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Abstract

Structure and movement of molecules in the Debye layers of a neuron is of fundamental

importance to the function of a neuron. This thesis is an investigation into the hydration

and distribution of mobile ionic species adjacent to the membrane walls of a model neuron

using electrical double layer theory.

The model neuron considered has two separated planar membranes thus creating the

intra/extra cellular fluid regions. The membïanes are modelled as a continuum with

an associated dielectric constant and surface charge density. One and two semi-infinite

membrane geometries are also considered as limiting forms. The fluid regions are modelled

as a hard sphere ion-dipole system with the dipoles creating the solvent structure through

the angular dependent potentials. The limiting form of a point ion-dipole system is also

considered for the fluid regions.

The BBGKY hierarchy of partial differential equations for the correlation functions

are truncated with Loeb's closure relation to determine expressions for the number den-

sities and pair correlation functions of the ionic species and dipoles. The results obtained

for the pair correlation function indicate a shielding both in the normal and transverse

directions. The shielding in the ttansverse direction occurs because the charge on the op-

posite side of the membrane is able to redistribute itself, screening the potential between

molecules. Comparison of the two membrane point model system (at large separation) and

the one membrane point system plus the effect of membrane thickness are investigated.

Calculation of hydration numbers for the mobile ionic species are also presented.
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Chapter 1

Introduction

The structure and distribution of mobile ionic species in a solvent medium (predominantly

water) is of fundamental importancé to the function of a neuron. Together with the struc-

tural and electrostatic properties of the membra¡e these factors determine the strength

and duration of the nerve signals. Of critical importance is the structure of the fl.uid ad-

jacent to a membrane wall. Electrical Double Layer (EDL) theory will be used to model

this region of fluid.

1.1 Description and function of neurons

1.1.1 Structure of a neuron

The gross anatomy of the neuron cell of most animals is as follows. The soma (cell body)

contains the nucleus and. cytoplasrn (intracellular fluid). Attached to the soma is a tube-

like structure called the axon which is the medium for the propagation of the nerve signal.

At the base of the axon is the auon hilloc& which is the site for the initiation of the

nerve signal. The nerve signal reaches the terminal branches called synapses which form

the connections with the denilríúes which receive the nerve signals to the soma [1-]. Ir

primitive animals (such as the leech [Z]) the distinction (in function) between axon and

dendrites tends to disappear.

L.L.z Ion transport through cell membranes

Though the nerve signal or action potentiøl travels longitudinally to the axon it is trans-

mitted due to voltage differences across the membrane (width æ 50 - 100å) of the axon.
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The voltage difference is due to a variation in the conceutration of the mobile iouic species

in the intracellular and extracellular fluid and differences in the frxed charge associated

with protein at the membrane surfaces and in the cellular fluid regions. The most impor-

tant mobile ionic species being Na+,K+,Cl- ar.Ld.Cat+ ions. The -l[at and C/- ions

constitute more than 9O% of. the ionic species in the extracellular fluid but less than L0%

in the intracellular fluid. In the intracellular fluid the dominant ionic species are Jl* ions

and negatively charged organic molecules. In general the membrane is impermeable to

negatively charged organic molecules. As a result in the resting súaúe, when the membrane

is polarized and the concentrations of the ionic species is stable, there is a potential dif-

ference of about gOmV with the intracellular fluid negative relative to the extracellular

fluid. See Table 1.1. The membra¡re is called an encitable membrane since the permeability

decreases with an increase in the potential difference across the membrane [3], [4], [5]. It

should be noted that even in the resting state there maybe some leakage of potassium ions

across the membrane if the concentrates are not in chemical equilibrium [6]. During the

d,epolarization and then repolarization stages of the action potential, the concentration of

the ionic species varies due to diffusion across the membrane.

The membrane wall or lipid biløyer consists of protein molecules embedded in lipids.

Thansport through this bilayer is either via interstices in the lipids which act as channels

and by a þumpingo mechanism associated with enzymes in the membrane. The relative

impermeability of ions through the lipid bilayer occurs mainly because

1. most of the ions are hydrated (see below) which greatly increases their size and

therefore reduces the movement through channels in the lipid bilayer, and

2. electrical charge of an ion interacts with the charges of the lipid bilayer and

causes a repulsive force between the charged species.

The relative importance of these factors depends of structural properties of the channels

and the state of the neuron [6].

The enzymes or trønsytort proteinsact selectively to the type(s) of mobile ionic species

which can be transported across the membrane due to channelts size, shape and the amount

2



of electrical charge along its surfaces. Diffusion through these channels is by the process

of. simple diffusion - due to the kinetic movement of the molecules and is in the direction

of the electrochemical grad,ienú caused by variations in concentration, electrical potential

and pressure between the intracellular and extracellular fluids. Actiue transport of ionic

species is against the electrochemical gradient and thus energy must be imparted to the

diffusing ions. The active transport of sodium into the extracellular fluid and potassium

into the intracellular by the sodium-potassium purnp mechanism with energy derived from

metabolic processes. The carrier proteins are distinguished by their ATPase which can

cleave ATP (to form ADP or AMP) with the release of energy by breaking the phosphate

bonds. The mechanism that then imparts this energy to the diffusing ions is still unclear

t6l.

The sodium transport protein selective to sodium ions is mainly characterized by the

high amount of negative charge along its inuer surface. These charges attract sodium ions

in preference to other ions due to the electrical *barenesso (oniy one set oforbital electrons)

of the sodium ion. Once inside the channel these ions diffuse due to their kinetic motion.

'Whereas, the potassium transport protein is slightly smaller than the sodium transport

protein and does not posses the high a,mount of negative charge. Thus its selectivity to

potassium ions is not due to Coulomb forces but rather the smaller size of the hydrated

potassium ion.

An important difference between Jla+ and -If+ mobile ions is the binding of the water

molecules in their primary hydration shell. For the.l/a,+ ions, the water molecules a,re more

strongly held than for the ll+ ions, such that the .If+ ions more easily exchanges water

molecules while moving through the fl.uid resulting in a faster transport rate than for the

.ð[a+ ions. Transport rate of the divalent ion Cø++ is lower than for the monovalent ions

.ðy'¿+ and fl+ due to its larger hydration number and hence size l7l. See Table 1.2. Thus

the hydration of the ionic species is an important phenomena in the transport through the

fluid regions and membrane. In general the Cl- a,rrd -[f+ ions are more permeable than

the .ly'ø+ ion.

To gain a further understanding of the relationship between the concentration of the

3



1034ct-

0.110-4Ca++

4140K+

L4210.l[¿*

ExtracellularIntracellu-larMolecule

Table 1.1: Concentrations (*M) of the major mobile ionic constituents of the intracellula¡
and extracellular fluid for a neuron

various ionic species and the electrical and chemical potentials, macroscopic models have

been proposed including the pioneering Hodgkin-Huxley model [8], [9], [10], [11]. More

recently, Green and tiffet [12], [13], [14], [15], [16], [17], [18], [19] and rheir associares

Vaccaro [20], [21] and Sherwood [22], have had considerable success (e.g. explaining the

role of calcium in the action potential) by predicting changes in the chemical and electrical

potentials due to variations in the concentrations of the mobile ionic species not only in

the intracellular and extracellular fluid but within the membrane itself. As a result, the

Green-Tliffet model is an advance on and helps to explain the empirical success of the

Hodgkin-Huxley model.

The Green-Triffet model essentially combines the equations of continuity and the Boltz-

mann distribution for the number density of the ionic species to yield

ÔÓ¿%#:v2(ói-ó), (1.1)

where /¿ is the chemical potential *d 7¿ the inverse diffusion coeffi.cients associated with

the ith type of ionic species with / as the mear electrostatic potential. This equation ca,n

be closed by the use of Poissonts equation for the mean electrostatic potential, resulting

in

1,# : v2ë¿ 
" T4"n"'fl l"*p[- B"oóo] - lf

4

(1.2)



wheree¡isthecharge,nflisthenumberdensityof the lcthtypeof ioninthebulkof the

electrolyte and e is the dielectric constant. The inverse diffusion coeffi.cients used in this

equation are determined by experimental techniques. As noted above, hydration of the

ionic species is an important factor in determining the transport rate (rate of diffusion)

through the intracellular and extracellular fluid regions and membrane. Even though

the diffusion coeffi.cients for the mobile ionic species do not exhibit a large variation, a

theoretical model to determine these coeffi.cients would be advantageous in discussing the

possible solutions of Eq. (1.2). This is our motivation for developing a model to determine

the hydration of the ionic species in the intracellular and extracellular fluid regions with

particular emphasis on the structure near a membrane wall.

The theoretical fra,mework for the determination of the diffusion coefficients is through

statistical mechanics. The importance of such a molecular description to support the

empirical relations of the Hodgkin-Huxley model was recognized by Agin [23]. He showed

the connection of such solutions with the ensemble average of statistical mechanics. A

detailed statistical mechanical description of the action potential in terms of the one and

two body distribution functions was fi.rst presented by Vaidhyanathan and Phillips l2a).

However, the resulting equations ü/ere oniy solved in the Debye-Huckel approximation.

In both these and subsequent papers by Agin [25] and Arndt, Bond and Roper [26], the

importance of an electroneutrality condition in regards to the type of solutions for the

electrodiffusion equation is discussed. The two types of electroneutrality considered are

1. microscopic electroneutrality, Ð"onu:0, where all ionic cha.rges add to zero
i

at every point in both of the fluid regions and membrane, and

2. macroscopic electroneutralitf, 
/ dzlent: 0, such that the total ionic charges

i
integrated over the fluid regions and membrane (in one dimension) is zero.

In the case of no concentration gradients, macroscopic electroneutrality is equivalent to

microscopic electroneutrality. Microscopic electroneutrality, in the context of constructing

solutions to the electrodiffusion equation, provides a mathematical simplification. This

is a valid approximation for an aqueous electrolyte solution but is not applicable to a
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biological membrane [25]. The criteria for determining the applicability of the micro-

scopic electroneutrality condition in the membrane is the ratio of the Debye length in the

membrane to the membrane thickness being ( t 1271.

A related electroneutrality condition is that of electroneutrality in the bulk electrolyte

solution such that all ionic charges in the fluid regions where the membrane wall(s) have

negligible effect, i.e. in the far normal distance limit, add to zero. The bulk electroneu-

trality condition is given by

l"¿n!:s ' (1'3)
d

This particular electroneutrality condition is used in most physiological text books, for

example [1], [2], õ & simplifying assumption for the discussion of electrical and chemical

concentration gradients even though the condition is not satisfied in a neuron. It should

be noted that all these definitions do not include the prescence of surface charges (protein

molecules) on the membrane walls. The correct electroneutrality condition for a biological

membrane system is macroscopic electroneutrality that includes the prescence of surface

charges i.e.

Id"Ðeini+o:0, (1.4)

where o is the surface charge density and the region ofintegration is over the fluid regions

including the membrane.

The determination of the electrostatic poteutials is simplified by the cyJindrical geom-

etry of the neuronal cell. The natural length scale of the system is determined by the

Debye screening length which for physiological concentrations has a value of about Så in

the resting state. However, this value is appreciably less than the diameter of the smallest

ma,mmalian nerve fibres (= 1000å). Thus we will neglect the curvature of the membrane

since we are mainly interested in properties near the membrane wall and consider rather

the simpler geometry of planar membranes. But it should be noted that in the dynamical

phase of the action potential the concentrations vary such that the effective Debye length

becomes much larger than in the resting state and possibly comparable to the membrane

thickness [14].

6



1.2 Electrical Double Layer (EDt)
L.2,1 Description of the EDL

Under equilibrium conditions, the time average forces are the same in all directions and at

all points in the bulk of the intracellular and extracellular fluids (the system is isotropic

and homogeneous). Forces acting on molecules near a membrane wall are anisotropic

(different from bulk electrolyte forces). These different forces at the membra.ne wall effect

the distribution of solvent molecules (water) and charged solute molecules. Thus there is

a net orientation of the dipoles (associated with the water molecules) and excess charge in

the fluid region adjacent to the membrane wall. Once the extracellular and/or intracellular

fluid acquires an excess charge an electric field is detected across the membrane wall. The

term electrical double layer is used to describe the distribution of the solvent and solute

molecules near a membrane wall.

In general, if the membrane has an excess charge density, the distribution of the

molecules is as follows. The first layer from the membrane wall is mainly occupied by

solvent molecules. This layer is referred to as the hydration sheath of the membrane

wall. The next layer is mainly occupied by hydrated charged solute molecules. The locus

of centres of these hydrated ions is called the Outer Helmholtz ptane (OHP). Although

the hydration sheath of the membrane wall is mainly occupied by water, there are some

charged solute molecules in the same layer. The locus of the centres of these charged

solute molecules is called the Inner Helmholtz plane (IHP). It is important to note that

these charged solute molecules in the IHP are unhydrated. Such charged solute molecules

in the IHP are in contact absorption with the charged wall [28], [29], [30], [31]. It should

be noted that the above description of the EDL is a time average view of a dyna.mical

system. See Figure 1.1.

1.2,2 rPrimitiveD Models of the EDL

The historical development of the theoretical explanation for the EDL phenomena can be

traced back to von Helmholtz 132]. He proposed that the membrane wall and the IHP

could be considered as plates in a capacitor thus creating a potential difference between

I
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Figure 1.1: Schematic representation of the distribution of molecules nea,r a negatively
surface charged membrane wall showing the IHP and OHP.
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the planes. The major assumption being that a"ll the charged solute molecules on the time

average remain in the IHP. AIso the charged solute molecules are point molecules and

thus no effects due to their size was considered. The solvent molecules were modelled as

a dielectric continuum with an associated dielectric constant. Thus, as in a capacitor, the

potential between the planes has a linear variation with distance. This model is simplistic

but does exhibit some properties of the EDL.

The next major development was independently proposed by Gouy [33] and Chapman

[3a] and is known today as the Gouy-Chapman (GC) theory. They suggested that the

charged solute molecules are not constrained to the IHP but are free to move. Thus the

cha,rged solute molecules experience the fleld produced by the membrane wall and the

thermal motion of the other charged solute molecules. Equilibrium will be achieved by

a balance of these forces and a theoretical distribution of the charged solute molecules

in the region near the membrane wall can be derived. The derivation of the distribution

essentially comprises of equating the charge density p(z) as predicted by Poisson's equation

and that predicted by Boltzmann and then ünearizing the equation

p(z):-K2rþQ), (1.5)

where tþ(z) is the potential between a plane at distance z from the membrane wall and

the bulk of the electrolyte. Explicitly the potential is given by

'þ('):'¡to"-nz, (1'6)

such that r/0 is the potential at the membrane wa,11. The constant rc (inverse Debye length)

is defrned by

 trþ
Ð "l

2

"o¿
(1.7)K

e

This model is in general agreement with experimental data only at low concentrations

i.e.< 0.01M [30].

The major criticisms of the GC theory have been

1. the Sntuitive¿ coupJing of Poisson's equation (electrostatics) and the Boltz-

mann equation (statistical mechanics) rather than a rigorous development from
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the equations of statistical mechanics,

2. the applicability only at low concentrations since the Boltzmann equation ne-

glects the interaction between charged solute molecules, and

3. the molecules are point molecules and thus effects due to their exclusion volume

are neglected.

It is interesting to note that the Gouy-Chapman theory $ras proposed a decade earüer

than the Debye-Huckel theory for electrolytes [35].

In the year a.fter the development of the Debye-Huckel theory, Wagner [36] proposed

a model that included the effect of image' forces due to the differences in the dielectric

permittivity of the fluid region and membrane. This model was subsequently generalized

by Onsager and Samaras [37] and thus today is known as the Wagner-Onsager-Sama.ras

model. It also incorporates the effect of the distortion of the "Debye sphereo surrounding

a cha^rged solute molecule nea,r a membrane wall. One advantage of this model over

the GC theory is the incorporation of the effect of the interaction between the charged

solute molecules. Though in the original model the interactiou between the charged solute

molecules and the surfa,ce charges was neglected and the equations $¡ere derived again in

an intuitive way by combining the Poisson and Boltzmann equations.

A combination of both the von Helmholtz and GC modeis was proposed by Stern

[38]. In his model the charged solute molecules have a distance of closest approach to the

membrane wall. At this distance there is a plane of charged solute molecules. Thus the

effect of

1. the finite size of the charged solute molecules in relation to the membrane wall,

and

2. the contact absorption of charged solute molecules,

have been incorporated by introducing the *Stern' layer. The potential varies linearly

between the membrane wall and the distance of closest approach and past this plane (in

the bulk of the electrolyte) it has an exponential variation as predicted by the GC theory.
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Graha,me [3S] suggested that the charged solute molecules in contact absorption lie

in the IHP and the other charged solute molecules in the OHP. These two planes were

introduced to model the phenomena that some charged solute molecuLes that are unhy-

drated can morre into the IHP from the bulk region and others which are hydrated can

only approach up to the OHP. In the limit that the IHP and OHP coincide, we obtain the

Stern model.

All these early phenomenological models provide some insight into the theoretical de-

scription of the EDL but neglect, to varying extents, some important physical features

such as solvent structure, exclusion volume effects and the interaction between molecules.

The only consistent way of providing a theoretical description of the EDL is via the exact

equations of statistica,l mechanics, first considered by Buff and Stillinger [a0]. Approxi-

mations are made in this formulation to the Ha.miltonian that describes the EDL and the

bulk electrolyte and in solving the resulting equations for the distribution functions. This

type of theoretical formulation and refi.nements thereof form the basis of most research

into the EDL for the last thirty years [41].

The simplest formulation is called the Primitive Model (PM). The Hamiltonian in

the PM consists of the separation and orientation of only the cha,rged solute molecular

coordinates. Effects of the solvent a,re neglected as a first approximation. The charged

solute molecules are considered to be hard spheres with an embedded point charge. The

membrane waJl is modelled as a smooth, polarizable wall with uniform surface charge

density. Also included are the image charge effects in the Hamiltonian [a2], [a3].

Since the intermolecuLar potentials and equations in the above theories are approxi-

mate, it is impossibie to compare the accuracy of any theory to experimental data. Rather,

a comparison can be made of a theory with a computer simulation using the approximate

intermolecular potentials as inputs and then the properties of the system computed for a

few thousand molecules. The simulation techniques that can be used are

1. Monte Carlo (MC) - an equilibrium ensemble is generated from a random walk

algorithm, and
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2. Molecular Dyna.mics (MD) - the equations of motion are solved simultaneously,

For a charged hard sphere PM system, the MD technique cannot be used since the inter-

molecular Coulombic forces are both singular and long ranged-although the MC tech-

nique has been implemented by Torrie [44],1451, it does possess some inherent difficulties

due to the long range nature of the Coulombic forces [46].

The success of integral equations and the various closure relations for the correlation

functions (compared with computer simulations) in the region of the buik electrolyte,

excluding membrane wa,ll effects,l47l, [48], [49], [50], has prompted their use in the the-

oretical description of the diffuse part of the EDL. The two major integral equations

are the Ornstein-Zernicke (OZ) [51] and the BBGKY hierarchy, named a,fter its authors,

Bogolyubov [52], Born and Green [53], Kirkwood [5a] and Yvon [55].

The OZ integral equation defines a relationship between the direct and indirect cor-

relation functions. This has to be supplemented with a closure relation for the direct

correlation function so that the OZ integral equation can be solved. In the theory of

bulk electrolytes the most accurate closure relation is the Hypernetted Chain (HNC) [49].

However, the HNC gives a poor approximation for the exclusion volume of the molecules

near the membrane wall and is not a good approximation for the EDL at low concen-

trations and surface charge density. Tmprovement with computer simulation is noted if

the Mean Spherical Approximation is used rather than the HNC [56]. TheOZ integral

equation with the HNC closure relation is seriously flawed in its inability to handle image

interactions due to differences in the dielectric permittivity. This stems from the fact that

the Hamiltonian, that includes image interactions, has its translational invariance violated

and thus the derivation of the OZ integral equation via density functional techniques is

no longer valid [a1].

An interesting method, presented in a series of papers by Kjellander and Marcelja [57],

[58], [59], [60], [61], [02], [63], is to transform a three dimensional inhomogeneous system

between charged walls into a two dimensional homogeneous system. This two dimensional

homogeneous system can then be numerically evaluated using the HNC closure with the
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OZ integtal equation. The advantage of this method is its ability to ha^ndle the image

interactions since there is no violation of the translation invariance in the lateral direction

for the new system. The numerical solutions show excellent agreement with computer

simulations.

The BBGKY hierarchy are a set of coupled integro-differentiai equations that relate

the n body distribution function to the n*l distribution function. In addition, a closure

relation that gives an approximate expression for the n*l distribution function in terms

of lower order distribution functions is necessary to close the set of equations at the nth

level of the hierarchy. The major advantage of this set of equations over the OZ integral

equations is the possibility of including image interactions although this is computationally

intensive due to the evaluation of multiple integrals. Numerical solutions show good

agreement with computer simulations [64], [65], [41].

In parallel development with the integral equation theories has been the emergence

of Modifi.ed Poisson-Boltzmann (MPB) theories. The GC idea of combining Poisson's

and Boltzmann's equation is further exploited but features such as the exclusion volume

effect, correlations between molecules and image effects are not neglected. Outhwaite,

Levine and Bhuiyan [66], [67], [68], [69], [70], [71], l72l,l73l have presented a whole series

of related theories called MPBI, MP82,..., MPBS which improve on these various effects.

The numerical solutions a,re very good compared with numerical simulations provided the

surface charge density is low. If this is not the case then excluded volume effects become

dominant and the theory fails. Also possible are analytic solutions for the potentials in

certain geometries [74]. I-mproved credibiJity of the MPB theories has been obtained by

their derivation from the BBGKY hierarchy by Outhwaite [75].

Another method of improving the GC theory is to assume a smooth va¡iation of the

dielectric permittivity from the bulk region, across the diffuse layer into the membrane.

Various forms for the variation have been considered by Perram and Barber [76] and Buff,

Goel and Clay 1771, [78], [79], [B0]. The major criteria for these forms have been the

correct limiting values in the bulk and membrane regions, sufficient differentiability and

the ability to calculate analytic solutions from Poisson's equation. These solutions are in
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close agreement with the predictions of the GC theory.

Despite its deficiencies, the PM of charged hard spheres near a charged hard wall,

embedded in a dielectric continuum, is by far the most studied and well understood model

of the EDL. As quoted from Blum [8L]

The primitive model should not be considered as a working modei for the

interpretation of experimental data, but rather a learning model for the theo-

retician.

L,2,3 ßCivilisedD Models of the EDL

úr the above models of the EDL, the solvent has been considered to be a dielectric contin-

uum. Any structure of the solvent has been neglected. Theories that describe the whole

tra,nsition from the diffuse region nea¡ the membrane wa.ll to the bulk electrolyte and

include the solvent structure have emerged over recent years with particular emphasis in

putting the solvent molecules on equal footing with the charged solute molecules. Such

models are called "civilised" models.

As a first attempt to introduce solvent structure, models for the solvent molecules in

the IHP exist [82], [83]. Though outside the IHP, in the diffuse layer, the fluid structure

is a continuum. Also there are no charged solute molecules in the IHP. These models

give an insight into the dielectric properties nea,r a membrane wall but faii to account for

interactions between solvent and charged solute molecules in the diffuse layer with the

solvent molecules in the IHP.

Numerical models for dipoles alone (water molecules) near hard walls have been devel-

oped by Isbister, Rasaiah and Eggebrecht [84], [85], [86], [87], by using the HNC closure

relation for the OZ integral equation. An important feature is the dielectric function de-

creases as the distance of approach to the wall decreases. This is due to the ordering of

the dipoles in a minimum energy arrangement adjaceut to the wall compared with the

random orientation in the bulk region. Such models are important in the verification of

models that include charged hard sphere molecules (e.g. Torrie, Kusalik and Patey [88],

[89], [90], [91]) in the limit of zero density for the ionic species. It should be noted, as in
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the PM, these theories neglect the effect of image forces.

