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SUMMARY

The research associated with this thesis has been undertaken with an
objective to add to the understanding of the school timetable problem,
and of producing a solution technique that is practical for the South
Australian Secondary school timetable problems. In the introduction, the
main investigations already published on this topic are reviewed, and the

nature of the problem in general terms is presented.

|
Next, the theory necessary for the formulation of the mathematical
model is summarised. Such disciplines as set theory, combinatorics, systems
of distinct representatives and graph theory are included. The Marriage

Problem, closely allied to the timetable problem is discussed.

Then the school timetable is theoretically formulated as a resource
allocetion problem with constraints, for defined activities. Practical
features existing within schools are discussed. The problem is described
in two related parts. First, the simple tight timetable problem is defined,
so that a basis for comparison with other solution methods is established.
Second, the practical problem is derived by expanding the constraints on
the simple problem, so that the method will be of practical benefit to

zducation administrators.

The theoretical formulation is preceded by a detailed discussion of
the South Australian secondary school timetable problem. Each aspect of
the practical problem is defined, and provision for its inclusion is made

in the solution method. The aims of existing manual techniques are present-



ii.
ed and the shortcomings of manual systems for solving timetables discussed.

The algorithms for this study are then presented. Extensive use of
binary operations, set theory and combinatorics, combined with the daily
activity requirements of a school and computer application form the basis
for this solution technique. Considerable attention is given to the economy
in use of data storage and working arrays within the computer model. Methods
for the inclusion of special features in timetables such as teacher-class
sets involving several school resources for a specific time-period are
included in the algorithms, énd have important assignment implications.

It is concluded that a proper understanding of these and other implications
in the timetable problem is needed if the computer techniques are to be

applied effectively.

Then the computer program is discussed. Core storage problems and
varicus techniques to increase efficiency are presented. The effect of
special features required in practical problems are investigated. The
input in the form of daily activities for the timetable problem are

discussed.

The mathematical model is general enough to be applicable to a variety
of school timetable problems. The benefits of allocating time-periods to
the daily class-activity requirements are discussed. It is noted that the
technique used in this study can be expanded tu other larger weekly problems
at the expense of more computer time. A direct application of the solution
method to the Craigmore High School timetable problem is presented, to

demonstrate the practical nature of this system to an existing timetable
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problem. The sclution produced is presently in use at that school and

the program will be used for other schools in the future.

The benefits of an automated solution method are examined, and several
conclusions that had impartant implications for the school system were
reached. The method added a considerable contribution to the topics of
school resource allocation problems, staffing requirements and timetable
error-detection techniques. The program demonstrated that significant
economies in core storage can be obtained through the use of bit patterns
within computerwords, without any accompanying penalty in computational
speed., The economies of generating a computer solution was a prime

consideration.,

The thesis concludes with a general discussion in which various
conclusions are drawn. New and extended areas of research are

identitied.



CHAPTER 1

INTRODUCTION

HISTORICAL BACKGROUND

A school timetable is required to co-ordinate the complex daily
activities of the school environment. The efficiency of the
school organization is reflected in the quality of this schedule
of activities. During'early times, the construction of the school
timetable was a relatively simple exercise, since one teacher
taught all subjects and the number of subjects offered was few.
Now, with the specialist subject teachers, and the wide variety of
subjects offered to students, the generation of school timetables
is becoming increasingly more difficult. Manual methods are time
consuming, and the increased complexity of the schedules has
directed investigations to the production of timetables by computer

methods.

The situation is further compounded by the variety of school
types now in existence, such as the High, Technical High and Area
Schools of South Australia. Each type has its own requirements,

and the structure of an acceptable solution differs for sach school.

One method of solution involves the enumeration of all arrange-
ments of activities, ignoring those that do not satisfy the

conditions of the timetable problem. e.g. no resource shall be



allocated to more than one activity during any one time-period. From
this set of solutions the 'best' solution is chosen. However this
method fails through the volume of computation necessary to produce
the millions of arrangeéments. This was noted previously by

Appleby et al. (2 ), and this method can be dismissed, even thaugh

high speed computers are available.

1+1.1 Manual Methods

As mentioned by Sefton (52), many early articles on
school timetable methods were included in various teachers
journals not readily available today. Probably a typical
example of such publications is by Robinson (45). This
paper described prepared forms and detailed a list of steps
for the generation of a timetable solution. The technique,
however, would need adaption for schools other than the
Canadian school for which it was designed, and is therefare

not generally applicable.

In 1961 Lewis (28) compiled a comprehensive manual for
the hand generation of English Grammar school timetables.
The timetables considered were complex in their structure
and included subject options through the grouping of lessons
into "sets" allocated to common time-periods in the timetable
solution. The variation of the cycle length of the school
week of 6 to 10 days was discussed. Once again the method

was designed for hand techniques in solving English Grammar



school problems and was not widely applicable. However the
"sets" are related to the teacher-class sets used in this

thesis and described in a paper attached as Appendix A.

More recent attempts to formalize the school timetable
problem have been published by Lawrie (27) and Clague (12).
The approach used by lLawrie described 'layouts' which are due
to Lewis (28). The layouts are "expressions of the curricula
of groups of pupils" and the approach uses larger units of
departments and groups of students of the same year level.
The formulation is a prelude to a computer solution method
using linear programming techniques. e.g. Lawrie (27).
However the method as described is not directly applicable
to the South Australian situation because of part-time
teachers and the present curricula organization. The paper
by Clague assumes that there could be some agreement "for
formulating a preliminary timetable which may then require
minor adjustments to meet particular requirements". The
paper then discusses a systematic approach to solving the
timetable problem, and suggests that the method may lend
itself to computer implementation. No further work appears

to have been done using this approach.

Various techniques using mechanical aids such as magnetic
boards for interchanging timetable entries have been observed,

with the common faults of being time consuming, labourious
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and giving no guarantee of a solution.

Early Publications

A series of publications, quoting work on computer
generated timetables began in the late 1950's and early 1960's.
0f these, was a group of 3 papers by Bush, Caffrey, Dakford and
Allen (8), Dakford (38), and Bush (7) on the Secondary
Education Projec# at Stanford University. The problem is
described in the‘first paper and possible approaches to the
salution are considered by Oakford, who also indicated the aim
to combine the allocation of students to classes with the
timetable problem. The third paper of Bush reports success in
the design of a computer program. Three publications (58),
(49,), (50) from Stanford outline the approach of producing a
preliminary master schedule by computer and incorporating
changes, additions and corrections using other programs. Up-
dating is done manually and the computer is used to madify
and record the effects of these changes. No indication of

the techniques employed is given.

Other short papers of Flanagan (16), Welton (57), Wulff
(58), and Blackford (6)are also noted but none given any

indication of the methaods or techniques that are applied.
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Human Imitation and Heuristic Procedure

Early attempts to imitate manual methods were developed
in the early 1960's and examples may be found in publications
by a number of authors, e.g. Appleby et al (2 ), Barraclough

(3 ), Berghuis et al (5).

There are basically two approaches that are evident, as

noted by Ryan {46), these being :-

1. The interchange of pairs of entries to "improve"

a trial timetable.

2 Generated assignments are entered in an evolving
timetable if feasible or rejected otherwise. When
an assignment can not be made, the program retreats
to a previous stage of production and restarts.
Several sophisticated heuristic techniques were
incorporated to formalise the abstract features of
manual methods. However these early efforts usually
failed to produce solutions acceptable to schools.

The main reasons were :-

(a) the computer could not view the problem as a
whole, nor did it possess the experience cor

intuition of humans.

(b) the initial requirements and constraints were

presented to the computer as inflexible
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conditions, but manual methods allow for
modification of requirements when difficulties

arise.

(c) thé‘recognition of infeasibility as a result
of an assignment was not programmed, and thus
it was difficult to determine the critical
assignment causing infeasibility later. Look-
ahead feature is included in the paper by

Hemmerling (24 ) to overcome such infeasibilities.

Oliver (40) using heuristic techniques reported some
success using a "stable method" to keep track of assignments
and back-tracks, but solutions produced bear little resemblance
to actual school timetables. However, a tree-search approach

similar to Oliver's, was adopted in this thesis.

Theoretical Methods

The first mathematical formulation of the timetable problem
was proposed by Gotlieb (18) who recognised the need for
conditions indicating feasibility. The model used a result
of set theory to derive these conditions, the Hall's
conditions (21), which Gotlieb suggested as necessary and
sufficient for feasibility. Extensions to this theory were
developed by Cisma ( 9, 10), Duncan (14, 15), and Lion's

(29, 31). Lions (30) also demonstrated that the Hall



conditions were not sufficient for feasibility by a counter-
example. The main difficulty with the method, was the
inflexibility of the initial conditions that necessitated

procedures for reruns with revised requirements.

The method has however been used successfully in Ontario,
Canada and the implementation has been well documented by
Lions (31, 32, 33) who also draws attention to the experimental
nature of the method at present. The execution times at
present are large due to the number of reruns needed for a

solution.

Other Methods

Several other methods have been published, e.g. Mihoc and
Balas (35) based on the theory of mathematical programming
and Johnston et al. (26) with a two-dimensional allocation
problem involving items and time-periods. However, methods
have not been extensively tested and the application to real-
school problems have not been established. The method of
Johnston and Wolfenden was promising and the items, (resources
of a school) were grouped together for lessons in the timetable
solution. The approach used by Hemmerling (24) is similar,
in that the activities of Hemmerling related to the items are
of Johnson et al, and consists of groups of resources meeting

together for a lesson.
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The method of solution by Hemmerling has been applied
to real-school situations and results have been presented in

this thesis.

Other recent work has been published by De Warra (13),
based on Swiss schools, but at this stage only theoretical
results are available. Clacher (41) has generated timetables
for real-schools using PERT, but work has been terminated and
no further results published. Several reruns were also needed

for this method of approach. Other more general publications

such as (1, 25, 51, 53, 54) were also noted.

METHOD OF PRESENTATION

In the presentation of this thesis, practical features of the
school timetable problem are examined. Computer technigues for the
golution of real-school problems are developed and results are dis-

cussed. The subject matter of the thesis is presented as follows.

Chapter 2, contains the fundamental theory associated with the
school timetable problem. Relevant aspects of set theory are intro-
duced. This leads to the bijective mapping generator which plays
an important part in the allocation of the activities of the time-
table problem. This is followed by a discussion of graph theory
that is used in the formulation of activity paths for required
school activities. Then the theory of combinatorics, permutations

and systems of distinct representatives is presented. Systems of



distinct representatives are particularly relevant in the detection

of infeasible situations in the solution method of this work.

Chapter 3 contains a discussion of the practical features of the
South Australian Secondary School timetable problem. Various
characteristics such as teacher-class sets, fixed time-periods,
block-periods and school policies are discussed. The effects of

limited resources in relation to the school timetable are noted.

A theoretical formulation of the school timetable problem is
given in Chapter 4. The mathematical model is discussed together
with the method of solution. The problem, as presented, is combin-
atorial, and bijective mappings for the allocation of activities are
used in the solution method. Important aspects of the work are
discussed in this chapter, and are related to the solution algorithms
o’ chapters 5 and 6. The simple tight timetable problem is defined
at this stage to give a basis for comparison with other solution
methods and also for testing purposes. This is followed by a

mathematical description of the practical problem.

In chapters 5 and 6 the algorithms for the computer program are
presented. The composite availability vector is discussed in detail
along with the implication algorithm. The importance of the two
aspects in relation to the rejection of infeasible mappings is
discussed. This leads to techniques for the reduction of the
binary matrices containing all mappings for the timetable solution.

The bijective mapping generator is formulated and the philosophy
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of the use of mappings in the solution method is discussed. Two
important aids for the detection and correction of infeasible
problems are presented. They are the resource load analysis and
clash matrix. The use of these aids and the method of construction
of the clash matrix is given. These are practical devices and are
useful for both computer and manual solution methods for the school

timetable problem.

Chapters 7Tand 8 are concerned with the computer program and
solutions of timetable problems. Methods of data presentation and
conversion of the algorithms of chapters 5 and 6 into program form
are discussed. The method of application of the computer program to
timetable problems is presented and results are given. Test runs are
described, results analysed and conclusions reached. Chapter 8 is
primarily concerned with a description of the application of the
domputer program to a practical school problem, selected by the
Education Department of South Australia (the Craigmore problem).

A discussion of the difficulties of the real problem is given

together with the solution presently in use at Craigmore High School.

Chapter 9 contains a discussion of the major conclusions of the
research. Future research topics are outlined and suggestions are

made for future extensions of the work of this thesis.

It is submitted in Chapter 9 that the findings of the research
of the thesis have a direct application to school timetable problems

and will be of considerable value to those involved in the preparation

of school timetables in practice.



CHAPTER 2

MATHEMATICAL THEORY FOR THE SCHOOL

TIMETABLE PROBLEM

INTRODUCTION

The initial sections of this chapter summarise the combinatorial
theory required for the approach to the school timetable problem
contained in this thesis. A short resume of set theory, combinatorics
and graph theory has been Compiled.from the references of H. Ryser
(47 ), M. Hall (19 ), J. Riordan (44 ), C. Liu (34 ) and F. Harary
(23 ). Various theorems have been included in the text without proof,
but reference has been given. The theory of distinct representatives
has an important application in the solution method, and has been

quoted from the authors L. Mirsky and H. Perfect (37 ), C. Berge ( 4 )

.and D. Raghavao (43 ).

The final section of this chapter summarises graph theory, to
be used in the formulation of the mathematical model of the timetable
problem. This chapter is a theoretical review, in preparation for the

mathematical procedures presented in chapters 4, 5 and 6.

SET THEORY

This section summarises the aspects of set theory, that have
direct relevance to the work of this thesis. It will be shown in
chapters 3 and 4 that the school timetable problem requires the

allocation of resource vectors to time-periods (section 3.2, chapter
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3). The various set operations used are quoted in this section.

The notation for a set is described as follows :-
T = {1, 2, 3, ceeecesd
denotes a set T of elements labelled 1, 2, 3, «.... . A set may also

be described by listing all elements of the set.
ty € T signifies that t4 is a member of the set T, and

11 ¢ T the contrary, that t{ is_not a member of the set T.

If T is a finite set of n elements, T is called an pn-set*. When

n =0, T is the null set, denoted by :- §

An r-subset of the n-set T is a collection of any r elements of

T, t< n. When r< n, the r-subset is called a proper r-subset of T.

It will be shown that the teacher resources and class resources,
described in chapters 3 and 4, are proper subsets of the set of

resources of a school.

If A(t) is some statement about the element t € T, then the set
T*, containing all elements of T for which A(t) is valid is denoted

by,

™ = {t; A(t), t T}

Associated with each set T is a unique number denoted by |T|

called its cardinality or the cardinal number.

If T is an n-set, then the number of elements in T is given by
its cardinal number and is,

|Tl = n

*The timetable problem will always be concerned with finite sets.



Let Ty and T, be two sets (not necessarily finite).

T.| v T, is defined to be the union of sets T1 and T, containing

all elements of both T1 and T?.

T1 a T2 is defined to be the intersection of sets T1 and T2

containing all elements common to both T,| and T2.

If T1n T2 = ¢ then T1 and T2 are said to be disjoint (have no

common elements).

In general,

m m
LJ T4 and r\ Ty
i=1

i=1

will denote the union and inlLersection of the sets Ty, Toy eeneee

Tml

Let T be a set. Subsets Ty, T, Tgy esee Ty of T, form a

nartition of T if,

T; # ¢

1l
=

i#j dimplies T4 o Tj

I
—

T1 () TZU ooon---oUTm

The T; are called classes of the partition.
EXAMPLE 2.1
An example of a partition is given by the following
T = {1,2, 3, 4, 5, 6}
Then
{1, 2, 31, {4}, {5, 6}

is a partition of T with classes
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Ty = {1, 2, 3}
Ts = {4}
T4 = {5, 6}

The difference of sets T and S, denoted by T-S, is the set con-

taining the elements of T that are not elements of 5.
T-5 = {t; teT, tgs}

Set theory is used extensively in the solution method described in
chapters 5 and 6. The operations of union and intersection are
applied to the availability arrays of chapters 3 and 4 to determine
common time-periods available for a defined sub-set of resources.
The solution method is based on the generation of feasible mappings,

and a discussion of mappings is now given.

tet T = {1, 2,3, v.. , ntand 5 = {s(1), s(2), ..., s(m)}
be two sets.
A mapping A of T into S denoted by

Ay o= (] 2 3 n
1 - Si(1) Si(Z) Si(a) seoe =]

is a rule that associates an element s:(ts) € S with each element

i
tj 8 T.
Each sj(tj) = 24;i(tj) for each tj €T and is called the

image of tj under the mapping A

T is the domain ofAj and S is the range of A i

For brevity, the mapping is sometimes written

A . . T into 5



A mapping Aji is surjective (a surjection) if, for every

Si(tj) e S, there exists at least one t; € T such that

£ (t5)

(every element of S is an image for at least one tj e T.)

A mapping Aj is injective (an injection) if,
ty# tg  implies Ay (t;) 7 83 ()

for every tj,tk e T.

(Distinct elements of T have a 1-1 correspondence with distinct

images of 5).

A mapping 4; is bijective (a bijection) if it is both surjective
and injective, and is called a permutation of the images (every

element of S is an image of one and only one element of T).

Note that mappings of T into S that have a maximum range of

LY . 3 .
AMalues in S as possible, are necessarily

injective if |T l < lS |

|5 |

surjective if |T | > |S |

bijective if ‘ T‘

EXAMPLE 2.2
tet T = {1, 2, 3, 4 and S = {a, b, c}

An example of a surjective mapping is

1 2 3 4

A1 - (a b a c

)

An example of an injective mapping for the sets T = {1, 2, 3}

and 5 = {a, b, c, d} is
1 2 3
Az = [a c d)
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An example of a bijective mapping for the sets T = {1, 2, 3, 4}

and § = {a, b, c, d} is

A family of elements of T indexed by I is denoted by

I' = (tj s+ ic€ I)
where
I = {1, 2, 3, «os 4, N}

is the set of natural numbers, and I' is an injective mapping, such

that
r I into T
with
T (i) = ti , ti€ T, i = 1,2, 3, «.v.
EXAMPLE 2.3
Let T = {a, b, c, d}

Then (a, c, d) defined by

is a family of T indexed by I = {1, 2, 3}
Let A1 and Ap be two bijective mappings that map T onto itself.
Then the wapping
A (A5)
is given by
8y (a (%))

for each tj; € T
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EXAMPLE 2.4

The set T is given by T = {1, 2, 3, 4} and the two mappings

A1, A2 are defined as
1 2 3 4 1 2 3 4
A1“(2143)*A2=(1432)
Then
1 2 3 4
Bplay) = (g 3)

The solution method described in this thesis generates feasible
bijective mappings at each stage aof the solution. This generation,

of feasible bijections, will be discussed in section 5.3 of chapter 5,

when the bijection generator is stated.

Before proceeding with the theory relevant to the enumeration
of the solution space for the problem, a brief resume of graph theory
is given. The mathematical model of chapter 4, section 4.2 formulates
The

{,he timetable problem as a set of undirected acyclic graphs.

notation and definitions of this section are quoted from F. Harary (23).

GRAPH THEORY

A graph G consists of a finite non-empty set V of n-points
together with a described set X of m unordered pairs of distinct
points of V. Each pair x = {u,V} of points in X is a line of G and
x is said to join u and v. A graph with n points and m lines is
called an (n, m) graph. Under this present definition the graph G

is an undirected graph.
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EXAMPLE 2.5

A surjective mapping, for example, on the two sets

T = 1, 2, 3, 4y , S = {a, b, c}
defined by
1 2 3 4
A = (a b a c)

may be represented by the labelled graph
1

a
2
b
3
/ c
4
The point set V = {1, 2, 3, 4, a, b, c }and lines X = {1a,
Jda, 2b, 4c}

A graph G is labelled when the n points are distinguished by

names, (as in example 2.5).

A bigraph (or bipartite graph) G, is a graph whose point set V
can be partitioned into two subsets Vy and V2, such that every line
of G joins a point of Vi with a point of V5. This is the case in

example 2.5 where V, = T, V, = S and Vivu Vv, = V.

If G contains every line joining V4 and V5 then G is a complete

bigraph.

Note that by definition, a graph does not permit a line joining

a point to itself (called a loop).
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For the purpose of this thesis, much of the theory involves
undirected graphs that do not have more than one line joining any
two distinct points. When more than one line is allowable, these
are called multiple lines and a graph that contains loops and

multiple lines is called a pseudograph (Figure 2.1)

Figure 2.1 : A pseudograph

A walk of a graph G is an alternating sequency of points and
lines v, X{, Vi, X2, V2, eee 3 Xpy Vn, beginning and ending on
points, and each line joins the points preceeding and succeeding it.
Iy the walk is closed, vg = v_, then it is a cycle, provided the

n points are distinct and n > 3. (see example 2.6).

EXAMPLE 2.6

V4 X4 Vo
5 X6 2
V5 x4 V4 X3 V3
Vi X4 Vg, Xg Vg X3 Vg X5 YV, is a walk
Vi Xq Vp X5 Vg Xq Vy Xg Vy is a cycle
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A walk is closed if vg = vp and is gpen otherwise. It is a
trail if all lines are distinct and a path if all the points (and

hence all the lines) are distinct.

From example 2.6, Vg X4 V4 Xg V2 X2 V3 is a path.

A graph is connected when every pair of points are joined by

a path.
A graph is acyclic(1) if it has no cycles.

A tree is a connected acyclic graph. Any graph without cycles

will be called a forest and the components of a forest are trees.

The timetable problem is represented as a set of trees, that
describe all activities for each course taught within the school.

(Refer to chapter 4)

A directed graph (digraph) D consists of a finite non-empty set

Vv of points, and a defined collection X of ordered pairs of distinct
points. The elements of X are the azxcs (directed lines) of D.

(See Figure 2.2)

A 4

Figure 2.2 : A directed graph
(a digraph)

(1) The term acyclic is sometimes used to mean a graph that has no
circuits. However, the above definition will be adopted within
this thesis.
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COMBINATORICS

Proofs of the following theorems have been omitted, but may be
found in the references of C. Berge ( 4 ), and H. Ryser (47 ).
Combinatorial theory is used for the enumeration of the size of the
solution space for the timetable problem (section 4.3, chapter 4),
and also in the determination of feasibility during the stages of

the solution method (chapter 6).

A x B, the Cartesian Product of the sets A and B is the set of

ordered pairs (a, b) where a € A, b € B.

A" = A x A Xx ....x A is the set of n-tuple (&y, ay, «.. , a,),

ag EAfori = 1, 2, ..., N,

2.4,1 THEOREM

The number of subsets |[P(T)| of the m-set T = {t4, to,
ess tm} is
[P(T)| = 2nm H. Ryser (47 )

An ordered r-tuple (t1, tyy «.e , t.) of not necessarily
distinct elements of the n-set T is called an r-sample of T.

N(ti) denotes the multiplicity of the element t in the

r-sample.
2.4.2 THEOREM

The number of r-samples of an n-set is nT,

H. Ryser (47 )
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This theorem is equivalent to the proposition that the
number of mappings of an r-set T into an n-set A is n®.
C. Berge ( 4 )
An r-sample (ty, t,, ... , t; ) of an n-set T, 1 ¢ r¢n,

such that N(t;) = 1 foralli = 1,2, ..., r is called

an r-permutation of n-elements.

An n-permutation is called a permutation, and is a
bijective mapping of the n-set T onto itself. The graph

assaciated with an r-permutation is a bigraph (section 2.3).

THEOREM
The number of r-samples without repetition of an n-set is
P(n, r) where
P(n, ) = n(n=1)(n=2) +... (n-r+1)
H. Ryser (47 )
This theorem is equivalent to determining the number of
injections of an r-set T onto an n-set A.
n-factorial is written n! and represents
n(n=1)(n=2) +e¢. 1 if n s 0
nt = {
1 if n=20
and is the number of n-samples (permutations) of an n-set.
THEOREM

The number of permutations of n elements consisting of
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p elements of type 1

g elements of type 2

is given by
n‘./
(p! g! eevees )
J. Riordan (44 )

2.4.5 THEOREM

The number of bijections of an n-set X onto an m-set A,
m = n is n!

C. Berge (21 )

2.4.6 THEOREM

The number of injections of the n-set X into the m-set A,

n<mis

where

C. Berge (21 )

2.5 PERMUTATIONS

The generation of permutations is the basic feature for the

solution method of this thesis. Each stage of the method requires

-

the bijection generator (section 5.4, chapter 5) to produce a
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feasible mapping for the resource requirement. A review of

permutation theory is therefore included.

A permutation of degree n is a bijectian, written

1 2 3 cceves n
A= G kp kg eesees )
of the set T = {1, 2, 3, «ee. , N} oONto itself.

Assuming T to be an ordered sequence of elements 1, 2, 3, «s0 ,

n, then to effect the permutation A on these;elements is to replace
\

each element i by k; = A(i). The resulting n-tuple is called the

re-arrangement of the sequence 1, 2, 3, «.. N by the permutation A.

2.5.1 THEOREM

The permutation of degree n form a group S, called

the symmetric group of degree n.

C. Berge ( 4 )

From the theory of the preceeding section a directed
pseudo-graph is described as a directed graph that may contain

loops and multiple lines.

Each permutation & can be associated with a directed
pseudograph, by representing the elements of T by the points
labelled i = 1, 2, «.. , N and by an oriented line directed

by an arrow joining i to A (i) for each i,

Since A is a bijection, there is only one incoming and

one outgoing arc for each vertex i.
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EXAMPLE 2,7
The permutation

A‘(315426)

may be described by the directed pseudograph

1 > 3
4 6:

Each component of the directed pseudograph is a cycle of the

L
- oae

& % 5

permutation, and these cycles partition the n-set of the
permutation.

EXAMPLE 2.8
The components of example 2.7 are {1 352}, {4}, {6} and form

a partition of the set {1, 2, 3, 4, 5, 6}.

If A has the first row in standard order 1, 2, 3, «.. , N, then

4 may be denoted by
(k1, Koy eee kn)
where
ki = 4&(1) for i = 1,2, ...

Then the mapping A is characterized by the permutation

(k1’ k2’ o s ] kn)-

If A contains cycles, then A may be completely defined by
listing the cycles of the permutation (the components of its associated

directed pseudograph).
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EXAMPLE 2.9

Consider the permutation

A= |

with components that give the partition
{1, 2, 3, 5}, {4}, {6}
and characterized by
(315426)
may be completely described by listing its cycles

(1 352) (4) (6)

The length of a permutation, is the number of elements in its

longest cycle.

A Right Cyclic Permutation (RCP) of length n is denoted by

(1 2 3 R n

n 1 2 v n-1)

and a Left Cyclic Permutation (LCP) of length n is denoted by

1 2 3 - n
(2 3 4 . 1)

A circular permutation consists of one and only one cycle of
the permutation of length greater than one. The length of this
cycle is the length of the permutation.

EXAMPLE 2.10

The permutation
A = (1352) (4) (6)
of the previous example is of length 4 and since this is a

circular permutation, it may be more simply written as

A = (135 2)
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the single components being implied.

Let A1 = (81, 321 eeso ar) and A2 = (b1, b2, es e ¢ br) be

two permutations of an n-set T, r© < n.

Then A, is incongruent to Ay if, for every i =1, 2, 3, eww 4 T

a; # by H. Ryser (47)
Further, when 4, = (1, 2, 3, ... n) then A2 is called a derangement

of A4, having no element in its natural position.

H. Ryser (47) shows that if

D, = number of defangements of A1
D, = 1
Dy = 0O
*hen
Dn = (n—1 )(Dn_z + Dn_1 )

In a later chapter it is shown that the school timetable problem
requires the generation of incongruents and derangements at each stage
of the solution method. With teacher-class sets (defined in section
3.2 of chapter 3) coincidences are admitted and these will now be

described.

Letd, = (ay, ap, ««s , a,) be a bijective mapping of

T = {1, 2, «es , N} onto itself.

Then A admits a coincidence at i if

ag = A1) = i



2.6

28.

2.5.2 THEOREM

The number of permutations admitting exactly p coincidences

is

Py = () Plnop)
where

P(1) = 0O

P(ny = n Pn=1) + ()"

C. Berge ( 4 )

SYSTEMS OF DISTINCT REPRESENTATIVES

This section summarises the combinatorial theory associated with
the theorem of P. Hall (21 ) on distinct representatives. Theorems
are quoted from the references of L. Mirsky (36 ), M. Hall (20 ) and

L. Mirsky and M. Perfect (37 ).

ey

The theory of distinct representatives (or transversal theory)
has been shown to be important in the timetable problem {see for
example J. Cisma ( 9 ), C. C. Gotlieb and J. Cisma (10 )). For the
purpose of this thesis, the following theory will be used to determine
the feasibility of unassigned requirements of the timetable problem,
at each stage of the solution (see chapter 5). Feasibility will he
demonstrated, through the determination of a system of distinct
representatives for the CAV (section 5.2, chapter 5) of each class
of the problem. The feasibility test will be discussed fully in

later chapters of this thesis.
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Consider the family p = (Cj, 1 € I) of the subsets of an n-set
£ indexed by I. Choose an element t; € C; for each i ¢ I. Denote
the family of elements chosen by

6 = (t; 5 J e J)

Then the family of & of elements of p is a system of representatives

of p if there exists a bijection & : J 2089 T such that

t5 € Ca()

for all j ¢ J.

If in addition 1ﬁ # t for j# k, then § is a gystem of distinct

representatives (SDR) of p and t; is said to represent Cagi) -

The range {tj : j e J} of the SDR is a transversal of p.

A subset S of E is a transversal of p = (C; ¢ i € I) if there
exists a bijection A : 5§ —20%9% T guch that
2 S € CA(S) for all s € §

EXAMPLE 2.11

Consider the sets

¢, = f{2,3}, ¢, = {1, 4},

C; = {3,4,5, ¢ = {4, 5}
and

p = (Cq, Cp, C3, Cy)

Then {2, 4, 3, 1} is a transversal of p and (2, 4, 3, 1) is an

SDR.
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If however

{2, 3} ., = {2, 3}

C

C; = (3 and Cy, = {1, 4}

then no transversal nor SDR exists

The condition for the existence of an SDR is contained in the

following theorem.

2.6.1 THEOREM

A necessary and sufficient condition for the existence of

a system of distinct representatives for subsets Cy, Loy «ev

Cm is condition C

for every integral k = 1, 2, «.. W and indices

i(1), i(2), e , i(k) such that 1 g i(1) < i(2) <

< i(k) € m the condition

C [ >
i Y oY vl |? X
holds.

This theorem is a direct result of a theorem by P. Hall

(21 ). Due to the importance of this result for the feasibility

tests within the solution method, the proof is included. It

has been taken from D. Raghavarao (43 ) and forms an

important basis for feasibility tests (Chapter 5).
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The necessity of the theorem may easily be shown.

then there do not exist k distinct elements in the k subsets.

Hence the contrary must be true.

