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Abstract

Within quark models of hadron structure which respect chiral symmetry (like the

cloudy bag) it is possible to guarantee that well known soft-pion theorems are satis-

fied in Born approximation. The most famous example is the Weinberg-Tomozawa

result for S-wave r1ú scattering. However when one goes beyond Born approxima-

tion to solve the problems to all orders it has not yet proven possible to satisfy both

soft-pion theorems and unitarity. We intend to test a recent suggestion that the

problem can be solved with a particular choice of relativistic wave equation.
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Chapter 1

Introduction

The interaction of pions and nucleons has been studied extensively with many dif-

ferent approaches since the early days of nuclear physics. In those early days, there

were limitations in the capabilities of both experimental and theoretical techniques

with regard to r N physics [I{ol 69, Eric70, EW 88]. The nucleon is accepted as an

extended object but has to be treated as elementary particle. The study of the rl/

system was motivated by the aim to explain a more complex system, the nucleus.

Although there was some success in explaining Strong interactions there a,re still

many unanswered questions. The S-wave pion-nucleon interaction near the energy

threshold has been one of them.

In the eyes of present day's maturity of field theor)' and technology, studying

the z'it/ system represents not just a means to explain the nuclear structure but a'lso

serves as a system to test theories at a more fundamental level, such as quark models

[Tho 84, Klu 91]. The developments in both theoretical and experimental strong

interaction physics in the past two decades brings this subject to the forefront of our

interest. The experimental confirmation of the quarks and the theory of Quantum

Chromodynamics can be viewed as the major developments of the past two decades.

Deep Inelastic Scattering (DIS) experiments certainly show the trails of quarks and

gluons. Quantum Chromodynamics(QCD) is considered a most orthodox theory
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for the subnuclear structure. The pr:ohlem of confinement is unresolved and still

stands as a profound barrier in understanding nuclear structure and nuclear physics.

Therefore, there is a need to bridge the gap between traditional nuclear physics and

QCD. Our study of the pion-nucleon system has the objective of building such a

bridge.

In this work, attempts ale made to test two concepts: unitarity and chiral sym-

metry. By now, considerable effort has been made to satisfy unitarity in strong

interaction physics. Because of the non-convergence of the ,S-matrix in usual per-

turbation theory, an alternative formulation was required to describe strong inter-

actions. Such divergences are unavoidable when we use field theory and calculate

higher order graphs in order to describe interactions consistently. After the work of

Bethe and Salpeter [BS 51], followed by that of Blankenbecler and Sugar [BbS 66]

there is a method that can guarantee unitarity in field theory. The use of relativis-

tic 3-dimensional propagators developed by Blankenbecler and Sugar in studying

the l/l¡I interaction enable the successful application of field theory to the strong

interaction [Erk 74, Hola87, PL 70, Gro 82].

The success of One Boson Exchange potentials with unitarity preserving propa-

gators in the l/Iú interaction is rather elegant when compared with the remaining

sectors of strong interaction. For example, in the zrly' system, the one particle

exchange (tree diagrams) doesn't seem to provide a reasonable agreement with ex-

periment when we unitarize the scattering equation. Especially for the S-wave in-

teraction neal threshold, the experimental phase shifts are not weli reproduced and

the scattering lengths are wrongly calculated when we attempt to unitarize the wave

equation [Tho*87, CJ 86].

There is another concept of profound importance concerning with the symmetry

of subnuclear particles: quarks and gluons. It is chirai symmetry. Historically., this

symmetry was inspired by the smallness of the pion mass on the hadronic scale.
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The partially conserving axial current(PCAC), the culrent algebla and soft-pion

theorems were the major achievements in the 60s. These theorems, of coulse, build

on the concept that both nucleon and pion are structureless (which is a somewhat

simple picture compared with present day knowledge) were proved to be consistent

with experiment IAD 68, EW SS]. These traditional soft-pion theorems should, per-

haps, be considered as a successful test for the Chiral symmetry in the context of

nucleons and pions.

Chiral symmetry continues to play a role in modern field theory in a tnore funda-

mental way. Nucleons consist of quarks and gluons which ale confined to a spatial

region. The QCD Lagrangian in the limit of massless quarks is found to be in-

variant under chiral transformations. This QCD Lagrangian is known to be highly

non-linear and very difficult to solve. On ihe other hand, as \/e study low energy

nuclear physics, the relevant degrees of freedom are not those of quarks and gluons,

but mesons and nucleons. At first it seems for low energy nuclear physics there is no

reason to take into account the dynamics of quarks and gluons. However', from the

results of many workers, the interaction of pion ancl nucleon in low energy regime fol-

lows the dictate of the dynamics of the subnuclear particles [Tho 81, Tho 84, Klu 91].

It is rather interesting, from my point of view, to mention a brief account of the

physics of chiral symmetry developed to this date. In the mid-70's the difficulty in

applying exact QCD to calculations has led physicists to consider other alternatives.

The bag model of the MIT group provides such alternative. In the MIT bag model,

one uses the phenomenological confining force and can explain the nucleon structure.

The quarks are seen as Dirac particles confined to a spherical cavity. This model,

however, is not invariant under chiral symmetry. There is also no mention of how

to include mesons in the scheme lHey 77].

This drawback of MIT bag model ìs rectified by considering the pion (mesons)

as a compensating field required by Chiral symmetry. The pion is considered an

t
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elementary par-ticle and nlrc.ìeons a,s corrìbined 3-quark states. It is impoltant to

point out that such a scheme not only provides links between traditional low energy

nuclear physics and QCD but may also provide further theoretical clues regarding

confinement. As we've just said, in traditional nuclear physics the approximate

conservation of axial vector currents that resulted from smallness of pion mass in

hadronic scales gave various low energy theoretical predictions. The soft-pion the-

orems are a good example. Within the context of chiral bag models, the smallness

of the pion mass is also found to be crucial [Jaf 79, Tho{80, Tho 84].

As far as S-wave pion nucleon scattering is concerned, Weinberg's nonlinear La-

grangian satisfactor-ily predicts the isovector scattering length. The volume coupling

version of Cloudy Bag Model (CBM) has been found to provide the same lesults

[Tho 81]. However, our attitude is that we are not satisfied with the tree level cal-

culation which is consistent with experiment only at threshold. We must be able to

evaluate scattering lengths as well as phase shifts at finite energy.

Initially, it was assumed that the non-linear CBM lagrangians are reliable only to

lowest order in the zl/ coupling. However, I(albermann and Eisenberg proved that

the CBM Lagrangians are also reliable for higher order calculations, such as pion

production IKE 83]. In their work, Kalbermann and Eisenberg successfully calcu-

lated M1 photoproduction amplitude in the A(1232) ener-gy region. This encourages

us to use the CBM Lagrangian in higher order calculations.

The calcuiation for the S-wave n ly' interaction using higher order graphs has been

done by [Tho187, CJ 86]. In their work, Thomas et al. used the driving potential

to order pþ. Uo*ever, the experimental isovector form factors were used instead

of those given by the rnodel and only the isoscalar contributions were calculated

explicitly. The Lippmann-Schwinger equation was used to iterate the potential to

preserve the unitarity.

In our work, we calculate the driving potential for S-wave to order pþ, with
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both the isoscalal ancl isovector contributions derived from the CBM Lagrangian.

Various 3-dimensional relativistic propagators are ,used in solving the scattering

equation.

The outline of this thesis is as follows. In Chapter 2, we discuss the relevance

of chiral symmetry to nuclear physics. Attention has been given to the S-wave zr.fy'

scattering at threshold. Firstly, the related problems encountered in explaining the

S-wave threshold behaviour using covariant field theory are described. We then

discuss how the approximate conservation of the axial current is used in solving this

problem. Next we discuss the linear sigma model and how the PCAC results ale

reproduced in this model. Then we discuss Weinberg's non-linear representation

of the sigma model and show how the purely isovector scattering lengths for nIy'

S-wave a'.e obtained(Weinberg-Tomozawa resuits).

In Chapter 3, we discuss the question of unitarity in field theory. In particular,

attention has been given to the methods of approximations for the Bethe-Salpeter

equation which ensure covariance and unitarity. We discuss the methods to deduce

various three dimensional relativistic propagators. We also give attention to the so

called "smooth" propagators that are consistent with Dirac phenomenology. The

advantage of using such a propagator in systems of non-equal masses are discussed.

We list the propagators used in testing the scattering equation.

Our major contribution to this work can be found in Chapter 4. In Chapter 4,

the formalism used in deriving r/y' interactions is discussed. The examples of how

the interaction of pion and quarks are transformed to those of pion and nucleon are

discussed in detail. We then calculate the S-wave interaction to order "f 1rh using

the Cloudy Bag Lagrangian.

In Chapter 5 we calculate the P-wave interaction to order 1rþ rtitrg the CBM

Lagrangian. It is mainly a repetition of work done by previous researchers. We just

include this for completeness.
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In Chapter 6, we carry out renormalization fol the S-wa,ve zrly' interactions.

We first give detailed derivations of the nucleon self energy, vertex renornaliza-

tion and bare bag probability. After this presentation, which is a review of the

renormalization procedure, we show how the renormalization is carried out for the

Weinb erg-Tomozawa interaction.

All of our numerical results are presented in Chapter 7. The various phase

shifts and scattering lengths for S-wave and P-waves ar-.e given. The compar^ison

for different relativistic propagators is also made. The threshold behaviour for the

S-wave interactions are discussed.

We close the work with a general discussion and give an outlook for the zrl/ S

and P \\'aves in Chapter 8.
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Chapter 2

Chiral Symmetry in Nuclear

Physics

2.I Introduction

In this chapter, we will discuss how chiral symmetry plays an important role in the

understanding of the strong interaction. We will first focus our attention on the

traditional field theoretic methods in studying the S-wave intêraction. In Section

2.2 we will firstly look at the covariant calculation of Feynman diagrams to lowest

order. It witl be seen that the use of pseudoscalar and pseudovector n1ú interactions

in tree diagrams do not give correct scattering lengths for S-wave. In Section 2.3 the

Partially Conserved Axial Current (PCAC) and soft-pion theorems aÌe discussed.

We then show how the bad results for the S-wave scattering lengths in Section 2.2

are rectified by soft-pion theorems. We discuss the linear ø models in Section 2.4

and show how S-wave scattering lengths are obtained. In Section 2.+.4, we discuss

the Weinberg's non-linear ø model and show how the S-wave isovector scattering

iengths (Weinberg-Tomozawa Results) are obtained.
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2.2 Pseudoscalar and Pseudovector pion-nucleon

interactions

The interaction between pions and nucleons can be described by an interaction

Hamiltonian of the form (which is consistent with parity and charge conservation):

Hyì* : igú ¡,t1sr. zrÜ¡¿ (2 1)

tt\í)* : -fflu ¡¡1p15rú N . ð,r (2.2)

where g is the pseudoscalar coupling constant and / the pseudovector coupling

constant (dimensionless) :

o2 f :0.097 + o.oot ,* :14.3 + 0.08 , 
4tr

(2.3)

and / and g are related by

r I (2.4)
n1,r 2m¡,1

The two interactions,(2.1) and (2.2) are equivalent in the non-reiativistic limit for

P-wave scattering but not for S-wave.

2.2.L The S-wave interaction

Using the pseudoscalar interaction (2.1), we can calculate the S-wave scattering

amplitude by the usual covariant method IMS 88, BD 62, IZ 88, AH 84]. The S-

matrix amplitude to order 92 for the process

"u(q) 
* 1/(p, 

") - r¡(q') + l/(p', r')

8



(q' ,i') t

(2")-u

M{p") : g'u(p', 
"')r¿'lu

(q,i)

:1

1 I 1 11,_t
2Er2Er,2uq2ar, )

\¿\¿\¿\¿\/ \¿\

(q',i) -'

(2.5 )

(M"(p') * A,[6(ps)),

t 
. (ø'Ð

(p+q) (p'-q)
(p,s) (p' ,s') (p,s) (p' ,s'

(a) (b)

Figure 2.1: Diagrams contributing to the S-wave pion nucleon scattering: solid line
represents nucleon and dash line pion.

is given by (in this chapter we use the normalization convention of Aitchison and

Hey [AH Ba])

(p', 
"' 

; Ç',, ilSQ) - \p, s; q, i) (2tr)a6a(p'*q'-p-q)

where i,j arc pion isospin labels and the covariant aniplitudes M"(ps),M6(ps) are

given by

M"(p") : s'u(p' , "')ri'yrlØr+ 
d + "l.,yll yrouþ,, ") (2 6)

L \s-rr¿N-) I

and

In (2.6) and (2.7), s and u are usual Mandelstam variables

s:PIq:p'+q'

ttu:p-q-p-q

Using r;T¡ : 6¿¡ t ie¿¡¡,r¡, we can easily show that

M"(p") -l M6(ps) : 6n,7ft)ços) * ie;¡*rx7{-)(ps) ,

15r;u(P, s) (2 7)

9
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wher-e

By noting that in the non-relativistic limit (i.e. all momenta are nearly zero)

u(p',"') d"@,") x Zm¡,¡mn

s - ffi2N :2mNmn(\+ m"l2m¡g)

u - rn2¡¡ : -2mNm"(1 - mrf Zrn¡¡),

we can evaluate 7(+)(ps) at threshold. At threshold 7{+)(ps) behaves as

7(+)(ps) --+ -2s'
| - m2*f 4m2¡¡ )

7(-)(ps) __+ 92mn lrn¡rt
| - m2,f 4m2¡¡

From the deflnition of the scattering lengths we find that for low energies,

1

¡(+) 7(+) -- o(+) )8rW

and therefore at the threshold energy

7{+)(ps) : +s2u(p',")lJñ. Jñl ,(o,")

o[*)(p") =-{ I x_ 1sm*1
+7f n¿r + rnN

o[-)(pr) = !YL-:- = o.r4m t' 6r rr¿N rr¿î i mN

(2 e)

(2.10)

(2. i 1)

(2.r2)

(2 13)

(2.r4)

In eqn (2.I2), W : ntt, * mx is the total energy and ,f(+) th" scattering amplitude

which is equal to the scattering length ¿(+) at threshold. o[*)(p") in (2.13) and

oÁ-)(p") in (2.1a) corresponds to S-wave isoscalar and isovector scattering lengths

respectively. The pseudovector interaction (2.2) can also be used to calculate the S-

10



wave scattering length at thresholrl. Following similar algebra which led to equations

(2.6) and (2.7) theinvariant amplitudes for the diagrams shown in Fig.2.la and Fig.

2.1b are

M,(pr) : - f*f u(p', r' )'t, fu t lY##) /1snu(p, s) , (2.15)

and

{yr¡u(p,s). (2.16)

For threshold energy where the 3-momenta ale nearly zelo one finds that

ú(p' , "')"'tu d U+ f + m'N)1s d.,(p., s) x 2m¡¡m3*,

u(p',"')''tu dØ- I + ^*)ls du(p,s) x -2m¡¡m3*,

and therefore the amplitude for the pseudovector interaction is given by

Ma(pu) : - (*Y u(p',,)'yu ø",1! - ffìl

M"(pu) lM6(pu) = - f'z . -) 
-(ó¿,¡ 

+ ie¿¡¡r¡)
' (t + m,^f2m¡¡)

oLÐþr)=-+ I =-o.o1orn,1' 4rrnn{'mN

o[-)(pr) = -f -" 
- ]- = o' 8tr rrtN mr * m¡¿

Since we have

M"(pr) * Mr,(pu):6,¡TG)(pu) * ie;¡tr*7'-)@u) ,

The scattering length. ¿(+) for the pseudovector interaction are

(2.r7)

(2.18)

11
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It is immediatelynoted that the results (2.13) anrì (2.19) do not agree with experi-

mental values

of,+)þ"p): -o.o1o rn*1; "f,-)þ"p): -0.091 n¿*1 (2.20)

It is interesting, however, to note that the results oán)(pr) in eqn (2.18) tttd "[-)(p")

given in eqn (2.I4) do agree witn o[+)(erp) and, "[-)þrp) respectively. The large

value of ø[+)(p") resulted, from the large contribution of the isoscalar part of (2.8).

\\¡e shall no\l/ examine what mechanism can be used to reduce this value'

2.3 Soft-pion TheoreTns

In studying low energy strong interactions, the soft-pion theories are a time hon-

oured subject. In this section we will discuss the implication of the approxjmate

conservation of the axial current. In particular, we show how the soft-pion theorems

can be used to rectify the bad piece of the isoscalar scattering length o[*)(p") in eqn

(2.13). For the discussion in this secfion, we closely follow those of Adler [Adl 65]'

Scadron [Sca 79, Sca 81] and T.D. Lee [Lee 88].

2.3.L Partially Conserved Axial Current(PCAC)

The vacuum to one pion transition amplitude can be wlitten as

(0lJir(x) l"i(q)) - 5¿i ¿ ¡n0,"-'t'" (2.2r)

J'ruk) : tþN'yp'lsr' rúN

rvhere

t2

(2.22)



is the axial vector current and /* is the pion decay constant. Taking the divelgence

of this equation leads to

u"Lu: 6ii f**', (2.23)

From this, we can see that axial vector current is not conserved since .f,, and nr.l are

non zero. However, since the ratio of pion mass to nucleon mass squaled is small,

*'*l*'N = 0.02, to a good approximation we can take the divergence of the axial

current to be zero, i.e.

ôPJiu x o. (2.24)

This is one version of the hypothesis of the partial conservation of the axial culrent

(PcAC).

In order .to see how the soft pion theorem is used in pion-nucleon scattering,

let us consider the general pion transition A --+ B + n (A,B:hadrons) in Lhe soll

pion case [Sca 81]. One can separate the matrix element of the axial current,Tl:

(BlJiulA), into pion pole dominant part and a background part [Lee 88, Adl 65,

Sca 79, Sca 81]. Graphically, it can be presented as in Figure 2.2.

B

..AM
B

A

B

+

A

Figure 2.2: Pion poie dominant at low energy

The matrix element for this process can be written as

A

(2.25)

Where flk) can be identified as pion current matrix element and T'r is the back-

T : (-i)(- t,øò7!4rlk) +T:",

13



grr:n-rnr{ cur^r-ent. Þìqrra,tìon (2.25) with the condition m7x0,At,Jt" = 0 provicles the

so callecl ,S-matrix version of PCAC [Sca 81]

if"fi,G) -- qrT', (2.26)

Equation (2.26) is found to be insensitive to the m7 x 0 or q2 = 0 limit. One can

further' Ìemove the bremmstrahlung type pole in eqn (2.26). The result being the

soft pion version of PCAC [Sca 81]. In soft pion limit (*?,q' + 0 andq --+ 0)

r] ---; -if;'q'T;"(pole) + O(q) (2.27)

2.3.2 Adler's Consistency condition

(a) (b)

Figure 2.3: Diagrams for the generalized Born matrix element (rl/l/iull/). The
heavy dots marks for the axial current interaction.

One can further pursue the PCAC in order to apply it to the interaction of the

pion-nucleon system. Starting from generalized Born approximation, i.e. the axial

currents between l//) and lr,Àú) states, one can derive the so-called Consistency

Conditions for strong interactions [Adl 65]. As in the previous Section one can

separate the matlix element M*: \trNlJ¡"slN) into the pion pole contribution part

t4



(2.28)

In the limit rnl = 0 the approximate axial cur-rent conservation 0þjps = 0 impiies

if"Mi.(q) x qPNIi, (2.2e)

From this one can identify the nucleon pole part of q'ML as the pseudoscalar inter-

action of Fig. 2.3 while the non pole term has the folm

,i1uMo ! Mslsr' ,

where Mo denotes the background amplitude. In the limit qp --r 0, we have soft

pion theorems;

u:.(q) x Mí,¡,rpot""(q) + NI|(q --+ o) (2.30)

where

Mn and Backgroundparf M,

Mi : (-i)(-iÍ.qrlf --* - r)u'.(rù + M',
q'-m"r+r,e

Mi,k -+ 0) : ¡ft;{rorrt*, + Mo%ri) (2.31)

In the case of final pion being soft, the hadronic background amplitude ffi becomes

_ grr-ys.This results in the background amplitude for the pion nucleon case [Sca 81]:

t.t2Mik--0) :' U"
Tl?.N

i5

(2.32)



Therefore this background. amplitude moclifies th. 7(+)(p.s) as follows

r(+)(ps) - , -,ffiA+2s2
-g2m2*f 2m2*_1_m2,f4m2* (2.33)

With this modification, the scattering length o[*)(pt) becomes

(2.34)

which is comparable with the experimental value

2.4 The Sigma Model

In the previous section we showed how crtrrent algebra and soft pion theorems are

applied to get correct scattering lengths fol the S-wave interaction. We saw that

the large and attractive isoscalar contlibution in the interaction is neutralised by

the background amplitude ¡t"ik -- 0). We will now discuss how such cancellations

occur naturally in the context of the sigma model.

