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OVERFLOI¡ü TRAFFIC IN TELEPHONY

R.M. POTTER

SUMMARY

This thesis is concerned with an anal-ysis of the Kosten and

Brockmeyer overflo\ár systems with renewal input.

T\'vo models of teletraffic overflow systems are included.

The first, or þrouptmodel, ccnsiders an overflow system as either

a GIU¡* or G/M/L queueing system with an overflow str:eam as

input. This overfl-ow stream is produced by offering a renewar

input stream to a finite primary group of trunks. The second, or

atomic model, considers sequential overflow streams from individual

trunks.

The atomic model- is used to study such characteristics of

an overflow stream as its peakedness and coefficient of variation.

However properties of the overfl-ow traffic and the Laplace-Stieltjes

transforms of the interoverflow distribution, deveroped by the

first approach, are used to prove the overflow traffic factorial

moment theorem.

A key feature of this thesis is the classification of traffic

by its tweakness r, a new concept to telephony.

Explicit formulae for all offered and carried overflow traffic

moments are derived in terms of finite differences of the overflow

traffic's weakness, or equivalentJ-y, Laprace-stieltjes transforms

of the input renewal- stream. The finite differ:ence version is

inverted to provide insight into the effect of specifying a finite

number of overfl-ow traffic moments on dimensioníng teletraffic

overflow systems.

A new dimensioning procedure, called the Equivalent Non Random

Method -rs devel-oped in the final chapter.



IL

SIGNED STATE¡,TENT

This thesis contains no materíal which has been

accepted for the award of any other degree or diploma in

any University. To the best of my knowledge and belief, the

thesis contains no material prevÍously published or written

by any other person' except where due reference ís made in

the text of the thesis.

Ronda May Potter.



II]-.

ACKNOWLEDGEMENTS

f happily acknowledge my gratítude to my supervisor,

Dr. C.E.M. Pearce for his guidance, help and criticism

throughout Èhe work on this interesting topic.

I warmly thank Professor R.B. Potts for his interest

in my work and his help and supervision during Dr. Pearcers'

absence.

I would like to take this opportunity to thank Dr. R. Harris,

Professor A. Myskja, and Mr. D. Sutton for their interest and

corrunents on my research.

f am grateful to Rob, Kate and. Janey for their encouragement

and understanding.

Finally, I would like to thank Ms. E. Henderson for her

excellent typing.



I

CHAPTER I

INTRODUCTION

The work contained in this thesis is a discussion of overflow

traffic resulting from offering a general renewal inpuÈ stream to

a finite fully-available primary group. The concepts of 'overflow

streamr and toverflow traffic' are analysed using queueing and

renewal theory. "Some Formulae old and New for overflow Traffic

in Telephony" by Pearce and Potter I 25 ] is based on definitions

and results found in Chapters II through fV. These three initial

chapters contain a unified methodology for finding

(i) the Laplace-Stieltjes transform of the interoverflow

event distribution, see Chapter II,

(ii) the binomial moments of offered. and carried traffic,

see Chapters III and IV respectively.

The distinction between continuous time and the imbedded Markov chain

steady state occupancy distributions corresponding to any given renewal

input stream is emphasized. throughout these early chapters. The

expressions derived for the overflow stream and the binomial traffic

moments are shown to be equivalent to early results of Takács and

Cohen, see Syski [ :¿ ]. The general inter-overflow distribution

formula simplifies for rand,om input traffic. In this case our

simplified general result verifies that a hyperexponential

distribution characterises the overflow stream, see Khinchine [ 18 ].

The basic queueing systems, G/M/* and G/M/L are needed to

analyse 'offered' and 'carried' traffic. Theory relevant to these

concepts are reviewed in detail in Chapters III and IV.
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The determination of explicit formulae for all overflow traffic

moments from a renewal input strean is given in chapter V. This

work is summarised in "Explicit rormutar for All Overflow Traffic

Moments of l(osten and Brockmeyer Systems with Renewal fnput", see

Potter I ZA 7. The 'groupt interpretation of these systems is to

consider the overflow stream from a finite primary group as the input

rènewa1 stream for either tlre G/n¡* or the c/M/L queueing systems.

Tl¡,e factorial overflow traffic moment theorem is proved for any

general renewal input stream, ttrus extending its known region of

applicability, see NighÈingale l2f).

The classification of renewal streams by the 'weakness', that

is the reciprocal of their i.ntensity, is a feature of this work. A

comprehensive list of explicit formulae for all offered and carried

overflow traffic moments and related functions (defined at arrival

instants and in continuous time) concludes Chapter V. These formulae

are expressed in terms of

(i) the divided difference of the overflow traffic weakness

and

(ii) the Laplace-Stieltjes transform of the input stream.

By simplifying the general overflow traffic binomial- moment formulae

for the case of random input traffic, the resulting expressions are

slrown eguivalent to those derived. by Sóhéhrer, IZZ ).

In Chapter VI an alternate view of overflow systems is considered.

This 'atomic' approach, based on sequential overflows from ind.ividual

trunks is described and its power demo¡rstrated by deriving

characteristics of the peakedness and coefficient of variation of

overflow traffic from a renewal input stream. Curves of overflow
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traffic peakedness versus eittrer the prirnary group size or tlre

input streams weakness are included to illustrate salient features

common to a class of renewal input streams, namely a set of Erlang

input streams of different phase. The intuitive result that

roverflow traffic arising from random input traffic is rough' is

verifìed as a qpecial case of the more general peakedness result

valid for all renewal input streams. Pearce I ZZ ] extended this

work by analysing ttre effect of both heavy and ligfrt input traffic

on the peakedness of offered and carried overflow traffic.

The final chapter, a detailed version of PoLEer Í 27 ],

contains a consideration of Èhe effect on an overflow system when

a finite number of overflow traffic moments are given specified

values. The inversion of the factorial overflow traffic moment

formula is fund.amental- to this work, resulting in an expression

relating the overflow traffic weakness from an increased primary

group with the number of prescribed overflow traffic moments. Using

results derived in Chapter V, a list of overflow quantities fixed

by the given number of specified overflow traffic moment values is

establ-ished. Two overflow traffic moments, an assumption common

to most tetetraffic dimensioning techniques, are shown to specify

the marginal occupancy, independently of the form of the renewal

input stream. Additional restrictions arising when three overfLorv

traffic moments are given set values are also considered. If the

input traffic is random, exact dimensioning formulae are obtained

in terms of three overflow traffic moments.

A dimensioning technique, based on a recurrence expression

derived in Chapter V for the overflow traffic variance involving
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the marginal occupancy and the mean overflow traffic, is developed.

Ífris Equivalent Non Random (n.N.n.) Method is dependent on charts

produced by superimposing two families of curves. One family

corresponding to constant input weakness values whereas the otlrer

corresponds to constanÈ prìmary group'size values. Examples of

such charts for different Erlang input streams are included and

their conmon features d.iscussed.

Througtr.out this work t?re holding time distribution is assumed

to be negative exponential with parameter U.
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CHAPTER II

2.L Introduction

!{hen a renewal stream is offered to a finite set of trunks

and forced to overflow, the overfìo* "tt..m is also renewal, as

shown by Takács [:a] and Descloux [rz]. The invariance of the

renewal property will be verified in the subsequent analysis of

the inter-arrival time distribution of the overflow stream-

Initially the notation and terminology needed to analyse

the input and overflow streams will be discussed.

A queueing theory approach to this overflow stream will be

used to derive the Laplacetstieltjes transform of the inter

overflow distribution. The same approach, thus providing a

unified methodotogy, is used in Chapters 3 and 4 when analysing the

steady state occupancy distributions on a set of trunks (finite or

infinite) .

The equivalence of the author's expression for the Laplace-Stieltjes

transform of the overflow stream with that of Takács [¡Z ] , is

establ-ished. An identity resulting from this equivalence provides

insight into the structure of the o.f. stream.

In the last section of this chapter relevant quantities'

such as the weakness of an overflo$/ stream, the ,rth divided

d.ifference of the weakness, the probability of congestion and their

associated props are introd.uced. Such quantities are essential in

the subsequent derivation of explicit formulae for all the overflow

traffic moments.

2.2 Notation and Terminology

consider a telephone exchange at which calls arrive at time

ínstants T1 ( 'r2 < ...
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:Ts=O) are independently and identically distributed random

variables with distribution function F(t):

p(x,, < t) = F(È) for all n=I ,2,... ,

that is, calls arrive in a renewal stream with interevent time

distribution F(t).

The mean interevent timer flr

rn = n[XrrJ J-aur,a, for atl n=r,2,... (2 -2.L)

Let 0(s) be the Lapì-ace-Stieltjes transform of F(t) '

Q (s) flt '* dr (*)

An alternate expression for the expected time between successive

events is given by

m = _ 0'(o) (2.2.2)

If this renewal stream, F' is offered to a finite set of

N trunks with negative exponential service distribution, parameter

il, the weakness, f0, of the input stream:

fo = - u0'(o) (2.2 .3',)

Hence,'using (2.2.2) ,

fo=tUm (2.2.4)

Teletraffic engineers use the term, intensity, fo, to describe

the ratio of the arrival rate of calls to the service rate, thus

ro = À e.2.s)
mu
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Thus the weakness of the renewal stream,

its intensity.

F, is the reciprocal of

Let n* be the probabil-ity that an arriving call finds all

N trunks occupied. The expected number of calls between consecutive

instants at which arriving call-s find all N trunks busy is given by

E [v] (2.2.6)

where v is Èhe nu¡nber of interevent times occurring between

successive overfl-ow instants.

Suppose t, and t, *, are consecutive instants at which

arriving calls finds all N trunks busy. The interevent times

x. . - = t. . - - t. are independent, identically distributed randonr
¡+1 i+l i

variables \"rith distribution G:

p(", *r < t) = G(t) i=I ,2r...

that is, calls overflow in a renewal stream with interevent tíme

distribution c(t). Let lt'l.N be the mean interevent time of G,

thus

M* =,- rl.r*'{O) (2.2.7)

where Ú*{s) is the Laplace-Steiltjes transform of G(t). ff

x. = Xt * ... + x-. where v is the number of interevent times¡-v
occurring between successive instants when calls find all N trunks

busy, (v is a random variable), then by Wald's Theorem, see

Takács [:O ] ,

n[*¡] =¡[v] Elxrl

I
lIN

providing E [v] < æ and the event V=n and subsequent time

(2.2.g',)
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intervals x .. ,X are Índependent. Equation (2.2.5) can be
n+l' n+2

expressed as

MN +
IIN

m (2 .2.e)

The weakness, fN, of the overflow stream:

f* uÚN' (o) (2.2.rO)

hence, using equation (2.2.7) ,

f"=uK (2.2.Lrj

The intensity, IN, of the overflow strearn:

I
I" = ffi (2'2'L2)

substituting for m and M" in terms of fo and fr, given

by equations (2.2.4) and (2.2.LL), equation (2.2.9) becomes

(2.2.L3)

Thus the congestion probability is the ratio of the weakness of

the input stream to the weakness of the overflow stream. A similar

interpretation of this loss probability is used by DescJ-oux LtZ1,

page 33L/1 and Pearce and Potter ÍZS), eguation (15)-

I assume throughout this thesis Èhat the holding time of each

trunk has a negative exponential distribution, parameter U.

2.3 Analysis of the Overffow Stream, G

Let fn (t) be defined as the distribution function for the

time from an epoch where a call joins a group of N trunks to find

n of them occupied. till the inst-ant of the first subseguent overflow.

fo.
f

N
1T

N



f (r)
n T ,[,t--u')'*t'j. t'"rr(t-y)ar(v), o'( n ( N. (2.3.1)

Jo

I0.

Suppose a call at T, finds n trunks busy and that the

first subseguent overflow occurs at tÍme T. +t. Let y = Ti*r-T,

where O < y < t. If a call at T, *, finds ), where

O < j < n+1, trunks busy, then (n+l-j) calls must have finished

in time y whilst the remaining j ca1ls díd not. The time to

the first subsequent overfl-ow from T, *, now becomes (t-y), hence

n+l
n+1
j

Since the overflow is instantaneous when a call arrives to find afl

N trunks busy, let

fN(tI = ô(t-o) (2.3.2)

where ô is the Dirac Delta measure defíned by

r"
J-"o

(t) ô (t-a)d t = s (a) for any generalized

function s (') .

The condition of equation (2.3.2) puts a physical boundary on

equation (2.3.I).

Takíng the Laplace=Stieltjes transform of equation (2.3.I)

gives

f * (s) "1rltr-. ut)' t- j" 
"''dr(t)f. *(s), 0 < n < N (2.3.3)

lJ

o¡

n
= ;i:li'" ,

The solution to these equations (2.3.3) is the same as that of the

unrestricted set for which 0 < n ( oo with the imposed supplementary

boundary condition

f** (s) =1 (2.3 .4)



By taking factorial generating functions, the extended, set

of equations becomes

11-

(2.3.s)r* þ) = J;t " #r* þi pt 
) exp{2 (r-e "t l } ]an 

ttl

Proof of equation (2.3.5)

The factorial generatÍng function, f* (z) of f * (s) is given by
n

f.* (zl. =

o

+

I
n

æ

I
=o

co

i
-o

n

J-;" ,tïtr(1-e-t't )n+r- 
j; jrt åu,.,r. *(s) rrom

e 't (t-e " )-"*p (z(L-e pt 
) )ar(t)

) (r-e rt ,r; 
j ¡,t

(2.3.3)
n

- f o*,=, j;

æ

T
=1 t[' 1

s r+j
+ f. * (s)

t )
f

¿ ; t ut 
[t " (r-" ut 

¡ "*p{r 
(r-e ¡'t ) }dr (t)

+ I, Ïit ; t)t"' j - 'rt 'ut 
fl; ""*n{ zl-e u' 

) }ar (t)

J-; " åf t. (,"' "')e*p{z (r-. P' I t 
]ar 

ttl

By substituting k(z) : f*þ)e equation (2.3.5) can be rewrittenz
,

as

fk(z) =
s

which on expanding

e ,# * r)k(ze ut )ar(t) (2 .3 .6)



æ

I
=on

n

L2.

(2.3 .7 )

(2.3.8)

(2.3.e)

(2. 3.10)

by (2. 3. I0)

k(z)

grves

k(z) (

Equating coefficients of
n

z
n! gives

k (s)
n

i,."*i t"l 
"n 

Jnttt 
" 

,, îårttle n!
n=0

r-0 (s+j-Iu)
0 (s+ju)

(kr(s)dt¡'t * k,*, (s)e (n+1)¡tt)dF(t)

dF(t), equation (2.3.7) can be rewritten as

k (s)=k(s)
n+l n

1-ó (s+nu)

S (s+n+1¡r)

["
st

(þ
Fn
lz+

n=O

f
st

Since ó(s)
-st

e

n

Since k(z) = e't ¡* (z)

k, (s) = ko (s)

f *(s)
n

1T

j =l

o

n

I n )k (s)
t f

f

= ko(s) i ,l, I *g#Ètr=O j =t

r** æ

I
=o

I *t"l
d.z

n

n*, (") 
'Frpt

æ

I
=o

n
z

n
9 t(r. ut 

)
d.z

k n!



But the physical boundary condition (2.3.4) gives

I-0 (s+j-ru)
Q (s+iu)

1-0 (s+j-Iu)
0 (s+iu)

13

(2.3.11)

(2.3.L2)

(2.3.13)

(2.3.14)

f**(s) = I = ko(s)

ko (s)

N

i
r =O

Í
1T

=t
)

N

t

Thus t * (s) can be divided by f** (s) to give

n

i
=o

n
î

f

1f

=1f

f *(s)
n

f,t * (s)
f"* (s )

k (s)
1

o 
(s)

N

Ik
n
t

1-Ô (s+j-ru)
0 (s+iu)

k(o)-ô
n 0n

0f

The ko(s) cancel enabling it to be given any value w.1-o-9. by

expressing f,r*(s) by equation (2.3.L2). !Ùe take ko (s) = I in

the expression for k (s) hencer-

¡
'tÍ

=l

I

(
={ t

r>L

r=0

One property of k (s) useful for later work is
f

Proof of (2.3 .L4)

!{hen s = 0, fn * (0) =

f* (z) and k(z) become

(t) - I and the corresponding functions[-ut
Jo n

æ

I
=o

n

fx (z) f" * (0) z
n!

z
=e

k@) = '' f* (r) I

n

However we have defined ko(s) = I for all s,



ko(P) = I

I4

But k (zl = T
n=O

k" (s)z_
n!

n

n

thus

ko (o)

k (0)

+

-I
I
I

@

I
=1n

0 if nlo

I if n=O

By setting n = N - I in equation (2.3.12)

(s)

f*- , I (s) (2.3. rs)

G(t), the distribution function of the time separating two

consecutive epochs at which an arriving caII finds all N trunks

occupied, satisfies,

c (r) (2. 3. 16)

EquatÍon (2.3.16) is the same as equation (2.3-1) with n = N - 1'

.Ihis result is reasonable physically " After the arrival of one more

call, the fuII set of channefs and that with (N-I) calls become

indistinguishable (except for the overflowing call).

Thus the Laplace-stieltjestransform, 'ü"(s) of the overflow

stream c, satisfies equation (2.3.15) ' giving

N-1
r )k (s)

f

N.
(N-

t

N

I tNlt (s)
f

=o

rf l I tr-.'" )*' 
j ' j ¡¡Y r, (t-v) dr (v)

I Jo

II
r =O

k

I

N

¡o

N.

i
=o

(

f
rl;no {s )

N

t
(s)

N

T
=0

k

where k (s) .is defined by equation (2.3.1-3) -

(2.3.r7)



Takács [¡CJ obtained the fotlowing expression for ü*{s¡,

N
) r. (s)î 1

ú* {s) N+l N+Iir r ) {, (s)
I

r =O

t-0 (s+j-lu) r>1

N

I
=0r

15.

(2.3.r8)

(2. 3. 19 )

where

t

r
1T

=l

t_

Ó (s+j-rP¡

,

9" (s) J
ì

r=0

2.3.I Overflow Stream Distribution Resulting from a Negative

Exponential Input Stream

If F(t) = f -e

Substituting for 0 (s)

Í. (s)
f

where a=I
u

, then 0 (s) = l-À+s

in the expressÍon (2.3.19) for 9"

- Àr

A
t I (s+r

(s)

À '' (-t)t (-tr

, tÞJ-

(s), gives

(2.3. r, r)

{
I r=0,

rf we assume U = I, then .f, (s) can be rewritten as

1,, C=l = {

)r! , r Þ I

, f =0t

substitutinq this expression (2 . 3 . 1. 1) for .t_ (s ) into equation

( 2.3. 18 ) for ü* {s ) , qives

tllr'(-u'tllrr
N

¡f o

N+l

I
ú* {s¡

r =O

,*lt,r ' (-t)' tllrr



I x real

16.

(2.3 .L.2)

(2.3.r.3)

(2.3.r.7)

where

lrl,
C*(-s;tr) is the Charlier Polynomial, s e Bateman manuscript

section 10.25, defined bY

C* (x; À)

N

I tll t-rl' rll'rr '
I o

with generating function g(x,z:ì,¡ satisfying

æ

g (x, z;).) I c*{"tÀ)fu
N

N=0

z=()

c¡ (x;l) = ]

cr(x;À) = f - x
T

, for x rear and l"l < r-
(2.3.r.4)

(2.3.1.5)

(2. 3. r. 6)

(r-l).

