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SUMMARY

This thesis considers hydrodynamic ship interactions in shallow

!,rater. It is assumed that the ships are slender, the fluid ís inviscid

and incompressible and,that free surface effects can be neglecÈed'

Four separate intcraction problems are considered. The first is

the interactíon of a ship with some depth contour. Only sEeady inter-

actions are considered, so the ship is moving at a uniform velocity

parallel to any <lepth contours. Trøo particular contours, namely, a

vertical wall and a beach of uniform sloPe, are considered and results

presented.

The rnodel is generalízeð. to include Èhe interaction of tr,/o or more

slender ships in shallovr \¡/a¡er, moving in such a manner that the problem

is steady. The cases of a flat bottom of uniform depth and a flat

bottom with a vertical v¡al1 are considered. The results obtained for

a wall are of particular interest when applying experimental results to

actual strip inÈeractions '

An unsteady model for two dimensional airfoil interactions is

formulated next. This provides insight into the significance of unsteady

effects in ship manoeuvres, when the bottom clearance is negligibie'

'This work is then extended to provide a model for the unsteady inter-

actions between tr^ro or more ships in unbounded shallow \itater, with

underkeel clearance effects included'

Each of the above problems leads to an integral eguation, or a

system of integral eguations, which has to be solved. A suiËable

algorithm is described in each case and used to compute results '

Comparison with experiments shows that Èhe algorithm is useful for

computation of the sway force and yaw moment in practical problems '

f{here possible, qualitative discussions of these results are presented'
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CHAPTER 1

INTRODUCTION

In recent years interest in hydrodynamic ship interactions has

resulted from the number of ship collisions occurring each year' The

collisions studied fall into tvro main classes, those between two or

more ships and those between a ship and another object such as a wharf,

bank, bridge, or sandbar. considerable effort has been put inÈo deriving

theoretical models, so that additional ínformaÈion about hazardous

situaÈions may be obtained.

From a theoretical point of view, ship interactions can be readily

divided into those in deep water and,those in water which is shallow

when compared to the drafË of the vessels. Tuck and Newman [25] have

considered the deepwater interacEion of tvro slender ships in both steady

and unsteady motion. In practice, this kind of theory is mainly limited

to refuelling manoeuvres, as ships are rarely close together in deep

rùater.

A ship is usually in close proximity to another ship or some

obstacle when it is moving in resEricted waterl^Iays such as harbours or

canals. Not only is there a lateral restriction on the water, but more

imporËantly, the depth is usually of the same order as the draft' It

is convenient to divide shallor¡ water interactions into two cases' steady

and unsÈeady. The steady case is the simpler to analyse of the two,

as a vortex wake must be included in the formulation of unsteady

problems. Tuck and Newman Í,25) formulated Èhe shallow-water ship-ship

in¡eraction problem for steady interactions in \'/ater of constant depth'

In this disserEation, only interactions in shalloer v/ater are

considered and, except in Chapter 4, the formulation of the rnodelled



interactions allows for some depth changes. This is done by applying

the results of Tuck l24l for slender ships moving in shallo$r vrater.

The models formulated all assume thaË the lateral separation between

the ships is comparable with the length of the ships, and large compared

to their beam. A nearfield theory for close interactions is described

in yeung ancl Hwang Í27). As the forces and moments of greatest import-

ance are those acting laterally, they are the only components ínvestigated

here.

The approach taken here is to take the sirnplest Problem and to build

upon it in successive stages. The first problem considered is the

steady interaction of a ship with some depth contours. This is expanded

to include the sÈeady interactions of tr^ro or more ships ín shallow water.

Temporarily abandoning this approach the simplest unsteady problem is

considered, that is, the two dimensional unsteady interactions of two

or more airfoils moving along parallel paths. This is formulated

directly from Èhe usual aerodynamic boundary conditions. The most

complex problem discussed is the unsteady hydrodynamic interactions

between two ships in shallow water. Here it is treated by combining the

results of the problems preceding it. In fact all the other problems

can be considered to be special cases of this last problem.

The advantage of starting with the simpler problem is that interesting

ship interactions of less complexity can be studíed more easily without

the numerical complications of the hardesË case. In fact, the last

problem depends on so many parameters that useful cases, which are

treated as separate problems here, could easily have been overlooked'

The first type of interactions considered are those between a single

ship and some depth contours. So that a steady model can be used, the

ship is considered to be moving parallel Èo any depÈh contours ' Two

particular cases are examined in detail, and numerical results presented.



The cases investigated are Ehose of a vertical wall (bank) and a beach

of uniform slope. One of the aims of this investigation is to determine

whether results for "bank-suctionrt problems can be generaLízed to other

boundaríes. This work has already been presented ín King and Tuck t16]

and Chapter 2 follows that PaPer closely.

In Chapter 3 the steady interaction between two ships is considered.

The formulation allows for depth coritours, and results for a flat bottom

of constant depth, and a flat boEtom r¿ith a vertical wall parallel to

the paths of motion of the ships, are presented. The results for a

vertical wall are í-mportanE as they show the quite large effect the

presence of a wall has on the sway force and yaw moment of the ships '

In fact, the results show that greaE care needs to be taken when applying

the results of model experiments to real situaÈions. This is because

experiments are quite often carried out in narro\"r tanks where the measurecl

forces and moments could easily include the effect of the walls of the

channels, even r¿hen this is not desired.

A two dimensional model for unsteady ship interactions is formulated

in Chapter 4. The model is that for two airfoils moving along parallel

paths at different velocifies. The Eheory is appropriate for flow pasE

a vessel in very shallow water, as Tuck [ZZ] tras shown that in this case

the flow is nearly two dimensional. King [14] describes a formulation which

can be used r¿hen there are no boundaries in the fluid. A more general

derivation is given in Chapter 4, together with some results for inter-

actions in an unrestricËed two dimensional fluid.

Underkeel clearance effects are included in the model for unsteady

ship interactions in shallow water which is described ín Chapter 5'

This is the most useful of the theories presented, but because of the large

rrumber of variables in such a problem (waterplane, clearance, relative

velocities etc.), only results for comparison with experiments are given.
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They show that Ehe model can be usefully employed in the study of ship

inÈeractions.

Each of the four problems considered is modelled by distributing

sources and vortices over the centre-line of the vrater-plane of the ships.

The sources model thickness effecËs and the vortices camber and inËeraction

effecÈs. I,lhen solving the problems the source distribution on each ship

is obtained analytically and only depends on Ëhe Èhickness of the ship

being considered. A sysËem of singular integral equations is obtained

for Èhe vortex distributions. These equations have non-unique solutions,

and a KuËta condition on each ship is used to determine the soluËion

appropriate to a given situation.

In each chapter there is a description of a numerical procedure

suitable for solving the particular kind of integral equation derived.

The procedure is, however, almost identical in each case and involves

replacing integration by summation to obtain a matrix equation for the

vortici¡y. In the unsteady problems this is further cornplicated by the

need to include time dependenÈ effects within the matrix equation'

An algorithm for the computation of sway force and yaw moment is

described. tr{here possible, the results from this algorithm are compared

with published experimenÈal resulËs. Jhese comparisons show that the

algorithm works satisfacEorily. The results of some of the calculations

done, are discussed in detail. The results are interpretdted qualitatively '$

to give insight into what is actually occurring to the ships during some

ship manoeuvres.
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CHAPTER 2

STEADY INTERACTIONS BETI^IEEN A SHIP AND THE BOUNDARY OF THE I^IATER

2.1 INTRODUCTION

Bank suction is a significanË problem in ship manoeuvring, and a

ndmber of studies have recen¡ly appeared of this hydrodynamic problem,

e.g. as revíe$red by Tuck 1241. In most such studies it is assumed that

the t¡ater is of constant depth, and that the bank is a vertical wall'

Although this assumption allows study of qualitaÈive effects of greatest

interest, some doubt remains as to whether the phenomenon is affected

by bottom geometrY.

A complete theoretical or computational study of ship manoeuvring

in variable bottom Ëopography would seem Èo be out of the question'

Unless the boËtom contours are straight and parallel to the shipts track'

the flow is unsteady, and a new boundary value problem musÈ be solved

for Laplace's equation at each instant of time. By restricting consid-

eration to the steady-flolir case, the problem is reduced to that o'f solving

only one boundarY-value Problem'

For general depths, this boundary-value problem is three-dimensional,

and involves the compl-ete hull and bottom geometry; again, a somewhat

daunting task, at least for routine computaËions. It wifl be assumed

that the nater is shallow, i.e. Èhat the depth is small compared to

oÈher important length scales. In the present case, this means small

compared to the shipts length. At the same time, it is convenient to

assume that the ship is slender, with beam and draft comparable to the

nater dePth.

The effect of this further approxí.maÈion is to reduce the task to

that of solvíng tr¡ro seËs of two-dimensional boundary-value problems'
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The ínner problem is to solve Ëhe t\^¡o-dimensional Laplace's equation at

each vertical ship cross-section, wíth uniform (local) depth, no banks'

walls or beaches, and a "rigid-wall" free surface. This is a solved

problem; work such as that of Taylor t21] and Yeung 126l provides Lhe

outpuL quantities of interest, namely Parameters which characteríze Et¡e

geometry of the ship as seen by an @ observer far from the ship'

The ouËer problem is to solve the lineatízed shallow-water equation'

allowing variable depth, banks, wall or beaches' This is a Ewo-dimensional

probleminthehorizontalplane,inwhichtheshipismodelledasan

eguivalent infinitesimally-thin porous airfoil. The parameters of this

equivalent airfoil (thickness, camber, porosity) are determined from the

solution of the inner flow problem at each section'

This outer problem is still a little too difficult for routine solution

with arbitrary Froude number and bottom topography. New soluÈions are pro-

videdhereonly in the case of a uniformly-sloping beach, and assume in

this case that the Froude number ís zero, i.e. that the free surface is

replaced by a rigid wall in the outer as r^rell as the inner region' Known

results in the case of a vertical bank, in water of constant depÈh, are

also reproduced.

The zero-Froude-number assumption is noE unreasonable, since in the

real manoeuvring situation the ship is forced for safety reasons to

travel slowly, if there is significanÈ bank suction. However, from

the theoretical point of view, there are some difficulties with this

assumption near any point where Ehe depth tends Eo zero' such as at

the shoreline of a beach.

An interesting feature of the uniform slope equation, is that it is

formally identical Èo that for axis¡rmmetric flow, the distance from

shoreplayingtheroleoftheradiusco-ordinate.Thustheouter

problem is the same as for flow through and around an equivalent
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"annular airfoil" or collar. Thus it is possible to make use of

previously determined solutions to this class of problem. In

particular, the fundamental building block for the numerical solution

is the velocity potential for a ring vortex, which can be expressed

in terms of elliPtic functions.

The computed results give the side forces and moments on Èhe ship.

Collections of such results for varíous ship geometries, both for banks

and beaches are presented. The results are much as might be expected

on intuitíve grounds. For example, the force near a beach is greater

than that at Èhe same distance from a bank, since the 'reffective'r

distance is smaller. An equivalent sÈatement is the volume of l¡tater

between the ship and the beach ís smaller than the volume between the

ship and the bank.

