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Abstract

Within quark models of hadron structure which respect chiral symmetry (like the
cloudy bag) it is possible to guarantee that well known soft-pion theorems are satis-
fied in Born approximation. The most famous example is the Weinberg-Tomozawa
result for S-wave mN scattering. However when one goes beyond Born approxima-
tion to solve the problems to all orders it has not yet proven possible to satisfy both
soft-pion theorems and unitarity. We intend to test a recent suggestion that the

problem can be solved with a particular choice of relativistic wave equation.
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Chapter 1

Introduction

The interaction of pions and nucleons has been studied extensively with many dif-
ferent approaches since the early days of nuclear physics. In those early days, there
were limitations in the capabilities of both experimental and theoretical techniques
with regard to m N physics [Kol 69, Eric70, EW 88]. The nucleon is accepted as an
extended object but has to be treated as elementary particle. The study of the # N
system was motivated by the aim to explain a more complex system, the nucleus.
Although there was some success in explaining strong interactions there are still
many unanswered questions. The S-wave pion-nucleon interaction near the energy
threshold has been one of them.

In the eyes of present day’s maturity of field theory and technology, studying
the 7N system represents not just a means to explain the nuclear structure but also
serves as a system to test theories at a more fundamental level, such as quark models
[Tho 84, Klu 91]. The developments in both theoretical and experimental strong
interaction physics in the past two decades brings this subject to the forefront of our
interest. The experimental confirmation of the quarks and the theory of Quantum
Chromodynamics can be viewed as the major developments of the past two decades.
Deep Inelastic Scattering (DIS) experiments certainly show the trails of quarks and

gluons. Quantum Chromodynamics(QCD) is considered a most orthodox theory



for the subnuclear structure. The problem of confinement is unresolved and still
stands as a profound barrier in understanding nuclear structure and nuclear physics.
Therefore, there is a need to bridge the gap between traditional nuclear physics and
QCD. Our study of the pion-nucleon system has the objective of building such a
bridge.

In this work, attempts are made to test two concepts: unitarity and chiral sym-
metry. By now, considerable effort has been made to satisfy unitarity in strong
interaction physics. Because of the non-convergence of the S-matrix in usual per-
turbation theory, an alternative formulation was required to describe strong inter-
actions. Such divergences are unavoidable when we use field theory and calculate
higher order graphs in order to describe interactions consistently. After the work of
Bethe and Salpeter [BS 51], followed by that of Blankenbecler and Sugar [BbS 66]
there is a method that can guarantee unitarity in field theory. The use of relativis-
tic 3-dimensional propagators developed by Blankenbecler and Sugar in studying
the NN interaction enable the successful application of field theory to the strong
interaction [Erk 74, Hol+87, PL 70, Gro 82].

The success of One Boson Exchange potentials with unitarity preserving propa-
gators in the NN interaction is rather elegant when compared with the remaining
sectors of strong interaction. For example, in the 7N system, the one particle
exchange (tree diagrams) doesn’t seem to provide a reasonable agreement with ex-
periment when we unitarize the scattering equation. Especially for the S-wave in-
teraction near threshold, the experimental phase shifts are not well reproduced and
the scattering lengths are wrongly calculated when we attempt to unitarize the wave
equation [Tho+87, CJ 86].

There is another concept of profound importance concerning with the symmetry
of subnuclear particles: quarks and gluons. It is chiral symmetry. Historically, this

symmetry was inspired by the smallness of the pion mass on the hadronic scale.



The partially conserving axial current(PCAC), the current algebra and soft-pion
theorems were the major achievements in the 60s. These theorems, of course, build
on the concept that both nucleon and pion are structureless (which is a somewhat
simple picture compared with present day knowledge) were proved to be consistent
with experiment [AD 68, EW 88]. These traditional soft-pion theorems should, per-
haps, be considered as a successful test for the Chiral symmetry in the context of
nucleons and pions.

Chiral symmetry continues to play a role in modern field theory in a more funda-
mental way. Nucleons consist of quarks and gluons which are confined to a spatial
region. The QCD Lagrangian in the limit of massless quarks is found to be in-
variant under chiral transformations. This QCD Lagrangian is known to be highly
non-linear and very difficult to solve. On the other hand, as we study low energy
nuclear physics, the relevant degrees of freedom are not those of quarks and gluons,
but mesons and nucleons. A,t first it seems for low energy nuclear physics there is no
reason to take into account the dynamics of quarks and gluons. However, from the
results of many workers, the interaction of pion and nucleon in low energy regime fol-
lows the dictate of the dynamics of the subnuclear particles [Tho 81, Tho 84, Klu 91].

It is rather interesting, from my point of view, to mention a brief account of the
physics of chiral symmetry developed to this date. In the mid-70’s the difficulty in
applying exact QCD to calculations has led physicists to consider other alternatives.
The bag model of the MIT group provides such alternative. In the MIT bag model,
one uses the phenomenological confining force and can explain the nucleon structure.
The quarks are seen as Dirac particles confined to a spherical cavity. This model,
however, is not invariant under chiral symmetry. There is also no mention of how
to include mesons in the scheme [Hey 77].

This drawback of MIT bag model is rectified by considering the pion (mesons)

as a compensating field required by Chiral symmetry. The pion is considered an



elementary particle and nucleons as combined 3-quark states. It is important to
point out that such a scheme not only provides links between traditional low energy
nuclear physics and QCD but may also provide further theoretical clues regarding
confinement. As we've just said, in traditional nuclear physics the approximate
conservation of axial vector currents that resulted from smallness of pion mass in
hadronic scales gave various low energy theoretical predictions. The soft-pion the-
orems are a good example. Within the context of chiral bag models, the smallness
of the pion mass is also found to be crucial [Jaf 79, Tho+80, Tho 84].

As far as S-wave pion nucleon scattering is concerned, Weinberg’s nonlinear La-
grangian satisfactorily predicts the isovector scattering length. The volume coupling
version of Cloudy Bag Model (CBM) has been found to provide the same results
[Tho 81]. However, our attitude is that we are not satisfied with the tree level cal-
culation which is consistent with experiment only at threshold. We must be able to
evaluate scattering lengths as well as phase shifts at finite energy.

Initially, it was assumed that the non-linear CBM lagrangians are reliable only to
lowest order in the 7N coupling. However, Kalbermann and Eisenberg proved that
the CBM Lagrangians are also reliable for higher order calculations, such as pion
production [KE 83]. In their work, Kalbermann and Eisenberg successfully calcu-
lated M1 photoproduction amplitude in the A(1232) energy region. This encourages
us to use the CBM Lagrangian in higher order calculations.

The calculation for the S-wave 7 N interaction using higher order graphs has been

done by [Tho+87, CJ 86]. In their work, Thomas et al. used the driving potential

1

to order @

. However, the experimental isovector form factors were used instead
of those given by the model and only the isoscalar contributions were calculated

explicitly. The Lippmann-Schwinger equation was used to iterate the potential to

preserve the unitarity.

In our work, we calculate the driving potential for S-wave to order 1)4, with

(2f



both the isoscalar and isovector contributions derived from the CBM Lagrangian.
Various 3-dimensional relativistic propagators are used in solving the scattering
equation.

The outline of this thesis is as follows. In Chapter 2, we discuss the relevance
of chiral symmetry to nuclear physics. Attention has been given to the S-wave 7V
scattering at threshold. Firstly, the related problems encountered in explaining the
S-wave threshold behaviour using covariant field theory are described. We then
discuss how the approximate conservation of the axial current is used in solving this
problem. Next we discuss the linear sigma model and how the PCAC results are
reproduced in this model. Then we discuss Weinberg’s non-linear representation
of the sigma model and show how the purely isovector scattering lengths for m/V
S-wave are obtained(Weinberg-Tomozawa results).

In Chapter 3, we discuss the question of unitarity in field theory. In particular,
attention has been given to the methods of approximations for the Bethe-Salpeter
equation which ensure covariance and unitarity. We discuss the methods to deduce
various three dimensional relativistic propagators. We also give attention to the so
called “smooth” propagators that are consistent with Dirac phenomenology. The
advantage of using such a propagator in systems of non-equal masses are discussed.
We list the propagators used in testing the scattering equation.

Our major contribution to this work can be found in Chapter 4. In Chapter 4,
the formalism used in deriving 7N interactions is discussed. The examples of how
the interaction of pion and quarks are transformed to those of pion and nucleon are

discussed in detail. We then calculate the S-wave interaction to order of =’ using

(2H*
the Cloudy Bag Lagrangian.
In Chapter 5 we calculate the P-wave interaction to order (—2—}—)3 using the CBM

Lagrangian. It is mainly a repetition of work done by previous researchers. We just

include this for completeness.



In Chapter 6, we carry out renormalization for the S-wave wN interactions.
We first give detailed derivations of the nucleon self energy, vertex renormaliza-
tion and bare bag probability. After this presentation, which is a review of the
renormalization procedure, we show how the renormalization is carried out for the
Weinberg-Tomozawa interaction.

All of our numerical results are presented in Chapter 7. The various phase
shifts and scattering lengths for S-wave and P-waves are given. The comparison
for different relativistic propagators is also made. The threshold behaviour for the
S-wave interactions are discussed.

We close the work with a general discussion and give an outlook for the 7N S

and P waves in Chapter 8.



Chapter 2

Chiral Symmetry in Nuclear

Physics

2.1 Introduction

In this chapter, we will discuss how chiral symmetry plays an important role in the
understanding of the strong interaction. We will first focus our attention on the
traditional field theoretic methods in studying the S-wave interaction. In Section
2.2 we will firstly look at the covariant calculation of Feynman diagrams to lowest
order. It will be seen that the use of pseudoscalar and pseudovector m /N interactions
in tree diagrams do not give correct scattering lengths for S-wave. In Section 2.3 the
Partially Conserved Axial Current (PCAC) and soft-pion theorems are discussed.
We then show how the bad results for the S-wave scattering lengths in Section 2.2
are rectified by soft-pion theorems. We discuss the linear ¢ models in Section 2.4
and show how S-wave scattering lengths are obtained. In Section 2.4.4, we discuss
the Weinberg’s non-linear 0 model and show how the S-wave isovector scattering

lengths (Weinberg-Tomozawa Results) are obtained.



2.2 Pseudoscalar and Pseudovector pion-nucleon
interactions

The interaction between pions and nucleons can be described by an interaction

Hamiltonian of the form (which is consistent with parity and charge conservation):

HWy = igUnysT - 7N (2.1)

HNN = —(mi)\i’m"vsr\lw O (2.2)

™

where g is the pseudoscalar coupling constant and f the pseudovector coupling
constant(dimensionless):
g’ f

P 14.3 +£0.08 , ~— =0.097 £ 0.001 , (2.3)

T 4r

and f and g are related by

f g
m—"r'——%. (2.4)

The two interactions,(2.1) and (2.2) are equivalent in the non-relativistic limit for

P-wave scattering but not for S-wave.

