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ABSTRACT

In this thesis a model is set up for the discussion of
nucleon nucleon scattering. Bethe-Salpeter type equations are
written down for interactions betwsen two nuclecons, taking into
account not only processes where a meson is exchanged by the
nucleons but processes where 2 meson is cmitted by one nucleon
either to be reabsorbed or to be a free particle, The time
dependence of these equations is eliminated for the spin singlet
J = 0 case and the remaining equations interpreted by their
similarity to the space part of the Klein-Gordon equation,

The solutions of the equations obtained, which are relevant
to the scattering problem are found for the two cases where the
interaction region is spherical and where the interaction region
is spheroidal and the cross sections, both elastic and inelastic,
are investigated, particularly at high energies. Energies near
the threshold are also examined in detail,

In the course of solution it is noted that the wave function
and cross sections depend critically on the singularities and
branch points of the scattering amplitude; thus these singular-
ities and branch points are examined, The appearance of
similar singularities in scattering amplitudes investigated by

the method of dispersion relations is discussed.
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Chapter 1.

INTRODUCTION

Tn this thesis a model will be presented for nucleon nucleon
scattering at high energies. This is a subject on which only
limited experimental data is available. At present, more detailed
and accurate data is of use only to a theoretical physicist approach-
ing the subject by considering a phenomenological potential;
accurate calculations based on field theory are too complicated to
carry out and if expressionsfor the scattering cross sections are
required then drastic approximations must be made, This is the
approach presented here, the aim being to achieve results which
show the same general features as the cross sections determined by
experiment, with detailed agreement in some aspects.

The data available is summarised in various sources. Results
of experiments determining nucleon nucleon scattering cross sections
have been gathered together by Fowler et al1 and correlated with
their own results to show how the total, elastic, and inelastic
scattering cross sections vary with energy up to 3 Bev and also how
the differential cross section changes in form with increasing
energy. Since then many other sets of results have been added to
the data availsble; MacGregor et a12 gave a summary of the work done
on all aspects of nucleon nucleon scattering up to 1960 and in this
summary included a list of sources for data, The data available
on elastic scattering up to 1964 is summarised by MacGregor et al3

and elastic and inelastic scattering datae between 12 and 27 Gev



is summarised by Diddens et alh. The data available does not
show the detailed behaviour of the cross sections with changing
energy but nor is the model presented here accurate enough to be
expeoted to predict detailed behaviour. The experimental results
do, however, show the general behaviour and the model is accurate
enough to predict this.

At high energies the differential cross section exhibits a
nmarked peaking in the forward and backward directions, the peaking
becoming greater with increasing energy so that when the kinetic
energy of the incident nucleon is 2,75 Bev there is practically
no scattering at 211 outside a region within 30 degrees of the
forward and backward directions. The data may be fitted at any
given energy by an optical model involving a spherical potential

5,6 but as

well by choosing the parameters of the well suitably
G-reen7 has pointed out it is quite wrong for the scattering region
to be spherical for high energies because a spherical region
suffers a Fitzgerald contraction in the direction of motion

turning it into a spheroidal region. This being so, results
derived from a spherical interaction region as to the relative
importance of the parameters involved in the potential will be
wrong, possibly seriously at high energies. Clearly the flat-
tening of the interaction region into o spheroid is responsible

for some of the forward and backward peaking while the introduction
of higher angular momentum states and spin-orbit coupling terms
into the potential as they become energetically possible will

account for the rest.

Another general feature of the cross sections which is



apparent from the data available is that the total scattering
cross section falls rapidly with energy till about 10 Mev when
it becomes almost constant at about 25 millibarns. This has
been interpreted by Jastrow8 to indicate the presence of a hard
core in the nucleons. The total scattering cross section then
remains almost constant until the first meson emission threshold
is reached when the total cross section rises sharply but the
elastic cross section remains constant. This fact is explained
by supposing that the elastic scattering is almost entirely
confined to the surface of the hard core while the inelastic
scattering is spread over the whole interaction region. That is,
from about 17 Mev +the elastic scattering is confined mostly to
the surface of the hard core and as energy increases through the
threshold no significant change in the elastic scattering occurs
because the inelastic scattering, coming from a different region,
does not interfere with it.

A particular feature of the inelastic scattering cross section
is that as the threshold is passed it rises sharply from zero,
smoothing off and becoming constant at about 25 millibarns. This
feature may be expected intuitively and will be predicted by the
model presented in this thesis,

Phenomenological potentials have been obtained by fitting
scattering data at energies below the meson production threshold
which give cross sections in close agreement with those obtained
by experiment over the whole range of energy considered. Sugh
potentials have been obtained by Gsmmel and Thaler9, Hamada1o,

and Lassila et al11 (Hull and Breit). Recently a new type of



phenomenological potential has been considered; in these the pilon
resonance states are considered to be new elementary particles.
Such potentials are those obtained by Bryan and Scott12, and

13,14

Sawada et al , and are in close agreement with the potential
suggested by Lassila et al,

Green and Sharma15 have drawn attention to work which was
presented to the American Physical Society in Cambridge in 1949.
In this work nucleons were considered to be represented by five-
vectors and the properties of the deuteron were studied. Green
and Sharma have considered the w and E) mesons (783 Mev and
763 Mev respectively) to be manifestations of five-vector fields
and found the tensor, spin-spin, and spin-orbit potential generated
by these particles or resonances. They have also studied the
contribution of the q meson (549 Mev) to the isoscalar part
of the potential together with the w meson potential and the
contribution of the pi meson together with the Q’ meson.

The value of a phenomenological potential is that when the
parameters are such that a good fit is obtained with experimental
data their values at a given energy indicate the relative
importance at that energy of the interaction processes represented
by the potential, However it is possible that in an exact
theory a particular interaction may not give rise to a potential
type term at all, in which case a phenomenological potential may
be misleading. The model presented here indicates that the
single meson interaction processes do give rise to potential
type terms for elastic scattering but not for inelastic

scattering,



Potentials which predict inelastic scattering have been
obtained by Grishin et a116 and by Bfown5. These potentials
contain complex paramevers and are analogous to the optical poten-
tials used for the nucleus. This optical model for the nucleon

will be discussed later in connection with work done by Feshbach.

Another approach to the problem of nucleon nucleon scattering

2

has been by using dispersion relations. Scottl and Wong1 and
Bryan et al18 have used this approach, analysing the nucleon nucleon
interaction in terms of one boson exchange processes and obtained
phase shifts for nucleon nucleon scattering below the meson emission
threshold.

In this thesis the interactions between two nucleons which
involve only one meson being "in the air" at a given time are taken
into account in detail while all other interaction processes are
taken into account by representing the nucleon by a square potential
well, This very simple potential is used so that the equations
obtained are solvable and the effect of one meson interactions can
be clearly seen. It cannot be hoped that the model will give
reasonable results at energies higher than the threshold for
emission of two mesons but it is expected to show exactly in what
way the single meson emission affects the cross sections near the
threshold. In fact the model predicts cross sections which behave
in the expected way around the threshold but the inelastic
scattering cross section does not arise in the way predicted by
a complex potential. Thus while the optical model can give good
results it could not be equivalent to any model which took into

account exactly all the interaction processes involveds



Feshbach19’20

has developed a theory of nuclear reactions
from which all other descriptions such as the compound nucleus,
the opticel model, and the direct interaction model may be
obtained by specialising or approximating in a particular way.
This work has relevance to the model for nucleon nucleon scattering
being presented here for the following reason., Feshbach shows
that when several exit channels are possible after a nucleon has
been shot at a nucleus the wave function for the system after
elastic scattering is the solution of a set of coupled equations
which reduce to a single equation which is of the Schrodinger type
if a complicated term involving inverse operators is replaced by a
potential., He shows that this term is complex and non local and
replaces it by a complex potential to produce the optical model
for the nucleus. The same procedure is presumebly possible for
nucleon nucleon scattering where different chamels for inelastic
scattering are possible. In the model presented here only one
inelastic process is allowed and only two coupled equations are
obtained. It is thus not necessary to replace the inverse operator
by a potential function as these two equations can be solved almost
exactly. It will be seen that while an optical potential for a
nucleon may be deduced it is not necessary to use it in a model
which seeks to describe single meson emission only, provided that
the model is simple enough otherwise,

The results of inelastic scattering experiments show that the
inelastic scattering cross section rises sharply from zero with

increasing energy past the threshold. This sort of behaviour

cannot be satisfactorily explained using = complex pofential for



if it were forced to fit the data its energy dependence would be
highly artificial. It is much more natural that the inelastic
cross section should arise as a term which is a function of energy
increasing with increasing energy and zero at the threshold, This
is the way it arises in the present model; the inelastic scattering
terms arise from an integral around a cut in the complex plane, the
length of the cut increasing with energy and being zero at the
threshold.

As mentioned earlier, another approach to the problem of the
nucleon nucleon interaction is through the theory of dispersion
relations. The difficulty with this approach is that while it shows
clearly the singulsrities of the scattering amplitude corresponding
to the various thresholds and stable states the actual calculation
of the scattering cross sections is very complicated, particularly
above the meson emission threshold. The problem of two particle
interactions has been considered in general by Mandelstam21 while
the particular case of nucleon nucleon scattering has been considered
by Hara22 and by Hsieh23a The singularities of the scattering
amplitude revealed by the dispersion relation approach will be
discussed in more detail in Chapter 7. The model presented here
is simple enough for the scattering amplitude to be obtained
explicitly, exhibiting the nature and position of the singularities,
thereby throwing light on the structure of the scattering amplitude
which would be obtained in an exact theory.

The model presented here, then, is aimed at describing two

aspects of nucleon nucleon scattering, They are the effect of



the flattening by the Fitzgerald contraction of the interaction
region on the differential cross section and the effect of the
single meson interaction on all the cross sections. To do this a
Bethe Salpeter type equation is set up, which takes into account
all types of single meson interaction, and a generalisation of a

2L

method used by Green and Biswas™ is used to derive from it a
pair of coupled differential equatioms, which hold in the centre
of mass frame of the nucleons, involving the wave functiors for a
nucleon and a nucleon plus meson. In this derivation the
instantaneous interaction approximation is used and, as the
interactions other than those involving a single meson are to be
approximated by a simple square well potential, only the spin
singlet J = O case is considered., These coupled differential
equations are then solved and the effect of the single meson
interaction is analysed in detail. Solutions are given assuming
both that the interaction region is spherical and spheroidal in
the centre of mass frame and thus the effect of the flattening
becomes clear., The analysis of the single meson interaction is
best carried out in the case where a spherical well is used as
the calculation is simpler and the important points are not
obscured by calculational detail, The effect of the flattening
of the interaction region is seen qualitatively only; the
importance of the calculstions made is that with a model which
was detailed enough to justify accurate calculation a spheroidal
well could be used and cross sections found almost exactly, The

model presented here is not detailed enough to justify accurate
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numerical calculations of the differential cross sections

As mentioned before, this model allows the scottering
amplitude to be found explicitly so that its singularities,
branch points, and cuts can be analysed exactly and their effect
on the cross sections seen clearly: This is discussed in the

last chapter,



Chapter 2. 10.

THE FIELD EQUATIONS :ND THE ELIMINATION OF

THEIR TIME DEPENDENCE

In this chapter field equations will be found for the scattering
of two nucleons, based on relativistic field theory. This will be
done making sufficient approximations to allow the equations to be
solved but remaining close enough to the accurate field theory model
to give an indication of how this model accounts for meson emission
threshold phenomena.

Green and Biswaghhave given a method of obtaining covariant
solutions of the Bethe-Salpeter equatioson which is an equation for
the nucleon interaction where the "ladder”approximation has been made.
In the relevant part of their method Green and Biswas have also used
the "instantaneous interaction" approximation. The present chapter
is an extension of the Green Biswas method applied to a model which
inocludes, not only ladder type interactions but also interactions where
the emission 2nd absorption of one meson by each nucleon is allowed.
Thus, interactions associated with Feynman diagrams of the following

types are taken into account.
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Using the rules derived by Feynmman for obtaining field equations from
such diagrams the following field equations may be written down:

S (R AN LRSS PR (1)

By? = & f(x) /s (WP +9™) e (1)

By’ = g v (8 +87) (b, - 0) (1i1)

Bxy"" = g(p, - M) (2 + 2524) Y (iv) ..... 2.1
g = & £(x) v KA+ ) ()

= & £(x) vy K+ £ v (v1)

B = gYg (y Y, - W) S(xyy)  (vii)

B = g (p, - WOPT oY) ¥, S)  (viid)....2e2

Here B O (x1,x2) = (p1 -M) & (p2 -M) ,

amd K8 (3) = (o - w)®

where v is the meson mass and M is the nucleon mass.

Also 251 = ;zﬁ(x1, X5 x1)

and ;{52: ,Qf(x1, Xp x2) .

Put x:ﬂ +1y5 = W

amd B+ = B .
Then

By = g # (0, - 1) + £0(x) VoW Vg P
and KBS = gYow(p, - M) S(x, -¥) + ng(x>y5 Y, ceee-2uh

Equations 2.3 and 2.4 have been derived from (i), (iii), (v) and (vii)
entirely so that any results obtained from 2,3 and 2.4 have analogous results
which can be derived from (ii), (iv), (vi) and (viii).

The equations 2.3 and 2.4 are a generalization of the ordinary Bethe-
Salpeter equation, which considers ladder type interactions only, to include
inelastic scattering processes involving the emission of one meson. Green and
Biswas have shown that the ordinary Bethe-Salpeter equation can be reduced, by
restricting attention to the centre of mass frame of the two nucleons, to a
Klein Gordon type equation for the spin singlet state and to a pair of coupled
Klein Gordon type equations for the spin triplet state. In this model it is
proposed to approximate the detailed spin-orbit and tensor interaction terms by
a very simple scalar potential function. This being so, detailed analysis of



12.
such terms is wasted and after 2.17 attention is restricted to the spin singlet
j = O state, for which the solution assumes its simplest form,  Thus, all
spin-dependent terms are neglected. With this approximation the pair of
coupled equations 2.3 and 2.4 eventually lecad to

O+ @Y w0 = ey

2\ 2 :
g Cy + %) {0 + 220} wy(xny) = & () 84Gw)
where Ve and \Pi are the wave functions of the nucleons which have or have
not emitted 2 meson and az(gg) is the simple scalar potential function.
In 2.3 and 2.4 put

K= Y58 (o, = 1)

then
LA = =Y (o - M) £ (p,” - 1)
= =Yy 36 (p, + ¥)
where
LA = (p1 + M) X;(p2 + M) .
BY = g2 £(x) YSW\/’B + BX, cee2.5
and KLX_ = g2 f(x)y5 KXYy + gx-,«(pzz - MZ)E,(X1 ~y) cee246

In equations (2.5) and (2.6) make the substitutions
‘\.P = (p‘I +M)W+W(p2+M) + ©
- 0 - M)
Ko= (py ~WEL+dil(p, - M) + B

whers {m, Y5} = {0,Y5) = [&% ] =@ Y5 = O

together with a transformation to centre of nass coordinates

X B x1 - X2
X _
and = x1 + x2
making py = P+1i Vo,
P, = P~ iV,
2 2 2
pJ] -+ P2 = 2(P -D) 2

and Py = Py = Lip. V .
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If y is now measured relative to the centre of mass framexthe trans-
formation to centre of mass coordinates, transforms x, =y to 5 =Y -
The delta function, % (X1 - y) will be left untransformed until "integrations
need to be performed.