This work is contained in the paper King and Tuclc t16l and the

following discussíon will follov¡ that paper closely'

2.2 MATHEMAT ICAL FORMULATION

Gonsider a ship moving at uniform speed U in the -x direction

along y = 0, in water of depth tr = h(y)' Viewed in a frame of

reference fixed in the ship, the flow is steady and the disturbance

velocity poEential Q satisfies the linearized shallow-ülater equation

0** *0" = Q. Q.2.L)

This equation is valid excePt very near the ship, as an approximation as

hlL, -> 0, where 29. is the ship length. Note that Ô is, to leading

order in shallol,tness, independent of the vertical co-ordinate z '

Here the lirniting case of low Froude number , tJ2 f gh + O, is considered,

in rñich "ã"u 
(2.2.D reduces to

*ffi0,
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o*"*0"".#
In particular, for consÈant depth h=constant, Q.2.2) reduces to the

two-dimensional Laplace equation

ó = 0.'v
(2.2.2)

Q.2.3)

Q.2.4)

(2.2.5)

(2.2.6)

(2.2.7)

+Q0** = 0,
vy

in the (x,y) horizontal Plane'

here is of a unifo::m sloPe ß, i

The only other specific case treated

e

h(v) ho + ßY'

in which

ß0r* * 0r" ho *ßY+ ô = 0.'v

Defining

and subsËituting in (2 -2.5) gives

r = y + ho/ß

*0, =Q1+-Q
rfö'xx r

which is the equation for axisymmetric irrotational flow, with r as a

cylindrical polar co-ordinate'

The task is to solve Q'Z'3) or (2'2'7) ' subject to suitable boundary

conditions. The ship, being slender, is represented in the lirnit as

its bean/length ratio tends to zero, by a line segment y = 0t, l"l 1 L,

of the x-axis in the (x,y) plane' The analogy is therefore with a

thin airfoil. This airfoil is two-dimensional if h=constafiË, so that

Q.2.3) holds. On the olher han<l, the equivalent airfoil is in the

form of al annulus or "collar" r = ho /ß ín aa axisymmetric flow, in the

case of a uniform slope, where Q'Z'7) holds' -
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The actual nature of the limiting boundary condition on the hull must

be esËablished by an inner expansion in the inrnediate neighbourhood of

the ship, as in Tuck Í231. In Ëhe special case where the ship is a

vertical struE, i.e.

f-(x)<y<t+(*), l"l <L O-2.8)

the appropriate boundary condition is simply the usual thin-airfoil

condition (Ashley and Landahl, t3l )

Q.2.e)

These two condiEíons on y = 0t can alternatively be expressed in terms

of a mean normal velocity

O" = hþr(x,o*) * hþ"(x,o-) = u l'(x), (2.2.LO)

and a jump in normal velocity

^ó'v
- 0"(x,o-) = uÂf'(x), Q.2.Lr)

where

Q.2.t2)

is the camber of the strut and

Af(x) = f + (x) f (x) Q.2.t3)

is its thickness. For a strut with lateral symmetry, ya\^Ied at an angle

of attack 0, the camber is simPlY

#,",0+) = u ri'(x)

0" (x,0*)

t:

f (x) =-dx Q.2.L4)
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The most general case of a ship of arbitrary cross section, with non-

zero bott.om clearance, is discussed by Tuck t23]. The equivalent air-

foil is now clearly Porous, since the bottom clearance allows some water

Èo pass through the limiting line segment y = Ot, l"l < 9" So instead

of (2.2.10),

õ - ul'(x)'v 2h
I

c
o

A0 (2.2.rs)

where

^0(x) 
= Q(x,O*) - ô(x,0-) Q.2.L6)

is the jump in velocity potential across Èhe airfoil, and C(x) is the

non-dimensional blockage coefficient (Taylor' tzrl¡ of the ship section

at state x in water of depth ho If there is no clearance, C(x) + -,

and (2.2.LÐ reduces Eo (2.2.10). Since the jump in pressure across the

foil is proportional to A0'(x), (2.2.L5) indicates a net flow through

the equivalent Porous airfoil.

In a quite general case with a laterally unsymmetric ship, the

appropriate choice of the camber function I(") is not at all obvious,

and in general it is necessary to solve an inner-flow problem at each

section to determine t(") (Tuck t23l ). However, if each ship section

possesses lateral symmetry about the mean line y = l(x), then Ï(")

may be taken as the appropriate camber function. In particular, in

the case of symrnetric ships at an angle c[ of yaw, Q.2.L4) still

applies.

The normal-velocity jump condition e.2.II) is also modified in the

general case, but in a simpler manner. In fact (2-2-LL) sÈil1 applies,

with the sÈrut thickness Af(x) replaced by the mean thickness of the
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actual hull, averaged over Ëhe local water depth' ThaÈ is

Af(x) =+3, (2.2.t7)
o

where S(x) is the iurnersed cross-sectional area of the hull at station x.

The only remaining boundary conditions are at infinity, where

0*O as Y+- (¿'2'18)

and at the location of any bank or shoreline; if such a boundary lies

at y = -Y, saT, then

O,(x,-Y) = 0. (.2'2'L9)

2,3 SOLUTION PROCEDURE FOR GENERAL DEPTH CONTOURS

The boundary-value problem formulated in 2.2 can be solved formally

by a distribution of sources and vortices over the segment representing

the ship. Thus

0(x,Y) q(E)c(x,y;E,o) + Y([)H(x,YiE,o) dE (2.3.1)

where G(x,y;ã,n) satisfies Q-2.Ð except at (*,y) = (E,n) r¿here it

behaves like a unit source, and H(xry;E,n) is the potential for a uniÈ

vortex, whích is also a singular solution of (3.2.2) and is related to G by

Hr = - Gn * h''(1)' c. Q-3.2)

In fact G and H depend on x and I only via their difference

L

J
-9.

{
t
J

x-E
On substitution into

source strength q(x) is

the thickness boundary condition (2.2.1L), Ëhe

inrnediately found to be
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s(x) = 40,

= u 
^f'(x)

= u s'(x) /ho

Sirnilarly, substitution into the camber boundary condition (2'2'L5)

gives an integral equation to determine the vortex strength

Y(x) = - * o*,"r,

namely

(2.3.3)

(2.3.4)

(2.3.6)

(2.3 .7)

f v(E)n"(x,o;ã,0)dE . 
"fu [ Y(E)dE

-p -9

= u I'(*) - f o{e)[Zc"(x,0+;8,0) * \Gv(x,o-;8,0)]tt' l:'3'5)
-e

The integral equaEion (2.3.Ð is símplified by introducing a ner^I

kernel function K , defined bY
x

K*(x,E) = Hv(x,0;E,0) + ffi
where

u(x) =
0
1{

x<0
x>0

Equation Q.2.5) rnay be writÈen in the form

8.

.| t,E)K* (x,E)dE = u s'(x), (2'3'8)

-9

where U g'(x) is written for the function on the right-hand side of

e.3.5), which measures Èhe crossflow due to camber Ï(") of Ehe ship

and in addition an induced crossflow due to the thickness of the ship

in a laterally-asymmeEric flow. It is convenient to define a kernel

t(x) to describe the latter effect, whose derivaCive satisfies
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L'(x-E) = LrGy(x,o+;E,o) * 4Gv(x,o-;E,o) Q.3.e)

and set

g'(x) = f '(x) s,(E)r,(x-E)dE (2.3.10)

-9.

Note that if the bot¡om geometry is symmetric about y = 0, then L = 0,

and the only cross flow is that due to camber of the ship.

2.4 NUMERICAL PROCEDURE FOR SOLVING INTEGRAL EQUATION

A direct numerical procedure is used to solve the inËegral equation

Q.5.8), by replacement of integration wiÈh surnmation using a method of

discretization, and inversion of the resulting matrix equation. The

method is similar to that used by Tuck and Newman Í25) '

First take the índefinite integral with respect to x of equation

(2.3.8), giving

,2

Iv(E)r(*,E)aq=sg(¡ç)+c (2'4'r)
!0"-' o

where K(x,E) is determined by integration of equation (2-3.6), and

g(x) from eguation (2.3.10), for the Green's function G appropriate

to the particular choice of U(y). The constant Co is for the moment

an arbitrary constant of inËegration, ultimately deterrnined by application

of the KutËa condition at the trailing edge.

To find a numerical solut.ion, suppose the unknorrrn function Y(x)

can be represented by a step funcÈion on the ship, the value on the jth

interval *j. , ( x a *j being taken as the constant Y(x) = Y. Since

sguare root singularities are exPected at the ends of the ship, the

distribution of the point" *j must be chosen so as to counter these

singularities. A dístribution of the points wirh the correct properties is

_1
h

o r
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forameshof N+1

Replacing Y(x)

t = -.C cos( jnlN),

points on Ehe shiP.

ín equation (2.4.f) by such a step function gives

o.4.2)

(2.4.3)

*j' t

The integral is evaluated at points

of the ith irrt"t.rtl, sPecificallY

[= 14¡ I [y.], c
J-

Ie

with

Yj K(x,6)dE = U g(x)
0

+C

x which are near the centre

f"¡
J

N

T
=1t

x
I

The equation maY then be written as

ä = - !. cos((i-à)r/s)

Yj

or¡ equivalently, the matrix equation

AI=Ug*cog

where

K(", ,l)aq = U g(x, ) co, i = 1r2r...rN, (2-4.5)+

x. )lI
e [1] ,

(2.4.4)

e.4.6)

Q.4.7)

(2.4.8)

o.4.e)

N

I
=1j J"i

x
t3

(l and

In practice the matrix elemenÈ

out the logarithrnic singularity at

K(x, E) = * to"l 
"-E I

K(x. ,E)dE

A, ¡ are evaluated bY seParaÈing

E = x, and writing

Ka r, (*'E)

îx'
A.. = l'rt J

1-r

+

where *( r) is non-singular and withorrt loss of generality can be assumed

to vanish at E = *. .Now integrating Èhe logarithm exactly and the non-

singular funcEion *(r) by the rnid-point rule, yields
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A,¡ = fi t(*,-i, )1ogl",-l l-("¡-,-t )1oglx,-,-*, l-(x,-*,.,))

(x, -xr. , )*, r, (*, ,", l.+

Note that *( r) does noÈ conÈribute to the diagonal elements Ail

The solution I is obtained by direct matrix inversion, with the

two right-hand sides g and e' and may be written as

(2.4.10)

Q.4 .TI)I=uI'*cot'
where

and

t =A-1 g

o II =[ e

Íhis is a numerical approximation to a corresponding representation of

the actual vortex strength "¡(x), namely

Y(x) = uYt (*) + cot' (x). (2.4.r2)

Thus a numerical approximation to the general solution of the singular

integral equation Q.4-L) can be obtained, with Co a constant to be

determined by the Kutta condition'

The Kutta condition for this class of problem is that the vorticity

must vanish on the traíling edge, i.e'

Y(0) = 0. o.4.L3)

There are t\do ways in which this can be applied. A crude but effective

procedure is to require the vorticity on the trailing element Eo be zero,

so that
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I( ) 0
N

or

co - - u(It )N/(t' )N Q.4.L4)

from equation (2.4.LI),

A more satisfactory method is to use some of the expected properties

of the solution to the singular integral equaEion as x +.Q,. For

example, âny solution of. (2.3.8) must have the ProPerty that es x + l'

Y(x) # * E'Fx. ,I )L-X
Q.4.L5)->

for some constants D,E. ny fitting this function to the last two

elemenE.s (t''" )*., and {yt'")*, the four constants D = ¡8e 
e 

and

E = 6ere may be determined. In order that the Kutta condition O.4-L3)

holds, the sum of the inverse-square-root terms involving D must be

zeto, l.e

uDt = 0,

so that

e+CD
o

c
o

= - uDs /D" (2.4.L6)

Ln all results presenËed the second application of the Kutta condition

is used.

2.5 EVERYI,üHERN -UNI FORM DEPTH

If h=constant everywhere, then

IG(x,y; E,n) 2t¡
log x-[ + v-n (2.5.1)



L7

and

H(x,y;E,n) = L arclar- x-E
v-n

Thus the kernel functions K and L' defined by (2.3.6) , (2-3-9)

f'(E)
x-E

(2.5 .2)

Q.5.3)

o.5.4)

(2.5:5)

Q.5.6)

x

become

and

Kx

u(x- )+
zho c x

L'= 0

Equation Q.5.Ð is expected from Èhe symmetry of the bottom geometry

about the ship location Y = 0.

Afrer inregrating (2.5.3) Ehe kernel K is of the form (2'4'9),

with K(r) = K(o), where

K, o, 
(x,E) - fdrt-J c(r)

-9.

Ihe kernel *ao, measures the effect of bottom clearance, and vanishes

for zero clearance (c * -). If *(o) I 0, Èhe integral equaÈion (2'3'8)

is the classical Èhin-airfoil equation

uf '(x)

whose solution subject to Èhe Kutta condition Q.4.I3) is

dE Q.5.7)

If the clearance is noE zeto, the problem is that of a porous airfoil,

and (2.3.8) becomes

v(*)=-# IF¿
Jæ

lffi,-
./ ,1,+x r

_T

1 r r2n
-c

+

-2

Y(E)dE = uÏ'(x), (2.5.8)
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which was first obtained by Newman t17]. Although no closed-form

solution such as Q.5.7) appears to exist for arbitrary C(x), Ï(*),

integral equations of this type may be readily solved numerically by

the procedure described in 93.4. An alternative treatment of (2.5.8)

is by the Cauchy Inversion technique as described in Yeung lZø1. Non-

zero sÍíay force and yaw moment only occur when the ship is yawed to its

di'rection of motion or there is another body or obstacle in the flow.

In the more general cases which follow, it is convenient to express

the kernel of the íntegral equation as a correction to the uniform-depth

kernel, that is

K(x, E) = * torlx-El+r,o¡ (*,6¡ + x(x-E) Q.5.e)

or *(r) = K(o) + [ , where R(O) = o. Note that all effects of

clearance between ship and botÈom, are incorporated in K( o) , and

depends only on the bottom topography.

