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SUMMARY

Both the non-central Wishart and non-central means
with known covariance distributions can be written as the
appropriate central distribution multiplied by a factor
which in each case involves a oF, hypergeometric (or
Bessel) function of matrix argument (JAMES [3]). The
results of this thesis constitute an assault on the problem
of evaluating the Bessel functions via asymptotic expansions
or exact series for arbitrary argument matricess

In the first part of this thesis matrix transforma-
tions and group integrations are usced on the integral
representations for the Bessel functions to reduce them to
a form suitable for the application of a method of approx-
imation due to G.A. ANDERSON [1]. Asymptotic expansions
are derived and these are shown to be valid for large values
of the latent roots of the argument matrix or matrices.

For the non-central means with known covariance distribu-
tion the expansion is used to compute maximum marginal
likelihood estimates. for the non-centrality parameters and
to establish a modified Chi~square test on the number of
non-zero non-centiralities.

For the Bessel function of one argument matrix I
use a differential equation to derive an approximation
asymptotic in the number of degrees of freedom. The
result is applied to the likelihood factor of the non-central

Wisharte.



In the latter part of this thesis I consider methods
for the direct evaluation of the Bessel functions in terms of
series of 2zonal polynomials and Laguerre polynomials
(CONSTANTINE [2]).

By using the Laplace transform for matrix variables I
prove some generalisations of classical summation formulae
involving the Laguerre polynomial. A summation formula for
the determination of the coefficients (ﬁ) (ax s CONSTANTINE
[2]) is proved, as well as other identities involving them.
These coefficients are then tabulated for the values k=5,6.
Incidentally an algorithm for calculating the gﬁu, involved
in expressing a product of two zonal polynomials in terms of
zonal polynomials, is developed.

JAMES [L4] has shown that the zonal polynomials can be
expressed in terms of the monomial symmetric functions, where
the coefficients are easily determined recursively. i
calculate these for the direct evaluation of the Bessel
functions in zonal polynomial expansions. By summing the
first few terms of the series it is possible to study con-
vergence for various argument matrices.

The final section is devoted to making numerical
comparisons of all the methods and giving some idea of their
ranges of usefulness,

In appendices I give details of the computer programs
used as well as considering problems such as the generation

and storage of partitions and the indexing of arrays. .
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CHAPTER 1
INTRODUCTION

11 General

The topic is multivariate normal analysis based on
the multivariate normal distribution. Let the mxn matrix
variate X, with m < n, be distributed as

X =k :
dF (X;M,3) = (27) "2 et 3 znetr{—%Z'i(X-M)(X-M)’IIHdeli

(1.1)
where E[X] = My, X = (XgeeeXioeeXp) s, Xy = (XJI) mx1 and
That is, the columns of X form n
independent samples with x; from N(m;,3), where
M= (Myeeeemp) e
In 1961 JAMES [20] has given the non-central Wishart

distribution, which is the distribution of
XX, c1e2)

and the non-central means with known covariance matrix

distribution, that is the distribution of the latent roots

det(XX'-w2) = O.

The central distribution of XX’(i.e. M=0) was given by

WISHART [34] as
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where

To(a) = a®(®-» T r(a - 3(1-1))

and T(a) is the ordinary Gamma func tione For the latent
roots Wwy,Woj,eseeWy, the central joint distribution was given

by FISHER [11], HSU [13] and ROY [31] as

(1.6)

Now if (1.1) is written as

then both non-central distributions can be written as a like-
lihood factor multiplied by the appropriate central distribu-

tione That is, the non-central distribution of XX’ is

c, etr(-3=-1MM’) ! etr(M!2-1xH) (aH) x(1e4) (1.8)
(n)
where (dH) stands for the invariant Haar measure on the

group 0(n) of nxn orthogonal matrices H and

vor(o(n)) = [ (a) = 2 (149)
(n)

making c; = [Vol(o(n)) ]! to give the integral of (1.8)

the value unity for M=0. The process of integration over

o(n) is called averaging (see JAMES [16],[17])e One



S

further integration gives the non-central distribution of

czetr(-4=- MM’ ) Z (aH,) ! (de)etr((E_%M)'Hi(E-%X)Hz)x(1.6)
(m) (n) (1.10)

with the normalising constant c; = [Vol(0(n))Vol(o(m))]-*.

In [20], JAMES also showed how to expand both
integrals in series of zonal polynomials. These polynom-
ials ZK(S), where S 1is an mxm symmetric matrix, are
homogeneous symmetric polynomials in the latent roots of S

corresponding to the partitions
(1971}
of the integer Xk 1into not more than m partse. A most

important property is their average over the orthogonal

group 0(m), given by

by

where I, 1is the mxm 1identity matrix and
{113}
with

(a)x = )

=

1(a—%(i-1))ki (2)n = al(a+1)e.o(a+n-1) . (1.14)

Full definitions, proofs etc. can be found in JAMES [18],
[19],[20] and CONSTANTINE [7].
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det(MM! - a2) =0 (1420)

then (1.10) becomes

(4 w27

The oF4 1is called the Bessel function of matrix
argument and is a generalisation of the familiar univariate

function defined by

oF,(a3x) = = - (1.22)
n=0

This function appears in the non-central x=. If variates
Xy are independent N(0,1) then the distribution of
X2 = (X1 + V)2 + X2® +eeet X% is (setting w = x2)

1

14

i LR
e"ZYF, (3nstam) —r——— 72V 2T gy, (1.23)

220 (1n)
Both (1+19) and (1.21) reduce to (1.23) if m=1 but (1.21),
or the distribution of the non-central means with known
covariance, is considered to be the generalisation of the

non-central xZ2.

1¢2 Historical

The first results on the non-central Wishart distrib-
ution were obtained in 1944 by T.W. ANDERSON and GIRSHICK [3]-
They stated the general problem in the form of a multiple
integral and gave the solution for the rank of M < 2.
Both results are expressed in terms of the Bessel functions
Subsequently in 1947 ANDERSON [2], by transform-

ing the general multiple integral, managed to perform
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some of the required integrations and produced an integral
representation that appeared to be a matrix analogue of the
Poisson integral representation of the Bessel function. The
distribution for rank 3 was obtained in 1953 by WEIBULL [33]
and in 1955, prior to the zonal expansions, JAMES [16],[17]
gave a power series expansion for the general distribution.

The first definite mention of the non-central means
with Xnown covariance distribution was in 1961 when JAMES
[20] gave the general distribution. It has subsequently
been studied in JAMES [21], [22] where it was shown to be
the limiting distribution for the general non-central means
distribution with finite error degrees of freedom and for
the canonical correlations distribution both of which were
derived by CONSTANTINE [7]e.

For convenience these two limiting vprocesses will be
outlined here. If X is such that the mxm matrix XX’
has the non-central Wishart distribution on s degrees of
freedom with non-centrality parameters O (defined by
(1.20)) and Y 1is such that YY’ has the central Wishart
distribution on t degrees of freedom, the covariance
matrix in each case being X, then the distribution of the
latent roots TIjescerp, oOf the matrix R = XX/ (XX/+YY’/)-1

is given by


















































































































CHAPTER _
STATISTICAL APPLICATIONS

3«1 Introduction

In this Chapter we consider an alternative deriva-
tion of the asymptotic representation for the Bessel funct-
ion of two argument matrices using a parameterisation of
the Stiefel manifold given by JAMES [23]. The parameter—
isation is similar to that used for ©*(m) in Chapter 2,
but the substitution can be made without integrating out all
implicit variables.
In section 2 the leading (asymptotic) term is
derived for the case considered in Chapter 2 i.e. both
argument matrices are of full rank, while in section 4 the
technique is extended to derive the asymptotic term when one
of the matrices is not of full rank.
Two statistical problems are dealt with:
17¢ In section 3 the non-centrality parameters are estimated
by maximum likelihood.

2¢ In section 5 a likelihood ratio test for the rank of the
matrix of means M 1is derived and its sampling distrib-
ution is considered.

The final section ties the results of section 5 to
the work of BARTLETT [L], [5] and LAWLEY [26] in deriving

multivariate tests of hypothesis.
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3.2 The Stiefel manifold

We use as our starting point (2.9) of Chapter 2 i.e.

where k3 = [Vol(0(m))Vol(Voy)] t.

If H3 € Vn, is partitioned as H} = [H3' H3?]
the integrand of (3.1) becomes etr(AH;BH3'). It is
necessary to determine where the maximum of this function
occurs.

Since H3! is the top left hand corner of an
orthogonal matrix, its elements must satisfy the inequal-

ities (He = (kyy) 1,3 = 1,000m)

i,j = 1,2,000“1.

It is easily seen that the maximum of etr(AB) is attained

at the matrices

giving HE the form [H3! O0]. There are 2% equal maxima.

It is also clear that we again have the second
maximum of etr(A*B) but in the following derivations it is
ignored.

Since there is an equal contribution from each of the
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22 neighbourhoods of the equal maxima we write (3.1) as
oP{™) (fn;#a,W) = QmKs[(dﬂi) (dig)etr(AH,BHE). (3.2)
N(I) w([I 0])
Again N(I) contains only matrices in 0*(m) so
H, can be parameterised. Also JAMES [23] has given a

parameterisation of the Stiefel manifold. Thus we can

where ©S,T,, are mxm skew matrices and T, 1is an
mx (n-m) rectangular matrix.
If we let Hy, = (hy3), 8 = (813)s T = (t;3) with

t13 =0, 1 and Jj > m, then writing out the elements

hyy =1 = %Jgis?d + o(s®) I R |
hyy = Sy j + o(s) 55 = 1 el i £ 3
s = 1 -%éim + o(t?) i=1y00em
Kyy = tyy + o(t) 1o = Tpenens 2 A2 Js

From the integrand of (3.2), neglecting terms of

degree greater than 2,

(3.3)
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where

For the Jacobian of the transformation

m m
stand for A dsgy, A dtyy
1< 1<y

m n
and A A dt; 3y respectively.
1=1 J=m+1

Substitute (3.3) and (3.4) in the integrand of (3.2).
Since the integrand tends to zero as |811|s |t11| tend to
oy, We can change the range of integration to -« < S1j < oo

-0 < t1y < o to obtain the leading term of the asymptotic

seriese

Hence for large values of A and B

=00

00
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To summarise we substitute (3.5) in (3.2) to obtain

T etr(AB) T
11;[ Ciy deet(AB)EG—m)
]

oFS™) (4n;40,W) ~ K

where

This result is the same as the dominant asymptotic
term of (2.61). The method of this chapter is much simpler
for determining the leading term but it appears to be much
more difficult to extend in order to obtain further terms of

the seriese

3¢3 Maximum marginal likelihood estimation

The likelihood factor for the non-central means
with known covariance distribution is
etr(-302)oF{™ (4n;40,W).
We are interested in finding maximum likelihood estimates
for awy,e.seay from the marginal distribution of W;yeceWpe
Using the asymptotic results, the likelihood

function can be factorised as

where
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1
. etr(-1Q)etr(aw)?

Lo

-+(n-m) —ih
det Q 3 Igj(wl'wj) .

G 1is the asymptotic series (2.47) and K is a function not
involving Wi seeelhe

We begin by finding an estimate @; for w; wusing
L, only and improve it by using L;Lg. The function G 1is
shown to have negligible effect for large enough values of
the wie. The me thod of estimation is also due to ANDERSON
[1].

Taking (3.8)
Differentiating and equating to zero gives

and the approximate maximum likelihood estimate

Now we consider the effect that the function L,
has on this estimate. First expand the terms of £z=1n Lg
in a Taylor series about the points &;. From (3.9)

m
Lg = = n-m) S 1n wy = » = In(w;=w;)e
2 #( )1=1 Sl 8 (wy-wy)

Taking the terms separately, with

In wy = 1n oy + ln<1 + QQ‘-)
@y

f,(cﬁi) + 92);1' 4+ oo
wy
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= 4eoee 3

Combining these results with (3.8) gives

_lz 20 -éw"i'coo’f'

2 ~
=1 ]

where © 1is the sum of the functions f; amd gg3; and is

independent of (Wigeselly Oy yesedaye

Differentiating
1 .
3 w2 n-
i 1t et I I R
Wy tn 2 3 I£L 5 3
1 Wy W = Wy

Equating to zero and substituting w; for &,

—+...>’1.

Squaring and expanding binomially,

A = w BBt} ~ S
Cl)l = Wy (n m) 21%1 W}"WJ + e o (3.11)

At this point it would appear that this estimate
could be improved by including the effect of G. By
considering a numerical example I will show that for large
values of w;,wy and for small n the contribution of G
is negligible, but not so the correction made by including
Lo

Suppose from a normal sample with m=3, n=10 sample

latent roots of w,;=100, wgy=6lL4, wWz=36 were obtained.
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Using (3.11) the estimates for the w; are easily calculated.
The exact log likelihood function was approximated
by £;+L.+g where g = 1ln G¥ and G¥ 1is the series (2.47)
truncated after four terms. An iterative method was used
to locate the function maximum and its coordinates.

Comparing the two sets of results.

iterative (3.11) relative

error (%)
Wy 8320 8L4.32 1¢35
We 56.2L 55.98 0.46
s 33652 32670 ZRI

A1l relative errors fall within reasonable boundse.

At these values £ = 72.92, £, = 99.47, &5 = -26.10
while g = -0.L5. Small changes in the w; have much
greater effect on the values of {£,,£2 than on g.

Estimation from the marginal distribution is stated
by JAMES [22] to lead to unbiassed estimates. He illust-
rates this by showing that marginal likelihood estimates for
the latent roots of the covariance matrix are unbiassed.

In order to show the estimates (3.11) are unbiassed esti-

mates of the w; it would be necessary to determine E[w;].

3.4 One argument matrix not of full rank

Using the parameterisation for the Stiefel manifold
it is possible to easily derive the leading term of tle

asymptotic expansion of the Bessel function when one of the
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argument matrices is not of full rank but all non-zero
latent roots are large. In the statistical applications
this corresponds to 1, the matrix of non-centrality para-
meters, not being of full ranke. One application is consid-
ered in the next section.

