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OVERFLOW TRAFFIC IN TELEPHONY

R.M. POTTER

SUMMARY

This thesis is concerned with an analysis of the Kosten and
Brockmeyer overflow systems with renewal input.

Two models of teletraffic overflow systems are included.

The first, or Yroup' model, ccnsiders an overflow system as either

a G/M/® or G/M/L queueing system with an overflow stream as
input. This overflow stream is produced by offering a renewal
input stream to a finite primary group of trunks. The second, or
atomic model, considers sequential overflow streams from individual
trunks.

The atomic model is used to study such characteristics of
an overflow stream as its peakedness and coefficient of variation.
However properties of the overflow traffic and the Laplace-Stieltjes
transforms of the interoverflow distribution, developed by the
first approach, are used to prove the overflow traffic factorial
moment theorem.

A key feature of this thesis is the classification of traffic
by its 'weakness', a new concept to telephony.

Explicit formulae for all offered and carried overflow traffic
moments are derived in terms of finite differences of the overflow
traffic's weakness, or equivalently, Laplace-Stieltjes transforms
of the input renewal stream. The finite difference.version is
inverted to provide insight into the effect of specifying a finite
number of overflow traffic moments on dimensioning teletraffic
overflow systems.

A new dimensioning procedure, called the Equivalent Non Random

Method ‘s developed in the final chapter.
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CHAPTER T

INTRODUCTION

The work contained in this thesis is a discussion of overflow
traffic resulting from offering a general renewal input stream to
a finite fully-available primary group. The concepts of 'overflow
stream' and 'overflow traffic' are analysed using queueing and
renewal theory. "Some Formulae 0ld and New for Overflow Traffic
in Telephony" by Pearce and Potter [ 25 ] is based on definitions
and results found in Chapters II through IV. These three initial
chapters contain a unified methodology for finding

(i) the Laplace-Stieltjes transform of the interoverflow
event distribution, see Chapter II,

(ii) the binomial moments of offered and carried traffic,
see Chapters III and IV respectively.
The distinction between continuous time and the imbedded Markov chain
steady state occupancy distributions corresponding to any given reﬁewal
input stream is emphasized throughout these early chapters. The
expressions derived for the overflow stream and the binomial traffic
moments are shown to be equivalent to early results of Takadcs and
Cohen, see Syski [ 34 ]. The general inter-overflow distribution
formula simplifies for random input traffic. In this case our
simplified general result verifies that a hyperexponential
distribution characterises the overflow stream, see Khinchine [ 18 ].

The basic queueing systems, G/M/® and G/M/L are needed to
analyse 'offered' and 'carried' traffic. Theory relevant to these

concepts are reviewed in detail in Chapters III and IV.



The determination of explicit formulae for all overflow traffic
moments from a renewal input stream is given in Chapter V. This
work is summarised in "Explicit F;rmular for All Overflow Traffic
Moments of Kosten and Brockmeyer Systems with Renewal Input", see
Potter [ 26 ]. The 'group" interpretation of these systems is to
consider the overflow stream from a finite primary group as the input
rénewal stream for either the G/M/~ or the G/M/L gueueing systems.
The factorial overflow traffic moment theorem is proved for any
general renewal input stream, thus extending its known region of
applicability, see Nightingale [21].

The classification of renewal streams by the 'weakness', that
is the reciprocal of their intensity, is a feature of this work. A
comprehensive list of explicit formulae for all offered and carried
overflow traffic moments and related functions (defined at arrival
instants and in continuous time) concludes Chapter V. These formulae
are expressed in terms of

(1) the divided difference of the overflow traffic weakness
and

(ii) the Laplaée—Stieltjes transform of the input streamn.

By simplifying the general overflow traffic binomial moment formulae
for the case of random input traffic, the resulting expressions are
shown equivalent to those derived by Schehrer, [32].

In Chapter VI an alternate view of overflow systems is considered.
This 'atomic' approach, based on sequential overflows from individual
trunks is described and its power demonstrated by deriving
characteristics of the peakedness and coefficient of variation of

overflow traffic from a renewal input stream. Curves of overflow
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traffic peakedness versus either the primary group size or the
input streams weakness are included to illustrate salient features
common to a class of renewal inpﬁt streams, namely a set of Erlang
input streams of different phase. The intuitive result that
'overflow traffic arising from random input traffic is rough' is
verified as a special case of the more general peakedness result
valid for all renewal input streams. Pearce [ 23 ] extended this
work by analysing the effect of both heavy and light input traffic
on the peakedness of offered and carried overflow traffic.

The final chapter, a detailed version of Potter [ 27 1,
contains a consideration of the effect on an overflow system when
a finite number of overflow traffic moments are given specified
values. The inversion of the factorial overflow traffic moment
formula is fundamental to this work, resulting in an expression
relating the overflow traffic weakness from an increased primary
group with the number of prescribed overflow traffic moments. Using
results derived in Chapter V, a list of overflow quantities fixed
by the given number of specified overflow traffic moment values is
established. Two overflow traffic moments, an assumption common
to most teletraffic dimensioning techniques, are shown to specify
the marginal occupancy, independently of the form of the renewal
input stream. Additional restrictions arising when three overflow
traffic moments are given set values are also considered. If the
input traffic is random, exact dimensioning formulae are obtained
in terms of three overflow traffic moments.

A dimensioning technique, based on a recurrence expression

derived in Chapter V for the overflow traffic variance involving
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the marginal occupancy and the mean overflow traffic, is developed.
This Equivalent Non Random (E.N.R.) Method is dependent on charts
produced by superimposing two families of curves. One family
corresponding to constant input weakness values whereas the other
corresponds to constant primary group size values. Examples of
such charts for different Erlang input streams are included and
their common features discussed.

Throughout this work the holding time distribution is assumed

to be negative exponential with parameter .
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CHAPTER II

2.1 Introduction

When a renewal stream is offered to a finite set of trunks
and forced to overflow, the overfiow stream is also renewal, as
shown by Takacs [38] and Descloux [12]. The invariance of the
renewal property will be verified in the subsequent analysis of
the inter-arrival time distribution of the overflow stream.

Initially the notation and terminology needed to analyse
the input and overflow streams will be discussed.

A queueing theory approach to this overflow stream will be
used to derive the Laplace~Stieltjes transform of the inter
overflow distribution. The same approach, thus providing a
unified methodology, is used in Chapters 3 and 4 when analysing the
steady state occupancy distributions on a set of trunks (finite or
infinite).

The equivalence of the author's expression for the Laplace-Stieltjes
transform of the overflow stream with that of Takdcs [37], is
established. BAn identity resulting from this equivalence provides
insight into the structure of the o.f. stream.

In the last section of this chapter relevant quantities,
such as the weakness of an overflow stream, the nth divided
difference of the weakness, the probability of congestion and their
associated props are introduced. Such quantities are essential in
the subsequent derivation of explicit formulae for all the overflow
traffic moments.

2.2 Notation and Terminology

Consider a telephone exchange at which calls arrive at time

instants T, S T2 € ... ST <... where X =T - T ) (n=1,2,...,

n n n ne-



:Te=0) are independently and identically distributed random

variables with distribution function F(t):
p(x; < t) = F(t) for all n=1,2,... ’

that is, calls arrive in a renewal stream with interevent time
distribution F(t).

The mean interevent time, m:

m = E[Xh] = J tdrF(t) for all n=1,2,... . (2.2.1)
0

Let ¢(s) be the Laplace-Stieltjes transform of F(t),
00
d(s) = J e " arF(x)
0

Bn alternate expression for the expected time between successive

events is given by
m=- ¢'(0) (2.2.2)

If this renewal stream, F, is offered to a finite set of
N trunks with negative exponential service distribution, parameter

M, the weakness, £y, of the input stream:

fo

- U¢'(0) (2.2.3)

Hence, using (2.2.2),

fop = + Um (2.2.4)

Teletraffic engineers use the term, intensity, 1Io, to describe

the ratio of the arrival rate of calls to the service rate, thus

Ip = — (2.2.5)
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Thus the weakness of the renewal stream, F, is the reciprocal of
its intensity.
Let EN be the probability that an arriving call finds all
N trunks occupied. The expected number of calls between consecutive

instants at which arriving calls find all N trunks busy is given by

E[v] = i (2.2.6)

2

where V is the number of interevent times occurring between
successive overflow instants.

Suppose E and ti+1 are consecutive instants at which
arriving calls finds all N trunks busy. The interevent times
X, = ti+l - ti are independent, identically distributed random

variables with distribution G:

p(x < t) =G(t) , i=1,2,... ,
i+l

that is, calls overflow in a renewal stream with interevent time
distribution G(t). Let MN be the mean interevent time of G,

thus

MN = -y, (0) (2.2.7)

where wN(s) is the Laplace-Steiltjes transform of G(t). If
X = X1 + ... + Xv where V 1is the number of interevent times
occurring between successive instants when calls find all N trunks

busy, (V is a random variable), then by Wald's Theorem, see

Takacs [361],

E[xi] = E[v] E[X;] (2.2.8)

providing E[V] < » and the event v=n and subsequent time



intervals Xn+1’X£+2"' are independent. Equation (2.2.5) can be

expressed as

1
M‘N =Em (2.2.9)

The weakness, fN, of the overflow stream:

N

hence, using equation (2.2.7),

£, = = W' (0) (2.2.10)

fN = UN& (2.2.11)

The intensity, I of the overflow stream:

NI
1

I = ——

N pkk

Substituting for m and MN in terms of f£fo and fN, given

by equations (2.2.4) and (2.2.11), equation (2.2.9) becomes

fo

(2.2.12)

T Lo (2.2.13)

N
N

Thus the congestion probability is the ratio of the weakness of
the input stream to the weakness of the overflow stream. A similar
interpretation of this loss probability is used by Descloux [12],
page 331/1 and Pearce and Potter [25], equation (15).

I assume throughout this thesis that the holding time of each
trunk has a negative exponential distribution, parameter U.

2.3 Analysis of the Overflow Stream, G

Let fn(t) be defined as the distribution function for the

time from an epoch where a call joins a group of N trunks to find

n of them occupied till the instant of the first subsequent overflow.
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Suppose a call at Ti finds n trunks busy and that the
first subsequent overflow occurs at time Ti+t' ILet y = Ti+1fﬁ
where O <y < t. If a call at LI finds 3j, where
0 < j £ ntl, trunks busy, then kn+l—j) calls must have finished
in time y whilst the remaining j calls did not. The time to
the first subsequent overflow from Ti+1 now becomes (t-y), hence

"o ff Y mE1e] -
£ (t) = Z(j>J (1-e “H)"T g Y
j=0

)} =

% (t-y)dF(y), O<n <N. (2.3.1)
0

Since the overflow is instantaneous when a call arrives to find all

N trunks busy, let

fN(t) = §(t~0) (2.3.2)

where § 1is the Dirac Delta measure defined by

r” s(t)8(t-a)dt = s(a) for any generalized

J 0
function s(-).
The condition of equation (2.3.2) puts a physical boundary on
equation (2.3.1).
Taking the Laplace-Stieltjes transform of equation (2.3.1)

gives

nt+l ™ s
fn*(s) _ z J e—st (n+l) (l-e'“ )n+1-.| e-JIL.t dF(t)fj *(s), O0<n <N (2.3.3)
: 0

The solution to these equations (2.3.3) is the same as that of the
unrestricted set for which 0 < n < ® with the imposed supplementary

boundary condition

fN*(s) =1. (2.3.4)
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By taking factorial generating functions, the extended set

of equations becomes

f*(z) r ——{f*(ze yexp{z(1-e }]dF(t) (2.3.5)

Proof of equation (2.3.5)

The factorial generating function, £*(z) of fn*(s) is given by

by *
f£*(z) = Z (S)z
o e t n+l t n+1-j -ipt z
- - n - i
=7 7 |t a-et) T e Zar(t) £ *(s) from (2.3.3)
I - 0 J n! j
n=0 j=0
= fo*(s)Jr”e' St (1-€ Sy yexp(z (1-€ Kt Y)AF (t)
0
0 -] (] T R - rje1
-str+] -ut r -ju z
+ * . - —— (&
_Z £ *(s) _Z Joe Ciha-ete T
j=1 r=0
po £ * i - t t
= § &HZi8). ) e'””rﬁe'St (1-e **yexplz(1-¢ *") }ar (t)
§=0 J- 0
T Of % Y 3 j-tut tr” t t
+ ) —J'—j-l-s‘—zJ (-]Z-)e"' Hlet ] e “explz(1-¢ ") }dF (t)
. . 0
i=1
= re.St i!—f*(ze- i )exp{z(l—e.”t )}]dF(t)
0 dz__
By substituting k(z) = f*(z)e-z, equation (2.3.5) can be rewritten
as

k(z) = re‘“ S 4 1)k (ze *Pyar(b) (2.3.6)
0 dz

which on expanding
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k(z) = } Emi%l o
= n!
gives
-=st 4 k (S} i p (s) n :-n t ut **%
k(z)=re (Z*“——n*.—“-z+21—{““,— et yar (v
0 = i aco B
n
Equating coefficients of == gives

- (n+1)ut

re'“ x (s)e ™' +x  (s)e
0 n n

+1
re'“dF(t),
0

k, (s) =k (s)

k (s)

Since ¢(s)

1-¢ (s+nu)
¢ (s+n+1y)

n

1-¢ (s+3-11)

) TR T

Since k(z) = e " £*(z)
- n
£ *(s) = ,go (LK, (s)
n r C—— -
n, . 1-¢(s+j-1u)
= k - - =
o(S)rgo(r)jjl¢(s+ju)
o % 3 0 , (s) =
35 klz) = ] st
n=0
d - pt S “mElpt zn
o, k(ze ") = =Z k ., (s)e =

Jar(t) .

(2.3.7)

equation (2.3.7) can be rewritten as

(2.3.8)

(2.3.9)

(2.3.10)

by (2.3.10)
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But the physical boundary condition (2.3.4) gives

N r

=1 = N 1-¢(s+3-1y)
f¥() S1=TKo(s) ) () T oSy (2.3.11)
r=0 j=1
Thus fn*(s) can be divided by fN*(s) to give
n T —_—
1-¢(s+3j-1u)
£ *(s) = 2i8) (2.3.12)
" £y*(s) N r —
- n 1-¢ (s+j-1u)
k. (s) )} () m e
0 cSo E =0 ¢ (s+ju)

The k,(s) cancel enabling it to be given any value w.l.o.g. by
expressing fn*(s) by equation (2.3.12). We take k,(s) =1 in

the expression for kr(s) hence

r

1-¢ (s+j-1u)

T o e — r=1

[ =1 ®sHIW) :

kr(s) =3 (2.3.13)
) 1 , r=20
One property of kr(s) useful for later work is

k (0) =& (2.3.14)
n no

Proof of (2.3.14)

When s = 0, fn*(O) = ngfn(t) 1 and the corresponding functions
0

f*(z) and k(z) become

8

k(z) = e “f*(z) = 1

However we have defined ky(s) = 1 for all s,
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ko(D) =1,
But k(z) = 2 LS (s)z
oo n
k,(0) + Z Enigufi_ =
n:
n=1
thus

0 if n#0

k_(0) ={
‘1 if n=0 .

By setting n = N - 1 in equation (2.3.12)

Mk (s
Y T

(2.3.15)
Mk (s)
Y r

G(t), the distribution function of the time separating two
consecutive epochs at which an arriving call finds all N trunks

occupied, satisfies,

N
G(t) = } (Ijq)f (et P "”f (t-y) &F (y) (2.3.16)
j = o

Equation (2.3.16) is the same as equation (2.3.1) with n =N - 1.
This result is reasonable physically , After the arrival of one more
call, the full set of channels and that with (N-1) calls become

indistinguishable (except for the overflowing call).

Thus the Laplace-Stieltjes transform, wN(s) of the overflow

stream G, satisfies equation (2.3.15), giving

I hk (s
() = = - (2.3.17)
) ()%, (s)

where kr(s) is defined by equation (2.3.13).
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Takacs [36] obtained the following expression for wN(s),

b N

L ()8 (s)

r=0

Py (8) == -~ (2.3.18)
L C R (s)

r=0

where
% 1-¢ (s+3-11)

(17 ds+3-1)
£ (s) =1 (2.3.19)

2.3.1 oOverflow Stream Distribution Resulting from a Negative

Exponential Input Stream

If F(t) = 1-€ ™', then ¢(s) = }\—ig

Substituting for ¢(s) in the expression (2.3.19) for &_(s), gives

-;'gzzjr) ' r> 1
L (s) = {
r
1l ’ r =0
A
h A=-.
where i

If we assume W =1, then & (s) can be rewritten as

’L; (s) =3 (2.3.1.1)

Substituting this expression (2.3.1.1) for 2}(5) into equation

(2.3.18 ) for wN(s), gives

IPN(S) = —
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CN(—S;R)

_ (2.3.1.2)
CN+1{_S;A)

where CN(—S;A) is the Charlier Polynomial, see Bateman manuscript

[1], section 10.25, defined by

N
c, (xi\) = go(z)(—l)r(i)r!X-r , x real (2.3.1.3)

T

with generating function g(x,z:\) satisfying

o0 N
a(x,z;\) = ) CN(X;MET
N=0
= ez(l—-f-\)x , for x real and lz‘ < 1.
(2.3.1.4)
Hence, Cb(x;X) =1 (2.3.1.5)
c, (0 = 1 - ; (2.3.1.6)
2_ 2
C, (xsh) = EnpmiZAtliztd (2.3.1.7)

A2

Since CN(x;K), x positive has N distinct real roots £(0,°),
see Szeégo [35], Theorem 3.3.1, page 44, the ratio of CN(x;A)
to CN+1(x;k) can be expressed by (N+l1) partial fractions. If
£N+1;1,€N+1’2,...,£N+1’N+1 are the (N+1) real, positive zeros of

CN+l(x;A) then

c Gl N1 B
N A & >0 (2.3.1.8)
CN+1(X’A) r=1 (x-£N+l,r) S
and
c.( iA)
B = CN Eﬁz%" ¥ (2.3.1.9)
N+1 N+1,r '



Equation (2.3.1.2) can be rewritten as

N+1 Br
Wis) = I
N r=1 S £N+l,r)
N+1 %
L Z (2.3.1.10)
r=1 s+£N+l,r
where EN+1 . >0 for all N and r and Br satisfies equation
(2.3.1.9).

