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ÁBSTRA.CT

fn this thesis a nodel is set up for the discussion of

nucleon nucleon scatterireg. Bethe-Salpeter t¡rpe equations are

w¿"itten dorrn for interactions between tr¡o nucfeons, taking iato

account not only processes çhere a neson is exchanged. by the

nucleons but processes l'¡here e neson is emitted- by one nucleon

either to be reabsorbed- or to be a free particle. The time

d.ependence of these equati-ons is elininated. for the spin singlet

J = O case and the re¡nai¡ing equations interpreted. by their

sinilarity to the space part of the Kl-ein-Gordon equation.

the solutions of the equations obtained., v'¡hich are relevant

to the scatterj¡rg problenr are f ounci for the two cases v¡here the

interaction regj-on is spherical and. rvhere the interaction region

is spheroidal and. the crcss sections, both elastic a¡cl inelastic,

are i¡vestigated, particularly at high energies. Energies near

the threshol-d. are also examined. in d.etail,

In the course of solution it is noted. that the wave function

and. cross sections d.epend- critically on the singularitics and.

branch points of tlæ scattering anpl-itud.e; thus these oingular-

ities and. branch points are examined. The appearance of

sirnilar silgularities in scatteri¡g arnplitudes investigatecl by

the method- of d.ispersion reLations is cLiscussed..

(i)
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Chapter 1. )

TNTRODUOTÏON

In this thesis a nodel vrill be presented- for nucleon nucfeon

scattering at hígh energies. Thi-s is a subject on which only

linited. experimental d.ata is available. At present, more d'etailed.

a¡rù accurate d.ata is of use only to a theoretical physicist approach-

ing the subject by consid.ering a phenonenological potential;

accurate calculations based. on field. theory are too conplicated. to

carry out and if erqlressionsfor the scattering cross sections are

required. then drastic approxinations nust be uaile. This is the

approach presenteð here, the aj.¡n being to achieve results which

show the seJne general features as the cro ss sections determi:retl by

experiment, with cletailed. agreement in some aspects.

the d.ata available is surnnarised- in various sources. Results

of ex¡leriment¡ ctetermining nucleon nucleon scattering cross sections
I

have been gathered- together by Fowler et a1 and. correlated- with

thejr own results to show how the tota\ elastic, and. inelastic

scattering cross sections vary with eners¡ up to J Bev and also how

the differential cross section changes in form with i¡creasing

enerry. Since then many other sets of results have been ad.decl' to

the d¿ta available; MacGregor et t12 gt.r" a sunmalTz of the work done

on all aspects of nucleon nucleon scattering up to 1960 arrd' in this

sutrnary inclucled. a list of sources for data. The d.ata available

on elastic scattering up +o 196t+ is surmnarised. by I'{ac$regor et alJ

antl elastic and Lnelastic scettering cl,ata between 12 and' 27 Qev
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is sr.mnarised. by Ðidd-ens et 414. The d-ata availabl-e cloes not

show the fletailed. behavj-our of the cross sections ruith changing

enerry but nor is the nodel presented. here accurate enough to be

expeoteô. to predict d.etailed. behavj-or¡r. The e4perinental results

d.o, however, show the general behaviour anù the model is accurate

enough to predict this.

At high energies the d.ifferential cross section exliibits a

na¡ked peaking in the forward anà baclcr,¡¡ard èirections, the peaki$g

beconi¡g greater vrith increasing ener8y so that when the kinetic

ener$r of the incittent nucleon is l.JJ Bev there i-s practically

no scattering at all outsid.e a region witkri:r J0 d.egrees of the

forwarci. and. baclmard òirections, The d.ata nay be fitted' at any

g:iven enerry by an optical moclel involving a spherical potential

well by choosing the para:neters of the r,¡e11 suitablyS'6 b'rt t"

greeJ has pointed. out it is quite rirrong for the scattering region

to be spherical for high energ:ies because a spherical reg:ion

suffers a Fítzgerald contraction in the direction of notion

turning it into a spheroid'al region' This being sor results

d.erived froro a spheri-cal lnteraction regi-on as to the relative

irnportance of the parameters involved. in the potential wil-I be

wrong, possibly seriously at high energies" Cl-ear1y the flat-

teni.:cg of the interaction reg:ion into a spheroid' is responsible

for some of the forward and- backwarci pealcing vlhile the introduction

of higher angular momentt¡m states and. spi-::-orbít coupling terns

into the potential as they becone energetically possible will

accourt for the rest.

another general feature of the cross sections wh-ich is
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apparent fron the data availabJ-e is that the total soattering

cross section f alls rapid.ly with energr til1 about 1O Mev whg't

it beco¡oes almost constant at about 25 milfibarns. This has
o

been i.:rterpreted by Jastro*t to indicate the presence of a hard.

core in the nucleons. The total scattering cross section then

remains al¡ost constant until the first meson enission threshold-

is reached. when the total cross section rises sharply but the

elastic cross section renains constant. this fact is explained-

by supposÍng that the elastic scattering ís almost entirely

confined. to the surface of t]ne hard core whiLe the inelastic

scattering is spread. over the whole interaction region. Ihat is,

from about 1^' Mev the elastic scattering is confined nostly to

the sr:rface of the hard- core and. as eners¡ increases through the

threshol-d. no sígnificant change in the elastic scattering occurs

because the inel-astic scattering, comi.ng fro¡r a d.ifferent regiont

d.oes not interfere w'ith it.

A particular feature of the inelastic sc¡.ttering cross section

is that as the thresholtl is passed it rises sharply fron zero,

smoothing off and. becoming constant at about 25 nillibarns. fhis

feature nay be expected intui,tively and. vril1 be preùlcted- by the

model presented i¡ this thesis.

Phenomenological potentials have been obtainecl by fitting

scattering d.ata at energies below the meson production threshold.

which g'ive cross sections in close agreement l'rith those obtained.

by erçerinent over the whole range of energy considered.. Such

potentials have been obtained. by Gammel and. Tha1e"g, H"t"d."10,

ancl [assila et a111 (uurr and Breit). Recently a ner{ t¡çe of
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phenonenological potential has been considered.; i-n these the pion

resonance states are considered- to be nelv elementary particles'

Such potentiafs are those obtained- by Bryan and scott12, ancl

Sawaôa et al13t14, end are 1n close agreement v,'ith the potential

suggested. bY Lassila et aI.

Green and Sharm"15 :,,ru" dravrn attention to work which was

presented. to the american Physícal Society in cambridge in 1949.

In this work nucfeons ïyers considered, to be representecl by five-

vectors and. the properties of the deuteron r,¡ere studiecl. Green

anti. Sharsa have consicleretL the w and. e mesons (785 tvtev and

763 Mev respectíveIy) to be nanifestations of five-vector field's

and. found. the tensor, spin-spin, and. spin-orbít potential generateél

by these particles or resonances. They have also stud'ied. the

contribution of the I neson (5L9 ¡¡ev) to the isoscalar part

of the potential together rrith the Tr Ineson potentia"l and. the

contributÍon of the pi meson together with the q Ineson'

îhe value of a phenomenolog.ical potential is that when the

parameters are such that a good. fit is obtaineci. with e:çerimental

tlata their values at a given enerry ind.icate the relative

importance at t]¡at ener5r of the j-nteraction processes represented'

by the potential. However it is possible that in an exact

theory a particular interaction rnay not give rise to a potential

t¡rpe tern at a[ in rd:i-ch case a phenomenologíca1 potential nay

be mislead-i:tg. The nod.el presented here inùicates that the

single ueson interaction processes do give rise to potential

tSrpe terms for elastic scattering but not for inel-astic

scattering.
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Potentia}svrhichpred'ictinelasticscatteringhavebee¿

obtaj¡ed. by Grishín et al_16 *¿ by Brovrr5. These potentials

contaln complex pêt3ârrle'uers and. are analo8ous to the optical poten-

tíaLs used for the nucleus. This optica]- model for the nucleon

vri1l be èiscusseô l-ater in connection rrith1¡ork done by Feshbach'

another approach to the problem of nuclec¡n nucleon scattering

has been by using òispersion relations. Scot'bi 'n¿ 
ïTong17 a¡rcl

Bryan et aL18 n^u. used. th:j.s approach, analysing the nucleon nucleon

interaction in terms of one boson exchange processes and- obtai¡letl

phase shlfts for nuoleon nucleon scattering belorv the meson emission

threshold.,

In thls thesis the interactions between 'ctro nucleons rvhich

invol-ve only one meson being rrin the aírrt at a given tine are taken

i¡to aocount in detail whíl-e al-1 other interaction processes are

taken fnto account by representing the nueleon by a square potential

v¡ell. This very sirople potential is used- so that the eguations

obtalned. are sol.vable and the effect of one meson interactions cen

beclearlyseen.Itcannotbehopedthatthernoòelwi11give

reasonable results a'c enerSies higher than '':he thresholô for

eroission of trvo I¡esons but it is er¡rected- to show exactly in what

way the single neson emj-ssion affects the Cross sections near the

thresholcl.. In fact the mod.el pred-icts cross sections r'u'hich behave

in the erçected. way around. the threshold. but 'che inelastic

scatteri¡rg cross section d.oes not arise in the rvay preùictetl by

a conplex potential. Thus while the optical rnod.e] c8n give goocl

results it coultl not be equívalent to any model r¿liich took into

account exactly all 'r,he interaction processes involved.r
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Feshbachl9'2o nas d-eveloped. a. theory of nuclear reactions

frorn vvhich all- other d-escriptions such as the compound. nucleus,

the optical mod.eI, and. the ùirec'r; ínterac'r,ion model may be

obtained. by specialising or approximatirg in a particular vray.

This work has relevance to the moclel for nucl-eon nucleon scattering

bej-ng presented here for the follor,iing reason. Feshbach shovrs

that when several exit channels are possible after a nucleon has

been shot at a nucleus the wave furrctir:n for the system after

elastic scat-Lerj¡rg is the soluti-on of a se'c of coupled. equations

which reduce to a singl-e equation l¡hich is of the schrod.inger t¡rpe

if a complicated. term involving inverse operators is replaced. by a

potential. He sholrs that this term is complex and. non local ancl

replaces it by a complex potentía] to prod-uee the optical mod.el

for the nucleus. îhe sane proced.ure is presurnably possible for
nucleon nucleon scatter j¡g where d-ifferent channels for ine'rastic

scattering are possible. rn the mod.el presented. here only one

inelastic process is all-owed. and- only ti',ro coupled. equations are

obtained.. It is thus not necessary to replace the inverse operator

by a potential fr:nction as these t.,ro eq-u-ations can be solved armost

exactly. rt ',ri11 be seen that r¡hiIe a*a opti-cal potential for a

nucleon may be deduced- it is not necessary to use it in a mod.e1

r,vhich seeks to d.escribe single meson emission on1y, prouid.ed. that

the mod.el is simple enough otherv,¡ise.

The results of i-nelastic scattering experiments show that the

inelastic scattering cross section rises sharply fro¡n zero with

i:rcreasing energy past the thresholo. lhis sort of behavíour

cannot be satisfactorily erçlained- us)-rtg a. c'ôûpiex potentÍar for
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if it were forced. to fit the d.ata its ei-rergy d.ependence woulcl be

higtùy artificÍal-. It is much nore natural- that the inelastic

cross section should. arise aê a tern which is a function of enerry

increasing rÃrith increasing enerð¡ and zeTo at the threshold-. This

is the ryay it arises in the present nod-eI; the inelastic scattering

terus arise from an integral around. a cut in the complex Plafie, the

length of the cut increasing with enerry a:.ifl being zero at the

thresholò.

As rnentioned. earlier, another approach to the problem of the

nucleon nucleon interactíon is through the theory of dispersíon

relatíons. The difficulty rrith this appro¿ch is that while it shows

clearly the silgularities of the scattering anplitude corresponèing

to the various threshold-s and stable states the actual calculation

of the scattering cross sections is very corylicated, particularly

above the meson emission threshold.' The problem of two particle

interactions has been consi-d-ered. in general by }.{ariðelrt"^21 while

the particular case of nucleon nucleon scattering has been consid.ered.

by H*^22 and. by ttsieh2J. The sin6r:ì-arities of the scattering

anplítud.e revealed. by -bhe dispersion relation approach will be

discussed in more d-etail i:: Chapter /. The nod-el presentecl here

is simple enough for the scattering amplitud-e to be obtained.

explicitly, exhibiting the nature and. posítion of the singularities,

thereby throwing light on the structure of the sca-b-i,eri-ng amp1Í-tucle

wirich would. be obtained- in an exact theory.

îhe nod.el presented here, then, is ained. at d-escribing two

aspeots of nucleon nucleon scattering. they are the effect of
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the flatteníng by the Fitzgerald contraction of the interaction

region on the ðifferenti-al cross section and. the effect of the

single meson interaction on all- the cross sections. To d-o this a

Bethe salpeter t¡rye equation is set up, which takes ínto account

all t¡pes of single mesoïl interactíon, and- a generalísation of a

),,
method used by Green and Biswas'* is used to ùerive fron it a

pair of coupled. d.ifferential equations, which hold in the cent:re

of mass frame of the nucleons, involving the wave functiors for a

nucleon and- a nucleon plus meson, In this d.erivation the

instantaneous interaction approrirnation is used and, as the

interactions other than those involving a single rneson are to be

approxj-natecl by a sinple square weIL potential, only the spin

singlet J = O case is considered. These coupled differential

equations are then solved and- the effect of the single meson

interaction is analysed in d.etai]. Sol-utions are Siven assuming

both that the interaction region is spherical and. spheroiùal in

the centre of mass frame and- thus the effect of the flattening

becomes clear. The analysis of the single meson interaction is

best cagied. out in the case ¡¡here a sphcricaf welJ- is used as

the calculation is siropler and the irnportant points are not

obscured by calculational d.etail. The effect of the flattening

of the interaction re8ion is seen qualitatively only; the

importance of the calculations made is that r¡ith a model which

was d.etalled enough to justify accurate cal-cul-ation a spheroid-al

well could. be used anð cross sections found alnost exactly, the

nodel presented here is not detailed- enough to justify accurate



9

nr¡merical cafculations of the differential cross sectionr

As mentioned before, this modef allolzs the scat'cering

anplitud.e to be found- explicitly so that its singularities,

branch points, and- cuts ca¡ be analysed- exactly and- their effect

on the cross sections seen clearly; Th-is is C'i-scussed in the

last chapter,



Chapter 2. 10.

TTTE FIEÍ,D ESUATIONS AND T]]E EITI]IINAIION OF

TI{EIR TI¡IE DEPn{DM,TCE

In this chapter field- eguations lrill be found- for the scattering

of tno nucleons, based- on relativistic fieId. theory. This vri11 be

d-one making sufficient approximations to al1ow the equations to be

solve¿ but renai¡jlg close enough to the accurate field- theory noclel

to gi-ve an indication of how tbis model accor:nts for rneson emission

thresholcl phenonena.

Green anò BiswaS\"rru given a nethod- of obtaining covariant

solutions of tbe Bethe-Sal-peter equa-bi'rn -;¡irich is an equation for

the nucleon i¡tteraction where the rtlad.d-eril approxination has been nade.

fn the relevant part of their nethod- Green ancL Bisr¡as have also used-

the rtinstantaneous j¡tercctiontr appro;.i¡tation. The present chapter

is a¡ extenslon of the Green Biswas rnethod- applied- to a mocÙeI whi-ch

inoludes, not only lacld-er t¡rpe interactions but al-so ilteractions where

the emission and absorption of one neson by each nucleon is allor¿ecl.

