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Abstract

Structure and movement of molecules in the Debye layers of a neuron is of fundamental
importance to the function of a neuron. This thesis is an investigation into the hydration
and distribution of mobile ionic species adjacent to the membrane walls of a model neuron
using electrical double layer theory.

The model neuron considered has two separated planar membranes thus creating the
intra/extra cellular fluid regions. The membranes are modelled as a continuum with
an associated dielectric constant and surface charge density. One and two semi-infinite
membrane geometries are also considered as limiting forms. The fluid regions are modelled
as a hard sphere ion-dipole system with the dipoles creating the solvent structure through
the angular dependent potentials. The limiting form of a point ion-dipole system is also
considered for the fluid regions.

The BBGKY hierarchy of partial differential equations for the correlation functions
are truncated with Loeb’s closure relation to determine expressions for the number den-
sities and pair correlation functions of the ionic species and dipoles. The results obtained
for the pair correlation function indicate a shielding both in the normal and transverse
directions. The shielding in the transverse direction occurs because the charge on the op-
posite side of the membrane is able to redistribute itself, screening the potential between
molecules. Comparison of the two membrane point model system (at large separation) and
the one membrane point system plus the effect of membrane thickness are investigated.

Calculation of hydration numbers for the mobile ionic species are also presented.
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Chapter 1

Introduction

The structure and distribution of mobile ionic species in a solvent medium (predominantly
water) is of fundamental importance to the function of a neuron. Together with the struc-
tural and electrostatic properties of the membrane these factors determine the strength
and duration of the nerve signals. Of critical importance is the structure of the fluid ad-
jacent to a membrane wall. Electrical Double Layer (EDL) theory will be used to model

this region of fluid.

1.1 Description and function of neurouns

1.1.1 Structure of a neuron

The gross anatomy of the neuron cell of most animals is as follows. The soma (cell body)
contains the nucleus and cytoplasm (intracellular fluid). Attached to the soma is a tube-
like structure called the azon which is the medium for the propagation of the nerve signal.
At the base of the axon is the azon hillock which is the site for the initiation of the
nerve signal. The nerve signal reaches the terminal branches called synapses which form
the connections with the dendrites which receive the nerve signals to the soma [1]. In
primitive animals (such as the leech [2]) the distinction (in function) between axon and

dendrites tends to disappear.
1.1.2 Ion transport through cell membranes

Though the nerve signal or action potential travels longitudinally to the axon it is trans-

mitted due to voltage differences across the membrane (width =~ 50 — 100A4) of the axon.



The voltage difference is due to a variation in the concentration of the mobile ionic species
in the intracellular and extracellular fluid and differences in the fixed charge associated
with protein at the membrane surfaces and in the cellular fluid regions. The most impor-
tant mobile ionic species being Na*, Kt ,Cl~ and Ca'™ ions. The Na™ and C!~ ions
constitute more than 90% of the ionic species in the extracellular fluid but less than 10%
in the intracellular fluid. In the intracellular fluid the dominant ionic species are K ions
and negatively charged organic molecules. In general the membrane is impermeable to
negatively charged organic molecules. As a result in the resting state, when the membrane
is polarized and the concentrations of the ionic species is stable, there is a potential dif-
ference of about 90mV with the intracellular fluid negative relative to the extracellular
fluid. See Table 1.1. The membrane is called an excitable membrane since the permeability
decreases with an increase in the potential difference across the membrane [3], [4], [5]. It
should be noted that even in the resting state there maybe some leakage of potassium ions
across the membrane if the concentrates are not in chemical equilibrium [6]. During the
depolarization and then repolarization stages of the action potential, the concentration of
the ionic species varies due to diffusion across the membrane.

The membrane wall or lipid bilayer consists of protein molecules embedded in lipids.
Transport through this bilayer is either via interstices in the lipids which act as channels
and by a “pumping” mechanism associated with enzymes in the membrane. The relative

impermeability of ions through the lipid bilayer occurs mainly because

1. most of the ions are hydrated (see below) which greatly increases their size and

therefore reduces the movement through channels in the lipid bilayer, and

2. electrical charge of an ion interacts with the charges of the lipid bilayer and

causes a repulsive force between the charged species.

The relative importance of these factors depends of structural properties of the channels
and the state of the neuron [6].
The enzymes or transport proteins act selectively to the type(s) of mobile ionic species

which can be transported across the membrane due to channel’s size, shape and the amount



of electrical charge along its surfaces. Diffusion through these channels is by the process
of simple diffusion — due to the kinetic movement of the molecules and is in the direction
of the electrochemical gradient caused by variations in concentration, electrical potential
and pressure between the intracellular and extracellular fluids. Active transport of ionic
species is against the electrochemical gradient and thus energy must be imparted to the
diffusing ions. The active transport of sodium into the extracellular fluid and potassium
into the intracellular by the sodium-potassium pump mechanism with energy derived from
metabolic processes. The carrier proteins are distinguished by their ATPase which can
cleave ATP (to form ADP or AMP) with the release of energy by breaking the phosphate
bonds. The mechanism that then imparts this energy to the diffusing ions is still unclear
[6].

The sodium transport protein selective to sodium ions is mainly characterized by the
high amount of negative charge along its inner surface. These charges attract sodium ions
in preference to other ions due to the electrical “bareness” (only one set of orbital electrons)
of the sodium ion. Once inside the channel these ions diffuse due to their kinetic motion.
Whereas, the potassium transport protein is slightly smaller than the sodium transport
protein and does not posses the high amount of negative charge. Thus its selectivity to
potassium ions is not due to Coulomb forces but rather the smaller size of the hydrated
potassium ion.

An important difference between Nat and K mobile ions is the binding of the water
molecules in their primary hydration shell. For the Na™ ions, the water molecules are more
strongly held than for the K™ ions, such that the K+ ions more easily exchanges water
molecules while moving through the fluid resulting in a faster transport rate than for the
Nat ions. Transport rate of the divalent ion Cat™ is lower than for the monovalent ions
Na™ and Kt due to its larger hydration number and hence size [7]. See Table 1.2. Thus
the hydration of the ionic species is an important phenomena in the transport through the
fluid regions and membrane. In general the CI~ and KT ions are more permeable than
the Na™ ion.

To gain a further understanding of the relationship between the concentration of the



Molecule | Intracellular | Extracellular |
Na™* 10 142
Kt 140 4
et | we |
o | 4 | w

Table 1.1: Concentrations (mM) of the major mobile ionic constituents of the intracellular
and extracellular fluid for a neuron

various ionic species and the electrical and chemical potentials, macroscopic models have
been proposed including the pioneering Hodgkin-Huxley model [8], [9], [10], [11]. More
recently, Green and Triffet [12], [13], [14], [15], [16], [17], [18], [19] and their associates
Vaccaro [20], [21] and Sherwood [22], have had considerable success (e.g. explaining the
role of calcium in the action potential) by predicting changes in the chemical and electrical
potentials due to variations in the concentrations of the mobile ionic species not only in
the intracellular and extracellular fluid but within the membrane itself. As a result, the
Green-Triffet model is an advance on and helps to explain the empirical success of the
Hodgkin-Huxley model.

The Green-Triffet model essentially combines the equations of continuity and the Boltz-

mann distribution for the number density of the ionic species to yield

W =26 9) (11)

where ¢; is the chemical potential and ; the inverse diffusion coefficients associated with
the ith type of ionic species with ¢ as the mean electrostatic potential. This equation can
be closed by the use of Poisson’s equation for the mean electrostatic potential, resulting
in

Yi %‘iﬁ _ V2¢i 4 gl Z:ekn,oc [exp[—ﬂek¢k] -1f , (1.2)
€ %




where ey, is the charge, n) is the number density of the kth type of ion in the bulk of the
electrolyte and € is the dielectric constant. The inverse diffusion coeflicients used in this
equation are determined by experimental techniques. As noted above, hydration of the
ionic species is an important factor in determining the transport rate (rate of diffusion)
through the intracellular and extracellular fluid regions and membrane. Even though
the diffusion coeflicients for the mobile ionic species do not exhibit a large variation, a
theoretical model to determine these coeflicients would be advantageous in discussing the
possible solutions of Eq. (1.2). This is our motivation for developing a model to determine
the hydration of the ionic species in the intracellular and extracellular fluid regions with
particular emphasis on the structure near a membrane wall.

The theoretical framework for the determination of the diffusion coefficients is through
statistical mechanics. The importance of such a molecular description to support the
empirical relations of the Hodgkin-Huxley model was recognized by Agin [23]. He showed
the connection of such solutions with the ensemble average of statistical mechanics. A
detailed statistical mechanical description of the action potential in terms of the one and
two body distribution functions was first presented by Vaidhyanathan and Phillips [24].
However, the resulting equations were only solved in the Debye-Huckel approximation.
In both these and subsequent papers by Agin [25] and Arndt, Bond and Roper [26], the
importance of an electroneutrality condition in regards to the type of solutions for the
electrodiffusion equation is discussed. The two types of electroneutrality considered are

1. microscopic electroneutrality, Zemi = 0, where all ionic charges add to zero

1
at every point in both of the fluid regions and membrane, and

2. macroscopic electroneutrality, / dzZein,- = 0, such that the total ionic charges
i

integrated over the fluid regions and membrane (in one dimension) is zero.

In the case of no concentration gradients, macroscopic electroneutrality is equivalent to
microscopic electroneutrality. Microscopic electroneutrality, in the context of constructing
solutions to the electrodiffusion equation, provides a mathematical simplification. This

is a valid approximation for an aqueous electrolyte solution but is not applicable to a



biological membrane [25]. The criteria for determining the applicability of the micro-
scopic electroneutrality condition in the membrane is the ratio of the Debye length in the
membrane to the membrane thickness being < 1 [27].

A related electroneutrality condition is that of electroneutrality in the bulk electrolyte
solution such that all ionic charges in the fluid regions where the membrane wall(s) have
negligible effect, i.e. in the far normal distance limit, add to zero. The bulk electroneu-

trality condition is given by

dlemnd=0. (1.3)
)

This particular electroneutrality condition is used in most physiological text books, for
example [1], [2], as a simplifying assumption for the discussion of electrical and chemical
concentration gradients even though the condition is not satisfied in a neuron. It should
be noted that all these definitions do not include the prescence of surface charges (protein
molecules) on the membrane walls. The correct electroneutrality condition for a biological
membrane system is macroscopic electroneutrality that includes the prescence of surface

charges i.e.

fdzZe,-ni+a=0 , (1.4)
i

where o is the surface charge density and the region of integration is over the fluid regions
including the membrane.

The determination of the electrostatic potentials is simplified by the cylindrical geom-
etry of the neuronal cell. The natural length scale of the system is determined by the
Debye screening length which for physiological concentrations has a value of about 54 in
the resting state. However, this value is appreciably less than the diameter of the smallest
mammalian nerve fibres (= 10004). Thus we will neglect the curvature of the membrane
since we are mainly interested in properties near the membrane wall and consider rather
the simpler geometry of planar membranes. But it should be noted that in the dynamical
phase of the action potential the concentrations vary such that the effective Debye length

becomes much larger than in the resting state and possibly comparable to the membrane

thickness [14].



1.2 Electrical Double Layer (EDL) Nl

1.2.1 Description of the EDL

Under equilibrium conditions, the time average forces are the same in all directions and at
all points in the bulk of the intracellular and extracellular fluids (the system is isotropic
and homogeneous). Forces acting on molecules near a membrane wall are anisotropic
(different from bulk electrolyte forces). These different forces at the membrane wall effect
the distribution of solvent molecules (water) and charged solute molecules. Thus there is
a net orientation of the dipoles (associated with the water molecules) and excess charge in
the fluid region adjacent to the membrane wall. Once the extracellular and/or intracellular
fluid acquires an excess charge an electric field is detected across the membrane wall. The
term electrical double layer is used to describe the distribution of the solvent and solute
molecules near a membrane wall.

In general, if the membrane has an excess charge density, the distribution of the
molecules is as follows. The first layer from the membrane wall is mainly occupied by
solvent molecules. This layer is referred to as the hydration sheath of the membrane
wall. The next layer is mainly occupied by hydrated charged solute molecules. The locus
of centres of these hydrated ions is called the Outer Helmholtz plane (OHP). Although
the hydration sheath of the membrane wall is mainly occupied by water, there are some
charged solute molecules in the same layer. The locus of the centres of these charged
solute molecules is called the Inner Helmholtz plane (IHP). It is important to note that
these charged solute molecules in the IHP are unhydrated. Such charged solute molecules
in the THP are in contact absorption with the charged wall [28], [29], [30], [31]. It should
be noted that the above description of the EDL is a time average view of a dynamical

system. See Figure 1.1.

1.2.2 “Primitive? Models of the EDL

The historical development of the theoretical explanation for the EDL phenomena can be
traced back to von Helmholtz [32]. He proposed that the membrane wall and the IHP

could be considered as plates in a capacitor thus creating a potential difference between



Solvated positive ion

Unsolvated negative ion

@ Water molecules

Figure 1.1: Schematic representation of the distribution of molecules near a negatively
surface charged membrane wall showing the IHP and OHP.



the planes. The major assumption being that all the charged solute molecules on the time
average remain in the IHP. Also the charged solute molecules are point molecules and
thus no effects due to their size was considered. The solvent molecules were modelled as
a dielectric continuum with an associated dielectric constant. Thus, as in a capacitor, the
potential between the planes has a linear variation with distance. This model is simplistic
but does exhibit some properties of the EDL.

The next major development was independently proposed by Gouy [33] and Chapman
[34] and is known today as the Gouy-Chapman (GC) theory. They suggested that the
charged solute molecules are not constrained to the IHP but are free to move. Thus the
charged solute molecules experience the field produced by the membrane wall and the
thermal motion of the other charged solute molecules. Equilibrium will be achieved by
a balance of these forces and a theoretical distribution of the charged solute molecules
in the region near the membrane wall can be derived. The derivation of the distribution
essentially comprises of equating the charge density p(z) as predicted by Poisson’s equation

and that predicted by Boltzmann and then linearizing the equation

p(z) = —k2(2) (1.5)

where 1(z) is the potential between a plane at distance z from the membrane wall and

the bulk of the electrolyte. Explicitly the potential is given by

P(z) = 9%, (1.6)
such that 90 is the potential at the membrane wall. The constant % (inverse Debye length)
is defined by
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This model is in general agreement with experimental data only at low concentrations

i.e.< 0.01M [30].

The major criticisms of the GC theory have been

1. the “intuitive® coupling of Poisson’s equation (electrostatics) and the Boltz-

mann equation (statistical mechanics) rather than a rigorous development from



the equations of statistical mechanics,

2. the applicability only at low concentrations since the Boltzmann equation ne-

glects the interaction between charged solute molecules, and

3. the molecules are point molecules and thus effects due to their exclusion volume

are neglected.

It is interesting to note that the Gouy-Chapman theory was proposed a decade earlier
than the Debye-Huckel theory for electrolytes [35].

In the year after the development of the Debye-Huckel theory, Wagner [36] proposed
a model that included the effect of “image” forces due to the differences in the dielectric
permittivity of the fluid region and membrane. This model was subsequently generalized
by Onsager and Samaras [37] and thus today is known as the Wagner-Onsager-Samaras
model. It also incorporates the effect of the distortion of the “Debye sphere” surrounding
a charged solute molecule near a membrane wall. One advantage of this model over
the GC theory is the incorporation of the effect of the interaction between the charged
solute molecules. Though in the original model the interaction between the charged solute
molecules and the surface charges was neglected and the equations were derived again in
an intuitive way by combining the Poisson and Boltzmann equations.

A combination of both the von Helmholtz and GC models was proposed by Stern
[38]. In his model the charged solute molecules have a distance of closest approach to the
membrane wall. At this distance there is a plane of charged solute molecules. Thus the

effect of

1. the finite size of the charged solute molecules in relation to the membrane wall,

and
2. the contact absorption of charged solute molecules,
have been incorporated by introducing the “Stern® layer. The potential varies linearly

between the membrane wall and the distance of closest approach and past this plane (in

the bulk of the electrolyte) it has an exponential variation as predicted by the GC theory.
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Grahame [39] suggested that the charged solute molecules in contact absorption lie
in the IHP and the other charged solute molecules in the OHP. These two planes were
introduced to model the phenomena that some charged solute molecules that are unhy-
drated can move into the THP from the bulk region and others which are hydrated can
only approach up to the OHP. In the limit that the IHP and OHP coincide, we obtain the
Stern model.

All these early phenomenological models provide some insight into the theoretical de-
scription of the EDL but neglect, to varying extents, some important physical features
such as solvent structure, exclusion volume effects and the interaction between molecules.
The only consistent way of providing a theoretical description of the EDL is via the exact
equations of statistical mechanics, first considered by Buff and Stillinger [40]. Approxi-
mations are made in this formulation to the Hamiltonian that describes the EDL and the
bulk electrolyte and in solving the resulting equations for the distribution functions. This
type of theoretical formulation and refinements thereof form the basis of most research
into the EDL for the last thirty years [41].

The simplest formulation is called the Primitive Model (PM). The Hamiltonian in
the PM consists of the separation and orientation of only the charged solute molecular
coordinates. Effects of the solvent are neglected as a first approximation. The charged
solute molecules are considered to be hard spheres with an embedded point charge. The
membrane wall is modelled as a smooth, polarizable wall with uniform surface charge
density. Also included are the image charge effects in the Hamiltonian [42], [43].

Since the intermolecular potentials and equations in the above theories are approxi-
mate, it is impossible to compare the accuracy of any theory to experimental data. Rather,
a comparison can be made of a theory with a computer simulation using the approximate
intermolecular potentials as inputs and then the properties of the system computed for a

few thousand molecules. The simulation techniques that can be used are

1. Monte Carlo (MC) - an equilibrium ensemble is generated from a random walk

algorithm, and

11



2. Molecular Dynamics (MD) - the equations of motion are solved simultaneously.

For a charged hard sphere PM system, the MD technique cannot be used since the inter-
molecular Coulombic forces are both singular and long ranged—although the MC tech-
nique has been implemented by Torrie [44], [45], it does possess some inherent difficulties
due to the long range nature of the Coulombic forces [46].

The success of integral equations and the various closure relations for the correlation
functions (compared with computer simulations) in the region of the bulk electrolyte,
excluding membrane wall effects, [47], [48], [49], [50], has prompted their use in the the-
oretical description of the diffuse part of the EDL. The two major integral equations
are the Ornstein-Zernicke (OZ) [51] and the BBGKY hierarchy, named after its authors,
Bogolyubov [52], Born and Green [53], Kirkwood [54] and Yvon [55].

The OZ integral equation defines a relationship between the direct and indirect cor-
relation functions. This has to be supplemented with a closure relation for the direct
correlation function so that the OZ integral equation can be solved. In the theory of
bulk electrolytes the most accurate closure relation is the Hypernetted Chain (HNC) [49].
However, the HNC gives a poor approximation for the exclusion volume of the molecules
near the membrane wall and is not a good approximation for the EDL at low concen-
trations and surface charge density. Improvement with computer simulation is noted if
the Mean Spherical Approximation is used rather than the HNC [56]. The OZ integral
equation with the HNC closure relation is seriously flawed in its inability to handle image
interactions due to differences in the dielectric permittivity. This stems from the fact that
the Hamiltonian, that includes image interactions, has its translational invariance violated
and thus the derivation of the OZ integral equation via density functional techniques is
no longer valid [41].

An interesting method, presented in a series of papers by Kjellander and Marcelja [57],
(58], [59], [60], [61], [62], [63], is to transform a three dimensional inhomogeneous system
between charged walls into a two dimensional homogeneous system. This two dimensional

homogeneous system can then be numerically evaluated using the HNC closure with the
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OZ integral equation. The advantage of this method is its ability to handle the image
interactions since there is no violation of the translation invariance in the lateral direction
for the new system. The numerical solutions show excellent agreement with computer
simulations.

The BBGKY hierarchy are a set of coupled integro-differential equations that relate
the n body distribution function to the n+1 distribution function. In addition, a closure
relation that gives an approximate expression for the n+1 distribution function in terms
of lower order distribution functions is necessary to close the set of equations at the nth
level of the hierarchy. The major advantage of this set of equations over the OZ integral
equations is the possibility of including image interactions although this is computationally
intensive due to the evaluation of multiple integrals. Numerical solutions show good
agreement with computer simulations [64], [65], [41].

In parallel development with the integral equation theories has been the emergence
of Modified Poisson-Boltzmann (MPB) theories. The GC idea of combining Poisson'’s
and Boltzmann’s equation is further exploited but features such as the exclusion volume
effect, correlations between molecules and image effects are not neglected. Outhwaite,
Levine and Bhuiyan [66], [67], [68], [69], [70], {71], [72], [73] have presented a whole series
of related theories called MPB1, MPB2, ..., MPBS5 which improve on these various effects.
The numerical solutions are very good compared with numerical simulations provided the
surface charge density is low. If this is not the case then excluded volume effects become
dominant and the theory fails. Also possible are analytic solutions for the potentials in
certain geometries [74]. Improved credibility of the MPB theories has been obtained by
their derivation from the BBGKY hierarchy by Outhwaite [75].

Another method of improving the GC theory is to assume a smooth variation of the
dielectric permittivity from the bulk region, across the diffuse layer into the membrane.
Various forms for the variation have been considered by Perram and Barber [76] and Buff,
Goel and Clay [77], [78], [79], [80]. The major criteria for these forms have been the
correct limiting values in the bulk and membrane regions, sufficient differentiability and

the ability to calculate analytic solutions from Poisson’s equation. These solutions are in
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close agreement with the predictions of the GC theory.
Despite its deficiencies, the PM of charged hard spheres near a charged hard wall,
embedded in a dielectric continuum, is by far the most studied and well understood model

of the EDL. As quoted from Blum [81]

The primitive model should not be considered as a working model for the
interpretation of experimental data, but rather a learning model for the theo-

retician.
1.2.3 “Civilised? Models of the EDL

In the above models of the EDL, the solvent has been considered to be a dielectric contin-
uum. Any structure of the solvent has been neglected. Theories that describe the whole
transition from the diffuse region near the membrane wall to the bulk electrolyte and
include the solvent structure have emerged over recent years with particular emphasis in
putting the solvent molecules on equal footing with the charged solute molecules. Such
models are called “civilised” models.

As a first attempt to introduce solvent structure, models for the solvent molecules in
the THP exist [82], [83]. Though outside the IHP, in the diffuse layer, the fluid structure
is a continuum. Also there are no charged solute molecules in the IHP. These models
give an insight into the dielectric properties near a membrane wall but fail to account for
interactions between solvent and charged solute molecules in the diffuse layer with the
solvent molecules in the IHP.

Numerical models for dipoles alone (water molecules) near hard walls have been devel-
oped by Isbister, Rasaiah and Eggebrecht [84], [85], [86], [87], by using the HNC closure
relation for the OZ integral equation. An important feature is the dielectric function de-
creases as the distance of approach to the wall decreases. This is due to the ordering of
the dipoles in a minimum energy arrangement adjacent to the wall compared with the
random orientation in the bulk region. Such models are important in the verification of
models that include charged hard sphere molecules (e.g. Torrie, Kusalik and Patey [88],

[89], [90], [91]) in the limit of zero density for the ionic species. It should be noted, as in
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the PM, these theories neglect the effect of image forces.

Outhwaite has presented in a series of papers [92], [93], [94], [95], an extension of
the MPB theory for the PM to the hard sphere ion-dipole system. Analytic solutions
are obtained for the linearized version of the equations for the potentials and thus the
distribution functions. The solutions exhibit a damped oscillatory behaviour in qualitative
agreement with computer simulations. As for the PM, the MPB for the hard sphere ion-
dipole system has the advantage of incorporating image effects and analytic solutions are
obtainable for the linearized theory in the point ion limit. Though, it should be noted
that the dielectric constant derived from the linearized theory is only applicable to a low

density dipolar system.
1.3 Hydration of ions

The ionic hydration number is defined by the number of water molecules “attached” to
an ion [7]. This definition is ambiguous due to the inherent difficulty in defining the term
“attached” in a quantitative manner. The spirit of the definition is to differentiate between
water molecules that are chemically and/or electrically attached to the ion and those that
are in the bulk of the fluid on the time average.

