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There is a saying which says that Scientists are people who
are learming more and more about less and less, until one day each
will know everything about nothing.

But it seems to me that to learm more and more about less and
less, it is necessary to learn more and more about more and more.
For even the smallest system contains a myriad of principles, when
understood in its fullest complexity.

This philosophy is particularly appropriate for the work
discussed in this thesis. The studies involved investigations
into reflection processes from the upper Middle-Atmosphere.  Yet
to fully understand the processes requires understanding of many
concepts; e.g. radio waves, turbulence, fluid dynamics, gravity
waves, tides, magnetionic theory, photochemistry, chemistry,
Solar-Terrestrial phenomena, meteors, global etreulation, and

rocket techniques, to name but a few.

W.K. HOCKING
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SUMMARY

Radiowaves (typically 2 to 50MHz i.e. HF and VHF radio bands)
incident upon the ionosphere from below suffer weak partial
reflection at altitudes between 50 and 100 km (the ionospheric
D-region) . These weak reflections are used to measure various
parameters such as wind speeds and electron densities for the
region. However, the mechanisms causing this scatter are not yet
fully understood. The purpose of the work for this thesis was to
obtain more information on the nature of these scatterers.

A wide variety of factors may be related to these scatterers,
and so the first part of the first chapter is dedicated to a review
of general properties of the D-region. This is followed by a
more intensive review of previous investigations of D-region
scatter characteristics.

Since turbulence may be important in relation to this scatter,
the second chapter contains a review of turbulence. Some
important formulae are presented, including some which are believed
to be original.

Chapter III describes the equipment used for the investigations
undertaken, and gives some preliminary observations, while
Chapter IV discusses in detail many of the important general
features of these scatterers. Chapter II can, in some ways, be
considered as the most important chapter of the thesis.
Observations were made near Adelaide, Australia (35°56'S, 138°30'E)
and Townsville, Australia (19°40'S, 146°54'E), initially at
frequencies close to Z2MHz. Stratification of echoes was shown to
occur. The first direct observations of the angular spectrum of

the scatterers are also presented, and results agree with previous
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indirect measurements. Scatter is generally quasi-isotropic

above 80 to 85km, but quite "mirror-like" (Fresmel) below 75 to 80km.
The temporal variation of echo strength was also monitored, and

at times extremely strong, short-lived "bursts" were observed.

This was particularly so for heights below about 80km, where power
"pursts" up to 10 and 20 dB above the "normal" level could be seen.
The observing equipment was fully calibrated, allowing absolute
meésurements of effective voltage reflection coefficients to be
obtained.

Chapter IV also contains a review of VHF scatter observations
by other authors, since VHF results complement HF results to some
degree.

Investigations of the specularity of scatter by utilizing
amplitude histograms are presented in Chapter V, and in particular
the Rice distribution is extensively used. This may prove to be
a controversial chapter, since it dismisses (with reasons) several
investigations carried out by other authors. However, the author
is confident of his results, particularly since they agree well
with previous conclusions reached by studying the angular spectrum.
It was found that scatter from below =80km is quite specular, whilst
scatter from =80 to 90km appears to contain a mixture of specular
and random quasi-isotropic scatter.

In all the observations, a knowledge of the background noise
level is essential. For this reason, Chapter VI is dedicated to
discussions of the determination of mean noise levels from
observations of the signal. For cases in which both amplitude
and phase are recorded this is quite simple, but the problem
becomes somewhat more difficult when only amplitude is recorded.

The presence of noise also distorts the auto-correlation function
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if data is recorded as amplitude-only, and the form of this
distortion is discussed. It is believed that much of the theory
presented in Chapter VI is original work.

The use of equipment capable of recording both amplitude and
phase simultaneously also provided a major advance in the under-
standing of these scatterers. Such equipment was installed at
both the Townsville and Adelaide sites, and Chapter VII discusses
results obtained. It is shown that the fading times observed are
primarily related to beam-broadening, so these fading rates
cannot be used directly for determination of turbulence parameters.
However, some authors have attempted to make such measurements,
and some cont;oversy may result from a few of the statements in
this chapter. It is also shown that observations taken with a
tilted beam produce wider power spectra than those taken with a
vertical beam. An explanation for this effect is presented, and
it is believed that this is the first time that this explanation
has been recognized. The explanation is related to 2-dimensional
turbulence. The effect is used to derive turbulence parameters
(eddy dissipation rate, eddy diffusion coefficient, outer scale),
and it is believed that the first such useful measurements at HF
are contained in this thesis. Estimates by other authors working
at HF are believed to have been made using erroneous assumptions,
and to have been adjusted to appear realistic by the manipulation
of unknown constants to compatible values.

A comparison of partial reflections was also made with
simultaneously recorded high resolution measurements of electron
density made during a rocket flight at Woomera, Australia

(30°45'S, 136°18'E), and the results are presented in Chapter VIII.



This comparison gave further insight into the nature of D-region
scatter.

Chapter IX contains a more detailed search for mechanisms
causing the scatter. The role of turbulence is discussed, and it
is shown that this is unlikely to directly produce the observed
scatter for heights below about 75 to 80km. However, this does
not rule out indirect turbulence effects. Above 80 to 85km,
turbulence is quite capable of producing a significant component
of the observed scatter. The role of wind shears and gravity
waves in producing these scatterers is also discussed. It appears
that gravity waves may play an important role.

Towards éhe end of the work for this dissertation, facilities
were instélled at the Adelaide site to allow observations of the
scatter at a frequency close to 6MHz. The ability to observe on
two frequencies simultaneously proved extremely useful, and
comparisons of 2 and 6MHz results are presented in Chapter X.

Although the exact nature of the scatterers is still not
known, it is believed that this thesis has made some progress in

understanding these scattering phenomena.
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Table of Symbols.

The following table gives a brief summary of the symbols used in
this thesis. Within any one section, the use of symbols is
generally consistent; but different sections may on occasion use
different sets of symbols. For example, sometimes ''n'" is used
for refractive index, and sometimes''uV I have tried to be fairly
consistent, but this has not always been possible, especially

when the diversity of topics covered is appreciated. Further,

it is possible some symbols have been missed, particularly if

they are used only a few times.

Not all the symbols are fully defined, either. For example, I
write " © = potential temperature,' but do not explain the term

"potential temperature'. There is no room to fully define all
symbols, Either see the text, or other references, for fuller
definitions.
I. ROMAN

A used at times to represent amplitude of return echoes

(Prairs etc.).
Aeff = effective area for aerial array.

a: sometimes used as a constant.
a(t) = amplitude time series.

B : B = magnetic induction, H/u .

C: Cp,Cv - specific heats at constant pressure, volume
A= ( )p:V}

C = speed of sound (Yp 1o )
CI,C0 5 = complex fadlng %1me

c: p,cv = gpecific heats at constant pressure, volume
{= ( )p,v} :
c = speed of light (= 2.9979 x 10 m s lin a vacuum).

1
¢ = speed of sound (at times)(=(YPo/po)6).
D: De(E) = structure function (turbulence).

= directivity of aerial array.

total differentiation, e.g.-%;.

E: E = electric field.
e: e = charge of an electron (=l.602x10_19 Coulombs).
ejj = strain tensor.
F: F = force; F = force per unit mass at times.
f: f = frequency, f = force per unit mass at times.
G: Gain of aerial array.
g: acceleration due to gravity (=9.8ms 2 at ground level).
H: H = magnetic field = u_B.

H = scale height (c2/Yg for isothermal atmosphere).

Special Case:
H = Zog_in appendix B where H = magnetic field of E-M

radiation, and Z0 = Yu, /ey -
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Z

e RN K

B

xvii

h = heat flux vector. _

V-1 at times; i = unit vector parallel to x axis;
i = current.

V-1 at times; j = unit vector parallel to y axis;
j = current density.

Ke = dielectric constant = g/go.

K = complex wave~number (e.g. Kz = kz+j %%2)

Ko Ko Ko Ko Row Ko Kr3e Kors
= calibration constants.

KooK, = eddy diffusivities of heat, momentum.

k = unit vector parallel to z axis; k = Boltzmann's
constant (p=pkT, where p may be in particles per unit
mole, or mass per unit volume; in the latter case,
use km).

= wyavenumber.

= reciprocal scale in turbulence analysis.

= absorption parameter

= outer scale of turbulence (also Lm’ L(m), LO).

1

k

=)potential refractive index gradient; M = potential
refractive index gradient in ionosphere?

[M]= susceptibility matrix in analysis of E-M radiation
propagating through ionosphere (Appendix B).

= turbulence scales,

2 o= O OEw

me = mass of electron.

N = concentration of electromns.

n = phase refractive index = Ny + 3 Ny

n = frequency (at times).

P = polar diagram function of array . N

P = constant in gravity wave analysis (E——-= e~ .. )
Ppo  Rpgy

p = atmospheric pressure (possibly total, possibly perturbation)
Py~ background atmospheric pressure

' = perturbation pressure.

Q = heat content; Q = rate of heat transfer

R = reflection coefficient

= gas constant in p = pRT, p in moles/unit volume;

ij = 2-point velocity correlation function (turbulence).

o

= =

Rr = radiation resistance.

R = constant in gravity wave analysis (El—-= = ced)
Ppo Rp,

R() = Fourier transform of reflection coefficient.

r = reflection coefficient.

S entropy

8 = entropy

T = temperature

t = time; t, = time for turbulence to form.

U = wind velocity (often background wind velocity).

u = wind velocity (often perturbation velocity).

u = x component of wind velocity.

V = volume

V = wind velocity.



II.

(density), temperature,

momentum.

xviii

v v = volume (at times).
v = phase velocity of wave
vg = group velocity
v = fluid velocity or wind velocity (often perturbation
component) .
v = vy component of wind velocity.
W w = z component of wind velocity. ;
X: X = constant in gravity wave analysis C——-= %E—-= s e 1)
X x = horizontal cartesian co-ordinate (Eastward?
(%7, X9, X3) = cartesian co-ordinates.
y: = horizontal (Northward) cartesian co-ordinate
y(t) = amplitude time series
7 Z = vYu /e = impedance of free space.
o [¢] o} u u
Z = constant in gravity wave analysis (e.g. EE-= iz-...)
Z5d z = vertical cartesian co-ordinate.
z(t) = amplitude time series.
GREEK
o o = angle (general).
o = angle between group and phase paths of ionospheric
E-M wave.
o = constant in turbulence relation E = u62/3k2/3.
a9, Gpy = Rice parameters (Ch. V).
TE Pg’.ra = adiabatic lapse rate.
T() =T function.
vy: vy = Cp/Cv.
A: used to indicate small steps, e.g. t + At.
§: used to indicate small steps, e.g. t + 6t.
o €y = permittivity of free space (= 8.85 x 10712 Farad m 1)
€ = permittivity.
e' = complex permittivity.
€g = receiver array efficiency.
g, = transmitter array efficiency.
¢ = internal energy per unit volume for a fluid.
e = energy generation per unit mass for turbulence
(also at times used for energy dissipation rate)
€4 = viscous energy dissipation rate (turbulence).
Eg = bouyancy dissipation rate.
zs ¢ = integration variable; ¢ = space co-ordinate (especially
when used in correlation functions).
n: L o cosnx (absorption relation);
n = Kolmogoroff microscale;
n = total backscatter cross-section (= 41o).
0: © = potential temperature.
H 9 = angle (general) : particularly that from the vertical.
6 = general scalar (turbulence).
§ = potential temperature at times.
K k' = dielectric constant = g' = Re(k').
e b
Ky Koo K = molecular diffusion coefficients of particles



III.

xix
= wavelength; ) = mean free path.
phase refractive index = ™ + ij, j = v-1.

= group refractive index.

S =
T T r >
Qo 0

' = ug cos o for E-M radiation propagating through

ionosphere. 7 _
= permeability of free space = 47 x 10 = Henry m 1
= permeability

dynamic viscosity coefficient.

kinematic viscosity = u/p.

= electron collision frequency with molecules.

u
u
u
v
Y

used as a "specular component'" in Ch. VI.

often used as integration variable; £ = space co-ordinate,
especially when used in correlation functions.

] m = 3.14159 = constant relating circumference and diameter

of a circle.

vy (1}

p: o density (possibly total, possibly perturbation)
Py = background density, p' = perturbation density.
pg ground reflection coefficient.
p() = autocorrelation function.
Py = interpolated value of p(T) i.e. spike removed.
r: Summation Symbol.
o: Oij = stress tensor; ¢ = backscatter cross-section per unit
steradian (=n/4w); o = conductivity.
o 2 = structure function of turbulence (at times).
T: 1= time (especially used as time lag in correlation functioms).
d: ® = gravitational potential per unit mass.
¢ ¢ = angle in Xy plane from x axis.
X: x = solar zenith angle; x = V.u in gravity wave analysis;
x = electron to neutral density ratio;
x? = chisquare test parameter.
P used as angle at times.
Q: Q = angular frequency at times (particul?rly that of Earth)
Qe = electron gyro-frequency = EE—rad i
e

Q =uw - k+U = Doppler-shifted frequency of gravity wave
moving with a wind, u.
! = resistance.
we w = angular frequency; wg = gravity wave cut-off in

isothermal atmosphere; ®_ = acoustic cut-off.
1.
w, = Brunt-Vaisala frequency = & - 49,7 {g[——+T ]}
B 0 dz
OTHERS
V(grad) = i Q__+ i 2—-+ k é—-(cartesian co-ordinates)
— oX = 9y — 22
PR R 0y -
yk = l—akx + l-Bky + k Bkz’ (kx’ ky, kz) wavenumber.,
3 = partial differentiation symbol.



xX

D _ 9 , d .
E = i + v . V .(also written e at times).
DAE = Differential Absorption Experiment.

5
o
It

Partial Reflection Drifts.

PRF = Pulse repetition frequency.

CW = continuous wave.

RF = radio~frequency,

IF = intermediate frequency.

PRAIR ~ Parameter of Reflection for Adelaide Ionospheric Reserach.
TIRP = Townsville Ionospheric Reflection Parameter.
CRO = Cathode-Ray Oscilloscope.

SWF Short-wave fadeout.

RMS Root mean square.

<x> = mean of x.

x = mean of x.



1.1

1.2

1.3

1.4

CHAPTER I

GENERAL REVIEW OF THE ATMOSPHERE WITH PARTICULAR
EMPHASIS ON ALTITUDES OF 60-100KM

Introduction
The Lower E and D regions
1.2.1 Basic Structure and Chemistry
1.2.2 Propagation of Radio Waves Through the Ionosphere
1.2.3 D-region Absorption of Radio Waves, and the Winter Anomaly
D-region Dynamics
1.3.1 The Equations Governing the Atmosphere
1.3.2 Experimental Observations of Atmospheric Winds
1.3.3 Mesopﬁeric Turbulence
Radio Wave Partial Reflections
1.4.1a Early Data
b Investigations of Echo Structure After 1962
¢ Layer Widths
d Rocket Comparisons
e Angular Spectrum
f Preferred Heights
g Amplitude Distributions
h Fading Times
i Conclusions of HF Results to about 1977

1.4.2 VHF Observations to 1977



Chapter I: General Review of the Atmosphere

When HF radio waves are transmitted vertically, they are often
weakly reflected from regions of the atmosphere in the height regime
50 to 100km. The purpose of the work for this thesis was to give some
insight into the physical causes for this weak scatter. Experiments
were carried out at three stations in Australia; Adelaide (35°S, 138%°E),
Townsville (19°S, 147°E), and Woomera (31°S, 136°E). A frequency close
to 2MHz was used in all cases. At Adelaide, observations could also be
made at 6MHz.

Determination of the nature of these scattering mechanisms is not
simple, however. 'A general understanding of the atmosphere's chemistry
and dynamics is necessary before significant progress can be made in this
quest. Chapter I of this thesis attempts to provide such a background

of information.



1.1 Introduction

The work contained in this dissertation discusses primarily the
regions of the Earth's atmosphere between 60 and 100km above ground level.
Studies are concentrated largely on determination of the mechanisms
causing weak partial reflection of radio waves (2-50MHz) from this
region. This would appear, then, to be quite a small topic. However,
this is not the case. The reflections are quite important for a variety
of ionospheric studies, including the measurement of winds in this region,
and the measurement of electron densities. The various uses will be
discussed in more detail later. But the fact remains that a clear inter-
pretation of the results of experiments using these partial reflections
is not possible u;til the nature of the scatterers is fully understood.
Yet an understanding of these scatterers requires quite a general back-
ground of knowledge of the static and dynamic properties of the region
in which they reside; and an understanding of the properties of this
region requires in turn some degree of understanding of the properties
of the rest of the atmosphere, for the region cannot be treated in
isolation.

A complete discussion of the whole atmosphere would be an unrealistic
proposal, particularly in a thesis of this type. A more than elementary
understanding of the atmosphere is, however, essential. The approach
taken in this thesis is to concentrate largely on the region 60-100km,
and refer to other regions as the need arises. A brief review of the
atmosphere as a whole is given in Appendix A. The appendix concentrates
largely on atmospheric nomenclature, and the neutral atmosphere. A
section on ion and electron distributions above 100km is also included.

The discussion is of the type found in general text books on the ion-

osphere,



However, discussion on the 60-100km region's properties is felt to
be of sufficient relevance to be included in the .bulk of this intro-
ductory chapter. The techniques used to obtain the various results will
not be ‘discussed. Graph l.2a, which may perhaps seem more appropriate
to Appendix A, is included in this section because it shows well the
transition from the structure below 100km to that above. Figures A2
and A3 given quite good summaries of the distribution of the important
molecular and ionic species in the atmosphere, and a quick inspection of

them is recommended.



1.2 The Lower E and D Regions

1.2.1 Basic Structure and Chemistry

Below the E region, a high proportion of the incident high energy
ionizing solar radiation has been absorbed, and the ionization falls
away. However, the Lyman-o (121.6nm) hydrogen line of emission from
the Sun is extremely strong, and also suffers less absorption by O, O2
and N2 than many of the more energetic radiations, and indeed many of the
longer wavelengths, too. (The atmosphere has by "chance" a window in
the spectrum at 121.6nm). This La line then ionizes NO in the lower
atmosphere (75-90km) to produce some dggree of ionization. O2 is also
ionized, above about 85km, by UV, X rays (0.2-0.8nm), and Lyman B. A
good diagram of the dominant ionizing radiations can be found in Ratcliffe
(19721 Fig. 2.3. A more detailed discussion is to be found in Gnanalingam
and Kane (1978), Fig. 3. For ease of reference, the production rates of
Thomas (1971) are reproduced in Fig. 1.1. Below about 75km, Cosmic rays
can produce a significant degree of ionization, and X-rays can be important
during solar flares at these lower heights. Parameswaran et al. (1978)
and Gnanalingam (1978) both give examples of D region dependence on
0.1-0,.8nm X-rays.

In all cases, the electron concentrations are much greater by day.
This is so even for Cosmic-ray produced 60-70km ionization, because the
free electrons attach to neutral molecules at night. This attachment is
very sensitive to photo dissociation, so as soon as the Sun rises the
electrons become free quickly, and a rapid increase in electron density
thus occurs at sunrise (with a similar rapid decrease at sunset). Higher
up (about 80km), the build-up of electron density during the morning is
a much slower process.

Electron precipitation (that is, dumping of high energy electrons

from high in the thermosphere and plasmasphere) can also be a significant
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Fig. 1.1 Main production rates of electrons in the D region for quiet
daytime conditions (after Thomas, 1971).



source of ionization - for example Montbriand and Belrose (1976);
Chamberlain and Jacka -(1979).

The rates of most recombination processes ensure that there are
few free electrons at night, if there are no ionizing sources. However,
a night time ionosphere does exist., The reasons for this are not fully
clear, but several mechanisms have been proposed. Photo lonization by
La and LB radiation resonantly scattered around the Earth by the hydrogen

Geocorona, is one suggestion (Tohmatsu and Wakai (1970) have shown

photoionization by L, could account for mid-latitude night-time E region

B
electron densities). Ionization of NQ by La’ and of 02 by LB’ are both
effective., Thomas (1971), Fig. 10, gives typical night-time production
rates. Chamberlain and Jacka (1979), have presented evidence that
particle precipitation (electron precipitation especially) could have an
effect at mid-latitudes at least equal in effect to the above processes.
The suggestion is also made, from time to time, that direct meteoric
ionization may be an important process, but little qualitative data to
support this appears to exist. Certainly, however, metallic ions left
by meteors can play important roles in the creation of some sporadic E
layers (eg. Sinno, 1980).

Thomas G971> is a good reference for an initial understanding of
some of these important ionizing effects, although of course under-
standing of D region chemistry has improved since then. A more recent
discussion is that of Torr and Torr (1979).

The role of water cluster ions in D region chemistry is quite
significant, but other molecules also play important roles. Thomas (1976),
has discussed the role of CO2 in helping speed up the creation of some
of these water clusters., N0+(H20)n appears to be formed with the help

of CO and thence H+(H20)n' Thomas finds the reactions reasonably

2’
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Fig. 1.2b Lower ionosphere dominant ions. The situation in general
can be described as an NO+/02+ dominance above 80km, and

a water cluster ion dominance below about 75km.

This diagram does not include all the major ions, but is
representative of them. The H (H O)4 (also denoted as
H O (H 0) ) curve of the warm wet model of Reid (1977)

is typical of many of the H water clusters, with a rapid
decrease above about 75-80km. However, the dominant
clusters vary with temperature and conditions. In Reid's

models, H+(H20)4 and H+(H20)3 are the main clusters, but

their concentrations and relative importance vary with
water vapour content and temperature. The rocket flights

of Aikin et al. (1977) suggested that H30+(H20) dominates,
and H 0 (H 0) concentrations are somewhat weaker. H30+
and H 0+(H O)2 lie between H O (H and H30+(H20) in
the A1k1n profiles.

Other clusters also exist, eg., NO+(H20)n. Reid's models
showed the concentrations and shapes of the profiles of

these species to be a little similar to those of the H
clusters; although the heights of the maxima, and the
dominant ions, again changed with temperature and water

vapour content. NO+(H20)n, n = 1 and 2, appeared to be

the main members of the NO+(H20)n series.

Other clusters such as NO+CO exist too (eg., Reid, 1977).

2
This NO+ profile due to Aikin et al. is a little abnormal,
and this appears to be a day of anomalous Winter absorption.

Such days have an unusually large concentration of NO+ at
80 to 90km (with a corresponding lowering of the water

+ ) . Al .
cluster to NO dominance height (transition height)),
resulting in strong absorption of HF radio waves due to
the associated increase in electron density.

The difference between the NO+ profiles for the Reid cold
dry, and Reid warm wet models is clearly quite significant,
showing the sensitivity of the region to temperature and
water vapour changes.
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temperature dependent, and hence expects some degree of seasonal variation
of the various profiles.

Fig. 1.3 shows some of the principle D region reactions (from

+

+
2 and NO are the main ions formed by

Chakrabarty et al., 1978b). O
direct solar radiation, and the chemistry starts here. Reactions involving
C02, HZO’ NZ’ and OH then proceed from this point. The final state of

the atmosphere is determined as the equilibrium of all these reactions.
The concentrations of the various spegies can play an important role in
this equilibrium, and the reactions can be extremely temperature
dependent. Chakrabarty et al., (1978a) provides an example of comparisons
of such calculations with experiment. Increases in densities of N,

’

N, due to turbulent diffusion from higher up, and temperature changes,

2
have both been invoked to explain increases in NO+ densities (with
corresponding electron increases) at 80-90km which are seen from time

to time (Koshelov, 1979; Chakrabarty et al., 1978c). These increases

in electron concentration give rise to higher than normal radio wave
absorption, and occur particularly in winter, when the mesosphere is
warmer, This phenomenon is called anomdlous winter absorption, (or simply
the winter anomdly) and will be discussed in more detail shortly.

Fig. 1.4 shows a typical D region electron density profile. The
ledge at 80, 85km is a common feature of D region profiles, and can vary
in height by 2 to 6km over a few hours (Trost, 1979). There is sometimes
a small dip in electron density immediately under the ledge, (a little
similar to that on 16 Jan.). Another feature of D region profiles is
the presence of a maximum in electron density near 60km -~ perhaps a
little similar to those in Fig. 1.4. This can sometimes be quite
pronounced.

The ledge at 80-85km, and associated dip underneath, has been

investigated theoretically by Chakrabarty et al. (1978c). They find
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Sample electron density profiles at Wallops Island (38°N, 75°W)
from Smith et al. (1978). 5 Dec, is a normal day, and 16 Jan.
a day of high absorption at 1.8MHz., The rapid increase in
electron density at about 85, 80km (ledge) is a common feature.
A small 1lip under the ledge, as on 16 Jan., also often occurs.
A bulge in electron density at around 60 to 70km is also often
seen, at least at mid-latitude in the Southern Hemisphere -
particularly during sunspot minimum, since Galactic Cosmic Rays
are at a maximum then (during sunspot maximum, the cosmic rays
are in effect '"blown away' by the solar wind - the so called
"Forbush effect" eg., see Van Allen 1979). 1972-73 were near
sunspot minimum. A reference for general profiles is Mechtly
et al. (1972). McNamara (1979) also provides average D-region
electron density profiles, though with very codrse resolution.



that they can simulate this ledge on purely chemical grounds. The
height Hc of intersection of the q(02) and q(NO) profiles (ion-electron
production rates) is one important parameter. The q(NO) profile has
a minimum value at about 85km, and when Hc is below this height, the
ledge forms. The explanation of Chakrabarty et al. also explains the
sudden decrease in hydronium ions associated with this ledge. The rise
of temperature above the mesopause, and the decrease of total neutral
particle density with height are the main causes of this hydronium ion
decrease. The results form an extension of the work of Ferguson (1972),
who first explained this fall off as being associated with the reaction
T+o-0 +o0,.

4 2 70

The bulge near 60km 1s probably produced by Cosmic ray ionization.

0]

The discussion thus far has related only to electrons and positive
ion chemistry. However, negative ions certainly exist, often forming
by the attachment of an electron to a neutral molecule (equation A2).
Thomas (1971) has discussed these reactions to some degree. Théy can have
important effects. It has already been seen, for example, how these
ions form at low heights at night-time, thus reducing the number of
night time free electrons at 60-70km. Koshelev (1979) also gives an
example of D region negative ion chemistry. The most important ions

OH , 0, , 04', 004' and N03'.

Other constituents not mentioned here can also affect D region

are 0 03', co3', NOZ_,

chemistry - for example, mesospheric dust can play a role (eg.,

Parthasarathy 1976).



1.2.2 Propagation of Radio Waves Through the Tonosphere

The passage of radio waves through the ionosphere must, of course,
be well understood before a clear understanding of the scatter mech-
anisms in that region can be obtained. For most problems in this thesis
a simple ray theory is adequate. At high electron densities ray treat-
ment is not valid, however, and a more complex "full wave solution' is
necessary. A complete discussion of the propagation of electromagnetic
radiation through an ionosphere is beyond the scope of this thesis, but
some degree of understanding is essential. For this reason Appendix B
has been included. The appendix firstly discusses the general case of
radio wave propagation in a fairly non-mathematical context, and then
goes on to discuss the particular case of the ionospheric D-region.

The concept of wave groups, ray paths and the WKB approximation, and
radio wave absorption are considered to some degree, with some of the
more relevant full wave formulae being also given. Workers in ion-
ospheric physics will be well familiar with these discussions, but for
readers not directly involved in this field, the section may give a
feel for the problems involved in radio wave propagation.

The role of radio wave absorption in the ionosphere has always been
an important facet of ionospheric research. The studies of this
phenomenon can lead to an understanding of some important processes in
the ionosphere, and for this reason a fairly detailed review of D region
absorption studies is included in the next section.

Absorption processes can also be used to calculate the D region
electron density as a function of height. When a radio wave enters the
ionosphere, its strength is attenuated due to absorption (Appendix B).
This absorption is a function of electron density. If two radio waves
are transmitted, each suffering a different degree of attenuation for

a given electron density, then the ratio of absorption of the two waves



as a function of height of scatter can be used to obtain an estimation
of the electron density profile. Usually, the two radio waves used
are 0 and X modes on one frequency, although two different frequencies
could also be used. This is the Differential Absorption Experiment

(DAE), and it is discussed in a little more detail in Appendix B,

10.



1.2.3 D Region Absorption of Radio Waves and the Winter Anomaly

Radio waves passing through the ionosphere are attenuated in
amplitude due to the dissipation of some of their emergy, thus heating
the medium they pass through. The amount of absorption is directly
related to the imaginary part of the refractive index, as seen in
equation Bl5b, and this depends on the electron density, collision
frequency, magnitude of the magnetic field, and the angle of the ray
path to the magnetic field. The refractive index is best approximated
by the Sen-Wyller formula, and examples are shown in Fig. B.l. Appendix
B shows how the absorption of O and X modes can be compared to give the
electron density as a function of height (the DAE). But the measurement
of total D-region absorption forms quite an important experiment in
itself.

How is this total absorption measured? A variety of techniques
exist, and Dieminger (1978) has given a brief review. The three main
groups of measurement are Al (measurement of the amplitudes of pulses
critically reflected from the ionosphere), A2 (measurement of the
absorption of extra terrestial radio noise), and A3 (measurement of the
field strength of sky wave signals at short distances and oblique
incidence on frequencies suitable for obtaining absorption data).
Another technique used is the measurement of the minimum frequency recorded
on an ionosonde, but this technique has come under some doubt recently,
particularly for high absorption (Kotadia and Gupta, 1976; Offermann 1979).
All the techniques used have shortcomings. Those which rely on critical
reflection from the ionosphere, for example, actually contain two types
of absorption, Firstly there is the non-deviative absorption, which
is the absorption which occurs in the passage through the D region to
the height of reflection and back (for D region absorption measurements,

the frequency is chosen such that the reflection height is in the E region

11.
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(or F region at night)). Secondly, absorption occurs during the
reflection process, and this is called deviative absorption. Strictly,
it is only the non-deviative absorption which is desired. The deviative
absorption can be minimized by correct choice of the frequency used.
Further, the reflection height will depend on the frequency used, and
the total absorption naturally depends on this height. If in fact
reflection is from low sporadic E (93-95km) the absorption can be
underestimated (Smith ét al., 1978). But for all the disadvantages,
measurement of absorption by these techniques forms a cheap and
extensive way to monitor the ionosphere. Offermann (1979) has given

a good review of D region absorption, and mentions some references
comparing ground based absorption measurements and rocket results.
Provided care is used, the techniques show fair agreement with rocket
data. The Journal of Atmospheric and Terrestrial Physics, Volume 41,
Numbers 10/11, 1979 also provides some good papers on absorption
experiments.

The actual parameter used in Al measurements of absorption is the

L. parameter,

(1.2.3.1) L = 20 log,,(E,/E),

where E is the field strength received at the ground, and E0 the
field strength which would have been received had there been no
absorption. The practical calculation of L will be discussed in
Chapter 3, with some results for Townsville, Australia (19°S).
The degree of absorption varies on a variety of time scales - daily,
seasonally, and with sunspot cycle, for example. The daily variation
is fairly predictable. One may expect ionization to be maximum at
minimum solar zenith angle yx, since the Sun's radiation has less

ionosphere to pass through, resulting in higher intensities in the D
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region, and hence higher ionization production rates. Thus one expects
small absorption in the early morning, increasing to around 1200hr to
1400hr, and then decreasing toward sunset as Y once again increases,
However, the rate of change of absorption can vary. Sometimes the L
parameter does increase to noon and then fall away quite smoothly,
following a roughly L = Locosnx form. The value n varies, but is
generally ~ 0.75, though it may be as low as 0.4 and as high as 1.4
(Dieminger, 1978). On other days, absorption increases rapidly after
sunrise, achieves an approximately constant value for much of the day,
and then decreases rapidly around sunset. At other times, absorption
can show big increases, associated with solar flares. Such effects last
a few hours, and are termed SWFs (Short Wave Fadeouts) corresponding to
SFEs (solar flare effects). Some examples of all these effects will be
seen in Chapter 3, and Dieminger (1968) has given further examples.
Taubenheim (1962) provided a good discussion of some SWFs, and pre-
sented evidence that the effect was primarily due to X ray effects at
wavelengths of 0.2 to 0.3nm. He felt the absorption was primarily due
to an electron density increase around 70 to 75km, and that the ion-
ization was due to a line emission of X rays around 0.2nm. Generally,
SWFs are associated with X rays with wavelengths in the range 0.1 to
1.0nm., Taubenheim's 1962 paper gives some of the earlier references on
this topic, and the paper by Offermann (1979), section 3, some later ones.
Gnanalingam and Kane (1979) and Parameswaran et al. (1978) also show
evidence of X ray (.1 - .8nm) effects on the D region .

With regard to solar cycle effects, absorption is generally larger
in years of maximum sunspot activity, due to increased solar emissions
at short wavelengths. SWFs also tend to be more common in sunspot
maximum years, due to increased flare activity on the Sun. For example,

Bremer and Singer (1977) showed some solar cylce effects, as did Beynon
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and Williams (1976a). Schlegel et al. (1977) suggested evidence for a
shorter term correlation of D region absorption and interplanétary solar
magnetic fields. They suggested that this implied a Cosmic ray
dependence, since galactic cosmic ray intensities are governed to some
extent by the solar wind (Forbush effect; e.g. see Van Allen, 1979).

Another commonly observed departure from 'nmormality" are the
geomagnetic storm effects. At times there are large currents flowing in
the auforal ionosphere called electrojets, caused by the influx of high
energy particles from the Sun and outer ionosphere. These produce
fluctuations in magnetometers on the ground, and a geomagnetic storm is
said to be occurr;ng. Associated with such activity it is frequently
found that the D region can show greatly increased absorption. There is
a delay between the magnetic storm and the D-region effects, generally
of the order of 1-3 days (e.g. Beynon and Williams, 1976a). Evidence
suggests that the effects are due to high energy electrons (up to
1000keV; e.g. Montbriand and Belrose, 1976) precipitating down from the
higher regions of the ionosphere (magnetosphere and Van Allen Belts). The
delay in time seems to depend largely on the spatial and temporal
distributions of the precipitating electrons (Beynon and Williams,
1976a; Montbriand and Belrose, 1976; Wratt, 1977; Offermann, 1979).
Dickinson and Bennett (1978) suggested that the effect occurs pre-
dominantly in the region 68-90km. They also showed that the ledge in
electron density frequently seen at around 85km (see section 1.2.1)
almost disappears on such days.

The seasonal variation in absorption provides one of the greatest
D-region enigmas. One might expect the absorption to be maximum when
x is least, and least when x is largest. Thus it could be expected that
noon absorption (or, as a better measure, the value L0 which is obtained

by fitting L = L cosy to a full day's data) would be maximum in summer,
g 0 X
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and least in winter, However, this is not the case, particularly above
35° to 40° lattitude. Winter shows a dramatic increase in absorption.
There is an increase in the overall mean absorption, and also particular
days of extraordinarily high absorption (anomd@lous days) occur. This
winter increase is commonly known as Winter Anom@lous Absorption (or

simply the Winter Anom@ly). Fig. 1.5 shows this effect. Absorption
increases upwards on the vertical axis. During summer months, the trend
is roughly as expected (smooth curve), with maximum absorption during
mid-summer, and less either side. But during winter, the mean absorption
is much higher.

Offermann (1979) provides an extensive review of the winter anomaly,
and to some extené the following discussion is based on that reference.
The Journal of Atmospheric and Terrestrial Physics, Volume 40, Number
10/11, 1979, also contains results of an extensive set of absorption
investigations§.

There appears to be a lower latitude limit to anomdlous absorption
around 40°, as discussed, but this does not mean anom®lous absorption
does not occur at all for latitudes below 40°, Rather, its magnitude
decreases significantly at 40°-50° (Schwentek, 1976), then flattens out
somewhat below 40°. The effect still exists below 40°, however, right
down to around 20° latitude, although with decreasing strength. There
may in fact also be an increase in absorption as one moves equatorward
from 20°, but this is true in summer as well as winter. Below about 10°,
winter and summer absorption values are similar. Schwentek (1976),

Fig. 2, provides an excellent illustration of these effects. For ease

of reference, the graph is reproduced here as Fig. 1.6. Results also
suggest that the effect is similar in both hemispheres. An upper latitude
limit to the winter anom@ly is harder to define, as auroral effects begin

to disturb the D-region greatly, making days when winter anomdly can
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Fig. 1.5 Variation of the non-deviative absorption at noon for an
effective frequency of 1MHz at vertical incidence between
July 1961 and July 1962 as derived from measurements at
2.61MHz over a path of 295km (Northern hemisphere). The

g

curves correspond to a coso'75x variation, the discrepancy

between December 1961 and January 1962 being due to the
change in the mean solar activity. The diagram comes from
Thomas (1971), Fig. 15, and was originally due to

Schewentek (1963).
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be studied rare. Ranta and Ranta (1977) have suggested a limit of
60°~65°, above which summer absorption is greater than winter (for
example, see figure 4 of that reference). It also appears that the
"erratic" part of the anomaly (that is, the occurrence of anomdlous days
of very high absorption) does not exist below about 40°, whereas the
smoother winter increase (which Offermann calls the '"normal" winter
anomély) does.

The latitudes mentioned above refer to geographic coordinates, and
workers in this field appear to use such coordinates for their work.
However, there may also be geomagnetic effects. Schwentek (1976)
discussed this pogsibility, but, as seen in Fig. 1.6, the effect does
seem to be geographic, The dip equator does not appear to be in a unique
position relative to the absorption curves., Beynon and Williams (1976a),
also feel the true winter anomdly is not strongly related to geo-
magnetic activity. (They do, however, claim to find a weak longitudinal
dependence of the anomalw)

It appears, particularly from rocket flights, that anomdlous winter
absorption occurs primarily due to increases in electron density (by
a factor of typically 2 to 10 times) in the region 75-95km, with maximum
enhancement around 80-83km (Beynon and Williams, 1976a, 1976b; Beynon
et al., 1976; Smith et al., 1978). Smith et al. (1978) however, did find
at least one case where the major effect appeared to be below 82km.
Winter anomdly absorption is most pronounced at around 2.5MHz, and
Beynon and Williams (1976a) suggest this is because the largest absolute
electron density increases are at heights of greater than 90-95km. They
feel the increases in electron density lower the height of reflection at
frequencies less than about 2MHz, artificially depressing the absorption

estimates on these lower frequencies. Above about 2.5 to 3MHz, absorption

16U



simply falls off with increasing frequency (see Fig. B.1).

The spatial scale of the winter anomdly can be quite large. At
times, correlations between places up to 1000 to 2000km apart can be
observed (e.g. Schwentek, 1974; Offermann, 1979). Correlation up to
300km separation is frequently good,

One other feature of winter anomolous absorption is the occasional
occurrence of regular oscillations in absorption (Offermann, 1979)
which have periods typically in the range 7 to 14 days, and can appear
coupled with ground pressures (Rose and Widdel, 1977; Offermann, 1979).
These quasi-regular long period oscillations are possibly associated with
a general class of planetary scale, long period oscillations called
planetary waves (see later). Fraser (1977) claims to have found a
correlation between the 30mb temperature and ionospheric absorption,
each parameter having a period around 5 to 6 days. Brown and John
(1979) also found correlations of oscillations, with periods 6 to 30
days, between the pressure oscillations at the surface, and the heights
of electron isopleths in the E region, at times. Their work suggests
that whether there is a correlation or not depends largely on stratospheric
winds. Moderate eastward stratospheric winds allow propogation of
planetary waves upward most easily, strong eastward winds inhibit
propogation somewhat, and westward winds inhibit propogation greatly.
Ebel (1978) also investigated quasi-regular periods in ionospheric
absorption, and feels that, at times, planetary wave generation can occur
in the thermosphere.

Explanations of the winter anom@ly revolve largely around observed
increases in NO+ density during these events (e.g. Beynon et al., 1976:
Aikin et al(i9m):0ffermann, 1979). Also associated with anomdlous
absorption is a lowering of the transition height from water cluster ion

dominance below to NO+ dominance above. This is generally about 83-85km,
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but falls to heights around 77km during anomdlous events (Fig. 1.2b).

The general scheme appears to be that increases in NO molecular densities
occur, resulting in higher electron densities. Offermann (1979) however,
also suggests O2 (lAg) concentrations may be increased also, allowing
ionization of this species as well. However, few rocket flights
measuring 02 during anomalous absorption have been undertaken.

Explanations for the increase in NO density are based on either
transport processes, or chemical changes through temperature dependence.
The idea of NO produced in the auroral regions by particle precipitation
and transported equatorward by meridional winds, is one which has been
tested to some degree. Geller et al (1976), Wratt (1977), and Meek and
Manson (1978), all claim to find correlations between increased electron
densities and equatorward winds. However, a correlation between winds
and absorption at a few places alone does not imply that the above
mechanism is valid. The presence of zonal winds may mean that a particle
starting at the auroral zone may never reach the lower latitudes (that
is, the Lagrangian path lines may not link the auroral regions and
equator). Offermann (1979) points out that preliminary results from
Labitzke et al. suggest that there is no correlation between the
ionospheric circulation and increased absorption.

The other major transport mechanism is that of transport from above.
Koshelev (1979) has shown how variations in the turbulent eddy diffusion
coefficient can result in transport of N and O species from greater
heights, increasing the concentration of NO at 75 to 95km. If a
temperature inversion exists at about 75 to 80km, this may prevent
transport of these species any lower, resulting in a significant increase
above. The possibility also exists for a temperature dependence of

this diffusion coefficient (Zimmerman and Narcisi, 1970; Offermann, 1979).



Temperature dependences, with resulting chemical changes, form
another line of explanation. Many of the reactibns in the D region are
strongly temperature dependent so small changes in temperature can have
significant effects on chemical composition. The mesopause is warmer
in winter than summer, and theory suggests that the warmer mesopause could
result in increased NO densities (Offerman, 1979). Large temperature
changes, of the order of 100K can occur in the D region within time
scales of a day or so, and these could be correlated with anomdlous
absorption (Offermann, 1979). Theoretical results suggest temperature
changes can dramatically affect NO densities (Reid, 1977; Koshelev, 1979).

Fig. 1.2b shows a quite dramatic change in NO densities for a cold
dry atmosphere ané a warm wet one, when the two NO curves of Reid are
compared. Reid's results also explain the lowering of the transition
height. Chakrabarty et al. (1978c) also claim to be able to explain
this lowering of the transition height.

Reid's curves in Fig. 1.2b also illustrate to some degree the
effect of changes in water vapour content, although the reader is
referred to Reid's original paper for proper independent comparisons of
temperature effects, and water vapour effects. The concentrations of
H20, 0, 03, CO2 and so forth can have important roles in the reaction
rates in the D region (see Fig. 1.3). More accurate measurements of
these quantities are important. Gadsden (1978) has pointed out possible
errors in one method of water vapour determination.

Clearly, there are many possible factors which can affect D region
absorption. There is still much work to be done, but based on present

evidence, Offermann suggests the following scheme:

3 strong temperature enhancement in the D-region is associated

with increased downward turbulent transport of NO and O. This
+

explains the high NO and O2 (lAg) densities measured, as

0 enhancements effect O2 (1Ag) increases via stronger 03 pro-—

duction. At the same time both the high temperature and the



increased electron production rate act to decrease the water
cluster ion formation. Furthermore the temperature inversion
impedes the turbulent transport of water vapour from below,
thus further decreasing the cluster formation."

20.
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1.3 D Region Dynamics

1.3.1 The Equations Governing the Atmosphere

Movements in the ionospheric D region are driven by a variety of
forces - from seasonal winds to winds which oscillate in strength with
regular periods, and right down to extremely small scale turbulence.
Although studies of global winds do not form a major part of this thesis,
an understanding of their main characteristics will still be necessary.
Some of the smaller scale oscillations may turn out to be quite import-
ant in the studies presented here. Turbulence, it appears, is a crucial
ingredient of the phenomena discussed in this work. For these reasons,
then, a brief review of mesospheric dynamics will be given here, with
the general tende;cy to place emphasis on the smaller scales. Turbulence
will be discussed in some depth.

As with some other introductory aspects of the ionosphere, there
is insufficient room to discuss the derivation of the equations of
fluid dynamics, and their use in predicting atmospheric motions, in this
chapter. A brief review is given in Appendix C. This section (1.3)
of Chapter I will concentrate more on physically observed properties of
the Earth's atmospheric dynamics.

Appendix C also contains a description of some of the important

characteristics of gravity waves, planetary waves, and tides, with

relevant references.
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1.3.2 Experimental Observations of Atmosphieric Winds

The general wind circulation of the Earth's_Atmosphere, whilst not
directly related to this thesis, should still be appreciated, as from
time to time knowledge of atmospheric winds will be necessary.

Geller (1979) gives quite an extensive review of atmospheric
dynamics, at least with regards to the mean winds, planetary waves, and
temperature, of the middle atmosphere. Geller also gives an account of
stratwarms - sudden warmings of the stratospheric temperature, with
associated wind circulation breakdowns in the mesosphere. This aspect
will not be discussed here. Groves (1976) provides quite a good review
of atmospheric tides. Fig. 1.7 shows an approximate diagram of mean
winds in the lowe; to middle Earth's atmosphere. Above 70km tidal
oscillations frequently achieve amplitudes of 20 to 30msml (e.g. Vincent
and Stubbs, 1977), and amplitudes greater than 50ms_l have been observed
at Townsville, Australia (19°S) (R.A. Vincent, private communication).
Hence the winds fluctuate greatly on a daily basis. Groves, Fig. 1
(1976), shows a good example of this, and it can be seen that tides
become important above about 40 to 50km.

Evidence also exists at times for strong planetary wave activity
at these heights, particularly with 2 and 5 day periods. Some mention
of these has been made in Section 1.2.3. Muller and Nelson (1978)
have shown evidence for a 2 day wave which peaks strongly in mid-summer
(Northern hemisphere July-August). R.L. Craig (private communication)
has shown the existence of an extremely strong (> 40rns_l amplitude)
quasi-2-day wave in the latter weeks of January at Adelaide (35°S, 138%°E)
(Southern Hemisphere summer). The wave exists primarily in the meridional
component - the zonal component is very weak for this wave. Various
references to 5 day waves can be found in Muller and Nelson (1978) and

Geller (1979). But for proper investigations, a world wide cooperative



Fig. 1.7 Approximate diagram of the mean atmospheric zonal (i.e.
parallel to lines of latitude; EW) winds. Meridional winds
(parallel to meridians of longitude; NS) tend to be somewhat
weaker and less well defined (e.g. Groves, 1969). The top
diagram comes from Geller (1979) and was originally due to
Murgatroyd (1969).

Also shown are profiles of the mean winds for 35°S, winter
and summer. Groves (1969) provides an alternative source
for graphs of the mean atmospheric circulation, and points
on these profiles above 70km come from that source (January
is used for summer, June for winter).

Positive winds are eastward.

Notice in particular the strong westward jet at 60-70km
in summer, and eastward jet at similar heights in winter
(at Adelaide, this jet seems to be slightly higher, at

68 to 76km). The transition from winter to summer can be
quite dramatic, taking place over only a few days, with
strong wind reversals at around 70km. Such changes have
been observed at Adelaide, September-October, 1979
(unpublished results). The strong winter to summer (and
reverse) transition has also been observed in the phases
of the semi diurnal tide (e.g. Schminder and Kurschner,
1978) at 90km. (Two phases are generally defined for tidal
analysis - the hour of maximum northward wind, and hour of
maximum eastward wind)

It may also be worth bearing in mind that much of the
data in this diagram was actually obtained using Northern
hemisphere observing stations, and assuming the Southern
hemisphere to be similar. Hopefully in the future more
genuine Southern hemisphere measurements can also be used
in the compilation of such diagrams.
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program is necessary,and extensive satellite measurements. Houghton
(1978) discusses some satellite data in a revieﬁ of the stratosphere
and mesosphere,

Experimental investigation of upper atmospheric tides is a vigorously
researched subject. Some good data has been obtained, and a picture of
the Earth's atmospheric tides is beginning to emerge. However, a full
picture is still some way off. Many papers have been published on
individual measurements of tides, but to establish information on the
important modes, a grid of stations is necessary over the Earth's
surface. An attempt has been made to do this with the CTOP (Cooperative
Tidal Observations Program (organized as a joint venture by URSI
(International Union of Radio Science) and IAGA (International
Association of Geomagnetism and Aeronomy)) but results are only begin-
ning to be compared. The Journal of Atmospheric and Terrestrial Physics,
Volume 40, Number 8, 1979, contains a collection of papers on these
early coordinated studies. Adelaide University has stations at Adelaide
(35°S, 138%°E), Townsville Australia (19°S, 147°E) and is at present
cooperating with Christchurch, New Zealand (44°S, 173°E), Broken Hill,
Australia (32°S, 141%°E), and Kyoto, Japan (35°N, 136°E), to gain some
feel for important modes. Some information on tidal amplitude variations
with height, and season, has been gained for Adelaide (e.g. Stubbs, 1973;
Stubbs and Vincent, 1973; Stubbs, 1976; Vincent and Ball, 1977; Vincent
and Stubbs, 1977). Needless to say, many other stations exist, and are
doing similar work (J. Atmos. Terr. Phys., 40, No. 8, 1978). Saskatoon,
Canada (e.g. Manson et al., 1979) is another station making tidal
observations. The Russians have quite an extensive meteor observatory
network.

One point concerning tides is the way diurnal tides often seem to

decrease in amplitude as they approach 90km from below (e.g. Elford and



Craig, 1980). One suggestion for this is that energy is being dissipated
into turbulence (e.g. Elford and Roper, 1961; Stubbs and Vincent, 1973;
also see Fig. 1.9b which shows a possible correlation of diurnal tides
and turbulent dissipation). Yet the radio wave partial reflections
from 90km seem to be related to turbulence at 90km (see later in this
thesis). Then this case serves as a classic example of why, in con-
sidering these partial reflections, a wide knowledge of the atmosphere
is necéssary, and again justifies the rather general approach taken in
this chapter. Even if the concept is wrong (standing waves due to
reflection of tides have also been invoked to explain the 90km minimum
in tidal amplitudes; or mixing of tidal modes with different vertical
wavelengths could also explain this minimum (this latter argument is
supported by observations of large phase changes across the minimum
(e.g. Elford and Craig, 1980))), the necessity for a wide comprehension
of the atmosphere can still be seen.

Factors such as day to day variations of tidal strengths (which can
be quite dramatic) and seasonal variations, can be found in references
such as Stubbs (1976); Manson et al. (1979).

Gravity waves appear to contribute greatly to the dynamics of the
mesosphere. In fact, gravity waves, tides and planetary waves (and to

[ ]

some extent acoustic waves; Rind, 1977) are perhaps the major coupling

mechanisms between the various levels of the atmosphere. The general view

is that these waves are generated in the troposphere and stratosphere,
and propagate their energy upwards to the higher regions. This does not
discount the possibility that the waves can also be generated higher

up (e.g. Ebel, 1978), but present work appears to concentrate sig-
nificantly on the concept of generation in the lower atmosphere. Not
all waves generated in the lower atmosphere reach the upper atmosphere,

however. In Appendix C, the concept of critical layers and critical
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reflections is discussed, whereby atmospheric waves can be prevented
from propagating past certain levels if particulér wind and temperature
conditions prevail. Hines and Reddy, (1967), for example, discussed filtering
of these waves by background winds, and showed that significant portions
of the gravity wave spectrum generated below the stratopause may be
filtered out on occasions. The prevention of planetary wave prop-
ogation by stratospheric winds has already been discussed in Section
1.2.3.

The source of tides in the mesosphere is largely solar heating of
atmospheric Ozone and water vapour (e.g. see Appendix C). An understanding
of the sources of planetary waves is still some way off although it is
known that the 1a£itudinal variation of the Coriclis parameter can drive
Rossby waves (Appendix C; also Houghton, 1977, Section 8.4). Baroclinic
and Barotropic instability can also generate such waves (Houghton, 1977,
Ch. 10). Manson et al. (1979) mentioned the possibility of baroclinic
instability in the mesosphere. Gravity waves and acoustic waves may be
generated by a wide range of mechanisms. Rind (1977) studied 0.2Hz
acoustic waves (microbaroms) generated by large amplitude ocean waves.

Such long period acoustic waves, up to the acoustic cut off period
(Appendix C) are called infrasound.

With regard to gravity waves, many sources have been proposed -
lee waves (these are mon-propagating) due to the passage of wind over
mountains, thunderstorms, jet streams, cloud convection - in fact almost
any effects which cause atmospheric oscillations with periods greater
than the Brunt-Vaisala period (which is the period of oscillation for
an air parcel oscillating adiabatically in the air). Gravity waves can
also be generated in situ - e.g. large amplitude non-linear tidal
motions or the interaction of tides and gravity waves can lead to

potentially unstable wind shears which may further generate gravity waves
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(e.g. Hines, 1960; Sidi and Teitelbaum, 1978). The motion of the moon's
shadow over the Earth during an eclipse has also been suggested as a
source. However, detailed experimental investigations of these processes
is only just beginning.

One technique (called ray tracing) is to take a clearly observed
gravity wave in the atmosphere, and effectively "turn it round" on a
computer to propagate from whence it came, using a model atmosphere
(principle of reversibility). Sometimes the wave can be tracked to
sources at ground level (e.g. S.M. Ball of Adelaide has tracked gravity
waves seen by E region phase measurements back to tropopause jet streams
(private communic?tion); Bertin et al. (1978) also find associations with
jet streams, and Hung et al. (1978) claim to be able to track many gravity
waves to tornadoes). Sometimes with ray tracing, the tracking stops at
some height where the wave could not have penetrated. This means either
the wave must have been generated above this level, or the model wind
and temperature profiles used were inaccurate. It is clearly important
to be able to distinguish between these possibilities, and great care is
neceésary in the choice of the model atmosphere - otherwise the model
may prevent propagation where the real wave may have penetrated on that
day. Alternatively, the model may allow propagation whereas in the
real case the gravity wave could not have penetrated. Accurate wind
measurements at the time of wave propagation are to be preferred for
the computer model. Of the authors above, Ball, and Bertin et al.

(to some extent), use experimental winds in much of the mesosphere.
Hung et al. use a model only.

Other methods of looking at gravity wave sources exist. Clark and
Raitt (1976) looked at the possibilities of generation by supersonic
motion of the terminator, the equatorial electrojet, and energy deposited

in the auroral regions during magnetic activity. (The auroral regions
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are regarded as a major source of gravity waves) Manson et al. (1979)
by statistical analyses, suggested that the Rocky Mountains of North
America are a source for many of the waves they observe in the mesosphere.
Rottger (1980) examined gravity waves he felt were generated by jet
streams, and by convection in the troposphere. Several observers have
looked for solar eclipse induced gravity waves, but results appear to
be inconclusive. Some authors claim to see waves, others claim null
results (Cornelius and Essex, 1978; Bertin et al., 1977; Butcher et al.,
1979; Ball, Stubbs and Vincent, 1980).

The role of the various oscillations in transporting energy from
the sources to the mesosphere is another important facet of observation.
Rind (1977) has reviewed the major energy dissipation mechanisms in the
atmosphere. Rind lists viscosity, heat conductivity, relaxation processes,
radiation, bulk viscosity, diffusion, mean free path effect, Joule
heating and turbulence as the major mechanisms. Turbulence is perhaps
the most important below 100km. Calculations of energy (and momentum)
dissipation rates can be made for the mesosphere, using the height
variation of RMS wave velocities (e.g. Vincent and Stubbs, 1977; Manson
et al., 1979) and results agree with observed turbulent dissipation rates
as measured by rockets (e.g. Rees et al., 1972). Energy dissipation in
the mesosphere thus appears to be largely due to these waves (typically
.01 to 0.5W/Kg). Generally, gravity waves seem to carry more energy to
the mesosphere than tides, and tides more than planetary waves, but this
may vary from day to day (see Fig. 1.8). Rind (1977) feels that at
110km, acoustic waves can be as important as gravity waves. Elford
(1979) has discussed the role of these waves (particularly tides) in the

momentum budget of the Earth's atmosphere.
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Fig. 1.8 Altitude profiles of (pon) (which is proportional to the
energy density per unit volume) for the various wave motions
of the upper mesosphere at Adelaide, Australia (138%°E, 35°S)
for June 15-21, 1973. From Vincent and Stubbs (1977).

The constant of proportionality relating energy and QOVQ
depends on the type of energy being considered and the
wave type. According to Teitalbaum and Blamont, 1977.,

Total energy = kinetic energy + elastic energy
+ thermobaric energy.

Generally the elastic energy can be ignored for gravity
waves.,

For gravity waves, the thermobaric energy is approximately
equal to the kinetic energy (and is in phase quadrature),
and this is equal to l/poV2 . %povéax (V = velocity of

displacement = u + v, u and v being displacement velocities
in orthogonal directions approximately perpendicular to
the wave normal).

For the diurnal tide, the kinetic energy is 2 orders of
magnitude greater than the elastic energy, and 7 times the
thermobaric energy, at 33°N, (and likewise at 35°S), so
the total energy is approximately the kinetic energy
(Teitelbaum and Barat, 1977).

Notice in all cases the kinetic energy is = %povz.
Thus the total energy due to tides is %pOVQ, and that due

to gravity waves 1is pOVQ.
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1.3.3 Mesospheric Turbulence

Turbulence may play a significant role in the scatter of radio
waves from the mesosphere. Some knowledge, then, of mesospheric turb-
ulence structure is essential. A discussion of turbulence, and a
collection of important definitions and formulae, can be found in Chapter
II. The section below will discuss the height distribution of some
important turbulence parameters.

In the mesosphere, the atmosphere is generally potentially turbulent.
An appropriate realistic wind shear, or unstable temperature profile,
can generate the random irregular motions characteristic of turbulence.
However, above a height band, of width about 5km, somewhere in the region
90 to 115km, turbulence of the neutral atmosphere rarely occurs. (Enormous
energy inputs would be required to produce turbulence here. However,
turbulence can occur in the plasma at greater heights; for example, the
Rayleigh-Taylor instability believed to cause spread F (eg. see Chiu
and Straus , 1979) is a type of turbulence,and the electrojet irregularities
observed by VHF radars may well be a type of plasma turbulence (Sudan
et al. 1973),) This height band is known as the turbopause. Its height
varies, depending on local conditions. This is not to say, however, that
below the turbopause the atmosphere is always turbulent. Some of it may
be, but some flow can be laminar, too. (Turbulence often appears in
patches, or clouds (eg. Blamont and Barat, 1967; Anandarao et al., 1978).
Anandarao et _al. claim a correlation between strong wind shears and
turbulence, but not all observers have seen this. Blamont and Barat
(1967) and Roper (1971) have suggested gravity wave activity may create
these patches, perhaps along similar lines to the suggestion of Hodges
(1967).) Rather, the turbopause represents the height above which flow,
as observed by say a rocket experiment, is always laminar. Most momentum,
particle and heat transport takes place by molecular processes rather than

turbulent processes at these higher altitudes - in other words, the



molecular diffusion coefficient becomes greater than the eddy diffusion
coefficient. (Eddy and molecular diffusion coefficients are defined
more precisely in Chapter II. For the present,.regard them as parameters
indicgting how fast momentum, density, temperature and so forth can be
transported by turbulent and molecular means respectively)

If eddy diffusion extends to greater heights on any one day, then
greater mixing occurs in the region 90-120km. This can alter the state
of the atmosphere, and has been invoked by Koshelev (1979) and others,
to explain enhanced 90km NO concentration on anomalous winter days
(Section 1.2.3). Blum et al. (1978), and Blum and Schuchardt (1978)
have examined the variatioﬁs of density of He, O, N2 and Ar in the
thermosphere which would be induced by variations of the eddy diffusion
coefficient profile (and hence the turbopause height) and temperature.
They have then taken the densities of these constituents as measured
by satellites and worked backwards to calculate the height of the
turbopause as a function of latitude and season. The height varies from
90km to 115km. Their eddy diffusion coefficients agree reasonably well
with observed values. The authors do, however, point out that the He,

0, N, and Ar density varilations could also be due to wind transport

2
processes. Their main point is that thermospheric density variations
are related, to some degree, to turbopause heights.