2.4.L The Linear Sigma Model

In 1961 Gell-Mann and Levy introduced the linear omodel IGL 60] In this model,

they postulated an isoscalar-scalar field ( ø) in addition to the pion field, which

is isovector-pseudoscalar. Together they form a so called chiral 4 vector {o,n}

for which the scalar product wilh {tþNtþx,tþ¡v^lsrtþ¡,t } is invariant under chìral

transformation. The Lagrangian of the linear o rnodel can be written as

L:Lolco,

16
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where Lo in (2.35) is givcn as

Ls: ú^rli.tr0' - g(o * ir .r15)ltþr,r * u(o,*¡ +l@ro)' + (0*n)"1, (2.36)

with the potential term

1
U(o,r) (2.37)

4

where À and À2 arbitrary constants. In eqn (2.35) co is the chiral symmetly breaking

term. under an infinitesimai isospin rotation, zr and ,ry'¡¿ transform as

À'{(o' + rz) - 
^'r}',

7f---+rt-aX7Í,o ---+ o) (2 38)

(2.40)

(2 42)

(2 3e)

while under an infinitesimal chiral transformation

o --+ o - þ.n, rt --+ it loþ,

With these two transformations we have vector and axial vector curLents ,

(2 4r)

6L
vp

6(ôra)

,þ¡,tlrr l2rþ¡¿ * zr x ôrtr,

6(A*p)

tÞ *t* *f,rl' tr * (ô ro)r - o rzr o,

6L

(2.43)

and

Ap

t7



and their divergences are

}rV*:0; ðPAr:ç7ç (2.44)

2.4.2 Broken Symrnetry Mode

It should be noted that in the potential term in the Lagrangian, U(o,zr), we can

choose one of the constants, )2, as the pion decay constant f" . h is chosen so that

the vacuum expectation of the ø fleld in the absence of the pion field is

(olølo) : fn, (2.45)

(01g1þNo1þ^rl0l g f ",þN,þN

m¡,ttþ¡vtþ¡t. (2.46)

The zr-a interaction is also generated by the potential termU(o,zr). In the absence

of a nucleon field one may expand the ø field so that [Bro 90]

uff" + óo,T - o) : 
^'fió'" 

+ 
^'z 

f:ó3" +
1

and the nucleon masses are generated according to the Goldberger-Treimann relation

4 ^, 
ó:, (2.47)

(2.48)

from which we can identify the mass of /o as

*7ó7 : 
^',r?ó',".

For a non-zero pion field, the potential term becomes

1

4
À'[(("f" + ó,)' + ir2) - f:)',

1

t

U(f" + óo,T) :

18
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which leads to an interaction Lagrangian of the form

2.4.3 Correction to the S-wave amplitude

(q'j)- -

(p-p') o

Lo-nn : #r"nr.

(+) u@',,) 

=# + ¿,u(p, 
s) 6 ¿¡

- - (q,i)

(2.50)

(2.51)

(p,s) (p' ,s')

Figure 2.4: t-chartnel ø exchange diagram for S-wave zrly' interactions

Using eqn (2.50), we can write down the amplitude associated with Fig- 2.4 as

generated by the sigma field

Mo

In the non-relativistic limit, t : (p - p')'= 0, therefore

Mo x +s2ffdo, :2s26¿i (2.52)

where use has been made of the Goldberger-Treimann relation rrù¡¡ - gf* tn (2.52).

In our discussion for soft pion theory in Section 2.3, we have seen that in eqn

(2.33) the background amplitude Mi! k + 0) in (2.32) modifies the large piece of

pseudoscalar result 7(+)(ps) of eqn (2.13). Here we can see that the t- channel a

exchange diagram shown in Fig. 2.4 provides the same modifrcation to the pseu-

doscalar result(2.13), as the three diagrams shown in Fig. 2.Ia,2.lb and Fig. 2.4

19



must be taken together in linea,r sigma model.

2.4.4 The Non-linear sigma model

The ø model of Gell-Mann and Levy provides a good theoretical foundation for

explaining chiral symmetry, spontaneous symrrretry breaking and the genelation

of nucleon masses. As we have demonstrated in the previous section it is also

consistent with the soft-pion theorems in explaining the S-wave scattering behaviour

at threshold energy. A drawback of the ø model is that the a particle has not been

observed in nature. However Weinbelg has shown that the o lield can be tr-ansformed

away by defining a new pion field (d) ". follows [wei 67, wei 69, wei 79, Bro 90].

ó :2.f*tar(r) î, (2.53)

where fr:rlr and 0 is related to ø and zr through

o: fncosd, r -- f *â'sinî (2.54)

When we apply this transformation to the Lagrangian of the linear ø model (2.35),

we get the Weinberg Lagrangian

L'W l:N(fi' D * - mN)úN - t{lrt'.^ts^tprúN' D *ó

12 ó
2

1

2
DrÓ' D*Ó ) TT¿ 

71

(1 + ó2
4J?

The boson kinetic energy term of (2.35) l¡ecomes

,)

)

(2.55)

1 1
--+ --l@,n)' -t (ô*o)21,

20

2
DrÓ' D*Ó (2.56)



whcrc covariant derivatives are defined as

and

Dr'þ* : lð,-r iTr: + ó')-". (d x ð,ó)lrþ*

ðr'þ¡'r *
Øf] + ó'z)

Trþ¡v .(ó x Aró) (2.58)

In eqn (2.55), the pseudovector coupling term is written by using the relatio" * =

fi. 'tt't" Weinberg Lagrangian (2.55) is particularly convenient in dealing with S-

wave scattering at threshold. We noticed that the empirical isoscalar piece of (2.20)

is nearly zero and that the¡efore the pion-nucleon scattering length af threshold is

pureiy isovector. We see that the Lagrangian (2.55) has an interaction tcrm linown as

the Weinberg-Tomozawa term (2.58) in addition to the usual pseudovector coupling

term . The Weinberg-Tomozawa term gives the correct scattering length at threshold

energy as follows.

The usual covariant ^9-matrix expansion to order (1) is

(2.57)

5(t)

(/lstrr - 11,)

dar'llr,y7(r)I
dartþ¡¡(r)T¡rþN("). (ó(*) x ôoþ(r)). (2.5e)

(2r)a6a(p'lq'-p-q)

To this order we find the ,S-matrix amplitude for Weinberg-Tomozawa interaction

AS

r lt t I 1l
(2")u lz Er, 2 Ep 2ur, 2uql

1

2

2t

MpyT(iB',j;in,/) (2.60)



Where, the covariant amplitrr de Mçy7(i,8,, i ,ia,i) is given by (we rather writing this

amplitude by showing explicit isospin dependence)

1
MyyT(iB', j;iB,i) (ro * u r,)uÏ (p', t' )u(p, s) (I p, i p,lr ¡(- i e¡, ¡ ¡)l I ni a), (2. 6 i )4fl

where eq.: ,n7 + q2 the pion energy and ie¡¡; the pion isospin matrix elements

[Wick55]. In order to have a covariant amplitude for total isospin 1, rather than

an amplitude for definite isospin state for pion and nucleon, we transform (2.61) as

follows

M{", I t ci:,:', ::, cïEï Ji Mwr (i 6, i ; i Bi)
NBIJ NBL

(2.62)

where Àîryr : -2 and )lvr :1 (see also Table 4.4). At thresholcl the scattering

length is

- fifr" + un)r) (p' , ,')u(p, 
")ÀI*,

#*{,,úzI

1

I
WT (2.63)

This is the famous Weinberg-Tomozawa result

Tn*
+ ;-+:0.18 rn.'

+7t I;

- :+: -0.09 rn"l 
'Er Ií

(2.64)

which agrees well with experiment since the isoscalar scattering length o(+) .tt¿

isovector scattering length o(-) u." related to ø1 and ca via I

Ay

A3

(or+2a3) =0.0d(+)
3
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1
a(') (o. - or) æ -0.09 rn,l

,)

The contribution from the usual pseudovector coupling term (2.19), as we have

shown in Section 2.2.1, is indeed negligible.

2.5 Surnrnary

In this chapter we have shown that usual pion-nucleon interactions, i.e. pseudoscalar

and pseudovector interactions, cannot give correct sc¿ttering lengths for the S-wave

interaction. We then discussed how the S-wave scattering lengths are evaluated

correctly by soft-pion theorems. Next we showed that in the linear sigma model, the

t-channel sigma exchange gives the necessary cancellation in the isoscalar component

and consequently yields the correct result for the S-wave scattering lengths. We also

discussed the non-linear o model and Weinberg-Tomozawa results.
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Chapter 3

Relativistic Two-Body

Propagators

3.1 Introduction

In this chapter we would like to discuss the methods used to ensure unitarity in

two body scattering theory. It has long been elear that use of the non-relativistic

Lippmann-Schwinger equation with non-relativistic potentials satisfies the unitarity

condition. When one describes the scattering process in a relativistic framework,

it is natural to use relativistic propagators (Greens Functions) and to treat the

interaction in terms of fields. This poses problems which make it difficult to solve

the scattering equations exactly. Firstly, we have to take the negative ener'gy states

into account in propagation as well as interaction. Furthermore) the 4-dimensional

scattering equations are more difficult to solve numerically. Tire convergence of

the equation is not readily guaranteed, especially in strong interactions. However

after numerous approximations and reductions, and encouraged by the success of

non-relativistic formulations, it is reasonable to believe that one may ensure the

unitarity by using relativistic propagators. In Sections 3.2 and 3.3, we wili outline
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how the relativistic equations for a scattering process are deduced. In Section 3.3.1

we discuss how the 4-dimensional relativistic scattering equations can be reduced to

3-dimensions, by removing the relative energy variable by means of the dispersion

technique. In Section 3.3.2 we employ the instantaneous interaction approximation

to obtain the relativistic three dimensional equations.

Relativistic 3-dimensional two body propagators have been used for systems of

two equal mass particles ( with or without spin) since Blankenbecler and Sugar

invented that technique. For the zr,Àú system, where the masses are different, these

relativistic plopagators cannot be applied. There are additional restrictions that

must be imposed on these relativistic equations in order to give correct physics

when the particles are of unequal mass.

In this context, we discuss more recent developments in this field. In Sect. 3.4,

the concept of short range structures is introduced and its relevance to relativistic

scattering is also discussed. Then, in Sect. 3.5, we show how a smooth relativistic

3-dimensional propagator for the z1/ system can be deduced by applying the short

range method. The one body limit is discussed in 3.6 and 3.7 and it is proven that

the smooth propagators do not violate one body limits.

3.2 Bethe-Salpeter Equation

In field theory, one can write down the covariant amplitude for the interaction of

two particles in accordance with perturbation theory to any order in the coupling

constant. However, it is impossible to calculate all of these dìagrams exactly. A

remedy for this is to use the Bethe-Salpeter(BS) equation, which is covariant and

describes the relativistic interaction of two particles. The variables for the BS equa-

tions are those of 4-momentum (or 4-coordinates) of the interacting fields. The Bethe

Salpeter equation for the scattering of two particles with initial(final) 4-momenta
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M (Pt , Pzi Çt, Qz)

where M(pr,,pziÇr.tøz) is the relativistic scattering amplitude and the interaction

kernel 1l is the sum of all connected two-palticle irreducible diagrams (to infinite

order). The G¿'s are relativistic, one particle, free propagators. The structure of

the Bethe-Salpetel equation (3.2) can be represented schematically by Fig.3.1. It

h,q2(P7)Pz) is given bY [BS 51]

P1 41

P2 e2

Figure 3.1

Ii(pr,pz)Çt,Çz) (3.1)

. | ffi ffi " rr,, Pz i kt, k') G' (kr) G 2(k2) M (k'' kz; qt' qz)

p 41 p k I
q

I I I

e2

+

P2 42 P2 k2

Schematic Diagram of Bethe Salpeter equation

is advantageous to describe the 4-momentum variables, Pt,PzrÇtr8z, in relativistic

Jacobi coordinates [CJ 89]. For two spinless particles of different masses, the total

4-momenta P, and relative 4-momenta p) are given by (see more detail in Appendix

B),

q¡lqz:PtlPz:kt*kzP

P

Pt

, c2(S)p, - ,'(S)p,
Pt -t Pz, p : q(s) + €dJD

e r (S)P €r(S)P

eGt+ .{Ð t P'Pz: .ds) + €lÐ - e
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where the energy of particle 1 and 2 is,

S+rnl-ml
er(S)

2 c

s +^3-*?
.r(S)

2JS

The Bethe Salpeter equation in terms of relative coordinates p, k and q becomes

(3 3)

M(p,qls) : r{(p,qls) -, I ffi.@,kls)G(k,s)M(k,qls)
(3 4)

The Kernel 1( is the sum of all two particle irreducible diagrams, i.e.

I{(p,klS): t I{Q"),,
oo

n=l

where 1çQn) represents the covariant Feynman amplitude of order' 2n. It is the usual

practice to approximate the infrnitely summed kernel with a one particle exchanged

diagram, meaning the kernel can be approximated by

K(p,klS) 7 6Q)

The resulting equation where 1( is replaced with 1l(2) is known as the ladder ap-

proximated Bethe-Salpeter equation. It is normally assumed to be the best equation

to describe strong interactions (see however Gross [Gro 82]).

The obvious advantage in using the Bethe-Salpeter equation (or ladder approxi-

mated version) is that it ensures unitarity. Since the ,S-matrix element ^91; 
is related

to reiativistic scattering amplitude via

S J, : 6 ¡; * i(2r)nd(Pt - P¡)M ¡;,
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the unitarity condition,

S^91 : SIS: 1, (3.6)

can be satisfied. Another advantage in using Bethe-Salpeter equation is its simi-

larity with the Lippmann-SchwingeL(LS) equation. Although the four dimensional

Bethe-Salpeter equation,(3.2) or (3.4), cannot be solved easily, we can reduce it to

a 3-dimensional equation. Since the reduced form of the Bethe-Salpeter equation

is similar to the non-relativistic Lippmann-schwinger ecluation, the comptrtational

techniques become more tractable. In the next section we will discuss the three

dimensional reductions of the ladder approximated Bethe-Salpeter equation (3.4)

3.3 Relativistic Two Particle Propagators

The Bethe-Sirlpeter equation (3.a) is similar to the Lipprnann-Schwinger(Ls) equa-

tion, where the main featule is that one uses the iterated solution for the scattering

amplitude M. However a gleat deal of care must be taken. Firstly, consider the

kernel 1{ of (3.a) which plays the role of the potential. In the non-relativistic LS

equation, the potentials are independent of the scattering erìergy. In the relativistic

case, the kernel is the sum of all irreducible diagrams to infinite order,, which have

singularities. Secondly, the propagator G(k,,5) represents not only the propagation

of particles but also anti-particles.

In this section, we will discuss how the Bethe-salpeter equation is reduced to

three dimensions by removing the relative energy variable. When one considers

relativistic scattering, the scattering amplitude and the propagator possess a com-

plicated anaiytic structure. Furthermore, the kernel and propagator include negative

energy states. There is also a question of how many exchange particles should be

included in the kernel. Since it is impossible to solve all problems exactly, an ap-

28



proximation must be made to the scattering equation which is consistent with the

physical picture. To do this, the kernel will be represented by the ladder approx-

imation and we will ignore the anti-particle contributions to the propagator. This

will greatly simplify our procedure for calculating the scatteling amplitude'

There have been various attempts to construct propagators that incolporate

relativistic effects in LS-type scattering equations. Here, we will obtain the three

dimensional propagators from the Bethe-Salpeter equation by using two different

methods IWJ 73]. First we will discuss the method of Blankenbecler and Sugar

[BbS 66] which employed the dispersion technique to obtain an apploxirnated prop-

agator. Then we will discuss the instantaneous-interaction approxinal;ion. We will

not discuss another derivation-namely- the minimal intloduction of relativistic kine-

matics into LS equation [Bro 79, Bro 69].

3.3.1 Blankenbecler-Sugar Method

The starting point for the Blankenbecler-Sugar reduction [BbS 66] is the require-

ment that the relativistic propagator must have the same cut structure as its non-

relativistic counterpart in the elastic region. The actual situation, however, is com-

plicated by the singularities in the scattering amplitude and the potential(kernel).

Therefore, we restrict ourselves to the singularity free region of the scattering am-

plitude and kernel. We will discuss the scattering of two spinless particles of masses

rn1 and m2. We recall the Bethe-Salpeter equation in the c.o.m frame,

where p,krÇ are the 4-momenta and ,S the total scattering energy and

M(p,qls) : r((p,qls) -, | ffi r{@,kls)G(k,s)M(k,,rl,s)

1

c(k' s) : -Gp + tc1,- *?ll¡p - k), - *Zl'

(3.7)
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is the fully relativistic two particle propagator. It must be noted that the total

4-momentun is conserved in each step of the interaction in the ladder' while the

total mass varies during interaction(off-mass-shell scattering). It should also be

noted that G(k,.9) has singularities due to its pole structule. When one imposes

certain restrictions, namely that the kernel is independent of the relative energy

( and therefor-e singularity free ) the essential difference between the BS equation

and the LS equation will be the form of the propagator G and the non-relativistic

propagator g. It is also known that G can produce a two-particle cut in the non-

physical region(left hand cut), in addition to usual right hand cut in the elastic

region. Ou¡ aim is to construct the three dimensional propagator g(lc,S) from

G(k,.9) which ploduces the same two particle cut in the physical legion. Now let

us rewrite the BS equation as two equations:

M

K

: I{ ¡ I{gM,

: V+V(G-s)I{

(3 e)

(3.10)

It is hoped that the difference between the two propagators g and G is small enough

so that it will give correct result when we iterate (3.9) and (3.10).

Following Aaron [Tho 77]) we can prove for a symmetric K(p, ql,9),

M(p,qlS*) - M(p,qls-)

: (2r)_a I
(3.11)

d4 k M (p,ft ls+ )[G(k, s*) - G(k, s- )]M (k,qls-)

The statement of unitarity also provides

M(p,qlS*) - M(p,qls-)

I
' (3.12)

d4kM(p,kls+)[(zr)',6*(k?. - ml)6+(k" - *Ð]m(k, qls-): (2tr)-a
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We have from (3.12) and (3.13), the djscontinuity of G(k, S)

disc{G(k, S)}

Now the integration over the discontinuity gives

: G(k, ^9+) - G(fr, S-)

: i(2r)2 6+ (k? - ^?)6* 
(r3 - ^7)

(3.13)

c(k,.ç) : * l,ï,n^,,
(3.14)

Evidently, g(k, S) is defined to have the sa'me eìastic unitarity cut structure as

G(k,s). one can carry out the integration over ,s' in (3.1a) for tn1 : rTt2 to get the

three dimensional propagator

I ó(ko)
g(k,,s) (3.15)

4E* lu2 - q2 - ie

(The detailed derivation of the propagator fol the general case of different masses

rn1 an{ rn2is given in Append.ix B, and (3.15) is only the particular case rnt: ïnz.)

Equation (3.9) with the choice (3.15) f.or g(lc,,S) is knorvn as Blankenbecler-Sugar

equation.

3.3.2 Instantaneous-interaction approximation

In Section 3.3.1 we obtained the relativistic 3-dimensional equation which is known

as the Blankenbecler-Sugar equation. The basic principle in deriving (3.15) was to

removethe relative energy variable from the Bethe-Salpetel equation while maintain-

ing the unitarity condition which is necessary for elastic scatteling. In this Section

we will'obtain the Blankenbecler-Sugar equation by the instantaneous-interaction

approximation [Thom?0, WJ 73]. In this case, one makes the assumption that the

kernel in the Bethe-Salpeter equation is independent of the relative energy. We first
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wlite the homogeneous term of the BS equation as follows

t dko d3kI I{ (p, 0; k, kols) M (k, ko;q' 0 
I 
S) (3.r6)

K|JS * ko)2 - Eî + i,lt(LrJs - ko)' - El + ie)

orr .(3-17)

We are interested in obtaining the totally on-shell scattering amplitude M (q,0; q, 0lS)

for the case of two equal mass particles. When one reduces the integral equation

from four to three dimensions, certain information about the amplitude À1 as a

function of relative energy ko will be lost. For example, the singularities due to the

exchanged particle are neglected for some kinematical regions [WJ 73]. If we m¿rke

the assumption that the scattering amplitude M is independent of relative energy

Ä16, we can write the homogeneous term of the BS equation as'

I d3kM(lr,,o;q, olS) I
It must be noted that (3.17) does not imply that M(lc,ke;q,0lS) is equiva,lent to

M(tt,g;q,0ls). we are merely calculating M at particular value of k¡. Since we

require the solution for a totally on-shell amplitude, we choose ks : Q. In (3.17)

there is still some k6 dependence in the kernel 1(. There have been calculations for

which the energy dependence of the kernel Ii has been taken into account[WJ 73,

Coh 70]. One can make a further simplification by assuming the interaction kernel is

independent of relative energy variable ks which enables us to write the homogeneous

term of BS equation as

l#.(P'kls)
lf4lg )*çr,o¡r¡ll z"tlGJS a ko) - El + iell\Js - ko)' - El + iell 

-

(3.18)
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The contour integration ovet' d,lco can be done to give

11
4E- n"r - Sl4

(3.1e)

Noting that Sl4: E{, this equation (3.19) is easily seen to be the same as

Blankenbecler-Sugar equation (3. 15).

3.4 short Range structure in the Propagators

In the preceding section, we outlined how a reiativistic three dimensional propagator

can be obtained from the Bethe-Salpetel equation. In this section we will introduce

the concept of short range structure of the relativistic propagators [CJ+86, CJ 8S].

One can obtain the short r-ange structure of the propagator by expressing it as a

function of lr - r,l. Those pieces which behave like ó(r - r') or erp(-rnlr - t'l)

will be defined as short range structure.