Bockris® view [96] of hydration and thus hydration number is a refinement of the above
definition. He proposed that a certain number of water molecules (dipoles) are orientated
by the field produced by an ion and form an immobile sheath of water relative to the ion.
They are strongly bound by this ionic field and experience negligible influence from the
other molecules in the fluid. The size of the region should only be a few angstroms due
to Debye shielding of the ionic field. This region is called the primary hydration sheath
and the number of water molecules in it called the primary hydration number. The region
between the primary hydration sheath and the bulk fluid is called the secondary hydration
sheath and the number of water molecules in this region is called the secondary hydration
number. Again this is an ambiguous definition but the ambiguity is now localized to the
secondary hydration sheath. In this region, the field due to the ion is tending to orient the

water molecules parallel to the field and the other water molecules in the sheath are tending
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to align the water molecules into the bulk region arrangement. The picture proposed by
Bockris is of an ion with a immobile sheath of water moving through the fluid and the
water molecules in the second hydration sheath becoming attached and unattached and
being replaced by other water molecules as the ion moves. Typical range of values for the
hydration number for various ionic species are presented in Table 1.2. The numbers in the
table are an average of the different numbers obtained from the variety of experiments to
determine them [7].

Even though the size of the second hydration sheath is ambiguous, a precise definition
by Azzam [97] can be given for the primary hydration sheath in terms of the pair correlation
function g(r). The hydration number is based on the number of nearest neighbour water
molecules to the ion by the following relation

Rmaﬂ
nf = 47rng/ drrg(r) , (1.8)
RHS

k3

where ng is the number density of the water molecules in the bulk, RfI 5 is the hard sphere
radius of the ion and R,,,; is the first minimum in the pair correlation function between
the ion and water molecules. The first minimum defines the most probable location of the
hydrated sheath. However, this definition is only useful in the bulk region where the fluid
is isotropic and homogeneous. For our particular application, the number density and the
pair correlation function will have functional dependence on the normal distance from the
membrane walls and angular dependence on the orientation of the dipole (water molecule).

A modified integral expression for the hydration number is presented in Chapter 4.
1.4 Description of Model

The model discussed in this thesis is developed to investigate the structure of water
molecules in the vicinity of an ion, adjacent to a membrane, by the application of EDL
theory. Let us restrict our attention to hydration effects in the intracellular and extracel-
lular fluid regions only. We will not consider the effects of hydration in the membrane.
Also we will consider the neuron to be in the resting state and thus assume there is no net

transport across the membrane. The ion-dipole system of Chan, Mitchell, Ninham and
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Molecule | Radius A | Hydration No.
Nat 0.95 51
KT 1.33 442
Catt 0.99 B 122
Mg+t 1.00— 14+2
N Ccl~ 1.81 1+1 |
H,O 1.38 -

Table 1.2: Molecular hard sphere radii and hydration numbers.

Carnie [98], [99] and Outhwaite [93], [94], [95], will be used to model the extracellular and
intracellular fluids of the neuron.

Since protein molecules are the major component of the negative organic charge and a
constituent of the membrane it does not seem unreasonable to assume that a percentage of
the protein molecules can be modelled as a membrane surface charge density. The charge
balance is restored by including the contribution from the membrane surface charge density
and relating fixed charges associated with protein in the electrolyte. Thus the model is as
follows.

The electrolyte solution consists of mobile and fixed ionic species with hard sphere
diameters R;, electric charge e;, bulk number density n{ (i=1,..., M:M=no. of different
ionic species) and point dipoles with hard sphere diameter R4, number density ng and
dipole moment m(wj) such that w; describes the orientation of the dipole. The point
dipoles are introduced to model the solvent structure. The electrolyte is contained in
three regions which are separated by two membranes (of finite thickness L and separated

by distance 2D) and uniform surface charge density. The uniform surface charge densities
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model the negatively charged protein molecules protruding from the membrane walls which
create a negative potential. Also a constant negative background potential models the fixed
protein molecules in the electrolyte. The membranes are modelled as a continuum with an
associated dielectric constant. See Figure 1.2. We shall refer to this geometry as the two
membrane model. Typical values of the parameters from [3], [4], for the two membrane
model are presented in Table 1.3.

We also consider a limiting form of the above model by setting the surface charge
density and number densities in the extracellular region to zero and then taking the limit
as the membrane thickness tends to infinity, See Figure 1.3. This is called the two semi-
infinite membrane model. The two semi-infinite membrane model geometry is introduced
to test the solutions for two membrane model. The one membrane model is introduced to
investigate the effect of the presence of a second membrane in the two membrane model.

See Figure 1.4,

1.5 Omutline of Thesis

In Chapter 2 we present a derivation of the potential formulation of the distribution func-
tions from the BBGKY hierarchy in a similar manner to Outhwaite’s derivation [75] for
the PM. The method essentially involves the closure of the equation for the mean electro-
static potential with the first of the BBGKY hierarchy for the number density (in terms
of the mean electrostatic potential) and neglecting the integral terms which are first order
in the indirect correlation function. A similar process is involved in the determination of
the mean electrostatic fluctuation potential by its closure with the second of the BBGKY
hierarchy for the two body correlation function and truncating the resulting equation
using Loeb’s approximation. In addition for our derivation, we do not assume bulk elec-
troneutrality but rather a linearized version (in the mean electrostatic potential) of the
macroscopic electroneutrality condition for the interfacial regions. The differential equa-
tions in our derivation reduce to Quthwaite’s equations [94], [95], if bulk electroneutrality
is assumed. The point model systems are considered by letting the hard sphere diameters

of the molecules tend to zero. These equations are also consistent with previous results by
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Carnie and Chan [74]. Due to the cylindrical geometry, we perform a Hankel transform
in the transverse distance variable which reduces the partial differential equation for the
mean electrostatic fluctuation potential for the point model systems to a second order or-
dinary differential equation in the normal distance variable. The Hankel transform of the
mean electrostatic fluctuation potential is called the transverse Hankel transform mean
electrostatic fluctuation potential. The inhomogeneous term in the ordinary differential
equation for the transverse Hankel transform mean electrostatic fluctuation potential is a
Delta function in the relative distance between the source and field point. Thus the dif-
ferential equation defines a Green’s function problem which can be solved by the standard
technique of variation of parameters [100].

In Chapter 3 explicit solutions for the mean electrostatic potential and the transverse
Hankel transform mean electrostatic fluctuation potential for the two membrane point
model system are derived by applying boundary conditions at each of the membrane
walls. For the transverse Hankel transform mean electrostatic fluctuation potential, both
cases for the position of the source point are considered i.e. when the source is in the
extracellular and intracellular fluid regions. The solution to these ordinary differential
equations is written in terms of either Bessel or modified Bessel functions depending on a
charge asymmetry parameter that is introduced. Asymptotic expansions of the transverse
Hankel transform mean electrostatic fluctuation potential for both cases are presented
and show excellent agreement with a numerical solution of the differential equations for
the specialized case of the source and field point coinciding. Due to the complicated
nature of the expressions for the solutions, for each of the cases, consistency of the these
solutions with relevant limiting forms, presented in the Appendices and the one wall system

considered by Carnie and Chan [74], are verified. The limiting forms considered are

e large behaviour in the transform variable,

e D — 0, thus creating a system with one membrane and extracellular fluid on either

side,
e L — oo, reducing to the two semi-infinite membrane model system,
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e ¢)r — 0, the membranes are perfect insulators, and
® €)1 — 00, the membranes are perfect conductors.

Comparison of the two membrane point model system solution for the transverse Han-
kel transform mean electrostatic fluctuation potential, in each region, with that of the
one membrane point model system shows negligible difference in the region adjacent to
the membrane walls for typical values of the parameters as in Table 1.3. The effect of
the second membrane is negligible due to the large distance between the membranes 2D
compared with the Debye length. Provided the ratio of the Debye length to the distance
between the membranes is < 1, then the effect of the second wall is negligible. For the
purposes of calculating the indirect and pair correlation functions it is only necessary to
evaluate the transform inversion for the transverse Hankel transform mean electrostatic
fluctuation potential, in each region, for the one membrane point model system.

In Chapter 4 we present the calculation of the ionic hydration number for various ionic
species in both the extracellular and intracellular fluid regions. To obtain the ionic hydra-
tion number, we first calculate the inverse transverse Hankel transform mean electrostatic
fluctuation potential, in each region, for the one membrane point model system. Since
we are interested in the structure in the vicinity of the ion, which corresponds to large
values in the transform variable, the asymptotic form for large values of the transform
variable is inverted in closed form. Comparison of this analytic expression with a numeri-
cal integration of the transverse Hankel transform mean electrostatic fluctuation potential
shows excellent agreement. Thus this analytic form for the mean electrostatic fluctuation
potential is used in our proposed definition of the ionic hydration number which accounts
for the orientation of the dipoles (water molecules). Due to the inherent difficulties in
integrating functions that have both a normal and transverse dependence over a spherical
region, we propose to take the region of integration for the ionic hydration number not as
a sphere (as in Azzam'’s definition) but rather as a cylinder. Thus the cylindrical region
of integration is a simplification though the volume of the region will be similar to those

of Azzam’s spherical region.
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Figure 1.2: Schematic representation of a two membrane model geometry showing the
various regions and the associated inverse Debye lengths, dielectric constants and surface
charge densities.
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Quantity Value
L 50 A
D 100 4
og —0.53406E — 22 CA~2
o1 —0.53406E — 22CA 2
’/’g —-TmV
’»bF -92mV
dre 3

Table 1.3: Typical values of the parameters for the two membrane model.
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Figure 1.3: Schematic representation of two semi-infinite membrane model geometry var-
ious regions and the associated inverse Debye lengths, dielectric constants and surface
charge densities.
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Figure 1.4: Schematic representation of a one membrane model geometry showing the
various regions and the associated inverse Debye lengths, dielectric constants and surface
charge densities.
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Chapter 2

Equilibrium Statistical Mechanics

In this chapter we will consider in general the statistical mechanics of the electrical dou-
ble layer. Since the relative orientation of ions and water molecules is important, but
rarely considered in other contents, we briefly derive the fundamental equations and exact
conditions on various quantities of the EDL including the number density, pair and indi-
rect correlation functions from first principles. Then approximations to determine these

quantities will be introduced and their validity discussed.
2.1 Grand partition function

In statistical mechanics we construct an ensemble of the system (in particular a fluid for
our application) to be studied. An ensemble consists of an infinite number of identical
systems with the same macroscopic parameters but occupying different microscopic states
with the particles having different positions, momenta and possibly orientations. From
the distribution of the corresponding points in phase-space we construct the probability
density function. We wish to consider an ensemble of systems which can exchange both
heat and matter with a heat reservoir. Such an ensemble is called the grand canonical
ensemble.

The state of a system is determined by the following macroscopic (or extensive) pa-

rameters. They are

1. energy in a region of thermal contact (i.e. exchange of heat or energy is possi-

ble),
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2. momentum and angular momentum in a region of mechanical contact,

3. number of particles in a region of chemical contact (i.e. particle transfer is

allowed to and from the region), and

4. volume of a region of mechanical contact.

With these quantities there is an associated conservation law and each of them is

defined by a constant of motion C,. These are the

1. Ci=H=Hamiltonian or energy of the particles in volume V,
2. C5,C5,Cy=P= total momentum of the particles,
3. Cs,Cg, Cr=L= total angular momentum of the particles,
4. Cg=Ni=total number of particles of type one, and
5. Co=Ns=total number of particles of type two....etc.
For convenience, the set of the constants of motion is denoted by C = (C1,C2,Cs,....).

We introduce P(C), the probability that the constants of motion C have the value C

in the ensemble. From the laws of probability, we have the normalization condition

M. P(C)=1, (2.1)
C

where the summation is over all possible values of C in the ensemble. Also the average of

C is defined by
(C)=>)_CP(C) . (2.2)
C

Note that the functional dependence of the probability function is in actual fact
P(C) = P(C,(C),V) . (2.3)

Together with the fact that the constants of motion C are additive we have the usual form

for the probability function [101]

P(C) = Po(C, V) exp[~ 3 AaCu — /V dxh(x)] , (2.4)
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where Py(C,V) is a constant determined by the high temperature limit and the Ay's
are parameters which are determined by the state of the system. The function h(x) is
a function of x and due to the normalization condition, Eq. (2.1), is dependent on the
set of intensive (volume independent) quantities which can be expressed as functions of
A =(A1,22,A3,....). In turn, A = (A1, A2, A, ....) are functions of the volume and the other
extensive parameters (C) and it can be shown by thermodynamical arguments that h(x)
is proportional to the hydrostatic pressure at x [102].

Now we define the grand partition function E, in terms of A and the constants of

motion C, by

81
|

= S PRy(C,V)exp[-AC]
C

= exp [/deh(x)] . (2.5)

A variation in E with respect to A yields

Sn
5]
I

Z Py(C,V)[-6A-Clexp[—A-C]
C

= 6A-(C)E . (2.6)
Hence
1 68
ey = —=-°=
oh
= = deﬁ . (27)

Thus a knowledge of the dependence of the grand partition function on the parameters A

determines the average values of the constants of motion.
2.2 Distribution functions and the BBGKY hierarchies

We can now define the classical mechanical grand canonical phase-space distribution func-

tion from Eq. (2.4) as

P(C) ) )
PO(C,V) —FN(X]_,--.,XN,pl,...,pN,W1,-.-,WN) . (28)
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A quantal analogue is due to Wigner [103], and at ordinary temperatures approximates
very closely the classical function (except when free electrons are involved). For conve-

nience, we use the concise notation

Fn(x;piw) = FN(X1,- - XN} PL, -+ - PN} W1, - - WN) - (2.9)
The quantity

N
Fn(x;p;w) [] dxidpidw; (2.10)

i=1
defines the probability that the volume elements dx;,...,dxy, are occupied by particles
of the first kind with orientations dwy,...,dwy, and momenta in the ranges dpy,...,dpn,
and the volume elements dxpn, 11, ... ,dXpN; +N, are occupied by particles of the second kind
with orientations dwpn, +1,. .., dwn, +N, and momenta in the ranges dpn,+1,...,dPN;+N;

and etc.. The orientation vector w is described by the angular co-ordinates (6, ¢) such
that fdwl = 4.
Thus the probability that the volume V consists of Ny particles of the first kind, Ny

particles of the second kind etc., is given by

. N
Py = m/.../FN(x;p;w)gdxidPidwi , (2.11)

such that the normalization of Fiy required by Eq. (2.1) is satisfied. That is
2 Pn= Z/FN(X;P;w)dQN =1, (2.12)
N N

where

2

N N1=0N3=0 Npr=

M 1 N
dQN = H NI de,;dpidwi ,
a=1""9"i=1

Il
M
X
-

M = no. of species of particles.

It should be noted that the grand canonical phase-space distribution function is related

to the grand partition function via Eq. (2.4), Eq. (2.5) and Eq. (2.8) by

In Fiy(x;p;w) =—InE - A-C . (2.13)
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Thus substituting this relationship for the grand canonical phase-space distribution func-

tion into the normalization condition, Eq. (2.12), yields

== %:/exp [—,\-c] i . (2.14)

Finally we can write the ensemble average of some quantity G, as defined in Eq. (2.2), as
© = ¥ [GPn(xipsw)in
N

- é%/Gexp[—A-C]dQN . (2.15)

The number density ng or the one body distribution function for molecules of the ath
kind, is defined by
na(x,w|V) = (Z 8iab(x — x;)8(w — w;)) . (2.16)
%
Similarly the two particle correlation function ng or the two body distribution function

is defined by
nab(x,w; X’, w,‘V) = (Z 6ia6(x - xi)é(w - wi)zl‘sjb‘s(xl - x]-)é(w’ - w])) ’ (217)
i j

where Z’ indicates the value i=j is excluded from the summation. These two quantities
j

are important for describing most of the features of the molecular structure of the fluid

system. Quantities related to the two body correlation function are the pair distribution

function g.p(X,w;x’,w'|V) defined by

nap(x, w; x',w'|V)

wlx,wi X, W|V) = 2.18
ab(3 X, V) = o Vs V) G
and the indirect correlation function h.p(x,w;x’, w'|V) defined by

hap(x,w; X, w'|V) = gap(x,w; x',w'|[V) -1 . (2.19)

The notation |V is used to show explicitly that an external potential V, is acting on the
system. If the external potential is equivalently set to zero, the number density and the
two particle correlation functions reduce to their homogeneous values [104].

The general fluid system we wish to consider consists of particles which interact via a

potential that is dependent not only on the particles position but their orientation. The
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Hamiltonian of our model system has the form

p 1 N N M M
H= ZZ‘SW z' 9 4 ZZZZ‘SM Jbéub(xhwﬂx])w:’)
i=1a=1 i i=1j=la=1b=1
+ ZémVa(xi,wi) , (2.20)
i=1a=1

where p, is the momenta of a particle of the ath kind. ®,5(x;,w;;X;,w;) represents the
mutual potential energy of two molecules of the ath and bth kind, if their mass centres
and orientations are at (xj,w;) and (xj,w;) respectively. Define 6;5 to be equal to 1 if
the molecule at x; with orientation w; is of the ath kind and zero otherwise. V,(x;,w;)
denotes the potential energy of the ath kind of molecule at (x;,w;) due to the external
field.

The grand partition function can be written in the form

E= Z/exp[zzaa%(x“wz) —<I> dQdy (2.21)

1=1a=1

and

B = (ksT)', (2.22)
271N,
e = 3 nl ] (223)
Yo(Xiywi) = 7o+ Bpa(xi,w;) — BVa(xi,wi) , (2.24)
N N M M

& = D D3 D biabipPas(xi, wis xj,w;5) (2.25)

i=1lj=la=1b=1
where kp is Boltzmann'’s constant, p,(X;,w;) the chemical potential associated with the
ath kind of molecule at (x;,w;). The expression for 7, is derived from the integration over
the momenta coordinates. Thus the ensemble average of G, Eq. (2.15), can be explicitly
written as
/Gexp [Z Z SiaYa(Xi, ws) — '8 @dQy , (2.26)
i=la=1
provided the function G does not have an explicit dependence upon the momenta.
From the definition of the grand canonical phase-space distribution function it is possi-

ble to derive a set of coupled integro-differential equations relating the n body distribution
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function to the n+1 body distribution function. The resulting set of equations are known
as the BBGKY hierarchy.

The grand canonical phase-space distribution function Fi(x; p;w) satisfies Liouville’s
equation

OFN(x;p;w
DRn(xipiw) = ZNEPO | ypyiipiw) By =0, (2.27)

where D is the Liouville operator and {} is the Poisson bracket [102]. For the Hamiltonian
of our system, Eq. (2.20), the Poisson bracket can be evaluated to give the explicit form

for the Liouville operator which is then substituted into Eq. (2.27), to yield

OFy LM FN ¥ sy, (x,w) OFN
DFN(x;p;w) = 8—F+226iam—'——*—225w — p;
i=1a=1 @ i=1a=1
e £ e 0P, (x;,ws; x5, wy) OFN
- 15505 3 hus, el
2 i=lj=la=1 b ox; op;
- 0. (2.28)

To obtain the first equation in the BBGKY hierarchy, we multiply Eq. (2.28) by
6iq6(x—x;)6(p—p;)6(w —w;), sum over 7, integrate over the phase-space of the IV particles

M
1
with the weight factor I I —N 0 and then sum over N to obtain
: a.

Ofalx,p,wlV) P Ofa Valx,w) Ofa

ot me 0X ax 3p
— Z/ ?Qab(xaaw;xlaw’) - afab(x)paw;xl7p,1wllv)dxrdpldwl
X
b

?

op
(2.29)

where the quantities fo(x,p,w|V) and fuu(x,p,w;x’,p',w'|V) are the velocity and pair
velocity distribution functions which are defined by
fa(x,p,w|V) = O biab(x —x:)6(p — Pi)b(w —wy)) ,  (2.30)
i
far(x, p,w; X', p',W'|V) = (3~ biab(x — x:)6(p — Pi)b(w — wy)
A
x 3 6isb(x' —x))8(p' — p)S(w! ~wy) . (2.31)
j
These quantities are related to the number density and the two particle correlation

functions by
fa(xapywlv) = ’Pa(p)na(x,le), (2'32)
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fab(xap7w;x’7p,’wllv) = Pab(p;p’)nab(x:w;xlvw’lv)7 (233)

where P, and P, are the Maxwellian distribution of velocities normalized to unity [105].
Using the definition of the ensemble average, Eq. (2.15), the partial derivatives with

respect to the momenta yield

a a x, ’w V
% = —ﬂpfa(x,p,w|V) , (2.34)
P Mg
Afun(x,p,w; X, p, |V
fulnp a’p Pl _mipfab(x,p,w;X’,p',w'lV)~ (2.35)

Since the fluid is assumed to be in equilibrium there is no explicit time dependence of the
distribution functions thus the partial derivatives with respect to t are zero. Substituting

these results into Eq. (2.29) and integrating over the momenta p’ yields

p ] oV, (x w)

me LOX ]a(x wlV)

Z/aéah(x i w)"zab(x,w;x',w'W)dx’d“” - (2.36)

Since the momenta p is arbitrary, the equation can be rearranged to yield the first of the

BBGKY hierarchy

Vihn,(x,w|V) = — pBVV,(x,w)

Npa (X1, w1; X, w|V)
na(x,WIV)

- ﬂZ/dxldw1V<I>ab(x,w;x1,w1) .(2.37)
b

Similarly, this process can be repeated to obtain the second of the BBGKY hierarchy

Vinng(x,w;x,w'|V) = — BVVi(x,w) — BV Pe(x,w;x’,w')

= ,BZ/dxldw1V<I>ac(x,w;x1,w1)

nca.b(xla Wi X, W, x’) w,]V)

nap(X, w; x', w'|V) (2.38)
2.3 Electrostatic potential conditions
The one body potentials, V,(x1,w;), are written in the form
Valxp,w) =V3 +VF (2.39)
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Figure 2.1: Schematic representation of the ion-dipole exclusion planes relative to a mem-
brane wall.
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Figure 2.2: Interfacial wall geometry
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where V% is the short range contribution to the one body potential which models the
exclusion of molecules from a region adjacent to the membrane wall. See Figure 2.1. The
short range potential, V7, is given by

o |z« %‘1
VS (x1,w1) = , (2.40)
0 ‘ z1 |> %"‘

where z; is defined as the perpendicular distance from the membrane wall and R, is the
hard sphere diameter for the ath type of molecule. See Figure 2.2. The term V2 is the
electrostatic contribution to the one body potential.

The two body (intermolecular) potentials, ®,p(x1,w1;X2,w2), are also written in the

form
B o5 (X1, w1 X2, w2) = 85, + B (2.41)

where <I>gb is the short range contribution to the two body potential and is given by

o r< R,
Boy(x1,w1i X, wa) = { 0 r> Raz , (2.42)
such that
1
R = E(Ra +Ry) . (2.43)
The other term, @fb, is the electrostatic contribution which is defined by
&L (x1,w1;Xg, w3) = B + 8L, (2.44)

where <I>£b is the image potential due to the discontinuities in the dielectric tensor at the
membrane walls and Qacb is the Coulombic potential. The one and two body potentials
are derived and explicitly shown, for our model system(s), in Appendix A.

For the rest of the thesis let the subscripts i, j, k refer to the various ionic species and
d to the dipoles with a, b, ¢ referring to general molecules.

The mean electrostatic potential ¥(x;) is defined by
eb(x) = VEE)+ Y [ dxe®fx, xa)m(xslV)
k
+ /dw3dx3<1>£,(x1;x3,wg)nd(xg,wglV) , (2.45)
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where the first term is due to the external potential V;F(x;) and the integral terms are
the potential due to the distribution of molecules in the region. Related quantities are the

mean electric field E(x;), which is defined by

E(xy) = —Vip(x1) , (2.46)

and the polarization vector P(x;), defined by
Pxy) = [ dwim(ina(xs,@nlV) - (247)
The displacement vector D(x;) is then defined by
D(x;) = 47P(x1) + E(x;) . (2.48)
Application of the Laplacian operator V4 to Eq. ( 2.45) yields Poisson’s equation

Vip(x1) = —4m Zeknk (x1|V)+ 47V -P(x1) . (2.49)
k
From the expressions for the one and two body potentials for our model system(s) in

Appendix A, the mean electrostatic potential (which is a function of the normal distance

from the membrane wall) can be written, as derived by Outhwaite [93], in the form

Y(z1) = — 47?2%/ R dzg(z3 — z1)nk(23|V)
P maz( =3t ,21)
— 47 /mam(gd’z])dz;gp(z;a) , (2.50)
such that
P(z1) =z -P(x1) , (2.51)

where Z is an unit vector, normal to the membrane wall. Differentiating this expression

w.r.t. z; yields

¥ (21) = 471'Zekf a dzang(z3|V)
k mae( 2 ¥%1)
Ry
+ 4nH(z — T)P(Zl) 5 (2.52)
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where H(z;) is the Heaviside (unit step) function. Thus the normal derivative of the mean
electrostatic potential is discontinuous at the distance of closest approach of the dipoles

to the walls. At %‘i, the point of discontinuity, we have the following condition
W (1) Ly~ (1) | gz = AmP(2 (2.53)
21 Ezat z1 52;_ =4nP(<7) - .