Thus, i¡rteractions associated- vrith Fe¡mman d.iagrams of the following

t¡rpes are taken into account.
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Usi¡g the rules deríved by Feynnañ for obtaining field- equations from

such tliagra¡ns the following fieId. equations may be v'rritten clovm:

Bt -,

Bf
Bv

Bv

1

2

e2 r(*) .s (V' *.*13) ,i j
s2 r(*) 'is (V2 +\y4) -l j
s YD Øl * ø1\ (r, - Lr¡

s (n, - v) (Ø22 " ØzL') Y¡

e2 r(*)'{ru(øt " É)y,
e2 r(r) ys K(þ2 * È) y5

s Y5 (V r * yl)(n z - rt) !(*., v)
s (r., - m)(?2 *Yh) Y5 t(xr-v)

(i)

(ii)

(ii-i)

(irl) " ". ".2.j

(")

("i)

(":.i)

(viii) " ... .2.2

1o)

.... . "2J+

, (iii-), (v) ana (rrii)
have analogous resufts

3

L

= þ(*1, t2, *1)

= þGl, *2, .2)

Al-so ø1

and. øz

Put Y'
a¡rdl d

red

ßø2

oF
reÈ

Here B ü (x., ,*2) = (n., - u) I (1, - u1 
'

a¡¡cl ro(y) -6o !2)ø ,

where y is the neson mass and M is the nucleon mass.

*v3 = V
*É = ø

eY5 4 G, - n) * s2r(")Ysr{Ys

e Yrry(n, - u) !(*r - v) * s2r(,.) Y, xøVu

lquations 2.3 anð, 2.4 have been deriveå frour (i)
entirely so that any resrrlts obtained- from 2.J end 2.)+
which can be d.eriveã from (t), (l.t), (vi) ana (viii).

Then
BV=

a¡d. \ßø =

the equations 2.J and- 2Ja eüe a generalization of the ord.inary Bettie-
Salpeter equation, vrhich consiclers l-adder type ilteracti-ons on1y, to i-ncIud-e
j¡relastic scattering processes involvi-ng the e'¡i ssion of one meson. Green and
Biswas have shoø:: that the ordinary Bethe-Salpeter equation can be red.ucecL, by
restrictìng attention to the centre of nass fbane of the tno nucleons, to a
E-ei¡r Gordon t¡rye eguation for the spin sin6let state and- to a pair of coupled.
Ifl-ei¡l Gordon t¡,rpe equatic¡:s for the spÍ.n triplet state. Tn this nodel it is
proposed to approxi-mate the d.etailed spÍl-orbit and- tensor interaction te::ns by
a very simple scalar potential fi,mction. This being sor cletailecl analysis of



12.

such terns is r¡asted and after 2.17 attention is restricted to the spi:r si:rglet
j = O state, for nhich the solution assunes its siruplest f9*.. - thus, al:l
ãpil-d.ependent tezns are neglected.. With this approxination the pair of
cãupIed-equations l.J anð' 2.4 eventual-l-y lead' to

il* * "21"¡l y"(") = -e r¡,'r(x,x)

arrcr 
e,(a-iv * y2) il* * 

"(*)) 
.vi(*,r) = g* Ve(") f,L(--v)

where y" and- yi are^the rvave frrrctions of the nucleons which have or have

not emitted. a meson and "t(L) is the si.:np1e scalar potential fu:ction.

fn 2.3 anð.2.4 put

/v=75Ø(.pr-m)

then
llL = -Y, (n.' - M) ø (nr2 - w27

= -YSBØ (n, + u)

where
l7'.- =

BY=

KLX- =

a¡rd

¡oaki¡tg

p1

(n,, * M) á(n, + u)

e2 r(*) Y¡yÉ + g X.r

e2 r(*) y j K\yD + B$p 22 - \Ã2)¡(x.,, -r)

.. ..2.5

. .. .2.6and

In equations (2.5) and. (z.Q rnake the sr:bstitutions

V = (nr+1,{)w+w(pr+M) + e

7L= (n.,, -¡r)l)*iL1nr-u) +'@

i",Y¡i ir ,tr) = 1",y, J [ru,Yli 0rrhere

together v,rith a transfOrrnation to centre of nass coordinates

= *1-*2

= *1*t2

= p+il/ ,

= p-iV ,

= e(p2 - t:l )

= IÉP'Y.

x

x

2

P1

p2

+Pz

p2

,
2

2and. p1
2
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If y is nov measureð relatíve to the cen.tre of nass fra.ne the trans-
fomoation to centre of nass coorðilates, transfo:ms x. - y to ä - y ..
The d-el-ta function, t (*, - y) r:i-11 be left untransfoined r¡nti1 -Íntegraiions
need to be perforned,. I

Noting the íd.entities

(n, -rø)e(p, -u) = å(r, -u)(pre+e v2) +LGre +ep2)(nr-li)
-LGr2*Pz -zu2)e ,

(n., + M)e(p, + u) = !(n., + I{)(p.e + en2) * å(pre * epz)(P2 + M)

-LG12+Pz -"Ê)n ,

Gr' -lÉ)'(nz - u) + (pr - M)w(p22 - vP)

=t\t2 *p2 -elÉ)'(p2 -M) *å(pr2 *p2 -ztr2)(pt -Lr)w

- tîr' - nr'){pr' - nryz) 
'

,rr¿ (nr' - ro') -lì(p, + u) + (r, * M)j-L(p22 - rÊ)

=å (pr2 * p22- aÉ)jl(p2 + M) * å(pr2 * p2 - ztÊ)Gt + Ivl)J^L

- t G,,' - ,r'){n, -,) - -íì rr) ,

equati-ons Q.5) ,na (2,6) tecome

(p2-L -u2¡'1p, -M) * (p2 -Ü -#)(pr -M)' -2íp.ç(rrn-r7p2)
*å(pr -¡¡)(ple * Qz) *å (pre * cpn)(pz -M) - (p2 -I -oÉ1.

= - e2 r(*) i(pr - u)w -'(pz - i'l) + e | + ei (pr - M)ilr *flr G, -lr) + @1 i

. .. ".2.7
ancl

K kp2 -fl -tÉln(n, * u) *(p2 -I -*t)(p., + u)j)2ip. V (r.:1-l)nr)
* t Gt* m)(pr@*@pz) * å(pr@*(Ðpz)(n, * m) - (p2 - f - rfl g;]
e2 r(*) [ (n.,, + M)Jì *!\Gz+ ]ll) + 9l- *i- (n, + M)rv + vr(p, + M) +@ I

(nr'-u2)S(*r -v) ...--2.8

Equations (t3) and.(t+) *" satisfied- if

K('¡ -p2 * u2¡J)= Kå (r,,ftù*6lp2) t e2 r(*) KJì- sn(pz2 -¡,É)5("r -y)
"..".2,11



K('I- p2 *n2) @ =K2ip.V(p,'Ô- l1p) - e2t(*) K (E)

* ee(pr - ¡I2)!(*r - v) '¡e2 [Vt ,4
For sinplification Put

w2F-r
rl

L

14,

,. " .2.12

. "..2.13

' ' ' '2'1L'-

N:

then the equations becone

N'o - g2 f(x) w =

ue-g2r(x)e =

NJì- e2 r(x)fl =

LG.e+opr) ei^L

2ip.V(p,v - rrpz) - is2

å(n1 @-'@P)-*u'"

7¡ I

, *-i *Ðt
nr' - r't2) \(,,, - v)

-p +

I
I

I

(

.. ".?.15

N@ * e2r(*) ê = zip$ (n,,fi ---:nr) +

Noç defin" Jl-t and rvì such that

Nv¡t *g2r(*)'!-rr =zP.Vw *s0,,t

| æ 6"' - rÍ2)f, (x,, -r)
t * [ vr .l) 1....2,t6

1{.-

ancL

N 1¡r * .2 (*) i)' = zP.V

and. d-efine f and O such that

--ltå"' (=r -ù iw12 -M2)

ancL

ø e - i(p,wt - not Pr)

0 = ,:Ð - i (lrll' - jì' pz)

the equations satisfied bY ø Tr ¡ and. rf I are tt

{* * *t tt")} ø = i* * *t t(*)) e - t l* * s2 r(*)i tnr'' -''p2)

= 2ip.V (n,,,rn - lçz) - is2 l-f r , no-i + e @t

- 2íp1p.VJ-¡- + 2i p-Vl)pz - ie(prì' -il'nr)
+e2iVt,v¡'i-t,t

= -:qZlV r(' o ir,¡' ) - (t - i'¡r ¡ [lr] + e @t

-is (pr /ìr' - 'lr' lr)
= -iB2LV r (v + irr') - (ro - irvf) V r] " e o'i,
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l* - *' t(*))' = å(pre * epz) - e-rr,

= å(pr Í * /nz) - s-CL., * ål (p ,' *' - *' p22)

= Sil-V, ø'). å tP , ø'i - zp.V wr - sl'1. ,

and-

{* * rt r(x)} w' = h.rJ no * gJ^L',

The equations satisfied. bY 0 J-L, "n¿ 
CL

F * *'rt")) o 2ip.V (n.,-ft- - J^Lnr) . 1" æ (nr' - u2) t(xa - r)

- r su (n,'vrr - wfp2)i(*r, - ÐGr2 - \i1 -'5 
[Vt, 

fì-']

- t #l- Vr(rt+ iJì!) - (n- - ií)') tt J

*f e (nr'- iti2¡8¡*,, -y)

- ff {nr.*' - *'p2) (nr' - M2)!(x, - r)
2-

- r frL VttO+ i-fL') - (iì-rfl- t) Vr i
* E"ø (nr' - M2)t(x* - r) ,

å (r,, gl*@nz) -Ë'(nr'-M2)i(*r -v)

* ttV , r-l * åtn , rJ - -rn.V -n-' - fr-'1nr2+r2)!(x,-v)

zp.V:ì - Ë *' 6r' - m2)S (*.' - y)

a.re,

{* - *' t(")i -C¡-

þ * *'tt"ù rì' =

As rryas inùicated- earlier, at tiris point the discussion vil-I be

restricted- to includ.e only spi.:r singlet J = O interactions.t' Later

it is intend-ed- to replace terns arislng fron these interactions by a

simple potential fl:nction so that a nore d-etailed- anaì-ysis at this stage

would be wasted.. The sinplification is nade so that the resul'bi:ng

equati-ons can be solveil in closed for:r e.nd the appeararrce of tire rceson

emission threshold. seen in the ex¡lression for the scat'cering cross section.

*For a more detailed consid.erati-on of the interaction ter,Lrs see Reinfeld.s
or Biswas;26

28



This bej¡¡B sor solutions are sought r¡hich a^re even 
^T +

I t..j .

and-

*4 so that the fol-lolrilg substitutions are made:

w

Ï,7
D

rq
D

4

T'I.
b

a

LG *^1,* r Y +)

å(" -.|u " I a)

!(r,rt +Jr* ontÌ+)

tG' -^Y + "'Y+)
+(Y uø 

* Øtr)

+?t +ø - þir)
ø

øb . .. .2.17

and- similar sr:bstitutions fø iL, jl-r, and A

Then in the centre of mass fra¡le vrith p_ = 0 and. P4 = E for

the wts and- Ø t and- !-= O and. PU - 3r for the J-¡s and- O , (St

may be regarded as the enerry operator of the nucleons uhich have

enittetl me sons ),

+ 28ff w"4a

-28[wu

tþu -^yL^/ .V øb - Bf)ra

8fL+

- e2 r(*)ì( *^
Ìo

+ s' r(*)l' t^'
)4

- *' t(")j %

* s'2 r(*)f *o'

* s2 r(*)1 þu

þ
Ín
L

þ
íw
ç
'.--

u

1a t

* sz t?)l \
u * Æ'V¿i),

"'- 
2I"'v+tt"

o + 2E'VUftr

tfN' 
. e2 r(')þo '- 2E 'Vhç¿ b

þ' * s2 r(")io"

E' . *z rt"{%

- o()o- -ib

" eSL'1¡

= zf.7,1rut-21 +(Y.Tß)%' o I E1^ ,

= zfqwo -2YL(YVr)"" * I CIr¡ ,

' 
I''ø^ 

-r n v o' 
; Ë ;ii--5ßl;rl

'{q Ë,.¡(rr2.r'n2¡f{"r-r)

= n- Ë*.'Gr2-tÊ)$(".'-r)
--l

= älzrr-zui4' - z^l ,,(YVr)fr-o'f
* frØ,G2' - *r)5(*. _ y)
2t-

= fr i rtVr,¡ a - z"l t*(? Sk)ÍL"]
* fi \6 r' - oo')6 (*.,, - y) . . ..2.18

+ zr Vl ,%' = V,.øb

- ztV, otr =

,
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In order to see the natr¡re of the solution of these equations

more easily the follorring change of varia.ble is mad-e:

+
w

a =W
d

+iwt
a

a

t

w
Ð

+

a

T1L = YúDD

W. = Ì-ú,bD

and- similar cha¡Ees d.efiling

Then the equaticns become

* i%t ,

-i-lul .b'

-CLa
(-,

JL.
b

= w -ivr t

rL
bQt+ I

t anA

l* - e2 r(*)i ,"*

[* - r'r(x)i wa-

I* * *' r(x)i *o+
-L^)

t* * *t r(x)j wb

i* * ,' t(.)1\ þu
i- 2 -, ,t) )1N+g f'(x)i A^L ')"D

- 2iEVU w"+

+ 2iEVO w"-

- zirV' 5+
+ 2iEV4 %

b'- *t r(x)]<zn+

l*'- *' r(x)jí1,-

þ'* *t r("{cr+

l*'* r' r(x)j o"

þ'* *'r(*[ n"

Note that

2 2 2 ¿ 2sr -s E -lr -2T.e-e and.