2.2.1 The S-wave interaction

Using the pseudoscalar interaction (2.1), we can calculate the S-wave scattering
amplitude by the usual covariant method [MS 88, BD 62, 1Z 88, AH 84]. The S-

matrix amplitude to order g2 for the process

7i(q) + N(p,s) = m;(¢") + N(p', s')



\ o~ (i) (q.0) -

(@) (@) ~ . -
N 4 S~ -7
h £ = =
AN /! = - - =~ ~ S
(p+q) (p’-q)
(P:S) (p’ ,S’) (p’S) (P’»S’)
(a) (b)

Figure 2.1: Diagrams contributing to the S-wave pion nucleon scattering: solid line
represents nucleon and dash line pion.

is given by (in this chapter we use the normalization convention of Aitchison and

Hey [AH 84])

(0,554,718 —1lp,s;¢,5) = (2n)*6*(p'+¢ —p—1q) (2.5)

1 lll]ﬁmwwmwm

nye|

where 7, j are pion isospin labels and the covariant amplitudes M,(ps), My(ps) are

given by
(#+ 4+ mn)

M) = Pat, e | L

] Ys7iu(p, s) (2.6)
and

(F'— 4+ mn)

My(ps) = g*a(p', s')1evs [ (u—mp?)

]%WU@&) (2.7)

In (2.6) and (2.7), s and u are usual Mandelstam variables
s=ptqg=p+¢

u=p—q¢=p—q

Using 7;7; = 6;; + t€i5Tk, We can easily show that

M. (ps) + My(ps) = 65T (ps) + ieijum T (ps) (2.8)



where

1 q

(£) - 2=( 0
T™)(ps) = Fg*u(p', s) p s g e

u(p,s) -

(2.9)

By noting that in the non-relativistic limit (i.e. all momenta are nearly zero):

u(p',s') du(p,s) = 2mym,

s —ma = 2mamg(1 + m./2my)
u—mi = —2mymg(l — mg/2my),
we can evaluate T#)(ps) at threshold. At threshold T#)(ps) behaves as

—2g2
TH) ) S
) = T g,
2
gima/my

(-) =Y
T (ps) = 1 —m2/4m¥%

From the definition of the scattering lengths we find that for low energies,

oL@, @

W ’

and therefore at the threshold energy

2 1
ag+) = g

(2.10)

(2.11)

(2.12)

(2.13)

(2.14)

In eqn (2.12), W = m, + my is the total energy and &) the scattering amplitude

which is equal to the scattering length a(¥) at threshold. a((J+)(ps) in (2.13) and

(

ao_)(ps) in (2.14) corresponds to S-wave isoscalar and isovector scattering lengths

respectively. The pseudovector interaction (2.2) can also be used to calculate the 5-

10



wave scattering length at threshold. Following similar algebra which led to equations
(2.6) and (2.7) the invariant amplitudes for the diagrams shown in Fig.2.1a and Fig.

2.1b are

(#+ 4+ mn)

S —m?,\.- + €

M) =~ e |

™

] drsmiu(p,s) (2.15)
and

i(p—  +mn)

5 .
§ — mi + i€

Mi(po) = (L Fa(w, s [ ] frsmulps) . (216)

For threshold energy where the 3-momenta are nearly zero one finds that
a(pl? Sl)75 g,( ?‘+ d_*— lrnN)75 {f“(P, S) ~ 2mNm73ra

a(p,s"Vvs 4(p— 4 +mn)vs dup, s) = —2mym3,

and therefore the amplitude for the pseudovector interaction is given by

1
(1 + mﬁ/QmN)

M. (pv)/My(pv) = —f* (8i; F t€ijTk)-

Since we have
M, (pv) + My(pv) = 51-]-T(+)(pv) + icijkaT(_)(pv) , (2.17)

The scattering lengths a*) for the pseudovector interaction are

(+ s
4t m, + mpy

2 F
¥ .1
a$7) (pv) volme L g (2.19)

~ —0.010m; " (2.18)

11



It is immediately noted that the results (2.13) and (2.19) do not agree with experi-

mental values:

aé“(emp) = —0.010 m;"; ag_)(e:cp) = —-0.091 m;! . (2.20)

It is interesting, however, to note that the results a(()+)(pv) in eqn (2.18) and a(o—)(ps)

given in eqn (2.14) do agree with a((,+)(exp) and a(—)(exp) respectively. The large

value of ag+)(p3) resulted from the large contribution of the isoscalar part of (2.8).

We shall now examine what mechanism can be used to reduce this value.

2.3 Soft-pion Theorems

In studying low energy strong interactions, the soft-pion theories are a time hon-
oured subject. In this section we will discuss the implication of the approximate
conservation of the axial current. In particular, we show how the soft-pion theorems
can be used to rectify the bad piece of the isoscalar scattering length agﬂ(ps) in eqn
(2.13). For the discussion in this section, we closely follow those of Adler [Adl 65],

Scadron [Sca 79, Sca 81] and T.D. Lee [Lee 88].

2.3.1 Partially Conserved Axial Current(PCAC)

The vacuum to one pion transition amplitude can be written as

(0155 ()| (@) = 87 frgue™* (2.21)

where

Jis(X) = PNYusT - TYN (2.22)

12



is the axial vector current and f, is the pion decay constant. Taking the divergence

of this equation leads to

Ol = 67 fam? (2.23)

From this, we can see that axial vector current is not conserved since fr and m? are
non zero. However, since the ratio of pion mass to nucleon mass squared is small,
m?/m% = 0.02, to a good approximation we can take the divergence of the axial

current to be zero, 1.e.

84 J%s = 0. (2.24)

This is one version of the hypothesis of the partial conservation of the axial current
(PCAC).

In order to see how the soft pion theorem is used in pion-nucleon scattering,
let us consider the general pion transition A — B+ w (A, B=hadrons) in the soft
pion case [Sca 81]. One can separate the matrix element of the axial current, T, =
(B|J;;5[A), into pion pole dominant part and' a background part [Lee 88, Adl 65,

Sca 79, Sca 81]. Graphically, it can be presented as in Figure 2.2.

Figure 2.2: Pion pole dominant at low energy

The matrix element for this process can be written as
i - ’ i 7
Tp. = (_Z)(_fﬂ‘qu)ﬁTvr(q) + T,_n (225)
q me
Where T:(q) can be identified as pion current matrix element and 77 is the back-

13



ground cnrrent. Fquation (2.25) with the condition m2 ~ 0,8,J* ~ 0 provides the

so called S-matrix version of PCAC [Sca 81]
i.Ti0) = T (2.26)

Equation (2.26) is found to be insensitive to the m2 ~ 0 or ¢* ~ 0 limit. One can
further remove the bremmstrahlung type pole in eqn (2.26). The result being the

soft pion version of PCAC [Sca 81]. In soft pion limit (m2,¢* — 0 andg — 0)

Tf; — —ifw_lq”T;(pole) + O(q) (2.27)

2.3.2 Adler’s Consistency condition

/7 -
/! -
7/ -
/ -

p _ -
(a) (b)

Figure 2.3: Diagrams for the generalized Born matrix element (xN|J:;|N). The

heavy dots marks for the axial current interaction.

One can further pursue the PCAC in order to apply it to the interaction of the
pion-nucleon system. Starting from generalized Born approximation, i.e. the axial
currents between |N) and |7 N) states, one can derive the so-called Consistency
Conditions for strong interactions [Adl 65]. As in the previous Section one can

separate the matrix element M, = (w N|J,5|N) into the pion pole contribution part

14



M, and Background part M,,.

1

3 .
—mi 4 1€

M;, = (—i)(—ifrqu)( )M, (q) + M, (2.28)
q
In the limit m2 ~ 0 the approximate axial current conservation 0,5 ~ 0 implies:

i fn My (q) = ¢“M,, (2.29)

From this one can identify the nucleon pole part of M L as the pseudoscalar inter-

action of Fig. 2.3 while the non pole term has the form
Tys Mo + Movyst'

where M, denotes the background amplitude. In the limit ¢* — 0, we have soft

pion theorems;
M'}r(q) ~ M;ziszoles(q) + ]V[;r(q - 0) (230)

where

M, (q — 0) = 2riN (775 Mo + MoysT") (2.31)

In the case of final pion being soft, the hadronic background amplitude My becomes

—g77vs. This results in the background amplitude for the pion nucleon case [Sca 81}:

_ . 2 ..
Mi(q— 0) = ngTN‘S” (2.32)
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Therefore this background amplitude modifies the T (ps) as follows:

T(+)(p3) N ___£_ + 2¢*
1 —m2/4m}
_  omeN) 92 2
_ Zgme/2my (2.33)
1 —m2/dmy
With this modification, the scattering length a(()+)(ps) becomes
alt) = —0.0092 m;? (2.34)

which is comparable with the experimental value.

2.4 The Sigma Model

In the previous section we showed how current algebra and soft pion theorems are
applied to get correct scattering lengths for the S-wave interaction. We saw that
the large and attractive isoscalar contribution in the interaction is neutralised by
the background amplitude M (g — 0). We will now discuss how such cancellations

occur naturally in the context of the sigma model.

2.4.1 The Linear Sigma Model

In 1961 Gell-Mann and Levy introduced the linear omodel [GL 60] In this model,
they postulated an isoscalar-scalar field ( ¢) in addition to the pion field, which
is isovector-pseudoscalar. Together they form a so called chiral 4 vector {o, =}
for which the scalar product with {¥nvn,YnysTYN } is invaria;lt under chiral

transformation. The Lagrangian of the linear o model can be written as

L= EO -+ ca, (235)
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where Ly in (2.35) is given as

Lo = pn[i7,0* — g(o +im - 775)|[¢on + Ulo, ) + %[(aﬂa)2 +(0,m)?],  (2.36)

L

- with the potential term
1
V(o) = —pN{(o? +7) = M7, (2.37)

where X and ), arbitrary constants. In eqn (2.35) co is the chiral symmetry breaking

term. Under an infinitesimal isospin rotation, ar and 9y transform as

o — o, T T - X, (2.38)

T

N A (2.39)

2

while under an infinitesimal chiral transformation

c—o—p-m, T — T+ of, (2.40)
¢N—>7J)N—iréﬂ’ys¢m @/;NHIZN—Z'@[_)N%Téﬂ. (2.41)

With these two transformations we have vector and axial vector currents ,

oL
Vo = " 8(9,0)
= ILN’Y;LT/Qd)N + 7 X a/_ﬂ"', (242)
and
oL

A = e

] 6(9.8)
= "/_)N’YS’)’M%T/)N + (Ou0)mw — 9o, (2.43)
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and their divergences are
0,V ,=0; 0"A, = cm. (2.44)

2.4.2 Broken Symmetry Mode

Tt should be noted that in the potential term in the Lagrangian, U(o, ), we can
choose one of the constants, X, as the pion decay constant f . It is chosen so that

the vacuum expectation of the o field in the absence of the pion field is
(0l10) = fr, (2.45)

and the nucleon masses are generated according to the Goldberger-Treimann relation