If the inter overflow stream has distribution and density functions

GN(t), gN(t) respectively, then inverting equation (2.3.1.10) gives

N -€N+l 1't
gN(t) = 2 Bre
r=1
r"’ N*}':l -Bl'
But g (t)ydt =1, -~ ———— = ]
JO R ' r=1 +E’N+I,r

or equivalently

S CN(£N+1, r ;A)

1 - -1
CN+1|(£N+l,r;x) EN+1,r

r=1

(2.3.1.11)

(2.3.1.12)

Equation (2.3.1.12) is a new relationship connecting the zeros of

the extended Charlier polynomials. The distribution function

corresponding to (2.3.1,11), is

N+1 - - i
8 £N+l,r
) e

T
r=1 €N+l,r

GN(t) =1

Gy (£)

(2.3.1.13)

which agrees with equation (33.1) of Khinchine [18] p. (94), but

gives explicit expressions for his constants ay, in terms of the

zeros of Charlier polynomials, i.e.
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-8
= —T1 (2.3.1.14)
e £N+1,r

where B and {£N+1 l_} satisfy equations (2.3.1.10) and (2.3.19)
respectively. In telephony, a convex combination of negative
exponential distributions as in equation (2.3.1.13) is known as a

hyper exponential distribution.

Equation (2.3.1.13) can be rewritten as

N+1 —gr -t
G (t) = } [1-e

r=1 EN+1,1'

t

ML (2.3.1.15)

Equivalently, Palm's function ¢N(t), the complementary distribution

of GN(t), satisfies

e —Br -£N+l r !
o (8) = } F——e ’ (2.3.1.16)
EN+1,r

+> r=1 .
To demonstrate this methodology for determining the GN(t)

we consider the simple case when N = 1.

2 —Q -E ot
G, (t) = } [1-e

1 (2.3.1.17)

where {Ez r} are the zeros of Cz(x;l) defined by equation (2.3.1.7)

and C r)
B =5, Y

2 2,

by equation (2.3.1.10).

Now the zeros 52 L and E2 ) satisfy

£ _ 2\l - Var+1 IRT
2, 1 2

2A+1 + Var+l

E, , = > (2.3.1.19)
va\
giving c2'(g2 l;x) = - “éX;l
Var+1

(@]
N
gy
>
I
>
N
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Hence +(1_§zhL.) 2
-6 A ) A
£, B & JAAL

—k+£2’2

AT since § & = A?
4A+1 2,1 72,2

1l

1
= 5+ 57 (2.3.1.20)
and -8B, -1 - Ei %) A2
g2,2 5232 P
= 5 ;'t} 2 = 2
. *i%%X%Tﬁ_ﬂ since 52.252’1 A
1 + VaAi+1l
2 2
Var+1
= 1 % _ _:7£___ (2.3.1.21)
2vV4)+1
Thus G. (t) = . | V1 - exp[2A+1 - /4A+1f]
1 2 T 2
2V/4x+1
N [% _ 575&1?1[1 _ exp[2>\+1 ; /hx+1rj (2.3.1.22)

This equation (2.3.1.21) for G;(t) is equivalent to the following

expression for Palm's ¢;(t) given on page 95 of Khintchine [18],

1 1 2A+1 - V4AA+1

0(8) = G + ey exel 2 ]
1 1 2A+1 + VAA+1

*+ I3 - sypxglexel 2 ]



20.

Kuczura [13], approximates the overflow distribution from any
negative exp, input stream by an interrupted Poisson Process, which
is a Process which is alternately turned on for an exponentially
distributed time and then turned off for another (independent)
exponentially distributed time. If the interrupted Poisson Process
approximates the overflow stream, then the interevent time distribution,

A(t), between successive overflow instants (see Kuczura [13], page 444,

equation 16), satisfies

-r t -r

1 2

A(t) = k;[1 -~ e ] + k2[1 - e ] (2.3.1.23)
where 1

=z +rwrve YO+w+v) 2 - 4\w] (2.3.1.24)

rx = %[X +w v = YQern)? - 4dw) (2.3.1.25)

K, = ATz (2.3.1.26)

r1-ra

ko =1 - k; (2.3.1,27)

1 . . . .

N mean interarrival time of the input stream F,

1 . .

3 = mean on time of the random switch

1 . .

a = mean off time of the random switch.
and u is assumed to be unity.

Note that the form of Kuczura's A(t), is identical to equation
(2.3.1.17), which gives the interoverflow distribution from a single
primary trunk. The following relationships hold between the various

parameters if A(t) 1is equated with G;(t) ,



21.

r; = 52 , i Y2 = 521 (2.3.1.28)
ky = gsz i ko = %ﬁl— (2.3.1.29)
2,2 2,1

Equations (2.3.1.24) and (2.3.1.19) are identical when

(2.3.1.30)

that is r, = 52’2, r; = Ez,l'

Equation (2.3.1.26) for k; can be rewritten using equation (2.3.1.28)

as follows

=P py (2.3.1.20)

which checks with the expression for k; in (2.3.1.29). Hence the
overflow stream from an individual trunk can be considered to be an
interrupted Poisson Process with a unit mean 'on time' of the random

switch and a mean 'off time' of the random switch being the same as

the mean interarrival time of the input stream.

2.4 Equivalence of Formulae for the Overflow Stream, G.

Equations (2.3.17) and (2.3.18) are equivalent if

.l N+1 -1 N N
L (s) = [9(s)] ) () (s) (2.4.1)

0 r=0

I pg +

r

Proof of identity (2.4.1)

Step 1.
—_— _1-9(s)
Doy (s) - DN(S) = -—¢(sﬂ—-) DN(s+u) . (2.4.2)

N
Whete D (s) = Zo (I;)Slr (s) (2.4.3)
o
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Proof of Step 1.

r

_ 1-¢ (s+3y)
% (1wl = , b(s+30)
= EZ$E:; PRC) (2.4.4)
NN v N
, (8) = D (s) = Zo( L8 (s) - Zo(r)z}(s)
r= r=

¢
_ 1-6(s)
~ $(s) Dy (sH+)
Step 2.
= _ __O(s)
kt(s) Flsemi) ﬂr(s) (2.4.5)

Proof of (2.4.5) follows from definitions of ki(s) and 2}(5).

Step 3.

X 6)
(s)

1-¢(s)
¢ (s)

|w

&.(s+u) = - 2}(5) (2.4.6)

©-

Proof of (2.4.6)

b(s) 1-d(s+rp) "' 1-¢ (s+ju)
1-¢(s) ¢(s+ry) ;) d(s+iw)

&_(s+u) =

___¢(s) 1-¢(s+ry)
= 156 (s) §(s+ry) % (s)

_ L (s) _
21' (s+U) = &)—{_SI-H_’U} Qr (s)

1-¢(s)
$(s)
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_ ke (s)

= 3 (s) - lr(s) by (2.4.5)

Multiplying equation (2.4.6) through by (?) and summing from r=0

to N gives

1-¢(s) 1 N _
o) DN = 5 rzzo (L) (s) = Dy(s) (2.4.7)
D (s) - D (s) = — E(N)k(s)-—D(s)b(242)
N+1 N ¢(s) B 't N Y G
1 % 0N
DN+1(S) = 5(s) Igo {r)kr(s), proving (2.4.1).

A consequence of equation (2.4.1) with s=U is

1 N

(N:l)’%, W = w1 ] (I]:)kr 4y (2.4.8)
0 r=0

N

I~ +

r

This equation (2.4.8) can be proved using congestion probabilities
as will be demonstrated in Chapter 4.

2.5 Properties of the Overflow Stream

In this section, we will prove properties of the overflow stream
and comment on their relevance to further results, proved in subsequent
chapters.

Property 1.

P (0) = 9°(0) "y (N;l}kr (1) (2.5.1)

Proof of (2.5.1)

Differentiating equation (2.3.17) and putting s=0 gives

N-1 BN -1 TN
Ok '(0)r=Z0 Ll (eF =Zo( LK (O)rzzo (LK ' (0)
Yy (0) = T
[ I Ox (@17

r=0
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but by equation (2.3.14), k (0) = 6:0

N.
Pyt (0) = )

T

1 N

N-1,. N.. ,

C_k T = f (K (0 (2.5.2)
0 r=0

Differentiating equation (2.3.13) and putting s=0 gives

T o T — i
C o , 1-¢ (0+5-11) afl l-¢(s+j—lu)]
PO =RTO T TGy T Qs e

Al-4(s)] [1~d(stn . .[1-¢ (s+ﬁm]]
ds| ¢ (s+p) ¢ (s+2u) ...d(s+ry) -

_dafigs)] T1-6G-1w) | _<i_|'1—¢(s+u)] 1-6.(0) T 1-6 (5-1n)
dsl¢(s+m)] j=2 ¢ (W) as|¢(s+2w) [ _, o) 5 ¢(3W)
|+ temms of form T{’% x
since $(0) =1, k '(0) = ’i;ﬁ?)jzrzl“igi_}“)
= "(qtlu(x())) W (2.5.3)

Substituting equation (2.5.3) into (2.5.2) gives

N-1

s N
' __(IJ'{O)[ N-1 1 - N _ '
by (0= s inl( K W+ K T(0) rzZI (D, () - kg (0)]
N-1
—._$'(0) N-1, N _
== S0 L:Z;[( L) (r)}kr-x(“) kN_l(U)]
' N-1 _
= 88T Che
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Using equation (2.4.8) gives Tak£c§'[36] alternate representation,
for wN‘(O),
N

v =9t I e (2.5.4)

r=0

A consequence of equation (2.5.1) is the following expression for the

weakness, fN, of the overflow stream G,

£z T Ehk (2.5.5)

where £ and f, are defined by equations (2.2.10) and (2.2,3)
respectively.

Alternately the weakness can be expressed as

N
£,=f ] ()& () using equation (2.4.8). (2.5.6)
r=0

The intensity, IN, of the overflow stream satisfies

N
I =1, go (fg)ftr w1t (2.5.7)

since IN and I0 are the reciprocals of fN and f0 respectively.
Property 2.

The nth divided difference of the overflow streams' weakness,

f(N,N+1,N+2,...,N+n) satisfies
£ N
f(N,N+1,N+2,...,N+n) = E%' Yoo (W (2.5.8)

where _ A"
£(N,N+1,N+2,...,N+n) = — £ (2.5.9)

n! N

and A 1is the forward difference operator defined in Appendix 1.
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Proof of equation (2.5.8)
Equation (2.5.8) is proved if
N

N
A g o= £ L (R, (2.5.10)
r=0

n+r

Proof of (2.5.10) follows by Mathematical Induction.

When n=1, Af
N

1l
Hh
1
Hh

N+1 N+l N N 1
- f"[,g CoE - rzzo ()% (u)J from (2.5.6)

Assume . N N
Ne =f£ 1 (D%, G (2.5.11)

>
|
>
Hh
1
[
Hh

thus proving equation (2.5.10) by Mathematical Induction.
Property 2 of the overflow stream is basic to the derivation of
explicit formulae for the overflow traffic moments given in
Chapter 5.

-

An alternate expression for Aan is

N
£f = £, 4 W _ZO (‘:_)SLr (nt1p) (2.5.12)
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Proof of (2.5.12) follows if

Lo, u =2 0L () (2.5.13)
Now n+r .
. - 1-¢ (5u)
fare 0= T TH G0

1-6 () " 1-¢(31)

= T : :
R TG TR 16T
i=1 ¢(n+ju)

Qh(u)ﬂ}(ﬁiih), proving (2.5.13).

Property 3.
The Laplace-Stieltjes transform of the overflow stream satisfies

the following recurrence relation,

Y (s+) = wN(s)[l =t ][1 - J—l(_sT] (2.5.14)

Proof of (2.5.14)

Step 1. k (s+1) = %ffz‘(*g)’ Kk, (s) . (2.5.15)
r ]
Since k,(5+u) = T 1-¢ (s+31)

i=1 ¢(s+§11h1

_ d(shn) "1 1-6 (s+3-1n)
1-(s) , I, S(stim)

thus proving eqguation (2.5.15).
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Step 2. Z

(2.5.16)

Proof of (2.5.16)

)

Yyls) 1=

l—wN(s) N N
L

using (2.3.17)

thus proving equation (2.5.16).

Now 5
(N;l)kr(s) ) (S)kr+l(s)
Un(s) 1-Unep (s) _ = 20
1=y (s) (s) N- ~ N
§ IOk, o 1 Ox e
= r=0

r r+1

lei’ 1

o N
_Zo (K ., ()

n
=

4
w

N-1
N—-1
2:0 ¢ Y )kr +1 (s)

iy

N
D) (D (s+u)

by (s) Neloo
POk (s+u)
=0

It

by (2.5.15)

T

= \!)N(s)[le(sﬂl)]"1 (2.5.17)

Rearranging equation (2.5.17), proves (2.5.14).
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Equation (2.5.14) is a rearrangement of the recurrence relation

established by Takdcs [37], equation (8), page 136,

_ ¢N-1IS+H)
le(s) B 1-—1[JN_ , (8) + LIJN”I (s+1) (2.5.18)

However it is the form given in equation (2.5.14) which is necessary
to prove the factorial moment theorem for overflow traffic, given
in Chapter 5.
Property 4.
The probability of blocking or the congestion probability ﬁN '

on the primary group of N trunks, satisfies equation (2.2.13), that

is,
7 o=fo (2.5.19)
N £ :
N
Property 5.
The ratio of fN to fN+l is a measure of wN(s) at s=u.
fn
: = wN(U) (2.5.20)
N+1

Proof of (2.5.20)

b N
LR

fN r=0 )
f T by equation (2.5.6)
N+1 z (N+l)£ (
5 H)
_ r=0
= Y () by equation (2.3.18)

The second order moments of the overflow traffic will be shown in
Chapters 3 and 4 to depend on wN(u), hence equation (2.5.20) enables
such moments to be expressed in terms of the weakness of the overflow

stream from N and N+1 trunks. Equation (2.5.20) is basis of
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the formulation, given in Chapter 7, of the Equivalent Non Random
Method for dimensioning overflow systems. An alternate expression
for wN(u), is
IN+1
b () =/ (2.5.21)

In

since the intensity of the stream is the reciprocal of its weakness.

Property 6.

q)N(zu) = %L'%Nil_ . (2.5.22)
N+1 N+2
Proof of (2.5.22)
_ [ _i__] i} __1__]"
wN(Zﬂ) WN(M)ll wN(U) [l ¢N+l(u) by (2.5.14)

-1
= —fN—-{l - fgiL}{l - £N+2} " by (2.5.17)
- N N+1

A generalization of (2.5.22), viz,

n

—_ A £

— -

wN(n+lu) Anf (2.5.23)
N+ 1

is a consequence of the factorial moment theorem of overflow traffic

to be proved in Chapter 5. However equation (2.5.23) can be proved

directly using equations (2.5.12) and (2.5.13).



Proof of (2.5.23).

Since

Py, (n+1n)

(1

N
N it
z)jo ()2 (n+lp)

N+1 N+1 .
Z ( r )Qr(n+lu)
r=0

= N

Zo (& ,, (0
r:
N+1 N+1
IO

n+r
r=0

()

by (2.3.18) with

by (2.5.13)

by (2.5.12)

31.

s=n+1y
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CHAPTER III

OFFERED TRAFFIC bISTRIBUTIONS

Introduction

Imbedded Markov Chain Occupancy Distribution
Continuous Time Occupancy Distribution
Properties of the Offered Traffic Moments

Application of Traffic Formulae for Specified Input Streams.
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CHAPTER TIII

3.1 Int;gduction

Suppose the arrival instants of calls at an infinite group
of trunks form a renewal stream, with an interevent time distribution
G(t) and corresponding Laplace-Stieltjes transform Y(s). The
steady state occupancy distribution, T, of the calls at arrival
instants is called the imbedded Markov Chain distribution of the
offered traffic. The steady state continuous time occupancy
distribution, g, is known as the offered traffic distribution.
The mean, variance and other central moments of the offered traffic
are determined from the g distribution. The call congestion,
discussed in the previous chapter, depends on the imbedded Markov
Chain occupancy distribution for a finite group.

Expressions for the binomial moments and the occupancy
probabilities of both the T and g offered traffic distributions
will be derived using the approach of Pearce and Potter [25]. The
technique consists of the following four stages.

1. Determine (using the fundamental ergodic theorem) a system
of equations satisfied by the relevant occupancy distributions;

2. obtain an integral eqﬁation satisfied by the relevant
occupancy generating functions;

3. obtain binomial moments, using successive differentiation
of the relevant generating functions;

4. recover (if necessary) the occupancy probabilities.

The same methodology is used in the next chapter when analysing the
carried traffic's imbedded Markov Chain and continuous time

distributions.
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The literature discussing the occupancy distributions for the
G/M/® queueing system is diverse, see Takdcs [36], Palm [22] and
Syski [34]. However, to demonstrate the simplicity of the above
fore mentioned technique and to obtain suitable, convenient forms
for the offered traffic moments, a complete analysis of this G/M/«
system will be given.

The final section of this chapter contains proofs and comments
on key results related to the offered traffic and the input stream.
For example, the intuitive result that the mean offered traffic is
the reciprocal of the weakness of the input stream is verified and
the existence of an inverse relation between the ws and the
factorial traffic moments is established. Such results are fundamental
to the factorial overflow traffic theorem of Chapter 5. Expressions
for statistical quantities such as the peakedness and coefficient of
variation of the offered traffic are derived for any renewal input
stream.

Simplified formulae are obtained for the following specific input
distributions; (i) Erlang distribution of order k, (ii) deterministic
distribution and (iii) negative exponential distribution.