C2 (x; À)

Since C*(x;À), x positive has N distinct real roots e(O,-),

see Szägo [:S], Theorem 3.3.I, page 44, the ratio of C*(x;À)

to C"*, (x;À) can be expressed by (N+I) partial fractions. If

g**r,rrtrr*t,2,..-rE**l,N+l are the (N+r) real, positive zeros of

c**, (x; À) then

Hence,

Cro (x; À )

c**, (x;À) =

N+l g

I (*-ãu*r,, )
E >0-N+l,r (2. 3.1. 8),

r=l

ß

c"(Ç*r,.tÀ)
= t"*r t (6**r, . ;tr)r

and

(2 . 3. 1.9)



i7

Equation (2.3.L.2') can be rewritten as

N+t

Iü* {s¡
¡=l

(-t-ä.,*r, , )

ß,

where E > O for aII N and r and ß, satisfies equation_N+1, ¡

(,2.3.1.9).

If the inter overflow stïeam has distribution and density functions

GN(t), 9*(t) respectively, then invertinq equation (2.3.I.10) gives

N+l

T
¡=l

r=l

ß,

"*E**r, ,
(2.3. r. r0)

(2.3.r.11)

(2.3.1.r_3)

N+l Ë

9N (t) i N+1, ¡
t

eap f

But
JT,-

(t)dt - Lt :. I
N+1

r =l

-&
=1

-opr

E'N+l,r

or eguivalently

*it c"(E**,,.,À) _ :_¿_= _ f (2.3.L.r2)L î -r77-------i) E =-r
=l -N+l t9N+1,, "" ÞN+r,,

Equation (2.3.1.12) is a new relationship connecting the zeros of

the extended Charl-ier polynomials. The distribution function GN(t)

corresponding to (2.3.1.II), is

N+l

¡=l

N{. l, r
t

GN(t) = I - I e

whl.ch agrees with equation (33.I) of Khinchine [18]

gives explicit expressions for his constants .N,

zeros of Charlier polynomials, i.e.

p. (94), but

in terms of the



-ß,
\, = 

ç; 
(2'3'r'14)

where ß, and {E**r,, } satisfy equatíons (2.3.1.10) and (2.3.19)

respectively. In telephony, a convex combination of negative

exponentÍal distributions as in equation (2.3.1.13) is known as a

hyper exponentíal distribution.

Equation (2.3.1.13) can be rewritten as

N+l -g -t__ t
cN(r) = i tr-- [t - e'N+r,r ] (2.3.1.15)

¡=l 'N+l,r

Equivalently, PaIm's function ó" {t¡, the complementary distribution

of cN (t) , satisfies
N+l _ß -t**r,, t

ô-(r) = I =.--I-" (2.3.I.16)'N ,=", I,{*r,,

To demonstrate this methodology for determining the GN (t)

we consider the simple case when N = I.

2 -q -Ë t
cr(r)= I +[r-e'" f (2.3.1-17)

i=1 '2rt

18.

(2.3 .1. 18 )

where {Er,, } are the zeros of

and cr(

by equation (2.3.1.10).

Now the zeros er, r, and

8", ,

C, (x; À) defined by equation (2 -3.L-7)

er,,)
crt ( Er,,)Ê 1

E satisfv-2r 2

2À+r - laL+t
2

E-2, 2

zÀ+t + /ü,+L
2

c2, (82
/sX+t

x2;À)I

/a^.+t=-
^¿

giving

crt ( t
2

;À)

(2.3.1.re)



Hence

and

_^+Ez
2

rm__+-22

8,,,8, t2

19.

(2.3 .1 . 20 )

12.3 .1 . 21 )

(2.3.r.22)

+(r
-ßr

E,, , E,, ,

srnce
r'41\+I 2

I
=--l-2

-ßz -(r - \ut
E;- E-2, 2

srnce

2^+r - /+\,+t
2

zÀ+t + À+t

E","8r,, = )t2

ñL

Thus

This equation (2.3.I.21) for
expression for Palm's ór (t)

cr (t) = ,i . h) [1 - expl

+ ri - #Ël [1 - exP[

l

l2

Gr (t) is equivalent to the following
given on page 95 of Khintchine [ 18] ,

0, {t¡ = È. ñ#)exp[
2À+r - /4\+r

2

z).+l + /4^+L.TI.+ tj - ;ft1J ""n t 2
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Kuczura I t:1 , approximates the overflow distribution from any

negative exp, input stream by an interrupted Poisson Process, which

is a Process whÍch is alternaÈely turned on for an exponentially

distributed tíme and then turned off for another (independent)

exponentially distributed time. If the interrupted Poisson Process

approximates the overflow stream, then the interevent time distribution,

A(t), between successive overflow ínstants (see Kuczura [13], page 444,

equation 16), satisfies

A(t) = kr[1 - e I + k2[t
-¡

-e
-r 2

where

(2.3.L.23)

(2.3.L.24)rl = åt^ + û) + v + ,/(),+r¡+v)2 - 4)'url

t, = *.[À + r¡ +- v - ,/(À+r¡+v) 2 - a),t¡J (2.3.L.2s)

kr = À-r,
Tr-r 2

(2 .3 .L.26)

kz=1-kr (2.3.r,27]¿

I
T = mean interarrival time of the inpuÈ stream Ft

I = *".r on time of the random swit-ch
v

I -- .i = mean off time of the random switch.
(¡

and U is assumed to be unity.

Note that the forrn of Kuczura's A(t), is identical to equation

(2,3.1.17), which gives the interoverflow distribution from a single

primary trunk. The fol-Iowing relationships hold between the various

parameters if A(t) is equated with Gr (t) t



rl =

that is
Equatìon (2.3.L.26) for

as follohrs

kI = Ft2,2

Equations (2.3.L.24) and L2.3.1.19) are identical when

(2.3.L.29)

o = Àr v - 1 , (2.3.1.30)

tt = 82,2, 12 = Er,r'
k1 can be rewritten using equation (2.3.I.28)

\-E .t

e",, ì Tz=Er,,

-32

2L.

(2.3.1.28)

(2.4.L)

(2.4.2)

. -ßr. k^| .'z -Ç",,

a_r
'2,2 '2,1

ßz
Er,"

k¡

by (2.3.I. 20)

which checks with the expression for k¡ in (2.3.I.29). Hence the

overflow stream from an individual trunk can be considered to be an

interrupted Poisson Process with a unit meanton timet of the random

switch and a mean'off time'of the random swítch being the same as

the mean interarrival time of the input stream.

2.4 EquivaÌence of Formulae for the Overflow Stream, G

Eguations (2.3.I7) and (2.3.18) are equivalent if

I t** [ó(s)] '
N+1

r =0

I N

i N
T) 9' (s)

Ì k (s)
r

0r

Proof of identity (2.4.I)

Step I.
D"*, (") - DN(s)

N

= I rNll¡
r =0

1-0 (s)
0(s)

where o*(s) (s)

DN (s+u)

(2.4.3)



Proof of Step 1.

Proof of Q.4.6\

&. (s+p¡ =

.Q, Cs+p) =
l ô Lsljy)
0 (s+iP¡

= ,-$-få} o, *, 1')

I

1T

=1t

N

I tNl.Q, (s)
f

r =O

22,

{2.4.4)

{2.4.s)

(2,4.6)

¡=0

N+t

lr N
r-1 ) 9' (s)

f
¡ =l

N

I
¡ =O

N
r )( L

I
(s)

I+

by (2.4.4')

l-Q (s)
Ó (s) D* (s+p)

Step 2
k, (s) = ##,Q, (s)

Proof of (2.4.5) follows from definitions of k (s) and Í,- (s).
rf

sqe.q_3

N

I tNl l, (s+1.¡¡
f

=0I

#t r, ("+p¡ = f¡=9 - r (s)

0 (s) 1-Ô (s+rU)
r-0 (s) 0 (s+rP¡

t-0 (s+ju)
0 (s+iP¡

r- I
1T

j =o

= --0-Gl- 
=Jf=liu) 

r (s)
l-Q (s ) Q (s+r¡t¡ r

Il (s)
ó (s+rU)ä*,- r, t=+p¡ = -[,f"l



k (s)
0 (s)

Multiplying equation (2.4.6) through by (

to N gives

23.

o (s) by (2-4.s)

T ) and summing from r=0

k (s) or* (s) (2.4.7)

(2 - 4.8)

f

N

I
DN (s+U)

ó(s)'r

1D**, (=) DN (s)
0 (s) k (s) DN (s) by (2.4.2)

1-0 (s)
0 (s)

N

I
=o

N

N

r

N

i
=o

r r
r

I N k ( s ) , proving (2 .4 .I) .D**, (= ) 0(s)'f
r f

A consequence of equation (2.4.I) with s=l-l is

N+t
N+T
r

-tt0 (u) l
N

N

T
-o

)

r k (u)
r =0

This equation (2.4.81 can be proved using congestion probabilities

as will be demonstrated in Chapter 4.

2.5 Properties of the Orr.tflot Stream

In this section, we wíll prove properties of the overflow stream

and comment on their relevance to further results, proved in subsequent

chapters.

Property I.
N,t

lr ) [, (u)
o

N

I
f

¡

0' (o)

0 (ul lr N-I k (u)ü*' {o) (2. s.1)r 1
r =O

Proof of (2.5.1)

Differentiatingi equation (2.3.L7) and putting s=0 gives

N-I N N. I N

lt *-t)* ,(o) I t*lr. (o)- I (
ll:l"rr- r=0 r=O

lrN-1
r )k (0) N)k '(o)

t
N

T
-o

N)k (o)12
T

ú*' {o)
r =O

t

r
r =O

t f



but by eguation (2.3.L4), k (O) = ôro

V*,{o) = \t tNrrlx,', tol

24.

(2 . s.2)

1-0 ( j-lu)
0 (iu)

(2.s.3)

N

T tr
N)k '(0)

¡ =O

Differentíating equation (2.3.13) and putting s=0 gives

Í o

.'. k- ' (0) = ko

f

'(0) n
j =r

1-0 (0+j -Iu)
0 (iu)

I- (s I- (s+ )1.. I- s*r-1
ó (s+P¡ (s+zp¡ ...0(s+r1.t¡

+ ko (o)*=1,i,,-$€ïFr]

].

--o

=0

: a l-r-Or=tl ', r-OtFrut .. a f r-0(s+u) I r-Orol i= dsloG+uil=o;-1'z-ltfit * æ'¡41"*^, J,=o 0(Ð ,=,

+ terms of form

Since Q(Ol = 1,

ü*'{o)=- 0 lr k
0 (ul

k '(o) = -q:(9) ;I ' A(U) ¡=2

= -fi#\'r (u)

X

Substituting equation (2.5.3) into (2.5-2) gives

1

I

, (u) + ko'(o) Ï rllx,-, tul - ko'(o) 
]r=l

1N
T 1-

=1

. rN-lr

-.-Q'(o)l I I

0 (ul L, =', I
N

L

N-l

lr N-I

t)r 
]x. - , 

(u) - kN- , (u) 
]

0' (o)
0 (u)

r =0
t )k (u)
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Using equation (2.4.8) gives tafácsJ [:e1 alternate representation,

for V*' {o) .,

ü"'{o) = 0t (0) (2. s.4)

A consequence of equation (2.5.1) is the fo-llowing expression for the

weakness, f,o, of the overflow stream Gl

N. I

N

I rNl f, (u)
f

r =O

r
N

-:to I )\ {u)
0 (u)

(N-Ir¡ =O

(2.s.s)

(2.5.6)

(2.5 .7 )

where f* and fo are defined by equations (2.2.IO) ênd (2,2,3)

respectively.

Alternately the weakness can be expressed as

f. =fNO
N ôx, (U) using equation (2.4.8).r

N

I
=o

f
f

The intensity, Ir¡, of the overflow stream satisfies

I =IÍN O-
(N)¿ (u)l-r
l1

N

I
=oI

since f,o and

Property 2.

I
o

are the recíprocals of f* and fo respectively.

The nth divided difference of the overflow streams' weakness,

f (N,N+1rN+2r... rN+n) satisfies

f(NrN+rrN+2r...rN+n) Eo-
n!

N
t" (u) (2. s.8)

t n+r

where An (2. s.e)

N

I
=0r

f (N, N+I I N+2 , . . . , N+n) -"! f
N

and A is the forward difference operator defined in Appendíx 1.



Proof of equation (2.5.8)

Equation (2.5.8) is proved if

n
A f

N

Proof of (2.5.10) fol-l-ows by Mathematical Induction.

when D=Ir Af* : f**, - fN

26.

(2. s. r0)

rN* I

= to 
L, =Io

N+l

(N) ¿ (u)
T n +r

N

-f t
OL

r =O

o

N

T
N+1

) 9" (u)
I

I
J

N t (u) from (2.5.6)
t r r

1

-f IoL

_c
-I

(
o

( N-)¿ (u)
r-I ¡

N L (u)
t r *1

r=l

N

T
r =0

Assume N

I
=o

Ii,

L (u)¡'t - fNO
N (2. s.11)t s+r

I

d*ttr=dt**r-dt*

_E_L
o

N+I
r *, (u)!.

o

N

T
I

rlt t"., rul 
]

-f N
L (u)

o r s +r +l

thus proving equatíon (2.5.10) by Mathematíca1 Induction-

Property 2 of the overflor+ stream is basic to the derivation of

explicit formulae for the overflow traffic moments given in

Chapter 5.

An alternate expression for An t* is

N

i
=or

o

N

Ì
An f" = fo .Q,n (u)

f,f

(") f, (n+]-u)
fr

(2.s.L2\



Proof of (2.5.12\ follows if

r-Ô (jul
0(ju)

27.

(2. s. 13 )

(2.s.L4)

(2.s.1s)

1,rr*, (uI = l,r, (u) &, tnEu)

Now
Ln+¡

Proof of (2.5.L4I

Step I. kr (s+U) =

Since \ (s+¡i¡ :

v*(s+p¡ = uN(s)l' - Ë][' Ç-]

n+l
(u)= fi

j =t

1-0 (iu)
0 (jul

= &r, (u) 1-0 (n+jU)

Q (n+ju)

= [,, (u) l, (n+ru) , proving (2.5.13) .

Property 3.

The taplace-Stieltjes transform of the overflow stream satisfies

the following recurrence relation,

I

ô ("+u)
1-Ô (sI k¡ +l

1-0 (s+iu)

0 (s+j+rU)

r +1

TI

j =t

I

fi
=l

I

IT

=l

ô (s+u)
r-0 (s)

1-Ö (s+j-lu)
0 (s+i¡¡¡

thus províng eouation (2.5.15).



!
¡

I

I
I

I'I

I

Step 2.

Proof of (2.5.16)

-ü¡¡ 
(s)

I-rp* (s)

N-t

I )k (s)
f

N. I

,lo 
t";t'\ *, (=)

(N-
T

I

o

N.

,I

using (2.3.L7)

28.

(2. s. 16)

I( )\ (s)N-1
r¡ =O

N

I
r =O

N.

I
¡ =0

N-
t

I
N

(r
t) u (s)

I

*it 
,"-t,o (s)

I
r =O

tN-llr (s)
f-l- r

N

I
N.

,¡

I
I N-I

( )r (s)
T I

0

} r";tlk, *r (s)
r =O

,

thus proving equation (2.5.16).

Now N-r
N)k (s)

r t )k +1 
(s)I(N-l

r
N

I
=0

(

ûN (sl
1-Û* (")

r =0 r
N-r

f=O

N

IrN-1
)k, *, (s) i (X)k (s)r

f o

N

T tllx *, t=l

(N-I
t

r =O= ü,o (s)
N-1

I )k *, (s)
¡ =0

N

r =O

I tNlx (s+u)
r

= VN (s) by (2.s.Is)

\t ,*-t,o (s+u)
I

¡ =O

= ü* {s) [rf,o (s+y¡ 1-t

Rearranging equatíon (2.5.17), proves (2.5.L4J '

(2.s.L7)
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Equation (2.5.I4) is a rearrangement of the recurrence relation

established by takács 1371, equation (8) , page 136,

rl* {s) (2.s.r8)

However it is the form given in equation (2.5.14) which is necessary

to prove the factorial moment theorem for overflow traffic, given

in Chapter 5.

Property 4.

The probability of blocking or the congestíon probability n* ,

on the primary group of N trunks, satisfies equation (2.2.13), that

is,
(2 . s.Le)

Property 5.

The ratío of f* to f**, is a measure of ü*ts) at s=U'

EIN = ü* (u) (2.s.20)

EIO
f

N
1Í

N

f N+l

Proof of (2.5.20)

by equation (2.5.6)f
N+t

N+l
I (**1) g (u)

f
¡ =O

= vN (u) by equation (2.3.18)

The second order moments of the overflow traffic will t¡e shown in

Chapters 3 and 4 to depend on ü"(Ul , hence equation Q.5.2O\ enables

such moments to be expressed in terms of the weakness of the overffow

stream from N and N+I trunks. Equation (2.5.20) is basis of

clN

N

I rNl [ (u)
I

r =O
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the formulatÌon, given in Chapter 7, of. the Equivalent Non Random

Method for dimensioning overflow systems. An alternate expression

for tf* (U) , is

(2.5.2r)

since the intensity of the stream is the reciprocal of its weakness'

Property 6.

ú*(u) = +t]-
N

r!*(zu) = f;;ffi
Proof of (2.5.22\

by (2.5.L4)

by (2.s.L7)

(2 . s .221

(2.5.23)

rf* (zu) = úN (u) [' - dur]lt
II

-,

ú**, (u) I

f;['-+i]l' ffil '

-l

- fN - fn*t
EEr -ÀN+ I N+2

thus provì-ng (2.5.22)

A generalization of (.2.5.22)-, vLz.

ü* (n+rP¡ =

is a consequence of the factorial moment theorem of overflow traffic

to be proved in chapter 5. Ho\^¡ever eguation (2.5.23) can be proved

directly using equations (2.5-L2) and (2'5'13) '
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Proof of (2 .5 .2.3) .

Since

rl;* (n+IU)
N+l

r =O

N+l

I
¡ =O

N

I

Ir ) 1,. (n+fp¡
T

N
L (u)

t n+f

by (2.3.18) with s=n*IÞ

by (2.s.13)

by (2.s.L2)

N

i
=o

N
( L (n+1I)r f

r

N+1

o

(N
+I

9" (u)
T n+¡

^43
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CHAPTER IIÏ

OFFERED TR.AFF IC DISTRIBUTIONS

Introduction

Imbedded Markov Chain occupancy Distribution

Continuous Time Occupancy Distribution

Properties of the Offered Traffic Moments

Application of Traffic Formulae for specified Input streams.
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CH]\PTER IfT

3. t fntroduction

suppose the arrival instants of calls at an infinite group

of trunks form a renewal stream, with an interevent time distribution

G(t) and corresponding Laplace-stieltjes transform tf.t(s). The

steady state occupancy distribution, '[f , of the calls at arrival

instants is called. the imbedded Markov Chain distribution of the

offered traffic. The steady state continuous time occupancy

distribution, Q, is known as the offered traffic distribution.

The mean, variance and other central moments of the offered traffic

are determined from the q distribution. The call congestion'

discussed in the previous chapter, depends on the imbedded Markov

Chain occupancy distribution for a finite group.

Expressions for the binomial moments and the occupancy

probabilities of both the 1T and q offered traffic distributions

will be derived using the approach of Pearce and Potter 125). The

technique consists of the following four stages.

