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(iii)
SUMMARY

Let f = £(x) = f(X4sX2s.+05%n) De an indefinite
n-ary quadratic form of signature s and determinant
+{; that is, f(x) = x'Ax where A 1is a real
symmetric matrix with determinant *1. Then when we
say that f takes the value VvV Wwe mean that there
exists integral x # Q0 with f£(x) =v.

The problem of asymmetric minima is to find for
each t > O the value ¢:(t) defined to be the infimum
of the set of all positive o such that every form
£ takes a value in the closed interval [-a,ta] The
value ¢:(t) is thus a measure of the least closed
interval I = [-a,b] containing the origin and with
asymmetry b/a = t such that every form £ takes a value
in any open interval containing I.

For n = 2 Segre has given an upper bound on
¢:(t) which is best possible if and only if either
t or 1/t 1is integral. However Tornheim has shown how
to calculate ¢:(t) for any given t > O in terms of
infinite chains [gy], —» < 1 < o, of positive integers
and simple continued fractions associated with these
chains, and it appears that ¢:(t) is an extremely

complicated function.
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1
In this thesis the function ¢ (t) is evaluated for
3

1
all t >0 and it is shown that t¢3(t) is a continuous

piecewise linear function of t. In fact constants
a; and Bys 0 < 1 €9, are found such that
1
¢ (t) = min { max (ap,Bi/t)} : t >0,
3

0<ig9

This result is proved by showing that every indefinite
ternary quadratic form of determinant -1 takes a value
in each of the closed intervals [-ay,8i], and that
there exist nine special forms Fi, 1 €1 < 9, with the
property that F; takes no value in the open interval
(=0t 9Bi-1)> where the By are in descending order.

A further asymmetry problem concerning indefinite
quadratic forms is the following. Let m+(f) and
m_(f) denote the infimum of the non-negative values
taken by the forms f and -f respectively, Furthermore
let A(f) denote the ratio m_(f)/m+(f) where this is
defined. Restricting f to a given number of
variables (n) and a given signature (s), the problem
is for each integer k > 1 +to determine the least value
that the absolute value of the determinant of f may
take if £ satisfies A(f) = k.

This problem is dealt with in chapter 2 for two
special cases, and the results so obtained arc used

later in the thesis,
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INTRODUCTION

Part 1
In this section the terms and symbols to be used
throughout this thesis will be introduced and some of
the known results concerning quadratic forms will be

given,

4 In this thesis we shall be concerned with real
indefinite quadratic forms in n variables - that is,
forms f = £(x) = x'Ax where A 1is a real symmetric
matrix - which have determinant det(f) = det(a) # 0.
The signature of such forms is denoted by s.

As most results are concerned with |det(f)|, we
use d(f), or 4 where it is not ambiguous, to
denote |det(f)].

In the case of binary forms it is more usual to
express results in terms of A = 2/4, where
A®> = D is the discriminant of the form.

A form £ will be called normalised if it has 4 = 1.

2 If there exists integral X # Q such that
f(x) = v then v is called a value of the form f.

If £ does not take the value 0 it is called non-zero.

The quantities m = m+(f) and m_ = m_(f) are
defined by
m+(f) = inf{v; v > 0 is a value of £},
m_(f) = m+(~f).
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The problem of asymmetric minima is to find for
each t » 0 the value ¢:(t) -defined to be the
infimum of the set of all positive a such that every
form f takes a value in the closed interval
[—a,ta]. The value ¢:(t) is thus a measure of the
least closed interval I = [-a,b] containing the
origin and with asymmetry b/a = t such that every
form f takes a value in any open interval

containing 1I.

3 In the theory of quadratic forms it is often
convenient to pass from one form f = x'Ax to an
equivalent form g = X Bx where B is related to
A in that there exists an integral unimodular matrix
T such that B = T'AT. We use f ~ g ‘to denote
that f is equivalent to g.

In passing to an equivalent form, d,n and s
remain unchanged, and as eguivalent forms take
precisely the same values, m, and m_ are also
unchanged.

If v+ 0 1is a value of f taken at a point
X = (X1,X25...9%n) where ged(Xi,Xz,...5%n) = 1
there exists a form g equivalent to f such that

g(1’0’.¢,0) 4 v.
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4 The simple continued fraction a = (ai,ag,,..,an,..)
where all the ai are positive integers is defined to

have the value 1lim pn/qn where
N0

ag + ] 1 —
as +

Pn/Qn

1
an

= (ai,aZ’--.,an).

The notation (ai,ag,,.,ar,ar+1,.°,as) is used to
denote the simple continued fraction
(ait--;ar,ar+1stcsasyar+1:--,as,ar+1s--)
where the block &8r4pi1s..38s 18 repeated indefinitely.
If o = (84,8250058n500) 203 B = (DrseesPnses)
are two simple continued fractions then o > 8 1if and
only if the first non-zero signed difference
(=1)t=2(a; - by) is positive, Furthermore if
& = (81,82,s0985) and B3 = (21,32,..98) * 1), then
ay >a >pBy if J is even, and oy < a < fj if

J 1is odd.

5 A non-zero indefinite binary quadratic form
f = ax® + bxy + ¢y® is called reduced if

0<A-=b<2lal <A+ D,

§ lagrange's results: The following properties of

non-zero indefinite binary quadratic forms are due to
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Lagrange and are proved in Dickson [6].
(i) BEvery form is equivalent to at least one reduced
form,

(ii) To every reduced form £ there exists an
infinite chain (fi), =0 < i < o, of reduced forms
equivalent to f and such that

i = (-1)tayz® + byxy + (=1)t*a; 44577,
where the £} are related by the following property:
There exists a chain [gg] of positive integers

A

gty =o < 1 < o, such that
(2) (Bis8L+2s8142s0s) = Fy
(by + B)/2ay 41,
(b) (0,81 -1+81-2ses) = 5S¢
(=by + A)/2ay 44,
(c) Kt = F{ + Sy = &/ai41, and so
(@) £y = (1) *appay® + (<1)84%(F, = Sy )xy - P8 x2]
= (=1)l+ia 4 (¥ 2 Fx)(y F Six).

(iii) Every reduced form equivalent to f 1lies in the

chain (f{).
(iv) Every value v taken by f such that
lvl < 8/2 occurs as one of the coefficients

(-1)*ay in the chain (£i).
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I Segre's result: The following result, due
basically to Segre [19] is proved in Cassels [31.
¢ f = ax® + bxy + cy® takes no values in the
open interval (-p,q) where p >0 and q> 0, then
d > pg + &max(pz,q?);
Furthermore eguality is required if and only if
either p/a or ¢/p 1is integral and £ 1is equivalent

to the form -px? - max(p,q)xy + av°.

8 Tornheim's results: In his paper Tornheim f20]
has used the continued fraction apuroach of TLagrange to
extend Segre's result above in the case where either
v/q or gqfp is integral, Although the main result

is not of use in this thesis a number of the ninor

results will be used. However before stating these
resulte tie necessary notation has to be introduced.
Let g Dbe an indefinite binary guadratic form,

sand let Q denote the form g¢/2/d so that Q has

A =1, Let P = m+(Q), N = m_(Q) and for a given
integer k > 2 let A = max(1/P,k/N) where this is
defined (we shall not be interested in the cases where
either P =0 or N = 0). Let [gi] be the chain of

integers associated with @ as in 6 s&bove. Then

the following are Tornheim's results,
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(1) If any gei+s > 2 then A > 2k.
(ii) If any gzi > k then A > Xk + ,/5.
(iii) A > /¥ + Lk with equality if and only if
Q 1is equivalent to a multiple of the form
¥ - kxy - ky?.
(iv) If 8ll goi+s = 1 and all gzi < k then

k/N > /& + Lk,

(v) If k¥ is odd, 2ll gsi4+s =1, and gz 2> k + 1

for some J then A > JK° + 6k + 1.

(vi) If k is even and A < /X + 6k + 1 then
gai+s =1 and k/2 < gy <k for all i,

(vii) Either A = A4 = /K + Lk with equality as in
(111) above or A > Az = (¥ + k + (3k - 1)As)/(Lk - 2).
Furthermore while A = Az only for one form Q (and its
equivalent forms) there exist forms with A arbitrarily
close, but not equal, to Ag.

This last result may be interpreted to give the
following. If g is a binary form which taskes no
values in the open interval (-1,k1) then either
(a) @ = 22A0,%*/4 and q ~ 1L(&x® -kxy - ¥®*), or
(b) & > 1242 /L.

It should be noticed that the relations

1/P = sup Kei, 1/N = sup Kei+s

—0o< i <o o< 1 <o

do not, as Tornheim appears to have assumed, follow
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directly from Lagrange's results quoted in 6 above in
the cases where the suprema are less than 2., However

the relations can still be proved in these cases.

Part 2
Tn this section some of the known results
commected with the asymmetric minimum problem will be
given,
1 The problem of the symmetric minimum, as it is
sometimes called, is that of finding sup M(f) over
all normalised n=ary quadratic forms £ with signature

8, Wwhere

f

M(f) = min {m+(f),m_(f)}

inf {|vl; v is a value of fi.

i

Hence
sup M(f) = ¢:(1).

For convenience we shall use ¢: to denote ¢:(1).

In 1879 Markoff [8] showed not only that
¢: = Ji/5 = my, but that there exists an infinite
sequence My ,mz,Ma,... ©Of successive minima m, with
1imit 2/3, and a sequence of forms f1,f2,fs,... such
that M(fi) = m{, with the property that M(f) < 2/3
for all normalised forms not eguivalent to one of the

forms fi.

It is suspected that a similar sequence of
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successive minima my occurs for n = 3 and n =4,

that T m, =0 for n=3 endn =14 and that
S 3
¢ =0 for n 2= 5. However tiiere is no conclusive

n
evidence that this is so.

For n = 3 Markoff [9] has shown that ¢: = %273,
and Venkov [21] has shown the existence of at least
eleven successive minima.

For n =14, s =0, Oppenheim [13] ha&s shown that
¢: = ¥/9 and that there exists a sequence of at least
eight successive minima.

For n=»,4, 8 = *2, Oppenheim [14] has shown that
2 -2

¢& = ¢* = 3&77 and that there exists a sequence of at
least three successive minima, In this particular

case there are two non-equivalent forms féi) and

£$2)  with M(f) = ms.

2 A problem that is sometimes known as the asymmetric
minimum problem to distinguish it from the sbove problem
is that of finding sup M+(f) over all normalised n-ary
forms f with signature s, where

M+(f) = inf {v; v > 0 is a value of fi.
For n = 2 the solution of this problem, due to
Mahler and proved in Cassels [3], is that M+(f) < 2
for all f, that equality is necessary only when f is

equivalent to Xx3Xz, and that for any € > 0 there
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exist infinitely many non-equivalent forms with
M+(f) > 2 - €. Hence in contrast to the symmetriec
minimum problem there exists no sequence of successive
minima,

For n = 3 Davenport [5] has shown that
sup M+(f) = J4 for forms of signature 1 and that
sup M+(f) = 3577E for forms of signature -1,
Oppenheim [15] has extended these results by showing
the existence of several successive minima,

For n = 4 Oppenheim [16] has shown that
sup M+(f) = 2, #1673, ¥556/27 for forms of signature
0Oy 2, &and -2 vrespectively. He has also shown the
existence of several successive minima,

For n > 5 it is suspected that M (f) =0 for

all forms f.

2 Another one-sided problem concerning indefinite
quadratic forms, similar to the above, is that of
finding sup m+(f) over all normalised forms f.

This problém differs from the above problem only in that
gero forms are virtually excluded from consideration,
It is easily seen that sup m+(f) = ¢;s(0).

For n:= 2 it is easily seen that ¢:(O) = 2, for

[o]
¢ (0) < sup M+(f) = 2, while taking the limit as
. .

0
p/q =+ » 1in Segre's work shows that ¢2(0) > 2.
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For n = 3, 4 Bgrnes [1] and Barnes and
%
Oppenheim [2] have shown that ¢3(0) = ¥16/5,
-2

¢;1(0) = /3, &:(o) = JeL/B1, ¢é(o) < ¥32/27 and
2
¢, (0) = yen/=1.

)
For n 3 5 it is suspected that ¢n(o) £ 0.

4 There are & number of results on the asymmetric
minimum of binary forms.

For t > 1 Segre [19] and otners [7],[10],(11],[12]
and [17], have shown that ¢:(t) < 2(t? + ut)“%, with
equality only if t is integral, in which case the
form

£(t) - o(tx® - txy - PINE + bt
takes no values in the open interval (—¢:(t),t¢:(t)).
By using the relation
¢:(t) = %¢;s(1/t) ; t >0
a corresponding result for t < 1 may be deduced.

Sawyer [18] has proved that for integral k > %
every normalised form f, not eguivalent to f(k),
takes a value in the closed interval I = [-4(k),ky(k)]
where (k) = 2{¥® + Uk + 2 + k‘e)-%, and that
furthermore the interval I may be opened for k > 2,

Tornheim [20] has shown that for integral k > 2
every normalised form f not equivalent to £(K)  op

enother form fik) takes a value in the open interval
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J = (-x(x),kx(x)) where
x(x) = [(@ + k + (36 - 1)/ 7 K)/(8k - L)1

Purthermore he has shown that fik} takes the value

kx(k) end that for arbitrarily small € > 0 there

exist infinitely many non-eguivalent normalised forms

taking no values in the interval (-x(x) + e,kx(k) - ke).
Tor non-integral t > 0 it follows from the work of

Tornheim that ¢:(t) can be found as follaws.

Let [gL], ~ < 1 < 0, D& an arbitrary chain of

positive integers and let XKi be defined as in section

6 of vart 1 of this introduction.. Let
p = sup Keis n = sup Kei+as
i i
and let A([gy]) = max(p,tn). Then

(v}
¢_(t) = inf Al ])
where the infimum is taken over all pogsible chains

[gi].
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CHAPTER 1

Results on the asymmetric minima of indefinite

ternary quadratic forms,

The complete answer to the problem of the
asymmetric minima of indefinite ternary quadratic
1 -
forms, that is, the evaluation of ¢3(t) and ¢3tt)

for 211 t > 0, follows from the following theorem,

Theorem A
Every normalised indefinite ternary quadratic form
of signature 1 takes a value in each of the following
closed intervals:
Io : [09 m:‘
I, = [-¥1/48, ¥5u/L9]

I [-¥2/49, ¥8/9]
Is : [-¥1/9, J125/104]

L. : [-¥3/16, ¥2/3]

Is (-¥273, ¥27/112)
Is : [-¥125/112, 2791
I, : [¥16/9, ¥1/2u]
Is : [18/3, ¥2/135]
Is : [43737—9 0]s

Furthermore if we define:




f2 = (x + 22)* - #(22 - 2yz - 2y°)
f2 = (X + dy + #2)® -.3(2° - 2yz - §3°)

f3 = (X + 4y + $2)% - 2(2® ~ 2yz - ¥°)

Hy
S

]
N
»

+ %y + 22)® - 28(2® - yz - ¥°)

f5 = (x + 3y + £2)® - §(2® - $yz - &5°)
fo = (x + Ly)? - &(22 - yz - :y?)
£, = (x + 3y)° - 3(z® - yz - %y°)
fg = X2 - 8(z® - yz - §v°)
fo = (x + 3y)® - 15(22 - yz - F&V°),

and let Fi, 1 < i< 9, denote that multiple of

f{ which has determinant -1, then for 0 < i< 3
closure is required on the left of interval TIi+; and
on the right of interval Iy only for forms
eguivalent to Fis,-

Clearly the closure conditions of this theorem
imply that if I is any interval about the origin in
which every normalised indefinite ternary gquadratic
form of signature 1 takes a value then I must
contain an interval I; for some i with 0 < i < 9,
Thus in particular for every t > O the interval
[-¢:(t),t¢:(t)] must have an end-point in common with
an interval TIi. From this it follows that as ¢
increases from zero, ¢:(t) and t¢:(t) remain fixed

1
alternately, so that the graph of t¢ (t) is
3
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piecewise linear and continuous. Thus if we let

I; = [~y ,81], we have that

2 min { max (og,Bi/t)} : t >0
¢3(t) =} 0<ig9
Clg : t=0,

-1
with a similar expression for ¢3 (t).

It is of interest to note that the forms £ have
rational coefficients. The following table gives

m_(f;,) and da(fy), while m+(fL) =1 for all i,

Table 1.1

ilylotslunlslelz]l8lo]
n(f) (2| &2 2118121 L]6
a(r) | B |82 | 8 |3E8| B (4P 2 |24t

The proof of theorem A occupies most of this
thesis, After some preliminary results in Chapter 2.
the forms P are considered in detail in Chapter 3.
In Chapter L theorem A 1is broken down into ten
separate sub-theorems and in the following chapters

these sub-theorems are proven.
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CHAPTER 2

2,1 In this chapter we prove results concerning the
determinant of indefinite binary and terrary quadratic

forms f which have asymmetry

m_(f)
A(f) = ——('T')'- > k
m,
for integral k > 2. The following are the theorems

proved.,

Theorem 2,1

For integral k > 2 there exists a positive
constant c¢(k) such that whenever an indefinite binary
quadratic form q = g{x,y) satisfies

0 < (1 =c)m(a) <m_(a)/k
for some ¢ with 0 < ¢ < e(k) it may be concluded
that either
(1) @ ~ m,(q) (¥ - kxy - ky®) and A(q) =k, or
(i1) a(q) = [m+(q)]2(1 - ¢)2(x® + 6k + 1)/h.

Theorem 2,2

et k > 2 be integral and define
K= + 6k + 1,
t(8) = K2(1 + L/8)/6L,
da, = (K® + 12K)/6L,
max ( min {t(S),9(S + J5)¥/64}),

dz
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where the maximum is taken over all positive integers
S, and let ‘S$ denote the S at which the maximum is
attained. FPor positive integers r and s let
a(r,s;y,z) denote the indefinite binary quadratic

form
s(r + 2) r+ 2

p- P 2
S + T + S yz S + T 4+ S 27y

and for integral 1, 0 <1 < s, let F(r,S,1;X,¥3)

denote the indefinite ternary guadratic form
k 1 1
(x + 3y + 32)2 - (¥ + Wk)a(r,s;5,2).

Let f = £f(x,y,z) be an indefinite ternary
quadratic form of signature 1 with a(f) = a such
that (i) m+(f) = 41 and this value is attained by
£, and (ii) m_(f) > k. Then either

(a) @ » min (4,,d2), or
(b) m (£) =k and f ~ f(r,s,1;x,y,2) for some

r and s such that r < s < s”.

Theorem 2.1 may be used to obtain information
about indefinite binary guadratic forms g that have
asymmetry A(q) slightly below an integer X. It is
clear from the statement of the theorem that if q 1is
an indefinite binary gquadratic form with

k(1 - e(k)) < A(q) <k
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then setting c =1 - A(qQ)/k yields th=zt

a(q) > [m (P + 6k + 1)/uK,
In addition, the following corollary to theorem 2.1

should be noted.

Corollary to Theorem 2,1

If k > 2 is integral and if q = q(x,y) is an
jndefinite binary quadratic form with m+(q) =1 and
m (q) >k +1 where 1> 0, then

d(q) > 3(x¥® + 6k + 1) + 1.

It should be noted that the condition that
£ should attain the value m+(f) = 1 can be removed to
make theorem 2.2 apply to all forms f with m+(f) = 1
and m_(f) > k. This is easily done with the help of
theorem 4.1 in examctly the same way as it is shown that

theorem C; implies theorem By (see chapter L).

It should also be noticed that not all forms
£(r,s,1;x,y,2) have m (f) =1 and m_(f) = k. In
fact it appears to be the exception rather than the rule
that a form shall satisfy this condition. Calculations
performed on the CSIRO's C,D.C, "3200" computer in
Adelaide have shown that for k = 7,10,11 and 12 not
one of the forms has m+(f) =1, m_(f) =k =and

a(f) < min(dsy,ds), while for k = 2,3,4,5,6,8 and 9



(18)

the forms listed in table 2.1 were found to be the
only ones satisfying these constraints (note: for
simplicity in the table the transformation X = X - [g]y
has been performed, where [£] denotes the integer part
of k/2).

For comparison with the determinants of the forms

listed in table 2.1, min{(d;,dz) is listed in table 2.2.

Table 2.1
x form r,s,1,4(f)
2 | (x+ 32)° - 3(y -yz - 22°) Lok, 2,U5
o | (x + 32)® - 3(y* - yz2 - £2°) 2,2,1,6%
2 X - 3(3’2 - &yz - &ZB) 1,4,0,7
3 L (x + iy)® - 2 (y® - &yz - %2°) 2,4,0,16%
n x? - 8(y® - yz - §£2°) | 8,8,0,24
51 (x + 3y + £2)® - 28(3® - &yz - #z22) | 3,18,9,54
6 | (x+ 42)% - 15(y® - yz - £2°) | 20,20,10,67%
6 | (x+ %2)? - 15(y° - yz - }2°) | 6,6,3,93%
6 | 2 - 15(3® - 8yz - f52°) | 3,18,0,96
8 | 2 - 2L(y® - yz - §2°) | 9,9,0,208
9 | (x + iy + 22)°- S2L(3® - Hyz - #2°) | 9,42,21,270
Table 2.2
K | 2 |31 u | 5 1 6 | 7 |
min(d, ,dz) |7.5..]17.5|33.7..]59.3..]96.7..|149.3..|

k | 8 | 9
min(ds ,dz) [220.5..]31h.1..
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Tt will be noticed that the forms in table 2.1
which have least determinant for k = 2,4 and 6 are
eguivalent to the multiples of the forms Fqp,Fs and
Fo which have m, = 1. This may be related to the

fact that these forms have determinant in absolute value

much less than the corresponding'value of min(d,,ds).

e shall now prove theorems 2.1 and 2.2 and the

corollary to theorem 2.1

Proof of the Corollary to Theorem 2.1

Taking ¢ = 0 in thecrem 2.1 we find that
d =d(q) > (& + 6k + 1)/L.
Suppose that d < ¥ (¥® + 6k + 1) + 1. Then as
m+(q) = 1 we may write for arbitrarily small & > O

a~ 3 1 =(x + Ay)? - a(1 -6)¥",

and so by choosing x such that

(1 + 2k + 1)/ < (x + N)2 < (¥ + uk +4)/4
we obtain a value of g which for sufficiently small
§ 1lies in the open interval (-k - 1,1). This

contradicts either m, = 1 or m_2k+ 1.