2.6 MOTION PARALLEL TO A VERTICAL I,JALL IN UNIFORM DEPTH

If there is a vertical wall at y = -Y, this wall may be modelled by

images, obtaining the potential for a unit source at (E'n) as

K

G(x,y;E,n) = * ro"

+
1

n log

x-[ y-n2+ 2

(2.6 .L)

Q.6 .2)

and the potential for a unit vorEex at (Ern)

x- + y+n+2Y 2

as

IS

H(x,y;E,n) = fi arctan
1- :- arctan

ZTt
v-n
x-E

Thus Èhe necessary kernel function for (2-5.9)

ñ(*)=-*t.r[t.ai=] (2.6.3)
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L(x) Q.6 .4)

This is Èhe bank-suction problem. Recently IIess [10] has investigated

this with particular emphasís on the yaw angle (which is usually small)

and rudder angle required to give a zeto sway force and yaw moment.

2.7 MOTION PARALLEL TO A UNIFORM BEACH

Consider a uniformly-sloping beach with a shoreline at Y = - Y,

i.e. r"¡ith slope ß = ho/Y The appropriate Greenrs function is that

foraringsourceof radius r=Y, where r=y *Y, as ín(2'2'6>'

The potential of such a source can be wriÈEen as an inÈegral of Bessel

functions , i. e.

where K(0) = 0 as required and the induced-camber kernel is

1x
Ul arctan Zy

G(x,y;0,0) = - ZY f- .-o'*' ,o (nr)lo (pY)dp

and the corresponding ring vortex is given by

o

Q.7.L)

Q.7 .2)

(2.7 .4)

These integrals can also be written in terms of complete elliptic integrals,

e.g

G(x, y;0 ,0 ) =-år(*)lTK -
Q.7.3)

where

R2=x2+

f-
J

sgnx.H(x,y;0,0) =-ÞrY e

=x2+

4rYn=[z-

Jo (pr)J, (pY)dp.-Plxl

q¡+y) 2

(y+2Y)2 ,

Q.t.s)
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and

r
o

l2
K(rn) (2.7 .6)

(2,7 .7)

Q.t.s>

e.7 .e)

(2.7"10)

is a complete elliptic integral (Abramowitz and stegun tll ).

carrying out the required differentiations and integrations, it

found that the necessary kernel functions are

Upon

is

K(x) =--
1TmY'

1
[ ( r-äm)r(rn) -E (m) ]

-frrogl"l -+.frros8v

and

l(x) = f¡ rf*l

wherenow y=0 or r=Y ínthedefinitionsof R and m'i'e

7= rpT@

and

E(m) is the corresPonding elliptic integral of the first kind. Note

that as x + 0, ß * 1 and the elliPtic

logarithmic singularity of the correct

K is well behaved. The constants rr

so that R(O) = O, as required.

integral 5 Possesses a

strength so that the function

- 1 * I los 8Y" are includedn zll

2.8 SI,üAY FORCE AND YAI,ü MOMENT

The quantities of main interest are the sway force Y and the yaw

moment N acting on the ship. The linearízed Bernoulli equation yields

the pressure
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P=-pu0*

_a.q
èz = Q on the free

(2.8.1)

o.8.2)

x IT

Q.8.4)

(2.8.5)

(2.8.6)

l¡here p is Èhe density of vrater. The sway force can then be calculated

by finding the total y-directed pressure. That is,

J=- pdx dz

hull of
ship

fI

=-pu
-9. c( x)

where C(x) is the cross section curve of the ship aË station

is convenienÈ to introduce a function I such that

0* dz

T 0* dz= d9. (2.8.3)

c( x) c( x)

where I is the normal into the fluid.

Consider the closed path of integration shown in Figure 2.1. Since

this is an inner problem, the local water depth may be assumed constant.

By Greenr s theorem for this Path

J *"#

!¿
ân

.âôuu=fvfar,

which, together with the boundary conditions that

surface,and ff=O on C and z=h(z),gives

r=f ,+uu-f

fo.

o-ffar
st-

But,

.âô
fr#do=o,

r=-Jr*_

= h Y(x)

ôx

so

Purdn

(2.8 .7)
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by equation (2.3.4) when considering this as an inner problem. Thus

the expression for the sway force is

Siurilarly the yaw moment is given by

y=puh dx y(x).
-0

f
J

N=puh dx x Y(x)

r (2.8.8)

(2.8.e)

-r

2.9 RESULTS

The preceding sections provided a formulaÈion and a numerical solution

technique for an arbitrary slender body moving parallel Ëo a beach or a

bank in shallow r.rater. Here the application is to ships, so consider

slender bodies which are laterally syrrnetric, and nearly (but not necessarily

exactly) fore-and-aft synnnetric. The formulaÈion itself made no synrnetry

assumpËions, so the effects of yaw on Èhe motion of a shíp can now be

studied.

rn order that the blockage coefficient c can be evaluated easily

when needed, only ships with rectangular cross-sections and constant

draught are considered. Then, if the clearance-to-draft ratio is small'

Taylor's ÍzLl formula for Èhe blockage coefficient may be used' This

restricts the investigation to situations with small clearance-to-

draughÈ ratios, but, as the results show that the magnitude of the forces

and momenËs on the ship decrease rapidly as the clearance íncreases 
'

this ís the most interesting region'

The quantities of main interest are the sway force Y and the yaw

moment N acting on a ship near a wall or beach. so that subsequent

results can be presented as dimensionless coefficients, the dimensionless

sway force coefficient C" and dimensionless yar^l moment coefficients C*

about amidships are
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(2.e.1)

and

c* (2.e .2)

respectively where L = 29- is the length of the ship and the sway force

Y and the yaw moment N are given by (J'8'B) and (2'8'9) '

The programs used to produce the following resulÈs were written in

FORTRAN and run on the Llniversity of Adelaide's control Data Cybet L73'

The execution time for a typical compuËation v/as 458 seconds ' In that

Èime the sway force and yaw moment on a ship in the presence of a wall

andrseparaEelyra beachrqrere calculated for tl4Tenty different depths of

waÈer. At each of these depths the porosity contributions Èo the

matrix equations had to be recalculated' Also' the computation is

considerably slower in the beach case, as the elliptic integrals required

are much slower to calculate than Ehe corresponcling Èerms for a vertical

r.¡a11 .

To check the validity of the results, the calculations required

to produce Figures 2 and 3 of ltess []-01 were carried out using the above

technique.Itwasfoundthat,tographingaccuracy'whenusinga

mesh of 40 points on the ship, the resulÈs computed by the above theory

were indistinguishable to those of Hess for a ship noving parallel to

a wall.

Inthefirstplace,itisdesirabletoinvestigatetheeffectof

changingÈheshapeofaship,sothattheextenÈÈowhichresultsfor

maEhematically-defined bodies may be generaLízed to real ships can be

estimated. For ships which have a bearn/length ratio of 1/8 and

draught/length ratio of L/L6, the effect of varying the water depth on

various ship shapes vras studied, with the ships a disÈance rl of o'29"

from a vertical- wall or the shoreline of a uniformly-sloping beach'
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Figure 2.2 shows the five different water-plane shapes which were

investigated. In Figures 2.3 and 2.4, the sway force is plotted

against the local úrater depth at the ship, for a vertical wall and a

beach respectively. It can be seen that results for ships A, B and

D and ships c, E are essentially identical. The graphs all show the

same decreasing behaviour as the depth increases, and hence the bottom

clearance increases. Even though ship C is ship B running backwards,

there is a significant difference in the sway force. ships A,B and

D, which have the same r^later-plane for x > 0 have the same sütay force'

similarly for ships c and E so, for the five ship shapes considered'

it appears that the sway force ís determined more by the aft shape of the

ship than the fore of the ship. These figures show that although it ís

hard to predict ¡,¡hat effect changing the shape will have on the sway

force, it appears that some general quantitative conclusions can be made

about the sway force, regardless of the shape of the ship'

tlhen the corresponding results for the yaw moment are examined (Figures

2.5arld2.6)itcanbeseenthaÈnor¿thevaluesofthemomentarequite

scattered. rn the zero-clearance case (depth/draught = 1)it can be seen that

there is a non-zero moment for the ships which are not fore-afÈ synrnetric'

Also, aE zelo clearance, the direction of the non-zero momenÈ is such

that the blunter end moves towards the boundary and the yaw moment acting

on ship B is equal and opposite to that on ship C IÈ is not

surprising thaE ships A and D gíve such similar results, as their

shapes are quite sirnilar. In contrast to the force case' it is necessary

to be cautious when genera!ízíng the results for the yav/ moment to real

hull geometries, since the moment depends to a much greater extent on

Ehe shape of the ship. All subsequent results are for a ship of parabolic

water-plaue shape (i.e. tYPe E).
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Before comparing the results for a constant-s1ope beach with those fcr

a vertical wal1, it is convenient Eo examine the effect of changing the

beach angle. The numerical values for four different beach angles ß

(see Figure 2,7) are given in Figures 2.7 to 2.11. The horizontal

scale on all the figures is the depth/draught raEio at the ship's position.

For a given depth/draught ratio, the four lines on each graph are therefore

at four different distances from the shore. Figure 2.7 is a graph of

the sway force, for Ehe ship moving parallel to the shoreline at zero

angle of attack, whereas Figure 2.8 shows the sway force for a ship yawed

to an angle of attack of arctan 0.1 = 5.7 degrees to the shoreline'

In the case of zero angle of attack, the sway force is toward the shore,

and for a given depÈh it is greaÈer for beaches of greater slope, since

the ship is nearer to the shore in such cases. If the sway force had been

plotted insÈead against distance from the shore, it would have appeared

that in general the sway force is greatest for the beach of leasÈ slope.

In Figure 2.8, it can be seen that, even for this small angle of attack,

the sway force has already become repulsive (i.e. force away from the

beach). In fact, for an angle of attack of only 0.5 degrees away from

the beach, the sway force is repulsive for ß = 0'05'

The yaw moments corresponding to the situations of Figures 2.7 and 2.8

respectively are given in Figures 2.9 and 2.10. Here it can be seen

that, at zeto angle of attack, the momenÈ Èurns the boqt away from Ëhe

wall, and that yawing the bor¿ increases this moment. It is interesting

to find the angle cr at which the ship must be yawed to make the sway

force or ya!'t momen1 zero. The tangent of this angle is shor¿n in

Figures 2.11 and 2.12, for the force and moment respectively. Two

features are irmnediately aPParent from these figures. Firstly, the

angle required is very small, for both force and moment, and secondly

Èhe sign of the angle is dífferent in each case. This means that a
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symmetric ship without a rudder cannot. yaw itself so as to exPerlefice

simultaneously zero s\^/ay force and yaw moment, when moving parallel to

a boundary. In a slowly-varying dynamic situation, the above results

show that the ship would begin to turn away from the shore and, as this

would decrease the atÈractive force and increase the bow-away moment,

the ship would subsequen¡ly turn further avray. Eventually even Èhe sway

force itself would be arvay from the shore' accelerating this tendency'

It is of interesË to compare Ehe forces and moments due to a

vertical walI with those from a uniformly-sloping beach. To do this,

consider a ship at a distance n from the shoreline or wall, and in

lrater of depth h This will then determine the appropriaÈe beach

angle. To graph the resulÈs n was fixed at various values and h

varied, which means that the beach angle ß is different for each

value of h.

In Figures 2.13 to 2.16 Ëhe numerical results for a wall and a

beach are compared, for three different values of n The results

for the wall are given by solid lines and for the beach by dashed lines'

The sway force tor a ship which is not yawed is given in Figure 2\L3 '

Irunediately, it can be seen that the force due to a wall is smaller

than that due to the beach, which could have been anËícipated, since

Ëhere is a greater volume of water between the ship and the wall than'

between the ship and the beach. The yaqt moment corresPonding to this

sway force is shown in Figure 2.L4. Again, the values for the beach

are greater Èhan those for the corresPollding wall. All moments are

zero f.or zero bottom clearance, and rise rapidly to a maximum as a

function of water depth before decreasing. The moments are zero f'or

zero botEom clearance as ship E is fore-aft symmeEric, whereas if a

ship without this synunetry is used , a troÍL-zero yaI^t moment would be

'expected. It is apparent Èhat, unlike the sway force, whose maximum
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Occurs f.or zexo clearance, the ya\¡I mgment reaches its maximum at a sma1l

but non-zero clearance.