Sufficiency is proven in two parts by induction on m.
Part & whenever 1 £ k&m and 1 £ i(1)< i(2) < ..s
< ji(k)s m then
Ci(1) Ci(2) cas Cig)| = k + 1
Part b for some 1¢ k §m there are subsets Cj (1),

Ci(z),o-- ’ Ci(k) such that

Ci(y v Ci(p) ™ *=2 V Ci (k) ‘ = k
The result is true for m = 1 and may therefore be assumed

true for n< m.

Proof of part a

Choose an element a4 € Cy and form the sets
c;* = ¢y -{af i = 2, 3, e
By the assumptions, whenever 1 ¢ k ¢ m=1t and

2 ¢ i) < 3(2) < ouu < jlk) ¢ m  then,
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CJ(1)U CJ(2) U eeo \JCJ(k) > k
and by the induction hypothesis there exists an SDR

(bp, b3, «.. , bp) for the sets
Co*, C3*, «.v , Gt

Then (ay, by, b3, s, bp) is an SDR for €4, Cp,

eee 5 Cp thus completing the proof of part a.

Proof of part b

Without loss of generality, assume that the subsets

satisfying
Ci(1) @ Ciz)v »+ ¥ Cigo| = X
are the first k subsets.

Then by the sufficiency condition and induction
hypothesis, there exists an SDR (aq, ap, ««- , ay) for

the subsets Cy, Cy, «vs 4, Cie
Form the subsets

Ci* = Ci —{81, 89y sse ak}
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Whenever 1 ¢ h ¢ m-k and k < Jl1) < j(2) «.e

< j(k) £ m  then,

* * *
Cj(1) (@] Cj(2) V oees W Cj(k) 2 h

else C

1UE2U ...UCkqu(1)u CJ(Z)U PP UCJ(k)

< k + h
thus contradicting the sufficiency condition. Hence, by
the induction hypothesis, there exists an SDR (dk+1’ dk+2’

R dm) for subsets

»* * *
E:k+‘| 2 Ciyp & ®oei Lo

It is easily verified that (aq, az, +«- , 8k,
digpts »-- dy) is an SDR for Cy, Cp, eev C, thus complet-
ing the proof of the theorem.
D. Raghavarao (43 )
Call a set of r subsets Cj(q), Ci(2)s <<+ » Ci(r) @ block,
designated by Br,s where s is the number of distinct elements in the

subsets.

Condition C is equivalent to the requirement that s & r for

any block Br,s.

If r = s then call Bs,s a critical block. Bo,o is the void block
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and is critical. M. Hall (19 ) states the following two lemmas with

regards blocks.

2.6.2 LEMMA

The union Br,r v Bt,t and intersection Br,r n Bt,t of

critical blocks are again critical blocks, assuming condition

C.

2.6.3 LEMMA

If Bk,k is a critical block, then the deletion of elements
of Bk,k from the sets not belonging to Bk,k leaves condition

C valid.

The application of these two lemmas will be shown in the
CAV Reduction algorithm and the Implication algorithm of
chapters 5 and 6. At some stage of the solution method
situations may arise where the CAV form a critical block
and the image positions will be deleted from the remaining

CAV.

2.7 STRICT SYSTEMS OF DISTINCT REPRESENTATIVES

tet p = (C1, C2, «e. , Cm) be a family of subsets of E. A family
of elements § = (ai, a2, ... , am) is a system of representatives for

p if for some permutation A of {1, 2, 3, «es , m then

aq € CA(1): ap € CA(2)y ++e 5 8n E Ca (m)
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Call & a strict system of distinct representatives (SSDR) of p

if the aj are distinct and
a 8[:1, 825[:2, ceos ,amECm
Two systems &84 = (a4, @py «ee , 8y) and 85 = (by, by, .eey bm)

are said to be different if

aj; # bj for all i

2.7.1 THEOREM
Let p = (Cq, C2y «.. , Cy) be a family of subsets that
satisfy condition C.
If min (‘C1\, IEZ,, Ses 7 ‘Cn') = r then,
r! if rgn
Ry(p) >

ri/(r-n)t if r 3 on

where Ry(p) = Ry(Cy, €z, ... , Cp) denotes the number of strict

systems of distinct representatives.

THEOREM EXTENSION

Assuming |C1 < |Colg e-e < E”L then
n
Rylp) = ]-[rnax (1, i Ck‘—k+1)
k=1

C. Berge ( 4 )
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THE MARRIAGE PROBLEM

The theory quoted in the previous sections of this chapter may
be applied to a variety of assignment and scheduling problems. One
closely allied to the timetable problem is the 19th Century Marriage

Problem. The problem may be stated in the following form.

There exists a set of men M and a set of women W. Each member
of M is associated with some subset of the set W. Each member of M
desires to marry a fixed number (not necessarily the same number
for each man) of wives. From each mans' acquaintance subsets of W,

find wives for each member of M.

It will be shown that the subsets of acquaintances are similar
to the requirement resource vectors (section 3.2, chapter 3) of the
timetable problem. The following theorem and conditions resemble

those quoted later in this thesis for the timetable problem.

Halmos and Vaughan ( 22) generalised Hall's theorem to give
necessary and sufficient conditions for the Marriage Problem solution.

From J. Cisma ( 9 ) the following theorem is quoted.

2.8.1 THEOREM

Let C = Cy, Cp, ««. , Cy) be a finite family of subsets
of W, and let rq, I3, ... , Ty be non-negative integers called
requirements. There exists a generalised system aof distinct
representatives in which each Cj is represented exactly rj times

if and only if the following condition holds :-
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i(1), i(2),

LS

then

i{1) < i(2) <

37.

1, 2, «.. , m and set of indices

eee 5 i(k) such that

vee < i(k)s m

Ci(1)UCi(2)U coe "’Ci(k) > k

The necessity and sufficiency for the theorem is proven by

Halmos and Vaughan ( 22 ).

holds for infinite €'s.

They also have shown that the theorem

The C; represent the acquaintance set for the ith man and rj

his desired number of wives.

problem later.

These will be related to the timetable



CHAPTER 3

STATEMENT OF THE SOUTH AUSTRALIAN SECONDARY

SCHOOL TIMETABLE PROELEM

3.1 INTRODUCTION

This chapter defines the terminology applied to the subseguent
chapters of this thesis. The reasons for the increasing complexity
of the South Australian Secondary School timetable problems have
been summarised. The variety of school types (section 3.3), each
with their unique requirements and timetable difficulties have been
examined. Factors contributing to the need for an automated
solution method have been quoted. The objectives of section 7.4 of
chapter 7 require the production of a generalised solution method,
capable of solving all types of secondary school timetable problems

(@xisting within South Australia.

Courses are defined in section 3.2. These are related to the
limited resources available within the state. Limited resources
are a major contributing factor to the timetable difficulties present

in South Australia.

Manual timetable aims are discussed with a view to later
formulation of the aims of the computer solution method. South
Australian schools resemble other Australian schools, but, in general,
differ markedly from schools outside Australia. For this reason,
together with the expenses involved, scheduling systems already in

existence elsewhere, are not readily adaptable to South Australian
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timetables. The cost factor, when calculated in dollars per student

head at school was not acceptable.

On account of the increased difficulties associated with the

manual methods, it was decided that an investigation into automated

methods of solution should be carried out. It will be shown

in

chapter 9 that the solution method produced in this thesis, is useful

for other aspects with the timetable problem. (e.g. staffing of

schools.)

DEFINITIONS OF TERMINOLOGY

Some of the following definitions are extensions of earlier work

by R. V. Oakford et al (39 ). Much of the terminology is related

specifically to the South Australian education system, and is a

rafinement of an earlier publication attached as appendix A.

I. EVENT

An event is a moment in time. Events have no duration,
the purpose of this thesis, define start and end points
time-periods.
EXAMPLE 3.1
Consider the labelled events 2, 3 and 4. They are
ented in section 4.2 chapter 4 by the points of an

path of the following form :-

O—O—0

and for

for

repres-

undirected

The lines (2, 3), (3, 4) represent activities during the

time-periods described by the events, starting at events



II.

II11I.

40.

2 and 3, and ending at events 3 and 4 respectively.

TIME-PERIOD

A time-period is the duration of a meeting involving some

resources of the school. The duration of the time-period varies
between the range of 30 to 50 minutes for timetables of the

conventional type(1). A time-period is spanned by two events.

RESOURCES

A resource is an item involved in an activity at the school.
The resources for the school timetable problem are teachers,

classes, rooms, laboratories, workshops and special equipment.

A class resource, is a collection of students of the school, of
the same academic level. There may exist several classes at the
same academic level but all classes are disjoint from one another.
Hence, a student may belong to at most one class, and classes

will be considered as single items within this thesis.

In South Australian schools, classes are identified by alpha-
numeric, or numeric codes that designate the academic level of
the students within the class, and the class identifier to

differentiate classes of the same level.

EXAMPLE 3.2

With South Australian secondary schools the academic levels

are :-

(Da

conventional timetable consists of all time-periods of equal

duration.
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ist year, 2nd year, 3rd year, 4th year, 5th year.

A class 5C is a 5th year level class with a class name C.

The numeric convention is more usual with a code 301
signifying a 5th year level class, an O-track where the
track number designates the courses the students of the
class pursue, and the 1st class. There are 5 tracks
available within South Australian secondary schools. It
will surfice to assume that a track number is related to
courses in this thesis. More detail of tracks may be
obtained from the reference "Our Secondary Schools" (59 ).
The complete set of classes within a typical secondary
school could be similar to :-

101, 102, 103, 111, 112, 121, 201, 202, 203, 211, 212,

301, 302, 311, 4D1, 402, 411, 501, 502.

ACTIVITY

An activity is a meeting of resources available during a common
time-period. The activity must involve two or more resources
of the school, and requires the duration of one time-period

for its completion. The minimum of two school resources is
defined, since any activity must involve at least one class and

one teacher resource. Other resources may also be included.

TIME-SPAN AND DAILY TIME-SPAN

School days are the days of the week when students attend school.

The number of consecutive school days in a week, is called the

weekly cycle length, and the days constitute a school week.
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Each school day is divided into a number of time-periods of
equal duration. The number of time-periods in a school day 1is

called the daily time-span. The number of time-periods in a

school week is called the time-span of the timetable.

For conventional secondary schools (using the conventional time-
tables), the daily time-span ranges from 6 to 9 time-periods.

The weekly cycle length is invariably 5 days for all schools.

BLOCK PERIOD

The number of consecutive time-periods required in a daily time-
span, involving the same resources for a given activity, is

called the block-period size. The duration of the consecutive

activities is a block-period. All block-period sizes must be

integer multiples of a single time-period for the conventional
timetable. Start events that indicate the permitted start points
for each block-period size for a daily time-span are usually

laid down by the schools before the timetable is prepared.

These are necessary, to prevent block-periods spanning lunch and
recess breaks, thereby breaking the continuity of the block-

period.

In South Australian secondary schools, block-period sizes range

from 1 to 5 time-periods in length.
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EXAMPLE 3.3
For clarity, label the events 0, 1, 2 ... , B. Let recess
breaks occur at events 3 and 7. (i.e. ... a recess break
occurs between activities (2, 3) and (3, 4) and activities

(6, 7), (7, 8).) Lunch breaks occur at event 5.

The daily activity pattern is described as follows :-
activities (0, 1), (1, 2), (2, 3), recess, activities
(3, 4), (4, 5), lunch, activities (5, 6), (6, 7),

recess, activities (7, 8).

Since block-periods may not span lunch or recess breaks,
a block-period size 2 may occur as :-
(o, 1), (1, 2) ; (1, 2), (2, 3) ; (3, 4), (4, 5) ;
(5, 6), (6, 7)
Block periods
(2, 3), (3, 4) ; (4, 5),(5, 6) ; (6, 7), (7, 8B)
are not permitted because they span recess and lunch breaks

at events 3, 5, 7.

In most schools the lesson patterns do not have 4 or 5
consecutive lessons without a recess or lunch break.
Therefore on some occasions blocks must be broken. However
in general they must not span lunch breaks and hence start
periods for block-period sizes 4 and 5 are still defined

in the usual form.
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TEACHER-CLASS SETS

A teacher-class set is a combination of more than one teacher

and more than one class, required to be assigned to a comman
time-period of the timetable solution. The set may involve
other resources, but the classes and teachers involved, define

the teacher-class set.

South Australian schools endeavour to offer students a wide
variety of subjects. However, the limited number of available
teacher resources and facilities within the schools, do not

allow classes to remain as a single learning body throughout

the school day. A pseudo-class is a collection of students

from each class of the teacher-class set, requiring instruction
in a common subject area. Several classes may redivide into a
set of pseudo-classes for some required activity. By using

this technique, the school administrators found that they could
offer a broad education, encompassing a variety of subject areas,

within the physical limitations of the schooling system.

EXAMPLE 3.4

Consider the two 5th year level classes, 501, 502.

501 is oriented toward science disciplines

502 is oriented toward the humanities.
Each of the classes are offered electives but the school
involved can not cater for two separate classes in all

activities for all distinct time-periods.
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Suppose the electives offered are Art, Film Study and

General Affairs.

There are two methods of solution to the problem,

Let classes 501 and 502 each divide into 3 pseudo-classes
containing students requesting the three electives.
EITHER ; the pseudo-classes remain as distinct units
(6 in all) and are assigned as such during
the same time-period
OR ; the corresponding pseudo-classes combine
into 3 composite pseudo-classes for the

common activity thus only involving 3 units.

The latter method is adopted with the use of teacher-class
sets. The classes involved are defined by the resources
of the activity and the set of pseudo-classes consist of
students of these classes. The important advantage of
this method is the rescurce saving and resource load

reduction accomplished. (See later)

VIII. REQUEST

A list of desired resources for a given activity is called a
request. When the request is included in a class requirement
(defined later), the requested resources are called requirements.
A required resource must be assigned to the relevant activity

in the timetable solution.



46.

Some of the resources contained in the request list for an
activity do not necessarily appear in the resource requirements
for that activity. During the manual solution pro;edure, the
person involved with the timetable solution may decide that a
particular resource request imposes severe restrictions on the
problem. If it is decided that this request is not necessary
then the involved resource is deleted from the activity. It
would be undesirable to include such a procedure within the
computer method of solution, and any such deletions occur during

the manual data stage of this solution method.

EXAMPLE 3.5
Consider the activity involving the resources :-=
A. Jones, 301, tape recorder, Room 3.
When assigned in the timetable solution, all of the resources
would be dedicated to this activity. The tape recorder may
be a heavily required item since the school has only one,
and would therefore impose a restriction on the assignment
procedure. If the recorder was not an essential item to
the activity then it may be deleted. This is a vetting
stage mentioned in chapters 7 and 8, to avoid too stringent

requirements being given to the solution procedure.
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PART-TIME TEACHERS

A teacher that is not available for assignment, initially, for

every time-period of a daily time-span is called a part-time

teacher .

Circumstances existing within the South Australian education
structure demands the employment of teachers with restricted
availabilities for assignment. Situations such as part-time
university courses, family commitments, and the sharing of
teacher resources between schools are contained within this

part-time structure.

The number of time-periods that are available for assignment,
for a part-time teacher, is usually expressed as a fraction of
the total daily time-span. It should be noted that other
resources, beside teachers may have limited availabilities,
(e.g. workshops, that are shared with other schools). In
general, all other resources are fully available for all time-

periods of a daily time-span.

EXAMPLE 3.6

A 6/8 part-time teacher is available for 6 time-periods of

an B time-period daily time-span.

Part-time teachers with limited availabilities, impose heavy
restrictions on the school timetable problem. The restrictions

compound when the part-time teacher is utilized for all available
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time-periods. This special type of restriction is said to be
a "tight condition™ and in general will constitute a block
(as defined in section 2.6, chapter 2). This will be discussed

more fully in later chapters.

FIXED TIME-PERIODS

Some activities must occur during specified time-periods. The
time-period for the activity involved cannot be changed, and

is called a fixed time-period.

The activity may involve several resources. A fixed time-period
may only involve one activity and hence can only have a block-

period size of one.

EXAMPLE 3.7

(a) A teacher, A. Jones, and class 301 must meet for a
science lesson during the activity (2, 3) every
Monday (the 3rd lesson). A television set is required
for the purpose of viewing a science program during

this activity.

The fixed time-period is 3 associated with activity
(2, 3) on a Monday and involves the resocurces :-

A. Jones, 301, T.V.

(b) All senior classes, 4th and 5th year levels, must
meet during the activities (6, 7), (7, B8), related

to the 7th and 8th time-periods on each Wednesday
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with teachers A. Jones, B. Brown, C. Smith, D. Black

for inter-schools sports.

In this second example the fixed time-periods are the
7th and B8th on Wednesday with resources : A. Jones,
B. Brown, C. Smith, D. Black, 401, 402, 403, 411, 501,

502, 503.

For clarity, each class is treated separately for
fixed time-period requirements, when they are assigned

by manual methods.

COURSE

A course is a body of subject matter to be studied by classes
of students. A course may encompass several academic levels,

or may involve single classes only.

English, Mathematics I, Physics and Geography are examples of
course names. English is a course offered to all levels within
a school while Biology is only offered toc 4th and 5th year level

students.

The course name is the same for each of the academic levels, but
the subject content differs at each level. The course structure
and method of presentation of the subject matter may differ for

each involved class.
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XII. COURSE STRUCTURE

A course structure is the daily activity organization, for the
purpose of instruction in the subject matter of the course.
Students and school resources must be arranged into meetings,
that satisfy the requirements of the course. Course structures
for courses offered in secondary schools in South Australia,

consist of ane or several of the following phases :-

1e INSTRUCTIONAL PHASE

Four types of instructional phases are defined :-

Lecture phase - usually consist of lessons of block-

period size one, and are activities involving a teacher

in a lecturing situation with a class.

Workshap, Laboratory phases - consist of activities

requiring more than one consecutive time-period.
Block-period sizes of 3 or 4 are quite usual for

this phase type.

Group Discussion phases - consist of block-periocd size

one activities. These phases are similar to lecture
phases except students take an active role in the

activity.

Independent Study phases - consist of single time-

period activities for the purpose of private study
by the students of the class. This session usually

requires the use of the school library.



2.

51.

A MEETING PATTERN FOR EACH COURSE

This pattern indicates the activities and the time-periods
involved. Block-period sizes are specified if required,

for each academic level and classes involved.

COURSE DEPENDENCIES

A course dependency is a relationship between the subjects
of different courses. For example, the two courses of
History and Geography are offered as an alternative choice
to students. This relationship is stated in the course-
dependency section of the course structure for bath

courses, History and Geography.

EXAMPLE 3.8

An example of a course structure for one day could be
Course Name : English

Instructional phases

1st year level 1 lecture, 1 group discussion
2nd year level 2 lectures
drd year level 1 lecture

4th and 5 year
levels

none
Meeting Pattern

one time-period, in a block-size one for each

phase of the course.
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Course Dependency :
the 3rd year course of ENGLISH is to be of fered
with options of French or Latin, to be assigned
to a common time-period. (Will be a teacher-

class set.)

XIII. CLASS-COURSE REQUEST

A class-course reguest details resources requested for an activity
for the course (one time-period), for a particular class, during

a daily time-span. If an activity requires more than one
time-period, more than one class-course request is needed with

some means of relating the two requests.

EXAMPLE 3.9
Consider the course ENGLISH described in the previous
example. Assume that the 3rd year level classes involved
are classes 301, 302, 303. The 3rd year level classes have
the option of English or Latin or French, requiring one

teacher for each course. No other resources are required.

The following class-course request details the resources
requested for the English course :-
Resources : Jones, Smith, Brown
301, 302, 303.
where Jones teaches English
Smith teaches Latin

Brown teaches French
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The class issuing the request is always one of the requested
resources. The following details are extracted from examples

3.8, 3.9.

(a) Since more than one teacher and one class resource
is involved, in the class~-course request (and inter-
course dependencies), the allocation is of a type

described earlier as a teacher-class set.

(b) If the courses of French and Latin were to be taught
separately (not as options to English), the 3 courses

would require separate class-course requests.

XIV. CLASS REQUIREMENT

A class requirement is a complete collection of daily activities

far the class. The collection describes all meetings, and

resources required for each.

Associated with the class requirement is the block-period
indicator, that defines relationships between the activities
of a class requirement where the block-period sizes of two or

more time-periods are required.

The resources requested in the class-course request are required
when they are included in the class requirement. This transition
from request to required has been discussed previously in this

chapter.

The total requirement (stored in the form of a requirement

matrix as discussed in chapter 4), is a collection of all class
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requirements for the school. I+t describes all activities

for a daily time-span for all courses.

RESCURCE LOAD

A resource load is the required number of time-periods necessary

to satisfy the activities requiring the resource, for a single
daily time-span. This number is expressed as a ratio (similar

to the part-time teacher description) of the following form.

time-periods required : available time-periods for the
resource

A class is always fully accepted and will have the maximum load.
They must always be involved in some activity for each time-period

of the daily time-span.

EXAMPLE 3.10

The teacher resource of A. Jones is required for 6 of B
available time-periods. This is expressed as :-

A. Jones & : 8
Notice that all class resources have the ratio p : p

where there are p time-periods in a daily time-span.

RESOURCE AVAILABILITY ARRAY

A resource availability array is a matrix representation of the

availability of each resource in the school, for assignment to
gach time-period of a daily time-span. This array is a binary
matrix where 1 indicates that a resource is available for

assignment in the period concerned and O the contrary (see
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chapters 4 and 5).

Individual resource type availabilities will be required in the

thesis. These will be referred by the following names :-

teacher availability array
class availability array
room availability array
equipment availability array

laboratory-workshops availability array

EXAMPLE 3.11

Consider the following resources :-

teachers : Jones, Smith, Brown
classes : 101, 102

rooms : R1, R2, R3
equipment : T.V.

The activity time-periodsare labelled 1, 2, 3 for a 3 time-
period daily time-span. The resource availability array
is given by :-

Resource Name

Resource

; Jones Smith Brown 101 102 R1 R2 R3 T.V.
Periad
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The array indicates :-

(a) teacher Smith is not available for time-period 3.

(b) +the T.V. is not available for time-periods 2, 3.

(c) the remaining resources are available in each time-
period.

The teacher availability array is :-

Teacher Resources

Teacher
Period Jones Smith Brown
1 1 1 1
2 i 1 1
3 1 0 1

In chapter 5, the availability array will be treated as a set
of column vectors. Each column indicates the resource availability
of the resource associated with the column. The availability
arrays have an important role in the feasibility tests in the

solution method.

THE SOUTH AUSTRALIAN SCHOOL TIMETABLE PROBLEM

~ Three school types are present in this state, namely High Schools,
Technical High Schools and Area Schools. Each offer a variety of
courses. They differ in size, physical structure, academic structure
and number of available resources. The differences have a marked
effect on the structure of their individual timetables, and for this

reason are described below. The relevant similarities are compiled
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into a set of basic constraints for the computer method described in

chapters 5 and 6.

A school timetable is a table indicating the activities for
gach time-peried, such that no resource is assigned to more than one
unrelated activity during any one time-period. The timetable must
also satisfy the requirements of both internal school administrators
and external Education Department policies. The relevant requirements

existing in each school type are now discussed.

High Schools tend to be acédemically oriented. Courses require
many lecture phases to be assigned within the timetable. Extensive
\
use of teacher-class sets is pr%valent, adding severe constraints

|
on their timetable sclutions.

Technical High Schools are oriented toward trade subjects with
many activities involving practical work included. In contrast to
High Schools, they have fewer lecture phases. Extensive use of block-
periods and teacher-class sets are included for workshop and
laboratory exercises. An added constraint involving the sharing of
workshop resources with neighbouring schools is present in some

schools.

Area Schools cater for both academic and trade courses. They
are found in country areas and usually encompass first to fourth
year courses. Class sizes are usually smaller than in High or

Technical High Schools and resources are limited.
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The current trend in education is toward more comprehensive
schools. These schools will haQe timetables, that combine the
features of High Schools, Technical High Schools and Area Schools.
This trend, together with the stated objectives of chapter 7,
required the design of a generalised timetable solution method,
capable of solving timetables of all school types. At present, this
new comprehensive school is being incorporated into High and Technical

High Schools, by broadening the subject fields offered.

Table 3.1 gives a breakdown of schools into the 3 main

secondary types for 1972.

High Schools 70
Technical High Schools 28
Area Schools 43

141

TABLE 3.1
A breakdown of S5.A. secondary schools into the 3 main

school types.

A lack of sufficient resources, mainly teachers, is a major
contributing factor to the timetable difficulties. The implications

of these resource deficiencies are :-

(a) +the need to utilize part-time teachers to off-set this
short fall. This procedure imposes severe restrictions
on the timetable structure, a direct result of the limited

resource availabilities.
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(b) the use of extensive teacher-class sets to cope with the
diversity of subjects required by the students.

(c) the school facilities, including workshop and laboratory
rooms are limited in some schools. An arrangement between
schools, involving the common use of workshop facilities,
in some circumstances, can overcome this deficiency of
facilities. In this respect, the timetables of two

neighbouring schools can be tied together.

EXAMPLE 3,12

Two neighbouring schools A and B require the use of
workshop facilities. School A has the facilities on site,
but school B does not. The two schools A and B must share
the facilities in some manner., e.g. available to school

A in the morning sessions and to school B in the afternoaons.

In an effort to make clear the features found common to the
above school types, the following list is included. These features
have an important role, as they are used as a basis for the constru-
ction of the general secondary school timetable solution method

described in chapters 4, 5 and 6. The features are :-

1. Teaching loads for esach schocol day should be evenly distri-
buted for each teacher. Ffor example, a load of 7 : 8 on
one day and 2 : 8 on another would not be desirable. A

better distribution would be 5 : 8 and 4 : 8.
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Course meetings should be evenly distributed throughout
the weekly time-span. It would be undesirable to have
6 English lessons on one day and none for the remaining

4 days.

Single lecture phases for the same course should not,
unless specifically required, be assigned to consecutive

time-periods of a daily time-span.

Block-periods should not, in general, be assigned to time-
periods that span lunch or recess breaks. In some circum-
stances this restriction may be omitted, e.g. block-period
size 4 where recess breaks may occur between the two sets
of 2 time-periods. Craft teachers do not oppose this

break .

Each class of the school has an assigned class teacher. This

teacher is responsible for the administrative functions re-
lated to the class, such as roll marking, handling notices
and term reports. A class teacher usually takes the class
for at least one activity per day, and are assigned to the

first time-period for the class teacher functions.

Special requirements for fixed time-periods for radio and
T.V. programs, inter-school sports, religious instruction

lessons must be met.

Senior teachers, responsible for the course structures used
within the school for each subject taught, should be
available for at least one common time-period during a
school week for the purpose of a senior staff meeting with

the school principal.

Course structures must be arranged with the use of teacher-
class sets to permit the wide variety of subject options

for senior students in the 3rd, 4th and 5th year levels.
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AIMS OF THE MANUAL TIMETABLE METHODS

Before proceeding with the formulation of the mathematical model
of the timetable problem, the aims of the manual timetabling methods
will be discussed. These are used in the formulation of objectives
in chapter 7, for the computer method discussed in this thesis. They
also indicate the meihod of approach for the solution procedure and

this is noted in chapters 5 and 6.

Many manual methods are in present use within South Australian
schools. These range from pencil-paper methods to sophisticated
coloured magnetic systems. Various publications such as those of
C. Lewis (28) and N. Lawrie { 27 ) summarise the stages in these
respective manual methods, in an effort to increase the efficiency

and adaptability of these techniques.

The basic aims of all manual methods may be summarised as

follows :-

1. To produce a workable solution, acceptable to the school

concerned, within a determined limit of time.

2. To produce such a solution without much manual labour by

the personal at the school.

3. To incorporate as many desirable features (described above),
into the solution as possible. Some features are ignored
if too much time is spent in the production of a

solution.
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To attempt to solve the problem on a daily basis, so that
a timetable may be introduced into the school system as
soon as possible. This aims at producing a timetable for
Monday say, with the view that Mondays' timetable may be
used while Tuesday, Wednesday, Thursday and Friday time-
tables are produced. A school could temporarily use the
same day's timetable for several days, and in fact do,

until the complete timetable is produced.

To attempt to assign the teacher resources and activities
as described by the requirements of the school. Changes of
rescurces may be necessary when too much time is spent
satisfying some class-course request. The interchange

of resources may solve the problem, by easing the conflicts

that occurred during the solution method.

It is important that the senior level timetable is solved
first. This section of the timetable is most difficult
since it involves extensive teacher-class setss The extent
of these sets are defined by the variety of subjects
offered to senior students, and the resources available to
cope with the subjects. The timetable should be completed
for the senior students with a minimum delay since they

are involved with external examinations and heavily loaded
courses with respect to the course content. The general
approach by the manual methads is to solve the 5th year

timetable first, on a daily basis, then work through the
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ath, 3rd, 2nd and finally the 1st year timetables
respectively. Many of the resources required in one
level are required in another, and for this reason the
timetable solution becomes progressively more dif ficult

as the various levels are completed.

7. To efficiently use laboratory and workshop facilities is
a secondary aim of the manual methods. For example, to
have a 1st year laboratory class followed by a 5th year
and then another 1st year class would be inefficient.

The apparatus required by the classes would not be the
same and it would be more convenient to have the two 1st
year classes in consecutive activities. The manual time-
table should attempt to group the levels together in an
effort to increase the efficiency of these types of

facilities.

The above aims are the more important ones, determined by con-
sulting a variety of people involved with the manual production of
school timetables. Other factors such as having principals free
for specified time-periods have been considered and to a large
extent have been included when possible. Any factor that is not
important to the timetable solution is usually not considered
during the construction stage, but may be included later, when

possible.



CHAPTER 4

THE MATHEMATICAL MODEL FORMULATION FOR THE

SCHOOL _TIMETABLE PROBLEM

INTRODUCTION

This chapter contains the mathematical formulation of the school
timetable problem. The model characterizes a resource allocation
problem with constraints, and caters for all secondary school types
within the state of South Australia. The simple tight timetable
problem is discussed. This particular problem serves as a basis for
the formulation of the generalised model described in the final section
of this chapter, but has little practical significance. It does
indicate however, a common problem for comparison purposes with other
timetable methods. Therefore some results of chapter 7 have been

quoted for the tight problems.

The model is produced from the theory of sets, combinataorics
and graph theory, a review of which has been presented in chapter 2.
The problem is first described in the form of a set of disjoint
activity paths, that are transformed into a resource requirement
array discussed in this chapter. The availability array for resources,
as presented in chapter 3, section 3.2, is formulated together with
the block-periods, fixed time-periods and teacher-class sets. Details
of mappings for describing timetable features, and 0-1 matrices for

the availability and resource requirements are given.
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The chapter also shows in outline, how the model is used to
solve the problem. The algorithms for the problem solution are

described in detail in chapters 5 and 6.

THE MATHEMATICAL MODEL

The large weekly problem is formulated as 5 separate daily
problems. This division of the timetable problem is not unique to
this thesis, and has previously been used by C. C. Gotlieb ( 18).

The 5 daily timetable problem has the following advantages.