Teitelbaum and Blamont (1977) examined the turbopause height using
rocket data. They looked at night-time variations, Wind fields were
calculaped by rocket vapour trail releases, and the height variation of the
energy density after removal of tides gave an indication of the turbulence.
Two main regimes were found:

around twilight (up to 2200hr in the evening, and after 0400hr 1in the

morning), the mesosphere and lower thermosphere were turbulent up to

29.



heights of the order of 105kmj and between 2200 and 0400hr, the turbopause
fell to around 95km. The authors explained this behaviour as being due to
gravity wave input, which they claim is greater around the twilight
hours. This increases turbulence, via processes such as the production
of strong wind shears when the gravity waves interact with tides
(Teitelbaum and Sidi, 1976). The passage of the terminator over
irregularities in Ozone concentration was proposed as a mechanism to
explain the increased twilight gravity wave activity. Teitelbaum and
Blamont also calculated the eddy diffusion coefficient K as a function of
height, and obtained values around 106-107cm?s™ ! (102-103m2s”!). These
seem typical values (eg. Fig. 1.9c contains a collection of profiles of K).
Teitelbaum and Blamont claimed that K increased from around 2 x 102m2s”1 at
97km to around 10%m?s™ ! at the turbopause height, with a sharp fall above
this height; although the result is very sensitive to the analysis
technique. However, other workers have assumed similar profiles (eg.
Koshelev, 1979; Blum and Schuchardt, 1978, model KII).

Rees et al. (1972) have also examined the height of the turbopause.
They used as their indicator of the turbopause the time t, (= (v/e)%,
where v is the kinematic viscosity and e is the turbulent energy dissipation
rate (this follows by equations 2.2.3.0 and 2.2.3.2c in Chapter II)) taken
for the turbulence to become evident in luminescent vapour releases from
rockets. (The turbulence is assumed to exist before the rocket release,
but it takes time for the vapour to become mixed and hence show evidence
of the turbulence) Observations of turbulence in this case were taken
by photographing the development of sodium-based vapour trails, and using
visual inspection to determine when flow was laminar, and when turbulent,
They found t, increases dramatically around the turbopause height.
Physically, the kinematic viscosity v becomes just too large to provide

a reasonable t, - enormous energy inputs e are necessary to produce
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turbulence, and.so flow is generally laminar. (These large v at high
heights mean that the atmosphere behaves somethiﬁg like honey up there!)
Variations in the height of the turbopause are dependent upon the energy
dissipation rate e, since v is reasonably time independent. Interestingly,
Rees et al, found some evidence of turbulence up to heights of 130km,

but its effects were very weak relative to molecular diffusion processes.
So it is seen, as has been pointed out above, that‘the turbopause does

not represent a clean break between turbulent and molecular diffusion,

but rather a transition region (albeit a very sharp transition).

The height of the turbopause is not, of course, the only important
parameter measured in the atmosphere. One extremely important parameter
is the energy dissipation rate, e. Rees et al. (1972) calculated this
from measurements of ty (t* being defined above). That is, € = t;zv;
and v, the kinematic viscosity, can be obtained from standard atmospheric
profiles. Usually, € is expressed in units of Watts.kg—1 (= mzs_?)
(energy deposition rate per unit mass), but often it is useful to express
€ in terms of the temperature change such an energy input would make in

the atmosphere per day. A useful conversion is

(°C/day) = 86.4 x ¢ (Watts kg 1)

at heights of around 90km (eg. Justus, 1967).

Turbulence can be Fourier decomposed as the sum of various sinusoidal
spatial oscillations, or "scales". Each scale has a "wavelength" A,
equal to the distance between the maxima of these oscillationms. (These
oscillations should not be confused with propagating waves; nor do they
vary in time. They are simply Fourier scales) A wavenumber k = 2n7/X
can also be associated with these scales; and sometimes the scale is
expressed in length units per radian. A wavelength A corresponds to a

scale A/2w. . This Fourier decomposition results in an energy spectrum of
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turbulence E(k). Here, E(k)dk is the energy associated with wavenumbers
in the region, k to k + dk. This spectrum falls off with increasing

k, until the Kolmogoroff microscale wavenumber

k = ()" rad. m 1 is reached. (see equation 2.2.3.0)

! i5 called the Kolmogoroff microscale)

(The associated scale n = k;

Wavenumbers less than kv = 07169 kn, and greater than a wavenumber k.,
called the "outer scale" wavenumber, lie in the so-called inertial range
of turbulence. This is one of the most intensively investigated turb-

ulence regimes. It is discussed in considerable detail in Chapter II.

The spectrum follows the form

E2/3k—5/3

E(k) o within this region.

Wavenumbers greater than kn lie in the "viscous range'.

The spectrum falls off extremely fast in this regime, since the
shears associated with these small scales are quite strong and are
quickly dissipated by viscosity. Rastegi and Bowhill (1976b) quote a
spectrum of the form

E(k) ~ ()2k7 exp{:k},
v kc
where kc = O.738kn, for this viscous region, but there is still
some debate as to the actual form of E(k) in this region. The form of
the spectrum between kv and kn is a mixture of the two forms discussed
above. This is called the Tchen range.

At wavenumbers less than the outer scale wavenumber k,, buyoyancy
effects become important. Eddies associated with these large scales
also tend to be anisotropic - their horizontal dimensions are larger

than their vertical dimensions. This is a gravity-induced effect.
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From estimates of €, the Kolmogoroff microscale can be estimated:

31
v % , -
n = (?;D“ metres radian !,

By multiplying by 2m, n can be expressed in metres.

The kinematic viscosity does not vary significantly in time at
any one height, although e can vary considerably. (For example, Fig. 1.9b
shows typical seasonal variations of average € values) However, variations
of é by 20 times results in variations in n of only about 2 times. Hence
n does not vary greatly in time at any one height. Rastogi and Bowhill
(1976b) have compiled assorted measurements of e, and hence n, and have
plotted typical profile of kn as a function of height (their Fig. 5).
Some of their data was used to produce Fig. 1.9a in this text.

Fig. 1.9a attempts to delineate the various turbulence regimes as
a function of height in the atmosphere. The data has been taken from
various references, as explained in the caption. It should be mentioned,
however, that the outer scadle, as drawn on this graph, and the inner

scale of the bouyancy range, L (= ﬁgﬁ,are both very crude estimates.

B
Likewise, the estimates of régions where anisotropy becomes important
are only approximate. However, they do at least serve as a reminder
that not all the wavenumbers to the left of kv are in the inertial range.
It may also be worth noting that although the inertial spectrum is not
fully valid for wavenumbers between kv and kn, often the inertial spectrum
is assumed valid right down to wavenumbers kn. This assumption is in
fact necessary to derive many of the relations between scales, energy
deposition rates, times, etc. obtained in Chapter II.

The variations of K, €, t,, n and the turbopause height discussed
above form the main points of this section. However, it may be worth

mentioning that turbulent eddies generally move with random motions, with

velocities dependent on the scale size and energy deposition rate. Rind



(1977) gives typical velocities in his Table 3. These vary from around
lms ! at the Kolmogoroff microscale to tens of metres per second at

scales of the order of kilometres.
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Fig. 1.9a Models of the Kolmogoroff microscale wavenumber, kn,
and other related turbulence parameters. The kn values

above 65km came from Rastogi and Bowhill (1976b, Fig. 5).
Estimates of v were obtained from the United States
Standard Atmosphere (USSA, 1962); assorted references
were used to estimate e (see Rastogi and Bowhill, 1976b).
The values shown in the two models correspond to €
values around 10 2 Wkg ! at 60km altitude (both models),
and € ~ 10 Wkg ! at 100km for model 1, with e ~ 0.1 Wkg !
at 100km for model 2. It is assumed logloe changes

linearly between these limits.

Three axes are shown - the wavenumber in rad m_l, the scale
in m rad !, and the wavelength in metres.

The parameters are plotted for mean ¢ values, and also
using values of € of 3.0 and 0.3 times the mean. The
terms kv and kC delineate the various regions indicated,

and are discussed in the text. The Kolmogoroff wavenumber
for an energy deposition rate e closely matches the
"kc’ 3e" line, and the two lines are drawn as one.

A k profile based on the data of Rees €t al. (1972, Fig. 8)

is also shown (e ~ 0.03 Wkg ! to 0.2 Wkg~ ! at 90-100km,
with a 20m Kolmogoroff scale at 80km, and 40-60m at 90km).
It was felt this profile was particularly relevant, because
the measurements were made at Woomera, Australia - within
a few hundred kilometres of Adelaide, the location of one
of the experiments discussed in this thesis. Ground-based
experiments at Adelaide, Australia (e.g. Elford and Roper,
1967; Vincent and Stubbs, 1977) have produced results
similar to those of Rees et al. Manson et al. (1979)

have found similar values at Saskatoon, Canada. Since
these values agree with model 2 best, this model is the
main one used in this thesis.

The kn values below 65km were taken from Gage and Balsley

(1978, Fig. 21). They all correspond to € values around
.004 to .01 Wkg_l. The diagram of Gage and Balsley also
extended above 65km, and closely matched model 1 presented
here. However Crane (1980) suggests € ~ 10" % - 10° 3 in
the troposphere and stratosphere, so kn is also plotted for

= 10_% and 10™* WKg !. Caughey et al. (1978) also suggest
e ~ 10°% ~ 10" 3, but at times intense patches of turbulenge
can occur with € ~ 1072, [Note that Crane assumes (v3/e)“
is the Kolmogoroff microscale in metres, rather than m rad
as has been assumed here. This should be borne in mind
when comparing Fig. 1.9a to Crane (1980),]

Times scales can also be associated with these length scales,
by virtue of the equation 2.2.3.2c¢ (Chapter II) - namely,
k 2173 = ¢, 1 represents the lifetime of an eddy of size

(--—- CAPTION Continued over)
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Fig 19a ctd.

4 & %}-metres. For example, if ¢ = 5 x 10 2 Wkg !, and

£~ 60m, T ~ 12 s rad ! or T ~ 76s.

Some attempt at describing the outer scale of the inertial
range of turbulence is also made in this diagram. The
inner scale of buocyancy range, LB’ as estimated by formula

2,2,4,2a", Chapter II, is shown as kB’ where

-3k - -a.%
HE = Iy

2

k, ! = LB ~ (ew

B B B

and Wy is the Brunt Vaisala frequency. This relation comes

about through a formula derived by Weinstock (1978),
and is developed in Chapter II. It is difficult to say
just how reliable this final form is. Also shown is an
estimate of LB made by Weinstock (1978). Values of v

were obtained from USSA, 1962, and estimates of 1 from
models 1 and 2. The Brunt-Vailsala frequency profile was
based on Fig. 5-2 of Gossard and Hooke (1975), and is

shown in the inset of Fig. 1.9a. The scale LB would be

expected to be of the order of the outer scale of the
inertial range - possibly somewhat larger. Also shown
are estimates of the outer scale by Ho et al. (1978)
and Van Zandt et al. (1978). Notice further that kB

1s more strongly dependent on & than kn. Further an
increased € decreases kB and increases kn, thus widening
the inertial range. Also shown are kB values for

e = 1073 Wkg ! and 10 * Wkg_l. These are probably more
appropriate in the lower atmosphere (eg. see Lilly et al.
(1974); Crane et al. (1980).

Eddies greater than lkm vertical extent tend to be
anisotropic at 90km (eg. Rind, 1977) and this is indicated
on the diagram. Scales to the left of the kB line will

generally be anisotropic (eg. see Weinstock, 1978), but

it is difficult to say exactly at what scales anisotropy
becomes important, eg. Bolgiano (1968) has shown that weak
turbulence in a strong wind shear can induce anisotropy

at small scales.

If these boundaries are estimated at higher heights (not
shown in Fig., 1.9a) it is found that the kB, model 2 and kn,

model 2, lines intercept around 100-120km - the height of
the turbopause. This is interesting, and is discussed
more in Chapter II. (When kB = kn, no inertial range exists,)

ctd. over.



Fig.19a ctd.

Also shown on the graphs are the Bragg scales which give
backscatter reflection for various radio wave systems.
For example, Jicamarca, using a radio wavelength of 6m,
recelves reflections from Bragg scale components of
wavelength 3m, or 3/2Mmr 1. Buckland Park (near Adelaide)
and Townsville, in Australia, were the two major research
stations used for the work of this thesis, and operate at
frequencies near 2MHz (both stations) and 6 MHz (Buckland
Park only). These frequencies correspond to Bragg scales
"wavelengths" of 75m and 25m respectively.

As a summary, the best lines to use_would be model 2; and
below 40km, use the € = 10 3 and 10 * Wkg ! lines.
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Seasonal variations at Adelaide (35°S) of (a) the rate of
dissipation of turbulent energy, (b) the prevailing wind
energy, (c) the diurnal wind energy and (d) the semi-
diurnal wind energies, at 91km., The mean flow energies
are the sums of the squares of the appropriate zonal and
meridional wind amplitudes. (From Elford and Roper, 1967).

To convert from Watts kg_1 to a heating rate of °C per
day, multiply by 86.4 (see text).



Fig. 1.9¢c Plots of eddy diffusion coefficient K vs altitude. Models
1 and 2 come from the € values of Fig. 1.9a, and use the
formula K = e/w (equation 2.2.4.7a", Chapter II).

Variousestlmatesof K by other authors are also shown.

Model 2 seems more agreeable with most other K estimates.
When values are estimated at higher heights, model 1 goes
to a value of loglOK = 5.1 at 110km - considerably larger

than accepted values. Models 1 and 2 merge below 60km.
Agreement with other authors is worst at about 20km,

but the model line assumes & = 10 % Wkg ! everywhere
below 60km, which may be a little 51mpllst1c. Elsewhere,
agreement is fair. The formula K = e/w may also be a

little suspect (see Chapter II).

As discussed in Fig. 1.9a, ¢ is closer to 10 % - 1073
below around 40km. K values have also been plotted for

= 10 3. Thus realistic K values are s 10 m?s” ! below
10km and less again between 10 and 40km. Lilly et al.
(1974) estimate K to be around 4 - 10 m?s ! in the
stratosphere. The shaded region represents this more
realistic range of K wvalues.
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1.4 Radio Wave Partial Reflections

The effects of the ionosphere on the prop®gation of radio waves
are extremely varied. Some discussion of this topic has already been
presented; for example, Appendix B, and Section 1.2.3. Section 1.3.3
contained a small section on the possibilities of turbulent scatter, but
no mention was made of experimental results. Apart from turbulence,
the primary effects thus far examined have been critical reflection
(to some degree; also see Appendix C), and radio wave absorption.

But one important phenomenon not yet fully discussed is the partial
reflection of radio waves. When radio waves enter the ionosphere, they
can be partially Feflected at heights in the range 50 to 100km. The
reflection coefficients corresponding to these reflected signals are
in the range 1078 to 1072, so the process is certainly not strong reflection.
These reflections occur over a wide range of frequencies, from less than
2MHz to greater than 50MHz. However, their cause is still largely unknown,
and the purpose of this thesis was to gain more insight into the physical
mechanism causing the radio scatter. This introductory section will
concentrate primarily on the years up to and including 1977; the results
of some papers printed after that date will not be included here, part-
icularly if they would pre-empt discoveries discussed later in this
dissertation. Rather, these papers will be discussed within the thesis
itself, at the appropriate place. All results relating to MF and HF
radio scatter up to 1979-1980 will be discussed here, since they pose no
challenge to these studies, but most papers relating to VHF invest-

igations after 1977 will be discussed later.
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1.4.1 Early Observation at MF and HF

l.4.1a Early Data

Ellyett and Watts (1959) provides a review of the early discoveries
of these partial reflections. Some evidence appeared as early as 1930,
when Appleton (1930) found indications of these lower echoes. Early
hints of such scattering heights also occurred in the period 1930 to
1950, when experiments using VLF, LF and MF radio waves suggested such
structures.

Dieminger (1952) presented evidence of these echoes using con-
ventional ionosondes, and appears to have been one of the earliest
workers to study the echoes in any real degree of detail. Dieminger
found that the echoes could be seen over heights of 75 to 90km, and over
a frequency range 1.6 to 4.0MHz (this upper limit is most likely a result
of the sensitivity of the system). The heights of the echoes varied
diurnally, with a minimum at local noon; and the heights were frequency
independent. The low echoes were most frequent in winter, and occurred
in groups of days.

Gnanalingam and Weekes (1952) also made some investigations of
these echoes.

Gardner and Pawsey (1953) provided perhaps the first detailed study
of these echoes, with an experiment specifically designed for invest-
igation of these weak reflections. Their system was quite semsitive,

30 to 40dB more so than Dieminger's ionosondes.

The system used by Gardner and Pawsey was similar in principle to
the systems used for the investigations discussed in this thesis. Pulses
of radio waves were transmitted regularly, and the returning signal
monitored, using a sensitive receiver. Echoes from lower scattering
structures return to the receiver first, and the time lag between the

transmitted pulse and an echo can be used to calculate the height of
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the reflector, by the formula

(1.4.1.1) h = vt

h being the reflector height, t the time delay between the transmitted
pulse and the receiver echo, and v the speed of the radio waves through
the ionosphere to the point of reflection (assumed to be the speed of
light in a vacuum, ie. v = c¢; this assumption results in a so called
virtual height h, but this is close to the real height in the D region).

Fig. 1.10 shows a typical profile of echo strength as a function of
time delay for Buckland Park, Adelaide, Australia (35°S, 138°E). The
horizontal axis gives the time delay, but has been converted to height
by formula (1.4.1.1) and assuming v = c¢ (virtual height). The various
structures are described in the figure caption. Gardner and Pawsey obtained
similar profiles, and presented similar diagrams. In the case shown,
there are clearly scatterers at 68, 78 and 92km.

Gardner and Pawsey used a frequency of 2.28MHz, and a pulse length
of 30 psecs. Half wavelength dipeoles were used for transmiésion and
reception. Either plane polarized radiation, or circularly polarized
[Ordinary (0) or Extraordinary (X)] radiation could be transmitted.

The transmitter had a peak power around 1kW. The systems used for the
experiments discussed in this thesis were essentially the same as this,
except that larger transmitter powers (up to around 40kW peak), large
receiving arrays, and other improvements, resulted in much greater
sensitivity. Frequencies used were around 2 and 6MHz.

The echo strengths observed by Gardner and Pawsey (near Sydney,
Australia) corresponded to reflection coefficients of typically 1079
at heights near 70km and 10" 3 around 90km. Echoes at 80-100km generally
appeared to come down in height until noon, then rise again afterwards.

The "60-70km'" echoes appeared to rise in height until noon, then decrease
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Typical O mode echo structure for a pulse of 2MHz radio waves
transmitted into the ionosphere. The system saturates at
10Volts, and this is the reason for the flat tops of the
"echoes" at O to 100km. The Okm "echo' corresponds to the
transmitted echo, and the 100km echo is the totally reflected
E region echo. The structures 60 to 90km are genuine D-region
ionospheric scatter. The small echo at 55km 1is not
ionospheric, but corresponds to reflections of the pulse off
nearby mountains. The "echo'" at around 33km may also be a
ground echo, or could be ringing of the receiver. The
ionospheric echoes change in amplitude and height in a time
scale of the order of seconds; the "echoes'" less than 60km
change very little even from one day to the next, and this is
one characteristic which allows them to be interpreted as
non-ionospheric.



again. An echo might appear at one height and remain visible (during
the day-time) for periods ranging from hours to days. Then it would
disappear. Echoes continually came and went. The echoes faded in
amplitude with fading times of the order of seconds. However, an echo
at any one height would still fluctuate in height around its mean.
Echoes below about 80kn appeared only during the daylight hours, but
above this height, night-time echoes did occur.

The results discussed above provide an accurate assessment of many
of the major characteristics of these D-region echoes. One major
characteristic can be seen with a comparison of O and X mode echo
strengths, (That’is, 0 or X radiation is transmitted and received)

Below about 70km, the X mode echo is often the stronger, but above this
height the X mode radiation is strongly absorbed due to the large electron
densities, and the corresponding echoes are quite weak. O mode absorption
is not so strong, so the O echoes are still quite strong even when coming
from heights around 90km. Gardner and Pawsey used these different
absorption characteristics to determine the D-region ionospheric electron
densities, and thus devised the so-called "Differential Absorption
Experiment" (DAE). The DAE is discussed briefly in Appendix B. The
technique requires knowledge of the electron collision frequency profile
of the atmosphere, and inaccuracies in this parameter can lead to erxrors
in the calculated electron densities. In an extension of this experiment,
Belrose and Hewitt (1964) were able to use a theory similar to that for
the DAE to calculate this collision frequency near 60km, since at these
heights the electron collision frequency is the main reason for absorp-
tion of radio waves. However, electron densities are hard to calculate

at these low heights, for this very reason. Above 80-85km, X mode
strengths become very weak and hard to measure, so electron density

estimates above about 85km are also unreliable for the DAE technique
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(eg. Lindner, 1972).

However, the Gardner and Pawsey DAE theory relies on the assumption
that the echoes are due to rapid changes in electron density of a few
per cent with increasing height, which extend over several Fresnel zones
horizontally. If, for example, they were due to sudden changes in
collision frequency, the theory would have to be modified. (eg. Piggott
and Thrane, 1966; Lindner, 1972; Jones and Kopka, 1978). Further, if
the scatterers are not planar, extending over several Fresnel zones, but
perhaps turbulent eddies, then the returned echoes may come from a wide
range of angles, which could also modify the theory (Lindner, 1972,
1975a, b). If, as well, the scatterers cover a thick height region
(eg. > 1-2km), then other modifications are necessary (Flood, 1968).
Clearly, then, it is important to understand the structures causing
these echoes much more thoroughly before the DAE can be interpreted
correctly.

Gardner and Pawsey did not continue the work reported in their
paper. Gregory (1956, 1961), however, did carry on similar observations
at Christchurch, New Zealand, using a similar experimental arrangement
to that of Gardner and Pawsey, but on a frequency of 1.75MHz. Gregory's
work provided the first detailed analysis of seasonal variatioms, and he
also began to look carefully at the problem of preferred heights ~ that
is, do the echoes show preference towards certain heights of scatter, or
are the echoes equally likely to come from all heights?

One important point which must be borne in mind with many of these
results is the geographical location of these statioms. Dieminger's work
was in the Northern Hemisphere. Gardner and Pawsey worked near Sydney,
Australia (34°S, 151°E). Gregory worked near Christchurch, New Zealand
(43° 37'S, 172° 24'E). Thus conclusions drawn by any one author may

not be globally true.



Gregory (1956) found scatterers with lower boundaries principally
at heights of around 95km and 85km, with occasional occurrences of echoes
at heights around 75km, 70km, 65-68km, and in some cases 56-57km.
Reflection coefficients generally decreased with decreasing height,
from around 5 x 10 % to 10 3 at 95km, to around 4 x 10" % at 85km, and
around 5 x 10" © to 10 “ at the lower heights. At night echoes were
observed only from heights above about 80km. The heights of any one
echo at the greater heights tended to fluctuate, although at times an
echo could be stable to within less than *1km  (especially the 85km
echo). The echoes below 80km were primarily a non-summer phenomenon.
Their stability would vary - they might last for periods from hours to
days. Occasionally echoes would occur in summer, but these were often
quite short-lived - some lasting less than a minute. No echoes were
observed below 50km. Evidence was also found suggesting that echoes
became stronger on days of higher electron density (a similar effect has
been observed more recently for the low echoes by Haug et al., 1977 -
at least in one specific case). A comparison was made with observations
at other locations, and the "85km" echo was found to be a common feature.
Insufficient data existed to comment on comparisons of the lower echoes.

In his 1961 paper, Gregory had more data to comment on. Again,
preferred heights were found - in particular, around 86km, around 74km,
around 66km, around 61km and around 55km. Experiments were also made to
determine the thickness of the scattering regions, and these tended to
increase from less than about 2km at the lower heights to greater than
S5km at 86km. A seasonal variation in the height of the "86km" echo was

found, the height of the reflector falling to around 8lkm in winter, and

rising back to 86km in summer. (It should be pointed out that a ""preferred

height of around 86km" does not mean all echoes come from this height, -

there can be quite a spread, eg. see Fig, 1.13a.) Some speculation as

40.



41.

to the nature of the scatterers was also made, and the conclusion was
that they are generally due to turbulence. However, echoes had also
been seen with very slow fading times, particularly at the lower heights,
and rapid changes of electron density (around 10%?) within depths around
10m were suggested as the cause of these echoes. However, the reasons
for the stratified turbulence, and the sharp electron density gradients,

could not be explained.

1.4.1b » Investigations.of Echo Structure After 1962

Around the same time as Gregory's papers, some other papers on
similar work appeared, but they were not great in number. Gregory's
results have been discussed in detail here because he worked at a similar
location to the investigations in this thesis. Gregory lists Fejer
(1955); Fejer and Vice (1959); and Bjelland, Holt, Landmark and Lied
(1959) as the principle other related papers. These will not be discussed
here.

After about 1962, until around 1968-9, there appears to have been
something of a 1lull in publication of papers discussing direct invest-
igations of these echoes. The nature of the scatterers was assumed to
be sufficiently well known for the partial reflections to be made use
of in experiments such as the DAE (eg. Titheridge, 1962a;Belrose and
Burke, 1964; Gregory, 1965; Gregory and Manson, 1967; Belrose, 1970
(review)). Some debate and even controversy did continue regarding the
nature of the scatterers (Belrose and Burke, 1964; Manson, 1966; Piggott
and Thrane, 1966; Flood, 1968), but little experimental data was produced
to clarify the situation. Generally the arguments revolved around either
Fresnel reflector models (a Fresnel reflector is a planar (mirror-like)
reflector extending over several Fresnel zomes (see any optics book))

or volume scattering models. The use of the DAE was, however, assumed



valid, provided care was taken. The effect of the scale of the scattering
irregularities was felt to be unimportant (eg. Holt, 1969; Flood, 1969).
The possibility of off-vertical signals arriving at the receiver (which
degrades the range resolution, and makes discrimination of O and X modes
more difficult) was eliminated to some degree by using narrow beams
(large receiving and/or transmitting arrays). The effects of a finite
length radio pulse was also considered by Coyne and Belrose (1973).
Belrose et al. (1967) and Belrose (1970) discussed some of the problems
associated with the DAE, and gave some typical results obtained. These
papers also gave summaries of the main stations doing the DAE at the
time. Even quite recently, the DAE has been improved further (eg.

Von Biel, 1977); gut a really complete interﬁretation of the DAE still
requires a fuller understanding of the radio scattering mechanism.

Other experiments using these partial reflections also began to
appear, such as the measurement of drifts in the D-region (eg. Fraser,
1965; Fraser, 1968); but again, the lack of knowledge of the mechanism
of scatter restricted interpretation of the results. The measurement of
drifts at HF was generally done by the method of similar fades, first
used by Mitra (see Mitra, 1949). The earlier work was done using E
region total reflection, but during the period from 1965 onwards, the
technique was extended to the D region by utilizing partial reflections.
The method involved correlating signals received at three (or more)
spaced receivers, and using the time delays between the signals received
to determine drift velocities. It was subsequently improved (Briggs,
Phillips and Shinn, 1950; Briggs and Spencer, 1954; Phillips and Spencer,
1955; Fooks, 1965), to arrive at "Full Correlation Analysis" (FCA).

This has become a reasonably widely used method of measurement of
ionospheric drifts. Briggs (1977b) has given a review of FCA, and Briggs

(1977a) reviewed some of the results and limitations of FCA.
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The interpretation of ionospheric drift measurements was debated
for some time, however. Did the results give neutral atmospheric motions,
or something else? For example Hines (1972) suggested drift measurements
could in fact be tracking gravity wave motions, rather than neutral
.winds,if the ionized irregularities were produced by the waves. On
the other hand, if the irregularities were produced by turbulence and
then transported by the wind, the method would give the wind velocity.
Thus once again uncertainties as to the nature of the partial reflection
mechanism resulted in ambiguities in interpretation of results of
experiments using these scatterers. A clearer understanding of these
D region scatterers was needed. [It may be worth noting here, however,
that FCA results have since been compared with other methods of neutral
atmospheric wind measurement, such as meteor winds and rocket data (for
example, Kent and Wright, 1968; Sprenger and Schminder, 1968; Muller, 1968;
Wright, 1968; Stubbs, 1973; Stubbs and Vincent, 1973; Balsley, 1973;
Crochet et al., 1977; Vincent EE_él:’.1977; Vincent and Asenstorfer
(comparisons with Doppler measurements — private communication)). The
method has been found to be acceptable as an indicator of neutral air
motion, at least for the experimental arrangements used in this thesis
for D-region measurements (see in particular those papers in which
Stubbs and Vincent were involved). Further, as pointed out by Briggs
(1980/81), many’ criticisms of spaced receiver measurements of winds can also
be made of Ddppler measurements. In many cases the spaced receiver method
has definite advantages. In this thesis, the FCA method of ionospheric
drift measurement will be used a great deal, and results will be inter-
preted as neutral atmospheric windsl]

After about 1968, papers again began appearing which discussed the
nature of the scattering irregularities. Vincent, in his thesis (1967),

discussed the nature of these echoes to quite a degree, but none of the



data was published till some time later, when he was a joint author in
two papers (Gregory and Vincent, 1970; Fraser and Vincent, 1970). Around
the same time, Austin and Manson (1969), Manson, Merry and Vincent (1969),
and Austin, Bennett and Thorpe (1969) also produced papers investigating
the nature of the D-region reflectors, and a clearer picture of the
'scatterers began to emerge.

Vincent (1963) used phase information of the returned signals to gain
a much better feel for height fluctuations and echo '"coherence'. Results
suggested that echoes from above 85km were often quite incoherent
(frequent random phase jumps and variations), whereas those from around
70km often showed very smooth phase variations over intervals of
several minutes a; times, and frequently showed quite slow fading rates.
Thus it seemed that echoes from around 70km could well be due to one or
two Fresnel reflectors drifting across the beam, producing specular
scatter (in some cases, Vincent measured the speed of drift of these
reflectors via phase measurements; results appeared to compare favourably
with measurements of wind speeds made by the spaced receiver technique).
Above about 85km, volume scatter appeared to dominate. The night-time
90km echoes showed similar incoherence to the day time ones. The lower
echoes were, at times, found to be extremely stable in height, showing
very small fluctuations over quite long periods, particularly during
the equinoxes. At times, height fluctuations were less than a few
wavelengths over several minutes. However, even these lower echoes
became Somewhat incoherent during the solstices. Fraser and Vincent
(1970) also showed that for these lower echoes, fading times and pattern
size (the latter is a measure of the distance required between two
aerials for the signals received on the two aerials to become uncorrelated
to a significant degree) correlated well with the degree of phase

coherence. Figure 1.11, from Fraser and Vincent (1970) shows these
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features well. This would not be surprising if the reflections were from
Fresnel reflectors — since as the reflectors became more 'mirror-like",
it might be expected fading would become slower, the phase would show
less erratic variation, and the angular spectrum of the scatterers would
become narrower, thus giving a larger pattern scale (the last statement
follows because the angular spectrum and spatial autocorrelation are
Fourier transforms; eg. see Briggs and Vincent, 1973). The suggestion was
also made by Vincent (1967) that these scatterers may well be closely
related to gravity waves. Vincent speculated that the reason for the
seasonal variations of some of the layer characteristics may be related
to tropospheric-generated gravity waves. The possibility that the
increased electron densities in winter (winter anomaly - see Section 1.2.3)
were related to the increase in observed lower echoes in winter was also
mentioned.

Austin and Manson (1969) suggested that the D-region scatter in
the region 70 to 90km may come from several scatterers, too close together
to be resolved with the pulse le;gths used (resolutions were typically
4km). They suggested these multiple scatterersmay be the result of
gravity waves perturbing the neutral atmosphere. If the scatter were
to be explained by a single scatterer, perturbations in electron density
of the order of 5% to 40% were necessary, according to these authors;
but multiple scatterers would require smaller perturbations to explain the
observed powers. Other observations (eg. Fraser and Vincent, 1970)
have shown at times the existence of single scatterers. Austin and
Manson concluded that both situations (scatter from a single reflector
and scatter from multiple reflectors) can in fact occur. Some attempt
was also made by Austin and Manson to discern the thicknesses of the
scattering layers by varying the pulse length used. Results suggested

that, at least up to about 84km, the scattering regions never filled a
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major portion of one pulse length.

l.4.1c Layer Widths

Gregory and Vincent (1970) carried out a more careful analysis of
layer widths at Christchurch, New Zealand (44°S, 173°E; L = 2.6). Their
system was capable of detecting two reflecting regions, less than lkm
thick, if they were separated by more than 4km. The results of their
analysis are summarized in Fig. 1.12. Below about 80km, the scatterers
appeared in general to bé less than lkm in extent, (and possibly less
than a few wavelengths thick (A ~ 170m; £ = 1.75MHz)). Rapid changes in
electron density with height (steps) were offered as the explanation of
these echoes below about 80km. Above 80km, the scattering regions
tended to have a mode thickness of 2-3km, and sometimes were as large
as 10km. It was not possible to say, however, whether these were
continuous scattering regions covering the full estimated thickness, or
whether there were several discrete scatterers (or even regions of
scatter) with separation too close to resolve.

For a station at a much higher geomagnetic latitude (in the case
discussed the station was Saskatoon, Canada; (52°N, 197°W); L = 4.4),
indications were that scatter tended to be similar in some ways to that
at Christchurch, but tended to be more "diffuse'" - that is to say, the
layers were not quite so well defined, and appeared "thicker". However,
no detailed analysis was carried out at Saskatoon. Belrose (1970)
suggested that at Ottowa, Canada (45°N, 76°W), scatter was not uniquely
quasi-stratified or turbulent, but rather a combination of the two.
Belrose et _al. (1967) (also see Austin and Manson, 1969) felt that there
were no preferred layers like those seen by Gregory (1956 and 1961 at
Christchurch) in the nearer-auroral regions of Canada. Some stratification

did exist at Ottowa, however (Belrose and Burke, 1964).



Thus there appeared to be a geomagnetic dependence upon the nature
of these scatterers, although at the time no expianation was offered.
Conceivably, the increased incidence of precipitating electrons in the
auroral regions could partly explain the effect.

It became clear that higher resolution was necessary to deduce any
more about the thickness of these layers, and with this in mind, Austin
et al. published a paper in 19693 regarding the possibilities of decon-
volving the received echoes. Unfortunately, very little in the way of
results were presented, and there appears to have been no follow-up
paper. The uses and limitations of deconvolution will be discussed later
in this thesis in more detail. The technique has potential, but must
be done carefully: Chandra and Vincent (1979) have also shown the use-
fulness of deconvolution, and find several cases where the echoes from
two layers have merged to appear as one echo; the layers could be seen

separately when deconvolution was applied. Deconvolution is a useful

technique, but it has not been used extensively to date.

1.4.1d Rocket Comparisons

Perhaps one of the most obvious things to do in investigating these

echoes would be to compare directly the detailed electron density profile,

as measured by rocket experiments, with reflections observed by HF radar.
This appears never to have been done, however; the first results of such
an experiment will be presented later in this thesis.

Manson, Merry and Vincent did, however, present a paper in 1969
which presented statistical comparisons of echoes and high resolution
electron density profiles obtained by rockets. Small scale fluctuations
in electron density, of the order of 1% to 20%, were observed in the
rocket data, with a mode at about 3%. The fluctuations seemed largest
at 60-70km, and 80km, which crudely agrees with preferred heights of

radio scatter. The winter and autumn rocket firings showed more marked
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small scale electron density irregularities, agreeing with the observ-
ation that partial reflections appear to be greatest in those months.
On two days of anom@lous absorption, these density irregularities were
found to be enhanced; and this agreed with observations suggesting HF
radio scatter is strongest on such days (Gregory, 1956). Calculations
using the Sen-Wyller equations suggested that each electron density
fluctuation was capable of giving rise to scattered radio pulses with
powers of the order of one third to one quarter of those observed by
radio techniques. The combined effects of several of these perturbations
was quite capable of causing the observed echo strengths. The paper
thus concluded that the observed echoes, at least up to around 80km,

were due to fine scale (less than 100m) irregular variations of the

electron density with height.

1.4.le Angular Spectrum

In 1973, Briggs and Vincent presented a paper in which they
theoretically examined the form of the signal received when radio waves
are scattered from "blobs" of electron density. Vincent (1973) followed
this up with some experimental results, in which the spatial autocorrelation
function of the received signal was found; this could then be used to
deduce information about the scatterers. (The Fourier transform of the
spatial autocorrelation function gives the angular spectrum of the
scatterers (Briggs and Vincent, 1973).) Interpretation of the results
suggested that at around 95km the scatterers could be quasi-isotropic
blobs; perhaps about three times wider than they were high. At lower
heights (say 75km), the scatterers appeared to be sharply bounded,
possibly with ‘edges as small as 10m in depth. These lowex scatterers
appeared to extend several kilometres to tens of kilometres in hor-

izontal dimension.



49.

Vincent found the concept of such sharp edges hard to accept, and
with good reason. A step of thickness h would diffuse away with a time
scale t around h2/K, K being the relevant diffusion coefficient (see
Chapter II). If turbulence were operative, K ~ 10-10%m%s ! at 60-80km
(eg. Cunnold, 1975, Fig. 3), so if h ~ 10m, t ~ 1-10 seconds. (If flow
is entirely laminar, K is the molecular diffusion coefficient, which is
roughly equal to the kinematic viscosity, and the value is around
0.3m%s ! at 75km (U.S. Standard Atmosphere, 1962). In this case
t ~ 1000 seconds ~ 16 minutes). Thus if turbulence were at all operative,
as it generally appears to be, a step of thickness around 10m would
quicHy diffuse out in a few seconds. However, as will be seen later,
the conclusion regarding these narrow edges does appear to be quite
valid. The conclusion for the 95km echoes may not be entirely valid,
since only one type of scatterer was consldered. Possibly several
scattering mechanisms operate. This will be discussed in more detail
later.

Lindner (1972, 1975a) showed how statistical properties of amplitude
and phase variations received on neighbouring -dipoles: can be used to
deduce information about the angular spectrum of the scatterers. Then
Lindner (1972, 1975b) used these concepts to carry out an extensive
series of measurements on ionospheric irregularities at Adelaide,
Australia (35°S, 138°E). If the power received in the range of zenith

angles 0 to 6 + d is P(6)d6, and P(8) is assumed proportional to
eXP{—[sinze/sinzeol},

then 6, serves as a useful parameter for describing the type of scatter.
Large 60 values suggest more isotropic scatter, and small 60 values
suggest most scatter is from the vertical. Lindner presented evidence

that 6, is quite small (around 2°-3°) up to about 80km, and then rises
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sharply to 10°-14° at 90-95km. This is essentially consistent with the
observations reported by Vincent (1973). |

In a later series of measurements at Ottowa, Canada (45°N, 76°W),
Vincent and Belrose (1978) obtained further estimates of 64, and the
results agreed well with those of Lindner for Adelaide. In these
experiments, 6, was calculated by comparing powers received on two
calibrated antenna arrays - one with a wide polar diagram, and one with

a narrow polar diagram.

1.4.1f Preferred Heights

It has already been mentioned how Gregory (1956, 1961) observed
preferred heights’of scatter, but Belrose et al. (1967) found this was
not so in the auroral regions. Lindner (1972) obtained an extensive
series of observations of echo heights at Adelaide, Australia (35°S, 138°E),
and the results are presented in Fig. 1.13a. Similar results have been
found for Townsville, Australia (19°S, 147°E), and are presented in
Fig. 1.13b. (These latter results were obtained as part of the work for
this thesis, but are presented here for ease of reference) Schlegel
et al. (1978) also presented such histograms for their station at
Tromso, Norway, and again preferred heights could be seen. These
results imply that, certainly in non-auroral regions, scatterers do have
preferred heights; and even some quite high latitude stations (eg.
Tromso) can exhibit this feature. These heights appear reasonably
consistent globally. Particularly common heights are around 65km,
70-74km, (sometimes 76-80km), around 82-86km, aﬁd/arouhd
90-95km, although there are marked seasonal variationms, both in preferred
heights, and echo strengths. Schlegel et al. (1978) found echoes weakest
in summer, as most other authors have. The heights of peaks of occurrence
can also change significantly seasonally. Gregory (1961) found the

"around 85-86" km echo became as low as 8lkm in winter. Similarly,
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Fig. 1.13a Preferred heights of D region scatterers for summer (Dec-Feb),
autumn (March-May), winter (June-Aug) and spring (Sept-Nov)
for 1971 at Adelaide, Australia. (Results are from Lindner,
1972)..
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seasonal variations can be seen in Fig. 1.13a. For example, the 83km
echo in autumn gives way to two echoes at 80 and 86km in winter. Whether
either of these can be regarded as a continuation of the autumn 83km
echo is difficult to say. Probably the 86km winter echo shows similar

characteristics to the 83km autumn echo (from personal observation).

1.4.1g Amplitude Distribution

If radio waves are scattered from a random distribution of moving
scatterers, such as in turbulence, the amplitude distribution follows
a characteristic form called a Rayleigh distribution (Rayleigh, 1894).
1f, however, one scatterer dominates, the situation is akin to finding
the probability distribution of a constant vector with many other small
random vectors added on. The result is the so-called Rice distribution
(Rice, 1944, 1954; Van der Ziel, 1954; Norton et al., 1955; both the
Rayleigh and Rice distributions will be derived later in this thesis).
Then plotting amplitude distributions can indicate the type of scatterer
being examined. Specular scatter, from a simple step in the electron

"roughness' super-

density profile, with a certain degree of horizontal
imposed, should be Rice-distributed with a large Rice parameter a (a
being a measure of the specular component amplitude to the standard
deviation of the random contribution). Turbulence would be expected to
produce Rayleigh distributed (a = 0) fading.

Unfortunately, things are not so simple in practice. The case of
2 or 3 specular components, of differing amplitudes, is not covered
by either case (the distributions in such cases will be derived later).
Greater than five roughly equal specular scatterers would also give a
close approximation to a Rayleigh-type distribution (Goldstein, 1951;
Vincent and Belrose, 1978). Further, if the components do not exhibit

all possible phase differences with equal probability, the theory is not

valid. Nevertheless, amplitude distributions do offer a possible tool



for D-region investigationms.

Von Biel (1971), at Christchurch, New Zealaﬁd, appears to have been
the first author to attempt this procedure. Mathews ét al. (1973)
at Ottowa, Canada, followed this attempt, and Newman and Ferraro
(40°N, 77°W) produced further results in 1976. All three groups of
authors concluded that scatter appeared to be Rayleigh~like below about
80km, but may have some specular contribution above this height.

P.K. Rastogi (1979, private communication) working at Tromso, Norway,
in some preliminary work, also found Rayleigh-like distributions below
80km, but some indication of specularity above.

These results, then, would appear to contradict the conclusions
drawn earlier in ;his section that, below 80km, scatter appears quite
specular, whilst above is more random in nature. Von Biel (1971) in
particular offers his results as a direct contradiction of the work of
Gregory and Vincent (1970).

Can this apparent contradiction be explained? The answer will be
discussed more in later chapters of this thesis, but appears to lie, at
least in part, in the assumption that the scatter should indeed be Rice-
distributed. Much of the scatter from below about 80km is from a few
specular scatterers, but the time intervals used to perform the amplitude
distributions are often too short to allow all possible relative phases
of the vectors of the scattered radiation. 1If, however, long data sets
(about 10 minutes) are used, it is quite possible that such a time
interval is much longer than the lifetime of an echo. A distribution
formed from say 10 minutes of data may in fact contain contributions from
one scatterer during say the first three or four minutes, then nothing,
and then a second scatterer, possibly of different scattering strength
to the first, in the last couple of minutes. Consequently, many

distributions may be non-Rician. Von Biel (1971) accepted data at the

i2ks
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15% chi-square level. But at the low heights, as will be seen in this
thesis, a large percentage of distributions, alghough indicating specular
scatter,should be rejected as non-Rician. (At least, this is true for
Adelaide and Townsville, Australia; it is presumably true elsewhere).
Interestingly, Chandra and Vincent (1979) have produced Rice parameters
which do indeed show strong specularity at the lower heights (below
80km); and it may be significant that they used 3 minute data lengths,
compared to Von Biel's 8 minute data blocks.

As an interesting extension of amplitude distribution amalyses,
Vincent and Belrose (1978) compared their amplitude distributions to
those expected for 2 or 3 specular components, and found that for

typically 207% of the data the distributions appeared to indicate 2 or 3

principal specular scatterers.

1.4.1h Fading Times

Another parameter of significance in examination of D-region HF
echoes is the fading time. This is generally taken as the time for the
temporal autocorrelation of the data to fall to 0.5.

Echoes from turbulent scatterers may be expected to give signals
at the ground which become uncorrelated after a shift of 1 or 2 seconds
(at around 2MHz probing frequency); specular echoes, perhaps due to
steps in electron density of the order of kilometres in horizontal extent,
may well give rise to much better correlated signals, and thus longer
fading times. Some fading time data can be seen in Fig. 1.11, which
comes from Fraser and Vincent (1970) for Christchurch, New Zealand.
Quite clearly, the lower echoes (70-79km) exhibit longer fading times
than the higher ones during the equinoxes. Lindner (1972, 1975b) also
presented fading time data for Adelaide, Australia. He found that above

about 80km, fading times are typically less than 2-3 seconds, whilst
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below, fading times as large as 20 seconds can be attained. Schlegel
et al. (1978) found a similar trend for Tromso, Norway, with fading times
less than about 4 séconds at 90km but quite large at the lower heights.
Unfortunately, Schlegel et al. also tried to relate their fading times
to turbulent dissipation rates, but this is not valid unless a very
narrow beam is used, or unless the fading time which would be observed
by an observer moving with the background wind can be obtained (see
Chapter II, equations 2.2.3.11 and 2.2.3.12). Even then, the results
are only valid if it can be proved that the scatter is indeed from
turbulence. The same paper also reports a seasonal variation in the
fading time, but as pointed out by Vincent (private communication), this
may in part be du; to the seasonal variation of the horizontal wind.
After all, with a wide beam (17° beamwidth for the Tromso case) there
would be a wide range of Doppler shifted frequencies received due to
scatter from scatterers at different zenith angles in the beam, and this
would contribute in part to the fading (beam broadening). Larger mean

wind velocities result in a wider spectrum and hence smaller fading

times.

1.4.1i Conclusions of HF Results to Arournd 1977

Emerging from the above discussions, then, appears the following
picture of D-region scatterers.

Scatterers exist from 50 to 95km, with reflection coefficients
increasing roughly exponentially with height from around 10°° to 10 *
at the low heights (60-75km) to around 10" 3 at 90-95km. (An upper
1imit for the scatterers is hard to define at HF. Frequencies at 2-4MHz
are often critically reflected by the E region, and this hides any scatter
from heights near 100km. It also prevents any signal penetrating above

the E region). Echoes from below 80km are primarily a day time
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phenomenon} above they may exist at night as well. A distinct height
preference seems to exist, at least at low and middle magnetic latitudes;
scatterers at around 66, 70-74, 76-80 (at times), around 85 and 90-95km
appear to be most common, although the preferred heights do vary somewhat
seasonally. The preferred heights seem to be a global phenomenon. The
echoes often fluctuate in height by several kilometres - although on
occasion the stratifications can be very stable in height. A seasonal
variation is evident, particularly for the lower echoes, which almost
disappear in summer. Greater coherence is evident in the echoes around
the equinoxes, with slower fading. Extremely height-stable echoes
sometimes occur dgring the equinoxes, with variations in echo height of
less than lkm, and at times less than 1 wavelength (A ~ 70-100m). This
is particularly true at around 85km, but sometimes lower echoes can also
show this effect., The scattering layers can last for periods from
a few minutes to several hours and even to days. There are some indic~
ations that the lower echoes may be stronger during days of high
absorption. TFading times appear to decrease with increasing height.
The scatterers at lower heights (5 80km) appear to be less than lkm in
vertical extent, although possibly tens of kilometres in horizontal
extent at times. At these lower heights, the angular spectrum of scatter
appears quite narrow, suggesting mirror-like scatter. Above about 80km
and up to around 92km, the scattering regions tend to be thick (from
0 to 10km in vertical extent), and scatter is more isotropic. (However,
it should be noted that layer thickness measurements to date have had
a resolution around 4km, so conceivably a 10km deep scattering region could
be several scattering layers with less than 2-3km vertical separation).
It also appears that scatter from below about 80km may be from

changes in refractive index about 2%-20%, which are less than a few tens
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of metres in vertical extent. Often several reflectors may contribute
to an echo at any one time, but on occasions a single reflector can be
the sole cause of an echo.

However, some of these conclusions are based upon scanty evidence,
and much more extensive observations are needed. For example, Lindner,
and Vincent and Belrose, appear to have been the only authors to have
examined the angular spectrum in any detail, and even then, only by
indirect means. Further, it seemed possible that the echoes from
above 80km may be due partly to turbulence, but this was not certain.
Certainly the reasons for the preferred heights was totally unknown.

An explanation of’the existence of small steps in electron density, of
only a few tens of metres extent, was not forthcoming. The purpose of
this thesis, then, was to obtain greater insight into the nature of

these phenomena. The complete answer as to their nature 1s still

unknown,
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1.4.2 VHF Observations to 1977

Some scatter from the ionosphere at VHF was observed in the 1950s,
and Ellyett and Watts (1959) mention that Bailey, Bateman and Kirby, and
Pineo, did observe some VHF scatter from 75-90km. Booker (1959) also
discussed VHF scatter from around 90km. Villars and Weisskopf (1955)
also observed VHF scatter.

However, all these examples were cases of oblique scatter, with
transmitter and receiver well separated, so that the scatter came from
Bragg scales many times the wavelength of the radiation. In fact, the
scatter was most likely due to irregularities of electron density with
scales similar in order of magnitude to those causing the previously
discussed HF back;catter. (Villars and Weisskopf suggested vertical
scales of about 14m, with scatter being from heights below 90km).

However, a significant step forward in the understanding of D-region

echoes came about with the detection of backscattered echoes at 40-50MHz

from the D-region. TFlock and Balsley (1967) reported on such echoes

from 75 to 80km at Jicamarca near Lima, Peru (12°S, 77°W), although they
mention that Bowles had detected such echoes as early as 1958 in Illinois,
U.S.A.. Flock and Balsley then concluded that the echoes they observed
must be due to turbulence, and that the scattering regions were less than
a few hundred metres thick vertically. If a step in ionization caused

the scatter, as had been suggested for HF work below 80km, the step would
have to be less than on quarter of a wavelength thick; or less than 2

or 3 metres! (This arises because the refractive index step would,

upon Fourier decomposition, have to contain a significant contribution
from Bragg scales around:%'metre, A being the probing wavelength in metres ;
eg. Atlas, 1965; also see later in this thesis). Admittedly, turbulence
would also have to contain such scales, but it is easier to envisage a

random arrangement of scatterers of around 2-3m scale produced as part
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of a turbulent process, than a well defined step less than 2-3m thick
maintaining itself for a few minutes (also see Section 1l.4.le;
t ~ h%/K).

Héwever, investigations using VHF were rare up to about 1974-1976.
In 1974, Woodman and Guillan published a paper concerning VHF observations
of mesospheric (and stratospheric) scatterers (also using the Jicamarca
array) and this preceded a great increase in VHF observations of the
Mesosphere, Stratosphere and Troposphere. Perhaps the main reason for
this increase was the widespread introduction of both amplitude and
phase (ie. the complex signal) measurements. This allowed coherent
integration of the signal, and hence produced significant improvements
in the signal to noise ratio. However, useful coherent integration
requires that the integration length be less than one quarter of the
smallest fading cycle, and hence higher pulse repetition frequencies and
data acquisition rates were necessary. The advent of on-line mini-
computers made this high data acquisition rate possible. By recording
amplitude and phase, Doppler measurements of wind speeds also became
possible.

Woodman and Guillen (1974) interpreted the scatter they saw as due
to turbulence, just as Flock and Balsley before them. Under this
assumption, they estimated the scattering regions to be less than about
100m thick. They also observed the passage of short period gravity waves
with their wind measurements. Again, 75km emerged as a height from which
strong mesospheric scatter was obtained.

Rastogi and Woodman (1974), also presented a paper on these VHF
echoes. Of significance was the fact that the paper showed detail
regarding the temporal variation of echo structure; interestingly, at

times strong bursts of power occurred, lasting a few minutes only, and
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having powers 10 to 20dB above the "normal' level. Such bursts also
seemed to be associated with slower fading. |

Cunnold (1975) followed up the above papers with a further discussion
of estimation of turbulence parameters from VHF data. A few more parameters
apart from those obtained by Woodman and Guillen were estimated. Again,
however, the paper made the assumption that the scatter was indeed due
to turbulence.

Rastogi and Bowhill (1976a, 1976b) appear to have been the next
authors to discuss VHF observations of the mesosphere - again with the
Jicamarca radar. They, too, assumed the scatter was due to turbulence.
Fading times were found to be typically less than one or two seconds; and
evidence existed that strong bursts of power often exhibited slow fading
(a similar result had been noted qualitatively by Flock and Balsley, 1967).
This result was interpreted to mean that during times of increased power,
the thicknesses of the scattering layers decreased. Rastogi and Bowhill
also found evidence for at least two scatterers contributing to their
echoes, each moving at different velocities. Similar results will be
seen later in this thesis.

However, it should perhaps be restated here that the case for
turbulent scatter from the mesosphere at VHF was far from established -
it was a hypothesis which had been adopted more because nothing else
seemed reasonable than for any other reason. The possibility of steps
in refractive index less than one or two metres in vertical extent seemed
quite unrealistic; such a step may be expected to be destroyed by turbulent
diffusion in a time t ~ LZ/K; L ~ 2m, K ~ lOzmzs—l, so t ~ .04 seconds!

In 1977, Harper and Woodman presented more VHF results of mesospheric
scatter - again with the Jicamarca array. Again, scatter came part-
icularly from around 75km. Detailed temporal analyses of the echoes
were presented, similar to those of Rastogi and Woodman (1974). Results

showed that frequent power bursts occurred, often 10-20dB above the



"normal" level, lasting around 2-5 minutes, and with a quasi-periodicity
of around 5 minutes. This periodicity, they claimed, correlated with

a 10 minute gravity wave observed in the Doppler measured winds at the
same height. Thus emerged some of the earliest direct evidence of the
possible effects of gravity waves on these D region scatterers. The
authors also found a correlation between strong echo power and slow
fading - but this did not always exist. At times, there was even an
inverse correlation, with strong powers showing quite rapid fading.
These results generally supported the findings of Rastogi and Woodman
(1974).

VHF radars sgch as that at Jicamarca are also capable of detecting
scatter from clear air in the stratosphere and trcoosphere, and in recent
years a great deal of effort has gone into examination of these echoes,
particularly since about 1976. These echoes show many similar character-
istics to the mesospheric echoes observed from around 75km; and since
temperature measurements are much easier in the lower atmosphere than
in the mesosphere, the opportunity existed for extremely detailed
investigations of the relationship of winds and temperatures to these
structures (assuming, of course, that the lower scatterers were similar
in origin and nature to the mesospheric scatterers). The results of
these investigations will not be discussed here, since detailed work
was only attempted after around 1977-1978. Gage and Balsley (1978)
gave a review of the historical development of these VHF radars with
regards to clear air scatter. This will not be discussed yet. For
the present, it is sufficient to say that further developments in VHF
studies have questioned the interpretation that these echoes are always
due to turbulence, and have suggested the possibility of specular scatter.
These things will be commented upon further at their relevant place in

the ensuing discussions.

60.
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Just as examinations of lower atmospheric echoes may be helpful in
interpreting mesospheric structures, so too may examinations of structures
in the ocean be useful. Some interesting structures have been noticed
in certain bodies of water, which may help give clues as to the nature
of mesospheric echoes. These things, too, will be left till later for
a fuller discussion.

Of course, the scatterers causing VHF reflections in the mesosphere
may not even be the same ones as those causing HF scatter - that
possibility exists, too. But the similarity in heights of VHF and HF
echoes (particularly the common occurrence of the 75km echo) would
suggest the scatt?rers are related in some way - even if they might
not be one and the same. Thus it is important to follow advances in

VHF studies during the course of this thesis.,
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CHAPTER II

TURBULENCE - A GENERAL  'DISCUSSION
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Chapter II Turbulence - A General Discussion

2.1 Warning

No pretence is made in this chapter that turbulence is a well
understood phenomenon; there would not be a reference anywhere that
would make such a claim. Scorer (1978), in his first two sections of
Chapter 7, points this out quite well. Turbulent motions are extremely
complex, and to even attempt to explain them in useful terms so that
resulté can be applied generally, requires a statistical description.

What is turbulence? Many definitions have been given. In this
thesis, it will be taken simply as any set of zero-mean motions which are
too random to desqribe by concepts such as waves, or any ordered phen-
omena. In time, it may come about that some of the motions ascribed to
turbulence can be explained more simply. As an example, many of the
atmospheric motions now known to be due to gravity waves were treated
as turbulence before Hines' 1960 paper.

As Scorer points out, there are many different types of turbulence,
and descriptions appropriate to one type may not be appropriate to
another type. This chapter will concentrate largely on atmospheric
turbulence for which no significant boundaries exist (although at very
large scales, of the order of thousands of kilometres, the Earth's surface
must be regarded as a boundary). Typical parameters used to characterize
turbulence will be discussed, and results which can be regarded as
generally applicable given. This is not to say the results are always
applicable, and on occasion exceptions will be mentioned.

One more point may be worth comment. Two of the most important
functions of turbulence are the eventual deposition of mechanical energy
into the atmosphere as heat, and increased rates of diffusion . Frocesses

which do not do these things are not turbulence. For example, a random



arrangement of gravity waves passing through a region may look like
turbulence - but particles moving under these forces will simply
oscillate. They will not diffuse apart. This. then, is not

turbulence.
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2.2 Description of Turbulence

2.2.1 The Energy Budget

A complete discussion of turbulence is beyond the scope of this
thesis. However, turbulence probably makes an important contribution
to radio wave scattering in the ionosphere. It 1s thus important that
some insight into turbulence be gained. 1In this chapter, a brief
review of some of the important concepts of turbulence will be given,
and also a collection of relevant formulae relating eddy sizes, life-
times, velocities and so forth is given. For a more detailed discussion
on the theory of turbulence see, for example, Batchelor (1953);
Taéarski (1961); Pumley and Panofsky (1964); Bolgiano (1968); and
Tennekes and Lumley (1973). Villars and Weisskopf (1955) also gives a
useful introduction to some of the simpler turbulence formulae.

Turbulence is, by definition, a random set of motions. However,
its origins still lie in the Navier-Stokes equations (equations C.6a,
C.6b). Batchelor 1953), develops his discussion from these equations,
as does Bolgiano (@968). The full development will not be given here,
but some of the results will be quoted.

The Navier-Stokes equations are often re-arranged to give an equation
in terms of energies (eg, Bolgiano, 1968; Villars and Weiskopf, 1955).
Dutton and Panofsky (1970) give a particularly simple form of this
energy-budget equation, which is quite good for descriptive purposes.

The equation

dE _ _
(2.2.1.1a) e M+B-e+T

represents this energy budget.
E represents the turbulent kinetic energy, and t is time.

M represents the mechanical generation of turbulence, and is always
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positive (ie, an energy source).

B represents the buoyancy term. It may be either positive (energy source)
or negative (energy sink), depending on the atmospheric conditions. B

is positive if the rate of fall of temperature, i%%; is more rapid than
the adiabatic lapse rate. Otherwise, B tends to damp out the turbulence.
¢ is the rate of loss of turbulent energy through viscous dissipation,

and is always positive. Hence (-€) represents an energy sink.