Outhwaite [94] has noted the difficulty in defining the dielectric tensor e(x;). The
dielectric tensor is usually defined by the macroscopic relationship between the mean
electric field vector E(x;) and the polarization vector P(x;) such that

D(x1) = 47P(x1)+E(xy)
= e(x1) -E(x1) . (2.54)
This definition is only correct if the mean electric field is non zero. However, we see from
Eq. (2.52), that the mean electric field and the polarization do not necessarily vanish

simultaneously.

The surface charge density is related to the number density through

Z/dzleknk(zllV) =—-0 , (2.55)
k

which is the condition of electroneutrality over the interfacial regions.
We also define the mean electrostatic potential 1,(x1; X2,w2) at x3, given a molecule

of type b is fixed at (x2,w2), by

ey (X1 X2, w2) = Vi (x1) + B (x1; %2, w2)

+ Z/dxf’)q)ﬁe(xl,x3)nk(x3lv)gkb(x3ix2,w2lv)
p

+ /du-’:st:s‘I’ﬁ(xl;xs,wa)nd(xs,w3|V)gdb(x3,W3;xz,wzlv) ,

(2.56)

and the polarization vector Pp(x1;X2,w2), is defined by

Py(x1;x2,w2) = /dwlm(wl)ndb(xla“"l;x2aw2|V) : (2.57)
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Thus the displacement vector Dp(x1; x2,ws) at x1, given a molecule of type b is fixed at
(x2,w2), is given by
Dy (x1; X2, w2) = 47Pp(x1; X2, w2) — Vithp(x1j X2, w2) . (2.58)
The difference between 1/,(x1; X2, w2) and ¢(x;) is defined to be the mean electrostatic
fluctuation potential vp(x1; X2, ws):
eitp(X1; X2, w2) = ey (X1; X2, w2) — e;9(x1)
= B (x1; X2, w3)
+ Z /dx:;@gc(xl,xg)nk (x3|V ) hip(x3; %2, w2|V)
k
+ /dw3dx3‘1)£t(xl§x37w3)nd(x3,w3|V)hdb(x37w3;x27w2lv) -
(2.59)

The boundary conditions that must be satisfied by the mean electrostatic potential
and the mean electrostatic fluctuation potential will be discussed in Section 2.4, for the

relevant cases of point and the more general hard sphere ion-dipole system.

2.4 Number densities

In this section we evaluate, with the help of Loeb’s closure, from the BBGKY hierarchy
the number densities for the hard sphere and point ion-dipole model systems from the

potentials defined in the previous section.

2.4.1 Hard-Sphere system

The first of the BBGKY hierarchy, Eq. (2.37), can be written as
Vilnng(x1,wn1|V) = — BV iVa(x1,w1)

X nc(x3,w3|V)gm(X3,w3;xl,w1|V) i (260)

Application of the operator —3V; to the mean electrostatic potential, Eq. (2.45),

yields
—AViep(x1) = — BV1VE(xy)
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- ﬂz/dwgdx3V1<I>£(x1;x3,w3)nc(x3,w3IV) . (2.61)

Setting molecule a to be an ion in Eq. (2.60) and subtracting Eq. (2.61) from Eq. (2.60)

results in
Vilani(xi|V) = — BViep(x1) — BV1V (x1) — Viln
— ,3Z/dx;;dw:;Vl(I)ﬁ(xl;X3,W3)nc(X3,w3|V)hci(X3,UJ3;X1|V) ,
(2.62)
where
Vilnr, = —ﬂz/dX3dw3V1<§fc(x1,w1;X3,w3)nC(X3,w3|V)gca(X3,w3;x1,w1|V) ,
(2.63)

is an exclusion volume type term as it contains the short range contribution from the two
body potentials [93], [92].

Application of the operator —ﬂVle%m(wl) - Vi to the mean electrostatic potential,
Eq. (2.45), yields
—AVim(w1)  Vig(x1) = ~ BVIVE (x1,w1)
— ﬂZ/dwgdx_gVﬂI’ﬁ(xux3,w3)nc(X3,w3|V) .(2.64)

Setting molecule a to be an dipole in Eq. (2.60) and subtracting Eq. (2.64) from Eq.

(2.60) results in

Vilnng(xp,wi|V) = — AVim(wi)- Vig(x1) — BV1Vy (x1) — Vilny

- ,BZde3dw3V1<I>dEc(x1,w1;X3,w3)

X 1Ne(x3,ws|V)heq(x3,ws; x1,w1|V) . (2.65)

Eq. (2.62) and Eq. (2.65) are exact equations. However, we need some ansatz for
the indirect correlation functions ho, to close this set of equations. In the limit that the

external field approaches zero, both the number density and indirect correlation functions
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reduce to their homogeneous (zero field) values, i.e. as V. — 0

ne(x1,w1|V) — nga(x1,w1|0) , (2.66)

hap(X1, w1 X2, w2|V) —  hgy(x1,w1;X2,w2(0) , (2.67)

provided the distance between the membrane walls is large compared with the Debye
length [106]. In a neuron this is the case. Thus, a first approximation is to assume
that the indirect correlation function takes the homogeneous (bulk) values for the entire
region that the fluid occupies. Since the homogeneous indirect correlation function is
only a function of the relative distance of the field point to the source point, there is no
dependence in the indirect correlation function on the relative distance of the source and
field point to the membrane wall(s). Obviously, the approximation deviates more from
the actual distribution as the source and/or field point approaches a membrane wall (i.e
within one to two Debye lengths). Despite this limitation, the approximation has the
correct limiting value for large distances away from the membrane wall(s) and can be
used to start an iterative procedure to determine a more accurate approximation for the
indirect correlation function [94].

Since the homogeneous values are spherically symmetric, the angular integrals in the

right hand side of Eq, (2.62) and Eq. (2.65) will vanish. Thus

Villnng(x1|V) + Besp(x1)] = —BV1Vi(x1) , (2.68)

Villnng(xy,wi|V) + fm(wi) - Vig(x1)] = —BV1V7 (x1,w1) . (2.69)

Use of the boundary condition that the number densities must approach their homogeneous

value for large distances from the membrane wall i.e,

ni(x1|V) — n as |z |- o0, (2.70)
nO
na(xp,wilV) — 72 as |z |—oo0, (2.71)

which is consistent with setting the external potential equivalently to zero. Thus Eq.

(2.68) and Eq. (2.69) integrate to
_ .0 R; B
m(lV) = ndH(z - ) e | ~Belblx) —¥7]) | (2.72)
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ng Ry B
nabennlV) = JH(G - 1) exp|-pmlwn) - Vi) — )| L (273)

where 9% is the constant background potential. The functions nyH (z; — %‘) and
g:‘rH (21— %‘i) are approximates to the exclusion volume term when the indirect correlation
function has its bulk value [93], [92].

These resﬁlts for the number densities can now be substituted into Poisson’s equation,
Eq. (2.49), the angular integration performed by the expansion of the exponential terms
to first order in the mean electrostatic potential and use of the fact that the external

potential is only a function of the normal distance z; to yield
Ry 1" _ Ry, 0 B
1+ H(z — 7)33/ ¥ (z1)= — 4ry H(z— T)nkek exp|Bery” ]
k
R
+ 4nB Y H(z — 5 )nled explBexy ™I (=1) (2.74)
k

where

4
y= ?ﬂ-,@mzng : (2.75)

The mean electrostatic potential boundary conditions for the hard sphere system are

¥(x1) continuous, (2.76)
P(x) = p? as |z |- o0, (2.77)
D(x1) -z |z;r — D(x1)-% lz1—= Aro (2.78)
at the membrane walls, and
I3 [ Rd
¥ (21) |E;£ —¢ (21) |32,Z_ P(5 (2.79)

at distance %‘i from the membrane walls.

The first three boundary conditions are the usual conditions associated with the mean
electrostatic potential for a point system. The last condition, Eq. (2.79), was derived in
the previous section, Eq. (2.53), and is particular to a hard sphere system [93].

For the last boundary condition, we calculate the polarization in the normal direction

at the dipole exclusion plane in the following manner. Substitution of the dipole number
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density, in terms of the mean electrostatic potential, Eq. (2.73), into the definition for the

polarization vector, Eq. (2.47), we obtain
ng Rd B
P(x) = H(z - 7)/dw1m(w1)exp —pm(wy) - Vi[$(x1) —¥7]| . (2.80)

Only the normal component will contribute to the polarization. Thus the angular integral
is of the form I = 27r/ d@; sin 61m cos 81 exp[—Fm cos 619 (21)]. This integral can be
0

evaluated to yield

I - _ 4ir i[sinh[ﬁmd;(zl)]]
pmy'(z1)dB |l pmy' (1)
~ —‘%’ﬂmw’(n). (2.81)

This linear approximation to the angular integral is substituted into Eq. (2.80), to yield
~ Rd '
47P(x1) -2 = —H(z1 — 7)[& —1]% (z1) . (2.82)
We define the inverse Debye length « as

4
k2 = WTﬁZe,%ngexp[ﬁekzﬁB]
k

Q

€

4
8 5~ e2nd (2.83)
k

and the background potential ¥ by

¥P = =3 epnd explBery®)
p

Q
|

Eekng , (2.84)
k

where we have assumed | Bex 3P |« 1 and for convenience we define the dielectric constant

in the usual form
e=[1+3y . (2.85)

It should be noted that the summation for 4f is over all the ionic species (mobile and
fixed) whereas the summation for the inverse Debye length x is restricted to the mobile
ionic species. To simplify the model we assume that all the ionic species have the same

hard sphere diameter R;.
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Thus the differential equation for the mean electrostatic potential for a hard sphere

system is given by

[1 + Hon — 223y [4" (1) ~ B (1 — D)(e1) = ~w%eH(z1 — 0" . (286)

This differential equation reduces to the usual linearized GC differential equation for the

mean electrostatic potential, [93], when the bulk electroneutrality condition is satisfied i.e.
Z ekng =0.

k
2.4.2 Point system

The equations for the number densities and the mean electrostatic potential in the point
system, can be obtained by setting the hard sphere diameters to zero for all molecules.
Thus the relationships between the number densities and the mean electrostatic potential

are given by

malV) = nfexp|-peipix) - 7] | (2.87)
na(xeilV) = 1 exp|pm(on) - Vifsta) - ¥ | 25%)

and the differential equation satisfied by the mean electrostatic potential is given by
¥ (21) — 62(z1) = 797 (2:89)

The mean electrostatic potential for the point system has the usual boundary condi-

tions [93] of
¥(x1) continuous, (2.90)
P(x1) = 9P as |z |- oo, (2.91)
and
D(x;)-% |z;L ~D(x;) - 2 |z]—= o (2.92)

at the membrane walls.
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2.5 Indirect correlation functions

In this section we evaluate, with the help of Loeb’s closure, from the BBGKY hierarchy
the indirect correlation functions for the hard sphere and point ion-dipole model systems

from the potentials defined in Section 2.3.

2.5.1 Hard-Sphere system
The second of the BBGKY hierarchy, Eq. (2.38), can be written as

Vilnngp(xy,wisxa,we|V) = — BV V(x1,w1) — BV 1 ®ap(x1, w1; X2, w2)

Neab(X1,w1; X3, w3; X2, w2|V)

2.93
Nab(X1, w1; X2, w2|V) (2.93)
This equation is closed by using the Kirkwood superposition approximation
Neab(X1, W15 X3, w3; X2, wa|V)
= ; 14 : v
rop (1, @1 %2, @2 V) e (X3, w3|V)gac (X1, w1; X3, ws3|V)
X geb(x3,ws; X2, w2|V) , (2.94)
which is substituted into, Eq. (2.93), to yield
Vilong = — BViVa(x1,w1) — BV1®ab(x1, w1 X2, w2)
- ﬂz/dX3dw3V1(I>ac(x1,w1;X3,w3)nc(X3,w3|V)
(4
X gae(X1, w1; X3, w3|V)gep(x3, w3; X2, w2|V) . (2.95)

Also the left hand side of Eq. (2.95) can be written in terms of the pair correlation function

and the number density resulting in

Viln|ng(xy, w1 |[V)ny(x2, ws|V)ges (%1, w1; X2, w2|V)

Vilnng(x1, wi; xa, wz|V)

= Vilnng(xy,w1|V) + Viln gay(xq, wi; x2,w2[V) ,(2.96)
and then Eq. (2.60) can be substituted for the number density to yield

Vilngey = — BVi1®as(x1,w1;Xx2,w2)
- ﬂZ/dxsdwavl%c(xhwl;Xs,wa)nc(xs,wslv)

X gac(X1,w1; X3, ws|V)hey(x3,w3; X2, w2|V) . (2.97)
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Setting the molecule a to be an ion and a dipole respectively in Eq. (2.97) and substi-

tuting for the electrostatic component of the intermolecular potential ®F ysing Eq. (2.59),

yields
Vilngp= — PBVi®(x1;%Xa,wa) — BV s (x1; X2, w2)
— ﬂz/dX3dw3V1<§fc(x1;X3,w3)nc(x,3,w3|V)
X gic(X1; X3, ws|V)hep(x3, w3; x2,w2|V)
= /32/dX3dW3V1‘I>£(X1;xa,wa)nc(xs,wslV)
X hic(x1; X3, w3|V) heo (%3, w3; X2, w2|V) , (2.98)
and
Vilngs = — BV185(x1,wi;x3,ws) — BVim(wi) - Vi(x1; X2, w2)

= ﬂz/dX3dw3V1‘I’gc(x1,W1;x3,w3)nc(x3,w3|V)
X gde(X1,w1; X3, ws|V)hep(x3, ws; X2, w2|V)

- [3Z/dX3dw3V1<I>fc(x1,w1;X3,w3)nc(X3,w3|V)

X hge(X1,w1;x3,ws|V)hep(x3, w3; X2, wa|V) . (2.99)

As a first approximation we use Loeb’s closure [107], which neglects the integral terms

in both Eq. (2.98) and Eq. (2.99), to upon integration

R i
gib H(rip - Tb) exp[—fe;Pp(x1; X2, w2)] , (2.100)

Il

9db H(ryz - %) exp[—fm(w1) - Vivp(x1; X2, w2)] , (2.101)

where we have used the boundary condition that
Pp(X1;X2,w2) — 0 as | z1 |— oo . (2.102)

This closure approximates the exclusion volume term between the two molecules by the

Heaviside function. Thus the indirect correlation functions are defined by

R; -
hip = H(riz— sz) exp[—PBeiPp(x1;x2,w2)] — 1 , (2.103)

I

hap H(ri2 — %) exp[—fm(wy) - Vihp(x1;x2,wa)] = 1 . (2.104)
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Lon
These results are then substituted into Eq. (2.59) for the mean electrostatic fluctu.
potential and the Laplacian operator V7 applied to yield
Viea, = Vi®f(x1; %2, wa)
Ry T oo
— dme; Y epnp(xy|V) |H(r12 — T)GXP[—ﬂek%(xl,xz,wz)] -1
k
+ 47reiV1-/dwgm(w3)nd(x1,w3|V)
Ry =

X |H(riz = =) exp[-fm(ws) - Vighy (k15 %2, w2)] — 1| . (2.105)

To simplify Eq. (2.105) we expand to first order in the mean electrostatic fluctuation

potential, substitute for the dipole number density and perform the angular integration

over w3, to yield
Vieipy = Vi®H(x1; %2, wa)
R
— dme; ) epmp(x1|V) [3(7‘12 - %) -1
k
2 By, -
+ 4nfe; y  ehnp(x1|V)H (r12 — = Je(x1,%2)
)

Oy (%15 X2, w2) 82y (x1; X2, w2)
X2) —

+  eixs(x1, o2, + eii(x1; X2, w2) T ez
+  ewn(x1,X2) — eimp(x1, X2) Vighy(x1; X2, w2) (2.106)
where, by letting 8 = ﬂm%;—, we have
Rap Ry de
vp(x1,%X2) = — 47 [H(rlz — T) - 1] ngH(zl -3 md—z1
6(6% + 2) sinh § — 262 cosh @
94
dé
= 0= .
) (2.107)
R R do
xp(x1,%2) = — AnBH(r12 — “2)ndH(z; — ~L)mi-—
2 2 dzy
(6% + 6) cosh 8 — 3(6% + 2) sinh 4
X o
de
- O(60— .
R R 0 cosh 6 — sinh 8
me,xs) = AnBH (2 — ~)ndH (s — pym? | TR
R R
= 3yH(ria— %)H(zl - Td) +0(6) (2.109)
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sinh 6
5]
= 06 . (2.110)

: R R
Ep(x1,%x2) = 3mp(x1,x2) —4nBH (r12 — —zcé)ngﬂ(zl — ?d)mz[

Compared to the corresponding equation derived by Outhwaite [94], [95], Eq. (2.106)

has additional terms due to the violation of the bulk electroneutrality condition i.e.

Z exny # 0.
k
If the second order terms xp(x1,X2), &p(x1,X2) in @ are neglected and expanding the

other terms to first order in the mean electrostatic potential with the added assumption,

| Bex® | < 1, Eq. (2.106) reduces to
R R .
€ [1 + 3yH(ri2 — %)H(Zl - 7‘1)] Vide

== 47!',661; Z H(’rlg — Ezk-b)H(zl =- %)e%ng [1 - ,Bek'l,b] I,Zb

p
= Vi®H (x1;%2, w2)
R R
— Y [H(m -y I]H(zl - 24)eund [1 - ﬂekqb]
p
Rap ] Ry d*
3y | H(rp — 22 - L Shel .
+ e y[ (r12 5 )—1|H(z 5 dz% (2.111)

The boundary conditions associated with the differential equation for the mean elec-

trostatic fluctuation potential are
Pp(x1;X2,w2) —» 0 as | x2 —x1 |— o0 , (2.112)
with d_fb(xl; X2,w2) continuous everywhere except for
ey (X1; X2, wa) — BE(x15%2,wa) as |xg—x1 |0, (2.113)
€(x1) - Vighy(x1;%g,w2) 2|, = €(x1) - Vitho(x1;Xp,wa) -2 [, (2.114)
at the membrane walls, and

—%-V1 [1/_’b(X1; X2,w2) + 1/’("1)] + 47z - Py(xy; X2, w2) (2.115)

is continuous at the dipole exclusion plane (i.e at a distance %’i from the membrane walls),

and
—T12- V1 ['Q,I_Jb(xl; X2,w2) + ¢(x1)] + 4nt12 - Py(x1; X2, w2) (2.116)
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is continuous at the volume exclusion sphere boundary (i.e. at 712 = Rgyp), where 2
is an unit vector in the direction joining the centres of molecule 1 and 2. The first
three boundary conditions are the usual conditions associated with the mean electrostatic
fluctuation potential for a point system. The last two conditions are statements of the
continuity of the generalized displacement vector Dy, Eq. (2.58), and are in addition for
a hard sphere system [94], [95].

Obviously the two cases to be investigated are when molecule b is an ion or a dipole.
Also we assume that the ionic diameters are the same which is consistent with our as-

sumption for the mean electrostatic potential. Thus the two equations to be considered

are
[1 + 3yH(ri2 — %)H(;I — % ]V%JH
— 4mBH(r12 — Ri)H (2 — %) ;eing [1 - ﬂek¢] P;
= — 4nb(x2—x1)
— 4g [H(m —R) - 1] H(z — %) Xk: exnd [1 — ﬂek¢]
+ 3y[H(r12 - de") - I]H(zl _ %)‘%’ , (2.117)
and
[1 + 3yH(ri2— Rg)H(z1 — %)] Vi
- 4B~ O H (G - ) S el 1 Bent]
= — drm(ws) - Vab(xz — x1)
— 4rx [H('rlz — %) — I]H(zl — %) zk:ekng [1 — ﬂek¢]
+ 3y [H('rlz _ Ry - 1] H(z — % %ﬁ ‘ (2.118)

A further simplification can be made by assuming that the diameters of all molecules
are the same. The last two terms in both Eq. (2.117) and Eq. (2.118), are then simplified
using Eq. (2.86) to

R &%
2 dzf

2
H(z — g) [47rZekn2[1 — Bexyp] — 3y—j f = —H(z —
k 21
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R
= —H(z - E)Vl¢(xl) . (2.119)
Thus Eq. (2.111), for the case r12 < R can be written in the form
e; V3 [zﬁb(xlg X2, w2) + H(z — %)1,[1(}:1) = V288 (xy;x9,w2), 712 < R (2.120)
and for the case r13 > R as
Rlg2r R 2.0 7
1+ 3yH (21 — 5) Vivy — 4AnfH(z — E) D ernp |1 — Bextb| ¥y
k
=0, rp>R . (2.121)
Eq. (2.120) and Eq. (2.121) have to be investigated when the field point is inside or

outside the exclusion plane i.e. z; < g or z; > g.

Case 1:21 <

|y

Vidy(x1;x2,w2) =0 Vria (2.122)

Case 2:z; >

Nl

V88 (x1;x2,w2) — VI (x1) T12 <R

eV, = _ (2.123)
' eidmB ) exrnp[l — Bertpl s ri2 > R
k

For the last two boundary conditions for the mean electrostatic fluctuation poten-
tial, Eq. (2.115) and Eq. (2.116), we calculate the polarization vector P}, explicitly in
terms of the mean electrostatic potential 1/(z;) and mean electrostatic fluctuation poten-
tial 9Pp(X1;X2,w2) in the following manner. Substitution of the two body distribution
function in terms of the one body distribution functions and the pair correlation function
Eq. (2.18), into Eq. (2.57), yields

Py = np(x2, wa|V) /dw1m(w1)nd(x1,w1|V)gdb(x1,w1;x2,w2|V)- (2.124)
The expressions for the pair correlation function, Eq. (2.101), and the dipole number
density, Eq. (2.73), in terms of the potentials are substituted into Eq. (2.124), such that
o R R
P, = Z—;H(n - f)H(ﬁz - %)nb(xz,ule)

P /dwlm(wl)exp —Bm(w1) - Vi[thp(x1;x2,w2) + ¥(21)]| . (2.125)
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To be consistent with the approximations used in the derivation of the correlation func-
tions in terms of the potentials, we must linearize Eq. (2.125) to first order in the mean

electrostatic potential, to yield

R R, R
A7Pp = — 3yH(Z1—7d)H(Zl—7b)H(7'12—#
X Vi |$s(x1;%2,w2) +¥(21)] . (2.126)

Thus boundary condition Eq. (2.115) can be written, with the use of Eq. (2.53), as
€z - Vip(X1; X2, w2) |n+ —2 - Vip(X1;X2,w2) [g-=0 . (2.127)
2 2

Boundary condition Eq. (2.116), combined with the condition that the mean electrostatic

potential is continuous across the exclusion volume sphere, has the form

ef12 - Vihp(x1; X2, w2) |gr —T12 - Vigh(x1;X2,w2) [p-=0 . (2.128)
2.5.2 Point system
The equations for the indirect correlations functions and the mean electrostatic fluctuation
potential for the point ion-dipole system can be obtained by setting the hard sphere

diameters to zero for all molecules. Thus the relationships between the indirect correlation

functions and the mean electrostatic fluctuation potential are given by

hip —Beip(x1; X2, w2) , (2.129)
hay = —pm(wy) - Vip(x1; X2, ws) . (2.130)

A simplification is made by noting the symmetry relation

Pa(x1; %2, w2) = ém(wz)'vzﬁl_’j(xl,xz), (2.131)
b

and setting

Pi(x1,%x2) = ep(x1,X2) . (2.132)

Thus the differential equation satisfied by the mean electrostatic fluctuation potential,

determined from Eq. (2.111), is given by

[1+3y]Vi— 478D npedl — Berip(x1)]| P(x1,%X2) = —4md(x2 — x1) . (2.133)
k
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The mean electrostatic fluctuation potential for the point system has the usual bound-

ary conditions [95] of
P(x1,Xx2) =0 as |xp—x1|— 00, (2.134)

with 9(x1,X2) continuous everywhere except for

= 1

P(x1,%x2) — as |xg—x1|—0 (2.135)

| x2 —x |

and
e(x1) - Vip(xy,%2) - 2 |- = €(x1) - Vi(x1,%x2) - Z .t (2.136)

at the membrane walls,

An integral transform technique will be used to determined the mean electrostatic
fluctuation potential [74], [108]. This reduces the problem from solving a partial differential
equation to that of solving an ordinary differential equation and then performing the

transform inversion. Defining the transverse Hankel transform by

P(z1,22,k) = /dPeXP[ik'P]%Z(Zl,Zz,P)

= 2n /0 dppTo(kp)b(z1,7,p) (2.137)
where
p = (z2—zi,y2—w1) ,
k= |k|,

and applying it to Eq. (2.133) yields the following ordinary differential equation for the
transverse Hankel transform mean electrostatic fluctuation potential 1,/3(z1, 22,k),

d? 4 . 4
d_z%' - kz - K’z + %ﬂ anei,@’lp(X1)]’d)(Zl,22,k) a _?ﬂé('zl - Z2) : (2138)
k

Application of the transverse Hankel transform to the above boundary conditions yields
the following boundary conditions for the transverse Hankel transform mean electrostatic
fluctuation potential

$(21,22,k) = 0 as |z |— o0, (2.139)
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with (21, 22,k) continuous everywhere and
e(x1) - Vip(ar, 22, k) & | == €(x1) - Vagp(a1,22,K) - & |4 (2.140)

at the membrane walls.
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Chapter 3

Two Membrane Point Model
Neuron

In this chapter we construct solutions for the differential equations associated with the
mean electrostatic potential and transverse Hankel transform mean electrostatic fluctua-
tion potential for the two membrane model in the limit of point molecules. The two cases
considered are when the fixed molecule (source point) is in the extracellular or intracellular
fluid regions.