Outhwaite has presented in a series of papers [92], [93], [94], [95], an extension of

the MPB theory for the PM to the hard sphere ion-dipole system. Analytic solutions

are obtained for the linearized version of the equations for the potentials and thus the

distribution functions. The solutions exhibit a da,mped oscillatory behaviour in qualitative

agreement with computer simulations. As for the PM, the MPB for the hard sphere ion-

dipole system has the advantage of incorporating image effects and analytic solutions are

obtainable for the linearized theory in the point ion limit. Though, it should be noted

that the dielectric constant derived from the ljnearized theory is only applicable to a low

density dipolar system.

1.3 Hydration of ions

The ionic hydration number is defined by the number of water molecules (attachedo to

a¡r ion [7]. This definition is ambiguous due to the inherent difficulty in defining the term

'attached¿ in a quantitative manner. The spirit of the defi.nition is to differentiate between

water molecules that are chemically a,rrd.f or electrically attached to the ion and those that

are in the bulk of the fluid on the time arlerage.

Bockris' view [96] of hydration and thus hydration number is a refi.nement of the above

definition. He proposed that a certain number of water molecules (dipoles) are orientated

by the field produced by an ion and form an immobile sheath of water relative to the ion.

They are strongly bound by this ionic field and experience negligible influence from the

other molecules in the fluid. The size of the region should only be a few angstroms due

to Debye shielding of the ionic field. This region is called the primary hyd,ration sheath

and the number of water molecules in it called the primary hydration number. The region

between the primary hydration sheath and the bulk fluid is called the second,ary hydration

sheath and the number of water molecules in this region is called the secondary hydration

number. Again this is an ambiguous definition but the ambiguity is now localized to the

secondary hydration sheath. In this region, the fie1d due to the ion is tending to orient the

water molecules parallel to the field and the other water molecules in the sheath are tending
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to align the water molecules into the bulk region arra.ngement. The picture proposed by

Bockris is of an ion with a immobile sheath of water moving through the fluid and the

water molecules in the second hydration sheath becoming attached and unattached and

being replaced by other water molecules as the ion moves. Typical range of values for the

hydration number for various ionic species are presented in Table 1.2. The numbers in the

table are an average of the different numbers obtained from the variety of experiments to

determine them [7].

Even though the size of the second hydration sheath is ambiguous, a precise definition

by Azzam [97] can be given for the primary hydration sheath in terms of the pair correlation

function g(r). The hydration number is based on the number of nearest neighbour water

molecules to the ion by the following relation

rR^^-
nf : +""2 

Jry*- 
drr2s(r) , (1.8)

where rr! is th* number density of the water molecules in the bulk, Rf,s is the hard sphere

radius of the ion and R*o* is the first minimum in the pair correlation function between

the ion and water molecules. The first minimum defines the most probable location of the

hydrated sheath. However, this definition is only useful in the bulk region where the fluid

is isotropic and homogeneous. For our particular application, the number density and the

pair correlation function will have functional dependence on the normal distance from the

membrane walls and angular dependence on the orientation of the dipole (water moiecule).

A modified integral expression for the hydration number is presented in Chapter 4.

1.4 Description of Model

The model discussed in this thesis is developed to investigate the structure of water

molecules in the vicinity of an ion, adjacent to a membrane, by the application of EDL

theory. Let us restrict our attention to hydration effects in the intracellular and extracel-

Iular fluid regions only. We will not consider the effects of hydration in the membrane.

Also we will consider the neuron to be in the resting state and thus assume there is no net

transport across the membrane. The ion-dipole system of Chan, Mitchell, Ninham and
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1,38Hzo

1+11.81cl-

L4 +21.00Mg++

t2 +20.99Ca++

4+21.337ç+

5+10.95.ðy'ø+

Hydration No.Radius -AMolecule

Table 1.2: Molecular hard sphere radii and hydration numbers.

Carnie [98], [99] and Outhwaite [93], [94], [95], will be used to model the extracellular and

intracellular fluids of the neuron.

Since protein molecules are the major component of the negative organic charge and a

constituent of the membrane it does not seem unreasonable to assume that a percentage of

the protein molecu-les can be modelled as a membrane surface charge density. The charge

balance is restored by including the contribution from the membrane surface charge density

and relating fixed charges associated with protein in the electrolyte. Thus the model is as

follows.

The eiectrolyte solution consists of mobile and fuced ionic species with hard sphere

diameters .R¿, electric charge e¿, bulk number density n! (i:t,... , M:M:no. of different

ionic species) and point dipoles with hard sphere dia,meter ft¿, number density n¿ aîd.

dipole moment m(c¿r) such that c.r1 describes the orientation of the dipole. The point

dipoles are introduced to model the solvent structure. The electrolyte is contained in

three regions which are separated by two membranes (of finite thickness -t and separated

by distance 2D) and. uniform surface charge density. The uniform surface charge densities
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model the negatively charged protein molecules protruding from the membrane walls which

create a negative potential. Also a constant negative background potential models the fixed

protein molecules in the electrolyte. The membranes are modelled as a continuum with an

associated dielectric constant. See Figure 1.2. We shall refer to this geometry as the two

membrane model. Typical values of the parameters from [3], [4], for the two membrane

model are presented in Table 1.3.

'We also consider a limiting form of the above model by setting the surface charge

density and number densities in the extracellular region to zero and then taking the limit

as the membrane thickness tends to infinity. See Figure 1.3. This is called the two semi-

infinite membrane model. The two semi-infinite membrane model geometry is introduced

to test the solutions for two membrane model. The one membrane model is introduced to

investigate the effect of the presence of a second membrane in the two membrane model

See Figure 1.4.

1.5 Outline of Thesis

In Chapter 2 we present a derivation of the potential formulation of the distribution func-

tions from the BBGKY hierarchy in a similar ma,rrner to Outhwaite's derivation [75] for

the PM. The method essentially involves the closure of the equation for the mean electro-

static potential with the first of the BBGKY hierarchy for the number density (in terms

of the mea,rr electrostatic potential) and neglecting the integral terms which are first order

in the indirect correlation function. A similar process is involved in the determination of

the mean electrostatic fluctuation potential by its closure with the second of the BBGKY

hierarchy for the two body correlation function and truncating the resulting equation

using Loeb's approximation. In addition for our derivation, we do not assume bulk elec-

troneutrality but rather a linearized version (in the mean electrostatic potential) of the

macroscopic electroneutrality condition for the interfacial regions. The differential equa-

tions in our derivation reduce to Outhwaite's equations [94], [95], if bulk electroneutrality

is assumed. The point model systems are considered by letting the hard sphere diameters

of the molecules tend to zero. These equations are also consistent with previous results by
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Carnie and Chan [7a]. Due to the cylindrical geometry, we perform a Hankel transform

in the tra¡rsverse distance variable which reduces the partial differential equation for the

mean electrostatic fluctuation potential for the point model systems to a second order or-

dinary differential equation in the normal distance variable. The Hankel transform of the

meaû electrostatic fluctuation potential is called the transverse Hankel transform mea,rr

electrostatic fluctuation potential. The inhomogeneous term in the ordinary differential

equation for the tra,nsverse Hankei transform mean electrostatic fluctuation potential is a

Delta function in the relative distance between the source and fi.eld point. Thus the dif-

ferential equation defines a Green's function problem which can be solved by the standard

techuique of variation of parameters [100].

In Chapter 3 explicit solutions for the mean eiectrostatic potential and the transverse

Hankel transform mean electrostatic fluctuation potential for the two membrane point

model system are derived by applying boundary conditions at each of the membrane

walls, For the transverse Hankel transform mean electrostatic fl.uctuation potential, both

cases for the position of the source point are considered i.e. when the source is in the

extracellular and intracellular fluid regions. The solution to these ordinary differential

equations is written iu terms of either Bessel or modifled Bessel functions depending on a

charge asymmetry parameter that is introduced. Asymptotic expansions of the transverse

Hankel transform mean electrostatic fluctuation potential for both cases a,re presented

and show excellent agreement with a numerical solution of the differential equations for

the specialized case of the source and field point coinciding. Due to the complicated

nature of the expressions for the solutions, for each of the cases, consistency of the these

solutions with relevant limiting forms, presented in the Appendices and the one wall system

considered by Carnie and Chan [74], arc verified. The limiting forms considered are

o large behaviour in the transform variable,

c D ---+ 0, thus creating a system with one membrane and extracellular fluid on either

side,

o L ---+ oo, reducing to the two semi-infinite membrane model system,
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. eM -+ 0, the membranes are perfect insulators, and

. eM - oo, the membranes are perfect conductors.

Comparison of the two membrane point model system solution for the transverse Han-

kel transform mean electrostatic fluctuation potential, in each region, with that of the

one membrane point model system shows negligible difl'erence in the region adjacent to

the membrane walls for typical values of the parameters as in Table 1.3. The effect of

the second membrane is negligible due to the large distance between the membrares 2D

compared with the Debye length. Provided the ratio of the Debye length to the distance

between the membranes is ( L, then the effect of the second waII is negligible. For the

purposes of calculating the indirect and pair correlation functions it is only necessary to

evaluate the transform inversion for the transverse Hankel transform mean electrostatic

fluctuation potential, in each region, for the one membrane point model system.

Lr Chapter 4 we present the calculation of the ionic hydration number for various ionic

species in both the extracellular and intracellular fl.uid regions. To obtain the ionic hydra-

tion number, we first calculate the inverse tra,nsverse Hankel transform mean electrostatic

fluctuation potential, in each region, for the one membrane point model system. Since

\4re are interested in the structure in the vicinity of the ion, which corresponds to large

values in the transform variable, the asymptotic form for large values of the transform

variable is inverted in closed form. Comparison of this analytic expression with a numeri-

cal integration of the transverse Hankel transform mean electrostatic fluctuation potential

shows excellent agreement. Thus this analytic form for the mea,n electrostatic fl.uctuatiou

potential is used in our proposed definition of the ionic hydration number which accounts

for the orientation of the dipoles (water molecules). Due to the inherent difficulties in

integrating functions that have both a normal and transverse dependence over a spherical

region, we propose to take the region of integration for the ionic hydration number not as

a sphere (as in Azzam's definition) but rather as a cylinder. Thus the cylindrical region

of integration is a simplification though the volume of the region will be similar to those

of. A.zza,m.'s spherical region.
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Figure 1.2: Schematic representation of a two membrane model geometry showing the
various regions and the associated inverse Debye lengths, dielectric constants and surface
charge densities.
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100 åD

50åL

ValueQuantity

Tab1e 1.3: Tlpical values of the para,meters for the two membrane model.
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Figure 1.3: Schematic representation of two semi-infinite membrane model geometry var-
ious regions and the associated inverse Debye lengths, dielectric constants and surface
charge densities.
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Figure 1.4r Schematic representation of a one membrane model geometry showing the
various regions and the associated inverse Debye lengths, dielectric constants and surface
charge densities.
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Chapter 2

Equilibriurn Statistical Mechanics

In this chapter we will consider in general the statistical mechanics of the electrical dou-

ble layer. Since the relative orientation of ions and water molecules is important, but

ra,rely considered in other contents, we briefly derive the fundamental equations and exact

conditions on various quantities of the EDL including the number density, pair and indi-

rect correlation functions from first principles. Then approximations to determine these

quantities will be introduced and their validity discussed.

2.t Grand partition function

I¡r statistical mechanics we construct an ensemble of the system (in particular a fluid for

our application) to be studied. An ensemble consists of an infinite number of identical

systems with the same macroscopic parameters but occupying different microscopic states

with the particles having different positions, momenta and possibly orientations. From

the distribution of the corresponding points in phase-space rve construct the probability

density function. We wish to consider an ensemble of systems which can exchange both

heat and matter with a heat reservoir. Such an ensemble is called the grand canonicaJ

ensemble.

The state of a system is determined by the following macroscopic (or extensive) pa-

ra.meters. They are

1. energy in a region of thermal contact (i.e. exchange of heat or energy is possi-

ble),
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2. momentum and angular momentum in a region of mechanical contact,

3. number of particles in a region of chemica^l contact (i.e. particie transfer is

allowed to and from the region), and

4. volume of a region of mechanical contact

With these quantities there is an associated conservation iaw and earh of them is

defined by a constant of motion Co. These are the

1. C1:1¡-Ha¡niltonian or energy of the particles in volume V,

2. CzrCsrC4:p- total momentum of the particles,

3. Cs,C6,C7:l- total angular momentum of the particles,

4. Cs:I{1-total number of particles of type one, and

5. Cs:N2-total number of particles of type two....etc.

For convenience, the set of the constants of motion is denoted by C : (Ct,Cz,Cs,....).

'We introduce P(C), the probability that the constants of motion C have the value C

in the ensemble. From the laws of probability, we have the normalization condition

f rlc¡ :1 , (2'1)
C

where the summation is over all possible values of C in the ensemble. Also the average of

C is defined by

(c) :fcr1c1 Q.2)
c

Note that the functional dependence of the probability function is in actual fact

P(c) : P(c' (c)'Y) ' (2'3)

Together with the fact that the constants of motion C are additive we have the usual form

for the probability function [101]

P(c): Po(C,v)expt-Ð ÀoCo- lra*n{*)1 ,

26

(2.4)



where Po(C,V) is a consta,nt determined by the high temperature limit and the Àors

axe pararneters which are determined by the state of the system. The function å,(x) is

a function of x and due to the normalization condition, Eq. (2.1), is dependent on the

set of intensive (volume independent) quantities which can be expressed as functions of

À : (Àr, À2, Àg, ....). Io turn, ì : (lr, À2, Àg, ....) are functions of the volume and the other

extensive parameters (C) and it can be shown by thermodynamical arguments that ñ,(x)

is proportional to the hydrostatic pressure at x [L02].

Now we define the grand partition function E, in terms of À and the constants of

motion C, by

Ð ro(c,tr) exp [-À'c]
c

.*pllr-dxtr.(x)l (2.5)

(2.6)

A variation in E with respect to À yields

Hence

P(c)
Po(C,V)

óE Ð ro(c, v)[-ót.c] exp [-À'c]
c

: ó.\.(c)E

: .FN(xr,...,x1viPI,.,. rPjVittrlr...,@iV)

(c) : å:î

Io*#,. e.T)

Thus a knowledge of the dependence of the grand partition function on the parameters À

determines the average values of the constants of motion.

2.2 Distribution functions and the BBGKY hierarchies

'We can now define the classical mechanical grand canonical phase-space distribution func-

tion from Eq. (2.4) as
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A quantal analogue is due to Wigner [lOe], and at ordinary temperatures approximates

very closely the classical function (except when free electrons are involved). For conve-

nience, we use the concise notation

.FN(*;p;<.r) = .Fx(*r,... rxtviplr... rpiviotlr...,øiv) (2.e)

The quantity 
lv

r'¡(*;p;ar) fI dx¿dp¡du¿ , (2.10)
i,=L

defines the probability that the volume elements dxL,...,dx¡v, are occupied by particles

of the fi.rst kind with orientations d,¿L, . . . ,d,¿ N, and momenta in the ranges dpt, . .. , dp¡r,

and the volume elements d*1yr+t, . . . , d*ry, +iv, are occupied by particles of the second kiud

with orientations d.Nr+rr..., doNr+.M, aûd momentain the ranges dpivr+r,...,dpivr+¡¡,

and etc. . The orientation vector c¿ is described by the angular co-ordinates (0, /) such

that / d,u1: {¡.

Thus the probability that the volume I/ consists of .f[ particles of the first kind, .Aþ

particles of the second kind etc., is given by

N

i=l

such that the normalization of JlN required by Eq. (2.1) is satisfied. That is

PN:E** 
"' I I .FN(*;p;ar) fI dx¿dp¿d,u¿ , (2.11)

Ð¡'* : Ð /"*t*'p;c.r)do7y:1 , (2.12)

where

N

Ð
N

doiv

N

ËË Ë,
ivr :0 l\b:0 ffiw:o
M-^¡

il + lfd,x¿d,p¿d.o,t¿ ,

o:1 !\ ai ;:1

M no. of species of particles.

It should be noted that the grand canonical phase-space distribution function is related

to the grand partition function via Eq. (2.4), Eq. (2.5) and Eq. (2.8) by

ln.F¡(x;p;¿u): -lnE -.\'C .
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Thus substituting this relationship for the grand canonical phase-space distribution func-

tion into the normalization condition, Eq. (2.12), yields

(2.L4)
N

Finally u¡e can write the ensemble average of some quantity G, as defined in Eq. (2.2), as

G.F¡(x;p;at)d0iy

| .*n[-r c]ao*

I c "*vl-r c]ao'

gou(xr ut; x' r r'tt lV) : 
nou(x' c¿;x" ?' lV)

n,(x,ulV)na(x',r'lv)'

(2.15)

The number density no or the one body distribution function for molecules of the ¿úl¿

kind, is defined by

n"(x,utlV): (Ð 6¿o6(x - x¿)ó(<u - -¿)) . (2.16)
i

Similarly the two particle correlation function rr,øb ot the two body distribution function

is defined by

r,.,a(x,ut;x',u'lV): (I- 6¿o6(x - x¿)6(ot -.i)Ð'6jaó(*' - x¡)6(o'- -¡)) , (2.I7)

where f indicates thelr¿o" ,:i is excluded *"*'rO" summation. These two quantities
j

are important for describing most of the features of the molecular structure of the fluid

system. Quantities related to the two body correlation function are the pair distribution

function gou(x, w ; xt,,a' lV) defined by

(2.18)

and the indirect correlation function hou(x,ut;xt,u'lV) defrned by

hoa(x,us;x' ,t's'lV): goö(x, u;x' ,,'t'lV) - L (2.1e)

The notation lV is used to show explicitly that an external potential Vo is acting on the

system. If the external potential is equivalently set to zero, the number density and the

two particle correlation functions reduce to their homogeneous values [104] .

The general fluid system we wish to consider consists of particles which interact via a

potential that is dependent not only on the particles position but their orientation. The
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Hamiltonian of our model system has the form

H- ÐÐ0,"È
2m¿

.¿v

Ð
¿--t

Ð Ð | 6;"6 ¡ oQ,o(x¿, u¿¿i xj, u i)
i:l ø:L
JVM

+ Ð Ð 6¿oVo(x¿,t's¿) , (2.20)
ó:! ø:L

where p" is the momenta of a particle of the athkind.. Oo¿(x¿, @¿;xi,c.r¡) represents the

mutual potential energy of two molecules of the øth and bth kind, if their mass centres

a;rd orientations are at (x¿,c.r¿) and (*¡rr¡) respectively. Define 6¿o to be equal to 1 if

the molecule at x¿ with orientation c.r¿ is of the ¿úl¿ kind and zero otherwise, V"(*¿r.¿)

denotes the potential energy of the ath kitd of molecule at (x¿, cu¿) due to the external

fi.eld.

The grand partition function can be written in the form

IVM

n_
P

lA

'lo(x¿r,'t¿) :

o:

JVMM

i:1 o:1ö:1

(ttaT)-L ,

l'qWt,
To+ ppo(xi,@¿) - BV,(x¿,t's¿) ,

IV/VMM
Ð Ð Ð Ð 6¿,6¡60oa(x¿,ti¿ix¡, u j) ¡

1+,

e : Ð I "*n[$Ér,"r"(*¿,.¿) - Pr-]doiv, (2.2r)

(2.22)

(2.23)

(2.24)

(2.25)

and

i.:L j:L c:l b:1

where ks is Boltzmann's constant, p"(x¿,cu¿) the chemical potential associated with the

øúl¿ kind of molecule at (x¿, c.r¿). The expression for ro is derived from the integration over

the momenta coordinates. Thus the ensemble average of G, Eq. (2.15), can be explicitly

written as

(2.26)

provided the function G does not have an explicit dependence upon the momenta.

From the definition of the grand canonical phase-space distribution function it is possi-

ble to derive a set ofcoupled integro-differential equations relating the n body distribution

(G) : !¿ |GexplË É 6¿o^to(x¿,,,,i) - f;ø)aa* ,
- N' Li:lo=L
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function to the n-t-L body distribution function. The resulting set of equations are known

as the BBGKY hierarchy.

The grand canonical phase-space distribution function .FN (*; p;c.r) satisfies Liouville's

equation

D.F¡(x;p;<.,) : qft*"t4+{.e¡(x;pio),fr}:0, (2.27)

where D is the Liouville operator and {} is the Poisson bracket [102]. For the Hamiltonian

of our system, Eq. (2.20), the Poisson bracket can be evaluated to give the explicit form

for the Liouville operator which is then substitutedinto Eq. (2.27), to yield

D.F¡.¡(x;p;c,): +*ååo^b*, # ååo^%P H
1 lv '¿v M M âoo6(x¿, tto¿;x¡rttt¡);ÐÐÐÐd,"a¡,ffir:L t:L a:L b

+l

ôFN
ðp¿

0 (2.28)

To obtain the flrst equation in the BBGKY hierarchy, we multiply Eq. (2.28) by

6¿"6(x-x¿)ó(p-p¿)ó(c.r -r¿), sum over i, integrate over the phase-space of the -ð/ particles

with the weight factor 

"4 
+, and then sum over N to obtain

0fo(x,p, arlY)
at

+
p 01" ïV"(x,ut) AÍ"

nLq 0x 0x 0p
ôQo6(x, usl xt,c's') ô lou(x,p, @ixt rp', u' lV)

0x 0p
dp'du' ,

(2.2e)

where the quantities /.(x, p,uulv) and /"6(x, p,aixt,p',.Ð'lV) are the velocity and pair

velocity distribution functions which are defined by

å(*, p, ulv) :

.fra(*, P, @ix', pt ,utlv) :

(Ð ¡¿"¿(* - x¿)ó(p - p¿)ó(c¿ -.¿)) , (2.30)

(Ð ó¿"ó(x - x¿)ó(p - p¿)6(c't - t';¿)

x i',,uj{*'- x¡)ó(p' - p¡)6(,¿' -,,,i)). (2.31)
i

These quantities are related to the number density a¡rd the two particle correlation

functions by

f"(x,p,utlV) : P"(p)n"(x,rlv) ,
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f .,u(x, p, a j x', p', -' lV) Pru(p;p')roa(xrus;xtrt's'lV) , (2.33)

where Po and Pa6 ate the Maxwellian distribution of velocities normalized to unity [105].

Using the definition of the ensemble average, Eq, (2.15), the partial derivatives with

respect to the momenta yield

0p
0f ou(xrp, @ix', p' ,,Ð'lV)

ôp

B n"(x,ulV)

: -LP1'Lt-,P,alV) ,
ffiq

: -LPÍ,uG,P,uix',P', t'lv) '
n'La

0Ío(*,p,,Ð V)

Since the fluid is assumed to be in equilibrium there is no explicit time dependence of the

distribution functions thus the partial derivatives with respect to ú are zero. Substituting

these results into Eq. (2.29) and integrating over the momenta p' yields

a
A*

ïV"(x,u)p
n'La

+

:

(2.34)

(2.35)

(2.38)

0x

pp
ffiø Ð

b
I ôfÞo6(x, c.r;x',

ôx

?z"ob(xl, (,1ixr ttl;xt ,ttltlV)
nob(:xrut;xt,tts'lV)

(*,.; x' ,u'lv)dx'd,¿' (2.36)

Since the momenta p is arbitrary, the equation can be rearranged to yield the first of the

BBGKY hierarchy

Vlnno(x, ulV):

Similarly, this process can be repeated to obtain the second of the BBGKY hierarchy

Vlnno6(x, u;x'ru'lV) : þVV"(*, u) - BY Q 
"u(x, 

u i x', a')

BYV"(x,u)

u + I 
d,x1d,w 1v eoa ( x, ø i *r, r r)?þ+ 

rî,' ìå'D . (2.37)

U4 I d,x1d'us1Y Qo"(*,.; xl, arl)

X

2.3 Electrostatic potential conditions

The one body potentials, V.(x1,ar1), are written in the form

lVoE ,v:
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Figure 2,1: Schematic representation of the ion-dipole exclusion planes relative to a mem-
brane wa,ll.
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Figure 2.2: Inteúacial wall geometry
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where Irj is the short ra¡rge contribution to the one body potential which models the

exclusion of molecules from a region adjacent to the membrane wall. See Figure 2.1. The

short range potential, V"s, is given by

I¿j(*r,rr):
oo I "rl< *
o lrrl>+

(2.40)

where z1 is defined as the perpendicular distance from the membrane wall and -Ro is the

hard sphere diameter for the øthtype of molecule. See Figure2.2. ThetermVoE is the

electrostatic contribution to the one body potential.

