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SUMMARY

A mathematical approach to the problem of checking
and adjusting a mathematical model of a physical device is
presented, A measure of the adequacy of such a model is
proposed and a detailed study is made of the case where both
the gsystem and model are linear transformations, while the
inputs are realisations of stationary random processes with
rational spectra., The difference between the weighting
function of the system and that of the model is then the
error in the weighting function of the model. If the records
were error free and of unlimited length this difference could
be found as the solution of a Wiener-Hopf integral equation.
In the case of an input whose spectrum is sufficiently flat
and of unit power density, the required solution may be found
in terms of the cross-correlation function of the input and
the difference between the outputs of the system and model,
The particular inputs considered may all be derived by
linearly transforming a realisation of a process having a
flat spectrum; this problem may therefore be reduced to
the determination of a cross-correlation function,

In practice the records are of limited length; the
problem may then be reduced to one of estimating the above
cross~correlation from a finite length of data. A formula
is obtained for the variation of the expected adequacy of the

corrected model with the length of data available for model
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correction, The weighting function of the model should, in
general, only be adjusted for an interval of its argument
which is much smaller than the length of data available for
model correction, A method for determining this interval is
described and a simple formula, which will be a useful guide
in most cases, 1s derived.

The effect of errors in the records is also investig-
ated, It is shown thatjproviding certain statistical inform-
ation concerning the errors is available, compensation for
these errors may be made, The effect of recording errors on
the expected adequacy of the corrected model then depends on
the length of data available according to expressions derived
in the text.

If the system has several inputs which are not cross—
correlated, the problem may be reduced to the case of a single
input with errors in the recordings. If the inputs are corr~
elated the cross—correlation technique may be used iteratively
to improve the adequacy of the corrected model, but the model
weighting functions will not necessarily converge to the
system weighting functions,

Experimental evidence is produced to support the
theoretical work and extensions of the work to other types

of system and input are discussed in the final chapter.
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CHAPTER 1.

INTRODUCT ION

The greatly increased effort, during the last fif-
teen years, directed towards the design and development of
physical devices of considerable complexity, for example
guided weapons; has provoked a correspondingly increased
interest in the application of mathematics to the study of
such devices, The term “systems analysis" has been widely
used to describe these studies and there is now a vast 1lit-
erature in this field, [1].

An important aspect of systems analysis is the
description of a physical device by means of a mathematical
model, Such a model can be used to obtain information
about the behaviour of the physical device it represents,
In some cases this information is only qualitative; hut a
prime requirement of each model; to be considered in this
thesis, is that it be adequate, in the sense that it can be
used to obtain useful, quantitative information concerning
the performance of the physical device it represents,
Before such a model may be used with confidence it must be
checked and, if necessary, adjusted to ensure that it is
adequatead The purpose of the work described in this thesis
is to study the application of correlation techniques to the
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checking and adjusting of a mathematical models
Each physical device to be considered may be char-
acterized by mathematical transformations relating the input
and output of each of its components, These transforma-
tions will be called the "system transformations" or simply
the 'system"* , If a device has only one or two components
and the system transformations are elementary the system is
called a "simple system", An example of a simple system
is the relation between the input and output voltages of
the electrical circuit illustrated in fig.i. If, on the
other hand, the system transformations are numerous and
complicated the system is cdlled a complex system,
Examples of complex systems are those which characterize
guided weapons, chemical and other industrial plants, bus-
iness undertakings, the economy of a country, modern air-
craft, automatic computers, etce
Bloek diagrams as shown in fig.2 are often of great
assistance in the study of complex systems, In the case of
a gulded weapon [2] the blocks of the diagram may represent:-
input - information concerning the present
position of the target;
comparison - of the weapon and target position to
determine the error in the weapon's
present course; any such error will

result in a demand for control;

% The term "system" is currently used both for the device
and the transformations which characterize the device,
In this thesis its use will be restricted to the latter,
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control - of the actuators which move the con-

trol surfaces;

execution - movement of the control surfaces;

feedback - information concerning the present
position of the weapon;

output - movement of the weapon.

In general, each block may be subdivided and in the case of
a complex system the number of individual blocks will Dbe
large, perhaps as many as one hundred or more, The
transformations characterizing individusl blocks will be
called components of the system; each component will have
one or more inputs and outputs which are functions of time.
Recently, there have appeared a number of papers
[2-5] describing the evaluation of complex systems using
mathematical models; an earlier paper, Siefert [6], des~-
cribed the role of computing machines in the analysis of
such systems, Work of this nature was rarely undertaken
before 1950, Before that time mathematical models of com~
plex systems were, with one notable exception mentioned be-
low, greatly simplified models of the system they purported
to represent, A1l but the highly relevant was discarded
in the interests of writing a model which could be manipu-
lated using the mathematical tools avallable, Non-limear
equations were linearised, friction was assumed either
viscous or non existent, backlash was ignored and small
angle approximations were freely used. There were two
major difficulties associated with the use of more com-

plicated models:
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(i) the enormous computing effort required to obtain
useful information from the model was seldom avail-
ableg
(ii) even should one or two numerical solutions of a set
of complicated equations and inequalities be found,
these solutions would be virtually useless, unless
they could be given some, well understood, physical
significance.
The advent of the large automatic computer has, in most
cases, disposed of the first difficulty; while the work
reported by Lawrence and others [2-5], shows that the
second is not always valid,

There is, however, one field, viz. accounting, in
which these twe difficulties were faced and overcome be-
fore the advent of the large automatic computer, The
extremely detailed system of boek-keeping has been build
up because no simple mathematical model of a business
would suffices To provide against fraud, and pessibly
for other valid reasons, complicated models of business
undertakings are essential., Fast automatic computation
considerably increases the usefulness and ease of manipus-
lation of such models, so it is not surprising that one of
the first and probably the most successful application of
automatic computers has been to business accounting. On
the other hand, in those activities where a mathematical
model is prized mainly for its elegance and simplicity,

there is sometimes considerable reluctance to take full
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advantage of the automatic computer in order to study the

details missing from a simple model,

1.1 _The development and use of 2 mathematical model

Before proceeding it will be useful to distinguish
four types of component and their corresponding inputs and
outputs.

(i) A component of a physical device, €.Ze., an actuator,
an electrical network or a bulk store. The corr-
esponding inputs and outputs may be shaft rotations,
voltages or goods.

(ii) A component of a system; a mathematical transforma-
tion relating functions of time which are the input
and output of the system component.,

(iii) A component of a mathematical model; a mathematical
transformation relating functions of time which are
the input and output of the model component,

(iv) A component of a computer; =a computing unit; e<8e
a D.C, amplifier set up as an integrator, or a
storage unit of a digital computer, with their
electrical or other inputs and outputs.

This thesis is not concerned with physical components as

such, but in their characterization as a system, It will

be sssumed that there is a one to one correspondence be-
tween the inputs and outputs of a physical compoment and
those of its charascterization as a system. If the volt-
ages or shaft rotations, etc., which are the inputs and

outputs of a physical component are recorded, then, assuming
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no recording errors, the functions of time so represented
will be the inputs and outputs of the corresponding system
component,

The problem discussed by Lawrence and others [2-5]
is essentially one of describing, or evaluating an existing
physical device, Most problems in physics are of this
type as are many problems in other fields [1], such as
engineering, economics, accountancy or psychologye. Four
stages in this evaluation process have been recognised and
described elsewhere, [1], [3]; only those points which are
important to this thesis are mentioned below.,

1p1¢1 _ The formulation of a mathematical model

In the formulation of a mathematical model some system
compcnents may be ignored while others are combined and mod-
ified. In so doing it is possible to destroy the physical
picture, in the sense that very few, if any, of the inputs
and outputs of a model component represent inputs and out—
puts of a system component, However it is essential for
the checking procedure described below that, in a nunber
of cases, the inputs and outputs of a model component do
represent inputs and outputs of a system component, and
that recordings of the corresponding physical inputs and
outputs will be available.

It will be assumed that the model is sultable for
programming for an automatic computer,

1e1.2  Programming the model for a computer

Analogue computers were used for the work described

by Lewrence and others [2], and Biggs and Cawthorne [5],
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but as shown by Keats [3] they are not necessary for such
work; modern digital machines may in some cases be more
suitable, The essential requirement from the computer is
that records of certain physical inputs may be applied as
inputs to the model as programmed, and records of the corr-
esponding model outputs obtained. The analogue machine and
the digital differential analyser meet this requirement by
using computing components to represent components of the
physical system. However, this is only one way and not
necessarily the best way of meeting the requirement. Fast
digital machines are quite capable of providing the required
inputs and outputs if they are programmed to do so.

1«13 Checking the model

A procedure for checking the model is described by
Biggs [u] and is represented essentially in fig.3. The
input and output of a physical component are recorded while
the device is in operation; the recorded physical input is
then applied to the corresponding model component and its
output is also recorded. The two output records, one from
the physical component and the other from the model compon-
ent, are then compared. The comparator has often been an
engineer and the comparison process has been carried out by
superimposing one output record on the other as illustrated
in fig.h., After studying such a figure and observing the
differences between the two records, a skilled engineer
with a good knowledge and understanding of the system can
often suggest methods for improving the model or, alternatively,

decide that this component of the model is adequate for its
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purpose. Differences between the records are usually
interpreted in terms of gain or phase shift errors in
the model, although time dependent and non-linear effects
may also he detected.

In some cases abnormal inputs to +the physical com-
ponent, such as step functions, may be used to assist the
checking process; very often, however, it is not possible
to interfere with the normal operation of the device, The
work of this thesis applies to those cases where no abnormal
inputs may be used,

Although the recordings of the model ouwbput may be
assumed free from error, there will often be significant
errors in the recordings of the input and output of a
physical component, Records of information telemetred
from a guided weapon, for exsmple, are seldom free from
errors which may be significant,

1e1elt Applications of the model

Many of the uses of a checked mathema tical model of
a complex system are discussed in [2], [3] amd [5] =and
also by Apostel [7]+ In particular, such a model is often
the only practical means for studying the performance of a
physical device under certain conditions which may be of
great interest and importance; experiment under these con-
ditions being virtually impossible, For example, a guided
weapon sortie against enemy aircraft is not an experiment
which may be conducted in peace time; similarly experiments
which interfere with the economy of a nation will seldom be

permitted,
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1.2 Antecedent and related work

Simulation is now well established as a powerful
aid to the study of complex systems, [8], [9]s The com-
prehensive bibliography given by Morgenthaler [8] contains
many examples of the application of simulation to a wide
range of activities, Recent examples include: computer
studies of the economy of India by Holland, [10]; bio-
logical applications discussed by Dallos and Jones [11],
De Land [12], and Watt and Young [13]; simulation of bus-
iness firms such as that described by Bonini [14]. For
many years simulation has played an important part in the
design and development of missiles and this application has
extended naturally to studies of satellites and space
vehicles, [15], [16].

The opportunity for model checking and adjustment
in the manner described in section 1.3 does not arise in
all applications of simulation; for example the physical
device may not yet exist, [15], However the mathematical
model to be used in an evaluation exercise such as that
dascribed by Biggs and Cawthorne [5] must be checked
empirically, and if necessary adjusted, to ensure that it
adequately describes the system which it represents,

The mathematical approach to model checking and
adjustment, described in this thesis, derives from the
work of Wiener [17] on the prediction and filtering of
stationary time series, Many simplifications and extens-

ions of Wiener's theory have appeared. Levinson [17,

appx.C], Bode and Shannon [18] and Darlington [19] have
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presented mathematically simpler versions of the theory;
while Zadeh and Ragazzini [20], Davirs [21] and Shinbrot
[22] have considered its extension tc non stationary prob-
lems., Most of this early work is now available in text
books [23 - 26]. Bendat [27] gives a comprehensive biblio-
graphy of work carried out before 1959, while developments
in prediction theory from 1957 to 1960 are summarised by
Zadeh [28],

Kalman [29], in 1960, presented a new approach to
the prediction and filtering problem applicable to both
stationary and time variant problems. He observed that the
prediction and filtering problem had only been effectively
solved in the case of Gauss-Markov processes; i1i,e. processes
which may be generated by exciting a linear dynamic system
with Gaussian "“white noise"., An exposition of this work
and work carried out with Bucy [30], has been given by
Kalman [31].

A problem which is closely related to the prediction
and filtering problem, is that of approximating a linear sys-
tem using records of the input and output from the system
[24,P.342]", [32 - 3u]. In 1950 Lee [24,P+342], showed that
the weighting function of a linear system with constant para-
meters may be obtained by cross correlating its input and out-
put when it is excited by "white noise"., Modifications of
this technique using specially selected inputs have been

suggested; Anderson and Buland [35] describe the use of

“References to books will include the number of the first
relevant page, if appropriate,
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specially selected samples of "discrete-interval binary
noise" in a problem in adaptive control, Turin [36],

Levin [37] and Lindenlaub and Cooper [3L] have considered
the estimation of the weighting function of a linear sys—
tem in the presence of noise; while Grinten and Krijger
[38] nhave recently described an analogue method for obtain-
ing the step response of a linear filter knowing the auto-
correlation function of its input and the cross correlation
of its input and output,

Adaptive control or self optimization has received
considerable attention during the last decade; work in this
field prior to 1961 is reviewed by Jacobs [39]. Mathemat-
ical foundations for studies in adaptive control and related
fields, based on the theory of dynamic programming, have
been laid down by Bellman and Kalaba [Lo]. One aspect of
adaptive control is the frequent, or continuous, estimate of
a gystem which is slowly changing in a manner difficult or
impossible to predicte. On the basis of such an estimate
the system may be restored to an acceptable form [35] .

The work of Kerr and Surber[hﬁ] on the precision of an
estimate of the impulse response of a linear system based
on short, normal operating records arises from this aspect
of adaptive control,

In the same way as Wiener's approach [17] to. pre-
diction and filtering has suggested methods for estimating
a linear system using input and output records, Mayne [u2]
has shown that Kalman's approach [31] may also form the basis

for estimating the parameters of a linear system, providing
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full knowledge of the state of the system at any instant is
available,

The work discussed above is based mainly on methods
for studying linear systems, Interest in non-linear meth-
ods has increased greatly during the past decade; such
methods are essential when a problem is non-linear and can
not be satisfactorily linearized., Bram and Saaty [43]
give comprehensive bibliographies of work iunvolving non-
linear methods and their application prior to 1963; much
further work has been reported since then [Lh]. However
although some types of non-linear systems will be consider-
ed in this thesis, the methods used are essentially linear;
non-linear methods may be required for further work on model
checking and adjustment,

1,3 Scope of the present work

The process, described in section 1.1.3, relies
heavily on the intelligent use of engineering judgment.
The ultimate aim of the present work is to develop, and
study, a mathematical approach to this problem of checking
and adjusting a model, Such an approach would not only
reduce considerably the reliance on engineering judgment,
but would also provide a basis for answering important
subsidiary questions such as: "How does the adequacy of
the adjusted model depend on the length of the records avall-
able for checking and adjusting the model?"

A useful first step in developing a mathematical
approach is to describe the intuitive approach of the

engineer in a way which can be interpreted mathematically.
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The engineer examines the two output records, one from the
physical component and the other from the model component,
looking for agreement, or lack of agreement, between them,
Good agreement indicates an adegquate model. If the agree-
ment between the two records is, in his opinion, insuff-
jcient to indicate an adeguate model, he will then examine
the recorded input to the physical compoment, looking for
some explanation for the discrepancy between the two output
records. In other words he is looking for correlation
between the input and the difference between the two output
records. This correlation may also be investigated math-
ematically,

This thesis is primarily concerned with presenting
the problem and studying the case of a stationary linear
system; however the extension to non-linear systems will
also be discussed, A mathematical investigation of the
cross correlation mentioned above is carried out in the
case where no abnormal inputs, such as the test signals
used by Buland and Anderson [35], may be applied to the
physical device,

Techniques other than cross correlation might also
be used in the present problem, Lindenlaub and Cooper
[34] have discussed three techniques; viz. cross correlation,
matched filters mentioned by Turin [36], and sampled input
output data discussed by Levin [37]. They have shown that
these three technigues are equivalent to each other and also
to an "ideal identifier", when they are applied to the

related problem of system identification in the presence of
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noise, However, as mentioned by Kerr and Surber [41],
correlation techniques are more suitable in cases such as
the present one where comparatively long lengths of input
and output records are available,

In Chapters 2 and 3 of this thesis the problenm is
stated more precisely and some preliminary definitions and
theorems are given; most of these are well known or adapta-
tions by the author cf well known results., Part (1) of
theorem L4, for example, is only a particular case of the
work of Lee [24, P342]. Apart from Keats [45], however,
no previous statement or discussion of parts (ii) and (iii)
of theorem 4 has appeared,

The case of a stationary linear system is introduced
in chapter l4; alternative approaches to this case are con-
gldered and reasons are given for pfeferring one of these,
Not unexpectedly it is shown that the problem may then be-
reduced to the solution of a Wiener-Hopf type integral
equation, Some well known methods for attacking the
Wiener-Hopf equation are mentioned and an example is given,
The advantages and consequences of a "whitened" input are
also discussed in preparation for the theoretical work in
the following chapters, The iterative process and its
convergence, which are studied in section L4.1.1, have not
been mentioned by other authors,

The main contribution of this thesis is contained
in ¢hapters 5,6 and 7. Each record, available for model
correction, is considered to be portion of a realisation

of a stationary normal random process, Theoretically
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each realisation of this process may be "whitened" suffic-
iently for the problem to be reduced to the estimation of
a cross correlation function, The effects of finite length
records, and errors in these records, on the adequacy of the
corrected model is discussed in detail, and mathematical
expressions for these effects are obtained; some examples
are given. Many of the techniques used have been applied
to similar problems, but their application to the present
problsm has not appeared elsewhere,

The details and results of experiments carried out
to confirm the theoretical work are reported in chapter 8,-
while in chapter 9 extensions of the work are briefly con-
sidered.

1.4 Notation

Although the subseripted notation used, especially
in the case of correlation functions, becomes a little
unwieldy in chapters 6 and 7, it seems, to the author, to
be more meaningful than a, possibly less cumbersome, use
of figures, Thus the interpretation of pIS,OM(T) as the
cross correlation function of the input to the system and
the output of the model requires less effort than the inter-
pretation of an alternative such as p3’6(7). Nevertheless
some compromise has been made in chapter 6, To alleviate
this problem subscripts will be omitted where they are not
relevant to the work of a particular chapter and a complete

list of notation appears after the appendix,
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CHAPTER 2.

MATHEMATICAL STATEMENT OF THE PROBLEM

In this thesis the expression "checking the model"
will mean a procedure such as that outlined in 1.1.3; ieCe
a comparison of two outpuﬁs, one representing system output
and the other model output, to an input which, aparf from
recording errors, 1ls the same for both system and model,

A record of this input will always be available for consid-
eration when making the comparison.

An input or output to a system, or model, will be
regarded as a realisation X(t,w;) of a measurable random
process X(t,w) [46,P.60], a function of two variables, such
that t Dbelongs to the set of real numbers and represents
time, while w is a point in some probability space W on
which is defined a probability measure P, [L6,P4605], For
fixed w = wy, X(t,w;) is then a real valued function of.
time which is Lebesgue measurable for almost all choices of
Wi » Accordingly it will be assumed that input records
taken from the physical device are, apart from recording
errors, values of such a realization for some interval of te
For fixed t = tj, X(tj,w) is a random variable (measur-

able function) with expectation f X(ty,w)dP and higher
W
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moments [ XN (ty,w)dP assuming these exist, Similarly
errors inggoduced in a recording will be regarded as & real-
ization of some measurable random process N(t,w).

2 djusti the model

This term will be restricted to include only minor
alterations to the model, For example, an alteration to a
component of a model which changed the mean square output
by more than 50 per cent would not, in general, be called an
adjustment. Such an alteration would usually be too drastic
to be made without further study and experiment on the phys—
ical device; the resulting change to the model is then in
the nature of a new formulation, However 50 per cent is
rather arbitrary and some tolerance could be allowed.

2.2 Causal transformations [h7,P.85]

A model or system component is a causal transforma-
tion. A transformation T, whose domain is &, is sald
to be "causal" if,given any function f£(t) £ & such that

£(t)
then T[£(t)]

o, t < tao
O’ tS ti.

i

Such transformations may be mathematical representations of
physical phenomena, typlcally:
(i) stationary, linear, phenomena causing gain and phase
shift between an input and its corresponding output;
(1i) phenomena, which vary with time, (some parameters
of T are then time dependent);
(ii1) various non-linear phenomena, e.g. physical limits
on the amount of rotation of a shaft, Coulomb friction,

voltage rectification.
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2.3 An adequate model

This term, which is used by Lawrence and others [2],
is not, of course, meaningful, unless the purpose, for which
the model is adequate, is stated. In this thesis the foll-
owing measure of the adequacy of a model, or component of a
model, will be used.

Consider a system component TS’ which is represent-
ed in the model by TM. For each wp ¢ W, & probability
space having probability measure P, let IS(t,wL), a reali-
sation of the random process Is(t,w), be an input to Tg
and let Os(t,wt) be the corresponding output,. Let the out-

put of T, to the input Is(t,wt) be OM(t,wL). The adequ-

M
acy of the model at t = t; will then be measured by

[ Loglts ) = oy(ty w)}*aw
A(tJ) =1 - N . (241)
josa(tj ,W)dP
i}

An adequate model will be one which satisfiles certain re-
strictions on A(t); e.ge A(t) > 0,9 for all t; the
actual restrictiop depending on the purpose of the model,

A more useful quantity for many purposes is
1 ~ A(t), which will be denoted by A(t) and called the in-

adequacy of the model,

(S

[ [og(sasw) = oy(tym)l7a
K(tj) = Y . ° (202)
fwosz (ty,w)aP
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The only term in A(t;) or A(ty) which is aff-

ected by an adjustment to the model is

[ [ogttsw) = oty mPep. (243)

2,4 Statement of the problem
Given: (i) a model component Ty;

(ii) a set o of allowed causal trans-
formations one member of which will
normally be TM;

(iii) for some i, (41 < i < mn), n typically

< 12, and for some interval of 1,

(a) records of Is(t,w;) and the
corresponding Os(t,wL),

(b) a record of the output of the
model, OM(t,w;), to an input
which epart from recording
error = Is(t,wt);

(iv) some information regarding the record-
ings and their errors;
(v) a criterion of adequacy for the model
component based on A(t), (2e1)e
Choose from the set Ja model component such that

A(t) satisfies the given criterion of adequacy.
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CHAPTER 2.

STATIONARY LINEAR SYSTEM AND MODEL
PRELIMINARY DEFINITIONS AND THEOREMS

This thesis is mainly concerned with system and
model components which are stationary, linear, causal
transformations, The following definitions and theorems
will be required; most of them are well known or adapt-
ations of well known results,

Definition 1 - Stationary* transformation [47,Pe83]

Let é? be a linear space of real valued functions
£(+) such that if £(t) ¢ & then £(t +c) e G, all
real c.

Define the shift operator A, such that

p,2(t) = £(t + ), £(*) € G

Let T be any transformation defined on & and
satisfying TLTf] € &

Then T is a stationary transformation if

T[Ac[f]] = 8,[T[£]] for all () € G

% The terms "time invariant", and "constant parameter' are
also used to describe such transformations.
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Definltion 2 - A class of stationary, linear transformations L

The symbol L will be used for causal transformations

defined on a linear space of real valued functions f£f(+) such

that
L[e(t)] = fw £(t - u) W(u) du;
0
where w(t) is real and, in general,
W(t) = JgiPJ(t) es‘]t’ t > Oy (3e1)
w(t) =0 5 t < 0;

n is a positive integer ;
Pj(t) is a polynomial in t;
s; 1s a complex number whose real part is negative.
Ww(t) may also include generalizzd functions of the form
&(n>(t - T), T > 0;
i.eos the Dirac delta function and its derivatives defined by

fw £(t - u) (u)au = £(t),

AW
fmf(t - u) &(n)(u - T)du = f(n)(t - T,
-
In general the domain of L will be the class of

measurable functions f£(t), such that f(t)e;b(T-t)

is
Lebesgue integrable (=—w,7) for all 7 and all positive
real numbers D, However this domain may be further
restricted if generalized functions are included in w(t),
Any such operator L is stationary, linear and causal.