For a long time, the short range structure in scattering has been noticed by

various authors. For example Barshay et al. pointed out that in pion scattering the

iteration of momentum dependent potentials in the Lippmann Schwinger equation

can generate a delta function term that corresponds to scattering of these particles

at the same point [Bro*74].4 sirnilar phenomenon in proton-nucleus scattering has

been pointed out by Thies [Thi 85, Thi 36]. Recently, the interpretation for the short

range structure and anti-particle contribution in proton-nucleus scattering has been

given by Cooper and Jennings [CJ+86].

In order to discuss the relation between short range structure and anti-particle

contributions in scattering processes, we willlook at the propagator G6(r',r), for a

Dirac particle scattering off a local potentiai V(r') [CJ+86, CJ 88]. The propagator

33



can be obtained from the full Feynman propagator Sp(r'- r) as follows

Gn(r',r) - | ort -t)sp(r' - r)e-i,(t'-t)

I
where the Feynman propagator is

sr(r' - r):

d"p 
"ip.(r/-r)

(2n)t p' - lc2 - ie

E+m -t-p
ú.p tn-E

(3.20)

(3.21)

(3.22)

We obtain the asymptotic Dirac propagator Gf)?',,r) by performing a contour in-

tegration over the momentump. Since the only pole contributing in the asymptotic

region is from lpl: (kIie), we have

Gf) ç,',,¡ : E+m -o-lc ,-klr/-rI

o.k m-E 4rlr' - rl

On the other hand, one can also decompose Sp(r'- r) into particle and antiparticle

contributions. We then have:

(l'Po - ^l 'P + m)¿-iuo(t'-t¡

lno + E, -f ie)l2to - E, - ie)

) (3.23)

lf + m2, (3.29)Taking the Fourier transform into the scattering energy E :

becomes,

Çr(r',t) : ,91*)(r' - ,) + Sl-) (r' - *),

-Sp(r' - r)

(3.24)
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where

(3.25)

The coordinate representation of the particle propagator .ili) ."" be obtained by

integrating over momentum p. We will write the contribution from the pole as

Sl+)1", - r)l.p.t.and other contributiottr .r Sf,*)(r' - r)lnon-'pot..We can then write

Gp(r',r) as

GB(r',r) : Sf,+) ç*' - r)lpa"+ sf+l @' - *)lnon-pot" + S!-l @' - ,)

: G(i) þ',r) + sl+)( ,' - *)lnon-pot" + sl-) @' - ,) (3.26)

The second line of (3.26) follows since we can prove that

Sf,+) ç"' - r)lpot" : Gf) (r' ,r)

In the asymptotic region, we noticed that GB(r" r) behav", u, G!+)(r"r) in (3.22).

The interpretation of the result (3.26) is controversial. In fact, it is not at ali

clear that the last two terms in (3.26) give a null contribution in the asymptotic

region or why they should. However, Cooper and Jennings [CJ+86] justify this

numerically. They also argue that the propagator is not only subjected to elastic

scattering, but that all physical processes include negative energy states. Therefore,

the success of Dirac phenomenology in proton-nucleus scattering is attributed to

the cancellation of the spurious short ranged terms in the particle propagators by

anti-particle contributions (see discussion in Ref. IPT 87], however).

ð(+) _ _[dtp "ip'(r'-r) l+''rc4-l'p+mluF I ç2"¡' 2Eo L EoaE-ic I
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3.5 Smooth ProPagators

We have discussed at length, in Section 3.4, that the short range structure removes

the anti-particle contributions in the propagators. In this Section, we wilì ertend

the method of removing anti-particle degrees of freedom by means of the short

range approach to the two particle propagators. We will derive the pion-nucleon

propagators from the so-called box diagram Fig. 3.2, which can be evaluated in

accordance with Feynman rules. As has been done in Section 3.3.2, we will apply

the iirstantaneous-interaction approximation to the l¡ox diagram and then apply the

short range method to this propagator. A similar application has been rnade to

obtain a smooth propagator for the try'lú scattering ICJ 88]. Ou.. presentation in

this section is a follow up application of Cooper and Jenning's rvork. The model

chosen is a pion interacting with a nucleon through p meson exchange where the

p - it coupling is of the form

(E* + E'*)lon'

with only the time component of p contributing ICJ 88].The amplitude for Fig-3.2

ls,,

kl= (El,kl)
\

oi= (ti k1 )

kz ( p
2'02)2

E , k)= (82',k;)

Figure 3.2: Box Diagram for zrN system
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dapldap2daqdaq'

Integrating over p2,g, q'gives

6n(ki - pz I q') 6n(k', - pt - 8') 6n(pt - h - q)

[q'' - mf; - ie] le2, - rn2" - iel lq2 -m2r-iel
A

x(Ei* pro) 
tnlP' - ø + q) 

x(prc * Eò
lPz-mttt-zeJ

(3.27)

(3.28)A 64(k'r + kL - k, - kr) I o^, 
ttA _ py _ *r, - ir)lp, - )f - on

L_, 1

Mlo(E1 + n") 6ro(Po * Er)

As in Section 3.3.2, we integrate over the energy variable po' By noting

u)

ur

u)^

aN

A 64|r,1+ kL - k, - kr)

: t(kl - ù' + ^71i
: l@ - kr)' + *l1i

: lp' + rn'*17

: t(fri + k, - p)' + *'*li

and integrating over ps, the four poles from (3.28) give

t.1ap

1 1 1

2u|(Et I r',o) - r? (U| + u',p - Et)', - ,to

X(Er l Et - E| - u') -',r - (le,* kr - p) * mN

(8,+ E,- E|-r,r)" -a2¡y
111

(E|+Er+u'o)

(Er+E|+r'o)

+
(E', - ,*) - uf 2u* (r, - Er)' - ,3

x@', + u^) x(8, * Et -.*) - 1 - (kz* kr - p) + mN

(Ez -f Et - u^)' - a2*

11
@i + Er + up)2 - r'] (Er l rr)2 - u2^2uo

1
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ro( Ez I Et - Er - r) - 1 . (k, I h - p) + mN
rc@i+ Etlup)rc@í+ Et I up) (8,*Et-Et-rr)"-u2¡¡

11
' (E', - Ez - E, - r*), - u'/ (Ez I h -f r*)' - r?

1

(8, -f Er * u:N - Er)' - *1"@'t 
* Ez I h * u¡'t)

7o(-ø¡¿) -1.(kzI}.r-p)+mN @{+EzIEt*ø¡¡) (3.2e)
2,tsw

Now let us examine each of the 4-terms in (3.29). The pion propagator in the last

term can be written as

1 Ez- p2*m2x

(8, + EL + .¿N)z - u2^ 2(Et * Er)(k _ pr)

This denominator is not only providing the branch cut in momentum space, but

also vanishes when we integrate over lpl. The contribution from nucleon part

ro(-ø¡r) - 1' (lez * h - P) * mN

2a¡'t

will give a branch cut since (tN :

purely short range.

p' -l m'u. We will therefore regard this term as

Similar consideration for the 2nd terms of (3.29) leads to

Et*l P2 + rn\1

(Er* Et-øn)2 -u2¡¡ 2(E'*Er)(k'-p')
Erl

Et I Ez (k' - p')
(3.30)

Following Cooper and Jennings [CJ 88] the lst and 3rd term in (3.29) cancel. There-

fore, in the c.o.m (3.29) becomes

I rru;ffi'ro(2ø*¡1

, 
"2'lo-p

I
p þ

A: 6a(k', + kL - kt - kr) d"p
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Hence we take the two particle propagator for ¡Iy' system to be:

(3.32)

This is known as smooth propagator, which we will apply in our CBM calculation

in Chapter 7

3.6 The One Body Lirnit

After writing down a fully r-elativistic scattering equation, such as the Bethe-Salpeter(BS)

equation, there is the question of how this equation is consistent with non-relativistic

physics. It is a sensible question to ask how an equation will reduce to known results

in physics. In the case of the BS equation, which is a relativistic description of the

interaction of two particles, we ask the question whether this will reduce to a one

particle equation when the mass of one particle becomes large(one body limit). In

this limit, the interaction will reduce to an instantaneous one since there will be no

energy transfer to the larger mass source. The two particle propagator then reduces

to the one particle propagator. Gross [Gro 82] has made such an analysis for the

iadder approximated BS equation. Following Gross, we will show that ladder ap-

proximated BS equation does not reduce to the correct equation in the one body

timii. Let us recall the Bethe-Salpeter equation (3.7) with masses rm1 {{ rm2

c(prl,s) :ffi

M (p, qlS) : K (p,q 
I 
s) -, I ffi *(p, q 

I 
s) G, ( k,)G2(k2) M(k, q 

I 
S) (3.33)

where Gr(kr) and G2(k2) are the relativistic propagators. Denoting or : e1f (ev!e2)

and o2 : ,rl(rt I ez), the two body propagator becomes
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G(/c,.9) Gr(kt)G2(h2)

1

l@'P + k)' - ml r iel l(a2P - k)' - ml + iel
(3.34)

Consider the particular case of m2 ---+ oo. In this limit, the kernel 1( is free of relative

energy variable hence the integration over relative energy variable will be done only

on the poles of G(k,S). Firstly we will look at the contribution flom the poles of

particle 1. The two poles are at

ko: -crt*.EtIie

where E1 :

1

nL?+1c2. The effect of these poles on Gzin the limìt of nt'2 --+ oo is

1
Gr(kr)

l@rP-k)'-rrr|)
1

[(.r+et-Et)z-83]

where €1 and e2 been given in (3.3). For the contributions from the poles of particle

2, we will first write Gr(kr) in (3.3a) as follows:

-+0 (3.35)

(3.36 )

1 1
G(k,.9)

In the lirnit m2 --+ oo

l@'P -t lro)' - E? + iel2E2

E2 --+ rn2

E2 - a2P --+ E2 - e2

Ez * azP --+ Ez t e2 x 2m2

(1_,r\
\ø, - azP I ks- ie' Er+ azP - ks- ic)
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Thus the contribution from 2nd term in (3.36) can be ignored. For the lst term of

(3.36) there will be a significant contribution in the energy integration since E2 - e2

is small. Therefore, we cannot ignore this term in the limit rnz ---+ oo. It is this term

that violates the one body limit.

In relation to smooth propagators, it is worth noting that the troublesome term

from the nucleon pole, i.e. the last term in (3.29), is removed by the short range

method. Therefore, the smooth propagatols naturally satisfy the one body limit.

3.7 One Body Lirnit, the R factor

In Section 3.3 we demonstrated how the Blankenbecler-Sugar and Instantaneous-

interaction approximations can be applied in approximating the Bethe-Salpeter

equation. In Section 3.6, we showed that the ladder approximated Bethe-Salpeter

equation does not give the correct equation when one of the scatterirrg parlicle's

masses becomes large. It is worth noting that Gross's discussion of the one body

limit is based on the instantaneous-interaction approximation of Section 3.3.2. One

can equally discuss the one body limit in Blankenbecler-Sugar type propagatols

ICJ 89] which we will now examine.

Likewise in (3.14), we can write down the Lorentz invariant propagator for the

general case of different masses my and rn2. The general two particle propagator

Ge"," which has poles when two particle are on shell is

Gn",(p, P) I,Ï,*^r" i\' rt"s')ó* ( (il#ä -

'.((a#ärr-')
4 -ml

2

2

-ml (3.37)
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where Pt : IEP and /(.9, ^9') represents any function which has the property

/(^9,.9¡ : 1

The propagator Gn"n in (3.37) is most general among 3-dimensional propagators

that the smooth and BbS propagators can be considered as special ca'se. One can

do the integration over S' (see Appendix B for- more details ). From (3.37) rve then

have the general case of a two particle propagator for two spinless particles with

different masses

(3.38 )

where

'ft,
m?-p2 * p2

Equation (3.3S) is the central result for our discussion. Since this is a general case

of a propagator for two different mass particles, we can compare with the other' twrr

particle propagators and identify the so-called R factor fbr different propagators.

Firstly, we can factor out the smooth propagator G"^ in (3.32) and Blanltenbecler-

sugar propagator Gaas (3.19) from general propagator (3.38) as follows:

G"^(P,p)
6(Po) (SoS - (*? - *Ð)

r6, s:e)
zJs(p, - k') +r[s s,a(s,).,(^9,)

(3.3e)

Gsus(P,p)

(3 40)

From (3.39) and (3.a0), it can be seen that for equal masses rtll : r'n2, R"^ and

Go.n(P,ù :6P6es - (rn? - ryi)!.f(s, so),- ectú\- t, p2 - lc,2 arp$et$r)rr(sr)r \- ) - P/)

TN
t
t
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lQr¡s both become unity, the only difference being the square root factors in the

denominators. We can now study the properties of different propagators when the

mass of one particle become infinite' rrt2 -+ Øl

(3.41)

(3.42)

We can now compare the smooth propagator and BbS propagator in the light of one

body limit. In Section 3.6, the one body limit was defined as the ability to reduce to

one particle equation when the mass of one particle approaches infinity. When we

formulate the 3-dimensional propagator in Blankenbecler and Sugar's approach(used

dispersion technique) the potential is instantaneous and we need to ask whether the

propagator exhibits the features of one particle propagator. In fact the smooth

plopagator does become the one particle propagator since r?"- = 1 in the m2 --+ oo

limit. On the other hand -Ilaas does not reduce to unity when the mass of one

particle becomes large and it therefore violates the one body limit.

3.8 Application to the rN systern

In Section 3.7, we derived the Blankenbecler Sugar propagator and smooth propa-

gators and examined their one body limits. When we apply these propagators to

the r'1/ system, we need to include spin. This is done by introducing the projection

operators in eqn (3.37) for one particle as outlined in [Erk 74,Bro 79, CJ 89].

For the Blankenbecler Sugar propagator,, rve need to make modifications as out-

lined bv Cooper and Jennings [CJ 89] in order to have correct one body limit- The
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propagators used in our calculation in Chapter 7 are

(P,p): r, (

cl!2'o)çr,r¡ #ffiD!*(P'p)
,¡rn&Dl''(P'P)'

(3.43)

c9!3'o) (p,p) (3.44)

where the Dirac factorDl- is given by

'., p, + pr) + -,Q*ez /

3.9 Surnmary

In this Chapter, we discussed methods to ensure unitarity by using relativistic prop-

agators. Attention has been given to 3-dimensional propagators which are covariant

and guarantee unitarity. We first discussed how the interaction of two particles is

described using the Bethe-Salpeter equation in ladder approximation. We also fo-

cussed our attention on a recently suggested smooth propagator which is consistent

with Dirac phenomenology and does not violate one body limits. We also presented

the relativistic propagators used in our calculation in Chapter 7.

D sTn
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Chapter 4

The Formalism

4.t Introduction

In Chapter 3 we presented the relativistic wave equations which can guarantee uni-

tarity in scattering. We shall now discuss in detail how the driving potential for the

relativistic scattering equation is obtained in the Cloudy Bag N4odel(CBM)' As we

have stated in Chapter 1, the CBM Lagrangian describes interactions of pion and

quarks . The main aim of this chapter is to provide the formulatìon for transforming

interaction of pion and quark to those of pion and nucleon. We expect the poten-

tials to be relatively simple at threshold energy and give propeÌ cancellations of the

type encountered in Chapter 2. In Section 4.2 we rvill discuss how the pion-quark

interaction can be projected into a pion-nucleon interaction. We give two examples,

namely the vertex function and the Weinberg-Tomozawa term. In Section 4.3 we

give a detailed account of how the higher order graphs are calculated in the CBM.

We also give information on how we can approximate sonle complicated integral

functions
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4.2 fnteractions in the Cloudy B.g Model

There are many possible non-linear lagrangians which represent the same physical

system and can provide the same result to order of !r¡¡".Fr-om these, we shell use

the l{albermann and Eisenberg's variant of CBM lagrangian lKtr 83], and write in

Hamiltonian form favoured by [Tho*87, CJ 86]. The full Hamiltonian is given as

follows(see Appendix 4.2 for details):

H(*) I d,3 r {'11¡t rc(r) +'11o"(æ) + 11{æ) * 11s(æ)

i 11'(æ) t'.lla"(æ) +'.Ìlwr(*)j , (4.1)

where

l-+(ri7t.$ - v)q + B)0" +
't '

;{o' + (v óf + ^?ó'}
0.,

- e¡¡ttt5rq. 
Y Q

A

øîFe't1srÇ'vÓ Ó'Ó

iw"rffi-ffita'

I'llurr(æ) :

Tlo"(t) :

1L(æ) :

11s(n) :

11'(*):

'11a"(æ) :

7f!*r(*)

11'tí,r(*) :

2
4qL" (4.2)

(4.3)

(4.4)

(4.5)

(4.6)

(4.7)

(4.8)

(4.e)

i
Qr)'

0,

(2r)'

/-\
(o' - (v ó)' - *'"ó')

q'yorq .@ x n)
0,+

øfp 
q'Yrq ' (dx v d)

ôó

Up to order pþ, ttr" diagrams shown in Figure 4.1 (from now on we will simply

refer as Fig. 4.1 etc.) contribute to the potential. The diagram shown in Fig. 4.la

produces the Weinberg-Tomozawa result at threshold energy. When we take all

interactions to order pþ, nigr. 4.lb and 4.lc needed to be included in the calcu-

lation. However, since the driving potential is the sum of all irreducible diagrams,

46



\ a

,

\

\ I\ f \ I\ I \
\f \/

J
\ I

\/ !

(a)
\- --(

t\
¡l
¡l
t/

(b)
a

I
I

I
l¿' -

I

(c)

\

\

\
\
\

Y
I \I\

\ I \\¡

(e) (f)(d)

\ \ ,f\ \ I
f \

I

,\ f

I
\ \fI t

--v
(e) (h)

Figure 4.1: Diagrams included in this calculation

Fig. 4.1b will not be included since it is an iteration of Fig. 4.1a. We wili now show

how the potentials for Fig. 4.1a to Fig. 4.1h are calculated in the cBM.

4.2.L Vertex Functions

When we use the linearized CBM Lagrangian (a.i) to describe pion-nucleon inter-

actions we not only have the Yukawa type vertex Fig. 4.2a. but also the three pion

vertex Fig. 4.2b . The vertices of Fig. 4.2a and 4.2b are generated by 111(æ) and

11"(*) r'espectively. Figures 4.2a and 4.21¡ are needed when u'e calculate higher order

diagrams shown in Fig. 4.le and Fig. 4.1f. 'Ihe dependence on the momentum of

the third meson in Fig. 4.2b when we consider the S-rvar-e isoscalar interaction in

Fig. 4.1e is the same as the dependence on the meson momentum in Fig. 4.2a (pseu-

dovector coupling) because the isoscalar pair rn'|fi(æ) rvill interact with ingoing and
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Figure 4.2: Or.e pion and 3-pion vertjces

outgoing mesons.

The calculation for the process shown in Fig. 4.2a : B' ---+ B + 7T is given in

[Tho*83, Tho*80] for the pseudoscalar coupling. For pseudovector coupling the

same form factor as for the pseudoscalar case is obtained after integration by parts

[Tho+86]. Here, we calculate the pseudovector form factor in a straight forward

In order to çlarify the presentation later in this thesis where several interactions

occur, we shall formally retain the coordinate at which the intelaction occurs(even

though it is integrated). Thus the interaction Hamiltonian for the diagram shown

in Fig. 4.2a will be written as:

IH'(*) d3r 111(æ)

+
d3r Q@)11srct@).v d(') (4.10)

The transition from the initial state

li ) : lSnmn,IniB)

l/) : lSB,mB,, I 8,i6,; P,i v,)

(4.11)

(4.r2)

to the final state
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can be described bv the matrix element of interaction Hamiltonian H1(æ)

UIH'(')l¿) : ulP Hr@)eli)

(4.13)

where the kets la)and lB) arc colourless baryonic bag sta,tes which have the same

quantum numbers as baryons and o (ot) are annihilation (creation) operators for a

real nucleon. Therefore the projection operator P : Do lo)("1 projects the pion-

quark Hamiltonian flr(æ) onto baryon space. Now

(ol*,(*)lþ): (2n)-i I o"n Ðl'iil(q)o¡(q) +v;pt (q)'j(q)l (4.14)

where the interaction matrix element rs

vfo (o) -fit,ç") | a"" @lqiz)t -qtsr¡q(r)lþ)
!2%

lo" 
o* rz I ae "¡(,1Ét(¡;iffl - ilr)lto,@).qrþ)

exQ'Y

x ¡/"'?

Qf) Ør)

+ 2j?(

'Fa

e'<l'>ç

9r^,
| "'o

Qr
) a@) .ã q.t rl")llpl",

e'j'x
(4.15)

(4.16)

R

In eqn (4.15), the kets lo)"¡ denote the spin-flavour wave function for the baryon

bag state lc) and the operato.. o(") and r(") are the spin and isospin operators for

quark a. It is useful to write the interaction matrix element as

(zf) (+r) Id,rT 2 dîÐN:
t,

aB
R

vt"o(o) .t

where the symbol ÐiP represents

ÐiP : "r(,t å ffr;t$l - rlt$li o@),(o) + 2;(+)oþt - â ,,1"']W) "¡ (4 12)
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Since we have (See Appendix C)

I
and

I

dã o .e ¿ie"x : (aùio(qr) o-q (4.18)

dfr o 'ã q'î e"e'x : (jo(q")-2j2(qx))o'q (4.1e)

the interaction matrix element (4.15) becomes

(4.20)

4tr

3

vfo(ù:-ó #,("ï) u@R) ",('lå o@) 'o'@)wl"¡

In eqn (4.20) the form factor U(qR) is given by

u(qR) *fr1r4 lo^ 
a'*' P"(q*)

Åßù lo^d**"t(i3(#) i?rffni"rqù -! itrfft i,(q,)l

(4.2t)

1

3

The form factor U(qR) has a different analytical form from previous calculations.