The two body (intermolecular) potentials, iÞo¿(xr, @tix2¡u2), arc also written in the

form

fÞoo(xr, eLix2¡,'sz) : Ofo + Ofl , (2.41)

where iÞfu is the short range contribution to the two body potentiai and is given by

R.,b

Rob

r1
r)

oo

0
iÞfo (*r, t's 11 x2, t't 2) (2.42)

such that

Rob:|{n"+aù (2.43)

The other term, iÞfl, is the electrostatic contribution which is defined by

iÞf;u(*t, @tjx2,uz) : Of;u + Õju , (2.44)

where iÞj, is the image potential due to the discontinuities in the dielectric tensor at the

membrane walls and Of;u is the Coulombic potential. The one and two body potentials

are derived and explicitly shown, for our model system(s), in Appendix A.

For the rest of the thesis let the subscripts i, j, k refer to the various ionic species and

d to the dipoles with a, b, c referring to general molecules.

The mean electrostatic potential ú(*r) is deflned by

e¿g(x1) : Vu (*t) "+ I dx3ofi (x1, x3)rz¡(x3lIz)

du sdxsÞE*(*r ; *s, u s)n¿(xs,o slv),I+
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where the first term is due to the external potential V¿u (*t) and the integral terms are

the potential due to the distribution of molecules in the region. Related quantities are the

mean electric freld E(x1), which is defined by

E(*r) : -Vrú(xr) , (2.46)

and the polarization vector P(*r), defined by

P(*r) : I a.rrn(ut1)n¿(x1,1'rLlv)

The displacement vector D(*r) is then defined by

D(*r):4zrP(xr)+E(x1)

AppJication of the Laplacian operator Vl to Eq. ( 2.a5) yields Poisson's equation

v?rþûxù : -4tr f e¡n¡ (x1 lV) + 4trY 1' P(*r)

(2.47)

(2.48)

(2.4e)

(2.50)

k

trÌom the expressions for the one and two body potentials for our model system(s) in

Appendix A, the me n electrostatic potential (which is a function of the normal distance

from the membrane wall) can be written, as derived by Outhwaite [93], in the form

.þQù: n" 
Ð "* 1,,,,1ry,"rr0"'("' - z1)n¡(4lv)

nn 
1, ,*ry,"rrdzsP("t) '

such that

P("ù: â 'P(xr) , (2.51)

where à is an unit vector, normal to the membrane wall. Differentiating this expression

w.r.t. zl yields

( 4n\e¡
k

d,4n¡(zslV)
ñ74L

+  rl(a - !)e{"r) ,

,þ
"ù
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where H("ù is the Heaviside (unit step) function. Thus the normal derivative of the mean

electrostatic potential is discontinuous at the distance of closest approarh of the dipoies

to the walls. At +, the point of discontinuity, we have the following condition

,þ'("t) l+ -f'1zr) ly 4rP(+) . (2.53)

Outhwaite [9a] ha^s noted the difficulty in defining the dielectric tensor e(xr). The

dielectric tensor is usually defined by the macroscopic relationship between the mean

electric field vector E(*r) and the polarization vector P(*r) such that

D(*r) : 4a'P(x1)+E(x1)

e(xr) 'E(*r) (2.54)

This definition is only correct if the mean electric field is non zero. However, we see from

Eq. (2.52), that the mean electric freld and the polarization do not necessarily vanish

simultaneously.

The surface charge density is related to the number density through

which is the condition of electroneutrality over the interfacial regions.

We also define the mean electrostatic potential ,þo(*1;x2ruz) at x1, given a molecule

of type b is fixed at (x2, e2),by

e¿rþu(xt;x2,tÐ2) : V¿E (*ù + Of,(x1; xz¡az)

It
k

d,4e¡n¡(zlV): -o , (2.55)

Ð [ dxsü ¿E¡,(x1,x3)n¡ (x3 
| 
V) g¡a(*s ; x2, u2lV)

KJ

P¿(*r; x2,t',2): f art n(ar1)n¿6(x1 ,u!lx2¡,zlV)

do sdxsÞ 
E¿(* 

r ; *e, o 3 ) rz¿ (x3, tÐ slV ) g ¿6(xB, u B ; x2 ) u, zlv ),

(2.56)

+

+ I

and the polarization vector Pa(*r;x2>@2), is deflned by
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Thus the displacement vector D¡(*r;*2,.2) at x1, given a molecule of type b is fixed at

(xz,uz), is given by

Da(*r;xz,u,z):4trPu(xtix2,@2) - vrúa(*rix2,u2) ' (2'58)

The difference between ú¿(xr; x2,rÐ2) and r/(x1) is defined to be the mean electrostatic

fl,uctuation potential üa(*r ; x2, us2) :

e¿úu(xt;x2,u)2) : e¿tþa(xt;x2,.Ð2) - .¿rþ(*ù

= ofl(x1;x2,c,s2)

+ 
+ I 

dx3ofi (x1,xs)nft (x3llz)lz¡6(x 3;x2,u2lV)

+ | aoúxsøifi(*r;x3, t r3)rz¿(x 3,uslV)h¿6(*s, rs; x2,o,2lV)

(2.5e)

The boundary conditions that must be satisfied by the mean electrostatic potential

and the mean electrostatic fluctuation potential will be discussed in Section 2.4, for the

relevant cases of point and the more general hard sphere ion-dipole system.

2.4 Nurnber densities

I-n this section we evaluate, with the help of Loebrs closure, from the BBGKY hierarchy

the number densities for the hard sphere and point ion-dipole model systems from the

potentials defined in the previous section.

2,4,1 Hard-Sphere system

Th,e first of the BBGKY hierarchy, Eq. (2.37), can be written as

Vl lnno(x1,uylV) : þYtV"(xt,uù

pÐ
I axú,oñriÞo"(xr, c.r1;x3, c.r3)

x ?¿"(xB, uslV)g""(x3, ccsi xl, ur1lV) . (2.60)

Application of the operator -þYt to the mean electrostatic potential, Eq. (2.45),

yields

- BY p¡þ(x) : þv tVE (*ù
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pÐ I a,^rsaxsVriÞf,(*r;x3, cu3)n"(x s,uslV) . (2.61)
c

Setting molecule ø to be an ion in Eq. (2.60) and subtracting Eq. (2.61) from Eq. (2.60)

results in

where

V1lnro: - P 
Ð | 

a*sa. svloå (x1, c, 1 i xs, t''t s) n"(xs, t'.t slV) g.,(x3, or3 i x1, @ LIV),

(2.63)

is an exclusion volume type term as it contains the short range contribution from the two

body potentiafs [93], [92].

Application of the operator -ÉVt*-(c.rr) .Vi to the mean electrostatic potential,

Eq, (2.a5), yields

V1lnn¿(x1ly) : BYp¿tþ(x1) - þVtVs (*r) - Vllnr¿

P Ð | 
axsa,'r sVrAf, (xr ; x3, t r3)n" (x s, u slV ) h.¿(*s, .s ; x1 

I 
trr),

(2.62)

-þV1rn(c'tr) ' VrTl(xr) : BY yV¿E (x1,to1)

P Ð [ dc.r3dx3V 1 iÞ# (*, ; *r, ø3)n" (x3,,Ð sl[)'(2.64)
;J

Setting molecule ø to be an dipole in Eq. (2.60) and subtracting Eq. (2.64) from Eq.

(2.60) results in

Vl lnn¿(x1 ¡ulV) : BY¡¡rn(cry) 'Vrú(xr) - BVfi (x1) - Vl lnr¿

U+ 
Idx3do3V1Õ 

u*(*,.,c.r1; x3, c.r3)

X n 
" 
(xB, t't slV ) h.¿(x3 r kr3 i x I r e lV ) (2.65)

Eq. (2.62) and Eq. (2.65) are exact equations. However, we need some ansatz for

the indirect correlation functions h"6 to close this set of equations. In the ümit that the

external field approaches zero, both the number density and indirect correlation functions
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reduce to their homogeneous (zero field) values, i.e. as V ---+ O

rzo(xl,,ÐlV) ---+ n"(xt,arllO) , (2'66)

hot(xtrt¿L)x2t,Ð2lv) ---+ h,a(xtru1ix2,or2l0) , (2.67)

provided the distance between the membrane walls is large compared with the Debye

length [106]. In a neuron this is the case. Thus, a first approximation is to assume

that the indirect correlation function takes the homogeneous (bulk) values for the entire

region that the fluid occupies. Since the homogeneous indirect correlation function is

only a function of the relative distance of the fleld point to the source point, there is no

dependence in the indirect correlation function on the relative distance of the source and

fi.eld point to the membrane wall(s). Obviously, the approximation deviates more from

the actual distribution as the source and.f ot field point approaches a membrane wall (i.e

within one to two Debye lengths). Despite this limitation, the approximation has the

correct limiting value for large distances away from the membrane wall(s) and can be

used to sta¡t an iterative procedure to determine a more a,ccurate approximation for the

indirect correlation function [94].

Since the homogeneous values are spherically symmetric, the angular integrals in the

right hand side of Eq, (2.62) and Eq. (2.65) will vanish. Thus

V1[nrø¿(x1lv) + Be¡þ(x)] : -þYtVs (*ù , (2.68)

V1[Inn¿(x1,@lV) * Brn(cu1) 'Vr,/(xr)] : -BV{f (x1,a,1) (2.69)

Use of the boundary condition that the number densities must approach their homogeneous

value for large distances from the membrane wall i.e,

no¿ u" I z1 l-- oo ,---+n¿(x1lV)

n¿(xtr,'rLlV) * lzt l- * ,---+
no¿

(2.7o)

(2.7r)
4r

which is consistent with setting the externai potential equivalently to zero. Thus Eq.

(2.68) and Eq. (2.69) integrate to

nlnel - !) "*o
n¿(xlV)
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n¿(*r,,¿tlv) : #rrr, - !1"*o l-B*1.r) 
. vr[ú(*r) - ú"]] , Q.73)

where t/B is the constant background potential. The functions nlï(21- *) u^rr¿

#"Qr,- *) ur.approximates to the exclusion volume term when the indirect correlation

function has its bulk value [93], [92].

These results for the number densities ca^rr now be substituted into Poisson2s equation,

Eq. (2.a9), the angular integration performed by the expansion of the exponential terms

to first order in the me¿n electrostatic potential a,nd use of the fact that the external

potential is only a function of the normal distance z1 to yield

It+n1,'-!n, n" 
T 

H (a - !1"2"o explBe¡$B I

+ +nþÐH(a - !1"fl"?,explBe¡{Bltþ(21) ,Q.7a)
k

,ùfr",

where

,þ@ù-- rþB

D(*r) ' ù l,{

þ*'noo

as lz1 l- oo ,

D(*r) .à l"-: 4no

4¡ry: 
g

(2.75)

(2.76)

(2.77)

(2.78)

The mean electrostatic potential boundary conditions for the hard sphere system are

ú(*r) continuous,

at the membrane walls, and

,þ'(zt) l+ -f'çzt) ly Pf*l Q.ls)

at distance ! fro*, the membrane walls.

The first three boundary conditions are the usual conditions associated with the mean

electrostatic potential for a point system. The last condition, Eq. (2.79), was derived in

the previous section, Eq. (2.53), and is particular to a hard sphere system [93].

For the last boundary condition, u¡e calculate the polarization in the normal direction

at the dipole exclusion plane in the following ma,nner. Substitution of the dipole number

4t



density, in terms of the mean electrostatic potential, Eq. (2.73), into the deflnition for the

polarization vector, E,q. (2.47), we obtain

dc.r1m(c.r1) exp -þ^@ù 'vr[ú(xr) -,þBl (2.80)

4a'P(x1) .ât : -H(2, - llV - Llrþ' (rt) (2.82)

We define the inverse Debye length rc as

P(*r) :P^"Ur-* I

o2:

Only the normal component will contribute to the poiarization. Thus the angular integral

is of the form .[ : zn 
Io" 

a/,lsinllmcosdl expl-Bmcosl¡þ'(21)]. This integral can be

evaluated to yield

t _ 4r d, lsinhlBmrþ'(rù)lt - - pñ aù dpl-- p*F a¡ )

4tr
= -io*'+'(rù . (2.81)

This linear approximation to the angular integral is substituted into Eq. (2.80), to yield

T+ef;nflexplBe¡,þB)

T+'\'2, (2.83)

and the background potential ,þB by

Ð"0"?,explBe¡rþBl

"lr'2
(2.84)

where we have assumed I þ"nrþB l< 1 and for convenience \rye define the dielectric constant

in the usual form

e:[1+39] (2.85)

It should be noted that the summation for $B is over all the ionic species (mobile and

fixed) whereas the summation for the inverse Debye length rc is restricted to the mobile

ionic species. To simplify the model ï¡e assume that all the ionic species have the sa,me

hard sphere diameter .R¿.

k

tB 4tv: eK'

4tr
q

eK' Ð
fr
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Thus the differential equation for the mean electrostatic potential for a hard sphere

system is given by

It 
+ nçr, - *Utl,þ" (rt) - rn2H(r1 - !l+f"tl : -rc2en(2, - !W,u . (2.86)

This differential equation reduces to the usual linearized GC differential equation for the

mean electrostatic potential, [93], when the bulk electroneutrality condition is satisfied i.e.

|"¡tfl:¡.
k

2.4,2 Point system

The equations for the number densities and the mean electrostatic potential in the point

system, can be obtained by setting the hard sphere diameters to zero for all molecules.

Thus the relationships between the number densities and the me n. electrostatic potential

are given by

n¿(x1lI/)

na(xrr.'rLlV)

and

,r! *xp 
l-Þ"01,Þot) -',þ"1],

# "*nf-ø*{",,) 
. vr[ú(*r) -,þ"1

(2.87)

(2.88)

and the differential equation satisfied by the mean electrostatic potential is given by

,þ" ("r) - ,r2úQt) : -*'rlru (2.se)

The mean electrostatic potential for the poiut system has the usual boundary condi-

tions [93] of

ú(*r) continuous, (2.e0)

,þ(xù--'þB I z1 l-r oo, (2.e1)as

D(*r) . ù,1"{ -D(*r) 'û lu-:4no

at the membrane walls.
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2.6 Indirect correlation functions

In this section we evaluate, with the help of Loeb's closure, from the BBGKY hierarchy

the indirect correlation functions for the hard sphere and point ion-dipole model systems

from the potentials defined in Section 2.3.

2.5,1 Hard-Sphere system

The second of the BBGKY hierarchy, Eq. (2.38), can be written as

Vllnno6(xt¡@Lix2¡t't2lV) : þY tW(*t,t¿ù -BV1Q"6(x1,t,.s1jx2,ø2)

UÐ Idx3dcr3VliÞo"(xl, 
arl i x3, or3)

X
n.ob(xI ¡4, 1 ; xg, U S ¡ x2 t,Ð zlv) (2.e3)

nob(xL,eLix2t.zlv)

This equation is closed by using the Kirkwood superposition approximation

flcab ;rrLrrvuL; )ÉB, Arg; x2rO2lV) : n.(x3, uslV)g".(xlr @ti x3r .4lV)
nob(xt,aLjx2¡,¿2lV)

X g"¿(xs, @Jlx2lø2lv) , (2.e4)

which is substituted into, Eq. (2.93), to yield

V11nno6 : þY tV"(xt,eL) - BV1Õ,6(x1,ttslx2,us2)

U+ 
ldx3dc.r3V1Qo"(x1, 

ø,1; xB, c.r3)n"(x3, .'nlv)

X g .(xt,c.lli x3, otslV)g"6(x3, k 3 i x2, u¿2lv) . (2.95)

Also the left hand side of Eq. (2.95) can be written in terms of the pair correlation function

and the number density resulting in

Vllnno6(x L¡u)Lix2,e2lv) : Vrhfn,(x 1,o1lV)n6(x2,o2lV)goa(xr, u)tjx2¡rrln]

: Vl ln no(x1 ,tÐlÍ) * Vr ln goa(x1,@L;x2,u2lv) , (2.96)

and then Eq. (2.60) can be substituted for the number density to yield

BV {Þ"6(x1,tÐr;x2,ø2)

U+ I d,xsd,o.tsl 1Qo"(*1, &¡li xB, u.ts)n"(xs,urslv)

g o"(xt r@1 i xsr u slV) h"6(x3 t Lù Bj x2 ¡,'r2lv) .X

V1 ln 9o6 :

44

(2.s7)



Setting the molecule a to be an ion and a dipole respectively in Eq. (2.97) and substi-

tuting for the electrostatic component of the intermolecular potential lÞE using Eq. (2.59),

yields

Vl lng¿6 : ÉVrÕå (xr ; xz, tnsz) - þV p¿úu(x¡i x2, t's2)

and

IpÐ dx3dc.r3V1iÞrt" (*t ; *r, cu3)n"(x3, %lV)

x g¿"(xüx3, c.r3lV)b"¿(xs, ol¡ix2¡ @2lV)

X h¿.(xt; x3, t't slV) h"a (xe, u Bi x2 ¡,Ð zlÍ),

OÐ I dx3dc.r3V1iÞ# (*, ; *r, c.r3)n"(x3, u4lv)

(2.e8)

(2.ee)

(2.103)

(2.104)

V1 ln 9¿6 :

Heaviside function. Thus the indirect correlation functions are defined by

ÉVrOå(xr, o,1ixB, ars) - BVlm(c.r1) ' Vrúa(*r; x2,u2)

, 
Ð | 

d'xsd'u sY 1L;il (*r, (¡, 
1 i xB, 4,3)n" (x3, r slV)

g a.(x1rcrl i xsr t't slV)h.6(x3 r c.r3i x2 r tt zlv)

U+ I dx3dc.r3V1Õ l"i;l.r,ol i x3, c.r3)n"(x3, oalv)

å¿" (xr, c.l 1 i xs, t't slV)h.6(x¡¡ @ Ji x2 ¡ @zlv) .

X

X

As a first approximation we use Loeb's closure [107], which neglects the integral terms

in both Eq. (2.98) and Eq. (2.99), to upon integration

H(rn - ll expl-Be¿56(*r;*2, ,¿z)l , (2.100)

R¿o
9aa H(rL2 ) exp[-Bm(.r) 'Vrúa(*r;*2, az)l , (2.101)

2

where we have used the boundary condition that

úa(*r;x2,.Ð2) -+ 0 as I z1 l--+ oo (2.102)

This closure approximates the exclusion volume term between the two molecules by the

9¿u

h¿t

h¿a

: H(rp - ll expl-Be¿$6(*r;*2, .Ð2)l - L ,

: H(rn - !lexp[-Bm(ør) ' vrúa(* 1;x2,u2)] - L
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tioo

These results are then substituted into Eq. (2.59) for the mean electrostatic fluctr'

potential and the Laplacian operator Vl applied to yield

v!e¿{6: vfofl(x1; x2,@2)

hre;le¡n¡,(x1lV)
k

+

X

þOt - !lexpl-Be¡g6(*r;*2, ,z)l - L

I4tre¿Y 1 . d,u4xn(ut s) n¿ (x1, cu 3 | 
V)

þu,,-
R¿u

2
) exp[-Bm(rù .Y¡¡þa(*r;*z, rùl - 7 (2.105)

To simpl-ify Eq. (2.105) we expand to first order in the mean electrostatic fluctuation

potential, substitute for the dipole number density and perform the angular integration

over arg, to yield

Yle¿{6: vfofl(x1; xz,r¿2)

hre;le¡n¡(x1lv)l"rrrr- ?, - t]k

Rnu+ 4trBe¿lertn¡@1lv)H(rp )tþú*t,*z)
2k

+ e¿y6(x1rx2)

+ e¿u6(xy,*z) - "¿nu(*t,x)VlS6$Lix2,@2) ,

where, by letting 6 : Bmff, we have

vu(xtr*z):

X

ôrþÁxt;x2,,¿z) . ìt \ô + eiË, (xI ; x2) t¿)2 )dzt
02úu(*t;x2,1ù2)

ar?

(2.106)

(2.ro7)

(2.108)

+nln ç,n - lt - t].gn ç", - *r*#
| 0@2 + 2) sinh 0 - 2e2 cosh d ILT)
ot9¡,

dzl

 nBn(re - !1"2"ø - ffl*rff
¡ e(02 + 6) cosh d - 3@2 + 2) sinh dlLI
o@!) ,øzl

4r B H (rp - !t"'r, (", - ?)*' l4tt!ä**ry]
ByH(r12 - fflue, - ll + o@\ ,

x1XU xz

X

?a(xr, xz)
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€a(*r, *z)

oQ2) (2.110)

Compared to the corresponding equation derived by Outhwaite [94], [95], Eq. (2.106)

has additional terms due to the violation of the bulk electroneutrality condition i.e.

l"¡"1¡ o.
k

If the secoud order terms Xu(xr,xz), €a(xr,x2) in d are neglected and expanding the

other terms to first order in the mean electrostatic potential with the added assumption,

I þ"*rþB l( 1, Eq. (2.106) reduces to

3?u(xr, *z) - 4tr þH (rn - !1"'^, t", - !)*' [#]

Byn(re-!l"f,t - ?,]e¿ 1+

)H("t

v?úo

Rn

2
4trBe¿Ð rf rn- 

Z

Rna
V7""21, - O.*',Þ]ú,

k

+

VlOfi,(x1;x2,u2)

hre,ilþ {,r, - ll - tfu {,t - !)"o,Il - o*,1

"ßylu ç,, - lt - t]u {"t - *rtl},
The boundary conditions associated with the differential equation for the mean elec-

trostatic fluctuation potential are

,þo(*t;*z,rz) --r 0 as l*z - xr l- oo , (2.112)

with r/6(x1;*z,rz) continuous everywhere except for

(2.LLL)

(2.113)

, (2.rL4)

t¿úa(*t;*z,oz) --* <Þfl(x1; *2,.2) as

e(xr) . Vrúa(*r; *z,rz) . à 1,, :
l*z-xrl-0,
e(xr) 'Vrúa(*r; x2,u2)-ât 

I .+'1

at the membrane walls, and

-ât . Y tfúu{*r' *2,-z)*l¡1*r)] * 4trù' P¿(*r; *2,.2) (2.Lt')

is continuous at the dipole exclusion plane (i.e at a d.istanc" $ fro* the membrane walls),

t;*z,tz) + ú(*r)

and

-irz'Vr
r_

lúa(*
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is continuous at the volume exclusion sphere boundary (i.e. at r12 : Boö), where i12

is an unit vector in the direction joining the centres of molecule 1 and 2, The first

three boundary conditions are the usual conditions associated with the mean electrostatic

fluctuation potential for a point system. The last two conditions are statements of the

continuity of the generalized displacement vector Da, Eq. (2.58), and are in addition for

a hard sphere system [94], [95].

Obviously the two cases to be investigated are when molecule b is an ion or a dipole.

Also we assume that the ionic diameters are the sa,me which is consistent with our as-

sumption for the mean electrostatic potentiai. Thus the two equations to be considered

a,re

and

t - þ"nrþ ,þ¿

(2.Lt7)

(2.118)

[t + ByH (rp - R¿)H(zy - ?r]"'rr,
4r BH (rp - !t" e, - lt Ð 

¿*ll
: 4rlrm(u2)' V2ó(x2 - x1)

+nluçn- lt -tl"r,,- *
+ zylnç,n - R¿) - t]nç"t - ll

)Ð
k

d2rþ

d"7

eknhl'- '"-r]

A further simplification can be made by assuming that the diameters of all molecules

are the same. The last two terms in both Eq. (2.117) and Eq. (2.118), are then simplified

using Eq. (2.86) to

.R. | .. d21þ1 R. d21t)H(a - ?f"\"¡"f;¡t - þ"n,þl - * räl : -H(a - ?#,
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-H(a - 9r)vt|,{*r) (2.11e)

Thus Eq. (2.111), for the case r12 ( -R, can be written in the form

.¿Y? úu!t;x2,ø,2) * H(21- E)rþ(*r) : vfofi(xLix2,a2), rL21^R (2.120)

a¡rd for the case r12 ) R as

It 
+ sun1,'- lrl"lr, 4trBH(21- *, ?