Iühen the ship is yawed at an angle whose Ëangent is 0.1, the sway

force and yaw moment are shown in Figures 2.I5 attd 2.L6. In contrast

to before, the force is greater in Èhe case of the wall than the beach'

In general, the yaw moment due to the beach is greater than that for

the wa11 for the corresponding distance from the boundary.

This chapter provides a technique which can be, used to find the

effect of different botÈom toPographies on the motion of a ship' It

shows that the results obtained from a bank sucEion investigation cannot

always be readily used to predict the effect of some other bottom topography

Thus care must be taken when trying to formulate general conclusions from

such an investigation.
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SITIP A

SHIP B

SHIP C

SHIP D

SHIP E

b(.x) = bEx''z
b(x) = rb(1-x2)

to,¡=t
b(x) = þ,/ç3

{o < ,.-*'I
b(x) = rb(l-xa)
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2.2 Functions describing the breadth of a ship b(x) for
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CHAPTER 3

STEADY INTERACTIONS BETI^IEEN TWO OR MORE SHIPS MOVING

OVER A FLAT BOTTOM OR NEAR TO A BANK

3.1 INTRODUCTION

Ilhen tr¡o ships pass each other each ship experiences forces and

momenÈs induced by the presen.ce of the oËher ship, in addition to any

effect from the boundaries of the fluid. The problem may be considered

as sÈeady, if the ships are moving along parallel paths at Ëhe same constant

velocity, and if any depth contours are parallel to the tracks of the ships'

otherwise Ehe problem should be considered to be unsteady' In this

section only the sEeady problem will be considered, and the unsteady

problem left for ChaPters 4 and.5'

ThesameresËrictionsontheshallofúnessofthe$/aterandthe

slenderness of the ship will apply as described in sectio¡ 2'L' The

inner problem to be solved is Ëhe two-dimensional Laplace's equation at

all vertical sections of each ship in turn, with uníform (local) depth'

no banks, wall or other ships, and attrigid-wall" free surface' This

problem has already been solved, and Taylor l,Zt1 and Yeung 126l provide

the blockage coefficient of a ship, which describes how the geometry is

seen by an outer observer far from the ships '

The outer problem to be solved is the Lírrtearízed shallov'r \^/ater

equation,allowingfortwoshipsaswellasvariabledepth.Asin

chapter 2, this is a two-dimensional probl-em in the horizontal plane'

in which the ships are modelled by equivalent thin Porous airfoils'

rn this outer problem the free surface is replaced by a rigid wall, so

the Froude number is again assumed Eo be zexo'
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I,Ihen the interaction between the ships is taking place with zero

boÈtom clearance, a uniform flat bottom and a small stagger, the problem

is equivalent to that of the two-dimensional stream-wise section of the

wings of a biplane. This problem has been investigated by several

classical aerodynamicists, notably Karman and Burgers tfZl

CoLLatz t6] presenÈed a theory for the interaction of two bluff

el1ipses, with no underkeel clearance or circulation around the bodies.

His results motivated experiments by Oltmann tfa1. Tuck and Newman l25l

produced a theory for the zero-underkeel clearance caser which is the same

as the procedure given here for zero cLearance, and compared their resulEs

with those of CollaEz arrd the experiments of Oltmann. They found that

the results from their Èheory gave better quantitative agreement with

Oltmannt s experiments for sway force but v/ere not significantly better

for the yar^r moment than those resulEing from Collatzt s theory.

In addition Tuck and Newman províde an intuitive derivation of the

theory for two ships interacÈing over a uniform-depth flat bottom with

small bottom clearance. In section 3.2 a more rigorous derivation which

allor¿s for some depth variation is given'

A numerical technique suitable for solving the resulting system of

singular integral equations is presented, and results are given for three

interaction problems, namely tl,7o identical ships passing over a flat

bottom and near a wa1l, and two ships of different sizes ' The results

of these computations show that, in pracËice, steady shíp-interaction

problems should be considered individually because there are so many

parameters involved, such as shape of waterplane, length, draft and

breadth ratio of each ship and between ships, seParation of the paths of

the ships and the distance to any boundary of the hrater. This makes

difficult the task of obtaining any general conclusions, which could

avoid the necessity of calculating the sway force and ya\'/ moment for all

new problems.
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3.2 DERIVATION OF GOVERNING SYSTEM OF INTEGRAL EQUATIONS

Consider the hydrodynamic interactions between türo ships in a steady

flow situation. This means that the ships have a fixed position relative

to each other, and are moving at constant velociËy, parallel to any

depth contours. This may be modelled 
.by 

having two fixed ships with an

incident free s¡ream of velocity u, parallel to any depth contours

h(y), and poseibly at a small angle of attack to both ships.

The geomerry of rhis situation is shown in Figure 3.1' Ship i

has half length L, and occupies a section of the x-axis ßi at a

position!=Y!shipjalsohascross-sectionalareas.(x)

at station x in the segment ßj rf each section of ship j possesses

lateral s¡runneÈry about the mean line , = Ï, {*) ' then f, {") may be

taken as the appropriate camber funcEion. The depth contours tr(V)

give the local r,rater depth belovr ship j as n, = h(y' )'

The quantities of most interest in this problem are the sway force

and yaw moment, especially the manner in which Èhey are effected by

the stagger and separation of the Èwo ships and the distance from any

boundaryorsignificanËdepthcontour.Ihestaggersisthedistance

betv¡een the centres of the tvro ships, measured from ship 2' The

separationnisthelengthofthegapbetweenthepathsofthet'r¿o

ships, that is

n lvt - vrl (3.2.1)

The differential equation for the perturbaEion velocity potential

O, caused by the presence of the ships in the free stream' is still'

(3.2.2), the lineari.zed shallow rrrater equaÈion for low Froude number'

But, now there ís Ëhe added complication that body boundary conditions

must be satisfied on both bodies separately' In this cese' Ehe
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thickness boundary condition Q.2.Ll) on ship j *.y be written as

¡Qv=u^fj'(x) at y=yi

and the camber boundary condition (2.2.15) on ship j a"

õ - u ï.'(x)'v J

1=ãft. ¿0 aË !=lj
t,

ety yt

ß .2.2)

ß.2.7>

a sys Eent

1-

(3.2.3)

whereat y=li

^ö 
= ó (x.,r.+0)'v 'y "l

(3 .2.4)

Â0 = 0(*,t. +0) - 0(",Y, -0), (3 .2.5)

and Af. (x) is Èhe mean thickness of the hull of ship j . Ship i
,

has blockage coefficient Cj , so this Eime the moclel being developed is

that for the interaction of two porous airfoils in steady moËion along

paralle1 paths.

This boundary-value problem can be solved by distributing sources

and vortices over the segments rePresenting the ships. Thus the

velocity potential may be written as

0(x,y) {a, (E)c(x,yil,!¡ ) * Y, (E)n(x,y;6,yj )}dE ß-2-6)

where G and H are gíven as in section 2.3 an.d t and \j are the

source and vortex strengths respectively on ship j .

On substitution into the thickness boundary condition ß.2.2) the

source strength on shíp i is found Eo be

0" (x,yj -0),

=,i, 
I

q. (x) = A0-r 'y

= U S.'(x)/h.
l1

Similarly substitution into the camber boundary condition gives

"of integral equations to determine the vortex strength on ship
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(3.2.8)

ß .2.e)

(3. 2.11)

namely

where

where

,i, t
Y, (E)Hy(x,yi iE,l, ) . 4fu J 1 (x)u(x-[)d[

for í = Lr2

2

I h.
J

1 s.'( E) l'zc"G,y, +o ; E,l, )

= u f.'(x) -
I cj (E) [äc" (x,Y, +0;E,v, )

* 4cv(x,y. -0;E,v, )ldE í = Lr2

v, (E)rii (*,E)dE = u g.'(x)

,1, 

I

u(x) =

ô..t¡

Then the system of integral equations may be written as

0
I

x<0
x>0

This may be solved for y(x), as the right hand side is knor^¡n. The

system of integral equations may be simplified by introducing the new

kernel function

ô

rlj f*,E) = 
""(*,y,;8,v, 

) . 2''fu u(x-E) (3'2'10)

í+j
i=j={î

,i, t

(1:
I

x )

* Lrcv(x,yi -0;Ç,y, )l for i = t,2.

f
ß¡

I

where

g.'(x)

ß.2.r2)
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The funcEion Brt(x) measures

(i) the cross flow due to the camber of ship i,

(ii) the induced cross flow due to thickness of ship i in a

laterally asynnnetric flow due to bottom geometry, and

(iii) the cross flow induced by the Èhickness of the oEher ship

in the flow.

To simplify the notation it is convenienË to introduce a kernel fi j (*)

so thaÈ

t'i '(*-E) = 4G"(x,y. +9;8,r, ) * 4G"(x,y. -0;E,v, ) (3.2.13)

and then

ß.2.r4)

If the bottom geometry ís s¡rmrnetric L" (*) = O and the cross flow

on ship i is due only to its ov¡n camber and the presence of the other

ship. If the bottom is flat, i.e. h(y) = h, then Èhe system of

íntegral equations (3.2.11) can be shown to be the same as those derived

by Tuck and Newman l25l

3.3 NT]MERICAL PROCEDURE FOR SOLVING THE SYSTEM OF INTEGRA], EQUATION5

In section 2.4 a direct numerical procedure for solving an integral

equation was described. Here that method is expanded so that a system

of integral equations of the form of (3 .2.1L) can be solved numerically.

The technique is a generalízatíon of Tuck and Newman l'251 '

Taking the indefinite integral with respect to x of equation

( 3. 2 . 10) gives

ar'(x) = Ïr'(*) sj'(E)il "(*-E)¿E,i,+ |

2¡
I I Yj (t)f ' (*,8)¿E = u 8i (*) + c¡

t=l 'n
Pj

for i = L,2 (3.3.1)



45.

where 1çti (*,8) is determined by integration of Q.2.9) and g. (x)

from (3 .2,LÐ. The constants C, are arbitrary constants of

integration whích take values so that the Kutta condition holds at the

trailing edges of both shiPs.

As in section 2.4, the unknovm functions Yr(x) and y2(x) af-e

represented by step functions on their respecÈive ships, with the value

_ .rhon Èhe j''^ interval of ship i 1r-, < x ( x¡j being taken as the

constant y. (x) = Yi¡ To siurplify the procedure,the same number of

mesh points are taken on each ship. However, the method described can

readily be altered to include different numbers of mesh points on each

ship. Since sguare-root singulariÈies may be anticipated at the end of

each ship, the distribution of points x.. on ship i is chosen so that

x.¡, 9".
I

cos
n\
ñ/*'tj

j = 0rI ,2r...rN, í = lr2 (3.3.2)

which provides the right increase in density of points near the ends of

each ship. The variable .i in (3.3.2) is the x-coordinate of the

centre of ship i.

Replacing y. (x) in (3.3.1) by such step functions gives

2NIi
j=r k=1

Y¡* I"'* oj (*,E)dE = u e, (x)

xjk-1

+ c
I

for i = LrZ.
(3.3.3)

To solve this system of equations the integrals are evaluated at points

T = *, * which are near the centre of the kth i,tt"tval on ship i

A useful way of choosing these "mid-pointstt is to use

xi
L, cos((k-ä)ï/N)

k

The system-may then be written as

+ ri í = LrZ. (3.3.4)
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k

2

T
J

i, ,,- J1 
* c¡ (i,o,E)46 = u *, (1 u) * c,

*jL-t

for í = I,2 and l' = L,...rN. (3.3.5)

This is a system of 2N simultaneous equaÈions in 2N

may be wriËten as the matrix eguation

t^ 82 x
2

Yr* 8, (xr*)

and e
(2)

unknowns Y¡ u
and

( 3. 3.6)AI
1)(

:Ic+Ug

Y,,

* c "(t)2-

where

gr

gr

(*r,

(xr, )

1)
(

01

\,,

[= t4 g¡l,I =

0

1

1
0

Yr* e, (xr*)

( 1)
:

0 1

The matrix elements 4 ¡ are such thaÈ

f", 
- o' ,t 0,6)dEoar. rrN+Î ,{j- r)N+k

*j*-t

(3.3.7)
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Quite often for simple geornetries the integration in (3.3.7) may be

performed analytically. For more complex geometries it may be necessary

to evaluate the matrix elements A' by a quadrature procedure.