Definition 3 ~ Wide sense stationary random process [25,P.15]

The idea of a random process may be extended to

include g(t,w); i,e, a vector with components
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Es(tsW)eesln(tyw)e Such a process is stationary in the
wide sense if:
(1) fﬂcft(t,w)dP =y is finite and
inependent of t,
and (11) Mﬁ@m%&ﬁ+7mMF=mﬂﬂ
exists for all 1 and J, and is
independent of t,
pry (7) will be used instead of Byy(7) if and only if,
the assumption is being made that p = 0, all i, In the
case 1 = 3, pyy(7) is called an "autocorrelation function",
otherwise it is called a "cross correlation function", If
#y = 0, then
11 (0) = [W&z(t,w)dr =02,

which is the variance of & (t,w) for every t,

0
If j ‘th(T)‘dT exists, the spectrum, or spectral

—00

density function of &(t,w) may be defined as

Sy (w) = ]“bnt(f) e~ 1Tar, (32)

-—r0
and similarly a cross spectral density function

sus@) = [Tpug(r) & ar (343)

=00

may be defined if fw‘pLJ(T)ldT exists,
—00

Definition 4 - Gaussian process [46,P.71]

Let &£(t,w) be a random process and consider a
finite collection of random varisbles & (tjsw)e If for all

such collections the joint distribution of the random variables



27
is normal then the process will be called Gaussian.
Ergodic_process [25,P,16]
Let £(t,w) be a Gaussian, wide sense stationary
process of zero mean, Under quite general conditions such
a process is ergodic, which implies that the following equa-

tions, involving mean square limits, are true.

0, all i, (3ek)

i

T
lim gﬁ f Ei(tyw)dat = py

Moo

T
and Llim éﬁ f &, (t,w)Ey (t+7yw)at = pyy(7), all i and Jo (3.5)

Moo L

Mean sguare limits imply limits in probability, ands accord-
ingly it is often assumed [26,P.90], that if E(tywg) is

any realisation of the above ergodic process §(t,w),

11m o f &L (towy )dt = (3.6)

and %im éﬁ j & (B, wk )Ey (B47ywy Jat = py g (7)) (347)
e -

where the Lebesgue integrals on the L.H.S. may be approx-
jmated by Riemann sums [L46,P.63].

In this thesis the assumption that &(t,w) is an
ergodic process with zero mean will imply that egquations (6)
and (7) hold for each realisation &(t,wx) considereds
Definition B - Stationary Gauss Markov process

A real random process, M(t,w), which is Gaussian,

wide sense stationary with zero mean, and whose auto-

correlation function is of the form p(7T) =0
stationary Gauss Markov process [25,P.15h]. The parameter

o is real and positive,while o® 1s the variance of the
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process M(t,w), The obvious abbreviation S.GeMs will be

used in this thesis,

Processes derived from stationary CGausgs MarkoV processes

Definition 6 ~ A type X3 of random process

In this thesis a random process will be called a type
X, process if it may be written in the form
Xy (tyw) = f:ﬁ(t~u,w)w(u)du + kM(t,w), (348)
where:
(i) M(ty,w) is an S.GeMe;
(i1) Ww(t) has the exponential form (1) and therefore
has a Fourier trensform ¢(w);
(iii) k is real and may be zero;
(iv) the frequency response function Xk + ¢(w),
corresponding to the weighting function
k6(t) + W(t) , has no zeros on the real axis,
This restriction, which apparently has little
practical significance [25,P.162] is necessary in
the sequel,

Random processes such as Xi(t,w) are known to exist

providing
jm pM(t—u)[k6(t) + W(t)1[kS(u) + W(u)lat du

exists [25,P.53)s This condition is always satisfied in the
present case since pM(t—u) is of the form Tze—alt-u].

As will be shown in theorem 1, processes of type X1
have a rational spectrum which has no poles on the real axis.

Equations (4) end (5), with i = j, are therefore true for
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such processes [25,P«21]4

The assumption will be made that each realisation of
a type X, process, considered 1n this thesis, may be written
in the form

Xy (tywg) = Lo[M(tewe)],

where L, is a transformation of type L whose weighting
function satisfies (1i),(iii) and (iv) above, Such trans-
formations will be called type Ls. The realisations
Xy (t,wx) and M(t,wx) will be assumed Lebesgue measurable and
when multiplied by e—b<Tit), b > 0, the product will be
assumed Lebesgue integrable, (ﬂ»,T), for all T, The quite
general conditions, under which similar assumptions hold for
almost all w, are discussed by Doob (46, Chapter I1).
Theorsm 1

A type X; process has a rational spectrum with no

poles or zeros on the real axise.

This spectrum may be written in the form Y(w) W),

where y(w) = %gé%%; the polynomials Pi(w) and Pa(w)
have the following properties:
(i) the degree of Ps(w) is less than that of
Pa(w);

(11) the zeros of Py(w) and Pg(w) eall lie in
the upper half plane and are either on the imag-
inary axis or occur in pairs of the form a + ib
and =-a + ib, a > 0, b > O3

(111) the coefficient of (w)" in each polynomial is
of the form iM multiplied by a real positive

constant,
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Proof These results are well known, [U6,Ps543]4[25,Pe161] etcs
Let the frequency response function corresponding to Ii be
k + ¢(w) where ¢(w) is the Fourier transform of some W(t)
having the exponential form (1).
Lemma

¢(~-1s), the Laplace transform of W(t), may be

PaS
PQS’

P.(s8) have real coefiicients snd the degree of Pz(s) 1is

written in the form where the polynomials Pa(s) and

less than that of Pa(s).

Proof of Lemma Since W(t) is the sum of terms of the form

ctmesjt, Re(SJ) < 0, then its Laplace transform is the sum

of terms of the form

(o]
j ctmesjte_Stdt.
0]

This integral exists for Re(s) » 0, since Re(sy) < O,

and is equal to

5§§m f:ce(sJ_s)tdt
- G_‘éé%‘,aﬁ ; (3.8)

Hence the Laplace transform of VW(t) is rational and may be
written in the form %&%g% s Where the degree of Ps(s) is
less than that of Ps(s). VWhence

$(-10) = Bafe) Za(a) (349)

Pe(8)

Further ¢(-is) = /ww(t)e-Stdt is real for all real positive
s, since W(t) isoreal. Therefore (9) is the ratio of two
polynomials which are real for all real positive B Any

such polynomial P(s) has real coefficients; otherwise
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the polynmomial P(s) - P(s) would be zgero for all real pos-

itive s and at least one of its coefficients would not be

ZETO, Hence the expression (9) is in the required form

PaS
4\ B

and the lemma is proved.

It follows from this lemma that:

(a) k + ¢(-is), and therefore k + $(w), is

(b)

(e)

rational, and when written as the ratio of
two polynomials in s, or , the degree
of the numerator is not greater than that of
the denominator;

the poles and zeros of k + ¢(-1s) are real
or they appear in conjugate pairs of the same
order;

the poles of k + ¢(-is), which from (8)
occur at s = sj, all lie in the left half
plane, since Re(sj) < O. The poles and
zeros of k + ¢(w) are therefore imaginary,
or they appear in pairs, of the same order,
having the form a + ib and =-a + ib. The .
poles of k + ¢(w) all lie in the upper
half plane.

A well-known result [26,P,127] gives the spectrum

of Xi(t,w)

as

PRy (keh(@)) (1eFT@))

This expression is rational since k + ¢(w)

(3410)

is rational;

it has no poles or zeros on the real axis since, k + ¢(w)
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has no such poles or zeros (definition 6),
Since each pole and zero of the rational expression
(10) is accompanied by its conjugate, it may be factorized to
the form y{(w) y(w), where ¥(w) has the form %ﬁ%%% and
the zeros and poles of ¢(w) 1lie in the uvpper half plane.
The remaining parts of the theorem may now be proved.
(i) Since the degree of the numerator of (10) is at
least two less than that of the denominator then
the degree of P,(w) 1is less than that of
Ps(w)e.

(ii) The zeros of Py(w) and Py (w), all of which
lie in the upper half plane, arise either,from
the zeros and poles of ag%az or
(k+¢(w) ) (k+p(w))e The first term gives rise
to a zero of Pz(w) on the imaglnary axis at
io; while, from (c) above, the second term
gives rise to zeros which are either on the
imaginary axis, or occur in pairs of the form
a+ ib and ~-a + ib, a > 0, D > O,

(i1i) Each of the polynomials Py(w) and Pz(w) may,
then, be factorized into terms of the form
(w-z)(w+z), or (w=ibs), (3.11)
where 2z has the form a + ib, a > 0, b > O,
and by, 1s also positive.
These factors may be rewritten as

(iw-iz)(iw-1z), or (dw+by); (3412)

but in so doing ¥{w) may be multiplied by
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i, =i or -1 and to compensate F(w) must be
multiplied by =-i, i or -1.
The guadratic factor in (12)
= (iw)?® + 2b(iw) + a® + b® (3413)
Each of the polynomials Pi(w) and Pg(w)
may therefore be written as a polynomial in 1w
which, from (412) and (13), has real coefficients
of the same sign. These coefficients may all
be made positive by multiplying ¢(w) and
ETE’ by =1, 1if necessary, and the result
(iii) follows
Theorem 2
If a realisation Xi(t,w;) of the random process
X, (t,w) may be written in the form X (t,w) = Lya LMy (tywy )],
where M,(t,w) is an S.G.M. having autocorrelation function
wiae_a|Tl; then for every positive real o, and S there
exists, under the assumptions following definition 6, an
S.GeMes, Mg(t,w), having autocorrelation functiontrzae“ﬁ‘Tt
such that Xg(t,wy) = Lyg[Mz(t,w, )]s The transformations
Lis and L,z are of type Lj.

Proof The randoQ process

s (ew) = (£)" B[ (smum) (o) a4 s ()]

exists and is of type X4, since the freqguency response function

(é = (ig +g (341L)

corresponding to the weighting function

(é) 16(t) + (a-ﬁ)e aad (3415)



3.

has no zeros on the real axis,

Let I,5 be the type 1, transformation having the weighting
function (3.15).

The process Mz(t,w) has spectrum [26,P,127],

Y. %a 022 /f0® 4+ o
W 0= <§> o"'?'? F{’%’

1
X 2
= W‘?‘%ﬂ‘; ’

and its autocorrelation function is

My (t,w) 1is therefore an S.G.M, and using the assumption
following definition 6,

Mz(tywt) = Lysa Mi(tywl‘.)o
Define the transformation Iss having weighting function

(8)" % t6() + (B=)e™"1.

Then LyalLys[My(tyw)]] =

Lﬂ[(gf(?,—‘f;)im(t,w;.) v (@) [ i (omeym Yo e ]

I

My (tpwy ) + (o=8) f:Mi(t-x,wL)e'ﬁxdx + +

+ (B=a) Mi(t-x,wt)e'axdx + 4

0
o0 W
+ (B-a)(a~B )/:e'ay['/OMi (t=y—x,w, Y P ax]ay- (3416)
The repeated integral in (16) becomes, after the substitution
T =X + ¥
(=)o) [&™ [wa(emrym )e B (™ V)ar ay. (3417)
y
¥

The convention to be used in this thesis for repeated int-
egrals is shown by these square brackets, which will be omitted
hereafter,
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Using the assumption following definition 6, that

M(t,wk)e-b(T-t), b > 0, 1is Lebesgue integrable, 1t may be
shown that

[Z e~ O\Mm-y-x,wme'ﬂ"ax ay

is finite, The order of integration in (17) may therefore

be reversed to give

(B=a) (o) OM,_(t-'r,wL)e_ﬁT oe"aye‘eydy ar

= (=) OMu.(t"T:WL )(e-aT"e-ﬁT)dT-

The expression (16) is therefore equal to Mi(t,wy ), whence

X (tywy) = Lug[TaalMa (tywe )]l
Also

Lyal[Mz (towy )] = <%>%<%>{M2 (tywy ) + (ﬁ-—oc )joooMg (t=u,wi e *Yaul,

so that if Ts4 has weighting function kd(t) + w(t), then

Tys[TialMa(tyw)]] equals, apart from the constant term

L
()" e ,
\ﬁ Oz

K Mg (tewy) + k(B-o) Omz(t-xswt)e-axdx
+ j:Mz(t-x,wL W(x)ax + +
(p-a) [ W(w) j: Mp (6=y—x g e %Az dy . (3418)

As with the double integral in (16) the order of integration
in the double integral in (18) may be reversed to give

(B-o:) OMz(t-’T,WL) OW(y)e"a(T"y)dy ar.

Hence the expression LgalLie[Mz(tywm )]] 1is equal to
Lya[Ma (t,w )] where 1, has the weighting function
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(8 08) + Kpde™% (1) + (o) W),

The convolution j W(y)e-a(t-y)dy is zero for t < O and
0

for t > 0 is the sum of terms of the form

t
[ocy“‘ e ye"'m"eo‘yd;r, Re(sy) < O,

it is therefore of the form (1)

The fréquency response function corresponding to Lyg 1is

(%f 2 (28) (x + #0)

which has no zsros on the real axls, since k + ¢(w) has no
such zeros. Therefore ILsz 1is of type Ly and the theorem
is proved,

Because of this theorem any realisation of the type
X; process Xi(tyw), may be written

Xs(towy) = Li[Ma(t;WL)]’

where Ma(t,w) is an S.G.M. having autocorrelation function
e e_a‘T‘, and - o may be chosen arbitrarily large. The
S,G.M, then approaches'white noisé) [25,PP,94 and 162],- of

unit spectral density, Its spectrum is

aB
Sa(w) = gmm »
so that, given any positive € and Wo, then

0 < |1 -8g(w)l <& for all w such that lw] < wo,

providing

“b251‘€2
o? > N

€
It is often useful to consider type X4 Dprocesses

to have been derived from S,G,Me Dprocesses which approximate
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"white noise" or, colloquially, "each realisation of X (t,w)
to have arisen from passing white noise through a filter of
type Li".
Theorem 3
Let X(t,w) be a type X; process. Then there exists an
S.G.Ms, M(t,w), satisfying an equation of the form

M(t,w) = m%okm Xi(m)(t,w) + j:xi(t-u,w)w(u)du,

where the weighting function

3 k8 (6) & W(E)

_corresponds to a transformation of type L.

Proof According to Theorem 1 X,(t,w) has a rational

P, (w

Balw and

spectrum of the form y(w) YWw) where Y(w) =
the polynomials have the following properties:
(1) their zeros are all in the upper half plane;
(i1) they may be written as polynomials in iw with
real coefficients.
Consider the expression

¢J2a Paiw;
ia’-l-a P1 0)7 *

This may be written in the form

Ps(iw) + %ﬁ%%%}, (3419)

() the polynomials P3,Ps and Ps have real

where:

coefficients;
(b) if the degree of Pj =py (J =1 =~ 5), then
Ps -~ Pe = 1)
Do = DPa ~ Py —~ 1o
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The expression (19) is the frequency response
function of the required type 1L transformation, The

individual terms in Pa(iw) correspond to d(t) and its

Paliw
Pg(iw

integration to give an expression W(t) of the form (1)
Since /w@(w) (@) («®)P2aw exists, then the auto-

derivatives, while may be transformed by contour

=00
correlation function of X (t,w) may be differentiated 2ps
times, and therefore [25,P.23] the process Xi(m)(t,w)
exists for m € pPae

Hence the process

;g; Xn Xi(m)(t,w) + ]:ki(t-u,w)w(u)du

is also defined; 1its spectrum is

W) Way 11225 1° 1Bafed)®
_ 02 2a
+ O

as required by the theorem.

On the basis of this theorem it will be assumed thet
each realisation of a type Xy process considered in this
thesls may be transformed by a type L transformation to
give a realisation of an S.G.M, The parameters o0°® and «
in the correlation function of this 8.G.M. may be chosen
arbitrarily. In particular they mey be chosen so that
o2 = % end o is large, in which case the S.G.M. approx-
imgtes white noise.

It is well known [24,P.342], that an estimate of the
welghting function of a linear transformation (filter), may
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often be found by applying to it an input which is a realisa-
tion of a process which approximates white noise, and then
cross correlating the input and output, This procedure is
now investigated more closely in the case of an S.G.M, having

—a|7]| . This investigation

autocorrelation function % e
applies, with slight modification, to other types of station-
ary random process which approximate white noise LL5].

Theorem _L_L

For each positive real number o let Mg(t,w) De
an S.G.M. having autocorrelation function pg(7T) = % e-ocl'rl .

Let T be a linear causal transformation with
weighting function W(t) of the form (1), but restricted

so that 1ts frequency response function, ¢(w), satisfies

jmlgb(w)ldm is finite.

Let Og (tyw) = /:Ma (t=u,w)W(u)du
and Pa 50 (7T) = E[ilg (t~T,w)0g (tyw)],
Then:
(1) 1im pg,o0(7) = W(7), T » 03
Oi-s00
(1i) 1im Pa,o(f) + Pa,o('f) = W(7), T 2> 03
Olt00

(1ii) j:pa’o(fr) + pa'o(-fr)d'r = [:W(T)dT, all o,

Proof (i) Applying the Schwarz inequality,
E| Mg (t-T,w) Ma(t‘xyw)‘
< {E[Mg® (tr,w) B[ Mg ® (t=x,w)]]%
o

=35 and 1s therefore finite,
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whiesice f; () | 2L | Mg ( 63wl ( t=xpw) | Jax

is finite,

Therefore

Pa,o(T)

E[Mg (t=Tyw) OMa(t—x,W)W(x)dx]

j: W(x)EL g (b= 5w ( £=x,w) ] dx
- jzpu(T-x)W(x)dx. (3.20)

The Fourier transform of the convolution (20)

is 8y(w) ¢(w),

where S,(w) is the spectrum of MNy(t,w), viz,

aa
a® + a2 °
Therefore
lim pa,o(T) = gﬁ 1i j Su(w)¢(W)ein@w0 (3021)
Q>0 Ol

=00

Butor every w

1im Sp(w) = 1
O»c0

and |Sg(@)] < 1;
80 that by dominated convergence, since

fw|¢(w)|dw is finite,

the limiting and integration operations in (21)
may be interchanged to glve

1in pgy0(7) = 4= f #(w)e ™ aw

Ol=¥c0

W(T), T 2 0, (3022)
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(11) It follows from (20) that

Payo(™) + Puyo(r) = [ Loa(r=x) + o (-r=x)IW(x)ax

which, since pu(7) is an even function, becomes

j«ba(Thx)W(x)dx + jaba(wa)W(x)dx
0 0

= f:pu(r-x)w(x)dx + fqpu(T-x)W(-x)dx.

The Fourier transform of this expression is
8¢ (w) ¢(w) + 8y (w) ¢(-w)
= 2 Sy (w) R¢(w)s (3.23)

where 2 R¢(w) twice the real part of ¢(w)

1

and 1s the Fourier transform of the even function
which equals W(t), t > O,

Hence

Lin pus0(T) + Pugo(~r) = gz Lin | 28 (w)Ry(@)e™ aw
O30 Ol—»c0 ;

};
o3
.e.'EU

T

i

q

=

n i
© =
P Pam
o 93
| g L
L ] A ]
‘1
v
O
L 3

(iii) jzw(x)dx
[tba,0(x) + a0 (=)lax

I
—
8
o)
i)
-O
—~~
el
~r

it

8q (0) #(0)
= ¢(0).
The theorem is proved,
Since the process Mg(t,w) is ergodic the cross correlation

function pq,0(7) is equal to the expression
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T
lim -2-',%[ Mg (t=Tywk )Ox (t)at « (3423)
-7

Moo

Now suppose an estimate is required of the weighting function
Wi(t) of a linear system which is known to be of type DLie
A,realisation, My(tywy) of an S.G.M. whose correlation

function is % e-ocl'rl

may be applied as an input to the
system and the cross correlation function pg,0(7) estimated
as a time average. Then, relying on theorem 4, it would be
expected that, for large o and 7T > 0, pg,o(T) would be
a good approximation to Wy(7T).

As an illustration consider

Wi(T) = "re-aT, T>0, a real and positive,
= 0, T <0 »
| T o=
Payol(T) = j:;% Kl xlxe-axdx’ rs o0,
T
= %‘ e-ot'rf X e"(a—a)xdx + %‘ eaTij e-(a"'a)xdx,'r 2 0y
0 T
s e ¢ BT _ . 280°  -aT a e 9T + 5 0
= aR—ar (@ =a= )2 + 2(a-a )? ’ ’
(3.24)
which for T » O approaches 7¢™8T gz o - w,

The dlfference between the expression (24) and Wy(7),

_ 82 -aT _ __280%  -aT o o7
= R -as (o® —a® )= 2(0~a)? N

The usefulness of the expression (24) as an approximation to
Wi (T) may be judged by considering

j:‘Pa,o(T) - Wy(7)|Rar

af ~ 2aa* - 2a%0® 4 8a%a® ~ 7a*o + 2a°
8(a® = a® )~

'ga's'-n%z “rey for o > > 8.

3|
Y
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The ratio of this expression to

]ZlWi(T)lsz = E%g

is approximately

3
%(—3) : (3427)
However theorem L part (i) does not apply to all

aT

systems of type Lye. For example if Wi(T)=e"""y > 0, a > Oy

then the corresponding frequency response function is i£+a
which does not satisfy the requirement
fw|¢(w)ldw is finite,
=00
In this case i
o _=Q|T=X| _=aXx
pa’o(T) = jw-§ e l ‘le B%ax
0]
__a® omaT o__ —OT T > 03 (3428)
= wR et 2(a-a) ’ ? B

and therefore
1im Pg,0(7T) = o 2T = wy(7), T > 0,
Ol~yo0
='1§ T = 0,
An error in Ws(7) at 7T =0 only is of no practical
importance, but for finite o an estimate of Wy (7T) may

have large errors, not only at 7 = O, but also for values

of T near zero, Thus if o = 10a
100 =aT -=10aTt
Pa,o('r) = 99 e = '121' e s T 2 0,

which differs from W (T) by

A a7 _ ~10a7
99 © 15? © .
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The usefulness of the expression (28) may also be Jjudged by

computing

lepa,o(r> - Wy () |ar

[ a® et _ & e-aT]sz
- 0 aF wa 2(o~a )
_a® 4+ 2a0® - 7aa? 4+ La®
- 8(a® - a
pogil B -

8o La® °°°

The ratio of this expression to
o0

j (W, 7T)2ar
0

contains a first order term in <§ s Wwhereas in the first

case considered, viz. Wi(7) = Te-aT, the lowest order term

3
18
was 2<a> ®

As another =xample consider the case
Wi (7T) = 6(7)>»
so that
Payo(T) = pa(r) =& ™7,
If in this case the estimate
We(T) = Pa,o(T): T 2 0Oy
is used to compute the output of the system to a given input
the answer will in general be about half the correct answer,
This follows immediately from the fact that
fw % e”atdt = 5 and not 1 as would be necessary for a good
agproximation to &(t).

In the last case a more useful approximation to

Wy (7) would be the expression
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Pa,o('r) + Pa.,O(“'T)y T 2 0y
which is considered in parts (i1i) and (iii) of theorem L.

The proof of these parts is still valid if the reatriction
fwl¢(w)|dw is finite,
-00

is relaxed to fw|R¢(w)|dw is finite.
m

This latter restriction is satisfied by all W(t) of form
(1), since,for such W(t),¢(w) is rational and therefore

R¢(w) is rational and real, Hence R¢(w) may be written

R¢(0J) . g-ié_-%'? (:U) ’

where Pg(w) and P;(w) are poiynomisls in w with real

in the form

coefficients and the degree of Pg(w) 1s less than that of
Pr(w)e

300 - B B3

But R¢(w) = jww(t) cos wt dt and is therefore even, so
0

that (29), whose denominator is clearly even, must be the
ratio of two even polynomials in W, Since an even poly-
nomial in ® contains only even powers of « the degree
of the numerator of (29) must be at least two less than
that of the denominator. Therefore, since ¢(w) has no

poles on the real axis,

fw|R¢(w)|dw is finite,

Consider again the example



Wi(T) = e“aT 9 T 2 0,
-— 0 ] T < O.