Vfofl(x1;*2,.2) - e¿v?þ(xù re l R

e¿4trBÐ"|"?,lt - þ"nrþlúu rn ) R
k

"7"?,lt - B"r,þ]úu

-0, rp)R (2.L?L)

Eq. (2.120) ulrd Eq. (2.121) have to be investigated when the field point is inside or

outside the exclusion plane i.e. z1a f or "t , E.

Case 1:21 ( f

V?úa(*r; x2,us2) :0 Vr¡¡2 (2.!22)

Case 2zz¡ > !

eiv?úb:

For the last two boundary conditions for the mea,rr electrostatic fluctuation poten-

tial, Eq. (2.115) and Eq. (2.116), we calculate the polarization vector P6, explicitly in

terms of the mean electrostatic potential tþ(z) and, mea,D. electrostatic fluctuation poten-

tial r/6(x1;x2,r,;2) in the following manner. Substitution of the two body distribution

function in terms of the one body distribution functions and the pair correlation function

Eq. (2.18), into Eq. (2.57), yields

(2.L23)

IPu: nu(xz,u2lV) d,utgn(t1)n¿(xr, ør lV)g¿u(*t,.ÐLix2trzl7) . (2.L24)

The expressions for the pair correlation function, Eq. (2.101), and the dipole number

density, Eq. (2.73), in terms of the potentials are substituted into Eq. (2.L2a), such that

Pà : *rr,, - !ltr,r, - !),0(x2,,.o21v)

I d-r*n(-r) exp 
l-ør.t..,r) 

. Vr[úo(*r; *z,rz) * '¡'çrr\f
X
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To be consistent with the approximations used in the derivation of the correlation func-

tions in terms of the potentials, we must linearize Eq. (2.125) to first order in the mean

electrostatic potential, to yield

4rP6 -

X (2.126)

(2.L27)

Thus boundary condition Eq. (2.115) can be written, with the use of Eq. (2.53), as

eît . V 156(xLi x2 ¡ @2) 
I a* -ù' Vrú¿(*r ; x2, u 2) I ¿ - : 0

Boundary condition Eq. (2.L16), combined with the condition tbat the mean electrostatic

potential is continuous across the exclusion volume sphere, has the form

eïp'Yyþ6(*r;*2, t'tz) la+ -|p' Vrúu(xr;xz,tÐ2) la-:0 . (2.t28)

2,6,2 Point system

The equations for the indirect correlations functions and the mean electrostatic fluctuation

potential for the point ion-dipole system can be obtained by setting the hard sphere

diameters to zero for all molecules. Thus the relationships between the indirect correlation

functions and the meaü. electrostatic fluctuation potential are given by

h¿a: -þ"¿rþu(*t;x2,tÐ2), (2.729)

h¿u : -Brn(ut)' Vrú¿(xr; r.z,o.l2) . (2.130)

A simplification is made by noting the symmetry relation

,þ¿|*t;x2,ttz) : 1*(.r) 'Y2$¡(x1,x2) , (2'131)
ei

and setting

tþ¿(*t,*z) e¿tþ(x1,x2) (2.t32)

Thus the differential equation satisfied by the mearÌ electrostatic fluctuation potential,

determined from Eq. (2.111), is given by

[t + sy]vf - 4'r þl nf;"2'¡t - þ"xrþ.r.ùl
k
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The mean electrostatic fluctuation potential for the point system has the usual bound-

ary conditions [SS] of

,þ(*t,x2) ---+ 0 as I *z - xr l- oo , (2.134)

with r/(x1,x2) continuous every\¡¡here except for

and

e(xr) 'Vrú(*r, *r) 'ù 1,,-: e(x1) 'Vrú(*r, *r) 'à l"{ (2'136)

at the membrane walls.

An integral transform technique wili be used to determined the mean electrostatic

fluctuation potential [74], [108]. This reduces the problem from solving a partial differential

equation to that of solving an ordinary differential equation and then performing the

tra,nsform inversion. Defining the transverse Hankel transform by

,þ(*t,*z)

tþ(21, z2rk)

| *z - x1 l---+ 0 (2.135)

(2.137)
æ

I ap expltk . plú(q, 
"2, 

p)

2n dppJo(kp)tþ(a, rz, p) ,

p (*z - *t,u2 - yL) ,

t,

where

k lkl,
and applying it to Eq. (2.133) yields the following ordinary differential equation for the

transverse Hankel transform mean electrostatic fluctuation potential rf (zy,z2rk),

l#r- tc2 - n2 *ryÐú"1,8'|{*,)],/{,,, z2,k): -!aQ, - 22) (2'138)

Application of the transverse Hankel transform to the above boundary conditions yields

the following bounda,ry conditions for the transverse Hankel transform mean electrostatic

fluctuation potential

,þ(zr,"z,k) -r0 æ lq l-- ,
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with rþ(z1rz2,k) contiD.uous elrery$¡here and

€(x1) ' Ytú(q,zz,k)'ât 1",: €(x1) . Vtþ(a,z2,k)'ât lu+

at the membrane walls

(2.140)
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Chapter 3

Two Mernbrane Point Model
Neuron

In this chapter we construct solutions for the differential equations associated with the

mean electrostatic potential and transverse Hankel transform mean electrostatic fluctua-

tion potential for the two membrane model in the limit of point molecules. The two cases

considered are when the fixed molecule (source point) is in the extracellular or intracellular

fl.uid regions.

Ûe particular lve are interested in the form of the solutions (for both cases) of the

transverse Hankel transform mean electrostatic fluctuation potential near the membrane

wall(s). 'We expect from electrostatics [109] that these solutions will contain a Debye

Huckel type term and image term(s) due to discontinuities in the dielectric medium. As

the normal distance from a membrane wall increases the effects due to the membrane wall

should become negligible due to the screening of the molecules. As a result, in the bulk

of either the extracellular or intracellular fl.uid regions the only significant contribution

to the transverse Hankel transform mean electrostatic fluctuation potential (and thus the

mean electrostatic fluctuation potential) should be from the source point.

Since we are ultimately interested in calculating hydration numbers of the mobile ionic

species both the small /c (large p) and large k (small p) behaviour of the transverse Hankel

transform mean electrostatic fluctuation potential become important in our analysis. The

large k behaviour should be dominated by the distribution of molecules in the vicinity of

the source whereas for the small ,t will include the effects due to presence of the membranes.
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3.1 Mean electrostatic potential

The solution to the differential equation for the mean electrostatic potential, Eq. (2.89),

in the various regions, is given by

.4¡exp[rc¿(4+IL + DDI+úBE -oo ( z1 < -lL + D]

-Amzr -l Bu -lL + Dl < a < -D

A7 coshln¡zl + tþf -D < 211 D

Amzr-lBm D1z1<lL+Dl

,4,¿ exp[-rc n(zt - lL + D))] + 1þBE lL + Dl ( z1 ( oo

Note that the solution is symmetric about z :0. The constants AB,AmrBMrl¡ are de-

termined using the boundary conditions at the membrane wa-Ils. The continuity condition

yields

An+rþE : AulL+Dl+Bm , (3.2)

A¡ coshlrc¡D) + rþF : AuD i Bm . (3.3)

Using the definition for the displacement vector Eq. (2.48), the other boundary condition

at the membrane wa,lls become

[azrP(x1) + E(x1)] .à lV,+nI *evAm : 4roB , (3.4)

-euAm - [arP(x1) + E(x1)] 'â l¿ : 4tro¡ (3.5)

Note we have not used the relationship between the electric field vector and the displace-

ment vector, Eg. (2,54), thus defining the dielectric tensor, due to its inapplicability if the

electric field is zero. Substituting for the explicit definition of the polarization vector Eq.

(2.47), in terms of the dipole number density into the boundary conditions yields

,þ(rù:

4troB:

(3.1)

f a.rrrrço,r)rflo"*n þ* cosLlApn¿f n ouou i e¡y1An4 , (3.6)

etrAm - | a.t n(-t)n'ao 
"*ol-Þ*tos01A7n¡sinh[rcra]]

4tro7 -

+ A¡n¡sinhln¡Dl
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The angular integral in both boundary conditions Eq. (3.6) and Eq. (3.7) are evaluated

to first order in the mean eiectrostatic potential to yield

4troB: A¿nBeB * e¡wAm , (3.8)

4tro7: euAm * Alrcle¡sinh[rc¡D] . (3'9)

Equations (3.2), (3.3), (3.8) and (3.9) can be solved for the constants Ap,AM,Bn¡,At

such that

Ap

Bm

*1n", " 
t o ¡)e¡¡4cosh[rc¡D] + sinh[rcrD] (4tr o B Le ¡ rc 7 -, M, I o I LrþB)]

- jln""rr¿rcø cosh[rc Ð] -e¡rc¡ sinh[rc¡ ol(+non - ,u*uvrþu)] ,

,þ? - lmo * ,4¡ cosh[rc¡D] ,

*ln" r r l o 7)e¡¡ * 4tro ¡e¿n BL - e vep,*u o'þuf

A1¡¡

A¡

(3.10)

(3.11)

(3.12)

(3.13)

where

¡r : eBr;selvlLsinh[rc¡D] + e¡¿

: ,tf _+8 .

6rc¿ cosh[rc tDl + e¡rc¡ sinh[rc¡D]
t

, (3.14)

(3.15)arþB

Use of the typical values for the concentration of the molecular species (see Table 1.1)

and the values from Table 3.1 (see page 65) for the surface charge density, dimension and

background potential yields the following figure for the mean electrostatic potential. See

Figure 3.1.

It is possible to check that the meaû electrostatic potential satisfies the overall elec-

troneutrality condition Eq. (2.55), i.e.

-o: 
+ld'zp¡n¡(z1lv)

: 
+ I 

d'p¡nfl 
"*pl-B"nl,¡,Ar) -,Þd]

Linearizing the exponential and substituting the explicit form for the mean electrostatic

potential yields

-Zl4nop * 4tro¡l: , l-:."t a"tl+nÐ"onlo expfBee{Bul - o'ururþE]
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Figure 3.1: Mean electrostatic potential for a two membrafle point model system.
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+ ll"o,rþ" ? 
e¡n!¡o expfp"n',þ¡l - rc2t,t,þP

Zn2BeB I_'.' d,ztAnexp[rc¿(21 + [¿ + D])l

*'r r, I I od 
ztA tcosh[rc¡41]

The first two terms are equivalently zero due to the definition of the constant background

potentials $Bu aú.rþP,Eq,. (2.84). The integrals in the next two terms can be evaluated

and simplified to yield

4nlos * o7l: ABn¿eB * A:.n¡elsinh[rc¡D] ,

which is the result obtained from adding Eq. (3,8) and Eq. (3.9) together.

With the mean electrostatic potential determined it is now possible to obtain an explicit

expression for the normal component of the dielectric tensor. The dielectric tensor can be

decomposed into its normal and transverse components in the following manner

e(x1): ev(z)ll-ù'ût)+e¡ç(z)ùù ' (3'16)

Substituting this expression into Eq. (2.54) aud the explicit expressions for the electric

field and polarization in regions I,III al;.dV yields

,'t¡Qù: L+l*ffiùlrhlffi#l
r*4,rrî:W, (8.12)

where nÍi)Qr) is the component of the electric field. in the direction normal to the mem-

brane wall. See Figure 3.2.

3.1.1 One membrane limiting form

A specialized case of the one membrane model can be derived as a ümiting form of the

two membra,ne model in the following manner. Consider first the situation where there is

an absence of solute a,nd solvent molecules in the intracellular fluid region. As a result

--+
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Also we require that there are no surface charges on the membrane walls adjacent to the

intracellular fluid region i.e.

oI '-+ 0

To ensure that there is no discontinuity in the mean electrostatic potential across the

membrane walls adjacent to the intracellular fluid region we set the dielectric consta.nt in

the intracellular fluid region equivalent to that of the membrane i.e.

eI ---+ eM

Thus we have derived a one membrane model system with a membrane of thickness zlL+Dl

and extracellular fluid in each of the fluid regions adjacent to the membrane.

The mean electrostatic potential in this case takes the limiting form of

,þ"" -oo ( z1 < -lL + D)

-lL+Dl<q<lL+Dl

+rþBE lL+D|1z11æ

This result is equivalent to letting Kr --+ KE) er ---+ €Et or ---+ oB, and. ,þF -- ,þuu i"

the solution for the mean electrostatic potential for the one membrane model system in

Appendix B.

This limiting form is not only a mathematical verification of the validity of the mean

electrostatic potential but is of biological interest in regards to the microtubeles in the

intracellular fluid [2]. These microtubeles can be considered to be a membrane of com-

parable thickness to the membra,ne wali of the neuron and thus have similar fluid regions

adjacent.

3,1.2 Two semi-ir¡finite membrane limiting form

The two semi-infinite membrane model may be derived from the two membrane model by

the following limiting process. Now we consider the situation where there is an absence of

solute and solvent molecules in the extracellular fluid region i.e

-)
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Next we require that there are no surface charges on the membrane walls adjacent to the

extracellular fluid region i.e.

06 --+ 0

To ensure that there is no discontinuity in the mea.rr electrostatic potential across the

membrane walls adjacent to the extracellular fluid region we set the dielectric constant in

the extracellular fluid region equivalent to that of the membrane i.e.

eE --+ eM .

The above limiting process is equivalent to letting the membrane thickness approach in-

flnity i.e.

tr --+ oo

Thus we have two semi-infinite walls with the intracellular fluid contained between them.

If the above limiting process is performed then the mean electrostatic potential obtained

is equivalent to that of Appendix C i.e.

,þP + ,*rtu coth[rc¡D] -oo ( 211 -D

,þ(rù: -D<zt{D

,þf +,*rtucoth[rc¡D] D I z1 1 æ

3.2 Tlansverse I{ankel transforrn ilrean electrostatic fluc-
tuation potential

Substituting for the mean electrostatic potential in the various regions into Eq. (2.138),

yields the following homogeneous differential equations for the transverse Hankel tra.nsform

mea,rr electrostatic fluctuation potential:

k' - *I * .?euÆ + o?eø expfrc1(zp+ [¿ + D])l

n'lrl,"*{"r,22,k) : o ,

t' - o', * ÊrerY + *T?rcosh[rcrzr]] g7e1,z2,k)

¿2

d'Pt

¿2

d,P,

¿2

d,?,

tþtr(rr,zz,k) :0 , (3.18)

(3.le)

0
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ld2t_
l¿,?
td2t_
L¿"?

\tz úfoQt',22,k): o ,

,,þE
h'- *'u* *'u1n * *2u|uexpf-nB(zt - lL + Dl)l

An

(3.21)

l,lßf",,,22,k) 
: s

(3.22)

The differential equation in the intracellular region is a modified Mathieu differential

equation which has a general solution in terms of products of Bessel or modified Bessel

functions [110], given by

(ct +¿r) Ë (L)' d.2,J,p(j e "? p,*r¡zçr+ "t+l
+(ct -Dr) Ë (-L)' dz,J,+,¡z(ì "-!+;'lJ,Pei e!+ l

r:-oo

1:-æ

?:- oo

(¡>o

,þt:

(Ø + ¿¡) Ð (-L)'d,2,I,lz I (¡ lå "-oË'll,*n[z I (¡ 1* etË'1
1:-æ

æ

+(ct -¿¡) I (-L)'d,2,1,¡rl2l k 1* "-L?p,lz IÇ 1È e'8 1 Cr < o

where -I is the Bessel function of the first kind and f is the modified Bessel function of

the first [111] and the recurrence relation for d2, is given by

d.2,l4ul - (2r + ù21 - 2;ildz,+z + d,z,-z] : 0, (¡ ) 0,

d.2,l4ul - (2r +rù1 -z I k lldz,+z+ dz,-zl : 0, (¡ ( 0,

and rl is chosen such that d2, - 0 as r --+ *oo to ensure convergence of the series. The

method for determining ? is by a numerical scheme to approximate the continued fraction

form of the recurrence relation [111]. So for each value of fr we must determine a value

of 7. Thus this form of solution is complicated and asymptotics of products of Bessel or

modified Bessel functions in a series solution difficult to obtain [L12]. Since the distance

between the membranes is large, a simplification can be made by approximating the mea,n

electrostatic potential between the membrane walls by

! expl-rc¡"|+ rþf -D < z1 1o

!expln¡z1l+rþF 01z11D
For the parameters chosen in the model, if we va,ry the distance between the membranes

i.e. 2D, for distances greater than 60å, the difference between the approximate and

,þ(rù : (3.23)
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exact potential is negligible for the region within 10å of the membrane wall and has a

maximum error of = 4To at the origin (for 2D: 60å). See Figure 3.3. Thus the differential

equation for the transverse Hankel transform mean electrostatic fluctuation potential can

be separated into two in the following manner

l#, k' - o? + 
'"',e 'E * +exp[-rc¡21]f','! t"'' z2'k) : 0 ' (s'24)

l#, h' - o? * *',e,8 . +"*p['¡'1]] 'úF4r,z2,k) : s (3'25)

The homogeneous solutions to the differential equation for the transverse Hankel trans-

form mean electrostatic fluctuation potential, in the five regions, are given by

,þ"

c|rz,,þeå""nf t r@f]
* D LBY2,,lrCå 

""n I 
dt{@ 

I (.e>o

(¡<o

,þ'* : CL¡¡ explkzvl + o!, exp[-,t21] ,

,þ!

et>o

(¡<o

(¡>o

cf Jz,, rteì ""plTl
+DfY2,, ,/ieì ""pl';l

'þi
cfb,,lAtetlå ""pt.fl]
+Df Kz,rlE I e, I 

I -"ptry l]

Cf;a explkzll + Ofo exp[-kz1] ,,þf,
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Figure 3,3: Exact and approximate mean electrostatic potential in the intracellular fluid
between the membranes.
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,þE

k

(ø>o

(¡<o

where ..I and Y are Bessel functions of the fi.rst and second kind, f and I{ are modified

Bessel functions of the first and second kind [111], such that

G>o
(3.26)

('(0

(,: u'o,¡tt41 , G.zT)'Llef;nio ) '

for r: ErI. The index parameter y for the extracellular and intracellular fluid regions

does not depend on the length para,meters L and, D. The para.meter Ç, is a measure of the

charge asymmetry of the ionic species in the extracellular and intracellular respectively.

Note that the solutions a,re written in terms of Bessel functions of the first and second

kind if the asymmetry is positive and in terms of modified Bessel functions of the first

and second kind if the asymmetry parameter is negative. The charge asymmetries for our

model neuron typically are positive both in the intracellular and extracellular fluids. See

Table 3.1. It should be noted that the concentrations of the mobile ionic species used in

the calculation of the various parameters are those in the resting state of a neuron. In

the dynamical phase of the action potential, the concentrations ca!. vary such that the

asymmetry para,meter may change sign in either or both of the fluid regions. Thus for

completeness, the possible solutions for the transverse Hankel transform mean electrostatic

fluctuation potential in each of the combinations for the sign of the asymmetry parameter

are presented even though rile are investigating the structure in the resting state.

The homogeneous differential equation associated with Eq. (2.138) can be written in
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L.02275,e l*:o

4.29949 x L0-2en

70.7L8-sE-
4treo

0.11995å-1,TE

2.06522w lx:o

5.60216 x 10-5et

70.7L8:L-
Atreo

0.os4254-1ßI

ValueQuantity

Table 3.1: Table of n, e, ( u,lrd z values in the extracellular and intracellula¡ fluid regions
for the two membrane point model.
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the form of Schroedinger's equation in the following manner

See Figure 3.4. Since the effective potential V¡¡ is positive in the fluid regions we expect

from scattering theory in quantum mechanics that no bounded solutions at *oo exist for

real k [113]. Thus it will be possible to construct a Green's function type of solution for the

transverse Hankel tra.nsform mean electrostatic fluctuation potential using the solutions

to the homogeneous differential equation. This is due to the wronskian having no zeros

for real k [100].

The two caries to be considered are when the fixed particle at z2 is in region I or III.

The region tr/ case is found by the symmetry in the t - y plane.

3,2,L Case l:-oo I z2 1 -V + nl

(r>o

The Greents function type of solution for the transverse Hankel transform mean electro-

static fluctuation potential in region .I is of the form

where

#, +v¡¡,þ : -t2ú ,

v.rr: o'- S+Qr) .

lþ"t("t,zz,k): ffin,,lre',""nrublfÐl
J2rt z(fiexpl

+ ,þLE\IL -t Dl,z2,k) #n""Pe

X

+

X

I oø(r.+lL+D))
2

f1

lz(fr 
expI

t
ÅlJz"'

n,"lzç'¡,"*p¡ l
1

(3.28)
Jz""[2(Ê]

Application of the appropriate boundary conditions at infinity and for the membrane

wall located at [.t * D] we find

0,
CEKEEÊ

lceu

DE

cT{r2,"[z(]lcosh[k (a - lL+ D])l -'þf,
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Figure 3.4: Effective Schroedinger potential of the transverse Hankel transform mea,rr

electrostatic fluctuation potential for the two membrane system.
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The boundary conditions for the membrane wall located at D yield the following relations

for the constants Cf and Df i.e.

-9Í "o, :
Cfi2ke^,r {tr, "lze'Ê,)cosh[&.ú] 

* # r;, 
"PeiÊlsinh[tur] ] 

rr,, r", e n, D, C t),

{r r,,Í, eiÊlcosh I 
k -ú] * # r;,,Íz e:hlsinh [ 

&r] 
] 
rr,, (", e n, D, ( t),Dl e¡n1

Cfi zke¡a

such that

Sz,r(L,Cn,D,Ct)

Tz,r(L,Cn,D,Ct) :

Zz,"(L,(.e) :

2 r, 
" 

(L,, C n)Yz,,laeì *n I f I 
]

* # explt'lv),,1"t, eì ""U I I 

]

Zz,u(L,en)K2,, rt Ct

+fff "*vl
KL,, ft Ç

_1 n¡D

."p[*

(¡>o

(¡<o

(¡>o

(¡<o

exp 2

1ntD
t

z z, 
" 

(L, C ø) J z,,lAei ""n t I l]
I

* # "*plfl r z,,lø eì *n t 
g 

I 

]

zz,"(L,eø)rz,,lA I er l* ""ntlfl]

"## explf)r)",|*,ç, 
¡ 
* "*ntf t]

and

Jz""PeÊlsinh[,tl] + ¡L,,p;lÊlcoshIk.ú]eÐ&E

Jz,"lz|Êlcosh[b.[] * Jr,,PCiÊlsinhIkr]e

(3.2e)

(r>0

At the origin, the boundary conditions yield the following relations for the constants C¡¿

and, D! i.e.

c!
t/|1et Ê

vr,,lr/i (ì ll" f ,;,,r* eh + o ivi,,vrze,+ l]

+vi, JJi eì llc I 4,,¡¿¡ e il + o Fvr,lrfzeì l

Kz,,l/i I C¡ l*ll"f ,;,,r,/r l (r l*l + DfKi,lOl e, Èll
+x'r,,[Ji l & lå]l"Ft,,tJr l (¡ lål * Df K2,,lJr l e, Êl]
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D!
Jzle'là

t r,,l,/l;ì ll c f ú,,lrtei I + ofvJ,,VZei t1

+ rl,,t'lzei llc P n,,l,fzej 1 + o lvr,,t t rei I
rz,,lû I e¡ l*llr|ri,,rr,r l (¡ l*l + of xr,,¡rt I e, Èl

+tr,,lJ|l (¡ lållc\n,,lrt I (, l*l + oft<r,,¡Ji l Ç I
1,1

(¡>o

(¡<o

For the membrane wall located at -D, the boundary conditions yield

,ú"*:

on(".+ [r + o])

cosh[fr(21+ ¿)]

"{"!?,,laei ""nt#l] + D!y2,,1øeì *nt#r]}

-#"*r [9] sinh[k(21 + ¿)]

" {cp 
t;,,laeì ""ntf l] + n!v),,laeì ""rtyr] }

cosh[k(21+ D)] 
rr,,lQrr ft rå ",.ntgr] ]

*;,,lJtt ft tå ""nl#t] ) e,. o

,þ"uer, 
"z,k) 

: #{"r,"lrej."ofryblfÐl

(¡>o

'We can no$/ use the Green's function type of solution for the transverse Hankel trans-

form mean electrostatic fluctuation potential in region f and tpply the boundary con-

ditions at the membrane wall located at -[I + D] to solve for the constants Cf and

+"ut-tl, + D], ,z,k).Thus the soiution for the transverse Hankel transform mean electro-

static fluctuation potential in region f can be written in the form

x n,"lzçj,*p¡
2

1

2("6expl

x n,,lzej*rr*{.lj@r]}
+ Az(L,Cn,D,Ct)Jz"u

(3.30)
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where

1
2

Yr, øl2Cål cosh [ß.õ] *
EE EE<, v; [zçj],i"r,¡r2,1

¡r,rlzl|)cosh[lc.õ]* ,ÍreÈ)sinh[Èr]
eB nBC

l"rM

X

+

X

1,

urr rlrr rlJz(ì \-vz,rYz,rlJ2C
1.2trl

U,,,JL,

_l
l,/re?