However, it gives the same momentum cut-off as the form-factors of [Tho*83,

Tho*861.

Now we are left with the task of replacing the quark spin and isospin operators

with those of the appropriate baryons. In order to do this, we write the matrix

element of the quark spin and isospin operators in eqn (4.20) in terms of transition

spin (S) and isospin (") as follows [BW 75]:

a

x'P (als . qrlØ : "¡(ol I o@ . or@)18¡", (4.22)
a:l

Now, on the left hand side o1(4.22), the kets lo) and lB) are colourless baryonic bag

wave functions which possesses the same spin-isospin quantum number as baryons,
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l.e

lo)

tp)

: lS,m,, I.i.)

: lS Bm¡j,IBip)

(4.23)

(4.24)

gtn (4.25)

where so (,I,) and rn" (i.) are total spin(isospin) quantum numbers and their

projections respectively. on the R.H.S. of (4.20), the kets la)"¡ and lB)"¡ represent

explicit su(6) spin-flavour quark wave functions [see Appendix 4.3]. The operatoÌs

ø(") and r@) ur" the spin and isospin operators fol a-th quar-k- Xoþ is a symmetry

factor that arises when we eliminate the quark spin and isospin operators in favour'

of their nucleon counter Parts.

The operatots in (4.22) can be written in the spherical basis [See Appendix C],

X'P (S.mo, I oi olS 1^7\,lS Bm B., I pi p) i;; 9tn

: 
"y 

(al Ð "\l,rlï) lØ 
" 
¡ "-^a:7

where Sr^,Trn,off ""d "{fi) 
d"trot" spherical tensors of rank 1. The L.H.S- of (a.25)

is, according to the Wigner-Eckart theorem [see Appendix C]'

X*Þ (S,mo,I.,i,lS1^T1.lSBmB., I¡jiò î;i ' q i-,

(4.26)

Since we can calculate R.H.S. of (+.25) for a particular case of m : 0,n - 0, we

have

Moþ JrS; +lJrT; +a (4.27)
/1m P O rna
usB r so c'åi',: (s*1" I ls(1)?(1)llsBIp)

Jrs;+I\ET;+1
(,s.1* I ¡St1)r

x,p \s.r,lls('1)7(r) w Br B) ffi #^i- . qt*^

{t)llSBlB)

XoP

\"{¡

51

(4.28)



In eqn (4.27) the ma,trix element M^p \s defined (see Appendix 4.3) as

3

Moþ: "¡(ol Ð "1")rlùlÐ,a=t

and in eqn (4.28), the constants loÉ are defined by

\oþ : u,olci[?T: cïi?;:]-'

The constants XoÉ and ÀoÉ are given in Tables 4.I ar'd 4'2

Table 4.1: The symmetrY lactot X"þ

o2r/2A
4\/25¡ú ^

¡/o\B

Table 4.2: The symmetrt'factor )"É

It is useful to introduce another constant ,lie. Wittr the help of (4.28), the eqn

(4.22) can be written as

sJ (a
J

Do(
a=l

qr@lþ\ 
"r

: x'p (als . qTlpl

: X*P (S.mo,I.,iolS1*T1^lSprnB,IpiB) si qîi

: 
^B 

ci: ? î." c',ZTlZ ai" q ti Ø.2s)

: 
^îp 

ci; T i." ¡;' q (I'i"lTlIBiB)

: t7P sff;;-q(I.i,lTlIBiù (4.30)

1
?

4'/2
?A

4t/2
?

Þ.
q¡/

ANo\B
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The constants Àip cliffer fr.,m À'É[Tho*83] as a consequence of horv the rrratr-ix

elements of the isospin operator are defined. This has certain advantages which we

will explain in Section 4.3.3. Finally the symbol Sff represents the Clebsch-Gordan

coefficient C|:TT:

We can now write (4.15) as

í,fP (q) : - ôà("=) 
u(ql) 

^iB 
sffè' 8 (I,i,lrrllBipl (4.31)

The values of ÀiB are given in Table 4.3.

Table 4.3: The coupling constants 
^iP

J!
3

4
,/zA

-4J
,;5¡tr ^

¡'ro\B

4.2.2 The Weinberg-Torn ozawa- Terrn

In tlre preceding section, we demonstrated how the process B' -+ B i r can be

described in the CBM. In this section we will consider a more general process, i.e.

B + T --+ B' I r' . In Chapter 2 we have seen that the Weinberg- Tomozawa term

gives the correct scattering length at threshold enelgy. In the following, we will

discuss the Cloudy Bag Model version of the Weinberg-Tomozawa relation. We

shall now clerive the potential for Fig. 4.la, i.e. the transition amplitude from the

initial state

li): lsnmn,Inin;k,i¡ò (4.32)

l/) : lS 8,m6,, Is,iB,;k',iu,) (4.33)

to the final state

53



This will be written as (we suppress spin-isospin indices)

u"(k',k) (i lilhr@)lrl (4.34)

In eqn (4.34) the subsclipt ø corlesponds to Fig. 4.1a and Hlry7 hhe Hamiltonian

for the time component of the Weinberg-Tomozawa interaction (4.8). In order to

evaluate (4.34), we first determine the interaction matrix element

V:P (tt', lc) : (a; k', i ¡4,lHi*r@)lþ ; k,, i u) (4.35)

The kets la) and lB) are non-exotic, baryonic SU(6) wavefunctions and oI By'ß(le',k)

is an operator in reai baryon space, i.e

(ÍlHhr@)li) Ð(S ",*",, 
I B,iB,1ot B V;P çtt',lc)lS Bmp, IBiBl, (4-36)

aþ

where the operatorc a1 (o) create (destroy) the real baryon. Now, the interaction

matrix element,

v;a gt"u¡ (o; k', i ¡a,l H!ry7 @)l íJ ; k, i r)
0"(") N: 1 c..,¡, f ø¡
(zf)'z (+r) (2tr)3 $u:1,'Ta

¿3* 
"ik.x"-ik''xI

?

pt(r) ",("1 I '@ 
-elþ)"¡ (4.37)

a=7

In eqn (4.37), we write 0¿: -ie;¿¡ø,i¡1,t'he pion isospin matrix element and p¿(r) :

b3 (#) +/i (#)l Hele the kets la) and lB) are the SU(6) wavefunctions in quark

space which are combined to give the bag state. In order to project (4.37) onto

nucleon space, \rye may write the spin-isospin part of eqn (a.37) as follows,

A.B þlr . 0lØ: ";(ûl | '("1 
. ïlpl"¡
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On the left hand side, the kets la),lB) are baryonic bag wave functions rvhich have

the same quantum numbers as the physical baryons. The isospin operator ? opelates

on the baryonic wave function, therefore it is the same operator in nucleon space.

On the right hand side the kets la)"y,j 0¡"¡ ur. explicit spin-flavouÌ wave functions

of the quarks (see Appendix C). The operator r(") is the isospin operatol for the

a-th quark. In order to determine the symmetry factol in this case, we write the

operators Trr@) in spherical tensor notation

A'B U,i,lThlIpiB)î-^ . e : 
",,("1 D ,|")lTl,¡ îi' e (4.3e)

¿=1

By the Wigner-Eckart theorem we can rewrite the L.H.S. of (a.39) in i,elns of

irreducible tensors and Clebsch-Gordan coefficients:

Combining(4.39) and (a.a0) , for m: 0 we find:

A'P : Jtr" +t 
"¡ 

(ol D3=, ,!")lP) 
"¡

cfiornå (1" ll?(1)ll/B)

JT|;TT ".r(ol Ð3=,,!") lØ "¡
Xq (1"11"(1) lllB)lIo

Now we can write the interaction matrix element as,

v;o çu"t ¡ A"P (alr .olþl

: D cï:i,y,'; c'frnt'; }v,;çî''¡v,*çî*¡

A'P U,i,lT#) lt u¡ o) : A'þ (I ol lr{rl ¡ V pl ffi (4.40)

(+.4r)

lm

d"r lfi(+) + ii(#))i{kr) j¡(k'r){a.az)

ct

IIz

^fN 
ar¡ * t.,'¡, n,z IR

gtr2 f2 Júøaw" " Jo
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In eqn (4.42), the constants \ffN a,re defined as

^îf]! 
: A't3 ((I*I¡4')I'lrlro e{r)lgotr¡t t"¡

where we use the notation of Edmonds [Edm 57] to describe the ptoduct of two

tensor operator T(t) and g(t). The values of lffrI are given in Table 4.4.

Table 4.4: Coupling constants for WT tenn)fff¡I

2050rL,
010qrN

rLrNrL,rNû\B
I:*I:ï

4.3 Higher order graphs

In the previous Section 4.2, much effort has been invested in order to explain how the

pion-quark Hamiltonian can be projected onto pion-nucleon space. In this section,

we will apply those techniques to higher order diagrams shown in Figs. 4.1c-h.

4.3.L The Cross Box Interaction

a

Figure 4.3: The cross box interaction
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where Hlrr@) is the time component of Weinberg-Tomozawa interaction (4.8) and

the subscript c stands for Fig. 4.1c. We will first use the projection operator P to

project the pion-quark Hamiltonian 11. onto pion-nucleon space by the norv familiar

procedure:

u"(k',le)

The inter-action Hamiltonian fol Fig. 4.3 is

H": Hl,vrtø uj* ¡ Hlrr(*)

: ulPH.Pli)

: (Se,m6,; IB,ip,lafrrrÛ.o'o' (k',k)lSBmn; Ininl

itqto'(lr,,k)

P;@)

(o"; k' ., i xa,l H.la1; lc, i u)

I o'" I o'o@rlpr@)oo(*¡l.,1) e¿,¡,¡,e¡¡¡

\k" i *, l ó ¡, (s)tr a (ù TlrT¿s ¡ @)n ¡ @)1k, i r), ( 4. 45 )

o"(r\ -, \

ffiuf* nor¿e\r )

(4.43)

(4.44)

The interaction matrix element is

where pi's are defined by

&ffi,,øþ_-rtl"'r" (4 46)

It is constructive to calculate the meson and baryon parts separately. The meson

part grves
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e¿t ¡ t ¡"t e¿ ¡ ¡, (k', i tw'ló ¡, (A) IIo' ( g )

1 
"i(k'Y-k/'x)

4+*¿þ¡@)n¡@)V''iu)
(4.47)

d"q
eiq'(Y-*) l-roru + rå + @kukt - ulltuqf

: €itjiM€ijir,(Z"yWñ 2rq E¿-*N -u)k,-tllk - uq*zeI

T¿tTie.itjiM€iji ¡r.t, 
: 26.;r,; r, ! ie¡¿*¡ r, t¡,

When calculating the baryon part, we will first project the quark operators pi'(A)

añ. p¿(æ) onto baryonic bag states and then to the nucleon space as follows:

azaE Ntl

: aåar (Io"iori So"ffio"l26;-r¿."6irir, I i et;r¡nr,TklloJol ; '9o, tnor ) (4'48)

where the kets ll/") represent the real bar-yon spin-isospin eigenstates. \A/e also make

use of the relations

One may nov/ expand the plane waves in (a.aS) into spherical harmonics. For the

S-wave interaction, we get:

(4.4e)

(4.50)

u.(k',te) : #+, \cT:":',i,:,'; 
cTEni,'Ì }u^{î,)v,;lî,)

Í26;r¿r,6¿r¡r, + À,BriBr'rl [* ,r.n 
qz (-'u.r,,u * uä I auuu' - c¿u''.'r)

JTaPW Jo -' 2ro E¡ - mu - (Ðk,- øk - t'sq I ic

lo* 
d,**' p,(*)io(q*)iu(k'ù l, d'yy'p,(y)io(qy) jo(kv)

One problem which is encountered at high energy when we calculate diagrams to

order trh ir that of numerical singularities. In fact the intermediate states in

Figs. 4.3., 4.4r 4.5 and 4.6 contain more than one pion and should be solved as a

3-body problem. However, we are primarily intelested in the low energy regime and
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such 3-body problem is beyond the scope of present work. Therefore, in numerical

calculations we made static approximation for the nucleon and took incoming and

outgoing pions on-shell. Cooper and Jennings [CJ 86, Tho*87] also has to wolli

within such an approxirnation.

4.3.2 Loop diagram

I

\
I

\ t
I I

I
\

t tI f\

(a)

I \7

(b)

Figur"e 4.4: Loop diagrams

The projection onto the pion-nucleon space is carried out in the usual way. The

interaction matrix element for Fig. 4.4b is

The interaction Hamiltonian for Fig. 4.4 is,

2f)a @tr)

I

Ha : H*(z)E+.rHlrr(r) + H!ur(æ)T+-lHn,(") (4.51)

1
v;f,{r'',t') (o; k' , i ¡a'lH!rr(æ) E¿- Ho+ie

3

Hn"(r)\0; k,i¡,r)

I
(k+k')'(k-k'-p)

a(ztr)6

1

(tp E; - EN(k - (,k, - up - (,k-k'-p

40u ¡/.:
d3r p¿(r) "i("1 I ,[")19¡", i roo, "i(k-k,).x:

1/2uy2ayr, e'52)
(

1
dsp

where k, ,k' and p are four vectors. We will get the interaction matrix element for

Fig. 4.4a by replacing k with k' and lc' with k in (a.53). For the S-wave case, we
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have

u¿(lc',le) 1- ¡-tiBri¡¡rrt nisi¡ah 
^t 

(4T)N:
Lu ta,r¡ø,r v rsr¡¡r 

QI)4 Júfui D,Y'^(n,)v,î"Gt)

dr 12 p 
"(x) 

j o(k' r) j s(kr) (2")-u

Im

d:p e-e2R7/4.o
t,

R I
(rt + t¡r.,)(øp - tdk,-k-p +2(k + rr') . p - (k'' - k'))

Ei - EN(k) - ru - up - tdk,-k-p

(rr, + ¿¿r.)(arp - cdk-k,-p + 2(k + k')' p - (k' - lr''))
+ (,1.53)

Ei - EN(le') - ru, - up -uk-k,-p

It should be noted that we treat the pion 4-point interaction as described in [Tho*86].

The exponential factor in (a.53) is the result of replacing the pion field operator' ø; (Ic )

by ã,¡(k)e-k2R2nfr2' to take into account the internal structule of the pion [Tho*86].

To obtain the numerical value of the momentum integral we expand the function iu

terms of Legendre polynomials [see Section 4.3.4].

4.3.3

\ \ I
\ \ I
\ \ I
I \

\ I\ I
\ /-- \ I\ \ / I

I

The Chiral Partner of the Sigma Diagram

t

I
I

I
I

I
I

'{
I

(a) (b)

Figure 4.5: The Chiral Partner of the Sigma diagram

The interaction Hamiltonian for Fig. 4.5 is

n,@)Alt" 
+ *H,(*) + u,(*)E;i" 

+ *H"(ù (4.b4)H"

60



We find the interaction matlix for Fig. 4.5a as follorvs

i/.o"o' (k' , tt) \or; k', z u,ln'@) ¡;fi ¡ ¡eH 
r(*)la1; te, i p¡)

¿ry# lo^ 
a**' 

Io^ 
orr' lor I dv Qtr)-3 | o'r' I o',

I I(¿" l*ló':,n,@) Ó@)'Ó(a)Ði'"^ Qt

(4.55)

a+a2 Ntl

onlN")(N"lal ..o,,
ffi N,zor' ø ó'¡,,@)lk,int)

where the )¡'s are given by (a.17) and S','(æ) represents

1

ó'0 "(*) 
: -!ç"¡(q)"nr* - otlql"-oo*1,

l'¿'o

etc. Now, as we compute the expectation value between initial and final mesolì

states and do the integration over momentum, (4'55) becomes,

Vo"o'
1 N"n (zir)-u

-W@F JTu¿,',i

¡R
l¿v

Jo
dr12 2

vl"
R

lorlotlo'nfrffi
t t 6o+,N,,6o2,N,, {6¡o*,60n.)vsaa 

'k Ði'"' 'e
a+oQ Ntl

*6¿j6¿.,¿r,)?sa+ .q ÐT'"' 'q - 6¿;r,6i¿nnÐI'"n '

(4 56)

k' Ði'"' 'aj

It can be seen from (4.56) that the second term in the braces gives a purely isoscalar'

interaction. Let us now consider the telm

I or I ¿t I ¿E 
"iq'(x-v).;(k-k')'v¡a3oa

qÐi"' .q (4.57)
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Since fsee section 4.2, equations (4.15)- (4.2I) for comparison]

First, expand 
"i(k-k/)'v 

in spherical harmonics and set the angular momentum of the

incoming and outgoing mesons to be 0. Equation (a.57) becomes

@tr) yoo(k,)),ö(k) I or | ¿, I ¿a e¿q'(*-v)jo( ky)js(k'y)Ðî"r ' qÐî'o' ' q (4.58)

I or"î.-"' .ee-iex
3

(4tr)pr"(qr) "¡\orl P, 
ot"' ' qr:")lo')"r

(4r) pr,(qr))1'"' S#"" è;' 8\I,,io,lr¡ll',i..,)' (4'59)

equation (4.58) becomes

$v..f r')v.ä(k) lql' pr,(qr) p,,(qy) jo(kv)io(k'ùSÏ:'" Si\"'(-)^' 6*,-*'

ìfoa+ ¡ozar (I orio"lr¡ll,ni,) (Ioriorlr¡ll,ri")6;i6¿*¿ *,.

with the help of (4.60), we can now carry out the sum over Q2,¡Q4 in (4.56), and

since .fy'" for-ms complete set of isospin states' we get

D I ( ¡". i.rlr¿l I. ni " ) (I o,í.rlr ¡l I'ri ̂
 
r) 6 ¡i 6 i * i *, 6 o o,N " 6 ..z,N "

a+d2 Ntl

: (I o"i orlr¡r ¡ 6 ¿¡lI..ri ..rl 6 ; r,; -,

- 3 ár.r 1o. óio, io. 6i*ir,.

(4.60)

(4.61)

Our comment after (4.30) that the advantage of writing the isospin matrix as defined

in (a.30) can now be justified. When rve calculate the higher order interaction matrix

elements between bag and pion states, the intermediate states involved are those of

baryons. In order to transform the quark spin and isospin operators into those

of baryons, it is necessary to use the spherical representation. However, we have

transformed the nucleon isospin operators into the orthogonal basis as in (4.30) so
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l\14 \a3a2\d2dl .. .c ,c - 4"
U"(k,,k):-eîÏ;,ffi%o(k,)yö(r)(-)'.,*Sor*1fiuo,n*,

, 
Io* 

ortlo* d*r" 
lo^ 

orr'r,,(qr)pr,(qv)js(kr)js(k'r)

..f I - I 'l

^ lÛr-trta2- ..,q- uulie' Ei- Tn'd2 uq-uy' lie)

4.3.4 Sigma like diagrams

thaf the pion field operators have simple commutation relations

For S-wave, the potential for Fig. 4.5a-b becomes,

(4 62)

\a

\

\

\
\

\
\

\
t

I
'(

," 
tt

\a -2
al

at
,l

I
I

I

\
\ \I \ a

t

(a) (b)

Figure 4.6: Sigma like diagrams

(c)

We can w¡ite down the interaction Hamiltonian for diagrams shown in Figs. 4.6a,b

and c as follows:

1

H ¡<"1

H¡('l

E¿- Ho*ie
1

E;- HoIie

H'(*)

H'(*)

H¡<.)

Diagrams shown in Figs. 4.6a,b and c are different by the ordering of the 4-pìon

interaction vertex Han. We can find the interaction matrix element for Fig. 4'6a as

H,(y)"=+=¡H,(*) nlt" + *Hn,(") (4.63)
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follows

1 1

'iir'"î' (tt', tt) : (on; tc', i ¡vv,lH {g) E¡-Ho*ze
Hn"(.)

