy
(1991)

« bed sectioning
- counting coloured particles

transient: C = f(Z,t)

« multi-phase model with four wake phases
« numerical solution

Lakshamaman and Potter

« data from Sitnai (1981) used for com-

» multi-phase - wake, dense and wall phase - ‘Cinema-

(1987,90) parison with model tic’ model.
« used Sitnai’s (1981) data for comparison
« discussed problems associated with inversion of
Laplace transform
Liu and Gidaspow « data from May (1959) used for com- « hydrodynamic approach
(1981) parison with model « Laplace transforms (infinite bed) and method of image

(finite bed) were used for solving the equations

May (1959) « scintillation counter « transient: C = f(Z,t) « Diffusion model

« radioactive tracer (dp = 2.0x10°
1.5x10*m)

ve



TABLE 2.3. A REVIEW OF THE STUDIES ON MIXING OF UNIFORM SOLIDS (continued)

Reference Experimental Theoretical model
Technique Resulits
Sitnai (1981) « sampling tubes « investigated in bed with horizontal » model wih wake, dense and wall phase
» used magnetic separation tubes « numerical solutions
« tracer : iron ore (dp = 6.70x10* m, p,= |+ C=f(Z,1)
3870 kg/m’) « exchange coefficients estimated
bed : silica sand (d, = 7.00x10* m, p, =
2580 kg/m?)
Tailby and Cocquerel | » bed-sectioning » F-diagram: residence time of solids in | » combination of perfect mixing, short-circuting, piston
(1961) « analysis of colour of the dyed particles | continuous feed system flow and the like
dissolved in chloroform by spectrophoto-
meter.
van Deemter (1967) » data from de Groot (1967) used for » multiphase - counter-cuurrent flow model

comparison with model » Laplace transform solution for large times

« simulation of solids mixing response with different
values of material exchange relative to circulation (in-
dicated oscillation)

S¢
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2.5 SEGREGATION IN BINARY FLUIDIZED
SYSTEMS

When particles of differing size and/or densities are fluidized together, segre-
gation can occur. In a binary system, one particle species (flotsam) tends to migrate
towards the upper end of the fluidized bed and the other prefers to occupy the lower
section of the bed (jetsam). Which species forms the jetsam (or the flotsam) depends
on both the relative sizes as well as the densities of the fluidized particles (Chiba et
al., 1980; Nienow and Chiba, 1985). Experimental studies on segregation in fluidized
beds usually aim to measure the variation of the concentration of the tracer particle
with respect to height above the distributor. The tracer particles can be well mixed
or in the form of a separate layer at the beginning of the experiment. The bed is
fluidized at the required operating conditions. At the end of the run - most often after
steady state conditions have been achieved - the bed is slumped and the particles are
aspirated layer by layer (for example, Beeckmans et al., 1984; Rice and Braino-
vich,1986).

A more elaborate approach in which the solids at different heights above the
distributor were isolated by the simultaneous introduction of several horizontal plates
has also been reported (Garcia-Ochoa et al, 1989); the advantage of this technique
being that more information on the bed voidage becomes available compared to the
conventional bed slumping procedure. The tracer particles are then separated from
the solids collected from different horizontal levels - most often by sieving or, in the
case of frequently used iron-based tracer, magnetically. The results from such
experiments have usually been interpreted, at the macroscopic level, in terms of a

mixing index that varies between 0 (complete segregation) and 1 (complete mixing).
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The mixing index is related to the superficial gas velocity by a logistic equation which
requires the specification of a parameter termed the takeover velocity. Empirical
correlations for the takeover velocity include the influence of particle size, shape and
densities; the relative proportion of jetsam and flotsam, and the bed aspectratio. The
mixing index approach has been reviewed in detail by Nienow and Chiba (1985) and,
more recently, by Daw and Frazier (1988).

More detailed approaches have also been used in which mechanisms for mixing
and segregation have been taken into account. It is well recognised that mixing in
bubbling fluidized bed is caused solely by bubbles (Rowe et al., 1965). The three-
phase countercurrent backmixing model, perhaps the most advanced approach
available to describe mixing of gas as well as solids in a bed of uniform particles,
views the bed to be made of three - bubble, emulsion (dense), and the wake - phases.
The bubble phase is considered to be free of solids; hence, the description of solids
mixing requires the solution of coupled material balance equations written for the
wake (in which solids move up) and the dense (where solids move down) phases.
Besides the gross circulation of solids, a lateral exchange of solids between these
phases is also included (Gwyn et al., 1970; van Deemter, 1985). Segregation, which
competes with mixing, is also a consequence of bubble motion (Rowe et al., 1972a,
b). An approach similar to that used for solids mixing can thus be adopted to model
solids motionin a segregating fluidized bed by including an additional termdescribing
the segregation propensity. There is, however, some uncertainty as to which of the
phases the segregation term is associated with: Gibilaro and Rowe (1974) prefer to
include it in the dense phase, whereas Yoshida (1980) considers it more likely in the
wake phase. Thus, there are three rate parameters which require specification in order

to obtain concentration profiles of jetsam (or flotsam) in bubbling fluidized beds of
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binary solids: a gross circulation rate; lateral exchange rate; and a segregation rate
(either in the dense or in the wake phase). Gibilaro and Rowe (1974), in their steady
state formation, also include an axial dispersion term in the dense phase material
balance. Though Daw and Frazier (1988) advocate its retention, this term has often
been considered unnecessary (Nienow and Chiba, 1985). There are other second
order effects in low concentration jetsam systems and an additional mechanism of
overlayering in cases of high jetsam concentration systems.

Inthe approaches of Gibilaro and Rowe (1974) and Yoshida (1980), the variation
of bubble properties with height above the distributor was not considered. This short
coming, in context of the Gibilaro-Rowe model, was addressed by Naimer et al.
(1982). Their calculation procedure, however, cannot cope with the possibility of
the formation of a defluidized layer at the bottom of the bed; a mechanism for
segregation which has been considered to be important (Chiba and Nienow, 1983;
Beeckmans, 1984). Their use of the empirical results of Tanimoto et al. (1980) in
the estimation of the segregation rate parameter has been criticised by Beeckmans
who argued that the segregation velocity predicted is significantly higher than the
experimental values measured.

Much effort has been placed on experiments and modelling relating to the steady
state concentration profiles. Beeckmans (1984) notes that transient behaviour has
been almost but not entirely neglected. Yang and Keairns (1982) have reported data
on segregation in a dolomite - acrylic binary system. They observed the formation
of a defluidized layer rich in the jetsam in the lower regions of the bed. A
two-compartment model with interchange of particles was proposed. Yoshida et al.
(1980) presented experimental data on segregation of equi-density particles of dif-

ferent sizes. The experiment was compared with the predictions of their model in
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which bubble properties were assumed to be constant. Beeckmans and Stahl (1987)
presented data on strongly segregating system (glass and iron particles with the same
U.,); a model which assumed the presence of pure jetsam in the region above the
distributor was proposed. Burgess et al (1977) reported a model in which bubble
wake was assumed to consist of a stagnant and a well mixed region. Segregation
was assumed to occur by falling of the jetsam particle through the bubble void. This
idea of the wake consisting of several regions has been considered in greater detail
recently by Kozanoglu and Levy (1992) who have postulated the existence of four
regions in the bubble wake. Representative work reported in the literature has been
summarized in Table 2.4.

In this work, results of a theoretical and experimental study on the transient
mixing/segregation behaviour of binary solids in a bubbling fluidized bed are pres-
ented. The temporal variation of the axial concentration profile has been followed
experimentally using digital image analysis techniques. In the modelling study,
unsteady state solutions of the Gibilaro-Rowe and Yoshida models have been gen-
erated numerically. The variation of bubble properties with height above the dis-
tributor has been taken into account. Further, the possibility of the formation of a

defluidized region above the distributor has been taken into account.



TABLE 2.4 A REVIEW OF STUDIES ON SEGREGATION IN FLUIDIZED BED

bed-sectioning
 magnetic and

Reference Theoretical Experimental Comment
Model Result System and | Experimental variable Result
Method

Beeckmans » kinetic model forrate |« prediction of C |« id = 0.137m |+ d,/d.=0.70 » determined upward |« jetsam velocities much lower than
and Stahl of approach to steady in upper strata | « bed-section- | p,/ps=2.84 velocities of jetsam | Tanimoto et al. (1980)
(1987) state ing ¢ Upp /U, p=1.0 particles

* magnetic - glass, iron

separation
Beeckmans et «3.-D:id = sdiide=1-2.7 » negligible jetsam transport in
al. (1985) 0.279m s py/pe=1.6-2.9 wakes above the interface

« 2-D:thick-  {* Upp /U p= 1

ness = 0.013m |« magnetite, steel, coal, sand

« layer by layer
suction
« separation by

« charcoal, limestone,sand,
maganetite salt

sieve separ-
ation
Beeckmans et +id=0279m |ed,/d;=0.27-23 « measure setding » presence of defluidized layer noted
al. (1984) « double tracer | p,/pe=1-3.7 velocity of jetsam « jetsam velocities much lower than
technique o Uy s/Uy = 0.31-6.5 Tanimoto et al. (1980)

screening and
magnetic
Bilbao et al. « modified G-R model |« steady state: «id = 0.08m » d,/d;=0.12-0.68 « steady state: - use different exchange parameters
(1988) = 2 circulation terms C=1(2) » bed-section- [ p,/p=75.7 C=1(2Z) for fluidized and defluidized regions.
« use bubble model ing ¢ Upy /Uy p= 0.07-0.39 « circulation parameter accounts for
» criteria for defluidiz- » separation by |« x,=0.125-0.54 particular characteristics of straw
ation screening « sand, straw

id: internal diameter of the fluidized bed; 3D: three-dimensional; 2D: two-dimensional

0€



31

[EUOISUSWITP-OM] 1T ‘[EUOISUSWIP-201Y] ¢ PAq PAZIPINY) Ayl JO Jojourerp [ewIaur :pt

oMy peaq SSe[3 Jeyd Mooy «
-01d doxp omssoxd » SI0="x.
S1°0 > "X pue S¢'0 > ones azis xopur urxiw « $80-L0°0 ="*n/*n - Bur
J1 Wes10]y 2q ued [eLIATeUI JSUSP @Z3=0 ¢T="0/'d +| -uonoss-poq (0861)
wes1af 10y eueILd pateInges « -1e1s Apeals 90-L10="P/'P+| wgpQ=pr. Te 19 BqIyy
SuOO[eq BIIJIS ‘Jeyd MOJjoy
ImxIuI Joj ‘peaq sse[3 qoys Jaddoo »
N 10§ uonE[OLIOY . gz ordn =4Rpn My,
My 65 01 dn =*d/d . wyQ (6L61)
-0id doxp omssaxd . L9 0o1dn =%p/p. ‘SO0=ple ‘T 19 eqiyD
wolsAs uonexredas
soroads oponued pue ‘Areulq . Ansuap 10§
DsA ofuere=x.| uonons wnn
0N 3o weierp aseyd . sr9ordn =T/ M0 o -oea ‘Suraars
pidex aq 01 punoy 0Z3=0 8¢ 01 dn =d/"d » | wod Furjdures . (SL61) suireay]
sem A1100[9A MO] I8 UOIESITS » JUQISURT) « TLY1=P/pe| wpig=pre pue uay)
MEBIIS ‘DUES » Surugaios
£E0-¥1°0='x +| £q uoneredss «
‘23=0 LT0-L00 ="%n/"*n +| uruonoos-peq «
Juaisuen . 1L°6="d/d 0'Z3=0 (1661)
(8861) T8 12 OeqIIg 395 » xopur Burxrus « woTro="r/p.| wgpo=pr- AJudISURD « | [opow Y-D payyipow « [ e 10 oeqqIg
POYIPIN
nsay dlqeLIeA [ejuswiliadxy | pue wd)sAg Nnsay PPON
judwiwo)) [erudwLIRd Xy [B2132.109Y |, UAIJIY

(Panunuod) AAg AIZIAINTA NI NOLLVOIADIAS NO STIANLS 40 MIAIATAY V +'7 A19V.L




TABLE 2.4 A REVIEW OF STUDIES ON SEGREGATION IN FLUIDIZED BED (continued)

sidered: circulation,
exchange, segregation
and axial diffusion

Reference Theoretical Experimental Comment
Model Result System and | Experimental variable Result
Method
Daw and - segregation «id=0.102m |- d,/de=1.03-1.92 « steady state: « Segregation index related toG-R
Frazier (1988) index « bed-section- |« p,/p=1.0-3.3 C=12) model with circulation, segregation
ing ¢ Upy J/U g p=1.02-2.3 and axial diffusion mechanisms
» magnetic, - coal, limestone, acrylic,
manual separ- | polypropylene glass, steel
ation shot
Ekinci et al. +id=0.1,0.2m |+ d,/de=up to 10 - transient lempera- |« extent of segregation deduced from
(1990) » on-linetem- |+ p,/pe=1upto2.2 ture profile temperature profile
perature detec- |« lignite, dolomite, sand,
tion quartz
Garcia-Ochoa |+ G-R model - steady state: «id=0.114m |+d,/d=1.0 » steady state: « wake fractions estimated are too
etal. (1989) C=f(Z) « bed-section- | p,/p=1.5-2.39 C=1(2Z) small
ing while fluid- |+ U, /U, = 0.25-0.75 - many combinations of parameter
ized * X » polyethene, glass, possible
alumina « poor fit if axial diffusion not
included in G-R model
Gibilaro and |« steady-state model - analytic results « possibility of a defluidized layer
Rowe (1974) | with segregation in for steady state: not considered.
dense phase C=12) « the model paramelers not related to
(G-R model) |+ mechanisms con- bubble parameters.

« model parameters were considered
to be independent of height

id: internal diameter of the fluidized bed; 3D: three-dimensional; 2D: two-dimensional
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TABLE 2.4 A REVIEW OF STUDIES ON SEGREGATION IN FLUIDIZED BED (continued)

from weight
loss from burn-
ing of sawdust

Reference Theoretical Experimental Comment
Model Result System and | Experimental variable Result
Method
Hemati et al. +id=0.1m e d/de=upto 7.5 » mixing index « strong segregation at lower velocity
(1990) «dividebed | p/ps=upto5.2
into slices « sawdust, coal sand, alumina
- concentration
determined

£e

« foam rubber, aluminium
foil, cardboard, alumina

« steady state:
C=1(Z)

Kozanoglu and | » G-R model with modi- | » Transient: +id=0.152m |+ d,/d=0.93 « transient: « defluidized layer considered
Levy (1992) ficd 4 wake phases C={(Z,) » bed-section- | p,/p=2.14 C=A1(Z,1) - segregation parameters related to
+ used bubble model ing * Upy /U,y =194 « measured segrega- | bubble characteristics
» manual * X,= arange tion coefficient
separation « glass, plastic
Naimeretal. |+ G-R model * mixing index » related segregation rate to bubble
(1982) - steady state: parameter and separation distance
C=12) from Tanimoto et al. (1980)
« not applicable for jetsam rich sys-
tem
- defluidized layer not accounted for
Nicnow and « X-ray cineph |« large particles of different |« the effect of particle
Cheesman otography, and | shape shape
(1980) bed-sectioning |+ p,/pp= 0.55-3.9 + mixing index

id: internal diameter of the fluidized bed; 3D: three-dimensional; 2D: two-dimensional



TABLE 2.4 A REVIEW OF STUDIES ON SEGREGATION IN FLUIDIZED BED (continued)

Reference Theoretical Experimental Comment
Model Result System and | Experimental variable Result
Method
Nicnow ct al. «id=0.15m | d,/de=upto 35 - steady state: + defluidization encountered
(1987) « different dis- |+ p,/ps=1 C=1(2)
tributors U,y /U g 5= large range « binary and multi-
. « ballotini, polystyrene, species systems
bed-sectioning |alumina, steel shot + modified mixing
» separation by index using Sauter
sieving mean diameter
Nicnow ct al. «id=0.141, |ed,/de=0.127-2.38 * mixing index
(1978) 0.222m « p,/ps=1.19-8.44 » effect of size, den-
« bed-section- | U, /U, =1 - 104 sity, gas velocity,
ing + x,0.064-0.7 shape, concentration
studied
Rice and Brai- «3-D:id= e d)/de=1.89-3.9 « steady state:
novich (1986) 0.273m s p,lpe=1 C=f£(Z)
» 2-D thickness | « x,= 0.356 » modified mixing
=0.28x0.025m |« glass beads index
» bed-sectionin
g+ photo-
graphic and
techniquese
separation by
sieving

id: internal diameter of the fluidized bed; 3D: three-dimenstonal; 2D: two-dimensional

be



TABLE 2.4 A REVIEW OF STUDIES ON SEGREGATION IN FLUIDIZED BED (continued)

Reference Theoretical Experimental Comment
Model Result System and | Experimental variable Resuit
Method
Rowe et al. * 2-D bed o d,/de=1.67-6.67 » steady state: « segregation mechanisms identified
(1972a, b) « 3-D bed s p,/pe=1-84 C=1£(Z)
- photographic, | * U, ,/U, = wide range « mixing index
sectioning « visual segregation
patterns
Seo and Gid- e rectangular |+ d/d.=12-34 « Time-averaged spa-
spow (1987) bed 0.4 x s p,/pe=12-19 tial distribution of
0.038m ¢ Upy /Uy p= 1.5-8.3 tracer concentraction
« X-rays, » glass bead, lead glass,
Y- rays and pyrite, coal
radio-active
tracer particle
Tanimoto et al. « 2-D: e ddr=025-39 - measure segrega- | » single bubble injection
(1980) 0.01x0.3x1.0m | p,/p;=3.5-4.5 tion distance
- cinephotogra |« used aggregates of glass
phy bead, copper shot, lead shot
Tanimoto et |+ use G-R model « steady state: «id =0.19, e d,Jde=0.25-39
al.(1981) » estimation of segration | C = f(Z) 0.50m e p,/p=3.545
rate « bed-section- |+ U,y /U, = 0.245-49.2
ing » glass, copper shot, lead shot
Yang and » two fulidized beds « Transient: - id =0.07m o d)lde=223 « transient: « presence of entrapment zone
Keairns (1982) | with interchange of par- |C = f(Z,t) « bed-section- }e p,/ps=2.35 C=f(Zy
ticles ing +x,=02-08
+ separation by |+ acrylic, dolomite
screening

id: internal diameter of the fluidized bed; 3D: three-dimensional; 2D: two-dimensional
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2.6 MOTION OF A LARGE AND LIGHTER PAR.-
TICLE IN A FLUIDIZED BED OF SMALLER
PARTICLES

In bubbling fluidized bed combustion, large coal particles - comprising about
1% of the total bed inventory - are fluidized along with smaller sulphur-sorbent
particles. The density of the coal particles is less than that of the bed particles. This
combination of the concentration, size and density results in the setting up of
circulation pattern for a coal particle within the bed: a jerky upward movement under
the influence of rising bubbles and a downward motion when associated with the
dense phase (Nienow et al., 1978). Based on these experimental observations,
Agarwal (1987) estimated that the char particle could be associated with the bubble
Phase of the fluidized for as much as 20% of its time in the bed whereas earlier models
for fluidized bed combustion assumed that the char resided only in the dense phase.
In view of the different properties of the two phases of the bubbling bed, the motion
of the “active’ particle - represented in terms of a phase residence probability - is of
importance in modelling heat and mass transfer for such particles (Agarwal and La
Nauze, 1989; Linjewile and Agarwal, 1990). Recent experimental investigations
indicate that the combustion of volatile species in the immediate vicinity of a
devolatilizing coal particle is inhibited in the dense phase and takes place preferen-
tially when the coal particle is associated with the bubble phase (Agarwal, 1986; Prins
ctal., 1989). The above studies have dealt with single char particles in the fluidized
bed. Recently Hesketh and Davidson (1991) found from experiment that particle

motion will influence the batch burn-out time of char introduced into the fluidized
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bed. The importance of the determination, experimental as well as theoretical, of the
characteristics of the motion of an ‘active’ particle in modelling fluidized bed
combustion is evident.

It appears necessary to detect not only the particle’s position within the bed but
also the nature of its association with the two phases of the bubbling fluidized bed.
Rios et al. (1986) measured the local velocity of an ‘active’ particle using radioactive
tracer. The interpretation of the measurements in terms of an axial presence prob-
ability, however, could not provide a complete picture of the circulation pattern of
the particle and the nature of its interaction with the bubble and dense phases. The
only alternatives currently available are visual inspection or the use of photographic
techniques on a two-dimensional bed. The tracking of the ‘active’ particle and the
determination of its interaction with the bubble and dense phases by the naked eye
is not possible because of the fast and apparently erratic movements of these particles
in the bed though qualitative features can still be extracted (Nienow et al., 1978). A
manual analysis on a sequence of image frames from a pre-recorded film is feasible
(Tanimoto et al., 1980); however, such analyses are tedious, subjective and laborious.

In this work, digital image analysis techniques have been used to measure the
circulation patterns and the local velocities of the ‘active’ particle resulting from
bubble/particle interactions for a range of ‘active’ particle densities and fluidizing
gas velocities. The technique has also been used to measure the phase residence

probability.
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Chapter 3
EXPERIMENTAL

3.1 EXPERIMENTAL SYSTEM

3.1.1 Apparatus

The experimental apparatus is illustrated in Figure 3.1.1. A two-dimensional
fluidized bed of dimensions 1.00 x 0.20 x 0.009 m was constructed from trans-
parent perspex. A porous plate served as a distributor. The solids in the bed were
fluidized by compressed air supplied from the mains. Sufficient pressure drop
across the calming section prior to the gas distributor ensured uniform distribution
of gas through the distributor and the bed. ‘Fhe flow rate of the gas was monitored
and measured by rotameters. Two types of rotameters were installed to measure
flow rates ranging from 1.2 I/min to 120 I/min. A pressure probe (made of fine
Stainless steel tube) attached to the adjacent manometer was inserted into the bed
from the top to enable pressure drop measurements. Minimum fluidization vel-
ocities of the various types of particles used were determined from the
Pressure-drop and superficial gas velocity plots. Additionally, a gas injector was
installed 1o generate single bubbles in beds maintained at incipient fluidization

conditions.
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IGURE 3.1.1:  (a) Experimental setup for digital image analysis,
(b) Schematic of the two-dimensional fluidized bed.



41

The bed was uniformly illuminated by light sources to eliminate undesirable
shadows and intensity gradients. The lighting condition depended on the nature
of the investigation. If only the bubble phase was of interest, then a back-lighting
condition was adequate where bright images of the bubble void could be observed
through the transparent perspex sheets and the solids phase remained, in com-
parison, opaque to visible light. However, if both the solids and bubble phase
were to be observed, the bed must be exposed to both front- and back-lighting
conditions.

Images from the bed (bubble or solids) were captured using a CCD
(charge-coupled device) video camera. The analog image signals from the video
camera were digitized by an image digitizer (frame-grabber). The digitized image
was subsequently displayed on the video monitor. A sequence of the images could
also be recorded on tape using a video cassette recorder. Computer software was
developed to automate the procedures for image acquisition, data processin g and
analysis.

3.1.2 Imaging System

The digital image analysis system included the following components:

Frame grabber : A PCVISION™ frame grabber from Imaging Technology
Inc. was installed in the system for digitizing (through an A/D converter) the
analog image signals from the video (camera or recorder). The digitization process
involved two steps: the division of images into 512x512 picture elements (pixels)
and subsequent quantification of brightness level of each pixel to a gray scale
value. The digital brightness level ranges from 0 (minimum) to 255 (maximum).
The pixel values were stored in the frame memory. Display logic on the frame-

grabberconverted the pixels in the frame memory back to an analog RS-170 format
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signal for display on the video monitor. The digital data stored in the frame
memory can be accessed by the host computer through the PC-Bus interface. The
elementary structure of a frame-grabber is shown in Figure 3.1.2.

Video camera : Two models of CCD cameras have been used in the
experimental studies. Both types display monochrome (or black and white)
images. One of the models (Sony XC/77RR-CE) possessed several additional
fez:fflres including a variable shutter speed (2x107 to 1x10™ s) and auto/manual
gaincontrol. The high shutter speed feature was essential for capturing fast moving
images without a ‘blurring’ or ‘tailing’ effect, especially in measurements related
to particle motion in the fluidized bed. The auto-gain feature in the video camera
enabled self-adjustment of the illumination level under the influence of the
background or surrounding brightness. Auto-gain has its advantages in certain
areas of study but is undesirable in quantification of intensities required, for
example, in determination of concentration from intensity levels in studies on
solids mixing and segregation. For most general purpose experiments, an ordinary
video camera can suffice. |

Video equipment : Video equipment, including a video monitor and a video
cassette recorder (VCR), was available for the visual study of the behaviour of
the fluidized bed and for the recording of the experimental runs for subsequent
analysis. The VCR was modified so that it was coupled with the computer using
an opto-coupler device through a serial port. This enabled control of the key
operating functions of the VCR (for example play, pause, stop frame advance).

A video mixer WJ-MX 10 (Panasonic) was utilised for combining different video
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signals and eliminating synchronisation problems in the video signals. The video
mixer formed an integral part of the imaging system and at the same time per-
formed useful graphic functions.

3.1.3 Equipment Configuration

The experimental and imaging system used in this work has evolved and has
been upgraded with time. A range of configurations and setups were used in the
various parts of the study. The basic configurations used in the studies, however,
can be classified under two general categories.

On-line measurement system : The on-line measurement system for digital
image analysis is shown Figure 3.1.3a. The image of the bed was captured by
the camera and immediately digitized by the frame-grabber. This image was then
processed and analysed with the use of appropriate software. The data were stored
on the hard disk in the computer before the next image was snapped. The entire
routine was fully automated, and data could be collected for pre-specified times
and the time-averaged properties could be computed at the end of each run. This
arrangement was suitable for the study of statistically meaningful parameters.
This approach was used in the measurement of bubble size, velocity and related
bubble parameters and the phase residence probability of the ‘active’ particle in
the fluidized bed.

Off-line measurement system : Figure 3.1.3b shows the configuration of
the off-line measurement method. This method was adopted if the temporal
variationof the measured quanatity was of interest. This included the tracking of
particle motion and the studies on the rate of solids mixing and segregation. This
method also provided a feasible means of studying processes which could not be

analysed in real-time. The sequence of events was first recorded on tape. A
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computer routine was developed for the generation of the encoding signals from
which a set of bar codes denoting the frame number was generated. The signals
from the video camera and the image frame encoding signals from the PC were
then combined at the digital video mixer and combined signals were recorded by
the VCR. The encoding process required precise synchronization with the rate
of standard video frame (that is, 25 frames/s) as poor synchronization led to
incomplete and incorrect frame number transcription. The frame encoding feature
allowed the tracking of time and was utilised for a fully automated frame-by-frame
analysis of the video tape. During data analyses, the images were displayed back
from the tape in slow advance mode. The image of the frame was then anaylsed
using appropriate software. The frame number was interpreted so that the exact
time was known. Afterthe completion of the data analyses, the computer advanced
the VCR to the next frame through the use of an opto-coupler driver and the same
routine was executed again. The time interval between two successive frames is
0.04 s. For some slower processes, the image data were analysed between several

frames.
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3.2 EXPERIMENTAL TECHNIQUE

3.2.1 Measurement of Bubble Size Distributions

3.2.1.1 Experimental procedure

The setup used for measurements of bubble size is shown schematically
in Figure 3.1.3a. Two different sizes of glass ballotini were employed in the
experiments. The geometric mean of particle sizes were 2.09x10* and
2.50x10* m and the corresponding minimum fluidization velocities were 0.031
m s and 0.068 m s’ respectively. The distributions of the bubble properties
were analysed at various heights ranging from 0.05 m to 0.4 m. The effects
of the variation of gas fluidizing flowrates on the bubble parameters were also
studied. The range of superficial velocities of the air varied from 1.6 to 5 times
the minimum fluidization velocity.
3.2.1.2 Measurement method

Thresholding : The initial step in data processing involves discrimination
of bubbles from the emulsion phase. The general procedure for this identifi-
cation involves examination of the histogram of the gray scale values for an
image consisting of both phases. A typical histogram of such an image is
presented in Figure 3.2.1. The gray scale distribution is normally bimodal
and the separation of the two peaks is large provided the image contrast is
sufficient. The peak at a lower gray scale level corresponds to the background
or the emulsion phase whilst the other peak represents the bubble phase. These
two phases may be distinguished by assigning a threshold value (or cut-off
level) somewhere between these two modal values. In practice, the threshold

value may either be chosen from a gray scale value whose frequency is at a
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minimum or at midway between the modal values (Castleman, 1976; Gonzalez
and Wintz, 1987). This threshold value is then used for the detection of the
bubble boundary. The area possessing a gray scale greater than the threshold
value is identified as bubble phase. A global threshold value may be applied
provided lighting conditions are reasonably uniform.

Image contrast was normally high. Thus, the delineation of the bubble
boundary with high accuracy is possible using the global thresholding method.
However, as noted, this method of thresholding is subject to some limitations.
The detection of very small bubbles, where excessive solid interference occurs,
produces problems as a consequence of the light attenuation in the emulsion
phase. If there exists a high proportion of bubbles possessing a size smaller
than the critical value, then the computed distribution of the bubble size is not
truly representative of the entire bubble population. Consequently, the bubble
size distribution measured at lower heights, where the smaller bubbles pre-

dominate, will require correction and is therefore not as reliable as data gathered
: . |
higher up in the bed.

Edge detection and automatic bubble measurement procedure : The
detection and measurement of the bubble paramctcrs('\uve been automated by
employing a series of systematic edge searching routines. The initial step of
the routine detects the numbers of the bubbles intersecting a line positioned at
some height above the distributor. For every bubble detected, further scanning
across the image is performed in both horizontal and vertical directions so
that the complete boundary of the bubble may be delineated. Various geo-
metrical properties of the bubble are readily evaluated during this process. The

measured bubble parameters are the projected area of the bubble, A, the
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perimeter (or circumference), C,p, vertical and horizontal extremities, dy, and
dy, and the approximate location of the bubble centre, (x,y). From these
measurements, other size parameters for the bubbles can be inferred. Bubble
size, expressed as an area-equivalent diameter, dp, can be readily calculated

as follows
dy=\[4— (3.2.1)

where A is the area of the bubble as projected in a two-dimensional plane. A
shape factor, S, may be defined to compare the shape of the bubble to the

circular form. Thus,

S =— 0<§5<1 (3.2.2)

where Cj is the bubble perimeter evaluated from the experiment. S is unity

for the perfectly circular or spherical bubble. The orientation of the bubble

may be characterized by the aspect ratio, o, where

o=— (3.2.3)

and dy and dj are the vertical and horizontal extremities of the bubble
dimensions.

This logic for edge detection is repeated for the subsequent frames. The
procedures of the routines are summarized in block diagram form as Figure
3.2.2. Generally, a total of about 2000 to 5000 frames of images are analysed

for each experiment.
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FIGURE 3.2.2: A block diagram showing the logic of the software for
the measurement of bubble parameters by digital
image analysis technique.
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Reconstitution of the true bubble size : As the edge detection is both
objective and consistent, bubble parameters can be accurately measured.
However, it has been observed that this technique underestimates the sizes of
bubbles having diameters comparable to the bed thickness. These bubbles are
partially embedded in the solid phase and the interference of this solid leads
to minor absorption of the light energy. A more rigorous method of thresh-
olding and edge detection should be adopted, for example, the adaptive
thresholding technique (Gonzalez and Wintz, 1987) with the value of threshold
varying from one region of image to the other. Unfortunately, the application
of this technique is not practicable because a substantial computational time
is required for the evaluation of different threshold values in each region. To
overcome the deficiency, a simple model has been developed to reconstruct
the true bubble sizes from the measured quantities.

The model is based upon an assumption of bubble shape, viz spherical
or ellipsoidal. The following analysis considers an ideal spherical bubble.
Envisage such a bubble of radius R wﬂich is small in comparison to the bed
thickness, #; with the bubble’s centre aligned with the central axis, Figure
3.2.3a. The bubble will be surrounded by a solid phase of thickness d. If, as a
first approximation, the extent of absorption of the light energy in the solid
phase is assumed to be proportional to the thickness of this solid layer, J, then

the following relationship is readily derived.

Iy—1 2
L KR—B— = Gy (3.2.4)
Ip—1I¢ Ir
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Here 0 < Ci < 1.0 and K is assumed to be unity. [ is set as the intensity of

the background or the emulsion phase, / as the intensity level for an unob-
structed light path and /7, as the threshold level selected for the distinction of
the bubble and emulsion phase. Clearly, Iy defines the measured bubble
radius,r,,.

For this small spherical bubble located at the bed centre, Figure 3.2.3b,
the true radius R can be related to the measured radius r,, by simple geometric

consideration as

R? = r:+r:l 3.2.5)

also
- Ts (3.2.6
r, = > 2.6)

Combining equations (3.2.4) and (3.2.6) yields
Ir
r, = E(l_ck) (3.2.7)

a

Substitution of the value of r, from equation (3.2.7) into equation (3.2.5) yields

2
2 |
R = r,,,+[—2—(1 —CR)] (3.2.8)
With the true bubble area, A, defined as A = tR? and the measured bubble area
, A, defined as A,, = nr2 equation (3.2.8) may be written as

¢ 2

A = Am+1t{:2'—(l —CR)] (3.2.9)

It is clear that the second term on the right hand size of equation (3.2.9)

represents the correction factor for the undersized bubbles. The effect of
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correction factor is negligible for larger bubbles where 4 [r/2(1 - Col*
Equivalent expressions for bubble shapes other than the spherical form, such
as ellipsoidal (Figure 3.2.3d), can be derived by employing similar reasoning.

The results are presented below.