(Olgpnopn|0) = gfepntdn

= mN’(/_)N'l/)N. (246)

The 7 — o interaction is also generated by the potential term U(o, 7). In the absence

of a nucleon field one may expand the o field so that [Bro 90]
Ul + b0, = 0) = Nf262 + V265 + 001, (2.47)
from which we can identify the mass of ¢, as
i 22 272 42
Sl = VL2, (248)
For a non-zero pion field, the potential term becomes
U(fs+ o) = Ve + o+ 77) = F21, (249)

18



which leads to an interaction Lagrangian of the form

2
m )
e = —Z T 2.50
Lo, 2f7r¢ T ( )

2.4.3 Correction to the S-wave amplitude

(p.s) (p’'.s’)

Figure 2.4: t-channel o exchange diagram for S-wave w N interactions

Using eqn (2.50), we can write down the amplitude associated with Fig. 2.4 as

generated by the sigma field

: m2g 1
M = - a alp' s\ —————— R 2.
4 ( f7r ) ’U,(p S )t _ mg + ieu(p’3)5] ( 51)

In the non-relativistic limit, t = (p — p')* & 0, therefore

2m
M, = +g N

§i; = 29%6; (2.52)

ks

where use has been made of the Goldberger-Treimann relation my = gfr in (2.52).
In our discussion for soft pion theory in Section 2.3, we have seen that in eqn
(2.33) the background amplitude M (¢ — 0) in (2.32) modifies the large piece of
pseudoscalar result T(H)(ps) of eqn (2.13). Here we can see that the t- channel o
exchange diagram shown in Fig. 2.4 provides the same modification to the pseu-

doscalar result(2.13), as the three diagrams shown in Fig. 2.1a, 2.1b and Fig. 2.4
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must be taken together in linear sigma model.

2.4.4 The Non-linear sigma model

The o model of Gell-Mann and Levy provides a good theoretical foundation for
explaining chiral symmetry, spontaneous symmetry breaking and the generation
of nucleon masses. As we have demonstrated in the previous section it is also
consistent with the soft-pion theorems in explaining the S-wave scattering behaviour
at threshold energy. A drawback of the o model is that the o particle has not been
observed in nature. However Weinberg has shown that the o field can be transformed

away by defining a new pion field (¢) as follows [Wei 67, Wei 69, Wei 79, Bro 90].
¢ = 2f,rtan(g) T, (2.53)
where # = 7 /7 and 6 is related to o and 7 through
o= frcosb, 7 = frrsiné. (2.54)

When we apply this transformation to the Lagrangian of the linear o model (2.35),
we get the Weinberg Lagrangian
| % i

JoNYsYE T YN - Dy

My

Lw = ¥n(v"Dy—mn)pn —(

1 1 P°
~5Du¢ - D" — oy ——— (2.55)
2 "
The boson kinetic energy term of (2.35) becomes
1 9 5 1 i
— (@) + (Bu0)) — —3Dub D (2.56)
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where covariant derivatives are defined as

.9
DHQ’) = : 2 3 257
T 5 (2.57)
and
Dybn = [0, + 2(4](3 e ¢2)—1T (@ x 0,9) YN
— BN+ —— T - ( X D) - (2.58)

(4124 ¢°)

In eqn (2.55), the pseudovector coupling term is written by using the relation 21? R

Rf:. The Weinberg Lagrangian (2.55) is particularly convenient in dealing with S-
wave scattering at threshold. We noticed that the empirical isoscalar piece of (2.20)
is nearly zero and that therefore the pion-nucleon scattering length at threshold 1s
purely isovector. We see that the Lagrangian (2.55) has an interaction tcrm known as
the Weinberg-Tomozawa term (2.58) in addition to the usual pseudovector coupling
term . The Weinberg-Tomozawa term gives the correct scattering length at threshold

energy as follows.

The usual covariant S-matrix expansion to order (1) is

S(l) = /d4$HWT($)
1

= 5 [ dob@rin() (B0 x P9@). (259

To this order we find the S-matrix amplitude for Weinberg-Tomozawa interaction

as

(FISW - 1) = @' +d -p—q)
[ o1 1 17

Mwr(ig,j;ip,t)  (2.60)

|



Where, the covariant amplitude My r(ip:,7;1p,1) is given by (we rather writing this

amplitude by showing explicit isospin dependence)

Mwr(ig,J;iB, 1) = —4—f2-(wq + wq/)uT(p',s')u(p,s)(IanB:|Tk(—zckji)|]BzB) ,(2.61)

where wq = y/m2 + g2 the pion energy and i€;; the pion isospin matrix elements
[Wick55]. In order to have a covariant amplitude for total isospin [/, rather than
an amplitude for definite isospin state for pion and nucleon, we transform (2.61) as

follows:

My S Yo O M (ipg; i)

4 . £ o B’IM’I
tgr) tBt
1
— —W(wq +wq,)1ﬁ(p',s')u(p,s))\{4,T , (2.62)

1 2
where A}y = —2 and A3, = 1 (see also Table 4.4). At threshold the scattering

length is

il 1
SWWMWT
o Mo I
= Pt m /m.N)’\WT (2.63)

Qa1

This is the famous Weinberg-Tomozawa result:

m
= = :0. _1
ay + inf? 18 m
— £ _ 1 -1
a3‘ = SrfZ 0.09 m;" (2.64)

which agrees well with experiment since the isoscalar scattering length att) and

isovector scattering length a(~) are related to a; and as via

Il
(1(+) = g(al + 20,3) = 0.0
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The contribution from the usual pseudovector coupling term (2.19), as we have

shown in Section 2.2.1, is indeed negligible.

2.5 Summary

In this chapter we have shown that usual pion-nucleon interactions, i.e. pseudoscalar
and pseudovector interactions, cannot give correct scattering lengths for the S-wave
interaction. We then discussed how the S-wave scattering lengths are evaluated
correctly by soft-pion theorems. Next we showed that in the linear sigma model, the
t-channel sigma exchange gives the necessary cancellation in the isoscalar component
and consequently yields the correct result for the S-wave scattering lengths. We also

discussed the non-linear o model and Weinberg-Tomozawa results.

23



Chapter 3

Relativistic Two-Body

Propagators

3.1 Introduction

In this chapter we would like to discuss the methods used to ensure unitarity in
two body scattering theory. It has long been clear that use of the non-relativistic
Lippmann-Schwinger equation with non-relativistic potentials satisfies the unitarity
condition. When one describes the scattering process in a relativistic framework,
it is natural to use relativistic propagators (Greens Functions) and to treat the
interaction in terms of fields. This poses problems which make it difficult to solve
the scattering equations exactly. Firstly, we have to take the negative energy states
into account in propagation as well as interaction. Furthermore, the 4-dimensional
scattering equations are more difficult to solve numerically. The convergence of
the equation is not readily guaranteed, especially in strong interactions. However
after numerous approximations and reductions, and encouraged by the success of
non-relativistic formulations, it is reasonable to believe that one may ensure the

unitarity by using relativistic propagators. In Sections 3.2 and 3.3, we will outline
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how the relativistic equations for a scattering process are deduced. In Section 3.3.1
we discuss how the 4-dimensional relativistic scattering equations can be reduced to
3-dimensions, by removing the relative energy variable by means of the dispersion
technique. In Section 3.3.2 we employ the instantaneous interaction approximation
to obtain the relativistic three dimensional equations.

Relativistic 3-dimensional two body propagators have been used for systems of
two equal mass particles ( with or without spin) since Blankenbecler and Sugar
invented that technique. For the 7 N system, where the masses are different, these
relativistic propagators cannot be applied. There are additional restrictions that
must be imposed on these relativistic equations in order to give correct physics
when the particles are of unequal mass.

In this context, we discuss more recent developments in this field. In Sect. 3.4,
the concept of short range structures is introduced and its relevance to relativistic
scattering is also discussed. Then, in Sect. 3.5, we show how a smooth relativistic
3-dimensional propagator for the # N system can be deduced by applying the short
range method. The one body limit is discussed in 3.6 and 3.7 and it is proven that

the smooth propagators do not violate one body limits.

3.2 Bethe-Salpeter Equation

In field theory, one can write down the covariant amplitude for the interaction of
two particles in accordance with perturbation theory to any order in the coupling
constant. However, it is impossib}e to calculate all of these diagrams exactly. A
remedy for this is to use the Bethe-Salpeter(BS) equation, which is covariant and
describes the relativistic interaction of two particles. The variables for the BS equa-
tions are those of 4-momentum (or 4-coordinates) of the interacting fields. The Bethe

Salpeter equation for the scattering of two particles with initial(final) 4-momenta
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q1,92(p1, p2) is given by [BS 51]

M(pi,p2;q1,92) = K(p1,p25q1,92) (3.1)
dk d*k
/(271.)4 (27r)24f((p1’p2;kl)k?)Gl(kl)G2(k2)M(k‘l7k‘2;q17q2)

where M (p1,ps;q1,92) is the relativistic scattering amplitude and the interaction
kernel K is the sum of all connected two-particle irreducible diagrams (to infinite
order). The G’s are relativistic, one particle, free propagators. The structure of

the Bethe-Salpeter equation (3.2) can be represented schematically by Fig.3.1. It

P, 9, P, q; P, k5

Figure 3.1: Schematic Diagram of Bethe Salpeter equation

is advantageous to describe the 4-momentum variables, py, p2, q1, g2, in relativistic
Jacobi coordinates [CJ 89]. For two spinless particles of different masses, the total

4-momenta P, and relative 4-momenta p, are given by (see more detail in Appendix

B),

P = gig+q=p1+p2=k+k;

62(5)1)1 - 61(5)1’2
&1(S) + €2(S)
a(S)P N B, e(S)P
al®) tal) PP oS raiG)  *

P = pi+p,p=

P1 (3-2)
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where the energy of particle 1 and 2 is,

S +m?—mj]
2/

S+ m?2 —m?
e(S) = —2—\;§—l (3.3)

61(5) =

The Bethe Salpeter equation in terms of relative coordinates p, k and g becomes

Mp,al8) = K(pal$) = [ (5K HSIGE M als). 34)

The Kernel K is the sum of all two particle irreducible diagrams, i.e.
K(p,k[S) = KO,
n=1

where K (") represents the covariant Feynman amplitude of order 2n. It is the usual
practice to approximate the infinitely summed kernel with a one particle exchanged

diagram, meaning the kernel can be approximated by
K(p,k|S) ~ K®.

The resulting equation where K is replaced with K (?) is known as the ladder ap-
proximated Bethe-Salpeter equation. It is normally assumed to be the best equation
to describe strong interactions (see however Gross [Gro 82]).