ErHoþe
Hr(*)lot; k, iM)(4.64)

First we find the relevant part of the 4-pion intelaction for Fig. 4.6a (which we

denote bV Z)

(2n)-" I d" rr¿" rrd" qrdt qn l2ur,2uo,2uo,2u oo]-'

{n ,t(o' - ez i {Iz - I't) (u, ' ,t, - *'") a@) ' oI (qr) a(q3) ' oI (qn)

+ ó3(s, * q, - es- 8q) (-n' qr- ""-) ("*(0,)'oI(qr) a(qs)'a(q¿)

+ a(q,) - o(qr) ¿t(q3) ' "t(qn))) i+-or)

Now, the interaction matlix element (4.64) becotnes

,¿

'ti,:î, (t"',k) :

I D(r',¿
d3d2 C

W # Io^ 
0"" 

lo^ 
d**' I o' n I o" n'

,,r I d,ûÐîo'"-t ö'o,o(u) n,#L**t oy#*
I or"î", . e' ó'¡,n, @)lk, i¡1)

In (a.66) the intermediate state lC) can either be a nucleon or A. One can now

compute the expectation value between pion eigenstates and perform the momentum

integration so that we have;

(4.66)

(4.67)

64



Here, Fp,¡,(Ç,k', k) represents

þo*u,-u(E ¡ - rnN - uk -'n*u'-u)]-t (4'68)

From the defi.nition of F61;¡,;rt*,(q,k"k), we can see that it is clependent ou g,lb'

and k. Although it is possible to obtain an exact analytic expression for (4.68) at

threshold for numerical computation, it is not possiìrle fol higher scatter-ing ener-

gies. we therefore resort to some approximation methods. since we noi'ed that

the function F6¡;¡,trtr,(Q,lr',k) depends on the magnitudes of the three moment¿

lql, lk'1, lkl and the rotational invariant functions,zl, z2,whete

F6¡.(e,k',k) : F6¡;¡,t*t*,(q., k', k)

: [t-* q' - k' . q - m2*)6;,ir,6i,it,t

-f (q' - k' * q' k - m2")6r,;r6¡,i*,

*(q' . q + k' . k - rn2,)6or,nr,6o,¡]

cos d
0,k- k'

cos d¡,¡,

F6¡.(Ç,k',lr) : Fç1;¡,;*;r,(q,k'rk)
oo

: Ð (zt + 1)(2( * 1)F1"¡,,r t,(q,kt,k)P¿(21)Pv(22)
lJt=O

: 4")',oo(Ç, lc', lù Ps(z 1) Po("r) { 3F1";o,or (q,, k', k) Ps(21) P1 (z 2)

a3F1"¡.,r0( c1, lc', k) P1(21) Ps(22) * 9 F1";o,r r P1(21) P1(zz ) + ('a- 69 )

It is found that the first coefÊcient f'1"¡",,ss has the largest magnitude and t,he con-

tribution from F1o¡o,or or F1o¡o,1s âr€ 10 times smaller. Therefore we approximate

Z1

Z2

We expand the functior F¡o¡;¡,;.t.,(Q,le',k) in Legendre polynomials as follows
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Fp¡*(Q,k',k) as

F6¡*(Ç,k',,k) N F6¡.po(Ç,k',,1r)

: tu 

l:,' 0", ll,' d,z2 Fp¡,(Q,k',k)

Now the interaction matrix element (4.68) becomes

'ùi:î'(k',k) eù-"è¡t^&# I or I ot I o'oi
,¡',oo(Çrk',k)

Ð q Ð?"'' (q + k'' - k¡e;q.'(x-v) 
"-i(k'-k) 

v
(En-ITLN-akt-uq

o4.C
1

(4.70)

71)

One may now expand the exponential "-i(kt-k)'Y 
as usual. In S-wave we therefore

find from (4.7I).,

I o, | ¿y I aa Ðîr" . q Ð?". (q + lc' - ls¡e;t(x-v) 
"-i(k'-k)'vf'1")o ,oo(q,k',k)

(4tr)Yoo(k')l'oi(l)70(/c y)jo(k'ù I oU I d'ûÐî'" 'qe-iq.'v

I or"?". (q + k' - k¡e;t'* 4"),,00(Ç ,k',k) (4.72)

One may now proceed in a similar procedure as outlined from (4.58) to (4.60)

Equation (4.72) becomes,

Yn rrr' ) vö ( k ) lql' p r" (qr) p r" (qy ) i o(kù i o(k' y) 53"' S i\c (-)^' 6 - ^,,*

Àf r c ¡cor (I o ni o nlr,lcl (C lr ¡l 1.,i,, ) 4").,00( q, k', lr)

Since the states lC) form a complete set of isospin states, we have

(4.73)
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U o oi o olr¿r¡lI o,i or) 4')',oo(q, k', k )

: tU 

l:r' 0", 
Ilr' 

d,z2(Ionionl6¿¡ t ie¿¡¡r¡llo,io,) Fp¡r¡,;*;.,(q,k',k)

: i l:r' or, Il,' dz, {Q*ni,nl6;,,t*,lI o,io,l F6¡"(q, k', k)

+ (Ionioolier¿ r,; r,r*l 1o'rlo, ) F6¡,(Q,k" k))

: 6 ¿ r,¿ *, 6 r. n,I o, 6 i o n,i", F(c)s,oo - c'r::' #,:'; ci::"i'; ) I F1"¡,,00

where the isoscalar and isovector contributions l¡1o¡" and Flo¡, ale given by

(4.74)

Fç¡"(q,k',k)

Fç¡"(q,le'.,(e)

-{tO*i*.,,y,.,,r- uquk- 3c.-,¡,ø¡ +k'k' + lkl' +ltt'l'

+3lql' -F 3q . (k' - k) - øqar.,-r(-¿¿r * øk, + 3c,q))

þq+r,-r.(E¿-rnc-uk -rq+r.'-t)] (4'75)

-,{ru,ro*¿¿qc¿r. - 2k'' q - 2k' q + lkl2 - llt'l' (4.76)

*r¡q+r<,-r(rr. + q,)) þu+r.,-t(E i - mc- øk - tq+t'-t)]

After putting everything together finally we get for the S-wave interaction

u¡6¡(k'',k)
1 ¡/Í lfsc¡co' @tr)a ,9ç

( _ 
) 
1+sc +s -, (2tr)-6 yoo 

1 
t'¡ 16 1r; Ø.7 7)

l"* dq

Qf)a @r)2 2J,ìkuw

q4 e-R'nq'/6'

,q(E; - nrc - u)k,- rq)

3 so,
p

dr 12 dv v2 p r,(qr) p r"(qv) j o(k' v) j o(kv)l"
D

l"

l(I*ri.116o r,o rlI orior)F1,¡",00(Ç, k' , k) + (I o"io"lie¿¡¡r¡ll ',io,) 6¿,¿ *,6 ¡,;, F¡o¡u,oo(q, k' ,1,)l

Similarly for Fig. 4.6b we han,e,
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Qf)a @r)2 zJ,nka,w 3

[- ¿nt e- *?'c'lq [" o*
Jo ' 'r, Jo

s"
ôPdl

1 N"n Àizc ¡c'r
1 - ; 

r+sc +s " (2tr)-6Yo. i Â'¡ r; i k ¡

{-ur¡øn, * c.roø¡, - uk.-,q. l aq,u'1*, - 3urrur, * 3otøt '

-t}n*, - lkl' - ltt'." - le .k'* 3q . (k' - k) - 3q'j

[rf.,-f.-q(Ei - ?17C - c{rq - øk,-k-q - uù(E¿ - Tr¿c - uk'-k-q -'U)]-t

{-rurr, luq..,y, *t¡kc.rq -u)qtu)1or - lkl'+ltt'l'-2q' (k'+ k)}

[rr.,-r.-q(E¿-rnc - uq-@k,-k-q - ry)(E¿ -rnc -tl,rk'-k-q -'U)]-t

4.3.5 The Contact Interaction

\ I
a

a
/

a\ a\ a\ /

(a")n
u¡ç,¡(lc',ls)

4,)"

*' Io d"yy2 pr,(qr) pr,(qy)io(k' r)js(kr)

[(1,.i,.16;*,;*llorior)4¡)",00 + (I'ri'"lie¿r,¿r¡r¡llorior) 4¿)",oo] (4'78)

Where F1a;," and F1u¡, ut'" given bY

Fp¡"

\

Figure 4.7: Contact interaction

The interaction Hamiltonian for this diagram can be written as

']
Hn@):f,e, I o"*l*"(*-æ) 2

(4.7e)
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The interaction matrix element for thrs ls

vn'Þçk"k) \o; k', i ¡a,lH n @)l 0 ; k, i ul (4.80)

(4.81)

ou ¡/Í 1 f Þ;(k-k').x

Ja'"plç"¡fu
g) 

" 
¡ (r¡¿¿nnrn¡; r, * €kji M, €kii M)

ørY

".r(ol

For S-wave we found that,

un(le',k)

4.3.6 The Interaction for Diagrarn h
\ /

I \
, \

a\
=--\ t

a\ >\

1 4+y,.(1,,)rü.(r)6i ti u, 6 i *i r, 
çZ ¡¡o (Zn ¡. rl,,y,,lrt

lo^ 
a* r' ol þ) i s(k r) jo( k'r)

/
\ /

\ /

\

t, 
- - - -

/
\\

(4.82)

We may project this Hamiltonian into baryon space in usual way. The interaction

matrix element is

I \ a \ \ ,at
Figure 4.8: The interaction for Diagram h

The interaction Hamiltonian for this diagram is

Ht : n,@)¡j-" ¡ *ni,rQ) n;]n + *H,(*)

V;n"'1k',tt¡ : (4-83)

r ( on ; k,, i ¡,7, I 
H, (ù P;:+rç, ø ¡P#3, (*) la1; k, i ¡'7)

ù3d2
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Since the incoming and outgoing mesons interact at the contact point z we catt wlite

this as

v;n", (k' ,tt) Ð,þ nl n r( y ) I 
o. ) 

"=+r¡(o, 
; k', i ¡,¡' | 

ÍI la,, Q)la 2; Ie, i laJ

By recalling from eqns (4.20),(4.21) and (4.29), the interaction matrix element for

Yukawa vertex is

(4.85)

We also noted from the eqn (4.37) that the interaction at the contact point, z, is

(ot; k' ,i¡a,lV!,y7Q)la2; k,i¡a)
1 ¡ú"t uy, ! uy

Qf)'z@r) JDwúk
dzz2 p¿(z) d2

ósorso, 6*or^or(Iorior; I¡¿,i¡r¡'lr ' 0llotior; Iui¡ø)

l"
R

"i(k-k').2
(2")'

(4.86)

With the help of eqn (4.85) and (a.86), the interaction matrix element for eqn (4.83)

becomes,

1 N"u (2")-t ø,1*r ! uy*. I I 1
V;o"(t',k)

Qf)a @n) (2") JTuwZuk
dtq,' d" q,

2arr2ur,

À44d3)d2d1 
lo^ 

orr'or,(qry) 
foo 

dr*'or,(qr*) 
lo

dzz2 p¡(z)

1,1na3Íflt "r1.a4 niornt ion{,i.l'i s.f" U k:l r":èi.' ' q,
Ei - Tno" - @q, - u)k,

(01¿;, . o(qr)t.^. øt(qr)10) (Io"io"; I¡a,i¡a,lr ' elI.,i',; I¡øitt)

I .-eal'Lrtla2 71rs1rr 1¿1 ^ 4

Ewc';'",' i";:;' c;::';'^?,èi"' q'' (4'87)

t ^ i(k-k'\-zo,ze'

óso. so, 6*o"^o,
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Since we have

(0 
I 
¿;, a,I (qr)lo) : 6'(q' - 8r)(-)" 6^,-,,, (4.88)

the momentum integral over q2 can be done. Therefore the spin palt of eqn (4.87)

IS

"@) îi

t t Ð ci;i'{^"'ci:,'îi^:' I oU,È"^,'qrî,-^'q-, óso.,so, 6*o",^oz
So3mo3 Sormo, mrmt

t Ð ci;'i'{;' cîå'iî,;' lql' (-)'" 6^,,-^
4r
3Sorma, mrml

lql' (T) ásooso' 6*on*o,1-¡s':+s'r+r 
I I'
2'9'. + 1

Io, I¡r¡ I

I¡t, Ion 1

Io,

Id3 a2

(4.8e)
2So, I

The isospin part of eqn (4.87) becomes [see Appendix C]

' 
t(-)" ciï:o,Yl,'ici:: i;::

zMtxMt n 

t r Art tinllz
( I o 

"i 
o, ; I ¡4, i ¡4, lt' 0 

I 
I o ri o, ; I ¡a i ¡¡) C'¡iiT',Ï|, CiÏ r, r,,

(-)t*t', *' l(21,o + I)(21,,+ 1)];

I

(4.e0)

(1*. I lr(') lv,,) (I u,l l0(1) | | 
1Àl) Í

I Io,Ì{

I
I

1

1

d4

d2

By noting

,So.-:--
,90, I

tf
JI

îo,îon I Io, Ion 12

In¡' I¡r¡ I

Io, Ion 12

SI^ À
d2IA3d

I1

(-)s.3+s.1+1+1+1a1*t(l,.llrttl¡11,,)(Iu,llattl¡lIu), (4.91)
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we can write the interaction for Fig. 4.2h as

u¡(k'',k)
¡ff o.lk, I ak

384fara Jîrøi [* ¿nt [^ dyr'pr,(qy)
Jo uq Jo

1

1""
dxr2 pr"(qr) ,91"

R 1

I" dzz2 p¿(z) jo(kz) js(k'z) (4.s2)
(8, - ffio" @q - c¿t,) (Eo - TTt'd2 aq - uk

The Spin-Isospin constant ,51o are given in Table 4.5

Table 4.5: Spin-Isospin factors arise from diagram h)

4.4 Surnrnary

In this chapter we presented the derivation of potential for S-wave rN intera.ctions.

Kalbermann and Eisenberg's variant of the non-linear CBM Lagrangian was used

to derive diagrams to order Oh. W" firstly gave examples in the CBM fornralism

to transform the interaction of pion and quarks to those of pion and nucleons. We

then calculated higher order diagrams to order pþ. tn".e interactions will be used

as driving potential to calculate phase shifts and scattering lengths in Chapter 7.

1

2

3

4 312

r12

312

rl2 (N, N, ¡/, ¡\/)

(¡/, ¡/, ¡/, ¡\/)

(¡{, a, a, ¡\/)

(N, A, A, ¡\/)

-50/3

+2513

+32013

-L6ol3

Q, Total Isospin ST,State(aa, o3, a2,,cl1)
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Chapter 5

P 'Wave Scattering

5.1 Introduction

In Chapter 4, we calculated the S-wave interaction to order fr within the context

of the Cloudy Bag Model. In this chapter we will calculate the P-wave interaction

to order 1rþ ttittg the same technique.

The CBM has been very successful in describing P-wave pion nucleon scatter.ing

[Tho-l-80, Tho*86, PA 86, PA 89]. Our purpose in rederiving the P-wave interaction

is to provide a complete formulation of the zrly' system in this work. This P-wave

interaction will also be used in testing various propagators in Chapter 7.

5.2 P-wave interactions
\ t\ \ I\ / \

I \ a I\ \\a I\ I \
\ / I
1/

\ I

(b) , (c)

Figure 5.1: Diagrams contributing to the P-wave interaction

(a)
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5.2.I Contact Interaction

The contact interaction diagram shown in Pig. 5.1a is generated by the time piece

(a.8) as well as spatial piece (4.9) of the Weinberg-Tomozawa (WT) interaction:

nirr@) : &ld'rq1or,t 
(óxrr), (5.1)

u",frr(*): &1,P,q1,,l'(dxÇd) (5.2)

For. the time piece of WT interaction, the amplitucle between the final state l/) and

initial state li) is given by,

ulflin,;no,(k,k') : Ul+hrþ)li)

: (SnrnB, I BiB; k, I Mi^4litl4,r@)lS B,me,, Ie,is,; k', I ¡a'i¡v¡')

: \Su^u;ln lufB'(k,k')l,9B,mB,;lm),, (5.3)

where in eqn (5.3), the interaction matrix elements ,:u'(k,k') are those of @.a2)

with the primed and unprimed labels interchanged. The matrix element (5.3) can

be transformed to yield the scattering of total isospin 1 and spin -I as

,7pçu,t',¡ t u, cïEot'; cÏ:":"i:'; Ð Ð ci"'Tn! cil,'*,,'ru"Á1,,u,,,,(k,k')
igisr i¡4t¡4r ffLpffi Br .ppt

u7f ç*,,t''¡
,BBI.I

M: y# 
N ? [ 

* 
d"r x2 p ¿(r) j, (k") j, (k' r)y ^(È)Y;*(k' ) ( b.4)

8tr2 f2 1/2u¡r2u¡.' ' Jo

For the spatial piece of WT term, we first calculate the amplitude between the final

state l/) and initial state li)(please note the change of the label in this chapter);

: Ul4ffirþ)li)

: (S Bm n,, I Bi n ; k, I ¡a i ¡al H i,f, r(")l S p, m 8,, I e, i B, ; lt', I ¡a' i ¡r¡')

uhiu;B,i¡t,(k r k')
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The interaction matrix element between su(6) bag states is

uhiriB,i*,(k,k') Ð@ l(lI PV:t ¡,t.,ß i ¡,t, 
(k, k'' )l B' I (5-5 )

aþ

VJrr,onr,Ut,k') (o; k,, ; p¡l U ;;, (x)l þ ; k' ., i *,)

& | a",þ141r;qlþ) þ,i¡,¡l(þx Ç ó)nlt',¿r,). (5-6)

The meson part in eqn (5.6) is gives

(5.7)

The baryon part for eqn (5.6) is given by

Equations (5.7) and (5.8) put into (5.6) yield

where in (5.9) we used the notation

-0¡: -ie;¡¡6¡¿t6¡;*,

Since we can prove that (see Appendix C)

I a4ot .î - o 'îo)'(k' + k)e-i(k-kr)'x

(k,i¡a|(þxiÓ),lr,,iM,):-ie¿¡¡,6¡,;,6ji,,(k,+k)##

v:i,,o,,,(t ,k') = rÏrfffi@r J d'r¡o(',x)j1(a"r) (5 e)

"¡(o;i¡rtlÐ{ot"lot").f -o@\.¡o@) }(-r("1 e)lþ;i¡ø,).,¡(k'+k)e-i(k-kr)'x
a=l

-4
l'l @r)2 | i t(k' r) j ¡(kr)Yr;,(k')Yr*(k) /(/+ 1) I or,,,CTT'î'(5.10)

Ì'nmtm2
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we write eqn (5.9) as

/(/ + 1)

V::*,uor,(k, k'')
2n2 f'
Iz

J

D "¡þ;iull ofi'øt . rlþ;i'*) "¡cTT'î'Yth,(k')Yr^(È) 
(5.1I)

mmtm2 a=l

In order to project the interaction between quarks, (5.11), onto nucleons we will

first defrne the symmetry factor XBB' such that

"r(ol I "g)ry)lþ)"¡ 
: x"P (alo^,rnlll

J

a=l

(5.12)

On the L.H.S. of (5.12) the eigenstates la)"¡ and lB)"¡ are explicit SU(6) spin-fìavour

wave functions and on the R.H.S. the nucleon bag wave functions (c.f. Section 4.2.1).

The symmetry factor X'þ in (5.12) is given by

Xoþ : )oþ
o* 1 Jn;+a (5. r 3)

(s",llst'rllsB) (r"ll ,Ttt)¡Ip)

The value for X'0 is given in Table 4.1. Using (5.13) we can write eqn (5.11) as

Uki,;B,i,,(k,,t,,):##¡"i"fii"tu"r)j1(a"r)\',(k,r)j¡(kr)(5.r4)

Yh,(îc)Y^tÂl/¿A + rl xBB' Ð G)'(Blor^,rtqlB')(IMiMlTl,-olI¡v¡,i¡a,)cTT'î'
mmtm2q

The interaction (5.14) represent the transition from initial state with spin and isospin

li) : lS p,mp,, I B,i e,; lc' ., I ¡4,., i ¡4,1

to the final state with spin and isospin

l/) : lS n*n, I nin; k, I ¡,¡i¡,¡)
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Now we wjll transform (5.1a) to get the interaction for total spin (J) and total

isospin (I) We can transform (5.14) as

ui.¡(k,k') t
m BTn Bt

Since we can prove that

ci,'îy ci:,'T'y Ð t cï,¿,x'f ci:"',n,X:,t; uhi¡a;B,i¡6,(k, k')(5'15)
i B,t st i ¡¿i ¡4r

t t t ci"'îy ci:,'\,'Y \s"*nlot^,lss,rnB,)cTT"T'(2J + r) ?fLBnI Bt Mnt nztn2

1

Sn Sn, 1

i_¡"r+r+sr .,Æt + I (Sr | | S(tl I lS",)

(-)/+rir+¡ ", U 
"l1r{1) 

| lrr,) (I Mll|Q) lV r,)

we can write eqn (5.15) as

) so,I

(5.16)

ll'J

and

"+t 
t Ð t cilo,:J'icÏ:":',i:'f (-)o(I"iulrlolIs'iB')(I¡ai¡a101,-olI*'i'')

\ ' ' ?BxDt ql3 xMxMt

Iv, I IB,

IBTIU
(5.17)

(-2) 6/(/+ ¡Ja+tv,;,1 îûv,^(ù (b.18)

t

1t
I 2f2 Ztr2{TuPu¡.,

i_;.r+r+å

I
lo^ 

a*r'¡zu! 1

lrlto
(u 

"r) 
j {u,r) j ¿(k r) j y (k' ")l

SB Sp, 1

ttJ

where À|i;f, in equation (5.1S) are defined as

t'BB'so,I 1r
BB' - e2J6)

( s" ¡ ¡ 
5rtr I I S", ) (18 | | 

r{t ) 
ll r a ù (r vl16$) ¡t *,)

ui¡Qt,k') BBI

I¡t' I Ip,

)
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The values for ì|ij, are given in Table 5.1

Table 5.1 The coupling constants for the contact term, 
^";'Å'-

5.2.2 Crossed Born Term

x

zt/2 5\,/10 2r/5 v10
aA

q
?