1_

J'<? J -VrrrYi,

_t
l'4<?

1_
Jre ,, )

Sz, t Jz, I l-r,,,Yr,,

(¡>o

(rco

A2:
SrrrJLrrl l-rr,rYl,rl

J.
21

Yz"øl2!3l cosh[&I] [zçj],i"r,¡r,r1
epnpC

Y;,

Murlz$]cosh[k.L] ,lr<ÈJsinhIkr]
utr rrz, rl{ilÇ

1
2 l-vr, rlçr, rÍ{llerl

1,,)
Szrr Iz, Èl_rr,rxr,rft/i 1r

l(rltl

+

such that

Uz,r(L,ea,D,('t) :

Vz,,(L,Cn,D,Ct) :

tl"r, IL, f -v",rK'r, [Jzte'l å1

sr,trL,rlJzl<rl l-r""rr'r,rlt/z¡ç1

,l{21<,1
f,tz1ç7*

x z, 
" 

(L, C n)Yz,,lAeì -"d I I 
]

I

* #i, explt'lvr,,løeì 
""p t I I 

]

xz,,(L,Cn)Kz,,l"r r rt Iå ""ptfl]
*#*"*pl+lrl2,,lrtrl (, lå ""ptçl]

(¡>o

(¡<o

(¡>o

(¡<o

and

(3.31)

C.s<o

With a similar derivation as in the (¡ > O case, the solution for the tra.nsverse Hankel

transform mean electrostatic fl.uctuation potential in region -l can be written in the form

,ú"uar,,z,k) : #{*-,lr r ruf + -"nfg@#t4f]
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A2vø\L>\E):

vz, 
"lzC'Êlcosh[kr] 

* #";, "lze 
Êlsinh [kr]



x n,,lzl (¿ lå ."orfdftlE@l]
+ Lz(L,Cn,D,(ò12,,[r'," l+ ""nfgkdrt@1]
x ,r,"lrl (¿ lå ""rtt4ftlttll"Dr] )

K z,, l2l 6 l* 1 "" "n¡x r,7 + :a:fl ff È x'", ulzl ç 
" 

þ lsi nh 
[ 
ft rl

tr,rlzlçrþ1
I

"o,r,¡t.41 
+ :zffffJÃ lr, rfzlEu¡* lsinh [,tr]

l-vr, rvr, ,l{2eil
-t

llz, , Jz, ,lJ2(?

(3.32)

where

such that

_ 1-
lJzçl l-rz",Yz

1_
Jzçrz l-vz"rvr,

1
2

X

+

SzrtJzrt

tlrrrJ'",

SrrrJLrrl l-rr,rY/,,rl
A,z

¡çr¡å]"i^r,¡ø;

(¡>o

(r<o

ç"¡å ] .ior,1r.r1

X

+
s r,, t'r, rly' z1ç r 1L, I - rr,, tt'r, rlJ z1ç t þ 1

Zz"'(L,(n)

Xz"r(L,Ca)

, (3.33)

.(3.34)

3,2.2 Asymptotic transverse Hankel transform mean electrostatic fluc-
tuation potential

The solution for the transverse Hankel transform mean electrostatic fluctuation potential

for each of the above cases for the charge asymmetry para,meter (, is of the same form as for

the one membrane system (see Appendix B) and indeed the one wall system considered

by Carnie and Chan [4L]. The flrst term will yield upon transform inversion (for all

three systems) the Debye-Huckel type correlation function in the bulk solution which will

be a function only of the relative position of the field and source point. The quantity

Lz(L,Cn,D,(¡) is the image term due to the dielectric boundaries of the systems. It is
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important to note that the quantity -Az(L,Cø,D,(¡) is an even function with respect to

the transverse transform variable k for finite L and D. This can be seen by noting that

the quantities Z2,r(L,(6) and Yz,r(L,(6) are odd functions of k and thus the quantities

-7 -LS2,rJ2,rlt/ZÇl T2,,Y2rrlr/2(î1,
1 -!sz,,JL,,t /teil Tz,,Yz,,lr/2cil ,

sz,rrz,rlJ2l (r lå] Tz,rKz,rlrt I Cr lä] ,

s2,J;,lJr l(r l*l T2,,K;,,l,,fz l (t lål ,

-L 1

fJ2,rJ2,rl\/reil vz,,Yz,rlJiC?1,
1l

[Jz,,JL,,lJrCil vz,,Y],,1\/riil,

u2,,I2,,lli l(¡ lå] V2,rK2,rltf2l(¡ lå] ,

Il2,rI;,lJt I (¡ lål v2,rx'r,,lJ2l(r lål ,

are aJ.so odd functions of the transverse transform variable k. Since ratios of the above

quantities are taken in the image term Ã2(-Lr|nrD,(¡) and is therefore an even function

with respect to k for finite L ar.d. D. Thus, as noted by Carnie and Chan [+t], tUe

correlation in the transverse direction is screened. The shielding in the transverse direction

occurs because the charge on the opposite side of the membrane wall is able to redistribute

itself, screening the potential between molecules.

As & ---+ oo, comparison between the two membrane and one membrane system (see

Appendix B) shows that both Az(L,(n,D,(¡) and A,1(2L,Cø,Ct) tend to the same limit

t.e,

I
Y2"E[2(Ê]+

ep rpC
Y;, ¡zeÈ) (.s>o

Az ---+ Ar ---+

_ 1-
h"'lzeÊl+ t|,"1'<âl

(3.35)

K 2, EI2l. E È I + + KL, Elzlc" è l

t r, ulzlç u þ I + @ rr, 
"lzle, 

È )

This is also the limit as k --' oo for Ã(O in the one wall system [41], when (: (¿, even

though A(O is neither an even or odd function of fr. This is not a surprising result if we

consider all three quantities at the same source and field point, relative to the membrane

(¿<o
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wall at the interface between the extracellular fluid and membrane. Since the large ,t

behaviour describes the small p behaviour, a molecule experiences negligible influence

from boundaries more than a Debye length away. Thus only as k ---+ 0 (large p behaviour)

can we expect any influence from the other regions.

Also it should be noted that the large lc behaviour for A'2(L,Cø,D,(¡) h* no explicit

dependence on the distance between the membrane walls 2D ar^d.both Ã2(.[, CørDr(¡) and

Ã,1(2LrCnrÇ) have no explicit dependence on the membrane thickness. The dependence

of these quantities on the parameters .t and D is rather via the extracellular asymmetry

para,meter (¡, The two membrane system extracellular asymmetry para.meter (¿, for fixed

membrane thickness, has negligible dependence on the distance between the membrane

walls provided the distance is large. This is certainly true for our value of.2D: 200å and

is valid to the approximation breakdown distance for the intracellular mean electrostatic

potential of about 60å. Thus the two and one membrane systems have identical values for

the extracellula,r asymmetry parameter (p fot the sa,me values of the membrane thickness.

Table 3.2 shows values of the extraceilular asymmetry para.meter (¿ for various values of

the membrane thickness. úr the limit as L --+ oo, both the two a,nd one membrane systems

extracellular asymmetry para,meter CE approa,ch the one wall system value given by

Ð.l"fo
Cn

Ix

Ð"3"10
k

If we assume thar the ratios '# h:0,'# h:0,'# l-:, u,'afr! l¡.:o < 1, we can

use the asymptotic forms for the Bessel and modifled Bessel functions in Appendix D to

show

]2 cosh[kI]ó- ÐeW+D))

0.046709 .

sinh[,tI]*

coe¡.lkLl+:E:MÈeM 1_,lq ø( 
=PJ 

ol) 
] 

2 
sinh [er]ô-" ( - t¿+Dl )

1

1+

(.e>o

sinh[ÀI]* qø(-lr'+DJ')
f2 "oøhfk 

Ll6{, 
E e IL + D])

r +l*æÐl 2 
sinh [fr r] 6r+", (- ïL + Dl)

Zzrø ---+

cos1.lkLl+98:EZENêM
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0.3224940.0465581000

0.3343350.044835100

0.3472850.04294950

0.4439780.02887410

et(øMembrane Thickness (À)

Table 3.2: Table of (¡ and (¡ values for various membrane thickness values of the one and
two membrane systems.

Bin]nlkLl_êEtÊEv E
NêM rfq ø ( 

;VJ 
o]) 

]' .o"r, ¡*r,1 af, (-[¿+D])
(¡'>o

coehltcLl_18:wECM t -lo ø( L¿J 
pD 

l2 einhlk Ll6{" r( - [¿+¿] )

X2rn

sinh[ftI] eEFEVE q¿(-[¿+Ð])
]'3co"h[frf,]ô- ÐeW+D))

-)
1+ 2v (,s<o

cosh[kLl_ ê E,e Ev E
ECM +[t"æÐl 3 

sinh [fr r] 6-, (- lL + Dl)

where

such that

q?EQù

l2røls
szyQù

l2rnlï
6l,uþr)

cosh[&.C]-

)+

6l,rQr) 1 + o((Zufl-4) ,

+ o((2ufi-4) ,

(¿>o

(,s<o

] 

2 
sinh [ft r] ár+,, ( - t¿+Dl )

1

t
1

2

+

1

qn(zt) :

Thus the quantity Lz(L,Cn,D,(¡) h* the asymptotic form of

þæ4
Jz,ø[2e Ê)
Xz"ø(L,Cø

1

+Zz"p(L,(ø)*
r 
(-D,o) Zz"ø(L'(ø) eM M;rçD,o)eM

1
2

1,

coehlkLl+frffiL I lr"æÐ]2 sinh[ftr]ó-, (-t¿+Dl)
tt{" (-D,0) X2"t(L,(p)i M; (-D,0)e

X

t<", o¡z1Eu¡lz 1 
cosh [Àr] - L+l*æPDl'? sinh[ft r]á-" (- t¿+Dl )

x z, ø (L,( ø ) t'ç * ¡, <rlï,o¡

L +l*æÐ] 2 
sinh [kr] ôrj]" ( - t¿+Dl )

(¿>o
Az*

X zr,, (L,( p) + ffi tø{,, 1- o,o¡
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such that

MT,,ED,O):

Mù,(_D,O) :

where

rtZr¡(21, z2) :

qt(zù :

,þtu/r', zz,k) :

X

coshl2v ¡ r¡2,, (-D,0)] + T

ainhl2v r¡2, ¡ ( -D,o) ] - å Í2, t

1+[

sinhl2v7tt2,reD,0)]

co.hf2v¡r¡2, r(-¿,0)]

"i'.hf2rfltz,¡(_D,o)f

1-[ l'
X

X

X

X

)'

-Ð

_D

I

(r>o

(¡<o"oøhl2r¡az,¡(-D,0)]- ä

ainhl2v ¡ r¡2,, ( -A,O) ] + ] cosinl2v¡r¡2, r(-¡,0)]

1-[
einhl2v ¡ r¡2,, (-A,O)] + ] coshl2v¡r¡2, r(-D,0)] (¡>o
coehl2v ¡ q2,, (-D, 0 ) ] - å lzvt

slthl2v¡rt2rr(_D,0))

1+[ 2vt l'
sinhl2 v ¡ q2,, ( -D, 0 ) ] - nl

coahl2v¡q2"r(-D,0)\

coahl2v ¡ r¡2 r, (-O,O)] + | -rl
tiohl2v ¡q2" , (- D ,0)f

(r<o

_nt(zL-zz\ _ È:r*l"^#^] + oçç2,,¡-n¡ (¡ > o

_nt(zL-zz\ + ùñlr-#^] + ogz,,¡-+¡ (¡ < o

,fzcì,*{*] (¡ > o

rttcttå"*pl*] (¡<o

Thus the solution for the transverse Hankel transform mean electrostatic fluctuation

potential in region I can be simplifred to

2nf
I

,nonrn I
1 1

1
4

1
4

L - fa\znf

{rr,' 
(r., 

" 
r) "*rlr, u r r, 

" 
("., 

" 
r)f

Lr^r,"(q, rz) 
"*plzru¡r'tr,"(-lL+ 

Dl, zt) * nz,ø(-lL + o), ,r)l]

cosh[ß.L] - 1 l2 sinh[,tZ]ól,,eþ + Dl)

qø(a)
2vø

2
1

X

E

kLl + *ffi. 1 l2 sinh[kI]óù"(-lt + Dl)

X

+
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aJ].d

(z1rz2rk):tþt,
2r | 1 1å¡ t 

1ä
eEKEuE i + ¡ryfff ) lt + ¡tafff I

x 
{rr,t(r., 

rr) 
"*nþrurr,uQ., 

r)]
t 

^r,"("r., 
z2) explrrulrr,"(-lL + Dl, zt) * nz,r(-lL + ol, 

"z))]

"l
XI

cosh[k.ú] - sinhlkL)6;,(-lt, + Dl)

1+[ l2 sinh[/cl]óL,elt + Dl)2vø

Xz,r(L,(¡) + W Mz",(-D, 0)

Zz,r(L,(¿) + uffi Mz"r(-D, 0)

, Xu,ø(L,Ca) + WMz"r(-D,O)11+ ll (.e(0,

_nB(zL-zz\ _ E#l*-"u^] + oKz,ø)-a) (.e > o

_nB(zL-zz\ + #l*^"*^] + oççz,u¡-+¡ (¿ < o

r+ øhl*-#"]+ oççz,u¡-+¡ (ø > o

L - ø#l*"+^f + oççz,u¡ +¡ (¡ < o '

t + ffilryf + ogzuB'¡-+¡ (¿ > o

L - ø#1ry] + oqz,B¡-+¡ (.ø < o

(3.37)

where

Tzvp(21, z2)

\2r"(z1rz2):

zzzl^l2vø ( )

Since the above expressions for the transverse Hankel transform mean electrostatic

fluctuation potential involve a considerable amount of algebra to derive and are compli-

cated, a numerical integration of the differential equations is used to test the validity

of the analytic solutions. A shooting method [11a] is employed to numerical soive the

differential equations for the transverse Hankel transform mean electrostatic fluctuation

potential. This method solves the differential equations by starting at two boundaries and

abhootingD towards an interior point using the Runge-Kutta algorithm and using iteration

matches the solutions from either side. For our particular application, the shooting point

is the source point. At the source point we require that the solution is continuous and has

a jump discontinuity in the first derivative. To start the integration we choose boundaries
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far enough away from the source point so that the solution and the first derivative are

essentially zero (due to the expected exponential decay of the solutions from the source

point). The distance of the boundaries from the source point is also important to en-

sure that there is a negligible mix of the unbounded solution with the required bounded

solution.

Presented below are plots of the numerical and asymptotic transverse Hankel transform

mear. electrostatic fluctuation potential at the source point for specified k values. See

Figures 3.5, 3.6, 3.7 and 3.8. The location of the starting boundaries for the numerical

proced.ure decreased as the value of the transform variable k increased. For & : 0.001å-1

the boundaries were located about 100å either side of the source and for lc : lA-r at

about 5å. This is consistent with the above discussion for large b behaviour which is

determined by the region near the source point whereas the opposite is true for small

k values. Thus for these values a knowledge of the differential equations for the second

membrane and the extracellular region I/ is unnecessary. This suggests that the second

membrane and thus the extracellular fluid in region V have negligible effect on the value

for the transverse Hankel transform mean electrostatic fl.uctuation potential ( and thus

the mean electrostatic fluctuation potential).

As the normal distance from the membrane wall increases, the plots tend to a constant

value determined by the Debye-Huckel type term in the solution i.e.

It
L;lsø!zl1'

1
42r 1l

L-l,Eí#l' l
(.e>oeþ,rEvE l*l

lþ"uQr,z2,k) ---+

1

4

+[æ) (.e<o

As the transform variable k increases this Debye-Huckel term (the field point and source

point coinciding) has the form

'ú"uQl,z2,k) ---+ #
This result is consistent with that of Carnie and Chan [41] for the constant density systems

(both single and two plate) and the linearized GC density for the single plate. Again this

is due to the large k behaviour being determined by the region near the source point.
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Figure 3.5 : Comparison of the numerical and asymptotic solution for the transverse Hankel
transform mean electrostatic fl.uctuation potential at the source point in the extracellular
fluid of a two membrane system vs distance from the membrane wall for k:0.001.
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Figure 3.6: Comparison of the numerical and asymptotic solution for the transverse Hankel
transform mean electrostatic fluctuation potential at the source point in the extracellula¡
fluid of a two membrane system vs distance from the membrane wall for k:0.01.
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Figure 3.7: Comparison of the numerical and asymptotic solution for the transverse Hankel
transform mean electrostatic fluctuation potential at tbe source point in the extracellula¡
fluid of a two membrane system vs distance from the membrane wall for k:0.1,
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Figure 3.8: Comparison of the numerical and asymptotic solution for the transverse Hankel
transform mean electrostatic fluctuation potential at the source point in the extracellula¡
fluid of a two membrane system vs distance from the membrane wall for k:1.
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The asymptotic solution for the tra,nsverse Hankel transform mean electrostatic fl.uc-

tuation potential in region I is a complicated expression. A simplification can be made by

noting the second membrane wall has a negligible effect on the values for the contribution

from the image forces. See Figure 3.9. Thus for the purposes of performing the Hankel

transform inversion we will replace Lz(L,,Ca,D,(¡) with the simpler expression for the

image forces of the one membrane system A1(2L,(¿,(¡).

3.2,3 Limiting forrns of the transverse Har¡kel trar¡sform mean electro-
static fluctuation potential

To obtain the one membrane limiting form (as described in Section 3.1.1) for the transverse

Hankel transform mean electrostatic fluctuation potential we fi.rst take the limit as (r -- g.

As a result, both

u2,, J2,,11/2(ì I - vz,,vr,,Vieì I

s2,, J2,,lt/li.ì I - rr,,vr,,Vleì l

and

U2,,12,,1t/21 ft lå] - V2,,K2,,lJi I e, Èl
S2,rI2,rlJl l e¡ lå] - 72,rK2,,1rt I ç,, l*l

tend to the same limit of

X2,, sint,lrc try Dl + t!# coshln 7v ¡ Dl
Z 2,, sinhlrc p t Dl + kW cosh[rc¡z¡D]

Also, both

u2ry J;, lrtci ) - vr,,v),,lrtei I

s2,, J;, l\fzeì I - rr,,vi,,lJ zçj 
1

and

UzrrIL, ÍJz I ç,, 1*1- vz,,KL, lr/i I et t"l
Sz,,IL,,[Jz l et I l-Tz,,KL,,lJilert,l

tend to the same limit of

X2, 
" 

coshln p t Dl + kW sin'hfn 7u ¡ Dl
22," coshlnptDl + w sinhln¡ulDl '

If we now take the limit rc¡ ---+ 0 then the quantit y Krur ---+ k. Also we set the dielectric

constant of the intracellular fluid region to that of the membrane i.e. e 7 ---+ eM. Thus both
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the above quantities reduce to

X 2,, sinhlkD] + cosh[fu D]- Zr," 
"ioh¡kD1* "ot '

X2,u coshfkD] + sinh[kD]- Zr,*o"A¡ttO¡ "1"¡¡P1 
'

Use of the definition for A2 in terms of X2r, and. 22,u, simplifres A2 to

I

1,
I

Yz" øl2CÈl coshIk(I+ D)]+ v;, Ízle" å ] "i,'r,¡t1r,+o;1

t'r, 
"1, 

<âlsinh Ik( r+D )]ltrul
1

Yz"el2eÅ) Ízl<" å ] .o,r,¡r1^c+o;1
+ (.e>o

(.e<o

Lz- tr, 
"lz$lsinh 

[k(r+D)] + ,1, 
"lr<Èlcos 

h [e (r + D ) ]

1
K 2v E l2lcg I 

z I cosh[ft (I+D) 
] +

1
2 x'r, [zlC"t*]Binh[È(¿+D)]1

2
tz, ulz¡ ç, þ lcos h [fr (.1 * t'r, 

"lzg 
u þ lsinh lft (¿ +D )]

+
Kz"øl2l(ø

1
ã I sinhlft(¿+D)] r'r, lzl<" å]"o"r,¡r1z+l¡1

t,ul2lh + ] sinhlk(¿+D)l+
1"" M

lr,"lrle" å ] "o"r,¡*1.r+n;1

After some algebra, the above expression for Az further reduces to

I
Y2" u12(fi122" E(zlL+Dl,e Ð

egnpe
1

I
t2<al

1

J 2 
" " 

12 Ç fi ) Z 2 ", (zlL + D),C n tL,rl<ÅlegrpC

M

C.e>o

] e'.0

A2:
Kz, u lz16 ll I z 2, E (zlL + Dl,< E) + x'r,

1

lzl|øl,l

t r, 
" 

¡21 Eu 1* p r,, (2lL + Dl,C ø) + ri,"¡21ç"þ7

I
2

M

Comparison of this limiting form for Lz(L,Cn,D,(¡) with the one membrane case

A,y(2L,Cn,(t), see Appendix B Eq. (8.14), shows that this limiting form is equivalent to

a one membrane model system with a membrane of thickness 2lL + D] and extracellula¡

fluid in each of the fluid regions adjacent to the membrane.

Another two limiting cases of the system occur when the membraues are perfect insu-

lators (i.e. e¡¡:0) or perfect conductors (i.e. e¡¡: oo). Thus

tr,"¡21çr1t1

(¿>o
4,2 ---+
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Az

Jzrrl

tarl K2,,

u(zù :

a(zL) :

-)
(^o>o

as €M ---+ 0

t'r,r¡21E"þ1
(.e<o

These Iimiting forms approach the same value as in the one membrane model (see Ap-

pendix B) and that of the one membrane wali model considered by Carnie and Chan

[41].

3,2.4 Case 2z-D 1 221 D

The Greents function type of solution for the transverse Hankel transform mean electro-

static fluctuation potential in region III is constructed using the functions u(z) and.a(z)

defined by

,/zeì ,"pl-Yl

-Y2rt rteì""p|-Y

,/ilh lå exp[-T] ,/z lÇ lå *pt#l]

vr,,l,fz1ì "*pt#ll

ln),ltreì".nt#r]

$f (o,z2,k)
u (0)

(r>o

(¡<o-K2rt t/21Ç lå exp[-T] l,tzte, ¡å exptt'J12,,

such that

u(-D): u(o) : o

Thus the Green's function type of solution for the transverse Hankel transform mean

electrostatic fluctuation potential in region III is of the form

.WfffiÐae)*,þ!(rr.,rz,k): - rYW?
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where lü is the wronskian of the solutions u(zy) ar.d u(21) and' is given by

( T"@: -ua(-D) (¡ > o
W(u,a): | (3'39)

[ -1"(o) : \u(-D) (r < o

Application of the appropriate bounda,ry conditions at *oo and at the membrane walls

located ar IIL * D] yields

DE 0,

[2ffi]cosh[k(a-lL+D])l

"zrk)
,þfoQt

Jr,"P;iÅlsinh[b(21 - lL +Df )f ]

cf;{ 4,,¡zl ft lål cosh[k(21 - t¿ + D])l

-à#tr;,ulzl er lålsinh[tu(21 - lL+Df)f ]

cfi{ h,,¡z(il cosn[t( zt * lL+ D])l
\,

*tï# 4, 
"lz;'Êlsinh[k 

(21 + lL +¿l )] ]

(.u>o

(.e<o

(,e>o

DLE 0

zzrk)zL,þt*

cÈ{tr,"tz,l (¡ lålcosh[k(21+ [¿ + D])l

+#IL,;z l e¿ lålsinh[k(21 +lL+Dr)r] (.ø < 0

Then the application of the boundary conditions at the membrane wall located at D yields

expressions for the constants Cf arrd Df in terms of the constant Cfi i.e.

lz,"lz('ÊlcoshIkZ]

oi#r;,"¡zçi1 sinnl,t r,1\sz,,qr,,(n,D,(ù (^ø > 0+
Cf e¡n¡
Cfi zke¡¡

{h,,lz I çø l*lcosh[,tr]t
+#ri,,pl (, lålsinh[e.r]]sz ,,(L,(ø,D,cù (r < o
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DF
CE 2key

CI KI

$f (o,z2,u)

Iz,,l2 I çr lå I cosh[b.t]

Jz""lzCÊ) coshIk.ú]

+ '#r;,,[zgi]sinr[r r,1\r2,,çr,,cn,D,cù (¿ > o

*#PÈr;,"lz l cø ¡*1,iou¡r.r1\rr,,rt,,(n,D,cù (.ø < 6

where Szrr(Lren,,D,(¡) and Tz,r(Lren,D,(¡) have the same deflnitions as in Section'3.2'L.