Noting the identities

(p, -Me(p, - M) = Hp, -W)(p,@ + 6 p,) + 2(py8 + & p,)(p, - ¥)

2

2 2
-2(p," +p, -2A) @

(py + W8(p, + M) = £(p, + M)(p,6 + p,) + 2(p48 + 6p,)(p, + )
-%(P12+P22-2Mz)g s
(p,% - )w(p, - M) + (p, - W(p,” - ¥°)

2
= z(p,

+ 1322 - 21\‘12)W(p2 - M) + %(P12 + p?_2 - 2M2)(p1 - Mw
- '12_(P12 - P22)(P1W = sz) )
and (P12 - Mz)_(\:_(jp2 + M) o+ (p,, s M)fl(pz2 - MZ)

=% (p,% + p,2- %) N (p, + 1) + 3p,” + 1y - 21°)(p, + M)

-1 (p,° - p, )oY = {1py)
equations ©.5) and (2.5) become
(0% -0 -1)w(p, - 1) + (° - 1] -1 (py - Ww - 21 p.V (p,% = p,)
+ 3, ~1)(p,0 + 8p,)) + % (p,0 + ), - M) - (° - ~ 18
= - & 1(x) [(p, - W7 -w(p, ~H) + 6| +g] (p, ~W Ny +0(py = 1) + @y |

.-.-.207
and

X [(p2 _ l:f - Mz)ﬂ (P2 - M) +(p2 - ,“’{ = MZ)(p1 + M).D. 2ip. V (p1.j'1-_QP2)

+z (py + M)(p,@+@0,) + 2(p, @+B1p,)(p, + M) - (p% - I - 1) @]
. g2 f'(x)[ (p1 + M)_.r\.'. _,__ﬂ-(p2 + M) + @1+ g[ (p1 + Mw + W(p2 + M) +@—j

(P22 -1 § (x, - ¥) £ 8- 238

Equations (13 and (14) are satisfied if

(- p2 + MZ)W = jl_-(p,le + sz) + ng(x) w - g.Q,l ..... 2.9

2 X
(T -p + M2)€ = 2ipV/ (p1W - sz) —ng(x) S+ 8@y - igz(Vf,w) ,,,,, 2.10

KT - p° + 1) L= K £ (p, @+@p,) + & £(x) KN - gulp,” - ¥) $(x, - ¥)
ceeee2,11



2 2y 2 _ b
K('::I -p" + N7 & = KZ:L](J.V(p1 Y - ﬂpz) - g°f(x) K (&

. 2!‘ o
+ g8(py - Mz)%(x1 - y) -ig” | ¥r ,-!”1_5....2.12

For simplification put

. T 2 2

N p + M :

-
[ )
——a

Then the equations becone

2
N:-g f(x) w %(p1 e +6 p2) - g,q1 eeee2413
Ne - g2 £(x) @

N - g2 f(x).CY

. 2 i X
2ip.7(p1w-wp2) -ig 1Vf ,W1+g.@1....2.11.u

1 2 2
%(P'] @'1‘@ PZ) - Tr; W (Pz - M )%(Xq - y)
eeea2e15
2 . oo i 2 2 )
2—. .
-i %!_Vf L)Ll .26
Now define (L' and w' such that
Nw' -Lg2f(x) w! = 2pV W +g_ﬂ.1'
and
gk 2 .y My VW - 2 ¥l
NIV + g \X).:.L = .2P-- TK‘T (x1-y)(p2 -M)

and define @ and ¥ such that

g

I

6 - i(pyw' - w' Pz)
and

[}

) -1 (p1 ORI 4 pz)
The equations satisfied by g, w, and w

! 2 j { 2 ., . 2 ) .

{N+g f(x)j- Ji N+eg ;(x)} ) -1{N+g f(x)JL(p1 - _WIPZ)

. .25 g

21p.\7 (p1w - wpz) -1ig ;-\; f,w +8 @1

- 2ip, p.YL L+ 23 pV Ly, - 18(p Y -, p,)

- R
+ g2 {ka 5 W'!,’

4

1
are ,

—igzj:v flg + iw' ) - (w = iw' ) vf:} + 8 Ay

-3 L - !
18 (P1 JPL1 - =1 Pz)

-igzzv £ (v + iw!) - (w - iw!) V f‘:} + 88



2 15.
W-g f(x)}w = 3p8 + 6py) - £

= Koyl + o) - 8Ny + B (047 W - W' %)
=31lV, 81+ 25, B} -2V w - ey
and
{N + g2 f(x)} w! = 2p./ W+ gf).‘,l

The equations satisfied by @ , .ﬂ., and (L are,
2 Y, O}y (1_ 1 2 2\ <
{N + & f(x)} o 2ip.V (p,d L - L p,) +x 88 (p,” = M) olxy - ¥)

> =
-1 & [Vr ,.Q]- ip,2p.V L L + 12p.V lp,

- 2 .2 =2 (o
-1 % (PJIW“ - thz) k3 (X1- - y)(Pz =il > + i:?; EL\/f: ﬂ'}

-3 ‘gff“[vf(ﬂ+ 1000 - (-0 T |

2 25\ ¢
+80 (p,” -U)o(xy =)

i 2 . 2vc
- 3£ (p,w' = w'p,)(p,” - M) % (x, - ¥)

I

2 _
-1 & [ V(e 1)) - (LalLy) P2 ]

+ B8 (7 -1 - )

I

' 2 3 2 2\~
=g 2} ML= (o @+ @ry) ~Ev (0, - )% (5 -3)

I

2V, 8+ 2, 0l- 9 N - B, 50 )

2p.vi1 - % w! (p22 - Mz)% (X1 -¥)

{N + g2 f(x)} I

As was indicated earlier, at this point the discussion will be
restricted to include only spin singlet J = O interactions.® Later
it is intended to replace terms arising from these interactions by a
simple potential function so that a more detailed analysis at this stage
would be wasted, The simplification is made so that the resulting
equations can be solved in closed form and the appearance of the meson

emission threshold seen in the expression for the scattering cross section.
g€

- PP - B e T B PR

*For a more detailed consideration of the interaction terms seé Reinfe1d328
or Biswas.?2



15,
This being so, solutions are sought which are even in’\/’4 and

x, so that the following substitutions are made:

L
m, = 2@y, wY))
- HweTmYy)
Moo= aE ey, )
m' o= A=Y, wy,)
g = HY 0
g, = %(Vh'd"d\r’h) coes2al?

and similar substitutions foar O , ', a2nd
Then in the centre of mass frame with p = 0O and Ph =EF for
the w's and #, end p =0 andp, =B' for the s ad T, (B

may be regarded as the energy operator of the nucleons which have

emitted mesons).

zN - & f(x)g w, +ZBY w'= 36 -V, Y4 ey, o
i v & f(x)"S w! =&\ W, = + 8y,
SN - &2 f(x)§ W+ 2BV W' =4 e W
ELN+g2 f(x)g wm! o ZE\Z w o= + 8SLYy
W g 2(x)} 8, = 2 12y, (Y¥)m ' + £ Ty,
@T + g f(x)g .4 = 2w -2V, (YNe)w, + 8 8y
SLN' - gf f(x)g_qa + mfvbrga' = E's, -V, Y Ve -£ wa(pZZ-MZ)E(a -y)
L & f(x){ﬁ_a'— 287,00, = + & w10 -1 ) (=)
‘EN' - & f(x)?’gnb + 2E'vb:(lb' =X'7'lP e, % wb(pzz-Mz)g(x1 -y)
SLN' + & f(x)§;1b'- 2E'\T7h_ﬂb = . % w ! (p22-Mz)5 (x,¥)
%3\1' - f(x)éﬁa = Efff'aﬂa' - 2“/4(3’ K7f)_0.b':f

5 LSy Y
¢ 2 23 2y
lN' +g f(x)j'ﬁ.b - EI:- ‘LZf\/b_.ﬂb - 2"{4("7 Vf)iz_a]

>
*%ﬂb(Pz - MZ)S(X,I -y) ....2.18
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In order to see the nature of the solution of these eguations

more easily the following change of variable is made:

+ s 1
w = w_+ 1iw A

a a a
w = w -iw! s

a a a

+ . ]
L " R
Vv'.b— S W.b i iVlb ! 3

end similar changes defining Q. * , (L,  , {7, and S0 7,

Then the equations become

P
=
N

? —
-g f(x)7 w, * oo ZiEVIF w Eﬁa—’YLf/ \/Zﬁb - g‘D"Ia+

SLN . f(x) + 2iE\'7 w,~ =Bf, -”‘/Lr“f Ng,  -efl,,
ELN 5z f(x)% - 21EV/, ® S - g2, "
gN e f(x)é W~ o+ 21BV, w "=V, & - gil,"
AR = 2w 20y E)m 8 By,
e g ()} 4, = 267w -2V, YVe)w, + 8 By

iN'— 82 f(x,"}ﬂ"; e 'vlfﬂ‘a-’.: Ema —r\/h.(y N7 gb '1% Wa+(p22_M2) CQ)(X‘I )
-8 ], v 2T e m, Y,y e - g e, ) ()
W @ f@lat - 2870, - £ (0,00 S (xyy)
ZN'+ g2 f‘(x)j g - 2f‘\74_@_ar - 2(1/l:(°§7f) _(}_a'

+ & ;zsa<p22 - 102)§(x, - ¥)

26N, 1y = 207, Y- V) 1,

+i<:ﬂb P2 -M)o(x1 -y) ....2.19

%’N'+ g2 f‘(x)é B,

Note that
N=t§+M2-E2, N' = J+ ¥ -E%, S S - NP, 17 = PP
S'2-SZ=E2-E'2:2Ee-eZ, and

M =N + 2:'_E</.4) = ~(N - 23‘_E_\7h_) - 4iE\7h_ .

The equations are now in a form from which the time dependence can

easily be eliminated. The following solutions for the time dependence



18.

of the equations are substituted in order to find equations relating the
coefficients of the time dependent parts of the solutions (i.e, the (s 5
% 5, As, and Bs ). These are functions of x and in the case of the

#As and Bs functions of the space components of y and g .

Wa+ = (0(1 +od, sen xjﬂ'_)elT'lelr 1%y, 4 (283)”" sen X, 18 1%)) (Eo(—‘}’h’)’. \7§]
Wa— = (0!1 - X, sgn xli_)eiT jxl;.l e_E‘lea- - (ZES)“‘1 sen x) eiS'XlFI (Bx ‘713" VG}
\

Wb+ B (QZ + \é 4 sen xbr)eiT 'XZJ eiE2Xl;. - (ZiE)-1 T 'Xl,.'%

wb— = (—-’\32 +Q1 sen XL)eiT "XLJ e—E2Xl;. + (2iE)-‘l eiSlxlj_'a,’é
ﬁa = CxeiSExﬁ_
ﬁb _ B\elsleL

Ko2N =j{ (4, + 4, sen Xb)eiT'XL,! o1E1 %, eiq(.v:x1)
= - . . _ 1

+ (A3 + .A){‘ sgn Xh_)‘ els in;-l GIQ(y 4 )_{ 45|
L o

+ (A3 - AL,. sgn x&-) eiS'le eiQ(y - x1)! dq

<L 'b+ =j !r (B2 + B, sgn ::h)eiT‘xi;‘. o eiQ(y __x1)
e (]33 +B, sen x,) oo {szl ey - xi)_! dq

QT =j), (B, + B, sen xl_L)eiTixzf o %), eiQ(Y_' %)

- + (B; - B, sen xl:_) eiSlxzi 1el7 - =, )J q

g = ( (A + A' sgn xb_)eis'xal Jaly - %) de

g, =] (B +B'sen xll_)eiS'Xa} oty - %) dq veee2420

These solutions are analogous to those obtained by Green and Biswas for

the ordinary Bethe-Salpeter equation, the main difference being the replace~

ment of E by E, end B, in & 4 . The E, and E, are in

general different from E because they represent the energies of nucleons

which may have emitted mesons. They are also different from each other

as E1 represents the energy of one nucleon and E2 the other. This is
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the physical interpretation of the E‘I and E2 but the reasons for
supposing solutions of the type 2.20 are not only physical ones.