Proof of Theorem 2.1

The proof of this thecorem depends upon the work of

Tornheim [20]. We let
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a(x,y) = a(x,y)/2/a(a),

so that @ 1s an indefinite binary guadratic form with

discriminant &% = 1. We define
M = m+(Q.),
N = m_(Q.)s
A = max (1/M,%/N),
A1= ldiz + m; 9

A= [k + k + (3k - 1)A]/(kk = 2),
(k) =1 - Ay/Bs > O,
Then Tornheim has shown that either
(a) A=A, and N = kM, in which case
Q ~ M(x® - kxy - ky®), or
(b) A > /K5 + 6k + 1, or

(c) ¥ > 1/, and N < k/As.
Consider firstly the third alternative. This

implies that

N/KM < A /A = 1 = e (K),
and so

n_(a)/k < (1 - ¢ (&))m(a).
Hence if we set c(k) = c$(k) we have, for
0 < ¢ < c(k), that

m_(q)/x < (1 ~ c)m (a),
which contradicts the given. It remains to show that,

with c(k) = cx(k), the conclusions (i) and (ii) of
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the theorem follow from the alternatives (a) and
(b) above. Since (a) clearly implies (i) we
need only show that (b) implies ELisN
From (b) we have that
max (1/M,k/N) > JK* + ok + 1,

and so
2/d(q) > vk + bk + 1 min(m+(q),m_(q)/k).
Using the given it follows that

a(q) = g[m+(q)]2(1 - c)2(x® + 6k + 1)

as required.

In order to prove theorem 2.2 we need the

following lemnma on indefinite binary quadratic forms.

TLemma_ 2.1
Let g(x,y) be an indefinite binary quadratic
form with A =1 and let [gy] De the chain of
positive integers associated with the chain of reduced
forms equivalent to d. Suppose that the elements
g=iy of the chain are bounded above by the integer
8, and let
c(8) = 3/5/u0(8 + 1)%.

Let M,N denote m+(q),m_(q) respectively. Let
kX > 2 be integral and let c¢; and C; be small

positive numbers with e3 < c(S) such that for each
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negative value -n taken by g either
n/N<1+ ¢y
or
n/N > (k® + 6k + 1)/(¥® +L4k) - ca.
Then either
(i) /N = 2, or
(i1) 1/N > /T + 780 (k% + 6k + 1)/(kK® + W) - cz 1, or
(1ii) There exist integers r and s, both at most

S, such that for all integers iy

Bai+1 = 1s Bai = Ty Zai+2 = Se

Proof
If gpi+s > 2 for any i, then as indicated in
the introduction (part 1 section 6) g takes the value

-n where
1/n = (gzt+1sgzt+2;€zt+3’--) + (O,gzt,gzl-i’--)-
Hence 1/n > 2, and as n > N it follows that 1/N > 2,

We now suppose that gzi+4 =1 for all i, and in
addition that the chain is not of the form given in the
third alternative. Clearly the proof of the lemma
will be complete when we show that alternative (ii) must
hold.

As the chain is not of the form in alternative (iii)

there must exist an i for which g3 # Baitae Let

S = max (gza,gza+4):
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t = min (82L:g2t+4), and
r = gzi+2.
Let
1/n = (1,251, 1500e) + (0,8,1,004)
(1,7,1,7) + (0O,u)

and
(1,?,1,8,1,...) + (Orty1,---)
(19r91,ﬂ) + (0,%),

where the .. indicates the continmuation of the chain

1/n,

in the expected manner, so that -n and -n; are values
taken by d. Consider the function

f(x)

(0,r,x) - x

/(1 + rx) - x.
Then the derivative ff(x) of f(x) is given by
£(x) = 1/(1 + rx)% -1,

and so ff(x) <-2 for r>1 and x> 1. Now by
the mean value theorem of calculus, as f{x) is
continuous and differentiable for r > 1 and x > 1,
we have for r > 1 and 1 < Xz < xy_ that

f(xg) = f(x2) = (x -Xp )T' ()
for some o With Xz < < Xz Substituting
x, = (1,A\) and x; = (1,p) and simplifying, mnoting
that ©/(a) < -2, gives that

4

1/n = 1/ny < 2(1/N = 1/u). (2.1
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Now

L= N=(8y1y0es) = (ts1y00s)
(s - t) + (0,7) =~ (0,T,5)
1+ 4 -1

= &
2

A\

v

and Ne < (S +1)® as A and p are each at most
S + 1. Hence
1/N - 1/ > 1/2(8 + 1)2,
Using this in (2.1) yields that
1/n - 1/n; < =3/8(s + 1)%,
Now as 1/N > 1/n; it follows that
n/I - 1 > 3n/8(s + 1)2,
from which, as 1/n< (1,7T) + (0,1) = /5, we can deduce
that
n/N > 1 + 3/5/L0(S + 1)2 =1 + C(8) > 1 + ¢y
Hence, using the given conditions, we must have
n/N > (k¥ + 6k + 1)/(k® + Lk) - ca.

Now

1/n > (1,8) + (0,5,1) = /1 + L/S,
and so we can Conclude that

18 > TFEBL0R + 6k + 1)/(6° + bk) = cz],

which is alternative (ii) as required.



(25)

The Proof of Theorem 2.2

Let f be an indefinite ternary quadratic form of
signature 1 such that m+(f) =1, m (f) > k, and let
f attain the value 1. By passing to a suitable
equivalent form we may assume T to be given in the
forn

f=(x+ N + uz)® + aly,2), (2.2
where gq is an indefinite binary quadratic forn.
Let e denote m_(q), so that for arbitrarily small

p > 0 we may write

a(y,2) ~ p(¥,2) = 725y + §2)° + -olg-g'—ﬁlzz,

where i) depends on p and satisfies l{;{ < A,
Then for arbitrarily smail p© > O there exists a form
?p such that
f~f =(x+ N
o (

s

where %p and %0 depend on p,

Consider the section

t(x,y) = (x + %py)z - ey?/(1 - p)

of f_ . Clearly

v+ upZ)"‘ + qp(y,Z),

m+(t) =1, m(t) > mn(f) > k.
Hence we may apply theorem 2.1, with ¢ = 0, to
t to conclude that either
(i) t ~ x® - kxy - ky®, or
(ii) a(t) > (¥® + 6k + 1)/4L.
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Now one of these possibilities must be true
for arbitrarily small pP. If the second possibility
holds for arbitrarily small p, Wwe have that

e/(1 - p) > (¥ + 6k + 1)/b = K/L
for arb. small p and sc e > K/L. Now g cannot
take any value in the open interval (0,3/4), else by
choosing x suitably we could obtain a value of
£ contradicting m+(f) =1, Hence as m_(a) = e,
g can take mo values in the open interval (-e,3/L).
Then by a result of Segre mentioned in the introduction

a(q) > 3e/4 + kmax (9/16, &%),

i.e. d > 3K/16 + K2/6L4 = d;.

We now consider the case that the first possibility
above, mnamely t ~ x® - kxy - ky®, occurs for
arbitrarily small p. This implies that

a(t) = e/(1 = p) = (K% + Lk)/h
for arb. small pP. Hence our ‘arb, small p' must be
p =0, and so
t = (x + No¥)? - 2 + LK)¥®.
As this is equivalent to x® - kxy - ky®, a form with
integral coefficients, we must have N = k/2 (mod 1).
Suppose that qo takes a value in the open

interval

I = (=(k% + 6k + 1)/L,—(X® + Lk)/L),
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say at the point (y,z) = (Y,Z). Then choosing
% such that (x + NoY + u0Z)® 1lies in the closed
interval
[( + 2% + 1)/4, (& + bk + 4)/u]
would give a value of fo 1lying in the open interval
(-x,1), which, as f ~ fo, contradicts either
m (f) =1 or m_(f) > k. Hence go can take no
values in the interval 1.
Suppose for the moment that the integers gzi oOf
the chain [gi] associated with g (as in lemma 2.1)
are bounded above by S*° Then by applying
lemma 2.1 to the form
® (x,5) = qo(x,¥)/2/d(q0)

taking ci = %G(S*) and ¢z arbitrarily small, we
may conclude that one of the following holds:

(a) 2/d(a )/m_(q) = 2/d/e > 2,

() 2/a(@)/n_(a) = 2/a/e > T+ 578 B2 - o),

(¢) There exist integers r and s, both at most

S*, such that for all i,
gzi+r = 1, gzl = Ty Bai+z = S
If however, gzi > S* for at least one i, then
either (a) above holds if g; > 2 for at least one
odd j, or gj =1 for all odd J and Q takes a

value my Wwhere
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1/my > (ST + 1,1,...) + (0,1,1,...) .
This latter implies that
2/a/m (o) > S + J5
and s0
2/d > m+(qg)(S* + 45).
Thus if the possibility (c) above does not hold,
either
(1) 24d > 2e, or
(ii) 24d = eJT—:—E7§*((k? + 6k + 1)/(® +4k) - cz) for
arbitrarily small cz, OF
(111) 2/d > m, (@) (8" + J5).
From these we conclude that either
(i') @ > e, or
(ii') 4 > R®¥(1 + u/s*)/eu, or
(11i%) @ > 9(s" + J/5)2 /6.
We shall now show that in each of these cases
d = dz. Clearly it is only necessary to show that
e? > ds. For k = 2, numerical evaluation shows
that S*z 6 and that
e? =9 > §AR82 = 4,.
As t(8) (and hence S*) is increasing with Xk it
follows that S* >6 for k> 2, and so
dp < 3+37(3 + 6k + 1)2.

Now for k > 3 it is a simple matter to verify that
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B-4(x® +6k + 1)% < ((K® + Lk)/W)%,

and hence &2

> dz as required.
Thus, summarising, we have proved so far that
if f satisfies the conditions of theorem 2.2 then
either d > min (dy,dz) or f is equivalent to the
form
fo = (x + Doy + w0zl + a0 (y,2),
where
N = zk (mod 1),
m (g) = e = (¥ + Lk)/4,
g = -ely + 802z)® + dz®/e,
and the chain of integers [gi] associated with go has
the property that there exist integers r and 8, both
at most S*, such that gzi+1 =1, g2i = r, and
gzi+2 = s Tfor all integers 1i. Clearly, to complete
the proof of theorem 2.2, we need only show that
fo, with the above properties, must be equivalent to
£(r,s,1;x,y,2) for some 1 < s, and that m_(f) = k.

If gqo has the above properties then

o s(r + 2) +2 2
w (v,2) ey - F T+ I T Te + T + 8% ;
- 2 r(s + 2) s+ 2 =2

-y -t T It " T e v i el

Hence by passing to an equivalent form if necessary we

may take fo to be of the form
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(x + Ny + pz)2 - eq(r,s;y,2)
where we may assume without loss gé generality that
r <8 < S*. The congruence
A = 2k (mod 1)

may be deduced in the same way that No = +k was

deduced. Hence f is equivalent to the rform

. (x + iky + uz)?® - B(¥® + hk)qlr,s;y,2z)
which takes the value -k at (x,y,z) = (0,1,0). Thus
as m_(f) > k is given we must have m_(f) = k. It

now remainss +to complete the proof of the theorem, to
show that p = 1/s (mod 1).

We have

£ (x,1,-8) = (x + Tk = ps)® - (& + Lk)/h,
and so by choosing x such that
1{x + 1) < |x + 2k - us| < ¥k + 2)
we obtain a value of f* contradicting either
m+(f) =1 orm_(f) > k unless
1k - ps = ¥k (mod 1).
That is,
L= 1/s

for some 1 with O <1 < s. Hence

P £ o~ (x + +ky + 1z/sF - §(&¥® + uk)qlr,s;y,z)

as required. This completes the proof of theorem 2.2,
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2.2 Turther information about the relationship between
r,s and 1 for those forms f(r,s,1;X,y,2) which do in
fact have m_(f) = k and m+(f) - 1 may be obtained by
applying various automorphs of q(r,s;y,z) and by
applying various X-y transformations. The following

theorem gives some of these relationships.

Theorem 2.5
&
Tet k » 2 be integral and let ds ;82 ,S and
£ = f{r,s, ;x,y,z) be defined as in theorem 2.2. Let

1
B =slr+ 2)/(rs + 1 + 8),

e = (¥ + uk)/L,
E = 8(1 + £k) + 21/s, and
P = (1/s)® - B(1 - 1(1 + 3k))/s + eB® /i

Then if d(f) < min {(d;,dz) and if m+(f) =1 and
m_(f) = k the following cenditions must be satisfied:
(1) r(k/2 + 1/s) = 0 (mod 1),

(ii) The fraction seB, when reduced to its lowest
form, has denominator at most S*,
(iii) There exist positive integers r' and s', both
at most S*, and an integer b such that
'

E=2b *B

and

Y
il
rl),
w
+

+ bB' + B' /s,

where we have 1ised B' +to denote the fraction
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s'(r' +2)/(r's' + ' +s'), and
(iv) For this r' and s',
B®/l, + B/s = (B')2/h + B'/s'.
Proof
(i) Considering the section
£x,r + 1,0) = (x + $k(r + 1) + rl/s)® - (1 + Lx)/4
in the same way that the section f*(x,1,-s) was
considered in the proof of theorem 2.2 yields that
ix(r + 1) + rl/s = £k (mod 1).
This clearly implies that
r(k/2 + 1/s) = 0 (mod 1),
(1ii) Applyinz the transformation
(x,vy,2) » (X,X - Y,2)
to f yields the equivalent form
(X + 4kY + DZ)% - e(Y? + EYZ + FZ2), (2.3
where
2D = 1(k + 2)/s + eB. (2.4
Repeating the argument of theorem 2.2 we find that’
Y8 + EYZ + FZ2 ~ q(r',s';¥,2)
for some r' and s' satiefying r <s <8 . We
now proceed to find out further information about the
transformations yielding this equivalence.
Let h be an integer such that
0 < |E + 2h| < 1

H
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and consider the transformation
Y>3 + hz }
z 3. §(2.5
This sends the form Y® + EYZ + FZ® into the form
9 (7,2) =3 + (B + 2n)yz + (h® + Eh + 7)z2
= Y2 - BiyZ - Fy2Z°.
By changing the sign of § if necessary we may assume
E, to be ncn-negative. Let d denote d(q) = dalas).
Then as s 2 I we nave B > 1 and so
E,2% + UF, =L4d = B® + UB/s > 1.
Hence as B < 1 we find that ¥y > O. We shall
now show that ¢(¥,z) is either a(r',s';y,z) or
a(s’ v 5_3;9-5)-
Suppose that
Py > J4. (2.6
Then d = B,/ + B> /4, and so a > 1. However
this leads to a contradiction as follows:
(a) If s > 2, then

g4 q - 2X2s® - bLrs & Lhrs? - 8s + Lsr® - 8r
= L(rs + ¢ + 8)2

< 1
which contradicts 4 > 1.
(p) If r =s =1, the only other possibility,

d = 5/4 and E,F and thus F; are integral.
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Howsever
5/ = d > F1 = /5/2,
and this is clearly insoluble in integers Fi.
From the above considerations it follows that
F, < 4d, and so, from a theorem of Lagrange
mentioned in the introduction, -F, occurs as a
coefficient in one of the reduced forms equivalent to

qs (and hence g(r',s';¥,2)). From the nature of the

chain of integers [gi] associated with g, it follows

that either

P, = (p' + 2)/(r's’ + 7' + s')

or

P, = (8" + 2)/(r's’ + 1" +58').

Upon calculating E, from d in terms of r' and sf,
it immediately becomes clear that g, 1is either
alr',s' {F;Z) or als’,r';¥,Z). By dropving the
assumption that r’/ < s’ we may assume that
qs = af{r’,s’ ;ST-,E) .
Applying the transformation (2.5) to the form (2,3)
yields the equivalent form
(X + 567 + (D + &kh)Z)?- ea(r’,8';7,Z).
Considering this form as in theorem 2.2 yilelds that
D + 3kh = 17/s' (mod il s

Hence
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oD = 1(k + 2)/s + eB = 21'/s’ (mod 1)
and so

osD = eBs = 2s1'/s' (mod 1).
Thus the denominator of the reduced form of the fraction
seB divides s’ and hence is at most S$.
(1ii) As g4 = q(r',s';¥,2) it follows upon sorting
out the relations between h,E,F,Ey and Py that

B =B, = *(B + 2h)
and
Bi/s! = Fy = ~(h® + Eh + F),
The required integer b is then given by b = -h.
(iv) Bquating the determinants of g &and qq4 yields

that

B2/l + B/s = (B')?/L + B'/s8',

Tt should be noticed that condition (iv) of
theorem 2.3 is highly restrictive. Calculations
performed on the CSIRO's C.D.C. *3200" computer in
Adelaide have shown that for § < 200, the couple

(r',s’) fust be either (r,s) or (s,7).

2.3 As the result of theorenm 2.2 for k=2 will be
used later in chapter 11, we will now show that the

forms f£(r,s,1;x,¥,2z) given in table 2,4 for k=2
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are the only forms with m = 1, m_ =2 and determinant
at most 7.5 in absolute value.

The numerical calculations involved in showing
that S° = 6 and that min(ds;,ds) > 7.5 (for k = 2)
are straightforward, and hence will be onmitted. in

table 2.3 below the values of seB for r < s < b

have been listed.

Table 2.3
s |6 5
s lelslnlslel1i5lui3]2|1
B |4 |s-|3plsel g i20 43¢ 2% %9148
sen |15 %58 32z 20/ 200 (232 15] 380 | 520 300 |33
i |3 o 141}
r iyl o321 21211"1
B 1|3 leizifseizinlg |l
oeb |12/532(38(16{0]a82 (8| 6{32 (3]

Using condition (ii) of theorem 2.3 we need only
consider those r and s where the denominator of
seB 1is at most 6. These are (s,r) = (6,6), (6,3),
(6,2), (5,5), (Lsl), (Uy1), (3,3), (2,2), (2,1), (151).
We may exclude (s,r) = (2,1) or (1,1) as in these
cases f(r,s,1;X,y,z) has d(f) > 7.5. In table 2.4
the remaining (s,r) possibilities are listed together

with the corresponding 1 which are not excluded by
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condition (i) of theorem 2.3.

Table 2.4

(s,r) (__(6,6) (6,3)16,2%  (5,5) 1 (h.h)
aliowable 1 10,1,2,3,4,5/0,2,410;310,1,2,3,4[0,1,2,3

(s,r) | (u,1)1(3,3)]1(2,2)
allowsble 1 | O [0,1,2! 0,1

As f(r,s,1l:x,y,2) ~ f(r,s,s-1:X,y,%) we only need
to consider those allowable 1 with 0 < 1 < s/2, In
table 2.6 the forms q,(¥,2), as defined in theorem 2,3,
ere listed. These must be one of the forms
aolr’,s’;y,2) or a(s’,r’;y,z), for allowable r' and s’,

which are listed in table 2.5.

Table 2.5
(gyr) | a(r,d;y,2) | a(s,r;y,2)
(6,6) | ¥ - yz - 7° ] y? - yz - £2°
(6,3) | ¥ - 2yz - F2% | ¥° - &yz - §77°
(6,2) | y* - 8yz - $2° | y® - gyz - 277
(5,5) | ¥® ~yz - 22*> | y° -yz - £7°
(Ui | 52 -3z - 4222 | y® - yz - &2°
(4,1) | y® - Byz ~- &22 | ¥ - &yz - &7°
(3,3) | ¥® -yz-%22 | y® ~yz - }2°
(2,2) | ¥® -yz - 322 | y® - yz - &2°
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Table 2.6

(s,e) |11 B | F | s (75 2) _
(6,6) ol 2 | & |3 - 5%

T3 T2k | |5 - &2 - &7

2 | 22| £ |3 - &z - it7°

L3 3 | & |72 - 52 - §2°
(6,3) | 0| a2 | 28 | ¥ - &5z - #§7°

|2 as| 2 | 3 - &2 - 572
(6.2) Lol 4 | 8 | 7 - 872 - 17

314z | 232 | P - 5E - 8T
(5,5) 1ol 2 | & | 7 - 5%%

11 ] 22| £8 | 7° - &2 - §552°

l 2| 28| 288 | 7 - §57 - &5z
G lolz |l & |5 -8

TV 2 v -E - 5T

2131 2 |7 -32-3%2
(LAY tol 81 1 | 7 - %5z - %2°
(3,3 1ol 2 | & | ¥ - %7°

|11 22| 8 | 7 - 852 - 47
Gy lolal & | -22

P41 31 & | 7 -5 - §%

It is easily seen

which q4(F,Z) is one

that the only r,s and 1 for

of the forms in table 2.5 are

(I‘,S,l) . (LL,lJ,,Z), (1,’4,0), (292’1)-
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Hence the only possible forms f(r,s,l;x,y,z) which

2 and a(f) < 7.5 are the

]

have m+(f) =1, m_(f)
following:

£, = £(l,l,2;%,5,2) ~ (x + 32)% - 3(y® - yz - £2°),
£(1,4,05%,5,2) ~ ¥ - 3(y® - &yz - §2°),

s = f(2,2:1 ;X:ysz) . (X + %’Z)z - 3(y2 - Yz - %Zz).

0>
"

Tt is now a simple exercise in congruences to
verify that these forms do in fact have m (f) =1 and
m (f) = 2. The following facts are sufficient to
show this,

(1) The coefficients of f3,fz and Uf; are integers.
(ii) Taking congruences mod 3 it can be seen that
£y cannot take the value -1, while taking congruences
mod © shows that it cannot take the value O for
relatively prime X,y and z, and hence that it cannot
take the value O at all.
(iii) Taking congruences mod 8, as
fa =x% + 32 + (2 + 2y)% (mod 8),
it can be seen that f» can take neither the value
-1 nor the value 0 Tor relatively prime X,y and Z.
(iv) Taking congruences mod 8, &s
Wfs = (2x + 2)2% + (2y + 2)® + 5z (mod 8),
it can be seen that U4fz; cannot take the values

1,%2,%3,=5,-6 and -7, In addition, taking congruences
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mod 3 shows that Uufs cannot take the values -4 or

-1. . Furthermore, taking congruences mod 3,9 and 27
in turn shows that Lfs cannot take the value O for

relatively prime X,y and 2.
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CHAPTER

In this chapter we consider the special forms
Fy and show that the closure conditions of the intervals
I, are necessary.

The forms Fi; are considered 1in separate lemmas,

each giving m+(F;) and m_(F;) for some 1.