A = Am+n7t|:—t25(1 —CR)]2 where M =é , o<l

n=oa , a>1

(3.2.10)

The lateral distributions of the key bubble parameters (size, shape factor

and aspect ratio) were determined for all the bubbles having their centres
distributed within a region 0.01 m hﬁh across the bed width at some specified
height, Z, above the distributor plate. The typical distributions of the bubble
parameters are presented in Figure 3.2.4. The result presented in Figure 3.2.4a
shows the distribution of bubble size in radial (lateral) position, consistent with
the observation reported by Chiba et al. (1975). Furthermore, the bubbles are
roughly spherical with a high proportion 5of bubble possessing shape factors
within 0.85 and 1, Figure 3.2.4b. Likewise, the aspect ratio of the bubbles

appears to be approximately normally distributed with the mean value close

to unity, Figure 3.2.4c.
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FIGURE 3.2.4b:

Distribution of shape factor S
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3.2.2 Measurement of Bubble Pierced Length at an ‘Imaginary’
Probe

3.2.2.1 Experimental procedure

The experimental set-up used for measurement of bubble pierced lengths
is shown Figure 3.1.3a. Two size fractions of glass ballotini (2.1x10™*m and
2.5x10*m) were used as bed material and the corresponding minimum flui-
dization velocities were 0.031 m/s and 0.068 m/s respectively. Experiments
were performed under different fluidizing conditions and at various
‘imaginary’ probe positions within the bed. The operating conditions
employed are summarized in Table 3.1
3.2.2.2 Measurement method

The operation of an in-bed probe is simulated by specifying its ‘imagi-
nary’ position, X, within the bed, Figure 3.2.5. One frame of the image is
captured and analysed at a time. The parameters of a bubble are measured
only if the bubble intercepts the specified probe position, that is, if X lies within
the bubble. For each detected bubble, fhe vertical chord drawn through X to
the boundary of the bubble was taken as its pierced length, y. In addition, size
measures (maximum vertical and horizontal lengths, dy and d, respectively),
projected area, A, and circumference, Cp, were also measured. Measurements
of these parameters were performed by scanning the image in both horizontal
and vertical directions. Several hundreds of bubbles were analysed and the
distributions of various bubble properties are generated.

It must be emphasized that this approach measures the temporal size
distribution of the bubbles at the ‘imaginary’ probe position. Hence, this

approach must be distinguished from a photographic analysis which measures
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TABLE 3.1. EXPERIMENTAL OPERATING CONDITIONS FOR
MEASUREMENTS ON BUBBLE PIERCED LENGTHS

Powder size (x10*.m)

2.1 25

(Uny =0.031 m/s) (U,y = 0.068 m/s)

Fluidising velocity 10.13 8.40, 12.46, 13.3
x10%,m/s

Bed heights 10, 20 5, 10, 20, 25
x10°m

Probe position 0 0,0.2,0.4,06,0.8

(2L, /Dy)
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the size distribution of bubbles in the entire frame - that is, the spatial size
distribution. If the spatial size distributions are measured, it is necessary to
convert them to the temporal size distribution taking bubble velocity into
account.

Typical results obtained from the experiments are shown in Figure 3.2.6
where the cumulative distributions of y, dyand d, have been plotted. The
measured projected area data were converted to the area equivalent diameter,
dg, using dg = V4A/r, equation (3.2.1); the cumulative distribution of dg has

also been plotted in Figure 3.2.6.
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2-D Fluidized Bed

‘Imaginary'
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FIGURE 3.2.5: A schematic showing the position of an 'imaginary’
probe, X.
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3.2.3 Measurement of the Angle of Bubble Rise and Bubble Vel-
ocity
3.2.3.1 Experimental procedure

For bubble velocity measurements, both on-line and off-line measure-
ment methods - Figures 3.1.3a and b, were used. The local characteristics of
the bubbles were measured for a fluidized bed of glass ballotini of size
2.4x10"m (U, = 0.0528 m/s). The static bed height, H,, was 0.36 m in all
experiments. Measurements of bubble size/shape, velocity and the angle of
incidence were performed for several fluidizing gas velocities. To determine
the effect of spatial location on the measured variables, experiments were
conducted at several lateral positions - L, denoting the distance of the
imaginary probe from the central vertical axis of the bed of width W - at
different heights, Z, above the distributor. The experimental conditions used
are summarized in Table 3.2.

Additional experiments were performed to compare the bubble size/shape
and velocity relationships for bubble swarms formed at the porous distributor
with those from a single nozzle (¢ =2mm), J-shaped injector operated to
produce single bubbles or a continuous chain of bubbles. For these experi-
ments, the bed was maintained at minimum fluidization conditions with gas
flow through the porous distributor. A fixed volume reservoir (cylindrical tube
of diameter (0.125 m and length 0.330 m) maintained at variable gauge pressure
was used to generate bubbles; the experimental conditions are summarized

also in Table 3.3.
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TABLE 3.2. EXPERIMENTAL OPERATING CONDITIONS FOR BUBBLE

VELOCITY MEASUREMENTS

FREELY BUBBLING FLUIDIZED BED

particle size

probe location

x10°%m 2L,/W Z/Hp U,, =0.0528m/s
180-300 0.0 0.55 1.4,1.75,2.28,2.84
0.0,0.5 0.55 2.84
2.84

0.0,0.25, 0.5 0.28

CONTINUOUS INJECTION OF BUBBLES IN INCIPIENTLY FLUIDIZED

BED

(Injector located at bed central axis and 0.03 m above the distributor)

particle size

probe location

volumetric rate

x10%m

2L, /W Z

p

1/min (69 kPa g)

180-300

0.0 0.78

(Injector located at bed central axis and 0.03 m above the distributor)

1.0, 1.5, 2.0, 3.0, 4.0, 6.0

dimension of cylindrical

reservoir pressure

particle size
x10° .m reservoir kPa g
180-300 $=0.125m,L=033m 103.4, 137.8, 172.3
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3.2.3.2 Measurement method

An ‘imaginary’ probe was assigned at a specified position in the bed.
Bubble properties were measured if a bubble was found to be intercepted by
this ‘imaginary’ probe in any given image frame.

The novel technique for the measurement of the instantaneous velocity
of the bubble and the angle of bubble rise (or the angle of incidence at the
vertical probe) utilizes the 1-2 interlace image scanning feature which is
intrinsic to most standard video imaging systems. A full image is composed
of two half images - an odd field and an even field. While the camera acquires
one field, the other field is sent to the digitizer board or frame grabber. There
is a short time period - known as the vertical blanking time - between the end
of the acquisition of one field and the beginning of the acquisition of the next
field. However, this time interval is negligible in comparison with the total
acquisition time (1/25 s) for a frame. Therefore, the time delay between the
odd and even fields is 1/50 s. For measurements, the two image fields were
separated from a single image frame and analysed, Figure 3.2.7, to determine
the location of the bubble centroid in each image field. The instantaneous
bubble velocity was determined from the translation of the bubble centroid
overthe time interval (1/50 sec) between the image fields. The absolute bubble

velocity, V, ¢, was calculated using
Vps=\VZ,+VZ, (3.2.11a)
where V, , and V; , are the measured velocity components in the x and y

directions respectively. Further, the angle of incidence, 8, was deduced from
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FIGURE3.2.7. Measurement of bubble velocity and angle of
incidence utilizing 1 : 2 interlaced image scanning
feature.
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V
6, = tan"( ”"J (3.2.11b)
Ve,

The global intensity thresholding method, described in section 3.2.1, was
utilized for the bubble edge detection and the measurement of bubble size
parameters (area A, perimeter Cp, area - equivalent diameter dg, vertical dy
and horizontal dj, diameters) and shape (aspect ratio &, shape factor §) in each

image field.
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3.2.4 Measurement of Tracer Concentration in the Mixing of
Uniform Solids

3.2.4.1 Experimental procedure

The experimental set-up for the solids mixing experiments is shown in
Figure 3.1.3b. A layer of tracer particles, comprising a fraction x of the total
bed volume, was introduced as a horizontal plane at location g (defined as
relative position to the total fixed bed height, Hz). The total height of the fixed
bed was 0.25 m. The bed was then fluidized at a pre-determined superficial
gas velocity, U,.

The measurements of the solids mixing behaviour were performed for
the bed fluidized at various superficial gas velocities and with three different
particle sizes. Additionally, the effectof initial conditions (amount and position
of the tracer) on the solids mixing patterns were also investigated. A summary
of the experimental conditions employed in this investigation is presented in
Table 3.3.

Tracer particles for the experiments were prepared by dyeing ballotini
using the method patented by Hyde (1940) and as described by Selim et al.
(1983). Particles were treated with a 3% solution of ferrous sulfate at 358 K
for about 30 minutes with occasional stirring. Subsequently they were treated
with a warm 1 % solution of potassium ferrocyanide acidified with HCI to
colour them Prussian blue. This colour was selected for the solid tracer because
it gave maximum contrast with the uncoloured glass ballotini. Minimum
fluidization velocity of the tracer particles prepared from each of three size
fractions were determined experimentally; the colouring process had no sig-

nificant effect upon the results, Table 3.3.
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TABLE 3.3. EXPERIMENTAL CONDITIONS FOR STUDIES

ON MIXING OF UNIFORM SOLIDS

Particle Size

Total tracer

Initial tracer

U /U

d,(m) concentra- position, q
tion, x
2.40x 10* 0.1, 0.2, 0.0,0.4, 0.5, 1.63, 1.91, 2.20,
(Bulk U,,= 0.068 m/s) 0.3,0.5 0.7,0.8,0.9 2.50, 3.56, 4.64,
(Tracer U, = 0.067 691
m/s)
5.12x 10* 0.2 0.8 1.43, 1.68, 1.94,
(Bulk U,,= 0.240 my/s) 2.21,2.25
(Tracer U, = 0.235
m/s)
7.25 x 10* 0.2 0.8 1.35, 1.54, 1.75,
2.00,2.23

(Bulk U, = 0.350 m/s)
(Tracer U, = 0.339
m/s)
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3.2.4.2 Measurement method

The mixing behaviour of the solids tracer in the bed was observed through
the CCD video camera. The bed was illuminated with front and back lighting
to permit distinction of the bubble phase from the dense phase; and, at the same

time, to provide sufficient contrast for the coloured tracer and the bulk material.

Independent measurements of bubble size, dj, bubble velocity, Up, and

the expanded bed height, Hy, were also carried out. Bubble size and velocity
were measured using the techniques described in sections 3.2.1 and 3.2.3.
Intensity and Concentration Relationship : The principle for the
measurement of the tracer concentration is based on the fact that the frame
grabber digitizes each of the 512 x 512 pixels (picture elements) comprising
a frame into gray scale values from 0 to 255. The dark tracer (dyed in Prussian
blue) would then acquire lower gray scale values in contrast with the uncol-
oured bulk bed material. These two pure constituents should possess gray
scale values at the opposing extremes of the gray scale spectrum,; for a mixture
consisting of the dyed tracer and undyed bed material, the gray scale value
should lie between these limits. Ideally, the gray scale value of a sample
consisting of any amount of the tracer should vary linearly with concentration.
Preliminary tests showed that there was a unique and monotonic relationship
between the tracer concentration and gray scale value, but the relationship was
not linear. This could be an intrinsic characteristic of the photo-sensitivity in
the video camera or the reflective and transmittive properties of the glass beads.
Nonetheless, the relationship between the tracer concentration and gray scale
intensity could still be established if samples of known concentrations were

used for calibration.
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The calibration of tracer concentration, defined in terms of volume
fraction (or weight fraction if tracer particles and the bulk material have the
same density), was conducted by mixing a known quantity of tracer material
in a fluidized bed containing the bulk material. The measured intensity dis-
tribution of the well-mixed sample was found to follow a Normal Distribution.
The mean was then taken as the characteristic gray scale value representing
the sample concentration. Similar tests were conducted for different quantities
of tracer and plots of the intensity values with respectto the tracer concentration
are shown in Figure 3.2.8. The results showed that the intensity became less
sensitive to concentration at higher tracer concentrations. The tracer used in
the experiments was, therefore, diluted to a concentration C (shown in Figure
3.2.8) to ensure operation in the region where intensity varied strongly with
tracer concentration.

The functional relationship between the concentration and the absolute
gray scale value established at one background lighting condition can not be
applied to experiments conducted at otl;er conditions. To overcome such
difficulties, the measured absolute values were normalized with respect to the
gray scale values of the unmixed (or pure) components; the normalized gray
scale parameter, /,,,, was defined as

/- Imin
=— (3.2.12)

nor
Imax - Imin

where/, [, and / ,, represent the absolute gray scale intensity for the mixture,

the unmixed components having darker (the tracer) and lighter (the bulk)

colours respectively.
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A normalized functional relationship between C,,, (where C,,, = 1.0 at

C¢) and,, was established and was plotted, Figure 3.2.9. This normalization
procedure eliminated the local variability when the tracer particles were used
at different background conditions. The relationship was expressed as an
n-order polynomial equation and readily evaluated by computer in the auto-
mated data analysis routine. Different correlations were obtained for the
different types of glass ballotini used. In the absence of a physical model,
generality can not be claimed for these calibration results. Since the above
correlation was derived from a statistical method, the results are not exact.
Evidently, some degree of uncertainty is associated with the method of con-
centration measurement using this approach; however, error analysis indicated
that the extent of uncertainty in the concentration was £5%which, in practice,
is reasonable.

Data Analysis : The data analysis routine is divided into two stages.

In the first step, the bubble phase was distinguished from the dense phase
by thresholding techniques. This can be accomplished readily as the bubble
phase possesses higher intensity values in comparison to the dense phase.
However, preliminary tests showed that as the mixing of the coloured tracer
progressed, the detection of the bubble/dense phase boundary, using the
pre-determined global threshold, was becoming unsatisfactory and the bubble
void area was consistently underestimated. This occurred due to the continuous
change of the intensity distribution of the image as the initially uncoloured
bulk of the solids progressively mixed with the darker tracer, turning the bulk
phase to a slightly darker mixture; measurements confirming this change are

shown in Figure 3.2.10. This problem necessitated the use of adaptive
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thresholding methods and a scheme for an automated determination of the
varying threshold values was also incorporated in the procedures for boundary
detection. Visual inspection, on the video monitor, of the images being ana-
lysed confirmed that such refinement improved the operation of the phase
identification and separation routines.

In the second stage, the tracer concentration of each cell, C; ; consisting

of 0.01 x 0.01 m’ cell size at a given location in the bed, was determined from
the mean intensity (or gray scale) of the cell excluding the bubble phase and
then inferred from the concentration/intensity calibration curve. The temporal
volume fraction or concentration C(Z,t) of the solids tracer at a given a
horizontal plane above the distributor plate, i = Z, was determined by summing

the tracer fraction in each cell across the horizontal plane, namely
CZ,0)=— (3.2.13a)

where A4, ; is the incremental cell area excluding the bubble phase in ith row

and jth column depicted in a two-dimensional M x N matrix. Similarly, the
temporal bubble fraction, €;(Z, ), was defined as

N
2 A4,

£,(Z,1)=1 —";;,AZ (3.2.13b)

where W and AZ denote the bed width and size of incremental bed height. A

schematic diagram depicting the procedure used for the analysis of concen-
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tration is shown in Figure 3.2.11. Typical measurements of the total tracer
concentration, C(Z, ), and bubble fraction, €4(Z, t), at a given height are shown
in Figure 3.2.12a and b.

It was observed that the axial concentration measured at heights near the
region where the tracer was located initially was lower than its expected value
towards the start of the run. This anomalous result is shown in Figure 3.2,13
where the tracer concentration was expected to be close to 1 for t ~0 whereas
the measurements were significantly lower. A little thought revealed that this
anomaly arose from the severe distortion and deformation experienced by the
tracer layer during bed expansion immediately after the injection of the flui-
dizing gas at the distributor. Images dumped to the printer from the videotape,
Figure 3.2.14, illustrate the progression of events for the run corresponding
to the measurements plotted in Figure 3.2.13. Anestimate forthe time duration
of the anomalous result is expected to be of the order of the height of the tracer
layer divided by the velocity of the initial bubble; for all cases considered in
this investigation, the anomaly is iexpc:cted to last less than a second.
Measurements at locations other than the immediate vicinity of the tracer layer
will not show this behaviour. In addition, the sequence of events shown in
Figure 3.2.14 also establishes that the temporal fluctuation in the measure-
ments of tracer concentration as well as bubble fraction (Figure 3.2.12a and
b) is mainly due to the passage of the bubbles. For the purpose of model
comparison with the experimental data in section 5.1, such temporal fluctu-

ations in the measurements were smoothed by averaging a number of data
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FIGURE 3.2.11: A schematic of the analysis of tracer concentration in

square cells along a horizontal plane in a fluidized
bed.
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points within a specified time interval. The smoothing procedures were

performed with care so that the gross solids mixing patterns were not severely

distorted.
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3.2.5 Measurement of Jetsam Concentration in Segregating
Binary Fluidized Systems

3.2.5.1 Experimental procedure

The rate of segregation of binary-particle system as a result of of density
orsize difference was investigated in the two-dimensional bed shown in Figure
3.1.3b. The process of segregation occurring when the initially well-mixed
bed was fluidized at a gas velocity was observed using a CCD video camera
and recorded on tape. A fully-mixed bed was achieved by fluidizing the mixture
at gas velocity slightly higher than the minimum fluidization velocity of the
heavier or larger component, U, , for several minutes. A mixture containing
0.2-0.25 weight fraction of the jetsam was used. The total height of the fixed
bed was around 0.2-0.25m. The types of particles used in these studies are
show in Table 3.4. The bed particles consisted of glass ballotini which
possessed a lighter color. The solids (jetsam) of darker color were chosen as
tracer particles. Tracer particles made from larger glass ballotini were also

3'2"*.

dyed according to the procedure discussed in section,\ The effect of fluidizing
velocity on the solids mixing and segregation was also studied. The range of
gas velocity used is show in Table 3.5. The minimum fluidization velocities
of the mixtures as a function of composition were also measured using the fast
defluidization procedures described by Nienow and Chiba (1985); a typical
result is shown in Figure 3.2.15.
3.2.5.2 Measurement method

Calibration of jetsam concentration : The concentration of the tracer

material was inferred from the intensity of the mixture as described in section

3.2.4. A calibration curve was charted out for each type of the binary mixture
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TABLE 3.4 PHYSICAL PROPERTIES OF PARTICLES

USED IN SEGREGATION STUDIES

Particle Type Size d, (m) Density Minimum fluidisa-
pp(kg/m?) tion velocity
Urnl‘ (rﬂ/S)
2.40x10** 2482 0.068
Glass Ballotini 5.12x104*" 0.22
7.25x10*" 0.38
4.14x10°° 3557 0.32
Aluminium oxide 5.18x10™*" 0.40
6.45x10°° 0.38

+ Bulk (Flotsam)

* Tracer (Jetsam)
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TABLE 3.5 EXPERIMENTAL CONDITIONS FOR SEGREGATION

STUDIES
Set Size Density U, ratio | Gas veloc- | Jetsam
ratio | ratio p,/pr | U,y /U r |ity Up(m/s)| mass
d,/ldr fraction,
Xy
A 3.02 1 5.60 0.14-0.464| 0.2
B 2.14 1 3.23 0.85-0.206] 0.2
C 1.73 1.43 470 0.134 - 0.25
0.401
D 1.26 1.43 245 0.342 - 0.25
0.602
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used. In the course of this investigation, it was ascertained that the change of
the intensity with the concentration of the tracer followed a functional rela-
tionship which could be uniquely described by an exponential decay function

similar to the Beer’s law
1 =1,exp(-xC™ (3.2.14)
The corresponding constants /,,, k and 1] can be determined readily by solving

the above equation from three independent intensity-concentration data sets.
The validity of the equation (3.2.14) for describing the the change of intensity
with concentration is shown in Figure 3.2.16 where each data point was
determined explicitly from sample mixtures of known concentrations. This
method provided a very convenient method for the determination of concen-
tration of coloured tracer materials in binary mixtures used in this work. The
procedure used was to first measure the intensity values of both the pure
tracer and bulk material before they were mixed in the fluidized bed. The
intensity of the mixture was then measured following fluidization at a high
velocity to achieve a well mixed condition. These three data points permitted
the calculation of the three unknowns in equation (3.2.14). Thus a single
calibration effort was required if all experiments were conducted using the
same binary system.

Analysis procedure : The analysis procedure for the determination Ajetsam
concentration in the bed was similar to that described in section 3.2.4 and
illustrated in Figure 3.2.11. Adaptive thresholding was used to distinguish
the gas bubbles from the solids phase. The intensity in a cell of 1x10 m* in

the bed was measured and the jetsam concentration was inferred from the
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calibration curve. The average axial composition of the bed was calculated
subsequently. Typical results are shown in Figure 3.2.17 where a surface plot
of the variation of the jetsam concentration with time is shown at different
heights within the bed. Accumulation of the jetsam tracer in the lower regions

of the bed with time is evident.
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3.2.6 Measurement of the Circulation Patterns of Large and
Lighter (or ‘Active’) Particle

3.2.6.1 Experimental procedure

For particle detection and tracking experiments, both off- and on-line
measurement systems - Figure 3.1.3a and b, were employed.

Thediameter of the ‘active’ particles used in thisinvestigation was chosen
as 7x10” m; such particles were large enough to permit easy detection and
small enough to permit free movement in the bed with minimum interference
from wall surfaces which are 9x10 m apart. ‘Active’ particles of different
density were then prepared by impregnating plastic spheres of this size with
materials of different densities or with an air cavity. Additional experiments
were performed with coal particles of this size. Particle motion characteristics
were measured in beds of glass ballotini (bed particle size : 7.12x10™* m)
operated at different superficial gas velocities. The physical properties of the
bed and ‘active’ particles, and the fluidization conditions used in the experi-
mental program are summarized in Table 3.6.

The motion of an ‘active’ particle (prepared from plastic or coal) was
observed using a variable shutter speed (2x107 to 1x10“ s) CCD video camera
(Sony XC/77RR-CE) capturing images at a rate of 25 frames per second.

In the first part of the investigation, the circulatory pattern of the ‘active’
particle motion in the bubbling bed was determined. The movement of particle
was traced by performing the automated frame-by-frame analysis of images
pre-recorded on the video tape, that is the off-line measurement system. With
the knowledge of time and particle displacement, the velocity of the particle

was calculated.
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TABLE 3.6. EXPERIMENTAL CONDITIONS FOR THE STUDY OF

LARGE PARTICLE MOTION AND DENSE PHASE RESIDENCE

PROBABILITY MEASUREMENT

Bed particles

dp =7.25x 10*m, pp = 2482 kg/m’, U, = 0.38 m/s

‘Active’ particle

(d, =0.007 m) U, (m/s)
Type Pa Particle tracking Particle dense phase
(kg/m*) experiment residence probability
experiment
plastic 947 0.565, 0.605, 0.687 10.565, 0.605, 0640, 0681,
0.721, 0.767, 0.81
1141 0.604, 0.687, 0.774 0.681, 0.721, 0.767,
0.822,0.870
1309 0.774 0.681, 0.721, 0.766,
0.850
coal 1016 0.566, 0.602, 0.639,
0.680, 0.720, 0.764,
0.807




93

In the second part of the study, the phase residence probability of the
‘active’ particle in a fluidized bed was measured. For such experiments -
performed on-line - a number of frames were captured at random for a given
duration (for example, an experimental run of 1.5 - 2 hours totalled to about
300-500 frames). The position of the particle and its association with either
phases of the fluidized bed were determined for every frame. The time-av-
eraged data were computed at the end of each run.
3.2.6.2 Measurement methods

Particle search and recognition : Since the particle may be present either
in bubble or dense phase, a method for phase separation and identification is
required. The interface between the bubble and dense phase could be distin-
guished without great difficulty by using intensity thresholding method. The
value of the threshold could be obtained by examining the intensity histogram
of the image (Lim et al., 1990). Though the ‘active’ particle is opaque, the
intensity of the particle is not always constant and lower than that of dense
phase. The relative intensity of the particle with respect to the dense phase
was found to vary with the local intensity level of the surrounding region. For
example, the particle would appear to be brighter closer to the bubble than
when it was totally submerged in the dense phase. Hence, the ‘active’ particle
can not be identified with simple thresholding method as that used for
bubble-dense phase distinction. Interference from bed particles adjacent to
the edge of the bubble further complicated the problem. Therefore, the
measurement approach adopted additional identification logics as discussed

in the following.
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The key feature for the search method was to assume the particle always
appeared slightly darker that its surroundings. However, due to the variation
of particle intensity and background intensity throughout the bed area, an
absolute minimum intensity of the whole bed area may not necessarily
represent the ‘active’ particle. This problem was overcome by searching for
the location of minimum intensity in a smaller sub-area or viewing area. Given
all the possible ‘active’ particle positions (the darkest spot in each sub-area),
the true position needs to be located. Image intensities in the regions neigh-
bouring a probable position - represented as a 3 by 3 array of square cells, each
of the size of the ‘active’ particle with the probable particle located on the
central cell A,, as shown in Figure 3.2.18 - were evaluated. An algorithm
consisting of a series of statistical evaluationgof intensity values of the
neighbouring cells and combined with a set of logics which compared the
pattern of the cell intensity variations in horizontal, vertical and diagonal
directions was implemented for the verification of the true particle location.
In case none of the probable particlezpositions satisfied the criteria, a null
decision was realised. Visual observations confirmed that the implemented
algorithms were substantially successful in tracking the particle. Results of
data analysis indicated that the percentage of null decisions ranged from 5 to
15%. It was assumed that the results of the analyses were not influenced by
the undetected particle positions. In practice, experiments with high fraction

of the undetected events were excluded. A typical result showing the motion

of the active particle is given in Figure 3.2.19.
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FIGURE 3.2.18: Subdivision of search area and analysis of the region

(one particle size) in the neighbourhood of the 'active’
particle
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Chapter 4
RESULTS and

DISCUSSION:

BUBBLE HYDRODYNAMICS

4.1 DISTRIBUTIONS OF BUBBLE SIZE PARA-
METERS

Recognition of its importance in controlling the behaviour of the fluidized bed
has led to substantial research effort, both theoretical as well as experimental, directed
towards estimation of the size of bubbles. Most of this effort has been aimed towards
determination of an average bubble size. However, coalescence (and splitting) of
the rising bubbles will inevitably lead to distributions of bubble sizes at different
lateral and horizontal positions within the bed. This section describes the results of
the measurements made in the two-dimensional bed; the experimental results are
compared with predictions of a model for bubble size distributions reported by

Agarwal (1985, 1987).
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4.1.1 Theoretical Models

The population balance based approach developed by Agarwal (1985, 1987)
considered coalescence as the dominant growth mechanism. Collision frequency
was assumed to depend on the velocity difference between two coalescing bubbles.
Analytic expressions were reported for prediction of the distribution of the bubble
characteristics. The density function for the bubble diameter, d’p, for an uncon-

strained growth in a large diameter bed was expressed as follows

f(d’ )=l l-u(m+1)(""'ly2' x"'+l .exp _{M}lni

T2 Tom +1)m02 yme2gin Ton-1)) 'y
4.1.1)

where
172 1/2
x= (‘J'B _ﬂ) -(”’Tldo) = 0232" (4.1.2)
m

y =@’ -d,”) (4.1.3)

172
dy=dy+d,+ (4 ﬁm—l) dpd® = (d*+0.23Z7°%’ 4.1.4)

2
_ Ko,

l—tyE (4.1.5)

d, is the initial bubble diameter (at the distributor) and Z” is the height above the

distributor. The model contains four adjustable parameters %, k;, m and s. The
corresponding values of these constants were estimated from the results of bubble
mean properties obtained from several studies. The estimated values of k, k4, m

and s were 2.226 (in m*®*s™), 5.174 (in m*® s™*), 10 and 0.4 respectively.
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Subsequently, the model was modified to consider the effect of bed diameter
as a constraint to bubble growth. The density function in term of the bed diameter

dependent bubble size, dy,, was derived as follows

dl
Fdgp) = DTf @y (4.1.6)

| S5’y

and yields
Fm+1)| 12 x
f”(d )_l {M}(mﬂﬂ. xmH! ‘ exp(—-{r(m_l)} ;)
(4.1.7)
where
¥ =(ds =4, (4.1.8)
Cn+1))?_ x 221527 ’

- Tm-1)) (D2-dM) = M 4.1.9)

and v denotes an incomplete gamma function. The cumulative bubble diameter

distribution was derived as

(4.1.10)

I‘(m+1)—y(m+1,b)}

F"(dy) ={I‘(m + 1) —ym +1,b)

where

(Tm+DY?  x 4111
b_(F(m—l)) (D2 -d)"? 11D

The effect of the bed diameter is observed to be notable if

04
a = 221527 > 3 (4.1.12)

(D1 -d,”)
Furthermore, the expression for the average bubble diameter was derived from

the density function as



100

1/2 172
T = do

- 74z ]
dpp = [do‘” +0.23274 - 0.0232"-“{ 007— - 1}] (4.1.13)
Accurate prediction of the initial bubble size is vital in any model. It provides
the initial conditions and accounts for the effect of different types of distributor
plate. Miwa et al. (1972) proposed that the initial bubble sizes may be evaluated

from

(a) perforated plate
d,=0.872{A,U, - U,)/n}"* (4.1.14)
(b) porous plate
d,=0376(U,-U,,) (4.1.15)
These expressions for the initial bubble diameters were derived based upon the
assumption that all the excess gas, (U,-U,,), isdirected to the formation of bubbles.
However, based on continuity considerations over the cross-sectional area of the
bed, the distribution of the gas flow in a fluidized bed may be separated into three
components (Grace and Harrison, 1969; Clift and Grace, 1985). The total gas
flow is balanced by the flow required to maintain the emulsion at minimum
fluidization condition, Q,, the visible bubble flow, Qp, and the bubble through-
flow, Or.
Qo =Qp+0p +0r
Up=(1-¢e)k U, +&Up + kKU, 4.1.16)
Equation (4.1.16) suggests that only a fraction of the gas flow, Q,, contributes to
the formation of visible bubble phase in the fluidized bed. If this analysis applies

to all sections in the bed, then for consistency the effect of the bubble throughflow

should also be taken into consideration in the formation of the initial bubble size
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at the distributor. The value of &, can be taken as unity if porosity of the emulsion
phase is maintained at minimum fluidization conditions. Considering the initial
bubbles to be spherical, the bubble throughflow can be taken as three times the
minimum fluidization velocity (Davidson and Harrison, 1963), that is K equals
to 3. Upon simplification, equation (4.1.16) reduces to

Qp =A,Up — U, [1 +2¢5]) 4.1.17)

Alternate expressions for prediction of the initial bubble size may be deduced
if the visible gas flowrate, Q,, instead of excess gas flowrate is considered
responsible for bubble formation. For a porous plate, the initial bubble diameter

can be calculated from

d,=0.376(U, - U, [1+2¢5)’ (4.1.18)
In equation (4.1.18), the evaluation of the initial bubble size requires a priori
knowledge of the €5 and this value may be estimated by rearranging equation
(4.1.16) as.

UO—UNV'

= 4.1.19
Us + ky(Kr = DU,y (4.1.19)

&

where Uy can be approximated by a correlation proposed by Davidson and
Harrison (1963)

Uy =(U,-U,)+071gd, (4.1.20)

The value of d, is calculated by solving both equations (4.1.18) and (4.1.19)
simultaneously.

4.1.2 Comparison of Model Calculations with Experimental Data

The experimental results for the bubble size distribution were compared with

the theoretical prediction by the model equation (4.1.7). The prediction of the

model based on the existing adjustable constants was observed to be poor. One
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of the reasons of discrepancy is probably due to the fact that those constants were
estimated for bubbles in a three-dimensional bed. Consequently, new values for
the adjustable constants were estimated from the experimental results by
employing a Chi-Square Goodness-of-Fit test. The values of m and s were
unchanged but new value of k, was evaluated.

Unfortunately, a range of values of k, was implied from the test. It was found
to vary from 3.5 to 6 m*®s™ depending on the bed height and fluidizing conditions.
Clearly, the mathematical model possesses some shortcomings for predicting
bubble size in a two-dimensional bed. Thus, the following section will highlight
and discuss the discrepancy and deviation found in the comparisons. Itis not the
intention of this work to propose additional modification of or alteration to the
existing theoretical model.

The effect of various fluidizing conditions and bed heights on the distribution
of bubble size were investigated and compared with the theoretical model. Figures
4.1.1a and b show that the effect of gas velocity on the distribution is not sig-
nificant. Interestingly, Chiba et al. (1975) have reported a similar observation for
the higher gas velocities. However, the model over-predicts the bubble size at a
higher gas rate. This is partly because of the over-prediction of initial bubble size
as the excess gas velocity is increased. Furthermore, the model only considers
the growth of bubble size by coalescence and neglects the effect of bubble splitting.
It has also been suggested that the gas leakage at the bed wall may be prominent
in a two-dimensional bed (Werther, 1978). Hence, such phenomenon may hinder
the continuous growth of bubble size with increasing gas rate.

Figures 4.1.2a-d illustrate the growth of bubble size with bed height for
powder size of 2.09x 10 m. The extent of dispersion of the distribution increases

progressively with bed height. Despite this, the proportion of smaller bubbles
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remains substantial. It is not entirely certain if these smaller bubbles result from
the breakage of the larger bubbles. However, it is highly improbable that such
small bubbles will travel up the bed without coalescing with other bubbles. From
the model prediction, itis observed that the value of k, decreases accordingly with
increasing height of the bed. This behaviour highlights the inadequacy of the
model in describing the growth mechanisms of the bubbles. A similar trend was
also seen in the experiments conducted on a different powder size. These results
are summarized as Figures 4.1.3a and b. Figures 4.1.1 to 4.1.3 also display a
comparison of predictions using the initial bubble size model proposed by Miwa
et al. (1975) with the more complex model presented as equation (4.1.18). The
effect appears to be minor and probably does not warrant the use of the more
complex expression.

Adequate comparison of the experimental data for the bubble size dis-
tribution with other sources is not possible given the paucity of the experimental
results available in the literature. Hence, the average bubble size must be used
for comparison with various empirical correlations. The results are shown in
Figures 4.1.4a and b. The empirical i:orrelations used in the comparisons are
givenin Table4.1. Large deviation in the prediction of the bubble size is observed
for the correlations by Rowe and Yacono (1975) and Werther (1978). These
correlations are developed for three-dimensional beds and appear inappropriate
for two-dimensional or thin beds. The prediction of Chiba et al. (1973) for a
two-dimensional bed shows good agreement with the experimental data. Simi-
larly, the prediction derived from the population balance model - equation (4.1.13)

- proposed by Agarwal (1987) gives reasonable fit. However, the equation by
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TABLE 4.1. EMPIRICAL CORRELATIONS FOR AVERAGE BUBBLE SIZE.