The E1 and E2 need to be different from ane another and from E
so that solutions of this type may satisfy the eguations at all. ir
E = E1 = E2 then the ecustions obtained foro(1 etc. by substituting
2,20 in 2,19 are inconsistent,

The Wa+ etc. were needed to ssze what type of solution was to be
expected and having found Wa+ etec. it is now possible to write domn

corresponding expressions for LA wa' s ete,

a

They are:
W, = Xy eiTth! cos E, %), + 19/2 sgn X, eiT!xh.l sin E, X, :
Wa' = o(1 eiT'xhl sin E1 x, = io(z sen X, eiT‘Xlé cos E1 %),

+ (Zifﬁ‘.&)m1 sgn X, eiS'xLJ (B~ -”‘/z‘_"/.‘U%) R
w o= i%z eiT‘XLJ sin E2 X, 4%1 sen X, eiT;xLi cos E2 %, )
W.b' = -i%z eiT %) cos E2 x, + {%1 segn X, eiTth‘_ sin E2 X,

s (25)"! eiSl'xLi ’
< =j i!:A1 eiT( Xh‘ cos E‘1 X, eiq(y - X1)

+ iA2 sgn XL,. elT;XL}. sin E‘I xl+ e
3 { 3 -
. A3 elSIXu. elq(y x1)]¥ dq

iq(y - x,)

7

_C\L_. '=“I-A

iT{ x|
a TN ° *

sin EJ| x, eiQ(y - x1)

. iTix | %
-J_Azsgnxhe ZPccsr.,‘xh_e

- iAZF sgn x, e
S itlx . ig(y - x,)
1y _Sllee L s:_n.b,zxz‘_e 1
= : | . -
+ B1 sgn Xl,_ elT(XLp cos E2 x e]'(l(y x‘l)

cafw | s _ 7]
+B, sem x, elexll elq(y x1) | dq

iQ(y - x-«l )

R ; T
isl Xl;! elq(y - x1)_|% dq

.S)_b' =S \)-sz e , cos E. x eiq(y - x1)
; 1 .
Jaly - =x,)

salel 3 - {
B, A8 ey -x) b, 1
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If these possible solutions of the equations are to satisfy them

then the following relations must hold between the X 's , @ 's , A's,

and B's.*

- - \ . )
im X, e:n.(J..+e1 )x

2 ‘ —~ *' ;
(2e1 T sgn x, + e, )(:)(1 +:)(2 sgn xl{_)e L = g.ﬂ_:ra yeseefi)

2ESof , + B -’\/4\/.\7@ =0, ... (i1)
(T-V)o<1+(E+e1)cx2 = 0 , ee.o(iii)
Ay + &) = 0 , ceve. (iv)
) (T -V) A, + (B + e1)A2+ (s-v) A3= & 5  .asm, (v)

j(Ze T sgn x, + e12)(A1 + A2 sgn Xll-) eIQ(y - X1) dq

1
¢ 2
= 'I%C(X1 - y)(e1 + LET sgn Xl,, + L,.Ee1 + l.-.Ez + 261 T sen xh_)(<><1+o(2 sgn xll)

ceee. (vi)
and
2

(2ES sgn xbr =g, S sgn X, * q)+ /2)(A3 - A)+ sgn xh_)
=) E(A + 2! sgn Xl+) -“/4“/."\7 (B +B' s XL-,) oty - =) dq

-E8(x, - y) sen x, (Bot =7 V.NE)(1 - 5/28) eenoo(vii)

ceee2e22

where E1 = E-r—e1 .

At this point not all the time dependence has been made explicit; the
ej'Q(y - x1) has a factor eiql,.(yl.,. - X114,.) , the X operator contains a
term ?z/ayf_ , and the & (x1 - ¥) contains a factor 3 (x“!’ - yl:_) .
This time dependence may be eliminated by supposing that A1 and A2
both have a factor ez/qbr2 s Where e 1is the meson energy, and no other
9, dependence. Then K becomes (-e2 - Eyz -/1/62) .

Equations 2.22 are obtained by substituting in the first pair of eack
set of six equations. The results of the substitutions for the other
eight may be conjectured* and are not needed here.

Note that in (i) _‘ﬁ_:a' is used to mean that part of _5./112 whi ch
S3T1x)) Ji(Bre, )xh_

has as a factor. The equivalent eguation for

(O(,' = X, S8 xb) gives identical equations foro(,l and0(2 separately

¢ — E A AR i) A BB A E S A e 8 b —— e P

*See appendix
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end is thus omitted. Similarly the equivalent equation to (vi) from

the equation for A1 - A2 sgn Xbr gives (v:L).

Equations (ii), (iii), (iv), and (v) are analogous to the equations
obtained by Green and Biswas at this stage of their argument, in fact
(ii) ana (iii) are identical to two of their equations if &y = &, = o .
If a similar elimination process is carried out using the corresponding
equations which arise from the differential equations for LR £ b 2
etc. then the twelve equations may be taken to define ey and ey

Equation (vii) gives the expressions for A3 and A}+ needed to
make _('La and (] a' solutions of their eguations.

Equations (i) and (vi) are the ones which concern the present
problem; the others need to be examined only to be certain that none
of the quantities involved is over determined by inconsistent ecuations.
Equations (i) and (vi) give a pair of coupled equations between the
A 's and the A's as follows:

Split (i) and (vi) into even and odd parts with respect to x,
J( A Goy) H0 - %) 5

( 1y () o9 = 2)

and put a, (x,y)

and az(x’y)
2, 2 / 2, 2
were 4,(x,y) e%/9% = 4 =g 8,1 7o ? 5 4,
Notation:
From this point in this chapter vectors x and ¥ will be space

vectors of three dimensions.

2e1Tc>(1(x) + e129_( Z(X)

2 .
; 9<1(x) + 2Te X 2(x)

ge(x,x)

e

H

33«1 (X,X) s

2
29.1T 31(3‘1:3’) ¥ 8y az(x:Y) = ‘E.{(}E/Q"Y) [f13< 4 F fz\’/: 2‘.] s

2 { = E
and e, 2, (x,5) + 281 Taz(x,y)zé, (x/2—y)§ £5 ) * i‘1o{ 2‘1

where f 4

LET + 291'.[‘

and f e12+1.1.E‘e1 +l;.E2 5

I

2
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e (ke T = e )X (%)
(hey1° = &, 7)o ()

oT az(x,x) - e, a1(x,x) s

-, az(x,x) + 2T a1(x,x) .

2 o
(l!-e1T = 613) 31(x;y) ‘I%(\J(X/Z—Y) ZT(f-‘;X""" f2K><2) —61(f2£)(1+ f1\)<2) P

2 -

e (g™ = o 7)o (1) 5ot () = (22 - e))(a, (%) + an(x,))

(he,7% = &,2)(ox 4 (x) = & (=)= (20 + o, ), (x,%) = a,(x,%)) ,

(4o, = €,%)(a,(x,7) + 2y(x,7)) = £5(x/2-7)(2D - e, )(£,¢, (x)
+ fzo<2(x) + f1o{2(x) + T, (x)) ,
and (he,T° - 0,7)(2,(x,5) - ay(x,7)) = £3 (5/25)(2T + o,)(2,0¢ , ()

+ £00,(x) = £,0¢,(x) = £0¢,(x)) .

=y (27 + 61)(9(1(x) +~><2(X)) = §1(a1(x,x) + az(x,x)) .

(20 = 0)(1(x) = x(3) = = & (o) () = 2,(x)),

(20 + oy )(ay(x,5) + ay(x,¥) )= -§1ggz<x/z—y><f1x1(x>
+ £o005(x) + £,50,(x) + £,¢,(x)) ,
wd (2 - o)(ey () - ay(xy)) = & 2 3 (/27)(£,5¢, ()
+ fzdz(x) - £, yz(x) - f2.><1(x))
Consider
(2% = ¢, 2o, (x) +X (=) = § (2 - o)y (6m) + 2y(xx)

=2 (2T + e1)(a1(x,x) + az(x,x) - Zg(a1(x,x) + az(x,x))

—

Al

FI629) T sy (5 0 £y () + € 3) 2l ()0 ay(,0))

2
h f2 (0{1(::) e 9(2(::) + -g-:?- h (28 + e1)(2T + e1)(o(1(x) + '-'7\2(3:))

2,
SEE (254 0)(0,) (¢, (0) + o (=)

€y

N

CDP ﬂ)rq
- - ()
N N

- 26 (2,(x,%) + a,(x,x))
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.'.\4T2-912—5-2%(e12+we +1+E2-2Ee - )'(w (x) + o1,(x))

! e

\"5'2_1"21(2E+e)5_h 25‘]‘a(xr’*)"‘a(x’x)—} .

-V)W (x) = g WL (xx) .
and similarly

KT -9 Vixy) = gV (x) § (W2 - )
where 'EU e(x) = 0{1(3:) + o(z(x)
and W (x,y) = 2 (xy) + ay(xy) .

Note that exactly similar equations could have been derived for
t3(1(x) - Cﬁz(x) and a1(x,y) - az(x,y) .

Now that the original equations have been reduced to these
equations for \/ (x) and \;/i(x,x) their similarity to the Klein~
Gordon eguation reveals the nature of the functions N:,i/e(x) and
“%’i(x,x) » They are wave functions for the nucleon, and nucleon
plus meson respectively. This assertion is borne out by the wark of
Reinfeldgsmad that of Green and Biswaghhho, however, did not consider
the possibility of real meson emission.

Since T° = M2 - ‘?2 , the relativistic ecuations of which these
are the space parts in their centre of mass frame may be written down.
Calling x and y position four vectors again and redefining the
functions slightly so that x/2 —y becomes x -y

E,[:&:+ M2 £ f(x)% \%’e(x) = g1q$/i(x,x)

and

( L“__{y ‘L/L"z)EDX T f(x)% W (x,y) = 8, ¥ e(x)(S(x -y) .

Here it is an approximation that the f(x) in each equation is

written the same and as a further approximetion it will be supposed
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that the mass appearing in the second equation is renormalised while
that in the first equation is not. This amounts to assuming that the
complicated expression which appeared inside the curly bracket with
Egc + ﬂz is what has been called f(x) minus 2\ M2 where 6 MZ is
the infinite function of M which must be subtracted to renormalise
the mass,

The equations 2.23 will be solved in Chapters four and five with
£(x) replaced by a simple step function. In order to carry out this
solution boundary conditions must be imposed. The conditions used
arise from the fact that nucleon - nucleon scattering is being con-
sidered so that the wave function at infinity will be of the form of
an incident plane wave plus an outgoing spherical wave and the fact
that a causal solution is required. The causality condition is
satisfied by incorporating an infinitesimal negative imaginary part

with the masses at the appropriate stage of the solution.



Chapter 3. 25.

THE PHYSICAL MEANING OF THE FIELD EQUATIONS

AND THEIR DERIVATION FROM A LAGRANGIAN

In this chapter it is proposed to show that the equations of
motion derived in Chapter 2 may be derived in an intuitive way from
a Lagrangian, The chapter may be regarded either as this intuitive
derivation or as a physical interpretation of the equations. TWhat-
ever way it is regarded, the fact that the field equations can be
derived from a Lagrangian is important because it ensures the existence
of a current, the conservation of particle density, momentum, and
energy.
81 Potential in a Relativistic Thecary

The wave function of any free particle must satisfy the Klein-
Gordon equation,

(O+¥®) W) = o
in a relativistic theory. If the particle is not free but is inter-
acting with another particle then some sort of perturbation or
interaction must be introduced into this equation to represent the
effect of the other particle. One way of doing this is equivalent
to introducing a potential well in a Schrodinger equation in the non
relativistic approximation, when’%/ (x) is put equal to eiEtﬁ(E) .
This effect is obtained by writing
I

(O vy o

{

This equation can also be derived, as shown in the second and fourth

chapters, from field theory, and this derivation shows that V(E)

can be regarded as the expectation value of a scalar or pseudoscalar
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meson field, whose source is the other particle. The term, V(g_c) s

has the interpretation of causing the effective rest mass of the
particle to vary over space allowing different fractions of the total
energy to be available as kinetic energy since
B -EZ . w BB

If the interaction depends on the distance between the particles then
V(_gc_) is a function V(r) of r only in the centre of mass frame
of the two particles.

Equation 3.2 is not a relativistically covariant form and so
cannot hold in more than one Lorentz frame. Thus a particular frame
must be chosen and the only special frame involved with two particles

is the centre of mass frame,.

§2 The Relativistic Two-Body Problem

Consider a system of two particles of mass m . Suppose they
are each surrounded by a spherical region of radius 2R which has
the property that the other particle, on entering the region, has its
effective rest mass reduced to "a" such that a2 = m2- V . Suppose
now that the positions of both particles are referred to their centre
of mass frame of reference. Then the positions of the particles are
x and =x , their momenta p and -p , and their total energies
each the same. If |x|<R (fig.1) then both particles are within
the interaction region of the other, Thus in the contre of mass frame

the rest mass of either particle may be considered to be a function of

position a(x) such that

a2(;_c) = m° for r >R
and = & for r {R .
If the total energy of each particle is E then

E2 = 22 + a2(§)



-R=- = -
% Dl =i |

-
NN
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and in the coordinate representation this ecuation becomes
{E:I + az(x2§ YViix) = 0 .

This shows that in the relativistic case, as in theron relativistic
case, the equations of motion for the two bedy problem may be reduced
to a single particle type equation by transforming to a centre of mass
system of coordinates, and shows that for the physical situation
considered here the single particle type equation is 3.2 as con-
jectured in 81, except that, here, the particular case of a square

well potential is assumed.

83 The Lagrangian

In this section the equations eventually derived in Chapter 2
will be derived from a Lagrangian based on the ideas of B1 and 82 of
this chapter. They will be the equations of Chapter 2 except that
the potential will be specialised to be a square well, This derivation
is an intuitive one and is not based on exact field theory but does have
the advantage that each term of the Lagrangian has an obvious physical
interpretation and also has the virtue that the Lagrangian formalism
ensures conservation of energy, momentum, and particle current. It
also gives a method, using Noether's theorem, of finding the particle
density.

A Lagrangian defining a field consisting of nucleons which may or
may not have emitted a meson must contain two wave functions,’ﬁu e(x)
and “%/i(x,y) say, where q?’e(x) represents a nucleon, which has
not emitted a meson, at x in space-time and.“%Ji(x,y) represents a
nucleon at x in space-time, together with a meson which it has emitted,
at y in space-time, Note that "ﬁJ e(x) represents not only those
nucleons which have never emitted a meson but also those which have

emitted and resbsorbed one in the course of a self energy process,
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The coordinates of the Lagrangian will be referred to the centre

of mass frame of the two particles and in this frame the model for
the nucleon will be a particle moving in a frame of reference which
has a region surrounding the origin in which the mass of the nucleon
is reduced from m to a. So the mass of the nucleon is a function
of x, a2(r) such that
a2(r) = m® for r> R
and = a% for r<R .

It should be noted here that the Lagrangian is to take the
interaction into account in two ways. First, it is taking into
account exactly the interactions between the nucleons involving
exchange or emission of one meson. Secondly, it is representing all
other interactions, i.e. those involving more than one meson, by a
square well potential., The presence of the potential well is
essential to both types of interaction for without it the field
equatians would be those of one nucleon of constant mass which by
conservation of energy and momentum could not emit real mesons.

