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SUMMARY

The resea¡ch associated with this thesis has been unde¡taken with an

objective to add to the understanding of the school- timetab-ì-e problem,

and of producing a solution technique that is practica-l- fo¡ the South

Aust¡al-ian Secondary school timetabl-e problems. In the introduction, the

main investigations already published on this topic are reviewed, and the

nature of the problem in general te¡ms is presented.

Next, the theory necessary f or the f ormu-l-ation of the mathematica l-

mode-L is summarised. Such discipJ-ines as set theory, combinatorics, systems

of distinct representatives and graph theory a¡e incl-uded. The Marriage

Probl-em, cJ-osely al-l-ied to the timetabre probrem is discussed.

Then the school timetabl-e is theoreticaJ-l-y formuJ-ated as a resource

al-l-ocatron problem with constraints, for defined activities. Practical-

features existing within schools a¡e discussed. The probl-em is desc¡ibed

in two ¡el-ated parts. First, the simple tight timetabl-e problem is defined,

so that a basis for compa¡ison with other solution methods is establ-islred.

iecond, the practicql problem is derived by expanding the const¡aints on

bhe simple probJ-em, so that the method wi-LL be of plactical- benefit to

:ducation administrators.

Ïhe theoreticaL formuLation is preceded by a detailed discussion of

bhe South Australian secondary school timetabl-e probJ-em. Each aspect of

bhe practical problem is defined, and provision for its inclusion is made

i-n the sofution method. The aims of existing manua.l- techniques are present-



LL

ed .¡nd the s;hortcomings of manu.rJ- s.ystems fo¡ soLvinq timetaLrl,es cli::currsecl .

The ¿lgorithms fo¡ this study .lre then pre:;ented. Extensive use of

binar.y operations, set theory and combinatorics, combined with the daiJ-y

activity requirements of a schoo-l- and computer application form the basis

for this soLution technique. Considerabl-e attention is given to the economy

in use of data storage and working arrays within the computer modeL. Methods

f or the incl-usi-on of special- f eat ures in timetabl-es suc h as teacher-class

sets involving several- schooJ- resources for a specific time-period are

incLuded in the algorithms, and have important assignment implications.

It is concl-uded that a proper unde¡standing of these and other implications

in the timetable problem is needed if the computer techniques are to be

applied ef fectiveJ-y.

Then the computer program is discussed. Co¡e storage probJ-ems and

varic¿ls techniques to inc¡ease efficiency are presented. The effect of

speciaJ- features required in practícal probl-ems are investigated. The

input in the form of daily activities for the timetab-l-e prob-ì-em are

discussed.

The mathematical model- is general- enough to be appJ-icabl-e to a variety

of schoo-l- timetabl-e problems. The benefits of aì-J-ocating time-periods to

the daily class-activity requi¡ements a¡e discussed. It is noted that the

technique uced in this study cdl be expandecl to o l,her .ì-arger weekJ-y problems

at the expense of more computer time. A direct application of the sol-ution

method to the craigmore High schoof timetabJ-e probJ-em is presented, to

demonstrate the practical- nature of this system to an existing timetabl-e



L1r_ .

Problem. The sol-ution produced is presentJ-y in use at that school- and

the program wilL be used for othe¡ schools in the future.

The benefits of an automated sol-ution method are examined, and seve¡al-

concl-usions that had irnportant imp-ì-ications for the school- system were

reached. Ïhe method added a considerabl-e contribution to the topics of

school resource al-location prob.ì-ems, staffing requirements and timetable

error-detection techniques. The program demonstrated that significant

economies in core storage can be obtained through the use of bit patterns

within computerwords, without any accompanying penal-ty in computational

speed. The economies of generating a computer sol-ution was a prime

consid eration .

The thesis concludes with a general- di-scussion in which various

concl-usions are drawn. New and extended areas of reeea¡ch are

iden +,if ied .
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CHAPTER 1

INTRODUCT I ON

1 .1 HISTORICAL BACKGROUND

A school- timetable is required to

activities of the school environment.

co-ordinate the compJ-ex daily

of theThe efficiency

school organization is refl-ected in the qual-ity of this schedur l_e

of activities. During early times, the construction of the school_

timetabre h/as a reJ-ativel-y simple exe¡cise, since one teacher

taught all subjects and the number of subjects offered was few.

Now, with the specialist subject teachers, and the wide variety of

subjects offered to students, the generation of schooL timetab-l_es

is becoming increasingly more difficur-t. Manual- methods are time

Çonsuming, and the increased compJ-exity of the schedul_es has

directed investigations to the production of timetabl_es by computer

methods.

ïhe situation is furthe¡ compounded by the variety of school

types now in existence, such as the High, Technicar High and Area

schools of south Austral-ia. Each type has its own requirements,

and the structure of an acceptab.l-e sol-ution differs fo¡ cach school.

One method of sol-ution invoJ-ves the enumeration of a1I arrange-

I ments of activities, ignoring those that do not satisfy the

conditions of the timetabl-e probrem. e.g. no resource shal-l_ be



aLlocated to mo¡e than one activity during

this set of soLutions the rbestr solution

2.

any one time-period. From

is chosen. Howeve¡ this

method faiÌs through the vol-ume of computation necessary to produce

the mil-Ìions of arrangéments. This was noted previousry by

Appleby et ar. (2 ), and this method can be dismissed, even though

high speed computers are avaiJ_abLe.

1 .1 .1 Manua1 Methods

i

As mentioned by Sefton (SZ), many early articles on

school timetabre methods were inc.r-ud ed in various teac hers

journals not readily availabJ_e today. probably a typical

example of such publications is by Robinson (4S ¡ . This

paper desc¡ibed prepared forms and detair-ed a.r-ist of steps

for the generation of a timetabre sorution. The technique,

howeve¡, would need adaption for school-s other than the

canadian schooL fo¡ which it was designed, and is therefo¡e

not generally applicable.

In 1961 Lewis (ZA ) compiled a comprehensive manua.l_ f or

the hand generation of EngJ-ish Grammar schoor timetabr-es.

The timetabl-es considered were complex in their structure

and included subject options through the grouping of l_essons

into frsetstt arlocated to common time-periods in the timetab-l_e

sorution. The variation of the cycle rength of the schoor-

week of 6 to 1 0 days was discussed . Once again the method

was designed fo¡ hand techniques in sol_ving English Grammar



school problems and

rrsetsrr are ¡elated

3

was not wideJ.y appJ-icable. However the

to the teacher-cl-ass sets used in this

thesis and described in a paper attached as Appendix A.

More recent attempts to fo¡mal-ize the school- tj-metable

problem have been published by Lawrie (27 ) and Clague (lZ) .

The approach used by Lawrie described 'layoutsr whích are due

to Lewis (28 ). The layouts are rrexpressions of the cur¡icul-a

of groups of pupil-s'f and the approach uses J-arger units of

departments and groups of students of the same year J-eveÌ.

Ïhe fo¡mulation is a prelude to a computer solution method

using l-inear programming techniques. e.g. Lawrie (27).

However the method as desc¡ibed is not directly applicable

to the South Austral-ian situation because of part-time

teachers and the present cu¡ricuLa organization. The paper

by CJ-ague assumes that there could be some agreement rrfor

formulating a preJ-iminary timetable which may then require

minor adjustments to meet particular requirementsrt. The

paper then discusses a systematic approach to soJ-ving the

timetable probÌem, and suggests that the method may J-end

itself to computer implementation. No fu¡ther work appears

to have been done using this approach.

Various techniques using mechanical- aids such as ma g ne tic

observed,boards for interchanging timetabl-e entries have been

with the common faults of being time consuming, J-abourious
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and giving no guarantee of a so-l_ution.

1 .1 .2 Ea¡Lv Publ.ications

A series of pubJ-ications, quoting wo¡k on computer

generated timetables began in the late 1950rs and earJ_y 1960rs.

0f these, was a group of 3 papers by Bush, Caffreyr Oakford and

Al--l-en (B), 0akford (38), and Bush (7) on the Secondary

Education Project at stanford unive¡sity. The probtem is
described in thelfi"=t paper and possible approaches to the

solution are consid ered by Oakf ord , who a.r-so indic ated the aim

to combine the ar--r-ocation of students to c.r-asses with the

timetabl-e problem. The third paper of Bush reports success in
the design of a cornputer program. Th¡ee publications (58),

(alr¡, (50) from stanford outr-ine the approach of producing a

preriminary master schedure by compute¡ and incorporating

changes, additions and co¡rections using other programs. Up_

dating is done manuaÌly and the computer is used to modify

and ¡ecord the effects of these changes. No indication of

the techniques empj_oyed is given.

0ther short papers of FJ_anagan (le ¡ , t¡le_l_ton ( 57) , I¡/uIf f
( 58 ) , and Bl-ackf ord ( 6 )a¡e a.l-so noted but none given any

indication of the methods o¡ techniques that are applied"
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1 .1 .3 Human Imitation and Heuristic Procedure

Early attempts to imitate manual

in the early 196O1 s and examples may

by a number of authorsr e.g. Appleby

(¡ ) , lerghuis et al- (5 ) .

methods

be found

were deveJ-oped

in publications

), Barraclough

There are

noted by Ryan

et aI (Z

basicaJ-ly two approaches that are evident, as

(qA), these being :-

2.

The interchan ge of pairs of entries to Itimproverr

a trial timetab.l-e.

Gene¡ated assignments are entered in an evoJ-ving

timetabl-e if feasibl-e or rejected otherwise. V'Jhen

an assignment can not be made, the program ret¡eats

to a previous stage of production and restarts.

Several- sophisticated heuristic techniques v'/ere

incorporated to formalise the abstract features of

manual methods. However these earJ-y efforts usually

faiJ-ed to produce solutions acceptable to schools-

The main reasons were :-

(a) the computer coul-d not view the problem as a

whole, nor did it possess the experience or

intuition of humans.

(b) the initiaÌ requirements and constraints were

presented to the computer as inflexibl-e
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conditions, but manual' methods all-ow for

modification of requirements when difficul-ties

arise.

(c) the recognition of infeasibiJ-ity as a resul-t

of an assignment was not programmed, and thus

it was difficul-t to determine the critical

assignment causing infeasibility later' Look-

ahead feature is incl-uded in the paper by

Hemmerl_in s Q4 ) to overcome such infeasibil-ities.

0liver (40 ) using heuristic techniques reported some

success using attstabJ-e methodtrto keep track of assignments

and back-tracks, but sol-utions produced bear l-ittl-e ¡esembf ance

to actual school timetabLes. Howeve¡, a tree-search approach

simi.l-ar to 0liverrs, u/as adopted in this thesis .

1.1.4 Theoretical Methods

The first mat hematical- f ormu.l-ation of the timetabl-e problem

was proposed by Gotl-ieb (l S ) who recognised the need for

conditions indicating feasibility. The mode.l- used a result

of set theory to derive these conditions, the Hall-rs

conditions (Zl ), which Gotlieb suggested as necessary and

sufficient for feasibility. Extensions to this theory were

developed by Cisma ( g, l0), Duncan (14, 15), and Lionrs

Qg, tl). Lions (¡O) also demonstrated that the HaIl



conditions were not

1.

sufficient for feasibil-ity by a counter-

difficul-ty with the method, was theexampJ-e . The

inflexibility

procedures fo¡

mal-n

of the initial- conditions that necessitated

reruns with revised requirements.

The method has however been used successfully in Ontario,

canada and the impJ-ementation has been wel-I documented by

Lions (3t , ¡Z , 33 ) who al-so draws attention to the experimental-

natu¡e of the method at present. The execution times at

present are l-arge due to the number of reruns needed for a

solution.

1 .1 .5 Other Methods

Several- other methods have been publishedr e'9' Mihoc and

Bal-as (35 ) based on the theory of mathematical- programming

and Johnston et al-. Q6) with a two-dimensional al-location

problem involving items and time-periods ' However, methods

have not been exten sively tested and the appJ-ication to rea-l--

school problems have not been establ-ished. The method of

Johnston and Vr/ol-f enden was promising and the items, (resources

of a school) were grouped together for lessons in the timetabl'e

solution. The approach used by Hemmerfíng (24 ) is similar,

in that the activities of HemmerJ--ing retated to the items are

of Johnson et al-, and consists of groups of resources meeting

together f or a l-esson .
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The method of solution by Hemmerling has been appJ-ied

to real-school situations and results have been presented in

this thesis.

0ther recent work has been published by De warra ( t ¡) '

based on Swiss schools, but at this stage only theoretical

results are available. Clacher (t t ) has generated timetables

for real-schools using PERT' but work has been terminated and

nofurtherresuttspubJ-ished.Severa].rerunswerea.].soneeded

for this method of approach' Other more general publications

such as (1, 25, 51, 53, 54) were also noted'

1.2 ME OF PR ESENTATION

In the presentation of this thesis' practical features of the

schooltimetab]-eproblemareexamined.Computertechniquesforthe

E¡Iu'tion of ¡eal-schoo'l- problems are developed and results are dis-

cussed. The subject matter of the thesis is presented as fol-Iows'

Ehapter 2, contains the fundamental theory associated with the

SchooltimetableprobJ.em.Relevantaspectsofsettheoryareintro-

duced. This leads to the bijective mapping generator which pJ-ays

an important part in the alLocation of the activities of the time-

tableproblem.Thisisfol]-owedbyadiscussionofgraphtheory

that is used in the formulation of activity paths for required

schoolactivities.Thenthetheoryofcombinatorics,permutations

and systems of distinct representatives is presented ' Systems of



distinct representatives are particularJ.y relevant

of infeasible situations in the soLution method of

o

in the cietection

this work.

Chapter 3 contains a discussion of the practica-I featu¡es of the

south Austral_ian secondary school timetable problem. V¿rious

characteristics such as teacher-c.l-ass sets, fixed time-periods,

bJ-ock-periods and school- poJ-icies ale discussed. The effects of

]imited lesources in rel-ation to the school timetable are noted.

A theoretical formul-ation of the school timetabl-e problem is

given in chapter 4. The mathematical- model- is discussed together

with the method of solution. The probJ-emr as plesented, is combin-

atoria.l-, and bijective mappings for the af.l-ocation of activities are

used in the sol-ution method. Important aspects of the work are

discussed in this chapter, and are refated to the solution algorithms

g-,, chapters 5 and 6. The simpJ-e tight timetabl-e problem is defined

at this stage to give a basis for comparison with othe¡ solution

methods and a.l-so for testing purposes. This is followed þy a

mathematical description of the Practical- probJ-em.

In chapters 5 and 6 the al-gorithms for the computer program are

presented. The composite avail-abifity vector is discussed in detail-

along with the impJ-ication algorithm. The importance of the two

aspects in relation to the rejection of infeasibJ-e mappings is

discussed. This leads to techniques for the reduction of the

binary matrices containing all mappings for the tímetabl-e solution.

The bijective mapping generator is formulated and the philosophy



of the use of mappings

important aids for the

problems are presented.

clash matrix. The use

research. Future research

10.

in the solution method is discussed. Two

detection and correction of infeasibLe

They are the resource Load

of the se aids and

These are

the method

analysis and

of construction

of the cLash mat¡ix is given. practicaf devices and are

usefuL for both computer and manual soLution methods for the schoof

timetabl-e pr oblem .

Chapters Tand I are concerned with the computer program and

sol-utions of timetable problems. Methods of data Presentation and

conversion of the algorithms of chapters 5 and 6 into program form

are discussed. The method of application of the computer program to

timetab.l-e problems is presented and resul-ts are given. Test runs are

described, resuJ-ts anal-ysed and concl-usions ¡eached. Chapter B is

primarily concerned with a description of the application of the

domputer program to a practicaf school problem, seJ-ected by the

Education Department of South Austral-ia (the C¡aigmore problem).

A discussion of the difficulties of the reaJ- probl-em is gíven

together with the so.l-ution presently in use at Craigmore High 5c hool- .

Chapter 9 contains a discussion of the major

outlined andtopics are

of the work

suggestions are

made for future extensions of this thesis,

It is submitted in Chapter 9 that the findings of the resea¡ch

of the thesis have a direct appJ-ication to school timetable probJ-ems

and will- be of considerable vafue to those involved in the preparation

of school timetables in practice.

concl-usions of the



CHAPTER 2

T ICA T-OR Y TH HO

TIMETABLE PROBLEM

2 .1 INT RODUCTI ON

Theinitiafsectionsofthischaptersummarisethecombinatorial

theory requíred for the approach to the school timetable problem

contained in this thesis. A short resume of set theory, combinatorics

andgraphtheoryhasbeencompiledfromtherefe¡encesofH.Ryser

(¿l ), M. HaIl (19 ), J' Riordan (44 )' C' Liu (34 ) and F' Harary

(z¡).Varioustheoremshavebeeninc]-udedinthetextwithoutproof,

but ¡eference has been given. The theory of distinct representatives

hasanimportantapplicationintheso].utionmethod,andhasbeen

quoted from the authors L. Mirsky and H. Perfect (37 ), C' Berge ( 4 )

,,,¡nd D. Raghavao (¿s ) .

The final section of

be used in the formulation

problem. This chaPter

mathematical Procedures

this chapter summarises graph theory' to

of the mathematical model- of the timetabl-e

a theoretical review, in preparation for the
1S

5ET THEOR.Y

This section

direct relevance

presented in chaPters 4, 5 and 6

summarises the aspects of set theory, that have

to the work of this thesis ' It wiL'l- be shown in

that the school timetable problem requires thechapters 3 and

allocation of

4

2.2

resource vectors to time-pe¡iods (section 3'2' chapter
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3). The various set operations used are quoted in this section.

The notation fo¡ a set

T = {1r 2,

den otes a set T of el-emen ts

is described as follows :-

a
J,

't

labelled 1, 2, 3, A set may al-so

be described by J-isting al-l- el-ements of the set.

t1 e T signifies that tt ;þ a member of the set T, and

t1

If T is a f inite set of n elements, T is call-ed an n-set*. \¡/hen

n 0, T is the nu.l-l- set. denoted by É

f t tn" contrary, that t1 is not a member of the set T.

An r-subset of the n-set T is

T n. Vlhen r < n, the r-subset

of any r elements of

DroDar r-subset of T¡(

a col-l-ection

is ca l-l-ed a

It will be shown that the teacher resources and cl-ass resourcest

described in chapters 3 and 4, are proper subsets of the set of

resources of a school.

T*rt

by,

If A(t) is some statement about the element t e T, then the set

containing all el-ements of T fo¡ which A(t) is valid is denoted

T* = {t ; A(t)¡ t e T}

Associated with each set T is a unique numbe¡ denoted by ltl

cal-Ied it= !-g5!!g,,.!!;þy. o¡ the cardinaL number.

If T is an n-set, then the number of elements in T is given by

its cardinal number and is,

lrl = n

*The timetabfe problem wiJ-l al-ways be concerned with finite sets.



Let T1 and f, be twc sets (not necessarily finite) '

Ti t T, is defined to be the union of sets T', and T' containing

aLL el-ements of both T',' ':nd T-'

tJ.

to be the int ersection of sets T r2¡nd

common to both T.,' and T,

4 then T., and T 2 ;'te said to be disioint (have

T1 
^ 

T, is defined

containing all elements

If T,n T- =l¿

common eLements ) .

In general,

no

m

U
i=1

Ti and
m

ñ r;-
l=l

f¡, f2, T3,

willdenotetheunionandinLersectionofthesetsrl,r2,......'

Tm.

LetTbea

'Ja ition of T

set. Subsets

if'

r¡ I 0

í + i implíes

, Tr of T, form a

Ti^ rj 0

TT,v I, \', ........eTm

The T1 are cal.Ied g]ry of the partition '

MPLE 2 "1

An example of a Partition

I = {1, 2r 3,

Then

{1, 2r 3}, {4}, {5, 6}

is a partition of T with classes

is given bY the following

4r 5, 6\

EXA



T1

r2

T3 =

The difference

taining the el-ements

T-5

14.

3Ì

and S, denoted bY T-S, is the set con-

are not elements of 5.

t É sÌ

the solution method described in

of union and intersection are

of chapte¡s 3 and 4 to determine

a defined sub-set of resources.

{ 1, 2'

{¿ }

Set theory is

c h.rpt ers 5 and

app li ed

c ommon

{ 5, 6 }

of sets T

of T that

= {t; t

extensively in

The operations

Ta

used

6

to the avail-abil-itY arraYs

time-periods avail-able fo¡

The soLution method is based on the generation of feasible mappings,

and a discussion of mappings is now given '

LetT ={1r2,3, ¡n}andS ={s(1)rs(2), ,s(m)}

be two sets.

A mapping Ai of T into S denoted bY

ai 12
si(1 ) si(2)

.¡
J

si(3)

si(t¡) a 5 with

n

si.(n)

each e-Iement

tjeT

image of ti unde¡ the maPPing A i

T is the domain of Ai and S is the ranqe of 
^ 

i

is a rule that associates an e]-ement

For brevity, the mapPing is

4., T into>S
l-

Eac h si(t5) A i(t¡ ) for each t¡ e' T and is call-ed the

sometimes written
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A maPPinS Ài

si(t¡) e s, there

^i

is surjective

exists at l-east

(tj) = s1(t¡)

is bijective

is cafLed a

(a surjection) if, for everY

one t¡ e T such that

(every element of S is 'an image f or at l-east one t¡ e T ' )

A mapping Ài is injective (an injection) if,

til t¡ imPlies Ai(tj)lAi(tr.)

for every t¡rtk e T. :

(Distinct e-l-ements of T have a 1-1 corlesPondence with distinct

images of 5).

A mapping

and inj ective ,

element of 5 is

( a bij ection )

oermutation of

if it is both surjective

the images (everY

el-ement of T).

A.
l_

and

an image of one and onÌY one

Note that maPPings

'\,al-ues in S as possibJ-e,

in jective

bijective

surjective if

EXAMPLE 2.2

Let T = {1,

An example of

A1

An example of

and S = {a,

L2

3, 4] and S

of T into 5 that have a maximum range of

are necessariJ-y

if

if

Itl<
It l =

It l >

I'l
I'l
l'l

2 {a, b, c}

a surjective maPPing is

= | 2 3 4'
'aba")

an injective maPPing for the sets T

b, c, d] is

{1, 2,3}

2

c

2J

da
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{1, zr 3, 4}An example of a bijective mapping for the sets T

and 5 = {a, b, cr d} is

À3 = (: : ; lr

A familv of el-ements of T indexed by I is denoted bY

i e I)I = (ti:

where

I = {1 , 21 3,

is the set of natural- numbers,

that

I : I into--T

with

r (i) ti

EXAMPLE 2.3

' n)

and I is an injective maPPing, such

tie T, i = 1r 21 3,

t
Let T = {a,

Then (a, c, d)

ì'=

b, c, d)

defined by

a
2
c

3

d

is a familY of T indexed bY I = {1, 2, 3}

Let A1 and À2 be two bijective mappings that map T onto itself'

Then the mapping

A1 (À2 )

is given by

fo¡ each ti e T

Ar (¡z (ti) )
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EXAMPLE 2.4

The set T is given bY T

0., , L, are defined as

{1 , 3, 41 and the two maPPangs

A1 L.Z

Then

À,, (Àr) = ú î ) ll
The solution method described in thís thesis generates feasibl-e

bijective mappings at each stage of the sol-ution' This generation'

of feasibJ-e bijections, will be discussed in section 5.3 of chapter 5

when the bijection generator is stated '

Befo¡e proceeding with the theory relevant to the enumeration

of the solution space for the problem, a brief resume of graph theorY

4.2 formulatesis given. The mathematical- model- of chapter 4, section

l,he timetabfe a set of undirected acyclic graPhs. The

quoted from F. Harary (23 ) .

2

1

2

2

1

3

3

2

4

4
2

4
3

3

4

notation and

problem as

defin itions of this section are

2.3 GRAPH THEORY

A qraph G consists of a finite non-empty set V of n-!g!¡¡þ

togetherwithadescribedsetXofmunorderedpairsofdistinct

points of V. Each pair x = {urv} of points in X is a æ' of G and

x is said to join u and v. A graph with n points and m l-ines is

called an (n, m) graph. under this present definition the graph G

is an undirected qraPh.
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EXAMPLE 2.5

A surjective mapping, for exampJ_e, on the two sets

T - {1, 2,3, 4 } , S = {a, b, c}

defined by

_ ,1 2 3 4.\ = (. b a .)

may be represented by the labelled graph

The point set V = {1, Z, 3, 4, a, b, c }and lines X = { 1.,

3., 2b, 4c]

A graph G is labelred when the n points are distinguished by

names, (as in example 2.5).

A biq¡aph (or bipartite graph) G, is a graph whose point set v

can be partitioned into two subsets v1 and v2, such that eve¡y line

of G joins a point of v1 with a point of vr. This is the case in

example 2.5 where V., - T, VZ = S and Vjv VZ = V.

If G contains eve¡y line joining V1 and V2 then G is a complete

bioraoh.

-
Note that by definition, a graph does not permit a line joining

a point to itself (caJ_fed a J_oop ) .

a

b

c

2

3

4
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For the purpose of this thesis, much of the theory involves

undi¡ected graphs that do not have more than one line joining any

two distinct points. when more than one l-ine is allowabl-e, these

are called multipJ-e lines and a graph that contains loops and

multiple Lines is called a pseudograph (Figure 2.1 )

Figure 2

A wal-k of a graph

l-ines v0, x1 t v1¡ x2,

p oin ts , a nd eac h .l-in e

I r' t he wal-k is clos ed ,

n points are distinct

EXAMPLE 2.6

1 z A pseudograph

G is an aLternating sequencY of

X V2

x2

x4 v4 x3

v1 11 u2 ^6 u4 "3 u3 12 ,2 is a walk

v2, ,

joins the

v¡=v

and n), 3

V1

X¡r vn, beginning and

points preceeding and

n, then it is a cYclet

. (see example 2.6) .

points and

ending on

succeedinS it.

provided the

v5

u1 "1 uz ^z'3 *3 u4
"5

is a cycJ-e

v3
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ISA

( and

hence all the lines) are distinct'

From exampLe 2.6, v5 x4 v4 x6 v2 x2 v3 is a E4'

A graph is connected when every pair of points aIe joined bY

A walk i" g!gg! if vo

t¡ail if all l-ines are distinct

a path.

A graph l" -ggyg..¡4.(1)

A æ9. is a connected

wiII be calLed a forest and

and is -gBg. otherwise ' It

a -eg![ if al-I the Points

if it has no cYcles.

acyclic graPh. AnY

the components of

graph without cYcles

The timetabJ-e problem is represented as a set of

describe alf activities for each couroe taught within

(Refer to chaPter 4)

a forest a¡e trees.

trees, that

the school.

Ad ted qraoh (digraph) D consists of a finite non-empty set

Vofpoints,andadefinedcollectionXoforderedpairsofdistinct

points. The elements of X are the arcs (directed lines) of D'

(See Figute 2.2)

î íguxe 2 .2 : A di¡ected graPh
(a digraph )

(1 ) The term acYclic is sometimes
circuits . However, the above
thiE theaig.

used to mean a graPh that has no

definition wifl be adoPted within



21 .

2.4 EOMBINATORICS

P¡oofs of the fol-Lowing theorems have been onitted, but may be

found in the ¡eferences of C. Berge ( ¿ ), and H. Ryser (ql ) .

Combinatorial theory is used for the enumeration of the size of the

solution space for the timetable problem (section 4.3, chapter 4),

and also in the determination of feasibility during the stages of

the solution method (chapter 6).

A x B, the Ca¡tesian P¡oduct of the sets A and B is the set of

ordered pairs (a, b) where a t A, b e B.

An A x A x .... x A the set of n-tupJ-u (a1 , aZ, tn),l-s ,

alEAfo¡i

2.4 .1 THEOREM

1, 2, r D.

The number of subsets P( T) of the m-set T {t1, tz,

... , tr) is

letrtl = 2m H. Ryse¡ (42 )

An o¡de¡ed r-tuple (t1, t2, , t") of not necessarily

distinct elements of the n-set T is call-ed an r-sample of T.

N(ti) den

r-sample.

otes the multiplicitv of the element t in the

The number of r-samples of an n-set is nr.

H. Ryser (47 )

THEOREM2.4.2
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This theo¡em is equivalent to the proposition that the

number of mappings of an r-set T into an n-set A is nr

An r-sample (t1 , t2, ,

such that N(ti) - 1 fo¡ aLl- i

an r-permutation of n-e.Lements .

An n-permutation is called

bijective mapping of the n-set T

associated with an r-permutation

2.4.3 THEOREM

n-factorial

C. Berge ( 4 )

of an n-set T, 1 .4 r -¡ n,

1, 2, ., ¡isca-l-l-ed

tr)

The number

P(n, r) where

p(n, r)

of r-samples without repetition of an n-set is

n(n-1 ) (n-2) (n-r+1 )

H. Ryser (47 )

This theorem is equivalent to determining the number of

injections of an r-set T onto an n-set A.

a ermuta tion and is a

onto itself. The graPh

is a bigraph (section 2.3).

and represents

.1 if n>

ifn=

0

{

is written n I

n(n-1 ) (n-2)

1

n!
0

and is the number of n-samples (permutations) of an n-set.

2.4 .4 THEOREM

The number of permutations of n elements consisting of
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p elements of type 1

q elements of type 2

is given by

n

ql )

J. Riordan (44 )

2.4.5 THEOREM ]

The number of bijections of an n-set X onto an m-set A,

m = f'ì is nl

C. Berge (Zt )

2.4 .6 THEOREM

The number of injections of the n-set X into the m-set A,

n<mis

n!

n

m

whe¡e

( (m-n ) I

C. Berge (21 )

2.5 PERMUTATIONS

The generation of permutations is the basic featu¡e for the

solution rnethod of this thesis. Each stage of the method requires

the bijection nun""írot (section 5.4, chapter 5) to produce a
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feasible maPPing for

permutation theorY is

A permutation of degree n is a bijection, written

2 3

the resource requirement. A reviaw of

therefore included.

l"r
^

k1 k2 k3

of the set T {1, 21 3r .... , n} onto itself'

Assuming T to be

n, then to effect the

each element i bY ki

re-êrtêrteement of the

an o¡dered sequence of elements 1, 2, 3, "' ,

permutation A on these, elements is to replace

= ^(i). 
The resulting n-tup1e is called the

sequence 1, 2, 3, ... n by the permutation 
^'

2 "5 .1 THEOREM

The permutation of degree n fo¡m a group Sn' called

the svmmet¡ic qroup of deqree n '

C. Berge ( 4 )

From the theory of the preceeding section a directed

pseudo-graph is described as a directed graph that may contain

Ioops and multiPle lines.

Each permutation À can be associated with a directed

pseudograph, by representing the elements of T by the points

Iabelled i = 1 , 2, ... , n and by an oriented line directed

by an axroùv joining i to À(i) fo¡ each i'

Since A is a bijection, there is only one incoming and

one outgoing arc for each vertex i'
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EXAMPLE 2.7

The permutation

À
3

5

2

1

1

3

4
4

6q
J

2 6

may be described by the directed pseudograph

5 4

Each component of the directed pseudograph is a cycle of the

permutation, and these cycles partition the n-set of the

permutation .

EXAMPLE 2.8

The components of example 2.7 are {1 3 5 2} , {4}, {6} and form

a partition of the set {1, 2, 3, 4, 5, 6}'

If ¡ has the first row in standard order 1, 2' 3t r trr then

4 may be denoted bY

(k1, kZ, , kn)

where

ki = A(i) for i = 1' 2, r ñ'

Then the mapping A is cha¡acterized by the permutation

(kt, k2r..., kn).

If 
^ 

contains cycles, then A may tre completely defined by

listing the cycles of the permutation (the components of its associated

directed pseudograPh) .
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FVAMPLE 2.9

Consider the Permutation

r= (l î ¿ i i lt
with components that give the partition

{1, 2,3, 5}, {4}, {6}

and characterized bY

(3 1 5 4 2 6)

may be completely described

(1 3 5 2) (4) (6)

by listing its cYcles

Tht fru.!.b- of a permutation, is the number of e'l-ements in its

Iongest cycle.

A Right cyclic Permutation (RCP) of length n is denoted by

' n, 
). n-l

(LCP) of length n is denoted bY

1

n

3

¿

2

1

End a Left Cyc1ic Permutation

(
2

3

n
1

3

42

A ci¡cular permutation consists of one and onÌy one cycJ-e of

the permutation of length greater than one. The length of this

cycle is the length of the permutation.

EXAMPLE 2.1 O

The permutation

a = (l 3s2) (4) (6)

of the previous example is of length 4 and since this is a

circu.l-ar permutation, it may be more simply written as

a = (t 3 s 2)



1'7Ll.

the single components being inplied.

Let A.¡ = (a1 t aZ, ... , .¡) and Lz = (b1, b2,

two permutations of an n-set T, r ( n.

, b") be

,rïhen Â2 t-s incongruent to À 1 if, for every I

ai I bi

Further, when A1 = (1, 2,

of À1 , having no el-ement in

H. Ryser G7)

3, o¡. Fr) then L, is calLed a deranqement

its natu¡al position.

H. Ryser (47) shows that if

Dn

Do

number of derangements of At

D1

t hen

Dn = (n-1 ) (Dn-Z + Dn-1 )

In a 1ater chapter it is shown that the schoo.l- timetabfe problem

requires the generation of incong¡uents and derangements at each stage

of the solution method. h/ith teache¡-class sets (defined in section

3.2 of chapter 3) coincidences are admitted and these will now be

described.

LetÀ 1 - (.t , aZ, ... , un) be a bijective rnapping of

f = {1r 2, ... r n} onto itself.

Then A admits a coincidence at i if

ai = A(i) = i

1

0
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The number of permutations admitting exactly p coincidences

D
P'(n) ) P(n-p)n

2.6

P

whe¡e

P(1) = 0

P(n) = n P(n-1 )+ (-)n

C. Berge ( 4 )

SYSTEMS OF DISTINCT REPRESENTATIVES

This section summarises the combinatorial- theory associated with

the theorem of P. Harl- (21 ) on distinct representatives. Theorems

are quoted f¡om the references of L. Mirsky (¡e ), M. HaIl (ZO ) and

L. Mirsky and M. Pe¡fect (37 ).
'r.i'

Ïhe theory of distinct representatives (or t¡ansversaL theory)

has been shown to be important in the timetable probJ-em (see for

exarnpJ.e J. Cisma ( g ), C. C. Gotl-ieb and J. Cisna (10 )). Fo¡ the

purpose of this thesis, the following theory will be used to dete¡'mine

the feasibility of unassigned requirements of the timetable problem,

at each stage of the sorution (see chapter 5). Feasibility will be

dernonstrated, through the determination of a system of distinct

representatives fo¡ the CAV (section 5.2, chapte¡ 5) of each class

of the problem. The feasibility test will be discussed fulJ-y in

Late¡ chapters of this thesis.
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Consider the famiJ-.y p = (Ci, i e I) of the subsets of an n-set

E indexed by I . Choose an element ti e Ci for each i e I. Denote

the family of eJ-ements chosen by

ô - (tj ; i e J)

Then the family of 6 of el-ements of p is a svstem of representatives

of p if there exists a bijection À : J -onto> I such that

t¡ t cl(j)

foral-IjeJ.

If in addition tjl t¡ for j I k, then g i=.@

represent C¡(j) .representatives (SDR) of p and t¡ is said to

The ranqe {t i : j e J} of the SDR is a
J

tran sversal- of p.

A subset S of E is a transversal of p = (Ci : i e I) if the¡e

exists a bijection A , S ontoÞI such that

.t 5e C¡(")foral-IseS

EXAMPLE 2.1 1

Consider the sets

c1 {2, 3}, cz

c
3 {3, 4 5], C4

{1 , 4},

= {1, 5}

and

p - (Ct , C2, C3, C¿)

Then {2, 4, 3, 1} is a t¡ansve¡sa.l- of p and (2, 4, 3, 1) is an

5DR
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{2, 3} c2 {2, 3}
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i(2) <

c

c3 i3Ì and C4 {1, 4i

then no transversal- nor SDR exists

The condition fo¡ the existence of an SDR is contained in the

following theorem.