1. Determine (using the fundamental ergodic theorem) a system

of equations satisfied by the relevant occupancy distributions;

2. obtain an integraÌ equation satisfied by the relevant

occupancy generating functions;

3. obtain binomial moments, using successive differentiation

of the relevant generating functions;

4. recover (if necessary) the occupancy probabilities.

The same rnethodology is used in Lhe next chapter when analysing the

carried traffic's imbedded Markov Chain and contínuous time

distributions.
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The líterature discussing the occupancy distributions for the

G/M/æ queueing system is diverse, see Takács' [36], Palm lZZl and

Syski [¡¿]. However, to demonstrate the simplicity of the above

fore mentioned technique and to obtain suitable, convenient forms

for the offered traffic moments, a complete analysis of this' G/M/æ

system will be given.

The final section of this chapter contains proofs and comments

on key resul-ts related to the offered traffic and the inpuÈ stream.

For example, the intuitive result that the mean offered traffic is

the reciprocal- of the weakness of the input stream is verified and

the existence of an inverse relation between the tr" and the

factorial traffic moments is established. Such results are fundamental

to the factorial overflow traffic theorem of Chapter 5. Expressions

for statistical" quantities such as the peakedness and coefficient of

variation of the offered traffic are derived for any renewaf input

stream.

Simplified formulae are obtained for the fotlowing specific input

distributions; (i) Erlang distribution of order k' (ii¡ deterministic

distribution anc (iii) negative exponential- distribution-

3.2 Imbedded Markov Chain Occupancy Distribution

Let N(t) be the nuriber of calls in progress at time t.

For the renewal input stream F, N(t) is not a Markov Process unl-ess

the arrivals form a Poisson stream, that is F(t) is negative

exponential. As in the previous chapter, suppose arrivals occur at

time instants, T* , k=l ,2,. .. and N(Tk- 
o ) is known, then until the

next call arrives at Tk*, the number of calls in progress is a

simple death process with death rate U per trunk. No additionaf

knowledge of N(t) for t . Tn is of prognostic relevance to N(t)

for t>T o)k
when n(Tr_ o ) is known. Thus the ¡¡(Tr form a
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Markov chain imbedded in the non Markov Process N(t). The 1T

occupancy dlstribution is the steady state distribution of the

N(Tk-o) whereas the q occupancy dÍstribution is the steady state

distribution of the N(t).

Let r1. be the steady sÈate probabílity that an arriving
t

customer finds j busy trunks, Èhus

T.
t = Iim p(N(

k+æ
-*-o) = j) (3.2.L)

Let çt be the steady state probabiJ-ity that at time t. j
,

trunks are busy, thus

1 = Iim p(N(t) = j) (3 .2 -2)
t+@

Step 1. Derivation of IT system of eguations

An arriving call could find j trunks busy, if the previous

caII had found m trunks busy and m-i-1 ca]-Is terminate during

this interarrival time, when m=j-l ,i,.. - , thus

(tn
+l

) (r-e P* 
)

rìr.j+l
-JPx

e dG(x),

j=r,2r---

(3.2. 3)
nì l

Step 2. Generating function t¡(z)

fTT

@

=ï L
rtt=j - I

Îf.
J

tr (z) (3 .2 .4)

w (z) = ztt (z) .

then equation (3.2.3) becomes

Æ

I r*111
'uJ o )

Jîtr."-,-; 
u* ¡dc{*)

where

Proof:

Let r (z)

ii
=l nr=j -

tt(z) ='lTo * 'lÍ
-tlLx

e (l-e ¡'*)**t' 
jrjae(*) 

, )=r¡2,---
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=no*i
nFO

- l,r* m*1
(1-e +ze dG (x)

+ze u* 
) n (t-. F* +ze'P* ) ac (x)

(r-e' u* Ir, (l-e' r'x 
) dc (x) .

æ

æ P m+l
In I (r-"u.) dc(x)

,rËo tJ of;
xt"

fT
m

= IT9 *
-æ

I tr-" u*
Jo

oo

But T (I) I

0

f = fig + I

-æI 

- 

- rx
I w (t+z-Le -'- ) dc (x) .
J0

(1-e' "* )n (1-e' P* 
¡ ae 1x)

r (z)

0

ræ
I tr- "' 

u* +r"''* ) n (r-e' þ* +ze'P* ) ac (x) (3 - 2 - 5)
Jo

Step 3.

where

ßn

h(u)=
n

= n( ") (t)
-n! =þ (U)

nÍ (3 .2 .6)

(3 .2.7 )

'tÍ
j =t

n

I

n>I

{
L

,D=0

Proof of (3-2.6)

Taking the ,rth derivative of equation (3.2.5) and applying

l,eibnitz rule gives,

,r( ") (t-" P* +"å t'* )n( 
n) (rl = J-tr-"- '* 

*rà u*\,
=1 l. =1

dG (x)



. Ji'l )" 
u*n(n'r) tr-. r*+råu*)

]"
dc (x)
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(3.2.8)

(3 .2.e)

(3.2.10)

( 3. 2. rr)

firt" (r). 'u'dG(x) . lft 
nrrxn(n'r)

=l

tl (nu)
r-iþ ( np )

(I) dc (x)

'fi

( n)
TÏ (I) = fi(r)n! 'tr

thus proving equation (3.2.6).

Step 4.

(") (t) = ,, n("'t) (t)

j =t

n
V(ju)

r-U ( ju)

1l
k i rf,t t-rl"'ut,, {u)

n=k -

Proof of (3.2.10).

The binomial moments g
nn

of the 'tt distribution:

7t
ßn

f

hence equation (3.2.10) is the inverse of equation (3.2.II) '

3.3 Continuous Time Occupancy Distribution

The q distribution is accessible from the r distribution.

Step I.

co

)n Ii[ ,'i-,(r-e ¡'* )-. j u*dxdG(t), j > L (3.3.1)qj =(
rn=o j - l+:n

Proof of equation (3.3.1)

Consider an arbitrary instant in steady state. Let T be

the length of the interarrival interval in which this point lies.

The probability that this given instant falls in an interval of
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prescribed length is proportional both to the frequency of intervals

of that length and to the length itself, that is

p(t<T<t+dt) =KtdG(tI

where dc(t) = prob(t < length of arbitrary selected interval-

< t+dt)

and K is an arbitrarY constant.

But
f-lp(t<T<t+dt)=1
Js

I fi dc (r)K

-lK=M

where M is the mean of G(t).

No\¡/ p(j trunks busy at an arbitrary instant,/instant lies in an

interval of length t)
Å

I n (j trunks busy at time x after beginning of
Jo

inten'al) dx

I = p(j trunks busy at arbitrary instant in steady state)

l;" (j trunks busy at arbitrary instanÈ/interval has length

T = t) p(t < T < t+dt)

(3.3.2)

(3.3.3)

I
t

= .iiii," (j

= '.[[" 
(j

trunks busy at time x after beginning of

intervaf) dx t dG(t)

trunks busy at time x after beginning of

interval) dx dG (t)

T TT=l(
nì=O j - l+:n fifr,,fl, (r-e /'*)n'. j'*dxdc(r), i > L .



Step 2.

-I 
:

e@) = I + f-r J (r-r)"h,,-r.(u)/n
n=l

where f is the weakness of the input stream G.

Proof of (3.3.4)

using equation (3.3.1),

39.

(3. 3.4)

(3.3. s)

(3.3. 6)

Let w(I+y) =

æ

I
n=O '"h

For n )- L, 1r¡

r-(
J oacttlJow{r+z-re "* )d*

'(') {t*Y) ]r=" = $ tt-*''n t'*'' 
]r=o

)e 
j p* (1-e ,,x )^ri d*

k;-t-nt l- 'Ë*(I -e )dx

where k=j_I+m

by (3.2.8)

æ o

q(z)= I i "l;." 
(r) i:1T

j=O nro j-l+m

j+m
m

"Í;u" 
(r) j: i i ,,* tklrr þ,i þ* 

)

rn=O k=lr¡ I

tn

=(

n

,r(") (t) + nn(n't) (t) by Leibnitz Theorem.

and vJ o=I.

Substituting for w, equation (3.3.5) becomes

s,þ) = *fiu" (t) ji
oo

I t$t
- nÉx

e dx
n

n=0

i ,,,
n=l

n - nut(z-I) (1-e ' 
)

"! nU
I
J

=t(Íio",., It+
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r
.lo

=I*K

-K=I+-
u

( z-1) "
n!

n(n't) (t)
u

æ

I
=l

(z-L)" r-ú (nu)=( rdc(r) + K w
n n! nu

by equation (3.3.6)

(3.3.7)

n

n

æ

T
=1

æ

I
=l

n n- I
(U) by equation (3.2.6)

But f -r = x/V by equation (2.2.4), thus proving (3.3-4) -

n

Step 3.

Proof of (3.3.7)

Since S,k)

equation (3.3.7)

Step 4.

Bn

h"- r (Ìl)
nfq

co

I
=o

J ") (l)
n!

(z-I)" and ctk) satisfies (3.3.4),
n

is obtained by equating coefficients of (z-L)"

(3. 3.8)

9o=1-f lt. ' (u) (3.3. e)
n

Equations (3.3.8) and (3.3.9) fo1low from the definition of the

binonial moments ßnq

3.4 Properties of the offered Traffic Moments

Property 1. The factorial moments of the IT and q distributions

satisfy

s = f-r i (l) (-r)n'k hn' r (U)
-kn

n=k

-I
oo

T
=ln

o( n' , )r,
f =f O rnq

¡0,I nz
1-ct

nq

= n( ") (t)

= q(n) (t)

where

n2I ( 3.4. r)
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Proof of (3.4.1)

thus proving (3.4.1).

Property 2.

Proof of (3.4.3)

Since q( 
n) (r)

h (U) by equation (3.3.7)
nf n- I

(n)q (1) n

(n-1) !

f h (u)
n- I

- r('- 
t) (r)

r.
by eguation (3.2.6) (3.4.2\

r %o l-rll + n II c[--- |, n*le J
= rf.r (nU)

hn. 1

(u) by (3. 3.7 ) ,

from (3.2.7)

(3. 4. 3)

(3.4 .4)

(3. 4. s)

(n-l) !

f

q( "*t ) (r)
q( ") (r)

th (u)

h I (u)
n,

-n

=n

I' 
Ú (nu)

thus proving (3.4.3).

This property relating rf (ttp¡ with the factorial moments of the

offered trafflc ls basic to the derivation of explicit formulae for

the overflow traffic moments for any rene\^¡al input stream.

Equation (3.4.4) relates the 1T and q factorial moments in

the following way,

(3.4.6)
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whereProperty 3. The mean offered traffic, Nl, is given by oro

,r( 
t ) (t) = h, (U) by equation (3.2.6)

_o-u -!
-l (3.4 .7 )CTlq 1q

Equation (3.4.7) follows from equation (3.3.7) with n=I. rmplicit

in this result is the equivalence of a renewal streams' intensity

and the mean offered traffic produced by this sÈream. this is

intuitively obvious but is important when considering the offered

traffic moments of an overflow renewal stream-

property 4. The variance v of the offered traffic satisfies

-l -t (3.4 . B)V= f lr-f +f*

where f-l is the mean offered traffic and

f* = (orrr) , (3.4.9)

that is, f* is the mean offered traffic for the 1T distribution.

Proof of (3.4.8).

v = q(') (t) * q( t) (t) - [q( 
t) (r) ]' (3.4.10)

= q( 
t) (r) [r-q( 

t) (r) + r( 1) trl ] (3.4.1r)

by equation (3.4.2), for n = 2

thus result follows bY

Since

(3.4.7) and (3.4.9) .

I

from (3.2.1) with rl=I r

then y = ¡t( l-tj +h, ) (3.4 -t2)

or alternatively

v=r-2fffi-rf (3.4. r3)
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Property 5. The peakedness t z¡ and the coefficient of variation,

vù, of the offered traffic satisfy

I] (3.4.14)

f
( 3. 4. Is)$t

VV r-{, (u) 1

The equations (3.4.L4), (3.4.15) follow directly from equation

(3.4.13).

Property 6. The peakedness of the offer:ed traffic is greater than

or equal to à. The minimum value is only achieved for a deterministic

stream of very low weakness. Variation in the weakness of the

renevral stream is equivalent to leaving the interevent times fixed

and varying the parameter U of the holding times, see Pearce lZZl.

A large value of U corresponds to high traffic weaknesses (or

equivalently low intensities), and small values of U correspond to

Iow weaknesses. To prove property 6, we consider z as a function

ofUwithlfixed.

By the mean vafue theorem

_v --t. f
-__=+--M - '1-Ü(u)

r!(U) = 1+ U!;r(o)

for U small- for some g € (0'U).

rewritten as

-lz= (I-tf (u) ) [-prf.'' (o) I

* Ë,1," ct

- +r"(E)l 
-r- ¡-pp' {o) J t

Equation (3.4.L4) can be

-1

[-uü' (o) by (3.4.16)

( 3. 4. 16)

tt

2rf '(o) [ú'(o) "(E)l
(3.4.L7)
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tim z (U)

u-+0

( 3.4.18)

v, then

satisfies

If the input stream G has meanr h, and variance,

the coefficient of variation, ht' of the interevent times

(3.4.Ie)

(3.4.20)

(3.4.2r)

(3 .4 .22)

l-. e =I+w

Therefore equation (3.4.18) becomes

tim z (U)

u+0

1+w
2

a.e

This limiting value of t occurs for a stream with low weakness a¡rd

I¡I=0, that is, a deterministic stream of low weakness.

Kuczura, [ 14 ] p. 1315, in analysing the variabii-ity of a

traffic str.eam uses Jensen's inequality , to show that

for a fixed mean interarrival time, m, a streamts peakedness defined

by equation (3-4.14) attains a minimum when G(t) is the one point

distribution deflned by

t(m
c (r) (3.4-23),

m(t

with rl (ul -f o where fo = mU (3-4.24\.=e

On substituting equation (3.4 .24) for tf (U) into equation (3.4.I4)

for z, he showed that the peakedness for this distribution can vary

from \ (when the intensity = æ, or equivalently the weakness = 0)

limz(U)>L since wÞo
u+0

{'\I



to unity I when the intensity = 0 or equivalently the weakness

= oo).

Property 7. The coefficient of variation, w' is a monotonic

increasing function of

Equation (3.4.15)

u

can be rewritten as

by (3.4.16)

45.

(3.4.25)

(3 .4.26)

(3 .4 .27 )

!{= -uÛ'(o)
1-t! (ul I

uü'(u)
r-ú (ul+ I

J

_ -û' (o) u2ú" (E)- l-U (u) 2 (1-q, (u) )

>0

Hence W is strictly monotone increasing with U. From equation

(3.4.25) it follows as U+0, W+O and as U+æ, Iiù-)co, hence the

coefficient of variation of the offered traffic ranges from 0 to

as the streamts weakness ranges from 0 to oo.

Iication of traffic Formulae for Specified Input Streams.

æ

3.5 App

A k-phase Erlang input stream, characterised by an interarrivaf

dístribution Gnn, satisfies

G__(x) =r--oit 1}+L.Àr*, k integer, Àr)o, (3.5.r)ER' ¡lo l!

(i) Erìang Distribution order k ínput stream.

with a corresponding Laplace-Stieltjes transform rlinn, given by

üu^ { s) (3. s.2)
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This distribution arises quite naturally in the consideration

of input processes. Suppose, that a device distributes requests for

service to two groups of trunks on an alternating basis. Then the

input to each group of trunks is Erlangian with k=2 phases'

The Erlang Distribution is the discrete case of the well

known mathematical gamma distribution'

f (x)

where

The intensity,

reciprocal of

Àd^* (p > o, À > o, x Þ o)

is the

(3.5.3)

(3. s.4)

(3.s.s)

(3.5.6)

The weakness, f, of this stream is given by

f = -Uú;R (0) from (2.2.3)
ER

+uk
À1

=kA
t

A=L
u

or equivalently the mean traffic Muo.

f thusER'

I\4
E

(3.s.7)

If the mean interarrival time of an Erlang distribution order

k is assumed identical to that of a negative exponential stream,

parameter ). then the intensity, of both streams is the same'

Àr
kuR

=4k

M =[ERt.e (3.s.8)
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(3.s.e)

(3.s.r0)

(3.s.11)

using (3.5.8) and (3.5.10)

(3.s.12)

(3. s.14)

a = À,/u

À¡ = kÀand

Now the variance of the traffic produced by the Erlang input

stream satisfies eguatlon (3.4.12) givi.ng

I

-t

t-rJ.rr* (u)'V = llt (-M
ER ER' ER

+

=[ -A+
r_tr+Al- n

r-rr.frr'k

r- rrfot- k

I
t

I

,The peakness and coefficient of variation of the traffic produced

by the Er1ang input stream satisfies equations (3-4.I4), (3.4.15)

respectively, hence

I (3. s.13)z =-A*ER

I
A

w
ER =-I+

The Erlang distribution provides a model for a range of input

processes characterised by complete randomness when k=I and no

randomness when k=æ.

(ii) Negative Exponential input stream .

A negative exponential- stream with parameter À, is an

Erlang distribution of order 1. He¡1ce by letting k=I in equations



(3.3.8) r (-3.5.L2) r (3.5.f3) r and (3.5.14) |

\x =[

V =[EX

'"x= L

M =ADET

F1Vl =[EX

48,

(3. 5. 15 )_

(3, s. r6)

(3.s.17)

(3. s. 18)

(3.s.le)

(3. s.20)

(3. s.2r)

(3 . s.22)

GiiI Deterministic inPut stream.

A deterministic stream with constant interarrival time equal

to mean interarrival time of the negative exponentiat distributiont

parameter Àr corresponds to the limiting case of an Erlang

Distribution of infinite order. Hence by taking the limit as k

tends to,infinity in equations (3.5.8), (3.5.12), (3.5.13) and

(3,5.14)

v =IimA
k+oDBT

^[
I
J

Iz = -A+--DET - -llAI-e

w =-1+ A-l
''DET .IIAr-e

An alternate method for obtaining these expressions for VDET, zDE"t'

wo", is to simplify equations (3.4.13),. (3.4.L4) and (3.4.15) with



and

-1f=A

úorr{s) = e f,

49.

(3. s.23)

(3 . s .24)
s
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CHAPTER TV

CARRIED TRÀFFTC DISTRIBUTIONS

4.L Introduction

To establish notation and certain properties of the carried

traffic of the stream G¡ the techniques used will parallel those

of the previous chapter which corresponds to the limiting case

L=@.

Key relations between the 1T and A binomiaf moments will

be stressed as well as expressions for the time congestion, call

congestion and the first two central moments of the carrÍed

traffic. One significant expression resulting from the analysis

of this chapter is a relation linking the offered traffic moments

with the carried traffic moments. This expression is fundamental

in the derivatìon of explicit formulae for the carried overflow

traffic moments, given in Chapter 5.

The ch4pter concludes with a few comments on the possible

divergence between the continuous time and the imbedded l4arkov

Chain distributions for the traffic on a primary set of trunks.

4. 2 lrnbedded Markov Chain Carried Traffic Distribution

As in section 3.2, define and by eguations (3.2.1)qTI.
J

and (3.2.2 ) where the lbar I

offered the renewal stream

Step l. Derivation of 1T.
J

signifies that the set of trunks being

c is finite of. stze L.

syst-ems of equations.