With the square well present, a nucleon approaching the well mzy emit
a meson; it may resbsorb it again before reaching the well boundary
but if it does not then the rest mass of the nucleon is suddenly
changed allowing the meson to remain free without violation of energy
momentum conservation, Also, a particle inside the well is required

by the formula
E = p + a

to use up less of its energy for rest mass so that it also may emit a
free meson, without violation of energy momentum conservation. Thus
it is only because the well is present that free mesons may be emitted
at all, If the well were not square and had no sharp boundary then

there would be continuous variation of the nucleaon rest mass over all
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space, once again allowing the emission of free mesons.
P )

The Lagrangian of the field of nucleons of this type is given

by
L -y 2@ T+ 200, § 4 - )
s g W ) Wi(xy) & Mx - ¥)
A AORACTIFCEE?

o :
v & Wity O, - o2 { (O, +?) Wi le)
- g'yn’ W i*(x,y)(\l:(,y 71/&2) W Gey)

Where/b’L is the meson mass and g and g' are coupling constants,

This is the Lagrangian of a field of nucleons at x and mesons
at y . To obtain the Lagrangian of the field of nucleons alone it
is necessary to integrate with respect to y over all space time,
It is more convenient here to integrate with respect to the space
time interval y ~ x which is an equivalent integration.,

The change of variable

x! = x
y' = y-x
is made so that
L ) =L (xty)
and
K(x) = L(x') = ff (x',y1) dy?

is the Lagrangian of a2 system of nucleans at x., TIts physical
interpretation is as follows.

The first term

(W, + 205 W 0 5 dbye
B O m IR OTRTNE

represents "e" nucleons which are being propagated without interaction.

1]
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The second term

g | Wt Wilny' + ) & M)

AR CORNCEY
represents the annihilation of an "i" nucleon together with a meson,
both at x , and the creation of an "e" nucleon at x ., This
process would be the end of a self energy interaction where the virtual
meson is being reabsorbed.

The third term which reduces to

g W () W ()
represents the annihilation of an "e" mnucleon at x and the creation
of an "i" nucleon together with a meson at x . This process is the
emission of a meson as sither a real or virtual interaction,

The fourth term, before the integratiom over y'! is carried out,
represents the propagation without interaction of "i" nucleons and
their associated mesons,

The fifth term,

g'Su’ Wi, +4) Y5 (x,3)
is a term introduced into the Lagrangian to help with mass renormali-
satian, If this term were not there the mass in the fourth term would
remain as the "bare mass", there being no infinite mass to subtract off,
The term may be interpreted as representing the propagation of the meson

cloud which surrounds the nucleon due to the self energy processese

85 The Hermiticity of the Lagrangian

As mentioned earlier, one advantage of using a Lagrangian approach
is that the Hermiticity of the Lagrangian ensures that the regquired
conservation laws hold, The Lagrangian L(x) taken here is clearly
Hermitian in the first three terms but is Hermitian in the last term

only if 2! is taken to be pupe imaginary. This is due to the fact
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that the relative time interval ¥, — % must be regarded as pure

L.
imaginary. Wick?ias shown that the wave function can be continued
analytiecally to pure imaginary values of the relative time so that

carried out
integration over the time interval is equally we1l/by rotating the
integration path to lie along the imaginary exis. This procedure is
often effectively adopted when evalueting integrals by Schwinger's and
Feynman's methods.

Reinfelé; has adopted the same procedure in finding a current
involving the Bethe-Salpeter amplitude, The density found reduces to
’\U“yf* for free particles and is interpreted as the particle prob-
ability density for interacting particles.

The fact that g' is pure imaginary is discussed again in Chapter

6 when it is seen that it is necessarily so for the equatian solutions

to have a good physical interpretation.

B6 The Field Equations
If the principle of least action is applied to the Lagrangian
L(x) the field ecquations
T+ W) = e W)
and
e § [0, + 2605 (T, o44°) Wil = -e 1,60 2 - 9)
- + dgmz (Dy +/UL2) }Ui(x,y)

are obtained. These are two coupled differential equations which may
be interpreted physically to say that the source of "e" nucleons is
an "i" npucleon and a meson both at the same point of space-time and
that the source of "i" nucleons at x and mesons at y is an Ye"
nucleon at x . The S;g(x - y) may be interpreted as a source function

for the meson,



Chapter 4. 32,

THE SOLUTION OF THE FIELD EQUATTUNS

In this chapter it is proposed to find approximate solutions of
the field equations in the special cases where the potential well is
spherical or spheroidal. As will be secn, the approximations
necessary 4o not change the analytic properties of the solution.

Thus the advantage of the simple square well potential is seen to be
that the analytic properties of the solution may be examined in detail,
These illustrate some of the properties of scattering amplitudes, which
have been the subject of much investigation in dispersion relation
theory and show how they affect the scattering cross sections.

In the course of solution boundary conditions must be introduced.
The conditions used are that the wave function at infinity should be
an incident plane wave plus a scattered outgoing spherical wave, that
the wave function and its derivatives should be continuous across the
boundary of the well, and that the wave function should vanish on the
surface of a hard core which is introduced in the centre of the poten-
tial well., As mentioned in the introduction, such a core must be
present to account for sharp drop and flatteming out of the total
cross section as energy increases from zero to the meson emission

threshold,

81 The General Solution
In this section the solution will be found in such a form that
it can easily be specialised to either of the cases mentioned above,

The field equations are

{0+ o2 v

-g Y ;(x,%) cee ot
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and

1

&Y (%) § Hx - y)
ceoe a2

g'( L]+ %) EL:}X : az(x)}( Y i)

where the mass in L.,1 1is unrenormalised.

Equation 4.2 may be solved for y to give

el + " Wiw) = - e w00 § M- 9) iy - 5
where H(x) is given by i

- 1
k) = s

BT 2

H(k) being the Fourier transform of H(x) so that H(x) is a

solution of

(14 +/U ) H(x) = D (x) .
... + a X%U. X, ¥
{Dx () ’~, ]( ,)

-EW (0 By -x) .
g

--gfi(w e(x')H(y—x')L(x-x’)dx' eelid3
g'J !

% s&’i(x,y)
where L(x) is a solution of
— 2, )
M+ “@i = S M .

The function az(z) in this eguation arises in Chapter 2 as an
approximation to a complicated function, the approximatinon being to
make it a step fumection. If a different approximation is made at
that stage and az(x) is put equal to a constant a® then the
expression for “%; (x,y) above is simpler because L(x) is replaced
by a function whose Fourier transform is simpler than that of L(x) .
This approximation amounts to supposing that once a nucleon has
emitted a meson it behaves as though no potential well exists but its
rest mass is reduced to a over all space. 4n approximation of this
sort is consistent with the original aim of the model which was to

take into account processes where a nucleon can emit only one meson,
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If the effective rest mass of a nucleon which had emitted a neson were
to be a step function az(g) then the restriction that it could not
emit another would be an artificial one but if its effective rest mass
is taken to be a constant then it is impossible for it to emit another
meson consistent with the conservation of energy and momentum.

With this approximation then, L(x) becomes G(x) where

1

2 _ 2

e(x) =
and
W, (my) = - gi,( WxRGy - x)6(x - x1) &' eee bk
This function has a singularity at y = x so that the R.H.S. of L4.1
is infinite. This is to be expected as the mass on the L.H.S. is
unrenormalised. A fumction g;mz'gbé(x) may be subtracted from both

sides so that the L.H.S. is written in the same way but the mass is

renormalised, From the R.H.S. the function

{g%"u( H(y - x') Gy(x - x') & - R} WZKES
is subtracted. It is chosen because the first part obviously sub-
tracts out the infinite part of the R.H.5. and R is a constant to
be found later which will ensure that the “right sized infinity™ has
been subtracted. Tt is evaluated using the condition that when
a=mn (i.e. no well exists)

(D + mz)\{/e(x) = 0 )

m heing the renormalised mass,

This renormalisation is important for without it a nucleon which
stayed inside the well would simply be “recognised" by the model as a
particle of rest mass a . As such it could not emit a meson. It
is only because of this renormalisation that the particle is
"recognised™ by the model to have a true rest mass of M , making it

possible, with conservation of energy and momentum, for a nucleon in
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this region of constant rest mass "a" to emit a meson.
A so, it must be checked that the gquantity subtracted is in fact
a function of m alone multiplied by ”t{/e(x) . The check is made

when R has been determined.*

4.1 has now become
{0, + ey e gﬁ"’-‘j AACECEEDECRED
-V(X) H(x - x!) {}O(x -x')Vax' + R\,‘/(x)
= jK(X) - X')\y(x') ax! S (L

1}

where *

K(k)

gﬂ;ij ITI(n)Iz-E(k - n) - TL -n)} an ...1.6
and J) is a four vector such that
L2 - of .

In 4.5 '\;f/ (x) has been written for \’Ue(x) .

Equation 4.5 cannot be solved to give an explicit expression for
'\/J (x) but the following method allows suitable approximations to be
made to give an approximate solution.

Put W (x)
where ’\Pi(x)

4 i(x) + W 0(x)
9(")(0 -}’)}’/(x) R

and =
VY C(x)

o(X - XJY &), AN

where © 1is a step function and 'X =’XO is the boundary of the
potential well in some suitable coordinate system.

Then

O, + 2 Vi)

{Dx + az(z)} W H(x)

Yo - X (L + @ W @ - ¥ 0¥ 26 0%
2 VW)V e(Y, -X)

o(X -x>fz<<x - W () axt (o)

-~ = - s

*See appendix.
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where
T(x) = =WEV (X, -X) - 2 V=) Te( X))
ceoe L9
(O, + W) -JfK(x - x )W) axt 4 2(x) 4 T (x) .10
where
T(x) = 8(X ~X) [ Klx - x') Wix') ax! -Mgfz«x - x) W) ax
\JK(x - x') W (x") 59(‘( -Y) - e(}(0 -;\ff)} dx' ...h.11
Similarly
Ty + 2o = {0, + 2@ W oW
= (X - Ao){\_,.x*“a(l)}\/(x)
-T2 e~ X
- zvb(x) Ne (X=X
o( X - o)\) K(x - X’)’IW(X ) ax' +. '(x)

where
Tx) = =WE)NTE e (Y - Y ) -2 V)X - X,)
-7 (x) veo b2

SRR DR ACO

[ B -2 a4 1) -7 ()
where
T'(x) = e(\’ -Xs )iK(x - x!') ax' - K(x - x")V(x) ax’
._,K(x - x’)U(x') 29(—\/ ¥ o)-e0Y ! ?"o)j ax!
= ~T(x)
L+ az)”}ui(x) -fK(x -x')\;‘)i(x') ax!
- O+ DY) + K - 2O ax
= T(x) + g (x) ) cookat3
The two functions T(x) and T (x) are easily interpreted
physically. Together they form either a source term for\;l/ i(x)

which represents completely the effect of \J °(x) on the space inside
!
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the well or a source term for \%/O(x) which represents completely
the effect ofﬁ%/l(x) on the space outside the well., Separately the

two terms have a simple interpretation too:
e

(x) = V}! K(x - x")VW(x') {9()\/0 =X) - (X, -X')j’dx' .
The term in curly brackets is zero if "X and ‘X' are on opposite
sides of the boundary but is 1 or -1 otherwise. If X <::(0
the term is 1 and T(x) is the source due to the annihilation of
particles at points X ' outside the boundary and their creation inside.
If X >X, the termis -1 and T(x) is the source due to the annihil-
ation of particles inside the boundary and their creation outside,

T = WETZe (X =Xy + 2T Wx).Te( X - %)
which is a singular "function” at X = X o 2nd zero at all other
points of space. It is a source function rspresenting the direct
"transmission" of particles through the boundary.

To find the scattering cross section 7 ° must be known and the
ratio of the scattered density to the incident density found.  The
form of?#’o is known and thecross scction can be calculated by finding
T(x) and g (x) from it, solving for »b’i and using the condition
that v/ B is finite at the origin or vanishes on the core. The form

of *4/0 varies according to the shape of the potential region so at
!

this point the discussion is specialised to particular cases.



38.
82 The Spherical Well

In the spherical case 171/0 must be asymptotically of the form of
an incident plane wave plus an outgoing spherical wave, and as the J = 0

. N . - . A o
case 1s being considered an approximation to '\/U is

WO (x)

\/U(r) e-iEt e (r - R)
where

(sin Il_glr)/r + 1 /T, eee. kL

YV ()

the well boundary is r = R » and ol is a function of energy which
will determine the cross sections. ]}_gl is the magnitude of the
momentum of the particle in a region where its rest mass is m so

that 5
E -« kX = m cees 115

This is an approximate expression for \’V = because, while it does
not satisfy 4.12,
O+ 0 )W) = -gn)
where O~ "(x) may be identified with T (x) and the remaining term in

jK(x -2V %zt ax' - (x)

L.12

is small.
With this approximation then,
-0 + 2V
W) 7 T 20 (v - ) + 2 VW) To (r - B)eiE
T [280 - DV ¢ YD) P §ie - ]

From this expression for'\l/o(x) the source functions T(x) and

g (x)

U" (x) can be found,
Tgx) +q(x) = - J + m2) '\;f’(x) +SK(X - x')’\flo(x’) dx!
=“V (r) e_iEtd\-/ze (r =R) +2 V\f/o(r).ve(r—R) e_iEt
-fK(x -2 (216 (' - R) &7 gpr
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@ (x) is the singular part of the expression so that

T (x) = B¢ [2 §(r - (W () + Y () +Y (2) § ' - R)J

and

a (k)

§ (¥, - E)J[28(r -R)(W_(r) + 2V ()
Y § M - B) | T ax
§ 0, -3 [t + 1y e)ee - ) »

+"\V (r)q! (r - R)? Suﬂ:ﬂr r ar
(k E)[ (R\{/ () + W (®)) - R\/(R) cos\k\R]

2ooe l}-q16

Equation 4.2 for 'Y./i(x) is first considered exactly without
making the approximations which were made for‘)(/ °(x) (i;é. neglecting
™(x) and K(x - x')). The reason for this is that the effect of these
terms on'\})i(x) is much greater than their effect on ‘\Po(x) . This
is best seen physically by noticing that both terms represent the effect
of the emission and sbsorbtion of mesons, processes which are not expected
to affect \%/o(x) greatly, especially the emission of real mesons which
is impossible outside the potential well, Tt will also be seen mathe-
matically that the incorporation of another small term in N,Jo(x) s
as would be the result of employing a perturbation method, would not
greatly affect o/ and hence the cross sections.