The criterion

f;m,om v Pu,o(=T) = Wu(T)|3ar

for the usefulness of the estimate

Pu 50 (T) + pg ,o("'r)’ T3> 0,

of this weighting function, is equal to

()

In the case of the original estimate, viz.

Pa ,0(7'), T > 0

this criterion contained a first order term in (

J

U6

a>O,

therefore seems that (30) is the better estimate.

The above discussion is summarised in the

following theorem.
Theorem 5

(330)

it

Let a linear system of type L, have a weighting

function k&(t) + W(t) and frequency response function

k + ¢(w)se TLet pq,0(T) be the cross correlation function

of the input and output of this system when the input is a

realisation of an S.G.Me having autocorrelation function

a —a|7]
5 € .

Iet £(t) be a bounded and piecewise continuous

function of t.

Then:
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(1) PuyolT) + gy o(~T) = kae™" + Wy (7), T > O,

where 1lim Wg(7) = W(7), T 2 0;
Ol—»cc

<n)j}hwﬂ+ﬁp@ﬂm=fhvo+Mﬂm;

(1i1) 1im fzf(t~y)[pa,o(y) + Pa,o0(-y)]dy =

Q=300

- fwf(t—y)[k5(y) + W(y)lay.

=00

Proof Parts (i) and (ii) follow immediately from theorem L

and the previous discussion.

(111) j:}<t-y)[pu,o<y> + Pa,0(~y)]dy

. '/Zf(t—y)[koce"ay + Wa(y)]dy.
Consider jé%(t—y)kae-“ydy
0
= jm}(t - &)ke™%az,
o o
Since f£(t) is bounded write
|£(t)] < k, all %,
Then |£(t - £)k | < k|xie™

and
ffklk1eﬁzdz exists,
Therefoge
1im jm}(t - 2)xe™az
oo 4 O
= fw lim £(t - £)ke %z
0 o0
=k £(t)
= [ttty

=00



T
Similarly

lim ] £( by )Wy (y)ay
Oyoo 4 O

& f: 1im £(t=y )Wy (y)dy

Ol=200
. j: £( b=y W(y)dy s

The interchange of limiting and integration is justified
since; as shown in the appendix, for y = O

We(y) 1s of the form
. n
fa(a)e W, JgiQJ(y,a)esjy, Re(sy) < O,

where Qj(y,a) 1s a polynomial in y whose coefficients
depernd on o, It is also shown that the coefficients of
Qy(yy0) and fz(a) are bounded for o > & > |sy|, all J.

The restrictions placed on £(t) in this theorem
are sufficlently wide to include most, if not all, practical
applications,
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CHAPTER L,

STATIONARY TLINHAR SYSTEM AMND MODEL

ERROR FREE RECORDS OF UNLIMITED IENGTH

In this chapter the study 1s restricted to systen
components which are linear and of type L (definition 2),
The following assumptions are also made:

(a) there are no restrictions on the length of the records;

(b) there are no recording errors;

(¢c) the inputs to the system and model are realizations of a
random process of tyre X;;

(d) the original model component T, is of type L,

M
This situation may be represented in two ways as

shown in figs. 5A and 5B, In both figures T is the

S
system component and TM the model component, Is(t,wL) is

the system input and Os(t,wt) is the system output, while
oM(t,wL) is the model output to the input Is(t,wl,). In

A the correction to the model, T is shown in parallel

CA?
with the original model, while in B the correction TCB s
is in series with the original,

Under the assumptions of this section correcting
transformations T

" or T gy can be found such that the

C C
output of the corrected model will be the same as the system

output to this class of input, However TCA and TGB are
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(A)
Is(t,WL) TS Os(t\wh)
Oy (t,wi)
TM M L
|
I
' ke 1 o (
L—"_— __| TcA '_ _____ C _(""-WL)
|
(B)
Is (¢, wi) Ts 0s (t,wy)
0 """ 1
M M(t""Y‘L—L Tes _}

FIGURE 5. TWO APPROACHES TO MODEL CORRECTION
A. CORRECTING TRANSFORMATION T.,, IN PARALLEL

CA
WITH THE MODEL
B. CORRECTING TRANSFORMATION TCB IN SERIES WITH

THE MODEL
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in general quite different from each other, In particular
a TCA of type L can always be found which completely

corrects the model, On the other hend no T of type L,

CB
which completely corrects the model, may exist. For example

if Ty has weighting function §(t) and T,, has weighting

M
function J(t-T), T » 0, then Tog must have weighting
function 6(t+T); hence T,y is not a causal transformation
and therefore not of type L. For this reason representation
A 1is preferred and will be used in this thesis. However if
TM were restricted to the class of minimum phase transforma-
tions [L48,P.282], e.gs its frequency response function were
rational with all its poles and zeros above the real axis,
then the method described below for representation A may be
applied, with minor alterations, to B.

For representation A +the following theorem applies.
Theorem 6

Let Is(t,wt) be a realisation of the process
Is(t,w) of type X, and let Tg and Ty be transformations
of type L, with corresponding weighting functions Ws(t) and
WM(t), such that TS[IS(t,wL)] and TM[IS(t,wL)] exist,
Then there exists a transformation TC of type L with
corresponding weighting function Wc(t) such that

(TM + Tc)IS(t!WL) = TS[IS(t:WL )1, (Uet)

and Wc(t) is the unique 1 type solution of

jm‘OI(T—X)W(X)dX pI,OS(T) = pI,OM(T)’ 7> 0,
~ve (Le2)
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Proof The existence of Wc(t) is trivial since
Wo(t) = Wg(t) - wy(t) (L4e3)
satisfies the requirement,

Now let equation (3) hold and then
fw IS(tnx,W)WC(x)dx = /a)IS(t-x,w)WS(x)dx - jm)Is(t-x,w)ﬂmﬂx)dx.
-0

m
(h.h)
Multiplying each side of equation (L) by Is(t—T,w) and tak-

=00

ing expectations yields
j pI(T-x)WC(x)dx = j pI(T-x)WS(x)dx - jpr(T-x)WM(x)dx
-—00

-0 -00
= T - T °
pI,OS< ) pI,OM< ) (u‘5)
The inversion of the expectation and integration

operations 1s justified for weighting functions of form (3.1)

since

jwﬁ[IIS(t-T,w)IS(t-x,w)w(x)l]dx

—)
e

is finite, On the other hand for weighting functions con-
taining generalised functions, assuming Is(t,w) may be
differentiated n times,
[* (n) o
E[Is(t—T,w)j I (t=x,w)d' ™ (z-1)ax]

—=00

E[Is(t-T,w)IS(n)(t—T,w)]

pI(n>(7;T) [493P0165]

joo pI(T-.-x)d‘(n)(x-T Jax.

~—0
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Assume now that equation (2) has two I type solu~-
tions, viz. WC(T) and Wp(7)s It will be shown that
WC(T) - Wb(T) = O, Similar theorems are proved by
Titchmarsh [50,chapter XI].
If WC(T) and Wb(T) both satisfy (2) then
[pr(r-m)ig(x) - mxNax = 0, 7> 0, (146)

-0

where Wc(x) - Wb(x) is of the form

n m 1l
§1PJ(X)eSJx+J§‘;° LgikJLd‘(J )(X-TJL), Re(s_;) <0, Ty 2 0, x 2 0,

J
(4a7)
and is zero for x < O,
n
Let »Mx) = J?ipj(X)est, x > 0,
= O, X < 0’

have Fourier transform ¢(w), which is then a rational
function of w with all its poles above the real aXis.

Also assume, for the moment, that all the Ty, are zero.
Then, writing X; in place of ;gikJL, equation (6) may be
written

[ortrxizxax + 2w &5 pr(r) = B, (14:9)

where P7) =0 s, T3> 0, (44+10)
If Wb(x) represents an admissible transformation of type L
for this input then the Fourier transform of the left hand side
of (9) exists, so that

Up(@) = 8p(@)p(@) + 2 K (10)°]

s;(w)l¢(w) + B(W)]; (Le11)
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where:
¢F(w) is the transform of F(7);
P(w) 1is a polynomial in w;
SI(w) is the spectrum of IS(t,W).

The equation (141) may be written in the form

P w Pq(w
wp(w) = ooty Bt ity
where Pon (@)

Borti) = SI(w) is a rational spectrum, since Is(t,w)
is of type Xi. It may be assumed that the polynomials
Pon{w) and Pgp(w) have no common factors, they are both of
even degree 2n and 2m respectively, and have half thelr
zeros shove and half below the real axis (theorem 1), It may
also be assumed that Pq(w) and Pr(w) have no common factors,

Now wF(w) is the transform of a function which is
zero for t > O, therefore it has no poles gbove the real
axis, Hence the r zeros of Pr(w), which are all above
the real axis, since 2(x) = 0, t < O, and the m zeros of
Pgn(®w) above the real axis must also occur in Pgn(w) and
Pq(w) respectively,

Therefore g>m and n > r, (Le13)

Pan(w) |Pg(w)l|?
Now consider 5;&%57 lﬁféaji (Ledl)

which, if (7) represents an admissible transformation, is the
spectrum of the cutput of a system having input Is(t,wt) and
welghting function wc(x) - Wb(x), [26,P.126]. The inequal~
ities (13) show that the highest power of w in the numerator
of (14) is at least equal to that in the denominator, and
therefore the only permitted value for (14) is zero for all
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real W,

Since sI(w) £ 0, then {gf}%l = 0,

ise, ¢(w) + P(w) = 0 (Ll-n'15)

whence both the rational function ¢(w) whose numerator is
of lower degree than the denominator and the polynomial
P(w) must be zero for all real w,

Thus, in the case where the Tj{ are all zero, the
expression (7) is zero for all x and therefore

Wo(x) = Wp(x).

In case some of the T3y are not zero, let Ts De
the smallest of these, they are all positive., Equaticn (6)
now becones, after inserting the expression (7) for

Wc(x) - WD(x) and rearranging the terms,

1
m ad
[ ortrmnnax + 3 3wy &5 or(n)

—00 Tt =0 dTJ
= F(7) - t —q;]- p(T=Ty1 ). (Le16)

k)
TJ ué1

Congsider the open interval, O < 7 < Tg, in which
F(7) is zero., The left hand side of (416) has a Fourier
transform which is a rational function of w, (11)s It may
therefore be evaluated, for 7T > 0, by contour integration
of this transform multiplied by ein, around the upper
semicircle; i,e, by evaluating residues at poles with
positive imaginary parts, In the interval O < 7T < Tg then,
the left hand side of (16) will be a sum of terms each of

which contains an exponential of the form e 27, but no

exponential of the form e?', where Re(z) > O,
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On the other hand a similar evaluation of the right
hand side for 0 < T < Tg will, because of the presence of
e"19TiL 5 each transform, involve contour integration
around the lower semicircle, and hence give rise to terms
containing 27 but none containing e 27, Re(z) > O,
Clearly equation (6) can not be satisfied, in the interval
0<7T<Ts, by any function of the form (7) unless all the
Tji are zero,which is the case first dismissed.

L,4 Model correction not involving generalised functions

Under the assumptions of this chapter there Is, then,
no difficulty in reducing the problem of correcting the model
to one of finding an I type solution of the Wiener-Hopf like
integral equation (2). In this section it is also assumed
that the model correction WC(X) contains no generalised
functions, The correlation functions pI<T), pI,OS(T) and
pI,OM(T) may in principle, be calculated from the data since
the records are supposed freec from error and of unlimited
length,

The Wiener—Hopf equation has been extensively studied,
(see, €48ey [23])e Wiener gives the solution [17] in the

form

S: aal1) = 81 g1
~iwt fm 1,08 Lo0M Zo3ubsu, (4a17)

polw) = w%aj %; f:e at 5
s
where:
¢C(w) is the frequency response function corresponding
to Wc(t);
SI,OS(w) is the Fourier Transform of pI,OS(T)’



57+

i,e, the cross spectral density of Is(t,w) and
Os(tyw) H
SI,OM(w) ig the cross spectral density of IS(t,w) and
OM(trW);
Sp(w) = ¢(w) ¥(@) .
That the right hand side of (17) is the freguency

response function ccrresponding to Wc(x) is readily confirmed

by direct substiitution, since

57 ,05(W) = 87, u(w) = ¥(u) TG ¢(u),

S1,05(®) = 81 gyl

iees ¢C(u) . SI(u) . (Ll"18>
and therefofe the right hand side of (17) is
@i%ﬂ'Jﬁ fze'iwtdt / ¥(u) ¢C(u) eltqy, (Le19)

Moreover the rational expression y(u) ¢C(u) has no
poles below the real axis and therefore

wa(u) $o(u) el%%qu 1is zero for t < O,
=00

whence (19) becomes
W(%)')' ﬂlg& ¢C(w) B ¢C(w)' (4020)

Both the solution (17) and the less general form (18)
are of restricted practical application, since they involve
Fourier transformations of the data. However it is useful
to represent (17) as two L type transformations in series,
as in fig., 6, where the frequency function of each transforma-

tion is shown,
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o

oo
lﬁi(w) 217r f e_w‘t"d. P gy(wet” du
0 -0

FIGURE 6. SOLUTION TO WIENER-HOPF EQUATION
SHOWN AS TWO COMPONENTS IN SERIES
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As shown in theorem 3 there exists an L type trans-

formation such that, for almost all w,,
LLIg(t,w )] = M (tywi ),

where Mg (t,w) is an S.G.M. having autocorrelation function

& e-aITl and o may be chosen arbitrarily large. The

frequency response function corresponding to this L 1is

waw) ' (aiiw) (Le21)
which, for large o, approaches the frequency response
function of the first component in fig. 6.
Similarly, since Is(t,w) is a type Xy randonm
process, its realisations may be written in the form,

Ly Mg (ty,w )] = Is(trwt)y
where 1, is a transformation of the type described in
definition 6, In this case the frequency response function
corresponding to Ly 1is
W(w) %1-"1)
and hence that corresponding to the product transformation

TC ‘Li is

bo(w) ¥(w) (%22), (h22)

For large o the expression (22) approaches
Bo(@) (),
the frequency response function of the second component in
fig. 6.
The first component of fig. 6 may therefore be

considered to transform the input to "white noise"., Theorem 4
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shows that the weighting function corresponding to the
second component may then be found by cross correlating
its input and output., Since SI(w) and therefore Y(w)
is known the weighting function of the first component is
also known. The convolution of these two weighting
functions is the fequired weighting funection Wc(t).

The possibility of applying these ideas to the pres—
ent problem is illustrated in fig, 7 which is an elaboration
of fig. BA introducing these two transformations L and Lj.
If the parameter a in Ma(t,w) is large enough,then, as is
clear from this figure and theorem 'L4. the weightihg
function corresponding to TC may be estimated by cross
correlating Mg (t,w;) with

L[0g(tym) = Oy(t,m )],
A number of components in fig. 7 are included only to explain
the ideas more fully, the figure may clearly be simplified to
fig. 8.

The procedure Jjust discussed is equivalent to modify-

ing the input to the components TM and TS so that the
autocorrelation function, p(7), of this modified input is
small, excépt for values of 7 near |7| =0, and
jmp('r)dfr =1,
s

The corresponding spectrum is then virtually constant and
approximately equal to 1, O < |w| < wp, where w, is large
and positive., This procedure is known as "whitening" the
input; 1its usefulness has been recoghised in similar activ-

ities, e.gs, the measurement of power spectra [51,P.28]., It
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M (t, Wi) Ig(t.wi) Og (t,wi)
— Ly Ts -
L[ og(t, w)]
My (t,wi
« W .
Y
. Ly Ig(t, w) Ty Oy (£, W) Y Llowm (_t_,__WL)]
— L Is(t,wi) e Oc(t, W) L _ L[oc(tﬁd]
FIGURE 7. AN ELABORATION OF FIGURE 5A ILLUSTRATING A

METHOD OF APPLYING THEOREM 4 TO THE CALCULA-

TION OF THE WEIGHTING FUNCTION CORRESPONDING

TO TC .
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IS(tva) Os(t,WL)
- g
M . L [os(t.“fi.j]
L TM FOM(t,W‘J _ L L[om(t,WL)]
= Te ———  Oc(t,wy)
FIGURE 8, A SIMPLIFICATION OF FIGURE 7
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has also been intuitively recognised in the earlier work on
model checking [2 = 5]e As already indicated the computa-
tion problem is often easier if"whitened"inputs are used,
Cross correlation techniques are then more easily applied
and, as discussed at the end of this section, other computa-
tion techniques are also assisted by a "whitened" input,

A further advantage of a'whitened"input may be
mentioned here although it is not relevant to this chapter.
Errors introduced in recording often approximate a realisa-
tion of a random process whose spectrum is significant at
high frequencies. “Whitening”of the input, if carried out
before recording, will help maintain a satisfactory signal
to noise ratio at these higher frequencies [51, P.28],

Two possible methods for achieving the effect of
a "whitened" input are illustrated in figs. 9A and 9B, In
each figure physical components are shown, vice the system
components of fig, 8, The symbols P and 7P, denote the
physical components which are characterized as systems by
L and Lg, The first method, fige. 9A, may be impractical
in many cases since it interferes with the operation of the
physical system,

A third method, viz., to use for model checking,
only those inputs which are judged by inspection to be rich
in high frequency content, has also been used, [2].

A further possibility is to use specially selected
inputs; e.g. step functions, or discrete interval binary
noise repeated periodically in the manner suggested by

Anderson and others [35], However the use of such inputs
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involves a degree of interference with the normal operation
of the physical system which may not be permitted or poassible,

Several other methods for tackling the Wiener-~Hopf
equation are known, Ianing and Battin [23, P.283] describe
in considerable detail a method, used several years earlier
by the author*, for solving this equation when the kernel and
the right hand side are expressed as sums of exponentials,
They also describe a complete set of exponentials (some of
which they tabulate), orthogonal over (0O,o), which may be
used to approximate the kernel and the right hand side of
this equation, Laguerre functions have also been proposed
for this purpose, [17],[26].

An effective, 1if elementary, method for the present
purpcse, assuming no generalised functions are involved, is
that described in reference [ 52, P.448]. Assume a solution
of equation (2) of the form

WC(T) = 8,84(T) + az82(7) + + + anen(7), (4e23)

where the gi(7) are functions which are orthogonal (0O,c);
€.g. the exponentials of reference [23]. Then determine
values for the a; by a least squares method, Thus the
expression

T 0 n

| L prlr=0t 2 s (mlax - fop o5(7) = oy gy} 12ar (4a2u)
may be minimised with respect to the ai. The limit of
integration T may be taken as o 1in the present case where

the length of data available is unlimited; in practice T

#* Classified paper published by Royal Aeronautical Establish-
ment, Farnborough, U.,K.
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will be finite, Similarly the number of terms taken in the
approximation Lgia;gL(x), i.es the value of n, will deperd
on the particular application,
The minimisation of (24) leads to equations for the

a;, in the form

Lgicktat = Dk (4e25)
where

T .
Ckt = Gk = jO fsz(T_xi)gK(xi)dxi ijI<T'Xa)81(Xz)dxbdf3

ik
D = ‘/O{pI,OS(T) - pI,OM(T)} [:PI(T—X)QK(X}G-X dT.

The following, somewhat trivial, example illustrates the
effectiveness of this process,

Let the system component have weighting function

t
g—:% o 202 t > 0,
while that of the model component is
% e~2t y t > 0,
and suppose
pr(r) = &7I71,
Direct calculation shows that
pI,OM(T) = % e ’ 7T < 0,
= % e_%T;e-T, T > 0,
pI,OS(T) = %f% e’ ’ T<O0
@
= %f% e—‘-‘é.:.§ - E e, T > 0,

so that
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i n _
pI,OS(T) - pI,OM(T) = %fg e 2°2 . % e 27, & e 7, T 2> 0,

The orthogonal exponentials [23] are formed from

the sequence
e-Ct, e—ZCt, eé}ot... .

The parameter ¢ must be determined; accordingly the
assumption has been made that the correction, Wc(t),
required to the model weighting function, decays at approx-
imately the same rate as the model weighting function itself,
This assumption suggests that the value c¢ = % should be used
in this example; however the more conservative value c¢ = ﬁ

has been used. With this value of ¢ the orthogonal expon-

entials are,

2 =
g1(t) = 42 e b

gz (t) = 3e 2 - p )
- 2t - 1 -+t
ga(t) = %§<10e g - 12e N 3e i );

ete. Only the first two have been used, i.e, the approx-
imation
Wc(t) ~ 8181 (t) + azga(t)
has beer. assumed,
After performing the required calculations the values

ay

-0,0588,

ag ~0.0380

were found and the weighting function for the corrected
model is, then,

1t Lt
-2 - %
0.386e + 0,035e ’ t » 0,
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A comparison of the weighting functions for the original
model, the system component and the corrected model is shown

in the following table.

Table 1.
Weighting Function

t Original Model, System Component, Corrected Model
0 0°500 0409 0+421
z 0+389 0+326 0°331
1 0+303 0-259 0+ 261
2 0-18L 0165 0153
3 0111 0°105 0103
L 0+067 0°066 0°065
6 0+025 0026 0027
8 0+ 009 0-011 0°012
0 0+003L 0°*00LL 00053

However a more useful criterion for comparing the
adequacy of the two models is A(t), (2.1), which may be
written, by virtue of the ergodic hypothesis,

j:]:bI(T;X)WC(T)WC(X)dT ax]?
1 = ' (14-026)

jZ]ZﬁI(Tux)WS(x)WS(T)dT ax

This expression increases from approximately 0°85 for the

original model to 0°98 for the corrected model,

The following similar approach to the problem also
involves approximating Wc(t) by an expression of the form
(23). The ai may be chosen to have values which minimise,

in a least squares manner, the quantity
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[C10e=01 2 e Gl ax - [og(+) - oy(0)]. (4.27)
0 L=4a o M

This leads to a different, though similar, set of equations

for the ai, viz,.

L t
2 C'ctal = D' (1428)
where
0 0O
C'kt = C'ik = /Oj-o po(T-x)g (x)a (T)ax ar,

(e
D'K = jo[pI,OS(T) = PI,OM(T)]QK(T)dTo

In general these values for the ap willl differ

from those obtained Ffrom (25) with T = o, However if

o —alTl’

pI(T) is of the form 3 e then calculations similar

to those in the appendix show:

1lim Cky = 1im C'yy = 1, i=x%k,
O—co COl—>00 :

=O, iﬁk;
1im Dy = 1lim D'k
Ol—00 O—00

i.e. the values of a, from (28) approach those from (25)
as o approaches oo,

Also, if the input is "whitened", then Cxiy and C'ky
will be small for i #Z k compared with their value for 1 =Xk,
and the computation of the a; from (25) or (28) will often
be assisted; the off-diagonal terms in the matrix (Cky ) or
(C'kt) being small compared with the diagonal terms,

Le1.1 Correction by iterated cross correlation

As mentioned above the results of theorem l may be
applied to the problem considered in this section, Providing

Is(t,w) approximates white noise, a good estimate of the



704
correcting weighting function Wc(t) may be found by cross
correlating the input IS(t,wL) with the difference between
the two outputs Os(t,wL) and OM(t,wL). The corrdction
to be made to the model weighting function is then

pI,OC(t) + pI,OC(-t)’ t >0
where
t) = t) - t
pI,OC( ) pI,OS< ) pI,OM( )0

After this correction has been made the model weighting

function becomes

WM(t) + pI,OC(t) + pI,OC<_t)’ t 2 O,

go that there remains an error
ig(t) = W (e) = [pg oalt) + Py ool-t)1s t >0,
= Wc(t) = [pI,OC(t) + pI,OC(_t)]’ t 2 O

In principle this procedure may be repeated; it is
the purpose of the next theorem to determine conditions
which ensure that such an iterative procedure converges.