2.6.1 THEOREM

A necessary and sufficient condition for the existence of

a system of distinct representatives for subsets C1 
' 

C2'

C. is condition C :

for every integral k = 1¡ 2, m and indices

i(1), i(2), i(k) such that 1.< i(1).,

< i (k ) -< m the condition

UC U. uc i(k)
>.k

i(1) í(2)

holds.

This theorem is a direct resuLt of a theorem by P' HaII

Ql ). Due to the importance of this result for the feasibility

tests within the solution method, the proof is incl-uded ' It

has been taken from D. Raghavarao (a¡ ) and forms an

c

inportant basis for feasibility tests (Chapter 5) '
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PROOF :

The necessity of the theorem may easily be shown '

If ci.(r)v ci(z) u u Ci(k) <k

thentheredonotexistkdistinctelementsintheksubsets.

Hence the contrarY must be true '

Sufficiency is proven in two parts by induction on m '

Pa¡t a virhenever 1 -( k .( m and 1 -< i(1)< í(2)

< i(k).< m then

ci(1) ci(z) ci(r) >¿k+1

2t 3t , m

part b for some 1 ( k .' t there are subsets Ci(1 ) r

ci(2), "' Ci(t ) such that

u Ct(k) kc:_(r)u ci(z) v

The ¡esult is true for m = 1 and may therefo¡e be assumed

true for n< m.

Proo f of oart a

Choose an element a1 E C1 and form the sets

L I ci -{ a} Ltt

By the assumptions, whenever 1 .< k -( n-1 and

2 < j(1) j(2) < ¡.. ( j(k) s m then,
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l_llcj(r), cj(z) u ... u cj0.)l >

and by the induction lrypothesis there exist:r ¿rrr SDR

(b2, b3, , b.) for the sets

c2*, c3* t ... , cr*

Then (al , b2, b3, , bt) is an sDR for c1 I c2'

, C. thus completing the proof of part a'

P¡oof of part b

Witl-rout Ioss of generality, assume that the subsets

sati sfying

ci(1) - ci (2\ s " ci(xll

condition and

SDR (a1 , aZ,

k

are the first k subsets.

Then by

hypothesis,

the subsets

sufficiency

exists an

ind uction

, ak) for

the

t here

C1, C2, ck.

Form the subsets

^.*Li Ci -{a1' aZ, "t)

for i k+1, k+2, m,
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ldhenever 1 .< h .< m-k and k < i (1 ) j (2)

j (k) -<

e1s e

then ,

* *

l+

*
cj(r)u C512¡v ." tci(t)

C, v Crv ... rJ Cn u Cr(1),J Cj(Z)Lr .¡o u C¡(k)

>.h

<k+h

thus contradicting the sufficiency condition' Hence, by

the induction hypothesis, there e>tists an SDR (dt*t, dk+2,

d)m'
for subsets

*c C c*t
k+1 k+2

It is easily verified that (a1, a2, ak,

dk+1 , ... dm) is an SDR for C1 r C2' C, thus complet-

ing the proof of the theorem.

D. Raghavarao (43 )

Calt a set of r subsets Ei(t ), Ci(Z), ci(r) a @'.t

designated by Brrs where s is the number of distinct elements in the r

subsets .

condition c is equivalent to the requirement that s.( r for

any block Brrs.

If r = s then call- Bsrs a 9g!!!g!-þ,]g!. Boro is the void block
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and is critical. M. Hau ( t9 ) states the following two l-emmas with

regards blocks.

2.6.2 LEMMA

The union Brrr u Btrt and intersection B¡rr n Btrt of

criticat blocks are again critical blocks, assuming condition

c.

2.6.3 LEMMA

If Bkrk is a critical block, then'the deletion of elenents

of Bkrk from the sets not belonging to Bkrk leaves condition

C valid

The application of these two l-emmas wil-l be shown in the

cAV Reduction algorithm and the Irnplication algorithm of

chapters 5 and 6. At some stage of the sol-ution method

situations nay arise whe¡e the cAV form a critical- block

and the image positions will be deleted f¡om the remaining

CAV.

2.7 STR ICT SYSTEMS OF DISTINCT REPRESENTATIVES

Let p = (C1,82r... , Cm) be a family of subsets of E' A family

of elements ô - (a1, azr ... , an) is a system of representatives for

p if for some permutation A of {1, 21 3, ... , t} then

a1 t Cl(1), a2 e C¡(2)r ... , ên t C¡(m)



35.

CaLI ô a stric t svstem of distinct reoresentatives (SSDR) of p

if the a1 are distinct and

a1 e C1r a2 eC2, ... , am e f,m

Two systems ô1 = (a1 t a2¡ , .m) and ô2 = (bt, b2, , bt)

are said to be g!!|@.9! if

ai I bi for all i

2.7 .1 THEOREM

Let p = (Ct , C2, , Cr) be a family of subsets that

satisfy eondition C.

rr min tlt,'|, lrrl, , ItJ ) = r then,

r! if r.< n

RN (p) >,

¡ll(r-n)l ifrTn

where nru(p) = R¡(C1, CZ, , Cn) denotes the numbe¡ of strict

systems of distinct representatives.

THEOREM EXTENSION

Assuming
| ''l .. l',1-. * l'J' then

n

RN(p ) > -k+1 )

k=1

C¡

C. Berge ( 4 )
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2.8 THE MARRIAGE PROBI.FM

The theory quoted in the previous sections of this chapter may

be appJ-ied to a variety of assignment and scheduling prob.ì-ems . One

closel-y atlied to the timetabl-e problem is the 1 9th Century Marriage

Probl_em. The problem may be stated in the following form.

There exists a set of men M and a set of women W. Each member

of M is associated with some subset of the set w. Each nember of M

desi¡es to marry a fixed number (not necessarily the same number

fo¡ each man) of wives. From each mansr acquaintance subsets of W,

find wives for each member of M.

It will be shown that the subsets of acquaintances ale similal

to the requirement resou¡ce vectors (section 3.2, chapter 3) of the

timetabLe problem. The following theorem and conditions resemble

those quoted l-ater in this thesis for the timetable problem.

Halmos and Vaughan ( 221 generalised Hall-rs theorem to give

necessaly and sufficient conditions for the Marriage Problem solution '

From J. Cisrna ( g ) tfre following theorem is quoted '

2.8.1 THEOREM

Let C = C¡, 82,

of hl , and let T1, rZ,

) be a finite familY of subsets

, be non-negative integers caIled

generalised sYstem of distinct

Ci is represented exactlY 11 times

condition holds :-

cm

,r

requirements.

representatives

if and only if

There exists a

in which each

the following
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for each k - 1, 2, , m and set of indices

i(1 ), i(2), , i(k) such that

1.< i(1) < i(2) < ... <

t hen

r-l-
l.tt.' ) u Ci e) u ... \, ci¡.)l > k

The necessity and sufficiency for the theorem is proven by

Halmos and Vaughan ( ZZ). They also have shown that the theorem

hofds for infinite Crs.

Ihe Ci rePresent

his desi¡ed number of

problem late¡.

the acquaintance set for the

b/l-ves. These will be rel-ated

ith man and 11

to the timetabl-e



3.1

STATEMENT O

CHAPTER 3

F TIIE SOUTH AUSTRALIAN SECONDARY

SCHOOL TIMETABLE PROBLEM

INTRODUCTION

This chapter defines the terminoLogy applied to the subsequent

chapters of this thesis. The leasons for the inc¡easing complexity

of the South Australian Secondary School timetab.l-e problems have

been summa¡ised. The variety of school types (section 3.3), each

with their unique requirements and timetable difficuLties have been

examined. Factors contributing to the need fol an autornated

soLution method have been quoted. The objectives of section 7.4 of

chapte¡ 7 require the production of a generalised solution method,

capabÌe of solving aII types of secondary school timetable problems

liiir<isting within South Austraf ia.

courses are defined in section 3.2. These are rel-ated to the

-l-imited resources availabl-e within the state. Limited resources

are a major contributing factor to the timetabl-e difficulties present

in South Austra-l-ia.

Manual timetable aims are discussed with a view to l-ater

formulation of the aims of the computer sol"ution method. South

Australian schools resembl-e other Australian schools, but, in genetal,

differ markedly from schoo.l-s outside Aust¡alia. Fo¡ this leason,

together with the expenses invol-ved, scheduling systems already in

existence elsewhere, are not readily adaptable to South Aust¡aLian
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timetabfes. The cost factor, when calculated in doIIaIS per student

head at school- was not acceptable.

0n account of the increased difficulties associated with the

manual methods, it was decided that an investigation into automated

methods of solution shoul-d be car¡ied out. It wilf be shown in

chapter 9 that the sol-ution method produced in this thesis, is useful

fo¡ othe¡ aspects with the timetable problem. (e.g. staffing of

schools . )

3.2 DFFTNITIONS OF TERMINOLOGY

Some of the following

by R . V. Oakford et aI ( 39

specif ica J-J,y to the South

¡efinement of an earl-ier

definitions are extensions of earlier work

). Much

Austral-ian

of the te¡minology is related

education system, and is a

I

pubtication attached as appendix A.

EVENT

An @ is a moment in time. Events have no duration, and for

the purpose of this thesis, define start and end points for

time-periods.

EXAMPLE 3.1

Consider the l-abelled events 2, 3 and 4. They are rePres-

ented in section 4.2 chapter 4 by the points of an undirected

path of the following form :-

The lines (2r 3), (3,4) represent activities during the

time-periods desc¡ibed by the events, starting at events



I I. TIME-PERIOD

A time-period is the duration

40.

of a meeting involving some

duration of the time-period varies

2 and 3, and ending at events 3 and 4 respectively.

resources of the school-.

between the range of 30

conventional type(1 ) . A

The

to 50 rninutes

time-period

fo¡ timetables of the

l-s spanned by two events.

III. RESOURCES

A resou¡ce is an item involved in an activity at the school-.

The resou¡ces for the school timetable problem are teachers,

equipment .classes, rooms, Iaboratories, workshops and speciaÌ

A class resource, is a collection of students of the school, of

the same academic level. There may exist several classes at the

same academic level but al-l classes are disjoint from one another.

Hence, a student may belong to at most one class, and classes

wilt be considered as single items within this thesis'

In South

numeric,

Australian

o¡ numeric

schools, classes are identified by alpha-

codes that designate the

and the class

academic Ievel of

the students within the class,

differentiate cfasses of the same leve-l-.

EXAMPLE 3.2

with South Australian secondary schools the academic levels

are :-

identifier to

(1)A 
"onventional timetabl-e consists of all time-periods of equal-

duration.
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lst year, 2nd year, 3rd yearr 4th year' 5th year.

A class 5C is a 5th year level class with a cLass name C

The numeric convention is more usual with a code 501

signifying a 5th year level cJ-ass, an O-track where the

track numbe¡ designates the courses the students of the

class pursue, and the 1 st cfass. There a¡e 5 tracks

available within South Australian secondary schools. It

wiII surfice to assume that a track number is rel-ated to

courses in this thesis. More detail of tracks may be

obtained from the reference rf Our Secondary Schoolsrr (59 )

within a typicaJ- secondarYThe complete set of c.La sses

schooL coul-d be simil-ar to : -

101, 1O2, 103, 111, 112, 121,

301, 3O2, 311, 401 , 4O2, 411,

2O2, 2D3, 211, 212,

502.

2O1 ,

501,

IV. ACTIVITY

An activitv is a meeting of resoutces availabl-e during a common

time-period. The activity must involve two or more resources

of the school, and requires the du¡ation of one time-period

fo¡ its completion. The minimum of two school ¡esources is

defined, since any activity must invoLve at least one class and

one teacher resource. Other resources may also be incl-uded .

V. TIME-sPAN AND DAILY TIME-SPAN

School davs are the days

The numbér of consecutive

weeklv cvcle lenqth, and

of the week when students attend school.

school days in a week, is cal-Ied the

the days constitute a school week.
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Each school day is divided into a number of time-periods of

equal- duration. The number of time-periods in a school day is

ca.l-Ied the 5þ!.!y;!!¡35¡4.. The numbe¡ of time-periods in a

school week is called the time-span of the timetable.

For conventional secondary schools

tables), the daily time-span ranges

The week]y cycle length is invariably 5 days

(using the

from 6 to

conventionaL time-

9 time-periods.

for all schools.

VI. BLOCK PERIDD

The number of consecutive time-periods required

resources for a giveninvolving the same

the block-period size. The duration of

sPAn,

called

in a daily time-

activity, is

the consecutive

activities is a block-Pe¡iod.

integer multiples of a single

tinetable. Start events that

for each block-period size for

taid down by the school-s before

prevent

brea kin g

AII- block-period sizes must be

time-period for the conventional

indicate the permitted start points

a daily time-span are usuallY

the timetabLe is prePared.

block-periods spanning lunch and

the continuity of the bl-ock-

These are necessary, to

recess breaks, thereby

period .

In South Aust¡alian secondary schools, block-period sizes range

from 1 to 5 time-periods in length.
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For clarity,

breaks occur at events 3 and 7

43.

l-abe-l- the events 0, 1 t 2 , 8. Let recess

occurs between activities (2,

(6, 1), 0, 8).) Lunch breaks

. (i.e. ... a recess break

3) and (3, 4) and activities

occur at event 5.

The daily activity pattern is described as fo.l-Iows :-

activities (0, 1 ), (1, 2), (2, 3), recess, activities

(3, 4), (4, 5), Iunch, activities (5, 6l', (6, 7),

recess, activities (7, 8).

Since block-periods may not span lunch olc recess breaks,

a block-period size 2 may

(0, 1), (1 , 2l ; (1,

(5, 6), (6, 7)

Block periods

(2,3), (:, 4) ; (4,

are not permitted because

at events 3, 5, 7.

2), (2,3) ; (3, 4), (4, 5) i

occur as

5), (5, 6)

they span

In most school-s the Lesson patterns do not have 4 or 5

consecutive l-essons without a recess or l-unch break.

Therefore on some occasions blocks must be broken. However

in general they must not span lunch breaks and hence sta¡t

periods for bl-ock-period sizes 4 and 5 are still defined

in the usua.l- form.

; (61 7\, fi,8)

recess and lunch breaks



44.

VII. TEACHER-CLASS SETS

A teac her-class set is a combination of mo¡e than one teacher

and mo¡e than one class, required to be assigned to a common

time-period of the timetable so.l-ution ' Ihe set may invofve

othe¡ resources, but the classes and teachers involved, define

the teacher-cIass set.

South Australian schools endeavour to offer students a wide

variety of subjects. However, the Limited number of avail-abIe

teacher resources and facilities within the schools, do not

allow cl-asses to remain as a singl-e learning body throughout

the school day. A pseudo-class is a collection of students

from each class of the teacher-class set¡ leguiring instruction

in a common subject area. Several- cl-asses may redivide into a

set of pseudo-classes fo¡ some required activity ' By using

this technique, the schoof administrators found that they could

offer a broad education, encompassing a variety of subject areas,

withinthephysical.].imitationsoftheschoolingsystem.

EXAMPLE 3.4

Consider

501

502

Each of

the two 5th

is oriented

is o¡iented

year level- classes, 501 , 5O2'

toward science disciPlines

the classes are

not caterinvolved can

towa¡d the humanities.

electives but the schooloffered

for two separate classes in all

time-periods .activities for a1I distinct
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Suppose the electives offered are Art, FiLm Study and

General Affairs.

The¡e are two methods of soLution to the problem.

Let classes

c on tain in g

E ITHER

OR

The Iatter method

sets. The classes

of the activity and

is adopted

invo lved

the set

501 and 502 each divide into

students requesting the three

; the pseudo-classes remain

(6 in aII) and are assign

3 pseudo-classes

el-ectives .

as distinct units

ed as such during

the same time-period

; the corresponding pseudo-cl-asses combine

into 3 composite pseudo-cJ-asses for the

common activity thus only involving 3 units.

with the use of teacher-class

students of these classes.

this method is the resource

are defined by the resources

of pseudo-cl-asses consist of

The important advantage of

saving and resource load

reduction accomplished. (See l-ater)

VIII. REQUEST

A list of desi¡ed resources for a given activity is called a

request. t¡rlhen the request is included in a class requirement

(defined later)., the requested resources are cafl-ed requirements.

A required resource qf be assigned to the relevant activity

in the timetable so.l-ution.
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Some of the resources contained in the request fist for an

activity do not necessarily appear in the resource requirements

for that activity. During the manual soLution procedure' the

person involved with the timetable solution may decide that a

particularresourcerequestimposesSeVelerestrictionsonthe

probJ-em. If it is decided that this request is not necessarv

then the involved resource is del-eted from the activity' It

wou.Ld be undesirabl-e to include such a procedure within the

computer method of solution, and any sucl-t deletions occul during

the manual data stage of this solution method '

EXAMPLE 3.5

Consider the activity involving the resources z-

A. Jones, 301, taPe recorder, Room 3'

l¿r/henassignedinthetimetabfesolution,alloftheresources

wouldbededicatedtothisactivity.Thetaperecordermay

be a heavily required item since the school has only one 
'

andwouldtherefo¡eimposearestrictionontheassignment

procedure. If the recorder was not an essential item to

the activity then it g¡- be deleted' This is a vetting

stage mentioned in chapters 7 and 8, to avoid too stringent

requirements being given to the so'Iution procedure '
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IX. PART-TIME TEACHERS

A teacher that is not

every time-Period of

teacher.

available for assignment, initially, for

daily time-sPan is called a oa rt-time

ci¡cumstances existing within the south Aust¡al-ian education

st¡ucture demands the employment of teachers with restricted

availabilitiesforassignment.Situationssuchaspart-time

university courses, family commitments, and the sharing of

teacher resources between schools ate contained within this

part-time structure.

The numbe¡ of time-periods that a¡e avai]-ab].e for assignment,

for a part-time teacher, is usualJ-y expressed as a fraction of

the total daily time-span. It shouLd be noted that other

resources, beside teachers may have limited availabi.Iities,

(".g. workshops, that are shared with other schools) ' In

general, all other resoulces are fulty available for aII time-

periods of a dai.l-Y time-sPan.

EXAMPLE 3.6

A 6/8 part-time teacher is avaifable for 6 time-pe¡iods of

an I time-period dailY time-sPan '

Part-time teachers with limited availabil-ities, impose heavy

restrictions on the school timetable problem' The restrictions

compound when the part-time teacher is utilized for aII available
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time-periods. This special type of rest¡iction is said to be

arrtight condition'r and in general will- constitute a bLock

(as defined in section 2.6, chapter 2). This will be discussed

more fully in later chapters.

FIXED TIME-PERIODS

Some activities must occtlr during specified

time-period for the activity involved cannot

is called a @.

The activity may involve severa-L resources.

may only invol-ve one activity and hence can

period size of one.

EXAMPLE 3.7

time-periods. The

be changed, and

A fixed time-period

only have a bl-ock-

(a) A teacher, A. Jones, and cl-ass 301 must meet for a

science lesson during the activity (2, 3) every

Monday (the 3rd lesson). A television set is required

for the purpose of viewing a science program during

this activity.

The fixed time-period is 3 associated with activity

(2, 3) on a Monday and involves the resources :-

A . Jones, 301 , T.V.

(b) Al-I senior cl-asses,4th and 5th year leveJ-s, must

meet during the activities (6, 7), (7, 8), reLated

to the 7th and 8th time-periods on each lrüednesday
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wíth teachers A. Jones, B. Brown, C. Smith, D. Black

for inte¡-school-s sports.

In this second exampJ-e the fixed time-periods are the

7th and 8th on Wednesday with resources : A. Jones,

B. Brown, C. Smith, D. Btackr 4Olr 4O2,403,411, 501t

5O2, 503.

For clarity, each class is t¡eated separately for

fixed time-period requirements, when they are assigned

by manual methods.

COURSE

A gE is a body of subject matter to be studied by cJ-asses

of students. A cou¡se may encompass several- academic leveJ-s,

or may involve singJ-e classes only.

English, Mathematics I, Physics and Geography are examples of

course names. English is a course offered to al-l level-s within

a school while Biology is only offered to 4th and 5th year.l-eve.L

students.

The course name is the same for each of the academic l-evels, but

the subject content diffe¡s at each level. The course structure

and method of presentation of the subject matter may differ for

each involved class.
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A cou¡se structure Ís

p urpose

Students

of instruction

and school- resources

that satisfy

for courses

the requirements

s0.

the daily activity organization, for the

in the subject matter of the course.

must be arranged into meetings,

of the course. Course structures

consist of

offered in secondary

one or several of the

schools in South Australía,

f oll-owin g phases : -

INSTRUCTIONAL PHASE

Four types of instructional- phases are defined

Lecture phase - usually consist of lessons of block-

period size one, and are activities involving a teacher

in a Iecturing situation with a c.Iass.

Workshoo. Laboratorv phases - consist of activíties

requiring more than one consecutive time-period '

Block-period sizes of 3 or 4 a¡e quite usual fo¡

this phase type.

Group Discussion phases - consist of bl-ock-period size

similar to lecture

active role in the

one activities. These phases

phases except students take an

activi ty .

period activities for

by the students of the

are

Indeoendent Studv phases consist of

the purpose of

sin gIe

private

time-

stud y

usuaJ-lycl-ass. This session

requires the use of the schoof library.
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EXAMPLE 3.8

An example

Course

51 .

A MEETING PATTERN FOR EACH COURSE

This pattern indicates the activities and the time-periods

invol-ved . Bl-ock-period sizes are specified if required,

for each academic level- and cLasses involved '

COURSE DEPENDENCIES

A cou¡se dependency is a relationship between the subjects

of different courses. For example, the two courses of

History and Geography are offered as an alte¡native choice

to students. This ¡elationship is stated in the course-

dependency section of the course structure fo¡ both

courses, HistorY and GeograPhY.

of a course structure fo¡ one day coul-d be

Name : English

Instructional phases

1 st year Level

2nd year level

3rd year level

4th and 5 year
1evels

1 lecture, 1 group discussion

2 lectures

1 lecture

non e

Meeting Pattern :

one time-period, in a block-size one for each

phase of the course.



52.

Course DependencY :

the 3rd year course of ENGLISH is to be offered

with options of French or Latin, to be assigned

to a common time-period - (ì¡/iII be a teacher-

class set. )

XIII. CLASS-COURSE REOUEST

A cl_ass-course request details resources lequested for an

fo¡ the course (one time-period), for a particular class,

a daily time-span. If an activity requires more than one

time-period, more than one class-course request is needed

some means of rel-ating the two requests.

with

EXAMPLE 3"9

ac tivi ty

d uring

Consider the course ENGLISH described in

example. Assume that the 3rd year

The 3rd

l-e v el

the previous

classes involved

year J-evel cJ-asses haveare classes 301 , 3D2 r 303.

the option of English or

teacher for each course.

Latin or French, requiring one

No other resources are required.

The fol_l-owing class-course request detai-l-s the resources

requested for the English course .'

Resources : Jones, Smithr Brown

301 , 3O2, 303.

where Jones teaches EngJ-ish

Smith teaches Latin

Brown teaches French
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The class issuing the request is always one of the requested

resources. The following details are extracted f¡om examples

3.8, 3.9 .

(a) Since more than one teache¡ and one class resource

is involved, in the class-course request (and inter-

course dependencies), the allocation is of a type

described ear.l'ier as a teache¡-cIass set.

(b) If the courses of French and Latin we¡e to be taught

separateÌV (not as options to EngJ-ish), the 3 courses

would require separate class-course requests.

XIV. CLASS REOUIREMENT

A class requirement is a complete coJ.Iection of daily activities

coÌl-ection describes all meetings, andfo¡ the class. The

resources required for each.

Associated with the class requirenent is the bfock-period

indicato¡, that defines relationships between the activities

of a cl_ass requirement where the block-period sizes of two or

more time-periods are required.

requested in

included in

the class-course request are req uired

the class requirement. Ïhis transition

to required has been discussed previously in this

Tht @ (stored in the form of a requirement

matrix as discussed in chapter 4), is a collection of all class

The resources

when they are

from request

c hap ter .
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requirements for the school. It describes alI activities

f or a daily time-span f o¡ a.l-l courses.

XV. RESOURCE LOAD

A resource load is the required number of time-periods

to satisfy the activities requiring the resource, for

daily time-sPan.

to the part-time

This number is expressed as a ratio

teacher description) of the following

necessary

a single

( simila¡

form.

time-periods required available time-Periods for the
resource

A class is aÌways fully accepted and will have the maximum load.

They must always be involved in some activity for each time-period

of the dailY time-sPan.

EXAMPLE 3.10

The teacher resource of A. Jones is required for 6 of I

available time-periods. This is expressed as :-

A. Jones 6 z B

Notice that alt class resources have the ratio p: p

whe¡e there are P time-periods in a daily time-span'

XVI.

A resource availabiLitv arraV is a matrix representation of the

availability of each lesource in the school, for assignment to

each time-period of a daily time-span. This array is a binary

matrix where 1 indicates that a resource is avail-able for

assignment in the period concerned and 0 the contrary (see
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chapters 4 and 5).

Individual resource type availabilities wiII be required in the

thesis. These will- be referred by the following names :-

teache¡ availabil-ity array

class availability array

room availability array

equipment availability array

labo¡atory-workshops availabiJ-ity array

EXAMPLE 3.1 1

Conside¡ the following resources :-

teachers : Jones, Smith, Btown

classes : 10'l , 1O2

rooms : R1 , R2, R3

equipment : T.V.

The activity time-periodsare labelled 1r 2r 3 for a 3 time-

period daily time-span. The resource availabiJ-ity array

is given by :-

Resource Name

Resource

Pe¡iod Jones Smith Erown 1 01 1OZ R1 R2 R3 T.V

1

0

0

1

1

0

2

3

11111'l

11111

11111

1



The array indicates :-

(a) teacher Smith
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not available for time-Period 3 '

avail-abIe for time-Periods 2, 3 '

Jones Smith Brown

l-s

(b) the T.V. is not

(c) the renaining resources are availabfe in each time-

period.

The teacher availabilitY arraY rs z-

Teacher Resources

Teac her

Period

,|
1

2

1

01
1

In chapter 5, the availability array wiÌI be treated as a set

ofcolumnvectors.Eachcolumnindicatestheresourceavailability

of the resource associated with the column ' The avaifabiJ-ity

arrays have an important ¡ol-e in the feasibiJ-ity tests in the

solution method.

3.3 THE TH AUS LIA N HOOL TI TABLE PROBLEM

Th¡eeschooltypesalePresentinthisstate,nameJ-yHighSchools,

Technical High School-s and Area School-s ' Each offer a variety of

courses.Theydifferinsize,physicalstructure,academicstructure

andnumberofavailablelesoulces.Thedifferenceshaveamarked

effect on the structure of their individual timetables, and for this

reason are described bel-ow. The relevant similarities aIe compiled
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into a set of basic constraints for the computer method described in

chapters 5 and 6.

A school timetabLe is a table indicating the activities for

each time-period, such that no I'esoulce is assigned to more than one

unrelated activity during any one time-period. The tinetable must

al-so satisfy the requirements of both internal- school- administrators

and extelnal- Education Department policies. The relevant reqÚirements

existing in each school type are now discussed '

High Schools tend to be academically oriented. courses require

many lecture phases to be assigned within the

use of teacher-class sets is prfvafent, adding

on thei¡ timetable sol-utions.

Technical High Schoofs are oriented toward trade subjects with

contrast toactivities involving practica-l- work incl-uded ' In

Schools, they have fewer Lecture phases. Extensive use of bl-ock-

timetable. Extensive

severe constraints

many

High

periods and teacher-cl-ass sets are included for workshop and

laboratory exercises. An added constraint invoLving the sharing of

workshop resources with neighbouring schoo.Ls is present in some

sc hool-s

Area SchooLs cater for both academic and trade couIses. They

encompass first to fourthare found in

year courses.

Technical High

areas and usually

sizes are usuaIlY smal-Le¡ than in High or

country

CLass

Schools and resources are limited.
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The current trend in education is toward more comprehensive

schools. ïhese school-s wil-.L have timetables, that combine the

features of High SchooLs, ïechnical High Schoo.l-s and A¡ea Schools.

This trend, together with the stated objectives of chapter 7,

required the design of a generaÌised timetabl-e solution method,

capable of solving timetables of al-l school types. At present, this

new comprehensive school is being incorporated into High and Technical-

High Schools, by broadening the subject fields offered.

Table 3.1 gives a breakdown of schools into the 3 main

secondary types fo¡ 1972.

High Schools

Technical High Schools 28

Area Schools 43

141

TABLE 3.1

A b¡eakdown of 5.4. secondary school-s into the 3 main

school types.

A lack of sufficient resources, mainly teachers, is a major

timetable difficulties. Ïhe impJ-icationscontributing factor to the

of these resource deficiencies a¡e :-

(a) the need to util-ize part-time teachers to off-set this

short faII. This procedure imposes severe ¡estrictions

on the timetable structure, a direct result of the limited

resource availabil-ities .

70
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(b) the use of extensive teacher-class sets to cope with the

diversity of subjects required by the students.

(c ) the school f acilities, including workshop and -l-aboratory

rooms are Iimited in some schools. An arrangement between

schools, involving the common use of workshop facilities,

in some circumstances, can overcome this deficiency of

facilities. In this respect, the timetabl-es of two

neighbouring school-s can be tied together.

EXAMPLE 3.1 2

Two neighbouring schools A and B require the use of

workshop facilities. School A has the facil-ities on site,

but school B does not. The two schools A and B must share

the facilities in some manner., e.g . avaifabl-e to school-

A in the morning sessions and to school B in the afternoons.

In an effort to make cl-ear the features found common to the

above school types, the following list is incfuded. These features

have an important role, as they are used as a basis fo¡ the constru-

ction of the general secondary school timetabl-e sol-ution method

described in chapters 4, 5 and 6. The features are :-

school day shouJ-d be1 Teaching loads for each

buted for each teacher.

onedayand2:8on

bette¡ distribution

evenly distri-

of7:8onFor example, a load

another would not be desirable. A

would be 5 : I and 4 : 8.
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4

2.

E

7.
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Course meetings shouLd be evenly distributed throughout

the weekl-y time-span. It wou-l-d be undesirabl-e to have

6 English lessons on one day and none for the remaining

4 days.

Single lecture phases for the same course should not,
unl-ess specifically required, be assigned to consecutive

time-periods of a daily time-span.

BIock-periods should not, in general, be assigned to time-
periods that span lunch or recess b¡eaks. In some circum-

stances this restriction may be omittedr e.g. block-period
síze 4 where recess breaks may occur between the two sets

of 2 time-períods. C¡aft teachers do not oppose this
break .

Each class of the school- has an assigned g',]gg!g!g. This

teacher is responsible for the administrative functiorrs re-
Iated to the c-l-ass, such as roII marking, handJ-ing notices
and te¡m reports. A cl-ass teache¡ usually takes the c-Lass

for at l-east one activity per day, and are assigned to the

first time-period for the class teacher functions.

SpeciaI requirements for fixed time-periods for radio and

T.V. programs, inter-school sports, religious instruction
l-ess on s must be met .

Senio¡ teachers, responsib-l-e for the course structures used

within the school for each subject taught, shoul-d be

available for at Ieast one common time-period during a

school week for the purpose of a senior staff meeting with
the school principal-.

Course structures must be arranged with the use of teache¡-
class sets to permit the wide variety of subject options
for senior students in the 3rdr 4th and 5th year Ìevels.

6

I
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3.4 AIMS OF THE MANUAL TIMETABLE METHODS

Before proceeding with the formulation of the mathematical model

of the tímetable probJ-em, the aims of the manual timetabJ-ing methods

will be discussed. These are used in the formuLation of objectives

in chapter 7, for the computer method discussed in this thesis. They

afso indicate the method of apploach for the solution procedure and

this is noted in chapte¡s 5 and 6.

Many manual methods are in present use within South Australian

schools. These range from pencil-paper methods to sophisticated

coLoured magnetic systems. Various publications such as those of

C. Lewis ( 28 ) and N. Laurie ( Zll summarise the stages in these

respective manual methods, in an effort to increase the efficiency

and adaptability of these techniques.

The basic aims of aII manual methods may be surnmarised as

follows : -

1. To produce a h,orkable solution, acceptabÌe to the school

concerned, within a dete¡mined limit of time.

2. To produce such a solution without much manual- labour by

the personal at the school-.

To incorporate as many desirable

into the solution as possibJ.e.

if too much time is spent in the

solution.

features (described above),

Some features are ignored

3

production of a
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To attempt to solve the problem on a daily basis, so that

a timetable may be introduced into the school system as

soon as possible. This aims at producing a timetabl-e for

Monday say, with the view that Mondaysr tinetable may be

used while Tuesday, ldednesday, Thursday and Friday time-

tables are produced . A sc hool- couJ-d temporariJ'y use the

same dayts tímetable for several days, and in fact do'

until the compJ-ete timetable is produced '

To attempt to assign the teache¡ resources and activities

as described by the requirements of the school' Changes of

xesources may be necessary when too much time is spent

satisfying some cLass-course request ' The interchange

of resources may solve the problem, by easing the conf'l-icts

that occurred during the solution method '

It is important that the senior Level timetable is solved

first. This section of the timetable is most difficul-t

since it involves extensive teacher-cl-ass sets' The extent

of these sets are defined by the variety of subjects

offered to senior students, and the ¡esources availabfe to

cope with the subjects. The timetable should be completed

for the senior students with a minimum delay since they

are invol-ved witlr exte¡naI examinations and heavily l-oaded

couxses with respect to the course content' Ihe general

approach by the manual methods is to solve the 5th year

timetable firstr on a daily basis, then work th¡ough the

5

6
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4th' 3rd, 2nd and finally the 1st year timetables

respectiveJ-y. Many of the resources required in one

Ievel are required in another, and fo¡ this reason the

timetable solution becomes progressively more difficult

as the various levels are completed '

7. To efficiently use laboratory and workshop facilities is

a secondary aim of the manual methods. For example, to

have a 1st year l-aboratory class followed by a 5th year

and then another 1st year class woul-d be inefficient'

The apparatus required by the classes wouLd not be the

sameanditwouldbemoreconvenienttohavethetwolst

yearclassesinconsecutiveactivities.Themanua]time-

tab.Ie shou l-d attempt to group the levels together in an

effort to increase the efficiency of these types of

facilities.

The above aims are the more important onesr determined by con-

sulting a variety of people involved with the manual- production of

school- timetables. 0ther factors such as having principals free

for specified time-periods have been considered and to a large

extent have been included when possible ' Any factor that is not

important to the timetable Eolutiun is usuaLly not considered

during the construction stage, but may be included Iater' when

possible.



CHAPTER 4

THI THEMATICAL MODEL FOR LATION FOR THE

5CH L TIMET ABLE PROBLEM

4.1 INTRODUCTION

This chapter contains the mathematical formulation of the school

timetable problem. The model characterizes a resource allocation

problem with constraints, and caters fo¡ all- secondary school types

within the state of South Austra.l-ia. The simple tight timetable

probJ-em is discussed. This particular problem selves as a basis for

the formulation of the general-ised model- described in the finaf section

of this chapter, but

indicate however, a

timetable methods.

has little practical significance' It does

common problem for comparison Purposes with other

quoted for the tight

Therefore some results of chapter 7 have been

problems.

Themodelisproducedfromthetheoryofsets'conbinatorics

andgraphtheory,ateviewofwhichhasbeenpresentedinchapte¡2.