In particular we are interested in the form of the solutions (for both cases) of the
transverse Hankel transform mean electrostatic fluctuation potential near the membrane
wall(s). We expect from electrostatics [109] that these solutions will contain a Debye
Huckel type term and image term(s) due to discontinuities in the dielectric medium. As
the normal distance from a membrane wall increases the effects due to the membrane wall
should become negligible due to the screening of the molecules. As a result, in the bulk
of either the extracellular or intracellular fluid regions the only significant contribution
to the transverse Hankel transform mean electrostatic fluctuation potential (and thus the
mean electrostatic fluctuation potential) should be from the source point.

Since we are ultimately interested in calculating hydration numbers of the mobile ionic
species both the small k (large p) and large k (small p) behaviour of the transverse Hankel
transform mean electrostatic fluctuation potential become important in our analysis. The
large k behaviour should be dominated by the distribution of molecules in the vicinity of

the source whereas for the small ¥ will include the effects due to presence of the membranes.
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3.1 Mean electrostatic potential

The solution to the differential equation for the mean electrostatic potential, Eq. (2.89),
in the various regions, is given by

( Apexplkp(z1+[L+ D))+ 98 —o0o0o <2z < —[L+ D]

—Amz1 + Bum —[L+ D] <z <-D
¥(z1) = { Arcoshlkrzi] + ¢¥E -D<z <D : (3.1)
Apzi+ By D <z <[L+ D]

| Apexpl—kg(z1— [L+ D)) +92 [L+D]<z <oo
Note that the solution is symmetric about z = 0. The constants Ag, Apr, By, Ar are de-
termined using the boundary conditions at the membrane walls. The continuity condition

yields

Ap + 48 Aym|L + D]+ By , (3.2)

Arcosh[erD]+¢2 = AyD+ By . (3.3)

Using the definition for the displacement vector Eq. (2.48), the other boundary condition

at the membrane walls become

[47P(x1) + B(x1)] - 2 ||1+p) TemAm = 4moE (3.4)

—GMAM - [47!'P(X1) -I-E(xl)] Z |D B 47!'0'[ . (3.5)

Note we have not used the relationship between the electric field vector and the displace-

ment vector, Eq. (2,54), thus defining the dielectric tensor, due to its inapplicability if the

electric field is zero. Substituting for the explicit definition of the polarization vector Eq.
5

(2.47), in terms of the dipole number density into the boundary conditions yields

dmog = /dw1m(w1)nfo exp [ﬂm cos 01AEKE] + Apkp +emAyn ,  (3.6)
dror= — epmApm — /dwlm(wl)nﬁo exp [—ﬂm cos @1 Arkysinh[k; D]
+ Arky Sinh[HID] . (3'7)
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The angular integral in both boundary conditions Eq. (3.6) and Eq. (3.7) are evaluated

to first order in the mean electrostatic potential to yield

drop = Apkpeg + emAnm (3.8)

dror = — epmAum + Arkrersinh|krD] . (3.9)

Equations (3.2), (3.3), (3.8) and (3.9) can be solved for the constants Ag, Ay, Bar, A1

such that
Ap = % [47r(aE + o1)eps cosh[krD] + sinh[k7D)| (47raELeInI - GMGIRIAT/JB)] ,
(3.10)
Ay = —% [47raIeEnE cosh[krD] — erkr sinh[k1D] (47rcrE — eEnEA¢B)] ,  (3.11)
By = %P — ApD + Arcosh[k;D] , (3.12)
A = %[47!‘(0’E+0'I)€M+47TO'I€EK,EL —eMeEnEAz,l:B] , (3.13)
where
N = egkpercrLsinh[krD] + ey [eEnE cosh{k; D] + erkrsinh[krD]| , (3.14)
AYT = Yf —yF . (3.15)

Use of the typical values for the concentration of the molecular species (see Table 1.1)
and the values from Table 3.1 (see page 65) for the surface charge density, dimension and
background potential yields the following figure for the mean electrostatic potential. See
Figure 3.1.

It is possible to check that the mean electrostatic potential satisfies the overall elec-

troneutrality condition Eq. (2.55), i.e.

-0 = Z/dzleknk(zlw)
k

= dziexny exp | —Ber[th(21) — ¥ .
Ek:/ 1€kN p[ k[ (21 B]

Linearizing the exponential and substituting the explicit form for the mean electrostatic

potential yields

—[L+D]
—2[4rog + 4nor| = 2/ d= [47r Z exn? exp[BervB] — k% empD
o0 p
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Figure 3.1: Mean electrostatic potential for a two membrane point model system.
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D
+ /D dz [411' Z exni? exp|Ber?] — k2epp?
- k

9 —|L+D]
— 2Kp€E / dz1Ag exp[kp(z1 + [L + D})]

—00

D
- fc%q/ dzyArcosh[krzi] .
—-D

The first two terms are equivalently zero due to the definition of the constant background
potentials 5 and ¥F, Eq. (2.84). The integrals in the next two terms can be evaluated

and simplified to yield
4r[og + o1) = Agkgeg + Arsrersinh[k1 D] ,

which is the result obtained from adding Eq. (3.8) and Eq. (3.9) together.
With the mean electrostatic potential determined it is now possible to obtain an explicit
expression for the normal component of the dielectric tensor. The dielectric tensor can be

decomposed into its normal and transverse components in the following manner
e(x1) = er(z1)[I — 22] + en(21)2% . (3.16)

Substituting this expression into Eq. (2.54) and the explicit expressions for the electric

field and polarization in regions I,III and V yields

dr  d sinh[ﬂmE%) (z1)]
[ED )28l fmBY (1)

- 00 2nm2nE1(\7:r)2n—2/32n—1
+am 3 (2n + 1) )

n=1

en(z1) = 1+

Il

(3.17)

where E%) (21) is the component of the electric field in the direction normal to the mem-

brane wall. See Figure 3.2.

3.1.1 One membrane limiting form

A specialized case of the one membrane model can be derived as a limiting form of the
two membrane model in the following manner. Consider first the situation where there is

an absence of solute and solvent molecules in the intracellular fluid region. As a result

kr — 0.
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Figure 3.2: Dielectric Function
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Also we require that there are no surface charges on the membrane walls adjacent to the

intracellular fluid region i.e.
or—0 .

To ensure that there is no discontinuity in the mean electrostatic potential across the
membrane walls adjacent to the intracellular fluid region we set the dielectric constant in

the intracellular fluid region equivalent to that of the membrane i.e.
€1 — €M .

Thus we have derived a one membrane model system with a membrane of thickness 2[L+ D]
and extracellular fluid in each of the fluid regions adjacent to the membrane.

The mean electrostatic potential in this case takes the limiting form of

s explkp(z+ [L+ D))+ 9f  —o00 <2z < —[L+D]

EpRE

P(z) = { & 4l —[L+D] <z <[L+ D]

cEnE
eork exp[—rp(z1 — [L+ D)) +¢f [L+D]<z <o

This result is equivalent to letting k1 — &g, € — €g, 67 — og, and 1/)}3 — 1/:5 in
the solution for the mean electrostatic potential for the one membrane model system in
Appendix B.

This limiting form is not only a mathematical verification of the validity of the mean
electrostatic potential but is of biological interest in regards to the microtubeles in the
intracellular fluid [2]. These microtubeles can be considered to be a membrane of com-

parable thickness to the membrane wall of the neuron and thus have similar fluid regions

adjacent.

3.1.2 Two semi-infinite membrane limiting form

The two semi-infinite membrane model may be derived from the two membrane model by
the following limiting process. Now we consider the situation where there is an absence of
solute and solvent molecules in the extracellular fluid region i.e

kp — 0.
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Next we require that there are no surface charges on the membrane walls adjacent to the

extracellular fluid region i.e.
op — 0 .

To ensure that there is no discontinuity in the mean electrostatic potential across the
membrane walls adjacent to the extracellular fluid region we set the dielectric constant in

the extracellular fluid region equivalent to that of the membrane i.e.
€ — €ENT .

The above limiting process is equivalent to letting the membrane thickness approach in-

finity i.e.
L -0,

Thus we have two semi-infinite walls with the intracellular fluid contained between them.
If the above limiting process is performed then the mean electrostatic potential obtained
is equivalent to that of Appendix C i.e.

( P + 59U coth[kyD] —oo0 < 23 < —D

€Iny

CIky

W = { |yl v yf D <a <D

| Q/JP § Szon coth[k;D] D <z < oo

€IRI

3.2 Transverse Hankel transform mean electrostatic fluc-
tuation potential

Substituting for the mean electrostatic potential in the various regions into Eq. (2.138),

yields the following homogeneous differential equations for the transverse Hankel transform

mean electrostatic fluctuation potential:

[ d2 B _

Z K — kg + N%CE% + &3¢E explr1(zE + [+ D])]] P5(21,22,k) =0, (3.18)
[ d? 2l 7L

ﬁ -k ¢M(z17z27k) =0, (319)
L azy

[ d? 2_ 2., 2. ¥ -

d_z% — k*—k7+ nICIA—II + kX1 cosh[mzl]]q,bf(zl,zz,k) =0, (3.20)
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2 -~
[—j - kz] B (21, 22,k) = 0, (3.21)
2]
d? 2 2 2, ¥B | 2 IR
[-—d 5 — k' —rp+kple- = + kpCeexp|—kEp(z1 — [L+ D))]|¥E(21,22,k) =0 .
Zl A.E
(3.22)

The differential equation in the intracellular region is a modified Mathieu differential
equation which has a general solution in terms of products of Bessel or modified Bessel

functions [110], given by

i o) 1 Kz 1l kyz
(Cr+Dr) 3 (1) dandpf2Cie 5 | Trl2(ie s ]
Z—gg 1 KRyz 1 kyz
H(Cr—D1) S (~1)dopTrigl2¢ie 5 1T [2¢Fe 5 ] (r>0
'IZI =4 3
€1+ D) > (1) daeL,[2 | (o |3 e 5 L2 | (o |3 €75
+(Cr—=D1) Y (1 dgeLyq2 | G |3 e TILR2 ¢ T e (<0

where J is the Bessel function of the first kind and I is the modified Bessel function of

the first [111] and the recurrence relation for da, is given by

dor[4v2 — (2r + )% — 2([d2rs2 +dor2] = 0 ,({1 >0,

doo[4vf — 2r +0)*] — 2| (1| [dorp2 +d2r—2] = 0 ,(1 <0,

and n.is chosen such that do, — 0 as » — 00 to ensure convergence of the series. The
method for determining 7 is by a numerical scheme to approximate the continued fraction
form of the recurrence relation [111]. So for each value of £ we must determine a value
of 7. Thus this form of solution is complicated and asymptotics of products of Bessel or
modified Bessel functions in a series solution difficult to obtain [112]. Since the distance
between the membranes is large, a simplification can be made by approximating the mean

electrostatic potential between the membrane walls by

521 exp[—£rz1] + 1/)? -D<z <0
Y(z1) = . (3.23)

Sexplrrza] +9f  0<z <D
For the parameters chosen in the model, if we vary the distance between the membranes

i.e. 2D, for distances greater than 604, the difference between the approximate and
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exact potential is negligible for the region within 10A of the membrane wall and has a
maximum error of & 4% at the origin (for 2D = 604). See Figure 3.3. Thus the differential
equation for the transverse Hankel transform mean electrostatic fluctuation potential can

be separated into two in the following manner

dz 2 ¢I ICI 7L
[d—z% - K -rF+eiGil+ 9 exp[—mzl]] Y7 (21,22, k) =0, (3.24)
d2
[Zz? S S n,{ ¢1 5184 exp[K,Izl]] PF(21,20,k) =0 . (3.25)
1

The homogeneous solutions to the differential equation for the transverse Hankel trans-

form mean electrostatic fluctuation potential, in the five regions, are given by
3 1
3 s(z21+|L+D
CRTays 20} expleton sl

a
_|_Dféy2m {QCE exp[ﬁs(%lﬂl)]] (g >0

Chln, [2 | e |} exp[raat it Dl

+DEK,,, [2 | ¢g |2 exp[ﬂ%@ﬂ]] (g <0

P = CLrexplkzi) + Dy exp[—kz] ,

; 1

CF oy [x/i@@ exp[—%ﬂl]
DY, [Vac el-5] >0
¥ = 9 :
P, [V 61 1 expl—557]
DKz, [VE | ¢r [} expl=2]] ¢r <0

1
CF g |VEGH expl4]

1
+DEY;,, [ﬁgf exp[ﬂzﬂ]] >0
of = | ;
Ol [V2 | G1 1} expl4]
+DF K V21 1} e ] <0
PE = OF explkzi] + DE exp[—kz] ,

62



Potential(mV)

—  Exact
= e Approximate

—_80 -

-85

—90 -

-95 T T T T T T
-30 -20 -10 0 10 20 30

Z.1 (Angstrom)

Figure 3.3: Exact and approximate mean electrostatic potential in the intracellular fluid
between the membranes.
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3 © -
CE sy [2C 2 exp[— f:k;(zl_zwl]

1 S
—hl)ﬁ?i";;,,E [2(,'133 exp[—%‘—éu—’ﬁu]] (>0

0113?12::3 [2 | (E I% exp[_ifi@___zwl]

+DEK,, [2 | ¢k |3 expl— %‘—‘2@1@ (5 <0

.

where J and Y are Bessel functions of the first and second kind, I and K are modified

Bessel functions of the first and second kind [111], such that

B
23 ﬁ;‘fCrE’-“‘

”7”2_4..-_ ¢G>0

2 ”

v: = , (3.26)

B

B a2l | 4

Ay CT‘ < 0

%3
1 3,70
;Zeknk
k

Ze%n‘,;o ] ’

k

G = feds| (3.27)

for r = E,I. The index parameter v for the extracellular and intracellular fluid regions
does not depend on the length parameters L and D. The parameter (,, is a measure of the
charge asymmetry of the ionic species in the extracellular and intracellular respectively.
Note that the solutions are written in terms of Bessel functions of the first and second
kind if the asymmetry is positive and in terms of modified Bessel functions of the first
and second kind if the asymmetry parameter is negative. The charge asymmetries for our
model neuron typically are positive both in the intracellular and extracellular fluids. See
Table 3.1. It should be noted that the concentrations of the mobile ionic species used in
the calculation of the various parameters are those in the resting state of a neuron. In
the dynamical phase of the action potential, the concentrations can vary such that the
asymmetry parameter may change sign in either or both of the fluid regions. Thus for
completeness, the possible solutions for the transverse Hankel transform mean electrostatic
fluctuation potential in each of the combinations for the sign of the asymmetry parameter
are presented even though we are investigating the structure in the resting state.

The homogeneous differential equation associated with Eq. (2.138) can be written in
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Quantity Value

KI 0.094254°1
P 70.718

(r 5.60216 x 1075

VI k=0 2.06522
KE 0.119954°1
= 70.718

(e 4.29949 x 1072

VE |k=0 1.02275

Table 3.1; Table of k, €, { and v values in the extracellular and intracellular fluid regions
for the two membrane point model.
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the form of Schroedinger’s equation in the following manner

d% b 2.7
”d—z%+Veff¢'=—k Y,

where
2
Vess = K% — EA—CQ/J(ZI) :

See Figure 3.4. Since the effective potential V¢ is positive in the fluid regions we expect
from scattering theory in quantum mechanics that no bounded solutions at oo exist for
real k [113]. Thus it will be possible to construct a Green'’s function type of solution for the
transverse Hankel transform mean electrostatic fluctuation potential using the solutions
to the homogeneous differential equation. This is due to the wronskian having no zeros
for real k [100].

The two cases to be considered are when the fixed particle at 2z is in region I or III.

The region V case is found by the symmetry in the z — y plane.

3.2.1 Case 1:—00 < 25 < —[L + D|
(e >0

The Green’s function type of solution for the transverse Hankel transform mean electro-

static fluctuation potential in region I is of the form

-~ 2 1
'»bg(zl, z2,k) = — 6:7;}3 Youg [2(1:} exp[mE(Z> +2[L + D])]]
X Jou, [2(% exp[RE(z< +2[L + D)) I]
- 2 1 g .
HIBL DL + Yo, (2 [20h exp 2T DD
X ;;.sz [ZC}%; exp["“':(z1 +2[L 2 D])]] . (3.28)
Joug [ZCE]

Application of the appropriate boundary conditions at infinity and for the membrane

wall located at [L + D] we find

DE = o0,

¥ = CB{Tasl2th|coshlk(es — (£ + DY)~ EEL, [ach] sinblk(ss L+ D).
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Figure 3.4: Effective Schroedinger potential of the transverse Hankel transform mean
electrostatic fluctuation potential for the two membrane system.
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The boundary conditions for the membrane wall located at D yield the following relations

for the constants Cf and D}Z i.e.

1
C €Ik % GEK,ECE ' G o }
— vV 2 7D, ?
e { uslaci)coshikr) + EXEL T, (23] sinblkL] | S, (L (o D, 1)
1
D €1 1 egkpCh E
bt - { avsl2ch coshlkL) + EEL 2} sinb{kE] {Touy (L, 5, D, 1)
such that
[ 1
Zaun (I, (o) ¥a [ VEC] expl 2]
1
HI a2, [Vad el (>0
Szvj(L)CEaDaCI) = 4 >
ZZVE (L,CE)sz [\/i‘ CI ]% exp[ﬁlzg]jl
By
| L expl 21K, [VE | G x| ¢ <O
( 1
Z2UE (L:CE)th [VIQC? cxplﬁjg]]
3
HIG eI, [VEC expl®R]) >0
TZVI(IHCE:D:CI) = £ 3
Ty )y [V | i 1 expl =42
1
| L] expl=R1L,, [VE [ el )] <o
and
Javp[2C2] sinh[kL] + %E‘ELJQV [2¢2] cosh[kL]
Z2VE (L,CE) = M E . (329)

1 S 1
J2p[2¢ 3] cosh[kL] + EREE 11 [9¢3] sinh[kL]

keng

At the origin, the boundary conditions yield the following relations for the constants Cf’

and D¥ i.e.
[ Yaulvech |CF s, [vach + DJY,, [VacH]|
+Y;,, (VI | OF s [VEG] ] + DJYa, VEC]) (>0
2¢r s [ ; : ,
A, Koy V21 G1 11| CF B, VB | ¢ 4]+ DS, 12 1 1 1]
K3, V2| 61 131[CF L [VE | 1 18]+ DFKasWE |1 )] G <0
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TV [ OF 1, VG + DY, 1V5CH |

o I, V331 [OF T V3G + DY, [VEGH | (>0
I
velal BV | ¢ B)[OF L, V3| ¢ 141+ DFEG,VE 1 G 1)

o, (V2 1 1] OF Iy [VE | 1 14 DFEau W2 [ 1] o <0

'

For the membrane wall located at —D, the boundary conditions yield

( cosh[k(z1 + D)]
1 ] 1 ]
{1 [Vach expl42]] + DF¥a, | VEC} expl)] |

ersr(? wD7 _:
_m exp[—fz—l] s1nh[k(z1_+ D)] 1 _
<{ct s, [vach explsP)| + DY, [Vach exl=s?)] | 1> 0

iz = S
cosh[k(z; + D)]

X{Cffgw [\/ﬁ | {1 |% exp[-’-‘-f;—)]l + D¥Ks,, [ﬂ | {1 |% eXP[MzQ]]}

1
B 1_,3;4%1 exp[“L] sinh[k(z; + D)

<[, [V2 1o 1 expl=2)] + DEEG, [VE| Gl exlR]] | €1 <0

.

We can now use the Green'’s function type of solution for the transverse Hankel trans-
form mean electrostatic fluctuation potential in region I and apply the boundary con-
ditions at the membrane wall located at —[L + D] to solve for the constants CE and
1,I~Jf'3(—[L + D], z9,k). Thus the solution for the transverse Hankel transform mean electro-

static fluctuation potential in region I can be written in the form

472

€EKE

1
Joug [2(};3 exp|

J’é(zl,zzak) = -

{¥ans 263 expl 22 +E+ D))y

nE(z< + [L -+ D])]]

X

2

k(22 + [L + DJ)
)

- 1
+ A2(L7 CE: Da CI)JzVE [ZCE exp[

kg(z1 +2[L + D])]] } '

X

Joug [2(1% exp| (3.30)
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where

2¥

o Yg,,E[ch]cosh[kL]—}-ML—Y [2¢2] sinh[kL]

[

1
Ty [2C2] cosh[kL]JrLEcﬁ 7 [2¢3] sinhlk]

VE
1 1
“ [Uz”hu![\/zc[ |- vzy,qu,[\/zc,1 ]
sz,,JzV,[f c,] ~Tay, Yau [V2 ¢ ]
+U2V1 21/1 [\/_CI] ~Vayy 2u,[‘/_cr]]

Savy ZVI[\&CJ] Tavy 2”[‘/2‘:1]

(r>0

>
[\

I
o
%

1 i 1
5 eprpla ! 21 .
1 [ Yarg[2¢2] cosh[kL] + M}’z o [2¢2] sinh[kL)
—-5 1 l 1
¢z .
Javg |2C2] coshlk L+ EL2E T, [2¢2] sinh[kL)

y [Uzy,fzu[[flczrz] sz,sz,[ﬂcn%]
SZV,Iz,,[f |c;|z] Tay; Kov[vV2 |c:|z]
Ussy Iy, (V21113 ] Vi K5, [V2IGr1 B ]]
Savy 2v1[\/2|41|3] —Tauy ZVI[‘/2lCI| ]

(r<o

.

such that
r -X2VE(L!CE)Y2VI [‘/541% exp[ﬁlg]jl

.1
28 ot [k ] oo
U2V_[(L!CE)D7CI) = 9 ?
XZVE (L7<E)K2V1 |:\/§ | CI |% exp[Elzg]]

1 , .
vt ol [VE ] o lF expl=R]] <0

Xowp (L, Cp)Joy, [\/ic }1‘ ex1:['—“2£]]

YN % ' 1
+"ir.:< . cxp[ﬁlﬁl—)]-fgw [\/QC}" exp[%g]] (r>0
I/21/1(1":4.573-D,CI) = A{ ;
X2u;.; (L-,-CE)IZHI |:\/§ l Cf |% CXI)IE‘IQ-D"]]

st oy, (V3] ¢r f expl=R1] ¢i<0

and

Yau[2( 2] sinh[kL] + %YM [2¢] coshlkL]

X2w_a: (L> CE) =

(3.31)
Y2, [2¢ ] cosh[k L] + mszﬁ [2(5] sinh[kL]

Rear

Ce <0

With a similar derivation as in the (g > 0 case, the solution for the transverse Hankel

transform mean electrostatic fluctuation potential in region I can be written in the form

8w
€ERE

ke(zs +[L + D])]
2

V5 (21,22, k) = {KzuE [2 | ¢ |7 exp]
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kg(ze + L+ D])]]

X I2VE|:2‘CE|% exp| 5

+ As(L,Ce, Dy (D) g [2 o |} exp[PE2 +2[L + D])]]
kg(z1 + [L + D])
1}

2

X T 2] Cu I} exp] (3.32)

where

vg

B Kz,,E[2|CE|%]cosh[kL]+fE—"E£E-|lK [z|gE1%]sinh[kL]]

N
| p—— |

Iy [2E] z] cosh[kL]+-E—E£Eﬁ
% [02V1J2V1[‘/§C€]—V2V_LY2VI[\/_CII]
SavpJauy (V22 |~ Tou, Yau, [V2(F |
U Ty, V262 | Var Yo, V22
Sav 75, [VEGE] T, ¥, [VEC

S [2/¢5|2 ] sinh kL]

¢r>0

1
1 e 1, |
Koy (21G| 3] cosh(kE]+ ESEIEER g, [2)¢p)|2 ] sinh kL]

1
—
I""E [2](51%] COShlkL]-F—b—L"‘L—" 13:1 I;” t

[Uzu; B, [V216113 ] -Vay Ko [\/éml ]
Szv;-h;:;[ﬂKll:l Tz»;Keu,[\/EICJP]
Us L, [Jzicfln] Vau, Ky, [V210113]

Savy zu,[\/2|CI| 2| -Ta, 2u1[\/2|C1|2]

[21¢213 ] sinh (kL]

(1<0

such that

Ipp[2 | ¢ |7]sinh[kL] + fb—ﬁglfﬂi I,,,.[2 | (r |7] cosh[kL]
Z2VE(L7CE) = i %

Inpl2 | (g |3] coshlkL] + EE8EE ) 19| (g |3)sinh[kL]

Koy, [2 | Cp |2] sinh[kL ewrulial? 1! 191 cp 13 coshlkE
Xou (L, CE) = 2vp[2 | (e |?] sinh[kL] + =500 Ky, ,[2 | (p |2] cosh] ].(3.34)

1 = v . % ] A "
Kouyl2 | ¢ |3] coshlkL] + L2ELEE i 19| (g |3] sinh{kL]

kengt

, (3.33)

3.2.2 Asymptotic transverse Hankel transform mean electrostatic fluc-
tuation potential

The solution for the transverse Hankel transform mean electrostatic fluctuation potential
for each of the above cases for the charge asymmetry parameter (, is of the same form as for
the one membrane system (see Appendix B) and indeed the one wall system considered
by Carnie and Chan [41]. The first term will yield upon transform inversion (for all
three systems) the Debye-Huckel type correlation function in the bulk solution which will
be a function only of the relative position of the field and source point. The quantity

As(L,{g,D,{) is the image term due to the dielectric boundaries of the systems. It is
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important to note that the quantity As(L,{g,D,(r) is an even function with respect to
the transverse transform variable k for finite L and D. This can be seen by noting that

the quantities Zs,,,(L,(E) and Y3, (L,{E) are odd functions of k and thus the quantities

s )
Saws Tay V2]
Sou T2y [V2 | (1 |%]
Sou; I, V2 | 1 |3]
Us,, Jzu,[\/iCI%]
Uy T3, [V}
UnuTou, [V2 | {1 |3]

i 1
Ui Iy, [V2 | 1 3]

Tou Yo IVECH]
Tou Ya, [V2CE]
Ty, K2, [V2 | (1 ]3]
T, K, [V2 | ¢ 3]
Vau Yo, [V2CE]
Vau, Ya, V23] |
Vour Kz, [V2 | ¢ [3]

‘ 1
I/v2l/11;(2111[\/i | CI |2]

?