The particular question answered is: "how closely must
Is(t,w) approximate white noise in order that the iteration
will corverge?"

Theorem |

Let Is(t,w) be a random process of type Xy having
autocorrelation function pI(T) and spectrum SI(w) such
that

SI(w) < 2, all w,
Let the weighting functions, ws(t) and WM('b), have the

exponential form (3+1) and correspond to the system and mod el
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components whose inputs are realisations of Is(t,w).
Let WM(1)(t)’ WM(2)ﬁﬁ9"WM(n)(t)"" be a sequence of

model weighting functions such that

WM(‘1)(t) = WM(‘C)

Wy (net ) () = W) (8D + A1 0c(n)(t) + P1,00(n)("t)s t >0
= 0 Iy t < 0;

where

Oc(n)(t,wt)= j:is(t—x,Wg)WC(n)(X)dx

and

WC(n)(t) = WS(t) - WM(n)(t).

Then

iiﬁ WC(n)(t)= 0 , 11 t,

Proof Let the frequency response function corresponding to

each W )(t) have real part Rn(w).

c(n
Then, as in theorem U,

pI,OC(1)(t) + pI,OC(1)(-t) = f:[pl(t-x) + pI(t+X)]WC(1)(X)dX

has Fourier transform
SI(w) 2Ry (w),
which is rational, Therefore for t > 0, the expression
P1,00(1)(%) *+ P1,00(1)(~)
has the form (3.1); hence
lhy(ay(8) = ty4y(8) + [Tor(tm) + py(bam)Igpy(x)ax, &> 0,

also has this form,

Similarly each of the WM(n)(t) is of the form (3¢1)e
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12,

chz)(t) = WM(,‘)(t) + j:[pl(t—x) + pI(t+X)]WC(1)(X)dx,

= 0
then

Wc(z)(t) = ws(t) - WM(Z)(t)

n

=0

So, as in theorem UL,

Rz (w) = Ry(w) = Sp(w)Ry(w)
= Ra(@)[1 - 8y(w)].
Similarly
Ry, (@) = Ry(@)[1 - 8p(w)]

Re (@)1 - 8 (@))%

»

Wc(1)(t) = j:[pl(t“x) + pI(t+X)]WC(1)(X)dx,

’

ct
W

(@)
w

Now, for a type X, process, SI(w) > 0 and therefore for

this process
0 < SI(ou) < 2,
i.e- I1 e SI(w)‘ < 1.

Hence
lim Rp(w) = 0, all w,
o0
1 iwt
Also WC(n)(t) = 5m Fan(w)e dw

=00

and therefore

2m

I iwt
lim Wc(n)(t) = = 1lim / oRp (w)e ¥ aw,

-0 N=c0

-0
(>8]

= 2 | Lim 2Ry (w)e

>0
=co

iwtdw

’

t » 0,

t » 0,

t > O,



=O, t?O.
Since; for all n,

Wc(n)(t) = 0, t < 0,

the theorem is proved.

In agreement with the assumptions of this chapter, the
strict application of theorem 7 demands the impractical reguire-
ment that the length of data available for model checking is
unlimited, Nevertheless this theorem gives some hope that
quite large departures from a flat spectrum may be tolerated
if the records are not too short and several iterations are
possible,

4,2 Nodel correction when generalised functions are involved

If the correction Wc(t) contains generalised
functions then it will usually be necessary to modify the
procedures discussed in section L.1. Thus referring to
figs., 7 and 8 and the related discussion it is possible,
under these circumstances, that the expression

L[Os(t,WL) - OM(tyWL)]
may not exist,
A suitable modification, which will overcome this
difficulty, is illustrated in fig. 10, where the transforma-

have the same meaning as in
fige 7 o With this modification the methods discussed in
1.7 may be used to estimate the weighting function correspond-
ing to the product transformation T4°T. . The correction to

the model is then the product of the two transformations L
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Mg (t wi) Ig (v, wi) os(t,wi)

Oy (t.wi)
Mu (t,W‘L) L1. o TM f——
Oc(twi‘)

- l_,1 1 TC.

FIGURE 10. ILLUSTRATING MODIFIED APPROACH TO MODEL CORRECTION WHEN THE
CORRECTING TRANSFORMATION MAY CONTAIN GENERALISED FUNCTIONS
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and L,°T The weighting functlions corresponding to both

C.
these transformations are known and the required correction
may therefore be made, If it is necessary to estimate

wc(t) explicitly it may be found as the convolution of the

weighting functions corresponding to I and La'TC°
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CHAPTER 5

STATIONARY LINEAR SYSTEM AND MODEL
ERROR FREE RECORDS OF FINITEH IENGTH

In chapter 4 the length of the records available for
model checking was assumed to be unlimited. This assumption
is now relaxed and the more practical case of finite length
records is considered; all the other assumptions of chapter_u
are retained., The case of one set of records of length Tp
is first considered.

The following three difficulties arise from this
restriction on the length of the records.

(1) Since the output of the model, OM(t,wL), to an input,
Is(t,wL), applied at time to and removed at time
™ + to, is
t-to
jo Is(t-x,wt)Wﬁ(x)dx, to <t < Th + toy

then no useful estimate of the weighting function

We(t) = Wglt) = Wy(t)
can be expected for values of its argument greater
than some Tn which is less than Tne If accord-
ingly, no correction is made to the model weighting
function Wﬁ(t) for t > Tp, the corrected model will,

due to this fact alone, have an error in its output at
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time t of

L“&S(t~x,wt)wc(x)dx. (5e1)

Consequently even though
wm(t) = ws(t), 0< t< Ty
the adequacy of the corrected model, as measured by

A(t), (2¢1) will not be better than

lmlabl(fux)wc(x)wc(T)dxar z

2
T0s
where T%S = fZ[ZpI(T~x)WS(x)WS(T)dxdT.

1 ’ (542)

The expression (2) can not be calculated
exactly without knowing Wc(t), Ty € t < 03 but in
practice a useful estimate of the value of Tp,
which ensures (2) has an acceptable value, may often
be found from known characteristics of the physical
component, its inputs and outputs, For example the
design of the physical component will usually have
entailed some consideration of the spectrum of
Is(t,w) and therefore some information on which to
base an estimate of pI(T) will be available,

A conservative estimate of Wc(t) for this purpose
would be WM(t), the known welghting function of the

model, and the expression

oo = foZpI(T—X)WM(X)WM(T)dXdT

may be used as an estimate of 0%8. It will be
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assumed, then, that a useful estimate of Ty, based

on the expression

lulmbl(r-x)wm(x)wM(T)axdr

ou

14 (503)

may be made,
Some length T4 at the beginning of the record of
OM(t,WL) must be discarded, since irrelevant trans-
ients will be set up when the record of Is(t,wL) is
first applied to the model; some settling iime (4]
must be allowed for these to die out, Zero time will
be taken as the time of commencement of an acceptable
output from the model after discarding this length T4,
The output of the model at t = 0 will then
differ from the output which would have resulted had

the complete input prior to t = 0 been known, by

im3(~x,wh)wm(x)dx. (Felt)

!
m

The square of this gquantity averaged over all Wi,
i.e, all realisations of Is(t,w), and divided by

2
Tom

is
ialfbl(THx)WM(x)WM(T)dxdT
1t
m-m

a ; (545)
o om

which may therefore be used as a measure of the signifw
icance of this effect, The value of this expression

will usually decrease rapidly as t increases from



79

zero since the lower limits of integration become
Th + te

The expressions (3) and (5) are identical
apart from Tp and Tf, the lower limits of integra-
tion; further, the total length of record available
for model checking will usually be much greater than
Tmoe In general therefore it will be of no practical
importance and of some theoretical convenience to take
Tn = Thoe

(iii) Estimates of autocorrelation and cross~correlation

functions based on records of restricted length will
not be exact, Such estimates however must be used if
the techniques discussed in previous chapters are to be
applied to model correction; they will lead to an
estimate, Wg(t), of Wc(t), the usefulness of which
will depend on the length of the available records.

The next section is concerned with the case of
a whitened S.G.M, input, The relation between the
adequacy of the corrected model and the length of
record availlable for model correction is investigated.
The results obtalned may easily be extended to cover
the case of any type Xy; input and this is done in
section 5.,2.

bl __Gauss Markov input.S3ingle sample

Let the system input be a realisation of an S.G.M.,

Mg (t,w), whose correlation function pMa(T) = %e_alTl,

let the correcting weighting function Wc(t) contain no

and
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generalised functions, Because of the residual error,

Wc(t) - WE(t), the adequacy, A(t), of the corrected model

is in this case
jojopMa(T;x)[Wc(x) - WE(X)][WC(T) - WE(T)]dxdT ‘
1 - (546)

o8

Setting WE(t) =0, t>Th, and using theorem 4 to estimate
Wc(t), Ot Ty, gives

Wip(t) = Py, 0clt) + Pyg,0cl-t)s 0<%t <Tn,
where

Oc(t!wl) . Os<t’WL) - Om(t’wL)'
From the data sample values RMa,OC(T’WL)’

R (=7ywy ), of these cross-correlation functions
Moty OC
pMa,OC(T) and pMa,OC(—T) may be calculated for some values

of T. For example

T4 |
RMa,oc(T’WL) = %I jo Mg (t=T,w, )0 (t,w )at (547)

where T4 1s the effective length of the record after dis—

carding an amount Tf = Tp;
i.e. Tﬁ =Th =~ Tho
For 0< T < T, the expression (7) will be used as an estimate

'l 3
of pMa,OC(T) and accordingly the function RMa,OC(T’WL) is
defined such that
’ —
RMa,OC(T’WL) = RMa,oc(T!Wb)y 0<7< Tny

(5.8)

=0 T > The
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However, as shown in theorem A.1. in the appendix, 0., OC(_T)
14

decays like e_“T for T > 0 and hence the definition of

Rﬁa,OC<T’WL) is completed by
R]\IIIOC,OC(-T’WL) = RMa,OC(-T’WL)’ 0 <7< T(a),
(5+9)
=0 T > T(a),
where T(a) approaches zero as o tends to oo Actually
an effective length T4 + T(a) of data would be required in
order to compute Rﬁa,OC(T)’ (o) < T & Tny, using (7)s
However, since T4 >>> (o), the difference between the

expression (7) and
TE=T (o)

TK’%“TTE7 fo My (t=T,w, )0 (t,w )dt

has no practical or theoretical significance here.

The expression

fo: oy (=)W (%) = Wg(x)[We(T) = Wig(r)laxar  (5.10)

is the only part of (6) which is affected by WE(T).
Apart from the constant U%S this expression is equal to
the square of the inadequacy of the corrected model,

Since

We(7) = Ry oo{Tam) + Ry go(=Tswe)y 7> 05 (5011)
the expression (10) depends on the particular realisation,
Wy, which was used for checking the model. The expectation
of (10) is then, apart from the constant T%S' the mean
square inadequacy of the corrected model, where the average

ig tasken over all the realisations which may have heen
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available for model checking. The value of this expectation
will depend on T§; a small value will correspond to an
adequate model, It is useful therefore to study the varia-
tion of this expectation with TA.

Substituting the expression (11) for WE(T) in (10)

and teking the expectation ylelds

E[j:j:'OMOC(T_x){WC(X)—[RI’IIOC,OC(X’W>+R]‘&C£,OC(-K’W)]}EWC(T) -
—[Rﬁa’OC(T)w)+Rﬁa’OC(-T,w)]}dx&r]

_-oo - T (v V| RY { - -
= || oual TR IEL 1)~ 06 2o+ R o5 T 1P (7)
~Int
[RMa’OC(T,W)+Rﬁa’OC<—T,W)]3]dXdTQ
(5+12)
Calculation of the required expectations is trivial apart

from terms of the form

N ! ‘ol

E[Rjiq, 00(¥s " Rity 0o Tr¥) s (5.13)
which for, 0 < X< Tpy, and, 0 < 7 < Ty,

= B[Ry, 00(%s")Ryq, oc( oW1

T4 L
= E[.(F 1 fon/OnMa(ti“x’w)oc(ti’w)m“(tz-T’w)oC(ta ’W)dtidtzj .

(5a1L)
Since the random variables My.(ti-x,w), Oc(ti,w), Mg (to=7,w)
and OC(tz,w) have a joint normal distribution,a well known
result, Bendat [27,P.288], enables (14) to be written
Th Th
5 [ | Py 00tia, 00 TP ta=taramdegg( et ) ¢

pMa,oc(tz‘ti+x)PMa,oc(ti‘tz+7)dt1dtz- (5415)
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The important case is that of a "whitened" input and
accordingly the 1limit of (12) as a tends to o will be
considered here, The following results are Jjustified by the

work in the appendix.,

Lin fojo Pye T-XVELW(x W g( 7)) axar

_ j':[wc(x)]o?ax. (5.16)

00 (OO
Lim jojo pMa(Thx)E[-WC(X)Rﬁa’OC(T,W)]dxdT

Ol=»00

Tn
im = - ‘ dx
lim ]o j: pMa(T X)WC(X)pMa,OC(T) ar

- fzmtwc(x)]zdx. (5.17)

"0
im - - . ! -T dxaT
i - ["[" oy (WG (0RY oo ~rym)laxa

()
lim - ]0 fz pMa(T;x)Wc(x)pMa,OC(-T)dxdT

Ol=>00
= 0. (5.18)

Lin - jo]: O T )BLRY, o (42, wW)HG(T)]arax

Ol—>c0

_— jzm[‘.ﬁlc(x)]zdx. (519)

Iim - f:]o pMa(Thx)E[Rﬁa’OC(—x,w)WC(T)]dex
= Oo (5'20)

. °° - ! ‘
gig fZ/O pMa(T x)E[Rﬁa,OC(X"W)RMOL,OC('J—""’)]G‘XdT
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is made up of three terms corresponding to (15):

(i) +the limit as o = o

m (Tn 1 'Tr,'l TI”)
i fo P TR /O fo Pri, 06 (X IPyq, 0c( TIatadte daxaT

O=»00

m m .
p [2 fz Pual T¥)Pyq, 0c(*)Pyq, oc(TIAxAT

j:?[wc(x)]zdx; (5.21)
(ii) the 1limit as 2 = o

m (Tm b (Th ,
jz jo PMQ(T-X){(ﬁ%jEJz jonPMa(ta-ti-T*X)Poc(tz-ti)dtidta}dXdT

=T 0-%05 (5-22)

(iii) the limit as a - o
T (T p i
jo jo pMa('T'-‘X)W jo jo pMa’OC(tg-‘ti-i'X)PMa’oc(ti-‘tg+7-)dt1dt2d'rdx

Tn T
. T2 jo jO(Tf’V"ta )Wc(q-_.ta )WG(T-l-ta )dtad'ro (5023)

o)
o T-x)ELRy Ry, ~-Tyw)]axar
O(:;g j:./o pMa( x) [RMOC,OG(X’W) MOC,OC( ,W)]

= 0, (5.2h)

(ve]
| ’ - ' Ylax
Lim ijo pMa(T X)E[RMa,OC( X’W)RMa,OC(T’W)] ar

= O, (5425)

CO
Tim fwj pMa(Tﬁx)E[Rﬂa OC(AX,W)Rﬁa OC(-T,W)]dxdT
O—o00 4 O ’ '

= 0, (5426)

The limit as o tends to o of the expression (12) then
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becomes, after dividing by T%Sp

T f% Tn T
C 2
'ri\-% + V%S(Tﬁ & j f (TA~ts )WC(T"ta )W (T+ts )dts AT
+ E%g L Wcz(x)dx. (5.27)
m

In order to study this expression further some
assumption must be made concerning the unknown correction
Wc(t). The fellowing is a simple assumption which seems
to lead to useful results, Assume that the error, Wc(t),
in the model decays with the same time constant as the weight-
ing function of the model, Estimate, from the model, a time

y

constant Py which approximately describes the decay of

WM(t) and assume, for this purpose,

Wo(t) = ke 2%, k>0, a>0. (5428)
Then
2 _ _1_ 2 kz
Toc = Mim 27r/ (cx“+cu3) (®az) W
~—00
k2
=33

whence, writing aT, =p , and aTfA = g, and substituting

in (27) yields

Tn 7
R " 2 L=2p
oC p 2a3 [ j . 5 —aT ats _—aT_-—ats k? e
== T+ e (Th~ta) k2e " e %e e Ats ATy =g~
Tos @ %0s¥ Jo o Thg 2@
= 0OC [ B + ﬁg 6—28‘7'(.1\'!]7 _ 1:"‘)(17' + e™2P ]
os 2 T Jo
(o T -2a7 -2aT -2aT -2aT
0C ua3rh ,  Te e 1,72 2e -2p
=a'%g{§+?g DA (P + )+’ G+ T ) 1+
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1 .
"2'-795_"’%)];

o°
==L oL 22y d - E - % -

Tos 4 P 2pa P
(5229)
which for q >> p > 1 1is approximately
T8¢ y
he] 1o e2p(_ 4
;gg q L1+ D~ ¢ ( p)]
Toc
- 20 [ Bl e-ep], (5430)
08 q

For fixed q, i.e. fixed length of record, differentiation
of (29) with respect to p shows that (29) has a minimum
value if

3
1 4+ e=2P[L4p - g%— - 2q] = Oy

or for q >> D
p = = 1n(2qa). (5.31)
As an example, if the length of record available,

T4, Wwere 189 then T, should be chosen about 2;1 and

the expected value of the square of the inadequacy of the

corrected model, as measured by the expression (29), is about

2
4 %oc i
25 73q

The value of (29) is, in many practical cases, not
very seasitive to that of p. Thuszfor g = 100 and

p = 2 the value of (29) is 0,047 Fgg‘whereas for q = 100 and
0S

e
p =3 it is 0,042 =

08
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FIGURE 141. ILLUSTRATING MODEL CORRECTION WHEN SYSTEM INPUT IS A
REALISATION OF A TYPE Xy, PROCESS
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5,2  Input derived from Gauss Markov processs Single sample.

The case of a system input Is(t,wt) which is a
realisation of a type X4 process is considered in this
section. Such an input may be generated by operating on a
realisation, Mg(t,wy), oOf an S.G.Me, Mg(t,w), having
autocorrelation function % e_alTl. The situation is
illustrated in fig. 11; the transformations L and Iy

being chosen so that

Is(tﬁwt )

]

Lo [Mg (tywy )]
and My (t,wy ) = L [Is(t,wm)].

The existence of these transformations was discussed in
chapter 3.
If the parameter a is chosen large enough then,

as illustrated in fige. 14, it may be expected that the
expression

Py, 0cl™) + Prger, 0cC=T) » T2 Oy (5¢32)
will be a good approximation to the convolution

Wy () * Wy(7); (5433)

where W,(7) is the weighting function corresponding to the
transformation 1j. As explained previously the frequency

response function corresponding to Ly 1is
2222 y(w); (5434)

where y(w) P(@J is.the speetrum of_IS(t,w)-andfw(w) is free
of poles and zeros in the lower half plane, It follows from

(34) that, in general,
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lim Wy (T) = -23;; jmw(w)ei‘"dw. (5435)

C-»00

The problem of estimating the convolution (33) from
a finite length Tp, of the realisations My (t,wy ), Os(t,wt)
and OM(t,WL) is identical to the one discussed in the
previous section; providing Wc(t) is replaced by the con-
volution

Wy () wc(t).

With this change the expression (27) applies to the present
case., The value of the parameter "a" used in the assumption
(28) must now be based on the convolution of WC(T) with the
expression (35); this value will, in general, be smaller than
one based on WC(T) only. The results of the analysis foll-
owing the assumption (28) show that the smaller the value of
"g" the greater must be the length of record, Tnh, to give
the same mean square inadequacy (27) in the corrected model,
It may be concluded that, in general, the "whiter" the input,
IS(t,w), the smaller is the length Tpn required for the
same improvement in the model.

The foregoing approach to the problem of this section
leads to an estimate of the convolution (33) from which
Wc(t) may be estimated if this is required specifically.
On the other hand the relation

To = LIL.[Tq 1]
shows that the correction to the model may be incorporated as

the transformation corresponding to (33) in series with the

known transformation L, If it is necessary to estimate
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Wc(t) directly the method discussed in section 4.1 and
illustrated by fig. 7 may be used. In this case WC(t) is
estimated by correlating My (t,wy) with
Op(tywy) = Llog(t,m) = Oy(t,wi)] (5436)
providing the latter exists,

The mean square inadequacy of a model corrected in this

way is, as before, the expected value of

E%E j:ya’pI(T—X)[WC(X) - wy(x)][w (7)) - Wy T)laxar, (5.37)

0
where
- nf ! _
Wp(t) = RMa,OL(t) + RMa,OL( ) ,t > 0,
= O t < 0;
{
n
Rﬁa,OL(T) = %ﬁ jo My (t-Tyw, )07 (tyw )at, O <7 < Tp,
. ’ T > Tm;
TA
= O T > T(Of.),

The 1limit of this expectation as o ‘tends to oo may
be derived in a similar way to the expressions (16) to (27).

It is again the sum of three terms, ViZ.:

Lmlmﬁl(T-x)wc(x)wc(f)dxdf; (5436)
T
TT§5? fo pp(¥)(Tn=y ) (Th=3)P1(¥)a¥ s (5437)

Z'T'f?fzm 2mp1('r-x) fZ(TA—y)vvc(x+y)vvC('r-y)dydxdr. (5.38)
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The contribution (36) is due to the truncation of WE(T) at
T = Tye As shown in the appendix, the expression (37)
approaches %%-T%C as T§ and Tp approach infinity in
such a way that %ﬁ remains finite; i.ees, for large Th
(37) may be approximated by %ﬂ'”%c' There does not seem
to be any useful simplification of (38),

53 Several input and output samplesg
If there are several input and output samples available
for model checking they may be treated in the following way
which is very similar to the previous treatment for one sample.
Let the inputs to the linear system TS whose weight-
ing function is of the form (3¢1); i.c
Wg(t) = J%iPJ<t)eSJt , Re(sy) < 0, t 30,
(5439)
=0 t < 0Oy
be realisations of an S.G.Ms, Mg (t,w), whose correlation
function is % e-altl.

Let there be a model, T of this

M’
system, whose weighting function WM(t) is of a form similar
to (39). Suppose there are avallable 1 sets of records,

the ith set consisting of a finite length Tny from the
realisation Mg (tswy) and the corresponding outputs,

Os(t,wL) and OM(t,WL), from the system and model, Consider
the case of large o where the error in the weighting

function of the model is estimated as

1 1
Wig(7) = (3 T )™ 3 ThilRyy oo(Tom) + Ry oo(=mow )l
(5410)

where as before:
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md
1 [t .
Rl’I[oc,OC(‘T’WL) = T fo My (t=74wy )oo(t$WL Jat, 0 < 7 < Ty,
=0 P T > Tns
' 1 At
= 0 ’ T > T(CX);
Iim T(o) = 0,
Olr»00

T4y 1is the length remaining of the ith

sample after dis-
carding sufficient to ensure that the effect of transients
set up in the output, OM(t,wL), is negligible. It will be
assumed that T4y > Tny all 1.