Ihe problem is first described in the form of a set of disjoint

activity paths, that are transformed into a Iesource requirement

array discussed in this chapter. The availabitity array fot lesoulces 
'

aspresentedinchapter3rsection3'2risformulatedtogetherwith

the block-periods, fixed time-periods and teacher-class sets. Details

of mappings for describing timetable features, and 0-1 matrices for

the availability and resource requirements are given '
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The chapter a.Lso shows in outline, how the model is used to

so.l_ve the problem. The algorithms for the problem solution are

described in detail in chapte¡s 5 and 6.

4.2 THE MATHEMATICAL MDDEL

The large weekly problem is formulated as 5 separate daily

problems. This division of the timetabLe problem is not unique to

this thesis, and has previously been used by C. C. GotLieb ( lA)-

The 5 daij-y timetabl-e problem has the following advantages.

First, the problem size is reduced into a set of 5 smaLl-er sub-

problems. second, the requirement of an even spread of cou¡se and

teacher loads rnay be incorporated into the problem solution mole

easily. It may be noted from the manuaf aims of section 3.4 of

chapter 3, that this even distribution with respect to daily loads

is mentioned as a desirable feature for the timetable solution '

The advantage of the weekl-y approach comes from the optimal-ity

of the overall sol-ution. The daity problem approach achieves sub-

optimal resufts, but optimaÌity with respect to the weekly probJ-em

is not guaranteed. However, this is not a large disadvantage, as

the sub-optimal solution is acceptabLe to the school- administrators,

and the¡e is some doubt as to what the best so.l-ution contains.

Thus, although the breakdown is

of chapters 5 and 6, the sub-division

of :-

preferable for the a Igorithnrs

the expensemay be excluded at
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(a) a reduction in administrative co4trol over the solution

dist¡ibution of courses, and

(b) increase in computer time to produce a solution'an

School administrato¡s have emphasised the two following matters'

First, the preference fo¡ a day by day structure, to give greater

control over the course layout in the resultant timetable. Second,

when problems do occur in the production of a solution, some partial

sol-ution may be available for use. This lecovery stage is important

to the administrato¡s, since a partiaJ- solution coul-d operate

temporarily within a school, until such a time as the faults were

rectified. A fail-ure to obtain a solution to the weeklY Problem

temporary solution.wouLd excLude any possibiJ-ity of a

Accordingly, the problem, irrespective of any computer time

saving or efficiency, has been prepared on a daily basis to meet the

specified recommendations of the departmental officers concerned '

Itisconvenienttorepresentthestructureoftheschoo]-

timetable problem, by a set of disjoint undirected paths of nodes

joined by lines. The nodes represent events and the lines, commonly

called links, indicate the timetable activities. An event is the

beginning or end of a timetabl-e activity, and a timetable activity

is the interaction of a given set of resources for a single time-

period, i.e a specific lesson' ExampJ-e 4'1 below' is given to

clarify this formulation. The sets of paths describe every activity

within the school timetable.



EXA MPLE 4.1

As defined in

cribes activities

school.

chapter 3, section 3'2,

for aIl- academic IeveIs,

From these structu¡es

following manner.

67.

ActivitY 3

a course structure des-

covered bY the courset

the set of Paths is

Activi

Activit

1

2

In the graphs, the events represented by uniqueJ'y numbered

nodes and the activities by lines (chapter 2' section 2'3) ' Some

nodes are both start and end events¡ e.g. node 4. Othe¡s are either

sta¡t events onJ-y (1 and 3) or end events (2 and 5) '

The set of timetable paths ale constructed from the course

structures, class-course request and class requirements' of the

school. The manner in which this is done is exptained in detail in

Example4.2.Eachcoursestructureuseslesoulcesdescribedbythe

school administrators, for each activity' For any activity of a

path,thenumberofinvolvedresourcesisatleasttwo(onec]-assand

one teacher) . Each activity hap a duration of one time-period and

wiLl constitute a specific Lesson for the resources involved'

within the

c ons truc ted in the

PLE 4.2

For the course

defined.-

EXAM

named English the fol-Lowing structure is



Course Structure

3rd year level

2nd year level

I st year level

Class-Course Request

3rd year level

class 301

cl-ass 302

68.

1 lecture

1 lecture, 1 grouP discussion

no meetings

to meet teacher A.

to meet teacher 'A .
I

to meet teacher B.

Jone s

Jone s

SmithcLass 31 1

2nd year levef

class 201 to meet teacher C. Brown

c-l-ass 211 to meet teacher B. Smith

From the above description the folJ-owing activity paths

are constructed :-

301 Jones

3t2 Jone s

s1 1 Smith

201 B¡own 201 Brown

211 Smith 211 Smith

The set of paths is composed of con secut ive and paralleL activities.

The two terms, consecutive and paralleI, relate to the resources

invofved in the activities concerned, and no indication of where the
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activities can be assigned in the timetable solution is impJ-ied by

their use.

ConsidertwoactivitiesthatinvolvethesubsetsXandYof

resources, requested from the resource set E of the school'

Then, the

(section 2 .2,

two activities are consecutive if the difference sets

i.e. every resourcu B s X impries p e Y' and P e Y impries I e x'

The two activities

j

are p.g.!þ! if either or both of the

Y-X are non-emPtY.

a resource P e X such that B I Y or/and a

Y such that Y É X.

difference sets X-Y and

chapter 2) X-Y and Y-X a¡e both empty'

i.e. there exists

resource Y e

when all- class-course structures are considered in this mannel,

a total daily resource path structure may be constructed ' Each activity

of the paths is a Iesson that must be associated with a time-period

in the timetabl-e sol-ution. However, this structure does not fu1ly

specify the timetable problem. It only indicates the Iessons'

resources and number of time-periods required. It does not specify

resource availability, fixed time-period requirements, block-periods,

no¡ the st¡uctu¡e of teacher-cLass sets, desc¡ibed in section 3'2,

chapter 3.

The resource availability array, as described in section 3'2

of chapter 3 wil-l- now be f ormulated '
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Let E

B = 1,2,

teacher and

be an d-set E {1 , 2,3, c[] of resources B where

3

one cLass resource, and hence the lower Limit on 0

Let a daily time-span consist of p time-periods j, where

j = 11 21 3r r P.

Then an ct x P array A, defined bY :-

{

1

where ,Gandj

res ourc e availabilitv arrav.

The model defined above is now used to present an

formulation of the timetable problem as folfows '

22I

A (a
F¡

)

if resource B

assignment to

is available for

time-period j

p is called the

in troduc t ory

4.3 THE 5I LE TIMETABLE PROBLEM

The simple timetabJ-e problem is defined in other publications on

timetables, e.g. J. Lions (33 ). It has no block periods, teacher-

cl-ass sets, or fixed time-periods and the resoulces are avaiÌabLe

for assignment to every time-period of the daily time-span ' This

problem,sinceitcanbec]-ear]-ydefined,isusedasabasisfor

comparison between various timetable procedures. It is presented at

this stage to give firstly, a basis for the comparison of resul-ts

with other solution procedures to the simple problem, and secondly,

to formufate ¡elevant conditions and constraints for the practical

problem that f ol-l-ows .



In the fol-Lowing fomulation the subsets

with the activities of the timetable problem

ordered samples_of the school resource set E

are denoted by rir and are

the resources requested for

activity paths.

11 .

of resources, associated

are conside¡ed to be

The orde¡ed samples

calLed resource vectors. ri¡ defines

the ir-th activity ai¡ of the set of

Denote the set of ¡esource vectors by

the number of elements of * (="t

ñ.natetfR
chapter 2). Then there

=nbê

are n activities in the timetabl-e

Let rit denote the number

vecto¡, and since every activity at least one teacher

resource of r, r is

at most once for any

section 2.2,

problem.

of resources in the it-th resource

and one cJ-ass,

distinct since

activity.

then ).2

any resource may

must involve

Fu¡ther, each

be requested

l;', I

The notation of ñ and I¡ was chosen since

vectors wilL be refo¡mul-ated into the resource

with ¡esource vectors rij l-ater in this section

cr)

the set of resou¡ce

requirement array R

(see section 3.2,

chapter 3). This transition, pJ-aces the el-ements of ñ into tf,t

mathematical modeI,

method. No direct

in preparation for the algorithms of the solution

reLationship exists between the indices ir , i

and j but every member of R is an element ín R

l¡/ithin the set E, there exists an m-subset C of cl-asses . Let

C { C1, cz,

denote the class subset, where C1 E C implies that Ci t E for all_



i - 11 21 3, , m.

Since an activity involves

then C is a proper subset of E,

CeE, and

Tn C =

For the simpJ-e timetabl-e

(a) a = m+k

(b) E = Tu c

i.e. E consists of only

Let R(9) denote the set

0
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at least one teacher and one class,

denoted

E >m

problem let E be the cf-set such that

(4.1 )

the cl-ass and teacher ¡esources.

There also exists a proper k-subset of T of teacher resources. Let

T = {tr, t2, , tk}

denote the set of teache¡s where t1 e T implies t1 e E for alL

I = 1, 21 3, , k.

The two subsets C and T are d is j oint

and lr | ' '*t

of al-l- activities air with ¡esou¡ce vector

"i,, that involve the resource Ê e f within the set of paths.

T hen R(B) denotes the number of activities requiring the

resource B.

i.e. the number of times B is required in the daiJ-y time-span.

Befo¡e continuing with the discussion of the general simple

timetabl-e probJ-em, a specia.l- case of this problem wiLl- be described .

This problem, call-ed the Simple Tiqht ïimetabLe Probl-em satisfies
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the foLlowing conditions :-

(.) each class and teacher must meet for some activity in

the daily time-span'

(b) the number of teachers, classes and time-periods in a daily

time-span are the same

m=k=p

(c ) every resource is fully utilized in each time-period of

the timetabl-e (no slack).

The mathematical formulation follows :-

Since every resource is fully utilized in every time-period,

then,

R (B) p for every p e E (4.2)

By the definition of the simple timetab-l-e problem, all resources

a¡e avai-l-able for every time-period, hence

p

L
J= I

.pj p for eve¡y p e E (4.3)

The folÌowing necessary constraints for the timetabÌe solution

a¡e stated.

CONSTRAINT 1

No resource B e E shal-I be assigned to more than one

lesson for any time-period of the timetable solution.

unre l-at ed ( 1 )

(1) A lesson is related to some given lesson when both must be

assigned to a common time-period, and both are associated with
an actiVity that involves more than one class and more than
one teacher, i.e. a teacher-class set.
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All activities
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of the timetabl-e requirements must be assigned

to a time-period in the timetabl-e solution.

The f ollowin g examp1e 4 .2, defines a simpJ-e tight timetabl-e

probJ-em.

EXAMPLE 4.2

The problem invol-ves 3 time-periods and 6 resources (:

c.l-asses, 3 teachers) .

The set of activity paths fo¡ the problem are as foLl-ows

t C t

t

C

C

C+

t

t C

,c

t ,C

t

The class 01, i = 1 r

i of the class requirement

each of the cl-asses Ci of

of the set I = {1, Z, 3,

2, , m is always associated with row

t ,C

C

AÌl simple tight timetable activity structures are of simil-ar

lay-out to the above example. AlI paths are paral-lel, and no

consecutive activities exist.

i.e. the resource sarnple for each activity is unique within the

simple tight timetabJ-e problem.

The activity paths are expressed in the form of an m x p 4,æg

resource requirement arra.y R in the f ol-.ì-owin g manner.

array. The bijective mapping Àr , maps

the set C onto the integer row numbers i

, m] of rovvs . Similarly, the set of
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time-periods j are mapped

associating column j with

onto the col-umn indices J {1,

C,n respectively, where

2 P},

t

time-period j by the bijection It t.

i.e. Âr (Ci) = i

Àrr (j) = j for i = 11 21 3, , m

j = 1r 21 3, r P

lrrle may assume, without loss of generality, that the activities

a¡e ordered in the foÌlowing manner.

Form the sequence :-

R(C1 ), R(C2)¡ , R(f,m)

of activities with resources C1 , CZ, ,

R (ci) = ã(i-1 )p+1 , ã(i-r )p+z t a.rP

This o¡dering may be performed, since for any class C:_ e

R(ci) P.

For the row

C

Iesource vector

in R(C

of row

i, of the class requirement array, there are p

eLements, assocíated with the p activities involving

resoulcecl-ass ci i). The resource Ci may be omitted f¡om the

v ect ors i since it may be assumed that the class resource

will aLways be involved.

EXAMPLE 4.3

Conside¡ the activity paths of exampJ_e 4.2. The f oJ-J_owing

sets are const¡ucted



R (cr )

R(c2)

R(c3)

= { (t,

= { (7,

= { 113,

2),

8),

(3,4), (5, 6)Ì

(9, 1o), (11, 12)\
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section 3.2

meetings of

R1, RZ,

R

(t2,c1 ) (t3'c1)

(tz,cz) (t3,c2 )

(t2,ca) (t3 , ca )

In the latter array, the lesources C¡, C2, C3 are omitted,

since they may be assumed to be represented by the ¡ow number.

row of the array is a class requirement (see

(t.' ,c,1 )

(t1 ,c2)

(t1 ,c3 )

(t1 )

(tr )

(t1 )

(tr)

(tz\

(tz)

(t¡ )

(t: )

(t3)

From these ordered

requirements mat¡ix

3),

The

14), (15, 16), (17, 18))

sets the foLlowing class resource

is compiled.

Each

of chapter

the cLass.

Rm.

listing alf resources required in the p

m class requirement rows are denoted by

A solution array 5, is an m x p alray satisfying the following

conditions:-

(a ) each c ol-umn j consists of m

with the m class activities

period j designated by the

(b) each row 5i of 5 contains

each respective row R1 of

resource vecto¡s, associated

to be assigned to the time-

coLunn number.

the same resource vectors as

2,R l- r ff'

(c) the o¡de¡ of the e-l-ements of ¡ow Si is determined under a

associated with R (i.e.bijective mapping Â1 (see below)
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... the order of the resource vectors in si is a permutation

of the order of the vectors in Ri) '

(d) S satisfies the defined constraints'

CONSTRAINT 3

Each element position of 5 rnust contain one and only one lesoulce

vector of R.

The solution method wil-I be shown to consist of the generation

m to give theof the bijective mappings Â1,

arrangements of the resou¡ce

THEOREM 4 .2.1

tI eT

Ioss ofwithout

in column j

t5 e T, e'9'

4 .3.

Consider the

permutat ion

1, 2,.l_

vectors in the solution rows Si'

The simple tight timetable problem will- a'l-ways have a

solution.

PROOF

By definition, each row Ri of R invoJ-ves each teache¡

in a resource vector. ìr'le may assume

generaJ-ity that the resource vectors

R all invo.l-ve the teacher restource

resource

OT

see the form of the array R in example

bijection À ,

(LCP) defined

that is the left cYclic

in section 2.5 of chaPter

2. The LCP is denoted bY

1

2
(

2
3

3

4
P
1

A
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and maps the element r15 in position (i, i) of

Ri, into the position (i, i+1) in 5i for j = 1r 2' 3'

... , p-1 . The element rl' is mapped into the

position (i, 1) in Si.

Using the theory of chapLex 2, section 2.2, defíne

the mappings

Ài*1 = A(Ai) í = 1t 2, ..., p-1

where

À, = (l i Z .:: i'
is the identity mapping.

i.e. in the case i = p = 3 the following mappings

are produced.

1 2
2

2
1

lr ,az= l,

3

2

2
3

3

1

A ,
1

a3 
= (l

Then the mapping 4-+f maps the j-th element of row

Ri*1 into the (i+1, 
^i*1(j)) 

position in S1*1.

By applying the mappings to their associated rows of

R, the solution array is produced, that satisfied alJ-

stated conditions and constraints. Hence the simple

tight problem has at least one solution.

Q.E .D "
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The following exampJ-e is included, to cJ-arify the application

of theoren 4.2.1 to the simple tight timetable probJ-em.

EXAMPLE 4.4

Consider the resource requirement matrix of example 4.3,

namely !-

R

The mappings 41, 
^2 

and A3 are defined by

^

t1

t1

t1

t2

t2

t2

t3

t3

t3

1 3

3

2

21

^ ^(^ 1)2

^ 3
A(A 2\

i.e. the LCP, 
^ 

cycles the image elements of
^.l-

3

1

3

2

2

3

2
1

1

2

1

3

to the left by one position,

applied, to give Â i*1 .

each time A is

ïhen

^ 1(R1) = (tt t.2 t¡) = S1

^ 
z(Rzl- = (t¡ ti tù = 52

A3(R3) = ftz t3 tl) = 53

e.g. The mapping A3 for R3 takes the elements of row

R3 of R in positions (3, 1), (3, 2l., (3, 3) and

places them into positions (3, 3), (3, 1), (3, 2')

respectively.



Thus the sol-ution

problems of Latin Square,

pxparrayofpdistinct

S

Tþe simple tight timetab.Le

t1

t3

t,2

t3

ï,2

t1

80.

require that

in every time-

t2

t1

t3

problem is associated with the

. Ryser (q ). A Latin Square is a

elements such that

see H

'l . each row contains the p distinct elements

2. each column contains the p distinct el-ements

3. no row or column contains any element more than once.

The generaJ- simple timetabl-e probJ-em will now be discussed.

The general simpJ-e timetabl-e

m=k p. Howevet, every class

period of a dail-y time-span .

R(ci)

probJ-em doe s not

must be utilized

P for every Ci e C (4.4)

l- ,m2

The following

simple problem to

necessary conditions must be satisfied for the

have a solution.

(a) Any resource B e E can not be required in more than P

unrelated activities.

fnroll -. P

This is a generalisation

problem. The classes by

for every BE E (4.s)

of equation 4.2 fo¡ the tight

definition satisfy the equation 4.5.
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The total- number of activities n for the simple probJ-em is :-

[ì=mxp

AIl activities are unrelated since no teacher-cl-ass sets

exist within this ProbJ-em tYPe.

The contrary of equation 4.5 is assumed for some resource BeE.

Then the resource B is requi¡ed in R for more than p time-

periods.HoweverrthereareonlypavaiJ-abletime-pe¡iods

for assignment within the timetable problem and no solution

could be determined without violating the constraints'

i.e. aII requirements must be satisfied, and no resource

shal-l- be assigned to more than one unrelated

activitY in a time-Period '

Hence, the equation 4.5 must hold.

(b) Any resource B E E, shall not be required in more unrelated

activities, than the total number of time-periods avail-abJ-e

to that resource.

R(p) \< 'Bj
(4.6 )

P

x
=1J

by

the

forall-PeE

definition, this condition wilt aLways be satisfied for

simple problem. The proof foJ-lows that of equation

4.5.

(c) To restrict the ProbJ-en

(i.e. ... no lessons can

to the hours within the timetable

occur outside school hours) tfre
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folJ-owing condition is included. Each resource B e E

shaLf be avaiLabl-e for at most p time-pe¡iods for a daily

time-span .

P

X aßi \< p

J= I

for every resource B EE

(d) There must be at l_east as many teacher resources as there

are c-l-asses .

ï l.l (4.8 )

for any time-period with unrefated activities.

If the contrary

teacher. This

must invol-ve a

viol-ates the conditions that

(4.7)

woul-d have no

an activity

a c-l-ass must be

were assumed, then a cl-ass

teacher and class, and that

associated with an activity for every time-period.

The above conditions are related to the computer algorithms in

chapter 5. However, a mathematical formul-ation is given at this stage

to demonstrate the association of the bijective mappings and systems

of distinct representatives in the solution method. The simp-l-e

problem witl- be used to demonst¡ate these connections.

Let A1 denote the non-empty set of al-l- bijective mappings

associated with row R1 of R fo¡ i = 1, 2, r h.

i.e. Ài defines the p! permutations of size p, of the

elements 1r 2r... ¡ p.
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The menbers of the set 11 are denoted by Àiô, where

pl

Denote the eLements (resource vectors) of ¡ow Ri by 11¡ where

¡ P'

32

2

Two resource vectot= ti1 j1 and

there exists at l-east one resource

I e "izjz.

rj ^ i^ a¡e assiqnablv equal- when-2J2

9e E such that Be.itjt and

R, \ I í2, with associated

that map the resource vecto::s

i.e. the two tesource vectors invol-ve at .l-east one common

resource.

Consider two rows R1,, and

bi jective mappings O trO ,, and

tr,,of and

tr, of the

Then the two

o rro r.'

R;^ respectively, into new positions within
"¿

sol-ution array 5.

R oft2

if for each j

bijective mappings

,2rrpthetwo

ot,,o,¡ and otd,

resource vectors

TOWS c
"i1 and

are distinct

in positions

(it, j) and (í2, i) of 5 are not assignably equaÌ.

i.e. the two mappings do not map any resource into mo¡e than

one lesson during anyone time-period.

EXAMPLE 4.5

Consider the bijection sets that consist of al-.1- mappings

of 3 el-ements j - 1, 2, 3 (the time-periods that are

equivalent to the col-umn numbers in R and S)
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Each set wilÌ have 3l = 6 elenents (see chapter 2,

section 2.5 )

The sets 11 and ttare defined by t., = {À 11, LjZ,

, Ât6) and I z = {^ 2j, L2z, ... , Lz6} .

Each set I1 and f, contains the 6 bijections

The order of the elements within f , and f., may be

considered to be

A A
11 21

A

^12 22

^
A

13 23

A
14

^
A

15 25

or, = a26 = () î 3'

It should be noted that fo¡ convenience the order of the

elements has been chosen in the above ¡nanner, but that

any other orde¡ could have been taken. An example of

distinct mappings from I 1 and f, based on R1 and R2 of

4î 2t
(1 ii, , (l Z), , (=1), , ,\31 , , (,tr|,

(l 
"i,(l 33,

(å î),

(l 3î,
ú 3i,

^ 24

I
t3

:lR

r7



l-s

and

Àr t

Lzz

since n, ., (R., )

(1,1), (1,2

respectiveJ-y,

positions (2,

(2,3), (2,2)

maps the el-ements in R

), (1, 3) to positions

and, LZZ(RZ) maps the

1), (2, 2), (2, 3), to

respectively.
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.,, from positions

(1, 1), (1, 2\, (1, 3)

el-ements in R, from

positions (2, 1),

2
2

3

3

3

2
2

3

t3

do not have a resource occuring mo¡e than once in any

col-umn position j, j

The sel-ection of distinct mappings associated with the rows R1 r

R2, .. . , R, of R, to produce the soLution

Thus the resul-tant ¡ows

s1 = (t'1

s2 - (t: t5

ts )

tz)

32

rows 51 , 52, , 5, of

of distinct representativesS is equiva.l-ent to

f¡om the sets f 1,

the sel-ection of a set

f 2t f
m

The number of eLements in each set f i will be cal-cul-ated through

the number of available positions (time-periods) for each resource

set of row R1, i = 1, 2, r [. This ca]-culation has important

impJ-ications in the computer algorithms and is discussed fuJ-Ìy in

section 6.3, chapter 6.



table probJ-em resource requirement

n^, '. of bijections associated

s ol-u ti on rows S .,¡ r 5 2, , S, is

3, , m and indices k(1), k(2),

k(2) ( ... < k(i)-< m there exists

ou('' )' ^k(2)'
where

ot (i)e rr(i)

for each index.

ïhis is an application of rheorem 2.5.1 . The implication of the

theorem on the sorution method is important. The above statement

A necessary and sufficient

of distinct bijective mappings

indicates that if any subset of

bijections, then no sol-ution to

is no possible to assign the

without viol-ating the defined

the solution method within the

of the sol-ution. (see section

Befo¡e proceeding with

the practical problem, the

briefly discussed.

86.

condition for the existence of a system

for rows R1, R2, ..., R,o of the time-

array R, from the sets I1, I 
Z,

with the rows of R, to produce

that, for every integral i = 1, 2,

... , k(i) such that 1-( k(1) <

at.l-east i distinct bijections

, "k(i)

the rows of R do not have distinct

the probJ-em can exist. (i.e . it

resource vecto¡s into time-periods

conditions.) The theorem is appJ-ied to

Implication Algorithm at each stage

6 .2 of chapter 6 ) .

discussion of the sol-ution method fo¡

extent of the solution space wilf be



4.4 THE SOLUTION SPACE FOR THE TIMETABLE PROBLEM

m, T

87.

k,

are incLud-

assigned ) ,

Conside¡ the timetabJ-e probl-em with

= C[ and p time-periods in a daiJ-y

C

l.l time-span.

The following is an application of earl-ier work of V. Portugal

( ¿Z) to the solution method of this thesis .

If the elements (resource vectors) of the solution array 5 are

considered as co-ordinates, then each timetable solution, irrespec-

tive of feasibil-ity with respect to the defined conditions and

constraints, can be represented by a point in an m x p dimensionaÌ

space of timetable solutions, i.e. ... there are mp co-ordinates per

timetable. The search for a sol-ution, is a search for a point in

this solution space.

If any point can assume any

the nunber of points in the space

kmp

lrlhen constraint 2 is imposed

ed in the resource vecto¡s of the

the number of sol-ution points

(pl)m

i.e. ... m rows (classes) of

row having p! arrangements.

l¡lhen the simple

of the k teacher resources, then

will be of o¡der

(aLl the activities that

requirement array must be

reduces to

p resource vectors, (time-periods) each

problem is considered

5 may be arranged in p!

with respect to const¡aint

1, the fírst ¡ow of hrays. Portugal shows



that the solution space is restricted

each of the m rohrs, p resource vectors

BB.

to C[n ! points, :iince f'ot

are se-l-ected.

For the practical situation, the solution space is reduced

further. Repetitions of ¡esources within the resource vectors within

rows of R have an effect.

It will be shown that the algorithms of chapters 5 and 6 wil-l

consider only feasible bijections with respect to the class-require-

ment rows of R, at each stage of the solution method. The number of

feasible solutions is dependent upon the resource vector availabilitieso

block-period requirements, teacher-class set requirements invoJ-ving

inter-row dependencies, resource repetitions within the ¡esource

vectors, and the effects of previously assigned ¡esource vectors.

The sol-ution method determines, that every un-assigned row of R may

still be assigned in S, by the cal-culation of the feasibility of the

remaining solution images through the ¡esource vecto¡ availabilities.

If the number of images fot an unassigned vector is reduced to zero

an immediate indication is given through the Implication Algorithm.

(See chapter 6, section 6.2r.

4.5 THE PRAETICAL PRDBLEM

The const¡aints imposed on the simple problems apply to the

practical situation. Teacher-cIass sets are included, and define

the ¡elated activities of constraint 1. They involve seve¡al

teacher and class resources, that must be assigned to a common time-



period. In this respect,

il9.

invo-l,ves mr¡rt: l,lr.r n onetl-re requi¡ement

This is"the onlyrow of R for assignment.

resources ín difference

case, where common

¡esource vectors are assigned to the same

time-period of the timetabl-e sol-ution.

For the pxactical- problem, a resource vector may involve more

than 2 resources (cIass and teacher). Equipment, room, other teacher

and class resources may al-so be required for one activity. AII

requirements are expressed within the resource vectors and an example

of a more comprehensive ¡esource description fol-lows ;-

e.g. R2 = ( (t1 , Q¿), (t.¡ , tZ, C1 ), (t3, O2, e5))

wheret = teacher, q = equipment, C = c]ass,

0 = IOOfi IeSOUTCES

The number of eLements of the ¡esou¡ce vectors does not necessarily

have to be the same for every activity. It is noted that the resource

vectors described the ¡esources for every activity of the timetable

problem.

The resource set E contains other subsets, namely room and

equipment resoLlrce subsets.

These a¡e defined by

Q = {Q1, 92, ... , 9g}

o = {01, 82, , oe,}

for equipment and room facilities respectively, and

E = TuCu0uQ



EXAMPLE 4.6

The following

to have been

90.

resource activity paths have been assumed

constructed from given course st¡uctu¡es '
c ,l ,01

,t
c2, t1

c ,t4,t

c3, t5' q1 c3, ts, q1

The associated resource requirement array is const¡ucted

in a simil-a¡ manner to that of the simple problem, with

resource vecto¡s occur¡ing in the cl-ass rows of R '

C

For

is also

ad equate

cJ.arity,

given. It

R

can be seen that

to indicate teacher-class

(t3, q4)

(t4, t¡ )

(ts, q1 )

the activitY path descriPtion is

sets, but further descriPtion is

time-period requirements.

(t1, ot)

(t1 )

(ts, c1 )

The orde¡ of the elements within the resource vectors is

not important. Note that the resources (t5, Q1 )'urt

involved in two consecutive activities and appear as two

activity descriptions for row R3 of R.

an example of a teache¡-class set resource vector

needed for block-periods and fixed



EXAMPLE 4.7

There are 2 classes in

91 .

and they are retluired

t2, t3 f or 2 activities; .

describe the meetings.

the problem,

teachers t1 ,

activity paths

to meet together with

The f oi-Lowin g set of

,tc

C1 ,C2rt1 ,t2rL3 L1 ,CZrt1 ,1u2rt3

c t

The order of the activities is not important in the activity

paths, and the node numbers (events) are only displayed for

the convenience of defining a particul-ar activity.

0nce

ment

ïhe

array,

reS0urCÉ

the resources are defined within

the o¡der the resource

the resource require-

vectors become fixed.

R

requireme

has

periods or fixed tirne-ie

It will- be shown in chapter

vectors for the resource vectols

array fo¡ this examPle

t1 , tZ, t¡) (Cz, ti, t2,

t1 , tz, t¡) (Cl , t1, t2,

of

nt

t

r-s :-

:il
The teachex-class are described in rows R1 and R2 of

associated with these

sets

,

I

j

ll
I

R since they involve

rouús. No índication

C1 and C2

been given

riods.

, section 5

at this stage of bl-ock-

2 t hat

c ASSES

of R when celculated,

availability

define aII

time-periods availabl-e for each resourËe vector. By approaching

the problem in this menner, and reducing the avail-ability vectors

5
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after each low of R is assigned in 5, the infeusib.l-e situ¡r1;ionri

(those that reduce availability vectors to zero) are easily deter-

mined.

The basic special rëquilements of block-periods and fixed time-

periods wilf now be discussed.

Consider firstJ-y the fixed time-period requirement. Associated

with each resource vectol ri¡ defined from the activity ãir with

resource vector 11r that involves class Ci, is a non-negative integer

f, such that :-

o-(f-(p

A mapping P1 associates with each resource vector ri¡ of Ri, a

member of the set 0, 1 t 2t r P such that :-

Pi(ri¡) 0 implies complete freedom of

for r=, within the available
r-J

a ssi gnmen t

time-periods.

Pi (ri¡ ) f implies that r1¡ must be assigned to

time-period f of the daiJ-y time-span.

Hence the family F

required resource vector, a

shown that when a resource

(Pt, Pz, ... , Pr)

fixed time-period

vector has a fixed

associates with each

indicator. It wil-l- be

time-period f, that

to a 1 in position f

thus assigned to time-

for this activity to the

the associated availability vector is reduced

and zero elsewhere. The resource vector is

period f by restricting the image portions

one period. This wil-l- be discussed fully in chapters 5 and 6.
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Block-periods wii-l- now be f o¡mulated . A surj ective mappin g tl i r

associates with each resource vector rij of Ri, a membe¡ uf the set

1r 2r 3r 4r 5 of integers, that indicate the required bl-ock-period

sizes.

ür(ri¡) = b where'1 ( b-< 5 indicate the size of the

block-period required for the resource

vector 11¡.

Since, by definition every activity is incl-uded in R, and each

activity has a duration of one time-period, then there must be b

occurrences of resource vector ri¡ in row R1. Each will- have an

associated block-period indicator of size b.

'.'. úi("ij(r )) - b, üi('i¡12¡) - b, , úi(tij(¡)) = b

Then B = (ü 1, þ2, ... , ùr) define alr bfock-periods within

the resource requirement array R.

EXAMPLE 4.8

Consider the fol-Iowing activity paths

c t

I
r u3

,D ,t

t

C

c

t

t

c

c tt

c

C ,t ,t
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,t

C t

Special Requirements :-

1. activity (1, 2) must be fixed in time-period 1

of the sol-ution.

2. activities (7, 8), (8, 9) must occur as a block-

period of síze 2 in the sol-ution.

3. activity (14, 15) must be fixed in time-period 1

of the solution.

The fol-l-owing resource requírement array is constructed from

the activity paths

C

tc

R=

(t1 ) (t3) (ts)

(C2,t3,14) (C4,t3,t4) (tS)

(t1 ) ft2) (t¿ )

(C2 rt3,t4) (C2 , t3 , t4 ) (t1 )

Note that R can not be a so.l-ution since activity (14 , 1 5 )

is not in the first time-period (column 1 ), resource t5 is

in column 3 twice and is nÒt a teacher-cLass set require-

ment and resource t1 occurs twice in column 1 .

Associated with the rows of R are the fofl-owing fixed time-

period mappings



95.

F (Pt, Pz, P3, P4)

Þ1

P3

Pa

i.e. P1 indicetes that the resource vectors in

columns 1, 2 and 3 respectively, of row R1 of

R are to be assigned such that :-

resource vector 11 1 is fixed in time-period

(column) 1 of the solution.

resource vectors 112r x13 are assigned freely

in time-pe¡iods (columns) 2 and 3.

In chapter 5, section 5.3, the mappings F are storèd more

conveniently as the ímeges

where

(
3

0

3

0

3

0

3
0

2
0

2

0

2
1

2
0

p2
'l

0

1

0

1

0

F

100

000

0'l 0

000

whe¡e the time-periods (column numbels related to R) have

been omitted. This association of the resource vectors

with the fixed time-perio indicators of F can be assumed

since the portíons of the vectors within R are fixed.
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Similarly the block-period mappings ts (ú1,û2,tj'ú4)

a¡e defined by

,1,1 =

' þz =

rlr- =J

qr4 =

and are stored

I
1

1

2

(

(

(

3

1

3
'l

3

1

3

1

2
1

2

2

2
1

2
Z

1

2

AS

22

111

11'l

221

B

where once again the association with the resource vactors

of R a¡e assumed.

and r22 must occur as ai.e. resou¡ce vectors r21

bl-ock-period size 2 in the solution.

A feasíble solutíon to the above problem is given at this stage

wÍthout derivation. Frlrther examples ín chapte¡5 5 and 6 will

indicate the solution method.

5=

(t1 ) (t5) (t¡)

(C4't3,t4) (C4¡t3't4) (t5)

ftz) (t1 ) (t4)

(C2,t3rt4) (C2,t3,t4) (t1 )



Note that the teacher-class

common resources t3, t4, C2, C4.

within

97.

and 54 of S involve

involved occur in

set in rows 52

The activities

a block-period size 2 that has been assigned in the sol-ution.

In the above probJ-em the position of the bl-ock-period was not

the timetable solution. As mentioned in chapter 3,specified

section 3 .2 sta¡t-periods defined where the block-periods may occur

in the practical case. These are now fornally described.

Start-periods for each bLock-period size b are defined by the

surjective mappings 6 that maps the eÌements 1, 2, 3, ¡ p re-

Iating to the time-periods of the school day, into the binary

numbers 0, 1 in the following way :-

if block period size b g be

started in time-period j
rb(i )

0 otherwise

EXAMPLE 4.9

Fo¡ block-period eíze 2 the fol-Iowing surjection

r2

defines start-periods 1, 3 and 4 as the only legal- positions

for the beginning of any block-periods of síze 2.

Hence the following double þeriods are alJ-owab.le

1 -2, 3-4 , 4-5

(
3

1

4
1

2

0
5

0
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The block start mappíngs are stored in an array BS in image

fo¡m as are the ffxed and block requirements.

All other special requirêments of the South Austra-l-ian secondary

school-s can be incorporated within the above formulation, together

with the soLution rnethod algorithms of chapters 5 and 6. It witl- be

shown that the availabiLities (image positions for the assignment

mappings) have en important role ín the solution procedure.



