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THESIS SUMMARY

Integrated field, petrographic and geochemical studies of four Precambrian
felsic volcanic terrains in Australia have been undertaken with the object
of gaining an insight into the processes of magma generation and crustal
development in the Precambrian. The areas examined include two Archaean
felsic volcanic centres in the Norseman-Wiluna greenstone belt of the Yilgarn
Block and portions of two post-orogenic Middle Proterozoic volcano-plutonic
terrains in central-southern Australia.

The Archaean felsic volcanic rocks are confined to discrete centres and
show no systematic relationship in space or in time with the tholeiitic and
komatiitic volcanic members of the greenstone succession. The two suites
examined show typical calc-alkaline major element geochemical characteristics,
but appear to have evolved along different lines of liquid descent from common
parental magmas. On the one hand, extended fractionation of plagioclase and
clinopyroxene at shallow depths (<10km) has yielded acid rocks relatively
enriched in REE, Zr, Nb and Y, but depleted in Sr. On the other, prolonged
fractionation of amphibole at greater depths (20-30km), perhaps near the
base of the crust, has resulted in acid differentiates that are relatively
depleted in HREE, Zr, Nb and Y, but enriched in Sr. It is postulated that
the primary magmas for the calc-alkaline suites were derived by hydrous melting
of a LIL element-enriched mantle source over a significant pressure interval
(e.g. 10-20kb). Experimental evidence indicates that melting under these
conditions will yield a range of primary magmas that differ chiefly in their
Mg0 and SiO2 contents, and this can account for the variable levels of Mg0,

Ni and Cr observed in the andesites. Such an origin is also able to explain
why many of the low-silica andesites, which may be little removed by different-
iation from their quartz-normative mantle-derived parents, are relatively
enriched in Mg0, Ni and Cr compared with modern andesites. Available data

for calc-alkaline volcanic rocks from four other centres in the Yilgarn Block
suggests that these conclusions have general applicability.

The two post-orogenic Middle Proterozoic volcano-plutonic terrains, by
contrast, lack calc-alkaline andesites and are characteristically bimodal.
Both of the provinces studied are comprised of vast subaerial ignimbrite
sheets with subordinate intercalated basic flows and voluminous granitoid
rocks, and have undergone minimal deformation and metamorphism. The acid
intrusive and extrusive rocks are enriched in all LIL elements compared
with modern calc-alkaline suites, and geochemical modelling calculations
favour an anatectic origin. The moderately low silica contents of the primary

magmas (58-65% SiOz) indicate a relatively basic crustal source, in order to
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avoid the necessity of invoking excessive degrees of melting (>60%). This

is supported by trace element modelling calculations which show that at

degrees of melting in excess of 40%, the enrichment of LIL elements in the

melt is insufficient to account for the levels of these elements observed in

the acid volcanics. Of the various possibilities tested for the crustal

source, a basic granulitic refractory residue is considered most plausible on

geochemical grounds. A literature review demonstrates that late-to post-orogenic

bimodal igneous activity is widespread in the Proterozoic of other continents.

The acid rocks in particular, show comparable geochemical characteristics to

the Australian examples, which the present studies indicate could be explained

as follows:

1. Relatively high LIL element contents, as the result of a sialic
crustal source.

2. Particularly high Zr, Nb, Y, REE, Fe and Ti contents, due to the relatively
high temperatures of melting which contributed to the disintegration of
minerals normally refractory under low temperature wet melting conditions
(e.g. zircon, apatite, sphene, spinel).

3. Relatively low A120 Ca0 and Sr contents, reflecting a high proportion

>
of residual plagiocfase probably as the result of the relatively dry
conditions of melting.

Although the felsic volcanics of the Archaean and Proterozoic terrains
studied have contrasting origins, it is notable that the relatively minor
associated basic volcanics have comparable critical geochemical characteristics
(e.g. elemental ratios), indicating derivation from similar LIL element-
enriched upper mantle sources. It seems likely that mantle diapirism provided
the heat for melting of the upper mantle and crust in both the Archaean and
the Proterozoic, although the scale of diapirism probably differed. During
the Proterozoic, significant amounts of heat for crustal fusion may have also
been contributed by basic magmas that were entrapped beneath the relatively
thick, bouyant sialic crust existing at that time (c.f. Archaean). The
record of felsic volcanism in the Precambrian can thus be explained in terms
of an evolving crust, in which the "sialic" component increased in thickness
with time through partial melting of basic igneous precursors and also via
direct additions from the mantle of acid, calc-alkaline differentiates.

Once formed, the sialic crust was reworked at various stages, culminating
with the development of the voluminous acid magmas in the post-orogenic,

Middle Proterozoic era.
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