Reference Correlation Comment

Chlba et al _ (25/4 _ 1) (Z _Z ) 25 2 - D
dg= do{ =+ 1

(1973) do

Rowe Oﬂd g - (UO _ Umf)uz (Z _Za)3/4 3-D

Yacono(ia7s) = e

Werther (1978) 3-D

!
dy = 0.00853[1+27.2(U, - U,,))’

x[1+ 6.84(Z +Z, —d,)) "™

Mori and Wen

0.3Z 3-D
dg = Dy — (Dpgpy — dp) €XP| — D
(1975) T

Dy = 1.57{A(U, - U, )}*°
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Mori and Wen (1975) underpredicts the average bubble size. This may be a
consequence of the uncertainty in the evaluation of the maximum bubble size,
g e

Figures 4.1.5 presents the variation of the average bubble size with excess
gas velocity. Again, the effect of the gas velocity on the average bubble diameter
is observed to be insignificant. In contrast, the prediction by Chiba et al. (1973),
Mori and Wen (1975), and Agarwal (1987) propose a stronger dependency of
average bubble size on the excess gas velocity whereas predictions by Rowe and
Yacono (1976) and Werther (1978) indicate a lesser effect. The behaviour
observed in the experimental result may be attributed to the effect of bubble
throughflow and minor gas leakage at the walls.

The variation of the average bubble shape parameters, S and o with height

above the distributor are also considered. From Figures 4.1.6, it is clear that no
appreciable changes of bubble shape factor and aspect ratio occurs with changing
bed height. The average shape factor varies from 0.8 to 0.9 and the average aspect
ratio ranges from 1 to 1.2. Therefore, it is sufficient to constrpe that the shape of

|
the bubbles remain reasonablnd constant throughout the fluidized bed.
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4.1.3 Conclusions

A new method for non-intrusive sensing and measurement of important
bubble characteristics was developed based upon the principles of digital image
analysis.

The experimental measurements for bubble size distributions were compared
with predictions from a population balance model using coalescence as the
dominant growth mechanism. This comparison has highlighted some discrep-
ancies and further work on modelling bubble growth is required. Average bubble
size measurements compare favourably with the correlation of Chiba et al. (1973)
for two-dimensional beds.

Given the simplicity of the method, it is ideal for the calibration of most
types of submersible probes. Further work in this direction is described in the

following sections.
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4.2 CONVERSION OF BUBBLE PIERCED
LENGTH TO BUBBLE SIZE

Bubble parameters in three-dimensional beds are often measured using sub-
mersible probes. Since the central axis of the rising bubble need not coincide with
the vertical axis of the submerged probe, such probes measure only the pierced length
and not the bubble diameter. In this section, using the methods described in sections
3.2.1 and 3.2.2, pierced length, maximum horizontal and vertical dimensions, cir-
cumference and cross-sectiongfl area for individual bubbles intercepted at an
‘imaginary’ probe have been measured simultaneously. Several assumptions have
been made in the literature regarding the bubble shape. These assumptions and the
experimental data on bubble pierced lengths are used, in the framework provided by
geometrical probability theory, to predict distributions of bubble size parameters.
Comparison of theoretical predictions with measurements then enables the assess-
ment of the applicability of geometrical probability methods for converting measured
distributions of pierced lengths to bubble si;c distributions. Though these methods
were first used by Werther (1974a,b), the résults presented here, for the first time,
verify their applicability experimentally.

4.2.1 Theoretical Analysis

Itis assumed that each bubble in the population is described by its horizontal
dimension, R (= dy/2), and that the bubble population possesses uniform shape
characteristics. The probability of measuring a pierced length, y, is the conditional
probability, P(ylR), of measuring that pierced length from a bubble characterized

by R integrated over the possible range of bubble sizes. Mathematically,

P(y)=fRP(y |R)P(R)dR 42.1)
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where P(R) is the probability density function of the horizontal dimension of the
bubbles detected at the probe.

To deduce P(R) from experimental data on P(y), the conditional probability
P(yIR) must be determined. Let P(rlR) denote the conditional probability of
detecting a bubble of size R with its centre at a distance r from the probe tip. If
the shape is specified for a bubble characterized by R the functional relationship
between y and r is monotonic and P(yIR) can also be expressed (Melsa and Sage,

1973) as
dar
P(yIR)=P(r|R)|3;I (4.2.2)

Functionalrelationships for (dr/dy) for possible bubble shapes have been tabulated
(Clark and Turton, 1988). Further,

number of bubbles (R) inter-

secting the probe with centres

P(r | R)AR = atdistance r from the probe
tip

total number of the bubbles (4.2.3)
(R) intersecting the probe
To obtain a general expression for P(rlR), the number density function of the
bubble centres at a height Z above the distributor and distance A from the central
axis of the bed is denoted as P(Z,A,R).
For a cylindrical bed, using the definition given by equation (4.2.3),
2n
P(Z,\R)rdd

P(r|R)= - 0 - 4.2.4)
f P(Z,\,R)rdOdr
o Jo
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P(Z,A.R)

FIGURE 4.2.1: Geometry of a probe in a cylindrical bed.
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The relation between r, A, and the distance of the probe from the central axis of

the bed, L,,, can be determined from geometry (Figure 4.2.1) as
A*=(r sin0)’+ (L, —r cos 6)’ (4.2.5)

The assumption of homogeneous bubbling within the probe detection region in
the cylindrical vessel implies that P(Z,A,R) is constant leading, in agreement with

Clark and Turton (1988), to

2r
P(r|R) =1T2 (4.2.6)

Equation (4.2.6) will not apply to the thin/two-dimensional geometry of
interest in this investigation. For this case, assuming the bubble size to be larger
than the thickness of the bed, the angular variation need not be considered. The
homogeneous bubbling assumption will then lead to, in agreement to with Sung

14 hang 4. .

The general form of P(rlR), equation (4.2.4), will permit consideration of
non-homogeneous bubbling provided a suitable function for the bubble centre
density function, P(Z,A,R), is available. The homogeneous bubbling assumption
has been retained in much of what follows.

4.2.2 Computational Procedures

Typical experimental distributions for the pierced length and other bubble
size parameters have been shown in Figure 3.2.6. For computational ease in the
transformation of bubble pierced length distribution, P(y), a continuous Gamma

function

a+l, a
Fa+ 1)exp(—by) (4.2.8)

P(y)=
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was fitted through the discrete experimental measurements. The parameters, a
and b, of the fitted distribution were determined from the mean, p, ., and standard
deviation, O,..» Of the experimental data (Burgess and Calderbank, 1975)

according to

_u')"“ . - Hy,ex 2_
b _0'3,.: ; a—(cy’aJ 1 (4.2.9)

For illustration, the fitted function is also shown in Figure 3.2.6.

The pierced length distribution can be used to estimate the local bubble size
distribution, in conjunction with an assumed shape for the bubble population,
using the backward transform technique established by Clark and Turton (1988).
The continuous integral of equation (4.2.1) is approximated by a summation of a

series of finite values consisting of the products of P(yIR), P(R) and AR:
m-1
P(y)= ,Zo P(y;| R)P(R))AR (4.2.10)
=

where the pierced lengths are divided into m divisions such that

Y, J'"“(m —(i+%)) 0<ism-1  (42.11)

m

and

R R ,
R. = mu(m -j); AR = 0<j<m-1 4.2.12)
J m m

Ymax 1 taken to be the maximum values measured in the system and R, may be
calculated from the given geometry

ymu

=—— 4.2.1
. (4.2.13)

where

N =V1-sin’8,/2) (4.2.14)
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By expanding the series for all possible y; values and recognizing that a pierced
length y;can only come from a bubble of radius R; or greater, a matrix of triangular
form is then generated. Each series may be easily solved in a sequential manner
to give the value of P(R) required. Computer algorithm can be readily programmed
to perform this task. From the calculated values of P(R), distributions in terms of
other bubble geometrical parameters (only for monotonic function) may also be
obtained, for instance

| ar | (4.2.15)

P(dg)=P(R) dd;

The bubble shape also specifies the geometrical relation between the hori-
zontal and other dimensions (dy, dg and Cp) of the bubble. These relations are
summarized in Table 4.2 and the nomenclature used is illustrated in Figure 4.2.2.
Thus, distributions of other bubble dimensions can also be predicted once P(R)
has been evaluated. It is clear that the comparison of predicted distributions of
the several bubble size parameters with experimentally obtained data enables a
comprehensive examination of the applicability of the geometrical probability
approach and the assumed bubble shape.

In the literature, bubbles are commonly assumed to be spherical, spherical
cap, ellipsoidal or hemispherical in shape. The simplest approach is to assume
the bubble shape as spherical. Experimental observations (Rowe and Partridge,
1965) indicate that the bubbles are spherical with particle-wake region occupying
the lower part of the sphere. Alternatively, an ellipsoidal shape may be assumed
for the oblate bubbles with a constant aspect ratio o (Werther, 1974a, b; Chiba et
al., 1973). For bubbles with arelatively flat base, a hemispherical bubble geometry
may also be considered (Sung and Burgess, 1987). To evaluate the applicability

of these assumptions, several bubble shapes were considered in the calculations.
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TABLE 4.2. GEOMETRICAL RELATIONSHIPS FOR VARIOUS SHAPES.

Shape area-equivalent diameter Circumference
(dg) (Cp)
spherical 2R 2nR
ellipsoidal 2R\a

spherical cap

hemispherical

(55

2R

T
IE i
4a (K’Z)

E(xgj = f\h ~xsin?¢do

’

a
(1 —G—W)ZTCR +2R sin(Q)
2n 2

TR +2R
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FIGURE 4.2.2: Geometry for the greater section of an ellipsoid
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TABLE 4.3. BUBBLE SHAPES AND SHAPE PARAMETERS

Parameter
Notation Shape o 0.
a spherical 1.0 0°
b ellipsoidal 0.77 0°
c spherical cap 1.0 120°
d hemispherical 1.0 180°
e ellipsoidal * ' 0.77 0°

*(Werther’s method)
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For the spherical cap bubble shape, the wake angle 8,, is expected to vary with
the type of particles and size; for the present calculations, 8, has been taken to be
120°. The bubble shapes and the corresponding shape parameters employed in
the calculations are summarized in Table 4.3.

Further, estimation of bubble size distribution using Werther’s method
(Werther, 1974a,b) is also considered. Incontrast to the backward transformation,
Werther derived a relatively simple expression for the prediction of cumulative

number density distribution in term of bubble vertical diameter d,,

(PO (e
F(dv) =1- (P (dv'min))(-;_) dV.min < y < dV,mn (4216)

where dy ., is calculated as the pierced length corresponding to the maximum in
the slope (with respect to the origin) of the P(y) versus y plot. However, the
density distribution of f(dy) as derived from F(dy) should be distinguished from
P (dy): the former represents the distribution of the bubble size in the system (that
is, across the entire horizontal surface (three-dimensional) or line (two-dimen-
sional) of the fluidized bed) whereas the latter depicts the distribution of the bubble
size touching (or measured by) the probe.- Thus, P(R) (or P(dy)) is influenced by
the size of the individual bubbles since larger bubbles have greater probability of
being detected at the probe. P(R) and the system density distribution of bubble
sizes, f(R) in three-dimensional bed, are related according to
TR%f(R )dR

(4.1.17)
J;nsz(R)dR

PR)dR =
Itis apparent that f(R) is not equal to P(R) except for mono-sized bubbles. Also,
since the second moment of bubble size R (that is, the denominator in equation

(4.2.17) has a finite value, the following relationship is established
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PR) o R*(R) (4.2.18a)
and for two-dimensional bed,

P(R) o Rf(R) (4.2.18b)

Using this relationship, the values of f(R) estimated from equation (4.2.16) were
converted to P(R) for comparison with the distributions calculated using the
backward transformation method.

4.2.3 Distributions of Bubble Size Parameters

Typical comparisons of the predicted distributions with the experimental
data at lower bed heights are shown in Figure 4.2.3a-d. These data were obtained
using the 2.10x10™ m sized powder as the bed material with a superficial gas
velocity of 0.1013 m s™ at a height of 0.1 m above the distributor at the central
axis of thvc bed. The theoretical predictions assuming different bubble shapes are
also plotted; the notation used for the predicted curves is given in Table 4.3. The
comparisons reveal several interesting features:

* It is clear that curve d, gcncrate}d assuming the hemispherical bubble

shape, is incompatible with data. ’fhe agreement is comparatively better

with curves a and ¢ which assume spherical and spherical cap (with 6, =
120°%) bubble shapes respectively. The hemispherical bubble shape implies

a wake angle 0,, = 180° whereas the spherical bubble shape implies 8,, = 0°.

It appears then that the bubble wake angle, if the spherical cap bubble shape

is to be accepted, lies between 0 and 120°. These numbers are consistent

with the observations of Chiba et al. (1973). The wake angle could be treated
as anadjustable parameter in our calculations. However, due to uncertainties

discussed later in this section, such calculations appear unwarranted at this
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FIGURE 4.2.8a: Comparison of the predicted distributions of various

Cumulative distribution

bubble parameters (dg, dv, dg, Cp) with
experimental data at lower bed height using various
bubble shape models.

a: spherical; b: ellipsoidal, o = 0.77; ¢: spherical cap,
8w = 120° d: hemispherical and e: ellipsoidal, o =
0.77, Werther's method. dp= 2.12x 104 m,Z =0.1
m, Uy = 0.101 m/s, 2 Lp/D1 = 0.0

10

dv x 102 m

FIGURE 4.2.3: Comparisons of predicted distributions with

experimental data.
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FIGURE 4.2.3c: Comparison of predicted distributions with
experimental data
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I;‘IGURE4.2.3d: Comparison of predicted distributions with
experimental data
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stage.

» Curves b and e are both obtained assuming ellipsoid bubbles with an
aspect ratio, o, of 0.77. However, the prediction using Werther’s method,
curve e, has a different minimum bubble size compared to the backward
transform calculations shown by curve b. During the course of computations,
it was found that P(R) becomes negative for small values of R at the final
stages of the calculations. This instability depends on the interval of bubble
size (hence number of iterations) over which the calculations are performed.
Similar behaviour was noted for calculations using Werther’s method.
Werther noted that, in his method, the selection of dy ., was somewhat
arbitrary; however, this was tolerated as it had no effect on the distribution
of remaining bubble sizes dy > dy .. The backward transform algorithm
does provide better agreement with experimental data in this case; a more
complete comparison is discussed subsequently.

» The comparison also reveals that the predictions for the vertical diameter
are identical for spherical, hemispherical and ellipsoidal bubble shapes.
Given the geometry, equation (4.2.1) may also be expressed in term of
vertical dimension d, rather than R. Mathematically, the expressions relating
P(dy) and P(y) for a spherical cap bubble with an arbitrary wake angle 6,

can be obtained using

dr yyy-n)
R)I—]| = (4.2.19a)
p(r| )Idyl rErv— a
N=J1-sn*(aw2) v=0+1d) (4.2.190)

Similarly, for an ellipsoidal bubble with an arbitrary aspect ratio, a,
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dr
pUIR)I | = 4 (4.2.20)
y

dA\1 = (y/d,)?

It may be noted that equation (4.2.20) is independent of «; that is, ellipsoidal

and spherical (o) bubble shapes will predict identical vertical diameters. It

can be verified that for the hemispherical(6,, = 180°) bubble shape, equations

(4.2.19) and (4.2.20) yield identical expressions. The difference between

various bubble shapes is evident for other size measures.

* For the prediction of the maximum horizontal and vertical bubble

dimensions and the area-equivalent diameter, the spherical bubble shape

assumption appears superior. On the other hand, the ellipsoidal bubble
assumption provides better agreement for the prediction of the bubble cir-
cumference. This apparent anomaly arises from the fact that the bubble
shape is irregular and the circumference is inevitably larger than the more
compact smooth shapes assumed for the purpose of theoretical analyses.

This irregularity of bubble shape would have manifested in the measured

projected area, A; however, these;effects are dampened by the square root

calculation in the conversion to th;(', equivalent diameter, dg.

The experimental data, in general, are encompassed by the predictions
assuming spherical, curve a, and ellipsoidal (a0 = 0.77), curve b, bubbles.
Qualitatively similar results were obtained for the other experimental conditions
employed in this investigation.

4.2.4 Overall Statistical Analysis

Fairly extensive data have been collected during the course of this investi-
gation. To provide an overall assessment of the predictions from geometrical
probability, based on various shape characteristics, the predicted mean and the

standard deviation of the distributions of the various size measures were compared
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with the corresponding experimental values. The scatter plots of the predicted
and experimental values for the means and standard deviations are shown in
Figures 4.2.4 t0 4.2.7. The average errors (deviation) of the mean values and
standard deviations between the predicted and the experimental values for various
models were also estimated and the results are tabulated in Tables 4.4a and b.

The qualitative consistency of the comparison between experiment and
theory, discussed in detail for the size distributions shown in Figures 4.2.3a-d,
is evident in these results. It can be ascertained that the hemispherical bubble
shape leads to the maximum average error in the estimation of the means (43.6%)
as well as standard deviations (63.5%)of the size distributions. The errors in the
estimation of the mean and the standard deviation of the distribution of the vertical
dimension, F(dy), is identical for spherical, ellipsoidal and hemispherical bubble
shapes. The ellipsoidal bubble shape provides the best comparison with the
experimental data on bubble circumference. In the estimation of the means of the
distributions, calculations using Werther’s method lead to lower absolute values
for dy and C; whereas the backward transform calculations lead to lower errors
in the estimations for d; and dg. The opposite trend is obtained in the estimation
of the standard deviations of the distributions. The results from both calculation
procedures are in reasonable agreement.

The assumption of a spherical bubble shape leads to the minimum error in

the estimation of the mean as well as the standard deviation.

4.2.5 Approximate Relation between Bubble Pierced Length and

Bubble Diameter Distributions
The use of geometrical probability in the conversion of the distribution of
bubble pierced length to those of several bubble size measures has been discussed

inthe preceding sections. Itappears useful toexplore the possibility of establishing
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TABLE 4.4a. OVERALL ERRORS ANALYSIS ON THE MEAN VALUES.

Absolute error, )L (%)
Shape Type dy dy dg Cp Average
a 1.3 104 0.9 154 8.5
b 20.4 10.4 12.9 2.8 11.6
c 459 6.2 40.1 25.8 29.5
d 854 10.4 40.1 38.4 43.6
e 24.6 7.4 16.8 0.5 12.3

TABLE 4.4b OVERALL ERRORS ANALYSIS ON THE STANDARD DEVIATION.

Absolute Error, G (%)

Shape Type dy dy dg Cp Average
a 5.1 16.0 28.4 10.7 15.1
b 36.4 16.0 46.3 2.7 254
c 65.8 0.5 81.8 329 453
d 110.1 16.0 81.6 46.2 63.5
e 254 227 345 . 5.6 22.1
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simpler, though empirical, methods for the transformation. Inspection of the
experimental data confirms that the size distributions can be fitted by Gamma
functions of the form given by equation (4.2.8). The distributions of bubble size
measures can be obtained if expressions for the parameters of the Gamma dis-
tribution are available. Several expressions have been proposed in the literature
to relate the average values of the bubble pierced length and bubble diameter,
Table 2.2. The plot of the experimental mean of bubble diameters in terms of d,,,
dy and dg versus bubble pierced length, y, is shown in Figure 4.2.8. The agreement
between the experimental data and correlations appears to be reasonable. To
establish the relation between the mean and the standard deviation of the size
distributions, a regression analysis was performed; the results are summarized in
Table 4.5. The results show strong correlation between the standard deviation
and mean property. A simple linear regression model ¢ = A, + A, | was used and
the corresponding coefficients have been estimated. Chiba et al. (1973) also
observed that the variance of the bubble size distribution was uniquely correlated
with the mean bubble size. The relationship o = 4, uA‘ was used and the estimated
values for coefficients A, and A, using a wide range of particle sizes and types
were 0.245 and 1.535 respectively. However, an exception was observed for
micro spherical catalyst particles (89 um) where the coefficients A, and A; were
0.110 and 1.955 respectively. Chiba et al. (1975) suggested that the bubble size
distribution may be expressed by a logarithmic normal distribution for most
particles. Such empirical approaches provide simpler procedures for the esti-
mation of bubble size distribution from the measured pierced length values in the
regime of the regression analysis. In general, the geometrical probability approach

is clearly preferable.
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TABLE 4.5. CORRELATION BETWEEN THE EXPERIMENTAL MEAN AND STAN-
DARD DEVIATION OF VARIOUS BUBBLE DIMENSIONS.

o= Ao + Al u.
Bubble Dimension A, A, Corr. Coeff.
Pierced length, y -0.340 0.620 0.976
Horizontal dimension, d,; 0.143 0.288 0.853
Vertical dimension, dy -0.204 0.468 0.951

Equivalent diameter, dg -0.157 0.346 0.929

e
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4.2.6 Requirements for Refinements in Theory

The results described above indicate that the geometrical probability
approach, when used with the spherical bubble shape assumption, provides a
reasonable method for the calculation of the distributions of bubble size measures
from experimental data on the pierced lengths measured at a probe. There are
two further refinements in theory which would strengthen the results reported in
this study.

Firstly, the theory assumes lateral homogeneity in bubbling. To test this
assumption, experiments were conducted at different lateral positions in the bed.
In Figures 4.2.9a and b, the experimental cumulative distributions for the bubble
pierced length, y, and the vertical dimension, dy, are plotted for lateral positions
2L,/D1 0f 0.0, 0.4 and 0.8 at a height of 0.25 m above the distributor. These data
have been obtained using the 2.5x10™*m powder fluidized at a gas velocity of 0.133
m s”. The inspection of these plots indicates that both size distributions are
identical at 2L/D; = 0.0 and 0.4, that is near the centre of the bed. This behaviour
is consistent with the homogeneous bubbling assumption. On the other hand, the
distributions of y and dy at 2L,/D; = 0.8 are markedly different from those at
2L,/D;=0.0and 0.4. These data confirm the existence of lateral non-homogeneity
in bubbling near the walls of the vessel. This behaviour is in qualitative agreement
with earlier literature results for two and three-dimensional beds (Grace and
Harrison, 1968; Werther, 1974a,b). At present, the functionality of P(Z,A,R),
which describes the lateral non-homogeneity, has not been established and further
work is necessary.

The theory also assumes uniform shape for the entire bubble population.
However, due to the effect of complex interactions between neighbouring bubbles

in the swarm, bubbles have been observed to occur in several forms and shapes
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(Hatanoetal., 1986; Hatate etal., 1985). A typical measurement of the distribution
of the bubble aspect ratio (dy/d;)) is shown in Figure 3.2.4c. The means of the
distributions are close to one - that is, the spherical bubble shape. However, it is
clear that the assumption of uniform bubble shape characteristic is not correct.
The transformation method described in the theory must allow the possibility of
bubble characterization by more than one independent size characteristics. The
derivation of an appropriate expression - instead of equation (4.2.1) - is possible.
The concept of statistical sampling from a multivariate population has been dis-
cussed by Kendall and Stuart (1977). In the following example, with the extension
of an additional size characteristic, the distribution of bubble pierced length is
characterized by a joint probability of bubble centre, horizontal and vertical
dimension. Alternatively, the vertical dimension may be interpreted by the aspect

ratio. Thus
PO)= [ PR 0P (@)
- f f P(y |R,0)P(R | )dRP(0)do.  (4.221)
aJR
If R and o are independent, then P(Rla) equals P(R). Also
dar
P(yIR,a)=P(rIR,a)IEy—I (4.2.22)

and

2x
PZ,\R,0)rd®
P(r|R,0)=—7—"— (4.2.23)
f P(Z,\R,a)rdOdr
0 0

Given experimental information of P(y) and P(c), the values of P(R) may be
obtained numerically. The backward transformation technique can not be applied

directly to this case and more sophisticated algorithms are required.
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However, inclusion of one more size characteristics demands an additional
stage of integration. The solution requires a more sophisticated algorithm than
the backward transformation method. It is thought that the effect of non-homo-
geneity in bubbling needs to be considered in more detail before the additional
computational efforts in the implementation of the more sophisticated algorithm
can be justified.

4.2.7 Conclusions

The distributions of the bubble pierced length as well as other bubble size
measures were measured experimentally by employing digital image analysis
methods. The experimental results show that bubble size distribution can not be
obtained directly from the pierced length distribution. However, reasonably
reliable inferences can be made using geometrical probability approach. Results
of comparison, for bubble size distributions as well as overall statistical analyses,
suggest that simulations using spherical or ellipsoidal («=0.77) models provide
satisfactory agreement between experiment and theory. Lateral non-homogeneity
in bubbling as well as the non-uniformity in bubble shapes have been detected
experimentally. Further work is necessary to include these refinements in the
theory.

These results will significantly enhance confidence in the use of intrusive
probes (measuring only the pierced length distributions) to determine the size
distributions of bubbles or droplets dispersed in a medium. Two further con-
siderations need a more detailed appraisal:

* the ability of two-element probes to measure bubble velocity and pierced
length unequivocally; and

« the possibility of alteration in the local behaviour of the dispersed phase

due to the presence of the in bed probe.
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The first issue is addressed in detail in the following section.
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4.3 THE ANGLE OF BUBBLE RISE AND SUB-
MERSIBLE PROBE SIGNAL INTERPRETATION
METHODS

Submersible probes used to measure bubble characteristics in three-dimensional
beds often have two sensing elements to detect the presence (or absence) of the rising
bubble void. Such probes measure the velocity of a bubble as the ratio of the probe
tip separation and the time (delay time) taken for bubble interface to travel from the
lower to the upper probe tip. The assumptions implicit in this measurement method
are that the shape of the interface or the bubble does not deform substantially and
that the bubble rises vertically (in alignment with the vertical probe axis). The former
assumption may be valid if the distance between the probe tips is small. In this
section, the implications of the latter assumption are examined both theoretically as
well as experimentally. The image analysis techniques developed to measure the
bubble velocity, described in section 3.2.3, also permit assessment of the relation
between bubble size, shape and velocity in flfreely bubbling beds. For comparison,
measurements have also been obtained for bubbles injected - singly or continuously

from a single orifice - into a bed maintained at minimum fluidization conditions.
4.3.1 Theoretical Analysis
Consider an ideal circular (two-dimensional) shape bubble of radius R rising

with a velocity V, ¢ at an angle 8, with respect to the vertical axis as shown in
Figure 4.3.1a. The vertical probe (with tip separation #,) intercepts the bubble
interface at a distance r from the central axis of the bubble. The bubble pierced
lengths measured at the upper and lower tips are y, and y, respectively. From

geometry, Figure 4.3.1b, the following relationship is established:
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FIGURE 4.3.1: (a) Interpretation of probed signal for bubble moving
at an angle 6B

(b) Geometrical relationship of signals measured by
the upper and lower probe.
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Yul2+tyVp o=y, /2 +1,cOs0p (43.1a)
where 1, is the delay time for the interface to reach the upper tip. Rearrangement

of equation (4.3.1a) yields

yi/2—yyl2+t,cos0p 1,
l, = =
H VB.O VB,m

(4.3.1b)

where Vj . is the inferred velocity assuming the bubble rises vertically past the

probe. Therefore, the deviation of the velocity inferred by the dual-element probe,
V., from the true velocity, V; 4, can be expressed as

VB,m t.v
VB,O B yL/Z - yu/z + t, cos eB

(4.3.1c)

Referring to Figure 4.3.1a, two cases arise: case I where the pierced length
measured by the lower probe, y, is greater than the that measured by upper probe,
Yu, whereas in case II, the converse is true. It can be shown from geometry that

the difference in the pierced lengths at the two tips of the probe is

ISR THPUY P AR Y PR N O
A)’—2 2—1{’\/R —(r—t, 2 )— R°—|r+1, > 3.2a)

Clearly, the variables influencing the ratio of inferred and actual velocity,

(Vs../Vs. o), are the bubble radius R, the off-center distance r, and the angle of
bubble incidence 6. Equation (4.3.2a) can then be written in terms of dimen-

sionless length parameters B =R/t,, T=r/R andn = Ay/t, as

n= iB{'\[l -(-: - Si;‘;")z—\ﬁ - (‘t+ Si;;"’ T} (4326)

Co%cqucntly, equation (4.3.3) can be rewritten as

VB,m _ 1

= for (M +cosBy) >0 (4.3.3)
Vpe mM+cosby
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Parametric studies with equation (4.3.3) revealed that (Vs .m/Vp ) wWas more

sensitive to T and 6 in comparison with ; computations for a bubble having
radius ten times larger than the tip separation distance (8 = 10) as functions of 8
and 7 are shown in Figure 4.3.2. The results indicate that in case II, the inferred
velocity is always greater than the true velocity for all angles and increases with
increasing value of angle of incidence 6,. The extent of deviation is considerable
if the off-center distance r is large. However, in case I, the inferred velocity may
be over- or under-estimated depending on the angle of incidence and the off-center
distance.

Though the above analysis is only for a simple bubble shape, its implication
is critical for velocity measurement (and the consequent deduction of bubble size)
using a dual-element probe. Given the geometry of a two-element probe, it is not
possible to measure either the angle of incidence or the off-center distance which
are of importance as shown above. Clearly, the measurements from adual-element
probe are questionable theoretically. It remains to establish the magnitude and
the nature of the deviation of the angle of bubble rise from the vertical in practice.
4.3.2 Bubble Deformation

Whether submerged probes, dual-element or multiple-tipped, alter the local
state of fluidization or not has been debated in the literature (Gunn and Al-Doori,
1985; Sung and Burgess, 1987; Rowe and Masson, 1981; Geldart and Kelsey,
1972; Rowe and Masson, 1980). In a fluidized bed, there is a continuous exchange
of material (gas as well as solid) between the bubble and emulsion phases and the
non-rigid bubble-emulsion interface could deform even in the absence of a sub-
merged probe. An estimate of this deformation was made by measuring the

local size and shape change between two successive image fields. The extent of
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FIGURE 4.3.2; Typical parametric results (for = 10) on the ratio of
inferred and actual velocity (VB m/VB,g) as a function

of angle of incidence, 68, and off-centre distance,
T=r/R.
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change or deviation, §, between fields was defined as

F,
d=1 =% %100 (%) (4.3.4)
1

where F, and F, are the measurable variables in first and second image field

respectively. Typical cumulative distributions for the extent of change in size and
shape are shown in Figure 4.3.3. The change in the size d; and shape factor §
was found to be relatively small - that is, more than 50 % of the bubble population
experienced less than 5 % deviation. However, the aspect ratio o changed con-
siderably due to shape elongation from impending coalescence.

The measured changes are, at the present stage, indicative only since they
also reflect possible limitations in the thresholding algorithms used in size/shape
measurements. The data presented in the following have been screened to discard
all measurements showing more than 5 to 10 % change between successive image
fields.

An estimate of whether the interface velocity is the bubble velocity (as
assumed in measurements using submersible probes) can, nevertheless, be made
fromthese measurements. The changes m;:asurcd by our technique occur between
two successive image fields, that is, over 1/50 s. Consider a submerged probe
with tips 4x10® mm apart. These measurements then represent the change,
assuming that the probes do not induce any additional deformation, for bubbles
with a velocity of about 0.2 m s'. Though the rate of bubble deformation needs
to be measured to make any quantitative statement, it does appear that interface
velocity can be taken as the bubble velocity for smaller probe tip separations and/or

faster bubbles.
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4.3.3 Measurements of Bubble Velocity

Experimental results demonstrating the effect of key variables on the dis-
tributions of absolute bubble velocity, Vj ,, are plotted in Figures 4.3.4a-c.
Measurements at two heights ( Z/Hy = 0.28; Z/H = 0.55) for U, = 2.84U,,, along
the central vertical axis of the bed clearly show, Figure 4.3.4a, that the average
bubble velocity increases with height above the distributor. In Figure 4.3.4b, the
effect of superficial gas velocity is examined by plotting measurements for U,/U n
of 1.4, 1.75 and 2.28 at Z/H, = 0.55 along the central vertical axis of the bed. It
is clear that both the mean and the standard deviation of the bubble velocity
distribution increase with superficial velocity through the bed. The results
examining the effect of horizontal position within the bed, Figure 4.3.4¢, provide
evidence of the lateral inhomogeneity in bubbling at the same height above the
bed distributor.

Measured bubble velocities are mostly greater than 0.2 m s indicating that
a submersible probe with 4x 10 m tip separation would be likely to see smaller
bubble deformation in comparison wit;h the results in Figure 4.3.3.

4.3.4 Effect of Non-Vertical Bubble Rise on Measurements using

Two-element Probes

The experimental data for the measured angles of incidence (or bubble rise)
- in the form of a probability density function - for several probe locations and
operating conditions are plotted in Figure 4.3.5. The range of the angle of inci-
dence was found to be £60° from most experiments. It is observed that, though
the distributions of bubble sizes and velocities differ for these operating conditions,
the density functions for the angle of bubble rise are remarkably similar. For

comparison, the limited experimental data  (Gunn and Al-Doori, 1987) are also
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plotted in Figure 4.3.5; their measurements are very similar. All these data can
be conveniently represented by a Normal density function with a mean corre-
sponding to vertical bubble rise (6 = 0) and a standard deviation of 14°. Further
research is necessary to provide a theoretical explanation for this interesting result.

The experimental results in Figure 4.3.5 along with the theoretical
computations plotted in Figure 4.3.2 confirm that the bubble velocity measured
by the two-element probe can be significantly different from the actual bubble
velocity especially for higher values of 7. Since the measured velocity is subse-
quently used for the determination of bubble pierced length and size, experimental
results reported using two-element submersible probes have to be viewed at best
as qualitative.