-2,/2 -5
6

-2\/s
3¡/

I:l
¡/ A

B\B' 2 I 3

v

Figure 5.2: Clossed Born term.

The crossed Born diagram shorvn in Fig. 5.2 is generated by the Yukawa interactions

The interaction Hamiltonian for Fig. 5.2 is given by

(5.20)

We will first calculate the interaction matrix element between two SU(6) eigenstates

Ha: Htt*)g;L¡1* *Hr(a)

uþ t,;o;,, (k, k' ) : (0 ; ki tal H {æ) #; -ãH r(s)la; k', i ¡a,)
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Recalling eqn (4.14), the Yukawa interaction is given by

er)- + I o" *D,*\tUe" (k) a¿(k) * ir,a't &)a! (qj PI a (5 22)

er)- * I o' r D*+ {í,:' (tc) a 
^(tc) + (-) v:'' çt') "r- ^1t"7} 

P 
t 

CI( 5. 2 3 )

where in eqn (5.23), Vf"&) is given by

vf"&): ó #(-ï) u&R)ci:TT,re; k)cî:T'å

H'(*)

uþrrro;r,(krk')

Since \Ã/e can write

u (k' R)u (kR)
E¿-mC-c¿k-Øq,

(5.24)

It must be noted that in (5.22) the indices i -- I,2,3 are written in a Cartesian basis

while in (5.23) n: *l,0 are written in a spherical basis fol the pion field.

Now by using (5.23) the interaction matrix element for (5'21) is

(2n)-' 
Ð n,, I 

o' nro' r, \k, i ¡* | {vf " " (q r) n.(q r)

o"lC)(Clo't , \r¿,,

", -t;¿e)' v#' " (q') ot-. *' (q')V"" ¿ *')

(2n)-'Ð I u!;," {u') ç:;ntÐw
C atail Li - mC - u)k - U<lt

ubBi.rn,i,r,(tt, k') l@ | BI auþ ;, ;o;,, (lc, Ie' )l B' )

(5.25)

We will now calculate the transition from state B';k',i¡a') fo B;k,i¡rr) as

f¿

f¿-1
2

c i: Ti,' ( ô ;, . k' ) cT:." y', ; "" cT å', rT: G; k) C'r:": - :', ; : ( - )', 
-( 5. 2 6 )

è;, . k' ci:T'i," : lk'l rTr-r^' Yi*,(i,')ci:T'i,'
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,U k'R)u(kR)lkllk'l
5.27)

E¿-*C-t¿k-uq,

( f ) Yi^, (îc)Yl 
^ 

(,) c i"" T' T : c i 
":,' 

T\Z e )*' c',2' y i i c Ïil,- ;,' f ( - )''

In order to get the interaction fol total spin (J) and isospin (1), we carried out a

similar transformation to that used in (5.15). we can prove that

we rewrite eqn (5.26) as

t I t ci,"-,^! ci:,'-tT'y cî.'T'T;c7"i,'T\Z(-)*
(2J + r) tn Brn Bt M,-rn -tnt,ntç

1

,g"s"i-¡t"+s" I SnlJ

Sn' l' Sc

/(k) : \ i'(kß)
)R

(5.28)

(5.2e)

A similar summation over isospin indices can be carr-ied out. 85' denoting

f¿

f-¿-1

the interaction with total isospin (1) and total spin (J) for the crossed box diaglam

5.2 becomes

1 SBC ¡cBt I yi^, (i' )yr*( k; 
1 - ¡s"+s 

c t I s ! I s s 
" 

S 
" 

Î u Î "321 2 JraA,rwf 2tr2

IJ
l' sc

"br 
rçlt , tt'¡

Sn

Ì{Sr,

IB I¡A I

TN, IM, Iç

5.2.3 The P33 Resonance

The CBM had its first success in explaining P33 resonance [Tho+80]. In the context

of Geilmann and Ne'eman's quark model, the Pss resonance is a stabie particle

consisting of three quarks. There have been calculations of n/y' scattering in the

so-called A-isobar model, which treats the A as a stable particle. In the CBM, the
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Figure5.3:Directchannelcontributingorrl5'P11andP.g'(")Thedirectchannel
with intermediate state nucleon; (b) with delta ; (c) the intermediate nucleon is

renormalised; (d) intermediate delta is rerormalised.

direct term appeals in Fig. 5.3. 'fhe matrix elemeut fol tire direct term can be

calculated in the following lrìanrì,er'. The intelaction matrix element is

\I

\ t\\

It

I
(c)

\/

/\

tftrto;*,(k,l,-') (þ;k,i¡øl|,,ttl ç";*¡ raf.,(*)lcz;te',i¡¡') 
(5'30)

(2o)-'Ð t irol;"t gelirnif fo'l #?##e)''C atatl

The propagator (En - Ho * ie)-l in eqn (5.30) needs to be tleated as outlined in

[Tho+80]. The intermediate states lC) involve the self energy graphs shown in Fig.

5.3 which can be a nucleon or A. When the intelmediaie state is a nucleon we will

approximate the propagator as

Sru(B¿) : (E¿ - rnN- X¡r'(E¿) - Eu(E;) - E Ho(tt))-l (5.31)

On the other hand, lC) is a A state, we need to include A self eneÌgy shift in the

propagator as

S¡(B,) : (E; - rn^- Ðo"(Bo))-t
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After the self energy graphs are included in the propagators, it is straightforward to

calculate the potential for the direct term as

ui.¡(k,k') t t t Ð cr:rn! ci"?,'T' 
n!,' cï:,"i'f c"""::iJ:';

rnBmBt rnmt igiBr i¡¡i¡¡r

Ba

(zt)s ¡nc ¡cn'

@rY Jú¿,'w
pn*rt)Yi*,(

l@lBt au Bt ¡a;oi ¡¡,(k, k')lB')

(å)' p¡n'1rçr')u(k'R)

St S" I"
k')Sc(E;- *")ï-î , i (5.33)

5.3 Summary

In tþis chapter, we explained how the n l/ P-wave interaction is described in the

CBM to older pþ. fn..e P-wave interactions will also be used to calculate phase

shifts and scatter.ing lengths using different propagators in chapter 7.
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Chapter 6

Renorrnalization

6.1 Introduction

So far we have described the r-À/ interaction in terms of a bare three-quark bag

(MIT) and pions. In QED the physical electron is described by a bare electron

surrounded by a cloud of photons. In the case of the strong interaction, the bare

nucleon, which is described by a three-quark bag, is surrounded by a cloud of pions.

As a result, the strength of the coupling constant and, hence, the interaction itself

has changed. This is known as the renor-malization effect. In this chapter we will

examine the renormalization effects on zr-|y' interactions. In Section 6.2, we give an

outline of how the various quantities of interest, such as baryon self-energy, the bare

bag probability and the renormalized vertex functions a,re calculated. In Section

6.3, we calculate the baryon self-energy in detail. In Section 6.4, we study the bare

bag probability. In Sections 6.5.1 and 6.5.2 we calculate the renormalizations for

the Yukawa vertex and contact, or Weinberg-Tomozawal terms.
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6.2 The Physical Baryon ExPansion

We describe the physical baryon state 1,4) as a combination of the bare baryot, lÁo);

bare baryon and one pion, lAolet,i) ; a bare baryon and two pions' lAo,gt,i;qr,i)

etc. The physical state, 1,4), and the bare eigenstate, lÁs), possess the same

quantum numbers (T,Tr,J,J").We can write lA) as,

lA) :,[241a,¡+^lA) (6.1)

where Zl ts a bare bag probability and the operator Â projects all components of

lA) that have at least one pion. The physical state ,lA), sa,tisfies

HIA) -- *olA)

{æ tt -t (*o - Ho - Â1/,,,4)-t H¡.r}lAo)

,[t+ tt * (* o - iIo)-' Ho,'] lao)

(C,.2)

where 11 is the total Hamiltonian and m¡ìs the physical mass of the nucleon. The

bare nucleon state l,As) and bare mass msa satisfy a similar equation

HolAo) : rnotlAo) (6.3)

From (6.2) and (6.3) it is clear that in the presence of a pion field, the free Hamilto-

nian, fIs, will become the total Hamiltoni an,, H : HolH¿n¿, where H¡6 is interaction

Hamiltonian.

Following [Wick55, Tho*81, Tho*83, Tho*80], the physical wave function lA)

can be described in terms of the bare bag probability Zl and bare bag wave function

l,As) as follows

(6.4)

lA)
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where flo is defined as

The mass shift or self energy of the baryon can be defined [Wick55, Tho*81'

Thot83, Tho*801 by

Do (* o) : (AslH ¿,t(rn ¿, - iI o¡-' ft,^¿ Ao¡ (6 6)

The bare bag probability zf can be derived [wick55, Ttro*S1,'I'ho*83, Tho*80]

from the normalization condition of the physical state

Êo : \- Aå¿o-o¿ * I I o'r ay a|,(k)a¡(k)
A J.

(6 5)

zf (*o): 
[t - #r^ttrf-o',=^o

(6 7)

In the renormalization procedure, the interaction matrix elements are the tna,l,t'ix ele-

ments between physical baryon states. In general, the relation l¡etu'een the ba,re m¿r,-

trix element, M{8, and physical one, Mo" , is given by [Wick55, Thof81, Tho*83,

Tho*801,

MAB

where ZfB is another renormalization constant defined via

(6 8)

(6 e)ZAB
[1 + 4fB]-'1

and (fB is defined through:

ruî" ef" : \Aslu¿ú(mo - Ho)-t fu(*u - Hr)-r H;,rlao). (6.10)
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6.3 Baryon Self EnergY

a\
\

\

-ta\
a\

f\
b

I \
t,

(a)
Figure 6.1

(b) (c)

Diagrams contributing to the baryon self enelgy

When we tried to extend the calculation to higher order, as we did in Chapter 4,

we saw that in eqn (4.1) the interaction Hamiltonian contains not only the Yukarv¿r

term, Tlr(*), which is linear in the pion field, but also other terms non-linear in the

pion field. Yet, when we calculate the self energy for baryons, (6.6), only the Yuliawa

tern will be taken into account. For the CBM Lagrangian the contribution fronr

multi-pion states is rather small in comparison to that from one pion. Thomas etaì.

[Tho+81] have rigorously shown that the probability fol one pion field sulrounding

nucleon is large compared to two or three pions. We will assume that is also true

for our volume coupling type Lagrangian, Kalbermann and Eisenberg's version ol

CBM (See Appendix 4.2). The baryon self energy is representecl graphically in

Fig. 6.1. Figures 6.1a and 6.1b, which contribute to the nucleon self energy are

generated by the Yukawa interaction. For our non-linear version of the CBM the-,-e

is an additional contribution for the self energy which is generated by the Weinberg-

Tomozawa interaction Fig. 6.1c. We shall assume this contlibution from Fig. 6.1c

is small and can be ignored in our calculations. Thelefore, we wìll simply replace

'Ì1¡,1in eqn (6.6) by Ht Then the self-energy for the baryon is given by

È (Asl41(ma - no¡-'ut¡ao¡

: D (¿rl¡r, lB) (Bl(ma - 11.)-' lc) (cl¡11 lA0)
B,C

DA(nr¡)
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The intermediate states, lB), are taken as a baryon with one pion. i.e.

t d'qlBo; q, il (Bs; q, il.( BB :ÐDI
Bo i"

where i is the isospin index of the pion. We recall eqn (4'14),

B

Ao,Bo

where 
"!." 

(1") is given by

,!*B çlt¡ :
irî" u (kR)

H1 Ð | a' n 1vo, ltc¡ o i (k) + Ûi, 1r¡"j 1r; 1,
J

D 'q[no I a'n1u¡," @)î; . o(k) + ut^u' (Ðt;- "t(k)Ì (6.13)

(6.12)

/lnBmmAusn 1 s¡ K) CTETÏî (6 14)(.3;
n'Lr 2ay(2tr)3

The subscript 0 in (6.13) and (6.14) is to symbolise that i;hese rnatrix elements are

bare matrix elements. The form factor U(kR) in (6.14) is the same as in eqn (4.21)

and the ÀAB are given in Table 4.2. The constants f{B are given by

(#) AAB f¿

.fon6( ) f ¿ - 1

where -fo- i. the pion decay constant and 0 : 2.04 is the eigen frequency for quarks

in S-state. Since (0lt;' a(k)ii,'o1(t"')10) : (01(-)"'"'(k¡aI--*,çk')10), eqn (6.11)

becomes

Eo(*o)
E I 

æk d3k'uî: (k)uïift')6(t ' - k)6.,-,,(-)^'

Eff#)1,*or 2u¡*(2tr)3 (*o-*"-ru) (6.15)

I ar'cg,'yg¡ ci:T' i,"(3; . k)(3;,, ¿l I cïETï:cïîT' ïE 6 
",- n, (-)n'

k4u(ka) I

fltflt
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The sum over charge index nrnt atd the angular integration can be done easiiy.

Noting that f{B f{A6BÎB)l(SoÎò : U{u )2, the self energy of the baryon Ðo(*o)

becomes

Eo(*o)
k4u2(kR)

6.16)uu(mt-rnts-Øk

6.4 Bare B.g Probability

The bare bag probability is defined by eqn (6.7). In the Cloudy Bag Model this can

described in term of the bag radius. Here we plot the bare bag probability.

Bare Ba robability
1.0

0.8

z
c\l

3" 0.4

o.2

0.0

Ð(_)",*" ørr¡*rs#(#), 
I"* or

Bo

À
0.6

0.6 0.8
Bag Radius

1.0 r.2

Figure 6.2: The Bare bag probability

88



6.5 Vertex Renorrnalization

6.5.1 Yukawa Interaction

a

a

(a)

Figure 6.3

- \7a /\
/a

a

\
t

(b)

Yukawa vertex (a) and Renorrnalised vertex (b)

As we have stated in Section 6.2 in renormalization pr-ocedure we calculate interac-

tion matrix element between two leal nucleon states. To do this, it is important to

find the function {fB, such that,

"t"@)el" 
: (Aoll-It(nt.a - ito)-tvo.çt'¡ç,n" - no¡-'ur1ao¡ (6.1?)

where u{f t" given by (6.1a). Let us fir'st calculate the right hand side of eqn (6.17).

By denoting

D-'(*o,rtlç,u)qr) : (rnt - ITL7 - øq, )-1,

we have:

(Aol+r(^o - uo)-'uo,(lr)(*u - lto¡-t nr1øo¡

t I I O}n, d3q2\AslT' lCo;q, ,i)6¿,¡,6(q1 - qr)(C"lU"*(k)lDo)
c"-,ooã J

(Dü Qz,i'|H|Bo) D-t (*o,rft B,LÐq,)D-t (*",nLD1uq2)

,D-. T I d"r,rt:, @,)',9,D (k)"PJ:(q')(-)""á n",-¿6n'l,i

D-t (* o, m c 1 u) q\) D-' (* 
", 

rn D ) LDqr)

89



Æ,T Io'n't_-¿(
\ u'(q',?)

¡ z"*
fî" f?o fP" u(qR)

,n" 2uy(2tr)3

D - t (* o, TrL ç ., tt) q,) D - t (^ u, TrL ¡1, tt) q,) C i.' T' i: C i o" i i"t C l' u''T" lo'

3L, . qrî,:^ - lrè1',, . qrcï',!nf^cï:"TïZCïET"i; 6n,,06n, ,-o(-)" îi, (6.1E)

By noting that / d1/ßî*,'qrii,,'Q-t : lqrl'(?X-)*'6^',-*"' we can simplify the

s¡m over spin indices. Consider the spin part of eqn (6.18). The Clebsch-Goldan

coefficients can be summed oY€r TrL¡rrnB as follows:

Ðc i"' Ti: {c i"' T fr" 3i^ ; k ¿ Ç !'\' T î c i,' -ï'#' c i"' -ï' i: ( - ) 
-' 3 ;.r ß 

} 
6. 1 I )

nArmB

where our-notation in eqn (6.19) implied: the spin part of L.H.S(R.H.S) of (6.17)

being written on the L.H.S(R.H.S) of double arrows respectively. Then we applied

tlre summation CffTirt on both sides- The result is

";'k <+ (-)sc*t" l(zh + r)(2IB + l)lt

îi o ç-:,rc+ro lQI" + L)(2ID + r¡1å

I
I

,S¡'1 Sn

SnISc

I¡ I6

In Is

k (6.20)

)"

A similar procedure is carried out for the isospin part. The result is

I 1

1

t; (6.21)

By combining the equations (6.17),(6.19) and (6.21), we finally have;

AB
1

tq t(-)
Co,Do

¡rABuan

qnu'(qR) D-' (* 
^, 

m6, a9,) D-t (* t, m n, us) $.22)(t2tr2)-r 
lo* 

o,
aq
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where

UâB (-)t"+to+ rc+rol(2Sc + 1)(2SD + t)(zIc + 1)(2ID + 1)l;

StISr ItIIa
(6.23)

So 1 ,Sc IplIc

tttf'tæ
,z AB/t1

zf zPlt + tlBl (6.24)

In CBM, Z{ and (fB are both functions of the bag radius ,R. In Fig. 6.4 we show

(Mo" lMîB) as a function of R.

Interaction Ratios for Yukawa vertex

Ì{

From eqn (6.8), the Ìatio betwee4 physical and bare matrix element is

MAB

Mtr

1.4

cq

1.2

0.8

0.6

\ 1.0

ca

à

0.6 0.8
Bag Radius

1.0 t.2

Figure 6.4: Ratios of unrenormalised and renornlalised interactions
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6.5.2 Weinb erg- Torn oz,aw a Int eract io n

\

\ ¿ - - -//\ /\\

\ a\
a

\a f\.\
,

(a) O)

Figur-e 6.5: Unlenormalised Weinbelg-Tomozawa intelaction (a) and renorrnalised

interaction (b)

In Section 6.5.1, we obtained the renor-malized version of the Yukawa interaction. In

this section we repeat the same procedure on the Weinberg-Tomozawa interaction.

To do this we need to find the expression lor (luB7 which satisfies

utnu*,.*(k',k)€lru, : (AolHt(,no - Éo)-t Voor,,,(k' ,k)(m6 - Ho)-t HrlBo) (6.25)

By recalling eqn (4.37), the L.I{.S. of eqn (6.25) is,

tâ,uo çqolVo; r, t, (k', k ) I 
Bo)

to 
Br (Ao; k" i ¡4' l Hir r @)l B s; k,, i 

^a)

AB 1 N"'tk,+uk
dzz2 p{z)

N! ø.¡'.' I
''' (zÍ), (+tr) ØulZ''tu

¿( 1""

¿,4B \- ¡1i ¡i¡4r h fti si 
^i 

lt
\WT / vlol*,1 vlsl¡y1 I (2f)2 atr Jruwîuk

WT

IIt

^ ;.rk-le't.z 
(6'26)

J azffi \As; i ^a,lr' 
olBs; i 

^a)

À
AB,I (,k

l"
R

Idz z2 p¡(z)

On the other hand, the R.H.S. of (6.25) is written as

\Aslï1(rna- flr)-t Vorr,;,(k',k)(*" - Uo¡-t Ur1ao¡

t t I Otn, d3q2(AslHtlCoi 8t,i'] (Co; q,{li/o;,,¡*(k' ,k)lDo;82,i)
Cs,Ds i,i' r

( D o i Q z, il H I B o) D-' (* o, rtì' ç, u) ç¡,) D- t (* 
", 

rn D 1 u q2)
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F* "Ð 
I 0", (otlnn' (te 1) a n'( k' ) I 

Co ; a, i) (C o ; i' lto ;,, ; * (k', t') 
I 
D o ; il

\D o ; q, ilVJ,-*,, (*. ) al,, (te r) ( - ) "" I 
B o) D-t (* o, * 

", 
r s) D -t (m p, rn D, uq)

(2")-' I
Co,Do

(tr#) I o* 
o n n' W o -' (* o, m ç, u s,) D -' (* 

", 
m o', a,t)

lo^a"r'p,çaltrffi
1 N"' tl¡, f td¡

(6.27)
(2f)'?(+tr) JT-uy,2wy

I oati..T'i:ci""T"io" Èk, . qiî.,, ' qcï'"Tïicï:" r";", (-)"(co; i¡ø4, . ïlDs;i 
^a)

As in Section 6.5.1, we shali sum over Clebsch-Gordan coefEcients. We first wlite

isospin part of eqn (6.25) as,

Ð sfr"¡' c T:n,f,:,' ; c ï:"0,X';
IIs

(-)CTZT,:CT:, t"'Ê(Icic; I¡y¡,i¡4,1t ' 0lIoio; I¡øim)

( - )" 
+ o c',""Tî)c i|1"i', C 'i3'.,0,". 