First, the problem size is reduced into a set of 5 smaller sub-
problems. Second, the requirement of an even spread of course and
teacher loads may be incorporated into the problem solution more
easily. It may be noted from the manual aims of section 3.4 of
chapter 3, that this even distribution with respect to daily loads

is mentioned as a desirable feature for the timetable solution.

The advantage of the weekly approach comes from the optimality
of the overall solution. The daily problem approach achieves sub-
optimal results, but optimality with respect to the weekly problem
is not guaranteed. However, this is not a large disadvantage, as
the sub-optimal solution is acceptable to the school administrators,

and there is some doubt as to what the best solution contains.

Thus, although the breakdown is preferable for the algorithms
of chapters 5 and 6, the sub-division may be excluded at the expense

of :-
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(a) a reduction in administrative control over the solution
distribution of courses, and

(b) an increase in computer time to produce a solution.

School administrators have emphasised the two following matters.
First, the preference for a day by day structure, to give greater
control over the course layout in the resultant timetable. Second,
when problems do occur in the production of a solution, some partial
solution may be available for use. This recovery stage is important
to the administrators, since a partial solution could operate
temporarily within a school, until such a time as the faults were
rectified. A failure to obtain a solution to the weekly problem

would exclude any possibility of a temporary solution.

Accordingly, the problem, irrespective of any computer time
saving or efficiency, has been prepared on a daily basis to meet the

specified recommendations of the departmental officers concerned.

It is convenient to represent the structure of the school
timetable problem, by a set of disjoint undirected paths of nodes
joined by lines. The nodes represent events and the lines, commonly
called links, indicate the timetable activities. An event is the
beginning or end of a timetable activity, and a timetable activity
is the interaction of a given set of resources for a single time-
period, i.e. ... 3 specific lesson. Example 4.1 below, is given to
clarify this formulation. The sets of paths describe every activity

within the school timetable.
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EXAMPLE 4.1

(E) Activity 1 (E)

(E) Activity 2__{33L_Act1v1ty 3 (E)

In the graphs, the events represented by uniquely numbered
nodes and the activities by lines (chapter 2, section 2.3). Some
nodes are both start and end events, e.g. node 4. Others are either

start events only (1 and 3) or end events (2 and 5).

The set of timetable paths are constructed from the course
structures, class—-course request and class requirements, of the
school. The manner in which this is done is explained in detail in
Example 4.2. Each course structure uses resouIrces described by the
school administrators, for each activity. For any activity of a
path, the number of involved resources is at least two (one class and
one teacher). Each activity hag a duration of one time-period and

will constitute a specific lesson for the resources involved.

As defined in chapter 3, section 3.2, a course structure des-
cribes activities for all academic levels, covered by the course,
within the school. From these structures the set of paths is

constructed in the following manner.

EXAMPLE 4.2
For the course named English the following structure is

defined :-
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Course Structure

Jrd year level 1 lecture
2nd year level 1 lecture, 1 group discussion
1st year level no meetings

Class-Course Reguest

3rd year level
class 301 to meet teacher A. Jones
class 302 to meet teacheriA. Jones
class 311 to meet teacheriB. Smith
2nd year level
class 201 to meet teacher C. Brown
class 211 to meet teacher B. Smith

From the above description the following activity paths

are constructed :-

(z) 301, Jones (E)
(E} b2, Jones (E)
(E} 311, Smith _{E)
(Z)__ZD1, Brown (E} 201, Browh (E)

@ 211, Smith @ 211, Smith @

The set of paths is composed of consecutive and parallel activities.

The two terms, consecutive and parallel, relate to the resources

involved in the activities concerned, and no indication of where the
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activities can be assigned in the timetable solution is implied by

their use.

Consider two activities that involve the subsets X and Y of

resources, requested from the resource set E of the school.

Then, the two activities are consecutive if the difference sets

(section 2.2, chapter 2) X-Y and Y-X are both empty.
i.e. every resource § € X implies B E€ Y, and B e Y implies B € X.

The two activities are parallel if either or both of the

difference sets X-Y and Y-X are non-empty.

i.e. there exists a resource B € X such that ( £ Y or/and a

resaurce Y € Y such that Y £ X.

When all class-course structures are considered in this manner,
a total daily resource path structure may be constructed. Each activity
of the paths is a lesson that must be associated with a time-period
in the timetable solution. However, this structure does not fully
specify the timetable problem. It only indicates the lessons,
resources and number of time-periods required. I+ does not specify
resource availability, fixed time-period requirements, block-periods,
nor the structure of teacher-class sets, described in section 3.2,

chapter 3.

The resource availability array, as described in section 3.2

of chapter 3 will now be formulated.
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tet € be an a-set £ = {1, 2, 3, ... , &} of resources f where
B = 1,2, 3, ¢es , & and & » 2. A school must have at least one

teacher and one class resource, and hence the lower limit on Q.

Let a daily time-span consist of p time-periods j, where

Then an O x p array A, defined by :-

! if resource B is available for
0 assignment to time-period j
where B = 1, 2, «u. , ®and j = 1, 2, «ce , P is called the

resource availability array.

The model defined above is now used to present an introductory

formulation of the timetable problem as follows.

THE SIMPLE TIMETABLE PROBLEM

The simple timetable problem is defined in other publicaticns on
timetables, e.g. J. Lions (33 ). It has no block periods, teacher-
class sets, or fixed time-periods and the resources are available
for assignment to every time-period of the daily time-span. This
problem, since it can be clearly defined, is used as a basis for
comparison between various timetable procedures. It is presented at
this stage to give firstly, a basis for the comparison of results
with other solution procedures to the simple problem, and secondly,
to formulate relevant conditions and constraints for the practical

problem that follows.
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In the following fomulation the subsets of resources, associated
with the activities of the timetable problem are considered to be
ordered samples of the school resource set E. The ordered samples

are denoted by ;v and are called resource vectors. =r;, defines

ll
the resources requested for the i'-th activity gi' of the set of

activity paths.

Dencte the set of resource vectors by R and let IR ' = n be
the number of elements of R (see section 2.2, chapter 2). Then there

are n activities in the timetable problem.

Let ;i'l denote the number of resources in the i'~th resource

vector, and since every activity must involve at least one teacher
and one class, then Iri.| > 2. Further, each resource of r; is

distinct since any resource may be requested at most once for any

activity.

The notation of E and ;i' was chosen since the set of resource
vectors will be reformulated into the resocurce requirement array R
with resource vectors Ty later in this section (see section 3.2,
chapter 3). This transition, places the elements of ﬁ into the
mathematical model, in preparation for the algorithms of the solution

method. No direct relationship exists between the indices i', i

and j but every member of R is an element in R.

Within the set E, there exists an m-subset C of classes. Let

C ={Cy, Csy se0s 5 Cp}

denote the class subset, where C; € C implies that C; € £ for all
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Since an activity involves at least one teacher and one class,
then C is a proper subset of E, denoted

CeE, and ||-:|> m.

There also exists a proper k-subset of T of teacher resources.
T = {1, toy eee st}
denote the set of teachers where t1 € T implies t1 € £ for all

!
)y Ko

The two subsets C and T are disjoint

TaC =¢, and |E]>mk

For the simple timetable problem let E be the d-set such that

(a) (04 = m+k

(4.1)
(b) E = TwecC

i.e. £ consists of only the class and teacher resources.

Let

Let R(B) denote the set of all activities aj: with resource vector

;i" that involve the resource B € E within the set of paths.

Then

R(B)

denotes the number of activities requiring the

resource .
i.e. the number of times [ is required in the daily time-span.

Before continuing with the discussion of the general simple
timetable problem, a special case of this problem will be described.

This problem, called the Simple Tight Timetable Problem satisfies
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the following conditions :=-
(a) each class and teacher must meet for some activity in
the daily time-span,
(b) the number of teachers, classes and time-periods in a daily

time-span are the same

(c) every resource is fully utilized in each time-period. of

the timetable (no slack).
The mathematical formulation follows :-

Since every resource is fully utilized in every time-period,

then,

lR(B)I = p for every B € E (4.2)

By the definition of the simple timetable problem, all rescurces

are available for every time-period, hence

P

Z agj = P for every B € E (4.3)
5=1

The following necessary constraints for the timetable solution

are stated.

CONSTRAINT 1

No resource B € E shall be assigned to more than one unrelated(1)

lesson for any time-period of the timetable solution.

(1) A lesson is related to some given lesson when both must be
assigned to a common time-period, and both are associated with
an activity that involves more than one class and more than
one teacher, i.e. a teacher-class set.
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CONSTRAINT 2

All activities of the timetable requirements must be assigned

to a time-period in the timetable solution.

The following example 4.2, defines a simple tight timetable

problem.

EXAMPLE 4.2

The problem involves 3 time-periods and 6 resources (3

classes, 3 teachers).

The set of activity paths for the problem are as follows

O t1,C4 : : tq1,Co : . tq1,C3 '
O OO0 O—=1(0

All simple tight timetable activity structures are of similar
lay-out to the above example. All paths are parallel, and no

consecutive activities exist.

i.e. the resource sample for each activity is unique within the

simple tight timetable problem.

The activity paths are expressed in the form of an m x p class

resource requirement array R in the following manner.

The class Cj, i =1, 2, +uos , m is always associated with row
i of the class requirement array. The bijective mapping A', maps

each of the classes C; of the set C onto the integer row numbers i

of the set I ={1, 2, 3, ..., m of rows. Similarly, the set of
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time-periods j are mapped onto the column indices J = {1, 2, ... , p},

associating column j with time-period j by the bijection A''.

>
-
-
—
.
~—
1]
[

for i = 1,2, 3, eco , m

We may assume, without loss of generality, that the activities

as

i1 are ordered in the following manner.

Form the sequence :-
R(C4), R(Cy), ... , R(Cy)

of activities with resources C4, Csy ee. , C, respectively, where

R(Ci) = 8(1_1)p+1 3 a(i-1)p+2 9 ses 4 aip

This ordering may be performed, since for any class C;je C

= p.

IR(Ci)

For the row i, of the class requirement array, there are p
resource vector elements, associated with the p activities involving
class C; in R(Ci). The resource C; may be omitted from the resource
vectors of row i since it may be assumed that the class resource

will always be involved.

EXAMPLE 4.3

Consider the activity paths of example 4.2. The following

sets are constructed



R(C1)

R(C5)

R(C3)

£(1, 2), (3, 4), (5, 6)}

{(7, 8), (9, 10), (11, 12)}

76.

{ (13, 14), (15, 16), (17, 18)}

From these ordered sets the following class resource

requirements matrix is compiled.

—

R = (t1,C2) (tZ’CZ) (ta,cz)

(t1,C4) (t5,C3) (t3,C3)

(t) (£5) (£5)
(t)) (t5) (t3)

(t)) (t5) (tg)

In the latter array, the resources Cq, C,, C3 are omitted,

since they may be assumed to be represented by the row number.

Each row of the array is a class requirement (see section 3.2

of chapter 3), listing all resources required in the p meetings of

the class. The m class requirement rows are denoted by Ry, Ry, ...,

Rpp »

A solution array S, is an m x p array satisfying the following

conditions :~-

(a) each column j consists of m resource vectors, associated

with the m class activities to be assigned to the time-

period j designated by the column number.

(b) each row Si of S5 contains

each respective row R4i of

(c) the order of the elements

bijective mapping 4; (see

the same resocurce vectors as

Re i = 1, 2,

of row S; is determined under a

below) associated with R (i.e.
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... the order of the rescurce vectors in 35; is a permutation

of the order of the vectors in Ri).

(d) S satisfies the defined constraints.

CONSTRAINT 3

Each element position of S must contain one and only one resource

vector of R.

The solution method will be shown to consist of the generation
of the bijective mappings 8;, i = 1, 2, ... , m to give the

arrangements of the resource vectors in the solution rows S5j.

THEOREM 4 .2.1

The simple tight timetable problem will always have a

solution.

PROOF

By definition, each row Rj of R involves each teacher
resource t; € T in a resource vector. We may assume

without loss of generality that the resource vectors

in column j or R all involve the teacher resource

tj €T, e.g. see the form of the array R in example

4.3.

Consider the bijection & , that is the left cyclic
permutation (LCP) defined in section 2.5 of chapter

2. The LCP is denoted by :=



and maps the element r.

Ris

sa 0 ’ p-1 . The

position (i, 1)

Using the theory of chapter 2,

the mappings
Ai+1

where

is the identity

i.e. in the case i = p =

are

Aj

into the position (i, j+1)

ij

element rip is

an Si.

]
>
—_
>

.

i:

mapping.

J the

produced .

1 2 3
(1 2 3)’A2=(
1 2 3
(3 1 2)

in Si
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in position (i, j) of

‘FOI‘j:

mapped into the

section 2.2, define

following mappings

Then the mapping &4 maps the j-th element of row

R;4q into the (i+1, Ai+1(j)) position in S; 4.

By applying the mappings to their associated rows of

R, the solution array is produced, that satisfied all

stated conditions and constraints.

Hence the simple

tight problem has at least one solution.

Q.E.Do,
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The following example is included, to clarify the application

of theorem 4.2.1 to the simple tight timetable problem.

EXAMPLE 4.4
Consider the resource requirement matrix of example 4.3,
namely :-

ty tz 13

t4 tz  t3

The mappings A1, AZ and A3 are defined by :-

1 2 3
by = (1 2 3)
1 2 3
Ay = A 4) = (2 -
1 2 3
by = BB 5 = (5 ] ;)

i.e. the LCP, A cycles the image elements of Ai
to the left by one position, each time & is

applied, to give Ai+1°

Then
Ay(Re) = (t1  tz  t3) = Sy
Bo(Rp) = (t3 t; tp) = S
A3(R3) = (¢, tq ty) = Sj3

e.g. The mapping A5 for Ry takes the elements of row
R3 of R in positions (3, 1), (3, 2), (3, 3) and
places them into positions (3, 3), (3, 1), (3, 2)

respectively.
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Thus the solution

-
tl‘ to t3

S = t3 t to
LEZ t3 t4

The simple tight timetable problem is associated with the
problems of Latin Square, see H. Ryser (47 ). A Latin Square is a

p x p array of p distinct elements such that :-

1. each row contains the p distinct elements
2. each column contains the p distinct elements
3. no row or column contains any element more than once.

The general simple timetable problem will now be discussed.

The general simple timetable problem does not require that
m=%k = p. However, every class must be utilized in every time-

period of a daily time-span.

R(C;) = p for every C; € C (4.4)

The following necessary conditions must be satisfied for the

simple problem to have a solution.

(a) Any resocurce BE€ E can not be required in more than p

unrelated activities.

'R(B)l N for every BE€ E (4.5)

This is a generalisation of equation 4.2 for the tight

problem. The classes by definition satisfy the equation 4.5,
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The total number of activities n for the simple problem is :-

All activities are unrelated since no teacher-class sets

exist within this problem type.

The contrary of equation 4.5 is assumed for some resource BekE.
Then the resource B is required in R for more than p time-
periods. However, there are only p available time-periods

for assignment within the timetable problem and no solution

could be determined without violating the constraints.

i.e. all requirements must be satisfied, and no resource
shall be assigned to more than one unrelated

activity in a time-period.
Hence, the equation 4.5 must hold.
(b) Any resource B € E, shall not be required in more unrelated

activities, than the total number of time-periods available

to that resource.

p
R(B)\ < Z

for all B e E

by definition, this condition will always be satisfied for

the simple problem. The proof follows that of equatian

4.5,

(c) To restrict the problem to the hours within the timetable

(i.e. ... NO lessons can occur outside school hours) the
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following condition is included. Each resource BeE
shall be available for at most p time-pericds for a daily

time-span.

aBj £ P (4.7)

4o

for every resource € E

(d) There must be at least as many teacher resources as there
are classes.
IT 1> |cl (4.8)

for any time-period with unrelated activities.

If the contrary were assumed, then a class would have no
teacher. This viclates the conditions that an activity
must involve a teacher and class, and that a class must be

associated with an activity for every time-period.

The above conditions are related to the computer algorithms in
chapter 5. However, a mathematical formulation is given at this stage
to demonstrate the association of the bijective mappings and systems
of distinct representatives in the solution method. The simple

problem will be used to demonstrate these connections.

Let Ai denote the non-empty set of all bijective mappings

associated with row R; of R for i = 1, 2, ... , m.

i.e. A; defines the p! permutations of size p, of the

elements 1, 2, «eee , P
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The members of the set T;j are demnoted by Aié, where

Two resource vectors ri1j1 and ri2j2 are assignably egual when

there exists at least one resource 8 € E such that B € i and
B € rizjz.
i.e. the two resource vectors involve at least one common

resource.

Consider two rows R;, and Ri2 of R, iy # iy, with associated

1

bijective mappings Ai161 and A , that map the resource vectors

162

of Ri1 and Ri2 respectively, into new positions within rows Si1 and

5i2 of the solution array S.

Then the two bijective mappings A, and A. are distinct

if for each j =1, 2, ... , p the two resource vectors in paositions

(i4, j) and (i, j) of S are not assignably equal.

i.e. the two mappings do not map any rescurce into more than

one lesson during anyone time-period.

EXAMPLE 4.5
Consider the bijection sets that consist of all mappings
of 3 elements j = 1, 2, 3 (the time-periods that are

equivalent to the column numbers in R and §)
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Each set will have 3! = 6 elements (see chapter 2,

section 2.5)

The sets I'y and [, are defined by Ty = {A11, A12,

coe A16} and FZ = {A21, A22, coe ,A26}-

Each set P1 and F2 contains the 6 bijections

123 123 123 123 123 123
(1 2 3) ’ (1 3 2) : (3 1 2) : (3 21 ) (2 3 1) ? (2 1 3)

The order of the elements within ', and T1 may be

considered to be

A = A _ (1 2 3)
11 21 1 2 3
big =8y = (: g g)
Big = 8, = (; 1 g)
bia = 8o = (; 3 ?)
Big = 8,5 = (; 3 ?)
bie = B = (; f g)

It should be noted that for convenience the order of the
elements has been chosen in the above manner, but that
any other order could have been taken. An example of

distinct mappings from P1 and P2 based on Ry and R, of
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is

o= G5 D
and

Bop = (1 g g}

since A11(R1) maps the elements in R1 from positions
(1, 1), (1, 2), (1, 3) to positions (1, 1), (1, 2), (1, 3)

respectively, and, A.,,(R,) maps the elements in R, from
2 “EaTR 3

2
positions (2, 1), (2, 2), (2, 3), to positions (2, 1),

(2, 3), (2, 2) respectively.

Thus the resultant rows
51 = (% t3 t5)

S

2 (t, te t4)
do not have a resource occuring more than once in any

column position j, j = 1, 2, 3.

The selection of distinct mappings associated with the rows Ry,

Ro, «.+ , Ry of R, to produce the solution rows 5q, S5, ... , S5y of

m
S is equivalent to the selection of a set of distinct representatives

from the sets U 19 r YRR r

The number of elements in each set T i will be calculated through
the number of available positions (time—periods) for each resource

set of row R;, i = 1, 2, «.. , ms This calculation has important

implications in the computer algorithms and is discussed fully in

section 6.3, chapter 6.
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A necessary and sufficient condition for the existence of a system
of distinct bijective mappings for rows R4, Ro, ..., Ry of the time-
table problem resource requirement array R, from the sets P1, FZ’
ces Pm of bijections associated with the rows of R, to produce
solution rows 51, 52, ees y 5 is that, for every integral i = 1, 2,
3, e«e 4 m and indices k(1), k(2), +.. , k(i) such that 1 & k(1) <
k(2) < +oo < k(i)€ m there exists at least i distinct bijections

By Beays oo Bea)
where
Bein® Tega)

for each index.

This is an application of Theorem 2.5.1. The implication of the
theorem on the solution method is important. The above statement
indicates that if any subset of the rows of R do not have distinct
bijections, then no solution to the praoblem can exist. (i.e. ... it
is no possible to assign the resource vectors into time-periods
without violating the defined conditions.) The theorem is applied to
the solution method within the Implication Algorithm at each stage

of the solutior. (see section 6.2 of chapter 6).

Before proceeding with a discussion of the solution method for
the practical problem, the extent of the solution space will be

briefly discussed.
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4.4 THE SOLUTION SPACE FOR THE TIMETABLE PROBLEM

Consider the timetable problem with Cl = m, lT\ =k,

|E| = O and p time-periods in a daily time-span.

The following is an application of earlier work of V. Portugal

(42) to the solution method of this thesis.

If the elements (resource vectors) of the solution array S are
considered as co-ordinates, then each timetable solution, irrespec-
tive of feasibility with respect to the defined conditions and
constraints, can be represented by a pocint in an m x p dimensional
space of timetable solutions, i.e. ... there are mp co-ordinates per
timetable. The search for a solution, is a search for a point in

this solution space.

If any point can assume any of the k teacher resources, then

the number of points in the space will be of order
kMP
When constraint 2 is imposed (all the activities that are includ-

ed in the resource vectors of the requirement array must be assigned),

the number of solution points reduces to

(pt)m
i.e. +.e. m rows (classes) of p resource vectors, (time-periods) each

raw having p! arrangements.

When the simple problem is considered with respect to constraint

1, the first row of S may be arranged in p! ways. Portugal shows
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that the solution space is restricted to Cgp! points, since for

each of the m rows, p resource vectors are selected.

For the practical situation, the solution space is reduced
further. Repetitions of resources within the resource vectors within

rows of R have an effect.

It will be shown that the algorithms of chapters 5 and 6 will
consider only feasible bijections with respect to the class-require-

ment rows of R, at each stage of the solution method. The number of

feasible solutions is dependent upon the resource vector availabilities,

block-period requirements, teacher-class set requirements involving
inter-row dependencies, resocurce repetitions within the resource
vectors, and the effects of previously assigned resource vectors.

The solution method determines, that every un-assigned row of R may
still be assigned in S, by the calculation of the feasibility of the
remaining solution images through the resource vector availabilities.
If the number of images for an unassigned vector is reduced to zero
an immediate indication is given through the Implication Algorithm.

(See chapter 6, section 6.2).

THE PRACTICAL PROBLEM

The constraints imposed on the simple problems apply to the
practical situation. Teacher-class sets are included, and define
the related activities of constraint 1. They involve several

teacher and class resources, that must be assigned to a common time-
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period. In this respect, the requirement involves more Lhan one
row of R for assignment. This is the only case, where common
resources in difference resource vectors are assigned to the same

time-period of the timetable solution.

For the practical problem, a resource vector may involve more
than 2 resources (class and teacher). Equipment, room, other teacher
and class resources may also be required for one activity. All
requirements are expressed within the resource vectors and an example

of a more comprehensive resource description follows :-

BeJe R2 = ((t1’ q4), (t1, t2, C.]), ('ta, 02, q5))
where t = +teacher, g = -equipment, C = class,
0 = room resources

The number of elements of the resource vectors does not necessarily
have to be the same for every activity. It is noted that the resource
vectors described the resources for every activity of the timetable

problem.

The resource set E contains other subsets, namely room and

equipment resource subsets.

These are defined by

Q

v{q']; Qos ees 5 Qc}

}

[wm]
[}

{01, Dz, aaa Dsl

for equipment and room facilities respectively, and

E = TwlC uwulwou
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EXAMPLE 4.6
The following rescurce activity paths have been assumed

to have been constructed from given course structures.

@ Co, 4, O @
@ €1, t3» 94 @

Cas ¥4

@
®

C3» t5, a1 ) C3, t5, a1 @

The associated resource requirement array is constructed
in a similar manner to that of the simple problem, with

resource vectors occurring in the class rows of R.

7*?1, 01) (%3, cm)_
R = (tq) (tg, t3)

(ts5, q1)  (t5, q1)

The order of the elements within the resource vectors is
not important. Note that the resources (ts, qq)-are
involved in two consecutive activities and appear as two

activity descriptions for row Rz of R.

For clarity, an example of a teacher-class set resource vector
is also given. It can be seen that the activity path description is
adequate to indicate teacher-class sets, but further description is

needed for block-periods and fixed time-period requirements.
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EXAMPLE 4.7
There are 2 classes in the problem, and they are required
to mest together with teachers ty, tp, t3 for 2 activities.

The following set of activity paths describe the meetings.

(Z) Cqy,ty (E)

C1,C2,t1,t2,t3 ~ C1,C2,%1,t2,%3
® \&r ®

O—==2—0

The order of the activities is not important in the activity

paths, and the node numbers (events) are only displayed for

the convenience of defining a particular activity.

Once the resources are defined within the resource reguire-
ment array, the order of the resource vectors become fixed.
The resource requirement array for this example is :-

(tq) (Cz, tq9, t2, t3) (Co, ty, to, t3)

(t2) (Cy J ty, t2, ta) (Cy, tq, tp, t3)

The teacher-class setséare described in rows R4y and R3 of

R since they involve classes Cq and C, associated with these
!

rows. No indication h%s been given at this stage of block-

periods or fixed time-ﬁeriods.

It will be shown in chapter 5, section 5.2, that availability
vectors for the resource vectors of R when calculated, define all
time-periods available for each resource vector. By approaching

the problem in this manner, and reducing the availability vectors
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after each row of R is assigned in S, the infeasible situations
(those that reduce availability vectors to zero) are easily deter-

mined.

The basic special requirements of block-periods and fixed time-

periods will now be discussed.

Consider firstly the fixed time-period requirement. Associated

with each resource vector r;.: defined from the activity aj with

J
resource vector rj: that involves class C;, is a non-negative integer

f, such that :-

A mapping p; associates with each resocurce vector‘rij of R;, a

member of the set 0, 1, 2, «.. , p such that :-

pi(rij) = D implies complete freedom of assignment

for T j within the available time-periods.

pi(rij) = f implies that r;; must be assigned to

time-period f of the daily time-span.
Hence the family F = (py, Ppy «oe pm) associates with each
required resource vector, a fixed time-period indicator. It will be
shown that when a resource vector has a fixed time-period f, that
the associated availability vector is reduced to a 1 in position f
and zero elsewhere. The resource vector is thus assigned to time-
period f by restricting the image portions for this acfivity ta the

one period. This will be discussed fully in chapters 5 and 6.
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Block-periods will now be formulated. A surjective mapping ¥,
associates with each resource vector Tij of R;, a member of the set
1, 2, 3, 4, 5 of integers, that indicate the required block-period

sizes.

i(rij) = b where 1€ b<$ 5 indicate the size of the
block-period required for the resource

vector rij'

Since, by definition every activity is included in R, and each
activity has a duration of one time-periocd, then there must be b

occurrences of resource vector Tjj in row R;. Each will have an

associated block-period indicator of size b.
i.e. wl(rlj('])) B b, ll)i(rij(z)) = b, eos g I‘bi(rij(b)) = b

Then 8 = (,, ¥,, ..., ¥ ) define all block-periods within

the resource requirement array R.

EXAMPLE 4.8

Consider the following activity paths
@ Cist3 @
O—=—®
@ C2:C40%3:% ©0) Ezsca:fartal@
12 Caity —13
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GE}_ C3,t2 __{EE)
@ C3,‘t4 @
@ C4,‘t1 @

Special Requirements :-

1. activity (1, 2) must be fixed in time-period 1
of the solution.

22 activities (7, 8), (8, 9) must occur as a block-
period of size 2 in the solution.

3. activity (14, 15) must be fixed in time-period

aof the solution.

The following resource requirement array is constructed from
the activity paths

7;1) (t3) (t5;—
(Co,t3,t4) (Cq,t3,ty) (ts)
(tq) (tz) (tq)

(Co,t3,t4)  (Cp,t3,t4)  (£q)

S —

Note that R can not be a solution since activity (14, 19)
is not in the first time-period (column 1), rescurce ts is
in column 3 twice and is not a teacher-class set require-

ment and resource t4 occurs twice in column 1.

Associated with the rows of R are the following fixed time-

period mappings
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F = (p1, Psr Py p4) where
oro= G5
Pp = (10 g 3)
Pz = {113 .12 SJ
Py = ([13 S g)

i.e. pq indicates that the resource vectors in
columns 1, 2 and 3 respectively, of row Rq of

R are to be assigned such that :-

resource vector rqq is fixed in time-period

(column) 1 of the solution.

rescurce vectors T oy Tqq are assigned freely

in time-periods (columns) 2 and 3.

In chapter 5, section 5.3, the mappings F are stored more

conveniently as the images

— —
1 0 0
o o o
F o=
o 1 0
o 0 o

where the time-periods (column numbers related to R) have
been omitted. This association of the resource vectors
with the fixed time-perio indicators of F can be assumed

since the portions of the vectors within R are fixed.
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Similarly the block-period mappings B = (b4, Vo, ¥ 3, Vyq)

are defined by

1 2 3
vy o= 1 1)
1 2 3
11’2 = (2 2 1)
1 2 3
l1’3 = (1 1 1)
1 2 3
Vo = (2 2 1}
and are stored as
|--1 1 1
p 2 1
B -
1 1 1
2 2 1

where once again the association with the resource vectors

of R are assumed.

i.e. resource vectors ryy and Tyo must occur as a

block-period size 2 in the solution.

A feasible solution to the above problem is given at this stage
without derivation. Further examples in chapters 5 and 6 will
indicate the soluticn method,

- —
(tq) (ts5) (t3)
(Cqst3,tg) (Cqyt3,tg) (t5)

(t,) (1) (t4)

(Cputasty)  (Cputa,tg) (%)
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Note that the teacher-class set in rows 52 and 54 of S involve
common resources ts, t,, Cy, C4. The activities involved occur in

a block-period size 2 that has been assigned in the solution.

In the above problem the position of the block-period was not
specified within the timetable solution. As mentioned in chapter 3,
section 3.2 start-periods defined where the block-periods may occur

in the practical case. These are now formally described.

Start-periods for each block-period size b are defined by the
surjective mappings | that maps the elements 1, 2, 3, ... , p re-
lating to the time-periods of the school day, into the binary

numbers 0, 1 in the following way :-

1 if block period size b can be

started in time-period j
Tb(J) =

0 otherwise

EXAMPLE 4.9

For block-period size 2 the following surjection
T2 - (

defines start-periods 1, 3 and 4 as the only legal positions

for the beginning of any block-periods of size 2.
Hence the following double periods are allowable

1-2, 3-4, 4-5
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The block start mappings are stored in an array BS in image

form as are the fixed and block requirements.

All other special requirements of the South Australian secondary
schools can be incorporated within the above formulation, together
with the solution method algorithms of chapters 5 and 6. It will be
shown that the availabilities (image positions for the assignment

mappings) have an important role in the solution procedure.
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CHAPTER 5

THE BIJECTIVE MAPPING GENERATOR

INTRODUCTIDN

The solution method described in this chapter is an individual
approach to the solution of the school timetable problem. The notions
of required resource vectors (section 4.3, chapter 4) and feasible
bijective mappings (section 5.4) for the determination of the solution
timetable are discussed. The terms resource vector and required-resource
vector, are used to mean the vector of resources that are required for
an activity. These requirements are obtained from the resource activity
paths of chapter 4, section 4.2. Class requirements, each consisting
of p required-resocurce vectors, are considered as complete assignable
units. i.e., all activities relating to a class are assigned together.
Hence, in this solution method there are m permanent assignment stages
for the m classes of a school. This is in contrast to the m x p assign-

ment stages of many other methods (see section 1.1, chapter 1).