The tefm T represents transport of energy (advection) into or out of the
region,

The fluctuations in density, velocity, or whatever, induced by the
turbulence, can be regarded as the sum of a great variety of plane
sinusoidal variations of varying orientations and "wavelengths" (scales)
(Wavelength here refers simply to the distance between successive peaks
in the sinusoidal fluctuations. These sinusoidal fluctuations should not
be confused with propagating waves however; they are simply spatial
oscillations). The turbulence can then be expressed as a power spectrum
in these wavelengths or scales. (That is, the turbulence can be Fourier
analysed.)

Let us assign each scale a wavenumber k, parallel to the wave normal
and of magnitude Zﬂ; A being the "wavelength''. Then with regards to these
wave numbers k, a more sophisticated form of the energy balance equation
(2.2.1.1a) can be derived. Such an equation can be found in Weinstock

(1978), and takes the form

F
2.2.1.1p) 2B L 2D g0 200

_ 2
- > + B(k) - 6VK2E(k),

where

(i) E(k) is the spectral kinetic energy density,

(i) 9Q(k)

87 represents the vertical transfer of energy in physical space

caused by the turbulence itself (z is the vertical coordinate),
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(iii) S(k) is the spectrum of the Reynold's stress, = -<uw>, where u
is the horizontal velocity fluctuation in the direction of the mean flow

Uy, w is the vertical velocity fluctuation, and < > denotes averaging,
oU

oz

so that S(k) represents the energy transferred from the mean flow to
the turbulence by the Reynold's stress,

(iv) €(k) represents the nett rate of spectral energy transfer from
wavenumbers smaller than k to wavenumbers larger than Kk,

(v) Bkk) is the spectrum of the buocyancy flux, §§<wp'>, where p' is the

0

density fluctuation, p is the average density at height z, and g is the
acceleration due to gravity, and
(vi) 2vk2E(k) is,the rate of energy dissipation by the molecular viscosity v.

For a feeling for the derivation of this energy budget equation from
the Navier-Stokes equation see, for example, Bolgiano (1968).

Weinstock then proceeds to calculate the form of B(k), but the
purpose of presenting this equation here is rather to give a further idea
of the important processes involved in turbulence.

It is worth commenting here that, over some of the spectral range
(and in fact an important range), e(k) is approximately a constant, e,
and is generally regarded as the rate at which energy is dissipated to the
atmosphere. Why does this follow?

Ene;gy is generally generated in large '‘eddies'" (associated with
small k values) - perhaps by rotation started by wind shear or temperature
processes - and then these large scale motions generate smaller scale
motions inside; and so on. The larger eddies, being affected significantly
by gravity, are anisotropic - longish and flattish. At large k values,
the eddies become more isotropic. (Some idea of the transition scale

between isotropic and anisotropic eddies has been given in Section 1.3.3,

Chapter I; generally it corresponds to values of the order of tens and



Fig. 2.1la Crude illustration of the development of turbulent eddies.
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hundreds of metres to a few kilometres vertical extent.) The process is
illustrated crudely in Fig. 2.la, with a more accurate example in Fig.
2.1b. (The Ri parameter is a parameter describing when turbulence is
likely. .Turbulence may occur if Ri < 0.25. Ri’ and Fig. 2.1b, will be
discussed in more detail shortly.) Eventually very small scales are
reached, and these cannot be maintained since the shears associated with
them become so large that viscosity damps them out. Thus the energy of
these smaller eddies is eventually dissipated into heat by viscous
processes. Then since turbulent energy is generated at large scales,

and moves down to smaller scales, it would seem reasonable that the rate
of energy transfe; between the scales is roughly the same at all scales.
The final energy transfer from the smallest scales to heat is also roughly
equal to this value. Thus the parameter e(k) is approximately independent
of k, and is called the energy dissipation rate. -

The above description is not exact. At largish scales, some of the
energy can be dissipated by buoyancy forces (eg, radiation of energy as
gravity waves). The term (vi) in (2.2.1.1b) also acts; although this
term is quite small for all but the smallest scales (smallest eddies).
However, there is quite a range of the turbulent spectrum where the above
description is valid, and energy just propagates down the scales. This
region is called the "inertial range" of turbulence. Considerations of

such a picture lead to the formula describing the energy spectrum; viz -

(2.2,1.2) E(k) = 0L€2/3k—5/3

where E(k)dk is the kinetic energy present in scales of wavenumber k
to k + dk. This result was originally due to Kolmogoroff (eg, Batchelor,
1953). Tt applies mainly to steady-state turbulence, where the sources

and sinks are all operative. It does not effectively cover decaying
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turbulence, where the sources are no longer active; although it might
seem reasonable that it will apply for some time after removal of the
source at the larger wavenumbers (smaller scales). Nor does it cover
"fossil" turbulence (irregularities which exist in the absence of a
generating source (Van Zandt et 'al., 1978)). In fact, many of the
formulae in thislthesis refer primarily to steady-state turbulence.
Different authors use different values of the parameter a.

Rastogi and Bowhill (1976a, b), give o = 1.586. Weinstock (1978) uses

o = 1.4, Gage and Balsley (1978) give 2.2.1.2 in component form

E, (k) = aisz/3k_5/3,

¢

i referring to orthogonal directions. (Ei(k)dki is the energy associated
with scales aligned in the direction corresponding to 1, with wavenumber

ki to ki + dki). For wavenumbers parallel to the mean flow (longitudinal
component), Gage and Balsley give oy v 0.5; and for the transverse components,
a; ~ 0.65. Caughey et al. (1978), also give a; ~ 0.5 + .02 for the

longitudinal component.



70.

2.2,2 Generation of Turbulence

Before discussing further the form of the energy spectrum of
turbulence, it might be fruitful to examine just when turbulence is most
likely to occur. Refer again to equation (2.2.1.1a):. (The following
discussion follows Dutton and Panofsky, 1970). Turbulence is likely to
occur if the energy sources can overcome the bouyancy effects trying

to prevent turbulence. Then the flux Richardson parameter,
(2.2.2.1) R, = =

is introduced. Rf measures the ratio of the rate of withdrawal of energy

by the stable temperature stratification to the rate of production of

energy by a wind shear. Equation (2.2.1.la) becomes

dE _
(2.2.2.2) T =MQ-R) -

If B is positive (source), Rf is negative, and both the wind shear
and temperature structure favour turbulence. Turbulence is then very

intense. If Rf is large and positive, energy is withdrawn so rapidly

by the buoyancy term B that turbulence does not develop. But if Rf
is small, and positive, the mechanical source may be able to overcome

B, and maintain turbulence. There is a constant Rc’ such that if

Rf < Rc’ turbulence can develop,

and if Rf > Rc’ turbulence is unlikely to develop.

Then if RC can be determined, and Rf measured, any atmosphere can be

classified as turbulent or non turbulent. Unfortunately, RC cannot be
determined and nor can Rf be measured. However, there is a parameter

called the gradient Richardson number,

(2.2.2.3) Ry = 50
=



where w. is the Brunt-Vaisala frequency of the atmosphere, given by

B
2 91lnb . .
we = g—=—— , 6 being the potential temperature,
B 9z
c
1% _ 129 =2
g(p az .Yp az), Where Y Cv k]
- 8T
T(az + rg).

Sy

2 for a dry adiabatic

Here, Fg is the dry adiabatic lapse rate, =
atmosphere, = éi- (¢ 1K/100m at ground level (see Houghton, 1977, section
3.2 for the adiZbatic lapse rate for a wet atmosphere, although this is
only really relevant in the troposphere)). In the above formulae, p

is the atmospheric density, p the pressure, Cp and Cv are the specific

heats at constant pressure and volume respectively, and T is the temp-

2

erature. Note wB

can be negative. This corresponds to a temperature

gradient igg > Fg’ which is a very unstable atmosphere.

-

as a function of height, z. The formula (2.2.2.3) assumes a horizonatally

2 2
{%%} + {%EJ , where U = (u, v, 0) is the horizontal velocity

stratified atmosphere.

Although Rijis not the same as Rf, it is at least a parameter which
can be measured. Ri and Rf are proportional if the ability of the
turbulence to transport heat vertically i1s proportional to its ability
to transport momentum. This is often assumed to be the case, although
need not be (Dutton and Panofsky, 1970). Experiments suggest turbulence

may form whenever

(2.2.2.4) R; 5 0.25

(eg., Woods, 1969). Theoretical results (eg., the Miles-Howard theorem

(see Miles, 1961; Howard, 1961; Hines, 1971)) also suggest turbulence



occurs when Ri is less than about 0.25.

This is the most commonly used criterion for turbulence in the
atmosphere. However, it is not general. TFor example, for flow in
a pipe, the Richardson's number is not applicable - turbulence is,
rather, likely to develop when a parameter known as Reynold's number
gets larger than some critical value. Reynold's number is given by

(eg., Haltiner and Martin, 1957, equation 14.7)

d being the pipe diameter, U the fluid velocity, and v the kinematic

viscosity. At times, a similar formula has been used as a criterion

)

for turbulence in the atmosphere, with d being a "typical scale", eg.,
Blamont and Barat (1967). This is not to say both views are applicable
- different authors give different reasons for using each. Generally,
the Ri approach is used. (It is interesting that Villars and Weisokopf
(1955), use an Re type approach to derive some of the basic equations

of turbulence)

2
What does Ri actually represent? If {gEJ is large, Ri becomes
z

small. Physically, this simply says large wind shears cause turbulence -

2

B can be negative or positive.

just as has already been seen. The term w

When it is positive, w, is the angular frequency of oscillation of an

B

2

B is negative if

adiabatic parcel of air in the atmosphere. The term w

f%§-> I' ; that is, the atmospheric temperature falls faster than the
adiabatic lapse rate, and a parcel of air rising adiabatically would
continue to rise - the atmosphere is said to be (hydro-) statically

unstable, and in this case the temperature profile also promotes turb-

ulence. Then Ri < 0, and turbulence is always possible. The condition

0 < Ri < 0.25 is called dynamic instability,

and Ri < 0 is called hydrostatic instability.
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Turbulence can occur even without wind shear if Ri < 0.

However, Dutton and Panofsky point out an interesting fact with
regards to atmospheric fronts in the troposphere. Near these fronts,
theory suggests that the wind shear is proportional to w%, so (2.2.2.3)

implies

1
«
Ri ;}23
in these cases. That is to say, turbulence is most likely in regions
of hydrostatic stability, at least when related to boundary layer (first
km of the atmosphere) fronts; only hydrostatic stability produces large
wind shears in this case.

So hopefully.the above survey has given an idea of the situations
in which atmospheric turbulence occurs. Fig. 2.1b shows the development
of one type of turbulence - the Kelvin-Helmholtz process. This is
applicable at the boundary of two fluids, where waves develop and then
break down into turbulence (also see Dutton and Panofsky, 1970; Thorpe,
1979).

It may also be worth mentioning that these formulae, such as that
for Ri’ are only valid for a horizontally stratified atmosphere. (Hines
(1971), shows how Ri can be generalized).

When determining Ri experimentally, resolution can be an important
factor. For example, Van Zandt et al. (1978), use a probabilistic type
of approach in the case where their resolution of temperature and wind
height profiles is worse than the true fine scale fluctuations which
exist. Coarse resolution can give the mean wind shear, but may miss

fine scale fluctuations and hence give estimates of Ri which are too

large.
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Here,

E(k)dk is the energy contained in scales with wavenumbers

between k and k + dk.

text. Here, kv 0.

the rate of transfer

The various ranges are discussed in the
l69kn kc 0.738k The term € represents

of energy between scales.

Lifetimes can also be associated with these scales (eg., Hines,

1977b). Since k 21

ot

d (equation 2.2.3.2b) for a given

energy dissipation rate €40 time scales can be assigned to k

k

For example, Hines claims that the inertial range in the

atmosphere corresponds to lifetimes between about lOs and 150s.

However, see section

2.2,3 for more on this.
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2.2.3 The Spectrum and Important Turbulence Pdrameters

2.2,3a The Spectrum

Thus far, it has been seen how wavenumbers are used to represent the
turbulence scales, and some discussion of the conditions for which
turbulence occurs has been presented. Now, let us take a more detailed
look at the energy spectrum of turbulence. Fig. 2.2 shows the approximate
form of the spectrum, The derivations of the various regions will not
be discussed. Rastogi and Bowhill (1976a, b) can be gxamined for
references regarding the inertial and viscous ranges., Batchelor (1953),
also discusses the regimes. Weinstock (1978) discusses the buoyancy
range, although several theories have evolved for this range (eg., see
Bolgiano, 1968).

As we have seen, energy is generated at small k values. It then
passes down through to the smaller scales, until eventually the energy
is dissipated at k values too high to be maintained against the effects
of viscosity. This final region is known as the viscous region. Above
kc (see Fig. 2.2) the energy density falls rapidly as a function of k,
with a spectrum something like that shown in Fig. 2.2. The form of this
spectrum has been discussed by Rastogi and Bowhill (1976b) - there has been
some debate as to its form. The term kn is known as the wavenumber

corresponding to the Kolmogoroff microscale, and it can be shown that
1
(2.2.3.0) kn = (e/vs)f radians per metre.

This will be derived later. For the present, we may regard it simply
as a "cutoff" wavenumber; wavenumbers of higher k do not exist strongly.

It is worth pointing out here that sometimes the reciprocal wave-
number k ! is called the scale. It is easy to confuse this with the
"wavelength" associated with this scale, 2n/k, since sometimes 'scale"

is used to refer to this '"wavelength''. When referring to scale, it is
g



often useful to express the units (eg., metres, or metres rad_l, whichever
is relevant). Workers in the field of turbulence tend to ignore factors
of the order of 2m, and freely mix these different forms of scale. This
can complicate matters for experimentalists. For example, some authors

call

n = kn_1 the Kolmogoroff microscale,

and others call n = Zwkn—l the microscale! It is therefore best to
express the units whenever dealing with scales, eg., n = kn;i m rad_l,
or 2ﬂkn_1m/<2ﬂc). (Sometimes just called metres). Theoreticians (eg.,
Batchelor, 1953) tend to use scale in m rad !,

At k wvalues ;uch greater than kc’ the exponential in the viscous
spectrum dominates. At k values between the outer scale of the inertial

range, k,, and the inner scale (~ kv) the energy spectrum is inertial,

*

with the form

e2/3k—5/3

E(k) = , as already has been briefly discussed.

In the region between kv and kc, called the Tchen range, the spectrum
is represented by a transition between the viscous and inertial formulae.
The region where buoyancy effects are most dominant is still far
from understood., Bolgiano (1968) discussed some of the possible theories
(eg., Bolgiano, Lumley and Shur, Phillips) relevant to this range.
Because it is later, and seems to have been developed in some detail, the
theory of Weinstock (1978) is adopted in this discussion. This is not
to say it is the final solution.
According to Weinstock, an upper limit to this buoyancy range is

given by kB’ where

W
B

1 = /0.8 —
(2.2.3.%) kB 0.8 ,

75.



and Vo is the RMS fluctuating velocity in the combined buoyancy and
inertial ranges along a given direction. For v, 0.2ms ! (weak
turbulence) to 1.5ms !, and w% ~ 4,6 x 107482 rad? (typical strato-

spheric value), kB corresponds to scales LB ~ 67 to 500 metres.

In this buoyancy range, energy does not only propagate down the
scales. Some energy is lost by the generation of incoherent gravity
waves, and is thus propagated away. In the inertial range, such waves
could also be generated, but are heavily damped. This loss of energy
by gravity wave production in the buoyancy part of the spectrum is
partly why Weinstock's buoyancy spectrum for the buoyancy range, B(k)
(see equation 2,2,1.1b), differs from that of Lumley and Shur, who found

n el/3kf7/3 depeédence for the buoyancy spectrum (see Weinstock's 1978
paper). Weinstock found a more complex relation. He also derived a
form for the energy spectrum E(k) in the buoyancy range. Two main
ranges appeared to exist in the general case, although both need not
always be present in any particular case of turbulence. The expression

for E(k) in the so-called "first buoyancy range' is a little complicated,

but is expressed in the form

R « e2/35/3 ()

so it "looks like" other spectral turbulence forms. In fact

-n (k)
[JSJ ! =1+ Ji-. a3/2 . a. ZE-. C[liJ[l - ;LJ

kB 12 Vo

Here, o ~ 1.4 according to Weinstock, and ~ 1.586 according to Rastogi
and Bowhill @976b). The parameter a is the ratio of vertical energy
&ensity compared to the horizontal energy density at any wavenumber k.
In the inertial range, a ~ 1l; in the buoyancy range, the turbulence
becomes anisotropic, and a ~ 0.5. The velocity v as discussed, is the

RMS velocity in the buoyancy and inertial ranges combined (k 2 km); vy
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is the RMS velocity in the bouyancy range only. Generally,

1< ;2-5 3 (see Weinstock),
"0
Re is the flux Richardson number. C(ﬁL) is a fairly complex form, and
B .

will not be given.
However, for all its complexity, Weinstock considers only 4 cases
to be important, depending on
v

o m
6 =2a -1,
Yo Re

These are:
(a) 0<68< 1.4
0LEZ/Bk—S/B(__}c__)—A

kp

Then E(k) = s 0 < A < 0.4,

Thus E(k) varies only a little faster than k_5/3.

(b) =-0.7 s 8§ < 0.

2/3k—5/3 k \+A

Then E(k) * ae [ Cond) 0 < A< 0.4.
k
B
] ] -5/3
Thus E(k) varies a little more slowly than k S
4l v
(c) VE.: 3, Re >> 1. Q&E ¥ 3 implies strong turbulence; Rf >> 1 implies
0 -0

static stability).

Then E(k) * a82/3k—5/3(£19—0'8,
B

This means a rapid variation of E(k), and corresponds to a sink of

turbulence, or decaying turbulence.

v

(d) 6§ < -1.0 (large vm-(strqng turbulence) and Rf < 1 (hydrostatic
0

instability)).

€2/3k—5/3(i(£_)1.0 .

B

Then E(k) = o
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This is a very slow variation of E(k), and corresponds to a strong
source of turbulence.

The "second buoyancy range' may not exist - it depends on whether

k

F;#is greater or less than km’ km being the minimum wavenumber for
-k
which Weinstock's theory holds. If i%-> km, the second range exists.

In this second range, the dissipation rate is not €; it is greater than
e if Rf > 1 (some energy is also lost by buoyancy effects, as the
atmosphere is statically stable and thus damps some of the motion; thus
the rate at which energy is propagated down the scales gradually
decreases as it moves down, until the inertial range is -reached, where the
dissipation rate is e), and less than e if Rf < 1.

The transition between inertial and buoyancy ranges is rather
ill-defined, but Weinstock feels wavelengths greater than a hundred
or so metres must be affected by gravity.

5/3

Interestingly, this theory still envisages a k- law at large
wavelengths (eg., second buoyancy range), and does not contradict
results that even at very large scales, where eddies are decidedly
anisotropic - and even nearly two-dimensional (horizontal scales of

5/3

tens of kilometres and mbre) -ak law has been observed (eg.,
Elford and Roper, 1967; Gage, 1979). Of course, this is not to say
that the conditions assumed in deriving the inertial range spectrum are
still valid at these scales. Perhaps they are. But just because the
law fits the theory does not always imply that the theory is relevant.
With regards to the very large scales (small k), it has already
been mentioned that the eddies tend to be anisotropic. Some idea of the
scales at which anisotropy becomes significant is given in Section 1.3.3,

Chapter I. Generally, in the upper atmosphere eddies with vertical

scales greater than 1 to 2km are anisotropic. But the anisotropic region
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covers a large range — from mesoscale (horizontal scales of 10's to
100's of km) to synoptic scales (around 1000 km) to macroscales (2-3000 km
horizontal extent). The laws governing these regions form a new problem
again.
According to Gage (1979) there are two main source scales for
turbulence -~ (This is for the troposphere - but it is mentioned here since

similar ideas (e.g. reverse-cascading) may be relevant elsewhere)

(1) small scale - perhaps a few km at most in vertical extent; for
example wind shears, thunderstorms, breaking waves; and

(11) ' large scale sources, generating eddies of macroscale size - for
example, baroclinic  instability represents one such source.

Associated with each source is a spectrum like Fig. 2.2. But when
both sets of sources occur in the same atmosphere, as they do, a mixing
of the spectra occurs. In fact, Gage also mentioned the concept of
reverse—cascading, whereby eddies act somewhat coherently to generate
larger eddies (in contrast with the earlier scheme whereby large eddies
generated smaller ones). Gage then proposed laws for the various regimes,
with a scheme something like that described in Fig. 2.3. Both cascading
and reverse cascading occur. Gage also claimed that the k 3 spectrum

A, and the k_5/3

spectrum B (Fig. 2.3) are incompatible, implying a sink
between the two. Phenomena associated with the decaying stages of
cyclone life (cyclones are, after all, just large eddies) were offered
as this sink.

It is also worth noting that exceptions occur'to the laws in this
scheme. Justus (1969) has presented a theory for the spectrum of shear
dependent turbulence. The buoyancy range, which does not always have

a k_S/3

law, has been mentioned. Bolgiano (1968) has also suggested
a k3_3lawfor weak turbulence in strong wind shears (k3 being the vertical
wavenumber). In such cases, the cut off wavenumber is not kn, but is

given by a form depending on the wind shear strength. Experiment and
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The region called ''microscale' here is the
main region studied in this thesis; and
microscale' will generally refer to scales in
the inertial range and close to Kk
rather than the range indicated here.
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theory do not always agree in investigations of turbulence, either
(eg., Stewart, 1979). |
However, it is primarily the region called "microscale" in Fig. 2.3

which will be dealt with in this thesis; and the nomenclature "micro-
scale" will generally refer to scales of the order of the Kolmogoroff
microscale. Scales in the inertial and buoyancy ranges will not be
considered as '"microscale'. The largest scales dealt with will be of
the order of the scale of the generating mechanisms - for example, a
wind shear across a 2km vertical extent can generate eddies no larger

than 2km in depth.

2,.2.3b Eddy Transport

In this section, we want to discuss the effective viscosity,
thermal conduction and diffusion coefficient for a turbulent fluid.
These quantities depend upon the transport of momentum, thermal energy,
and gas molecules respectively.

As a starting point, however, consider firstly a non-turbulent
viscous fluid. Consider the conduction of heat through such a fluid.
The rate of flow of heat H through a cross-section A of the fluid is

given by (eg., Tabor, 1970, section 4.5.2)

dH _ dT
B - —n e

K being a constant called the thermal conductivity.
Likewise, the rate of flow of momentum transverse to the mean motion

(Tabor, 1970, section 4.5.1)

F = %%-= UAQE, u being the horizontal velocity.

(F is in fact also the drag force which would be exerted on a plate

parallel to the fluid, and bounding the fluid eg., see Appendix C)



Here p is called the dynamic viscosity (also see Appendix C).
In a similar way, the rate of diffusion of density (molecules)

is given by

dc - Dhg

n being the number density, and D the self-diffusion coefficient (Tabor,
1970, section 4.5.3). (The case of one gas diffusing into another is
a slightly more complicated situation eg., Tabor, 1970)

Then Tabor's book shows that

K, = §-nclcv,

B o= %-meE
1 —

D = 3 Ac

where n is the number density of molecules, ¢ the rms molecular speed,
A the mean free path of the molecules, cy the specific heat at constant
volume per molecule, and m the mass of a molecule. Using nm = p, the

mass density, these can be rewritten as

c
N _ v _ e ]
Kn = 3 pAcC, C = m specific heat per unit mass
at constant volume
u=%p>\z
D = %;XE = %— (The term'%—is often denoted v, and is

called the kinematic viscosity eg., see
Appendix C).

Interestingly, p can also be written
L
= (2/302) . (mkT/w3)7,

o being the molecular radius (eg., Starling and Woodall, 1950, p. 215).
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Thus p also depends on the temperature, and the molecular species
(through o).

These rate of transport equations for heat, momentum and molecular
number density can also be used to obtain nett diffusion equations.
In the following formulae, horizontal flow and horizontal stratification
are assumed, for simplicity.

For example,

K 9l 2 .
dT _ “m 9°T _ 92T . . 2
dt ~ pC 0zZ “tm 3227 (in general, dt KtmV T

(C being the specific heat per unit mass at constant volume.)
describes temperature transport (Tabor, 1970, section 10.3.3).

In the real atmosphere, T would probably be replaced by potential

: d . . R , .
temperature. Notice qc 1s differentiation following the motion

e 2D 3y
ie. = 5t + v, v
Kim is called the thermal diffusivity (or temperature conductivity),

as distinct from K2 the thermal conductivity.

Likewise,

£ =_gg - 32u
— t Bz2

is the body force per unit mass acting in a fluid.when no horizontal
pressure gradients or external forces such as gravity act.

This can also be written

2
%%—= v%;g (z being the vertical coordinate; remember horizontal

stratification is being assumed)
which describes the transfer of momentum. Here v is the kinematic
viscosity.
This equation is also used to obtain a more complete equation of hori-

zontal motion, eg., see Haltiner and Martin, 1957, pp. 214-216.



%% = - %—%§-+ fv + v%%%— (In this case, p is allowed to vary
with x)

where P is the density, p = pressure, u is the velocity in the x direction,

v is the velocity in the y direction, and £ is the Coriolis parameter =

2Qsiny, ¥ being the latitude and Q the rotation rate of the Earth

(radian sec ). (It should be pointed out the equation of motion is

discussed in its general form in Appendix C)

The full vector equation of motion is (omitting in this case the Coriolis

force),

©
=<

v=-uW x (Vxv) -Vp

eg., Villars and Weisskopf (1955),

v being the velocity vector. It is interesting to examine this equation

for € = %pg?. Then
?Ti* V.(ge) = -u(¥ x v)2 - (v.¥p) + ul.(¥x x (¥ x ¥))

(eg., Villars and Weisskopf, 1955).
If transport of € is ignored (V.ve), only changes in time of € are
examined, and pressure fluctuations (VYp) and gradients of velocity are

ignored, then

83.

E.: _u(v XV)2
t -~
. 2
or a<gt> = -v(V x y)2 (v x y)z is by definition (V x v).(V x v)).

For "order of magnitude" calculations of the time rate of change of a

scalar 6 due to diffusion, the equation

3 62>
(2.2.3.9) 282 - —v|wef?

can be extremely useful. An equation like this will be used in the next

section .
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Let us now return to the nett diffusion equations. The nett diffusion

of particles is governed by

..@.:Dazn .
dt 9z2

(If chemical effects are also considered, and n refers to one part-

icular gas species,

dn _ 3%n .
Tl D 72 kn, k being a constant,

eg. , Rées et al. (1972); but generally kn can be ignored, especially
when n is the total number density.)

Thus for diffusion of temperature, momentum and density, the relevant
constants relating the rate of diffusion to the temperature/momentum/

density height profile are

\ 1l = : 5
Kem = 3 Ac thermal diffusivity,
(2.2.3.%9 | v = %-AE- kinematic viscosity,
Jand D =-% Ac self~-diffusion coefficient.

A is the mean free path, and c the mean molecular speed.
Thus in principle all these diffusion rates are equivalent. Tabor (1970)

has also pointed this out in equation 4.61;

K c
GJE).C =1 (C here = -~ in Tabor)
U M
K
or Jtm _ .
v

Notice also that because of these equalities, (2.2.3.%) is also good for
order of magnitude estimates when 6 is any of RMS velocity, demsity,
temperature, or momentum. However, in reality, Kim? Y and D are not

exactly equal. Kim and v are in a constant ratio for any one gas or



liquid, but the ratio varies between 1.4 and 2.5 (Tabor, 1970, p. 57).
The ratio E%E-is 1.73 for air, 2.31 for Helivm, and 1.45 for Carbon
Dioxide (eg., Starling and Woodall, 1950, p. 216). These actual ratios
can be derived theoretically if a more careful treatment than that of
Tabor is applied. The constant is not 1.0 because of inter-molecular
forces and other secondary effects.

Now consider turbulent transport of these properties. No longer
are the properties carried by molecules, but rather by turbulent eddies.
Thus in the equations (2.2.3.%9, A should be replaced by a typical
outer scale (or "mixing length') of the turbulence, and c by typical

eddy velocities.

l

. ., dT _ 32T
Equations like it - “em 9xZ still apply, but Kem ROV becomes an

eddy thermal diffusivity.

Thus three new turbulence parameters arise.

(1) Kt = eddy coefficient of heat conduction ~ ﬂt'vt'

Py . . . PR ~ ] 1
(ii) Km eddy viscosity coefficient Km v
(iii) K = eddy diffusion coefficient ~ Kﬂ'vﬂ'

Kt replaces « K.m replaces v, and K replaces D.

tm’®
Here, the Ki' are mixing lengths of the order of the eddy outer scales,

and vi' are the turbulent velocities associated with these scales.

Notice also

G K Gl can be crudely approximated b
dt t 922 y app y
AT AT

At Kt Y

or At = £2/K.

This is the time for turbulence to transport heat through a distance Z£.

Similar dimensional analyses are possible for density and momentum, and
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can be quite useful for gaining a physical feel for any situation.
What should be.used for ﬁt' etc.? Haltiner1and Martin (1957),

p. 245, say that for a given scalar S, with mean <S> and fluctuating

component S', £' should be chosen as the scale over which fluctuations

in S are comparable to the change in <S>.

9<S>
02

ie. s' -~ L'

This type of definition is often used to define outer scales (eg., equation
2.2.3.5a - see shortly). However, often in experimental situations,
the largest observable eddy is used for L' (eg., see Section 2.2.4).

The work above has all assumed vertical diffusion. Other components
of the various K's can be found, although the coefficients are generally
assumed to be isotropic. As in the molecular case, the various K's
are not all equal in practice; they are, however, generaﬂjof the same
order of magnitude. Curnow (1966), has suggested that the constant
relating any two lies in the range 0.8 to 1.2.

Notice that if a scalar S is considered, then the vertical diffusion

.9<S>

ol : - ' ', v - ' 1
coefficient for § is KVS ZS ve's and ES S'( 52 ) (see above)
3<8>.—-1
= qr(2eZ. '
50 Kys = ')
9<S>
1y, 1s = _ Al
or SVp? S 23z

This is the same result as that achieved by Haltiner and Martin (1957)

in their Chapter 15, and gives an exact formula for the determination

0<8>
0z

of KVS’ (the minus sign expresses the fact that if is positive,
then transport is downward).
Diffusion coefficients can be considered more deeply (eg., Curnow,

1966; Booker and Cohen, 1956), but the above discussion is adequate for

most purposes.
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Many references refer to just a single K. This usually means the
eddy diffusivity, but at times it will be taken to represent all of
Km’ Kt and K, since the parameters are fairly similar. At other times,
distinctions will be made between the various K's. According to
Stewart (1969), thermal and density diffusivities are closely related,

and K = Kt' Teitelbaum and Blamont (1977) also treat K and Kt as equal.,

2.2.3c Equations Involving Important Turbulence Parameters

An introduction to some important equations of turbulence is now
necessary. Simple dimensional-type derivations will be discussed first;
some insight into a more detailed theory will be given later.

Various references exist for this purpose, but one introductory
paper which gives some physical insight into these equations is Villars
and Weisskopf (1955), particularly Sections III and IV. The paper
derives many of the formulae discussed below in a very simple manner.

The discussion below is, however, based on that of Cunnold (1975, section
3), who followed Tatarski (1961).
Some mention has already been made of the possible confusion of

scales when dealing with turbulence. Length scales are sometimes taken

ll
E’

to have units of length per radian, (eg., metres per radian), £ =
and sometimes taken as length per 2m radians, (simply called length)
L = %gn Likewise, time scales have an associated ambiguity; sometimes
a time scale of time per radian is used, and sometimes time per 27©
(simply‘denoted time). For the present, we will simply regard £ as
a length scale, and T as a time scale. The confusion as to the factors
of 27 will be discussed as the derivations progress.
Consider a tracer of turbulence, 6. This may be perhaps RMS velocity,

or refractive index, or one of many other possible parameters. (Some

care is necessary before deciding if a parameter is an effective tracer.



Temperature 1s not a good tracer, but potential temperature is a good
one, for example. Refractive index is not a good tracer. The
description of a tracer will be discussed more in the "Radar section"
of this chapter (Section 2.4)) Then for all scales £ the rate of
generation of mean square tracer fluctuations is

a<le,|?> <|o,|%>

ot T£

Tp being a typical lifetime associated with these scales. In the inertial
range of turbulence, the rate of generation of fluctuations is equal to
the rate at which the smallest scale foluctuatio#s of silze around n
(n = Kolmogoroff microscale) are lost due to viscous effects, = €gs» SaY.
That is, it is assumed large scale eddles generate smaller ones until
those smaller ones are damped out by turbulence - and the rate of
generation of all scales is assumed the same. For example, 1f
L

GE = (v£2/2)2 (o the RMS velocity), <|0£lz>/T = %(VKZ/TK) is the time
rate of generation of kinetic energy per unit mass, and €y = €4 1s the
energy loss rate. The energy is generated at larger scales and propagates
down through the smaller scales until the scales become so small, and
associated shears so large, that viscous forces damp out the motions.
Thus within the inertial range kinetic energy is not created or destroyed -
it simply propagates down the scales.

So, <|e£|2>/r£= €q

But the loss rate at the Kolmogoroff microscale is e, ~ vlvenlz. (This

6

type of equation was discussed in the previous section, eg., equation

(2.2.3.3/4); v is the kinematic viscosity.) Hence
2 = = 2
<|6£| > Tp = €4 leOnl

But at the outer scale of the Inertial regiomn, L,

5<0 2> (~<|6L|2>

ot TL

. al2
) Ke|V6|

(equation 2.2.3.%— again, but this time looking at large scales, so v is
replaced by Ke, K6 being the turbulent diffusion coefficient appropriate to 6.

Henceforth, this will simply be denoted K). 8 1s the mean (time averaged)

88.



89.

<|e,|2>
value of 6 at height z. But ——;g;——-is constant, = €4, for all £, and
£ S
therefore this is valid for the outer scales L, so
2
< .
0
L. |

and hence KGIVEWZ v Ege Assume only a vertical gradient of 9.

Thus we have

de.
(2.2.3.1) <|e£|2>/1 ~ g, - vlvenlz " K3,

o
A velocity

(2.2.3.2a) vy - K/Tz

can also be associated with scales £, where Ve is the typical velocity
associated with these scales. For example, an eddy of dimension £

(eg., its half-density width may be £) would have a velocity around Vo
and a lifetime around Tpe To be correct so far as units are concerned,
if £ is the "width'" of the eddy in metres, and T the lifetime in seconds,

il

Vo should be in m sec !. However, often £ may be taken to be inm rad 1,

T in seconds, and A/ in ms 1, which is incorrect in so far as units
1.71

are concerned - Ve should be in ms lr For example, the equation

1
(2.2.3.0) n = (lé94; (= Kolmogoroff microscale)

is incorrect with regard to units; for v in ﬁzs‘l, e in m%s..3, n should have
units of metres. But n, as evaluated by this formula, is always taken

to be in metres per radian (Batchelor, 1953; Tatarski, 1961; Rees et al.,
1972; for example). It is probably best to bear in mind that most of the
equations in here are proportionalities at best, Unfortunately, when

they are used in interpreting experiments, they are often taken as

equalities.
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In the viscous range of turbulence, 2.2,3.2a is not valid; rather,
(2.2.3.2b) T, (VAT = v 2

This result is quoted without proof - eg., see Cunnold (1975,
Section 4), or Rastogi and Bowhill (1976b). However, as mentioned by
Rastogi and Bowhill, this equation comes from the Heisenberg form of
the viscous part of the energy spectrum, and this form has been questioned.
(The form of the viscous spectrum in Fig. 2.2 is not the Heisenberg
form).

Now consider b, = VVEZ/Z in 2.2.3.1, and set T = K/vz.

Then
2 2
SVypc> <YV ,<> v
4 £ L 2792
] e = —_— ~
(2.2.3.1") 511y =% 5 ¥ ey vlv/vn /2]
b P
b | !
ie. Energy generated Energy Energy lost
per unit mass = loss = to viscosity .
per unit time rate

Since this is a dimensional result, the factors of 2 are dropped.

Thus

(2.2.3.3a) e Vo * (edﬁ)l/B.

Further, using 2.2.3.2a

. "1/3,2/3

(2.2.3.2¢) d .

Notice also 1f we write

» v 2} w ?
V|V 2|2y | s —
n n n

then by (2.2.3.1"),

we have €4 " THZ



But by 2.2.3.3a, Vi (edn)l/S, giving

2/3
v(e4qn) /
Ed - —T
or ed1/3 vn—4/3
or
3
(2.2.3.0) n -~ (-%—)l/4 - the Kolmogoroff microscale.
d

This formula is taken as an equality in most discussions of turbulence,

(equation 2.2.3.0, section 2.2.3a), so

2,71 2

3 - -
(2—91/4' s ', g4 in m®s 3, n is generally taken

;3 +if v is inm
€
d
to be in units of metres per radian. (Crane (1980), however, takes
n to be in units of metres, resulting in a factor of 2w difference
compared to taking n in m rad }. This should be borne in mind when
comparing Figs. 1.9a and c to Crane's diagrams)

Equation (2.2.3.3a) offers the possibility of estimating eddy
dissipation rates from measurements of Voo and £ - or for that matter,
to decide just what "~" means in (2.2.3.3a).

Lloyd et al. (1972) have derived a more exact form of 2.2.3.3a -

namely

(2.2.3.3b) vy = (Tsdﬂ)l/S, (see Lloyd et al., page 780)

/2 (®* 10.), o being

. s ; 3
where vp 1is in m/s, £ in metres and T = (4.8a)
the same constant as occurs in equation 2.2.1.2. Here £ is the size of
an eddy, and Ve its velocity. The derivation uses more sophisticated

formulae than the simple dimensional analysis above. It does rely on

the assumption that

1.
<[v(x) - u(x + g)]zizis the velocity vy associated with scale £,



but this is reasonable. A similar assumption was made by Villars and
Weisskopf (1955), equation 14.

Briggs and Vincent (1973) have shown that for radio waves of
wavelength A, scatter at vertical incidence from irregularities with

a Gaussian density variation
2 2
_(X y z
Gz * 2z * 32
«e
is a maximum when b ¥ 0.2)\; or 2b (the %—thickness) ~ 0.4, Thus if

the velocities Ve due to turbulence can be measured by Doppler techniques,

g4 can be estimated by equation 2.2.3.3b;

. 3 3
) Vf. . V'e
€a T T(0.41) T A

(2.2.3.3b")

There are several weaknesses in this derivation.

Firstly, turbulence may not produce Gaussian density variations.
An eddy acting on a background electron demsity gradient may produce
a profile of refractive index as illustrated below (though still with

an exp{-(x2 + y2)/a?} variation in the x - y plane).
|

d

/

Heig htz

Z30

AN

P,

profile

refractive index



That is,the turbulence due to smaller eddies within the eddy of interest
tend to mix up the electrons within the turbulent eddy to produce a
more constant electron density. This concept follows a suggestion by
Bolgiano (1968) to explain sharp steps in refractive index profiles.

In the case discussed here, the same mechanism is assumed operative, but
not necessarily to the same degree. The edges do not have to be step

functions. ‘The general profile (ignoring small fluctuations can be
represented by a function proportional to

k,z + exp{-(x2 + y2)/a?}. z exp{-z2/b?},

2 .
or klz + exp{-(x2 + yz)/az}(_%Tﬁé%(exp{—zz/bz})

The klz term prodgces little significant radio wave scatter, since it
extends over a large vertical height range, much greater than one wave-
length (eg., see Atlas, 1964)., Thus it is only necessary to consider
the scatter due to the second part of the function. An approach similar
to that of Briggs and Vincent (1973) will be adopted. Then the back-
scattered amplitude can be found by Fourier transforming the refractive
index function, and taking the value at a distance ZQ_l)from the origin
in reciprocal space (vl, Vo va).

The Fourier transform desired is

ﬂ3/232b exp{-4m2) 2(a?sin?6)}. (—b2/2).[Zniv3exp{—4nzk_2v32}],

with v3 = 2\ lcos®.

(This uses the fact that if f(z)-ﬁ+F(v3) where <> means Fourier transform,

df .
then azue+2w1v3F(v3))

For vertical backscatter (6 = 0), the amplitude is
a(2.A-l)ﬂ5/2.a2b3exp{—4vzx_2b2}.

If a constant value a/b is assumed (= K, say), then the backscattered
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amplitude is

o K2b%exp{-412) 2b2},

This has a maximum at the point where its derivative with respect to b

vanishes; viz.

b=/5/8 .7 1A
or b = 0.25Xx.

A measure of the eddy thickness is now necessary, and an appropriate
one would be d, where d is the distance between the points where the
function z exp{-z2/b2%} is e 1 of the maximum value it attains. The

function is a maximum at

(1 - 222/b2)exp{-22/b2} = 0, or z = b/V2.

1
~s

The value at this point is (b/V/2)e %,

Solving zoexp{—z 2/p2} = ((b//i)e_%)e_l

gives z, 1.500873b,

2z * 3b.

or d 0

Then b ® 0.25) means

d ® 0.75X.

Thus this profile produces maximum scatter when its width d is about

0.75\A. Then using £ ~ .75\ in 2.2.3.3b gives

" ~ 3
(2.2.3.3b") €4 Vﬁ./(7'5A)'

(It is interesting that if the sharp-edged vertical profile illustrated
below is assumed (but still with an exp{-(x2 + y2)/a2?} variation in

x and y) then the back-scattered amplitude at & = 0 is

o a2sin(2wd/)).



*
He@h{z
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!
ol

refractive index
As might be expected, this result can also be obtained by assuming
two plane reflectors at z, and z, and adding the two reflected waves

(and assuming the area of scattering is o a2)

»

i
(amplitude = a2[{1 + cos(2d/r.2m + m)}2 + sin?(2d/).27 + w)1°
L.
« a2(1 - cos(4md/A))*
« alsin(2wd/A)).

Strongest interference occurs at d = A4, 3A/4, 5)/4 etc.
However, if it is assumed (a/d) is a constant, = K, maximum backscatter

occurs at the maxima Of
K2d2sin(2nd/)).

The first maximum occurs at d = .364), which is quite close to the
result obtained for a Gaussian density variation (2b = 0.41). The
maxima are not A/4, 3)/4 etc., because a/d was assumed constant, so
by increasing d, the scattering area («a?) is also increased.

Likewise, a double stepped vertical profile, as illustrated below,

gives scattered amplitude

1
« a2(l + cos(4md/A))"*
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refractive index

(using the concept of adding reflected rays from z, and z, in this case),
and this has its first important maximum (for (a/d) = K) at d = 0.58)
(there is a smalllmaximum at d = .171), but it is not important). This
can be compared to d = 0.75)A for the z exp{-z2/b%} variation. So
Gaussian and stepped variations in z produce similar results - although
in the sharp edged cases, there are also other possible d).

A weakness with this whole approach is the concept of considering
"eddies" - strictly, one should consider only the power spectrum and
look at the power associated with scale £ = 1/k m rad !, The Bragg
scale of scatter for an incident wave of wavelength X metres corresponds
to a turbulent scale of A/2 metres (per 2nc) or )/ 4m metres per radian.
Thus the intensity of scatter at radio wavelength ) is proportional to
the turbulence spectral density at a scale A/4m m rad !. This is all
perfectly valid; but many authors extend the concept to equation 2.2.3.3a;
they take Vp as the velocity measured (by Doppler techniques) due to the
turbulence and then assume 2.2,3,3a is an equality. This is not nec-
essarily valid. Thus they substitute £ = A/4rm directly in that equation
(or in some cases, £ = A/2 or A), eg. Rottger et al. (1979) used

£ =1/k = A 4w, as did Cunnold (1975). Batchelor (1953, equation

turb

6.4.1) also used € = v3/£, £ in m rad 1. Manson and Meek (1980) have

considered using £ = A.
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The major questions are

(i) Can 2.2.3.3a be assumed to be an equality?

(ii) Or is 2.2.3.3b more appropriate? In this case, £ need not be

the Bragg backscatter scale.

(iii) 1In the cases where it is physically possible to observe turbulent

eddies, £ is taken as either the eddy "size" in metres, or the

eddy size divided by 2w. Which is relevant? 1Is either relevant?

Probably 2.2.3.3b is more relevant in this case.

(iv) In cases where vy is measured by Doppler radar methods, is it

appropriate to take £ = A/2 or A/4m? 1If 2.2.3.3a is an equality

for either £ = A/2 or A/4m, then it is valid for that choice of £,

)

But if 2.2.3.3a is not an equality, then this is not valid. The

constant relating e and v3/L is unknown, and in this case, it may

be better to believe 2.2.3.3b as a means of deriving this constant

and in this case, £ represents a typical eddy size.
previous discussion showing maximum backscatter for
~ J4) or ~ .75\ may be more valid.

Thus two sets of possibilities exist

(2.2.3.3c¢") (1) € 3/, &£ = A/4m, or A/2.

This is an unproven equality.

Alternatively,

(2.2.3.3¢") (i) e = v3/TL, £ * 0.75A(or may be 0.41)
or perhaps the half widths of the eddies should be used (£
(or ~ 0.2))).

I shall wirte this as
(2.2.3.3¢") €q = (T*)_1 v£3/£,

where £ is either in length units or length rad ! units.

For example, if 2.2.3.3c) (ii) is valid, and T = 10, and

Then the

eddy sizes

% 0.3751,

the eddy

97.
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“"half width" is ~ 0.375), then

= (3.75) (41) = 157 when £ = 1/k = 4)7/4m is in units of

turb

il

mrad !, vinms !, This would be my personal choice. Alternatively,

T* could be = 1.0.

There are clearly large differences in the estimated magnitudes

of €q° Suppose A = 150m, Ve = 5ms !,

Then

£, = v£3/£, L = A/4m, gives e, = 10.5W Kg ! = 905 K day ! at 90km.
€, = v£3/£, £ = )/2, gives €4 = 1.7 WKg ! ¥ 147 K day ! at 90km.
= v£3/(10.(0.2A)) gives ey = 0.4 WKg ! = 35 K day ! at 90km.
g 1= v£3/(10.(.375k))[= v£3/(T*Z), Ty = 157] gives e; = 0.2 W Kg 1

=17 K day_1 at 90km.

d
~ 8.6 K day ! at 90km.

€, = v£3/(10.(.751))[= v£3/(T*£), T, = 307] gives ¢, = 0.1 W Kg !

(The conversion to heating rate per day at 90km is calculated by a
relation in Section 1.3.3, Chapter I1).

Thus the extreme estimates differ by a factor of 100. A heating
rate of 905K/day is far too large, but then perhaps so is Ve ~ 5m s 1.

Because it is not just a dimensional derivation my personal pre-
ference is for an equation like (2.2.3.3c") but it may also be that some
incorrect assumptions were made in this derivation. But at least this
discussion has, I hope, elucidated the fact that 2.2.3.34 is only a
dimensionally derived equation, and should not be taken directly as an
equality without some more justification. Perhaps that justification

exists, but I have not seen it. Authors have even used the £ and 1

values most likely to give the final results they favour! This was
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also pointed out by Hines (1974, page 73) who further illustrated the
ambiguities in £ and T.

Unfortunately, similar problems existed in the derivation of ¢
estimates used in Fig., 1.9a. Rees et al. (1972) used eauation (2.2.3.2¢)

with £ = 7, so

.. =1/3 3 %.2/3
T €4 [(v /ed) ]

or €, ~ T
d

T was taken as the time for turbulence to begin to show in rocket releases
of luminescent vapour; which again, was a bit of a guess for t. However,

the resulting € values corresponded to a heating rate of ~ 8.6 K day ! at

90-100km, which is not unreasonable. If t had been taken as this time

divided by 2w, €, would have been ~ 340 K day !, which is perhaps un-

d
realistically large. Most estimates of €4 using turbulence parameters
strike problems like this. A more sophisticated set of equations is
necessary, or at least an evaluation of the constants relating e and v3/4L.
This could perhaps be done experimentally. For example, € could be
estimated from height-rate-of-change of gravity wave amplitudes, and Vp
in the region could be measured using a radio wavelength A. It may then
be possible to estimate B, assuming £ = B vi/e. However, there would be
problems. This assumes gravity waves are the only source of the turbulence,
and that all the energy lost by these waves goes into turbulence.
Measurements of A7 could perhaps be over-estimates, too, if radio scatter
came preferentially from regions of intemnse turbulence.

Thus far, it has been assumed the energy dissipation rate €q° which
represents the energy loss by viscous heating, is also the rate of

transfer of energy between scales., But as seen in previous discussions,

some energy can be lost to buoyancy forces, particularly in the buoyancy
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range. Thus the rate of supply of energy e, may be greater than €q°

Cunnold (1975) quoted a relation

0., ou ) L [y
(2.2.3.42) € = 0.75KG)% = 0.75 K | |===| + |57 | >

where U is the wind vector = (Ux, Uy’ 0), and where K represents the
diffusion coefficient. However, whether the constant is 0.75, or some
other number, depends on whether K represents momentum, heat or density
transfer. This will be discussed later (see 2.2.4.9¢). But the equation
does show that the (mechanical) energy supply is a function of wind
shear. It should also be borne in mind that e > €4 although often in
turbulence analysés, it is assumed € ~ €q°

It is now necessary to look in more detail at the concept of an
outer scale. Following the lead of Section 2.2.3b, an appropriate outer
scale is the scale at which turbulent fluctuations of the tracer ©

become comparable with the ambient changes due to the existence of a

vertical gradient of 6, so that the outer scale L is defined by
de '
(2.2.3.5a) 22 = <lo,|*> .

Again, confusion of scales can arise. Some authors like to regard L
as a length unit, and the associated outer scale is then L/2m metres

per radian. I shall rewrite this equation as

(2.2.3.5b) Lz(m>(%2")2 = <|62l2>,

to distinguish the L(m) defined in this equation from the outer scale L,
For example, it may be desirable that all previous £'s are expressed in
metres radian_l, but L(m) in metres; so the outer scale L m rad !

= L(m)/27. (L is assumed to have the same units as £ in equation (2.2.3.1))

Or it may be both L(m) and £ are in m rad !, so L(m) = L; and so forth,
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Tatarski (1961) defined a parameter L, which we will see is identical
to L(m), and appears to have regarded L, as length per radian (see
2.2.3.8a); and he usually regarded scales £ to be length per unit radian.

Now by 2.2.3.1, and (2.2.3.2a)

— 371
(2.2.3.1'") <lop 2> ~ ey Llvy)

(2.2.3.1 was valid for all £ in the inertial range, and hence is valid
for the outer scale L).

Then using 2.2.3.3c", with L used for £, and also using (2.2.3.1') gives

<o |2> - EeLZ/Bed_UBT*_l/B'

?

However, again this is not an equality, so we may as well drop the T,.

So

: L2/3E -1/3

(2.2.3.6a) <|eL|2> - €g )

Combining this with 2.2.3.5b gives

. L2/3€ -1/3

(2.2.3.6b) Lz(m)(%252 = <lop %>~ e a

Notice by comparison with Cunnold's (1975) equation (11), Cunnold
uses L(m) = L. Yet in equation (18) of that reference, L is taken to
be in metres; but Cunnold uses scales £ as metres rad !. There is
clearly an inconsistency here - it would again appear to be a case of
choosing the dimensions to fit a pre-desired objective. A factor of 2%
is quite significant to an experimentalist. Perhaps the crude dimensional
analyses used to derive these equations do not warrant an accuracy
better than a factor of 2w, but experimentalists have taken the equations
more precisely than this; and having done so, they must at least establish

a consistent set of formulae to make comparisons of data possible.



More equations may now be derived. By (2.2.3.1) and (2.2.3.3c")

: 2/3 -1/3
(2.2.3.7a) <lop?> ~ et ey

(similarly to 2.2.3.6a, and again dropping the T,).

Then
(2.2.3.7a")  <|o,|%> ~ 12(m y/L23, 2/3(g§)2
since £ € -2/3 ~ LZ(m )/Lz/3 (de)2 by (2.2.3.6b).

6°d
Notice if L(m) was defined equal to 27L

4/3 2/3 6.

(2.2.3.7b) <lo,p|?> - 42 )7
and if L(m) =
(2.2.3.7¢) <log|2> - 14/3p2/3 4 )2

Now, some equations relating the diffusion coefficient K to €q°
£, Vs and L may be useful.

By (2.2.3.1)
<|eg, |2> ~ K( )2

and by 2.2.3.74',

2/3, ,2/3,d6

<|eL|2> ~ (L2(m) /L") . L ( ) >

so that

—2/322/3

L2 (m)L ~ K(ﬂ/vz)

Substituting for vy by 2.2.3.3c" gives (again dropping T,, as these are

only dimensional analyses)

. +1/3

d Lz(m)L_2/3.

(2.2.3.8a) K~
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If L(m) = 27L,

€ 1/34ﬂ2L4/3,

(2.2.3.8b) K~ d

and if L(m) = L 1s assumed,

e 1/3L4/3.

(2.2.3.8¢c) K ~ d

(This relation can also be seen in Tatarski (1961) by equations 3.31
and 3.28, where Tatarski's L, is = L here, The relation can also be
seen in Cunnold (1975), equation 14, except that there are numerous
misprints in his equation (eg., small k should be K etc.).)

The equation (2.2.3.8c) also gives
3 %
(2.2.3.9) L~ (K/ep™,
and it is interesting to compare this to 2.2.3.0,
1
no= (et

We thus see that (2.2.3.8c) is not a surprising result; n refers to the
largest scales at which viscous processes are important; L refers to the
largest scales at which turbulent processes act (inertially). Thus it
would seem reasonable that the molecular diffusion coefficient could
simply be replaced by the turbulent diffusion coefficient in (2.2.3.0)
to get the outer scale of turbulence.

Direct substitution of (2.2.3.2c) into (2.2.3.8a) gives

(2.2.3.10a) K ~ L2(m)L'2/3k'2/3r'1.

If L(m) = 2L,
4/3k—2/3T_1,

(2.2.3.10b) K ~ 472L

and if L(m) = L,

103.



104,

(2.2.3.10c) K ~ L4/3k_2/3r—1

where L is the outer scale in length per unit radian units.

If we use K ~ 102m?s” 1, €4 " .04 W Kg ! (typical of about 80-90km),
then by (2.2.3.8b), L ~ 4a5 mr !, or ~ 28 metres. If (2.2.3.8c) is used,
L ~ 70 mr !, or ~ 400m. Eddies as large as % a km high have been seen
in the mesosphere, so this suggests 2.2.3.8c may be more appropriate
(and hence 2.2.3.10c) for experimental work. This still does not mean
the equation is exact.

These formulae, then, give relations between €4 L, (%%)2, K and n.
These are perhaps the most important turbulence parameters. €4 is often
found from knowledge of two of the parameters 28 Ve and Ty However,
it is necessary to bear in mind that the statements are only dimensional
in some cases., The formulae are summarised in Table 2.1.

Thus a radio experiment working at a wavenumber ki’ which can
measure the RMS velocity of the turbulence at this radio wavelength,
and the mean wind vectors (by the width and Doppler shift of the power
spectrum, say), can be used to estimate all the parameters €q° L, (%%02,
K, and n (assuming v is known, v being the kinematic viscosity). The
turbulent scale £ corresponds to (Zki)_1 metres per radian; that is,
Bragg scatter occurs from scales £ = (2ki)—1.

How is Vo measured? For a radar with a very narrow beam (narrow
enough that Doppler broadening due to the mean wind and the finite beam
width (beam broadening) is unimportant relative to turbulence effects),
Ve is related to the width of the power spectrum, and thus also to the
half-correlation-half-width 1, . of the autocorrelation function of the

signal (that is, the time lag from zero along the time axis at which



the autocorrelation falls to 0.5).
If amplitude only is recorded (in this case, Doppler information

is not available), denote the half width by TRO-5° Then

(2.2.3.11) v = Y 1 (A/4m)/1n 2 (Briggs, 1980/81),

ams = (TRo-s

If, on the other hand, amplitude and phase are recorded, the magnitude
of the complex autocorrelation can be found; in this case, denote

Tg.5 @8 T g.5°

Then

(2.2.3.12) Ve = (Tco,S)'l(A/aﬂ)/zsln 2  (Briggs, 1980/81).

RMS
If a wide beam is used, then more care is necessary to obtain Tgese
The effect of beam broadening must be removed; that 1s, the fading time
must be the same as that which would be obtained if the observer was
moving with the mean wind (Briggs (1980/81). This parameter can be
readily evaluated from full correlation analysis (at least in principle),
or by appropriate removal of beam broadening effects. These matters
will be discussed more in a later chapter (Chapter VII), It is
imperative to see that chapter before using "v, .'" to deduce turbulence

RMS
data.
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2.2.4 More Careful Treatment of e, K

In the previous sections, a brief mention of the various types of
 energy dissipation machanisms was made, but only the viscous dissipation
rate ed was discussed in much detail.

In a more careful discussion at least three energy deposition rates
should be considered (Justus, 1967).

(i) €q> the rate per unit mass at which energy is dissipated by
viscous forces at the Kolmogoroff microscale;

(ii) Eg’ the rate per unit mass at which energy is dissipated by
buoyancy forces;

and ,

(iii) e, the total rate per unit mass at which energy is deposited into
the atmosphere due to the turbulence.

If the temperature gradient is stable, the development of turbulence
is restricted, and eg is positive - turbulent energy is lost to the
background. In such cases, €, the total energy loss rate, is also equal
to the rate of supply of energy by mechanical processes (wind shear).

Recall that energy is lost to buoyancy forces most effectively in
the bubdyancy range (eg., by the generation of gravity waves). Viscous
dissipation is most effective near the Kolmogoroff microscale. A crude
illustration of energy deposition is given below.

}

loss rate to the

atmosphere per | Buoyancy Inertial Viscous
unit wavenumber | Range . Range y Range
interval. (1) N )

1
[ 1A
| | Lliﬁ'f‘_

A |

wavenumber,



107.

¢ represents the integrated effect of curve (1), and €4 the integrated
effect of curve (2). Recall, too, that €4 is the rate of transfer of
energy from wavenumbers less than k to wavenumbers greater than k.
If the temperature gradient is unstable, Eg will be negative, and
the temperature gradient will also help to generate turbulence.
According to Justus (1967), the total energy supply (and therefore

deposition) rate is

an
(2.2.4.1) € = —<ViVj>a—XT‘
8l oU
= ~<v, va> 3;;-— v,V > S;E- for U3 small),

where U= (Ul’ u,, U3) is the background wind,
= (v;, V,, V3) are the turbulent velocities,
< > implies average over time (and possibly space),
and X = (Xl’ Xy x3) describes any point in a cartesian co-ordinate

system with Xg vertical, Repeated indices imply summation.

Justus gives the buoyancy dissipation rate to be

(2.2.4.2a) Eg = -wp

2<§v3>,

T being the vertical displacement of an eddy of scale ~ L, (taken as
the inertial range outer scale defined similarly to equation 2.2.3.5b;
also see 2.2.4.4 shortly) from its mean during oscillation, and wg is

the Brunt Vaisala frequency.

It is fruitful to campare this to equation (2.2.3.%); viz

Ly~ vm/wB, (v0.8 ~ 1.0):

Ly being the "inner scale' of the buoyancy range, and o/ the RMS
turbulent velocity in the combined bupyancy and inertial ranges. The

energy associated with a scale LB is



VB3
€, ~ T (equation 2.2.3.3c")
B L i
B
If we assume Vg Vo (possibly not unreasonable as LB lies between

the inertial and bouyancy ranges), then

i Vm Vm
imf 2 | m|; 2. 2
€2 " T Vm .|t “B

B B
50

- 2
eB wB Lva,

which is rather similar to (2.2.4.2a) (if it is assumed a typical eddy

displacement § is about the eddy size, L). However, LB is of the order

of the outer scale of the inertial range, so

v 3
i P> Hence €, ~ €
L d’ B

B d

But comparison with (2.2.4.2a) suggests €g ~ éé'

Frequently in discussions on turbulence, it is assumed € ~ Eg v €4
and the above gives a somewhat crude "justification'.