4.3.5 Effect of Bubble Selection Criteria on Multiple-tipped Probe

Measurements

As noted earlier, additional elements are incorporated in more sophisticated
probe designs (Burgess and Calderbank, 1975; Burgess et al. 1981; Sung and
Burgess, 1987) to detect and reject non-vertically rising bubblps. It has not been
established, however, whether velocity and size distributions of vertically rising
bubbles accurately reflect the distributions for the entire bubble population. To
address this issue, the experimental data were screened to identify the bubbles
with anangle of incidence lying between 8, = +5°. From Figure4.3.5, this fraction
represents about 16 % of the entire bubble population. The size (area equivalent
diameter, d;) and velocity distributions for these screened bubbles are compared
with corresponding distributions for the entire population in Figures 4.3.6a-d for
several probe locations and operating conditions. Itis clear from this comparison
that multiple-tipped submersible probes will provide a satisfactory measurement

of bubble characteristics in a gas fluidized bed.
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Gunn and Al-Doori (1987)
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4.3.6 Relationship Between Bubble Velocity and Size

The velocity of a single bubble, Uy,, rising in an incipient fluidized bed is

related to its size, dp, according to
Up, =Ky\gds (4.3.5)
The velocity for the bubbles rising in swarms, Up, in a freely bubbling bed is most

often calculated using (Davidson and Harrison, 1963)
Up=Uo—Upy+Ks\gds (4.3.6)
The simultaneous measurement of bubble velocity and size enables us to
assess the applicability of these expressions. Since submersible probes measure
the vertical dimension of the bubble, the results are presented with dp taken as d,,.
Ithas been verified that similar results are obtained for other bubble size measures
(dp and dp). In the first instance, the density functions for the rising velocity
coefficient K were evaluated using equation (4.3.5) from the data for freely
bubbling beds, Figure 4.3.7a. The range of the coefficients is seen to vary from
0.2 to 1.4 with a mean value of about 0.5. There is no appreciable difference in
the coefficient distributions for bubbles measured at two different superficial
velocity despite of a noticeable variation in the velocity distributions as shown in
Figure 4.3.4b; similar plots were obtained for other operating conditions and
probe locations. Separate experiments were also performed with bubbles injected
continuously in incipient fluidized bed for comparison with results for freely
bubbling beds. The density functions for the rising velocity coefficient for con-
tinuously injected bubbles - the data for two volumetric flow rates have also been
plotted in Figure 4.3.7a - were seen to be in excellent agreement with freely

bubbling bed results. Measurements were also performed, using frame-by-frame
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analysis of expriments recorded on video tape, on single bubbles injected in
incipient fluidized beds to obtain data in the absence of bubble-bubble interactions.
The density function for the rising velocity coefficient, also plotted in Figure
4.3.7a, is seen to have significantly lower mean and standard deviation. The
variation in K values about the mean for the single bubble experiments is
attributed to instantaneous jerky motion with periodical acceleration and shape
change of the rising bubble. For bubble swarms in freely bubbling beds and for
continuously injected bubbles in an incipient fluidized bed, this effect is com-
pounded with the effects of interactions between bubbles leading to a broader
density function and a higher mean K, value.

The experimental data for freely bubbling beds were subsequently re-ana-
lysed to determine the density function for the rise velocity coefficient using
equation (4.3.6); the results are compared with the single bubble data in Figure
4.3.7b. Though the standard deviation is still higher for the freely bubbling bed
data, the mean value is in good agreement with that for the single bubble
experiments. The inclusion of the (U, — U,,) term for freely bubbling beds does
approximate bubble-bubble interaction effects in the calculation of the mean
bubble velocity as concluded by Clift and Grace (1985) in a recent review.
4.3.7 Effect of Bubble Shape on Velocity

Hatano et al. (1986) concluded that the shape of the bubble - aspect ratio -
has significant influence on the bubble velocity, and bubbles were classified into
three different types, namely, spherical cap, elongated and slug. It was found that
the rising velocity coefficient for the bubbles having larger aspect ratio had a
higher value; for example, aspect ratio of 1.54 gave a rising velocity coefficient

of 1.7.
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To examine the effect of aspect ratio on velocity, bubbles with o > 1 were

separated from the measured bubble populations. Typical cumulative velocity
distributions, Figure 4.3.8a, show that bubbles having aspect ratios greater than
1 have a larger mean velocity. The corresponding scatter plot is shown in Figure
4.3.8b. For comparison, experimental data on single injected bubbles were
analysed in a similar fashion - the results are also plotted in Figure 4.3.8b. The
single bubble data indicate that the comparatively very few bubbles with a.> 1
have the same rising velocity coefficient as bubbles with oo < 1. These results
suggest that in freely bubbling beds impending coalescence leads to higher aspect

ratios as well as higher bubble velocities.
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4.3.8 Conclusions

The experimental results indicate that the angle of rise of bubbles deviates
significantly from the vertical. Surprisingly, the density functions of the rise angle
do not appear to depend strongly on the position in the bed and superficial gas
velocity for the range of conditions considered. Since the existing signal analysis
procedures for two-element submersible probes are based on vertical bubble rise,
these results indicate that available results from such probes can not be considered
as quantitative. Multiple-element probes detect and reject non-vertically rising
bubbles. Analysis of the data establishes that such rejection does not bias the
measurements of bubble characteristics and consequently such probes should be
preferred.

Bubble size/shape have also been measured simultaneously using the global
thresholding technique described in section 3.2.1. These measurements enable
assessment of the relationship between bubble size/shape and velocity. For
comparison with results for freely bubbling beds, separate experiments have been
performed with bubbles (single as well as chains) injected in incipiently fluidized
beds. The results indicate that the density functions for the rising velocity
coefficient from freely bubbling beds are virtually identical for different locations
in the bed and operating conditions considered in this investigation. These density
functions are also in very good agreement with those from continuously injected
bubbles in incipient beds. The single injected bubbles have lower mean and
standard deviation. The inclusion of the excess gas velocity term in the equation
forbubble velocity leads to good agreement between the mean of the rising velocity
coefficient density function for bubbles injected singly and in freely bubbling

beds; the standard deviation for freely bubbling beds, however, remains higher.
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Chapter 5

RESULTS and
DISCUSSION:

SOLIDS MIXING and SEGREGATION

5.1 MIXING OF UNIFORM SOLIDS

It is well recognized that the mixing of solids in gas fluidized beds is induced
by the motion of bubbles: solids, in the form of bubble wakes, are carried up by
bubbles, and the dense phase solids are simultaneously displaced downwards else-
where. Periodic disposal and replenishment of wake fragments as the bubble rises
through the bed also occurs. Various mathematical models:;fr‘(\){;%s}gde ieﬁrt)he literature.
Assessment and refinement of the more detailed models is hampered by the scarcity
of experimental data on the simultaneous characterization of bubble flow and solids
mixing. In this section, the experimental results obtained using the techniques

described in section 3.2.4 have been used to assess the three-phase countercurrent

backmixing model.
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5.1.1 Theory

Model equations : The three-phase counter-current back-mixing model
assumes that the movement of gas and solids in the fluidized bed can be described
in terms of three separate phases :

+ an upward moving gas phase which is free of particles;

» a phase consisting of upward moving gas and particles (bubble wake and

cloud regions); and

+ a phase of downward moving particles and interstitial gas (the gas may be

moving up or down depending on velocities of particles and the local slip

velocities). This phase is also referred to as the dense or emulsion phase in
the following.

Consider a material balance on the tracer in the upward moving wake (and
drift) phase, Figure 5.1.1a. This phase occupies fy€p fraction of the total bed
cross-sectional area and moves up at a velocity equal to the bubble velocity U,
carrying up Cy, fraction of the tracer material. From the material balance, the
concentration of the tracer in the upward imoving phase, Cy, at time ¢ and at a

given height, Z, above the distributor, can be expressed as:

dCy _a(fweBUBCw)

JfwEs ot = 3Z —kywfw€s(Cw —Cpg) (5.1.1)

where f;, is the wake fraction, € is the bubble fraction and ky, is the wake exchange

coefficient.

A similar analysis, considering Figure 5.1.1b, for tracer concentration,Cy,

in the phase of downward moving particles leads to

dCg _ o((1 — &5 = fwep)UsCr) +

(1-¢; - fwEp) Yl 3Z ke(l —€p — fiu€p) (Cy — G.1.2)
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I"IGURE 5.1.1: Material balance on the tracer in (a) the upward
moving wake (and drift) phase; (b) in the downward
moving dense phase.
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where Uy is the velocity of the dense phase and k; is the exchange coefficient

which is related to ky according to

kwfwEsp

ET T . .
1 —¢€5 — fw€sp

Equation (5.1.1) may be rewritten as

s ¥ - {af Y ey UsCu+ i o UsCo-+fua ot Cu + s Uy o ) ufots(Cu—Cs)
t oZ 82 oz oZ

(5.1.3)
If bubble properties are assumed to be independent of height within the bed -
through use of height-averaged parameters or otherwise - then equation (5.1.3)

reduces to

—0C —0Cy —
Jwes _a;! =“fw€BUB‘a_'Z‘Y"'kwfw€n (Cw—-Cp) (5.14)

Under a similar assumption, equation (5.1.2) reduces to

—  0Cg oCg A
(1-¢ -fwea)? =(1-¢g —fwea)Us'éz*' k(1 — €5 — fw€p) (Cyy — C£5.1.5)

Equations (5.1.4) and (5.1.5) have been cﬁployw in previous investigations using
the three-phase counter-current back-mixing model. The experimental results
obtained permit assessment of a less restrictive assumption according to which
the bubble properties vary, but only slowly, with height above the distributor.
According to this assumption, the material balance for the upward moving phase
can be written, from equation (5.1.3), as

dCy dCy
fwes = Py =—fw€Up =5 3Z - kywfwEs (Cy —Cp) (5.1.6)

Similarly, for the downward moving phase
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oC
fwea) =(1-g fWeB)US_a—Z—E+kE(l — €5 — fw€s) (Cw — C§P.1.7)

Equations (5.1.6) and (5.1.7) employ local height dependent bubble properties
instead of constant or height averaged values used in equations (5.1.4) and (5.1.5).
The total axial tracer concentration, C(Z, ), at a given height above the distributor

was evaluated from the model using the following expression

Sw€sCw + (1 — €5 — fuw€s)C
1-¢4

CZ,t)= (5.1.8)

Numerical implementation : These equations were solved numerically

following the scheme of Sitnai (1981). For the upward moving phase,

dCy; —Cyw,
fW 183 i dw {fw leB xUB i ) kW LfW leB l(CWl CE,i) (5‘1‘9)

forcells i =2 to M. Since there is no material leaving the system, all the material

in the downward moving stream is recirculated into the upward moving phase.

The discretized equation for the bottom cell, i = 1, is consequently derived as

. dcC Cw.,-C
fW,leB,l“ﬁ = {fW,IEB,IUB,l 'w_lAn”Z‘ﬂ) =k, fw,1€5,1(Cw,1 — C,105.1.10)

For the downward moving phase, the discretized form forcelli =110 (M - 1) is

dC i CE,i+ - CE,i
(1-¢; _fw,.'ea,.')‘gf’" EfW,iEB,iUB,i—T +ky ifw.i€,i{(Cw,;—Cg)

(5.1.11)

and the difference equation for the top cell, i =M, is

dC Cwu—Ce
(1-€5 p— fw.mEs.m) i = = fw mEs mUs .M 'LM?AZ—E—E +kw sfw mEsmCwy—Cen)

(5.1.12)
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5.1.2 Model Parameters

Before calculations can be carried out using the model, it is necessary to
specify several parameters: the bubble phase parameters - dp, U, and €; the
downward velocity of the dense phase, Us; the wake fraction, f, and the wake
exchange coefficient, ky. In this investigation, as described in the following, the
bubble phase parameters were established through independent measurements for
the two-dimensional fluidized bed under consideration.

Bubble size : To model growth of circular bubbles in the two-dimensional
fluidized bed, an approach parallel to that developed by Darton et al. (1977) for
spherical bubbles in three-dimensional beds was adopted. Thus, the height

dependent bubble size, dg, was expressed as

_ Y4 _ 2/3
d8=(8(U0 Un) 2 1)Z+d3’2J (5.1.13a)

g 12

where the initial bubble diameter, d,, is given by

dy = {8(U, = U,)Acy/Thsg 't (5.1.13b)
Ac, is the initial bubble catchment area (5.6 x 10”° m? for a porous distributor).

From experimental measurements on bubble size and velocity, the proportionality
constant A, which describes the distance a bubble travels in a stream before
coalescing with the adjacent stream to form a single new stream of larger bubbles,
was found to be ~ 2. Comparison of the predicted bubble sizes with the experi-
mental data for the local as well as level average bubble size using the above
equation is shown in Figure 5.1.2.

Bubble velocity : Following Davidson and Harrison (1963), the bubble

velocity was expressed as
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UB=U0—U,,!,+K\/gdB (5.1.14)
From results described in Section 4.3, K; = 0.4 for the two-dimensional bed used

in this investigation.

Bubble fraction : Clift and Grace (1985) have reviewed the several reasons
why the measured visible gas flow deviates from the prediction of the simple
two-phase theory. The major causes are: (a) an increase in interstitial gas flow in
the dense phase (Khattab et al., 1988); and (b) high gas through-flow (Valenzuela
and Glicksman, 1985) due to bubble shape, concentration and interaction. The
particles used in this investigation fall in the Geldart B category; for such particles,
- the gas flow in the dense phase is expected to be close to that required for minimum
fluidization (Valenzuela and Glicksman, 1985). Consequently, a gas balance
considering the presence of the bubble, wake and dense phases (to be consistent
with the three-phase model of the fluidized bed) and accounting for the
through-flow in the bubbles was written as:

Uo - Umf
Up—(1+fw—KpU,

e, = (5.1.15)

where K7 is the through-flow factor. Time averages of the experimentally

measured bubble fraction at different heights within the bed were used to estimate
the bubble through-flow factor using the above equation, Figure 5.1.3a. The
probability density function of the experimentally estimated factor, (1 + fiy — K7),
at various bed heights for a range of fluidization gas velocities using the three
particle size fractions, was plotted as shown in Figure 5.1.3b. The average
through-flow factor, K, was estimated as 3.52. A wide variation was found for
the smallest particle size, that is, dp = 2.40 x 10 m. This average value of K; is

higher than the theoretical prediction of 2 for an isolated circular bubble (Davidson
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and Harrison, 1963) rising in an incipient fluidized bed. The result is, then, in
agreement with Clift and Grace (1985) who suggested that the bubble through-
flow will be higher for a freely bubbling bed compared with that for a single
bubble. However, recent experimental measurements (Hilligardt and Werther,
1986) of the ratio of the through-flow velocity to the velocity of the gas in the
dense phase in a freely bubbling bed were close to that predicted by the isolated
bubble theory. Consequently, an independent estimate for the height averaged
bubble fraction was made by measuring the bed expansion. These values of
€p,£xp = (Hg — Hp)/Hg calculated from the bed expansion data compare reasonably
well with those obtained from height averaging of equation (5.1.15) €, based on
image analysis results, Table 5.1.

Dense Phase Velocity : For a batch fluidized bed, the velocity of the phase

with downward moving particles may be written as

JwesUp

U =—————
s 1—¢€3—fukp

(5.1.16)

Exchange Coefficient : Models for exchange of solids between the phases
of the fluidized bed, resulting in expressions for the wake exchange coefficient
of the solids, have been proposed by Yoshida and Kunii (1968) and Chiba and
Kobayashi (1977). The interchange of solids between these phases is assumed to
result from the flow of solids into and out of the wake with the solids moving
down in the thin cloud region leaving the wake at the same rate they enter. The
model proposed by Yoshida and Kunii was adapted, considering a two-dimen-

sional bubble, to obtain:

= = 5.1.17
ky e fw(l —€5)dp dp ( )
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It should be noted that equation (5.1.17) is derived for fast bubbles. Chiba and
Kobayashi (1977) derived an expression for the exchange assuming that fluidized
particles flow around a two-dimensional bubble as would an inviscid fluid.

Considering the solids within the cloud region, they obtained

au, A
. (5.1.18)
MEwdp dp

It should be noted that the exchange coefficients derived from both approaches

kye =

vary directly with U, and inversely with bubble size.
Theoretical responses for the axial tracer concentration, C(Z,t), were

obtained using local height-dependent model parameters. The theoretical pre-
dictions were compared with experimental data obtained using bed particles of
sizedp =7.25x 10*m (Uny =035 ms”) fluidized at Uo/Up = 1.75. The tracer
(20 %, that is, x = 0.2) was initially located near the top of the bed (q = 0.8). The
wake fraction, fy, of 0.2 was estimated to give the best fit for the tracer arrival or
breakthrough time (at different heights at which the simultaneous measurements
were made) and, hence, the solids circulation rate. The values for the exchange
coefficients were calculated from equations (5.1.17) and (5.1.18) as Ayy = 5.22
ms" and Ay = 1.114 ms™ respectively. The results of the simulation are shown
in Figure 5.1.4a and b at two heights above the distributor. The predicted con-
centration responses using these exchange coefficients do not agree with the
experimental data which show the presence of an oscillation at the higher height
within the bed, Figure 5.1.4b. The calculated exchange coefficients are clearly
too large. Separate simulations were carried out assuming that the bubble size
was constant - the height-averaged bubble diameters were used in these calcula-
tions. Comparison with experimental data showed that the exchange coefficients

were under-predicted  close to the distributor and overpredicted near the top
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of the bed. These observations, possible only because the experimental technique
permits simultaneous data collection at different heights, indicated that the
exchange coefficient should have an inverse bubble size dependence. Conse-
quently, in the absence of a more detailed model, the exchange coefficients were
written, in keeping with the bubble size dependence in equations (5.1.17) and

(5.1.18), as

A
ke ="‘f ' (5.1.19)

where Ay, assumed to be a constant, was determined from the experimental data.

It was found that Ay = 0.1 ms™ predicted the oscillation and recycle peaks as
shown in Figure 5.1.4a and b. Evidently, the models of Yoshida and Kunii and
that of Chiba and Kobayashi over-predict the exchange coefficient by an order of
magnitude. Consequently, for further comparison of model predictions with
experimental data, equation (5.1.19) was used to estimate the wake exchange
coefficient by treating Ay as an adjustable parameter to be estimated from the
oscillation and recycle peaks in the solids mixing data.

5.1.3 Results of Model Comparison with Experimental Data

Using the approach described above - that is, equations (5.1.13) to (5.1.16)
for hydrodynamic parameters and with wake fraction estimated from the tracer
arrival time - Ay; was determined for the range of experimental conditions
investigated.

The data obtained for dp = 2.4 x 10 m for three different superficial gas

velocities Up/U,, = 1.91, 2.21, 2.5 and 4.63 are plotted, respectively, in Figures
5.1.5a-d. For these runs, the amount of the tracer was 20 % of the bed material

and the tracer was located initially near the top of the bed. In each of these figures,
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simultaneous measurements of the concentration as a function of time have been
presented at three different heights within the bed to provide an overall picture of
the mixing process. The model calculations have also been plotted. As may be
seen, reasonable agreement can be obtained at different heights in the bed with
an appropriate choice of Ayg; however, Ay does appear to be a function of U,/ U

In Figure 5.1.6, data and model calculations are plotted for dp = 5.12 x 10™

m for Uy/U,, = 2.21 at three different heights. The data show prominent oscil-
lations or recycling of the tracer in the bed. For the largest particle size used in
this investigation, dp =7.25 x 10™ m, the results plotted in Figure 5.1.7 for Uo/U,y
= 1.75 show even more obvious oscillations in tracer concentration with time at
different heights within the bed. These oscillations imply small exchange
coefficients. On the other hand, the models of Yoshida and Kunii (1968) and
Chiba and Kobayashi (1977) predict that the exchange coefficient increases with
increase in minimum fluidization velocity; the data do not support this prediction.
It should be noted that the time duration of oscillations is of the order of 5 to 10
seconds; it is likely that experiments conducted using bed slumping and sectioning
can miss such oscillations.

Separate experiments were conducted for dp = 2.4 x 10* m and UolU,y =

2.21 to examine the effect of initial conditions on solids mixing patterns. For
these runs, the tracer was initially located close to the middle (q = 0.4) and at the
distributor (q = 0.0). These data showed an altered pattern for the solids mixing
depending on the initial condition. Nevertheless, good agreement was obtained
between the experiments and model calculations using the appropriate initial
condition, Figure 5.1.8a-b, with Ay, obtained from experimental data for tracer

located initially at ¢ = 0.8 (Figure 5.1.5b). This agreement enhances the confi-
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dence in the chosen values of 4,,,,.

The results of model calculations for the range of experiments conducted
are summarized in Table 5.1. The values of the wake fraction, f;, estimated from
the tracer arrival time have been included. It will be noticed that for d, = 2.4 x
10 m, the estimated values of the wake fraction are higher than what may be
expected. The model of Gwyn et al. (1970) does not include the influence of
solids drift induced by bubble motion. This effect is also not included in equation
(5.1.16). It was considered convenient to lump solids motion through wake
transport as well as drift in the wake fraction. The wake fraction measured from
tracer arrival time will undoubtedly reflect both these mechanisms. Cranfield
(1978) found that the transport of the solids in coarse particle systems (d, > 5.5
x 10* m) is mainly due to the bubble-induced drift. In beds of smaller particles,
motion of the solids was caused by both bubble-induced drift and wake. The
combined machanisms of solids transport, then, are responsible for the higher
values of the wake fraction (more correctly defined, in this context, as the fraction
of the particles displaced upwards by the bubble) estimated for dp = 2.4 x 10* m.

An important point to keep in mind while considering comparison between
model calculations and experimental data is that the bubble parameters used in
the calculations are time-averaged values whereas the mixing data are time-de-
pendent. The mixing measured experimentally, in time frames of the order of
seconds, will reflect the actual bubbling patterns which will surely have a random
component superimposed on the time-averaged behaviour. To consider this
aspect, replication tests were performed. These tests show that the initial

movement of the tracer was influenced by the size and direction of the motion of
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the first few bubbles as well as the random nature of bubbling, Figure 5.1.9a and
b. It is clear that the overall solids mixing pattern in the replicate tests is very
similar.

The experimental measurements of tracer concentration as function of time
can be used to obtain data on the arrival time of the tracer at different axial positions
within the bed. In Figure 5.1.10a-c, such data have been plotted for the three bed
particle sizes investigated for different values of Uy/U,,. Straight lines were
drawn, by regression, through such data for each superficial velocity as shown in
this figure. The slope of the straight line yields the height-averaged downward
velocity of the dense phase, Us, for the experimental run. Similar results were
obtained for other particle sizes. These measurements are compared with the
predictions of the height-averaged form of equation (5.1.16) in Figure S.1.11. It
is seen that the agreement between observed and predicted (using the estimated
value of f) dense phase velocity is good (within £ 30%). Though straight lines
have beendrawn in Figure 5.1.10a-c toestimate Us, the arrival velocity atdifferent
heights within the bed is not uniform, particularly for lower superficial velocities,
and it is thought that the results at individual positions within the bed show the
influence by the random aspects of bubble flow.

In Figure 5.1.12, the values of Ay, determined from the solids mixing

experiments are plotted as a function Uy/U,,. Itis seen that for dp =2.4 x 10*m,
Ay increases virtually linearly below Uy/U,,~ 3. Particularly interesting is that,
in this region, there is no particle size effect with values of Ay for other particle
sizes (dp = 5.12 x 10* m, U,y =0.24 ms" ; dp =7.25 x 10" m, U,, = 0.35 ms™)
also clumping around the data for the smallest particle size (dp = 2.4 x 10°m, U ”
=0.068 ms™). For greater values of U,/U,, Aw calculated from data for dp =2.4

x 10* m seems to be constant at about 0.14-0.15 ms'. Limitations in the
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experimental apparatus, at present, prevent collection of data for the larger particle
sizes at higher values of U,/U,,. Such data are needed to establish whether the
limit of Ay; = 0.14-0.15 ms™ holds for other particle sizes as well.

In Figure 5.1.13, the values of the wake exchange coefficient obtained from
our experiments are plotted as function of bubble diameter for comparison with
the predictions of Yoshida and Kunii (1968) and Chiba and Kobayashi (1977).
The hatched region represents our data set for all the particle sizes; it should be
noted that for any particle size, according to the results plotted in Figure 5.1.13,
kw depends on bubble diameter, dp, as well as U,/U,,.. The predictions of Yoshida
and Kunii, and Chiba and Kobayashi, are different straight lines on this plot
depending on the particle size through U,,. Itis clear that their models are unable
to predict our data.

It is now interesting to consider the data on the wake exchange coefficients
for single bubbles injected in an incipient fluidized two-dimensional bed reported
by Chiba and Kobayashi. The experiments were performed using bed (glass beads)
and tracer (crushed silica gel) particles with a minimum fluidization velocity of
0.0215ms™. Their data on the exchange coefficient, ky (it appears that the y-axis
of their Figure 7 should read e, kw/4U,, instead of ky as it has been shown in the
paper) have also been plotted in Figure 5.1.13. If &y increases with Uy/U,,; and
does not depend on the particle size, as our experimental results described above
indicate, then their measurements from single injected bubbles, should form the
lower bound values for ky. It can be seen from Figure 5.1.13 that their data are,

indeed, in line with these experimental results.
5.1.4 Discussion

The results obtained in this investigation show that the models available in

the literature to estimate the wake exchange coefficient are inadequate. These
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models suggest that k,, will increase with [/ n Results obtained there, from
experiments with different particle sizes, do not support this dependence. Further,
these results also show that the wake exchange coefficient increases with Uo/U,y
for Up/U,,; < 3; the models developed for isolated bubbles are unable to predict
such dependence. If the model derivations are examined, it can be seen that U,
appears in the equations from the postulate that the wake exchange involves solids
moving around the bubble periphery within the bubble cloud region. Clearly,
these models will not describe mixing behaviour in systems with slow bubbles.
Solids motion around the edge of the bubble is not understood and the region
around the bubble where the particles move may not be related to the thickness
of the gas cloud. Improved understanding of solids mixing in bubbling beds will
depend substantially on fundamental advances made in describing particle flow
around, and through (raining), the bubble.

If the wake exchange coefficient is chosen in the form of equation (5.1.19),
and Ay is treated as an adjustable parameter, then the three-phase counter-current
back-mixing model does provide reasonable agreement with experimentally
observed solids mixing trends. In particular, the model is able to follow the
oscillations and recycle peaks observed in the tracer concentration resulting from
the gross circulation of solids. This behaviour appears to become increasingly
more important in fluidized beds of larger particles. It is also important to
experimentally measure the bubble fraction for input to model calculations as the
currently available procedures for the estimation of visible bubble flow require
further refinement to acquire predictive capabilities.

It is also important to consider the applicability of the results obtained in the
two-dimensional bed to three-dimensional beds. The model calculations have

been carried out using bubble phase parameters applicable to and measured



208

independently for the two-dimensional bed. It appears reasonable to suggest that
the three-phase counter-current back-mixing model should apply to three-di-
mensional beds as well with appropriate choice of parameters. The bubble
diameter (Darton et al., 1977) and velocity (Davidson and Harrison, 1963) for
three-dimensional beds can be estimated with ease. The bubble fraction should
be estimated from experiments as discussed earlier. Itis thought that the results
on the wake exchange coefficient obtained from the two-dimensional bed studies
will apply to three-dimensional beds at least qualitatively: in terms of the absence
of particle size effects and the dependence on U,/U,,. Quantitative agreement
will depend on the magnitude of the difference between motion of solids around

the edge of the bubble in two- and three-dimensional beds.
5.1.5 Conclusions

The solids mixing data obtained for uniform solids show oscillations in tracer
concentration resulting from the gross circulation of the solids. These oscillations
become increasingly prominent with increase in bed particle size.

The experimental data have been interpreted using the three-phase coun-
ter-current back-mixing model. The bubble phase parameters required for model
calculations were also measured and interpreted in terms of appropriate models.
The comparison of model calculations and experimental data shows that the
models for the prediction of the wake exchange coefficient currently available in
the literature (Yoshida and Kunii, 1968; Chiba and Kobayashi, 1977) are not
adequate. In particular, the wake exchange coefficient appears to increase with
Uo!U,for UylU,, < 3 and the values, in thisregion, are independent of the particle
size. The models, on the other hand, predict that the wake exchange coefficient
should increase with increase in the minimum fluidization of the bed particles. In

line with results obtained in this investigation, the experimental measurements of
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Chiba and Kobayashi, for injected bubbles in a two-dimensional fluidized bed of
particles smaller than those used in this investigation, were found to in excellent

agreement with the lower bound of present measurements.
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5.2 SEGREGATION IN BINARY FLUIDIZED
SYSTEMS

Most fluidized beds contain mixed species. This may be because two or more |
solid components are fed into the bed or because the solids change in size and/or
density during their conversion in the reactor. Segregation will then occur in most
practical applications of fluidization.

Itisrecognized that segregation, like mixing, is a consequence of bubble motion.
Though several mathematical models have been proposed in the literature, the
emphasis has been on the prediction of the steady state behaviour. This, in part, is
due to the very limited data on the time dependent behaviour of the segregation
phenomenon. In this section, experimental measurements of the spatial (axial) and
temporal variation of the jetsam concentration, obtained using the methods described
in sections 3.2.4 and 3.2.5, have been used to evaluate the unsteady state versions of
the more accepted models reported in the literature.

5.2.1 Theory

Model Equations : The mechanisms by which the particles segregate through
the temporarily disturbed regions near rising bubbles have been modelled by
Gilibaro and Rowe (1974) and Yoshida et al. (1980).

Gilibaro and Rowe (1974) defined a settlement rate, ks, as the net downward

flux of settling particle relative to the bulk of the bed. Naimeret al. (1982) related
the settlement or segregation rate to bubble characteristics and the average
segregation distance, Yz, measured by Tanimoto et al. (1980). On the other hand,
Yoshida et al. (1980) viewed the segregation process to be a consequence of the

shedding of jetsam from the wake phase into the dense phase. An adjustable
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parameter R, was introduced in the solids exchange term to account for this effect.
Ry is unity if the system is homogeneous and zero if the system is strongly
segregating. It was pointed out that Ry may be a function of the physical properties
of the particle, operating conditions and the concentrations of the particle species.

In the following theoretical study, the unsteady state material balances
resulting from the Gibilaro-Rowe (G-R) model have been solved numerically. It
should be noted that the axial diffusion term included in their formulation has
been omitted following the recommendation of Nienow and Chiba (1985). Also,
the relation between settlement rate and bubble behaviour suggested by Naimer

et al. (1982) has been adopted. Thus

3 €

ks =“‘YGRU31—_8; (5.2.1)

4

Though steady state solutions of the G-R model, with or without the use of constant
bubble properties, are available in the literature, modelling results on the variation
of the axial concentration with time have not been reported.

Solutions of the Yoshida model have also been obtained for comparison.
Though Yoshida et al. (1980) presented parametric results from the solution of
the unsteady material balance equations, their computations were made assuming
a constant bubble size.

For both the models, the possibility of the formation of a defluidized layer
has been considered.

The material balances for the jetsam component over an incremental cell are
illustrated in Figure 5.2.1a and b. Accordingly,

G-R Model:

Wake phase:
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(a) Upward moving wake phase
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(b) Downward moving dense phase
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FIGURE 5.2.1: Material balance on the jestam in (a) t}}e
upward moving wake (and drift) phase; (b) in
the downward moving dense phase.
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f an,J__a(fWEBUBCw,J)
W Tor T oZ

—kwfw€p(Cw ; — Cr ) (5.2.2)

Dense phase:

aCE,J _ (1 -¢g — fw€p)UsCk ;)
(1 -¢€ — fy€p) FYR 3Z

+kp(1—€5~ fy€5) (Cyyp — CE,j)

+ 9(0.75Y g€ UpCg ;(1 -Cg )

oZ (5.2.3)
Yoshida Model
Wake phase:
dCy. O(fwesUpCy ;)
Jwes a:VJ=_ 4 BaZB w,J —kwfweB(CW.J_CE,J)_kwfwngyCEJ(l—CWJ)
(5.2.4)

Dense phase:

aCE,J _ d((1-¢p — fw€s)UsCk ;)
(1—¢€; — fwEs) a 37

+kp(1 —€5 — fy€3) (Cy ; — Ci )

+kg(1 — € — fy€)YyCg ;,(1-Cy ) (5.2.5)
where the extent of segregation is defined by Yy(= 1 —Ry).

The axial average concentration of the jetsam is calculated as

Jw€sCy ;+ (1 — € — fw€p)Ci

CZ,tn)= -
—&s

(5.2.6)

Numerical implementation : The differential material balance equations can
be rewritten using the finite difference approach as described in section 5.1.1.
Several approximations, based on how the second term on the right hand side of

equation (5.2.2) is treated, were considered:
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slow change in bubble variables : In section 5.1.1, the change of the bubble

properties with respect to height within the bed was assumed to be slow.

Consequently,

o(fwesUp Cw.1) ACy,
= fy&sUp % (5.2.7)

where fy, €3 and Ujare the local bubble properties. The difference between this

approximation and that which uses height-averaged values has been discussed
earlier.

ordinary difference : A more direct approach is to approximate the differ-

ential variable as

O(fwepUp Cw.s) - A(fwegUpCy ;)
0Z - AZ

(5.2.8)

complete difference : If the minimum fluidization velocities of the jetsam
and flotsam components are considerably different, then the bubble properties
will experience significant changes with height within the bed and with the local
bed composition during the course of segregation. This variation will be more
prominent in the regions close to the distributor or at the upper interface of the
defluidized layer. These variations were thought to be responsible for the
numerical instabilities encountered when the approximations described above
were used.