3.2 Imbedded Markov Chain Occupancy Distribution

Let N(t) be the number of calls in progress at time t.
For the renewal input stream F, N(t) is not a Markov Process unless
the arrivals form a Poisson stream, that is F(t) is negative
exponential. As in the previous chapter, suppose arrivals occur at

time instants, T k=1,2,... and N(Tk 0) is known, then until the

k 4
next call arrives at LI the number of calls in progress is a

simple death process with death rate U per trunk. No additional
knowledge of N(t) for t < T, is of prognostic relevance to N(t)

for t > Ty when N(Tk_ } 1is known. Thus the N(Tk- ) form a

0 0
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Markov Chain imbedded in the non Markov Process N(t]. The T
occupancy distribution is the steady state distribution of the
N(Tk_o) whereas the g occupancy distribution is the steady state
distribution of the N(t).

Let ﬂj be the steady state probability that an arriving

customer finds j busy trunks, thus

nj = 1lim p(N(Tk_o) = 3j) . (3.2.1)
k >0

Let % be the steady state probability that at time t, J
trunks are busy, thus
q = lim p(N(t) = 3J) . (3.2.2)

t oo

Step 1. Derivation of ﬂj system of equations

An arriving call could find Jj trunks busy, if the previous

call had found m trunks busy and m-j-1 calls terminate during

this interarrival time, when m=j-1,3j,..., thus
e m+1l x mj o+l j oux
mo= )y T Jw( Ty (- H e’ *ac(x), (3.2.3)
J : mlo 3
m=j=1
j=1,2,...
Step 2. Generating function TmT(z)
00
m(z) = J W(1+z—le-“x)dG(x) (3.2.4)
0 .
where w((z) = zm(z).
Proof:
o .
Let w(z) = Z‘m 2 , then equation (3.2.3) becomes
ji=o0

- o . m+l=-j
m(z) =Tme + ) ) nmjj(mfl)e PEX (1-e M) Zdac(x), 3=1,2,-.-



o0 {ee]

m=0

{oe]
Mo + J (l—e'”x+zehyx)ﬂ(l—e'yx+ze'nx)dG(x)
0

I}

(o]

- J (1-e"**)m(1-e" **)ac(x).
0

But Tw(l) = 1
1 =Ty + 1 - J (1-¢ "X ym(1-e **rac(x)
0
m(z) = J (l—e-”x+ze'”x)ﬂ(l—e'”x+ze'“x)dG(x)
0 <
- Jow(1+z—1e'”x)dc(x).
Step 3.
(n)
=T (1) _
an ~  n! - hn(u)
where
AN
j=1 LV OW ! >
h (n) = {
L
1 , n=20

Proof of (3.2.6)
Taking the nth derivative of equation (3.2.5) and applying
Leibnitz rule gives,

o

ﬂ(n)(l) = J (l—e-“x+ze-”xﬂ W(n)(l—e-#x+ze-”x)] dG(x)
0 _

z=1 z=1

36.

- ux - Jix -px M1
Mo + L T (1-¢ " 4ze’ ) ae(x) - Fm | (1-e77)  4G(x)
m 0 mjlo

(3.2.5)

(3.2.6)

(3.2.7)
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00
+J Py Fxptn- ) (1—e“‘"+ze'"")] ac (x)
0 -

z=1

Jo"

= r'n(") (Lye "Mac(x) + ( e () 1y a6 (x)
0

(n) . o0 1) Y (nu) 5.8

™ (l) =nmW 1) T (3.2.8)
n

(n) - Y (5u) 3.9.9

™ (1) = m(1l)n! lel E=EI ' (3.2.9)

thus proving equation (3.2.6).
Step 4.

mo= ) (2) (—1)"'khn(u) . (3.2.10)

Proof of (3.2.10).

The binomial moments Bn" of the T distribution:

(3.2.11)

hence equation (3.2.10) is the inverse of equation (3.2.11).

3.3 Continuous Time Occuparncy Distribution

The g distribution is accessible from the m distribution.

Step 1.

(o]

g =K ) J:T (j;‘“)(1—e'”*)me‘j“xdxdc(t), j=1 (3.3.1)
0

3
m=0 j-1+m

Proof of equation (3.3.1)
Consider an arbitrary instant in steady state. Let T be
the length of the interarrival interval in which this point lies.

The probability that this given instant falls in an interval of
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prescribed length is proportional both to the frequency of intervals

of that length and to the length itself, that is

p(t < T < t+dt) = K t dG(t)

where d4G(t) = prob(t < length of arbitrary selected interval
< t+dt)
and K 1is an arbitrary constant.

But

[wp(t < T < tHdt) =1
0

o= Jot dG(t) (3.3.2)
-1
K=M (3.3.3)

where M is the mean of G(t).
Now p(j trunks busy at an arbitrary instant/instant lies in an

interval of length t)

= %Jtp (j trunks busy at time x after beginning of
B .
interval) dx

. q = p(j trunks busy at arbitrary instant in steady state)

= pr (3 trunks busy at arbitrary instant/interval has length
0
T =t) p(t < T < t+dt)

_ KJF:% Jfo

p (j trunks busy at time x after beginning of
interval) dx t dG(t)

00 ot
= KJ J p (j trunks busy at time x after beginning of
0
0

interval) dx 4dG(t)

et t L] m .
+ - - .
K )} mo 1M - ') & Maxac), 3= 1.

m=0 j-1+m
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Step 2.

az =1+ £} (z1"n (/o (3.3.4)

where f is the weakness of the input stream G.
Proof of (3.3.4)

Using equation (3.3.1),

T T r” r J+m, -jnpx - px M
alz) = )} )= K| dG(_t)J _Me (1-e "%y 7 ax
j=0 m=0 j-1+m 0
© © .. kamil m
k+ - ‘ -k
= KJ[de(t)Jr yr m ml) (ze ¥ (1-¢ ¥y ax
0 O m=0 k=m1
where k=j-1l+m
t L
= KrdG(t)J w(l+z-le "*)ax (3.3.5)
0 0
oo n
Let w(l+y) = ] wi- .
5 n!
(n) d
For n =1, wo= W (1+y) = a—;—(1+y)ﬂ(l+y)
y:() y y:()
= ﬂ(n)(l) + nﬂ(n'l)(l) by Leibnitz Theorem.
(n-1)
m (1)
= R Y S 2. 3.3.
n 1= (0 by (3.2.8) (3.3.6)

and wp=1.

Substituting for w, equation (3.3.5) becomes

X n
q(z) Krdemr T o AL oneng
1]

J0 n=0 Hi

7o, el a-e " ]

[
K] \dG(t)Lt + g o

0
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00

K[ tdG(t) + K
Jo

°z° L, Az=D" 1-p(nw)

e n! ny
n (n-1)
=1 + K Z (z }) T (1) by equation (3.3.6)
n=1 n H
K v (z-1)
Z= : 2
=1 + ﬁ ngl = hn_l(u) by equation (3.2.6)
-1
But f = K/ by equation (2.2.4), thus proving (3.3.4).
Step 3.
(n) .
=4 (1) _ hpo 1 (W) (3.3.7)
nq n! nf T
Proof of (3.3.7)
co (n)(l)
n
Since q(z) = X S__;T__ (z-1) and qg{(z) satisfies (3.3.4),

equation (3.3.7) is obtained by equating coefficients of (z-1)".

n

Step 4.
g = £ I Ot (3.3.8)
n=k
qp=1- ¢ § Pnea @) (3.3.9)

Equations (3.3.8) and (3.3.9) follow from the definition of the

binomial moments Bnq.

3.4 Properties of the Offered Traffic Moments

Property 1. The factorial moments of the T and gq distributions

satisfy
o Jm=f o , n=1 (3.4.1)
(n- 1 nq
where o = ﬂ(n)(l)
{ nm
a =4



Proof of (3.4.1)

(n)

n!

q (1) = 3 n-l(U) by equation (3.3.7)
_ (n-1)!
=5 h ()
(n-1)
=L % (1) by equation (3.2.6)
thus proving (3.4.1).
Property 2.
-1
[1 + n il ] = Y (ny)
a____.
n+lq
Proof of (3.4.3)
sineel @ () & %h (1) by (3.3.7),
n- 1
¢" VW
q(n) (1) hn_1 (W)
_ . Yiny)
n 1= (o) from (3.2.7)
1 i ™ )
¥ (o) q(n+’)(l}

thus proving (3.4.3).

This property relating Y (nu)
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(3.4.2)

(3.4.3)

(3.4.4)

(3.4.5)

with the factorial moments of the

offered traffic is basic to the derivation of explicit formulae for

the overflow traffic moments for any renewal input stream.

Equation (3.4.4) relates

the following way,

(n+1)

(1) _
q(n](l}

= ‘N

the T

7™ (1)
"y

and q factorial moments in

(3.4.6)
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Property 3. The mean offered traffic, M, is given by ulq where
o =B = f (3.4.7)

Equation (3.4.7) follows from equation (3.3.7) with n=1. TImplicit
in this result is the equivalence of a renewal streams' intensity
and the mean offered traffic produced by this stream. This is
intuitively obvious but is important when considering the offered
traffic moments of an overflow renewal stream.

Property 4. The variance V of the offered traffic satisfies

-1 = -1
ve=f [ -f£'+ £ (3.4.8)

where f—1 is the mean offered traffic and
f* = (0. ) ’ (3.4.9)

that is, f* is the mean offered traffic for the T distribution.
Proof of (3.4.8).

(1)

v=gd? @+ @ - P’ (3.4.10)

<P - + 7Y (3.4.11)

by equation (3.4.2), for n = 2

thus result follows by (3.4.7) and (3.4.9).

Since (1) '
™ (1) = hl(u) by equation (3.2.6)
= E%é%%T- from (3.2.7) with n=1,
then vV = M(lﬂn+h1) (3.4.12)
or alternatively
-2 £

- .4.13
el (3.4.13)
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Property 5. The peakedness, z, and the coefficient of variation,

w, of the offered traffic satisfy

= = ——— -

z = f [1‘W(U) 1] (3.4.14)
= v _ .—_f -

W = —r =000 1 (3.4.15)

The equations (3.4.14), (3.4.15) follow directly from equation
(3.4.13).
Property 6. The peakedness of the offered traffic is greatef than
or equal to 5. The minimum value is only achieved for a deterministic
stream of very low weakness. Variation in the weakness of the
renewal stream is equivalent to leaving the interevent times fixed
and varying the parameter | of the holding times, see Pearce [23].
A large value of U corresponds to high traffic weaknesses (or
equivalently low intensities), and small values of W correspond to
low weaknesses. To prove property 6, we consider =z as a function
of W with A fixed.
By the mean value theorem
2

Y =1+ wp'(0) + %;w"(a> (3.4.16)

for Y small for some & € (0,W). Equation (3.4.14) can be

rewritten as

-y~ - [t ]

N
il

u? -1 =0
[-uyp' (0) - T;W"(Eﬂ - [-upr (0] by (3.4.16)

_ V" (E) (3.4.17)

207 (0) [p' (0) 144" (B)]
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. IIJ"{O]
lim z(W) = s> ~973 (3.4.18)
U0 2[¥'(0)]

If the input stream G has mean, m, and variance, v, then

the coefficient of variation, w, of the interevent times satisfies

o) - o]

v
= = 3.4.19
MR IO E: ‘ ’
. !['"(0) _
i.e. b7 (0) 1 +w (3.4.20)
Therefore equation (3.4.18) becomes
lim z(y) = 1% (3.4.21)
u>0
i.e. lim z(p) =2 % since w =0 (3.4.22)

u0

This limiting value of % occurs for a stream with low weakness apnd
w=0, that is, a deterministic stream of low weakness.

Kuczura, [ 14 ] p. 1315, in analysing the variability of a
traffic stream uses Jensen's inequality , to show that
for a fixed mean interarrival time, m, a stream's peakedness defined
by equation (3.4.14) attains a minimum when G(t) is the one point

distribution defined by

G(t) = { (3.4.23),

with Pu) = e-fo where f; = mu (3.4.24).

On substituting equation (3.4.24) for Y(U) into equation (3.4.14)
for z, he showed that the peakedness for this distribution can vary

from % (when the intensity = ©, or equivalently the weakness = 0)
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to unity 1 when the intensity = 0 or equivalently the weakness
=OO).
Property 7. The coefficient of variation, W, 1is a monotonic

increasing function of .

Equation (3.4.15) can be rewritten as

_-u' (o) _
W= o 1 (3.4.25)
aw _ =) [, . wpran] T

au  (-p)) | - |

=y' (0) Y ()
o) 20=pan) oY (3-4.16)

>0 . (3.4.27)

Hence W is strictly monotone increasing with u. From equation
(3.4.25) it follows as U0, W0 and as U, W»°, hence the
coefficient of variation of the offered traffic ranges from 0 to
as the stream's weakness ranges from O to <.

3.5 Application of Traffic Formulae for Specified Input Streams.

(i) Erlang Distribution order k input stream.

A k-phase Erlang input stream, characterised by an interarrival

distribution Gopr satisfies

k-1 i
GER(X) =1 - .z iA%El—-e'klx
’:

31 , k integer, A1 > 0 , (3.5.1)
: !

with a corresponding Laplace-Stieltjes transform wER, given by

o Al k
Yer(s) = o) (3.5.2)
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This distribution arises quite naturally in the consideration

of input processes. Suppose, that a device distributes requests for

service to two groups of trunks on an alternating basis.

input to each group of trunks is Erlangian with k=2 phases.

The Erlang Distribution is the discrete case of the well

known mathematical gamma distribution,

_ ™!

I'(p)

Ax

T'(x) e (p >0, A >0, x=0)

The weakness, f, of this stream is given by

fER = —uwéR(O) from (2.2.3)
= +uk
A
= kAT
where A= 5
u

The intensity, or equivalently the mean traffic MER,

reciprocal of fER, thus

"er Tk

-

is the

Then the

(3.5.3)

(3.5.4)

(3.5.5)

(3.5.6)

(3.5.7)

If the mean interarrival time of an Erlang distribution order

kX is assumed identical to that of a negative exponential stream,

parameter A then the intensity, of both streams is the same,

(3.5.8)
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where A = A/ (3.5.9)
and A1 = kA, (3.5.10)

Now the variance of the traffic produced by the Erlang input

stream satisfies equation (3.4.12) giving

_ B 1
Ver = Mep (Mg t i:m;;YﬂTq (3.5.11)
= A{—A + ,__}T___ using (3.5.8) and (3.5.10)
L l-[}‘_A_]k
kA4
= AL—A + . — ] . (3.5.12)

1.-k%
._.|__
1-i kA]

The peakness and coefficient of variation of the traffic produced
by the Erlang input stream satisfies equations (3.4.14), (3.4.15)

respectively, hence

_ 1
Zer = -A + a l)-k (3.5.13)
kA"
A-l
W _=-1+ —— (3.5.14)
ER 1 .-k
—_— +—
1-(1 kA)

The Erlang distribution provides a model for a range of input
processes characterised by complete randomness when k=1 and no

randomness when k=,

(ii) Negative Exponential input stream .
A negative exponential stream with parameter A, 1is an

Erlang distribution of order 1. Hence by letting k=1 in equations



(3.3.8),

(iii) Deterministic input stream.

(3.5.12), (3.5.13), and

(3.5.14),

48,

(3.5.15).

(3.5.16)

(3.5.17)

(3.5.18)

A deterministic stream with constant interarrival time equal

to mean interarrival time of the negative exponential distribution,

parameter

Distribution of infinite order.

tends to infinity in equations (3.5.8),

[}

(3.5.14)

An alternate method for

(3.5.12),

W is to simplify equations (3.4.13), (3.4.14)

DET

corresponds to the limiting case of an Erlang

Hence by taking the limit as

(3.5.13) and

obtaining these expressions for V '

DET

k

(3.5.19)

(3.5.20)

(3.5.21)

(3.5.22)

z '

DET

and (3.4.15) with
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£ = A (3.5.23)

and

(s) = e X . (3.5.24)
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CHAPTER IV

CARRIED TRAFFIC DISTRIBUTIONS

4,1 Introduction

To establish notation and certain properties of the carried
traffic of the stream G, the techniques used will parallel those

of the previous chapter which corresponds to the limiting case

Key relations between the T and a binomial moments will
be stressed as well as expressions for the time congestion, éall
congestion and the first two central moments of the carried
traffic. One significant expression resulting from the analysis
of this chapter is a relation linking the offered traffic moments
with the carried traffic moments. This expression is fundamental
in the derivation of explicit formulae for the carried overflow
traffic moments, given in Chapter 5.

The chapter concludes with a few comments on the possible
divergence between the continuous time and the imbedded Markov
Chain distributions for the traffic on a primary set of trunks.

4.2 Imbedded Markov Chain Ca{;ied Traffic Distribution

As in section 3.2, define i and % by equations (3.2.1)
and (3.2.2)where the 'bar' signifies that the set of trunks being
offered the renewal stream G 1is finite of size L.

Step 1. Derivation of ﬂ systems of equations.

Analogously to equation (3.2.3), the equations satisfied by

the ﬂj are
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= - fm m+l, -jux -ux MHI-d
Moo= ) Tl o ¢ 5 ) (1- ) aG(x)
m=j -1 B J
- L, -juex -px L-j .
+ WLJw(j)e (1-e ) dc(x) , 0< 3 <L (4.2.1)
0

The extra term included in equation (4.2.1) which is not in equation
(3.2.3) is the expression for the probability of an arriving call
finding all L channels occupied, that is the situation when an
overflowing call is produced or when congestion occurs.

Step 2. Generating Function T(z).

00

T(z) = J w(l+z-le “*yac(x) - ﬁLr(z—l)e"‘" (1+z=Te "Ylac(x)  (4.2.2)
0 0

where ﬁL is the congestion probability defined in Chapter 2 by
equation (2.2.6).