= TØu-l 
4"1 

.Vq - sjÌ.'r*
= EØu :YLJ'V4 : {-L1a

=VU 4 - sJZ.o+

=Vî 4 - eÍrr
= 2Ñrwut-z(^/p x1r)%' * I @1,

= zfll5 -z1l+\Vr)unu + I õ1b

- 2rl,î/r!)-u+= Eaa" -7Ì+y.i/ o¡ - fi*"*G22-t') å(x.-v)
+ 2i.E Ï-{i-r" - ffi" -"Y ;i.{7 o" - E,vra-(p22-M2)E (x,,-r)

- 2tE'V+Qo*=l/+% #%n(nr'-on')å(x,,-r)

= 2fv¿þo u, - 2(tl'1"\:/f)rL'

*ftØ|æ2'-*')$(". -r)
= 2rV1 il- a - 2C'/ ,,)("Vr) Sr-"

.T?4 6r'-u2)å("r -v) ..".2.1,q

N=ü*tÊ -n2, Nt=Ë+¡[2- 8,2, s2--u2 -r-2 -:f ,T2 =l='z-l?,

,r' - uf =1m + 2ísVL) = -(m - zrsVì - hiEVÀ_

The equations are no¡¡¡ j¡ a forn fron vhich the time depend-ence ca¡r

easily be eliminated-. The following solutions for the 'uime depend.ence



18.
of the equatíons are substi-tuted- il order to fi¡ld- eo.uati-cns relating the

coefficients of the tine depend-ent parts of the solu'çions (i,". theo(rs ,

Q " , Ab , and B's ). these are furctions of ë and. j-n the case of the

Ab an¿l Bs functions of the space components of y anð- e .

r"* = (dr * dz "s, *o-)"illtd 
"ü1tL + (ees)-1 ssr x4- "islxf 1rr<-7p, Vq)

9.%- = (c/, -q.z"sn *o)"irlxf u-l',"a - (ers¡-1 ssr x4 "islxf (¡o-7¿-y,Vq)

%* = (Q2 * ( r "eo 
*u)uirlxrl "ilr"4 - (zin)-1 "ttf"l.!q

% = (-(, .(r "sr' *u)"iri{ "-rrxu * (z:-l)-1 "ttf"llq
ø, = o< "isl{

4 = u, "tt'{
iL 

"* 
=f [(Ar * A2 "sr *rr)"lrixol "irlxu "iq(r-x1)

+ (\ * A4- , o ,.u) "isl4 "tn("-*, !'u.
-cL a- =!ir", - Lz,s,, '1)

* (L3 - or* ** 1o.

fl b* =Jf (e, + r., ssl r )

* (Bl + BU ser Iq

rL b- =lL ,-B, + B,, ssn *r )

* (83 - tr,- "* (q

õ" = I (l + e' 
"sr' 

*r,)"isl"ul "tn(" 
- *t) dq

% =J (n + e, ss,' *rr)"isl{ "tn(u 
- *t) dq ....2.2o

These solutions are analogous to those obtajled- by Green and. Biswas for

the orùi:rary Bethe-Salpeter eguati-on, the nai¡r difference befuig the replace-

ment of E by Et and. EZ irÌ ík.e4 The Et and- EZ are in

general òifferent from E because they represent the energies of nucleons

which may have enitted. rêsorrs¡ llrey are also d-ifferent from each other

as Et represents the enerð¡ of one nucleon and E, th;e other. This is
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the physical Í.reterpretation of the Et and. EZ but the reasons for

supposilg solutions of the t¡pe 2.2O are not onJ-y pþsical ones.

The Ei a¡d. EZ need to be d-ifferent from ane a¡.other and. from E

so that solutions of this t¡rpe raay sati-sfy the eo¡:ations at all. If

then the eoua'çions obtained. ford, etc, by substitutingX=
2)2O

E1 =Ez
in 2.19

+
Tf

a

are i¡rconsistent,

etc. vrere needed- to see rrhat t¡rpe of sol-ution Ì'as to be

ex¡rected. and. havi¡g founcl w^+ etc. it is now possible to write d.ovqr"a
corresponclilg ex¡rressions for w^ r t¡^l , etc.

They are:

t" - rx,, "irl*rJ cos E,' xu+ i*., sgr x¿+ eirld sin 8., xu

*^t = d 1"illxu! sin E.' *1,-- w2sg¡ xL "irlxl,! cos E., xu

+ (zi.ns)-t ,* *4 "tt'*r*l (n*- -?af .Vg) ,

The

í'r
-ct-" =J L^.

,

,
-^ iTlxf

% = i \12 e**--ï sin E, *r,- * 
Q,

\, = -rQ, .ir *L cos E, a * Qr

iT lx.i
"g rL e--'-ï cos E, xO

illx.lsgrr xl+ e-- - 4 sin E, xU

:-q(v - x, )

* (zr)-1 uisixr! ,

":-r{ 
xf cos E., *o rie(r - *t )

* Ã2 sge xL eirixC sin 8., xo e

* n, "isl*d "iq(Y 
- *r ) ], un ,

I
ô r -\Jr-^ - ìdj [o., e*{ x,l sin 8., xr, e

- íA2 sgn xL e
irf x/

illx.{
4

- iA, sgrl x, eisl x4!

-o =J to, "ifir*¿ "1.:, -,* 81 ss,r x4 "irtxrf
+ Bu sen *r* "ttf {

.iq(y - *r)cos E2 *l*

*'tviq( ) I
l

-l
clq ,

a¡¡cL

-çL b '=(ì-o, "./L *o1
E

(y

^iq(v
rT ?fo

)
iq(y - x.' )

*'l
co

esgn xr
+

S]JI i' *I* 
"

cLq
*1 )-r_: "tt 

lli 
e

r-q ..,.2.21



ïf tt¡ese possible solutions of the equations are to ""U"fy tnlT

then the follorring relations nust hold- betl,een the .)(ts , Q 
t" , Ats ,

and. B ts.*

(2e,, r ssr x4 * ".,'){o t *x2 
"sr, *u)"ir{r'o] "i(r*r)*L = .ll-î; ,"...(r)

2EScír+Eor -^/+^/.\-/Q = O , ......(ii)
(r-v)d1* (n+e.,)d-z = o , .....(iii)
Lz*Atu = o , '"... (i")

, (r-v)a.,+(u*".,)ar+(s-v)ar= o .....(")
jtr",, T ssr -¿, * "12)(\ + A, ssn *u) "ie(r 

- *r ) crq

= fE("., - v)("t2 + 4.Fr serr xL + l+Ee, * tß2 + Zer T sgr *U)(o<r*X, 
"sn 

*4)

ancl 
(o')

(zas ssn *L - 9t* s sen xu + n'/r){o,+.{o sen xu)

ll uto + Ar sgn *+) -y+^/.V (¡ + Bf sgn *rr) "iq(v 
- *r) 

crq

- Ë5(", - y) "s' "u (u* -J u1 .Vq)(r - s/n) ("¿i)

..2.22

v'¡here Et = B+e,

llt this point not al-1 the time dependence has been nade explicit; the

"iq(y 
- \) has a factor "ieu(vu 

- *tL) 
, ilre K operator contains a

term 72/òy1_ , a¡rd. the å (*r - v) contains a factor I (*rL - y¿þ) .

Thís tine d.ependence may be elini¡rated. by supposiag that Át and. Lz

is the meson energr, ancl- no other
c2.- gv -,/^')

Equati-ons 2.22 are obtai-ned- by substituti-ng in the fi¡st pair of each

set of six equations. the results of tlæ substitutions for the other

eight may be conjectr:red* and. are not need.ed_ here.

Note that t (l) fti; is used to mean that part ot <4,å which

has eirfîLl 
":'(e+e1)*U as a factor. The eo,uivalent ec¡ration for

(c(r - dt2 sgr x¿F) gives identical equati-ons foro(t *do(z separately

bothhaveafact 2' 2;or . /91* , rÍtrere

gU dependence. Then K becornes (-e ¿
a

hsè;- appenùix
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and. is thus onitted.. si-nilarly the equivalent equation to (vi) rron

the eo,uatíon for \ - AZ "g, xr, gives (lri).

Squations (li), (iii), (i.r), and (v) are a¡ralogous to the eouaficns

obtained. by Green and Biswas at this stage of their argr.ment, in fact
(ii) ana (ii-:.) are iclentical to two of their equations if "1 =.2- o .
If a sinilar elirnination process is carri-ed. out usi-ng the correspond.ing

equations v¡hich arise from the d.ifferential equations for % , J)_ b ,

etc. then the tnrelve equations may be taken to d.efi¡e "1 an¿ "2.
Equation (,rii) gives the erçressions for o3 and. oL neecþd. to

natce JZ" rtr¿ í?- 
"t 

solutions of thei¡ eopations.

Equations (i) and (vi) are the ones which concerrr the present

problen; the others neetl to be exa.mi:red. onl-y to be certai¡r that none

of the quantities involved- is over d-eterrnined- by inconsistent eciua-tions.

Eqr:ations (i) ana (vi) g"ive a pair of coupled. equations between the

'J- t s and. the ,â. 
I s as fo] I o.ss :

split (i) anrl ("i) into even and. otld- parts rrith respect to *r,-
f.t

arrtl put ^r(*,t) = \ At (*ry) "ig'(x 
- sr) as

a¡rd, .r(*,r) = ! + (*,y) "ig'(r 
-ët) ag

where nr(xrv) .2/qL2 = q enfl ar(r,l) 
"'1".U" î Az

Notation:

trbon this point in this chapter vectors x a¡d. y wirl be space

vectors of three rlimsnsis¿s.

2ert C1(*) * ",,2d- ,G) = g"r(*,*) ,

".,2r.. ., (*) + 2Te,¡X ,(*) = sr, (r,*) ,

t

and.

where

a¡cI

fl = 4tr+2erÎ
2

"12
f + 4se1 * lü2 a



T2(

(

\E
1 "1 ) c{

1
x zt ar(xrx)

l+e T2 3)s
J

xrx)"z(121
e

)

)

(

(

- e1 ,., (*r*)

+ Zr a,(xrx

tlz( 2'>{_

22.

,

,

æ )I

G'rr2 - "ri)'r(=,v) = ftEø/z-vl n(r*r: f rzxz) -u.,(rrr<1 -r ryx2) ,

arra (ærr' - "r3) ,r(*,v) = f,f,{rrlz-r) zr(trN j* 11*r) *r(frd t* rzdz)

)p( ,r" - "r3){ur,(*) n,.x ,(*)) = (zt - ",,)(".,(',*) * "r(',*))

,'(*))

!*?tw,.\ o=*1,(rr * r2)k<1(-) * x.,(x) -ze(^t (x,x)+ .r(*,*))

h (æ * ..)(n + er)(<r(*) + x.r(*))

t

(w,,rz -.ri){o,'(*) - z. r(*))= (zr * "r)(a1(*,') - .r(*,-)) ,

(t".r2 -",3)lr,(*,y) * "r(*,r)) = #.$<lr-"Xzr -.r)(r.,,x.,(*)
+ f ,e,r(x) + f.,otr(*) * trx",,(*)) ,

ana (&-e,r' - r,,3)(rt (*ry) - ur(',v)) = f å(r/z-yX2r + e.,)(rr,'z- r(x)
+ îrú-"(x) - fi,xr(x) - rr<.,(')¡

xrx) D*2+ (*,*) )

(*,*) ),

+xr(x)) = f.(..,(- "1

-ur("))=-å.(f-"1

(z¡ *..,)(xr(*)

(n - ".')(x.,,(')

,, (*)

)*f

-v
I

.' (*)

) -rz

(*r*) ,2

"z( "/z-v+ xtl )(rr x(zt * ",')(".,(*,y)

arra (zr - ".,)('.,(',v) - ^r(*,t)) = Ë1 *'¡tVr*)(rr>,.
+ rrar(*) - t,xr(*

* o(r(-))I )(". ) (r( j (x)

(",*))

f) + x

(*) )
Consicler

2

ZI+e
"., 

(rr*)
^r(*r*) zsGt (x,x) + a,

(

ft
"1
o2

2

"1p
¡¡=-

2

"1

)('x., (*) * o< r(*)) =
24I

2g
2

h f 2 (ú 1(*) * ú r(x) +

t1

.,x
", 

(*rr)

(r,") )

X "r(*r*))+

+

"1
(zr+e

"1

a- ze Gt (*r*) + u2
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!* "1

2-ÊÌr
2

2l
+ 4Ee1 + 4Ez - ?Ãe1 - "r 

t) 
i

_i

(c-:, (x) + cr r(x))
2

ió
t2
."1

"1

.'. (r2 - f¡y"ç*¡ = sr Y ,(x,*) ,

and. similarJ.y

r(r2 - v2) \,r(*,") = e, 17 "(*) Â (¡/z - y)

v¡here P 
"(x) 

= c< 1(*) * c( r(*)
ar¡d ty ,Gry) = r,, (xrr) * ^r(*rv)

Note that exactly sinilar eo¡ations could. have been òerivecl for

.;t,,(*) - ,r. r(x) and. rr(*,r) - "r(*rv) ,

Now that the original equations have been red.uced. to these

eguations for \//"(x) a¡cl \lri(*r*) tirejr sinilarity to the K.ei¡-

Gordon eo;uation reveals the nature of the functions Y"(*) and.

Y i(*r*) , They are rÍave fr¡nctions for the nucleon, a¡d. nucleon

plus meson respectively. thís assertion is borne out by tlre wcr.k of
28 2L

Reinfeld.s and- that of Green and. Biswas hho, honever, dJ.d- not consider

the possibility of real meson emi ssion.

Since T2 = \Ê - V'z , the relativistic equations of which these

are the space parts in their centre of mass frane nay be vrritten clov'¡n.

Cal1Ílg x a¡rd- y position four vectors a6ail and. red.efi¡ilg the

functions slightly so that ,JZ - y becomes x - y

'lru*f *r(')i v; qYi(*,")

2
Gt

(z¡ * ".,) q n - r*]i,r*.,(*,*) * 'r(*,*)] a

)X(
e

a¡rd.

( + :.,-') [+ + M2 + tf=)] ultr(x,r) = szY"(*)rS(* -y)

Here it is an approximation that ttre r(x) in each ";;;;;":'::
rrritten the same and as a further approxina';ion it r¡il1 be supposeè

t



%.
that the mass appearing i¡r the second. equaticlr is renorqalisecl wtrile

that i¡¡ the first equation is not. Th.is amounts to assr-¡ming that the

conplicated expression r,ù¡ich appeared, insid.e the cr.rrly bracket with
o

ff, * u' is what has been callert f(x) ninu" E ¡¡2 where ò to' is

the i:efi¡íte function of M which nust be subtracted. to renonralise

the mass.

the eo.uations 2.23 will be solved. in Chapters for¡r and. five vrith

r(*) replaceè by a simpre step fixrction. rn ord-er to carry out this

solution boundar5r conðitions must be inposed.. The cond.itions usecl

arise from the fact that nucleon - nucleon scattering ís beilg con-

sidered. so that the wave function at j¡rfinity rril1 be of the fom of

an j-nciclent plazre wave plus an outgoing spherical wave ancl the fact

that a causal sorution is required.. The causality conùition is
satj-sfied. by incorporating ar¡ i¡fånitesi-oal negative ímaginar¡r part

with the masses at the appropriate stage of the solution.



Chapter J. 25.

TTIE PTTSTC4,I }TF-ANINê OF TI$ FÏTLD EQUAîTONS

A]üÐ TTTETR DER VATION ¡T.O¡.{ A L¿,GTANEIAN

fn tlris chapter it is proposed. to shol, that the equations of

motion ðerived. il Chapter 2 may be d-erived. in an intuitive way from

a lagrangian. the chapter may be regarded either as this intuitive

d.erj-vation or as a physical ilterpretation of the equatJ-ons. Tfhe,t-

ever rray it is regardeô, the fact that the fie].d. equations can be

clerived. from a Lagcangían is i-nportant because it ensures the eristence

of a current, the conservation of particle ôensity, momenttnr md

9llêfSr

Et Potential i:n a Relativistic Thecr¡r

The vave f\.¡nction of any free particle nust satisf! the ifl-ein-

Gordon equation,

(ã*ru2)r2(") = o

in a relativistic theory, If the partíc1e is not free but is inter-

actilg with a¡other particle then some sort of perturbation or

interaction must be introduced. into ttris equation to represent the

effect of the oti:er particle. One way of d.oíng this is equivalent

to introduci-ng a potential well il a Schrodi:rger equation i¡r the non

relativistic approximation, when V/ (x) ís put equal to "iftø(+) o

this effect is obtainecl by writing

....3.2

ThÍ-s equation can also be derived., as shovrn j¡r the seooncl a¡d. fourth

chapters, fþon fieltl theæy, and. this derivation shov,rs that V(=)

can be regard.ed. as the expectati-on value of a scalar or pseud,oscalar

in + ,2-v(r)jy (x)=o
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meson fie1d., whose source is ttre other parti.el-e. The term, V(¡) ,

has tlæ interpretation of causing the effective rest mass of tlæ

particle to vary over space al-l-owj¡g d-ifferent fractions of the total

enersr to be available as kinetic enersr si¡rce

t2 -p-" = ^2 . ...3.1

ff the jlteracticrr d.epend.s on the d-istance between the particles then

V(") is a function V(") of r only in the centre of mass frame

of the two particles.