The advantages of the class unit approach are, firstly, that the
number of assignment stages has been reduced by a factor p. Secondly,
the inter-relationships between resource vectors of the unassigned
classes can be considered with respect to a larger group of assigned
vectors (section 6.3 of chapter 6). It will be shown that this
concept has important implications as discussed in chapter 6. Thirdly,

the teacher-class sets (section 3.2, chapter 3) establish a relation
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between classes through their resource vectors. Thus the class

approach is particularly relevant to these requirements.

The main disadvantage comes from the amount of testing required
to determine the implications of a class assignment. Although extra
time was involved in testing the more complex class requirements, the
method was nevertheless adopted for the following reasons. First, it
permitted a significant reduction in the number of possible solutions
to be investigated after each assignment stage before a final
solution was produced (see section 5.3). Second, the method was
exhaustive in its approach, permitting the early recognition of un-
feasible situations. Third, the method was directly applicable to the
South Australian secondary school situation, where classes are con-

sidered as units within a schoaol.

At each stage of the solution method the required-resource vectors
of a row of the resource-requirement array (section 4.3, chapter 4)
must be mapped from their existing positions in that row, into new
positions in the solution row. This translation, or assignment, is
subject to the conditions and constraints stated in chapter 4, together
with school policies included in the algorithms of chapters 5 and 6.
The available positions in the solution row, for each resource vector
of the requirement row are calculated in the form of composite

availability vectors (CAV), described in section 5.2
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The CAV reduction algorithm (section 5.3) has an important role

in identifying and rejecting unfeasible mappings. The implication
algorithm of section 6.3, chapter 6, applies the CAV reduction
algorithm extensively, to investigate many of the implications of a

class assignment.

An assignment is determined from the CAV by generating a mapping
of the column numbers, related to time-periods, onto themselves such
that the images are members of the associated CAV (section 5.4) of the

requirement row.

This chapter describes both the CAV and their reduction, together
with the bijection generator. The reduction algorithm and generator
when combined with the algorithms of chapter 6, provide the solution

method to the school timetable problem.

THE COMPOSITE AVAILABILITY VECTORS

From chapter 4, section 4.3, a required-resource vector is a
subset of the school resources, that are required for a tiﬁetable
activity. Associated with each required-resource vector is a composite
availability vector (CAV), constructed from the availability vectors
(chapter 4, section 4.2) of each resource member. It will be shown
in this section that the CAV define completely, all feasible bijective
mappings for each row of the requirement array, at each stage of

the solution method.
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The resource availability array A, (section 4.3, chapter 4)
defines the availability for assignment of each resocurce, for each
time-period of a daily time-span. A(B) denotes the column availa-
bility for the resource BeE of the school resource set E = {1, 2, 3,

ees , @}, This daily availability is given by

rb1(B§_

8> (B)
A(B) = :

[ % (B)

where

1 if resource  is available to be assigned

to time-period j in the solution

8;(B) =

0 otherwise

The rules governing the logical union (u), logical naot (~), and
logical intersection (n) of the binary numbers 0O, 1 are given

below :-

logical union J ovo =0
1971 = 10 = 01 = 1
logical intersection : 1anl0 = 0Nn!1 = 0N0O0 = 0O
1Tn1 = 1

logical nat : ~1 =0 ~0 = 1

Consider two resources B1 e E, 62 e E and the availability

vectors associated with them, namely A(B,) and A{(B.). Wher the above
Y 1 2
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logical operations are applied to bthe availahility veclors, 16 i
implied that the operation occurs between the p corresponding

elements.gj(B1) and Qj(BZ) for j =1, 2, ese 4, Po

'_91(51) n 91(82_)-]
82(B1) n 82(B2)

e.g. A(By)n A(By) = ‘ ’ *

|35(B1) 0 85 (B2)

Thus, for example, if the third element in the column vector A(f§1)
n A(B2) is unity then we are being told that both $1 and B2 are
availabls in period 3. If, by contrast, the third element is zero,
we are being told that either B1 or B or both B4 and B3 are not

available in period 3.

The composite availability vector for the resource vector rjj,

is denoted by A*(rij). The resource vector is a g-sample (B1, B2,
s 5 Bq) of the school resource set £ = {1, 2, 3, ... , 0}, and
describes all the resources required for an activity for the class Cj
(see section 4.2, chapter 4). The CAV defines, by entry of unity,
the time periods in which all the elements of rjj are simultaneously
available, and, by an entry zero, defines the time periods in which

at least one of the rjj is not available.

A*(rs3) = A(B) m A(Ba) n «ev. 0 A(Bg)
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The CAV has the same structure as the rescurce availability veclor
A(B), in that it is a column vector of p binary elements indicating
the availability or non-availability of sach time-period of the
solution timetable, for the resource vector rjj. Every resource
vector of the resource requirement array R (section 4.3, chapter 4)

has an associated CAV.

*
The composite availability array, denoted by Ai combines the CAV,

p in number, associated with the p required-resource vectors rjq, Tj2,

ees 5 Tjp Of row Rj of R. The array is given by :-
* *
A; = A*(Ri) = (A*(riq) AT (rip) eee A*(rip))

The CAA is a square, binmary, p x p array, indicating the availa-
bility or non-availability for assignment, of the p activities associat-
ed with class Cj of a school, to each time-period of the solution

timetabls.

An example, to demonstrate the construction of the CAV and CAA
is now given.
EXAMPLE 5,2
Consider the resource availability array A given by :=

resources

B1 B, B3 Bs Bs  Pg

1 1 1 1 1 1 1

time- 2 1 1 1 1 1 1
periods 3 0 1 0 1 1 1
4 1 0 0 1 i 1
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Assume that the following resource reyuirement array R
has been given.

time-periods (unallocated)

1 [ (Bq:B4) (B5,85) (B3) (BasBg)
Classes 2 [(By,B,)  (Bj) (BgsBg)  (B2)
3 [(Bg,Bg)  (Bg) (8,) (By)
Consider the resource vector rp3 = (B4,Bg) involving

resources f4,Bg.

The CAV for rp3 is given by :-

A*(r,q) = A(B) A A(Bg)
1] 1] 1]
1 | 1
= n =
1 1 1
1 1] 1

Showing that the class 2 requirement of resources (B4,0¢)

may be satisfied by use of any one of the 4 time-periods.

Similarly the CAV for resource vectors rpq, Tpp, Tpgq are

1 1 1
1

—_
-

A*(I‘21) = A(B1) N A(Bz) = n =
] 1 0
1 0 0
1]
A%(ry5) = A(Bg) = |
0
0
.
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A%(r,,) = A(By) =

The composite availability array for row Rp associated with

class C2 is given by :-

1T 11 1_
1T 1 1 1
A3 = (A¥(xpy) A¥(z,,) A*(zpg) A*(ryy)) =
A
0 0o 1 0
Similarly
[ - ]
1 1 1 {7 11 1 1
AT - 11 11 and A§ _ I N
o 1 0 1 1 1 0 1
d 0 O 1_ J 11 1_

are the new positions within the solution row S; of S (the solution
array, section 4.2, chapter 4) for the required resource vectors rj j
of R;. Recall that the resource vectors within the resource require-
ment array were not allocated to time-periods even though they
occupied specific column positions within the rows of R. The mapping
Ai allocates (assigns) column positions that are related to the time-
periods for the timetable solution to the required resource vectors.

The resource vectors of a row Rj are considered as the elements to
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be allocated to time-periods in the timetable solution, for a class
C . A resource occuring withim a resource vector is not considered
alone, but rather in relation to the other resources also required
for that activity described by the resource vector. For a mapping

to be feasible the following conditions must be satisfied.

For each required resource vector rjj of row Rj, the composite

availability vector A*(rjj) must satisfy the conditibn that
g6j(rij) = 1 y j = 1’ 2, see p- - (5.1)

i.e., for the mapping to be feasible, esach required resource vector
must be available for allocation to time-period dj' indicated by the

CAv.

The CAV therefore define all feasible mappings for each row
of R through the indication of permitted allocation positions within

the solution S5, for each required resource vector,

For any feasible mapping to exist for a requirement row of R,
the following condition, known as Hall's condition (sectian 2.6,
chapter 2) must be satisfied : for the association CAA of a row, the
logical union of any k-combination of the column vectors of the CAA,
k =1,2, 3, ¢oo , p must be such, that the resultant vector caontains
at least k available allocation positions, for the assignment of the

k required resource vectors.

The condition states, that if there exists a k-combination of
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CAV such that their union contains at most k-1 available allocation
positions, then it is not possible to generate a bijection that
assigns the k required resource vectors, since by definition, all

images of a bijection must be distinct (see section 2.6, chapter 2).

For the practical problem, Hall's condition is not sufficient
to indicate complete feasibility for a given requirement row. Added
practicalities such as block-periods that have restricted positions
within the solution, require extra considerations for feasibility
with respect to the assignable row requirements. It will alsao be
shown that a bijection can be feasible with respect to a requirement
row of R but when other rows of R are considered in relation to this
mapping it becomes unfeasible (section 5.4, and section 6.2, chapter

6).

It will suffice at this stage, to understand the importance of
the CAV in the solution method. They not only define all feasible
mappings for each row of R, but also indicate unfeasibilities in the

manner described above.

Before the bijection generator is discussed, the CAV reduction
algorithm will be given. This algorithm will be shown to reject
inadmissible elements from the CAV and is used extensively in the

algorithms of chapter 6.
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3.3 LCAV REDUCTIDN ALGORITHM

The CAV reduction algorithm considers the CAA associated with
a row of R and reduces inadmissible elements (see below) of the
CAV to zero.

This algorithm resembles a similar reduction algorithm

of J. Cisma ( g) in an earlier publication on school timetable

investigations.

DEFINITION 5.1

An admissible element ng(rij) of the CAA A;, is an element

that can be included in a feasible mapping Ai with respect

to row Ri of R.

Dtherwise the element is said to be inadmissible.

The rejection of inadmissible elements is accomplished in the
following steps. Consider the k-combination of CAV for row Ri to be

A*(rij1), A*(rijz) cee A*(rijk) and the logical union of the CAV to

be given by :-
* *
A (I‘ij1) v A (rijz) [V O ¥ | A*(rijk)
*
g, |
g*5
*
where
1 when at least one required resource vector
g*: of the k-combination is available for assig-
‘J =

nment to time-period j

0 otherwise



The reduction algorithm is presented in 3 steps. An example

is given after the 3rd step to clarify the reduction techniques.

Step 1

The location of teacher-class set requirements for row Rj.
The following algorithm is applied for the rejection of in-

admissible elements.

TC.1 Set j =1 (the column number)
TC.2 If ti;M C=¢ goto TC.3
else goto TC.4 (where C is the set
of classes at the school. This
locates a teacher-class set)
TC.3 j = j+1 ;3 if j> p exit from algorithm ;
else goto TC.2
TC.4 Set A" = A*(rij} the CAV of the required resource
vector.
TC.5 Set j' = 1 now locate all other involved teacher-
class sets of row Rj that are the same as Tije
TC.6 if j'> p goto TC.B

else goto TC.7

TC.? i‘F Irs

ijt = T

1ij SBtF::"\TU A*(rij')’ j' = j+

goto TC.6 ;
else goto TC.6 with j' = j'+1

TC.8 Include class Ci in the resource vector

L]
rij = Ci v rij
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TC.9 Locate other rows related to this teacher-class set
requirement
i' =1

TCAD0 if it = i goto TC.12

else if Cjr € (rij a C) goto TC.13

TC12 i' = di'+1 3 if i' > m goto TC.19
else goto TC.10

TC.13 Set A''' = 0 i.e. consists of p zero elements
TC.14 Set j' =1
TC.15 Determine all resource vectors of row R that are

involved in the teacher-class set
irjr v Gy
TC.16 If Ti'j' = rij , set AT'T = AtIty A*(rjrj1) 5 goto TC.17

else goto TC.17
TCAT j' = j'+1
TC.18 If j' > p, set A - K;-n A ; goto TC.12
else goto . TC.15
i.e., determine the common available time-periods for

rows R; and R;+ for the teacher-class set.

TC .19 Reduce all CAV of R; that are associated with the
teacher-class set vector rij
A*(rij) = F

TC.20 Set j' =1

rlJ

TC.21 If T set A*(rij') - A"

else goto TC.22
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TC.22 j' = j'+1 , if j'> p  goto TC.3

else goto TC.21

The above step locates a teacher-class set requirement in row
Ri of R (stage TC.2). It then determines all related resource
requifement rows (classes) and calculates the common available time-
periods, storing them in A" in stages TC.5 to TC.18. 1In stages
TC.19 to TC.22 the CAV of all required resource vectors of row Rj
that involve the teacher-class set are reduced. Once teacher-class
set requirements for row Rj have been considered block-periods must

be investigated (step 2). An application of the complete reduction

algorithm will be given later in this section.

Step 2

The investigation of block-period requirements for row
Ri.
The nomenclature BR will be used for the algorithm relating

to block-period requirements.

BR.1 Set the block-period size
b =1
BR.2 Set column indicator j = 1
BR.3 If required resource vector Ty j is in a block-period
size b goto BR.5 ; else goto BR.4
BR.4 j = j+1, if j > p goto BR.13
else goto BR.3

BR.5 Locate all resource vectors rjqt, rigr such that

Tijy, Tim's Tim", ... are in the block-period
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requirement.
BR.6 Form the logical union of their associated CAV
to give the time-periocds available for assignment

A' = A*(rij) V) A*(I‘iﬂ;|) (V) A*(I‘inu) es e

(note that there will be b vectors in this union)

where — =4

BR.7 locate block-period size b start positions in column

b of BS array (see section 4.5, chapter 4)

[ )
Q1 "

g,

BSp n A = :

-

gp"

"
where ﬁjl = 1 indicates j' is included in the avail-
able time-periocds for the block-period.
BR.8 Now determine if the periods j'+1, j'+2, «a. , j'+b-1

are also available

If E&: =1 form Bi'n Bi'v1 a ..o n Eﬁv+b_1

BR.9 If the logical intersection = 1 then all time-periods

L
of the block-period are available and hence 851
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is a feasible start-period for block-size b.

If zero, then qu not feasible and is reset to

zero. This step is carried out for each 831 = 1.
—_n
BR.10 finally only feasible start positions B85t = 1 will
remain. If only one remains then the time-periods

must be reserved for this block-period.

it b Gjn = 1 then goto BR.11
Jr=1
else goto BR.4
BR.11 Define A*(rij) = A¥(rjq51) = A*(5qn) = eees
such that 89 = 8> = ..... = Qj'_1 =0
Qj| = 5141 = eevee = Birypq = 1
Bijteb = Bjribpt = eeeee = 6, =0
i.e., reserve the only b feasible time-periods for
that block-period
BR.12 Then goto BR.4
BR.13 Set b = b+1 ; if b >5 exit from the algorithm

else goto BR.2

The above section of the reduction algorithm locates the block-
period requirements in Rj (at stage BR.3). If a block-requirement
is located then an investigation on feasible positions within the
solution are considered in stages BR.5 to BR.10. If it is found that
the block-period can only be assigned in one position (BR.10) the
time-periods involved are reserved for the requirement (stage BR.11).

All block-period sizes are considered for b = 1 to b = 5.
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Step 3
The next step involves the location of critical blocks
(section 2.6, chapter 2).
A critical block is a k-combination of CAV such that their
union contains exactly k, one digits. They are not related
to block-periods, that define consecutive time-periods for
a requirement of the timetable problem. During this 3rd
step Hall's condition is also checked, to ensure that a
feasible mapping exists for row Rj. (see section 2.6,
chapter 2).
The nomenclature HC will be used for the algorithm relating
to Hall's condition.
HC.1 Set k = 1 (the size of the k-combination)
HC.2 Have all k-combinations been considered?

If yes, goto HC.9 ; else, continue.

HC.3 Form the logical union of the k CAV in the combination,

1 * . . * . . * s = *'—
i.e., A (rlJ1) v A (rljz) O +esas @A (rle) 8,
QZ*
*
o
B S= ]
HC.4 If % Qj* < k Hall's condition is violated and no

j=1

solution for the row Rj can be determined.

Thus the back-track algorithm of section 6.4, chapter

6 is called. (see later)



HC.5

HC .6

HC.7
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else if g Qj* = k a critical block has been found
j=1

and the k available positions for allocation must be
reserved for these k resource vectors of the defined
combination.

From lemma 2.6.3, the critical block elements may be
deleted from elements of the CAV not in the critical
block without violating feasibility conditions for the

problem,

Assume the 1's occur in positions

1

indicating time-periods j;', o'y eee ji' for each

required rescurce vector r;q such that

Tin A {rij1 » Tijy 0 eee s rijk}

Ei
*

g2

If any A*(rjy) is such that

* =
A%z 0 | 0
i.e., no assignment positions remain for the vector

Tin after the reduction then no feasible mapping can

exist for R;. Once again the back-track algorithm

is required and will be discussed in the next chapter.
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HC.B8 else goto HC.2
HC.9 k = k+1 ; if k 5 p, exit from CAV reduction algorithm
else goto HC.Z2
EXAMPLE 5.2
Consider the following timetable problem with resources
Cqy Cp, Cg, ty, ty, tag, ty and resource availability array

Resource

t1 to t3 tq Cq Co Cj3

A = 1 1 1 1 1 1 i 1
time- 2 1 1 1 1 1 1 1

period 3 1 1 1 1 1 1 1

The resource requirement array is defined by

(Coytq4t3) (Costq, tp) (t3)
R = (Cyytqstp) (Cq,tq, by) (t4)
(t5) (tg) (tg)

L |

The block=-period array associated with R is given by

2 2 1
B = 2 2 1
1 2 2

L.

where bij indicates the block-period size of activity Tij

of R.

i.e., activities T35, T35 must be assigned in a block-

period size of 2. in the solution, whilst activity r1g3 is

a block size 1.
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The following CAA are calculated for each row of R.

The row

assignment.

1

Rz of R will be considered to be the present row for
The CAV reduction steps now begin for i = 2 (row 2),.
J =1, r51n {Cy, Cy, C3} # ¢
hence a teacher-class set requirement exists

in this position

set A" = A(ry) = [1
1
0
set j' =1 Ty = Thy hence Z:- = |1 1 =
1{ VY1
1 1
jt =2 Ty = Tpp hence 'KF = 11 1 =
ARAE
1 1
jr =3 Tyy = Tyg no action
3 ,
Setr21=‘:2u{[:1, t1, tz} ={C1, Cz, t1, tz}
it =1 c4 8'{C1, CQ‘ hence row 1 (classCy) is

related to the teacher-class set

1 = 1
v |1 1
1 1

so set A''' = O

All'

0O o o
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the available time-periods for row 1 teacher-class

set has been calculated.

it =2 not considered since that is where we found
the teacher-class set

it = 3 is not involved,

_A_;.n Alll

[0}

o

ot

>
I

1}
—
=2
iy
i}
—

this gives the resultant common availability for all
the teacher-class set CAV. In this case no reduction
has taken place since they were all available for the
same time-periods.

Se't A*(r21 ) = A*(rzz) = AN = 1

Now consider block-periods (remember only row Ry is

being considered).

b =1
j=1 ho block size 1
j=2 no block sizs 1
j=23 r,4 has block size 1
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no logical union of resource CAV is required since

r53 is the only required vector involved.

E

A= |1

K
Define 1
BS = [1 0 O
1 0 O

where a 1 in position (i', j') implies that a block

size j' may begin in time-period i'.
J g 8]

Thus 1

BS 1

1

the first column of BS indicating all feasible start

periods for a block-period size 1

are feasible)

Hence 1
BSpa A' = |1
1
and 3
j"§1 Qj" = 3

and no reservation is necessary.

(namely all 3 periods
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set b = 2

T,y has an associated block-size 2 from B, (2, 1)

The other required resource vector in this black-

period is Tone

form A' = A*(xp9) u A*(ry5)

1]

BS; = |0

hence 1

It
a

B52 0n A—',

3
L 8,
9 jn"

= 1

and hence a reserve situation exists since no other
position for the block-size 2 can be found.

Ty
Thus periods 1 and 2 must be reserved since 81 =1

- _ E" 1
814297 B2 = 1

— )
Hence QB = 1 is reduced to 83 =0

The outcome is thus A*(rpq) = |1 = A*(rpyy)
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After steps 1 and 2 are completed the CAA for row Ry
is now

_; 1 1_
1 1 1

0 0 1

Step 3 is now applied
11, set k =1
There is no k-combination of size k = 1 such that

N Q? =1 or X Q; < 1.

12. set k =2

There is a 2-combination of ryq, ryy such that

w

? at=o2
) J
j=1

i.e., the two column CAV have only two available time-
periods when considered together, namely time-periods
1 and 2.

Thus there must be reserved for the required resource

vectors ryq, Tyo and deleted from T53e

0

Hence A*(r..) becomes 0 !

23
1

The CAV reduction algorithm is now completed for Ry of R and

the resulting CAA is
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1 1 0

*
Ay = 1 1 0
0 D 1

From the above simple example it is evident that the CAV
reduction algorithm has an important place in the timetable problem
in the reduction of unfeasible solution positions for the required
vectors. The bijection generator, discussed in the next section of
this chapter, uses the reduced CAA to generate an assignment mapping

for R2'

THE BIJECTIVE MAPPING GENERATOR

The CAV have been reduced by the CAV reduction algorithm (section
5.3), and it is the purpose of the bijection generator to generate
a feasible mapping for the assignment row. It is divided into two

stages.

(a) The arrangement of the required resource vectors into a
descending order of block-period sizes.
(b) The generation of allocation positions for each of the

required activities.

The arrangement stage is included so that the more difficult
allocations are investigated early in the generation stage. i.e.,
a block-size 4 is more difficult to place in the solution array
than a block-size 2 since there is less flexibility for larger block-

period requirements.



For the row R to be assigned the following arrangement stage

is applied.

AR.1 Set k

1l

1 (sequence order indicator)

AR.2 Set b 5 (the block-size indicator)

AR.3 4if b = 0 exit from this stage of the procedure
else goto AR.B
AR.4 For j =1 top
if Tij is not a block size b or has been considered,

set j = j+1 and consider next rj;

else goto AR.5
AR.5 Set requirement resource vector order indicator to k

AR.6 For resource vectors r. ese included in the

imt? ri’l‘["’

block-size b also set order indicator to be k.
AR.7 k = k+1 , goto AR.4

AR.B b b-1 , goto AR.3

Now sach required activity has been assigned an order number.
The image allocation positions for each required resource vector are
now determined. The required resource vectors are investigated for
assignment beginning with the vectors flagged with order 1 and

working through until all have been allocated a solution position.

G.1 Set 1 = 1 (the generator resource vector indicator)
G.2 Set ICT(1) = ICT(2) = (O
to be resource availability used by the generator

G.3 If 1

k ; exit from generator
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l
—_

Set start period image STS(1)

1l
(]

Set End period image ETS(1)
Set IL = STS(1)

If IL> p , goto G.17

If 1 =1, ICT(1) = ICT(2) = O, goto G.10

ICT(1) = ICT(1-1)

Determine remaining start periods for resource vector 1.
IST = (starts for 1) a (* ICT(1))

Determine if IL is a legal start

If IL £ IST goto G.16

Set ETS(1) = IL + b =1

For each resource vector in block determine image in range
STS(1) to ETS(1). If no image goto G.16

STS(1) to ETS(1)

For Jj

ICT(1) = ICT(1) v Jq

1 « 1+ 1, goto G.3

IL< IL + 1 , goto G.7

1« 1-1

If 1 = 0, exit ; no mapping generated.
STS(1) = STS(1) + 1

If STS(1)> p goto G.IT

goto G.6

EXAMPLE 5.3

Consider the problem quoted in example 5.2 where
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(C2, t1, t2) (C2, t1, t2) (t3)

Ro= [(Cq, tq, t2)  (Cq, %, t2)  (%g)

(t3) (tg) (tq)
where (C», t4, t,) is a teacher-class set and must be

allocated in a block-size 2 that may only begin in start-

period 1,

The CAA for row Ry has been reduced in example 5.2 to

1 1 0
A, = [T 10
o o0 1

This composite availability array indicates r54 may be
allocated to time-periods 1 or 2, r,, to time-periods 1

or 2 and ry3 to time-period 3 only.

Thus the only feasible mappings for row Ry are defined by
this CAA.
The generator now orders the requirement vectors for row

Ro. Using algorithm specified by the nomenclature AR,

Set b =5 - no block-size 5 requirements
b =4 - no block-size 4 requirements
b =3 - no block-size 3 requirements
b =2 - have block-size 2 in positions rpq,
T22

Thus rpq, Ty are both flagged with k = 1

- no other block-size 2
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b =1 - have block-size 1 in position roj3
Thus ryq is flagged with k = 2

Hence the order of generating the mapping is that r34,

Too must be allocated first, followed by rsg second .

Pictorially, an assignment stack (queue) exists as follows

1 Tpq, Ipp

2 1'23
The start-period for stack-position is |1 = STS(1)
]
0

Hence allocation positions for rp4, rpp is produced as

-

1 0
1, 2 respectively, i.e., D and |1
0 1]
thus using time-periods indicated as available by A; for
ry1, Tpp. We note that the mapping could feasibly have
been defined such that rp4 was mapped to time-period 2 and

roy to time-period 1.

Thus time-period 3 remains for r33, i.e., 0

Hence the mapping
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(Note the mapping

1
A2 = (2

AS]

3

3)

—_—

would also be feasible.)

For each block-period size, in descending order, the generator
determines available image positions for the required resource vectors.
Figure 5.1 is a tree structure, used to indicate the procedure of

the CAV Reduction Algorithm and the Bijection Generator.

images for r,

i1

images for Tio

i3

Tig

Figure 5.1

Iree structure of Bijection Generation

The CAV reduction algorithm 'prunes' the branches of the tree
by reducing images for the associated resource vectors. Each node
of the tree is associated with an available time-period for each

of the resource veétors of row Ri of R.

1.B4 node 1 is for resource vector Ti4

node 2 and 6 is for resource vector'ri2

node 3, 4, 9, 7 is for resource vector g

node 5, 8 is for resource vector Tia
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_CQ_ indicates an unfinished mapping.

In this example of Figure 5.1, only two successful mappinus exist
(through nodes 1-2-4-5, 1-6-7-8). The CAV reduction algorithm has
reduced all infeasible images for each resource vectaor and the
bijection generator attempts to determine, from the remaining images,

a feasible mapping.

Steps G.6 to G.11 are the selection of images for the resource
vectors from available allocation positions. Step G.17 to G.21
indicate a route like 1-2-3 (an unfinished mapping) with no image
available for Ti4- Hence a new selection T4 is made (node 4) and
hence the feasible mapping (with respect to R ) of 1-2-4-5. The
selection principle is equivalent to the selection of an SDR, described

in chapter 2, section 2.6.

The original bijection generator was a permutation algorithm
described by Wells (55) called the Johnson-Trotter algorithm. All
permutations of images were produced and checked against the CAV's
for feasibility. It was found that the time involved with the
production of infeasible mappings (discussed in chapter 7) increased
as the method proceeded. The new generator just described is more
efficient, and includes an important time saving, since the

production of infeasible mappings has been reduced for each row.

The following chapter discusses the relationship between the
Implication Algorithm, Back-track procedure and the two algorithms

of this chapter,



CHAPTER b6

THE IMPLICATION AND BACK-TRACK ALGORITHMS

INTRODUCTION

The CAV reduction algorithm rejected inadmissible elements
(section 5.3, chapter 5) from the CAV associated with an assignahble
row of the resource requirement array. from the remaining admissible
elements, a feasible mapping was generated by the bijection mapping
generator (section 5.4, chapter 5). It is the purpose of the

implication algorithm (section 6.2) to consider the effect of this

mapping on the unassigned required resource vectors of the require-
ment array. The common resources that are required in both the
unassigned activities and the assignable activities of the assignment
row are the cause of first order implications. Second order impli-
cations are related to the unassigned vectors themselves, and will

be discussed in section 6.2.

The reduction stage of the implication algorithm is more
extensive than that of the CAV reduction algorithm. Factors such as
teacher-class sets, block—periods,fixed—time—periods, and critical
blocks (section 6.2, chapter 6) must be considered in relation to
the remaining activities and available assignment positions. It
will be shown that new critical blocks are produced by the impli-
cation algorithm, and must be considered in relation to the remain-
ing allocation positions. Hall's condition (section 2.6) has

important applications in this algorithm.
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To consider every implication caused by a row assignment would
not be economically feasible even with the use of a high speed
computer. Hence the problem was considered in two stages. First
the row that present the most difficulties for assignment were
considered early. To determine the measure of difficulty a heuristic

precedence algorithm was designed and has been discussed in section

6.4. The algorithm attempts to determine the most difficult raow,
not yet assigned, and supplies details to the bijection generator
(section 5.4, chapter 5). Two important error detection devices

were produced far the heuristic algorithm. They are the clash

matrix (section 6.5) and resource load matrix (section 6.6). Both

have a practical application in the school timetable problem
solution and extensive use has been made of them in the Craigmore

High School problem in chapter 8. Second a back-track algorithm

(section 6.3) was incorporated, to retrace to previous assignment
stages when an unfeasible situation was reached. This algorithm
can be forced to consider every feasible bijective mapping at any
stage by rejecting them through the implication algorithm. It will
be shown later (section 6.3) that the solution method is exhaustive,

and is capable of producing every arrangement of activities.

Finally, the assignment algqorithm (section 6.7) is discussed.

If the implication algorithm determines that no infeasibility is
caused by a generated mapping, then the row is assigned, and all

data relevent to the assignment is stored. The function of the
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algorithm is, in general, to store data in order that the back-

track algorithm may later retrace to any previaus stage as

required.

The relationships that exist between the algorithms discussed,

are indicated in Figure 6.1 below :-

Y

READ
DATA

31

HEURISTIC
PRECEDENCE

ALGORITHM

l y -

BIJECTIVE
MAPPING
GENERATOR

{ )
‘L IMPLICATIU1

ALGORITHM

ANY No BACK-TRACK
FEASIBLE
MAPPING? & ALGORITHM
ASSIGNMENT
Yes i .
ALGORITHM Figure 6.1 :

ANY

MORE TO
ASSIGN

A block-diagram of
relationships between
the various solution
algorithms.

PRINT
SOLUTION
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THE IMPLICATION ALGORITHM

Consider that the rows Ry, Ry, ... , Rj

j-1 have been assigned,

using bijective mappings A1, A2, ses Ai_1 produced by the bijec-
tive mapping generator of section 5.4, chapter 5. The next row Rj

of the resource requirement array is next to be assigned. The

bijective mapping generator generates a mapping Ai that is feasible
with respect to row Ry (i.e., maps the resource vectors of R; into
available positions in the corresponding solution row S;). The
function of the implication algorithm is to determine the impli-
cations of this assignment of row R; on the remaining unassigned

R

resource vectors of rows R; R

i1 This is accomplished

i+2r *°° 2 "m*
through the reduction of the CAV (composite availability vectors)

associated with each unassigned resource vector.