The obvious advantage in using the Bethe-Salpeter equation (or ladder approxi-
mated version) is that it ensures unitarity. Since the S-matrix element Sy; is related

to relativistic scattering amplitude via

Syi = 85+ i(2m)%6(Py — P)Mys, (3-5)
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the unitarity condition,
SSt=815=1, (3.6)

can be satisfied. Another advantage in using Bethe-Salpeter equation is its simi-
larity with the Lippmann-Schwinger(LS) equation. Although the four dimensional
Bethe-Salpeter equation,(3.2) or (3.4), cannot be solved easily, we can reduce it to
a 3-dimensional equation. Since the reduced form of the Bethe-Salpeter equation
is similar to the non-relativistic Lippmann-Schwinger equation, the computational
techniques become more tractable. In the next section we will discuss the three

dimensional reductions of the ladder approximated Bethe-Salpeter equation (3.4).

3.3 Relativistic Two Particle Propagators

The Bethe-Salpeter equation (3.4) is similar to the Lippmann-Schwinger(LS) equa-
tion, where the main feature is that one uses the iterated solution for the scattering
amplitude M. However a great deal of care must be taken. Firstly, consider the
kernel K of (3.4) which plays the role of the potential. In the non-relativistic LS
equation, the potentials are independent of the scattering energy. In the relativistic
case, the kernel is the sum of all irreducible diagrams to infinite order, which have
singularities. Secondly, the propagator G(k,S) represents not only the propagation
of particles but also anti-particles.

In this section, we will discuss how the Bethe-Salpeter equation is reduced to
three dimensions by removing the relative energy variable. When one considers
relativistic scattering, the scattering amplitude and the propagator possess a com-
plicated analytic structure. Furthermore, the kernel and propagator include negative
energy states. There is also a question of how many exchange particles should be

included in the kernel. Since it is impossible to solve all problems exactly, an ap-
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proximation must be made to the scattering equation which is consistent with the
physical picture. To do this, the kernel will be represented by the ladder approx-
imation and we will ignore the anti-particle contributions to the propagator. This
will greatly simplify our procedure for calculating the scattering amplitude.

There have been various attempts to construct propagators that incorporate
relativistic effects in LS-type scattering equations. Here, we will obtain the three
dimensional propagators from the Bethe-Salpeter equation by using two different
methods [WJ 73]. First we will discuss the method of Blankenbecler and Sugar
[BbS 66] which employed the dispersion technique to obtain an approximated prop-
agator. Then we will discuss the instantaneous-interaction approximation. We will
not discuss another derivation-namely- the minimal introduction of relativistic kine-

matics into LS equation [Bro 79, Bro 69].

3.3.1 Blankenbecler-Sugar Method

The starting point for the Blankenbecler-Sugar reduction [BbS 66] is the require-
ment that the relativistic propagator must have the same cut structure as 1ts non-
relativistic counterpart in the elastic region. The actual situation, however, is com-
plicated by the singularities in the scattering amplitude and the potential(kernel).
Therefore, we restrict ourselves to the singularity free region of the scattering am-
plitude and kernel. We will discuss the scattering of two spinless particles of masses
my and mo. We recall the Bethe-Salpeter equation in the c.o.m frame,

Mip,alS) = K(p,01$) — 1 | e KpHS)GES)M(hyglS) (39

where p, k, q are the 4-momenta and S the total scattering energy and

1

O S) = (PP — mll[GP — 07— md]
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is the fully relativistic two particle propagator. It must be noted that the total
4-momentum is conserved in each step of the interaction in the ladder, while the
total mass varies during interaction(off-mass-shell scattering). It should also be
noted that G(k,S) has singularities due to its pole structure. When one imposes
certain restrictions, namely that the kernel is independent of the relative energy
( and therefore singularity free ) the essential difference between the BS equation
and the LS equation will be the form of the propagator G and the non-relativistic
propagator g. It is also known that G can produce a two-particle cut in the non-
physical region(left hand cut), in addition to usual right hand cut in the elastic
region. Our aim is to construct the three dimensional propagator g(k,S) from
G(k,S) which produces the same two particle cut in the physical region. Now let

us rewrite the BS equation as two equations:

M = K+ KgM, (3.9)

K = V+V(G-g)K. (3.10)

It is hoped that the difference between the two propagators g and G' is small enough
so that it will give correct result when we iterate (3.9) and (3.10).

Following Aaron [Tho 77], we can prove for a symmetric K(p, q|5),

M(p,q|S*) — M(p,q|S™) (3.11)

- (27r)‘4/d4kM(p,k|S+)[G(k,S+) — Gk, ST M(k,qlS7) .
The statement of unitarity also provides

M(p,q|S™) — M(p,q|S™) (312

= (2m)™ [ M (p, KIS*)[(2m)P8Y (K] — m})8* (k — mi)]M (K, ql57)
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We have from (3.12) and (3.13), the discontinuity of G(k,5)

disc{G(k,S)} = G(k,5%)—G(k,57)

= i(27)26F (k2 — mb)6t (k5 — mj) (3.13)

Now the integration over the discontinuity gives

_ it
G(k’ S) C 2t mi+mo)? = (S" — .q)

0o lisc{G(k, S’
i / dise{CG( )} (3.14)
(
Evidently, g(k,S) is defined to have the same elastic unitarity cut structure as
G(k,S). One can carry out the integration over .5 in (3.14) for m; = my to get the

three dimensional propagator

1 8(ko)

k,S) =
g(k, S) 4 k2 — g% — e

(3.15)

(The detailed derivation of the propagator for the general case of different masses
my and ms is given in Appendix B, and (3.15) is only the particular case m; = ms.)
Equation (3.9) with the choice (3.15) for g(k,S) is known as Blankenbecler-Sugar

equation.

3.3.2 Instantaneous-interaction approximation

In Section 3.3.1 we obtained the relativistic 3-dimensional equation which is known
as the Blankenbecler-Sugar equation. The basic principle in deriving (3.15) was to
remove the relative energy variable from the Bethe-Salpeter equation while maintain-
ing the unitarity condition which is necessary for elastic scattering. In this Section
we will ‘obtain the Blankenbecler-Sugar equation by the instantaneous-interaction
approximation [Thom70, WJ 73]. In this case, one makes the assumption that the

kernel in the Bethe-Salpeter equation is independent of the relative energy. We first
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write the homogeneous term of the BS equation as follows

I ey st e ML
2 k 2 0 k

We are interested in obtaining the totally on-shell scattering amplitude M(q, 0; ¢,01S)
for the case of two equal mass particles. When one reduces the integral equation
from four to three dimensions, certain information about the amplitude M as a
function of relative energy ko will be lost. For example, the singularities due to the
exchanged particle are neglected for some kinematical regions [WJ 73]. If we make
the assumption that the scattering amplitude M is independent of relative energy

ko, we can write the homogeneous term of the BS equation as,

K(p,0;k, ko|S)
LVS + ko)? — ER +1€|[(3VS ~ ko)? — Ef + id]

/d3kM(k,0;q,0|S)/dk0 [( (3.17)

It must be noted that (3.17) does not imply that M(k, ko;q,0|S) is equivalent to
M(k,0;q,0|S). We are merely calculating M at particular value of ko. Since we
require the solution for a totally on-shell amplitude, we choose ko = 0. In (3.17)
there is still some ko dependence in the kernel K. There have been calculations for
which the energy dependence of the kernel K has been taken into account[WJ 73,
Coh 70]. One can make a further simplification by assuming the interaction kernel 1s
independent of relative energy variable ko which enables us to write the homogeneous

term of BS equation as

/ %K(p,HS) (3.18)
[ dko ! M(k,q|5)
2 [(%\/E + ko) — EF + 26][(%\/§ — ko)? — E} + €] e
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The contour integration over dko can be done to give

1 1
20V/S(2Ex —V5S)  2E:/S(2Ex + VS)
1 1
= 3.19
4Ey E} — S/4 (3:19)

Noting that S/4 = FEJ, this equation (3.19) is easily seen to be the same as

Blankenbecler-Sugar equation (3.15).

3.4 Short Range Structure in the Propagators

In the preceding section, we outlined how a relativistic three dimensional propagator
can be obtained from the Bethe-Salpeter equation. In this section we will introduce
the concept of short range structure of the relativistic propagators [CJ+86, CJ 88].
One can obtain the short range structure of the propagator by expressing it as a
function of |r — r’|. Those pieces which behave like §(r — #') or exp(—m|r — r'])
will be defined as short range structure.

For a long time, the short range structure in scattering has been noticed by
various authors. For example Barshay et al. pointed out that in pion scattering the
iteration of momentum dependent potentials in the Lippmann Schwinger equation
can generate a delta function term that corresponds to scattering of these particles
at the same point [Bro+74].A similar phenomenon in proton-nucleus scattering has
been pointed out by Thies [Thi 85, Thi 86]. Recently, the interpretation for the short
range structure and anti-particle contribution in proton-nucleus scattering has been
given by Cooper and Jennings [CJ+86].

In order to discuss the relation between short range structure and anti-particle
contributions in scattering processes, we will look at the propagator Gg(r',7), for a

Dirac particle scattering off a local potential V(v') [CJ+86, CJ 88]. The propagator
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can be obtained from the full Feynman propagator Sp(z’ — z) as follows

GE(’!',, 1’) = - / d(tl — t)SF(:B’ = x)e_iE(t’_t)

Bp P '-r) E4m —-o-p
- / (27m)3 p* — k* —ic (G0

o-p m-—F

where the Feynman propagator 1s
dii;u {_:—l.]')'(;l"—li’.‘)
Sp(z' —z) = f : 3.21

r(a’ — ) (2m)t (f—m) ( )

We obtain the asymptotic Dirac propagator G(E+)(7", r) by performing a contour in-
tegration over the momentum p. Since the only pole contributing in the asymptotic
region is from |p| = (k & ¢€), we have

E+m —o-k e—klr'—x|

G ) = (3.22)

dr|r’ — 2|

ok m-—F

On the other hand, one can also decompose Sr(z’ — z) into particle and antiparticle

contributions. We then have:

& —ipo(t'—t
—SF(:E'—Q;) = _/ dp oiP (! r)/dpo YoPo — Y - p+m) P(t.)
27) [po + Ep + 1€][po — B, — ic]

Taking the Fourier transform into the scattering energy E = \/k* 4+ m?, (3.23)

becomes,

Gp(r',r) = SP (' — 2) + 85 (' — =), (3.24)
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where

0= d’p e [i%E =l (3.25)

(2m)® 2Ep EpFE —1c
The coordinate representation of the particle propagator S'I(VH can be obtained by
integrating over momentum p. We will write the contribution from the pole as
5'1(;)(3:’ — ) |pote and other contributions as S’}H(az’ — T)|non_pote- We can then write

Gg(r',r) as

Gp(r',r) = S92’ — 2)lpote + 557 (2" = 2)lnon—pote + St (2 — )

- GS_)(TI, r) i gz(U'+)($l - x)lnon—-pole + S’%‘_)(ll . iL) (326)
The second line of (3.26) follows since we can prove that
50 (" = 2)lpote = G (¢, 7).