By using standard matrix-inversion techniques with the three right-

hand sides, (3.3.6) may be solved to give the solut-ion vector

I=uI(o) *.rlt, + (3.3.8)

where

Y(o) = [

c ,r(')2:

I( =[I

-1
It

-1 ( 1)
:

(3.3.e)

(3.3.10)

and

{" = A-': (2) (3. 3. 11)

This is a numerical approximation to the correspotìding representation of

the actual vortex strength I (x), namely

1(x) = u yÍo) (*) + cry(t) (*) + cr'((') (*). (3.3.12)

It is nor¡/ necessary to determine Ëhe constants C, from the KuÈÈa

condition on the trailing edge of each ship. The condition is the same

as that used in chapter 2; that is, the vorticity must vanish at the

trailíng edge of each ship, so

Yr(gr)=0 í=L,2. (3.3.13)

Again, there are two ways in which this can be applied. A naive but

effective procedure is to make the vorticity on the end interval of each

ship zero, so that

(I)"=(I)r*=o
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or expanding these Lerms

and

u(lo')* * c, {Y(t) )* * c, {y(') )* =Q (3.3.14)

(3.3.15)

1-> 0

i

(3.3.16)

(3.3.17)

u(It o' )r* * a, (It t' ,r* + c, (Y( " )r* = o,

which can be solved to give C, and C,

A rnore satisfactory method is to use the expected property of a

square-rooË singularity in y. (x) at the trailing edge ' that is as

on Y=Yi

\ (x)

for constants D, and E, By fitting this function to the last two

elements of each ship i for (/ rl 
), *- , and tl o' 

), r for 9' = o 'l '2

and í = 1,2 the 12 constants D, - oÍo and E, - ufo may be determined'

So that the Kutta condition (3.3.13) holds, the sum of the inverse square-

rooÈ terms involving D mus¡ be zero f.or each ship, i'e'

o) *crolt) *crD(r2) =Quol

UD(
2

o)*crnlt) +c2Dt2) =Q

From this c, and c, may be deËermined, so thaÈ by using (3.3'8) the

numerical approximation to the vortex strength may be obtained' As in

theprecedingchapterÈhesecondapplicationoftheKuËtaconditionis

used for all resulEs Presented'

3.4 EVERYI^IIIERE -UNIFORM DEPTH

Followingsection2.5íf'h=constanteverywherethenGandH

given by Q. 5 . 1) and ( 2.5 .Ð respectively. Thus from (3 .2 . 10) the

aTe
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kernel as given by

rli{*,E)

ship j on ship i

SubsËitution of

t
K

x

ô..
tl

u(x-E)
2h. C. (x) (3.4.1)

(e6)

in

and from ß.2.13) the kernel

lt 
j '(*) I Yi -Y¡

ß.4.2)zr xz+(yi-yi )z

This gives Li 
t (*) = 0 which is expected as there is no bottom asymmetry

but Li i (*) f O for í + j and shows the effect of the thickness of

and (97) of Tuck and Newman

and Lii ' into ( 3.2.L1') yields equations

l25l (except Lor a missing factor of 'lT

i
K

x
J

their equaÈions).

After ínregrating (3.4.1) the kernel Kii is obtained as

+ ( 3.4.3)
a. -9,.tt

and integrating ß.4.2) gives

r'i (*) = fi arct"" (+) (s .4-4)

These kernels may then be substituted into (3.3.1) and by the numeri'cal

procedure in thaÈ section the system of integral equations may be solved

for'¡.(x)rí=I,2.

3.5 MOTION PAP"AILEL TO A VERTICAL I,IALL IN I]NIFORM DEPTH

If there is a rrertical wall at y = -Y, this wall may be modelled by

images obtaining the kernels G and H given in (2.6.1) and (2.6.2)

respectively. The r¿all should not lie between the two ships, as this

would reduce to the situation of one ship and a vertical wall, as described

Kii(*,Ð=+bsw ô..rJ
dr

q -(Ð
tf"
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in section 2.6.

functions are

and

and

Thus, from (3.2.10) and (3.2-L3), the necessary kernel

rfi{*,Ð =+@#;\F.+ x-Ç v -v +2Y
'i 'i

Li tt

u(x-E)

+

f"

r yi -li*zy
2' x f

dr
qfãt

I

x- +

(3.5.1)

(3.5.2)

(3.5.3)

( 3.5.4)

(x)

Integrating (3.5.1) and (3.5.2) gives

Kij(*,8)=frrog Yr -Y¡ x-E
1-+ñLog v- -v. +2y-l -t+

+ 6¡ j
a. -9,.ll

r'i (*) = fi arcr"" T. ZT

v. -v. +2Y-r -l
arctan x

Comparing the two kernels above with those for a uniform depÈh

(3.4.3) and (3.4.4), it can be seen thaE the effect of the wall is to

introduce additional terms. These new terms have a similar form to

the other Eerms, and represent the effect of the vertical wall via the

image ships.

Although the effecÈ of a uniform sloping beach may readily be invest-

igated by following the above steps with the kernels G and H from

2.7, this is not done here. The effect of this and other bottom geometries

uray all be readily handled by the techniques described above. One case

of particular int.erest is that of ships in a canal, and the necessary

kernels can be found in Beck t4l.
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3.6 RESULTS

Using the numerical technique described in the preceding pages the

effect of changing the clearance between the keel and the bottom is

investigaËed. This is done mainly for a flat bottom of uniform depth,

but the effect of a vertical wall parallel Èo the Paths of the ships is

also corisidered. As í¡ 2.9 the non-dimensional coefficients of sway

force and yaw moment given by Q.9.1) and (2.9.2) are used with the

actual force and moment being calculated from (Z.S.A¡ and (2.8.9) which

are still valid.

Consider two identieal ships with a parabolic water-p1ane, a

breadth to length ratio of 1:10, and draft to depth ratio of L:20 
'

moving along paths separated by a dísEance of o.625.4L where L is the

length of the ships. To see the effect of the underkeel clearance,

curves for Èhe coefficients of sway force and yav/ moment for several

draft Eo depth ratios are plôtted against the stagger s of the two

ships. The stagger is the length along the x-axis from the projection

on the x-axis of the centre of ship 2 t.o the projectíon of the centre of

ship 1.

tlhen the draft to depÈh ratio is unity, this is the case of two

thin wings undergoing st.eady interactions in a two-dimensional stream;

that is, no variation in the fluid flow occurs with depth. This is

the interaction between thin bodies in steady two-dimensional flow

investigated by Tuck and Newman 125). As they did not give results

for the more general situation v¡ith depth effects, Èhe effect of varying

the underkeel clearance is investigated here'

Figures 3.2 and 3.3 show the numerical results obtained for the

coefficients of sway force and yaw momen!. The graphs shovm are for

shíp I U,ri tt e results for ship 2 are only a lateral inversion of
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those given. It can readily be seen that this must be Erue for identical

ships, by considering the symmeÈry of the problem, and Ëhis was confirmed

by the numerical results.

It can be seen in Figure 3.2 thaE even for small clearenc.es the

peak sway force rapidly decreases as Ehe draft to depth ratio decreases,

so that for a draft to depth ratio of 0.83 the peak sway force is abouÈ

onä Ewentieth of that for zero underkeel clearance (i.e. d/h = 1.0).

Also, the magnitude of the peak aÈtractive force and peak repulsive

force tend to become comparable in magnitude whereas the peak attractive

force was about 25% Latger than the peak repulsive force for zero clearance'

The results show that alÈhough values for zeto cLearance are easier and

faster to calculate than those for non-zero clearance' Èhey could at best

only be considered as a rough guide, even for quite small non-zero

clearances. Figure 3.2 shows that the peaks of the sway force occur at

almost the same values of the stagger, as the clearance changes' Also

the (negative) stagger value at which the force changes sign is almost

independent of Ehe draft to depth ratio. So the zero clearance results

can be used to give a qualitative idea of at what stagger the peaks in

the sway force occur, and the relative positions of the ships when the

sway force is zero.

In contrast to the sway force the peak ya\¡l moment (Figure 3'3) only

decreases slowly wiÈh decreasing draft to depth ratio, and the peaks for

the rnoment occur at widely different sEaggers for different clearances '

Also, the yaw moment aE zero sÈagger is only zero when the draft to depth

ratio is unity, and for other ratios it is bow inwards.

Having considered the main features of the results, it is interesting

to víew the results for sway force and yaw moment together, as if on

ship 1. lfhile ship I leads ship 2 (negative stagger) Ehe sway force

,is such that the two ships are forced apart for staggers tess than 
=4L,
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whereas the yaw moment is borv in. IE is here thaÈ the rnain danger lies

in ship manoeuvres, because if the ships are allowed to swing around

because of these yar^rmomentsrtheir own engines will Ëhen drive them

together. The force on ship 1 rapidly changes to an attractive force at

zero stagger, with a small (ot zero íf d/h = 1) bow-inwards moment' The

yatJ momenË then rapidly becomes bow outwards, even though the sway force

is aËtractive. This is less hazardous, as Èhe ship's propellors will tend

to drive ship 1 away from shiP 2 -

lühile this is happening to ship 1, the same events are occurring

in Èhe opposite order to ship 2. So, even for two identical ships, the

interacËions are quite complex and in a real situation are further

complicated by any sEeering or propulsion action taken by the shipts

master.

It is of interest to see how the relative sizes of the two vessels

influence the sway force and yaw moment. The numerical results for the

force and moment on t\^/o ships of greatiy different sizes are shown in

Figures 3.4 to 3.7. Both ships have a parabolic water-plane, but the

small ship has its length, breadth and draft only half those of the large

ship. This means that, when the large ship is touching the botEom, the

small ship has a draft to depth ratio of 0.5. For comparison of the

coef f icients of sway force and ya\^/ moment on both ships, the non-

dimensionalization is done by using the dimension of the large ship.

The coefficient of sway force on the large ship is given in Figure

3.3, which shows the same qualities as the sway force for identical ships

given in Figure 3.2. The main difference is that the force is two orders

of magnitude smaller. The sway force on Ëhe sma1l ship as shornm in

Figure 3.5 is much less sensitíve than the large ship to changes in

clearance.- The peak sway force is about one third that of the large

ship, and as the small ship has one eíghth the- volume of the large ship,



and hence the smaller mass, it would experience the larger acceleration

as a result of the sway force. Also, the added mass for sideways motion

of the small ship is much less than thaÈ of the large ship, so this would

again give the small ship a greater acceleration than the bigger ship'

The coefficient of yaw moment for the large and small ships is given

in Figures 3.6 and 3.7 respectively. They show much the same properties as

in the case of identical ships, and again the small ship is less sensitive

Ëo clearance changes. This is a result of the large clearance already

beneath the small ship, even when Èhe large ship is already touching

the bottom. AË a draft to depth ratio of unity, the large ship experiences

twice Èhe ya\^r moment of the sma1l ship, but when the draft to depth ratio

is decreased to 0.83 the two ships experience almost the same moment'

so, by similar arguments to those used for the sway force, the torque

induced by the sway force is larger on the small ship'

rn section 3.5 the kernels for the system of integral equations for

flow over a uniform flat bottom with a vertical wall at y = -Y are given'

see the effect of this wall on ship interactions a numerical study was

undertaken of the effect a wall would have on the interaction of the two

idenÈical ships discussed above. As zero cLearance was shorøn to give a

reasonable qualitative result, the interaction was considered for a draft

to depth ratio of 1:1. The numerical results obtained are presented in

Figures 3 .8 to 3. 11.

An examination of Figures 3.8 and 3.9 shows that as the wall is moved

away from the two ships the sway force rapidly converges to the results

obtained r¿ith no wall. The presence of the wall increases the sway

force on the ships by.rp to a factor of 3 fot Lhe cases considered,

showing Ëhat the hazaxd when the two ships pass is significanEly increased

by Ëhe wall.

54.
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The coefficient of yaw moment for the two ships is given in Figures

3.10 and 3.11. For ship 1, which is further away from Ëhe wall than

ship 2, the presence of the wa1l has a smaller effect than it does on

ship 2. The change in the ya\^r moment on ship 2 for Y = t4L indicates

a particularly hazardous siEuation, because the yaw moment is nearly

always bow inwards, thaÈ is towards the oEher ship. Hence the wa1l

makes it more likely for ship 2 to turn towards the path of ship 1' The

yaw moment on ship 2 converges more slowly to the no-wall result than thaÈ

on ship 1, but by the,'ii*", Y = L it is almosÈ identical Eo the no-wall ,rt[-;¡

case.

The results presenEed above for two ships near a wall are quite

important for experimenters. They sho¡¿ that when an experiment is

conducted, and the effecÈs of the r¿alls are not wanted, both ships musÈ

always be at leasË one ship length away from Èhe nearest boundary' This

may be difficult to achieve, as model experiments of Ëhis type are often

carried out in narro\^r channels with one of the models near to a bank'

The above results show some interesting ProPerËies of the interactíon

of two ships, but they also highlight the need to study each interaction

sítuation as a separate case. Some additional results which have been

computed show thaÈ the sway force and yaw moment can also be quite

sensitive to the shape of each ship, and to the separation between the

paths of the shiPs.