Equation (3.2.3) is the limiting case of equation (4.2.2) when
L > o,

Proof of equation (4.2.2)

T (z)

]
I~
=1

NH

L L-1 . S
=T+ Z 2 T Jw(mfl)e-J“x(1—e'”x)n+1-]szG(x)
_ m 0

° j=1 m=j-1 J
v . L, - X -pux Le
+ I om) peta 7 2 dax)
i=1 0
L1 . N .
=T, + anr[e‘“"(z—l)ﬂ]“‘ dG(x)+1TLJ e #* (z-1)+1]7dG (x)
=0 ‘0 0
g +1 L
- D7 et ™ (1-¢ "F)7as(x)



53.

=T, o+ I%Q(I¥E:Ié'yx)dG(x) + ﬁLJw(1+Eiié'“x)L[l—(1+E?Ié'“*)]dG<x)
' 0 0

{e o]

- J;v(l—e-yx)dG(x) - -TrLr(l-l-e"“"‘) (1-¢ “*)rac(x)
0 0

but T(l) =1=T, +1- rﬁ(l—e'“")_dc(x) + ﬁLJme"“‘ (1-¢ **ylac(x)
0 1]

thus proving (4.2.2).

Step 3. - :T-T(n) (1)

nmw n!

Los]]
1

k

where hn(u) is defined by (3.2.7).

Proof of equation (4.2.3)

n-1
- I, . -1
mmﬂl—ﬁgﬁﬁﬁ(ML 0 <n

<L

(4.2.3)

Differentiation of equation (4.2.2) n times, via Leibnitz

Rule, gives

ﬁ(n)(z) = Jé[(l+z~le-Fx)ﬁ(n)(l+z—le'”x)+nﬁ(n'
0

- T r[(z—l)e. . ([l+_z--_le.yx]L
L)o

+ e

n! n! (n-1)!

- L -nLx
- ﬂLJj(n_l)e dG (x)

=(n) ~(n-1)
T (1) [T (1) _ =, L,]
—— 1 - Y] = | oDt m (n_lJJw(nu)

)( ") +ne '¥ [(1+z-1le K

B [ B0 ETD 0 o
0

x , Li(n-1)

)

]

D (142-1e " ye “*1ac (x)

146G (%)

(4.2.4)
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Syski [ 34 ] p. 258 notes that this recurrence relation was originally
obtained by Cohen. Takacs [ 36 ] used an integral equation approach

to derive (4.2.4). Now from equation (4.2.4),

¢ TR L, hy (W)
n! klrl I“W(kU) TrL k=ZO (k) hk (u) 4 (4-2.5)
thus proving (4.2.3).
Step 4.
M = _Z (lr;) Sl Bn (4.2.6)

Equation (4.2.6) is the inversion formula needed to recover
the occupancy probabilities from the binomial moments.

4.3 Continuous Time Carried Traffic Distribution

The a distribution is accessible from the T distribution

in the same way as the q distribution was from the m distribution.

Step 1.
w N
dG(t)J (mfl)e-Jpx
0

_ L-1 - [
= 1-
% I =7 5 (1-e

m=j -1

- X )m+1-j

0
+ ﬁL KJ dG(t)J4 (Ij“)e""“‘(1—e““‘)L'j dx (4.3.1)
0 0

where K 1is defined by (3.3.2).
The analysis used to obtain equation (4.3.1) from (4.2.1) is the
same as that used to obtain (3.3.1) from (3.2.3).

Step 2.

(z-1)" 7™ (1) 1-9 (an)
n n! P (ny)

L
Gz) = 1+£ 1§ (4.3.2)



Proof of (4.3.2)
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L L-1 t . L
qz) =T, + ] 1 K 'TrmrdG(t)J Ly #X (e # )™ ax
i=1 m=j-1 0 R :
— L L » L . -
+xm ] rdG(t)r( ye M (- My 2 ax
j=1 0 1]
L-1
=T, +K ) T erdG(t)Jft [(1+z-1e "5)™ - (- **)™ ! ]ax
m=0 Jo 0
. t L L
+ K nLJ dG(t)J' [(1+z-1e “*)" - (1-¢ ¥")"1ax
0 0
= - _— X L1 - « [t px m+1
= Ty + Krdc;(t)w(uz-le'” yax - J w‘KJ dG(t)J (1-e *%)
1] m=0 - 0 0
t L
s —_— e X —_— = X
- K ﬂLdeG(t)J (l4+z-1e ’ ) (l+z-1le H -1)dax
0 0
- i x . L
- KT dG(t)J (1-e "%y ax
0 0
But q(l) =1
L-1 00 t .
- = - m
T, =K } T J dG(t)J (1-e **)™ ax
m
m=0 0 0
- t x L
+ KT dG(t)J (1-e "*)yax
L)
0 0
thus
q(z) = KI dG(t)J w(l+z-le ")yax
0 0
[~ " L
-k m )l agwy! (z-1) e FX (1izm1e FY)ax (4.3.3)
LJO Jo
- L o
Let w(l+y) = z W %T' as in section 3.3, then

n

0

dx



'FI'( ne1) (1)

{ " 19 ()
1 ' F n=20

Substituting for w in (4.3.3), gives

o0 L
q(z) J ity | f i 1) e "H* M (1)
1] n=0

Sl
L n+1
- z (2-11)11 e-(n+l)ux1—r(n) 1)
n=0
_ L
- m (z-1)e kX ;0 () (z-1) *]dx
L =(n)
= K dG(t)[ poolzl) emux T (D),
0 n=1 nu n
L r=(n) n -npgx qt
[T ) =  » . |(z1) e
* n=zl|- (n-1)! ﬂL {n—l) -nu 0
pne D ~(n)
™) - L, 10w ™ C ()
e (n-1)! M (n—l) T T P(np) nl by (4.2.4)
L n =(n)
q = LS (z-1) ™ (1) 1-P(np)
qa(z) =1+ 2 ngl = ik Tk
Step 3.

-
ng n!

L. .-1
(I, (U)]

Proof of (4.3.5)

Differentiation of (4.3.2) n times gives

=(n)
—(n) [T (1) 1-y(np)
R ]
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(4.3.4)

(4.3.5)

(4.3.06)
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=(n) n-1
T (1) = L,,-1
But = =h (W1 -m k_ZO ()b (W] by (4.2.5), thus on
" .
substituting for T in equation (4.3.6) gives

) _ _ n-1 i
$™ @ = w-11£'n (u){w)—}{l -F 1 gon’ (u)]
L k=0

]

n-1
£ (n-1)th (u)ll:l -m L on ] (u)] (4.3.7)
k=0

thus proving (4.3.5).

Step 4.
- - n n- k
a = L ()CLTUB - (4.3.8)
n=k
4.4 Properties of the Carried Traffic
Property 1.

The following relationship is satisfied by the binomial moments

of the carried traffic,

nfB =B R (4.4.1)

Proof of (4.4.1)

Substituting for ﬁ(n)(l) %%%ﬁ?El- using (4.2.4), equation
(4.3.6) becomes
~(n) _ =(n-1) - L
faq (L) = (1) ﬂL(n l)!(n_l) (4.4.2)

Dividing by n! gives the required result.

=(L)
. . == 1 R .
Property 2. The time congestion, q = SLETTL—L satisfies equation

(4.3.5) with n=L, that is
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L- 1
- - L,,-1
Lfgq =h (W[ -7 kgo (1 w1 . (4.4.4)

However the call congestion probability ﬁL is related to the time

congestion probability aL by equation (4.3.6), with n=L, that is

—(L -(L
- 3P o0 TP @ 1w
L T L! L. L! Y(np)
giving
- - 1=y (Ty)
Lf = T 4.
TN Teaw @ 2 29
Rewriting equation (4.4.5) gives
R éL (4.4.6)
¥ (Lu) Ty,

One interpretation of equation (4.4.6) is that the Laplace-Stieltjes
transform of any renewal input stream at s=Lu gives a measure of
the rates of the congestion probabilities produced on a set of L
trunks. This approach is used later in the thesis.

Property 3

Mean Carried Traffic, M, as given by equation (4.3.7) with

n=1, thus

M = f"[l—FrL] (4.4.7)

This expression for M could be obtained using egquation (2.2.13),
arising from the theory of section (2.2) in the following way.

If ﬁL is the congestion probability of the input stream

with weakness £, then the weakness, fL of the overflow stream

resulting from this congestion satisfies (2.2.13), thus
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But the average traffic carried on the L trunks, ﬁ, is the difference

between the intensity of the input stream and the overflow stream,

that is
M— = .].'. - ._l._ (4.4'8)
f £
L
1
= E[l = WL]
Property 4.

The variance of the carried traffic, V, satisfies

{/=ﬁ[l\—ﬁ+h1—

(4.4.9)
Proof of (4.4.9)

=32 @ + 3@ - &V @12

l[ﬁ(l)(l) - ﬁLL] +M - M? using (4.4.2) with n=2.

f
But T 1) (1) = hl(u)[l-T—TL] from (4.2.5) with n=1 and %= Eﬁ
L
from (4.4.8), hence
v = .D-f [(1-T )h, - L7 ] +M -M?
.1 L't L
which simplifies to give equation (4.4.9).
Equation (4.4.9) is a generalization of Wallstroms [ 40 ]
equation (3.1.35) page 208.
These expressions for M, and V as well as those for M and

V given by equations (3.4.7) and (3.4.13) are the basis of a possible study
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examining the errors introduced when the Kosten System is approximated

by the Brockmeyer System.

Property 5
If ﬁL denotes the proportion of lost calls to carried calls

on the set of L trunks, that is

31

- _LT
R = 1-7, !
then the following conditions are satisfied;
(i) 'RL > h; () with equality only when I~1 , (4.4.10)
(ii) {RL} is decreasing as L increases , (4.4.11)
(iii) R >0 as L~ © . (4.4.12)

Proof: Putting n=L in equation (4.2.3) gives

~( L) L
- m T (1) L,,-1 -1
moE = LD GOn ] (4.4.13)
. k=0
L,.-1
I (On -1

1 = L,.-1
= 1 (Ino
k=1
1 1 L L, -1
=h W + =z ZZ (B G (4.4.14)

Since the hi are positive, condition (4.4.14) holds. This condition
(4.4.14) implies from equation (4.4.9) for the variance of the

carried traffic, that

vV > M[1-M] with equality only when L=1. (4.4.15)
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Consider I > Lz, then

L
1-7 . 1 Ly -1
SHe w1 (D "(m by (4.4.14)
1o 153 . K
1

-1, 1 L -1 5
> hy (W) + — (Hh  (u) since L; > L2
Ly k k
k=2
L
=) 1 2 Lp, -1 , )
> hy (W) + — z (72)h " (y) since IL; > L» in each
Lo k k
k®2
term in the sum
_ 1 - ﬁLl
Lo 7 !
Ly
hence (4.4.15) is proved.
Since V>V and M M as L >« , considering equation

(4.4.9) in the limiting case proves (4.4.12).

4.5 A relationship between Carried Traffic Moments and Offered

Traffic Moments.

Equation (4.3.6) relating a(n)(l) to %(n)(l) implies that

the ratio of a‘n)(l) to ﬁ(n)(l) is independent of L even though

their individual expressions given by equations (4.2.3) and (4.3.5),

depend on L. Since this guotient is independent of L its value
(n)

can be obtained by letting L -+ ® and is E?;3_££L , Wwhich by
m (1)
equation (3.4.2) equals q(n)(l)/qun+1)(l), thus
=(n) (n)
‘f(n) () o q(nﬂ()l) . 0<n<L. (4.5.1)
™ (1) fq (1)

This equation (4.5.1) is a key relationship between the carried and
offered traffic moments. It is fundamental to the derivation of

explicit formulae for carried overflow traffic.

~(n- 1)

Equation (4.4.2) relates the ﬁ(n)(l) with (1) and
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the probability of loss, L enabling equation (4.5.1) to be

expressed in the following ways.

) ™D (1) - (n-1) 17, (5=1) - ¢ ) (4.5.2)
FESI <"

or equivalently

=(n) (n)
(i1) "(n+?) S L =% ?nﬂ)(l) ——
fq (1) + n!ﬂL( ) q (1)
n
Equation (4.5.2) can be expressed in terms of
(i) the factorial moments a , O giving
(63
- _ (nH1)q - _ - s L
o =g lo, ), - @M ] (4.5.4)
nq
(ii) the binomial moments B , B
(n+1)B
N (n+1)q 3 N L
o™ n B [B(n-l)ﬂ AR (RS o
nq
Similarly equation (4.5.3) can be expressed in terms of
{i) the factorial moments giving
(o)
= _ 1 = {(n+1)q _ ,= /L
a(nﬂ)q = f[f e o n.T\‘L{n)] (4.5.6)
nq
(ii) the binomial moments giving
B - 2[£ B KCTITTIN ™1 (4.5.7)
(n+1)q f nqg P (n+l) 'n T

naq

4.6 Possible Divergence Between the Continuous Time and the Imbedded

Markov Chain Occupancy Distribution

The formulation of the g and a distributions from the

and T distributions demonstrates that the continuous time distributions
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differ from the corresponding imbedded markov chain distributions.
The possible extreme divergence which can occur for different
input streams has been investigaﬁed by Pearce [ 24 ], Ben€s [ 2 1.
The two distributions are identical when the input stream is
negative exponential due to the memoryless property of the Poisson
Process, thus the relevance of the possible divergence and its
effect on the traffic moments for congestion systems has not until
recently been investigated. Since the overflow stream G, produced
when an input stream F 1is offered to a primary set of trunks, is
not negative exponential, the possible divergence of the gq and 7
or the & and T distributions of the overflow traffic could be
significant.

Pearce [ 24 ] discusses the extreme divergence in relation
to the fundamental paradox of renewal theory. He constructs renewal
streams f?r which the following paradoxes hold.
If E,E’ are two arbitrary constants,
(i) A renewal stream, representing arriving calls to a set of
L trunks exists for which both
To(L) < €
_ ) } hold simultaneously, O < L < ® .,
and gg (L) > 1-¢
Thus, the arriving calls emptiness probability can be arbitrarily
close to zero which the observers emptiness probability is arbitrarily
close to unity, regardless of the number of trunks in the finite set.
(ii) If e,e” are any two arbitrary constants, then a
renewal stream exists for which

m > 1-€ and &L < £¢7 hold simultaneously.
Thus, for this input stream the probability of overflow is all but

certain for an arriving call even when the set of trunks is full

only an arbitrarily small proportion of the time.
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Pearce also discusses the influence these paradoxes could

exert on the underdesign of teletraffic networks.
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CHAPTER V

OVERFLOW TRAFFIC -~ GROUP APPROACH

5.1 Introduction

An overflow stream resulting from a renewal input stream has
been shown in Chapter II to retain its renewal property, with only
the precise functional form of the interevent time distribution of
calls changing. This invariant renewal property of overflow streams
is basic to the 'group' approach for analysing overflow systems
with renewal input.

We consider an overflow system as comprising two trunk groups
with negative exponential services, parameter W. The first or
primary group is finite whereas the second or secondary group can be
either finite or infinite. A renewal input stream F, 1is offered
to a primary group of N trunks and the resulting overflow stream
G, (determined in Chapter II), is then offered to the secondary
group. When the secondary group is infinite the overflow system is
called a Kosten system with renewal input, (w,r,i), otherwise a
Brockmeyer system w.r.i occurs. The steady state continuous time
occupancy distribution of the Kosten and Brockmeyer systems w.r.i
determine the 'offered' and 'carried' overflow traffic distributions.

The approach or 'group method' used for determining overflow
traffic moments of .both systems, is to consider the overflow stream
G from a finite primary group as input for either a G/M/® or
G/M/L queueing system. Many formulae and properties relevant to
moments of steady state occupancy distributions on either an infinite
or finite group were determined in Chapters III and IV. All such

results are therefore valid for a particular input stream which has



67.

this interevent distribution G characterising an overflow stream
from the primary group. When the input stream for the G/M/® or
G/M/L dqueueing system is being considered in this special way, all
functions corresponding to this stream G are subscripted by N.
Although Cohen, see Syski [ 34 ] page (416), mentioned that this
approach could be used to analyse overflow systems, no detailed analysis
eventuated. If however the complicated expression for the yS
corresponding to G are inserted, for example, into the expressions
for the g moments, the mathematics becomes extremely complicated
and messy and yields no explicit formulae directly.

The link which enables the overflow traffic moments to be found
explicitly is a theorem relating the overflow traffic moments with
the size of the primary group . Two perspectives of an overflow
gystem provide interesting yet different proofs of this overflow
traffic moment theorem. Both are described in this chapter.

Nightingale [ 21 ] and Freeman [ 16 ] mention that the overflow
traffic moments from a negative exponential input stream satisfy this
theorem, however its wider application to general renewal input streams
is new to telephony.

The overflow traffic moments are expressed explicitly in terms

of either

(i) finite differences of the overflow stream's weakness
or

(ii) ©ILaplace-Stieltjes transforms corresponding to the input
Stream.

Explicit expressions for such statistical quantities as peakedness,
marginal occupancy and coefficient of variation which teletraffic
engineers use to describe characteristics of overflow systems, are

also derived.
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specific formulae, obtained by simplifying these general renewal
input results for a negative exponential input stream are compared

with results derived by Wallstrom [ 40 ], Schehrer [ 32 ], Mina [19 ],

Schehrer [ 32 ], by means of a joint probability approach derives
expressions for all moments of the Kosten and Brockmeyer overflow
systems with negative exponential input streams, whereas the earlier
work of Wallstrom [ 40 ] again using a joint probability approach
contains explicit expressions for only the first two moments. Mina [19 ]
studies properties of the peakedness of carried overflow traffic by
defining each of the offered input traffic, the carried primary and
secondary traffic and the traffic overflowing the secondary group by
a random variable, again for the negative exponential input stream.
Possible bounds on the congestion probability for the secondary group
for any renewal input stream were found by Holtzman [ 10 ].

The derivation of explicit overflow traffic moment formulae is
summarised in Potter [ 26 ].