C ii,,: ; i:
(1.1 Irr'r lv ù u *,¡ ¡ei1) ¡ lrr) (6 28)\EI:TI \Eri +1

Applying

t I cî:",i:'j' cï:"n,i'i,
LAItB 1Mt tLM

to both L.H.S and R.H.S of (6.23) we get (a similar procedure is carried ou1; in

obtaining equation (+.90)) ;

Sfrtì' <+ (-)1+ I 
"+t Î tÎ n (6.2e)

I

I

12 Ia IB
(1" ¡ ¡7{tl llr o) (r *,¡ ¡e{t) ¡ ¡r-¡

Finally, by combining eqns (6.25)-(6.29), we have

I Iv I ¡,r,

93



TAB
çWT

cq

1.0

0.8

o 0.6

rAC tDBJo ./o
r AB.I n

^wr 
mi

0.6

D ) -f- [* ¿rqnu-' kn) D-, (*o,ms,aq)D-t (*", mo,aq)
f 12tr2 lo ' 2rq

(r, ¡ ¡7{ti llr o) (r *,1 lettr ¡ lt ù Î Å os c sÃt
Co,Do

(_)/+sc+1
lz I¡ Ip

(6.30)

I Iv Iv,

The -R dependence of the ratio of renormalised to unrenormalised strength for the

Weinberg-Tomozarva intelaction is given in Fig. 6.6.

Interaction Ratios for I{-T vertex

à

à
Êa

0.4

0.2

0.0
0.8
Bag Radius

1.0 1.2

Figure 6.6: Renormalised to unrenormalised ratios of Weinberg-Tomozawa term
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6.6 Surnrnary

In this chapter we presented the renormalization procedure fbr the CBM. We first

outlined how the bare bag probability, self energy and vertex renorrnalization ale

obtained. Firstly, we calculated the baryon self energy and bare bag proÞability.

We then calculated the vertex renormalization for the Yukawa interaction and the

Weinberg-Tomozawa interaction. The effect of renormalization on S-wave in rl{

scattering will be studied in Chapter 7.
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Chapter 7

Nurnerical Results

In this Chapter, we present the results for the S-wave and P-wave rlV phase shil'ts

and scattering lengths and compare the use of different propagators. In Section

7.2.1 we show how the scattering length and phase shift fol S-wave n 1\¡ da'l,a' is

reproduced phenomenologically. We also compare the scattering lengths and phase

shift for different propagators using phenomenological potentials. In Section 7.2.2 we

study the threshold behaviour of the S-wave potentials which we derived in Ctraptel

4 . In Section 7.2.3 the S-wave scattering lengths and phase shifts f'or difle'-ent

propagators with CBM potentials are presented. In Section 7.2.4 we discuss the

effects of renormalization on the S-wave results.

In Section 7.3.i the phenomenological approach to rly' P-wave scattering rvith

a comparison of different propagators is presented. In Section 7.3.2 we presettt

the theoretical results for P-wave scattering using the CBM potentials derived in

Chapter 5. The comparison with different propagators has also been made.
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7.L Experirnental Data for n l/ s and P-waves

There are accurate zrlú scattering data up to a c.tn. energy of 1.7 GeV' The ex-

perimental phase shifts for both S-and P-wave in this work are frorn R.A.Arndt

and L.D.Roper, Scatteling analysis dial in( SAID pr-ogramme). The experimental

scattering lengths and volumes are given in lable 7.1 and Table 7.2(see also Ref.

[Kol 6e]).

Table 7.1: The Bxperimental S-rvave scattering I hs -1 )

Table 7.2: The P-lva,ve scatteri rrolumes rn;3

7.2 The S-wave Scattering Lengths and Phase

Shifts

7.2,.t Phenomenological Results

There have been many calculations for S-wave zrl{ scattering using separable' phe-

nomenological potentials [Tho 76]. In his rvolk, Thomas used a separable potential
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0.182 + 0.006

0.17
0.171 + 0.005

0.183 + 0.016

0.179 + 0.019

0.206 + 0.007

0.i70

-0.103 + 0.006

-0.10
-0.088 + 0.004

-0.109 + 0.016

-0.013 + 0.019

-0.099 + 0.007

- 0.099

[Fis 59, Bie 62]

[McK 63]

[Ham 63]

IWool65]
[Don 66]

IAZR 8ol

lSrahl

Ref ere.ncesA7 A3

-0.015
-0.016

-0.101+ 0.007

-0.0035
-0.13
-0.029 + 0.005

-0.13
-0.13

-0.038 + 0.005

0.243
0.201

0.215 + 0.005

[McK 63]a

[McK 63]b

[Ham 63]
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of the folm

u(k',k) : )s(k')s(k),,

where I : (+1) is repulsive(attr.active) arrd the form factor'9(å) is given by

s(k): s'l@? + k') + s,l@7+ k') (7.r )

The nucleon is treated as static and the pion reiativistic, while the R-matrix

approach was used to solve the scattering equation. The parameters ,S1 ,52, ()1,(12

are given in Table 7.3. We repeated this calculation using fully relativistic l<ine-

matics for both the pion and nucleon. The results frotn matrix invelsion rnethod of

Haftel and Tabakin [HT 70] using various relativistic equations are given in Table

7.4 and, Figure 7.1. There has also been a calculation for the comparison among

relativistic plopagators by Pearce and Jennings [PJ 90]. In their rvolk, Pearce and

Jennings used a Lagrangian that treated the nucieon and A as elementary particles

ancl thelefore were able to describe the interaction in a covariant fashion. They

found that there are, no significant difference in phase shifts in using the Smooth

(CJ) and Blankenbecler-Sugar (BbS) plopagators. In our work the CBM Lagrangian

is used and therefore interactions are calculated in non-covariant fashion. We there-

fore include not only relativistic propagators but also Lippmann-Schwinger (LS)

propagators in our calculations. In this work we find a significance difference in the

scattering lengths and phase shifts between Lippmann-Schwinger (LS) and relativis-

tic propagators while very close results are produced by CJ and BbS propagators as

can be seen from Table 7.4 and Fig. 7.1.

7.2.2 The Threshold Behaviour

It is well known that at threshold, the Weinberg-Tomozawa(WT) term reproduces

the isovector scattering lengths [Tho 31]. For our calculation with the CBM, we must
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Phenornenological Phase Shift S t I /SS f
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0.894

-0.1661

l0.I7I nz;I

-0.091 rn;r
r.7826
6.078

3.188
3.382

0.8255
1.107,Ssr

Stt
Ch,annel ^9r d.1 Sz cattg : Lengthd2

Table 7.3: The parameters used in the form factor (7.1) and the corresponding

scatteri hs

Table 7.4: cal scattering lengths (*;t)

compale with the phase shifts as well as the scattering lengths. When we itelai,e

the LS equation using the WT term as the driving potential we observe a large

discrepancy in scattering lengths as well as in the ,S11 phase shifts. This discrePancy

is known to arise from not preserving chiral symmetry when we iterate the WT term

in a LS equation [Tho+87]. Attempts have been made to overcome this difficulty by

including the diagrams to order pþ i" driving potential. In the work of Thomas

et a.l. [Tho+87, CJ 86] experimental isovector form factors were used and only the

isoscalar interaction for Fig. 4.le and Fig. 4.lf was calculated in the model. In this

work we calculated both the isovector and isoscalar contributions from the CBM

Lagrangian. Within the isoscalar interaction for u" and u1, the essential difference

between our work and that of Cooper and Jennings is the treatment of the pion-

pion scattering. Cooper and Jennings did not wish to introduce an extra parameter

(pion radius) in their formulation and sidesteped this difficultS' 6t transforming

the interaction to coordinate space. They also apploximated the nucleon and A

as having the same mass. In our work, the pion form factor was introduced and

formulated in momentum space.

We will flrstiy look at the behaviour of transition amplitude as we extend the

LS

CJ
BbS

0.1756

0.r477
0.1441

-0.0894
-0.i358
-0.1538

4,3Propagator at
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calculation to order pþ. As we can see fi'om Table 7.6, WT i,erm in th<'

approximation, which is a transition amplitude of order 1rþ oÌr"yt the Adler con-

sistency condition ay!Zas:0. This condition is badly viola,ted when we includer

potentials to order pþ i" Born Approximation. It is found that 1,he scatteling

length a3 is then changed by 100 per cent (see Tabìe 7.6).

We also study the behaviour of transition amplitude in the soft pion limits. It

is how each potentialuo to u¿ behaves when the incident pion enelgy becon-ies zero.

In the following we list the analytic form of the potentials which rvere clelivecl in

Chapter 4 at threshold. These can be obtained by setting ingoing a,ncl or.rt,goirtg

pion energies are the same, i.e. a'l¡ : LL)kt, and the incident enelgy lleirlg t,a,lietr ¿rs

Ei:mN*øt.

(7.2)

2
'Pt (26;r,;r, -Àlr ?-) (7.3)
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Her-e, the numerical factors ,S1o in eqn (7.12) are those of the spin-isospin factors

given in Table 4.5. In Table 7.5, we give numerical values of the potentials at

threshold energy.

One can now divide the potential into three different categories, depending on

the behaviour of vanishing external pion energy limit ø¡ = 0' i.e.

(i) Independent of this limit

(ii) goes to zero in that limit

(iii) Becones infinite in that limit.

In ordel to see the dependence of the external pion energy, lets rewlite uo T'o u¡

talrulated in eqns (7 .2-7.I2) as follows:
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The integralsl,T are given in Appendix 4.4. It can be seen that the Weinbelg-

Tomozawa term uo and u¿ are independent of this rn? x 0 (i.e. uk N 0) limit.

The troublesome terms that are infinite in the soft-pion limit m2* = 0 come fi'orn

't)b¡'t)..¡u"ruJ and un. Numerically, The sum of troublesome terms from u6 and u.

cancel with un since

h x 
|rnç*¡.

This is not surprising since the contact term un is designed to cancel the terms that

are infinite in the soft pion limit arising from iteration of uo,i.e. u6 and u. [Gui 85].

However, as shown below, the troublesome term from u, does not cancel with that of

u1. Therefore, in contrast to the transition amplitude for the Weinberg-Tomozawa

term, which is independent of the soft-pion limit, the transition amplitrrd" oi order
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pþ i. sensitive to the soft pion limit

*-r,*{-n * ît,@) +!rr!\ * I'tY' - I'[i't*
fttl^' +';rl:' - |rL')i)

0'08558 
{-0.0033 + 0.2658 + 0.4070}

ffin

0.08104

Table 7.5: The potential strength at threshold energy. The A in blacliets denotes

for inclusion of the A intermediate state in that diaqlam.

-0.1 1372

-0.07386

0.00473
0.00000

0.00000
-0.02096

-0.00894
0.00000

0.00757

0.01365

0.05686
-0.01847
-0.00236

0.00000

0.00000
0.0i048
0.00446
0.00000

-0.00379

-0.00683

0.00000
0.00000

-0.00473
0.06909
0.05914

,0.04742

-0.02698

0.02299
0.00000

0.00000

Uù

ub

uc

ue

'J"(^)
uJ

,¡(a)
uo

Dh

,r(A)

112 312 Iso-scalar
Diagram Total Isospin

Table 7.6: S-wave Scat Le hs at Threshold in Boln apploximation

7.2.3 Phase shifts and scattering lengths at finite energy

We now calculate the phase shifts and scattering lengths using valious plopagators.

The scattering lengths are given in Table 7.7. The phase shifts plotted in Figure

104

WT Term (u,) only
Full-set (u" to u¡,)

0.208
0.21.9

-0.104
-0.206

au. úzt



7.2 corresponds to using only the WT term (Fig. 4.1a )as the driving potential.

For the WT term as driving potential with various propagators, it is found that

the BbS propagatol gives the best scattering lengths. The phase shifts plotted in

Fig. 7.3 are the results from the full set of potentials derived in Chapter 4 to order

¡zþ, while the contributions from A intermediate states in Figs. 4.1e and 4.lf are

onritted. In Figure 7.4,we plot the phase shifts using various plopagators with the

fullset of potentials including A contributions in Figs.4.le and 4.lf. Il'-orn figs. 7.3

and 7.4, we see that the inclusion of the A in potentials has no significant effect on

phase shifts horvever Table 7.7 shows an improvement in the scattering lengtirs. All

of tlre CBM results tabulated in Table 7.7 were calculated for a bag radius .R : 1

fm ancl pion coupling constant /: 93 MeV.

Table 7.7: Scattering len for CBM calculation TN

7.2.4 Renormalised S-wave scattering

We derivecl the renormalised Weinberg-Tomozawa term in Chapter 6. We present

the renormalised scattering lengths in Table 7.8 and the phase shifts obtained for

different propagators in Fig.7.5. The phase shifts for different bag radii for un-

renormalised WT term and renormalised WT term are given in Figs. 7.6 and 7.7

respectively. In Fig. 7.7 it can be seen that the phase shifts a'-e insensitive to the bag

WT term (LS)
WT term (CJ)
WT telm (BbS
Fullset-1 (LS)
Fullset-1 (CJ)
Fullset-1 (BbS)
Fullset-2 (LS)
Fullset-2 (CJ)
Fullset-2 (BbS)

uo only
uo only
uo only
no A in u" and u¡
no A in u" and u¡
no A in u. and u¡
A in u, and u¡
A in u" and uy

A in u" and u¡

0.3006

0.2042
0.1942
0.2320
0.1532
0.1443
0.1810

0.1 148

0. i069

-0.0616
-0.0683
-0.0707
-0.0941
-0.1137
-0.7172
-0.1195
-0.1486
-0.1538

)

A'1 a3 Remarks
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Figure 7.2: S-wave phase shifts using only the Weinberg-Tomozawa term as the driv-
ing potential; solid line experimental value; dashed line Lippmann-Schwinger(LS)
propagator; dot-dash Smooth(CJ) propagator; 3-dot-dash Blankenbecler-

Sugar(BbS) propagator.
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Figure 7.4: S-wave theoretical phase shifts with the full set of potentials including
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ra,dius when the WT interaction gets renormalised. This is in contrast with unrenor'-

malised WT ter-m in Fig. 7.6 for rvhich the phase shifts show a strong dependence

on the bag radius.

Table 7.8: S-wave renormalised scatterl with various propagators

Table 7.9: S-wave Ìenolmalised scattering lengths for different bag radii. The LS

propagator is used.

0.1353
0.1613

0.1792
0.1856

-0.0305
-0.0378
-0.0436
-0.0490

0.7
0.8

0.9

1.0

&1 A3BagRadittt(/--')

LS Propagator
CJ Propagator
BbS Pi-opagator

-0.0490
-0.0537
-0.0545

0.1856

0.i430
0.1380

Method A1 O,3
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7.3 P-wave Scattering Lengths and Phase shifts

7.3.t Phenomenological Results

The P-wave phenorrenological scattering parameters can be found in [Tho 76]. The

form factors used in those potentials are:

g(k) : s1k l@l + k')' + s2k3 I @7 + k')' (i.25)

Table 7.10: The el for the P-u'ave scattering

The parameters 
^91 ,dt,52,¡C'2for' eqn (7.25) are given in Täble 7.10. The phe-

nomenological potentials are used in testing various plopagatols. It is found that

for P33 phase shifts are not reproducec{ for the CJ and BbS pr-opaga,tols in Fig. 7.8.

These two relativistic propagators behave differently for the P13 and P31 cases a.s

well. In Fig. 7.10 different phase shifts among propagators is observed for P13 ciran-

nel while almost the same behaviour was shown for P:r in fig. 7.11. The scattering

volumes evaluated by various propagators are given in Table 7.11.

Table 7.11: Phenomenological scatt volumes

Pes

Pst
Pn
Ptt

0.5403
4.290
7.557

0.3959

1.0583

0.0
3.659

0.0

3.400
0.0
1.945

0.0

r.475
2.059
t.224
r.074

Channel cY2^9r û1 Sz

Experiment
LS

CJ
BbS

-0.101
-0.05946
-0.05991
-0.05996

-0.029
-0.4562
-0.1645
-0.3798

-0.038
-0.03545
-0.03735
-0.03767

0.215

0.1853

-0.00474
-0.00389

Propagator &tt azt az3atg
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Figure 7.8: Phenomenological P¡f Pss phase shifts; solid line and long dash repre-
sents the P33 and P11 experimental phase shifts respectively; 3-dot dash and strort
dash represents phenomenological P33 and P11. The LS propagator is used for the

&s calculation and the relativistic propagators do not ploduce a resonance.
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the experimental; 3-dot dash line LS propagator; dash and dot dash lines CJ and

BbS propagators respectively.
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Phenornenological Phase Shift P31
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BbS propagators respectively.
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7.3.2 Theoretical P-wave results

For the theoretical P-wave calculations) we used the CBM potentials derived in

Chapter 5 as the driving potentiaì with the various propagators given in Chaptel

3. The scattering volumes are given in Ta,ble 7.12. The phase shifts are plotted

in Figures 7.12,7.13,7.14. In Fig. 7.12 phase shifts for P¡g channel is given ancl

it is found that the LS propagator as well a.s the relativistic propagators produce

the resonance. This is in contr-ast wiih the phenomenological potential that fails

to produce the resonance for the relativistic propagators in Fig. 7.8. In Fig. 7.12

we oniy show the phase shifts fol potential rvith parameters (coupling consta,nt and

mass of A) unadjusted.

The CBM has been vely successful in describing P-waves. The first calculation

for P33 resonance using a surface coupling version of CBM was done by Thomas

eú aI [Tho+S()]. The calculation for the P-wave scattering using volume coupling

version was done in Ref. [Tho+86]. When we use the Lagrangian of Kalbermann

and Eisenberg and take the interaction to order- l¡, th" potentials are the same

as those of [Tho*86]. Those calculations (and ours too) give good agreement with

the experimental phase shifts except for the P11 channel. Our point in repeating the

calculation was not only to provide a complehensive presentation but also to test

the different propagators for the P-waves.

We also noticed that Pearce and Afnan IPA 86, PA 89] have made a serious in-

vestigation of the P11 channel. In their wolk, they demand that the renormalization

procedure should be consistent with the LS equation and used modified version of

LS equation. A reasonable agreement was found for the Pf1 channel for 4 < 400

MeV.

For the P-wave scattering volumes, it is well known that Born approximation

to order pþ ntodlrces a good result in usual covariant calculations [EW 88]. Our

experience in S-wave tell us that the scattering volume produced by LS equation will
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Figure 7.12: Theoretical P33 phase shifts; solid iine expe.,-imental; long clash-clol, line
LS propagator; 3-dot-dash and dash lines CJ and BbS propagators respectively.

be different from those in Born approximation. Although previous authols cio not

mention the problem [Tho*80, Tho*86, PA 86, PA 89], we expect (and shorvn in

Table 7.12) that the scattering volumes are not as good in agreeing with exper:itnr:nts.
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Chapter I

Discussion and Outlook

I¡ this chapter we present discussion of the lesult and give an outlook fbl the r1ú

calculatio¡s. We will firstly look at the result of carrying out the calculation to order'

fr¡ i" S-wave. In Born approximation, the scattering lengths ale not irnploved by

taking the calculation to higher order. In Table 7.6 we c¿n see that the Adler

consistency condition (o, + 2az - 0, or that the threshold scattering lengths should

be purely isovector) has been badly violated by this. It has also seen in Section 7.2.2

that in the soft pion limit, m? x 0, the badly behaved components( which become

infinite in the soft pion limit) arise from nb.t't)c¡u.,u¡ arrd un. The cancellation of the

isoscalar. piece, un,by the badly behaved piece of u6 and uc carr be proved explicitly

[Gui S5]. We prove numerically that the badly behaved piece of u¡ is not gualanteed

to ca¡cel exactly those of u.. Nevertheless, these two diagrams at threshold energy

do tend to cancel as advocated by Cooper and Jennings [CJ 86].

The phase shifts obtained by using higher order interactions are not nrrrch im-

proved over the results of the leading order, Weinberg-Tomozawa term. I{owever it

is remarkable that the leading order results ale not greatly altered by adding higher

order graphs, as can be seen from Figs. 7.2 anð, ?.3. It is also'seen that when we

add the A contribution in the graphs, the overall magnitude over phase shifts is not

greatly altered but the scattering lengths are improved (Table 7.7)-
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A nice feature of the CBM is that it tleal,s the nucleon and A on the same

footing as required by QCD [Tho*80, Tho 8a]. This a,lso prevents double counting

in LS type equations [Holt87]. The improvement over scatteling lengths in Table

7.7 when we add the A contribution shows the Lagrangian of Kalbermann and

Eisenberg has kept this nice feature of the CBM.

We therefore conclude that for Chiral Bag Lagrangia,ns it is possible to guarantee

corìver-gence by adding higher order graphs. The overall magnitude of the phase

shifts in Figs. 7.3 ancl 7.4 proves that the inclusion of higher order graphs does not

induce significance alterations to the leading oldcr result of lìjg. 7.2.

One major drawback in our rvorl< is not inclticiing centel of mass and recoil

corrections to each higher order diagram. All graphs ate calculated in the static

approximation for the nucleon. While, those corrections ale expected to be small

[Tho Sa] they rnay be very imporl,ant in the lather subtìe soft pion limit.

As for the question of unitarity, we conrpare the resull,s florn covariant 3-din-rensional

propagators and the Lippmann Schwinger propa,gatols irr Figs. 7.I,7.3 and Tables

7.4,,7.7. There are significant differences in results bel,rveen LS and relativisticprop-

agators in Figs. 7.1 and 7.3. Thele is some slight iurprovement ivhen we use a smooth

propagator with leading order, Weinberg-Tomozawa interactions, as has been spec-

ulated by Cooper and Jennings ICJ 88]. This is not the ca,se when we use the full

set of diagrams to calculate phase shifts and scal;tering lengths as shown in Fig. 7.4

and Table 7.7. The relativistic propagators underestimate rú1 and ovelestimate a3

as we see in Table 7.7.