Lemma 3.1
m (F,) = #73, m_(F,) = /L3,
Proof (Due to Barnes [1])
m, = J/3i(x + 42)° - ¥(=® - 22 - 25°)}.
For the proof we consider the integral forn
W3/ Pa(x,¥,2)
i.ee Gu(X,¥,2) = Lx® + Lhxz - 2% + Lyz + Ly®.

Then we must prove that m+(G1) =4 and m_(Gy) = 1.

Gi(Xs.V, Z)

1l

Since G, clearly takes the values L and -1, we only
need to show that G; cannot take the values 3,2,1 or O.
Paking congruences mod 8, as
& = (2x + 2)? + (2y + z)°® - 32°,

it is clear that @G, cannot take the values 3,2 or 1,

To eliminate the value 0, we suppose to the
contrary that Gl(x,y,z) = 0 has a non-trivial solution.
Then there exist relatively prime X,Y,Z with

LX2 + LUXZ - 22 + LYZ + 4Y? = O.
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Clearly congruences mod 4 give 7 = 2t for some integer
t. Then we must have

(X + )2 + (Y + t)2 + t2 =0 (mod L),
which can only be satisfied if

X+t=Y+t=t=0 (mod 2).
This gives 2 as a common divisor of X,Y,Z, contrary
to the assumption that X,Y¥,Z were relatively prime.,
This shows that G, cannot take the value O and

completes the proof of the lemma,

Lemma 3.2
m,(Fa) = #5700, n_(F,) = Y2785,
Proof
Fo = JOI/00§(x + &y + 22)% - Z5(2® - 2yz - 3y3)i,
For the proof we consider the integral form
3¥0L9/5L Fz(x - Lz,¥,2)
= 3(x - y)® - 21xz + 352 + 7xy.

Go (X:Y:tz)

Then we must prove that m+(Gg) =3 and m_ (G) =1,

Sinece G takes the values 3 and -1 at (1,0,0) and

(4,0,1) respectively, and as taking congruences

mod 7 shows that Gp cannot take the values 1 or 2,

we only need to show that G cannot take the value O,
Suppose to the contrary that Gg(x,y,z) = 0 has a

non-trivial solution. Then there exist relatively

prime X,Y,Z2 with

3(X = Y)? - 21XZ + 35Z% + 7XY = O,
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This implies that X =Y (mod 7). Setting
X = ¥ + 7t and taking congruences mod 19 yields that

(Y + 22)% + 22 =0 (mod 7).
This can have only the solution Y + 22 =2 = 0 (mod 7),
which implies that 7 1is a common divisor of X,Y,Z,
contrary to the assumption that X,Y,Z were relatively
prime, This contradiction shows that Gz cannot take

the value O =and completes the proof of the lemma.

Lemma 3.5
m+(F3) = ¥8/9, m_(Fs) = §1/9.
Proof
Fs = I8791(x + &y + #2)® - (2% - 2yz - ¥)I.
For the proof we consider the integral form
Ga(x%,y,2) = 29578 Fa(xX = ¥,¥,% + ¥ = 2)
3% + 3y° - z°.

Then we have to show that m+(Ga) =2 and m_(Gs) = 1.

Since Gs clearly takes the values 2 and -1, and as
taking congruences mod 3 eliminates the value 1, we
only need to show that Cz does not teke the value O,
As usual we assume to the contrary that there exist
relatively prime X,Y,Z with
3X% 4+ 3Y% - 7% = 0. (3.1
However taking congruences mod 9 shows that any

solution of this equation satisfies
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X=vY=2z2=0 (mod 3),
and so (3.1) has no relatively prime solution. This

shows that G; cannot take the value O and completes

the proof of the lemma,

Lemma 3.4
m (Fe) = ¥125/14L, m_(F.) = ¥3/16,

Proof

Fs = JA25/100{(x + &y + %2)® - 3&8(2® - vz - ¥*)i.

For the proof we consider the integral form

Ga(x,¥,2) = 5 FILL/125 Fa(x,¥,2)
5%% + 8xy + Lxz + 8yz + 8y® = 4z?,

Then we must show that m+(G4) =5 and m_(Gs) = 3,
As G, clearly takes the values 5 and -3, and as

Ge = 5(x + 22)% = 0,5 or 4 (mod 8)
and

Gy = 2(x + 2y = 22)2 =0 or 2 (mod 3)
it is clear that we only have to prove that
Gs(x,¥,2) = O has no non~trivial solution,

As usual we assume to the contrary that there
exist relatively prime X,Y¥,Z2 with
FX® + 8XY + LXZ + 8YZ + 8Y® - LZ? = O,

Taking congruences mod L4 yields that X = 2t for some
integer t. Then as X,Y,Z are relatively prime

either 72 is odd or Z 1is even and Y 1is odd. We

consider these two cases separately.
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(a) 2 odd: We have
0 = 20t® + 16tY + 8tZ + 8Y(Y + 2) - LZ?,
which implies that
Lt2 + 8 -~ L =0 (mod 16)
which is impossible.
(b) Y odd; Z even: Putting Z = 2s we have
0 = 20t + 16tY + 16ts + 8Y% + 16¥Ys - 1652,
which implies that
4t2 + 8 =0 (mod 16)
which is also impossible.
Thus G. cannot take the value 0. This completes

the proof of the lemma,

Lemma 3, (Due to Markoff [9])

m,(Fs) = m_(Fs) = ¥273.
Proof - |
Fs = J2730(x + &y + £2)% - %(2® - &vyz - &°)}.
For the proof we consider the integral form

Gs(X,¥,2) = J3/2 Fs(x,¥,2)

=x® + Xz + Xy + 2yz + y? - z%,
Then we must show that m+(G5) =m (Gs) = 1. This
clearly follows once we show that Gjg cannot take the
value O,
Suppose to the contrary that there exist relatively

rrime X,Y,Z with

X2 + X(Y +2) + (Y + 2)% -22% = 0.,
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Then taking congruences mod 2 gives that
X=Y+2=06 (mod 2) and taking congruences mod U
gives that Z is even, Hence X,Y¥,Z cannot be
relatively prime. This shows that Gg cannot take

the value O and completes the proof of the lemma.,

Lemma 3,6
n,(Fe) = ¥ET/TTZ,  m_(Ve) = ¥TE5/TTE,
Broof
Fe = §27/1121(x + 4y)? - &(2® - yz - &¥°)].
For the proof we consider the integral form
Ge(X,y,2) = 39112727 Fel(x + ¥,¥,2)
= 3x% + 8xy + 8y°® -~ 8z® + 8yz.
Then we must show that m+(G6) =3 and m_(Ge) = 5.
As @g takes the values 3 and -5, and as taking
congruences mod 8 shows that Gg cannot take the
values 2,1,-1,.-2 and -3, we only need to show that
Gg cannot take the values -4 and O.

If G¢(X,Y,Z) = -, then taking congruences mod 8
shows that X =2 {(mod 4). Setting X = 2t and
taking congruences mod 16 gives

12t2 4+ 8Y2 - 822 4+ 8YZ =12 (mod 16).
Now as t is odd this yields that
Y2 + Y2 - 22 =0 (mod 2),

which only has the solution Y =2 =0 (mod 2),
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Thus X,Y¥,Z are all even. However this implies that
G, takes the value -1 at the point (X%/2,Y/2,%/2),
which we know is impossible.

If Ge(X,Y¥,Z) = O where X,Y,Z are relatively
prime then taking congruences mod 8 shows that
X=0 (mod 4). Setting X = Lt and taking congruences
mod 16 gives that

Y2 + Y2 - 22 =0 (mod 2).

Hence, as above, we are led to the contradiction that
X,Y,Z are all even, This shows that Gg cannot take
the values O and -4, and completes the proof of the

lemma,

Lemma 3,
n(F,) = ¥373,  m_(F,) = ¥7675.
Proof
F, = §279{(x + #y)* - 3(2® -yz - $y°)},
For the proof we consider the integral form
G- (%X,¥,2) = §¥9/2 Fe(x + ¥,¥,2)
= x® + 3xy + 3y® - 32z° + 3yz.
Then we must show that m+(G7) =1 and m_(Gy) = 2.
As Gp takes the values 1 and -2, and as taking
congruences mod 3 shows that Gy cannot take the
value «1, we only need to show that G, cannot take

the value O,
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As usual we suppose to the contrary that there

exist relatively prime X,Y,Z2 with
X? + 3XY + 3Y% - 3Z% + 3YZ = O,
Clearly taking congruences mod 3 shows that X = 3t for
some integer t, Then taking congruences mod 9 gives
that
Y2 + YZ - 22 =0 (mod 3),

i,e. (Y = 2)2 + 22 =0 (mod 3).
Hence Z =Y -2 =0 (mod 3). Then 3 is a common
divisor of X,Y,Z, contrary to our assumption that
X,Y,Z were relatively prine, This contradiction
shows that G, cannot take the value O and completes

the proof of the lemma,

Lemna 3,8
m+(F8) = #A/2L, m_(Fg) = ¥873.
Proof
Fg = J1/20{x?® - 8(2% - yz ~ &y®)}.
For the proof we consider the integral form
@s(x,¥,2) = ¥2U Fe(x,7,2).
Then we mist show that m+(G8) =1 and m_(Gg) = k.
As Gg takes the values 1 and -4, and as taking
congruences mod 8 shows that Gg cannot take the
values =2 or -4, we only need to show that Gg cannot

take the values -3 or O,
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Suppose to the contrary that there exist integers
X,Y,Z2 with
X?® + Y® 4+ 8YZ - 8Z°= 0 or <3,
i.e. X2 4+ (Y + 4Z)2 =0 (mod 3).
This implies that X = 3t and ¥ + LZ = 3s for some
integers t and s. Then
9t® 4+ 9582 -« 247% = 0 or =3,
i.e. 822 = 0 or 1 (mod 3).
This implies that 2 =0 (mod 3), and so 3 must
divide each of X,Y,Z. Hence Gg cannot take the
values O or =3 for relatively prime X,Y,Z. This is
sufficient to show that Gg cannot take the values

0 or -3, and completes the proof of the lemme,

Iemna 3,9
n (%) = ¥2/735,  m_(Fs) = ¥T675,
Proof (Due to Barnes and Oppenheim [2])
Fo = J2/1351(x + 4y)® - 15(2% = yz - v )i,
For the proof we consider the integral form
Go(x,5,2) = J135/2 Fo(x + 52,y — 102,y = 11z)
= x® + Xy + y2 - 9023,
Then we must show that m+(G9) =1 and m_(Gg) = 6,
As Ge takes the values 1 and -6 at (1,0,0) and

(8,2,1) respectively we only need to show that G

cannot take the values O0,~1,-2,=3,-4 or =5,
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Now
UGy = (2x + y)? + 3y® -360z° (3.2
and so taking congruences mod 3 shows that Gg cannot
take the values =1 or -L. Furthermore if Go(X,Y,Z)
were -3 we would have to have 2X + ¥ =0 (mod 3).
Setting 2X + Y = 3t we have
3t2 + Y? - 120Z% = -4,
which is impossible modulo 3.
If Go(X,Y,2) = =2 then taking congruences mod 2
gives
X+ XY + Y =0 (mod 2)
which implies that X =Y =0 (mod 2). Setting
X =2t and Y = 2s we have that
2t 4+ 25° + 2ts - L5Z® = -1,
Thus 2 must be odd and
2t2 4 2ts + 28 =44  (mod 8),
which is impossible.
If Gg(X,Y,Z) = =5 then taking congruences mod 5
in (3.2) yields that
(2X + Y)2 + 3¥2 =0 (mod 5).
This has only the solution 2X + Y=Y =0 (mod 5).
Setting 2X + ¥ = 5t and Y = 5s we have that
5t 4+ 582 + 32% = -4 (mod 35),
which is impossible,

This leaves only the value O to eliminate,
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Suppose to the contrary that there exist relatively
prime X,Y¥,Z with

(2X + Y)2® + 3Y® - 360Z® = O,
Then taking congruences mod 5 yields that
oX + Y=Y =0 (mod 5), and taking congruences mod 25
yields that Z =0 (mod 5). This gives 5 as a
common divisor of X,Y,%Z, contrary to the assumption
that X,Y,Z were relatively prime. This shows that
Gy cannot take the value 0 and completes the proof

of the lemma.
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CHAPTER

In this chapter we establish the general method of
prooif of thecrem A.

We first break down the theorem into ten sub-theorems
which when combined together are eguivalent to theorem A,
Rach of these sub-theorems takes the following ferm for
some i, O < 1 <9, where ap,by,I; and Fy are as in

theorem A.

Theorem Aj
Every normalised indefinite termary quadratic form
of signature 1 takes a value in the closed interval
Iy = [-Fai,¥pi].
Furthermore (for 0 € i < 8) closure is required on the
right only for forms equivalent to Fy+:, and
(for 1 < 1 € 9) closure is required on the left only

for forms eguivalent to Fi.

We now take the theorems Ay and try to reduce them
to a form in which they are more easily proven,
Consider, for 1 < i < 8, in place of theorem A; the

theorm By as follows.

Theorem By
If g is any indefinite ternary guadratic form of

signature 1 and with d(g) = 4 where
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0 < d < 1/by,
and if m+(g) = 1, then either
n_(g) < ¥=id

or g 1is equivalent to a multiple of either F; or Fi+i.

It is easily seen that theorem A; follows from
theorem By, for if f is any normalised form with
m+(f) = m then

(a) If 0 < m< I, f clearly takes a value in the
interior TIi® of I,
(b) If m > 3b,, consider the form
s(x,y,z) = £(x,y,2)/m.
This has
d = d(g) = 1/m® < 1/b,
and applying theorem By gives that either
(1) m_(g) < Jaid, from which it follows that
m_(f) < Ja,, and so f takes & value in TI;°, or
(ii) g 1is equivalent to a multiple of either Fy or
Fi+1, from which it follows, on comparing determinants,
that f 1is equivalent to either Fy or Fi+4i.
(c) The closure conditions follow automatically from

the results of Chapter 3.

Thus if we can establish theorems Ay and Ay and
prove theorems By,Bg,.sspBg Wwe will have proved

theorem A,
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Theorems By for 1 < i < 8, or more specifically
theorems Cp, stated below, from which thecrems By
follow, will be considered in later chapters, For

the present we will consider theorcms A and As.

Proof of Theoren Ap

Barnes [1] has proved the following.

"Every indefinite ternary quadratic form of
signature 1 with da(f) # 0 takes a value Vv satisfying

0 < v < JLa(ey/3.
Furthermore equality orn the right is necessary if and
only if the form is eguivalent to a multiple of
hy = -x2 + 8(y% + yz + 22)."

Theorem Ao follows immediately on setting d&(f) =1

and observing that

F,(%,y,2) = &hs(z ~ 2x - 2y,%,¥)J5/3.

Proof of Theorem Ag

Barnes and Oppenheim [2] have proved the following.
"Bvery indefinite ternary gquadratic form of
signature =1 with d(f) Z 0 takes a value V
satisfying
0 < v < Ji6a(x)/5.
Furthermore equality on the right is necessary if and

only if the form is eguivalent to a multiple of
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hy = -x% - xy - ¥° + 902%.7
Theorem Ag Tfollows jmmediately on multiplying the
forms by -1, setting a(f) = 14, and observing that
By (x,5,2) = =ha(x - 52,5 + 10z,-2)§2/735.

In order to simplify the theorems By we need the

following theoremn.

Theorenm l.1

Let f be an indefinite ternary quadratic form of
signature 1 and such that both m+(f) and m_(f) are
NORwZEero. Then if f does not attain the value
m+(f) we can associate with f another indefinite
ternary quadratic form £' with the following properties.

(i) aet(£') = det(L).
(ii) m+(f') = m+(f); m (£') > m_(£).
(1ii) £' attains the value m+(f).
(iv) ' is not a multiple of a form with integral
coefficients.
Proof

As m+(f) is not attained by f we can find, for
each integer n > 2, relatively prime ZXneIns2n such
that

m+(f) < f(xn,yn,zn) < (1 + 1/n)m+(f)o
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Let

£(Xns¥nszn) = (1 + §n)m+(f)
where 0 < 6y € 1/n, Then we can find a form
gn equivalent to T such that

gn = m (£)(1 + 6n)[(x + My + #n2)® + anly,2)]e

Now gn is an indefinite binary quadratic form and it
cannot take any value in the open interval

(-m_(£)/2m (£),1/L) (b1
as otherwise by choosing x such that
(x + \Y + pnz)? < 1/L we would obtain a value v of
f satisfying

~(1 + Sp)m (£)/2 < v < (1 + d“n)m+(f)/2,
which, as dp < 1/2, contradicts the definition of
either m+(f) or m_(£). Hence there exists a2 chain
of reduced forms, as described in the introduction,
all equivalent to ane. We take one of these reduced
forms and denote it by
eny® + Anyz + enzt.
Then by passing to an equivalent form we have
gn ~ b = m+(f)(1 + 6n)(x + ony + Bnz)?
+ eny? + dAnyz + enZ®].
We may assume without loss of generality that
tanl < 1/2, 1Bnl < 1/2,

as if this were not so, by using a suitable parallel



(57)

transformation on x we could pass to a further
equivalent form where this condition would be satisfied.
Clearly as qn cannot take any values in the open
interval (L4.1) both lenl and |enl must be bounded
away from zero by mnin {1/u,m_(f)/2m+(f)}. Then as
na(e) = (1 + &) (m (£))°(af +Henenl) (L2
it is clear that the sequences {cn} 1dn} and {en} are
bounded sequences., As {onl and {8} are also bounded
sequences we can choose a sub-sequence {yn} of §1/ni
such that the corresponding subsequences of {eni,{dni,
{enl,{an} and {Bn} converge to limits c,d,e,a and B
respectively. We shall show that
£t o= m+(f)[(x + oy + Bz)2 + cy® + dyz + ez®]
has the desired properties,
By taking limits of the subsequences corresponding
to {vn} in (L4.2) we have
blaet(£)] = (m (£))°(a® + bleel).
Then property (i) follows as the right hand side of
this equation is =hdet{f') and as £' must clearly
have signature 1.
Property (iii) is trivial,
Property (ii) clearly follows on showing that
£ takes values arbitrarily close to any value taken

vy £t If f' takes the value v at X,Y,Z, 1let



(58)

B = max (Ix!,1¥l,121). From the definitions of
c,dse,a and B it is clear that for any o > O we can
choose N such that the coefficients of x2,y°%,2°,xy,
xz and yz in hN differ from the corresponding
coefficients in f' Dy at most o,
[For example, if X > 1 denotes a common upper bound
of m+(f) and the elements of the sequences f{lenli,
flagtl,flenll, choose N such that 1/N is in {vnl,
3K3/N < o/, and each of le - cyl,la - dyl,le = eyl,
e = oyl and 1B - Byl 1is less than o /8x?,]
Then
‘hN(X:YyZ) = f'(X’Y,Z)l < 60’B2!
i.e. |n(X:¥,2) - vl < 6082,

As hN ~ f, and as o > 0 is arbitrary, it is clear
that £ +takes values arbitrarily close to any value
taken by f'.

Using the notation that f is in the e-neighbourhood
(abbreviated nhd) Ng(e) of g if the coefficients of
x®,y® ete, in f differ by at most € from the
corresponding coefficients in g, then we have seen
above that for any € > 0 we can choose n such that
hn is in Na.(€).

In order to show that f' cannot be a multiple

of a form with integral ccefficients we refer to the
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result of Cassels and Swinnerton-Dyer [4] concerning
the isolation of indefinite ternary quadratic forms
with integral coefficients, This result is that if

g 1is such a form and (#sn) is any open interval there
exists a nhd Ng(e) such that any form lying in Ng(e),
not a multiple of g, takes a value in (u,n), If we
assume kf' to be integral for some number k, and take
(psn) = (O,%km+(f)), then the above isolation theorem
shows that there exists Nf,(e) such that every form

g in Nf,(e) with m+(g) > %m+(f) is a multiple of
Bl As there exists n such that hy is in Na.(e),
h,, and thus f, must be equivalent to a mltiple of
. However this implies, using properties (ii)

and (iii), that f takes the value m+(f), in
contradiction to the given. This shows property (iv)

and completes the proof of the theorem,

We may now simplify the theorems B; as follows.
Suppose that theorem B; is false, Then there exists
a form g of signature 1, with d{g) = d where
0<dc< 1/b, with m+(g) =1, such that g 1is not
equivalent to a multiple of Fy or Fiy4+; and such that

n_(g) > Y= d.
If m+(g) is not attained by g, then by the above

theorem there exists g', not a multiple of an integral
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form (and hence not equivalent to a multiple of Fy or
Frsa) with a(g') = 4, m+(g') =1 attained by g',
and such that m_(g') > m_(g) > Fa,d.
Hence if theorem B; is false it still remains false if
we insert the extra condition that m+(g) is attained
by g.

Let theorem Gy denote theorem By with this extra
assumption. Then clearly theorem By will follow

once we have established theorem Cyg.

For the proofs of theorems C; we use a chain of
forms (ﬁi), ~0 < i < », equivalent to and associasted
with a given ternary form f.

Let T be an indefinite ternary gquadratic form of
signature 1 taking the value m+(f) =1, Then we
can find an equivalent form

g=(x+N +pz) + aly,z),
Now g 1is an indefinite bpinary quadratic form with
d(q) = a(f) £ 0, and it cannot take a value in the
open interval

(-m_(g) - 1/4, 3/4) (4.3

as otherwise we could choose x suitably (i.e. such
that (x + Ny + pz)? < 1/4 if the value of g were
non-negative, otherwise such that

1/b £ (x + Ny + uz)® < 1) to obtain a value of g
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that contradicts the definition of either m_(f) or
m+(f) = 1. Hence, as in the introduction, there
exists a chain of reduced forms
ap = (~1)lary® + bryz + (-1)'* e 442%, =0 <1 <
each equivalent to q. By applying a suitable y-z
transformation we may replace aly,z) in g Dby any
one of the qi(¥,z) giving
gL = (x + oy + f1z)% + q(¥,2)
equivalent ta £, Then by changing the sign of y 1if
necessary and by applying a suitable parallel
transformation to x we obtain, using the relations
of the introduction, a chain of forms
g. k4 = (x + Ny + mz)? + (-1)t2(z - Fiy)(z + Si¥)a.,
with [N | <% and || € £ such that each form k> of
the chain is equivalent to £, We shall call such a
chain an "equivalence chain® for ¥, It should be
noted that there may be a number of distinct
equivalence chains for a given f, depending on the

initial choice of g.
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In this chapter we prove theorem Ci. The proof

makes use of the following results.