?

b

?

are also odd functions of the transverse transform variable k. Since ratios of the above
quantities are taken in the image term Ay(L, (g, D,{s) and is therefore an even function
with respect to k for finite L and D. Thus, as noted by Carnie and Chan [41], the
correlation in the transverse direction is screened. The shielding in the transverse direction
occurs because the charge on the opposite side of the membrane wall is able to redistribute
itself, screening the potential between molecules.

As k — oo, comparison between the two membrane and one membrane system (see
Appendix B) shows that both As(L,(g, D,({r) and A1(2L,{g,{r) tend to the same limit
le.

1
1 eE"Eca f 1
Yaug 2031+ 2 E Y, [2¢2]
X% 2 YE CE > 0

1. epnpmca 1
Javg [241%]‘*' En“gif ’ J;VE [241?:]

, (3.35)
1. egrgl¢ I% ! 1
Ky l2iCa|3 1+ B ELEE ko, (2063 ] (5 <0
B

1
| Loy (2o 3]+ B ELER 1 [2)¢g|3]

This is also the limit as k — oo for A({) in the one wall system [41], when { = (g, even
though A(() is neither an even or odd function of k. This is not a surprising result if we

consider all three quantities at the same source and field point, relative to the membrane
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wall at the interface between the extracellular fluid and membrane. Since the large k
behaviour describes the small p behaviour, a molecule experiences negligible influence
from boundaries more than a Debye length away. Thus only as k — 0 (large p behaviour)
can we expect any influence from the other regions.

Also it should be noted that the large k behaviour for As(L,{r,D,{r) has no explicit
dependence on the distance between the membrane walls 2D and both Ay(L,{g, D, (s) and
A1(2L,{E,{s) have no explicit dependence on the membrane thickness. The dependence
of these quantities on the parameters L and D is rather via the extracellular asymmetry
parameter (g. The two membrane system extracellular asymmetry parameter (g, for fixed
membrane thickness, has negligible dependence on the distance between the membrane
walls provided the distance is large. This is certainly true for our value of 2D = 2004 and
is valid to the approximation breakdown distance for the intracellular mean electrostatic
potential of about 60A. Thus the two and one membrane systems have identical values for
the extracellular asymmetry parameter (g for the same values of the membrane thickness.
Table 3.2 shows values of the extracellular asymmetry parameter (g for various values of
the membrane thickness. In the limit as L — oo, both the two and one membrane systems
extracellular asymmetry parameter (g approach the one wall system value given by

dropf Zk:eznfo
N €EERkE [Ze%nfo

k
= 0.046709 .

(E

1
.22 3
If we assume that the ratios 7%1— |k=0, Aerl2 |k=0, S |k —o and —IC—EI— |k=0 < 1, we can

2vr

use the asymptotic forms for the Bessel and modified Bessel functions in Appendix D to

show
[ sinh[kL]+5Ek—’;%E\/1 2 “’“J]] cosh[kL]65,,  (~|L+D]) o > 0
E >
cosh[kL]-l—iEk—':EN?VE\/l [M] sinh[kL]é;, (—[L+D])

Z2,,E — A«
sinh [k L]+ “BEEE 1+[M] cosh[kL)65, _(~[L+D))

(e <0

cosh[k L]+ EEEVE 1+[“Jf(2[,%] sinh[kL]6, (~(L+D))
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Membrane Thickness (A) (E (r
10 0.028874 | 0.443978
50 0.042949 | 0.347285
100 0.044835 | 0.334335
1000 0.046558 | 0.322494

Table 3.2: Table of (g and (s values for various membrane thickness values of the one and
two membrane systems.

4

sinh[kL] —“EREYE ) [1 [M] osh[kL]e), (~IL+D)) bn >0
cosh[kL]-wiEjﬂ‘/l [J[—L“L] sinh[kL]63, _(—[L+D])
'X2VE — i 3
sinh[kL] - EEEVE 1+[M] cosh[kL]63, (~[L+D)) e
E<
‘ cosh[kL]—fEk—z?w—vE\/l+[gE(—2%D—]—] sinh[kL]65, (~[L+D])
where
dE\~1
oo = 14328 +oem)
_ 1 QE(ZI)] —4
1) = 1-- O((2
o (1) |t s) +oten ™
such that
1 o
2 exp [Mﬂizlﬂu] (g >0
qe(z1) =
2| ¢p | exp[”—‘—ulb == ] (5 <0
Thus the quantity As(L,(g,D,() has the asymptotic form of
r S it} b cofkE}— Entvb\/ _[amts [LfDl)] sinh kL5,  (~[L+D))
2JzuE[2<E1cosh[kLl+w\/1 [1GEOD ) dinh kL)sy,,  (~(L-+D))
[Xz,,E(L,CE)+ fuM 2,,‘,( D,0) Xi‘E(L,CE) sgn:..JM ( D,O). 5 >0
i Zay 5 (LGm)+ LT M, (~D,0) ZZVE(L,cEH%;:-MMMz,I( D,0) B

| Ka 213 ) cosIRL]— EEEYE | [1+[EGEAEDT sinhjkL)s;, (- (L+D)

1
% Inyl2Ks3) cosh[kL]+5Eﬁfw—VE\/l+[2E@] inh[kL]6, _(—[L+D])
[xzyE(L,cEHﬂﬂ—”lw (=Dy0)  Xapp(Lu)+ M, ( -001]
“

kepnr vy kepr du g

Zayp (Lkm)+ et My, ((—D0)  Zoyy (L) + L My, (—D\0)

(e <0

If}
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such that

- [P
cosh[2vy7z,  (—D,0)]+1 2= ﬂf@ﬁ sinh[2v172, ,(~D,0)] (>0
& sinh[2v 72, ;(—D,0)] - 1 ‘-“L%L—;]"“"— cosh[ 20730 (—D,0)] d
M, (-D,0) = q ;
s
cosh[2v1ma, (~D o)]—ll‘l%gl("—f” sinh[2v7 72, ; (— D,0)] -
8 sinh[2v 172, ;(—D,0)]+1 ‘—‘!i—‘—ll’;?-:;-@ cosh[2vma, (—D,0)] )
(i D
sinh[2v 7, (—D,0)]+1 1‘““[37‘:"”—”) 2 cosh[2vyna (—Dy0)] t>0
8 cosh[2vmz, ;(—D,0)] - ﬂu[’{;—?& sinh[2v 72, (—D,0)] .
M,,,(=D,0) = { ;
1+ 421 o
« sinh[ 20173, (— D,O)]*il—"l(—“%);"}'}f-(-"—)—l cosh[2v172,,(~D,0)] <0
cosh[2v 73, , (—D,0)]+1 L‘U%J‘”—m sinh[2u73,  (—D,0)]
where
—M(az'zz) - [21/11]3 [q?(a);q%(zz)] +0(@2vn)™) (>0
Mo (21,22) = 4 ;

_NI(le_ZZ) + [2,,1,]3 [q?(n);q%(zz)] +O((2vr)™) (<0

\/ECI% exp [_—”2‘51] r>0
qr(z1) =

Va1l exp| =53] <o

\

Thus the solution for the transverse Hankel transform mean electrostatic fluctuation

potential in region I can be simplified to

PRI -
'¢E(zlvz2)k) - €EkEVE |1 — [qg 21 ]2 1— [ g Z1 ]2
VE VE
X {72VE (2<,2>) exp [ZVEﬂzuE (2<, Z>)]
1
= 2/\2,,E(zl,z2) exp [21/E[’I]2,,E( [L + D}, z1) + 2 (—[L + D], zz)]]
) [cosh[kL] — emvs [y (G LEDD 2 Gnhikr)ed, (—[L + D])]
cosh[kL] + SEEELE \/1 = [MF sinh[kL]65, (—[L + D])
Z2H1,(L CE) + < M2w D,O)
Xa,, (L, +MM,, _D,0
p Bl TGP0 .
ZZVE (L)CE) + J]E;LMZV;(_DJ))
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and

1 1
- 27 1 1 1 t
L
z1,29,k) = [ ] [ ]
VECL T e L] L

X {‘YZVE (Z<,Z>) eXp |:2VE772VE (Z<,Z>):|

- %M»E(zl, 22) eXp [2VE[772VE(—[L + D}, z1) + n2vg(—[L + D], Zz)]]

) [cosh[kL] — egmvg, 1 4 (8GO sinh k)65, (—[L + D]z}
cosh[kL] + rmve 1 4 (CIEDDR gon k)6, (—[L+ D))

« [X2VE (L>CE) + QICLZIAZVLMZVI(_D)O)
Z2VE(L7(E) + EI]?'ZIA;VLMZVI(_Da 0)
4 XoaLia) t gﬁMMMz_W(_D’O)]} ¢ <0 (3.37)
Zoug (L, CE) + LM, (D, 0) ’
where
[~ sslyn) ok [qg(zl)?ﬁ(z’)] +0((2ve)™) (e >0
Nowg(21,22) = 4 i
N Z1)— 2 Z -
\ _NE(Zé—Zz) + [2‘/;]2 [QE( 1)4‘113( 2)] +0((2VE) 4) CE <0
( [ 2 z21)— £ 2 —
1+ [21,]}'3]3 2 1)4qE( 2)] +O((2VE) 4) CE >0
Youw(21,22) =« _ )
2 Z1)— N zZ —
| 1- g [ B2 o) ) Ga <0
L+ gks 2qi~(*[L+D])—49?E(Zl)-QZE(Z:!)] +0(2vp)Y) (5> 0
Aovg(21,22) = ] ]
2 (— —q2(z1)—¢% (= .
| 1k 24} (~(L+D]) (1) z)] +O((2vp)Y) (5 <0

Since the above expressions for the transverse Hankel transform mean electrostatic
fluctuation potential involve a considerable amount of algebra to derive and are compli-
cated, a numerical integration of the differential equations is used to test the validity
of the analytic solutions. A shooting method [114] is employed to numerical solve the
differential equations for the transverse Hankel transform mean electrostatic fluctuation
potential. This method solves the differential equations by starting at two boundaries and
“shooting” towards an interior point using the Runge-Kutta algorithm and using iteration
matches the solutions from either side. For our particular application, the shooting point
is the source point. At the source point we require that the solution is continuous and has

a jump discontinuity in the first derivative. To start the integration we choose boundaries
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far enough away from the source point so that the solution and the first derivative are
essentially zero (due to the expected exponential decay of the solutions from the source
point). The distance of the boundaries from the source point is also important to en-
sure that there is a negligible mix of the unbounded solution with the required bounded
solution.

Presented below are plots of the numerical and asymptotic transverse Hankel transform
mean electrostatic fluctuation potential at the source point for specified k values. See
Figures 3.5, 3.6, 3.7 and 3.8. The location of the starting boundaries for the numerical
procedure decreased as the value of the transform variable k increased. For k = 0.0014°1
the boundaries were located about 1004 either side of the source and for k = 1471 at
about 54. This is consistent with the above discussion for large k behaviour which is
determined by the region near the source point whereas the opposite is true for small
k values. Thus for these values a knowledge of the differential equations for the second
membrane and the extracellular region V is unnecessary. This suggests that the second
membrane and thus the extracellular fluid in region V have negligible effect on the value
for the transverse Hankel transform mean electrostatic fluctuation potential ( and thus
the mean electrostatic fluctuation potential).

As the normal distance from the membrane wall increases, the plots tend to a constant

value determined by the Debye-Huckel type term in the solution i.e.

GEI%;VE[I [ZVE ] ]1[1 [_Egl_] ]4 (e >0

Pk (21, 20,k) — ,

2 1 . 1 ¢ Cp <0
CENEVE l![ﬂj(»])] 1+[ E(zl ] E

As the transform variable k increases this Debye-Huckel term (the field point and source

point coinciding) has the form

- 2
L
¢E(Zl,zz,k) - eEk N

This result is consistent with that of Carnie and Chan [41] for the constant density systems
(both single and two plate) and the linearized GC density for the single plate. Again this

is due to the large k behaviour being determined by the region near the source point.
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Figure 3.5: Comparison of the numerical and asymptotic solution for the transverse Hankel

transform mean electrostatic fluctuation potential at the source point in the extracellular
fluid of a two membrane system vs distance from the membrane wall for k=0.001.
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Figure 3.6: Comparison of the numerical and asymptotic solution for the transverse Hankel
transform mean electrostatic fluctuation potential at the source point in the extracellular
fluid of a two membrane system vs distance from the membrane wall for k=0.01.
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Figure 3.7: Comparison of the numerical and asymptotic solution for the transverse Hankel
transform mean electrostatic fluctuation potential at the source point in the extracellular
fluid of a two membrane system vs distance from the membrane wall for k=0.1.
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Figure 3.8: Comparison of the numerical and asymptotic solution for the transverse Hankel
transform mean electrostatic fluctuation potential at the source point in the extracellular
fluid of a two membrane system vs distance from the membrane wall for k=1.
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The asymptotic solution for the transverse Hankel transform mean electrostatic fluc-
tuation potential in region I is a complicated expression. A simplification can be made by
noting the second membrane wall has a negligible effect on the values for the contribution
from the image forces. See Figure 3.9. Thus for the purposes of performing the Hankel
transform inversion we will replace A2(L,(g,D,(r) with the simpler expression for the

image forces of the one membrane system A;(2L,(g,{r).

3.2.3 Limiting forms of the transverse Hankel transform mean electro-
static fluctuation potential

To obtain the one membrane limiting form (as described in Section 3.1.1) for the transverse

Hankel transform mean electrostatic fluctuation potential we first take the limit as {f — 0.

As a result, both

1 1
U2Vj '72111 [ﬁ(f] - V2V[Y'2V1[‘/§<]2;]

1 1
S2VIJ2VI[\/§<_[2] - T2111Y’2VI [\/ECI?]

and

Usuy T, [V2 | {1 3] = Voo, Koy [V2 | G |7]
SawrTag V2 | ¢ 5] = Tow Koy [V2 | €1 |5]

tend to the same limit of

Xy, sinh[krvr D] + Eﬁ%ﬁl cosh[krvy D]
Zy,y sinh[k v D] + 9,5}%’1 coshkrvD]

Also, both

) 1 , 1

U2V1J2u[[‘/§C1?] - I/2VIYZVI[\/§C]2;]
1 ] 1

,5'2,”]2”![\/5(13] - T2V1Y2u1 [\/ECIZ]

and

Ui Iy, [V2 | ¢ 3] = Vau, Koy, [V2 | (1 [3]
Soidp,, [V2 | C1 2] — Tou Ky, [V2 | (1 |7]

tend to the same limit of

Xy, cosh[k vy D] + Q—k':ﬁ‘ sinh[x v D]
Zy5 cosh[k v D] + 5%‘#1 Sin];T[,?,,I]j] .

If we now take the limit x; — O then the quantity xyvr — k. Also we set the dielectric

constant of the intracellular fluid region to that of the membrane i.e. ef — €37. Thus both
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Figure 3.9: Comparison of —A;—Z—& and —Ay——Z—£" in the extracellular fluid vs k.
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the above quantities reduce to

Xoyy sinh[kjvr D] + LEL cosh[kviD] X, sinh[kD] + cosh[kD]
i H ’
Z3yy, sinh[krvp D] + Eﬁﬁ‘[ cosh[xrvrD] Za,, sinh[kD] + cosh[kD]

Xy, cosh[w vy D] + G2 sinh(kjvi D] Xo,, cosh[kD] + sinh[kD]
_) .
Zyy cosh[r D] + et sinh[k vy D) Zyy, cosh[kD] + sinh[kD|

Use of the definition for Ay in terms of X»,, and Zy,,, simplifies As to

5 1

1 eprpls 1
Yau g [2¢2] cosh[k(L+D)|+ 2L Y,

s [21¢2|3 ] sinh[k(L + D)]

1

2 7 I
cphpln

Tav g 263 ] cosh(k(L+D) |+ T,

1
Ve [2¢2] sinh[k(ZL+D)]

1 z ¥ 1
_ Yaup (2CH 1 inbl( L+ D)+ ELTEY,, iG] comhlk(E+ D)
1

Ce >0

1 P | 1
Jav g [2¢2 | sinh[k(L+D)]+ "h‘;:l-‘. Ty, s [2¢2] coshlk(Z+D)]

Az—*(

Repr v

1
) [K;;,E [2/¢x|3 | cosh(k(L+D)+ < ELEE k! 9)¢5|3] sinh[k(L+D)]

3
Lo g (21513 ] coshlk(L+D))+ E2ELEE 1 51653 ] sinh[k(L+D)]

, Kop 2o 3 inbli(L+ D)+ EAE L K, [2Ca| ] cosh k(2 1-D)

] (e <0

1
| Bugl2sl?] sinh(k(L+ D))+ LELEE [ - [2/¢x|2] cosh[k(L+D)]

After some algebra, the above expression for Ay further reduces to

4

1
—% egrplé 2 %
Yau 2021 20 s (ALA-DI )+ T B Yy, 261

Ce>0

1
1 P 1
T3y 2031 Z2u p (2ALAD]Cu) = T, 1203

NDI
Il

1
1 = 2 1 1
Kovg 20813 ) 22y  (2L+D) (o) + EEEE o, ()02

] (e <0

(B (200015120, 5 (2UL+D]G) + Eﬂfﬁ'ﬁﬁ 1, . [21Cs13]
Comparison of this limiting form for Ay(L,({g, D,(;) with the one membrane case

A1(2L,{E,(1), see Appendix B Eq. (B.14), shows that this limiting form is equivalent to
a one membrane model system with a membrane of thickness 2[L + D] and extracellular

fluid in each of the fluid regions adjacent to the membrane.

Another two limiting cases of the system occur when the membranes are perfect insu-

lators (i.e. €pr = 0) or perfect conductors (i.e. €y = 00). Thus

1
2
_YQIIE[2CEI C_E = 0
Ay — ;ﬁml[zz‘:f;]m as €y — 00 ,
~Zwgllealdl . g
IZVE [2|<E|2]
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1
]

S L
Ay — J’;’H{zcﬂj 2 as ey — 0 .
K, [2Ck|3
_'3_&[ b|11 CE <0
I, 121€8| 2]

These limiting forms approach the same value as in the one membrane model (see Ap-

pendix B) and that of the one membrane wall model considered by Carnie and Chan

[41].
3.2.4 Case 2:—D <2z <D

The Green’s function type of solution for the transverse Hankel transform mean electro-

static fluctuation potential in region III is constructed using the functions u(z;) and v(21)

defined by
(72, [VECH expl 21| i, [ VEGH expl42)
Yo, [VEH expl=5421] s | VG exal 42 (>0
u(z1) = A
Fan|[VE1 1 ¥ expl-542]| K | V2 | |} expl*42]|
| K [V 1 ¢r 1} expl—21| B [VE | 1 B expl=42]] <0
, Jou; [»/5(;* exp[—%"*]] qu;[ﬁé]
Yo, [\/icﬁ expl— %’511] Toog IW3CH] (>0
v(z1) = X i
T, [v’i ¢ 13 exp[—%} Koy [V2 | ¢1 3]
K, [\/”2' <o 3 cxp{—%ﬁl}]fzu,lvfz ¢ 3] <o
such that

u(—D)=v(0)=0 .

Thus the Green’s function type of solution for the transverse Hankel transform mean

electrostatic fluctuation potential in region II1 is of the form

A u(zc)v(zs) 1/;{{,[(—17,22,100 P70, 22, k)

¥f (z1,22,k) = o W) o(~D) (21) 2(0) u(z1) ,

(3.38)
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where W is the wronskian of the solutions u(z;) and v(z1) and is given by
"Ly(0) = —%y(-D) (1>0
W(u,v) = . (3.39)
—u(0) = Jv(-D) (1<0

Application of the appropriate boundary conditions at +0o and at the membrane walls

located at +[L + D] yields

DE = o0,

( cg{.fz,,E 12¢ 3] coshlk(z1 — [ + D))]
) )
_ewreCh g, (23] sink{k(z1 — L + D])]} (e >0
’QZﬁ(Zl,Zz,k) = 3
CE{Rapl2 | ¢o 1} cosbis(ar — L+ D)
el 1o | ¢p [})simb{k(z1 — L+ DI} ¢z <0
Dt = o,

i &
CH{ T20p12¢H) coshlb(ar + 2+ D)
1

3 ol 2‘ !' .
4-‘”—’"‘51? Ty, [2¢3] sinh[k(z1 + [L + Dl)]} (g >0

11["111-/4'('21':2271{) = 3
CB{anl2 | o 3] cosbli(z1 + (2 + D)

keps

1
eEsEKEL 1 19| ¢ |3) sinhlk(z + [L+ D])]} (e <0

.

Then the application of the boundary conditions at the membrane wall located at D yields

expressions for the constants CF and DF in terms of the constant Cg ie.

[ {Jz,,E [ZC},%J] cosh[kL]

1

2, F
CcE erkr +EE:E_EE1: JZVE [2(%] 51nh[kL]}S2V1(LyCE,D,CI) Ce >0
—or _
CE 2kep ‘ ,

{IM 2| ¢x |¥] cosh[kL]

1 1
femsElel o), |§]sinh[kL]}szy,(L,cE,D,cI) s <0

kepr 2vg

.
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’

{Jz,,E [2¢2] cosh[kL]

1

ERK C2 T 1 .
Df-z _— + Ekjwﬂjzm[zgg] mnh[kL]}Tz,,I(L, (e, D,{1) (g >0
C—ngGM ,

{IzuE 2| ¢z |3] cosh[kL]
1
+mIC_EIiIéVE[2 | & |3] sinh[kL]}TZVI(L,CE,D,CI) CE <0

ke

\

where S, (L, (g, D, (1) and T5,,(L,{E, D,{r) have the same definitions as in Section 3.2.1.
At the origin and the membrane wall located at —D, application of the boundary

conditions yields the following set of equations

eu Vi (=D, 22, k) = — W?: S (=D)ul) + qﬁf%u’(—p)
+ eI%u'(—D) : (3.40)
b (0,20,k) = — W?: 3 v (0)u(z) + e;éif%z)z’k)v' (0)
+ é%u'(o), (3.41)

to solve for the constants ¢;(—D, z2,k) and %¥(0, 22, k), such that

47
egW(u,v)

o(=D)ulea) — Vanr | 1 I} Bk 0,00

@Zl%l(_szbk)

( dr [ 1 } 1
ey Wi, = I 1 i
VO aernichd a0 04, [VECH ] B0, 3, [VEGH]

x{k—g;u'(—D)v' (0)v(2)
=o' (0)[S11 72 [VECH] = Tans Yo [VECH| u(ar)} (>0
1/;11-?'(0,22,1{) = %

dar 1 1
eW{thy) [x/iemmn% ] Sauy Ty [VEIC113]-Tow Ky, [V2ICA13]
% { <Ly (—D)v' (0)0(22)

kepg

' (0) S0y B[V | 1 13 = Tory Koy [VE | G ] ue)} 1 <0

.

