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SUMMARY

This thesis considers hydrodynamic ship interactions in shallow
water. It is assumed that the ships are slender, the fluid is inviscid
and incompressible and,that free surface effects can be neglected.

Four separate interaction problems are considered. The first is
the interaction of a ship with some depth contour. Only steady inter-
actions are considered, so the ship is moving at a uniform velocity
parallel to any depth contours. Two particular coﬁtours, namely, a
vertical wall and a beach of uniform slope, are considered and results
presented.

The model is generalized to include the interaction of two or more
slender ships in shallow water, moving in such a manner that the problem
is steady. The cases of a flat bottom of uniform depth and a flat
bottom with a vertical wall are considered. The results obtained for
a wall are of particular interest when applying experimental results to
actual ship interactionms.

An unsteady model for two dimensional airfoil interactions is
formulated next. This provides insight into the significance of unsteady
effects in ship manoeuvres, when the bottom clearance is negligible.
‘This work is then extended to provide a model for the unsteady inter-
actions between two or more ships in unbounded shallow water, with
underkeel clearance effects included.

Each of the above problems leads to an integral equation, or a
system of integral equations, which has to be solved. A suitable
algorithm is described in each case and used to compute results.
Comparison with experiments shows that the algorithm is useful for
computation of the sway force and yaw moment in practical problems.

Where possible, qualitative discussions of these results are presented.
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CHAPTER 1

INTRODUCTION

In recent years interest in hydrodynamic ship interactions has
resulted from the number of ship collisions occurring each year. The
collisions studied fall into two main classes, those between two or
more ships and those between a ship and another object such as a wharf,
bank, bridge, or sandbar. Considerable effort has been put into deriving
theoretical models, so that additional information about hazardous
situations may be obtained.

From a theoretical point of view, ship interactions can be readily
divided into those in deep water and,those in water which is shallow
when compared to the draft of the vessels. Tuck and Newman [25] have
considered the deepwater interaction of two slender ships in both steady
and unsteady motion. In practice, this kind of theory is mainly limited
to refuelling manoeuvres, as ships are rarely close together in deep
water.

A ship is usually in close proximity to another ship or some
obstacle when it is moving in restricted waterways such as harbours or
canals. Not only is there a lateral restriction on the water, but more
importantly, the depth is usually of the same order as the draft. It
is convenient to divide shallow water interactions into two cases, steady
and unsteady. The steady case is the simpler to analyse of the two,
as a vortex wake must be included in the formulation of unsteady
problems. Tuck and Newman [25] formulated the shallow-water ship-ship
jnteraction problem for steady interactions in water of constant depth.

In this dissertation, only interactions in shallow water are

considered and, except in Chapter 4, the formulation of the modelled



interactions allows for some depth changes. This is done by applying
the results of Tuck [24] for slender ships moving in shallow water.

The models formulated all assume that the lateral separation between
the ships is comparable with the length of the ships, and large compared
to their beam. A nearfield theory for close interactions is described
in Yeung and Hwang [27]. As the forces and moments of greatest import-
ance are those acting laterally, they are the only components investigated
here.

The approach taken here is to take the simplesf problem and to build
upon it in successive stages. The first problem considered is the
steady interaction of a ship with some depth contours. This is expanded
to include the steady interactions of two or more ships in shallow water.
Temporarily abandoning this approach the simplest unsteady problem is
considered, that is, the two dimensional unsteady interactions of two
or more airfoils moving along parallel paths. This is formulated
directly from the usual aerodynamic boundary conditionms. The most
complex problem discussed is the unsteady hydrodynamic interactions
between two ships in shallow water. Here it is treated by combining the
results of the problems preceding it. In fact all the other problems
can be considered to be special cases of this last problem.

The advantage of starting with the simpler problem is that interesting
ship interactions of less complexity can be studied more easily without
the numerical complications of the hardest case. In fact, the last
problem depends on so many parameters that useful cases, which are
treated as separate problems here, could easily have been overlooked.

The first type of interactions considered are those between a single
ship and some depth contours. So that a steady model can be used, the
ship is considered to be moving parallel to any depth contours. Two

particular cases are examined in detail, and numerical results presented.



The cases investigated are those of a vertical wall (bank) and a beach

of uniform slope. One of the aims of this investigation is to determine
whether results for 'bank-suction" problems can be generalized to other
boundaries. This work has already been presented in King and Tuck [16]
and Chapter 2 follows that paper closely.

In Chapter 3 the steady interaction between two ships is considered.
The formulation allows for depth contours, and results for a flat bottom
of constant depth, and a flat bottom with a vertical wall parallel to
the paths of motion of the ships, are presented. The results for a
vertical wall are important as they show the quite large effect the
presence of a wall has on the sway force and yaw moment of the ships.

In fact, the results show that great care needs to be taken when applying
the results of model experiments to real situations. This is because
experiments are quite often carried out in narrow tanks where the measured
forces and moments could easily include the effect of thé walls of the
channels, even when this is not desired.

A two dimensional model for unsteady ship interactions is formulated
in Chapter 4. The model is that for two airfoils moving along parallel
paths at different velocities. The theory is appropriate for flow ﬁast
a vessel in very shallow water, as Tuck [22] has shown that in this case
the flow is nearly two dimensional. King [14] describes a formulation which
can be used when there are no boundaries in the fluid. A more general
derivation is given in Chapter 4, together with some results for inter-
actions in an unrestricted two dimensional fluid.

Underkeel clearance effects are included in the model for unsteady
ship interactions in shallow water which is described in Chapter 5.

This is the most useful of the theories presented, but because of the large
number of variables in such a problem (waterplane, clearance, relative

velocities etc.), only results for comparison with experiments are given.



They show that the model can be usefully employed in the study of ship
interactions.

Each of the four problems considered is modelled by distributing
sources and vortices over the centre-line of the water-planme of the ships.
The sources model thickness effects and the vortices camber and interaction
effects. When solving the problems the source distribution on each ship
is obtained analytically and only depends on the thickness of the ship
being considered. A system of singular integral equations is obtained
for the vortex distributions. These equations have non-unique solutions,
and a Kutta condition on each ship is used to determine the solution
appropriate to a given situation.

In each chapter there is a description of a numerical procedure
suitable for solving the particular kind of integral equation derived.

The procedure is, however, almost identical in each case and involves
replacing integration by summation to obtain a matrix equation for the
vorticity. In the unsteady problems this is further complicated by the
need to include time dependent effects within the matrix equation.

An algorithm for the computation of sway force and yaw moment is
described. Where possible, the results from this algorithm are compared
with published experimental results. These comparisons show that the
algorithm works satisfactorily. The results of some of the calculations
done, are discussed in detail. The results are interpretgéed qualitatively ?
to give insight into what is actually occurring to the ships during some

ship manoeuvres.



CHAPTER 2

STEADY INTERACTIONS BETWEEN A SHIP AND THE BOUNDARY OF THE WATER

2.1 INTRODUCTION

Bank suction is a significant problem in ship manoeuvring, and a
aumber of studies have recently appeared of this hydrodynamic problem,
e.g. as reviewed by Tuck [24]. In most such studies it is assumed that
the water is of constant depth, and that the bank is a vertical wall.
Although this éssumption allows study of qualitative effects of greatest
interest, some doubt remains as to whether the phenomenon is affected
by bottom geometry.

A complete theoretical or computational study of ship manoeuvring
in variable bottom topography would seem to be out of the question.
Unless the bottom contours are straight and parallel to the ship's track,
the flow is unsteady, and a new boundary value problem must be solved
for Laplace's equation at each instant of time. By restricting consid-
eration to the steady-flow case, the problem is reduced to that of solving
only one boundary-value problem.

For general depths, this boundary-value problem is three-dimensional,
and involves the complete hull and bottom geometry; again, a somewhat
daunting task, at least for routine computations. It will be assumed
that the water is shallow, i.e. that the depth is small compared to
other important length scales. In the present case, this means small
compared to the ship's length. At the same time, it is convenient to
assume that the ship is slender, with beam and draft comparable to the
water depth.

The effect of this further approximation is to reduce the task to

.that of solving two sets of two-dimensional boundary-value problems.



The inner problem is to solve the two-dimensional Laplace's equation at
each vertical ship cross-section, with uniform (1ocal) depth, no banks,
walls or beaches, and a "rigid-wall" free surface. This is a solved
problem; work such as that of Taylor [21] and Yeung [26] provides the
output quantities of interest, namely parameters which characterize the
geometry of the ship as seen by an outer observer far from the ship.

The outer problem is to solve the linearized shallow-water equationm,
allowing variable depth, banks, wall or beaches. This is a two-dimensional
problem in the horizontal plane, in which the ship is modelled as an
equivalent infinitesimally-thin porous airfoil. The parameters of this
equivalent airfoil (thickness, camber, porosity) are determined from the
solution of the inmer flow problem at each section.

This outer problem is still a little too difficult for routine solution
with arbitrary Froude number and bottom topography. New solutions are pro-
vided here only in the case of a uniformly-sloping beach, and assume in
this case that the Froude number is zero, i.e. that the free surface is
replaced by a rigid wall in the outer as well as the inner regiom. Known
results in the case of a vertical bank, in water of constant depth, are
also reproduced.

The zero-Froude-number assumption is not unreasonable, since in the
real manoeuvring situation the ship is forced for safety reasoms to
travel slowly, if there is significant bank suction. However, from
the theoretical point of view, there are some difficulties with this
assumption near any point where the depth tends to zero, such as at
the shoreline of a beach.

An interesting feature of the uniform slope equation, is that it is
formally identical to that for axisymmetric flow, the distance from
shore playing the role of the radius co-ordinate. Thus the outer

problem is the same as for flow through and around an equivalent



"annular airfoil" or collar. Thus it is possible to make use of
previously determined solutions to this class of problem. In
particular, the fundamental building block for the numerical solution
is the velocity potential for a ring vortex, which can be expressed
in terms of elliptic functions.

The computed results give the side forces and moments on the ship.
Collections of such results for various ship geometries, both for banks
and beaches are presented. The results are much as might be expected
on intuitive grounds. For example, the force near a beach is greater
than that at the same distance from a bank, since the "effective"
distance is smaller. An equivalent statement is the volume of water
between the ship and the beach is smaller than the volume between the
ship and the bank.

This work is contained in the paper King and Tuck [16] and the

following discussion will follow that paper closely.

2.2 MATHEMATICAL FORMULATION

Consider a ship moving at uniform speed U in the -x direction
along y = 0, in water of depth h = h(y). Viewed in a frame of
reference fixed in the ship, the flow is steady and the disturbance

velocity potential ¢ satisfies the linearized shallow-water equation

u? h'(y) _
(1 - —”‘gh(y)) b * b, * ——Lh(y) ¢, = 0. (2.2.1)

This equation is valid except very near the ship, as an approximation as
h/% -+ 0, where 2% is the ship length. Note that ¢ 1is, to leading
order in shallowness, independent of the vertical co-ordinate z

Here the limiting case of low Froude number, U%/gh > 0, is considered,

in which case (2.2.1) reduces to



o +¢ +20 4 g (2.2.2)

In particular, for constant depth h=constant, (2.2.2) reduces to the

two-dimensional Laplace equation
o +¢ . =0, (2.2.3)

in the (x,y) horizontal plane. The only other specific case treated

here is of a uniform slope B, i.e.

h(y) =h  + By, (2.2.4)
in which
¢xx ¥ ¢yy 1 EBy ¢y = (2.2.5)
0
Defining
r=y+ ho/B (2.2.6)

and substituting in (2.2.5) gives
¢ =0 (2.2.7)

which is the equation for axisymmetric jrrotational flow, with r as a
cylindrical polar co-ordinate.