5.2 The Overflow Traffic Factorial Moment Theorem

The factorial overflow traffic moment theorem can be expressed

mathematically as

(ln) = (nl) + , n>1 (5.2.1)
CAUURRC D W ¢ SR (1)
where qN(n)(l) is the nth  factorial moment of the overflow traffic

from a primary group of N +trunks. These factorial moments satisfy

equation (3.3.7), hence
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ne 1 Yo (3W)
1 N

is1 o 1-y (31
nfq ™ (1) = { N

s (5.2.2)

l r n=l r

where (i) wN(s) is the Laplace-Stieltjes transform of the overflow
stream G, determined by equation (2.3.17},
(ii) fN is the weakness of the overflow stream given by
equation (2.5.6).
If the nth factorial moment of the overflow traffic is
represented by anq(N), equation (5.2.1) becomes
-1

o w1y = a () +n oo N . (5.2.3)
nq ngq (n+1)q

Proof 1. Direct Approach.

The overflow stream G, from a primary group of N trunks

satisfies equation (2.5.14) with s=n-1, hence

=1
Y () = wN(n_—i“u)[l - —1_—][1 - ~—-l:J—] (5.2.4)
by (n=1w) -+~ Ve, (011
-1
o - et @] - ——_1_—] {1 - —~—1_—_~;—] (5.2.5)
by (n-11) Yy, (=11

But equation (3.4.3) related the factorial moments of the overflow

traffic to the overflow stream, by

-, a1
P np) = 1 4+ n o & (5.2.6)
N (n+1)

SRR P

Equation (5.2.5) on substituting for ¢ in terms of the g® by using
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equation (5.2.6) becomes

-1 .
a0 W g Wy e W q,, "W
l +n _(-n_+_1_)_-_. = I_l + (n-1) ) (n- 1) ™ (5.2.7)
I (1) 9y (1) g (1) et (1)
which on rearranging can be expressed as
.1 -1
g ge,, M " Wy g, @
!1 +n ai D) J TS - [l + (n-1) s ] (oo 1) (5.2.8)
- (1) dy (1) dy (1) (1)
Since
=1 -1
[ " Wy, "W
[l + (n-1) ) (2 1) =1 when n = 1,
q, (1) b (1)
equation (5.2.8) becomes
"M g, @
[1 + n T } an =1 for all n=1 (5.2.9)
N (1) Ay (1)

The statement of the theorem by equation (5.2.1) is a rearrangement of
equation (5.2.9).

Proof 2. Divided Difference Approach.

Equation (2.5.23) relates the overflow stream with the divided

difference of its weakness, fN' giving
-1
Uy (alt) = —- (5.2.10)

N
where Aan = £, Z (N)Q (w) by equation (2.5.10). Thus the
r=0
overflow traffic moments can be expressed in terms of the weakness of

the overflow stream by equating equations (5.2.6) and (5.2.10), to

give
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ne 1 (n)

A 9y @
—en & 1+ n —-?;;T;—*‘- (5.2.11)
A fN ay (1)
A N+1~An-lfN qN(n)(l)
An-l £ =n (n+1) 3
N dy (1)
n (n)
A £y ) ay (1)
ne 1 (n+1)
A fN - (1)
. n (n+1) _aR-1 (n) _
i.e. (A fN)qN (L) /n! =(A fR Ay (1) /(n-1)! (5.2.12)
(1) 1 )
Now q (1) = T by equation (3.4.7) , (5.2.13)
N
hence (A?.IfR qN(n)(l)/(n—l)! =1 when n = 1.

Thus by equation (5.2.12),

n

Ng qN(n)(l)/n! -1 for all n>1 (5.2.14)
or alternatively

(n+1) (5.2.15)

Rewriting equation (5.2.11) using equation (5.2.15) gives

e ™ () g™ iy
——————— T2 l + n ——

(n) (nt1)
ey D) % D

which on rearranging gives equation (5.2.1).
The result, (5.2.15) incorporated as part of proof 2, can be

considered as a lemma to the theorem when proved by the approach
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adopted in proof 1.
Proof of (5.2.15).

A mathematical induction proof is used with the theorem Being applied at
the inductive step.

Since qN(l)(l) S [fN]--1 by equation (3.4.7), equation (5.2.15)
holds for n = 1.

assume q '™ (1) = 25 ]—1 i (5.2.16)

(m-1) ¢

then equation (2.5.1) can be expressed as

(m+1) -1 1 (m) -1 (m) -1
[ay M) = 2llq,, @1 = lag " @1 ]
(m+1) -1 _ f_l__ me 1 _ me 1
lay (W17 = A7 £, - A7 f] by (5.2.16)
=1 A
m!

thus proving (5.2.15) for all n =1 by Principle of Mathematical
Induction.

5.3 Explicit Overflow Traffic Moment Formulae

Equation (5.2.15) which expresses the overflow traffics' factorial
moments as a function of the weakness of the overflow stream, enables
explicit formulae for all the overflow traffic moments to be found.

The formulae can be given either in terms of the divided difference
of the overflow stfeaﬁs weakness which corresponds to a recurrence
expression, or directly in terms of the lLaplace-Stieltjes transform
of the input stream.

5.3.1 Factorial Moments

The divided difference operator A is related to the forward

difference operator E, by
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A" = -1 = § (E)E' (-1" " (5.3.0)
r=0

Equation (5.2.15) can be rewritten as

[‘:IN(IHI)(J-)]“1 = %l Z (:)(_l)n.rfN+r + n=0 S
T r=0
giving
n n E -1
0t’n+1,q(N) - n![ ;go(r)(—l) fN*'] ' R

The overflow traffic factorial moments corresponding to the
T occupancy distribution are obtained from the uhq(N) by
equation (3.4.1},

o Ny = £

nm N u(n+1)q(’N)‘ (5.3.3)

where fN satisfies equation (2.5.6).

Using equation (5.3.2), equation (5.3.3) becomes

o =nt 517 Den™re 170 (5.3.4)
r=0

n T

Explicit formulae for uh+1 q(N) and an"(N) in terms of the input

stream's Laplace-Stieltjes transform are obtained by substituting

for Aan by using equation (2.5.10), giving

N
_ N
4, (M =nl[f rzo ()%

n+l, n+

; w1t (5.3.2a)

and

N N N N
o (N) = n! go ()%, 01 go (

e w1t (5.3.4a)

n+
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where £, = ~U¢'(0) by equation (2.2.3) and % (W) is defined by

equation (2.3.19).

5.3,2 Binomial Moments

The binomial moments Bn of any distribution are related to

the corresponding factorial moments by

n!Bn = Q . (5.3.5)

n

Hence the binomial moments of the overflow traffic corresponding to

(i) equations (5.3.2) and (5.3.2a) are

_ 1 3 n,, _.n-r -1
Bey o M) = 5T [r:EO (1T E ] (5.3.6)
oY
1 T N -1
Bt N =iy £, 1 g, (] (5.3.6a)
' £=0
(ii) equations (5.3.4) and (5.3.4a) are
B =£,0] D g, 1 (5.3.7)
’ r=0
or N N
BN = ] (IJ:)JLr ) {I;)JL“H wi . (5.3.7a)
! r=0 r=0

5.3.3 Ordinary Moments

The ordinary moments Bn of any distribution are related to

the corresponding factorial moments by
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(5.3.8)

where

1
b o ¥ (5.3.9)

that is, the Oh , are Stirling numbers of the second kind.

Hence the ordinary moments of the overflow traffic corresponding

to
(i) equations (5.3.2) and (5.3.2a) are
n+1 k-1 k=1 Ke 1es 0
n+1.q(N) - z O;+1,k(k—l)![ z ( s ) (-1) fN+s] (5103, 3L0)
k=1 s =0
or
ntl N N 1
6, ™ = ) O o1 - LIE ) (D% ., W] (5.3.10a)
k=1 s =0
(ii) equations (5.3.4) and (5.3.4a) are
n k n i i
-5 -
6, , M = Y Gn’kk!fN[z (DT E ] (5.3.11)
k=1 $=0
or
n N N N N .
6, = ) o ki Dl ] Qe @l . (5.3.11a)
k=1 s=0 s=0

5.3.4 Central Moments

The central moments c, of any distribution are related to

the corresponding ordinary moments by

c = ¥ (-1 () 6., 8 (5.3.12)
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Hence the central moments of the overflow traffic corresponding

to
(i) equations (5.3.2) and (5.3.2a) are
S n+l n+1
cn+1.q(N) - igo =) ( i ) n+1-i,q(N)el
(5.3.13)
n+1 . nti-i kel o L )
S T G T O S DR (G N D S k-
i=0 k=1 ! s=0
or
»! i n+l " n+1 ¥ oN -1
Chpr, g = L DN Y o eI IE, LR, ()
i=0 k=1 s =0
(5.3.13a)
(ii) equations (5.3.4) and (5.3.4a) are
- i n n
a @ = 1 0 G, 0
e i n " g K- s -1
= L0 @ Lo KEDT (QEDT L] (5.3.14)
i=0 k=1 5=0
or
n . nn-i N N N N 1
1 -
o = 1 0@ To ke QL wmll QL ] (5.3.14a)
i=0 k=1 s=0 s=0

5.3.5 Special Formulae

(i) Mean overflow traffic, MN, is given by equation (3.4.7)

with n =1, hence

_o(n 1
M, = a0 (1) =2 (5.3.15)
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(ii) Variance of the overflow traffic, VN, satisfies

2 1
v = q; ) (1) + q;‘)(l) [

2
W (D]

R S SN I S
W+ o [f ] by (5.2.15)
N+1 N N N
MN
= MN[;/IT - MN] by (5.3.15) (5.3.16)
N N+1
=M 22 - 1] (5.3.17)
N TH

where HN is defined to be the marginal occupancy of the overflow

system, see Pratt [ 28 ], defined by

H M. -M ) (5.3.18)

The marginal occupancy is the decrease in the overflow traffic when
the size of the primary group is increased by one.
The expression (5.3.16) can be obtained directly from equation

(3.4.12) as follows

b (W)
VN e MN[]_ - MN + -l—_—ll)NW] by (3.4.12)
but fN
VW) = ¢ by (2.5.20)
N+ 1
MN+1
= by (5.3.15)

My

which on substituting into (3.4.12) gives (5.3.16).
(iii) ©Peakedness of the overflow traffic, ZN, is defined

to be its variance to mean ratio, thus
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N
N

U (W)
=1-M + ———— Db 3.4.12 5.3.19
N 1—1PN(U) vy ( ) )
: - 1
or alternatively 2 = MN[H 1] by (5.3.16) .

The peakedness is a quantity which is used in telephony as a measure
of the 'roughness' or 'smoothnessg of the traffic. Traffic is said to
be rough if its peakedness is greater than unity and is said to be
smooth if its peakedness is less than unity.

(iv) Coefficient of variation of the overflow traffic, WN’

is defined by

_ N
WN :-*—;
MN
1
= ﬁ—-— 1 by (5.3.20).
N

The physical interpretation of the marginal occupancy implies that
it must have a value lying between zero and one . The corresponding
value of WN can therefore range between zero and infinity.

Chapter 6 contains a study of the nature and properties of the

peakedness and coefficient of variation of overflow traffic.

5.4 Carried Overfloww?raffic Moments

When the overflow stream G from a primary group of N trunks
is input to the G/M/L queueing system, the steady state & occupancy
distribution on the secondary group can be found using formulae
derived in Chapter 4. This distribution will be called the carried

overflow traffic distribution or alternatively the distribution of the
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overflow traffic carried on the secondary group.
Equation (4.5.1) can be subscripted by N to denote that
this Brockmeyer overflow system with renewal input is being considered
and reads, .

(n)
=(n) —(n) (1)

£, q (1) =m (1) =———— 1
N °N N q(n+l)(l)

N

N
=]

<L (5.4.1)

where fN satisfies (2.5.6) and the overflow traffic moments
(n) .
9y (1) satisfy (5.2.15).

Equation (5.4.1) can be rewritten in terms of finite differences

of the overflow stream's weakness, as

- = N
£ q;")(l) T (1) m——t 5 1SN <L s (5.4.2)
N N n- 1
nA f
N
The mean carried overflow traffic, ﬁN L is given by a;l)(l) and

satisfies equation (4.4.8), hence

= _ =(1)
MN,L = N (l)
= MN[l - TTL] (5.4.3)

where MN' the mean overflow traffic,satisfies (5.3.15) and ﬁL

is the probability of congestion on the secondary group.

Substitution of 'a;I)(l) given by (5.4.3) into equation (5.4.2)

—(1
with n = 1, gives the following expression for ﬂ; )(l),

(1) 0y g _my N
T = =T (5.4.4)
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~( 2 - (1
But W; )(l) is related to ﬂ; )(l) by equation (4.5.4) with

n = 2, that is

o. (N)

17w =m0 o= m] — (5.4.5)

o, (N)

2q
An explicit expression for the ﬁ;n)(l) is given by
1MW = mFeLLm )T, 1<n < (5.4.6)
where

=(1) = el L, 2

F(N,L,n) = W0 (DAg =T 1 (IAE . (5.4.7)

=1
Prxoof of (5.4.6)
Equation (5.4.5) is identical to equation (5.4.6) when n = 2.

Suppose ﬁ;nul)(l) = (n-l)!F(N,L,n—l)[AF-IfN]_l, then substituting

=(n-1)

this expression for e (L) into (4.5.4) gives
nAn'lf
=(n) o N _ _ n- 1 —1_ _ = L
M (1) = e [(n-1)1F(N,L,n-1) [A7 £ 1 —(-1tm ( “ )]
N

= n!F(N,L,n—l)[Aan]—l—[Aan]—l{n!%L(nEl)AP'lfN}

n-1

- L
but F(N,L,n-1) - WL(n_l)A fN = F(N,L,n)

M) = nFa, L TEIT

N

thus proving (5.4.6) by Principle of Mathematical Induction.

An explicit expression for the &;n)(l) is

—-(n) _ n- 1 < <
Ay (1) = n!F(N,L,n) [anA fN] , 1<n<1L. (5.4.8)

Proof of (5.4.8) follows by substituting for ﬁ;n)(l), given by

equation (5.4.6), into equation (5.4.2).
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Equation (5.4.8) is a generalization of Schehrer's [ 32 ]
equation (72) established in the case of a negative exponential
input stream.

All the expressions for all moments of the overflow traffic which
are contained in the following section of this chapter will be in
terms of fN and the finite difference Aan. These equations

can be rewritten using relations (5.3.0) or (2.5.10) for Aan.

5.4.1 Factorial Moments

Equations (5.4.6), (5.4.8) giving the T and a factorial

moments can be rewritten as

& M) =ntFN,L,m [Af ], 1<n<L (5.4.9)
nmw N

fN]—l, 1<n<L (5.4.10)

n- 1

&nq (M) = n!F(N,L,n) [anA

5.4.2 Binomial Moments

Using equation (5.3.5), the binomial carried overflow traffic

moments corresponding to equations (5.4.9) and (5.4.10) are

B (W) = F(N,L,n) [A“fN]“ , 1<n<L (5.4.11)

nm

and

B N = FO,Ln) e '£17, 1<n<rL . (5.4.12)
nq N N

The probability of congestion, T on the secondary group of

L
I, trunks is given by EL"(N), that is
- = L -1
— = -4.
™ B, (W F(w,5n,L) [A7£ ] (5.4.13)

where
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L-1
_ = = L, A%
F(N,L,1) = m " (L)AE, - le (ATE
_ - M Loe —(1) L. -1
mo= [ L (OATE + M (DAEATE]

=1

L-1
- L L 4
m [A7E, + zzl (P ATE]

=(1)
Ty (1)AfN

(1 - )£, by (5.4.4)

L
= L, ,%
MLl (AR

= f (5.4.15)
N
2=0
or alternatively
L
N L, .2
mo=f£[] (a"el . (5.4.15)
) 2=0
But inverting equation (5.3.0), gives
L
L
) (E)AZ = E (5.4.16)
2=0
therefore equation (5.4.15) becomes
To=f£0£ 170 . (5.4.17)

This proves that the probability of congestion on the secondary group

is the ratio of the weakness of the overflow stream from the primary

group to the weakness of the overflow stream arising if both the

primary and secondary group were combined. Equation (5.4.17) is

a generalization of Wallstrom's [ 40 ] equation (3.1.40) on page 208.
The time congestion, aL on the secondary group of L trunks

is given by BLq(N), thus
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_ m AfN
q = e —— by equation (5.4.2) (5.4.18)
L L. 1
Lf A £
N
=Af L AVED b tion (5.4.17) (5.4.19
= . - N y equation 4. ) .4.19)

5.4.3 Ordinary Moments

Using equations (5.3.8) and (5.3.9), the ordinary moments of
overflow traffic corresponding to equations (5.4.9) and

(5.4.10) are

n
k ju—
5 ) = Y o KIF(NLK(WE) ', 1<n<L (5.4.20)
nw k=1 n, k. N
and
& i k-1 -1
B ) = ) o kFN,LX)[KEA E£] , 1<n<L (5.4.21)
nq & n, k. N N
where Oh K satisfies equation (5.3.9).

5.4.4 Central Moments

Using equation (5.3.12) the central moments of overflow

traffic corresponding to equations (5.4.9) and (5.4.10) are

EM (N) = i:Eo (—l)i (ril)ér;r :Ell On_i’kk!F(N,L,k) (Aka)—1 , 1<n<1L (5.4.22)
and

- E i ——— k- 1 -1

c, W = izZO (-1)" (D8] k=zl O, KPR E AT E]T, 1<n <1

(5.4.23)
where 05 " satisfies equation (5.3.9).

Alternate expressions using equations (5.3.0) and (2.5.10) for all

moments, are listed in Appendix II .
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5.4.5 Special Formulae

(a) The mean traffic carried on the secondary group, MN 5 satisfies

equation (5.4.3), that is

=1
|

N, L. (1 - 7 )My

MNeL
"

MN - MN+L - (5.4.24)

(1L - )MN by equation (5.4.17)

]

This agrees with intuitive reasoning which says the average traffic
carried on the finite secondary group is the difference between the
intensities of the input stream and the overflow stream from a
combined set of (N+L) +trunks. Equation (5.4.24) is a generalization
of Wallstrom's [ 42 ] equation (3.1.34), page 208 and Schehrer's [ 33 ]

equation (62).