Equation 3.2 is not a relativistically covariant fors and. so

cannot ho1d. in more than one lorentz frame. Thus a particular fr¡mp

must be chosen and- the only special frane i.nvolved with tçro particles

is the centre of mass fra¡ne.

Ez The Relativistic Two-Body Problen

Consider a system of two particles of mass m . Suppose they

are each surror¡rded. by a spherical region of ratlius ?Å. which has

the property that the other particle, on entering the reg:ion, has its

effective rest mass recluced to rrart such that ,2 = ^2- 
y . Suppose

novr that the positiors of both partícIes are referred. to thei^r centre

of mass fra.ne of reference. Then the posi-tions of the particles are

E and. -! t thei¡ rnomenta p a¡d -¿ r æd their total energ:ies

each the s?me. ff lët <R (fig.t) ttren both particles are withi¡

the interaction region of the other. Ihus i¡ the ccntre of mass fba¡ne

the rest mass of either particle nay be considered- to be a fi¡:ction of

position "(=) such that

^2(*)
2

û¡

2

for r)n

for r( Rand. a a

ïf the total ener5¡ of each particle is E then

T2=p2+"2(*)
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and- in the coordinate representatlon tiris ecuation becomes 
27'

[':.*t(*\ìyG) - o .

IhÍs shor¡s tha.t in the relativistic caee, as i¡r themn relativistic

case, the equations of motion for the tno body problem nay be red.uced.

to a single particle t¡rpe equatíon by transfonling to a centre of mass

system of coorùinates, anù shows that for the physical sj-tuaticn

consid,ered- here the si¡gle particle ilrpe eouation is 3.2 as con-

jectr:red- in St, except that, here, bhe particular case of a square

welJ potential is assumed..

8¡ The Lagrangian

In this section the equations eventually derived- in Chapter 2

iril1 be d-erived. flon a lagra:rgian based- on the id-eas of Et ana ãZ of

this chapter. They r-,ril_l be the eouatíons of Chapter 2 except that

the potential will be specialised. to be a square we'l'l . This derivation

is an intuitive one a¡rd. is not based on exact field- theory but d.oes have

the advantage that each term of the L'agrartgian has an obvious physical

interpretation a¡d- also has the virtue that the Lagrangial fornalisn

ensures conservation of energ¡, momentum, and. particle cu:rent. Í+

also g"ives a method-, usi-rrg Noetherts theore¡1, of fìlòing the particle

density.

A Lagrangian d-efj¡ring a field consisti:rg of nucleons vrhich may or

may not ha.ve emitted a neson must con'cain two wave f\:nctions, 'p 
"(")

a:rd. Y r(*rv) say, wheru "úl 
"(*) 

represents a nucleon, which has

not emitted. a mesor5 at x i-n s.oace-time and. Yr("r¡r) represents

nucleon at x 1n space-tine, together with a meson which it has eraifüed.,

at y i:r space-time. Note that Y 
"(") 

represents not on-ly those

nucleons which have never enitted- a meson but also those which have

enitted. and. reabsorbed one in the course of a self energ¡ processr



28.
the coorùi-nates of the Lagrangían wiJ-1 be referred. to the centre

of mass frame of the two particles e¡rd. in this frane the nod.el for

the nucleon n-ill- be a particle noving in a fra:ne of reference whioh

has a region surrounðing the origin i:t which the mass of the nucleon

is red"uced. fro¡l m to àt So the mass of the nucleon is a fuction

of I , u2G) such that
.>o

u'(r) = û.' r-or r) R

and- = ^2 for r( n .

It should- be noted here that the Lagrang"ian is to take the

i:rteraction j¡to account in two rrays. First, ít is taking ínto

account exactay the interactions between the nucleons i:lvolving

exchange or emissíon of one meson. Seccrràly, it i-s representing al-l

other i¡rteractions, i.e. those ilvolving more tha¡r one meson, by a

sguare well potential. The presence of the potential well ís

essential to both t¡ryes of interaction for without it the field.

equatio:s yrouJ-cl be those of one nucl-eon of eonstant mass rvhich by

conservation of energr and. momentr¡m could- not e¡nit reo] mesons.

lTith the square weIL present, a nucleon approaching the welJ nay emit

a meson; it roay reabsorb it again before reachilg the weIL bound.arSr

but if it d-oes not then the rest mass of the nucleon ís sud.d-enly

changed- alJ-owilg the meson to remail free without violation of enerry

nomentr.m conservation.

by the fornt¡l-a

ll1so, a particle i¡rsid-e the well is requirecl-

E2
22! I 4

to use up l-ess of its energ¡ for rest mass so that it aJ.so may enit a

flee meson, without violation of enerry momentr:m conservation. Thus

it is onþ because the well is present that free mesons may be e¡aitted.

at all. If the well were not square and, had. no shar¡l bound.ary then

there would. be continuous variation of the nucfeon rest mass over aLL



29space, once agai.:r allowing the enission of free mesons.

the tragrangían of the field- of nucleons of this t¡rpe is given

by

i G,") +f{*';')
a¡rcL

/ = t/ 
"*(x) ifç * "'{*¡{y"(') [ 

4(* - v)

* sY""(*) Yt(',vl t 4-(* - y)

* d Y"( *) "u/ro(*,y) å 
4(*-- y)

* e, y io(*,y) Í.f- * "21*1j t + *l*'')]i(*,r)
- e'$ ^2'Y ,o(*,rf.fÇ ./ ") )r-zr(x,v)

whene þ i" the meson mass and. g and. gt are cor4rlin6 constarts.

TÌ¡-is j-s the lragrangian of a fiel-d. of nucleons at x ancl masons

at y . To obtain ttrc T'agrandan of the field. of nucleons alone it

is necessary to integrate with respect to y over af1 space tjne.

It is moz€ convenient here to iltegrate with respect to the space

tj-ne i-nterva-l y - x which is an equivalent i-ntegration.

The change of variable

xl=x

Yt = I-x
is mad.e so that

l(x) = t(*')

is the f,agrangían of a system of nucleons at x.

interpretation is as follows.

The first term

= lJ (x, ,y,) ¿4y,

Its physicaS-

I
^t)
I.Y .t") irf. * "21'¡

'v/
I

(')

( -f 
"(") 

E 
L("') è5'^o(*)v l'+ 2+a )x ì

\
)
)e e

represents rre¡r nucleons wtrich are being propagateil w'ithout interacticrn.



The second. te:n 
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/I \Ye*(") pr(*,v' * *) E 
a("') a5'

= sþ"o(x))2r(",*)
represents the annj-Ìrilation of an rrirr nucleon together with a meson,

both at x , a¡rd. the creation of asr rretr nucleon at x o This

prrocess v¡ould- be the end. of a seì.f enerry irrteractíon where the virtual

tneson is beìng reabsorbed.

The third- term wbich reduces t

* ^rr, .G) ^.y r*(*,*)
represents the anníhilation of an îrerr nucleon at x a¡itl the creation

of a¡¡ tritt nucleon together with a meson at x ¡ This process is the

emi ssion cf a meson as either a rea-l or virtual i¡rteraction'

Ihe fcn:rth tern, before the integrati-qr over yt is carrietl out,

represents the propagati-on without interaction of Îri¡r nucleons and.

their associateil mesorrs.

the fifth teru,

e'8,2 \f/r*(x,y)Aç fr) jr(*,r)
is a term i¡rtrod.rrced. j-nto the Lagrangian to help vrith mass renotmali-

satisr. If this terø øere not there the nass i¡ the fourth tern would.

remain as the rbare masstt, there beil6 no irrfj¡-ite mass to subtract off.

îhe tern may be interpreted- as representing ihe propagation of the meson

cloud- which sr¡rround.s the nucleon due to the self energr processes.

$¡ The He:mÍticity of the Eagrangian

As mentioned earlier, one ad-vantage of usÍng a Lagrangian approaoh

is that the Herrniticity of the Lagrangian ensures that the requireð

conservation laws ho1cL, ?he Lagrangian I,(*) takcn here is clearly

Her.mitien i-n the first three te¡ss but is Henritian in the last te¡n

only {f tr is taken to be pr.r¡e inagi-nar¡r. This is due to the fact
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that tte relative time interval Y, - x, must be regarðed. as pure

27 
q- Li-

i-naginary. Wick has shov¡n that 'cire r¡ave function can be conti¡rued

anal¡rtiga-1Iy to pure inaginary values of the relative ti¡ne so that
carried out

integration over the tjrne interva^l- is e gual I y well,hy rotating the

i:rtegration path to lie al-ong the imaginary axis. This procedure is

often effectively adopted when evaluating integrals by Scbriri:rgerls and.

Fe¡mmalrs nethods.
2Ð

Reinfel-d.õ has ad.opted. the sane procedure in fi:rd-i:rg a current

ilvolving the Bethe-Salpeter "nFlitucle. The density for¡nò reduces to

"Y'Y + for free particles anð is ilterpretecl as the par"ticle prob-

abifity cLensiþ for interactSrrg particles.

Itre fact that gr' is pure imag"i¡arJ¡ is discussed again Ín Chapter

6 when it is seen that it is necessari-1y so for the equatiqr solutions

to have a 6ood. physical interpretation.

E6 The tr'iefd Equations

If the principle of least action j-s applieC- to the Ï,agrang'ian

r(=) the field- equati-ons
(- e..)-.,
Ltr- * "'(*) \ Y"t"l = -s pr(",")

a¡rd.

I * .21*¡ ir)tJ\
+ d¿\u

2

*f') pr(*,v) = -s* f"(') bì,4(* - y)

() .¡x') yr{*¡)
are obtaj¡red. these are tsro coupled. d-ifferential equations which nay

be i.:nterpretecl physicalJ-y to say that the source of rterr nucleons is

arr itirt nucleor¡ and- a meson both at the same point of space-time a¡rcl

that the source of rrirt nucleons at x and. mesons at y 1s an rrerr

nucleon at r .

for the meson.

me lh(* -y) may be interpreted. as a source fi¡nction
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TIÍE SrìLU|ION 0F THE FIELD EQITATIùI'IS

In this chapter it is proposeil to finc'i approximate solutions of

the field- equations jl the special cases trhere the potential well is

spherical or spheroidaf-.. As 'rill- be seen, the approxi-mations

necessary do not change the anal¡rtic pro,oerties of the soluti-on.

Thus the aðvantage of the simple squaïe well potential is seen to be

that the anal.ybic properties of the solution may be exanjrred i¡ detail,

these illustrate some of the properties of scatteriag amplitud.es, which

have been the subject of rauch i¡:.vestigation in ùispersion relation

theory and shovr how they affect the scattering cross sections..

In the course of sofution bor:ndary cond.itions must be introduced.

The conditj-ons used are that the wave firnction at ilfinity should be

an incid.ent plane wave plus a scattered. outgoing spherical wave, that

the wave functlon a¡d. its cierivatives shor:ld- be continuous across the

bound.ar¡r of the well, and- that the wave fr:nctj-on shoulcl vani.sh on the

surface of a hard- core wllich is i:rtrod.uced in the centre of the poten-

tial weIl. Äs mentioned- in the introduction, such a core must be

present to account for sharp drop and. f1atteteilg out of the total

cross section as energr increases from zero to the meson enission

threshold.

tt the General Solution

In this section the solution will- be found. i¡r such a fo¡s that

it can easily be specialised. to either of the cases mentioned. above.

îhe field- eouations are

f + * "2(=)j v' ,(x) -sY r(*,*) ... 4.1
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a¡d.

,'( + *,/a2) 
[,+ * "t{*)J Y ii,v) -e:'Y"(*) $'u(* - y)

.. ". 4.2

where the mass in 4.1 is urerenormalised..

Equation )+.2 nay be solved for y to give

solution of

s'[ft * "'{*{ \7 rG,Ð = - *Jy 
"(*) 

E 
r(* - y') ä(y - y') dy'

where n(") is given byE(r)=fu,
ff(t) being the Fourier transform of H(r) so that H(*) is a

= 54(*) .

! .(*) H(y - *)

l ry 
"(=')H(r-*r)¡(x-xr)axr 

. - -t+.5

f+ * "'{'{ V r(*,r)

'y- ,(",r)

aå--
t

Þ

tL-
II

where f(") is a solution of

f ft * '2ç'¡Ì r(*) = E L(")
L*Jr -J

The fr¡nction u'(Z) i¡r thj-s ecr,uation arises in thapter 2 as art

approximati-on to a complicateð function, the approximation beiag to

make it a step fwrction. Tf a &ifferent approxi.mation is made at

that stage antL ^'(*) is put equal to a constant ^2 then the

expression for Y (try) above is sinpler because f(") is replacecl

by a fuection whose Fourier tra¡sform is simpler than that of l(*) .

This approximation amounts to supposing that once a nucleon has

enittecl a meson it behaves as though no potential well exists but its

rest mass is reduced- to a over aIL space. -ê¡ approximation of this

sort is consistent T-ith the origilal ain of the nodel lrlrich ¡¡as to

tatce into accor¡nt processes rvhere a nucleon ca¡r emit only one Eteson.
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If the ef,fective rest mass of a nucleon which had- e¡ritted a rleson were

to be a step function ^2(ù then the restriction that it could not

enit another would- be an artificial one but if its effective rest mass

is taken to be a constant then it is impossible for it to emit another

meson consistent with the conservation of energr ancl momentr:m.

lflith this approximation then, l(*) becomes C(*) where

e(r.) = +-a -K
and.

\', (x,r) = - $,J 
,l"(*,)H(v - xr)G(x - *r) ¿¡<r .... +.Lr

Tlrj-s f\¡nction has a singularttyr at y = x so that the R.H.S. of 4.1

is j:rfinite. This is to be ex¡rected as the mass on the L.H-S. is

r:nrenorralised. A function $ 12 qZ^{") rr¡- be subtracted fþon both

sid-es so that the L.H.S. is r¡ritten in the sarne way but the mass is

renorna].ised-. Frorn the R.H.,S. the function

i -f I nf" - *,) G,..,(x - *,) dx, - R I 'rç7-(x)
Lgt-, j

is subtracted-. It is chosen because the first part obviously sub-

tracts out the infi-nj-te part of the R,IÌ.S. a¡d, R is a constant to

be found later which v¡ill- ensr¡re that the ';right sized infÏ-nitSrrì ltas

been subtracted.. ft is evaluated- using tìre conùition that when

a = m (i.e. no well- exists)

(n+']r/"{*)- o ,

m being the renormalised. tIlâss¡

This renorma.lisati-on is inportant for vrithout it a nucleon which

stayed- i¡¡sid.e the well v¿ouId. simply be ltreccgnisedrt by the model as a

particle of rest mass â o As such it could. not enit a meson. It

is only because of this renormalisation that the particle i-s

I'recognised-r'by the rcod.el to have a true rest mass of l[, nalcing it

possibler. with oorrgervation of enerry and. momentr:mr, for a nucleon i¡r
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this region of constant rest mass ¡îail to emit a meson.