The task is to solve (2.2.3) or (2.2.7), subject to suitable boundary
conditions. The ship, being slender, is represented in the limit as

its beam/length ratio tends to zero, by a line segment y = 0%, |x| < 2,

of the x-axis in the (x,y) plane. The analogy is therefore with a
thin airfoil. This airfoil is two-dimensional if h=constant, so that
(2.2.3) holds. On the other hand, the equivalent airfoil is in the

form of an annulus or "collar" r =h /B in an axisymmetric flow, in the
() :

case of a uniform slope, where (2.2.7) holds.-



The actual nature of the limiting boundary condition on the hull must

be established by an inner expansion in the immediate neighbourhood of
the ship, as in Tuck [23]. In the special case where the ship is a

vertical strut, 1.e.

£ (x) <y<£(x), |x|] <2 (2.2.

the appropriate boundary condition is simply the usual thin-airfoil

condition (Ashley and Landahl, [3])

%9(x,0¢) = U £ (x) . (2.2
y

These two conditions on y = 0% can alternatively be expressed in terms

of a mean normal velocity

9, = % (x,0,) + 3¢ (x,0)) = U £(x), (2.2.

and a jump innormal velocity

Ay =9, (x,0) - ¢ (x,0) = UM (x), (2.2.

where

£ (%)

is the camber of the strut and

Af(x)

is its thickness. For a strut with lateral symmetry, yawed at an angle

of attack o, the camber is simply

f(x) = - ax . (2.2.

Lt (x) + 3£ (x) (2.2.

fhx) - £ (%) (2.2.

8)

.9)

10)

11)

12)

13)

14)



The most general case of a ship of arbitrary cross section, with non-
zero bottom clearance, is discussed by Tuck [23]. The equivalent air-

foil is now clearly porous, since the bottom clearance allows some water

to pass through the limiting line segment y = 0%, le < 2. So instead
of (2.2.10),
3. - UE'(x) = =—— A¢ (2.2.15)
y 2h C T
where
Ap(x) = ¢(x,0+) - ¢(x,0_) (2.2.16)

is the jump in velocity potential across the airfoil, and c(x) 1is the
non-dimensional blockage coefficient (Taylor, [21]) of the ship section
at state x 1in water of depth h0 . If there is no clearance, C(x) > *,
and (2.2.15) reduces to (2.2.10). Since the jump in pressure across the
foil is proportional to A¢’(x), (2.2.15) indicates a net flow through

the equivalent porous airfoil.

In a quite general case with a laterally unsymmetric ship, the
appropriate choice of the camber function f(x) is not at all obvious,
and in general it is necessary to solve an inner-flow problem at each
section to determine f(x) (Tuck [231). However, if each ship section
possesses lateral symmetry about the mean line y = f(x), then f(x)
may be taken as the appropriate camber function. In particular, in
the case of symmetric ships at an angle a of yaw, (2.2.14) still
applies.

The normal-velocity jump condition (2.2.11) is also modified in the
general case, but in a simpler manner. In fact (2.2.11) still applies,

with the strut thickness Af(x) replaced by the mean thickness of the



actual hull, averaged over the local water depth. That is
Af(x) = SﬁX) , (2.2.17).
0

where S(x) is the immersed cross-sectional area of the hull at station x.

The only remaining boundary conditions are at infinity, where
$ >0 as y > (2.2.18)

and at the location of any bank or shoreline; if such a boundary lies

at y = -Y, say, then

¢y(x,—Y) = 0. (2.2.19)

2.3 SOLUTION PROCEDURE FOR GENERAL DEPTH CONTOURS

The boundary-value problem formulated in 2.2 can be solved formally
by a distribution of sources and vortices over the segment representing

the ship. Thus
L

o(x,y) = I {q(E)G(x,y;E,O) + Y(E)H(x,y;g,o)}dg , (2.3.1)
-2 .

where G(x,y;E,n) satisfies (2.2.2) except at (x,y) = (§,n) where it
behaves like a unit source, and H(x,y;E,n) is the potential for a unit

vortex, which is also a singular solution of (3.2.2) and is related to G by

G. (2.3.2)°

In fact G and H depend on x and & only via their difference
x-£ .
On substitution into the thickness boundary condition (2.2.11), the

source strength q(x) is immediately found to be

11,



a(x) = A9,

U Af"(x)

Similarly, substitution into the camber boundary condition (2.2.15)

gives an integral equation to determine the vortex strength

y(x) = - 3‘1; Ab(x), (2.3.4)

1 X
Y(E)Hy(x,O;E,O)dE + W J v(£)dg
-2 L

2
=U £f'(x) - J q(&)[%Gy(x,0+;§,0) + %Gy(x,O_;g,O)]dE . (2.3.5)
-L

The integral equation (2.3.5) is simplified by introducing a new

kernel function L defined by

u(x-%)

KX(X,E) . Hy(X,O;E,O) + 2hoC(X) (2.3.6)
where
alx) = {o x <0
1 x>0 . (2.3.7)
Equation (2.3.5) may be written in the form
£
J Y(E)K (x,8)d8 = U g'(x), (2.3.8)

-9

where U g’(x) is written for the function on the right-hand side of
(2.3.5), which measures the crossflow due to camber f(x) of the ship
and in addition an induced crossflow due to the thickness of the ship
in a laterally-asymmetric flow. It is convenient to define a kermel

L(x) to describe the latter effect, whose derivative satisfies

12.

Us'(x)/b, . (2.3.3)



L'(x-8) = %G (x,0_ ;E,0) + %G (x,0_;£,0) (2.3.9)
and set
- 1 2
g’(x) = F'(x) - h—j S’(E)L’ (x-E)dE . (2.3.10)
0
-£

Note that if the bottom geometry is symmetric about y =0, then L =0,

and the only cross flow is that due to camber of the ship.

2.4 NUMERICAL PROCEDURE FOR SOLVING INTEGRAL EQUATION

A direct numerical procedure is used to solve the integral equation
(2.3.8), by replacement of integration with summation using a method of
discretization, and inversion of the resulting matrix equation. The
method is similar to that used by Tuck and Newman [25].

First take the indefinite integral with respect to x of equation

(2.3.8), giving

L
I Y(E)KR(x,E)dE = U g(x) + C, (2.4.1)
-2

where K(x,£E) 1is determined by integration of equation (2.3.6), and
g(x) from equation (2.3.10), for the Green's function G appropriate
to the particular choice of H(y). The constant C is for the moment
an arbitrary constant of integration, ultimately determined by application
of the Kutta condition at the trailing edge.

To find a numerical solution, suppose the unknown function 7Y(x)
can be represented by a step function on the ship, the value on the jth
interval X _, <% < x being taken as the constant Y(x) =Y, - Since
square root singularities are expected at the ends of the ship, the

distribution of the points x; must be chosen so as to counter these

singularities. A distribution of the points with the correct properties is

13.



x, = -2 cos(jm/N), (2.4.2)

for a mesh of N + 1 points on the ship.
Replacing 7y(x) in equation (2.4.1) by such a step function gives
N rx.
Iy, ] ’ R(x,E)AE = U g(x) + C; . (2.4.3)
i=1

X,
j-1

The integral is evaluated at points x = % which are near the centre

of the ith interval, specifically
% = - & cos((i-%)n/N). (2.4.4)
The equation may then be written as

N X
¥ Y, [’ K(;(i JE)AE = U g(;{i) +C, i=1,2,...,0, (2.4.5)
i=1

Yo

or, equivalently, the matrix equation

Ay =U g + Cpe (2.4.6)
where
A=[Aij],1(= [Yj],§= [g(;ci)] and e = [1], (2.4.7)
with
X, =
A, = J’ R(x LEMIE . (2.4.8)

.1
In practice the matrix element A.ij are evaluated by separating

out the logarithmic singularity at & = x, and writing

1
K(x,E) = o logx-E] + K, (x,8) (2.4.9)
where K(l) is non-singular and without loss of generality can be assumed
to vanish at & = x.  Now integrating the logarithm exactly and the non-

singular function K .

(1) by the mid-peint rule, yields

ia.
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_ — . . .
AL T on {(xj X, )1og|x‘i X, |--(xj_l—xi )1og|xj“l--xi |—(xj —xj_l)}
+ (xj —xj-1)K(1) (xi X ). (2.4.10)
Note that K does not contribute to the diagonal elements A .

(1)

i1

The solution Y 1is obtained by direct matrix inversion, with the

~

two right-hand sides g and e, and may be written as

~ ~

Y=UY +CyY (2.4.11)
where
Y =4'g,
and
Y =4le

This is a numerical approximation to a corresponding representation of

the actual vortex strength 7Y(x), namely
Y(x) = Uy (%) + Gy (). (2.4.12)

Thus a numerical approximation to the general solution of the singular
integral equation (2.4.1) can be obtained, with C  a conmstant to be
determined by the Kutta condition.

The Kutta condition for this class of problem is that the vorticity

must vanish on the trailing edge, i.e.
y(2) = 0. (2.4.13)

There are two ways in which this can be applied. A crude but effective
procedure is to require the vorticity on the trailing element to be zero,

so that



(v)

]
o

or
c, = - U(f )N/(f )y (2.4.14)

from equation (2.4.11).
‘A more satisfactory method is to use some of the expected properties
of the solution to the singular integral equation as x > X%. For

example, any solution of (2.3.8) must have the property that as x > &

D

y(x) ~» Jie * EV&-X , (2.4.15)
for some constants D,E. By fitting this function to the last two
elements (Yg'e')Nﬂl and (Yg’e)N, the four constants D = D**°  and
E = E°° may be determined. In order that the Kutta condition (2.4.13)

holds, the sum of the inverse-square-root terms involving D must be

zero, i.e.

so that
c, =- o /D7 . (2.4.16)

In all results presented the second application of the Kutta condition

is used.

2.5 EVERYWHERE-UNIFORM DEPTH

If h=constant everywhere, then

G(x,y;&,n) = 2—];T logV(x-£)2+(y-n)? (2.5.1)

16.



and
H(x,y;&,n) = —l-arctan bl (2.5.2)
2733 2m x-& T
Thus the kernel functions K  and L' defined by (2.3.6), (2.3.9)
become
_ 1 u(x-£) .
% = 2D * n, C(x) (2.5.3)
and
L' =0 . (2.5.4)

Equation (2.5.4) is expected from the symmetry of the bottom geometry
about the ship location y = 0.
After integrating (2.5.3) the kernel K 1is of the form (2.4.9),

with K ] where

(v - Koy

K, . (x,8E) = (2.5.5)

u(x-£&) Jx dt
(o)

2h c(t)
—{

The kernel K(o) measures the effect of bottom clearance, and vanishes

for zero clearance (C - ©). If K(o)

0, the integral equation (2.3.8)

is the classical thin-airfoil equation

2
1 ] YCE)AE _ yEr(x) (2.5.6)
x-§

whose solution subject to the Kutta condition (2.4.13) is

2 T
Y(x)=—2—:- %;—’;J /%%fx—fé—)dg : (2.5.7)

I1f the clearance is not zero, the problem is that of a porous airfoil,

and (2.3.8) becomes

2 X
o J Y(xg—)gg * D J v(E)dE = UE'(x), (2.5.8)
- - 0 9 :

17.
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which was first obtained by Newman [17].  Although no closed-form
solution such as (2.5.7) appears to exist for arbitrary C(x), f(x),
integral equations of this type may be readily solved numerically by
the procedure described in §3.4. An alternative treatment of (2.5.8)
is by the Cauchy Inversion technique as described in Yeung [26]. Non-
zero sway force and yaw moment only occur when the ship is yawed to its
direction of motion or there is another body or obstacle in the flow.

In the more general cases which follow, it is convenient to express
the kernel of the integral equation as a correction to the uniform-depth

kernel, that is

K(x,E) = 5= log|x-E[+k , (x,€) + R(x-) (2.5.9)

or K(l) = K(o) + K , where K(0) = 0. Note that all effects of

clearance between ship and bottom, are incorporated in K o) ° and K

(o)
depends only on the bottom topography.