Analogously to equation (3.2.3) t the equations satisfied by

1T. are
J

the



-æ; ! r*1rr
''rJ0 )

tL.

T
t m=j-l

".|i,ï,d 
i '* (r-d "*

'jYx
e (r-e

- ¡lx
rn+l- j

dc(x)

L-j ac(x) o<j<L

1
e
-tyx (r-e

-px
, 

'n+ 1' j ,j ac (")

T
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(4.2.2)

(4.2.r)

The extra term included in equation (4.2.1) which is not in eguation

(3.2.3) is the expression for the probalrility of an arriving call

finding all L channels occupied, that is the situation when an

overflowing call is produced or when congestion occurs'

Step 2. Generating Function îtù.

+ñ

r (z)

where 1T

equation

Equation

Jî rr*,-r; 
u* 

) ac (*) ;"J-t"-r-le !{ 11a;-6'* )"dc(*)

" 
i" the congestion probability defined in Chapter 2 by

(2.2.6) -

(3.2.3) is the limiting case of equation (4.2'2) when

L-+æ.

Proof of equation (4.2.2)

L\.-'
= ) Tl.z

j =o
1ï

=fio

L+I
j =t

=î
D

f;

(*1
l1T

IL.L

I
j =t

+

;"jlril"- j ** (r-e t" )t'i ¿ dc(x)

fitt "* (r-1)+rln'*1 ac(x) *t"f-["'* (z-r) +l]"aç(*)

+ i" {r-e u* )"1dc (x)I n"tr-" ¡rx 
)nì+l

I Iqr= j - I

+ t1TUq

L.

oNF

o

L.

rìF
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+

but

thus proving (4.2.2) .

Step 3.

fi J-;cr*r-r-- 
u* )dc(*) . t"f (r+ã-re u* )" [].- a+z-tei tsx 

¡ lac(x)

Ii,t-t 
u* 

) dc (x) - ;"J-rr--r--" !* ) (1-e ¡'* ¡"ac {*)

0

-

îrrl=1=îo

ß
fi( ") (r)

n7t n!

= h,, (U) [I - Tl

+

t (u)1, o ( n ( l
(4 -2 -3)

n

¡
L
k h

k
ok

where h, (U) is defined bY ß-2.1) -

Proof of equation (4.2.3)

Differentiation of equation (4-2.2)

Rule, gives

n times, via Leibnitz

i(") (r) = jlt(r+Z-re 'x ¡fr(") (r*;--r. u* ¡+r,ñ("- 
t) (r*r-r" u* ). u*¡ae {*)

1T
L J-t,"-r," ''* ( lt+z-te u*1")(') +ne '* [(r+r-r" u* )"](n- 1) 

ldc(x)

î( n) (r) - n¡.¡x
e

î( n) (r) î("'t) (r) d nr-.*]dG(x)
n! fi n! n-1

IL
'tf L

) d nu* dc (x)In

n( ") (r) -(n- r) (t)
t

L

L
n-I

l
In! I - r!(nU)l = (n-I) !

nt( ú (nu) (4.2 .4)
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Syski I S+ ] p. 258 notes that this recurrence relation v¡as originally

obtained by Cohen. Takács [ 36 ] used an integral equation approach

to derive (4.2.4). Now from equation (4.2.4) |

i(n) (r) _
n!

thus proving (4.2.3) .

Step 4.

V (xul
l-tf (ku)

n
) (-r)

in the same \^Iay as the

Step I.

q distribution was from the

(4 .2. s)

(4.2.6)

distribution

TT distribution

(4. 3. r)

(4-3.2)

n

fi
k=l

(l
n- I-n ILu
k=o

þ*lÐ_
hk (u)

L

I
=k

n- k:
IJfi k

Equation (4.2.6\ is the inversion formula needed to recover

the occupancy proba-bilities from the binomial moments.

4.3 Continuous Tíme Carried Traffic Distribution

rhe a distribution is accessibLe from the TI

ft 1tk
n

L-

f-.",., f, ,Kì
nt4

+rf
L

I m+I
j ). 

j u* (r-e "* )nt*t' 
j 

d*
nr=j-l

{J"(t) Jn 
tlr".i '* (t-" u* )"' 

j 
d*

where K ís defined by (3.3.2).

The analysis used to obtain equation (4.3.1) from (4.2-L) is the

same as that used to obtain (3.3.f) from (3.2.3).

Step 2.

- -tq(z) = I*f - (z-r)" n( ") (rl t-rf (nu)
n n! ú(nU)

L

T
1n



Proof of (4.3.2)

L-r
+ i

rn=j - f

+KIT
L

L.
=ño+K I n-

nFO

+Kl

- t ttx
e (1-e

(1-" u* )Ll ¿*

dx
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,:rx.nì+l-j j -) zdx

(r-e ¡'* )'*t ]d*

q 1Tz
L

i
=l

KïI m+l
jnt0

i, J-u",., [ ,î,d i u* (r-. u* )"- 
i ] a*

r
Jo

dc(r)
tt

I ttr*r-r" ,,x)m+I
Jo

ræ rt

J ou" 
,., 

J o 
[ (r+r-re' t'* I 

t'
L

L-I
=fio*K (r);(r+z-le'u* )¿* - r

rn= O

m+l

(- ÍtI a" t.l I tr+r-r" "* )" (t*r-Ë'* -r) d*
Jo Jo

,æ ,t
-tl-r I acto I tr-" u')
'tJo Jo

fi",.,f'o ,r-. '. ,
rn+ I dxTK

tìì

- K,IT
L

- " orfuc (r) 
fto 

(1-. u* )La*

But q(1) - I

L. I
T K I0

Í:F o

+rñ

thus

9,@) = l(

n
v

,[u.,.,f ,t-t'* )"d*

f-(I acttr | @-L). u* (t+r-t" '* )"d* (4.3.3)
Jo Jo

L

_KII
L

o

L
rL

n=
Let w(I+y) w

n n! as in section 3.3, then



; ={nL
I

;( "' t) (r)
I-tl.r(nU) , 1(n(r,
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(4.3.4)

(4. 3. 5)

, D=0

Substituting for \iI in (4.3.3) , gives

9(z) = (r)

+

I
J l" !,

n
z-j-) d'rr* l(") (r)

0

0

L

I
n

ntl(z-1) d ("*r)&xñ(n) (f)
n!

n!

L
) (z-L)n - n¡¡x

e
n

+
l( ") (r)

(n-I) !

z-L
n -nEx

e

-nu

]u"

by (4.2.4)

- fi" {r-t) d u*
L

I
=0n

= *Jîu",.,L!, l#d"* +P..

l:-'fi
L

n-1
I
Ln

L

T
=1

n" t'lrl r-ú (nu)
9(nu)

fr(") (r
n!

L

n

but

Step 3.

L

s,trl=I+i^¡, (z-L)
n

I

ßn <l

= f't l-1r
L tllr';' (u) 

]

n

k o
i

Proof of (4.3.5)

Differentiation of @.3.2) n times gives

nt")trr = r'[fþtfip-] (4.3 .6)



But fr( 
n) (r)
n!

substituting for

tlr r.';' tu) l
n-I

=h,,(u)[1 -î" I
k=O

1-iþ (nU)
tf,'(nU) ][' -'

n-I

L
k h

k
(u)
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(4.3 .7 \

(4.4.L)

by (4.2.5) , thus on

î( ") (r)
n! in equation (4.3.6) gives

l') trl = (n-r),t tn" tul 
l-

r t (rr-r) tn

L in

k

I

o

(u) 1-TrI
L

L
L
kir r.*' tul 

]n-
k=O

thus proving (4.3.5).

Step 4.

tll t-u"'*EK nq
(4.3.8)

4.4 Properties of the Carried Traffic

Property 1.

The following relationship is satisfied by the binomial moments

of the carried traffic,

L=I
n=k

an

f.n 8"" = [8 ,,- ,,,, - î" trrfrl J

Proof of (4.4.L)

Substituting for

(4.3.6) becomes

oividing by

Property 2.

-( ")il (1) l-if (nU)

ú (nu) using (4.2.4), equation

r ã( ") trl = i('- t) (r) - f" {r,-r) r {
L

n-I
(4.4.2)

n! gives the required result.
-( L)

The time congestion, s" = #II satisfies equation

n=L, that is(4. 3. 5) with
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(4.4 .4)

fi
L

is related to the time

(4.3.6), with n=L, that is

L-7

k=o

However the catl congestion probability

congestion probability 
"" 

by equation

cf

gr_vrng

Lf cr 1r
L

Rewriting equation (4.4.5) gives

- ã(") tr) --t
--= 

I-L!
î( ") (r) r-ü (nu)

L. L! ü (nU)

1-q'' (Lu)
tl.' (LuI

(4.4. s)

(4 .4 .6)

One interpretation of equation (4.4.6) is that the Laplace-Stieltjes

transform of any renewal input stream at s=LU gives a measure of

the rates of the congestion probabilities produced on a set of L

trunks. This approach is used Iater in the thesis.

Property 3

Mean Carried Traffic, M, as given by equation (4'3'7) with

[=Ir thus

(4 .4 .7)

This expression for M could be obtained using equation (2.2.l-3) t

arising from the theory of section (2.2) in the following way.

If 1T- is the congestion probabi.lity of the input stream
L

with weakness f I then the weakness , fL of the overflow stream

resulting from this congestion satisfies (2"2-L3), thus

il-=r+"tT

ú = r 1¡r-fi"J
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L

But the average traffic carried on the L trunks, lvi, is the difference

between the intensity of the input stream and the overflow stream,

that is

f
1Í

f
L

11

Property 4.

Proof of (4.4.9)

But

from (4.4.8), hence

L IIltV = M [t - l,t + tr1 - ;---:-J1_ÎTL

(4.4 .8)

(4.4.e)

using (4.4.2) with n=2.

M
f. Í.

L

1-
= ;[t - r"]

The variance of the carried traffic, V, satisfies

ñ"Ll +ú-¡t2

-( r)q+
a-(qv ) (1) tãl ') trt I '(1)

Irlt" (1)

n( 
t) (r) = hr (u) [1-îl] from (4.2.5) with n=r and

1M
f r-1

L

-Mu = T#- [(I-nr)tr,
ttL

-r-nIL' MM+ 2

which simplifies to give equation (4.4.9).

Equation (4.4.9) is a generalization of Wallstron's [ 40 ]

equation (3.1.35)' þage 208.

These expressions for M, and v as well as those for M and

V given by equations (3.4.7) ancl (3.4.13) are the bas.is of a possible study
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examining the errors introduced when the Kosten System is approximated

by the Brockmeyer System.

Property 5

If R denotes the proportion of lost calls to carried calls
L

on the set of L trunks, that is

R
L

L ,ITI

,_frr,

then the following conditions are satisfied;

(i)

(ii )

(iii)

\ > ht (U) with equality ontY when IFI

{n } is decreasing as L increases t- L-

\*o as L+oo'

(4.4.LO)

(4.4. rr)

(4.4 .L2)

(4.4.L3)

Proof: Putting n:L in equation (4.2.3) gives

L

k=O
rI rflr.';' (u) l' '

L

I tll i,*' tul I
1-T' 0k

"nl
L

LIn ì
LL

k= 1

L -t
)hk- (u)

k

Since the hl are positive, condition

(4.4.74) implies from equation (4.4.9)

carried traf f j-c, that

(4. 4 . l-4)

(4.4.14) holds. This condition

for the variance of the

=þ t (u) l,n- (u)
L1c+- )

u k=2

v > ¡,rtf-¡n] with equality only when L=1. (4 .4. 1s)
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Consider Lr ) Lz t then

]{¿r- = nìt (u)
Lt lILr

ï'

"L'

tf'rn;'tul by (4.4.r4)+- 1
Lr

k

t hìt +

hence (4.4.L5) is proved.

since ü*v and

since L1 > L2

t (u) since L¡ ) Lz ín each

term in the sum

L -+ co , considering equation

(4.4.L2).

> hi' tul + fi .trri'ltror 
tul

(u)

fr

t
Lz

Lz
k

( h
k

k=2

t
Lz i",

M.}M AS

(4.4.9) in the limiting case proves

elationship between Carried Traffic Moments and offered4.5 Ar

Equarion (4.3.6) relating l" ttl to î(") (r) implies that

the ratio of l") ttl to fr(") (r) is independent of L

Traffic Moments.

their individual expressions given by equations (4-2.3)

even though

and (4.3.5),

its value

which by

Ldepend on L. Since this quotient is indePetd,r"l;r;t

can be obtained by letting L -) oo and is g^
ì ,r(n) (t)

equation (3.4.2) equals q(") (t) /fq("*t) (t), thus

( n)q (r) (4.s.1)
l( ") (r) fq('*t ) (r)

This equation (4.5.I) is a key relationship between the carried and

offered traffic moments. ft is fundanental to the derivation of

explicit formufae for carried overflow traffic.

Equation (4.4.2) rerates the nt"' ttl with i("'t) (r) and

, 0(n(L.



the probability of loss , TL, ena-bling equation (4.5.1) to be

expressed in the following ways.

(n)
q (r)
(n+1)

q (r)
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(4.5.2)

(4. s.3)

(4.s .4)

(4.s.5)

(4.s.6)

(4.s.7)

(i)

or equivalently

i( n' t) (r) (n-1) !n

ñ( 
n) (r)

L

(íi)

Equation

(i)

-( n)
q (1) q( ") (r)

rl"*t) (r) + nt'nl(l) (n+1)
q (1)

(4.5.2) can be expressed in terms of

the factorial moments d,, d giving

1
f

0n'r

01 nr+r ) q

cl'nq

(ii) the binomial moments ß g

(n+I) ß(n+r)q
B

ã, !TIn
L

n-1 )lLn t) tt

ItnE(
Þnq

nftÍ "" t.,lrl l

L

Similarly equation (4.5.3) can be expressed in terms of

(i) the factorial moments giving

0(rr+r)q
- nlTl''

*'' - {fr rirt

ct
nn+l) q"(

Þ

lqd
nq

(ii) the binomial moments giving

L n

ß1 n*r¡o nq

4.6 possible Dívergence Between the Continuous Time and the Imbedded

Markov Chain Occupancy Distributlon

The formulation of the q and q distributions from the 1l

and ri distributions demonstrates that the continuous time dist-ributions
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differ from the corresponding imbedded markov chain distributions.

The possible extreme divergence which can occur for different

input streams has been investigated by Pearce l' 24 J, Bene"s [ 2 ].

The t\,rto distributions are identical when the input stream is

negative exponential due to the memoryless property of the Poisson

Process, thus the relevance of the possible divergence and, its

effect on the traffic moments for congestion systems has not until

recently been investJ-gated. Since the overflow stream G, produced

when an input stream F is offered to a prímary set of trunks, is

not negative exponentiaf, the possible divergence of the q and II

or the S and rr distributions of the overflow traffic could be

significant.

pearce l,24 ] discusses the extreme divergence in relation

to the fundamental paradox of renewal theory. He constructs renewal

streams for which the following paradoxes hold.

If ere' are two arbitrarY constants'

(i) A renewal stream, representing arriving calls to a set of

L trunks exists for which both

TO (L)

qo (l'l

<g

> L-e-
ho1d simultaneouslY, O < L(oo.

and

Thus, the arriving calls emptiness probability can be arbitrarily

close to zero which the observers emptiness probability is arbitrarily

close to unity, regardless of the number of trunks in the finite set-

(ii) rf e,€' are any two arbitrarY constants, then a

reneh/al stream exists for which

I > I-E and q < e' hold simultaneously-
L-L

Thus,. for this input stream the probability of overflow is all but

certain for an arríving call even when the set of t:lunks is full

onJ-y an arbitrar'ily sma1l proporti-on of the time.
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Pearce al-so discusses the influence these paradoxes could

exert on the underdesign of tefetraffic networks.
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CHAPTER V

OVERFLOW TRÀFFIC - GROUP APPROACH

Introduction

The Overflow Traffic Factorial Moment Theorem

Overflow Traffic Moments

5. 3. I Factorial Moments

5.3.2 Binomial Moments

5. 3. 3 OrdinarY l"loments

5.3.4 Central Moments

5.3.5 Special Formulae

Carried OverfloÛ Traffic Moments

5. 4.1 Factorial Moments

5.4.2 Binomial Moments

5.4.3 Ordinary Moments

5. 4. 4 Central l'loments

5.4. 5 Special Formulae

Formulae applicable to the Kosten and Brockmeyer

Systems with Random Input Traffic.
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CHAPTER V

OVERFLOW TR¡,FFTC - GROUP APPROACH

5.1 Introduction

An overflow stream resulting from a renewal input stream has

been shown in Chapter If to retain its renewal property, with only

the precise functional form of the interevent time distribution of

calls changing. This invariant renewal- property of overflow streams

is basic to the 'group' approach for analysing overflow systems

with renewal input.

We consider an overflo\nr system as comprising two trunk groups

with negative exponential services, parameter u. The first or

primary group is finite whereas the second or secondary group can be

either finite or infinite. A renewal input stream F, is offered

to a primary group of N trunks and the resulting overflow stream

G, (determined in chapter rI), is then offered to the secondary

group. when the secondary group is infinite the overflow system is

called a Kosten system with renewal input, (w,r,í), otherwise a

Brockmeyer system w.r.i occuïS. The steady state continuous time

occupancy distribution of the Kosten and Brockmeyer systems w.r.i

determine the 'offered' and 'carried' overflow traffic distributions-

The approach or 'group method' used for determining overfl-ow

traffic moments of -both systems. is to consider the overflow stream

c from a finite primary group as input for either a G/M/æ or

G/M/L gueueíng system. Many formulae and properties relevant to

moments of steady state occupancy distributions on either an infinite

or finite group were determined in Chapters III and IV. AII such

results are therefore valid for a particular input stleam which has
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this interevenÈ distributíon G characterising an overflow stream

from the primary group. llhen the input stream for the G/t't¡æ or

c/Nl/L queueing system is being consídered in this special way, all

functions correspondíng to this stream G are subscripted by N.

Although Cohen, see Syski [ :¿ ] page (4f6), mentioned that this

approach could be used to anaÌyse overfl-ow systems, no detailed analysis

eventuated. If however the complicated expression for the üs

corresponding to G are inserted, for example, into the expressions

for the q moments, the mathematics becomes extremely complicated

and messy and yields no explicit formulae directly.

The link which enables the overflow traffic moments to be found.

explícítly is a theorem relating the overfl-ow traffic moments with

the size of the primary group-. T\^ro perspectives of an overflow

system provide interesting yet different proofs of this overflow

traffic moment theorem. Both are described in this chapter.

Nightingate I Zl I and Freeman I f0 ] mention that the overflow

traffic moments from a negative exponential input stream satisfy this

theorem, however its wider application to general renewal input streams

is new to telephony.

The overflow traffic moments are expressed explicitly in terms

of either

(i) finite differences of the overflow stream's weakness

or

(ii) Laplace-Stieltjes transforms corresponding to the input

stream.

Explicit expressions for such statistical quantities as peakedness,

marginal occupancy and coefficient of variation which tel-etraffic

engineers use to describe characteristics of overflov'¡ systems, are

also derived.
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KOSTEN SYSTEM WITH RENEWAL INPUT

G (N)F

Q (s) vtrl (t)

N
TRUNKS

oO

TRUN KS

BROCKMEYER SYSTEM WITH RENEWAL INPUT

G (N)

S (s) { *l( t)

TRUNKS

I

I

I

I

I

I

I

I

I

I

I

I

N
RUNT

F

KS
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Specific formulae, obtained by simplifying these general renewal

input results for a negative exponential input stream are compared

with resul-ts derived by hlallstrom [ 40 ] , Schehrer I lZ l, Mina I fg ].