The expectation

E[[Z]: pMa(T“X)[Wc(X)'WE(X)][Wb(T)‘WE(T)]dXdT (5441)

must be calculated, This calculation is similar to those

previously carried out except there are now terms of the form

OO
E[f:]o pMa(T—X)TﬁLTﬁJRﬁa’OC(T’WL)Rﬁa’OC(X,WJ)dxdT] (5.442)
00 [CO
) /o/o Pyl T=X)TALTASBIRY 0o (ToWe Ry (%W Jaxar]

The symbols w; and w; are here to be interpreted as
points ir. two similar probability spaces Wi and Wjy. The
expectation is to be taken with respect to the product space.
For, 0 <x < Tpy and, O < 7 < Tp, the required expectation

is given by

E[Rﬂa,OC(T’WL)Rﬁa,oc(x’wu)]

1 Tl’{l!. I-T-‘rllJ
=E[m[0 Mg (ti""rywt )OC( BasWy )dtifo Mg (tz =Xy WJ )OC(tz Wy )dtZ]
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Tht (Ths
TnLTnJ[ f‘n [Ma(ti-’f'swn)Oc(ti,Wn)Ma(tz-x,wu)oC(tQ,WJ)]atidt2

1 Tr’leTl"lJ

= TZLTHJ 0

Pria, 06 T )Pye, 0 (%)t dta

= pMa,OC(T)pMa,OC(x); (54143)

since the random variables defined on W, and W; are independ-
ent for 1 #£ J.

Hence the expression (42) equals,for i £ J,
Tm (Tm
o { 4 .
fz fz Paua{T=XITALTAS Py 06{ TPy, o (X )ATAX S (5elk)

The 1limit as ¢ tends to o« of the expectation (41) now be-

comes the sum of the following terms,

Lim ] jfp (r=x)w. (x)wW.(7)axar
oo Mot C C

Ol—»00
- ]“hg(x)ax i (5.45)
0
. i m
- 1m 2 [T oy (TG by (o, ool - axar
= =2 ijwz(x)dx- (5446)
0 C
1 _ T (T 11
Lin( ® Thi ) fz jo Pual T 2 (3 TALTAI Py 00 T)Pyg, oo ()} dTax
T
- f 2,(x)ax. (5447)
0
(, 2 [T (| 2 [T g = 554— 2ce (5.48)
22,707 [ 13 mau-t g re gy agar (5.19)

The three terms (L5), (46) and (47) together contribute
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o0
j W‘é(x)dx;
T

m

i.es the amount due to the truncation of WE(X) at X =Tpe

The fourth and fifth terms arise only from the expectations
! P .
E[RMa,OC(73WL)RMa,OC(waj)] for i = J

and are therefore the sum of 1 similar expressions, one for
each samples,

As in the case of one sample this expression may be
studied further by making the assumption W(t) = ke Y

and writing
aTn =D and
1
@ L§1 TAL = 4.

The expression (41) when divided by ¢%g then becomes

S|
«Q

2
0
0

21 + Lo_e2p,l-2 L L D] (550

2pq a 4da 2pa P

3
w2

Lol B

In most applications the inequalities a >> p > 1 and

g >> 1 will hold and in such cases (50) is approximately

0—2
oc /p_+ 1 -2p
o:%s ( q + € )o (5051)

For fixed g the derivative of (50) with respect to p 1is

zero if

_ 2
14 e %Pl - g%f— -2q) =0

ie€e D = = 1ln 2q. (5452)
Comparing these results with the results for one
sample, (30) and (31), it appears that in general there is

little to choose between 1 samples of total effective length
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T4 and one sample of length THa In the former case,
however, more of the total length of record must be discarded
because of transients set up in the output of the model,

The above discussion assumes that T4 > Ty for all
samples, Only rarely, if at all, would samples of such small
length that TAy < Ty Tbe used; the analysis could be extend—
ed to cover such cases if such an extension were useful,

5.l Correction by iteration

The discussion in the last section related to the
case where all the available records were used to estimate
the correction, Wc(t), to the original model, An altern-
ative procedure is possible, viz. each set of records is used
to adjust the model before proceeding to use the next set,
If there are 1 sets of records there will then be 1 success~—
ive corrections made to the model, The convergence of such
an iterative procedure is now discussed in the case of a sys-
tem input, My(t,w), which is an S.G.M. having autocorrelation

o —a|7]

function 5 e and o 1s arbitrarily large. It is

agsumed that each set of records ig obtained independently and
the parameter Tp is the same for each iteration; the method
described at the beginning of this chapter could be used for
determining a value for Tpe.

let

'/w ch(x)dx = K,
i

m

and let an effective length T4, of the input Mg(t,w;) be
used in making the ith adjustment to the model,
Then according to the expression (27), the mean square

error in the output of the model after the first adjustment,
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when averaged over all possibilities for wy 1s,

Tw T
Tﬁ o) m
s T 4. O%C + zTKi ;2 jo fol(T% i—ta )VVC(T-tG )‘Nc('r'FtB ) l dta d.’T'-l-K

Tm T .
—ﬂ— TR + TM [o j W (T=t3) + W’é(7'+t3)dtad7' + K

N

ni

Tn (2T
T‘?—- Tjoj Wz(y)dydv- + K

sz'-l?iz—crgcafx.

Denote by ¢%01 the mean square error in the out-
put of the model after this first adjustment and consider the
situation after the second adjustment,

The mean square error in the output of the model
after this second adjustment when averaged over all poss-—
ibilities for we 1is

T

L. g2
< 2 47 Toc

+ K.

This expression when averaged over all possibilities for wy
is
[
<2 —%—[2 o2, + K] + K. (5453)

Thus the mean square errcr in the output of the model averaged
over all possible independent choices of the first 2 sets of
records is given by (53),

Proceeding by induction, after the 1th correction
to the model the mean sguare error in its output averaged over

all possible independent choices of the first 1 sets of

< oo 4 K(%=§E> (5454)

records 18
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2 . This expression

where J 1is the greatest of the

13

nt
,11.Ejas 1> o providing 0< j < 1.

(54) converges to

This iterative method should not then be used
unless T, may be chosen such that:

—2- -—
<?§h> < the required value of the inadequacy Aj;

0S8

2T
Tﬂ'<1all i.

However if, for example, T, may be chosen so that

K \? 1%
=] < 74,
(""os

T < #Thy, all i,
then the procedure should be satisfactory.

In some cases it may be useful to divide one set of
records of long length into two or more sets of shorter length
and use an iterative procedure. Consider for example the
problem discussed at the end of section 5.1 and take
aTh = q = 100 and aTp =p = 3. The value of the mean
square inadequacy after correction using this one set of
records was found to be approximately 0,04 G%C. The para-

meter K in this case is
/w W (x)ax

T

m

. -2ax
=f kae adx
2

a

. 2
0+0025 ooc®

il

The length T4 may be divided into 1 equal shorter

lengths, but at each division an amount Tp (say) must be
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discarded to allow for transients in the model and to
engure the records are independent, Hence the length

of' the shortened records will be

T4 = (1 = 1)Ty
1

and the parameter J will be

- 21Ty
Th - (1L = 1)Tq
21p
q-(1-1)p
I < N
= 903 - 31 °

The following table gives the value of the expression

(54) calculated for some values of 1.

Table 2.

1
al 2 1.—
Value of 1, J TOC + K(T:%;>

0,0630%
0,01%7%,
0,00%7% 4
0,0080%
0,008
0.0100%
0,010 4
0,025%
0,15 0}

O o~ o1 W N

-

Clearly there is a distinct advantage in dividing up this
long record of effective length T4 into four or five shorter
lengths and correcting the model by iteration.
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5,5 Corrections involving generalised functions

The work of this chapter may be extended to the case
of transformations TS and TM whose weighting functions
include the generalised functions ¢(t) and its derivatives.
It would be meaningless in such a case to consider an input
which is a realisation of an S.G.M., whose autocorrelation

function is % e'"Otl'rl

and then allow the parameter a to
approach oj; the mean square outputs E%Sfr%m and, probably,
T%C would also approach oo,

However the general case of an input Is(t,wt) which
is a realisation of a type X, process and for which the
mean squares of the corresponding outputs are finite, presents
no difficulty. The weighting functions corresponding to
the transformations Li'Ts, Li'TM, and Li'TC * ghown on
fig, 11 will all be of the exponential form (3.1)a
Accordingly the first method described in section 5.2 may be

used to estimate the effect of finite sample length on the

adequacy of the corrected model,
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CHAPTER 6,

STATIONARY LINEAR SYSTEM AND MODEL
RECORDS WITH ERRORS

In this chapter the effect of errors in the records
of Is(t,wL) and Os(t,w;) are considered, both in the
case where these records are of unlimited length and also
in the case where the length of the reccrds is finite,

The other assumptions of chapter L are retained,

The situation is represented in fig,12 where:

(a) Is(t,wt), the system input, is a realisation of a

random process of type X;i;

(b) T, and T, are the system and model components;

8 M

(e) NI(t,wL) and No(t,wL) are realisations of random
processes of type X3 which appear as errors, or
noise, in the recordings of IS(t,wL) and Os(t,wi);

(a) by and b, are constant bias errors introduced in

the recording.

6s1 Records of unlimited length

Suppose, first, that the records are of unlimited
length, the weighting functions corresponding to TS and TM
are of the exponential form (3.1) end the bias errors by

and bo are both zero.



Ig(t, W)

OS (t.WL)

RECORDER

Ig(t, W)+ Ni(t,wy) +og

RECORDER

Os(t,wy) + No(t, wi)+bo

om(t, wy)

FIGURE 12. BLOCK DIAGRAM ILLUSTRATING RECORDING ERRORS
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According to theorem 6 the error in the weighting
function of the model is the solution of the Wiener~Hopf

equation

jOpI(T-x)W(x)dx = pI’OC(T), T3> 03

where pI,OC(T) is the crosse.correlation function of
Is(t,wL) and the difference, Oc(t,wL), between Os(t,wt)
and OM(t,wi) in the absence of recording errors, However,
owing to the errors NI(t,wt) and No(t,wt) in the records,
neither pI(T) nor pI,OC(T) may be calculated exactly,
unless certain information concerning these errors is
available, If these errors are ignored and correlation is

carried out as before, the quantities

pr(T) + oyg (7)) + pp yz(T) + Ppgp(7) (6.1)

and

pI,OC(T) + 'ONI,OC(T) - /:PI,NI(T"X)WM(X)dX - j:pNI(T_X)Wm(X)dx

+ oyz,w0(™) + P1,molT)s (642)

will be obtained instead of pI(T) and pI,OC(T)'
Clearly some knowledge, or assumption, concerning the correla-—
tion functions involving NI(t,w;) and No(t,wL), is
required.

The following assumptions, which are not unrealistic,
will be made in this section.

(2) It would be surprising if the process No(t,w)
were correlated with either Is(t,w) or NI(t,w).

Accordingly it will be assumed that
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P1,m0l™) = Pyr,mo(™) = ©- (6.3)

Since these are the only terms involving No(t,wh}
in (1) and (2) it follows that, under this assump-
tion, No(t,wL) may be ignored.

(b) For many recording devices it will be safe to
assume that the error in the record is not correl-
ated with the signal being recorded or with records
of other quantities, Accordingly it will be
assumed that

Pyy,1(T) = Pr,n1(7) = Py1,00(7T) = O» (644)

(e¢) It will often be satisfactory to assume the spectrum
of Ni(t,wm ) to be sufficiently flat that, with
negligible error,
j:[pNI(7~X)+pNI(-T-x)]Wm(x)dx = ksz(T), T2 03

(645)
where k® is the height of the spectrum of
Nl(t,w) at low frequency.
Consider now the case where Is(t,wL) = My (tywy ),
i.e. & realisation of an S.G.M. whose autocorrelation
function is % e‘a'Ti. For large o the correction VC(T)
mey, as before, be estimated by
pMa,OG(T) + pMa,oc(“T)' (7 > 0).
If the expression (2) is used as an approximation to this
quantity, there will, under the above assumptions, be an

grror of —kawM(T) due to the presence of the noise

NI(t,wL). The residual mean sguare error in the output of
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the corrected model will then be

00 (GO
jOjopMa(T-x)kZWM(T)kZWM(x)dex (646)

= k* +times the mean square output of the original model or,
approximately,

k%%, (647)

Since X2 ip the ratio of the power density of
l\TI(t,w) to that of Mg(t,w) at low frequency it will, in
most cases, be much less than one, The error (6) may then
be so small that it can be accepted; alternatively a know-
ledge of k® <would allow a simple correction to be made to
the estimate of W, (7).

A similar result is obtained if the input Is(t,wl,)
is a realisation of a type X4 process which is "whitened"
to an S.G.M, having autocorrelation function % e-a|T|,
before recording, As illustrated in fig. 13, providing the
realisations OM<t,WL) and L[Os(t,WL)] + No(t,wL) exist,
an estimate of Wc(x) may be obtained by cross correlating
the recorded "whitened" input, Mg(t,wy) + NI(t,wL), with
the difference between the recorded, "whitened" system output,
Llog(tsw )] + No(t,w,), and the output of the model,
OM(t,wL), to the recorded, "whitened" input. The result of

this cross correlation will be, under the above assumptions,

00
'DMOC,OL(T) - fOpNI(T"X)Wm(X)dJC;

where OL(t,wL) = L[Os(t,wb)] - TM[Ma(t,WL)]. The error
in the estimate of WC(T), due to the recording errors, is

then the same as that obtained for Is(t,wt) = Mg (t,wt)e



Is(t,wi)
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Os(t,wt)

Ca
-

RECORDER

L[ose, w)]+Nolt. w)

Mot wi) + Nj(t,wy)

RECORDER

om(t, wy)

FIGURE 13. INPUT AND OUTPUT "WHITENED" BEFORE RECORDING
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If the weighting functions corresponding to
'I‘S and TM in fig. 13 contain generalised functions then
the quantities L[Os(t,wL)] + No(t,wt) and OM(t,WL) may
not exigt, To overcome this difficulty a suitable trans-
formation Lz may be placed in series with TM gso that the
weighting function or the product transformation LZ'TM
has the exponential form (3.1). The output of the system
Os(t,WL) should then be transformed by the nroduct trans-
formation Is*L instead of 1 as shown on fig. 13. A
procedure similar to that described above will then lead to
an estimate of the weighting function corresponding to the
product transformation La'TM-

If the "whitening" is carried out after recording
then the transformation I, acts on the recording errors
NI(t,wL) and No(t,wL) o8 well as on the system input
and output, The previous results would still apply if
the recording errors could be replaced by L[NI(t,WL)] and
L[No(t,WL)]. However these two expressions may not exist
as realisations of a type X, process, in which case
corresponding practical difficulties will also arise; e€.Zey
if Is(t,w) has spectrunm SI(w) = [Tap-éfﬁgj]a and

NI(t,w) has spectrum (aﬁr{%1wg), the frequency response

a(B + iw)3
o + iw

so that L[NI(t,wL)] is not a realisation of a type X,

function corresponding to L will then be

process,
This difficulty may be overcome by modifying the

transformation L. One possible modification, which is
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illustrated in fig. 1L, would be to modify L to Ls such
that

Lol Ig( %) + Np(t,w)] = Ma(tyw); (648)
this will be satisfactory providing La[No(t,w)] exists.
Under the assumptions (3), (4) and (5), of this section,
the existence of an Is satisfying (8) may be shown in
the following waye The spectrum of the process
Is(t,w) + Ny(tyw) is the Fourler transform of its correla-
tion funection

prg(T) + Py yyp(7) + Py, 1(7) * opr(T)
which under the assumption,(L),of this section
= prg(T) + oyr(7)s

The spectrum of this sum is, therefore, the sum of the
spectra of Is(t,w) and NI(t,w) which may be written
(theorem 1) as the ratio of two polynomials in w? with
real coefficients and no zeros on the real axis. This
spectrum may, therefore, be factorised to the form Y(w)F(w),
where w(w) has all its zeros and poles above the real axis;
these poles and zeros are either imaginary or occur in pairs
of the form a + ib, and -a + ib, b > O, Hence, as
shown in theorem 1, ¥(w) may be written as the ratio of
two polynomials in (iw) with real coefficients.

Let L be the transformation whose frequency

1 o
Y(w) o + 1w

La[IS(t,wL) + NI(t,wL)] is a realisation of a process which

response function is then

exists and has spectrun



IS (1’,, WL)
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Os(t,wt)

RECORDER

RECORDER!

L3

La[0g(t, w)+ No(t, WL)]

Is(tw) + Np(e wi)

FIGURE 1L.

L3

My (t, WL)

| T My (e, w0)]

INPUT AND OUTPUT "WHITENED" AFTER RECORDING
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WS |, ey
L W@y & F
0£2

=T

Hence this trensformation Ls satisfies the equation (8),
As illustrated in fig. 14, the output of the system,
after recording and transforming by La, is
La[os(towt) + No(t9wt)]-
Assuming this expression exists it is equal to
La(TS[IS(t:WL)+N1(t9WL)])+IB[NO(t:WL)]“1B(TS[NI(tpWL)])
= TS[Ma<tle.>]+L3[N0(t9WL)]"‘Ls(TS[NI(towl.)])- (649)

The cross correlation of the input to the model, Mg (tywi )
with the daifference between this expression (9) and the
output of the model may be written

Py, 0T * Pa,n2{T) = Prt, w3 T) 3 (6410)
where, for brevity, the notation,

OL(taWL) = (Tg - TM)[Ma(t'WL)]i

Na(tyw) = La[No(tyWL)]y

Na(tywm ) = IB(TS[NI(tsWL)])’
has been introduced.

nder the previous assumptions (3), (4), (5), that
various cross correlation terms are Zero, the expression (10)
becones

pMa’OL('r) - pN’M('r)
= pMa,OL(’r) - pN,Nh(T) - pN,N5('r); (6411)

where,
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]

N (tywy) Ls[NI(t9WL>]:
Ne(tywy) La(TM[NI(t:WL)])s
Nﬁ(tlwﬁ) e IB(TC[NI(tiWL)])O

In order to proceed as above the correlation function

i

pNI(T) must be known and therefore the expression pN,Nu(T)
may be calculated and allowed for in (11)s The third term
in (11) involves the unknown transformation T,, but as
shown below an iteration process such as that described in
theorem 7 will converge.
After allowing for pN,Nh(T)’ the correction made
to the model weighting function is
P, onlT) + P, 0nl ) = pN’N5(T) - PN,N5(“T)’ T > 0,
so that the error remesining is
Wo(7) = 'OMoc,OL(T) - PMQ,OL(-’P) + pN’N5(T) + pN,N5(—T),
T > O
The real part of the Fourier transform of this gquantity is
R(@)[1 - () + S(@)]
where R(®w) is the real part of the frequency respcnse
function corresponding to WC(T). An argument similar to
that used in the proof of theorem 7 now shows that this
iterative procedure will converge providing
11 = Sa(®) + Sy(@),]< 1 (6412)
Since Sg(w) - SN(w)

L) Sy (w) :
S (w) SNiGE%7+ @) Se ()

S, 5 (w)
«(@) (ENI(E) +_§i(w)>
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the condition (12) is theoretically always satisfied,

6.1.1 Records with blas errors

A common type of recording error is a constant error
or bias. As shown in fig. 12 the records of input and out-
put are, in this case, of the form Is(t,wt) + by and

Os(t,wl) + b, where b; and b, are constants, In the

0 0
case Is(t,wb) = Mg (t,w;) an estimate of WC(T) based on
the correlation of Iq(t,WL) + by with
Og(tywe) + by = TM[IS(t,WL) + bl will 1ooe
. 2
Pric, 00(T) * Py, 0c(=T) + 2brbo = 2Pg jOWM<X)dx‘
Since the length of each record is unlimited then each bias
may be determined and an allowance made, If this is not
done then WG(T) as estimated will, due to bilases, be in

error by a constant, Proceeding mechanically this will

produce a mean square error in the corrected model of
o0 00
bajoj Pyt (r=x)dTax (6412)
o Mo

where b 1is this constant error. This expression is not

finite because

prMa(T—x)dx =1 -~ %e g T2 0.
0

However in practice the estimate of WC(T) would be truncated
so that this estimate is zero for 7 > Ty (say) and the

expression (12) then becomes

Ty Tn
szo jo pMa(T—x)dxdT, (6413)

which is finite and approaches 12T, as « approaches e
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6,2 PFinite length records with errors

In this section the work of chapter 5, dealing with

finite length records, is extended to take asccount of errors

in the records, The case in which the following assumptions

hold, is considered in detail.

(a)

(v)

(a)

The system component TS and the model component
TM both have weighting functions of the exponent-
ial form (3e1)e

The system input is an S.G.Me Mg(t,w) whose
autocorrelation function is % e-a‘Tl.

One set consisting of finite lengths, Tn, of
recordings of the realisation Mg(t,wy), the
corresponding system output, Os(t,wL), and
model output, OM(t,WL), is available for model
checking., The length of the record of OM(t,wL)
is reduced to Tn'’ when sufficient to allow for
transients has been discarded.

The errors in the recordings are portions of
realisations of type Xi random processes
NI(t,w) and No(t,w) together with small
constant biases. These biases vary with each
realisation in such a way that for every choice
of Jjis Jo and Js the normal random varlables
M«(tJ:uW)p NI('th,W), No(tjasw)o bI(W): bO(W)

are independent and have zero mean, This assump-
tion, which is similar to that made in section

(641) is reasonable in many practical cases.
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(e) The correlation functions pNI(T), pNO(T), and

: 2 2
the variances 031y 03 gs 8Ir€ known.
The records available for model checking are, then,

finite lengths of the realisations

Mg (towt ) + Np(tow) + br(wi), (641L)
TS[Ma(tsWL)] + No(t;WL) + bo(WL), (6415)
and TM[Ma(t:WL)] + TM[NI(tyWL)] + TM[bI(WL)]y (6-16)

for one realisation, wi, of the random processes

Mg (t,w), NI(t,w), bI(w), No(t,w), bo(w). For the present
purpose bI(w) and bo(w) may be considered to be random
processes whose realisations are constants, i.e. independent
of t. It will be convenient to consider the vector process
having realisation

Ma(tiwti.
NI(t:Wi>
bI(tsWL)
§<tywt) = Oc(t,WL)
No(t,WL)
bo(tywt)
NM(t:WL)
bM(trwh)

(6.17)

ae

where
Oc( t,WL)
NM( t"WL)
bm(t’w[.)

(TS N TM)[Ma(t:WL)]s (6.18)
- T, [N (t,w )]s (6419)
- Tyl (tswi )]s (6420)

1}
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The following table distinguishes correlation func-
tions which, under the assumption (d) above, are identically
zero, from those which are not; a tick means phj(T) # 0,

a dash means phj(T) = O,

Table 3
3 h 2 3 N 5 6 7 8
1 J/ - - J - - = -
2 - J . . = - J -
3 - - J - - - - "
L W - - J - - s -
5 - ~ ~ - J - - -
6 - . : . . J . -
7 - J ~ - - - Y -
8 - - " - - - - J

The quantities p33(7), and p66(T) are to be interpreted
2 2 ;

as 02, and 0%, for all values of 7T while pBB(T) is

also independent of 7 and equal to

«r%IjowM(y)dy.

The definition of R(7,wy) and R'(7T,w;) are

extended so that for h = 1,2,3, and J =L - 8:

Tn’
Rﬂj(T,WL) = T%T jo §h(t-T,wL)§j(t,wt)dt, 0 <7< Ty,
(6.21)
=0 Tn" s T > T
Rhy(-ron)= g7 [ EteTm)E (tm)at, 0 < T < Na),
(6.22)
= 0 ) T > T(a);
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where §h<t’WL) and Ej(t,wL) are components of g(t,wL),
and lim T(a) = O,

Olr-500 3 8
The expectation of = 3 Rﬁj(f,wn) + Rﬁ.(-T,w;) is
h=1 J=hL J
then equal to
3 8
> = phj(T) + phj(—r), 07 < T(a),
h=1 J=
3 8
IR phj(T) 5 ™a) < T € T,
h=1 j=U4
0 ’ T > Thoe

For large o the error, WO(T), in the weighting
function WM(T) of the model may be estimated by cross
correlating the expression (14) with the difference between
(15) and (16), and then compensating, where possible, for
the errors in the records. The quantities required are

Pra, 00(T) + Paer, 0cC =T 0 <7< T(a),

pMOL,OC(T) ? T(O{.) < T s Tm?

they may be estimated from the data and the given correlation
functions as,
3 8 . : 3‘ 8’ |
h21 jiﬁth<T'Wt) + Bp4(~mym ) - hi1 jih[phj(T) + P11
0 < 7< T(a),
(6.23)
3

8 _ 3 8
3 _E Rﬁj(vat) - 3! phj(T)’ T(a) < T < Tne
h=1 j=U4 h=1 Jj=bL

The dashes on the summations, X/3/, indicate that pQj4
is to be omitted from the summation, The guantities (23)

may be computed since all the required phj(T) except
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pis 8are known or assumed to be zero.
In order to determine the mean square inadequacy of

the corrected model the expectation of

[ [ oy (rdlug(r) = (] Dg(x) = (a0 Jarax (6.21)

must be investigated, where WE(T) is given by (23) for
0< T< Tpy and WE(T) =0 for T <0, and T > Tpe
In the intervals, O < T < Tpy O €< X < Ty, the expectation
B[R, ,(T)RL; (7))
may be writ%;nﬁ'as in Chapter L,
1 f “f n :
R G €. (ts=T)E (14 )6, (t3~x)E (tz)atydts

’ T (TA
= (ﬁgjzfo fo Phj(T)Pkl(X)dtidtz + +

Ty T4
' (Tﬁ) fo [o Pl ba=ta+T=X)p 47 (ta=ts Jatadtz + +

!