These results for the constants 1,7:1{’4(—D, z2,k) and 1&}3(0, 22,k) are substituted into the
the solution for the transverse Hankel transform mean electrostatic fluctuation potential

in region III Eq. (3.38) and the solution can be written in the form

FE (21, 20,k) = — ’t_;fu(;f_?)z%l)
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L] 1 |
er W(u,v) szwjéw[\/i(]%] - Tz,,jYz',,I[\/iCIE]

{[ v : ][“'(‘D)”'(O)][u(a)v(za+v<z1>u<z2)1

1
si¢iken b ¥0)

X

- [ ﬁ;é”z((g)) [52VIJ2VI[\/5€;]—TszzuI[\/iC;]]U(n)U(@)

[“é;\f )]v(zl)v(zz)} >0, (3.42)

and

s __ Amu(zdu(z)
")bI (21,22,1{) = €r W(u,v)
4r 1 [ 1
e1 W(u,v) Sou; Iy, [V2 | (1 3] - To, K3, [V2 | (1 3]
1 w (—D)v' (0)
(ol [ v s+ st
O 1 ] [v' (0)
LV2k1 | (1 |% u(0)
x| SawTan [V2 | (1 3] = Tou Koug [V2 | (1 I%]]u(n)U(zz)

X

_ :UIEG_MD)]v(zl)v(zz)} ¢r<o. (3.43)

By noting that the functions u(z1) and v(z1) are even functions of the transform
variable k, the solutions for the transverse Hankel transform mean electrostatic fluctuation
potential, Eq. (3.42) and Eq. (3.43) are also even functions of k. Thus we expect that
the correlation in the transverse direction will be screened for the mean electrostatic

fluctuation potential.
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3.2.5 Asymptotic transverse Hankel transform mean electrostatic fluc-
tuation potential

1

2(12

1
. 2¢2
If we assume that the ratios 7%1— |x=0, 507 |x=0, 2”E | k=0 and —I%EB |k=0 < 1, use of the

asymptotic forms for the Bessel and modified Bessel functions in Appendix D yields

| “—[[J—‘—QJH R o]

Auy

X [sinh[?vmzu, (z1,—D)][1 + O((2vr) %)
1@&@@)_1 cosh[2vrna,, (21, D)]] (r>0

[2vr]®

u(z)) — \ :

1 1
1 [ l ]i[ 1 3] 4
2y 1+[..1£:L 1,[_J_i

e [smh[?v;ngw z1,—D)|[L + O((2v1)™%))

(2]

f 1 1
1 1 ' 1 ‘
LT LT

X [sinh[2um2,,1(z1,0)][1 + O((2vr)™)]

IMM;U cosh[2v179,, (21, — D)]] (r<0

2

; 2
_‘_i L ZJ[2VI]3I 0 cosh[ZVIﬂzw(zl’O)]] r>0

v(z1) — < ,
1 1

2_‘1”[1+[J(ﬂ—] ] [1+Hf%1 ]Z

X [sinh[2vmz,,l(z1,0)][1 + O((2vr)™)]

—qr(0)2
+1 L 21[21, ]q’ cosh[ZVInz,,I(zl,O)]] (1<0
where the quantities qI(zl) and 72,, (21, 22) have the same definitions as in Section 3.2.1.

Thus the quantities u(z1)u(22), u(z1)v(z2) and v(z1)v(22) have the following asymptotic

| [”_ifr[ [J<—’L]] [1 [J(i]] [1 [¢=P) ,,I’]]

2vy vy

X [% cosh|2vng,, (21, —D) + 2vin2,, (22, —D)|

forms

B [t

—% cosh[2vn2,, (21, —D) — 2vina,, (22, —D)]] r>0

u(zr)u(ze) — 4 ’

[T’EI] 2 [1+[5‘1(’—“]2]

N
B =t

T [H[Jl‘i] ] Z [1+[J‘1—D] ] _

x [% cosh[2vn2,, (21, —D) + 2vin2,, (22, —D)]

| —% cosh[2vrna,, (21, —D) — 2v1n2,, (22, —D)]] (<0
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1

] [or] r]

2vy

<[] [

Avy

3

X [5 cosh[2v1m2,, (21, —D) + 2vm2.,(22,0)]

—% cosh[2v1n9,, (21, —D) — 2vri2,, (22,0)]] (>0

u(z)v(z2) — | )

[ﬁf 2L+[4€n~1 HH[J,%L] ]
<[] [pbmp]

| aenmm—

x | 5 cosh[2v1n2y, (21, —D) + 2vim2y,(22,0)]

—1 cosh[2v1n2,, (21, —D) — 2vima,, (12,0)]] (<o

\

(] T ] ] L]

vy 2wy

X [é cosh[2v1n2,,(21,0) + 2vrm2,, (22, 0)]

—1 cosh[2vrn2,,(21,0) — 21/1772:/,(22,0)]] r>0
v(z1)v(z2) — < ) _
[Ti’ [1+[J1(i ] [l+[“;{fﬁ]] [H[#ﬁﬂ—]]

X [% cosh[2vrn2,,(21,0) + 2v1n2,,(22,0)]

{ —% cosh[2vna,,(21,0) — 2vino., (22, 0)]] (1 <0
The source term in the solution for the transverse Hankel transform mean electrostatic
fluctuation potential Eq. (3.38) has the following asymptotic using the asymptotic forms

for u(z1) and v(z1), i.e.

a5t |

= cosh[n;u;(z<+z> -+ D)] —wsh n;u;(z< z>+D)]
slnh[n;VID]

¢r>0

_aru(zn(z)
er Wi(u,v)

4

¢ 1

[H[”EL ]
x[cosh[m;u;(z<+z>—|jD)] wshrﬁ,w;{z<—z>+D)]] CI <0
\ smh[n;u;D]

27 1
cfRIVY 1+[ ((q ]

Since we are mainly interested in the fluid region adjacent to the membrane wall in region

IIl,ie. z1 = z9 = —D), and the quantity
krviD [p—o> 1 ,
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the source term further reduces

.

EfKIV qr(z1)12 z
e | peof ] |

X [exp[ﬂn/](z< — 25 )] — explervi(z< + z>)]} (>0
dm u(zc)v(z>)

g W) )

™

[H[ﬂl(—’ﬁ]s]%

2% [ 1 ]
1) 12
o gmee

| x [exp[np/[(z< —z5)] — exp[rrvi(z< + z>)]] {1 <0

This asymptotic form of the source term is similar to that in the solution for the source
term in the extracellular fluid i.e. Eq. (3.36) and Eq. (3.37).

A similar analysis can be performed on the other terms in the solution for the transverse
Hankel transform mean electrostatic fluctuation potential, Eq. (3.42) and Eq. (3.43),
to determine the dependence on the source and field point provided they are near the
membrane wall located at —D. The details of the analysis are not presented here. Rather,
presented below are plots of the numerical and asymptotic transverse Hankel transform
mean electrostatic fluctuation potential at the source point for specified k values. See
Figures 3.10, 3.11, 3.12 and 3.13. The location of the starting boundaries for the numerical
procedure decreased as the value of the transform variable k increased. This is consistent
with the above discussion for large k& behaviour which is determined by the region near
the source point whereas the opposite is true for small &k values. Thus for these values
a knowledge of the differential equations for the second membrane and the extracellular
region V is unnecessary provided the source point is near the membrane wall located at
—D. This suggests that the second membrane and thus the extracellular fluid in region V'
have negligible effect on the value for the transverse Hankel transform mean electrostatic
fluctuation potential (and thus the mean electrostatic fluctuation potential) provided the
source point is near the membrane wall located at —D. Comparison of these plots with
the corresponding k value plot for the intracellular fluid region of the one membrane point
model in Appendix B, see Figures B.6, B.7, B.8 and B.9, shows excellent agreement for
both the numerical and asymptotic solution. Thus, as for the extracellular fluid case, the

presence of the second membrane has negligible effect in the region near the membrane

wall located at —D.
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As the normal distance from the membrane wall increases but less than D the plots

tend to a constant value determined by the Debye-Huckel type term in the solution i.e.

2r 1 i E 0
erxIvVI 1_[21291_)]2 i [J;;(ﬂ“ Cr >
= v vy
1/Jf’(z1,z2,k) — ] 1
1 -
EIKJVI [1+[ [(21 ] ] |:1+[q[2(zl)]3] (r<o0
vy

As the transform variable k increases this Debye-Huckel type term (the field point and

source point coinciding) has the form

27
PY (21,22, k) — =k

This result is consistent with that of Carnie and Chan [41] for the constant density systems
(both single and two plate) and the linearized GC density for the single plate. Again this

is due to the large k behaviour being determined by the region near the source point.

3.2.6 Limiting forms of the transverse Hankel transform mean electro-
static fluctuation potential

To obtain the two semi-infinite membrane limiting form (as described in Section 3.1.2) for
the transverse Hankel transform mean electrostatic fluctuation potential we take the limit

as I — oo. This results in the quantity

Z2VE(L)CE) —1 ’

in both cases for the sign of (g. Thus the solutions for the transverse Hankel transform
mean electrostatic fluctuation potential Eq. (3.42) and Eq. (3.43) in both cases for the

sign of {r reduce to those of the two semi-infinite membrane point model of Appendix C,

Eq. (C.11) and Eq. (C.12).
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Figure 3.10: Comparison of the numerical and asymptotic solution for the transverse
Hankel transform mean electrostatic fluctuation potential at the source point in the intra-
cellular fluid of a two membrane system vs distance from the membrane wall for k=0.001.
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Figure 3.11: Comparison of the numerical and asymptotic solution for the transverse
Hankel transform mean electrostatic fluctuation potential at the source point in the intra-
cellular fluid of a two membrane system vs distance from the membrane wall for k=0.01.
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Figure 3.12: Comparison of the numerical and asymptotic solution for the transverse
Hankel transform mean electrostatic fluctuation potential at the source point in the intra-
cellular fluid of a two membrane system vs distance from the membrane wall for k=0.1.
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Figure 3.13: Comparison of the numerical and asymptotic solution for the transverse
Hankel transform mean electrostatic fluctuation potential at the source point in the intra-
cellular fluid of a two membrane system vs distance from the membrane wall for k=1.
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Chapter 4

Ionic Hydration Numbers

In the previous chapter we constructed the solutions for the transverse Hankel transform
mean electrostatic fluctuation potential for the two membrane point model for the cases
when the source point is located in the extracellular and intracellular fluid regions. Com-
parison of these solutions with the one membrane point model solutions shows that the
second membrane has a negligible effect. Thus for the determination of ionic hydration
numbers we will use the one membrane point model solutions to approximate the two

membrane point model solutions for the transverse Hankel transform mean electrostatic

fluctuation potential.

4.1 Mean electrostatic fluctuation potential

The inverse transverse Hankel transform is defined by

¥(z1,22,p) = ﬁ/dkeXP[—ik'P]@Z(zl,ka)

1 [ -

on | dkRT (kR 22, (41)
™ Jo

Thus this expression can be used to obtain the mean electrostatic fluctuation potential for

the two cases described below,

4.1.1 Extracellular mean electrostatic fluctuation potential

In this case we are interested in the mean electrostatic fluctuation potential in the extra-
cellular region. The transverse Hankel transform mean electrostatic fluctuation potential

in the extracellular fluid region transforms to
PE(21,22,p) = VP2 (21,22,p) + PR (21,22,P) » (4.2)
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where
N 1 foo _
PR mmp) = o= [ dkkI(kp)FB (1 22 K) (43)

is the Debye Huckel type term and QIBEH (21,20,k) is given by

EEK-L. }',2”1&- [2CD exp[ mﬁz_&) ]]

X T2 [2(5 exp|“£ z‘z“i-l]] Ce >0
,‘Z_-EH(Zl,Z27k) = 9 ) (44)
qm;g vy B2vp [2 | Ce |:l expl’ﬁ_b(b_t{{l]:l

X Iovg [2 |¢e |3 BXP[E’E—%*LLII] (e <0

and
_ 1 fpoo -
P Gr,m,p) = o [ dkET(kpB (21,2210 (45)

is the image term due to the discontinuities in the dielectric medium across the membrane

walls such that 1,1) M(21,22,k) is given by

L
- 32128, G, () o |20 exp[ 252
X Jou, 2(5,exp—“5‘1"{"31'—&1 (g >0
B B 2
1/;_1E',‘M (zly 22, k) = 4 ) (46)
o A1(2L,¢Es () v [2 ¢ |3 exp[ﬂ‘-%i@J]
{ XI5y [2 | ¢ |% exp| f-°“"""L=’;Z.§~~+£]-]] (g <0
where
i 1 ;"
 Yag [2c§1Zzu,(2L,cI)+-i*kT‘§ff vy, 23] (s> 0
_ J2”E[2CE]ZWI(2L C1)+5Ek':}::}£h ;”E [2CE]
A1(2L, (g, (1) = { , 4
K [2|cE|%1Zzu1(2L,cI)+Mf;-';f,kﬁffz,b 2I¢sl3) (5 <0
= E
\ IzVE[z|cE|%]z2y,(2L.c1)+J=-¢5';jLﬁf [2/¢z|3]
such that
( 1 K C 1
Tawy[2¢2] sinh[kL]—i—-—Ih—Iﬂ;‘—Jz” [2¢2] cosh[kL]
! I”C L (r>0
Tavp[2¢2] cosh[kL]+ oL Ty, [2¢7 | sinh[kL]
Z2VI(L3<I) = 4 (4'8)
Iz,,I[2|CI|2]smh[kL]+J—"Ji—§E-IQVJ [21¢:13] cosh{kL] <0
I
| B, [21:13] cosh[kL]+fiﬁ,§!§-’% [2/¢113] sinhlkL]

21/1-
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The above results for the transverse Hankel transform mean electrostatic fluctuation po-
tential for the one membrane point model are derived in Appendix B.

The transform inversion can be explicitly obtained by numerical integration for various
values of the normal and transverse distance. The asymptotic form of the transverse
Hankel transform mean electrostatic fluctuation potential for the one membrane point
model, derived in Appendix B, is used in the intergrand for the numerical inversion. The
numerical scheme employed uses Simpson’s rule with an extended trapezoidal rule driver
[114]. For values of the normal and transverse distance within about 24 of the source point
the transform variable k (integration variable) it was necessary, to ensure convergence, to
truncate the integral at value of 1004~! compared with 204! for values outside the 24
region. This is consistent with the argument presented in Chapter 3 concerning small p
behaviour determined by the behaviour in the transform for large k.

Two plots of the extracellular mean electrostatic fluctuation potential are presented to
highlight the following points. Figure 4.1 is a plot in the normal direction for various values
with the source and field points in the transverse direction to the membrane coinciding

i.e. p=0. Important features are

e the skew symmetry in the potential when the source point is close to the membrane

wall,

e the rapid decay (shielding) behaviour of the potential in the normal direction, and
e monotonic behaviour.

The skew symmetry is due to the image term which is a function of the normal distance
of both the source and field point whereas the Debye-Huckel type term is a function of
the relative normal distance between the source and field point. When the source point
is further than about 54 from the membrane wall, the image term is negligible and thus
the Debye-Huckel type term dominates and therefore the potential is symmetric. Figure
4.2 is a plot in the transverse direction for various source point values with the source and

field points in the normal direction to the membrane coinciding i.e. z2 = z;. It should
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be noted from this plot the dependence of the potential in the transverse direction on
the source and field point position in the normal direction and the apparent shielding in
the transverse direction. The monotonic behaviour of this solution should be contrasted
against the damped oscillatory behaviour in real fluids [49]. Our neglect of the size of
the molecules (i.e. setting the hard sphere diameters to zero) has caused the finite size
effect in the solution for the mean electrostatic fluctuation potential (and thus the pair
correlation function) to be averaged such that there is no oscillatory behaviour.

An analytic expression for the extracellular mean electrostatic fluctuation potential
would be advantageous in the analysis of its dependence on the transverse and normal
distance variables and for the calculation of ionic hydration numbers. Since the large k
dependence determines the small distance behaviour, we take the limit as k — oo in the
asymptotic solution for the extracellular mean electrostatic fluctuation potential in the

one membrane point model, see Appendix B, to yield

TDH exp[—kpve(k) | z2 — 21 |]
"/"E (zlvz2vk) =2 GEK'EVE(k) H (4'9)
N k
M (2 k) — Ag SRlrEvE®)(Z2+ 2 +2L)] (4.10)
egxeve(k)
where
B

\/k2+n2E—n2E<E§g (g >0

keve(k) = y (4.11)
B
l/k2+I€2E+n2E|CE | % (e <0
€gp — €

If we further assume that these forms are the dominant terms for the evaluation of the
extracellular mean electrostatic fluctuation potential and valid for all k, then the transform

inversion can be performed in closed form, see Appendix D, to yield

_ 1 o exp[—kpvEe(k) | 22 — 21 |]
DH P EVE
2o, p) = — | dkkJo(k
YE - (21,22,P) o= /0 o(kp) cnrEva(k)
e—rEvE(0)r
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Mean Electrostatic Fluctuation Potential (mV)
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Z1 (Angstrom)

Figure 4.1: Numerical solution for the extracellular mean electrostatic fluctuation potential
in the normal direction for a one membrane point model system for various values with the
source and field points in the transverse direction to the membrane coinciding i.e. p = 0.
Normal distances are measured from the membrane wall.
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Mean Electrostatic Fluctuation Potential (mV)
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Figure 4.2: Numerical solution for the extracellular mean electrostatic fluctuation potential
in the transverse direction for a one membrane point model system for various values with
the source and field points in the normal direction to the membrane coinciding i.e. z2 = 21.
Normal distances are measured from the membrane wall.
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such that

[

3
o= [(wz —21)? 4+ (2 — )2 + (2 — 2)?|
and
- I foe explegve(k)(z2 + z1 + 2L)]
M
= — dkkJ A —
vy (21,22, P) o fo o(kp) AE PRy
c-—x;-;y_r;{ﬂ]r"
= Apg ———— ; (4.14)
ent
where
1
* 2 2 2|2
7 = |(zz—21)’+@2—y1)*+ (2 +21+20)°| .

Comparison of this analytic expression with the numerical solution shows negligible
difference i.e. < 1%. Thus the dominant behaviour for the extracellular mean electrostatic
fluctuation potential is determined by the large k behaviour in the extracellular transverse

Hankel transform mean electrostatic fluctuation potential.

4.1.2 Intracellular mean electrostatic fluctuation potential

The transverse Hankel transform mean electrostatic fluctuation potential equations for
the one membrane point model in case of the source point in the intracellular fluid can
be derived from those of extracellular fluid case by interchanging the extracellular and
intracellular fluid regions.

A numerical integration of the transform inversion yields plots which are similar to
those of the extracellular case in features (as discussed above). See Figure 4.3 and Figure
4.4.

A similar analysis, as discussed in the previous case, for the large k limit in the intracel-
lular transverse Hankel transform mean electrostatic fluctuation potential and subsequent

analytic inversion yields

B e gy (0)r
b me) = — (4.15)
~IM g
¢I (zla 22, P) = Ay e ) (4‘16)
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Mean Electrostatic Fluctuation Potential (mV)
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Figure 4.3: Numerical solution for the intracellular mean electrostatic fluctuation potential
in the normal direction for a one membrane point model system for various values with the
source and field points in the transverse direction to the membrane coinciding i.e. p = 0.
Normal distances are measured from the membrane wall.
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Mean Electrostatic Fluctuation Potential (mV)
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Figure 4.4: Numerical solution for the intracellular mean electrostatic fluctuation potential
in the transverse direction for a one membrane point model system for various values with
the source and field points in the normal direction to the membrane coinciding i.e. z3 = 2;.
Normal distances are measured from the membrane wall.
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_Quantity Value

kpve(0) | 01227471

xvr(0) | 0.1946471

Table 4.1: Table of kv(0) values in the extracellular and intracellular fluid regions for the
one membrane point model.

where

Ay = 2=
€1+ ey

1

2
r = [(wz—w1)2+(y2—y1)2+(22—z1)2]

1

* = —21)? + (y2 — 11)? —2L)%|"
™ = |(@a—21)*+@2—y) + (2t 2 )

Comparison of this analytic expression with the numerical solution again shows negli-
gible difference i.e. < 1%. Also a comparison between the extracellular and intracellular
analytic expressions shows that for the same dielectric constant in each of the fluid regions
i.e. €g = €1, which is true in our model, that the parameter ,,(0), which can be thought
of as an “effective » inverse Debye shielding length, determines the structure in each of
the fluid regions. The values of the parameter «.v.(0) are presented in Table 4.1. The
difference in the values between the two regions is due to an order of magnitude difference
in the charge asymmetry parameter (,, see Table B.1. The asymmetry parameter being
greater in the intracellular fluid due to the abundance of cations (Nat,Kt,Ca™) com-
pared to the major anion C!~. Whereas for the extracellular fluid the asymmetry is less
due to a greater balance in the amount of anions to cations. Thus the “effective™ Debye
shielding length in the intracellular fluid is less than that of the extracellular fluid i.e. an
ion in the intracellular fluid is screened more than that of an identical ionic species in the

extracellular fluid.
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4.2 Calculation of ionic hydration numbers

The definition of Azzam for the ionic hydration number Eq. (1.8) has to modified to
account for the orientational dependence of the dipole (water molecule). The quantity
dxg dws ng(x2, ws|V) gia(x1; X2, wa|V) describes the number of dipoles (water molecules)
in the volume region X2 , X2 + dx2 with orientation in the angular region ws , was + dw2
given that an ionic species of the ith type is located at x;. We have to integrate this
quantity over a (to be determined) region to calculate the ionic hydration number. Since
the correlation functions have both a normal and transverse dependence but the mean
electrostatic potential has only a dependence in the normal direction, integration over a
spherical region (as in Azzam’s definition) is analytically not possible in closed form. Thus
a cylindrical region is chosen so as to provide an analytic expression for the ionic hydration

number. The appropriate definition for the ionic hydration number is thus given by

MaT
nf(x1) = / ~dxe / dws ng(x2,wa|V) gig(x1; x2,w2|V) . (4.17)
mn
maT
The region of integration, denoted by / dxs, is such that we are evaluating the number
min

of dipoles (water molecules) contained within a cylindrical region with a region of exclusion.
The region of exclusion is included (by hand) in the calculation to represent the “hard
sphere” of an ion. The extremities of the region of integration are chosen to be multiples
of the “effective” Debye length. This choice is physically reasonable since the interaction
between the ion and any “attached” water molecules is over this length scale though it is
still arbitrary compared with a choice of say two “effective” Debye lengths. Thus the region

of integration has the following limits when written in terms of cylindrical co-ordinates

mae Z21tZmae Pmaz
/ dxy =27 / dzz (22 — 21) dp2 p2 ,
z

min 1—Zmazx Pmin

where
o B
pmz'n - 2
_ 1
1
maz 4.18
¥ 2kgvE(0) ( )



See Figure 4.5. The region of integration must be truncated in the normal direction if it
extends into the membrane region since no dipoles (water molecules) can be “attached™
in that region for our model.

The relationship between the ion-dipole indirect correlation function and the mean
electrostatic fluctuation potential is given by Eq. (2.129) (setting molecule of type b to

be a dipole) i.e.
hig(x1; X2, w2|V) = —fesm(ws) - Vaip(x1,X2) . (4.19)
Thus the ion-dipole pair correlation function is given by

gid(x1;x2,w2|V) = exp[—Be;m(wz) - Vob(x1,%2)]

1 — Be;m(ws) - Vath(x1,%2) . (4.20)

R

Expansion to first order in the mean electrostatic potential for the dipole number

density Eq. (2.88) i.e.