Schehrer I SZ ], by means of a joint probability approach derives

expressions for aII moments of the Kosten and Brockmeyer overflow

systems with negative exponential input streams, whereas the earlier

work of Wal-l-strom [ 40 ] again using a joint probability approach

contains explicit expressions for only the first two moments. Mina I f9 ]

studies properties of the peakedness of carried overflow traffic by

defining each of the offered input traffic, the carried primary and

secondary traffic and the traffic. overflowing the secondary group by

a random variable, again for the negative exponential input stream.

Possible bounds on the congestion probability for the secondary group

for any renewal input stream were found by Holtzman I I0 ].

The derivation of explicit overflow traffic moment formulae is

summarised in Potter | 26 l.

5.2 The Overflow Traffi-c Factorial- Moment Theorem

The factorial overflow traffic moment theorem can be expressed

mathematically as

I l n nÞl (s. 2. r)
(n) n) (r) (r)o

'N+ I
(r)

where u"(") {t) is the ,,th factorial moment of the overflow traffic

from a primary group of N trunlcs. These factorial monients satisfy

equation (3.3.7), hence

+
o

(n+1)
o



n-I
I

j =r

rf* (Jut

I-rlrN ( jU)
n>1

ü**, (n-1u)

I

10.

(s.2.2',)

(s.2.3)

(s.2 .4)

(5.2.s)

(s.2.6)

nr*e*( n) (r) = i
l_ n=l

where (i) ü*{s¡ is the Laplace-Stieltjes transform of the overffow

stream c, determined by equation (2.3.I7),

(ii) fn is the weakness of the overflow stream given by

equation (2.5.6).

If the nth factorial moment of the overflow traffic is

represented by ctnq (N) , equation (5.2.1) becomes

-t0
nq

(x+t¡ = cx
-1
nq

(N) *tof,,t*l)q(N)

Proof l. Direct Approach.

The overfl-ow stream G, from a primary group of N trunks

satisfies equation (2.5.I4) rvith s:n-I, hence

I
I
L

t-
I

I

I

ü* (n-:-P¡ r!**, (n-lU)

I
l

I
t!* (nU) = û* (n-ty¡ I- 1-

ü* (n-IU)

-r -r 
- 

f
ü*'(nP¡ = ÚN^ {n-rul i

-l
I
L

I
J

l- I-

But equation (3.4.3) related the factorial moments of the overflow

traffic to the o.r"trto* stream, bY

)n

I
o (1)

tirN (nU)=f+n (n+1)
cf (r)

Equation (5.2.5) on substituting for {i in terms of the qs by using
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equation (5.2.6) becomes

)n ( n- 1) (n) ( n- I )
cf.N (1) o (r) 9r*, (1)

I*n
cf (1)

r + (n-l)I
L

(s .2.7 |(n+1)
o (r)

which on rearranging can be expressed as

( n)
o (1) n*t"'t) (r) n**r(") (t)

ø*( 
n) {t)

I T TI

n*t"*t) (t)

(n)
QN* t

(r)
1 + (n-1)

( n)
cf,hI (r)

( n- 1) (n- 1)
cf (1) 9tt*,

( n- r )( n)
o (r) o (r)

(n- r)
(1) d-N+ I

(1)( n- 1)
o

I
I

I
J

(s.2.8)
)n (n- 1)

(r)

cf.N (1) cf,îT (1)

-1 when D=I,

Since

I + (n-I)I
L

equation (5.2.8) becomes

( n)
cf (1) cl

'N+ I
(1)

-I forall nÞL (5.2-9)I+n (n+l) ( n)
cf (1) cf (r)

The staternent of the theorem by equation (5.2.I) is a rearrangement of

equation (5.2.9).

Proof 2. Divided Difference Approach.

Equation (2.5"23) relates the overflow stream with the divided

difference of its v¡eakness, fN, giving

( ")

, -1
!rN

(s.2.10)

N

where A'f* = fo I (N)ø (U) bv equation (2- 5.10) . Thr¡s the
r n+f

r =0

overflow traffic moments can be expressed in terms of the weakness of

the overflow stream by equating equatíons (5.2.6) and (5.2.10)' to

g]-ve
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( n)
qN (1)

(n+r)
o (r)

(n)f
N

CT (1)

(n+1)
o (r)
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(s. 2. 11)

(5.2.L2)

(s.2.13)

(s.2.l-4)

(s.2.rs)

n

^n't 
f*

À"r* ø"(") {t)

1.e ( A"t*)n"tn*t) (t) /nr =(l^'t rJ n*tn' (r),/(n-1) !

n (n+1)
a"' t t* qN (r)

( r) by equation (3.4.7)cf (1)

( A"' 1 fJ s"(") (t) / (n-L)! = I when n = 1-

Now
I

f.
N

hence

Thus by equation (5.2.I2) ,

AN f
N

cf (L)/n!=I forall nÞl-

or alternatively

-1(n+1) (r)o n!

Rewriting equation (5.2.11) using equation (5.2.f5) gives

( ")o (r) ( ")o (1)

( n)

f
N

A'
I
L

I
J

--1+n
( ") (n+l) (1)qtI*t (t) cf

which on rearranging gives equation (5.2-J-) -

The result, (5.2.I5) incorporated as part of proof 2, can be

considered as a lemma to the theoretn when proved by the approach
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adopted in proof I.

Proof of (5.2.15).

A mathematical induction proof is used with the theorem Þeing applied at

the inductive steP.

since e*(t) {r) = [f*]-t by eguation (3.4.7), equation (5.2.15)

holdsfor n=I
An'

( n.r)
o l

I

I
t

r.
N

t
Assume (1)

(m-l) !

then equation (2.5.1) can be expressed as

[n*("'*t) (r)]-t = *ttno-r(-) {t)l-t - [n*(-) (r)]-tl

[n"t'"*t) (t)]-t = *,to"tr**, - a*rf*J by (5.2.L6)

(5.2.16)

m

thus proving (5.2.15) for aII nÞ L by Principle of Mathematical

Induction.

5.3 Explicit overffow Traffic Moment Formulae

Equation (5.2.I5) which expresses the overflow traffics' factorial

moments as a function of the weakness of the overflow stream, enables

explicit formulae for all the overflow traffic moments to be found'

The formulae can be given either in terms of the divided difference

of the overflow stream's v¡eakness which cor:responds to a recurrence

expression, or directly in terms of the Laplace-Stieltjes transform

of the input stream.

5.3.I Factorial Moments

The clivided difference operator A j.s related to the forward

dífference operator E, bY

I
^l

f
N

A



A" (n-t ¡ "

Equation (5.2.15) can be rewritten as

tç(n+1) -t(r) l I

gr_vl_n9

rflr-rl"'""*, , nÞo

I (:) E (-r)"' '
¡ =O
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(s. 3.0)

(5. 3.1)

(5.3.2)

(5.3.3)

(5.3.4)

I
ñr r o

c[ (N) = n! f"I

n
r ) (-r)"'r f¡+r -1

)'- 
t ,"*, l' 

t

0 (N) = n!n+1, q

ft ft

L 0

n

T (

r

The overftow traffic factorial moments corresponding to the

Tr occupancy distribution are obtained from the olnn (N) by

equation (3.4.1) |

orrn (N) = f* O(rr*r)q(NI

where f* satisfies equatioq (2.5.6).

Using equation (5.3.2) | equation (5-3.3) becomes

I

N

I
r =O

(N).q, (u) I I
f1 r =O

(t)
t

I
0f

Explicit formulae for c[n+ t, q 
(N) and

stream's Laplace-Stieltjes transform

for A"t* by using eguation (2.5"10),

crnr, (s) in terms of the inPut

are obtained bY substituting

gr-vrng

N
9" (u) l (5.3.2a)

r n'l-r

N
N o

0nrr, 
o 

(N) = n! [f o

N

I
¡ =O

qlr) J' 
t

and

o¿ (N) = n!
nn t n+r

( 5. 3 .4a)
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where f o = -UQr(0) by eguation Q.2.3) and

equation (2.3.L9).

e, {U) is defineQ bY

5.3^2 Binomial Moments

The binomial moments ßr, of any distribution are related to

the corresponding factorial moments by

ntß C[
nn

Hence the binomial moments of the overflow traffic corresponding to

(i) eguations (5.3.2) and (5.3.2a) are

L (u) l

(s. 3.5)

(5.3.6)

(5.3.6a)

(5.3.7)

(5. 3. 7a)

ß,,*,, o 
(*) = ,rf,t t,l, ril r-r'' ' ,**, r' '

or

or

ß (N)
N

= Glu tto 
, =Io

N
9"r n+i

(u) ln*1¡ I

(ii) equations (5.3.4) and (5.3.4a) are

ß (N) = r, I I (:) (-r)n- 
"**, 

]' t
f t f

n

r =O

NN

I (ï)r (u)r I
r =O r =O

N -1
(N) r n+r[r f

5.3.3 Ordinary Moments

The ordinary moments 0r, of any distribution are related to

the corresponding factorial momen'Es by

ß
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0 9n, t 0k (s. 3.8)
n

where

I (s.3.e)oî, k k

that is^ the or,, * are Stirling numbers of the second kind.

Hence the ordinary moments of the overfl-ow traffic corresponding

to

(i) equations (5.3.2) and (5.3.2a) are

n

I
-l

k

I
=t

k

(-r)t*k tlli"

n+l k- I

I o"*1_k(k-1)![ I
k=l ' s=O

k- 1- s

) (-r) f
N+ s

(k-
s
I I

or

or

n'l l, Q

0 (N)
n+ l, q

0 (N) 9"k- 1+s

_- 1(u) J

(s.3.10)

(5. 3. I0a)

(s. 3.1r)

(5.3.lra)

n+ I

I o"* r. k 
(k-1) ! [f

k=r 0

N

I
=0

N

s =O

s

(ii) equations (5.3.4) and (5.3.4a) are

e (N)
k k-s

Ãt T S
) (-r) f

N
Õ klf tn, k N -

s

k

I
=o

l'

o

n

I
=l

n

I
=1

+s
k

k

N

I
N

0 (N)
î¡ lf

o k!n, k
s

N I)e" (u) [
S s

(N) 1.. (u) l' I
S l(+s

5.3.4 Central Moments

The central moment" .r, of any distribution are related to

the corresponding ordi-nary moments by

0 0'
I

r
o

r

¡ r- lcr
(-r)

t_
(5.3.12)
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Hencè the centr¿rl moments of the overflow traffic corresponding

(i) equations (5.3.2) and (5.3.2a) are

to

c (N)
n*I
in*1,I

n+ I
= I t-rlt ( ) 0r,*r- r, o {N) 0f 

*t

n+1- i k- I

I o,,*1-i.k(k-1)tl J (

k= I s =O

i =o

n+ I

I t-u' t
n+1

.l

n+1- i N

,"Tt, ul, 
on+r1 . , k 

(k-1) ,ui*t Ito, 
]o

) (-r)k' r' I f*** l' t ui*t

)[n.r*. {u)J'I

(5.3.13a)

k-1
S

(s.3.13)

(s.3.14)

(5.3.I4a)

i =o

or

c
n +

In*1¡ I
(N) (-1)

(ii) eguations (5.3.4) and (5.3.4a) are

N

S
o

c (N)
B, Í

(-1)

¡

, 
or- r, nk!ft

n

I ' tll o (N) oi
I n-i"f I

o

k

r I (k) (-r)*'*
s =0

= [ r-u' rlr I
l=o k=

I
f.

N+ l

or

c (N)
n{

5.3.5 Special Formulae

(i) Mean overflow traffic, MN, is given by equation (3'4'7)

with n=1, hence

t
=:-t

N
M

N øf') trl (s.3.Is)



(ii) Variance of the overflow traffic, VN, satisfies

(
cf

2) (1) +
( r)

cf (r) tøf') trl I 'V*

78.

(s.3.16)

r -f.N+I N

I
r.

N

by (s. 2.15)+

M
NMI

N-
r*l by (5. 3.l-s)M-MN N+I

I

rl (5. 3. 17)

where H* is defined to be the marginal occupancy of the overflow

system, see Pratt [ 28 ], defined bY

H* f M" - t**r (5-3.18)

The marginal occupancy is the decrease in the overflow traffic when

the size of the primary group is increased by one.

The expression (5.3.16) can be obtained dÍrectly from equation

(3.4.L2) as follows

ü* (u)
v" = \[1 - MN + f;-. .] bY (3.4.L2)

-!rN (u,

but

Û* (u) f
N+

f*
by (2.5.20)

M
N+1 by (5.3.Is)

I\4
N

which on substituting into (3.4.I2) gives (5.3-f6).

(iii) Peakedness of the overflow traffic, zN, ís defined

to be its variance to mean ratio, thus

'*'t* -
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tlnn (u)
=i-Ì"í 1==----- 'N r-v* (u) by (3 .4.L2) (5. :. rv¡

l
or alternatívely Z* = M*t;: - tt by (5.3.f6)

N

The peakedness is a quantity which ís used in telephony as a measure

of the 'roughness' or rsmoothnesd of the traffic. Traffic is said to

be rough if its peakedness is greater than unity and is said to be

smooth Íf its peakedness is less than unity.

(iv) Coefficient of variation of the overflow traffic, WN,

is defined by

L
N

v*
M

N

v
N

vt
N 2

M
N

1_
=-_I

H
N

by (5.3.20).

The physical interpretation of the marginal occupancy implies that

it must have a val-ue lying between zero and one . The corresponding

value of W* can therefore range between zero and infinity.

Chapter 6 contains a study of the nature and properties of the

peakedness and coefficient of variation of overflow traffic-

5.4 Carried overflow Traffic Moments

lrlhen the overflow stream G from a primary group of N trunks

is input to the G/II\/L queueing system, the steady state q occupancy

distribution on the secondary group can be found using formul-ae

derived in Chapter 4. This distribution wiII be called the carried

overflow traffic distribution or alternatively the distribution of the
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overfloÍ/ traffic carried on the secondary group.

Equation (4.5.I) can be subscripted by N to denote that

this Brockmeyer overflow system with renewal input is being considered

and reads,

- -( n)
tq

N
(1) ;( 

n)
N

(r)

The mean carried. overflow traffic,

satisfies equation (4.4.8), hence

MN,L
-(1
cf (r)

u* [r - n"l

M
N

is given by {t) rrl and

{") ru
q:"*t) (r)

1(n<L (5.4.1)

(s.4.3)

where f* satisfies (2.5.6) and the overflow traffic moments

øf") trl satisfy (5.2.Is).

Equation (5.4.f) can be rewritten in terms of finite differences

of the overflow streamts weakness, as

fi(." )
N

(1) I(n<L (5 .4.2)
f

N

f.
N

^t
^D'nA

r,o {") tÐ

L

)

where Mr, the mean overflow traffic.satisfies (5.3.15) and n"

is the probability of congestion on the secondary group'

Subsrirurion of'ãft) ftl given by (5.4.3) into equation (5.4.2)

with n = l-, gives the forlowing expression for lft) frl,

f*
nf') tl (l-T)' L'

^f N

(5 .4.4)
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nf') trl is rerated to nft) trl by equatíon (4-5-4) with

rt = 2, that is

nf') trl l) (r) L o, 
o 

(N)

I
a, 

o 
(N)

An explicit expression for the tt[") trl is given by

-(
'IT

N
(r) = n!F(N,L,r,) [Anf"J-1 , I(n<L

But

where

ïIî(
N

l

L
L

l'\ t
N

(s.4. s)

(s .4.6)

(s.4.7)

(s.4.8)

L

n

F (N, L, n)
n. I

;1," ,r)ArN - îL I
9,= t

L
(

Proof of (5.4.6)

Equation (5.4.5)

-(n- r)Suppose tt"- -' (1) =

this expression for

n)

but
n) (r)

is identical to equation (5.4-6) when n = 2.

(n-r) !F(N,L,n-r) ¡4"'I r,oJ-1 , then substituting

nf"'t) trl inro (4.5.4) gives

1T(
N

-('Í
N

,rAt' I f,
(1) [ (n-1) !F(N,L,n-f) ¡4"' 

1 r*l -t -1r,-t) rn" tr,1tl I
at t*

= n!F(N,L,n-L) ¡A"r*1-t -[A"t*]-t {ntfr" t,rlrlan'I f*}

F(N,L,n-1) - Í"trrlrln''tr* = F(N,L,n)

= n!F(N,L,n) ¡Änr"1-r ,

thus proving (5.4.6) by lrinciple of Mathematical fnduction.

An expricit .*pr."sion for the øf") trl is

øf') trl = n!F(N,L,n) [nf*A"' 
t t,o]-t, I ( n ( L

proof of (5.4.g) fotlows by substituting for äf") tll, given by

equation (5.4.6), into equation (5.4.2) -
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Equation (5.4.8) is a generalization of Schehrer's [ 32 ]

equation (72) established in the case of a negative exponential

input stream.

A]I the expressions for al-f moments of the overflow traffic which

are contained in the foll-owing section of this chapter wiII be in

terms of f* and the finite difference anfN. These equations

can be rewritten using refations (5.3.0) or (2.5-tO) for A"t*'

5.4.I Factorial Moments

Equations (5.4.6), (5.4.8) giving the 1T and s factorial

moments can be rewritten as

cx (N) = n!F(N,L,n) [4" r*J -r , 1(n(r, ( s.4. e)
tt 1l

5.4.2 Binomiaf Moments

using equatio¡ (5.3.5), the binomial carried overflo\,r traffic

moments correspondinq to equations (5.4.9) and (5.4.I0) are

ct (N)
nq =n!F(N,L,n) [nf*a 

tt*]-t, 1(n(l

I(n(r,

Bn
(N) = F(N,t ,n) [nfrA"' 

t fal -t , 1(n(r,
q

on the secondarY grouP of

(s.4.ro)

( s.4. 11)

(s.4.L2)

= F(N,r,,n) [4" fN] -1 
,ß (N)

n1Í

and

The probabil-itY of congestion, T"

L trunks is given by 8",, {N) , that is

IT= f
NL

where

E"r, {N) = F(N,L,L) [^
L -1 (s.4.13)
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IL.
F(n,r,,r,) = nlt) (r)Ar* - ãr tf raøI

9,= t

L-1
L oLTt = f-17L-L L

f
N

9,= t
Ir

f
N

l* ñl,t) {r)lr*l [1"

n" ) t* by (5 .4.4)(I

f
N

L.
fi

L
tALr +-N )^nt^l = nlt) {t)at"I L

o

9-l

(s. 4. ls)

or alternatively

rll arr*l (s.4. 15)

L
E (s.4.16)

therefore equation (5.4.15) becomes

ñ" = f.[f"*"] (s.4.L7)

This proves that the probability of congestion on the secondary group

is the ratio of the weal<ness of the overflow stream from the primary

group to the weakness of the overfl-ow stream arising if both the

primary and secondary group were combined. Equation (5-4.J-7) is

a generalization of l,lalf strom' s [ 40 ] equation (3 . I . 40) on page 208.

The time congestion, \ on the secondary group of L trunks

is given by ßLq (N), thus

n"I rfl l¿r*l = f"
0

L

I
L=

L
1T =f f I

t. N'!- &=o

tfr ar
o

L

Iî-

But inverting equation (5.3.0) ' gives



L

6 (N)
ni

0 (N)

n(N) (-1)
I lq

by equation (5.4.2)

84.