2.6 MOTION PARALLEL TO A VERTICAL WALL IN UNIFORM DEPTH

If there is a vertical wall at y = -Y, this wall may be modelled by

images, obtaining the potential for a unit source at (&,n) as

G(X3y;€,n) = é% log/(x—g)z + (y_n)z

+ f% log V(x-£)2 + (y+n+2Y)?2 (2.6.1)

and the potential for a unit vortex at (&,n) as

A =L yn_ L yin+2y¥ 6
H(x,y;€,n) = 5 arctan L 7§ arctam S (2.6.2)

Thus the necessary kernel function for (2.5.9) is

= _ 1 x?
K(x) = - T log[l + Z?T] (2.6.3)
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where K(0) = 0 as required and the induced-camber kernel is

_ 1 X
L(x) = 4 arctan oo . (2.6.4)
This is the bank-suction problem. Recently Hess [10] has investigated

this with particular emphasis on the yaw angle (which is usually small)

and rudder angle required to give a zero sway force and yaw moment.

2.7 MOTION PARALLEL TO A UNIFORM BEACH

Consider a uniformly-sloping beach with a shoreline at y = - Y,
i.e. with slope B = ho/Y . The appropriate Green's function is that
for a ring source of radius r = Y, where r =y + Y, as in (2.2.6).
The potential of such a source can be written as an integral of Bessel

functions, 1i.e.
(o]
G(x,y;0,0) = - %Y I e P! J, (pr)J (pY)dp (2.7.1)
0

and the corresponding ring vortex is given by

00

-plix|

sgn x.H(x,y;0,0) = - %Y j e Jo(pr)Jl(pY)dp. C(2.7.2)
0

These integrals can also be written in terms of complete elliptic integrals,

e.g.

- — K(m) (2.7.3)

G(x,y;0,0) —= K

where

RZ = x? + (r+Y)?

= x2 + (y+2Y)2, (2.7.4)

w =TT (2.7.5)



and

/2

_ . db
E(m) = Som sinZ6 (2.7.6)
0
is a complete elliptic integral (Abramowitz and Stegun [11). Upon

carrying out the required differentiations and intecgrations, it is

found that the necessary kernel functions are

R(x) = - =7 [(1-3mK(m)-E(m)]
—z—lﬂloglxl —%+2—]:n-log 8Y (2.7.7)
and
_ X
L(x) = TR E(m) (2.7.8)

where now y =0 or r =Y in the definitions of R and m, i.e.

R = vx2 + 4Y? (2.7.9)
and
__ 4y?
Ll sy (2.7.10)
E(m) is the corresponding elliptic integral of the first kind. Note

that as x> 0, m > 1 and the elliptic integral K possesses a

logarithmic singularity of the correct strength so that the function

w1 + —L-log 8Y" are included

K is well behaved. The constants
v 2m

so that K(0) = 0, as required.

2.8 SWAY FORCE AND YAW MOMENT

The quantities of main interest are the sway force Y and the yaw
moment N acting on the ship. The linearized Bernoulli equatiom yields

the pressure



p=-0U00 (2.8.1)

where p 1is the density of water. The sway force can then be calculated

by finding the total y-directed pressure. That is,
Y = - II pdx dz
hull of
ship
2
= - pU J dx J ¢ dz (2.8.2)

—£ C(x)

where C(x) 1is the cross section curve of the ship at station x . It

is convenient to introduce a function I such that

T =J o dz=J 6 A g (2.8.3)

x on
C(x) C(x)

where n 1is the normal into the fluid.
Consider the closed path of integration shown in Figure 2.1. Since

this is an inner problem, the local water depth may be assumed constant.

By Green's theorem for this path

& %
§ ¢, 5> A2 = § y 5 44, (2.8.4)
which, together with the boundary conditions that %% = 0 on the free

b _

surface, and o 0 on C and z = h(z), gives

9 N
F=§y3ndl-§¢x-§id£ . (2.8.5)
S
But,
3¢,
§ y 5o dt =0, (2.8.6)
SO
=r 9y
F J ¢x on €
St

h y(x) (2.8.7)
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by equation (2.3.4) when considering this as an inner problem. Thus

the expression for the sway force is

L
Y = pUh J dx v(x). (2.8.8)

Similarly the yaw moment is given by

9
N = pUh Jf dx x y(x) . (2.8.9)

2.9 RESULTS

The preceding sections provided a formulation and a numerical solution
technique for an arbitrary slender body moving parallel to a beach or a
bank in shallow water. Here the application is to ships, so consider
slender bodies which are laterally symmetric, and nearly (but not necessarily
exactly) fore-and-aft symmetric. The formulation itself made no symmetry
assumptions, so the effects of yaw on the motion of a ship can now be
studied.

In order that the blockage coefficient C can be evaluated easily
when needed, only ships with rectangular cross—sections and constant
draught are considered. Then, if the clearance-to-draft ratio is small,
Taylor's [21] formula for the blockage coefficient may be used. This
restricts the investigation to situations with small clearance-to-
draught ratios, but, as the results show that the magnitude of the forces
and moments on the ship decrease rapidly as the clearance increases,
this is the most interesting region.

The quantities of main interest are the sway force Y and the yaw
moment N acting on a ship near a wall or beach. So that subsequent
results can be presented as dimensionless coefficients, the dimensionless

sway force coefficient C, and dimensionless yaw moment coefficients C

Y N

about amidships are



Y

CY =W (2.9.1)

and

_ N

respectively where L = 2& is the length of the ship and the sway force
Y and the yaw moment N are given by (2.8.8) and (2.8.9).

The programs used to produce the following results were written in
FORTRAN and run on the University of Adelaide's Control Data Cyber 173.
The execution time for a typical computation was 458 seconds. In that
time the sway force and yaw moment on a ship in the presence of a wall
and,separately,a beach,were calculated for twenty different depths of
water. At each of these depths the porosity contributions to the
matrix equations had to be recalculated. Also, the computation is
considerably slower in the beach case, as the elliptic integrals required
are much slower to calculate than the corresponding terms for a vertical
wall.

To check the validity of the results, the calculations required
to produce Figures 2 and 3 of Hess [10] were carried out using the above
technique. 1t was found that, to graphing accuracy, when using a
mesh of 40 points on the ship, the results computed by the above theory
were indistinguishable to those of Hess for a ship moving parallel to
a wall.

In the first place, it is desirable to investigate the effect of
changing the shape of a ship, so that the extent to which results for
mathematically-defined bodies may be generalized to real ships can be
estimated. For ships which have a beam/length ratio of 1/8 and
draught/length ratio of 1/16, the effect of varying the water depth on
various ship shapes was studied, with the ships a distance n of 0.2%

from a vertical wall or the shoreline of a uniformly-sloping beach.

24,
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Figure 2.2 shows the five different water-plane shapes which were
investigated. In Figures 2.3 and 2.4, the sway force is plotted
against the local water depth at the ship, for a vertical wall and a
beach respectively. It can be seen that results for ships A, B and
D and ships C, E are essentially identical. The graphs all show the
same decreasing behaviour as the depth increases, and hence the bottom
clearance increases, Even though ship € is ship B running backwards,
there is a significant difference in the sway force. Ships A,B and
D, which have the same water-plane for x 2 0 have the same sway force.
Similarly for ships C and E . So, for the five ship shapes considered,
it appears that the sway force is determined more by the aft shape of the
ship than the fore of the ship. These figures show that although it is
hard to predict what effect changing the shape will have on the sway
force, it appears that some general quantitative conclusions can be made
about the sway force, regardless of the shape of the ship.

When the corresponding results for the yaw moment are examined (Figures
2.5 and 2.6) it can be seen that now the values of the moment are quite
scattered. In the zero-clearance case (depth/draught = 1)it can be seen that
there is a non-zero moment for the ships which are not fore-aft symmetric.
Also, at zero clearance, the direction of the non-zero moment is such
that the blunter end moves towards the boundary and the yaw moment acting
on ship B is equal and opposite to that on ship C . It is not
surprising that ships A and D give such similar results, as their
shapes are quite similar. In contrast to the force case, it is necessary
to be cautious when generalizing the results for the yaw moment to real
hull geometries, since the moment depends to a much greater extent on
the shape of the ship. All subsequent results are for a ship of parabolic

water-plane shape (i.e. type E).



Before comparing the results for a constant-slope beach with those for
a vertical wall, it is convenient to examine the effect of changing the
beach angle. The numerical values for four different beach angles B
(see Figure 2.7) are given in Figures 2.7 to 2.11. The horizontal
scale on all the figures is the depth/draught ratio at the ship's position.
For a given depth/draught ratio, the four lines on each graph are therefore
at four different distances from the shore. Figure 2.7 is a graph of
the sway force, for the ship moving parallel to the shoreline at zero
angle of attack, whereas Figure 2.8 shows the sway force for a ship yawed
to an angle of attack of arctan 0.1 = 5.7 degrees to the shoreline.
In the case of zero angle of attack, the sway force is toward the shore,
and for a given depth it is greater for beaches of greater slope, since
the ship is nearer to the shore in such cases. If the sway force had been
plotted instead against distance from the shore, it would have appeared
that in general the sway force is greatest for the beach of least slope.
In Figure 2.8, it can be seen that, even for this small angle of attack,
the sway force has already become repulsive (i.e. force away from the
beach). In fact, for an angle of attack of only 0.5 degrees away from
the beach, the sway force is repulsive for 8 = 0.05.

The yaw moments corresponding to the situations of Figures 2.7 and 2.8
respectively are given in Figures 2.9 and 2.10. Here it can be seen
that, at zero angle of attack, the moment turns the bow away from the
wall, and that yawing the bow increases this moment. It is interesting
to find the angle a at which the ship must be yawed to make the sway
force or yaw moment zero. The tangent of this angle is shown in
Figures 2.11 and 2.12, for the force and moment respectively. Two
features are immediately apparent from these figures. Firstly, the
angle required is very small, for both force and moment, and secondly

the sign of the angle is different in each case. This means that a
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symmetric ship without a rudder cannot yaw itself so as to experience
simultaneously zero sway force and yaw moment, when moving parallel to
a boundary. In a slowly-varying dynamic situation, the above results
show that the ship would begin to turn away from the shore and, as this
would decrease the attractive force and increase the bow-away moment,
the ship would subsequently turn further away. Eventually even the sway
force itself would be away from the shore, accelerating this tendency.

it is of interest to compare the forces and moments due to a
vertical wall with those from a uniformly-sloping beach. To do this,
consider a ship at a distance n from the shoreline or wall, and in
water of depth h . This will then determiue the appropriate beach
angle. To graph the results n was fixed at various values and h
varied, which means that the beach angle B 1is different for each
value of h.

In Figures 2.13 to 2.16 the numerical results for a wall and a
beach are compared, for three different values of n . The results
for the wall are given by solid lines and for the beach by dashed lines.
The sway force for a ship which is not yawed is given in Figure 2.13.
Immediately, it can be seen that the force due to a wall is smaller
than that due to the beach, which could have been anticipated, since

there is a greater volume of water between the ship and the wall than

between the ship and the beach. The yaw moment corresponding to this
sway force is shown in Figure 2.14. Again, the values for the beach
are greater than those for the corresponding wall. All moments are

zero for zero bottom clearance, and rise rapidly to a maximum as a
function of water depth before decreasing. The moments are zero for
zero bottom clearance as ship E is fore-aft symmetric, whereas if a
ship without this symmetry is used, a non-zero yaw moment would be

‘expected. It is apparent that, unlike the sway force, whose maximum



occurs for zero clearance, the yaw moment reaches its maximum at a small
but non-zero clearance.

When the ship is yawed at an angle whose tangent is 0.1, the sway
force and yaw moment are shown in Figures 2.15 and 2.16. In contrast
to before, the force is greater in the case of the wall than the beach.
In general, the yaw moment due to the beach is greater than that for
the wall for the corresponding distance from the boundary.