Lemma 5.1
Let k > 2 be integral and let g be an

indefinite binary guadratic form., Define
A=[r¥ +x+ 3k - 1)/ + Lk]/(uk - 2),
B = min (4k?,k% + 6k + 1),

d = min {A?m_a/hk?,Bm+2/h,Bm_2/hk?}

where m, = m+(q) and m_ =m_(q). Then either

+

q is equivalent to a multiple of ** - kxy - ky°

d(q) > d.

Proof

or

The proof of this result depends on the work of

Tornheim [20]. Put
alx,y) = alx,y)/2/d(d)

so that Q has discriminant A® =1 and let
M=m(Q) =n (a)/2/a(d)
N = m_(Q) = n_(g)/2/d(q)

P = max (1/M,k/N).

fi

Then Tornheim has shown that either
(a) P > 2k, or
(b) P=JK° + Lk and @ is equivalent to

M2 - oy - ky?) = N - kxy - )/,

(5.1

or
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(¢) From the proof of lemma 7 of his paper,
N < k/A, or
(d) Prom his lemmas 8 and 10 the chain of gi for
Q@ contains at least one (k + 1) and

P> Jk + 6k + 1.

Now (a) and (d) give

1/M or k/N > min (2k,/K + 6k + 1) = /B
from which, using (5.1), we have that either
a(q) > m *B/4 > d, or
d(q) = m_*B/U%® > 4.
Similarly (e) gives that
d(q) = m *A% /1¥° > 4.
The lemma now follows on observing that the alternative

(b) implies that g is equivalent to a multiple of
¥ - kxy - ky®.

Lemma 5,2
Both hi(x) = x® - A(x + %£)? and
he (x) = x¥® - &(x + 2)® have only one real root.
Proof
Evaluation of the roots of the derivatives of

hy and hy shows that these roots are at most 1/8 in

absolute value (in fact they are (1/8 = J1/6L + 3/8)/6

and (1/9 + J1/81 + 1/3)/6 and the maximum of these is

1/8). Then hy; and hy are negative at these points,
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and so their graphs have both turning points below the
x-axis, This implies that hy(x) and hs (x) have

only one real root,

The Proof of Theorem Gy

We are now in a position to prove theorem Ci which
for reference is re-—-stated.
"If g is any indefinite ternary quadratic form
of signature 1, with d(g) = d where
0 < d < 49/54,

and if m+(g) =m =1 is attained by g then either

+

(a) m_(g) < ¥3/L8, or

(b) g is equivalent to a multiple of either F; or Fa."

As indicated at the end of Chapter 4 we consider
in place of g an equivalence chain (gi) of forms
equivalent to ge We have

gi = (x + Ny + piz)? + (1) a4 (2 - Piy) (2 + Siy)
where as indicated in the introduction

ai = ai+1FiS{
Fi = (DisDi+1sDitzsees)

S (O,PL-1,PL-—2,---)

i

Ki = F{ + Si
ai+1Xi = 43 A% = HTe N (5:2

Since (-1)*tai4(z - Piy)(2 + Siy) cannot take any
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values in the interval (4.3) we have, assuming that

n_(g) = m_ > 3708, (5.3

the following:

aip = 3/4 (i even), (5.4
ap > m_ + 1/4 > J&/48 + 1/4 (i odd), (5.5

Using (5.2) and setting
a = 498/54, O0<pB <1 (5.6

we obtain
Ki = 7/6B/9%i41.
Then using the bounds (5.4) and (5.5) we find that
Ki < 28/68/27 < 2.5403/8 (i odd), (5.7
Ki < 7W/BRL9IB(+ + 3zE2s) 1™ < 3.6893%B (i even). (5.8
As pi < Py < Ki we conclude that
pi <2 (iodd); pi <3 (i even).

The preoof is now presented as a series of lemmas,
each eliminating various possibilities for combinations
of pi occurring in the chain (pi]. In these lemmas
the following property will be used,

“If the sequence (r,;S,ecest) = (DisDitssecssDit])
cannot occur in the chain [pi] then neither can the
sequence (t,...s8,0) = (Dk—=jsa+esDk-1sPk) wWhere
k=3i (mod 2).,"

This follows from the fact that replacing y by

-y reverses the order of the chain ([pi] without



(66)

affecting the values taken by the form.
[In fact, if qly,z) = (-1)**tais.(z - Fiy)(z + Siy)
then the transformation z = z + PLY s } = -y gives
o(y,2) ~ aF,2) = (1) M ais(z - 333 @ + $i3)
where ¢ = (Fi - pi) = (OyDi+1sDi+2ss..) and
pi = (80 + i) = (PisDi-1sPi=zyees). Clearly this
reverses the order of the chain. ]
For simplicity, A and p will replace Aj and
pi  in the local considerations of the chain [pi] in

the following work,

Lemma 5,
The chain cannot contain either pi = 3 with
i evenor pi =2 with i odd.
Proof
Iet pi =2 with 1 odd and suppose that one of
Pi-1sPi+1 1is mnot 3. Then
Ki > 2 + (0,2,1) + (0,3,1) = 2%
which contradicts (5.7). Thus if pi = 2 with i
odd then DPi~1 = Di+r = 3.
Let pi =3 with i even and suppose that one of
Pi+1sPi—-1 1is not 2. Then
Ki >3+ (0,1,1) + (0,2,1) = 3%
which contradiects (5.8). Thus we must have

Pi-1 = Pi+1 =2, and SO Di— = Di+z = 3. Then
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Ky > 3 + 2(0,2,3,3) = 89/23
which again contradicts (5.8). Since pi = 3 (i even)
leads to a contradiction and pi; = 2 (i odd) implies
Pi+1 = 3 the lemma follows.
From this lemma we can conclude that

pi =1 (i odd); pi < 2 (i even).

Lemma
The chain cannot have Dpi-1 = DPi+1 = 1 Wwhere
i 1is odd.
Proof
Suppose that pi-1 = Pi+1 =1 with i odd. Then
Fi > (1,1,1,2) =1 + 1//3 > 1.57735. (5.9
Similarly Si > .57735, and so Xi > 2,1547. Using
(5.7) we can obtain that B > 71944 and combining
this with (5.3) and (5.6) we find that
m_ > .2386. (5.10
Now
Fi < (1,1,1) = (J5 + 1)/2 ]
- (5.11
and sy < (0,1,1) = (/5 - 1)/2. i
Using these bounds together with the lower bounds (5.9)
we obtain that
91068 < FiSi < 1
1 (5.12

.91068 < (Fy - 1)(sy + 1) < 1.

In addition we have, with regard to (5.4),(5.2) and
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(5.6), that
75 < ajpr = 7/6B/9KL < .88LL.
Suppose, contrary to what we wish to prove, that
ai+1 < .81, Then as m = 1, choosing x so that
(x + u)z € #, 1t is clear that we must have the value
(x + u)? + aj4s 2 1. Therefore
(x+ u)® 21 - a4 = .19.
This implies that
lu - 2l < .o06u2, (5.13
where “t" denotes the distance from t to the nearest
integer. Choosing x so that 1/4 < (x + A)® < 1
gives gi the value (x + A)® - a2 4+1FiSi which is less
than 1. Then
(x + N)? < ai42FiBL - m_.
Using (5.10) and (5.12) gives that
(x + N)? < 5714
and so ||\ - £} < .256.  Combining this with (5.13)
yields that ”% - uﬂ < .3202, s0 we can choose X such
that (x + N - u)® < .103. However using the bounds
(5.9) and (5.11) we find that
ap+1 (1 + F) {1 - Si) < .8963,
giving
(x+ N =p)® +eipa(1 + F)(1 - 8) < .9993.
This is a value of gi contradicting m,6 =1, and

+
shows that we cannot have aj4+s < .81, Thus we have
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.81 < ai+1 < 8844, (5.14
In the following values of gi we choose X such

that the square lies between 1 and 2.25 inclusive:

(x + N)? - ap+1PiSi,

(x + N+ p)? - ap+ (P = 1)(8L + 1),

Equations (5.12) show that these values are non-
negative, so they must be at least 1 (=m+). Thus

(x +A)® 21 + ai+1FiSi. (5.15
Then using (5.12 and (5.14) we have
(x + N\)® > 1.73856, which yields that |[IA - 2| < .182.
similarly ||n +p - 3| < .182. thus ||uf] < .364,
so we can choose x such that

(x + p)? < (.364)% < ,1325.
In order that the value (x + u)® + ai4y shall not
contradict m_ = 1, we must have aj+1 > .8675.
Using this instead of (5.14) in (5.15) and repeating
the argument gives that [uf < .326, so we can choose
x such that

(x + p)® + agq4s < (.326)% + .88L44 < 1.
This contradicts m = 1 and completes the proof of

+
the lemma.,

Lemma 5.5

The chain cannot have pPi-s = Di-1 = 2, Pi+1 = 1

where i is odd.
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Proof
Suppose to the contrary that such an i was in the
chain, Then the previous lemma implies that Dpi4+s = 2,
and so
Fi-a = (2,1,1,1,2,1,...) > (2,7,1,7) > 2.6329,
Si-1 = (0,1,2,1,...) > (0,7,2,1,1) > .7247.
Thus Ki > 3.3576. Using (5.2),(5.3) and (5.5) we

find that

_ 2 K Fm_+ 1/L)%/3 /b,
and inserting the above bound for Xi gives that

m_ > ¥3.7578Cm_ + 1/0)° /.

By iterating on this, commencing with m_ > 0, we

eventually obtain that m_ > .242.

The following bounds on Fi{ and Sy may be easily

obtained.
1.57735 < (1,1,1,2) < < (1,1,1,2) < 1.580,
366 < (0,2,1,2) < < (0,2,1,2,1,1) < 36702,

Then Xi > 1.9433, and using (5.2) and (5.,6) we can
deduce that ai4+s1 < 9804, Combining this with the
bounds for F{ and S; yields that
ai+1FiSL < .5686,
(5.16
ap+1 (1 + 3F) (38, - 1) < .5686.
Choosing x with 1/4 < (x + A\)® <1 gives, by the

same method as in the previous lemma, that
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(x +N)? < ai+aFiSi - m_.
Using the above bounds for m_ and ai+1FiS{ gives
(x + N)2 < .3266 < (.5716)%,
and so ||A - %" < 0716, Similarly we can prove that
I3n - 4 - 2| < .0716, and so [UA - pfl < .1432. Now
8i+g (7.309) (LL6L) < ai+s (1 + LFL)(4SL - 1) < 3.36,
and we can choose x such that 3.4 < (x + LN - u)® < 4.
This gives & positive value
(x + U\ = p)? = a4 (1 + 4F) LSy = 1)
of gi, so in order not to contradict m, = 1 we must
have
ai+1 (7.309) (LL6L) < 3.
Thus ai41 < 8847, This enables us to revise the
bounds in (5.16), and repeating the analysis yields
that [N - & < .021 and that |3\ - p - 4] < .021.
Then ”#“ < 084, so we can choose X such that
0 < (x + u)® + ai+s < (,084)% + 8847 < 1.
This contradiction to m, =1 completes the proof of

+
the lemma.

It follows from the above lemmas that the chain
[pi] must be one of the following:
(a) o(1,2)e0, i.e. for all Jj, Dej =2, D2j+s = 1.

(b) o(1,1,1,2)0, i.e. for all j,

Pej—1 = Paj = Paj+1 = 1y DPaj+2 = 2,
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We now consider these special cases in turn,

Lemma 5.6
If the chain [pi] is of(1,2)cy, then g ~ F3¥3/L.
Proof
If the chain is w{1,2)w, we have for i even
gL = (x + Ny + piz)® - ai4a(2® - 2yz - 29°).

Since gi ~ g there is no loss of generality in dropping

the suffixes and taking g; to be g. Then
d = d(g) = 32® < L9/5U4,
and so a < 7J2/18 < .55.

In addition, d/L8 = a®/16, and so (5.3) and (5.5)
yield that
m® > (m_ + 1/4)2/16,
i.e. hy(m_) = O.
By using lemma 5.2, noting that h,(1/L4) = 0, we have
m_>1/4; a>1/2.
Consider the binary quadratic form
t(x,z) = az® - (x + uz)?,
the negative of a section of g. This must have
m (t) > 1/h, m_(t) =1.
Then taking k = 4 in lemma 5.1 we have that either
(2) ¢t ~ (2% - hxz - 4x®)/4 and a = d(t) =1/2, or
(b) a = a(t) > .5389.

Por the moment let us consider the second
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possibility. This gives
m_ > ¥a%/16 > .26.
Choosing, without loss of generality, O < u < ¥, we
have in the section -t{(x,z) with x = -z =1 that
(1 - u)® - ac< .5
Then this value must be at most -m_, and so
(1 - u)® <a-m_ < .29 < (,5386)2,
from which we can deduce that . 4b14 < p < .5. Then
in the value =t(1,3) we have that
5.66 < (1 + 3u)® < 6.25,
L.85 < 9a < 4.95.
In order not to contradict m, = 1 we must have
(1 + 3u)® > 5.85, giving .L728 < 4 < .5. In the
value -t(5,-4) we have that
9 < (5 = Lu)® < 9.67,
8.622 <« 16a < 8.8.
Then as m, = 1 we must have 16a < 8.67. In the

+
value -t{(1,4) we have that
8.35 < (1 + Lp)? < 9,
8.622 < 16a < 8.67.
Then as m_ =1, m_ > .26 we have that
8.35 < (1 + Lu)® < 8.67 - .26 = 8.41 = (2.9)3,

Hence we must have that

.4728 < u < 0L|-750 (5017
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By an identical treatment applied to the sections
“ty = (x + (N = p)z1)? - az,®: Vo= =% = 23
“ty = (x + (N + 3u)z2)? - az®: 2z = 333 = 3y
we can derive that
U728 ¢ N = p < J475 or .525 < N =-p < .5272 (5.18
U728 ¢ N+ 3u < U475 or .525 < N+ 3u < 5272 (5.19
(modulo 1). These inequalities (5.17),(5.18) and
(5.19) can be shown to be inconsistent by adding
L times (5.17) to (5.18).
This eliminates the possibility that a > .5389

and leaves a = 5. In this case

c+.

~ 32% - (x + $2)?,

zs® - (x + 321)%.

N

ts ~
This yields on considering the types of forms equivalent
to 422 - (x + 32)® that pu=rN-p=% (mod 1), from
which it follows that g 1is equivalent to

(x + 42)® - 3(2* - 2yz - 2°) = F1J3/L.

Lemma 5.
If the chain [pi] is o(1,1,1,2)0 then
g ~ F2JL9/5L.
Proof
If the chain is ow(1,151,2)ec we have for i even
and 7pi = 2 that

gi = (x + Ny + piz)® - aipa(2® - 2yz - &°).
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Since gy ~ g there is no loss of generality in dropping
the suffixes and taking gi to be g. Then
d = a(g) = 8a°/3 < L9/5L,
and so a < 7/12.
In addition &/48 = a®/18 and sc as in the previous
lemma we obtain that hs(m_) > O. Since hs(.23) < O
we must have m_ > ,23. By the same method as in the
previous lemma it can be shown that either
(a) az® - (x + pz)® ~ 322 - (x + 22)%, or
(b) a > .5389.
For the moment let us consider the first possibility.
In this case a = . If we set ¥y = 32a, 2 = -22s
then we must have
azg® - (x + (BN - 2u)23)? ~ %25% - (x + 123)%,
which yields, taking (a) into consideration as well,

that pu =3\ -2u=% (mod 1). From this we can

deduce that A =% or *} (mod 1). However N\ = %%
gives the section (x + A)%2 + 2 the value 2%}, and
N = L1 gives the section (x + A -pu)® - 1(1 +2 - %)

the value £, in each case contradicting m = ik
This eliminates the possibility that a = 3, leaving
a > .,5389, from which we obtain that

m_ > 9a5718 > 252,

Choosing x with 1/4 < (x + u)® <1 in the section
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(x + p)z ~ a gives a value less than 1, soO this value

is at most -m_. Therefore
(x + p)2 < 7/12 - .252 < .331h < (.5757)%,
This yields that [lu - ¥] < .0757. Thus we can choose

x such that
5.0 < (x + 3u)% < 6.25.
Then as L.85 < 9a < 5.25 this gives ({(x + 3u)? - 9a
a value greater than -m_, 8O this value is at least 1.
This implies that
(x + 3u)® > 5.8501 > (2.4178)%,
from which it follows that
le - 2] < .0274. (5.20
The value (x + N - u)® - La/3 with Xx chosen
such that 1 < (x + N = )® < 9/4 yields, as
.718 < ha/3 < 7/9, =a positive value of g. This
value must be at least 1, so
(x + N = u)® > 1.718 > (1.31)3,
which yields that
INn-n -2 < .19. (5.21
since 5a/3 < 35/36 it is clear from the sections
(x + N)® + 5a/3; (x + 2n - p)? + 5a/3;
(x + N + 2u)% + 5a/3; (x + 2N + 5u)? + 5a/3;
that we must have
NsN + 2u,2N - g,2N\ + 5y each at least  from 0 (5.22

(modulo 1).
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It is easily verified that the only solutions to the
congruence inequalities (5.20),(5.21) and (5.22) are
A= i%; p =% (mod 1). Then in order that the section
(x + N2 + 5a/3 shall not take a value contradicting

m, =1 we must have a = 7/12. Thus we must have

g~ (x+3y+32)® - (2 - 2yz - &5°) = Falf9/50

as required,

Combining the lemmas proven we have shown that if
m_(g) > ¥34/L8 then g is equivalent to a multiple of
either P, or Fs. This is clearly equivalent to

proving theorem C;.



(78)

CHAPTER 6

In this chapter we prove theorem C; which for
reference is re-stated.
"If g is any indefinite ternary quadratic form
of signature 1, with d(g) = 4 where
0 < d < 9/8,
and if m+(g) =m, = 1 is attained by g then either
(a) m_(g) < J2d/L9, or
(b) g 1is ecuivalent to a multiple of either Fs or Fs.'

The Proof of Theorem Co

As in the previous chapter we consider, 1in place
of g, an equivalence chain (gi) of forms equivalent
to g. For simplicity we use the same notation as in
the previous chapter, renaming (5.2) as (6.1), 1i.e.

ai+1Ki = A; A% = 44, (6.1

and replacing (5.3) by the assumption that

m_(g) = m_ > ¥2a/k9. (6.2
Similarly (5.4) and (5.5) become
ap > 3/4 (i even) (6.3

ap >m_ + 1/4 > ¥2d/49 + 1/4 (i odd), (6.4
from which, using (6.1) and setting

d=988, 0<pB<i1, (6.5
we obtain that
KL = 3J2—E/2a£+1¢ (6 06
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Then using the bounds (6.3) and (6.4) we find that
Ki < 2/28 < 2.82843/8 (i odd) (6.7
k. < 3/2BL2¥B% + PEE) 1™ <« 3.48859%9B (i even)6.8
As py < Py < XKy we can conclude that
pp < 2 (i odd); pi € 3 (i even).
The proof is now presented as a series of lemmnas,
with the use of A,u for N,y respectively for
simplicity.

Lemma 6.1
The chain [p;] cannot contain py = 3 for
i even.
Proof
If py =3 with i even then
F > (3,2,1) = 10/3; 8¢ > (0,2,1) = 1/3
and so Ky > 11/3 which contradicts (6.8).

Lemms 6,2
The chain [py] camnot contain p; =2 with
i 0dd unless DPi-1 = DPi+1 = 2.
Proof
Suppose that pi = 2 with i odd and with one of
PL-1sDi42 DO 2, Then
K, > 2 + (0,2,1) + (0,1,1) =17/6

which contradicts (56.7).
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Lemma 6,3

If in the chain [pi] there is an odd Jj with
pj = 1 then either (a) pj-z = Dj+2 =1 or
(b) pj-1 = Dj+1 = 2 and one of Dj-z,Pj+z 15 1.
Proof
Suppose that pj; =1 with J odd and that one of
Pj-2sPj+2 1is not 1. Then lemma 6.2 shows that
there are in effect two possible cases where (b) does
not hold, viz
(i) pj~z = pj+2 = 2; the chain is ..,2,2,2,},2,2,2,..

J

It should be noticed that the reverse situation to
(ii), i.e. Dj—= = 2, Dj+z = 1, 1is equivalent to (i1) -
this was observed in chapter 5.

We now take i = j + 1 and consider these two
cases together, for the actual method of proof is the
same although the bounds may differ. Where the
bounds do differ, those given will be those for case
(ii) with those for case (i) following in square
brackets.

We have that

P > (2,2) =1 + J2 > 2.41421
and that

Sy = (0,7) > 618  [(0,1,2) > ,7071].
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Hence K; > 3.0322 [3.1213], and using (6.,6) yields
that
apra < 3/(3.0322/2) < 69961 [.68].
Now we also have that
Fi < (2,2,2,1) < 2.42265
and that
St < (0,1,1,T,2) < 634 [(0,1,2,2,2,T)<, 7079
Consideration of the section y = 1,z =2 of g,
with (x + N + 2u)® < 1/h, yields that
apsq > +67369 [.6553] and that
N+ 22 = )l < .03, (6.9
In addition, as m_ 3 > 81;4%K%/98 we obtain
in each case that
m_ > «349.
Considering the section (x + p)? - aj4y with
1/4 < (x + p)? €1 yields that
Nu - £l < 0925 [.0754].
Then using (6.9) we obtain that
In=-pll < .31 [.257].
By choosing x such that 1 < (x + A= p)® < 1.72
[.552 < (x + N = u)® < 1] in the section
(x + A= p)® = a1 + PO - 3)
we obtain a value of g in the open interval
(.,085,.879) [(~«138,.35)] which contradicts either

m_ = 1 or m_ > «349.
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Lemma 6,

If in the chain [py] there is an odd J with

p;y = 1 then we cannot have pj-z = 1, Dj=~1 = Dj+1 = 2.
Proof

Suppose that such a situation occurred. Then

setting 1 = j - 1 we have that
F = (2,1,2,..) = (2,1,2) > 2.7071,
St = (0,1,..) = (0,T) > .618.
Hence Ky > 3.3251, and so aj4s < 638 follows from
(6.6}, Combining (6.1),(6.2) and (6.4) yields that
m 3 > ay+22K%/98 > K 2(m_ + 1/L)2/98,
and inserting the bound for X; gives that
98m_2 > 11,05629(m_ + 1/4)3.