Thus from 4,12
(42 + AP (1) = K@) PHE) + (k) + T (k)
Bt Tiw - TE (k) ceee 417

P(x%) F(12)

where

0% a2+ e - K(x) . veee b8



In 1+.’1 6 put
7 (I, ®)
where
F(k°)

then

g (r,R)

oo BH(r, R) = - 21;

1]

ol

40.
sin{k|R

ceve 4e19
15 7 (%)
FE - kD) ;
jB (\k(, B) o X g
0 sin |k|R sin |k|\r
j‘ ) I 1k dlk!
0 F(k%) k) r

4 (oo sinkiR sin(k|r
-I-_f alkt

o' wxd)

1 {eiqg\(r +R)  -ilkl(r + ﬁ)

0 F(x2)

- itk (r - B) _ _-Hk\(r - R)§ alkl

-l
4T

From 4.16

SO = 6T Be,R) g(R) - f(e,R) BR) 4

and 4.17 putting R\//(R) =

Vi = Sk, - 8) [B (5 ,R) B.(R) - £(\k|, R) E(R)] +

© A ¢ k(e +R) _ _~A[K[(r - R)
o0 F(K9) ie T gdm

eoes 4,20
8 (R) -

T(k)

F(kz)
(k) =ik.x
F(kz) °

..... Lo21
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This expression for '\'l/l(x) depends upon the way in which the

singular integrals in #(r,R)- and \Sﬁ'(k)/F(kz) SEEE pp, e
evaluated. As will be seen in the next chapter, it is possible to

choose the contours so that \]Ui(x) is approximately zero for rd>R ,
j-f(k)/F(kz) oKX a1 being small.

As is shown in the appendix, F(kz) has branch points at k2
= (a +/M)2 and o¢ and has a zero at a point on the real line
¥ = X7 say, such thet X% (a - Y2 . F(¥?) hes no otler
zeros, poles, or branch points and thus the only finite singular points
Xio . B =

(k2 - X 12) R(kz) such that R()(12) # 0O so the pole of 1/F(k2)

of 1/F(k2) a3 ; 1:2 = (a +/(A )2 and k2

is simple., The function 1/F(k2) has a cut along the real axis
between k° = (a +/(A)2 and k= +o0. (fige 3)

Consider the 52 plane where _1=cz = E2 - k2 . In this plane
1/F(k2) has branch points at E2 - (= +/«\)2 and =20 and a pole
at k_12 where k

1
axis between E° - (a +'/M)2 and = o .

2_ g2 . X 12 . There is a cut along the real

Consider the ¥\ plane. This plane may be divided into two

halves, in each of which the whole range of the function is produced.

n

The function has poles at k| = % \/;2- )(1'/' = % k‘l and

i+

branch points at £ i o¢) and \ E2 - (a -|-/u.,)2 . The latter
branch points are on the real line if E ) a ""/M but on the pure

imaginary axis if E (a +/(A . That is, they are real if the energy
is greater than the threshold energy but pure imaginary if it is less.

If EL e + A the cuts lie along the imaginary axis between

I3 ﬁa +/vt)2 ~E° and I iag, (fig. L) but if Eda + fA- they

lie along the whole of the imaginary axis and the part of the real axis

between O and = \/—:32 - (a -17/&)2 . (fig. 5) 1In the latter case
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the rule of adding a small negative imaginary part to the mass of the
particles to obtain causal solutions shows that the cuts do not "pinch" *

and contours like thoss shown in fig. 5 are possible,

L T T i R T

*See appendix.
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Contours for E< a +u  are shown.



Figure 5,

Contours for E > a + U are shown,
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Chapter 5

PROPERTIES OF THE SOLUTION

In this chapter the difference between the solutions below
and above the thresholds and for spheroidal and spherical wells

will be discussed.

81 The Solution Below the Threshold for a Spherical Well
From 4,20

#(r; R)

n

1

where 50
T \ (-
I, = 12 o 1 |k (r+R) 8 lk\
F(X") |
and < 5
D .
12 = 12 1|‘ e"l\l_c\(r"R) dll_i_(
F(x™) !
- "J oo
11 and I2 are evaluated by contour integration, completing

an infinite semicircle in the lower half plane for I1 since r + R0
always, and in the lower half plane for 12 if r>R, but in the upper

half plane for 12 if r<R .* The path along the real line may avoid

the poles in any of four ways and the integral may be a ccmbination of
the results from thee paths. The .‘Eath which makes #(r,R) approxi-

mately zero for r>}R is that shown in figure 4, for then the cases
»

-

where the contour is completed in the lower half plane

{  Erel (s
I o= _12. o, 1kl(r + R) alk|
F(x")

and _, _
1 e-'i\g\(r - R) alk



Ly
both of which are small, there being no poles within the contour.

e's When r<R

#(r,R)

i}

- f _lé._ L ogikr [k|R dl]ﬁ‘
o, F(&°) or

and

o TIEE [Z-ﬁ(r,R) 2. (R) - f(r,R) E(R;I

+j T(k) / F(&°) e BoF g terend5ud

i)

By definition of'sl)i(x) it is zero for r>R ; it is not
expected, however, that this will be exactly true for the (\7’/ i(x)
derived here because an approximation was made in obtaining O"(x) :
/\./l/ o(x) being assumed to be a function which only approximately
satisfied L4.12. However,'y/i(x) given by 5.1 is expected to
be approximately zero for r>R which is true since @(r,R) is
small for r>R andjﬁ(k)/F(kz) ot Kux dk can be seen to be
small on both physical and mathematical grounds. Physically, the
processes which it represents are expected to be of small consequence
to either ‘\Pi(x) or tte cross sections. Mathematically,
j&"(k)/F(kz) o XX g1 _ e'imfi(gz)“?(g) o(r"-R)-6(r! -R)}

1/F(52)ei2'(§." = .}E') e-il_{.(z" - 5) dx' dx" dm dk

_ f “im fwdl_s J ! j ax" K@) W) |m) k| /%)
0 0

{Q(r" -R) - &(r' - R)}
sin |k||x" - x| sin|m||x" - zs'|ﬁ/(izs"- x| |x" - ') g-
Change the variables of integration so that the integrations over
x' and x" becomejd(g_c" - z)jd(g' ~ x") then the integral becomes

= —
d)m(d|k|d[x" - x | I-{(mz) V(m)|m\ k|{&(x" -~ R)- 8(r' - R)
| RERAZOTEY

0
Sin“.sll&" = ?5{ sin[m\\z" = -}-c’ﬂdb," ?(_n.
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This integral may be transformed using contour integration
methods by completing the contour from O +to c»Haround an infinite
quarter circle in either the upper or lower half plane so that the
contribution from the curved part tends to zero. Then each
integral from O +to ofis equal to a sum of integrals from
13 00to 0 which are of the form fwe-dy dy where {_is positive,
The only poles involved are those o?‘ 1/F(}£2) which can be avoided
and the only cuts are those of 1/F(1_§2) and ?{(52) « The cuts of
‘I/F(l_gz) are the same place on the flél plé.ne as the cuts of T((L{z)
so that the paths must be as shown in figure 6, Thus
g-f'(k)/F(kz) e‘-ik'X dk is small, a fact which Justifies the approxi-

mate expression used for ’\}/o(x) in two ways. TFirst it shows that

\

this approx’matisn docs not significantly upset the property of\})i(x
that it is zero for r>R and second, it shows directly that the
approximation amounts to the neglect of a small term, the neglected
term being similar to J T(x)/P(k%) o HF ax
Approximately then,
Vix) = e-iEt[}é(x:,’R) 5. (R) -~ 4 (r,R) m(;ﬂ 5.2

where

1
ﬁ(r’R) Lr (12 = I1) .
When r<R, }Zf(r,R) changes its nature since the contour used

in evaluating I, nmust be completed in the upper half plane thus

2
including the poles of 1/F(§2) within the contour. Thus while

. _f 1 -ilk[(x + R) alk|

i 6, F(£)
as before
I, = -f =-1-2- e-i[}_;\(-r—R) k| + 2‘!1'i(R1 + R2)
s



1 ilk|(r-R)

where R, and R, are the residues of at
1 2 F(kz)
the points |kl = Tk, . That is -
12 - - j ___‘_;__ e-it}_c]t(r-R) dU.S.\ " “_Q_E.é_ sin k1(r-.-R) )
F(k) k,R(k, )
c, = 1+
U
e For r<R
Hr 2) =£; 12 o~ [kl (x-R) k| ‘1'15 f _1_2__e-1(1_5\(r+R)(315
Jo F(ED) L F(E)
U L
1 2 .
- e sin k, (r-R)
) r(k2) 4
15V
=T - -211;- ‘H’z sin k, (r-R)
U k1R(k1 )
where I = - s =l ei\g'R 2i sin \k\r .
c LF 2 £
v o F()
U

The reason for the change in nature of @(r,R) as r crosses
the boundary r = R is that the source function J(x) involved in
B(r,R) is singular on the boundary. The term \S-T-‘(k)/F(kZ)e-ik'xdk s
however, involves no terms which are singular at r =R and as can
be seen by the above analysis of it it does not change its nature
as r crosses the boundary, Thus where r <R it is still small
and W¥(x) is still assumed to be given by 5.2

The procedure from here is to use the condition that'\}/i(x)
must vanish on the core; i.e. where r = Q : e being the core
radius.- This gives an expression for o from which the cross sections

can be derived.

82 The Solution Above the Threshold
There is no difference in the form of the solutions below and

above the threshold. The solutions are different in nature, however,
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because the branch points of 1/F(k2) are on the real line for
E>a +//0Land the contours CL and CU are those shown in figure 5.

This has the cmsequence that IC is no longer small, having
U ’

I
)
1

contributions from integrals of the type-j e:'LELX dx along the real

axis. This is not the only way in which the movement of the branch
points of 1/?(k2) onto the real line affects the solution. The
branch points of F(EZ) are also the branch points of K(k?) and

the contours of figure 6 must be modified to those in figure 7 for

the integrations over k| end |m| in evaluating Sﬂf(k)/F(kz)e_ik‘Xdk
which is evaluated by integration around contours in the upper half
plang7§2n no longer be neglected. Also the expression assumed for
\%/O(X) will no longer be a good approximation. Thus new effects

are introduced into the solution when X a +/;A but these will simply
add a term to’#/ i(x) which will be denotzd by I . I is an integral

around a cut on the complex plane, the significant part of which extends

from the origin along the real line to \/XEZ - (a t//.)z . The range

of integration thus increases with E frcm zero when E = a t/uv .
The net result of these effects is that for energies above the

threshold \%’i(x) changes its naturs, the change being small at

E=oa +/A& but increasing with energy above this., The effect of

-
such a change on the cross sections will be examined in §A.

$3  The Spheroidal Well

Tn this section the model will be modified to have a spheroidal
well instead of a spherical well, Greeg7has considered the problem
of hard sphere scattering, both in a classical and wave mechanical

context, where spheres are flattened into spheroids relative to one
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another by the Fitzgerald contraction and concluded that the forward
and backward peaking of the differential cross seection for nucleon
nucleon scattering at high energies is better explained by such a
model than by a spherical model, It is therefore of interest to
examine the consequences of assuming that a general potential region
is flattened into a spheroid in the same way.

To consider the boundary of the potential region in the present
model to be a spheroid would lead to straightforward calculations
were it not for the fact that the hard core will also be flattened
into a spheroid of the same eccentricity by the Fitzgerald contraction,
The orthogonal spheroidal coordinate system® has surfaces of constant Z

as spheroids, If ¥ = g o 1is the boundary of the well and this is

|\/.\;1

a spheroid of eccentricity e then no other surface = constant of

the coordinate system has this same eccentricity. This means that
the core cannot be represented by a surfacé § = constant. This

difficulty is overcome in this case by the fact that if two spheroidal

coordinate systems are chosen so that % = T is the well boundary
5 5
in one and T ' = gf R is the core boundary in the cther then the
> .

spheroidal wave functions of the two systems are approximately
orthogonal ,* The difficulties would be more complex in the case of
a well which was not square,

The calculation in the case of a spheroidal well follows similar
lines to the spherical case. The notation and properties of spheroidal
wave functions used in this chapter are explained in the appropriate

section of the appendix,

*See appendix.
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Equation 4.12 1is independent of coordinate system and well

boundary. That is

O+ ) i - Jf K - )W) @ = 2 ¢ T ()
and

_-— !

[T+ 5 Vo) - | K- x) W) @t = () = TG -

bhe used,
In the calculation two systems of spheroidal coordinates will/ (Eu}\)c
¥

end (g,?i'),q such that g:fb and g: ¢ , are the

)
-

well and are boundaries respectively. Then

W) = wi(x) e (5 -§)

and

{1

/e / e
Vo) = wi(x) e (-1

With angle origins chosen suitably a plane wave with cylindrical
symmetry may be expanded

ik? _ << ._,és R o
e ‘1 —2:2)‘_1 ﬂ(c,’//) n(c’5)sﬂ(c’ €cos Q),

where

c kif2 .,

Note that /é in this expansion is not the angular momentum in
the usual sense but for this simple model the 4 = O term only will
be considered, The advantage of a sphercidel model is that /@ =0
does not give a constant differential cross section but one which is
peaked in the forward and backward directions., What is meant by a
better model in this context is that lower order partial waves will
give differential cross sections of the right shape.