Clearly, the approximation scheme can be improved if the change of the
bubble properties with height in the bed was treated in detail. For the purposes
of this study, due to the lack of detailed knowledge, the wake fraction, fy, was
assumed to be independent of height within the bed. Since the bubble fraction,
€3, and the bubble velocity, Uy, are related by equation (5.1.15), the differential

term can be expressed as:
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a(fweBUBCW,J) d(egUp) an,;
where
U= Yyl K 5.2.96
88 B_U8+k’Umf B ’ —_( +fw— T) ( o Loe )

and 0(ggU,)/dZ can be derived analytically as follows

a(&BUB) _ Uo - Um’f k’UmfaUB

(5.2.10a)
2 2
oz (1+k'3—°) U} oz
'
where, for the two-dimensional bed under consideration,
oU, 8R*™-1U,-U
g = )Wo = Un) (5.2.10b)

oZ 3nhgd,
It should be noted that U, in the above equations refers to the minimum flui-

dization velocity of the mixture of particles with local bed composition.
A similar approach was extended for the differential term due to segregation

as used in the G-R model,

8(0.75YGR£BUBCE,,(1 - CE,.’))
dZ

3(eaUs) s
= 0.75YGR(T‘;‘- Cr /(1= Cp ) +5Up(1 - 2C, ) a;'lj

(5.2.11)

Discretized differential equations: The bed was divided into M cells in the
axial direction for both the wake and the dense phases. The discretized differential
equation of the jetsam concentration in wake phase for cell (i =2 — M) was
expressed as follows
G-R Model:

Wake phase:
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dCyw ., Cwyi— CW,J,i -
SwEs i dr = {fweB,iUB,i AZ l = fwCw M,
—kw,ifw€s,i(Cwsi —CE 1) (5.2.12)
where n; is the corresponding ith term of d(ggU;)/0Z. Since there is no material

leaving the system, all the material in the downward moving stream is recirculated
into the upward moving phase. The discretized equation for the bottomcell, i = 1,

was consequently derived as

dC C C
JwEs 1 s ‘(f BlUBlLlAZ_ﬂ) = fwCw .My

—kw, Sw€p 1 (Cw s 1 —CEg.1) (5.2.13)
Dense phase:
The discretized form for the dense phase for cell i=2 > M -1 was

expressed as

dCElx CE,.I,i+1—CE,.I,|

(1-¢€, — fwEs,i) —"'—fw 5.:Us.i AZ 4+fWCE,J.ini

+ky ifw€s i(Cw 1= Cge)

Cesiv1=Ceui
AZ

+0'75YGR(T].'CE,J,:‘(1 - CE,.I,i) + UB,ieB,i(l - 2CE,J,i)

(5.2.14)

Segregation can not extend beyond the boundary imposed by the distributor
at the bottom of the bed. Consequently, the differential equation forcell i =1 was

written as
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dcC, Cer1..-C
(1 -85~ fws, ,)ﬁ_f vEs U %

+fwCe M
+hw Sw€s.1(Cw 51— Cg s1)

. —C
"075YGR(711 a1 =Cp )+ Up 1551(1“26‘511)'}"%*‘[/ 1€5.1Ce s (1 - 511]

(5.2.15)

and forcelli =M

E!M CW,I,M_CEJM

(1 — &5 5 — fis, M) ~fW€a.MUB.M_T+fWCE.!.MnM

+hw ufw€s m(Cw s = Ce s.m)

CE!M+1—CEIM

w'75YGR(nMCE,!,M(1 = Coym) + UpnCan(l = 2Ce s )= 15— =~ Up uEs uCre su(1 - CE,/,M))
(5.2.16)
Yoshida Model:
Wake phase:
Forcelli=2 > M:

dCy ;i Cws,i—Cw,yi-
fWEBt 2 ‘(fWGBnUBI s AZWJ l) fWCWJlnl

—ky Jw€p i(Cyw i —Cg.i)

~ky SwEs YyCe ; (1 = Cy ;) 5217

and the bottom cell i = 1

dC C C
fw€pg i — — ‘{fwea 1Us, 1_W_J—1ZZ_£'J—1) —fwCw. My

~ky Sw€p (Cw sy —Ce 1)
~ky S YyCe (1 - Cy ;1) (5.2.18)

Dense phase:

Forcelli=1 >M -1
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CE,.I,i +17 CE

AZ

CE,.I,i

dt
+kW,LfW£B,i(CW,J,i —Ce )

+kW,LfW£B,iYYCE,J,i(1 _Cw,J,.') (5.2.19)

(1-¢5;—fwes:) = fwes, Us Lt +fwCe s M

forcelli=M

CE,J,M CW,J,M - CE,J.M

d
(1 -85 5 ‘fwep,M)T = fwCs mUs u A7 +wCe s aMu

Vhw ufw€s m(Cow sy = Cr g pg)
+hy mfw€s m¥yCr s (1 =Cy s 5) (5.2.20)

5.2.2 Model Parameters

Bubble parameters : It was assumed that the gas bubbles in the binary
mixture behave similarly to those in a fluidized bed of uniform particles. The
bubble size, dp; velocity, Ug; and the bubble fraction, €,, were calculated using
equations (5.1.13 to 5.1.15) with U,, for the uniform particles replaced by the
minimum fluidization velocity of the binary mixture corresponding to the local
composition, U,,. .. For the purposes of the parametric study, U,y,. and com-

position were related using the expression proposed by Cheung et al. (1974)

Un,c = Unsf,F(UnJ,J/UnJ,F)C} (5.2.21)

It was assumed that when the local concentration reached a level such that

the operating velocity became less than the local minimum fluidization velocity,

the layer corresponding to the discrete cell under consideration defluidized. This,

then, resulted in the moving of the porous destributor to the upper interface of the
defluidized layer, that is, to the next upward cell.

Exchange coefficient : Exchange coefﬁcienébased on the results described

in section 5.1.3 were calculated using
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Ay
ky=——:
w dp
0 UO
Ae=15=2-1| for —2<3
e (Uw J U
Awe =150 for —2>3

(5.2.22)

Segregation rate parameter : For solution of the G-R model equations, the
dimensionless segregation distance, Ysz, has to be specified. Tanimoto et al.
(1980) measured the net distance moved down by agglomerates of jetsam particles
in fluidized beds of different flotsam particles. They correlated their experimental
results empirically in terms of the density and size ratios of the jetsam and flotsam

particles according to

d 173
Yo = 0.45[&] (—’) —for two — dimensional bed ~ (5.2.23a)

Pr dr
Ps dy \"° . .
Yo =0.6 p_ 7 —for three — dimensional bed  (5.2.23b)
F F

Recently Kozanoglu and Levy (1992) have proposed another correlation for the

segration coefficient

d, —d -
9 | 0.04262=PF (5.2.24)

dr Pr

Y,, =0.0063

It should be noted that the values of the segregation coefficient predicted
from the correlations of Tanimoto et al.(1980) are significantly larger than those
obtained form equation (5.2.24). Beeckmans et al. (1987) have criticized the use
of equations (5.2.23a,b) arguing that the segregation velocities predicted are

significantly higher than those measured experimentally. However, Naimer et al.
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(1982) observe that jetsam moves down in clumps following the passage of the
rising bubble. Clearly, the matter is far from being resolved. For the purposes of
the parametric study, Y, was treated as a variable. Further, following equations
(5.2.23) and (5.2.24), Y was assumed to depend only on the physical properties
of the particles comprising the binary system; that is, it was assumed to be

independent of the superficial gas velocity.

For solution of the Yoshida model equations, Y, was treated as a variable

with 0 <Yy < 1 and assumed, like Y, to depend only on lfic Phjs’lCﬂ‘ properties
of the particles comprising the binary system.

5.2.3 Parametric Studies

Selected results from the parametric study are presented in Figures 5.2.2 to
5.2.7. All these compulations have been made assuming that mass fraction of
jetsamin the systemis 20%. The results are discussed in terms of the key variables;
other model parameters used are indicated in the captions of the figures.

Typical results from calculations using the Gibilaro-Rowe model are shown
inFigure 5.2.2. InFigure 5.2.2a, the jetsam concentration, bubble size and bubble
fraction calculations are shown as a function of time at several heights within the
bed. It can be seen that the' jetsam concentration increases at the lowest levels
much faster than at the higher heights. The concentration reaches a plateau value
of about 0.7 which is the composition with a minimum fluidization velocity equal
to the operating superficial gas velocity. Thelayer at the bottom of the bed, though
richerin jetsam, does contain flotsam due to entrapment (Yang and Keairns, 1982).
As the lower levels within the bed get richer in jetsam, the local minimum flui-
dization velocity changes leading to smaller bubble sizes and smaller bubble

fractions as shown in this figure. When the jetsam concentration reaches the
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plateau value (~ 0.7), U, becomes equal to the local ¢/ f.c* the bubble size and
fraction approach values of zero and, consequently, the region is assumed to
defluidize.

In Figure 5.2.2b, calculations are presented for the axial jetsam concen-
tration profile at different times starting from the initially well-mixed condition.
It can be seen that the height of the defluidized layer increases with time and the
upper portion of the bed gets leaner in jetsam. A more detailed picture of how
the height of the defluidized layer increases with time is shown in Figure 5.2.2¢.
From this figure, it can be seen that, for the model parameters used in these
calculations, a steady state is achieved after about 25 s and the height of the
defluidized layer at this time is about 0.05 m.

Similar calculations using the Yoshida model are presented in Figure 5.2.3.
For the parameters used in these calculations, a defluidized layer is not predicted.
It can be seen from inspection of Figure 5.2.3a that the jetsam concentration,
bubble size and the bubble fraction reach steady values at different heights at
different times ranging from about 10 to 15 s. The axial jetsam concentration
profile plotted for different times in Figure 5.2.3b shows that the jetsam con-
centration leading to defluidization is not reached even at the lowest height within
thebed. Also, a global steady state, that is for the whole bed, in axial concentration
is reached after about 20 s starting from the initially well mixed condition.

The influence of the superficial velocity on the transient response of the
jetsam concentration at Z = (0.05 m using the G-R model is shown in Figure 5.2.4a.
It is seen that the jetsam concentration in the defluidized layer increases as the
superficial gas velocity isincreased. Anextremely important point, to be discussed
in context of comparison with experimental data in a later section, is that higher

superficial gas velocity leads to a more rapid attainment of steady state; for the
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conditions used, this time is about 12 s for U, = 0.1 m/s and about 2 s for U, =
0.3 m/s. It should be noted that the attainment of the local steady state (at the
specific height under consideration) does not necessarily imply that global steady
state has been reached. In Figure 5.2.4b, the axial concentration profiles are
plotted for t = 60 s. Calculations shown in Figure 5.2.4a, show that higher
superficial velocities lead to smaller heights of the defluidized layer containing
higher fraction of jetsam. A combination of these phenomena could lead to higher
or lower jetsam concentration in the upper regions of the bed with increasing
superficial gas velocities. The heights of the defluidized layer with time for the
different superficial velocities are plotted in Figure 5.2.dc, these results essentially
reinforce the conclusions drawn from the earlier calculations.

The influence of superficial gas velocity on the calculations using the
Yoshida model are shown in Figures 5.2.5a-c. The calculations of the transient
jetsam concentration at Z = 0.05 for different superficial gas velocities reveal that
the concentration of the jetsam in the defluidized layer can increase as well as
decrease with increasing superficial gas velocities. In agreement with the trends
observed using the G-R model, the attainment of the local steady state is more
rapid as the superficial velocity is increased. Calculations for the axial jetsam
concentration profile, Figure 5.2.5b, indicate that a defluidized layer is formed
only at the lowest superficial gas velocity of 0.1 m/s. The progression of this
interface with time is shown in Figure 5.2.5¢.

The influence of the dimensionless segregation parameter, Y5, on the

calculations using the G-R model is shown in Figures 5.2.6a-c. In Figure 5.2.6a,
the results, for the transient jetsam concentration at Z = 0.05 m are plotted. Itcan
be seen that higher values of Y, lead to a more rapid formation of the defluidized

layer (and attainment of local steady state). The concentration of the jetsam in
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the defluidized layer is, of course, independent of Yo+ The axial concentration
profiles at t = 60 s, plotted in Figure 5.2.6b, show that higher values of Y, lead
to a higher height for the defluidized layer as well as lower jetsam concentrations
in the upper region of the fluidized bed. Further, the sharpness of the interface
increases with Y. These conclusions are reinforced considering results for the

variation of the height of the defluidized layer with time plotted in Figure 5.2.6c¢.

Similar calculations, showing the influence of Y, on calculations for the

jetsam concentration using the Yoshida model are shown in Figures 5.2.7a-c.
These figures show that increase in Yy leads to more rapid attainment of local
steady state conditions. Further, the formation of a defluidized layer is predicted
only for Y, =0.8.

From the parametric calculations, it was concluded that the two models
predict qualitatively the same behaviour in terms of the influence of various
parameters on the axial and temporal jetsam concentration profiles.

5.2.4 Comparison with Experimental Results

Minimum fluidization velocity of binary mixtures : The experimentally
measured minimum fluidization velocities of the binary mixtures used in this
investigation are plotted as a function of the jetsam mass fraction in Figures 5.2.8a
and b. The measurements were made using the fast-defluidization technique
described by Nienow and Chiba (1985). The results for the equi-density systems
considered (Sets A and B, Table 3.5) are plotted in Figure 5.2.8a whereas the
results for pafticles with differing densities and sizes (Sets C and D, Table 3.5)
are shown in Figure 5.2.8b. For comparison with these data, the correlation of
Cheungetal. (1974) - equation (5.2.21) - is also plotted in these figures. Itis clear

that the Cheung equation predicts data for the equi-density systems well, Figure
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$.2.8a; this observation is in agreement with previous comparisons (Nienow and
Chiba, 1985). For particles of differing densities and sizes, the Cheung equation
under-predicts the minimum fluidization velocities of the mixtures as shown in
Figure 5.2.8b, this, too, is in accord with reported work (Nienow and Chiba,
1985).

Jetsam concentration profiles : The experimental measurements on the
segregation behaviour of the binary systems considered, Table 3.5, are presehted
inFigures §.2.9105.2.14. The data for Set A particles fluidized using a superficial
gas velocity of U, = 0.155 m/s are presented in Figures 5.2.9a-c. The transient
jetsam concentrations at different heights within the bed are shown in Figure
5.2.9a. These data are qualitatively similar to predictions of G-R and Yoshida
models shown in Figures 5.2.2a(i) and 5.2.3.a(i) respectively. The variation of
the measured bubble fraction as a function of time at different heights within the
bed is shown in Figure 5.2.9b. These results, too, are in qualitative agreement
with predictions plotted from the two models in Figures 5.2.2a(iii) and 5.2.3a(iii)
respectively. The axial jetsam concentration profiles at different times, Figure
5.2.9¢, are also in qualitative agreement with model calculations shownin Figures
5.2.2b and 5.2.3b. The data for Set C particles with U, = 0.152 m/s plotted in
Figures 5.2.10a-c show similar trends. It would appear from such comparisons
that, for a given superficial velocity, the theoretical models, with appropriate
choice of parameters, can be made to fit the experimental data.

Discrepancy between model calculations and experimental data is brought
forth when the concentration versus time data at different superficial velocities
are considered as shown in Figure 5.2.11a. These data, at Z = 0.02 m, were
obtained using Set A particles. From these data, it is clear that a higher superficial

velocity leads to a slower attainment of steady state concentrations at the axial
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FIGURE 5.2.10a: Experimental response of jetsam concentration
as a function of time at different bed heights for
U, = 0.152m/s; particle properties (set C): dj/dp

= 1.73; pj/PF = 1.43, Umnf, J/UmfF = 4.7
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as a function of time for different superficial
velocities at Z = 0.02m; particle properties (set

A): dJ/dF = 3.02; PJ/PF=1.0, Umnf, J/Umf,F =5.6
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level under consideration. This trend is completely opposite to that predicted by
the two models, Figures 5.2.4a and 5.2.5a, as discussed earlier. On the other
hand, the measured axial concentration profiles at different superficial velocities,
Figure 5.2.11b, bear qualitative resemblance to theoretical calculations shown in
Figures 5.2.4b and 5.2.5b.

Experimental data obtained with other binary systems examined - Sets C
and D, plotted in Figures 5.2.12 and 5.2.13 respectively - reinforce the same
conclusions; that is, though the theoretical models are in qualitative agreement
with axial jetsam concent ration profiles at different superficial gas velocities, the
data for the variation of concentration with time show the opposite trend in terms
of rate of approach to cquilibrium«any particular axial level.

A further mismatch between experiment and theoretical trends was observed
for data obtained using Set B particles. In Figure 5.2.14a, the experimental
measurements for U, = 0.166 m/s show that the bed remained well-mixed for
about 100 s before enrichment in jetsam concentration commenced at the lower
levels leading to the formation of a defluidized layer after about 200 s. Similar
results were obtained for other superficial gas velocities. Both theoretical models
are unable to predict such behaviour.

The experimental results suggest that at higher superficial gas velocities, the
mixing is stronger at any specific axial level; the segregation propensity is lower
in comparison. From physical grounds, the experimental results appear to be
reasonable and the discrepancies between experimental and theoretical trends can
not be ascribed to the two-dimensional bed being used. The theoretical calcula-
tions - with the links used between segregation rate and bubbling parameters - on
the contrary lead to higher local segregation rates when the superficial gas velocity

through the bed is increased.
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The mismatches brought forth by this investigation have not been uncovered
in earlier work because of (i) the lack of detailed experimental data on the spatial
(axial) and temporal evolution of jetsam concentration in the bed; and (ii) the
emphasis on measurements of the axial jetsam concentration profiles for various
systems at steady state.

Given that the G-R and Yoshida models are unable to reproduce the
experimental trends successfully, there are two options which may be considered.
The first option is to retain these models and assume that the Y, (or Yy) parameters
contain a superficial velocity dependence as well. In that case Y zmust be called
a segregation propensity and not a segregation distance; this is because the
segri;ion propensity must decrease even though the net distance moved by jetsam
may increase with higher superficial velocities. In the course of this investigation,
some simple functions were tested. However, they were unable to produce good
agreement for all experimental conditions considered. In absence of theoretical
guidelines, it was not considered judicious to pursue this line further. The other
option is to consider other models to represent segregating fluidized beds. Two
candidates currently available are: |

. the model proposed by Sitnai (1981) which recognises that the existence

of a separate wall phase of solids which exchanges particles from the central

core region;

. the model of Kozanoglu and Levy (1992) which assumes the existence of

four wake phases with different exchange characteristics.

Whether these models reflect the physical mechanisms actually involved in

segregation or provide additional adjustable parameters for data fitting requires

further evaluation.
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Height of the defluidized layer: According to Chiba and Nienow (1983), the
height of the defluidized layer depends on the concentration of the particle species
as well as the superficial velocity. Yang and Keairns (1982) have made the
interesting qualitative observation that the fluidizing velocity does not have a
strong influence on the total time required to reach equilibrium for a particular
mixture of particles. To verify their observations, and to explore the influence of
time and superficial velocity on the height of the defluidized layer, two dimen-
sionless groups Z* =Zp/Zp ¢ and t" =1/tp s were defined where Z, ; is the equi-
librium height of the dcﬂui%‘éd layer which is attained at time #, ;. Clearly,
0<Z"<1land0<t" < 1. From experimental measurements, plots of Z* versus "
were prepared for the binary systems considered; the results are presented in
Figures 5.2.15a-d. These results suggest that the superficial velocity does not
have a very strong influence on the rate of approach to equlibrium in terms of the
dimensionless variables. Weakly segregating systems (Set B particles) appear to
remain well mixed for a longer duration initially and reach the equilibrium
defluidized layer height in comparatively shorter fraction of time, ¢°. Strongly
segregating systems, on the other hand, start forming a defluidized layer quickly;
however, subsequently they take a comparatively larger fraction of ¢" to reach
equilibrium. These experimental data can be represented by a one-parameter

equation of the type commonly used to represent vapour-liquid equilibrium data

. OLup!

Tt (5.2.25)

where the parameter o, analogous to relative volatility, is a measure of the

segregation propensity.
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FIGURE 5.2.15b: Dimensionless height of the defluidized layer,
Z*, as a function of dimensionless time, t*, for
Set B (dj/dp = 2.14; pg/pF = 1.0, Unf, J/Umf F =
3.23) particles.
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Equation (5.2.25) with appropriate values of o, has been plotted, alon g with

the data, in Figures 5.2.15a-d. A higher value of o, represents a stronger ten-
dency to segregate. The binary systems considered in this investigation can be
arranged in order of increasing segregation tendency as follows

SetB(0,3 =0.25) < SetA(o,; = 1.75) < SetD (0,5 = 2.5) < SerC (o, =4.5)
Interestingly, for these binary systems, Y, values calculated from equations

(5.2.23) indicate the same order.

The equilibrium height of the defluidized layer, Z, ¢, and the time required

to reach this height, 7, 5, will undoubtedly depend on the superficial gas velocity.
In Figure 5.2.16 #, s has bec;:‘ plotted as a function of (U - U,,..) where U, is
calculated using the average concentration of the jetsam in the bed in equation

(5.2.21), that i
-2
Uniie = Upg e Upg /U,y £ (5.2.26)

For the binary system considered experimentally in this investigation, x, = 0.2,
In Figure 5.2.17, Z; ¢ has been plotted as a function of (U, — U,;,_c). Sur-

prisingly, the data for Sets A and C appear to fall on a single line. More data are
required to establish whether this trend has a more general application. In Figure
5.2.18, experimental values of Z, s has been plotted against ¢, ;. The data suggest
that linear relations may hold between these variables for different binary systems.

Once again additional data are necessary to elaborate on the observed trends.
5.2.5 Conclusions

Unsteady material balance equations from the Gilibaro-Rowe and Yoshida

models for segregating fluidized beds have been solved numerically. The
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possibility of the formation of a defluidized layer at the bottom of the bed has
been taken into account. ComPa rison of model predictions with data indicates
that though these models do reflect some features of the experiment, the influence
of the superficial velocity on the temporal variation of the concentration at any
specific height within the bed is not predicted. Infact, a trend completely opposite
to that predicted is observed experimentally. If these models are to be used, then
the segregation rate parameter must have a dependence on superficial velocity
substantially different to that currently available in the literature.

Some preliminary empirical relations have been established for the move-
ment of the defluidized layer with time. In particular, a promising new indicator
for segregation propensity is proposed from analogy with vapour-liquid
equilibrium data representation methods. Additional data are necessary before

further generalization can be attempted.
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5.3 MOTION OF A LARGE PARTICLE

In bubbling fluidized bed combustion, large coal particles - comprising about
1% of the total bed inventory - are fluidized along with smaller sulphur-sorbent
particles. The density of the coal particles is less than that of the bed particles. This
combination of the concentration, size and density results in the setting up of
circulation pattern for a coal particle within the bed: a jerky upward movement under
the influence of rising bubbles and a downward motion when associated with the
dense phase (Nienow et al., 1978)

It appears important to characetrize this motion for improving the current
understanding of combustion of coal in bubbling flu4 dized beds. In this section, the
methods described in section 3.2.6 have been utilized to detect and track a freely
moving larger and lighter (or ‘active’) particle in fluidized beds of smaller particles.
Inaddition, measurements have also been made for a macroscopic measure - residence
phase probability - of the ‘active’ particle’s association with the bubble phase.

5.3.1 Particle Motion and Circulation Pattern
5.3.1.1 Particle motion in one circulation

A complete circulation of an ‘active’ particle of density p, = 1141 kgm™

introduced at the top of the bubbling bed fluidized operated at a superficial gas
velocity of 0.604 m 5™ has been shown in Figure 3.2.19. Visual observations,
as well as experimental measurements, show that there are several recurrent
‘active’ particle motion patterns. Further, certain patterns are predominant in
different regions of the bed. The particle circulates in the bed by moving
predominantly downward slowly near the vertical edges of the bed and rising
upward in a jerky movement in the central region. Several characteristic

patterns of particle motion were observed during the particle’s ascent to the
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top of the bed. The particle could execute a looping pattern along the edge of
the an upward moving bubble or fall through the roof of the bubble - in both
these cases the particle ends up moving downwards. Further, the particle was
also seen to travel a significant distance upward in the bubble wake before
being shed off. The motion was especially fast when there was a bubble trailing
the wake of the leading bubble. Itis clear that bubbles cause particle motion;
however, it appears that certain bubbles induce a greater upward motion than
the others. The results in Figure 3.2.19 illustrate these patterns : the particle
was seen spiralling in the same region (half way above the distributor in the
central region of the bed) for some time resulting in approximately zero net
vertical displacement before being carried up to the top of the bed very quickly.
These observations are in qualitative agreement with Nienow et al. (1978) and
Tanimoto et al. (1980).

To illustrate the quantitative information that can be obtained from
experiment, the X and Y co-ordinates of the particle in Figure 3.2.19 are plotted
as a function of time shown in Figures 5.3.1a and b. The corresponding
velocity components, V, ., V, , of the particle were calculated from the slopes
of X-Y displacements versus time plots, Figures 5.3.1c and d, and the
calculated absolute velocity V, , is plotted in Figure 5.3.1e. It can be seen
from these results that the magnitudes of V,, , and V, , range from 0.01 to 0.25
m s and 0.025 to 0.5 m s™' respectively. Further, the plots show significant
greater lateral and axial displacements during the rising portion of the circu-
lation compared to when the particle is descending down along the edge of the
wall. The absolute velocity in the rising section is significantly greater than
those in the sinking region. Considering Figure 2, the number of cells (sur-

rounding the ‘active’ particle) having intensities greater than the threshold
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FIGURE 5.3.1: (e) Resultant velocity of the 'active' particle as a
function of time
(f) Bubble-particle interaction as a function of time.
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value (that is, in the bubble void) were determined. This number as a fraction
of the total number of cells surrounding the active particle is a measure of
bubble-particle interaction. This fraction, denoted as Fyy, is plotted as a
function of time in Figure 5.3.1f. Simultaneous consideration of Figures
5.3.1d-f establishes clearly that the motion of the ‘active’ particle correlates
very strongly with the presence of bubbles in its immediate vicinity.

5.3.1.2 Overall circulation pattern

The circulatory pattern of particle motion in the bed can be clearly
illustrated with plot of Y versus time for a longer duration. Figure 5.3.2 shows
the rising and sinking patterns of the particle for a period of 150 s continuously.
The circulation time ranges from approximately 8 to 22 s with a more dominant
circulation time about 16 s. Itis obvious that the circulation time is influenced
by the depth to which the particle descends. Although the particle was seen
more frequently to descend to a depth very close to the distributor, there were
occasions where the particle was deflected back to the surface after only
reaching down to a shortdistance. Such premature re-emergence of the particle
to the surface occurs especially when the particlé resides in the inner/central
region of the bed in which a higher bubble frequency is encountered. The
particle tends to sink down closer to the distributor when close to the vertical
edge of the bed.

In addition, the average velocity vector of a specified region in the bed
was calculated by averaging all the V, , and V,, , components of that region.
The average angular direction of particle motion was evaluated from
tan"(VA,,/VA. ,) and was classified into one of the eight key directions with an
angle of 45° between two intervals. A map of these vectors is shown in Figure

5.3.3a. These results, depicting the overall circulation pattern, substantiate the
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FIGURE 5.3.3b: Magnitude of 'active' particle velocity in various
regions of the bed.
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visual observations suggesting that the particle moves downward near the edge
of the bed and rises through the central region. The pattern is very similar to
the gross circulation pattern of the bed solids resulted from the wake-drift
transport (Lin et al., 1985; Soo, 1986). The corresponding magnitudes of the
velocity vectors, shown in Figure 5.3.3b, clearly indicate a higher magnitude

for the particle velocity in the central region of the bed.

The plot of the height-averaged distribution for VM, Figure 5.3.4a,

provides a convenient basis distinguishing characteristics of particle motion
in the fluidized bed:

. the particle moves predominantly downward with a velocity, V, py, in

the wall region. This region extends about 20% of the bed width from
either side of the wall; and

. the particle moves in downward and upward directions with velocities
Va.oc and V, gy respectively in the central region which occupies about
60% of the bed width.

i
The distributions of the particle velocity, V, ., in these regions are shown in

Figure 5.3.4b. The mean and the spread of the velocities in both upward and
downward directions in the central region are greater than those for the
downward velocity in the wall region. On the other hand, the distributions for
the particle velocities in both upward and downward directions?\';eomewhat
comparable. Experimental results obtained at different fluidizing conditions
showed a similar trend.

5.3.1.3 Theory for ‘active’ particle velocity

Though substantial progress has been reported on the modelling of flow

of the gas in a bubbling fluidized bed (Clift and Grace, 1985), prediction of
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the solids flow still offers unsolved challenges. In the following we develop
simple models, from semi-empirical considerations, to describe the motion of
the ‘active’ particle.

Downward velocity of the ‘active’ particle in the wall region, V, py : If

there is no segregation between the ‘active’ and the bed particles when the
‘active’ particle resides completely in the dense phase (Rios et al., 1986;
Agarwal, 1987), then the downward velocity of the ‘active’ particle in the wall
region must be substantially the same as the downward velocity of the dense
phase. To test this hypothesis, the dense phase velocity, Us, was calculated as

(Kunii and Levenspiel, 1969)

e, U
U, = JweaUs (5.1.16)

1 —&3 — fwEp
The bubble fraction, &g, and the bubble rise velocity, Uj, were calculated using

the appropriate equations (5.1.13-15). The results of the calculations with the
wake fraction, fy, taken as 0.2 are compared with experiment in Figure
5.3.5a,b. In Figure 5.3.5a, data are presented, anéii compared with theory, for
the variation of V, py as a function of height within the bed. In Figure 5.3.5b
the height-averaged measurements for V,, , are plotted as a function of the
excess gas velocity along with theoretical predictions. It can be seen that
calculations compare favourably with experiment. These results are then in
accord with Rios et al. (1986). Ourexperiemntal measurements show a stronger
influence of the excess gas velocity, (Up = U,,). It should be noted that our
measurements cover a wider range of the excess gas velocity; further, the trend

is still in agreement with their theory.
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Upward velocity of the ‘active’ particle in the central region, V, y¢ :

Based on visual observations, Nienow et al. (1978) proposed that the

height-averaged rise velocity of the ‘active’ particle, U, can be written as

U, =0.19U, - U, )" (5.3.1)
Nienow et al. (1978) further indicated that UR was an order of magnitude lower

than the bubble rise velocity. It should be noted that U, differs in concept with
the upward particle velocity, V, yc, measured in our experiments. U, at any
height above the distributor represents a time average of both upward and
downward particle velocity components in the central region whereas V, ;¢
includes only the upward component. Hence our measurements are similar to
those of Rios et al. (1986) who measured the upward velocity component of
particle motion using an ‘active’ particle doped with radio-active tracer. They
presented results on the variation of V, y¢c with height above the distributor

and concluded that V, ;¢ was about 30% of the bubble rise velocity.

To clarify the link between V, ,c and Uy, the net upward motion is
|

visualized to result from the following steps:
. the particle executes a hesitating motion under the influence of rising
bubbles. This motion is assumed to cause a zero net displacement as the
‘active’ particle waits for the ‘right’ bubble to arrive, lift and carry it; and
. once the ‘right’ bubble is encountered, the particle is carried up at the
bubble velocity. After a certain time, the particle is shed from the wake
of the bubble and rejoins the dense phase where it waits for another ‘right’
bubble to come along. This process is repeated until the ‘active’ particle

reaches the top of the bed.
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Now consider the time-averaged motion at any given location in the central
region of the bed. The fraction of the oca{rcnccs corresponding to net upward
motion in association with the bubble is denoted as K. Then, the fraction of
upward hesitating motions (compensated by an equal number of downward
hesitating motions and leading to net zero vertical displacement) is (1 — K).
Therefore,

VA,UC =(1 _KR)VA,H(:"'KRUB (5.3.2a)
where V, y is the upward velocity of the particle during the hesitating motion.

If it is assumed further that the upward and downward velocities during the
hesitating motion are equal in magnitude (but opposite in direction) then

Vauc= (1=K Vs pcl +KpUy (5.3.2b)
Rearrangement of equation (5.3.2b) yields an expression for estimating K

from experimental measurements

K _Vauc=1Vand
* Us=|Va,od

(5.3.2¢)

In Figure 5.3.6 the experimental data are plotted with V, ;- and Uj as

the y-axis and the corresponding V,, pc as the x-axis. These data lead to average
values of V, yc/Vapc = 1.2and  Ug/V, pc = 4.0 £0.5. Substitution of these
numbers in equation (5.3.2c) yields Kz =0.072£0.01. Further, the ratio of
V4 uc!Up can be determined easily as 0.3 which is in accord with the
measurements of Rios et al. (1986) mentioned earlier.

The model for particle motion also leads to

Up =KpU, (5.3.3)
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For comparison with the correlation of Nienow et al. (1978) given by equation
(5.3.1), the velocity corresponding to the height-averaged bubble diameter
(Darton et al., 1977) in a three-dimensional bed was calculated. Calculations
using equation (5.3.3) with K =0.07+£0.01, shown in Figure 5.3.7, show

satisfactory agreement with the higher value of K.

Downward velocity of the “active’ particle in the central region, V, ,

The average downward velocity of the particle in the central region was found
to be greater than the downward dense phase velocity but somewhat similar
to the upward velocity in the same region. Visual observations indicated that
these velocities were generally associated with the particle moving around the
edge of a rising bubble or, less frequently, with the particle falling through the
bubble roof. Considerable gaps remain in the current understanding of the
motion of particles in the immediate vicinity of the bubble. Consequently,
prediction of V, p-, in terms of bubble character;%tics, appears difficult.
Nevertheless, the measured values of VA.ch shed additional light on the
measurements of the wake exchange cocfﬁcieht in a bed of uniform particles
reported in section S.1.3 as discussed in the following.

The exchange rate of the solids between the dense and wake phase is
conventionally estimated assuming that the particles flowing within the bubble
cloud region get into the wake and are well-mixed before leaving it (Yoshida
and Kunii, 1968; Chiba and Kobayashi, 1977). Adaption of the Yoshida and

Kunii model to a two-dimensional fast bubble leads to :

Y e fw(l —gp)dy  dp

(5.1.17)

Similarly, the Chiba and Kobayashi model leads to
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Both these models for the wake exchange coefficient can be written as

kwg = Aygldy (5.1.19)

The exchange coefficients derived from equations (5.1.17) and (5.1.18) vary
directly with U, and inversely with bubble size. However, in our previous
study on the mixing of uniform particles, sect fon 5.1.3, the exchange
constants Ayy and Ay were found to be significantly larger than those deter-
mined from the fitting of the measured tracer concentration profiles using the
three-phase countercurrent backmixing model. Further, the experimental
exchange constants, Ay, , were also found to be a function of superficial gas
velocity for a given particle type (constant U,,); equations (5.1.17) and (5.1.18)
do not predict such dependence.

In Figure 5.3.8, the measured values of V, 5. are plotted as a function

of Up/U,,. The measured exchange constants in beds of uniformly sized
particles, Ay; , have also been plotted. Itis clear that bon;h sets of data show a
linear dependence on Uy/U s (for Up/U,4 < 3 correspon"ding to (Up-U,) <
0.76 ms™' forthe 7.12x 10 m glass ballotini bed particles under consideration).

A link between these measurements can be established using a simple
model. Itis assumed that the solids flowing in the region between a radius of
kcdy/2 and the bubble boundary, dy/2, enter the wake. The solids flux into and
out of the bubble wake, V, can then be estimated from the product of the
downward velocity, V,, of the bed particles and the cross-sectional area

resulting from the thickness ¢of the bed and the width of flow region,

Vi = ke = DdpteVp (5.3.4)
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Itis also assumed that the ‘active’ particle can move down a net distance, y,,

compared with the bulk bed particles following the passage of a bubble, Figure
5.3.9. Consequently,

Vapc=Ve+ Y/t =Ve+Y,U, (5.3.5)
where the bubble passage time, 25, has been approximated as t = dp/U, and

the dimensionless segregation distance, Y,, has been definedas Y, = y,/d. The
exchange coefficient can be written as

Vw_(ke=1)ds Vo Ay

WE™— <, = = (5.3.6)
Vw Zdn?fw dp
Combining equations (5.3.5) and (5.3.6),
4(kc—1) 4(kc—1)
=V == (V, pe = Y, Up) (5.3.7)

"E fw g Tfw
Tanimoto et al. (1980) have presented measurements for Y, (taken as Y,

in section 5.2) where the segregating particle is heavier and larger than the
bulk bed particles. Forthe case under consideration, thou %’h the ‘active’ particle
is 10 times the size of the bed particles it is also considerably lighter. In the
absence of detailed information, at presentitis convenient toassume that Y, = 0.
Now, if k. is assumed to be constant then it can be concluded that Ay should

be proportional to V, pc and should also vary with the superficial gas velocity.