In the asymptotic region, we noticed that Gg(r’,r) behaves as Gg—)(r’, r) in (3.22).
The interpretation of the result (3.26) is controversial. In fact, it is not at all
clear that the last two terms in (3.26) give a null contribution in the asymptotic
region or why they should. However, Cooper and Jennings [CJ+86] justify this
numerically. They also argue that the propagator is not only subjected to elastic
scattering, but that all physical processes include negative energy states. Therefore,
the success of Dirac phenomenology in proton-nucleus scattering is attributed to
the cancellation of the spurious short ranged terms in the particle propagators by

anti-particle contributions (see discussion in Ref. [PT 87], however).
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3.5 Smooth Propagators

We have discussed at length, in Section 3.4, that the short range structure removes
the anti-particle contributions in the propagators. In this Section, we will extend
the method of removing anti-particle degrees of freedom by means of the short
range approach to the two particle propagators. We will derive the pion-nucleon
propagators from the so-called box diagram Fig. 3.2, which can be evaluated in
accordance with Feynman rules. As has been done in Section 3.3.2, we will apply
the instantaneous-interaction approximation to the box diagram and then apply the
short range method to this propagator. A similar application has been made to
obtain a smooth propagator for the NN scattering [CJ 88]. Our presentation in
this section is a follow up application of Cooper and Jenning’s work. The model
chosen is a pion interacting with a nucleon through p meson exchange where the

p — m coupling is of the form

(Er + E)yor”

with only the time component of p contributing [CJ 88].The amplitude for Fig.3.2

is,

k = ,k k’-: ’ »
1= (Bpky) P 17 (Ep k)
k =( P ) ] = ’ ’

> E2,k2) A ks (E2,k2)

Figure 3.2: Box Diagram for 7N system
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54k — p2 + q) 64Ky — p1 — ¢) 8*(py — k1 — q)
(7 = m2 —ie] [p} —mi —id] lg? —m}—ic]

A = [d'pd'pdied'y

, §*(p2 — ko +
Yo(E{ + p1o) [Ifipi mNZ_ 2 Yo(pro + E1) (3.27)

Integrating over p2, g, ¢’ gives

4010 r o 4 1 1
R OV v e e
- o(El*i'Po) !

[(p— k1) —m2—1e] T PNt = fr) — mv — id]

(3.28)

Yo(po + F1)

As in Section 3.3.2, we integrate over the energy variable py. By noting

[T

w, = [(k}~p)*+m]]

S

w, = [(p—Fk1)?+m?
w, = [PP+mi]?

oy = (K + ki~ p)* + mpl?
and integrating over pq, the four poles from (3.28) give

A = 54(k;+k;—k1—k2)fd3p

1 1 1
o( B + Ey + Wl
{2w;,(E;+w;)z_w3r (E{+w;—E1)2—wg'}”( L+ Ey +w))

Yo(Ez + By — E] —w)) —v-(ky+ ki —p)+mn
(Fo+ By — B — W;)Z —wi
1 1 il
(B} — wr)? — wi? 2w, (wr — Ey)? —w?
Yo(E2 + E1 —wy) — v - (k2 + ki —p) + mp
(E2 + E1 — w,r)2 — wfv
1 1 1
E{+ By +w,)? —wi? (B +w,)? — wi 2w,

"}’(J(E{ + E} + w:,)

+

Yo(E7 + wn) Yo(Ey + wr)

T
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(B + Ey — By —w,) —v- (k2 + ki —p) + mn

(Ey + By — By — w,)? —wj

1 1

(B} — By — By — wn)? — w2 (E; + Ey + wn)? —w?

1
(B2 + By +wy — E)?—w
Yo(—wn) —v - (ks + k1 —p) + mn
2wn

Yo(E{ 4+ Fr +w,)

70(E{ + By wp)

_1..

2’)/0(E; + Ey 4+ E1 +wn)
o

Yo(Ey + Ey + E1 + wN)} (3.29)

Now let us examine each of the 4-terms in (3.29). The pion propagator in the last

term can be written as

1 E, — \/Pz-l—m?v

(Ez + E1 + UJN)2 . w72r - 2(E1 + EQ)(,\‘,2 — p2)

This denominator is not only providing the branch cut in momentum space, but

also vanishes when we integrate over |p|. The contribution from nucleon part

Yo(—wn) — v - (k2 + k1 — p)+mn
2w

will give a branch cut since wy = y/p? + m%. We will therefore regard this term as

purely short range.

Similar consideration for the 2nd terms of (3.29) leads to

1 Ey+4/p*+m}
(Ba4 By —wr)? —wfy 2B+ E)(k* — p?)
o L - (3.30)
B E1+E2 (kz—p2)- ’

Following Cooper and Jennings [CJ 88] the 1st and 3rd term in (3.29) cancel. There-

fore, in the c.o.m (3.29) becomes

E;+~y-p+m 1
foa S g Yo(2Ex)—

1
A=8k + kK, —k —k p{ =~ (2E, 31
(4 8= b= ) [ @] Soulap) T B ) S
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Hence we take the two particle propagator for # N system to be:

Yoba — - py +mnN
G S) = 3.32
(pN| ) 2\/§(k2—p2) ( )

This is known as smooth propagator, which we will apply in our CBM calculation

in Chapter 7

3.6 The One Body Limit

After writing down a fully relativistic scattering equation, such as the Bethe-Salpeter(BS)
equation, there is the question of how this equation is consistent with non-relativistic
physics. It is a sensible question to ask how an equation will reduce to known results
in physics. In the case of the BS equation, which is a relativistic description of the
interaction of two particles, we ask the question whether this will reduce to a one
particle equation when the mass of one particle becomes large(one body limit). In
this limit, the interaction will reduce to an instantaneous one since there will be no
energy transfer to the larger mass source. The two particle propagator then reduces
to the one particle propagator. Gross [Gro 82] has made such an analysis for the
ladder approximated BS equation. Following Gross, we will show that ladder ap-
proximated BS equation does not reduce to the correct equation in the one body

limit. Let us recall the Bethe-Salpeter equation (3.7) with masses m; << ma

4

M(p,q|S) = K(p,q|S) — ’/ (;7:;4

K(p,q|S)G1(k1)Ga(k2) M (K, q|S)  (3.33)

where G1(k;) and Go(k,) are the relativistic propagators. Denoting ay = e /(e1+€2)

and as = €2/(¢1 + €2), the two body propagator becomes
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G(k, S) e Gl(k‘l)Gg(k'z)

L i
T [(eaP + k)2 —m? +id [(aP — k)2 — mk +ic] (3.34)

Consider the particular case of ma — co. In this limit, the kernel K is free of relative
energy variable hence the integration over relative energy variable will be done only
on the poles of G(k,S). Firstly we will look at the contribution from the poles of

particle 1. The two poles are at
kOZ _alil:Elj:iﬁ

where E; = y/m? + k%. The effect of these poles on G in the limit of my — oo is

1
[(caP — k)? — m3]
il

T (ata-B)y—F 0 (3.35)

Ga(k2)

where €; and €; been given in (3.3). For the contributions from the poles of particle

2, we will first write G2(k2) in (3.34) as follows:

1 1
G(k,S) =
( ’ ) [(Q1P+k0)2—E12+Z€] 2E2
( ! + ! ) 3.36
Ez—a2P+k0—i6 E2+a2P—k0—ie ( )
In the limit my — o0
E2—>m2

Eg—azp—)Eg—Cz

E2+6¥2P—>E2+62%2m2
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Thus the contribution from 2nd term in (3.36) can be ignored. For the lst term of
(3.36) there will be a significant contribution in the energy integration since £, — €,
is small. Therefore, we cannot ignore this term in the limit my — oco. It is this term
that violates the one body limit.

In relation to smooth propagators, it is worth noting that the troublesome term
from the nucleon pole, i.e. the last term in (3.29), is removed by the short range

method. Therefore, the smooth propagators naturally satisfy the one body limit.

3.7 One Body Limit, the R factor

In Section 3.3 we demonstrated how the Blankenbecler-Sugar and Instantaneous-
interaction approximations can be applied in approximating the Bethe-Salpeter
equation. In Section 3.6, we showed that the ladder approximated Bethe-Salpeter
equation does not give the correct equation when one of the scattering particle’s
masses becomes large. It is worth noting that Gross’s discussion of the one body
limit is based on the instantaneous-interaction approximation of Section 3.3.2. One
can equally discuss the one body limit in Blankenbecler-Sugar type propagators
[CJ 89] which we will now examine.

Likewise in (3.14), we can write down the Lorentz invariant propagator for the
general case of different masses m; and my. The general two particle propagator

Glyen, which has poles when two particle are on shell is

oo ds' e(S") P! ’
G o 1P _ e ! 6+ 1 o 2
g (p ) /(m1+m2)2 S_ Slf(S,S) ((GI(SI) +62(S,) +p> ml)

e2(S") P’ .
5+((e1(5'>+ez<s')"’) _mz) 30
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where P’ = \/%P and f(S,S") represents any function which has the property
f(S,8) =1

The propagator G, in (3.37) is most general among 3-dimensional propagators
that the smooth and BbS propagators can be considered as special case. One can
do the integration over S’ (see Appendix B for more details ). From (3.37) we then
have the general case of a two particle propagator for two spinless particles with

different masses

§(2P - p) (SpS — (m] —m3))
p? — k* 4,/55,61(5,)ex(Sp)

Ggen(Pa p) = f(Sa SP)’ (338)

where
N Y

Equation (3.38) is the central result for our discussion. Since this is a general case
of a propagator for two different mass particles, we can compare with the other two
particle propagators and identify the so-called R factor for different propagators.
Firstly, we can factor out the smooth propagator Gy, in (3.32) and Blankenbecler-

Sugar propagator Gpss (3.19) from general propagator (3.38) as follows:

_ 2 2
Gsm(P,p) = 5(50) . (SpS — (m] m2))f(5’ 5)
2VS(p? — k*) 4,/55,61(S,)ea(Sy)
§(Po)
- R‘HR 3‘39
25 (p?— k%) (3.39)
6(Fo) &SS;, — (m? — m3)?
2/, (0 — k) S S — (m} —md)?
8(Fo)

= Rpws (3.40)
2/5,(p? ~ )

Ges(P,p) =

£(5.5,)

From (3.39) and (3.40), it can be seen that for equal masses m; = my, Rm and
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Rpps both become unity, the only difference being the square root factors in the
denominators. We can now study the properties of different propagators when the

mass of one particle become infinite, my — oo:

Rom = 1 (3.41)

€] + € (Sp)

o) (3.42)

Rpys ~

We can now compare the smooth propagator and BbS propagator in the light of one
body limit. In Section 3.6, the one body limit was defined as the ability to reduce to
one particle equation when the mass of one particle abproaches infinity. When we
formulate the 3-dimensional propagator in Blankenbecler and Sugar’s approach(used
dispersion technique) the potential is instantaneous and we need to ask whether the
propagator exhibits the features of one particle propagator. In fact the smooth
propagator does become the one particle propagator since Ry == 1 in the my — o0
limit. On the other hand Rpgys does not reduce to unity when the mass of one

particle becomes large and it therefore violates the one body hmit.