(b) The ratio of the lost calls to carried calls on the secondary

group, EN - is given by

=
=1

- L

L

If

- —N by (5.4.17) . (5.4.25)

ﬁN L satisfies equations (4.4.14), (4.4.15) and (4.4.16) given in

Chapter 1IV.

(c) The variance of the carried overflow traffic, V satisfies

N, L.

equation (4.4.9}), hence
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v =M [ M h ) 1 (5.4.26
VN,L_N,L|1_MN,L+1" = | .4.26)
1-m
L
where (1) ﬁN . satisfies equation (5.4.22)
(ii) EL satisfies equation (5.4.16)
P (1)
N
(iii) h; = ————
1=y, (W)
-1
N+1. .
= [ - l] by equation (2.5.20) - (5.4.27)
LfN
M
N+ 1 .
= e by equation (5.3.15) (5.4.28)
i
N +1.

9 ¢
o

Equation (5.4.25) can be written in terms of the weakness functions

fN, fN+1_ and fN+L giving
GN - (j; oot )(fN+LffN_LfoN+L _ fN+1_fN_foN+l) . (5.4.25)
o B’ Taen e EY fN(fN+1ffN)
Proof of equation (5.4.29)
= 1 1l .
M = = - from equation (5.4.23) (5.4.30)
N, L. f £ .
N N+L
, Uy (W
1+hi(y) = 1 + ———— by (3.2.7)
1=y (w)
e
1= (1)
£
N
= —~1 py (2.5.20) (5.4.31)
fN_fN+1

Substitution for ﬁN LY 1+hi (W), ﬁN L given by equations (5.4.30}),

(5.4.31) and (5.4.25) respectively, gives the required result.
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Equation (5.4.26) is a generalization of Wallstrom's [ 40 ]

equation (3.1.35), page 208.

(d) The peakedness of the carried overflow traffic, Zy 1 is

given by a rearrangement of equation (5.4.26),

L ﬂL
'+ hy - . (5.4.32)

1-m
L

zN,L'= 1l —MN’

L

Equation (5.4.32) is a generalization of Mina's [ 19 ] equation (1).

Note that the quantities MN’L! Vﬁ’L' and zN,L. are functions
of MN' MN+l and MN+L when N and L are given. If therefore
the functional dependence of the mean overflow traffic on N is
known, these quantities can be calculated from eguations (5.4.24),

(5.4.29) and (5.4.32).

5.5 Tormulae Applicable to the Kosten and Brockmeyer Systems with

Negative Exponential Input

) g At : _
(i) F(t) =1 -¢ with ¢(s) = T (5.5.1)
(ii) £ = -u¢'(0) from 2.2.3)
s I
A
= A where A is defined as the intensity
(5.5.2)

of the input stream.
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r .
(iii) frqn = 1 ZQOW fon (2.3.19)

j=p 90w
T iu
= 1 i
g1 A
=rix" (5.5.3)
i N
(iv) £,=£, )} () fr(w from (2.5.6)
r=0
-1 . N
=a ¥ (Orwn’
r
r=0
N+1 Y Aﬁ
=y (D7 A (5.5.4)
£=0 X.:
M, = £ from (5.3.15)
AN+1 N Ar
= S Y = (5.5.5)

Equation (5.5.5) is the well known expression for the mean overflow
traffic, see Wallstrom [ 40 ], equation (3.1.11), page 205, and is

usually written in terms of the Erlang Loss function, EN(A) as

MN = AEN(A)
AN N Ar
where EN(A) = ﬁ_!_/ 2 =
r=0
(v) Recurrence relation satisfied by fN.
N+1 -
£, = fo Yoo« L) fr() from (2.5.6)
r=0
N r
_ N+L - (N+1) A .1
=K N! ) =
r=0
N+ o 1 (5.5.6)
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Equation (5.5.6) is a rearrangement of the following well

known recurrence relation satisfied by MN’

A M
e = - (5.5.7)
N+1+M
N
fN
(vi) wN(u) = —— by (2.5.20)
fN'I-l
A
—N—+l_+—I"TN— by (5.5.7). (5.5.8)
(vii) TR - A N E Y A (5.5.9)
N+k N! N (N+k+1-r) ! T

The proof of equation (5.5.9) follows by mathematical induction for
which equation (5.5.6) is the induction step.
The following proof is based on equation (5.5.4) with N=N+k.

(N4+K) ! N+k A

fN+k - AN+k+T z m= by (5.5.4]

r=0 r!
N N+k
_Gwiy e m [y Ay "]
B T ! !
N? ANH‘- r=0 r! r=N+1 r J
(M-+k) ! K (k+N+1) g AN+r
i MNTENE R 1A =
L AT E 4 (k) A rg RO
k re k-1
_o(Ntk) ! -k \
= AT £+ (NHR) L tg e
k =
o ANHK) !t A'kf + (N+k) ! z ___é:i_____ where s=k+l-r
~ N N T L (utktl-s) !
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n
(viii) A'f = kzo (E)(-l)“'ka+k by (5.3.1)
n k -8
a0 n, . oome k[ (N+K) 1k A 1
= (FLfg 4 o G (1) [ ! 2 fN+(N+k)!s§1(N+k+l-s)!J
by (5.5.9) (5.5.10)
AE o-1
(ix) <™y = [ 2 ] by (5.2.15)
n!

n- k[ (N+k) !

K p A" T
=] 1 ] —— e
n! o A fN+(N+k).s§1(N+k+l_S)!] ]

B |

(-1 E 4+ M (-1)
| NOL K I

by (5.5.10) (5.5.11)

Equation (5.5.11) can be rewritten in terms of A, N and MN

to give

k -1
(n+1) _ n [ . t n, . n-k|-(N+k)! (N+k) ! k-s-l
q M = i) (=) +k§1 (@ (M7 S MNSEI—————(N+k+l_s)! A

(5.5.12)

Schehrer [ 32 1, equation (43) gives the following expression for

+1
",
N w we 1 -1
(n+1) n r (-1) N4n-w r w N w-1-k]
= ! -
q (1) = ntamnt ) 20— " ANy Y (kA i (5.5.13)
L ow=o0 = k=0
(x) Equivalence of Schehrer's and Potter's higher order moments.

The denominator of Schehrer's equation (5.5.13) can be written

as X + Y whexe

D" N
x =nt ) LERL Ty v (5.5.14)
W n-w

w=0



N
and o onm § (T DT "7 Gy 1o
w=1 k=0

The denominator of equation (5.5.12) can be written as X; + Y3

n
X1 = (A" ] (et L
‘ n ‘ n-k n, _n B A_s
ane 1= My _z N e _Z (N+k+1l-8) !
k=1 s=1
Step 1 X =X
Proof of (5.5.18)
n
X = {(N+n) + 2 ("1)I (N+n—w}Aw}
el w n-w
et k=n-w
(N-+n) ! "Ll ) N+k, _n-
X = + ) . )A
N! LT ok
Jumy 7Y <;>_ iy 1 Py
N! L 13
_ xi ( 1)n-k (N+k) ! (n)An-k
RS, N! k
= xl
n e n n-s e A-k
Step 2 Y= -AM _Z () (=1)"" (w+s) ! ) T
. =0 k=s+1
Proof of (5.5.19)
et w=n-s in (5.5.15)
) (-1)""°  N+s B GEts) N n- k- (s+1)
Y = -nlM. ) TH:ETT_-( s ) ) (I kia

91.

(5.5.15)

where

(5.5.16)

(5.5.17)

(5.5.18)

(5.5.19)
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- e R IG5 N (z”” N1 ke (s+1)
o= (n-s) ! st Nt e (N=-k) !
n n=-1 nes n n A_k
= -A'M SEO (-1)77 7 () (W) k=§+1 T
n
= +A M Z
n-1 n n A—k
Ne=§
where Z = - z (-1) (S)(N+S)! z TEIEII:ETT (5.5.20)
s =0 k=s+1
Step 3 7 = Y1/MNAn ' (5.5.21)

Proof: Equation (5.5.21) is proved if the coefficient of A—m in

7 = coefficient of A " in Y1/MNA? for 1<m<n.

Let Ym be the coefficient of A" in YI/MNA? and let z_ be the

coefficient of A" in Z.

m 1 (7) () b
Z = - 2 —E;—-j:::—ﬂ-(—l)n-‘ from equation (5.5.20) where
r=0 (N+r-m-1)!
1<m<n (5

n (M) (N+x) !
r n-r .
e = z or—————— (~1) from equation (5.5.19). (5
r=m (N+r-m-1)!

To show Ym -7 =0. (5

Y - zm = 2 (:)(_l)"" _ N4yt i (5

r=0 (N+r-m-1) !
Equation (5.5.24) follows from the following theorem:

T

P (r) () (-1 =0 for 0<k<n

I ~1 3

where Pk(r) is any polynomial in r of degree k. (5

.5.22)

.5.23)

.5.24)

.5.25)

.5.26)
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Proof of (5.5.26)
Any polynomial in r of degree k can be rewritten in the

following form

k-1 k- 2
Pk(r) = B, .ﬂ (r-3) + B, .ﬂ (r-3) + ... + B, (5.5.27)
j =0 j=0
% n : k 1 n r'k ! r
n-r'r n- - . .
P @)D" e =B ) ()1 (-t
r=0 r=0 j=0
k-1 A n n 1"k-2 re(k-1)
+B _t ) QD (r-j)t
r=0 j=0
e r'r
n=
+By ] (Dt
r=0
k k k-1 (ke
=t f ey w2 E Y )+ s B E()
(5.5.28)
where £(t) = (t-1)"

f(k)(l) =0 for 0S<Sk<n.

Hence

n ner ' (k) (k- 1)
B (r) () (-1) Bf (1) +B | f (1) + ... + By£(1)

Il ;B

=0 . g.e.d.

Equation (5.5.25) can be written as

r'

- = n . Ne
Y -2 = =z P (r) () (-1)

(N+r) !

since is a polynomial in r of degree (m-1) for

(N+r—ﬁ:1)!

fixed values of N.
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Hence Y - Z =0 by (5.5.26) since 1 <m<n.

Therefore equation (5.5.21) is proved.

<
Il

¥y

1 1

N B
nlA MN[X1+Y1] ;

n N
|
n!'a MN[X+Y],

thus proving the equivalence of Schehrer's and Potter's expressions.

The following particular formulae are calculated from equation

(5.5.11) for n=1,2,3,4 respectively,

A M
(a) n=l, (1) = ——— . (5.5.29)
N+1+MN—A

This expression is well known in telephony and when substituted
into equation (3.4.10) gives the following well known expression for the

variance of overflow traffic,

A
VN = MN [l - MN + mm;:“ﬁ'] 3 (5.5.30)
(b) n=2, qga)(l) = 2187 M [(N+2) M ~AM + (N+1) (N+2)

—2(N+1)A+A2]—l SRR

Equation (5.5.31) is a rearrangement of Schehrer's [ 32 ] equation
(44). -

(c) n=3, q;4)(1) = 31A M [(N+3) (N+2) M~ (2N+3) A +27 M

+(N+1) (N+2) (N+3) -3 (N+1) (N+2)A+3(N+1)A2 —A3]_1. (5.5.32)
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Equation (5.5.32) is a rearrangement of Schehrer's [ 32 ] equation

(45a) .

(1) = 4!A3MN[(N+4)(N+3)(N+2)MN—(N+3)(3N+4)AMN
+(3N+4)A?MN—A3MN+(N+4)(N+3)(N+2)(N+l)
—4(N+1) (N42) (N+3) (N+4) A+6 (N+1) (N+2) A

amnat+at] . (5.5.33)

Equation (5.5.33) is a rearrangement of Schehrer's [ 32 ] equation

(46b) .

(xi) Probability of Loss on the Secondary Group

£

ﬁL = . ! by equation (5.4.17)
N+L
oy L \ -1
=g R 270 ! Tﬁégf%%?YT A7"17 by (5.5.9)
BRTC TN % (WHL)! ==l -
N! - (N+L+1-r) !

(xii)Mean traffic carried on the secondary group

MN,L. MN[l—WL] from (5.4.3)

=M - [£ 17"  from (5.4.17)

N+L

MN - MN+L from (5.3.15}
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L
-1
= My - [——N-,—A £, + I g FECH (54550

r=1

(N+L) ! (N-+L) ! A”’]—

) L
=M [1 - {M'— RSV m—-(—‘lﬂ‘)—!—i’}'l] . (5.5.35)

N1 N2 (N+L+1-x) !

(xiii) The ratio of lost calls to carried calls on the secondary
group.

s N

AN, L.

L
(NFL) ! p-L ORI
LfN[fN(——N—!—-— A - 1) + rzl oo ® >] by (5.5.9)

which simplifies to

_ 3 __(Nili_’_#;;’]'l

L
[ (WD) L - L+ INIATM rzl TR (5.5.36)
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CHAPTER VI

OVERFLOW TRAFFIC - ATOMIC APPROACH

6.1 Introduction

In the foregoing 'group' analysis, an overflow system is
considered as comprising of two groups, namely the primary and
secondary group. An alternate analysis, based on individual trunks
and sequential overflows is discussed in this chapter. By analogy
with other areas of mathematics, this approach is called an 'atomic'
analysis of overflow systems.

The overflow system is considered as a sequence of individual
trunks each being offered the overflow stream from the preceding
trunk. This situation is illustrated in Figure 6.1. The overflow
stream from a primary group of N trunks is interpreted as the
Nth  overflow stream from the Nth individual trunk which has been
offered the (N-1)St overflow stream from the (N-1)St trunk.

In general, if the Brockmeyer system with renewal input is being
analysed, the overflow stream from a finite secondary group of L
trunks, becomes the stream overflowing the (N+L) B individual
trunk when offered the (N+L-1)S%t overflow stream from the
(N+L-1) St trunk.

This htomic' approach is valid only when the services are
memoryless. For more general service distributions, the'group'
approach could be extended, however the overflow traffic moments for
the corresponding queueing systems become extremely complicated

and intractable.
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To demonstrate the methodology used for an 'atomic' analysis
of an overflow system, the Laplace-Stieltjes transform wN(s) of
the overflow stream G, from a finite primary group, is rederived.
The three phases of the atomic approach are illustrated in figure 6.1.
New properties of the overflow traffic's peakedness and coefficient
of variation are then established. A significant consequence of
this study on peakedness is a simple proof of the well established
practical teletraffic result, "The overflow traffic arising from
randomly offered traffic is rough". Wilkinson [ 41 ], intuitively
gives reasons why such a result must necessarily hold.

This study of the overflow traffic's peakedness is extended

by producing peakedness charts for different Erlang input streams.

Notation

The inter event time distribution of the overflow from the
ith  individual trunk when offered the overflow stream from the
(i-1)St individual trunk is denoted by G(i)(t) with w(i)(s) as

its Laplace-Stieltjes transform.

6.2 Derivation of ¢ (s) by the atomic approach
N

6.2.1 Phase I

The overflow stream from the first trunk when offered the

input stream F satisfies

_ ko (s)
lp(l)(s) " ko (s)+ki(s) 6 2
where ko(s) =1 (6.2.2)
ki(s) = 1o0(s), . (6.2.3)
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Proof of (6.2.1)

If fq(t)

100.

is the distribution function for the time separating

an instant when a call arrives to find thé trunk already occupied

and the instant of the first subsequent overflow, then

fo(t) =
0

where we interpret

t
J (1-e "7y Eo (t-y)aF (y) + J e

t
4

0

£1(t) = 8(t-0).

f1(t-y)dF (y)

(6.2.4)

Taking the Laplace-Stieltjes transform of equation (6.2.4), gives

We impose the boundary condition

Y £

o*(s)dr(t) +

1 then

fi1*(s)

fo*(s) [1 - d(s) + ¢(s+w)] = d(s+y)

But (s)

(1) Eo*(s)

1-¢$(s)

NI

¢ (s+u)

1/[1 +

thus proving equation (6.2.1).

6.2.2 Phase II

The overflow stream from the

offered the overflow stream from the

l’)( N)

Proof of (6.2.7)

If the input stream F

(s) = l/[l +

by equation (6.2.5)

Nth

l"'lb( N- 1) (S) ]

Vo 1y (51

and overflow stream G(l)

J e Sttt g x(s)ar(t).
0

(6.2.5)

(6.2.6)

individual trunk when

(N-1)St  trunk satisfies

(6.2.7)

are replaced
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by G(N 1 and G(N) the situation depicted in Phase I is identical
with that of Phase II, hence equation (6.2.6) holds when w(l)(s) and
¢(s) are replaced by w(N)(s) and w(N;lj(S) respectively.
6.2.3 Phase TII
The overflow stream G(N) from the NP individual trunk
satisfies
N- 1
N-1
Y Dk (s)
r=0 r f
UJ(N) (s) == - (6.2.8)
I (Dk (s)
r=0
where I 1 ' r=0
k (s) = — 6.2.9
r( ) 1 l:n_ 1-¢ (s+j-1w) r>1 ( )
- ¢ (s+3H) !

j=1

Proof: Equation (6.2.8) simplifies to equation (6.2.1) when N=1.

If equation (6.2.8) is valid for w(N_l)(s), then
1-y (s)
w(N)(s) = l/[l + ———LELLL———} by equation (6.2.7)
) (s+u)

(N-1)

Now k, (s) = %%géﬁ%-k'(s+p) by equation (2.5.15)
N2 oN-2
,zo( LK L, (8)
Vo, (54 = 5 — (6.2.10)
,Eo( kL ()
N- 2
I "k (o)
1¥ .y, () = 1 - ;f? — by equation (6.2.8) with N=N-1
7 M hx (s
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N oN-2
,zl (L_Dk ()
TN (6.2.11)
ZZO "hHx (s)
N-1
N-1
l—w(N-l)(S) r=zo( N )kr“(S)
= 7 (6.2.12)
Yo 1y (W) ) (N;l)kr (s)

Substituting equation (6.2.12) into the expression for w(N)(s)
given by equation (6.2.7) shows w(N)(s) satisfies equation (6.2.8).