CHAPTER:J

THE BIJECTIVE MAPPING GENERATOR

5.1 INTRODUCTION

The sol-ution method described in this chapter is an individua.l-

approach to the sol-ution of the school timetabl-e problem. The notions

of required resource vectors (section 4.3, chapter 4) and feasible

bijective mappings (section 5.4) for the determination of the solution

timetabl-e are discussed. The terms resource vector and required-resource

vector, are used to mean the vector of resources that are required for

an activity. These requirements a¡e obtained from the resource activity

paths of chapter 4, section 4.2. Cl-ass requirements, each consisting

of p required-resource veôtors, are conside¡ed as complete assignable

units. i.e., all activities relating to a class are assigned together.

Hence, in this solution method there are m permanent assignment stages

fo¡ the m classes of a school. This is in contrast to the m x p assign-

ment stages of many othe¡ methods (see section 1 .1 , chapter 1 ).

The advantages of the class unit approach are, firstly, that the

number of assignment stages has been ¡educed by a factor p. SecondIy,

the inte¡-relatíonships between resou¡ce vectors of the unassigned

classes can be considered with respect to a larger group of assigned

vecto¡s (section 6.3 of chapter 6). It will- be shown that this

concept has important implications as discussed in chapter 6. ThirdJ-y,

the teacher-cl-ass sets (sectíon 3.2, chapter 3) establish a relation
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between classes through their resource vectors. Thus the class

approach is particularly relevant to these requírements.

The main disadvantage comes f¡om the amount of testing required

to determine the implications of a class assignment. Although extra

time was invol-ved in testing the more compLex class requirements, the

method was nevertheless adopted for the fo1J-owing reasons. First, it

permitted a significant reduction in the number of possible solutions

to be investigated after each assignment stage before a final

solution was produced (see section 5.3). Second, the method was

exhaustive in its approach, permitting the earJ-y recognition of un-

feasible situations. Third, the method was di¡ectly applicabl-e to the

South AustralLan secondary schooJ- situation, vúhere classes are con-

side¡ed as units within a school.

At each stage of the solution method the required-resource vectors

of a row of the resource-requirement array (section 4.3, chapter 4)

must be mapped from their existing positions in that row, into new

positions in the solution row. This translation, or assignment, is

subject to the conditions and constraints stated in chapter 4, together

with school policies included in the algorithms of chapters 5 and 6.

Ïhe available positions in the solution row, fot eech ¡esource vector

of the requirement row are

availabilitv vectors (CAV),

calcuLated in the form of composìte

described in section 5,2
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)

The CAV reduction alqorithm (section 5.3) has an important

in identifying and rejecting unfeasibl-e mappings.

algorithm of section 6.3, chapter 6, applies the

algorithm extensively, to investigate many of the

class assígnment.

The implication

e

implications of a

An assignment is determined from the CAV by generating a mapping

of the coLumn numbers, related to time-periods, onto themsel-ves such

that the images are members of the associated CAV (section 5.4) pf the

requirement row.

ïhis chapter

with the bijection

when combined with

describes both the CAV and

generator. Ïhe reduction

the algorithms of chapter

CAV reduction

their reduction, together

algorithm and generator

6, provide the solution

method to the school timetable problem.

5"2 THE COMPOSITE AVAILABILITY VECTORS

From chapter 4, section 4.3, a required-resource vector ís a

subset of the school resoulrces, that are required for a timetable

activity. Associated with each required-resource vector is a composíte

availabifity vecto¡ (CAV), constructed from the avail-ability vectors

(chapter 4, section 4.2) of each resoulce member. It wiLl be shown

in tl-¡is section that the CAV define compJ-etefy, 4 feasibfe bijective

the requirement array, at each stage ofmappings for

the so.l-ution

each row of

method .
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The resource availability array A, (section 4.3, chapter 4)

defines the availability for assignment of each resource, for each

time-period of a daily time-span. A (B) denotes the corumn avail-a-

bility for the resource BeE of the school resource set E = {1, 2,3,

. o. , dj , This daily availability is given by

81 (p)

e2(p)

where

logica l- not

Consider two resources B

vectots associated with them,

A(B)

sP(p)

if ¡esou¡ce B is available to be assigned

to time-period j in the sol-ution

otherwise

sj(B)

1U 1

Iogical intersection : 1 ô 0

1/ì1

0

The rules governing the logica-l_ union (u) , Iogical not (-), and

logical inte¡section (n) of the binary numbers 0, 'l are given

below : -

logical union 0tr0 0

1v0 0u1

0n1 0n 0 0

z -1 0 -0

e E, FZ, E and the availability

nameÌy A(81 ) and A tFZ). l¡/hen the above
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logical opelartionrj Lìre app.Iierl Lo t, lre ¿vai-l-alri Lit,v vttt: [,rrt'r;, -i t. .i :i

implied that the operation occurs between the p corresponding

el-ements gj(gf ) and gj(FZ) for i = 1,2, , p.

st(9t) n

92(B1 ) n

sr (92)

Ezßz)

e.s. n(B1)n A(p2)

sp(Fr ¡ n Eo(B2)

Thus, for example, if the third el-ement in the column vecto¡ A(Ft)

r. A(FZ) is unity then h,e are being told that ¡oth F1 and B2 are

available in period 3. If, by contrast, the thi¡d element is zeto,

we are being told that either B.1 or F2 or both p1 and p2 are not

available in period 3.

The composite availabilitv vects]c for the resource vector ri¡,

is denoted by Ax(ri¡ ). The resource vector is a q-sample (gt , FZ,

... , Bq) of the school xesource set E = {1, 2, 3, , 4, and

describes all the resouxces required for an activity for the class C1

(see secti-on 4.2, chapter 4). The CAV defines, by entry of unity,

the time periods in which all- the el-ements of rij are simuftaneously

availabLe, and, by an entry zero, defines the time periods in which

at Least one of the ri5 is not availabl-e.

A*(r; r )¡J A(81 ) n A(02) n .... n A(pq)
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The CAV has the same structure as the resource avail¿rbil-ity vecIor

A(P), in that it is a column vecto¡ of p binary elements indicating

the availabij-ity or non-avaiLability of each time-period of the

solution timetable, for the resoulce vecto" rij. Every :resoLllce

vector of the resour.ce requirement array R (section 4.3, chapter 4)

has an associated CAV.

The composite availabilitv a¡rav, denoted by Ai combines

p in number, associated with the p required-resource vectors

rip of row R1 of R. The array is given by :-

the CAV,

ri1 r Ti2t

A
*
r. R" (Ri) (R*(rit ) A*(riz) R* (rip ) )

The DAA is a square, binaryr P x P array, indicating the availa-

bility or non-avail-ability for assignment, of the p activities associat-

ed with olass C1 of a school, to each time-period of the sol-ution

timetable.

An example, to demonstrate the construction of the CAV and CAA

is now given

EXAMPLE 5.2

Consider the resource availability array A given by :-

resources

Fr þz F¡ 9¿ Ps 9e

1

2

3

1

1

1

1 1 1

time-
periods 0

I

1

1

10

0

I

04
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Assume'bh¿rt the foll-owing resource retìuirentetrl urruy R

has been given.

time-periods (unalfocated )

Classes

(Fr ,F¿ )

(9r,Fz)

(p5,B5)

Conside¡ the resource vector xZ3 =

resources 9qrle.

Ïhe CAV for r23 is given by :-

A*(rr3) = A(p4)n A(p6)

A*(r21 )=A(81 )nA(p2) =

( Fz,9s )

t0¡ )

tFe )

(9¿'9e)

rFz)

t F¿)

(F:)

(F¿,Fe)2

3 tgr )

(F¿,9e) in volvin g

ô

Showing that the class 2 requirement of resouxces (9¿rPg)

may be satisfied by use of any one of the 4 time-periods.

Similarly the EAV for resource vectors x21 , rZZ, T24 ate

[]

n

1

1

1

0

1

1

0

0

1

1

0

0

Ax(rzz) = A(83)
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A*(r24) = A(P2)

The composite availability array fot row R2 associated with

cLass C2 is given bY :-

1

1

1

D

Aä= (A*(121 t A*( x22l A* ("2¡) A*(rr4) )

1111
1111
0011
001 0

Similar1y

AT=

1111
1111
0101

Aä=and

1111
111 1

1101
1111'l 001

It has been shown in chapter 4, section 4'3 that the images

Jt
j 1, 2, ..o p for the mapping

Ai
23ó2 63

j
ô¡

,

1

ô

p
6 p

a¡e the new posítions within the solution row 51 of S (the, solution

array, section 4.2, chapter 4) for the required resource vectors 11¡

of Ri. Recal-l that the resource vectors within the resource require-

ment array were not allocated to time-periods even though they

occupied speeific column positions within the rows of R ' The mapping

^. 
al-locat9e (assigns) column positíons that are rel-ated to the time-

periodsforthetimetablesolutiontotherequiredlesoLllcBvectors.

The resource vectors of a roì/ì, R1 are considered as the eLements to
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be aLJ-ocated to time-period s in the timetabJ-e solution , for a cl-ass

C . A resou¡ce occuring within a resouxce vector is not conside¡ed

alone, but rathe¡ in relation to the other resources also required

fo¡ that activity desc¡ibed by the resource vector. For a mapping

to be feasible the fol-l-owing conditions must be satisfied.

For each required resource vecto¡ ri¡ of row R1, the composite

availability vector A*(ri¡) must satisfy the condition that

Eôr(ri5) = 1 , j = 1,2, ... r p. - (5.1)

i.e., for the mapping to be feasibl-e, each required resource vector

must be avail-abl-e for al-location to time-period ô j, indícated by the

CAV.

The DAV therefore define al-l- feasible mappings for each row

of R through the

the sol-ution 5,

indication of permitted all-ocation positions within

for each required resource vector.

For any f easible mappin g to

the f ollor,ling condition, known as

exist for a requirement row of R,

Hallrs condition (section

chapter 2 ) must be satisfied : for

J-ogical- union of any k-combination

k = 1, 21 3, , p must be such,

the association CAA of a

of the col-umn vectors of CAA,

2.6,

IOì¡l ,

the

the

that the resul-tant vector contains

at l-east k availabl-e allocation positions, for the assignment of the

k required resource vectors.

The condition states, that if there exists k-combination of
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CAV such that their union contains at most k-1 availabl-e al-l-ocation

positions, then it is not possibÌe to generate a bijection that

assigns the k required resource vectors, since by definition, at1

images of a bijection must be diS.!-@.!. (see section 2.6, chaptet 2).

For the practical problem, HalJ-rs condition is not sufficient

to indicate complete feasibility fo¡ a given requirement row. Added

practicalities such as block-periods that have restricted positions

within the soJ-ution, require extra considerations for feasibitity

with respect to the assignable row requi¡ements. It wílI also be

shown that a bijection can be feasibl-e with respect to a requirement

roh/ of R but when other rows of R are considered in relation to this

mapping it becomes unfeasibl-e (section 5.4, and section 6.2, .^hapter

6).

It will suffice at this stage, to understand the importance of

the cAV in the solution method. They not only define all feasibre

mappings for each row of R, but also indicate unfeasibilities in the

manner described above.

Before the bijection generator is discussed, the CAV

algorithm wil--L be given. This al-gorithm will be shown to

inadmissible el-ements f¡om the CAV and is used extensively

algorithms of chapter 6.

red uc ti on

rej ect

in the
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i.3 CAV REDUCTION ALGORITI.IM

The CAV reduction algorithm considers the CAA associated with

a row of R and reduces inadmissible elements (see below) of the

CAV to zeto. This algorithm resembl-es a simil-ar reduction aJ-gorithm

of J. Cisma ( g) in an earlier publication on school timetabl-e

investigations.

DEFINITTDN 5.1

An Elgi==ib1e el-ement Df,, (ri¡ )

l+of the CAA Ai, is an e-l-ement

that can be included in a feasibl-e mapping Ai with respect

to row Ri of R.

Dthe¡wise the el-ement is said to be inadmíssible.

The rejection of inadmissibl-e elements is accomplished in the

following steps. Consider the k-combination of CAV for row R1 to be

¡*{rij1), ¡*(rijz) ... n*(ri¡O) and the logical- union of the CAV to

be given by 2-

¡*(rijt ) ., A*(ri¡r) v ... ., R"("tjt)

t+s
1

8*2

E*P

when at least one required resource vector
of the k-combination is available for assig-
nment to time-period j

of herwise

where

g*j

0
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The reduction algorithm is presented in 3 steps. An example

is given after the 3rd step to cJ-arify the reduction techniques.

Step 1

The location of teacher-class set requirements for row Ri.

The fol-lowing algo¡ithm is applied for the rejection of in-

admissible elements.

TC.1 Set j = 'l (the co¡-umn number)

TC.z If rrrn C=Ô gotoTC.3

else goto IC.4 (whe¡e C is the set

of c.l-asses at the school-. This

TC.3 j j+1 ifj>

TC.4 Set Afl A* (rrJ

locates a teache¡-cl-ass set)

p exit from algorithm ;

else goto TC.2

the CAV of the required resource

set AIt ¡r(rij'), it = j+lAil u

with jt = jr+1

vector.

TC.s Set j

class

TC.6 if ¡ t

TC.7 if ri¡ | = rij

goto Tf,.6 ;

else goto TE.6

| = 1 now locate all- other involved teacher-

sets of row R1 that are the same ãs r¡ ; rJJ

> p goto TC.8 i

rt=" n"a" tt.t

TC.8 Incl-ude class Ci in the resou¡ce vector

x.
r-J

ciu x..
r_J
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TC.9 Locate other ¡ows related to this teacher-cl-ass set

requirement

il = 'l

TC.10 if i' - i goto TC.12

else if Ci r E

TC,l 2it =it+1 ; if i'> m

(ri¡ 6 c) soto T0.13

rll - 0 i.e. consists

goto

e.l-se

Arrô Artr ; goto

elSB

commoh available

TC.19

goto TC.1 0

of p zero elementsTE.1 3 Set A

TC.14 Set j

T0.16 If

TC.1Z ¡ t

TE.1B If

I =1

TC.1 5 Determine aIJ- resource vectors of row R that are

involved in the teacher-c1ass set

*t.irjr rit jtv Cil

I

- -:_J

goto

IIir j r , set Arrr - Atrr!, A*(rir¡r) goto TC.1 7

else TC.17

j '+1

jo t Þr set Arr = TC.12

goto TC.1 5

time-periods for

set.

i.e., determine the

rows R1 and Rir for the teacher-class

TC.19 Reduce all CAV of Ri that a¡e associated with the

teacher-class set vector 11¡

A*(ri¡) = A-

TC.20 Set jr = 1

TC.21 If ri¡ r = =ij set A*(ri¡ r )

alse goto TC.22

An
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TC.22 jt = jr+1 , if j'> p goto TC.3

else goto TC.21

The above step J-ocates a teacher-c1ass set requirement in ¡ow

Ri of R (stage TC,2). It then determines aII rel-ated resource

requirement rows (classes) and calculates the common avail-abl-e time-

periods, storing them in ãî in stages TC.5 to TC.18. In stages

TC.1 9 to TC .22 the CAV of aII requi¡ed resource vectors of row R1

that invol-ve the teacher-cl-ass set are reduced. 0nce teache¡-c.l-ass

set requirements for row Ri have been considered btock-periods must

be investigated (step 2). An application of the complete reduction

algorithm will be given fater in this section.

Step 2

The

Ri.

The

to

ER.

investígation of block-period requi¡ements for row

nonenclatu¡e BR wiI-l- be used for the algorithm relating

bJ-ock-period requirements .

1 Set the block-period size

b=1

BR.2 Set column indicator j = 1

BR.3 If required resource vector ri¡ is in a bl-ock-period

size b goto ER.5 i

ER.4 j = j+1 , if j > p

BR.5 Locate all resource

else goto BR.4

goto BR.1 3

else goto BR.3

vectors rifir r rlnrr such that

ri j r rinr, riTlrr , .. .. are in the block-period
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requirement.

.6 Fo¡m the logical union of their assocj.ated CAV

to give the time-periods availabl-e for assignment

A - 4+ (ri j ) u A* (rin, ) u A* (rirr,, )

BR

(note that there

where

Ar

BR.7

BR.B Now determine if

will be b vectors in thís union )

o1 t

['
2

BP

locate block-period size b sta¡t positions in col-umn

b of BS array (see section 4.5, chapter 4)

El1 tt

Dz"

n56 n ã-'

s

il
where li; r = 1 indic ates j I is inc l-uded in the avail--J

abl-e time-periods for the block-period.

the periods j r+1 , j, +2, , j r+b-1

are also available

If ej 1 fo¡m 0i
J

tn 0¡ r+1 n n gj 
'+b-1
il

lt
P

lt
I

ER.9 If the Ìogical inte¡section 1 then a1I time-periods

ãj
il

henc eof the block-period a¡e available and



is a feasibl-e

If zero, then

BR.1 0 final-Ìy only feasible

remain. If only one

must be reserved for

if

start positions

¡emains then the

this block-period.

1 then goto BR.1 1

else goto ER.4

= A* (rin r ) = A* (irrrt ) =

E2 = = 0jt-1 = 0

114 .

n¡i = 1 witl

time-p eriods

jr+b-1 = 1

-no=o

time-periods fo¡

r;tart-period f or L¡l-ock-size b.

0lr not feasibLe and is reset to
J

zero. This step is carried out for each sji

p
v
-1

It
ll=8j

jtt

8R.11 Define A*(r1¡')

such that E1 =

ojt = I j '*1 ..... = B

Ejt*b =

i.e., reserve the

that block-period

BR.1 2 Then goto BR.4

8R.13 Set b = b+1 ; if b > 5 exit from the algorithm

else goto BR.2

Ïhe above section of the reduction algorithm locates the bJ-ock-

period requirements in Ri (at stage BR.3). If a bl-ock-requirement

is located then an investigation on feasible positions within the

so.l-ution are conside¡ed in stages BR.5 to 8R.10. If it is found that

the block-period can only be assigned in one position (nn.t0) the

time-periods invotved arè rese¡ved for the requirement (stage 8R.11 ).

AI1 bl-ock-period sizes are considered for b = 1 to b = 5.

oj'*b*1 = ""'

only b feasibl-e
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Step 3

The next step involves the location of critical bLocks

(section 2.6, chaptex 2).

A critical block is a k-combination of CAV such that their

union contains exactly k, one digits. They are not rel-ated

to block-periods, that define consecutive time-periods for

a requirement of the timetabJ-e problem. During this 3rd

step HaJ-lrs condition is also checked, to ensure that a

feasible mapping exists for row R1. (see sectíon 2.6,

chapter 2 ) .

The nomencl-ature HC wí11- be used for the algorithm relating

to Hallrs condition.

HC.1 Set k = 1 (the size of the k-combination )

HC,.2 Have al} k-combinations been conside¡ed?

If yes, goto HC.9

HC.3 Form the logical

í.e., R*(ri¡, ) u

; else, continue.

union of the k CAV in the combination,

R* ("ijz ) U A*(r.: r. )
'JK

U

p

L
j=1

HC.4 If 0j* ' k Hall-rs condition is violated and no

solution for the row R¡ can be determined.

Thus the back-track algorithm of section 6.4, chapter

l-ater )

91*

o2*

oP*

6 is calIed. (see
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HC.s else if Bj* k a critical block has been found

HC .6

and the k available positions for a1l_ocation must be

reserved for these k resource vectors of the defined

combination.

From l-emma 2.6.3, the critica-l- block elements may be

del-eted f¡om elements of the CAV not in the critical_

bJ-ock without vioJ-ating feasibil_ity conditions for the

problem.

Assume the 1rs occur in positions

sj1 g

p

x
=1J

{- lÊS.' rJk
*

t iZ' ' "" t

indicating time-periods j1 I , j2t , ...

required resource vector r1r, such that

linl {rij1 , tíjz , rijk}

set A* (ri.,r) = A* (rin) n F'

HD.7 If any A*("ln) is such that

jkt for each

si
E*

2

E*p

ln*t"rrrt I
0

i.e., no assignment positions remain for the vector

r1r, after the reduction then no feasible mapping can

exist for Ri. Once again the back-t¡ack algorithm

is required and will be discussed in the next chapter.
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HC .8 eJ-se goto HC .2

HC.9 k = k+1 ; if k ¡ p, exit from CAV reduction algorithm

else goto HC.2

EXAMPLE 5.2

Consider the following timetab-l-e problem with resources

C1, C2, C3, t1, tZ, t3, t4 and resource availability array

t1

Resource

t2 t3 t4 C1 C2 C3

A

time- 2 1

period 3

The resource requirement array is defined by

R=

(C2,t1 ¡t2) (C2,t1, tZ) (t3)

(C1,t1,t2) (C1 ¡t1 , t2) (t4)

(t3 ) (t4 ) (r4 )

The bLock-period array associated with R is given by

2 2

B L

1

where bi¡ indicates the bÌock-period size of activity rij

of R.

í.e., activities r32, r33 rñust be assigned in a bÌock-

period size of 2. in the solution, whilst activity 113 is

a bl-oc k size 1 .

2

2

2
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The foll-owing CAA are calcul-¡rted f'or eaclr row of R.

Ai

111

1l'l
^ä

111

't11 Aä

111

111

111

I

1

1

1

The row R2 of R wírr be considered to be the present ¡ow for
assignment. The DAV ¡eduction steps now begin for i = 2 (row 2).

J 'l ' î21 ñ {tr¡, C2, C¡} I þ

hence a teacher-cl_ass set requirement axists

in this position

5. ir = 1

2. set ¡-ÎÍ = A(rZj )

21

3. set jr - 1 x2,l = t21 hence Ail

jf=2 r2j=r2Z hence Ail

j' = J r21= 'zz

= C2 u { C1, t,l,

c1 E{c1, ct

4. set r

no action

tù ={c1, cz, tj, tù

hence ¡ow 1 (ctass C1) is

1

1

0

1

1

I

u
1

1

1

1

1

1ljl,lll

related to the teacher-class set

so set Aìrt 0

0

D

0

1

1

1

1

1

1

jr = l Ar I I

v
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j' = 2 Arlt

flfl[]
the avaíl-able time-periods for row 1 teacher-class

set has been calculated.

ir = I not considered since that is where we found

the teacheÌ-cIase set

it = 3 is not invol-ved.

6. set Alr Arr fì A I I I

[][][]

7.

this gives the resultant common avail-ability for all

the teacher-cl-ass set CAV. In this case no reduction

has taken place since they were all availabl_e for the

same time-periods.

Now consider block-periods (remember ohly row R2 is

being considered ) .

b=1

j = 1 no block síze 1

j = 2 no block size 1

j = 3 rr3 has.block size 1

8.
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120.

no l-ogical union of resource CAV is required since

rr3 is the only required vector invol_ved. .

Ar

lll
Define 111

100

100

B5=

where a

size j t

Thus

1 in position (it, jr) implies that a block

may begin in time-pe¡iod i' .

E5

Lll
the first co-l-umn of BS indicatíng al-l feasible start

periods fo¡ a block-period size 'l (namely aLf 3 periods

a¡e feasible )

Hence

and

855.n At

€-j
3

x
j tt=1

-ãIt-J

and no rese¡vation is nBcessary.



121 .

10. set b = 2

"21 has an associated block-síze 2 from B, (2, 1 )

The othe¡ required resource vecto¡ in this block-

period ís r22.

form A I A* (r21 ) u A* G22)

henc e

ESz

lll

|il

[J
B52n Aî =

3

ì"
-1jtt

Ejtt 1

and hence a resêxve situation exists since no other

position for the block-size 2 can be found.

Thus perÍods 1 and 2 must be reserved since flt = f

-ll -ilE1*z-r= E2 = 1

E3 = 'l is redueed s3

|J

H enc to

The outcome is thus A* (r21) 
=

Ax Gzz)
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After steps 1 and 2 are completed the CAA for row R2

r-s now

111

111

001

Step 3 is now applied

11. set k = 1

There is no k-combination of size k 1 such that

Xnj=1 orXEl< 1.

12. set k 2

Ïhere is a 2-combination of r21, T22 such that

2

i.E.¡ the two column CAV have only two available time-

periods when considered together, namely time-periods

1 and 2.

Thus there must be reserved for the requiled resource

vectors r21 r t* and del-eted from rr3.

Hence A*(r ) becomes
23

The CAV reduction algorithm is now completed for R2 of R and

3rEi
j=1 J

0

0

the resulting CAA is



required activities.

The arrangement stage is incl-uded

al-locations are investigated early in

a bl-ock-size 4 is more difficult to

than a block-size 2 since there is

1.'3.

so that the more difficult

the generation stage. i.e .,

pJ-ace in the sol-tttion array

less fl-exibiJ-ity for larger bl-ock-

lf
A 2 110

001

From the above simple example it is evident that the CAV

¡eduction algorithm has an important pJ-ace in the timetabl-e problem

in the reduction of unfeasibl-e sol-ution positions for the required

vectors. The bijection generator, discussed in the next section of

this chapter, uses the reduced CAA to generate an assignment mapping

for R2.

5.4 THE BIJECTIVE MAPPING GENERATOR

The DAV have been reduced by the tAV reduction algorithm (section

5.3), and it is the purpose of the bijection generator to generate

a feasible mapping for the assignment ¡ow. It is divided into two

stages.

(a) Ihe arrangement

descending order

of the required resource vectors into a

(b) The generation of

of bl-ock-period sizes.

al-l-ocation positions for each of the

period requirements.
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For the row R to be assigned the following arrangement stage

is applied.

AR .1

AR.2

AR .3

AR.4

AR .5

AR .6

AR.7

AR .8

Set k = 1 (sequence order indicator)

Set b = 5 (the block-size indicator)

if b = 0 exit from this stage of the procedure

else goto AR.B

Forj=ltop

if ri¡ is not a block size b or has been considered

set j = j+1 and consider next 11¡

else goto AR.5

Set requirement resource vector o¡de¡ indicator to k

For resource vectors riï,, ri.¡¡,,, ... incl-uded in the

bLock-size b also Bet oxder indicator to be k.

k = k+1 , goto AR.4

b = b-1 , goto AR.3

Now each required activity has been assigned an order number.

each required resource vector areThe image allocation

now determined. The

assignment beginning

working through until

resource vectors are investigated for

order '1 and

positions

required

wíth the

for

vectors flagged with

aIl- have been all-ocated a sol-ution position.

G.1

G.2

Set I = 1 (the generator resource vector indicator)

Set ICT(1)= ICT(2) = 0

to be resource availabil-ity used by the generator

If l- = k ; exit from generatorG.3



G.4

G.5

G.6

G.7

G.8

G.9

G.10

G.1 1

G.12

G.13

G.14

G.15

G.16

G.17

G.1 I

G .19

G.20

G.21

125.

Set start period imerge 5TS(l) = 1

Set End period image ETS(I) = 0

set IL = STS(I)

If IL> p , goto G.17

If 1 = 1¡ ICT(1) = ICT(2\ = O, goto G.10

ICT(1) = rCT(r-1 )

Determine ¡emaining start periods for resource vector 1.

IST = (sta¡ts fo¡ I) n (- ICT(]))

Determine if IL is a legal start

If IL é lSl goto G.16

SetETS(I)=IL+b-1

For each resource vector in block dete¡mine image in range

5T5(t) to ET5(1). If no image goto G.16

For J1 = ST5(r) to EIS(I)

ICT(I) = ICT(I)u J1

f+1+1rgotoG.3

IL<-IL+1rgotoG.7

l+r-1

If I = 0r exit ; no maPPing generated.

STs(I)=sTS(r)+t

If ST5(l-)> p goto G.17

goto G.6

EXAMPLE 5.3

Consider the problem quoted in example 5.2 where
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R

where (CZ, t1 ,

allocated in a

period 1 .

(CZ, t1 , tZ)

(Ct , t1, tZ)

(t3 )

rz) is a

block-si

(cz, t1 ,

(ct, tt,
(ta )

tz)

tz)

(ts )

(ta)

(ta )

teacher-cl-ass set and must be

ze 2 Lhat may only begin in start-

The CAA for row R2 has been reduced in example 5.2 to

A;=

'l 1

11

00

0

0

1

This composite avai-l-abil-ity array indicates 12 1 may be

allocated to time-periods 1 or 2, T2Z to time-periods 1

or 2 and rr3 to time-period 3 only.

Thus the only feasible mappings for row R2 are defined by

this CAA.

The generato¡ now orders the requirement vectors for row

R2. Using algorithm specified by the nomencl-ature AR,

Set b = 5 - no block-size 5 requirements

b = 4 - no bl-ock-size 4 requirements

b = 3 - no block-size 3 requirements

b = 2 - have block-size 2 ín positions r21 r

rzz

Thus r21 , rZZ are both flagged with k = 1

- no other block-size 2
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have block-síze 1 in position 123

that 121,

second .

Thus rrt is flagged with k = 2

Hence the order of generating the mapping is

r, must be allocated first, fol-lowed by 12¡

PictorialJ-y, an assigntnent stack ( queue ) exists as f ol-f ows

2 r23

TZ1, 122

The sta¡t-períod for stack-position is 1

0

0

srs(1 )

Hence alfocation positions for r21 r r22 is produced as

1, 2 respectively, i.e.,

[] 
.'. 

L

thus using time-periods indicated as available by R) to"

T2j, 1ZZ. l¡Je note that the mapping could feasibly have

been defined such that r21 was mapped to time-period 2 and

r22 to time-period 1.

Thus time-period 3 ¡emains for r23, i.e.¡

Hence the mapping

0

2

2
(

3

32



¡

(Note the mapping

^z = () î 3,

woul-d also be f easibLe . )

For each block-period size, in descending order, the generator

determines avaiLable image positions for the required resource vecto¡s.

Figure 5.1 is a tree structure, used to indicate the procedure of

the CAV Reduction AJ-gorithm and the Bijection Generator.

images to" 
"i.,,

images for r'

r.-
AJ

ri4

Figure 5.1

-Lree structure of Biiection Generation

The CAV reduction aJ-gorithm rprunesr the branches of the tree

by reducing

of the t¡ee

images for the associated resource vecto¡s. Each node

is associated with an available time-period for each

of the resource vectors of row R1 of R.

node 1 is for resource vecto" ri1

is for resource vector r.,node 2

node 3

node 5

and 6

, 4r 9r 7 is for resource vector r

I is for resource vecto" "i4

i3
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1Q indicates arì un f inis;hed nrapping .

I n this examp-ì-e of Figure 5 .1

(through nodes 1-2-4-5, 1-6-7-B) .

¡educed alJ- infeasibl-e images for

vec tors f rom avail-abIe

only two successf uJ- mappin,l s exist.

The CAV reduction algorithm h¿¡s

each resou¡ce vector and the

the resource

to

bijection generator attempts to determine, from the remaining images,

a feasible mapping.

Steps G.6 to G.11 are the selection of images for

al-l-ocation positions . Step G .1 7

indicate a route like 1-2-3 (an

avaiLabl-e for rr4. Hence a new

hence the feasible mapping (with

unfinished mapping ) with no

sel-ection r* is made (node

to R ) of 1-2-4-5.

G.21

r-m ag e

4) and

The

selection principle is equivatent

in chapter 2, section 2.6.

resp ec t

to the sel-ection of an 5DR, described

The o¡iginal bijection generator was a permutation aJ-goritlrm

described bv lnlerrs (55) catred the Johnson-T¡otter argorithm. Al-l

permutations of images were produced and checked against the CAV's

for feasibility. It was found that the time invol-ved with the

production of infeasibl-e mappings (discussecl in chapter 7) increased

as the method proceeded. The new gene¡ato¡ just described is more

efficient, and incl-udes an important time saving, since the

production of infeasibre mappings has been reduced fo¡ each row.

ïhe forrowing chapter discusses the ¡er-ationship between the

Impli-cation Algorithm, Back-track procedure and the two aJ-gorithms

of this chapter"
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THE IMPLI CAT I ON ANI] CK-TRACK AI G ORITHMS

6.1 INTRODUCTION

The

( section

CAV

5 .3,

row of the resource requirement array. F¡om the ¡emaining aclmissibl-e

e-Iements, a feasibJ-e mapping was generated by the bijection mapping

generator (section 5.4, chapter 5). It is the purpose of the

implication al-oor it hm (section 6.2) to consicle¡ the effect of this

reduction algorithm re j ected inadmis sib.l-e

chapter 5) from the CAV associated with

the unassioned required resource vecto¡s of

The common.resources that are required in

e-l-entents

an assignabl_e

the require-

both the

maPpl_ng on

ment array.

u na ss ign ed

¡ow are the

cations are

activities and the assignabre activities of the essignment

cause of first order impJ-ications. second orde¡ impri-

rel-ated to the unassigned vectors themserves, and wirr_

be discussed in section 6.2

The reduction stage of the imp,-ication al-gorithm is more

extensive than that of the cAV ¡eduction algorithm. Facto¡s such as

teache¡-crass sets, block-periodsrfixed-time-periods, and critical
blocks (section 6.2, chapter 6) must be conside¡ed in relation to

the remaining activities and avairabr-e assignment positions. It
wirl be shown that new criticar. b-r-ocks are produced by the impri-
cation algorithm, and must be considered in relation to the remain-

ing allocation positions . Ha-l_Irs condition (section 2 .6 ) has

important applications in this algorithm.
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To consider every imprication caused by a row assignment wour,d

not be economicalJ_y feesible even with the usg of a high speed

computer. Hence the probrem was considered in two stages. Fi¡st
the ¡ow that present the most difficur-ties for assignment were

conside¡ed early. To dete¡mine the measu¡e of difficuì_ty a heu¡ist IC

precede nce aloor thm designed and has been discussed in sectionWAS

6'4' The algorithm attempts to dete¡mine the most difficur J_t row,
not yet assigned, and supplies details to the bijection generator
(section 5'4, chapter 5). Two important erro¡ detection devices
were produced fo¡ the heuristic aJ-gorithm. They a¡e the clash
mat¡ix (section 6.5) an¿ ¡esource l_oad mat¡ix (section 6.6). Both
have a practicar apprication in the schoor timetabre probrem

sorution and extensive use has been made of them in the craigmore
High School probrem in chapte¡ g. second a back_t¡ack alo ithm
(section 6.3) was incorporated, to ¡etrace to previous assignment
stages when an unfeasib.r-e situation was reached. This aJ-gorithm

can be fo¡ced to consider every feasibre bijective mapping at any

stage by rejecting them through the implicati_on aJ_gorithm. It wirr_

be shown rate¡ (section 6 .3 ) that the so-r-ution method is exhaustive,
and is capabre of producing every arrangement of activities.

Finally, the assiqnment alqo¡ithm (section 6.7) is discussed.
If the impJ-ication argorithm dete¡mines that no infeasibirity is
caused by a generated mapping, then the row is assigned, and ar_r

data ¡erevent to the assignment is sto¡ed. The function of the
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algorithm is, in general, to store data in order that the back-

track argorithm may later ret¡ace to any previous stage as

required.

The ¡eJ.ationships that exist between the algorithms discussed,

are indicated in Figure 6.1 below :-

Yes

A bJ-oc k-dia grarn of
relationships between
the various sol-ution
algorithms.

PR INT
SOLUTION

ANY

ETO
55I GN

MOR
A

ASSI GNMENT

ALGOR I THM

BACK-TRACK

ALGOR iTHM
FEASIBLE
MA PP I NG?

ANY

IMPLICATI O

ALGOR ITHM

BIJEC TI VE
MAPPING
GENERATOR

IU

ALGOR ITHM
ECEDENCE

READ
DATA

No
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6.2 THE IMPLICATION ALGORITHM

Conside¡ that the rows R1, RZ, , Ri-1 have been assigned,

using bijective mappings A1, L2, ... , Ài-1 produced by the bijec-

tive mapping generator of section 5.4, chapter 5. The next row R1

of the resource requirement array is next to be assigned. The

bijective mapping generator generates a mapping 
^i 

that is feasible

with respect to row R1 (1.e., maps the resource vecto¡s of R1 into

available positions in the corresponding solution row Si). The

function of the implication al-gorithm is to determine the impli-

cations of this assignment of ¡ow Ri on the ¡emaining unassigned

resource vecto¡s of rows Ri*,¡ , Ri*Z, , Rm. This is accompJ-ished

through the reduction of the CAV (composite availability vectors)

associated with each unassigned resource vecto¡.