Since the solution, ‘y/ (x) , outside the well is to be of the

form of a plane wave plus a wave which, at infinity, is an outgoing

spherical wave, ’\ZUO(X) is given by
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WO = { R (e,7) + R(e, £)] sg(e, ) o715

= W () sglery) T ST -5y) s

Then

™(x) + 7 (x) :-Q:{+m) N/ °(x) + K(x—x')\p (x') ax!
and
T = [ WETP5 -5y) + 57 (5) 0605 =20 ] P (e »

SRR 23

| 2(1 532
| )"‘““'“W?) eI AL Ca
L3 Y SRy AR
zzg sV () (-5 ] [ 8, (0,7)e'ﬂ-{‘-’£d_x_ A
But

E(-lrs (c,c05 €) 8 (o, ) Ryfe, )
G ;

. /1 (o 4]
— { - s 7
T = JT(x)em“lf(fzﬂfz)d{dL)
w4 Jo - ! :
\ 8 (" 7
=(S(k4—E) (c, cos ©) ': dg{LZ/\[/(")
~.»‘O fm

R SRS ST N RUREL OISy

N R (c 2‘)
= N (kla- - E) = d_2 So(c cos Q)LRO(C,. ) (fb)
- W(gy) R 0. (e gb)—“ (1 +§b ..... 5.5

Put E

ﬁ(c,fb) = ;5 8y (¢, cos 8) Ry (C’Eb) ;‘il:z_;
then

3,54 = % \(So(c, cos 8) R, (c,%,) == &=F ak .... 5.6

. &) S TS §



In finding the Fourier transform of ¢~ the e-lE'X was expanded.

in the 7/,, lq ),¢ coordinates to allow the integration to be carried
2

out using the delta functions of 7~ . Here & ;’§b> is to be
D
found in terms of the (';', [?') , q coordinates as it is to be used

to find"\*/ *  which must be zero on the core boundary ? = <

c
In order that this conditli on may be applied easily ell—':'-25 is here
expanded in the (:,T/!-), q coordinates.
1
ﬁj(“‘::p ‘_:-b) = S I‘. i'g SO (C; cos e) RO(C, gb) —1'2_' So(q,COS 9)
> <=1 0 d 7 P(k)
- =\ .2
5,(a ,7) Ro(q)Z) k* alk| & (cos ®) .
=
(16 - p — 1 2
S S Ro(e, 7)) Rela, 70 Sl 1) == & d{k)
Jo g2 0 7gp’ Torh i/ Por Y F(f)
16 / - _ 1 25 - - - ey
== Sl i) k") R, (c,%,) R, (q,€
dzl,l. o N EE) T 00 Tothe

= = ¢ *
+ RS (C:fb) RO (Q;g) T
- - )

and

[«<YRN =
an
S S

T - =
Solasy ) === k"R (c,5.) R, (q,%)
0+ gy S0, (5P T0 TS

=
~
(Vvay|
WA
o
i
ol

-

+ - - e
+ Rofb (e;54) Ry (0,3)

since E\,(c,v;) and Sm( q,r} ) are approximately orthonormal.

— _ I, )
) K% )
. 2 i
S | - 8 =

— fra = .
-4 (g’?b)”‘“/‘(‘, ;" i ﬁlf_zL gTikex 4 5.7
| - 4 FED)

As in the spherical case the value of “-\le(x) depends upon the
way in which the singular integral for #( ‘:;, g‘b) is evaluated.

*See equation 5.7a.
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Note that

Ro’(c’z )

n

L ieg
1e ‘? So(c,,{q)dyj

1, e 2 g
elcg”} S(com ) dp + e 1031 S (c,n) d
S o 0\% )/ %9

0

i

Rg (c’g) + Ra (c’g) SE‘:YJ ss 00 5'.73-.

where Rg (c,g)—-}o as |k| —>+ io/end RB (c,§)~-> 0 as k— = inl,

B)

+
0

infinite semicircle in the upper half plane and RS

plane, This situation is complicated by the fact that there is a pro-

Thus an integral involving R, could have its contour completed as an

in the lower half

duct of radial function in the integral to be evaluated.

Since the core and well boundary have the same eccentricity

§b=§c=§0 S&y .

Thus on the core the problem terms are those like
1 . & :
+ - ey _ [ dcef (' -iq¥%
RO(C, Zo) RO(q’ _)O) = } 5 € DOV) So(c"'} ) dV! ! e JOV) So(q"'})d7-

Jo
Since the angle functions achieve a sharp maximum at i/} = 1 +this

term is approximately equal to

i % (e=g)| [ ] [ !
R q)l_})( ) so(c,v]) dVi\‘ 1o So(q"’}) dl/L!‘

and it is clear that the contour chose;i to integrate it must be completed

i
-

in the upper half plane.
I+ is also necessary to know the behaviour of. ,@5(2 s go) on the
well boundary. This is more difficult as the well boundary is not

given by E = constant. However as the scattering is strongly peaked

—

in the V): 1) Qirections the spheroid g = constant which coincides

with ‘g = 20 at = % may be considered to approximate the well

-

boundary. If

(YA

= 5’1 is such a surface then

qg 1 = 0?0 .

-
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This means that a term like Rg (c,fb) Ra (q,?) must be completed
in the lower half plane if Ef is outside the well boundary (i.e. when
Z, q> Zoc) but in the upper half plane when —Z— is inside the well
boundary, The derivative with respect to g-b of RB (c,gfb) has
the same behaviour as Ro(c,gg) as far as these contours are concerned.

The solution for qf/i(x) in the case of a spheroidal well is
similar in form to that in the case of a spherical well, especially in
its behaviour as energy crosses the threshold. The same three effects
are introduced and these may be expected to have a similar influence
on the scattering cross sections, The real differences between the

spherical and spheroidal cases are in the differential cross sections

“

of the partial waves which will be discussed in §5.

B4 The Threshold in the Cross Sections

The way in which the threshold affects the cross sections is
clearly much the same for thespheroidal and spherical well cases so
for this section the spherical case only will be considered.

For

”\,(/O(X) = (1/r) sin |X[r + (o(/r) Jilklr

the following fractions are obtainable.

particles elastically scattered _,. {2 _ —
particles incident - (2104\ = b,

2
1
. , — OL
outgoing particles _| 21 _ —
ingoing particles | 1_ | 1+ hodoc 4 f]m(oé) ;
21
and .°.

ingoing particles
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If there is no inelastic scattering

Im(ec) = oKX
and if there is inelastic scattering the fraction of particles
either inelastically scattered (absorbed) or elastically scattered
is
ho<® + LIm () =Lk oftoc = LkIm () .
Thus L4 Im{c<) is the fraction of particles scattered whether there
is inelastic scattering or not.

From 5.1

=)

o fe,2) B (R) - go(r,R) B (R))

+S‘-’f’(k)/F(k2) gTHKX ap

where

Am) <31 - (6 /) sin Xy = 3)

5, = ‘rr/ZR(kﬂz)
and
' slxlr
1 = =S —— e 1,,( 23 si & R .
Cy ™ JCU F(£2> 1 sin \L.\I‘ L\

BUELg & [5x) / 70%)] o F ax = 1™ the condition that
wi(x) should vanish on the core boundary r = 1s

ﬂ(e :)) [ {g\ cosl_g_tR * 1‘}_5&“ eill—c‘R]

- B;(¢ ,R) [sin_{l_ciR + X eih—‘\R} # T

0

v Ao ) s |1 - A Dl cos |5l - 2

- B e N

el 2 ) - 4 (g 0] SR
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£ LpoR) = %,IRCU + (04/p) cos y(p - B)

where
‘ |k1 ddz 1.
e it
U
Then
ot - (a/p) o HER
where
A = sin{gi R cos k1(€ - R) + (\k‘/’k” cos‘_l;_tR sin k1(€
+ (1/¢ )(IRF sin -‘ l I. cos kiR) -T
and

B =ocosk (p-R)+ i(\gk/lgl) sin k, (@ - R)
- (1/6,) (i\}_g\ o = Tro

7

Since T and ICU are approximately zero below the threshold,
the expression for ¢« there is
s1n( klR cos k (Ei - R) + (lk(/k )cos‘ \R sin k (ﬁ) R) -i\klR

cos X, (P = R) +i(|k|/k,) sin k(@ - R)

oL =

which is exactly the expression obtained for o for a simple square
well model, the radius and depth of the well being R and m - k1

respectively, with a hard core of radius f? « Below the threshold

no inelastic scattering is expected; it is esasily checked that this
is predicted by the value for o< given above since

IID(Q<) = C{O—Q )
Thus below the threshold the cross section curve will be Just that

obtained for this simple model; i.e, it will decrease with increase
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of energy and then level out to an almost constant value, This
can be seen from the expression for ¢ above for when l_lg‘ is
small

Im(x) == sinz(‘l_;] R)
and the total cross section is proportional to sinz( lgiR)/l_gz
which is approximately equai to R2.
When lk} is large enough for ll_g\ to be approximately equal to
k

1 _sin (k| + x]p - jx}R) e'ih—‘TRe"'*Jl‘-i(e‘R)

X L= 7

= smlgle e-il-k—Ie
and
Im(c< )-_f:sinz(\l;:\ € )

so that the total cross section is proportional to

sint (Y x| é‘a)/_l_c_z .
At the threshold it will certainly be the case that

LE‘ - k, and it may be assumed that

1

4 = sin] k| o (1/01)(IRCU sin| k|r - | x| 1

: cos \1_{}R) -T
and

5 AEl(e -R) _ (1/6,)(3}¥ T, ~ IRCU)

at the threshold and above. Above the threshold I, , I 3
Cy RCy

and T are not negligible and it is no longer the case that

(<) = o< o e
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This has the expected physical interpretation that inelastic
scattering is now occurring since the total scattering cross
section is not equal to the elastic scattering cross section.

It is of interest to calculate ¢ approximately to see
how Im(c¢) = o¢0< behaves asbove the threshold.

First consider I
CU

I, = --1;5 1 kR, sinjl_g}e) d{g}

u o, TE)
1 t v '“2- g 2 B . i y]
£ - ZtJO B =(a+p1) 2i sin 1.15'63 e }E{RZII‘T‘ F(:{Z)) d" k‘
—\1 ;?_"Ez _( o }4 ) 2
— sin 4 ei 5 B i | ! .
) jo \‘E\f ke (F(kz)) 'k

is positive/and from values derived

From A.5 Im(

1
F (k%)

) if (? is chosen to be negetive
from the Fortran programme given in the appendix it varies almost
linearly with ‘_k‘ ; at least for small ll_{_‘. The quantity
Im(c<) - X X would be very complicated to evaluate exactly
for all values of E and this simple model would not justify

such calculations. However it is easy to calculate for values

of E near to a + Moo In this case Ll_cl is small for the

whole range of the integral. ' Supposing that Im ( 12):'\) h{_i
F(k")
and that E 1is near to a + H

oy e | e
Q

! e\) [E2 - (a +,u)2] 72
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and i
) ‘/Ez . (a'VzL)z 3
Lo = & El” oV alx|
2

U 0
_iovlg?. 2]
_L,.QJ}_E (af/f)—}
From the expression for T on p.hk, since E(gz) involves

the same sort of imaginary part as 1/F(1_§2) , it is clear that

T will be of the order

= il
. LEZ - (a +/A)2\
and is thus neglected, IRC is included along with IC as
U U
all the terms in Im(ol ) = o« ¥ involving IC cancel out,
U
-3 k
oA = = (a/B) e ER
where now
A = sinfklp - (\kl/c,) ICU cos {k| R + (1/C,) IRCU sin\k|R
= sin \E\Q - I, cos kIR + i1, sin|k|R say
and .
5 - otE[(QR) I, +11, ;
I, = (kvc,) Te,
and
I, = (1/c,) IRCU .
2
c, = T /2r(k])

o T/2R(E)
- (- _152 - k12)/2F(_l=_<2)
which is real and slowly varying at the thrashold., Near the

threshold, then, C1 will be regarded as r=sal even though it
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will have a small imaginary part just above the threshold.

Tm(0t) = Re(4/B) sin |k|R - In (A/B) cos|k| R
and
# X = AA/BE .
Re (A/B) = \;(sin {0 - T, cos | R) cos (k[ (Q - B)
+ I, sin kR (sin [1_4(@\ -R) - I, + 12)] / BB
and
Im (4/B) = _12 sin [k| R cos EI(Q' R) - (sin|}fQ- I,cos{k|R)

(sin {k[(Q-R) - I, + 12)‘] /B .

. . neglecting 112, 122 , eand I Z[2

I}

Im(o¢) - o ok LsinQWQ - 2I, sin klo cos |kiR + I, 51n\_|(\-P)

- sin 11{}0 + 2I, sin \k‘Q cos{k| R I / BB

= I, sin \ k| (Q-R)/B§ .

C1 is shown to be negative by calculation of F(k2) using the

programme given in the appendix and R > Q .
e Iml) - (X > O

and veries with energy like ‘-Ez - (a + AA )2 f .

The cross section is obtained from Im{x ) by dividing by

52 so that the inelastic scattering cross section varies like

[EZ - (2 +~ )2_( 2 / ‘;EZ - mz]_



near the threshold, That is, the cross section curve is of
quadratic form with a minimum of zero at the threshold., This

is in accord with the experimental data available.

85 The Differential Cross Section
For a spherical potential well the differential cross

section in the 4{ = 0O case calculated is a constant, Cal-
culations have been made using a spheroidal potential well to
make the model more realistic at relativistic energies and in
the hope of obtaining a differential cross section having the
desired peeking in forward and backward directions., This, of
course, will not be achieved using the Jg = 0 solution given
here but it is clearly possible to solve the equations for ,éi
equal to other values in the seame way. The,j?:-o case gives

an indication of the type of result expected but it is not

60.

considered worth making a deteiled calculation for such a simple

model as a square well model,

In the ja = O case the differential cross section is
So(c,q ) which in con‘rast to PO
peaked in the forward and backward direction®, (SO(C’? ) is
an even function of 1 .) If the well radius is taken.to be
the Compton wave length on the meson then ¢ = /E,R varies
from O +to approximately 3 at the meson emission threshold.

As ¢ increases the peaking of So(c,v)) increases, similar

behaviour being found for SV\(c,r}) for other values of Vi .,

D i B e e N T T i S T

*See appendix.

(cos &) is not constant but



Thus inecreasing energy increases the forward and backward

peaking in each partial wave separately.

61.



Chapter 6. 62,

SINGULARITIES AND THRESHOLDS

This chapter will be a general discussion of the nature of the
solution, \J/ (x) , of the field equations, found in Chapter L with
particular reference to the influence of ths singularities of

1/F(k2) on the results.

81 Poles of 1/F(k?)

The basic part of the solutiou,“+/‘(x) , inside the potential

-imp Sinkyr

well is a term like e where )(12 = E2 - k12 and

)< 2

1

k1 so that inside the well the nucleon behaves like a particle of

rest mass X, . This value X, is not equal to a, a fact whioh

is the pole of 1/F(k2) . Thus it is a plane wave of momentum

shows that the effective well depth is altered by the presence of
self energy processes involving one meson and suggests that the
original model represcunting all self energy interactions by a
potential well was a good one.

The basic plane wave form of the solution inside the well is
to be expected, indicating that poles ofﬁjF(kz) at k2 = K12 for
X1 real are essential to a reasonable theory. This being so, the
assertion made in Chapter 2 that g' 4is pure imaginary, thus allow-
ing the Lagrangian to be Hermitian and have a Euclidean metric space
time interval between the nucleon and emitted meson, is borne out,
This is because 1/F(k2) has no real poles if g' is not pure
imaginary.