( s.4. 18)

(s " 4.20)

r(n(r, (5.4.2r)

,I(n(l
(s.4.23)

f
N

ALTÏ

a"
Lf

= alf¡ [L fi,¡*"ÂL' I t*l by equation (5.4.Li). (5.4.19)

5.4.3 Ordinary Moments

using equations (5.3.8) and (5.3.9), the ordinary moments of

overflow traffic corresponding to equations (5-4-9) and

(5.4.I0) are

^L'tf N

-=ï, 
or, n*!F(u,L,k) (Akrr)-t, I ( n =< L

N

and

nq

where on, * satisfies equation (5.3.9).

5.4.4 Central Moments

Using equation (5.3.12) the central moments of overflow

traffic corresponding to equations (5.4.9) and, (5.4.10) are

c (N)
n?t

n-
= I o"- kk ! F (N,L,k) [xt*Au- 

t f*J -t ,
k=1

(-1)i

4nd

c
n q

n
F
L
=0

n

I

n-i
tilOi" I o"-,.uk!F(n,r,,k) (Akt*)-t, I ( n ( L (5-4-22)

k=l

n- i

IoL n-i-k
k=l

:n
U k! F (N,L,k) [kfNAk' 

t t*] -t
o

where o satisfies equation (5.3.9).
n, k

Alternate expressions using equations (5.3.0) and,

moments, are listed in Appenclix If .

(2.5.f0) for all



5.4.5 Special Formulae

(a) The mean traffic carried on.the

equation (5.4.3), that is

MN,L (I - nL)\

secondary group, M*, 
". 

satisfies

M

(r - I*")\ by equation (5.4.L7)
M

N

85.

iv1
N

M
N+L

(s . 4.24)

This agrees with intuitive reasoning which says the average traffic

carried on the finite secondary group is the difference between the

intensities of the input stream and the overflow sÈream from a

combined set of (N+L) trunks. EquaËion (5.4.24) is a generalization

of lfallstrom's [ 42 ] equation (3.I.34), page 2OB and Schehrer's [ 33 1

equation (OZ).

(b) The ratio of the lost caLls to carried calls on the secondary

group, \, 
" 

ir given by

L
RN.L

1TL

1-n"

L ft
(5 . 4.2s)by (s.4.Li)

f-fN+L N

\, ,. satisfies equations (4.4.L4) , (4.4.15) and (4.4.L€)) given Ín

Chapter IV.

(c) The variance of the carried overflow traffic,

equat:Lon (4 .4.9 ) , hence

V
N, L't

satisfies
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I

satisfies equation (5.4.22)

satisfies equatíon (5.4.16)

ü* (u

"fi"thr----
1-t"

by equation (2.5.2O)

86.

(s . 4.26)

(s.4.27)

(s. 4. 30)

(5.4. 3r)

where (i) M
Nr

fi"

L

(ii)

(iii) hr. =
1-{,N (Þ)

- -1
f t¡¡*, Il- - 1i
Lf J

N

M
N+1 by equation (5.3.15) (s . 4.28)

M*-\*, 
,

Equation tS.+.)àl can be written in terms of the weakness functions

ffandfqivinqN' N+ I N+L

I I fN+L-fN-Lf*f**" f** 
r -f"-f*f**, (5 .4,29)

L ffN N+L
f**" (f**"-f") f* (f**, -f")

Proof of equation (5.4.29)

=(ur,

M = ¿ - -f- from equarion (5.4.23)^\, L. f* f**l

t+hr(u)=f + 
Ù"(u). 

by (3.2.7)
r-Ú* (u)

I
l-ìl,N (u)

f*n,
=æ

EEtN-tN* I

by (2.5,20)

substitution for 4o, ", 
t+hr (Lr) , \, ". 

given by equations (5.4.30) ,

(5.4.3I) and (5.4.25) respectively, gives the required result.



a7.

Equation (5.4.26) is a generalization of V{allstrom's I

equation (3.I.35), page 208.

(d) The peakedness of the carried overflovr traffic , Zr, 
".

given by a rearrangement of equation (5.4.26),

40

is

Lli
L (s .4.32)zN,L "*, ", 

* rtt
I-r

L

Equation (5.4.32) is a generalization of Mina's I 19 ] equation (f).

Note that the quantities 4v,1., ür, 
". 

and ã*, 
". 

are functj'ons

of \, M"*, *d \*" when N and L are given' If therefore

the functional dependence of the mean overflow traffic on N is

known, these quantitíes can be calculated from equations (5.4.24),

(5.4.2e) and (5 .4.32) .

5.5 Formufae Appl-j.cable to the Kosten and Brockmever Systems with

1-

Negative Exponential InPut

ti) F(t) = I - .-Àt with Ô(s)
À

).+s

(ii) ¡ = -¡rQ' (0) from 2:2.3)

u
À

(s.s.r)

(5.s.2)
-l= A-- where A is define<l as the intensity

of the inPut stream.
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(iii) 1,r (U) 1-ô ( iu)
0 (iul from (2.3.19)

J!-
À

r
l
=l

f

ÏI
=l

N

T
=o

I

N+I _-(N+t)
= 

-A
A

f
A
r!

r =O

N+I

Atr
-*-r! A

(s. s.3)

(5. s.4)

(s. s. s)

= rlA

N(iv) f* = fo ) ll,r (U) from (2.5.6)î

-t=[ N )r!A f

t

-lN+r)= NlA
¡

r
A
r!

\ f
N

-l from (5.3.15)

r

N

I
=0f

N

I
=o

N+l
A

--t N! /
N

I
r =O

Equation (5.5.5) is the well known expressíon for the mean overflow

traffic, see Wallstrom [ ¿O ], equation (3.f.11), page 205, and is

usually written in terms of the Brlang Loss function, EN(A) as

M
N

EN (A)-å

A
where N! r!

(v) Recurrence relation satisfied by f"

N

0

N

I
A

¡

N+1

f"*, - f s I ,*;t) [r (u) f rom (2 's '6)

N

I
r =0

=- 1+-
AA

f"

N!

(s. s.6)
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Equation (5.5.6) is a rearrangement of the following well

known recurrence relation satisfied by \,

AM
N

M
N+ t N+r+M

N

(vi) by (2.s.2o)

by (s. s.7) .

t
A(N+r -k

N!

-k

(5. s.7)

(s.s.8)

(s. s. e)

A=-N+I+\

A-kf" +f
N+

(vii) (N+x -f

f

k

If

A

N+k

i
¡ =N+ 1

N! (N+k+1-r

The proof of equation (5.5.9) follows by mathematical induction for

which equation (5.5.6) Ís the induction steP.

the follewing proof is based on equation (5-5-4) with N=N*k'

I
(N+k) ! N+k A

I by (5. s.4)Ê
I

N+k N+k+ r
A t =O r!

k

t
o

N

Ir
A

A-k f" + (u+t<¡ ¡

N!l
N-l I

AL
+

r1Al
'I J

k

¡f

N+r
Af* * (N+k) !A

(k+N+r)

-sA
(N+k+I-s) !

(N+r) !

r- k- I
A_ (N+k) !

A f* * (N+k) ! (N+r) !N!
-k

k

I
1f

k

I
=1s

where s=k*I-r



(viii)

(ix)

^t
f.

N i tilt-rl''nrn*n bv (s.3.1)
=o

90.

s

k

n-k (N+r -krfN+ (N+k) ! ¿

k -sA
(N+k+I-s) !

(5.5.10)

= (-r) +f
N

(-1)
w!

o

n n
k

I
L

i
=l

) (-1)
N!

k

by (s.5. e)

A' -l
q("*t) (1) =

f
N

n!
by (s.2.15)

w-I
N
k

k -1
=n! l,-r,'r* *,.Ï. tir t-u"'uI

u k= I
*iJ- A-kf*+(N+:<¡ t I

by (5. 5.I0)

Equation (5.5.fI) can.be rewritten in terms of A, N and \

to give

I
L

o*-\ I t

- --lw- r- k I I

)k !A jJ

(s.s.rr)

(s.s.12)

(s.s.13)

q('*') (r) = n!A"-lr-or"*nÏ, rlr r-ar''t[(N1E) r * r",!,-+l#Ìtt *'' ]]-'

Schehrer I 32 l, equation (43) gives the following expression for

q('*t) (t),

q('*t) (t) = n!A'çl'"t
N

I N+n-v7
n-w )

k=O

(x) Eguivalence of Schehrerts and Potterts hiqher order moments.

The denominator of Schehrer's equation (5.5.1-3) can be written

X + Y where

N+n-w
n-r¡¡

AS

Nwn (-1)X=n! ) +(û t.tl

w=O

A (5.s.14)
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and

and

Step I

Proof of (5.5.18)

Let k=n-v¡

vr = \ i (-r)n'n tf,lo" (N+k) !

k=1

k

I
=1

Y = -n!\ (

ì\r- I

I
k=o

tf,)rre*'t'k

X = nrt(N+t) +

A-
(N+k+I-s) !

k, 
on- 

k

n n-k
A

(s.5.ls)

(s. s. 17)

(s. s.18)

(s.s.re)

N

I
w=l

N*n-w
n-w

+ n!

The denominator of equation (5.5.1à) can be written as X¡ + Y¡ where

Xl = (-A)" +
n

I
=l

til r-al"'k -(x19j (s. s. 16)
k

s

X=Xl

i
$r= I

n-I
I

k=o

N*n-w
n-\^r

A}
n

[= (N+n) ! ,*iN!

_ (N+n) t

N!

n-l -.n-k
* 

n=lo 
f+t- (N+k) ! (

(_r)"-k (N*T)! rlla"

)

o

=xl

n- 1

s =O

Proof of (5.5.19)

Let vr=n-s in (5.5.15)

srep 2 Y = -A'M* I (:) (-1)"'s (r¡+s) !

k
n

ik

+1

n

I
=8

k

-k
A

(N+s+l-k) !
k

n-(s+1)t (-r)t''
o (n-s) !i N+s i

k=O
Y = -n!\ (

s tf;l:.ra"'k' 
(s+r)



=-A
n \I (n-s) ! s! N!

s =0

n- ( s + 1)

n -k
A

k=s + I
(N+s+1-k) !

n -k
I (N+s+I-k) !

¡=stl

n- I n-s- (-1)--- n! (N+s)!
I

k=0

N ! .-k'(s+l)
(N-ÐT ^
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IN

=-[ M
N

(-r)"'' tf,l {u*") r

o

n

s

n I I

n

hrhere

z
m

To show Y

=*A Nl, Z
N

n-I
l=-

o
I t-rl"'* tf,) {N*=) t

A

s

(s.s.20)

( s. 5. 2r)

(s.s.22)

Step 3

Proof: Equation (5.5.21)

Z = coefficient of A-m in Yr

Let Y_ be the coéfficient of

coefficient of A-n' in z.

ÍÞ r (t) (w+r) I

_nZ = Y1/M*A

is proved if the coefficient of A-m

n
/ltl A,N f.or I-<m(n

A-m in Y r,/tu1*4" and. let z be the
m

i Í n f from equation (5.5.20) where

1(m(n
r =0 (tt+r-m-l) !

n ) (N+r) !t

(N+r-m-I) !

(-1)

Í-f
n
FlY=)mþ

f =m

( -1) from equation (5.5.19). (5.5.23)

nt
z -0

m

Y

(s.s.24)

(s. 5.2s)z
mm i l.ì n- f(--) (-r) (N+r) !

t (N+r-m-I) !of

Equation (5.5.24) foll-ows from the followíng theorem:

(r) (
n

P )(-t)"'' -o for O(k(n
k r

o

n

If

where ln (r) is any polynomial in r of degree k (s . s .26)
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Proof of (5.5.26)

Any polynomial in r of degree k can be rewritÈen in the

following form

e* (r)
k-. I

Bn 1r (r-j ) +
j =o

k-2
Tr (r-j) + ... + Bo

j =o

j=o

(s.s.27)

r-(k-1)

+ Bof (r)
(s. s. 28)

Bk-1

(r) (
n
x

where

Hence

eu (r) tfl t-rl"''

Y

sl-nce
(u+r) I

(N+r-m-I) !

fixed values of N.

+ Bo I ril r-Ð
¡ =O

o

n

I¡
P

k ) (-1)"-'C = Bk

n

I
=o

n
r ) (-r)n- I ' k' 1 (r-j ) C' kkt

+B k-1t
k-1

k- 2',
't| (r-j)t

j=o

'( t- r) (t) +

) (-r)

k-1
-tÈ,

fl- r '

f

n

I n
r

n

n-f
(

o

r t

='Bkt

f (r) (r-1)

r( 
u) (t) + Br

k

/k)(r)-o for o(t(n

n

I e*r(k) {t) * B*-,ftu't) (r) + ... + B'f(r)
of

0

Equation (5.5.25) can be written as

q. e. d.

n
z

mm

n

I P (r)(
ßl

) (-r)t
I 0

is a potynomial in r of degree (n-I) for
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Hence Y -z =Q by(5.5.26)since 1(m(n.mm

Therefore equation (5.5.2I) is proved.

Y=Yl

n!A'M* [x+v] 
-t = r!AnM* ¡xr+vrl - 

I

thus proving the equivalence of Schehrer's and Potter's expressions.

The following $articular formulae are calculated from equation

( 5 . 5 . 1f ) f or rt=I ,2 ,3 ,4 respectiveJ-y,

(a) r=1, (2)
o (1)

A M
N (s .s.29')

N+I+MN-A

This expression is well known in telephony and when substituted

into equation (3.4.f0) gives the following well known expression for the

variance of overflow traffic,

V=
N

M
N

1-M
N

(s. s. 30)

(b) D=2,
(3)

cf (r) = 2tt \ t (x+zl MN-AMN+ (N+l) (N+z¡

-2 (N+1) A+A2 I 
- 1 ( s. s. 3r)

Equation (5.5.31) is a rearrangement of Schehrer's I ZZ I equation

(44) .

[c) n:3, (r) = 3 !A3\ t(w+:l (N+2) \- (2N+3) a5+a2rç

+(N+r) (N+2) (N+3) -3 (N+1) (U+Z¡A+3(N+r)A2-A3 l-t. (s .5.32)
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Equation (5.5.32) j.s a rearrangement of Schehrer's [ :Z 1 equation

(45a) .

(d) î=4 ¡ eft) trl = 4!Aa\l(N+4) 1u+3) (N+2)\-(N+3) (3N+4)aç

+ [3N+4) A'M*-At MN+ (n+¿) (N+3) (tt+Z ¡ (N+1)

-4(N+1) (N+2) (N+3) (N+a¡A+6(N+r) (U+z)a2

-4 tN+r) at +eo 1 
-r ( 5 . 5. 33)

Eguation (5.5.33) is a rearrangement of Schehrer's I ZZ ] equation

(46b) .

[xi ) Probability of Loss on the Secondary Group

f*
by equation (5.4.17)1I

L E
I
N+L

-ft N.
-LA f.

N
+

L

I
=1

-ll by (5.5. e)
r

= IIIff- o-" * \ I
L

I
¡ =l

I (s.s.34)

(xii) Mean traffic carried on the secondary group

M =¡rtr-îlN,L. N- L' from (5.4.3)

= M* - [f**"]-t from (5.4.17)

= M-- - Ivt--. - fron (5.3.15)
N N+L
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from (5.5.9)

**L'-{Y^ 'L
-Lr +14 )

Nþr=1
. (s. s.3s)

by (s.5.e)

(5.s.36)

-1

-l

)-'l

(xíii) The ratio of lost calls to carríed calls on the secondary

group.

L f
N

R
Nr L' f

N+
f

NL

= Lr*[rN(!+Pl o-" - ') *
which simpririe's to

IrL= l¡tx*r,t t - L + LN!o"t* 
rJ,

-l
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6.4 Peakedness of Overflow Traffic

6.5 Features of Overflow Peakedness Charts
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CHAPTER VI

OVBRFLOW TRAFFIC - 
.ATOMTC 

APPROACH

6.1 Introduction

rn the foregoing'group' analysis, an overflow system is

considered as comprising of two groups, namely the primary and

secondary group. An alternate analysis, based on individual trunks

and sequential overflows is d.iscussed in tTris chapter. By analogy

with other areas of mathematics, this approach is called an 'atomic'

analysis of overflow systems.

The overflow system is considered. as a seguence of individual

trunks each being offered the overflow stream from the preceding

trunk. This situation is iltustrated in Figure 6.1. The overflow

stream from a primary group of N trunks is interpreted as the

Nth overflow stream from the Nth individual trunk which has been

offered the (N-1) st overflo!ù stream from the (N-I) st trunk.

In general, if the Brockmeyer system with renewal- input is being

analysed, the overflow stream from a finite secondary group of L

trunks, becomes the stream overflowing the (N+r,) th individual

trunk when offered the (u+r,-t) st overflow stream from the

(¡¡+r.-l) st trunk.

This htomic'approach is valid only when the services are

memoryless. For more general service distributions, thetgroup'

approach could be extended, however the overflow traffíc moments for

the corresponding queueíng systems become extreme-Ly complicated

and intractable.
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To demonstrate the methodology used for an latomicr analysis

of an overflow system, the Laplace-Stieltjes transforrn tf* (s) of

the overflow stream G, from a finíte primary group, is federived.

The three phases of the atomic approach are illustrated in figure 6.I.

Nehr properties of Èhe overflow tr4ffie's peakedness and coefficient

of variation are then establ-ished. A significant consequence of

this sÈudy on peakedness is a simple proof of the well established

practical teletraffic result, "The overflow traffic arising from

randomly offered traffic is rough". Wilkinson [ 41 ] , intuitively

gives reasons why such a result must necessarily hold.

This study of the overflor¡¡ traffic's peakedness is extended

by producing peakedness charts for different Erlang input streams.

Notation

The inter event time distribution of the overflow from the

ith individual trunk when offered the overflo\^/ stream from the

(i-l)st individual- trunk is denoted by G<,¡ (t) with Û,,, {") as

its Laplace-Stieltjes transform.

6.2 Derivation of tJ., (s) Èhe atomic roach

6.2.L Phase I

The overflow stream from the first trunk when offered the

input stream F satisfies

where

ú1, , (s) = ko (s)
ko (s)+kr (s)

ko(s) :1

1-0 ( s)
0 (s+P¡

(6.2.r)

(6.2.2)

kr (s) (6.2.3)
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Proof of (6.2.L)

If fo (t) is the distribution function for the time separating

an instant when a call arrives Èo find the trunk already occupied

and the instant of the first subsequent overflow, then

fo(t) (r-e ¡'Y 
) f o (t-y) dF (y) +

- lry
e f r (t-y) ¿r (y)

where we interpret fr (t) = ô (t-0) .

Taking the Laplace-Stieltjes transform of equation (6.2.4), gives

J,

r-Ut 
N_ r¡ (s)

I
l

(6.2.4)

(6.2.s)

(6 .2 .6)

(6.2.7)

l:

|.-
Jo

ts (r-e "t ) fo * (s) dF (t) * ¡ ' ¡tt f r * (s) dF (t) .Ifs*(s) e + e

!{e impose the boundary condition fr*(s) =I then

fe*(s) [r - 0(s) + ö(s+U)] = 0(s+p¡

But qr (s) = fo*(s)( r)

thus proving equation (6.2.L).