0
na(xz,walV) = ZL[1— fm(ws) - Va(xa)] , (4:21)

and substituting for the pair correlation function Eq. (4.20) into the definition for the

ionic hydration number Eq. (4.17) results in

n_fl(xl) = Z% /T::m dxp /dwz[l — fm(wz) - V2¢(X2)]
x (1 Beam(n) - Vaba, %) (4.22)

Then performing the angular integration for the extracellular fluid case yields

nf(x)) = nf fmw dxs [1 + %eiﬂzmz p(x2) 81{7(x1,x2)]

min 822 322
mae 1 A —'CEVE(O)T 1 —
= ng/ ~dx {1 - geiﬂ2m2—E,€E e"E(Z"‘JrL){-—e [xEvE(0) + = 24
™min €R r
e—revE(0)r” 1.2z04+2z1+2L
+ Ag —"T*—[KEVE(O) +5 %—}] . (4.23)

The integrals involved in the above expression are of the form

[ o -y eatarty 22 [

min r T
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Figure 4.5: Schematic representation of the region of integration for the calculation of
ionic hydration numbers.
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for the Debye-Huckel term and

mac —kpvE(0)r* 117"
/ dxy (z2 + z1 +2L) eemlmtl) & T [—] ,

min r* r*
for the image term, where n = 1,2. These integrals are evaluated in Appendix D and if

we now substitute those results into Eq.(4.23) we obtain

n{{(xl) . ngﬂ-[pznaw - p?’nin]zzmﬂvfﬂ
_ 02 22 AERE (e tD) / T dy y Y
3 €E —Zmaz
[aww(on/piﬁ,ﬁy” { 0 1 3
g e e G (e erwri D)
pgni'n + y2 KEVE (0) sz'n o y2
e FEVE(0)/ Phasty? { > 1 :
e (S (e v e D)
maz T Y K'EVE(O) Pmaz T Y
maz L
_- ng—z—ﬂ.ezﬂzm2 A_EK'E e—NE(zl—!-L)AE /2ZI+Z i dy yenEy
3 €E 221—Zmae +2L
[e—NEVE(O)V Prin 197 { o 1 3
R L (fwrwr i D)
P + 42 k1v1(0)4/ p2,im + 42

C_K'EVE(O) p?naz +y? { 0 1 3
ol )
e T y2 K'IVI(O) pznam + y2

A similar expression can be obtain for the ionic hydration number in the intracellular

(4.24)

fiuid region such that

H 0 2 2
n; (xl) = ndﬂ-[pmaa: - pminlzzmﬂfﬂ
2w Arsr Zmaz
— ng—eiﬂzmz—e"m f dyye™Y
3 €1 —Zmaz

(O 1 3
N vl
pgni'n + y2 \/;)gnin + y2
e~V Poes +9 {1 +0 ( [ v 1 ] 3) }
Vhinae T Prac + 9

27(' AIK‘I _ 221+ 2Zmaz+2L
- ng?eiﬂzmz——e M(ZIJFL)AI/
€r 2z1—2Zmaez+2L

l:e—NIVI(O)\/P?nm'le{ 1 3
1+0([——])}
Plin + Y2 \ Poain +
T o[t )
2 ae + 92 Praz + 92 '

The ionic hydration number expression for both the extracellular and intracellular

dyye™?

X

(4.25)

cases has the leading term nJn[p2,.. — PZ.in)22mag Which is independent of the charge of
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the ionic species but does depend on the size of the molecule and its position relative to
the membrane wall. The size of the ionic species is incorporated through the exclusion
volume effect of 7p2 ;,22mq: and the position of the molecule through the truncation of the
length of the hydration cylinder if the region extends into the membrane. Thus strictly,

the quantity 2zmae for the extracellular case is given by

Zmaz | 21+ L | | 21+ L |< Zmae
= 4.26
2#mas { 2z I z1 + L |> Zmaz ' ( )
and for the intracellular case by
z |Z1—L| lzl_L|<zmaw
2Zmaz = maw 4.27
Fmas { zzmam | Z1 — L |> Zmaz ( )

The truncation of the region of integration when the ionic species is within a distance
of Zmae describes the geometric effect of the exclusion of dipoles (water molecules) if
the ion is close to the membrane wall. The difference between the leading term in the
extracellular and intracellular fluid regions (for the same ionic species) is due to the upper
limit for the region of integration in the transverse direction pmqgz. Since pmqe is given by
the “effective® Debye length, which is smaller in the intracellular fluid, the leading term
behaviour is smaller in the intracellular fluid as compared with the extracellular fluid at
the same relative position to the closest membrane wall and identical ionic species.

The next term in the expansion is negligible compared to the leading term (< 0.1%)
for both the extracellular and intracellular fluid regions. This is due to the term being a
product of the two kinds of potential and thus a second order term. The approximations
made during the thesis have been to first order in the mean electrostatic potential and thus
this second order term being small is not surprising. Despite the term being negligible it
does show some important qualitative features. The term shows an exponential damping
in the normal direction as the distance from the membrane increases and depends on the
charge of the ionic species.

Improvement of this result should be possible by starting a numerical iterative proce-
dure with the analytic solutions for the mean electrostatic potential and the mean electro-

static fluctuation potential to obtain a better approximation for the appropriate BBGKY
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hierarchy equation and then substituting this result into the potential equations. This it-
erative procedure is necessary due to the failure of the assumption that the potential mean
electrostatic potential is small especially in the region adjacent to the membrane. Thus
the non linear terms in the mean electrostatic potential are important. Also the effect
of the 2 body correlations could be included in the derivation of the mean electrostatic

potential equation since these contribute to the potential.
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Chapter 5

Conclusion

In this thesis we proposed a model to investigate the distribution of molecules in the
vicinity of the membrane of a neuron. The model neuron consisted of an electrolyte
solultion that was bounded by two planar membranes (of finite thickness L and separated
by a distance of 2D). Each of the membranes was modelled as a dielectric continuum with a
uniform surface charge density. The concentrations of the various mobile ionic species used
in the extracellular and intracellular fluid regions of the model were typical of the resting
state of the neuron. The model could have been extended to consider concentrations of the
mobile ionic species typically found in the dynamical phase of the action potential though
the assumption of planar geometry breaks down if the Debye length becomes comparable
to the radius of curvature of a neuron.

In Chapter 2 we presented a derivation of the potential formulation of the distribution
functions from the BBGKY hierarchy in a similar manner to Quthwaite’s derivation [75]
for the PM. The resulting differential equations for the mean electrostatic potential and
mean electrostatic fluctuation potential (for both the hard sphere and point molecules
cases) reduced to those of Quthwaite (hard sphere [94], [95]) and Carnie and Chan (point
[74]) if the condition of bulk electroneutrality was assumed. It should be noted that
the differential equations for both kinds of potential were derived by truncating in the
appropriate member of the BBGKY hierarchy in the higher order terms in the indirect
correlation function and closing the equations with this linearized form of the BBGKY
hierarchy. Thus these differential equations can be considered to be first iterates in a

perturbative method for determining both the mean electrostatic potential and mean
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electrostatic fluctuation potential. Further work can be pursued by using the analytic
solutions to these differential equations (as derived in Chapters 3 and 4) to derive a new
approximation to the n body distribution function and use these equations to close the
potential equations.

In this thesis, solutions of the differential equations for both kinds of potential, in the
case of hard sphere molecules, were not considered. This was due to the inherent difficulty
in constructing solutions to the partial differential equation for the mean electrostatic
fluctuation potential in a cylindrical geometry with a radial boundary condition across
the sphere of exclusion for the generalized displacement vector Pp(x;;X2,w2). Thus a
numerical solution of this case could be explored though it is unclear how to incorporate
the radial boundary condition in the numerical code.

In Chapter 3 explicit solutions for the mean electrostatic potential and the transverse
Hankel transform mean electrostatic fluctuation potential for the two membrane point
model system were derived. For the transverse Hankel transform mean electrostatic fluc-
tuation potential, both cases for the position of the source point were considered. An im-
portant parameter was introduced called the charge asymmetry parameter ¢, and its value
varied from the extracellular to intracellular fluid regions. This parameter determined the
type of solutions for the transverse Hankel transform mean electrostatic fluctuation poten-
tial depending on its sign in terms of Bessel functions (¢ > 0) or modified Bessel functions
(¢ < 0). For the concentrations of the mobile ionic species used in the model, the charge
asmmetry parameter was positive in both the extracellular and intracellular fluid regions.
It was found that (provided the ratio of the distance between the membranes 2D and
the Debye length is > 1) the asymmetry parameter for the two membrane case showed
negligible difference to that of the one membrane case for the same membrane thickness
L. Also the asymmetry parameter in the limit as L — oo approached the value for the
one wall case considered by Carnie and Chan [74].

The solution for the transverse Hankel transform mean electrostatic fluctuation poten-
tial for each of the cases for the sign of the charge asymmetry parameter ¢, when the source

point was in the extracellular fluid region, was noted to be of the same form as for the one
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membrane system (see Appendix B) and indeed the one wall system considered by Carnie
and Chan [41]. The first term (for all three systems) was associated with a the Debye-
Huckel type correlation function in the bulk solution which was a function only of the
relative position of the field and source point. The other term As(L,(g,D,{r) the image
term, was due to the dielectric boundaries of the systems. The quantity As(L,(E, D, (1)
is an even function with respect to the transverse transform variable k for finite L and
D. Thus, as noted by Carnie and Chan [41], the correlation in the transverse direction
is screened. The shielding in the transverse direction occurs because the charge on the
opposite side of the membrane wall is able to redistribute itself, screening the potential
between molecules.

As k — oo, comparison between the two membrane and one membrane system (see
Appendix B) showed that both Ax(L,(g,D,({r) and A1(2L,(g, () tend to the same limit.
This limit is the same as for A(¢) in the one wall system [41], when { = (g, even though
A() is neither an even or odd function of k. This is not a surprising result if we consider
all three quantities at the same source and field point, relative to the membrane wall at
the interface between the extracellular fluid and membrane. Since the large k& behaviour
describes the small p behaviour, a molecule experiences negligible influence from bound-
aries more than a Debye length away. Also it was noted that the large k behaviour for
Aa(L,(E,D,(r) has no explicit dependence on the distance between the membrane walls
2D and both As(L,{g,D,{;) and A1(2L,{E,{r) have no explicit dependence on the mem-
brane thickness. The dependence of these quantities on the parameters L and D is rather
via the extracellular asymmetry parameter (g.

A shooting method was employed to numerically solve the differential equations for
the transverse Hankel transform mean electrostatic fluctuation potential as a test of the
validity of the asymptotic forms. The location of the starting boundaries for the numerical
procedure decreased as the value of the transform variable k increased. This is consistent
with the properties of the transform such that the large k behaviour is determined by
the region near the source point whereas the opposite is true for small k values. This

property of the numerical integration supported the argument that the second membrane
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and thus the extracellular fluid in region V has negligible effect on the value for the
transverse Hankel transform mean electrostatic fluctuation potential (and thus the mean
electrostatic fluctuation potential) provided the distance 2D is large compared to the
Debye length. A numerical procedure was also used for the case when the source point was
in the intracellular fluid region and comparison with the asymptotic form showed again
that the second membrane wall has negligible effect provided the distance 2D is large
compared with the Debye length and the source point is in the vicinity of the membrane
wall located at —D. Since the second membrane wall had negligible influence on the
solution for the transverse Hankel transform mean electrostatic fluctuation potential, for
both cases of the position of the source point, the simpler expression for the image forces
of the one membrane system A1(2L,{g,(r) was used to perform the transform inversion.
In Chapter 4 we presented the ionic hydration number calculation for various ionic
species in both the extracellular and intracellular fluid regions. An analytic expression
for the mean electrostatic fluctuation potential was obtained by taking the large k limit
and inverting this expression in closed form. Comparison of this analytic expression with
a numerical integration of the transverse Hankel transform mean electrostatic fluctuation
potential showed excellent agreement. Also a comparison between the extracellular and
intracellular analytic expressions showed that for the same dielectric constant in each of the
fluid regions, the parameter kv (0), which can be thought of as an “effective * inverse Debye
shielding length, determines the structure in each of the fluid regions. The difference in the
values between the two regions is due to an order of magnitude difference in the charge
asymmetry parameter (. The asymmetry parameter being greater in the intracellular
fluid due to the abundance of cations (Nat,K*,Ca*") compared to the major anion
Cl~. Whereas for the extracellular fluid the asymmetry is less due to a greater balance
in the amount of anions to cations. Thus the “effective” Debye shielding length in the
intracellular fluid is less than that of the extracellular fluid i.e. an ion in the intracellular
fluid is screened more than that of an identical ionic species in the extracellular fluid.
Our definition for the ionic hydration number took into account the orientational

dependence of the dipoles as opposed to Azzam'’s definition. Also, due to the normal
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direction dependence of the mean electrostatic potential, it was necessary to modify the
region of integration to be a cylinder with an exclusion volume to obtain an analytic
expression for the ionic hydration number. This analytic expression contains two terms.
The leading term describes the number of dipoles in the region of integration if the number
density of the dipoles takes the bulk value. The next term describes the variation from
this bulk term. This term was found to be negligible compared to the leading term.
Improvements should be possible by including higher order terms in the approximations
made in the derivation of the defining equations for the mean electrostatic potential and

mean electrostatic fluctuation potential.

117



Appendix A

Molecular Potentials

In this appendix we calculate the image potentials due to the discontinuity in the dielectric

permittivity at the membrane walls for the two membrane system.

A.1 One body potential
The one body potentials V,(x1,w1) are written in the form
Va(xl:wl) = Vas + VaE ) (Al)

where Vas is the short range contribution to the one body potential which causes the
exclusion of molecules from a region adjacent to the membrane wall. The short range
potential V.3 is given by
oo |21 |< }—22‘1
V2 (x1,w1) = L (A.2)
0 |z|> 5
where z; is defined as the perpendicular distance from the membrane wall. The term V,*

is the electrostatic contribution. Due to the symmetry in the model system, see Figure

A1, the displacement vector D(x;) satisfies
D(x1) = D(a1)z , (A.3)
D(-z) = —D(z) . (A.4)

At the membrane walls, we have the continuity condition of the displacement vector in

the normal direction i.e.

= 4ro (A.5)
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Figure A.1: Schematic representation of a two membrane model geometry showing the
various regions and the associated dielectric constant, inverse Debye length and surface
charge density.
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where o is the surface charge density at the membrane wall. The displacement vector is

related to the electric field by
D(x1) = e(x1) E(xi) . (A.6)

where €(xy) is the dielectric tensor. Thus the electric field is, using the above boundary

condition, given by

0 0<z1 <D

E(z) = { &= D<z <[L+D] . (A.7)

€3
dn(o1+o03) [L+D]<z
The electrostatic contribution to the one body potential, V.Z(x1,w;), is thus given by

f

dn(oy+o3)(z1+ [L+ D)) — 2L 2 < —[L+ D]

4—76'211(n+D) —[L+D] <z <-D
VEx)) = {0 -D<zn <D , (A.8)
—41% (21 — D) D <z <[L+ D]

—4w(o1 +03)(z1 — [L+ D}) — %"f [L+D| <z

such that
VE(x) = V¥, (A.9)
VE(xLwi) = m(wy) ViVP . (A.10)

A.2 Two body potential

The two body (intermolecular) potentials ®45(x1,w;; X2, w2) are also written in the form
: — &S E
Qab(xlywlax%“’z) =®5 + 24 (A'll)

where @fb is the short range contribution to the two body potential and is given by

oo < Rgp

0 r>Rgy ’ (A.].Z)

B5,(x1, w1 X2, w3) = {
such that

1
Rap = E(Ra + Ryp) - (A.13)
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The other term, <I’aEb, is the electrostatic contribution which is defined by
B, (x1,w1; Xz, w2) = B, + 85y (A.14)

where ‘I>£b is the image potential due to the discontinuities in the dielectric tensor at the
membrane walls and @acb is the Coulombic contribution. The Coulombic contribution to

the potential , <I>aCb, is given by

ion-ion <I>g-(x1,w1;x2,w2) =ei:j ; (A.15)

1
ion-dipole @%(xl,wl;xz,wg) = ——eiE'l; , (A.16)

1

dipole-ion &5, (x1,w1; %2, w?) =eiE1; ; (A.17)

1
dipole-dipole 8%, (x1,w1;x2,w2) = —ElEl; , (A.18)

where

.E]_ = m(wl) . Vl . (A.lg)

The dipole orientation vector wy is defined by the angular co-ordinates (61, ¢;) such that

/ dw; = 47. I is the 3x3 identity tensor. The vector r is defined by r = x2 — x3.

I

The ion-ion image potential, ®;;, is calculated in the following manner. We know

from electrostatics [109] that the electrostatic contribution to the two body potential, i’ﬁ,

satisfies
<I>5 = ee;BY | (A.20)
Vier = —4né(xp—x1) , (A.21)
since
Vidh = 0, (A.22)
with the boundary conditions of
¥y = @F| -, (A.23)
e%‘lz’f = e% = 8 (A.24)
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at the membrane walls. Since there is cylindrical symmetry in the system due to the

external potential being only a function of the perpendicular distance from the wall we

can solve this problem through the use of the transverse Hankel transform. See Figure

2.2. Defining the transverse Hankel transform by

P (21, 2,k) = /dPexP[ik'P]‘I’E(ZhZz,P)

= 2r [ dpopTolkp)2"(z1, 2:0)
and the inverse transverse Fourier transform is thus given by
1 (> ~
®%(21,22,p) = ﬂf dkkJo(kp)®" (21, 22,k)
0

where

p = (x2—z1,92—v1),

ko= |k
We can apply the transverse Fourier transform to Eq. (A.21) to yield

d? N
[9 - k2] <I>E(z1,z2,k) = —Anb(z1 — 22) .
1

(A.25)

(A.26)

(A.27)

Equation (A.27) has to be solved in the five regions of our model. The two cases to be

considered are when the fixed particle at 2o is in region I or III. The region V case is

found by the symmetry in the z — y plane.

Case 1:—o00 < 22 < —[L + D]

The differential equation for % (2, 22,k), Eq. (A.27), is given by

([ —4wd(z1 — z9) 21 < —[L + D]
0 —[L+D)|<z1<-D
d? =
[@—kz]QE(Zl,ZQ,k) = {0 -D<z <D
1
0 D <2z <[L+ D]
| 0 [L+D] <z
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The form of the solution to Eq. (A.28) is
(2meHaal | Breka
Apre *1 + Brets
8% (21,20,k) = { Aprre ™ + Byppet®

Afve_kz1 “+ BIVekzl

Ayeka

.

z1 < —[L + D]
—[L+D]<2z1 £-D
-D<zx <D

D <z <|L+ D]

[L+Dl <~

(A.29)

Application of the boundary conditions given above, at the membrane walls, yields

2 kza

_ e—2KL][] _ A2e2HL
By = =€ 0] [[1 J[1 — A%e“™]
_ [1 _ A26—2kL][1 = e2kL]62kD] ,
dr i, 1 2 _2kL
— Tekar___ =~ 1 _A
At kS L+ el R(K) [[1 <]
_ A - o2 e—4kD]
_ AT 4o A [ 9%kL7_—2kD
Bu= e argmmltC
- - A2e_2’°L] ezw}
_ 2T ki [ A2 A2 —ZkL]
Anr = %€ R(k) [1- A% - ]
27
B . kza _AZ 1-— —2kL —2kD]
m= |- an - e ne]
— 4_7r kz3 1 _ A2
Av= v emm A
4ir A
By = — =T kz {1 = A21e-2+L+D)
v kS L+ eaR(K) [[ le
_ 4_7!' kzg 1 _ _ A2
Av = % € [1+€2]R(k)[1 Alll - A%,
where
R(k) — [1 _ A2e—2kL]2 _ A2[1 _ e—2kL]2e—4kD ,

1 —eo
1+e
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(A.30)

(A.31)

(A.32)
(A.33)
(A.34)
(A.35)
(A.36)

(A.37)

(A.38)

(A.39)



Case 2:—D <z <D

The differential equation for F(z;, z9,k), Eq. (A.27), is given by

(0 z1 < —[L + D]
0 —[L+Dj<z < -D
d? ~
[@ = kz] &% (z1,29,k) = { —4nb(z1—2) —-D<zar <D . (A.40)
1
0 D <z <[L+ D]
\ 0 [L +D] <z

The form of the solution to Eq. (A.40) is

[ Brek=a z1 < —|[L + D]
Apre*# 4 Breka ~[L+D) <z <-D
2T1re—k|z1—zz|
&% (21, 20,k) = (¢ —D<zn <D . (A.41)

+Arrre* + Brpre*”

Apye*a 4 Bryeka D <z <[L+D]

Ayeka [L+D]<~n

.

Application of the boundary conditions given above, at the membrane walls, yields

M e2k[L+D]
B — = N kzp R k -
+ e *32A[1l—e 2 — R(k)]e 2P| | (A.42)
dn 1 '
A — e kzz -
B k [+ e[l — A2|R(k) [e [R(k) — 1]
+ e *mA[l— e L — R(k)]e" 2P | (A.43)
ir RIIAS,) . '
= —_ —_ 2] —
Bur k [L+ e AL — AZR(k) [e [R(k) 1]
+ e *A[l—e 2 — R(k)e 2P| (A.44)
2 X2
Apg = %ekzz R [[1 _ A2e_2kL]e_2kL +- e—2kL]2e—4kD]
b Aot —R(lk) [A[l eI - A2e'2kL]e_2kD] , (A.45)
2 Al — —2kL|,—2kD
By = %f [ eR(k)]e [ek@ +e—kz2A[1_e—2kL]e—2kD]  (A.46)
Arv = . L, [ekzz +e k2 Al - e_ZkL]e_ZkD] (A.47)
k [1+ e2]R(k) : '
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: 2| ] kzg —kzg —2kLy _—2kD
dm Ae Z: 2z A 4
B[V = -—k 4——[1 €2]R(k) [e +e A[l—e ]e ] ) ( 8)
dn [1 A] kzg —kzg —2kL —2kD]
g e ——— 2 z =8 . 4
AV k [1 €2]R(k) [e +e A[l € ]e (A 9)

Thus the ion-ion image potential is given by the difference between the total electro-
static contribution calculated above using the transverse Hankel transform method and
the coulombic part of the two potential. The other image potentials are calculated by
applying the F operator an appropriate amount of times.

Note in the limit 67 — 0 and L — oo, these results reduce to those of Kjellander and

Marcelja [58].
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Appendix B

One Membrane Point Model
Neuron

In this appendix we construct solutions for the differential equations associated with the
mean electrostatic potential and mean electrostatic fluctuation potential for the one mem-

brane model in the limit of point molecules.
B.1 Mean electrostatic potential

The solution to the differential equation for the mean electrostatic potential, Eq. (2.89),
in the various regions, is given by
Ap exp[kg(z1 + L)] + dlg -0 < z1 <L
P(z1) =< Apmz1+ By ~L<Lx <L . (B.1)
Arexp[—kr(z1 — L)) + 9% L <z <oo
The constants Ag, Apr, By, Ar are determined from the boundary conditions at each of

the membrane walls. Thus

Ap+v2 = —AmL+ By, (B.2)

AL+ By = AYL+ B%, (B.3)

—ey Ay + egepAp = 4drwop , (B.4)
erkiAr +eymAy = 4dwoy . (B.5)

These equations are solved for the constants to yield

drmepr(og + o) + dmoperki2L + eprernr AYP
em(epkE + €181) + egrpersr2L

Ag , (B.6)
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A _ dwoperky — ATOIEERKE — epkperkAYP (B.7)
. em(egkE + erkr) + epkperRr2L ’ )

¥ —AuL+ Ar (B.8)

oy
=
1l

Arep(og + o1) + dnorepkE2L — 6M€EI€EA¢B
A = > (B.9)
€M(€EK/E + GIK,I) + egpkperk2L

See Figure B.1. Comparison of this figure with that of the mean electrostatic potential
for the two membrane point model system, Figure 3.1, shows negligible difference in the

region near the membrane walls. Thus the presence of the second membrane at a distance

of 2D has negligible effect.

B.2 Transverse Hankel transform mean electrostatic fluc-
tuation potential

The differential equations for the transverse Hankel transform mean electrostatic fluctua-

tion potential for the case of the source point in the extracellular region are

d? B -
(£~ ¥ -t wbto E + whcpexplin(ar + D)]|#2(2,10
1 E
4
= —Z§(a— ) (B.10)
€E
d? o] =
[ﬁ -k ]¢M(Zl,z2yk) =0, (B.11)
31
d? o 2, 2, ¥ | o -
[@ - k" —k7+ NICIA—I + k7(rexp[—rr(z1 — L)]] Yr(z1,22,k) =0 . (B.12)
{

The solutions to the homogeneous differential equations are

4

i o
Cias 26 expl =252

+DEpYoy, {ZCE exp[ﬁ(zgl';”'l]] g >0

+DgKs,, [2 |z |2 exp [5_;;_13_21;&1]] ‘e <0

Yy = Cyrexplkzi] + Dyexp[—kzi] ,
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Figure B.1: Mean electrostatic potential for a one membrane point model system.
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Quantity Value
K1 0.09425A4°!
= 70.718
(1 0.34729 -
vr |r=0 2.06522
KE 0.11995A4°!
P 70.718
(E 4.29949 x 102
VE k=0 1.02275

Table B.1: Table of &, €, ¢ and v values in the extracellular and intracellular fluid regions
for the one membrane point model.