Since the stream overflowing the nth  trunk in sequence is
identical to the overflow stream from a primary group,

U (8) = Uy (s) (6.2.13)

hence, equation (6.2.8) and (2.2.17) are eguivalent.

The inductive form of the proof of equation (6.2.8) is
essentially equivalent to the conditional probability argument of
Takdcs [ 36 1 . He applied an integral equation technique to obtain
the solution. He was unaware of our physical 'atomic' interpretation

of the system and his argument appears outwardly dissimilar.

6.3 The Coefficient of Variation of the Overflow Traffic from N

Trunks
Notation:
Let f M \Y Z denote the weakness, mean,

(N " (N’ (N)’W(N)’ (N)

variance, coefficient of variation, peakedness of the overflow
traffic resulting from the overflow stream G(N) of section 6.2. We

assume these quantities are defined for N=0 by defining

il
o

G = a3k
(0) (6.3.1)



6.3.1 Phase I

The overflow traff

Proof of expression (6.

103.

ic from the first trunk satisfies

W > W i (6.3.2)

The input stream F satisfies equation (3.4.12), giving

()
v =M -M , 200 .3.
(0 ~ (0 [l oy 1—¢(u)] (6.3.3)
where M == o L. by equation (2.2.10)
Yoy TR ugroy Y o4 e
Vo)
Since Wko) = equation (6.3.3) becomes
[M(o)]
woo=f 1ot | 6.3.4
(0) (o) |7 1= | ( )
. _ Q(u)__] _
~1¢ (0)[1 ErYeTy 1. (6.3.5)

But equation (6.3.5) is valid for any renewal stream and in

particular holds for the stream G overflowing from the first

trunk, thus

(1)

-1
Wy = "W,y OV =9, o] -1 (6.3.6)
- $(21). )
But ¢k1)(p) P EESEYeh) by equation (6.2.6) (6.3.7)
and Y '(0) = oL (O, by equation (2.5.1) with N=1 (6.3.8)
(1) (b(]-'ll D v e D

therefore the expression for W given by eguation (6.3.6) can be

(1)
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simplified to

_ _q _ Mo'(0) ¢(21) +1-6 (1)
Moo T TN T IS5G0 T 6w (6.3.9)
Holtzman [ 10 ] notes that for any renewal stream,
xGw = Ixw? , =1 (6.3.10)

and Winsten [ 42 ] shows that strict inequality holds in the case
when 3j=2 unless the underlying distribution is degenerate, that

is
¢(2n) > [¢(w1? since F is not degenerate. (6.3.11)

Now [1 - ¢(]1? >0 since ¢(u) # 1

[pG01% = o) + 1 > ¢

[pI%-pw+1 o

. 6.3.12
b (1) g 12)
Hence using the inequality, (6.3.11) gives

¢Cw-p+L o . (6.3.13)

$ ()

Thus the latter term in the product of W . is greater than unity,

(1)
proving the inequality (6.3.2}).

6.3.2 Phase IT

The overflow traffic from the Nth  individual trunk when

offered the overflow stream from the (N—l)St trunk satisfies

' >

(o ” Weneny o (6.3.14)
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Proof of expression (6.3.14)
The argument used in the proof of phase I is valid for any
renewal input stream and its corresponding renewal overflow stream

from one trunk. Hence equations (6.3.5), (6.3.6) and (6.3.9) hold

when F and G(l) are replaced by G(N_l) and G(N), giving
-1
— - 1 — -
Winety = MY gy ' (O) 1= Y1y (w1 1 (6.3.15)
-1
Wy =~ ' - - 6.3.16
and

(2w +1-y

(1
(1) ] (6.3.17)

v
- . _ —1] (N=- 1)
W = 71~ W gy (0)[1 Vw1 (u)] [ o

IP(N? 1)

Hence the inequality (6.3.14) follows since

(2w + 1 - (w (1) by equation (6.3.12)

lp(N-—l) \p(N-l) g ll)(N-l)

This result given in Phase II, proves that the coefficient of variation

of the overflow traffic is an increasing function of N.

6.3.3 Phase III

The coefficient of variation of the overflow traffic from N

trunks satisfies

=W > W = 3.
" = oo 7 Yoo (6.3.18)

This result follows by induction on (6.3.12), having proved (6.3.1).

The increasing property of W with increasing weakness of

(o)

the input stream was proved by equation (3.4.25).
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If the identical analysis of varying U for a fixed X is

now applied to W N given by equation (6.3.16), the derivative

(N)

of W(N) with respect to | satisfies
aw Yoo 0w ()
N
CD, e oo i) (X where & € (0,W) . (6.3.19)
au =Y g (0 21 (1)
Hence W(N) >0 as Y +0 and W(N) > oo as W > «; that is,

the coefficient of variation of the overflow traffic ranges from O
to ® as the input weakness ranges from O to <.
When the input stream is Erlang order k, defined by equation

(3.5.1) and satisfying equation (3.5.10),

W( 0) ER

-1
A

= -1 + ———————— by equation (3.5.14).
k

l_
— (14—
1-61 kA)
Hence the coefficient of variation of the overflow traffic from

N trunks produced by this input stream satisfies

-1
A

W, > -1l +———— Dby (6.3.18) . (6.3.20)

1,k
-( 14+
1= kA)

If k=1, that is the input stream is negative exponential, the

inequality (6.3.20) reduces to

-1

W, > A , (6.3.21)

whereas if k=%, that is the input stream is deterministic, the

inequality reduces to
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Uy > "Lt TR (6.3.22)
For Telecom Australia [39 ] p.-31, the peakedness =z defined by
(3.4.14) is accepted as the standard for measuring variability of a
stream. The standard being z = 1 for the negative exponential
input stream and traffic being called smooth if 2z < 1 or rough

if =z > 1. However Kuczura [ 15], calls a stream smooth if W <1
and peaked W > 1 with the standard still being the negative
exponential stream for which W = 1, although he mentions "the same

dichotomy is effected by the inequalities z <1 and 1 < z."

6.4 The Peakedness of the Overflow Traffic from N Trunks

Telephony classifies the various streams of an overflow system
by means of the peakedness of the traffic produced by that stream.
If the peakedness of the traffic produced by a renewal stream is

greater than or less than unity, the stream is called rough or

smooth respectively. The label {rough, implies that the traffic
smooth
is {rougher than pure chance traffic for which the variance equals
smoother
the mean.

6.4.1 Phase I

The overflow traffic from the first trunk satisfies

Z(1)> mln(l,z(o)) 5 (6.4.1)
Proof of (6.4.1)
Vio)
Since z(o) = , equation (6.3.3) becomes
"0y
z 1 1 ¢ (1) (6.4.2)

(o "o T e
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This equation (6.4.2) is true for any renewal stream, and in particular

holds for the stream G

(1 overflowing from the first trunk, thus

Yo ()
1 (1)
z =1 + + (6.4.3)
' (0 _
(1) utp(l) (0) 1 w(l) (W)
Yo (W)
1 (1)
z - 1= (6.4.4)
(0 =
(1) uw(l) (0) 1 IP(I) (w)
= uif%é) + TE;?)) by equations (6.3.7) (6.4.5)
H and (6.3.9) .
But the stream F satisfies (6.3.11),
-1> - 6.4.
21y 1 > () [Z(o) 1] ( 6)
The condition expressed by (6.4.6) means that
i - , - >
if z(o) -1 > 0 then z(l) -1 0
but
i - < - > -
if z(o) 1 0 then Z(1) 1 Z(o) 1,
or equivalently
- > 3
z(l) 1 mln(l,z(o))
6.4.2 Phase IT
The overflow traffic from the Nth trunk satisfies
z(N) > mln(l,z(Nel)) (6.4.7)

Proof of (6.4.7)

Equations (6.4.2),

(6.4.4) and (6.4.5) hold for any renewal

input stream and its corresponding overflow stream from 1 trunk.

In particular if F and

G 1 are replaced by G and

( (N-1)

S

)
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these equations can be rewritten as

; Y (W)
. 1 (N-1)
b =1 + - + = (6.4.8)
(N-1) uw(N_l) (0) 1 w(N_l) (W)
Y (1)
1 (N)
z -1= - e (6.4.9)
(N) uw( N) (0) 1 w( N (W)
11)( 2 (w) 11)( N l)(211)

= , + : (6.4.10)
W gy (O Vi 1y W

But inequality (6.3.12) holds for any non degenerate renewal
stream,

(u)[z( - 1] (6.4.11)

(N) > lp(N-l) N-1)

. S mi
that is z(N) mln(l,z(N_l))

This result (6.4.7) implies that if the input stream is smooth then
the peakedness of subsequent individual overflows increases until
the overflow traffic becomes rough; once this occurs all subsequent
overflows remain rough but whether the increasing property of the
peakedness is maintained is not necessarily true. Tables obtained
from computer calculations for the overflow traffic peakedness for
different Erlang input streams imply that a unigue max value,

greater than unity exists.

6.4.3 Phase III

The overflow traffic from a set of N trunks satisfies

Zy > min(l,z(o)) (6.4.12)
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This result is a consequence of induction on (6.4.7) since (6.4.1)
is valid.
When the input stream is Erlang order k, defined by equation

(3.5.1) and satisfying equation (3.5.10),

(o) ER
1 .
= -A + — 1 by equation (3.5.13).
1-tng

Hence the peakedness of the overflow traffic from N - trunks

produced by this input stream satisfies

z, > min(1,-A + ___;_li__:? by (6.5.12) . (6.4.13)
l—(l+§i

If k=1, that is the input stream is negative exponential, the

inequality (6.4.13) reduces to

zy > min(1,1) = 1 . (6.4.14)

This proves the well known practical result that the overflow traffic
corresponding to a negative exponential input stream is rough.
If k=», that is the input stream is deterministic, the

inequality (6.4.13) reduces to

2, > min(l, -A + ——) . (6.4.15)

l-e_A

1
The peakedness of the input stream has a lower bound of >
which occurs for a deterministic distribution of very high intensity,

as shown by equation (3.4.22), hence
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z. >

. 5 by (6.5.12) . (6.4.16)

This confirms the analysis of section 7.2 of Pearce and Potter [ 25 ].
Table (6.5.1) gives the peakedness of the input traffic

corresponding to Erlang distributions of order k=1,3,6,10,% for

the indicated values of A.

Equations (3.5.13) and (3.5.21) were used to calculate these

values.
MEAN INPUT TRAFFIC (A)
5 7 9 11 13 15 (19)
1 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
3 .6812 .6774 .6748 .6735 .6726 .6715
Erlang
6 .5993 .5948 .5923 . 5907 . 5897 .5889
Phase 10 .5666 .5617 .5591 .5586 .5565 .5560
k o .5318 .5121 .5099 .5076 .5067 .5058 .5048

TABLE 6.5.1

6.5 Features of Overflow Peakedness from Computed Charts

If an input stream, F, is Erlang order Xk, k=1,2,...,
with its average interevent time identical to that of a negative

exponential distribution parameter A, then

-1
(1) fo = A from equation (3.5.23) (6.5.1)

where A AU from equation (3.5.9).
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(ii) (kii )k, k finite, from equations (3.5.2)
_ : and (3.5.10)
$(s) = \ (6.5.2)
e"sfh , - k infinite, from equation (3.5.24)
(iii) (a/[a+3/k1D)* , k finite
o (w) = { " (6.5.3)
e'_JA , k infinite .

Substituting for ¢(ju), defined by equation (6.5.3), into equation

(2.3.19) gives

A k
s vy
(iv) T ———— , k finite, r =1
(=0 Ak
( A+j/k
L () = g (6.5.4)
r = -—}A-
T (e - 1), k infinite, > 1
j=0
\
1 ., r =1 all k

The overflow weakness, fN, corresponding to the Erlang input
stream is obtained by substituting for Q}(u), given by equation
(6.5.4) into equation (2.5.6}.

The mean overflow traffic, MN which is the reciprocal of the
overflow stream's weakness was calculated for Erlang input streams
of order 1,3,6,10,%.

The variance Vﬁ, and the peakedness 2, of the overflow
traffic were found by substituting calculated values of MN and
MN+1 into equation (5.3.16) and (5.3.20) respectively, for these
particular Erlang input streams.

Families of curves were produced from these results. Figures
6.5.1 to 6.5.5 corresponding to the different Erlang streams

illustrate the dependence of the overflow peakedness zN(A), on the

primary group size N, when the input stream has a fixed intensity
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value, A.

The effect of the phase of the Erlang stream, or equivalently,
the effect of smoothing the input traffic on the overflow traffic's
peakedness is demonstrated in Figure 6.5.6.

Families of overflow traffic peakedness curves, corresponding
to fixed primary group size are given in Figures 6.5.7 to 6.5.10
for the various Erlang input streams.

The effect of the phase of the Erlang stream being offered to
a primary group of fixed size, on the overflow peakedness is depicted
in Figure 6.5.11.

One striking feature of all the graphs is their common shape.

The curves of Figures 6.5.1 to 6.5.6 suggest that for all input
streams, E of constant intensity A, there exists a unique
maximum value for the overflow traffic peakedness at N=N* say.

In the case of A=9 Erlangs illustrated in Figure 6.5.6, all the

input streams E1,E3,E¢/E10,E have their max value occurring at

N*=12, but the value of z17(9) ranges from 2.14 to 1.52 corresponding
to k=1 or .

Similarly the curves illustrated in Figures 6.5.7 to 6.5.10
suggest that there exists a unique maximum value of the overflow
peakedness at A=A* for all Erlang input streams offered to a primary
group of fixed size. Figure 6.5.11 shows that the maximum value of
zg(A) ranges from 1.97 for a negative exponential input stream to

1.41 when the input stream is deterministic, but the maximum value

for all Ei1,E3,E10,E, occurs at A*=7.5.
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CHAPTER VII

THE E.N.R. METHOD AND RESTRICTIONS IMPOSED

ON RENEWAL OVERFLOW SYSTEMS BY DIMENSIONING

7.1 Introduction

"What is the effect on any general overflow system, (one with
any general renewal input), when a finite number of the overflow
moments are fixed?" Any restriction imposed on the system by these
moment values would necessarily be independent of the particular
distribution function chosen to model the interarrival times of the
input stream. Holtzman [ 10 ] studied some invariant features of a
general overflow system produced when values of the mean and variance
of overflow traffic are giveh specified values. However, most
dimensioning procedures, ranging from the early work of Erlang [ 5]
through to the recent work of Bretschneider [ 3 ], Nightingale [ 21 1,
Schehrer [ 32 ] and Rubas [ 31 ], have assumed a particular input
stream. Any such procedures must necessarily incorporate properties
peculiar to the chosen input distribution.

The explicit moment formulae, derived in Chapter 5, are used to
both study the posed question and provide basic formulae needed to
establish a more general dimensioning method. This chapter is divided
into two sections. In the first section, we consider those
characteristics of general overflow systems which are made invariant
by specifying values for a finite number of overflow traffic moments.
In the second section, we develop a dimensioning method, called the
Equivalent Non Random (E.N.R.) method which is applicable for any

renewable input stream.
i

al
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The inversion of explicit formulae for the factorial overflow
traffic moments is basic to any study on the invariant features
produced when dimensioning an overflow system by a finite number of
moments. One inversion expression gives the weakness, fN+r, of
the overflow stream from an increased primary group (the extra number
of trunks is determined by the number of specified overflow traffic
moments), as a simple function of the fixed overflow traffic moments.
Many quantities applicable to overflow systems were shown in Chapter 5
to be functions of only these fN+:s’ hence all these quantities are
invariant whenever the fN+r are. The particular effect on an
overflow system caused by specifying two or three overflow traffic
moments is discussed in detail. With the added restriction imposed by
assuming a negative exponential input stream, the inversion formulae
provide closed expressions for the input stream's weakness, A_l, and
the corresponding primary group size, N, involving only three overflow
traffic values. Nightingale [ 21 ] in his ER-W dimensioning model,
recognised that three moment values were needed to provide an exact
dimensioning model if the input traffic was assumed random.

The E.N.R. method is based on formulae for the first two overflow
traffic moments for any Erlang input stream, phase k, k=1,2,...,%.
Using computed values for the overflow traffic's mean and variance,
dimensioning charts, similar to the well known Wormald Charts, (see
Nightingale [ 21 I, page (49)), are produced. Two families of curves
are superimposed to produce a E.N.R. chart. Examples of these charts

are given for various input streams ranging from random to smooth.

Features common to all charts are discussed.
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7.2 1Inversion of the Overflow Traffic Factorial Moment Formula

Since only the g (or a) steady state occupancy distributions
on the secondary group need be considered in this chapter, the
following notation for the factorial moments of the overflow traffic

will be used,

an(N) = o (N) . (7.2.1)

n, q

Now the overflow traffic factorial moments were shown to

satisfy

Q
2
Il

n

» -1

n![ z (rrl)(—l)n rfNH] from equation (5.3.2)
r=0

or equivalently

p N
n! £, z (r
r=0

I

)2 r(u)]—1 from equation (5.3.2a).

o (N) -

n+1

When the finite difference representation of uh+1(N) given by

equation (5.3.2) is inverted, then

r
r -1
£ = nzo(n)n! a, (N, (7.2.2)

whereas equation (5.3.2a) on inversion becomes

-1 . r re N -1
L, W = £ Nzo (P -1 Tata () . (7.2.3)

The implications of equation (7.2.2) on dimensioning general
overflow systems are investigated in this section.

If a finite number of overflow moments, say al,uz,...,u}+l

s - 9 wpfs can be determined from

are specified, then all of fN+ £ i

1 N+2
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equation (7.2.2). Hence any of the overflow system's quantities

dependent only on any of the £ £

_ N+2,...,f are necessarily made

N+r
identical for all the input streams by the chosen values of the r overflow

traffic moments.

.. £ are

overflow quantities which are functions of fN,f Nér

N+1'°°
listed below.