From the slopes of V, p¢ versus Up/U,, (0.1724 m s) and Ay, versus

Uo/U,y (0.087 m s), kc was calculated to be approximately 1.08 using fy =
0.20. This result implies that the region around the bubble from which the
solids flow into the wake is 0.04 dj in thickness. This thickness is considerably

smaller than the thickness of the gas cloud from the Davidson (1963) and
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FIGURE 5.3.9: Schematic diagram of 'act;

ve' particle motion around
a bubble.
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Murray (1965) theories. This thickness is also smaller than the thickness of
the region in which the solids are expected to move following the passage of
a bubble (Singh et al., 1972; Gabor, 1972). The result indicates that only a
fraction of the total solids flowing within the cloud region actually enter the
wake.

There are some uncertainties in this analysis. The assumption thatY, =0

can be questioned. In addition, the assumption that the particles in the wake
are well-mixed can be questioned as well. Kozanoglu and Levy (1990, 1992)
suggest the presence of stagnant regions in the wake which will lead to lower
exchange rates and, consequently, a lower value of k.. Despite these uncer-
tainties, the analysis does provide an explanation for the dependence of the
wake exchange coefficient on the superficial gas velocity - the fundamental
reasons why V, and V, pc vary with gas velocity require further investigation.
At the very least, the measured variation of V, pc with superficial gas velocity
in a manner similar to the wake exchange coefficient inferred from tracer
concentration data is thought to be independent corroboration for the results
reported in section 5.1.3.

5.3.2 Phase Residence Probability

§.3.2.1 Experimental measurements

The phase with which the ‘active’ particle is associated within the bed
was determined by measuring the average intensity of the neighbouring cells
surrounding the particle. The number of the surrounding cells having intensity
greater than threshold value (that is, in the bubble void), np, were determined.
A particle was considered to be totally submerged in the dense phase if np was

zero. InFigure 5.3.10, the cumulative fraction of events is plotted as a function
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of ng_Itappears that the dense phase completely surrounds the ‘active’ particle
for times ranging between 85 to 92%. For the rest of the time, the ‘active’
particle has some association with the bubble phase though the chance of its
being present within the bubble phase entirely is very small. It was assumed
that a particle resided in the dense phase if the number of surrounding cells in
the bubble void is less than 25%, that is 2 of the 8 cells in Figure 3.2.18.
Otherwise, the particle was considered to be in contact with the bubble phase.
The probability of the ‘active’ particle residing in the dense phase, p, was then
evaluated as

Np

= N, (5.3.8)

p

where N, is the number of the events in which the ‘active’ particle was detected

as present in the dense phase [p at n; < 2] and N; is the total number of events
excluding all null decision events. Since the fluidized bed is considered as a
two-phase system, the bubble phase residence probability is clearly (1 - p).

Experimentally measured values of; the dense phase residence prob-
ability, p, of the ‘active’ particle are shownf as a function of excess gas velocity
in Figure 5.3.11. Clearly, the value of p decreases with increasing excess gas
velocity because the ‘active’ particle associates increasingly with the bubble
phase. The average value of p is fneasured to be about 0.92. In addition, the
dependency of p on the density of the ‘active’ particle is very small. Thus,
the ‘active’ particle spends about 10% of its time in association with the bubble
phase for the cxpcrimcﬁtal conditions considered in this investigation.
5.3.2.2 Theory for residence phase probability

Agarwal (1987) proposed a model for the residence phase probability

which assumed that the ‘active’ particle experienced a series of captures and
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sheddings while rising to the top of the bed. It was further assumed that there
was no slip between the ‘active’ particle and the phase, bubble or dense, it was

associated with. This model leads to

Us+Up

p (5.3.9)

The circulation pattern which emerges from our present measurements
is that the downward velocity of the ‘active’ particle in the central region is
significantly different from the dense phase velocity. Further, in the central
region, only a fraction, K, of upward movements actually resul{ in net upward
displacement in association with the bubble; the fraction, (1 — Ky), of the
upward movements IS compensated by downward movements resulting in
roughly zero net vertical displacement. The approach of Agarwal (1987) can
be corrected and the dense phase residence probability determined using

X/Us +X1Upy
P =0, +x10,

(5.3.10)
where X is the penetration depth of ;the ‘active’ particle in the fluidized bed.
v is the fraction of the time spent byithe particle in association with the dense
phase during its sojourn in the central region and can be written as

v =(1-Kp)py (5.3.11)

Py is the fraction of time spent in association with the dense phase during the

hesitating motions. Direct experimental determination of py, at this stage,
appears difficult. Using equations (5.1.16), (5.3.10) and (5.3.11) it can be
shown that

_ Kp((1 —€p — fw€s) — fw€pPu) + fwEgpn
- Kp(1—¢3 "waB)"'waB

(5.3.12)
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In Figure 5.3.11, calculations using equation (5.3.12) with K; = 0.07 are

compared with experimental data. The upper bound of the data corresponds
to py =0.975 and the lower bound to p, = 0.875; an average value of p, = 0.9
is recommended. This result implies that the active particle, even when not
executing the net upward motion, is associated with the bubble phase for about
10% of the time. This is not specially surprising since the hesitating motions
also are a direct consequence of bubbling activity. Itis interesting to note that,
in spite of differences in the mechanistic description, predictions from equation
(5.3.9) compare well with experimental data in Figure 5.3.11.
5.3.2.3 Conclusions

Automated image analysis methods have been used to characterize the
circulation pattern of the ‘active’ particle and to measure its velocity in the
bubbling bed. The results show dominant ‘active’ particle motion patterns in
various regions of the fluidized bed - descending near the edge of the wall and
ascending in the central region. The downward velocity of the particle in the
wall region is comparable to the 1;alculated solids dense phase velocity.

|

Extensive particle/bubble interaction'was measured in the central rising region
which leads to large upward and well as downward velocities. The average
upward velocity of the particle was found to be about 0.3 U,. The measured
downward velocity in the central region - aconsequence, mainly, of the ‘active’
particle moving around the bubble - provides a possible explanation for the
dependency of the solids exchange constant on the fluidizing gas velocity.
This experimental technique has also been used to measure the phase
residence probability of the ‘active’ particle. The measurements indicate that

the ‘active’ particle is increasingly associated with the bubble phase of the

fluidized bed as the excess gas velocity is increased.
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Chapter 6
CONCLUSIONS AND

RECOMMENDATIONS

A new method for non-intrusive sensing and measurement of important char-
acteristics of bubbling fluidized beds has been developed based upon the principles of
digital image analysis. The procedures developed provide several key elements which
make this technique extremely attractive for such measurements and characterization.
A high level of automation is introduced into the e{cquisition, processing and analysis
of digitized images. The laborious manual effort and consequent tedium of previous
studies have been dramatically alleviated. Automation of the analysis procedure means
that a large number of images are captured for any data set. This should improve the
statistical accuracy of any ensemble estimates produced. The use of gray-level
thresholding improves the reliability for delineation of the phase boundary; edge
detection is now objective and consistent. This is an important advantage where
measurements in two-phase are necessary. The availability and continued development

of image analysis software across several disciplines is another advantage.



In the research reported in this thesis, digital image analysis techniques have been
used on two-dimensional fluidized beds to address the following problem:s :

* measurement of bubble size distributions;

« evaluation of geometrical probability methods for interpretation of pierced length

signals obtained from dual-tipped submersible probes frequently employed for

bubble characterization in three-dimensional beds;

» evaluation of the influence of non-vertical bubble rise on the interpretation

methods, and designs, of submersible probes used in three-dimensional fluidized

beds;

» measurement and interpretation of tracer concentration profiles in fluidized beds

of uniform particles;

- measurement and interpretation of jetsam concentration profiles in segregating

binary fluidized beds; and

« tracking of a larger and lighter (or ‘active’) particle in fluidized beds of smaller

and heavier particles. |

Given the versatility of the technique, it 'can be used readily to explore the influence
of the presence of in-bed tubes on the behaviour of the bubble and solid phases.
Extensions of the technique to other configurations of fluidized beds are also possible.
In the following, the major conclusions from the study are summarized.

Bubble Size Distributions : The experimental measurements for bubble size dis-
tributions were compared with predictions from a population balance model using
‘coalescence as the dominant growth mechanism. This comparison has highlighted some
discrepancies and further work on modelling bubble growth is required. Average bubble
size measurements compare favourably with the correlation of Chiba et al. (1973) for

two-dimensional beds.



303

Given the simplicity of the method, it was considered ideal for the calibration of
submersible probes and further work was undertaken in this direction.

Conversion of Bubble Pierced Lengths Measured at a Submersible Probe to Bubble
Size Measures : The distributions of the bubble pierced length as well as other bubble
size measures were measured experimentally. The experimental results showed that
bubble size distribution can not be obtained directly from the pierced length distribution.
However, reasonably reliable inferences can be made using geometrical probability
approach. Results of comparison, for bubble size distributions as well as overall stat-
istical analyses, suggested that simulations using spherical or ellipsoidal (0=0.77)
models provide satisfactory agreement between experiment and theory. Lateral
non-homogeneity in bubbling as well as the non-uniformity in bubble shapes have been
detected experimentally. Further work is necessary to include these refinements in the
theory.

These results will significantly enhance confidence in the use of intrusive probes
(measuring only the pierced length distributiqns) to determine the size distributions of
bubbles or droplets dispersed in a medium. :Two further considerations need a more

detailed appraisal:

« the ability of two-element probes to measure bubble velocity and pierced length

unequivocally; and

« the possibility of alteration in the local behaviour of the dispersed phase due to

the presence of the in bed probe.

Due toconstraints of time, only the firstissue could be addressed in detail; the conclusions

from the study are outlined in the following.
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Influence of the Angle of Bubble Rise on Bubble Velocity : This study was
undertaken to determine whether the dual-tipped probe does measure bubble velocity
and pierced length unequivocally. Theoretical analysis showed that the angle of bubble
rise will influence the measurements made using submersible probes based on the
conventional probe signal interpretation methods. The experimental results indicated
that the angle of rise deviated significantly from the vertical. Surprisingly, the density
functions of the rise angle did not appear to depend strongly on the position in the bed
and superficial gas velocity for the range of conditions considered. Since the existing
signal analysis procedures for two-element submersible probes are based on vertical
bubble rise, these results show that available results from such probes can not be con-
sidered as quantitative. Multiple-element probes detect and reject non-vertically rising
bubbles. Analysis of the data established that such rejection did not bias the
measurements of bubble characteristics and consequently such probes should be pre-
ferred.

Bubble size/shape were also measured simultaneously using the global thresh-
olding techniques. These measurements enatiplcd assessment of the relationship between
bubble size/shape and velocity. For comparison with results for freely bubbling beds,
separate experiments were performed with bubbles (single as well as chains) injected in
incipie:ntly fluidized beds.

The results indicated that the density functions for the rising velocity coefficient
from freely bubbling beds were virtually identical for different locations in the bed and

“operating conditions considered in this investigation. These density functions were also
in very good agreement with those from continuously injected bubbles in incipiently
fluidized beds. The density functions of the rise velocity coefficient for single injected

bubbles had a lower mean and standard deviation. The inclusion of the excess gas
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velocity term in the equation for bubble velocity led to good agreement between the
mean of the rising velocity coefficient density function for bubbles injected singly and
in freely bubbling beds; the standard deviation for freely bubbling beds, however,
remained higher.

The possibility of alteration of the local behaviour of the dispersed phase due to
the presence of submersible probes needs further study. Preliminary comparisons
between measurements from two types of submersible probes - capacitance and fiber-
optic - and image analysis were made. However, a complete study could not be
undertaken because of time constraints.

Mixing of Uniform Solids : An effective and reliable method for the measurement
of solids mixing in fluidized beds was developed. The advantage of this image analysis
based technique included

» continuous data acquisition and fully automated data analysis;

« fast response;

» ability to measure the mixing behaviour whilc the bed is fluidized; and

» simultaneous measurement of mixing at different locations in the bed to enable

unambiguous determination of model parameters.

The data obtained for the mixing of uniform solids showed oscillations in tracer
concentration resulting from the gross circulation of the solids. These oscillations
became increasingly more prominent with increase in bed particle size.

The experimental data were interpreted using the three-phase counter-current

‘back-mixing model. The bubble phase parameters required for model calculations were
also measured and interpreted in terms of appropriate models. The comparison of model
calculations and experimental data showed that the models for the prediction of the wake

exchange coefficientcurrently available in the literature (Yoshidaand Kunii, 1968; Chiba
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and Kobayashi, 1977) were not adequate. In particular, the wake exchange coefficient
appeared to increase with Up/U,, for Uy/U,, < 3 and the values, in this region, were
independent of the particle size. The models, on the other hand, predicted that the wake
exchange coefficient should increase with increase in the minimum fluidization of the
bed particles. In line with these results, the experimental measurements of Chiba and
Kobayashi, for injected bubbles in a two-dimensional fluidized bed of particles smaller
than those used in this investigation, were found to in excellent agreement with the lower
bound of our measurements.
It is expected that the results on the wake exchange coefficient obtained from the
two-dimensional bed studies will apply to three-dimensional beds at least qualitatively
in terms of the absence of particle size effects and the dependence on Uo/U .
Quantitative agreement will depend on the magnitude of the difference between motion
of solids around the edge of the bubble in two- and three-dimensional beds. Additional
theoretical work, supplemented by careful experiments, is necessary to investigate the
motion of particles in the vicinity of the bubble to develop a predictive understanding
of solids mixing in fluidized beds.
Segregationin Binary Fluidized Beds : Unsteady material balance equations from
the Gilibaro-Rowe (1974) and Yoshida (1980) models for segregating fluidized beds
were solved numerically. The possibility of the formation of a defluidized layer at the
bottom of the bed was taken into account. Comparison of model predictions with data
indicated that though these models did reflect some features of the experiment, the
‘influence of the superficial velocity on the temporal variation of the concentration at any
specific height within the bed was not predicted. In fact, a trend completely opposite to
that predicted was observed experimentally. If these models are to be used, then the

segregation rate parameter must have a dependence on superficial velocity substantially
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different to that currently available in the literature. Further work in this direction is
recommended. The influence of jetsam concentration was not explored in this experi-
mental study; such measurements are recommended as well.

Some preliminary empirical relations were established for the movement of the
defluidized layer with time. In particular, a promising new indicator for segregation
propensity was proposed from analogy with vapour-liquid equilibrium data represen-
tation methods. Additional data are necessary before further generalization can be
attempted.

Motion of a Larger and Lighter (or ‘Active’) Particle in Fluidized Beds of Smaller
and Heavier Particles : Automated image analysis methods were used to characterize
the circulation pattern of the ‘active’ particle and to measure its velocity in the bubbling
bed. The results showed dominant ‘active’ particle motion patterns in various regions
of the fluidized bed - descending near the edge of the wall and ascending in the central
region. The downward velocity of the particle in the wall region was comparable to the
calculated solids dense phase velocity. Ex}ensive particle/bubble interaction was
measured in the central rising region which led to large upward and well as downward
velocities. The average upward velocity of the particle was found to be about 0.3 Us.
The measured downward velocity in the central region - a consequence, mainly, of the
‘active’ particle moving around the bubble - provided a possible explanation for the
dependency of the solids exchange constant on the fluidizing gas velocity.

This experimental technique was also used to measure the phase residence prob-
‘ability of the ‘active’ particle. The measurements indicated that the ‘active’ particle was
increasingly associated with the bubble phase of the fluidized bed as the excess gas
velocity was increased. The results point to the necessity of including the motion of

coal particles in future modelling of fluidized bed combustion.
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NOMENCLATURE

a parameter

a’ major axis of an ellipsoid, m.

A area of a two-dimensional bubble, m?

A, area of distributor, m®

Aco bubble catchment area at the distributor, m?
Awc exchange constant, ms™

Ay exchange constant, ms™

Awy exchange constant, ms™

A A, variables.
b parameter

b’ minor axis of an ellipsoid, m

Cr correction factor for bubble size

C concentration or volume fractio’n of the solids tracer, [-]
Cp circumference, m |

d, diameter of ‘active’ particle, m

dy’ bubble diameter under unconstraint growth, m
dp bubble diameter, m

dps bubbble diameter with growth constrained by presence of bed walls,

m
dg area-equivalent diameter, m
dr flotsam particle size, m

dy, maximum horizontal dimension, m
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jetsam particle size of, m

initial bubble diameter, m

bed particle size, m

bed diameter or bed width in a 2-d bed, m

maximum vertical dimension, m

minimum vertical dimension, m

elliptic integral

probability density function

cumulative distribution

wake fraction, [-]

measured bubble size/shape variable in the first image field
measured bubble size/shape variable in the second image field
acceleration due to gravity, m s

expanded bed height, m

fixed bed height, m

mean gray scale of cell sample, [-]

adjustable parameter

constant for the bed expansion

adjustable parameter

dense or emulsion phase transfer coefficient based on the corre-
sponding phase volume, s

wake phase transfer coefficient based on the corresponding phase
volume, s
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settlement rate, m s™
gas through-flow factor, [-]

constant

bubble rise velocity coefficient, dimensionless, [-]

fraction of occurences correspond to upward motion of ‘active’
particle in association with a bubble

distance between probe tip and bed centre, m
adjustable parameter

number of the events in which the ‘active’ particle was detected as
present in the bubble phase

total number of image frames analysed
number of holes in the perforated plate

the presence probability of the ’active’ particle residing in the
emulsion phase

initial location of the tracer discharge, [-]
gas flowrate, m* ™
bubble throughflow rate, m’ s
distance, m

radius of bubble, m

dimensionless segregation parameter
adjustable parameter

shape factor (= P/nd,)

time, S

separation between probe tips, m
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bubble passage time, s

time required for reaching steady state conditions, s
dimensionless time required for reaching steady state conditions
bed thickness, m

delay time or the time required for the leading bubble interface to

travel from the lower to the upper probe tip in a two-element probe,
s

bubble velocity, m s™

minimum fluidization velocity, m s™

minimum fluidization velocity of a binary mixture, m s™
superficial gas velocity, m s

bubble rise velocity, m s™

average rise velocity of the ‘active’ particle, m s™
average descent velocity of the dense phase, m s™

downward velocity of the ‘active’ particle in the central region, m

s-l

downward velocity of the ‘active’ particle in the wall region, m s™

upward velocity of the ‘active’ particle during hesitating motion in
the central region, m s’

absolute velocity of the ‘active’ particle, m s™
x-component of ‘active’ particle velocity, m 5!
y-component of ‘active’ particle velocity, ms™

bubble rise velocity inferred by a conventional two-element probe,
-1
ms

magnitude of the actual bubble velocity, m s™

x-component of bubble velocity, ms™
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Vs, y-component of the bubble velocity, m s
Ve actual bubble rise velocity at an angle 8, m s™
W width of the two-dimensional fluidized bed, m
X position of ’imaginary’ probe in a 2-D bed
X fraction of tracer discharge, [-]
y pierced length, m
i pierced length at the lower tip of a two-element probe, m
Yu pierced length at the upper tip of a two-element probe, m
Ay difference in pierced lengths at the two tips of the probe, m
Yor dimensionless segregation parameter
Y dimensionless segregation parameter
Yy dimensionless segregation parameter
YA Z’'=Z +2,, where Z, =0 for porous plate, m
zZ bed height from the distributor, m
Zp steady state height of dcﬂuidi:zed layer, m
Zp s height of defluidized layer at time t, m
z dimensionless height of the defluidized layer
Subscripts
B bubble phase
BD bubble diameter with the influence of bed diameter
E emulsion (dense) phase

F flotsam
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J jetsam
m experimental measurement
max maximum
min minimum
nor normalized quantity
TH at threshold condition
total total gas flow
w wake phase
Superscript
_ average property
Greek symbols
g dimensionless segregation propensity
€ bubble fraction
Pp density of particle, kg/m
Pa density of ‘active’ particle, kg/m™
) variable
r Gamma function -
C(m+1) =f a"eda
0

Y incomplete Gamma function n g

Ym+1l,a)=T(m+1)y1-e™ 3 =

i=oi!

AA; ; incremental cell area, m™

L)

dense phase porosity at minimum fluidization, [-]
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€3, Expi bed expansion factor, (Hg — Hg)/Hg

Ap proportionality constant for the distance a bubble travels before
coalescence, [-]

B variable

n variable

6z angle of bubble rise or the angle of bubble incidence at a submerged
probe, deg

T variable

a aspect ratio

A radial distance from bed centre

18 mean value

c standard deviation.

6 angular variable (deg / rad)

y variable

Ow wake angle (deg / rad)

) angular variable (rad)
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Appendix A

PARTICLE SIZE DISTRIBUTION

The bed particles mainly consisted of glass ballotini were analysed for the size distribu-
tion using a Coulter LS Series Particle Size Analyzer. The cumulative distributions of the
particle size were plotted.
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Appendix B

MINIMUM FLUIDIZATION VELOCITY

The minimum fluidization velocities of the particles used were determined from the
plots of bed pressure drop versus superficial gas velocity. As there were some variations of
the size distribution of the particle obtained from the factory (manufacturer), the minimum
fluidization of the particle were measured each time when there were changes in the batch.

Figure B1 and 2 show the variation of the measured U,,, values in both different batches
under the same classification.
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Appendix C

DERIVATION OF BUBBLE GROWTH MODEL OF DARTON (1977) IN A 2-D SYS-
TEM

A model describing the growth of bubble due to coalescence was proposed by Darton et
al. (1977). The bubble growth model for the gas bubbles in a two-dimensional fluidized bed
was derived following the similar approach.

A gas bubble in a fluidized bed is assumed to rise at a velocity U, and the frequency
with which they pass a fixed observer is Up/2a where a is the radius of the roughly circular
region enclosing the bubble and its wake.

The volumetric flow due to the bubble is

Q =VpUp/2a (C1)
and the volume of the bubble is V,
T
Ve =74d; (C2)
Up=KypVgdg ' (C3)
where K;; = 0.5, and for circular bubble shape,
2a =d, (C4)
equation (C1) may be expressed as
L] /
Q = 1Kzedy” (C5)

and assuming the bubble flow is a result of excess gas
where the A is the catchment area from which gas is drawn into the bubble stream and is

expressed as
Ac=D.T (C7

equating equations (CS5) and (C6) gives

nKeg'? .,
Pe = 4o - U™ 8

if each bubble size ’lives’ for a distance AzD., where A, is constant, before coalescence
between two adjacent streams gives a singles new stream of larger bubbles. Thus the height
Zy at the N stage of the coalescence is

Zy =AgDco+ApDc, + ....+ABDC(~_1) (C9)

nKBXBg 172

=m(d3g+d;2+....+d3@_”) (CIO)

Zy
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assuming no loss or gain in bubble volume during coalescence
dB?n = 2"ng
Kghgg? L N-1
ZN - sAp8 d;? 2 23n/4
4(U0 - U"V‘) =0

From geometric series

n . 1__ a+1
2q"= q
0 1-¢q
and it can be shown that
KAy
z,= 298 (@R —d3D)
4Uo-Un) (27 -1)
rearranging
AU, -U,)(2%-1) >
dB,,,=[ nK")f — Zy+dye
8/\p8
where

(AU~ UnAco
%0 = nKpApg 12

(Cc11)

(C12)

(C13)

(C14)

(C15)

(C16)
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Appendix D
COMPUTER PROGRAMS AND CODES

Due to the large volume and size of the computer programs used in various sections of
the studies, it not prossible to include all the codes of the computer programs developed.
Hence, only some selected key features of the computer are included.

Listed programs and subroutines are:

+ automated bubble size measurement
+ automated particle tracking
+ computer simulation for solids mixing and segregation



Automated bubble size measurement:
An extract of the subroutine for the
measurement of bubble size parameters,
circumference, and centroid.
$include:'itexpc.inc’

c. Bubble/object parameters measurement
routines
c.

¢. The following routines are used to measure
the size, circumference

¢. centroid, pierced length and maximum and
minimum size in both

c. horizontal and vertical directions.

¢. The routines are:

c. SIZEONE

c. Sizing the one single object given a point in
the object is known.

¢. Object identification by intensity greater than
threshold value.

¢. This is the major part of the subroutine for
the measurement of the

¢. parameters. The corresponding routines,
require certain parameters

c. to be predefined, i.e. linear dimension
calibration, incremental

c. size for the trapezoidal sectioning of the
object, starting point

¢. of the horizontal line which intersecting the
objects and its lenght,

c. vertical reference line and its corresponding
height in real dimension

c. with respect to a datum line, and the
threshold value distinguishing

c. the object and background. Note:
identification of the object is

¢. based upon a global threshold value with
object having gray scale

¢. larger than threshold. These parameters are
defined and passed on

c. through the common block /AA/

¢. The output of the measurement may be
obtained through a common block

¢. [EE/. Hence, it is required to define this in
the Main Program.

¢. FOEDGE(x,y,thresh,x1,x2)

¢. determine any two points (x1 and x2)
intercepting the object boundary

c. along y=y at given a starting point at (x,y)
inside the object.

c.
BOUND(subx,pos],pos2,xmin,y_xmin,xmax,y_
xmax,ymin,ymax)

c.
Y _MN(subx,posl,ymin,ymax,x_ymin,x_ymax)
¢. required common block /AA/

¢. common /AA/
vermm,hormm,pixacc,piyacc xrefl,dxref,Yref,th
resh,

¢. +stepsi,Height

c.
X_MN(ystart,intvy, xloc,xmin,xmax,y_xmin,y_x
max)

¢. also required common block /AA/

c. YDIRTN(xloc,yloc,y dir,thresh,stepsi)

o

. XDIRTN(xloc,yloc,x dir,thresh,stepsi)

¢. OBSIZE(xmin,y_xmin,xmax,y_xmax)

c. also required common block /AA/

¢. where measured bubble parameters are
declared in commom block

c. common/EE/
Xposn,Yposn,Area,CL,xcord,ycord xprobe,Plen
ght

¢. NEARER(x,y,up,down,thresh,piyacc)

Subroutine SIZEON()
¢. Call this routine name to measure the object
size parameters

integer*2
xrefl,dxref,Yref,thresh,pixacc,piyacc,stepsi
integer*2
Nobub,Bubloc(20,2),pos1,pos2,subx,bub,ichk
integer*2 xprobe,unit,Xmean, Y mean,int2
integer*2
ymin,ymax,X_ymin,Xx_ymax,xmin,Xxmax,y_xmin
,y_xmax
integer*2
pymin,pymax,px_ymin,px_ymax,pxmin,pxmax,
py_xmin,
+py_xmax

real*4
vermm,hormm,Xposn, Y posn,Area,CL xcord,yc
ord

real*4 Plenght,Height

9€E



¢. need to specify the following common blocks
/AA/ and /EE/ in the MAIN
. program

common /AA/
vermm,hormm,pixacc,piyacc xref1,dxref, Yref,th
resh,

+stepsi,Height

common/EE/
Xposn,Yposn,Area,CL,xcord,ycord,xprobe,Plen
ght

common /CC/
ymin,ymax,X_ymin,x_ymax,Xmin,xmax,y_xmin
,y_xmax

common /DD/
pymin,pymax,px_ymin,px_ymax,pxmin,pxmax,
py_xmin,

+py_xmax

common /Fileunit/ unit

common/CEN/ Xmcan,Ymean
c. determining the two intercepting points on
the object boundary

write(*,*)'pixacc, piyacc=', pixacc, piyacc

call
FOEDGE(xprobe,Yref thresh,pos1,pos2)

write(*,*)'posl, pos2', posl, pos2

subx=int2((pos2-pos1)/(pixacc*1.0))

write(*,*) 'subx=', subx

c. if detected bubble section is too small, the
method by sectioning

c. may not work properly, so these bubbles will
be ignored.

if (subx.gt.2) then

c. if this is true, it is required to determine the
possible maximum and
¢. minimum boundary positions for the bubble

c. first, the horizontal detected length is
subdivided into a series of

c. sections and at each position, axial (vertical)
search in both

c. upward and downward directions are carried
out. This will give the

¢. minimum and maximum vertical boundary
positions. Knowing these quantities

c. lateral (horizontal) search is performed to
determine the horizontal

¢. boundary positions because in terms of
evaluation of the bubble size

¢. maximum and minimum lateral positions are
required.

call BOUND(subx,pos1,pos2)
call OBSIZE(xmin,y_xmin,xmax,y_xmax)

write(*,949)
949
format(/1X,3X,'X',5X,Y' 4X,'Area’ 4X,/C_L".3
X,'Xmax'2X,"Ymax',

+3X,P_L")

if (unit.ne.6) then

write(6,950)
Xposn,Yposn,Area,CL,xcord,ycord,Plenght

endif

write(unit,950)
Xposn,Y posn,Area,CL,xcord,ycord,Plenght
950 format(1X,2F6.1,F8.1,F7.1,3F6.1)

else

write(*,*)'* Size is 100 small to measure.'
endif

return

end

Subroutine BOUND(subx,pos1,pos2)
external Y_MN, X MN

¢. This routine search for the maximum and
minimum edge of the bubble

c. boundary, it is only required to specify two
intersection points at

c. the boundary along any horizontal reference
line Yref.

c. in addition, minimum and maximum vertical
boundary is known.

integer*2
yupsub,UXN,UXM,YUXN,YUXM
integer*2
ydnsub,DXN,DXM,YDXN,YDXM
integer*2 YMN, YMX, XYMN,XYMX
integer*2
ymin,ymax,x_ymin,X_ymax,Xxmin,xmax,y_xmin
,y_xmax
integer*2 subx,pos1,pos2
integer*2
pixacc,piyacc,xref],dxref,Y ref thresh,stepsi
real*4 Height,vermm,hormm
common /AA/
vermm,hormm,pixacc piyacc,xrefl,dxref, Yref,th
resh,
+stepsi,Height
common /CC/
ymin,ymax,x_ymin,X_ymax,xmin,xmax,y_xmin
,y_xmax
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¢. Search upward and downward with respect to
Yref line

call
Y_MN(subx,pos], YMN,YMX XYMN,XYMX)

ymin=YMN

x_ymin=XYMN

ymax=YMX

x_ymax=XYMX

yupsub=int2((Yref-ymin)/(piyacc*1.0))

ydnsub=int2((ymax-Yref)/(piyacc*1.0))

if(yupsub.lt.2) then
c. if yupsub less than 2 then no horizontal
search at the upper section
¢. can be made, hence keep the old values

UXN=posl

UXM=pos2

YUXN=Yref

YUXM=Yref

else
c. otherwise, search for the maximum and
minimum boundary locations
C. are nccessary.

call
X_MN(ymin,yupsub,x_ymin,UXN,UXM,YUX
N,YUXM)

endif
c. Similarly situation for the lower section from
the Yrel

if(ydnsub.lt.2) then

DXN=posl

DXM=pos2

YDXN=Yref

YDXM=Yref

else

call
X_MN(Yref,ydnsub,x_ymax,DXN,DXM,YDX
N,YDXM)

endif
¢. The minimum and maximum values of the
horizontal boundary location from
c. both upper and lower section are compared so
that the true minimum and
¢. maximum values are determined.

if (UXN.ILDXN) then

xmin=UXN

y_xmin=YUXN

else

xmin=DXN

y_xmin=YDXN

endif

if (UXM.gt. DXM) then

xmax=UXM

y_xmax=YUXM

else

xmax=DXM

y_xmax=YDXM

endif

return

end

Subroutine FOEDGE(x,y thresh x1,x2)
¢. determine any two points (x1 and x2)
intercepting the object boundary
c. along y=y at given a starting point at (x,y).
¢. The point (x,y) has to be inside the object.
c. i.e. intensity greater than threshold value,
thresh.

c. note have change ‘intensity’ variable to
‘intens’ ie 6 characters

integer*2

intens,x,y,thresh,x1,x2 left,right RPIXEL

left=-1
right=1
x1=x
x2=x

c. search to the left

10 if (x1.ge.0) then
intens=RPIXEL(x1,y)
if (intens.gt.thresh) then
x1=x1+left
goto 10
else
x1=x1+right
endif
endif

c. making sure that x1,x2 are within the object

boundary

¢. search to the right
20 if (x2.le.511) then

intens=RPIXEL(x2,y)

if (intens.gt.thresh) then
x2=x2+right

goto 20

else

x1=x1+left

endif

endif

return
end

Subroutine

Y_MN(subx,pos1,ymin,ymax,x_ymin,x_ymax)
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external YDIRTN

integer*2
subx,posl,ymin,ymax,x_ymin,x_ymax,yu,yd,xlo
c

integer*2
pixacc,piyacc xrefl dxref, Yref thresh,stepsi

integer*2 up,dn,j,Yf

real*4 vermm,hormm,Height

common /AA/
vermm,hormm,pixacc,piyacc,xref1,dxref, Yref,th
resh,
+stepsi,Height
up=-1
dn=1
do 30 j=1,subx-1
xloc=pos1+j*pixacc
Yf=Yref
call YDIRTN(xloc,Yf,yu,up,thresh,stepsi)
call YDIRTN(xloc,Yf,yd,dn,thresh, stepsi)
if(j.eq.1) then
ymin=yu
ymax=yd
x_ymin=xloc
x_ymax=xloc
else
if (yu.lt.ymin) then
ymin=yu
x_ymin=xloc
elseif (yd.gt.ymax) then
ymax=yd
x_ymax=xloc
endif
endif
30 continue
return
end

Subroutine
X_MN(ystart,intvy xloc,xmin,xmax,y_xmin,y_x
max)
external XDIRTN
integer*2
ystart,intvy,xmax,y_xmax,xmin,y_xmin
integer*2
xR xL,xloc,y thresh,xref1,dxref,Y ref,stepsi
integer*2 pixacc,piyacc,right,left
real*4 vermm,hormm, Height
common /AA/
vermm,hormm,pixacc,piyacc,xrefl dxref, Yref,th
resh,
+stepsi,Height
right=1
left=-1
do 10 i=1,intvy
y=ystart+i*piyacc
call XDIRTN(xloc,y,xR right,thresh,stepsi)
call XDIRTN(xloc,y,xL left thresh,stepsi)
if(i.eq.1) then
xmax=xR
xmin=xL
y_xmin=y
y_xmax=y
goto 10
endif
if (xL.lt.xmin) then
xmin=xL
y_xmin=y
elseif (xR.gt.xmax) then
xmax=xR
_Xmax=y
endif
10 continue
return

end

Subroutine

YDIRTN(xloc,yloc,y,dir thresh,stepsi)

integer*2

xloc,y,stepsi RPIXEL thresh,yloc,pix,dir

y=yloc
10 pix=RPIXEIl(xloc,y)
if (y.le.0) then
y=0
return
endif
if(y.ge.511) then
y=511
return
endif
if ((pix.lt.thresh).and.(y.eq.yloc)) goto 20
if(pix.gt.thresh) then
y=y+stepsi*dir
goto 10
endif
y=y-stepsi*dir
20 return
end