There are two main stages with the implication algorithnh
reduction of CAV. The first stage considers the CAV of resource
vectors that involve any of the resources that are to be assigned
in row Rjy. The period assigned to a resource within the solution
row 3; must be rejected from these CAV when common resources are
located within unassigned resource vectors. For example, suppose
teacher Smith is involved in an activity of row Rj and was allocated
to time-period 2 of S; by the mapping A; (i.e. the resource vector
containing Smith is allocated to the second.position in row 5i).
Then Smith is not available for time-period two in any future

assignments, and the time-period 2 is rejected from each CAV af
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the unassigned rows that involve the resource Smith. This reduction

may be complex- when teacher-class sets are involved.

The second stage of reduction cccurs when considering the
unassigned requirements. For example a resource vector with only
one remaining assignable time-period in its CAV must be assumed to
be temporarily allocated to that time-pericd. Hence further

reductions may occur amongst the unassigned CAV.

If any CAV is reduced to zero (no remaining allocatable time-
periods for its associated resource vector), then the mapping Ai
is said to be infeasible with respect to the unassigned rows of R,
Hence it is possible for a mapping Ai to be feasible with respect
to row Ry but yet be ineligible for use because it is found to be

infeasible with respect to the other rows of R.

The second reduction stage of the algorithm is equivalent to
locating critical blocks (chapter 2, section 2.6) within the CAA
(composite availability arrays) of the unallocated rows of R, and
investigating the implications of the critical blocks. This process

is demonstrated in the following example 6.1.

EXAMPLE 6.1

Consider the CAA associated with Ry of a timetable

problem where
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PRy - |10
01 11

Lg 0 0 1

This demonstrates a critical block of size 3 occurring

for resource vectors ryq, rp> and rp3 since there exist

only 3 available positions for assignment, determined

from

A*(rq) v A*(ry5) v A*(rs3)

- -
1

1
i
0

Thus the 3 time-periods must be reserved for these resocurce

vectors. Hence they must be elimineted from the CAV of

Toy to leave

A*(rzq4) =

which itself is a critical block.

From Lemma 2.6.3 the above reduction is justified since it
does not affect the feasibility of the CAA (reduction of
inadmissible elements for rp4). J. Cisma (9 ) has shown

that the rejection of inadmissible elements does not cause

Hall's condition to be violated.
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Beside critical blocks, sometimes called 'tight situations',
the practical requirements of the school timetable problem must be
considered. e.g. teacher-class sets. For simplicity, the
implication algorithm will be discussed in stages with examples

given at each stage to demonstrate the reduction carried out.

Stage 1

Reduction of CAV's that are related to resource vectors
(unassigned), that involve common resources to the

assignable row R; of R.

Assume the mapping generated for R; is Aj, described by

1 2 3 -
Ai = (61 8o 83 Ep)
From the theory of section 2.4, chapter 2, the mapping is character-

ized by the permutation

A,
i

= (8 8 8 cee

1! 2) 3! 6 )

'p

The resource vectors of Ry are r.

i1 T. «e 4 L. o Hence the

i2* ° ip

resource vector rij is mapped into position % of the solution row
Si. The resources involved in rij must be made unavailable for
position % for all unassigned resource vectors that also require

these resources. The following algorithm rejects allocation positions

for involved required resource vectors.
S1.1 For each resource B € T ; do the following steps

S1.2 Set i1 = 1 to be row counter.

51.3 If row iy assigned set iy = iy + 1
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else : goto S1.5

S1.4 If i1 > m exit from stage 1

else : goto S51.3
51.3 If i = i, set i1 =i, + 1, goto S51.4
else : set j1 = 1 to be column counter
S1.6 If Ti, i is related to rjj through a teacher-class
set, set all elements of A*(ri1j1) to zero except

the Gj-element set to 1. goto S1.7

else : goto S1.9

S1e7 Jq =3¢ + 1

$t1.8 If j4y > p i =iy + 1, goto S1.4
else : goto S1.6

51.9 Delete element §; from A*(ri1j1) if B € ry5 and

B e ri1j1.

else : goto S1.7

51.10 If A*(ri1j1) = 0 ; the mapping 4; is not feasible

with respect to row iy of R.

else : goto S1.7

The above algorithm stage 1 is applied for each resource 8 € Tijs
for j =1, 2, «cs , p thus deleting the allocation positions from
future mappings (since constraint 1 states that a resource must not

be allocated to two unrelated activities during the same time-

period).
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If the activity is related through a teacher-class set to an
activity in row iq of R then the activity Ty must also be
allocated to time-period Gj (see teacher-class set requirements,
section 3.2, chapter 3). This step is contained in step 51.6 of
the algorithm. If the activities are not related then steps 51.9,

51.10 are applied.

In step S$1.10 if a CAV is reduced to all zeros then the mapping
A

; is not feasible with respect to this row iy of R and another

mapping for row R; must be generated.

Stage 2

When all first order implications have been considered in stage
1, the second order implications are investigated. These are only
in relation to the unassigned resource vectors and the effect that

the mapping Ai has on them.

Stage 2 is treated in 3 steps. First the CAV reduction algorithm
is applied to each unassigned row of R to reject any inadmissible
elements brought about by the mapping Ai through stage 1. Second,
the single available CAV are treated and the implications of these

considered.

It will suffice, to briefly mention this first step since the
CAV reduction algorithm has been extensively discussed in section

5.3, of chapter 5. The reduction is applied to each unassigned row
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of R in turn to ensure that each row of R is still feasible with
respect to their required resource vectors. The special require-
ments such as teacher-class sets, and block-periods are alsoc consid-
ered in this algorithm. If some requirement can not be met the
implication algorithm causes another mapping to be generated for

row Rj and the implication algorithm begins again at stage 1. Other-

wise the next step in stage 2 is considered.

Any CAV, not assigned, with a single non-zero element must have
the indicated time-period reserved for the associated resource

vector.

i.e. if there exists a CAV, A*(ri1j1), such that

where 8% =1
J

is the only non-zero element, then time-period j' must be reserved
f L L] L]
or r1131
In essence, this is the same as temporarily assigning the
resource vector Tiqig to the time-period j' using a mapping Ai1
with Gj' = j'. Hence, for this single required resource vector
ri,j, We can use the algorithm of stage 1 with %n = j'. This

algorithm will delete the element j' from each unrelated resource

vector CAV, that involves any of the resources 8 € Tigjq -
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A simple example will now be given to demonstrate the functions

of the implication algorithm.

EXAMPLE 6.2

Consider the problem where

—

(Coy 1, t2) (%9, &4) (g, 8g) (%3, ep)
R = (C1, 't1, ‘tz) (‘t1, 84) (tS, 82) (‘tﬁ, 82)

(ty) (t3, ep) (t3, O5) (tq)

S

where the school resource set E consists of
classes C = {C4, Cy, C3}

teachers T

{ty, to, t3, tg, t5, tgl

others 0 = {ey, e4, Og}

The composite availability arrays (CAA), associated with each
row Ry of R we recall, indicate the availability of the time-periods
for assignment of each resource vector of Rj. The columns of A*; are
associated with the corresponding resource vectors of R; where the
1st column indicates the availability of the time-periods for Tigo

column 2 for ri2’ etc.

Assume the three CAA for the above requirement array R are given

as follows :-

A¥ = indicating complete availability

1 1 1 1 of every time-period for all resource

vectors of R1.
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P —
—_ =
Y
PU—

A; = indicating for row Ry that the re-

source vector rp3j is not available

I
-
o
I o o

for time-period 4, and rpg is not

available for time-periods 3 and 4.

i.e. columns 3 and 4 of AE have zero elements in positions

(3, 4) and (4, 3), (4, 4) respectively.

1 1 1 1
1

A; = o 1 1 1 indicating resource vector r3jq is
hP ! L l_ or 4.

-—
—_
—_

not available for time-periods 3

Since the fixed-period requirement allocates time-periods 2 to
resource vector rgy, this time-period is not available to any of the
other resource vectors of row Rj (since no two activities of a class
can be allocated to the same time-period). Hence it is in order,
to remove time-period 2 from the other resource vector availabilities.
This is done by rejecting the ones in positions (2, 2), (2, 3),

(2, 4) of Ag associated with the row R5 resource vectors. Further
assume that resource vector r3; must be allocated to the 2nd time-

period.

i.e, the fixed time-period mapping of section 4.5, chapter 4

is such that

o
o
o
o
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Any fixed time-periocd can be included immediately into the CAA
by reduction of the associated CAV. In the case above, we reduce

A*(r31) from

e — —

0
1
0 ha 0
|9 Ui

thus making all time-periods inadmissible except the second. Note
that the CAA also include any restricted time-period constraints for
any resources of the school in the same way. (i.e. by the reduction

af CAV).

Thus A; becomes

— -
0 1 1 1
1 1 1 1
0 1 1 1
0 1 1 1

In the practical problem, the first algorithm used is the
implication algorithm. This action is taken since all praoblem
requirements can be chekced for feasibility before the generation
of mappings begin. e.g. do the fixed time-periods requirements

cause any infeasibility?

The only CAV causing any reduction is A*(r31) and time-period

2 must be reserved for the required resource vector r31s to leave

1 1 1

(am]

'DD
—
—

L~
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No further reduction of R3 CAV is possible. Now the effect

of A*(r3q) is considered with respect to the other CAA.

r3y involve resource tp, hence any other resource vector involv-
ing tp can not be assigned to time-period 2. (from constraint 1,
that states that no resource may be allocated to more than one
unrelated activity during the same time-period 2). Hence A*(rqq),

A*(r12) both involve ty and must be reduced by rejecting time-period

2.
Hence
- - — —
11 1 1 1111
1 1 1 1 o 1 1 1
*
A= |1 4 4 g besomes .
111 11 11
L - L o
and . _—
,—- —
1 1 1 1 1 1 1 1
ae e |77 T fecomes |81 11
2 1 1 1 0 1 1 41 o0
L1 1 0 o 1 1 0 0 |

No further implications of the problem special requirements
cause reductions. Thus at this stage the problem is feasible with

respect to the problem special requirements.

Now the generating algorithm is called for row Ry. We will

assume that the order of rows to be assigned is Ry, Ro, R3.

All requirements for row R are single block-pericds and

thus the bijection order is rqq =1, r45 = 2, T3 =3, g4 = 4.

P%
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The allocation positions are indicated by AT.

The first mapping generated for Ry is

That gives a solution row

S1 = ((CZ’ t1’ tz)’ (t‘[’ 54), (t4, 94), (ta, 82))

The implication algorithm checks the effect of the mapping.

The teacher-class set in ryq is investigated. This involves
ryy since (C,, t4, t;) indicates row R, through the resource C,.

Remembering that a teacher-class set involves an assignment to the

same time-period (in this case period 1) the CAV of I,y must be

reduced .

Thus

A¥ = becomes
2

1 1 G ©
F=0 -

0

r o o o - '
(

Next consider the resources that have been assigned in row Ry .
Resources t4ys t; can not be assigned elsewhere (except in the teacher-
class set requirement of row 2) to time-period 1. Thus any resource

vectors involving ty and t, must be reduced to exclude time-period 1.

in rows Rz, R3.

This involves A*(r22), A¥*{rqq)
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Thus
1_1 0
1 |
A*(r22) = becomes
1 1
1 1
and _
UT 0
1 1
A¥(rq,) = becomes
31
0 0
0 0

i.e. stays as it is since time-period 1 is already

excluded.

Similarly the 2nd assignment in row R4 involved resources ty, eq
and the 2nd time-period. Hence exclude this time-period from all

CAV in rows Ry, and R3 that involve resources t1, 4.

Thus

— = = -

0
A*(r22) = : becomes ?

1 1
L L

Similarly for (t4, e4) in time-period 3

and (t3, ep) in time-period 4

to give

-
=]
o |

0O o o
-
-
=
[ma]
(]
- o o |

rDDD
o
.IDD
lo o
[
(w]
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Now the CAV reduction algorithm considers the CAA of Ry and

R3 to consider unassigned vector implications.
. *
Consider Aj.

The effect of a singular in A*(r21) involves the deletion of

time-period 1 from columns 2, 3, 4 to give

1 0 0 0

#* 0 0 1 1
A2=

0 o© 1 o

0 1 0 0

The singular in column 2 has no effect but the singular in

column 4 reduces column 3.

Finally
1 0 O 0
A; _ |0 0 o 1
0 o 1 0
o 1 0 O

. . * g i
Thus an extensive reduction has occurred on A2 resulting in

all singular CAV.

Ag is considered in the same way by the CAV reduction algorithm

and it is left to the reader to determine that AE becomes

—
0 1 1 0

A; _ 1 0 0 0
0 1 1 0

o 0 0 1
— —

The solution row Ry is adopted since no infeasibility is

‘located with respect to the mapping A1 on the unassigned resource

vectors.



147.

The next mapping for R4 is the singular mapping, i.e. only

one exists.

Namely

0 1 1 Ej [:; 1 0 0
A; _ 1 0 0 8] . 1 0 0 0
0 1 1 0 0 0 1 0
0 0 a 1 0 @] 0 1
N L
and hence
1 2 3 4
by = 1 2 4

Thus the solution

(C2, t1, t2) (%1, eq) (tg, eq) (t3, e2)
S = (Cqy t1, t2) (g, ®2) (t5, ep) (t1, eq)

(t3, 82) (tz) (t3’ 05) (t4)

—_— —)

From the above relatively simple example, the extent of the
implication algorithm can be seen. However, in general not every
implication has been fully considered, since reductions caused by
the second stage could cause new implications for the CAV. This
is not reconsidered since it was found that the majority had been
sufficiently considered, and the back-track algorithm and heuristic
precedence algorithms reduce the probability that unfeasible
situations will be caused by unconsidered possibilities. The back-

track algorithm will now be discussed.
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THE BACK-TRACK ALGORITHM

With the practical timetables that have features with exten-
sive ;mplications, the time for testing would be considerable.
This method of solution disregards any further implications of the
rows at the expense of the possibility of an infeasible situation
arising. To minimise the possibility of infeasibility occurring
a heuristic precedence algorithm was incorporated. This will be

discussed in the next section.

Consider that the i-th stage has been reached and that the
implication routine indicates that no feasible mapping with respect
to the unassigned resources of R can be determined for R . The
algorithm recreates the situation before the previous stage mapping
was assigned and a new mapping for stage (i-1) is produced. If
no more mappings remain for (i-1) then a revision of stage (i-2)
is made. If stage 1 is reached by the back~tracking algorithm,
and no mapping can be generated for this stage 1, then all feasible
mappings for stages 1, 2, ... , i have been considered with no
result. Hence no solution can be found for a subset of rows of R

and no solution exists to the problem.

It can be seen from this outline of the back-track algorithm
that the solution method is exhaustive. A flow chart of the back-

track algorithm is given in Figure 6.2.
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vy §

Generate No
Feasible Ai
w.r.t. Rj
* Yes SOLUTION
EXISTS
STOP
Yes
A CATION 0.K? i= i+l

Yas Anymore
Feasible 4 ;

BACKTRACK
i=1i-1

NO SOLUTION

EXISTS [——®—5TO0P

Figure 6,2 : Flow Chart of Back-track procedure.
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To minimise the work of the back-tracking algorithm it was tound
desirable that good mappings were produced early. Rows of R that
would have severe effects on other rows of R should be considered
first in an effort to reduce the length of back-tracking when
required. This led to the construction of the heuristic precedence

algorithm,

THE HEURISTIC PRECEDENCE ALGORITHM

Manual investigations have shown that different degrees of
difficulty are associated with various special requirements in the
timetable problem. The heuristic precedence algorithm makes use of
these investigations by listing the special requirements in order
of difficulty. Also taken into consideration was an objective
stated in chapter 3, section 3.4. This objective detailed the
desirability of creating the timetable solution considering the
upper (4th and 5th) year level classes at a school first, and working
back to the 1st year level classes last. Using this technique has
two advantages. First, if a complete solution can not be determined
due to some infeasibility in the 1st year or 2nd year levels a partial
result will have been produced for the upper levels of the school
while corrections are made. Second, the complex teacher-class sets
and block-period requirements are usually located in the upper
level requirements and are more easily considered early in the

assignment procedure.
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The manual techniques indicate the following order of difficulty.

Teacher-class sets, block-periods, fixed time-periods, part-time

staff in that order. The following computer precedences were

calculated on this basis. It should be noted at this stage, that

precedences are recalculated after each assignment stage to

faciliate the changing order of difficulty that arises due to the

availability reduction stages of the implication algorithm.

LEVELS

L1

L2

L3

L4

LS

L6

L7

L8

Teacher-class sets with block-periods involving

these sets, block-periods outside the sets, fixed

time~period (singular availability vectors) and the

extent of teacher-class set row involvement.

€.g. a set involving 3 rows of R would be considered
before a 2 row involvement.

Teacher-class sets, block-pericds, without singular

availabilities,

Teacher-class sets, with block-periods not involving

the sets and with singular availabilities.

Teacher-class sets with block-periods outside the

sets, without singular availabilities.

Teacher-class sets and no block-pericds with singuler

availabilities.

Teacher-class sets.

Block-periods with singular availabilities.

Block-periods - no singulars.
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L9 Singular availability resources.

L10 Any remaining rows.

The level of precedence decreases from L1 to L10. In the
production of the precedence algorithm two important matrices were

used. These were the Resource Load Matrix and Clash Matrix.

RESOURCE LOAD MATRIX

The resource load matrix summarizes the total number of time-
periods required by each resource, to meet the requirements defined
in the resource requirement array. This summary is presented in the
form of a table or matrix where entries in column 1 indicate the
number of time-periods required and column 2 the number of available
time-periods for the resource. Rows are indexed by the resource
code, discussed in later chapters. In essence, each row of the
matrix is associated with a particular distinct resource, thus
giving a complete picture of the total involvement of every resource

in the timetable pattern.

The matrix is formed for each daily timetable problem, and by
scanning each daily requirement for a resource a tally of the weekly
load can be determined. It should be noted that teacher-class set
requirements involve the same resources for an activity and although
several classes are involved the number of time-periods required is
still only one. (The only situation where common resources may be

allocated to the same time-period for different classes, see
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chapter 3, section 3.2)

The resocurce load matrix has two major uses. First it is
used to determine precedence when several requirement rows have the
same precedence level as discussed in the previous section 6.4,
Rows that have heavily loaded resources will then be given a higher
precedence within that level. Ffor example, if two rows R4 and R
are on the same precedence level, Ry involves resources that have
loads of 6, 7 and 8 time-periods while row R, involves resources

with loads of 5 and 6, then row Ry will be given a higher priority.

The resource load matrix changes as the assignments are made.
The matrix in effect keeps a tally of the number of remaining time-

periods required by each resource after each assignment stage.

EXAMPLE 6.3
Consider rescurces involved in example 6.1. From the
resource requirement array, and knowing that resource
t, is not available for time-periods 3 and 4, tg is not
available for time-period 4, tg is not available for time-
periods 3 and 4 the following resource load matrix is

compiled.

Rescource Load Availability
tq 3 4
to 2 2
t3 3 4
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Resource Load Availability
tg 1 3
tg 1 2
eo 4 4
g4 3 4
Us 1 4

Note : (1) the class resources can be omitted since they
are always fully loaded as they are involved
in every daily time-period.

(2) resources ty, t3, e,, e4 are heavily committed.

Secondly, the resource load matrix is used when no solution can
be determined for a given problem. This is useful for the fault
location of over-committed resources (i.e. over-committed for 5 out
of 4 available time-periods) and for altering loadings when errors
must be corrected in 'mo solution' situations. School administrators
use the load matrix in conjunction with the clash matrix of section
6.6 for re-allocating requirements (see chapter 8, section 8.4).

The clash matrix will now be discussed.

THE CLASH MATRIX

The clash matrix is an important error detection and correction
aid, (described in detail later), designed in conjunction with the
resource load matrix (section 6.5). It is constructed by the computer

program from the required activities of the timetable problem (see
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example 6.4). The clash matrix is generated for two main purposes.
Firstly, it is used to indicate activities of the timetable problem
that cause an infeasibility within the problem definition. This
situation wili arise when a combination of resources required for
a class activity involves at least one resource of each activity

related to another class.

EXAMPLE 6.4
Consider a timetable problem defined by the activity

paths

@ C1, CZ, t1, tz, 'ta @
Cis 4 Cy, tg
® ®

n

©
O@@@@

C t

The activity (1, 2) deletes any possibility of an allocation of
the class Cq activities since (1, 2) involves all the teacher
resources required by Cj activities. Recall that no unrelated
activities inveolving the same resource may be allocated to the same
time-period (chapter 4, section 4.2). The clash matrix indicates

this type of infeasibility, and can be used to consider the effects

of various combinations of activities allocated to the same time-
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period (see later in section 8.3, chapter 8).

Secondly, the clash matrix can be useful for redefining the
resource combinations identified by the computer program as infea-
sible. Since the manual interaction during the timetable construc-
tion has been minimized through producing the solution by computer,
it is necessary to indicate the existing combinations of resources
for activities so that manual alterations can be made with little
difficulty. A practical example of the use of the clash matrix is
given in section 8.3, chapter 8. The construction of the clash

matrix will now be discussed.

The clash matrix is a binary array with each column representing
a distinct activity of the timetable problem. The rows of the matrix
represent the same activities that are identified by the columns,
and in addition the resocurce elements of the school resource set
are also associated with rows of the clash matrix. To clarify the
description consider example 6.3. The resource set E ={C1, €y, Cy,
ty, to, t3, tg, tg) and the distinct activities are (1, 2), (3, 4),
(6, 7), (9, 10), (11, 12), (13, 14). These 6 activities are repres-
ented in the clash matrix by the first six rows and columns while
rows 7 to 14 represent the elements of the resource set E. Thus
in general, the activities E}, Eé, Ej, s, E} are associated with
the first r rows and columns of the matrix while the & elements of

the resource set E are associated with rows r+1, T+2, ... , I+Q,

as shown in diagram 6.1
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activities

a1 82 33 R

activities

. BINARY

— — — S — — — — — — — — — — — —

resources

. ARRAY

a

Diagram 6.1 : The layout of the clash matrix

The element (iy, jy) of the clash matrix is set to 1 if the
activity (resource) of row iy does not involve any of the resources
(is not a resource) of the activity of column j4. Otherwise the
element (i1, jq) is set to zero. Thus a zero entry indicates that
activities of row i4, column jy can not be allocated to the same
time-period because they involve at least one common Iesource. The
resource section of the clash matrix is included to define each
resource combination for the activities 3y, @y, ... , @, and is

useful in assisting manual corrections to infeasible problems, such
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as those described above in example 6.3. Distinct activities are
considered to delete the duplication of information when several
activities require the same resource combinations. (i.e. the

consecutive activities described in section 4.3, chapter 4).

The most probable area of infeasibility when a problem does
not have a solution is in the combinations of resources chosen for
the teacher-class set activities of chapter 3, section 3.2. For
convenience a clash sub-matrix was produced, and includes only
activities that involve 3 or more resources. This sub-matrix does
not include the basic single teacher class activities that do not
impose far reaching restrictions on the timetable solution. The
sub-matrix is merely an option and is mentioned without further
discussion. An example of a clash matrix is given in example 6.4

to demanstrate the construction involved.

EXAMPLE 6.3
Consider the activity paths of example 6.1, namely

C C

10 Loy by, 5 Loy 1y, By C3s t;
@ ® GG @

C t e C t e C t e
(5}_ 15 “1s» "4 (Eg) (Ez} 21 “5s =2 {IE) ([E} 3, “3s B2

Cy, ta, € Co, tg, e Ca, ta, O
Q===—0) =20 G

c

s T e Cq, t
(z) 1 3 =2 __{E) (EE} dr 4



Activities

=]

Irc

(1,2) (3,4) (5,6) (7,8) (9,10) (11,12) (13,14) (15,16) (17,18) (19,20) (21,22)

Row Sum

(1,2) 0 0 0 0 0 0 0 0 1 1 1 3
(3,4) 0 0 o 0 o 1 1 1 1 1 1 6
(5,6) 0 0 0 0 0 1 1 1 1 1 0 5
(7,8) 0 0 0 D 1 0 0 1 0 0 1 3
(9,10) 0 0 0 1 0 0 0 1 1 1 1 5
(11,12) 0 1 1 0 0 0 0 1 0 1 1 5
(13,14) 0 1 1 0 0 0 0 1 o 1 1 5
(15,16) 0 1 1 1 1 1 1 0 0 0 0 6
(17,18) 1 1 1 g 1 0 0 0 0 0 0 4
(19,20) 1 1 1 0 1 1 1 0 0 0 0 6
(21,22) 1 1 0 1 1 1 1 0 0 0 0 6
Cq ] 0 0 0 1 1 1 1 1 1 1 7
Co ] 1 1 1 0 0 0 1 1 1 1 7
Cy 1 1 1 1 1 1 1 8 0 0 0 7
tq 0 0 1 1 0 1 ( 1 1 1 1 8
to 0 1 1 1 1 1 1 0 1 1 1 9
t3 1 1 1 0 1 1 1 1 0 0 1 8
t4 1 1 0 1 1 1 1 1 1 1 0 9
tg 1 1 1 1 1 0 1 1 1 1 1 10
tg 1 1 1 1 1 1 0 1 1 1 1 10
04 1 1 1 1 1 1 1 1 1 1 1 11
02 1 i 1 1 1 1 1 1 1 1 1 11
05 1 i 1 1 1 1 1 1 1 1 1 11

1 1 i 1 1 1 1 1 1 1 1 11

*661
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Activities

(1,2) (3,4) (5,6) (7,8) (9,10) (11,12) (13,14) (15,16) (17,18) (19,20) (21,22) Row Sum

1 1 1 1 1 1 1 1 1 0 1 10
1 1 1 1 1 1 1 1 1 1 1 11
1 1 1 0 1 0 0 1 0 1 1 T
1 1 1 1 1 1 1 1 1 1 1 11
1 0 0 1 0 1 1 1 1 1 1 8

Clash Matrix

Note that (a) activity (17,18) is available to be assigned to a common time-period
with any of 4 other activities while (1,2) can only be allocated

with 3. (shown by row sum).

(b) For the resource section of the matrix, by calculating (r - row sum) =

ioad of resource a column of the resource load matrix can be formed.

‘09!
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EXAMPLE 6.6
Consider the previous example 6.5. From the resource
section the following resource load column can be

determined.

Resource Load
C1 (11-7) =4 : 4
Co (11-7) =4 : 4
Ca (11-7) =4 : 4
4 (11-8) = 3 : 4
ts, (11-9) = 2 : 4
tg (11-8) = 3 : 4
t4 (11M=9) = 2 : 4
ts (11-10) =1 : 4
tg (11-10) =1 : 4
01 (11-11) =0 : 4
05 (11-11) =0 : 4
04 (11-11) =0 : 4
04 (19-11) =0 : 4
05 (11-10) =1 : 4
ey (11-11) = 0 : 4
C (11-7) =4 : 4
eq (11-11) =0 : 4
By (11-8) = 3 : 4

Note : the ratio 1 : 4 indicates that the resource is

required for 1 of the 4 daily time-periods.

The clash matrix is produced after all the program data has
been interpreted by the computer. It is generated, along with the
resource load matrix, during the vetting stage of the computer

program. Thus anyinfeasibilities for 'over-loaded' resources can
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be immediately determined. The principles of their use are indicated

in the following situations.

Situation 1
A resource has been located that is overloaded. The clash-
matrix can be interrogated to locate any teacher-class
sets that involve such a resource. The resource may then
be deleted from the set, and from the load matrix a suitable
replacement may be chosen, thus reducing the load on the

'over-loaded' resource.

Situation 2
A problem has no solution. (see chapter 8, section 8.3).
The program prints the clash-matrix which is interrogated
to locate the activities causing infeasibility. Activities
or combinations of activities are located from the clash
matrix such that they cannot be allocated to the same
time-periods, and thus the cause of the infeasibility is
determined. Therefore a new combination of resources in
such activities must be sought. By conferring with the
load and clash matrices the re-organization of the
activities can be more easily accomplished. A detailed
example is contained in chapter 8 to indicate such

situations.
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The clash matrix presents a clear indication of the extent
and composition of the school activities. It indicates activity
pairs that are compatible in that they may be allocated to common
time-periods. The matrix is therefore of considerable assistance
in the construction of new combipations of activity resources when
an infeasibility is attributed to a faulty grouping of resources.

Both the clash matrix and resource load matrix are of considerable

benefit in the error detection and correction techniques for practical

problems and a direct application is presented in chapter 8. The
connection between the two matrices has been demonstrated in

examples 6.5 and 6.6.

THE ASSIGNMENT ALGORITHM

This algorithm is the final stage of the assignment pracedure.
The algorithm simply stores the solution rows determined by the
generated mappings and stores relevant computer information required

to reinstate previous stages together with the reduced CAA's.

A flow chart combining all algorithms is given in the next

chapter when the computer program and results are discussed.
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CHAPTER T

THE COMPUTER PROGRAM AND GENERAL TIMETABLE RESULTS

INTRODUCTION

The mathematical model of the timetable problem has been presented
in chapter 4, and a formal description of the solution algorithms is
contained in chapters 5 and 6. The establishment of the solution
method in the form of a computer program, and its application to

various school timetable problems is discussed in this chapter.

The speed of the logical operations of the computer are utilized
in the investigation of the implications of an assignment (see chapter
6, section 6.2). The advantage that this approach has over previous
methods is in the implication and assignment techniques. Fraom
chapter 4, section 4.2, an assignment involves all daily activities
of a class. Thus for a p time-period school day, an assignment is
the allocation of p activities of a class to the p time-periods.

The implication algorithm considers the effects of the assignment

on other unassigned classes. In previous methods such as those
quoted in chapter 1, an assignment involved only one teacher-class
activity. Thus the inter-relationships between activities and their
subsequent implications on the timetable solution were not quickly
established when generating the solution. In this method a class

is treated as an assignment unit, and all relationships for a class

assignment are considered together with individual activity impli-
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cations involved in an assignment. Thus the soclution method firstly
detects any infeasibilities in a problem more quickly, and secondly
is directed toward a solution, when one exists, without a large

amount of time being wasted on undetected assignment difficulties.

This approach, through the recursive nature of the back-track
algorithm of chapter 6, has the added advantage of being exhaustive.
The program is capable of producing every solution to a given time-
table problem by rejecting the last assignment of each successive
solution produced, and thereby forcing the program to back-track

and try again.

The program will be used to solve many school timetable praoblems
in South Australia, and indeed has already been used with success at
Craigmore High School (chapter B). Therefore it was important that
running costs of the program should be kept within acceptable
economic bounds. In the final outcome, results that have exceeded
expectations have been achieved without excessive expense. A
discussion of the method of solution is given. Input data for the
program are detailed and binary word patterns, which are used
extensively, are discussed. An important feature of the program
is the packing of data within words in the computer primary storage

of the Control Data 6400 machine.