However, closer inspection of Justus's (1967) paper shows this
approximation is not exactly valid. Justus's figure 3 shows that the
terms differ at most (in that case) by a factor 10 times below 110km,
and generally only by 2 to 3 times below 105km. For most order of
magnitude calculations, a factor of 2 or 3 is not important.
1/3,1/3

Then if we take (2.2.4.2a) with £+ L, and uses v ~ €

we obtain

(2.2.4.2a")
L =3/2
or L ~ Ed wB .

If €q = v3n % is used, (2.2.3.0),

108.

(2.2.3.3c"),
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- - 1
(2.2.4.2a") L ~-(vin Yoy 3y2

Then these equations give a crude estimate of the outer scale of
the inertial range of turbulence. They were used to plot L on graph
1.9a. L should be taken to be only a rough estimate from these formulae,
but at least these equations illustrate some points regarding L. For
example, intense. turbulence (large ed) has a large L and small n -
that is, increased turbulence widens the inertial range of turbulence.

It is also worth noting that no inertial range exists when n ~ L.

Thus ,

1 1
3. T1\E 73 -3/2
(v €4 ) €4 “p

v3/4e -3/4 " -3/2

or d ~ wy
Jeg)? - uy ]
or v ed) - wp
% ~1
or T, " Y

where Tn is the timescale associated with the Kolmogoroff microscale
(equations 2.2.5.0 and 2.2.3.2c, with n = £, gives L (v/ed)%).

Thus it may be expected that the turbulence is unlikely to develop
strongly if n ~ L, or, equivalently Tn ~ wB_l. (In this case, it might
be reasonable for Tn to be in seconds per radian, since this is the
units of wB—{) This-point was mentioned briefly in Chapter I in
association with Fig. 1.9a, and it was interesting that with model 2,
Fig. 1.9a shows L and n roughly intersect around the turbopause. This

may give more physical insight into why little turbulence exists above

the turbopause - there is no inertial range of turbulence, and viscous



forces act at scales in the buoyancy range. Certainly the fact that
Tn ~ wB_l when this occurs is not inconsistent with the definition of
the turbopause adopted by Rees et al. (1972) - namely that it is the
level where the time scale associated with the Kolmogoroff microscale
becomes large. (It is also worth noting that by 2.2.3.0 and 2.2.3.9,
when 1 = L, (edkvs)% = (ed/Ks)%, so v = K - ie. molecular diffusion is
comparable to eddy diffusion. This is also consistent with the concept
of the turbopause. For example Blum and Schurchardt (1978) used such a
concept to define the turbopause) It seems somehow reasonable that
turbulence cannot develop when the time scale associated with the
Kolmogoroff micro§cale becomes comparable to the period of oscillation
of a parcel of air in the atmosphere (= 2ﬂwB—1). This is also not
inconsistent with Fig. 3 of Justus (1967) where it can be seen that the
viscous dissipation rate falls quite markedly above 115km, whilst the

buoyancy dissipation rate shows no such fall.

The viscous dissipation rate can be written as

avi v
(2.2.4.3a) €4 = V% s§—> (compared with 2.2.3.1') .
j ]
Then
av, 12
(2.2.4.3b) €q = 15v< v e for isotropic turbulence (Rastogi
' 1
and Bowhill, 1976a)
Bvl 2
(2.2.4.3c) or €4 = (15/2)v< s > (Justus, 1967)
)

v being the kinematic viscosity.

A characteristic length (outer scale) can be defined for the turbulence

by

AR VR
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(eg. as seen in equation 2.2.3.5b). Justus (1967) takes L(m) as a

length unit.

Then by 2.2.4.1 and 2.2.4.4,

(2.2.4.5) € = - <Lmv3>w52
2 237
v, U, ]
where w_ = 5——- + T
S x3 x3

is the vertical wind shear.

Justus (1967) defined the momentum eddy diffusivity as

(2.2.4.6a) K =- <L(m)v3> .
Thus
' = 2
(2.2.4.6a") € mes by 2.2.4.5

This is a reasonable definition, by comparison with section 2.2.3b,
where diffusion coefficients were shown to be of the order of the typical
outer scale multiplied by the associated velocity. L(m) would seem to
be the relevant outer scale since by 2.2.4.4 it is related to the shear
in velocity and therefore momentum .

In a similar fashion the thermal eddy diffusivity was defined by

Justus as
(2.2.4.7a) Kt = - <CV3>

{ being the eddy displacement associated with scale L.

(The true values of Kt should be defined by the relation

L K 22T (T = temperature) - see section 2.2.3b
3t toxZ P RSk

Likewise Km really has a more precise definition,)



This also means, by 2.2.4.2a, that
(2.2.4.7a") e =Kw? .

(Thermal diffusivity is also closely related to density (molecular)
diffusivity eg., see Stewart (1969) - viz. K * Kt’ K being the eddy
diffusion coefficient. This would seem reasonable in view of 2.2.4.7a.
The eddy carries both its particles and heat; and it seems reasonable
then that K and Kt are related to the actual eddy displacement,)

It will be recalled that in deriving 2.2.4.2a', we assumed L(m) ~ G,
s0 Kt ~ K.m by 2.2.4.6a and 2.2.4.7a. However, Justus (1967) devotes the
bulk of his paper to a discussion of this assumption, and claims L(m)
and [ are not exaétly equal. This will be discussed more fully below.

Note that both 2.2.4.6a and 2.2.4.7a give the diffusion coefficients

K ~ <L(m)v3>, and as seen in 2.2.4.7a, and assuming Eg v €gs all K are

roughly given by

gy
(2.2.4.78.") K ~ —a
“p

This relation was used to form Fig. 1.9c. Some doubts as to its validity
will be discussed shortly.

1/351/3

(Alternatively K ~ L(m)v ~ L(m) (L ) (using 2.2.3.3c")

so K~ L4/35 1/3 (L”v3n_”)1/3).

d

However, let us consider 2.2.4.6a and 2.2.4.7a in more detail. What
exactly is the relation between C and L?

The Prandtl number is defined as
(2.2.4.8) Pr = Km/Kt

According to Justus, this is proportional to L/%, the ratio of outer
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scale eddy size to eddy displacement. Justus found that Pr lies between
2.2 and 5.1. However, Teitelbaum and Blamont (1977) assumed Pr ~ 0.7.
Thus there appears to be some doubt as to this number, although it
appears to be generally assumed to be around 0.7 - 1.2. For order of
magnitude estimates, Km & Kt ® K is roughly valid, but for more exact
analysis the K value must be chosen carefully. (It may be reasonable

to take the eddy diffusion coefficient K equal to K. however (eg. see

section 2.2.3b; also Stewart, 1969),) For example, (2.2.4.6a) implies

(2.2.4.6b) e = Km[g-lﬂz (z = x5),

and if Pr ~ 0.7, this means

¢’

i on)2
(2.2.4.9a) g = O‘7Kt[az] >

which closely agrees with (2.2.3.4a) if K = Kt

But if, as Justus claimed, Pr lies between 2 and 5, then

E 2
(2.2.4.9b) e = (2 - 5)'Kt{%]

Thus it appears that Pr needs more accurate measurement. It may

perhaps even be wrong to assume Pr is a constant - it could, for example

depend on the type of turbulence. Recall that for the Richardson gradient

and flux numbers (Ri and Rf) to be interchangeable as a criterion for
the onset of turbulence required that the heat and momentum transport

rates to be proportional (ie. K_ « Km). This is generally assumed to be

t

valid, and this amounts to assuming Pr is constant,

Then the real form of equation 2.2.3.4a should be

_ . [au)? _ 2u|?
(2.2.4.9¢c) € = Km{szi = Pthle] 3

€ being the total energy deposition rate.
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It is now instructive to compare these equations to some deduced
by Lloyd et al. (1972). In that paper (p. 786) a relation

Tsd

(2.2.4.9d) Ke = E;T

is derived, where T = (4.8&)3/2 ie., the same T as in (2.2.3.3b).

So T = 10, Lloyd et al. used a slightly different outer scale to that

of Justus (1967). (Lloyd et al. used L as the thickness throughout

which the given'rate of dissipation of turbulent energy would be able

to render the temperature profile adiabatic,) So perhaps 2.2.4.9c and
2.2,4.9d are not directly comparable (the different scales used can

lead to the "dropping'" of different terms in a quasi-dimensional analysis).

Certainly the € in 2.2.4.9d is the viscous dissipation rate € since

a’
the equation comes about through their equation (2), which comes directly
from Batchelor (1953); and Batchelor only considered €q It should be
pointed out most formulae for K use a form Lvi; the definition of this
outerlL must be chosen carefully. Any differences in this choice (eg.
Justus compared with Lloyd et al.) will be reflected in the final K
estimates. Choices like that of Justus have been used in this chapter
and appear to be used more commonly. The equation K = Lvi, which is
generally assumed, might also be questioned. 1Is it fair to assume an
equality?

As a further alternative, Gage and Balsley (1978) assumed the

relation

2

(2.2.4.9e) K= d/“’B .

wp[)n—-

Crane (1980) also derives a relation similar to this, although his

definitions of ¢ differ marginally from those adopted here.



There appears to be some degree of discrepancy in these formulae
(2.2.4.9).

I should like to emphasize again the assumption that many authors
make in assuming e ~ eg ~ €q- The various forms of energy dissipation
are freely mixed at times, and this can lead to grave errors. As has
also been discussed, it is not infrequent to see a dimensionally derived
result taken as an equality. Any worker must be clear on which relations
are being used to derive various quantities, and whether the relations
are exact, or only dimensional.

Some last points of interest can be seen by comparing equations
2.2.4.9 (ed « K w2, or

e B €d B

= U, 2 . ' = 2
2.2.4.6b (e Pth(Bz) ), and equation 2.2.4.7a (eg Kth ). We have

= GKtw 2 say (assuming'.Ke = Kt)), equation

the following interesting results

(2.2.4.10) () eyle, =C (b) e 2/(%%)2=C/Pr.Ri

. d/e = C/Pr.w

B

and (c) eg/e = l/Pr'Ri

Notice also that sz « (%%02 in cases where turbulence acts. This is
not surprising - when turbulence acts, Ri is approximately 0.25, and

sz = Ricggﬁz. It is also interesting that if we add (b) and (c), and

take ¢ + &, = €, then
g d .

(2.2.4.,104) Ri = Pr/(l + C).

Ri depends on atmospheric conditions, which suggests either Pr or
C does also (although bear in mind that this equation is only applicable
when turbulence exists). It would not be surprising if C were dependent
on atmospheric conditions. That is, atmospheric conditions might affect
the way in which the total energy input was shared between Eg and €q>

and thus affect C. But for shear-induced turbulence, it is not un-

115.
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reasonable to assume Ri = 0,25. Larger values will not produce turbulence;
and once turbulence develops (Ri = 0.25), it wili mix the wind shear to
some extent, thus preventing Ri dropping significantly below 0.25. If
Ri is assumed equal to 0.25, and Pr taken as about 0.7, then C = 1.8,

However, the possibility also exists that we are assuming too much
in assuming all the equations (2.2.4.10a-c) are exact - perhaps we are
trying to get more out of these equations than their original crude
formulation allows. TFor example, recall K was calculated from equations
of the form <Lv>, and there was some debate as to the exact form of L.
In fact, it can even be questioned as to whether K = <Lv> should be an
equality. The equation (2.2.4.10d), however, is possibly quite valid -
Kt does not enter into it.

If, however, we can assume the equations (2.2.4.10), then deter-

2

mination of £, and (82/82)2 allows determination of wp”s

4 eg and ¢

(assuming Ri = 0.25, Pr = 0.7, and hence C = 1.8). Kt may also be

calculated by any of the relations €q = CK e = Pth(BI_J_/az)2 or

2
B
= 2 2
eg Kth . If wB could agtually be measured, as well as €4 and
(ag/az)Z, this would allow determination of Ri’ and hence C, assuming

Pr = 0,7. One important point should be mentioned here, however. It

may be that (82/32)2 is only determined to a poor resolution. In this

case, w,2 = 0.25(Byjaz)expt2 is not a valid assumption - there may be

B

larger fine scale wind shears not observed. This is discussed more in

section 2.3.2,
Lloyd et al. (1972, equation 6) assumed the eddy diffusion coefficient

Ke could be written Ke =L L0 being an outer scale which they defined

0¥o>
(see above) and W, the associated vertical velocity. They then derived

the relation Ke = Tede—z, T ® 10 (as discussed above). However, if

K=2¢C "2, ¢~ 2, as derived above, then this suggests that if

]
€a"s
Lloyd et al. had used K * O.OSLOWO, they would have arrived at
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K = 0.5ede2 also. There was no justification for taking K = LOWO'

After all, Kt is actually defined by the relation

aT _ _ ?2T .
T ngZT (section 2.2.3b),

However, in a similar way, the equation Eg = Kthz, which was assumed
to derive (2.2.4.10d), may not be an equality. This then puts the
relation (2.2.4.10d) in doubt.

It would be better to write

e = C,P K 2, and e, = C3K

- 2 2
(2.2.4,11) e, =C Ko » W C sK wp®

These would be exact, with Cl’ Cy» and C, yet to be determined.

Then

(2.2.4.12) sd/eg = 01/C3’ ed/e = Cl/(czPr)’ eg/s =(C3/(02Pr))Ri,

and finally

(2.2.4.13) R, = C,P /(C) +Cy)

These would be exact. In the equation (2.2.4.10), we have assumed
C1 = C, C2 = C3 = 1.0, Accurate determination of Cl’ C2 and C3 would
be a great help for better use of turbulence relations. In fact, only
two of these need be found - the third could be found by (2.2.4.13),
using Ri = 0.25, Pr = 0.7.

Formulae for K, Kt and K.m can also be derived in other fields.

For example Teitelbaum and Blamont (1977) have shown one method by which
Kt (* K) may be estimated from gravity wave parameters. Vincent and
Stubbs (1977) have also estimated K from gravity wave scale heights, as
have Manson et al. (1979) (eg. see Fig. 1.9c). These formulae will not

be discussed here in detail. However, it is worth commenting that these

K values only apply when the atmosphere is turbulent. If there is no
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turbulence, molecular transport coefficients must be used. Crane (1980)
emphasises this point, and also emphasizes that in cases where turbulence
occurs in stratified layers, K estimates may perhaps not be the best
estimators of large scale transport rates, since turbulence does not
exist between the layers.

Hopefully, however, these last few pages have given some feel for

the treatment of turbulence parameters, and the uncertainties involved.
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2.3 Correlation Formulae, Structure Functions, and Some More Rigorous

Theory

In the preceding sections, the concept of analysing turbulence as
a spectrum of scales has been developed. However, many of the formulae
have been given without proof, and the specification of an energy
spectrum E(k) implicitly assumes a directional independence of k - that
is, E(k) was assumed a function of magnitude only - or, in other words,
the turbulence was assumed isotropic whenever E(k) was applied. Hence
no spectrum was given for anisotropic turbulence.

This section (based to some extent on Rastogi and Bowhill, 1976a,
Appendix 2) will not prove many of its statements, but will attempt to
give a feel for the methods used in a theoretical approach to turbulence,
and briefly explain how such concepts as E(k) come about. More thorough
approaches can be found in Batchelor (1953) and Tatarski (1961) for
example.

It may seem a strange approach to give the theory last, but to an
experimentalist a feel for measurable parameters often takes priority

over a feel for the theory.
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2,3.1 Theory

One of the first functions encountered in turbulent theory is

the 2 point velocity correlation function
(2.3.1.1) Ry (@ = <vy v, & + 1)>

where v(x) = (vl, Vs V3) represents the turbulent velocity at
X = (Xl’ X, xs). The vector r [= (rl, ,s r3)] represents the vector
joining the two points x and x + r. < > denotes time and space average.
(More general correlation functions can be defined, as in Batchelor
(1953) but Rij is perhaps the most common)

Likewise correlations can be defined for scalars 6 like density,

’

temperature and so forth; namely,
(2.3.1.2) Ré(lf_) = <8(x)6(x + 1r)>

(2.3.1.1) and (2.3.1.2) actually are only valid for homogeneous turbulence.

In the more general case, R, is also a function of position x. For

0
example, Bolgiano (1968, equation 11) expresses <vi(§)vj(§_+ r)> =

Rij(g)a(§) where a(x) expresses positional dependence. However, such

complications will be ignored in this simple discussion.

For isotropic, homogeneous turbulence,
(2.3.1.3a) Rij(g) = F(E)rirj + G(E)éij (Batchelor, 1953, §3.4)
or

alternatively,

= y2L -
(2.3.1.3) R @ =V <‘r£r§ ity teby)

where g=f+ %r%%; and U2 = UpZ = Uﬁ2

Here, Up2 is the mean square turbulent velocity parallel to the fluid

velocity and Un2 is the mean square turbulent velocity normal to the



1.0

f(r)

g(r)

Fig. 2.4 Forms of the functions £(r), g(r)

r

(From Batchelor, 1953, Fig. 3.2)
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mean fluid motion. The general form of f(r) and g(r) are illustrated
in Fig. 2.4.

Then, having viewed the form of this correlation, let us now
Fourier transform back into k space. A spectrum tensor Qij(E) can

be defined,

(2.3.1.4) %500 = (2m)"3 L Ry (r)exp{-ik.r}d3r

For isotropic (and homogeneous) turbulence,

ki B
= (6§ =

(2.3.1.5) 255 k) = ( i3 7)) IeRZ
where [ E(k)dk = L<u?>,

u being the turbulent velocities.
Hence the relation between the previous E(k) approach, and this correlation
approach, can be seen through this formula. E(k) is really only valid
for isotropic turbulence -~ this is why no form was given for it in
Fig. 2.2.
Likewise, a 3 dimensional Fourier transform can be formed for
R, ()5

(2.3.1.6) 0,(k) = (2m) 3 J Re(r)exp{-ﬂ_;.;}d%

A three dimensional spectrum Ee(k), depending only on the scalar wave
number k = |£J, is obtained by integrating QG(E) on a spherical shell

of radius k;

(2.3.1.7) Eq (k) = l/zf%(pk%s,

ds being an element of solid angle. Ee(k) is then the spectrum of the

variance of 8, since



122.
(2.3.1.8) [ Eq(k)dk = L<p>2

In the isotropic case, @6 depends on k, and hence
(2.3.1.9) Eq(k) = 2nk2¢e(k) ‘

The "density" of fluctuations in 6 at wavenumber k can also be written,

for the inertial range, as

_11/3; -

(2.3.1.10a) ¢ (k) = 0.033C62k ‘(Tatarski; equation 3.24)

where Ce2 is a constant.

'3
’

(i) C62 = a2L4/3(%§)2 (From Tatarski, equation 3.29",

after it has been corrected (there is a mistake in

4/3 (graa M2,

3.29"; it should be C\)2 = aZL0
as can be seen by using Tatarski's 3.31 in 3.29'.
(2.3.1.10b) (The correct form of the equation is used later in

the book e.g. 3.51))

Recall also that Tatarski's Ly is = L in our case - see
equation (2.2.3.8c).

Other formulae for C can then be derived; eg.

-1/3 b

(ii) €. 2 = a%¢,¢

o 0€d y 2:2:3.6b, using L(m) = L, as decided;

{01?

-1/3
d

(1i1) ¢ ? = aZchg)Ze
[a% ~ 2.8, eg. Van Zandt ét al., 1978, equation 4; also see
shortlyl].

It can be seen from 2.3.1.10a and 2.3.1.9 that E(k) is indeed « k_5/3

in the inertial range, as previously mentioned.
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It is also worth pointing out that 2.3.1.10a and b imply that to
get significant fluctuations of e' # 0. That is to say, the turbulence
must have a background gradient of 9 to mix. In particular, if 6 is
taken as the refractive index, this says no significant radio wave scatter
will occur from the atmosphere unless there is a background gradient of
the potential refractive index. (Note the use of the words "potential
refractive index". One must be a little careful in the choice of
parameters which can be used as passive tracers of turbulence. This
will be discussed again below)

This last statement is not exactly correct. For example, Villars
and Weisskopf (1955) have derived a relation for the turbulent density
fluctuations produced in é situation whéré thé poténtial density is

unchanging with height viz. -

4/3 4/3 —4

(Ap)2 = ( ) (their equation 25).

Here iy is the RMS velocity of the molecules, £ is the scale of fluctuation,
S0 the energy supply, and p the "potential density'. This can then be
related to electron density and hence refractive index fluctuations.
However, the radio scatter produced by this effect is considerably less
than that produced by the turbulent mixing of a background gradient.
For example, in the case discussed by Villars and Weisskopf, a background
electron density gradient of less than about 2cm 3 per km (which is
extremely small) would be sufficient to make the backscatter produced
by turbulent mixing of.the background gradient comparable with the above
effect.

With steeper electron density gradients, the scatter due to mixing

of the gradient dominates. Thus for most purposes, a background gradient

in 0 is necessary to achieve significant radio backscatter.
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Another common parameter used in turbulence theory is the structure

function,

(2.3.1.11) Dy (r) = <{6(x + 1) - 6(x)}?%>,
§ being a scalar, and < > denoting spatial averaging.
In the inertial range De takes the form

(2.3.1,12a) De(r) = C'ezrz/3

where C62 is the same parameter which appeared in (2.3.1.10a).
In fact, equation (2.3.1.12a) is usually used to define Cez, and 2.3.1.10a

is derived from this definition. The derivation will not be given here,

but can be found in Tatarski; section 3;2. The formula (2.3.1.10b)

can then be derived, but this is not done here.

In the viscous range of turbulence,:De(r) takes an r? form;

(2.3.1.12b) Dy(r) = 062202/3.(r/£0)2,

.1
where £0 (27a%v3e 1){ (a is the same constant which has appeared
elsevhere).

ie, L. = 33/4a3/2n, n being the Kolmogoroff microscale.

However, discussion will largely concentrate on the inertial range.
Tatarski (1961) gives more on the viscous range.

In some cases, such as 6 equivalent to velocity, C 2 can be directly

8
related to the energy dissipation rate, eg., for velocity, (in this case

the vector velocity v is used, and averaging is over all directions)

2r2/3 = 4.8@82/3V2/3

D, () = <{y(x +1) - y@I> = C, ;

o ~ 1 to 1.5, as seen in equation 2.2.1.2.
Thus

2/3

CV2 = 4.8ae (eg. see Elford and Roper, 1967; Batchelor,

1953, equations 6.5.5 and 6.5.7).



Caughey et al. (1978) looked at only one component parallel to the mean

flow (longitudinal) and dexived the formula

(v, @ - vy + D)2 = ¢ 3.

1

Gage and Balsley (1978) gave a component form

2/3

(Cvz)i (avz)ie , where

111

(avz)i 1.75 for the longitudinal component (ie. parallel to
the mean flow), and

(avz)i £ 2.35 for the transverse components.

(The appropriate structure functions are of course <{vi(§) - vi(§ + E)}Zz)
Formulae like these can be used to obtain e estimates from a single
observing station, provided it can be assumed that v(x + r) is equal to
v(x) at a time t = (r/u), © being the mean wind velocity (Taylor's
hypothesis eg. see Caughey et al., 1978; Gage, 1979). This is not,
however, always valid; it assumes the turbulence is '"frozen'" in the
background wind, and does not change in form greatly as it moves.

Thus the above statements all say

C.2 = ye ’ -y being a constant.

Notice also that by 2.3.1,10b, (iii)

dv,

azK(zﬁfﬁed—l/B = Yed2/3,
so
t(dz)2= yeq: but thls~YPK( )2 by (2.2.4.9¢),
so ( )2 = .62502 - or, in other words, the shear in

turbulent velocities is proportional to the shear in the mean velocities,.

125,
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2.3.2 Estimation of gﬂz

In this section we will obtain some estimates of an. But the
problem of what serves as a passive tracer must firstly be discussed.
Such a:.quantity should be one for which positional variations have no
effect on the tracer. For example, if density is used, an eddy would
change density as it moved vertically and the density would not be
independent of height. Similarly, temperature is not a good tracer.
However, potential temperature makes a good passive tracer. (Potential
quantities are values an air parcel at some position x would have if
moved adiabatically to a standard pressure Py Py is usually 1000 millibars)

One important quantity for the work reported in this thesis is the
refractive index, since the strength of radio wave scattering depends on
this parameter. As it stands, refractive index is not a good passive
tracer. For example, Tatarski discusses the refractive index of air,

and finds

n = n(z, p, 0, q)

where z = height, p = pressure, 0 = potential temperature, and q = specific
humidity@is also a potential quantity).

Suppose an eddy moves from height z, at-pressure pl,‘and has © = 9,5
q =q;, to a height zz.At z,, the pressure is p,, and the environmental

© and q are 0, and q,. However, the parcel itself has @ = 0, and q = ¢

1? 1’

still, as it moved adiabatically. Hence the difference in refractive

index between the parcel and its environment at z, is

n(Z,Z’ pzs 01, ql) - n(zz, pzs 62’ qz)

parcel environment
- An = (SR 239 | 3n 3qy,,

90 dz 9q 9z g



Thus the effective refractive index gradient to be used in equations

like (2.3.1.10b) for g-% a1

- (on 30  dm - 3q,
(2.3.2.1) M = (30 Ty + 5q az)
ie. an = a2L4/3M2. Van Zandt et al (1978) write this as

4/3

an = a20'L"/°M2, o' ~ 1, and a% ~ 2.8.

Notice this is not the full refractive index gradient, which would be

dn _9n , 9n 3p , dm 90 . dn 3q
dz 9z + op 9z * (86 9z * 9q az)

A%%-= 0; n has no.explicit height dependence except through p, q)
The quantity M can also be regarded as the gradient of a "generalized
potential refractive index'", provided care is taken (Ottersten, 1969a) -
namely, that the reference pressure p, for this generalized potential
refractive index is the mean pressure at the level of turbulence, rather
than 1000mb.

What, then, of the problem of ionospheric radio wave scatter?
(It should be noted that the following work up to equation 2.3.2.11, is

largely original, so may be inerror.)

In this case, the refractive index is given by

(2.3.2.2a) n = n(N, Vo B)

where N is the electron density, Vo the electron collision frequency,

B the magnitude and direction of the magnetic field, and z the height.

(There is actually not an explicit dependence on z; that comes through N,

Y and B variations with height; hence %2-= 0y

However, N is not a passive tracer - the electron density changes

as the eddy oscillates in height. B can be regarded as constant over the
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vertical scale of turbulence, so we may regard n as

(2.3.2.2b) n =N, v) 22 = o).

The desired passive parameter for electron density is,rather, the difference
between the parcel density and that of its environment. To discuss
this, a clearer understanding of potential temperature is necessary.

So let us consider the concept of potential temperature in more

detail. This is defined, at height z, with a temperature T,
y-1
as 0 = T(po/p) Y (eg. Houghton, 1977)
where p is the pressure at height z, vy = Cp/Cv is the ratio of specific
heats, and Py is the pressure at a reference height z = 0. (0 is in fact
the temperature a parcel of air at z would have if moved adiabatically
to z = 0) Consider firstly an isothermal atmosphere. The pressure
p = poexp(—z/H), H = scale height = RT/Mrg = (Cp - CV)T/g (Houghton,

1977, equations 1.4 and 1.6) = (1 - %)(Cp/g)T.

Thus
0= (y - 1)/Y.Fa_1T (Fa = g/Cp = (9.8ms 2)/(1005m?s 2)
= .9soc kh’:l.' )
Then y-1
0 = T(p,/p) ' , and p = pyexpl-z.(ZIp).r T 1}
0 ? 0 ‘ty=17""a
means o = Texp{z.Pa/T} (if T is a constant).

For small © (z < 5km), this gives

0= T+ Paz. But it must be emphasized that the reference level
z = 0 must be chosen close to the region of interest. A similar situation
occurs for the concept of potential density (Ottersten, 1969a).
The usual definition of potential temperature is to take Py = 1000mb ,

so z = 0 roughly corresponds to ground level. It is important to note
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in all these formulae that we are using a generalized potential temperature;
p, must be chosen close to the level of interest; and it is implicitly
assumed that all displacements associated with turbulence are less than
about 5km, so © = T + raz is valid. It is worth commenting here that
Tatarski (1961) '"derived'" a relation which implied 0 = T -+ Paz exactly.

This is not so. It was assumed that for the parcel, moving adiabatically,

dT _ ,y - 1)g£
T Y P

, and this is of course correct.

Then the hydrostatic equation,

dp = -gpdz was used, and this is also valid.

Finally, p = pRT ° (R = gas constant per unit mass in this case)

p(Cp - CV)T was used.

But it is important that the pressure p is that of the background

atmosphere, (which is also that of the parcel), and so

= -~ C )T
P p(cp Cv) atmos.

Then the relation

o @ bhle - Qo P

T Y P v “Te(C, - €T

atmos.
was used. If the parcel has moved over a large distance, T and Tatmos

cannot be assumed equal. (In the troposphere, the atmosphere is often

nearly adiabatic, so T = T is nearly valid) Tatarski assumed

atmos.

they were equal and cancelled them, resulting in the relation

(%gaparcel = Fa’ so T = Faz - H; H is a constant, which Tatarski

took to be the potential temperature.
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But it must be pointed out this is not general; nor, for that matter, is
the relation 0 = Texp{zFa/T} - that is only valid for an isothermal
iy

atmosphere. The only true definition of O is T(po/p) Y . However, the
approximation O = T + Faz will be used in the following discussion -
provided it is borne in mind that z = 0 must be taken at a level close
to region of interest. If this is done, the relation is sufficiently
accurate for the analysis of problems in which it is used.

The desired parameter for electron density fluctuations is, then,
the difference between the parcel and its environment.

Consider an air parcel at height z temperature Tl (potential

l,

temperature Ol) and suppose it moves to height Z,s where the background

temperature is T, and pressure p,.

Then the parcel density is (using p = pR*T)

.P2 1
P = e (T of parcel at z_ =0, - T z_),
parcel R, Ol—l“az2 2 1 a2
But © =T + Tz,
(2.3.2.3)
so p = EE— pellact S dz = z z
parcel R, Tl—Fadz w2 1
P 1
(2.3.2.4) The environment density at z 1is p , = =,
environ R, T1
Then the difference in (pparcel) and (penviron)
Pp. 1 1
(2.3.2.5) =§j(m—T—) .
* a 2

However, it is the electron density difference we desire.
If X(z) is the ratio of electron density to total density of the

parcel, then by (2.3.2.3)

Py 1

(2.3.2.6) Nparcel B X(zl)i;-' T -T dz at z,
a

1



An important assumption has been made here - it has been assumed
that the electron density to total density ratio.x(z) is unchanged as
the parcel moves. If this is not valid, the derivation here fails. This
assumption means, for example, that the electron partial pressure of the
parcel differs from that of the environment at z,. (If it were felt that
the electron pressure should equal that of the environment at z,, the

analysis would be done by saying

P
1 2e 1 ~
Nenviron R, ° Tz’ Nparcel R, Tl—radz, Poe ~ electron

partial pressure)

However, the assumption seems reasonable. Equilibrium of total
pressure at all héights is a reasonable concept (die. P, is used in
2.3.2.3 and 2.3.2.4, but surely if the parcel can be regarded as a unit,
then it can be regarded as maintaining all its particles, including its
electrons?). Equilibrium of partial pressures is not such a valid concept.
Gallet (1955), in dealing with a similar problem, assumed (dp/p) = (dN/N)
for the parcel, which is similar to the assumption made here (p « N).
Villars and Weisskopf (1955) made a similar assumption. The problem will
be discussed again later.

The electron density of the background is

Py
environ S X(ZZ) 'ﬁ‘;Tz by (2.3.2.4) .

Then dN = N N .
parcel environ

D,. 1 -
IS

EE T1 ) Padz T2
x(z;) x(zy) x(z,)
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Using the expansion

— d(%) dz,

T R,1Z

T T Fadz
_B X7~ ) ¥ x(z))
Ry =
" E(z ) T 1(z )
x U x(z)|'x 72
T
T a
P, a6 + x(zI)dz,
TR (p o T Fyd2
[;(-(zl) ;(Zz) - )_(-(ZZ) . X(Zl)]
1
1 +x
I dz

§ o WMol 4 -2
af = La () + -2

further gives

= XNdyp
T T

= dN
XP,
Then R,T
so
(2.3.2.8)
Expanding
an
Thus
(2.3.2.9)

T a .
(dfz) +‘§?ET)

T dz

X

T I|a

—dy + —dz

X & X )

T

—7d%)

X
N dX (= .I\_]. @ —_
x dz T dz

dN
dz +

N dp

p dz

p

= 1 - x for small x, and dropping second order

air density)

expresses the rate of change of density difference between the parcel

and background with height.

The result seems reasonable, as

132,
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&D) in an adiabatic atmosphere, © = const, so the only change in N
occurgdue to the gradient of the mixing ratio, X.

(ii) If the mixing ratio ¥ = g-is independent of height, the only
fluctuations which occur are due to the adiabatic expansion of
the parcel.

Notice also the - QH-in the second form of 2.3.2,9., This arrives purely

dz

by definition of dl = N - N(zl), where as

parcel
dN = N(zz) - N(zl).

Now by 2.3.2.2b,

; _ . . . av
_ dn _an N o TVm
n=nlN, v, so g7 =555, T ov_ oz

(Recall n has no explicit dependence on z).

But the more useful parameter is
n = n(N, vm)
where the relation between n and N is the same as that between n and N.

That is to say

dh _oh o8, an *m
dz R oz avm oz

(the change in refractive index of the parcel due to collision frequency
changes is assumed to be the same as the change in background value in

going from z, to zz),
and-%% simply expresses the change in refractive index for a given

change in electron density, so



A

N o e o ; ]
55 EXpresses the variation in N due to a given change in z, but

no change in Vs and this is given by 2.3.2.9 N is independent of vm).

Thus

(2.3.2.10a) 2.2 MNdo Ndy, +% .
m

which should be used for (%E) in equations like 2.3.1.10b. (Here

0 =T+ Faz, z being the displacement from a reference height close to

the region of interest (as discussed), X = N/p, N is the electron number

density, and p is the neutral air density.)

Can (2.3.2.10a) be simplified? Consider the region 85 - 95km -

in particular, two heights; 85 and 90km. Firstly, rewrite (2.3,2,10a)

'

as
an N do  dN , N dp. . 80 ’m
' = e S8 B0 fhust o =
(2.3.2.10a") Me aN(T iz iz + = we + anl 5z
., Ndp _ dlnp
Firstly, consider > dz N ol

By Fig. I.2.11, US Standard Atmosphere (1962),

dlnp

S 4 "1
(¢ 1n 10 d loglop) 1.4 x 10 *m *.

This is true over the entire region O to 120km, so

av
m

av 0z

(2.3.2.10a") M, =iobro=~ g = (1.4 x 10 *m 1)N) + —

From Mechtley et al. (1972) Table 5, —E ~ 2 x 10 ®m™™ at 85km (where
a strong ledge of increasing electron density existed for this data),
and ~ 3 x 10°m * at 90km. N ~ 2,5 x 10%m 3 at 85km, and ~ 1010m~3 at

90km. Thus (1.4 x 10 *N)m™* is comparable with % at 85 — 90km

(eg. at 90km, 1.4 x 10 *N = 1.4 x 105, which is ~ %). Thus neither

of these two terms should be dropped.

m ]
ryale M , say, is the parameter
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What about %-%% ? This = gI-+ I' . Examination of Fig. 5-1 of
Gossard and Hooke (1975) shows %§-~ 3K/km at 90km, and ~ 0 at 85km.
Thus %—S— - .013Km™! at 90km, and ~ .01Km ! at 85km. T is - 200K at these
heights. Thus at 90km, %30 - 6.5 x 105m % (which is about Y% of g—l:).
ﬂ_g@ o 5-. ﬂ'dN
At 85km, T dz 1.25 x 10 ¢ ——th of oE

Thus neither can this temperature term be ignored. So (2.3.2.10a")

should be the appropriate form of Me - or, alternatively,

(2.3.2. lOa")

oV
- Nd_T _4aN _ -y =1 _m
M, BN {T( + T ) in (1.4 x 10 *m )N} + — Bv o

Notice Me is a complex number, since may be complex. However, the

BN
important term is'[Melz, as we will see shortly.

In the HF limit, %% & —(2ﬂ)—1IeA2 (Ie being the classical electron
radius (= 2.8 x 1071%n) and A the wavelength of the probing radiation)

but this is not true at 2MHz (eg. Vincent, 1973), and the more accurate

Sen-Wyller formulae must be used to estimate L

oN’
If H'%‘S‘and g~%§ were both negligible, then (2.3.2.10a) gives
ov
(2.3.2.10p) m =-2di om  m_2n

e N dz v 0z 0z
m
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We have see, however, that this approximation is not often valid. However,

it is often (erronéously?) assumed.‘
So (2.3.1.10b) implies
(2.3.2.11)
( 2 _ .2.4/3 2
(1) c ?=a’L ]Mel
-1/3

or (ii) C? a?k|M_|e,

5 B ~1/3 ., (2Ol -2
4 or (iii) Cn a /Pr . €84 IMel (az) (by 2.2.4.9c,

K= (e/P, )(—) LN

b

where Me is given by the equations (2.3.2.10).
(I have denoted these as ani— they should perhaps be written Cﬁz. In

future, Cn2 and Cﬁz will mean the same thing.)



The third version of 2.3.2.11 can, by assuming € ~ €, be written

as

. 2 _ ,2p ~1 -2 2/3 2
2.3.2.1; (iv) ¢ a®P_ "Rywp ‘e |Me|

91nod
0z

L
where w, = (g )? is the Brunt Vaisala frequency (0 = potential

B
temperature) and R, is as defined by (2.2.2.3). For wind shear induced
turbulence, Ri is unlikely to get below Ri(critical) ~ 0.25; since as
soon as Ri reaches 0.25, turbulence develops, and this smooths out the
wind shear, increasing Ri (similar to Fig. 2.1b). Gage et al. (1980)
have used this final form for an, with Ri replaced by Ri(critical)

(= 0.25).

Thus these equations provide another useful set for the inter-
pretation of radio wave scattering experiments. For example, (2.3.2.10a)
and (2.3.2.11(iii)) offer the opportunity for estimating %% from

measurements of an, the mean wind shear, energy deposition rates, and

the electron density gradient. However, if the §~%§ term swamps the
¥~%§ term, (eg. 2.3.2.10b), this is not possible in practice. But the

possibility certainly exists for determination of temperature gradients
from ground based measurements using these formulae.

It is worth commenting here that an can only be estimated (for
radar work) if the turbulence fills the radar volume (volume defined by
the radar pulse and polar diagram). This is often not the case, and
the true Cn? for turbulence (an(turb) say) is given by an (as estimated
by the radar, assuming turbulence fills the radar volume), [= an(radar),
say] divided by F, F being the fraction of the radar volume filled by

turbulence. Thus

2 = 2
Cn (turb) Cn (radar)/F

136.
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For example Van Zandt et al. (1978) discussed the determination of F
for the troposphere and stratosphere. They felt that turbulence
occurred in narrow layers, with many such layers occurring in one pulse
length., They suggest F was generally about .01 to 0.1 in the troposphere
and stratosphere. Individual estimates of F were based on the mean wind
shear, and upon the assumption that any mean wind shear has fine structure
associated with it (which could not be seen by the radar), some of which
is able to create turbulence. It was assumed that the spread of fine
wind shear gradients about the mean shear was a function of the mean wind
shear. Thus strong wind shears have a larger spread of fine scale wind
ol

shears. Turbulence would develop when the fine scale wind shear-gz

obeyed the relation (%g)z > wBZ/O.ZS (by equation 2.2.2.3). The term sz
could be estimated by temperature soundings of the atmosphere.

Then the probability that
30y 2 2
(Bz) > wp /0.25

gave the fraction of the radar volume filled by the turbulence. The

theory assumed a Gaussian distribution of fine scale wind shears

about the mean.

However, the assumptions made in deriving 2.3.2.10 must be borne
in mind; namely
(i) that the mixing ratio (electron to total densities) at the parcel
is constant as the parcel oscillates, and
(ii) that the collision frequency for an electron in the parcel, being
proportional to the total pressure, adjusts continuously to the background

value.



138.

Assumption (i) deserves perhaps a little more comment. The
assumption amounts to assuming that the parcel carries all its neutral
particles and electrons and ions with it at all times, and that the
chemical reaction rate within the parcel do not change. However, there
is the possibility of electron diffusion into the background, part-
icularly as the electron partial pressures in the parcel, and outside,
differ. Assumption (i) is invalid if this diffusion time is less than
the oscillation time of the eddy. Electrons have larger mean free
paths, and move faster, than the neutrals, so could diffuse quite rapidly.
However, the rate of electron diffusion is controlled to some extent by
the ions. But it is still possible for the electrons to diffuse faster
than the ions and neutrals, at least at low heights, of the order of
65km (for example, Hill and Bowhill, 1979, p. 623, mention this
possibility). Generally, however, the lifetime of a parcel of scale

£(m) (length scale) is given by

22w
iy, D

where D is the maximum diffusion coefficient of the possible diffusive
mechanisms (for example, mechanisms include turbulent diffusion (D = K),
ambipolar diffusion (D = Dd, the ambipolar diffusion coefficient) or even
molecular diffusion). The equation follows, at least for turbulence, by
2.2.3.9b, where T becomes the lifetime associated with scales of the
order of the eddy size, so k =-%, and £(m) = 2nf. It is only valid,
for turbulence, however, for scales within the inertial range - 2.2.3.2b
is more appropriate, for example, in the viscous range.

If, then, the appropriate D is in fact the eddy diffusion coefficient
(that is, turbulent diffusion acts much faster than any other process),

then assumption (i) 1s crudely valid. At 90km, Da ~ 3.6m?s 1 (see Hill
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and Bowhill, 1979; T ~ 2.5s for £ ~ 3m for ambipolar diffusion means

Da = 3.6) so ambipolar &iffusion is not §ignificant in the inertial range
(@ > GOmDr.lifetimes for ambipolar diffusion are ~ 1.5 x 10%s at £(m) ~ 75m,
compared to times ~ 5-50s (K -~ 102 - 103m2s”!) for turbulent diffusion.
Thus, at least around 85 -~ 90km, and up to around 105km, ambipolar
diffusion is not important at scales around 70m.

However, processes other than diffusion can also occur in displaced
turbulent eddies, which can affect assumption (i). Hill and Bowhill
(1979) give an excellent discussion of the processes which can occur in
a displaced air parcel. The temperature of the parcel changes upon
displacement, as do of course the number densities of the various
constituents. Thé photo dissociation rate also changes. Consequently,
reaction rates within the parcel change upon displacement, and the
electron production and loss rates also change accordingly. Hence it is
quite possible that the electron density to neutral demsity ratio of the
parcel does change as a function of displacement. The lifetimes involved
in these processes can be quite short - of the order of the lifetime of
an ~ 75m eddy (1t ~ 8_1/3£2/3 by 2.2.3.2¢c (dr £2¢m)/K as -seen previously)),
so for ¢ = 0.01 > 0.1 W/kg, Tt ~ 30 - 80s at £(m) ~ 75m and some of the
processes depicted by Hill and Bowhill produce significant effects within
this time scale - particularly below 80km. At 85km (Fig. 1, Hill and
Bowhill), the processes are not quite so rapid - only small changes in
the electron to neutral density ratio of the parcel occur over 100 to 200s
for a 200m displacement (eddies of scale £(m) typically are displaced
around £(m) over a lifetime).

Thus the results of Hill and Bowhill suggest that above around
80 - 85km, equation (2.3.2.1c) may be roughly relevant, but at lower

heights assumption (i) is far from valid, and the problem of estimation
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of an is very complex indeed. In fact the spectrum of scattered radiation
as a function of frequency might no longer be a simple E11/31aw, even
though the neutral turbulent spectrum may be. No refinements upon an,

as calculated in (2.3.2.10) will be attempted in this thesis.
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2.4 Radar Scatter

2.4.1 Radar Equations

Having discussed turbulence, we must now examine the scattering
of radio waves from the turbulence. The turbulence produces variations
in refractive index which are especially important when it acts upon
a pre-existing gradient of refractive index (equation 2.3.2,10). These
in turn produce radar scatter. But is it possible, from measurements of
the radiation scattered, to deduce an?

Consider firstly the case of an atmosphere with random variations
of refractive index n, and hence of permittivity e. Let the "normalized"
(see shortly) k spectrum of these fluctuations be given by P(k). Consider
a radio wave of w;ve number kki’ and wavelength A, incident on these
fluctuations, and suppose we examine the component scattered in the
direction Eﬁs'

Then according to Booker (1956) (also Rastogi and Bowhill, 1976a,
and Ottersten, 1969b), the scattered power, per unit volume of scattering

medium, radiated into a unit solid angle in the direction.kki, for unit

incident power in the direction kﬂi’ is

o 2 - 102
2.4.1.1a) o = <[£52> Ip P(k, - Kk )sin®x .

Here, X is the angle between EAS and the E field vector of the incident
wave, and <|%§!2> is the mean square fluctuation of permittivity averaged
over all wave numbers k. (It is interesting that this formula, although
generally attributed to Booker (1956) was also derived earlier by (or
at least a similar form was) by Villars and Weisskopf (1955).)

For most cases in this thesis, the transmitter and receiver have
the same location (monostaticcase), so the case of interest is

== .
Eﬁs Eﬁi (x 2), and (2.4.1.1a) becomes
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(2.4.1.1D) z> —rr P(2ky ;)

Qbackscatter l

This says that the power scattered back for incident wavelength A
comes from scales in the fluctuations of n of wavelength A/2, which is
to be expected, by analogy with Bragg reflection from crystal planes
(Bragg Scales).

Flood (1968) also discusses derivations of this scatter cross-
section, but considers the effects of the loss of energy by absorption
as the incident wave passes through the medium, which is an effect not
considered by Booker. Consequently, he derives a more sophisticated

"cross—-section'!. He assumes radio pulses are used, and the

%)

form of
"cross section' emerges as a function of the pulse lengths (assuming

the region of refractive index fluctuations "fills" the pulse);

Ae T2
(2.4.1.1c) = 8 4r <|§|2> PRACLI

where
it
=41 c—

=(1-e B )/(4nn c—)

Here, n:L is the imaginary part of the refractive index, (and therefore
related to absorption - see Appendix B), T is the pulse length, and c
the speed of light in a vacuum.

In this case, the cross section " 1o0d is the scattered power
radiated into a full sphere (assuming the radiated power to be the same
in all directions as in the particular direction being examined) for unit
incident power. Flood shows it is not strictly possible to define a
cross section per unit volume, but in the case B ~ 1, it is valid. Then a
cross section n equal to the scattered power per unit volume radiated

into a full sphere (assuming the radiated power to be the same in all
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directions as in the particular direction being examined) for unit

/v

incident power can be defined. Then n = - being the

"r1o0d’ Vnom’ Vno

volume of scatterer. This is similar to the definition for o, ie.
(2.4.1.2) n = 4ro ,

For most cases in this thesis, B is assumed * 1, so the Flood and
Booker formulae agree. (This amounts to assuming weak absorption across
one pulse length; ni %—must be small)
What of P(k)?

Firstly, compare the 2.4.1.1 equations to Ottersten (1969a);
3'"2
(2.4.1.14d) o ="4(2m) T Qn(ZkKi) (Ottersten, equation 2)

where _@nﬂg)dk = <|m|%> .
all k

Then @n(k) can be written
(2.4.1.3a) = <|m]|?> Py(K)
(2.4.1.3b)  where . }Po(k)dk =1,

all k

Further, for an isotropic medium,

Sy J—_
€0
so 2ndn = de
€o
and so
(2.4.1.4) <lan|2> = %< 'AA€_|2> .

The ~ symbol again denotes difference between value for a parcel, and
that for the background enviroﬁment (eg., equations 2.3.2.8 - 2.3.2.10).

Then (2.4.1.1d), (2.4.1.3a), and (2.4.1.4) give



- 3r (A€ 2, T2
(2.4.1.1e) o = (2m) {<|€0| >Iiﬁ-rocggki)}

and by comparing this to 2.4.1.1b, (2")3P0(25Ai) = P(ZEAi) - clearly
different normalizations are used in the two equatioms.

= By'(2.4:153b)¢uP0‘is normalized as IPO(k)dk =1, so
(2.4.1.1£) R :
" 7. |P must be normalized as SP(k)dk = (2m)3.
So all the equations are consistent provided these normalizations are
kept in mind.

-11/3

Qﬁ(k) is also given by 0.033Cﬁ2. k (equation 2.3.1.10a, bearing

in mind that monostatic radar backscatter experiment only sees 1

’

dimensional spectrum - that is it only sees scales-perpendicular to the
radar beam).

Here.the normalization is
Jo. (k) dk = <|a|?> (2.3.1.8, 2.3.1.9),

Thus by 2.4.1.1d, where that @n has a similar normalization,

2 .
_ g 3 hmy -11/3
o 4(2m) a 0.033Cn (—-}\)
giving o = .03ocﬁ2x'1/3, or

-1/3

(2.4.1.5) n = 0.38Cﬁzk (but note the warning below!)

as also obtained by Ottersten (1969b).

However, notice that (2.4.1.5) assumed equation 2.4.1.4. 1In the
ionosphere which is an anisotropic medium, the permittivity is a tensor,
not a scalar (see Appendix B, and the susceptibility matrix). The

refractive index depends on the angle of the radio wave normal to the

144,
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magnetic field; 2.4.1.4 may be valid if e 1s taken as a "component" in
the direction of the radio wave (L am not sure). In this thesis,
(2.4.1.5) will be assumed quite valid, and in equations 2.4.1.1, at times
4<l%?12> may be used in place of <|é§12>, to "remove" ambiguity in the €.
One point must be mentioned with regards 2.4.1.5. Although this
equation (which appears in many texts) appears to treat Cﬁz as a constant,
this is not the case - for a given patch of turbulence, Cﬁ2 is strongly
wavelength dependent! - and equation 2.4.1.5 is-very misleading. The
A_1/3 dependence expresses the wavelength dependence of the spectrum.

But the Cﬁz term depends on the reflection mechanism -~ and this

mechanism has a wavelength dependence of its own.

Proof: The refractive index structure function is (equations

2.3.1.11, 2.3.1.12)

2/3

(2.4.1.6)  Da(x) = <a(x + D) - H@I»> = CF x

n

<{Af1(§_,£)}2> where
a(x + r) - n(x) = m(x,r)

~

and the refractive index a is related to the electron density fluctuations Nj
AR = 22 AR (also see between equations (2.3.2.9) and (2.3.2.10))

(Fluctuations in Af due to collision frequency changes are assumed

negligible for simplicity).

Hence <{sa(x,r)}?> = (%%)2 <{AR(x,r)}%>
so

2 = (ODy2n 2
(2.4.1.7) Cr® =GRy -

But for a given patch of turbulence, Cﬁz is a constant., Thus

Cﬁz o C%%)Z, which is extremely wavelength dependent. For example ,
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for the VHF case ( e.g. Vincent, 1973)

x Te e’
N, where r

(2.4.1.8) ¢€/ey =1 - ) is the classical

e 4megm c
e
electron radius.
Here, N = electron density, A 1is the radio wavelength, e is the

charge of an electron, m, the electron rest mass, and ¢ the speed of

light in a vacuum.

Then
- M r (dN)
e
de = —"——“E“——.Eo
- Xr (dN)

= 2dn = —-—-1‘”:——— by 2.4.1.4.
SO

" o e 2y

dN e

and Caz clearly has a A* dependence.

For the more general case, the Sen-Wyller equations must be used to
obtain %% (for example, Vincent (1973), Fig. 8, shows the ratio of the
backscatter cross section evaluated by the VHF formula to the true Sen-Wyller

cross section, at 2.4 MHz. This in fact is the ratio of ( %%—) by the VHF

approximation to the true %%—, as a function of height).

This wavelength dependence of Cﬁz should be borne in mind when

comparing values at different wavelength - it may be better to evaluate Cﬁ’.

and compare these. (Often Caz is used as an indicator of backscattered
signal, as distinct from ©).

One final point should also be made concerning radio backscatter
measurements of turbulent spectra. The radar spectrum gives the 1D

spectrum of scales normal to the beam. This is not the same spectrum
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as would be measured by a probe moving through the atmosphere, since
such a detector measures the spectrum on a line ﬁoving through the

full 3D turbulence spectrum - it detects effects of all scales with all
orientations. Ottersten (1969b) gives an excellent discussion of the

difference between these two situations.



Table 2.1

Some Important Turbulence Formulae

(See text for any qualifications related to these formulae)

The following symbols are used in this table.

€ = Total energy dissipation rate (per unit mass)

€ buoyancy energy dissipation rate (per unit mass)

g

€q = viscous energy dissipation rate (per unit mass), and also equals
the rate of transfer of energy between scales in the inertial range

k refers to turbulence wave numbers

£ (< k 1) refers to turbulence scales

VZ refers to turbulent velocities associated with scale £

Tp refers to lifetime associated with scale

6 is a tracer of turbulence

L = outer scale of turbulence

Km = momentum diffusivity (eddy viscosity)
Kt = heat diffusivity

K = eddy diffusivity (K = Kt)

wg = Brunt-Vaisala angular frequency

v = kinematic viscosity

z is the typical displacement of an eddy of size ~ L

n = refractive iIndex

N = electron number density

T = temperature

r, = (dry) adiabatic lapse rate

v_ = electron collision frequency with neutral molecules



(i) Energy Spectrum

203753 gy e = i

Buoyancy Range: E(k) ~ €4 k

n(k) takes a variety of complex forms - see text

2/3k—5/3

Inertial Range: E(k) ~ aey

k = [k

o = 1.4 (Weinstock, 1978)

1.586 (Rastogi and Bowhill, 1976a, b)

Inertial Range, component form:

2/3, -5/3 |
€4 ki :

E,(k;) = o4
i refers to 3 orthogonal directions

a; = 0.5 for the direction parallel to mean flow
(Caughey ‘et al., 1978; Gage and Balsley, 1978)

ay = 0.65 for the directions transverse to mean flow

(Gage and Balsley, 1978). 1In these component cases,
a normalization J'Ei(ki)dki = Ez is used e.g. Kaimal et al, (1972).

Viscous Range: Ek) ~ 0.148(€d/v2)2k_7 exp{—k/kc} ?

k = .738k
c N

(Rastogi and Bowhill, 1976a, b)

(ii) Other Formulde (Inertial Turbulence)

dfn L
Kolmogoroff Microscale: n = (va/ed)“ (units of length per radian)

=

1 1 -
Quter scale ~ (K3/Ed)4 [or L ~ (K3/€d)1(4ﬂ2) 3/4 27]

— former more appropriate

g2
<|e£|2> T~ E5 ° v|V6n|2 ~ K(%%J



3
eq ~ Yy /L

often assumed j

€q = (T*)_1 v£3/£

for radar work, £ = 4m/A., Ag

= radar wavelength.

Choices include 1.0, 2m, 157 (see text).

T, = 1.0 frequently assumed.

If £ is actually measured, use

What of T*?

Personal choice, 157 or 30m.

€q4 = 1/10 v3/&(m), £L(m) = scale in metres

Definition of outer scale:

K ~ L4/3k_2/3'r_1:

d8, 2
Lz(m)(329 =

<leL|2>

(equation 2.2.3.3b)

constant relating equation uncertain,

1
Use L ~ (Ksled)f and €q 28 above - a better method,

€ = Ed + Eg
€ ~ ed ~ € often assumed.
oU, : 2
_ i_ _ U,
€= <Vivj> ij <Lvy> (Bz)

(vi are turbulent velocities)

& _ 200
By = —wp<LVs>
Bvi Bvi
e, = v< -

d 81{j ; 3Xj‘
Isotropic turbulence: =
K.m = <LV3>
K, = <Cv_>

15v < (dv, /0% )%

(Rastogi and Bowhill, 1976a)

(15/2)v <(3v1/3x2)2> (Justus, 1967)



2
e, ~e_ ~¢~K (ggﬂ

d g m 0z
U, 2
” Pth(Bz)
where P = K /K, = Prandtl number
r m' Tt

P

r 0.7 (eg. Teitelbaum and Blamont, 1977); Pr ~ 2 - 5 (Justus, 1967)

P
T

0.7 probably best estimate.

Eddy diffusivity and temperature diffusivity roughly equal.
€ = me.z e =K w2 (Justus, 1967): wg = wind shear

K, ~ (c_l),sd/wB2

Possible c; ¢ = 1.0 (used in Fig. 1.9¢c)
— ¢ = 1.8 (this chapter, section 2.2.4)
¢ = 0.10 (Lloyd et al., 1972)

¢ = 3 (Cage and Balsley, 1978)

ed/eg = c3 ed/e = c/Pr Rys eg/e = 1/Pr Ri R, = Pr/(l+c)
[~ Exact relations 1
2
= 2 = 9U. - 2
€4 cthwB , € czert(az) , eg csKth

ed/eg = c /c3, ed/e E Cl/(czPr)Ri’ eg/e = c3/(c2Pr) Ri

R, = P +
PR r/(c;1 c3)

Above, have assumed cp =c¢c, ¢, =Cy = 1

These are probably fair. Probably ¢ ~ 1-3




Radar Formulae

Dy (r) = <{6(x + 1) - 0.(x)}%>
= Cezrz/3 (Inertial)
2 4/3 o
c 2 ~ a’L M, |2 (a ~ 1)
-1/3

~ g2 2
a KIMe| €4

~ (az/Pr) € ed-l/3 |m |2 égga_z

+ other forms (see equation (2.3.2.11)

Where ,
M—"’—n{l‘](dT)+r)—'d—N—(14x10‘+ “lyny + 22 Tn
e ON ‘T dz av Bz
2 - o2 - ; -
Ca® urb Cy (radar)/F F = Fraction of radar volume filled by

turbulence
2 -
o = <|2&]"> w224 P(2k, ) mPsr !
€ —Al
e refers to permittivity here; A is probing wavelength. P(ki) is spectrum
of turbulence normalized st J[P(k)dk = 2m)3

o = (0.38)cﬁ2x'1/3

But bear in mind Cﬁz has strong A dependence.

For observation of turbulence by radar

<
|

= (14 5) 1 (W/4m)/In 2 (amplitude data)

VeMs (10.5)—1(A/4w)V21n 2 (complex data)

v is the velocity associated with scattering scales £ = \bm.

RMS
(However, if long lengths of data are used, and if the polar diagram used

has a wide beam,important complications arise. See Chapter VII for

correct interpretati £ .
P on o VRMS)



For turbulent velocity,

52/3

c2 = (a,?) (0 (r) = <{y(x + 1) - v@ 1)

4.80 (Elford and Roper, 1967; Batchelor, 1953).

Qs
]

(o as in Energy spectrum formulae)

Componernt form

cr 2= (aV 2)62/3

. . (v, (x) = <{v; (& + ) - v, (@12>)

a, 2 =2 (Caughey et al., 1978), Longitudinal component (ie.
i
parallel to mean flow)
a 2 =1.75 ’'(Gage and Balsley, 1978), Longitudinal component
i
a_ 2 =2.35 (Gage and Balsley, 1978), transverse component
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Chapter IIT Introduction, Calibration and some Preliminary Observations

3.1 Introduction

This chapter summarises the experimental techniques used in this
thesis. However, only the basic principles will be discussed; the
actual equipment used will be considered largely as "black boxes"
which receive an input and produce an output. For example, details
concerning the electronics of the transmitter and receivers will not
be considered, unless it is felt necessary for a clearer interpretation
of some of the results obtained.

The discussion will also show how the systems may be calibrated,
and the types of errors involved. To do this the reflection coefficient
of the ground must be known, and some space will be given to con-
sideration of ground dielectric constants and conductivities. Polar
diagrams of the aerial arrays used will be presented, and estimates
of the efficiencies given.

Finally, some simple information which can be gained by just
watching the received signal will be presented.

Two main field stations were used in the work for this thesis.

The major one was at Buckland Park (34°38'S, 138°29'E), near Adelaide
(34°56'S, 138°36'E) Australia. Observations were made at frequencies
of 1.98MHz and 5.995MHz. The second station was near Townsville,
Australia (19°15'S, 146°54'E), and operated at a frequency of 1.94MHz.
The site itself was at (19°40'S, 146°54'E). A third station at
Woomera, Australia (30°45'S, 136°18'E) had also been in use up to 1976.
Although this station was closed before the work for this thesis

began, some important insights into D-region scatterers were obtained
by analysing some data produced at this site. This will be discussed

in a later chapter.