Tterating on this, commencing from m_ > 0, eventually
gives that m_ > .339, aj4+s > +589,

Consideration of (x + u)® - ap4s with
1/ < (x+ ) <1 gives that |lp - Zll < .0u681, Then
in the value (x + 3u)% -~ 9214+s+ we have that
5,301 < 9ay41 < 5.742 and we can choose X such that
5.567 < (x + 3u)® < 6.25. This gives a value of

gy that contradicts either m =1 or m_ > «339.,

Lenma 6.5
If in the chain [p;] there is an cdd Jj with

p;y =1 then p; =1 for all odd 1.
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Proof
We only need to show that pj—z = pjse =1 if
p; =1 with J odd. This follows from lemma 6,3,

using lemma 6.4 to eliminate the possibility (b).

Lemma 6.6
If in the chain [py] there is an odd Jj with
Pj =1, Djgs = 2 then DPjogs = Dj4a = 1
Proof

This is a direct consequence of lemmss 6,4 and 6,5,

Lemma 6
If in the chain [py] there is an odd Jj with
Pj =1, Pj+s = 2 then pj-z # 1.
Proof
Suppose to the contrary that there was an odd
J with pj=3z =p3y =1, DJj+1 = 2, Then setting
i=J+1 we have that
2,618 < (2,T) < Fy < (2,1,1,1,2,1,2) = 79/30,
618 < (0,7) < 8, < (0,1,1,7,1,1,2) < 62021,
and that K; > 3.236. By using a similar method to
that used in lemma 6.4 we obtain that ap.s < .6556
and that
98m_2 > 10,47169(m_ + 1/4)3,

from which m_ > .33 follows by iteration.
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Consider the form
t = aj4122 = (x + pz)?,

the negative of a section of gi. This has

i

m_(t) =m(gi) =1,
m (t) > m_(g) > .33.

Now using lemma 5.1 with k = 3 we find that either

(1) a(t) >.6577, which contradicts the previous
bound ai+s < ,6556, or
(i1) a(t) = a4 = 7/12.
Then as Ki < 3.2536 we have that

d = ai+12Ki®/4 < 19/5L

and the result follows from theorem Ci.

Lemma 6.8
pi = 2 for at least one 1.
Proof
If pi =1 for all i then for 1 even
gi = (x + ANy + piz)® - a4 (2 - yz - ¥2).

Since gi ~ g there is no loss of generality in

dropping the suffixes. Then
d = d(g) = 52%/4 < 9/8,
and so a < .9u87. (6.10

If a < .852 then 4 < 49/54 and the result follows
from theorem Ci. Hence it is sufficient to assume

that a > .852,
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Considering the sections
(x +N=-pP-a; (x+p)2 -a
with 1 < (x+ u)®2 <9/4, 1< (x+N-p)% <94 we
find that each square must be greater that 1.852, from
which it follows that ||z - | < .14 and that
IN = - 2] < 4. Hence ||A]] < .28, and so we can
find x such that
0 < (x+2A)?% +a< 0784 + a.
Thus as m,_ = 1 we must have a > .,921. Repeating
this argument using this new bound gives that a > .947,
and a further iteration gives that a > .95,

contradicting (6.10). This completes the proof of

the lemms,

Suppose that pj = 1 for all odd J. Then from
lemma 6.8 we must have Dpi+1 = 2 for some odd i, and
lemmas 6,6 and 6.7 applied to [pi] and the reverse
chain show that

Pi+s = Pi-3 = 25 DPi-1 = Pi+s = 1.
Repetition of the argument yields that
Pj =2 (j=1i+ 1 (mod L)),
pj = 1 (otherwise),
and hence the chain [pi] is o(1,1,1,2) .
Suppose that pj; = 2 for some odd J. Then

lemmas 6.2 and 6.5 show that pj; =2 for all J, and
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so the chain is w{(2)c.
We shall now consider these remaining two

possibilities.

Lemma 6.9
If the chain [pi] is o{1,1,1,2)0 then

g ~ F23949/54.

Proof
If the chain is of(1,1,1,2)0c we have for i even
and pi = 2 that
gL o= (x + Ny + piz)® - ana (2 - 25z - 39°).

Since gi ~ g there is no loss of generality in dropping

the suffixes and taking gi to be g. Then
da = d(g) ] 88.2/3 < 9/8,
and so a < .65,

By the usual method we obtain that

m® > 16(m_ + 1/4)2/147.
Hence

47m ® - 16m ? - 8m_ -1 > 0,
and so

(3m_ -~ 1) (4om ® + 11m_ + 1) > O.
Then as m_ » O we must have m_ > 1/3, a > 7/12.
Now considering the section (x + p)® - a with
1/ < (x + p)® <1 as in lemma 6.7 we find that

lu - 2] < .ou1.
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Then considering the section (x + 3u)® - 9a with
5.65 < (x + 3u)® < 6.25 we find, if a > 7/12, that
g takes a value in the open interval (-.2,1),
contradicting either m, =1 or m_ > 1/3. Hence
a=7/12. Then 4 = 49/54 and applying theorem C4
shows that g ~ F2?E§7§H.

Lemma 6,10

If the chain [pi] is o(2)ew then g ~ F2Y¥9/8,
Proof
If the chain is w(2)w we have for i even that
gi = (x + My + uiz)® - ai4a(2® - 2yz - ¥%).
As gi ~ g there is no loss of generality in dropping
the suffixes and taking gi to be g. Then
d = d(g) = 2a° < 9/8,
and so a < 3/U,
As m, = 1, considering the sections
(x+AN)2 +2, (x+N+2u)% +a
we find that a =1/4L and A=A+ 2z =% (mod 1).
Then as p =0 implies that g takes the value
1 -3/4 =1/4 when y =0, 2 = 1, contradicting m,=1,

we must have pu = 3. Hence

g~ (x + 3y + 33)% - 2(z®

oyz - y2) = F:39/8.
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CHAPTER

This chapter is devoted to proving the following

result:

Theorem D

If g 1is any indefinite ternary quadratic form of
signature 1, with d(g) = @ where
0 <4< 3/2,

and if m+(g) =m_=1 is attained by g, then either

(2) m_(g) < §3/9, or

(b) g is equivalent to a multiple of either Fs,Fs or

Fs.

This theorem is stronger than either theorem Cs,
which makes the stronger assumption that 4 < 144/125,
or theorem C;, which has the weaker conclusion that
m_(g) < 735773. Thus theorems Cz3 and C, will follow
when we prove theorem D.

Applying theorem D to normalised forms, in the
way that theorems Ay are deduced from theorems By, it
can be seen that every normalised indefinite ternary
quadratic form of signature 1, not equivalent to Fa,

takes a value in the closed interval [-¥1/9,¥2/3], the

intersection of intervals Iz and 1.,
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Proof of Theorem D
As usual we consider, in place of g, an
equivalence chain (gi) of forms equivalent to g.
Assuming that m_(g) > ¥a/9 and using the same

notation as in the previous chapters we have that

ap+1Ki = 4; S IT: (7.1
m_(g) =m_ 2 7&7—, (7.2
aip > 3/ (i even), (7.3
ai >m_+ /b >¥3/9 + 1/4 (i cdd), (7.4
d=38/2, 0<gB <, (7.5
and Ky = J/6B/2i+1. (7.6
Using the bounds (7.3) and (7.4) in (7.6) we obtain
that
Ki < Wf6B8/3 < 3.266/8 (i odd), (7.7
Ki < JOBLIBGEE + L)1 < 3.06298 (i even). (7.8
Hence we must have piy £ 3 for all 1, If however

Pi = 3 for some 1 we would have

Ki > (3,4,1) + (0,4,1) = 3.4
which contradicts the relevant one of (7.7) and (7.8).
Thus we must have pi <€ 2 for all i,

We now present the proof as a series of lemmas,

Lemma 7.1

If pi =2 with i even then pi-2 = Di+1 = 2.
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Proof
Let pi =2 where 1 1is even and suppose that one
of DPi-1,Pi+s 1is 1. Ther we have that
Ki > 2 + (0,1,1,2) + (0,2,1,2) > 2.943,
and comparing this with (7.8) yields that ¥B8 > .96113,
i.e. ¥B > .92377. Hence as m_ > yB/6 we have that
m_ > .508, and so ai4s > .758. In addition, wusing
the above bound for XK; in (7.6), we find that
ai+1 < .8324. However applying lemma 5,1 with k = 2
to the form
t = aj+12° - (x + pz)?,

the negative of a section of g (and thus m_(t) =1,
m, (t) > .508), yields that either

(a) t ~ $(x® - 2xz - 22°), with d(t) = aj+1s = 3/h4, oP

(b) ai+a = a(t) > oLk,

in either case contradicting .758 < ai+1 < .8324,

Lemma 7.2
If pi, =2 with i even then pi =2 for all
i and g ~ Fb?§7§.
Proof
Let pi = 2 where 1 1is even. Then we have
that
Ky > 2 + (0,2,1) + (0,2,1) =1 + 3.

Now combining (7.1),(7.2) and (7.4) we have that
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m® > K2(m_ + 1/4)2 /36,
and inserting the above bound for X; yields that
m_® > 7.4641(m_ + 1/4)%/36.
From this, by iteration, we obtain that m_ > .L78,
and hence the form
t = ap4e2® - (x + pz)?
has m_(t) =1, m+(t) > J178. Lpplying lemma 5.1
with k = 2 yields that either
(a) ap4a = 3/4, or
(b) ag4s > <913,

However as (b) implies that d = ay442Ki3/4 > 1.55
which contradicts the given we must have ap;s = 3/4.

Now we have, using the previous lemma, that

F, < (B) 5 s < (0,2) = 1/(2),
and so FiSy<1 with equality if and only if py = 2
for all i, However as FiS; < 1 implies that
ap+1F1 Sy < 3/4 which contradicts (7.3) we must have
py = 2 for all i, Thus
gi = (X + Ny + pz)® - 2(2® - 2yz - ¥°),

and so d = d(g) = 9/8 and the lemma follows from
theorem Cs .

For the remainder of the proof of theorem D we

may assume that py =1 for all even 1.
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Lemma 7.3
If py =2 with i o0dd then pi— = Di4z = 1.

Proof
et py =2 with i odd and suppose that one of
Pi—=2» Pi+z 18 2, Then
K > 2 + (0,1,2,T) + (0,T) > 3.31
which contradicts (7.7).

Lemma 7.h
Ir Py = 2 with i odd then DPi-es = Pil4s = 2
Proof

Let pi = 2 with 1 .odd and suppcse that one of
PiL—zs Pis+e 18 1. Then by considering the reverse
chain if necessary we may assume that pi-s = 1. This
gives the following bounds:

2,618 < (2,7) < Fi < (2,1,1,1) < 2,633,

618 < (0,7) < S¢ < (0,1,1,T,1,1,2) < 62021,
Hence Ki > 1 + #/5 > 3.236, and using this in (7.6)
gives that ai,s < .757. In addition, a4y > «75
follows from (7.3), so combining (7.1) and (7.2)
with the above bound for XEKi yields that

m® > (3 + J5)/32 > (.545)%,
i.e, m_ > .5h5.
Considering the value (x + p)% + agyy of g

yields that
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Me -2l < o071, (7.9

Furthermore choosing x such that 1 < (x + A)2 < 9/
in the section (x + N)? - ay,,F8; of gy yields, as
1.212 < ap4+4F1S1< 1.237, that [N = 3l < (013,
Combining this with (7.9) shows that |5\ = 3ull < .09,
and hence we can choose X such that
1 < (x + 57N = 3u)% <1.19. However

1.08 < ap,1(3 + 5F)(58, - 3) < 1.24,
and so g; takes a value in the open interval (=e24,.11),
contradicting either m = 1 or m_ > .545, This

contradiction completes the proof of the lemma,

It follows from the sbove lemmas that if
g # F339/8 and if p; = 2 for some 1 then the chain

mist have

p; =2 (3 =1 (mod L)),
Dy = 1 {otherwise),

and so the chain is oo(1,1,2,1 )0

Lemma 7,5
If the chain [py] is (1,1,2,1)0 then
g~ F5937—.
Proof
If the chain is oo(1,1,2,1) then for odd i with
pL = 2 we have thst
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gL = (X + Ny + p2)® + aga(2® - 2yz - 8y°).
Since gi ~ g there is no loss of generality in
dropring the subscripts and taking gi to be
a = d(g) = 8a%/3 < 3/2,
and so a < 3/L.

S Then

However as a > 3/4 by (7.3) we must have a = 3/,
and so considering the sections (x + u#)? + 3/b and
(x + N\)2 - 5/4 we find that g =A=% (mod 1). Hence
g~ (x+ %y + 32 + (2% - 2yz - &5°)
~ (x4 2y + 32)? - &(2® - &yz - &P),

i-e. g~ Fsss; Iy

There is only one further possibility left for the
chain [py], namely p; =1 for all i, We now

consider this case.

Lemma 7.5
If the chain [py] is oof(1)o then g ~ P JILL/125.
Proof
If the chain is of(1)e then for i even we have
gL = (x + Ny + m2)? - ay41(2° - yz - 3°).
Since g; ~ g there is no loss of generality in dropping
the suffixes and taking g, to be g. Then
d = d(g) = 5a%/L4 < 3/2,

and so a < 1,096,
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In addition a > 3/4 follows from considering the
section (x + N)? + a. In fact we must have
a > 1 = lInl?,
and as
Al < e =20+ In=-p =2l
it follows that
az1=(lpg-2l+lIn-p-20)2 (7.10
Now the section (x + p)® - a with X chosen such
that 1 < (x + u)® < 9/4 gives a value of g 1lying in
the half-open interval (-.096,1.5]. Then as
m_ > ¥&79 > ¥5/L > 427
this value of g is at least 1, and so (x + p)? > 1+a,
Hence
i - 31 <372 - T,
Similarly it can be shown that
IN - -2 <3/2-J/1+%a.
Inserting these in (7.410) yields that
a>1-(3-2/1+a)?,
whiech on simplification implies that (252 - 24)a 2 0,
Then as a > 3/4 we must have a > 24/25,
Considering the sections (x + u)?® - a,
(x +N=-p)® —a and (x + N+ 2u)° - a with the

squares chosen the closed interval [1,9/4] we find that

4

e -2 < .1, (7.11
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In=-n-2f <. (7.12
and N+ 20 - 3] < 1. (7.13
Subtracting (7.12) from (7.13) gives |[3uf < .2,
while multiplying (7.11) by 3 gives "3 - %l < .3
i.e. |3u] = .2. Hence |3u]l = .2, and combining this

with (7.11) we find that g = .4 or .6 (mod 1).
Without loss of generality we may take u = J4. Then
(7.12) and (7.13) imply that A = .8 (mod 1),
As 3,84 < ha < L.4 the value
(3 - 2u)® - La = 4.84 - La
will contradict m =1 unless a = 24/25, Hence
g~ (x+ 8y + 320 - B4 - yz - ¥°)

= FaI14L/125.

This completes the proof of theorem D,
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CHAPTER 8

The proof of Theorem Cs.

For reference the theorem is re-stated.

Theorem Cs
If g is any indefinite ternary quadratic form of
signature 1, with d(g) = @ where
0 <4 < 112/27,

and if m+(g) =m, =1 is attained by g then either

(a) m_(g) < ¥2d/3, or

(b) g is equivalent to a multiple of either Fs or Fe.

Both this theorem and theorem Cs may be deduced
from the work of Venkov [21]. This will be shown in
chapter 10. For the sake of completeness, however,
theorems Cs and Cg will be proved first by methods

similar to those of the previous chapters.

Proof of Theorem Cs
As usual we consider in place of g an equivalence
chain (gi) of forms equivalent to g. Assuming thet
m_(g) > ¥2d/3 and using the same notation as in the
previous chapters we have that
ai+1Xi = A; A® = 44, (8.1
m_(g) = m_ > ¥24/3, (8.2



ai > 3/4 (i even),
a, >m_+ 1/b > ¥24/3 + 1/4 (i odd),
d = 1128/27, 0 < B <1,
and Ki = 8/78/3/3ai+1.
Then using the bounds (8.3) and (8.4) in
(8.6) we obtain that
Ki < 8/78(3/3 B (Fo2u/81 + 1/4) ]t < 2.L643YB
for i even and that
Ky < 32/76/%3 < 5.43121J8 (i odd).
Hence we must have
pi €5 (iodd); pi <2 (i even).
Now suppose that piy = 5 for some odd 1i.

Ki > 5 + 2(0"2,15) = 17/3

which contradicts (8.7). Hence pi < 4 for all

odd i,
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(8.3
(8.4

(8.5
(8.6

(8.8

(8.7

Then

We now present the proof as a series of lemmas.

Lemma 8,1

If pi =2 with i1 even then Di-1 = Pi+s1 = U.

Proof

Let pi =2 with 1 even and suppose that one

of pi-1y Pi4+1 1s not 4. Then
K, > 2+ (0,4,1) + (0,3,1,4)
> 2.468

which contradicts (8.8).
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Lemma 8.2
pi =1 for all even 1.
Proof
ILet pi =2 with 1 even. Then pPi-1 = Pi+1 = U
and so
Ki > 2 + 2(0,4,1) > 2.414,
Hence using (8.6) we obtain that aj4+s < 1.688.
Now combining (8.1),(8.2) and (8.4) gives that
m_® > K2 (m_ + 1/L)3/6, (8.9

and inserting the bound on X; yields that

m_ > ¥.97123(m_ + 1/L)%.

By iteration, commencing with m_ > O, we eventually
obtain that m_ > 1.35, and so (8.4) yields that

ai+1 > 1.60. However we can clicose Xx such that

1 < (x+u)® <9/4, and so g; takes the value

(x + #)® - ai4+s+ lying in the open interval (-.69,.65).

This contradiets either m =1 or m_ > 1.55.

Lemma 8.3
If pi =4 with i odd then pi4e2 = 2 and

Pi—2 2 2.
Proof
et pi =4 with 1 o0dd and suppose that pi—= =1.
Then

Ky > b+ 2(0;7) 3 5:236,
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Using (8.1),(8.2) and (8.3) we obtain that m_>1.369.
Now it follows on consideration of (x + ui-1)? - ai,
choosing the square suitably in the closed intervals
[(1/4,1] and [1,9/4], that if m_ > 1 then a; must
be at least 1 + m_ for odd i, 1i.e.

a, > 1 +m_ if m_>1 (i odd). (8.10

Hence as m_ > 1.369 we must have ai > 2.369.

Now
Ki-s > (1,4) + (0,1,1,0) > 1.751,
and so
d = ai®Ki-12/4 > 4.3
which contradicts (8.5). Hence pi-z > 2,

Similarly (by considering the reverse chain) we

must have pi4z = 2.

Lemma 8.4
pi €3 for all odd 1i.

Proof
Let pi = 4 with i odd. Then pi-s > 2 and
Pi+z = 2 from the previous lemma, and so
Ki > 4 + 2(0,1,2,1) > 5.447,
which contradiects (8.7).

Lemma 8.5
If pi =3 with i odd then pi-g 2 2 and
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Proof

Let pi =3 with i o0dd and suppose that one of
DPi-2s Pi+2 1is 1. Then by taking the reverse chain if
necessary we may assume that pi—= = 1. By a similar
method to that used in lemma 8.3 we obtain that
Ki > 4.236, m_ > 1.189 and a; > 2.189, In addition,

Ki-s > (1,3) + (0,1,1,3) > 1,822,

and using this in (8.6) yields that ai < 2.24.
Then considering the value (x + pi-1)® - a; with
1 < (x + pi-2)® <9/ we find that |ui-1] < .0255.
Hence |[2ui-1|| < .051 and so we can choose x such
that 8.6 < (x + 2ui-1)® < 9. However this leads to
a value (x + ZuL_i)z - ha; which contradicts either

m, =1 or m_> 1,189,

Lemma 8.6
If pi =3% for some odd i then py =3 Tfor all
odd i and g ~ FeJ112/27.
Proof
Let py =3 with 1 odd and suppose that
Pi-—z = 2s Then
Ki > (3,1,2,1) + (0,1,2,1) > L.447,
and so using (8.1),(8.2) and (8.3) we obtain that
m_ > 1,228, Hence ai > 2.228 follows from (8.10).

In addition,
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Ki-1 > (1,3) + (0,2,1,3) > 1.622,
and so a; < 2.513 follows from (8.6). Now
combining (8.10) with (8.1) and (8.2) gives that
ap = ai+1Fi 81 2 1 +¥2(ai+1° K"/ )/3,
and so

aisaKi 2 [1 + Jar422K 2 /61(1/70 + 1/80). (8.11

As

3.7236 < (3,1,2,1) < Fi < (3,1) < 3.7913
and
7236 < (0,1,2,7) < s < (0,1,2,1,3) < .7362L,
it follows on consideration of (8.11) that
ai+1K > [1 + Jar4°K2/1.81721(1.6220).
By iterating on this, starting with ai4+.Ki > 0, we
eventually obtain that ai+:Xi > 3.79, which implies
that m_ > 1.337 and ai > 2.337.
Considering the value (x + ui-1)® - ay where
1 ¢ (% + pi-1)?® < 9/L we find that [ui-1]| < .086.
Thus we can choose x such that 9 < (x + 2ui-1)%< 10.1.
However this gives the section (x + 2uL-1)2 - Lay a
value in the open interval (—1.1,.8), contradicting
either m_=1 or m_ > 1.337.
This contradiction shows that pi =3 with i odd
implies that pi-z = 3, and by consideration of the
reverse chain, that Dpi4z = 3. Hence, clearly,

pi = 3 for all odd i, and so, for odd 1, we have
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gL o= (x + ANy + piz)® + ap+a (22 - 3yz - 39°).

As gi ~ g there is no loss of generality in dropping

the suffixes and taking gi to be g. Then
d = da(g) = 21a% /4 < 112/27,

and so a < 8/9.