INPUT DATA

For convenience in data storage and manipulation every school
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resource is given a distinct positive integer code (non-zero).
Since classes already have such a code within the schools (see
section 3.2, chapter 3) these remain unchanged, but teachers, rcoms
and equipment must be considered. An example of teacher codes for
the Craigmore High School Timetable problem is given in Appendix B,

table B.1.

Every activity is presented to the program in the following
form. Thus for the i;th activity the data string is
gk, gl, ..., gL, Wt B, T
where
B? € E is a resource of the school and is a member of the
total resource set E of the school for each j = 1,

2, «ee 5 X. for the i-th activity.

The variable notation x is used since the number of resources
required by each activity need not be constant. The lower bound on
x is 2, since aﬁ activity must involve at least one teacher and one
class resource, (chapter 3, section 3.2), and the upper bound is Q,

the total number of resources in the school.

i.8., 2 € x £ o for all activities of the timetable problem.

mi is the number of times the activity is required in the time-
table solution. In a graphical representation of activity paths
(see chapter 4, section 4.2) for the school timetable problem, mi

would represent the number of links in the path requiring the resources

%’ B%" L ] BJX-.



167.

bt is the block-period si:ze indicator for activity i. If mi
is greater than one, the activities may either be required to occur
in consecutive time-periods (a block-period) or as single time-
period activities, separated by other activities in the timetable
solution. The indicator Ei defines the number of consecutive time-

periods required.

1 is the fixed time-period indicator. If I oo q then the
activity i must be assigned to time-period q in the solution. If

q = 0 the activity i may be assigned to any time-period.

The assumptions and contraints that relate to the problems to

be solved are now repeated briefly for the convenience of the reader.

1. Every activity is represented in the resource requirement
array in the form of a resource vector (see chapter 4,
section 4.3). Hence every resource vector will contain
the resources listed in the associated data-string for

an activity given by the input activity data.

2 Each row of the resource requirement array R is associated
with a particular class resource, and each element of the
row is a resource vector, listing all resocurces required
for a class activity. Thus for each class resource

activity i, there will be m?! resource vectors of the

associated class row of R with the same resource elements.
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EXAMPLE 7.1

Consider an input activity data-string to comprise the
following :-

(301, 302, 10, 11 ; 2, 2, 0)
which indicates that resources 301, 302, 10, 11 are required
twice in a block-period size 2 and the activities are not
fixed to any particular time-period. The classes are 301

and 302.

Let class 301 be associated with row Ry of R. Then row Rj
will have two resource vectors of the form (302, 10, 11)

(recall that the class resource associated with the rTow

is omitted from the resource vectors of that row).

For a p period day, any resource may be required in at
most p activities. Hence for any resource B € E.

by nt & p

Be activity i

i=1,2, «c0
Indeed for the class resources, this inequality becomes an

equality since every class must be occupied for every time-

period of a daily time-span. (chapter 3, section 3.2).

The block-period indicator of the data-string defines only
one block-period of size 2 2. If mi > bl then all
activities, (mt - BL) in number, are assumed to have a
block-size of one., A practical limitation on block-sizes

within schools is that :-
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1< bl g5 (section 3.2, chapter 3).
and for the data-string :-

o
m b

The fixed period indicator must be within the range of the
daily time-span and hence :-

D< fL€p (section 3.2, chapter 3)

In order to reduce ambiguity in the details of fixed time-
period requirements, a condition was included such that
whenever f* > O then bi - mi = 1 within the activity

data-string. Thus every fixed time-period activity had to

be separately detailed for the input data.

The activity data-strings are interpreted by the computer and a

verification routine checks that resources are not over committed

(see resource load matrix, chapter 6, section 6.5), that fixed time-

period requirements can be allocated without causing infeasibility,

and that the block-period requirements satisfy the constraints

listed above. From each activity data-string three inter-related

arrays are formed. These are :-

(a)

(b)

resource requirement array which defines all resources

required for each activity of the timetable solution

block-period array which indicates which of the resource
vectors of the resource requirement array are required in

block-periods
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(c) fixed time-periods array which indicates any resource
vector of the resource requirement array that is required

to be allocated to a specific time-period.

All details of these 3 arrays may be obtained by referring to
chapter 4. To demonstrate the manner in which these arrays are

formed a brief example will be given.

EXAMPLE 7.2
Consider the following data-string :-
(101, 102, 11, 12 3 2 ; 2 ; D)
where 101, 102, 11, 12 are the resources required for the

activities

w
1}

number of activities = number of time-periods
required since each activity has a duration of

1 time-period

N
11

block-period size

o
1

no fixed time-period reguired.

The codes 101, 102 are class codes (section 3.2, chapter 3)
and will be associated with rows Ry and Ry respectively of the
resource requirement array. Since each activity has an associated

resource vector in R for the classes involved, then :-

Row Ry will have 3 resource vectors of resources (102,

1, 12), and
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Row Ry will have 3 resource vectors of resources (101,

1M, 12),

the class codes 101, 102 being omitted since they are implied for

all resource vectors of rows Ry and R, respectively.

Hence the resource vectors

Tijy = Tijp T Tiig

]

(102, 11, 12) for R,

and

2jq = T24p = 235 = (101, 11, 12) for Ry

The block-period indicator must be associated with these activities
and since bt < ™ there are (i - Ei) activities of block-size 1.
Hence there are

2 activities in a block-size 2, and

1 activity in a block-size 1.
Thus the block-period array associated with R (section 4.2, chapter
4) becomes :~

2 2 1 e o8 000000

2 2 1 eeceenoeo

"R R R I SRR R

R R L B R R L

Similarly the fixed-period array associated with R becomes

(section 4.2, chapter 4) :-
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D D D e0 000000

0 0 0 cecnceas
F —

— —

Initially, it is assumed that every resource is available for
every time-period of the daily time-span. Hence the resource
availlability array A has all elements set to 1 to indicate the
complete availability of resources (see chapter 3, section 3.2).
Some resources are not available for every time-period, e.g. part-
time staff, and the availability array must be modified in the

following manner,

The resource data=-string indicating periods that are unavailable
is presented to the computer program in the following form :-
(Biv 5 Jys dpy oe)
where Bi' is the resource code, and Jqs j2’ .+. are the time-periods

that are not available for resource Bi"

Thus the column vector associated with the resource Bi' must
be modified in the resource availability array such that row elements

j1, j2, .+. are reduced to zero.

As mentioned in chapter 4, section 4.2, block-periods have defined
start-periods wahere b is the block-size and Th is a mapping of time-
periods 1, 2, ... p onto the binary numbers 0, 1 indicating permitted
start periods if a period is mapped onto a 1, and not permitted

otherwise.
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EXAMPLE 7.3

The block-period mapping

indicates start-periods 1, 2, 4, 6, 7 are legal for a

block-size 2.

The details of these start-periods for the various block-sizes
of theprogram are presented in the form of a block-period data-string.
(b5 39 s Jo' s aesed
where b = block-period size, b = 1, 2, 3, 4, 5.
1

j1 ) j2', oo are the admitted start-periods for block size

b.

Hence the mappings may be constructed with a time~period j1',
Joty s mapped onto 1 and the remaining time-periods are mapped

onto O.

From chapter 4, section 4.5, the images of the mappings are
stored in an array BS, with rows representing block-sizes and

columns the p time-periads.

EXAMPLE 7.4
The block-period data-string
(2 51, 2, 4, 6, T)

results in the mapping
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for an B-period daily time-span, and will be stored in

the 2nd col of BS, the block-period start array.

All details have now been presented to the computer program,
and verified to indicate any obvious infeasibility such as over-
committed resources, undefined block-start-periods, block-periods
out of the range 1 to 5, etc. The computer program will now be

discussed in relation to the solution of problems.

THE COMPUTER PROGRAM

The computer program was written in the FORTRAN IV and COMPASS
programming ‘languages for the Control Data 6400 machine. The
primary storage words within this machine are unusually large
(60 bits) and this feature was exploited in the program for the
compact retention of the various resource requirement and availa-
bility arrays. Various working areas were also needed to permit
a return to any previously defined stage of the solution. The large
word size was combined with the high speed logical operations of
.AND., .OR., .NOT. to further increase the speed of the solution

method.

The main objectives of the computer program may be stated as

follows :-

(a) to provide a solution to a timetable problem if one exists,
or to indicate "no solution™ when such a problem is

encountered
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(b) +to translate the algorithms of the solution method into
a form that is understood by the camputer

(c) to do (b) efficiently, within the terms of reference
discussed in chapter 4, e.g. cost

(d) to provide suitable diagnastic facilities for problems
with a "no solution" result, so that a minimum of time

is required to correct faults.

Storage and Operations of Data

The method of storage of the arrays will be discussed.
All arrays, with the exception of the block-period size
indicator array, are stored as bit patterns within the computer
words. To illustrate this method of storage, the resource

requirement array (section 3.2, chapter 3) will be discussed.

As detailed in section 7.2 of this chapter, all resources
of a school are given a coded number between 1 and 60, If
more than 60 resources are required at a school this coded
number range can be increased to a programmed limit of 240
in multiples of 60. Hence, if a school has 60 or less
resources, then one word of storage will be sufficient to
represent them, if 120 or less, then two words will be
required, etc. Each resource is associated with a particular

bit position in a computer word.
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EXAMPLE 7.4
Storage of data within primary computer words .
Consider the resources :-

Code = position in
computer word

Classes 301 1
201 2
101 3
Teachers Jones 4
Smith 5
Brown 6
Qther resources T.V. 7
Room 1 B
Room 2 9
Room 3 10

Then a word to represent a requirement of the
resources 301, Smith, T.V., Room 1 would be :-

[..casceaasesess O T o 3 eonus 1) position

(000 seeeees 01 101000 1) primary
computer word

with 1-bits in positions 1, 5, 7, B of a single

computer word, to represent the resource codes.

7.3.2 Resource Vectors and Composite Availability Vector Operations

Resource vectors describe the resources required for the

activities of the timetable problem, and are stored in the
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resource requirement array R (chapter 4, section 4.3). 1In
the computer program, they are stored in the manner just
described. Each resource vector is a list of required
resources, and this list is represented by a 0-1 bit pattern.
For a school of 60 at less resources there will be 1 word per
resource vector, for a school with 61 to 120 rescurces, 2
words per resource vector, etc. A large schaool could have

as many as 240 individual resources. Hence the size of the
array R in the computer program where there are m class
resources and p time-periods per school day is within the
range

m X p to a maximum m x 4p.

Associated with each resource vector, ry

ijs 1s a composite

availability vector A*(r

ij)’ that indicates the availability

of the rescurces required for the activity for each time-period

of the daily time-span (chapter 5, section 5.2). It was
previously shown that this information can be stored in a
0-1 array, and this is the case within the program for each

CAV. Hence the link as follaws :-

Resource Vector

vector
000 ...1T00 00 ...011000
000 ... 0180 00 ... 01 1001 (7.1)

000 ... V10 D00 0o 011001

Associated composite availability
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that shows that resource 3 in the first row is available

for time-periods 4, 5 as indicated by the CAV.

Through simple logical .AND. operations it is possible
to determine common available time-periods for any group of

resource vectors.

e.ge. the common available time-periods for rows 1 and 2
above are given by :-

(00...011000) .AND. (00 ...011001)
to give

(00 ... 01100 0)
indicating time-periods 4, 5 are the only common time-periods

available to both resource vectors.

To determine 'tight situations' or critical blocks as
discussed in section 5.3, chapter 5 within the CAV, the

logical .0OR. operation is used as follows :=-

Consider the three resource vectors of 7.1. By perform-
ing a logical .0OR. operation on the three associated composite
availability vectors

(00 ...011000) .OR. (0O ... 01100 1) .OR.

(00 ... 0110101)
we get

(00 ... 011 001)
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Hence three resource vector requirements together have

only three available time-periods, and these time-periods
must be used by these activities. Thus a tight situation
has been located and the appropriate actions of reserving

these periods can be applied.

€.g. consider a fourth CAV
(00 ...011110)
Then by a simple logical operation
(00 .o.011110) .AND. .NOT. (OO ...011001)

= (00 o011 11D0) .AND. (* 1 ... 1 001 10)

(00D ... 0001 10)

Thus time-periods 2 ana 3 are the only remaining available
time-periods from the original 2, 3, 4, 5 time-periods since
the periods 4, 5 are reserved for the other tight activities.
This example demonstrates the mechanism of the location and

subsequent reduction of availabilities associated with tight

situations.

It can be seen from the above examples that the 0-1
patterns and logical operations have important applications
in computer methods on timetable problems. e.g.Barraclough ( 3)
has indicated the use of bit patterns and logical operations
for timetable problems. Storage of the large amount of data
required for timetable problems has been overcome by the method

of compacting detail into word patterns. The methods just



180,

described have the advantage of reducing array sizes without

loss of computational speed.

T.3.3 The Main Features of the Computer Program

The main features of the computer program are shown in

the flow chart of Figure 7.1, and are as follows.

The first stage of the program involves the establishment
and verification of data arrays. Any of the obvious inconsis-
tencies as discussed in section 7.2, are detected immediately
and a diagnostic printed. After all data have been considered,
the program either continues to the next stage, or if errors
have been located stops to allow corrections to be made
manually. There are 2 stop conditions, stop 01, stop 02 in
the flow chart. The first indicates errors in data, the
second refers to incompatabilities between fixed time-period
requirements and availability conditions of resources required

in the activities.

The preparation of the arrays includes the construction of
resource requirement arrays, resource availability arrays,
composite availability arrays, block-size arrays, and the
general work and storage arrays necessary for the back-track
procedure discussed in chapter 6, section 6.3. As detailed
in chapter 5, section 5.2, all binary reductions are involved

with the composite availability vectors that are determined
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A flow chart of the general layout of the

computer routines for the timetable
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from the availability vectors of individual resources.

Any errors detected up to this stage of the program must

be manually corrected. Errors are located by the program.

e.g. resource 12 is required for 8 time-periods but there

are only 7 time-periods in the school day.

This error indicates that resource 12 is over-loaded.
Hence all activities requiring resource 12 must be located and
a suitable re-allocation of resources made. Once all errors
have been corrected the program is restarted. The next stage

is the assignment stage.

Figure 7.1 details the order of the algorithms as they
occur within the computer program. A description of each
algorithm has been given in chapters 5 and 6. The precedence
algorithm determines the next class requirements {or row
requirements since the two terms class and row are synanymous )
to be attempted by the bijection generator. The levels of
precedence have been discussed and the program locates the

unassigned class with the highest precedence number.

Then the bijection algorithm generates a feasible mapping
for the assignment of that class. It has previously been stated
that although the mapping generated may be feasible for the
class to be assigned, it may not be feasible when considered

with respect to other unassigned class requirements. The
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implication algorithm considers many of the effects that the
assignment would have on the unassigned class requirements.

If no infeasibilities are fore-seen the mapping is accepted
and the assignment made. Then the precedence algorithm deter-
mines the next assignable class. If an infeasibility is found
by the implication algorithm, a new mapping must be generated

for the class requirements.

When some difficulty arises, due to an unforeseen infeas-
ibility, the back-track algorithm can be called to reinstate
any previous assignment situation so that other solution paths
may be considered. The back-track algorithm has been discussed
extensively in chapter 6, section 6.3, It has also been shown
that the method is exhaustive since every assignment can be
generated for each class requirement of the timetable problem.
If the program is forced to retrace to the first class require-
ments considered, and no alternative assignment can be generated
for this class then no solution to the problem can exist. In
such a situation a subset of class requirements has been found
such that no suitable assignment can be made without violating
the constraints of the problem, and thus no solution to the
problem exists. This aspect has been discussed previously by
Cisma (9 ). The maximum time so far encountered to locate a
"no solution” result is approximately 7 miputes computer time,
for a problem involving 40 teachers, 25 classes and a 7 time-

period day. At present there does not appear to be any means



184.

whereby an exact estimate of time to locate these "no

solution” results can be determined.

7.4 THEORETICAL AND PRACTICAL RESULTS

T.4.1 Development of Method of Sclution

The first bijection generator used for the solutiom method
presented in this thesis was a permutation routine, described
as the Johnson-Trotter algorithm in Welsh (56). The algorithm
is based on a translation technique for producing successive
permutations by the interchange of two adjacent elements within

the preceeding permutation.

e.g. by interchanging the numbers 1 and 3 in the permutation

1, 3, 2 the new permutation 3, 1, 2 is generated.

The method has been shown to be an efficient permutation
generator, e.g. see reference (41). In the present application,
each permutation produced was used in the bijection generator
and tested for feasibility for the class in the school to be
assigned. Successive permutations were generated until a
feasible mapping for the class requirements was identified.

Then the same procedure would be repeated for the next class

requirements, and so on, until the timetable was completed.

As suggested by Appleby et al. (2 ), the computation

times entailed in this approach were excessive, even with the
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use of a high speed computer. A table of computation times
is presented in method 1 of Table 7.1. The long execution
times were caused by the extensive testing of infeasible
mappings associated with this method. To reduce these
execution times, a subroutine was included in the program to
locate requirements with only one available assignment
position, and to ensure that the mapping produced would not
involve any attempt to assign these requirements elsewhere.
This modification resulted in a substantial reduction in

execution times, as shown in method 2 of Table 7.1.

Method 1 Method 2 Method 3
Number Based on Modified Bijection
Number Number of Johnson- Johnson- Generator

of of time-periods Trotter Trotter with Impli-
Teachers C(lasses in a algarithm algorithm cation

school day algorithm

3 3 3 .97 45 .95

4 4 4 .49 .52 1.05

5 5 5 .56 .64 1.28

6 6 6 .96 .89 1635

7 7 7 3 .85 2.54 1.93

8 8 8 31.98 15.44 2.26

9 9 9 333.77 132.95 3,09
Table 7.1 : A comparison of execution times in CP seconds,

to solve the various simple tight timetable
problems from 3 x 3 x 3 to 9 x 9 x 9 for the

3 methods indicated.
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The simple tight timetable problems have been discussed
in chapter 4, section 4.3, where each class must meet with
the same teachers during the school-day. Hence each resource
requirement row of the resource requirement array contains the
same resource vectors, and the mapping generator described
above, must investigate more and more unfeasible mappings as

the method proceeds. This situation arises because

(a) the mapping generator based on the Johnson-Trotter
algorithm produces the same mappings in the same order
for each class assignment, and

(b) as the number of rows assigned increases, the number of

feasible mappings remaining decreases.

€.g. by enumerating all permutations for a 4 x 4 x 4
simple tight timetable problem it can be shown that
there are 24 = 4! feasible mappings available for
the first assignment. However, after one of these
has been accepted there remains only 2 feasible
mappings of the original 24 feasible mappings for

the second assignment.

This led to the third method of generating mappings. This
method only generates the feasible mappings for any row of
the resource requirement array. The rejection of unfeasible
mappings was accomplished through the use of the composite

availability vectors, that indicate the remaining available
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positions (time-periods) for each unassigred resource vector.
(Chapter 5, section 5.2, 5.3). The essential features that

give the increased efficiency are first, the reduction in

execution time due to the eliminmation of tests of feasibility |
for mappings associated with the class requirements. Second,

the reduction of the composite availability vectors that

eliminates infeasible mappings of the unassigned class require-
ments., Third, the application of the implication algorithm

to look~ahead at future requirements to ensure that such

requirements have not become infeasible because of the generated

mapping at each assignment stage.

The computer execution times for this third method are

given in Table 7.1. The presented graphically in diagram 7.1.

The solution method discussed in this thesis (method 3),
has been extensively tested on both theoretical (simple, and
simple tight timetable problems) and practical problems with
a considerable reduction in execution times for the generation
of solutions. Computation times to study the effects of the
various practical complexities required by schools are tabu-
lated and discussed below. In each case the results quoted
are for the simple timetable problem of 9 teachers, 9 classes

and 9 time-periods since :-

(a) this simple problem has no flexibility as all resources

are fully utilized, and is therefore more difficult to



T.4.2

189,

solve, and

(b) the 9 x 9 x 9 prablem gives a maximum solution time since
it is the largest of the simple tight problems tested, and
also is the maximum number of time-periods (9), occuring

in schools within South Australia.

The application of this program to an existing school
timetable problem at Craigmore High School will he described
in detail in chapter 8. The solution produced is now in use
at that school, and future applications are discussed in

chapter 9.

Fixed Time-Period Reguirements

As defined in chapter 3, section 3.2, a fixed time-periocd
requirement forces an allocation of a particular activity to
a specified time-period. Such a requirement increases the
number of constraints on the timetable problem since such an
allocation reduces the availability of the resources involved
in the fixed requirements, i.e. the resources involved are no
longer available for assignment to this time-period elsewhere

in the timetable solution.

The program was tested on the 9 x 9 x 9 problem with
increasing numbers of fixed requirements. Results are con-

tained in Table 7.2 for 1 to 10 fixtures.
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Number of
Fixed
Time-Period
Requirements.,

Solution Time .0 3.+ 3.1+ 3,0 3.0 3.0 3.0 3.0 3.0 2.5 3.0

Table 7.2 : Solution time results for fixed time-period
requirements 1 to 10 in the 9 x 9 x 9 simple

tight timetable problem

It was evident from the solution times that the fixed time-period
requirements had little effect on the speed of the solution
method. This is understandable since the consequence of a fixed
time-period requirement is that the associated composite
availability vector is reduced, such that only the required
time-period remains available for that activity. (see chapters
5 and 6 for a more detailed explanation of the composite
availability vectors and the effect of the fixed time-period
requirement). This stage is indicated in Figure 7.1 of the
computer flow-chart when the arrays and the CAV are calculated.
The effect of the fixed requirements on other CAV is established
through the implication algorithm, discussed in chapter 6,

section 6.2,

Upon extending the number of fixed requirements to 30
no change was noted and result times were still between 2.9 and

3.1 seconds CP.
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Block-Period Requirements

Block-period requirements involve allocating activities to
consecutive time-periods within the timetable soluticn. The
number of time-periods involved is the block-period size (see
chapter 3, section 3.2). The most common practical block-sizes
of 2 and 3 were extensively tested. Table 7.3 contains
examples of solution times for six problems of block-period
size 2, and six problems of block-period size 3.

No. Block
Size 2

Solution Time 3.1 3.1 2.9 3.0 3.0 2.9 2.8

No. Block
Size 3

Solution Time j.1» 3.0 3.1 2.9 3.4 6.3 3.8

Table 7.3 : Solution times for 9 x 9 x 9 problem with

block-period size of 2 and 3.

The block-size 2 results remained relatively stable. This
indicated that these requirements, being the most prevalent
block-periods in practical problems, were marginally more
difficult than single period requirements with respect to
execution times. The block-size 3 requirements indicated
similar tendencies, having a slight increase in exscution time
when compared to the block-size 2 results. An increase in

computation time was noted for the problem invelving 5 block-
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size 3 requirements and was associated with several back-
tracks that were needed to produce a solution to this problem.
Other problems were solved within increasing numbers of block-
size 2 and block-size 3 requirements. The maximum execution
time was still associated with the 5 block-size 3 problem.
However, there may exist problems thar do have increased
computation times, associated with back-tracking to produce

a solution. Nevertheless, the execution times presented are
economically acceptable, and are considerably less than

expectations.

Teacher«Class Set Reguirements

As detailed in section 3.2, chapter 3 the teacher-class
sets involve several teacher and class resources for the one
activity. Once again solution times were relatively stable
implying that resource distribution was the main cause of
increased solution times for this method of soclution. The
implication algorithm was sufficiently flexible to direct the
problems to speedy sclutions on each occassion that the
timetable problem had a result. The loading of resources

and problems with no solutions are discussed in chapter 8.

General Problems

Many problems were tested that were compiled from existing

practical timetable problems. An example is given in appendix
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A with a solution. A detailed discussion cf the solution
technique will be given in chapter 8. The computer program
on all occassions produced solutions to problems when they
existed, and indicated '"mo solution" results when such
situations arose. In the no solution problems, the infeasi-
bilities were manually corrected and results produced. An
example of this is given in section 8.4, chapter 8. The
practical problem of Craigmore High School will be discussed

in the next chapter,



CHAPTER 8

THE SOLUTION OF THE CRAIGMORE HIGH SCHOOL TIMETABLE

PROBLEWM

INTRCDUCTION

The solution method described in this thesis was tested by
solving the Craigmore High Sctool timetable problem, selected by
the Education Department of South Australia. The problem contained

the following special features :-

(a) the school was a comprehensive type (chapter 3, section 3.2)
which was technically suitable since the required timetable
involved complexities associated with both High and

Technical High schools.

(b) the school was to have staff changes midway through the
second term of the school year. These changes would
significantly disrupt the previous timetable and a complete

new solution would therefore be required.

(c) the rmew result was required quickly, to avoid extra
administration burdens on both students and staff at the

schoaol.

Staff changes during the school year are not unique and occur
for a variety of reasons, e.g. resignations. Replacement teachers

are not often qualified in the disciplines of the existing teachers,
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thus necessitating a re-allocation of staff duties. Hence a new
timetable must be constructed. The computer method has a direct
application to such intra-year problems as well as the new year

problems that arise at the start of each academic year.

The description of the Craigmore High school problem and its
solution will now *be given. Examples are included to illustrate
different aspects of the problem. The problem associated with
Tuesday's timetable is discussed in detail. All date associated
with the Craigmore description is contained in appendix B. Solutions

to the five daily problems are tabled - appendix C.

A problem with Po solution is presented in section 8.4 and the

relevant data given in appendix D.

DEFINITION OF THE CRAIGMORE HIGH SCHOOL TIMETABLE PROBLEM

8.2.1 General Discussion

The Craigmore problem involves some 410 students and 23
staff members consisting of a headmaster, deputy headmaster,
3 senior masters, 1 senior mistress and 17 teachers. One
of the teachers is only available for the first 3 time-periods
of any one school day (a part-time teacher). It will be
seen later, that this teacher is fully utilized in every

available time-period.
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The students were assigned by school administrators to
13 classes that have the following numeric codes (described
in ctapter 3, section 3.2). For convenience these codes will

be adopted for the remaining discussion in this chapter

101, 102, 103, 104, 105 ;

1st year level

201, 202, 203, 211 ;

2nd year level

301, 302, 303, 311

3rd year level

At present the school is at two thirds capacity with
respect to student enrolments since it is a new school in a
recent suburban area. Administrators expect enrolments to
be at the capacity of approximately 610 in January, 1973.
Classes were constructed from the previous academic achieve-
ment and I.Q. of each student together with personal
interviews to determine the future course requirements of

the studente.

During 1972 the 4th and 5th year levels were not available
at Craigmore. However extensive teacher-class sets occurred
in the 2nd and 3rd year levels as will be seen later in this
chapter. This gave rise to a very complex timetable problem

that was time-consuming and difficult when solved by manual

methods (see section 8.3). The problem contained a high
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percentage of features of both the Technical and High school
timetables and was hence a demanding problem for the computer

solution method.

The schoal facilities consists of 18 classrooms, but
several are for specific purposes, e.g. typing room, history
and geography model room, remedial teaching room, etc. These
are used by specified classes for required time-periods within
the timetable solution. On the whole however, the class-room
situation did not cause any restrictions on the timetable
solution procedure. Sufficient rooms were always available

to satisfy all class requirements.

Resource Reguirement Array Construction

For the purpose of this thesis the manual ccmpilation
of timetable data for the computer method has not been
detailed. The teacher resource codes, teaching subjects and
teacher status have been detailed in table B.1 of Appendix B.
Class resource codes will be left unchanged in the text to
avoid confusion. Thus code 301 will still be associated with
a 3drd year class, being the first class in the 'O-track'
(chapter 3, sectionh 3.2). However, it should be remembered
that classes are similarly coded as are the teachers in
table B.1, such that no two resource of the school have the
same code number. School administrators compiled the resource

activity requirements for each class of the school on a daily
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basis. The details are presented in tables B.2 to B.6 in

the form of activity requirements, that indicate the resources
required, number of lessons involved, the block-period size

and whether the lesson is to be allocated to a specific time-
period in the school day. The details of this presentation

has been given in section 7.2 of chapter 7. These require-
ments partially describe the five sub-problems of the weekly
timetable. The other features such as block-period definitions,
will be discussed later. Examples are given to illustrate

various aspects for ease of understanding.

The resources required for each activity are pleced in
the resource requirement array by the computer program (see

section 4.2, chapter 4).

EXAMPLE B.1

Consider the resocurce data of table B.3 for Tuesday
in Appendix B. Resource requirement vectors for
classes 101, 102, ... , 311 are presented in the
rows of that table, and are placed into the 13 rows
of the resource requirement array in the following
manner.

Consider class 101 to be placed in row one of R,

namely Rq.
Then Ry = ((15,18), (15,18), (6), (103, 16, 22),

(12), (10), (3), (16))
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Similarly Ry is associated with class 102, R3

with 103, etc. until R4 associated with 311.

8.2.3 Block-Period and Fixed Time-Periods

The block-period starts that are required for the Craig-
more problem are defined in the following manner (see chapter

4, section 4.5).
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Dnly block-period sizes 1 and 2 are required within
this timetable problem since the administrators are of the
opinion that two time-periods of 40 minutes are sufficient
for craft practical periods. The block-periods starts are

stored by the computer on the form in the array BS
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where column 1 is related to block-pericds size 1 and column
2 to block-period size 2. There are numerous block-period
requirements indicated by tables B.2 to B.6 of Appendix B.

For example table B.3 for Tuesday has a block-period size 2
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for each classes 101, 102, 104, 105 as indicated by the

column labelled block.

Fixed time-period requirements are also indicated in
table B.3 for classes 301, 302, 303, 311 in activities
(69,70) and (71,72) for time-periods 3 and 4. This is a
complex fixed time-period requirement since it invaolves nine
resources. A fixed time-period involving every class is given
in table B.5 Appendix B, where Religious Instruction is given
to every student in the B8th lesson on Thursday, activity
(9,10). The persons taking these lessons are external to
the staff of the school and are indicated as part-time teachers
with teacher codes 24 and 25. The fixed time-period array
F as described in chapter 4, section 4.5 is associated with

the daily resource requirement array.

EXAMPLE 8.2
For Tuesday, (table B.3, Appendix B) the fixed time-
periods must be indicated for classes 301, 302, 303,
311 thus involving rows 10, 11, 12 and 13 of F, the

fixed time-period array.

The rows of the resource requirement array R are

for example

Rig = ((302,303,311,2,3,9,21), (302,303,311,2,3,9,21),
(302,303,311,2,3,4,17,23), (302,303,311,2,3,
4,17,23), (302,303,311,6,7,16,19), (302,303,

311,6,7,16,19), (302,303,311,6,12,20,21,22))
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Simllarly ‘R11, R12’ R13.

Hence the 10th row of F will be
F1D=(DDE134DDD)

Similarly Fyq, Fy5, Fqge

For convenience, it was noted in chapter 4, section 4.5,
that all fixed time-periodrequirements must be of multiplicity
and block-period size 1., This is demonstrated in the two
row requirements of table B.3 in activities (69,70) and (71,72)

that involve exactly the same resources.