.4.1so, it nust be checked- that the opantity subtractetl is i¡ fact

a function of m alone nultipliea ty '!/"(x) . the check is made

when R has been tletermi¡recl.*

4.1 has now become

L+ * "'kt-y(*)

E(t )

and. T, is a four vector such that

¿z = ^2
Trx l$.5 p (*) has been written ror )/"(*)
Equation 4.5 canrrot be solved. to give an ex¡rlicit expression for

| (") but the followÍlg nethod- allons suitable approxirnations to be

macle to give an approxi-nate solution.

pur V(") = lyi(*) *yo(')
where Vi(*) = e(Xc-Ì)!(*) ....L.7

a¡rd.

/ o(") = e(X - I ¡)p (*) ...4.8

where g is a step function and. f = X O is the bor-rrdary of the

potential v¡el-1 in some suitabfe coorùinate system.

then

where *

(i-i* * "\\yt('.) =

-2VY (*)V e(Xo -X)
e(Xo -Xljt<f" - *')y (*') dr,¡ + r (x)

+See appenèix
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where

where

Sinil-arly

where

6 (') - i* (*)v z e(x 0 -)l) - 2 î/y(x).ve( ,ao- x)

.'. (A * ^Z)yit*) =f"* - '')Y't(*') dxr + r(x) + r(') ..L.1o

"... k.g

\!/' (*') a*t
a,

I

(ü* . *2) yo(*) = F* - '
= e(X_
'-w

I

-zV r-*(*).Ve(X-Xo)
= e( X - Xo).f r<" - *') Y GL ) d:r'i +

il'ct . ".¿+.1 1

n(')

s-'(*) -p(*) V2 e (ì -Xo) -t VY*).Ve(,1-)'o)
- o,-(*) ... 4.12

.'. fi * '2¡1;o1*¡ = Ior" - 
*'))to(*,) dxr + r'(*) -v-(x)

where

r'(*)

= -r(*)
([ * u')yt(', -fo,- - *')y i1*t1 ¿.t

= -C * 
")Y 

o(*) *fo," - *,)Yo(*') a*,

= t(x) * 6:- (") ...t+.13

The two functions f(*) an¿r (x) are easily interpreted.

physically. Together they forn ei-ther a source term for fy i(*)
I

which represents completely the effect of V o(x) on the spaoe insitle
I
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the well or a source term for p o(') which repre sents conpletely

the effect of Va(x)
I

on the space outsidre the welI. Separately the

two terms have a siuple interpretation too:

is fi¡ite at the origin or vanishes on the core. the fort

varies accord-ing to the shape of the potential region so at

1(,i.r(*) = -j 
K(- - *')Y(*') f(Xo -Ï) - e(X' -X')j a*'

the tern i:e crrly brackets is zero if X and. / t axe on opposite

sicles of the bound-ary but is 1 or -1 otherwise. If 7. <X 
O

the term is 1 and. t(*) is the source d.ue to the annihilation of

parti-c1es at pointsI I outside the bor:ndery arid. their creatiorr i¡rsicle.

If X > XO the term is -1 and f(") is the source due to the a¡mihil-

atj-on of particles insid.e the bowrd.arXr and. thejr creation outsicle.

r(*) = 1ø(*)Vze(X-Xo) + 2Vy(x).Ve(X-Xo)
wtrich is a singular rrfi¡lctionn at / = X 0 and- zero at all other

poi-nts of space. It is a source fr¡lction representi-ng the d.irect

rrtransmi ssionrt of particles through the bor:nd.ary.

To fi¡d. the scattering cross section \./ o must be koov¡rr and. the
/

ratio of the scattered. d.ensity to the incid.ent density found. the

forn of V/o is h:oç¡¡¡ and. ü:eæoss scction can be calculated by fintl-ing

f (*) ana C- (x) from it, solvi:rg for V.-/ i ,rrd. using the condit ion

that'Vl a

of --¡r*'o
I

this poilt the d-iscussion is specj-alised- to particrrlar case6.

a
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rn the spherical case ]/ 
o must be as¡roptoticaJìy of the form of

an i¡cident prane wave plus an outgoi:rg spherical wave, and. as the J - o

case is being considered. an approximation *o y o i"

lo (') = 1¡(r) u-üt e (r - n)

where

l/ (") = (ri¡ l}l")/" * "í 
E' / , , .... 1..i4

the well bound.ar¡r is r = R , æd c(1 is a fr¡rction of energr nhich
wilr deternj¡re the cross sections. lBl is the nagnÍtude of the

nomentum of the particre ln a reg.ion where its rest mass i_s u so

that
E .... d-.11

2
mk2

2

This is an approxj-nate ex¡lression for
not satisfJr ¿+.12,

where q¡ "(x)

4.12

is snall.

oY because, d:i1e it d.oes

(ü*12)Yo(*) = -tr,,(x)
nay be identified. with fr(*) and- the renaÍning tern in

r
J K(* - "')Y 

o(*') dx' - r(x)

With this approxina,cion then,

s(*) = - (ü + '2)yo(")
= p(")_"-iEt V 2e (* - R) * z V!(r).Ve (, - a)e-iæt

_iE- i-= e --r 
LrEt" - R)(y"(*) * *yt.l) *y(")8,(" - R)]

rbon this e:qrression foryo(") the source fi:nctions r(*) ancr

ç (x) can be founcl.

r(x) +c(x) = - (ü * 0,2)rft"l .fu,* - *,)yo(*r) 6:cr

=y (r) e-i-Etv2e (" - R) + 2 Vy"(r).1/e(r-a) u-üt
-J<- - *')y (",)e (", - n) e-iEt ¿¡., .
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q' (") ís the si.ngular part of the expression so that

ar¡d.

a (x) = e-iEt [, E,' - n)(Y"(') . *V(") +] (") E'(" - -,]

c (r.) = $ (r<o nXY"(") * *Y("))
'(, - R)] "-l&'r dr

= f, tr.u - o fr*EÇ"(.) 
. 

,1 y("))$(' - n) *

+\t (r)E' (" - -,-] W r dr

= $(1-n¡
sin lklR 1
-ni- (nþ(n) + r¡(a)) - nf(n) coslllt

.. .. I+.16

Equation L.Z for 1¡ t(x) is first considered. exactly without

roaking the approximations which were made fotf o(*) (irer re$lêctíng

f(*) and. K(x -*t)). the reason for this is that the effect of these

teros ooyi(*) j-s nuch greater than their effect on y o(x) . This

ís best seen physically by notici¡g that both ter"ms represent the effect

of the enission and absorbtion of nesons, processes which are not expected.

to affect p o(*) 
6reatly, especially the emission of real mesons whictt

is inpossible outsid.e the potential well . ft wil-l- also be seeD nathe-

natically that the incorporation of another sna11 tern in Yo(x) ,

as woul¿ be the result of enploying a pertr:rbatíon nethotl, wouLd' not

gteatlry affectol and hence the cross sections.

Thus fron 4'12

(-v2 * "\F 
t (u) = frtr.) Vi(t) + F(r<) *6(k)

so that y i{r.) = -H + ffi .-.. I+-11

where

¡,(t 
2

) lt? +.2 - Elt ¡ ' .. . L.18a
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where

.'. y'(", R) -

In l¡..16 put

T (lbt, R) =

þ (" rP,)

F(32) ¡'(n2 - tEll)

J, ,\&r, n) " Ë'ë a&

sin{k[R

t$ F(82)

t-

.. .. l+.19

then

3 t kd.

¡.o sin($la sin E¡r
Jo'-tF-I

= r ð\Lt

ì
J

o (n)

-il}l(r + R)

a

_ "if$(" 
- n) - "-1lE\(* 

- n) a\¡ t

-.itll(r - n)

trbom ¿+.16 ancl I+.17 putting y(*l

d.lk r

" " t+.zo

4.21

lrttl = 5 (kr* - r) [i (U ,*) v*(n) - {t[Er, n) nt*il
T(r).ff1

"-ik.x
.'.yi(*) = fS l(",n) u*(n) - d*(r,n) u(a) +

r(k)

rc-21
dk
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This e:çression for },/ 

í(*) 
d.epends upon the way in which the

singular intesrals i-n l(",R)' ana J t,nrrr,o2¡ "-ik'x dt are

evaluated.. As will- be seen i¡ the next chapter, it is possíble to

F(r<)/r(r<2¡ "-ik'x ¿¡ being sma1l.

As is shovna in the appendix, F(k2) has branch points at k2

= (t +r/)2 and o6l and. has a zero at a point on the real 1i¡e

kz - )( ,2 "^y, such that X r'((u +ru)z . ¡(t2) has no oilær

zeros, poIes, or branch points and. thus the only finite singular points

of t/¡(uz) a;., ' ti2 = (^ *7u)2 and- u' = )(, r' . r(t2¡ =

(u2 - \ ,') R(k2) such rhar n( X r') + o so rhe pole of t/r(uz)

the fu:ction t/s(uz)

choose the contours so that y i{*) is approrcimate}y zero for r) R ,

has a cut along the real axis

+ ô¿) . (rie. 5)

E2 = E2 - u2 . rn thís plane

1s simpler

-2Þetween l<

rf
+.-a

(" *y'^ )2 and. k =

plane where
)

Consider the k-

i./PQ3) has branch points at E2 - ( a +7t)2 and - Ð and. a pole

at n,' 'where or' = u' - X l' . There is a cut along the real

axis betv¡een E2 ' '2- ça +ru)- and - ú .

Consid.er the 151 plane. îhis plane na.y be d-ivided, i-nto two

halves, in eaeh of which the whol-e range of the furction is produced.,

The function has poles at 15\ = t
branch poilts at t i o¿l and : n2 - (^ **)2

E2 _ )(1 + k.t anci

The l-attera

branch points are on the real line if f ) a + Á,t but on the pure

inaginary a:cis if E ( a That is, they are real if the energr

is greater than the threshold. energy but pure imaginary if lt is less.

E{ a + the cuts lie along the iraaginary axis between

and. ! iN), (ris. À') but if f) a +7uv tiney^ *t)' -
1ie along the whole of the irnaginary axis and. the part of the real axis

between O and ! (, +r+)2 . (rig. 5) ïn the latter ease
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the rule of ad.ùing a snall negatíve imaginary part to the mass of the

particles to obtain causal solutions shows that the cuts d.o not repilsþtt Ù

and. contours like thoæ shonn in fig. ! are possible.

*See appendix.
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Chapter !

PROPNÈTIES OF TIIE SOLTMION

In this chapter the difference between ihe sotrutions below

a¡ld above the threshold.s and. for spheroid.al and. spherical wel1s

w:ilI be ùiscusseô,

Ef The Solution Below the threshold for a Spherical Ttel1

From 4t2O

Ø(", s)

ï

# tt, - rr)

1 e-Ì lEì (r+R) 
d lk\

where

ancl

ancL

1

,t)

æ

(r-n\&
"x)
'rO..
e )rz kd.

It a¡rd- IZ are evaluated. by contour iltegration, conpleting

a¡r infi¡ite senicircle in the lower half plane for It since r + R)0

aÌways¡ a¡d. i¡r the lower half plane for LZ if r-t R r but in the upper

half plane for IZ if r(R.' lhe path along the real li¡te nay avoitL

the poles il any of four ways and. the integral rnay be a cmbination of

the results from th"ff paths. The qath which uakes d(rrR) approxi-

nately zero for "t t 
is that sholvn in- figure þ, for then the cases

where the contow is c'ompleted. in the lower half plane

ït e-l\k\(r + n) ug,
c_L

1

¡(82)

1

F(32)
I "-i\t\1" 

- n) alll
2
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both of whieh are sna1I, there beíng no poles w'ithin the contor¡r.

Wlren r ( R

Ø(r,n) = -

a

t*l
f:-r.J fr, *) / r(r.2) "-i 

k"x dk .... .,5.1

By d.efinition of )ri(*) it is zero for r) R ; it is not

expected., however, that this wj-l-L be exactly true for tire l/ 
i(x)

d.erived. here because an approximation was macLe in obtainingCf(*) ,

lllo(") being assr¡ned. to be a fr.mction which only approximateþ

satisfied. 4.12. Howeverryi{") given by 5.1 is expected. to

be approxiroately zero for r)n which ís true since þ(*rn) j_s

srnarl for r)n *uJ l(t)/¡,(t2) "a 
o'* u& can be seen ro be

snall on both physical and. ¡rathematical ground.s. Ptrysically, the

Processes which it represents are ex¡lected. to be of snall. consequence

to either rJ,t *(x) or tþ cross sections, Mathenatically,

_ft,urr*(k2) "4k'x dk = "-t*fR(e')ytsl Ie{",,-a)-e(r, -a{
r,/r1t2¡ei3.(ë" - 1t) 

"-t3.(¿" 
-Lë) dxr dJC,, dE -d&

l_
2r

cos l&la dl¡l

'l[ztg.- * I lã" - *'] ,] .

["
-ikr

ancl

t
ú

3 f u=' Iun', r(e2)VC,ltEllI I 1/F(&2)-) -JtLn
r ù¿2ld

io

L.('" -R) -e("'-n¡l
sin l$llë" - {l "iole\ l*" - =

Change the variables of integration so that the integrations over

ët ancl xft becone d(ë" - *) d(ë, - ë") then the integral becomesI Ifrc
Jo 

u'eldl&ldlë" -xfþt '2)V')tE\[ElQ{",' - R)- .("' - *Ì
sin{k[l ã,, - å{ sin[n l\ =,, 

- ë'il d l¡'- x 'l
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this integral may be transformeò using contour integration

nethod.s by completilg the contour from 0 tro úaround- an infinite

quarter circle in eitlær the upper or lower half plane so that the

contribution fron the cr:rved. part tend.s to zero. Then each

integral from 0 to oOis equal- *ortt* of integrals fro¡n

tiooto O whích are of the forn I "-*u dy where o( is positive.
"0

the only poles involved. are those of l/t(81 which can be avoiclecl

ancL the onl-y cuts are those of le(82) and- l(g2) , The cuts of

l/p(&2) are the same place on the l&l pr*." as the cuts of f(¡2)

so that the paths nust be as shown i:r figr:re 6, Thus
1"

J flolzttu2¡ "-ik'x alc is smarl, a fact which justifies the approd--

nate ex¡rression usecL for Y ) in tmo ways. First it shows that

this appror'.natjil:i rlrcs nct significantly upset the property of Ii{":
that it is zero for r) R and second, it shows dÍrectly that ttre

approxination amounts to the neglect of a small term, the neglectecl

o(*

te:m beins siroilar t" J 
l(r)/¡(r2) "-*'" dk .

-ApproximateJ.y then,

ru¿ i(*) = e-iEt fø{",*) oR(R) - Ø*(",a) u(a
I

lrtrere

þ(r,R) = *ftr-rr) .

I[hen r(R r ØGrn) changes its natrrre since the contour usetl

1n evaluating IZ must be completed. ín the upper half plane thus

il RD

inclucling the poles of

t-*1

as before

f^=
¿

Ur(82) wÍthin the contour.

1

n(r-2) "-ilg{(r 
+ R) a{kl

"-itEl("-a) qE I + zrl(n. + Rr)

Thus whil-e

{,"
1
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1

"-ilEl("-n)where Rt

the poi.nts

t--

and. R2 are tlre residues of

l3f = to.. Thatis

at
n(82)

¡'(g2) "-rgl(r-n) uÌsì .Effi si:r k.' (r-a) .