At the origin and the membrane wall located at -D, application of the boundary

conditions yields the following set of equations

,*rþ!i?o,22,k) : ffir' (-D)a(22) * rr!fuffiPo' eD)

, - tþ!(o,z2,k) t. ñ\+ .r"ìiff'-'u'(-D) , (3.40)

,rúF'(o,rz,k): åÃ;e)u(22)+e
(-Drz2rk)

u'(0)

+

u(-D)
(0, z2rk) (0) ,
u (0)

to solve for the constants '{,"*(-O,z2,k) ard.'{tF((.,"2,k), such that

$L*(-o, z2,t<) #o,(D)u(22) - {i*,1 ft l* ffiø,"t0,22,k) ,

+e

Sru tJL,,lÆ< I f-rr,rYl,rl

(3.41)

{ffi"' t-o)u' (o)a(22)X

-.,' (o) 
1s2,, 

tr,,¡Jzel I - rr,,vr,,lrteì l u(zz) (¡>o

(rco

1

J2e ¡n¡l(¡l sr,, lr, 
rlJ21Ç, t 1*l - rr,, x'r, rl,l¿rc t È I

,{¿u' (-D)a' (o)u(22)

-rì (o) 
ls2,,tz,,¡Ji I (¡ l*l - T2,,K2,,1,/i I e, ¡i1]rez)

These results for the constants ,þ"*(-D, z2,k) and'úF{(,, z2,k) arc substituted into the

the solution for the transverse Hankel transform mean electrostatic fluctuation potential

in region III E,q. (3,38) and the solution can be written in the form

4n u(za)a(z'r)
er W(u,a)
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X {l 
"#,*] 

t4#P ]wQù' Q') + a (z)u(22)l

l#]l#]1s,,,t,,,¡Jicìl-r,,,v,,,¡'rzeìl]uQ1)u(22)

l+P],þ)o(,2)j (r>s , (8.42)

4tr1l__t
et W(u,u)L s2,, J),,lfrçj 1 - r2,,Y),,1 rreìt

1

4n u(za)a(z'r)
er W(u,u)
4n1l__t
e7 W(u,u)l s2,,r!r,,lJi I & lål -Tz,,KL,,lr/llerlil

1

and

X

u(rz)zlX

lu(z)u(z) + a(z)u(22)l

lø;*l lffil
lsz,,tz,,lr/i I er lål - 72,,K2,,¡Ji ¡ ç, þ1]"

l+fl]ue)a(z)\ c¡ < o (3.43)

By noting that the functions u(z) and a(21) arc even functions of the transform

variable k, the solutions for the transverse Hankel transform mean electrostatic fluctuation

potential, Eq. (3.42) and Eq. (3.43) a¡e also even functions of fr. Thus we expect that

the correlation in the transverse direction will be screened for the mean electrostatic

fluctuation potential.
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3.2.6 Asymptotic transverse Hankel transform mean electrostatic fluc-
tuation potential

If we assume that the ratios 'S l*:r, # h:0,'# l*:, ^oa'fi! l¡,:o ( 1-, use of the

asymptotic forms for the Bessel and modified Bessel functions in Appendix D yields

1 lqr(zr )2 -q¡(-D)2i -oshl2v¡q2rr (q, - D)]4 l2v¡lt

u(zù ---+

l*
D)l[1+ o((zv¡)-a)

+ itu \#rA coshl2u ¡ q2,, (a, - D)

l

rl

(¡>o

(¡<o
1

4
1
4

1

a(zù ---+

1f vI
1

qtkt)

l+l
2

X

1
qr(o)

þi"u

2rI 2rI

X l2u ¡q2,,(21,0)l [1 + O ((2v ù-\]

4 l2rtl! coshf?v7r72,r("r,0)]

+lL+l++

t
4

1+[T8]

X sinhl2u ¡r¡2,,(21, 0)l [1 + O ((2v 7)-4)l

1

4

(¡>o

q t(-D)
2rI

+ ifuI#M coshl2u ¡ r¡2,., (rr, o) l (¡<o

where the quantities q¡(21) ard. r¡2rr(21,22) have the sa.me definitions as in Section 3.2.L.

Thus the quantities u(z)u(22), u(z)u(22) and.a(z)a(22) haxe the following asymptotic

forms

l'1*6J*lq#1*¡L+luç?l l*

l*
I'l
Lr-tug1'1

I'l
Lr-t131'1

1
4

t
4

1

- I coshl2u r'02, t (zL, - D) - 2v fltz, t Qz, - D)]

I coshlLv yr¡2, ¡ (21, -D) + 2v 7172,, (22, - D)]

\ cosh[Zu ¡r72, ¡ (21, - D) + 2v ¡r72,, (22, - D)]

(r>o

1
2vt

X

- ! coshl2v 7Tz, ¡ (21, - D) - 2v yr¡2r, (22, - D)]

u(z)u(22) -)
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TVI
1

1

I
4

1
4

1
42

1*1.6
, lä;ieïl

t
1

X

X

I
2vt

1
2

1
2

\ coshl2u7172,¡(21, -D) + 2v¡q2,r(22,0)]

coshl2u7r72,r(a,-D) - 2v1 2,rQ2,0))] (¡ > O

u(z)a(22)

a(21)u(22)

i+l
lrl
Lr tt91'1

1

(¡<o

(r>g

] a'o

] e'.0

--+

r*[ 2v
q¡þz)

tL
4

X

X

1+

(z2vrT2"2+DzLT2r¡2utcosh

z22utnzuDzlcoshl2uy12u

) ,0)]

o)r](I )

I

(

2 1

+
1
4

1
qtþz)

2vr

X l, coshl2u ¡q2, ¡ (21, 0) * 2v ¡q2r,

- ! coshlàv rT2v, (21, O) - 2u 7 r¡2,, ("2, O)l

--)
I
4

l--]
,

1+[ qtkt)
2rI L+Í+Pl

1
4

l'iærl
X I coshlàu ¡rt2, ¡ (z¡, O) * 2u ¡r¡2,, Qz, 0)l

- | coshl2v rTz, ¡ (zy, 0) - 2v 7172,, ("2, o)] (¡<o

The source term in the solution for the transverse Hankel transform mean electrostatic

fluctuation potential Eq. (3.38) has the following asymptotic using the asymptotic forms

for u(21) and u(21), i.e.

t
1
4

1
4

1- g

I
coshfn¡v¡(zalz za_ z2iD)]

4tr u(za)u(zs)
- , w1"¿ -'

X

2n
CI NIU I

sinh[n¡z¡D]

+t+P) l*l 1+

X
coshln¡v¡(z4Iz>+D)]- za-22*D)]

sinh[n¡z¡D]

Since we are mainly interested in the fluid region adjacent to the membrane wall in region

III, i.e. zL = zz æ -D, and the quantity

rc¡v¡D lr:oÞ 1 ,
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the source term further reduces

2'tc

EI KIVI rl"tçr') tl"\çri)l

1
4

I
4

X expfrc1v1(z< - z>)l- expfn1v¡(zai z2)l (r>o
4r u(za)u(22)-ã w1"¡ -'

2rl
qrqry |

" l"*r¡

L+l+Pl l'IL+l+Pl l*
pt(z<* r')l] (¡ < on¡v1(za-r>)l-exp[rc

This asymptotic form of the source term is similar to that in the solution for the source

term in the extracellular fluid i.e. Eq. (3.36) and Eq. (3,37).

A similar analysis can be performed on the other terms in the solution for the transverse

Hankel tra,nsform mea!. electrostatic fluctuation potential, Eq. (3.42) and Eq. (3.43),

to determine the dependence on the source and fleld point provided they are near the

membrane wall located at -D. The details of the analysis are not presented here. Rather,

presented below are plots of the numerical and asymptotic transverse Hankel transform

mean electrostatic fluctuation potential at the source point for specified k values. See

Figures 3.10, 3.11, 3.12 and 3.13. The location of the starting boundaries for the numerical

procedure decreased as the value of the transform variable k increased. This is consistent

with the above discussion for large k behaviour which is determined by the region near

the source point whereas the opposite is true for small k va,lues. Thus for these values

a knowledge of the differential equations for the second membrane and the extracellular

region I/ is unnecessary provided the source point is near the membrane wall located at

-D. This suggests that the second membrane and thus the extracellular fluid in region I/

have negligible effect on the value for the tra,nsverse Hankel transform mean electrostatic

fluctuation potential (and thus the mean electrostatic fluctuation potential) provided the

source point is near the membrane wall located at -D. Comparison of these plots with

the corresponding fu value plot for the intracellular fluid region of the one membrane point

model in Appendix B, see Figures 8.6, El.7, B.8 and 8.9, shows excellent agreement for

both the numerical and asymptotic solution. Thus, as for the extracellular fluid case, the

presence of the second membrane has negligible effect in the region near the membrane

wall located, at -D.
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As the normal distance from the membrane wall increases but less than D the plots

tend to a constant value determined by the Debye-Huckel type term in the solution i'e'

2n It
Lr-[ucrl1'

It
L r+ [rrf:rl1'

(¡>0

(r<o

l*[

l*[

1
qtGt)

1
4

CI ÑI VI

2n
eI ñrvI

2vI
'ú! (rr, z2,k) ---+

As the transform va¡iable k increases this Debye-Huckel type term (the field point and

source point coinciding) has the form

,þ! ("t, z2,k) ---+
2tr

e Ilc

This result is consistent with that of Carnie and Chan [41] for the constant density systems

(both single and two plate) and the linearized GC density for the single plate. Again this

is due to the large k behaviour being determined by the region near the source point.

3.2.6 Limiting forms of the transverse Hankel transform mean electro-
static fluctuation potential

To obtain the two semi-infinite membrane limiting form (as described in Section 3.L.2) for

the transverse Hankel transform me n. electrostatic fluctuation potential we take the limit

as L ---+ oo. This results in the quantity

Zz,"(L,(.ø) - 1 ,

in both cases for the sign of (¿. Thus the solutions for the transverse Hankel transform

mean electrostatic fluctuation potential Eq. (3.a2) and Eq. (3.43) in both cases for the

sign of (¡ reduce to those of the two semi-infrnite membrane point model of Appendix C,

Eq. (c.11) and Eq. (C.12).

I
4

+1
qtGt)
2rI

92



Nume¡ical
Analytic

1.O

'¡e

coÀ

o.8

o.6

o.4
o 10

21 (Angstrom)

Figure 3.10: Comparison of the numerical and asymptotic solution for the transverse
Hankel transform mean electrostatic fluctuation potential at the source point in the intra-
cellular fluid of a two membrane system vs distance from the membrane wall for k:0.001.
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Figure 3.111 Comparison of the numerical and asymptotic solution for the transverse

Hankel transform meaï. electrostatic fluctuation potential at the source point in the intra-
cellular fl.uid of a two membrane system vs distance from the membrane wall for k:0.01.

94



l'{ume¡ical
Analytic

o.8

o.7

E'ãdo
o
êr

o.6

o.5

o.4
o 5 10

21 (Angstrom)

Figure 3.12: Comparison of the numerical and asymptotic solution for the transverse
Hankel transform mean electrostatic fluctuation potential at the source point in the intra-
cellular fluid of a t$'o membrane system vs distance from the membrane wall for k:0.1.
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Figure 3.13: Comparison of the numerical and asymptotic solution for the transverse
Hankel transform mean electrostatic fluctuation potential at the source point in the intra-
cellular fluid of a t$'o membrane system vs distance from the membrane wall for k:1.
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Chapter 4

Ionic Hydration Nurnlcers

ú(a,"2, p)
Eæ tdkexp[-ek' 

p]$(zv, z2,k)

In the previous chapter we constructed the solutions for the transverse Hankel transform

mean electrostatic fluctuation potential for the two membrane point model for the cases

when the source point is located in the extra,cellular and intraceilula¡ fluid regions. Com-

parison of these solutions with the one membrane point model solutions shows that the

second membrane has a negligibie effect. Thus for the determination of ionic hydration

numbers we will use the one membrane point model solutions to approximate the two

membrane point model solutions for the transverse Hankel transform mean electrostatic

fl.uctuation potential.

4.L Mean electrostatic fluctuation potential

The inverse transverse Hankel transform is defined by

dk kJs(kp)Iþ(21, z2,k) (4.1)

Thus this expression can be used to obtain the mean electrostatic fluctuation potential for

the two cases described below

4.L,L Extracellular mean electrostatic fluctuation potential

In this case $/e are interested in the mean electrostatic fluctuation potential in the extra-

cellular region. The transverse Hankel transform mean electrostatic fluctuation potential

in the extracellular fluid regiou transforms to

,þn(q,"z,p) : úBu("r,zz,p)*ú'{("r,22,p), Ø.2)
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where

úEu (rr,rr, p)
* 

dt lrtoçlrp)rþEï("r,"z,k) ,

is the Debye Huckel type term and, $DuH (zt,zz,k) is given by

: LI
Zr Jo

Cn>o

(¿<o

(4.3)

(4.4)

(4.6)

(4.7)

'úEu ("r,rz,k) :

'ú'{ (rt,zz,k) :

where

Ã1(2L,(n,1-t):

such that

and

ú'*(rr,rr,p): *lr*d,hkJ¡(kp)$t{(rr,rz,k), (4.5)

is the image term due to the discontinuities in the dielectric medium across the membrane

walls such that $I{ (zL,z2,k) is given by

- ffi tr{zL, ( n, Cù rz, ulreå *n f "d;@ f 
]

xrz,uþeå 
""nf 

*9Ðf] (.ø > o

ffi Ã,¡zt, (n, ¡.t) rz,ulr r r, 
_L 

å ""nl-$Ðl]
xrz,nl, , ," l+ ""U*$Ðl] (ø < o

I
Yz 

" " 
l2C fi I Z z ", 

(2 L,( r) -f Y;"
t

t2<ål

I
J2 

" " 
12( fil Z 2 ", 

(2 L,( r) * ep n¿e, 1

4,rlzeÅl

€

(¿>o

(¡<ox",, ¡21ç, 1È pr,, (2L,( ù + x'r,
1

[zl!ø\,)
I
2

1

Iz 
" E l2l(, E lã ) 

Z 2 ", 
(2 L,C r ) 

-l lr,u¡21ç"¡*7

I
I

Jz"¡lzei lsinh[ÈI]+
e¡rc¡C

J,, [zç;t ] "",r,1tr,1

:l-r¡zçjlcosh[ß-L]* tL, ,lr<ì lsinh [ftr]
e¡n¡e,

M

(r>o

1

Iz" r l2l( r It I sinh IkI] I 1,, [zlerlå ] cosh[ft.r]

Zz,r(L,Ct) :

tr,rlzlçrþlcosh[fttr]*
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The above results for the transverse Hankel transform mearl electrostatic fluctuation po-

tential for the one membrane point model are derived in Appendix B'

The transform inversion can be explicitly obtained by numerical integration for various

values of the normal and transverse distance. The asymptotic form of the transverse

Hankel transform mean electrostatic fl.uctuation potential for the one membrane point

model, derived in Appendix B, is used in the intergrand for the numerical inversion. The

numerical scheme employed uses Simpsonts rule with an extended trapezoidal rule driver

[11a]. For values of the normal and transverse distance within about 214, of. the source point

the transform variable k (integration variable) it was necessa,ry, to ensure convergence, to

truncate the integral at value of 100å-1 compared. with 20å-1 for values outside tlne 214,

region. This is consistent with the argument presented in Chapter 3 concerning small p

behaviour determined by the behaviour in the transform for large k.

Two plots of the extracellular mean electrostatic fluctuation potential are presented to

highlight the following points. Figure 4.1 is a plot in the normal direction for various values

with the source and field points in the transverse direction to the membrane coinciding

i.e. p - Q. Trnportant features are

o the skew symmetry in the potential when the source point is close to the membrane

wall,

c the rapid decay (shielding) behaviour of the potential in the normal direction, and

o monotonic behaviour

The skew symmetry is due to the image term which is a function of the normal distance

of both the source and field point whereas the Debye-Huckel type term is a function of

the relative normal distance between the source and field point. When the source point

is further than about 5å from the membrane wall, the image term is negligible and thus

the Debye-Huckel type term dominates and therefore the potential is symmetric. Figure

4.2 is a plot in the transverse direction for various source point values with the source and

field points in the normal direction to the membrane coinciding i.e. z2 : zt. It should
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be noted from this plot the dependence of the potential in the transverse direction on

the source and field point position in the normal direction and the apparent shielding in

the transverse direction. The monotonic behaviour of this solution should be contrasted

against the damped oscillatory behaviour in real fluids [a9]. Our neglect of the size of

the molecules (i.e. setting the hard sphere diameters to zero) has caused the finite size

effect in the solution for the mean electrostatic fluctuation potential (and thus the pair

correlation function) to be averaged such that there is no oscillatory behaviour.

An analytic expression for the extracellular me n electrostatic fluctuation potential

would be advantageous in the analysis of its dependence on the transverse and normal

distance variables and for the calcu.lation of ionic hydration numbers. Since the large k

dependence determines the small distance behaviour, we take the limit as k -* oo in the

asymptotic solution for the extracellular mean electrostatic fluctuation potential in the

one membrane point model, see Appendix B, to yield

,þDBH (21, z2,k)
expf-nBvB&) l rz- qll

eBrcBuB(lc)
(4.e)

{:I{ (21,22,k) A¡ explnBvB k zzl zt*2L
(4.10)

eBrc,Bv¿(lc)

where

7ç2+nzB-*'BCuffi (.e>o
rcBuBQc) (4.11)

lc2+nzu*o'ulC"lÆ (,e<o

-+

---+

A¿
CE_EM
eB * e¡y¡

(4.L2)

If we further assume that these forms are the dominant terms for the evaluation of the

extracellular mean electrostatic fluctuation potential and valid for all /c, then the transform

inversion can be performed in closed form, see Appendix D, to yield

*lr-orrto&o)W
,-navp(O)r

t
EET

úBu (rt, "r, 
p)
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Figure 4.1: Numerical solution for the extracellular mean electrostatic fluctuation potential
in the normal direction for a one membrane point model system for various values with the

source and field points in the transverse direction to the membrane coinciding i.e. p - 0.

Normal distances are measured from the membrane wall.
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Figure 4.2: Numerical solution for the extracellula^r mean electrostatic fl.uctuation potential
in the transverse direction for a one membrane point model system for va¡ious values with
the source and field points in the normal direction to the membralxe coinciding i.e. z2: 21.
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o.3

o.2

LOz



such that

a,lrd

where

1

r (*z - *t)' + (yz - aù2 + Q, - rt)2

ú'{ (rr,rz,p) L^ 
lr* 

d.kkrs(kp) a6 expln Bu B (lc) ("2 + zt * 2L)
eBrcBvBQe)

(4.14)

(4.15)

I

* (*z - *t)2 + (yz - yù2 + ("2 + "t + 2L)2T

Comparison of this analytic expression with the numerical solution shows negligible

difference i.e. ( 1%. Thus the dominant behaviour for the extracellular me n electrostatic

fluctuation potential is determined by the large fu behaviour in the extracellular transverse

Hankel transform mean electrostatic fluctuation potential.

4.L,2 Intracellular mean electrostatic fluctuation potential

The transverse Hankel transform mea!. electrostatic fluctuation potential equations for

the one membrane point model in case of the source point in the intracellular fluid can

be derived from those of extracellular fluid case by interchanging the extracellular and

intracellula.r fluid regions.

A numerical integration of the transform inversion yields plots which are similar to

those of the extracellular case in features (as discussed above). See Figure 4.3 and Figure

4.4.

A simila¡ analysis, as discussed in the previous case, for the large k limit in the intracel-

Iular transverse Hankel transform mean electrostatic fluctuation potential and subsequent

analytic inversion yields

ú?u(rt,rr,p):

ú'r* ("r, "r, 
p) :
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Figure 4.3: Numerical solution for the intracellular mean electrostatic fluctuation potential
in the normal direction for a one membrane point model system for various values with the
source and fi.eld points in the tra.nsverse direction to the membrane coinciding i.e. p - 0.

Normal distances are measured from the membrane $¡all.
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Figure 4.4: Numerical solution for the intracellula¡ mean electrostatic fluctuation potential
in the transverse direction for a one membrane point model system for va¡ious values with
the source and field points in the normal direction to the membrarxe coinciding i.e. z2: 71.

Normal distances are measured from the membrane wall.
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0.1946å-1n¡u7(0)

0.t2274-rrcnvn(O)

ValueQuantity

Table 4.1: Table of rcz(0) values in the extracellular and intracellular fluid regions for the

one membrane point model.

where

A¡ eyle71 '

(*z - *t)2 + (yz - yù2 + Qz - rt)2

er-eM

1
2

1
2

T* (*z - *r)' + @z - aù2 + ("2 + "t - zL)z

Comparison of this analytic expression with the numerical solution again shows negli-

gible difference i.e, < l%. Also a comparison between the extracellular and intracellular

analytic expressions shows that for the same dielectric constant in each of the fluid regions

i.e. e¿ : €rr which is true in our model, that the para,meter nrvr(0), which can be thought

of as an oeffective o inverse Debye shielding length, determines the structure in each of

the fluid regions, The values of the parameter n,u,(0) are presented in Table 4.1. The

difference in the values between the two regions is due to an order of magnitude difference

in the charge asymmetry parameter Ç, see Table 8.1. The asymmetry parameter being

greater in the intracellular fl,uid due to the abundance of cations (l[o+,.I1+,Ca++) com-

pared to the major anion C/-. \il'hereas for the extracellular fluid the asymmetry is less

due to a greater balance in the amount of anions to cations. Thus the 'effective' Debye

shielding length in the intracellular fluid is less than that of the extracellular fluid i.e. an

ion in the intraceltular fluid is screened more than that of an identical ionic species in the

extracellular fluid.
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4.2 Calculation of ionic hydration nurnbers

The definition of Azzam for the ionic hydration number Eq. (1.8) has to modified to

account for the orientational dependence of the dipole (water molecule). The quantity

d,x2clus2n¿(*z,rzlV) gòd(xL;x2,u2lV) describes the number of dipoles (water molecules)

in the volume region x2 ¡ x2 * d,x2 with orientation in the angular region Q2 ¡ @2 * do2

given that an ionic species of the ith type is located at x1. We have to integrate this

quantity over a (to be determined) region to calculate the ionic hydration number. Since

the correlation functions have both a normal and transverse dependence but the mean

electrostatic potential has only a dependence in the normal direction, integration oYer a

spherical region (as in Azzam's definition) is analytically not possible in closed form. Thus

a cylindrical region is chosen so as to provide an analytic expression for the ionic hydration

number. The appropriate definition for the ionic hydration number is thus given by

nf Gù : I::' a*, I d,us2n¿(x2,,',zlv) s¿a(xt;x2,u2lv) . (4.r7)

The region of integration, denoted b, [*"* d,x2,issuch that $¡e are evaluating the number
Jmin

of dipoles (water molecuJes) contained within a cylindrical region with a region of exclusion.