3.8 Application to the mN system

In Section 3.7, we derived the Blankenbecler Sugar propagator and smooth propa-
gators and examined their one body limits. When we apply these propagators to
the 7 N system, we need to include spin. This is done by introducing the projection
operators in eqn (3.37) for one particle as outlined in [Erk 74, Bro 79, CJ 89].

For the Blankenbecler Sugar propagator, we need to make modifications as out-

lined by Cooper and Jennings [CJ 89] in order to have correct one body limit. The
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propagators used in our calculation in Chapter 7 are

1 &(po)
GU/20)(p, = D! (P, 3.43
sm ( p) 2\/§p2 _k2 sm( p) ( )
1 é(po)
GU/20(p py = MY _plo(P,p), 3.44
BbS ( ) 2\/S—pp2 . k2 ( ) ( )
where the Dirac factorD},, is given by
Dim(P,p) = Yu ( “ P”+p“) + m;.
‘ €11 €

3.9 Summary

In this Chapter, we discussed methods to ensure unitarity by using relativistic prop-
agators. Attention has been given to 3-dimensional propagators which are covariant
and guarantee unitarity. We first discussed how the interaction of two particles 1s
described using the Bethe-Salpeter equation in ladder approximation. We also fo-
cussed our attention on a recently suggested smooth propagator which is consistent
w15th Dirac phenomenology and does not violate one body limits. We also presented

the relativistic propagators used in our calculation in Chapter 7.
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Chapter 4

The Formalism

4.1 Introduction

In Chapter 3 we presented the relativistic wave equations which can guarantee uni-
tarity in scattering. We shall now discuss in detail how the driving potential for the
relativistic scattering equation is obtained in the Cloudy Bag Model(CBM). As we
have stated in Chapter 1, the CBM Lagrangian describes interactions of pion and
quarks . The main aim of this chapter is to provide the formulation for transtorming
interaction of pion and quark to those of pion and nucleon. We expect the poten-
tials to be relatively simple at threshold energy and give proper cancellations of the
type encountered in Chapter 2. In Section 4.2 we will discuss how the pion-quark
interaction can be projected into a pion-nucleon interaction. We give two examples,
namely the vertex function and the Weinberg-Tomozawa term. In Section 4.3 we
give a detailed account of how the higher order graphs are calculated in the CBM.
We also give information on how we can approximate some complicated integral

functions.
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4.2 Interactions in the Cloudy Bag Model

There are many possible non-linear lagrangians which represent the same physical
system and can provide the same result to order of (217)2 From these, we shell use
the Kalbermann and Eisenberg’s variant of CBM lagrangian [KE 83], and write in
Hamiltonian form favoured by [Tho+87, CJ 86]. The full Hamiltonian is given as

follows(see Appendix A.2 for details):

H(z) = / Ea{Hr(@) + Hor(®) + Hy(2) + Ha()

L H (@) + Han() + Hur(x)},  (41)
where

Huir(e) = (%26’)’(6 = %)q + B)0, + %qqu (4.2)

Hor(w) = l{112 (V ¢)* +mie?) (4.3)

Hi(z) = (2f)q7'ysrq V¢ (4.4)

Ma(e) = VT Ve ¢ (4.5)

! _ l - VT (T X (,ll)) V)

Henlz) = (2})2 (12 (% g~ mie*) 6 (1)

wil®) = g o'ra (@ x D) (4.)

wr() = (29;)2 YTg - ($X V §) (4.9)

Up to order (2f)4’ the diagrams shown in Figure 4.1 (from now on we will simply
refer as Fig. 4.1 etc.) contribute to the potential. The diagram shown in Fig. 4.1a
produces the Weinberg-Tomozawa result at threshold energy. When we take all
interactions to order (-2}—)4, Figs. 4.1b and 4.1c needed to be included in the calcu-

Jation. However, since the driving potential is the sum of all irreducible diagrams,
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Figure 4.1: Diagrams included in this calculation

Fig. 4.1b will not be included since it is an iteration of Fig. 4.1a. We will now show

how the potentials for Fig. 4.1a to Fig. 4.1h are calculated in the CBM.

4.2.1 Vertex Functions

When we use the linearized CBM Lagrangian (4.1) to describe pion-nucleon inter-
actions we not only have the Yukawa type vertex Fig. 4.2a. but also the three pion
vertex Fig. 4.2b . The vertices of Fig. 4.2a and 4.2b are generated by H;(x) and
Hs(x) respectively. Figurés 4.2a and 4.2b are needed when we calculate higher order
diagrams shown in Fig. 4.1e and Fig. 4.1f. The dependence on the momentum of
the third meson in Fig. 4.2b when we consider the S-wave isoscalar interaction in
Fig. 4.1eis the same as the dependence on the meson momentum in Fig. 4.2a (pseu-

dovector coupling) because the isoscalar pair in Hz(zx) will interact with ingoing and
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Figure 4.2: One pion and 3-pion vertices

outgoing mesons.

The calculation for the process shown in Fig. 4.2a : B — B + 7 is given In
[Tho+83, Tho+80] for the pseudoscalar coupling. For pseudovector coupling the
same form factor as for the pseudoscalar case is obtained after integration by parts
[Tho+86]. Here, we calculate the pseudovector form factor in a straight forward
manner.

In order to clarify the presentation later in this thesis where several interactions
occur, we shall formally retain the coordinate at which the interaction occurs(even
though it is integrated). Thus the interaction Hamiltonian for the diagram shown

in Fig. 4.2a will be written as:

Hi(z) = /d3x Hi(z)

= —% Pz g@)ynra@) v (z) - (4.10)
The transition from the initial state
li) = |Sema, I5ip) (4.11)
to the final state
|/} = |Semap, Ipip; ki) (4.12)
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can be described by the matrix element of interaction Hamiltonian Hy(z):

(flHi(2)ls) = (fIPH(2)P]i)

= (fleNalHi(2)|B)Bli) (4.13)

where the kets |a)and |3) are colourless baryonic bag states which have the same
quantum numbers as baryons and « (a') are annihilation (creation) operators for a
real nucleon. Therefore the projection operator P = Y, |a){«a| projects the pion-

quark Hamiltonian H;(x) onto baryon space. Now

(@lH(@)18) = @n)F [ 4 LV @e(@) + P @] (49

where the interaction matrix element is

V() = (@) [ #2 (ala)y - arma()I) Sy
: @’ m

i N? 3 Qx
N s dz 22 | di sf(al [(]2( ]( ))U(a).nga)
eh <47r>/o / el LI CR) — 3 )

Q.'L' qu

+253(—) o - & q - & 717)|B)s
R Wy
In eqn (4.15), the kets |a),; denote the spin-flavour wave function for the baryon

bag state |@) and the operators o(® and 7(*) are the spin and isospin operators for

quark a. It is useful to write the interaction matrix element as

o 1 ]\/'2 RIS
Vo(q) = —— / di 330 g S—, 4.16
where the symbol 2?'6 represents
o 5.1 .,,0z o, 0z 2 (a 2,20 W . . (a
2 = ol 3 [ — AN @ + 220 - 67| 18).s. (417
a=1
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Since we have (See Appendix C)

/d:i: o q 9% = (4m)jo(qz) o - q (4.18)

and
4

[dio-iq-i e = () Golgr) ~ 252(a0) o (4.19)

the interaction matrix element (4.15) becomes

: 3
7B (q) = —— ! < ¢ ) U(qR (o) . gr(®) 4.20
In eqn (4.20) the form factor U(qR) is given by
3 R
= —— dzz? py, 4.21

= i o 4o () - R Vilae) - § 3HCR) lee)
The form factor U(gR) has a different analytical form from previous calculations.
Howéver, it gives the same momentum cut-off as the form-factors of [Tho+83,
Tho+-86].
Now we are left with the task of replacing the quark spin and isospin operators
with those of the appropriate baryons. In order to do this, we write the matrix

element of the quark spin and isospin operators in eqn (4.20) in terms of transition

spin (S) and isospin (T") as follows [BW 75]:

X(0]S - qTIB) = wylal o - qr18).; (4.22)

Now, on the left hand side of (4.22), the kets |a) and |3) are colourless baryonic bag

wave functions which possesses the same spin-isospin quantum number as baryons,
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1.e.

la) = |SamasLata) (4.23)

18) = |Spmmg, Igip) (4.24)

where S, (I,) and m, (is) are total spin(isospin) quantum numbers and their
projections respectively. On the R.H.S. of (4.20), the kets |a)ss and |B)ss represent
explicit SU(6) spin-flavour quark wave functions [see Appendix A.3]. The operators
(@) and 7(® are the spin and isospin operators for a-th quark. X8 is a symmetry
factor that arises when we eliminate the quark spin and isospin operators in favour
of their nucleon counter parts.

The operators in (4.22) can be written in the spherical basis [See Appendix C]J,

" %

Xaﬁ (Sama,Iaio,lSlmTlnngmﬁ, ]ﬂiﬁ) .§* -q tn

*

= a\ZO’lmm)lﬂ Vopsn g bn  (4.25)

where S, Tin, 0%,,2 and () denote spherical tensors of rank 1. The L.H.S. of (4.25)

1n

is, according to the Wigner-Eckart theorem [see Appendix Cl,

X (S,mers Inial SimTinlSomp, Igis) 3 - by =
mg m maq Ciﬁnia
Sﬁ 1 So Iﬁ 1 Iy A*

X (8o || SMTMY|Sp15) RS Plrl 5 -qt,  (4.26)

Since we can calculate R.H.S. of (4.25) for a particular case of m = 0,n = 0, we

have:

Xaﬁ o MO{ﬁ \/?Sa + 1\/2111 + 1 (4 27)
C3r L e Ot (SaLal|SUTW|ISs15) '

)\aﬁ \/Tsa + 1\[2101 + 1
(Salal|SWTW]|Sp1p)

(4.28)
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In eqn (4.27) the matrix element M,y is defined (see Appendix A.3) as:
@) o)
Mag = silal 3 oim"1B),
a=1
and in eqn (4.28), the constants A*# are defined by
o mgOma ~i30ia] ™
2 = Map [Csﬁﬁ1 Sa Cl§ 11s

The constants X*? and A*? are given in Tables 4.1 and 4.2.

a\B | N A
TN ENES

4/2 1
A 2 3

Table 4.1: The symmetry factor X*°.

a\p | N
N
A

22

e
N
O‘t%[)

Table 4.2: The symmetry factor A°P.