-i [Er(,-a) ùEl _ # "-lllT(r+n)qn

1

For r(R

)=,Rrø(
1

cu

1

L
=Ftau

¿

r,,n{rr 2)
_1_
2+r

sih k, (r-A)

AT
trn{r.2)

I
b "i.n \ ("-n)

where f ^ =-+ f + "i\tfn 2isin\Elrcu t+/ J^ Fk2) 
v 1

uu

a.

The reason for the chan6e i¡r nature of l("rR) as

the bor:nd.ary r = R is that the source fr.¡nction ç(")

r crosses

i¡vo1vecl i¡r

J/("rn) is singul-ar on the bor-urd.ary. the te¡.n l(r<)Æ(r<2)"-*'*dk ,

however, i¡¡volves no terms which are sÍngular at r = R and as can

be seen by the above analysis of it it d.oes not change its nature

as r crosses the bound.ary. Thus where r (A it is stiJ-I smaLl

ana )4i1"¡ is stil1 assumed. to be gÈven by 5,2,
l_The procedure fron here is to use the cond.ition that )| (*)

Se The Sol-ution Above the Threshold.

there ís no ùifference in the form of the soLutions below a¡rtl

above the thresholcl. The solutions are d,ifferent in nature, however,

nust vanish on the core; i.e. where r = O t p being the core
\\

raèLus. This gives an expression for d from:rhich the cross sections

can be d.erlvecl.



because the branch Points of

T) a + ,/* and. the contours Cl

47.
are on the real line for

CU are those shomn in figure t'

t ft(uz)
and

this has the consequence that IC__ is no longer sma1l, havlng
U¡

contributions from integrals of the type i ".o a* along the real
J

axis, This is not the only way in r¡hich the novement of the branch

poinis of l/r(u2) onto the real line affects the solution. The

branch points of r(,82) are afso 'çhe branch points of f(t2) and-

the contours of figure 6 must be xûodified to those ín fígtrre J fot
/^

the intesrations o.vez. ltf and. ìgl ín evaluatin* J 
ñG)/e(Ê¡"-ik'x¿<

v¡hich is evaluated. by integration around- contours 1n the upper half
and"

plane/can no longer be neglected." Also the e>qrression assumed- for

\i/ o(x) will no longer be a good approximation. Thus new effects

are íntroduced in'co the solution when ts) z +rtt but these will sinply

ad-d- a terrn to 1ø 
i1r.¡ ¡ihich rrill- be dcno'cad by I I is an iltegral

around. a cu.t on the conplez plane, the significant part of which extend-s

from the origin a'j o:rg the real 1íne to ¡2 - (" rr' . The ranre

of integration th'¿s iucreases with 3 frcn zero r¡hen E = ^ f .

The net result of these effecbs is that for energies above the

threshold- flZ'(t) changes its natu.re, thc change being sma1I at

E = â +/t^ b,rt increasing with enerey abo-¡e ttris. The effect of

such a cha:rge on the cross sectiorrs ,¡¡i11 be exanined- in Ë4"

c3l The Spheroiåal ',,¡e11

In tÌ:is section the model vr¡ill- be noùified- to have a spheroj-d-al

well instearl of a spherical wello Gre 
"f,. 

n^" consid-ered- the problem

of hard- sphere scattering, both 1n a classical and'wave nechaniCal

context, 'çhere spheres are flattened intcl spheroid.s relative to one



.b'r_gure b.

Figure /.
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another by the Fitzgerald. contraction and- concluded that the for¡¡ard

anil backruarcl. peakilg of the d-ifferential cross section for nucleon

nucleon scattering at high energíes is better explai.:red by such a

mod.el than by aryherical nod.el. It is therefore of j¡rterest to

examine the consequences of assurning that a general potential regíon

is flattened. into a spheroíd. in the s¡mê rrâÏr

To consider the boundary of the potential region in the present

rnodel to be a spheroid v¡ould. l-ead. to straightforward calculations

were it not for the fact that the hard core wilL also be flattened.

into a spheroid- of the sa¡ne eccentricity by the Fitzgerald- contraction.

The orthogonal spheroid.al coord.inate systemrk has surfaces of constant {
as spheroids. ff í = lO is the boundary of the r'reIl and. this is

a spheroid. of eccentricity e then no other strface { = constant of

the ooord-inate system has this sane eccentricit¡r. This neans that

the core cannot be represented by a swface t = constant. This

d.ifficulty is overcone i¡ this case by the fact that if tv¡o spheroid.al

coortü-nate systens are chosen so that I = I t is the well boundar¡r

j¡ one and. I ' = ç _ is the core boundary in the other then the

spheroid-aI wave functions of the two systems are approxinately

orthogonal.* The ùiffi-cuJ-ties vùouLd. be nore complex in the case of

a well which was not sguare.

the calculation in the case of a spheroíðaI well follows sinilar

l-ines to the spherical case. The notation and. properties of spheroid.al-

wave ft¡:ctions used in th-is chapte¡ are erçlained- i:r the appropriate

sectio¡ of the appenùlx.

*See appenùix.
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Equation 4.12 i-s independ.ent of coordinate system and well

bound.ary. that is

(f] * ^2) yt(*) - f 
*," - *') Yt(*') ¿*' = r(x) +,r(x)

J
a¡rd.

/
fi-J * ^\ T'"f") - J K(* - *') Po(*ì) dr{' = r(x) -:-f(")

be used.,
In the calculation two systems of spheroid-al coordinates wll/ (frl\.

and (1 ,\), q. suchthat I = l, and

well a¡d. are bor¡ndaries respectiveì.y. îhen

r¿ i{") = ;,* (*) e (í o - I )

are the

ancl

f=t

tu tn?, t! ) arr(c, i) suG, cos e) ,
<-)
f^

-¿

2

,/ o(-) =ttt(x) e(l -lo) ,.

Ifith angle origins chosen suitably a plane wave with cylindrical

s¡rnnetry rnay be e:rpanded.

"fklrl

where

c = kd/z r,

Note that -L i" thr-is expansion is not the angular momentr¡m 1n

the usual sense but for this si:lple mod.el tlne /. = O terro only wiJ-1

be consíd.ered.." The a.dvantage of a spheroidal nod.el is that -L = O

d.oes not give a constant differential cross section but one which is

peaked. in the forward anô backward directions. That ís neant by a

better mod.eI in tkr-is context is that lower order partial v¡aves n'i11

give ðifferential cross sections of the right shape.

Since the soluti-on, ! (*) , outsid.e the well is to be of the

forn of a plane wave plus a wave which, at infinity., is an outgoing

spherical rrave, rlz o(*) i-s given by
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u-iEte(l-l¡)= f n.(", í ) *.o *o',( 
", í)]so(", i7 )

o(*)
"/

Then

and.

-iEt=Y

) *r(

â

L

g:.)

:l x c

(1) so(r,1)

(E * *2) \+/o(*) .( K(* - *,) \r.o(x,) ¿:rr

oG, ,l ).r¡e( I -ío)l "

I

v, tll¡l{ f-fol

q -í¡) *( , *i'lvtt¡^'( í-F)_l
(",1 )

e({ -fa} say ...,5.3

-üts

)x(T x

e

x

-ik.x
2 -a

k

)(

(

,Ï

tj'

a

z? t\2)
I

Â(r, -x)+ (
-¿+r¿\ ctr

v' ì +)(lit)t'.It
1_-

)

r r üi

=f,{tu-r)åso(",

ka

22

I+

.F*Y$) E'(r-î-l 'oG,,l
But

) s,G,cos e) sr(",y) n (c,i)(
I
L
]..

-1 _f,
(

,1
(

)(

81.
-2\"oct _)

a

23 2-ao
1)af'çl ala'l)+i

.>..'.:

.t
(

)

+ z(t .l 'v
<:

so( ", (",Í¡)"/- (lb)

cos ê)

2

-r)+ a2
cos I

(v¡'/l -,a(

"'<l; . ¿.
J! L

b
0

)

Ro

a, -ilR^'lu
L-

B
í_.)

k(

2(rr//i
-i

G'l o)2

5.5)+f
b

1þG'Ç u)
B so (c, cos 0) Ro

Put

then

ct

Ø({ ,\) = (", cos o) no (",{r) "i!'ë dE .. .. 0.6
1



-ik.xIn find.ing the Fouri-er transf srm of (f- the e Tfas exp

in the (í , n)r" coorùinates to all-o'i' the integration to be carri.ed-)l
out using the clelta fr:nctions of ,1* . Here Ø(7 r; ¡) is to be

')
found ín terms of the (lr r), q coord.ínates as it is to be used'

.'l 
-ato find. ^V ' which ¡nust be zero on the core bound.ar¡r t<

In order that thís conditi on may be applied- easily "iE'ë is here

nate s .

os o) no(c, fr) # 
so(o,cos o)

so(ø ,.7) *ot q)l) f uE I d (cos e) .

* 
io"" #no(c, í r) 

*o( ,,1) so( r, 4) # &2 dtk I

so( o,, 11- )

,x)
)t î

,Ío) =i\ so(4,1)
) dJ

---,x)

G,í")
b ) )u

R;
2k

R;

t\'
E-; *olo

(",i.)

t62
d.

(
'¿

(.,1¡) *; ( r,Ç)

lo) *ã (e,y)(",

(

anô

ø(ç
r(k2)

* aå_¡ q,ã )

" \) and Sr( e, I ) are q)proxirnately orthonormal .

1

Ro

since y(
-Ç,'(u)

Y

'faE)
¡'( r.2)

ÁEte

+

'(") (
(* 5¡

^-_Zal 
-) 7\_ø(i ,{o) vi (íb)

'*'cío! .iffi "-ik'x\
t_As in the spherical case the value of -,.!) x

way in which the singular integral for ø({,
*See equatiø 5.7a.

{o)

(

dk .,. 5.7

) depend.s upon the

is evaluated.
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Note that

nu(cr{ ) = \t_, "t"l,l so(c, \) uq

J

1

e

0

icíu¡ so(".,? ) u

"1

so("' \) u,l\. f : "

' ,o{",, , .dl Í. '.,n,,} 
) u,i

= nf ("r I ) * nl (c, f ) sãr, .... 5.7ã.

where nf (c,! )+o ". lå I :>* íe,tanð, ai (c, l)-+ o as kl - i&,
Thus an iltegral involving ai could have its oontotr oonpletecL as an

i¡rfi.nite senicirole in the upper half plane ancl Èã j¡ ttie lower half

plane. This sítuation is cornplicated. by the fact that there is a pro-

duct of raðiaI fr:nction in the integral to be evaluated.

Si-nce the core a¡rd. well bouad.ary have the sane eccentri-city

Su $c 50
Thus on the core the problem terms are those 1i-ke

11 . ¿ í1 !--
nf(c,lol a;tn, lo) = j; .í"Ç,o\ so(c, 1) u,l.l o'*nto'? 

so(0,1)dy-

lo

Si¡rce the angle functions achieve a sharp ma:rimum at

tern is approxi:nately equal to
1

1 this

"i to(c

and. it is clear that the contour chosen to integrate it nust be conpleted.

i-n the upper half plane.

It is al.so neoessary to know the behavior:r of. Ø({, çO) on the

well bound.ar¡r. This is ¡nore clifficult as the well bound.arXr is not

constant. However as the soatteri:cg is strong1y peaketlgiven by

ç
5

i-r¡ the

ûith
\

()tlirections the spheroi-d. constant whLch coi¡cltles

tt rnay be considered. to approxi¡aate the w,ell

is sæh a sr:¡face then

at lA =
I

?'?
i - 51bouad.arlr. ïf

q3r t"a a
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Tkis means that a term like nf (crf.) *O G,9 ) nust be conpl-eted'

ín the lower half plane it! i-s outsid.e the well bor.md.ary (i.e. when

Ç q\ l.c) but 1n the upper hal-f plane uhen î t" insid-e the welJ.

The d.erivative with respect to f o of nf (crfo) has

bo( A ,

the sa.me behavior¡r as nOGrÇ¡) as far as these contours are concerned.

The solution for ll¡íl*) i¡r the case of a spheroiclal wetl ís

similar 1n forn to that in the case of a spherical we1I, especiaAly flß

its behaviour as enerry'crosses the threshold.. The sa,me three effects

are introd.uced and. these may be e>rpected. to have a sj-niIar infl-uence

on the scattering cross sections. The reaL clifferences between the

spheríoal- and spheroictal cases are in the difYerential cross sections

,ìt'

of the partial rrares ryhícht*iu be ùiseussed'' ih g5.

EL The Threshold jn the Cross Sect,i-ons

The way in which the threshol-d. affects the cross sections is

clearly nuch the same for thespheroitlal and. spherical well cases so

for th-is section the spherical case only will be considerecl.

For

at tot -' = ( 1/r) sin ltc{r + (a/r) 
"ilElrY rx/

the following fractions are obtainable.

pertÉçleå _Ðs!i-t q-Ux-scettæeê 
= ( zi *\2parti-cIes incident

boundary.

2

outBoinE particles
i¡eping particles - ¿* J, (o()1 + 4o<J

- |aa. a

anil

r+ Í,- ( 
"¿)



54.

If there is no inelastic scattering

It(<) = o<

and. if there is inelastic scatteríng the fraction of particles

either inelastically scattered (absorbed') or elastically scatterecl

l-s

4ô<R + 4- rm ("<) - 4 o(; = 4 Im (c<) '

Thus L fn(o( ) ir the frac'cion of particles scattered. r¡he'rirer -bhere

is inelastic scattering or not.

From 5'1 ... -r

-'yi{*¡ = e-iEt [ø{*,n) qR(R) - Ø*(",R) o (R)J

+

J'
E(r.)/r(1<2) dk-ik.x

,R) ,R) [] lr R-r

where

and.

Putting

v
a x

arrd. .'.

Ø(",a) -Lrcr.- G,/urr) sin k.,(r - R) 
'

c1 = n¡zn(ur2)

r^ = -+ | + "tig{* 2isin-cu ¿+ Jcu lqr.'¡
a IeI\¡þ

lEtul / F(k2)l "-ik'* dk = I e-iEt the cond.ition that

should- vanish on the core boundary r = l) is

o = t(q ,a¡ [t¡! "o"[x[n . rls["< )tl¡l*]

- Ø*(t ,*) ["r"illn * o< "i]¡l*J '" t

)(

ø-(n

['

øR3san ( cos

"r\l{n
ô(

Fl ø(t ,R) - Ø* (q ,nll
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Ø*(?,R) = 
å 

t*ru + Gr/g) "o. u,(fl - n)

J'san"tl3l* ,
1

T

where

t*tu

Then

where

bl r .{ri

/*- = - (r/v1 
"-rlxfn

.t"{Sl * cos k,(f - R) + (\r.þ'ri) ""'[Uln sin r<,(( - n)

* (t/ct¡(rncu ,i" lEl- l¡l rru .o' \gfn) - r

"-r\l[*

A

a¡d.

B = cos k1 (e - *l .r r(1gt/11) sin t, f - *l

- (t/ct) (r\s\ t.u - rncu)

Since T and. tr' are approxlmately zero below the thresholð,

the expression for g< there is

Þ(- 'in I gla cos k,,, (f - R) + (\¡tZu,,¡"o'{}ln 'l" r<.,(g - n)

cos k,,{ç - a) * i(fg[/ur) sin k,,(e - *l

which is exactly the expression obtained. for c(. for a sinple square

well mod.el, the rad.ius and d.epth of the well bei-ng R and. t - k1

respectively, with a hard. core of radius e . Below the thresholtl.
no i-nelastic scattering is expeoted; it is easii-y checkeà that thís

ie pred.icted. by the value for ç( gi-ven above since

r*(o<) = c(a .