The programs used to calculate the results presented in this section

had an execuEion time of 114 seconds each on a CYBER 173 conPuter' In

that tíme the sway force and yaw moment on both ships could be calculated

at different staggers so that one curve for the corresPonding quantity

could be plotted in each of the Figures 3'4 to 3'7'
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CHAPTER 4

A TI^¡O-DIMENSIONAL MODEL FOR UNSTEADY INTERACTIONS

4.1 INTRODUCTION

A problem of interest in a number of different areas is the calculation

of interact.ion forces and moments acting on two or more bodies moving in an

unsteady manner. There are applications in both hydrodynamics and aero-

dynamics, alËhough here the theory is developed with ship-ship interactions

in mind.

In Chapter 3 the steady interactions of two shipsv/ereconsidered. In

the present chapter, the unsteady situation of two or more ships moving

at differenE velocities along paralle1 paths in very shallow water is

discussed. A ma¡hematical model for two-dímensional unsteady interactíons

is seË up and numerically solved. A two-dimensional theory ís appropriate

for very shallow water as Tuck l22l has shown that flow Past a vessel,

ín shalloqr r"rater, with a small underkeel clearance is nearly two-

dímensíona1.

A non-linear numerical technique for interactions between bodies in

arbiËrary motion has been devised by GiesinC [9]. His theory is for

two-dimensional potential flow and is used to examine the shape of

vortex wakes as well as the forces on the bodies. The theory developed

here is linearized, so no wake displacement occurs.

Another possíble application of this type of Eheory is the aerodynamics

of the interactions between passing motor vehicles. This is a ground

effecÈ problem to which much experimental efforÈ has been devoted, and

a number of papers giving experimental results have been published.

Brown's [5] paper is on this topic, and t2] contains several other

relevant papers.



The theory described here is essentially that presented in King [14],

buÈ a more general derivation, which can be used to allow for boundaries

in Èhe fluid (such as a wall), is given. First a mathematical model is

seË up for the two-dimensional motion of a group of thin bodies and

their respective wakes, in a fluid which is assumed to be incompressible

and inviscid. The Froude number is assumed to be sufficiently smal1,

so that free surface effecËs can be neglected by replacing the fluid surface

by a rigid wall. It is also assumed that the bodies are thin; that is

they have a small beam Èo length ratio, and thaÈ the lateral separation

between bodies is comparable witl'r their lengths, and large compared to

their beams.

Following Tuck and Newman l25l in an extension of classical thin-

wing Èheory, the model is formulated as a system of coupled singular

integral equations whích have non-unique solutions. The solution r'rhich

is feasible for a given problem is obtained by having zero cítculation

around stationary bodies, and by using a Kutta condition on moving bodies.

A suitable condition for determining the raÈe of vortex shedding inÈo the

wake of each body is also required.

A numerical proeedure for finding a solution according to this theory

is developed, and the results obtained are compared with the experiments

of Oltmann t18] and the theory of CollaÈz Í61. The results show reasonable

agreement for the sway force with Oltmann's experiments and in Èhis resPect.

seem to be an improvement on Col-1-aluzrs theory. The calculated yaw moment

is not significantly better than that resulting from Collalz's theory.

A related mathematical model is used by Dand [7,8], with circulation

being ignored in his first paper (i.e. essentially Collatz's theory), and

only a crude first approximation to the effects of circulation being used

in the second paper. .Dandts theory gives excessively large values for

forces and momenEs, when compared with experiments.
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4.2 DERIVATION OF GOVERNING SY S TEM OF INTEGRAL EQUATIONS

Consider the motion in two dimensions of N thin bodies, all moving

with (possibly) time-varying velociry parallel to the x-axis' It is

convenient to consider this problem in an absolute frame of reference

(that is, fluid at rest at infinity). Thus, for a velocity poEential

0(x,y,t) and velocitY q(x,Y,t)

_q=y0,where 0*o at oo.

The geometry of the jth body, when it is rnoving to the left,

represented as in Figure 4.1. The body surfaces are given by

+
y = yj + fi(x,È), a, (t) < x ( b. (t)

1S

(4.2.r)

G.2.2)

with a plus sign for the upper surface and a minus sign for the lower

surface. The body segment u, is represented by the interval

a, (t) ( x ( t, (t) and, for a body moving to the left, the wake segment

W¡ by interval b. (È) ( ¡ ( æ . For body j the exacË boundary

condition is

39
ðx ,oD Y=Yj tf: G.2.3)

since the fluid canriot penetrate the body surface. For a thin body, this

can be linearized to give

Or(*,Y, +o,t) = fi ri{*,t) , or Bi ' (]+'2'4)

In order that the wake remains sÈationary after it has been shed, a

condition that there is no Pressure jump across the wake is required,

namely

Ap = p(x,Y, +o,t) - p(x,Y--0,8) = 0, across wj ' (4'2'5)

_?o
ây

+
âf.

t
ðt

+
âf.

,
ôx

+
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where p is the pressure. By linearízíng the Bernoulli equatron

P=-p _aE
ðr

(4.2.6)

(4.2.7)

(4.2 .B)

(4.2 .e)

(4.2.11)

is obtained, where p is density, so from G'2'5)

Àp=-pA & 0, across the waket

Therefore

Thus the jumP in Èhe Potential

O åt = o' across the wake'

a

={

AQ = Q(x,yj *0,t) - O(x,Y, -0,È)

is a function of positíon x only across the wake 
", ' Hence the

strengÈh of the wake does not vary with time'

The velocity potential Q satisfies the two-dimensional Laplace

Equation

ô** * 0"" = o' (4.2.10)

with the possibility of some further conditions due to any restriction of

the x-y plane such as the presence of walls. In this formulation it

will be assumed that the paËhs of the bodies are parallel to any boundary'

As with conventional thin-wing theory, the lifting effects are rnodelled

by vortices of strength y. (xrt) on u, * W¡ and the thíckness effects

aremodelledby sources of strengÈh q. (x,t) on U¡ T'he vortex strength

Y, (x,t) on Y = Yj is given bY

ð

ã; A0,acrossY=Yi

0, ahead of

unknown on

B.
t

B.
t

Y, (x,t)

rf("), on I^I.
¡

(4.2.12)



Hence the disturbance velocity potential due to N bodies has the

representation

Q(x,y, Ë) q. (E,t)G(x,yiE,y. )dE

Yj (6, t)H(x,v; E,r, )aE)

J
B¡

, ï,{

G.2.L3)

l^I.
J

where G(x,y;6,n) is the velocity potential at (xry) for a unit source

located at (E,n) and H(x,y;E,n) is the velociËy potential aÈ (x,y)

for a unic vortex at (E,n). Both these potentials must be chosen so

as to satisfy any restrictions on the two-dimensional fluid. If there

are any branches in the velocity PotenEial for a unit vortex H' then

these branches must be chosen so that any discontinuities in Èhe potential

function occur across a wake, so thaË the velocity potentíal satísfies

Yj , across I^I.
t

G.2.r4)

The unit source potential G(x,y;6,n) is determined by solving

G +G = ð(x-E)ô(y-n) G.2.L5)
xx vv

ôtt G.2.L7)

whích has the asymptotic behaviour

+

r
J

B.
J

+

_?1
ôx

A

together with any boundary condit,ions on the fluid, and will have the

asymptotic behaviour that as (xry) * (E,n)

G(x,y;E,n) *fi:l,gKÇJã:CÑ. (,4-2-L6)

The unit vorÈex potential H(x,y;E,n) is obtained by solving

âE

AG

ãñ

H(x,y;8.,n) * fi atct." [Ë] AS (x,y) * (E,n). G.2.18)
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The velocitY Potential

condirion (4.2.4). so, if

S must also satisfy the body boundary

* . B, , equations(4.2.4) and (4.2.13) give

0"(*rY, i0,t) = Lr\ (x,t)

sj (E,t)Gr(x,Y, 10;E'v, )dE

N

I
=1

Yj (E,t)n"(x,Y, tO;E,v, )aE

+I^J.
J

I
B.

J

+

{tlt*'"

.ï t
(l lï) 4

ô=-ât

Subtracting the plus and minus parts of equation (4.2.19) gives

+
f. (x,E)

I
i = 1r... ,N G.2.re)

i = 1r...rN (4 .2.20>

G.2.21)

(4.2.22)

s, (x't)

where a prime denotes
a

â" and where

â

E

This is equivalent to the usual aerodynamic relation for the source

strength in terms of the slope of the thickness function, recalling that

such relations are normally expressed in a frame of reference which is

moving with the body. Thus the source strength is completely determined'

Adding Ehe plus and minus parts gives the system of inËegral equaEions

Yj (E,t)H" (x,Y, tO;g,Yj )dE

= F'(x, r) + ci (x, t) * Hi'(x, t) ,

,ï, I

i = 1r... ,N

F.'(x, t) {t,.,",r) + f.
I

(x, t) t
Iât

â

I n (E,t)." (*,v, to;Ç,Y, )dE
N

I
fi
=1

(
J

ci (x, t)
B.

J

(4.2.23)



¡J.

and

These three functions are all known once

knornm. To determine this lasË quantity

vorticity shed into the wake is required.

Vi(e>n, (x,y. 1o;E,vj )dE

Yj (E,t)aE = I

y|(x) = Y, (x,t), x € l,rr. is

y: , some means of finding the
t

N

4'(*,t)=- t f' 
'=t w¡

(4.2.24)

(4.2.25)

As the system of integral equations (4.2.2I) does not Possess a

unique solution, an additional condition for each body is required. For

body j Kelvin's circulation theorem must hold around the body U, and

iÈs wake !'I. So Ehe circulation f. (t) around body j must be zero,
it

that is

r. (t)
t

+Id.
t

J
B.
t

This ís the only condition required on a body sEationary relative to the

fluid which has no wake, so equaËion (4,2.25) becomes

Yj (E,t)dE = o (4.2.?-6)

For a moving body, sears [20] has shown that the appropriate Kutta

condition on the trailing edge of a body is that the vorticity at the

trailing edge be equal to the vorticity in the wake immediately adjacent;

that is, for moving bodY j

Y, (b, (t),t) Yi ( b (t)) G.2.27)

This is equivalent to the Kutta-Jowkowski condition, that the pressure

above and belov¡ the trailing edge must be equal. By using the above

conditions as required, the unique solution for a given problem may be

obÈained. 
-

f
B.
t
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4.3 FORCES AND MOMENTS

The quantities which are of most interest in this problem are the

sway force and ya\^r moments on the bodies. These are of principal

importance during ship manoeuvres, as they may cause some situations to

be hazardous.

The net y-direcÈed force (sway) on body j i"

Yr(t)=-

f-
a. (t)
t

and substituting into (4.3,2) gives

Ap dx

Y, (xrt)dx across Y -- Yj

(t)

f
B.
t

(4.3. 1)

(4.3.2)

(4.3.3)

(4.3.4)

a^0
ðt dx

by using equation G.2.6). From equation (4 '2'1-L)

fx

.J t, (6,t)dÇ dx'

a, (t)

I
Bj

=-p

Â0=-

v.(t)=-p
t

B.
t

The net ya\¡r moment about the cenËre of body j i"

H, (t) : - p f on,*-,a, (t)+u. (t))/z)¿x.

ð

ôt

(4.3.5)

u¡

So using equaÈions G.2.6) and (4.3.3) gives

n, (t) = ro I (a, (t)+u. (r)-2x) * f"'urti
Yj (6,t)dÇ dx (4.3.6)

The sway force is defined to be positive to the starboard and the yaw

moment positive for the bow turning to sËarboard'
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4.4 NUMERICAL TECHNIQUES FOR SOLVING SYSTEM OF INTEGRAL EQUATIONS

IN UNSTEADY PROBLEM

A numerical technique which is an extension of that described in

Chapter 3 is developed. Here there is the additional difficulty of

having a trailing wake, and the necessity of including some kind of time-

stepping process.