The optical mode1_§uggests that a complex pole of 1/F(k2)

could be interpreted to give a plane wave with complex momentum
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representing inelastic scattering or emission of mesons. This
representation of inelastic scattering, however, is not realistic
for a model which is to hold for all energies; such a complex pole
would predict inelastic processes at all energies, an unrealistic
situation as inelastic processes will be impossible below their
energy threshold. The model of this thesis does not represent
inelastic processes in this way but by the presence of a cut in the
complex (k| plane of the function 1/F(k2) . This will now be

discussed.

S2  Branch Points and Cuts of 1/F(k%) .

Apart from the part of the solution representing a plane wave
inside the well there is term which is very small below the energy
threshold for meson emission but becomes significant above the
threshold and increases with energy increase. This term, then, is
easily interpreted to represent the inelastic scattering processes.

It is due to a cut in the camplex Lg‘ plane of the function 1/F(k2)

from LE\ =y/é2-(a f/pk)z to iod ., For ease of evaluation of
the integral around the cut it is drawn along the imaginary axis and
real axis if necessary, It is the integral along the part of the
cut on the real axis which is significant and this exists only if
E)a +//%/. Thus the presence of a square root branch point at

k? ="sqpare of threshold energy“and infinity is responsible for the
prediction of inelastic scattering.

Apart from the poles and branch points mentioned, other singular-
ities of 1/?(k2) would be difficult to interpret so that it appears
that a function like the 1/?(k2) produced by the present model in
its singularity is of the only suitable type for a model which is to

predict interactions involving one meson,



§3 Thresholds and Anomalous Thresholds e
It is well recognised that poles of the transition amplitude
between one state of particles to another is associated with the
existence of stable particles if they are on the physical sheet and
it is conjectured that they are associated with unstable particles
if they are on other sheets. The poles on unphysical sheets may
migrate onto the physical sheet as parameters of the theory vary
and to do this they must "come up" through a cut on the physical
sheet. Thus the existence of unstable particles and hence of
Inelastic scattering may be expected to be associated with cuts of
the physical sheet of the transition amplitude., The situation where
two particles interact producing two other particles has been discussed
in detail by Blanckenbecher et al, and by Mandelstam, while more general
discussions have been given by Polkinghorne and Landshoff.
In the present model the existence of stable particles of effective
rest mass }( 1 is demonstrated by the presence of a pole at )( = X 1
in the complex ){ plane of 1/F(k2) , and the existence of a threshold
causing the combination of nucleon plus meson to be unstable.,is demon-
strated by the presence of a branch point at (a t/pk)z and a cut
from this point to i00. The work of Mandelstam is particularly
interesting here in view of the fact that an expression derived by him
for the imaginary part of the transition amplitude is similar in nature

to part of F(kz) . That is, it is of the form

/& log {(B +JRA) / (B -/I)} ceee 5t

where the branches of the log are taken as for F(kz) in this work.*

*3ee appendix for destailed nature of F(kz) .
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The properties of F(kz) for which this expression is

responsible may be Interpreted physically in terms of the meson
emi~sion threshold znd an anomalous threshold.
Consider F(k2) for k real and such that
ayL<k\/a+/(A;
then the expression
iR 2 2 27—
V/ix - (a 7u) % ik - (= t/A) %;: A

is real and the arginent of the log in 5,1 is real. At first sight

5.1 may be expected to have square root branch points at the zeros
of A; thatisat k= a i/u . This however is not the case

because 5,1 1is single valued if the prineipal log function is taken,

|- 10e {6 - /D5 + VD] = VEree {8 +/D) / 2 /DY |
However, in F(kz) the log function takes prineipal values only for
kzdf a2 f/bbz « Therefore, at the zero of A, k= a = M the

log is a principal function and F(kz) has no branch point. At the

zero of A, k= a t/A,, howsver, the log is not a principal funotion
and F(kz) has a term equal to 2 i\/{kz -(a +pm )22 {\kz-(ar//‘)zg .
This term has a branch point at k = a t/LA.SO that F(k?) has a
branch po’nt there but not at k= a t/A/y.

The point 2 = & j/A? is an anomalous threshold. As k moves
along the real line from a :}LkAtowards a t/bL4, if it is such that
k2 < a2 t/ULZ the functional form of F(kz) suggests that it has no
branch boints. This corresponds to the physical idea that when the
energy of a nucleon is less than \/QE-;::? the nucleon is not recognis-
able as a composite nucleon plus meson. If k is such that

ST P2 2 the functional form of F(kz) makes it obvious that

there is a branch point at k= a t/AA~corresponding to the physical
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. 2 2
idea that when the energy of a nucleon is greater than ‘/{a. +/U\

it is recognised as a stable combination of nucleon plus meson. Then
E> a + the combination becomes unstable and the nucleon may emit

a meson.

84 Extension to a Many Meson Theory
By anology with the present model it may be expected that in a model

where many mesons were able to be emitted by a nucleon an equation like

Vo) o) = T (k)
may arise where G(kz) has twe poles between k = a :/uk and square
root branch points at k = a+»r1/4A, n= 12, «see o+ In this
case the cuts on the complex k plane would presumably Jjoin these points
in pairs and the effect on the wave function inside the well would be

to introduce an integral with respect to || around a cut from the

origin to \éz - (a +/u»)2 on the real line when energy reached the

threshold for one meson emission, to change the range to \/E2 - (a + ;M)Z

to \/Ez - (a W)z when energy reached the threshold for two meson
emission, etcs It is possible that such a model would produce cross

section curves of the right kind through these thresholds,



67.
APPENDIX

81 Notation and some Mathematical Results

Throughout this thesis integrations will be over the whole of
the appropriate space unless limits are present. The space of
integration will be indicated by the varisbles of integration.

The symbols Xx, ¥, k,,e)m, n, and p denote four vectors, and
k2 = kh_2 - 52 where k represents the space components of the four
vector k, The symbols X%, ¥, K, ﬁ, m, n, and p denote three
vectors.

Mathematical results which will be used later in the appendix

are as follows:

@ 3 f1 fﬁ-o(. ; { ) } \
a b = 2 do‘ — EY-1
D1D2D3 0 0 % Ex D1 +%D2 + (1 o= %)D;‘

an = o,
(v) j(nz - 2y f(_@(nhz 2 - a2y a0,

dn

= 5 iT/
a (52 = A2)5/2
iy (-1
l;.é- --'nAo
1 1
£ 2

1
oli
1og(z-04i)-fo dol 1+&2_di}

d-
log (z - OLi) -1 - “;i log (o€ 2 - O(i)

1
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O(l log (z -<><) + OC"‘—log ("°4 )

log (z-O(i) -1 -

X o &
(1 =) 10g (2 -04) + 7= log (-0) -1 . .eiAl3

§2 The substitution of w, s Wa' , etc. into their equations. (P.20 of

Chapter 2).

Only a sketch will be given of the substitutions as the detall adds
nothing to the clarity of the work and the substitutions are straight-
forward.,

- 2 2 2

Noting that N - 2iE VL; = (=g - i) + T
s N=[J+12 -5, 2w -2 -V, mar? =" -V,

W; and wa may be substituted into their equations. If they are to

be solutions then by taking the regular parts of the equation the following

relation must hold between the of s.
) e:LTlx

(Ze T segn x) + e )(0( *X , sE0 X i(E + e,l)xh_ g_rl,l;

A similar relation is obtained from the equatiam for w, it is the

same with "‘Xl+ for Xl,. .

The singular parts of the two equations for W, and Wa,‘ each give

separate relations,

i - Y4 "
2ES X , + EX ’)’A’Y.\@ = 0
and
(T-V)Q(T + (B +e1)c(2 = 0 .
Similar substitutions in equationsfor -QZ:L : _Q_'a“ s J)_a y-

and _ﬂ_ . yield

L
(x -*)(e + FT,gzzx J-.’.,..e1+l;.E

J(Ze T sgn X, + e, )(A +Azsgl'1x)eIQ(y_x1) dq

_&
X
+ 26,7 sen x) )(ey + oy 580 %)

byt by = 0,
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and

(7-v) Ay + (E + e1) A, + (8-v) Ay = 0 R
There is also a relation which comes from the regular coefficients
of ot *i in either the equation for S a+ or L a— .
2
(28BS sen x, = q, S sen X, + g /2)(.1\.3 + 4, sgn xz'_)
= jqiE(A + A' sgn xa) —qﬂ;y.f?(B + B! sgn Xh)g SIQ(y - x1) dq

#8806y -9 - % senx, (Bo( =7,V T8) - sen %, (Bc-¥YSTQ)
This relation serves only to give values for A3 and A4 B

Similar relations can clearly be found from the equations for
w etc, but these will turn out to be not of much interest as they
serve only to find unwanted quantities. As is indicated in Chapter 2
the equations are consistent and give differential equations in the

space variables for the unknown quantities.

§3 Mass Renormalisation
From equation 4.5
{Dx + a2<;>§w<x> = -gﬁf § W (xE(x - ') G(x-x)
-\{J(x)H(x - x")e(x - x') ax'+ RY(x) .
The Fourier trans”:rm of the R.H.S. is gé* (I1 - 12) + R'\?(k)

where

H
1

1 f(\‘/ (xE(x - x') &{x - x') eXF ax ax'
!Hg‘?(ﬂﬂ H(n) E(p)e'irfl:' g-ine(x=x') _-ip.(x-x')

| e " ax ax' ém an dp
gﬁﬁ\*‘lf (m) F(n) E(p)eix'(k’P’n) Jix'(pn-m)
dx dx' dm dn 4
j((\—p (n) H(n) €k = n) oix!e(k-m) Zx' .-
5{‘7(1{) Hn) € (k ~n) an ,

n

i

H
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2 (H (f\? (m)(n) Gy(p) gi¥-(kp-mm) ix'o(pn) g qyrananap
{9 0 Fm) Tym) a0

and

-~
1

*. The Fourier transform of {_Ux + az(x)g V(%)
= y(k) I_ﬁﬁ—jﬂ(n)z G(k-n) -G (—n)} dn + R_’
Now when a = m (D+m YW (x) =0 and Y (x) = e- .

where ,@ = n’ (m = nucleon mass)

'.'\‘T(k) =é\(kt,a) when a = m .
0 = [g‘%i(ﬁ(n) {Eo(k -n) - EO(-n)§ dn + R] 8(1: T4y,
0 = gs,: H(n) Eo(ﬁ- n) - =(?o(-n) dn + R (x%* )
R =

; g;f.jﬁ(n) {EO(,Q- o - EO(—n)} %
and the Fourier transform cf; {!:L( + az(_x_)g Y (x)
-V ) [g@ijﬁ(n){-é(k-n) -Tl-w) ]

., %{Elx + az(z)é WY(x) = EK(x - x") W(x') axt )
where (k) = g%zj ﬁ(n){ﬁ(k -n) - EO(,Q— n)} in .

A check must be made that the quantity subtracted from the R.H.S.

of 4.4 is a function of m multiplied by’\y (x) . The quantity

subtracted is -g%z'\i)(x) I,

rhere I = v(H(x - x')GO(x - x') dx! +JH(n {G— (,é - O(-n} dn
- [ E@) B(m) @+ [H0) T4 0) - GO(-n)} an
_ j f(n) By(L ) an

which is a function of m alone,
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Evaluation of F(k2)

From equation 4,18

MK2) = -x% 4 a2 - K(x)
I PP o
g
where

I = Tn) {E(k - ) = Ty(h- n)} an
=f 1 { 1 ) 1
/a'g -y g° « (k - n)2 n - (L~ n)2:g

=f 2f.n - a° + k° - 2k.n an
DLA? - nz}[az - (k - n)2:‘[m2 - (,ﬂ— n)2J
using A.1

- k) + -a2
i zjodxjo dd iL znw.if kg dn (%n

;Ek.n + (1 -M-Q){m2 - (,Z- n)gl}5

1 1-
* [aa(,f k)+k-a]dn
zjo Gt fo % [_ Q Qk 2§knT2,én(1-c<—§)—n2J3

Put n! =n-§k-ﬁ(1-°( -@)

Then
) __£n £ Ok 4 M1-o-8) ] (l-k)+k gt an

1:-2_[) a] dQ [n.z {leﬁ e G)} Qk o(/UZ:P

This integrand divides into an even and an odd part, the odd part

giving zero.
_o ! = (2l l6x s L1 ~x-g)sPa?
= 2'(0 det fo d%(ig_ EQIHJU—G‘ -¢ )gz_d}}z_%azﬁk kaf

QLZ(,Q-IC).[QIC +£(1-o¢—§)] + %2 - a2
{Qlﬂi(‘l-d-@)}g +o(/A2 +%a2 - @kz



- 1-
_ i 1do(10g’\{ k+f(4 ~«- )E +of +3 a° = k2] B
2 o N ¢ R % 0
9 .
i'/‘ 0(2 k2 -k 4+ o =xa +a.2
=5 dod log 55 >
0 X “m” - 2¢m +o(/u +m =
S AU P R N S
7
=-3-'é— j doe 1og> 1112 m2 m2 m2 m2 .
0 2 2
L (x=1)F e M2 _
2
m
2 2 2 2
1 r l__o((l’:..+§.___.,_§'_
& 2 2 2 2 2
.'.F(k2)=-k2 a2 - iT ggf_ dex log m m m - m m
(ot = 1)% 4 ot —
m

A dimensional analysis of the Lagrangian gives the dimensions of

e
g%— + Using units where ¢ =‘F\ = 1 mass is dimensionally % .

Let the dimensions of ’\,{/e s ;5 8, and g' be ’??1 y Ty G,

and G' respectively. Since the dimensions of all terms of the

Lagrangian must be the same

w12 v o - G-W1W2ML" = 6! W2 wt

2
where mass is of dimension M = % B
‘. W, = oW -%
° 1 2 M2
. 2 _ ; 2 .2
e G2W2 = G W2 M .
2
o.o E’_ = M2 .
G_!
e -gii has dimensions N2 .
Write - 1 .2 2
g%i = Q m i—rr s

then % is a dimensionless constant.