3 -
CIJZW [2(} ex_p[_ _’i.i'_(zé_[:l ]]

+DrYa,, [2@? OKP[—K—IL%i}]] >0

CII2»; [2 | CI |% exp[_ ”f[ﬁ’%—_ﬂ)]]

+D1 Ky, [2 | ¢r |3 exp[—"-ﬂ%‘—”]] (r<0

\

Application of the appropriate boundary conditions at the membrane walls located at
+L, yields the solution for the transverse Hankel transform mean electrostatic fluctuation

potential in region I for the following two cases.

B.2.1 (g>0

- 472

1 kp(zs + L
’l,bE(Zl,Z2, k) =1 — kg {Y’2VE [2C}_3,' exp[E(—>——)_

5]
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X Joug [2(2}; exp[ﬁE(z—;_Fi)]]

+ A1(2L, (B, (1) ovg [Zcf%z exp[ﬁ_fs(zz;j)]]

X Joug [2(% exp[@(le_FQ]] } , (B.13)

where

(B.14)

3 EER a{% ' 1
_ Youi [2¢2] Z2, 2L,cz)+—*’-%ﬂ1’y [2¢2]
A1(2L,CE,CI)=—[ el Gl e

1 €
T [2¢ 3] Zo, (2L, (1) + cansch 7, [2¢3]

keas

such that

1
1 ¢3 1
Ja; (267 | sinh[k L]+ "EL T, [2¢2 ] coshk]

(>0

np¢? 1 .
Javy [2‘5: ] cosh[kL)+ % -'—Ll T, [2¢? ] sinh(kL]

Zyy (L, (1) = \ . (B.15)

Inyy [21¢4] i | sinh[kL]+ _L_Jﬁlﬁ]';” [2](:; [% ] cosh|kL]

(1 <0

Tau, 21113 ] cosh(kL]+ melerlsy [21¢;|2]51nh[k£|

B.2.2 (g<0

8w

|

X Ing [2 | ¢a |3 cxp[z;zhc)]}

¥r(21,22,k) = o

+ Al(zIHCEaCI)IZVE [2 | (e |% exP[K’E—(zz;—L)]]

x Ioyg [2 | ¢z |3 exp[@(zlz—”LL)]] } : (B.16)

where

kenr

1
Iougl2 | Cu 1] Z20, (L, 1) + ERELER 1 12| (g |3

kepr

EEN. 3 2
[sz 2| CE |7] 220, (2L, ¢r) + E2E2R K 12| (g 3]

Ai(2L, e, Cr) = — | @
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B.2.3 Asymptotic transverse Hankel transform mean electrostatic fluc-
tuation potential

: 2¢2
If we assume that the ratios L |x=0
2vy ?

2£12

2vg

1 bl
SE 2
| k=0> 2,, k=0 and g lk=0 < 1, we can

use the asymptotic forms in Appendix D to show

A]_—)T

where

such that

Z2VI(L7CI) — 9

2
Zayy (2L~ "EENE  [1- [J‘—L] 63, (—L)

64, (z1) = [

65,(z1) = [q’(z

qI(Zl)

] O((2vy)~
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] +o(u) Y

_K%m[z‘:gl =
1
Jawp (2 ? CpKRV
2vy 207 ] Zayy (2L +_E_E_E\/ _E.(_L] 83 (L)
2
Zay (2L, _iE"EYE ({14 [_E(_L] (- L)
_I{gp ,12|C}_:;|J%] [ 2 I( I) keng 2 B
Iy ; I2|c3| i] 2
. szl(zL,C1)+5EﬁEjE 1+ |:—E(E—Ll] 6;,E(—L)
11g%(21) 4
ZVE(ZI) = 1+ 3 [ZVE]3 +O((2vg)™®) ,
_ 1[g%(21) _
621/3 (Zl) = 1- 5[[2EVE]3 + O((2VE) 4) H
2CE exp [M@l (g >0
ge(z1) =
2| ¢e |3 eXP[N—"u(‘%"ﬂil (e <0
f = ]
sinb[RL]+ L2y [1 (;“] coshlkL)sy, (L)
= ~ (>0
cosh[kL]-}-ﬂ’iﬁl‘/ er)} sinh{kL]é;, (L)
r 2
sinh[kL]+ EEL2L 4 [14 ‘U—fﬁ] cosh[kL]6], (L)
= . (<90
cosh[kL]—l—Hﬁﬁll‘/ 1+ i{f;ﬁ] sinh[kL]5], (L)
! I

(g >0

(e <0

]

(B.18)

(B.19)



such that

ZCBCXP[ R L] (r>0
gr(z1) = )
2(¢ exp[*ﬂ(”ﬁ—_q] <0
Thus the solution for the transverse Hankel transform mean electrostatic fluctuation

potential in region I for large k can be simplified to

- 27 1 1 1 r
¢E(zlaz27k) - €EKEVE |:1 _ [ggufj;!]Z] [1 _ [qu(:l]z]

X {721/}3- (Z< ) 2>) ¢Xp [2VE7721/E (Z<, Z>)]

EEKEV L
Zay (2L, (1) — SEREVE [1 EVE 62m( ~L)

- Aawg(21,22)
Zony 2L, (1) + 5252 1 — [—(‘—1] 53, (~L)

X exp[ZuE[nzuE(—L,zl)+n2,,E(—L,z2)]]} (e>0, (B.20)

and

PN M |
E\%L, #2, €EKEVE 1+[g‘121]2 1+[Ez1]

2vE

X {‘quE (2<,2>) exp [ZVEﬂzuE (2<, z>)]

Z20, (2L, (1) — SEEELE 1+[ ]62,,E( L)

— Ag(z1,22) —_—
PSR A P S

X  exp [ZVE[nz,,E(—L, z1) + M2, (—L, 22)]] } (<0, (B.21)

where

—Z 3 Z1)— N Z: E
—mgea) _ ot [l 4 o((2us) ) (5> 0
WZVE(zlaz2) = X H
_spla=) | . [qz(zl);qg(zz)] (5 <0

'8 2 2 2 B
1+ g | B2l 4 o((ve) ) (e >0
Yovg(z1,22) = < ’

1 -1 |dkG)-ak@)| L o aym) -t
| 1~ . +0((2vE)™) (£ <0
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1 P 1 [291‘(‘L]_Q%{ZJ)_9¥-;(32):| + O((2VE)_4) CE >0

vg)®

Aovg(z1,22) =

1 - gk [ A 1 o((ve) ) (5 <0

A numerical solution of the differential equations for the transverse Hankel transform
mean electrostatic fluctuation potential by a shooting method [114] is used to test the
validity of the asymptotic solution. The numerical and asymptotic solution for the trans-
verse Hankel transform mean electrostatic fluctuation potential show excellent agreement
for the two cases when the source point is in the extracellular or intracellular fluid regions.

For the extracellular case see Figures B.2, B.3, B.4, and B.5. As the normal distance
from the membrane wall increases, the plots tend to a constant value determined by the

Debye-Huckel type term in the solution i.e.

1
2n 1 g e 0
EEKEVE 1_[‘1E2(21)]3 1— [q_{&(“_ll] 2
YE(21,22,k) —

1

cafzug[“[m]]z[ [m]] (g <0

v

As the transform variable k increases this Debye-Huckel term (the field point and source

point coinciding) has the form

27

g (21, 22,k) = — .
erk

This result is consistent with that of Carnie and Chan [41] for the constant density systems
(both single and two plate) and the linearized GC density for the single plate. Again this
is due to the large k behaviour being determined by the region near the source point.
For the intracellular case see Figures B.6, B.7, B.8 and B.9. As the normal distance
from the membrane wall increases the plots tend to a constant value determined by the

Debye-Huckel type term in the solution i.e.

1

q?}w[l [ 2VI)] ]i[l [LGD]? ]4 (>0

P1(z1, 22, k) —

1

1
2% 1 * C <0
EIRIVI 1+[Q[2(21)]2 1+ [ (z(z] ] I
vy vI
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———————— Numerical
s = Analytic

Potential

T T T T T T T T ] T

0 5 10
Z1 (Angstrom)

Figure B.2: Comparison of the numerical and asymptotic solution for the transverse Han-
kel transform mean electrostatic fluctuation potential at the source point in the extracel-
lular fluid of a one membrane system vs distance from the membrane wall for k=0.001.
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Potential
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1.00 \\“i
\\iﬁ
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(0] 5 10

Z1 (Angstrom)

Figure B.3: Comparison of the numerical and asymptotic solution for the transverse Han-
kel transform mean electrostatic fluctuation potential at the source point in the extracel-
lular fluid of a one membrane system vs distance from the membrane wall for k=0.01.
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Potential

————— Numerical
- = = = Analytic
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. \\"-.__
S
~——
0.60 \_ﬂ‘_—_—‘_‘___‘_-_
0.50 T T T T T T T T T =
0 5 10

Z1 (Angstrom)

Figure B.4: Comparison of the numerical and asymptotic solution for the transverse Han-
kel transform mean electrostatic fluctuation potential at the source point in the extracel-
lular fluid of a one membrane system vs distance from the membrane wall for k=0.1.
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———————— Numerical
—-— = = Analytic

Potential

0.08 T T T T T
6] 0.5
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Figure B.5: Comparison of the numerical and asymptotic solution for the transverse Han-
kel transform mean electrostatic fluctuation potential at the source point in the extracel-
lular fluid of a one membrane system vs distance from the membrane wall for k=1.
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As the transform variable k increases this Debye-Huckel type term (the field point and

source point coinciding) has the form

2w

@I(zl,zz,k) — (-:I—k .

This result is consistent with that of Carnie and Chan [41] for the constant density systems
(both single and two plate) and the linearized GC density for the single plate. Again this

is due to the large k behaviour being determined by the region near the source point.

B.2.4 Limiting forms of the transverse Hankel transform mean electro-
static fluctuation potential

The limiting form of the one membrane wall model [41] can be obtained from the one
membrane model in the following manner. Consider the situation where there is an absence

of solute and solvent molecules in the intracellular region. As a result

CI_)OI

kg — 0.
Thus the quantity
Z2VI(2L)CI) - 1 ]

and therefore

¢

1 % 1
”eEnEC!. ]
_ XZVE[2C%]] k‘;b,[%Ym’E[zC%] CE > 0
. eprplp o
A@L,(p,Cn) =4 T [2¢EH hen ™ aug %]
1. ceprplCrl? ! 1
_[szE[ZICEI:H ke 11(3"3[2|CELZ]] CE <0
| hugl2ielF B EEER L (2)k)2)

kepg 2vp

This limiting form is equivalent to the solution obtained by Carnie and Chan [41] for the
one membrane wall model.
Other limiting cases of the system occur when the membrane is a perfect insulator (i.e.

exr = 0) or perfect conductor (i.e. ey = 00).

1
3
__YE*"'}-} [2CE} CE > 0

Al . Jav g [2€2 ] N as ey — o0,
_@P[leEll’_l (g <0
IzyE[2|CE|2]
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Potential

———— Numerical
—= AV Analytic

Z1 (Angstrom)

Figure B.6: Comparison of the numerical and asymptotic solution for the transverse Han-
kel transform mean electrostatic fluctuation potential at the source point in the intracel-
lular fluid of a one membrane system vs distance from the membrane wall for k=0.001.
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Potential

—————— Nurmerical
—_———— Analytic

1.0-
0.
0.
. i
e
- -‘-‘—\—ll-__‘__-_\_
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(e] 5 10
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Figure B.7: Comparison of the numerical and asymptotic solution for the transverse Han-
kel transform mean electrostatic fluctuation potential at the source point in the intracel-
lular fluid of a one membrane system vs distance from the membrane wall for k=0.01.
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Potential

———— Nurmerical
- = — = Analytic
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Figure B.8: Comparison of the numerical and asymptotic solution for the transverse Han-
kel transform mean electrostatic fluctuation potential at the source point in the intracel-
lular fluid of a one membrane system vs distance from the membrane wall for k=0.1.
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Figure B.9: Comparison of the numerical and asymptotic solution for the transverse Han-
kel transform mean electrostatic fluctuation potential at the source point in the intracel-
lular fluid of a one membrane system vs distance from the membrane wall for k=1.
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Appendix C

Two Semi-infinite Membrane
Point Model Neuron

C.1 Mean electrostatic potential

The solution to the differential equation for the mean electrostatic potential, Eq. (2.89),

in the various regions, is given by

Apr -0z <-D
P(z1) = { Arcoshlkrz| + qb? —-D<x <D ; (C.1)
Ay D<z <o

The constants Ay and Ay are determined by the application of the boundary conditions

at the membrane walls located at D such that

4
Ay = P+ UL coth[krD] , (C.2)
€IKT
_ dmor 1
Ar = €IKT [sinh[mD]] ' (€3)

See Figure C.1. Comparison of this figure with that of the mean electrostatic potential for
the two membrane point model system, Figure 3.1, shows negligible difference in the values
of the potential. This shows that the membrane thickness can be considered as infinite
(compared with the value of L) for the investigation of the mean electrostatic potential

between the membranes.
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Figure C.1: Mean electrostatic potential for a two semi-infinite membrane point model
system.
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C.2 Transverse Hankel transform mean electrostatic fluc-
tuation potential

The differential equations for the transverse Hankel transform mean electrostatic fluctua-

tion potential for the two semi-infinite membrane wall system are

d2
[d—z%
- d2
| d7?

- d2
- d2
dz}

k2 — k2 + k31

k2:| Q,EL(Zl,Z2,k) =0,

B2 .
k% — kF+ N%CI% + ITCI exP[—ﬂIzl]] ¥ (21,22, k)
——8(z1 — 22) ,
€1
o

2 -~
A + KI—CI exp[mzl]] 1,[1}2(21,22,1{) =0,
I 2

k2 lf;R(zl,,Zz,k) =0 .

The solutions to the homogeneous differential equations are

¥f

9

YR

Cy explk(z1 + D)] ,

1 )
CF T2y {v’ 2(; exp[—"*4* l]

R &
+DLYs,, [ch : exP[—*ﬂ-«;x]] >0

CLL, [Jz’ e |3 exp[_mﬁz_,_]}
-i-Df‘sz [\/f:’ | ¢r I% exp[—ﬁlzil]] (1 <0
CEn,, [\/ﬁC}l‘ exp[ﬂzﬁl]]

1 N
+DRYs, [ﬁc; exp[%] >0

Pl V31 ¢ | expl=52)

DKy, [ﬁ o explﬂfl]] ¢ <0

Cgrexp[—k(z1 — D)] .

(C.4)

(C.5)
(C.6)

(C.7)

The Green'’s function type of solution for the transverse Hankel transform mean elec-

trostatic fluctuation potential is constructed in exactly the same manner as for the two

membrane system with the source point in the intracellular fluid using the functions u(z1)
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and v(z;) as defined in Section 3.2.4. Thus the solution for the transverse Hankel transform

mean electrostatic fluctuation potential is constructed in region III is of the form

4_7ru(z<)v(z>) QI;L(—D,Zg,k)'v( ) 'QZIR(O,Z%k)
e W(u,v) »(—D) ! u(0)

At the origin and the membrane wall located at —D, application of the boundary

ﬁf(zl,zz,k) = - u(z1) . (C.8)

conditions yield the following set of equations

euby(~D,z,k) = - W?, S D)v(zz)+q-’“(;—(1_)’5)2’—k)v'(—p)
L AR,
erdR (0,22,k) = — W?, )v(O)u(z2)+eI‘Lv’(l_7bz§—’k)u‘(0)
+ ¢I(0(g)2’k) '(0) , (C.10)

to solve for the constants ¥r(—D, z2,k) and 1/:}2 (0, z2, k), to yield

—
W (u,v)

v(=D) -1

Pr(—D,z2,k) = o(~D)u(z) — V2rr | (1|3 7 0) — (0, 22,k)

and

[ dx [ 1 ] 1
ey Wi(u, = P t P P |
1V (mv) V2erng(P SzuIJz,,I[\/QC?]—TzuIY;,,I[\/2(;"']

< {k—fﬂu (—D)v' (0)v(z2)
! (0)[Sa01T2alVECF ] — T Yo IV |t} (>0
1/;}2(07‘2231{) = T

dn 1 1

W [s/iemnczﬁ] Sav Ty, [V3IGHE ] -Tou K, [VEIGH]
X {!i{.} u' (—D)v' (0)v(z2)
|~ O[St lV2 1 ¢ ] - Tor K [VE 1 Pt | <0

s

]

These results for the constants ¥,(—D, z2,k) and $¥(0, 29, k) are substituted into the
the solution for the transverse Hankel transform mean electrostatic fluctuation potential

in region III Eq. (C.8) and the solution can be written in the form

FE(z1,22,k) = — g%’%
4w 1 [ 1

er W(u,v) 521”]2”1[\/'(1] —Tz,,fyzw[\/—CI%
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! ul(_D)v’(O) KATARKAWA v ULz
— ! 1, Ts,, Yo, \/5% u(z z
[\/EKIC}%][ (O)][Szw-fzw[\/_(ﬂ by Yau [V2(F ]| w(z1)u(22)
- [“,ﬁ‘D) Wero(e) | >0, (c.11)
€M
and
1[7%(21,22,1{): - i_ju('z.w;()’:,(:;)
Cam 1 [ 1
et W(u,9) LSy, I, [V2| &1 3] = To, K3, [V2 | 1 B
1 ur(—D)vr(O) UL21)v\2 V\Z21)ULZ
X {[\/inﬂ&l%keMH 2(0) ][(1)(2)+ (z1)u(z2)]
- [l
2~1|<r|2 u(0)
>< [szu,fzu,[f 61 ] = T K [V | G 1) (ar)ute)
- [ Dot} <o, (C12)
where

[ Yo, [Vac espl21]

1
+ﬂx_ cxp[m_Q]qu [\/_CI exp[uﬁl] (>0
S2VI(D’CI) = .5

Ko [V3 11 1} expl=s2]
1 ' i "
\
¢ 1
Jou, [ﬁ(}‘ expl%]]

€k 3 : ' — 1 &
+~—‘—k‘;;5§ exp[ =275, [\/2(; exp[ 42 ]] (>0
T, (D, C1)

P

[V €1 1} exp[42)]

1 , _
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Appendix D

Mathematical Identities

D.1 Bessel functions

The asymptotic expansions presented below can be found in [112], [111]. The subsequent
expansions in inverse powers of v have been derived from the uniform asymptotic expan-

sions.

D.1.1 Uniform asymptotic expansions for large order

_exp[y(tanha — o) o U,(coth )
Jy(vsecha) = Sy [1 + 32::1 e ] (D.1)
Y, (vsocha) ~ _exp[—v(tanha — )] 1 5 s Us(cotha) DA
(voecher) \/lmxtanha [ ' .92=:1( : v ] S
where
Usalp) = 3921~ VL) + § [ (1= 56U, 0)dg (03)
Also
J, (vsecha) =~ \/sh;:fa exp[r(tanh o — )] [1 + Z @)] (D.4)
a=1
Y,,' (vsecha) = 1/ sin:y2a exp[—v(tanha — )] [1 + Z(—l)‘W] (D.5)
a=1
where
Vo) = Ualp)— 5p(t - PA)Us1(p) — 2P0 = P01 () (D.5)

Setting secha = £ and expanding the series in brackets in inverse powers of v yields

U, 2
1+Z (p) 1 11 11 1[139 z]_i[ 571 132

"1y T2 T A |51sa0 2 1|2488320 48~
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+ O™

i U, (p) 11 11 1139 22 1] 571
1 —1)s =¥ = 14—~ g_____—]__[j_
M ,,;( ) v t 12 T 28802 T 3 |51800 4 412488320
+ O(V_5)
(=) r 2
V. (p) 1111 17139 z] 1[ 571
1 e = 1- e - e
+2 127 T 2882 T 351840 3 412488320
+ 0(1/'5)
i V(p) i 1 11 17139 22 1] 571
a i [ i i o
1+ Z( Y 1+ 45, T 2882 ~ 3 |51840 *t3 ] 4 [2488320
+ 0(1/“5)

D.1.2 Small argument expansions

When v is fixed and z — 0

L&)~ tornl

Y, (z) — —%I‘(V) [%] B

D.2 Modified Bessel functions

D.2.1 Uniform asymptotic expansions for large order

_ exp[v7] Us(p)
L (vz) NIy [1 + Zl ]

K,(vz) = \/zfi“i”—"j[uz(_lymy_(j’)]

V(14 22)s o

L) = a+ 2R, +Z e

K.(vz) = \/7 (1+22): exP[ al [1 + i(q)s‘éf;?)]

where

v = (1+2%): +ln[—z—1]
1+ (1+22)2

p o= (1+29)73

z

(D.7)

13
13 zz]
48

(D.8)

13 zz]
48

(D.9)

13
48z]

(D.10)

(D.11)

(D.12)

(D.13)
(D.14)

(D.15)

(D.16)

(D.17)

(D.18)

Setting z — £ and expanding the series in brackets in inverse powers of v yields

U, (p) 11 11 17T 139 22 1 571
1 1 el i
" Z [ ] 4 [2488320

28852 T8l5m800 T 1

150

13 ,
18”



+ O(V—S) (D.lg)
sU(p)_ 11,11 17139 221 1] 57 13 ,]
1+Z( 2 1+ 150 T oss 2 3[51840 4] v4[2488320 TS
+ O™ (D.20)
. Va(p) 11 11 1[139 21 1[ 57 13 ]
1 = 1-——— |- -l
+§1 v 127 T 2882 T o3 |51840 4] »4|2488320 8° |
+ O™ (D.21)
sV(p)_ 11 11 1[189 2% 1 57 13 5]
S Z( b I+ 5y T 2882 ~ 03 [51840 %) " vA|2a88320 487
+ O™ (D.22)
D.2.2 Small argument expansions
When v is fixed and z — 0
1 z]Y
I, — = 2
@) = Te+D [2] (D23)
1 z]7%
K,(z) — EP(")[E] (D.24)
D.3 Bessel integrals
zkr 2x zkrcosﬂ
[Ergrs = f as [ d00/ a ks
—u\/r,az +2z%
- vfp“-z
co zﬁka ezkp cos @
= a9 | d
/ / kk/ dkgk 21 k2 + o2
—z\/k3+a3
- o / dkkJo(kp D.25
) S vyl (D.25)
where
r= \/-p2 + z2
D.4 Exponential integral
D.4.1 Definition
o0 —zt
Bu(z) = f dt <
1 [
= 21 - (D.26)
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D.4.2 Asymptotic expansion

En(z)ze;z[ n n(n—zl-l)_n(n+1)(n+2)+”

1——+ . . (D.27)

z z z z

D.5 Hydration integrals

Debye-Huckel term

Mac —kEvE(0)r n
/ dxa (22 — 21) e"E(z2+L) ﬂ [l]

min r r
21tZmaz
= Zw/ dzs (22 — z1) e~E(zt+l)
z

1~ Zmaz

/Pmaa ) e EvE(0)y/ pi+(z2—21)? [ 1 ]n
x P2 P2
Prmin \/p% + (22 — 21)? \/pg + (22 — 21)?

1+2Zmae

= ZW[NEVE(O)]n_I/ dzy (z0 — 21) e~e(7+L)

717 Zmae

""EVE(O] F':rsnaz +(z2—z1)2
kEvE(0)A\/2 i +(22—21)? T

21t 2Zma

NE(zz—i—L)

= ZW[KEVE(O)]n_l f ) dza(z2 — 2z1) e
21" Zmae

{ﬂ(wmmﬁﬁwﬂa—mﬂ_E{wm@wﬁm+m—mﬂ

X

¥

n—1 n—1
[t Ga =] [Vt G
(D.28)
and the image term
mac —xgve(0)r* n
/ dxy (z2 4 z1 + 2L) enelz2FL) e__*_~ [l*]
min T T
1 Z1tZmaz
= anleprp@ [ dm (gt 20) 5D
21" Zmaz
En (REVE(O) x/ Plin+ (22 + 21+ 2L)2)
{ n—1
[\/P?m + (22 + 21+ 2L)2]
En (NEVE (0)v/P2ae + (22 + 21 + 2L)2)
- } ‘ (D.29)

[\/p,?nax + (22 + 21 + 2L)2] "

Substitution of the asymptotic expansion for E,(z), into these expressions such that the
Debye-Huckel term has integrals of the form

21t Zmaz
a[kpvE(0)" / daa (22 — 21) E(a+D)

21— Zmaw
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and the image term

X

X

[k gre(0)]" /

e—rEvE(0)y/PP+(z3—21)?

VR T (72— 1) [m]m

mae
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