There are two main stages with the impJ-ication algorithnÈ

reduction of CAV. The first stage considers the CAV of resource

vecto¡s that involve any of the resources that a¡e to be assigned

in row Ri. The period assigned to a resource within the sol-ution

row 5i must be rejected from these CAV when common resources are

Iocated within unassigned resource vectors. Fo¡ example, suppose

teacher Smith is invol-ved in an activity of row Ri and was al-located

to time-pe¡iod 2 of 5i by the mapping Âi (i.e. the resource vecto¡

containing Smith is alLocated to the second.position in row 5i).

Then Smith is not available for time-period two in any future

assignments, and the time-period 2 is rejected from each CAV of
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the unassigned rows that involve the resource Smith. This reduction

may be complex' when teacher-class sets are involved.

The second stage of ¡eduction occu¡s when conside¡ing the

unassigned requirements. For example a resource vector with only

one remaining assignable time-period in its CAV must be assumed to

be temporarily allocated to that time-period. Hence further

reductions may occur amongst the unassigned CAV.

If any CAV is reduced to ze¡o (no remaining alJ-ocatabl-e time-

periods for its associated resource vector), then the mapping 
^ I

is said to be infeasible with respect to the unassigned rows of R.

Hence it is possible for a mapping A 1 to be feasible with respect

to ¡ow R1 but yet be ineligible for use because it is found to be

infeasible with respect to the othe¡ rows of R.

ïhe second reduction stage of the algorithm is equival-ent to

Iocating critical blocks (chapter 2, section 2.6) within the CAA

(composite availabiJ-i-ty arrays ) of the unall-ocated rows of R, and

investigating the implications of the c¡itical blocks. This process

is demonst¡ated in the following example 6.1 .

EXAMPLE 6.1

Consider the CAA associated with R2 of a timetabl-e

problem whe¡e



R*(Rz)

demonstrates a critical block of size

resource vectors 121 r r22 and r23 since

for assignment,

1110
1011
0111
0001

135.

3 occurring

there exist

d ete¡mined

This

fo¡

onJ-y 3 availab-Le positions

f¡om

A* (r21 ) u A* (r22) v A* (r23 )

[]
Thus the 3 time-periods must be ¡eserved for these resource

vectors. Hence they must be eLimineted from the CAV of

r24 to leave

A* (r24 )

which itself is a

From Lemma 2.6.3

critical block.

the above reduction is justified since it

does not affect the feasibility of the CAA (reduction of

inadmissible el-ements for r24) . J. Cisma ( 9 ) has shown

that the rejection of inadmissible elements does not cause

Ha-l-Irs condition to be violated.

0

0

0

1
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Beside critical blocks, sometimes cal.Led rtight situations ,

the practical requirements of the school timetable probJ-em must be

considered. e.g. teacher-class sets. For simplicity, the

imp.ì-ication algorithm will be discussed in stages with examples

given at each stage to demonstrate the reduction carried out.

Staoe 1

-

Reduction of CAVts that are related to resource vecto¡s

(unassigned), that involve common resources to the

assignable row Ri of R.

Assume the mapping generated for Ri is 41, described by

A. =].

A.
J.

(ô 1, ô 2, ô 3,

3
ô 32

From the theory of section 2.4, chapter 2, the mapping is characte¡-

ized by the permutation

d fo)
2
6

... , ô
P

The

Iesourcts

Si. The

position

resource vectors of Ri are r.1 , Tl2, r.
r-p

Hence the

vecto¡ r.rJ
resources

is mapped

involved in

l. tor alL unassigned

ô.
J

into position of the solution row

r. must be made unavailable for1J

resource vectors that a.Lso require

algorithm rejects all-ocation positions

vectors.

these resources. ïhe following

for involved required resou¡ce

51 .1 For each resource F e "ij do the following steps

51 .2 Set i.¡ 1 to be row counter.

i1 +151 .3 If row i1 assigned set i1
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BÌse : goto 51 .5

51.4 If i1 > m exit from stago 1

else : goto 51 .3

51 .5 If i = ., set i' = i,t f 1, goto 51 .4

else : set j.t = 1 to be column counte¡

51 .6 tt =t., j, is ¡elated to r1¡ through a teacher-class

set, set al-I elements of A*("it j.' ) to zero except

the ô¡-element set to 1 . goto 51 .7

else : goto 51 .9

51 .7 j1 = i1 +'l

51.8 If jt > p i1 - i1 + 1, goto 51.4

else : goto 51 .6

51 .9 Delete element ô¡ from Ax(ri,,¡,, ) if B E ri¡ and

F e "i.,j1.

else : goto S1.7

51.10 If A*(" rjr) = 0 ; the mapping A1 is not. feasible

with respect to row i1 of R.

else : goto 51 .7

The above algorithm stage 1 is appJ.ied for each resource B t "ij,
for j = 1r 2, ..o , p thus deJ-eting the al-l-ocation positions from

future mappings (since const¡aint 1 states that a resource must not

be allocated to two un¡elated activities during the same time-

period).
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If the activity is reLated through a teache¡-class set to an

activity in row i,¡ of R then the activitV ri1j1 must also be

allocated to time-period ôj (see teacher-cl-ass set requitements,

section 3.2, chapter 3). This step is contained in step 51.6 of

the algorithm. If the activities are not related then steps 51.9,

51.10 are applied.

mapping for row R1 must

CAV is reduced to all

respect to this row i1

be generated.

Staqe 2

bJhen aLl first order implications have been considered in stage

1 , the second o¡der implications are investigated. These are onJ-y

in rel-ation to the unassigned resource vectors and the effect that

the mapping Âi has on them.

Stage 2 is treated in 3 steps. First the CAV reduction algorithm

is applied to each unassigned row of R to reject any inadmissibl-e

elements brought about by the mapping At through stage l. Second,

the single available CAV a¡e treated and the implications of these

considered.

It will suffice, to briefly mention this first step since the

CAV reduction algorithm has been extensively discussed in section

5.3, of chapter 5. The reduction is appJ-ied to each unassigned row

In step 51.10 if a

is not feasibl-e with

zeros then the mapping

of R and anothe¡
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of R in turn to ensure that each ¡ow of R is stilt feasible with

respect to thei¡ required resource vecto¡s. The speciaJ- require-

ments such as teacher-cLass sets, and block-periods a¡e also consid-

e¡ed in this algorithm. If some requirement can not be met the

implication algorithm causes another mapping to be generated for

row R1 and the implication algorithm begins again at stage 1 . 0the¡-

wise the next step in stage 2 is considered.

Any CAV, not assigned, with a

the indicated time-period rese¡ved

vector.

single non-zero el-ement must have

for the associated resource

i.e. if the¡e exists a CAV, A*(ri1j.¡ ), such that

v'/here ni, = l

is the only non-zero elernent, then time-period jr must be rese¡ved

tot "t.,j., '

In essence, this is the same as temporarily assigning the

resource vecto¡ =itjt to the time-period jt using a mapping À1.,

h,ith ôjt = if. Hence, for this single required resou¡ce vector

"itjt we can use the algorithm of stage 1 with $, = j'. This

algorithm wiII del-ete the e-ì-ement jr from each unrelated resource

vector CAV, that involves any of the resources F e "itjt.

p

IST
j=1 J
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A simple example wil-I now be given to demonstrate the functions

of the impJ-ication algorithm.

EXAMPLE 6.2

Conside¡ the problem where

classes C = {C1, C2, C:}

teachers f = {t1, tZ, t3, t4, tS, tS}

othe¡s 0 = {e2, e4, 0S}

The composite availabiJ-ity arrays (CAA), associated with each

row R1 of R we recal-I, indicate the availability of the time-periods

for assignment of each resource vector of Ri. The col-umns of A*1 are

associated with the corresponding resource vecto¡s of Ri where the

1 st column indicates the availability of the time-periods for ri,, r

column 2 for r; , etc.t2

Assume the three CAA for the above requirement array R are given

as fol-l-ows :-

fl =

where the school resource

(C2¡ t1 , tZ)

(Ct, tt , tZ)

(t2)

(t3,

(t6 ,

(t4 )

"z)

"z)

(t1, "¿) 
(t4, e4)

(t1, u¿) (-s, 
"z)

(t¡, "z) (t¡, os)

set E consists of

indicatin g complete availability

of every time-period for a.Il resource

vectors of R1 .

Ai

1111

1111



i.e. columns 3 and 4 of

(3, 4) and (4, 3),

141 .

indicating for row R2 that the re-

source vector 123 is not avaiLab.l-e

fo¡ time-period 4, and r24 is not

availabl-e for time-periods 3 and 4.

Aä have zero elements in positions

(a, I ) respectively.

1

oä= 1111
't 110
1100

A*
3

1111

0111

1

11

indicating resource vector 131 is
not avail-abIe for time-periods 3

or 4.

0

Since the fixed-period requirement al-.1-ocates time-periods 2 to

resource vector r31 r this time-period is not availabl-e to any of the

other resource vectors of row R3 (since no two activities of a cl-ass

can be allocated to the same time-period ) . Hence it is

to ¡emove time-period 2 from the other resource vector

in order,

availabilities.

Thi s

(2t

is done by rejecting the ones in

4) of A! associated with the row

positions (2, 2) , (2, 3 ) ,

R3 resource Vectors. Furthe¡

be aJ-Iocated to the 2nd time-assume that resource vector 131 must

period.

i.e. the fixed time-period mapping of section 4.5, chapter 4

is such that

0

0

0

0

0

0

0

0

0

0

0

2

F
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thus making aJ-l time-periods inadmissible except the

that the CAA also include any restricted time-period

any resources of the school in the same way. (i.e.

of CAV).

Thus A$ becomes

Any fixed time-period can

by reduction of the associated

A*(13l ) from

142 .

be included immediately into the CAA

CAV. In the case above, we reduce

second. Note

constraints for

by the reduction

used is the

all problem

the generation

requirements

any reduction is n*("gl ) and time-period

131 ¡ to -l-eaverequired resource vector

1

1

0

0

0111

0

0

0

0

1

1

'l

In the practical problem, the fi¡st algorithm

implication algorithm. This action is taken since

requirements can be chekced for feasibility before

of mappings begin. e.g. do the fixed time-periods

cause any infeasibility?

The only CAV causing

2 must be rese¡ved fo¡ the

ìt
3

01
10

A

11
00
11
11



143.

No fu¡the¡ reduction of R3 CAV is possible. Now the effect

of A*("¡t) is conside¡ed with respect to the other CAA.

131 involve resource t2, hence any other resource vecto¡ invoLv-

ing t2 can not be assigned to time-period 2. (from constraint 1 ,

that states that no resource may be allocated to mo¡e than one

unrelated activity during the same tirne-period 2). Hence A*(r11)¡

A*(112) both involve t2 and must be ¡educed by rejecting time-period

2.

Hence

\

1111
1111
1111
1111

111

becomes

becomes

1111

1

0

1

1

1

and

Ai

A*
2

I

1

0

0

1

0

1

111
1

0 110
0

0

No fu¡ther implications of the probJ-em special requirements

cause ¡eductions. Thus at this stage the problem is feasibre with

respect to the problem speciaJ- requirements.

Now the generating algorithm is cal-led for row R1 . t¡r/e will

assume that the orde¡ of rows to be assigned is R1 , R2, R3.

All requi¡ements fo¡ row R are single bJ-ock-periods and

thus the bijection order is r11 = 1, T1Z = 2, "13 = 3, "14 = 4.
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The al-Iocation positions a¡e indicated by Af.

The fi¡st mapping generated for R1 is

4
)

4

That gives a solution row

51 = ((CZ, t1, t2), (t1 , u4), (t4, 
"4), 

(t3, e))

The implication algorithm checks the effect of the mapping.

The teacher-crass set in 11 1 is investigated. This invoJ-ves

tZ1 since (C2, t1, t2) indicates row R, through the resource Cr.

Remembering that a teacher-cl-ass set invo.Lves an assignment to the

same time-period (in this case period 1 ) the CAV of rrl must be

¡educed.

Thus

^ I 1

3

3

2

2

1111 1

0

0

111
1110

1

111A*
2

b ecome s

110
0

0

10

0 010

Next consider the resources that have been assigned in row R1 .

Resources t1r t2 can not be assigned elsewhe¡e (except in the teache¡-

crass set requirement of row 2 ) to time-period 1 . Thus any resource

vectors involving t1 and t2 must be reduced to exclude time-period 1.

in rows R2, R3.

This invoÌves A*("ZZ), A*(r31 )
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Thus

A* (rr, )

and

Similarly for

and

becomes

0

1

1

I

A* (131 ) becomes

i.e. stays as it

excluded .

is since time-period 1 is already

Similarly the 2nd assignment in row R1 invoLved resources t1, e4

and the 2nd time-period. Hence exclude this time-period from all_

CAV in rows R2 and R3 that involve ¡esources t1 t e4.

Thus

A* (rr, ) = becomes

0

1

D

0

0

1

0

0

0

1

1

0

0

1

(tq,

(t¡,
"4)

"z)

in time-period 3

in time-period 4

l+
2

A

1

1

1

0

0

0

1

0 1

0

0

A*
3

011
100
011
0001

1

0

000

to give

01

and
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Now the cAV ¡eduction algo¡ithm considers the cAA of R2 and

R3 to conside¡ unassigned vector implications.

Consider A).

The effect of a singular in

tirne-period 1 from columns 2, 3,

A*(121 ) involves the deletion of

4 to give

Aå=

1000
0011
0010
0100

The singu.l-a¡ in corumn 2 has no effect but the singular in

column 4 ¡educes column 3.

FinaIIy

l+

2A

10
00
00
01

00
01
10
00

Thus an extensive ¡eduction has occur¡ed on

alJ- singula¡ EAV.

At is conside¡ed in the same way by

and it is left to the reader to dete¡mine

*
AZ resulting in

the CAV reduction aJ-gorithm

that Aj becomes

Aä

011
100
011
0001

0

0

0

The solution row

l-ocated with respect

vectors.

R1 is adopted since no infeasibiJ_ity is

to the mapping A.¡ on the unassigned ¡esource



The next mapping for R1 is the singular mapping, i.e. only

one exists.

NameIy

A
2 2

The mapping has the effect of reducing

2

4
4

01
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e2)

e4)

A
*
3

011
100
011
0001

J

3

4
4

3

2

0

0

0

0

0

1

0

0

0

0

0

0

0

0

0
to

and hence

^3
1

2
( 2

1

Thus the sol-ution

S

(c2,

(c1 ,

(t¡ ,

t1 ,

t1 ,

"z)

tz)

rz)

(t1 ,

(t6,

(t2)

e4)

e2)

Ds)

e4)

e2')

(t4,

(ts,

(t3,

(t¡,

(tr ,

(t4 )

From the above relatively simple example, the extent of the

implication algorithm can be seen. However, in general not every

imprication has been fuLl-y considered, since ¡eductions caused by

the second stage coul-d cause new impJ-ications for the cAV. This

is not ¡econsidered since it was found that the majority had been

sufficientry considered, and the back-track argorithm and heuristic

precedence argorithms reduce the probability that unfeasibl-e

situations wirr be caused by unconside¡ed possibilities. The back-

track algorithm will- now be discussed.



6.3 THE BACK-TRACK ALGORITHM

I¡Jith the practical

sive implications, the

This method of sol-ution

timetables that

time fo¡ testing

dísregards any

the possibility

148.

have featu¡es with exten-

woul-d be considerabl,e.

fu¡ther irnplications of the

of an infeasibl-e situationrows at the expense of

arising. To minimise

a heuristic precedence

discussed in the next

the possibility of infeasibility occurring

algorithm was incorporated. This will be

section.

consider that the i-th stage has been reached and that the

imprication routine indicates that no feasibJ-e mapping with respect

to the unassigned resources of R can be determined fo¡ R . The

aJ-gorithm ¡ecreates the situation before the previous stage mapping

was assigned and a new mapping for stage (i-1 ) is produced. If

no more mappings ¡emain fo¡ (i-1 ) then a revision of stage (í-2)

is made. If stage 1 is reached by the back-tracking argorithm,

and no mapping can be generated f or this stage 1 , then a l.l- f easibl-e

mappings for stages 1, 2, ... , i have been considered with no

resurt. Hence no so]ution can be found for a subset of rows of R

and no sol-ution exists to the problem.

It can be seen from this outrine of the back-track al-gorithm

that the sorution method is exhaustive. A fLow chart of the back-

t¡ack algorithm is given in Figure 6.2.
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No

Yes

No

No

STOP
NO SOLUTION

EX I STS

1l-
BACK

f=

Anymore
Feasible Â

i=i+1

5ï0P

CATION O.K?
IMPLI-

S OLUÏ I ON

EXISTSl-=m

Generate
Feasible A1

w.r.t . Ri

Yes

Fiqu¡e 6.2

Yes

Flow Cha¡t of Back-t¡ack procedure.
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To minimise the t^¡ork of the back-tracking algorithm it w¿s found

desi¡abIe that good mappings

woul-d have seve¡e effects on

were produced earJ-y.

other rows of R shoul-d

Rows of R that

be considered

to the construction of

6.4 THE HEURISTIC PRECEDENCE ALGORITHM

Manual- investigations have shown that diffe¡ent degrees of

difficul-ty are associated with various special requirements in the

timetable problem. The heuristic precedence algorithm makes use of

these investigations by J-isting the speciar requirements in o¡der

of difficulty. Al-so taken into conside¡ation was an objective

stated in chapter 3, section 3.4. This objective detail-ed the

desirabi-l-ity of creating the timetabl-e sol-ution considering the

uppex (4th and 5th) year lever c]asses at a school first, and working

back to the 1st year l-evel- cl-asses l-ast. using this technique has

two advantages. First, if a complete sol-ution can not be determined

due to some infeasibility in the 1 st year or 2nd year LeveJ-s a partial

result wirl- have been produced for the upper l-evels of the schoo.l-

whire corrections are made. Second, the complex teacher-cLass sets

and bl-ock-period requirements are usualLy rocated in the upper

level- requirements and are more easiJ-y conside¡ed early in the

assignment procedure.

first in an effo¡t

required. This Ied

algorithm.

to ¡educe the J-ength of back-tracking when

the heuristic precedence
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The manual techniques indicate the foJ-lowing o¡der of difficulty.

Ïeacher-cLass sets, bÌock-pe¡iods, fixed time-periods, part-time

staff in that o¡de¡. The folì-owing computer precedences were

calcuLated on this basis. It shoul-d be noted at this stage, that

precedences are recalcul-ated afte¡ each assignment stage to

faciliate the changing order of difficuJ-ty that arises due to the

availability reduction stages of the impJ-ication aJ-gorithm.

LEVELS

L1 Teache¡-class sets with bl-ock-periods involving

these sets, block-periods outside the sets, fixed

time-period (singular avail-ability vectors) and the

extent of teache¡-class set row invo-l-vement.

e.g. a set invoJ-ving 3 rows of R woul-d be conside¡ed

before a 2 row invo.l-vement.

Teacher-cLass sets, block-pe¡iods, without singular

availabiLities.

Ïeacher-c.l-ass sets, with bJ-ock-periods not invoJ-ving

the sets and with singuJ-ar avail-abi-l-ities.

Teache¡-cl-ass sets with block-periods outside the

sets, without singuJ-ar availabi.l-ities .

Teacher-c-l-ass sets and no block-periods with singuJ-ar

availabil-ities.

Teache¡-class sets.

Block-periods with singular availabil-ities.

Block-periods - no singuJ-ars.

L3

L2

L4

L5

L6

L7

LB
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L9 Singular availabil-ity resources.

L10 Any remaining rows.

The l-eve.l- of precedence decreases from L1 to L1 0. In the

production of the precedence aJ-gorithm two important matrices were

used. These were the Resoutce Load Matrix and Clash Matrix.

6.5 RESOURCE LOAD MATRIX

The resource load matrix summarizes the total- number of time-

periods required by each resoutce, to meet the requirements defined

in the resource requirement array. This summary is presented in the

fo¡m of a tabl-e or matrix whe¡e entries in co.l-umn 1 indicate the

numbÊr of time-pe¡iods required and col-umn 2 the number of avail-able

time-periods fo¡ the resource. Rows are indexed by the resource

code, discussed in Later chapters. In

matrix is associated with a particuJ-ar

giving a complete picture of the tota.l-

in the timetable pattern.

essence,

d is tin ct

each row of the

resource, thus

involvement of every resource

matrix is formed for each daily timetabl-e problem, and byThe

scanning

l-oad can

each daily requirement for a resource a

be determined. It shoul-d be noted that

tal-ly of the weekly

teache¡-class set

requirements invoLve the same resources for an activity and although

involved the number of time-periods required isseveral classes

still only one.

al-located to the

are

(The only situation where common resources may be

same time-period f or dif f erent c-l-asses, see
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chaFtex 3, section 3.2)

The resource load matrix has two major uses. First it is

used to determine precedence when several requirement rows have the

same plecedence level as discussed in the previous section 6.4.

Rows that have heaviJ-y Ioaded resources will then be given a higher

precedence within that fevel-. For example, if two rows R1 and R2

are on the same precedence leveÌ, R1 invo.l-ves resoulces that have

Ioads of 6r 7 and I time-periods while row R2 invol-ves resources

with loads of 5 and 6, then row R1 will be given a higher priority.

The resource load matrix changes as the assignments are made.

The matrix in effect keeps a tatly of the number of remaining time-

periods lequired by each resource afte¡ each assignment stage.

EXAMPLE 6.3

Con sid e¡

IESOUICE

t2 is not

available

periods 3

compiled.

Resource

t1

t2

t3

t4

resources involved in example 6.1. From the

requirement array, and knowing that resource

available for time-periods 3 and 4, t5 is not

for time-period 4, t5 is not avail-abl-e for time-

and 4 the foll-owing resource load matrix is

A va ilab ility

4

2

4

4

Load

3

2

3

z
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Resou¡ce Load AvailabiJ-ity

3

2

4

4

4

t5

t5

e2

êt+

05

4

3

1

Note : (1 ) the class resources can be omitted since they

in vo.l-v edare always fulÌy l-oaded as they are

in every daily time-period.

(2) resources t1, t3, eZ, e4 are heavily committed.

secondJ-y, the resource J-oad matrix is used when no sorution can

be dete¡mined fo¡ a given problem. This is usefur for the faul-t

location of over-committed resources (i.e. over-committed for 5 out

of 4 availabÌe time-periods) and for altering loadings when errors

must be co¡rected in rno sol-ution I situations. School- administrators

use the l-oad matrix in conjunction with the clash matrix of section

6.6 fox re-allocating requirements (see chapter B, section B.¿).

The cl-ash mat¡ix wil-.1- now be discussed.

6.6 THE CLASH MAIRIX

The cJ-ash matrix is an important error detection and cor¡ection

aid, (described in detail rate¡), designed in conjunction with the

resource load matrix (section 6.5). It is constructed by the computer

program from the required activities of the timetabl-e problem (see



example 6.4) . The clash matrix is generated

Firstly, it is used to indicate activities of

that cause an infeasibility within the

will- arise when a combination of resources required fo¡

problem

'155.

for two main purposes.

the timetabÌe probJ-em

definition. This

situation

a cl-ass activity invol-ves at least one resource of each activitv

¡elated to another class.

EXAMPLE 6.4

Consider a timetable problem defined by tl-re activity

p aths

c c

,t

t5

t tZ, t3

C1, 14

c ,t

C

C1, t4

C

c3,

c3, t

The activity (1,2) detetes any possibility of an allocation of

the class C3 activities since (1, 2) invol-ves all the teecher

resources required by CS activities. Recall- that no unre-l-ated

activities involving the same resource may be all-ocated to the same

time-period (chapter 4, section 4.2). The cl-ash mat¡ix indicates

this type of infeasibility, and can be used to consider the effects

of various combinations of activities all-ocated to the same time-
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period (see late¡ in section 8.3, chapter 8).

Secondly, the cl-ash matrix can be usef u-l- f or redef inin g the

resourcB combinations identified by the computer Plogram as infea-

sible. Since the manual interaction during the timetable construc-

tion has been minimized through producing the solution by computer,

it is necessary to indicate the existing combinations of tesources

for activities so that manua.l- alterations can be made with.l-ittl-e

difficuJ-ty. A practical example of the use of the cl-ash matrix is

given in section 8.3, chapter 8. The construction of the c.l-ash

matrix wil-f now be discussed.

The cl-ash matrix is a binary array with each column representing

a distinct activity of the timetable problen. The rows of the mat¡ix

represent the same activities that are identified by the columns,

and in addition the resource e.Lements of the school resource set

are also associated with rows of the c-l-ash matrix. To cl-arify the

description consider exampJ-e 6.3. Ihe resource set E ={C1, C2, C3,

t1, tZ, t3, t4, tSÌ and the distinct activities are (1, 2), (3, 4),

(6, 71, 0, 10)r (11, 12), (13, 14). These 6 activities are repres-

ented in the cl-ash matrix by the first six rows and columns while

rows 7 to 14 represent the el-ements of the resource set E. Thus

in general, the activities ã1, ã2, ã3, , ã" u"" associated with

the fi¡st r rows and columns of the matrix whil-e the ü el-ements of

the resource set E are associated with lot^/s I+1 , r+2t ... r r+dt

as shown in diagram 6.1



activities

1s7"

ara1 a2 a3

"3

a1

o2

a

activities

BI NARY

r

¿

3

resources

AR RAY

activity (¡esource)

(is not a resource)

element (i1, jf ) is

a

set to zero. Thus a

of row i1 does not involve

of the activity of col-umn

any of the resources

j1 . 0therwise the

zero entry indicates that

be allocated to the same

Diaq¡am 6.1 : The layout of the clash matrix

The elenent (it, jf ) of the cl-ash matrix is set to 1 if the

activities of row i1 r column j1 can

time-period because they involve at

resource section of the clash mat¡ix

least one common resource. The

is included to define each

--r, and l_s

not

resource combination for the activities â1, ã2, ...

useful in assisting manual corrections to infeasible problems, such



as those described above in example

duplicationconsidered to delete the

activities require the same resource

consecutive activities described in

158.

6.3. Distinct activities are

of information when several-

combinations . (i.e. the

section 4.3, chapter 4) .

The most probable

not have a solution is

area of infeasibility when a problem does

in the combinations of resources chosen fo¡

the teacher-cLass set activities of chapter 3, section 3.2. For

convenience a clash sub-matrix was produced, and incJ-udes onJ-y

resources. ïhis sub-matrix doesactivities that

not include the

invo.Lve 3 or more

basic singJ-e teacher c-l-ass activities that do not

impose far reaching restrictions on the timetabl-e solution. The

sub-matrix is merely an option and is mentioned without fu¡ther

discussion. An exampre of a clash matrix is given in exampre 6.4

to demonst¡ate the construction invol_ved.

EXAMPI E 6.5

Conside¡ the activity paths of example

C2, t1, e4

6.1 , namely

c1 , c , t1, t2 C3'Lz

c t1, e4 c t5, ez

C ,t

C3, t3, ez

C3, t3, 05

t

,t

1B

c tÞ ,e

C +
tv

C ,t e2



(1 ,2) (3,4) (s,6) (7,8) (9,tO'¡ ltt,tZ) (13,14) (15116) (17,18) (tg,Zsl (21 ,ZZ) Row Sum

1 10(1 ,2)
(3,4 )

(5r6)

(7,8 )

(9,10)

(11 ,12)
(13,14)

(15,16)

(17,18)

(19 ,2O)
(21 ,22)

C1

c2

ca

t1

t2

t3

t4

t5

t5

01

O2

03

O4

0

0

0

0

0

0

0

0

0

0

0

0

0

I

1

1

1

1

1

0

0

0

0

0

0

0

0

0

0

0

0

0

1

0

0

0

1

1

1

1

1

0

1

0

1

1

1

1

1

1

1

1

1

0

1

1

0

0

0

0

0

1

1

0

0

0

0

1 1

3

6

5

3

5

5

5

6

4

6

6

7

7

7

I
9

B

9

10

10

11

11

11

11

0

1

0

0

0

0

0

0

1

0

0

1

1

1

1

0

0

0

0

I

1

0

0

1

0

0

I

0

1

1

1

1

0

1

1

1

I

1

I

1

0 0

1

I

1

0

1

0

0

D

0

1

0

D

0

0

1

1

0

1

0

00

0

0

1

1

0

1

0

1

0

1

0
1

I 1

1

1

1

1

1

1

1

1

1

1

1

1

I

1

0

0

I

1

1

1

1

0

1

1

0

0

0

0

1

0

0

1

ul
\o
a

1



05

e1

e2

e3

e4

(13,14)

1

1

0

1

1

(17,18)

1

1

0

1

1

(19,2O)

0

1

1

1

1

(1 ,21

1

1

1

1

1

(3,4)

1

1

1

1

0

(5,6)

1

1

1

1

0

(7,8)

1

1

0

1

1

(9,10)

1

1

1

1

0

(11 ,12)

1

1

0

1

1

c

Activities

atrix

(15 ,16]i

1

1

1

1

1

(21 ,22)

1

1

1

1

I

Row Sum

10

11

7

11

I

Note that (a) activity (17,18) is available to be assigned to a common time-period

with any of 4 other activities while (1 12) can only be allocated

with 3. (shown bY row surn)'

(b) For the resource section of the mat¡ix, by calculating (r - row sum)

load of resource a column of the resour.ce load matrix can be formed '

o\o
a
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EXAMPLE 6.6

Conside¡ the previous

section the following

determined.

Resource

C1

C2

C3

t1

t2
t3

t4

t5
t.

o

01

o2

03

04

D5

e1

ez

e3

e4

exanpJ-e 6.5. From the resource

resource load col-umn can be

Load

(11-7)

(11-7)
(11-1)
(11-8)

(1 1-e)
(11-8)

(11-e)
(11-10)

(11-10)

( 1 1 -1 1 )

( 1 1 -1 1 )

(1 1 -1 1 )

(r 1 -1 1 )

(11-10)

( 1 1 -1 1 )

(11-7)

( 1 1 -1 1 )

(11-8)

424
424
424
3:4
2:4
324
224
124
124
0:4
0:4
Oz4
0:4
124
0:4
424
0:4
3:4

Note : the ratio 1 z 4 indicates that the resource is

required for 1 of the 4 daily time-periods.

The clash matrix is produced after all the program data has

been interpreted by the computer. It is generated, along with the

resource load matrix, during the vetting stage of the computer

program. Thus anyinfeasibil-ities for rover-Ioadedt resoulces can
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be immediateJ-y determined. The principles of their use are indicated

in the following situations.

Situation 1

A ¡esource

matrix can

sets that

be deleted

has been l-ocated that is ove¡loaded. The clash-

be inte¡rogated to locate any teacher-class

involve such a resource. The resource may then

from the set, and from the l-oad matrix a suitabl-e

replacement may be chosen, thus reducing the load on the

I ove¡-l-oaded I resource .

Situation 2

A problem has no sofution. (see chapter 8, section 8.3).

The program prints the clash-matrix which is interrogated

to locate the activities causing infeasibility. Activities

or combinations of activities are located from the cfash

matrix such that cannot be allocated to the same

time-period s ,

determined.

they

thusand the cause of the infeasibilitY is

Therefore a new combination of resoutces in

such activities must be sought. By conferring with the

load and cJ-ash matrices the re-organization of the

activities can be more easily accomp.l-ished. A detailed

example is contained in chapter I to indicate such

situations.



The clash

and composition

pairs that are

time-periods.
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matrix presents

of the school activities. It indicates activity

compatible in that they may be alLocated to common

The matrix is therefore of considerable assistance

a clear indication of the extent

in the construction of new combinations of activity resources when

an infeasibility is attributed to a faulty grouping of resources.

Both the clash mat¡ix and resource load matrix are of conside¡able

benefit in the error detection and correction techniques for practical

problems and a di¡ect application is presented in chapter 8. The

connection between the two matrices has been demonstrated in

examples 6..5 and 6.6.

6.7 THE ASSIGNMENT ALGORITHM

This algorithm is the final stage of the assignment procedure.

The algorithm simply stores the solution rows determined by the

generated mappings and sto¡es relevant computer information requi¡ed

to ¡einstate previous stages togethe¡ with the ¡educed CAArs.

A flow chart combining all algorithms is given in the next

chapter when the computer program and results are discussed.



CHAPTER 7

THE COMPUTER PROGRAM AND GENERAL TIMETABLE RESULTS

7.1 INTRODUCTION

in chapter

c on tain ed

method in

The mathematical- model- of the timetable problem has been presented

sol-ution algorithms is4, and a formal- description of the

various school timetable

and 6. The establ-ishment of the sol-ution

computer program, and its appJ-ication to

probJ-ems is discussed in this chapter.

in chapters 5

the fo¡m of a

The speed of the logical operations of the compute¡ are uti-l-ized

in the investigation of the implications of an assignment (see chapter

6, section 6.2l-. The advantage that this approach has over previous

methods is in the implication and assignment techniques. From

chapter 4, section 4.2, an assignment invoÌves alI daily activities

of a class. Thus for a p time-period school day, an assignment is

the allocation of p activities of a cl-ass to the p time-periods.

The implication algorithm considers the effects of the assignrnent

on othe¡ unassigned classes. In previous methods such as those

quoted in chapter 1, an assignment invoJ-ved onJ-y one teacher-c.l-ass

activity. Ïhus the inter-rel-ationships between activities and their

subsequent implications on the timetabl-e sol-utj-on were not quickly

established when generating the solution. In this method a class

is t¡eated as an assignment unit, and all- relationships for a class

assignment are considered together with individual- activity impli-
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cations involved in an assignment. Thus the so.l-ution method Fi¡:;tl.v

detects any infeasibilities in a problem mole quickJ-y, and secondJ-y

is di¡ected toward a soLution, when one exists, without a l-arge

amount of time being wasted on undetected assignment difficu.l-ties.

This approach, through the recursive nature of the back-t¡ack

being exhaustive.algorithm of chapter 6, has the added advantage of

The program is capabte of producing every sol-ution

table problem by rejecting the last assignment of

solution produced, and thereby forcing the program

and try again.

to a given time-

each successive

to back-track

The program wil-l be used to sol-ve many sc hoof timetabl-e probf ems

in South Aust¡alia, and indeed has a.lready been used with success at

Craigmore High School (chapter 8). Therefore it was important that

running costs of the program shoul-d be kept within acceptabJ-e

economic bounds. In the final- outcome, results that have exceeded

expectations have been achieved without excessive expense. A

discussion of the method of solution is given. lnput data for the

program are detailed and binary word patterns, which are used

extensively, ale discussed. An important featu¡e of the plogram

is the packing of data within words in the computer primary storage

of the Control Data 6400 machine.

7.2 INPUT DATA

For convenience in data storage and manípu-l-ation every school-
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integer code (non-zero).

within the school-s (see

unchanged, but teachers, looms

examp-l-e of teacher codes for

Since classes already

section 3.2, chapter

and equipment must be

have such a code

3) these remain

conside¡ed. An

the Craigmore High School TimetabJ-e problem is given in

tabÌe 8.1 .

to the program in the foJ-lowingEvery activity

form. Thus for the

(Bi,Pi,

wh e¡e

mr is the

table sol-ution.

(see chapter 4,

woul-d represent

number of times the activity is

representation

Appendix B,

required in the time-

of activity paths

timetabl-e probl-em, ñi

path requiring the resources

ig presented

i-th activity the data string j-s

ß1 e f is a resource of the school and is a membe¡ of the.J

total- resource set E of the schoof for each j = 1,

2, , x. for the i-th activity.