The general form of the system of singular integral equatíons which

r¿as derived for the unsteady problem in sectíon 4.2 ís

Hj (x, t)+

, Ï, I 
Yi (E,t)x*(x,E;v, -v)dE =Ri'(x't)

J

i = 1r...rN

where K*(x,l;î) is a kernel which has a logarithmic singularity at

x = E and R.'(x,t) is the righE-hand-side of the integral equation

excep¡ for the wake term Hi(x,t). Both of the right-hand-side terms

are known at a given time t

An indefinite integration wíth respecÈ to x of equation (4.4.1)

yields

yj (E,t)K(x,EiYr-tr)dE=\ (x,t) + H. (x,t) c. (t)
I

(4.4.1)

+

i = 1r...rN G.4.2)

where C. (t) is an arbitrary "constant" of inÈegration. Integral

equations of the form of equation G.4.I) r'rith the singular behaviour

of K* have non-unique solutions and this is asserted here by the

ttconstantsil C. (t), which are determined by the vortex shedding condition'

A numerical solution to equaÈion G.4.2) at time T can be found

íf. \ (x,T) and H. (x,T) are known. This suggests an iteration scheme

with a forward time-stepping process. To simplify the evaluation of any

terms invølving Ehe wake vorticiEy, it is useful to assume that consEant

,i, I
J
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vorticity is shed into the wake during each time step. If the sequence

of time-steps used is to = Ortt,t2r, and the position of Èhe Ërailing

edge of body i aE these time-steps is P¡ s ,P¡ ¡ rP¡ 2 '. .. then, if

vorticity Y|n is shed into the wake by body j at time point tu:

the vorticity of the r,zake ín the interval (P¡ r*r ,Pj r) is t*

To find a numerical solution it is necessary Èo divide the body

segments U, into intervals in i^rhich the vorticity may be represented by

step functions. At the ends of each body a square-root singularity may

be anticipated so U, is divided into M intervals x.. - (t) ( x ( xr. (t)

with vorticity y. . (t), where

x,, (t) = - zla, (t)-u. (r)l cos ç * "¡ 
(t):b¡ (tl 

'

i = 0r1r...rM (4.4.3)

which provides the correct increase in density of points near the ends

necessary Èo counter the singularities.

The system of inËegral equations can nol{r be written as

NM

I I Y,n
j=r k=l J*

*¡ r- , (t)

+

(t)
k(r) K(x, E;yi -yj ) dE

\ (*,t) + Hi (x,t) c. (t), í = 1,...,N G.4.4)

The integral in equaËion G.4.Ð can usually be evaluated analytically

at any value of x . In particular at x = 1f (t) where ".OCtl is

a point near the centre of th" lth interval of body j at time t,

specifically

1 r 
(.1 = - ,l a, (r)-b, (t) 

|
cos [( 9,-b)¡r /u]

.. (¡)+b. (r)

9, = Ir2r... rM

+
2

(4"4.s)
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It is nohr convenient to introduce the kernel function

X(x, E iî) = K(x, E;n)dE

in terms of which equation (4.4.4) can be written as

(4 .4 .6)

G.4.7)

- x(1 I (t),x, *- , 
(.);yi -yj ) (4 .4 .e)

N I\T

I i y,n(t)tx{!o(t),x¡n(t);1, -v¡ ) - x(ln(t),x.n- r(.);vi-vj )l
j=t k=l

= R,(",0(t),r) * H¡ (to(t),t) +'c. (t), i = 1,...,N

N T. 1

I, -i. tI- tx{10(tr),pj k;vi -v¡ ) - x(tr(tr),P, r*, iYi -vj )l
(4.4. 8)

e(t),,- r¡**l ,(i- r)ntrk = x(tq(t),x. n(t);v, -r, )

= \ (",0(t),t) * H¡ (t o(t),t) + c. (t)

"(i 
) c. (t)

-J

time steps have elapse<l, from equations G'Z'24) and G'4'6)IfT

\ (", r ,tt)

By 1etÈing

equation (4.4.7) can be written as

which is a system of NM

solved at each time steP.

e(t),i- r)n+Q,(i- r¡-*uY¡ u(t)

í=1r...rNrL=1r...rM (4.4.10)

simultaneous equations for Yr*(t), to be

This can be expressed as the matrix equation

N IlI

IT
j=t k=1

N

I
(4.4.11)e(t)y(s) = g(t) +
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where ¡,(t) is a NM x NM matrix such thaË

e(t) = [4. j (r)]

and the NM vecËors

H, (*,,( t) , t)

(4.4.L2)

(4.4. 13)

G.4.L4)

Y (t R, (xr, (t),t) + Hr (xr, (t),t)
II

\

y(t) = Y

and

The solution

techniques with the

can be written as

y(t) = y(o) (t) * i co (t) I r)r.l
=1

(r)

(r)

R
1
(xrr(t),t) +

I

2

À{

Y*, ( t)

,.r**{ a)

g(t) = R2 (;2, (t),r) + Hz(;2r (t),r)

\(\, (t),t) + HN(iNl (t),t)

\("*r(t), t) + tt*(x*r(t),t)

)
(j-1)xM terms

( j )e )

0

d

I

i
0

M terms

e

)
NM-jM terms

y(t) is obtaíned by using standard maErix inversion

N + I right-hand-sides g(t), .(P) , 9' = L,...,N and

0

Y(

where

o) (r) = A-t (t)g(t) (4.4.15)
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and

",,,t 

o'

v. u(t) vji)r.l

(t) = a-t(a)"to', g, = L,...,N.

Ï co ct)vfl' ,.,
=1

(4.4.16)

G.4.17)

Thus by examination of the componenËs of the vectors in (4.4.I4), the

vorticity at *.u{t) (i.e. "mid-poinÈ" of kth irrt"tval on body j) is

+
L

This is a numerical approximation Eo a corresponding representation of

the actual vorÈex strength Y, (x,t), namely

y, (x,tl = vjo) (*,t) co cr)vj 
r) {*, r¡ , j 1,...,N. (4.4.18)

I

N

j
e

+

The preceding numerical technique allows a numerical approximation

to the general solution of the N singular integral equations to be

calculated, with CO(t), L = 1r...rN as arbitrary "constants", which

are determined at each t.ime steP by imposing a Kutta condition on the

trailing edge of each body which is moving relative to the fluicl, or a

zero círculation condition on a stationary body'

For unsteady interaction manoeuvres the appropriate conditions to

determine co(t), L = 1,...,N are given by equation (4.2.27) fot a

moving body and Q.2.26) Lor a staÈionary body. Thus for equation

(4.2.26) it is necessary to obtain an estimate of the vorticity at the

trailing edge of a moving body as the vorticity is only calculated aE

approximately the centre of each interval on the body. A satisfactory

method is Èo use one of the expected properties of the solution to Ëhe

singular integral equations as x + bj (t) on body j ' Namely, êûY

solution of equation (4.4.1) must have Ehe property that as x + bj (t)

on body j



80

Y. (x,t) -> e. (r) + o('/5:Tñ) (4.4.re)

tvro intervals

for some "constants" O, (t) and n. (t). In contrasÈ to the steady case

(see ChapEers 2 and 3) the expression above contains a constariE term.

This is because a non-zero vortex strengÈh is expected at Ëhe trailing

edge whereas bodies in steady flow have zero vorticity at the trailing edge,

The vorticity at the trailing edge must be finite, so the sum over f"

of the inverse square-root terms must be zexo' that is

D: (r) * Ï ., <tl{ ttl = o, (4.4.20)
t Pit * J

as they cannoÈ shed vortices into the flor¿.

' By fitting this function to the vorticiËy on Èhe last

tl} and tÍll,,, on bodv j the "constants" D = D:(t)
J

may be deÈermined for each body j and each value of 9"

for each rnoving body j

may be written as

For a slationary body j equation (4,2.26)

TI

ul, Y,n(t) (x,*(t)-x¡u-r(t)) = o

and [=

(.0 = 0,1,.

¡l ctl
t

,N).

(4.4 .2L)

which upon subsËitution of equation (4.4.17 ) becomes

MN

i,,tÍi) c.l . o], 
co(t)vil',.r)(x¡r(t)-x¡*-,(.)) = 0. (4 '4'22)

k

Equations G.4.20) and (4.4.22) may now be combined as required by the

type of inÈeracËion occurring to form a matrix equation which may be

solved to determine C[ (t) , L = 1,...,N.

Once the CO(t)'s are known the vorticity on all intervals of each

body at rime E may be determined by using equation (4.4.L7). This may

then be used to determine the sway force and yaw momenE on each body'

To do this a finite difference scheme in time is used to approxímate the
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time derivative so that aË time tn from equation (4 .3.4) the sway

force is

v,(tr) =--h Y, u(Èr)(xr, (tr)-x,. -, (tr))T,tI,k

Similarly the yaw moment at time E,

k

I

k

I

Y, *(tr-, )(x,, (.r-, )-", r -, (tr-

, )( *¡ ¡ 
(tr-, )-*r. -, Ctr-, )))

,))) (4.4.23)
I

l-s

N.
J

* (*, n(tr)-*j u_, 
(tr)) Y, u(tr)(x,, (tr)-x,,., (tr))

Y, r 
(tr- (4.4.24)

I

Thus the sway force and ya\^r moment may be calculated. As a resulE of the

treatment of the r,rake and the time dcheme used, the two formulae above

actually calculate an aPProximation to Ëhe mean of the sway force and

yaw moment for the time interval [tr- r,trl So, when graphing the

force and moment it would be more accurate to plot the value at time

LGr-r*tr) which was actually calculated at t,

4.5 RESUL TS FOR IINBOUNDED TI^IO-DIMENSIONAL FLOI'I

The results which will be presented in this chapter are those for

unbounded Ewo-dimensional flow, although Èhe nurnerical technique developed

in the preceding discussion can be used for some resEricted flows. For

unbounded flow the kernel

Krj = * ro:a

) = - zo çfi nÏ,,",(tr)+t,. 
(tr)-1 *(tr))(.,

k

I It

and l,ii (*) is given by (3 .4.Ð.

Yi -Y¡ + x- (4.5. 1)
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Only results for the case N = 2 (that is, for interactions between

two bodies) will be considered. Although the formulation was for N

bodies, results for N > 2 would either be inaccurate, or involve the

inversion of very large matrices with a consequent increase in the time

and computer memory sPace required. The numerical method has been teste'd

for convergence by varying both the number of mesh points on each body

and the size of each Eime steP, for inÈeractions involving two bodies

travelling in the same direction. The convergence q/as found to be

satisfactory for the results presenÈed in this thesis, if 30 mesh points

hrere taken on each body, and if the time-steps were such that a change

in the stagger of about one thTentieth of Èhe length of the larger body

occurred in each time-steP.

The numerical technique described in 4.4 was coded in FoRTRÄN and

run on the university of Adelaiders c.D.c. 6400. A typical run of Èhe

program, allowing sufficient wake to build up before the ships came

close together rhad an execution time of 990 seconds. The execution

time is large as at each time-sËep a nev/ matrix had to be calculated and

inverted.

An interaction situation for which some exPerimental results exist,

and for which the above model is valid, is that for a moving body passing

a stationary body. The non-dimensíonal sway force and yaw moment

coefficients which will be used for this type of interaction are

v. (r)
J

purec", {, )
G.5 .2)

and

c*, {, )

respectively, where U is the velocity of the moving body, ß is the half

breadth and L ls the length of the bodies. The sway force Y. (t) and

are calculated by using G.4.23) and (4'4.24) 'yaqr moment N. (t)
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Oltmann [18] has obtained experimenEal results for two elliptic-

sectioned cylinders r¿ith beam/length = 0.I25, with one body stationary and

the oÈher moving at constant speed. In Figures 4.2 and 4.3 the measure-

ments of Oltmannts experiments are compared with values computed using the

foregoing formulation of the net sway force for a separation n between

the paths of Èhe bodies of 0.625('4L). Oltmann's results are somewhaÈ

dependent on the velocity of the moving body, whereas, from Ehe preceding

formulation, it can be seen thaÈ the non-dimensional force and momenE

results are independent of Froude number, being the zero Froude number

limits. Oltmannts experiments r¿ere conducted in Èhe presence of a free

surface, so the Ì^rave pattern of the moving body may have affected his

results. In the t'tiefgeÈauchtt' case, the measurements vrere taken deeper

in the fluid than in the "f lachgetauchtt', so the t'tiefgetauchtt' results

would be expected to be less affected by free-surface effects.

The compuÈed results in Figures 4.2 and 4.3 seem to give reasonable

quantitative agreement. with the experiments. There is good qualitative

âgreement with the peak aËtraction force in the "tiefgetaucht" case at

FroudenumberFo=O.l44andO.2L7.InFigure4.2rt,epeakaÈtracEion

force on the moving body is much larger than the peak repulsion force,

so thaË for ships in passing manoeuvres the moving ship will tend to be

attracted more than it is repelled, thus giving rise to the danger of a

collision. In fact the moving body is experiencing a large attraction

force for a range of stagger S of over half a body length.