From sections 2.3,2.4 the integrand of (2.6) can be

reduced to etr(AH,BHi!) so the equation can be written as

n

oF{™@An;+a,W) = k z (aH, ) ,ﬁ (aHy) etr(AH,BH!) (3.12)
(m) (n)

where %k, = [Vol(0(m))Vol(o(n))]-t.

Let the matrix A (and hence = A®) have rank

0| x
0 m=k

As before we can integrate out over subsets of the

k < m, That is

orthogonal manifold and since A 1is of lower rank here, the
remaining domains of integration are Stiefel manifolds of

lower dimension. Partition the matrices H, and Hi! as

X
= ) S | Hil = ]:Ki Kz_lm :
H? |m-k —

m k m-k

The exponent of the integrand of (3.12) becomes

[ 3]s w )



Now +tr(A;H}BK') contains only elements

H} € Vpx and of K where

1
K = K 2 (S Vnk.
K#* |n-m

k
We can integrate out over HZ for fixed

over HE for fixed K Dby the formulae

where

_ Vol(o(m o. = Yol(o(n
C1 = VOlZmGg 2 = Vol(vnkg ¥
The equation (3.12) becomes

oFgm)(%n;%ﬂ,W)

mG Vnk

where

Let k+gq = m and partition B into

53

of

Hi

and

kg / (an}) f (aK) etr(A,HIBK?) (30
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where B,,B; are both diagonal matrices. Then

matrices
H = [I* O]
k aq
where
*1 T
I# = T :

Thus (3.14) becomes approximately

Now Hf and K can be parameterised by

[Hi] < S14 Siz:D
i I AN b

2 < Tii T12 >
K HQ_ = €Xp "T:,Lz 0

where S;,, T;4 are kxk skew matrices and S,, kxq and

Hy

]

He

1
1

T,. kx(n-k) are rectangular matrices. With the obvious

definitions for S,T and their elements,
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m
hli =1 —%28?1 + seoe i = 1,oo.k
J=1
hlj = Sij-i'ooo i=1,oo'k, j=1,...m
n 5 .
k11=1"'1é’2t11+.00 l=1,-uok
i=1
klj = tid + ecoe i=1,oo-m, j=1,oook.

For the infegrand of (3.15), neglecting terms of

degree greater than 2,

1 - 3 2 2
aibi—glz JZ {aiblslj+a1b1t1J+2a1bjs”t”}
£ =1 =1

I
M

This expression can be summarised in the notation of quad-
ratic forms as before to facilitate using the standard
integral (A.1.5). Let s8y3 and Qi3 be as defined in

section 2 and

#* % . 1 B -
Since det Qyy = a?(b?—b?) > 0, Qyy 1s positive definite.
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Then

For the Jacobian of the transformation

K
stand for A dsjjy,
1<

k m k k n
A AN ds dat AN N dt respectively.
1=2. F=kiwa ot !/}j 13 1=13J=k+1 13 P ¥

Again the method is to substitute (3.16) and (3.17)

in the integral of (3.15) and change the range of integration

to -w < s13, t;1j < o to obtain the asymptotic representa-

tione.

(dﬂi)/ (dK) etr(A,HIBK?)

N([10]) N([é])

k m 00 1 P
x I 1 / /éXP(‘EE{jQijEIJ)qglj
f=1 j=k+1
=co

k n .
X I II /QU exp(—%aibiti j)dtij
{=1 J=m+1

=00
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exal £ n, Yom) B6051) (o) 83 o)

= K
II c
1<) 13 1

ol

K 1 K 1 ) .
I [af (b7-b§) )% 1T (aiby) 2P
=1 +1 1=1

an

j:
Finally the substitution of (3.718) in (3.15) gives

oF:™ (4n;20,W) ~

where

For k=m this agrees with (3.6).

3¢5 A BARTLETT-LAWLEY type test of rank

The aim is to develop a likelihood ratio test on
the rank of the matrix of means M. This is also a test
on the number of non-zero non-centrality parameters w.
The equivalence of the two follows from
LEMMA 3.1

rank (M) = number of non-zero wis

Proof

Since the covariance matrix 2 1is positive definite

rank (M) = rank (MM/) = rank (2-%MM’2-%)

- ]
where 3 2 1is the positive definite square root of 2%,
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i) i

The matrix = 2MM’2® 2 is symmetric and hence its rank is
equal to the number of non-zero latent roots. The matrix
Z"*MM’ has the same latent rootse. R.E.De

First we consider the likelihood ratio test of the
hypothesis Hp: M =0

against

On the alternate hypothesis the likelihood function is

and the test statistic is

Now

=2 1In N=tr W =w, +eaet+ Wy
and putting X = (X;..eX,) where x; an mx1 column
vector

n
tr W= tr °IXX/ = 2 x{ 2%,

On Hp each term has a %® distribution on m degrees of

freedom so tr W has a x®

distribution on mn degrees of
freedom.
A more general hypothesis is now considered. We
wish to test Ho ¢ M has rank k < m
against H; ¢ M arbitrary.
By LEMMA 3.1 this is equivalent to the test of
Ho 2 Wksq = oo = =0

against Hy; ¢ all w; > O.
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We now derive the test statistic and consider its

asymptotic distribution. The test statistic used is
A==21n N= Wg,.q +ooet Wy

and rather than interrupt the argument at this point, the

long but straightforward derivation is given in Appendix 2.

The derivation is a modification of one given by
RAO [30]. There he is considering what he calls a test of
dimensionality on the matrix of means.

It is interesting that the criterion A 1is deriv-
able, as most BARTLETT-LAWLEY type test statistics for test-
ing these intermediate hypotheses, such as the test that a
subset of the latent roots of the covariance matrix are
equal, are merely a contraction of the statistic derived
for the overall test, such as the sphericity test.

Now by asymptotic theory A is distributed as %
where degrees of freedom = number of parameters in H,

- number of parameters in Hg.
The null hypothesis states that M has rank k. This
means that k row vectors of M are linearly independent
and the remaining m-k rows are unknown linear combinations
of these. Thus H, involves kn + k(m-k) parameters.
Clearly H, involves mn. Hence there are (m-k)(n-k)
degrees of freedom for x2.

Summarising
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THEOREM 3.1
To test Ho : M has rank k <m against H, ¢ M

arbitrary, use the statistic

On Ho A ~ %% where 4 = (m=k)(n-k).

In the spirit of LAWLEY [26] we can improve our
approximation by finding a multiplier ¢ such that cA 1is
more nearly x§. A new approach to this problem is given
in JAMES [23]. It involves the determination of the
conditional distribution of the last q sample roots given
the first ko

Now using the asymptotic result (3.19) the joint
distribution is given by the
THEOREM 3.2

The asymptotic distribution of the latent roots
WyseeaWk, Wk,q9eeeWy depending on the non-centrality
parameters ay seeelx 1S

il
f(Wi...Wk,Wk_,_i..on;wi,..owk) 1/_\1dW1
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where

As in [23] there are two very useful corollaries.
COROLLARY 1

The first k sample roots are asymptotically suff-
icient for the population roots (wjsyeeetye
COROLLARY 2

The conditional distribution of the last roots

Wkiqss00eWp, given the first k, is

k m 3.
= const. 1l I (wy-wy)?2
1=1 J=k+1

s n 4(n-k-g-1) ;
exp(-2 = w 0 w2 I Wy =W A dwy .
Xp< 2J=k+1 1>1=k+1 b k<i<Jsm( ! 3)1=k+1 !

(3.25)

and this does not depend on the population parameters

The last line of (3.25) is essentially the null
distribution of Wk,41,eeeWy oOn n-k degrees of freedom.
One degree is lost for each variable conditioned one. The

test of rank can now be made using this conditional distrib-

utione
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If k were zero, then the distribution of the likeli-

hood ratio statistic A would be derived from the distribu-

tion in the second line of (3.25), The result is
Xd = &

where
d=qno

In testing the last g roots when k £ 0, as a
first approximation one could ignore the factor involving
Wi,.eeWx 1if these were large. In this case (3.26) would
be correct as a first approximation but in (3.27) n 1is
replaced by (n-k) and we have

d = q(n—k) .
(Of course (3.27) could be written gq(n-k) as k=0 in that
case.)

By considering the factor involving W,;,...Wx Wwe
obtain the refinement of the form cA, Wwhich is more nearly

x%+ Expanding the product, with Wx >> Wg,;1seeeWp

K k
=(1-43L 4 oI\ 1 w22,
214V W/ /t=1
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Using (3.29) the distribution (3.25) is approximated

as
1k1 1qu . .
fx = const.<1-§AE s o(ﬁ>> Iw; °*.null distribution

(3.30)

where the null distribution is given by

Define the following notation for expectation.
By = expectation with respect to the null distribution (3.31)

expectation with respect to the modified distribution

(3.30).
To a first approximation, by (3.26) and (3.28)
Eo[A] = d@ = a(n-k) (3.32a)
Eo [A%]= a(a+2). (3.32b)

To find the constant of (3.30) we have
Eo [ tof 1-2AF = AN 1t w %q]
(o) CONnsTe 2 W1 + O w gar] 1
k 1 1 k i
conste( 1-4d4% = + of=)) I w;22
< 4 Wy <w>>1=1 !

and the modified distribution takes the form

1 = E1[1]

1

o null distribution.

The improved multiplier <c¢ comes from
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Thus.to order w1 we have

1 + g-i- = %4
1=1Wy

and the results of this section are summarised as
THEOREM 3,3

The statistic

is an improved statistic and is asymptotically distributed

as xﬁ.

3.6 Connections with MANOVA and canonical correlations

This problem of rank, or number of non-zero non-
centralities, is now shown to be allied to the general
MANOVA situation. The results (3.21), (3.22), (3.23),
(3.26), (3.27) and (3.28) of the previous section can all be

derived as limiting cases.
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Let Xmxn, Ymxt ©be sample matrices on n,t degrees
of freedom respectively with the columns all normally and
independently distributed with common covariance matrix .
Also E[X] = M, E[Y] = O.
Thus the likelihood ratio statistic to test Hp:M=0

against H; ¢ M arbitrary is

1
B det YY! §(n+t) m | l(n+t)
A "[ ot (XXT+YYT) = I (1-ry)®

where the 1ry are the latent roots of
det[XX! - r(XX‘+YY’)] = O.

Asymptotically

The test was proposed by BARTLETT [5] and by considering the
expectation of -2 1In AN he derived an improved approxima-
tione. Allowing for the notational changes n - n+t, g - m,
P » n, this has the form

—[t - +(m-n+1)] 2 1n(1-T1) ~ XEne

BARTLETT [4], [5] also proposed that in order to

test that M has rank k, the statistic to use is
(3.41)
which is asymptotically x?® on q(n~k) degrees of freedom.

In [26], LAWLEY considers a further adjustment term.

Let the f; Dbe solutions of
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If the f,; estimate population parameters B;® then the
approximation is (1 = ry = (1 + £7)°1)

K
[t - $(g-n+1) + E'éL] % In(1+fy) ~ %3
{=1 i =k

J +1

where d = (m-k)(n-k).

Now it was shown in section 1.2 that the non-central
means with known covariance distribution can be obtained as
a limit from the general non-central means distribution with

the substitutions

Wy = 1r_trl i.c. ry = ——WJ'—'

and then letting t - «e Take the right hand side of

(3.37), substitute for r; and let t - o to give

m
T2 eXP(‘%lgiwl) = etr(-zW)

which is the result (3.21).

Similarly substitution for r; in (3.39) and (3.40)
and letting t - o gives (3.22) while the 1limiting process
applied to (3.41) yields (3.23). Under this limiting pro-
cess the asymptotic distribution of -2 log A is still a 2
on the appropriate number of degrees of freedom, thus yield-
ing (3.26), (3.27) and (3.28).

Also if we substitute tfy = w; then as t -
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(3.42) becomes det(XX! - w2) =0 and (3.43) becomes

k m
4 - g=n+l s 111 I
[ 5t T ] nx:

t
4 1+ N
1=12W4 k+1( T )

which is precisely (3.36).

One final link is with the canonical correlations
distribution. As was shown in section 1.2 the general
canonical correlations distribution tends to the non-central
means with known covariance distribution under the substitu-
tions wy = try®, wy = tp1® and taking the limit as t - ocoe

To test the hypothesis px.q = eee = pp =0
BARTLETT [L4] proposed the statistic (n - t, p-m, @ - n,

s - k)
x? = =[t = #(menet)Jlog 1 (1-7,%)

where x? has (m-k)(n-k) degrees of freedom. The
multiplier was modified by LAWLEY [26] to give an improved
approximatione. Quoting equation (8) (n > t, p » my, @ » n)
this improved multiplier takes the form

K
t =k = 3(m+n+1) + = —1g .
1=17y

Substituting this in (3.44), putting r;?® = t"*w; and

letting t - o gives (3.36).
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CHAPTER

UNCTION OF ONE ARGUMENT

L.1 Introduction

Here we apply the reduction process of Chapter 2
to the Bessel function oF,;(2n; +XX’) and obtain an
asymptotic expansion valida Tor those X such that XI' has
large latent rootse. The result is easier to obtain than
(2.58) amd is made even easier by borrowing freely the
results of Chapter 2.

ANDERSON'S integral, in the case m=k, is derived
as a stage in the process and in section 7 we see how (2.11)
can be obtained by averaging (Lel).

Statistically the Bessel function of one argument
matrix appears as part of the likelihood factor of the non-
central Wishart distribution.

Direct substitution for H in (u.1) again leads
to obviously wrong results so some preliminary integrations
are in order before setting H = exp(S).

4«2 ANDERSON'S integral

Directly from JAMES [21] comes the integral

oF; (in; #XX') = k, [etr(XHi)(dH)
(n)

and using (2.9), with H; € Vnnm
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oFs (3n; £XX') = ke l‘etr(XHi)(dHi) (4.2)
nm
where k, = [Vol(0(n))] %, ko = [Vol(Vnp)] ' and

H=[H, Hz] € 0(n).