This chapter provides a technique which can be’used to find the
effect of different bottom topographies on the motion of a ship. It

shows that the results obtained from a bank suction investigation cannot

L.

always be readily used to predict the effect of some other bottom topography.

Thus care must be taken when trying to formulate general conclusions from

such an investigation.



SHIP A b(x) = b/1-x2 )

SHIP B b(x) = (b(1-x*) x <0
{bVT:ET x>0

SHIP C b(x) = (bvVI-x2 x <0 | x| <1
{b(l—xz) x >0

SHIP D b(x) = (b(1-x*) x <0
{b/q:gf x > 0 )

SHIP E b(x) = b(1-x2)

2.2 Functions describing the breadth of a ship b(x)

a maximum beam b and a ship length 2.

for
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CHAPTER 3

STEADY INTERACTIONS BETWEEN TWO OR MORE SHIPS MOVING
OVER A FLAT BOTTOM OR NEAR TO A BANK

3.1 INTRODUCTION

When two ships pass each other each ship experiences forces and
moments induced by the presence of the other ship, in addition to any
effect from the boundaries of the fluid. The problem may be considered
as steady, if the ships are moving along parallel paths at the same constant
velocity, and if any depth contours are parallel to the tracks of the ships.
Otherwise the problem should be considered to be unsteady. In this
section only the steady problem will be considered, and the unsteady
problem left for Chapters 4 and 5.

The same restrictions on the shallowness of the water and the
slenderness of the ship will apply as described in section 2.1. The
inner problem to be solved is the two-dimensional Laplace's equation at
all vertical sections of each ship in turn, with uniform (local) depth,
no banks, wall or other ships, and a "rigid-wall" free surface. This
problem has already been solved, and Taylor [21] and Yeung [26] provide
the blockage coefficient of a ship, which describes how the geometry 1is
seen by an outer observer far from the ships.

The outer problem to be solved is the linearized shallow water
equation, allowing for two ships as well as variable depth. As in
Chapter 2, this is a two-dimensional problem in the horizontal plane,
in which the ships are modelled by equivalent thin porous airfoils.

In this outer problem the free surface is replaced by a rigid wall, so

the Froude number is again assumed to be zero.
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When the interaction between the ships is taking place with zero
bottom clearance, a uniform flat bottom and a small stagger, the problem
is equivalent to that of the two-dimensional stream-wise section of the
wings of a biplane. This problem has been investigated by several
classical aerodynamicists, notably Karman and Burgers [12] .

Collatz [6] presented a theory for the interaction of two bluff
ellipses, with no underkeel clearance or circulation around the bodies.
His results motivated experiments by Oltmann [18]. Tuck and Newman [25]
produced a theory for the zero-underkeel clearance case, which is the same
as the procedure given here for zero clearance, and compared their results
with those of Collatz and the experiments of Oltmann. They found that
the results from their theory gave better quantitative agreement with
Oltmann's experiments for sway force but were not significantly better
for the yaw moment than those resulting from Collatz's theory.

In addition Tuck and Newman provide an intuitive derivation of the
theory for two ships interacting over a uniform-depth flat bottom with
small bottom clearance. In section 3.2 a more rigorous derivation which
allows for some depth variation is given.

A numerical technique suitable for solving the resulting system of
singular integral equations is presented, and results are given for three
interaction problems, namely two identical ships passing over a flat
bottom and near a wall, and two ships of different sizes. The results
of these computations show that, in practice, steady ship-interaction
problems should be considered individually because there are so many
parameters involved, such as shape of waterplane, length, draft and
breadth ratio of each ship and between ships, separation of the paths of
the ships and the distance to any boundary of the water. This makes
difficult the task of obtaining any general conclusiomns, which could
avoid the necessity of calculating the sway force and yaw moment for all

new problems.
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3.2 DERIVATION OF GOVERNING SYSTEM OF INTEGRAL EQUATIONS

Consider the hydrodynamic interactions between two ships in a steady
flow situation. This means that the ships have a fixed position relative
to each other, and are moving at constant velocity, parallel to any
depth contours. This may be modelled by having two fixed ships with an
incident free stream of velocity U, p;rallel to any depth contours
h(y), and possibly at a small angle of attack to both ships.

The geometry of this situation is shown in Figure 3.1. Ship j
has half length % and occupies a section of the X—axis % at a
position y = A Ship j also has cross-sectional area Sj(x)
at station x 1in the segment % . If each section of ship j possesses
lateral symmetry about the mean line y = fj(x), then Ej(x) may be
taken as the appropriate camber function. The depth contours h(y)
give the local water depth below ship j as hj = h(yj).

The quantities of most interest in this problem are the sway force
and yaw moment, especially the manmer in which they are effected by
the stagger and separation of the two ships and the distance from any
boundary or significant depth contour. The stagger S 1is the distance
between the centres of the two ships, measured from ship 2. The
separation n is the length of the gap between the paths of the two

ships, that is
n o=y - y2| (3.2.1)

The differential equation for the perturbation velocity potential
¢, caused by the presence of the ships in the free stream, is still,
(3.2.2), the linearized shallow water equation for low Froude number.
But, now there is the added complication that body boundary conditions

must be satisfied on both bodies separately. In this case, the
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thickness boundary condition (2.2.11) on ship j may be written as

A¢y =U Af;(x) at 'y =y (3.2.2)

and the camber boundary condition (2.2.15) on ship j as

_ - 1
— & i =
¢y U fj(x) 2 C A at v b7 (3.2.3)
where at y = Y
Ay = ¢ (x,y,+0) - ¢ (x,y;-0), (3.2.4)
Ap = ¢(x,y, +0) - ¢(x,y, =0), (3.2.5)
and A% (x) 1is the mean thickness of the hull of ship j . Ship j

has blockage coefficient % , so this time the model being developed is
that for the interaction of two porous airfoils in steady motion along
parallel paths.

This boundary-value problem can be solved by distributing sources
and vortices over the segments representing the ships. Thus the
velocity potential may be written as

2

o(x,y) = .2 I {% (E)G(x,y;E,yj) + Y}(E)H(x,y;g,% YIE  (3.2.6)
i=1 Bj
where G and H are given as in section 2.3 and q and Y, are the
source and vortex strengths respectively on ship j

On substitution into the thickness boundary condition (3.2.2) the

source strength on ship 1 1is found to be

A¢y at y =y,

U si'(x)/hi . (3.2.7)

q (x)

Similarly substitution into the camber boundary condition gives a system

of integral equations to determine the vortex strength on ship 1
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Yi(X) = - é% Ap(x) at y = Yy, > (3.2.8)
namely

2
2 J Yj(E)Hy(x,x ;E,% ) + EE_ELTET I Yi(x)u(x—g)dg
=1 i

B, B

i

2
=UEi’(x) ) J qj(E)[%Gy(x,yi+0;E,yj)
i=1
B
)

+ %G&(x,yi-O;E,yi)]dE i=1,2 (3.2.9)

where

This may be solved for Y(x), as the right hand side is known. The
system of integral equations may be simplified by introducing the new

kernel function

K;j(x,i) = Hy(x,yi;i,% )

+

m u(x-E) (3.2.10)

where

[t}
—r—
)
He b
[ 8
e b

Then the system of integral equations may be written as

2 P
) [ Y, (DK (x,8)dE = U g/(x) (3.2.11)
i=1
% for 1 =1,2

where

nw~1

g/(x) = E/(x) -

1 ’ .
b ] $7(2) [3G, (x,y, +05,, )
8

3
+ %G&(x,yi—O;E,yg)] for i =1,2. (3.2.12)



The function g;(x) measures
(1) the cross flow due to the camber of ship i,
(ii) the induced cross flow due to thickness of ship i in a
laterally asymmetric flow due to bottom geometry, and
(iii) the cross flow induced by the thickness of the other ship
in the flow.

To simplify the notation it is convenient to introduce a kernel L’ (x)

44,

so that
e "(x-E) = %Gy (x,y, +0;€,yj) + %Gy(x,yi -O;E,yj) (3.2.13)
and then
- 2 1 ij’
g{(x) = f;(x) - X . J S;(E)L P (x-E)dE . (3.2.14)
i=1
B, '

)

1f the bottom geometry is symmetric Lii(x) = 0 and the cross flow
on ship i 1is due only to its own camber and the presence of the other
ship. If the bottom is flat, i.e. h(y) = h, then the system of
integral equations (3.2.11) can be shown to be the same as those derived

by Tuck and Newman [25]

3.3 NUMERICAL PROCEDURE FOR SOLVING THE SYSTEM OF INTEGRAL EQUATIONS

In section 2.4 a direct numerical procedure for solving an integral
equation was described. 'Here that method is expanded so that a system
of integral equations of the form of (3.2.11) can be solved numerically.
The technique is a generalization of Tuck and Newman [25].

Taking the indefinite integral with respect to x of equation

(3.2.10) gives

N

i=1

J

I o (E.)Kij (x,E)dE = U g (x) + C, for i = 1,2 (3.3.1)
B



where K?j(x,E) is determined by integration of (3.2.9) and g, (x)
from (3.2.13).  The conmstants C  are arbitrary constants of
integration which take values so that the Kutta condition holds at the
trailing edges of both ships.

As in section 2.4, the unknown functioms 7Y;(x) and 7Y,(x) are
represented by step functions on their respective ships, with the value
on the jth interval of ship 1i X < x < X being taken as the

constant Yi(x) =Y, ..

o To simplify the procedure,the same number of
mesh points are taken on each ship. However, the method described can
readily be altered to include different numbers of mesh points on each

ship. Since square-root singularities may be anticipated at the end of

each ship, the distribution of points %, on ship 1 1s chosen so that

LT
X, = - % COS(J ﬁ) + a

3=0,1,2,...,N, i = 1,2 (3.3.2)

which provides the right increase in density of points near the ends of
each ship. The variable a in (3.3.2) is the x-coordinate of the
centre of ship 1i.

Replacing Y}(x) in (3.3.1) by such step functions gives
O Kk i

) Y« J’ K’ (x,6)df = U g (x) + C for i =1,2.
3 k=1

! (3.3.3)

i

X

jk-1

To solve this system of equations the integrals are evaluated at points

. th . . .
which are near the centre of the k interval on ship 1

T Xy

A useful way of choosing these 'mid-points" is to use

;ik =- 2 cos((k=%)T/N) + a i =1,2. (3.3.4)

The system may then be written as
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2 N xjk ij -
z X ij J K (xig ,E)dg =0
=1 k=

j 1

jk-1

gi (xik) + Cl

for i=1,2 and 2 =1,...,N.

This is a system of 2N simultaneous equationms in 2N unknowns

may be written as the matrix equation

where

Y11 gl(xll)
Y12 gl(x12)
A=[A~.j]’1= Yin|* &7 g, (x| >
Lo gz(le)
Yon g2(§2N)
_1_‘ =0T
™ g @ _ |
e Q and e %
L 0 L1

The matrix elements A.‘j are such that

A(i- 1)N+& (i 1) N+k

jk-1

Xk s )
K xiQ,E) g .
X

(3.3.5)

ygk and

(3.3.6)

(3.3.7)
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Quite often for simple geometries the integration in (3.3.7) may be
performed analytically. For more complex geometries it may be necessary
to evaluate the matrix elements Aij by a quadrature procedure.