1 A (Th
+ (ﬁgj?jz ji Phl(tz-t1+7)Pjk(tz‘ti-x)dtidtz (6.25)
= phj(T)pkl(x) + other terms. (6426)

This pesult is true for all h,k (1-3), and J,1 (4-8),
providing the terms involving bI’ bo and bM are interpreted
as above.
If the other terms in (26) were not present, i.e. if
E[R{ J(TIRL, (x)] = B[R ,IE[R, (7)1,
then the expectation of (24) would equal

[ Oj: oy (T-R) () = BLW (7)1} (W (x) - EWg(x)]}arax

which, as o tends to o, approaches



1147
lmﬁg(x)dx; (6.27)

ji.e, the mean square error in the output of the corrected
model due to the truncation of the estimate of WC(T) at
T =Tne

In this limiting case where o approaches o, the
contribution to the mean square error arising from the other

terms in (26) may be written as the limit o = o

G T et i 16 ) (ta=ts)
/o ]o Mox ot ol k=1 1=4{Th/)"Jo Jo THE 1

+ + phl(tz—ti+7)pjk(tg-ti-x)dtidtgdxdT.(G.ZB)

The parameter T(a) appearing in the estimate (23)
of WC(T) has, in this case, been given the value zero and
accordingly the terms in (23) with negative arguments have
been omitted, These terms may be of interest in other cases
depending on the value of «.

The mean square error in the output cf the corrected
model now consists of the contribution (27) due to the
truncation at Tp plus the non-zero terms in (28). These
latter terms will be considered individually,

If hZk and J # 1 there are 6 non zero terms,

equal in pairs and corresponding to the subscripts shown in
table UL,



118,

Table 4
h J k 1
1 7 2 L
2 b 1 72
1 8 3 U4
. .
2 8 3 7
3 7 2 82

Corresponding to the subscripts 1,7,2,4 and 24Ly1,7

there are two terms; viz:

Tn (Tn T (T4
éigfo o PMa(T‘X)(T%jij fo 044 tg=ty +T) 073 (tg=t1=x)dty dtzdTdx,

T (T Th T
and 1%mfo [O pMa(T-x)rﬁijgfo fo p27(tz-t1+7)péi(tz-ti-x)dtidtngdXx

Since phj(T) = pjh(—T) the second of these terms may be written

~ (Tn (Tm 4 [ThTh & .
élm 0 ,/O pMOL(T-X>W 0 fo p72(ti_tz-q-)pif.’c(ti-t2+x)dtidt2d7-dxo

Further the variables of integration t; and 1t may be inter-
changed, as also may x and T since pMa(T—x) is an even

function, Hence these two terms are equal and their sum is

o (Ta o (DA (Th |
2 1lim . fo pMOL(T—X)W_/O [O P1a (tg—tii-'r)pg., (‘bi—t3+x)dt1dt2dXd’r

which, as in the appendix, is equal to
[ 2 gy (Bhta M psaC tasrpns (2=t )]
2 1lim P T=X ; j Trl]—ta P14 Ta+T )Pz X=-tg ) At dxXAT +
oo 0 40 X Th o

Ty AT TA
+ 2 éizfom/OmPMa(T‘X)(ﬁ%j?fo (Tﬁ-ta)[Pie(T“ta)P27<X+ta)]dtadXdT
(6429)
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Tﬁ:jﬁ / (Tn-te)[w (ta+T)Pz7(T—ta)+WC(T'ts)P27(T+ta}]dtsdT.

The term corresponding to the subscripts 1,4,3,8 is,
similarly, twice the llmlt o = oo

T T
jO . pMa(T-X)T-ijf f Pie(tz-t1+T)Pae(ti‘ta+x)dtidt2dXde

which, since pas is constant and equal to bljm 1. (y)dy,

becomes
-20‘bI<]m‘!IM(y)dy>mgf f (T,{,-ta)[w (t3+'r)+W (T-t5)]dtadTe
(6430)
The remaining term corresponding to the subscripts
2,793,8, 1is
(/MWM(y)dV (ﬁTj?j f (Tn—t")[P27(ta+7)+P27(T-ta)]dtadfo

(6431)
If hZk and J =1 there are no non zero terms in
(28); if h =%k and J # 1 there arc agein no non zero terms
in (28); it therefore remains to consider the terms for which
h=%kX and J = 1.
In the case h =k = 1 there is for each J,J = L-8 o
the term
Tn Tn
atn| *[ "oy (- x)r—,-;gf j oo (ta=buaT=x)py ) (ta=ts )at,dts axaT,
and, according to equation (5.22) and the appendix, these

will sum to

In( 2 2 2 2 2



120,
There is also the additional term (5.23) when h =k = 1

and Jj =1 = LI., viz.

Tn (T
2_[*m .
TTETVJO [O(Tﬁ—ta)WC(T-tg)WC(T+t3)dtadT. (6433)

In the case h = k = 2 there is for each J,J = 4-8,
the term

11m/0 fo pMa(T-x)rﬁxjgfo jo pNI(tg—t1+T-X)pJJ(ti—tg)dtidtgdxdT

and the sum of these five terms is
8 . 1 [ [ [T (ta~ts )0y (ta=ty YAty dtaar
J=4—WTn .[O ./O fO pl\TI 2=ty )05 (ta=ts 1

2 2T

THh
J 2 (T jO (Th-ts )pNI(tB Jpgs(ts Jats . (6434)

There is also an additional term when J =1 =7, VizZe,
the limit as o —» o

O ) a5 ( )02 ( =tz +7 )aty dts dxd
P T-X j [ Pa7(ta=t14X)027 (Ti=T2+T)dTy xar
{ E;z Mo 0do

T (T4 (T4
(‘Ej? j [ P27(tz-t1+T)P27(ti-t2+7)dt1dt2d7

T (T
. ZT%SQJOTJO (Tﬁ‘ts)Pz7(ts+T>Pa7(T-ta)dtadT- (6435)

Tn the case h = %k = 3 there are the terms

Tw (Tn
2 -—
J§*fb1 éig fO pMa(T X)(—zjzf j py3(ta t4 )dty dtgdxaT

T4 (Th
rb;jg— It *j f pyy(ta=ty)dtsdts

l

202 T
= mrmbl - Jijon(ffr'u—ta )pyy(ta)dts . (6436)
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For the two cagses Jj =6 and J =8 this expression (35)
4 2 2 4 2
simplifies to Tmfbfﬁbo and Tmohl[fZWM(y)dy] respectively.

Again there is an additional term when J = 8, viz.
. (Tm [T 1 Th (TA
11m/0 o PMO‘(T'X)W‘/O fO pos(ta=ts+7)pae (ty=ta+x)dtsdtsdxdT

= Tmm%I[]ZWM(y)dy]S. (6437)

Many of the expressions (29) - (36) are still quite
complicated. Further simplification is possible in cases
where suitable assumptions are appropriate. For example
it may be appropriate to assume that the process NI(t,w)
ig "white" of power density k§ over a frequency range
wide enough that the following approximations are useful

i p27(T) = “kiwW(t), t > 0, (6.38)
[ ematamtadoss (tamtudats =108, 0 < ta < T (6.39)

Under these assumptions the expressions (29) ~ (36) become

- 2 (Im (T
ZTTﬁrz\k j’g ‘[O(Tﬁ—ta )[WC( ta +T)WM( T—=13 )+WC(T-t3 )WM(T+133 )] dts ar.

(6429a)
2 (1% 1 (Tm (T ! -
‘2%1(1 OWM(y)dV>TT7,'Ff . jo (Th=tas YW ( ta+T)+W(T=ta )] ats ar.
(6430a)
3 5 1 [tm g i
+2rb1k§<fowm(y)dy zﬁzjgjo jo (Th=ta ) [V ( ta+T)+Wy (7=t )l dtadr,
(6+312)
%2—(0‘200 s 0%+ 02w 0By +02y) (6.32a)
2 o T(T’—t YW (T=tg YW~ ( T+t )dtadT (6433a)
Tﬁ:’! fO jO n="ta /¥as 3 /¥%q 8 3 . .
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_%.EL (O—OC + O N 0"20 + ouf\]-M + O-%M) . (603Ll-a)
Ty
e | [Lmhetam ey (r-to)atoar, (6.350)
ZT
'("'r*)'z-[ (Thta )Pl ta Jat. (6.36a)
208 _Tp (T
rﬁf%z“ [OA(Tﬁ-ta)PNo(ta)dta. (6436b)
mT%f%o ) (6036@)
202 Ty (T
Z'—iTE— (Tr’m"'ta )me( ta )dta . (6036(1)
T cr:;;I[ [tz (6.360)
Tn gl i (y)ayl?. (6437a)

For the purpose of estimating the effect of recording
errors these expressions may be rearranged in the following

five categories,
(1) Those which are present when there are no record-

ing errors, ViZe,

& o2 (6438)

z—ngj‘ j (Th=- ta)Wc(T-ta)WC(T+t3)dt3dT (6.39)

(ii) Those which contain the recording error N, Viz.,

(1 + k254 0By (6440)

ZTbITm

Th
(T /0 (Th=ts Joyol ta)dta. (641)
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(iii) Those which contain the recording error bo, vize,

(1 + kﬁ.) _LI,L 'bos (60L|-2>
Tn 0%1 750 (6443)

(iv) Those terms, not already contained in categories

(i) - (4ii), which contain N, Vviz.,

-2kzaf j (Tn"'ta )[WC( ts +T)W (T—ta )+WC(7-_ta )W (‘T’+'b3 )} dtsdT.

T, (6.l4)

Z-%Ik?-(jOWM(y)dy T joj (Th=1s )[W (t3+7')+W (7-t3 )]dts dr,
(6445)

(10 38) B oty + 1 (@A + ohy) . (6:46)

oK% (Tm ‘T ,
o | [ (mh=te iy tasmdiy(T=toNatsar - (6.47)

TA
2781 T TRpT |, (Th=te) P (ta)d:6 o

(v) Those terms, not already contained in categories

(1) - (iv), which contain by, ViZe,

2 4. Tm’Tﬁ ‘ .
~or® [ OWM(Y)dY]rfzjwjo [ (2h=t0 WoC taardtglr-ta ) latoar

(6449)

'UT;% “ou (6450)

2y In (T%j? fzf(Tﬁ’ta)Poc(ta)dtd§(6o51)
2Tm0"§1[j:WM(v)dy]3'. (6452)

The terms in the first category have already been

discussed in chapter 5 . The slgnificance of the terms
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in the other categories may be estimated by comparing them
with the known guantity T%M = jowﬁ(t)dt. All these terms
may be calculated from the given data excepting (ul), (49),
(51) and portion of (46); estimates of these four quantities
may be made using the assumption made in chapter L, viz.
the error in the weighting function of the model decays with
the same time constant as the weighting function of the
model,

The terms in categories (ii) and (iii), i.e. those
which are zero if there are no errors in the record of the
system output, are fewer, easier to calculate and, in general,
of less significance than those in categories (iv) and (V).
If there were no errors in the recording of the system
input, i.e. U%I = fﬁl = 0, then the remaining terms in
categories (ii) - (v), viz., %%(U%O + G%o), would in
general be less than the term %% T%C in category (i)

On the other hand the terms in categories (iv) and (V)
remain, even though the errors in the recording of the
system output are eliminated.

If the bias error in the input, D is zero then

I’
all the terms in categories (1) - (v) approach zero as the
length of record T4 - o« However the terms (43) and (52)
are independent of T4 and proportional to Tn; bias
errors in the recording of the input therefore require
special consideration when long lengths, T4, are avail-

able for correcting the model. A biag in the recording of

the system output needs no such consideration.
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In section 5.1 an expression (5.31) leading to an
optimum value of Tn for a given T4 was determined.
The present section could be extended along those lines;
but in practice it will usually be satisfactory to deter-
mine T, from (5.31) and then compare the additional terms,
categories (ii) - (v), with those already taken into account,
category (i). If any of the additional terms are signific-
ant it may be necessary to revise the value of Tpo,

This chapter may be extended along the lines of
chapter 5 to cover the two cases:

(a) Is(t,w) is any type X4 random process,

(v) more than one set of records are available.
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CHAPTER 7.

UNCORRELATED MULTIPLE INPUTS

A physical component may have more than one input
and output, In order to characterize such a component as a
system, a number of transformations must be kKnown, since the
relation between the system inputs and outputs will be of the

form

n

where each of the n inputs ISk(t,wL), as operated on by
the appropriate transformation TSjk’ provides, in general,
some contribution to the output Osj(tsWL)o A model of the
system will then involve correspcnding transformations

TMjk; the task of adjusting such a model will involve

adjusting these TMjk‘

The following restrictions apply to the problem
discussed in this chapter:
(a) the system components TSjk all have real

weighting functions of the form
n Sljkt
121P1jk(t) e : Re (Sljk) < 0,
where the Pljk(t) are polynomials in 1t;
(b) the model components T 5k all have real known

weighting functions of the form

m rljkt
Zoalt) e ™ Re (ry ) < O
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where the Qljk(t) are polynomials in t;
(c) the system inputs are all realisations of type X,
random processes;
(4) one set of recordings of portions of the inputs
ISK(t,wL), and the outputs Osj(t,wt) and
OMj(t,wL) are available;
(e) the inputs are not cross correlated, i.ce
Prsk,151(T) = 0) k £ 1.
This problem may be reduced to one of those already
considered in previous chapters. Since it will no*% be
necessary to distinguish between the system outputs, the
subscript J will be omitted when used for this purpose;
esge  In Ty Ty osj(t,wt)g

7.1 Error free records of unlimited length

If there are no recording errors and the records are

of unlimited length then

n

K§1(TSK - TMk)[ISk(t’WL)] = Oc(t,WL), (702)
where Oc(t,WL) = Os(t,wL) - OM(t,WL)o Multiplying each

side of this equation Dby ISl(t-T,wL) and taking expecta-

tions yields

n
2 Tax - TMk)[pISl,ISk(T)] = pISl,OC<T)'
This becomes, since the inputs are uncorrelated,

(Tgq = Ty1)le1ga(m)] = Prg1,00(7)s

Qo
go that j0p181(T—X)W01(X)dX = pISl,OC(T>’ T > 0;



128,
where WCl(t) igs the weighting function corresponding to

Ter = Tgr = Tyze

Equation (3) is the Wiener-Hopf equation already discussed in

chapter L.

7.2 _Records of finite length

If the records are of finite length then, as with a
single input, the adequacy of the corrected model will vary
with the lengths of the records avallable for model check-
ing.,. The case considered here is one where there are no

recording errors and, for each Xk,
ISk< t’W) = M(Xk( tQW) [

i.es an S.G.M. of zero mean and correlation function

%Fe_aklt‘. The weighting function WCl(t) corresponding

to the transformation TCl =T - T

g1 ML is then equal to

1im t -t
o Po, 001 ) + Pyga, 001 )s

1

t 2 0;

where OCl(t,wL) = Tcl[Mal(t,wL)].

The recordinge available may be used to calculate, for

each 1, the quantity

/

TA
Ryo1,00({ 7o) = é&jé M1 (t=Tsw, )0 (t,w )dt, O < 7 < Tpqs

and

lI\A
d y
RMal,oc("T’WL) = Tgfo Mal(t+T:WL)OC(t,WL)dt, 0 <7< T(ag),

= 0, T > T(al);
where lim T(al) = 0, and T4 is the effective length of

Ol 4 —¥co

1
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the records after discarding sufficient to allow for trans-—
ients in the output of the model; Tml may be chosen diff-

erently for each TCl‘

Since
Rita1,00( ") = R oca (7o) +kilRﬂa1,00k(T,wn); (7e4)
then
E[Rip1, 00(Ts") + Rig1, oc(=Tsm )] (745)
= pMOtl,OCl(T) . pMOLl,OCl(-T)' 07T« T(ocl),
and pMal,OCl(T)’ T(al) <T < T

Hence as 0y tends to o the expression (5) approaches

WCl(T), 0<T<T 4

The adequacy of a model corrected in this way will
now te investigated. Since the inputs are not correlated

with each other

n
3 — 2
“0c = k2,7 0ck’ (7.6)

Equation (2) may be rewritten in the form

Og(tywt) = Oy (towy) + KilOCk(t,WL);

whence OC(t,wL) may be interpreted as the difference between

recordings of OSl(t,wL) and OMl(t,wL) where the record of

> OCk(t,wL) uncorrel-

OSl(t,wL) has a recording error of
kAL

ated with the input M_;(t,w).
The present problem is therefore identical to that

considered in section 6,2, restricted so that



130.
Np(towi) = bp(t,w) = bo(tew ) = Ny(t,m ) = oy(t,w ) = 0
and

No( tywy )

3 0. (tyw )
k£l CF

Hence it may be deduced from the results in section 6,2 that
the mean square inadequacy of a model adjusted as above will,

as oy approaches infinity, contain the following terms,

l W2, (x)ax; (77)
ml
T n T
ml 1 S
- 2,00k = 7 Toc (7.8)
o [Tp (T
TR fO /O(Tﬁ - ta)WCI(T - ta)W01(T + tg )dtsdTe. (7.9)

If the calculation is repeated for each input then the mean
square inadequacy of the components of the model contribut-
ing to the particular output difference, Oc(t,wt), being

n
considered will be pH
1=1

W, 2(x)ax E¥é-r2 - TmlﬁT(T'-t IW o (T=t5 )W, (T+t5 )dtz dT
cl TR0 YT, Joo M el 3 /%01 3 '

ml
(7.10)

A3 in section 5.1 it may be useful to approximate

X

WCl(x) by kle-al and endeavour to determine a criterion

for each Tml assuming T/ fixed. Writing
81T = Pys
ale!l = q'l 9

and substituting in (10) gives, as in section 5.1,
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n b 2
-2pl ol § % 1 -2pq D P P
2 {02 e P03 402 [ - = 7P, P 1 1
oc1 oc oc1 5 oLl . g - & - }
1=1 qq 4, a3 ( a4 93 'a?-' '('1"{ E%g)]
(7.11)
Differentiating (11) with respect to p,; gives
L 2p%
(P 2 -2p3 (=L _ L _
a. oc T Toc1 © B ( ) a3 2)s
1 1 1
which is equal to zero if
043 ZPB LI-P
2p 001< 1 1> v
el = 2 4+ =F -~ =)0, (7012)
Toc a 4/ ,
20-2
or D, = % 1n <f;§glq1>. (7.13)
0C
If one is prepared to make a further assumption concerning the
o
. OCL
ratic =g then expression (12) or (13) may be used to deter-
10]6]

mine a useful value of Tml for a given T Those model
components which contribute most to the inadequacy will then,
reasonably enough, receive the most attention, On the other

hand any for which —%2fq; < 1 should not be adjusted.
oG

This discussion may be extended as in section 5.2 to
cover the case of type X; inputs,

In this section all except one of the model outputs have
been treated as a recording errore In many cases the genuine
recording errors will not be important in comparison with this

term; if necessary they may be dealt with as in section 6e24
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CHAPTER 8.
SOME EXPERIMENT CONFIRMATION

Experimental work to confirm some of the preceding
theoretical results has been carried out using analogue
computing equipment at the Weapons Research Establishment,
Salisbury, South Australia. In addition to standard
computing equipment for integration, addition and multi-
plication, the multi-channel digital to analogue converter
IDAC proved very useful in this work. IDAC will convert
up to 20 channels of digital data stored on magnetic tape
into voltages which appear at each of the 20 outputs of the
machine, These voltages may be changed every %6 second.,
Thus, given any bounded function of time f£(t), a voltage
output Vo(t) may be obtained from IDAC which, apart from

a scale factor, is a step function approximation to £(t);

e.g8. Vo(t) = f(gn-o-), -5%- & & %’6—1;

where n is\a non-negative integer. This converter is
fully described by Dunne [53]. 1In the experiments to be
described here, IDAC was used in the following way to
generate synthetic inputs to the system and model,

Random numbers from a population normally distributed
with zero mean and generated using a method described by

Taussky and Todd [54), were stored on the magnetic tape for
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IDAC., Each IDAC channel contained the same numbers, except
that they were displaced so that the voltages Vo(t) and
Vo (t=7) were available simultaneously at the output of IDAC
for a number of values of 7,0 < 7T < 3 o As explained later
this facility was extremely useful for computing points on
the experimental cross~correlation function R'S,OC(T)‘

The output, Vo(t), of random numbers from IDAC was
assumed to be portion of a realisation X(tywy) of a station-
ary normael process having zero mean and autocorrelation func-

tion

- Fg <1 - l%i>, |7l < T,

O ? |T| > T; (8.1)

where

T equals the constant step length, i.e. gﬁ second, and
T: is the variance of the random numbers., This autocorrel-
ation function may be derived by a method similar to that
described by Solodovnikov [26,P,105], for example. The

corresponding spectrum,

T -
2jara(1 - T) cos wTaT

sin?(%?)
= (2] —T
C S
2

is almost flat for |wT| < %; in particular for |w| < 24

it lies between 0'9&TZT and T:T-

If X(t,w,) is operated on by a transformation whose

at

weighting function is oae” the result will be a realisation,
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Is(t,wL), of a stationary normal process having spectrum

O_aaT sin® (%T") o 8
(Q@Sz (0 + o) * (842)
2

Apart from the scale factor TZT this expression differs
from the spectrum of an S.G.M. having autocorrelation function

a -altl
7]

by < 2% for |w| < 24,
For the experiments described in this chapter the

quantity
Is(t) = jmﬁb(t-x)10e”1oxax
0

was used as system input. This quantity was assumed to be
portion of a realisation of a stationary normal process of
zero mean which differs from a Markov process in spectrum
and other characteristics by amounts which are unimportant
for the present experiments.

Two experiments will be described. The first, which
confirms that the gquantity Rﬂa,oc(t) + Rﬁa,oc<'t) may in
some cases give a better estimate of the weighting function of
a system component than does Rﬂa,oc(t) alone, was also used
to check the experimental method, The second and main exper-
iment confirms some of the results of chapter 5 using an

electromechanical servomechanlism as the physical component.

8.1 Experiment 1: comparison of cross correlation approx-—

imations to an exponential weighting function

8ele1l Objects of the experiment

? ! -
(1) To show that REg oo(t) + Rig oo(-t)s (t > 0),

provides a better estimate of the weighting
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function WC(t) than does R C(t) in the

1
18,0
case.

(a) Is(t), the system input, is generated

as previously described in this chapter;
t

(v) wc(t) =e t > O,
(i1) To check the usefulness of the equation
P = 15 In 2q, (5031)
and the expression
70| pat 2
Fgg pgf + e p, (5.30)
0S

derived in chapter 5, which relate the quant-
ities Ty, T4 and the mean square inadequacy
of the corrected model,

(iii) To check the experimental technique.