Again this can be shown to be a function of the
latent roots of XX’ only. Diagonalise X by the trans-
formation of LEMMA 2.1« Set X = D[A O]JE with D e o(m),

E e 0(n), A = diag(ay) and the a;® are the latent roots of
det(XX’ - a®I) = 0 with af >...> a2 > 0. Substituting in
the integrand of (4.2) gives

etr(XH,) = etr([A O]EH,D)
and it is clear that EH,D € VUppe Change variables to
K, = EH,D and since E,D are constant matrices (dK,)=(dH,).

Hence (L.2) becomes
oFs (n; #xX') = kl etr([A 0JK,)(aK,).
nm
Applying the Stiefel manifold transformation of
HERZ,

.
where T is an mxm real matrix with T'T < I, U € Vyop,n

and there is now the added restriction of n > 2m. For the

1(pn-2m-
measures (dK,) = de1:(I-T’T)2(n e 1)(dT)(dU) and for the
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integrand of (4.3)

So (L+3) becomes, on integrating (dU) over V,_p g

oF, (An3#XX!) = kg I etr(aT)det(I-1/T)2(B=2m=1) (47} (1.
TI

<I

where

Equation (L.4) is ANDERSON'S integral for the case when the
matrix X mxn 1is of rank me For m=1 this reduces to the
POISSON integral (1.30).

The integration over T'T < I must be reduced to
one over O(m)e Let T =HS where He 0(m) and S an
mxm symmetric positive definite matrix. From (2.14)

(aT) = (dH)ng(dde)(dS) (445)

where dj,..sdy; are the latent roots of S, and (Lel4)

becomes .
oFy (dn; #XX') = kg i (an) f (dS)etr(AHS)
(m) SXI
x det(I-g2)2(n-2m=1)

I (dy+dj)e
1, (ar+d;)

The three steps of the classical approximation are

now applied. Transform U = I-S, U has latent roots
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uy = 1=d; and (4.6) becomes

oF1(3n; #XX') = k, | (dH)etr(AH)

(m)
l - -—
/(dU)etP(-AHU)[det u(1-4u) ]2 (n-2m 1)1H (1 _ u,;u1>
UKI <3
(4«7D)
1— o ||| a=e
with k. = 22m(n n 2)kg. Expand binomially to obtain the

series (2.17). Apply THEOREM 2.1 term by term to (L.7b)
with the series substituted and the range of integration
extended to U > 0O, since the latent roots of A are
assumed large. This gives, with R=AH, R™1=H/A~?
oF41($n; #XX’) 2~ ks det a~2(n-m)

letr(AH)ﬁ r 3 A (1)) (an)

m
with d, as in (2.20) and

L.3 Finding the maxima

Now (L4.8) can be split into integrals over the dis-
joint subsets 0*(m) and 0'(m). Making use of the device

H* = JH of Chapter 2, we get

z f(H;A) (dH) = é f(H;A) (aH) + l f(H;A*) (dH)
(m) *(m) *(m)
where f stands for the integrand of (L4.8) amd

A:k = diag(ai...am_l ’-am)o
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To rind the stationary points of tr(AH) over

o*(m) we have, taking differentials aml equating to zero,

d tr(AH) = tr(AH(H’dH)) = O. (4.10)
Using LEMMA 2.2, (L4.10) implies that AH is symmetric.
Thus AH = H'A, or element by element ajhyy = hyjay. For
2= g

j = 2,oo.m.

Since the rows and columns of H are normalised

m
h, + = ¥y B .
j=2
By assumption aj; < a;, J = 2,...m and the above are contra-

dictory unless hy; = 0, J = 2,...Me

J = 2ye0ele Thus we can write

where H; € o(m-1), and by repeating the argument on H,,

=4

Hence for tr(AH) the maximum is tr(A) at H =1

and for tr(A*H) the maximum is tr(A*) at H = I.

Unlike the Bessel function of two argument matrices,
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we have a unique maximum for tr(AH) over H e 0*(m) and a
unique maximum for tr(A*®H) similarly, rather than the 20
equal maxima over each subset as before. However we argue
as before that for large values of A and A% the integrands
on the right hand side of (L.9) are large only in the neigh-
bourhood of the maximum of +tr(AH) and tr(A%*H) respective-

ly. Thus (4.9) approximates to

Z f(H;A) (aH) = z £(H;A) (dH) + [ f(H;A%) (dH) . (Le18)
(m) (1) (1)

L.44 Approximating the integral

We concentrate on

g(a) = 1[ £(H;4) (aH) (14.13)
(1)
but the same procedures may be applied to g(A%).
Now N(I) contains only H e 0*(m) so apply the
parameterisation H = exp(S) where S is an mxm skew

symmetric matrix.

S?J + O(SE) i = 1,.o|m
2

=
l
. -—
!
rol=
It B

S 4 + of(s) iZ e
Also N(I) - N(S=0) and (aH) = J(S)igjdsij where

J(S) is given by (2.37).
Substituting for H in f(H;A) = etr(AH) (1+F(H;A)).
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First

tr(AH) =

Thus

g(A)

(L4e15)

For large values of a; the major contribution to
the integral (4.15) comes from integrating over values of
syj near the origin so the range of integration can be
extended from N(S=0) to U [s;ji-w < Sy < w}s Further-

1<
more let A% = diag(aj?) = diag(ey), R = (Plj) and

with the a;{* the elementary symmetric functions of the
latent roots of R~1%,

Firstly

and secondly a,*% 1is easily found, while since P1 3=03hyy
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Substituting in F(H;A) gives ¢(S;A) and it is

easily seen that all terms derived from (L.15) are evaluable

/wexp(— ds®)ds = EZW:I
/w Fexp(-Ltds®)ds = [ ]

=00

using

r‘=1’2,000

and the integral of an odd power of s gives zero.
Substitution and integration of all terms from (L4.15)

gives

g(4)

and stopping at terms of second degree in é%

+ Tha(a-3) (2-5) (aem) (n-mr2)3 21p

1

2t T%§(n~3)(n—m)(m-2)1§ k§1 ax (ay+aj)

, {m=2)

(5m=11) 3 5m?-23m+38
2.6! 1%5'(ai+aj)2 th 6! 1<1 i<k(ai+317(41+a£7
j<k
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Using HSU'S LEMMA we can show that (L4.18) is an
asymptotic expansion for the integral (4.13) for large
values of A.

THEOREM 4.1
Let A = diag(ay) be mxm with a,;58>ese>37>0.

Then for A large and g(A) defined as in (4.13)

g(4) ~ KQWQ%m(m-i)eErﬁA) .
I (aj+ay)?
1<§

Proof

The proof follows the lines of that for THEOREM 2.3.

Set A = a,X, xy = ajta;, etr(AH) = [etr(XH)]?* etce..Q.BeDe
Again it is easy to show that
g(A#*) = O0(exp(-2a,)g(4))

indicating the relative unimportance of the second term.

L6 Summary
From (4.8) and (L4.13)

10 s dxx! -%(n-m) N
OFi(En;LXX ) =~ ks det A [g(A) + g(a#)].

The results may be summarised in the
THEOREM 4«2

Let the matrix XX’ have latent roots af. Then
for large values of the af the Bessel function has the

asymptotic representation
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)
(ax-lfaj)et;’ii AZ(n -m) G(A) (4e22)

0F1(2n,4 ) =

2*’“(20 m- 5)1\ (ln)

where G(A) is given by (L4.19) amd k = T _Fnarn)

Setting m=1 this reduces to

w22 e (1) (03) | (1) (ae1) (03) (no5),
oFi(%n:%xz)"f T(n—‘l)\ 8x 128x* >
which agrees with the first few terms of (1.31).

Again numerical evaluations are left for Chapter 8.

Le«7 The averaged ANDERSON'S Integral.
The integral (2.11) can be deduced directly from

(u.u) by averaging over the orthogonal group. Take the
left hand side of (2.11)

o™ ($n3247,8%) = o Z oFs ($n;#A7HB?H') (aH) (4e23)
(m)
where ¢, = [Vol(0(m))]-%*. The argument A®HB2?H’ has the
same latent roots as BH/A(BH’A)’ so (L4«23) becomes
oF{™) (4n;£A%,B2) = oy é oF; ($n;#BHA(BH'A) ) (aH)
(m)

= 02! Z etr(BH'AR)det(I—R’R)%(n—zm_1)(dR)(dH)
9 p(n) RirsT

Tp ($m) Ty (£
where cg = n () Ty (1) . Making the substitution

M (4 (n-m))

T!=R and using the fact that tr(XY) = tr(X‘Y’) with

X = BH'A,Y=T' gives (2.11)+
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CHAPTER 5
THE P.D.E. ASYMPTOTIC FORMULA FOR F,

5«1 Introduction

The result of Chapter 4 for the Bessel function of
one matrix argument was given in terms of inverse powers of
the latent roots and was asymptotic on these becoming large.
In this Chapter we consider an asymptotic expansion for
oF; (#n;R) (R mxm symmetric) where the series is given in
powers of n-! on the condition that the matrix R depends
on n.

The asymptotic expansion is derived using a system
of partial differential equations given by MUIRHEAD [27].

The system is a generalisation of that given by JAMES [17]
for oF,;(2m;R) and many of the results used in section 2 are
taken from that paper.

Finally the expansion is related to the yF, appear-
ing in the likelihood factor of the non-central Wishart
distribution.

5.2 Using the differential eguations

Let R be an mxm complex symmetric matrix with
latent roots Ry;,RzseeeRpe Then from MUIRHEAD [27]

THEOREM 5.1

The function oF,(3nj;R) is the unique solution of

each of the m differential equations



i = 1,8 el
subject to the conditions that

(a) F is symmetric in R,,;Rp,eseRy, and

(b) F is analytic about R=0 and F(0)=1.

In statistical applications the matrix R 1is
restricted to being positive semi-definite. That is all
Ri B2 Oy & = 1,2%% s However for the expansion an even
more restrictive condition is needed. Let R have the
form

for each n,
where S 1is a fixed mxm symmetric matrix.

Thus we can determine the behaviour of (I, as n-oo.

LEMMA 5.1
lim oF, ($n;R) = etr(2S)
N—oo

Proof

Expand oF4 1in a zonal series and take limitse
Since the series is absolutely convergent, the order of the

operations of summation and taking limits can be reversed.

Thus, substituting R=nS

lim OF:L (%H;R) =

00
Now Ck(nS) = n*C,(S) and taking limits the individual

terms reduce to C,(2S)/k!. Summation of these terms gives
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the required resulte Q.E.Ds
First we obtain a system of PDE's in the latent

roots S,,5z5,e¢¢3; of S Make the transformation (5.2).

_ ) s OF _ 1 9F 3°F 1 gRF._
Then Ry = nS; and differentiating T C R aSj’ng-‘EE g§§5

The system (5.1) becomes
I =i “h52ym el
Now using (5.3), for large values of n the function
oF; can be factorised in the form
F = etr(28)G

and we get PDE's for G. Differentiating partially in (5.5)

oG

oF'
B, < etr(2S) s 2 etr(28)G

°F  _ ode; oG
B, etr(2S) §§Tg4-u etr(2S) Bt L etr(2s)G.

Substituting in (5.4) and cancelling an etr(2S) gives the

i = V52 pes alils (5.6)
By the condition (a) on the solution of (5.1), F is
a symmetric function. Also etr(28) is a symmetric functione
Hence from (5.5) G 1is also a symmetric functione. This
suggests that we try a series expansion in elementary sym-

metric functi onse That is, & saolution of the form
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where the P,(a) are polynomials in the elementary symmetric

JAMES [17] has shown how to transform from a PDE in
the variables to a PDE in the elementary symme tric functions
of them. Let a4(!) for j =1,2,...m-1 denote the jth
elementary symmetric function of the variables S,...5

omitting Sj. Introducing the dummy variables

ag = ao(i) = 1

aj = O j = -1,-2,oooand m+1,m+2,ono
1)

aS = 0 j = -1,-2,...and m,m+1,o-.-

we have the relationship

1
ay = 84 agii + ag ’

~0 < J < o
i = 1,2,...m.

The partial derivative farmulae are

Cip _©
1av—1 da,

YL

v

On substituting for the partial derivatives and

applying (5.8), (5.6) gives

1= 1,2,..-m.
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To proceed we need the following

LEMMA 5.2 ([17] p 371)

If 5,y525¢+¢8; are indeterminates and a,;,383¢.48
(1) (1)
1 1

the elementary symmetric functions of them, and a eeelp-
the elementary symmetric functions of Sj;e..S; with S,
omitted and if %o(a),%l(a),...%m_i(a) are functions of

aie.eap such that

then No(a) =0, M(2) = Oceeern-4(a) = Oo

Using the LEHMA 5.2 each of the m PDE's in (5.9) can
be expanded into a system of m PDE's. Each member of
(5.9) will give the same system of derived PDE's. Equating

the coefficients of agfi to zero for j = 1,2,e.em We have

V%“=ic£3)(si...sm)sgf%%: + 3(n+1-3) %%;
+ 4 % ay
v=1
J=1;20nt (5.10)
where 053) = 053) and for U <V
aysv-j 1< < u
cﬁg) = 0 U< jsvy J = 1,850 el
=3y+v-} V< Js U+ vy
0 U+ v < j

Written more explicitly, the system of differential

equations (5.10) is



. . 2a e N
a, ag ---: m aaiz **** da,0ap
aog R ° e
tr { . . B
{ . 0 0%G feide 2
an L dap 04, oap
L. &G mo_ 3G
+ 30 G 4 uvgiav £ + L4a, G =0
1
j =2 (af!?)
{"_10 sibd 1 | }
O 32 a3oo am
. 2T e
=T uf oa, 0ay
[ ] L] O
L 0O ap =
oG oG
Ll o - - —
+ g\n 1) aag )4 aai L’-G'
For the general PDE (agii
0 0 -1 -
"'1 "'al
o O
0 -1 -aj-
t A
r { -1 -a4 -8j.3 —8j.2
83 8j41 o o, %n
{ 0 By+1 .
s [
[L B ’
+ 3(ne1-3) L L. -0

aaj - L*aaj-i

/’I\
I
N g
\ Moo U T N a N Y)

83.