It is useful to introduce another constant /\fﬁ. With the help of (4.28), the eqn

(4.22) can be written as

3,
(e S 0@ gr@|p),, = X°P(a|S - qT|B)
a=1
= X (S4ma, Lnia|SimT1alSamp, 1pig) S, - qt.
= NPCETS CLYL et (4:29)
mﬁmmaA‘

= /\?ﬁcsp 1S, m "4 {{ata|T|Igip)

= MPGPagr . q(Iia|T|Igip) (4.30)
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The constants A** differ from A*?[Tho+83] as a consequence of how the matrix

elements of the isospin operator are defined. This has certain advantages which we

will explain in Section 4.3.3. Finally the symbol 5P represents the Clebsch-Gordan
mgmma

coefficient Cg "y s, -

We can now write (4.15) as

. ) 1 Q
720(q) = — e ( ) R) ;P SEesr - q (IotalT|Ig0 4.31
‘J (q) (6f) 2wq Q —1 U(q ) 1 m sm q ( t | JI ,31’,3> ( )

The values of A% are given in Table 4.3.

Table 4.3: The coupling constants pe

a\p| N A
5 2
IR
4 5
A &1 \8

4.2.2 The Weinberg-Tomozawa Term

In the preceding section, we demonstrated how the process B* — B + 7 can be
described in the CBM. In this section we will consider a more general process, i.e.
B+ 1 — B + 7' . In Chapter 2 we have seen that the Weinberg- Tomozawa term
gives the correct scattering length at threshold energy. In the following, we will
discuss the Cloudy Bag Model version of the Weinberg-Tomozawa relation. We
shall now derive the pptential for Fig. 4.1a, i.e. the transition amplitude from the
initial state

o) = |Spmsp, Ipis; k,inm) (4.32)

to the final state

|f) = |Sema, Ipip; K ine).- (4.33)
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This will be written as (we suppress spin-isospin indices):

va(k' k) = (i [Hyp(2)lf)- (4.34)

In eqn (4.34) the subscript a corresponds to Fig. 4.la and H}y, the Hamiltonian
for the time component of the Weinberg-Tomozawa interaction (4.8). In order to

evaluate (4.34), we first determine the interaction matrix element

VeP (k! k) = (o k' i | Hiyr(2)|8; K, i) (4.35)

The kets |o) and |8) are non-exotic, baryonic SU(6) wave functions and ot BV (K k)

is an operator in real baryon space, 1.e.

(flHLp (@) = S (Spme, Ipisle!f VP (k' k)
af

Ipig), (4.36)

where the operators af (@) create (destroy) the real baryon. Now, the interaction

matrix element,

VeB(k' k) = (o k', inee| Hipp(2)|Bs kying)

011(‘7') st 1 Wi + wk /dS 1kx —ik/-x
(2f)? (47) ( V2w 2w

pe(T) s a|Z’r - 0|8) sy (4.37)

In eqn (4.37), we write 6; = —i€;i,iy,, the pion isospin matrix element and p(z) =
[72 (Q—Rx) +73 (QRE)] Here the kets |a) and |8) are the SU(6) wave functions in quark

space which are combined to give the bag state. In order to project (4.37) onto

nucleon space, we may write the spin-isospin part of eqn (4.37) as follows,
AP (T - 818) = s5{] Z (@ (4.38)
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On the left hand side, the kets |a), |8) are baryonic bag wave functions which have
the same quantum numbers as the physical baryons. The isospin operator T' operates
on the baryonic wave function, therefore it is the same operator in nucleon space.
On the right hand side the kets |a),s, |8)s5 are explicit spin-flavour wave functions
of the quarks (see Appendix C). The operator 7(3) is the isospin operator for the
a-th quark. In order to determine the symmetry factor in this case, we write the

operators T, 7(*) in spherical tensor notation

AP(Lio|Tim| Igig)ts, - 6 = o5(c Zﬁmlﬂ of (4.39)

By the Wigner-Eckart theorem we can rewrite the L.H.S. of (4.39) in terms of

irreducible tensors and Clebsch-Gordan coefficients:

iﬁmia
APB(Li I T yig) = AP (L ||TW||Tg) —2re 4.40
(llm|ﬁzﬂ> (H llﬁ)m ( )
Combining(4.39) and (4.40), for m = 0 we find:
Aaﬁ \/21 +1 Sf(alza—l T?Ea)l/B>3f
C}Z?’,‘; (LT Ip)

oL +1 , 3_ 9|8),

_ \/ : + f<a|2a_1 T3 |ﬂ> f (441)

Ciit (LllT™|I15)

Iﬁl[a

Now we can write the interaction matrix element as,

VP (k' k) = AP (a|r-6|B)

o iaiMlla 7,5’LM13
. ;CIQIM;I IsIy ] Z )Y ()
3
I
A

wg + Wk 2/ g 1.9, 802 o, 82T o
N d lain S
3722 oo * Jo zz* [75( 7 )+ j:( 7 Na(kz) 7:(k'z)(4.42)
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In eqn (4.42), the constants Agvﬁi"l are defined as
AP = AP (LI ') - 00| (T L) 1 L5)

where we use the notation of Edmonds [Edm 57] to describe the product of two

tensor operator T and 0. The values of Ay are given in Table 4.4.

Table 4.4: Coupling constants for WT term/\(ﬁfj!

I=1 [=23
a\B|rN | nA | «N | TA
N | -2 0 1 0
TA 0 -9 -2

4.3 Higher order graphs

In the previous Section 4.2, much effort has been invested in order to explain how the
pion-quark Hamiltonian can be projected onto pion-nucleon space. In this section,

we will apply those techniques to higher order diagrams shown in Figs. 4.1c-h.

4.3.1 The Cross Box Interaction

Figure 4.3: The cross box interaction
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The interaction Hamiltonian for Fig. 4.3 is

1 t

. = Hyr(y) T Ho 1 Hyp(x) (4.43)

where Hiyp(z) is the time component of Weinberg-Tomozawa interaction (4.8) and
the subscript ¢ stands for Fig. 4.1c. We will first use the projection operator P to
project the pion-quark Hamiltonian H, onto pion-nucleon space by the now familiar

procedure:

v (k' k) = (f|PH.Pl)

e (SB/mB:; IB:iBz|a£a1 f/caso‘l (k’, k)

SBmB;IBiB). (4.44)
The interaction matrix element is

Ve (k! k) = (ag; ksine|Helass b, in)

= [dz [ @ylasloe@)pl@)len) cojucin

(K ingl ()T () oo TR ), (485)
where p;’s are defined by
0,(z)
pi(ﬂc) = (2()2«35)’70%’(1(95)
6, N? 2 a
= &fp (M)pt(x)z_:ﬁzn‘ 9. (4.46)

It is constructive to calculate the meson and baryon parts separately. The meson

part gives
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, 1 .
cirjr€ijk (R ,ZM'|¢j'(y)ﬂk'(y)—E——ET¢j(w)Hk(w)|k, in) (4.47)

1 eitky-k'x) / i (y—x) —wqwk + w + Wgwir — u-’k""’q]
q

= € Eiis
VIIM VL) ppt (27(_ /—_—kaka'

—mN—wk,—wk—wq-{—ze

When calculating the baryon part, we will first project the quark operators pi(y)

and p;(x) onto baryonic bag states and then to the nucleon space as follows:

M S b (o) pi () az) s N"Y (N o (| pi(®) o) €irjigs €y

oo N

o - : -
= a3a1(Ia32a3, Saamaa‘26ialia3 6iMiM/ + 2 6k,'MiM,Tk|IQIZa1 S Sal7n'a1> (448)

where the kets [N") represent the real baryon spin-isospin eigenstates. We also make

use of the relations
TiTi€itjing Cigings = 20ing,ing T 1€kingipng Tho (4.49)

One may now expand the plane waves in (4.48) into spherical harmonics. For the

S-wave interaction, we get:

N: igriggr 1, i ls
vc(kl7k) = 64]('4 4 ZCIEIIA;[/IS IgIJ,\\J,III 25 ]“ k

[26;

B’ B I
igig Oingiyy T AWT | / —wqwi + Wi + WKWk — Wiiq)

V2w 2wy qu i — My — Wk — Wk — Wq + €

/0 dzz’pi(z)jo(qz)jo(K'z) /ORdyyZPt(y)jo(qy)jo(ky) (4.50)

One problem which is encountered at high energy when we calculate diagrams to
order @ f)4 is that of numerical singularities. In fact the intermediate states in
Figs. 4.3, 4.4, 4.5 and 4.6 contain more than one pion and should be solved as a

3-body problem. However, we are primarily interested in the low energy regime and
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such 3-body problem is beyond the scope of present work. Therefore, in numerical
calculations we made static approximation for the nucleon and took incoming and
outgoing pions on-shell. Cooper and Jennings [CJ 86, Tho+87] also has to work

within such an approximation.

4.3.2 Loop diagram

~ -~ ~ 7
~ -~ ~ 7
~ ’/ \\ -,
o~ »

\ 7/ \
{
\ 7/
i 1
1 ! /
\
\ ) ' /
/l\ _,/"’\-/\
(a) (b)

Figure 4.4: Loop diagrams
The interaction Hamiltonian for Fig. 4.4 is,

1 1

H . . __—___Ht t e
¢ = Hq (Z)Ei ~Ha T ic wr(z) +HWT(w)Ei _ Earlne

Hi(2)  (4.51)

The projection onto the pion-nucleon space is carried out in the usual way. The

interaction matrix element for Fig. 4.4b is

1

V;Ebﬂ)(k” k) = (a; k’,th|H€/VT(iB)m

H47r(z)|ﬂ; ka 7'M>
460, N2 3 et(k—K')-x

——v s [ (a) G il
(21)4 (47) / z pu(2) s5(e azz:l Tk_ 1855 @ €xij NoEwE
il /d3 1 8iiygsOjing (b + E') - p + 6iipy 651y (K + K) - (K — K — p)

4(2m)8 & Wp E; — En(k') — wi — wp — wWk_xi—p

(4.52)

where k, k' and p are four vectors. We will get the interaction matrix element for

Fig. 4.4a by replacing k with k' and k' with k in (4.53). For the S-wave case, we
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have

E k) = CiB’iM’ISCiBiMIa A (47T)N52 Y, ]5, y* ik
vd( ’ ) - z[: IgiIypI Y Iglyl (2]0)4\/'2?1(%1:%; lm( )lm()

R 2 p2
[ daapu(@)io(ka)io(ka) (2m)° [ Ep e el
0

[(wk +wi) (wp — wiw—k—p + 2(k + k') - p — (K — k7))
E; — En(k) —wx —wp — Wk'—x—p

(@ +e)(p —wiciwp + 2k +K) p - (K k)

4.53
E; — En(k') — wx —wp — wWk_¥—p ( )

It should be noted that we treat the pion 4-point interaction as described in {Tho*86].
The exponential factor in (4.53) is the result of replacing the pion field operator aj(k)
by @;(k)e ¥ Fx/12% to take into account the internal structure of the pion [Tho*86].
To obtain the numerical value of the momentum integral we expand the function in

terms of Legendre polynomials [see Section 4.3.4].