The variable notation x is used since the number of resources

required by each activity need not be constant. The lower bound on

x is 2, since an activity must involve at -l-east one teacher and one

class resource, (chapter 3, section 3.2), and the upPer bound is o,

the total number of resou¡ces in the school-.

i.e., 2 -( x ( g for alf activities of the timetable problem.

-i_-=mrbrlpl,

In a graphical

section 4.2) for the school-

the number of l-inks in the

Ba.
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-# i= the block-period si.¿e indicator for activity i. If ;i

is greater than one, the activities may eithe¡ be required to occur

in consecutive time-periods (a bLock-period) or as singJ-e time-

period activities, separated by other activities ín the timetabl-e

solution. The indicator Ia ¿"tinus the number of consecutive time-

periods required.

f-i i= the f ixed time-period indicator. If îi = q then the

activity i must be assigned to time-period q in the sol-ution. If

g = 0 the activity i may be assigned to any time-period.

The assumptions and cont¡aints that rel-ate to the

be solved are noh/ repeated briefly for the convenience

probl-ems to

of the reader.

Every

array

activity is

in the form

represented in the resource requirement

of a ¡esource vector (see chapter 4,

section 4.3).

the resources

Hence every

Listed in the

resource vector wil-l- contain

assoc-.ì-ated data-string for

data .

2

an activity given by the input activity

Each row of the resource requirement array R is associ.ated

with a particular cl-ass resource, and each eLement of the

row is a resource vector, J-isting al-l- resources required

fo¡ a class activity. Thus for each cl-ass resource

activity i, there wifl be -ri ""=ource vectors of the

associated cl-ass row of R with the same resou¡ce el-ements.
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EXAMPLE 7.1

Consider an input activity data-string to comprise the

following :-

(301, 3oz, 10, 11 i 2, z,

which indicates that ¡esources

twice in a block-period síze 2

wiII have two resource vectors

(recall that the cLass resource

3. Fo¡ a p period day, any ¡esource

most p activities. Hence for any

x ma<. P

BÊ activity
í = 1o 2,

0)

301, 3O2, 10, 11 are required

and the activities are not

fixed to any particular time-period. The classes are 301

and 302.

Let class 301 be associated with row R1 of

of the form

assoc iated

R. Then row R1

(302, 10, 11)

with the roh/

is omitted from the resource vectors of that row).

may be required in at

9eEresource

l-

4

Indeed for the class resources, this inequality becomes an

equality since every class must be occupied for every time-

period of a dail-y time-span. (chapter 3, section 3.2).

The bl-ock-period indicato¡ of the data-string defines only

one block-period of síze )¿ Z. If ;i > Fi then aIl

activities, tñi - ¡-il in number, are assumed to have a

block-size of one. A practical limitation on bl-ock-sizes

within school-s is that:-
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t<b-i-.5 (section 3.2, chaPter 3) '

and for the data-string :-

5. The fixed period indicator must be within the range of the

daity time-span and hence :-

D < Fi -< p (section 3.2, chaPter 3)

In order to reduce ambiguity in the detaits of fixed time-

period requirements, a condition h/as inc'l-uded such that

,"hrn"ue" fa > 0 then I'i = r-i = r within the activity

data-string. Thus eve¡y fixed time-period activity had to

be separately detailed for the input data'

The activity data-strings are interpreted by the computer and a

ve¡ification routine checks that resources are not over committed

(see resource l-oad matrix, chapter 6, section 6'5)' that fixed time-

period requirements can be al-located without causing infeasibility 
'

and that the btock-period requirements satisfy the constraints

listed above. From each activity data-string th¡ee inter-related

arrays are formed. These are :-

(-)resourcerequirementarraywhichdefinesa.]-lresources

requiredforeachactivityofthetimetab]-eso]-ution

J 
-.irt)b*

6

(b) block-period array which indicates which

vectors of the resource requirement array

block -p eriod s

of the resource

are required in



(.) fixed time-periods array which indicates

vector of the resource requirement array

to be aLLocated to a specific time-period.

1 70.

any resource

that is required

obtained by referring to

which these arrays are

A1I detail-s of these

4. To demonstrate

3 arrays may be

the manner inc hapter

forned a brief example wiII be given.

EXAMPLE 7.2

Consider the foLJ-owing data-string

(101 ,

where 1 01 ,

acti vities

1O2, 11,12 ;2;2; 0)

1O2, 11, 12 axe the resources required fo¡ the

3 = number of activities = numbeÌ of time-periods

required since each activity has a du¡ation of

1 time-period

2 = bl-ock-period size

0 = ho fixed time-period required.

The codes 101, 1D2 are class codes (section 3.2¡ chapter 3)

and will be associated with rows R1 and R2 respectiveJ-y of the

Iesource requirement array. Since each activity has an associated

resource vector in R for the classes involved, then :-

Row R1 wi.l-l- have 3 ¡esource vectors of resources (1O2,

11, 12'), and
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Row R2 will

11r 12),

the cl-ass codes 101 ,

a.l-1 resource vectors

have 3 resource vectors of tesources (101 t

1 02 being omitted since they are impJ'ied for

of rows R1 and R2 resPectivelY '

Hence the ¡esource vectors

T..-aJ1 rij 
2

T..-aJ3 (1O2, 11,12) for R1

and

r2i1 = r2iz = "zi3 =

The block-period indicator must

and since Ïi ' iF there are (;i

Hence there are

(1 01 , 11 , 12) for Rt

be associated with these activities

- bt) activities of bLock-size 1 '

2 activities in a block-síze 2, and

1 activitY in a block-size 1 '

Thus the block-period array associated with R (section 4.2, chapter

4) becomes 2-

1

2

2

2

2 a.aa.aaaa

Similarly the fixed-period array associated with R becomes

B

(section 4.2, chapter 4) :-
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0

0

0

0

D

0

aaaaaaaa

F

Initially, it is assumed that every resource is available for

every time-period of the daily time-span. Hence the resou¡ce

availabil-ity array A has all- elements set to 1 to indicate the

complete availability of resources (see chapter 3, section 3.2).

Some ¡esources are not avaiLabl-e for every time-period, e.g. part-

time staff, and the avail-abitity array must be modified in the

f oJ-lowing manner.

The resource data-string indicating periods that are una va il-a b le

is presented to the computer program in the fol-l-owing form i-

(9i, i j1r i2,...)

where Bir is the resource code, and i1, iZ, .¡. êrE the time-periods

that are not avaiLabl-e for resource o
Pit '

Thus the col-umn vector associated with the resource B., must

be modified in the resource avail-ability array such that row el-ements

J1, JZ, are reduced to zero.

As mentioned in chapter 4, secti-on 4.2, block-periods have defined

start-periods tO where b is the b-l-ock-size and t6 is a mapping of tíme-

periods 1r 2r... p onto the binary numbers 0, 1 indícat,ing permitted

start periods if a period is mapped onto a 1 , and not permitted

otherwise.
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EXAMPLE 7.3

The bl-ock-period mapping

"82
0

indicates start-periods 1 r 21 41 6' 7 are legal for a

block-size 2.

1 2

1

3

0

I7
1

6

1

5

0
4
1

The details

of theprogram are

of these start-periods for

presented in the form of a

the various bl-ock-sizes

block-period data-strin g .

t.t(b i Jt ' J2 ,

where b = block-period size, h = 1, 2, 3, 4, 5.

i1 t, iZ' , are the admitted start-periods for bl-ock size

b,

Hence the mappings may be constructed with a time-period i1 t,

iZ' , mapped onto 1 and the remaining time-periods are mapped

onto 0.

columns the

From chapter 4, section 4.5,

stored in an array BS, with rows

p time-periods.

the images of the mappings are

representing bJ-ock-sizes and

EXAMPLE 7.4

The block-period data-string

(z i 1, 2, 4, 6, 7')

results in the mapping

1 I
0

7
1

6

1

5

0
3

0
2

1
T

2

4
1



for an 8-period daily time-span, and will be stored

the Znd col of BS, the bLock-period start array'

6400 machine.

are unusuallY

in the program

174.

l-n

The

la rge

for the

AII details have now been presented to the computel Proglamt

andverifiedtoindicateanyobviousinfeasibilitysuchasover-

committed resources, undefined block-start-periods, bJ-ock-periods

out of the range 1 to 5, etc. The computer Plogram will now be

discussedinre]-ationtotheso]utionofprob]-ems.

7.3 THE c OMPUTER PROGRAM

ThecomputerprogramWaSwrittenintheF0RTRANIVandCOMPASS

programning'l-anguages for the ControL Data

primary storage words within this machine

(60 bits) and this feature was exploited

compact¡etentionofthevariouSresourcerequirementandavai]-a-

bilityarlays.Variousworkingaleaswereal.soneededtopermit

a return to any previously defined stage of the solution ' The large

word size was combined with the high speed J-ogicaÌ operations of

.AND., .0R., .NOT. to further inc¡ease the speed of the solution

method.

The main objectives of the computer Program may be stated as

follows :-

(-) to provide a solution to a timetable problem if one exists'

or to indicate |tno solutionrr when such a probJ-em is

enco unt ered
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(b) to tr¿rnsL¡te thr¡ al-r1 rrrithms of the soLution method irrto

¡¡ form th¡t is untle¡:;tood by the com¡-ruter

(c) to do (b) efficic:n.bLy, within tile terms of refe¡ence

discussed in chapter 4, e.g. cost

(d) to provide suitable diagnostic facilities for problems

with a trno so.l-utionrr result, so that a minimum of time

is required to correct faul-ts.

7 .3.1 Stora qe and 0oerations of Data

The method of storage of

AIl arrays, with the excePtion

indicator array, are stored as

the arrays wil-l- be discus sed .

of

bit

words. To

the bl-ock-period size

patterns within the comPuter

of storage, the resourceil-fust¡ate this

array ( section

method

requiremen t 3.2, chapter 3) wil-l be discussed.

As detail-ed in section 1 .2 o1 this chapter, a.l-f resources

of a school are given a coded numbe¡ between '1 and 60 ' If

more than 60 ¡esources are required at a school this coded

number range can be increased to a programmed Ìimit of 24o

in multiples of 60. Hence, if a school has 60 or less

resources, then one word of storage wil-l- be sufficient to

represent them, íf 12O or l-ess, then two words wil-I be

required, etc. Each resource is associated with a parrticular

bit position in a comPuter word.



EXA MPLE 7.4

Classes

Teac he rs

Other resources

Then a word to

resources 301,

with 1 -bits in

computer word,

116.

1

2

3

4

5

6

1

I

9

10

a requirement of the

St orag e

Consider

of data within primary computer words '

the resources :-

Code = position rn
comPuter word

301

2t1

101

Jon es

Smith

Brown

T .V.

Room 'l

Room 2

Room 3

represen t

Smith, T .V

(0 0 0 .. 0 1 1 0

Room 1 would be rÇ

5 .....1) Position

1 0 0 0 1) PrimarY
comPuter word

5, 1, I of a single

the resource codes '

81

positions 1,

to represent

1 .3.2 an DM it t e ati

required for the

stored in the

R -rc

Resource vectors describe the resources

activities of the timetable problem' and are
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resource requirement array R (chapter 4, section 4.3) ' In

the computer program, they are stored in the manner just

described. Each resou¡ce vector is a Iist of required

resources, and this l-ist is represer¡ted by a 0-1 bit pattern.

For a school of 60 at .l-ess resources t here wil-l- be 1 word per

resource vector, f or a schoo.l- with 61 to 1 20 resoutces, 2

words per resource vectot, etc. A large school could have

as many as 240 individual resources. Hence the size of the

array R in the computer program where there are m c.l-ass

resources and p time-periods per schooL day is withi-n the

ran ge

m x p to a maximum m x 4P.

Associated with each ¡esource vector, =ij, is a composite

avaiLabil-ity vector A+(",j ), that indicates the availabiJ-ity

of the resoulces required for the activity for each time-period

of the daily time-span (chapter 5, section 5.2). It was

previously shown that this information can be stored in a

0-1 array, and this is the case within the program for each

CAV. Hence the l-ink as follows :-

Resource Vector Associated composite availabiJ-ity
vec to¡

000

000

100

010

110

0

0

0

0

011000

o 1 1 o o 1 (7.1 )

01'l 0010000



that shows that resourcce 3 in the first row is

for time-periods 4, 5 as indiceted by the CAV.

Through simple logical .AND. operations it

to determine common available tine-periods for

resource vecto¡s.

178.

a va ii-a bl- e

is pos s ibJ-e

any group of

B.!f o

above are

(0 0

to give

(0 0

indicatin g

available

the common available time-pe¡iods for rov\,s 1 and 2

given by :-

... 0 1 1 0 0 0) .nrun. (0 0 01 1 0 0 1)

... 0 1 1 0 0 0)

time-periods 4, 5 are the only common time-periods

to both resource vectors.

To dete¡mine ttight situations' or criticaL bl-ocks as

discussed in section 5.3, chapter 5 within the CAV, the

Iogical .0R. operation is used as foll-ows :-

Conside¡ the three resource

ing a logical .0R. operation on

availabi-l-ity vect ors

(00...011000) .oR.

(0 0 ...0 1 1 0 01)

we get

(o o ...01 1 o o 1)

vectors of 7.1. By perform=

the three assocj-ated composite

(00 01 I 0 01) .0R.
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Hence three ¡esource vector requirements together have

only three avail-abIe time-periods, and these time-periods

mu*st L¡e used by these activities. Thus ¿r tight situation

has been located and the appropriate actions of reserving

these periods can be applied.

e.g. consider a fourth CAV

(o 0 ... 0 1 1 1 1 o)

ïhen by a simple logical operation

(0 0 ...0 1 1 1 1 0) .AND. .NOT. (0 0 ...0 1 1 0 0 1)

= (0 0 ... 0 'l 'l 1 1 0) .AND. (1 1 ... 1 0 0 1 1 0)

= (0 0 ... 0 0 0 1 1 0)

Thus time-periods 2 and 3 a¡e the only remaining available

time-periods from the original 2, 3, 4, 5 time-periods since

the periods 4r 5 a¡e reserved fo¡ the other tight activities.

This example demonstrates the mechanism of tl-re location and

subsequent reduction of availabilities associated with tight

situations.

It can be seen from the above exampJ-es that the 0-1

patterns and J-ogical operations have important applications

in computer methods on timetabl-e problems. e.g.Barraclough ( : )

has indicated the use of bit patterns and Ìogical operations

fo¡ timetable probl-ems. Storage of the large amount of data

required for timetable probl-ems has been overcome by the method

of compacting detail- into word patterns. The methods just
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described h,rve the adv,,rrrtage of reducing drrôy sizes without

loss of computationaJ- speed.

7.3.3 The Main Features of the Comouter Prooram

The main featu¡es of the computer program are shown in

the fl-ow chart of Figure 7.1 , and a¡e as f ol-l-ows.

The first stage of

and ve¡ification of data

the program invol-ves the establ-ishment

tencies as discussed in

Any of the obvious inconsis-

are detected immediateJ-y

been considered,

or if errors

be made

arrays .

s ec tion 7 .2,

and a diagnostic printed. After all data have

the proEram either continues to the next stage,

corrections tohave been l-ocated stops to

manual-Ly. The¡e are 2 stop

the flow chart. The fi¡st

conditions, stop

all-ow

indicates errors

01 , stop 02 in

in data, the

second refers to incompatabil-ities between fixed time-period

requirernents and availabil-ity conditions of ¡esou¡ces required

in the activities.

The prepa¡ation of the

resource requirement arrays,

arrays incl-udes the construction of

resource availability arlays,

and theblock-size arrays,

necessary fo¡ the

6, section 6 .3 . As

binary reductions are invol-ved

composite availabil-ity arrays,

general work and storage arrays

procedure discussed in chapter

in chapter 5, section 5.2, al-L

with the composite availabiJ-ity

bac k -trac k

detall-ed

vectors that are determined
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Ficure 7.1 :

A flow chart of the gerreraì. layout of the

computer ¡outines for the timetable

Prog¡am.
Yes

Requirement array, Block-períod array, T-C set array,
Avail-ability array, Fixed time-periods

No

Yes

No

Yes



from the avail-abil-ity vectors of individua-L resou¡ces.

Any errors detected

be manually corrected.

l8it.

stage of the program must

Located by the program.

up to this

Errors are

e.g. resource 12 is required for I time-periods but there

are only 7 time-periods in the school day.

This er¡o¡ indicates that resource 12 is over-l-oaded.

Hence all- activities requiring lesoulce 1 2 must be l-ocated and

a suitabfe re-allocation of resources made. Once alf errors

have been corrected the program is restarted. The next stage

is the assignment stage.

Figure 7.1 details the o¡der of the al-gorithms as they

occur within the computer program. A description of each

algorithm has been given in chapters 5 and 6. The precedence

algorithm determines the next class requirements (or row

requirements since the two terms cIasS and ¡ow ale synonymous )

to be attempted by the bijection generator. The levels of

precedence have been discussed and the Program Ìocates the

unassigned class with the highest precedence number.

Then the bijection algorithm generates a feasib-l-e mapping

fo¡ the assignment of that class. It has previously been stated

that although the mapping generated may be feasibLe for the

class to be assigned, it may not be feasibl-e when considered

with respect to other unassigned c.l-ass requirements . The
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impJ-ication algorithm conside¡s many of the effects that the

assignment woul-d have on the unassigned cl-ass requirements.

If no infeasibii.ities are fore-seen the mapping is accepted

and the assignment made. Then the precedence aJ-gorithm deter-

mines the next assignabJ-e cl-ass. if an infeasibility is found

by the implication algorithm, a neh/ mapping must be generated

for the class requirements.

Vr/hen some dif f icul-ty arises, due to an unf oreseen inf eas-

ibility, the back-track aJ-gorithm can be called to ¡ej-nstate

any previous assignment situation so that other sol_ution paths

may be considered. The back-track algorithm has been discussed

extensiveÌy in chapter 6, section 6.3. It has al-so been shown

that the method is exhaustive since every assignment can be

generated for each cl-ass requirement of the timetabJ-e problem.

If the progrêm is forced to retrace to the first cl-ass require-

ments considered, and no al-te¡native assignment can be generated

for this c-l-ass then no soLution to the probÌem ca'n exist. In

such a situation a subset of cl-ass requirements has been found

such that no suitable assignment can be made without violating

the const¡aints of the problem, and thus no sol-ution to the

problem

Cisma (9

exists .

rrno solutionrr¡esul-t is approximateJ-y 7

for a problem invoJ-ving 40 teachers, 25

period day. At present there does not

Ïhis aspect has been discussed

maxímum time so fa¡ encounte¡ed

minutes

cl-asses

prevì-ousÌy by

to l-ocate a

ccmputer ti-me,

and a 7 time-

). The

appear to be any means
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whereby an exact estimate of time to l-ocate theserrno

soLul,ionrr rr:s¡uLts can Lre determine.d.

1.4 THEORETICAL AND PRACTiCAL RISULTS

7.4.1 Development of Method of Sol-ution

The first bijection generator used for the solution method

presented in this thesis was a permutation routine, described

as the Johnson-Trotte¡ algorithm in Vr/el-sh (Se ) . The algorithm

is based on a t¡¿nsl-ation technique for producing successive

permutations by the interchange of two adjacent el-ements within

the preceeding permutation.

e.g. by inte¡changing the numbers 1 and 3 in the permutation

1, 3, 2 the new permutation 3, 1 t 2 is generated.

The method has been shown to be an efficient permutation

generatorr e.g. see reference (¿t ). In the present application,

each permutation produced hlas used in the bijection generator

and tested for feasibility for the cl-ass in the school- to be

assigned. Successive permutations were generated until- a

feasibl-e mapping for the cl-ass requirements was identified.

Then the sane procedure woul-d be repeated for the next class

requirements, and so on, until the timetabl-e was completed.

As suggested by AppJ-eby et

times entail-ed in this approach

al-. Q ), the computation

were excessive, even with the
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use of a high speed computer. A tabl-e of computation times

is presented in method 1 of Tabl-e 7 .1. The J-ong execution

times were caused by the extensive testing of infeasibl-e

mappin gs associated

execution times, a

locate requirements

method. To ¡educe these

was incl-uded in the program to

one avaifabl-e assignment

the mapping produced wou.Id not

these requirements el-sewhe¡e.

a substantial ¡eduction in

method 2 of Tabl-e 7.1 .

with this

subroutin e

wit h only

t hatposition, and to ensu¡e

invol-ve any attempt to assign

lhis modification resufted in

execution times, as shown in

Number
of

Teac he¡s

Method 1

Number Based on
Number of Johnson-

of time-periods T¡otter
Cl-asses in a al-gorithm

school day

Met hod 2 Method 3

Mod ified
John s on -
Tro tt e¡
algorithm

Bijection
Gen era t or
with Impli-
cation
aJ-g orit h m

IJ

4

5

6

1

I

9

IJ

4

5

6

7

I

9

3

4

5

6

7

I

9

.s7

.49

.56

.96

3.85

31 .98

333.77

.45

52

.64

.89

2.54

15 .44

132.95

.99

'1 .05

1 .28

1"55

1 .93

2.26

3 "05

A comparison

to solve the

of execution times in CP seconds,

various simple tight timetabJ-e

3x3x3to9x9x9fortheproblems

3 methods

from

ïable 7.1 :

indicated.
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The simple tight timetabl-e probJ-ems have been discussed

in chapter 4, section 4.3, where each cl-ass must meet with

the same teachers during the school-day. Hence each ¡esou¡ce

requirement row of the resource requirement array contains the

same resource vectors, and the mappíng generator described

above, must

the method

investigate mo¡e and more unfeasibl-e mappings as

proceeds. This situation arises because

(u) the mapping generator based on the Johnson-T¡otte¡

algorithm produces the same mappings in the same order

f or each cl-a ss assignment, and

(b) as the number of ¡ows assigned incteases, the number of

feasibl-e mappings remaining decreases.

e.g. by enume¡ating al-l permutations for a 4 x 4 x 4

simpJ-e tight timetab.l-e problem it can be shown that

there are 24 = 4! feasible mappings avail-abl-e for

the first assignment. Howeve¡, after one of these

has been accepted there remains only 2 feasible

mappings of the original 24 feasible mappings for

the second assignment.

This l-ed to the third method of generating mappings. This

method only generates the feasible mappings for any row of

the ¡esource requirement array. The rejection of unfeasibl-e

mappings was acconiplished through the use of the composite

avai.l-abil-ity vectors, that indicate the remaining avaiJ-abJ-e
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positions (time-periods) for each unossigr-ed resou¡ce vector.

(Chapte¡ 5, section 5 .2, 5 .3 ) . The essentiaL featu¡es tha t

give the increased efficiency are fi¡st, the reduction in

execution time due to the elimination of tests of feasibility

for mappings associated with the cl-ass requirements. Second,

the reduction of the composite availabiJ-ity vectors that

el-iminates infeasible mappings of the unassigned c.l-ass require-

ments. Third,

to look-ahead

the appJ-ication of the impJ-ication algorithrn

at future requirements to ensure that such

requirements have not become infeasibl-e because of the generated

mapping at each assignment stage.

The computer execution times for this third method are

.given in TabIe 7.1. The presented graphicaÌJ-y in diagram 7.1

The solution method discussed in this thesis (method 3),

has been extensively tested on both theo¡etical (simpJ-e, and

simple tight timetabl-e problems) and practical problems with

a considerabl-e reduction in execution times fo¡ the generation

of sol-utions. Computation times to study the effects of the

various practicaJ- complexities required by schooJ-s are tabu-

lated and discussed below. In each case the resul-ts quoted

9 cfassesare for the simple timetable

and 9 time-periods since :-

(a) this simple probJ-em has

are fuJ-1y utilized, and

problem of 9 teachers,

no fl-exibility as al-l- resources

is therefore more difficul-t to



sol-ve, and

(b) the9x9

it is the

x 9 problem

Iargest of

1 gg.

gives a maximum solution time since

al-so is the maximum

the simple tight probJ-ems

number of time-pe¡iods (9),

tested, and

oc cu Ian g

in schools within South Austrafia.

The application of this program to an existing school

timetabl-e problenr at Craigmore High School- wi.l-l- be described

in detail in chapter 8. The soLution produced is now in use

at that school-, and future applications are discussed in

chapter 9.

1 .4.2 Fixed Time-Period Requirements

As defined in chapter 3, section 3.2, a fixed time-period

requirement forces an al-l-ocation of a particul-ar activity to

a specified time-period. Such a requi¡ement increases the

number of const¡aints on the timetabl-e problem since such an

al,Iocation ¡educes the avaiJ-ability

in the fixed requirements, i.e. the

Ionger availabl-e fo¡ assignment to

in the timetabfe sol-ution.

of the resources involved

resources invol-ved are no

this time-period el-sewhere

x 9 pro bJ-em withThe program was tested on the 9 x 9

increasing numbers of fixed requirements.

tained in Tab-le 7 .2 f ox 1 to 10 fixtures.

Results are con-
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Number of
Fixed

Time -Period
Requirements.

0 I 2 3 4 s 6 7 I 9 10

Solution Time 3.0 3.1 3.1 3.0 3.0 3.0 3.0 3.0 3.0 2 .9 3.0

Tabl-e 7.2 : So-l-ution time resul-ts for fixed t im e-p eriod

9 x 9 sirnplerequirements 1 to 10 in the 9 x

tight timetable problem

It was evident from the sol-ution times that the fixed time-period

requirements had l-ittJ-e effect on the speed of the sol-ution

method. This is understandabl-e since the consequence of a fixed

time-period requirement is that the associated composite

avai.l-abiJ-ity vecto¡ is reduced, such that onJ-y the required

time-period remains avail-abl-e for that activity. (see chapters

5 and 6 for a more detail-ed expJ-anation of the composite

availabil-ity vectors and the effect of the fixed time-period

requirement). This stage is indicated in Figure 7.1 of the

computer flow-chart when the arrays and the CAV are cafculated.

The effect of the fixed requirements on othe¡ CAV is establ-ished

through the impJ-ication aJ-gorithm, discussed in chapter 6,

section 6.2.

no

Upon extending the

change was noted and

seconds CP.

number of fixed requirements to 30

3.1

resul-t times were sti.l-l- between 2.9 and



7.4.3 B.l-ock-Pe¡iod Requirerne¡ts

191 .

involve al-Locating activities toBJ-ock-period requiremen ts

consecutive time-pe¡iods within

number of time-periods invol-ved

chapter 3,

of2and3

exampJ-es of

size 2, and

section 3.2) . The most

timetable sofutic'n. The

the b-l-ock-period size ( s.ee

common practicaL bJ-ock-sizes

Tabl-e 7.3 contains

the

l-s

tested.

No. Bl-ock
Size 2

were extensiveJ-y

sol-ution times

six problems of

D1

for six problems of block-per'iod

block-period size 3.

23456

Solution Time 3,1 3.1 2.9 3.0 3.0 2.9 2.8

No. Block
Size 3

01234s6

SoLution Time 3.1 3.0 3.1 2.9 3.4 6 .3 3.8

Table 7.3 : Sol-ution times fo¡ 9

block-period size of

x9x

2 and

9

3

probJ-em with

The bl-ock -síze 2 resul-ts rema j-ned reLativeJ-y stable. This

indicated that these requirements, being the most prevalent

block-períods in practical problems, were marginalJ-y more

difficul-t than single period requirements with respect to

executíon times. The bl-ock-size 3 requirements indicated

similar tendencies, having a slight inc¡ease in execution time

when compared to the bl-ock-size 2 resul-ts. An increase in

computation time was noted flor the problem invol-ving 5 block-
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associated with several- back-size 3 requi-rements and was

tracks that we¡e needed to

Other pro bJ-ems we¡e s ol-ved

produc e

wit hin

síze 2 and block-síze 3 requirements. The maximum execution

time was stiÌl- associated with the 5 bl-ock-size 3 problem.

However, there may exist problems thar do have increased

computation times, associated with back-tracking to produce

a sol-ution. NevertheJ-ess, the execution times presented are

economical-Iy acceptabl-e , and are cons id erabJ-y less than

expectations.

7.4.4 Teache¡-Cl-ass 5et Requi¡ements

As deta ii-ed in section chapter 3 the teache¡-cl-ass

sets involve severa-]" teacher and c-l_ass resources for the one

activity. Once again sol-ution times were relativeJ-y stab.l_e

implying that resource dist¡ibution was the main cause of

inc¡eased sol-ution times for this method of sol-ution. The

implication al-gorithm was sufficiently fl-exibl-e to dj.rect the

problems to speedy solutions on each occassion that the

timetabl-e problem had a resu-l-t. The loading of resources

and problems with no soLutions are discussed in chapter B.

7.4.5 General Probl-ems

Many probl-ems were tested

practical timetabJ-e problems.

a so l-ution to thrs problem.

of bl-ock-inc¡easing numbers

that were compiled from existing

An example is given in appendix

1A¿.4,
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A with a solution. A detaiLed cliscussion cf the solution

technique wi.L.l- be

on all occassions

existed, and indicated rtno solutionrl

situations arose. In the no sol-ution

bil-ities hiere manualJ-y corrected and

example of this is given in section

practical problem of C¡aigmore High

in the next chapter.

The computer prcqram

to probJ-ems when they

¡esuLts when such

problems, the infeasi-

resul-ts produced. An

8.4r chapter 8. The

School will- be discussed

gr-ven rn

p rodu c ed

chapter I

sol-utions



CHAPTER 8

E CRAIG GH SCH MET0 TION

which was

in volved

T

PR OBLEM

8.1 INTRODUCTION

Theso]-utionmethoddescribedinthisthesiswastestedby

solving the craigmore High 5cl- oo.l- timetabl-e probJ-em, selected by

the Education Department of South Australia. The problem contained

the folÌowing special features :-

(a) the school- was a comprehensive tYPe

tec hnic aJ-ly suitabl-e since

( chapter 3 , section 3 .2 )

the required time tabl-e

compJ-exities associated with both High and

Technical- High school-s.

(b) the school- was to have staff changes midway through the

secondtermoftheschoolyear.Thesechangeswould

significantJ-y disrupt the previous timetab-l-e ànd a complete

new solution woul-d therefore be required '

(c ) the new resul-t was requi red quickJ-y, to avoid extra

administration burdens on both students and staff at the

sc hool- .

staff changes during the schooJ- year are not unique and occur

fo¡ a variety of reasons, e.g. resignations. Replacement teachers

are not often qualified in the disciplines of the existing teachers,



195 
"

thus necessitating a re-allocation of staff duties. Hence a new

timetable must be constlucted. The computer method has a di¡ect

appJ-ication to such intra-year Problems as wefl as the nev'J year

problems that arise at the start of each academic year.

The

s o.Lution

d ifferent

Tuesday I s

with the

d esc ription

wilJ- now nbp

aspects of

time ta b l-e

of the Craigmore High schooJ- problem and its

given. Examples are included to iÌlust¡ate

the problem. The problem associated with

is discussed in detail-. AIJ- data associated

is contained in appendix B. SoLutionsCraigmo re d escription

problems areto the five daily tabled appendix C

A problem witi¡ ¡s sol-ution is presented in section 8.4 and the

rel-evant data given in appendix D.

O] DEFINITION OF THT CRAIGMORE HIGH SCHOOL TIMETABLE PROBLEM

8.2 .1 Gene¡al- Discussion

The Craigmore probl-em invol-ves some 410 students and 23

staff members consisting of a headmaster, deputy headmaster,

3 senior masters, 1 senior mist¡ess and 17 teache¡s. One

of the teachers is onJ-y avai.l-ab.l-e for the first 3 time-pe¡iods

of any one school day (a part-time teacher). It wilf be

seen J-ater, that this teacher is f uJ-J-y utif ized in every

available time-period.
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The students were assigned by school administrators to

codes (described1 3 classes that have the following numeric

section 3.2). For convenience these codes wiLl-

the remaining discussion in this cha¡¡te¡

10'l , 1o2, 103, 1O4, 105 i

1st year l-eve1

2O1, 2O2, 2O3, 211

2nd year J-evel

301 , 3O2, 303, 31 1

3rd year level

At

respec t

recent

present the

to student

school- is at two thirds capacity with

enro.Lments since it is a n ew sc hool- in a

suburban area. Administ¡ators expect enrolments to

be at the capacity of approximateJ-y 610 in January,1973.

Classes were constructed from the previous academic achieve-

ment and I.Q. of each student together with persqnal-

inte¡views to determine the future course requirements of

the student.

During 1972 the 4th and Sth year leveLs were not available

at Craigmore. However extensive teacher-cl-ass sets occu¡¡ed

in the 2nd and 3rd year level-s as wil-l- be seen l-ate¡ in this

chapter. This gave rise to a very complex timetabl-e problem

that was time-consuming and difficul-t when sol-ved by manual

methods (see section 8.3). The problem contained a high
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percentage of features of both tl're Technical- and Hj-qh school

timetabLes and vras hence a demanding problem for the computer

soLution method.

The schoot facilities consists of 18 cLassrooms, but

several are fo¡ specific purposesr e.g. typing room, history

and geography model room, remedial- teaching room, etc- These

are used by specified classes fo¡ required time-periods within

the timetable solution. 0n the whofe howeve¡, the cl-ass-room

situation did not cause any restrictions on the timetabl-e

so.l-ution procedure. Suf ficient rooms were aJ-ways avaifab-l-e

to satisfy alJ- cl-ass requirements.

8.2.2 Resource Requirement Arrav Construction

For the purpose of this thesis the manuaJ- ccmpilation

of timetable data for the computer method has not been

detail-ed. The teacher resource codes, teaching subjects and

teacher status have been detail-ed in table 8.1 of Appendix B.

the text to

associated with

r0-t¡ack I

be remembered

Class resource codes wil-l- be l-eft unchanged in

avoid confusion. Thus code 301 wil-l- stil-l- be

a 3rd year class, being the first cl-ass

(chapter 3, section 3.2). However, it

thet classes are similarJ-y coded as are

tabte 8.1 , such that no two resource of

ín the

shoufd

the teachers in

the schoof have the

same code number. School- administrators compiled the ¡esou¡ce

activity requirements for each cJ-ass of the school on a daiJ-y
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basis. The details are presented in tabl-es 8.2 to 8.6 in

the form of actj-vity requirements, that indi-cate the resources

required, number of Iessons involved, the bl-ock-period size

and whether the -l-esson is

period in the school day.

has been given in section

to be alLocaterl to a specific tj-me-

The detaifs of this presentation

7 .2 of chapter 7. These require-

the five sub-probJ-ems of the weekly

other featu¡es such as block-period definitions,

wil-f be discussed l-ater. Examples are given to il-lust¡ate

various aspects for ease of understandì-ng

The ¡esources requi¡ed for each a c tivi ty

c omp u ter

are placed in

the resource program (see

ments partially

timetabl-e. The

section

EXAMPLE

d esc rib e

4 .2,

requirement array by the

chapter 4 ) .

I .'l

Conside¡ the

in Appendix B

cÌasses 101,

rows of that

of the resource

manner.

Consider class

namely R1 .

((15,18), (15,18),

(12), (10), (3),

(6), (to.l, 16,22),

(16))

resource data of tabl-e 8.3 f or

. Resou¡ce requirement vectors

1D2, , 311 are presented in

tabl-e , and are pltrced into t he

Tu esd a.y

for

the

I 3 ¡ows

requirement array in the follor,,iing

101 to be placed j-n row one ol R,

Then R1
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SimiJ-arly R2 is associated with cJ-ass 1D2 ' R3

with 103, etc. until RIS associated with i1 I .