Now

m_ > J7a%/2 > Y63/32 > 1.253,
and so, considering the section (x + N\)2 - 3a, we
find that
3a 21 +m_ > 2.253
and 1 < (x+2A)® <3 -m_. (8.12
If 3a < 2,419 then (8.12) implies that |IA] < .08,
and so we can choose X such that 9 < (x + 2A)® < 10.
However this implies that g takes the wvalue
(x + 2A\)® - 12a 1lying in the open interval (-.7,1),
contradicting either m =1 or m_ > 1.253. Hence
we must have 3a > 2,419, and so m_ > 1.314.
Consider the value (x + 2A)® - 12a of g, where
9 < (x + 22)® < 12,25, As 9.67 < 12a < 32/3 we have
two possibilities: either
(a) (x + 2A)® - 12a > 1, or
() (x + 27)® - 12a < -m_.
Consider the first of these two. In this case

(x + 27n)% > 10.67, from which it follows that
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”k" > «133, and so we can choose X such that
1.283%3 < (x + A)® < 9/k. Then considering the wvalue
(x + \)2 - 3a we find that 3a > 2,597, and hence that
12a > 10,388, Repeating the analysis shows that we
can choose x such that 1.39 < (x + A)® < 9/L4. As
2.597 < 3a < 8/3 this value of x leads to a value of
g contradicting either m, = 1 or m_ > 1.314,

Thus we have eliminated the first possibility,
leaving the possibility (b). This implies that
12a > 10.314, and so m_ > 1.37, As
(x + 20)® < 12a - m_ and 12a < 32/3 we can deduce
that “2%" < .05, Considering the section
(x + N)® - 32 we find that ||A - %[ > .025, so we
must have “%” < .,025.

Similarly it can be shown that ||A + 3u] < .025
and so, by subtraction, it follows that

fi3ull < .05. (8.13

We may assume, without loss of generality, that
0 <y <% Then as consideration of the section
(x + £)® + a shows that ”ﬂ - %" < # it follows from
(8.13) that

pL=r+1/3

where 0 < r < ,02. As 4® + a>1 we must have

a>8/9 -2r/3 -1 >8/9 - r.
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Hence

23.,u6 < 2L ~ 27r < 27a < 2L,
NWow as ||All < .025 we can choose x such that

254,25 < (x + 3N)® < 25,

Hence g takes a value (x + 3A)® - 27a which is at
least .25, Thus this value is at least 1, and so

(x + A > 1 + 27a » 25 = 27r > (5 - 3r)?,
Hence |3\l < 3r, and as Al < .025 we must have
Al < », Similarly it may be shown that lIN + 3ull < p,
and so, by subtraction, H3HH £ 2r. However as
I3ull = 3r this implies that r = O. Thus we must
have g =1/3, a = 8/9 and A=0 (mod 1), and so

g~ (x + &2)% + &(2% - 3yz - 3y%)

~ (x + 3y)? - B(2®? - yz - §¥°)

= F5§?112; 27.

This completes the consideration of chains
containing py = 3 for some odd 1. For the rest of

the proof we may assume that py < 2 for all odd 1.

Tenma 8.7

If pir-:s = 2 with i even then Diy1 = Piea = 1.
Proof

Suppose that pi-1 = Pi+12 = 2 where 1 1is even.

Then
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Ky =1 + 2(0,2,1) =43
and
Kies > 2 + (0,1,2,7) + (0,T) > 3.3L16,
Now ap4s > 3/4, and so
d = ap42°Ki412/0L » 9(3.3016)2 /6L,
Hence m_ > 1.015 and ag+y 21 + m_ > 2,015, This

yields that

m_ > Ja 41-K,°/6 > 1.266,
and so aj4s > 2.266, Repeating the procedure gives
that ag4s > 2.368, and so
d = ay ;42K 2/L > 4,205,
which contradicts the given condition that 4d < 112/27.
This proves that, given pPi.s = 2, we must have
DPi4r = 1o Upon replacing i by i - 2 in the above

proof it can be seen that we must also have pi-z = 1.

Lemma 8,8
If pi-1 =1 with i even then Di41 = Di-s = 2.
Proof
Suppose that pi—s = Piys =1 where 1 1is even.,
Then
2,1547 <1 + 2(0,1,7,2) < Ky < 1 + 2(0,1) < 2.,2361
and
2.236 <1 + 2(0,T) < Kigg < 1+ (0,1,2) + (0,1,1,7,2)
< 2,366,



(107)

Hence as a8y, > 3/4 we must have m_® > L4687,

i.e. m_ > o776, Thus ag+4 > m_ + 1/4 > 1,026, and

so m_ > ¥ai41 K(°/6 > .93, Repeating the argument
a number of times gives that m_ > 1.02, This implies
that ay41 > 2,02 and so

d = ay+2 K 2/0 > La7,

which contradicts the given bound on 4.

From the above lemmas it is easily seen that the
only possibility left for the chain [py] is the

chain oo(1,1,24% ).

Lemma 8,10

If the chain [py] 1

g ~F5$3; L]

Proof

oo(154,2,1 )00 then

0]

If the chain [pi] is o(1,1,2,1)0 then for 1
odd and py = 2 we have
gy = (x + Ny + p12)® + agsa(2® - 2yz - 55°).
As gi ~ g there is no loss of generality in dropping
the suffixes and taking g; to be g. Then
da = d(g) = 8a%/3 < 112/27,
and so a < JT/9 < 1.2L73. (8414

Now a > 3/hL. Suppose, contrary to what we wish to

00

prove, that a > 3/4. Then m_® > %2-:£%°% =1, and

6



52/3 > 1 + m_ >
> 1.36.

so
m—
i.e.
a=3/L and m_

>

(x + #)? +a and

N (mod 1).

1

g~ (x+ 3y +
~ (X + 37 +

S F59372 o

2 > 1416 wh
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Hence

2r a >» 6/5 and so

However this implies that 52/3 > 2.36,

Hence

(8.14).

Then considering the sections

ich contradicts
1.

(x + N)® - 5a/3 it is clear that

Hence
2z)® + 2(2 - 2yz - 2y°)
2zP - 2(2% - &yz - &y%)

This completes the proof of theorem Cs.
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CHAPTER 9

The proof of Theorem Cg.

For reference the theorem is re-stated.

Theorem Cg

If g 1is any indefinite ternary guadratic form
of signature 1, with d(g) = @ where
0 <4< 9/2,
and if m+(g) =m, =1 is attained by g then either
(a) m_(g) < 25d/112, or
(b) g 1is equivalent to a multiple of elther Fg or Fn.
Proof
As usual we consider in place of g an eguivalence
chain (gy) of forms equivalent to g. Assunming
that m_(g) > 9T§§E7TT§ and using the same notation as

was used in the previous chapters we have that

ap+1Ky = 4 M = La, (9.1
m_(g) = m_ > ¥1253/112, (9.2
a, > 3/k (i even), (9.3
a, > n_ + 1/b > #25a/172 + 1/ (i oadd(9.k
d =98/2, 0<pB<H, (9.5
and Ky = 3/28/ai 41 (9.6

Now if 4 < 112/27 it follows from chapter 3 and
theorem Cs that g ~ Fg9112727. Hence for the
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remainder of the proof we may assume that
112/27 < 4 < 9/2. (9.7
From (9.2) it follows that m_ > 5/3, and using
(8,10) we may replace (9.4) by
ap >m + 1> F1254/712 + 1 (i odd). (9.8

Then using the bounds (9.3) and (9.8) in (9.6) we
obtain that
Ky < W28 < 5.657/8 (i o0dd) (9.9
and
Ky < 3/2RLYB(1 + ¥E558)]1™* < 1.565§F (i even).(9.10
From (9.9) and (9.10) it follows that
pi €5 (io0add); 1pi =1 (i even),.
Now if pi = 5 for some odd i then
K, > 5 + (0,2) + (0,2) = 6,
which contradicts (9.9). Hence py < 4 (i odd).
In addition py 22 for 1 odd for if py =1 we
would have
Ki—s 21 + (0,2) + (0,5) = 1.7
which contradicts (9.9).

The proof is now continued as a series of lemmas,

Lemma 9,1
Py 2 3 for all odd i,
Proof

Suppose thet py = 2 for some odd 1i. Then
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Fi-y > (1,2,T,0) =1 + J/2/L,

Sg-s = (0,I51) = 3(J2 - 1),
and so

Ki—a = (2 + 3/2)/L > 1.56.
Using this in (9.6) gives that ay < 2.72, In
addition, as Xi-, < 1.565¢8, we must have
86 > .9968, and so

m_ > F11256/22L > 1.7,
Thus using (8.10) we have that ay > 2.7, Hence the
value (x + py-1)2 - ap of gi-is where
1 < (x + pi—-1)? € 9/, 1lies in the open interval
(-m_,-.35) unless

(X + py-1)? < ay - m_ < 1,02,
This implies that llpi-all < 401 and so we can choose
x such that 24,7 < (x + 3uy-1)% < 25. However
24,3 < 9a; < 24,48, Hence gj_s1 takes a value

contradicting m+ =1,

Lemma 9,2
If pi, =3 with i odd then p, = 3 for all
odd i and the chain [py] is oo(1y3)ew,
Proof
Let p; = 3 with J odd and suppose that one of
Dj-2s Dij+2 15 L. By taking the reverse chain if

necessary we may assume that pjie = U. Then setting
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i=3j+ 1 we have that
1,207 < (1,4) <« Py < (1,4,7,3) < 1,209
and
261 < (0,3,T,4) < 8¢ < (0,3,1) < .26k,
Hence K¢ > 1,468, and using this in (9.6) yields
that ag+1s < 2.891,
Consider the section
(z + N+ p)® + agpa(FL = 1)(8, + 1),
We have
0 < appa(Fy = 1)(8y + 1) < .76k,
and so in order not to contradict m= 1 we must have
ap+e(Fp = 1)(8y + 1) = .75.
This implies that ags1 > 2.839. Hence we must have
m_ > 12523 4+4°K 2 /008 > 1.69.

By choosing x such that 9/L < (x + u)® < 4 in the

section (x + u)® - aj+y we obtain a value of g; that
is greater than ~-.7. Hence in order not to contradict
either m _ = 1 or m_> 1,69 we must have

(x + u)® > 1 + ajps > 3.839,
and so "u“ < 041, Hence we may choose X such that
25 < (x + 3u)® < (5.123)% < 26,25,
However
25.5 < Jai+1 < 26.1,

and so gi takes a value in the open interval
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(=1.1,.75), contradicting either m, =1 or m_> 1.69.
It follows from the above that pj = 3 with

j odd implies that pj—= = pj+2 =3 and so pj =3

for all odd j.

Lemmsa 9.
The chain [pi] cannot be oo(1,3)w.
Proof
If the chain [pi] is w(1,3) we have for
i even that
gL = (x + Ny + uiz)® - aisa(2® -yz - 5°).
Now as gi ~ g there is no loss of generality in
dropping the suffixes and taking gi; to be g. Then
d = d(g) = 7a®/12.
Using this in (9.7) we find that
8/3 < a < J/54/7 < 2.78.
By choosing x such that 1 < (x + u)® < 9/4 in the
section (x + u)z - a we can contradict the bound
m_ > 5/3 found earlier unless
(x + u)® < 278 = 1.66 = 1,12,
Hence |lul < .06. It can be shown similarly that
I3n = ufl < .06 and ||3n + tuf < .06, By subtracting
these we obtain ||S5uf < .12 which, as |luf] < .06,
implies that ||u]l < .024. Hence we can choose X

such that
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24.28 < (4.928)% < (x + 3u)® < 25.
However as 24 < 9a < 25,02 the value (x + 3u)® - 9a
of g contradicts either m_=1 or m_ > 5/3.

This completes the proof of the lemma,

The only remaining possibility for [pi] is the
chain o(1,4)e where pi =1 (i even) and pi =4

(i odd). We now consider this case.

Lemma 9.4
If the chain [pi) is w{1,4)e then g ~ F»¥9/2,
Proof
Let the chain [pi] be ool1,4)00. Then for
i even we have that
gi = (x + Ny + piz)® - ai+1(2® - yz2 - £/°).
As gi ~ g there is no loss of generality in dropping
the suffixes and taking gi to be g Then
d = d(g) = a®/2 < 9/2,
and so a < 3.
As m, = 1 and g takes the values

(x +AN)? +a/4 and (x + N+ u)? + a/4 it follows that

a=3 and [IA] =™+l =2 Hence
g~ (x+ 2y)% - 3(2%2 - yz - &°)
= F,%9/2.

This completes the proof of theorem GCg.
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CHAPTER 10

Deduction of Theorems Cs and G from the work

of Venkov.

The result of Venkov that we refer to is the
following.

“let f be an indefinite ternary gquadratic form
with determinant 4 > 0 (and hence signature -1) and
define

M(f) = min {m+(f), mn_(f)}.
Then either
M(r) < J2a/9
or f 1is equivalent to a multiple of one of the
following forms:
11 = -x* - xy -y + 22°,
Io =X + xy -y° - 22%,
1l = =X - y® + 322,
1, = =x® - xy + y° - 8%%,
1s = -x° - 8xy - ¥° + 3xz + ¥yz + 3Lz°,

l¢ = -x® - y° - xz - yz + 3z°,

1, = =x® - xy - y° + 52°,

ls = -Lx® + 2xy - %3y® + 2xz + tyz + 2%,
lg = - + 3xy - y® + Byz + 27,

lp = -¥° + xy - ¥ + 3yz + §Lz®,
1y = =X2 + Xy - y° + 2%z + 2yz + 2z2,
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Furthermore M(1;) =1 for 1 < i < 41."
We can use this to prove theorems Cs and GCsg as

follows.

Proof of Theorem Cs

et g Dbe an indefinite ternary quadratic form of
signature 1, with d(g) = da where 0 < d < 112/27, and
let m+(g) = 1 be attained by g. Furthermore let
m_(g) > ¥2d/3. Then
M(-g) > min {¥2d/3,1}
> min {¥24/3,¥274/112}
> Y2479,

Hence =g 1is eguivalent tc a multiple of 1; for some

i, 1 <1 < 11, Now this is a positive multiple as
1t and g have opposite signatures and so we can let
g = =kli, k » 0O,
Thus
1=m(g) =n_ (i) = km_(1).
Now as M(ly) =1 and each 1li clearly takes the value

-1 it follows that g = -l for some 1i. Hence

m (1) = mn_(g) » ¥24/3 (10.1
and

a(ly) =a < 112/27. (10,2

As 1; takes the value 1 for i = 2,3,4,6,7 and 8,
and 1ls takes the value 8/7 at (-1,0,1), it can be

shown that
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m+(lL) < 7(_175
for 2 < i < 8, In addition d(ly) > da(le,) > 112/27,
so the only values of i for which 1 satisfies
(10.1) and (10.2) are 1 and 9.

As

~1. (X,y + 2,2) = ¥3/2 Fs(x,y,2)

and

~1s (x,~y,2) = J112/27 Fs (x,¥,32) (10.3

theorem Cs may now be deduced from the results of

lemmas 3.5 and 3,6,

Proof of Theorem Cg

Let g bYe an indefinite ternary quadratic form of
signature 1, with d(g) =4 where 0 < d < 9/2, and
let m+(g) = 1 Ybe attained by g. Purthermore let
m_(g) Z 775557775. Then

u(-g)

\'%

nin{¥125d4/112,1}
min{¥1254/112,¥24/9}
= 32d;9o

Hence, as in the above proof of theorem Cs, g = -1i

\Y

for some 1.

As 1y tekes the value 1 for i = 1,2,3,4,6,7 and
8, and as 1ls takes the value 8/7 at (-1,0,1) and
1, takes the value 3/2 at (3,0,2), it can be shown
that m+(lg) < ¥4da/5 unless i =9 or 11.
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As (10.3) shows that -l 1is equivalent to a
multiple of Fg, and as
“111 (x + 2,-y,2) = J9/2 ¥y (x,y,2),
theorem Cg¢ may now be deduced from the results of

lemmas 3.6 and 3.7.

It should be noticed that it can be deduced, 1in a
similar way, that theorems Cs and Cs may be replaced
by the following:

“Iet g be an indefinite ternary quadratic form of
signature 1, with d(g) =d where O < 4 < 9/2, and
let m+(g) = 1 be attained by g. Then either

m_(g) < 75573

or g 1is equivalent to one of =1;,-lg,-1lp OP s P



(119)

CHAPTER 11

The Proof of Theorem C;

Por reference theorem C; 1is re-stated.

Theorem Co

If g is any indefinite ternary quadratic form of
signature 1, with d(g) = @& where
0 < d < 24,

and if m+(g) =m, =1 1is attained by g then either

(a) m_(g) < ¥164/9, or

(b) g is equivalent to a multiple of either ¥, or Fg.

Proof
Ag usual we consider in place of g an equivalence
chain (gi) of forms equivalent to g. Assuming that
m_(g) 2 77557§ and using the same notation as in the

previous chapters we have that

ai+1Xi = A; A% = 44, (11.14
m (g) =m_ > J164/9, (11.2
a;, = 3/b4 (i even), (11.3
ap >m_+ 1/b > JA6d/9 + 1/4 (i ocad), (11.4
d =248, 0<pB<i, (11.5
and Ki = WoB/ai+as (11.6

Now if S < 3/16 we have d < 9/2 and using the

results of theorem Cs and lemma 3.6 it can be seen
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that g must be equivalent to a multiple of Fre
Hence we may assume from now on that g > 3/16.

Then

and so using the results of chapter 2 we find that

3(y° - yz - $2°), or

3(y* - yz - 22°), or

t

either (i) g ~ (x + %2)%?

(i1) g ~ (x + $2z)?
(iii) g ~ ¥* - 3(y°
(iv) @ = 7.5.

gvz - §2°), or

Now possibility (i) may be eliminated as B ¥ 3/16 for
this form, and possibilities (ii) and (iii) may be
eliminated as these have m_ = 2 < 3WEE7§, contradicting
equation (11.2). Hence d > 7.5, and so B > 5/16.
Using this in equation (11.2) we find that

m_ > 7&673 > 2,37
Applying the corollary to theorem 2.1 to the sections

(x + piz)® - ai412®
of gi (where i is even) we find that aj+s > L.62
for all ever i, and hence that qi(y,z) can take no
values in the open interval (-4.62,.75). By a result
of Segre [19] it follows that

d = dlgi) > {(4.62)% + 3(L.62)}/u > 8.8,

We may now use this in (11.2) to obtain that m_ > 2.5.

Repeating the above process yields that
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m_ > 2.53; ai+s > L.78 (i even). (11.7
For the present we shall assume that
d < 243/16. (11.8
Then A < 81/128, and using this in (11.6) we obtain
that K; < 1.631 for i even. Thus pi =1 for
even 1.
Combining (11.3),(11.6) and (11.8) we obtain that
Ky < 10,393 for odd i, and so p; < 10 for i odd.
For i even we have that
Fi > (1,10,1,11), sy > (0,10,1,11),
and so Ki > 155/131, Using this in (11.6) we obtain
that ai+y < 6.6 for even i, Now suppose that, for
some even i,
5.25 < aj+1 < 6.6,
Then in the section (x + u)® - aj+s of gi, choosing
x such that 4 < (x + u)® < 6.25, we obtain a value
of g{ contradicting either m, = 1 or m_ > 2.53
unless ai4+1 > 6.53, However in this case, as
Ki > 155/131, combining (11,1) and (11.2) yields
that m_ > 2.8, while the value (x + u)® - ay41 lies
between -2,6 and -.28. This contradiction shows
that we must have

4.78 < aj4s < 5.25 (i even) (11.9

We may now improve our bound on X, for even i,
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as follows, From the corocllary to theorem 2.1, as
m_ > 2, we have that
aj+1 > L.25 + (m_ - 2) (i even), (11.10

and combining this with (11.1) and (41.2) yields that

piulm_) =m® - 2K2(2.25 + m )2 > 0 (i even). (11.11
Now from (41.9) and (411.10) it is clear that
m_ < 3, hence the inequality (11.11) must be satisfied
for some m_ < 3, However using the known bounds on
m_ and K it can easily be seen that the derivative

¢i ' (m_) = 3m? - 8Ki?(2.25 + m_) > O,

and so (11.11) must be satisfied with m_ = 3. Hence

Ki < 6/3/7 < 1.485 (i even). (11.12

The proof is now continued as a series of lemmas

eliminating all possibilities for the chain [p;].

Lemma 11 .1

pj € 8 for all odd Jj.
Proof
Let pi 2 9 for some odd i, Then pi is either
9 or 10, and so
12/131 = (0,10,1,11) < 8; < (0,9,2) = 2/19,
Now using (11.3) we have that
ai+2Fi+18i+s = ai+1 > 3/L,

and so, using (11,9), it can be seen that
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Figs 2 %x%x%g > 1.357. (11.13
Considering (11.12) and noting that
1+ 1/(1 + Dita) < Figr < 1 + 1/Di+e
it follows that ©pi+e = 2. Thus
Si+a > (0,2,1,11) = 12/35,
and so in order that (41.12) may be satisfied we must
have Fiis < 1.1422, However as
Fits > 1 + 1/(1 + Di+e)
it follows that pi+e 2 7, and so
Fivs < (1,2,1,7) = 31/23 < 1.35.
This contradiction to (11.13) completes the proof of

the lemma,

Lemma 11.2

p; € 7 for all odd j.
Proof
Let pi-4+ =8 with i even. Then
10/89 = (0,8,1,9) < S, < (0,8,2) = 2/17,

and so using (11.12) we find that P, < 1.373. In
addition, considering the relation ai+1FiSi = a; » 3/h,
we obtain the bound F; > 1.214,

Now ai+1FiSi < .85, so by choosing x such that
(x + N)® < 1/4 we obtain a value of gi contradieting
m, =1 unless

+
In = 2] < 113, (11.14
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In addition, by choosing x such that
4 < (x + p)® < 6.25, we obtain a value (x + pu)? - ag4s
of gi which contradicts either m, = 1 or m_ > 2.53
unless "u - %" < 096, Combining this with (11.14)
we find that H% . u" < 209, so we can choose Xx such
that 9 < (x + A = u)? < 10.3. However using the
known bounds on ai+i, Fi and S; we can show that

9.3 < ap+1 (1 + F)(1 = 8S1) < 11,1,

and so gi takes a value in the open interval (—2.1,1).

This contradicts either m =1 or m_ > 2.53.

Lemma 11.3
pj < 6 for all odd .
Proof
et pPi=-1 =7 with i even, Then
9/71 = (0,7,1,8) < sy < (0,7,2) = 2/15,
and so using (11.12) we find that P, < 1.359. Now
Py > (1,7,1,8) = 80/71, hence
8,81 < aj41 (1 + Py) (1 - S¢) < 10.82,
and so we can obtain a bound on ||A - u - %| as follows.
(a) If 8.81 < ai++(1 + P)(1 - 8;) € 9.89 then by
choosing x such that 6.25 < (x + A - u)? <9 we
obtain a value of g; which contradicts either m, = 1

+
or m_ > 2.53 wunless

IN - - %] < .213. (11.15
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(b) If 9.89 < a3, (1 + F)(1 - 8y) < 10.82 then by
choosing x such that 9 < (x + A - p)® < 12.25 we
obtain a value of gi which contradicts either m, = 1
or m_ > 2.53 unless [N -pu - %] < .2. Thus in each
of cases (a) and (b) we have (11.15) holding.