Subroutine

XDIRTN(xloc,yloc x,dir, thresh,stepsi)

integer*2

xloc,yloc,x,stepsi, RPIXEL thresh,pix,dir

x=xloc
10 pix=RPIXEL{x,yloc)
if(x.le.0)then
x=0
return
endif
if(x.ge.511)then
x=511
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retum
endif

if ((pix.lt.thresh).and.(x.eq.xloc)) goto 20
if(pix.gt thresh) then
x=x+stepsi*dir
goto 10
endif
x=x-stepsi*dir
20 return
end

Subroutine
OBSIZE(xmin,y_xmin,xmax,y_xmax)

external YDIRTN,LINE NEARER
c. measurement of the bubble size
c. bubcir(i,1) contains the x position,
bubcir(i,2)=y upper position
¢. bubcir(i,3)=y lower postion (along X=x)
C.

integer*2
Xxmin,y_xmin,xmax,y_xmax,x,y,bubcir(512,3),i
ntvx

integer*2
yup,ydown,up,dn,RPIXEL igsc,int2

integer*2
pixacc,piyacc,xrefl,dxref, Y ref,thresh,stepsi

integer*2
xprobe,pcup,pcdown,ymini,ymaxi,Ymean,Xmea
n

real*4
dA,Area,CL,y1,y2 dyup,dydown,DLup,DLdown

real*4
Height,vermm hormm,Xposn,Y posn,xcord,ycor
d,Plenght

real*4 Ysum,Xsum

common /AA/
vermm,hormm,pixacc,piyacc,xrefl,dxref, Yref,th
resh,
+stepsi,Height
common/EE/
Xposn,Yposn,Area,CL,xcord,ycord,xprobe,Plen
ght
common/CEN/ Xmean,Y mean

intvx=int2((xmax-xmin)/(pixacc*1.0))
if(intvx.1t.1) then

write(*,*)'* Object too small - IGNORED'
goto 40

endif

Area=0.0

CL=0.0

Ysum=0.0

Xsum=0.0

up=-1

dn=1

do 10 i=1,intvx+1

if (i.eq.1) then
bubcir(i,1)=xmin
bubcir(i,2)=y_xmin
bubcir(i,3)=y_xmin
ymini=y_xmin
ymaxi=y_xmin

goto 30

elseif (i.eq.(intvx+1)) then
bubcir(i,1)=xmax
bubcir(i,2)=y_xmax
bubcir(i,3)=y_xmax

goto 20

endif
x=xmin+(i-1)*pixacc
y=int2((bubcir(i-1,2)+bubcir(i-1,3))/2.0)

igsc=RPIXEL(x,y)

if(igsc.1t.thresh) then
c. if the estimated starting point location lies in
the region where
c. intens less than the threshold, use NEARER
to search for the possible
c. locations and assuming that it is possible to
find the points
c. Note: NEARER doesn't handle the situation
which is otherwise

call NEARER(x,y,bubcir(i-1,2),bubcir(i-
1,3),thresh,piyacc)

endif

call YDIRTN(x,y,yup,up,thresh,stepsi)

call YDIRTN(x,y,ydown,dn,thresh,stepsi)
c. determine the minimum and maximum
vertical extremities

if (yup.it.ymini) ymini=yup

if (ydown.gt.ymaxi) ymaxi=ydown

if (yup.eq.ydown) then

bubcir(i,1)=x

bubcir(i,2)=bubcir(i- 1,2)

bubcir(i,3)=bubcir(i- 1,3)

goto 20

endif

bubcir(i,1)=x

bubcir(i,2)=yup

bubcir(i,3)=ydown
c. determine the vertical pierced lenght at
position (xprobe, Yref)

if ((xprobe.ge.bubcir(i-
1,1)).and.(xprobe.it.x)) then

call
YDIRTN(xprobe,y,pcup,up,thresh,stepsi)
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call

Y DIRTN(xprobe,y,pcdown,dn,thresh,stepsi)
Plenght=(pcdown-pcup)*vermm
call LINE(xprobe,pcup,xprobe,pcdown,255)
endif

20 yl=(bubcir(i-1,3)-bubcir(i-1,2))*vermm
y2=(bubcir(i,3)-bubcir(i,2))*vermm
dA=pixacc*hormm*(y1+y2)/2.0
Area=Area+dA

dyup=(bubcir(i,2)-bubcir(i-1,2))*vermm
dydown=(bubcir(i,3)-bubcir(i-1,3))*vermm

DLup=(dyup**2+(hormm*pixacc)**2)**(.5

DLdown=(dydown**2+(hormm*pixacc)**2)**
0.5

CL=CL+DLup+DLdown

call LINE(bubcir(i-1,1),bubcir(i-
1,2),bubcir(i,1),bubcir(i,2),

+0)

call LINE(bubcir(i-1,1),bubcir(i-
1,3),bubcir(i,1),bubcir(i,3),

+0)

30 Ysum=Ysum+bubcir(i,2)+bubcir(i,3)
Xsum=Xsum+bubcir(i,1)

10 continue
Ymean=int2(Ysum/(2.0*(intvx+1)))
Xmean=int2(Xsum/((intvx+1)*1.0))
Xposn=(Xmean-xref1)*hormm
Yposn=(Yref-Ymean)*vermm+Height
xcord=hormm*(xmax-xmin)
ycord=vermm*(ymaxi-ymini)

40 return

end

Subroutine
NEARER(x,y,up,down,thresh,piyacc)
integer*2
iniy1,iniy2,up,down,thresh RPIXEL ,igsc1,igsc2
integer*2 int2 x,y,n,ick,piyacc
ick=0
c. search every 0.5piyacc division so that to
ensure that the point
c. within the bubble is found
n=int2(2.0* (down-up)/(piyacc*1.0))
do 10 i=1,n-1
iniyl=up+i*piyacc
igsc1=RPIXEL(x,iniy1)

if(igsc1.ge.thresh) then
c. assuming that there is a point bounded by the
points 'up' and ‘down’
y=iniyl
return
endif
10 continue
return
end

c. End of bubble parameters
measurement routine
c.
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An extract of the programs and subroutines for
the particle detection and recognition algorithm
used in the study of large and lighter particle in
a fluidized bed.

Sinclude:'itexpc.in¢'

subroutine
emulsion(x1,y1,dx,dy,ithrs, Gmean ,Gstdv)
€. measure intensity in emulsion phase

integer*2 dx.dy,ithrs,pixel,x,y,x1,y1

logical*2 INSIDE

character gsbloc(54000)

real*8 sum1,sum?2

common /fimgmem/ gsbloc
c. gsbloc data called somewhere else

sum1=0.0

sum2=0.0

iemul=0

ibub=0

icount=0

do 10 i=1,dy

y=yl+(i-1)

do 20 j=1,dx

x=x1+(j-1)

idata=(y-y1)*dx+(x-x1)+1

if(INSIDE(x,y)) then

Pixel=ICHAR (gsbloc(idata))

if(pixel.lt.ithrs) then
icount=icount+1

ratio=(icount-1)/float(icount)
sum 1=sum1*ratio+Pixel/float(icount)
sum2=sum?2*ratio+Pixel*Pixel/float(icount)

endif

endif
20 continue

10 continue

Gmean=suml
Gstdv=(sum2-Gmean**2)**(.5

return
end

subroutine REFINE(Px Py ithrs)
c. refine the position of particle
integer*2 dxp,dyp,ithrs,pixel,x,y,x1,y1,n,x2,y2
integer*2
xstart,ystart, Pxmin,Pymin,Px,Py,dx dy
logical*2 INSIDE
character gsbloc(54000)
common /imgmem/ gsbloc
common /PSIZE/ dxp.dyp
c. gsbloc data called somewhere else

x1=Px-dxp
y1=Py-dyp

x2=Px+dxp
y2=Py+dyp

dx=x2-x1
dy=y2-y1

call getbloc(x1,y1,dx,dy)
ifirst=0

do 10 i=1,dyp,2
ystart=y1+(i-1)

do 20 j=1,dxp,2
xstart=x1+(j-1)

sum1=0.0
icount=0

do 30il=1,dyp
y=ystart+(il-1)

do 40 j1=1,dxp
x=xstart+(j1-1)

if(INSIDE(x,y)) then
idata=(y-y1)*dx+(x-x1)+1

Pixel=ICHAR(gsbloc(idata))

if(pixel.lt.ithrs) then

icount=icount+1
ratio=(icount-1)/float(icount)
sum1=sum 1 *ratio+Pixel/float(icount)
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endif
endif

40 continue
30 continue

if(ifirst.eq.0) then
Gmin=sum1
Pxmin=xstart+dxp/2
Pymin=ystart+dyp/2
ifirst=1

else

if(sum1.1t.Gmin) then
Gmin=sum1
Pxmin=xstart+dxp/2
Pymin=ystart+dyp/2
endif

endif

20 continue
10 continue

Px=Pxmin
Py=Pymin

return
end

Subroutine
QSEARCH(xlin,ylin,x2in,y2in,Px,Py,GSmin)
c. search for the possible particle positions

integer*2

x1in,ylin,x2in,y2in,dxpdyp,Px,Py,Pxmin,Pymin

integer*2 x,y,int2,dx,dy
integer*2 pixel

integer*2 dxstep,dystep
real*4 GSmin,pave(512)
logical*2 INSIDE JUSTIN

character gsbloc(54000)
common /imgmem/ gsbloc

common /PSIZE/ dxp,dyp

common /criteria/ Fpsize,critcut,wl,w2,w3,w4

c. call data from getbloc

dx=x2in-x1in
dy=y2in-ylin
dxstep=Fpsize*dxp
dystep=Fpsize*dyp
nx=dx/dxstep
ny=dy/dystep

icount=0
ifirst=0

do 10il=1,ny
ystart=ylin+(il-1)*dystep

do 20 i2=1,nx
pave(i2)=0.0
20 continue

do 30 i3=1,dystep
y=ystart+(i3-1)

do 40 i4=1,nx
xstart=x1in+(i4-1)*dxstep

do 50 15=1,dxstep
x=xstart+(i5-1)
idata=(y-ylin)*dx+(x-x1lin)+1
pixel=ichar(gsbloc(idata))
pave(i4)=Pave(i4)+Pixel

50 continue

40 continue

30 continue

do 60 i6=1,nx
x=x1in+(i6-1)*dxstep+dxstep/2
y=ylin+(i1-1)*dystep+dystep/2
pave(i6)=pave(i6)/float(dxstep*dystep)

if (INSIDE(x,y) ) then

if(ifirst.eq.0) then
Pxmin=x

Pymin=y
Gmin=pave(i6)

ifirst=1

else

if(pave(i6).1t.Gmin) then
Pxmin=x

Pymin=y
Gmin=pave(i6)
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endif
endif
endif

60 continue

10 continue

Px=Pxmin
Py=Pymin
Gsmin=Gmin

return
end

Subroutine QGSMAP(Gsmap,Femap,ithrs)

c. obtain intensity map around the particle

integer*2 dxp,dyp.Px,Py,PXmin,PYmin
integer*2 x,y,int2,dx,dy,ithrs

integer*2 pixel,ichar

integer*2 dxstep,istep,dypstep,dxpstep

icount=0
ifirst=0

do10i1=13
do20i2=13

Gsmap(il,i2)=0.0
Femap(il,i2)=0.0

20 continue

do 30 i3=1,dyp
do 40 i4=13

do 50 i5=1,dxp

icount=icount+1
pixel=ichar(gsbloc(icount))
if(pixel.lt.ithrs) then
Gsmap(il,i4)=Gsmap(il,i4)+pixel
Femap(il,i4)=Femap(il,i4) + 0.75
endif

if(Femap(il,i6).1t.frtn) then
Gsmap(il,i6)=Modbub*1.0

else

Gsmap(il,i6)=Gsmap(il ,i6)*0.75/Femap(il ,i6)
endif

60 continue
10 continue

return
end

subroutine

QCONFIRM(Px,Py idecision,GSmap)

¢. modified Pconfirm

¢. final confirm for the identified particle
integer*2

Px,Py,dxp,dyp,x1,y1,x2,y2 xstart,ystart
integer*2 x1in,y1in,x2in,y2in,x,y dx,dy
integer*2 dxcell,dycell,ithrs,istart

real*4 Gsmap(3,3),Femap(3,3) 50 continue integer*2 dxpcell,dypcell,dxx,dyy,inbub
logical*2 INSIDE 40 continue logical*2 INSIDE
30 continue real*4 GSmap(3,3),Femap(3,3)

character gsbloc(54000) real*4 Fpsize,critcut,wl,w2,w3,w4

common /imgmem/ gsbloc do 60 i6=13

common /PSIZE/ dxp,dyp if((il.eq.2).and.(i6.eq.2)) then common /PSIZE/ dxp,dyp

common /criteria/ Fpsize critcut,wl,w2,w3,w4 frtn=dxp*dyp*0.75%0.3 common /criteria/ Fpsize,critcut,wl,w2,w3,w4

common /Iphase/ AveP1,StdPI, Modemul, else common /Iphase/ AvePl,StdPI, Modemul,
Modbub frtn=dxp*dyp*0.75*0.5 Modbub

endif

common /thrs/ ithrs
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if(i.eq.1) dyy=-1.5*dyp

x1in=Px-3*dxp call QGSMAP(Gsmap,Femap,ithrs) if(i.eq.3) dyy=1.5*dyp
ylin=Py-3*dyp AR=0.75 if(j.eq.1) dxx=-1.5*dxp
x2in=Px+3*dxp frtn=0.3*dxp*dyp*AR if(j.eq.3) dxx=1.5*dxp
y2in=Py+3*dyp
dxcell=6*dxp c x=Px+dxx
dycell=6*dyp write(*,*)'emul=",emul,'estd=",estd,'Gsmap22=",Gs y=Py+dyy
map(2,2)
call getbloc(x1in,ylin,dxcell,dycell) ¢  write(*,*)Femap22='Femap(2,2) if((i.eq.2).and.(j.eq.2)) then
¢ call BOXSHOW(xlin,ylin,x2in,y2in) idecision=0 if(INSIDE(x,y)) then
stdmod=estd**0.95 else
istart=Modemul+(Modbub-Modemul)*2/3.0 idecision=0
ikeep=istart call inbubp(Femap,inbub) endif
call if(inbub.eq.0) then else
NTHSBUB(x lin,ylin,dxcell,dycell istart,ithrs) scale=0.33
if (ithrs.le. Modemul) ithrs=ikeep else if(INSIDE(x,y)) then
scale=-0.33 inscnt=inscnt+1
call endif diff=Gsmap(i,j)-Gsmap(2,2)
Emulsion(x1in,ylin,dxcell dycell ithrs,ave, stdv) setd2=ABS(scale)*stdmod
emul=ave setd1=scale*stdmod if(setd2.1t.5) setd2=5.0
estd=stdv if(diff.le.setd2) then
call REFINE(Px,Py,ithrs) idecision=0
if((Femap(2,2).ge.frtn).and.(Gsmap(2,2).le.(emul- endif
x1=Px-dxp*1.5 setd1)))
y1=Py-dyp*1.5 > then endif
idecision=1 endif
x2=Px+dxp*1.5 inscnt=0 20 continue
y2=Py+dyp*1.5 10 continue
dx=3*dxp do 10i=1,3
dy=3*dyp endif
do20j=13
call getbloc(x1,y1,dx,dy) dxx=0 ¢ call BOXSHOW(x1,y1,x2,y2)
¢ call BOXSHOW(x1,y1x2,y2) dyy=0 ¢  write(*,*)'inscnt=",inscnt
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C

C

if((idecision.eq.1).and.(inscnt.1t.5)) idecision=0
write(*,'(9F7.1/)") ((GSmap(i,j)j=1,3),i=1,3)

call BOXSHOW(x1in,ylin,x2in,y2in)

return
end

subroutine inbubp(Femap,inbub)

c. check if in bubble

integer*2 dxp,dyp,inbub
real*4 Femap(3,3)
common /PSIZE/ dxp,dyp
inbub=0

sum=0.0

do 10i=1,3

do20j=13
sum=sum+Femap(i,))

20 continue
10 continue

total=9.0*dxp*dyp*0.75
ratio=sum/total
if(ratio.It.0.5) inbub=1

return
cnd

function INEQ(a,al,a2,bl,b2)
integer*2 a,al ,a2,bl b2 INEQ

c. usage: al, a2 denominator, INEQ=value of line
ona

if(al.eq.a2) then

INEQ=b1

else
INEQ=(b2-b1)*(a-al)/float(a2-al)+bl
endif

return
end

function INSIDE(x,y)
¢.MODIFIED INSIDE with BEDAREA and PSIZE
¢. check if inside the bed search area

logical*2 INSIDE

integer*2 x,y,INEQ

integer*2
BXY(4,2).dxp,dyp,x1out,ylout,x2out,y2out

integer*2 x1,y1,x2,y2

common /BEDAREA/ x lout,y lout,x2out,y2out
common /PSIZE/ dxp,dyp
common /BAOL/ BXY

c. upper line

x1=x1out+5*dxp
yl=ylout+5*dyp

x2=x2out-5*dxp

y2=y2out-5*dyp
c. rough check if in BEDAREA = § particle size

if((x.ge.x1).and.(x.le.x2).and.(y.ge.y1).and.(y.le.y2
)) then

INSIDE=.TRUE.

else
if(y. gt INEQ(x,BXY(1,1),BXY(2,1),BXY(1,2),BX
Y(2,2))) then
c. right line
if(x ILINEQ(y,BXY(2,2),BXY(3,2)BXY(2,1),BX
Y(3,1))) then
c. lower line
if(y ILINEQ(x,BXY(3,1),BXY(4,1),BXY(3,2),BX
Y(4,2))) then
c. left line
if(x.gt INEQ(y,BXY(4,2),BXY(1,2),BXY(4,1),BX
Y(1,1))) then

INSIDE=.TRUE.
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else
INSIDE=.FALSE.
endif
else
INSIDE=FALSE.
endif
else
INSIDE=.FALSE.
endif
else
INSIDE=.FALSE.
endif
endif
return
end
subroutine SALIL (idecision,Px,Py,GSmap)

c. search for all clusters/cells in AQI
parameter (mcell=10, mtcell=mcell*mcell)

integer*2 xdiv,ydiv xcell(mcell),ycell(mcell)
integer*2 x1out,ylout,x2out,y2out x,y,ithrs
integer*2 x1,y1,x2,y2

integer*2

x1in,ylin,x2in,y2indxcell dycell,istart
integer*2 dxp,dyp.Px,Py, RPIXEL ,GS(mtcell)
integer*2 Xpos(mtcell),Y pos(mtcell),icodecut
integer*2

GSindx(mtcell), GSOUT(mtcell), GRINDX (mtcell)

logical*2 INSIDE
real*4 GSmap(3,3),Gpmean

common /BEDAREA/ x1out,y lout x2out,y2out

common /XYCELL/ xdiv,ydiv xcell,ycell

common /PSIZE/ dxp.dyp

common /Iphase/ AvePI,StdPI, Modemul,
Modbub

common /codcut/ icodecut

common /thrs/ ithrs

call CODECUT(icodecut)

dxcell=(x2out-x 1out)/float(xdiv)
dycell=(y2out-ylout)/float(ydiv)

icount=0
do 10 i=1,xdiv

xlin=xcell(i)
x2in=xcell(i}+dxcell

do 20 j=1,ydiv

ylin=ycell(j)
y2in=ycell(j}+dycell

call getbloc(xlin,ylin,dxcell,dycell)
¢ call BOXSHOW(x1in,ylin,x2in,y2in)

call
QSEARCH(x1in,ylinx2in,y2in Px Py, GPmean)

¢ call BOXSHOW(x1lin,ylin,x2in,y2in)
icount=icount+1

Xpos(icount)=Px
Ypos(icount)=Py

GS(icount)=int2(GPmean)

20 continue
10 continue

icell=icount

call
IMY SORT(icell,GS,GSindx,GSOUT,GRINDX)

¢. to speed up the analysis, we may specify not all
the cells will be
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c. analysed. eg. may be only HALF the total
number of cells/clusters
c. iclust = the number of the first few clusters to be
analysed

iclust=icell

idecision=0

do 40 ik=1,iclust

Px=Xpos(GRINDX(ik))

Py=Ypos(GRINDX(ik))
¢. idecision=1 is yes, i.e there is a particle

call Edgechk(Px,Py,icheck)
if(icheck.eq.1) then
iupper=Modemul+(Modbub-Modemul)/2

if(GS(GRINDX(ik)).It.iupper) then

call QCONFIRM(Px,Py idecision,GSmap)

if(idecision.eq.1) goto 99

endif
endif

40 continue

99 return

end

c. SORTING PROGRAM
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subroutine
IMYSORT(N,ARRIN,INDX,ARROUT RINDX)
c. sort an array ARRIN of INTEGER numbers,
INDX gives the ranking of
c. the sorted number, a same rank is given for more
than one INDX elements

integer*2
ARRIN(N),INDX(N),ARROUT(N),RINDX(N)

irank=1

iremain=N

call [ZERO(N,INDX, ARROUT,RINDX)

call

FINDMIN(N,ARRIN,INDXirank,iremain,ix min)
20 if(iremain.gt.0) then

call
SAMERANK(N,ARRIN,INDXirank,iremain,ixmi
n)

if(iremain.gt.0) then

irank=irank+1

call
FINDMIN(N,ARRIN,INDX irank,iremain,ixmin)

goto 20

endif

endif

call
SORTED(N,ARRIN,INDX ,ARROUT ,RINDX iran
k)

return
end

Subroutine
IZERO(N,INDX,ARROUT,RINDX)
integer*2 INDX(N),ARROUT(N),RINDX(N)
do 10 i=1,N
INDX(i)=0
ARROUT@1)=0
RINDX(i)=0
10 continue
return
end

Subroutine
SAMERANK(N,ARRIN,INDX irank,iremain,ixmi
n)

integer*2 ARRIN(N),INDX(N)

do 10 i=1,N

ifINDX(i).eq.0) then

if(ARRIN(i).eq.ixmin) then
INDX(i)=irank
iremain=iremain-1

endif

endif
10 continue

return

end

Subroutine

FINDMIN(N,ARRIN,INDX, irank,iremain,ixmin)
integer*2 ARRIN(N),INDX(N)
number=1
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do 10i=1,N
if(INDX(1).eq.0) then
if(number.eq.1) then
ixmin=ARRIN(i)
i_d=i
number=2
else
if(ARRIN().ILixmin) then
ixmin=ARRIN(i)
i_d=i
endif
endif
endif
10 continue
iremain=iremain-|
INDX(i_d)=irank
return
end

Subroutine
SORTED(N,ARRIN,INDX,ARROUT RINDX iran
k)

integer*2
ARRIN(N).INDX(N),ARROUT(N),RINDX(N)

m=0

do 10 i=1,irank

do 20 j=1,N

if (INDX(j).eq.i) then

m=m+1

ARROUT(m)=ARRIN()

RINDX(m)=j

endif
20 conunue
10 continue

return
end
¢. SORTING PROGRAM

(end)*************************************
ok ok ok

subroutine
NTHSBUB(x1,y1,dx,dy,istart thresh)
c. this routine find the intensity for the edge of the
bubble
c. need to supply a starting point
c. it search for the RHS 'foot’ of a distribution
which lies on the LHS
c. of the so called inten
csity distribution for the bubble phase.
c.

c. determine the threshold from a block obtained by
"getbloc”

integer*2 thresh, filno,istart,i,idegree

integer*2 x1,x2,dx,yl,y2,dy

integer*4 histaoi(256),histvals(256)
c. if the search continuosly find S successive
positive slopes, stop the search

idegree=5

call HISTOG(x1,y1,dx,dy,1,1,histaoi)
do 5i=1,256

histvals(i)=histaoi(i)
S continue

filno=10
call SMOOTHi(histaoi,filno histvals)

icount=0
thresh=istart
i=thresh

30 if(histvals(i).ge.histvals(i-1)) then
thresh=i-1
i=thresh
icount=0
else
icount=icount+]
i=i-1
endif

if((icount.lt.idegree).and.(i.gt.0)) goto 30
thresh=thresh+filno+idegree

return

end

subroutine Edgechk(Px,Py,icheck)

c. check if the position is outside the boundary
integer*2 Px Py x,y,dxx,dyy,dxp,dyp
integer*2 xul
logical*2 INSIDE

common /PSIZF/ dxp,dyp
inscnt=0

icheck=1

do 10i=1,3

do20j=13
dxx=0
dyy=0
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if(i.eq.1) dyy=-1.5*dyp
if(i.eq.3) dyy=1.5*dyp
if(j.eq.1) dxx=-1.5*dxp
if(j.eq.3) dxx=1.5*dxp

x=Px+dxx
y=Py+dyy

if((i.cq.2).and.(j.eq.2)) then

if(INSIDE(x,y)) then

do 301i=1,2

do 40 jj=1,2

dxx=0

dyy=0

if(ii.eq.1) dyy=-0.5*dyp
if(ii.eq.2) dyy= 0.5*dyp
if(jj.eq.1) dxx=-0.5*dxp
if(j).eq.2) dxx= 0.5*dxp

x=Px+dxx
y=Py+dyy

if(INSIDE(x,y)) then
else
icheck=0

endif

40 continue
30 continue

else

icheck=0

endif

else

if(INSIDE(x,y)) then
inscnt=inscnt+1
endif

endif

20 continue
10 continue

if(inscnt.It.S) icheck=0
return
end

Function JUSTIN(Px,Py)

c. check if the position is outside the boundary in
1/2 Px,Py

integer*2 Px Py x,y,dxx,dyy,dxp,dyp
integer*2 xul
logical*2 INSIDE JUSTIN

common /PSIZE/ dxp,dyp
JUSTIN=.TRUE.

do 30ii=1,2

do 40 jj=1,2

dxx=0

dyy=0

if(ii.eq.1) dyy=-0.5*dyp
if(ii.eq.2) dyy= 0.5*dyp
if(jj.eq.1) dxx=-0.5*dxp
if(jj).eq.2) dxx= 0.5*dxp

x=Px+dxx
y=Py+dyy

if(INSIDE(x,y)) then
else
JUSTIN=FALSE.

endif

40 continue
30 continue

returmn
end

0SE



Program for simulation of solids mixing and
segregation in fluidized bed
implicit real*8 (A-H,0-Z)

c. Simulation of solids mixing and segregation in
fluidized bed

c. Prediction of average axial tracer concentration
(transient)

c.C=1(Zy

¢. numerical solution using IMSL numerial library.

parameter (Nmax=500)
character*2 MH,DH
character*12
foutl,fout2,fout3 foutd fouts,fout7 fout8
character*12 fout9, fout10
dimension
PARAM(50),CZ(10),B(1,1), RWKSP(73000)
dimension
Z1.OC(10), TLOC(10),DBLOC(10),EZ(10),Y(2*N
max)
dimension
Ebz(Nmax),Ct(Nmax,10),DB(Nmax),Us(Nmax)
dimension CW(Nmax),CE(Nmax)
dimension CA(Nmax)

external DIVPAG,DSET FCN,FCNJ,IWKIN

common /WORKSP/RWKSP

common /VARY/ U, Umf, Emf, fw, gx, xi, N
common /ZEXP/ ZLLOC,NZ

common /TEXP/ TLOC,NT

common /TIME/ Ttot,Dt,Dtwrit

common /BUBF/ Ebz

common /BUBD/ DB,Us, TK

common /STAG/ NB

common /DXSIZE/ DX

common /PCONC/ CW.CE
common /DEFLU/ IDEFLU
common /MODEL/ Imodel, Ischem
common /SSCHK/ SFAC

common /HEADER/ MH

pi=3.141592654
g=981.0
call IWKIN(73000)

c. reserve unit=9 for input

call FBVAR

do 10i=1,50
PARAM(i)=0.0
10 continue

c. DIVPAG settings

TOL=1.0D-6

PARAM(4)=5000000

PARAM(10)=1

PARAM(12)=1
¢. A maxtrix a constant = implicit or 2 if A depend
ont

PARAM(19)=0

¢ write(*,*)Enter File header {[Char=2], G=GR,
Y=YOS model'

¢ write(*,*)To run > 1 program Use different
header'

¢ read(*,'(A)) MH

C
C

if(Imodel.eq.1) MH='GR’
if(lmodel.eq.2) MH='YS'

if(DEFLU.eq.0) DH='CF
if(IDEFLU.eq.1) DH="DF'

fout1=MH//DH//CAT .dat'
fou2=MH//DH//DBT .dat’
fout3=MH//DH//EBT dat'
foutd=MH//DH//CWT .dat'
fout5=MH//DH//CET .dat’
fout7=MH//DH//HET .dat'
fout8=MH//DH//CAZ dat’
fout9=MH//DH//CST dat'

OPEN (1 file=fout],status="unknown’)
OPEN (2 file=fout2,status="unknown")
OPEN (3 file=fout3,status="unknown’)
OPEN (4 file=fout4,status="unknown’)
OPEN (5 file=fout$,status="unknown’)
OPEN (7 file=fout7,status="unknown’)
OPEN (9 file=fout9,status="unknown’)

T=0.0
NB=0
icount=1
IDO=1
itime=0

M=Ttot/Dt
NTskip=int(Dtwrit/Dt)
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write(*,*)'processing
write(**)"'

do20i=1 M
TEND=i*Dt
NEQ=2*(N-NB)
write(*,200) TEND
200 format('+',Time="F10.3,'s")

call CTOY(Y)

IDO=1

call
DIVPAG(IDO,NEQ,FCN,FCNJ,B,T,TEND,TOL,P
ARAM)Y)

call YTOC(Y)

IDO=3

call

DIVPAG(IDO,NEQ,FCN,FCNJ,B, T, TEND,TOL,P
ARAM,Y)

call CFBVAR

c. extracting C vs t at specified height of Dcell size

do 40 k=1,NZ
Z = Zloc(k)
call AVEPRO(Z Cave Eave)

CZ(k)=Cave
EZ(k)=Eave

40 continue

c. extracting C vs Z data at different time

if((TEND.ge. TLOC(icount)).and.(icount.le.NT))
then

do 60j=1,N
Cl=((Ebz()*fw)*CW(j)+(1-Ebz(j)-
fw*Ebz(j))*CE())/(1-Ebz(j))
Ci(j,icount)=C1
60 conunue

icount=icount+1

endif

c. check if steady state has reached

sum=0.0

do 80 j=1,N
C1=((Ebz()*fw)*CW(j)+(1-Ebz(j)-
fw*Ebz(j))*CE())/(1-Ebz(j))
sum=sum+ABS(C1-CA(j))
CA())=C1
80 continue

if(itime.gt.0) then

if(sum.le.(SFAC*N)) then

write(*,*)'Approaching steady state condition’

goto 99
endif

endif
itime=1

c. only print out at required time interval
if(iTskip.eq.0) then

write(1,110) TEND, (CZ(k), k=1,NZ)
write(2,110) TEND, (DB(k), k=1,NZ)
write(3,110) TEND, (EBz(k), k=1,NZ)
write(4,110) TEND, (CW(k), k=1,NZ)
write(5,110) TEND, (CE(k), k=1,NZ)
write(7,120) TEND, (N*DX), (NB*DX)
write(9,110) TEND, (CA(k), k=1,NZ)

¢ write(*,110) (TEND),(CZ(k), k=1,NZ)

endif
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iTskip=iTskip+1
if(iTskip.gt.NTskip) iTskip=0

110 format(F7.3,8F8 .4)
120 format(F7.3,2F10.2)

T=TEND

20 continue

99 close(l1,status='keep")
close(2,status='keep’)
close(3,status="keep")
close(4,status="keep")
close(5,status=keep")
close(7 status=keep")
close(9,status=keep’)

OPEN (1 (file=foul8,status="unknown")

do 70j=1,N
Z1=*DX
write(1,130) Z1,(C1(j,k), k=1,NT)
70 contnue
130 format(F7.2,8F8.4)
close(1,status="keep’)

END

subroutine AVEPRO(Z,Cave Eave)
c. calculate avarage C for several cells

implicit real*8 (A-H,0-Z)
parameter (Nmax=500)

dimension Ebz(Nmax),DB(Nmax),Us(Nmax)
dimension CW(Nmax),CE(Nmax)

common /VARY/ U, Umf, Emf, fw, gx, xi, N
common /BUBF/ Ebz

common /BUBD/ DB,Us, TK

common /DXSIZE/ DX

common /PCONC/CW.CE

common /SCell/ Dcell

KZ =7Z/DX
KN = Dcell/DX

if (KN.ge.1) then

c. for Dcell size larger than DX : lumped conc

sumC=0.0
sumE=0.0

do10k=1,KN

j=KZ-KNf2 +k

sumC=sumC + ((Ebz(§)*fw)*CW(j)+(1-Ebz(j)-
fw*Ebz(j))*CE())

sumE=sumE + (1-Ebz(j))

10 continue

Cave=sumC/sumE
Eave=1.0 - sumE/(1.0*KN)

else
¢. simple linear interpolation of the concentration

j=KZ

Z1=j*DX

C1=((Ebz(j)*fw)*CW (j)+(1-Ebz(j)-
fw*Ebz(j))*CE())/(1-Ebz(j))

E1=(Ebz(j))

j=KZ+1

Z2=j*DX

C2=((Ebz(j)*fw)*CW(j)+(1-Ebz(j)-
fw*Ebz(j))*CE())/(1-Ebz(j))

E2=Ebz(j)

Cave=C1HC2-CIY*(Z-Z1)/(Z2-Z1)

Eave=E1+(E2-E1)*(Z-Z1)/(Z2-21)
endif

return
end

subroutine YTOC(Y)

implicit real*8 (A-H,0-Z)

parameter (Nmax=500)

dimension Y (2*Nmax),CW (Nmax),
CE(Nmax)

dimension
VUb(Nmax), VFR(Nmax), VWK (Nmax),VY S(Nma
x),VEBZ(Nmax)