3.2 General Description of the Technique

A brief discussion of the technique used to study D-region radio
wave scatterers has been given in Chapter I, in connection with the
experiments performed by Gardner and Pawsey. Basically, pulses of
radio waves are transmitted into the ionosphere, and these are partly
reflected by scatterers in that region. The reflected signals (or
"echoes") are then picked up by receiving aerials and can thus be
analysed. The delay between the transmission of the pulse and the
reception of the signal is determined primarily by the altitude of
the scatterer in the D-region,at least for frequencies greater than
about 2MHz. ’

Fig. 3.1 shows the simplest arrangement used for the work of
this thesis. It is in fact a general view of the system used at
Townsville. The description of the technique used will be based on
this diagram. More detailed photographs and parameters of the
Townsville system will be given towards the end of the chapter
(eg. Fig. 3.13, Table 3.3b), The transmitter, receiving and record-
ing equipment were housed in a caravan at the centre of the array,

represented by the small dark rectangle in the centre of Fig. 3.1.

3.2a The Transmitter

The transmitter produced a pulse of the appropriate radio
frequency, with a Gaussian envelope. The half power width of the
envelope was variable, but was generally about 30us. Such a pulse was
transmitted at a constant pulse repetition frequency (PRF) of,
typically, 20 to 50Hz. At Townsville, the PRF was intitially 15Hz,
but was later changed to 20Hz. This pulse was then carried by

transmission lines to two pairs of parallel folded half-wave dipoles.
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Fig. 3.1 Plan view of the Townsville aerials. The small dark
central rectangle represents the caravan which houses
the equipment, and the large square the transmitting
array. The lines leading from the large square to the
caravan represent the transmission lines which carry
the signal to the transmitter dipoles. The contours
represent lines of constant amplitude of the diffraction
pattern produced by the scatterers at height h., The
vector 2W represents the drift direction of this
diffraction pattern, and W is the drift vector of the
scatterers at height h. In the bottom left hand corner
are typical amplitude signals which might be received
on aerials A, B and C as the diffraction pattern drifts
across.

See the text for a more detailed description. Figs.
3.13 also show photographs of the Townsville array.



The peak power of the pulse was monitored by measuring the peak
voltage on one side of one of these transmissionilines. Generally,
this was about 600 Volts. 1In Fig. 3.1, the top and bottom lines of
the large square represent one dipole pair, and the two lines
perpendicular to these represent the other pair. Considerable care
was taken in matching the transmitter impedance to that of the dipoles.
The two pairs of dipoles were phased separately. In this way, various
types of radiation could be transmitted. For example, circularly
polarized radiation with either a clockwise or anticlockwise sense

of rotation could be transmitted if one pair of dipoles led the other
by w/2 radians. These types of radiation produced were approximately
0 (ordinary) or X’(extraordinary - also denoted E) radiation for the
latitudes used. Linearly polarized radiation would have been
transmitted had the two pairs of dipoles been phased equally. The
normal mode of operation in the work for this thesis was to use

either O or X modes. The transmitting dipoles were generally about

one quarter of a wavelength above the ground at all sites.

3.2b Reception

The radiation scattered from the ionosphere was received on three
sets of aerials, denoted A, B and C in Fig. 3.1. In the arrangement
used at Townsville, these were in fact two crossed orthogonal inverted-
V-dipoles, with peak heights about 10m above the ground. One inverted-
V-dipole is shown in the bottom right hand corner of Fig. 3.1. The
dipole impedances were transformed to 500 purely resistive, and 50Q
coaxial cables carried the signal received back to the caravan, where
the receiving and recording equipment was stored. Here, the separate
signals from the orthogonal dipole pairs were added, with an appropriate

phase change (+ m/2 radians) to allow for reception of 0 or X
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polarized radiation. This phasing was arranged to match the transmitter
polarization. By only allowing one polarizationlto be received the
atmospheric noise was reduced and polarization fading (interference
between 0 and X modes) was also dampened. However, this was not

always done. At Buckland Park (Adelaide), for example, such phasing

for reception was not always done, Simple linear half-wave dipoles
were used for reception in that case, although frequently the signals

on several of these dipoles were added (before entering the receiver)

to produce a stronger signal and narrower polar diagram.

The received signal entering a receiver was then amplified,
beaten down to an intermediate frequency (IF) of generally 400-500kHz,
amplified again, and finally the amplitude envelope obtained. This
could then be monitored on a Cathode Ray Oscilloscope (CRO). At
a later stage in the thesis work, facilities were added to allow
measurement of phase and amplitude. This will be discussed in more
detail later.

Every time a pulse was transmitted, a form something like that
shown in Fig. 1.10 appeared on the CRO. As discussed in Chapter I,
the time lag from the transmission of the peak of the pulse to any
later time was expressed as a '"virtual range", by multiplying the
time lag by c¢/2, c being the speed of light in a vacuum. Thus a
peak at a lag of 600us corresponded to a virtual range of 90km. If
a peak in the received signal occurred at a virtual height of 90km,
it could usually be assumed that this was in fact due to a scatterer
90km away, since the speed of light in the D-region at frequencies
of 2MHz and greater is close to c. Above about 95 to 100km, however,
the virtual height may be somewhat greater than the true height of

scatter at 2MHz. This is because the electron density becomes
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sufficiently large that the group velocity of pulses at frequencies
near and below 2MHz becomes somewhat less than the speed of light in
a vacuum. Finally, the pulse is critically reflected at around 100
to 110km when operating at frequencies near 2MEz during the day. At
6MHz no such effects generally occur until F-region heights are
reached (250-300 km). (At times however a strong sporadic E layer
can occur at around 110km which can reflect 6MHz radiation). These
2MHz effects are illustrated adequately by Fig. 1.10. The possibility
of ground echoes was also discussed in Fig. 1.10. At night times,
the electron densities are reduced considerably. and the observed
structure differs from that seen in the daytime. Night-time echoes

J

will bhe discussed later.

3.2c Temporal Variations

On each transmission of a pulse. the signal received on the CRO
changes form, as the scatterers vary in reflection strength, shape,
orientation, distance and so forth. If the signal at any one virtual
height is monitored, time series such as those shown in Fig. 3.1
are produced. If the scatterers are moving overhead, the aerials
A, B and C receive similar signals, but with displacements in time.
By determining the shifts of these signals necessary to make them
best match up, the apnarent velocity of drift of the scatteres can
be determined under the assumption that motion is purely horizontal,
For example, suppose the contoursdrawn in Fig. 3.1 represent contours
of equal amplitude of the diffraction pattern produced by scatterers
at a particular height in the ionosphere, and suppose initially that
they do not change in form as they drift, These will move over the
ground in the direction of the scatterers' movement at speed 2W, W
being the scatterer drift velocity (eg., Ratcliffe, 1956 - point

source effect). Let the shift between signals received on aerials
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A and B be ToB and let dAB be the distance betwgen A and B. If the
broken line (which specifies the contour orientation) in Fig. 3.1

were perpendicular to the drift direction, the value dAB/'rAB would

give 2W/cos Q the velocity of drift of the pattern along the line AB,

Here o is the angle between the wind vector W and the line AB,

By using the other pairs of aerial (AC and BC), W and o can be determined.
However, the contour orientation may not be perpendicular to W, as
illustrated in Fig. 3.1. To properly consider such cases, Full
Correlation Analysis (FCA) was developed, by means of which the true
velocity W could be determined even in these anisotropic cases

(eg., Briggs, Phi}lips and Shinn, 1950; Briggs and Spencer, 1954;

Phillips and Spencer, 1955; Fooks, 1965). The possibility of the
contours of constant amplitude varying in time was also considered

by FCA.

There has been some debate as to what D-region drift measurements
actually do measure, but experiments have shown that it 1is generally
valid to take the measurements to be the neutral wind velocity
(see Chaptér I). These wind measurements determined by the Full

Correlation Analysis technique will be used extensively in this

thesis. A fuller discussion of FCA can be found in Briggs (1977b).

3.2d Data Acquisition and Recording

The final stages of instrumentation used in these experiments
were the data acquisition and recording systems. The pulses scattered
from the D-region can be observed on a CRQ; as discussed, and their
temporal variations inspected wvisually. But to analyse the echoes
properly requires recording the signals. Generally, the signal was
monitored at several virtual ranges, and the voltage at each range

stored on 7 track magnetic tape as a number between O and 63 (le.,



digitized to 6 levels). Such numbers were stored at regular intexvals
for each height - typically at intervals of 0.1 to 0.8 seconds. For
example, initially the Townsville system could record data at 10
ranges, in steps of 2 km (for example 60, 62, 64, ..., 78 km) every
0.2 seconds. The starting height could be set at any multiple of
10. Alternatively, the system could cover 20 ranges, again in
steps of 2km, and again every 0.2 seconds. The data could then be
analysed later on a digital computer. At a later date, the Townsville
system was changed, and this will be discussed shortly in the section
regarding recording of phase.

Towards the ?nd of the work for this thesis, a mini-computer
was installed at the Adelaide (Buckland Park) research station, and
in the near future much of the analysis may be able to be done at
that site itself, without the need for data storage on tape. The
installation of this computer allowed data to be collected more
efficiently, and in its initial stages it was used to store data on
tape more systematically. This also resulted in a change in the
way in which the data was recorded. The PRF was changed to 20Hz,
whereas previously it had generally been 50Hz, and sometimes 25Hz.
The ranges used to pick data formerly started at multiples of 10,
plus 2 km (eg., 62, 72 km etc.) and subsequent ranges increased in
(generally) 2km steps. The new system had starting heights at
multiples of 10, eg., 60, 70 km, increasing in steps of 2 km. Ten
ranges were generally recorded simultaneously on the new system.

The former version could record either 10 or 20 heights simultan-

eously.
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Schematic diagram of the electronics used to record in-phase
and quadrature components. Here, fr is the transmitted

central frequency, fL the local oscillator frequency,

and f the received (possibly Doppler shifted) radio

frequency.
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3.2e Phase Recording

Another major improvement to the receiving-and recording systems
was the ability to record both amplitude and phase information
simultaneously. The early work presented in this thesis was obtained
by recording amplitude only, and chapters IV to VI discuss conclusions
drawn using amplitudes. The ability to determine the phase of the
signal allowed determinations of velocity by Doppler techniques
(see later), and also allowed detailed monitoring of height fluctuations
of individual scatterers. The amplitude and phase were not directly
recorded, but rather the "in-phase' and "quadrature' components.

That is to say, the returned signal for a specific virtual range,

E(t), could be written as

E(t) = EIP(t)cos wrt + EQ(t)31n wrt, w_ being the
angular frequency of the radiation transmitted. The term EIP(t)
represents the "in phase" component, and EQ(t) the "quadrature"
component. Since cos wrt and sin wrt form an orthonormal set of axes,

E(t) can be represented as a complex number,
Bpp(e) + JEQ(t), =

Thus the points [EIP(t), EQ(t)], which are the values stored
by the recording system, are directly amenable to complex Fourier
analysis.

Fig. 3.2 illustrates the principle of determination of EIP
and EQ' The signal E(t) is amplified, and then mixed down by
beating with a local oscillator, of angular frequency Wy to produce

an IF (intermediate frequency) signal. This is further amplified,

and then mixed with a cw IF signal of angular frequency (wL = wr).
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This mixing effectively multiplies the signals of frequencies

(wL - w) and (wn - Qr), and thus produces frequeﬁcies [(wL - w) + (wL - wr)]
and [(wL - w) - (wL - wr)]. A low pass filter then insures only

those frequencies close to zero Hz - namely (v - wr) - are allowed

through. This filter must be chosen so as to allow a reasonable

range of frequencies (w - wr) to pass, but so as not to allow any of

the other components through.

As an example, consider a purely sinusoidal input. Suppose the
received RF is E(t) = cos wt, and let the transmitted central angular
frequency be w_. Then the IF signal will be cos(wL - w)t, after
mixing with a locgl oscillator of angular frequency Wy ¢ wr) and
removing all frequencies except those near (mL - w). This signal is
then mixed with an IF reference signal, cos(wL - wr)t. (For example,

at Townsville the IF was 485kHz). The resultant is

cos(w - wr)t, after removal of all frequencies except
those near OHz. This is the "in phase" component. Mixing

cos(wL - w)t with 51n(mL - wr)t produces

sin(w - wr)t after filtering., This 1is the ''quadrature"
component.

Thus if E(t) was a purely sinusoidal oscillation with angular
frequency w, then EIP and EQ are also (slowly varying) sinusoidal
oscillations, with angular frequency (w - wr). If w > w__s
(wL'— w) < (wL - wr). That is to say, the IF produced is less than
(wL - wr), and the in-phase component leads the quadrature component.
If w < W_s (w - mr) is a negative frequency. Physically, this means

that the quadrature component leads the in-phase component. It can

thus be seen negative frequencies have a real meaning in this case.



This system can be used to determine the component of the
velocity of a scatterer towards the transmitter - receiver system.
A positive frequency means w > W or the scatterer was approaching

the receiver. The radial velocity is given by the relation

2vr (Af/f).c

or v (\/2) AL,

r

A beiﬁg the radiation wavelength and Af = (w - wr)/Zﬂ) the offset

of the frequency from OHz. If Af is negative, movement away from the

array is indicated.

A system to record phase and amplitude in this manner was installed

in the Townsville equipment in March, 1979. A version was also
installed in the Buckland Park equipment during 1977, but it could
only operate on one receiver. It was not until May, 1980, that
in-phase and quadrature components could be recorded on several
receivers simultaneously at Buckland Park.

The installation of the phase equipment at Townsville was also

accompanied by a change in the PRF (to 20Hz) and also the method of

storing data on tape. The ability to record "in-phase'" and '"quadrature"

components also allows '"coherent integration'; that is, several
successive points may be averaged together, to reduce the effect

of noise. The "integration time'" must be less than the smallest
realistic fading period of the signals EIP and EQ’ however. If
amplitude only is recorded, averaging of n successive points results

in a signal to noise increase by roughly /n times in power, whilst

averaging n successive points recorded as "in phase" and "quadrature"

improves the signal to noise ratio by n times in power. Further,

averaging amplitudesonly data is strictly speaking an incorrect
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procedure - this distorts the time series and can affect such things
as the autocorrelation and cross correlations. These points are
discussed in more detail in Chapter VI. Such distortions do not
occur when averaging in-phase and quadrature data (ie., the complex
data). The Townsville equipment made use of this fact by recording
data at each height 20 times per second, and then averaging sets of
8 consecutive points using a small microprocessor (SC/MP). These
averages were then stored on tape. Thus data was stored every

0.4 seconds on the later version of the Townsville data acquisition

system.
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3.3 Calibration

When a radio pulse is scattered from the ionosphere, the strength
of the signal received on the ground can be used to determine the
cross—-section of backscatter for the scatterer, or scattering cross-
section per unit volume in the case of volume scatter. To do this,
however, the system must be correctly calibrated, and the description
of how this may be done follows shortly. With the method adopted,
however, it 1s important to have some knowledge of the reflection -
coefficient of the ground, and the first part of this section is

devoted to a discussion of ground characteristics at the sites used.
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3.3.1 Ground Characteristics

The reflection coefficient at the ground for radiation incident
at an angle i to the ground normal is given by
_ neos 1 = /T~ wlsin’i

(3.3.1.1) Rl._ ncos i + — n‘sin‘i

when the E vector is perpendicular to the plane of incidence, and

_'cos 1 = nvl -'n“gin“i

(3.3.1.2) Ry) = os 1 + o/T = nsin’t

when the E vector is in the plane of incidence (eg., Jackson, 1975,
equations 7.39and'7.41).Rl_and R,| are both complex numbers, indicating
the possibility of phase change upon reflection. In these equations,
it has been assumed the refractive index of air is 1, and that the
permeability of the ground,u, is equal to that for free space. The

term n represents the complex refractive index of the ground, and

(3.3.1.3) n? = e‘/eo = g, (1 - jgfeowK)) j = /=1 (MKSA)

[or nZ = uk(1 + 3 4m0/(wk)) in cgs. (Jackson, 1975, equation 7.68).
Notice this has a "+" sign, compared to a "-" in 3.3.1.3. It doesn't

matter whether a "+" or "-"

is used; |n| is still the same. A

4" ig used if wave propggation is written as exp{j(k.x - wt)}, and a
"ot §f exp{j(wt - k.x)} is used (eg., Slater and Frank, Ch. VIII
equations 1.4 and 1.5, compared with Jackson (1975) equation 7.68]
Here, o is the conductivity, and «k the real part of the dielectric
constant, k' = e'/eo. e' is the complex permittivity. w is the

angular frequency of the radiation, and = 2nf, f being the frequency.

Notice for perpendicular incidence, (i = 0),



n-1
(3.3.1.4) R =Ry =97 °
The above formulae imply
(3.3.1.5) n = np + jng

where, in cgs units

np = 1//2 . (/xZ + (20/£)% + |<)1/2

(3.3.1.6) and ; .
1
n, = 1/V2 . (/xZ + (20/£)% - k) *? (eg., Jackson, 1975,

equation 7.69)

These formulae (3.3.1.6) can be simplified if (o/fk) << 1
(good dielectric; poor conductor) and if (o/fk) >> 1 (poor dielectric;
good conductor), but these simplifications will not be considered
here.

McPetrie (1938) has presented graphé by which it is easy to
determine Rl_and Rll given k and (¢/f). For the work in this thesis,
only perpendicular incidence will be considered. Then what are
reasonable estimates of Rl_= Rll = R for vertical incidence? Smith-Rose
(1934), has measured k and ¢ for a great variety of soil types in
England. Fig. 3 of that reference suggests x and o should be reasonably
constant over the range 2 to 6 MHz. Table 2 of Smith-Rose gives
values of (k) at 1.2MHz ranging from 10 to 90, and © ranging from
.12 x 10° to 20 x 10851 (cgs units) in most cases. (cgs units can be
converted to o in mho m ! (MKSA) by multiplying by 4me, =(1/9)x 1079).
For granite, and slate, smaller and ¢ values are possible, and for

very salty red clay, k values greater than 100 were possible, But

the sites involved in work for this thesis were not granite or slate,
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Fig 3.3
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Graphical determination of the reflection coefficient for
radio waves incident vertically upon the ground. KP

represents the real part, and Kp' the imaginary part, of

this reflection coefficient. Here, o must be in cgs units
(s™!) and f in Hz. Then, given the ground conductivity

o and real part of the dielectric constant, k, the reflection
coefficient can be determined. Typical ranges at Buckland
Park and Townsville for x and (o/f), and hence (Kp, Kp?),

are shaded for frequency of 2MHz.

The graph comes from Fig. 3a of McPetrie (1938).
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so the limits of k will be taken as given. Then (k, o/f) at 2MHz
range from (10, 6) to (90, 1000). Examination of Fig. 3.3 (which is
Fig. 3a from McPetrie) shows Re(R) lies between about -0.6 and -0.9,
and Im(R) is less than about 0.15. Thus IRI is greater than about
.62, and probably less than about 0.9, at both the Townsville and
Buckland Park sites, at 2MHz.

At 6MHz, the limits of (k, o/f) are about (10, 2) and (90, 300),
so (R) lies between about -.55 and -.9. 1In both cases, Im(R) is
significantly less than lRe(R)l, so the phase change upon reflection
is close to ﬂc. Thus at both frequencies, the reflected signal is
between 6 to 1 dB down on the incident amplitude.

At Townsville, the soil is a grey clay, generally quite dry
and cracked. Smith-Rose (1934), Table 2, samples 144 to 147, might
suggest k to be about 70, and ¢ about 108 (cgs units) at 2MHz, giving
(x, o/f) = (70, 50), and R ¥ (-0.85, 0.1) (|R| = .85, or a 1.3dB
loss on reflection). However, there may be some doubt as to whether
English conditions are applicable in Australia. Nicol (1974, 1980)
suggests K ~ 10 is more typical of Australian conditions, in which
case lRI may be as low as 0.5.

Buckland Park may be an interesting case. The soil type is very
sandy, so samples 166 of Smith-Rose (1934) would suggest k ~ 8,

o ~ 0.12 x 108, (= 1.3 millimho m !) so that o/f ~ 6 at 2MHz, and
~ 9 at 6MHz. Then R ® (-0.6, 0.1) at 2MHz, and ~ (-0.55, 0.05) at

6MHz. Thus only about 60% of the incident radiation is directly

reflected. However the optical depth of this sand is ¢ = (ZEOC/E) =
Yk /(1880), where ¢ is in MKSA units. For « = 10, and ¢ = 0.12 x 108 x
4re. = 1.3 x 10 3mho m 1, § * 9 metres. But the site is quite close

0

to the sea, and a very salty water table lies under the surface at



a depth of about 3 to 5 metres. Thus that radiation which does not
get reflected directly, but propagates down through the soil,
(attenuating in amplitude), is significantly reflected by this water
table (x ~ 80, o large ?) before decaying completely in amplitude.
The total path travelled to the water table and back up is about one
optical depth, so up to around 30% of the radiation which was not
reflected originally may in fact eventually be reflected. Of course,
this aescription is quite simplistic - the complete solution of the
reflection coefficient for a radio wave incident on such a doubly
stratified medium would be somewhat more complex. But certainly the
water table at Bgckland Park would play a significant role in ground
reflection at 2 and 6 MHz., In fact, measurements of the impedance of
a 2MHz half wave dipole 10m above the ground given values around

200 - j209 (eg., Trott, 1967) at Buckland Park. Reference to say
Proctor (1950) suggests that this means the ground at Buckland Park
is very highly conducting (high « (around 100?) and o).

Thus at both Buckland Park and Townsville, the reflection
coefficient at 2 and 6MHz may be only 1 or 2dB down on a reflection
coefficient of 1.0. In this thesis the amplitude reflection
coefficients will be taken as about

—4(£2)

10 20

and a ¢ phase change upon reflection will be assumed). Perhaps in

‘the future, ¢ and Kk can be measured at the sites. Even quite crude

estimates could place much better bounds on the reflection coefficient R.
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3.3.2 Techniques of Calibration

A detailed discussion of the techniques of calibration can be
found in Piggott et al. (1957). However, the discussion below will

proceed somewhat independently of this.

3.3.2a Definition of Units

In these experiments, a small signal scattered from the ionosphere
was amplified and recorded. The output of the receivers was a DC
voltage, which lay between O and 10 volts. Any stronger signals
saturated at 10 volts. To examine these stronger signals, the gain
of the receiver was reduced until the bC output level fell below
10 volts. Experiments showed that the receivers were quite linear
in their response up to an output value of about 9 volts. That is
to say, the DC output level was proportional to the input RF
amplitude.

Tt was desirable to know the actual strength of the signal
before amplification. Suppose that the peak DC amplitude of an
echo recorded at a virtual range R is DS volts. The input signal
strength may be measured by removing the cable carrying the signal
and feeding a small RF signal from a signal generator, at a frequency
equal to the transmitted central frequency, into the receiver. Then
adjust the signal generator level until the DC output of the receiver
lies in the range 0 to 10 volts also - say DSG volts. The receiver
gain should not be changed during this process. Suppose the signal

generator now reads VSG volts. Then the input signal had a strength

(3.3.2.1) Vg = (DS/DSG)VSG
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Generally, VS and VSG are of the order of uvV for D-region scatter,
and mV for strong E region scatter.

For most experiments discussed in this thesis, the receivers
were calibrated in this way. The gain was not changed after this
calibration. Increases in scattered power were kept below receiver
saturation by using an accurately calibrated attenuator between
the antenna and the receiver to decrease the signal strength. Since
the amount of attenuation (XdB say) used was known, this could be
taken into account by multiplying (3.3.2.1) by lOX/ZO. Thus the actual
voltages produced by the receiving aerials, VA say, could be monitored.

However, VA itself is not the most desirable unit in which to
express the results. Variations in transmitter power will vary VA, and
it is desirable that the unit used to express amplitudes of scattered
radiation be independent of transmitter power. In this way, the

unit can be related directly to back-scatter cross-sections of the

ionospheric scatterers. The unit chosen was
(3.3.2.2) A= (VA/VTX?

where VTX is a parameter proportional to the peak amplitude of the
transmitted pulse. An estimate of VTx was obtained by measuring the
voltage of the RF pulse transmitted on one side of a transmission
line leading to a transmitting dipole (see Fig. 3.1). Call this
VTXl' To be consistent, this measurement was always made on the same
side of the same transmission line, at the same point (close to the
transmitter), and always when the transmitted radiation was O mode.

0 and X mode transmitted powers were assumed equal, and this appeared

to be valid. It may be expected VTX1 could vary as the standing waves

on the transmission lines varied with ground conditions, but the
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effect was not noticeable. An alternative way of monitoring VTX -
namely, monitoring the signal strength on a properly terminated
dipole some distance from the transmitting array to give a strength

v ~'did appear to show considerable variation, depending on

TX2

whether the ground was wet or dry. A plot of V against V

TX1 TX2?

taken over several years, showed a roughly linear trend on any one

day, but the slope varied significantly on different days, resulting
in quite a large scatter when a composite graph was created. The
reason for this is not fully understood, but may be due to changes

in the ground conductances and the position of the effective electrical
ground plane. )

The following units were adopted.

At Buckland Fark, the unit chosen was

(3.3.2.3) A=Y

AV

X’

where VA S (DS/DSG).VSG (see 3.3.2;1).

VTX was taken as the peak to peak pulse voltage measured on a transmission
line divided by 200. This was done for both 2 and 6MHz. The division
by 200 was chosen rather arbitrarily. VSG was taken as the peak
voltage of the CW signal fed in from the signal generator. Such units
were called PRAIRS (Parameter of Reflection for Adelaide Ionospheric
Research), and were denoted by Pr. Of ecourse two measurements of this
quantity as measured on a single dipole, and on several dipoles
coupled together, cannot be compared directly. It is necessary to
distinguish between them. Buckland Park is a large array of aerials
(see shortly), and two particular configurations were commonly used

(a) & dipoles coupled together, to produce a wide polar diagram,

and (b) 89 dipoles coupled together, to produce a narrow polar diagram.
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Fig. 3.4 Ray paths for a ray critically reflected from the ionosphere.
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Prairs as measured on configuration (a) are denoted by Przw (the 2 stands

for 2 MHz, W for the "wide beam"), For case (b). PrZM (the 2 stands for
2MHz, M for "main array")was used. Similar definitions are possible at 6 MHz

and Prairs produced by 6 MHz experiments are denoted Pr6w and Pr6M'

[P ,Pr, may also be used These will mean QMHZ,]
he'ltw MY

At Townsville,

(3.3.2.4) A=V,/V

A"'TX

where VA = (DS/DSG).VSG (see 3.3.2.1).

VTx was taken as the peak to peak pulse voltage measured on a particular

transmission line, divided by 1000. VSG was taken as the RMS voltage
of the CW signal fed in from the signal generator. Such units were
called TIRPs (Townsville Ionospheric Reflection Parameter), and were

denoted by T. At Townsville, only one frequency (1.94MHz) and one

aerial type (crossed inverted Vs) were used.

In Fig. 3.4 a transmitter is assumed to be at T , and a plane
X
reflector is at height h, with a reflection coefficient R. Then the

amplitude received by an array of dipoles 1is

= !
VA (h) ,VTX.R

(The wavefront emitted by the transmitter is assumed spherical, and
falls off in amplitude as 1/r, r = distance travelled. In this case,
r = 2h).

This gives

R « (h)A, A being the normalized amplitude defined previously.

Write this as

(3.3.2.6) R = K, (h)A
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If it is possible to determine K,, and measure A, the reflection
coefficient R can be determined. (K* depends, of course, on the

exact definition of A.)

Method I

One very simple way to measure K is to measure A at night,
for scatter from a level which is known to produce total reflection.
Such situations often occur when a strong sporadic E layer is present
in the ionosphere. These are thin sheets of strong ionization.
They produce almost complete reflection of incident radiation below
their critical frequency, with very little absorption during this
process (as distinct from say daytime critical reflection from the
E region, when deviative absorption can be important —~ see Chapter I).
If it is late at night, so there is very little D region ionization

to cause non-deviative absorption, it can be assumed R = 1, so

(3.3.2.7) K, = (h) A7l

Method II

Method I requires very special conditions, and one can never be
gure that there is no D region absorption. A better technique can
be produced by examination of Fig. 3.4. The pulse produced by the
transmitter propagates up to the reflection region and back, suffering
absorption along the way. Let R' be an effective reflection coefficient,
equal to the field strength received at the ground divided by the
field strength which would have been received had R been equal to 1,
and had there been no absorption.

w .z
' —ZE fO uI.dz
(3.3.2.8) Then R' =Re
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where By is the imaginary part of the ionospheric refractive index at
height z, and the integral is performed up to tﬁe height of reflection
z. The '"2" arises because the pulse must go up and back.

Then the normalized amplitude measured by the Receiver/Transmitter

system is

(3.3.2.9) A, =K, () IR,

Upon striking the ground, much of the radiation will be re-
reflected back yp to the reflection height and back to the ground
(paths 3 and 4 in Fig. 3.4). The result will be another pulse on
the CRO, at a virtual height of 2h, and reduced in amplitude. The
process repeats i;self, and pulses at heights 3h, 4h, etc. will be

produced. This second pulse (called a "second hop'" echo) will have

a strength

(3.3.2.10) A, = [K*_l(Zh)-lR'].pgR'

The (2h) arises because the pulse has now travelled a distance twice
that In producing Al' The term pg represents the ground reflection
coefficient. The R' term arises again because the pulse again suffers

absorption and reflection,as along paths (1) and (2).

(3.3.2.11) A, = K@) THRD %0,

Generally, this second hop is far too weak to see for D region
scatterers (R' less than about 10_3), but for E region reflection, a
second hop can often be seen,particularly on days of weak D-region
absorption. At night, several "hops" of the night time F region echo

can often be seen on 2MHz. If there is a sporadic E, as discussed in



method I, this may hide the F region echo (it reflects all the radiationm,

preventing any propagation to higher levels), but it will have its
own second, third etc. hops.

By (3.3.2.9) and (3.3.2.11),

2 . 21,72 2
A2 RTTERD
A, K;"l(Zh)'l(R')ng
or
A
(3.3.2.12) K, = & . ).
A 2 pg
1
" The quantity
A
(3.3.2.13) K = %—. et 18
A 2

can readily be measured. If pg is also known, K, can be calculated,
and the array will be fully calibrated. Any measurement of A can
be directly related to an effective reflection coefficient, R',
allowing comparisons between measurements made at different sites,
and allowing comparisons of experiment and theory.

The main relation is

(3.3.2.14) R' = K,hA,[ where K, = p_ 'K,

and K is defined by 3.3.2.13. Alternatively, K, can be found by
(3.3.2.7) at times.

0f course, each type of unit A has its own K and K,. (See
3.3.2.3 and 3.3.2.4). For example, a 4-dipole array at Buckland Park,
working at 2MHz, has a value sz. Using the full array at Buckland

Park, one uses a constant K2M at 2MHz, and K6M at 6MHz. At Townsville,
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Fig. 3.5 1Illustration of some of the effects which can produce fading.
The surfaces represent isopleths of constant electron
density with a critical frequency equal to that of the
incident radio wave, The arrowed lines represent ray
paths, '

(a) shows focussing -~ radiation transmitted is focussed

at the receiver, thus producing an increase in

powers

(b) represents focussing which occurs after 2 hops

(¢) represents de-focussing, which implies only a weak
signal is received;

(d) represents beating. The oblique ray, upon reflection,
has a Doppler shift, and beats with the vertical ray

(e) represents the effect of a tilt. Vertically propagating
radiation does not return to the receiver, but is
reflected away. However, there is still a strong signal
due to the ray incident normally upon the isopleth -
unless the system has a very narrow polar diagram.
As time progresses, these isopleths move and change
form, thus producing fading.

(f) shows a typical amplitude distribution for E region
fading.

In connection with (d), it may be noted that if the oblique
scatter is at a large range, the reflected pulse may not
significantly overlap that due to the vertical reflection.
There will be little beating in this case, but the
obliquely reflected pulse will produce its own 'echo"

at a greater virtual range than the E region echo. 1In
general, there usually are such weaker echoes at greater
virtual ranges than the E region. It should be borne in
mind that these are generally not due to scatter from
above the E region, but oblique scatter., Multiple reflections
between the E layer and a strong 90km D region echo can
also produce some of these echoes at large virtual range.
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the constant is denoted KT3 (The "3" indicates that aerial 3 (C
in Fig. 3.1) is used at Townsville, as distinct from aerials A and
B.) It makes no sense to compare A values produced with the different

arrays, but comparisons of R' values is both meaningful and important.

3.3.2c Experimental Determination of Calibration Consgtants

Before the work for this thesis the Buckland Park array had never
been calibrated. By doing such calibrations, a new dimension was
added to investigations of D region scatterers. Although in principal
estimate of K is quite simple, iIn practice it can be quite difficult,
Piggott et al. (1957) have discussed this to some degree. The power
received by a recéiving system from a particular height varies
considerably as a function of time - the echoes are said to "fade".
These variations in time of the signal have already been mentioned,
and examples shown in Fig. 3.1. The fading occurs due to a variety
of processes. For total reflection from the E region, two of the main
reasons are focusing effects, and tilting of the isopleths of constant
electron density. Beating of signals scattered from various oblique
angles can also play a role. Fig. 3.5 illustrates these processes.

In general it is necessary to obtain average A1 and A2 values, although
a freak occurrence of a large amplitude "burst" can bias this mean,

and it is often better to plot amplitude histograms as well., To
minimize these effects, days should be chosen when fading is very

slow (on these occasions, the constant electron density isopleths
should be fairly flat). Further, during the daytime the E, (second

hop E echo ) is often close to the noise level (D region absorption
weakens the E2 echo). There can be a danger that E2 values are only

recorded during focussing as in Fig. 3.5b, giving biased K values.



Table 3.1

Table of estimates of K* and K, These are estimated for
use in the equation (3.3.2.14), R' = K,hA, A being received

amplitude of signal in calibrated power units, h the height
of the scatterer and R' the effective reflection coefficient.
Generally, K, has been obtained from K. ie. K, = p 1, and

in all cases here, has been assumed to equal 10'-4%20
(ie. a 4dB loss on reflection), except in those mentioned,
(in one or two cases direct measurement of K, was made) .

The various estimates of K and K, have quite large errors,

since in general observations were made by eye. This was
because the recording equipment could not record echoes
at a vertical height of 200km - about the usual E, range.

However, measurements of (KW/KM) could be made quite

accurately, by recording the same signal on the 2 arrays
(wide beam and narrow (main) beam),. and assuming R'

was the same in each case. Comparisons of the normalized
power estimates allowed accurate determination of (K2M/K2w).

For example, on day 77/151, comparison was made using a
73km D-region echo which was known to be from a Fresnel-
like, flat reflector. Knowledge of this ratio (KZM/KZW)

will be useful later for comparison of signal strength
received on the two aerial arrays.

7t will be noticed that there 1s a considerable degree of
Zluctuation in the K values. Thils is partly experimental
error (see text), and may also be function of season. For
example, changes in ground conditions may change the

polar dlagram, and hence gain, of the array, thus altering
the K values., In this thesis, the one K value will be
used throughout for each system, but perhaps later workers
could obtain K values as a function of season. Ideally,

a K value should be obtained each day an experiment is
carried out.

It will be noticed that the earlier K estimate were around

T3
1.7,but later estimates were around 0.6. This is probably
because these were daytime measurements, so the E2 echo

was very weak, As discussed in the text, this can lead to
a bias of taking periods when E2 focussing occurs (see

Figure 3.5b), thus leading to over-estimates of KT3'

This problem was not quite so severe at Buckland Park,
where increased transmitter power, and better receiving
aerials meant the E, was usually above the noise level.



Table 3.1 : Calibration Constants.

PN

Day of 77/118 & 171/284  77/304-% 70)0kT  78/076  T78/1h6 79{l‘§5' 78/218  78/306

19/248 797274 80/020 B0/06A 80/065 80/0T4 80/012

I.IDE.I'U.IINI 11/15)

Kirs

N L6 1.2hy 1010
1.5t 1346 1.9%5 1.2
sty P st R A ) 3.6

6.0 a9 P et it s 5.7

Ve 2.8t 3] 1.0 3.5 [ 108
2.k %.5t2.0[2.7%1.6/5.6 [2.75.8

1t A2 R S I 1

#F.3 .85

Ccomment &

X Indicates bad condltions

Notes

(1) 78/306
(2) 79/248
(3) Kpg

Dey Day - Bad Dry - Might Day- Hight- Day-
[ 7Y Fading Quite Vime - Quita (€8 Bad
Estimales - bad Good Good Goad foding-
Estimates Estimaras Very
et

Direct measurement of K, and K in both cases. Sugests
p_ = 2dB loss on reflection, (and 5dB at worst) for

Buckland Park. This is not surprising, as discussed
in Section 3.3.1.

These measurements may be unreliable, as fading was bad.
However, they may also indicate possible changes in K

due to changes in ground effects. This possibility should
be borne in mind (see caption).

Measurements represent averages over the periods shown.
Not all KT3 individual measurements are shown,

(4) 78/156 (0400-0600 hrs). Direct measurement of both K4 and Kpq.
This suggested pg = ~ 3dB loss on reflection at Townsville.

(5) 78/274 (0300 hrs) suggested pg ~ 4dB at Townsville.

Conclusion [K,. = 1.0 = .43 K*ZW = 1,5+ ,6; KZM = 0,5 + .3; K*ZM = .8 = .43
KZW/KZM = (K*ZW/K*ZM) = 1.8 = .4; Key = 2,4 £ 1,0;
K*6M = 3,8 + 1.6; KT3 = 0,4 + .2; K*TB =0,6 .3

In these final estimates Iassumepg = 0.67 (= 3.5dB) for 2MHz, and

Pg

= 4dB for

6MHz .
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To obtain the best K values, night time observations, using a strong,
slowly fading sporadic E echo (or even fhe F layer) should be used at
2MHz. At 6MHz, critical reflection occurs from the F layer, not the E.
However, absorption at 6MHz is considerably weaker than at 2MHz, and F2
echoes can usually be seen in the daytime, The K6 estimates are possible
in the daytime.

At times, it is possible to use both method I (to calculate K*)
and method II (to calculate K) if a good early morning Es can be found.
This allows estimates of pg. This has been done on two occasions at
Townsville, and it was found pg corresponded to about 3 to 4dB loss on

'3/20). This is in

reflection (i.e. reflection coefficient of about 10
line with suggestions made in Section 3.3.1. However, the accuracy
involved in these measurements is uncertain, and may be as large as
+ 3dB.

Table 3.1 summarizes all useful measurements of the various K and

K, values, with comments as to their accuracy.

3.3.2d Turbulent Scatter

The previous discussions have been based on Fresnel type reflection,
but the possibility of turbulent scatter also exists. These calibration
constants can also be used to determine backscatter cross-sections. Imagine
a wavefield incident on a volume of scatterers. Then define n as the
scattered power per unit volume of scatterer which would be radiated
into a full 47¢ if all the scattered power was the same as the backscattered -
power, for unit incident power. Alternatively, define ¢ as the back-
scattered power per unit steradian per unit volume of scatterer, for unit
incident power. Both these terms are called "cross-sections of backscatter'.

(Also see section 2.4, chapter II). It is clear
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(3.3.2.15) n = 4mo .

Now recall
(3.3.2.14) R' = K*hA

is the strength received at the ground divided by the field strength which
would have been received had there been total reflection and no

absorption. If we have non-Fresnel reflection, the quantity
(3.3.2.17) (R")?2 = K, 2h%A?

may be more useful. It represents the power received at the ground
divided by the power which would have been received had there been
Fresnel total reflection and no absorption.

But now consider a wave field emitted from a transmitter with
Poynting vector of magnitude Pt at unit range. At a range h, the Poynting
vector magnitude is Pt/hz. Suppose the wave is now scattered by a region

with backscatter cross section g. The backscattered power per unit

steradian is

- Zc9 fg ﬂlds
2
(Pt/h)-e N Veff [
v being the volume of space producing the scatter (this is defined by

eff

the beam of the polar diagram and the pulse length). Each scatterer
in the region scatters independently, so no longer does the energy travel
as a single wave front. Rather, the power again falls off as 1/h2.

Thus the power per unit area received at the ground is

hw h w
“hlg o ngd Vers ~4y ¢ wpds

s

2 B Y
(3.3.2.17) e (O‘Pt/h )—h'z— OPt/h .e 'Veff
Suppose there had been total Fresnel reflection at height h and no
absorption. The power per unit area received at the ground would have

been
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(3.3.2.18) Pt/(2h)2 = Pt/(4h2)

But the ratio of 3.3.2.17 to 3.3.2.18 is just R'%2, as defined above, so

these two equations imply

h w h w
—4[0 —-pIds —4f0 —-uIds

12 b 2 ¢ = 2 c
R'¢ = OPt/h /Pt/(4h ).e Vg = (R9) .e say,

[]e)

Vefs

(3.3.2.19) RZ = (%9) = (n/(h2)).V . = no2L

V.
[ as —%§£ = ﬂegL, where L = pulse length, 6, =% power ’ width of the beam]

0

il

(This formula may also be seen by equation 13c of Flood (1968), since R?
as defined above = [ES|2/|E0/2|2 in Flood's notation, and Flood's "g"
is equivalént to our n times the effective Yolume).

So if the received power is averaged over some time, and

(3.3.2.20) R'Z = K, 2h?AZ

h w
4f0 c uIdS

RZ =R'Z,e

and thence
found, the crossection of backscatter can be found by means of equation
(3.3.2.19). Having thus obtained o, it is now possible to estimate
terms such as an (see Chapter II, section 2.4).

However, as discussed in Chapter II, it should be noted that these
estimates of ¢ and n are average values for the radar volume (that is,
that region of the ionosphere covered by the width of the polar diagram
and the depth defined by width of the pulse for a range rO). If the
scatter comes from a few isolated scatterers within this volume, the

o and n values for these scatterers will in fact be much larger than

these average values.



Fig, 3.6 One form of night-time echo structure as seen at a
frequency of around 2MHz. The diagram is only crudely to scale
vertically; D region echoes correspond to reflection
coefficients of around 10 % to 10_2, whilst the ESl echo, and

F echo, correspond to effective reflection coefficients R!
of greater than 10 1



176.

3.4 Some Simple Observations

Although most of the results discussed in this thesis were obtained
by recording the data on digital magnetic tape and later analysing the
results on a computer, a surprising amount of information can be gained
by just watching the received signal on the CRO.

As discussed, Fig. 1.10 illustrates typical day time conditions.
But it is instructive to consider the changes which occur at other times
in the day. I shall describe the situation seen on 2MHz during one day.
As the sun sets, D region absorption decreases, as the electron density
decreases. The totally reflected E region echo eventually disappears (and
this disappearance can be quite rapid, as the electron density critical
frequency falls below 2MHz). This allows propagation of the radiation
to higher heights, and total reflection now does not occur until about
250-300km. By this time it is perhaps 2100 hours, The partial reflections
below 80km have disappeared, but some still exist between 80 and 110km.
These can show quite strongly, as the D region absorption is reduced.
However, the noise is now at its worst for the 24 hours,presumably because
the decreased D region absorption allows propagation of noise signals over
larger distances (a plot of the noise as a function of time of day will
be given in a later chapter). The situation may then stay like this all
night - total reflection from about 250-300km, and weak scatter from
80-110km. However, often a "sporadic E" can form in the region 110 to
200km, and this is a very interesting scatterer. It may reflect all
incident radiation (a "blanketing" layer) but at times it can be
only partially reflecting, so the higher F region reflection can still
be seen. Fig. 3.6 presents an example of such a case. Notice also the
presence of the second hop ESZ' There would also be second, third and

fourth etc. F hops (EZ’ F3, Fq, at multiples of 240km (the F1 echo height).
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This "ES" generally moves down during the night, Many sporadic E layers
are generally thought to be due to convergence of metallic ions produced
by East-West vertical wind shears. (e.g.Whitehe;d(1961); Whitehead
(1976); Miller and Smith (1978, Fig. 14), Smith and Miller (1980)).
North-South wind shears can at times also produce an effect, Usually

ES layers are thought to occur around 100-120km, but these weaker, higher
"Estype“ layers do occur (e.g. see MacDougall (1974); Rowe (1974);
MacDougall (1978)). These are also called "sequential ES" layers.
MacDougall (1974, 1978) has explained them as being due to the wind shear
mechanism acting at the nodes of tides in the ionosphere. Thus their
downward propagation actually indicates the phase progression of these
tides. This can bé used to determine whether the diurnal or semidiurnal
component dominates, and also allows determination of the phase (e.g.
MacDougall (1974, 1978)). Briggs and Vincent (private communication)

have shown that the phase defermined by these ES echoes matches well that
determined by PRD measurements.

At other times, particularly during January at Adelaide, and regularly
at Townsville, another ES layer can form at about 90 to 100km. This can
often last all night - and at times, can even exist during the day, partly
masking the "usual" E echo, and also hiding some of the higher D region
echoes, This ES layer at Townsville can be interesting to watch at night.
Sometimes it totally reflects X mode polarized 1.94MHz radiation, but
allows propagation of O mode to greater heights. (The X mode critical

frequency for a given electron density is greater than that for O mode).

This fact will be utilized latexr (section 4.2.4a, Chapter IV).

Around midnight, the radio noise decreases somewhat. Absorption
also continues to decrease, (This can be seen by examining the strength
of X mode F reflections). By early morning, absorption is at its lowest.
Then, at sunrise, the region becomes quite active., The electron densities

begin to build up rapidly, and absorption increases. The noise drops
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Fig. 3.7 Early morning development of the E layer. This graph shows the
height of critical reflection at 1.94MHz, O mode, as a function
of time, for January 19, 1980 at Townsville. The error bars
give an idea of the variability of height of the critical level
of reflection over a 5 to 10 minute period. By 0700, the
critical reflection level is nearly stable, and the E layer
has formed.



Fig. 3.8 (a) & (b)

Absorption L vs. time of day (Eastern Standard Time) for
Townsville, Australia, during January 1980.

Graph (a) shows '"nmormal" conditions, with a smooth daily
variation of absorption. After about 2100 at night, and
before about 0600, absorption is generally less than about
10 to 20dB.

The graphs in (b) show behaviour after a major flare on the
sun on day 25, The smoother curve is typical of the days
before day 26. It can be seen day 26 is a little abnormal
with quite a sharp fall to high absorption by 0900, Day

28 is particularly '"abnormal". Two periods can be seen
when absorption increased dramatically (0930 and 1300)
(these are termed Short Wave fadeouts). The general
character of these days is a rapid increase in absorption
around sunrise, an approximately constant value to sunset,
and then a rapid rise.



JAN- 1980
0iF= (a) § Days 16-21 inc. _e
x Day 22 s
B . ; qu 23 /I//
20 N 1 Day 24 /
TN 3 Day 25 ;X
® \\ I;/
o gy 1 A
~ . -
m - i, % o =
E Ex{“ "}c}:-’ 3
60
80
100 ! I | | | L ! | ! ! | ! I
0600 0900 1200 1500 1800 2100
JAN 1980
0 (b) 0 Day 26 Disturbed -
I Day 27 Normal e
i s
§ Day 28 Disturbed /
\ ’
201 R I Day 29 Normal e
\ /
[~ N\ /
N /
,_\ 40— A ~ //
m N - & 7,
N TN
ol o glm [ &
60 . ll s
! :
SWF
i SWF
10 [ S ! ! | | I 1 | S B
0600 03800 1200 1500 1300 2100

Time (hours)



178.

considerably. Finally, a totally reflected echo appears quite high up
(around 150km), and as the electron density builds up, this echo moves
down. Fig. 3.7 shows the typical movement of such an echo, It can be
seen that it falls about 20 to 30km in 20 minutes initially - a very rapid
fall. Also, the lower D region echoes begin to show (although D region
echoes are not always observed), and by perhaps 0900, a picture like
Fig. 1.10 again emerges (although the actual heights of the D region
echoes may vary).

The build-up of D region total electron density is illustrated
best by Figs. 3.8 (a and b). In these graphs, the E region strength
is used to estimate the parameter L (see equation 1.2.3.1) at Townsville,
Larger L values crudely mean greater D region total electron densities.
The graphs illustrate how the total absorption changes. They show some of
the diurnal changes discussed in section 1.2.3 of Chapter I - graph (a)
shows a typical cosn(x) variation (x = solar zenith angle), and (b)
shows cases where the absorption increases rapidly at sunrise, remains high
all day, and then decreases at sunset. Case (b) also shows some typical
short wave fadeouts. The case (b) occurred after a major solar flare on
Jan. 25, 1980, and magnetic disturbances were reported after this event.
Such effects are due to increase X ray activity, (e.g. Taubenheim, 1962),
and delayed effects are thought to be due to precipitating electrons

(e.g. see Chapter I, Section 1.2.3 e.g. Montbriand and Belrose, 1976 etc.).
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3.5 The Field Sites

The previous sections of this chapter have basically been devoted
to general discussions of observational technique. It will now be
fruitful to discuss some of the more specific aspects of the various

systems used in the work for this thesis.

3.5.1 Buckland Park

Buckland Park was the largest and most powerful installation used
for this thesis. The transmitter arrays (2 and 6MHz) are similar in
form to the general form already discussed - namely, four half wave
folded dipoles arranged in the form of a square, about one quarter of a
wavelength above the ground (actually, about 30 metres above the ground
at 2MHz and 10m at 6MHz). The dipoles are fed by 6009 transmission lines
(each 47m long). (This length was chosen so that the impedance at the
transmitter was purely real.) The impedance seen at the transmitter end
of these lines is roughly 350-4009 (almost purely resistive), and so
when all four are coupléd together in péréllel, this gives an impedance
of about 800. As discussed, opposite dipoles transmit in phase, and may
be given a phase shift with respect to the other pair to produce O or
X mode polarization. The aerials are matched to the transmitter output
impedance. The 6009 transmission line does not match to the aerial
perfectly, but the Standing Wave Ratio is less than 1.7.

The transmitter power could be monitored by measuring the voltage
of the pulse on one side of a transmission line near the transmitter.
This gives a value of typically 1000 volts peak, suggesting the voltage
difference across the transmission line would be 2000V. The peak output
power is thus typically EOZ/R = (2000)%/(80Q), or about 50KW.

The receiving array comprises a square grid of 89 pairs of crossed

orthogonal half-wave dipoles (for 1.98MHz) with a circular perimeter,
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z

A
A G
e
4+
AT s
44+

44
A
R T
_+__
44+

et
A4

>
100 meters

_?_

+ -+
R
b

_+— _-+_ TRANSMITTER |,

BUILDING

Plan of the Buckland Park Array. -There are 89 pairs of crossed
orthogonal dipoles. Each of the 178 dipoles is connected to the
main laboratory by a separate underground coaxial cable. The
2MHz transmitting aerial consists of four folded dipoles arranged
to form a square, with the transmitter in the centre. The

6MHz transmitting aerial is represented by the small square
north of the 2MHz array. The 6MHz transmitter is housed in the
transmitter building, and its signal carried to the aerials by

a transmission line. The diagram comes from Briggs et al.
(1969).



Fig. 3.10 -

(a) A long view of the Buckland Park. Aerial Array. The
extremely tall towers in the middle are 1.98MHz transmitter
towers, about 30m high. There are four of these in the
form of a square, with horizontal folded dipoles between
them. The building in the foreground is the technician's
workshop. The small building to the right of the sign

in the very background is the central receiving hut. The
6MHz transmitter array was to the right of this photo.

Both transmitters were located in the transmitter hut,
which is hidden behind the sign. The faint vertical poles
behind the transmitter towers are the posts used to support
the receiver aerials. They cover the full width of

this photo and more.

(b) The central receiver hut at Buckland Park. The
vertical pole is one of the supports for the 178 receiving
dipoles. On the top, a small box exists (just out of

the photo), and this transforms the impedance of the
dipole to 702, so it can be matched to the cable which
carries the signal back to the central hut. All cables
are buried underground, and are a multiple of half
wavelengths long, so all signals arrive back at the hut

in phase.

The instrumentation in the receiver hut is not shown.

It is similar to that in the Townsville photos shown
later except that a mini-computer is also attached.
Likewise the actual transmitters resemble the Townsville
one.
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Fig. 3.10c Photograph of the instrument used to tilt the beam of the

array.
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the dipoles being separated by 0.6 wavelengths and the array diameter
being about 900 metres. The dipoles are close to resonant at the
transmitted frequencies of 1.98MHz (when they are half-wave dipoles) and
5.995MHz (when they are three half-wavelength dipoles). Each dipole is
connected independently to a central receiving hut.

A more complete description of the array can be found in Briggs et al.
(1969). Fig. 3.9 shows a plan of the array, and Figs. 3.10a and b some
photogéaphs of the array.

In the early work for this thesis, only 2MHz was used. The 6MHz
transmitter was not finished until late 1979, When used at 2MHz, the
array was generally used in the following manner. A full set of 89
parallel dipoles (generally those aligned East-West) were coupled together
to form a large array with a narrow polar diagram. This polar diagram
had half-power points at * 4.5°, and the first minimum was at 11.6°
from the zenith when phased for reception from the vertical. This beam
will be referred to as the "marrow" or main beam. Twelve of the North-
South aligned dipoles of the array were used to simultaneously measure
winds by the partial reflection drift technique., These twelve dipoles
were used to form an approximately equilateral triangle, each corner of
the triangle comprising a set of four adjacent dipoles in the form of a
square coupled together. The half power width of the polar diagram of
such a square was approximately 20°, This beam will be called a "wide"
beam. For more information concerning measurement of winds see Stubbs (1973).

One of the earliest projects for the work of this thesis was the
construction of a phasing system to tilt the narrow beam of the array
when operating at 2MHz. The dipoles were coupled into eleven rows, and
the impedances transformed to 50Q. Phase shifts were introduced for each
row by passing the signals through 50Q cables of appropriate length. These

phase shifted signals were then coupled together, transformed up to 500
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again, and then fed into the receiver. By means of a series of switches,
the phase shifts between successive rows could be altered, thus altering
the tilt angle of the beam. If the phase shift between successive rows

was ¢ radians, the angle of tilt from the vertical was
3.5.1.1 6 = sin l((¢/2m),(1/0.6)),

since adjacent rows of the array were 0.6 wavelengths apart. The phase
could be adjusted in steps of cable lengths of .01\, A being the wavelength.
This corresponds to steps of ¢ of 4¢ = 2ﬂ/100c, although there were some
multiples of A¢ which could not be attained. Generally, however, it was
possible to tilt Fhe beam in small steps (A6 ~ 1° in the range 6 = 0° to 20°,
and increasingly coarser steps at larger 6) from 6 = 0° to 6 = 90°.

A more complete discussion of this beam swinging apparatus will not be

given here. One can be found in Hocking (1976). Fig. 3.10c shows a
photograph of the beam swinging apparatus.

The phasing system was tested initially by measuring E-region reflected
powers at a variety of angles, on those occasions when the E-region
appeared to be behaving as a smooth horizontal mirror. The received
signal strength varied as a function of angle in the manner expected
from the theoretically predicted polar diagram. Fig. 3.11 shows some
typical results.

The polar diagram of the full array was calculated numerically on
a computer. The subroutine used for this calculation is called "BPRES"
and can be found in program "VOLSCAT", which appears in the appendices.

The effects of the dipoles were summed, incorporating the dipole polar
diagrams. The ground was considered by including a ground reflection
coefficient. The major weakness of the program was that this reflection

3 3 . . c
coefficient was assumed to be real, with a phase change of m  upon



Figs, 3.12 Slices through the polar diagrams of the Buckland Park
Aerial array. These diagrams are the combined polar
diagrams of the transmitter and receiver aerials, All
assume a reflection coefficient at the ground of 1.0,
with a 7° phase change, Changing the ground reflection
coefficient does not greatly affect the shape of the
polar diagram-at least,not near 0°, The 2MHz array uses
A/2 dipoles for transmission and reception, and the 6MHz
system-uses A/2 dipoles for transmission and 3A/2 dipoles
for reception. The receiving dipoles are 10m above the
ground. The 2MHz TX dipoles are 30m above ground, and

the 6MHz TX dipoles 10m above ground. Graphs (b) and -

(c) show the grating lobes at 6MHz. Grating lobes only
appear at these ¢ values; at all other orientatiomns,
there are no such lobes,
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reflection, and was assumed independent of the zenith angle. These are
not major errors, as it was seen in section 3.3.1 that the ground reflection
coefficient is largely real and negative, and the graphs of McPetrie
(1938) show the reflection coefficient is reasonably independent of angle
out to about 30°. Most of the power received was well within * 30°.

Figs. 3.12a, 3.12b and 3.12c show cross-sections of the polar diagrams
of the full Buckland Park array, for operation at 1.98 MHz and 6.0MHz.
The transmitter polar diagram has also been considered by regarding it as
two parallel dipoles parallel to the receiving dipoles, and ignoring the
other two dipoles of the transmitter. This is not exactly valid, but
quite a good apprpximation near the vertical. The half power widths of
the arrays are t 4,5° at 2MHz, and + 1.5° at 6MHz. Notice also the
presence of "grating lobes" on the 6MHz polar diagram, This is because
when used for 6MHz, the receivingdipoles (which are 3-half-wavelength
dipoles) are greater than one wayelength apart (1.8 wavelengths in fact),
There are eight such grating lobes - two at * 33.8° in the direction
parallel to the dipoles, two at * 33.8° in the direction perpendicular
to the dipoles, and four at * 51.8° in the four directioms at .
+ 45° from the dipole orientation. These grating lobes are shown in
Fig. 3.12c. Notice they are down in strength compared to the 0° lobe,
partly due to the effect of the transmitting antenna array.

Using this computer subroutine, it was also possible to estimate
the directivity, effective areas and radiation resistances of the arrays.
The directivity is given by

w/2 2w

(3.5.1.2) D = 471.P(0,0)/ (o foog

P(0,4)d0),

where P(0,¢)d0 is the power transmitted (or received) into solid angle d@ at

a zenith angle § and azimuth angle ¢«



1.98 MHz 6.0 Miz

Grouad Refl, 2 N
Coulflclent g Aeff(m ) “r(n) réff(m) B Aeff(m ) Rr(ﬂ) rcff(m)
&=
0.0 200 3.6 x 105 0.3 340 146 .29 x 108 0.82 96
(absorbing
yround)
0.5 320 5.8 x 105 0.25 430 358 .70 x 10% 0.74 152
1.0 420 7.2 x 17 0.24 475 405 .83 x 105 1.16 " 163

Table 3.2 Estimates of directivity (D), effective area (Aeff) and
radiation resistance (Rr) for the full Buckland Park array, and

for the specified ground reflection coefficients. A we
phase change was assumed upon reflection. The radius of a
circle of area Aeff is also given (reff)’ and this can be

compared to the true array radius of 450m. (although bear in
mind that the true effective radius may be larger than this,
as the effective area of the outer dipoles extends beyond
these dipoles). The transmitter has not been included in
these calculations. Notice how at 6MHz, the effective radius
is considerably less' (by 3 times) than 450m, due to the effect
of the grating lobes in (3.5.1.4). The ground reflection
coefficient is greater than 0.5, so the directivities may be
taken as about 350 to 400 in each case.
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When the reflection coefficient at the ground was not 1.0, the power
absorbed by the ground must also be included in the integral term above.

The radiation resistance is
(3.5.1.3) R, = JJ P(6,$)de/(0.5(N I)?),

where I is the current in one dipole, and N is the total number of dipoles.

The effective area 1is then

= 2
(3.5.1.4) A p; = DAZ/4m

These parameters were tabulated for various ground reflection
coefficients, and appear in Table 3.2, The program was checked by
estimating the radiation resistance of a single dipole in free space,
and the correct value of around 73Q was obtained.

These parameters have not been determined for the 4-dipole array.
However, taking the effective diameter as crudely the diagonal distance
between 2 corners of the square gives an effective area of 1.3 x 10" m2,
and a directivity of 7. The true directivity may be as large as 10.