; K 1:3,,_2-&‘3)&3
2 2 2 2 2
F(kz) = -k2+ a2- 1 mzf dol log 5 L g n
R 0 (- 1) s 25
2
m
k
Put r = = 3 :-‘{';T » Z S E 3
then

.1
2 2 2 2 2 2
( dxXlog {M 2 _OC(_Z 2+ L ;) £ L .
0 (e =1)" 4 s

Put 1
2 2 2 2 2
1 I( Boa log{{x z- - (2" + 1 -s)g

0 (o(-1)2+0(52
= I1 o I2
where 1
I, =4( d o log Loczzz-o((zz-%rz-sz)-prz‘l
0 .
and 1 C 5 5
I, = dol log )\(0(- 1) + Xs .
O .
1 1
12=J d ol log (oc-oc1) +§ d.o(log(o(-o(_z)
0 0
where
2 b
= 1 S % C -
0(1 » Ky = 1 5 i \/s o .
USjng Ac3
I2 = (1 '0(1) log (1 -°<1) +°(1 log (-0(1)
+ (1 =0t ,) log (1 =o(,) + oL, Log (=) =2
= élog = (1 --5-2) log 4 + 4 - -ﬁlog (1—0(2)(-“1)-2
2 2 VT TR,
s - oL
52 : 2 sl" log ] -2
= 5 log s + iy s - 1 -a,
since oy o0, = 1 and (1 - 0(1)(1 -042) a 82
2 s
2 b e AR
= & 2 B 2 Lo
I, =% logs + iV s 21_log 3 \/2 T 2
-2-+i s -
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s
2 L §£.
2
s2
=s log s 2 sz-—é-ltarcta.n I -2
= g 8 + T S .
1
I, =J dalog{x zz—o((zz+r -s)+r2§
0
1 1
=S d ol (o(z-o(1)+j ao<(o<z-oc2)
0] 0]
where
2 r° 82 4+ 1 - 2 ) 2
X4y = 3+% "5 "~ 3 {z—(r+s)§{z -(r-s)z ,
2
X 4 &Ko = r »
and
(Z = 0(1)(2 - 0(2) = 52 . eseows An){.a
From A.3

X 2
z

X
I, = 1 - -05;1) log (z -0(1) + -;'1 log ('051) + (1 - )log (Z‘°¢2)_.

+ &2 105 () -2 .

From A.4 (z - 0(1) and (z - 0(2) have equal and opposite arguments.,

“oarg (2 -oy) +arg (2 - X,) = arg (2 - )z - X,)

= 0
e (= o 4= o)
o 2 S2 - o - X
I1 = log 52 -2 + (‘5— +g—z= —E) log ‘(‘ET”;((:)(Z _02<2) + iA1(z)
2 (- )z = X,)
4 2 2 2 2 1 2
+Z/§:z -(r+s)§{z -(r-s)i)_log('o(g)(z‘dﬂ
+iA2(z)J
where

8,(z) = erg (-¢,) + arg (- X)) - arg(z - X)) - arg(z - &C,)
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- g X1 X2
gt(z =)z = o(5)

and
Ay(z) = arg (- ,) + arg (z = () - arg (- X)) - arg (2 - X,)
(- Nz = )

- ere ‘(_042)(2 -0(1) $

Consider, first, A1(z) 5

Sincearg(o(1o<2)=arg (z-0(1)(.z-o(2) = 0 ,

L4 X
= .(?"°<1)(Z -0(2)

and
- - - oL -
= O .
Now consider Az(z) , takingr -~ s¢z¢(r + 5 .
(1) 1r 22 <re - 52

(r2-52)-zl+ >0

(rz—sz-zz)(r2-32+zz)> 0 .

2 I‘2 S2 Z I‘2 52
] - I - e L) N
'°(2 2+2z)(2 Zz+22)/o .

.’. the real parts of (= -0(1) and ( - 0(1) have the same sign.

Also the imaginary parts of (z -o(,l) and (= 041)“ are equal..

-_g < arg (-0(1)-arg (z—9<1)< g .
similarly - £ < ar (=) - arg (z - X)) < 1
o= T <arg (- ,) = arg (- X,) + arg (z =o(,)

-arg (z -X,) < T,
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(ii) 1If, instead, 22> r2 = 5% then the real parts of (z -0(1)
and (- 0(1) have opposite signs but the imaginary parts are still

equal.

(ii)a. If 22< 2 4 82
then 5 P
2 2
= 3 2 2
Ben + 2(r° +8°) .

»

(ﬁﬁ)( 2§)<{¢(—L—_—ﬁxﬁf——fs)

r.
2z

.". the product of the real parts of -0(1 and z - 0{2 is less than

the square of their common imaginary part.

In figure
CoOw 0D < ac? .
*. C0% + 0%+ 200, o0 < 0% + AC® + ODZ 4 BD® .
? < 0% + BO® .
e < T,
2
.1 T
-3 (arg(-o(1).-arg(z-o(1)< 5 .
.". In this case AZ(Z) = 0 .

(ii)b. If 22_> r° + s° +then the argument of (ii)a holds with

the inequality signs reversed

o . arg ('0(1) - arg (z-0(1) is either>_-g-r'or <= -g :



Figure 8.

Figure 9.
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i
0

R

.". Since arg (-0(1) =
and arg (z -oé1) =
AZ(Z) oo,

{

1

:
o]

)
R

Hence I = I’I - 12
2 r2 52 r
= (2-s)logs+(z+=;=-==z-)log-;
——— 2
L - 5.
-2 SZ—ST;arctan 2V1 L

the O being applicable if 2z is real so that 22 < r2 + 52 and one
of fo being applicable if 2z is real and z2> r2 + 52 .

In order to determine which of the < signs is physically applicable
to this situation it is necessary to go back to the original integral and
consider what happens to the argument of the logarithm in the course of
integration. This is determined by Feymman's rule of putting a small

negative imaginary part on the masses 1o ensure a result corresponding to

causal physical processes.

.1
o 2 i? -o((k2 + 82 -/42) + 32‘2
I= del 1log 55 5 ) .
0 (¢ =-1)"m" + oA
The denominator of the integrand may be neglected from this consideration

as 1t is positive definite and its integral is well defined. Consider

1 -
f do¢ log (o(_k-0(1)(°(k-0(2)]

0

—
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where replacing a by a =i and A By 4 -i§

) 2
k at _ME 223l 2448
oy 0L, =5+ 5 -5 ok v T ok

. |
+ -12-\/(1: _ (s +1/{1Al N 2:.(a+/‘/k)l({i+ 'é))

\2 . N o -
(k_Larl-cg_-L”.ng_-A%.Lﬁ_&)

taking the + sign for 0&(1

Now

JETE = VE (B VB f Vs s

H

IR SOV oo rrey

2k

2ai € 2AA3 Y
= t L e L
o<1,o(2 ._0(1 ,o( 51 + o1 +

S

A e el g

Y =21 (2 +u)(g+ §) + 21 (a ~m)E-§)
B0 (AL 9 4 (2= 8)

Al

I (a2+/8) - -blfz (a2 -/AZ)(E’- £ -/"‘8)

k /V\'z-az
+

. _ ' ' aig e, +
2 2
+=——S-1t ) 4 B e }

g —tl
-\/.M-— —kl{f\zv-
Now k2-a2+/U\2
-1+\/=r\:~ > 0
and
2 2 2
1+k—a+/A > 0
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but 5
- - k - a8~ + AA < g
V. AAAC
and
2 2 2
PR W < O
Y A~
e O<1 has a positive imaginary part while 042 has a negative
imaginary part, Therefore &X , aend o , are placed as in figure § ..

Thus the imaginary part of I is -7//(0(1 - 0(2)

- “mv la%a %

and over the whole complex plane
F(kz) = F(zz)

- 2 2
mZL-zz-pr- %\(2-3)10gs+(z+—;--—)log§
f & \/
_l:

+=21; z'2-(r'+s)2 zz-(r-—s)2

2 2 2 \// 2 2 2 2
log Zm X+ 8+ z_=(r-5) z°«(r+3s) -ZWiQE

zz--r2+32-/z2—(r-.s)2 22+(r+s)2 .

eeoe A,5,
where © 1is zero on the left of a line through 2z~ =" ¢ 5~ and
is unity on the right of this line.

The function F(kz) has some interesting properties which are

discussed in greater detail in Chapter &, It cannot be written as a
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single expression if the principal value is to be taken for the
logarithm but must be written as two functions which join smoothly
along a line through the point z2 = r2 + sz. The function is clearly
analytic everywhere except possibly for the last term in .1k, At
first sight this would appear to have branch points at the zeros of
the square roots; i.e. at 5 = (r + 5)2 B 7 = (r - s)2 .

This, however, is not always the case for

B - A B+ /A
-\/Klog s -r»/zlog
B 4avfz B -VA

H

and unless © is unity no branch points are present.

If .z is to the left of a line through the point 22 . r2 + 52
the function is written so that no branch points are involved. Thus,
the point . (r - 3)2 is not a branch point of F(zz). On the
other hand the point 22 = (r + s)2 is to the right of the point ‘
2t =B & St add CHEFe i 3 term, = 2114 \/§52 -(r + 552§£?2 -(r—s)z}%z ,
involved which means that z> = (r + s)2 is a branch point of F(zz) i

The point z2 = r2 + 52 has some special properties and physically

these are interpreted to mean that r2 + 52 is the square of the

anomolous threshold energy., This is discussed more fully in Chapter L.
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85 The Orthogonal Spheroidal Coordinate System

Tn this section results will be derived which are used in 83
of Chapter 5. Some of the results have been set out by Flammer32
but are included here for completeness.

The spheroidal coordinate system used is related to the

rectangular cartesian coordinates by

x= (@2) [0 - DE2 )] s 8,

y= @) [t - PE2e] T wn g,
and

2 = (8/2) {7

with =1 ¢ ¥ g1, 0<{ <00, and 0Kf < 270

The surfaces of constant 3’ are oblate spheroids given by

2 2
(@)1 + £9) " (@) E?

The eccentricity of this spheroid is given by
e = 1/\.’1 + z 2

which is independent of & . Thus in any oblate spheroidal coordinate

U

system the eccentricity of a surface (g . is determined by go .

0]

If the wave equation

2
(V2 +x)Y = 0
is solved using this coordinate system separation of variables yields
two equations which are analogous to Legendre's equation and Bessel's

equation.
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These are

& L= g s tem] + [y« il otom -

g L0 -1 gk sem] + LA )+ o 5 (em) = o
and

__g_[ 2 a ]_[,\ ) 242] ~

d§ (% +1)E’§'Ré(°;g) ] ((C) c g_,Rg(C,g)—o 2
where

c = ki/2

and )\d(C) is a separation constant.
The solutions of these are the spheroidal angle and radial functions
respectively. The angle function equation has a cylindrically
symmetrical solution, analogous to the ordinary Legendre function,
which is written §7(0,17) . The radial function equation has two

independent solutions which can be written

1
icEP
i e1¢ ST S{(c,q) am

-1

Re(cyg)

and -1 ( ‘g )
w, (e, 8)= | 2 §lem)
- a(n-1§)

It is easily checked that the first is a solution and the second may

32

dv].

be showm to be a solution by using the theorem on p.4l4 of Flammer

From the angle function equation it can be showm that
"1
' : 2 2 2_2
L #7580 (A0 - 000 - o

Thus if ¢ = ¢

’
AL an s, (c]_,n) S, (c,'r]) = 0

and the normalisation of the angle functions is chosen so that
1

. in (SZ (C’T])] ° = 1 .
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This orthonormal property of the angle functions doecs not hold

exactly if ¢ # g but it does hold spproximately. The

above squation gives

1 gl 12
d 3 i S ) e
40 S () 8 (M) = S
1

2 .
|, 5 (0,18, (e,m) avy

Since the angle functions achieve 2 sharp maximum at ')’]2 = 1
the R. H. 8. 1is approximately equal to
2

1
2

Since o - ¢ £ A (q) -;’\n(c) if ¢ # q

1

1 S, (M) s (e,m)dm == o .

This result has been checked by numerical integration and found
to be a very good approximation. The fact that the angle functions
achieve a sharp maximum at 7‘]2 = 1 may be checked by referring to

the tables in Flammerjz.

Asymptotically R(c,g) and R*(c, §) are like cos c‘tL; and
e:.ng /iqg . Thus R(c,g ) contains an ingoing part and an
outroing part of equ~l amplitude while R*(c,¥) is purely an
outgoing wave, R(c,g) is finite at g = O andgy and is
thus the equivalent of a plane wave while R*(c,g) is asymtotically
like eikr/r since € - r as § - 0Q and is thus like an

outgoing spherical wave.
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The last result used in Chapter 5 i1s the expansion of the
plane wave
-
; o .
e1kz cos & _ elcg“q cos &

in radial and angle functions. The result is derived on p.48

32

of Flammer and states that

(e§ 1 cos & _ 2}“_12 g (c,q)Rn(c,EJ )Sé,(c,cos 8)

¢
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§6 Fortran Programmes
F(kz) may be investigated by evaluating it on a computer.
In the course of the work for this thesis such an evaluatiom
was carried out on a 1620 computer using the following Fortran
pr gramme - The programmes given are for
- @ ; F(zz)/m2 + 22 - r?']

[ —

from which F(zz) is easily found. See equation A.5.

Programme for F(zz) for real values of 2z between r ~s and r + s .,
1 FORMAT(F8.L,1XF8.4,1XF8,L, 1XF8.L, 1XF8 .4, 1XF8.4)
2 FORMAT(E12.6,1XE12.6,1XE12.6)
3 ACCEPT,R,S,ZMINZ,ZINTZ,RINT ,RM X
PRINTY,R,S, ZMINZ , ZINTZ, RINT , RMAX
12 Z=R-S
PUNCH1,R, S
GOTO05
L Z=7+ZINTZ
5 SS=8%8
RR=R*R
ZZ=0%7,
SQT=SQRTF(SS-(8s*83)/4.)
T=2,%*3QT
A=(2,-38)*L0OGF(S)+{Z+RR/Z~SS/Z Y *LOGF(R/S ) =2 . *SQT* ATLNF(T/SS )
=7Z-RR~-SS
PI=3.1415927

SCRT=SQRTF( ( (R+8)*(R+S)-22)*(22-(R-3)*(R-3)))



17(Z%-RR-88)7,7,8
7 REB=1./2)*SCRT* AT NF( ( SCRT/(RR+SS~7Z)))
GOT09
8 REB=(1,/2)*SCRT* (T NF((SCRT/(RR+5S8-22) ) )+PI)
9 RIB=C.
REFZ=A+REB
RIFZ=RIB
PUNCH2, Z ,REFZ ,RIFZ
I7(2-{R+8))L, 6,6
6 IF(R-RMAX)10,44,11
10 R=R+RINT
G0TO012

11 STOP

- [.2Y o
A similar programne may be used to evaluate F(z ) for real

values of 2z above R + S .
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