By using standard matrix-inversion techniques with the three right-

hand sides, (3.3.6) may be solved to give the solution vector

y =0y ey vy (3.3.8)
where
¥ = a7, (3.3.9)
R S (3.3.10)
and
() _ 47D (3.3.11)

o
4

This is a numerical approximation to the corresponding representation of

the actual vortex strength Yi(x), namely
v, 0 = 0”@ ey e+ oy . (3.3.12)

It is now necessary to determine the constants Ci from the Kutta
condition on the trailing edge of each ship. The condition is the same
as that used in chapter 2; that is, the vorticity must vanish at the

trailing edge of each ship, so
Y, (&) =0 i=1,2. (3.3.13)

Again, there are two ways in which this can be applied. A naive but
effective procedure is to make the vorticity on the end interval of each

ship zero, so that
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or expanding these terms

U(I(O))N * Cl(Y(l))N * Cz(Y(Z))N =0 Peleilo) =

and

(o) (1) (2) -
v ), ¢ o (), 6 ), = 0, (3.3.15)

which can be solved to give C, and C,
A more satisfactory method is to use the expected property of a

square-root singularity in Yi(x) at the trailing edge, that is as x 7 %

on y = yi
D,
Yi (X) ¥ ‘/E;—_; + Ei V?.i = (3.3.16)
for constants D, and E . By fitting this function to the last two
C (%) (€3 -
elements of each ship i for (¥ )iN“l and (Y )iN for 2 =0,1,2
. _ B RG] .
and i = 1,2 the 12 constants D, = D, and E = E may be determined.

So that the Kutta condition (3.3.13) holds, the sum of the inverse square-

root terms involving D must be zero for each ship, i.e.

w'® +cp? +cot® =0
1 11 21
(3.3.17)
w'® +cp? +cent? =0
2 1 2 2 2

From this C, and C, may be determined, so that by using (3.3.8) the
numerical approximation to the vortex strength may be obtained. As in
the preceding chapter the second application of the Kutta condition is

used for all results presented.

3.4 EVERYWHERE-UNIFORM DEPTH

Following section 2.5 if h=constant everywhere then G and H are

given by (2.5.1) and (2.5.2) respectively. Thus from (3.2.10) the



i . )
kernel K.xj is given by

i, _ 1 x-£ u(x-£)
I (x,8) = 2m (y, *Y; )2+(x-E)2 K ‘Sii 2h, C, (x) (3.4.1)

and from (3.2.13) the kernel

1 Vi 7Y;
2T x2+(yi 7 e

ij s

L (%) (3.4.2)

This gives Lii(x) = 0 which is expected as there is no bottcm asymmetry
but L° (x) #0 for i # j and shows the effect of the thickness of
ship j on ship 1

Substitution of K;j and L'’ into (3.2.11) yields equations (96)
and (97) of Tuck and Newman [25] (except for a missing factor of 7 in
their equatioms).

After integrating (3.4.1) the kernel K’ is obtained as

K?j(x £) = _l_logyff =y )Z+(x-8)2 + § H&E:gl * __QE_.(3 4.3)
’ 27 Y 7Y; il 2h, c (&) "7
a %
i i
and integrating (3.4.2) gives
.. Y. —V. i
L) (x) = éL arctan ( . J) (3.4.4)
m X

These kernels may then be substituted into (3.3.1) and by the numerical
procedure in that section the system of integral equations may be solved

for Yi(x), i=1,2.

3.5 MOTION PARALLEL TO A VERTICAL WALL IN UNIFORM DEPTH

If there is a vertical wall at y = -Y, this wall may be modelled by
images obtaining the kernels G and H given in (2.6.1) and (2.6.2)
respectively. The wall should not lie between the two ships, as this

would reduce to the situation of one ship and a vertical wall, as described
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in section 2.6. Thus, from (3.2.10) and (3.2.13), the necessary kernel

functions are

& = i x_g _]-_ X-E
K (x,8) 2m (ng)2+(yi—yj)2 * on (x—E)2+(yi—yj+2Y)2
ij
TR I (3.5.1)
and

i Y; 7Y y. -y, +2Y

ijr _ _1_ i i _1_ i f

L (x) = 2m Xz‘i‘(yi -yj ) 2 & 21 X2+(yi _yj +2Y)2 * (3.5.2)

Integrating (3.5.1) and (3.5.2) gives

Kij(x,E) = —L-logVTyi—y5)3+(x—£)2 + é% log\/'(x—g)2+(yi—yj+2Y)2

2m
u(x-£) [* dt
+ 85 ~on I C (t) (8 S5
i 1
a -4
i i
and

- y. Y. y. -y, +2Y

ij _~1 i 7] 1 i 7

L (x) = T arctan + o arctan ———— . (3.5.4)

Comparing the two kernels above with those for a uniform depth
(3.4.3) and (3.4.4), it can be seen that the effect of the wall is to
introduce additional terms. These new terms have a similar form to
the other terms, and represent the effect of the vertical wall via the
image ships.

Although the effect of a uniform sloping beach may readily be invest-
igated by following the above steps with the kernels G and H from
2.7, this is not done here. The effect of this and other bottom geometries
may all be readily handled by the techniques described above. One case
of particular interest is that of ships in a canal, and the necessary

kernels can be found in Beck [4].
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3.6 RESULTS

Using the numerical technique described in the preceding pages the
effect of changing the clearance between the keel and the bottom is
investigated. This is done mainly for a flat bottom of uniform depth,
but the effect of a vertical wall parallel to the paths of the ships is
also considered. As in 2.9 the non-dimensional coefficients of sway
force and yaw moment given by (2.9.1) and (2.9.2) are used with the
actual force and moment being calculated from (2.8.8) and (2.8.9) which
are still wvalid.

Consider two identical ships with a parabolic water-plane, a
breadth to length ratio of 1:10, and draft to depth ratio of 1:20,
moving along paths separated by a distance of 0.625.%L where L is the
length of the ships. To see the effect of the underkeel clearance,
curves for the coefficients of sway force and yaw moment for several
draft to depth ratios are plotted against the stagger § of the two
ships. The stagger is the length along the x-axis from the projection
on the x—axis of the centre of ship 2 to the projection of the centre of
ship 1.

When the draft to depth ratio is unity, this is the case of two
thin wings undergoing steady interactions in a two-dimensional stream;
that is, no variation in the fluid flow occurs with depth. This is
the interaction between thin bodies in steady two-dimensional flow
investigated by Tuck and Newman [25]. As they did not give results
for the more general situation with depth effects, the effect of varying
the underkeel clearance is investigated here.

Figures 3.2 and 3.3 show the numerical results obtained for the
coefficients of sway force and yaw moment. The graphs shown are for

ship 1 but the results for ship 2 are only a lateral inversiom of



those given. It can readily be seen that this must be true for identical
ships, by considering the symmetry of the problem, and this was confirmed
by the numerical results.

it can be seen in Figure 3.2 that even for small clearances the
peak sway force rapidly decreases as the draft to depth ratio decreases,
so that for a draft to depth ratio of 0.83 the peak sway force is about
one twentieth of that for zero underkeel clearance (i.e. d/h =1.0).
Also, the magnitude of the peak attractive force and peak repulsive

force tend to become comparable in magnitude whereas the peak attractive

force was about 25% larger than the peak repulsive force for zero clearance.

The results show that although values for zero clearance are easier and
faster to calculate than those for non-zero clearance, they could at best
only be considered as a rough guide, even for quite small non-zero
clearances. Figure 3.2 shows that the peaks of the sway force occur at
almost the same values of the stagger, as the clearance changes. Also
the (negative) stagger value at which the force changes sign is almost
independent of the draft to depth ratio. So the zero clearance results
can be used to give a qualitative idea of at what stagger the peaks in
the sway force occur, and the relative positions of the ships when the
sway force is zero.

In contrast to the sway force the peak yaw moment (Figure 3.3) only
decreases slowly with decreasing draft to depth ratio, and the peaks for
the moment occur at widely different staggers for different clearances.
Also, the yaw moment at zero stagger is only zero when the draft to depth
ratio is unity, and for other ratios it is bow inwards.

Having considered the main features of the results, it is interesting
to view the results for sway force and yaw moment together, as if on
ship 1. While ship 1 leads ship 2 (negative stagger) the sway force

is such that the two ships are forced apart for staggers less than -%L,
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whereas the yaw moment is bow in. It is here that the main danger lies

in ship manoeuvres, because if the ships are allowed to swing around
because of these yaw moments their own engines will then drive them
together. The force on ship 1 rapidly changes to an attractive force at
zero stagger, with a small (or zero if d/h = 1) bow-inwards moment. The
yaw moment then rapidly becomes bow outwards, even though the sway force

is attractive. This is less hazardous, as the ship's propellors will tend
to drive ship 1 away from ship 2.

While this is happening to ship 1, the same events are occurring
in the opposite order to ship 2. So, even for two identical ships, the
interactions are quite complex and in a real situation are further
complicated by any steering or propulsion action taken by the ship's
master.

It is of interest to see how the relative sizes of the two vessels
influence the sway force and yaw moment. The numerical results for the
force and moment on two ships of greatly different sizes are shown in
Figures 3.4 to 3.7. Both ships have a parabolic water-plane, but the
small ship has its length, breadth and draft only half those of the large
ship. This means that, when the large ship is touching the bottom, the
small ship has a draft to depth ratio of 0.5. For comparison of the
coefficients of sway forcé and yaw moment on both ships, the non-
dimensionalization is done by using the dimension of the large ship.

The coefficient of sway force on the large ship is given in Figure
3.3, which shows the same qualities as the sway force for identical ships
given in Figure 3.2. The main difference is that the force is two orders
of magnitude smaller. The sway force on the small ship as shown in
Figure 3.5 is much less sensitive than the large ship to changes in
clearance.” The peak sway force is about one third that of the large

ship, and as the small ship has ome eighth the- volume of the large ship,
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and hence the smaller mass, it would experience the larger acceleration
as a result of the sway force. Also, the added mass for sideways motion
of the small ship is much less than that of the large ship, so this would
again give the small ship a greater acceleration than the bigger ship.

The coefficient of yaw moment for the large and small ships is given
in Figures 3.6 and 3.7 respectively. They show much the same properties as
in the case of identical ships, and again the small ship is less sensitive
to clearance changes. This is a result of the large clearance already
beneath the small ship, even when the large ship is already touching
the bottom. At a draft to depth ratio of unity, the large ship experiences
twice the yaw moment of the small ship, but when the draft to depth ratio
is decreased to 0.83 the two ships experience almost the same moment.

So, by similar arguments to those used for the sway force, the torque
induced by the sway force is larger on the small ship.

In section 3.5 the kernels for the system of integral equations for
flow over a uniform flat bottom with a vertical wall at y = -Y are given. To
see the effect of this wall on ship interactioms a numerical study was
undertaken of the effect a wall would have on the interaction of the two
identical ships discussed above. As zero clearance was shown to give a
reasonable qualitative result, the interaction was considered for a draft
to depth ratio of 1:1. The numerical results obtained are presented in
Figures 3.8 to 3.11.

An examination of Figures 3.8 and 3.9 shows that as the wall is moved
away from the two ships the sway force rapidly converges to the results
obtained with no wall. The presence of the wall increases the sway
force on the ships by up to a factor of 3 for the cases considered,
showing that the hazard when the two ships pass is significantly increased

by the wall.



The coefficient of yaw moment for the two ships is given in Figures
3.10 and 3.11. For ship 1, which is further away from the wall than
ship 2, the presence of the wall has a smaller effect than it does on
ship 2. The change in the yaw moment on ship 2 for Y = %L indicates
a particularly hazardous situation, because the yaw moment is nearly
always bow inwards, that is towards the other ship. Hence the wall
makes it more likely for ship 2 to turn towards the path of ship 1. The
yaw moment on ship 2 converges more slowly to the no-wall result than that

~

on ship 1, but by the;fimes Y =1L it is almost identical to the no-wall LE

case.

The results presented above for two ships near a wall are quite
important for experimenters. They show that when an experiment is
conducted, and the effects of the walls are not wanted, both ships must
always be at least one ship length away from the nearest boundary. This
may be difficult to achieve, as model experiments of this type are often
carried out in narrow channels with one of the models near to a bank.

The above results show some interesting properties of the interaction
of two ships, but they also highlight the need to study each interaction
situation as a separate case. Some additional results which have been
computed show that the sway force and yaw moment can also be quite
sensitive to the shape of each ship, and to the separation between the
paths of the ships.