These estimated directivities,-along with the K, estimates made previously,
can be used to determine the efficiency of the arrays,

Imagine the peak power output of the transmitter is W. The vertically
transmitted Poynting vector is Pt(r) = W/4ﬂr2.DT e, where D is the
transmitter directivity, and €p the efficiency.. (DTeT = gain). Suppose
the wave travels to a height h, and is totally reflected. Assume no

absorption occurs. Then the Poynting vectox magnitude at the ground is
= 2
P (2h) = Wwhim(2h) ).Dper
The power received by a receiver is thus

W/l (2h) 2).DT€T) (A peeep)
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where A.eff is the effective area, and €R the receiver efficiency.

- 2
A e DpA /4w, so

. = 21,72 2
(3.5.1.5) Power received = W/647mch DTDRA (eTeR)
But by (3.3.2.14), the received amplitude (in Prairs) in this case is
(3.5.1.6)  A(P) =K, Th! (R' = 1)

But A = (peak volts received going into the 508 receiver)/VTX 9

VTX being a measure of the transmitter volts, (as defined).

So the received peak power is AZVTX?/SOQ (since the receiver impedance

is 509).

So the

(3.5.1.7) peak power received = (K*-lh_l)ZVT&?/SO Watts
Equating 3.5.1.5 and 3.5.1.7 gives

(3.5.1.8) eqep = (64ﬂ2.VTXZ)/(DTDRAZK*Z.SO.W)

Typically, when VT = 10, the transmitter volts are 1000 volts peak on

X

1 side of a transmission line, so the total volts are 2000 volts. However,
only the 2 dipoles parallel to the receiving dipoles are important, so

the total useful power output is (2000)2/80Q x 0.5 = 25kW. So

VTX?/W =4 x 1073, DT is the directivity for the 2 parallel dipoles,

say about 4. Also bear in mind that in Table 3,1, K, is for h in km,

so 1f h is in metres, divide by 103, In this case, for the narrow beam use
K62M = ,0008.
Then

EpER ~ 0.2% (Narrow beam)
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For a wide beam, K*ZW -~ 0.0015, D, ~ 7, so

T

€rfR ” 3% (Wide beam).

These numbers may be in error by perhaps a factor of 2 or 3 if the
assumed transmitter and receiver directivities are wrong. But it can be
seen the efficiencies are not high, particularly for the narrow beam.

In fact it only receives at best about four times the power of the wide
/K

beam (X %= 1,8). However, the narrow beam does have the advantage

®2W' TR2M

of cutting out a lot more noise than the wide beam, since most noise comes
in from the off-vertical directions. In building such a large array, the

improvement of the signal to noise ratio is perhaps the main requirement.

The above efficiencies also include the transmitter efficiency. If we

assume a wide beam and the transmitting array have similar efficiencies

then
€ide beam Y Ep 7 17% (ie. VY37%)
Thus
€ ~ 1%.
narrow beam
In the 6MHz case, V.., = 10 when the transmitter volts are about 1000V

TX

peak on 1 side of a transmission line, In this case, however, the
transmitter feeds into a single transmission line which carries the signal
out to the centre of the transmitting array, and from there four feeder
lines go up to the dipoles. 1In this case, the transmitter sees an impedance
of about 400-500Q. Only half the aerials are important as before, so

W = (2000)2/400 x 0.5 = S5KW. SO(VTXF/W = ,02, Assume DT ~ 4, Dp - 400,

Kooy ~ .0038 (for height in metres). Then

Assuming €p ~ 17% again gives ER(6MHz) ~ 2%.
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3.5.3 Townsville and Woomera

Most of the important features regarding the Townsville site have
already been discussed. Figs. 3.13 show photographs and diagrams of the
site, and there is little more that need: be said. The system began as an
amplitude-only system, but graduated to recording in-phase and quadrature
components in March 1979.

The Woomera system was simpler than the Townsville system, but its
basic design was quite similar. Four receiving aerials were used instead
of three, however, and it only recorded amplitude data. None of the data
taken was ever calibrated.

This chapter, concludes with Table 3.3, which summarizes the main

characteristics of the system used in the work for this thesis.



Fig. 3.13

(a) Photograph of the Townsville transmitting array. The
caravan which housed the transmitter and receivers can
also be seen.

(b) This is an expanded diagram of the photograph in (a).
The broken line square indicates approximately the area
covered in the photograph (a).

Also shown are magnified views of various parts of the
main figure. D shows how the folded dipoles were attached
to the main towers. The small dark vertical rectangles

on the dipoles are called spacers, and hold the wires of
the dipoles apart. All were insulators, except those on

each end of the dipole, which were conducting. Some support

cables to support the tower are also shown, although

in reality there were many more. The dipoles were in-
sulated from the main towers. The dipoles were attached
to halyards, so they could be wound up and down without
bringing the tower down., These halyards have not been
drawn. The dipoles were about 15cm between opposite wires.

E shows the point where the transmission line meets the
dipole.

C shows a view of a typical receiving aerial. The 2
orthogonal dipoles did not actually touch; one passed
under the other. Each dipole fed into a small box,
which transformed the impedance to 50Q. The signal was
then carried back to the central caravan by 50Q cables,
each cable being a three half wavelengths in length.

The signal received by each dipole was carried separately
back to the caravan.






Fig. 3.13 (c) Photograph of the transmitter inside the caravan
at Townsville. (An air conditioner to control the
temperature can also be seen in the background. This also
doubled as a fridge!), The various levels, starting from
the top, are: the Aerial Switching Unit (ASU), Aerial
Tuning Unit (ATU), Power Amplifier and Driver (that is the
.one with the meters), the pre-driver section, the Power
Amplifier Modulator, the power supply and the High Tension
Power Supply (with meters) and finally a fan at the bottom.
The transmitter attached to the transmission lines through
the roof of the caravan,

(d) View of the receiving equipment used at Townsville.

The tape recorder can be seen at the top. The transmitter
can be seen in the foreground, and the CRO used to examine
the echoes visually is between the transmitter and receivers.
The cables hanging on the sides of the receiving rack

were used as phase shifters. The two cables from a pair

of orthogonal receiving aerials were each fed into two

70Q, quarter wavelength cables, which transformed their
impedances -up to 100§, Then one of these was passed through
a 1009, quarter wavelength cable to give it a 7/3 radian
phase lag. This was then added to the signal from the

other dipole; in this way, either O or X polarization could
be received, depending on which dipole had its signal

pass through the 100Q cable,






TABLE 3.3a BUCKLAND PARK AERIAL ARRAY ( '"'2MHz'' and ‘'6MHz2" )

{ as of January 1980 )
GENERAL M2MHZ" VgMHZ"
Location (34°38's, 138°29'E) (34°38's, 138°29'E)

Magnetic Co-ords

Beginning of
operation

Central
frequency

(fo)

Central
wavelength (1)

Modes of
Polarization

Ground reflection
coefficient ?

Transmitter

Tx Array

Pulse repetition
frequency: (PRF)

Nominal pulse
length

Range
resolution

Peak volts on
one side of Tx
feeder lines

Tx aerlal imped-
ance seen at Tx

Peak Tx pulse power

Tx effective area
Tx radiation
resistance

Tx direct ivify

Half power, half-
width of polar
dlagram

Efficiency

(45°s, 213°E)

1968
1.98MHz
151 .4m

0, X generally
0.6-0.9 - probably ~0.8

4 hal f-wave folded dipoles
in the form of a square,
approx. A/L above ground.

Usually 50 Hz in 1978
Generally 20 Hz after
January 1978

50 us basewidth, 30 ys
half-power width

4.5 km
~ 1000V
8o

50 kW

(45°S, 213°E)

Late 1979
5.995MHz
50.0m

0, X generally

0.5-0.8 - probably ~0.7

4 half-wave folded dipoles
in the form of a square,
approx. Ak above ground.

20 Hz

400~5009
10 kW

The calculatlions have not yet been done

~ 4-8 17

~ 48 17
~ 3¢
~7% T

Jcontinued.......



TABLE 3.3(a) cont

c.

Receiver aerials a

fnued.....

nd receivers

Rx aerial type (2
deslgnated (i) and

(i) =
(1i) =

narrow (ma
wide beam

Bandwidth of Rxers

Rx effective area

Radius of a clrcle
area

Rx radiation resis

Rx array directivi
not included)

Hal f power half-wi

Efficiency

Recording System
No. of heights rec

Steps between succ
Coherent integrati

Frequency of data
(after coherent In

No. of receivers r

NOTES:
(i)

(ii)
(iii)

main aerial types at B.P.
(ii).

in) beam

of given effective

tance

ty (Tx polar diagram

dth of polar diagram

orded simultaneously

essive heights recorded
on over n pts

collected per height
tegration)

ecorded simultaneously

The system was modified to

Effective areas, radiation
beams; other estimates not
mean calculations have not

"2 MHz"
(i) B9 parallel half-wave (11)
dipoles 90 m spacing
In a square grid with
circular perimeter,
~ 450 m radius
(ii) 4 parallel half-wave
dipoles 1.8)% space,
at the four corners of
a square
~ 30 kHz half power
(i) (3.6 ~7.2) x 10°m’ (1)
(it) 10'm* 7
(i) 340 m~+475m (i)
(i) 60 m?
(i) (.3 .28)0 (ii) 17 (i)
(i} 200-k20 (ii) ~77? (i)
(i) 4.5 (ii) ~20° (i)
(i) ~1% 1 (i) ~17% 7
Before 1978: 1, 5, 10 or 20,

1978 +;possible to alternative
diff. sets of 10 hts each min

"6 MHz'

As for 2MHz, but dipoles are
3-hal f-wavelength

{only (i) used at present)

~ 30 kHz half power

(.29 + .83) x 10°m’

96 m ~+ 163 m
(.82 » 1.16)Q

(146 - 405)

1.5° There are grating lobes
also: 4 at 32° from vertical,

4 at 52°.

~ 2%

} "
2 km
1
5 Hz
4

run off a mini computer around January 1978.

resistance, gains, only calculated properly for narrow

properly calculated (yet).
been done fully.

the proper integrals have been performed on a computer.

Question marks generally
No question mark generally indicates

Some 6 MHz work had been done bufore 1979, but with a much ltess powerful

transmitter. The work all

involved F-region scatter.
that made in 1979 has been able to see D-region echoes at

No system previous to
6 MHz

at Buckland Park.



(a)

(b)

TABLE 3.3b  TOWNSVILLE AERIAL ARRAY ("'2MHz")

(as of January 1980)

General

Location (19°40's §146°, 54'E)
Magnetic Co-ords (29°s, 219°E)
Beginning of Operations September, 1977
Central frequency (fo) 1.95 MHz

Central Wavelength () 154. 4 m

Modes of polarization 0, X

Ground reflection coefficient ~0.6 -0.97

.

Transmitter

Tx array 4 half wave folded dipoles in
the form of a square, approx.
Al above ground (30 m actually)

Pulse repetition frequency (PRF) 15 Hz up to March 1979; 20 Hz

thereafter
Nominal pulse length 50 us basewidth; 30 ps half power
width
Range resolution =~ c(Zt%)/Z L .5 km
Peak volts on one side of
Tx feeder lines ~ 600V
Tx aerial impedance seen at Tx ~ 80Q
Peak Tx pulse power ~ 20 kW
Tx effective area ?
Tx radiation resistance ?
Tx d ir,ecﬁvi’r\y ?
Half power half width of polar
diagram ~ 30°

Efficiency 7



TABLE 3.3b continued.....

(c) Receiver Aerials and Receivers

3 pairs of orthogonal

Rx aerial types erossed inverted V, half wave
dipoles, 165 m spacing, to
form an equilateral triangle

Bandwidth of Rx ~ 30 kHz half power
Rx effective area ?

Radius of a circle for a given

effective area ?

Rx radiation resistance 7

Rx array directivity (Tx polar

diag. not included) ?

Half power half width of polar

diagram ?

Efficiency ?

(d) Recording System

(No. of heights recorded
simul taneously, steps between

stccessive hts recorded) (10 or 20, 2 km steps)
Coherent integratover n
points Before March 1979, no coherent J 3

after, 8 pts.

Frequency of data collected
per height, per receiver (after

coherent integration) Before March 1979, 5 Hz; after,
2.5 Hz

No. of receivers recorded

simultaneously 3 ; before March 1979, amplitude
only - after, 1/P, Quad on each
receiver

NOTE:

—_

(i) System originally had PRF 15 Hz, and recorded amplitude
only. In March 1979, PRF became 20 Hz, and system
recorded amplitude and phase.
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Chapter IV Angular and Temporal Characteristics of D-Region Scatterers
Using Amplitude-Only Data

4,1 Introduction

In the previous chapters, studies of radio frequency scatterers in
the D-region have been reviewed, and some of the techniques used in the
work for this thesis have been introduced. It is now appropriate that
some early observations be presented.

In some ways, it might have been useful to present some additional
theory first, particularly some important techniques for the estimation
of noise from the received signal. But in practice, this would have been
unwise. After thFee chapters, with very little in the way of experimental
results having been presented, the reader is no doubt ready for some
actual data. Hence the chapter regarding estimates of noise will be left
until Chapter VI. This also has the advantage of placing this thesis
in something of a chronological order, since the theory regarding estimates
of mean noise from the signal did not evolve until late 1977, sometime
after many of the observations presented in this chapter were taken,
Before that date, noise was estimated by simply turning the transmitter
off, and monitoring the received signal. This practice was maintained
even after the development of the noise estimation theory, since it gives
more accurate estimates than the theory. But the noise theory could be
used at times when the system was un-manned, and it was for this purpose
that it was derived. The actual mean signal power could be found as the
mean received power minus the noise power,

In the early stages of the work for this thesis, the systems used
could only record amplitudes, and this chapter discusses results obtained
using amplitude alone. A considerable amount of information could be

obtained with these techniques, and important insights into the structure
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of D-region scatterers will be presented.

A review of studies at VHF by other authors will also be presented,
and it will be seen that the observations at HF and VHF complement each
other to some degree. Valuable information has been gained by pooling

the two sets of results.



Fig. 4.1la

Contour plot of l-min means of calibrated power vs. range and time taken using a narrow
beam on day 77/151. The means were smoothed by interpolation. X mode polarization was
used for transmission. The presence of a distinct minimum at 80-82km is the most
obvious feature. Strong bursts of power at 66-70, 74-76 and 90km can be seen. (The
power levels can be converted to dBs of (uPrM)2 by subtracting 9db).

Much of the signal from above 80km was probably actually O mode leakage.
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Fig. 4.1b Contour diagram of smoothed l-min power means vs. range and time, taken with (a) a
narrow and (b) a wide beam on day 77/151. The power levels are not dBs of (uPr)2.
Rather, they have been corrected to allow for the differing gains of the two antennae,
and arbitrarily adjusted so that the minimum level is around 0dB. To convert to
dBs of (uPr)z, subtract 13dB for the narrow beam and 17dB for the wide beam.

Powers are strongest in a layer centred on 88~90km for the narrow beam, and strongest

at 88-92km with the wide beam. The larger powers on the wide beam, the increase in
range when the narrow beam was pointed at 11.6° off-zenith, and the strong powers at
11.6° all indicate significant off-vertical scatter for this layer. O mode polarization
was used, since this suffers less absorption than X mode. Maximum powers correspond

to reflection coefficients of about 1.3 x 10 3.
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Fig. 4.1lc

Contour plot of smoothed 1-min power means vs. range and time, taken with (a) a narrow
beam and (b) a wide beam on day 77/151. The power levels are not dBs of (uPr)Z2.
Rather, they have been corrected to allow for the differing gains of the two antennae,
and arbitrarily adjusted so that the minimum level is around 0dB. To convert to dBs
of the respective (uPr)z, subtract 9dB for the narrow beam and 13dB for the wide beam.

Strong bursts of scatter will be noted in a layer centred on 74km. The lack of significant
power recorded whilst the narrow beam was at 11.6°, and the very close similarity between
corrected echo powers on the two beams suggests that most scatter came from the vertical.

X mode polarization was transmitted, since it is reflected more effectively than

0 mode, and there is little absorption up to such heights. Maximum powers correspond

to reflection coefficients of about 2-4 x 10 *.
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4.2 Investigations Using Time Scales of the Order of Minutes

Until about 1970 the bulk of observations of ionospheric D-region
echoes had been made with photographic recording, using similar techniques
to those of Gardner.and Pawsey (1953). This allowed only qualitative
examination of echo strength fluctuations. To obtain quantitative values
of echo power, it was necessary to record the data on magnetic tape.
Furthermore, few investigations of the angular spectrum of these scatterers
had been undertaken. Lindner (1975a, b) and Vincent and Belrose (1978)
had obtained some indirect results, but little other work had been done.
More detailed investigations of temporal variations and angular distrib-

utions were necessary.
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4.2,1 Temporal Variations

Figs. 4.la, 4.1b and 4.lc present some of fhe earliest quantitative
results of D-region investigations. The diagrams come from a paper
published in "The Journal of Geophysical Research", March, 1979. This
paper is reproduced as Appendix D.

The diagrams are contour graphs of the power received at Buckland
Park for the 151st day of 1977 (denoted 77/151 (May 31, 1977)), plotted
as a function of time and range. The powers were recorded at 2km range
intervals, at a rate of 2.5Hz per range, and were then averaged in one
minute blocks. These mean powers were then smoothed by computer inter-
polation (Akima, 1974). Wind measurements were also made‘using the
partial reflection drift technique. As discussed in the captions, the
powers were fully calibrated. The powers are not in (uPr)z, but were
adjusted for the purposes of the paper. The powers may be readily converted
to (uPr)? as described in the captions.

Fig. 4.la is a contour diagram of power as a function of range
and time using the narrow beam of the Buckland Park array pointing vert-
ically, and using X-mode polarization for transmission. Intermittent
increases of signal power will be noted at ranges of approximately 66-70km,
74km and 90km. Thus the D-region irregularities were clearly quite
stratified on that day. Stratification of the scatterers has already been
discussed in Chapter I. The X mode is strongly absorbed above 80km and
so the 90km reflection coefficients are actually much larger than they
appear from this diagram. A very definite "wvalley" can be seen at 80-82km.
The strong signal above 96km is due to total reflection from the E-region,
which saturates the receivers. Some of this may in fact be O mode leakage
of the totally reflected signal. The time interval shown in Fig. 4.1a

coincides with the period of most frequent burst of power at 66km on this
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particular day. On other days, however, the layer can be more significant.
Figure 4.1b shows contour diagrams of the power returned from 82
to 100km range during the period 0915 to 1034 hr. on both a narrow and a
wide beam, and Fig. 4.lc is a similar pair of diagrams for the ranges
62 to 80km from 1445 to 1604 hr.
A layer in the region 85 to 95km is a common feature at Buckland
Park, and this layer often persists throughout night and day. The 90km
layer on day 77/151 had a minimum O mode reflection coefficient of about
6 x 10 %, and rose to 1.3 x 103 on some occasions. If it is assumed that
the scatter was due to turbulence, then the backscatter cross-section is
m = §2AB%2L)(equation 3.3.2.19, Ch, III). For the narrow beam,
6;5 % 4.,5°, and the pulse half power length on this day was about 6km.

Then n ® .027R2, so for R2 ~ 1076,
n*2.7x 10 8m 1, or T % 2,15 x 10 %m ! sr'l. Then

/3

(n/.38) x (151.5)l by equation 2.4.1.5, or

(@]
gt
n

124

(4.2.1.1) C_Z = 14.0% n2/3 = 38R2 * 1760

n
at 2MHz using the narrow beam at Buckland Park. For R? = 1076,

cn2 = 3,8 x 10 7.

These calculations assume that the turbulence fills the radar volume.

If this is not so, E;Z (turbulence) is even larger, as discussed in

section 2.3.2, Chapter II. The effects of absorption have not been

removed, and this means that E;zlvalues are understimates. Typically

the error is only a matter of 2 or 3dB for heights below 90km on O mode at
2MHz. (This absorption estimate was made using a "typical" D-region electron
density profile, and integrating the effects of absorption over the path

a ray would take. Refractive indices were calculated with the Sen-Wyller

equations).

One feature of both graphs 4.lb and 4.lc is the occurrence of strong
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bursts of power, those at 90km rising by around 3dB over the normal level,
and those at 74km by around 10dB. The bursts at each height have a quasi-
periodicity of between about 5 and 15 minutes. For the 74km layer, bursts
often last less than 2-3 minutes. This "burstiness' is very similar to
some VHF results obtained using scatter from 70 to 74km altitude (e.g.,
Rastogi and Woodman (1974); Harper and Woodman, 1977), and suggests that
VHF and HF experiments are observing the same structures. This point has
already been briefly discussed in Chapter I, and will be discussed in
more detail later.

Wind observations made on this day showed a strong, principally
eastward, wind jet at 74km, which attained speeds up to 70ms” '.
Discussions of correlations between layers of scatter and wind

]

profiles will be left until a later chapter. However, imagine a

1

gscatterer of small horizontal extent moving at a velocity of 70ms ', and with

a narrow polar diagram. Suppose the angular spectrum of the scatterers
is given by exp{—(sinelsineo)z}, and say 6, ~ 2°-4°, (It will be seen
shortly that indeed 6, is around 2°-4° at 70km). Such a scatterer would
takeé between 1 and 2 minutes to pass between the half power points of its
angular spectrum. The fact that the "lifetime" of the scatterers at
74km is the same on both the narrow and wide beams must be because the
effective half power beam width is defined by the scatterer, and not the
array beams. A scatterer of several kilometres dimension horizontally
would take correspondingly longer to pass through the half power points
of the effective polar diagram, and measurements of the "lifetimes" of thé
echoes suggest these 74km scatterers have horizontal dimension of the order
of 3-10km (see Appendix D). The horizontal scale must be of the order of
1 Fresnel zone to produce such anisotropic scatter, which implies a size
of greater than (A.height of scatterer)l/2 ¥ 3.2km at 70km.

Thus it appears that the "lifetimes" of these power bursts are defined
by the time it takes a scatterer to pass overhead, rather than the lifetime

of the scatterer. If the scatterer did not pass directly overhead, the
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observed lifetime of the burst would be evén less than that for one fhat
did. However, these observations do not rule out the possibility that
the scatterer lifetimes could also be of the order of 1 or 2 minutes.
Rottger et al. (1979), using data collected at VHF, suggested that some
of the scatterers they observed did have quite short lifetimes, and may
have actually been formed in their beam.

Reflection coefficients for the lower echoes typically varied between
about 2 x 10 ° to greater than 2 x 10" for the 74km echo when observing
on X mode, and about 5 x 10 ° for the 66km layer.on X mode. These can be
converted to backscatter cross-sections if the scatter is due to isotropic
turbulence. A reflection coefficient of 2 x 104 corresponds to a value

for an of about .38R%2 ~ 1.5 x 10_8m_2/3

assuming R% ~ (R)2. However,
as will be seen, the scatter at this height is certainly not isotropic,
and so this E;Z estimate is not meaningful.

The results quoted in this section are quite typical of the echoes
observed both at Buckland Park and Townsville. Echo strengths below 80km
do appear to be stronger at Townsville, and these lower echoes appear to
be even more "bursty'" in nature than their Buckland Park (Adelaide)
counterparts. The Townsville echoes frequently show increases in power of
greater than 10dB, and can be quite short-lived, often lasting less than
one minute. These are quite likely due to scatterers formed and/or
destroyed within the beam. (They could perhaps be meteors, but this seems
unlikely at these low heights). Echoes can become very strong at around
70km at Townsville - on one occasion, on 22nd January, 1980, a 70km echo
with a reflection coefficient of 10 3 was observed. This echo lasted for
some hours. However, it was not typical of Townsville echoes.

The echoes from above 80km show comparable reflection coefficients

at Buckland Park and Townsville. Those at Buckland Park may be marginally



Fig. 4.2 Typical mean power-range profiles for Townsville. Power
averages were formed using 1 to 3 minutes of data. This
system had quite a wide reception polar diagram, as
discussed in Chapter III. Powers are dBs of (uTirps)z.
-------- = X mode

= 0 mode

The actual starting times of the various observations were

(1) X mode: 77/306/1415 )

(2) X mode: 77/306/1315

(3) X mode: 77/305/1900 (Night time)

(4) X mode: 77/304/2340 (Night time)| 77/304 = 31lst Oct, 1977
(5) X mode: 77/304/2200 (Night time)h 77/305 = 1st Nov, 1977
(6) O mode: 77/306/2200 (Night time)| 77/306 = 2nd Nov, 1977
(7) 0 mode: 77/305/1400

(8) O mode: 77/305/1420

(9) O mode: 77/305/1600 J

Notice all X mode observations above 80km are night time
observations. During the day, X mode observations from
above 75-80km were very weak (even weaker than any 60-70km
echoes) due to the large absorption in the day time.

Preferred heights of scatter can clearly be seen.

Also shown are radio noise estimates for the Townsville
data, expressed in (uT)? for typical transmitter powers.

a = day time nolse after coherent integration of 8 points
(see chapter on phase observations (Ch. VII).

b = day time noise with no coherent integration.

¢ = night time noise (around midnight) with no coherent
Integration.

Night time radio noise 1s generally far more severe then day
time noise. This will be shown in more detail in Chapter VI.

These powers are not directly comparable to those in Fig.
4.3, but if converted to effective reflection coefficients,
can be compared.

. 1
(R = (§2)f = K*H./f, P = power{(uT)2 or (uPr)z}, H = height
of echo; see Ch, III).

(K*T3 = .6 + .3, and K*ZM = .8 * .4)). However, if volume

scatter predominates, R? is proportional to the radar volume
and the back-scatter cross-section, so the beam widths of
the array beams should be considered before backscatter
cross-sections can be compared.
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SAMPLE POWER / RANGE PROFILES
BUCKLAND PARK, NARROW BEAM
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Fig. 4.3 Typical mean power-range profiles for Buckland Park, using
the narrow beam(d).Profiles correspond to means over intervals

of between 1 and 3 minutes. Powers are in (uPrM)z.
———————— = X mode
= 0 mode

The actual starting times of the various observations were:

(1) X mode: 77/151/1425
(2) O mode: 77/201/1224 77/151 - 31st May, 1977
(3) O mode: 77/201/0740 77/201 = 20th July, 1977
(4) O mode: 77/201/0850

Preferred heights of scatter can clearly be seen.

The small horizontal line indicates typical day time noise at
Buckland Park as observed by the narrow beam in (uPrM)2 for

typical transmitter powers.

The powers are not directly comparable to those in Fig. 4.2,

but if converted to effective reflection coefficients can be
compared. The procedure is described in Fig. 4.2. Bear in
mind that the beam-width can be important for isotropic scatter,
as also discussed in Fig. 4.2.
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stronger on average. As mentioned briefly in Chapter III, the 90km
echo at Townsville often becomes an Es type echo, with near-total
reflection. Some radiation usually can penetrate, so the E echo can be
seen with a similar strength to this 90km echo. At Buckland Park, Es
type layers may form at 90km during January (summer), but at most times
of the year this does not happen. Echoes from 90km at Buckland Park
appear to be from isotropic scatterers, and have effective reflection
coeffiéients of about 10 3.

Night time scatterers frequently exist above 80km, and these often
have larger reflection coefficients than their day-time counterparts.
This is at least partly due to the reduction in ionospheric absorption
at night, coupled with the fact that X mode polarization is usually
used at night, thus giving larger reflection coefficients (since X mode
radiation is scattered more efficiently than O mode). However, the noise
is also stronger at night, so the signal to noise ratio can still be much
less than during the day. Although echoes at night do generally only
occur above about 80km, weak echoes from below can at times be seen. For
example, a 76km layer was observed at Buckland Park at 0035 hr on day
78/307. The ionization at these heights is probably maintained by Cosmic
Rays (see Ch. I).

Figs. 4.2 and 4.3 show typical power:height”profiles for Townsville
and Buckland Park. The powers are not directly comparable until converted
to effective reflection coefficients. The graphs have not been presented
as effective reflection coefficients due to the uncertainties of the
calibration K, values (see Ch. III). Recall K*T for Townsville is about

3

0.6, and K for Buckland Park is about 0.8. (R = K*H.amplitude).

*2M

Also shown on these graphs are typical noise levels. The techniques used

to derive these noise estimates will be discussed in a later chapter.
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Echoes from below 80km are principally a daylight hours phenomenon,
as has been discussed. They may appear at any time during daylight
hours. However, they generally seem to be most common, and strongest,
during the afternoon, particularly between about 1300 hr and 1700 hr.
Sometimes, however, layers can form quite soon after sunrise. For
example, on day 77/201 at Buckland Park, a 70km echo formed around 0700 hr,
and echoes from that height occurred intermittently all day, peaking in
strepgth at about 1500 hr.

It is also worth commenting that although many echoes do show a
burst-like character, at times quite time-stable echoes can be observed

helow 80km. . Echoes from below 80km do, however, appear 'bursty"

generally.

These temporal investigations form an important part of this work.
Of perhaps greater importance, however, were the results contained in

Figs. 4.la-c regarding the angular spectra of the scatterers.



Fig. 4.4 Profiles of 3 minute means of power vs. range for a layer at
about 64km on day 76/259. The vertical scale is a linear
scale of uncalibrated power. The gain of the receiver
was constant for all measurements, so it is valid to
compare powers.

The reduced power at 9.6° and 11.6° from the zenith is the
main point to be noticed. This suggests highly aspect-

sensitive scatter.

The observations were taken at the following times.

(1) 1240-1243 —————~—- X mode, (3.0° from zenith)
(2) 1246-1249 ——————— X mode, 11.6°
(3) 1255-1258 X mode, 9.6°

(4) 1300-1303 Xmode, 0°

Notice also that there is a slight increase in range at
9.6° and 11.6°, suggesting some off vertical scatter, but
certainly not a great deal. The small shift in peak power
range may be due to changes in height of the scattering
layer, but this is unlikely, as the two near-vertical
observations (curves 1 and 4) were made before and after
the two off-vertical observations, yet have similar peak
ranges.
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4.2.2 Angular Spectra

During the observations made on day 77/151, the narrow beam of
the Buckland Park Aerial array was tilted to an angleof 11.6° from the
zenith at times. This was done to determine the nature of the angular
spectra of the scatterers. A large fall-off in received power compared
to the 0° case would suggest a horizontal mirror-like reflector, and
only a small change would suggest isotropic scatter (some change might be
expecfed due to changes in antenna gain, beam width etc.). The angle
11.6° was chosen because this places the first minimum of the polar
diagram in the vertical direction, thus reducing leakage of scatter
from the vertical.

Fig. 4.lc shows that the 74km layer backscatters very little power
at 11.6° relative to that at 0.0°. There is a slight increase in range
of this layer at 11.6° at this time of measurement. This would be
expected if there were some backscatter from 11.6°, since scatter from
that angle would have its range increased by a factor sec(11.6°). However,
the wide beam shows a similar change in range on this occasion, suggesting
that this increase is due to an actual increase of the layer height with
time, rather than being a result of tilting the beam. Hence it seems
reasonable to assume that the majority of the power recorded at 11.6°
is really leaking in from the near vertical, through the edge of the
main lobe and through the first side lobe of thepolar diagram,in spite
of the fact that a null was pointing vertically. Fig. 4.4 shows another
similar set of observations for a~6¢km layer on day 76/259. Again,
scatter was greatly reduced when the beam was tilted off vertical,
Interestingly, there was a small increase in height when the beam was
tilted,suggesting some off-vertical scatter. Possibly a more detailed

investigation of the data for Fig. 4.lc might show a similar increase.



Fig. 4.5 These two diagrams show temporal variations of range-
profiles of power. They were formed from 3 minute mean
power profiles, with 2-dimensional interpolation being
used to smooth the surface. Notice that the largest
range is at the front. It can be seen that the temporal
variations on the narrow and wide beams are quite similar
for the 64-66km echo. As discussed in the text, the
scatterers causing this echo scattered quite anisotropically.

Of greater interest is the 76-78km echo observed on the
wide beam, which does not show on the narrow beam. The
reason for this is discussed in the text.



76 /259

(@09 NARROW

patlefs E'r "

il ;/’f/f il
?!ﬁ%ﬂ' J‘I '}_‘ __‘ . .'( ""{ ..
B ; *&’ {ff*f'wf .3% 'T?., ‘,ﬁ, K




198.

But certainly the behaviour of most echoes from heights below about
74km have generally suggested very anisotropic scatter.

If the power backscattered per unit solid angle is assumed to obey
a function proportional to exp{—(sinelsineo)z}, ® being the angle from
the vertical, then it can be concluded that 6, < 2°-4° for this layer
on day 77/151, and indeed for most scattering layers below about 74km.
This supports the findings of Lindner (1975a, b). At times, scatter can
be seeﬁ from the off-vertical, but it is usually weak. For example, the
narrow and wide beams give remarkably similar results in Fig. 4.1c,
suggesting very little off-vertical scatter. Likewise the 66km layer in
Fig. 4.5 (day 76/259) shows very similar behaviour on the narrow and wide
beams. At times, the wide beam may show a burst which the narrow beam
does not, suggesting it is due to off-vertical scatter, but this requires
that no scatterers are overhead to mask the effect. Fraser and Vincent
(1970) at Christchurch, New Zealand, have seen 70km scatterers out to around
10°, but amplitudes were quite weak. It is fair to conclude, then, that
the scatterers below about 75km are quite anisotropic. For such Fresnel
scatter, it is also required that the dimensions of the scatterer cover
greater than a Fresnel éone = (Az)%, z being the height of scatter and
A the wavelength. (This implies a dimension of at least 3km at 70km }uﬁght)

In contrast to the 74km layer, the higher 90km layer clearly

shows strong scatter at 11.6° from the zenith (Fig. 4,1b). Further,
the received power on the wide beam is around 6dB larger than on the
main beam, when allowance is made for the different gains, and this also
suggests the existence of strong scatter from off-vertical angles. An
increase in the range of the layer of about 2km at 11.6° compared to 0.0°
can also be seen, further suggesting significant off-vertical scatter.
Similarly, the mean range of the layer observed with the wide beam is

greater than the range measured using the narrow beam.
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Occasionally it is possible to determine the location of individual
bursts. One might expect all bursts received on the narrow beam to be
received on the wide beam, but the wide beam might, on occasion, pick
up a burst at some angle from the zenith which the narrow beam might not
receive. For example, at 1007 in Fig 4lb, the wide beam receives a strong
burst whilst the narrow beam does not show a similar structure, suggesting
the bulk of reflections came from the off-vertical on this occasion. On
the other hand at 1010, a strong burst shows on the narrow beam, but
only weakly on the wide beam. This was probably a small region of scatter
directly overhead. 1Its relative strength on the wide beam would probably
be small compared to the normal wide beam strengths because that beam
receives much of its signal from the off-vertical. The range of this
echo is 88km on both beams, compared with the normal 90km mean height on
the wide beam, again suggesting an overhead reflection.

In general, for this particular 88-90km layer, the average power
at 11.6° is reduced by a factor of 3 compared with the vertical beam,
suggesting 64 ~ 12° in an exp{—(sine/sineo)z} model. This is again
consistent with Lindner (1975a, b).

In fact, all scatterers above about 80km showed quasi-isotropic
scatter during the investigations involved in this thesis.

The actual transition region from scatterers of small 8, (< 4-5°)
to scatterers of large 6, (> 11°) is actually quite sharp, and lies
between about 76 and 80km (e.g., Lindner, 1975a, b; Vincent and Belrose,
1978). Scatterers appear to be either quite Fresnel like (small eo),
or fairly isotropic; there do not seem to be many intermediate cases.
However, the actual height of the transition region is a little hard to
define. It appears it may vary from day to day. Lindner's results
suggest the transition is at about 80km. However, at times 76km echoes

can appear quite isotropic. At other times 74-76km echoes can appear
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quite anisotropic. An example of an isotropic 76-78km scattering layer
ijs illustrated by Fig. 4.5. It can be seen that simul taneous observ-
ations on a narrow beam and a wide beam indicate a layer at 76-78km on
the wide beam, but nothing on the narrow beam. Observations on the
Cathode Ray Osciloscope (see Chapter 3) showed occasional weak bursts of
scatter on the narrow beam, but no sustained echo. The wide beam did,
however indicate a steady echo. These observations can be explained by
a 1aye£ at 76 to 78km, consisting of "blob-like" irregularities separated
horizontally. The narrow beam would only see a burst when a blob was
overhead - but the wide beam would always see some scatter if the
irregularities were quasi-isotropic, since there would always be some
irregularities in the wide beam. When 3 minute means were taken, an
effect would only be seen on the wide beam, the weaker effect on the
narrow beam being "swamped" by the tails of the echoes from the 66km
reflecting layer.

As a further point, it can now be stated that the backscatter
cross—sections (o and n) estimates made previously are not relevant below
about 75km, as the echoes are Fresnel-like. Above 80km, however, the
scatter has been seen to be quasi-isotropic. Thus turbulence cannot be
ruled out as a possible mechanism of scatter, and the ¢ estimates may
be useful for calculations of turbulence parameters. (It will be seen
later that turbulence can still be invoked to explain the lower echoes,
at least in one model of the mirror-like scatter, but the ¢ estimates
will still not be useful for determination of relevant turbulence parameters
such as ¢ and K, the energy dissipation rate and eddy diffusion co-

efficient.)
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Tllustration of the differences O and X mode power profiles
can have, using the narrow beam. The angles shown are angle
of tilt of the array beam from the zenith. An 11.6°
observation (number 3) clearly shows the scatter was quite
anisotropic. Most of the scatter received was thus from

the vertical. For this reason, curve 2 has been written as a
0° observation, although in reality the beam was tilted at

3.0°.



Fig. 4.6b Profiles of 1 minute mean powers due to a layer at about
86-88km on day 77/201, using the narrow beam. All
powers are in (uPrM)z. The times given are the start

time of the minute for which the mean was calculated.

The observations were made in the early morning, when
absorption was fairly low, but increasing rapidly -with time.
The layer was only beginning to form, as can be witnessed
by comparing O mode powers at 0740 (curve 1) and 0843
(curve 5). The layer was also monitored on a wide beam,
and its mean range on any one mode did not fluctuate

more than a kilometre or so. This can be seen by
comparing curves 1 and 5 - the difference in range is

less than 2km. Absorption can be seen to be low up to
85km, because curve 2, which used X mode, has greater
powers than curve 1. The region was monitored continuously
during this period, and these curves are typical of the
time periods they represent.

Of major interest are ;

(i) the reduced height of X mode echoes compared to
O mode echoes when looking vertically (curves 2
and 3 compared to curves 1 and 5);

(ii) the increased range on O mode at 11.6° compared
to the 0° echoes, and the fact that 11.6° powers
are only 3dB down on 0° powers (curve 5 compared
to curve 4);

and

(iii) the fact that the 11.6° X mode observations
do not show a great increase in range compared
to the 0° observations, and are down in power
by 6dB compared to 0° (curve 3 compared to
curve 2),

These points are discussed in the text.
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4,2.3 0 and X Mode Comparisons

Fig. 4.6a shows some examples of near-simultaneous observations of
. the D region echoes on O and X modes. It can be seen the structures
differ'considerably. It is worth considering why this is so.

As radio waves enter the ionosphere, they are absorbed, as we have
seen, and suffer some partial reflection. X mode is reflected most
strongly from these partial reflections, but also suffers strong absorp-
tion as the electron density increases. Thus X mode scatter returned
from higher regions of the ionosphere is highly absorbed and hence quite
weak compared to O mode. The height region in which X mode scatter
strengths change from strong to weak can be of the order of a few km.
Echoes on O and X mode are often significantly different around this
transition region.

The case presented in Fig. 4.6a probably corresponds to an ion~
osphere with two principal scattering layers - one at about 64km, and
one at 70-72km. The stronger X mode reflectioncoefficient at 6Akm, and
increased absorption above 70km, results in the 64-66km layer showing
most strongly on X mode. On O mode, the absorption is not significant
up to 74km, so this shows the more strongly reflecting 70-72km scatterer.
The effect of the 64-66km echo is still present, but is hidden by the

larger 70-72km echo - the result is a "widening" of the leading edge

of the 70-72km echo. (Bear in mind that these profiles are 3 min. means).

Once gain, the effect of tilting the beam of the array to 11.6° can be
seen by means of the 1246 echo, and again the scatterers were clearly
highly anisotropic.

The case presented in Fig. 4.6b is even more interesting. On this
day (77/201), a very stable layer at about 86 to 88km altitude occurred.

Again, it would be reasonable to speculate that the reduced X mode height

201.
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was due to the effect of a rapid increase in absorption at this height,
with strong reception from below this transition region, and weak
reception from above. The scatter could either be due to a continuum

of scatterers near this region, several kilometres in vertical extent,
.or due to perhaps a few close layers, some just below the region of high
absorption, and some above. Whichever is correct, the scattering region
had to be several kilometres from the bottom to the top. The O mode
11.6° 6bservations suggest quasi-isotropic scatter, since the range is
increased by about 2km and the power only down by 3dB compared to the

0° observations. Conversely, X mode observations on 11.6° suggest
scatter to be more anisotropic, with an increase in range of only lkm,
and a power reduction of 6dB,compared to the 0° observations. This

may suggest that the X mode scatter came from a different type of scatterer
to that from which the O mode came. Hence it could be speculated that
the region consisted of anisotropic scatterers at the lower heights, and
more isotropic ones higher up. However, the possibility also exists that
by tilting the beam of the array, thus making the radiation enter the
highly absorbing region obliquely, the X mode radiation might have been
absorbed even more quickly than at 0°. This would also result in a
reduction in the range of the peak of returned power compared to an

" assumed sec(11.6°) increase in range. This problem has not been
quantitatively examined.

Whatever the reason, however, the data certainly suggests a scattering
region several kilometres in vertical extent, and also suggests an
extremely rapid increase in absorption at this height. Such a rapid
increase in absorption suggests in turn a large increase in electron
density at this height. Such 'ledges" have often been observed in the
region 80 to 90km altitude (e.g., section 1.2.1, Chapter I). (This

could perhaps have been investigated more thoroughly with a differential
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absorption analysis of the O and X mode profiles. However, the fact
that the observations were taken at separated times, and during a period
when electron density was building up rapidly, would make the results
only qualitative at best). |

Ledges of this type may be very important. One will be discussed
in much greater detail in a later chapter, using simultaneous rocket
measurements and partial reflection observations. It will be seen
that ledges of.this type, and echoes from heights of about 86km, may well
be related. By doing a 1-dimensional computer simulation (using Sen-
Wyller formulae) of the passage of an HF wave of frequency 1.98MHz
through the electron density profile deduced by rocket experiments, and
assuming all Fresnel scatter, it was possible to simulate this difference
of 0 and X mode heights. The details of this particular analysis will
not be presented, however, due to lack of space. It will also be seen
later that scatter from 86km is not entirely Fresnel-like (indeed this
is obvious from the quasi-isotropic O mode scatter already noted) so this
one dimensional simulation is not entirely valid. However, it does
at least illustrate the absorption on X mode can change sufficiently
rapidly to produce the desired effect. It is also interesting that often
a small dip in electron density below the large ledge occurs - perhaps
the X mode scatter observed on day 77/201 was related more to this dip
than the ledge itself, explaining the different nature of the X mode
scatter?

It will be noticed that this observation was made during the early
morning. As the day progressed, the electron density built up more, and
X mode radiation was significantly absorbed at lower heights before
reaching this ledge. Thus later during the day, the effect was less

pronounced.



204.

The layer also showed a height variation during the day, falling
to an altitude of around 80 to 82km around noon and then once again

rising back to about 86km by late afternoon.
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4.2.4 Height Fluctuations

Observations of height fluctuations and distributions of echoes
can show some interesting effects, and provide some useful data.
Stratification of echoes has already been dealt with in Chapter I, and
needs no more comment. There is no doubt that the D region is generally
quite stratified,with echoes coming from particular heights on any one

day.

4.2.4a Upper Limits of Echoes

Before discussing temporal variations of echo heights, one part-
icularly relevant observation bears discussion. It has been seen how
echoes are producéd at heights above 50 to 60km, and it has been mentioned
that echoes can be seen up to 95 to 100km. At greater heights, total
reflection from the E region hides any other echoes in the day time.

The question arises, then, as to how high partial reflections woula extend
if there were no total reflection? The best time to examine this is

at night, when there is no total E region reflection. We saw in Chapter
III that ES echoes can occur above 100km at night. Partial reflection
echoes can occur up to 150km in range, but the strongest echoes fall off
in strength around 110-120km. In fact, the echoes from above about

110km range are generally obliques. This was made quite clear on one night
in June 1978, at Townsville (day 78/183 at 2045 hr). On this occasion
there was a sporadic E (Es) echo at about 110km, which totally reflected
on X mode (no F layer could be seen), but partially transmitted on O

mode (an F layer was visible). Thus all scatter from ranges greater

than 110km on X mode had to be by obliques, or possibly multiple scatter
processes below 110km. Yet O and X mode range profiles above 110km were
quite similar, suggesting that all O mode scatter occurred by the same

processes as X mode scatter. This, then, suggested that there was very



206.

little scatter from altitudes of greater than 110km. The reason for

this fall off is not immediately obvious. However, if we were to speculate
(as others have done ~ see Chapter I) that these partial reflections
were due to turbulence, then the fact that the echoes die out above 110-
120km could be explained by the fact that this is of the order of the
turbopause height,so no significant turbulence exists at greater heights,
(See section 1.3.3, Chapter I;- the night time turbopause height before
about 2200 hr is at 105-110km according to Teitelbaum and Blamont (1977).
Other estimates vary, but are around this value) Recall, however, that
Rees et al. (1972) have found evidence of weak turbulence up to heights
of 130km, so some. weak, unseen turbulence could exist up to 130km. Such
turbulence would produce weak scatter, as radio wavelengths of 150m
would generally be in the viscous region of turbulence above 95-100km,
according to model 2 in Fig. 1.9a. Particularly strong patches of
turbulence (with large energy deposition rates) could perhaps be seen

in the inertial range on occasions.

It is fair to say, however, that this fall off in echo strengths
above 110km is quite compatible with a turbulence mechanism. (This does
not mean, however, that no echoes ever occur above 110-120km. Sequential
sporadic E layers have been discussed in Chapter III, and meteors can

also occur.)

4.2.4b Temporal Height Fluctuations

In keeping with the rest of this section, only height fluctuations
on time scales of the order of minutes will be discussed here. Fluct-
uations on the scale of seconds will be considered later.

Although the vertical resolution of the pulses used in the work
for this thesis was about 4km, some information can be gained at better

resolution. The peak of an echo can be located quite accurately by
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spline interpolation. If these peaks are located for 1 minute mean

power profiles, and plotted as a function of height and time, graphs

like Fig. 4.7a result. These can give potentially important information,
although the data cannot always be interpreted unambiguously. However,
with reasonable assumptions, they can be quite useful. For example, the
scatter of points in Fig. 4.7a(i) indicates either that a thin region

of scatterers are moving in height significantly, or that the layer
producing the scatter is several kilometres thick, and the variations

of the heights of the peaks results from differing interference of
scattered pulses during each minute. The second suggestion seems more
likely. The curve from 0840 hr to 0900 hr in Fig. 4,7a(i) either
suggests that this layer is oscillating vertically, or that we are seeing
the effects of a large cloud which drifts across the beam, thus decreasing
in range until overhead, and then increasing as it moves away. The
second case seems more likely, so this data suggests a spatial variation
in scattering strengths, and the existence of "clouds" of scatterers.

The period between 0940 hr and 1000 hr shows two cycles of a rather
regular oscillation. The beam was tilted at 11.6° from the zenith to the
West. It would seem reasonable to assume that this was due to a gravity
wave perturbing a cloud of scatterers - possibly oscillating it. The
general downward slope suggests the cloud was moving towards the region
immediately above the array. At 1004, the beam was pointed vertically,
and it seems we may (fortuitously) be seeing the same scatterer as that
at 11.6°. (It is also possible that the effect is due to a layer moving
down vertically, and also oscillating vertically, but the fact that the
oscillations are greatest at 11.6° suggests much of the oscillatory
movement is in the horizontal plane. Thus this alternative seems unlikely.)

Thus it appears that we have tracked a cloud. The period of oscillation



was about 10 to 14 minutes. This 1is not the period of the gravity wave,
but rather a Doppler shifted period, as the cloud was (probably) passing
through the gravity wave at the speed of the background wind. The
cloud, when observed at 0940, was at a range of about 93km, whilst at
1010, when overhead, it was at 88km. This suggests that at 0940, the
cloud was at an angle of about 15° to 18° from the zenith. This

information should be useful to determine the velocity of this cloud.

Eost_

However, this is not as simple as it at first appears, as indicated
by the above diagram. Circle A represents the area of the ionosphere
at 88km covered by the array beam at 11.6°, and B that for a vertical
beam. W is the wind vector. Let W = IEJ. The distance D is given by
88km x sin(15° - 18°), i.e. about 25km. The time to travel this
distance is about 1010-0940 = 30 minutes. This suggests

o~

W/cos o = 25/30km m ! * 13m s !. There is insufficient information to

208,
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determine W and o, although clearly W < 13m s 1.

However, this calculation also assumes the écatter at 0940 comes
from a point at the same distance from the axis of the cloud as that
at 1010, and also that the cloud is aligned perpendicular to the direction
of drift. Neither of these need be valid. (Also see the discussion
of full correlation analysis in Chapter III.) Partial reflection
drift measurements suggested that the wind vector was about 28m s 1
towards the south-east at this time. These calculations thus show the
difficulties in making crude estimates of velocities. Tt may be more
meaningful to compare this W estimate to apparent velocities determined
by PRD. )

Fig. 4.7a(ii) shows more interesting cases. It can be seen, for
example, that the 80km echo is very stable in height. (This layer has
already been discussed to some degree in relation to Fig. 4.6b, when it
was at 86km height.) This suggests either that it was very thin and
stable in height, or that its basic profile remained quite constant
throughout the day. The second case seems more likely, as it was shown
in comnection with Fig. 4.6b that the scatter region was a few km thick.
A very stable layer at about 65-68km can also be seen. Another layer
(or set of layers) lay between 70 and 75km. The long broken line drawn

between 1510 and 1550 shows an ascending layer, with possible gravity
wave oscillations present with periods of the order of 10 min. These
dips in range could also be due to scatterers moving overhead, but the
dips are around 2km deep, suggesting the scatterers would be up to
12° off-zenith. If this were so they should be weak in strength at
that stage, being quite anisotropic. This was not so, and the gravity
wave hypothesis is preferred. Either the scatterers were oscillating
in height, or the region of scatter was changing, induced by the gravity

wave. (It will be seen again and again in this thesis that these
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appear to be weakly anticorrelated, and range and fading times
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The jump in range at 1229 appears to be real, although the
reason for it is uncertain.
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scattering layers often appear related to quasi-regular oscillations of
periods of 5 to 15 minutes.) The curves linked by the broken line as
shown on Fig. 4.7a(ii) were chosen because the wide beam, which was
being used simultaneously, suggested this was all the one scattering
layer. This does not rule out the possibility that the oscillations
at 75km between 1530 and 1550 could, rather, be related to the 75km
echoes at 1510-1520 hr. Often it is hard to decide which echoes belong
to whiﬁh layers, particularly for these lower echoes. This is illustrated
in Fig. 4.7b, where it can be seen the peaks of the echoes move around
quite a lot. This is probably due to interference between layers
located between 70km and 74km or even a continuum of scatterers in this
region (or perhaps even just two layers of scatterers near 70 and 74km).
This type of fluctuation in height is quite common. At times, quite
height-stable echoes can be seen (for example the 65-68km echo in
Fig. 4.7a(ii)), but often too, this type of large height fluctuation
occurs, even on scqles of the order of seconds, as will be seen later.
Fig. 4.8 is a particularly striking example. It shows temporal
variations of the range of 2 minute mean power profile peaks, and of
the actual power. (Fading times are also shown - these will be dis-
cussed shortly.) There would appear to be a significant degree of anti-
correlation, with strong power bursts during minima in range. Both
sets of fluctuations appear to be associated with an oscillation of
period around 8 min. The reasons for this correlation are unclear, but
could be along similar lines to the suggestion of Hodges (1967), whereby
unstable temperature gradients are created at one particular point in
a gravity wave cycle, thus possibly generating turbulence. It is
significant that power bursts occur only once per gravity wave cycle, as
distinct from observations at VHF by Harper and Woodman (1977 - also see

Chapter I, section 1.4.2) which suggested power bursts twice per gravity



Fig. 4.9 A particularly interesting night-time contour plot of power against range and time.
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of 10 2, Thus these echoes are stronger than normal day-time echoes, partly due to the

reduced absorption at night time, and also due to the fact that X mode polarization was used.
(X mode reflects more efficiently than O mode.)
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wave cycle. Van Zandt et al. (1979) have also observed gravity wave-
power correlations, with one power burst per gravity wave cycle, in the
troposphere.

One other interesting occurrence which may suggest a gravity wave
induced effect is illustrated in Fig. 4.9, which shows some night-time
observations. Bursts of scatter appear at the upper heights, (around
98km) and then appear to move down to heights of about 90km in about
1 hour. The bursts then disappear, and a new set appear at the upper
heights. Notice also that these echoes correspond to effective reflection
coefficients of about 10" 2, This is quite strong when compared to day-
time 90km echoes, which usually have reflection coefficients of about
1073. No doubt the reduced absorption at this time of night is part
of the cause for the stronger echoes.

This behaviour suggests that the region 86-98km may be close to
being unstable; a gravity wave propagating through may then render the
region unstable, producing scatterers. At lower heights, the atmosphere
may be sufficiently stable that the gravity wave cannot induce instability.
Alternatively, the wave may have been generated at 86km, propagating
energy upwards, and so giving the usual dowvnward phase propagation.
Another possibility is that the gravity wave could generate turbulence
in all regions, but only in regions of large electron density gradient
would significant scatter occur (Cn2 o« lMeIZ: Chapter II, equation
2.3.2.11). Electron density gradients are often quite large at 90-
100km at night (e.g., Mechtly and Smith, 1968). This latter possibility

will be discussed more in Chapter IX.
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4.3 Short Term Temporal Changes

In examining changes of echo structure on time scales of the order
of seconds, it is most desirable to record both amplitude and phase
information. Interpretation of amplitude - only data can be difficult
and ambiguous. However, some useful information can be gained from
amplitude only, and some preliminary effects will be discussed in this

section.



Fig. 4.10a Raw fading at Buckland Park. Amplitudes of the received
signal have been plotted as a function of time at various
ranges. Successive ranges have 2km steps between them.

0 mode polarization was used.

A significant power burst can be seen at 68km, with
applitudes maximizing at 1144-1145. Fading became
very slow and shallow (specular?) during this period.

Data was only recorded every second minute up to 70km,
but continuously above. The data was recorded using a
wide beam for reception.

This graph also shows the vertical resolution of the
pulses used. For example, 70km and 76km echo oscillations
show a reasonable degree of independence. Even 70km

and 74km show significant differences., But 70 and 72Zkm
fluctuations are quite similar. The resolution is thus
4~6km.
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Fig. 4.10b Another example of detailed fading. This data was recorded
using a wide beam at Buckland Park, near midnight on
day 77/307. X mode polarization was transmitted. Notice
how the height of maximum power decreases from 92(1)km
to 90(+1)km and then rises again to 92(1)km. [94km
amplitudes have not been shown, but were always less
than those at 92km.] This sequence is not uncommon, and
suggests a cloud of scatterers drifting overhead.

If it were assumed that the cloud had small horizontal
dimensions (less than lkm say), then the velocity of the
cloud was about ((2 x 90km x cos 1(90/092+1)))/5 min)km min !
- 1.e. about 90-150 m s 1. If the cloud was extended
horizontally, so the effective scatter point moved back
along the cloud as the cloud drifted through, then the
velocity would be somewhat more. Partial reflection
drift measurements showed apparent velocities reached
greater than 100 m s 1 at 86-90km in the period 2329-
2347 hr at times. The apparent velocity may be better

to compare the above estimates with, as the above
calculations do estimate a form of apparent velocity
rather than a true velocity. True velocitles were about
50 m s ! ‘in this period, as estimated by full correlation
analysis. .

Thus, although agreement is not perfect, the estimated
velocity of the scatter is of a similar order to the

PRD velocities. Considering the crude velocity estimation
technique used, this result may support the concept of
this being a cloud moving overhead. Notice also how

the fading becomes slower as the cloud moves overhead.
Before and after being overhead, the Doppler shifted
scattered radiation from the cloud beats with the radiation
from weaker scatterers overhead, producing fast fading.
But whilst overhead the Doppler-shifted frequency of the
scattering cloud is quite small (little vertical

motion) so beating effects are slower.
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Fig. 4.11 Smoothed contour diagram of 2-minute mean powers as a
function of time and range for 24th January, 1978, at
Buckland Park. The wide beam was used for reception.
Powers are dBs of (uPrW)z. The diagram illustrates well

the temporal variability of the lower echoes. A strong
burst at 1145, 68km can be seen, and then the 68km height
region shows very weak scattered power. Another strong
burst occurred at 1300, 70km. The detailed fading
associated with the 1145 burst was shown in Fig. 4.10a,
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4.3.1 Temporal Fading

4.3.1a Introduction

Figs. 4.10a and b show typical examples of the type of amplitude
fluctuations which are generally seen at a frequency of 1.98MHz at
Buckland Park. Consider firstly Fig. 4.10a. Below 70km, data was only
recorded every second minute. Clearly fading is qﬁite slow (that is,
the amplitude changes slowly) below 76km, particularly in the period
1144-1145. The 1 minute mean powers were calculated below 70km, and
2 minute mean powers above. These were then smoothed and plotted on
a time-height contour diagram, and the result can be seen in Fig. 4.11.
There was clearly a strong power burst at 1145 hr at 68km. Above 76km,
fading is much more rapid, and this is quite common.

Fig. 4.10b shows some typical night time fading. As discussed
in the caption, this scatter may well be a cloud drifting overhead.

Rather than saying fading is 'slow", or 'fast', however, it would
be better to be more quantitative. This can be achieved by calculating
the autocorrelation function of the amplitude time series a(ti). This

is given by

n

T a(ti).a(ti + Tj)
(4.3.1.1&) p(Tj) = 3=i

[ z (a(ti))z}

i=1

where a(ti) has had the mean subtracted.

Such a calculation generally gives a function of the form shown in Fig. 4.12a.
Notice p(0) = 1. The narrow spike on Fig. 4.12a at T = 0 arises due to
noise, which becomes uncorrelated after one shift. This spike is usually
interpolated across, and the autocorrelation "renormalized" so that

the value Py is assigned a value 1.0; all other p(t) values are also



Fig. 4.12 (a) Typical autocorrelation of a data sample (typically
one to three minutes of data was used) up to about a
15s lag. The narrow spike at T = 0 arises due to the
. effects of random noise.

(b) Autocorrelation of 3 minutes of data from Townsville,
with a lag out to 120s. Although the regular oscillations
look meaningful, they must be treated with great care.

If a strong specular signal, and a weaker one of different
Doppler shifted frequency added to cause the signal, a
fairly regular oscillation results. i.e;

Ale)

(amph"l'ude).

“Eime,

This would produce a smoothly oscillating autocorrelation
like that shown. (This oscillation is similar to that of
the in phase component of the weaker signal, at a frequency
modified by the frequency of the stronger signal - see later
in text.) (If the 2 specular signals had equal amplitudes,
the minima would be deeper and more sharply dipped, and

the autocorrelation could not be so regular.) The raw

data for this autocorrelation did in fact look like the
above diagram.

Before computing this autocorrelation, the data was ’
multiplied by a Hanning window, which has the effect of
placing greater emphasis on the middle data of the sample.
This was not the usual practice, however.