(5.11a)

(5.11b)

92G
oay 08,

(5.11¢)

j = 3.oomo
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Substitute for G in (5.11) using (5.7) and equate
coefficients of powers of n~?1,.
Term independent of n(u=0).

5 _ s %il(;_;_(_&l_)+ua1 -0 (5.12a)
a4

c,
1}
N
nj=
[eV] V]
e
N L
Il

i (5.12b)

cy
v
N
LY
nj-
[eV] [}
3|3
Cb
1}

0. (5.12¢)

Hence P,(a) is a function of a, and a, alone
and must have the form
(5.13)
Condition (b) on (5.1) is needed here to provide a unique sol-
ution to the equations (5.12). If S=0, then  F,(%in;nsS) = 1
and hence G=1. Thus P,(0)=0 and cy=0. Substituting

(5413) in the equations (5.12a) and (5.12b) gives the solu-

tion
Next the coefficient of n~%.
j=1: 1 %%f-: 8a, + 32a,% - 32a, - 32ajap + 16a,3
j=2 3 %Eg = =4 - 32a, + 32a, - 16a,%
5 = 3 %%:32 j> 3 %:0.

Solving the system under condition (b)

By considering successively the coefficients of
n"?,n"%,.... the polynomials

The number of terms per polynomial increases sharply with u
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Integrating

+ similar terms.

Combining all m results

It is easily seen that

re + 2 % SISJ
1<)

rs? =7, + 23 28,2
1<3

and substitution in (5.20) gives the answer in power sums as

For general u, the m equations have the form

) 2
O +1 = 28, 0°Qy 2 (m_1)_9972. - 83, oy - 851Qu

0S4 0S;% aS, Sy
0Qy 0y
_z 51 55, ~ 51 %@,
- 81 - Sy
J#i
i = %, qvieiila (5.22)

5«4 The two methods, a comparison
From JAMES [21] comes a table of zonal polynomials in

terms of power sums and elementary symme tric functions. By

equating the two
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Substitution in P; and P; shows that

but Q, and Qz only involve half as many terms as P, and
Po. From this it is inferred that in general Q, will
contain less terms than P, but one can be converted into
the other if necessary.

The method of Section 3 is more direct as no change
of variables is required in the PDE(5.6) before substituting

On the negative side the main disadvantages appear

to be the evaluation of the term

and the combination of m results like (5.19) into the
polynomial (5.20) where the method is one of trial and error.
The solution of (5.22) introduces functi ons that are not

power sums or even elementary symme tric functions e.ge

For the first method the main problem is to write
down the system of equations for each Py. The general
equation (5.10) is not as simple as (5.22) because the
coefficients cﬁi’ depend on the equation, but the solving

is trivial since we need only work in terms of elementary

symmetric functions.



88
The main asset of the first method is that it would
be quite simple to write a computer programme to evaluate
the polynomials Py(a) recursively. For the second method,
the term (5.24) seems to need human intervention to handle.
Also there is this problem of mixed terms and their convers-

ion to power sums.

5.5 Statistical applications

The non-central Wishart distribution involves the
Bessel function oF,(3n;#2 *MM/2"1XX’) where n is the
number of degrees of freedom of the sample matrix ZXmxn,
E[X] = M and the columns of X are normally and independ-
ently distributed with common covariance matrix 2.

Let XX’ = nS, then E[S] =2 + MM/ and S is
clearly bounded in probability as n - . For n 1large S
can be treated as a constant matrix. Thus XX’ can be
considered as a function of n alone for n sufficiently
large, satisfying the condition of LEMMA 5.1.

The Bessel function can be written as

Approximating for n
large gives
oF4 (n;nT) = etr(2T)G(n;T)

where G can be expanded as in (5.7) or (5.16).

This approximation would be particularly applic-
able to power function calcula tions. There we are dealing

with small deviations from the central distribution. In
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particular, it should be most useful for situations involving
only one non-zero latent root or perhaps more generally a
small number of them non-zero.

The approximation could also be used to evaluate

the likelihood func tion of the non-central Wishart distribu-

tion, viz.,

Its usefulness would be limited to that part of the range
for which the latent roots of nT are small or the sample
size would need to be largee.

No numerical calculations were done to determine
the region of application of the approximation. This would

be an extensive study in itself.
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CHAPTER 6
THE LAGUERRE POLYNOMIAL LZ(S)

6.1 Introduction

All previous asymptotic expansions are only valid
for large n or for argument matrices with large latent
rootse. For small values the zonal series converges reapidly
enough. The problem is that for '"medium" values the asympt-
otic expansions do not work and.the convergence of the =zonal
series is too slow.

The aim of this Chapter is to work with the zonal
series for the yF, functions and by rearrangement of series
obtain more rapid convergence. The series will be rearrang—
ed in terms of the generalised Laguerre polynomials introduc-
ed by HERZ [12] and CONSTANTINE [8]. Two such rearrange-
ments will be demonstrated. Both are applicable to the one
and two argument Bessel.

A similar Laguerre type expansion exists for the 1F;.
This is involved in the non-central moments of the generalis-
ed vseriance and the likelihood ratio statistice. The expans-
ion is included for reasons of completeness only.

The numerical work is left to Chapter 8. All
matrices referred to in the following sections are m=xme.

6.2 The classical results

Let us first review the classical formulae for func-

tions of a single variable. Referring to Chapter 10,
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Section 12 of ERDELYI ET AL [9] we see that the Laguerre

polynomials <£53(x) are defined as

= Dy1g2, cens (6+1)
a> =1

The identities to be generalised are

Eo ﬁ%ﬂ' 2 = (x2)7% 25, [2(x2)*] (6.2)
and
noéonm%;i%ﬁg(y) z" = (1-z)8-1 expl:- _124-)_&'%1: oF, (a+1 ;T%SE).

Both can be proved by applying the Laplace transform
g(w) = gme'vwvaf(v)dv.

Apply to 2z in (6.2) and y in (6.3) and in both cases
they reduce to the main generating function for Laguerre

polynomials i.€.

As is well known (and easily verified) the functions

J and ,I'y are related by

A different normalisation is used in [8] so that for m=1

the generalised Laguerre polynomial reduces to a multiple of

(6+1) ieee
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Li(x) = ol 23(x).
Using (6.6) amd (6.7) the identities (6.2), (6.3)
and (6.5) can be written in a form suitable for generalisa-

tion (I'(n+a+1) = I'(a+1)(a+1),)

(6+8)
- = (1-z)-a-t exp[_ %L%L'om(a”;_(%?)
2] <1 (6.9)
2 LR(x) n . —a %2
o o = [z exp[z_1_ 2] < 1. (6.10)

6.3 The matrix generalisations

The following definitions and THEOREM 6.1 are taken
from [8]. Let S be a positive definite symmetric matrix,
p = 3(m+1), a > =1 and « a partition of k, then the
generalised Laguerre polynomial Lﬁ(s) has the definition

(corresponding to (6.1))

(6611)

The "binomial" coefficients <§> are defined by

- 1 (6412)

In Chapter 7 specific methods for calculating the <K> to
any order will be considered.

Now the analogue of (6.10).
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the right hand side becomes

=  Tp(at+p)det(W-I)-2-P RpS™ (s, (I-W)-1),
Since I-W = (W1-I)W, both sides are equal. Q.E.D.

- Now the generalisation of (6.9).

THEOREM 643

For S > 0, 2> 0, a> -1

Lg (S)Lg(2) Lk
Kk (a+D)k!Cx(I)

- t
= (1=-t) m(a+P)etp(- 7:{(S+Z))0F§m)(a+p;zq§%758,z) (6+20)
(£ = 83 7 = By 5 = &) ‘tl s

Proof

Apply (6.16) to both sides. The left hand side

becomes

= Tp (a+p) [det W(I-t(I-W-1))]-2-P

(6.123)
[ etr [SH t(I-W-1) (t(I-w-*)-I)~*H](4aH)
(m)
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The right hand side becomes

(1-t)'m(a+p)etr<- —3-S> ) CK(TT%ETE'S

1-t k ,Kk (a+p),¢k!Cx(I

£ etr(=Z2(W + T%E I))det 223C,(2)(az)
>

= -t)-m(a+p) —LS
(6.17)(1 t) e 1-t )

E—
k,K (3+P5x k!ux(TT
Ty (a+p,kc)det(W + 7§EI)‘°'PCK((W + T§€I)'i)

= Tp(a+p) det[(1-t)W+tI]-2-P
etr(- ~£—S)etr s SH! (W + “E—I)'iH](dH)
Tt T1-t)° 1~1 .
(m)
The exponent in the integral reduces to
T%ESH’[-I+((1-t)W+tI)‘1]H.
Comparing the two sides for the terms in det we have

W(I-t(I-w1)) = (1-t)W+tI. Finally we must show that

Taking the right hand side gives
T%E(w-t(w-l))-i[I-(1-t)w-tI]

QoEoDo

6.4 The non-central moments of the likelihood ratio statistic

The non-central moments of the generalised variance

det(XX‘) were given in [12] as
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Eldet(xx’')k] = 2knm %§%§§§§l det =¥, F{™) (-k;is;-10) (6.21)
where XX'mxm has the non-central Wishart on s degrees of
freedom and noncentrality Q = diag(w;) and the w; the
latent roots from det(MM’ - w®) = O. If XX’ 1is as above
and YY'mxm is a central Wishart on t degrees of freedom
then the non-central moments of the likelihood ratio

statistic have been given in [7] as

5| (-det YY¥' S
det(Xxl+YY') ) _

(6.22)

A classical formula for the ,¥, in Laguerre poly-

nomials is given by RAINVILLE [29] as

Pt (5:23)

= xt =
(1=t)"°4Fa(cstrasi=s) = =

n=0

This generalises to a formula given by JAMES [21] equation
(138) .

THEOREM 6.4
(6.24)

(F =B K < Sl
Progdf
The proof follows by applying the Laplace transform

to ©S. Rearrangements required are the same as those of
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[8] Theorem 1. Q.E.D.
Using the trick (1.17) gives 8S=I, 2(2-I)"* = -1Q,
and Z = Q(Q + 2I)"*, No attempt is made to evaluate (6.21)

and (6.22) numerically.
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CHAPTER

CALCULATION OF ZONAL POLYNOMIALS AND (ﬁ)

71 Introduction

Recently JAMES [24] developed an expansion of 2zonal

polynomials in terms of the monomial symmetric functions

Sections 2 and 3 deal with the
numerical calculation of the Bessel functions using the zonal
seriese In section 3 an algorithm for the recursive evalua-
tion of the Mc(S) is stated and proved.

Also, as stated in Chapter 6, in order to proceed
with the evaluation of the LE(S) a method for calculating
the <§> to any order is needed. In section 4 a formula
for them, in terms of the product coefficients gﬁu (defined
by (7.21)), is presented. Of course it then follows that we
need to determine the gﬁu and a method using the monomial
symmetric function expansion is given in the following section.

Finally section 6 contains some summation identities
for the gﬁu and <5> which could prove fruitful if stud-
ied further.

e SV 3 RN VR R S I O N TR

The fundamental units of the theory are the 2zonal
polynomials Z.(S). As yet there is no known direct form=-
ula for them. JAIES [24] found a partial differential

equation satisfied by the 2Z,(S) and showed how to use this
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P.D.E to find expansions of the 2zonal polynomials in terms of
the monomial symmetric functions (msf's) Mc(S).

Pirst the definition of Mk (S). As usual S is an
mxm symmetric matrix with latent roots S4;S5e.eSge Let

K = (KeKgoooke) = (1272, 3™ ) v < m. Then
i,jooou = 1,2,-..m

where the summation is over all distinct 1i,j...u for which
each distinct term appears once only. The number of terms

in the sum is

: [m]r

where [m]y = m(m=1).ee(m-r+1) ([m]p = (=1)"(-m)r).
The F.D.E. for 2Z,(8) is

where Kk 1is a partition with at most m nonzero partse.
My task here was to write a computer programme using
the recurrence relations derived from (7.3) to find the co-

efficients ¢Cx;r of the expansion

where k,7 are partitions of k and the ordering is
defined in section 1.4. I found it feasible to compute all

values of Cxy for k < 17,
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The formula for the leading coefficient is (k§+1=o)

I
CKK' = 2k H

£=1

£
Xy o Lif3o =
(3 - 301 4k = k) (7.5)

and the recurrence relation is

[C£i+t)=(L5-1) 1€y

= T<E<K Pk = Pt \Tu6)
where
S
oro= 2 Li(Ly-1) (7.7)

and 4 = (Lyeeelyttecelyj-teosls) for t =1,2,¢.4445 such
that when the elements of /i are arranged in descending
order the inequality 7 < U4 < Kk 1s satisfied.

Tables for k = 6,7 (Table 7.1) and k = 8 (Table
7.2) are given. A table for k = 9 would have 31 rows amd
columns with some of the entries having 9 digitse. This
would most certainly require at least two pages and seems to
me to be too vast to cope with by hand anyway.

The tables in [24] are for k = 1,..5 and do not go
far enough to reveal a very interesting point. For k=6
there are two zero entries in the table. These zeros are

easily explained. For example

Note that in the lexicographic ordering a partition of 2
parts follows one of 3 partse. If S has 2 non-zero latent
roots then clearly M(u12)(8) = 0 and by theory

z(mz)(s) = 0 Dbut M(Bz)(S) /A O hence its coefficient must
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be zero.