8.2.4 Resource Availability

Initially all resources are assumed available for every
time-period. The resources that have reduced availabilities
in this exercise are the part-time teachers, namely resource
8. The time-periocds 4 to B are not available and hence all
composite availability vectors involving this resource must be

reduced to exclude these periods.

EXAMPLE 8.3
Consider table B.3, Appendix B where activities
(53,54) and (67,68) involved resocurce 8 (the part-
time teacher). These activities are contained in
rows 6, 7, B, ... , 13 of the resource requirement
array since the resources involve classes 201, 202,

ce., M.
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Consider the CAA (see chapter 5§, section 5.2)
for row R6 of R.

T 1 1t 1t
where periods

4 to 8 have

oo 1 1 1 1 (B
AY =
6~ co 1 414 1 1 1 1 been excluded
o 01 L ! T due to resource
g 0 1 1 1 1 1 1
000 1 1 1 1 1 1] %

Teacher-Class Sets and Timetable Structure

The structure of the second and third year levels indicates
complete teacher-class setting for every time-period of the
daily time span. This complexity was consistent for every

day of the school week.

The 8 time-period pattern present at Craigmore is
relatively common although latest trends favour the 7 period

day. The daily activity pattern is :-

lessons 1 to 3 (each of 40 minutes duration)
Recess Break

lessons 4 and 5

Lunch Break

lessons 6 to B.

No afternoon recess break was available at this school.

As mentioned in chapter 4, the course content is not



considered by the assignment procedure. The activity is
assigned to a time-period, and the function of the activity
is not considered in detail. Therefore a printout procedure
had to be written to relate the activity to a subject to make
the solution useful for the schools. Also a decoding routine
was included to convert the teacher codes to teacher names

for output purposes.

Numbers of : Monday Tuesday Wednesday Thursday Friday
Teachers 23 23 23 25%* 23
Classes i3 13 13 13 13
Time-periods 8 § 8 8 8
Block-periods 3 4 3 6 5
Fixed-periods 0 2 3 13 0
Teacher-class 14 12 14 14 14
sets
Back-tracks* 0 100, 6 0 1
SISt Ei Lo 15.2 102.3 16.7 15.0 15.1
(seconds)
Table 8.1

Comparisons of features of the 5 daily timetables of the

Craigmore problem,

= the number of back-tracks the computer program went
through to produce the daily solutions.

bl the two extra staff were external to the school

for religious instruction lessons.
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The final timetable results have been presented in
Appendix C, tables C.1 to C.5. The solution method and

special features will now be discussed.

8.3 SOLUTION OF THE CRAIGMORE PROBLEM

8.3.1

General Discussion

A detailed comparison of the various important features
of the 5 daily Craigmore sub-problems are given in table 8.1.
Solution times are included and the number of back-tracks by
the solution procedure presented. Solutions were determined

for every day and are included in Appendix C.

Solution times include the 12 seconds (approx.) needed
for the compilation of the timetable program. The Tuesday
timetable was most difficult and the problem will be discussed
to indicate the reasons for the difficulties. The solutions
produced were readily acceptable to the Craigmore, administrators
and the solution was immediately incorporated into the school
system, The staff member responsible for the manual production
of their timetable in past years was enthusiastic at the
speed of the solution. The Tuesday problem is now discussed

in relation to the following sections.
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Special Features

The description of the special features of the Tuesday
timetable have been discussed in section 8.2. These include
block-periods, fixed time-periods and resource requirements.
The main problem area arises through the distribution of
resources in the class activities. Many of the resources
required in the complex teacher-class sets are involved with

the 1st year level classes.

The clash matrix (chapter 6, section 6.6) is given in
Appendix B, table B.8 and the resource load wmatrix in table
B.7. From this matrix it is seen that the activity (75,76)
of table B.3 clashes with 10 of the other teacher-class set
requirements of Tuesday (indicated by the row sum by counting
the number of zeros that occur). Recall that a zero entry in
the clash matrix indicates that the resource vectors associate
with the row and column of the clash matrix can not be allocated
to the same time-period. Thus requirement of activity (75,76)
may Dn%y be assigned in a common time-period with requirement
of activity (61,62) since only activities (61,62) and (69,70)
are shown by the clash matrix to be available for assignment
with this set. ((69,70) may be neglected since it involves
the same classes). We can see that the resources involved in
such an assignment involves many of the 1st year level resource

requirements, e.g. class 103, it clashes with 3 lessons.
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Further difficulties arise due to the fixture of
activities (69,70), (71,72) of table B.3 into time-periods
3 and 4. The clash matrix demonstrates that only activities
(53,54), (55,56) and (57,58) may be assigned to the same
time-periods for the 2nd year level classes. Resource 8,
(see table B.9, Appendix B) the part-time teacher is involved
in (53,54) and must be allocated in time-periods 1 to 3.
That resource is also required in (67,68) and must be allocated
in time-periods 1 or 2 since 3 already allocated. Hence,
since activity (53,54) is required twice, indicated by the
multiplicity column of (53,54) in table B.3, then (53,54) must
be allocated in time-period 3 for at least one of the two

required time-periods.

The remaining requirement of activity (53,54) and (67,68)
may be such that they are either allocated to time-period 1

or 2.

Another complexity is the limited number of distinct
teacher resources required by class 103. Three of the teacher
resources are required twice in the day (once again indicated
by the multiplicity of table B.3). Two of the required
resources for class 103 are heavily invelved in the extensive
teacher-class sets of the 2nd and 3rd year lewels, namely

teacher resources 19 and 2.



The above is a brief description of the difficulties
of the Tuesday timetable. However, the solution method
although encountering some difficulty, solved the praoblem
in some 90 secs., which was quite acceptable. This involved
some 100 back-tracks to previous stages to avoid the no
solution stages indicated by the implication algorithm,
extensively treated in chapter 6, section 6.2. The solution

is given in table C.2, of Appendix C.

The Precendences for Tuesday's Timetable

The classes 201, 202, 203, 211 are considered first
since they involve the most complex allocations determined
on the basis of priorities discussed in chepter 6, section
6.4. The factors involved in this priority are number of
distinct teacher-class sets, block-periods, fixed time-periods,
resource availabilities, etc. In the case of the 2nd year
level classes there are, for example, 6 distinct teacher-
class sets whilst the next nearest is the 3rd year level
with 5. No block-pericds are required by the 2nd year level

activities.

When the 2nd year level classes have been allocated
(all are allocated since each have the same priority and are
treated in turn) the 3rd year level classes become the next
highest. Hence each class 301, 302, 303, and 311 are allocated.

Priorities are then calculated for the 1st year level classes
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and these are allocated according to the sequence 102,

104, 105, 101, 103 thus completing the problem. For example
class 102 is allocated prior to 104 since 102 involves 2
distinct teacher-class sets and a block-period of size 2.
(see activities (19,20), (21,22), (23,24) of table B.3,

Appendix B).

The precedences are recalculated after each alleccation

stage to determine the next ‘row for assignment.

8.3.4 Brief Description of the Allocations

It has been shown in chapter 5, section 5.2 that associated
with each row of the resource requirement array R is the
compasite availability array. that indicates all time-periods
available to the resources of each of the activities associated

with the row of R.

EXAMPLE 8.3
Consider the classes 301, 302, 303, 311 that will
be associated with rows 10, 11, 12 and 13 of R,
from table B.3, Appendix B. The composite
availability arrays for each of the rows Rypg, Ry4,
Ry2, Ry3 will be the same since they each involve
the same resources (with the exception of class

resources that are always available).

Hence
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Similarly the CAA for rows 6 to

classes are calculated and
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where a zero in position (i, j)

availability of the time-period

209.
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9 for 2nd year

11111

indicates the non-

i for the jth

element of the asscciated row of R.

Before any precedences are calculated or allocations

determined, the implications of the fixed-

period and part-

time features are investigated. This stage is accomplished

by applying the implication algorithm to the CAA.

EXAMPLE 8.4

The implications of the fixed time-periods of

activities (69,70), (71,72) of table B.3 have the
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following reduction effect.

Teacher resources involved are 2, 3, 4, 17, Z3.

All rows involving any one or more of these teachers
will have their CAA reduced to omit time-periods

3 and 4 (make these time-periods unavailable).

Such a CAA is associated with 2nd year level classes

where the new CAA are

—

o o o o o
o o o o o

—_

1

1

o O
o O

1

1

o O

1

1

This reduction of the sets of resocurces is indicated
by the clash matrix of table B.8 that indicates
that activities (69,70), (71,72) clash with (59,60),

(61,62), (63,64) of the 2nd year level classes.

Also the implications within the CAA of rows Ryg to
Ry of R that are directly effected by the fixed

time-periods become

111001 1]
1111001 1
00001000
ATD=AT1=AT2=AT3= Doooo100
11100011
11100011
11100011
11100011
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Similar reductions are produced for the 1st year level

CAA.

The precedence algorithm indicates 2nd year level classes

are to be allocated first.

From the above reduced CAA a bijective mapping is generated
to allocate the activities of rows R6 to R9 to time-periods

as described in chapter 5, section 5.3.

The mapping

3 5 6 8
e § 2311810

5 6 8
»*
is not feasible since this would reduce the CAA of Ay to

*
Ay3 to zero in the 4th column (involving resource 8 the part-

time teacher).

The mapping Aﬁ gives an assignment for row R6 of R as

the solution row S6 of S as :-

s6 - | (7.8 16, 20, 6, 11,19, 21,
202,203,204,211° '202,203,204,211

(7» 8, 16, 20, , 6, 15, 20, 21,
202,203,204,211° '202,203,204,211
(4,5,1012,13,15,18,23, 1, 2, 3, 21,
202,203,204 ,211 202,203,204,211

(2, 14, 17, 19, 4,5,10,12,13,15,18,
202,203,204,211° ‘23,202,203,204,211
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Since all other 2nd year level classes are related to this
assignment of row R6 through the teacher-class sets then

S6 = ST = S8 = 289

The above assignment indicates for example that resources
6, 15, 20, 21, 201, 202, 203, 204, 211 are allocated in the
related activity to time-period 4 since this set of resources

occurs in the fourth position of row S6.

The implication algorithm determines all implications of
this assignment on rows R1 to R5, R10 to R13 of R for
feasibility. Then a new precedence is calculated and the
allocation begins for the new class, etc. The details of

the solution produced are given in tables C.Z2.

In the above description the details of the reduction
algorithm have been omitted, as have those related to the
bijective mapping generator. These may be determined by
refering to chapters 5§ and 6, and have therefore not been
stated again. A problem with no solution arising during the

Craigmore investigations will now be discussed.

8.4 A PROBLEM WITH NO SOLUTION AT CRAIGMORE

An automated timetable method is of little practical value to
school administrators when a problem has no solution, unless it

also gives details that indicate the reasons for the infeasibility



of such a problem. The timetable procedure described within this
thesis contains error detecting devices that enable manual alterations
to be made to the input requirement data once an infeasible problem
has been discovered. The error detection is accomplished mainly
through the clash matrix and resource load matrix (chapter 6,

section 6.5) together with output messages indicating the trouble
spots. A practical problem that had no solution is discussed. All
details are contained in Appendix D. The problem arose during
investigations at Craigmore High School when the administrators

were varying teacher allocations to classes to arrive at different

timetable patterns.

Table D.1 of Appendix D contains the details of resources
required for each school activity. Upon entering the problem the
computer returned a 'no solution' result and indicated that a problem
area was located with the 2nd year level classes. The precedence
list determined at this stage showed that the order of assignment
was 301, 302, 303, 311, 201, and thus the 3rd year level classes
had been successfully allocated. The printout further indicated
that the problem area was caused by the teacher-class set of activity
(53,54) of table D.1 involving the resources 201, 202, 203, 211,

3, 5, 13, 14, 19, 22 for a block-period size 2. Upon consulting the
clash matrix of table D.2 it is found that this combination of
required teacher rescurces clashes with every teacher-class set of
the 3rd year level classes, i.e. no teacher-class set of the 3rd

yea®t level classes can be allocated to the same time-period as this
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2nd year level set. This required a re-organization of this com-
bination of teachers for the activity by the school administrators.
With the use of the teacher load matrix and the clash matrix this
was easily accomplished since all details of the teacher resources
involved and loads of all staff members was detailed. Craigmore
administrators accept these two matrices, together with the

directions printed by the computer program as an important aspect

of this solution method. The time taken to determine that no solution

existed was approximately 1 sec. C.P. time.

Other more complicated problems were determined to have no
solution but the method of detection and correction was still the
same. In all cases the school administrator located the problem
area quickly and made the required corrections. The maximum time
taken to determine that no solution existed was less than 2 minutes
C.P. time on a Craigmore problem involving 23 staff, 8 time-period

day and 13 classes.

CONCLUSIONS ON THE CRAIGMORE PROBLEM

The computer program was shown to be practical for the school
situation and results were produced in much less time than by manual
methods. The deputy headmaster of Craigmore High School indicated
that manual methods had required two weeks to produce a solution
earlier in the year. The computer method needed a day for the com-

pilation of manual data, a time of a few hours for card punching and
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relatively few minutes for computer processing. In all only 2 days

were involved using this automated solution method.

The system solved all practical problems and indicated "no solution"
situations when they arose. All results were acceptable and were
easily initiated into the school organization. No solution problems
were quickly corrected through the clash and resource load matrices.
The system was found to be of benefit in staff utilization since
several arrangements of teacher-class sets could be tried and results
produced compared. This was not possible previously due to the time
involved by the use of manual methods. Thus an optimal solution could
be achieved for the school organization in preference to the ad hoc

methods employed to produce any solution.
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CHAPTER 9

DISCUSSION

DISCUSSION

Publications on the topic of school timetables are many and
varied, but still there remain relatively few that have practical
computer programs for the solution of real-life school problems.

In many cases the models, as presented, are highly theoretical, and
bear little resemblance to the practical situations. Others attempt
to formulate in a computer program, heuristic techniques that have
been applied to specific school problems, with no guarantee that a

solution will be produced.

Reports of successful approaches to the problem, such as the
Stanford School Scheduling System (5.5.5.5.), Ontario School Timetable
System and the Generalized Academic Simulator Program (GASP) of
M.I.T. have been noted. However, these systems are costly in terms
of computer time, with no guarantee of a successful solution (assuming
a solution does exist to a given problem). The cost factor is even
more critical when one body, such as the Education Department of
South Australia, must absorb the expense for some 147 solutions
to the 147 timetables present in this state. There was also a need
for investigations into the detection of infeasibilities in problems
that had no solution. This was important for administrators that

were not in direct contact with the computer centre processing
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solutions. Thus the broad aims of the research of this thesis were
first, to investigate a practical solution method for the production
of school timetables for South Australian secondary schools, keeping
in mind the cost factor, and second, to provide effective error-
detection-correction techniques for problems that had no solution

so that problems could be corrected quickly.

The success of the method presented in this thesis depended
firstly, upon the effectiveness of the implication algorithm that
reduced infeasible possibilities from each stage of the solution
procedure, and second, on the ability of the bijective mapping
algorithm to generate only feasible allocations for class requirements
at each assignment stage. The method of approach was to consider
daily problems, and each assignment stage allocated time-periods to
a set of daily class-activity requirements. The daily approach has
several advantages over the theoretically optimal weekly methods.
Firstly it reduces the larger problem to a more managable size.
Second, it permits direct administrative control over the distri-
bution of course and resource loads for the school week. Third, it
allows for the possibility of a partial weekly solution if one or
more daily problems are infeasible. Apart from any practical or
theoretical advantages, the daily approach was requested by school
administrators, so that there was still some control over the layout

of the solution timetable,as produced by the computer.
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There are a number of difficulties within secondary school
timetables. First, the demand for full-time teachers exceeds the
supply. Thus part-time staff are employed, but they have a limiting
effect on the timetable, caused by their restricted availability,
and on some occasions, fixed times for lessons. Second, students
in the upper levels of the school may choose from a variety of
course combinations. Ideally, all combinations of subjects should
be available for selection, provided that the examination conditions
are satisfied, but due to the limited teacher‘resources, the number
of course options is, in practice, limited. Nevertheless, teacher-
class sets are constructed to increase the number of possible
course options at the expense of increased complexity in the time-

table problem.

Lesson distributions impose a further restriction on the
problem. Block-periods of two or more consecutive lessons are often
required in the timetable solution, together with the desired even
distribution of teacher and course loads throughout the school week.
The block-periods impose further restrictions when they are confined
to specific time-periods of a school day, e.g. a block-period size
two can only be allocated in time-periods 1-2 or 2-3, or 4-5 or 5-6

in a 7 period day.

Lastly, the time for the production of manual timetables can
take up to 3 weeks, and thus impose administrative burdens on

students at the start of the school term. Similar difficulties arise
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during the year when new solutions are necessary because of staff
changes. It is thereforse desirable that a more efficient method,

in terms of time, be found for the production of school timetables.

The daily, combinatorial approach, presented in this thesis
considers the meetings of classes and teachers as activities. The
activity oriented method is advantageous since lessons in practical
situations may involve varying numbers of school resources (teachers,
classes, rooms, equipment, etc.). Another important feature of
practical significance is the composite availability vector, that
indicated the combined availability for resources required for an
activity, for each time-period of the timetable. Thus, instead of
having to allocate several resources individually to a specific time
period, the assignment procedure had only to determine a single

allocatione.

The daily class-activity assignment technique used at each
assignment stage was an important practical feature. The implications
associated with an allocation of several activities at the one time
permit an early recognition of infeasible situations. Thus 'faulty
assignments' could be recognised more quickly and alterations made.

This approach also permits early recognition of infeasible problems.

The clash matrix had important applications in two areas. These
were first for indicating feasible pairs of activities for assignment

to common time-periods, and second, in the detection and correction



of infeasibilities of problemswith no solution. This technique has
also been found useful in the production of manual timetables, ond

is used as an aid for manual timetable construction.

Data storage and manipulation is considered to be important
since the speed of solution is associated with the data of the
problem. The approach used in this work involved packing data into
computer words using the individual bits,and operating on the data
with logical operators. This technique contributed to the speed

of the solution method.

The program was tested on the Craigmore High School timetable
problem and the solution was produced. The practical features were
consistent with the needs of the school, and Craigmore is at present
operating under a timetable produced by the computer program presented
here. The method is to be progressively adopted in other department-
al schools. The Education Department has accepted the program and
has aims of extending its use to other aspects of resource
utilization. It is foreseen that the program will be applicable to

other schools beside the departmental schoolse.

FUTURE RESEARCH

Problems associated with the manual production of school time-
tables are becoming increasingly more difficult. There is a need
for more research into practical problems associated with real-

school situations, to overcome not only the complexities of varying
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course requirements, but alsc to make them amenable to solution by

automated methods.

Further research into the size and composition of allocation
groups could be undertaken. In its present form, the allocation-
group consists of the daily activities of a class, that are allocated
to time-periods in one assignment stage within the solution method
described in this thesis. Then, through the implication algorithm,
the combined effect of these activities on the unallocated require-
ments of the timetable problem is determined. The benefits of any
change in the allocation-group size should be weighed against such
suggested factors as the increased computation time necessary to study
the implications of an assignment stage, the ability to guickly
detect infeasibilities, and the complexity of the implicatiaon
algorithm itself to cope with any variation in the group size.

This work could result in the determination of an optimal allocation-

group size for the timetable problem.

There is a need for research into problems that have no
solution. It appears that there are at least three aspects that
such a study could encompass. The first involves the determination
of conditions and constraints most likely to cause infeasibilities
in timetable problems. These could then be placed in some relative
order such that constraints most likely to cause a problem to have
no solution would be identified. Second, further investiga#ions
into error detection and correction techniques such as the clash

matrix of this thesis, could be beneficial. The importance of



of indications into causes for infeasibilities should not be
neglected and the fact that school administrators would no longer
be completely conversant with the stages of construction of thre
timetable solution should not be overlooked. The third, aspect is
associated with the quantification of computer time, necessary to
determine that problems have no solution. At present, the method
will determine that no solution exists for a given problem, but no
accurate estimate of computer time can be made for the caomputation

of this result.

Another problem that calls for study is the allocation of
teachers to classes, according to the subject requirements of a
school. This work could be linked with a study on staffing of
schools as determined by course and student needs. Such research
would seek an optimal staffing strategy for schools with staffing

problems.

The concept of an activity-oriented timetable within schools,
as described in this work is advantageous since the number of
resources involved in lessons is not necessarily constant. The use
of composite availability vectors to describe the available time-
periods for activities could be used with other techniques for the
allocation of lesson times. e.g. PERT. The practical aspects of
the school timetable problem should not be overlooked when new

methods of assignments are considered.



223

The approach presented in this thesis has already been benefi-
cial to the South Australian Education Department. Computer
s to

generated timetables are being produced and further extension

the work are anticipated in the future.
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The School data for the five daily timetable problems of Craigmore
High Scheol. The first table indicates the codes assigned to the teacher.
resources of the school. Tables 2 to 6 contain data for the 5 daily

problems in the form of :-

Required activity : Resources of the school : Number of time-periods
required for the invaolved (if a repeéted
activity activity)
block-period size : fixed time-period
required designation if required

8.9, Multiplicity = 2 4implies the activity is to be allocated
twice in the solution.
Block = 2 implies a double lesson in consecutive

time-periods.

Tables 7 and 8 are the teacher-resource leoad matrix ‘and clash sub-

matrix for the Tuesday problem discussed in Chapter 8.



TEACHER RESOURCE DATA FOR CRAIGMORE HIGH SCHOOL

TABLE Ba1

H.M. - Headmaster T - Teacher
D.H.M. - Deputy Head Master F - Full-time
S.M. - Senior Master/Mistress P -~ Part-time
R.I. ~ Religious Instructor
Code Name Positional Full-time or Subject
Status Part-time Teaching
01 W.C. H.M. F Sc.
02 B.C. T F Sc, Ma.
03 K.C. S.M. F Sc, Ma.
04 E.C. T F B o
0s A.D. S.M. F Gg, Hist, Ma.
a6 B.D. T F P.E., Sc.
07 S.F. T F Library,
Eg, Fr.
08 H.F. T P Eg, Hist.
09 M.G. T F Basic tlect.,
Ma, Sc.
10 R.G. T F Aist, Eg, Ty,
Library
Hist, Eg
1 1. ist, Eg,
! Eell : J Library
Civics, Eg,
i Jebe T j Hist, As.St.
13 I.M. T F Library



Code Name Positional Full-time or Subject
Status Part-time Teaching
14 AM, T F Ma .
15 | H.N. T F Art
16 R.R. T F Ma, Gm.
17 P.R. D.H.M. F Ma .
18 C.R. T F Art
19 T.Re. T F Ma, Gg
Eg, Ma, Cons.
20 J.R. S.M. F Ed., Gg.
Sc., G.g.
21 J.S. S.M. F .Sl
Fr., Eg,
i 2 aW T i Hist, Film.
23 L.W. T F Cr.
24 P R.I
*External persons
25 P R.I.
Note Classes and other resources have not been included on this

list.

€lass codes as discussed in chapter 3, section 3.2

will be used in the description to avoid confusion.



TABLE B.2.

THE RESOURCE REQUIREMENT LIST DATA INPUT

FOR_MONDAY
ACTIVITY  CLASSES TEACHERS oThers  WOLTI= - plock  FIXED
PLICITY
(1,2) 101 12 2 1 -
(3, 4) 101 3 2 1 =
(5,6) 101 16 1 1 -
(7,8) 101 6 1 1 -
(9,10) 101,103 22,16 1 1 -
(11,12) 101 10 1 1 -
(13,14) 102 11 1 1 -
(15,16) 102,104,105 6,7,16 2 1 -
(17,18) 102 i 2 1 -
(19,20) 102 9 2 1 -
(21,22) 102 1 1 1 -
(23,24) 103 5 2 2 -
(25,26) 103 19 1 1 -
(27,28) 103 2 2 1 -
(29,30) 103 10 1 1 -

(31,32) 103 11 1 1 -




TABLE B.2 (CONT'D)

MULTI-

ACTIVITY  CLASSES TEACHERS OTHER o [cpry BLOCK  FIXED
(33,34) 104 14 2 1 -
(35,36) 104 11 2 1 -
(37,38) 104 15,18 1 1 -
(39,40) 104 3 1 1 -
(41,42) 105 10 1 1 -
(43,44) 105 5 2 2 -
(45,46) 105 12 1 1 -
(47,48) 105 14 1 1 N
(49,50) 105 5 1 1 -
(51,52) 201,202,203,211, 7,8,20,22 1 1 -
(53,54) 201,202,203,211  1,2,9,15,18 2 2 -
(55,56) 201,202,203,211  14,17,19,20 2 1 -
(57,58) 201,202,203,211  4,5,10,12,13, 1 1 -
15,18,23
(59,60) 201,202,203,211  6,11,19,21 1 1 =
(61,62) 201,202,203,211  4,10,15,18,20, 1 1 -
22,23
(63,64) 301,302,303,311  2,3,9,21 1 1 -
(65,66) 301,302,303,311  8,12,20,22 2 1 -
(67,68) 301,302,303,311  4,9,10,15,18, 2 1 -
21,22,23
(69,70) 301,302,303,311  2,3,17,21 1 1 -
(71,72) 301,302,303,311  2,3,4,17,23 1 1 -
(73,74) 301,302,303,311  6,7,16,19 1 1 -




TABLE B.3

THE RESOURCE REQUIREMENTS

LIST FDOR TUESDAY

RESDURCES
ACTIVITY  CLASSES TEACHERS OTHER MULTI- © 5lock  Fixeo
PLICITY
(1,2) 101 15,18 2 2 -
(3,4) 101 6 1 1 -
(5,6) 101,103 16,22 1 1 =
(7,8) 101 12 1 1 -
(5,10) 104 10 1 1 -
(11,12) 101 3 1 1 -
(13,14) 101 16 1 1 -
(15,16) 102 11 1 1 -
(17,18) 102 9 2 1 -
(19,20) 102 15,18 1 1 -
(21,22) 102 5 2 2 -
(23,24) 102 4,23 1 1 -
(25,26) 102 1 1 1 -
(27,28) 103 19 2 1 -
(29,30) 103 10 2 1 -
(31,32) 103 11 2 1 =
(33,34) 103 2 1 1 -




TABLE B.3 (Contd.)

ACTIVITY  CLASSES TEACHERS OTHER gE?Ei?Y BIREEIY (G TRGT
(35,36) 104 14 2 1 -
(37,38) 104 3 1 1 -
(39,40) 104 12 1 1 -
(41,42) 104 11 2 1 -
(43,44) 104 15,18 2 2 -
(45,46) 105 4,23 2 2 -
(47,48) 105 5 2 1 -
(49,50) 105 14 2 1 -
(51,52) 105 11 2 | -
(53,54) 201,202,203,211  7,8,16,20 2 1 -
(55,56) 201,202,203,211 6,11,19,21 1 1 -
(57,58) 201,202,203,211  6,15,20,21 1 1 -
(59,60) 201,202,203,211  1,2,3,21 1 1 -
(61,62) 201,202,203,211  2,14,17,19 1 ] -
(63,64) 201,202,203,211  4,5,10,12,13,15, 2 1 -
18,23
(65,66) 301,302,303,311  2,3,9,21 2 1 -
(67,68) 301,302,303,311  8,12,20,22 1 1 -
(69,70) 301,302,303,311  2,3,4,17,23 1 1 3
(71,72) 301,302,303,311  2,3,4,17,23 1 1 4
(73,74) 301,302,303,311  6,7,16,19 2 1 .
(715,76) 301,302,303,311 6,12,20,21,22 1 1 -




TABLE B.4

THE RESOURCE REQUIREMENTS LIST FOR WEDNESDAY

RESODURCES
ACTIVITY  CLASSES TEACHERS OTHER MULTI-  glock  FIXED
PLICITY

(1,2) 101 4,23 2 2 -
(3,4) 101 12 2 1 -
(5,6) 101 16 1 1 -
(7,8) 101 3 i 1 =
(9,10) 101 5 1 1 -
(11,12) 101,103 16,22 1 1 -
(13,14) 102 9 1 1 _
(15,16) 102 11 1 1 -
(17,18) 102 1 1 1 -
(19,20) 102 7 2 1 -
(21,22) 102,104,105 6,7,16 1 1 -
(23,24) 102 15,18 2 2 -
(25,26) 103 19 2 1 -
(27,28) 103 2 1I 1 -
(29,30) 103 11 2 i -
(31,32) 103 13 1 { -
(33,34) 103 10 1 1 -
(35,36) 104 14 1 1 =
(37,38) 104 12 2 1 -

(39,40) 104 4,23 2 2 -
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TABLE B.4 (Contd.)
ACTIVITY  CLASSES TEACHLRS OTHER MULTI-  giock  Fixed
PLICITY

(41,42) 104 11 1 ! -
(43,44) 104 3 1 1 -
(45,46) 105 11 1 1 =
(47,48) 105 15,18 1 1 -
(49,50) 105 10 > 1 _
(51,52) 105 14 2 1 N
(53,54) 105 4,23 1 1 -
(55,56) 201,202,203,211 7,8,20,24 2 | -
(57,58) 201,202,203,211  7,8,16,20 1 1 -
(59,60) 201,202,203,211 1,2,3,9 2 1 =
(61,62) 201,202,203,211  2,14,17,19 1 1 -
(63,64) 201,202,203,21%  2,4,14,19,23 1 1 =
(65,66) 201,202,203,211  6,11,19,21 1 1 =
(67,68) 301,302,303,311  2,3,17,21 2 1 -
(69,70) jo1,302,303,311  3,9,15,18,21 1 1 3
(71,72) 3o01,302,303,311  5,0,13,19,20,22 1 1 4
(73,74) 301, 302,303,311 5,10,13,19,20,22 1 1 §
(75,76) 301,302,303,311  6,12,20,21,22 2 1 -
(77,78) jo1,302,303,311  4,5,9,10,17,18, 1 1 =




TABLE B.5

THE RESOURCE REQUIREMENT LIST DATA INPUT FOR THURSDAY

*Religious Instruction teachers (not part of teaching staff)

RESOURCES
ACTIVITY  CLASSES TEACHERS OTHER MULTI- © Blgck  FIXED
PLICITY
(1,2) 101 6 2 1 -
(3,4) 101 10 2 1 -
(5,6) 101 12 2 1 -
(7,8) 101 4,23 1 1 =
101,102,103,104)
(9,10) 201?202’203’211; 24,25% 1 ! 8
301,302,303,311)

(11,12) 102 1" 1 1 -
(13,14) 102 4,23 2 2 -
(15,16) 102 7 1 | =
(17,18) 102,104,105 6,7,16 1 1 -
(19,20) 102 9 1 1 -
(21,22) 102 5 1 1 -
(23,24) 103 19 1 1 -
(25,26) 103 15,18 2 2 2
(27,28) 103 10 1 1 -
(29,30) 103 11 1 1 -

(31,32) 103 4,23 2 2 =




TABLE B.5 (Contd.)