For completeness, we calculated the P-rvave interaction and used it with various

propagators. It was demonstrated that the P lvave phenonrenological separable po-

tenlials are not reliable sources to learn potential strength and behaviour. This can

be seen from Figs 7.8 and 7.10, whele the P33 arrd P13 results ale not well reproduced

by relativistic propagators. In contrast, the theoleticai P33 can be tested leliably by
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both relativistic and LS plopagators, as shown in Fig. 7.12 - although we neecl i,o fit

the A mass for different propagators. There is still problem in scattering volumes

for P-wave. Because of the richness of physical content of the higher orclel CBM

diagrams that has been demonstrated in the S-wave calculations, one is encottlaged

to extend the calculation to order drf , inclucling the resonances.

The renormalization for the S-wave Weinberg-Tomozawa teltn n'a's calculated

and tested numerically. The renormalised interaction over the Bag ladius can be

studied from Fig. ?.7 and Table 7.8. It is interesting to note tha,t ovelall the phase

shift is not significantly altered by changing the bag ladius rvhett thc inl,elacl,ion

gets renormalised. This is in contrast to the unrenormalised Weinbelg-Tomozawa

term, which shows a dependence on Bag ladius as can be seen flonr Fig. 7.6.

From the overall picture of both S- and P-wave calculations, the CBM Laglangian

is reliable to calculate higher order graphs. This is not a new conclusiou as previ-

ous workers, I(albermann and Eisenbergs, IKE 83] pointed out a long time zrgo.

Cancellations of higher order diagrams such as Fig. 4.1e and 4.1f can be consid-

ered as a major attribute of the chiral Laglangians [Gro 82, CJ 86]. Numelically,

the isoscalar contribution from u" and u¡ are large (Table 7.5). One of our dis-

satisfaction in calculating higher order graptrs such as Fig. 4.lf is that, rve have to

use an over simplified account of the nzr vertex. This kind oT rr interaction is also

encountered in ,^/.^{ interaction as the correlated 2-pion resolìance for the S-wave

[Hol*87, PA 89]. In our calculation, the strength of u¡ is greatly influenced by the

assumption made on the zrzr vertex. When we vary the form factor at the zrzr veltex

by altering pion radius, it shows a significant difference in the phase shifts, especially

in the 
^911 

channel in Fig. 8.2. Therefore a more careful analysis is necessary I'or the

zrur interaction.

From Figs. 7.3, 7.4 and 8.2, the ,S31 channel calculations ale in good agreement

with the experiment. We therefore conclude that the remaining discrepancy in S11
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Figure 8.1: The phase shift obtained by turning off the isoscalar contributions from

u" and uy; dashed line uo only; dotted line full-set of driving potentials; clot-dash

line, the isoscalal contribution from u" and u¡ turned off.

channel is due to N(1535) resonance and the strength of the zrzr vertex.

The most challenging aspect of our work was to ensure that the Kalbelmann and

Eisenberg's Lagrangian does give the soft-pion limit. The troublesome part is clearly

the isoscalar piece arising from Figs. 4.le and f that would violate soft pion limit

(becomes infinite in that limit). On the other hand, the isoscalar piece is necessary

to produce scatteling lengths and phase shifts at higher energies. This is shown in

Fig.S.1 u,hen we turn off the isoscalar contribution from u" and u¡ the phase shifts

bend arva5r from experiment.
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Appendix A

The CBM Lagrangian and \Mave

function

4.1 MIT Btg wave functions

In this Appendix we gi'r'e the quark wave functions which were used in calculating

interaction matrix elements in Chapter 4. In the Cloudy Bag Model (CIf M) qua'rks

are treated as massless Dirac particles confined to a spatial region (Bug). Hetlce,

the quark wave functions in CBM are the same as those of MIT. In thjs work, we

only used the ground state wave function for quarks. The wave function for quark

(a) is given by [Tho 84, Tho*83],

¡ú"
Ç"(x) : J4"

'/f)r\
Jo\n/

. ^ ,r)-.
zc . r11\fi )

"-iQt/R6 
o (A 1)

I{ere fl :2.04 is the quark eigen-frequency, R the bag ladius À'" is the normalization

n,z- | / CI \^s 2Pz¡¡gz \cl - t /

constant
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and ?9o is the combined spin-flavour wave function for quark (a). Pion field is treated

as elementary particle (structureless). The pion field operators in o'-thogonal basis

are given by

ö¡(*):#l#h[o'(o)"'o* +al'çq¡e-;q*] (A'2)

where j : I,2,3 is the isospin index. The spherical basis for the pion field operators

(r+r,oo) are built up from orthogonal basis according to eqns (C.1) and (C.2)

1
ú+t T--rt(a1 !. ia2) (A.3)

(A.4)ag:43

A2 The Non-Linear CBM Lagrangian

There are two types of chirally symmetric Lagrangians that describe zr-fy' interac-'

tions, namely o and p types. It is also known that one can apply the unitarity

transformation on a type Lagrangians to yield p type coupling.

The Cloudy Bag Model Lagrangians are constructed from MIT Bag model in

order to have chiral symmetric properties. This is achieved by incorporating the

pion as a separate local field which couples with the quarks. Likewise in traditional

nuclear physics, there have been Chiral Bag Lagrangians that include ø field ICT 75]

and those reminisence of p type [Tho 81]. The latter type can be obtained by

applying unitarity transformation on the ø type Lagrangians. All these Lagrangians

are equivalent representation of the same basic theory and provide a freedom to

choose for particular application.

In this thesis, we choose to work with the Lagrangian of Kalbermann and Eisen-

berg [Ktr 83]. The Harniltonian density is written in such a way that the time

derivative of pion field being replaced by its canonical momenta. This has the ad-
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vantage of cancelling bad piece of the isoscalal component that arises from iterating

lowest ord.er (Weinberg-Tomozawa) tenn in Lippmann-schwinger equation [Gui 85]

(see the discussion in section 7.2.2). The Laglangian density is given by

L(") q -'runu"* *u nlo-,, (r,

^7Ó'

, .0ró 
" 

.(ó x A,ó)
2r (2Í)',

Q0,,

0Bqø
1

-x2 u q

2lr + p"l
(A-5)

(A.6)

(A.7)

(A 8)

where as in (4.5) d, is the step function, 1 inside the bag and 0 outside; B the bag

pressure constant; á" the surface delta function ancl p,: & By noting

F',(ó) (ro(d), r" (ó))

4^t"
(r:t -t " d\
\ z¡ (2Ð' )

the canonical momenta fol the pion field is given as

Then, the Hamiltonian density can be wlitten as

ðL(r)n@)

11 n '@oó) - L
_LBoo_ÇoitolnJig)'= t ,r'nó' , (ooó)'

- lr+p,l 1-2l1 +p.Y-21 +p)-2lI+p-l'

We expand (4.8) for small pion field i.e. pn: # a 1, rve have

[1 +p*]-1 =1- p*-tp?-...

l1+pÀ-2=1-2p,*3p'"-
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The Hamiltonian density to order Qf)-t becomes

In (A.e),

'|lurc : or.(Ç-Ç)q +B)0,+f,øø6"

(r' * *'*ó' + fÇ øl')

il : -Lnos-@ o(d)+V F(d)) +tT*!o'+ltiol'l
-p*(rr.l,'o(é)-Ç F(d)) + p*(t' -(Çd)') -p*,n'*þ'+

f,rr'rotY * otè*¡
: '11¡rn *'Jlno l'11;n

L

,
I
,

(A.e)

(A.10)

(A.11)

(A.12)

(A 13)

(4.14)

(A.15)

(A 16)

(A.17)

(A.18)

T(no

'11¡n, : 'lú l'l1z * 11!*, -t 11"årr -f'11' +'l1qn

where the interaction Hamiltonian is given by

11'(æ)
0u: 

(4¡Çtts

11"(*) :

11!*r(r) :

Tl"rirr@) :

"q.Ç ó
0., +

øf 7't'ysrq'v ô ó' ó

&q^f,q (ó*n)
A-

øÌ- |trq ' (dx v d)

11'(*): itn,fffi-ffila'
'nn*(*) : & (n' -(Ç ø)' -,.'-O') O.O

The pion canonical momenta If has the property,

-ia : lII, H"ol )

and therefore the pion canonical momenta in (4.15) served as time derivative of the
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pion field

4.3 SU(6) 'Wave functions

In the following we will give SU(6) wave functions and matrix elements of transition

spin-isospin operators. In studying the zrly' system, it is sufficient to consider only

two flavours u,d. Flom this we can construct spin(flavour) symmetric Xs(ds), mix-

symmetric xm,s(ónt,s) and mixed-asymmetric xu,t(Óu,t) (see section 4 of Þ-.E.

close) [clo 79]. we will denote spin s,MS and A states as follows:

3

lx")
1

lx3)

: I 111)

: 
firrrr+1Jt+t11)

: ft r rrt + 111 -2 111)

: 
$rru-t11)

xi¡,s)

(A.1e)

The flavour s,MS,MA states are obtained by replacing f (|) with u(d) flavour.

The l/, A spin-flovour states with particular spin(isospin) 3rd components can

be constructed as follows.

1111

lór¡ø,sX,u,s + ó,u, ¡X,u, t)

ló?x?'l
óq

ló?x's)

The matrix elements of (1.25) can be obtained as

1

lx'¡o,t)

11
N;1, : t,5. -- ,

11
A;13 : ,,5,: I

33A;13: i,5,:i

1

sJ:t

sJ

sJ

11
"¡(/ú; I": i,S": 2

(A.20)

o@)r(o) 1v;13 : f,,t,: f,)",

3

D
a=1

5:
3

Mp,p
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A r134J213
513¡r/ 4J213
NCI\p A

Table 4.1: The uark matrix element

When the transition involved only isospin, it is sufficient to determine the matrix

element with flavour wave functions since spin functions are orthonormal. In this

case we easily find that

"¡(r/; I": +tlå "t"'lr/;1, 
: +|)"i :

"r(A; 
I": +rlå'r"'la;1, : +1r)"r :

"r(A; I": +TlÈ ","'la;1, 
: +|),t :

1

1

(^.22)

,(A.23)

(A.24)3
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A.4 The Value for the Nurnerical Integrals

In this Appenclix, we give the numerical integrals used in Section 7.2.2. We denote

u) : (t)qtA- : rlr^-nrN)Tr(q") : ¡f; d,rrzpt(r)js(qr) and7,o,(qr) : /0" drr2pr"(qr).

symbol Integral Numerical value

TT drr2 p¿(r) 0.19436

rs [i dqq 0.1937

T1 dqq 0.08371
ræt
Jo aqq r?(q*)2l

.14. dq

F!:) Ii d,l
l6 r@')(q')

-0.16875
0.06138

0.06999

0.04671

0.01i83

0.005918

0.02279

0.007440

0.002125

0.018859

0.12118

0.02635

0.00954

u
2l

-u
a

1a

ræt
Jo ctqq r7G")

r!*) [i dq

r[) [i dq

(q")
(q")

dq /6.e

e

e

e

/6.

(q")
q:L

(q*)

2q [i dq e-Rtnq'/6'

li ¿q# e-R'^q2 /6' (q") 0.003518^)a
1

-m
1

n -n
r;:) ff ¿,t*

"-R'"øt 
/a.7;,çnr ¡ 0.001758

qn

u

tb
ræ¡
Jo dq

T(L)J th

r:î) ff ¿qS

rnþ:)

/4. qr 0.01129
n I r?\w" -l lel" )e /4 (qr) 0.08211

(q")
dræ

Jo q

dq

qo

u2

.'+q')"- (q*)

dr12
r x)q(

tL"\ þ) Ii ¿q* (r;+;r") T3"k")
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Appendix B

Relativistic Jacobi coordinates

The relativistic Jacobi coordinates for two particles with rrâSS ??11 and rrz2 , utontenta

ptrpz are defined as follows. In the c.m. fratne, the total 4-monrenturl, P, is relal,ed

to the total energy squared, S, via

p : pt * p, : (r,/^9, 0)

The energy of each particle when the square of total energy is S

(8.1)

(B 2)

(8.4)

,ñ\ S+ml-m2,t2: e2lb) : - Z,rß - (B 3)

We will denote the energy of particle I with total four rnomentum square P'2 : S'

as e', : .r(S') etc. The relative 4-momentum is given by the relation

134



By defining another energy variable P' -- ,[=P' one can show that

45, 45,

(B 5)

(B 6)

(B 7)

(B 8)

(B.e)

2

-m?:e!r2+zP ,h-@?- p')

2

- m.l: e!] - ze ,h - @3 - p',)

From (B.5) and (8.6), the trvo delta functions in eqn.(3.37) can be written as,

(Sofnzl-m?r)2 (So**3-*?)'
45,

(So -l- m2, - rn2r)2

45,
(So*ml-nt2r)2

+

By noting m! - *7: M, ts'e can pt'o'e that

e'f-e']:Y¡
t2, t2 S'2+M2

ct -f L2 : 
Ls'

Using (8.8) and (8.9), the pair of delta functions in (8.7) become

(8.10)

Provided that

P 'p:0,

by the 1st delta function the roots of 2nd delta function are ,So and M' I Sr. We can

therefore rewrite (8.10) by using the property

zd(zr 

"Æ) 
'(*#" ry#+2P,#)
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AS

4 (8.1i)
S;-M"

By utilizing the relation in (8.11), the integration along the unitarity cut in the

complex energy plane S', (3.37), can be carried out as

6(zP .o1fflats' - s,)

Gn"^(p, p) : lå.^rf%trt, r');!*, (zr 
"Æ) 

ô(.s' - se)

By using one more relation,

we rewrite (B.12) as,

SS,
(2P 'p)

S - So e1(S)e2(Sr)

/('9"So) S-(*?-nr|)"

(S - So) : (p' - Ir') U#hr,

6(2P .p)

(8.12)

(8.13)Gn.n(p, P) :
p2 - 11, S S, e1(Sr)e2('Sr)
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Appendix C

Angular momentum relations

In this appendix, we give details of some of angularmomentum calculations clone irt

Chapters 4,5 and 6.

C.1 Spherical tensors

The spherical basis (è+r,,è-t,ês) can be defined from the orthogonal basis (èr, è2- 4)

as [Rose57, Bdm 57, Bri 68, Sch 87]

^1è+, : T n(êr+iè2)v/,
êo:è3

(c l)

(c 2)

(c 3)

These spherical tensors have the property

èi-: e)-è-^ ì

ê^: 6*n

and the scala¡ product

en-

r37

(c .1)



We can write a vector A: (A,ã,AoA,A"2) as a sphelical teusor of rank-1 [R'ose57,

trdm 571

¿,:DAr*èi- (^:+1,0) (c.5)

1 (c.6)

(c.7)

At+t + (A" +iAs)J'

where the components Ay* ãîe given by

In particular we denote spin(isospin) operators in spherical representation as

Arc A,

(,

T

\-
^¿J

ornsn

Ttntn

(rn : tt,0)

(rz : *1,0)

(c.8)

(c.e)

(c.10)

(c.11)

(c.12)

TN

n
t

It is useful to write a vector in cartesian coordinate r : f lrl : (îr,ûy,22)by rank-l

spherical harmonic Y1-(i) as :

v4ffu*,rrt:

1't1ffr,.rrl :
+\{,+t'a)

7

The scalar product of two vectors can be written in spherical notation as

T Ar,,Br^è;.' è;A.B
nr,n

m
D(-)-¿t ^ Br,-n,

T
4tr

3
)ì or-, Y;, (f )

I
2

lTL1

o
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le

I

I
(-)mt+mz

and (trdmonds: (4.6.5))

)(Tm2r lkl

4r

4r
3

Yt
Tn2

k

NI

î'i- (C.15)

(i)Yi*" (c.14)

(c.17)

It is useful to describe the matrix element of spin(isospin) operatols in the spherical

representation. The matrix element of a spin vector can be decribed, for example,

using reduced matrix elements as

\SB,mB,lolS"*") (S B, m p, lÐ " 
r*îti^l S sm B)

nmBnn: It sB7s",
B, lI

C.2 Proof of Eqn. (a.f O)

By using the equations (C.i3) and (C.14), we can write (a'19) as

dîo.¡¡r.¡"ik'x :

diY;*,(f)Yi^,(î)Yt*(î') :

t I dãor*,Yi^,G)lklY*"ç*¡v;^,çt¡
l^,*t*zJ

(4r)(i)t jíkr)Yï*(îc)Yr*(î) (C.16)

3
2

3

Since we have (trdmonds: eqn (4.6.3) [trdm 57])

lz,çzt +_Ðlå

l+"1
11

000
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Y ) Y,hkm2 ( î,( )
(c 18)

II
1

2 1

:)(

1

Tll,2 -TrL m'
(-)*');i,,,(¿) ,

(cl.1e)

t
Itml 00

we can write eqn (C.16) as

(T)' Øn) k Ð(ù'i,(kùl ]

!
2

!
2

I II

:)(;

.t

1 ot^rYl*,(kX-)'
3 00 00

Since / - 0 and l:2 are allowcd, eqn (C.16) becomes

I '^ ^ t ^ ik.xd:x.ú.Trc.Te : 4tr
;ù (jo(k") - zj2(kr))o 'k (c.20)

C.3 Proof of Eqn. (a.OO)

We can calculate the isospin relations (4.90) and (6.29) wìth the help oI glaphical

method.s I See Brink [Bri 68] for details]. First, we write (4.90) as

r=a f ÐeY ci::',Y'; c:;:";,";:^^
\ ' '''ir.""'n':,; 

I¡a,i¡a,lr .0lI,,io,;IMiM)ci:'i,'î:,cn,::o,ii,'i . (c.21)

Since we can write in spherical representation

r.0:I(-)or,oO1,-q,
q
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we write the eqn (C.Zt) ìn terms of reduced matrix elements as (c.f' eqn (C'15))

1,. I lr(r) lI,,l U *,1 lo(1) | lIM) (c.22)
1 u, I (2r + 1)

Ð(-)*oci::',i:,';c',::',it;cÏ::i,nî:^cÏ:i¡î::'ci::i:î:,c
1M -qI Mt
I¡4121¡¡r

allm

1

I
a3 l

Tlre Clebsch-Gordan coefficients in eqn (C.22) can be represented graphically as

[Bri 68]:

I cr1 +

I l,¡

+

I I cr3M'

+

This can be fu¡ther decomposed into two 6-j symbols(See Brink[Bri 68] Section 7.)

+

I ,o,

2

+x

IG

l2

l1

+

I I Io 
3̂M'

+

This process is described by algebraric methods as follows. We first transcribe the

Clebsch-Gordan coefficients in 3-j symbols. Equation (C.22) then becomes
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(1,.llt(') lV,,)(Iv,lle{tl ¡ IIM) Î.,Î."

t ( - ) 
-rt * I ¡4 r -2 Io, - Ioz - I os - Ion - i ¡4, -i o2 -i o3 -i o4+2|,t *2lz*nIq

allm

)()(

d4

ion i¡,t, - 13

I I¡ø, I

I¡a 12 Iu,

I.," h Ioo

x o, -?7 -L aa.

Io, 12 Io"

Lo, Q -xoz

(c.23)

)()(

Jo, h Io,

Lo, 1r -zcyz

Io, 12 Io

zo, q -?'

Io, I¡a I

?'M -q -'LM' i.", i¡a - 13

Since \¡/e can write, using (trdmonds:(6.2.8)),

I.,, I¡a I

io, i¡a -13

Io" h I..n

I¡a 12 Iu,

(c.24)

t
-i ¡4r ,-i ¡¡r ,- [z

(- )-1+I3 -2 I ¡¡r I Iq:- - Ionli ¡,¡ ti ¡at

alln

zM -q -zM,

I Ion 12dl

I¡ø, IV I

We use eqn (C.24) in (C.23). We Finally have

D (- )-t-^ - I ¡¡t - Io, - Ioz- Iot -2Ion li ¡a -io2-iar-ia4+2ltI2lzln*q

Io, Ion 12

-?'at xon -q )()(

h Io,

Lo" -n -Z aq
_Xd2

I
I

: (-

Io, I..n 12

(1,. I l'(') llr,,l U r,l letu I lI ¡) Î,,Î *,
Iu, I¡t I

;r+r-r 
*t (1o.llr{tl¡ lI,,) (I¡ø,llettt¡ lI¡fiÎ.nÎ,,

(c.25)

Io, Ion lz

){

h lon Io"

lz Io, Io,I¡ur I¡v I

t42



C.4 Proof of Eqn. (5.10)

Since (oo 'î - o 'io) : -zi(o x â), we can write

I a4to - â - o' î,o)' (k' + k)e-;(k-k')'x

-to I dã@ x,î) .{(ü 
"ik''x¡"-ik'* - (Ç "-ik'x;"ãk''x1 (c.26)

(øxô).iU,-(¡') (oxã) @*-nTlY*(î)
-;
l¿t'x 

â) ' (î x L)Y¿^(i)

âr 
LY*(î,)

Since we can write [Edm 57, Rose57, Bri 68],

L

z

l"l
/(/+1) o-!t,*(ã)

¿(/+1) D cT'T"T!,*'çã¡ è*" '6
l"l

l"l

mtmtt

n1,l nr,t I
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we can then write (C.26) as
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