(i) Marginal occupancy for (N+r-1) primary trunks, given by

equation (5.3.18) with N=N+r-1l, satisfies

-1 -1
HN+r-1 - fN+r-1 - fN+, ror=1,2,... . (7.2.4)

(ii) Laplace-Stieltjes transform at s=U of the overflow
distribution from (N+r-1l) primary trunks, given by equation (2.5.20)

with N=N+r-1, satisfies

f
N+r-1

Y 1(u) =— , r=1,2,... . (7.2.5)

N+r -
N+r

(iii) Laplace-Stieltjes transform at s=rp of the overflow

distribution from N primary trunks, given by equation (2.5.23),

satisfies
N7,
WN(ITU) e ’ r=1121--~ . (7-2-6)
N E
N+ 1

(iv) ©Probability of loss on a secondary group of r trunks,

given by equation (5.4.17) with L=r, satisfies

T = , r=1,2,... . (7.2.7)

(v) Mean carried overflow traffic on a secondary group of «r

trunks, given by equation (5.4.24) with L=r, satisfies
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- -1 =1
MN,r-= fero1 ~ fner 7 TLe20ee (7.2.8)

(vi) Ratio of lost calls to carried calls on a secondary

group of r trunks, given by equation (5.4.25) with I=r, satisfies

R, , ==———— , r=1,2,... (7.2.9)

(vii) Variance of carried overflow traffic on a secondary group

of r +trunks, given by equation (5.4.29) with L=r, satisfies

-1 -1 ](fN+r—fN—r‘foN+r _ fner B b

£ (£ -£ ) £ (£ £)

) . (7.2.10)
N+r N+r N N N+l— N

The values of any overflow traffic gquantity listed above is
the same for all renewal input streams once values are assigned to
r overflow traffic moments. Hence dimensioning procedures involving
r overflow traffic moments restrict the structure of a general
overflow system by predetermining values (in terms of o1,02,...,0")

for all these listed quantities.

7.3 Specification of Two Overflow Traffic Moments

Most practical dimensioning procedures used in telephony involve
two overflow traffic moments which are usually the mean and variance.

Letting r=1, equation (7.2.2) becomes

-1 -1
fN+1 = a, (N) + o, (N) . (7.3.1)

Thus any overflow quantity which is a function of fN and
fN+l is invariant of the form of the input stream once values are

specified for o; and ds2. Putting r=1, in equations (7.2.4) to

(7.2.10) gives the following specified quantities,
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) w1 -1
(1) HN = fN - fN+l (7.3.2)
N
(ii) b () = - (7.3.3)
L
e = fN
(iii) m, = (7.3.4)
L
€1 Moo= £ -l 7.3.5
iv) MN.L_— fr = S (7.3.5)
f

i N

(v) RNv1.= (7.3.6)

fr I
) - -1 -1 (fm+1ffn—foN+1 faer E _foN+1\

(vi) v = (£ --f - (7.3.7)

N, 1. N N+1 \f (£ - ) £ (£ -£) )
N+1 ' "N+1. °N N'TN+1 N
which simplifies to

Vo=t - Al 7.3.8
N1, £y - N+l_)'[l -t N+1,] : (7.3.8)

The marginal occupancy, HN is used in telephony to describe the
decrease in overflow traffic when the primary group size is increased

by one. The substitution of fN+ given by equation (7.3.1) into

1

equation (7.3.2), gives
Hy = 01 - fo]” +a,] . (7.3.9)

Equations (7.3.2) and (7.3.5 imply

Hy = MN,1. R (7.3.10)

This result is apparent when the overflow system is viewed from
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an 'atomic' perspective, since the traffic carried on an additional
primary trunk is the same as that carried on a single trunk
(secondary group) when offered the NER  overflow stream from the
N previous individual trunks.

Equatiors (7.3.3) and (7.3.4) imply

Py = m . (7.3.11)

Equation (7.3.11) means that wN(u) can be interpreted as the
probability of loss when an overflow stream from the primary group
is offered to a single secondary trunk g?oup. Holtzman { 10 ]
recognised that wN(u) was independent of the input stream for any
dimensioning procedure based on two overflow traffic moments.

The implication of equation (7.3.8) is that not only the mean
but also the variance of the overflow carried traffic on a single
secondary trunk is invariant for any general overflow system once

values are assigned to 03 and Q2.

7.4 Specification of Three Overflow Traffic Moments

Some dimensioning procedures, see Nightingale [ 21 ] and
Freeman [ 16 ], involve three overflow traffic moments. Methods
for measuring or estimating three overflow traffic moments are not
usually considered practical by teletraffic engineers. However,
this section sﬂows that a great deal of additional information
concerning the structure of the overflow system is provided by
assigning a value to Q3.

If 0o1,02,03 are given specified values, then equation (7.2.2)
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with r=2, becomes

f = o, + 20 + 20, . (7.4.1)

Therefore, all quantities which are functions of not only fN and

f , See Section 7.3, but also of fN, £

and £ ar
N+ 1 N+ 1 N+2 Are

completely determined by a;,02, and 03 regardless of the form
of the input stream.

The following quantities are functions of fN+ and fN+

1 2"

. -1 -1 } . N
(1) Hﬁ+1 = fN+1 - fN+2 from equation (7.2.4) with r=2 (7.4.2)

or equivalently

= -1 -1 . : _
MN+1,1 = fN+1 = fN+2 from equation (7.2.8) with N=N+1
(7.4.3)
and r=1
e fN+1 .
(ii) ¢N+l(ul = from equation (7.2.5) with r=2 (7.4.4)
L
- faes
(iii) RN = ——————  from equation (7.2.9) with N=N+1
i g g (7.4.5)
N+2 “N+1 i
and r=1
(iv) ¥ = ey - £ ey £ tion (7.3.8)
AV Ve, 1T Yhner o) (L= fg, HEy,,)  from equation (7.3. (7.4.6)

with N=N+1

Therefore the marginal occupancy for a primary group of (N+1) trunks,
the Laplace-Stieltjes transform at (s=p) of the corresponding
overflow stream and the variance of overflow traffic carried on a
single secondary trunk are fixed for any input stream once
values are specified for 03,02 and d3 .

The following quantities determined by substituting r=2 into

equations (7.2.4) to (7.2.9) are functions of fN and fN+2
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. = N
(1) my = (7.4.7)
fyea
(i) M, = £ - £ (7.4.8
. MN,z.” N N+ 2 -4.8)
- fN
(iii) RN,2.= ——*——;;* . (7.4.9)
N+2 N
The following quantities are functions of fN, fN+1 and fN+2
Af
(i) wN(Zu) = from equation (7.2.6) with r=2 (7.4.10)
Af
N+1
oy = O T e i T L M e T
(ii) VN_2.= (fN —fN+2)\ - ) (7.4.11)
e Een 7HY £y e 7B

from equation (7.2.10) with r=2.

Eguations (7.3.3) and (7.4.10) imply that the overflow streams
Laplace-Stieltjes transform at s=) and 2l is invariant of the
input stream once three overflow moment values are given. Similarly,
equations (7.4.8) and (7.4.11) indicate that the mean and variance
of the overflow traffic carried on a secondary group of two trunks,
are independent of the form of the input stream when three overflow

traffic moments are specified.

7.4.1 Dimensioning an Overflow System with Negative Exponential

Input using Three Overflow Traffic Moments

It was shown in section 7.3 that fN+1 and fN+2 for any renewal
input stream must satisfy equations (7.3.1) and (7.4.1) when 01,02
and o3 are given particular values.

If the input stream is now taken as being negative exponential,

the resulting overflow stream's weakness from N trunks must also

satisfy the recurrence relation given by equation (5.5.6), that is
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AfN+1 = (N+1)FN + 1. (7.4.1.1)

Putting N=N+1, equation (7.4.1.1) becomes

AfN+2 = (N+2)fN+1 + 1 . (7.4.1.2)

Substituting for fN+x and fN+2 in terms of 0o3,02 and o3 from

equations (7.3.1) and (7.3.2), equations (7.4.1.1) and (7.4.1.2)

can be expressed as

-1
(N+1)op +1

-1 -1
o, + a,

A= (7.4.1.3)

-1 -1
(9+2) (] +a, )+l
A= ———— (7.4.1.9)
al +2a2 +20t3

-1 —1 -a
(N+1) o, +1  (N+2) (a, +0, )+1

- e = = . (7.4.1.5)
o, *a, 0, +20, +20,

Equation (7.4.1.5) a linear equation in N, simplifies to

-1 -1 9 -l -1

(o, +a, )" = (a, +20, )
N = o e E— - 1. (7.4.1.6)
200, 03 - O

2

Substituting for N using eqguation (7.4.1.6), equation (7.4.1.3)

simplifies to .

-1 =1 =1 sl
o, (o, +a, ) - q,
A = =semew — . (7.4.1.7)
20, O3 - O

2

Equation (7.4.1.7) is equivalent to Nightingale [ 21 ], page 46,
equation (26).

A simple expression for the third factorial moment of the
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overflow traffic involving only the first two moments, A and N

is obtained by subtracting equation (7.4.1.7) from (7.4.1.6),

giving
-1 =1 -1 -1 =1 s | -1 .
\ (0] +a, ) 2- (0, +205 )-0; (a1 +a, )+a,
N+l - A = ——— = ) (7.4.1.8)
20, O3 - a,
Equation (7.4.1.8) simplifies to
-1 .1 -1
a, (o, +0, ) - 203 .
N+l - A = e — (7.4.1.9)
20, 0y - q,

Rearrangement gives

-2 -1 =1

_ ] Oy [N+2-Bl+a, 0,

o, =3 = . (7.4.1.10)
1+a, " (N+1-R)

The closed form expressions for A and ﬁ, given by equations
(7.4.1.6) and (7.4.1.7) can also be obtained by solving the explicit
expressions (5.5.29) and (5.5.31) which give d2 and ’ag as
functions of A, N and o;. The existence of such closed form
expressions implies that an exact dimensioning procedure exists when
the input stream is assumed to be negative exponential and three

overflow traffic moments have known values.

7.5 Equivalent Non Random Method

The Equivalent Non Random (E.N.R.) method is a departure from
conventional dimensioning procedures for smooth overflow systems,
for which the peakedness of the overflow traffic < 1. The approach
of Bretschneider [3 ] and Nightingale [ 21 ] for dimensioning

such overflow systems is to assume a negative exponential input
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stream, (although it necessarily must be smooth by equation (6.4.12),
and extend the range of the equivalent primary group size to include
negative real values. The E.N.R. method assumes the input stream
to be Erlang with sufficiently large phase for the specified
smoothness of the overflow traffic. The particular Erlang distributions
considered in this section are Ej3, Eg¢, E19, and E_ although the
procedure can be applied to any given renewal stream. The intensity
of the assumed Erlang stream is made identical to that of a negative
exponential stream, parameter A, see section 6.5.

The mean overflow traffic, MN, produced from any Erlang input
stream satisfies equation (5.3.2a) with n=0, giving

P |

M, = = [fo _ZO (I;)lr (w1 (7.5.1)

where fy and Q}(u) satisfy equations (6.5.1) and (6.5.4)
respectively.

The variance, Vgr corresponding to this overflow traffic is

determined from equation (5.3.16), that is

2
v. =M [ L

— - 1] . (7.5.2)
N TN

Values of MN and VN corresponding to a given input stream are
computed for ranges of values of both A and N. The tabulated
results are theg used to produce dimensioning charts of MN versus
Vﬁ. Each specified input stream has a corresponding chart. Figures
7.5.1 to 7.5.4 are examples of these E.N.R. charts for Ei, E3, Eic, D

input streams. Two families of curves, illustrated in figures 7.5.5

and 7.5.6, are superimposed to produce these charts. The family of
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curves depicted in figure 7.5.5 corresponds to increasing the input
stream's intensity for fixed N values whereas figure 7.5.6
illustrates the effect of increaging the primary group size for
fixed A values.

Once an E.N.R. chart has been produced for any particular renewal
input stream, the values of A and N which correspond to the
specified values of MN and VN can be determined from the chart.

Wilkinson pioneered the dimensioning of overflow systems by
charts, see Wilkinson [ 41 ] p.448-451 . The original 'Wilkinson'
chart was produced from equations (5.5.5) and (5.5.30) for the mean
and variance of the overflow traffic from a negative exponential
input stream. Using the 'Wormald' chart, Bretschneider [ 3] and
Nightingale [ 21 ] extended Wilkinson's concept of a dimensioning
chart for a negative exponential input stream, by permitting negative
N values. The assumption of an Erlang input stream of sufficiently
large phase is basic to the E.N.R. method. This guarantees a positive
number of equivalent primary trunks, irrespective of the degree of

smoothness specified by the given My and Vi values.

7.5.1 Features of the E.N.R. Charts

(i) All the charts have a common shape. The invariance of
the marginal océupancy for a mean overflow traffic of 7.7 is
illustrated in fiqure (7.5.7) when F is Ej3. This property has
been shown in section 7.4 to hold for any renewal input stream.

(ii) As the Erlang phase k increases, the peakedness of the
overflow traffic for a heavy input stream, decreases. This property

was demonstrated in section 6.4. Table (7.5.1) gives the peakedness,
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taken as the reciprocal of the slope of the curve corresponding to

one trunk, for different input streams.

Phase k 1 2 3 6 10 ©
Overflow
1.0098 .7569 .6714 .58706 .5533 .5015
peakedness

Table (7.5.1)

(iii) A linearity condition relating the mean and variance
of the overflow traffic is shown in Figure (7.5.8), and can be

expressed by

Mo (A+k) - M () = sA[V1+k(A+k) = ¥ n1 . (7.5.1)

The slope of such lines is a function of the input intensity A.
Table (7.5.2) shows the decrease in slope with increasing input
intensity calculated for F = E;p. Such tables can be calculated

for every E.N.R. chart.

A 8 9 10 11 12 13 14

s .1459 .12811 .11402 .10266 .0923 .08544 .0739

Table (7.5.2)
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CHAPTER VIII

CONCLUSIONS

A new intensity measure for a renewal stream, that of
weakness, was used extensively as a basic descriptor for many
overflow traffic quantities throughout this thesis. Expressions
for the renewal overflow stream's Laplace-Stieltjes transform and
the binomial moments of the steady state g, &, T, T, occupancy
distributions for a group of trunks were obtained by means of a
unified queueing methodology.

The 'group' and 'atomic' views of renewal overflow systems
enabled features of overflow traffic to be examined. The 'group'
approach, with the overflow traffic factorial moment theorem,
resulted in explicit formulae for all offered and carried overflow
traffic moments as well as the related statistical quantities of
peakedness and coefficient of variation. These formulae were
expressed either as functions of divided differences of the overflow
stream's weakness or by equivalent functions of the input stream's
Laplace-Stieltjes transform.

Properties of the peakedness and the coefficient of variation
of overflow traffic were examined by means of the 'atomic' approach.

Features of graphs produced for various Erlang input streams,
provided insight -into possible characteristics of the peakedness of
overflow traffic. One avenue which might be pursued in future
research is that of an analytic study on the existence, uniqueness

and value of a maximum overflow traffic peakedness.
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The inversion of the explicit overflow traffic moment formulae
was fundamental to the examination of the effect on general overflow
systems when a finite number of 6verflow tfaffic moments have
specified values. One consequence for common dimensioning models,
which are based on two overflow traffic moments, was that the
marginal occupancy is completely determined by the two moment values
irrespective of the form of the input stream. An exact dimensioning
procedure, using three overflow traffic moments, was established for
random input traffic. The existence and simplicity of such formulae
question the accepted convention of basing dimensioning procedures on
two moments. A study on the implications and permitted ranges for
overflow traffic moment values on the possible form of an input
stream is a possible extension of this work.

The basis and formulation of the E.N.R. dimensioning procedure
was discussed. To illustrate E.N.R. dimensioning charts, various
Erlang streams were chosen to typify possible smooth input streams.
Common features of shape and linearity as well as properties of
peakedness and marginal occupancy were characteristics of these charts.
Future analytic research on underlying mathematical structures
evidenced by these charts might provide insight into their common

shape and linearity conditions.
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APPENDIX T

FINITE DIFFERENCE CALCULUS

It is appropriate to introduce the following notation.
Let E be an operator, used in Finite Difference Calculus, see
Wylie [ 43 ], p. 132 to advance the argument of a function by

one, i.e.

where
n-k_k

n
(k)(—l) E .
0

(e-1)" =

Il o @

k

The forward difference operator A, is defined by
A" = (e-1)"

and the nth divided difference function X(N), denoted by

X(N,N+1,...,N+n) satisfies

n

X(N,N+1l,...,N+n) = éT-x(N)

(1.1)

(I.2)

(I.3)

(r.4)
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APPENDIX II

MOMENTS OF QOVERFLOW CARRIED TRAFFIC

Carried Overflow Moments in Terms of the &

N
a (M) = ntFN,L,n)[fo zo (S}!Ln“ w1’ (I1.1)
- 2 YN N N -1
o, (0 = ntFOV,Lm) [nf] 20 ()L (W Zo (2, (W] (11.2)
r= r=

- b N -1
B, (N = F(N,Ln) [£ _Zo ()8, (w] (II.3)
= > v N v N -1
B, M = Fau,L,n) [nf, 20 (L rzo (D2 4, W] (II.4)
_ n N N 1
8 () = k; o, JIFOLLK) [£o ZO (%, (0] (I1.5)
_ n ) N N N N -1 .
0 = kzl 0, (JKIFONLK) [k zo ()%, G =Zo ()%, W1 (I1.6)
_ n . Ne i* N N .
C,m = } V'8 I o . KFNLKIEH } (4, 0] a1

i=o0 k=1 r=0

n i n- i’ N N N N
- =n 2 -
c, m =} '8 T oo L cFeunebke T8 )y, (]

i=o k=1 r=0 r=0

(1I1.8)
where
_ L-1" L N N
FON,Ln) = £ =7 ) () L (D, (I1.9)
s =0 r=0

and

v N
£, = fo zo ()2 (0 (11.10)
and
_ N N N+L N4L
T o= ,:20 ()8, 0/ ,zo CLOR (I1.11)
and

fo = -Up'(0).
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