Even though these oscillations look very regular, extreme
care is necessary. Quasi-regular oscillations in the
autocorrelation function can also be produced by semi-
random data, as will be seen in Chapter VII. It is
unlikely that the oscillations in this figure were due

to random data, as the raw data showed 4 oscillations over
at least 4 periods. The possibility of it being random
exists, however, and great care is necessary in inter-
pretation. Complex data is easier to interpret.
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Fig. 4.12c A more typical autocorrelation than (b). Some oscillation
exists, but not as obviously as in (b). The sample was
quite noisy, as can be seen by the large spike at 0 lag.

All the autocorrelations presented here have been taken
from noisy data, but this is not always the case. It
is often possible to obtain signals which are so strong
that the noise spike does not show - particularly for
the echoes from 90km.
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multiplied by (pI)_l. The rapidity with which this function falls to
zero is then a measure of the speed of fading. The value of T at which
p(t) = 0.5 is denoted T, , OF To. 50 and is called the fading time.

3 .

Usually, in the work for this thesis, T, was calculated for blocks

1
2

of data one or two minutes in length.

4,3.1b Some Theory to Help Interpretation

Before discussing the results of these fading time estimates,
however, some comments are necessary. Firstly, the spike at 7 = 0
in Fig. 4.12a is not completely useless. It can be used to estimate
the mean noise. This will be seen in Chapter VI. Secondly, the
existence of noise distorts the autocorrelation. The autocorrelation
with the spike removed is not the same as that which would have been
obtained had there been no noise. (This means the 'rl/2 estimate, even
after removal of the noise spike, may be in error.) If, on the other
hand, both amplitude and phase (i.e., the complex data) had been
recorded, and its complex autocorrelation calculated, removal of the
spike at O does produce the autocorrelation which would have been
achieved had there been no noise. If, also, powers (or intensity)
were used to obtain the autocorrelation, then removal of the spike
does produce the same autocorrelation as that which would have been
achieved if there were no noise. For this reason, all fading times
presented in this chapter will be for autocorrelations of the powers.
The proofs of the above statements will be given in Chapter VI,

It is also worth considering the effects of recording amplitude-
only in some simple situatioms. Consider two radio scatterers at similar
heights, moving with slightly different radial velocity components
(the radial velocity is the velocity component along the line from the

transmitter-receiver system to the scatterer). These will each produce
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a Doppler shift, and the frequencies received from each will be different;
f1 and f2 say. Assume that the received frequencies f1 and f2 have
equal amplitudes. Then, the received signal will be a radio frequency

of (f1 + f2)/2 with a beating envelope, as illustrated below.

=)
—|fi-Al —*
1f this information were recorded as inphase and quadrature data,

as discussed in Chapter III, then the result would be as illustrated

below. (~——)

In this case, the beat period is still (£, - fz)_l, but the oscillation
£. + £
il T2
inside has frequency o_—Tf_—_ - ft)’ ft being the transmitted frequency.
If plotted as amplitude and phase, this signal would appear as

follows. It is assumed that there are just over 2 cycles of the internal

oscillation per beat in the above diagram.
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if the amplitudes of the two signals differ, the phase variation becomes
more complicated, and this will be discussed more in Chapter VII. The
amplitude fluctuations still look like those presented above, but the
amplitude minima do not reach zero.

If the in phase (ai) and quadrature (aq) components are recorded
(see Ch. III ; i.e., the complex signal a(t) = ai(t) + jaq(t) =

A(t)e']¢(t)),then a complex autocorrelation can be defined as

17 ax(e).a(t+r)de
(4.3.1.1b) p(1) = (Champeney, 1973, equation 5.6)

{,I’g_*(t)._a_(t)dt}2 (* denotes complex conjugate)

which is just a generalization of 4.3.1.la.
Then if the complex signal were Fourier analysed, and the power spectrum

computed, it would show two quite pronounced spikes at frequencies
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(f1 - ft) and (f, - ft), i.e., the Doppler shifts. The complex auto-
correlation (which is the Fourier transform of the power spectrum)

would appear as follows. ( )

1 N (e
;an?ébsla. (1.
5 | N
6auﬁ% iae 2,0 | T
\ﬁu’y‘ﬁ.”. z (&cmﬂ lag). Q-S i : ‘C
—)ffal—"
OR |
1 Phase |
1.0 4 4 rt
|
Ko wy/ /i’
.j’ m/ﬂ.‘ ‘ \ "r\ ‘.?\Q‘;m.. — =

\?M"”‘C ((:l'm.. l°3)J ~ T

_f)-e,uenc_y
[ -4

(If the Doppler shifted frequencies were delta functions, the dotted [ (A
envelopes would in fact have a constant value of 1.0. I have assumed
the frequencies have finite bandwidth so this envelope decays with
time lag. The wider the spectral peaks, the faster this overall envelope
falls away.)

Thus interpretation is easy in this case if the complex data is
recorded. If, however, only amplitude is recorded,interpretation is
harder. The Fourier transform will be that of the function illustrated

here.

Rmph‘i-ude.

(@

time,

— i >
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This is the Fourier transform of

(b) gmp'i+ude.

+imnes

— Ififil —>
but multiplied by F(f), where F(f) is a delta function at frequency 0,
i-(f1 - f2), i2(f1 - f2) etc., since the initial function (ayissimply this
secondone ® repeated over and over. This Fourier transform should then be
convolved with the Fourier transform of a box function of length equal
to the data length, to obtain the full Fourier transform.
The Fourier transform of the function (b) is the Fourier transform

of the product of the functions (c¢) and (d) below,

A pk+
© /—\

t+ime,
— A
} 4 Avpplitude
Lo
fhng*

which is of course the convolution of the individual Fourier transforms
of ¢ and d.

Then combining all these procedures gives the power spectrum of
the amplitude series. It looks a bit like a (sin £/£)2 function, but
the analytic function is more complicated. It is very hard to interpret,
although this can be done; the positions of the minima, and secondary

peaks, are related to (£, - £5,).
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The autocorrelation is a little easier to deal with. It basically
oscillates with a pgriod (f1 - fz)_l, and the neéative minima do not
reach values as large in magnitude as the positive maxima. An example
is shown below. Also shown (~-<-) is the magnitude of the complex

autocorrelation which would have been obtained with the same data.

f 1PIT\ -6
1.0.
F I~ 7 ]
. ./ T
0.5 W T
\ ./
[# Y ) - O'f'-"'4 T
0-S {05 (-)-nz:c- ), Phasle
- o -
jof— 1 A— - -

Notice 9.5 will be less in this case than the value which would be
obtained for the fading time from the complex autocorrelation, C0 5
x 2T0.5).

It is interesting to note that if a strong, constant specular RF

(€y.5

signal, frequency fl’ is received, as well as weaker ones, then the
amplitude of the resultant is closely equivalent to that of the in-
phase component of the weaker signals (beaten down in frequency by fl)
plus the specular amplitude. For example, consider a weak signal of

frequency f£; and a strong one of frequency f,.
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rotation rate = If5-£1.

Then A x A + A,, and the amplitude A__ . oscillates with
res spec i res

a frequency (f1 - fz)'

’ 1 £i-Fal”

time, .

The autocorrelation is thus the in-phase component of the weaker
components' complex autocorrelation, beaten down by a frequency fl;
in this case, simply the in-phase component of a sinusoidal oscillation

-1
£ iod (f - £ 3
of period ( ; 2)

k—— 1Al

\/ \/ Lr(u"‘-&?)

f
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Likewise if two equal, weak signals, frequency f2 and f3, occur

with a strong specular signal fl’ the resultant autocorrelation is

\\\ Y \ frequency = [fths - £ ]
\ .
\/“ \J T (Lors Cag).
\ |
\
\\ '

Thus if only a few frequencies dominate in the power spectrum,

”
-—’

oscillations may be expected in both the complex, and amplitude (or
power) - only correlations. Notice, however, that in these cases

is a function of this beat frequency, and it will be seen shortly

T0.5

that this can be important for interpretation. Fukao et al. (1980)
have also mentioned that fading times can be determined by "beat
frequencies" if the spectrum has more than one peak.

Now consider another extreme case. Suppose we have entirely
isotropic turbulent scatter. Assume a Gaussian distribution of radial

velocity components., i.e., the probability of a radial velocity in the

~v2/2v2yo
range v to v + dv is proportional to e dv. Then the power

spectrum associated with this can easily be found. This can then be
Fourier transformed to give the autocorrelation, and hence the fading
time in terms of VoM Measurement of To.5 thus gives VeMS if there is
no mean horizontal wind. The results of such an analysis were given in
Chapter II (equations 2.2.3.11 and 2.2.3.12). (In reality, a mean wind
generally also exists, which produces beam broadening, and so 0.5

and v are no longer simply related. The effect of beam broadening

RMS

can be removed by using Full Correlation analysis, as discussed in
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Chapter II, and in Briggs (1980/81). However, VeMS estimates calculated
in this way for a wide beam cannot be directly interpreted as the RMS
velocity associated with the Bragg scales of the radiation used. The
reasons for this will be seen in Chapter VII).

In principle, the autocorrelations associated with such turbulence-
produced scatter should fall smoothly to zero, and stay close to zero
for larger t. Thus one may naively expect that if oscillations appear
in an éutocorrelation such as in Fig. 4.12b and c, they indicate a few
specular scatterers are causing the signal fading. In fact, this is not
necessarily so. It will be shown in Chapter VII that a signal with a
simple Gaussian pgwer spectrum, and random phase (as may be expected from
turbulent scatter, and beam broadened scatter) can in fact have oscill-
ations in the autocorrelation. It will be seen that if only one or two
minutes of data is taken using the full Buckland Park aerial array,
the (complex) power spectrum of turbulence and beam-broadening induced
fading can often consist of just onme or two surprisingly narrow spectral
peaks. Thus the autocorrelation will have oscillations. Awe (1964)
has also shown this effect using computer simulations. To obtain
meaningful autocorrelations, at least 4 or 5 minutes of data should be
used when recording with the narrow beam at Buckland Park - but in this
time, the dominant scatterers may have changed, or disappeared (e.g.,
we have already seen that bursts of power of less than 2 or 3 minutes
duration often occur). In this chapter, one or two minutes of data
are generally uysed for autocorrelations, since the power can change so
rapidly. But it should be borme in mind that data obtained from these
correlations must be interpreted with extreme caution.

If, however, the raw data is examined, and the beating can be seen,

and there are at least 4 or 5 cycles, this probably does imply genuine



beating between two scatterers. For example, Fig. 4.10a, at 70km, shows
a beating type of fading. The period 1145 to 1148 shows quite regular
beating, and this could possibly indicate one or two specular scatterers.
Also, as discussed in Fig. 4.12b, the oscillations in that figure also
probably imply several discrete scattering regions. Criteria for the
acceptance or rejection of "specular scatterers” will be discussed more
in Chapter VII.

It is interesting to note that Gardner and Pawsey (1953) also
observed such beating effects by recording on photogréphic film. They
were able to see the signal strongly for a few seconds, then it died,
then rose again, and so forth (e.g., see their Fig. 4c and their section
4.2). However, at the time those authors were not able to interprét
their results.

The main points to come out of this section are Qvenbebwc
(i) Oscillations in the autocorrelation produced from one or two
minutes of data with the narrow beam at Buckland Park do not necessarily
imply a few discrete scatterers, but may do.

(ii) The fading times deduced from such autocorrelations are similarly
unreliable. If the fading were due to say two specular scatterers, the
fading time would be related to the beat period of these scatterers.

This is an important point. If the fading were related to turbulence,
however, the calculated fading time may still not be that expected

from the root mean square radial velocity of the scatterers, particularly
if the observation time is too short and the beam width too narrow.

Peaks with no physical significance can occur in the power spectrum,

and the fading time may be related to the beat periods associated with
these peaks (also see Chapter VII). (This is not saying the power

spectrum is not that of the data sample. It is. But what it does say

223,
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is that the peaks cannot, for example, be interpreted as spectral peaks
due to a few separate eddies within the turbulence. The peaks have no
meaning in this regard.)

(iii) Amplitude and phase data is much easier to analyse than amplitude-

only data.

4.3.1c Experimental

With the points from the previous section in mind, consider now
some experimental observations of fading times. Fig. 4.13 shows a
smoothed contour diagram of fading times, and also a power contour
plot, for Buckland Park. Fig. 4.14 shows a similar pair of graphs for
the region 80-98km at Townsville, and Fig. 4.15 a similar pair for the
lower heights at Townsville. Fig. 4,16 shows 1 minute fading times
recorded for over an hour, averaged together, and presented as a height
profile. The associated power profile is also shown. Several points
are immediately clear. Firstly, fading is generally slower (larger T%)
at the lower heights. Secondly, maxima’of powers and Tj occur at similar
heights. Thirdly, it will be seen that at times strong bursts of power
are associated with slow fading, but this is not always so. Fourthly,
fading is slower on the narrow beam than on the wide beam (Fig. 4.16).
At heights above 80km, the narrow beam fading times are at least 50%
greater than those for the wide - beam. Below 70km, the narrow beam
fading times are only 30% greater than those for the wide beam. The
region of 70-80km will be discussed later.

Let us consider these points. The first (slower fading at lower
heights) is consistent with previous observations. The beam broadening
of the spectrum increases as e*'vhoriz increases. Here, 6, 1is the
angular half-width of the angular spectrum of the observing beam con-

volved with that of the scatterer, and Vhoriz is the horizontal drift



Fig. 4.13 Contour plots of (a) Power and (b) fading time as a function
of range and time for observations made at Buckland
Park on day 79/229 using the narrow beam. Powers are in
(uPrM)Z. The powers were computed as 2-min means$ fading

times were calculated in one-minute data blocks, and then
averaged in 2 min sets. Also plottedare the positions

of the peaks in the power profile (black line near 86km).
The height of this peak clearly shows a regular oscillation.
This data has already been presented in Fig. 4.8. However,
the fact that such a smooth oscillation occurs does not
necessarily imply that the height of the scatterer is
changing - perhaps the layer is a km or so thick, and the
dominant reflecting region may be changing. It can also
be seen that the heights of the lower echoes vary
considerably.

Three lower echoes appear to exist - at 70, 75 and 80km -
but clearly they are not stable in height. This point
has also been mentioned in the text. At times it can
also be seen that strong power bursts accompany slow
fading,; but this is not always so. This point is illus-
trated more in Fig. 4.18, and discussed in the text.

Apologies are also offered for the bad smudging which
has occurred - this seems to have been produced by the
photocopying procedure. Likewise for Fig. 4.14.
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Fig. 4.14

Contour diagrams of (a) power and (b) fading times as a function of time and range, recorded
at Townsville on day 77/305. The powers are 3 minute means, recorded every 5 mins in the
periods 1200-1305 and 1850-1915, and recorded every 10 mins in the period 1310-1850. The
fading times are 1 minute fading times using the first minute of each 3 min data block,

A strong echo at around 90km occurred, although at times it does not show as an actual

peak, but rather a point of inflexion imposed upon the stronger E region totally reflected
echo. Bursts of power can be seen rising at times by as much as 5-10dB over the '"normal"
level., Fading times are generally greater than 2 seconds, and at times reach greater

than 4 seconds. Occasionally slow fading (large T%) can be seen to be associated with

strong power bursts (e.g., 1700-1730), but in general this is not necessarily so. At other
times strong power occurs with rapid fading (small t,) (e.g., 1400-1430).
2



TOWNSVILLE 77 7 305

POWER [(uT)?]
- 0 MODE

98 (dB)

RANGE (km)
w
(]

oo
o

1200 1300 1400 1500 1600 1700 1800
TIME

FADING TIME

)]
9]
S

Ea )

RANGE (km)
QO =N NWWE



T

My

S
AR PN

SV. 77/253

_D
O
=
M

wwm L
IS
J

©

nC\Udp [

| ) l | ] l ]
¥ FADING TIME

5— 2.5s

==
OZ

S
O~
000

T

OO0

o
o

Fig. 4.15

1300 =~ 1500 |
TIME

Three minute mean power contours, and l-min fading time
contour diagrams for Townsville, day 77/253, 60-78km.

Data was recorded in 3 minute blocks every 10 minutes.

Fading times greater and less than 2.5s are shown. These
graphs are typical of many of the lower echoes at Townsville -
short burst of scatter, followed by a lull. At times, steady
lower echoes can be seen, but in general the Townsville
echoes appear to be even more "bursty" than those at

Buckland Park. At times strong bursts of power are assoc-
jated with slower fading (e.g., 1500), but this is not

always so. The power burst at 1300 is interesting in that
fading is lowest before and after the burst.
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Fig. 4.16 Plots of power {(uPrM)z} vs range for the narrow beam at

Buckland Park on day 79/229, and of one-minute fading times
for both the narrow and wide beams. These graphs are
averages over the period 1200-1304 hr.

narrow beam

———————————  Wide beam

Error bars are standard deviations for the mean, and each
mean comes from approximately 33 points.

Wind speeds were about 90m s ! on this day at 86-90km
(principally eastward), so fading times were quite small
due to beam broadening at 86km.
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velocity of the scatterer. As usual, vertical motions are assumed to
be negligible. The lower scatterers (below 75-80km) have narrow
angular spectra, and hence small 6, values, so that the fading
produced by them is quite slow. Fading times of up to 20s have been
observed for these lower echoes.

The fact that fading timesand power profiles peak at the same
height is also not surprising. Much of the signal received at the
minim; is due to the tails of pulses reflected from the more strongly
scattering layers, and the tails from pulses above and below beat to
produce rapid fading.

The third point is quite significant. Should we expect a
correlation between power bursts and fading times? If the scatter were
due to turbulence, an inverse correlation may be expected. The

81/

i i . . -1 - 3
fading time is proportional to(vRMS) , and VaMS (Chapter II,

-1/3

equations 2.2.3.3c"), so Tg.5 &€ The scattered power is

proportional to an, if turbulence fills the radar volume, and

an = aZPr_lR.w _2€d2/3|Me|2 (Chapter II, equations 2.3.2.11)

i B

Thus power and fading time would be reciprocally related -

02“82/3

« -2 . . X
n d TO.S , all else being constant. A rise in ed would

increase the scattered power and decrease To.5 (also see Liu and Yeh,
1980). The first 20 minutes of Fig. 4.8 do show an inverse correlation
of fading time and power. But this assumes that the turbulence fills
the radar volume. If this were not so, a change in the volume of
turbulence would also affect an(radar), and the relation between received
power and Ty, 5 may not be so simple (see section 2.3.2: an(radar) =
an(turb)-F, F = fraction of radar volume filled by turbulence).

What if, on the other hand, some type of specular mechanism produced

the scatter? Let us assume that somehow the scattering layer consists
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Fig. 4.17 One minute mean powers plotted against one-minute fading time

for the same one-minute period, for ranges from 62 to 70km on
day 78/024 at Buckland Park. The wide beam was used for
reception. There is a weak linear trend (particularly for the
D and E points). Large bursts of power do often seem to be
associated with slow fading.

Not all points in the period 1140-1330 were plotted. There were
more on the low power,. short fading-time portion of the

graph, but these have not all been plotted to prevent over-
crowding.
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Fig. 4.18 Another plot of power fading-time correlations, similar
to Fig. 4.17, but for day 79/229. Powers are in dBs of
(uPrM)Z. All points from the height range 66-76km

have been included. A weak linear trend may exist, but it

is not strong.

Notice however that all powers greater than 10dB have fading
times greater than 3s.
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of small horizontal stratifications, several kilometres in extent,
forming and decaying - or ‘even just drifting ac?oss the observing
beam. If a particularly strong scatterer comes into view, it may be
expected to dominate the scatter. The power would increase, and fading
would become quite slow. In this case, we may expect the fading
time to increase as the power increases. The fading would be due more
to processes such as those illustrated for the E region in Chapter III
(Fig. 3.5). But now carry this further. Suppose 2 such scatterers formed.
The power would no doubt increase - but £he fading time would now be
related to the beat frequency of the Doppler shifted frequencies produced
by these scatterers. This would depend on the scatterers' radial
velocities. 1In this case, no obvious relation between fading times and
power need occur. However, if both scatterers were overhead, their
radial velocity would be least (assuming primarily horizontal movement),
so we may still expect fading to be fairly slow. If one were at the
edge of the beam, and one overhead, fading would be faster. We may
expect Ty, to generally increase as power does, but the relation need not
be one to one. Fig. 4.17 and 4.18 show quite typical plots of power
against fading time for the heights below 76km. There may be a weak
relation between the parameters, but it is far from well-defined. The
heights 68-70km on day 78/024 (Fig.417) do show quite a well defined
trend. This can also be seen by examining Fig. 4.10a, also for that day.
During the strong burst at 1143-1145, fading was clearly quite slow.
Fig. 4.18 also shows a plot of power against fading time. Again, there
may be a weak positive trend, but it is again not definite. These results
are quite typical.

Finally, a brief discussion of the comparison of fading times on the
wide and narrow beams is warranted. As seen in Fig. 4.16, the wide

beam produces much faster fading than the narrow beam., This is probably
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due to the increased beam broadening suffered by the wide beam, At
very low heights (s 70km), the wide and narrow beam fading times are
quite similar, suggesting that in this case the "beam width" is not
defined so much by the array beams as by the scatterers themselves.
This again supports the previous statements that the angular spectrum
of the scatterers is quite narrow at these heights. The region from
70 to 78km is quite interesting. The reduced wide beam fading times
suggesf some degree of isotropy of scatter. However, it should be
borne in mind that bursts of power occur intermittently at these
heights (see Fig. 4.13). During periods when no scatterers were
overhead, a scatterer formed at a position several degrees off zenith
may show, even if its angular spectrum is quite narrow, simply because
nothing else exists to produce strong scatter. If perhaps 2 or 3 of these
scatterers formed at oblique positions, and their weak signals were
received, quite rapid fading may result. With the narrow beam, the
effects of these oblique scatterers would be cut out. Thus the difference
between the narrow and wide beams in this case is probably not so much
due to isotropic scatter as due to the temporal and spatial intermittency
of strong bursts.

Above 80km, fading times are 507% greater on the narrow beam than

on the wide beam, showing the beam broadening effect.
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Fig. 4.19 Example of short-term height fluctuations of peaks of echoes. The positions of the peaks were calculated
from profiles obtained every 0.4 seconds, and interpolated, to produce the above lines. The pulse
width used corresponded to 4km resolution. The upper echoes (98-100km) may be related to E region total
scatter and will be ignored. It can be seen that the peaks of the profiles vary between 84 and 94km
for the lower echoes. This data was recorded using a wide receiving beam, so some of the larger range
echoes may be obliques. However, it can be seen echoes come from a wide range of heights on this day.
It is not clear whether the scatter was due to several scattering layers at closer resolution than one
pulse width, or a continuum of scatterers. However, a histogram analysis (using a longer sequence of
data) showed that scatter came from 2 main ranges - one at about 84km (# 2km) and one at 88-92km. The
peaks at around 86km are often due to interference between the 84km and 88-92km echoes.

It can be seen that the position of the peaks varies substantially in a short time (e.g., around 6km

in 8s at 1019, 20s). This is not due.to large scale movements of scatterers, but simply changes in
interference effects of the pulses from the various contributing scatterers. It was not clear whether
the 88-92km scatter was due to a continuum of scatterers, or several discrete scattererswithin this region.
This type of wide height variation is quite typical of ~ 86-94km scatter. However, at some times,

quite height-stable echoes do also occur. For example, the 86km echo on day 79/229 (Fig. 4.13) showed
much less height fluctuationm.
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4.3.2 Height Fluctuations

Even on time scales of the order of seconds; the heights of peaks
of echoes tend to vary. In fact, Fig. 4.7b would often be similar
even if say 5 or 10 second mean profiles had been taken, This is
particularly true of the 88-94km echoes. At times, an echo at around
86km can be quite stable in height, (e.g., Figs. 4,7b, 4.8, 4.13) but
generally these show significant height variation, at least of 1 or 2km.
On some occasions, too, the lower echoes (70-74km) can exhibit little
variation of height, but, again, this is the exception rather than the
rule. Fig. 4.19 shows the short-term variation of the height of the
peaks of power prgfiles. The results were actually recorded at Woomera,
using a wide beam, but are fairly typical. Use of a narrow beam does cut
down the variation in range observed somewhat, but does not eliminate it
entirely.

The fact that these height oscillations occur on such short time
scales shows quite definitely that scatter generally comes from a range
of heights within any height regime, whether it be a continuum of
scatterers or just a few discrete scatterers. The variations in heights
of the echoes within any one layer is an interference effect, It is
difficult to conceive a single scatterer moving about this much on such
a short time scale.

Thus monitoring of the fluctuations of these peaks is a useful means
of determining estimates (under-estimates) of layer thicknesses (within

the resolution of the radar pulse).
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4,4 Spatial Extent of Scatterers

The investigation of the spatial extent of individual scatterers,
and also the horizontal dimensions over which similar ionospheric
conditions exist, are both important problems. Neither is dealt with
particularly extensively in this thesis.

Some elementary work was done to determine the horizontal scale
of scatterers, and values of the order of kilometres were obtained. TFor
example, Appenidix D shows calculations giving typical sizes of 3 to 10km
at 74km. Such calculations are, however, quite crude. The calculation
in Appendix D relied heavily on the assumption that the 1/e power half
width of the angu%ar spectrum of the scatterer was 60 ~ 2-3°,

With regards to the horizontal extent of D region radio wave
scattering structures, it can be said that the ionospheres at Adelaide
and Townsville certainly did not appear to be the same. The presence
of a scattering layer at say 86km at Townsville certainly did not imply
one would also exist at Adelaide at the same time.

On day 79/229, a very simple receiver was taken to Willunga, 70km
south of Buckland Park, and the ionospheric scatter from the transmitter
at Buckland Park was monitored using a simple half wave dipole attached
to this receiver. Scatterers were present at 86km, 76km (at times)
and 70km altitude, according to observations made at Buckland Park
(1200-1300). Indications were that during the period 1230 hr - 1300 hr,echoes
due to scatterers at around 85-90km, and possibly some at a lower height
(70-75km altitude) were received at Willunga. This may suggest that
similar ionospheric conditions extend at least over about 35-40km. The
equipment used was perhaps a little too inaccurate to state this un-
ambiguously, however.

But certainly, the question of the spatial extent of these scatterers,

and their physical dimension, is an important problem. It should be
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simple to investigate, using simple half-wave antennas placed at varying
distances from the main Buckland Park Array, and recording the transmitter

pulses scattered by the ionosphere to those dipoles.
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4.5 A Review of VHF Studies

4.5.1 Introduction

Some discussion of early VHF studies has already been given in
Chapter I. The period up to 1976-7 was covered. Having now seen many
of the features of HF echoes produced by mesospheric scatterers, it
is fitting that observations at other frequencies be compared here.

The review will concentrate on VHF studies. This is primarily because
only at frequencies below about 100MHz have significant echoes (apart
from Thomson (incoherent) scatter) been observed from the mesosphere
(e.g., see Gage and Balsley, 1980, Fig. 6), Observations at VLF and LF
will not be considered any more than the discussions already presented
in Chapter I.

Before discussing experimental observations however, it is worthwhile
considering the form of a pulse after scatter from a horizontally
stratified atmosphere. The results of this analysis will be useful for
interpretation of experiments at all frequencies. A more generalized,

three-dimensional treatment will be given in a later chapter.



4.5.2 The Scattered Pulse Profile

The following section attempts to illustrate some important points
regarding a pulse scattered from Fresnel scatterers. The discussion will
be largely pictorial,rather than involving a great degree of mathematics.

Assume a horizontally stratified atmosphere, and imagine a pulse
of radio waves which propagates vertically (z direction) through this
atmosphere. Let the refractive index profile be n(z). (n is complex).
Then the Fresnel reflection coefficient at any height is given by

(%z‘-)dz at that height. Let

(4.5.2.1) r(z) = 52

’

This will be at times referred to as a reflection coefficient, although
of course the real reflection coefficient between z and z + dz is
r(z)dz.

Let the transmitted pulse at position z and time t be

. dz
jw(t - f—v—)

N |-

(4.5.2.2) g(t - ﬁ%%).e (Appendix B, equation B.17)

Tn this approximate analysis, let us assume that the speed of the
radiation, v, is equal to the speed of light in a vacuum, c. Also, we

shall ignore the z ! dependence. Let the pulse at z = 0 be given by
j2wE
(4.5.2.3) g ()&t =g (e ¢ = g,(¥), say,

where § = %;-is a length coordinate.

Then the pulse.receiﬁed at time T4, corresponding to a virtual

range z; = CTQ/Z, is given by
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Fig. 4.20 Figure illustrating

(a) an assumed refractive index profile n(z), with the
associated reflection coefficient profile r(z)

and

(b) a pulse of radiation transmitted into the ionosphere.

The graphs (c) and (d) show the corresponding Fourier
transforms of r(z) and gz(z).

If the transmitted pulse were actually a simple cosine
oscillation inside the envelope (as is usually the case),
G(3) also contains a Gaussian peak at ~2/X. However,

for the discussion in the text relating to this diagram,
this is an unnecessary complication and has been ignored.



(4.5.2.4) gR(zo) =r(2) ® 8P(Z)

f:o r(z)g(zo - z)dz

(e.g., see Austin et al., 1969, and Appendix B, equation B.2b)

Now examine Fig. 4.20. Let n(z) in (a) be the refractive index
profile (a smooth step), and let r(z) be also as shown. For simplicity,
assume

z2
—(az)
(4.5.2.58) r(z) =e

Let the transmitted pulse bég;
2 d@m.s8)
"‘"'ﬁz_ s €
(4.5.2.5b) gz(z) = e
Let us now examine the peak amplitude of this convolution. It

is easier to do the convolution in reciprocal space, so obtain the

Fourier transforms; ie

R(3) for r(z) and G(%) for gz(z), where § = z !, These are drawn
schematically as (c) and (d) in Fig. 4.20. (R and G are generally
complex, but in this case r and g are symmetric so R and G are real.)

The peak amplitude of the convolution mentioned above is proportional

to the area under the product of R and G. It is assumed AS in Fig. 4.20d

is small. Then the area under the product of R and G is approximately
proportional to R(2/A) (assuming the pulse width H, and therefore A%,
are constant). A narrow step in n(z) means d is quite small, so R(%)
becomes a wide function, thus increasing this area, and so resulting in
greater scattered peak amplitude. A thick step means R(2/)) is quite

small, thus suggesting reduced scattered amplitude,
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In conclusion, the scattered amplitude in this Gaussian-stepped case is

approximately proportional to

(4.5.2.6) R/ = e (2N

assuming the step size An is constant, the pulse length H is constant,
and ignoring effects of the fall off in peak power for increasing range.

Thus it can be seen if d = A/4, the scattered power has fallen off
by 0.08 times compared to d ~ 0. For larger d, the scattered amplitude
falls off very rapidly. This is why, when Fresnel scatter is observed
from the atmospheye, it is usually assumed (e.g., see Ch. I, section 1.4.2)
that the scatter had to come from steps in refractive index less than
about A/4 in extent - unless the step in refractive index An is quite
large.

Many other cases for r(z) can be examined quite simply with the
above pictorial approach. Some discussion of double-sided scatterers
has already been undertaken in Chapter II, section 2.2.3,with regards
to scattering eddies. However, it should be borne in mind that in that
case horizontal stratification was not assumed, and a fuller 3-dimensional
treatment was undertaken. But examinations of several horizontally
stratified "§-function" reflection coefficients (sharp steps in n(z))
is also a useful case to consider. The possibilities of perhaps 2 or
3 of these producing scatter which beats together has already been
considered.

One extremely important case which will be considered is the case
where r(z) is a random function and covers a height range greater than
the pulse length. Such a case has been considered by Gage and Balsley

(1980), and Green and Gage (1980). Intuitively, it may be expected that
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the peak power received would be proportional to the pulse width. Tﬁese
authors, however, achieved the result that the peak power is proportional
to the pulse width squared. This is an erroneous result. Their
argument goes briefly as follows. Scatter is produced from Bragg scales
in the vertical of scale A/2. By doubling the pulse length, the number
of oscillations of this scale in one pulse length doubles. Thus the
scattered amplitude doubles, and the power becomes (2)2 times as much
as thaf for the original pulse length. The argument is presented most
fully in Gage and Balsley (1980).

The error is, of course, in considering only one Bragg scale. The
transmitted pulse}has a finite length, and so its Fourier spectrum has
a finite width. If reciprocal space is considered, as in Fig. 4.20,
the resulting R(3) and G(%) are as illustrated in Fig. 4.21.

The peak power of the scattered pulse in this case is equal to

(4.5.2.7) |/R(S)G()d S|

If the pulse width is increased by x times, the area under the pulse
envelope of gz(z) increases x times, and so the peak value of G(%)
increases x times. The width of G(3) becomes x ! of its former width.

So what happens to 4.5.2.7? This integral is equivalent to adding m
randomly phased phasors. The power is proportionslto m (e.g., see

Chapter V). By decreasing the width of G(8) by x times, this effectively
reduces the number of phasorsm, by x times, so the power reduces by

X times. However, G(3%) is x times larger at its peak, so this increases
the power by x2 times, resulting in an overall increase in power by x
times. The result can be proved more precisely, but this is not warranted

here.



236.

Under this analysis, however, the argument presented by Gage, Green
and Balsley is quite clearly wrong. By assuming a single Bragg scale,
it effectively assumed R(S) was a delta functioning at $=2/x. 1If
indeed’ the scatter was due to a single Bragg scale, then the result of
4.5.2.7 would be proportional to the amplitude of G(2/)) squared - the
changes in width of G(%) is not important. We saw G(2/12) increased by
x2 times, so the result is that the returned peak power is proportional
to the pulse width squared. But such a case certainly cannot be used to
approximate a random r(z), which is what was assumed.

One more point does arise. R(%) will not be completely uncorrelated
between successivg points. Thus R(8) may vary more slowly with % than
that shown in Fig 421 - it is possible that R(38) may not show a great
deal of fluctuation across A%. In such cases, the scattered peak power
would be proportional to the area under G(8), which is simply proportional
to the transmitter peak power. Thus in this case the scattered power
would be independent of the pulse width. But the'degree of fluctuation"
is inversely proportional to the total layer width - if in fact R(®)
does not show much fluctuation across A%, then this will mean that the
scattering layer is in fact much narrower than one pulse width.

Thus, for a scattering layer much narrower than the pulse width,
the scattered peak power is independent of the pulse length. For a layer
much thicker than the pulse length, with random fluctuations in r(z),
the scattered peak power is proportional to the pulse length. (Gage and
Balsley (1980), have called this Fresnel scatter, as distinct from
Fresnel reflection: they use this latter term to refer to reflection off
single steps of n(z)).

It should also be noted that these results apply at both VHF and HF.
With these points in mind, it is now possible to proceed to a review of

VHF studies.
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4.,5.3 Experimental VHF Observations

A considerable number of reviews of VHF observations of the atmos-
phere exist - for example, Gage and Balsley (1978); James (1980); Crane
(1980) ; Harper and Gordon (1980); Gage and Balsley (1980). The Journal
"Radio Science", volume 15, number 2 (March-April, 1980) contains some
extensive reviews. The short summary presented here will have mesospheric
echoes as the main point of emphasis.

Early results of VHF atmospheric studies in the mesosphere have
been presented in Chapter I. As discussed, turbulence was generally
regarded to be the cause of the scatter observed. Tropospheric invest-
igations of VHF hgve been going on since about 1940, generally using
oblique ray paths, with the transmitter and receiving being well
separated (forward scatter). The review by Gage and Balsley (1978)
discusses these early years,

The advent of systems which could record phase allowed much better
signal to noise ratios to be obtained and also led to measurements of
winds by Doppler techniques. This procedure also allowed measurement up
to much greater heights than had been previously possible, through the
facility of coherent integration. (Mean scattered powers fall off
exponentially with increasing height, at least up to about 20km, e.g., see
Balsley et al., 1980, Fig. 10). With these improvements, several VHF
stations for lower atmosphere (troposphere and stratosphere) studies were
made. The establishments near Boulder (Colorado, USA (the Sunset radar))
and Northern Germany (SOUSY Radar) were two of these. An extremely powerful
VHF radar near Jicamarca, Peru, has already been in service for some time.
This was used initially for VHF Thomson (incoherent) studies of the
E and F regions of the ionsophere. Several other radars are also being
built. Only the most powerful radars can observe in the stratosphere

and mesosphere. These are called MST (mesosphere, stratosphere and
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troposphere) radars.

In 1978, two papers were published which presented evidence for
specular reflections in the first 20km of the atmosphere. These were
due to Rottger and Liu (1978), and Gage and Green (1978). As both
papers pointed out, the existence of specular scatter had been proposed
as early as 1949 (e.g., Friend, 1949; Saxton et al. 1964). These later
(1978) papers presented very strong evidence of specular scatter using
backscéttered radiation. Strong scatter occurred from the vertical,
and much weaker scatter from off-zenith angles.  The authors were also
able to make rough measurements of the ratio of specular to isotropic
scatter. R6ttger'and Vincent (1978) also showed that significant Fresnel
scatter occurs in the troposphere and stratosphere, as has Rottger (1980).

The existence of this form of scatter suggested that quite sharp
vertical steps in refractive index occur in the lower atmsophere, which
extend some distance horizontally, to produce this highly aspect-sensitive
scatter. These steps must be less than one or two metres in vertical
extent, for significant scatter only occurs for steps of width less than
about % of the probing wavelength, as we have seen. Furthermore, they
must be highly stable, since these echoes can exist for tens of minutes
(e.g., Rottger and Liu, 1978). Quite sharp refractive index gradients
of thickness 10 metres and less have also been observed by in-situ
measurements (e.g., Crain, 1955).

With the realization that some of these lower atmospheric echoes
were caused by horizontally stratified scatterers, it became clear that
some mesospheric VHF echoes might also be due to similar scatterers, no
matter how intuitively unlikely it seemed. The assumption that all
mesospheric scatter of VHF was due to turbulence would have to be re-
examined. However, results of investigations of specularity at VHF in

the mesosphere had to wait until 1979-80 before they were published.
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Fig. 4.22a Contour plot of the received echo power from mesospheric
structures as a function of height and time for a period
of 80 mins, using the SOUSY VHF radar in Germany (from
Czechowsky et al., 1979).
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Fig. 4.22b Three-dimensional graph of the mesospheric echo power as a
function of height and time at VHF for the German Summer
(from Czechowsky et al., 1979).
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Fig. 4.22c Three-dimensional graph of the mesospheric echo power as a
function of height and time for the German autumn at VHF.
(From Czechowsky et al., 1979). Note that the single spikes
are due to meteors; all others are genuinely mesospheric.
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function of height and time at VHF for the German winter.
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Other interesting VHF observations were made in the meantime. Two
of the most important papers concerning mesosphefic echoes were those of
Czechowsky et al. (1979) and R¥ttger et al. (1979). Both sets of
observations were made at 53.5MHz, and both achieved height resolutions
which had never previously been achieved for mesospheric observations.
These papers contributed greatly to the understanding of these scatterers,
The improved resolution was achieved by using pulse-coding techniques. The tech-
nkvms will not be discussed here (see, for example, Schmidt et al.
(1979), and Woodman (1980a)). Czechowsky et al. achieved a resolution
of 300m, and Rastogi et al. 150m.

The diagrams of Figs. 4.22 show typical results from Czechowsky
et _al. (1979). It should be borme in mind that none of this scatter
is due to incoherent (Thomson) scatter, since the SOUSY radar is not
sensitive enough to detect such scatter (Harper and Gordon, 1980). The
data were prepared from 40s means of power for Fig. 4.22a, and 95s means
of power for the other figures. Quite clearly stratification of echo
structure occurs, just as it does at HF (e.g. compare with Figs. 4.la-c).
The rapid increases in power by around 10-20dB which last a few minutes,
referred to by earlier VHF workers (e.g.,Rastogi and Woodman, 1974;
Harper and Woodman , 1977) also appear in these diagrams. Miller et al.
(1978) also reported temporal intermittency of VHF signals observed with
the Urbana, USA, facility.

Various types of structure can be seen in Figs 4.22, which would
not be resolved at the 4km resolution of HF studies. Czechowsky et al.
(1979) classified the echoes into four categories -~ blobs, sheets, and
thin and thick layers. The short duration (1-2min) bursts in Fig. 4.22a
were denoted blobs. Longer duration (tens of minutes and more) thin
structures (less than about lkm thick) were called sheets. The scatter

at 68km in Fig. 4.22a was such a sheet. The notation 'layers" referred
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to long duration bursts (tens of minutes and greater - some persisted
for hours) of thickness greater than lkm. "Thin layers' referred to
structures up to 5km thick, and thicker layers were denoted as "thick™.
Thicker layers generally had longer lifetimes (Fig. 5 of Czechowsky et al.,
1979), which may mean they were larger horizontally, since ;he lifetime
is defined in part by the time taken for the scattering region to pass
through the array beam. Alternatively, the lifetime may actually be the
lifetime of thé scattering region. Very thick layers generally occurred
at greater heights. Below about 70km, layer thicknesses were generally
less than 2km, and in summer were always less than 0.5km. These findings
are quite similar to HF results (e.g., Chapter I, section 1.4.lc), where
it was found that echoes from below 75-80km appeared to be quite thin,
but scatter from above could come from regions upt to 10km in vertical
extent. The difference in transition height (70km at VHF in Germany
compared with 75-80km at HF in New Zealand, Australia, and Canada) may
reflect latitudinal differences, or may indicate something about the
scattering mechanisms. For example, suppose at all heights scatter was
produced by turbulence and also by Fresnel scatter from steps in refractive
index of depth equal toa Kolmogoroff microscale. At heights where this
microscale was less than one quarter of the incident wavelength, the
thin steps may dominate - at greater heights where the microscale was
larger, the turbulent scatter may dominate. The turbulent scatter would
be less affected by the change in Kolmogoroff microscale, as reflection
from a step falls of very rapidly once thicknesses greater than ~% are reached
(§45.2). Such effects will be discussed more in Chapter IX. The transition
region would be lower at VHF (see Fig. 1.9a). Rottger et al. (1979)
also supported this statement that thin sheets occur mainly below 70km.
Echoes at VHF in Germany were strongest in summer, and were strongest

from the region above 80km. However, they did occur over the full range
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60-90km. The echoes from above 80km persisted throughout day and night.
This is consistent with HF observations, which show echoes throughout day
and night above 80km. However, HF echoes are weakest in summer, particularly
those from below 80km. VHF echoes occurred only between 70 and 80km

in autumn. This is not the case at HF, for at those frequencies echoes
occur over the full height range 60 to 100km in autumn, winter and spring.
Just as at HF, however, the lower echoes were a day-time phenomenon

only.‘ In winter, VHF scatterers occurred predominantly in the regime

60 to 80km. The summer 80 to 90km echoes were 6-10dB stronger than

the autumn and winter echoes (which were from below 80km). This is also
true at HF, wherelthe lower echoes have effective reflection coefficients
of the order of 10 ° to 10 *, and the higher ones have effective reflection
coefficients around 10 3.

Thus the most striking difference between VHF and HF observations
concerns the 80 to 90km echoes. We have seen that HF scatterers in this
region are quasi-isotropic, and may be turbulence generated. Examination
of Fig. 1.9a, model 2, suggests that the upper limit of turbulence scales
which can be observed in the inertial range of turbulence with the
frequency used by Czechowsky et al. (1979) is about 75-80km. Scatter
from greater heights should be from scales in the viscous subrange, and
thus significantly reduced in intensity. Fukao et al. (1980b), however,
have suggested that they observed scatter at 75-85km with the Jicamarca
VHF radar, and that the scatter was from turbulence scales in the viscous
subrange. It should be borne in mind that the intensity of radio wave
scatter from turbulence depends on the gradient in electron density, and
scattered power is proportional to the potential refractive index gradient
squared, (e.g., Chapter II, equation 2.3.2.11). This is true in both the
inertial and viscous ranges (e.g., Harper and Gordon, 1980). The existence
of a steep electron density ledge may thus help to produce significant

scatter from turbulence, even if the scatter is from scales in the viscous
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range. A very steep ledge often exists at 80-90 km (e.g. see Chapter I;
also Trost, (1979) ). 1In fact this ledge is also capable of producing
scatter at HF, even though it is much thicker than one quarter of a
wavelength, due to the large electron density cﬁange across the ledge
(this will be seen in Chapter VIII). Perhaps it can also produce sig-
nificant specular scatter at VHF, although the results of Fukao et al.
(1980b) do suggest that VHF scatter is isotropic at these heights. The
summer appearance of VHF echoes at 80-90km may be a commentary on the
appearance of this electron density ledge (with either associated specular
or (more likely) turbulent scatter) or some other feature which produces
a large potential refractive index gradient (e.g., see Ch. II, equations
2.3.2.10 - the potential refractive index gradient also depends on the
temperature gradient, and the total electron density). During summer,
it is possible for sporadic-E type echoes to appear at heights as low
as 90km at HF (e.g., such a structure occurred during January, 1978 at
Buckland Park) and these summer VHF echoes could perhaps (alternatively)
be related to these structures.

- Rottger et al. (1979), also using the SOUSY radar, found very
similar results to Czechowksy et al.. Scattering regions were quite
narrow in height (s lkm) below 70km, but could be thicker at greater
heights. These authors also found, by spectral analysis, that spectral
widths generally seemed wider for thicker layers. This would be expected
for turbulence, since larger energy dissipation rates imply larger outer
scales and larger rms velocities. Fading times at low heights (70km
and below) were quite large - of the order of 4s - and these values are
larger than those observed at Jicamarca (1-2s, e.g., Harper and Gordon,
1980). This might suggest non-turbulent scatter (Harper and Gordon, 1980).

Rottger et al. also discussed the possibility of Fresnel scatter.
They felt that there could perhaps be some such scatter from steps in
refractive index caused by intense turbulence, presumably along similar

lines to a model proposed by Bolgiano (1968). This model will be
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discussed more in Chapter IX, but basically it p;oposes that intense
turbulence can mix up an electron density gradient so much that sharp
steps, of large horizontal extent, can occur between turbulent and
non-turbulent regions. Rottger et al. (1979) felt that actual Fresnel
reflection was unlikely! any such turbulence - produced steps should have
fluctuations in depth of the order of the Kolmogoroff microscale. The
Kolmogoroff microscale at such heightsissimilar in value to the probing
wavelength used with the SOUSY radar, so this would mean genuine Fresnel
reflection (i.e., reflection from a flat "mirror-like" step) could not
occur. But the scatter from such '"rough mirrors'" might still produce
scatter which is gomewhat aspect sensitive (the authors called this

"diffuse reflection" (also see Rottger, 1980)). The authors also claimed

to have done, and to know of some experiments due to Countryman at
Jicamarca, which suggested that there was some aspect sensitivity of
VHF scatter at mesospheric heights, but no actual data were presented.

The authors felt that the blob-like irregularities arose from
scatterers which were formed, and/or died out, within the beam. The
observed lifetime of sheets and layers could sometimes be determined by
the time it takes a scatterer to drift through the beam, however, so in
such cases the lifetime would not be the actual scatterer's lifetime.

The possibility of a new scatterer entering the beam as another leaves
could also produce artificially long "lifetimes".

Rottger et al. (1979) then attempted to make estimates of turbulence
parameters in a similar manner to Cunnold (1975).

But it is felt that one point must be mentioned here. The above
arguments against Fresnel scatter assume that turbulence is in fact active.
If the region were dynamically stable, turbulence may not act, and perhaps
quite sharp steps in refractive index could form by some non-turbulent

mechanism. The molecular diffusion coefficient at 75km is around .3m?s 1
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(see Ch. I, section 1.4.le) so a step of thickness 2m would last around
(2)2/0.3 * 13s. Larger steps would last correspondingly longer. Although
it has been assumed that step sizes are less than about A4, it is not
possible to determine the step size until estimates of effective reflection
coefficients are made. A step of size around )\ would produce only weak
reflection (e.g., see section 4.5.2), but it would produce some reflection.

Thus it can be seen that these VHF papers have improved our
unders&anding of mesospheric scatterers - although many of the results
such as scatterer sizes had been estimated earlier from HF studies
(e.g., see Ch. I; also, for example, Vincent, 1973). Rottger et al.

(1979) discussed briefly the possibility of specular reflectionm, but showed
little evidence, however. This was still a major experiment to be per-
formed and reported.

One particularly important point is to determine the nature of
the atmosphere in the region of the scatterers - is it turbulent, or
stable? Are the scatterers associated with wind shears? Some results
of such investigations will be presented in a later chapter (Ch. IX)
but it is worth considering the state of the tropospheric and strat-
ospheric atmosphere at scattering heights, where much more data is
available for comparison.

Gage and Green (1978) found, by using near simultaneous measurements
of winds and temperature with their observations of VHF scatter, that
highly aspect-sensitive scatter (i.e., significant vertical backscatter,
but little off-zenith backscatter) was associated with regions of great
hydrostatic stability. Vincent and Rottger (1980), found their Fresnel-
like scatter came from regions of high Richardson number (i.e., great
hydrostatic and dynamic stability). Thus specular reflection does

appear to be related to stable regions. Since the stratosphere is
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generally hydrostatically stable, it is generally true that this region
contains aspect-sensitive stable layers. The troposphere generally
shows more isotropic scatter, and scatter is generally due to turbulence
(although specular scatter can, and often does, occur (e.g., Vincent
and Rottger, 1980)). These differences can be used to determine the
height of the tropopause (Green and Gage, 1980). An increase in power
when looking verticﬁﬂy,as well as a decrease in the ratio of power
when looking at an off-zenith angle to that when looking vertical,
signify the tropopause. Green and Gage (1980) have had good success
in estimating tropopause heights by this technique.

Van Zandt et al. (1978) assumed that tropospheric VHF scatter is
generally due to turbulence which occurs in thin strata (also see
Crane, 1980), and developed a model by means of which measurements of
winds and temperature with relatively poor resolution (1-2km) can be
used to estimate scattered strengths. This has been discussed briefly
in Chapter II. The idea assumes that any mean wind shear has fine scale
fluctuations, and Van Zandt et _al. (1978) used probabalistic arguments
to determine the percentage of radar volume which would have wind shears
of sufficient intensity to produce turbulence. Such fine scale fluct-
uations do exist, as can be seen, for example, in Crane (1980), Fig. 2.

Some observations at UHF, and even higher frequencies, are also
worth noting. Aso et al. (1977) have presented early investigations in
the stratosphere using the Arecibo dish at UHF (430MHz), and found no
non-Thomson scatter exists from above the stratosphere. This is
consistent with a turbulence mechanism, since above those heights the
probing wavelength will correspond to scales in the viscous range of
turbulence, so little scatter should be expected (although some may if
the background potential refractive index gradient is large ). Fig.

4.23 shows the Kolmogoroff microscale as a function of height in the



00— | 1 |
Mesopause

Viscous
Subrange

o
<O
|

Inertial
Subrange

an
jo
|

Stréto qQuse ——: )
P Q Jicamarca

Altitude (km) =
l

Arecibo
-Chatanika
(]

® ~~Tropopause

o | | | |
10% 10 10° 10! 102
Kolmogoroff Microscale (m/27 radians)

Fig. 4.23 Height distribution of Kolmogoroff microscale, as given by
Gage and Balsley (1980). The solid dots represent experi-
mental estimates by various authors, and the solid line a
"best fit" line. The shading shows the effect of an order of
magnitude change in €. The open squares represent the upper
height limits of echoes observed at the various sites, and are
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for the wavelength used at the site. It is to be expected that
the upper limit should be approximately the height where the
Bragg scale reaches the Kolmogoroff microscale (although bear
in mind that scatter from within the viscous subrange of
turbulence can still occur).

Notice that this curve agrees well above 60 km with that shown
as model 2 in fig. 1.9a, Chapter I. Below 60 km, the above
curve is consistent with g~ 10-* - 10~% W kg~?! in Fig. l.9a.



atmosphere, and also the upper limit of echoes obtained at various
frequencies. The two sets of data are generally in agreement, suggesting
that the smallest scales causing backscatter are indeed related to the
Kolmogoroff microscale.

Relevant observations regarding the exlstence of narrow turbulent
layers can be found in Woodman (1980a, b). 1In these papers, results
of experiments are presented which were carried out at frequencies of
430MHz  (UHF) and 2380MHz (S band). A resolution of 150m was obtained
at 430MHz, and of 30m at 2380MHz. Results for the stratosphere showed
that extremely narrow turbulent layers exist - often less than 30m thick.
Crane (1980) has also shown the existence of thin turbulent layers, and
Fig. 1 of that re£erence shows a histogram of layer thicknesses. These
vary from 10 to 1000m. The mode for light and moderate turbulence is
at about 20 to 50m. The mode for all turbulence measured was 100-
200m. These thicknesses would be greater than the outer scale of
turbulence relevant for each observation., Woodman described his echoes
as being due to turbulence, which is interesting. VHF observations from
the stratosphere are often specular (e.g., Green and Gage, 1980), so
perhaps this indicates that VHF echoes may be from different structures
to those of Woodman. Simultaneous VHF, UHF and S band measurements
should be made to ascertain if indeed this is the case, or whether the
different radars are observing different characteristics of the same
layer (e.g., VHF may be observing a sharply stepped edge of the
turbulence (e.g., Bolgiano, 1968)). The fact that Gage and Green (1978)

suggest that specular scatter is associated with stable regions, whilst

turbulence requires instability, might suggest that the radars are looking

at different layers.

The question arises as to whether such thin layers exist in the

l —
mesosphere. The outer scale of turbulence is around (Ka/sd)1 m rad !
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(e.g., Chapter II, equation 2.2.3.9). At 80-90 km, K > 100m?s !,
€4~ .1W/kg (Figs. 1.9, Ch. I), so L, 2 400 metres., It would seem
reasonable that the mean wind gradient does not change significantly
within a distance LO, so any turbulent layers at 80-90 km should be
greater than about 0.5 km thick. At heights of 60 - 80 km,

€,< .0l Wkg !, K~30-100m? s°! (fig. 1.9¢), so L, 2 100m

d
(on average). Thus, even at mesospheric heights, the possibility of
wind shear fluctuations of less than the pulse resolution exists.

6ther radar investigations of the lower atmosphere have been under-
taken at other frequences. Richter (1969), used a frequency range
centred on 3GHz (A ~ 1O0cms) with up to 200MHz fluctuation either side,
and resolutions of the order of a metre have been obtained. A striking
amount of detail can be seen in results obtained with such equipment,
although only measurements within the lower troposphere can be made. The
system can also be used to measure winds (Gossard et al., 1978). No
doubt some of the observations made with this equipment may also be
reievant to the mesosphere. For example Merrill (1977) has shown how
sharp gradients in temperature and pressure (and thus refractive index)
only a few metres in vertical extent can form due to propagation of shear -
generated gravity waves into a critical layer. Perhaps a similar mechanism
may be relevant for the mesosphere. However, the effect of the ground
is important in the boundary layer, and the results obtained by Merrill nway
result from the ground and the critical level acting as a waveguide.

Care must thus be taken before applying tropospheric results to the
mesosphere.

Results have recently been published which suggest scatter from the
mesosphere can be quite aspect-sensitive at VHF. It appears that scatter
is predominantly from the vertical below 70km, and fairly isotropic above,
at VHF. Wakasugi et al. (1980) reached this conclusion by examining the
depolarization of radio waves, although the interpretation of such an

experiment can take other forms. Fukao et al. (1979) and Fukao et al.
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(1980) appear to have presented the first published papers in which the
aspect sensitivity of VHF signals from the mesosphere has been invest-
igated by beam-swinging. They used the powerful Jicamarca radar.
(Rottger et al. (1979) did mention some similar results breifly, but no
data was presented.) Fukao et al. found that below 70-75km, scatter was
quite anisotropic, with strong vertical scatter, and little at off-
zenith angles. Fading times appeared to increase with increased power.
Above 75km, however, scatter appeared to be fairly isotropic, and fading
times decreased with increased power. This suggests turbulent scatter.
Thus the region at 70-75km appears to mark a transition region, with
Fresnel-like reflection below, and turbulence—produced scatter above.
Figs. 4.24 shows typical results from Fukao et al. (1980). TFig. 4.24a
also shows that the echo power falls off at around 80km, and the large
bursts observed by Czechowsky et al. (1979) at 80-90km do not occur in
this data. 1In fact, much of the scatter received from above 80km may
well be incoherent (Thomson) scatter — Harper and Gordon (1980) have
stated that non-Thomson scatter strengths approach the Thomson scatter
levels at 85-90km for Jicamarca. Thus it is not possible with this data
to comment on whether the 80-90km echoes observed by Czechowsky et al.
(1979) show any aspect sensitivity.

A comment here may be worthwhile. 1In these notes, anisotropic

(aspect-sensitive) scatter has been taken to imply Fresnel-like scatter.

However, highly anisotropic turbulence could also cause this, as mentioned

by Gage and Balsley (1980). The possibility seems intuitively unlikely,

since turbulence seems hardly likely to be severely anisotropic at scales

of a few metres, (and ‘the aspect sensitive scatter is highly aspect-
sensitive). But this is no concrete reason to dismiss the idea. Shear

generated turbulence can be quite anisotropic (e.g., Bolgiano, 1968),

although not usually to the extent of rendering 2-3m vertical scale eddies
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severely anisotropic.

Another interesting point regarding VHF echoes is that the Poker
Flat radar in Alaska has recently given results suggesting that the
strengths of 60-70km echoes increases with increased ionospheric absorp-
tion (e.g., Balsley et al., 1980). This is consistent with HF observ-
ations by Gregory (1961) and also by Haug et al. (1977) (also see
Chapter I, section l.4.la).

Thus investigations at VHF have clearly helped to resolve the nature
of.D-region ionospheric scatterers. But many questions remain. Inwmrtant
v experiments’ remaining include investigations of the mesospheric
atmospheric stabi}ity associated with these scatterers. Are the echoes
associated with stable regions, as stratospheric and tropospheric echoes
are? The role of gravity waves is also important to ascertain. Some
evidence has been presented that gravity waves may be important, e.g.,
Figs. 4.8, 4.9; also Harper and Woodman, 1976; Van Zandt et al. (1979)
and more will be given in Chapter IX. Improved height resolution to
determine the exact dimensions of these echoes would be a great help.
Simultaneous observations on a variety of frequencies from HF to VHF
would also be useful.

Investigations into azimuthal asymmetries of the echoes may also prove
fruitful. For example, Harper and Gordon (1980, Fig. 5) have discussed
tropospheric evidence due to Balsley and Gage, obtained with the Chatanika
radar, which shows an azimuthal dependence of aspect sensitivity. The
possibility that scatter was due to parallel rolls was discussed (i.e., an
asymmetry in the horizontal plane). This is something which should be
investigated for mesospheric scattering, both at VHF and HF. Both isotropic

turbulence, and Fresnel scatter, would produce no asymmetry.
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4.6 Water Body Refractive Index Profiles

‘Investigations of temperature and salinity height profiles in
oceans and lakes over recent years have shown some highly interesting
microstructure. Fig. 4.25 shows some profiles taken from a paper by
Cooper and Stommel (1968). Stable steps in temperature and salinity
can be seen. Later, measurements in fresh water were also made by
Simpson and Woods (1970), and similar steps in temperature were found -
with e&en finer structure than that observed by Cooper and Stommel.

The reason for these steps was unknown. Simpson and Woods gave
a small review of ideas which were postulated at the time. Some authors
believed the steps to be due to layers originating at separate locations
meeting and interweaving. Others believed the layers would inevitably
develop due to different vertical diffusion rates of heat, salt and
momentum. For example, a "salt-finger" mechanism developed by Turner,
Stommel and Stern relied on the difference between molecular diffusivities
of salt and heat. The mechanism required a stable temperature gradient
and an unstable salinity gradient, or the reverse situation. The
detection of steps in temperature in a fresh water lake by Simpson and
Woods (1970) implied that a mechanism other than the salt finger mechanism
acted. The possibility of steps arising due to differences in turbulent
diffusivities of bwoyancy (density) and momentum was mentioned.

Whatever the reason for the steps, however, they do have remarkable
similarities to the proposed Fresnel scatterers in the atmosphere. For
example, they are narrow in vertical extent, yet extend over kilometres
horizontally and can remain stable for hours (e.g., Simpson and Woods,
1970). Other observations of this microstructure have also been noted
by Wunsch (1972). Of particular interest is the fact that some of this
microstructure appeared associated with highly stable regions (Richardson

number around 23 in one case). This, too, is consistent with observations



of "Fresnel scatterers" in the atmosphere.