The region of exclusion is included (by hand) in the calculation to represent the "hard

sphereo of an ion. The extremities of the region of integration are chosen to be multiples

of the oeffectiveD Debye leugth. This choice is pbysically reasonable since the interaction

between the ion and any "attached¿ water molecules is over this length scale though it is

still arbitrary compared with a choice of say two (effective' Debye lengths. Thus the region

of integration has the following limits when written in terms of cylindrical co-ordinates

fna,æ lztlz^aa f pmøø

J,*0, 
d'x2:'n 

J,r-,^", 
ilz2(22- "') Jrr^r* 

dpzpz 
'

where

Pntøæ rc6uB(0)
1

2n¿vB(0)

R¿

2
Prnin

1

Zmaæ

LO?

(4.18)



See Figure 4.5. The region of integration must be truncated in the normal direction if it

extends into the membrane region since no dipoles (water moiecules) can be *attached'

in that region for our model.

The relationship between the ion-dipole indirect correlation function and the mean

electrostatic fluctuation potential is given by Eq. (2.f29) (setting molecule of type b to

be a dipole) i.e.

h¿¿(*t;x2,u2lV): -Be¿rn(t'sù'Vzrþ',xt,xz) (4'19)

Thus the ion-dipole pair correlation function is given by

g¿¿(*üx2,u2lV) : expf-Be¿rn(rù' v2rl(x1, x2)]

x t - Be¿rn(tù .YzúGt,x2) (4.20)

Expansion to first order in the mean electrostatic potential for the dipole number

density Eq. (2.88) i.e.

-0na(xz,t,2lv): #tt-þ^@ù.vz'þ62)l , (4.2t)

and substituting for the pair correlation function Eq. (4.20) into the deflnition for the

ionic hydration number Eq. (a.17) results in

nf;(x):

X

înaæ f 1

nI J*,- axz 
lt + i

lnaî f 'l

"oo 
I ¿xzlr-*

Jtni,n L .t

0zz 0zz

Then performing the angular integration for the extracellular fluid case yields

z 0rþ(*ù 0tþ(x1,x2)

(4.22)

"f 6ù "uþ'*

"np, 
*, T "np 

(22 1 L) 

{-ïY @ ¿u B (o) * ilÇ
* Aø t#latuBu^(o). i ".;!4\]

The integrals involved in the above expression are of the form

'n*o* ø(zz lL) " "n"ø(o)' ¡L]"I ¿*' ('z - 'ù enø("2 l-¿) ' -:'- ' ' I I 1Jnin r Lr I
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Figure 4.5: Schematic representation of the region of integration for the calculation of
ionic hydration numbers.
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for the Debye-Huckel term and

Ë:" d'x2(22* zt*21)eñn+z+Ð t:yy: 
lå]" ,

for the image term, where n: L,2. These integrals are evaluated in Appendix D and if

we now substitute those results into Eq.(a.23) we obtain

nfl(x1¡ : n\nlp?,,"* - p?,n¿nfL",n'*

no¿!{ 
"¡B2 

*z 
A E! n 

"nuzt 
t L) 

I ::"dy a "',n

X

X

"-npvp(0)
+s,

P2*;. * Y2

"-npvp(0)
Ê^onl!2

{'.o(l
1

nBuB(0) Ê^¿. -l y2 l"))

(4.24)

A similar expression can be obtain for the ionic hydration number in the intracellula¡

fluid region such that

nfl(x1¡ : no¿nlp?^,, - Ê,oonl\r,,on

no¿!{ 
"pz 

*z 
A !! t 

"o, 
", f::"dy y 

"o,n

XI"-"'"'1o¡r/fi}+u"
P7rr¿* * Y2

,-n1v¡(O) Ê*onl!2

lil;+t {'*o(l#æl)\
{'.r(l

1

Pzrr¿* * Y2
l') )

l*ffi{,*o(ffif\X

(4.25)

The ionic hydration number expression for both the extracellular and intracellular

cases has the ieading term nï¿trlp'rro, - p?n ¿nl2"rno* which is independent of the charge of
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the ionic species but does depend on the size of the molecule and its position relative to

the membrane wall. The size of the ionic species is incorporated through the exclusion

volume effect of rp2*onzzrro, and the position of the molecule through the truncation of the

Iength of the hydration cylinder if the region extends into the membrane. Thus strictly,

the quantity Zzrno, for the extracellula¡ case is given by

o-4'þmag -

and for the intracellular case by

z*o*lzt*Ll
n-4þnaæ

lq+L11",o*
I a+ L l) ",n.,'

(4.26)

(4.27)

The truncation of the region of integratiou when the ionic species is within a distance

of z^o, describes the geometric effect of the exclusion of dipoles (water moiecules) if

the ion is close to the membrane wall. The difference between the leading term in the

extracellular and intracellular fluid regions (for the same ionic species) is due to the upper

limit for the region of integration in the transverse direction p-o,. Since Prno* is given by

the (effectiveD Debye length, which is smaller in the intracellular fluid, the leading term

behaviour is smaller in the intracellular fluid as compared with the extracellular fluid at

the same relative position to the closest membrane wali and identical ionic species.

The next term in the expansion is negligible compared to the leading term (( 0.1%)

for both the extracellular and intracellular fluid regions. This is due to the term being a

product of the two kinds of potential and thus a second order term. The approximations

made during the thesis have been to first order in the mean electrostatic potential and thus

this second order term being small is not surprising. Despite the term being negligible it

does show some important qualitative features. The term shows an exponential da.mping

in the normal direction as the distance from the membrane increases and depends on the

charge of the ionic species.

Trnprovement of this result shou-ld be possible by starting a numerical iterative proce-

dure with the analytic solutions for the mean electrostatic potential and the mean electro-

static fluctuation potential to obtain a better approximation for the appropriate BBGKY

z,no,l zL- Ll I a- Lll rnno,

2zrno, la-l'l)rrno,

r_L1



bierarchy equation and then substituting this result into the potential equations. This it-

erative procedure is necessary due to the failure of the assumption that the potential mean

electrostatic potential is small especially in tbe region adjacent to the membrane. .Thus

the non linear terms in the mean electrostatic potential are important. Also the effect

of the 2 body correlations could be included in the derivation of the mea,n electrostatic

potential equation since these contribute to the potential'
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Chapter 5

Conclusion

In this thesis we proposed a model to investigate the distribution of molecules in the

vicinity of the membrane of a neuron. The model neuror consisted of an electrolyte

solution that was bounded by two planar membranes (of finite thickness L and' sepa,rated

by a distance of.ZD). Each of the membranes was modelled as a dielectric continuum with a

uniform surfa,ce charge density, The concentrations of the va¡ious mobile ionic species used

in the extracellular and intracellular fluid regions of the model were typical of the resting

state of the neuron. The model could have been extended to consider concentrations of the

mobile ionic species typically found in the dyna,mical phase of the action potential though

the assumption of planar geometry breaks down if the Debye length becomes comparable

to the radius of curvature of a reuron.

In Chapter 2 we presented a derivation of the potential formulation of the distribution

functions from the BBGKY hierarchy in a similar manner to Outhwaite's derivation [75]

for the PM. The resulting differential equations for the mean electrostatic potential and

mean electrostatic fl.uctuation potential (for both the hard sphere and point molecules

cases) reduced to those of Outhwaite (hard sphere [94], [95]) and Carnie and Chan (point

[74]) if the condition of bulk electroneutrality was assumed. It should be noted that

the differential equations for both kinds of potential were derived by truncating in the

appropriate member of the BBGKY hierarchy in the higher order terms in the indirect

correlation function and closing the equations with this linearized form of the BBGKY

hierarchy. Thus these differential equations can be considered to be first iterates in a

perturbative method for determining both the mean electrostatic potential and mean
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electrostatic fluctuation potential, F\rrther work can be pursued by using the analytic

solutions to these differential equations (as derived in Chapters 3 and 4) to derive a new

approximation to the n body distribution function and use these equations to close the

potential equations.

úr this thesis, solutions of the differential equations for both kinds of potential, in the

case of hard sphere molecules, were not considered. This was due to the inherent difficulty

in constructing solutions to the partial differential equation for the mear electrostatic

fl.uctuation potential in a cylindrical geometry with a radial boundary condition across

the sphere of exclusion for the generalized displacement vector Pa(xr;x2¡u2). Thus a

numerical solution of this case could be explored though it is unclear how to incorporate

the radial boundary condition in the numerical code.

In Chapter 3 explicit solutions for the mean electrostatic potential and the transverse

Hankel tra,nsform mean electrostatic fluctuation potential for the two membra.ne point

model system were derived. For the transverse Hankel transform mean electrostatic fluc-

tuation potential, both cases for the position of the source point were considered. An im-

portant para,meter was introduced called the charge asymmetry parameter (' a,rrd its value

varied from the extracellular to intracellular fl.uid regions. This parameter determined the

type of solutions for the transverse Hankel transform mean electrostatic fluctuation poten-

tial depending on its sign in terms of Bessel functions (( > 0) or modified Bessel functions

(( < 0). For the concentrations of the mobile ionic species used in the model, the charge

asmmetry parameter was positive in both the extracellula¡ and intracellular fluid regions.

It was found that (provided the ratio of the distance between the membranes 2D and

the Debye iength is Þ 1) the asymmetry parameter for the two membrane case showed

negligible difference to that of the one membran.e case for the same membrane thickness

-t. Aiso the asymmetry para,meter in the limit as L --+ oo approached the value for the

one wall case considered by Carnie and Chan [74].

The solution for the transverse Hankel transform mea,n electrostatic fluctuation poten-

tial for each of the cases for the sign of the charge asymmetry parameter (, when the source

point was in the extracellular fluid region, was noted to be of the same form as for the one
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membrane system (see Appendix B) and indeed the one wall system considered by Carnie

and Chan [41]. The first term (for all three systems) was associated with a the Debye-

Huckel type correlation function in the butk solution which \Mas a function only of the

relative position of the field and source point. The other term Ã2(.L,(n, D,(¡) the image

term, was due to the dielectric boundaries of the systems. The quantity A2(L,CnrD,.-t)

is an even function with respect to the transverse transform variable k for finite L and'

D. Thus, as noted by Carnie and Chan [41], the correlation in the transverse direction

is screened. The shielding in the transverse direction occurs because the charge on the

opposite side of the membrane wall is able to redistribute itself, screening the potential

between molecules,

As fu ---+ oo, compa,rison between the two membrane and one membrane system (see

Appendix B) showed that both Lz(L,(n,D,(¡) and Ã,1(Zt',Cø,(.t) tend to the same limit.

This limit is the same as for Ã(O in the one wall system [41], when C: Cn, even though

A(O is neither an even or odd function of k. This is not a surprising result if we consider

all three quantities at the same source and fleld point, relative to the membrane wa^lI at

the interface between the extraceliular fluid a,nd membrane. Since the large k behaviour

describes the small p behaviour, a molecule experiences negligible influence from bound-

aries more than a Debye length away. Also it was noted that the large k behaviour for

Az(LrearDr(¡) h* no expl-icit dependence on the distance between the membra.ne walls

2D aad.both Ã2(2, Cn,D,(¡) and Ã,1(ZL,Cn,et) have no explicit dependence on the mem-

brane thickness. The dependence of these quantities on the parameters L arrd D is rather

via the extracellular asymmetry parameter (-e.

A shooting method was employed to numericaliy solve the differential equations for

the transverse Hankel transform mean electrostatic fluctuation potential as a test of the

validity of the asymptotic forms. The location of the starting boundaries for the numerical

procedure decreased as the value of the transform variable & increased. This is consistent

with the properties of the transform such that the large & behaviour is determined by

the region near the source point whereas the opposite is true for small k values. This

property of the numerical integration supported the argument that the second membrane
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and thus the extracellular fluid in region tr/ has negligible effect on the value for the

tra,nsverse Hankel transform mean electrostatic fluctuation potential (and thus the mean

electrostatic fluctuation potential) provided the distance 2D is large compared to the

Debye length. A numerical procedure was also used for the case when the source point was

in the intracellular fluid region and comparison with the asymptotic form showed again

that the second membra,ne wall has negligible effect provided the distance 2D is large

compared with the Debye length and the source point is in the vicinity of the membrane

wall located at -D. Since the second membrane wall had negligible influence on the

solution for the transverse Hankel transform mean electrostatic fluctuation potential, for

both cases of the position of the source point, the simpler expression for the image forces

of the one membrane system Ã,{Zt',(ø,(¡) was used to perform the transform inversion.

I-n Chapter 4 we presented the ionic hydration number calculation for various ionic

species in both the extracellular and intracellular fluid regions. An analytic expression

for the mean electrostatic fluctuation potential was obtained by taking the large k limit

and inverting this expression in closed form. Comparison of this analytic expression with

a numerical integration of the transverse Hankel transform mean electrostatic fl.uctuation

potential showed excellent agreement. Also a comparison between the extracellular and

intracellular analytic expressions showed that for the same dielectric constant in each of the

fluid regions, the parameter rcv(0), which can be thought of as an *effective t' invetse Debye

shielding length, determines the structure in each of the fluid regions. The difference in the

values between the two regions is due to an order of magnitude difference in the charge

a^symmetry parameter (. The asymmetry parameter being greater in the intracellular

fluid due to the abundance of cations (IÍo+, K+ rca++) compared to the major anion

CI-. Whereas for the extrarellular fluid the asymmetry is less due to a greater balance

in the amount of anions to cations. Thus the *effective' Debye shielding length in the

intracellular fluid is less than that of the extracelluiar fluid i.e. an ion in the intracellular

fluid is screened more than that of an identical ionic species in the extracellular fluid.

Our definition for the ionic hydration number took into account the orientational

dependence of the dipoles as opposed to Azzamb defrnition. Also, due to the normal

116



direction dependence of the mean electrostatic potential, it was necessa,ry to modify the

region of integration to be a cyLinder with an exclusion volume to obtain an analytic

expression for the ionic hydration number. This analytic expression contains two terms'

The leading term describes the number of dipoles in the region of integration if the number

density of the dipoles takes the bulk value. The next term describes the variation from

this bulk term. This term was found to be negligible compared to the leading term'

I-mprovements should be possible by including higher order terms in the approximations

made in the derivation of the defining equations for the mean electrostatic potential and

mean electrostatic fluctuation potential.
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App.ndix A

Molecular Potentials

In this appendix we calculate the image potentials due to the discontinuity in the dielectric

permittivity at the membrane walls for the two membrane system.

A'.1 One body potential

The one body potentials Vo(x1,c.r1) are written in the form

(A.1)

where tzf; is the short range contribution to the one body potential which causes the

exclusion of molecules from a region adja,cent to the membrane wall. The short range

potential Vos is given by

Vf (*t,c.rr) :
oo l rrl< I

,o l"tl>+
where z1 is defrned as the perpendicular distance from the membrane wall. The termV.-B

is the electrostatic contribution. Due to the symmetry in the model system, see Figure

4.1, the displacement vector D(*r) satisfi.es

D(*r) : D(z)ù, (4.3)

D(-"ù: -D(rù ' (A'4)

At the membrane walls, we have the continuity condition of the displacement vector in

the normal direction i.e.

D ' ù' ld -D ' ût l,-: 4tro ' (A'5)
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Figure 4.1: Schematic representation of a two membrane model geometry showing the
various regions and the associated dielectric constant, inverse Debye length and surface

charge density.
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where o is the surface charge density at the membrane wall. The dispiacement vector is

related to the electric field by

D(*r) : e(xr) .E(*r) . (A'6)

where e(x1) is the dielectric tensor. Thus the electric field is, using the above boundary

condition, given by

0 O1z11D

E("ù 4tro3, Dlzt<lL+Dl (A.7)

4r(o¡ * os) lL + Dl < z1

The electrostatic contribution to the one body potential, VoE(*r,c.r1), is thus given by

4tr(o1+ os)(zL+ [¿ + D]) - * z1< -lL + Dl

ff("r+o¡ -lL+Dllq<-D
vE(*r) 0 , (A.8)

-Ano" (r, - D\
e2

-4n(o1+ q)(zt -lL + DD - +

D{21<lL+Dl

lL+Dl<21
such that

e2

D<ztlD

v¿u (*t)

V¿E (x1,ø1)

: 
"iVE ,

: m(c¿r)'V:VE

Rob: |{*" * ar) '

(A.e)

(A.10)

^.2 
Two body potential

The two body (intermolecular) potentials Ooa(xr, eLix2tt's2) arc also written in the form

Qoa(xr, c,Lix2tø,z): Of, + O"Eu , (A.11)

where iÞfo is the short range contribution to the two body potentiai and is given by

OfO(*t, t't1ix2,t's2) (A.12)[ * 11
\ o r>

Rob

Rou

such that
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The other term, iÞfl, is the electrostatic contribution which is defined by

iÞ"'o(*t, .oLixztø,z): Oc"6+ ø1"6 , (A.14)

where Oju is the image potentiai due to the discontinuities in the dielectric tensor at the

membrane walls and Ofu is the Coulombic contribution. The Coulombic contribution to

the potential , Qc,,6, is given by

ion-ion iÞfi(xr, er;xz,ø2)

ion-dipole iÞft(*t, c,lLix21.¿2)

dipole-ion ÕÍu(*t, u1;x2,t't2)

dipole-dipole Õf;¿, (x1, t't 11 x2, t's2)

T

: -e¿EtL ,r

(A.15)

(4.16)

(A.17)

(A.18)

(A.20)

(A.21)

(A.22)

(A.23)

(A.24)

e¿ei

: e¿Et! ,r
I
rEtEt

where

Er : m(c.rr)'Vr . (A.1s)

The dipole orientation vector c.r1 is definedby the angula,r co-ordinates (dr,dr) such that
I
I d.t: 4r. I is the 3x3 identity tensor. The vector r is defined by r : x2 - xl.

,l

The ion-ion image potential, iOf,', is calculated in the following ma.nner. We know

from electrostatics [109] that the electrostatic contribution to the two body potential, Õfl,

satisfi.es

slnce

with the boundary conditions of

e¿e¡QE ,

-4n6(x2 - x1) ,

v?oi, 0

af,

v?o'

ÕEl-tãl

OQE€-;-
ozt

oE l"*-1

z,
aaE

' a^ l"{

LzL



at the membrane walls. Since there is cylindrical symmetry in the system due to the

external potential being only a function of the perpendicular distance from the wall we

can solve this problem through the use of the transverse Hankel transform. See Figure

2.2. Defining the transverse Hankel transform by

6E (zy, z2rk)

and the inverse transverse Fourier transform is thus given by

ÐE (21,22, p) * lr* 
d,kkJ¡(kp)a'(21,22,k) ,

I dp exp[ik ' p]QE (21,22, p)

lo* 
oootortcp)QE (21, 22, p),2r (A.25)

(A.26)

where

p (*z - æt,u2 - at) ,

k lkl

'We can apply the transverse Fourier transform to Eq. (4.21) to yield

¿2

d,7,
k2 QE (z1rz2rk) -4tr6(21 - z2) (A.27)

Equation (4.27) has to be solved in the five regions of our model. The two cases to be

considered are when the fixed particle at z2is in region I or IIL The region V case is

found by the symmetry in the æ - y plare.

Case 1:-oo 1 221 -lL + Dl

The differential equation for 6u(rt,zz,k), Eq. (4.27), is given by

-hr6(21- z2) z1 < -lL + D)

0 -lL+Dl{211-D
0

0

0

D1z11D

D{21<lL+Dl

lL+Dl<21

l#, - rc2]o' çzt, zz,r<¡

t22

. (A.28)



The form of the solution to Eq. (4.28) is

6E(z1rz2,k):

ffe-kl"r-""| + Brck"' z1 < -lL + Dl

A¡ye.-ku, lB¡1eku, -[L+D)< a< -D

A¡¡¡e-k" * B¡1¡ekut -D < zt ! D

A¡yç-t'"t *B1yek"t D lzt<lL+D)

Ay¿-kn lL + Dl < zy

(4.2e)

Application of the boundary conditions given above, at the membrane walls, yields

BI:

ATI :

Bil:

Ant:

Bfit:

Atv:

Brv :

1

[1 + e2]n(k)
A

[1 + e2]n(k)

T"o""urt ftt - "-zxr'llr - 62"zkL1"-2kD

It - 62.-zn'l[r - .znt'Pznn],

nn 

"*,r= 
1= , , lp - ñ"2kL1

la " [1 + ez].R(k) L

A2t1 - ,zn\"-+kD]- r- - r- I '

(A.30)

(4.31)

(A.32)

(A.33)

(A.34)

(A.35)

(A.36)

(A.37)

(A.38)

(A.3s)

4r
k IL - e2kL1"-zno

[1 -A'] ,

ftr - a']"- znv'+nt]

lL - Az"-znLlezkD

ub l't - A2l v - t2e-znt1] ,

uä l't - A2l[1 - "-zntP-zxo]

T"o"'

'n .o*
k

nn.o^
k-

T"0""

where

Av:

n(k) lL - 62"-zn"f - t'lt - "-2kL12"-4kD ,

A
L-ez
L]-ez

T"o"'El*tO[l - a][1 - a2] ,

t23



Case 2:-D 1 221 D

The differential equation for 6u(rr,z2,k), Eq. (4.27), is given by

¿2

d.7,
k2 6E (21, z2,k)

BI:

Att :

BII :

Artt :

0

0

-hr6(21- z2)

0

0

z1< -lL + Dl

-lL+Dllzt<-D

-D<zy{D
D1z1<lL+Dl

lL+Dl<21

. (4.40)

(a,.42)

(A.43)

(A.44)

(A.45)

(A.46)

The form of the solution to Eq. (4.a0) is

6E (21, z2,k) :

Byeku, z1< -lL + Dl

A,,e-t'u' lB¡yekul -lL+Dl3a< -D

ffe-kla-'zl
-D<211D

*A¡¡1¿-k"t + Bfißkut

A1y¿-ka * B¡yek"t D 121<lL+Dl

Ay¿-k"t lL + Dl < z1

(A.41)

Application of the boundary conditions given above, at the membrane walls, yields

zr e2klL:?l l.o",tnår\ _ tlh An(/ú) L" r¡u\'-l -r

+ e-k"" LIL _ e-zkL _ R(h)]e-2kD

4tr 1

þ [1 +.2][1 - a2].R(k) "h^¡açe¡ - t1

+ e-ku, Ll! _ e-2t4L _ R@)le-2kD

4n e2hlL+D)

k [1+ e2]A[1 - az]ñ(/c) þo'wtr) - tl

+ e-k", AIL _ e-zkL _ R(k)]e-2kD

T"*""# ftt - 62"-znL1e-2kL + [1 - "-znry"-+nnf

'f"-^^Ub l"'t -.-zxr'lf: - 62"-zkL1"-zxo],

BIfi: 2r All - e-zkLle-zkD
k R(k)
4tr 1

l"o. * e-k', l;l! - "-zwP-zxof

"kr, 
+ e-ku, Ll1 _ 

"-2kL1r-2kD
Arv :

+

/ç [1+ e2]R(k)

t24
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Brv:

Av:

4n 6"-2klL+Dl
b [1+ e2]^R(k)

4tr [1 - A]
l"o. 

* e-k,, AÍL - "-2kL1"-2kD

l"o. 
* e-k,, L¡- - "-2kL1"-2kD

(A.48)

(4.4e)
fr [1+ e2]R(k)

Tbus the ion-ion image potential is given by the difference between tbe total electro-

static contribution calculated above using the transverse Hankel transform method and

the coulombic part of the two potential. The other image potentials are calculated by

applying the .81 operator an appropriate a,mount of times'

Note in the limit o1 --+ 0 and. L + 6, these results reduce to those of Kjellander and

Ma^rcelja [58].
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Appendix B

One Mernbrane Point Model
Neuron

In this appendix we construct solutions for the differential equations associated with the

mean electrostatic potential and mean electrostatic fl.uctuation potential for the one mem-

brane model in the limit of point molecules.