£GE



dimension Ub(Nmax),FR(Nmax), WK(Nmax),
Ebz(Nmax)

common /VARV/ U, Umf, Emf, fw, gx, xi, N

common /STAG/ NB

common /PROP/ Ub,FR,WK,YS

common /BUBF/ Ebz

common /VPROP/
VUb,VFR, VWK ,VYS,VEBZ,VBDZ

common /PCONC/ CW,CE

do 10i=1,N
if(1.gt.NB) then
CW(i)=( Y(i-NB))
CE(i)=( Y((i-NB)+(N-NB)) )
endif
10 continue
retum

end

subroutine CTOY(Y)

c. changing of input array for the DE solver
implicit real*8 (A-H,0-Z)
parameter (Nmax=500)

dimension Y (2*Nmax),CW (Nmax),CE(Nmax)

dimension
VUb(Nmax),VFR(Nmax),VWK(Nmax), VEBZ(Nm
ax),Ebz(Nmax)

dimension
Ub(Nmax) FR(Nmax),WK(Nmax),VYS(Nmax),Y
A(Nmax)

dimension BDZ(Nmax),VBDZ(Nmax)

common /VARY/ U, Umf, Emf, fw, gx, xi, N

common /STAG/ NB

common /PROP/ Ub FR,WK,YS

common /BUBF/ Ebz

common /VPROP/
VUb,VFR,VWK,VYS,VEBZ,VBDZ

common /PCONC/ CW,CE

common /YADIJS/ YA

common /BUBDZ/ BDZ

do 10 i=1,N
if(i.gt.NB) then

Y(i-NB)=CW(i)
Y((i-NB)+(N-NB))=CE(i)
VUb(i-NB)=Ub(i)
VFR(i-NB)=FR(i)
VEBZ(i-NB)=Ebz(i)
VWK(i-NB)=WK(i)
VYS(i-NB)=YA(i)
VBDZ(i-NB)=BDZ(i)
endif

10 continue

return
end

function CLIMIT(C1)

implicit real*8 (A-H,0-Z)

common /VARY/ U, Umf, Emf, fw, gx, xi, N
common /UMFR/ RUMF

common /DEFLU/ IDEFLU

common /CRITIC/ CC

if(C1.1e.0.0) C1=0.0
if(C1.ge.CC) C1=CC

CLIMIT=C1

returmn
end

subroutine FCN(NEQ,T,Y,YPRIM)
c. input function for the differential equation for
solid tracer
¢. material balance using DIVPAG subroutine of
IMSL library
implicit real*8 (A-H,0-Z)
parameter (Nmax=500)
dimension Y(2*Nmax), YPRIM(2*Nmax)
dimension
VUb(Nmax), VFR(Nmax),VWK(Nmax)
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elseif(Imodel.eq.2) then

a3 =-1.0* VWK(i) * VYS() * Y(M+i) * (
CSAT - Y(i))

endif

YPRIM(i)=al + a2 + a3

c. downward movement
c.cell 1

i=1

al = VFR(i) * VUb() * ( Y(M+i+1) - Y(M+i))
/DX

a2 = VFR(1) * VWK(@) * (Y({) - Y(M+i) )

if(Imodel.eq.1) then

a3 =
VFR(#)*0.75*VYS(@{i)*VUb(@{)*Y(M+i+1)*(CSAT-
Y (M+i))/DX

elseif(Imodel.eq.2) then

a3 = VFR(i) * VWK() * VYSQ) * Y(M+i) * (
CSAT - Y(i))

endif

YPRIM(M+i)= al + a2 + a3
c.cell 2-M-1

do 20 i=2,(M-1)

al = VFR() * VUb() * ( Y(M+i+1) - Y(M+i) )
/DX

a2 = VFR() * VWK(@) * ( Y(i) - Y(M+i) )

if(Imodel.eq.1) then

ala=
VFR(@i)*0.75*VYS(i)* VUWi)*Y (M+i+1)*(CSAT-
Y(M+i))/DX

alb=-
1.O*VFR(i)*0.75*VYS(i)* VUb(i)*Y (M+i)*(1.0-
Y (M+i-1))/DX

a3 =a3a+a3b

elseif(Imodel.eq.2) then

a3 = VFR(i) * VWK() * VYS() * Y(M+i) * (
CSAT - Y(i))

endif
YPRIM(M+i)=al + a2 + a3
20 continue

c.topcell M

i=M
al = VFR(@) * VUb() * (Y(i) - Y(M+i) )/ DX
a2 = VFR(@) * VWK(@) * (Y(@) - Y(M+i) )

if(Imodel.eq.1) then
a3a=0.0

alb=-
LO*VFR(i)*0.75*VYS(@)*VUb(i)* Y (M+i)*(CSAT
-Y(M+i-1))/DX

a3=a3a+a3b

elseif(Imodel.eq.2) then

a3 = VFR(i) * VWK() * VYS(i) * Y(M+i) * (
CSAT - Y(i) )

endif

YPRIM(M+i)= al + a2 + a3

C. FERRER AR RR AR R KR Approximation scheme
D dkkdckR Rk Rk AR KRRk KK

elseif(Ischem.eq.2) then
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c. using ordinary difference method
c. bottom cell 1
i=1
ala=-1.0* VUb(G)* Y(i) /DX
alb = VUb() * Y(M+i) /DX
al =(ala +alb)
a2 =-1.0* VWK(@) * (Y(@i) - Y(M+i))
if (Imodel.eq.1) then
a3=0.0
elseif(Imodel.eq.2) then

a3=-1.0* VWK() * VYS(@i) * Y(M+i) * (
CSAT-Y())

endif

YPRIM(i)= al + a2 + a3

c.cell 210 M-1

do 90 i=2,M-1

ala = (VEBZ(i-1)/VEBZ(i) }* VUb(i-1) * Y(i-
1) /DX

alb=-1.0* VUb({) * Y(i) /DX

al =(ala+alb)

a2=-1.0* VWKQ@) * (Y(@i) - Y(M+i))

if(Imodel.eq.1) then
a3=0.0
elseif(Imodel.eq.2) then

- a3 =-1.0* VWK(i) * VYS(@) * Y(M+i) *(
CSAT-Y())
endif

YPRIM(i)= al + a2 + a3

90 continue

c. top cell

i=M

ala=( VEBZ(i-1)/ VEBZ(i) ) * VUb(i-1) *
Y(i-1) /DX

alb=-1.0 * VUb(i) * Y(@i) /DX

al =(ala+alb)

a2 =-1.0* VWK(@) * (Y() - Y(M+i))
if(Imodel.eq.1) then

a3=0.0

elseif(Imodel.eq.2) then

a3 =-1.0 * VWK(i) * VYS(@) * Y(M+i) * (
CSAT-Y(i))

endif

YPRIM(i)= al + a2 + a3

c. downward movement
c.cell 1
i=1
ala = (VFR(i)* VEBZ(i+1)/ VEBZ(i)) *

VUb(i+1) * Y(M+i+1) /DX
alb =-1.0* VFR(@i) * VUb() * Y(M+i) /DX
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al =(ala+alb)

a2 = VFR(i) * VWK(@) * (Y1) - Y(M+i))
if(Imodel.eq.1) then

a3 =0.75 * VYS(i+1) *VUb(i+1)*VFR(i)*
(VEBZ(i+1)/VEBZ(i))

>* Y(M+i+1) * (CSAT - Y(M+1) )/ DX
elseif(Imodel.eq.2) then

a3 = VFR(i) * VWK() * VYS(@i) * Y(M+i) * (
CSAT-Y(@))

endif

YPRIM(M+i)=al + a2 + a3
c. cell 2-M-1

do 100 i=2,(M-1)

ala = (VFR(i)* VEBZ(i+1)/ VEBZ(i)) *
VUb(i+1) * Y(M+i+1)
alb=-1.0% VFR(i) * VUb(i) * Y(M+i)

al = (ala+alb)/DX

a2 = VFR(1) * VWK() * ( Y(i) - Y(M+i))
c. check if fw to be removed

if(Imodel.eq.1) then

a3a=0.75 * VYS(i+1)*VUb(i+1)* VFR(i)*
VEBZ(i+1)/VEBZ(i)*

> Y(M+i+1) * (CSAT - Y(M+i)) /DX

a3b=-1.0 *0.75 * VYS(i)*VUb(i)* VFR() *
> Y(M+i) * (CSAT - Y(M+i-1)) /DX

" a3=(a3a+a3b)
elseif(Imodel.eq.2) then

a3 = VFR(i) * VWK(i) * VYS@) * Y(M+i) * (
CSAT-Y(@))

endif

YPRIM(M+i)= al + a2 + a3

100 continue

c.ceilM

i=M

ala = VFR() * VUb() * Y(i) /DX
alb=-1.0 * VFR(i) * VUb() * Y(M+i)/ DX

al = (ala+ alb)

a2 = VFR(i) * VWK() * ( Y(i) - Y(M+i) )

if(Imodel.eq.1) then

a3a=0.0

a3b=-1.0*0.75 * VYS(@i)*VUb(i)* VFR() *
> Y(M+i) * (CSAT - Y(M+i-1)) /DX

a3 =(a3a+a3b)

elseif(Imodel.eq.2) then

a3 = VFR(i) * VWK() * VYS(@) * Y(M+i) * (
CSAT-Y())

endif

YPRIM(M+i)=al + a2 + a3
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elseif(Ischem.eq.3) then

c. complete difference method
c. using local value + d(Ub Eb) dz terms

¢. upward movement

c. bottom cell

i=1

al =-1.0 * VUb() * (Y(@) - Y(M+i) )/ DX

a2=-1.0* VWK(@) * (Y() - YM+i))

bl =-1.0* Y(i) * fw* VBDZ(i) / (fw *
VEBZ(i) )

if(Imodel.eq.1) then

a3=0.0

elseif(Imodel.eq.2) then

a3 =-1.0 * VWK(i) * VYS(®i) * Y(M+i) * (
CSAT - Y(i))

endif

YPRIM(i)=al + a2 + a3 + bl
c.cell2to M-1

do 510 i=2,M-1

al =-1.0* VUb(i) * (Y()- Y(i-1) )/ DX
a2 =-1.0* VWK(@) * (Y(@i) - Y(M+i))

bl =-1.0 * Y(i) * fw* VBDZ(i)/ (fw *
VEBZ(i) )

if(Imodel.eq.1) then
a3=0.0
elseif(Imodel.eq.2) then

a3 =-1.0* VWK(@) * VYS@) * Y(M+i) * (
CSAT-Y(@))

endif
YPRIM(i)=al +a2 + a3 + bl

510 continue

c. top cell

i=M

al =-1.0 * VUb() * (Y() - Y(G-1)) /DX
a2 = -1.0 * VWK(G) * (Y(i) - YM+i) )

bl=-1.0 * Y(i) * fw* VBDZ(i) / (fw *
VEBZ(i))

if(Imodel.eq.1) then
a3=0.0
elseif(Imodel.eq.2) then

a3 =-1.0* VWK(@) * VYS(@) * Y(M+i) * (
CSAT-Y())

endif

YPRIM(i)=al + a2 + a3 + bl

c. downward movement

c.celll

i=l

/ DX

al = VFR(i) * VUb() * ( Y(M+i+1) - Y(M+i))
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a2 = VFR(i) * VWK() * ( Y()) - Y(M+1))

bl = Y(M+i) * fw* VBDZ(i) * VFR() / (
fw*VEBZ(i) )

if(imodel.eq.1) then
a3a=0.75* VYS(@) * VBDZ(i) * Y(M+i) * (

1.0 - Y(M+i1))
> * VFR(i) / (fw*VEBZ(1) )

a3b=0.75* VYS(i) * VUb(i)*
(VFR(1)/fw)*(1.0 - 2.0*Y(M+i))*
> (Y(M+i+1) - Y(M+i) )/ DX

a3c = 0.75*VYS3i)*VUb@G)*(VFR(1)/fw)*
Y(M+1)*(1.0 - Y(M+i))

a3=a3a+a3b+aic

elseif(Imodel.eq.2) then

a3 = VFR(i) * VWK() * VYS(@) * Y(M+i) * (
CSAT-Y(@))

endif

YPRIM(M+i)=al + a2 + a3 + bl

c. cell 2-M-1

do 520 i=2,(M-1)
al = VFR(i) * VUb(i) * ( YM+i+1) - Y(M+i))
/ DX
a2 = VFR(i) * VWK() * (Y(@i) - YM+i))
bl = Y(M+i) * fw* VBDZ(i) * VFR(i) / (
fw*VEBZ(i) )
if(Imodel.eq.1) then
a3a=0.75* VYS(i) * VBDZ(i) * Y(M+i) * (

1.0 - Y(M+i) )
> * VFR(i) / ( fw*VEBZ(i) )

a3b=0.75* VYS(@) *
VUb3)*(VFR(i)/fw)*(1.0 - 2.0*Y(M+i))*

> (Y(M+i+1) - Y(M+1) )/ DX

a3=a3a+a3b

elseif(Imodel.eq.2) then

a3 = VFR(i) * VWK(i) * VYS(i) * Y(M+i) * (
CSAT - Y(i))

endif
YPRIM(M+i)= al + a2 + a3 + bl

520 continue

c.topcellM
i=M
al = VFR(@) * VUb() * (Y(@i) - Y(M+i) )/ DX
a2 = VFR(1) * VWK(@) * (Y(i) - Y(M+i) )

bl = Y(M+i) * fw* VBDZ(i) * VFR()/ (
fw*VEBZ(i) )

if(Imodel.eq.1) then
a3a=0.75* VYS() * VBDZ(1) * Y(M+i) * (
1.0 - Y(M+i))
> * VER() / (fw*VEBZ() )
a3b=0.75* VYS() * VUb(i)*
(VFR(i)/fw)*(1.0 - 2.0*Y(M+i))*
> (Y(M+i+1) - Y(M+i) )/ DX
a3c=0.75* VYS(i)
*VUbI)*(VFRG)/fw)*Y M+i)*(1.0 - Y(M+1))
a3=a3a +a3b-a3c

elseif(Imodel.eq.2) then

a3 = VFR(i) * VWK() * VYS(i) * Y(M+i) * (
CSAT-Y())

endif

YPRIM(M+i)=al + a2 + a3 + bl
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c. Ictype(0:Cave, 1:CW, 2:CE)

¢. SFAC = residue erros check for steady state

c. EXFAC = now a slope for U/Umfc

c. different functionality for Y may be used

¢. Ys (max value oe mean)

c. IYoption; O:constant; 1:f(C) ramp to 1; 2: f(C)
ramp to CC;

c. 3: f(C) trianglular; 4: symmetrical bell;

c. 5: skewed bell (define alpha, beta, gamma = 1.0)
¢. CYS = lowest C where Y > 0 applies only to
iYoption 1,2,3

¢. IBUBVEL=1 (U-Umf); 2: no (U-Umf)

read(9,*) Imodel, Ischem, ICsat

read(9,*) IDEFLU, ICtype

read(9,*) DX, SFAC

read(9,*) fw, IBUBVEL

read(9,*) TK

read(9,*) EXFAC, EXINT, EXLIM

read(9,*) power

read(9,*) YS, iYoption, CYS, alpha, beta,
gamma

c. DURATION: (in sccond)
read(9,*) Ttot, Dt, Dtwrit

¢. REQUIRED BED HEIGHTS FOR C(t): (incm)
NZ = 8 max

read(9,*) NZ, Dcell
read(9,*) (Zloc(i),i=1,NZ)

¢. REQUIRED TIME FOR C(z): (in second)
NT=8 max

read(9,*) NT
read(9,*) (Tloc(i),i=1,NT)

close(9,status='keep")
c. check for conflicting case

if(YS.eq.0.0) then

if((Istate.eq.0).and.(IDEFLU.eq.0)) then

write(* ,*)'Homogeneous Mixing simulation'

if(RUMF.ne.1.0) then

write(*,*)RUMF not equal 1.0; so set to 1.0'

RUMF=1.0

endif

else

write(*,*)'Unidentified simulation mode for
homogeneous mixing'

slop

endif

elseif(Ys.gt.0.0) then
if(Istate.eq.0).and.(IDEFLU.eq.1)) then

if(U.le  RUMF*Umf)) then

if(qx.eq.0) then

write(*,*)'Packed bed at base, permanently
segregate'

else

write(* ,*) Tracer layer remains packed - unable
to fluidize'

endif
stop

endif
endif

endif

Area=20*0.9

RRHO=RHO1/RHO2
RDP =DP1/DP2

YST=0.6*RRHO*RDP**(.333
YSL=0.0063*(RDP-1.0)+0.0426*(RRHO-1.0)

c. FumfT and FUm{F >= 1.0

UT = U/FumfT
UF = U/FumfF

if (UF.le. (Umf)) then

write(*,*) FumfF is too large ie. UF < Umf
write(*,*)'will change FumfF to 1.0’
FumfF =10

endif

if RUMF .gt.1.0) then
c. cheung equation only for size difference

ifRRHO.eq.1) then
CCT=(log(UT/Umf)/log(RUMF))**0.5
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CCF=(log(UF/Umf)/logRUMF))**0.5

else
c. simple approximation will find some
correlations
¢. change to exponential fit (simple) A exp ( B * x)
¢. x in mass fraction
CCT=(UT/Umf-1.0)/(RUMF-1.0)
CCF=(UF/Umf-1.0)/(RUMF-1.0)

XCCT = (log(UT/EC1)) / EC2
XCCF = (log(UF/EC1)) / EC2

CCT=XCCT/(XCCT + RRHO*(1.0 - XCCT))
CCF=XCCF/(XCCF + RRHO*(1.0 - XCCF))

endif

if(CCT.ge.1.0) CCT=1.0
if(CCF.ge.1.0) CCF=1.0

else

write(*,*) note: Tracer has lower Umf
CCT=1.0

CCF=1.0

endif

CC=CCT

write(*,*) 'ICsat=", ICsat
if (ICsat.eq.0) CSAT=1.0
if (ICsat.eq.1) CSAT=CC

write(* ,*)'Critical C (theoretically) =',CC

write(*,*)'Critical C (in bubbling zone) =',
CCF

if(iYoption.eq.5) then

Yconst = Ypeak(alpha,beta,gamma)
endif

if(Iform.eq.0) then

VS=XM*(xi/RHO1 + (1-xi)/RHO2)
YLHS=VS$*1.0D6/(Area*DX*(1-Emf))
CIVOL=xi/(xi + RRHO*(1.0 - xi) )

c. Initial N, assuming eb=0.2
call ESTIN

c. For species balance

XLHS=xi*XM*1.0D6/(RHO 1*Area*DX*(1-
Emf))

c. LHS of Solids volume fraction:
¢. For total balance

call CINIT
else

call CIDATA

YLHS=N*1.0%(1.0-0.2)
XLHS=0.0

doS5i=l,N

XLHS=XIL.HS+CE(i)*(1.0-0.2)

continue

endif

SDB=0
SUb=0
SEbz=0
SFR=0
SUs=0
SWK=0

call CFBVYAR

write(*,*)'(Tim) YS=,YST
write(*,*)'(Levy) YS='YSL
write(* *)'(Input) YS="YS
do10i=1,N

Z@) =i*DX
SDB=SDB+DB(i)
SUb=SUb+Ub(i)
SEbz=SEbz+Ebz(i)
SFR=SFR+FR(i)
SUs=SUs+Us(i)
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SWK=SWK+WK(i)
10 continue
¢. height averaged properties

SDB=SDB/float(N)
SUb=SUb/float(N)
SEbz=SEbz/float(N)
SFR=SFR/float(N)
SUs=SUs/float(N)
SWK=SWK/float(N)

OPEN(unit=1 file='gryosinf.dat',status="unknown")

write(1,*) Z DB Ub
Us

> Kw'
c. height average properties

do 20i=1,N

write(1,600)
Z(i),DB(1),Ub(i),Ebz(i),Us(i), WK (i)

20 continue
600 format(5F10.4,G10.2)

write(1,*) '"AVERAGE VALUES'

write(1,600)
DX*N/2.0,SDB,SUb,SEbz,SUs,SWK

close(1,status="keep’)

Ebz

retum
end

subroutine CFBVAR
¢. calculate local bubble and fluidization conditions

implicit real*8 (A-H,0-Z)

parameter (Nmax=500)

dimension
Ub(Nmax),Ebz(Nmax),WK(Nmax),FR(Nmax),Y A
(Nmax)

dimension
Zloc(10),Z(Nmax),DB(Nmax),Us(Nmax),
CW(Nmax),CE(Nmax)

dimension BDZ(Nmax)

common /VARI/ U, Umf, Emf, fw, gx, xi, N
common /BEDH/ Hfix Ebm
common /ZEXP/ Zloc NZ
common /TIME/ Ttot,Dt,Dtwrit
common /PROP/ Ub,FR,WK,YS
common /BUBF/ Ebz
common /BUBD/ DB,Us,TK
common /EXCH/
EXFAC,power EXLIM,EXINT
common /UMFR/ RUMF
common /STAG/ NB
common /DXSIZE/ DX
common /LHS/ XLHS,YLHS
common /PCONC/ CW,CE
common /DEFLU/ IDEFLU
common /PRATIO/ RRHO,RDP
common /[YADJS/ YA

common /CYSVAL/CYS
common /Yoption/ iYoption
common /Y Cpower/ alpha,beta,gamma
common /YCval/ Yconst
common /CTYPE/ ICtype
common /CRITIC/ CC
common /CRIFAL/ CCF
common /BUBVEL/ IBUBVEL
common /BUBDZ/ BDZ
common /ICVOL/ CIVOL
common /ECONST/ EC1, EC2

£g=981.0
Ump=RUMF*Umf

30 sumEB=0.0

do 10 i=1,Nmax
c. have the option of C1 being CE or CW or
average
c. note used Ebz from last calculation

if(ICtype.eq.0) then

Cbed = Ebz(i) * fw * CW(i) + (1-Ebz(i)-
fw*Ebz(i)) * CE()

elseif(ICtype.eq.1) then

Cbed = CW(i)
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elseif(ICtype.eq.2) then
Cbed = CE(i)
endif

CFAC=0.999
¢. check for defluidization condition

if(IDEFLU.cq.1).and.(Cbed.ge (CFAC*CCF))
) then

NB =i
CW(i)=CC
CE@{)=CC
Z(1) =i*DX
DB(i) =0.0
Ub(1) =0.0
Ebz(1)=0.0
FR(i)=0.0
Us(i) = 0.0
WK(i) = 1000
YA@l)=0.0
BDZ(1)=0.0
else

c. calculating new bubble parameters basing on the
new C

c. Concentration effect on the Umf - Cheung et al.,
1978

if ((Ys.eq.0.0).or.(RUMF.eq.1.0)) then
CUMF=1.0

else

CUMF=Cbed
endif

c. for equi-density
¢. an intial assumption

if(RRHO.eq.1.0) then

.. UMFC= Umf*(RUMF)**(CUMF*CUMF)

else
c. for equi-size (or relatively) with density effect

¢ UMFC=Umf*(RUMF*CUMF+(1.0-CUMF))
c. fit with exponential equation for density effect
(experimental)

UMFC=EC1 * Exp(EC2 * CUMF)
endif
Z(3i) = i*DX

Z0 =NB*DX
ZF =1Z(i)-Z0

DB(i) = dbdarton(U,UMFC,ZF)
if(IBUBVEL.eq.1) then

Ub(i) = (U-UMFC) + 0.4 * (g * DB(i) ) **
0.5

elseifIBUBVEL.eq.2) then

Ubi) =0.5* (g *DB(i)) **0.5

endif
¢. calculate the change of the bubble properties
with height

xlambda=2.0

pi=3.141592654

XKprim=-1.0 * (1.0 + fw - TK)

PHI=0.4*8.0*(2.0**0.75 -1.0)/ 3.0 * pi
*xlambda)

UCl= (U-UMFC)**2.0 * XKprim * UMFC
UC2= (1.0 + XKprim * UMFC/Ub(i) )**2.0
BDZ(i) = UC1*PHI/(Ub(i)* Ub(i)*DB(i)*UC2)

Ebz(i) = (U - UMFC )/ (Ub(i) - (1.0 + fw -
TK) * UMFC)
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FR(i) = fw * Ebz(i) / ( 1.0 - Ebz(i) - fw * Ebz(i)
)

Us(i) = FR(1) * Ub(j)
c. introduce Uo/Umf effect make EXFAC as
slope of AWE vs U/Umf

if((U/UMFC).le EXLIM) then

AWE = EXFAC*U/UMFC - EXINT

WK(i) = AWE / (DB(i)**power)

else

AWE = EXFAC*EXLIM - EXINT

WK(i) = AWE/ (DB(i)**power)

endif
c. various functions for segregation parameters
¢. introduce ramp function; define CYS=minimum
C with no segregation
¢. symmetrical ramp function

if(Ys.eq.0) then
YA(1)=0.0

else

if (iYoption.eq.0) then

YA(i)=YS

elseif((iYoption.eq.1).or.(iYoption.eq.2)) then
CUPPER=1.0

if(iYoption.eq.2) CUPPER=CC

if (Cbed.le.CYS) then
YA(@1)=0.0

elseif ((Cbed.gt.CYS).and.(Cbed.le.(1.0-
CYS)) ) then

YA@i)=YS * (Cbed - CYS) / (CUPPER -
2.0*CYS)

else
YAG)=YS
endif
elseif(iY option.eq.3) then
 if(Cbed.1t0.5) then
YA() = YS * Cbed
else
YA(i)=YS * (1.0 - Cbed)
endif
elseif(iY option.eq.4) then

zeta = 13.0 * (Cbed - 0.5)

eta=4.0* (exp(-1.0*zeta)/ ((1 + exp(-
1.0*zeta)) ** 2.0))

YA@)=YS *eta
elseif(iY option.eq.5) then
¢. Yconst cal in FBVAR
CX = Cbed
YA®@) = YS * Yeta(CX,alpha,beta,gamma)

YA®) = YA(i) / Yconst

elseif(iY option.eq.6) then
c. Y = f(U/Umf)
YA@{) =YS * ((U-UMFC)/(Ump - Umf) )
** gamma
elseif(iY option.eq.7) then

c. Y = f(U/Umf)

YA(i) = YS * (U/UMFC - 1.0) ** gamma
c. other option (U-UMFC)

endif
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endif
endif

if(YLHS.le.(sumEB + (1-Ebz(i) ) ) ) goto 99
sumEB=sumEB+(1-Ebz(i))

10 continue

c. the N is determined from total mass balance

99 N=i

C

write(*,*)new N and NB=', N, NB
XRHS=0.0
do 15j=1.N
if(j.le.NB) then
Cl=CC
else

C1 = Ebz(j) * fw * CW() + (1.0-Ebz(j)-

fw*Ebz(j)) * CE())

endif

XRHS=XRHS+ClI

15 continue

FAC=XLHS/XRHS

¢ write(*,*)Fac="FAC

do 20 j=1,N
if(j.1e.NB) then
else

C1=CW(j)*FAC
CW(j)=CLIMIT(C1)

C1=CE(j)*FAC
“CE(j)=CLIMIT(C1)

endif
20 continue
if(ABS(1.0-FAC).gt.0.001) goto 30

return
end

function Yeta(CX,alpha,beta,gamma)
c. peak function for Ys
implicit real*8 (A-H,0-Z)

Yeta = (CX**alpha * (1.0 -
CX)**beta)**gamma

return
end
function Ypeak(alpha,beta,gamma)
c. in this case the peak is at the slope change
implicit real*8 (A-H,0-Z)
do 10i=1,9999

CX1=0.0001%(i-1)
CX2=0.0001*(i)

slope=Yeta(CX2 alpha,beta,gamma)-
Yeta(CX1,alpha,beta,gamma)

if(slope.gt.0.0) ksign=1
if(slope.eq.0.0) ksign=0
if(slope.1t.0.0) ksign=-1
if(i.eq.1) then
ksign 1=ksign

else
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ksign2=ksign

if(ksign1.ne ksign2) then
CX=(CX1+CX2)2.0
Ypeak=Ycta(CX,alpha beta,gamma)
goto 99

else

ksignl=ksign2

endif

endif

10 continue
99 return
end
subroutine ESTIN
¢. use to estimate the initial N size from bubble

fraction.

implicit real*8 (A-H,0-Z)
parameter (Nmax=500)

dimension
Ub(Nmax),Ebz(Nmax), WK (Nmax),FR(Nmax),YA
(Nmax)
dimension
Zloc(10),Z(Nmax),DB(Nmax),Us(Nmax),
CW(Nmax),CE(Nmax)
common /VARI/ U, Umf, Emf, fw, qx, xi, N
common /BEDH/ Hfix,Ebm
common /ZEXP/ Zloc NZ
common /TIME/ Ttot,Dt,Dtwrit
common /PROP/ Ub,FR,WK,YS
common /BUBF/ Ebz
common /BUBD/ DB,Us, TK
common /EXCH/
EXFAC,power EXLIM,EXINT
common /UMFR/ RUMF
common /STAG/ NB
common /DXSIZE/ DX
common /LHS/ XLHS,YLHS
‘common /PCONC/ CW,CE
common /DEFLU/ IDEFLU
common /PRATIO/ RRHO,RDP
common /[YADJS/ YA
common /CYSVAL/CYS
common /Yoption/ iYoption
common /CRITIC/ CC
common /BUBVEL/ IBUBVEL
common /ICVOL/ CIVOL
common /JECONST/ EC1, EC2

g=981.0

Ump=RUMF*Um(f

sumEB=0.0
NB=0
CFAC=0.999
do 10 i=1,Nmax

if(IDEFLU.eq.1).and.(xi.ge.(CFAC*CC)) )
then

NB=i

Ebz(i)=0.0

else
c. Concentration effect on the Umf - Cheung et al.,
1978

if ((Ys.eq.0.0).or.(RUMF.eq.1.0)) then

CUMF=1.0

else
c. check for other density ***

CUMF=CIVOL

endif

c. for equi-density
c. an intial assumption

89¢



if(RRHO.eq.1.0) then
UMFC= Umf*(RUMF)**(CUMF*CUMEF)
else

c. for equi-size (or raltively) with density effect

¢ UMFC=Umf*(RUMF*CUMF+(1.0-CUMEF))

c. fit with exponential equation for density effect
(experimental)

UMFC=EC1 * Exp (EC2 * CUMF)
endif

Z(i) = i*DX

Z0 = NB*DX

ZF =Z(i)-Z0

DB(i) = dbdarton(U,UMFC.ZF)
if(IBUBVEL.eq.1) then

Ub(i)=(U-UMFC)+04* (g *DB(i)) **
0.5

elseif(IBUBVEL .eq.2) then
Ub(1) =0.5* (g * DB(i) ) ** 0.5

endif

Ebz(i) = (U - UMFC) / (Ub(i) - (1.0 + fw -
TK) * UMFC)

FR(i) = fw * Ebz(i) / ( 1.0 - Ebz(i) - fw * Ebz(i)

)
WK(i) = EXFAC* U/ UMFEC/
(DB(i)**power)

if(YLHS.le.(sumEB + (1-Ebz(i) ) ) ) goto 99
sumEB=sumEB+(1-Ebz(i))

endif
10 continue
c. the N is determined from total mass balance

99 N=i
c. estimate Dt from the maximum faster bubble at

“"1éast in the first instant

Dtl=dx/(Ub(1))

D2=dx/(Ub(N))

Di3=1/WK(1)

Dt4=1/WK(N)

DtS=1/FR(1)*0.75* YS *Ub(1)

Di6=1/FR(N)*0.75* YS *Ub(N)

write(*,*)'estimated N and NB=', N, NB

write(*,*)'residence time:'

write(*,*)' ub 1-N, wk (1-N), Ys (1-N)'

write(*,100) Dt1, D2, Dt3, D4, DtS, Dt6
100 format(6E12.2,'s")

write(*.*)'input Dt ', Dt

write(*,*)'change Dt in GRYOS3.INP*

return
end

subroutine CINIT
c. initialization of concentration - ideal case
implicit real*8 (A-H,0-Z)
parameter (Nmax=500)
dimension CW(Nmax),CE(Nmax)
common /VARI/ U, Umf, Emf, fw, gx, xi, N
common /PCONC/ CW ,CE
common /MSTATE/ Istate
common /ICVOL/ CIVOL

NI=(xi*N+0.0001)

if ((xi+gx).le.1.0) then

Na=gx*N

Nb=(gx+xi)*N

else

write(*,*)'# allocation of xi and q not correct
stop

endif

t

do10i=1,N
if(Istate.eq.0) then

c. try to allow for non-pure layer
if ((i.gt.Na).and.(i.le.Nb)) then

CW()= 1.0
CE(i)= 1.0
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else
CW(i)=0.0
CE@®)=10.0
endif

elseif(Istate.eq.1) then

CW(i)= CIVOL
CE(i)= CIVOL

endif
10 continue

retum
end

subroutine CIDATA

c. initial concentration from data file
implicit real*8 (A-H,0-Z)
parameter (Nmax=500)
dimension CW(Nmax),CE(Nmax)
common /VARY/ U, Umf, Emf, fw, gx, xi, N
common /PCONC/ CW,CE
common /MSTATE/ Istate
common /DXSIZE/ DX
open(9 file="cin.dat'status="old")
read(9,*) DX
write(*,*)'Dx="DX
N=0

10 read(9,*,END=99) Y,Cl

N=N+1

write(*,*) N,CI

CW(N)=CI
CEMN)=CI

goto 10

99 close(9,status=keep")
retum
end

function dbdarton(U,Umf,Z)
c. average bubble size by darton’s method modified
for 2D
¢. circular bubble shape

implicit real*8 (A-H,0-Z)
pi=3.141592654
power=2/3.0

thick=1.0

UK=0.5

SF=1.0

xlambda=2.0

XF=1.0

if(U.gt. XF*Umf) then
a=(4.0*SF/UK/(981**0.5)/pi)**power
b=(U-Umf)**power
¢=(0.6818*Z/xlambda+0.56/thick)**power
dbdarton=a*b*c

else

U=XF* Umf

dbdarton=0.0

endif

retum
end

function DbChiba(U,Umf Z)

implicit real*8 (A-H,0-Z)

pi=3.141592654

2=981.0
c. bubble size: Chiba, 2D

thick=1.0

CKb=0.5

dbo= (4.0/(pi*g**0.5))**2.0 * ((U-
Umf)/thick/CKb)**2.0

write(*,*) 'dbo=",dbo

Zo=0.0

DbChiba=dbo*((2.0**1.25-1.0)*(Z-
Zo)/dbo+1.0)**(0.4)

retum

end
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