By a generalisation of the above it is easy to prove

LEMMA 7.1

If partition « of T parts is followed in the
lexicographic list by a partition T of less than 1r parts,

then Ckr = Os

7.3 Zonal series and evaluating the Mg (S)

The Bessel functions have the zonal series defini-

tions
CIC(R)
oFa(eiR) = B TeYex!
Ck (R)Ck (S)
‘(m) L] — -K #K—
oFi™ (c;3R,8)= K§K (Y oC, (1) k!
where G () = cik) Ze (S)
X (1)
and c(K) = [ZK]

ey a 'The char
TT?TTTTEK—1) aracter

X[2x](1) is easily calculated using a modified form of the
expression given by JANES [22] for Cc(I)e Its considera-
tion is left to Appendix 3. From (7.4) it is clear that

with ckr known everything depends on the evaluation of the

Direct evaluation of (7.1) by summing over all [m]e
permutations and dividing by the repetition factor
Tydleoy!loee is a very tedious processe. What is needed is
an algorithm for building up & table of the Mc(S) by ex-

pressing each msf in terms of msf's of lower degree.
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The clue is given by VAN DER WAERDEN [32] in exercises 5,6
on page 82.

h
Quoting directly with (m) = = x|
1=1

"5. Let

with the summation performed on all distinct permuted terms
which may be obtained if we take the order of the subscripts

different from 1,2,..eh Prove that

(7.10)
where the coefficients cy;(i=1,+..h) and co, indicate how
many of the integers in the symbols to which they belong are
equal to ky+m and to m, respectively.

6. Solve the formula found in Exe5 for (K, .eeknym)eeco”
The equation (7.10) is not strictly correct but a
corrected version is given by (7.11). Let
= (Kyoaske) = (1™ ,,.i™,,.) and also let (k;...kr)
indicate the msf of m variables associated with the part-
ition Ke Abbreviate
r part msf = msf associated with r part partitione.
The one part msf or power sum ©r can be written M(y)
or just (t).
Considering the product of M,y and ry, (7.10) is

replaced by
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THEOREM 7.1
where
kq = J
Co = mi+1 t =,
REMARKS
In particular
1 ky =3
Ci = ey
7 k,+t = i amd ay = O.

The terms on the right hand side of (7.11) are not necess-
arily distinct. When like terms are collected together all
resulting coefficients are integers.,. As a numerical example
(2211) (1) =5(3211)+3(2311)+3(2221) +&(2212) +3(22111)
= (3211)+3(2221)+3(22111).
The table building algorithm is given by
COROLLARY
A rearrangement of (7.11) gives
(45 = acailesesB) ='ggi(ki...kr)(t)-ci(k1+t...kr)-....
—Cr(Kqooekpt+t)}
(7.12)
REMARKS
This says that any r+1 part msf can be expressed'

in terms of r part msf's and a power sum. The power
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[m=11r_y

1T1!ooo('ﬂ'd"1)!.aoo

However the indeterminate sy can be associated with Xkq
in only 1/w3 of these terms as sy must also be associated
equally as often with the wy-1 other parts also equal to Je.
Since v may take m possible values the total number of

K, Ko+t Ky

terms of the form s; *...sy

eseSy is

Let

Then the number of terins in its associated msf 1is
[m]r

and

_S(lz.li%._m:i
S TUAFT6) T " °

k k .
The term sy Ye.eSy rswt occurs in

m[m=-1 ],
Taleootly oo (7.18)

[m]req

terms and

Co = % = my+l. (7.20)
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K
7.4 The formula for (v>

K
The "binomial" coefficients <v> are defined by

(6.12) while the g,, are given by

where K« 1s a partition of k = r+s
v 1is a partition of r

K

L 1s a partition of s
<v> and gfu is given by the

The relationship between
THEOREM 7.2

If k,rys,k,v,u are as defined above, then
(7.22)

The proof will follow from an easily established
identity.

LEMIIA 7.2

Proof
From the integral definition the left hand side of
(7.23) is

i etr[ (I+A)H'BH](aH)
(

m)

oF$™) (1+4,B)

= etr(B)l‘etr(AH‘BH)(dH)o Q«EeDs
(m)
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Proof (THEOREM 7.2)
Writing the hypergeometric functions of (7.23) in

zonal series

Gi (I+A)Ck (B
e TR 6 (7.24)

Since all three zonal series converge everywhere in A,B > O

we can take the Cauchy product of the right hand side to give

J

H >

i 1 Cy (
= 2 B C

K
% Ce (B).
(7.212) k r+s=k rist vu 3 Evyu IC( )

v

Rearranging gives

5 Cx (B)

kx| K!

Equating coefficients of Cx(B)/k! for this and the left

hand side of (7.24) gives

Cie ( Tadnh

k
Cell) .~ = i ”

The defining relation is

and the comparison of this with (7.25) gives (7.22). Q.E.D.

If we put A al 1in the defining relation the

result is

(1+a)k
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and comparison with the binomial expansion of (1+a)¥ gives

LEMMA 7.3

<¥> =3 <€> for all partitions &« of K.
v

This shows the connection between the "binomial" coefficients

<§> and the true binomial coefficients (?) o

A computer program was written to determine the <§>
for X = 1,2¢00¢9e The values obtained are in decimal forms
The values k=1,2,3,4 have been given by CONSTANTINE [8] as
fractions. The tables for k = 5,6 (see TABLES 7.3, 7.4)
were obtained by printing out the values to 8 decimal places
and converting these manually to fractions. It will be
shown later on that the gﬁu are rational and this implies
that the (5) are tooe. The programming is discussed in
Appendix L.

75 The gﬁu and products of monomial symmetric functions.

THEOREM 7.2 gives the relationship between <€> and
gﬁ“, but from a practical viewpoint this result is useless
unless the gﬁu are known. In this section is presented
an algorithm for generating them. This method has been
programmed for a computer evaluation of the gfu and hence

the <'f,> for Kk a partition of k and k = 1,2,.4.9.

Details are in Appendix Y.
Let k,7,0,€ be partitions of k = r+t
Oy V be partitions of r
Bl be partitions of t.



(0)
(1)
(2)
(12)
(3)
(21)
(12)
(L)
(31)
(2?)
(21%2)
(1%)
(5)
(L1)
(32)
(312)
(221)
(213)

(1°)

(5)

10

10

(L1)

23/5
27/5

8/7
27/7

K
(32)
:

5
16/3
14/3
8/5
u2/5

8/3
7/3

(31%)
.

5
13/3
17/3
7/5
33/5

7/3

8/3

(221)

1

5
10/3
20/3

15/2

5/2

5/3
10/3

/2
11/2

18/5
7/5

(1°)

10

10



K = (J-

(6) (o1 (u2)  W1?) (57) (z21) (317) (2%) (271%) (214)

(0) 1 1 1 1 1 1 1 1 | 1
(1) 6 6 6 6 6 6 4 6 é 6
(2) 15 3sh/3 9 8 8 19/3 5 5 4 7/%
(1%) * 11/3 6 7 7 26/5% 10 10 11 38/3
(3) 20 56/5 238/5 = 26/v 18/5 28/15  8/% .
(21) © L5 r2/5 12310 8W/5 74/5 57/5 15 12 7
(1%9) ’ ' £ 5/2 *10/3 7 5 3 13
(4) 15 39/7 4u48/35 9/7 ’ $ ’ . . .
(31) * 66/7 66/7 61/7 8 11/3 N
(2*) - * 21/5 : 7 11/3 : 5 5/2
(21%) : ’ : 5 *20/3 ue/5 10 52/5 h2/5
(14) * . : 2 : 95 * o 21/10 33/5
(5) 6 10/9 - . - . . . . .
(W) = w9 12/5 9h o : ' : : .
(32) : * 185 v 6 1479
(505 % ’ 15/ ©20/9  2u/7 . : ;
(2°1) . ‘ : . © o 20/9 . 6 3 ‘
(212) - : " * ’ * o 18/7 * 3 1u/3
(15) A . . i " 5 . " . W3
(6) ] . . 3 i ’ : :
(51) 3 4 " . . o . .
(n2) . . 1 . . -
(L17) . . . ; . .
(3:24) . . . 1 . -
(321) ‘ ' : 1
(512) ; . . 1 ‘ , .
(2°) . ; " i
(221%) . . . " . 1 .
(21%) . s i 5 . 5 4
(18) a ; R -

\
TARLE 7.4 The <§*
Y,
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Assume for convenience r > t. Drop the argument matrix

does not enter into any of the following relationships.

From (7.4)

agr Mz

Now using (7.27)

(7.28)

the following that none of the parts f; and hy are zero.
Then the msf of highest weight obtainable from the product
of My and Mg is My = (fy+hjecefyt+hee.fr)e Let

(analogous to (7.21) for gy,)e Then (7.28) can be written

as

Cy Cp = & 3 Z (7.30)

The msf's of highest weight in C, and Cy are
My and M, respectively. Let the msf of highest weight
then if we define

(7.30) can be written as
(7.31)

where
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The defining relation for the gﬁu can be written as

so a sequential comparison of the coefficients in (7.31) and
(7.32) will give us the g3,.

For example

and equating the coefficients of M,y gives

s
gﬁ# =aICK'.
Subtract from (7.31)

d’&u—)o

Then if 7 1is immediately below « 1in the lexicographic
list

dT
gcu = Vb
arr

and SO One. Thus we can express the gﬁu in terms of the
ars (known) and the egﬁ.
The calculation of the egﬁ is quite straightforward,

at least in principle. Let

(7.34)

and take all possible products i.e.
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where the &€ are not necéssarily distinct partitions. Add-
ing together all ©be Tfor the same partition will give the
el
What are the Dbeg?

THEOREM 7.3

Let @ = (fiee0efy) = (1922%92,,.,,)
B = (hyeeohy) = (1¥22%2,,..)
€= (Lyeeealy) = (1%12%2...)

where M 1is a possible product, then

De

= PrlPalecetys!Palense
REMARK

As an example

(211)(11) S #(321) + £(321) + +(312) + #(312)
+ £(222) + £(222) + £(3111)+ £(2211)
+ #(2121)+ £(3111)+ £(2211)+ £(2121)+ E=(21111)

= (321) + 3(3111) + 3(222) + L(2241)+ 6(21111)s
(7.29)

- Proof

finally a proof of (7.36) when the product term of

(7.3L) has the form

There are two cases
1. fq:-fV:il

With g,V,Xesez2 Tfixed, the number of possible terms is
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In the particular case t=1, the formulae agree with
those for c¢q and coe

The coefficients g, have already been tabled for
K = 1,2,e0.7 by KHATRI and PILLAI [25]. Their methods
were based on the expansion of the zonal polynomials in terms
of the elementary symmetric functions and the power sums.,
The limiting factor in this approach is the comparative diff-
iculty of expressing tle 2zonal polynomials in terms of these

functions versus their expression in msf's.
K

7.6 Summation identities for <v> and gy, .

This chapter is concluded with some formulae that are
useful in checking that the values for <§> and gﬁu are
correcto. One such formula (7.26) has already been given.
All results are obtained by using identities similar to
(7+23) and multiplying oute Coefficients of Cx(S) are
then equated. Throughout this section k,r,s,x,v,#4 are as
defined for (7.21)e The matrix S is mxm positive
definite.

IDENTITY 1
etr[(x+y)S] = etr(xS)etr(ysS) (7.40)

LEHMA 74

(7.41)
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Proof
Expand the term on the left hand side of (7.40) in a
zonal series. Expand the terms on the right hand side sim-
ilarly and take their Cauchy product. Equate the coeffic-
ients of Ck(S)/k!. Q.E.D.
COROLLARY 1

for r,s fixed.

Proof

Set y=1 in (7.41).

Q.EDe

COROLLARY 2

Proof

Set x=y=1 in (7.’-]-1)0 Q.E.D.

Many other formulae can be easily established.

These are perhaps mainly useful for checking the tables
Of g'f’u.

IDENTITY 2

det(I-S)"2-% = get(I-8)-2 det(I-S)-°® (7eL4)
a,b real

or in hypergeometric function notation

1Fo(a+b;8) = 1Fo(a;8),Fo(b3S). (7.45)
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LEMMA 7.5

Eoue (7.46)

Proof
Expand both sides of (7.45) in zonal series,

perform the Cauchy product amd equate coefficientse Q«E«De

For fixed Kk, various values of a and b may
be chosen to generate a set of simultaneous linear equations
for the gﬁu. All coefficients can be chosen as rational
by taking a,b rational. Thus the gﬁu are rational.
IDENTITY 3

JAMES [21] 1lists the KUMMER relation (equation (51))

(7.47)
LEMMA 7.6

Proof
Expand in zonal series, etc. Qe¢E.D.

COROLLARY

(7.49)

Proof

Rearrange (7.48) as

B - B0 2 sl ()2 o

and apply (7.22). Q.E.D.
Both (7.48) and (7.49) could be used to give syst-

ems of simultaneous linear equations for gfu and (Z) .
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CHAPTER 8

NUMERICAL EVALUATION

8.1 Introduction

It now remains to consider the arithmetic worth of
the various formulae for the numerical calculation of the
one and two argument Bessel functionse. The evaluations
are over three ranges, one each for small, medium and large
values of the latent roots. A section is devoted to each
range of values and within each section both the one and
two argument functions are considered.

BEach section begins with an outline of the formulae
used and this is followed by the results obtained when a few
specific values are input to computer programmes written to
perform the evaluation.

Results are good for very small and very large
values. The limited results obtained for some medium
values are encouraging but inconclusive in the case of the
single Laguerre expansion. Results for the double Laguerre
expansion are rather discouraging. However an extensive
computer evaluation programme would be needed to verify
these assertions.

The value n=10 was used in all evaluations.

8.2 8Small latent roots - zonal series

Direct summation of the zonal series is the method

to be used when the latent roots are all smalle. Both the



118s

one and two argument Bessel functi ons can be evaluated using

the same computer programme by making use of the identity

(1.17). That is

% (8.1)
and
(8.2)

It was decided to restrict the evaluations to the
cases m=2 and m=3.

One argument matrix:

R value ?igé‘
m=2 g 4 1-7961424950 11
L 2 314383941 9
8 L 9+03L L
16 8 614 3
p=5 3 2 1 3°202536 7
6 L4 2 9- 624 L
12 8 L 745 8
Two argument matrices:
R S value ?igé,
m=2 2 1 2 1 2°* 38036499 9
L 2 L 2 2394 L
8 u g 4 2x10*% 1
16 8 16 8 - none
m=3 3 2 1 3 1 9° 5360 )
6 L 2 6 b 2 250 2

12 8 4 18 8 & - hohe
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It is clear that very good accuracy is obtainable
for latent roots with values less than 1. For one argument
matrix about 4 significant figure accuracy is obtainable if
the leading latent root is less than about 8 while for two
argument matrices, to obtain the same accuracy the leading
latent root should be less than 4 (only for n=10).