8.1 Mean electrostatic potential

The solution to the differential equation for the mean electrostatic potential, Eq. (2.89),

in the various regions, is given by

AB expfn¿(a + L)l + rþB -oo ( z1 { -L

Anrzt*Bm -L<z11L

A¡expf-rc1(a- L)l+tþF L { 211æ

The constants AB,Au,Bm,A¡ are determined from the boundary conditions at each of

the membrane walls. Thus

An+tþBn: -AmL*Bur, (B'2)

AuL -t Bu : AïL + BÏ , (8.3)

-enrAmleBrcBAB : 4nop , (B'4)

e¡n¡A¡ * ep1A¡a : 4ro¡ (B'5)

These equations are solved for the constants to yield

,þQù -_ (8.1)

4re7¡(o B * a¡) * 4tro Be¡ n¡ZL * e¡¡e¡ n¡ A'tþB

e¡¡(eB nB * e¡n¡) * ennøefi t2L
Ag
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4tro pe1 n7 - 4tro 1eB nE - eE rí EeI u LIþB:_,

: ,þf -¡ul,*At ,

4tre¡y1(oB* or) * 4trolepr,B2L - e¡y¡esnnLrþB

l" - *'u + ÊucuÆ * o2ncnexp[rc¿(21 
" 

¿)]] $B(21,22,k)

4r.
--ö(zt- z:) ,

eE

n2]rl,u/,,,z2,k):o ,

t' - o', * "'r\r# * o?Ctexpl-nv(21- ¿)f] ,trrþt,z2,k) : s

The solutions to the homogeneous differential equations are

Ap¡

Bm

At

(8.7)

(8.8)

(B.e)

(8.10)

(8.11)

(8.12)

e¡a(eBnB * e¡rc¡) * e¿nBe¡ny2L

See Figure B.1. Comparison of this figure with that of the mean electrostatic potential

for the two membrane point model system, Figure 3.L, shows negligible difference in the

region near the membrane walls. Thus the presence of the second membrane at a distance

of.2D has negligible effect.

8.2 Transverse I{ankel transforrn iltean electrostatic fluc-
tuation potential

The differential equations for the transverse Hankel transform mear electrostatic fluctua-

tion potential for the case of the source point in the extracellular region are

¿z

d'Pt

¿2

d,7,

¿z

d,?,

,þn :

C¡¡¡ expflczl) + Om exp[-kz1] ,

cnJz,,þeå 
""nf 

t'9@fl

+DEY2:"þeå ""rr*edr]

cnlz,ulr r r" t+ ""nt*9Ðl]
*DBK2,"þ , ," lå "*ptoø(zdÐl

(¿>o

(.e<o

,þut

t27
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Figure 8.1: Mean electrostatic potential for a one membrane point model system.
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r.02275un ln:o

4.29949 x 10-2(ø

70.718eE
4treg

0.1L995å-1ftE

2.06522vt ln:o

0.34729Ct

70.7t8eI
4reo

0.09425å-1KI

ValueQuantity

Table 8,1: Table of rc, e, ( and z values in the extracellular and intracellular fluid regions

for the one membrane point model.

,fu:

ctJz,,þe;' *nt-.9¿t]
+ D 7Y2),þ +* ""nf - 

tc;¿ 
f 

]

ctlz,,lr',, tå ""pl-tÇall
+DÃ:,,[r,,, I+ --nf-41]

#{",,,lrela"*nPE\t

et>o

(¡<o

Application of the appropriate boundary conditions at the membrane walls located at

*.t, yields the solution for the transverse Hankel transform mean electrostatic fluctuation

potential in region -I for the following two cases.

8.2.r (e > o

(z¡rz2rk):,þu

t29



X J2rø 2(fr exp[

+ Ã,t(2L,Cn,i.t)J2,"

1 nB(za* L)
2

þeà""¿yÇLt

where

X

2v
"¡zç'3lzz,,(2L,Cò 

+
+

Pc:Äl

1

J 2" Elze Ê) Z 2,, (2 L, e t) + ri""lzcÅleE

,r,,lrelÊ,*nre$ta r] ),

(¡>o

(¡<o

(8.13)

(8.14)

(8.15)

(8.16)

(8.17)

Ãa(2L,Cn,et): -

such that

Zzrr(L,("t):

8.2,2 (¿ < 0

,þn(zt,zz,k):

where

I
Jz"tl24Ìl sinh[/c.¿]*

e¡*¡C J;, [z1rt ] "o"t'[t.r]

n,rlze ,llcosh[ft.r]* ,L,,lrellsinh[ftr]c &

cM

X

8n'

eEríE

trr"l,

u*"1

ttu t*

+ Ã,1(2L,Cn,Ct)Iz,,l, 

' 

,r li "*4ry991
x rz,"lzt tu t* ""nre$tar]) ,

Ã,1(Zt',Cn,í.t): -
Kz,"l|l cu lilzr,,(zL,cò + #K;,ulzl (¿ lål

rz,,l2, çu þ122,,(zL,Ct) * *PPÈ\,"Íz l ç¿ lål

130



8,2.3 Asymptotic trar¡sverse I{ankel transform mean electrostatic fluc-
tuation potentia

If we assume that the ratios '# h:o,'# h:o,'# t-:, u,,a "Sþ lr:o < 1, we can

use the asymptotic forms in Appendix D to show

A1 --+

where

such that

Zz"r(2L,Cr)-frffiL

22,r(2L,(¡)lW'

Z2,,(2L,(ì-S hPffiÃ t{"r{-t)

zz,r(2L,<ò+:E#r. vÐ

E

6;"(-L)

1

1

E

qø(-L)
E

qø(-L)

qø(-L)
2

1

2

(¡>o

(¿<o

(8,18)

(8.le)

1+ 6; _Lqø(-L)
E

+ tL"et)

a[,,(zù : 1 +

6ù"("ù : 1-
ilPr*r]+o((2up)-4) ,

tlffi]+o((2uB)-4) 
,

z(jfiexpl-tf"] (.e>o

cosh[,bI]á-r(I)

sinhIkr]6-r(I)

(¡>o

(¡<o

sÙ(zr) :
2l(¿låexp (.e<o

sinh[,bI]+ffi 1-

coshlfr.Ll+9{ØEêltl 1-

1+

+

Zz,r(L,(¡) -
2

sinhlkLl+ffi cosh[/cI]ár+", (I)

2

6î,,("r) : t.;l
6ùr(rt): t-;l

cos¡-lkll¡_9|IJJIEêM 1 sinh[fr¿]6;r(¿)

ffil+o((zv7)-4) ,

ffi]+o((zu7)-4),
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such that

,þnþt,zz,k):

and

where

l-
3
T2e exp (¡>o

(¡<o
qt(zt):

X

X

2l(¡låexp

Thus the solution for the transverse Hankel transform mean electrostatic fluctuation

potential in region I for large k can be simplified to

1
1
4 1

I
42rl_t

,nrcnVn I I - ÊEkùf L - [cø\ùf

"Yzrp(za, z;) exP 2vBr¡2rr(za, zs)

Àzr"Qvr"2)l
Z2,r(ZL,Ct) - t *uwt '- l*ç"] a{,r(-t')

22,,(2L,Ct) + nffi' '-l-*] 6nt

x 
"*plzrulnr,"(-L,"t)+rtz,u(-n,rr)J]) er t o

L+lwlz l*[t+t#l'

t

,
L

2rl_t
,¿Onrn L

1 1
1
4

(8.20)

(8.21)

,þø(zt, zz,k) :

^lzrB(2.,2;') exP 2uBr¡2r"(za, zs)

\2,r(21, z2)

x 
"*plzru¡rtr,p(-L,zt) * ttz,rç-t ,rr)J]) er . o

_nø(z!-zz\ _ ø#l-^i--]+ogzrp¡-+¡ (¿ > o

-nø(zL-zz\ + --L- lqïkt) -.sz-(rz) I Cø ( 02 rz""ltl 4 l

L + EhlU."*-]+ oKzun)-a) (¿ > o

L - ø#lu-P-]+ oKz,n)-a) (¿ < o 
1

Z2,r(2L,(.t) - Øffi'

Z2,r(2L,(.t) + Øffit

1+

1+

6ù,

6l,u

2

,

qø(-L)

qB?L)

vE

vE )(

L

L

Tzrp(z1rz2) :

^lzrB(z1rz2) :
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f + oKzuò-a) (¡ > o
I

I

l+ o((zvfl- ) (.u < o

A numerical solution of the differential equations for the transverse Hankel transform

mean electrostatic fluctuation potential by a shooting method [11a] is used to test the

validity of the asymptotic solution. The numerical and asymptotic solution for the trans-

verse Hankel transform mea;D. electrostatic fluctuation potential show excellent agreement

for the two cases when the source point is in the extracellular or intracellular fluid regions.

For the extracellular case see Figures 8.2, 8.3, 8.4, and Il.5. As the normal distance

from the membrane wall increases, the plots tend to a constant value determined by the

Debye-Huckel type term in the solution i.e'

1
4

1
4

2zr
t lqpkt)L L 2vp

1-l#l

(-u>o
eE&EvE

,þø(q,z2,k)'--+

l*[
1
4

As the transform variable k increases this Debye-Huckel term (the field point a,nd source

point coinciding) has the form

,þø(rr,z2,k)---+ #
This result is consistent with that of Carnie and Chan [4L] for the constant density systems

(both single and two plate) and the linearized GC density for the single plate. Again this

is due to the large fu behaviour being determined by the region near the source point'

For the intracellular case see Figures 8.6, 8.7, 8.8 and 8.9. As the normal distance

from the membrane wall increases the plots tend to a constant value determined by the

Debye-Huckel type term in the solution i.e.

2r i.æl

(¿<o

(¡>o
CI ÑIVI

1
4

1
4

lrl
L'.¡ç¡1

,þt(q,z2,k) ---+

eI&IvI

1D9
Ir) i)

1
4 I'l
Lr+[{fi]'l

1
4 (¡<o
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Figure 8,2: Comparison of the numerical and asymptotic solution for the transverse Han-

kel transform mean electrostatic fluctuation potential at the source point in the extracel-

Iular fluid of a one membrane system vs distance from the membra,rre wall for k:0'001'
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Figure 8.3: Comparison of the numerical and asymptotic solution fot the transverse Han-
kel transform mea¡ electrostatic fluctuation potential at the source point in the extracel-
lular fluid of a one membrane system vs distance from the membrane wall for k:0.01,
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Figure 8.4: Comparison of the numerical and asymptotic solution for the transverse Han-

kel transform mean electrostatic fluctuation potential at the source point in the extracel-

lular fluid of a one membrarle system r,s distance from the membra,ne wall for k:0'1'
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Figure 8.5: Comparison of the numerical and asymptotic solution for the transverse Han-

kel transform mea¡ electrostatic fluctuation potential at the source point in the extracel-

lular fluid of a one membrarxe system vs distance ftom the membrane wall for k:1'
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As the transform variable k increases tbis Debye-Huckel type term (the fiela point and

source point coinciding) has the form

,lt(rr,z2,k) -- L .

eI le

This result is consistent with that of Carnie and Chan [41] for the constant density systems

(both single and two plate) and the linearized GC density for the single plate' Again this

is due to the large k behaviour being determined by the region near the source point.

8,2.4 Limiting forms of the transverse Hankel trar¡sform mean electro-
static fluctuation Potential

The limiting form of the one membrane wall model [41] can be obtained from the one

membrane model in the following manner. Consider the situation where there is an ábsence

of solute and solvent molecules in the intracellular region. As a result

Ct

KI-)0

Thus the quantity

22,,(2L,(¡) - 1 ,

and therefore

--+ 0

1

Yz"ø12(Êl
e pnge,

Y;
1

l2eÊl (¿>o
-A,1(2L,Cn,Ct):

¡.
J2"El2cÈl+

rcr,"¡21çr1* PßBÈI (ø<o1

12, Elzle¡l+ ft nlfrdL Ír,, lzleø I 
å I

This limiting form is equivalent to the solution obtained by Carnie and Chan [41] for the

one membrane wall model.

Other limiting cases of the system occur when the membrane is a perfect insulator (i'e'

eM :0) or perfect conductor (i.e. e¡¿ - oo)'

eø>o

tr,u¡21ç"1tr1

Ar ---+
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Figure 8.6: Comparison of the numerical and asymptotic solution for the transverse Han-

kel transform mean electrostatic fluctuation potential at the source point in the intracel-

lular fluid of a one membrane system vs distance from the membrane wall for k:0'001'
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Figure 8.7: Comparison of the numerical and asymptotic solution for the transverse Han-

kel transform mean electrostatic fluctuation potential at the source point in the intracel-
lutar fluid of a one membrarle system vs distance from the membrarxe wall for k:0'01'
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Figure 8.8: Comparison of the numerical and asymptotic solution for the transverse Han-

kel transform mean electrostatic fluctuation potential at the source point in the intracel-
Iular fluid of a one membrane system vs distance from the membraJre wall for k:0.1.
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Figure 8.9: Comparison of the numerical and asymptotic solution for the transverse Han-
kel transform mean electrostatic fluctuation potential at the source point in the intracel-
lular fluid of a one membrane system vs distance ftom the membrane wall for k:1.
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Appendix C

Two Serni-infinite Mernbrane
Point Model Neuron

C.1 Mean electrostatic potential

The solution to the differential equation for the mean electrostatic potential, Eq' (2.89),

in the various regions, is given by

,þ(rù :

Am -oo ( 211 -D

A7 coshln1zrl + ,ltf -D < zt I D

Ap¡ DSztlæ

(c.1)

The constants Am arrd At are determined by the application of the boundary conditions

at the membrane walls located at *D such that

4no7

CIKT
A¡a : ,þF + cothIrc¡D] , (c.2)

(c.3)At
4rotl 1 I_ I 

-t

e¡rc¡ lsinh[*Ðl]

See Figure C.1. Comparison of this figure with that of the mean electrostatic potential for

the two membrane point model system, Figure 3.1, shows negligible difference in the values

of the potential. This shows that the membrane thickness can be considered as inflnite

(compared with the value of L) for the investigation of the mean electrostatic potential

between the membranes.
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Figure C.1: Mean electrostatic potential for a two semi-infinite membrane point model

system.
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C.2 Transverse I{ankel transforrn iltean electrostatic fluc-
tuation potential

The differential equations for the transverse Hankel transform mean electrostatic fluctua-

tion potential for the two semi-infinite membrane wall system are

¿2

d.7,

¿z

d,7,

¿2

d,?,

¿2

d'7t

rc'],|,r{",,,22,k) : o ,

t*' - *', + .?erfi . +exp[-rc¡21]l'Þ! {',,, "r,u)
4tr -.--ôlzt - zz) ,eI

tr' - o', * *',e,# 
" +"*P[o¡'1]]'þlQ',22,k) 

: o'

(c.4)

(c.5)

(c.6)

(c.7)k2

The solutions to the homogeneous differential equations are

,þ, : C¡ expfk(zr + D)] ,

l,l,r{"r, 
z2,k) : s

,þ!

'rþi

(¡>o

(r<o

(r>o

cPb,,lJzlÇtå ""pt?l]
*Df K2,, l,tzte,lå 

**p[",¡] (¡<o

'þn : C¿ exp[-k( a - D)l .

The Green's function type of solution for the transverse Hankel transform mean elec-

trostatic fluctuation potential is constructed in exactly the sa.me manner as for the two

membrane system with the source point in the intracellular fl.uid using the functions u(21)
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and. u(z) as deflned in Section 3.2.4. Thus the solution for the transverse Hankel transform

mean electrostatic fluctuation potentiai is constructed in region III is of the form

,ú! (",, zz,k) : -Y### .ø\!#Ðue) +ff+etuet) . (c'8)

At the origin and the membrane wall located at -D, application of the boundary

conditions yield the following set of equations

,¡rtú't(-D, zz,k) : ffi*' ÇD)a(z) * rrlLltfrÐu' (-D)

+er
4tr

W(u,a) a(-D)

(c.e)

(c.10)

(o,z2,k '(-¿) 
,

?r(0)

,túf'Q,zz,k): a'(0)u(22) + e¡
tþy(-D, z2,k)

(0)

+ ,,8w,,'10¡,

to solve for the constants ,þr?D,z2,k) arið'rþPQ,rz,k), to yield

únGD,zz,k):
4r (-D)u(22) - Jzo,l ft lå ffiø;f o,z2,k) ,

eyW(u,a)

and

s rr, J'rr rl l-rr,rYl,rl

ffiu'(-D)r' (0)u(22)X

-?r'(o) S2rt A<ì I - rz,,Yz,, lOeÈ l], er)\J2,, (r>o
tþF$,zz,k):

J2q"tlCl sr,rtl,rlnÕ1e,1 l_rr"rtlr,rl,/z1e ,l

Qz)

(r<o

These results for the constants ,þt?D,z2,k) and ,þf@,22,k) ate substitutedinto the

the solution for the transverse Hankel transform mean eiectrostatic fluctuation potential

in region III E,q. (C.8) and the solution can be written in the form

,þ! ("r,"2,k) : ur uQ)u(z>)
er W(uru)

1

,{,å+*'(-D)t'" (o)u

-tl'(o) lsr,,tr,,Í,/t I e, lål - T2,,K2,,1t/il ft lä1] "Or)j

s2,, J!2,,1J 2çj 1 - r2,,u),,1
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and

where

,þ! (rr,, zz,k) : 4r
eI
4tr

u(za)a(z-r)
W(u,u)

e7 W(u,a) s2,rI'2,,1J21 4¡ lål - Tz,rKL,rlr/z I ç,t I
å1

L 1

x {lø.,1 å r+,n] t ]þQ1)u(22)+u(21)u(22)l

| 1 ll,'(o)l
1rt",1 (¡ lå I L "(o) I

x 
lsr,,tr,,¡r/l I (, lål - Tz,,K2,,lJi I e, þ1fuçr¡¡uç"2¡

l+P],e)u(zz)\ (¡<0, (c'12)

Sz"r(D,(,t) :
(¡>o

(¡<o

(¡>o

(¡<o

Tz, (D, (¡)I

148



Appendix D

Mathernatical Ident íties

D.l Bessel functions

The asymptotic expansions presented below can be found in [112], [111]. The subsequent

expansions in inverse powers of z have been derived from the uniform asymptotic expan-

D.1.1 Uniform asymptotic expansions for large order

slons,

where

Also

where

J,(vsecha) x

Y,(usecha) È

Y)@secha) È

tl, (coth a)1+Ð
s:1 u"

exp[-z(tanha - a)]
1+ Ð(-1)"

t/"(cotha)l
u"]

|trutanha ¿:L

trr" (coth a
v"

(D.1)

(D.2)

(D.3)

(D,4)

(D.5)

u"+t(p) : !rr'{t - p\u'"ø) + } I, n - sqz)u"k)aq

J'r(vsecha) N #exp[z(tanha-a)]it"å

+#exp[-z(ranha - a)] 
þ 

* Ë,-t,'
V"(cotha

v"

(D.6)

Setting secha - z arrd expanding the series in brackets in inverse powers of z yields

1

v"(p) : u"(p) - iptr - p\u"-úp) - p2 Q - p2)u'"-{p)

1+Ð
' - i; . * i. #l'+ä - +l - :,1# -Erlæ u"(p)

vsc:L

1,49



t*it-t)"Y#:

1+t v"(p)
u"

+ o(r-5) (D'7)

r_ 11_, 1 1 _ 1lËq _A_ 1l 571 _9rr]- ' lZ u ' 288 v2 zs LS1S¿O 4 ) ua L2488320 48 I

+ o(r-5) (D'8)

' - +; . * i . hltitr'* . +] - :,1#. #ul
+ o("-5) (D.e)

- L1 L 1 1f139 .r'f 1|- 57r ,13-zlL* nr+ IBB;-frLuttno +Tl -ælz+aæ:m+ 48"-l

+ o("-5) (D,10)

a:1

t * i1-t)"u"-f) :

D,1.2 Small argument expansions

When v is fixed ar.d. z ---+ O

D.2

D.2.1

1 lz
lz

;l

v

J,(z) ---+

Y"(r) -+

Modified Bessel functions

Uniform asymptotic expansions for large order

r(z + 1)

-v
-1ttrl I7tL

v"(p)
,./"

(D.11)

(D.12)

(D.13)

(D.14)

(D.15)

(D.16)

(D.17)

(D.18)

r.(uz): #ig^þ.å%P]
K,(vz) : I +,##]t * ir-t )"%P]

r,(,2) : (t + z2¡iffilt . å ryl
x',(vz) : -rlT, G+ z\i exp[-27] r+ f(-r)"

oo

o=1

where

.,t : (L+ z\* + h[

p : G+z\-*
1+ (1 + z\*

Setting z -- i and expanding the series in brackets in inverse powers of z yields

1+Ë
g:1

u"(p)
v"

, - i; . * i. #l#ä . +l - hl##'.#rl
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u"
1+ Ð(-1)' U8

(p)

+ o(r-u) (D.le)

11 11 1l-139 ,21 1l-571 13zlt* n;+ IBB; - æ Lutt* 
+ 4l - ¡1248¡.:,ln-' 48' l

+ o(r-5) (D'20)
s=t

,*iv"(p): ,-11*-L1 1r13e 221

7, vs L-r2t+288æ+FLu**-Zl ,'l1 57t 13

u4 20 48

r + !{-r)"

+ O("-5)

r-- 11- 1

'' lzv ' zBB

+ O(r-5)

(D.21)

v"(p) -us

1 1f139 "'1 1l 57L LS_z

7-æLsrs¿o- 4l-7Lz,.¡,æzo

D.2.2 Small argrrment expansions

When r is fixed and z -+ 0

r"(z)

s:1

where

D.4

D.4.1

1

l;1"1)+u

(D.22)

(D.23)

(D.24)

(D.25)

--+ I (

K,(z) ---+ 
åttrl i:)

D.3 Bessel integrals

¡o'rffi : Io'" 
or 

Io" 
ore 

fo* 
ar,r'#iu

v

2tr2

f2n /Êæ læ aiÞh 
"ikPcoa9: J, d0 Jo orr 

J_*dkr@n n, * æ

: ,n, L ¿kkJo(kp)#

Exponential integral

Definition

T: Ê+"2

1,,* 
o'E"(") : e-rt

ttú

n-L e-æ

l"*
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D.4,2 Asymptotic expansion

E"(z)
e-z l. n . n(n'tL) n(n* 1)(n+ 2) 

,

lt-r*- ", ---¡ - (D.27)

D.5 Hydration integrals

Debye-Huckel term

îrrùa,s nsþz_lL) "- 
nBvn(0)r

I d*, (zz - zt) e
Jmin r

!'zr lz^o"
," 

J,,'_, )""" 
d,z2 (22 - zy) eñøkz+L)

lPmøt

Jo*r^ 
dø m

,-otr"(o)rr/ p'¡þ*tf

p3+ Qz - "t)'

1 1I

T

X

X

2r ln B u B (0)f -' 
I,',' : :: "" n" 

o 
", 

(rz - rt) eo n ( uz + L)

¡xnvø(0

J *r,uro,

*(zz-zt)2 e*
dæ

JilJG;æ rn

2trfnevn(o)f -tl,',':,":""n"0""(rz-"t)"np(zz*L)

En rcBve(0) P2rr¿** ("2 - ,t)2 En n6uB9)1/ffi,,1 (22--Vff
X

and the image term

X

En nsuB(0) Ê,,¿,* ("2 + "t 
+ 2L)2

n

n-L

l::" d,x2 (22 * zt + 2L) e*n(zz+r': 
e-Ñnv-:(,)r' 

lå] 
"

ztrlnBul(0)f-t 
l,',':,':"n." 

o"r(rz + "t + 2L) enp(zz*L)

(D.28)

(D.2e)
En neus@)ffi

pL¿*t(rz+"t+2L)2

Substitution of the asymptotic expansion for En(z), into these expressions such that the

Debye-Huckel term has integrals of the for

2nlnBu a(0)1"-' f'* "*"" d,r, (rz - "t) 
eñøþz*L)

J z1-Zaaa
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2trþlrul(a)ln-L ¿^ø(ur+", I::,dy y 
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ffù
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X
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