6.2.2 Phase II

The overflow stream from the N

offered the overflow stream from the

by equation (6.2.5)

th individual trunk when

(N-t¡ st trunk satisfies

= L/tL. ils#,

ú. *, {") = L/ I
L
I+

ì! (s+u)
(N- 1)

Proof of (6 .2 -1)

If the input stream F and overflow stream 
"( r) 

are replaced



by a("- r, and 
"(*)

with that of Phase II,

0(s) ar:e replaced by

6.2.3 Phase III

The overflow stream

satisfies

v, *, {=)

where
k (s)

Proof: Equation (6.2.8)

If equation (6.2.8)

r01.

the situation depicted in Phase I is identical

hence equation (6.2.6) holds when ü, r, {") and

,lr,*, {") and .lr1*-r) (") respectiveJ-y.

"<.O 
from the xth individual trunk

N.

tIr
r =0

N- tln, t=l

N

I
=o

Ir (s)

(6. 2. 8)

(6.2.e)

(6. 2. ro)

)k (s)N
r r

¡

Í
l.

1 , f=o

1-ö ( s+j -lu)
0 (s+iu) r7-L

simplifies to equation (6.2.L) when N=I

is valid for Ü1N- r, (s) ' then

r-Û<¡,r- r¡ (s)
by equation (6.2.1)

r
1T

=l

ü, *, {=) = r/ 1+I
L

NoI^r k (s)
r+1 k (s+¡-t¡ by equation (2.5.15)

f

N.

1-0 ( s)
0 (s+P¡

ú, *- ,, (s+u)

r =O

2
N-2
r )rr+l

ü ( s+Y¡(N-1)

n
N-2

T

r =0

)k (s)
r

N-

N-r
IrN-1

t )k *, (s)

Ir
r =O

N-IrN-I)r (s)
1-rt(N-r) (s) -r

¡ =O
t f

by equation (6.2.8) with N=N-l
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N-I

I
r =l

N-2
r-I )t (s)

r

N-I
N-1Ir )k (s)r r

r =O

N-r N-1
r-üt¡¡. r¡ (s) Ir T

)k *, (s)
r =0
N-I

rp ( s+Y¡ Ir )k (s)
r(N- r) N_I

t

(6. 2 . rr)

(6.2.r2)

(6.2.13)

r =O

substituting equation (6.2.12) into the expression for üa", {")

given by equation (6.2.7) shows ,1,,*, {=) satisfies equation (6.2.8).

since the stream overflowing the tlth trunk in seguence is

identical to the overflow stream from a primary group'

q, (s) rl;* (s)
(N)

hence, equation (6.2.8) and (2.2-L7) are equivalent'

The inductive form of the proof of equation (6'2'8) is

essentiafly equival-ent to the conditionaf probabitity argument of

Takács [ :O ] . He applied an integral equation technique to obtain

the sofution. He was unaware of our physical 'atomic' interpretation

of the system and his argument appears outwardly dissimilar.

6.3 The Coefficient o f Variation of the Overflow Traffic from N

Trunks

Notation

Let f(*), M(*), v(*), w("), ,(ru) denote the weakness' mean'

variance. coefficie¡t of variation, peakedness of the overflow

traff.ic resulting from the overflow stream 
"(*) 

of section 6.2. We

assume these quantities are defined for N=0 by defining

G( 0) =p (6. 3. r)
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6.3. I Phase I

The overflow traffic from the first trunk satisfies

*( r) t *( o) (6-3-2)

Proof of expression (6.3.2)

The input stream F satisfies equation (3.4.12), giving

V( o)
M(o) 1-M

( o)

,

t.
I

(6.3.3)

(6. 3. 4)

(6. 3. s)

(6.3.6)

(6. 3.7)

where
"( o)

Since o)\

II=r.) =-I6r5t by equation (2.2.LO) .

equation (6.3.3) becomes
lMr

w
( o)

_L
( o)

0) l

I_ 1

I
-1

= :uo'cor[r - *áih] - I

But equation (6.3.5) is valid for any renewal stream and in

particular hofds for tfre stream

trunk, thus

But (u) = _ Ö (2u).
0 (zu) +r-0 (u)

"( r) 
overflowing from the first

t( r) = -uv( r¡ '(o) tr - u( r¡ (u)l-t - r

il,'( 1)
by equation (6.2.6)

a¡d ü1 ,, '(O) = å# by equation (2.5.I) with N=1, (6. 3. 8)

ttrerefore the expression for t,r) given by equation (6.3.6) can be



simplified to

Q (zpl

Now Ir^O[u)]2>o since 0(u) /r

l0(u)l'-Otul+r>0(u)

LO4.

(6. 3. e)

(6. 3. 10)

(6. 3. tl)

(6. 3. 12)

(6. 3. 13)

is greater than unitY,

Holtzman I fO ] notes that for any renewal stream,

x(ju) > Ix(u)li j> L

tô(p)12 since F is not degenerate.

and !'Iinsten [ 42 ) shows that strict inequality holds in t]re case

when l:2 unless the underlying distrjÕution is degenerate, that

is

Ilence using the inequality, (6.3.11) gives

Thus the latter term in the product of t( r)

provlng the inequatity (6.3.2).

6.3 .2 Phase II

The overftow traffic from the Nth individual trunk when

offered the overflow stream from the (N-t) st trunk satisfies

w
N)

t *( *--, )
(6. 3. 14)



ro5.

Proof of expression (6.3.14)

The argument used in the proof of phase I is valid for any

renewal input stream and its corresponding renewal overflow stream

from one trunk. Hence equations (6.3.5), (6.3.6) and (6.3.9) hold

when F and 
"( r) 

are replaced by 
"(*- r, and G(^) , giving

\*-,) = -Þü(N--r) (o) t1 - ü,*- r¡ (u)J-r -t (6.3.15)

-t= -ÞÛ( N¡ ' (o) [1 - u(, (u) J
(6. 3. 16)

N)

and

*(
N) = -l - Uúq.r r) '(0)

Ú1 N- r, (2u) *t-Ût r- r ¡ 
(It)

(6. 3. 17)

ü1m , ¡ 
(E)

Hence the inequality (6.3.14) follows since

Ú,*--r) (2u) + r - Ú1¡- r¡ (u) t Ú<*- r¡ (u) by equation (6'3'12)

Tt¡-is result given in Phase II, proves that the coefficient of variation

of the overflow traffic is an increasing function of N.

6. 3. 3 Phase III

The coefficient of variation of the overfl0w traffic from N

trunks satisfies

w -1

t - ürx-.r¡ (ì-r) l-'l

=Ì{(N)v,I
N

>W
( o)

(6 . 3. 18)

This result follows by induction on (6.3.12), having proved (6.3.I)"

The increasing propert¡¿ of *( o) with increasing weakness of

the input stream was proved by equation (3.4.25).
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If the identical analysis of varying p for a fixed' ). is

now applied to *(*) given by equation (6.3.16) ' the derivatíve

of with respect to U satisfies
N)

dI^l ú1 *¡ ' (o) u2 tl,' (E)
N) where E€ (0,il) (6.3.19)

du 1-ú( $ (u) 2(L-\)(N¡ (u) )

Hênce *to0 +O as U+O and *(*) ->æ as U+-i thatis,

the coefficient of variation of the overflow traffic ranges from 0

to æ as the input weakness ranges from 0 to æ-

v,Ihen the input stream is Erlang order k, defined by equation

C3.5.I) and satisfying equation (3.5.10) '

vil

I^I
(

(N)
l
(

( o)

=-I+

w
ER

-tA
by equation (3.5.14).

r_ [r+!oo) -k

Hence the coefficient of variaÈion of the overflow traffic from

N trunks produced by this input stream satisfies

W
N

-1A
> -t + by (6.3.18)

1-k
r_ ( rT:_A)

(6.3.20)

If k=Ir tþat is the input stream ís negative exponential, the

inequality (6.3.20) reduces to

-l (6.3.2L)

whereas if k*, that is the input stream is deterministic, the

w*tA

inequality reduces to
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(6.3 .22\

For Telecom Australia [ 39 ] p. 31, the peakedness z defined by

(3.4.L4) is accepted as the standard for measuring variability of a

stream. The standard being z = L for the negative exponential

input stream and traffic being called smooth if z < L or rough

if z>L. HoweverKuczuraI fS1, callsastreamsmoothif V'¡<I

and peaked W > I with the standard still being the negative

exponential stream for whiclr lrl = 1, although he mentions "the same

dichotomy is effected by the inequalities z 1 I and L 1 2."

6.4 The Peakedness of the overflow Traffic from N Trunks

Teleptrony classifies the various streams of an overflow system

by means of the peakedness of the traffic produced by that stream.

If the peakedness of the traffic produced by a renewal stream ís

greater than or less than unity, the stream is called rough or

smoorh respecrively. rhe lalrer t::::Î- implies that the traffic
smooEn

. .fouqhefis t--*",.'-.-- than pure chance traf.f.Lc for which the variance equals-smoother

the mean.

6.4.L Phase I

The overflow traffic from the first trunk satisfies

'(r)' 
min(l'z (o

(6. 4. r)

Proof of (6.4.1)
u( 

o) equation (6.3.3) becomes
t( o)

Since z( 0)

'( o)
, _ t__* ô(u)r I 

uÔ' (o) r-0 (u)
(6 . 4.2)



This equation (6.4.2') is

holds for the stream a<
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true for any renewal stream, and in partícular

overflowing from the first trunk, thus
1)

'(,)=i+q*iut.
ü,,, {u)

1-ú (u)
( r)

ú (u)
( 1)

1)
(u)

by equations (6.3.7)
and (6.:. 6¡ .

'(r) - 1 > o

- I,

(6.4. 3)

(6.4.4)

(6 .4 .5)

(6 .4 .6)

(6.4 .7 )

r_V(

+

But the stream F satísfies (6.3.11) '

z - I > 0(u) [z( o)
_rl

( r)

The condition expressed by (6.4.6) means that

brrt
if

or eguivalently

ifz

2
( 0)

--1>0 then
( o)

-1<0 then ,(r) -]->z ( o)

"(r) - I > min(I,'(o))

6.4.2 Phase II

The overflow traffic from the Nth trunk satisfies

"(
> min (I, z(N- r)

Proof of (6.4.7)

Equations (6.4.2), (6.4.4) and (6.4-5) hold for any renewal

input stream and its corresponding overflow stream from I trunk.

In particular if F and 
"( r) 

are replaced by 
"(*- r, and 

"(on)

N)



these equations can be rewritten as

(N- 1)
(u)

ú1 *- , r(2u)

ro9.

(6.4. 8)

(6.4. e)

(6.4.10)

z = 1* i rr=. --(N- r) - Uú1N- r¡ '(0)
{t 

". 
,, (u)

r-rj,

Iz-I=(N) url, '(o)(N)

= 
û1*- r¡ (u)

tlllN- r¡ '(0)
+ r-ú(N- 1)

(u)

But inequality (6.3.L2) holds for any non degenerate renewal

stream,

1>tJl (u) [z _11 (6.4. 1r)
(N- l) (N- l)

that is 
"( *) 

) min(r,z1 ¡- r) )

This result (6.4.7) implies that if the input stream is smooth then

the peakedness of subseguent individual overflows increases until

the overflow traffic becomes rough; once this occurs all subsequent

overflows remain rough but whether the increasing property of the

peakedness is maintained is not necessarily true. Tables obtained

from computer cafculations for the overflow traffic peakedness for

d.ifferent ErlanÇ input streams imply that a unique max value,

greater than unitY exists.

6.4.3 Phase III

The overflow traffic from a set of N trunks satisfies

N)
,(

z, ) min(I,z1ç¡ )
(6.4.L2)
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This result is a consequence of inductíon on (6.4.7) since (6.4.I)

is valid.

When the input stream is Erlang order k,

(3.5.1) and satisfying equation (3.5.I0),

defined by equation

z

'l -k1- (r+kA)

Hence the peakedness of the overflov¡ traffic from N trunks

produced by this input stream satisfies

I by (6.5.L2) (6.4.13)zn ) min(l,-e +
r- (r*-) -k

If. k=I, that is the input stream is negative exponential, the

inequality (6.4.13) reduces to

z-_)min(I,t) =1. (6.4.L4)
N

This proves the well known practical result that the overflow traffic

corresponding to a negative exponential input stream is rough.

If k=ær that is the input stream is deterministic, the

inequality (6.4.13) reduces to

( o)

t by equation (3.5.13).=-A+

z* ) min(I, (6.4.ls)

The peakedness of the input stream has a lower bound of :-2

which occurs for a deterministic distribution of very high intensity'

as shown by equation (3.4.22), hence

z
ER

I
-A + 

-1 

)

1-e-Ã



tr_I.

,N by (6.s.L2) (6.4.16)

This confirms the analysis of section 7.2 of Pearce and Potter L 25 ).

Tab1e (6.5.1) gives the peakedness of the input traffic

corresponding to Erlang distributions of order k=1r3,6,IO,- for

the indicated values of A.

Equations (3.5.13) and (3.5.21) were used to calculate these

values.

}4EAN INPUT TR.AFFIC (A)

I
,

5 7 9 11 13 15 (le)

1. OOOO 1. OOOO r. OO0o 1. 0000 1. 0000 1 - 0000 r. 0000

.68L2 .6774 .6148 .6735 .6726 .6115
Erlang

6 .5993 .5948 .5923 .5907 .5897 .5889

Phase 10 .5666 .56L7 .5591 .5586 .5565 .5560

k .5318 .5r2r .5099 .5076 .5067 .5058 - 5048

I

3

æ

TABLE 6.5.1

6.5 Features of Overflow Peakedness from Computed Charts

ff an inpu! stream, F, is Erlang order k, k=L,2' " ',

with its average interevent time identical to that of a negative

exponential- distribution parameter À, then

I(i) fo=A

where I = \/l

from equaÈion

frclm equation

(3.5.23)

(3. s. e) .

(6. s. r)



, k finite, from equations
and (3.5.I0)

LT2

(3 .5 .2)

(6.s.2)
(3.s.24)

(íi)
0(s)

k infinite, from equation

k
( iii) (A/ ÍA+j/kl) , k finite

0 (iu) (6.s.3)
-ê , k infinitee

substituting for 0(ju), defined by equation (6.5.3), into equation

(2.3.19) gives

I
l. I

( iv)
¡
Tf

=0

I
TT

=0t

k

k finite, rÞI

-1), k infinite, rÞl-
1, (u) (6.s.4)

r:I all k

The overflow weakness, fl¡, corresponding to the Erlang input

stream is obtained by substituting for ø, {U), given by equation

(6.5.4) into equation (2.5.6) .

The mean overflow traffic, MN which is the reciprocal of the

overflow streamts weakness was calculated for Erlang input sLreams

of order L r3 ,6,10 r-.

The varia¡rce VN, and the peakednes" ,N , of the overflow

traffic were forfnd by substituting calculated values of M" and

M*n, into equation (5.3.16) and (5.3.20) respectively, for these

particular Erlang input streams.

Families of curves were produced from these results. Fígures

6.5.1 to 6.5.5 correspond-ing to the different Erlang streams

illustrate the dependence of the ove:lflow peakedness z* (A) ' on the

p::j.mary group size N, when the input stream has a fixed int-ensity

I
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val-ue, A.

The effect of the phase of the Erlang stream, or equivalently,

the effect of smoothing the input traffic on the overflow traffic's

peakedness is demonstrated in Figure 6.5.6

Families of overflow traffic peakedness curves, correspondíng

to fixed primary group size are given in Figures 6.5.7 to 6.5.10

for the various Er1ang input streams.

The effect of the phase of the Erlang stream being offered to

a prÍmary group of fixed síze, on the overflow peakedness is depicted

in Figure 6.5.II.

One striking feature of all the graphs is their conìmon shape.

The curves of Figures 6.5.1 to 6.5.6 suggest that for all input

streams, Ek of constant intensíty A, there exists a unique

maximum value for the overflow traffic peakedness at N=N* say.

In the case of A=9 Erlangs illustrated in Figure 6.5.6' all the

input streams EtrEgrE6,El0rE- have their max value occurring at

N*=I2, but the value of ztz(9) ranges from 2.1-4 to I.52 corresponding

to k=l or co.

Símilarly the curves illustrated in Figures 6.5.7 to 6.5.10

suggest that there exísts a unique maximum value of the overflow

peakedness at A=A* for all- Erlang input streams offered to a primary

group of fixed síze. Figir:re 6.5.11 shows that the maximum val-ue of

z9 (A) ranges from l-.97 for a negative exponential input stream to

1.41 when the input stream is deterministic, but the maximum value

for al-I EtrEsrEt0rE- occurs at A*=7.5.
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CHAPTER VIT

THE E.N.R. METHOD AND RESTRTCTIONS IMPOSED

ON RENEWAL OVEFSLOVI SYSTEMS BY DIMENSIONING

7.I Introduction

"What is the effect on any general overflow system, (one with

any general renewal input), when a finite number of the overflow

moments are fixed?" Any restriction imposed on the system by these

moment values would necessarily be independent of the particular

distribution function chosen to model the interarrival l-imes of the

input stream. Holtzman I fO ] studied some invariant features of a

general overflow system produced when values of the mean and variance

of overflow traffic are given specified values. However, most

dj-mensioning procedures, ranging from the early work of Erlang t 5 ]

through to the recent work of Bretschneider t 3 ], Nightingale l, 2L ),

Schehrer [ 32 ] and Rubas [ 3I ], have assumed a particular input

stream. Any such procedures must necessarily incorporate properties

peculiar to the chosen input distribution.

The explicit moment formulae, derived in Chapter 5' are used to

both study the posed question and províde basic formulae needed to

establish a more general dimensioning method. This chapter is divided

into two sections. In the first section, we consider those

characteristics of general overflow systems which are made invariant

by specifying values for a finite number of overflow traffic moments'

In the second section, we develop a dimensioning method, called the

Equivalent Non Random (n.n.n.¡ method which is applicable for any

renervable input stream.
4.{-
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The inversion of explicit formulae for the factorial overflow

traffic moments is basic to any study on the invariant features

produced when dimensioning an overflow system by a finite number of

moments. One ínversion expression gives the weakness, f**, , of

the overflow stream from an increased primary group (the extra number

of trunks is determined by the number of specified overflo\n/ traffic

moments), as a simple function of the fíxed overflow traffic moments.

Many quantities applicable to overflow systems \,vere shown in Chapter 5

to be functions of only these f**, ", hence al-I these quantities are

invariant whenever the f**, are. The particular effect on an

overflow system caused by specifying two or three overflow traffic

moments is discussed, in detail. With the added restrictie¡ imposed by

assuming a negative exponential input stream, the inversion formulae

provide closed expressions for the input stream's weakness, A-1, and

the corresponding primary group síze, N, involving only three overflow

traffic values. Nightingale I Zt I in his ER-V,I dimensioning model,

recognised that three moment values were needed to provide an exact

dimensioning model if the input traffic was assumed random.

The E.N.R. method is based on formulae for the first two overflow

traffic moments for any Erlang input stream, phase k, k=\ ,2¡- - - ¡6-

Using computed values for the overflow traffic's mean and variance,

dimensioning charts, si¡nilar to the well known Wormald Charts, Gee

Nightingale I Zt l', page (49Ð, are produced. Two families of curves

are superimposed to produce a E.N.R. chart. Examples of these charts

are given for varíous input streams ranging from random to smooÈh.