8e1.2 Method

The computing units were interconnected as shown in
fig. 15. Each of the outputs Vo(t) and Vo(t-7) from
IDAC was applied to a filter, having freguency response

function to produce the system input IS(t),

10 __
10+iw?
( t=T) 4 Is(t) was then applied to the system whose

S
welghting function was e-t and frequenéy response function

and T

ToIn O produce the gystem output Os(t). In this experi-

ment there is no model, l.e. OM(t) = 0, and therefore
oC(t) = os(t).
The two quantities OS(t) and IS(t-T) were then multiplied

together and the result applied to the integrator, as shown,
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FIGURE 15.

Vo(t) 10 Is(t) 1 ~ 0g(t)
] 10+ iw I+ iw
Vo(t-7 10 Ig(t-7) n
10 + iw -

BLOCK DIAGRAM OF COMPUTER INTERCONNECTIONS FOR EXPERIMENT A
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to give

+ [Is(t-—'r) oq( t)at,

= -%5 fls(t—T) og(t)at.

A continuous record of this quantity was displayed on a
digital voltmeter which was read at 3 seconds, 103 seconds
and 203 seconds after the commencement of each run; the
three seconds were allowed for transients to die out,

Pen recordings of the gquantities Vo(t), Is(t), Os(t) and

%6 fls(t-T) 0y( t)at

were taken throughout the experiment, A portion of such a
recording of the last three quantities is shown as fig. 16.

8+1+3 Results

The main data obtained from the experiment are shown

in table 5, where for each of eleven values of ¥ the output

Th

L I.(t=-7)0.(t)dt is shown for Tn = 3 secs, 103 secs.
10 0 S C )
and 203 seconds, The quantities in this table have units
of volt?® seconds, In order to estimate the system weight-
ing function their value at 3 seconds must be deducted from
those at 103 and 203 seconds and the result divided by a
scale factor, This scale factor is the product of the
following quantities:

(a) o®T = 2k L,+88 volt®secs.;

a 50
(b) the gain of the computer = %5;

(c) the time of integration = 100 or 200 seconds.,
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g ¢

[1g{t-7) Oc (t) dt
)

1
0
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g
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I

FIGURE 16.

to+ 1
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to+3
TIME IN SECONDS

to+ 4

PORTION OF PEN RECORDS TAKEN DURING EXPERIMENT 1
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r
1

1

Th
%5 f Is(tur)oc(t)dt at values of Th =
' 0

7_1n Secs. 3 _Secs 103 Secs 203 Secs

-0°25 ! 0 020 -0°30

-0°10 0L 10°0 186
0°00 ol 2L+9 458
0+10 046 375 69°5
0°25 07 373 68+3
0°50 0°6 319 559
0+75 oL 20°7 L0
1°00 0°6 20°0 411
1+50 ; 0°2 1146 21+6
2+00 ; Q<2 5*5 114
3°00 | 01 53 77
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The scale factor is therefore, numerically, 488 for 100
seconds integration time, and 97+6 for 200 seconds integra~
tion time,
When adjusted in this way the data provide the
guantities Ris OC(T) for some 7T in the range, 0 < T & 3
?
and RY (~1) for T = 0, 0°10 and 0°25, Tables 6A and
I3,0C
. . 1 ) b4 =
6B show the guantities RIS,OC(T) + RIS,OC( 7) and
R! (7) for the values of 7T covered by the experiment
Is,0C ’
and the two integration times of 100 seconds and 200 seconds,
These results are also shown on the graphs, figs. 17 and 18,
one for each integration time. Each graph also shows curves
for e~ ', the system weighting function, and calculated

values for pMa,OC(T) and pMa,OC(T) + pMa’OC(—T); where

My (tywy) 1is a realisation of the stationary Gauss Markov

process having correlation function % e_a‘tl, a = 10; and

Oc(tywh) = jwMa(t-xywt.) e~ ax.
0

8.1.4 Discussion

(i) Clearly the first object has been achieved since
; _ ot o e
for values of T where RIS,OC( T) is signific
ant, i.es 7 =0 and 7T = 0°1, the values of

[§ ! =
RIS,OC(T) + RIS,OC< 7) are much closer to

-T . .
those of e than is the value of RIS,OC(T>

alone,
(1i) The equation p = % 1n 2q (5.31) gives values
of p =265 for g =100 and p =3 for

g = 200, Since the time constant of the
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Table 6A
| Integration time 100 Secs.,
- !
AT SeCss Rig,00(™) + Rig,oc(~T) Rig,00(7)

0 i 1400 0°50
0410 0:95 0°:76
025 | 0+76 0°75
0°50 | 0°6L 0° 6L
0°75 | 0-42 042
1400 E 0°L40 0+40
1450 ‘ 023 023
200 | 011 0°11
3200 E 0+10 0+10

Table 6B

§Integr~ation time 200 Secs.

T in Secs.Jl RiS,OC(T) + RiS,OC( -7) | R{_‘S,OC(T)
1 T

0 0-92 | 0-L46
0-10 0°+88 070
0+25 0°68 0°69
0+50 056 0°*56
0*75 (ORRITS 046
1+00 O+L1 041
150 021 021
2°00 011 - 011

300 | 0-08 | 0+08
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QUANTITY CALCULATION  EXPERIMENTAL POINTS
e -T
PM.XQC(T)"'PMGOC( T) ------------- X
PMa,oc(T) _________

04
v x\
N
0
0 L 2 3
TIME T IN SECONDS
FIGURE 17. GRAPH OF CALCULATED CORRELATION FUNCTIONS AND EXPERTMENTAL

POINTS OBTAINED IN EXPERIMENT 4 - INTEGRATION TIME 100 SEC
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"“X QUANTITY CALCULATION EXPERIMENTAL POINTS
) T
e

X

PM(X OC(T)+ PM ('T) ----------------
P () e e

Mo, 0¢c

(o 1 2 3
TIME T IN SECONDS

FIGURE 48. GRAPH OF CALCULATED CORRELATION FUNCTIONS AND EXPERIMENTAL
POINTS OBTAINED IN EXPERIMENT 4 - INTEGRATION TIME 200 SEC
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system weighting function is 1 second then a

value of

Tm = 2°65 seconds corresponds to T4 = 100 seconds,
and

T™Tm = 3 seconds correspomds to T/ = 200 seconds.,

The corresponding value for the mean square inadequacy

of the corrected model as given by
0-2
=90 <33.:f. . e-21>> (5+30)
08
= 0*042 for q = 100,

and 0023 for g = 200y

An upper limit to the inadequacy,

N

[ ertrmte™ng( e gl r)) axer

2
708
L B

of a model based on the data from this experimeant
may be found in the following way.

T%S = g;.]wéI(w) TT%EET dw

=00

27 sina(gm) S
a 2 o a
= o /m ( w’l‘)z’ o +Zl? 1 e
2

2T 2l
a . 00 1
> 57 ( 98)fu (700+07) (T+P) &
=2

oRT 2l
2L . 100 _ __100
=z (*98) f , T T TS0 aw

-
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g37

= ?ﬁ? g% 2(arc tan 24 - %5 arc tan 2°4)
= O').l.}.l.- OJ;T . (8.3)

[[ostr=mrte™ - wyx)y te=ig(m} axar

=-£ﬁ ijI(w) je(w)|? aw,

where () =-[:(S—X-WE(X))e-iwde.

The above expression is therefore

agT
< B Fl@(w)lzdw
=00

- 021 j:le'X-WE(x)lzdx. (844)

In the case g = 100, i.es Tpn = 2°65 sec-
onds and T4 = 100 seconds, and for the values of
T in table 6A the difference |e‘T;WE(¢)| < 0°05,
Hence in this case the expression (4) will be less
than

o2T[25 x 107% x 2°65 + Lw e~ ax]
*65

0:009 02T, (845)
The inadequacy of the corrected model, l.e., oOne
using a weighting function based on the data of this

experiment should therefore be less than

go that in this case the adequacy actually obtained
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is better than that predicted by the expression
(5430)

As mentioned below the accuracy of the
computations for T4 = 200 seconds was affected by
drift in the multiplication unit, For this reason
the difference le-T;WE(T)l is for some values of
Ty notably 7T = 1, much greater than the value
obtained for T} = 100 seconds, A calculation as

above would have to be based on

le'TLwE(T)l < 0°10,

which leads in this case to an inadeguacy of 0°26.
3 _

A fairer estimate of the j (e™*- E(x))zdx would be
0

one based on Simpson's rule for integration, e.g.,
{E(6ux1o‘*+ux10'2+2x21x10'*+ux1o**+16x10'*) +

+ '16< 16x10™%4+Lx10~%4+6%x10™%)+9x10™*
= 0°0057.

This estimate plus jwe"zxdx, combined with
U%S = 0°Lhy ng leads to an inadequacy in this case
of X =013, (8.7)

The equation (5.31) and the expression
(5430) appear then to give a useful prediction of
the adequacy of the corrected model in the present
case,
The computing equipment interconnected as in fig. 15

was extremely useful for this work. The use of a

multiplier and integrator, together with the record-
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ing of the input on several IDAC channels, proved
a most efficient method for computing points on
the required cross correlation functions, Many
methods for computing such functions have been
described [26,B116], [24,B276], some similar to
the one actually used, One alternative, viz,.,
reading the pen records of Is(t-T) and Os(t),
and feeding these to a digital computer to compute
the cross correlation functions, was at first
contemplated. Many hours of work would have
been required to produce the results which were
avallable immediately from the experimental
arrangement, fig. 15.

The only difficulty encountered was some
drift in the multiplying unit which introduced
gsome inaccuracy in the readings at 2035 seconds.
Errors of 3 or l volts are possible in these
readings. As a result of this experience the
time of integration was restricted to 103 seconds
in the second experiment. It was later found
that this drift could be greatly reduced by using
a servo-multiplier rather than the electronic
multiplier used im this experiment,

8,2 Experiment 2: adjusting the mathematical model of a

servomechanism

8.2.1 Objects of the experiment

(i) To demonstrate the use of cross correlation for

adjusting a model of an electromechanical device.
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(ii) To demonstrate the adequacy of a model adjusted as
in (i) above.

8.2.2 Method

The physical component used in this experiment was a
servomechanism which, it was known, could be approximately

characterized by a transformation having the frequency

response function -aﬁ+3?hiwéh o This component was inter-
connected with the computing units as shown in fig. 19.

The system input Is(t) was generated as in experi-
ment 1 and applied to both the physical component and the
model as set up on the computer, The model chosen had a

frequency response function of -w3+2°;égg+1-96 and a corr-

esponding weighting function of 3+16 e~ 20%gin 0+62t; this
choice was based mainly on a desire to ensure that some sig-
nificant adjustment would be necessary. The difference,
OC(t), between the physical output and the model output was
then multiplied by Is(t-T), which was also generated =s in
experiment 1, The result of this multiplication was
integrated to give %5 IS(t-T)OC(t)dt. A continuous
record of this gquantity was displayed on a digital voltmeter
which wes read at three seconds and 103 seconds after the
commencement of each run. Pen recordings of the gquantities
Vo (), Ig(t), Og(t)s 0(t), Oy(t) and -115 fls(t-r)oc(t)dt
were also taken throughout the experiment.

8.2.3 Results

The main data obtained from the experiment are shown

in Table 7 where, for each of 16 values of 7, the output
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Vo®)| 0 Is(t) PHYSICAL Oglt)
] 10+ 1w COMPONENT
Oc(t)
Y
IDAC - MODEL. Oult)
Vo(t'T) ‘o ls(t"r) Is(t.-'l') OQ(t)
10 + 1w 100

FIGURE 19. BLOCK DIAGRAM OF INTERCONNECTIONS FOR EXPERIMENT 2



150,
.L n
1 |, Is(t-f)oc(t)dt is shown for T, = 3 seconds and

Th = 103 seconds,

Table 7

Tn
35 | "1g(t-mIo(#)at st values of o -
. \

secs % seconds 103 seconds

e e
[N
B
e 8
&,

‘1E 0°0 5 -0°+9
1 i . 5 i
= ?‘6 l 0°0 =0 Ll-
0 ‘ 02 i 16
+5 0+0 | 5014
3 0°1 153
i : 03 | 133
1 | 0°1 | 6°0
4 * . .
1"2" i 0°1 ‘! "'1‘3
! 1
13 | ~0°1 | -l 3
2 | 040 | -5+3
271-’ 0+0 -6+8
2-12; [’ 0+0 _. -6°7
2& | 00 i -57
3 | 00 | oy

In order to adjust the model, the figures in this

table at 3 seconds must be deducted from those at 103 seconds
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and the result divided by the scale factor 48¢8 as for
experiment 1. The result of so doing is shown in Table 8
together with values of the weighting function after adjust~
3446 e-1'26r

. ! !
ment 1.e. sin 0627 + RIS,OC(T) + RIS,OC(_T)'

Table 8
T in secs iRiS,OC(T)+RiS,OC(-T) | Modeéfg:ig?&iggtigzgtion
0 i 0+06 | 0+06
= | 010 0+27
g—L 0+ 26 060
1 0° 31 0+ 81
ﬁ 0+27 0+80
3 0-12 0°62
10 | 0oL 0-48
11 ~003 0+ 3l
4 ~0°09 0°24
2 -0+ 11 0:13
l 2,} -0+ 1l +0+03
2l -0+ 1l | ~0+01
I 2& —0+12 ~0+02
3 ~0+09 -0°02

1 |

These results are also shown on the graph fig. 20 together

with curves of the weighting function of the original model
and an estimate of the system weighting function obtained

independentlys This independent estimate was supplied by
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|
ORIGINAL MODEL ————=—=—=—=———
08 INDEPENDENT ESTIMATE OF SYSTEM
CORRECTED MODEL - EXPERIMENTAL POINTS X
0-6 A
) ,”’¢-§~‘~\
: <l
= ,’
,/
0.4 P
// \\\
ll SN N
/ ‘\\
/ \\
{ S
0-2 .r' & . B ~
/
! ™ S
/ X ~ 4
/ RN
'
\
0
15 2 A X x

1
T IN SECONDS

FIGURE 20. ILLUSTRATING RESULT OF EXPERIMENT 2
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staff of the Weapons Research Establishment; it was obtained
using a transfer function analyser.

8,2.4 Discussion

It is clear from fig. 20 that cross correlation has
been extremely effective in providing data required to adjust
the model, The inadequacy of the model before adjustment may
be estimated in the following way. For this purpose the
system is assumed to have the frequency response function

L , 100
P 3 aa;  8nd the input to have spectrum 02T T00+o° °

2 _ 1 em [ __100 16
T0s = e j 100+w® |=w®+3<Liwely]® dw

=00

. 1600
- 25 o5 F [CTo+Iw) (= + 5+ @) T2 0" 456

Integrals such as this have been computed by Solodovnikov$[26].

His table for

1 Gn(w)
In = 7w, F (=) @ (2 =3)
=00
where Gn(w) = bow* + Dsiw® + by,

Hn(w) = 800® + 840® + ag® + aa,

and the equation Hp(w) = O has all its roots in the upper

half plane, gives apa41bs
"agbo+a°bi b an
Ia = EaO(aoas—-aiagj ¢

*
Appendix IV of reference [26], which contains these tables,
states they are tables of

Gn(iw)
1 n
2w, fm Fn (1) (-1w)

-=00
and defines Gp(w) differently. This statement is not correct.
The correct statement may be found on PA65 of the reference,
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Substituting the values by =Dby = 0, bz = 16001,
gp = =i, a; = -13*L4, ag = 381, and az = 4O in this exprsss-

ion for Iz yields

2 _ 2 =13°4i x LO 268
785 = 72T 1 FIY(-01+5051) = TaT 189
= 057 03T = 2+8, since 0% = 2Ll and T = %.(8.9)
Similarly
3 _ 100 )i 1+96 2
Toc T 2ﬂ'UgT ja,(100+w3)l—w3+3'hiw+u - -wz+2-5ziw+1'961 dw,

) 1 Yeqbw* 4 14°T70”
= 100027 TIwS 3157 9275 [ 510° —1 620" +1 75~ B1w+ 78 -7 *

Solodovnikov's formula for this case, where n =5

and bg = by = bg = O, is

s
280 Ds J

Is =
where Mz reduces to
8obz (80 85=84 84 )+20ba (~80 a3 +81 83 )
and A 1is equal to
802853 -2a0 8, 8485808z 83 85+80 832 84+81% 847 +a182% 85 -8 828384 «

On substituting the values of the ai and b; 1in the

expression

3 3 5
02, = 100 02T i I

it is found that
0°07h 03T . (8410)

1l

2
oG
Hence the inadequacy of the model before ad justment was

approximately equal to

00 ,
(O,57> =036 . (8411)

o+
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To determine the adequacy of the model after adjust-
mentjthe new model must be determined completely by fitting
some curve to the experimental points shown in fig. 20 and
table 8, The following procedure was adopted in the
present case. The form of the model weighting function,

i.ee ke-at

sin bt, was not changed, but new values for

the parameters k, a and b were determined in the follow-
ing way, From fig. 20 the first zero of the weighting
function occurs at t . 2°45 seconds so that 2°45b = 7

i,es b = 41°28, The maximum value of the corrected model

will clearly occur at about t = 0°625 seconds at which

value
—ak ¢ 8% gin bt + x b €78 cos vt = O;
i.6s & =D cot bt
= 1°25,

The value of Kk was computed as 2°5 by taking a least squares
fit of the data to a curve of the form

k e—1°25t

sin 1 '28to
With this new model set up on the computer an estimate of
T%C was computed as 0°013, The inadequacy of the model

after correction in this way was therefore approximately

(MY = 007, (8.12)

Y

2+8
The equation p = % 1n 2q (5.31) and the expression
o2
;89 <E§1 + e-2p> (5.30) were used in planning the experiment;
0s
for this purpose the error in the model was assumed to die

out with a time constant % - 1 second. ©Equation (5.3%1)
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then gives a value of Tp = 2°65 seconds and so the cross
correlation was not carried beyond T = 3 seconds. The
expression (5.30) applied to the present case predicts an

inadequacy for the corrected model of
1

2

0:074/3:65 = .
0.57'(.100 + *005

031\
(%3

= 0°-08, (8413)
The remarkable agreement between this figure and the result
actually obtained is, to some extent, fortuitous since the
assumptions on which (5.,30) and (5.31) are based, are not

satisfied in the present case., However the equation (5.30)

and the expression (5.,31) appear to be a useful gulde in

planning work of this nature.
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CHAPTER 9.

DISCUSSION AND SOME EXTENSIONS OF THE WORK

The work described in chapters 4 to 8 of this thesis

deals with some particular cases of the general problem

detailed in the statement 2,4, For these cases the problem

was restricted in the following way.

(a)

(p)

(e)

The inputs to the system were realisations of a
type X, Dprocess as defined in section 3.1,

When more than one input was considered, as in
chapter 7, cross-correlation functions were
assumed to be zero,

The system and model components were both required
to be stationary and to have welghting functicns

of the form (3.1), Viz.,

n
W(t) = 3 Py(t) et Re (g5) <0, t> 0,

= 0, t < 0,
In some cases the generalised functions §(t)
and its derivatives were also allowed,
The errors in the recordings of the inputs and
outputs were assumed to be either constant biases
or realisations of type X4 processes, It was
also assumed that autocorrelation functions and

other statistical information concerning the input
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and the errors in the recordings, are known,

Under these restrictions, methods of adjusting
the model have been considered and, in particular, it has
been demonstrated that the cross-correlation technique
described in section 3,1 is extremely effective for this
purpose, This technique has been studied, in considerable
detail, for the practical case of finite length samples;
particularly the problem of determining the effect of this
finite length on the adequacy of the corrected model,

The relations developed in chapter 5, between the length of
record, T, the extent, Tp, of the adjustment to the
model and the inadequacy of the corrected model, should be
very useful in planning experiments to provide data for
adjusting a model, It should be noted that, in this
application, an accurate knowledge of the spectrum of the
input or other processes involved is not required. As
shown in the experiments described in chapter 8, fairly
crude information concerning these quantities can lead to
useful results,

If several samples are available for model checking,
then they may be used, as described in section 5.3, to
provide one correction to the model, In that case there is
little to choose, as far as adequacy of the corrected model
is concerned, between several samples of effective length
T4 and one sample of the same effective length. However,
as discussed in section 5,4, it is sometimes more efficient
to use an iterative method, even to the extent that a single

long length of record is divided into several shorter lengths,
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Recording errors were discussed in chapter 6,

It was shown that the cross-correlation technique, with
some small modifications, could also be very effectlve

in the presence of errors. However a very large number
of terms now appeared in the estimate of the adequacy of
the corrected model. Under certain assumptions, whichv
it is thought would be satisfied by many good recording
systems, most of these terms are zero; these assumptlons
are summarised in table 3, The non zero terms admit of
some simplification and their importance will vary with
the particular application, The expressions developed
in chapter 6 should help in determining the lmportance of
these terms in comparison with those present in the absence
of "noise",

Uncorrelated multiple inputs were considered in
chapter 7, where it was shown that this problem could be
reduced to one already considered in previous chapters,
Each model transformation may be adjusted separately; all
other inputs, except the one relevant to the transformation
being considered, may be treated as recording errors,

In this chapter some additional aspects of the
general problem, statéd in 2.h]will be discussed in an
incomplete and less detalled manner, This discussion
could be the starting point for future work.

Q21 Correlated stationary multiple inputs

If condition (e) of chapter 7 is relaxed so that the
inputs to the system may be cross-correlated, then it is no

longer necessary that the problem (2.,4) has a unique solution,
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For example, let the system have two inputs both of which are
realisations of the type X; processes, Is1(t,w) and
Isz(t,w), such that for every wy
Ig (tom) = T, [Tg5(t,w)]; (9.1)
where T12 ig a linear causal transformation of type L
whose weighting function contains no generalised functions.
Then any of the systems corresponding to real Xk 1in fig. 21
have the same inputs and output. Any of these systems
which characterizes a particular physical device must, of
course, correspond to a particular value of k; this value
can not however be determined from the data available.
If, for example:
(a) Isz(t,w) was an S.G.M. having correlation function
% e-altl o large and positive;
(p) there was no original model;
(¢) the first input cross-correlated with Os(t,wh)
was Isz(t,wt);
then, neglecting the effects of finite o and finite length
of record, the cross-correlation technique would yield the
model corresponding to k = O, Similarly, if there had been
an original model such that
Ty Lgy (8w )] + T[T (45m)] = Oy(tm ),
then under these conditions the model would, after the first

adjustment of T have no error in its output, If the

M2’
model is required solely to predict the output of the system
given inputs satisfying (1) then any model found by the above

procedure will be satisfactory; its adequacy (2.1) would



161.

Ig{twy)
Sl = ki Ts| Lo
1 (t‘w )
- T St (1-11 Tsy
Iga(t, wp)
Ts2
FIGURE 21. ILEUSTRATING%THE CASE WHERE THE MODEL

CORRECTION IS NOT UNIQUE

|Os(twy)
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have the maximum value, 1. Nevertheless care would be
needed in using such a model since its adequacy may deter-
iorate markedly if the inputs were changed so that (1) was
no longer satisfied.

If the records are error free and of unlimlted
length then a procedure such as that in section 7.1 yields,

for each 1, the equation

n
2 (Toxe = T lPrsa, 1o = Prga,00(™)0
n ©0
. kgifop181,ISk(T—x) Wy (x)ax = prgp oc(7)e (942)

Taking the Fourier transform of each side of (9.2) gives

38 1 (@) $ (@) = 8p oo(@); (9.3)

where the notation has been simplified in an obvious manner,

This set of equations, one for each 1, which 1s
known to have one solution of the required form, has no other
solutione, providing the Hermltian matrix, whose elements
are the spectral density functions Sl,k(w>’ is positive
definite [17,P.106], However the solution of (2) by taking
Fourier transforms, solving the set of equations (3) and
transforming back is hardly a practical proposition, The
problem is only slightly reduced in complexity if the inputs
are modified to stationary Gauss Markov processes with the

parameter o so large that

prISl,ISk(T'x)Wk<X)dX = Wy(x) for 1 =Kk,

since no such simplification is possible for 1 £ k,
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On the other hand the correlation technigque may still
be useful in the case of correlated inputs; since, as shown
below, the adequacy of the model is not reduced if we add to
the model weighting function, WMl(T), the solution of the
Wiener~Hopf integral equation,

/:pISl(T-x)W(x)dx = Prgr,00(™)y T3 0. (9.4

Let W*(x) be the solution of (L) and Oﬁ(t,wt) be
the output of the model when WMl(x) has been replaced by
Wyp (%) + w(x).