The programs used to calculate the results presented in this section
had an execution time of 114 seconds each on a CYBER 173 computer. In
that time the sway force and yaw moment on both ships could be calculated
at different staggers so that one curve for the corresponding quantity

could be plotted in each of the Figures 3.4 to 3.7.
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3.2 Coefficient of sway force for identical ships in various depths.
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3.3 Coefficient of yaw moment for identical ships in various depths.
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Coefficient of sway force for larger of two different size ships.

58.



-0.751

uolydelly Lr? uois|nday

3.5 Coefficient of sway force for smaller of two different size ships.
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3.6 Coefficient of yaw moment for larger of two different size ships.
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3.7 Coefficient of yaw moment for smaller of two different size ships
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3.8 Coefficient of sway force for ship 1.
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3.9 Coefficient of sway force for ship, 2.
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3.11 Coefficient of sway force for ship 2.
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CHAPTER 4

A TWO-DIMENSIONAL MODEL FOR UNSTEADY INTERACTIONS

4.1 INTRODUCTION

A problem of interest in a number of different areas is the calculation
of interaction forces and moments acting on two or more bodies moving in an
unsteady manner. There are applications in both hydrodynamics and aero-
dynamics, although here the theory is developed with ship-ship interactions
in mind.

In Chapter 3 the steady interactions of two ships were considered. In
the present chapter, the unsteady situation of two or more ships moving
at different velocities along parallel paths in very shallow water is
discussed. A mathematical model for two-dimensional unsteady interactions
is set up and numerically solved. A two-dimensional theory is appropriate
for very shallow water as Tuck [22] has shown that flow past a vessel,
in shallow water, with a small underkeel clearance is nearly two-
dimensional.

A non-linear numerical technique for interactions between bodies in
arbitrary motion has been devised by Giesing [9]. His theory is for
two-dimensional potential flow and is used to examine the shape of
vortex wakes as well as the forces on the bodies. The theory developed
here is linearized, so no wake displacement occurs.

Another possible application of this type of theory is the aerodynamics
of the interactions between passing motor vehicles. This is a ground
effect problem to which much experimental effort has been devoted, and
a number of papers giving experimental results have been published.

Brown's [5] paper is on this topic, and [2] contains several other

relevant papers.



The theory described here is essentially that presented in King [14],
but a more general derivation, which can be used to allow for boundaries
in the fluid (such as a wall), is given. First a mathematical model is
set up for the two-dimensional motion of a group of thin bodies and
their respective wakes, in a fluid which is assumed to be incompressible
and inviscid. The Froude number is assumed to be sufficiently small,
so that free surface effects can be neglected by replacing the fluid surface
by a rigid wall. It is also assumed that the bodies are thin; that is
they have a small beam to length ratio, and that the lateral separation
between bodies is comparable with their lengths, and large compared to
their beams.

Following Tuck and Newman [25] in an extension of classical thin-
wing theory, the model is formulated as a system of coupled singular
integral equations which have non-unique solutions. The solution which
is feasible for a given problem is obtained by having zero circulation
around stationary bodies, and by using a Kutta condition on moving bodies.
A suitable condition for determining the rate of vortex shedding into the
wake of each body is also required.

A numerical procedure for finding a solution according to this theory
is developed, and the results obtained are compared with the experiments
of Oltmann [18] and the theory of Collatz [6]. The results show reasonable
agreement for the sway force with Oltmann's experiments and in this respect
seem to be an improvement on Collatz's theory. The calculated yaw moment
is not significantly better than that resulting from Collatz's theory.

A related mathematical model is used by Dand [7,8], with circulation
being ignored in his first paper (i.e. essentially Collatz's theory), and
only a crude first approximation to the effects of circulation being used
in the second paper. Dand's theory gives excessively large values for

forces and moments, when compared with experiments.



4.2 DERIVATION OF COVERNING SYSTEM OF INTEGRAL EQUATIONS

Consider the motion in two dimensions of N thin bodies, all moving
with (possibly) time-varying velocity parallel to the x-axis. It is
convenient to consider this problem in an absolute frame of reference
(that is, fluid at rest at infinity). Thus, for a velocity potential

d(x,y,t) and velocity q(x,y,t)

q = Vo, where ¢ >0 at <« . (4.2.1)

~ ~

The geometry of the jth body, when it is moving to the left, is

represented as in Figure 4.1. The body surfaces are given by
+
y=uy + f;(x,t), aj(t) < x < bj(t) (4.2.2)

with a plus sign for the upper surface and a minus sign for the lower
surface. The body segment Bj is represented by the interval

aj(t) < x < bj(t) and, for a body moving to the left, the wake segment
W, by interval E (t) < x <o , For body j the exact boundary

condition is

+ +
of Af
o . G, 3 i _ +
il e v P R T (4.2.3)

since the fluid cannot penetrate the body surface. For a thin body, this

can be linearized to give

_ g
¢y(x,yj10,t) =5 fj(x,t) , on B, . (4.2.4)

In order that the wake remains stationary after it has been shed, a
condition that there is no pressure jump across the wake is required,

namely

Ap = p(x,yj+0,t) - p(x,yj—O,t) =0, across W , (4.2.5)

08,
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4.1

Geometry of jth body.
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where p 1s the pressure. By linearizing the Bernoulli equation
3
p= - p§% (4.2.6)

is obtained, where p 1is density, so from (4.2.5)

Ap = - pA %% = 0, across the wake . (4.2.7)
Therefore
90 _
A FY 0, across the wake. (4.2.8)

Thus the jump in the potential
A = ¢(x,yj+0,t) - ¢(x,yj—0,t) (4.2.9)

is a function of position x only across the wake Wj . Hence the
strength of the wake does not vary with time.
The velocity potential ¢ satisfies the two-dimensional Laplace

Equation
¢ +¢ =20, (4.2.10)

with the possibility of some further conditions due to any restriction of
the x-y plane such as the presence of walls. In this formulation it
will be assumed that the paths of the bodies are parallel to any boundary.
As with conventional thin-wing theory, the lifting effects are modelled

by vortices of strength Yj(x,t) on Bj + Wj and the thickness effects
are modelled by sources of strength qj(x,t) on Bj . The vortex strength

Y}(x,t) on y =y, is given by

S =
Y, (x,t) = P Ad, across y =, (4.2.11)
0, ahead of %
={unknown on B, (4.2.12)
W
- Yj(X), on Wl

/1U.



Hence the disturbance velocity potential due to N bodies has the

representation

4

0oy, = 1{ | o Eoetyity, e
i=1
B
i

n (E,t)H(x,y;E,yj)dE} (4.2.13)
+W.i

+
5 ——

J

where G(x,y;E,n) is the velocity potential at (x,y) for a unit source
located at (&,n) and H(x,y;E,n) is the velocity potential at (x,y)
for a unit vortex at (&,n). Both these potentials must be chosen so

as to satisfy any restrictions on the two-dimensional fluid. I1f there
are any branches in the velocity potential for a unit vortex H, then
these branches must be chosen so that any discontinuities in the potential

function occur across a wake, so that the velocity potential satisfies

A %% = - Y?, across wj . (4.2.14)

The unit source potential G(x,y;&,n) is determined by solving

G, *6, = §(x-£)8(y-n) (4.2.15)

XX

together with any boundary conditions on the fluid, and will have the

asymptotic behaviour that as (x,y) = (g,n)

G(x,y;&,n) ~ 3117 logV/(x-£)2+(y-n)?% . (4.2.16)

The unit vortex potemtial H(x,y;E,n) is obtained by solving

oH oG

=~ ™ 5 (4.2.17)

which has the asymptotic behaviour

H(x,y;E,n) ~ é% arctan [i;g] as (x,y) »~ (g&,m). (4.2.18)



The velocity potential ¢ must also satisfy the body boundary

condition (4.2.4). so, if x € B, equations(4.2.4) and (4.2.13) give
d)y(x,yi 0,t) = %qi (x,t)

N
+ ) J q, (§,t)G (x,y 20;&,y. )dE
. ) Y 1 J
(tiy 3

i=1 j

N
+ ) J Yj(E,t)Hy(x,yiiO;g,yj)dE

+

fi(x,t) . i=1,...,N. (4.2.19)

9
at
Subtracting the plus and minus parts of equation (4.2.19) gives

qi(x,t) = g% {f:(x,t) - f;(x,t)} i=1,...,N. (4.2.20)

This is equivalent to the usual aerodynamic relation for the source
strength in terms of the slope of the thickness function, recélling that
such relations are normally expressed in a frame of reference which is
moving with the body. Thus the source strength is completely determined.

Adding the plus and minus parts gives the system of integral equations

N
z I Y. (E,t)H (X,Yi 0;8,y, )dE
=g i y i

i

= Fi'(x,t) + Gi'(x,t) + 1/ (x,8),

i=1,...,N (4.2.21)

: 3
where a prime denotes —=—- and where

ox
F'(x,t) = 2 {f+(x t) + £ (x t)1 (4.2.22)
it T e i T i .

5

G;(x,t) = - z ] q (£,t)G (x,y *0;&,y. )d§ (4.2.23)
. i y i i
(ifl)B
ji=1



and
N
W
H' (x,t) = - ) J v, () (x,y *0;&,y. )dE . (4.2.24)
= i y i i

W,

i
These three functions are all known once Y?(x) = Yj(x,t), x € wj is

W

known. To determine this last quantity Yj , some means of finding the
vorticity shed into the wake is required.
As the system of integral equations (4.2.21) does not possess a

unique solution, an additional condition for each body is required. For

body j Kelvin's circulation theorem must hold around the body Bj and

its wake wj ; So the circulation % (t) around body j must be zero,
that is
I (e) = J Y, (,£)dE = 0 . (4.2.25)
B, +W,

This is the only condition required on a body statiomary relative to the

fluid which has no wake, so equation (4.2.25) becomes

J L (E,t)dg = 0 . (4.2.26)
B,
i
For a moving body, Sears [20] has shown that the appropriate Kutta
condition on the trailing edge of a body is that the vorticity at the

trailing edge be equal to the vorticity in the wake immediately adjacent;

that is, for moving body j
Y, (b, (£),8) = ¥ (b (£)) . (4.2.27)

This is equivalent to the Kutta-Jowkowski condition, that the pressure
above and below the trailing edge must be equal. By using the above
conditions as required, the unique solution for a given problem may be

obtained.
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4.3 FORCES AND MOMENTS

The quantities which are of most interest in this problem are the
sway force and yaw moments on the bodies. ‘These are of principal
importance during ship manoeuvres, as they may cause some situations to
be hazardous.

The net y-directed force (sway) on body j 1is

Yi (t) = - I Ap dx (4.
B,
J
= -0 I %%? dx (4
B

by using equation (4.2.6). From equation (4.2.11)

X
Ap = - Y}(x,t)dx across y =y (4.

a (t)
)

and substituting into (4.3.2) gives

8 X
Yj(t) =-p J T J Yj(C,t)d§ dx. (4.
B, a, (v)

The net yaw moment about the centre of body j is

Nj(t) = - o} I Ap(x—(aj(t)+bj(t))/2)dx. (4.

B,
i

So using equations (4.2.6) and (4.3.3) gives

X

N, (t) = %p J (aj (t)+b]_ (£)-2x) —3%; J Y, (z,t)dg dx . (4.
B, a (t)
i i

The sway force is defined to be positive to the starboard and the yaw

moment positive for the bow turning to starboard.

.1)

.2)

.3)

4)

.5)

.6)
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4.4 NUMERICAL TECHNIQUES FOR SOLVING SYSTEM OF INTEGRAL EQUATIONS
IN UNSTEADY PROBLEM

A numerical technique which is an extension of that described in
Chapter 3 is developed. Here there is the additional difficulty of
having a trailing wake, and the necessity of including some kind of time-
stepping process.