8.2.3 Bfock-Period and Fixed Time-Periods

The bl-ock-period starts that are required fo¡ the Craig-

the folJ-owing manner (see chaptermore probl-em are defined in

4, section 4.5).

r1

Only block-period sizes 1 and 2 ate required within

this timetabl-e problem since the administrators are of the

opinion that two time-periods of 40 minutes are sufficient

fo¡ c¡aft practical periods. The block-periods starts are

stored by the computer on the form in the array BS

,2

I
1

I
0

7
1

7
1

6

1

6

1

5

1

5

0

4
1

4
1

1J

1

3

rl

2

1

2

1

BS

where column 1 is related to block-periods size'l ancl cnlumn

2 to block-period si-ze 2. There are numerous bfock-period

requirements indicated by tab-l-es 8.2 to 8.6 of Appendix B -

For example tabfe 8.3 for Tuesday has a block-period síze 2

11
11
10
11
10
11
11
10



f o¡ each classes 10'l , 102, 1 04, 105 es indic;ted b¡ i he

colunrn l-abelLed bLock.

time-period requirements are

fo¡ cl-asses 301 ' 
3O2, 303, 31 1

200 .

al-r;o inciic¡ted .l- n

activiti-es

4. This is a

Fixed

tabl-e B

(69,1O)

complex

l-n3

and (7l r7Z) for time-periods 3 and

fixed time-period requi¡ement since it invol-ves nrne

resources. A fixed time-period involving evely c.l-ass is given

in tabl-e 8.5 Appendix B, where Religious Instruction is given

to every student in the 8th lesson on Thursday, activity

(9 r 10 ) . The persons taking these l-essons are exte¡na'I to

the staff of the school- and are indicated as part-time teachers

with teacher cod es 24 and 25. The fixed time-peri-od aI.Iay

F as described in chapter 4, section 4 .5 is assoc-j-ated with

the daily resource requirement array.

EXAMPLE 8.2

For Tuesday, (table 8.3, Appendix B) the fixed time-

periods must be indicated fo¡ classes 301 , 3D2 
' 

303'

311 thus involving rows 10, 11, 12 and 13 of F, the

fixed time-period arraY.

The rows of the resource requirement array R are

for example

Rj0 = ( (302r303'311,2,3,9,21), (302,303'31 1,2,3,9,?1),

(302,303,31 1 ,2,3,4 r17 ,23) , (3O2 r 303,3',l 1 ,2,3,

4r17 ,23\ , (302,303,31 1 ,6,1 ,16 119) ' 
( 302,303,

311 ,6 r7 ,16 r1g) , (302,303,31 1 ,6,12r2O,21 ,22\ )
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SimilarJ-y R11 , R12, Rl ¡.

Hence the 1 Oth row of F wilf be

Fto = (o o o 3 4 o o o)

SimiJ-ar1y F1 
1 r F 12, Ft ¡.

For conveni-ence, it was noted in chapter 4, section 4 . 5,

that a-l-l- fixed time-period requirements must be of multiplicity

and block-period size 1 . This is demonstrated in the two

row requi¡ements of tabl-e 8.3 in activities (69,70) and (7 1,72)

that involve exactly the same resources.

8.2.4 Resource Avail-abil-itv

Initially alf resources are assumed avail-able for every

time-period. The resources that have reduced avaifabil-ities

in this exe¡cise are the part-time teachers, nameJ-y resource

8. The time-periods 4 to I are not avaiLable and hence all-

composite availability vecto¡s invol-ving this lesouICe must be

reduced to exclude these periods.

EXAMPLE 8.3

Consider table 8.3, Appendix B where activities

(53r54) and (67168) involved resource I (the part-

time teacher). These activities are contained in

rows 6, 7, 8, , 13 of the resource requirement

arxay since the ¡esources involve cl-asses 201 t 2D2,

311 .



Consider the CAA (see chapter 5, section 5.2)

for ¡ow R6 of R.

11111t11
11111111
'1 1111111

2D2.

where periods

4 to I have

been exc l-ud ed

due to resource

*
6A

D

0

D

0

0

0

0

0

111111
111111

00111111

8.2.5 Teacher-Cl-ass Sets and Timetable Struc ture

The structu¡e of the second and third year.i-eve-ls indicates

complete teacher-cl-ass setting for every time-period of the

daily time span. This complexity was consistent for every

day of the school- week.

The I time-period pattern present at Craigmore is

reratively common al-though ratest t¡ends favour the 7 period

d.y. The daily activity pattern is :-

lessons 1 to 3 (each of 40 minutes duration)

Recess B¡eak

lessons 4 and 5

Lunch Break

Iessons 6 to 8.

No afternoon recess break was avail_abl_e at this school_.

As mentioned in chapter 4, the course content is not
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considered by the assignment procedure. The activity is

assigned to a time-period, and the function of the activity

is not considered in detail. Therefore a printout procedure

had to be written to rel-ate the activity to a subject to make

the solution useful- fo¡ the schools. Also a decoding ¡outine

was inc.l-uded to convert the teacher codes to teacher names

for output purposes.

Numbers of : Monday Tuesday Wednesday Thursday Fri-day

Teac her s

Classes

Time-periods

Block-periods

Fixed-peri ods

Teac her-c l-ass
set s

Back-t¡acks*

23 23

13

4

13131313

t.l

14

2 5** 23

13

14 14

I

I

0

I I

5

0

I

6

I

3

32

14 12

0 1 00. 6 0

Solution Time
(seconds) 15 .2 102 .3 16 .7 1 s.0 1 5.1

Tab l-e I .1

Comparisons of features of the

Craigmore problem.

* the number of back-tracks

5 d aily timetab.l-e s of the

the computer program went

solutions .

**

throu gh

the two

to produce the daily

extra staff b/ere exte¡nal to the schoo.l-

for religious instruction .Lessons.
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The f inal- timet ab.l-e

Appendix C, tables C.1 to

special features wil-l- now

results have been presented in

C.5. The solution method and

be discussed.

8.3 SOLUTiON OF THE CRAIGMORE PROBLEM

I .3.1 General Discussion

A detailed comparison of the various important featu¡es

of the 5 daily Craigmore sub-problems are given in tabl-e I .'1 .

Solution times are included and the number of back-t¡acks by

the sol-ution procedure presented. Solutions were determined

for every day and a¡e included in Appendix C.

Solution times

for the compilation

timetable was most

inc l-ud e

of the timetabLe

difficuLt and the

the 12 seconds (approx.) needed

program. The Tuesday

probJ-em wilI be discussed

to indicate the reasons for the difficulties. The solutions

produced were readiJ-y acceptable to the Craigmore, administrators

and the solution was immediately incorporated into the school

system. The staff member responsibl-e fo¡ the manua-I production

of their timetab-l-e in past years was enthusiastic at the

speed of the solution. The Tuesday probJ-em is now discussed

in re.l-ation to the f ollowing sections.
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8.3.2 Soecial- Features

The description of the special features of the Tuesday

timetable have been discussed in section 8.2. These incfude

block-periods, fixed time-periods and Iesource requirements.

The main problem area arises through the distribution of

resources in the class activities. Many of the lesouICes

required in the complex teacher-cfass sets are invol-ved with

the 1st year level- cl-asses.

The clash matrix (chapter 6, section 6'6) is given in

Appendix B, table 8.8 and the resource l-oad mat¡ix in tabl-e

8.7. From this matrix it is seen that the activity (15,76)

of tabl_e 8.3 clashes with 10 0f the other teacher-cfass set

requirements of luesday (indicated by the row sum by counting

the number of zeros that occur ) . Recal-f that a zero entry in

the clash matrix indicates that the resour.ce vectors associate

with the row and column of the cl-ash matrix can not be a]-]-ocated

to the same time-period. Thus requirement of activity (75116)

may only be assigned in a common time-period with requirement

of activity (61 ,62) since only activities (61 ,62) and (69,7D\

are shown by the clash matrix to be avail-able for assignment

with this set. ((69r70) may be neglected since it invol-ves

the same classes). We can see that the ¡esources involved in

such an assignment invol-ves many of the 1st year l-evel- IesoLllce

requirementsr e.g. class 103, it clashes with 3 l-essons'
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Fu¡ther difficulties arise due to the fixture of

activities (69r70), (11 112) of tabl-e 8.3 into time-periods

3 and 4. The clash mat¡ix demonstrates that only activities

(53r54), (55r56) and (57r58) t"y be assigned to the same

time-períods for the 2nd year level classes. Resource B,

(see tabfe 8.9, Appendix B) the part-time teacher is invoLved

in (53r54) and must be allocated in time-periods 1 to 3'

That resource is also required in (67 r68 ) and must be all-ocated

in time-periods 1 or 2 since 3 already allocated' Hence,

since activity (53r54) is required twice, indicated by the

muJ_tiplicity column of (53,54 ) in tabl-e 8.3, then (53,54 ) must

be aLlocated in time-period 3 for at l-east one of the two

required time-periods.

Ihe remaining requirement of activity (53,54) and (61t68)

may be such that they are either al-located to time-period 1

or 2.

Another complexitY is

teacher resources required

the limited numbe¡ of distinct

by class 103. Three of the teacher

resources are requi¡ed twice

by the multiplicitY of table

resources for class 1 03 are

in the day (once again indicated

8.3). Two of the required

heavily invol-ved in the extensive

teacher-class sets of the 2nd and 3rd year Ienrel-s, namely

teacher resources 19 and 2.
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The above is a b¡ief descriptíon of the difficu'l-ties

of the Tuesday timetabl-e. However, the sol-ution method

although encountering some difficulty, sol-ved the problem

in some 90 secs., which was quite acceptable. This invoLved

some 1 00 back-tracks to previous stages to avoid the no

solution stages indicated by the implication a'l-gorithm,

extensively treated in chapter 6, section 6.2. The sol-u.bion

is given in table C.2, of APPendix C.

8.3.3 The Precendences for Tuesdavts Timetabl-e

The classes 2O1, 2O2, 2O3, 211 are considered first

since they involve the most compl-ex allocations determined

on the basis of priorities discussed in chapter 6, section

6.4. The factors involved ín this priority are number of

distinct teacher-cl-ass sets, block-periods, fixed time-periods,

resource avai.l_abilities, etc. In the case of the Znd year

level classes there are, for example, 6 distinct teacher-

class sets whilst the next nearest is the 3rd year level

with 5. No block-periods are required by the 2nd year level-

activities.

lt'Jhen the 2nd year leveI c.l-asses have been al-located

(a1l are

treat ed

allocated since each have the same priority and are

l-n

highest.

P¡io¡ities

turn ) the

Hence each

3rd year level classes become the next

class 301 , 3O2, 303 ' 
and 31 1 are al-l-ocated .

calcuLated for the 1st year l-evel- cl-assesare then
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and these are al-l-ocated accordíng to the sequence l02t

104, 105, 101, 103 thus completing the probJ-em. For examçle

cl-ass 102 is allocated prior to 104 since 102 invol-ves 2

disti¡ct teacher-cl-ass sets and a bl-ock-period of síze 2.

( see activities (19 ,2o) , (21 ,22) , (23 ,24 ) of ta bJ-e B . 3 ,

Appendix B ) .

The precedences are recal-cul-ated after each a.Ll-ocation

stage to dete¡mine the next"row for assignment.

8.3.4 Brief Description of the Allocations

It has been shown in chapter 5, section 5.2 that associated

with each row of the resource requirement array R is the

composite availabil-ity array. that indicates al-l- time-periods

availabfe to the resources of each of the activities associated

with the row of R.

EXAMPLE 8.3

Consider the classes 301 ,

be associated

from table B.

availability

R12, R1 3 will be the same since

3O2r 303, 311 that will-

, 11, 12 and'1 3 of R,

B. The composite

the rows R1¡, R.l .l ,

they each invoÌve

each of

with rows

3, Appendix

arrays for

10

the same resources (with

resources that are always

the exception of class

available ) .

Hence
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.t+*
A1o = A 11

**
= 412 = 413 =

SimiJ-arJ-y the CAA for rows

c.l-asses are ca.l-cul-ated and

6 to 9 for 2nd year

11
11

11
10
10
10
10
10

00
00
10
01
00
00
00
00

t+ *
A -A 7

l+-48 -49

where a zero in position (i, j) indicates the non-

availabil-ity of the time-period i for the jth

e-l-ement of t he associated row of R .

Before any precedences are cal-culated or allocations

determined, the ímpJ-ications of the fixed-period and part-

time features are investigated. This stage is accomplished

by applying the implication algorithm to the CAA.

EXAMPLE 8.4

The implications of the fixed time-periods of

activities (69r7O), (7lr7Z) of table 8.3 have the

*
6

11
11
11
00
00
00
00
00

1'l
11
11
11
11
11
tt

11
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following ¡eduction effect.

Teache¡ resources involved are 2, 3, 4, 11 t l3'

Al-L ¡ows involving any one or more of these teache¡s

wil-L have their CAA reduced to omit time-periods

3 and 4 (make these time-periods unavailabl-e).

Such a CAA is associated with 2nd year level clesses

whe¡e the new CAA are

Aä
*

A8
*
7

*

11111111
11111111
11110000
00110000
00111111
00111111
00111111
00111111

A A9

This reduction of the sets of resources is indicated

by the clash mat¡ix of table B.B that indicates

that activities (69r7o), (7l r7z) cLash with (59,60),

(61 ,62\ , (63 r64 ) of the 2nd year l-evel- cl-asses .

Also the implications within the CAA of

R1 3 of R that are directly effected by

time-periods become

IOWS Rto to

the fixed

000
000

1111
111

0

0

1

0

0

0

0

1

0

0

0

0

0

* * * t+

111
111
111
11100

A 10 A
11

A 12 A 13

011
011
000
100
011
011
011
011
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Similar reductions are produced for the 1st year -l-evel-

CAA.

Ïhe precedence algorithm indicates 2nd year level- classes

are to be al]-ocated first.

From the above reduced f,AA a bijective mapping is gene¡ated

to allocate the activities of rows R6 to R9 to ti-me-periods

as described in chapter 5, section 5.3.

ïhe mapping

is not feasibl-e since this woul-d ¡educe the CAA of A1¡ to
*

413 to zero in the 4th column (involving resource I the part-

time teacher).

^ 6

A
5

5

3

3

2
2

(
4
4

4
4

6

6

B

B

7
7

6

7
5

6

3

2
2
3

1
( 7

5

oU

B

The mapping 
^ 6 gives an assignment for row R6 of R

the soLution row 56 of 5 as :-

qÁ _ f,7, B, 16, 2o, t tGt 11, 19, 21 ,s6 = U zâ2")ot")oq Jt t) (ror,2o3,2o4,211 )

,7r 8, 16r 2D, , ,6, 15, 2Dr 21 ,t)áz"Joà",)oÃ ), t) ( 
ro, ,2D3,2D4 ,211)

,415r19l211 3r15r18r23, ,1, 2r 3, 21 , \
'2o2 rzo3,zo4 r21i ' '2o2 r2o3,zo4,211 '

,2, 14, 17r 19 , ,415r10,12113, 15r18J
\ 2oz r2o3 ,2o4 ,211 

) \23 
,2o2 ,zD3 ,zDA ,211 

t )

as
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since all other 2nd year level classes a¡e reLated to this

assignment of row R6 through the teacher-class sets then

56=57=SB=59

The above assignment indicates for example that resoulces

6, 15, 2O, 21 , 2O1 , 2O2t 2f3, 2O4, 21 1 are aLl-ocated in the

related activity to time-period 4 since this set of tesources

occurs in the fourth position of row 56.

The implication algorithm determines al-l- implications of

this assignment on rows R1 to R5' R10 to R13 of R for

feasibiJ_ity. Then a nev,i precedence is calcul-ated and the

allocation begins for the new cfass, etc. The details of

the solution produced are given in tabfes C '2 '

In the above descriPtion

algorithm have been omitted,

bijective mapping generator.

refering to chapters 5 and 6,

stated again. A probl-em with

Craigmore investigations wilf

therefo¡e not been

no solution a¡ising during the

now be discussed.

the detai-l-s

as have those

of the reduction

rel-ated to the

determined bybeThese may

and have

8.4 A PROBLEM WITH NO 50 LUTION AT CRAIGMORE

An automated timetable method is

school administrators when a problem

of little practical- va-l-ue to

has no sol-ution, unless it

reasons for the infeasibititYalso gives details that indicate the
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of such a plobl-em. The timetable procedure described within this

thesis contains error detecting devices that enabl-e manua.l- alterations

to be made to the input requirement data once an infeasible problem

has been discovered. The error detection is accompl-ished mainJ-y

through the cl-ash matrix and resou¡ce l-oad matrix (chaptex 6,

section 6.5) together with output messages indicating the trouble

spots. A practical problem that had no soLution is discussed . Al1

detaiLs are contained in Appendix D. The problem arose during

investigations at Craigmore High SchooI when the administrators

urele varying teacher allocations to classes to arrive at different

timetable patterns.

Table D.1 of Appendix D contains the details of resou¡ces

required for each school activity. upon entering the probJ-em the

computer returned arno sol-utionrresul-t and indicated that a probJ-em

area was located with the 2nd year level- classes. The precedence

l-ist determined at this stage showed that the order of assignment

was 301 , 3O2, 303, 31 1, 201 , and thus the 3rd year l-evel c.l-asses

had been successfulJ-y atlocated. The printout further indicated

that the problem area v,ras caused by the teacher-class set of activity

(53r54) of table D.1 involving the resources 201, 2O2,2O3r 211,

3, 5, 13, 14, 1g, 22 fo¡ a block-period síze 2. upon consuJ-ting the

cl_ash matrix of table D.2 it is found that this combination of

required

the 3rd

teacher resources clashes with every teacher-cl-ass set of

year IeveI cl-asses, i.t. no teacher-cl-ass set of the 3rd

can be all-ocated to the same time-period as thisyeah level classes
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2ndyearlevelset.Thisrequiredare-organizationofthiscom-

bination of teache¡s for the activity by the school- administrators '

I¡rlith the use of the teacher load matrix and the clash mat¡ix this

was easily accomplished since aII detail-s of the teachel lesources

involved and loads of aII staff members was detailed. craigmore

administrators accept these two matrices, together with the

directions printed by the computer program as an important aspect

of this solution method. The time taken to determine that no solution

existed was aPproximately 1 sec. C.P ' time '

0ther more complicated problems were determined to have no

solution but the method of detection and couection b/as stil-'l- the

sêtTteo In all cases the school administrator located the problem

area quickly and made the required co¡rections. The maximum time

taken to determine that no solution existed was l-ess than 2 minutes

c.p. time on a craigmore problem involving 23 staffr E time-period

day and 13 classes.

8.5 CONC LU SIONS ON THE ERAIGMORE PROBLEM

Thecomputerprogranhjasshowntobepracticalfortheschool

situation and ¡esults were produced in much Iess time than by manual-

methods. The deputy headmaste¡ of craigmole High school- indicated

that manual methods had required two weeks to produce a so-l-ution

earlie¡ in the year. The compute¡ method needed a day for the com-

pilation of manual data, a time of a few hou¡s for card punching and
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were involved
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processing. In aIl onJ-Y 2 daYs

solution method.

minutes for computer

using this automated

The system solved aII practical probLems and indicated rrno solutionil

situations when they arose. AlL results were acceptable and we¡e

easily initiated into the school organization. No solution problems

were quickly corrected through the clash and resource l-oad matrices.

The system was found to be of benefit in staff utilization since

several arrangements of teacher-class sets couÌd be tried and resul-ts

produced compared. This was not possible previously due to the time

involved by the use of manual methods. Thus an optimal solution coul-d

be æhieved for the school organization in preference to the ad hoc

methods employed to produce any solution.



CHAPÏER 9

DISCUSSiON

9.1 DISCUSSION

Publicatíons on the topic of school timetables are many and

varied, but still there remain relativel,y few that have practicaJ-

computer programs for the sofution of ¡eaI-life school problems.

In many cases the models, as presented, are highly theoretical, and

bear little resembl-ance to the practicat situations. 0thers attempt

to formulate in a computer program, heuristic techniques that have

been applied to specific school problems, with no guarantee that a

solution wil-I be produced.

Reports of successful approaches to the problemr such as the

Stanford SchooI Scheduling System (5.S.5.S.), 0ntario SchooÌ Timetabl-e

System and the General-ized Academic Simul-ator Program (GASP) of

M.I.T. have been noted. Howevet, these systems are costly in terms

of compute¡ time, with no guarantee of a successful- sol-ution (assuming

a solution does exist to a given problem). The cost factor is even

more critical when one body, such as the Education Department of

South Australia, must absorb the expense for some 147 solutions

to the 147 timetables present in this state. The¡e was also a rreed

for investigations into the detection of infeasibil-ities in pr oblems

th atthat had no solution. This was important for administrators

h,ere not in direct contact with the computer centre processing
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sofutions. Thus the broad aims of the research of this thesis were

first, to investigate a practical solution method for the production

of schooL timetables for South Australian secondary schools, keeping

in mind the cost factor, and second, to provide effective error-

detection-cor¡ection techniques for problems that had no solution

so that problems could be corrected quickly '

The success of the method presented in this thesis depended

firstly, upon the effectiveness of the implication algorithm that

reduced infeasible possibifities from each stage of the sol-ution

procedure, and second, on the ability of the bijective mapping

algorithm to generate only feasibfe allocations for class requirements

at each assignment stage. The method of approach was to consider

daily problerns, and each assignment stage allocated time-periods to

a set of daiJ-y cl-ass-activity requirements' The daily aPproach has

severaf advantages over the theoreticaJ-ly optimal weekly methods.

Firstty it reduces the larger problem to a more managabJ-e size.

Second, it permits direct administrative cont¡o1 over the distri-

bution of course and resource loads fo¡ the school week. Thirdr it

allows fo¡ the possibility of a partial weekly solution if one or

more daily problems are infeasible. Apart from any practical or

theoretica.l- advantages, the daily aPploach was lequested by school

administratoxs, so that there was stilL some control- over the Iayout

of the solution timetable' as produced by the computer '
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There are a numbe¡ of difficul-ties within secondary school-

timetables. First, the demand for fu]L-time teachers exceeds the

suppry. Thus part-time staff are empJ-oyed, but they have a J-imiting

effect on the timetabl-e, caused by their restricted availability,

and on some occasions, fixed times for l-essons. second, students

in the upper l-evel-s of the schoor may choose from a variety of

course combinations. Ideally, all combinations of subjects shoul-d

be avail-able f or se-l-ection, provided that the examination conditions

are satisfied, but due to the -l-imited teacher resources, the number

of course options is, in practice, l-imited. Neverthe-l-ess, teacher-

class sets are constructed to increase the number of possibJ-e

course options at the expense of increased complexity in the time-

table problem.

Lesson dist¡ibutions impose a further restriction on the

probJ-em. Block-periods of two or more consecutive .l-essons are of ten

required in the timetabre sorution, together with the desired even

distribution of teacher and course l-oads throughout the school- week.

Ïhe block-periods impose fu¡ther restrictions when they are confined

to specific time-pe¡iods of a school dayr e.g. a bl-ock-period size

two can onry be alrocated in time-periods l-2 or 2-3, or 4-5 or 5-6

in a 7 period day.

Lastly, the time for the production of manua-l- timetables can

impose administrative burdens ontake up to 3 weeks, and thus

students at the sta¡t of the school- term. Simil-ar dif ficul-ties a¡ise
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the¡efore desirable that a more
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Lrecause of staff

efficient method,

school timetables.of time, be found for the production of

The daily, combinatorial approach, presented in this thesis

considers the meetings of classes and teachers as activities ' The

activity oriented method is advantageous sLnce l-essons in practicaf

situations may involve varying numbers of school lesources (teachers'

classesr rooms, equipment, etc') ' Another important feature of

practicatsignificanceiSthecompositeavailabilityvector,that

indicated the combined avairability for resources required for an

activityrfoteachtime-periodofthetimetab'Ie'Thus'insteadof

having to allocate several lesoutces individually to a specific time

period, the assignment procedure had only to determine a single

allocation.

The daily class-activity assignment technique used at each

assignment stage was an important practicaÌ feature. The implications

associatedwithanallocationofseveralactivitiesattheonetime

permitanearlyrecognitionofinfeasiblesituations.Thuslfaulty

assignmentsr could be recognised more quickly and alterations made'

Thisapproachalsopermitsearlyrecognitionofinfeasi-b]-eproblems.

The clash matrix had important applications in two areas ' These

were first fo¡ indicating feasible pairs of activities for assignment

to common time-periods, and second, in the detection and correction
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of infeasibil-ities of problenswith no sol-uticrn. This teclrnique lr'rs

also been found usefuL in the production of manuaL timetalrlesr ¿nd

isusedasanaidformanua}timetableconstruction.

Data storage and manipulation is considered to be important

since the speed of solution is associated with the data of the

problem. The approach used in this work invoLved packing data into

computer words using the inclividual bitsrand operating on the data

withlogícaloperators.Thistechniquecontributedtothespeed

of the solution method.

The program hias tested on the Craigmore High School timetable

problem and the solution was produced. The practical- featules wele

consistent with the needs of the school, and craigmore is at present

operating under a timetable produced by the cornputer program presented

here. The method is to be progressiveJ-y adopted in other department-

al schools. The Education Department has accepted the program and

has aims of extending its use to other aspects of resou¡ce

utilization. It is foreseen that the program wif-l- be appÌicable to

other schools beside the departmental- schoofs '

9.? FUTURE RESEAREH

Problemsassocíatedwiththemanualproductionofschooltime-

tables are becoming Íncreasingly mo¡e difficul-t ' There is a need

for more research into practical problems associated with real-

school situations, to overcome not only the complexities of varying
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course requirements, but also to make them amenable to sol-ution by

automated nethods.

Furthe¡ resea¡ch into the size and composition of all-ocation

groups couLd be undertaken. In its present fotm, the al-location-

group consists of the daiJ-y activities of a c.l-ass, that a¡e al-l-ocated

to time-periods in one assignment stage within the sol-ution method

described in this thesis. Then, through the impJ-ication algorithmt

the combined effect of these activities on the unallocated require-

ments of the timetable problem is determined. The benefits of any

change in the al-Iocation-grouP size shoul-d be weighed against such

suggested factors as the increased computation time necessary to study

theirnpJ-icationsofanassignmentstage,theabilitytoquickly

detect infeasibilities, and the complexity of the implication

algorithm itself to cope with any variation in the grouP size'

This work could resul-t in the determination of an optimal allocation-

group size for the timetabJ-e problem'

There is a need for research into problems that have no

solution. It aPPears that the¡e are at least three aspects that

such a study could encompass. The first involves the determination

of conditions and constraints most tikely to cause infeasibil-ities

intimetableproblems.Thesecou].dthenbepJ.acedinsome¡elative

order such that constraints most J-ikely to cause a problem to have

no solution would be identified. second, further investigations

into error detection and correction techniques such as the clash

matríx of this thesis, could be beneficial ' The importance of
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of indications into causes fo¡ infeasibil-ities shouLd not be

negJ-acted and the fact that school administ¡ators wou.Ld no longer

be completely conversant with the stages of construction of the

timetable sol-ution should not be overlooked' The third, aspect is

associated with the quantification of computer timer necessary to

determine that probl-ems have no solution' At present, the nethod

wil-l- determine that no solution exists for a given problem' but no

accurate estimate of computer time can be made for the computatic¡n

of this result.

Another problem that calls for study is the allocation of

teachers to classes, according to the subject requirements of a

school. This work coufd be linked with a study on staffing of

schools as determined by course and student needs. Such research

would seek an optimal staffing strategy for schoo.l-s with staffing

problems.

The concept of an activity-oriented timetable within schools,

as desc¡ibed in this work is advantageous since the number of

resources invol-ved in Iessons is not necessarily constant ' The use

of composite avail-ability vecto¡s to describe the avail-abl-e time-

periods for activities could be used with other techniques for the

allocation of lesson times. e.g. PERT . The practical aspects of

the school tirnetable problem shoufd not be overlooked when new

methods of assignments are considered '
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in this thesis has aLready been l¡enefi-

Education DePartment. ComPuter

generated timetables are being produced and furthe¡ extensions to

the work are anticipated in the future '
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The School data fo¡ the fi-ve daily

indic a tesHigh School. The first tabJ-e

resources of the school-. TabÌes 2 f,o 6

probJ-ems in the form of :-

Required activity

timetabLe probJ-ems of Craigmore

the codes assigned to the teache¡.

contain data for the 5 daily

: Resources of the schooL

required for the

activity

; block-period size
req uired

Number of time-periods
invofved (if a repeated

activity )

: fixed time-period
designation if required

e.g. Multiplicity - 2 implies the activity is to be al-rocated

twice in the sol_ution.

Block = I implies a doubl_e lesson in consecutive

t-ime-periods.

TabLes 7 and I are the teacher-resource load mat¡ix'and clash sub-

matrix for the Tuesday problem discussed in Chapter B.



TAIìLT. 8.1

TEACHER RESOURCE DATA FOR CRAIGMORE HIGH SCHOOL

H.M

D.H.M

S

R.I

Code

M

- Headmaste¡

- Deputy Head Master

- Senior Master/Mistress

- Religious Inst¡uctor

Name
Positio n aI

Status

T

F

P

Teac her

FuÌl--time

Pa rt-t ime

Ful-l--time o¡
Part-time

Subj ect
Teac hin g

01

02

03

04

05

06

07

08

09

10

11

12

13

ì¡J.C.

B.C .

K.C .

E.C.

A.D .

B.D .

5.F.

H.F.

M.G.

R.G.

c.I.

J.L.

I .M.

H.M. 5c.

S.,

S",

Gg,

P.E

T

F

F

c
I

F

F

F

F

P

F

T

ï

ï

T

Ma

Ma.

Hist, Ma.

, 5c.

Library,
Eg, Fr.

Eg, Hist.

Basic Elect.,
Ma, Sc.

Hist, Eg, Ty,
Library

Hist, Eg,
Li,bra ry

Civics, Eg,
Hist, As .St.

T

S .M.

S.M

FT

FT

F

F

T

T Library



Code Name
Po sitio na L

Statu s
FuÌL-time or

Part-time
Subject
Teaching

14

'ls

16

17

1B

19

20

A.M

H.N

R.R.

P.R

C.R.

T.R.

J.R. S.M

J.S. S.M

I .hJ. T

L.l¡'J .

*Externaf persons

T

T

T

Ma.

Art

M., Gm.

Ma.

Art

Mu, Gg .

Eg, Mu, Cons .
Ed., Gg.

5c., G.g
Comp.Sc.

Fr., Eg,
Hist, Fil-m.

Cr.

R.I

R.I.

D.H.M.

T

T

21

22

23

24

25

T

F

F

F

F

F

F

F

F

F

F

P

P

Note: Cl-asses and other resources have not been inc.Luded on this

list. Cl-ass codes as discussed in chapter 3, section 3.2

will be used in the description to avoid confusion.



TABLE 8.2 .

THE RESOURIE REOUIREMENT LIST DATA INPUT

FOR MONDAY

ACTIVITY CLASSES TEAC HER S OTHERS
MULTI_
PLIC I TY

BLOCK FIXED

(1 ,2)

(3, 4)

(5,6)

(z,s)

(9,t0¡

(11 ,12)

101

101

101

101

101 r103

101

12

3

16

6

22,

10

61

12

2

(13,14)

(1s,'16)

(17,18)

(19 ,2Ol

(21 ,22)

102

102r104,105

102

102

102

11

1

1

2

2

2

1

t6

7

9

1

7 6 1

1

(23,24)

(25,26)

(27 ,28l,

(29,3Dl'

(31,32)

103

103

103

103

103

1

1

2

1

2

I

1

5 2

19

2

10

11



TABLE 8.2 (coNT 'D )

ACTIViTY CLASSES TEACHIRS OTHIR
MULTI-
PLiCITY BLOCK F I XID

( 33,34 )

(3s,36 )

(37,38)

(39,40)

104

104

104

104

14

11

15r19

IJ

2

2

1

(41 ,42)

(43,44)

(4s,46)

(47,48)

(49,s0)

105

105

105

10s

10s

10

12

14

5

5

22

(s1rs2)

( 53,54 )

(ss,s6)

(s7,s8)

2O1 ,2D2,2O3 ,211 ,

2o1 ,2A2 r2O3 r211

2O1 ,2D2 ,2O3 ,211

2O1 ,2O2 r2O3 r211

2O1 ,2O2 r2D3 r211

2O1 ,2O2,2O3,211

7 ,8,2D r22

112rgr15r1g

14 ,17 ,19 ,2D

4 ,5 ,1O r12 r1
15 r19 ,23

6 ,11 ,19 ,21

a
J ,

(s9,60 )

(61 ,62) 411O115r18rz],
22 r23

2

1

2

2

(63,64)

(65,66',)

(67 ,68)

(69,7O)

(71 ,72)

(73,74)

301 ,302 r 303 r 31 1

301 , 302 , 303, 3'l I

301 ,302,303 r 31 1

301 , 302, 303, 31 1

301 ,302, 303 , 3,1 1

30'l , 302,303, 31 1

8 ,1 2 ,2O,22

419110,15119,
21 ,22,23

2r3r17,21

2 13 rg ,21

2,3 r4,17 ,23

2

2

61711611g



TAELE 8.3

THE RESOURCE RESUIREMENTS LIST FOR TUESDAY

R ESOURC ES

ACTIVITY CLASsEs T TAI HER S OTHE R
MULTI-
PLICITY BLOC K F IXED

(1 ,2')

(3r4)

(5,6)

(z,e)

(9,10)

(11 ,12)

(13,14)

101

101

101r103

101

101

181

101

15r18

6

16r22

12

10

3

It)

22

(1s,16)

(17,18)

(19 ,2O)

(21 ,22)

(23,24)

(25,26)

11

9

15,18

5

4,23

1

1D2

1D2

102

1D2

1D2

1D2

2

2

2

(27 ,28)

(29,3O)

(31 ,32 )

( 33,34 )

103

103

103

103

19

10

11

2

2

2

2



TABLE 8.3 ( Contd . )

ACTIVITY CLASSES TEAC H ER S OT HER

MULTI-
PLICiTY BLOCK FI XED

(35,36 )

(37,38)

( 39,40 )

(41 ,42)

(43,44)

104

1D4

104

104

104

14

12

11

15r18

?J

2

2

2

2

(45 r46)

(41 ,48)

(49,50 )

(51 ,52 )

105

105

10s

105

4,23

5

14

11

a2

2

2

2

(s3,s4)

( ss,56 )

(57,58)

( 59,60 )

(61 ,62)

(63,64)

2O1 ,2D2 ,2O3 ,211

2O1 ,2D2,2t3 ,211

2O1 ,2O2 ,2O3 ,211

2O1 ,2O2 ,2O3 ,211

2O1 ,2O2 r2O3 r211

2D1 ,2D2 ,2O3 ,211

7 ,B,16 rz]

6 ,11 ,1 g ,21

6,15 r2O r21

4 a 1 -1t,ar¿r¿l

2114117 r19

4 15 11O r12 r 1 3,1 5,
1g ,23

2

2

(65,66)

(61 ,68)

(69,7O)

n1 ,72)

(73,74)

fi5,76)

3O1 ,3O2r 303,31 1

301 ;302,303 r 31 1

301 ,302 r 303 r 31 1

301 ,302 r 303,31 1

301 , 302, 303, 31 1

301 ,302 r 303,31 1

2 ,3,g c21

9,12 r2o r22

2 r3 r4 r17 ,23

2,3,4 ,17 ,23

617 r16r1g

6 ,12 r2O ,21 ,22

2

3

4

2



ACTIVITY CLASSES

TABLE 8.4

THE REsOURCE RENIIIREMINT5 LiST FOR WIDhIISDAY

RESOURTES

OTHERTEAC HERS
MULTI-
PLICITY

BLOCK F IXTD

(1 ,2)

(3,4)

(5,6)

(7,e¡

(9,10)

(1 1 ,12)

10'l

101

101

101

1 0'l

101r103

4,23

12

16

IJ

5

16 r22

2

1

1

2

2

(13,14)

(15r16)

(17r'18)

(19,2O)

(21 ,22)

(23 r24)

1D2

1D2

102

102

1O2r104r105

102

9

11

1

1

6r7,16

15r18

I

2

1

22

(25,26)

(21 ,28)

(29,30)

(31,32)

(33,34)

103

103

103

103

103

19

11

13

10

2 1

2

2

1

(3sr36)

(37r38)

(39,40)

104

1D4

14

12

2

2

2104 4 r23



TAT]LE 8.4 ( Contd . )

ACTIVITY CLASSES T[AC HI-RS O IHER
MULTI-
PLiC ITY

FLt]IK F I XLD

(41 ,42)

(43,44)

104

1D4

11

2J

(45,46]-

(47 ,48)

(49,50)

(51 ,52 )

( s3, s4 )

11

15,18

10

14

4 r23

105

105

105

105

105

L

2

(5s ,56 )

( 57,58 )

(59,60)

(61 ,62)

(63,64)

(65,66)

281 ,2O2,2O3 r211

2o1 ,2O2 ,2O3 r211

2O1 ,2O2 ,2O3 ,211

2O1 ,2O2 r2O3 ,211

2O1 ,2O2 ,2D3 ,211

2O1 ,2D2 r2O3 ,211

7 ,B,2O r24

7 ,8,16 ,2O

2114r17,19

2 14 ,14 ,19 ,23

6r11r19 r21

a')'lot r-rrt)

2

1

2

(67 ,68)

(69,7O)

n1 ,72)

(13,14)

(15,76)

n7,78)

30'l ,302 r 303 r 31 1

30'l ,302, 303, 31 1

301r302r303r311

301 , 302, 303, 31 1

301 ,302 r 303,31 1

301 , 302, 303 r 31 1

2 r3,17 ,21

3 ,9 ,15 ,18 ,21

5 10, 1 3 ,19 ,2O r22

5r10r13119,2Or22

6 ,12 ,2D ,21 ,22

415r9r10,17r18,
23

2

2

3

4

5



TAI]LE 8.5

THE REST]U RDE RENUIRIMENT LI5Ï D ATA TNPUT FOR THURSDAY

*Religious Instruction teachers (not part of teaching staff)

R ESOURCES

ACTIVITY CLASSES TEAC HERS OTH ER
MULTI -
PLICITY

BLOCK FIXTD

(1 ,2)

(3,4)

(5,6)

(z,e¡

101

101

101

101

1 01 , 1 02 , 1 0 3 , 1 04 )

105 )

2D1 ,2O2 ,2D3 ,211 \
301 ,302,303,31 1 )

6 2

2

2

10

12

4 r23

24 r25*

1 1

(9,10) oU

(11 ,12t

(13,14)

(1s,16)

(17,18)

(1g,2Ol

(21 ,zz)

1D2

102

102

1021104r105

102

102

11

4,23

7

611r16

9

5

2 2

(23,24)

(25 126)

(27 ,28)

(29,3Ol.