Features common to all charts are discussed.
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7.2 Inversion of the Overflow Traffic Factorial Moment Formula

Since only the q (or q) steady staÈe occupancy distributions

on the secondary group need be considered in this chapter, the

following notation for the factorial moments of the overflow traffic

will be used,

cr (N)
n rQ

(N) (7.2.r)

Now the overflow traffic factorial moments were shol/\¡n to

satisfy

=oùn

0,r*r(N) = nrt I tf
r =O

-l from equation (5.3.2)

(U) l-t fto* equation (5.3.2a).

G,,*r (N) given bY

n
) (-r) f

N+ f

or equivalently

0
n+1

(N) = n! lfo N
t n+f

When the fínite difference representation of

equation (5.3.2) is inverted, then

N

I L
of

I-
N+r

t

I
N=

1

I
n=O

-1n! cln*1
(7 .2.2)

(7 .2.3)

t
n

(N)

whereas equation (5.3.2a) on inversion becomes

9. (u)
n+f

-lf s' -10n* I
(N)tfil r-rl'' Nr'!

o

The implÍcations of equation (7.2.2) on dimensioning general

overflow systems are investigated in this section.

If a finite nuÍiber of overflow moments, say oI ro2 r. .'ro¡ +l

are specified, then all of fN*r ,fN*r r... rfN*, can be determined from
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equation (7.2.2). Hence any of the overflow system's quantities

dependent only on any of the fN*, ,fN*z ,...,fN*, are necessarily made

identical for al-I the input streams by the chosen values of the r overflow

traffic moments.

Overflow quantities which are functions of f*rfN*l r...rfN+, are

listed below.

(i) Marginal occupancy for (N+r-l) primary trunks, given by

equation (5.3.18) with N=N*r-I, satisfies

-tu-FIt - rN+r- I N+r- I
-tf
N+

t=I ,2r... (7.2.4)

(ii) Laplace-Stieltjes transform at s=U of the overflow

distribution from (N+r-I) primary trunks, given by equation (2.5.20)

with N=N*r-1, satisfies

f N+r- l (7.2.s)ú^*. - , (u) r=L12r...
f

N+¡

(iii) Laplace-Stieltjes transform at s=rU of the overflorv

distribution from N primary trunks, given by equation (2-5-23),

satisfies

I

ü* (ru)

1T
r

r=L12r... (7.2.6)

(7 .2.'7)

(iv) Probability of loss on a secondary group of r trunks'

given by equation (5.4.L7) with L=r, satisfies

E
l- N*r

(v) Mean carried overflow traffic on a secondary group of

trunks , given by equation (5 .4 .2a') with L:r t satisf j-es

r



(vi)

group of
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-t (7 .2 .8)M=F-c
\,r.: tN*r-l - tN*, I r=I ,2r...

Ratio of lost cal-ls to carried calls on a secondary

r trunks, given by equation (5.4.25) with L=tt satisfies

r f
N

R
Nrf

r=L12r... (7 .2.e)t
f-fN.|-r N

(vii) Variance of carried overflow traffic on a secondary group

of r trunks, given by equation (5.4.29) \,rith L=t, satisfíes

I 
-lV = 11 ' - f - IN,r ^ N N*r'

-f-rff f -f-ffN*rN-NN+rN+lNNN+l
(7 .2 . rO)

f (f -f )
N*¡ ' N'l-r N' -f)r N'

The values of any overflov¡ traffic quantity listed above is

the same for all renewal input streams once values are assigned to

T overflow traffic moments. Hence dimensioning procedures involving

r overffo\d traffic moments restrict the structure of a general

overflow system by predetermining values (in terms of drrdzr...rot.)

for all these listed quantities.

7.3 Specification of Two Overfl-ow Traffic Moments

Most practical dimensioning procedures used in telephony involve

two overflow traffic moments which are usually the mean and variance.

Letting r=1, equation (7.2.2) becomes

f (î.
N. N+

-l -lf**, = G-t (N) * u, (N) . (7.3.r)

Thus any overflow quantity which is a function of f* and

f"*, is invariant of the form of the input stream once values are

specified for or and o[2. Putting t=L, in equations (1 .2.4) to

(7.2"IO) gives the fotlov¡ing specified qrrantities,



(i) H* = fN -lc
I

N+

I

L28.

(7 .3.2)

(7.3.3)

(7 .3.4)

(7. 3. s)

(7.3.6)

(ii) tJ;N

(iii) ñr

f*
(u) =c

EtN* l

f*

f**

(iv) 
\r.= fnq

-lEtN+
t

I

f*
(v) **' ,. f"*, -f*

, -f*-f*f** t f** 
t -f"-f*f**, (7.3.7)(vi)

+ (7.3.e)

(7.3.r0)
1.

, ( f** , -f*) f* ( fon* , -f*)

whìch simplifies to

üo.r.= (r;t - r;.t,J tt - r;t * r;-tr] (7.3.8)

Ttr-e marginal occupancy, Hra is used in telephony to describe the

decrease in overflow traffic when the primary group size is increased

by one. The substitution of f**, given by equation (7.3.I) into

equation (7.3.2), gives

-ì\=ctr-.[clr
_1_ - tdrl

Equations (7.3.2) and [7.3.5) impty

t4
N,

H*

This'result is apparent when the overflow system is viewed from
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an 'atomic' perspective, since the traffic carried on an additional

primary trunk is the same as that carried on a single trunk

(secondary group) when offered the Nth overflow stream from the

N previous individual trunks.

Equatiors (7.3.3) and (7.3.4) imply

ú* (ut (7. 3. 11)

Equation [7.3.II) means that ú*(U) can be interpreted as ttre

probability of loss when an overflow stream from the primary group

is offered to a single secondary trunk group. Holtzman [ 10 ]

recognised that tl;*(U) was independent of the inpuL stream for any

dimensioning procedure based on two overflov¡ traffic moments.

The irnplication of equation C7.3.8) is that not only the mean

but also the variance of the overflow carried traffic on a single

secondary trunk is invariant for any general overflow system once

values are assigned to 0,r and 9,2.

7.4 Specification of Three overflow Traffic Moments

Some dimensioning procedures, see Nightingale [ 21 ] and

Freeman I fO ], involve three overflow traffic moments. Methods

for measuring or estimating three overflow traffic moments are not

usually considered. practical by teletraffic engineers. However,

Èhis section shows that a great deal of additional information

concerning the structure of the overfl-ow system is provided by

assigning a value to clg.

ff otrQ2¿o3 are given specified values, then equation (7.2.2)

1T t
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(7.4.r)

(7.4.4)

(7.4.s)

-tf = Ct- + 2a"N+2 I
-1 -t+ 2s,
2 3

Therefore, all guantities which are functions of not only f* and

fN*r, see Section 7.3, but also of fN, f**, and f**, are

compJ-etely deternrined by ctlrcx2, and o3 regardless of the form

of the input stream.

The fotlowing quantities are functions of f**, and f**r.

-lli) H =f -fN+l N+l N+2
from equation (7.2.4) with r=2 (7.4.2)

or equivalently

4o*,, ,
-tE

f
N+1

f-r
N+2

from equation (7.2.8) with N=N*l

and r=I
(7 .4.3)

-t

ctN* 
1(Íi) rf**, [ul

[iii) \* r, ,

=- from equation (7.2.5) with r=2

from equation (7.2.9) with N=N+I

and r=l

f
N+2

f**,

EÊtN* 
z -tN* t

(iv) V**r,, -l -l -l -l(fr*, -f**, ) (r - f**, *f**, ) from equation (7.3.8)
(7 .4.6)

with N=N*I

Therefore the marginal occupancy for a primary group of (N+1) trunks,

the Laplace-Stie.Itjes transform at (s=U) of the corresponding

overflow stream and the variance of overflow traffic carried on a

single secondary trunk are fixed for any input stream once

values are specified for cxl rct2 and clg

The fol.lowing quantities determined by substituting r=2 into

equations (7.2.4) to (7.2.9) are functions of f" and f**,
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(7.4.7)

(7.4.11)

(i) 2
GtN+ 

2

(ií) \,,
-l -rEC'tN - tN+2 (7 .4.8)

f*
(7.4.e)(iii) \,,

fN*, -'f¡¡

The following quantities are functions of fN, f**, and f**,

Af
N from equation C7.2.6) with t=2 (7.4.r0)(i) ü*(zu)

Áf**,

fN+ 
2 -fN-2 f*f** 

' 
f** 

' 
-f*-f"f*n ,

fi

(ii) u",, -1(f¡¡- c

N+2

I

f**, (f**

from equation

, -f*) f* (f** 
r lf¡¡)

(7 .2.LO) with r=2.

Equations (7.3.3) and (7.4.10) imply that the overflow streams

Laptace-stieltjes transform at s=U and 2V is invariant of the

input s'tream once three overflow moment values are given. Simì-larly,

eguations (7.4.81 and (7.4.II) indicate that the mean and' variance

of the overflow traffic carried on a secondary group of two trunks,

are independent of the form of the input stream when three overflow

traffic moments are specified.

7.4.I DimensionÍns an Overflow Svstem with Neqative Exponential

Input using Three Overflow Traffic Moments

It was shown in section 7.3 that f**, and f"*, for any renewal

input stream must satisfy equations (7.3.1) and (7.4.L) vthen Utrcxz

and ct3 are given particular values.

If the input stream is now taken as being negatíve exponential,

the resulting overfl-ow streamts weakness from N trunks must also

satisfy the recurrence relation given by equation (5.5.6), that is



gr +2o"2 +2s"3

-t -t -l(N+1)crr +1 (N+z¡ (cl, +o, ¡+I

L32

(7.4.1.1)

(7.4.L.2)

and cl3 from

(7.4.L.2)

(7.4.1.3)

(7.4.r.4)

(7.4.1.s)

lM

,l
Af**r=(N+l)FN+1

Putting N=N*I, equation (7.4.1.1) becomes

Af**r=(N+2)fN+1+1

Sr:bstitutíng for f**, and f"*, in terms of ctl ,o2

equations (7.3.1) and (7.3.2), equations (7.4.1.1) and

can be expressed as

[=
-l(N+I) crr +I

-7 -tcll * dz

and
-1 -l(tl+z¡ (cr, -+o, - 

) +r
[=

-1 1 -l

-1 -l -l0t -1 -r+29,2 +2o"3'0 I ¡cx2

Equation (7.4.1.5) a linear equation in N, simplífies to

-l 'l .(o, +cr, )' - 3
(az +2d,

]\l = -1 (7 .4.L"6)

(7.4.L.7)

-t _1 -220,r cr3 - a,2

Substituting for N using equation (7.4.1.6) , equation (7.4-L.3)

simplifies to

t -t0 (ur+cl,r)-02
[=

2cx,r ot3 - d.2

Equation (7.4.L.7) is equivalent to Nightingale | 2I l, page 46,

equation (26) -

A sirnple expression for the third factorial moment of the

I
I

-l -1



overflow traffic involving only the first two moments' A and

ís obtained by subtractíng equation (7.4.L.7) from (7.4-L.6) 
'

giving

-'r -! I -l -l -l -l -r(clr-+cr,, l'-(a, +2cI3 )-ct (clr +o, )+oz

Rearrangement gives

2ct r 3
dz

-2- - -l -la.2 [N+2-AJ +clr 02

133.

(7.4.1.8)

(7.4.r.e|

(7 .4. r. 10)

N

N*I-A= -l -t
tdg

-2
2s,

Equation (7.4.1.8) simplifies to

-ldz

ct
2

1 -t*dz -t(cxl ) - 2c.ts

N*I-A= I _2I
o,

-l0g
1
2 1+0r (s+t-a)

The closed form expressions for A and N, given by equations

(1 .4.L.6) and. (7.4.I.7) can also be obtained by solving the explicit

expressions (5.5.2g) and (5.5.3I) which give dz and o3 as

functions of A, N and C1,1. The existence of such closed form

exp¡essions implies that an exact dimensioning procedure exists when

the input stream is assumed to be negatj-ve exponential and three

overflow traffic moments have known values.

7.5 Equivalent Non Random }4ethod

The Equivalent Non Random (E.N.R.) method is a departure from

conventional- dimensioning procedures for smooth overflow systemst

for which the peakedness of the overflow traffic < I. The approach

of Bretschneider t3 ] and Nightingal-e [ 2I ] for dimensioning

such overflow systems is to assume a negative exponential input
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stream, (although it necessarily must be smooth by equatíon (6.4.12),

and extend the range of the equivalenÈ primary group size to include

negative real values. The E.N.R. method assumes the input stream

to be Erlang with sufficiently large phase for the specified

smoothness of the overfl-ow traffic. The particular Erlang distributions

considered in this section are E3, Es, Et 0, and E- although the

procedure can be applied to any given renewal stream. The intensity

of the assumed Erlang stream is made identícal to that of a negative

exponential streamf parameter À, see section 6.5.

The mean overflow traffic, I\, produced from any Erlang input

stream satísfies equation (5.3.2a) with D=0, gíving

M =0rN lfo
N

I
r =O

9" (u) l -t (7. s.1)

7

N

T r

where fs and L (U) satisfy equations (6.5.1) and (6.5.4)
r

respectively.

The variance, VN,

determined from equation

corresponding to this overflow traffic is

(5.3. 16) , that is

(7 .s.2)

Va1ues of \ and V* corresponding to a given input stream are

computecl for ranges of values of both A and, N. The tabulated

results are then used to produce dimensioning charts of M* versus

VN. Each specified input stream has a corresponding chart. Figures

7.5.1 t.o 7.5.4 are examples of these E.N.R- charts for Et, Eg, El0' D

input streams. l\fo famifies of curves, illustrated in figures 7.5.5

and 7.5.6, are superimposed to produce these charts. The family of

V=
N

oai r; _þ- - rr
N N+I
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curves depicted in fign:re 7.5.5 corresponds to increasing the input

streamrs intensity for fixed N values whereas figure 7-5-6

ilLustrates the effect of increasinq the prirnary group size for

fixed A val-ues.

Once an E.N.R. chart has been produced for any particular renewal

input stream, the values of A and N which correspond to the

specified values of \ and Von can be determined from the chart.

V'Iilkinson pioneered the dimensioning of overflow systems by

charts, see Wilkinson [ 4I ] p.448-45I. The original 'lVilkinson'

chart was produced from equations (5.5.5) and (5.5.30) for the mean

and variance of the overflow traffic from a negative exponential

input stream. Using the 'Wormald' chart, Bretschneider t 3 ] and

Nightj-ngale [ 21 ] extended !'lilkinson's concept of a dimensioning

chart for a negative exponential input stream' by permitting negative

N values. The assumption of an Er1ang input stream of sufficiently

large phase is basic to the E.N.R. method. This guarantees a positive

number of eguivalent primary trunks, irrespective of the degree of

smoothness specified by the given \ and V" values.

7.5.1 Features of the E.N.R. Charts

(i) AÌI the charts have a conmon shape. The invariance of

the marginal occupancy for a mean overflow traffic of 7.7 ís

ill-ustrated in tign:re (7.5.7) when F is E3. This property has

been shown in section 7.4 to hold for any renewal- inpuÈ stream.

(ii) As the Erlang phase k increases, the peakedness of the

overflow traffic for a heavy input stream, decreases. This property

was demonstrated in section 6.4. Tabl-e (7.5.1) gives the peakedness,
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taken as the reciprocal of the slope of the curve corresponding to

one trunk, folr different input streams.

Table (7 . 5. 1)

(iii) A linearity condition relating the mean and variance

of the overflow traffic is shown ín Figure (7.5.8) , and can be

expressed by

Mr+k (A+k) - Mr (A)
+k

(A+k) - vr (A) lÞ lv (7. s. r)
A

The slope of such lines is a function of the input intensity A-

Table (7.5.2) shows the decrease in slope with increasing input

intensity calculated for F = El o. Such tables can be cal-culated

for every E.N.R. chart.

.1459 .l-281r .LL402 .10266 .0923 .08544 .0739Þ
A

I 9 10 1t L2 13 T4A

Table (7 .5.2)

1. 0098 .7569 .67L4 .58706 .5533 .5015
overflow

peakedness

1 2 3 6 IO æPhase k
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CHAPTER VTII

CONCLUSIONS

A new intensity measure for a renewal stream, that of

weakness, rr¡as used extensively as a basic descriptor for many

overflow traffic quantities throughout this thesis. Expressions

for the renewal overflow sÈream's Laplace-Stieltjes transform and

the binomial moments of the steady state 9, -q*, T, i, occupancy

distributions for a group of trunks were obtained by means of a

unified queueing methodology.

The tgroup' and tatomict views of renewal overfLow Systems

enabled features of overflow traffic to be examined. The 'group'

approach, with the overflow traffic factorial moment theorem,

resulted in explicit formulae for all offered and carried overflow

traffic moments as weII as the related statistical quantities of

peakedness and coefficient of variation. These formulae were

expressed either as functions of divided differences of the overflow

Streamts weakness or by equivalent functions of the input streamrs

Laplace-Stieltj es transform.

properties of the peakedness and the coefficient of variation

of overflow traffic were examined by means of the 'atomic' approach'

Features of graphs produced for various Erlang input streams'

provided insight -ínto possible characteristics of the peakedness of

overflow traffic. One avenue which might be pursued in future

research is that of an analytic study on the existence' uniqueness

and vaLue of a maximum overffow traffic peakedness.
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The inversion of Èhe explicit overflow traffic moment formulae

was fundamental to the examination of the effect on general overflow

systems when a finite nruÙcer of overflow traffic moments have

specified values. One consequence for colnmon dimensioning models,

which are based on two overflovr traffic moments ' was that the

marginal occupancy is completely determined by the two moment values

irrespective of the form of the input stream. An exact dimensioning

procedure, using three overflow traffic moments' \das established for

random_,iTput traffic. The existence and simplicity of such formulae

questlon the accepted convention of basing dimensioning procedures on

two moments. A study on the implications and. permitted ranges for

overflow traffic moment values o¡r the possible form of an input

stream is a possible extension of this work.

The basis and formulaÈion of the E.N.R. dimensioning procedure

was discussed. To illustrate E.N.R. dimensioning charts, various

Erlang streams were chosen to typify possible smooth input streams.

Common features of shape and linearity as well as properties of

peakedness and marginal occupancy were characteristics of these charts'

Future anal-ytic research on underlying mathematical structures

evidenced by these charts might provide insight into their conìmon

shape and linearity conditions.
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APPENDTX I

FINITE DIFFERENCE CALCULUS

It is appropriate to introduce the following notation'

be an oþerator, used in Finite Difference Calculus' see

43 ], p. 132 to advance the argument of a function by

Let E

Wylie t

one, i.e

where
(E-1) n

k=o

The forward difference operator 
^, 

is defined by

At = (e-t)n

and the ,rth divided difference function X(N), denoted by

x(N,N+Ir... rN*n) satisfies

Ekf* = f***

Ï til t-rln' k"k

x(N,N+1r...,N*n) = 4' "t*,

(I.I)

(f .2)

(r.3)

(r.4)
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MOMENTS OF OVER¡'LOVI CARRIED TRAFFIC

Carried overflow MomenÈs in Terms of the L"r

= n!F(N,L,n) [fo N -t

rlt ø, tul
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N

r =O

rÍC[
n

CT,

n

(N)

(N)

(N)

(N)

(N)

(N)

(N)

(N)

= n!F(N,L,n) [nff I t o

o (u) l

N

rul i tll t"- ,*, {u) ) -t
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(rr. 3)

(rr.4)

(rr. s)

t)l ln- ,*, (u) J 
-

(rr.8)
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