8.3 Medium value latent roots - Laguerre series

First the single Laguerre series. Substituting for
L2(S) wusing (6+11), noting that p = 3(m+1) armd using the

scaled zonal polynomials Cx#(S) defined by

the equation (6.19) becomes

oF{™) (a+p;S,2) =

ete(z) 5 45 2 () 3 (-1)" 3 ()

Setting this is evaluated in the form

where

(8.6)

As 2 test, values were chosen for which the zonal

series converged to an answer after summing all terms to

k=9. For n=10, n=2, S=diag(7°5,2°5). Z=diag(5,0°5) a
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value of 108 (correct to 3 significant figures) was obtained.
Using these values in the Laguerre series (8.5) no satisfact-
ory results were obtained while summing to k=9.
By introducing a scaling factor cZO considerable

improvement is possible. We have the identity

which follows easily from the fact that
CK(CR) = CkCK (R)c (808)
Thus from (8.7), (8.5) becomes

oF{™) (4n;8,2) = oF{™ (in;cS,c™13)

_1\k
etr(c~1z) z-ii;l- 3 Ck(Z)Ax (cS)c~k
k . K

and clearly from (8.6)
Ag(c8) £ c*ac(8).

Summing the series (8.9) using the above values and
c=10 also gave 108. This indicates that it may be possible
to obtain improved convergence by a suitable choice of a
scaling factor. This introduction of an extra parameter is
not possible in (8.1) as

Ck (cR)Cx (c™28) = Ck (R)CK (s)
and the effect is lost unlike the case (8.9).

Similar results can be obtained for the one matrix

case by se*ting
oF, (2n5R) = oFgm)(%HSCR’C-il)- (8.10)
As already stated no sensible results were obtained

for the double Laguerre series even with the introduction
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of a scale factor. A far more extensive study would be
necessary however to verify this as well as to confirm and
perhaps improve on results obtained from (8.9).

8s4 Large latent roots -~ asymptotic formulae

The asymptotic formula used for the one argument

matrix case is, from (4.22) and (4.19)

(8411)
where k, is given in (4.22) and
G(A) (8+12)
where
Ay = $(n=3) (n-m)
For two argument matrices, THEOREM 2.4 gives
gr(B)_ s 6(a,B)  (8.13)
I cqs°det(aB)?
1<}
where kp, is given in (2.58) and
(8.14)

A simple lower bound on the values of a; for
(8.11) and of aj,b;y for (8.13) can be obtained simply.
For two matrices firste. Assuming the aj,b; are large

and well spaced, we have
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(7 fYyn f 1 20
= ‘ilzhle
and
a1b1 1
C!; = a;bi ‘ (8'15)

Also since the a; and b; are ordered in a decreasing
seguence

-é;!i:‘; = 1 l ] 1,2,--.111- (8"16)

Hence since the Bessel function must be positive we would

like to have

i I
o M 1 a:h

and using (8.15) and (8.16) this becomes

1 1 { 11

a.

The solution is
anbp > §(n=3) (n-m)m + #¥m{m-1) (m-2). (8.17)

For m=2, n=10 this gives
Gubg > 18, 1s8s 8pby = L
and for m=3, n=10
aml In 1 E 1 |
A programme was written to calculate the first four correct-

ion terms for G(A,B) = 1=T,-To+Ts+T,.
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leading terms themselves to provide an adequate approxima-
tion to the true value.

8.5 Concluding remarks

Excellent results are obtained for small and large
values of the latent roots. It appears though that much
work is necessary to produce conclusive results on the
worth of introducing a scale factor in the single Laguerre
expansion and on the double Laguerre expansion.

Another interesting possibility is that the asymp-
totic series of Chapter 5 may produce better results for
small values of the latent roots. The removal of the term
etr(23) may well yield more rapid convergence than the
zonal series. Similarly, the Laguerre series too may very
well be more rapidly convergent for certain small values of
the latent roots. Certainly much theoretical and numerical

work remains to be donee
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APPENDIX 1

A.1.1 Calculation of the dg

The coefficients dy are related to the ¢, Dby
(2.20) and these can be evaluated from (2.17)« From the
formula of CONSTANTINE [7] equation (31)

1918 o w
det(I-30)E(n-2m=1) _ p (_i(n-2n-1);10)

filx

S (-3(n-2n-1)), Sl |

K,K k!

Also 10 (1 - ELEBJ) is a symmetric function of the U ;,eselye
1<

Let a;# be the 1P elementary symmetric function

of the u;, then the product has the expansion

To evaluate the ¥y, consider the product in an array form

as

1 - ZooatUn
2 :

By the symmetry it is sufficient to count the number of

times a typical term occurs in order to determine the vj.
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C(z)(U) + 0(12)(U)
ag® = *20(12)(U).

M2
a,

Substituting in (A.1.2) and collecting terms gives
1 = #(m=1)C(1) (U) + #(m-1) (m=2)C(2) (V) +

75(m-2) (2n+1)C 42y (V) + o(w?). (4.1.3)
Multiplying the two series (Ae1.1) and (A.1.3) and using the

zonal product formula

we get
1 = #(n-3)C(4) (U) + #5(n-3) (n-5)C(3z) (U) +

3zn(n-5)C 42y (V) + o(u?). (Ae1.h)

As a check none of the c¢x coefficients depend on me

A.1.2 The evaluation of (2.42)

There are three types of integral involved. All can
be evaluated using standard bivariate normal integrals.
LEMIA A.1.1

Let P,Q be 2x2 symmetric matrices and

Then if Q 1is positive definite

f/em(-%é’%)dﬁ - —2T
| det Q2
// s'Ps exp(-1s’Qs)ds= ——21-1- tr(Q 1P) (A.1.6)
L det Q2
f/.S.’;s. exp(-38'Qs)ds = —2&— tr(Qt).
det Q2

)
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((Ae1.7) is of course the particular case of (A.1.6) with
B = Tga
Considering (2.42) we have
cyy = det Qyy = (a1%-a4%)(by%3-b3%) > 0
and the leading principal minor is ajby + ajby > O, hence

Qiy 1is positive definite. Thus

= {l
K(A,B) = 153 / / exp(-38 3Q1 3813)dS1 (Ae148)
=00

ﬁgg)%m(m_1)

(A-1o5) ingIJZ

Also to calculate the terms required for (2.47)
!
(1+¢(S,T;A,B))J(S)J(T)=(1-d1(?aiﬂi-%lgjﬁiJPx3§13+9(Sz))+--)

<(1 = #5(n-2) 2 81481 5+0(s%))
(Ae1.9)
where d; = $(n-3)(n-m). The substitution of (A.1.9) in
(2.40) gives
g(A,B) = etr(aB) {K(A,B)-d, S0y B1K(A,B)+%d,L, (A,B)

- 35 (m-2)Lz (A,B) + 35(m-2)d, Doty B1Lg(A,B)+eae]

(A.1.10)
where
J; 14
B) = > P exp(-+ = s Sy 4)ds
L, (A,B) / l‘l<j§13 13815 exp( 21<J_13Q13_Ij) Sy
(s Mot 1)

(Ae146)
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and
I f
Tal(h R)
Tmf i)
@
-_ ] 1 1
and
] 1 - L
C 1
giving tr(quyt) = 2lahuzaibl
Substitution of these results in L, and Lg and
their substitution in (A.1.10) gives
e @Y
g(AsB) =
] ¥ |
+
m ] 1 1 ¥
+ -+
(=
I
To list the terms in increasing powvers of S note that

A,
-
-
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Some rearrangements of terms then give the results (2.46) and

(2.47).

A.1e3 Further terms of the series

Putting R™! = B"'H{A"'H; the next terms of
F(Hi,Hg;A,B) are d(g)C(z)(R_i) and d(12)0(12)(R-1).
Expressing the zonal polynomials in terms of elementary

symmetric functions gives

1#5(n-3) (n=5) (n-m) (n-m+2)C 2y + THan(n-5) (n-n) (n-m=1)C (42

= t35(n-3) (n-5) (n-m) (n-m+2)a, *2 - #x(n-5) (n-m) (m-2)a, *.
(Ae141L)

%2  can be found by squaring (2.14);) and the

Now a,;*
second elementary symmetric functi on of the matrix
R™1 = (p,,) can be found by taking the sum of the 2x2

principal minors i.e.

Pry =

(ReTa %)
On substitution for the h;,,k;; 1in terms of
S1ystyy 1if all four indices 1i,j,u,v are unequal then

each term is clearly O(s*) and will be disregarded.
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Also i=j is impossible ard u=v makes the term (...) of

(Ae1.15) zero. Only six combinations can possibly lead to

a contribution. They are
1. &= J=¥ 3. i= 5. J=u
2, 1i=v j=u e i=v 6y J=v .
Substitution in (2.40) and combination with

results (A.1.13) gives

the

(Ae1.16)
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APPENDIX 2

RAO [30] considers the case of the columns of M
defining a k dimensional plane rather than a k dimension-
al subspace. He also assumes repeated sampling on each of
n populations. The derivation of (3.23) that follows is a
simplified version of the proof of result (8c.6.L) p L75.

First we need a LEMMA from [30]. Let A mxm sym-
metric have latent roots Ay 2 Ng 2 e = Ny and corres-
ponding latent vectors DiseeseDPme
LEMMA A.2.1 (1£.2.8)

Let X,,e¢¢Xx Dbe mutually orthonormal mx1 vectors.

Then

and the supremum is attained when X;=pj, i=1,.¢¢Kke
Now the likelihood function is, apart from a con-
stant,
L(M) = etr[-3 =% (X-M) (X-M)']

and the likelihood ratio is

sup
He L(M)

sup X
H, L (1)

Asymptotically

x® = =2 log N\ = -2[ SUP in1 - 5% a1n L]

and on H;, ! =X giving 1ln L = O, Thus we must find
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2 = 1§f tr B (X-M) (X-M)7. (Ae2.1)

4

% i |
Make the substitutions Y = 2 2X, N = 2 2M to give

2 inf

x* = g, tr(Y-N) (Y-N)

where N has rank k on Hoe Let Y = (F1seee¥n)s

X% =

If o4,eeeax form an orthonormal basis for the

space spanned by the columns of N, then
k

m = j?iﬁljaj = A By
where A = (oy eseax) and pB{ = (Byie+eBik)s The ith
term of the sum to be minimised in (A.2.3) has the form
(yi = A By)'(yy - A By) and for fixed o4 ,...0g, this
corresponds to the sum of squares to be minimised on the
linear model E[y;] = A B;. By the usual theory, the

residual sum of squares is (noting that A’A = Ig)

Thus we have to find
n
2 YIIAAIYI]
fi=11
and since the first sum is a constant this reduces to find-
ing
n
Sy ALy
1=1

Now
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n
2 (Al ) (Afyy)
and by LEMMA A.2.1

where the w; are the latent roots of

1 i
det(YY! - wI) = det(Z 2XX’2 2 - wI) = O.
Also

n n
2yi'yy = 12 tr y1y1! = tr YY/ = WiteeetWpe
=1

Combining (A«2.4) and (A.2.5) we have the result
THEOREM A.2.1

where the w; are the latent roots of det(XX/-w32) = O.
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APPENDIX 3

CALCULATION OF THE COEFFICIENTS ckz

A.3.1 The programme

A FORTRAN computer program was written to perform
the calculations outlined in section 7.2 The purpose was
to calculate the coefficients cxr for k < 13. These
coefficients were written on to magnetic tape and used as
input to computer programmes for summing zonal series and
series of Laguerre polynomialse.

A listing of the programme is given at the end of
this Appendix and in the following sections important math-
ematical and practical features are discussed. Other feat-
ures are explained by comments in the listing and by refer-
ence to the appropriate formulae.

A.3.2 The generation of partitions

It is preferable that the partitions of a given k
be generated in decreasing order (section 1.4). The foll-
owing algorithm is such that when given a partition it
generates the one immediately below it. It is perhaps
easiest understood in terms of a verbal flow chart.

Let « = (Kyje.ekp) and its successor is
# = (i by e Both are partitions of k and all parts
are non-—-2zero. The algorithm is initialised by presetting
the first partition

ks =k, r=1.
1. Input the current partition (K ;,e.eKp)e

2o If k, =1, all partitions of k have been
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generated. Stop. Otherwise go to step 3.

5 If k. > 1, set s =r+41, Ly = kg, U = 1,50s~1,

This is now the new partition

ready for use and storage. Af'terwards return to
step 1 with 7T as the current partition.

4. Otherwise, find i such that k¢ > 1, ky,y = 1.

5. Set oy =ky, u = 1,e0ei-1, £y = ky=-1.

6. The sum of the remaining ky, u = i+1,¢eer 1is r-i
so find s, such that

0 < a=r-itl=Ly(s-i-1) < £y

T Set &y = Ly, W= i+lye0e8~1, {4 = &, Use and store
this new partition amd return to step 1 with 7 as
the current partition.

Relating this to the programme listing. The sub-
routine KAPPA generates the successor of the supplied par-
tition while PSET initialises the list by setting
ks =k, r =1,

A.3.3 BStorage of partitions

A binary representation of the partition is generat-
ed. This minimises the storage needed to record them for

later use in the program.

Consider the "Young'" diagram for the partition

4221,
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. . o t
-
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« 1

For convenience the diagram is written vertically instead of
its usual horizontal configuration. Coding 1 for a shift
right and O for a vertical shift, the partition 4221 can be
uniquely represented by the binary sequence 10011010. This
binary sequence can then be stored in one computer word
rather than using one word for each part of the partition.
Incidentally the number of 1's equals the number of parts

in the partition amd the number of O's is equal to the value
of the largest part.