In addition we can show, as in the proof of the
previous lemma, that
lg - +] < .09. (11.16
Hence combining this with (11.15) we find that
”x“ < 309, so we can choose x such that
(x + N)® < .096, This implies that
a,+1FiSi > .904
in order that the value (x + N)® + ai41FiSy shall not
contradict m, = 1. This yields, using the known
bounds on ai4+1 and Sy, that
P, > 1.291, (11.17
and so Ki > 1.417. Now as ¢i(m_) > O the inequality
(11.11) yields, if m_ < 2.85, that X < 1.416,
which is impossible, Hence
m_ > 2.85; ai4s > 5.10. (11.48
Using the bounds (41.17) and (11.18) it can be
shown that ai4+s(1 + P¢){(1 - 8¢) > 10.12, and so by a
method similar to that used in (b) above it follows

that

In-u =% < .166. (11.19
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Now by using (11.18) we eanirefine (11.16) to
lu ~ 2l < J031,
and combining this with (11.19) gives that
Al < 197, Hence, as ay41FSy < .96, gi takes a
value
(x + N)® + ap44FiSy < .96 + 04 = 1,
This contradiction to m,_ = 1 completes the proof of

the lemma.

Lemma 11,4

pj £ 5 for all ocdd J.
Broof
Let pi-1 = 6 with i even, Then
8/55 = (0,6,1,7) < 8 < (0,6,2) = 2/13,
and so using (11.12) we find that Py < 1.3k, Hence

we must have pi+s+ 2 3, as otherwise
Fy > (1,2,1,7) = 31/23 > 1.34.
Similarly, by considering the reverse chain, we have
Pi~-1 = 3 and so
Sy < (0,6,1,3) = L/27.
Now Fy > 63/55; hence
8,73 < a4+ (1 + F)(1 = 8¢) < 10,5,
and so as in the proof of the previous lemma we have
that
N = p = 2l < (213, (11.20
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If aj+s > 4.96, then by choosing x such that
bog (x + p)?% < 6,25 we obtain a value (x + p)® - ap+
of gi that contradicts either m, = 1 or m_ > 2,53
unless llp - %l < J06. In addition, if ap+s < 1.96,
then by choosing x such that 2.25 < (x + p)® < L4 we
obtain a value of g contradicting m_ > 2,53 unless
e - 2 < 06, Hence as one of these two alternatives
must hold we must have

Np - %l < .06, (11.21

Prom the relations between ai,ai+1,F; and S; it
may be shown that ap-i = at+1(1 + 6F()(1 - 6Sy) and so
by & similar analysis to that used above it can be shown
that ||6N - 1 - %l < .06, Combining this with (41.21)
we find that ||6N|| < 12 and so ||N -~ 1/6}l <.02 for
some integer 1 with 0 < 1 < 5. As (11.20) and
(11.21) together imply that ||Al] < ,273 it follows
that 1 = 0,1 or 5 and so |IAll < .187.

As the value |IA||® + ay . FiSy of gy must be at
least 1 we must have ay+:F1S¢ > .965 and so, using
the known bounds on ap4s and Sy we find that
Py > 1.2L4, Now if pr+1 > 4 then

Ty o< (1,4,2) = 11/9
which contradicts the above bound. Hence as Di+4 2 3

we must have Di+1 = 3. Thus
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B o> (153,1,7) = 39/31 > 1.258
and so XK; > 1.L03,

Now as ¢{(m_) > O the inequality (11.,11) yields,
if m_ < 2.8, that K; < 1.4 which is impossible.
Hence m_ > 2,8 and ag4s > 5,05 for all even Kk,

By choosing x such that L < (x + u)? < 6,25 we
obtain a value (x + u#)® - ay4+y of g, which
contradicts either mo= 1 or m_ > 2,8 wunless
e - T < o4, Similarly, as
ap+s = ay+a(lt = 3F)(L + 381),
we find that |3\ + 4u - %} < 041 and so
13N + 6u - £ < J123, (11.22

However as Fi < (1,3,2) = 9/7 we have that

7.7 < ap41(2 = F)(2 + S;) < 8.L4,
so by choosing x such that 6.25 < (x + N+ 2u)® < 9
we obtain a value of gy which contradicts either
m =1 or m_ > 2,8 unless [N+ 2uil < ,051,

+
Clearly this is incompatible with (11.22).

Temma 11.5

p; € 4 for all odd j.
Proof
Let pi-4 =5 with 1 even. Then

7/Ll-1 = (0’5,196) < Si. < (0;592) = 2/11’
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and so using (11.12) we find that F; < 1.315. Hence,
as in the proof of the previous lemma, DpPi+1 = 3 and so
48/l = (1,5,1,6) < Fy < (1,3,2) = 9/7.

By considering the sections (x + p)® - ap4s and
(x + BN = u)® - a{—; in the same way that the sections
(x + p)? = ay4s and (x + 6N = u)® - ay-y were
considered in the proof of the previous lemma we may
deduce that llp - %l < .06, 5N = u - |l < .06 and
Wenll < W12, Hence

N = 1751 < Jo2h (11.23
for some integer 1 with 0 < 1 < 4,

Now
B.U48 < ap4+s (1 + F)(1 - 5 ) < 9.96,
and so by the same method as was used in the proof of
lemma 11.3 we can show that [N - p - %l < 213, As
He = %l < .06 this implies that |IA|l < .28 and so we
have from (11.23) that ||Al} < .224, Thus, again
using the inequality |lg = %|| < .06, we have that
Ia + 2ull < .34k, (11.24
and so we can choose Xx such that
7,05 < (x + N+ 2u)% < 9. However as
741 < appa(2 - Fi)(2 + 8¢) < 9.5

this yields a value of g contradicting either m, = 1

or m_ > 2,53 wunless both
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apsa(2 - P )(2 + 8;) < 8 (11,25

and
N+ 2pll < o1, (11.26
Using the known bounds on aps+s and Sg, (11.25)

vields that Fy > 1.228,. Hence as Fi < (1,4,2) = 11/9
if pi+s =2 4 1t follows that pi+1 = 3 and so
Fi > (1,3,1,6) = 34/27. Hence K; > 1.403 and so by
the same method as was used in the proof of the previous
lemma we have that [|3N + 6u = |l < 123, Clearly
this is incompatible with (11,26).

Temma 11.6

p; € 3 for all odd J.
Proof
et pi-y = 4 with i even. Then
6/29 = (0,4,1,5) < 8 < (0,4,2) = 2/9,

and so using (11.12) we find that Py < 1.279. Hence
as in the proof of lemma 11,4 we find that pyes > 3,
Pi-z = 3 and so S < (0,4,1,3) = /19,

AS Diss € L we have Fy > 35/29 and so
Ki > 1.412, Hence by the same method as was used in
the proof of lemma 11.4 we have that ay4+s > 5.05,
m_ > 2.8 and

e - I < Jom, (11.27
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Using the known bounds on Fi and 8; we find that

8,03 < ai41(2 = Fi)(2 + 8) < 9.215
and

8.79 < ap4a(1 + FL)(1 = S;) < 9.49.
However we may choose Xy and Xz such that
6.25 < (x4 + N+ 2u)2< 9 and 6.25 < (% + N = u)2 < 9,
Hence g; takes a value lying in the open interval
(-3.2l4,.97) 1in contradiction to either m, =1 or

+
m > 2,8 unless both [N+ 2u = 3fl < .1 and

T s P Subtracting these yields that
H3ull < .2 which is incompatible with (11.27).

As a conseguence of the preceding lemmas D»Di-s4 Can
only be 1,2 or 3 for i even. Hence for 1 even
we have that

Ki > (153,1,4) + (0,3,1,4) = 23/19 > 1,485
which contradicts (11.12). From this contradiction
we can deduce that the assumption (11.8) was false,
Thus from now on we may assume that

a > 2L43/16, (1% .28
Inserting this into (11.2) we find that m_ > 3,

By an obvious modification of the corollary to

lemma 2.1 applied to the sections (X + pyz)? - aj412°

of g it follows that, for all even i,

ai+q = [ + (m_ - 3) > 7. (11.29
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Hence the binary form qi(y,z) can take no values in
the open interval (-=7,3/L), 8o by the result of Segre
it follows that
d = da(qy) = (L9 + 21)/4 = 35/2,

We now use this in place of (11.28) and repeat the
above analysis to obtain the bounds m_ > 3.145,
agss > 7145 anda 4 > 18.12,. Repeating the iteration
a number of times yields that m_ > 3,19 and that
8i4+1 > 7.19 for all even 1i.

Using (11.2) and (11.29) in (11.6) we fingd
that, for 1 even,

Ky < WEBLY + LYBE/317t < 1.3089Bs (11.30
while using ag+s > 3/4 for 1 odd in (11.6) yields
that

Ky < 16/BB/3 < 13.07/F (i oaa). (11.31
Hence as B < 1 we can conclude that

p; =1 (i even); Py € 13 (i odd).
Now if py € 3 with 1 odd we would have
Ki-1 > (1,4) + (0,14) > 1,32
which contradicts (11.30). Hence pi > 4 for odd 1i.
In addition, if p; > 12 with 1 odd we would have
Ki > (12,1,4) + (0,1,4) = 13,6
which contradicts (11.31). Hence we must have

b <p <11 (i odd).
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For i even we have
Ky > (1,12) + (0,12) = 7/6,
and so using (11.6) we Tind that ag+s < 8.4 for all
even i, If however ai4+4 > 8 for some even 1 then
by choosing =x such that 6.25 < (x + u4)® €9 we
obtain a value (x + p)® - ai+s of g that contradiects
gither m_ > 3.19 or m o= 1. Hence
7e1 < ajp+s < 8 (i even).

We now obtain an improved lower bound on ag,s for
i1 even and a bound on ”#LH. For a given even J we
may assume without loss of generality that O < pj < 3.
Then in order not to contradict either m = 1 or the
definition of m_ it is clear that we must have

(2 + u3)® = aj+4 € -m (11.32

and
(3 = p3)% - aj4s 2 1, (11.33

Subtracting (11.33) from (11.32) yields that
10p; €« 4 -~ m_ and hence that puj < 081, Thus

25 < (5 + 2u5)® < 26.7,
and as

28,72 < Laj44 € 32,
we must have, in order not to contradict the definition

of m_, that

(5 + 2u3)2 =~ baj,, < -m_.
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By multiplying this last ineguality by 9/4 and
rearranging we obtain that
(8 + 3u5)% = 98344 < 7.75 345 = 9m /b
< W83,
Hence in order not to contradict either m, = 1 or the
definition of m we must have

(8 + 313)° - 92344 < ~m_o (11434
By subtracting 9 times (11.33) from this we find
that 102u; < & =~ m_, and so

@ < «0L8, (11.35
In addition rearranging (11.34) yields that

92j+1 = (8 + 3u3)® + m_ > 67.19

and so

aj+s > 7.46. (11.36
As J was chosen arbitrarily we may deduce from
(11.35) and (11.36) that for all even i Doth

Wuyll < J0u8 (11.37
and ap+s > [eLb, (11.38

Using this new bound on a4y we find, by

repeating the argument immediately following (11.29),
that m_ > 3.26. This enables (11.38) to be
refined to

ap+4 > 7.47 (all even 1i). (11.39

We now proceed to eliminate all possible chains



(135)

[pt] except the one required to give g as equivalent

to a multiple of Fg.

Lemma 11.7
p; < 11 for some odd 1i.
Proof

Let py = 11 for all odd i, Then for even

we have that

o = (x + Ny + pjz)® - a5+4(2° - yz - 25°),
and so qj takes the value
N IF + ages/11 < 1/4 + 8741 < 1,

contradicting m = 1e

Lemma 11,8

p; € 10 for all odd jJ.
Proof
Let pi+1 = 11 with 1 even and suppose that
L < py-1 € 10, Then
168/155 = (1,11,1,12) < Fy < (1,11,1,4) = 6L/59,
13/142 = (0,10,1,12) < Sy < (O,L,1,4) = 5/2L4,

and so

ap+a(Fy = 1)(8y + 1) < 8193,
Hence in order that the value
(x + N+ p)® + apeq(Fy = 1)(Sy + 1) shall not contradict

m =1 for any x we must have [N+ u - %{l < .075.

BN
0
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Combining this with (11.37) we find that
N = = 2l <« .471 and so we can choose Xy and Xp
such that

11,07 < (xs + N = )% < 12.25
and

12.25 < (X2 + N = u)® < 13,48,
However

12,3 < appa(1 + F)(1 = Sy) < 15.24
and so g, takes at least one value contradicting
either m_ =1 or m_ > 3.26 (The value involving
xs 1f apye(1 + Fi)(1 = Sy) < 14.33, otherwise the
value involving g)e.

Hence Di4+1 = 11 implies that py-, = 11,

Repeating this argument indefinitely to both the
original and the reverse chains shows that pj = 11 for

all odd j, in contradiction to the result of lemma 11.7.

TLemma 11.9

(@)
)

If pr~-1 = 10 with 1 even then pi4s <€
Proof
Let pi-1 = 10 with 1 even and suppose that
Pi+s = lo Then
143/131 = (1,10,1,11) < Fy < (1,7,1,4) = LL/39,
12/131 (0,10,1,11) < S¢ < (0,10,1,4) = 5/54,
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and so

1he15 < appa (1 + P)(1 = S) < 15.47.
However we can choose x such that
12,25 € (x + N = p)® < 16 and so g; takes a value
contradicting sither m_ = 1 or m_ > 3.26 unless
IN = ull < 108, Combining this with (11.37) we find
that |IAll < .156 and so g; ‘takes the value

HAI® + ap44FLSt < 025 + .836 < 1

contradicting m, o= 1.

Temma 11,10

p; € 9 for all odd J.
Proof
Let pi-4 =10 with 1 even. Then using the
previous lemmas we have that
95/83 = (1,6,1,11) < Fy < (1,4,1,4) = 29/24,
12/131 = (0,10,1,11) < 8§ < (0,10,1,4) = 5/54,
and so K > 1.235. Using (11.37), application of

the steps
a= (ai+1KL )2/)—1-9

n > ¥16a/9,

(11.40

yields that m_ > 3,35,
Now ay4+4F;S; < .896, so in order that the value
2
U™l + a4 Sy shall not contradict m = 1 we must

have |IA - &l < .178. Combining this with (411.37)
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we find that N + 20 - Ll < .274 and so we can choose
X, and Xz such that

10 < (x4 + N+ 21)3%< 12,25
and

12,25 € (X2 + N + 2u)2< 14.3.
However

12.3 < ag4+4(2 = F)(2 + S;) < 1Ll
and so gi takes at least one value contradicting either
m =1 or m_ > 3.35 (the value involving x, if
ap+1(2 = Py )(2 + 8y) < 13.75, otherwise the value

involving Xs).

Lemma 11,11
If pi-1 =9 with 1 even then pi+1 < 5.
Proof

Let pi-1 = 9 with i even and suppose that

Di+1 > 6. Then
120/109 = (1,9,1,10) < Fy < (1,6,1,4) = 39/34,
11/109 = (0,9,1,10) < 8y < (0,9,1,4) = 5/L9,

and so ay+1F8; < .9%. Hence in order that the value

IAIZ + ay+1F1 8y  shall not contradict m = 1 we must
have lInN = ]l < .26, Combining this with (11.37) we
find that [N - u - %l < .308, so0 we can choose x such
that

12,25 < (x + N = )2 < 14,51,
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However

14,0 < a4 (1 + F)(1 = Sy) < 15.45,
and so g; takes a value contradicting either m =1

or m_ > 3,26,

Lemna 11.12

If pi-1 =9 with 1 even then pi+: = L.
Proof
et Pi-1 = 9 with 1 even, Then we only have
to show that pi+4 = 5 1s impossible. N Bpiiq =0 5
then we have
76/65 34/29,
11/109 5/149,

and so Ki > 1.27. Using this in steps (11.40) we

(1,551,10) < Fy < (1,5,1,4)
(0,9 1,10) < Sy < {(0,9,1,4)

1
1}

find that m_ > 3.419. Now

14,55 < ap+4 (1 + F)(1 = St) < 15,63,
and so in order that the value
(x + N =~ u)® = ap+2{1 + F)(1 - 8;) shall not contradict
either m+ =1 or m_> 3,019 for any x we must have
N = pll < .057 and ag+a (1 + F)(1 = S) < 15,  Using
(11,37) and the known bounds on Fi and S; these
inequalities imply that UA|l < 105 and ay+s < 7.71.
Hence g; takes the value

IAI® + &y aFLSt < 402 + .93 < 1,

in contradiction to m+ = 1,
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TLemma 11.13

p; € 8 for all odd J.

Proof
Let pr-4 =9 with 1 even. Then from the
above lemmas it follows that pr4qe = U. Hence

65/54 = (1,&,1,10) < By < (1,&,1,4) = 29/2L,
11/109 = (0,9,1,10) < 8¢ < (0,9,1,4) = 5/L9,
and so K; > 1.304, Using this in steps (41.,40) in

conjunction with the bounds ag4s > 7.47, apps > 7.922
and ay4;q4 > 7.992 we obtain that m_ > 3.48, m_ > 3.619
and m_ > 3.6L1 respectively. Now

14,78 < ap+1(1 + F)(1 - Sy) < 15,884,
where the upper bound may be reduced to 15,869 or
15,73 according as the upper bound on ay+s is reduced
to 7,992 or 7.922 respectively. Hence in order
that the value (X + N = u)? = apea (1 + F)(1 - §)
shall not contradict either m_ = 1 or the bound on
m_ for any x we must have |IN - pll < .03 and
ap+1(1 + F)(1 - 8) < 15. Thus ||M| < 078 and
841 < 759, Hence g; takes the value

IA® + aysaFLSL < 01 + 94 < 1,

in contradiction to m_ = il

Lemma 11,14

p; =2 5 for all odd J,
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Proof
Let pj =4 with J odd. Then
Kjer > (0,5) + (1,9) > 1.31,
which contradicts (11.30).

Lemma 11.15

If pj; =8 for 211 odd J then g ~ Fgi¥2L,
Proof
Let p; =8 for all ocdd J,. Then for 1 even
we have that
gu = (X + Ny + m2)® = ay4.(2° - yz - &5°).
As gy ~ g we may drop the subscripts without loss of
generality. Then from earlier work we know that
el < Jous (114441
and that 7.47 < a < 8, In addition,
n_ > ¥T63/9 = §35573 > 3.53.

Now 14.0 < 15a8/8 < 15 and so in order that the
value (x + N = ux)® = 15a/8 shall not contradict either
m, = 1 or m_ > 3.33 for any x we must have

N = il < 413, (11.42
Combining this with (141.41) yields that
Hox = ull < .31, and so we can choose x _such that
16 <€ (x + 2N = )2 < 18.6,
However as 18,6 < 5a/2 < 20, g takes a value

contradicting m_ > 3.33 unless ||2n - ull < ,083.
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Hence ||2A|ll < .131 and so either [IAll < 066 or
In = L1l < ,066., Clearly the second of these is
incompatible with (41.41) and (11.42), hence
Al < L066, (11.43
Now as the transformatiocns (y,z) - (y + 8z,=2)
and (yy2) » (¥ + 82,y + 92) send g into
(x + v + (8N = w)z)® - a(z® - yz - &y°)
and
(x + (N+ )y + (8N + 9u)z)® - a(2®? - yz - $y2)
respectively it is clear that any bound for |lull must
hold for [|8N - ull ana I8N + oull. Hence taking the
bound |lull < we have |I8N = ull < r anda ||8N + 9l <2
which yield that
llenll < 2r (111l
and |l1oull < 2r, From the second of these we have
that |lp - 1/10ll < »/5 for some integer 1 with
0<1c¢g9, Using (11.37) it is clear, if r < 048,
that 1 must be O and that {lull < r/5. Repeating
this argument indefinitely yields, if »r g 048, that
Well < /25, r/125, ete., and so, for r < ,0L8, the
only possibility is that |lull = 0. Similarly, for
r < 048, (11.4h) may be replaced by |I8All < 2r/5,
2r/25, etc., and so |8\l = 0,

Wow considering (11.41) we may take r = 048
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and so we must nave |jull = 0 and ||8All = 0, The
second of these yields, taking (11.43) into
consideration, that {A|l = 0, and so

g~ x® - a(z® - yz - 8°),
Thus as the value a/8 contradicts m, = 1 unless

a =8 we must have

8~X2-8(22-3’Z—§,‘3’2)=Fs$’§1—h

Lemma 11,16

If pi-1 = 8 with i even then pr4s #Z 7o

Proof
Let pi-4+ =8 with 1 even and suppose that

Dits = [e Then
89/79 = (1,7,1,9) < F < (1,7,1,5)
10/89 = (0,8,1,9) < S < (0,8,1,5)

}} 1]

N Wn
N
N\
U =
- ~J

and so K; > 1.2389, Using this in (11,1) and
(11.5) it follows that ay,s < 7.91. Hence
14,08 < ajpa(1 + P)(1 = S) < 14.94,
and so in order that the value
(x + N = )2 = a;+,(1 + F)(1 - 8) shall not contradict
either m = 1 or m_ > 3.26 we must have
In - ull < J117. Thus |IAll € +165 and so in order
that the value |AIl® + a;,4F Sy shall not contradict

m, = 1 we must have ap+s > 7.61, Using this new
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bound in the above analysis yields that
arse(1 + FLY(1 = 8y) > 14.35, N = pll < .083, {[All< 131
and agis > 7.99. Hence

16 < (x + 2N + 3u)% < (4 + .262 + (1BL)?

< 19.42
for suitable x and
18,46 < ap44(3 = 2P )(3 + 25;) < 19,06,

This implies that g; takes a value contradicting

either m, = 1 or m_ > 3.26.