Thus below the threshold- the cross secti-on curve will be just that

obtained, for this sinple nod.e1; i.e. it will d.ecrease wíth íncrease



56.

of enerry and then 1eve1 out to aJr almost constant value' Thls

cari be seen from the e>çression for q< above for v¡hen lSl as

sna11

2
rrn(p< ) -/.' sin k R

and. the total cross section is proportional to sinz( lUin)/X2

which is approximately equar to R2.

nnen ISI t, rarse enough ro" []l ao be approximately equal to

)(

kt
sin (\¡l* * lUlg

"-tl¡tn "-4¡lrf 
- ol- lnl*l

Þ( f'¡-
1

"* [¡[e
(k

and.

so that the tota] cross secti.on is proportional to

ô(

)D<tu(

e

sl-n-cl- 'c\s\ q I

"t"' ( \S\ ) a

!
At the threshold- it will certainly be the case that

¡

I ¡- k1 and- it may be assuoed that

a¡d.

, = "tlsl{e 
- n) - ?/ctxrl}l ,ru - rncr)

at the threshold. and above. Above the threshold tr' t t*t'

and r are not neglig]ble and it is no longer the case that

r.('()

u2

A = sin¡t\€ * (t/ct¡(rncu .:."1g\a -l¡\rru .o, ltlal - r
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This has the expected- physical interpretation that inelastic

scattering is now occuruing since the total scattering cross

section is not equal to the elastic scattering cross secti-on.

It is of interest to c alculate 64 approximately to see

how In(Þ<) - ocN behaves above the th¡eshold.

First consider I ,̂U

rn = -+ \ + "r{gl*2isin]¡{ p ¿lrl
'u ün F(Et) r" I

uu

1
4

-(a+lr)

å g+ [u'- 1" * ¡.)2]

2i sin t¡le "tl5{*^="ffi ulol-(r+¡.r )

sin lElf, "rfsla r- {r.å)
Fron .4..5 ïr fJ-\

li¡(u')/

from the Fortran programme given in the append.ix it varies afmost

linearly with I¡I, at least for snalI l¡1. The quantity

I .El
¿1if fJ i-s chosen to be negative/-is positive/and. fbom values d.erived.

In(Þ<) - r;( ?< would be very conplicated. to evaluate exactly

for all values of E and. this sinple nodel would not justify

such ca"lculations. However it is easy to calculate for values

of E near to a + y'). fn this case l¡l is ma1l for the

whole range of the integral-. Supposing that Im

and. that E is near to a + p

n2 -(^* ¡,r)2
t eÐl 3 d.

&

&kttu =

3/z
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and. (

¿

dtz - ç^*¡.ò2
l5lr ç) ¿lgl

p.l+l+, since fr(g2) involves

lft(82) , it is clear that

Fron the exPression for f on

the same sort of inaginary Part as

T will be of the order

c,
where nov¡

'Él

and-

c

ïnc a
U

2

= t qo þ, - ç^ *þ2-)

and- is thus neglecteð. t*tu is included. along with I as
cu

all the terms in fro(X ) - "(; involving tr' cancel out.

(t/s) "-i 
E n

F' G *l )'-Jt

= sirf Elq - (\k\/cr) rcu "o. \tl n * (l/ct¡ rncu sin\Eln

- sin \El ? - 11 cos t3ln + ir, sinlklR say
\

= "r\El(q 
-*l - Í rr + i r, ,

= ( ìE t/cr ) rcu

= (t/cr¡ rncu .

= ç¡zn@l)

+ rr/zl(Ez)

= trçnz - y2 - ur2)lzr{sz)

B

rt

and.
rz

1

which is real and slowly varying at the threshold.. Near the

thneshold., then, Ct vrill be regarded- as rgal even though it



59,

wil-1 have a snafl irnaginary part just above the threshold..

rm( oe ) ae(¡/e) sín lEfa - m (a/n) cos I *l n

anð.

ú, a tÃ/sE I

ae (¡Æ) L,"* ltlq - r, cos {}\ R) "o, /gl ( q - n¡

and.

.'. negleeting

rn(oc ) - x I

2

=frsin\
= (i/+c,)

I¡n ( )L/B

Tz

+ r, si:: lgl* Cr,ir' {&l(? -*l - 11 * trl] Z tf

l_t, 
,t" /&l n "o" Ef f q - n) - (sinlgq- r,cosl*la)

! 
(sin {El(( -n) - r', + rr) | t "S .

_2 _211- , 12- , and- Il IZ

j"rr,'l&lp + 2rl sin lE{q "osEr *-i / sF

5l (q- *) / YE

ç.r[u' - ç. *¡")21

a

a

2
a

Cl is show'n to be negative by calculation of

progranne given in the appendix and R > I

rn kd) d-d. >

¡'(r.2) using the

n2 Q *rø)
L

2
2

land varies with enerry ì-ike

k

The cross section is obtaíned fron Ïrn(x) ¡y divi&ing by

so that the inelastic scattering cross section varies l-ike

l- ^ ^'r'[" - ç^ y*)2 J t\',]'- "l
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near the threshold.. That is, the cross sectlon curve is of

quadratic form with a minimr:m of zero at the threshold.. Th-1s

is in accord. with the experimental d.ata available.

8¡ The Differential Cross Section

For a spherical potential wel-l the d-ifferential cross

section in the / 0 case cal-culated. is a constant. Ca1-

culations have been mad.e using a spheroid,al potential well to

nal<e the nod.el more realistic at relativistic energies and in

the hope of obtaining a d.ifferential cross section having the

desired- pealdng in forward- ancl backward d.irections. This, of

course, vri11 not be achieved- using Lhe if = 0 solution given

here but it is clearly possible to solve the equations tor /

equal to other values in the sarne l,ray. fne / = O case gives

an inùication of the type of result e:qrected but it is not

considered. worth naking a d.etail-ed ca-lculation for such a simple

nod,el as a square well model.

Tn tine ,!, = O case the d.ifferential- cross section is

so(cr1 ) v¡hich in con'.ra¡t to Po(cos e) is not constant but

peaked. in the forward. and- bacl<vrard- dlrection*, (S.,(., 4 ) is
"l

an even functlon of 
1 

. ) ff the vrell rad.ius is taken to be

the Conpton wave length on the meson then c = /Efn varies

from 0 to approxinately 3 at the meson enission threshold..

/rs c increases the peaking of So(c, v] ) increases, sinilar

behaviour being found. for Sr., (c, ri ) for other values of n .

ttsee appenðix.
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thus increasing enerry increases the forward and backward

peaking in each partial wave separately.



Chapter 6. 62.

STNG{TI.,ARIITES AI\ID THRSSHOLDS

This ehapter vri1l be a general di-scussion of the nature of the

so3-ution, ff (x) , of the fieId. eguations, found in Chapter l+ with

pa^rti.cular refere.nce to the j¡f,l-uence of the singularities of

lr(u2) on the results.

Er Pol-es ot tft(vz)
The basic part of the solutio;r, V (*) , insicle the potential

welL is a term rike e-iEt +$ *n""" X,r' = ,' - n,,' ancl

k,r' is the pole of l/t(uz) . Thus it is a plane wave of nomentun.

kt so that inside the well the nucleon behaves like a particle of

rest mass X1 . This value Xf is not equal to a, a fact whioh

shows tha.t the effective well d.epth is altered. by the presence of

self enerry processes involving one meson and- suggests that the

original mod.el represcnting all sel-f enerry interactions by a

potential nell was a goocl one.

The basic plane wave form of the solution insid.e the welJ. is

to be expected., ind.icatÍng that poles or't/rtr.2) at k2 = Xa' for

X 1 ""*1, 
are essential to a reasonable theory. Tt¡-is being so, the

assertion ruad.e in Chapter 2 that It is pure inaginarSr, thus allow-

ing the lragrangian to be Herritian and have a Sucliùea¡r metric space

tine interval between the nucleon and. enitted. neson, is borna out'

llÉs is because l/f(u2) has no real ,ooles if 8t is not pure

inagi-nar¡r.

The opticaL rnod-el suggests trlal- a complex pole of l/p(Vz)

coulcl be interpreted. to give a plane wave with complex mo¡aentum
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representÍng inelastic scattering or emission of nesons. lfhis

representation of inelastic scattering, however, is not reatristio

for a nod.el which is to hold. for all energies; such a conplex pole

woulcl predict inelastic processes at all energies, an unrealistic

situation as inelastio processes wí1l be lnpossible below their

energr thneshold.. The nod.el of this thesis does not represent

inelastic processes in this ruay but by the pr€sence of a cut i¡ tle

conplex (El pfrtr" of the fr¡rction l/f(Uz) . This will now be

discussecl.

SZ Branch Polnts and. Cuts of l/P(ikz) .

Apart from the part of the solution representing a plane wave

inside the well there is term which ls very gma1l below the energr

thresholtt for meson emission but becomes significant above the

thresholcL and. íncreases rrith enerry increase. Thj.s tern, then, ls

easily interpreted. to represent the inelasti-c soattering processes.

ït is due to a cut in the cøplex l31nf*" of the function l/g(lk2)

from li<l =\- I
-(a +y) to í Ò/2 . For ease of evaluation of

the Ínte6ral around. the cut it is dravm along the imagínany axls ancl

real- axis if necessary. It is the integral along the part of the

cut on the real- axis which is significant and- this exists only íf

E ) a + ,ulz. Thus the presence of a square root branch point at
-/,,rrlk' =" square of thresholcl enerry ancl infinity is responsible for the

preùiction of inelastic seattering.

Apart fro¡n the poles ar¡d. brarroh points nentíoned, othe,r singular-

ities of l/f(U2) nould be d.ifficult to interpret so that ít appea,rs

that a firnction like the l/P(A2) produced. by the present nod.e1 á¡

its sÍaguJ-arity is of the only suitable t¡pe for a nodel which is to

preùict interaotions i-nvolving one ûêsotlr
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S¡ Threshold.s and Inomalous Threshold.s

ft is well recognised- that poles of the transitio¡1 emFlitude

between one state of particles to another is associatecl with the

existence of stable particles if they are on the physical sheet ancl

it is conjectured that they are associated with r:nstable particJ-es

if they are on other sheets. The poles on unphysical sheets nay

migrate onto the physical sheet as paraneters of the theory vary

and. to d.o this they nust trcome uprr through a cut on the physical

sheet. Thus the existence of unstable particles a:rd. bence of

Ínelastic scattering may be ex¡rected. to be associatecl with cuts of

the physical sheet of the transition anplitude. The situation where

two particles interact prod.ucing two other partÍcIes has been tliscussed.

in d.etail by Blanckenbecher et aI. ancl by Mand.elstaro, while more genenaÌ

ùiscussions have been given by Polkinghorne and. I¡anclshoff .

ln the present mod.eI the existence of stable particles of effective

rest nass | ., is d.emonstrated by the presence of a pole at X = k r

in the complex )( piratrc of l/t(uz), and. the existence of a thresholcl

causing the conbination of nucleon pJ-us meson to be r¡rstable,j-s deraon-

strated. by the presence of a branch point at (^ * ,*)2 and. a cut

fron this point to i Ø. the work of Mandelsta.n is particuJ.arly

interesting here in view of the fact that an expression tlerivecl. by htn

for the ÍmaginarSr part of the transition anplitud-e is similar in nature
.9.to part of f(k') . that is, it is of the forn

..., 5r1

where the branches of the 1og are taken as for f(t2) in this work.*

,Ã ros lft."Æ) / (s -Æ)Ì

*See appendix for d.etailecL nature of F(k2)



Consid.er r(r.2)

the properties of e(f.z) fon whÍch this ex¡rression is
responsible nay be :nterpreted. physically in terrns of the neson

en-i-:sion threshoLd. ¿nd. an anornafous threshold..
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for k reaL and such that

, v" < k( " *./ ;

then the expression

,/L," '- G Tt"l lut - (" */)2\,-= A

is real and the ar6i rent of the 1og in 1.1 ls real. At first sight

5.1 may be expected. to have square root branch points at the zeros

of A ; that is at k = ^ 
f/ . this however i-s not the case

because 5.1 is single valued. if the prineipal 1og fr:nction is taken.

[-," i"ef{r -Æ)1e * rÆ)] = rÆ ros[er ... ,Ã) / (r -ôl 
J-

However, ín ¡(f.2) t)re log function takes principal values only for

k2< ,2 *f'. Therefore, at the zero of A , k = a -r/'+, the

1og i.s a principal function and ¡(t2) has no branch poini. At the

zeroof A, k= "ot , hov,ever, the log is not a principal firnotien

and n(i.2) has a term equal to 2 i -(" y" ) -(a -f)t ìr
\\ \

This term has a branch point ai ic = u *f so that f(t2) has a

branch po: rt there but not at k = a -//l¿/t .

The point k2 = "' ü is an ano¡lalous threshol{" Às k moves

along the real line fron " V. towards a +f ., if it is such that

l3 < 
^2 

* ,,n2 the functional forn of ¡(r.2) suggests that it has no
,/

branch points. this correspond-s to the physical idea that when the

2y,*ene?ry of a nucleon is less than a the nucLeon is not necognLs-

able as a composite nucLeon pLu.s meson. If k is such that

k2) ^2 *,y'n' the functional for.m of r(r.2) makes it obvious that

there is a branch point at k = " */n correspondir:g to the ptSrsical
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ictea that when the enerry of a nucreon is greater tha¡r /ry
it is recognised as a stable conbination of nucleon plus neson. lflhen

E) a + ¡* tlne co¡nbination becomes unstabLe and. the nucleon nay enit
-/

a lneson.

0+ Extension to a Many Meson theo

By anology with the pr.esent rood,el it nay be ex¡:ectecL that in a ¡oodeL

where ruaJîJ¡ ¡nesons rvere abLe to be eraittecL by a nucleon an equation like

nay arÍse where

V i(r) e(a2) = ç (k)

C(f.2) has two poles bet'ween k = " 
lt anil square

rootbranchpointsat k = a+yl* r D= 112t.... . Inttris

case the cuts on the conplex k plazre wolId. presurnably join these points

in pairs and. the effect on the wave f\rnction insicle the we1I woulcl be

to introduce an integraL with respect to I ¡ I around. a cut fron the

orígin to - (" +¡n) on ihe real ljne rvhen enerry reached the

thresholcl for oae ¡neson enission, to change the range to - (a + )t^)
to y,) when energS¡ reached the threshold. for two neson( a

emission, etc. It is possible that such a noclel woulcl prod.uce crosg

section curves of the right kincl througo- these thresholcls,
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APPTNDIX

8t Notation sone Mathena!ic-q1- Results

Throughout this thesis i¡tegrations vrill be over the whole of

the appropriate space unless lirnìts are present. The space of

iltegration will be inòicated by the variabies of integration'

lhe s¡rnbols xt lt yrl;Dr D, and' p ÉLenote four vectors, and'

k2
2

vector k.

vectors.