If the atmospheric and oceanic structures are the same, clearer
understanding of the atmospheric structures would be possible. This is
because the water body structures can be simulated in laboratories, and
thus are amenable to controlled experiments. For example Baker (1971)
and Calman (1977) have simulated such stepped structures in laboratory
experiments. Calman also discussed models for production of the steps,
and feels the steps are due to a "viscous diffusive instability of geo-

strophic shear". This is not to say other mechanisms cannot produce
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steps - for example Calman mentioned (p. 278) that internal waves, breaking

when they encounter a slope, give rise to steps in the density field.
However, such turbulence related steps require small Richardson numbers,
not large ones. Baker proposed a theory developed by McIntyre (1970a, b;
also see McIntyre, 1968, for some experimental details) to explain the
steps observed in his experiments. McIntyre's proposal involved a
"yiscous overturning instability".

Although I have not been able to fully follow all these theories,
it does appear that many of the analyses involving instability analysis.

(In this procedure, it is assumed a whole spectrum of wavenumbers may

develop. These all grow in time, and the fastest growing scale is assumed

to describe the final situation (e.g., see Verlardeand Normand (1980);

also Merrill (1977) adopts a similar technique for investigations of shear-

generated gravity waves.)). Almost all the theories for these steps

appear to rely on differences in various diffusivities. Certainly density,

heat and momentum turbulent diffusivities in the mesosphere are different,

so perhaps these mechanisms could operate in the atmosphere.
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Chapter V Amplitude Distributions

5.1 Introduction

The study of amplitude distributions can make an important con-
tribution to the understanding of scattering processes in the D-reglon.
Unfortunately, their interpretation can be ambiguous, and there are many
pitfalls to be avoided. Some brief mention of these distributions, and
discussions of various papers using them, have already been presented
in Chapter I, Section l.4.1g. The topic will be discussed in three
sections in this chapter - firstly, the theory, then the interpretation,
and finally the results of experimental work. The first section presents
no difficulty. The other two, however, are more problematical, and at
times interpretations may be presented which conflict with the few
papers already published on the topic (see Section 1.4.,1g, Ch. I).

The following notation will also be adopted in this chapter; x
will indicate a complex vector, and x will be used to represent its

magnitude (x = [5|).
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5.2 Theory

5.2.1 Rice Distributions

In the previous chapters, two primary mechanisms of scatter have
been discussed - Fresnel scatter, and turbulent scatter, It might be
expected that Fresnel scatter would give a strong, steady (specular)
signal, and turbulent scatter would produce many scattered signals which
would add up to a final fluctuating received signal. TFig. 5.1 represents
a combination of the two processes, and shows the resultant complex
vector.

This diagram represents the easiest situation to discuss and analyse,
and the amplitude distribution resulting from such a combination is known
as a Rice distribution (eg., Rice, 1944, 1954; Van der Ziel, 1954;

Norton et al., 1955). The case in which the specular component is zero
is termed a Rayleigh distribution, after Lord Rayleigh (1894). (This is
the so called two dimensional random walk problem.) In the simplest
case, the specular component is taken as a constant magnitude Véctorlg
(which may change phase freely), and all the random vectors (of which
there must be a large number) are taken to have a constant length n

say, and completely random phases distributed uniformly over the range
0% to 27%. In fact, a similar distribution results if this condition is
relaxed somewhat, and the random vectors are allowed to have a random
amplitude distribution (Norton et al., 1955), provided their RMS sum is
constant.

The distributions mentioned have been derived by Rayleigh (1894)
and Rice (1944, 1954), but it is instructive to re-derive them in this
chapter. However, the distributions will not be derived by the approaches
of the above authors, but by a different, and hopefully more unifying

and instructive,approach.



We begin by considering Fig. 5.2. Two vectors S and m, of randomly
varying phase, add to produce a vector £, with length |£J. What is the
probability distribution of |£J? The assumption of random phase & can
be replaced by the assumption that all values of 6 are equally likely.

Thus a smoothly varying relation for the phase of £ and n will give the

same distribution.

The clearly, if £ = |£], S = [S| and n = [n],

(5.2.1.1) £2 = s2 + n? - 2Sncos6,

and thus

(5.2.1.2) 6 = cos 1{(82 + n? - £2)/2sn}.

also note that

(5.2.1.3) 27 = s2 + n2, as cos 6 averaged over all 6 is zero.
Examination of Fig. 5.3 shows that each increment d6 is associated

with an increment of resultant length , df. The probability of the

phase lying in the region 6 to 0 + d6 is d8/2w, so the probability

Pz(ﬂ)dﬂ of the vector length lying in the corresponding region £ to

£ + df is 2d6/27 (the extra 2 arises due to symmetry implicit in Fig.

5.3 — each df is associated with 2 phase ranges).

Thus

_..de, _ 1 dcos 1 5%+n?-£2
B0k = 20 = 738 Caosa

or

L, S24n2-£2 5 Y
(5.2.1.4) P,()dl = ({1 - g )<} % dl

(Note that the probability of an £ value greater than ﬁo is equal to

255.
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S -14 s~1{(s24n2-£2)/25n}dl
i ‘dTCO

£

= 1 ! cos 2
25n

For S = n this gives the same result as Norton et al. (1955, equation 5).

The next step is to consider the resultant for the sum of three

randomly phased vectors. For simplicity, assume each has an equal length,

n. The diagram below illustrates the situation.

The probability distribution for £3 can be determined by means of
equation 5.2.1.4. We know the distribution of 22 by 5.2.1.4.

Then the probability of a length for the resultant between 23 and

Lz + dﬂa is;

(5.2.1.5: P,(£;)dl, = probability of a length £, to £, + df, when 2 vectors
of length n are added, multiplied by the probability of a length 23 to
£3 + dﬂa when a vector n is added to a vector &2, this being summed over

all possible £,, (ie., from £, = [£; - n| to |£; + n],

/
£ 7 b
B,
i
fS \ / )s
\ /
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for any given length 23.

Thus
(5.2.1.6) (- -~ 2
L,=L,4n . . 1
1 b e
P.(£.)dL, = DY — o ar
1 i 1_(_£ﬂﬂ___i_
S ) 2£2n
J£2=|£3-n|‘ e J

by 5.2.1.5 utilizing 5.2.1.4 ( firstly for the case S = n, and then S = K;.
If the square root is imaginary,set it to 0. This means an impossible
configuration has been assumed, eg., if KS = 3n (3 vectors added with no
phase diff.), £ >’2n is impossible. This comes out infthe equation as
an imaginary square root, and thus any imaginary square root should be
set to 0, there being no probability of it occurring,

It is thus quite simple to calculate the distribution for the sum
of three equal length vectors, by either analytically or numerically
integrating 5.2.1.6.

In fact, the procedure may be generalized. If PN(KN)dﬂN is the

probability distribution for the amplitude KN of the sum of N vectors of

length n, and 5.2.1.4 is written as P,(S,n,2)dl, then

(5.2.1.7)
Iy ~tyto
P (Ldl, = P Uy P, (8y_qom ) dly g dl
KN_1=|KN—n|
where
_ 2 S24n2-£2,2 %
(5.2.1.8) P*(S,n,ﬁ) =~ {1 - (——EEH-—) }

and P, is taken = 0 if the square root is imaginary.

Thus it is a simple matter (in principle), by successive integrations,
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to build up P3, P,, ... etc., given P, (= P2).
5.2.1.7 can be further simplified. It can be shown that

§24n2-£2 §2-(£24n2)

2
- Coggr % =gl G Y

Using this in 5.2.1.8, and inserting in 5.2.1.7, and then using the

change of variables

2_ (2412
cos ¢ = §—~é%zi2—) changes 5.2.1.7 to

’ ZZN 0 PN_l(ZN_l)
(5.2.1.9 P_( )d(’,N = — — . d¢
N zN m p— ZKN—l

2 = - 2 2
where KN—l ZnZNcos ¢ (KN, + n%)

This is a useful formula. For example, consider the case N - =,

The P, and PN— may be expected to have similar forms.

N 1
Ay
PN—-l(LN—l) _ (N-1D)o?
Try Y 2 Ke
N-1
_p 2
KN
No?2

i.e. PN(EN) = ZKNKe o

The N has been placed in the exponent, as it may be expected that the
width of the distribution widens as more vectors come into play. Also,
N

0 PN(KN)dﬂN =1.0 as N+ o

P 2
£N

® NaZ
so 20 Ke at, (= 2KNa? (Dwight,equation 860.12, 1961)) =1
0



259.

and thus K> (Na2) ! as N » = ,

_p 2
zN
Substitution of P (L. ) = (Na2) 122 e No into 3.2.1.9 (and likewise P_ .)
u u N ZN . KN .2.1. wise P,
gives
2402 -2nfcos —£24p2
20 wa? _ _2¢_ 1|0 7 W? | 0FDa?
NoZ © (N—l)oc2 o ¢

=T

As N > », this equation is consistent, showing this PN is a solution
of 5.2.1.9. 1In fact, o = n, although this procedure does not show this
(see Rayleigh, 1894, pp. 34-42 for the original derivation of the Rayleigh
distribution, which involved differential calculus).

Thus the amplitude distribution for the resultant vector £ due to
the sum of N vectors of length n (N being a large number) with random

phases is

-2
N2
(5.2.1.10) PR(K)dZ = ﬁ%% eNn (the Rayleigh distribution).

In a similar way to 5.2.1.3, it can be shown that the mean square value

for £ is £% = an, s0 5.2.1.10 can also be written

02
Z
(5.2.1.11) | P (£)dL = % B , where k2 = fZ

Equation 5.2.1.7 can also be used quite simply to derive the Rice dis-
tribution for a specular vector of length S plus a set of N random
vectorsmn, N being large. 5.2.1.7 becomes

F£+n.

(5.2.1.12) P (L)dL= PR.(KN) P (B, S, ) ak g (dX

£y= | 2nl



where £ is the total resultant vector, and KN is the resultant for the
random vectors. By identical manipulations to those used in producing

5.2.1.9, the result

2L 0 PR(KN) 22 -
(5.2.1.13) PS(Z)dZ i - _Z_KE_ do , N = _ZSZNCOS¢-(£N +54)

can readily be achieved, so that, using 5.2,1.11,

-£2482 : 258 cost
(5.2.1.14) P ()AL = %‘%. e X % ek do tal
0
Hence
-L2+82
(5.2.1.15) P_ (L)dL = g£-e k I (ZSK)dﬁ is the amplitude
S k 0V

distribution (called the Rice distribution) for Rayleigh distributed

2 .
noise of mean square resultant kK added to a specular signal §. Here,

IO(E) = %—Jz egcos¢d¢ is the zeroth order modified Bessel function
(Abramowitz and Stegun, 1970, equation 9.6.16).

Equations 5.2.1.11 and 5.2.1.15 represent the two most common
distributions dealt with in this thesis. Clearly others are possible,
and many alternative assumptions can be made. For example see Beckmann
(1962), for a far more generalized set of distributioms. If the dis-

tribution of the in-phase and quadrature components of the contributing

random vectors are Gaussian, but with different variances, a so called

"Hoyt distribution' results. The case of two or more specular components

of random phase added to a set of smaller random vectors with a Rayleigh
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distributed resultant could also be considered. It is worth noting,
however, that the addition of more than about 5 equal length vectors
produces very nearly a Rayleigh distribution (eg., Vincent and Belrose,
1978).

Another important distribution is the log-normal distribution.
This will be discussed later.

However, this thesis deals mainly with Rice distributions, since
only two parameters, S (= [§J) and k (= |g|) are then necessary, and
the assumptions behind their derivation are probably fairly well sat-
isfied by D-region scatter. As will be discussed in section 5.3, a
really detailed description of D-region fading may well be more complex
than any of these theories can provide. It thus seemed reasonable to
adopt the simple Rice distribution as a working tool, since it is simple
to use, rather than opt for extra complexity without gaining very much
information.

Some other statements are useful. Firstly, if two Rayleigh
distributed sets of vectors are added, with mean square resultants

k.2 and k22, then the final distribution is also Rayleigh, with mean

1
square resultant k12 + k22 (Rayleigh, 1894). Secondly, the mean square

resultant of the sum of a specular component S and a set of random

vectors of mean square resultant k2 is
(5.2.1.16) 27 = §%2 + Kk?

This may readily be derived in a similar manner to 5.2.1.3.

It also follows that the sum of a Rice distributed series of
specular component S and RMS noise kl’ and a Rayleigh series (RMS noise =
kz) (summed before detection) is also Rice distributed with specular

- - 2 2v2
component S and RMS noise (kl + k2 Y
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5.2.2 The Rice Parameter

If the same conditions as those discussed fgr the Rice distribution
are considered, then the distribution of the in phase and quadrature
components of the resultant £ can be derived.

Let the probability of a resultant £ lying in the area AA in

Fig. 5.4 be P(x,y)AA.

in phase component

quadrature component)

‘Il
S
~
A
N
N
\
i

Then

_22 _ﬂz
“kZ “kZ

(5.2.2.1) P(x,y)84 = By(8) .dl.br = Z—}TZ% e ¥ dtdp = =y e 7 atay

Then the probability of the in-phase component lying between x and x + dx is

—e2 —x2
(5 2.2 2) P (x)dx = ) 1 e . dvldx = _..1_. e K d (usi 22 = x2 + 2)
323, 2 e =_;;i? yldx = &0 x (using = x v4).

Likewise for the y component. Thus the in-phase and quadrature dis-

tributions are both Gaussian distributions with variance

(5.2.2.3) 2w () &
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the specular component.



Such a distribution added to a specular component gives a probability
distribution P(x, y) as illustrated in Fig. 5.5. Also shown in Fig.
5.5 are the distribution Px(x)dx = probablity that the x component lies
between x and x + dx, regardless of y value, and also Py(y).

The Rice parameter is generally defined as

V28 2

(5.2.2.4) o = g— (= —E—D (or sometimes aé gg; in this thesis, the
definition given here is used). Here, S = |§J.

It is the determination of this parameter which is the basic reason
for using Rice distributions in this thesis. Large values of this
parameter (greater than 1.0) imply a large specular contribution to the
scatter; small vaiues imply random (possibly turbulent) scatter. If
in-phase andquadrature components are available,the determination of o
is simple, provided phase fluctuations of the specular component can be
removed (see shortly).

If the signal is z(t), (complex), and the specular component has

constant phase,

(5.2.2.5) then 8 = <z(t)>, and o is the standard deviation of each of
the in-phase and quadrature components. (<> indicates mean value).

For much of the work for this thesis, only amplitude data was
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available, and determination of o was more difficult in that case. Towards

the end of the work for the thesis, some work using complex data was done,

but nbne will be presented. The assumption that the in phase and quad-
rature components have equal variances (an important result of Rayleigh
theory) is not necessary when dealing with in-phase and quadrature-data.
(Relaxation of this assumption produces the Hoyt distribution (eg.,
Beckmann, 1962; Rdttger, 1980a)). However, if the specular component

changes phase as time progresses, the resultant mean in phase and
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Rice distributions in steps of a = 0.5 as a function of

R = £/8, where S = specular amplitude, £ = received
amplitude. These may also be regarded as the distributions
for a constant specular component of 1.0, and varying
degrees of scattered power (k = /iya). The arrows show
the means of each distribution.
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Rice distributions in steps of o = 0.5 as a function of

v = £/c = Y28/k, where £ = received amplitude, k = RMS
scattered power and ¢ = the standard deviation of both the
in phase and quadrature components of the scattered
signal. These may also be regarded as the distribution
for a constant RMS scatter k = 1.0, and varying specular
components (S = a/V2).
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quadrature components will NOT give the true specular component. If,

component will not be important provided all phases of the random

components are equally likely, and estimates of the spécular to random

ratio will be accurate. This is perhaps the main reason why the emphasis

in this thesis is on amplitude distributions.
The estimationof a by amplitude - only data can be done by fitting
the data to curves like those illustrated in Fig. 5.6a, which are curves

of the form

102 2
(5.2.2.6a) P (r)dr = 2ra2e 20" (14T )Io(rMZ)dr,
where r = §3 and o = l/%E-is the Rice Parameter, Here S is the specular

component, and z the resultant vector. (In future, z(t) will be used
to represent the received signal as a function of time; previously, @
has been used as the resultant vector, but now we are looking at time
sequences of data z(t) will be used.)

Adjusting o adjusts the shape of the curve. (For a more complete
description of fitting the curves, see section 5.2.4.)

However, other methods exist to determine o, generally be util-

izing the expression

n/2 . .n -n, . -a?
P('§'+ 1) 1F1( "2—’ 1: '_)-

(5.2.2.7) E(M) = (20%) 3

where z represents the received (Rician) amplitude signal, o2 is the
variance as defined in 5.2.2.4, T is the gamma function and 1F1 is the
confluent hypergeometric function (Abramowitz and Stegun, 1970, p. 556).
E represents the expectation. This formula can be found in Marcum,
1960; Whalen, 1971). Then, as pointed out by P.K. Rastogi (private

communication), if one calculates
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Fig. 5.7: Plot of the expected value E(w) (= (;Ycz), z being the

received amplitude, z the mean, and Gz the standard dev-
iation, (w = z/oz)), as a function of the Rice Parameter

o, for a Rice distributed series, z(t). The line E(w) = a
is also shown. Note E(w) is a monotonic function of a,

so if nothing more, o does serve as a measure of the depth
of fading (oz) to the mean (z).
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(5.2.2.8) W =2f—, Az being the standard deviation,then

2
-o
/%' 1F1Gs 1 5

2 Z
424y~ 1 . 1. 87592

B 2
since o, = VE(zZ) - (E(z))%, and E(z2) = 202(1 + %?) (or = S242¢2 =
S2+k2).

Then 5.2.2.9 can be readily solved by numerical means for a, if
E(w) has been estimated from the raw data. Fig. 5.7 shows a plot of
E(w) as a function of o. Notice that for a < 1, very small fluctuations
in the estimate for E(w) can drastically affect the estimated a. Thus
a values < 1.0 are generally taken to imply random type scatter. I
shall denote o values calculated in this way as 0928 they are cal-
culated using the first and second moments of z. (As a point of interest,
E(w) in the case of 2 equal vectors (see equation 5.3.1.,4) = 2.068.)

However, alternative methods of estimating o exist, again using

5.2.2.7, We know

—n2

2. = (B (52

T 15 5) = oy
: n=0 n

where (a)n = a(a + 1)

Then if o = zgg,

(5.2.2.10) E(z2) = 2 + k%, (also see 5.2.1.16)

(5.2.2.11) and E(z*) = S* + 48%k? + 2k*,

Solving gives

(5.2.2.12a8)  k? = E(2?) - Y2(E(z?))? - E(z")
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SO

/zg _ V2VE(z%) - KkZ
k

(5.2.2.12b) o = "y

, where k is calculated by 5.2.2.12a.

Rice parameters calculated in this way (ie., using the second and
fourth moments) will be denoted Gyt

There are an infinite number of ways to estimate o — all that are
necessary are 2 moments E(zn) and E(zm), and equations can be solved to
get o from these moments. If the distribution is genuinely Rician,
all estimates of o should be identical.

Generally in the work for this thesis, o was calculated by both
of the above methods, (al2 and a24) although ay9 was used more commonly.
However, a x2 goodness-of-fit test was also used to ensure that the
distribution was reasonably Rician (see later). If the fit was good,

a9 and %o agreed moderately well.
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5.2.3 Removal of Noise from the Rice Pdrameter

In any ionospheric experiment, there are usually two types of
random signal apart from any specular signal S - a scattered random
component, and an external noise component. If the mean square scattered

signal 1is ké then the total received

and the external noise kix

cat’ t?

scattered component is Rice distributed but the random contribution

to the mean power is k2 = ki + kixt (see previously) (assuming the

cat

external noise is Rayleigh distributed). The parameter we seek is

V28 Vis  _ /28

= — : we in fact calculate a = L
“true k i tot k

scat k
scat ext

Assume kix can be measured (eg., by switching the transmitter

t
off). Then

(5.2.3.1) a =k___ [k = V&7 -K_/k.
ext

tot/atrue scat

- - JI(EGTY K2 ; 2y = 52 + K2
But k /Es/utot V2 (VE(z%) k )/atot’ since E(z%) 8% + k% by
5.2.2.10.

Solving this gives

k2 = 2E(z2)/(a? + 2), so

tot
= . L] . . ‘ -
ottrue oLtot k/kscat (g 2 22 ) 0Ltot_/ % kext/k
. 2 = 12 _ 12
(since kscat k kext)'
. . 2
Thus G e €21 be estimated from a o g2 8iven kext and E(z¢), as
2

- _ _ext

(5.2.3.2) % rue atot/ 1 v

(5.2.3.3 where k? = 2E(z2)/(a%0t + 2)
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This formula allows the Rice parameter to be estimated from a
noisy signal. In this thesis, this quantity was at times estimated, but
generally only signals with a good signal to noise ratio were used,
thus eliminating the need for this expression.

It is believed that the work in this section 5.2.3 is original.
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5.2.4 Fitting the Data to the Distributions

It was mentioned previously that given an amplitude distribution,
various a values can be tried to achieve a good fit. However, before
this can be done, either S (the specular component) or k? (random component
mean square value) must also be known. (This is to effectively "normalize"
the amplitude axis. If the standard deviation of the random component
alone could be obtained, this would be sufficient, since graphs like
5.6b could be fitted. This is not usually possible however.) In this

thesis, the formula

(5.2.4.1) §2 = E(z2)/(1 + 20" 2)

was used. (E(z2) and o are for either the signal plus external noise,
or for just the signal - provided the same data is used for each.
Generally the total signal plus external noise must be used.)

This formula follows because

(5.2.4.2) E(z2) = s2 + k?, so that §? = E(z%) - k2.

But o = V2 S/k, so k =V/2 S/a.
Substitution in 5.2.4.2 shows

S2 = E(z?) - 252/a2,

so that s2 = E(z2)/(1 - 2/02).
Then, given a and S, k could be calculated as k = V2 S/ao.

Thus, given a set of data, E(z2) could be found, o could be estimated
(alz or azu)’ and the number of data points could be noted. Then S
and k could be obtained, as described above, and thus the expected
distribution derived by substitution in equation 5.2.1.15. A X2
test could then be applied. If better accuracy were required for a,

then this parameter could be varied, S and k re-calculated, the dis-

tribution of equation 5.2.1.15 reformed, and a new X2 test performed.



270.

Then a could be adjusted to minimize x2. This was not usually done
in practice, since o, and Oy, usually provided sufficient accuracy.

Fig. 5.8 shows the computer program used to calculate the theoretical
distribution expected for the calculated E(z2) and o values. This
theoretical distribution could then be compared with the experimental

one, and a x? goodness of fit applied. Examples will be seen shortly.
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RETURN % END
PJ“
-
5.8: Fortram computer function used to estimate number of points
P P

expected for a Rice distribution in the interval of width
XINT centred on XMID, given the total number of points
KOUNT, the Rice parameter RICET, the specular component SPEC
(calculated by equation 5.2.4.1), and the mean square value
of the data, E(z?) = SUMSQ.

In this function, the random component of the signal is
referred to as '"moise'", although bear in mind that it is not
really unwanted noise in the true sense. The program
calculates the formula 5.2.1.15 with k = V2 S/a. A very
simple rectangular form of integration is used - the shaded
area is assigned to the point Xmid' A more accurate

integration was felt not to be warranted for the simple purposes
for which the function was written.
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5.3 Interpretation of Experimental Amplitude Distributions

5.3,1 Non Rician Characteristics

A review of experimental results from Rice-fitting was given in
Chapter I, Section 1l.4.lg.

One of the major problems in studying amplitude distributions is
to determine how often the data should be sampled, and what data lengths
are necessary. Von Biel (1971) used 10 points per minute to ensure
that each point was statistically independent, and data lengths of the
order of 10 minutes, to ensure a reasonable number of points. This
immediately presents a problem. It has already been seen that strong
bursts of power can grow and die within 2 or 3minutes, particularly at
heights below 80km. Clearly, as mentioned in section 1.4.1g, a 10
minute sample of data will not have the temporal statistical stationarity
necessary for Rice theory to be applied in such a case. A 10 minute
sample could even contain two or three independent bursts, interspersed
with long periods of weak signal. In such a case, a non-Rician form of
distribution could conceivably occur, with a sharp rise to a maximum
(due to the presence of a lot of weak signal between bursts), and then
a long tail. 1In such a case, the distribution may be expected to be
perhaps more like a log-normal distribution (the log-normal distribution
is defined shortly). (If a distribution is formed from observations of
a process which is a function of many independent variables, it seems
that a log-normal distribution can be expected (eg., Foldes, 1960). A
distribution of amplitudes formed from several short (independent)
bursts imposed on a weaker signal could perhaps be regarded as such a
process. Certainly a distribution with a large probability of small
amplitudes could be expected, and this would look more log-normal than

Rayleigh.)
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Fig. 5.9: Typical amplitude fluctuations due to random scatter
superimposed on a slowly vary specular component.
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However, the basic form may look crudely Rician, and may be accepted
into a Rice analysis. If each burst was sufficiently different in
scattered power, a multiple peak distribution may result, but such
distributions should be rejected before any analysis is applied. Even
at heights greater than 80km, statistical stationarity in time is
doubtful.

Another problem exists, too. The definition of "specular' signal
depends somewhat on the length of data used. It could be imagined that
if scatter were caused in part by Fresnel scatter from a gently undulating
surface, scatter as shown in Figs. 3,5, Chapter III, may occur (focussing
etc.). Clearly the "specular component' of the signal may also vary in
time, complicating the matter further. The amplitude fluctuations may
appear like those in Fig. 5.9. Clearly if the interval ab were used
for analysis, a high specular to random ratio would result, yet in the
period EE; a low ratio would occur. If the full period a to g were
used, a quite low ratio may result. The definition of what is meant
by "specular' scatter depends to some extent on the length of data
used!

The distribution in this case would be non-Rician but would generally
be sufficiently similar in form to be accepted by most Rice tests
(eg., x? test at the 5% level).

Tt is thus clear that many non-Rician processes will contribute
to the amplitude distributions. In the case described in Fig. 5.9, it
is possible to derive the true distribution. Let the "specular component"
as a function of time be 8(t), and assume its amplitude distribution is
G{S). Let the random component have RMS value k, a constant. Let the
in phase and quadrature standard deviation of this random component

be o = k/V/2. Then at any time the Rice parameter is
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(5.3.1.1) alt) = %)

Let the distribution of o valuesbe Gz(a).

Then Gz(a)da = Gl(S)dS

(5.3.1.2) 6 (a) = Gl(S)gs- = 06, (8) = oG, (a0).

Then if we class the received amplitude z(t) into groups of constant S,

(and therefore constant o), we get a Rice distribution for each one,

something like the illustration below.

T lass 1

Frequenc

of
Occurrence

N{

The final distribution is the sum of all these curves, ie., F(z)
say.

Thus

6.3.1.3) F(z)dz = {J . Gz(u)Ra(z)da}dz = {OJ Gl(ac)Rd(z)da}dz
o o

=0

where

Ra(z) is the Rice distribution for parameter a.

Other interesting non-Rician cases should be considered, too. For
example, imagine the case of two equal strength specular scatterers,
and no random scatter. Imagine the specular scatterers vary in phase,
either regularly (to produce a beating envelope) or randomly. In either

case, the amplitude distribution P(£) will be given by equation 5.2.1.4,
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Fig. 5.10: (a) Cumulative probability distributions for a Rayleigh
distribution, a typical Rice distribution, and the
distributions for the sum of n equal length (unit length)
vectors, for n = 2, 3, 4, plotted on Rayleigh paper.

(from Norton et al., 1955). In the Rayleigh and Rice
cases, n = 02, the variance of the in phase and quadrature
components of the random contribution to the signal.

(b) Illustrative diagram of the probability distribution
functions of some of the situations in (a). For n + «,
Yn = o for the Rayleigh case. Note that the function

P in (b) is not the same as that in (a), since P in (a)
is a cumulative distribution.
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(a) Amplitude histograms of data taken at 1055-1125 EST,
January 26, 1974, at State College, Pennsylvania,for a

height of 85km at 4.5MHz. (From Newman and Ferraro, (1976)).
The solid lines are Rayleigh distributions.

1
(b) Normalized amplitude distributions (A' = A/<A2>6) for
VHF scattered radiation from the troposphere. The dark
solid lines are Rayleigh distributions, and the broken
lines are Hoyt distributions for a ratio of standard
deviations of in-phase and quadrature components of about
5-10 (From Rottger, 1980a), The faint solid line®in the
bottom left hand corner is a log-normal distribution fitted

to the data.
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with S = n:ie

_ =L 2n2-02, 5. -%
(5.3.1.4) P(L)dL = 7 (1 - _—ZEZ_) ) “de,

where £ is the resultant length, and n the scattered amplitude due to one
scatterer. This distribution has a mean value of %n = 1.27n, a mean
square of 2n®, and a variance 02 = (2~%g)n2 = ,3789n%?. (If the
scatterers had different amplitudes, the distribution is even more
complex (see 5.2.1.4).) What does the distribution look like in this
case? TFigs. 5.10a and b give an indication of this. The value on the
lower axis for a given ordinate value in Fig. 5.10a is equal to the

area to the right of this value in 5.10b. Tt can be seen the n = 2 case
gives a clearly non-Rician distribution, This should be rejected in any
Rice tests. Vincent and Belrose (1978) examine amplitude distributions
and compared them to the expected distributions for 2 and 3 equal
strength scatterers. They found that a significant number of distributions
had these forms (about 15-207%).

Fig. 5.11a shows a distribution from Newman and Ferraro (1976).

It seems fair to say that the second diagram in this figure - and possibly
both - are not really Rayleigh, but rise somewhat more steeply., Newman
and Ferraro accepted these as Rayleigh.

Another interesting distribution is the Hoyt distribution. If the
scattering points in the ionosphere are distributed in such a way that
the rms deviation of the path lengths to these points is less than one
wavelength, the Hoyt distribution results. Such a case exists when
scatter from a rough Fresnel reflector occurs, with undulations less than
a wavelength in height (Rdttger, 1980a). The variances of the in-~phase
and quadrature components need no longer be equal (Beckmann, 1962;
Réttger, 1980a). (In this case, not all phase distributions of all the

yvectors occur. The assumption that all phase distributions do occur
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was an important criterion assumed in deriving the Rice distributions.)
Fig. 5.11b shows an interesting example of an amplitude distribution
formed from 26 minutes of data (from ROttger, 1980a). The data was
actualiy taken using a VHF radar, and is for clear air scatter in the
troposphere. However, it is quite relevant for illustrative purposes.
A Hoyt distribution has been plotted, and it is clear it peaks before
the Rayleigh case. (Also see Beckmann, (1962, Fig. 5)). Also shown
on the same figure is a log-normal fit (this curve does not appear in
the figure presented in Rottger's original paper (19808.)). This, too,
is a much better fit than a Rayleigh distribution. Whether the log-
normal or the Hoyt distribution is the better fit is debatable. The
log-normal distribution has not been optimized to produce the least

x2 value, either. Rather,

p = <1n(A')>, 62 = <1n(A')2> - <In(A")>2 has been used.
[The log-normal probability distribution function is given by
g(x) = (ov2m) 1x 1 exp{-(1nx-u)2/202%}
(eg., see Hogg and Tanis, 1977, p. 345)]

However, the important point is that the data is clearly non-Rician -

yet the best fit Rice curve would have a Rice parameter of zero, and

hence would suggest a random type of scatter. Yet the process described

by Rbttger (1980) (diffuse scatter) to explain his proposed Hoyt distribution
is certainly not random scatter. Nor does the assumption of a log-

normal distribution necessarily imply random scatter. Yet both of these
distributions would provide better fits to the data of Fig. 5.1lla than

a Rayleigh distribution.
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Clearly, then, if Rice parameters are the only values
calculated, highly specular reflection mechanisms exist which
(5.3.1.5)

in fact would result in a Rice parameter of zero, thus leading

to erroneous conclusions,




5.3.2 Statistical Fluctuation of the Rice Pdrameters

Even with a purely Rayleigh data sample, estimations of the Rice
parameter will not always give a zero value. Statistical fluctuations
will occur and it is important to know what effect these will have,

To examine this the following numerical simulation of a Rayleigh
distributed signal of the sort which might be received in a D-region
scatter experiment was undertaken. A Gaussian power spectrum centered
on OHz, of half power half width n% was generated. Random phases were
associated with each frequency, and the square root of the power at
each frequency was found. Then this function was Fourier transformed
to produce a complex time series. This thus simulated tﬁe in phase
and quadrature components received in a scatter experiment. Frequencies
of the power spectrum were chosen so that the data series had points
every 0.8 seconds, and the total data length varied between 50 and 100
minutes. These time series were then broken up into blocks of length
T, and Rice parameters estimated for each block, by formulae 5.2.2.9
(alz) and 5.2.2.12 (azq)' Results were quite similar in each case, so
only Oy will be discussed.

Although it is usual to use statistically independent points in
forming these parameters (ie., points separated by greater than about
41%, where Ty, is the time lag for the autocorrelation to fall to 0.5
1n2 -1 .22

L =.—F—'n9 N ), this was not done in this case. This is because
3 3 1
2

(7
using all the points does not appear to drastically alter the amplitude
distribution (see later). Knowledge of the number of statistically
independent points is necessary to determine the error of the Rice
parameter, however. The approach adopted in this section will use the
ratio'I'/Tl/2 to determine the rangeof a values expected (and hence the

error implicit in any single measurement), so direct knowledge of the
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Fig. 5.12a:

Probability distributions of Rice parameters o
(calculated by equation 5.2.2.9 ie alz) for various

data lengths (T) expressed as a multiple of 1, (see
3

the top right hand corner) for a Rayleigh distributed
data series. Each data block contained at least 20
points, and up to 750 points in some cases. Data was
effectively collected at 2.5Hz. N refers to the number
of data blocks used in each distribution. The error
bars were calculated as /H, n being the number of points
in each column. Notice that the columns to the right

of oo = 3 refer to all o values > 3.0.

The mean o values have been estimated assuming each
column has the midpoint value, except for the (0-0.5)
column, where a value 0.0 has been assumed. This is
because most values in this column are generally 0.0.
If a value 0.25 is assumed, about 0.1 must be added
to a.

The minima at o = 0.5-1.0 arise because o is clearly
very sensitive to z/oz (= E(w)) in this range (see

Fig. 5.7), and small statistical fluctuations result

in an o outside this range. All values of E(w) less
than 1.913 are assigned a value a = 0.0, so there are
many o = 0 values. Notice as the data length increases,
the distribution has more low o values. However,

even for quite large data lengths (eg., if Ty, < 3s,

the data length is 10 mins. for T = ZOOT%), a significant

number of o values up to 1.5 occur, even though the
distribution is Rayleigh-distributed. Even for
T = 6001, , o values as..large as 1.5 can occur

2

(see 5.12b).
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Fig. 5.12b:

The small upper graph is a continuation of the series in
Fig. 5.12a, for a data length of 6001, . There were
. 2

only 20 data blocks used, so there is a large uncertainty
in the distribution - but certainly cases with a up to
1.5 exist.

The largest graph is a collection of smoother versions
of the graphs in Fig, 5.12a., The numbers on each
graph are T/t1, . Bear in mind, however, that these

3

graphs are only relevant if data is grouped in classes
of 0.5 - ie., the resolution is quite poor. The height
in each o interval has been assigned to the midpoint

of each interval. Notice that as the data length
increases, the height of the o = 0.25 column rises, and
the tail shrinks to the left. Also bear in mind that
there are errors associated with the height of each
point (see Figs. 5.12a). The 2007, case has only been
dotted on due to the rather large érrors associated
with it.

Cleafly, a data length of T g 81y is not advisable, since
2

a large number of large o values occur. However,
provided T > (16—20)T;, any data length can be used
2

and interpreted.

The small inset graph shows a plot of o vs T/T;. Notice
2

T/t is on a log scale.
2
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number of statistically independent pointsismol necessary.

Having obtained these o estimates, histograms of the probability
distributions of a, for various values of TVT%, were evaluated. These
are shown in Figs. 5.12, As discussed in the caption, even for very
long data samples, quite large Rice values can result. Error bars were
obtained by assuming the height of each column had a Poisson distribution,
so that the variance equals the number of points in the column. This
speculation was checked by breaking the data blocks into smaller sub-
sets and replotting the-distributions, with associated error bars. All
column heights agreed to within these error bars, supporting the assumed
errors. In fact about 60% of the column heights agreed to within an
accuracy less than half the assigned errors. Also shown are mean . ®%
values for each distribution (uE).

It is worth mentioning here that these distributions are indeed
dependent only on T/T%, and not on the value of T, or Ty, Imagine a
data series which is compressed down to half its original length. 'rl/2
mﬁst become % of its original value, so '1"/'[1/2 is unchanged, and of course
the points are still the same ones, so the Rice parameter will be unchanged.
This hypothesis was checked by varying T and T%, and it was indeed found
that the distributions of a were dependent only on'T/T%.

It is thus quite clear that even for quite long data series (if

7, = 3s, T = 18 minutes for T/TL = 600), Rice parameters as large as
5 :

55
1.5 can still result, and for shorter time series Rice parameters up to
2.5 and 3 can occur, due simply to statistical fluctuations. Yet the
original data series was Rayleigh distributed! Thus even with data
blocks as long as 30 minutes, a Rice parameter of 1.0 to 1.5 does not

necessarily imply a non-Rayleigh distribution, unless there are more of

such values than Figs. 5.12 would suggest.



The statistical non-stationarity of scattered power has already
been discussed, and some of the results presented in previous papers
have been seen to be possibly erroneous. Given these curves in
Figs. 5.12, however, we are now in a position to discuss a better
procedure for determination of whether a signal is specular or random.

The following procedure has been used in this thesis.

279.
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5.3.3 Procedure for Determination of Specularity

(1) Decide on a data length T over which the received signal will
be statistically stationary (typically 1-5 mins. - preferably less than
3 minuteg-see Chapter IV). T should be greater than about 161%, since
Figs. 51.2a and 5.12b show that some very large but spurious Rice values
can occur with shorter time series. Non stationarity on time scale
> T will consequently not distort the results in this approachy unless
of cou?se the form of scatter also changes.

(2) Obtain the Rice parameters for each data interval. (This
procedure should also involve a Xz test to ensure rejection of double-
peaked distributions, saturating data, etc.)

(3) Plot the distribution of these parameters in groups of 0.5,
with errors equal to /E, n being the number of points in each interval.

(4) Compare these curves with the corresponding "theoretical"
distribution (Figs. 5.12) and see if the curves are significantly
different.

(i) An abnormally large number of large Rice values may suggest a
specular contribution to the signal (although I have not done it, it
would be a worthwhile project to plot similar o distributions for a
genuinely Rician signal,to make estimation of the true specular to
random ratio possible. However, temporal variability of the '"specular
component' would also complicate the matter,as discussed).

(ii) An abnormally large number of Rice values in the region O
to 0.5 may suggest a non-Rayleigh type of scatter - perhaps log-normal,
or Hoyt.

(iii) Agreement of the curves suggests Rayleigh scatter could
be acting - it does not say it is (ie., the test is a rejection test,

rather than an acceptance test).



281.

(5) It is also useful to compare the mean Rice parameterla
(and variance caz) of the sample with the expected means op presented
in Figs. 5.12.

(i) 1If E-z a. + Oy this may suggest some specular scatter.

E

(ii) 1If a'f Ay = 0> this suggests non-Rayleigh scatter

E
(log normal, or Hoyt, etc.).

(iii) 1If ap = 0 < 3'5 o + S the data series may be Rayleigh
distriﬁuted.

(6) The interpretation of a specular component is also important,
as discussed earlier. With the procedure described here, the detection
of"specular scattgr"means there exists a greater contribution from
frequencies with periods greater than 2T than would be expected from
purely Rayleigh scatter.

This is really the only way to do amplitude distribution analysis.
Thus the results in previous papers must be interpreted with caution.
Von Biel (1971), Mathews et al. (1973) and Newman and Ferraro (1976)
all used data lengths greater than 10 mins, so that their statements
regarding Rayleigh scatter at 60-80km may be in error, Rather, their
distributions would probably have been log-normal or Hoyt, or at least
some sharply rising function at small amplitudes, so the best Rice fit
would have been o = 0.0. This distribution is a result of the non-
stationarity of the signal, although exactly why this form should arise
is unclear.

As for the higher heights (> 80km), it is not possible to say
correctly whether their data was Rician without more analysis. We have
seen that a purely Rayleigh distributed series can produce a values up
to 1.5 — the important issue is the percentage of records with these

large values. Chandra and Vincent (1977, 1979) used 3-5 minute data

blocks, and thus overcame the problem of non-stationarity. However, they
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did not correctly analyse their results, which would have involved
comparing their means to ag values as calculated in Figs. 5.12.
Rather, they assumed that Rice values greater than 1.0 meant sig-
nificant specular scatter, and values less meant random scatter.
However, their results are certainly closer to the truth than those of
most other authors.

Another problem which should be mentioned concerns grouping of data.
Von Biel, Mathews et al., and Newman and Ferraro, all group their data
into height intervals without paying any regard to the heights of peaks
of power. This is a dangerous practice. It will be seen shortly that
Rice parameters tend to maximize at the heights of maximum power. At
intermediate heights, and in the minima of scattered power, Rice parameters
are often zero, simply because the signal being observed is due to a
mixture of the tails of the pulses of scatterers above and below the
region. The signal is not zero in strength, so signal to noise rejection
tests will not always reject this data.

The problem of non-Rician scatter has also been discussed to some
extent by Von Biel (1979), who proposed fitting another form of dis-
tribution to the amplitude histograms. However, because the parameters
of the distribution do not have a readily recognizable physical sig-
nificance, this approach has not been pursued.

As a summary then, it can be stated that the statistical non-

stationarity of ionospheric echoes, and the statistical fluctuations

inherent in estimates of the Rice parameter, have not been adequately

dealt with in most previous studies of specularity of iomnospheric scatter.




Figs. 5.13a, b, c (following):

Typical amplitude-time series, and the associated
distributions. All recorded points were used to plot
the histograms. Data was generally collected at
either 5Hz or 2.5Hz per height. Fig. 5.13(a) shows

a signal with a significant specular component.

Fig. 5.13(b) shows an essentially Rayleigh-distributed
signal. Fig. 5.13(c) shows a case where clearly the
fading is too slow to record a useful histogram.

Such cases must be rejected in any Rice-analysis,

and the procedure for doing this is discussed in the
text. In Fig. 5.13(c), the letters A, B and C on the
first graph show the points where the peaks in the

histogram come from. The Rice parameter Oqp has been

calculated, although clearly it is not relevant in
case c.
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5.4 Experimental Estimates of Specular to Random Scatter Ratios

5.4.1 The Distributions

Data for the amplitude distributions presented in this thesis
were recorded in the same way as all other data - namely, on digital
tape, with 64 levels of digitization. Great care was taken to remove any
DC offset present in the receivers, since this could bias the results.
Data was then generally grouped into classes of 4 levels (0-3 inclusive,
4-7 inclusive, 8-11 inclusive, etc.), or classes of 3 levels (0-2 inclusive,
3-5 inclusive, etc.).
Figs. 5.13a, b and ¢ show some 1 minute sets of amplitude-time
series, with the corresponding amplitude distributions and the Rice

parameter o The case 5.13c is not typical, but care must be taken

12°
to eliminate such distributions from any analysis.
To eliminate cases like 5.13c, a X2 test was used (eg., see Croxton,

1959; Bevington, 1969). Classes with less than 5 points were grouped

with adjacent classes, as is usual in such tests. Then the value

- 2
(£;-0,)

(5.4.1.1) X2 = z
all classes i

was calculated, Oi being the observed number of points in class i, and
Ei the expected number (for some assumed distribution - in this case, the
Rice distribution). This value is then compared to a standard set of
tables (the chi-square distribution tables). A particular acceptance
level is chosen, and if the calculated Xz is less than the x? associated
with the acceptance level, the data is accepted. The acceptance level
represents the probability that a data sample derived from a sample with
the assumed @xpected)distribution would produce a x2 value greater than

the x2 value associated with this level. Generally acceptance at about



284,

a 5% level means the data is reasonably acceptable.
Figs. 5.14a, b show typical distributions, with the Rice distributions
for the given Rice parameters shown. However, the x2 values shown are

not x? values in the true sense, as discussed below.
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Fig. 5.14a:

AMPLITUDE

Histogram of 10 minutes of data from 80km using a wide beam
at Buckland Park. Both 0o and 0y, are shown, and their

corresponding probability dlstrlbutlons The number of
degrees of freedom is v = 18, A x2 value was calculated
assuming o 2, was the expected Rice parameter. It was
found that Y% = 81.6, but this was using all points, with
a sampling rate of SHz Only points at least 2s apart
would be statistically independent (ie., =2 Tl), SO a more

realistic x? value would be around 81.6/10 ~ 8 16 (see
text). This corresponds to a high level of acceptance.

Notice this histogram was formed using 10 minutes of data.
This was possible on this day at this height because the
scattered powers were reasonably constant in time. This is
not always so, and certainly 10 minutes of data would
produce a less than useful histogram at helghts below 80km,
as has been discussed in the text.
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AMPLITUDE

Another histogram of amplitudes, for a height of 74km.

In this case, only 5 minutes of data were used (and data
were recorded on the lst, 3rd and 5th minutes only, for
instrumental reasons). Notice the maximum amplitude is
about 11. Normally, gains were sufficiently high that most
of the 64 levels of digitization were covered, but not so
high that significant saturation occurred. However, this
was not always possible. Even for amplitudes of the low
levels given here, quite reasonable Rice parameter estimates
could be achieved (v = number of degrees of freedom) .
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5.4.2 Rejection Criteria

As a first criterion, distributions were réjected if they had means
less than 3 or within 3 of saturation (60). Then a y2 criterion was
used. . The fits in Figs. 5.14a, b are reasonably typical. If a X2
value is calculated, quite large values result (eg., Fig. 5.1l4a gives
x2 ~ 80). However, bear in mind that all data points have been used to
form this distribution, and hence each point is not statistically in-
dependent. Now
(NP, - 0,)2
(5.4.2.1) 2 = z —

all classes i
N being the total number of points, 0i the observed number in class i
and Pi the expected probability of a point in class i. N should be
the number of statistically independent points. However, suppose it
is not, but is rather the total number of recorded points. Suppose it
can be assumed the distribution of statistically independent points is
the same as for all the points, and let the total number of statistically

independent points be N Thus the observed number of statistically

stat”’

independent points in class i is (N /N). 0,

stat

Then using all points, we calculate

2 Ns‘tat 2
2 ) Z(NPi -0 E(Nstat "N %7, N 2
all points NPi Nstat NstatPi NStat true
or
N
2 - stat( »
(5.4.2.2) X true N {? all pointJ

Thus, if, for example, data is recorded at 5Hz, but only points 2s
© s . 2 v L2
apart are statistically independent, X e 10 X a1l SoHn

However, the problems involved with obtaining sufficient statistically

independent points have already been discussed, given the non-stationarity
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of ionospheric scatter. The approach in this thesis hdas been to simply

calculate x? using all points. Visual inspection of many graphs suggested

x2 values of several hundred were generally unacceptable, but values of
x? of less than about 200 were generally reasonable. Thus x2 values
were rejected or accepted around such values, Data was often accepted

at a "10 102" acceptance level, using x2 Bear in mind, then,

all points’

that this is not a true x2 test, but for the purposes of these experiments,
the procedure proved more than adequate. It is not surprising that the

acceptedwxznvalues are less than 100+200. If N/N ~ 10-20, then we

stat

may expect the limiting x2 to be around 10+20 times the thrue

all points

acceptance value. But x2 /v is around 3+1.5 for around 4-+20 degrees of
: true

freedom (v) at the 5% level, and in the histograms presented here,

v is around 4-20. Then the limiting x2 is » (10+20) x v x (4.5+3).

all points
As a point of interest, it was noted that data obtained using a wide
beam often produced smaller "2 yalues than those recorded with the
marrow beam, particularly above 80km. This may be partly because the
fading times were less, so that (Nstat/N) was greater, reducing "X2a11 points"
for a given thrue' It may also be because of the presence of more
oblique scatter, thus increasing the "random scatter" component, and so
hiding fluctuations in the 'specular componentﬁ to some extent.
There was also some doubt as to the number of degrees of freedom
v relevant for a histogram. Since the number of points, the mean, and
the standard deviation are known, Croxton (1959) takes v = number of
intervals, N,mims3 .Bevington (1969) takes v = N-2, as he feels the

number of points, N, is not really a statistic. The former approach was

adopted in this thesis.



Fig. 5.15: (a) Contour diagram of 1 minute mean power and (b) a
“table" of 1 minute Rice parameters, as a function of range
and time. Measurements were only taken every second
minute. The powers have been smoothed by computer
interpolation.

In (b), the numbers refer to a parameters. O means

0 to 0.5, 1 means 0.5 to 1.5, 2 means 1.5 to 2.5 etc.
Values of 1.5 to 2.5 have also been shaded. A black
square is used for values > 2.5. Blanks mean the
data was rejected by a X2 test. Notice more are
rejected at the lower levels. In particular, notice
during the power burst at 76km, 1206-1210 hr., few
amplitude histograms are accepted as Rician. Likewise
at the 70km, 1300 hr power burst .

The large Rice values at 60km are due to the presence
of a ground echo at 58km. The arrows on the right of
(b) show approximately the heights of important echoes
on this day.

’
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Fig. 5.16:

Contour diagrams of (a) 3 minute mean power in (uT, Y2 and (b) 3 minute Rice values,

irps
for Townsville (80-98km) during November, 1977. A contour diagram of (a) can also
be found in Fig. 4.14, Chapter IV. Data was recorded in 3 minute blocks, either
every 5 or every 10 minutes (see Fig. 4.14). At times, correlations between power
bursts and Rice parameters can be see at around 90km. The echo above about 95km
is due to the E region total reflection - hence the large Rice parameters.

For this data, no X2 test was applied. However, even if the distributions@renot
Rician (andmost probably are Rician), the Rice parameters do serve as a measure of

depth of fading to the mean fading (see Fig. 5.7). Note that some degree of correlation

between mean power and Rice parameter is not surprising - if fading is deeper, the
mean power would be less, even if the range of amplitudes covered were unchanged.

In (b) dark patches below 95km generally correspond to a values between 1.5 and 2.0.
Above this height (E region reflections), o values are generally 2 4.
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5.4.3 Results

Fig. 5.15 shows a typical contour diagram of the Rice parameter as
a function of time; one and two minutes of data were used, as described
in the caption. Also shown is a contour plot of the mean power as a
function of time and range. A better diagram of the same data was
presented in Fig. 4.13, Chapter IV. Fig. 5.16 shows a similar pair
of diagrams for Townsville, 80-98km.

fhese graphs make some points immediately clear. Rice parameters
appear to be minimum at the heights of minimum power. This is most
likely because the echoes received at these (virtual) heights are due to
the superposition of the tails of echoes from above and below. At times,
too,there appears to be a positive correlation between power bursts and
large Rice parameters. For example, Fig. 5.16 shows a few such correlations.
However, not all large power bursts are necessarily associated with large
Rice parameters, nor vice versa. Fig. 5.16 also is also typical of some
night-time echoes at 80-98km; for example, during November 1977 on the
night 307-8 at Buckland Park, similar correlations were noted. However,
before reading too much into these correlations, it must be borne in
mind that there is considerable statistical fluctuation in any Rice
parameter estimate, as seen in section 5.3, To properly investigate
Rice param;ters, the data sets must be treated as groups. It is interest-
ing to notice, however, that at the lower heights (s 70km), amplitude
histograms are often rejected as non-Rician during large power bursts.
This will have important consequences in estimates of specularity of
scatter at these lower heights, as these large power bursts (often
extremely specular and slow fading) are not included in such analyses.
However, it is not surprising that at low heights, strong power bursts
associated with slow fading would produce large Rice parameters (eg., see

Fig. 4.10a; a Rice parameter estimation at 70km, 1142-1145, would clearly
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Fig. 5.17a:

RICE PARAMETERI(x)

(i) Correlation of 1 minute mean powers and 1 minute Rice
parameters (alz) at 84km for day 77/201 at Buckland Park
using the vertical narrow beam. There appears to be a
positive correlation.

(ii) Distribution of the 1 min. Rice parameters, with
error bars equal to vn. The solid line represents the
expected distribution of Rice parameters for a Rayleigh
distributed signal with T/T% = 20 (see section 5.3).
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|
ICE PARAMETER(x)

(i) Correlation of 1 min. mean powers and 1 min. Rice
parameter (o,,) for day 77/201 at Buckland Park using a
wide beam, for a height of 84km,

(ii) Distribution of the 1 minute Rice parameters, with
error bars equal to Yn. The solid line represents the

expected distribution of Rice parameters for a Rayleigh
distributed signal with T/t, ~ 20 to 30 (see section 5.3).
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(i) Correlation of 1 min. mean powers and 1 min. Rice
parameters at 86km (.) and 90km (x) for day 77/201 at
Buckland Park using the narrow beam tilted to 11.6°
off-zenith.

(ii) Distribution of the 1 min. Rice parameters, with
error bars equal to vn. The solid line represents the
expected distribution of Rice parameters for a Rayleigh
distributed signal, for T/Tl/2 - 20 (see section 5.3).
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give a large Rice parameter, and indeed did)., Many of the rejected
cases are also interesting. These have multiple.humps, or distributions
more appropriate to the cases of 2 or 3 specular scatterers. However,
they will not be discussed here.

Figs. 5.17a, b and c show much more detailed assessments of the
Rice parameters. The data is for a scattering structure situated at
around 84~86km on the morning of day 77/201. The layer descended to about
80-82km by 1200, and then rose again.

Fig. 5.17& is typical of the conditions observed with the narrow
beam. It can be seen that there appears to be something of a linear
trend on the power/Rice correlation graph. This may suggest that
increases in power are in part due to more Fresmel-type scatter.
Certainly the distribution of Rice parameters suggests there 1is a
contribution from specular scatter, since there are more Rice parameters
greater than 2.0 than a Rayleigh-distributed signal would be expected
to give.

Fig. 5.17b shows the power/Rice correlation, and the distribution
of Rice parameters, for the wide beam on day 77/201. 1In this case, there
is no clear power/Rice correlation, and the distribution of Rice para-
meters is more consistent with a Rayleigh' distributed signal. (Although
there is a weak hint of some specularity, as the o = 1.5-2 column has more,
and the 1-1.5 column less,than a truly Rayleigh-distributed sample).

These two graphs, then, suggest scatter from 86km comes in two forms
from near the vertical - a specular component and a random component.
Scatter from the off-vertical would appear to be purely random, This
would explain the approximately Rayleigh distribution on the wide beam -
the random scatter from the vertical and oblique directions 'swamps"

the vertical specular scatter. At times, on some days, a weak power/
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Rice correlation can be observed on the wide beam at around 80-90km,
but it is generally weaker than that for the narrow beam. It is fair
to say that the signals observed with the wide beam generally show
more Rayleigh-1like behaviour than those observed on the narrow beam at
80-90km.

Recall, however, that powers received with the narrow beam at
0° and 11.6° from these heights are similar (chapter IV) (to within
perhaps about 3-6dB). When the beam is tilted to 11,6°, the specular
component would no longer contribute, so the ratio of random scatter

(_3+_6)/20. Hence 1if

to (random + specular) scatter should be about 10
this moﬁel of specular plus random scatter from the vertical, and
random scatter from the off-vertical, is wvalid, then the specular
components and random components when viewed vertically on the narrow
beam,must make comparable contributions to the scattered power.

It would thus appear, then, that scatter from the ~ 86km layer
generally consists of approximately equal components of Fresnel
reflection and random scatter when observed with the vertical narrow beam.
The actual ratio varies depending'on the day of observation,

Fig. 5.17c shows graphs of power/Rice correlation and Rice parameter
distributions when observing the ~ 86km layer at 11.6° off-vertical
on the narrow beam, for day 77/201. There may be a weak specular
component, as indicated by the rather large number of Rice parameters
in the regime 2-2.5. However, this is questionable. Certainly there is
not the same degree of specularity as at 0°. Indeed, generally observation
at 11.6° do appear to suggest Rayleigh scatter, and support the above
description of 86km scatter.

What about the heights below around 80km? Fig . 5.18 presents

a typical case. There is not a great correlation between powers and

Rice parameters in this case. However, the histogram of Rice parameters
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Fig. 5.18:

RICE PARAMETER(e¢)

(i) Correlation of 1 min, mean powers and 1 min. Rice
parameters at 68-70km for day 79/229 at Buckland Park using

the vertical narrow beam.

(ii) Distribution of the 1 min. Rice parameters, with

error bars equal to Yn. The solid line represents the expected
distribution of Rice parameters for a Rayleigh-distributed
signal with T/TI/2 ~ 16 (see section 5.3).



Fig. 5.19: Profiles of power, fading time, and Rice parameter for day 79/229 at Buckland Park,
using the narrow beam. The first two graphs have already been presented in
Chapter IV, Fig. 4.16. The error bars associated with T, and Rice parameters
2

are ¥ the standard deviation for the mean. Also plotted on the Rice profile

(-—-) 1is the expected mean Rice parameter for a Rayleigh distributed series

for the T/TL ratios relevant for this data. The 86km, and 70km layers, both
2

appear Rician. The data is discussed more in the text. The data above 94km
is due to the front of the E region echo, and so exhibits slow fading and large
Rice parameters.
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presented in Fig. 5.18lii) definitely suggests a significant specular
component, and this is generally true for the echoes from below 80km.

As discussed earlier, some of the cases with a = 0.0 at these lower
heights may in fact not be Rayleigh distributed, but perhaps Hoyt
distributed. This case would give a = 0.0. The lack of a power/Rice-
parameter correlation simply suggests that the scatter mechanism appears
to be independent of the scattered power. At times, strong powers can be
found associated with large Rice parameters, but this is not always the
case. In many cases, scatter appears to be neither Rician or Rayleigh.
However, it does generally appear to be specular.

The apparent specularity of these lower signals supports the
evidence using beam swinging and fading times presented in Chapter IV
that the scatter from below around 80km is generally due to Fresnel-
reflection.

Finally, Fig. 5.19 is presented as something of a summary of Rice
parametexr characteristics. It refers to data taken on day 79/229 with
a narrow beam at Buckland Park. It can be seen that Rice values tend to
be small at the heights of minimum scattered power, as discussed. Also
marked on are the expected mean o values for a Rayleigh distribution,
using a data length T = 1 min. and a fading time Ty, of 4s below 78km,
and above 80km, T = 1 min., T;é = 2s.

Scatter from 86km appears to contain some specular contribution,
Scatter from 70km also appears to be specular. The fact that o values
are less than the expected means at the minima of power suggests that
scatter is not really Rayleigh-like here, either, This is not surprising
if much of the power is due to the beating of ''tails'" of the echoes from
above and below.

The scatter at 74-78km may be Rayleigh distributed. However, when

this data was considered in Chapter IV, it was pointed out that the
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echoes from around 76-+78km were temporally and spatially intermittent.
Processes such as the beating of 2 specular reflectors could be
important. It is the author's opinion that many of the "o = 0.0"

cases at these heights are due to non-Rician processeé, as already
discussed. The fact that histograms formed during large power bursts are
often rejected as non-Rician, yet are often quite specular, has already
been mentioned. In fact, this is possibly also true for the 70km echo.

The results of the analyses of this chapter, then, can be simply
stated as follows:

Scatter from below around 76-78km is generally quite specular (and
aspect sensitive (see Chapter IV)). Scatter from the .~ 86km echo
appears reasonably Rician, with both random (turbulent?)and specular
scatter. It has not been possible to ascertain decisively the nature of

echoes from » 90km, but it is felt the scatter is largely Rayleigh,



End of Volume I .

Completed in Volume II.