Then
0g(tyw) = Og(t,m ) = O(t,w )
= Os(t:WL) - OM(t,wL) - jZ&Sl(t-x,wL)W$(x)dx;
N oo =
i.e. Oa(t,wL) = OC(t,wL) - /0181(t-x,wt)wm(x)dx;

and therefore

B =08 - 2]0p181,00(x)w”(x)dx + /:]:bISl(vux)w“(x)w“(r)dxdr.

e
But, from equation (4) after multiplying by W (7) and integrat-
ing with respect to T,

jZ]OpISl(Thx)w*(x)W*(T)dxdT = joplsl’oc(f)w*(T)dT,

go that
©o oo B B
r%c¢ =QT%C - j0/0p181(7-x)w (x)w" (7)axar,
- 2 - 2 G
=%0c ~ T1s1",
oo i

where ISl*(t,wL) = j0181(t—x,wt)w'(x)dx.
Therefore

T%C* < G%C and hence
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and
OC
1-( >>1"'<;-_"50' L]

If prg OC('r) =0, T 0, then there will be no
4

improvement in the adequacy of the model, since

Fa1® = /Zb131,oc<7)w (T)ar

Conversely if there is no improvement in the adequacy
of the model then pISl,OC(T) =0, T3>0, This may be shown
by considering the equation

(W)|¢"(w)|2aw = o2

.J_. “ B
2T ISl Isl '’

=00
where ¢ (w) is the Fourier transform of Wm(T). If there

is no improvement in adequacy then o = 0, It follows,

Ts1”
since SISl(w) >.O for all w, 181(w) ?eing a type Xa
process, that ¢ (w) = 0. Therefore W (7) = O and hence,(L),
P1s1,00(T) = O T2 0.

Purther, since

ogltsm) = 3 ]°° (=, W, (x)ax,
1=1 JO

then multiplying both sides by OC(t,wL) and taking expect~

ations yields
n

2 — L]
Oge = = ]ab131,oc(x)WA1(x)dx’
1=4 JO
3
so that, if o # 0, then all of the P1s1, OC(T) can not be
zero for T > O.
It therefore seems, that with whitened inputs, some

improvement in the adequacy of the model will be achieved by

cross correlating each input in turn with the current Oc(t),



165,
each model weighting function being adjusted before proceed-
ing to the next, However, even though the adequacy of the
model be improved considerably by this process, the
individual model weighting functioms msy, at the conclusion
of the process, bear less resemblance to the corresponding
system weighting functions than they did at the beginning,

A poseible method of achleving the effect of whitened

inputs is shown in fig. 22, Only the input ISl(t,wL) is
considered and it is assumed the corresponding type Xi

process is such that ISl(t,wL) = LiMal(t’Wt) and
Mal(t,wL) = L[ISl(t,wL)]. If Mal(t,wL) is cross=-

correlated with Oc(t:WL) = Os(t,wL) - OM(t,w;) then, for
large o, an expression will be obtained which approximates

the solution, W$(x), of the equation
j:pMal(T-X)W(x)dx = Pri1,00( ™) G & o

According to the previous discusslon, 1f the product trans-
EY)

+ TMl’

formation Li'TMl’ in fig, 22, is replaced by L,_'TMl

where Tﬁl has weighting function W*(x), then the mean
square error in the output of the model will, in general, be
reduced, This adjustment is equivalent to replacing TMl

.
£

by TM1 + L'TMl and so improving the adequacy of the model,

942 Non-linear gnd other systems not of type L

In all cases so far considered in this thesis the
system components have been assumed to be of type L as

defined in chapter 3, Although this is a satisfactory
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Ig2(t, wy) SYSTEM OS("-'WL)
Mae (€, wi) Igp(t, wi)
o Ll >
Y
Mat(t,WL)
— L
I, (6 w) |-~ ———T"———/——77° O, w;
-— L| sx,( L) TML M( u)

FIGURE 22. ILLUSTRATING A METHOD OF "WHITENING"
AN INPUT IN THE CASE OF MULTIPLE
INPUTS
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assumption in a large number of practical situations, there
are also many in which it is unsatisfactory. If no restrict-
ion is placed on the type of transformation which may be
incorporated in the model in order to obtain better agreement
between the sample system output and model output, then, in
most cases, good agreement will ultimately be obtained,
However the transformations of the adjusted model may then be
unjustified physically and guite unlike those of the system.
It is therefore considered that no adjustment to a model should
involve the introduction of non linear, or other transforma-
tions not of type 1L, which were not present in the original
model, If as a result of model checking it is suspected
that some type of transformation exists in the system other
than those represented in the original model, then a new
formulation is required,

Accordingly this preliminary discussion will be
restricted so that:

(i) the model checking and adjustment consists of
adjusting the value of a few parameters in model
components which are not of type 1L, combined
with adjusting type L components;

(ii) 4ir the inputs to the system and model are specified
for all t then there is a unique system output
and a unique model output;

(iii) ©Dboth the system and model are stable, i.e.,
if I.(t) = Ia(t), t 2 tos

and T 1is the system or model transformation
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having I;(t) and I»(t) as possible inputs, then
1im T{I,(t)] - T(Iz(t)] = O:
tr00
further, the difference between these two outputs
is negligible for t > to + ty,; where t4 < < Tn)
the length of record available for model checking.,
A simple example, of the type of system being considered, is
the quite common situation of the output of an L type
transformation being limited in amplitude, so that
it does not exceed some constant value, A, 1in absolute
value, i.e,
log(tswi)] < A for all t ana 4i.

There is now a considerable literature dealing with
time vartant [27], non~linear [L3] and other transformations
not of type 1. Different methods are available for tack-~
ling different types of non linearity or other departure
from type L, However the process of model checking,
restricted as above, 1s of ten simpler than general problens
involving non~linearities. The remainder of this chapter
is devoted to two or three examples.

D201 L type model of system not of type L
Very often it is known that, although the system is

not of type L, nevertheless, it should be possible to

represent it adequately by an L type model, In some such

cases the system output may be assumed to be of the form
L[Is(t,wt)] + J(towy ),

where both IS(t,wL) and J(t,w;) are processes of type

Xy which are, in general, cross correlated. If the input

is an 8.,3.M. with correlation function

% e-‘xItl and this
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input is cross-—-correlated with
L[Is(t9WL)] + J(tywy ) - OM(tIWL)’
then, for o large and a long length of record, a good
approximation to
Wg(7) = W (7) + p7(7)y T3>0, (9.5)
will be obtained, Here WS(T) is the weighting function
corresponding to the system transformation L,
If the modzl transformation is adjusted by adding a
transformation having (5) as weighting function, the error

in the output of the adjusted model becomes
5t \
Oc(t,WL) = J(tywy ) = /:Is(t-x,wt)pI’J(x)dx.

Multiplying each side of this expression by IS(t-'r,wL) and
taking expectations shows that

1lim pIS,OC*(T) = O, T2 0,

Ol~yco
Since, in such circumstances, if W(x) 1is any weight~
ing function corresponding to an L type transformation,

2L0g(tm ) = [ Tg(tmxym J(x)2)]?

25" - zj:bls,ooﬂ(x)w(x)dx + j:y:;IS(T-X)W(T)W(X)deX

{
S|
5]

]
b
Q.".
+
q

where Is*(t-x,wt) = jmis(t—x,wt)w(x)dx,
0

then there is no point in adjusting the model further,
Therefore, in this case a process very similar to
that described in previous chapters will lead to the L type

model of highest adequacy. This adequacy will however be
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less than 1 if the system is not of type L,
Two further comments are necessary.

(i) In general it will be wrong to whiten the input to
the system. If the system is non linear it may be
impossible to predict its output to the original
input knowing only its output to a whitened input.
However as mentioned in section 4.1 it is usually
undesirable, for other reasons, to interfere with
the operation of the system in this way. of
course there is no objection to whitening the
model input.

(i1) Theorem 4 part (i) has been used in deriving the
expression (5), If part (ii) of this theorem
were used the corresponding expression would be

WS(T) = WM(T) + PIJ(T) + PIJ(""')y T > 0s (946)
The discussion following (5) would not then be
valid since pIJ(-T) is not necessarily zero,
In many cases of this type, therefore, only the
result of the correlation for non negative T
should be used in adjusting the model,
9s2.2 L type system with limited output

It is often necessary that the amplitude of the output

of a physical device be limited. If the system output is of
the form

Og(t,wi) = LlIg(t,w )],  |LLIg(t,wm )]l < 4,
Og(tsw) = & ; L[Ig(t,m )] = 4,
Os(t,WL) = =A 9 L[Is(tﬁwt)] < =0y
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where A is a positive constant, the procedure given in
previous chapters may be used to determine an adequate model
of L providing that portions of the record where
lL[IS(tyWL)]I > A are not used when correlating Is(t,wL)
with OC(t,wL). Normally the period of time for which the
output is limited is only a small portion of the total record.
The correlation may be carried out taking Oc(t,wt) =0 for

the period t in which the output is limited; the total

1
effective length of record for this purpose is then reduced

from T4 to T4 - tl' Since A 1is not known acecurately,
in general, some conservative value less than A should be
used in deciding the intervals during which Oc(t,wL) is
to be taken as zero,

Having determined the linear part of the model by
the above method, the correct value of A may be estimated
by varying this parameter in the model, Since an approx-
imate value of A for the system is known there will usually

be little difficulty in determining a value of A which

provides an adequate model,

e2s3 Stationary systems defined by a few parameters

Suppose it is known that Os(t,wt) may be expressed
as a function of the independent variables Is(t,WL), a
finite number of the derivatives of Is(t,wt), together
with a few parameters Nj,(j = 1-n), whose values are known
approximately,
i.e, Os(t’WL) = F[Is(t,WL),..., Nseoe Mla
Let the model be of the form
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OM('C’WL> . F[Is(tth)nur Nosese Mol
where NjogsessMo are the approximate values of the N,
used in the model,
Then OC(t,wL) = Os(t,wt) - OM(t,wL)
andaassuming F is a differentiable functionjwe may write

i OF . .
Oc(t,wb) = JEi (513> AN; plus terms of higher order in the

ONj o The expressions %%I are to be evaluated at the values,
Nos OFf the 2;; they will be of the form, f£j(t,w ), and
they may be found knowing the input Is(t,wL). Hence if
the higher order terms in
AN =N = No
are neglected
oC(t,wL) o J%ifj(t,W1) AN

If the effective length of the records is TA then

1 Tl’"l n 2
Tl o [Oc(t’WL) . leif.i(t9wt JANy R at

may be minimised with respect to the AN to give n equa-
tions to be solved for the AN,

Assuming these equations have been solved to give
useful values for the ANy and the model adjusted accord-
ingly, a further improvement in the adequacy of the model
may, in general, be cbtained by introducing a type L trans-
formation in parallel with the adjusted model, The advisabil-
ity and necessity for doing so will depend on the particular

case,

A simple example of this procedure is the case,
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Os(tsWL) %I%(t,w;),

OM(t,W") = NIas(t’WL)’
£(tym, ) = Ig(t’wt):
so that the‘expression to be minimised is

Th
T_:., [O [og(tswe) = ANIZ(t,w )]%at;

this clearly has a minimum value for AN = A = N In

practice this method would yield AN as the ratilo

T4 . \
[, T3Cesm )05 o das

!
0

the two integrals being computed from the records available
for model checking,
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CHAPTER 10

CONCLUSIONS

A mathematical approach to the problem of checking
and adjusting a mathematical model of a physical system has
been described, This formulation of the problem has pro-
vided enswers to some outstanding questions which could not
be snswered using the subjective approach described in
earlier papers [2 - 5].

The important case of a stationary linear gsysten
whose inputs are realisations of a particular type of
stationary random process has been studied in considerable
detail,. It has been shown, both theoretically and ex-
perimentally, that in this case, the process of checking
and adjusting the model may be represented as one of
estimating the cross-correlation between the input,
"whitened" if necessary to give a suitable spectrum, and
the difference between the system output and the model
outpute. This representation leads to a re¢lation between
the length of record available for model checking and
the improvement to be expected in the adequacy of the model
ags defined in chapter 2, This improvement increases with
the total effective length of record availgble according to
the expression (5.27) given in chapter 5. However if the

length of record available for model checking is consider-
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able, or 1if there are several samples available, an iterative
method, such as that described in section 5.4, may be more
efficient than a single correction based on the total effect-
ive length of record available, As shown in chapter 8 the
relation (5,27) is useful in planning experiments to check a
mathematical model; it should be very useful in cases where,
because of cost or for some other reason, there is an advant-
age in not producing more data for model checking than is
necessary.,

The effect of recording errors on the adequacy of
the corrected model is studied in chapter 6, In order to
compensate for such errors, statistical information concern-
ing the variance, correlation and cross-correlation of these
errors is reguired. For most types of recording error, the
adequacy of the corrected model increases with the length of
record available for model correction, However the effect
of a bias error present in the recording of the system input
is, in part, independent of the length of the records avail-
able,

The cross-correlation technique may also be applied
to the case of multiple inputs, If these inputs are not
themselves correlated then the transformations between each
input and the output may be adjusted individually. That
portion of the output which does not arise from the input
under consideration may, as shown in chapter 7, be treated
as an error in the output. In this way a relation between
the improvement in adequacy of the model and length of record
available was found for the case of uncorrelated multiple

inputs 3
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Other cases have been discussed in less detail in
chapter 9, The cross-correlation technique may be applied,
sometimes with modifications, to some of these cases, How=
ever there is still a large number of cases, e.g. the case
of non stationary inputs, which has not been studied., These

could be the subject of future work,
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APPENDIX

ROUTINE CALCULATIONS USED MAINLY IN CHAPTER 5

A number of results, e.g. (5.16) to (5.26),
have been quoted, without proof, in the main text, The
proofs have been omitted since in many cases they are long
and tedious, In this appendix a few of these results are
proved, the others may be proved in a similar manner.

Theorem A1 Let a linear system have weighting function

n
wg(t) JEin(t)eth, Re (s3) < 0, t > 0,
= O, t < O;
where Pj(t) 1is, for each j, a polynomial in t,

Let the input to this system, Mg(t,w;), be a realisation
a 0|t

of an S.G.M, having correlation function 5 Let
Oc(t,wL) be the corresponding output from the system.
Then for o > |sj|, all J,
or
'OMoc,OC(T) = f:l.(a)e s T < 0,

- n
= fz(a)e OL’I"+ J?iQJ(Tpa)eSJT, T 2 0;
where:

(i) 1im £,(a) and 1im fp(a) both exist;
Ol=¥c0 O=00

(i1) the Qy(7,a) are polynomials in 7 whose
coefficients are functions of o and have a finite
limit as a tends to infinity; these coefficients

are therefore bounded for a > dp > |s3l, all Je.
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PROOF j Ma(t-x,Wg)WC(x)dx = Oc(t'wi)’
0

whence, multiplying each side by Mg(t-7,wy) and taking

expectations,

[ PTG (Rax = g o)+ (A

Now consider fw% e'alT"xlxmeS-’xdx
0

_ ‘/‘T% 'a(T'x>xmestdx N /j% e-a(x-‘r)xmes.lxdx’ T 2 0,
_ [f o~ (T-%) 8yXgy ./O,:% e~ (X=T) 81%521. 7 5 o,
- B > g (aBEgJB) ST Zai_c_sn e_aT], T > o’v
= '52_’;‘: [(1 - '%F) TeMNT - (1 4 "") e, T > 0,
= eSjT[K%o@)TK 52—‘,;‘13—12,2-‘-{(1 - Blycm-t , (ca)mK(q 4 .S;TJ.)k-m-i}]
N -OL'T[2 (=)0 +L(1 4 _..)"h""d.]’ T2 0,
(A2 ).

o0
For T < O, j %e-alT-x'xmeSdex
0

o0
=j %e-oc(x—'r)xmes_;xd_X
0

m .
_ gJﬂ' f:% o=OX By X 0T 5

oT m! (1 = _s(%_)—i—m, T < O.

__onm B ] = e
= Ogym © ZZoc 8) ) 200
(A-S)o

For T 32 0, fz(a) is then a linear combination of terms of
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the forn

m! B \epy ~

Eam(_1)m+1(1 N ?%>-m L (As)
the 1limit of which, as o approaches o, 1is =%
for m = 0 and zero otherwise,

The coefficient of 7¢ in the polynomial Qj{7,a)

will similarly be a linear combination of terms of the form

the limit of which is 4 for nm = k and zero otherwise,

For T < 0, fy(a) is a linear combination of terms of the

form
m! St =1-m
G2 (4e)

the 1imit of which is & for m = O and zero otherwise.
Since fi(a), f2(a) and the coefficients of the

polynomials Qj(7,a) are continuous for all o such that

@ >0 > |sjly all J, and in each case 1im exists, then

. ' Ol—c0
they are bounded for all o > op. Hence p () is
Mo, OC
bounded for o > ¢ and all T,

Several corollaries follow from the above results.

Corollary 1
For all 7T # 0 1lim pMa’OC('r) = wc(fr).
Q=00

This result follows from a consideration of the limits of

expressions (As), (As) and (As)e
Corollary 2

For all a > op the following integrals exist

b
/ lpMa,OG(x)ldx’ a and b any real numbers,
a
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‘pMa,OC<X)‘dX‘

§

Turther 1lim of each of these integrals exists and

Ol=y00
b b
lim j P (x)dx = j lim p (x)ax;
o | JPe, 00 o oo Phiat, OC ;
00 ]
lim j Priat OC(x)dx = /m lim Py OC(x)dx.
o0 J a 4 a8 O o

These results follow from the form of the integrand which is
dominated by an absolutely integrable sum of expressions

similar to Wc(t) for t > 0 and to WC(-t) for t < O,

Corollary 3

Tn
Lim /\ pMa('r--x)pMoc OC(x)dx = WC(T), 0<T < Tpe
Oc0 4 O 4

This result may be obtained by performing the integration.

Corcllary L

Ty
Li T t dx = W (7+t 0 T < Thno
1m [O pMa( X)pMG,OC( 3+X) C( + 3)) < m

Theorem A4 and its corollaries may be used to establish

the results quoted in the main text, Two examples will be

given.
Example 1
o0 (0O
3 | foj O T=x)B[W ()W (7)]axdr
Cl=>o0 o) Ma c C

o0 00
lim j ] O (T=x )W (X)W (7)axdr
aveo J 0J 0 M Sl

(e'o]
iim j pMa,OC(T)WC(T)dT (equation A,)
-0 ¢ O

o0
lim p (7w, (7)ar
jo S0 Pya, 00t TMo
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= j“ﬁcz(f)dT, (Corollary 1). (5416)
0

The integration and limiting operations may be inter-

changed since py . OC(T) is bounded, o > Op, and
4

fw|WC(T)|dT exists,
0

Example 2

Consider

Tn P (T x) (T
f[m M fnf pMO(. oc(t2 t:l."'x)pM Oc(ti t2+T)dt2dt1 dxdT7.

Substituting t3 = tz - tiy and inverting the order of integra-

tion reduces this expression to

Tm Tl”] ! m
2(Th-ta)
[o fo A ]Z P TPy, 00l b8 +%)0yg oo (~ta+T)dxdts AT
Tn (Th o(ma—t Tn
- jo fz DL pMa,oc(T'ta)fo Prio{ TPy o o+ )dxdts AT

The inner integral is bounded for all o > dp and has a finite
limit as o —» «~, 8o the limit o — « of this expression is

equal to

Tn (TR o ma T
2(Td~1t .
1 -1 T-X ta+x)dxdtg dT
jo [0 9L =" pMa,OC( a)jo ol T-%)Pyq ool ta* ) 3

Tm'Tﬂ !
= / j 2&%%z§%l WC(T;ta)WC(T+t3)dtadT, (Corollaries 1 and 4)

0JoO

umfr
= ]2 ]0 Tﬁfjg (Th=ta JWo(T=ta YW (T+t3 )ALz AT (5.23)

since WC(T-t3) = 0, tg > Te
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The final expression to be examined is

Tm
ﬁ'f‘)" fo P (¥ )(Tu =y )(Th=¥)P gy (¥)dy (5437)

=2 fzmpl(y)@?; - %%) (1 - %q) PorT)ay.

Allowing T, and T to tend to infinity in such a way
that (%2) is a finite constant, this expression becomes

2

=Ly

[ px(®) py(day

i
) L]

‘ Fpl(y) Por(¥y)ay

=00

fl

B [ 8w spp(edan,

SI(w) is the spectrum of I(t;w) and it may there-
fore be factorised to the form Y(w) ¥(w). SOL(w) is the
spectrum of OL(t,w) and is therefore equal to Soc(w)
miltiplied by (Y(w) W@))~* so that the expression (5.37)

approaches
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NOTATION

Adequacy of the model.
Inadequacy of the model =1 - A
Correlation function for random Process.
As subscript indicates correction.
Expectation of random variable.
As subscript indicates estimate.
Also used to denote an error.
With subscript; functions used in tabulated integrals
of reference [26].
With subscript; functions used in tabulated integrals
of reference [26].
Random process, realisations of which constitute
inputs to the system and model; with subscripts.
As subscript, indicates input.
A stationary, linear, causal transformation,
As subscript indicates the function has been trans-
formed by such a transformation.
A type of stationary linear causal transformation
defined in chapter 3.
Stationary Gauss Markov process.
As subscript usually denotes model; but in combina-
tion Mg, or Mg denotes stationary Gauss Markov
process. Also an expression used in the tabulated
integrals of reference [26].
Random process, realisations of which appear as errors

in recordings.
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Random process, realisations of which constitute
outputs of the system and model,
As éUbscript indicates output,
Difference between the system output and the model
output in the absence of recording errors.
Probsbility measure,
A polynomial expression; lower case subscripts
if necessary.
A polynomial expression; lower case subscripts
if necessary.
An estimate of a correlation function.
Real part of a complex function; often with sub-
script,.
Estimate of a correlation function; Dbut zero
outside stated values of its argument.
Spectrum of random process, subscripts indicate
the processes concernede.
As subscript indicates system,
Transformation; subscripted in upper case where
necessary. A constant representing time; lower
case subscripts if necessary.
Time after which no correction is made to the model
weighting function.
Length of record.

Effective length of record.

Tn - Tr’].

Time which approaches zero as o approaches infinity.
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185.
Voltage.
Probability space of points W,
Weighting function, subscripted as necessary.
A random process.
A type of random process defined in chapter 3.
Domain of transformation; a linear space of
functions f(t).
A set of transformations.
A constant ;
% used as time constant.
A constant, usually a bias error.
A function, usually of time; often with subscript.
With subscript, a member of a class of orthogonal
functions.
Constant spectral density.
Degree of polynomial, Non dimensional gquantity
aTn e
Non dimensional quantity aTh.
Complex number, with subscript.
Argument of Laplace transform.
A point in a probability space We
A complex number.
Shift operator,
Expression used in tabulated integrals of reference
[26].
A constant.

Function which is sum of several functions.
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186.
Parameter, usually of stationary Gauss Markov process,
often as subscript,.
Parameter of stationary Gauss Markov process,
The Dirac delta function.
Mean of a stationary random processS.
Correlation function whose mean is zero; subscripted
to indicate the process or processes concerned.
Variance of stationary random process; subscripted
where necessary.
Time, usually as argument of correlation function,
Fourier transform; often frequency response function,
As a vector indicates random process; subscripted
to indicate its components.
Fourier transform. Also factor of spectrum having
all its poles and zeros in the upper half plane.

Argument of Fourier transform.
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