The general form of the system of singular integral equations which
was derived for the unsteady problem in section 4.2 is

N
) J Y, (B,8)K (x,&sy, -y)dE=R/(x,8) + B (x,t)
e
7B,
i
i=1,...,N (4.4.1)
where Kx(x,i;n) is a kernel which has a logarithmic singularity at
x = & and R;(x,t) is the right-hand-side of the integral equation
except for the wake term H;(x,t). Both of the right-hand-side terms

are known at a given time ¢t

An indefinite integration with respect to x of equation (4.4.1)

yields
N
) J Y, (£,0)KR(x,&;y, -y )dE=R (x,£) + H (x,t) + C (t)
= i i
B,
i
i=1,...,N (4.4.2)
where Ci(t) is an arbitrary "constant" of integration. Integral

equations of the form of equation (4.4.1) with the singular behaviour

of K have non-unique solutions and this is asserted here by the

"constants" Ci(t), which are determined by the vortex shedding condition.
A numerical solution to equation (4.4.2) at time T can be found

if Ri(x,T) and Hi(x,T) are known. This suggests an iteration scheme

with a forward time-stepping process. To simplify the evaluation of any

terms involving the wake vorticity, it is useful to assume that constant

/1.



vorticity is shed into the wake during each time step. If the sequence

of time-steps used is t = O,tl,t

. and the position of the trailing

ERRR

edge of body j at these time-steps is p, then, if

j0° jl:sz,---

vorticity 'ﬁi is shed into the wake by body j at time point t s
. s . . . w

the vorticity of the wake in the interval (pjk+l,pjk) is v,

To find a numerical solution it is necessary to divide the body
segments Bj into intervals in which the vorticity may be represented by
step functions. At the ends of each body a square-root singularity may
be anticipated so % is divided into M intervals X 1(t) < x < xji(t)

with vorticity in(t), where

a. (t)+b, (t)
j j

im
X (t) = - Elaj(t)—bj(t)l cos T& + ——
i=0’1,---,M (4.4.3)

which provides the correct increase in density of points near the ends
necessary to counter the singularities.

The system of integral equations can now be written as

N M xjk(t)
DIy, J K(x,E35y, =y )dE
S ()
xj ket
=R (x,t) + H (x,t) + ¢ (1), i =1,...,N. (4.4.4)

The integral in equation (4.4.4) can usually be evaluated analytically
at any value of x . In particular at x = -jQ(t) where gjg(t) is
a point near the centre of the ch interval of body j at time t,
specifically

a,(t)+bj(t)

Ejg(t) = - %|ai(t)—bj(t)| cos [(2-%)m/M] + 5

2= 1,2,...,M. (4.4.5)

/0.



It is now convenient to introduce the kernel function
x(x,&5n) = J K(x,&;n)ag (4.4.6)
in terms of which equation (4.4.4) can be written as
N

M
.i':zl k=21 ij(t)[x(xig(tr)’xik(t);yi /R X(x g (8) 5% e 1 (8D, 7y )]

=R (% ,(t),t) + H (x ,(t),t) + ¢ (t), i =1,...,N. (4.4.7)
1 IQ 1 12 1
If T time steps have elapsed, from equations (4.2.24) and (4.4.6)

Hi(xiﬁ’tT)

N T-t
w - -
T j:zl k=Zo Vi IXGx g (B )y 5, R/ C T AR SRS e/ )]
(4.4.8)
By letting
A(t)(i-l)m+Q ,(i=1)mk = X(xiQ(t)’xjk(t);yi -y, )
- X(xiﬁ(t)’xj l(_l(t);yi -yj) (4.4.9)
equation (4.4.7) -can be written as
N M
_z 2 A(t)(i-l)nﬁﬂ (j-l)m&ijk(t)
i=1 k=1 »
=R (x ,(t),t) + H (x ,(t),t) + C (t)
1 IQ 1 12 1
i=1,...,N, = 1,...,M (4.4.10)
which is a system of NM simultaneous equations for ij(t), to be
solved at each time step. This can be expressed as the matrix equation

N
A(t)y(t) = gle) + ) e(”Cj (t) (4.4.11)

~

i=1
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where A(t) is a NM X NM matrix such that

A(t) = [Aij (v)] (4.4.12) .

and the NM vectors

<2
~~
rt
g

' R, (x,, (£),t) + H (x, (£),t)]

¥ (B R (%, (£),6) + H (X (£),0)

y(e) = |y, (&) , g(t) = |R (x, (£),t) + H (x, (£),t)

Y, (©) R (%, (8),8) + B (x (£),0)
Yo (E) R (5 (8),8) + H (o (£),6)
and
S
} (3-1)xM terms
0
1
g(j) = | . } M terms : (4.4.13)
: .
Q
} NM-jM terms
[0

The solution Y(t) 1is obtained by using standard matrix inversion
, , | : : 2
techniques with the N + 1 right-hand-sides g(t), e( ),2 =1,...,N and

can be written as

)

N
v =¥ + I o) Mo (4.4.14)
Y(e) =y . Y

=1

where

Y (o) = AT (Dg() (4.4.15)

-~



and

2 , 2
ey = a0, 2= 1,0, (4.4.16)

~

Thus by examination of the components of the vectors in (4.4.14), the

vorticity at ;jk(t) (i.e. "mid-point" of kth interval on body j) is

N
L
Y, () =¥, (6) + 1z Gy ) (E) . (4.4.17)

This is a numerical approximation to a corresponding representation of

the actual vortex strength Y}(x,t), namely

N
Y, (x,8) = Y;") (x,t) + cg(t)ylfg’(x,t), j=1,...,N.  (4.4.18)
£ =1 '

The preceding numerical technique allows a numerical approximation
to the general solution of the .N singular integral equations to be
calculated, with CQ(t), 2 =1,...,N as arbitrary "constants'", which
are determined at each time step by imposing a Kutta condition on the
trailing edge of each body which is moving relative to the fluid, or a
zero circulation condition on a stationary body.

For unsteady interaction manoceuvres the appropriate conditions to
determine CQ(t), 2 =1,...,N are given by equation (4.2.27) for a
moving body and (4.2.26) for a stationary body. Thus for equation
(4.2.26) it is necessary to obtain an estimate of the vorticity at the
trailing edge of a moving body as the vorticity is only calculated at
approximately the centre of each interval on the body. A satisfactory
method is to use one of the expected properties of the solution to the
singular integral equations as x - bj(t) on body j . Namely, any
solution of equation (4.4.1) must have the property that as x +'bj(t)

on body j
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D, (t)
e .
Y (x,t) ~» /Bj— st 5 (t) + 0(;/’5], (t)-x) (4.4.19)
for some 'constants" D, (t) and Ej(t). In contrast to the steady case

(see Chapters 2 and 3) the expression above contains a constant term.
This is because a non-zero vortex strength is expected at the trailing
edge whereas bodies in steady flow have zero vorticity at the trailing edge,
as they cannot shed vorfices into the flow.
By fitting this function to the vorticity on the last two intervals
€] )

Y. and Y

, 9 2
X on body j the "constants" D =D (t) and E = E (t)
i i(me1) - i j

may be determined for each body j and each value of 2 (& =0,1,...,N).
The vorticity at the trailing edge must be finite, so the sum over 2
of the inverse square-root terms must be zero, that is

N

Q .
D (£) + ] ¢ (£)p (1) =0, (4.4.20)
£=1 .
for each moving body j . For a stationary body j equation (4.2.26)
may be written as
M ’
k=21 Y, () G ()% (£)) =0 (4.4.21)

which upon substitution of equation (4.4.17) becomes

M N
L
kzil(yfi’(t) ) ¢ (7)) ()G (D)=x  (£) = 0. (4.4.22)

Equations (4.4.20) and (4.4.22) may now be combined as required by the
type of interaction occurring to form a matrix equation which may be
solved to determine Cg(t), £=1,...,N.

Once the CQ(t)'s are known the vorticity on all intervals of each
body at time t may be determined by using equation (4.4.17). This may
then be used to determine the sway force and yaw moment on each body.

To do this a finite difference scheme in time is used to approximate the



time derivative so that at time ¢t from equation (4.3.4) the sway

force is
0 M [ k
Yj(tT) T L kzl 'gl ij(tT?(in(tT)_xii-l(tT))
K
- 1 ij(tTu1)(xji'(tT_l)—xji_l(tTnl))} , (h.h.23)

Similarly the yaw moment at time to is
L 5 ‘
= - %k — - -x
N, () 50 L (g (£ )+b, (£ 0=, (£1))

Bl k=1

k
O T e N R CICCR LTINS

= 1 ¥,(t )(xji(tTul)—xji-l(tT-l))} : (4.4.24)

Thus the sway force and yaw moment may be calculated. As a result of the
treatment of the wake and the time scheme used, the two formulae above
actually calculate an approximation to the mean of the sway force and
yaw moment for the time interval [t tT] . So, when graphing the

force and moment it would be more accurate to plot the value at time

3(t +tT) which was actually calculated at t

Te 1 T

4.5 RESULTS FOR UNBOUNDED TWO-DIMENSIONAL FLOW

The results which will be presented in this chapter are those for
unbounded two-dimensional flow, although the numerical technique developed
in the preceding discussion can be used for some restricted flows. For

unbounded flow the kernel

i
KJ = E%r' log‘/(yi —Yj )2+(X—E}2 (4'5'1)

and L' (x) is given by (3.4.4).
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Only results for the case ﬁ = 2 (that is, for interactions between
two bodies) will be considered. Although the formulation was for N
bodies, results for N > 2 would either be inaccurate, or involve the
inversion of very large matrices with a consequent increase in the time
and computer memory space required. The numerical method has been tested
for convergence by varying both the number of mesh points on each body
and the size of each time step, for interactions involving two bodies
travelling in the same direction. The convergence was found to be
satisfactory for the results presented in this thesis, if 30 mesh points
were taken on each body, and if the time-steps were such that a change
in the stagger of about one twentieth of the length of the larger body
occurred in each time-step.

The numerical technique described in 4.4 was coded in FORTRAN and
run on the University of Adelaide's C.D.C. 6400. A typical run of the
program, allowing sufficient wake to build up before the ships came
close together,had an execution time of 990 seconds. The execution
time is large as at each time-step a new matrix had to be calculated and
inverted.

An interaction situation for which some experimental results exist,
and for which the above model is valid, is that for a moving body passing
a stationary body. The non-dimensional sway force and yaw moment
coefficients which will be used for this type of interaction are

Y. (t)
B ]

CYj(t) =-p—U-2—B— (4.5.2)

and
N (t)
C MRS /S
N; (1)  pUZBL/2

respectively, where U 1is the velocity of the moving body, B 1is the half
breadth and L 1is the length of the bodies. The sway force Yj(t) and

yaw moment Nj(t) are calculated by using (4.4.23) and (4.4.24).
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Oltmann [18] has obtained experimental results for two elliptic-
sectioned cylinders with beam/length = 0.125, with one body stationary and
the other moving at constant speed. In Figures 4.2 and 4.3 the measure-
ments of Oltmann's experiments are compared with values computed using the
foregoing formulation of the net sway force for a separation n between
the paths of the bodies of 0.625(%L). Oltmann's results are somewhat
dependent on the velocity of the moving body, whereas, from the preceding
formulation, it can be seen that the non-dimensional force and moment
results are independent of Froude number, being the zero Froude number
limits. Oltmann's experiments were conducted in the presence of a free
surface, so the wave pattern of the moving body may have affected his
results. In the "tiefgetaucht" case, the measurements were taken deeper
in the fluid than in the '"flachgetaucht'", so the "tiefgetaucht' results
would be expected to be less affected by free-surface effects.

The computed results in Figures 4.2 and 4.3 seem to glve reasonable
quantitative agreement with the experiments. There is good qualitative
agreement with the peak attraction force in the "tiefgetaucht'" case at
Froude number F = 0.144 and 0.217. In Figure 4.2 the peak attraction
force on the moving body is much larger than the peak repulsion force,
so that for ships in passing manoeuvres the moving ship will tend to be
attracted more than it is repelled, thus giving rise to the danger of a
collision. In fact the moving body is experiencing a large attraction
force for a range of stagger S of over half a body length.