ACTIVITY  CLASSES TEACHERS OTHER EE;;%;Y BLOCK FIXED
(33,34) 104 3 1 1 -
(35,36) 104 5 2 2 -
(37,38) 104 12 1 1 -
(39,40) 104 11 1 1 ~
(41,42) 104 14 1 1 -
(43,44) 105 5 1 1 -
(45,46) 105 14 1 1 -
(47,48) 105 10 1 1 -
(49,50) 105 11 1 1 -
(51,52) 105 15,18 2 2 -
(53,54) 201,202,203,211  7,8,16,20 1 1 -
(55,56) 201,202,203,211  6,11,19,21 1 1 -
(57,58) 201,202,203,211  7,8,20,22, 1 1 -
(59,60) 201,202,203,211  5,13,14,15,18, 2 2 -
19,22
(61,62) 201,202,203,211  2,14,17,19 1 1 -
(63,64) 201,202,203,211  1,2,3,9 1 1 -
(65,66) 301,302,303,311  4,9,10,15,18, 1 1 -
i 21,22,23
(67,68) 301,302,303,311  8,12,20,22 1 1 -
(69,70) 301,302,303,311  2,3,17,21 1 1 -
(71,72) 301,302,303,311  2,3,9,21 2 1 -
(73,74) 301,302,303,311  6,12,20,21,22 1 1 -
(75,76) jo1, 302,303,311 6,7,16,19 1 1 ~




TABLE B.6

THE RESOURCE REQUIREMENT LIST DATA INPUT FOR FRIDAY

RESOURCES
ACTIVITY  CLASSES TEACHERS OTHER MULTI- B ook FIxed
PLICITY

(1, 2) 101 15,18 1 1 -
(3, 4) 101 6 1 1 -
(5, 6) 101 3 1 1 =
(7, 8) 101,103 16,22 2 1 -
(9, 10) 101 10 1 1 -
(11,12) 101 5 2 2 -
(13, 14) 102 9 2 1 -
(15, 16) 102 1 1 1 -
(17, 18) 102 1 2 1 =
(19, 20) 102 7 2 1 .
(21, 22) 102,104,105 6,7,16 1 1 -
(23, 24) 103 5 1 1 -
(25, 26) 103 19 3 1 =
(27, 28) 103 4,23 1 1 -
(29, 30) 103 2 1 1 -
(31, 32) 104 4,23 1 1 -
(33, 34) 104 3 1 1 -
(35, 36) 104 14 2 1 -
(37, 38) 104 5 1 1 -
(39, 40) 104 1 1 1 -
(41, 42) 104 12 1 1 -




TABLE B.6 (Contd.)
ACTIVITY  CLASSES TEACHERS otHerRs  WULTI= " pigek Fixen
PLICITY
(43, 44) 105 10 2 1 -
(45, 46) 105 14 2 1 -
(47, 48) 105 11 1 1 -
(49, 50) 105 5 2 1 -
(51, 52) 201,202,203,21%1 6,11,19,21 1 1 -
(53, 54) 201,202,203;211 7,8,20,22 1 1 -
(55, 56)  201,202,203,211 7,8,16,20 1 1 -
(57, 58) 201,202,203,211  4,19,14,20,23 2 2 -
(59, 60) 201,202,203,211 1,2,3,9 1 1 -
(61, 62) 201,202,203,211 4,10,15,18,20,22, 2 2 -
23
(63, 64) 301,302,303,311 8,12,20,22 1 1 -
(65, 66) 301,302,303,311  4,5,9,10,15,17, 2 2 -
18,23

(67,68) 301,302,303,311  3,9,15,18,21 2 2 -
(69,70) 301,302,303,311 6,12,20,21,22 1 1 -
(71, 72)  301,302,303,311  2,3,17,21 1 1 -
(73, 74)  301,302,303,311 6,7,16,19 1 1 -




TABLE B.7

TEACHER RESOURCE LOADRS

THE DAILY

* A part-time teacher

TUESDAY WEDNESDAY THURSDAY FRIDAY

MONDAY

.
.

g#*

10

11

12
13
14
15
16
17
18
19
20
21

22
23

24%

25%

The rescurce load matrix indicates the number of activities

Note

each resource (teacher) is required to be allocated in the

timetable solution.



TABLE B.8

The clash sub-matrix for the Tuesday timetable problem. (0 = cannot allocate activities to common time-
periods)
* indicates activities (67,68) and (5,6) cannot be allocated to the same time-period because of common

requirements for resource 22.

T1 T3 T27 T28 T29 T30 T31 T32 T33 T34 T35 T37 T38
activity (1,2) (5,6) (53,54) (55,56) (57,58) (59,60) (61,62) (63,64) (65,66) (67,68) (69,70) (73,74) (75,76)

{(1,2) 0 1 1 1 1 1 1 0 1 1 1 1 1

(5,6) 1 B 0 1 1 1 1 1 1 1 1 0 1

(53,54) 1 D 0 1 0 1 1 1 1 D 1 0 0
(55,56) 1 1 1 0 ) 0 0 1 0 1 1 0 0
(57,58) 1 1 0 0 0 D 1 0 0 0 1 0 0
(59,60) 1 1 1 0 0 0 0 1 0 1 0 0 0
(61,62) 1 0 1 0 1 0 0 1 0 1 ) 1 1
(63,64) 0 1 1 1 0 1 1 o 1 0 0 0 0
(65,66) 1 1 1 o 0 o 0 1 0 1 0 0 0
(67,68) 1 o* 0 1 0 1 1 0 1 0 1 0 0
(69,70) 1 1 1 1 1 0 0 0 0 1 a 1 1

(73,74) 1 0 0 0 0 1 0 1 1 1 1 0 0



T1 T3 T27 T28 T29 T30 T31 T32 T33 T34 T35 T37 T38
sctivity (1,2) (5,6) (53,54) (55,56) (57,56) (59,60) (61,62) (63,64) (65,66) (67,68) (69,70) (73,74) (75,76)

(75,76) 1 0 0 0 0 0 1 0 0 o 1 0 0
1 1 1 1 1 1 0 1 1 1 1 1 1 1
2 1 1 1 1 1 0 0 1 0 1 o 1 1
3 1 1 1 1 1 o 1 1 0 1 0 1 1
4 1 1 1 1 1 1 1 0 1 1 0 1 1
5 1 1 1 1 1 1 1 0 1 1 1 1 1

w

§ 6 1 1 1 0 0 1 1 1 1 1 1 0 0

3J

% 7 1 1 0 1 1 1 1 1 1 1 1 0 1

a-

- 1 1 0 1 1 1 1 1 1 0 1 1 1

2

§ 9 1 1 1 1 1 1 1 1 0 1 1 1 1

'_
10 1 1 1 1 1 1 1 0 1 1 1 1 1
11 1 1 1 0 1 1 1 1 1 1 1 1 1
12 1 1 1 1 1 1 1 0 1 o 1 1 0
13 1 1 1 1 1 1 1 0 1 1 1 1 1

14 1 1 1 1 1 1 0 1 1 1 1 1 1



TABLE B.8 (Contd.)

T1 T3 T27 T28 T29 T30 T31 T32 T33 T34 T35 T37 T38
activity (1,2) (5,6) (53,54) (55,56) (57,58) (59,60) (61,62) (63,64) (65,66) (67,68) (69,70) (73,74) (75,76)

15 0 1 1 1 0 1 1 0 1 1 1 1 1
16 1 0 D 1 1 1 1 1 1 1 1 1 1
17 1 1 1 1 1 1 0 1 1 1 0 1 1
18 0 1 1 1 1 1 1 0 1 1 1 1 1
19 1 1 1 0 1 1 0 1 1 1 1 1 1
20 1 1 0 1 0 i 1 1 1 0 1 ) 0
21 1 1 1 0 0 0 1 1 0 1 1 0 0
22 1 0 1 1 1 1 1 1 1 0 1 0 1

23 1 1 1 1 1 1 0 1 1 1 0 1 1




PERIDDS NOT AVAILABLE

DAY TEACHER CODE FOR ALLOCATION
Monday 8 4, 5, 6, 7, 8
Tuesday 8 4, 5, 6, 7, 8
Wednesday 8 4, 5, 6, 7, 8
Thursday 8 4, 5, 6, 7, 8
Thursday 24,25 1, 2, 3, 4, 5, 6, 7T
Friday 8 4, 5, 6, 7, 8
TABLE B.9

Table of the weekly time-periods that are pot available for
allocation, for the resources indicated, within the timetable

solution.

Note : The table defines the unavailable time-period for

each of the part-time resources.



APPENDIX C

The five daily timetable solutions for the Craigmore High School

problem have been tabulated in the following form :-

Time-periods allocated Required activity and resources
by the computer program : as described by tables in Appendix
B
Notes have been included where necessary to indicate special features
included in the solutions. Attention is drawn to the fact that various
output formats are possible to give solutions in the form of teacher
timetables, class timetables or period timetables (as presented in this
section). The other forms are mentioned in the text. By relating the
codes shown in these tablés to the initials of table B.1, appendix B,
the teacher initials may be substituted, and subjects related to the

lessons.



?%locateq Rqui?Ed Required Resources
ime-~period Activity
1 (3, 4) 101, 3
(15, 16) 102, 104, 105, 6, 7, 16
(23, 24) 103, 5
(53, 54) 201, 202, 203, 211, 1, 2, 9, 15, 18
(65, 66) 301, 302, 303, 311, 8, 12, 20, 22
2 (11, 12) 101, 10
(15, 16) 102, 104, 105, 6, 7, 16
(23, 24) 103, 5
(53, 54) 201, 202, 203, 211, 1, 2, 9, 15, 18
(65, 66) jo1, 302, 303, 311, 8, 12, 20, 22
3 (1, 2) 101, 12
(13, 14) 102, 11
(25, 26) 103, 19
(33, 34) 104, 14
(41, 42) 105, 10
(51, 52) 201, 202, 203, 211, 7, 8, 20, 22
(63, 64) 301, 302, 303, 31, 2, 3, 9, 21




AJ..locatec.i Req".lil.‘ed Reguired Resources
Time-period Activity

4 (1, 2) 101, 12
(17, 18) 102, 7
(27, 28) 103, 2
(35, 36) 104, 11
(49, 50) 105, 5
(55, 56) 201, 202, 203, 211, 14, 17, 19, 20
(67, 68) jo1, 302, 303, 3, 4, 9, 10, 15, 18,

21, 22, 23

5 (9, 10) 101, 103, 16, 22
(21, 22) 102, 1
(35, 36) 104, 11
(47, 48) 105, 14
(57, 58) 201, 202, 203, 211, 4, 5,10, 12, 13, 15,

18, 23

(69, 70) jo1, 302, 303, 311, 2, 3, 17, 21

6 (5, 6) 101, 16
(19, 20) 102, 9
(29, 30) 103, 10
(37, 38) 104, 15, 18
(43, 44) 105, 5
(59, 60) 201, 202, 203, 211, 6, 11, 19, 21
(71, 72) o1, 302, 303, 311, 2, 3, 4, 17, 23




Allocated Required

Required Resources

Time-period Activity
i (3, 4) 101, 3
(19, 20) 102, 9
(31, 32) 103, 11
(33, 34) 104, 14
(43, 44) 105, 5
(61, 62) 201, 202, 203, 211, 4, 10, 15, 18, 20,
22, 23
(73, 74) 3o1, 302, 303, 311, 6, 7, 16, 19
8 (7, 8) 101, 6
(17, 18) 102, 7
(27, 28) 103, 2
(39, 40) 104, 3
(45, 46) 105, 12
(55, 56) 201, 202, 203, 211, 14, 17, 19, 20
(67, 68) 3o1, 302, 303, 311, 4, 9, 10, 15, 18,
21, 22, 23
TABLE C.1

Solution in order

of Craigmore High

of time-periods for the Monday timetable problem

School.,

(Data presented in table B.2, Appendix B)

Note : that all classes are fully utilized for every time-period.



Allocated Required Required Resources

Time-period Activity
1 (1, 2)** 101, 15, 18
(23, 24) 102, 4, 23
(27, 28) 103, 19
(39, 40) | 104, 12
(51, 52) 105, 11
(53, 54) 201, 202, 203, 211, 7, B, 16, 20
(65, 66) 301, 302, 303, 311, 2, 3, 9, 21
2 (1, 2)»+ 101, 15, 18
(17, 18) 102, 9
(29, 30) 103, 10
(39,40) 104, 3
(47, 48) 105, 5
(55, 56) 201, 202, 203, 211, 6, 11, 19, 21
(67, 6B) jo1, 302, 303, 311, 8, 12, 20, 22
3 (3, 4) 101, 6
(19, 20) 102, 15, 18
(29, 30) 103, 10
(41, 42) 104, 11
(49, 50) 105, 14
(53, 54) 201, 202, 203, 241, 7, 8, 16, 20

(69, TO)* 301, 302, 303, 311, 2, 3, 4, 17, 23




Allocated Required .
Time-period Activity ReGULzed HeSkuzEes
4 (5, 6) 101, 103, 16, 22
(15, 16) 102, 11
(35, 36) 104, 14
(47, 48) 105, 5
(57, 58) 201, 202, 203, 211, 6, 15, 20, 21
(71, 72)* 301, 302, 303, 311, 2, 3, 4, 17, 23
5 (11, 12) 101, 3
(17, 18) 102, 9
(33, 34) 103, 2
(35, 36) 104, 14
(51, 52) 105, 11
(63, 64) 201, 202, 203, 211, 4, 5, 10, 12, 13,
15, 18, 23
(73, 74) jo1, 302, 303, 311, 6, 7, 16, 19
6 (7, 8) 101, 12
(21, 22)»+ 102, 5
(31, 32) 103, 11
(43, 44)*+ 104, 15, 18
(45, 46)** 105, 4, 23
(59, 60) 201, 202, 203, 211, 1, 2, 3, 21
(73, 74) 301, 302, 303, 311, 6, 7, 16, 19




Allocated Required Required Resources

Time-period Activity
7 (9, 10) 101, 10
(21, 22)=*+ 102, 5
(31, 32) 103, 11
(43, 44)#+ 104, 15, 18
(45, 46)*+ 105, 4, 23
(61, 62) 201, 202, 203, 211, 2, 14, 17, 19
(75, 76) 301, 302, 303, 311, 6, 12, 20, 21, 22
8 (13, 14) 101, 16
(25, 26) 102, 1
(27, 28) 103, 19
(41, 42) 104, 11
(49, 50) 105, 14
(63, 64) 201, 202, 203, 211, 4, 5, 10, 12/3,
15, 18, 23
(65, 66) 301, 302, 303, 311, 2, 3, 9, 21
TABLE €.2

Solution in order of time-periods for the Tuesday timetable problem

of Craigmore High School

(Data is presented in table B.3, Appendix B)

* fixed time-period requirements for periods 3 and 4

##*  plock-period requirements allocated to consecutive lessons.,



?Z!.locatec.i ReqL.liI.‘Ed Required Resources
ime-period Activity
1 (3, 4) 101, 12,
(23, 24) 102, 15, 18
(25, 26) 103, 19
(39, 40) 104, 4, 23
(45, 46) 105, 11
(55, 56) 201, 202, 203, 211, 7, 8, 20, 22
(67, 68) jo1, 302, 303, 311, 2, 3, 17, 21
2 (5, 6) 101, 16
(23, 24) 102, 15, 18
(25, 26) 103, 19
(39, 40) 104, 4, 23
(49, 50) 105, 10
(55, 56) 201, 202, 203, 211, 7, 8, 20, 22
(67, 68) jo1, 302, 303, 311, 2, 3, 17, 21
3 (3, 4) 101, 12
(15, 16) 102, 11
(27, 28) 103, 2
(35, 36) 104, 14
(53, 54) 105, 4, 23
(57, 58) 201, 202, 203, 211, 7, 8, 16, 20

(69,

70)* 301,




Allocated Required

Required Resources

Time-period Activity

4 (1, 2) 101, 45 23
(19, 20) 102, 7
(29, 30) 103, 11
(37, 38) 104, 12
(51, 52) 105, 14
(59, 60) 201, 202, 203, 211, 1, 2, 3, 9
(71, 72)* jo1, 302, 303, 311, 5, 10, 13, 15, 18,

19, 22

5 (1, 2) 101, 4, 23
(21, 22) 102, 104, 105, 6, 7, 16
(29, 30) 103, 11
(59, 60) 201, 202, 203, 211, 1, 2, 3, 9
(73, 74)* 3o1, 302, 303, 311, 5, 10, 13, 19, 20,

22

6 (7, 8) 101, 3
(13, 14) 102, 9
(31, 32) 103, 13
(41, 42) 104, 11
(49, 50) 105, 10
(61, 62) 201, 202, 203, 211, 2, 14, 17, 19
(75, 76) 301, 302, 303, 311, 6, 12, 20, 21, 22




Allocated Required

Required Resources

Time-period Activity
7 (9, 10) 101, 5
(17, 18) 102, 1
(33, 34) 103, 10
(43, 44) 104, 3
(47, 48) 105, 15, 18
(63, 64) 201, 202, 203, 211, 2, 4, 14, 19, 23
(75, 76) 301, 302, 303, 311, 6, 12, 20, 21, 22
8 (11, 12) 101, 103, 16, 22
(19, 20) 102, 7
(37, 38) 104, 12
(51, 52) 105, 14
(65, 66) 201, 202, 203, 211, 6, 11, 19, 21
(77, 78) jot, 302, 303, 311, 4, 5, 9, 10, 17,

18, 23

TABLE C.3

Solution in order of time-periods for the Wednesday timetable problem

of Craigmore High School.

(Data presented in table B.4, Appendix B)

* fixed time-period requirements to the periods 3, 4, 5.



A%locateq Raqgi?ad Required Resources
Time-period Activity
1 (3, 4) 101, 10
(13, 14) 102, 4, 23
(25, 26) 103, 15, 18
(35, 36) 104, S
(45, 46) 105, 14
(55, 56) 201, 202, 203, 211, 6, 11, 19, 21
(67, 68) jo1, 302, 303, 311, 8, 12, 20, 22
2 (1, 2) 101, 6
(13, 14) 102, 4, 23
(25, 26) 103, 15, 18
(35, 36) 104, 5
(47, 48) 105, 10
(57, 58) 201, 202, 203, 211, 7, B, 20, 22
(69, 70) 301, 302, 303, 311, 2, 3, 17, 21
3 (5, 6) 101, 12
(11, 12) 102, 11
(23, 24) 103, 19
(33, 34) 104, 3
(43, 44) 105, 5
(53, s4) 201, 202, 203, 211, 7, 8, 16, 20
(65, 66) jo1, 302, 303, 311, 4, 9, 10, 15, 18,

21, 22, 23




A]'.locate(.j RBC]L.JiI:‘Ed Required Resources
Time-period Activity

4 (1, 2) 101, 6
(15, 16) 102, 7
(31, 32) 103, 4, 23
(37, 3s) 104, 12
(49, 50) 105, 11
(59, 60) 201, 202, 203, 211, 5, 13, 14, 15, 18,

19, 22

(711, 72) 301, 302, 303, 311, 2, 3, 9, 21

5 (3, 4) 101, 10
(17, 18) 102, 104, 105, 6, 7, 16
(31, 32) 103, 4, 23
(59, 60) 201, 202, 203, 211, 5, 13, 14, 15, 18, 19,

22

(71, 72) 301, 302, 303, 311, 2, 3, 9, 21

6 (7, 8) 101, 4, 23
(19, 20) 102, 9
(27, 28) 103, 10
(39, 40) 104, 1
(51, 52) 105, 15, 18
(61, 62) 201, 202, 203, 211, 2, 14, 17, 19
(73, 74) 301, 302, 303, 311, 6, 12, 20, 21, 22




Allocated Required Required Resources

Time-period Activity
7 (5, 6) 101, 12
(21, 22) 102, 5
(29, 30) 103, 11
(41, 42) 104, 14
(51, 52) 105, 15, 18
(63, 64) 201, 202, 203, 211, 1, 2, 3, 9
(75, 76) 301, 302, 303, 311, 6, 7, 16, 19
8 (9, 10)* 101, 102, 103, 104, 105, 201, 202, 203,
211, 301, 302, 303, 311, 24, 25
TABLE C.4

Solution in order of time-periods for the Thursday timetable problem

of Craigmore High School.

(Data presented in table B.5, Appendix B)

* a fixed time-period requirement for all classes in time-period 8
for the purpose of a religious instruction lesson. Teachers 24, 25

are external to the school as indicated in table B.5, Appendix B.



APPENDIX C

?%locateq Reqei?ed Required Resources
ime-period Activity
1 (3, 4) 101, 6
(15, 16) 102, M1
(25, 26) 103, 19
(33, 34) 104, 3
(45, 46) 105, 14
(55, 56) 201, 202, 203, 211, 7, 8, 16, 20
(65, 66) 30:%’3?3: gg3, 311, 4, 5, 9, 10, 15,
2 (5, 6) 101, 3
(17, 18) 102, 1
(25, 26) 103, 19
(35, 36) 104, 14
(47, 48) 105, 11
(53, 54) 201, 202, 203, 211, 7, 8, 20, 22
(65, 66) 301, 302, 303, 311, 4, 5, 9, 15, 17,
18, 23
3 (1, 2) 101, 15, 18
(13, 14) 102, 9
(23, 24) 103, §
(31, 32) 104, 4, 23
(43, 44) 105, 10
(51, 52) 201, 202, 203, 211, 6, 11, 19, 21
(63, 64) 301, 302, 303, 311, 8, 12, 20, 22



T%me g Reqei;ed Required Resources
Time-period Activity
4 (7, 8) 101, 103, 16, 22
(19, 20) 102, 7
(37, 38) 104, 5
(43, 44) 105, 10
(57, 58) 201, 202, 203, 211, 4, 14, 19, 20, 23
(67, 68) 301, 3oz, 303, 311, 3, 9, 15, 18, 21
5 (7, 8) 101, 103, 16, 22
(17, 18) 102, 1
(39, 40) 104, 11
(49, s0) 105, 5
(57, 58) 201, 202, 203, 211, 4, 14, 19, 20, 23
(67, 68) 3oy, 302, 303, 311, 3, 9, 15, 18, 21
6 (11, 12) 101, 5
(21, 22) 102, 104, 105, 6, 7, 16
(25, 26) 103, 19
(61, 62) 201, 202, 203, 211, 4, 10, 15, 18, 20
22, 23
(71, 72) 301, 302, 303, 311, 13, 17, 21




Allocated Required Required Resources

Time-periods Activity

7 (11, 12) 101, 5
(13, 14) 102, 9
(29, 30) 103, 2
(41, 42) 104, 12
(45, 46) 105, 14
(61, 62) 2012é 202, 203, 211, 4, 10, 15, 18, 20, 22,
(73, 74) 301, 302, 303, 311, 6, 7, 16, 19

8 (9, 10) 101, 10
(19, 20) 102, T
(27, 28) 103, 4, 23
(35, 36) 104, 14
(49, 50) 105, 5
(59, 60) 201, 202, 203, 211, 1, 2, 3, 9
(69, 70) 301, 302, 303, 31, 6, 12, 20, 21, 22

TABLE C.5

Solution in order of time-periods for the Friday timetable

problem of Craigmore High School.

(Date is presented in Table B.6, Appendix B)



APPENDIX D

The following tables relate to a practical problem that had no
solution. The clash sub-matrix of Table D.2 indicates the activity
causing this infeasibility. Table D.! details the activities and resource
requirements of the problem whilst Table D.3 summarizes the teacher
loads. Table D.4 indicates the teacher availability constraints to be

considered in the solution.



TABLE D1

THE ACTIVITY AND RESOURCE REQUIREMENTS FOR A TIMETABLE

PROBLEM THAT HAS NO SOLUTIDN

RESDURCES
ACTIVITY  CLASSES TEACHERS oTHers WULTI= pigck FIXED
PLICITY

(1,2) 101 12 2 1 -
(3,4) 101 6 2 i -
(5,6) 101 10 2 1 =
(7,8) 101 4,23 1 1 &
(9,10) 102 11 2 1 -
(11,12) 102 15,18 2 2 -
(13,14) 102 9 1 1 -
(15,16) 102 5 1 1 -
(17.18) 102,104,105 6,7,16 1 1 -
(19,20) 103 2 1 1 -
(21,22) 103 10 1 1 -
(23,24) 103 19 1 1 -
(25,26) 103 15,18 1 1 =
(27,28) 103 4,23 2 2 -
(29,30) 103 11 1 1 -
(31,32) 104 14 2 1 -
(33,34) 104 1 2 1 -
(35,36) 104 12 1 1 -

(37,38) 104 3 1 1 -




TABLE D.1 (Contd.)
ACTIVITY  CLASSES TEACHERS others MUETI= ook FIXED
PLICITY
(39,40) 105 5 2 2 -
(41,42) 105 14 1 1 -
(43,44) 105 10 1 1 -
(45,46) 105 15,18 2 2 =
(47,48) 201,202,203,211  6,11,19,21 1 1 -
(49,50) 201,202,203,211  2,14,17,19 1 1 -
(51,52) 201,202,203,211  7,8,20,22 1 i |
(53,54) 201,202,203,211  3,5,13,14,19,22 2 2 -
(55,56) 201,202,203,211  7,8,16,20 1 1 2
(57,58) 201,202,203,211  1,2,9,22 1 1 -
(59,60) 301,302,303,311  4,10,15,18,21, 1 1 -
22,23

(61,62) 301,302,303,311  8,12,20,22 1 1 3
(63,64) 301,302,303,311  2,3,17,21 1 1 -
(65,66) 301,302,303,311 6,12,20,21,22 1 i -
(67,68) 301,302,303,311  2,3,9,21 2 i -
(69,70) jo1,302,303,311  6,7,16,19 1 1 -




TABLE D.2

THE CLASH SUB-MATRIX FOR THE TIMETABLE PROBLEM WITH NO SOLUTION DEFINED IN TABLE D.1

Distinct activities with more than 2 resources

ctivity (7,8)(11,12)(17,18)(47,48)(49,50)(51,52)(53,54)(55,56)(57,58)(59,60)(61,62)(63,64)(65,66)(67,68)(69,70)

7,8) 0 1 1 1 1 1 1 1 1 0 1 1 1 1 1
11,12) 1 0 1 1 1 1 1 1 1 0 1 1 1 1 1
17,18) 1 1 0 0 1 0 1 ¥ 1 1 1 1 o 1 0
47,48) 1 1 0 0 0 il 0 1 1 0 1 0 0 0 0
49,50) 1 1 1 0 0 1 0 1 0 1 1 0 1 0 0
51,52) 1 1 0 1 1 0 0 0 0 0 0 1 0 1 0
53,54) 1 1 1 0 ] 0 D 1 0 0 0 0 0 0 0
55,56) 1 1 0 1 1 0 1 0 1 1 D 1 0 1 o
57,58) 1 1 1 1 0 0 D 1 0 0 0 0 C 0 1
59,60) 8 0 1 0 1 0 0 1 0 0 0 0 0 0 1
61,62) 1 1 1 1 1 0 0 0 0 a 0 1 0 1 l
63,64) 1 1 1 0 0 1 0 1 0 0 1 0 0 0 1
65,66) 1 1 0 0 1 0 0 0 0 0 0 0 0 0 0
67,68) 1 1 1 D 0 1 0 1 0 0 1 0 0 0 i



ABLE D.2 (Contd.)

Distinct activities with more than 2 rEsources

ctivity (7,8)(11,12)(17,18)(47,48)(49,50)(51,52)(53,54)(55,56)(57,58)(59,60)(61,62)(63,64)(65,66)(67,68)(69,70)

1 | 1 1 1 1 1 1 0 1 1 1 1 1 1
2 1 1 1 1 0 1 1 1 0 1 1 0 1 0 1
31 1 1 1 1 1 0 1 1 1 1 0 1 0 1
4 O 1 1 1 1 1 1 ! 1 0 1 1 1 1 1
5 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1
6 1 1 0 0 1 1 1 1 1 1 1 i 0 1 0

LT 1 0 1 1 0 1 0 ! 1 1 1 1 1 0

18]

8 1 1 1 1 0 1 0 1 1 0 1 1 1 1

o

8 9 1 1 1 1 1 1 1 1 0 1 1 1 1 0 1

g 10 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1

5

8 11 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1
12 1 1 1 1 1 1 1 1 1 1 0 1 0 1 1
13 1 4 1 1 1 1 0 1 1 1 1 1 1 1 1
14 1 1 1 1 0 1 0 1 1 1 1 1 1 1 1
15 1 0 1 1 1 1 1 ' 1 0 1 1 1 1 1



ABLE D.2 (Contd.)

ictivity (7,8)(11,12)(17,18)(47,48)(49,50)(51,52)(53,54)(55,56)(57,58)(59,60)(61,62)(63,64)(65,66)(67,68)(69,70)

7 1 i : g ! : 1 i 1 1 0 1 1 1
18 1 0 1 : 1 i 1 1 1 0 1 1 1 1 i
19 1 ‘ 0 0 1 0 1 1 1 1 1 1 1 0
20 1 1 1 1 0 1 0 1 1 0 1 0 1 :
21 ! 1 0 1 : 1 ; 1 0 1 0 0 0 1
22 1 1 1 1 i 0 0 1 0 0 0 1 0 1 *
23 O 1 1 1 . 1 1 1 1 0 1 1 1 1 ‘
lumbex of 4 9 13 11 13 17 10 13 18 11 12 17 12 12
Clashes

Note that activity (53,54) has only 4 available activities that may be allocated to the same time-
period as (53,54), i.e. there are only 4 non zero elements in the row associated with (53,54).
Also note that all 3rd year level activities are from activities (59,60) to (69,70) and none are
available for allocation together with (53,54), i.e.. all zero elements in row (53,54) for columns

associated with (59,60) to (69,70). Hence no feasible allocation for a solution satisfying the

timetable constraints can be determined and thus the problem as defined has no solution.



TABLE D.3

A TABLE OF THE REQUIRED TEACHER RESOURCE LOADS FOR THE

TIMETABLE PROBLEM DEFINED IN TABLE D,1 THAT HAS NO SOLUTION .

Teacher Code Required Load
01 1 %7
02 6+ 7
03 6+ 7
04 41 7
05 5+ 7
06 6 & 7
o7 4 : 7
og* 3 : 3
09+ 4 : 6
10 5 : 7
1" 6 : 7
12 5: 7
13 27
14 6 : 7
15 6+ 7
16% J 45
17* 2 : 6
18 6+ 7
19 6+ 7

20* 4 : 6



TABLE D.3 (Contd.)

Teacher Code Required lLgad
21 6 ¢+ 7
22 T T
23 4 = 7

* g part-time teachers available for only restricted time-

periods as defined in Table D.4.



TABLE D.4

Time-periods not

Resource Code

available
17 1
8 4,5,6,7
9 7
20 7
16 4,5

The time-periods for resources indicated that are not available
for allocation in the solution, due to resource commitments cutside of
the timetable problem. e.g. resource B is a part-time teacher, only

available for the first 3 time-periods.
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