Another advantage of this binary representation is
in improving search efficiency. The comparison of the
actual partitions is not very convenient on a computer.

This 1is replaced by a search of the 1list of binary represent-
ations (of a given k or set of k's) to see if a given
binary number is on ite Thus after the partition x4 is
generated from 7 and the elements sorted into decreasing
order, the mext step is to find its binary representation.

It is then a simple ma tter to see if U4 < xk by comparing
its binary representation with the list of binary represent-

ations of all partitions of k¥ from k to T.
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A call to the function IBIN generates the binary
representation of the partition. The function is coded
in COMPASS (the assembly language for the CDC6400) a more
convenient language for this type of operation. Since all
parts of a partition are non-zero the binary representation
ends with at least one O. The actual representation gen-
erated by IBIN has this fimal O eliminated. A reason for

doing this is given in Appendix 4.

Ae3.4 The calculation of c(x) and X[ZK](1)

The normalising factor <c(xk), for converting Z, to
Ck, and the character X[ZK](1) are calculated convenient-
ly using formulae derived from JAMES [22] equation (3.2).

Let « = (Kyyeeekr) be a partition of k into r

non-zero parts. Then from JAMES [21] equation (21)

r
I (2kq+r-i)!
1=1

where A(i) = Ky+e.e+ky_4, A(1) = 0 and

(2k)! E
1n (2ky+r=-i)!
=1

r sk (B(i)+2=-1)(B(i)+24)r=t/ Picy .
< Ly (c+3) 3 % "2‘i€f'+31>>
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where B(i) = 2(k;+eee+ky_,), B(1) = O.

The subroutine ZONCHAR is used to generate the
coefficients c(«k) using (A.3.1), andi these are then stored
on magnetic tape along with the cgz. They are used in
calculating the Cx(8) from the Z,(8) when evaluating the
generalised hypergeometric functions.,

The formula (A.3.2) was used to write a separate
computer programme to calculate the characters listed in

TABLES 7.1 and 7.2.



TH1S PROGRAM EVALUATES THE COEFFICIENTS C(KAPPA¢NU) THAT ARISE WwHEN
THF ZONAL POLYNOMIALS Z(KAPPA) ARE EXPRESSED IN TeRMS nF THE MONOMIAL
SYMMETRIC FUNCTIONS M(NU),

THE PROGRAM ALSO GENERATES AND STORES THE PARTITIONS

KAPPA = (KleK24sseKR)sTHEIR BINARY REPRESENTATIONS AND THE CONVERSION
FACTOR FROM Z(kAPPA) TN C(KAPPA)

PROGRAM NY (INPUT<OUTPUT.TAPEL1O)
COMMON KP(500¢15) «LGTH(500) «CK(500) «RK(500) s IPOSeKsNPART
COMMON/A/KKK (20)
DIMENSION KQ(15) «KC(15) «kBS(15)C0(500)
DIMENSION ZONCH(500) +NN(500)
1010011=1420

1001 KKK (I)=2##(I-1)
PRINT4)

41 FORMAT(1H1)

M=20

OUTPUT NF DATA FOR k=1

NPART=1

NN (1) =1

ZONCH (1) =1

LL=1

KP(1s1)=1

WRITE(10e¢1644)NPART
WRITE(10¢142)NN(1)+eZONCH (1) 4yLLIKP(14l)
co=1.

WRITE(10¢149)C0O(1)

n0BOK=2.13

GENERATE AN NRDERED LTST OF THE PARTITIONS OF K

1P0S=0
CALL PSET(KeKQeMeMSe TH)
GOTO1
3 CALL KAPPA(KeKQsyMeMSeLTH)
1 IP0OS=IPOS.]
NOINT=1eLTH |
10 KP(IPOS+I)=K@(T)
KP(TPOS«LTH+1)=0
LGTH(IPOS)=LTH

CaLCULATE AND STORE C(KAPPAJKAPPA) o RHO(KAPPA}
NORMALISING FACTNR ANN BINARY REPRESENTATION FOR
EACH PARTITION KAPPA

CALL EAD
CALL RHO
CALL ZONCHAR(LTHeKoeKQe7ONCHR)
ZONCH (IPOS) =20NCHR
NN (TPOS)=THIN(KQeLTH)
IF (MS=1)3.2.3
2 NPART=IPOS

WwRITE THE DATA ON MAGNETIC TAPE

WRITE (10e144)10ART
44 FORMAT(IA)

N0201=14NPART

LL=LGTH(I)
20 WRITE(10¢142)NN(T)«ZONCH(I)oLLe (KP(TI4J)sd=1eLL)
142 FORMAT(064E20.1341413)

STEP THROUGH THE PARTITINONS KAPPA ONE BY ONE

NPAR=NPART=-1
NO701Z=1«NPAR
cO(12)=CK(12)
LMT=LGTH(IZ)
0071J=1.LMT

71 KBS(J)=KP([Z2+0)

FOR EACH KAPPA STFP THROIIGH ALL TAU = (L1sL2eeselS)
PFLOwW KAPPA

[22=12+1)
NO3NT=1ZZ NPaRT
N=0

SUM=04
MLELGTHIT)



FNR EACH TAU GEMERATE aLl POSSIBLE

MO = (LloeebTeTeuel )=TeeolS)
MM=ML =1
NOSO01A=2.ML
1D=1A-]

NOSnIB=1.10
MN=KP (I+1A)
D060IC=1.MN
0040J=1 ML
40 KC(J)=KP(1J)

KC(IR)=KC(IB)+IC
KC(TA)=KC(IA)=IC
KK=KC (IB)=KC(IA)

FOR EACH MU SORT THE ELEMENTS INTO DFCREASING ORDER
AND FINO THE RINARY RFPRFSENTATION

CALL SHORT(KC ML)
IF (KC (ML) «EQ.0)GOTO12
MLT=ML
G0TD18
12 MLT=ML-1
18 NNN=IBIN(KCeMLT)

TEST IF THE SORTED MU IS AOMISSIBLE
TF TRUF ADD APPROPRIATE TERM TO THE SUM AS PFR (7.6)

1S=1-1
n073J=12.1S
IF (NNN=NN(J)) 73438473
73 CONTINUE
GOTNAKO
38 SUM=SUM+KK®CO(J)
N=Ns1
60 CONTINUE
50 CONTINUE
IF(N)Bl+B2+81
82 CO(I)=0,
GOTO30
81 IF(ABS(SUM)-0,5)82+82+83
83 CO(I)=SUM/ (RK(1Z)=RK(I))
3n CONTINUE

CUTPUT THE COEFFICIENTS ONTO MAGNETIC TAPE

WRITE(104149) (CO(LL) «LL=IZ«NPART)
149 FORMAT(9F1%.1)
70 CONTINUE

WRITE(104149)CK (NPART)
80 CONTINUE

STOP $ END

CALCULATES THE LEADIMG COEFFICIENT C(KAPPAJKAPPA) ACCNRDING
TO0 (7.95) P

SURROUTINE EAD

COMMON KP(5004¢15) «LGTH(500) +CK(S00) +RK(500) » IPOSeK«NPART

PR=1

LTH=LGTH(IPOS)

DO10I=1sLTH

KL=KP (IPOS.1I)

LL=KL=KP (IPOS+1+1)

DO10J=1.1

A=(1=J)/24+ (KP(IPOSeJ)=KL)*NsS
10 PR=PR®COF (AsLL)

CK(IPOS)=pRa2, oK

RETURN $ END

CALCULATES THE (A) = A(A+l)ees(AsK=1)
K

FUNCTION COF (AK)
C=A
11=)
3 IF(II=K)1e240
1 C3C*(A+I])
11=11+1
GOTO3
4 COF=1.
RETURN
2 COF=C
RETURN % FND
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n

CALCULATES THF RHO(KaPPA)

10

CALCULATES THE NORMA[ {SING FACTOR FOR CUNVERSION FROM

2 (KAPPA) USING FORMULA

20

30

10

97

27

SUBROUTIME PHO

COMMON KP (5004+15) +LGTH(S00) +CK(500) ¢RK(500) + IPOSsKsNPART

SUM=0
I=LGTH(IPOS)
n0loJ=1.T

A=KP (IPOS.J)

SUM=SUM+p# (a=J)

RK(1POS) =SUM
RETURN $ END

TO C(KAPPA)

ACCORDING TO (7.,7)

(Ae3.1)

SUBROUTINE ZONCHAR(PeKsKAPPA«ZONCHR)
INTEGER P K.KAPPAKAPK.Q
NIMENSION KAPPA(P)
REAL ZUNCHR.PR

KAPK=0,
PR=1,
00101=1.P

KAPPAI=KAPPA(])

N020JU=1.KaPP

PR=PR#FLOAT (KARK+J) / (FLOAT (KAPPAT+J)8FLOAT (J))

CONTINUE
IF(1.EQ.,P) 1.
n=pP-1
D030J=1+0

PR=PR® (1 .=FLOAT (2#KAPPA(]+)))/FLOAT (2°KAPPAT+J))

CONTINUE

AT

2

KAPK=KAPK+rAPPu]

CONTINUE

20NCHR=2#aK®PR

RETURN $ END

SURROUTINE PSET(K«KP«M«MSWLGTH)

NDIMENSION KP (1)

KP = K

N0 10 I=2.x
KP(I) = 0
MS = 0

LGTH = 1
RETURN
ENTRY KAPPa

IF(K.EQ.1) GO

MS = 0

N =20

DO 11 KM = )
J = K=KM+]

N =N +« KP(J
IF(KP(J) «GT,
CONTTNUE
CONTINUE

MS = 1

LGTH = K
RETURN
CONTINUE

K

)
1)

T0

a0

TF(KP(J+]1) oRT.0)

KP(J) = KP(J
KP(J+1) =1
LGTH = J+}
IF(LGTH,GT M
IF(KP.EQ.1)
RETURN

KP(J) = L =
MM = )
MM = MM + |
N = N=LD

)

)

=1

<

G

7

TO 34

0 70 &

G0 TO 9
GO Tn 37

KP{J)) =1

IF(N,LT.C) GO Tn

KP(MM) = LD
GO TO 6

N = Ne+LD

MM = MM = ]
KP (MM) = N
LGTH = MM

IF(N,EQ.0) LGTH =

MM = MM + |

N0 27 IM = MMk

KP(IM) = 0
IF(LGTH.GT M
IF(KPeEW. 1)
RETURN

END

)
0

]

LGTH =

G0 TO Q

6

a7

1



CALCULATES THE BINARY REPRESENTATION OF A PARTITION

IDENT
ENTRY
USE
KK BSS
USE
IRIN BSS 1
SH4 1
SAl R2
sB2 X]+R]
SA2 hP2=-Ré4
SAal X2+KK=1
ST sB2 HP2=-H4
EQ H1 A2 RF
SA3 R2=-R4
1x2 X2ex3
SA3 R2
1x2 X2-x3
SX2 X¥2+R4
SA3 Y2+KK=]
1X1 X]ex3
JP ST
RF BxXe6 Xy
JP THN

CALCULATES THE PAFTITION FROM ITS RINARY RFPRESENTATTON

ENTRY NIng
NTHIT BSS 1
SBs 1
Sal 1
SB81 X
SA? x4
SX6 Ha
SX3 Ra
(NS ZR H]leFN
SB1 Hi-864
L BX4 x2¢v3
IR X4, 1)
SAe CREIY!
Lx3 1
JP L.
Ju SX#k Nise Al
LX3 1
JP 1
En SA6 83
JP WAl
END

SORTS THE ELEMFMTS 1)1.eall*Teaeld=~TesslS OF MU INTN
NECREASING nRhrR

1DENT SHOQT
FNTRY SHORT
SHNRT HSS 1
Sal He
Se2 X1-1
EL S83 R
SA4 Ry
ES EQ R2,H3.FR
SAZ2 Bl1+HI
SA3 A2+)
1 X4 Xp-x3
PL X4 «EK
RX6 X2
RX7 Y3
SA6 %)
SAa7 AR
SBe Has]
Ex s873 Bi+]
JP F<
ER R Ha4 ¢ SHORT
sB2 R2=1
R B7.SHORT
JP FL

END
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APPENDIX L

CALCULATION QF THE gf, AND (%)

A.4.1 The programme

The FORTRAN programme listed at the end of this
Appendix is designed to generate the coefficients gﬁu and
(®) for k < 9 using the formulae of sections 7.4 and 7.5.
Only the coefficients (%) are retained on magnetic tape.
These are used in the calculation of the Laguerre polynom-
ials., The coefficients gﬁu are not saved as they are
only used here to calculate the (¥) and as indicated in
section 7.5 they have already been tabled for k < 7.
Basically the programme is designed to calculate the gﬁu
and it is then a simple matter to selectively sum them to
derive the ().

The evaluation of the b and an efficient method
of storing them are discussed in the next two sections.

A.1e2 The product of msf's, the b, and the elg

Let o ©be a partition of r with m parts
B Dbe a partition of t with n parts
€ be a partition of k with p parts

under the conditions k = r+s, m > n, m < D < M+Ne

important that all parts be non-zero. Zero parts would

lead to unwanted extra terms.
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As for (7.34) and (7.35) the product of msf's is

The msf's
Mg are formed by taking all possible products in (A.4.1).
At the i*" stage:
Select i elements from f;,...fy to give the subset S;(a).
Select i elements from h;,...h, to give the subset S,(8).
Arrange the elements of S;(a) in some order and hold it
fixeds Then permute the elements of S;(8) in all possible
ways and after each permutation add these elements to the
corresponding ones of S,(a). To each generated list
append the m-i remaining elements of & and n-i of §
to form a partition €. Bach partition & 1is associated
with a possible msf Mg from (A.L.1).
For exgrnple m =5, n = L4, 1 = 3
Sg(a) = £1,f5,fs
Ss(B) = hy,hs,h,. _
Two possible permutations of Sz(B8) are
h, yh, yhy and hg,h;,h,
to give
e, = fi+hy ,f3+h, ,f5+hs,f2,T, ,h3
gy = f4+hg,f3+h, ,f5+hy,f2,f, ,h3e
Summarising, for fixed o« and S we may have

1. = 851 seue odiks For each 1 we generate all 1 element
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subsets 8S;(a) and for each 8¢ () we generate all possible
i element subsets S;(B)s TFor each pair of S;(a) and
S{(B) we generate all possible permutations of S, (3)
before adding it to 8y (a). The remaining m+n-2i elements
of o and B are appended to generate an €. Using
(7.36) the %be is calculated.