In a previous study on this topic by Collatz [6], in which no
circulation was allowed about the bodies, and no Kutta condition applied
on the trailing edge, a force which is symmetric with respect to stagger
was obtained. The results in Figure 4.2 of the present theory are quite
different to those of Collatz and do not show particularly symmetric

behaviour. In this respect the present theory is more satisfactory as it
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could be expected that the wake would introduce some asymmetry. The
steady results of Chapter 3 are also asymmetric, of course.

.In Figure 4.3, for the stationary body, there is a close correspondencel
between Collatz's results and the present computed results, both giving

good agreement with Oltmann's experiments. This is not too surprising,

as Collatz's zero-circulation assumption is the condition applied to the
stationary body (4.2.26).

Consider now the graphs of the yaw moment, Figures 4.4 and 4.5, and
compare them with Oltmann's experimental results. It can be seen that
the moments are of the correct magnitude, although the shapes of the
curves are very different. Collatz's theory fails to give better agreement
for the moving body, although it gives good results for the statiomary
body. The present computed results for the stationary body are of a
similar shape to Collatz's, but are smaller in magnitude. The danger
of a collision is highlighted by Figure 4.4, which shows the peak inward
moment occurring at the same time as the peak attraction force, so the
bodies are not only being sucked together but their bows are both turning
inward, as well.

Figures 4.6 and 4.7 show the variation in the sway force as the length
ratio (lk/Lm) of the two bodies is varied, at a separation of 0.625 L,
with the two bodies having the same breadth (breadth/L = 0.125). Figures
4.8 and 4.9 show the peak attraction and repulsion forces corresponding
to the results in Figures 4.6 and 4.7.

For the moving body it can be seen that the effect of varying the
length ratio gives two different kinds of responses, depending upon which
body is the larger. When the stationary body is the larger (that is,

Ls/Lm > 1), increasing the length ratio does not significantly change
the value of the peak attraction and repulsion forces, but increases

the length of stagger over which a large attraction force is acting on
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the moving body. When the moving body is the longer and the length

ratio decreases, the shape of the curve does not change greatly but the
magnitude of the attractive force decreases rapidly. Figure 4.8 shows
that the peak repulsion force varies slowly as the length ratio increases.
It appears that there is a limiting value to the peak force. Thus, it
may be worthwhile to investigate this further, as in situations when a
ship passes a stationary ship, island or sandbank the force and moment

on the moving vessel are of importance.

For the stationary body (Figures 4.7 and 4.8), increasing the length
ratio leads to an increase in the peak values of both the attraction and
repulsion sway force. The peak attraction occurs further away from
zero stagger as the length ratio increases.

As the separation of the two bodies depends on the length of the
moving body, for a larger moving body (that is, small length ratio) the
separation is greater, so the force would be expected to decrease, and
this can be seen in Figure 4.8. For the stationary body, Figure 4.9
shows that the peak sway force increases as the length ratio increases
(that is, bodies closer together or stationary body larger), and there
is no behaviour analogous to that seen for the moving body. In general
it appears that for a body passing a smaller stationmary body the force
on the stationary body is greater than that on the moving body. This
is important for berthed ships or ships moored to buoys as they will
experience the greater force, not the ship moving past them.

The variation in peak force om two ellipses of equal size (one
stationary, the other moving) for different values of the separation of
the paths of the ellipses is shown in Figure 4.10. The force increases
as the separation decreases, as would be expected.

Although these recsults are interesting and useful as a qualitative

‘guideline, for practical applications with underkeel clearance, they
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should be viewed with caution, since the clearance is important in
altering the magnitude of forces and moments, as shown for steady

interactions in Chapter 3.
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CHAPTER 5

UNSTEADY SHIP INTERACTIONS INCLUDING BOTTOM CLEARANCE EFFECTS

5.1 INTRODUCTION

The preceding chapters have shown the need for an unsteady shallow-
water ship interaction theory which includes the effects of underkeel
clearance. Yeung [29] has considered this problem and formulated 1t
be using results from slender-body theory. He finds solutions to
particular cases by using the Cauchy Inversion technique.

King [15] obtains the same governing system of integral equations
as Yeung, by using the results of Tuck [23] used in earlier chapters.
The system of integral equations is solved numerically by the technique
described in 4.4, and the results compared with those of Yeung and the
experiments of Remery [19]. The material contained in this chapter
is a fuller version of that in King [15].

A theory for the unsteady problem of a ship approaching a wall at
an angle in shallow water, which could be considered as an extension to
the above theories, has been developed by Hess [11]. This has the
added complexity that the kermels in the integral equation are dependent

on the distance from the wall, which is now a time dependent quantity.

5.2 MATHEMATICAL FORMULATION

The geometry of the ships and wake used here is the same as that
of Chapter 4, except that the ships are moving over a bottom of depth
h(y). The geometry of the jth ship is given in Figure 5.1.

Using the notation of Chapter 3, from Tuck [23] for unsteady flow

the thickness boundary condition on ship j is



5.1

Geometry of

th

ship and its wake.
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A¢y = q ()A %’(x,t) at 'y =y, (5.2.1)

and the camber boundary condition on ship j is

- -, _ 1 B

¢y -U % (x,t) = ZhjCj Ap at y = v, (5.2.2)
where

Ag, = ¢y(x,yj HOp E)] = d>y(x,yj -0,t), (5.2.3)

Ap = ¢(x,y, +0,£) ~ ¢(x,y,-0,t) (5.2.4)

and hj = h(y}). The wake condition (4.2.8) still applies, so the
strength of the vortices in the wake does not vary with time.

The disturbance velocity potential due to N ships and their wakes,
is given by (4.2.13) with the kernels H and G defined as in section
2.3. Substituting (4.2.13) into the thickness boundary conditién (5.2.1)

gives the source strength on ship j as
q (x,£) = U, (¢) 5/ (x) /b, . (5.2.5)

The camber boundary condition (5.2.2) yields a system of singular integral

equations to determine the vortex strength, namely

N
Z J[ YJ (E’t)Hy(x,yi ;E_»le)dg-'- 2h é (X) '{ Yi (x!t)u(x_g)dg
=1 i i

B

W B,
] ) i
N
=UE(x) - } J q, (£,8) [5G (x,y, +0;&,5; )
i=1
%
+ %G&(x,yi-O;E,yi)]dE i=1,...,N (5.2.6)
where u(x) is the Heariside step function. This system of integral

equations can be written as

ij

S, . u(x-g)l dE
r ) T T T A (oY
Y (u,,t){Hy(x’Yi 38,33 ) h, ¢ (x) )

o~ 2

1

W ——

i .
= Fi'(x,t) + Gi'(x,t) + Hi'(x,t) i=1,...,N (5.2.7)
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where Gij is the Kronecker delta function and F, G and H are given
by (4.2.22) to (4.2.24). It is still necessary to have a Kutta condition
on the trailing edge of a moving ship (4.2.27) and a zero circulation
condition on a stationary ship (4.2.26). The system of integral
equations (5.2.7) is of the same form as (4.4.1) and can be solved
numerically for the vorticity, by following the procedure described in

section 4.4.

5.3 SWAY FORCE AND YAW MOMENT

To obtain a formula for the sway force and yaw moment on a given
ship, the methods of section 2.8 and 4.3 are combined. The sway force

on ship j at time t is given by

Yj(t) = = JJ p dx dz
surface
ship j
= - p J dx I ¢t dz (5.3.1)
B, C. (x)
j j

using (4.2.6) and where Cj(x) is the cross section curve of ship jJ
at station x . Replacing ¢x by ¢t in (2.8.3) and using the path

of integration shown in Figure 2.1 it can be shown that

= - 9y
J ¢t dz J ¢t o dL
C, (x) S,
- - JA¢
=-h S5 . (5.3.2)
Substituting this into (5.3.1) gives
_ 949
Yj(t) + phj J 5t dx (5.3.3)



which by using (4.2.11) can be expressed as

3 X
Y, (t) = ph J T J Y, (g,t)dg dx . (5.3.4)

i
B a, (t)
j j

Similarly the yaw moment on ship j at time ¢t can be found as

_ 3 [*
N, () = %phj J (aj (t)+bj (t)-2x) EY J Y, (g,t)dE dx. (5.3.5)

B. a, (t)
i j

5.4 RESULTS

To test the above formulation and suggested numerical technique,
aumerical results were obtained and compared with the experimental results
of Remery [19]. The blockage coefficient is calculated using the formula
derived by Taylor [21]. To simplify the calculation, the blockage
coefficient is assumed to be constant along the whole ship. The term
involving the blockage coefficient in (5.2.7) may then be evaluated
analytically.

The experiments of Remery [19] which are used for comparison consist
of a model of a moored 100 MDWT vessel being passed by a 30 MDWT vessel.
The depth of water for all experiments was equivalent to a full scale
depth of 18 metres over a flat bottom. So the appropriate form of the
kernel K?i in the numerical analysis of section 4.4 is given by (3.4.3).

Figures 5.2 and 5.3 show the results obtained for the passing

manoeuvre with a separation of 61.4 metres between the parallel paths.

The graphs show that satisfactory agreement is obtained with the experiments

but that the magnitude of both the sway force and yaw moment on the
stationary ship are slightly underestimated.  When compared with the
far field results of Yeung [26] the graphs are also quite similar, showing

that the far field results are a good approximation even for close
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interactions. Although both theoretical computations underestimate

the force and moment, Beck [4] found a similar phenomenon for a ship in

a canal, and found that when the forces for the interactions between the
source distributions were added, a correction was obtained which gave better
agreement.

Figures 5.4 and 5.5 show the results obtained when the separation is
96.4 metres, and again it can be seen that both the magnitude of the sway
force and the yaw moment are underestimated. When comparing the two
different experiments it is significant that the fo%ce and moment decrease
quite rapidly as the separation increases.

The computer execution time for the computation necessary for Figures
5.2 and 5.3 was 553 seconds on a C.D.C. CYBER 173. The decrease in
time when compared with that used in Chapter 4 is a result of the greater
speed of the CYBER 173 compared to the 6400.

For the limited number of available comparisons with experiments, it
was found that the present formulation and numerical technique produce
satisfactory results. As the qualitative agreement is good the approach
described here should be useful for giving predictions for ship inter-—
actions which are difficult to model by experiment. Many different
simulations can be carried out by this method, such as investigating the
effect of varying the depth of the water, which can cause large changes

in the force and moment.
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Passing

Vessel

Symbol Unit Moored
Vessel
Deadweight MDWT 1000 ton 100
Length L m 257
Beam B m 36.8
Draught d m 15.7

TABLE 5.1 Relevant Dimensions of Ships

30
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26.1
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CHAPTER 6

CONCLUSION

This dissertation provides the formulation and a numerical solution
technique for the computation of the lateral forces and moments occurring
during ship interactions in shallow water. Although this is a valuable
tool for studying hazardous ship manoeuvres, it is limited by the computer
time required and the parallel path restriction. Also only the sway
force and yaw moments are calculated, whereas the other forces and
moments occurring, namely, squat, thrust, trim and pitch, can also be
important. Squat is usually the most important of these for ships
operating with a small underkeel clearance, as the increase in squat
experienced by a ship, when another ship or obstacle is close by, may
be sufficient to ground the ship.

A method for obtaining a power series approximation for the vorticity
on a ship by extending the method described in Kida and Miyai [13] seems
to hold some promise for steady two-dimensional interactioms. Such a
solution could be useful in decreasing the computational time of the
problem. Unfortunately when both thickness and camber effects are
included only the lower order coefficients of the series may be readily
evaluated. An algorithm for finding coefficients of any order can be
readily derived, but in practice a computer package capable of performing

symbolic algebraic manipulation appears to be necessary.
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