In a previous srudy on Ëhis topic by collatz 16l, in which no

circulation vras allowed about the bodies, and no Kutt.a condition applied

on the trailing edge, a force which is symmetric with resPect to stagger

was obtained. The results in Figure 4.2 of the present theory are quite

different to those of Collatz end do noL show particr-rlarly s}mmetric

behaviour. In Ehis respect the present theory is more satisfactory as ic
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could be expected that the wake ¡vou1d inÈroduce some as)nnmetry. The

steady results of Chapter 3 are also asymmetric, of course.

In Figure 4.3, for the stationary body, there is a close correspondence

between CoIIaEz's result.s and the present computed results, both giving

good agreement with Oltmannts experiments. This is not too surPrising,

as Collatz's zero-circulation assumption is the condition applied to the

sÈationary body (4.2.26) .

Consider now the graphs of the yahl moment, Figures 4.4 artd 4.5, and

compare them with OlËmannts experimental results. It can be seen that

the momenÈs are of the correcÈ magniEude, although the shapes of the

curves are very different. Collatzrs theory fails to give better agreement

for the moving body, although it gives good results for the stationary

body. The present computed results for the staÈionary body are of a

similar shape to Collatzrs, but are smaller in magnitude. The danger

of a collision is highlighted by Figure 4.4, which shows the peak inward

moment occurring at the same time as the peak attraction force, so the

bodies are not only being sucked together but their bows are both turning

inward, as we1l.

Figures 4.6 and 4.7 show the variation in the sway force as the length

ratio (1,/L_) of the two bodies is varied, at a separaÈion of 0.625 Lm,

with the rwo bodies having the same breadth (breadth/Lr, = 0.I25). Figures

4.8 and 4.9 show the peak atÈraction and repulsion forces corresPonding

to the results in Figures 4.6 and 4.7.

For the moving body it can be seen Ëhat the effect of varying the

length ratio gíves two different kinds of responses, depending uPon which

body is the larger. When the stationary body is the larger (that is,

L, /tn, > 1), increasing the length ratio does not significantly change

the value of the peak atÈraction and repulsion forces, but increases

the lengÈh of stagger over which a large attraction force is acting on
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the moving body. tr{hen the moving body is the longer and the length

ratio clecreases, the shape of the curve does noÈ change greatly buË the

magnitude of tbe attractive force decreases rapidly. Figure 4.8 shows

that the peak repulsion force varies slow1y as the lengËh ratio increases'

It appears that there is a limitíng value to the peak force ' Thus, it

may be worthwhile to investigate this further, as in situations when a

ship passes a stationary ship, island or sandbank the force and momenÈ

on the moving vessel are of importance'

For the stationary body (Figures 4.7 and 4.8), increasing the length

ratio leads to an increase in the peak values of boÈh the attraction and

repulsion sway force. The peak attracÈion occurs further avray from

zero stagger as the length ratio increases '

As the separation of the two bodies depencis on the length of the

moving body, for a larger moving body (that is, small length ratio) the

separation is greater, so the force would be expected Eo decrease, and

this can be seen in Figure 4.8. For the stationary body, Figure 4'9

shows that the peak sway force increases as the length ratio increases

(that is, bodies closer together or stationary body larger), and there

is no behavíour analogous to that seen for the moving body. In general

it appears that for a body passing a smaller staEionary body the force

on the stationary body is greater than thaÈ on t-he moving body' This

is important for berthed ships or ships moored to buoys as they will

experience the greaEer force, not the ship moving past them'

The variation in peak force on tvro ellipses of equal size (one

stationary, the other moving) for differenÈ values of the separation of

the paths of the ellipses is shown in Figure 4.10. The force increases

as the separation decreases, as would be expected'

Although these rcsulLs are interesting and useful as a qualitative

guideline, for practical applications with underkeel clearance, Èhey
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should be viewed with caution, since the clearance is important in

altering the rnagnitude of forces and moments, as sho\¡rn for steady

interactions in Chapter 3.
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CHAPTER 5

T]NSTEADY SHIP INTERACTIONS INCLUDING BOTTOM CLEARANCE EFFECTS

5.1 INTRODUCTION

The preceding chapters have shown the need for an unsteady shallow-

wàter ship interaction theory which includes the effects of underkeel

clearance. Yeung [Zg] tras considered this problem and forrnulated it

be using results from slender-body theory. He finds soluËions to

particular cases by using the Cauchy Inversion technique.

King t15] obtains the same governing system of integral equations

as yeung, by using the results of Tuck l23l used in earlier chapters.

The system of integral equaEions is solved numerically by the technique

described ín 4.4, and the resulËs compared with those of Yeung and the

experiments of Rernery t19] . The material conEained in this chapter

is a fuller version of that in King t15l'

A theory for the unsteady problem.of a ship approaching a wall at

an angle in shalloI¡¡ l¡/ater, which could be considered as an extengion to

the above theories, has been developed by Hess t11] ' This has the

added complexity that the kernels in the integral equation are dependent

on the distance from the wall, which is now a time dependenÈ quantity'

5.2 MATHEMATICAL FORMULATION

The geometry of the ships and wake used here is the same as that

of chapter 4, except that Ehe ships are moving over a boÈtom of depth

h(y). The geome¡ry of the jth 
"hip is given in Figure 5.1.

using the notation of chapl-er 3, from Tuck 1,23) for unsteady f low

the thickness boundary condition on ship j i"



z

e ( t) V-¡
b) )

uj (t)
e-

B It

y=yj , z=o

v
rh5.1 Geometry of i shíp and its wake.
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¡0v = U¡ (t)A f.'(x, c) at ! = yi (5.2. 1)

and the camber boundary condition on ship j i"

O, -ui'(x,t) =#T AQat Y=Y! $'2'2)
It

where

¡0v = Q, (x,y, +O , t) - 0, (*,Y, -0, t) , ( 5 .2 '3)

À$ = Q(x,y, +0,t) - Ô(*,y¡ -O,t) 6.2.4)

and h, = h(V, ). The wake condition (4.2.8) sti1l applies, so the

sÈrength of the vortices in the wake does not vary with time.

The disturbance velocity potential due to N ships and their wakes,

is given by (4.2.I3) wittr the kernels H and G defined as in s,ection

2.3. Subsriruting (4.2.1Ð into Ehe thickness boundary condition 6.2.L)

gives the source strength on ship j as

9, (x, t) = u, ( t) s.' (*) /h¡ ( 5 '2 '5)

The camber boundary condition (5.2.Ð yields a syste.m of singular integral

equations to determine Èhe vortex strength, namely

Y, (*,t)u(x-E)dE
Nl

._i, Í t,(E,t)tt"(*,y,;[,y.)ilE+ f¿ ' Br*wj B'

N

xU 7.,
I

( qj (8,È) [UGy (x,Y, +o;E;r)) I
i =t J

B,

* \c"(x,y. -o;6,v, )ldE i = 1,...,N

where u(x) is the Heariside step function.

equations can be r.¡ritten as

Yj (ã,.r{n"(*,y, ;8,v, )
ô,, u(x-E)

(5.2.6)

This system of integral

dE
h. C. (x)

v/

i, I
B,

= }.''(x,t) + G'(x,t) + H.'(x,t) i = 1,...,N G.2.7)
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rdre.re ôi¡ is the Kronecker delta function and F, G ancl tl are given

by (4.2.22) ro (4.2.24). Ir is still necessary to have a Kutta condiÈion

on the trailing edge of a moving ship (4.2.27 ) and a zeto circulation

condition on a stationary ship (4.2,26). The system of integral

equations $.2.7) is of the same form as (4.4'1) and can be solved

numerically for the vorticity, by following the procedure described in

section 4.4.

5.3 SI,üAY FORCE AND YAhI MOMENT

To obtain a formula for the sway force and ya$l moment on a gl-ven

ship, the methods of section 2.8 and 4.3 ate conbined. The sway force

on ship j at Eime t ís given bY

(t) pdxdzY Jf
surface
ship j

using G.2.6) and where c. (x)

at station x . Replacing 0*

of íntegration shown in Figure 2.L ít can be shown that

tu
ðn

="p dx

0t

Substituting thís into (5.3.1) gives

is the cross secÈion curve of shiP j

by 0, ít (2.8.3) and usíng the Path

Jo,
c, (x)

dz (5.3.1)

(5.3.2)

B.
J

I
c.
t

ð.2=-l'
J
S,)x(

q

4
ât

dL

=- h.
J

f
J
B.
,

ð40
ðtY.(t)=+ph.

JJ
dx (5.3.3)
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which by using G.2.Ll) can be expressed as

f ,", (r)+b¡ (¡)-2x) * f"
B. a.jJ

Yj (E,t)aE ¿x

(t)

(t)

(5.3.4)

Yj (g,t)aE ¿x. (5.3.5)

B

â

J"a-r
a.

J

sirnilarly the yaw moment on ship j at time t can be found as

v. (r)
t

p\

n, (r) = \eh¡

5.4 RESULTS

To tesÈ the above formulation and suggested numerical technique,

numerical results were obtained and compared with the experimental resulEs

of Remery t19]. The blockage coefficient is calculated using the formula

derived by Taylor l2:Il. To simplify the calculation, the blockage

coefficient is assumed to be constant along the whole ship. The term

involving the blockage coefficient in (5.2.7) may then be evaluated

analytica1lY.

The experiments of Remery t19] which are used for comparison consisE

of a model of a moored 100 MDI,üT vessel being passed by a 30 MDI^IT vessel'

The depth of water for all experiments \^ras equivalent to a full scale

depth of 18 metres over a flat bottom. So the appropriate form of the

kernel ¿i in the numerical analysis of section 4.4 ís given by (3'4'3)'

Figures 5.2 a¡d 5.3 show the results obtained for the passing

manoeuvre wifh a separation of 61.4 metres between the para1Iel paths'

The graphs show that satisfactory agreement is obtained r^¡ith the experiments

but that the rnagnitude of both Ehe sway force and yaw moment on the

stationary ship are slightly underestimated. When compared with the

far fiel¿-results of Yeung 126l the graphs are also quite' similar, showing

that the far field results are a good approximation even for close



100.

interactions. Although both theoretical computations underestimate

the force and moment, Beck t4] found a similar phenomenon for a ship in

a canal, and found that when the forces for the interactions between Ehe

source distributions l¡ere added, a correction was obtained which gave better

agreement.

Figures 5.4 and 5.5 show the results obtained when the separation is

96.4 metres, and again it can be seen that both the magnitude of the sway

force and the yar^r moment are underestimated. trlhen comparing Ehe tr¿o

different experiments it is significant that the force and momenL decrease

quite rapidly as the separation increases.

The computer execution time for Èhe computatiorl necessary for Figures

5.2 and 5.3 was 553 seconds on a C.D.C. CYBER 173. The decrease in

time when compared with that used in Chapter 4 ís a result of the greater

speed of the CYBER 173 compared Èo the 6400.

For the limited number of available comparisons with experiments, it

was found that the present formulation and numerical technique produce

satisfactory results. As the qualitative agreement is good the approach

described here should be useful for giving predictions for ship inter-

actions which are difficult to model by experiment. Many different

simulations can be carried out by Ehis method, such as investigating the

effect of varying the depth of the hrater, which can cause large changes

in the force and moment.
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Symbol Unit Moored
Ves se 1

DeadweighÈ MDI^IT 1000 ton 100

m 257

36. 8

15.7

TABLE 5.1 Relevant Dimensions of ShiPs

Passing
Vessel

183

26.L

10 .5

30

Length

Beam

Draught

L

mB

md
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CHAPTER 6

CONCLUSION

This dissertation provides the formulation and a numerical solution

technique for the computation of the laEeral forces and moments occurring

during ship interactions in shallow water. Although this is a valuable

tool for studying hazardous ship manoeuvres, it is lirnited by the compuËer

time required an,J the parallel path restriction. Also only the sIÀ'ay

force and yaw moments are calculated, whereas the other forces and

moments occurring, namely, squaÈ, thrust, trim and pitch, can also be

important. Squat is usually the most important of these for ships

operating with a small underkeel clearance, as the increase in squat

experíenced by a ship, when'another ship or obstacle is close by, may

be sufficient l-o ground the ship.

A me¡hod for obt.aining a po\^rer series approximation for the vorticity

on a ship by extending the method described in Kida and Miyai t13l seems

to hold some promise for steady Lwo-dimensional interactions. Such a

solution could be useful in decreasing the computational time of the

problem. Unfortunately when both thickness and camber effects are

included only the lower order coefficienÈs of the series may be readily

evaluated. An algorithm for finding coefficients of any order can be

readily derived, but in practice a computer package capable of performing

symbolic algebraic manipulation appears to be necessary.
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