Lemma 11,17

If pi-1 =8 with 1 even then piss # 6.
Proof
et Ppi-2 =8 with 1 even and suppose that
Di+s = Do Then
79/69 = (1,6,1,9) < Fy < (1,6,1,5)
10/89 = (0,8,1,9) < 8 < (0,8,1,5)

L7/44,
€/53,
and so Ki > 1.257. Using this in (11.1) and (11.,5)

it follows that ay4y < 7.795, while steps (11.,L0)
yield thet m_ > 3.39,. Following the method of proof
of the previous lemma we have

4.2 < apea(1 + P4 = Sy) < 1484, ™ = pll < J102,
and so ||2n = ull < 254, Hence we can choose X such
that 16 < (x + 2N = u)® < 18.1, However as

19,0 < a4 (1 + 2P )(1 - 2Sy) < 19.9
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it can be seen that gy takes a value contradicting
m_ > 3,39 unless ||2N\ - ull < ,064 and ags+s > 7459
These two inegualities imply that
16 < (x + 2N + 3u)2 < 18,2
for suitable x and that
17.3 < 2+2(3 = 2F)(3 + 28;) < 17.9.
Hence g; takes a value in the open interval (-1.9,.9),

contradicting either m =1 or m_ > 3.39,

Lemnma 11.18

If pi-y = 8 with 1 even then pi31 # 5.
Proof
Let pi-s = 8 with 1 even and suppose that
Pr+1 = 5. Then
69/59 = (1,5,1,9) < Fy < (1,5,1,5) = 4L1/35,
10/89 = (0,8,1,9) < 8, < (0,8,1,5) = 6/53,
and so X; > 1.2818, Using this in (11.1) and

(11.5) it follows that ay4+s < 7.6LL, while steps
(11.40) yield that m_ > 3.4k, Using the same method
as in the proof of lemma 11.16 we have
14,37 < ap+e(1 + F )1 = 8) < 1474, N = il < 08,
and so J|2N + 2ul < .. Hence there exists x such
that 12,96 < (x + 2N + 3u)® < 16. However

15.82 < ap41(3 = 2P )(3 + 28;) < 16,33

i
~

and so g ‘takes a value contradicting either m+
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or m_ > 3.4L,

FProm the above work it is clear that if p; = 8 for
any odd i then pj =8 for all odd J and
g ~ FQQEE. Hence we mey assume, for the rest of the
proof, that p; <€ 7 for all odd Jj.

Temma 11.19

If pi~s = 7 with i even then Dpi+1s = 7.
Proof
Let pi~1 =7 with 1 even and suppose that
DPi+1s Z 7o Then pi+4 1s either 5 or 6, Hence
71/62 = (1,6,1,8) < P < (1,5,1,5) = 41/35,
S/ 71 (0,7,1,8) < 8, < (0,7,1,5) = 6/U7,
and so K; > 1.2719, Using this in (11,1) and

(11.5) it follows that ay+4+s < 7.704, while steps
(11.40) yield that m_ > 3.42, Using the same
method as in the proof of lemma 11.17 we have that
13,97 < ap+4(1 + F)(1 = Sy) < 14,61,
N = ull < .13,
lon - ull < .30,
16 € (x + 2N - p)? < 18,6 for suitable x,
18.3 < ap+4(1 + 2F)(1 = 28;) < 19,25,
and so gy takes a value contradicting either m+ = 1

or m > 3.42.
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ILemma 11,20

p; = 6 for all odd J.
Proof
Let pi-4 =7 with 1 even, Then by applying
the above lemma indefinitely to both the original and the
reverse chain we find that p; = 7 for all ocdd j, and
s0
gL =& + MY + p412)® - a4.(2° -~ yz - 2y?).

As gy ~ g we may drop the suffixes without any loss of
generality, As d = 11a®/28 and a > 7.47, equations
(11.2) and (11.5) imply that a < 7.82 and m_ > 3,39,
Following the method of proof of the above lemma we
have that

13,87 < 13a/7 < 14.53,

N = pll < o1k,
ll2n - pll < .336,
16 € (x + 2N = u)® < 18.81 for suiteble x,

18.1 < 17a/7 < 19,0,
and so g takes a value contradicting either m, = 1
or m_ > 3,39, Hence pj < 6 for all odd J.
However if p; < 5 for some odd i then

Kiws > (1,5,1,7) + (0,6,1,7)

> 1,308

which contradicts (11,30). Hence pj = 6 Tfor all

odd J.
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Lemma 11.21

py £ 6 for some odd i,
Let py = 6 for all odd J. Then for 1 even
we have that
gL = (x + Ny + m2)® - ay4a(2® - yz - 35%).
As gy ~ g we may drop the suffixes without any loss of
generality., As 4 = 5a%®/12 and a > 7.47, equations
(11.2) and (11.5) imply that a < 7.59 and m_ > 3.45
Following the method of proof of lemma 11,19 we have
that
13.69 < 112/6 < 13,92,
In = ull < 168,
lan - pil < .384,
16 ¢ (x + 2N = u)® < 19,22 for suitable x,
17,43 < 7a/3 < 17.71,
and so g takes a value contradicting either m, = 1
or m_ > 3,45 unless I[2\ - pll > 293, Combining
this with (11.37) we find that ,245 < ||2n - 2ull < 334
and so there exists x such that
52,49 < (x + 2N - 2u)? < 53,82,
However as
54,76 < 22a/3 < 55,68
this implies that g takes a value contradicting

m_ > 3-L|—50
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The result of theorem C, now follows as we have
shown that if 0 < d < 24 and if m_(g) > ¥164/9 then

g 1is equivalent to a multiple of either ¥, or Fg.



(150)

CHAPTER 12

The Proof of Theorem Cg.

For reference theorem Cg 1is restated.

Theorem Cs
If g is any indefinite ternary gquadratic form of
signature 1, with d(g) = 4 where
0 < d g 67.5,

and if m+(g) =m, =1 1is attained by g then either

(a) m_(g) < ¥8a/3, or
(b) g is equivalent to a multiple of either Fg or Fg.
Proof
As usual we consider in place of g an equivalence
chain (giy) of forms equivalent to g. Assuming
that m_(g) > 7@573 and using the same notation as in

the previous chapters we have that

ap+1 Ky = A; A® = L4, (12.1
m_ (g) =m_ > ¥B8a/3, (12.2
a, >m_+ 1/ 2> ¥88/3 + 1/ (ioad), (12.3
ap > 3/ (i even), (12.4
d = 1356/2, 0 <pB <1, (12.5
and Ki = 3/308/2i+1 . (12.6

Now if 4 < 24 +then using theorem C; we have that

m_ < 313d79 unless g 1is equivalent to a multiple of Fs.



(151)

Thus we may assume from now on that 4 > 24 and try to
show that g 1is equivalent to a multiple of Fg.
Under this assumption we have that
m_ > ¥Bd/3 > u.
Applying theorem 2.1 to the sections
(x + piz)® - ap+42® (12,7
of g (where i is even) we find that aiss = 10.25
for all even 1, and so qL(y,z) can take no values in
the open interval (-10.25,.75). By the result of
Segre it follows thét
a = d(qi) » {(10.25)% + 3(10.25) /4,

and using this in (412.2) we find that m_ > 4.49,
We now use this and apply the corollary to theorem 2.1
to the sections (412.7) of gi to show that
a,+1 > 10,74 for all even i, Repetition of the above
process yields, after a few iterations, that 4 > 37.87,
m_ > 4.65 and

ai+1 > 10.9 (i even), (12.8

For the present we shall assume that

8d4/3 < 125. (12.9
Using this in (12.5) we obtain a bound on S which in
conjunction with (12.4),(12.6) and (12.8) yields that

Ki < 18.267 (i odd) (12.10
and

K, < 1.257 (i even). (12.11
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From these we have, as X; > pi, that pi =1 for
even 1 and pi < 18 for i o0d4dd.
Now if pk € 3 for some odd k then
Kg-1 > (1,4) + (0,19) > 1.3
which contradicts (12.11). Hence pi > 4 for all
odd 1i. Using this we can improve our upper bound on
pL to pi < 16 for all odd i, for if pk > 17 for
some odd k then
Ke > (17,1,4) + (0,1,4) = 18.6
which contradicts (12.10). This enables us to show
that py =2 5 for all odd i, for if pk = 4 for some
odd k then
Kk-1 > (1,5) + (0,17) > 1.258
which contradicts (12.11). Thus we have shown that
pi =1 (ieven); 5 <pi <16 (i odd)(12,12
Before commencing to eliminate various [pi] chains
we shall first obtain upper bounds on ai+;s and
lui = %] for even 1i. From the bounds (12.12) we
have that
Ky > (1,16,1,17) + (0,16,1,17) = 341/305
for i even, and so using (12.1) and (12.9) we find
that aj+s < 12.26 for i even. For a fixed even i
consider the values (3 + ||u)? - ai4s =2nd

(3 = |ulD® - ai+s ©of &i. In the first of these
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values we have that 10,9 < aj4s < 12.26 and
9< (3 + ”,u”)2 < 12,25, Hence in order not to

contradict either m+ = 1 or m_ > L,65 we must have

(3 + [e)? - aves > 1, (12.13
and so aj+4 < 11.25, Considering the second of the
two values, as (3 - ||u])® <9, it is clear that

(3 - |u)? - 2i4s < -m_.

Subtracting this from (12.13) we find that
12"u" >1 +m_, and so

el > (1 + m) /12, (12,14
As m_ > L.65 this implies that [ul| > .47, i.e.

Ny - %| < .03. (12.15
From the corollary to theorem 2,1, as m > 4, we

have that
ai+1 = 10.25 + (m_ - 4) (i even). (12,16

Combining this with (12.,1) and (12.2) yields that
pi(m_ ) =m?® - 2Ki%(6.25 + m_)®/3 > 0 (i even)(12.17
Now from (12.16), as ai+:1 < 11.25, it is clear that
m_ < 5 and so the inequality (12.17) must be satisfied
for some m_ < 5. However using the known bounds on
m_ and K; it can easily be shown that the derivative
vi'(m)) = 3m % - 42 (6.25 + m_)/3 > 0,
and so (12.17) must be satisfied with m_ = 5. Hence
Ky < /L0/27 < 1.2172 (i even). (12.18
Furthermore as wL'(m_) > 0 1t is elear that if
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WL(X) < 0 for all allowable values of K; then m_ > X,
The bound (42.18) allows us to improve the bounds
(12.42) on pi for i odd to 6 < pi < 16, for if
Pk = 5 for some odd k then
Keeq > (1,6) + (0,17) > 1.22

which contradicts (12.18).

The proof is now continusd as a series of lemmas

eliminating all possgibilities for the chain [pL].

Lemma 12,1

pj < 14 for &ll odd j.

Proof
Let 15 < pi-1 € 16 for some even 1i. Then
18/17 = (1,17) < Fi < {1,6,1,6) = 55/L8,
1/17 = (0,17) < 8y < (0,15,1,8) = 7/111,
and so ap4+F1S; <€ 813, Hence in order that the value
“%“2 + ai+1F 8¢ shall not contradict m, =1 we must
nave |n - || < .07. Combining this with (12.15) we

find that ||[2Nn - 4 - &] < .17, and sc there exists
X such that
28,04 < (x + 2n - u)® < 30.25,
However
29.6 < ai+1 (1 + 2P ) (1 - 28;) < 32.68,
and so gi takes a value contradicting either m, = 1

+
or m_ > L.65.
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Lemma 12.2

pj < 9 for all odd jJ.

Proc?f

Let 10 € pi-+ < 14 for some even 1. Then
255/239 = (1,14,1,15) < Py < (1,6,1,6,1,6) = 433/378,
16/239 = (0,14,1,15) < St < (0,10,1,6) = 7/76,

and so

204 < apes (1 + PL)(1 - 81) < 22.53

and

19.25 < ai+1(2 - F)(2 + 8;) < 21.97.

Hence in order that the values

sh
mu
Ho

wh

b+ N = u® = aisa( + PG - 81)

(b + |In+ 22D - apea(2 = F)(2 + 8)
all not contradict either m_=1 or m_ > 4.65 we
st have |A - uf < .23 ana |\ + 2] < .17,
wever by subtraction these yield that “3u" < b

ich is in contradiction with thrice (12.15).

Lemma 12.3

pj > 9 for at least one odd J.

FProof

i

Let pj; £ 9 for all odd J. Then for any even
we have that
120/109 = (1,9,1,10) < Fy < (1,6,1,6) = 55/48,
11/109 = (0,9,1,10) < 8; < (0,6,1,6) = 7/48,

It

and so K{ > 1.2018, Hence as 1y (4.93) < 0 for



(156)

Ki > 1.2018 we must have m_ > 4.93 and ai4+s > 11.18,
Consider the values

b+ N = uD? - aw+2 (1 + PO - 81)

and

(b + |In + 2uD? - apsa(2 - F)(2 + 80).
As

20.0 < aj41 (1 + P)(1 - 8¢) < 21.8
and

20.0 < ap41{2 - F)(2 + 8;) < 21.8
it follows that gi takes a value contradicting either
m, =1 or m_> 4,95 unless IN =4l < o412 and
I + 2#" < W12, However subtracting these yields that

|3l < .24 which is in contradiction with thrice

(12.15).

From the contradiction of lemmas 12.2 and 12,3
it is clear that the assumption (12.9) 1is false.
Hence
8a/3 > 125 (12,19
and so, using (12.2), we have that m_ > 5.
By an obvious modification of the corocllary to
lemma 2.1 applied to the sections (x + ui2z)% - ay4.2°
of gi 1t follows that
ai4z = 14 + (m_ - 5) > 14 (12,20
for all even 1i. Hence the binary form qi{y,z) can
take no values in the open interval (- 14,.75), 2and so

by the result of Segre it follows that
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d = dalqi) > (196 + 42)/4 = 59.5.

We now use this in place of (12.19) to obtain new
bounds on m_ and aj+i. Repeating this iterative
process a number of times yields that m_ > 5.538 and
that ai4+1 > 14.538 for all even 1i. Combining this
with (12.4) and (12.6) we find that

Ki < 21.911 (i odd); Xi < 1.1304 (i even). (12.21

We may obtain a tighter bound on K; for i even
as follows, As

aits > 9 +m_2 9 + 353573
we have that
Ky < 8/[9 + J20%/3].
Now the RHS of this inequality has positive derivative
with respect to A (over the allowable range) and so
as A < /270 we have that
Ki < 4/270/(9 + ¥180) < 1.1222 (i even). (12.22

Prom (12.21) and (12.22) we have immediately
that pi =1 for all even 1 and that p; < 21 for
all odd 1. Now suppose that pk = 21 for some odd
k. Then

Kk > (21,2) + (0,2) = 22

which contradicts (412.21). Hence pi < 20 for all
odd 1i. Suppose that pk < 12 for some odd K.

Then
K-y > (1,13) + (0,29} > 1.124
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which contradicts (12.22). Hence pi 2 13 for all
odd 1,
We now find upper bounds on a4y and ”ﬂL" for
even 1, As
K, > (1,20,1,21) + (0,20,1,21) = 505/L61,
using (12.6) yields that ai4+s < 15.01. Now
consider the values

W= fuD? - aie

and

(3 + “M”)z - ai+1
of gio Clearly we must have

(b= fuD? - ai4s > 1
and

(3 + flel)® - ai4a < -5.538
in order not to contradict either m =1 or m_> 5,538,
From the first of these it follows that aj4+1 < 15,
while subtracting the first from the second yields that
”p“ < 033, Hence

fluill < 033 (all even i).  (42.23

We are now in a position to work on the [pi]
chain, eliminating all possibilities except that which

gives g as equivalent to a multiple of Fg.

Lemma 12.4
If pj = 20 for all odd j then g ~ FeJ135/2,

Proof
Let pj =20 for all odd jJ. Then for any even
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i we have that

gL = (x + N + pz)® - ai+1(2° ~ yz2 - 55y°).
As ”%"2 + a;+1/20 > 1 in order not to contradict
m =1 it is clear that we must have ai+is = 15 and
Similar treatment of the value
In + 2| + ai+2/20 yields that [N + ufl = 2 and so
”u" = 0. Hence

g ~gi ~ (x+ 2y)® - 15(2% - yz - #gy°)
= Foi135/2

as required.

In order to eliminate the other possibilities for
the chain [pi] we shall suppose from now on that

Pi < 20 for at least one odd 1i.

Lemma 12,5
If pi-1 = 20 with i even then pi+s # 19,
Proof

et pi-1 = 20 and Dpi4+1 = 19 where i 1is even,

Then
L61/u39 = (1,19,1,21) < Fi < (1,19,1,13) = 293/279,
22/461 = (0,20,71,21) < S; < (0,20,1,13) = 14/293,
and so ai+1FiSi < .757. Hence in order that the
value “%"2 + ai+1Fi8; shall not contradiect m =1 we

must have [N = %[ < +003 and ai4ys > 14.94.  This
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implies that |[[u| < .008 as otherwise the value
(4 - [[ul)? - ai+s will contradict either m =1 or
m_ > 5.538.

Using the above bounds on ||N - #| anda [lu| we
find that |8\ + 9uf < .096, and so there exists x
such that 81 < (x + 8\ + 9u)?< 82.8. However

83.3 < ai+1(9 = 8F)(9 + 8Sy) < 8L.L,

and so gi takes a value contradicting m_ > 5.538.

Lemma 12,6

pj < 19 for all odd J.
Proof
Let pk = 20 for some odd k. Then by the above
lemma there must occur, either in the original or the
reverse chain, an even 1 such that pi-1 =20 and
13 < pi+s < 18, Then
w1 /419 = (1,18,1,21) < Py < (1,13,1,13) = 209/195,

22/L61 = (0,20,1,21) < 8, < (0420,1,13) = 14/293,
and so ay4+1FiS;y < ,7685. Hence in order that the
value ”%"2 + ai+4F Sy shall not contradict m, =1 we

+
must have “% - %" < 019 and ai4+4 > 14.638.

Now combining the above bound on ||\ - %] with
(12.23) we find that ||2\ + 3u] < 137, and so there
exists x such that 36 < (x + 2\ + 3u)? < 38.

However
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38 < ap+(3 = 2P )(3 + 2S) < L1.534
and so g takes a value contradicting m_ > 5.538,

Lemma 12,7

p; £ 18 for all odd j.
Proof
Let pi-1 = 19 with 1 even. Then
LhO/W19 = (1,19,1,20) < Py < (1,13,1,13) = 209/195,
21/119 = (0,19,1,20) < S < (0,19,1,13) = 14/279,
and so K; > 1.1002. Using this in (412.6) we find

that aj4qs < 14.936. Hence ai4+4+F;Sy < .8033, and so
in order that the value ||All® + ay+1F1S; shall not
contradict m_=1 we must have N - %]l < ,06.,
Combining this with (12.23) we find that {I27 + 3ull <.22
and so there exists x such that

36 € (x + 2N + 3u)® < 38,7.
However

38e5 < ap+a(3 = 2P )(3 + 28;) < L1.666,
and so g; takes a value contradicting either m = 1
or m_ > 5,538 wunless ayys > 14.8, 3 -~ 2F, > 897 and
lon + 3ull < +011.  Combining this with (12.23) we
find that ||8N\ + 9ull < 443, and so there exist x, and
X, such that 81 < (x; + 8N + 9u)? < 83,6 and
78.4 < (xz + 8N + 9u)® < 81, However
81 < ay44(9 - 8F)(9 + 88;) < 84,2
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and so g; takes a value contradicting either m, = 1

or m_ > 5.538,

Lemma 12.8

p; = 14 for all odd J.
Proof
Let pr—1 =13 with i even, Then
Ky > (1518,1,19) + (0,13,1,19) > 1.1222,
which contradicts (12.22),

Lemma 12.9
py € 17 for all odd J.

£roof
Let pr.s =18 with i even. Then
399/379 = (1,18,1,19) < Fr < (4,14,1,14) = 239/224,
20/379 = (0,18,1,19) < 8¢ < (0,18,1,14) = 15/284,
and so Ky > 1.1055. Using this in (12,6) we find

that apys < 1L.862, Hence ap,.4F;81< .838, and so in
order that the vaelue ||N|% ay,.FiS; shall not
contradict m =1 we must have U™ = 2l < o1,
Combining this with (12.23) we find that |27 + 3ull < .3
and so there exists =x such that

36 < (x + 2N + 3u)® < 39.7.
However

39 < ap4a(3 = 2F)(3 + 25;) < U143
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and so gy takes a value contredicting either m_ = 1

or m_ > 5.538,

Lemma 12,10

py = 15 for all odd J.
Proof
Let pi-+ = 14 with 1 even, Then
Ky > (1,17,1,18) + (0,14,1,18) > 1.1222
which contradicts (12.22),

Lemma 12.11

pj < 16 for all odd J.
Broof
Let Di-y =17 with 1 even. Then
360/341 = (1,17,1,18) < Py < (1,15,1,15) = 271/255,
19/341 = (0,17,1,18) < Sy < (0,17,1,15) = 16/287,
and so Ki > 1.111L., Using this in (12.6) we find

L

that ag+g < 1L.785. Hence ay+:F Sy < .876, and so
in order that the value |AIP + ay,4Fi Sy shall not
contradict m,_ =1 we must have In = 3l < o148,
Combining this with (12.23) we find that

2N = zll < «33 and so there exists x such that

36 < (x + 2N = pu)? < 40,1, However

40,1 < apsa {1 + 2F)(1 - 25;) < Wi.1, and so g takes

a value contradicting m_ > 5,538,
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Lemma 12.12

py £ 15 for all odd J.
Eroof
Let pDpi_s = 16 with 1 even, Then
323/305 = (1,16,1,17) < Fy < (1,15,1,15) = 271/255,
18/%05 = (0,16,1,17) < Sy < (0,16,1,15) = 16/271,
and so Ki > 1,118, Using this in (12.6) we find

that apgs < 14.7. Hence

39,97 < ap4.(4 + 2F)(1 - 25;) < L40.6,
Now by choosing x; such that 36 < (x; + 2N - uP < 42,25
we obtain a value of g contradicting either m = 1
or m_ > 5,538 unless [[2A = p - 3|l < 1. Hence
oA - ull > .4, and combining this with (12.23) we
find that |27l > .367. Thus [N - %]l > 183, and so
WA = = 3l > o5, Hence there existe X, such that
25 < (%2 + N = u)?® < 29, However

28,1 < ap4+a (1 + F )1 - S) < 28,6,

and so g; ‘takes a value contradicting either m = 1

or m_ > 5,538,

Lemma 12,13

p; > 15 for at least one odd J.
Proof
Let pj < 15 for all odd J. Then for all even
i we have that
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K > (1,15,1,16) + (0,15,1,16) > 1,1222
which contradicts (12.22).

From the contradiction inherent in lemmas 12,12
and 12.13: it is clear that we have eliminated all
possible [py] chains which have pj < 19 for at least
one 0dd Jj. Thus the only possible [piy] chain is
that giving g as equivalent to a multiple of Fsy.
This completes the proof of Theorem Cg.
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