After all acceptable combinations of S;(a) and
S1(B) are used we are left with the efg for the product
of My and Mg.

The selection of all possible subsets Si(a) for a
partition &« 1is done by the pair of subroutines SELSET and
SELGET. The routine SELSET initialises by setting
S;i(a) = f,,+++fy while the routine SELGET generates a new
S;(a) on each call. Similarly for all S;(B8) aof B.

An example suffices to illustrate the principle,
Set m=5, i = 3,
SELSET f1,f2,f3
SELGET 1. f,,f2,f,
2 fy15f2,fs
3¢ f41,T3,F,
Le £4,f3,fs
etCesas

The permutation of S;(B) 1is performed by the pair
of subroutines PERSET,PERGET. Subroutine PLRSET initial-
ises arrays and returns the identity permutation, while the

routine PERGET generates a new permutation from the current
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one using an algorithm given by LEHMER (p 23) in BECKENBACH

[(6].
Aslis? Storing the be

Every time a new b, 1is generated this must be
added to the accumulated total associated with that partit-
ion. One method of storage is to convert € to its binary
representation and use this to search a list of the binary
representations of all partitions « of k amd then
increment the associated coefficient. This is slow and
inefficient as much searching is involved.

A much faster method is to use the binary represent-

ation of € as an index. For example:

partition binary representation index (base 10)
L 1000 8
31 1001 9
o2 110 6

212 1011 11
s 1111 15

(the final O has been dropped as per Appendix 3).
Thus any Db¢,y 1is added to storage location 8

any b(szs) 1s added to storage location 9

€tCess o
As stated before each xk has a unique index. The largest
index for k < 9 1is 511 (corresponding to 12 having the
binary representation 111111111). Only some of the

storage locations are used for k < 9, but the increase
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in speed of operation far outweighe the disadvantage of
needing 511 storage locations reserved for the 97 partitions

Of k = 1;.--9.



THIS PROGRAM Cal.CULATES THE Z@NAL FOLYNUMIAL PRODUCT anD
GENERALISED RINNMTAL COFFFICTENTS A ONG THFE | INES OF
SECTIONS 7.4 AND 7.5

THE GENERALISED $TNOMTAL COEFFICIENTS ARE STNRED ON
MAGNFTIC TAPf FoR FUTURF USE

PROGRAM &KL (INPLUToUTEIT«TAPELOTAPEZO)
COMMON NN (140) oL TH(140) sCOR(1R60) «CO(4032) «KA(10H) «kR(1N)4KC ()N &
@l (42)
COMMON/STAl/KCCt10)
COMMON/STAaRT/iiP(11) «fR(42) 1IBS(11]1)
0ATA NH/Q0 el e 3enalia]15¢2102K0360659.554106¢7ReY141091204¢1 36153,
#17)10190e21002 41625232 T7A0300¢325:35]1 ¢ 3/He6NAEID04RE49nH2E006]
#5965 ¢630.66As T3 TL1aTANVH2NGBAL /
DATA NP/JeZetse74172.19430e6540T7.97.]13Y9/
DATA NRS/04]ets]0e25+R3:¢1194239.492.95741HAG/
DATA KCC/0e”+waNa77419044635496R.1980494037/
DIMENSION NMPATR{142,2)N(202)
COMMON APR (Hary)
DIMENSION L¥(i el Yl
COMMON/Fa/FaC(1n)
COMMON/A/KK (21
uo10011=1.2"

100] KK (I)=2#4(1-)
FAC(1)=1, & FAC(2)=2. % FAC(3)=6. % FAC(4)1=26. & FAC(5)1=120,
FAC(6)=T20. & FAC(7)=S040. $ FAC(R)=640320. % rAC(9)=362480,
FAC(10)=3R2X800.

149 FORMAT(9F)S.1)

144 FORMAT (I6)
14?2 FORMAT(06.FP0.13+12)

INPUT THE NDATA whITTES Nn MAGNETIC TAFE BY THE PQNGRAM
NFSCRIBED IN APFENMDTY 3
CALCULATE “HE COFFFICIEMTS 4(KAPPALTAU) OF (7.27)

IP0sS=0
DO10IJK=14]n
READ(10«1laa)nPADT
0020J=1 «NPuRT
1PNS=1P0S+)

20 READ(IO0«147INN(IPOS) 2 () o THIFPOR)
[I=NBS(1JK)
NDO3nI=)«NP2RT
READ(104169) (CH(LL) LL=[«NPART)
D040J=1eNPART
LL=TI+1eNR()

a0 COR(LLI=COCN®7(T)

30 CONTINUF

10 CONTINUF
N(1)=0
D099I=1.2()

GQ N(J+l)=th(])ss>
PRINT4 ]

41 FURMAT (1m1)
vosel=2.10
IPrR=0
D081 IXY7=].uure

1 APR(IXYZ)=,. "
Ix=nP (T
Iy=mpP (1410 -1
J=1

o J= =1
K=T=J
[xx=¢
[F(JU=K1€2.°47

2 Ixx=1

3 lazhPidel) - (1)
Ir=hP(Ke)) =i PN
Ixy=1x¥+)
BOR0JA=Y W [
GNTN(Rlabr) o [XY

) lyy=1
GOTNAS

&> Iyvy=Ja

£ DUAUJH=TY Y T
[1=N8S (N
LLL=NKS (K
MM=NBS (1)
JS=NP LY e i ~)
JST=nP (s |11
KS=MP (r) e =)
KST=NP (K+ )1 <)

IPR=IPH.)
NPATR(IPr. = (JS)
NPATR (P2 = oms

D) 7OMAZ )q. I-T
UNTOMR=FSr aT



SFLECT A PAIR OF RARTITTINNS

ALPHA A PaRTITIUN NF R
BETA A PARTITION OF 1

LAa=L TH(MA)
LB=LTH(MH)
IF (LA=LR) AH A9 A9

6A CALL NIBT(Lasivii(Ma) aKe)

I3

CALL NIBT(LH«NMIMR) +KA)
LA=LH
LB=LTr(MA)
GOTN6T

Q CALL NIRI(La«NtI(MA) kL)
CALL NIBT(LH«NMMIMH) «RA)

€7 MMA=MA-NP () + |

11

MMR=MHB=NP (K) « |
LLA=T L «Ja«tiH (i4144)
LLB=LLL + UR+NH (MMR)
AC=COR(LLA)#COR(LLR) -
FACA=FKRAC(KA I A)RFRACIKB LK)
FACR=AC/FACA
DO1101L=).L0b

n KC(lL)=Ka(IL)
Doj20IL=}«ln

120 KC(LA+IL)=rrt(TL)

LAB=LA+LHA
CALL SHORT (At ol LR)
NNN=1RIN(fCol B
LL=TNDEX (Fbth e 1) 1y (TP
APR(LL)=FRPaC(xCsLa)¢*FaCB+APKR(LL)
00130JJ=1 1+
CALL SELSFTI(LY«JJettes,LA)
GOTN131

4 CALL SELGFT(LY.JJdetenS,LA)
1F(MS)130.1314130

131 CALL SELSET(LY«JJeaYenQy, LR)

GOT(133
a CALL SFLGET(I YaJ ety enSY LH)
[F(MSY) 1364133, 44

33 IF(JJ-1)13Aa138.124
15 DO14CIL=1.L2
0 KC(IL)=KkA(TL)
JJA=LX (1)
JJUR=LY (1)
KC(JJA)=KC(JJa) +Kn (Jiln)
JJc=LA

00150TL=1) LR
IF(IL=vJr) 181G, 18]

151 JJC=JJUC+1

KC(JJC) =Kk (T

n CONTINUF
CALL SHORT(KCW 110
NNN=THIN (KCoJur)
LL=INDEX (NS o T) e ( (T1PP)
APRI(LLY=FR/C( (« ) JC)YPFaCH+APR(LL)
GOTO13R

134 CALL PEKRSET (L« )Jdat vy

GOTN137

139 CALL PERGET(Ly+JdJaSx)

IF (MSYX) 13k 1374134
7 LOVKOIL=].t 8

KC(lLy=xaqiL)

VOY70IL=)edd

Jda=Lrx (11

JJr=LY (TL)

170 KC(JJB)=K{TgJu) +rn( )I)

JJyc=La
DOYROTL= .LR

V0 90TLL=1.0J
IFCIL=LY (TLID) 190 1K14190

199 CONTINUF

JJUC=JJC+1
KC(JJC) =xm (1L

181 CONTINUF
1Pn CONTINUE

CALl SHORT(KCa3JC)
NNN=TRIH(RCeJIC)
LL=TINDFY (NWUte F) 2 L 1OR)
APRILL)=F ¥l (ar«JJC)Y#EACKSAPPILL)
GOTO13%9

130 CONTINUE
7n CONTINUF

NPART=NP (Ted) =i (1)
[M=M(1PR)
NPBR=NPLRY -]



D021 0Ma=1NPAR
MBX=MA+)
LL=TMeMp
LLX=MMeMA+NHE (Ma)
APR(LL)=2R=aPR (LL) /COR(LLX)
A D00220MR=MRX « NP aP T
LL=IMeMR
LLY=MM+MA +NH (MR)
220 APR(LL)=APR(LL)=~ZReCOR(LLX)
210 CONTINUE
LL=TM+NPART
LLX=MM+NPART+NR (NPART)
APR(LL)=APR(LL) /COR(LLY)
IMM=IM+NPART
IM=1IM+1
00230LL=TM.TMM
IF (ABS (APR(LL))~1,.F-1171231423]1.230
231 APR(LL)=0.
23n CONTINUE
60 CONTIMUE
IF(J=K)52+52e4
S? Z=FaC(I)
Ix=NP(])
IY=NP(1+1)=)
NPART=IY-Ix«]
[1=1-)
MCAR=0
KCCC=KCC(1)
003101a=1.kCCC
310 CO(IA)=0,
D0320JJ=1.11
22=72/ (FAC(JI) #FaC(T=JJ)
I1X=NP (JJ)
IY=NP (JJel) =1
D0330MA=Tx.[Y
NNN=NN(Ma)
00340MB=]1.1PR
IF (NNN=NPATR(MHBe1)) 34143424341
341 IF (NNN=NPAJR(MR¢2))34043424340
342 D0350MC=1+NPART
LL=N(MB) +MC
IF (ABS (APRI(LL) ) =1.E=10)350+350435]
35] MCC=MCAR+MC
CO(MCC)=CO(MCC) +APR(LL)
350 CONTINUE
340 CONTINUE
00360MC=1«NPART
MCC=MCAR+MC
340 CO(MCC)=CO(MCC)#Z2Z
MCAR=MCAR+NPART
330 CONTINUE
320 CONTINUE
WRITE(20) (CO(LL)YsLL=1exCCC)
PRINT2414 (CO(LL) sLL=1+xkCCC)
241 FORMAT (X10F13.8)
S0 CONTINUE
STOP & END

=)

SURROUTIMNE PERSFT (| «NaS)
DIMENSION D(10)«E(10).a(10) L (10}
INTEGER A«NJE
MS=0
NN=N=]
0010I=1eNN
0(I=0
E(I)=1
Al =I+1
CONTINUE
RETURN
ENTRY PERGET
J=NN
8 A(J)=A (M) =E(J)
IF(A(J)=U=1)1+241
IF(A(J)) 34203
I=Jel
K=a(J)
IF(I=NN) 4465
K=K+D(I)
[=1+1
GOT06
s IH=L(K)
LK) =L (Kel)
Likel)=IH
GoT07
2 E(N) ==E(N
0 =1=-0(N
J=J=-1
IF(J)Se9yn
Q MS=}
Ik=L(2)
L(2)=L(])
L) =In
RETURN & Eno

—
~o

W

&>



el

v

NN

NP
\L:]

TNDE X

AG

/M

FAC

NNE
FRAC

Fv

FitR

R

SURKNITTNE SF
DIMENS TN | )
MS=n
LiT+l)=ts)
M=y

L =1
LF(w=111.241
M=Mas]

LIMYSL (M=) )
GOTN3

RE TURN

ENTRY SFILGFT

1P SETO e TaMeMS i)
1

[F (LM s =l (42 1) 154485

LiMy=L (M) e
GOTN3

M=M= |
IF(MY6eT.n
MS=]

RETURN & Ftn

CHECKRS THF 1LTST oF HTIARY QEPRESENTATLONS OF wanTIr1n
KAaPRA A RPETUR IS THE OOSTTION OF £RSTLO0 ny e r
IDENT LHDEX
ENTRY [NREY
USE Y,
BSS lan
USE @
USE /START/
BSS 11
8SsS 5%
USE “
B8SS 1
SAal A1
SA2 WP
SA3 X2 +NP =1
SRe XJeNl~D
SB3 1
Sag R2+R3
Ix3 X}=x2
LR X3¢ RM
SR3 2 3.1
JP AG
SXa R3
JP TNDEX
END
CALCULATES FAC(P4T1)eFAC(PHI2)®,.. AS REONUIRED N
IDENT FRAC
ENTRY FRrRAC
JSE /Fn/
BSS 10
USE “
DATA 1e
BSS 1
Sal QONF
BX6 r]
SB3 a0
Sa2 32
sSR2 X2
SH2 P
R W2 «FP
Sal 1] +R?2
Sa2 al=l
Ix3 X|=X2
IR X3.FL
SAS H3sFac
Fxh Y304h
S83 HO
JP Fv
SH3 R+
JP Fv
Sas s3+Far
FxXe XS0X K
JP FRAC
ENU

THIS PROG2IAM
THFSE HAVE aL

aLS) CALLS IBIN SHORT

QFADY RAEFN LLISTED

AND

(7.36)
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