Mathenatical resufts wh.ich wiLl be used later í¡ the appenùix

are as follows:

= k¿* E2 where ! represents the space oouponents of the four

the synbols ë, ü, E, &, !, L, a-nd ¿ clenote three

l"'o. q, IF o. +(D, + (r -o¿- q)Dr-i

2
n - r2)3

dn

t:
'l

1
J

t(")

(u)

2 d-4: ...4

dn
dn

t2
t.n rz)3

l+

,4.

t: dol loe( al-z - * r) = o(1og( d' z 'dt) !"
1

(")
*z

ú z -úi

o

do(
0

Los (z - *r) - í: ðo¿ t
1

ros (z - &r) - t -+1oe ( d- z -*r) 
|
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- ros (z -'<r) - t '+loe (z -.<r) + * t", (-{i)

= (r -ff1 los (z -dr) .+ roe (-o(i) -1 ...A.1

EZ The substitution of wa, wat , etc. into their equations. (e.2Ooî

Chapter 2).

0n1y a sketch will be given of the substitutions as the d.etail ad'ds

nothíng to the clarit¡r of the work a¡id the substitutions are straight-

forward.

Notingthat N-2iE (+ ,ù'. rz

- r' -Y2, antt 12 - w2 -n2 ,

v,* =

as N=ü*M2-T2, s2=ìÉ

*"* and. *"- may be suþstituted. into thejr equations. ff tlæy ere to

be solutions then by taking the regular parts of the equation the following

relati-on nust holcL between the o1 
".

(ze,t serr xL * ",z)la, *d2sgn x4) "irl"4t "i(l 
+ "t)*.,* = g'-ft;

A sjnilar relation is obtained fron the equatior for

same with -xL for *h .

The singular parts of the two equations for wa

separate relations,

2TsN2 + no( 'TUa.Vç =

arrd

(t-vþ,(, + (n+e.)ú, =

Simil-ar substituti-ons in equationsfor S"* ,

antl nrl ,yie1

+ 2e,T rgn *r)(x1 +4,2 sgn x4) ,

w^t
4

it is the

and. vI each gite
a

0,

0

-l¿-a -rra, t'

ðq

0,az*AL
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ancL

= f I

(r¡¡) A,, + (n + 
",' 

) l, + (s-v) +, 0 a

ê

There is also a relati-on which comes fron the regr.rlar ooefficients

of "iS 
*¡* in either the equatì-on for -ÇL

+ or -O- aa a

(zns ssn *4 - 9L s sgr "L * 9¿* 
z/z¡{t, * to

t_n(e + 1r sal "r) -lr^Y "\"(B + n, "r, *u)]

" fig(*, - ") [- * ssr xr+ (¡o< -7ut.v(

s, *L)
q(y - "r) dq

) - "s' xu (rx -ryVç )

This relation serves only to give values for Lj and. Oh .

sinilar relations can clearì-y be for:nd. fron the equaticnrs for

\ etc. but these will tun: out to be not of uuch inte¡est as they

serve only to find- r¡nwanted quantities. As is ind.lcatecl in Ghapter 2

theequations are consistent and. give d.if,ferential equations ín the

space variables for the ttnlmown quantitíes.

s3 Mass Renor"nalisatíon

Fron eguation l+.5

the Tourier tran¡'';rm of the R.H.S. is

where

ln . "'e)ly(*) = fl -v 
(*')H(,0 - *') G(x-x,)

-1}/ (*)H(x - x')eo(x - *') dxt + np(")

ff,- tr, - t) * RV(k)

ft f{* (x')H(x - *') e(* - *') "*'* dx dr('

If{ffvø¡ n*(n) E(p)"-im.xr 
"-in. 

(*-*t ) 
"-iP. 

(*-*t)

fffff

ik.-r dx dxr dn dn dp

V trl E(n) ë(p)"í".(t-p-n) 
"ixi(p+n-n)

dx dxr dm d.n dp

V Cri Ë(n) 
:(r 

- ,,¡ "i*!'(t-t) dx' crn drn

V(t ) E(n) E (r - ") dn

J

J
t
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I
r(r-
I I i V (n)E(n) Eo(r) "ix"(k-p*-n) "ix''(p*')o*dx,dndndp
! tr.l E(n) õo(-n) an

The For.rrier transforn of

(x) = o anô rf/ (x) = e

*l

2

+
+- û--J*.x

a

Now when

. n2
wnere )L. = 12 (r = nuc]-eon nass)

V tnl 8ru t'L) whena=n.

0
[å+¡u,"1 [eotr.-n)-õo(-")j *.*] g{r.t/) .

.'. o = F F(r') EoU- n) - Eo(*) arr + n

= y (-)[#jnt"rfar-n) - EoU- ")J u',_l

(rt )

a V(") =

E(r) =where

subtracted. is

where
r

.frf . 
",=rJ

f o(" - *') V(*r) a:rr

SJ fr(")[E(r. - ,,) - Eo(l- ",]

a

adn

A check must be nacle that the quantity subtracteè from the R..H,S.

of ¿{.. i+ is a function of ¡¡¡ The Erantitynultipliea uy\[/ (x) o

FV(*) r ,

H(* - xt)Go(x - *t) drct +

E(n) Eo(-r,) ar, . Jnt"l IEo

= J 0,", Eo(,0 -,,)

)lercl-'). -eo(*)] a,,

") - Eo(*,)J dn

n

(

E(

T.

dn

which is a function of m alone.
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S+ Eval-uation of r(x2)

From equation 4.18

F(k2) = . :,2*.2-E(r.)

= -k2*u'-S-
where

ï

using A.

dn

2- o(n + 4

e

d¡r ,

1

1

0
cla¿,J

{

J I
1-o¿

o
aQ

- R,ot
+

]J,

à1,(.¿-k)+k2-*2 dn

L*,u'
2 2

q \"

r1

J.
-&

2 cto(

Put

Then

nt = n-

Í.=-2 ¡t
Jo

clo¿ K

2(k.n + (1 -4.- q ) þt - ÇL- ")

lo -.¿t, - d ) t

t,
-o¿

ï
e [n' + Q t + l(t-+- ß)] .(.1-*\+t2 - a2

L"'t 
- &n. !,U- "- q)l'* q n'- Ç.'- "f1t

dn

This integrand clivides into an even and an odd. pætr the oclù part

grving zeto.
1

'T--t d.o(
oJ !

'1-<
d,

0

Using L.2

r=_ {l 1
- z(A--v).[qo +!.(1-"-q )] + k2 2-a

da
o (t-a- q )]t[qo. z

"J.
+ cl-/' .q "' - çu'
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-'Jt
22

I

2
A

'2
E¡

2

*dr .(
1-o¿

0
a

= ! l"u*'"* [
o(-z v2 -olu? n *u' -n"2 * ,2
o(2^2 -zd.^z- nr +m

O(-
lr2n +2

l
1

o
2

a

t

22
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integration. this is d-eter^minecl by Feynnants rule of putting a sroal-l

negative iroaginary part on the rnasses to ensure a resul-t corresponùing to

causal physical processes.
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but
k2 2 2

a +.b
vf ,'*

and.

+1 - k2 22 +lA

're
N.1 has a positive inagi-nary part vrhiJ." &Z has a negative

inagi-nary part. therefore C( and. O( Z æe placed, as in figure 91

Thus the inaginary part of I is -f(\ - nZ)

and. over the whole complex plane

r(r.2) = t(22)
2l' 2

=Er L_, ål
arc tan

2 1-
s
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r"-

2 z - "2) 1og s + (z +$ -$l ,., 
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22

222z -T +s
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22 2 2 2
+ - 2ll
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.... A.J.

where e is zero on the left of a li¡e through ,2 = ,2 * "2 ancl

is unity on the right of this Line.

The furction F(k2) has sone interesting properties which are

discussed. in greater rletail in Chapter .4. ft car¡not be w¡itten aa a
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single expression if the principal value is to be taken for the

logarithn but nust be written as tv'ro functions which join snoothly

along a line through the point u2 = ,2 * ,2. The functi-on is cIear3-y

analytic ever¡mhere except possibly for the last terrn in ...14. .At

first síght thís yrould. appear to have branch points at the zeros of

the square roots; ioe. at ,2 = (, + s)2 anð u2 = (, - ,)2 ,

this, however, is not always the case for

-{îtoe # = +1Ærog 
tJ{ 

,
g*ß 

Tt¡¡¡¿¿võ 
B-vß, '

ancl wrless I is r:nity no branch points are present.

Íf . z is to the left of a line through the point ,2 - ,2 * 
"2

the fr¡rction is v'rritten so that no branch points are involvecl. Thus,

D .C
the point z- = (r - ")2 is not a branch point of g(t2). ùr the

other hand the point 
"2 = (, o ,)2 is to the right of the point

z2 = 12 + s2 a¡rd. there is a te¡m , - z(ti

invol-vecl ¡¡hich neans that ,2 = (, + s)2
o22

The point z- = r- + s- has sone special

these are interpretecl to mean that 
"2 * ,

1{,
is a branch point of

properties and. physi

2 íu the square of

-(r+s) -("-" )

n(r2)
1," ,

a

caJJ.y

the

a¡romolous threshold. eners¡. this is d.iscussed. ¡oore fully in Chapter 4.



81 .

5¡ The Orthogonal Spheroid.al Coordinate Systen

fn this section results will be d.erived whÍch are used in 5J

of Ghapter !. Sone of the results have been set out by î!,^ et'32

but are j¡cluded- here for completeness.

The spheroid.aL coordinate system used- is related to the

rectangular cartesian coorùinates by

'l

x = (a/27 f( f)q2 * 1)7 cos ø ,

1

v = G/z) fC, - I2)(E 
2 * 1)l sín ø ,

and

z = (Vz) lT
with -l ( 1j ( 1, 0 < ú <ôo, æd

the surfaces of constant 5 are oblate spheroids given by

o(ø í 2-ñ a

2r

ô- 1/ +

2
z

+ 1 a

(az/+)(t * €') G2/ùE'

The eccentricity of this spheroid- is given by

1

which is independent of È[ . thus in any ob]ate spheroid.al coordjnate

systern the eccentricity of a surface å = So is determined. by 6O .

If the wave equaticn

(V2 +u21çt = o

is solved. using th-is coorfìnate system separation of variables yield.s

two equations which are analogous to Legenclrers eguation and. Bessells

equation.



these are

and-

n¿ (c' {)

I

rh Lc, -',') tr su(e,1)1 -' [\s(") * ""tfs*(c,\) = o

82.

ari

0

and.

d I red.l L*b2.'..r1 *no(", Ç)] - f\*(") - "'t4n¿(",{) = o

where

c = UA/Z

and. À¿ (") i" a separatj-or constant.

The solutions of these are the spheroid.al angle ancl rad.ial functions

respectively. The angle function equation has a cylindrically

s¡rrunetrical solution, analogous to the ord.inary Legendre function,

which is rrritten S¡(crtl) . the raùial. fi¡nction equation has two

ind.epend.ent solutions which can be v.rritten

t

r1

=l
U-t

[1
I
d-r

"t" 
5T s¿(c,1) ari

n*, (c, 
Ç)

ft is easily checked- that the first is a solution anü the seconcl nay

be show¡: to be a solution by using the theorem on p.Jrlt of E1:æmet32.

Fron the angle function equation it can be shorn: that
fr1
I

J_, 
u'l tr(q,n) sr,(c,tl) [Àr(e) - À,,(") o q2 T'. "'tJ =

thusif c = q

i'
d-r

and. the nolsal-isation of the angle functions is chosen so that

a1 s, (c,,Iì) tr, (",t1 ) o

dtl Is¡ f ., 1il
2

1 a
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this orthonormal property of the angle functions d.ocs not ho1d.

exactly if c * q but it does ho1d. approxinately. The

above ec¿uation gives

õun

2Si-nce c q

S ("rt?)
2 2

c q.

(q) -À (.)
(q, ï) n ì m n

I
Since the angle functions ach-ieve a sharp naximum at T'
the R. ll. S. is approrimately equal to

"ìt t* (r,I )sr, (c,r¡) a1

f-. *,q,î) s,,(c,1) u*1

1

2 2

a

À*(r) - À,,(")

* À,(q) - À,,(

l1
I s lo,J)s,,(c,tl) d.r1 -rL, o
ü-l In

This result has been checked. by numerical integration and- found.

to be a very good- approxination. The fact that the angle fr¡nctions

achieve a sharp maxímum at T' = 1 may be checked- by referying to

the tables in Flamrn ur32 .

AsJ'mptotically A(", { ) *rd Ror(c, ç ) are like 
"o, " Ç and_

"iqÇ /iqq . Thus R(crç ) contains an ingoing part and. an

out'3oing part of equr',l "rnplitude while R*(c, É ) is purely an

outgoing wave, n("ri ) t" finite "t ( = o andql and. is
thus the equivalent of a plane wave while R,F("r6 ) is asymtotically

like uítu/, since { + r as ç + co and. is thus like an

outgoing spherical nâvê¡

2 c) if c t q
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is the expansion of thethe last result used. in Chapter I

plane wave

ikz cos ê icåeJ I cos0
e

in radial and- angle functions.

of FlatrerJ2 and- states that

the result is d.erived. on p.l¡8

!o

"t"it[ 
cos o = zÍUir rU,c,]l)Rn(",{ rr¿(c,cos o)
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$g Fortran hogranmes

I,(t2) may be investigated- by eval-uating it on a computer.

ïn the course of the vuork for this'chesís sueh an evaluaticnr

was carried, out on a. '1 620 computer u.sing the following Fortran

pr gramrne - The prograrnmes given are for

- q þt" )/^' * "' -' 
-\fron which l(r2) iî eu":-fy found. See equation Lr.j.

Programmefor p(r2) forrealval-uesof z between r-s and- r+sr
t Fonm,tr (¡9. i+r 1 lo'8. 4, 1 )G,8. 4, 1,U'g.4, 1 NF g . 4, 1 F g. 4)

2 FoRt[,tT( E1 2, 6, 1 y,E1 2. 6, 11,81 2. 6)

J 
^CCEFÎ1,R, 

S, ZMINZ,ZTNTZ, RINT TtulL'J(

PRrNIl, R, S, ZMT.NZ TZINTZ, RII\IT, RIL\X

12 Z=R-S

PtrNcHl ,R,S

GoT05

l+ Z=Z+ZINIZ

! SS=S''iS

RR-RJIR

no o:ko/J/J=¿J' ¿J

sQl-sQRrF( ss-( ssxs s)/+.)

T-2. * SQT

a= ( z . -s s ) " LO GF ( s) + { z+nn/ z -ss / z),r ¡"s er (n/ s) -2. * s QT 
*i\Tr'arF ( rÆ s )

E=ZZ-RR-SS

PT--3.1+15927

scRr=sQRrr( ( (n+s)*(n+s )-zz) x (zz-(n-s)*(n-s ) ) )
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rr(zz-Rfu-ss )7,7, I
7 Rm=' I ./z)'''ggnl'!-[T:,r]F( (scnr/(ne+Ss-zz) ) )

Ç0109

8 nm= ( 1 . / z)'r scw': ( - -u-rrTF ( ( s car/( nn +ss-zz) ) ) +pr )

O DTÞ-ô
) rtLp-v.

REF'Z=Ä+RiB

P.ïilZ=RfB

Pulicll2, z rRiÌ z,P,rT z

r¡(z-(n+s ) )1, 6, 6

6 rF(R-?.tttü)t o, t 1 ,11

'10 R=R+RI\T

G0101 2

11 STCP

TììD

,L siroil-ar prograt:ne nay be ltsed 'cf evtluate l(.,2) for real

values of z above P. + S
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