(31,32)

103

103

103

103

19

'l5r1B

10

11

4 r23

1

2

1

2

1

Z2103



TABLE B.s (Contd. )

ACTIVITY CLASSES TTAC HE R S OTHTR
MULTI-
FLI C IIY BLOCK F I XED

( 33, 34 )

(35,36)

(37,38 )

(39r40)

(41 ,42)

104

104

104

104

104

22

3

5

12

11

14

(43,44')

(45,46)

(47,48)

(49,50)

(51 ,52)

105

105

10s

'1 05

105

15

I

2

1

2

14

10

11

15r18

(s3,54)

(55,56 )

(57,s8)

(59,60)

2O1 ,2O2 r2O3,211

2D1 ,2O2 ,2O3 ,211

2D1 ,2O2 r2D3 ,211

2O1 ,2O2,2O3 r211

2O1 ,2O2 ,2D3 r211

2D1 ,2O2 r2O3 r211

7,Br16,2O

6 ,11 ,19 ,21

7 ,B r2O,22,

5r13r14r1511
19 ,22

2114r17 r19

1,21319

(61 ,62)

(63 r64)

22

(65 166 ) :Ot ,3O2,303,31 1 419,10r15r19,
21 ,22 r23

(67 ,68)

(69,7]',)

(71 ,72)

(73,74)

fis ,7 6)

301 ,302,303 r 31 1

301 , 302, 303, 31 1

301 ,302,303,31 1

301 , 302, 303, 31 1

301 , 302, 303, 31 1

8 r12,20 r22

2,3 r17 ,21

2 r3 ,g ,21

6 ,12 ,2O ,21 ,22

617,16r1g

1

2



TABLE 8.6

THE RESD RCE RENUIREMENT IST DATA INPUT FOR FRIDAY

RESOURCES

ACTIVITY CLASSES TEACH ER S OTHER
MULT I -
PLIC I ÏY

BLOCK FIXED

(1 ,2)
(3, 4)

(5, 6')

fi, 8)

(9, 1o)

(11r12)

101

101

101

101,103

101

101

15r18

6

3

16 ,22

10

5

1

2

2

1

2

('f 3 , 14l'

(15, 16)

(17,18)

(19 , 2Ol

(21 , 221

102

102

102

102

1A2,104r105

9

11

1

7

6r7 116

2

12

2

1

1

(23, 241

(zs, 26l-

(27, 2Bl

(29, 30)

5

19

4 r23

2

103

103

103

103

1

1

13

1

(31, 321

(33r 34)

(35r 36)

(37, 38)

(39, 4o)

(41, 421

104

104

104

1t4

104

104

4 r23

3

14

5

11

12

1

1

1

2

1

1

1



TABLE 8.6 (Contd. )

ACÏIVITY CLASSES TEAC H ER S OT HERS
MULTI-
PLiCITY

ELÛCK F IXED

(43, 44)

(45, 46)

(+7,48)

(49, so)

105

105

105

105

10

14

11

2

2

1

25

(51 ,

( 53,

(55,

( 57,

(59,

(61 ,

52)

54)

s6)

s8 )

6D)

62')

2O1 ,2O2 r2O3 r211

2O1 ,2O2,2O3;211

2O1 ,2O2,283 r211

2O1 ,2O2 ,2O3 ,211

2O1 ,2O2,2O3,211

2O1 ,2O2 ,2O3,211

6 ,11 ,19 ,21

7 ,B,2D r22

7 ,8 ,16 ,2O

4 ,19 ,14 ,2D ,23

1 ,2 13rg

4r10r15r1I,2O,22,
11LJ

I

1

-a

1

2

2 2

(6 3 , 64',)

(65, 66)

(67 ,68)

(69,7Ol

(7t , 72)

(7Sr 14)

301 , 302, 303,31 1

301 ,302,303r 31 1

301 r 302,303,31 1

301 , 302, 303, 31 1

301 , 302 , 303, 31 1

301 ,302,303,31 1

8 ,12,2O ,22

4r5rgr1Or15r17,
18 r23

3,9 ,15 ,1 B ,21

6r12r2Or21 ,22

2 r3,17 ,21

6r7116r1g

a2

¿ 2



* A part-time teacher

MONDAY

rAnr t 8.7

IHE DAILY IEACHF-R RT.St]tJRCI. t-OADS

TUESDAY U'/EDNESDAY TH UR SDA Y FR IDAY

oU

B

I
I
I
I
I
3

I
o
U

I
I
I
B

I
B

B

B

B

B

I
I
B

3

3

6

Ò
U

I
5

6

3

7

7

4

3

0

6

1

5

3

7

7

I
5

7

B

o
U

õ

I
o
U

I
o

I
IJ

I
I
I
I
o
U

oU

o
U

I
I
I
I
I
B

oU

I
1

1

5

5

6

6

6

5

3

5

5

5

5

2

5

7

aJ

2

7

6

4

6

6

6

1

I
I
o

oU

I
I
B

I

I
I
oU

I
ÊU

I
U

I
I
I
I
I
I
I
I

3

7

6

7

2

4

6

3

5

6

6

6

3

5

6

4

4

6

7

6

6

-7
I

7

oU

I
I
I
I
I
I
J

I
oU

o
U

I
o
U

I
o
U

I
I
I
I
oU

I
I
B

0

2

7

7

-7
I

6

6

4

3

4

5

I
6

2

5

I
6

?
J

7

6

5

6

3

7

0

I
I
I
I
oU

I
I
3

I
I
o
U

I
I
õ

o
U

I
I
I
I
I
I
B

I
0

0

aJ

7

6

5

6

5

6

3

7

7

5

6

1

F

7

5

4

7

5

6

5

7

5

0

0

0:0
0:0

0:0

I

2

3

4

5

6

7

grÞ

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24*

25r 0:0 0:0

The resource.Load matrix indicates the number of activities
each resource (teache¡) is required to be al-located ín the

timetable solution.

N ote



TABLE 8.8

The cfash sub-matrix fo¡ the Tuesday timetable problem.

periods )

* indícates activities (61 168 ) and

requirements for resource 22.

T1 T3 T27 T28

(0 = cannot al-l-ocate activities to common time-

(5r6) cannot be allocated to the same time'period because of common

activity (1'2) (5r6) (53'54) (55'56)

T29

(57,58)

T30

(59,60)

T3'1

(61 ,62)

T32

(63,64)

T33

(65,66)

T34

(67 ,68)

T3s

(69,7O)

T37

fi3,74)

T38

n5,16l,

(1 ,21

(5 
'6')

(s3,54)

(s5,56)

(57r58)

(59,60)

(61 ,621

(63,64)

(65,66)

(61,68)

(69,7t)

(73,74)

1

11

0

0

1

0

0

1

0

1

1

1

1

0

0

1

1

0

0

0

0

0

1

0

0

0

0

1

0

0

1

û

0

1

0

0

1

1

0

0

1

0

0

0

0

0

1

1

0

0

0

0

t

0

0

0

0

0

0

0

1

0

1

0

0

0

0

0 1

0

0

0

0

1

0

0

0

0

0

1

0

0

0

1

0

1
0

0

0

0

1

1

1

0*

0

1

0

0

0

1

0

01000

1

0 0



JJ

Þ
 

C
¡.

r 
f\J

 
r 

cl
 

\!,
 

cD
 

--
l 

O
\ 

U
r 

Þ
 

(¡
) 

f\J

rr
O

T
ea

ch
er

 R
ee

ou
¡c

ee
-l LN -.

1 o\ o

JE
O

JJ
JJ

JF

cl

r+
c

ro

JO
E

O
O

o

O
JJ

oc
]

JJ
O

oo

O
T

T
JO

cJ
o o

JJ
J(

J

or
r

JJ
JJ

J

rr
O

O

o

O
O

O

rE
ra

JE
éJ

J
O

-l rÉ r rr
l

o o c+ F
.

P
.

(i N
J (J
I o\ U
I

Û
J cn Þ (J
I

(J
I

U
ì o\ LN --
J ul C
D

tr q) r-
) o f, cl
' È

--
l -{ G
) -{ N
J -t -{ N
J g) --
t

r\
J \o -.
{ o) o --
t

C
¡) -{ Û
J f\) -l Û
J LJ -t o) Þ -l (, LN -l (J
J

--
t

ût \o o\ cl o\ o\ I\J o\ o) O
ì 5 o\ (J
l o\ o\ o\ { o\ C

D g\ \o --
J o --
.t ûJ -t Þ



TAELE 8.8 (Contd. )

T1 T3 T27 r28 T29 T3o T31 T32

activity ( 12) (5,6) (53,54) (s5rs6) (57'58) (59,60) (61,62) (63,64l.

15

16

17

18

19

20

21

22

23

T33

(65,66'.)

T34

(67 ,68)

T35

(69,7O)

T37

(73,74)

ï38

fis,76)

1

0I

1

0 1

0

1

0

1

1

0

0

1

1
0

10 0

1

0

0

1

I

0

0

0

1

1

1

1

0
1 0

1 0

1

1

0

1

1

0

0

11
1

0

0

01

0

0 1



DAY TEACHER CODE
PERIODS NOT AVAILABLE
FOR ALLOCATION

Monday

Tuesday

lr'lednesd ay

Thursday

Thursday

Friday

I

I

I

I

24 r25

I

4 7r 8

4

5

5, 7r 8t

6

6

6

6

4, 5t 7r 8

4' 5, 7, B

1' 2, 3, 4, 5, 6, 7

4, 5, 61 7r 8

TABLE 8.9

Table of the weekly time-periods that are not avail-ab-l-e for

al-locationrfor the resources indicated, within the timetable

solution.

Note The table defines the unavaiLabl-e time,-period for

each of the part-tine resources.



APPENDIX C

The five daily timetabl-e solutions for the Craigmore High School

problem have been tabulated in the following form !-

Notes have been included where necessary to

Time-periods al-Located

by the computer program

Required activity and ¡esou¡ces

as described by tables in Appendix

B

indicate special features

the fact that variousincl-uded in the solutions.

output fo¡mats are possible

timetables, class timetabl-es

section). The other fo¡ms

codes shown in these tables

the teacher initials may be

Lessons.

Attention is d¡awn to

to give sol-utions in the form of teacher

presented in this

By relating the

8.1, appendix B,

or period timetab.l-es (as

are mentioned in the text.

to the initials of table

substituted, and subjects rel-ated to the



A.]-l-ocated
Time-period

Required
Activity Required Resources

(3, 4)

(1S, 16)

(23, 24)

(53, 54)

(65, 66)

101 ,

102 ,

103,

2O1 ,

301,

3

104,

5

202,

3D2,

105, 6,7r 16

2D3,

303,

21 1r 1r 2, 9r 15, 18

311 , 8, 12, 2O, 22

2 (11, 12)

(1 5, 16)

(23 , 24¡

(53, 54)

(65, 66l'

10

104,

5

2D2,

302,

101 ,

102 ,

1 03,

201 ,

301,

105, 6,7r 16

2D3,

30 3,

211, 1r 2,9r 15, 18

311 , g, 12, 2O, 22

3 (1 ,2)
(13, 14)

(25, 26)

(33, 34)

(41, 42)

(51, 52)

(63, 64)

12

1'l

19

14

10

202,

302,

101 ,

102,

103,

't 04,

1 05,

201 ,

301,

2o3,

303,

2O, 22

9, 21

211 , 7, I

311, 2, 3



AIlocated
Time-period

Required
Activ ity

Required Resources

12

7

2

11

4 (1 ,2)
(17,18)

(27, 28)

( 35, 36 )

(49, s0)

(55, 56)

(67, 68)

101 ,

102 ,

103,

104 ,

1 0s,

201 ,

301 ,
21

302,
, 22,

5

2O2, 2O3, 211, 14, 17, 19, 2O

311, 4, 9, 10, 15, 18,303,
23

5 (9, 10)

(21 , 22')

(35, 36)

(47, 48\

(57, 58)

101 ,

1D2,

104,

1 05,

2D1 ,
18

1 03,

1

11

14

16, 22

2O2r 2o3,211r 4, 5,10, 12r 13, 15'

,23

(69, 7O) 301, 3O2, 303, 311, 2, 3t 11, 21

6 (5, 6)

(19, 2D)

(29,30)

(37, 38)

(43r 44)

(59, 60)

(7t , 72)

101,

1D2,

103,

1D4 ,

10s,

201 ,

301,

16

9

10

15,

5

2o2,

302,

211, 6,

311, 2,

18

2o3,

303,

11, 19r 21

3 4, 17, 23



Al-located
Time-period

R equ ired
Activ ity Required Resou¡ces

1 (3, 4)

(i9, zol

(31, 32)

(33, 34)

(43, 44)

(61, 62)

( 7:, 74')

101 , 3

1D2, 9

103, 11

104, 14

105, 5

201 ,
22

2O2, 2D3, 211, 4, 10, 15, 18, 2O,

,23
3û1, 3O2r 303, 311, 6r 7r 16r 19

I 0r B)

(17r 18)

(27, 2Bl

(39,40)

(45, 46)

(ss, 56)

(67r 68)

101 ,

102 ,

103,

1D4 ,

1 05,

281 ,

301,
21

303,
23

6

7

2

3

12

2t2, 2O3, 211, 14r 17,19r 20

31 1r 4,9, 10, 15, 18,3O2,

, 22,

TABLE C.1

Solution in orde¡ of time-periods for the Monday timetabl-e problem

of Craigmore High School-.

(Data presented in table 8.2, Appendix E)

Note : that aII classes are fully utilized for every time-period.



All-oc a ted
Time-period

Required
Activity Required Resources

1 (1, 2)**

(23, 24)

(21 , 28\

(39,40)

( 51 , 52')

(53, 54)

(65, 66)

101 ,

102 ,

1 03,

104 ,

105,

2O1 ,

301,

15, 18

4, 23

19

12

't1

202,

302,

2O3, 211, 7, B, 16, 20

303, 311, 2,3, 9r 21

¿ (1, 2)**

(17 , 1 I )

(29, 30)

(39,40 )

(47, 48 )

(55, 56)

(67, 68)

101 ,15, 18

1O2, 9

103, 10

1O4, 3

105, 5

2O1, 2O2, 2O3,

301, 3O2, 303,

211, 6, 11, 19, 21

311, 8, 12, 2O, 22

3 (3, 4)

(19, 2o')

(29, 30 )

(41 , 42)

(49, so )

(53, 54)

(69, 70)+

101 , 6

1O2, 1 5, 18

1 03, 10

104, 11

1 05, 14

2O1, 2O2, 2O3,

301 , 3O2, 303,

16, 20

4

2111 7r 8

3'11, 2,3 , 17, 23



Al-located
Time-period

Required
Activity Required Resou¡ces

4 (5, 6l

(1S, 16)

(35, 36)

(47, 48)

(57, 58)

(7t , 721*

101, 103,

1D2, 11

104, 14

105, 5

2O1, 2O2,

30'l , 3o2,

16, 22

203,

303,

21 1, 6,

311,2,

1 5, 2D, 21

3, 4, 17¡ 23

5 (11,

(t7,

(33'

(35,

(51,

(63,

12)

18)

34)

36)

52)

64)

101 , 3

1O2, g

103, 2

1û4, 14

105, 11

203
23

, 21 1, 4, 5, 10, 12, 13,

301, 3D2, 303, 311, 6, 7, 16, 19

2O1, 2O2,
15, 18,

( 7:, 74')

6 (7, 8)

(zt, 22)**

(31, 32)

(4s,44¡x*

(4s, 46¡**

(59,60)

( 7S, 74'l

'101 
,

102,

103,

104 ,

105,

2O1 ,

301 ,

12

5

11

15, 18

4, 23

2O2, 2O3, 211, 1, 2, 3, 21

302, 303, 311, 6r 7r 16r 19



Al-tocated
Time-period

R eq uir ed
Activity Required Resources

7 (9, 10 )

(21 , 22)**

(31, 32]-

(43,44)**

(4s, 46 ¡**

(61 , 62'.)

(7s, 761

101 , 10

1D2, 5

103, 11

104, 15, 18

105, 4, 23

2O1, 2D2, 2O3,

301 , 3o2, 30 3 ,

211r 2, 14, 17,19

31 1, 6, 12,2Or 21 ,22

(1:,

(zs,

(27 ,

(4t ,

(4e ,

( 63,

14)

26)

28')

42')

s0)

64)

101, 16

1O2, 1

1 03, 19

1D4, 11

1 05, 14

2O1, 2O2,
15, 18,

2O3, 211 , 4
23

1 o, 12/3,5

(65, 66) 301, 3n2, 303, 311, 2, 3, 9, 21

TABLE C.2

Solution in order of time-periods for the Tuesday timetabLe problem

of Craigmore High School

(Data is presented in tabl-e 8.3, Appendix B)

* fixed time-period requirements fo¡ periods 3 and 4

** block-period requi¡ements aLlocated to consecutiVe Iessons.



A Iloca ted
Time-period

R eq uired
Activity Required Resoulces

(3, 4)

(zl, 24)

(25, 26)

(39,4o)

(45, 46)

(55, 56)

(67,68)

10'l , 12,

102, 15, '18

1 03, 19

1O4, 4, 23

105, 11

2O1, 2O2, 2D3,

301, 3O2, 303,

211 , 7,

31 1, 2,

ou, 2D, 22

17, 21IJ,

2 (5, 6)

(23, 24ì-

(zs, 26)

(39, 4o)

(49, 5o )

(55, 56 )

(67r 68)

101, 16

1D2r 15, 18

1 03, 19

1D4, 4, 23

1 05, 1o

2O1, 2O2, 2D3, 211, 7,

301 , 3o2, 303, 311, 2,

I

3,

2O, 22

17, 21

3 (3, 4)

(1 5, 16)

(21, 28)

(35, 36)

(53, 54)

(57,58)

(69, 70)*

101, 12

1O2, 1 1

103, 2

1O4, 14

1O5, 4, 23

2D1, 2o2, 2o3, 211, 7, 8r 16, 2D

301, 3A2,303, 311, 3, 9r 15, 18, 21



All-ocated
Time-period

R equired
Activity Required Resources

44 (1, 2)

(t9, 20)

,(29 , 30 )

(37, 38)

(51, 52)

(59, 60)

(7t , 72)*

101 ,

1D2 ,

1 03,

1 04,

105,

201 ,

23

7

11

12

14

2O2, 2D3,

303,

21 1r 1r 2r 3, 9

31 1, 5, 10, 13, 15, 18,301,
19,

3O2,
22

5 (1 ,2)
(21, 22]'

(29,30)

(59,60)

(71,14t*

4, 23

1 04, 1 05,

11

2O2, 2D3,

382, 303,

6, 7, 16

21 1, 1,

31 1 , 5,

2, 3t 9

10, 13, 19,2O,

'101 
,

1O2 ,

1 03,

2O1 ,

301 ,
22

6 0, 8)

(1 3, 14)

(31, 32l.

(41, 42)

(49, 50)

(61" 62)

(7S,76)

101 ,

102 ,

1 03,

104 ,

105,

201 ,

301,

3

9

13

11

10

2O2,

3D2,

203,

303,

21 1, 2, 14,

311, 6, 12,

17, 19

2O, 21 , 22



Allocated
Time-period

Required
Activity Required Resources

7 (9, 1o)

(11r 18)

(33, 34)

(43, 44)

(47, 48 )

(63,64)

(7S,76)

101 ,

1D2,

1 03,

1 04,

1 05,

2D1 ,

301 ,

5

1

10

3

15, 18

2O2, 2O3

3O2,303

, 21 1, 2, 4,

, 31 1, 6, 12,

14, 19, 23

2O, 21, 22

I (11 ,

(1e ,

( 37,

(51 ,

(65,

(17 ,

12)

2t)

38)

s2)

66)

78)

101 ,

1D2 ,

1D4 ,

105,

201 ,

103,

7

12

14

202,

301 , 3o2,
18, 23

16, 22

2O3, 211, 6

303, 31 1,4

11, 19r 21

5, 9r 10, 17,

TABLE C.3

Solution in order of time-periods for the Vr/ednesday timetabl-e probl-em

of Draigmore High School.

(Data presented in tabl-e 8.4, Appendix B)

* fixed time-period requi¡ements to the periods 3, 4, 5.



Allocated
Time-period

Required
Ac tivity Required Resources

(3, 4)

('t 3, 14)

(zs, 26')

(35, 36)

(45, 461

(55, 56)

(67,68)

101 ,

1D2 ,

1 03,

104,

105,

201 ,

301,

10

4, 23

15t

5

14

202,

302,

'18

2O3, 211, 6

303, 311, I

11 r 19, 21

12, 2O, 22

2 (1, 2l

(13, 14)

(2s, 26')

(35, 36)

(41, 48)

(57, 58)

(69,70)

101 ,

102,

103,

1 04,

105,

2O1 ,

301,

6

4 23

15,

5

10

2D2,

302,

203,

303,

18

21 1, 7, B, 2D, 22

31'l , 2, 3, 17, 21

3 (5, 6)

(11, 12]-

(zz, 24)

( 33, 34 )

(43, 441

(53, 54)

(65, 66)

',l01 ,

102 ,

103,

1 04,

105,

2D1 ,

301 ,
21

211 , 1,

311 , 4l

12

11

19

3

5

2O2, 2O3, , 16, 2t

, 10, 15, 18,

I

3D2,
, 22,

303,
23

9



Allocated
Time-period

Required
Activ ity Required Resources

4 (1 ,2)
(15, 16)

(31, 32)

(37, 38)

(49, s0)

(59,60)

(7t , 721

101 , 6

1O2, 7

1O3, 4, 23

1 04, 12

105, 11

2O3,211r 5, 13, 14r 15, 18,

3o'l , 3a2r 303, 311, 2r 3, 9r 21

2O1 , 2O2,
19 ¡ 22

5 (3, 4)

(17,18)

(31 , 321

(59r 60)

(tt , t2)

101 , 10

1D2, 1O4, 1 05,

1o3, 4, 23

2D1, 2O2, 2D3,
22

301, 3O2, 303,

6 7, 16

211r 5, 13, 14, 15, 18, 19,

311, 2, 3, 9, 21

6 (7, 8)

(9 , z0',)

(27 , 28)

(39, 4o)

(51, 52)

(61, 62)

( 7S , 74')

4, 23

9

10

11

15, 18

2O2, 2O3,

3O2, 303,

17 t 1g

2O, 21, 22

101 ,

102 ,

103,

104 ,

1 05,

2A1 ,

301 ,

211 , 2, 14,

311, 6, 12,



AII-oc ated
Time-period

Required
Activity Raquired Resources

7 (5, 6)

(zl , 22)

(29, 30)

(41, 42)

(51, 52)

( 63, 641

(7S,76)

12

5

11

14

15, 18

2D2, 2O3,

3O2,303,

101,

1D2 ,

1 03,

1O4,

105,

2O1 ,

301 ,

21 1, 1, 2, 3, 9

311, 6r 7r 16r 19

202,
25

I (9, 1o¡* 101, 1O2, 103, 1O4, 105, 2D1,
211, 301, 3O2, 303, 311, 24,

2O3,

TABLE C.4

Solution in order of time-periods fo¡ the Thursday timetable problem

of Craigmore High School-.

(Data presented in table 8.5, Appendix B)

* a fixed time-period requirement for all classes in time-period I

fo¡ the purpose of a ¡el-igious instruction lesson. Teachers 24, 25

are external to the school- as indieated in table 8.5, Appendix B.



APPENDIX C

AlLocated
Time-period

Requ ired
Activity Required Resources

(3, 4)

(15, 161

(25, 26)

( 33, 34 )

(45, 46)

(55, 56)

(65,66)

11

19

3

14

2O2, 2D3,

101 ,

102 ,

1 03,

1 04,

1 0s,

2O1 ,

6

211, 7, g, 16, 2O

31 1r 4, 5, g, 10, 15,301
1

, 3O2,
7r 18,

303,
23

2 (5, 6)

(17,18)

(25, 26)

(ss, 36)

(47, 48 )

(53, 54)

(65, 66ì-

101 ,

102,

103,

1 04,

'105,

201 ,

301,
18

203,

303,

3

1

19

14

11

2D2, 211, 7, 8, 2O, 22

311, 4, 5, g, 15, 17,302,
,23

3 (1, z)

(13, 14)

(23, z4t

(31 , 32')

(43, 44')

(51, 52)

(63, 64)

101 ,

1O2 ,

103,

104 ,

1 05,

201 ,

301 ,

15, 18

9

5

4, 23

10

202,

302,

2D3

303

11 , 19, 21

12, 2O, 22

211, 6

311,I



Time
Time-period

Required
Activity Required Resources

4 (7, 8)

(19, 20)

(37, 38)

(43, 44')

(57,58)

(61, 68)

101 ,

1O2 ,

104 ,

1 05,

201 ,

301,

1 03,

1

5

10

2D2,

3O2,

16, 22

203,

303,

21 1, 4,

31 1 , 3,

14, 19, 2O,

g, 15, 18,

23

21

5 (7r B)

(17, 18)

(39r 40)

(49,50)

(57,58)

(67,68)

101 ,

1D2 ,

1 04,

105,

201 ,

301 ,

16, 22

2O3,

303,

1 03,

1

11

5

202,

302,

211, 4, 14, 19, 2O, 23

311, 3, 9r 15, 18, 21

6 (11, 12')

(21 , 22)

(25, 26'.t

(61 , 62)

101 ,

1t2,

1 03,

201 ,
22

5

104, 105, 6r 7, 16

19

2O2, 2O3, 211, 4, 10, 15, 18, 2O

t23
301, 3O2, 303, 311, 13, 17, 21(7t , 72)



A llocated
Time-periods

Required
Activity Required Resources

7 (11, 121

(t :, 14')

(29, 30 )

(41 , 42)

(45, 46)

(61, 62)

(7S,741

5

9

2

12

14

2O2, 2D3,

3O2r 303,

21 1, 4,

3'H , 6,

'101 
,

102 ,

1 03,

104 ,

10s,

'oLt
301,

10, 1 5, 1 8, 20, 22,

7r 16, 19

B (9, 1o)

(19, 20)

(27 , 28l-

(35, 36)

(a9, 50)

(59, 60)

(69, 70)

101 , 10

1O2, 7

1t3, 4, 23

1D4 , 14

105, 5

2o1, 2O2, 2O3,

301 , 3O2, 303,

21 1r 1r 2,3, 9

311 , 6, 12, 20, 21 , 22

ÏABLE C.5

Solution in order of time-periods for the Friday timetabLe

problem of Craigmore High School-.

(Date is presented in Table 8.6, Appendix B)



APPENDIX D

The folLowing tables ¡el-ate to

solution. The cl-ash sub-matrix of

a practical problem that had no

Tabl-e 0.2 indicates the activity

0.1 details the activities and resourceTa bl-ecausing this infeasibility.

requirements of the problem

J-oads. Table D.4 indicates

considered in the solution.

whil-st ïab-l-e D.3 surnmarizes the teacher

the teache¡ availability constraints to be



ACTIVIÏY CLASSES

TAFLE 0.1

THE ACTIVITY AND RESt]URCE REQUIREMENTS FOR A TIMETABLE

PROBLEM THAT HAS NO SOLUTION

RESOURCES

MULTI-
PLICITYTEAC HER 5 OTH ER 5 BLOCK FIXED

1t ,z)

1:,a)

(5r6)

(z,e)

101

101

101

101

6

12

10

4 r23

2

2

2

(g,to)

(11,12)

(13114)

(15,16)

(17.18)

11

15r18

9

5

617r16

102

102

102

1D2

1O2 ,1 04,1 05

2

I¿ 2

1

(1g r2O)

(21 ,22)

(23 r24 )

(2s 126)

(27 ,za)

( 29,30 )

2

10

19

15r18

4 r23

11

103

1U3

103

103

103

103

I

22

1

(31 ,32)

(33,34)

(3sr36)

(37,38)

104

104

104

14

11

12

3

2

2

1

104



TABLE D.'1 (Contd. )

ACTIVI TY CLASSTS TEAT HERS OTHERS
MULTI-
PLICITY

BLOCK F IXED

(39,40)

(41 ,42)

(43,44)

(4s,46 )

105

10s

105

105

5

14

10

15,18

22

22

(41 ,48')

(49,50)

(5'l ,52 )

( 53,54 )

(s5,s6)

(s7,s8)

2O1 ,2O2 ,2O3 ,211

2O1 ,2O2 r2O3 ,211

2O1 ,2D2 ,2O3 ,211

2o1 ,2O2,2O3 ,211

2O1 ,2O2 ,2A3 ,211

2O1 ,2D2 ,2D3 ,211

6 ,11 ,19 ,21

2114 r17 r19

7 ,B r2O,22

3r5r13114119r22

1,Br16,2O

1 ,2 rg ,22

2

2

1

2

( 59,60 ) ¡ot ,3D2 1303,31 1 4 ,1O ,15 ,1 B ,21 ,
22,23

B r12,2O r22

2 ,3 ,17 ,21

6 r12,2O r21 ,22

2,3 19 ,21

6r7,16119

(61 ,62)

(63,64)

(65 r66)

(67 ,68)

(69,1Ol,

301 ,302 r 303 r 31 1

301 ,302 r 303,31 1

30'l , 302, 303,31 1

301 ,302 r 303, 31 1

301 ,302,303 r 31 1

3

2



THE CLASH SUB-MATRIX FOR THE TIMETABLE PROELEM Ii{ITH NO SOLUTION DEFINED IN TABLE 0.1

B)(11,12)(17,18)(l¡rqa)(49rso)(s1 ,sz)(s3,s4)(ssrs6)(s7,sB)(59,6D)(61 ,62)(63164)(65,66)(67,68)(69,7o)

0

han 2 resourcestivitiesDist

ctivity (7,

10

0

11 1

1

0

0

0

0

0

0

1

1

1

0

0

0

7rB)

11 ,12)

17r18)

47 ,481

49,50 )

51 ,52)

53,54 )

55r56)

57r 58 )

59,60 )

61 ,62')

63 r64)

65,66',)

67 168)

39,1O)

0

0 0

1

0

0

1

0

0

0

0

1

0

0

0

0

0

0

0

0

0

1

0

0

1

0

0

0

0

0

0

1

1

1

1

0

0

0

0

0

0

0

u

0

0

0

0

0

0

0

0

1

0

1

0

0

0

0

0

0

0

0

0

0

0

0

1

0

0

0

I

0

0

1

0

0

0

0

0

0

0

0

1

I

0

11 0

0

1

0

0

0

0

1

0

0

0

0

0

01

0

0

0

0

0

0

0

0

1

1

0

1

0

0

0

0

0

1I

1

11001 0

1
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\ctivity (7,8) (1 1,1 2)(17,18)(47,

ABLE D-2

17 1

18 1

19 1

20 1

21 1

22 1

230

(Contd. )

48) (49,50) ( si ,s2) (s3r54) (55,s6) (s7,sB) ( 59,68) (61 r62) (63,64) (65r66)(67,68) (69,7o)

11

10

1u0

0

1

44

0

1

1

01

0

0

0

0I

4

01

1 1

1

0

0 0

0

1

0

0

00

I

1213 11 13 17 10 13 18 11

1

12 11 12lumber of
C Ias hes

9

Note that activity (53r54) has only 4 avairable activities that may be al-located to the same time-

period as (53r54), i.e. there are only 4 non zero elements in the row associated with (53r54)'

Also note that all 3rd year leveJ- activities are from activities (59r60) to (69r1O) and none are

avail-able for allocation together with (53r54), i.e.. all- zero elements in row (53r54) for columns

associated wiì:h (59r60) to (69,7A'). Hence no feasible allocation for a sol-ution satisfying the

timetabl-e constraints can be determined and thus the problem as defined has no solution '



TABLE D.3

Â TARI F NF TH RtrNIITRtrN TFAf-I-.IF RRE SNIIRf]F I OADS FOR THE

TIMETABLE PROB DEFINED IN TABLE 0.1 THAT HAS NO SOLUTION.

Teacher Code

û'l

o2

03

04

05

06

B1

0B*

0g*

10

11

12

13

14

15

16+

17x

18

19

Required Load

1

1

1

7

7

7

7

3

6

1

1

7

7

7

7

5

6

7

7

6

1

6

6

4

5

6

4

3

4

5

6

5

1¿

6

6

3

2

6

6

420*



TABLE 0.3 ([ontd. )

Teache¡ Code Reoui¡ed Load

21

22

23

t[ a part-time teachers availabl-e for onJ-y ¡estrictec time-

periods as defined in Table 0.4.

7

7

7

6

7

4



TABLE D.4

Resource Code
Time-periods not

avail-able 
-

4,5,6 r7

7

7

415

11

I

9

20

16

The time-periods for ¡esou¡ces indicated that are not avaiÌable

for al-Iocation in the solution, due to resou¡ce commitments outside

the timetable probl-em. e.g. Iesource I is a part-time teacher, only

avail-abl-e for the first 3 time-periods.

of
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