4.3.3 The Chiral Partner of the Sigma Diagram

(a) (b)
Figure 4.5: The Chiral Partner of the Sigma diagram

The interaction Hamiltonian for Fig. 4.5 is

1 il

H, = H. —_H H —_
S(y)Ei—Ho—}—ze 1)+ l(m)Ei—Ho—{—ie

Hi(y) (4.54)
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We find the interaction matrix for Fig. 4.5a as follows:

1
E;, — Hy + 1€

= (2;)( / / dyy* ]dx/d1 (2m)~ /d3 /d3

3TN ivldi g, (v) (y) - dly) X - q

Pem (i) = (s k' inel Hofw) Hy(@)lan; s i) (4.55)

agop N
as NN aT e
E4/‘|‘ _ZO —|i622j2 ' q ¢Jq( z)|k, )

where the X,’s are given by (4.17) and ¢’ (x) represents

¢ q(x) = \/21—(‘11‘(‘1)6“1')( — al(g)e1),
Wq

etc. Now, as we compute the expectation value between initial and final meson

states and do the integration over momentumn, (4.55) becomes,

1 N (2m)7° R
* daa? | vy
21)% (4m)? o /2wk2wk, = b

- JRIE (y—X)ei(k—k’)y
/ x/ y/ q;;(Ei—mN—wq—wk—l—ie)

X3
‘/ 31
e

Z 2501471\]”5012,1\]" {6].1.M’6“M203a4 k 2?201 " q (456)
ago NV
658y DL - q T2 - q — i, 8y T K X - g

It can be seen from (4.56) that the second term in the braces gives a purely isoscalar

interaction. Let us now consider the term

[di [ dg [ g sty g gz g (4.57)
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First, expand ¢'®&=¥)¥ in spherical harmonics and set the angular momentum of the

incoming and outgoing mesons to be 0. Equation (4.57) becomes
(4) Yoo F)Yi(B) [ i [ d [ dg O jo(ky)j(K'y) T30 - g D5 - g (4.58)
Since [see Section 4.2, equations (4.15)- (4.21) for comparison]

3
/da‘nZ‘j’Q"” Sqe M = (47)ppu(q) sf (e Z o). (IT]'(a)|al)sf

a=1

(A7) ppu(g2) A2 Spi%287, + @{lagtan|TiHontas ), (4.59)

equation (4.58) becomes

4:7'(' = ~ ~ B . Le oETel i
( 3) Yoo (') Yoo (B)1q | ppo (q2) pou(qy) do(ky ) o(K'y) St ® Sk (=)™ bim, -
/\(1)13014 )\?2&1 (IasiotaITi‘IO4i04)(Iazi02ITj|101i01>6i16iMiMl' (460)

With the help of (4.60), we can now carry out the sum over oz, oy in (4.56), and

since N” forms complete set of isospin states, we get

Z Z(Iasiots |Til]a4i014)<102i012|Tjualial>5ij6iMiMr60‘4,N”5a2,N”

ogop NI

= <1013i03lTiTj&ijualial)&iM,iM/

=3 Oy Tay Oty iag Oingipgs- (4.61)

Our comment after (4.30) that the advantage of writing the isospin matrix as defined
in (4.30) can now be justified. When we calculate the higher order interaction matrix
elements between bag and pion states, the intermediate states involved are those of
baryons. In order to transform the quark spin and isospin operators into those
of baryons, it is necessary to use the spherical representation. However, we have

transformed the nucleon isospin operators into the orthogonal basis as in (4.30) so
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that the pion field operators have simple commutation relations.

For S-wave, the potential for Fig. 4.5a-b becomes,

Uy

N4 )\?3 (23] )\‘11201
T 641t 2wy 2wne

o 4 R R
X dqq_/o d:v:z;2/(; dyy2ppu(qx)ppv(qy)jo(k$)j0(k':z:)

0126

) IMIM/
Seer

ve(k', k) Yoo(k') Yoy (k) (—)5ez t ¥

0 wq
1 1
X — + : (4.62)
E; —my, —wq —wk +1€ B —me, —wq — Wk + 1€
4.3.4 Sigma like diagrams
~ 7 ~ - -~
~ 7 ~ 2= N s
S 7/ ~ - -~ 7
N , -~ ~4
\/ \ \ 71
/ \ LWEAN 7 1
\ /7
/ : \ \ / !
/ \ \ \ 7/ 1l
/
L L i \ o) 1
(a) (b) (¢)

Figure 4.6: Sigma like diagrams

We can write down the interaction Hamiltonian for diagrams shown in Figs. 4.6a,b

and ¢ as follows:

] 1
Hio = Hi(y)=—————FHix(2)m0—F—H
f(a) l(y)ﬁ.-—ﬂu-i-ae ! (Z)Ei—HO‘I'ZG (=)
1 1
H = Hyu(2)o0————Hiy)—F7—H
Q) ! (z‘) E; — Ho + ic l(y)Ei — Ho + 1€ ()
1 1
5 = _ 4 ——-—.—Hvr
Hye) Hl(y)Ei—H0+zeH1(w)Ei—Ho-l-lﬁ w(2)

(4.63)

Diagrams shown in Figs. 4.6a,b and ¢ are different by the ordering of the 4-pion

interaction vertex Hs,. We can find the interaction matrix element for Fig. 4.6a as
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follows

1 1

Jason (Ll L) — k! —Hu(2)
(k' k) (a4””’ZM‘H1(y)Ei~H0+i6 . (Z)Ei—Ho-i-fte

f(a) Hi(x)|on; k,in)(4.64)

First we find the relevant part of the 4-pion interaction for Fig. 4.6a (which we

denote by Z)

Z = (27r)_3 / Pqrdqad® g3d®qs [2wq, 2wq, 2wq, 2wq4]_;—
{46%q, — 9.+ 95 — 9) (41 q2 = m?) alg,) - a'(q2) algs) - a'(q.)
+8%(qy + 45— €5 — 24) (—0 - @2 — m2) (al(q)) - a'(q2) a(gs) - a(q.)

+a(q,) - a(q,) a'(as) - al(g))}  (4.65)

Now, the interaction matrix element (4.64) becomes

Nragon (L1 _ (27r)_3 N: R N 2 3 3 1
o (k' k) = B (ar 2/0 dyy /0 dra /d q/d q
a3|C) (C|a§
Kine| [ dj e z
Z Z zM dy ¢ (y)E Hy 41 FE;,— Hy + e

azaz

[ iz gy (@), in) (4.66)

In (4.66) the intermediate state |C') can either be a nucleon or A. One can now
compute the expectation value between pion eigenstates and perform the momentum

integration so that we have;

o27r)~® N4
(2.72)4 ( ka‘)wk, /dm/dy Z 6012 c (4.67)

ag,C
(i (x-y) —i(k/—K)y

‘/foézal (kl L) - (

1
/quzzng LgZEe (g + K — ) Flayo(q, ', k)

(Ei — MmNy — Wk — wq)
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Here, F(o)a(q, k', k) represents

Flyal@, K, k) = Flayigingin (0, k5 k)
= |(=k-q' =K -q—mD)8iiybiin
+(q K 4 q-k—m7)8iinbiin
(g g+ K k=) iy bi)

-1
[wQ+k:_k(E,- — my — Wk — wq+k’—k)] (4.68)

From the definition of Fa)ijizin (4> k', k), we can see that it is dependent on ¢, k'
and k. Although it is possible to obtain an exact analytic expression for (4.68) at
threshold for numerical computation, it is not possible for higher scattering ener-
gies. We therefore resort to some approximation methods. Since we noted that
the function Fa)ijipiy, (¢, k' k) depends on the magnitudes of the three momenta

lq|, |E|,|k| and the rotational invariant functions, 2y, z9,where

71 = cosﬂq,'ﬁ,
29 = cos@;c’];,

We expand the function Fo)ij,ipi,. (¢, k's k) in Legendre polynomials as follows

F(a)a(q, k,a k) = F(a)ij,iMiM/(qa k’a k)

= Z (21 + 1)(2ll + 1)F(a)a,ll’(q, kl? k)Pl(zl)Pl’(Z2)
L,I'=0

= Flaywoo(q, k', k) Po(21) Po(22) + 3F(a)a,01(¢, k', k) Po(z1) Pr(22)

+3F(a)a10(qs k's k) Pr(21) Po(22) + 9F(a)a,1 P1(21) Pr(22) +(4-69)

It is found that the first coefficient F(a)q,00 has the largest magnitude and the con-

tribution from Fg)a,01 0T £{a)a,10 are 10 times smaller. Therefore we approximate
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F(a)(,(q, k' k) as

F(a)a(q7 kla k) F(a)oz,OO(qa kl, k)

1 o+t +1
= ; / 2 / dzy Flayalq, ', k). (4.70)
-1 —1

Q

Now the interaction matrix element (4.68) becomes

- 1 N 1 1
Qg0 kl k = 92 -6 s /dA/dA/dS -
f(a) (K, k) (2m) (2£)% (47)?% /2wy 2w R qwq
I'T[a)oz,OO(q’ kla k)
(E; — my —wir — Wwq

3l . g chal (g + k' — k)Y e i(K'=K)y £4.71)

One may now expand the exponential e {K'-K)Y a5 ysual. In S-wave we therefore

find from (4.71),

[ di [ di [ dg B3¢ -q D5 (q+ K — R Y By g, )
— () Yool F) Yoo (Rjolky)joK'y) [ dd [ dj @5 - ge™ @ |

/ 42 59 - (g + K — k)e'™™ Flaaoolg, K, k) (472)

One may now proceed in a similar procedure as outlined from (4.58) to (4.60).

Equation (4.72) becomes,

47 N ~ o . . / a o m’
: 3) Yool ') Yoo (k)11? oo (q2) ppu (g9 ok ) o (K'y ) St S (=)™ 6—mrim

Xl)(lic)‘lca1 <]014i014ITilc)(C|Tj|Ialia1> F(a)ot,OO(qa kla k) (473)

Since the states |C) form a complete set of isospin states, we have
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(Laglo |Ti7—j|]a1ia1>F(a)a,oo(q, k', k)
1 rH1 +1 ‘
= Z/_1 dz, /_1 de(IMZ.QA(Sij +i€ijk7—kllallal> F(a)ij,iMiM,(q, kl, k‘)
1 A +1 . ‘ ,
— 1/—1 dzy /_1 dz, {(Ia4za4|6iM,iMl|Ia174al> Flays(g, k', k)
+ (Lo Borg | 1€kt pgring T Lar By ) Fla)o( Qs k' A)}

iasingtls ~iayivds I
— 6iM.iM/61a4.Ia1 51'04 fay F(a)s,oo — CIaZIT,,:IS Clai-’];\lﬂa A F(a)u,OO (474—)
where the isoscalar and isovector contributions F{,); and ), are given by

Floys(a, Ky k) = —{10m2 + wiowq — wqwk — 3wiewi + k- B+ [k]* + [k
+3[g]” +3q - (K — k) — wqpiek(—wk + wio + 3wq) }
[wq+k’—k(Ei —mg — Wk — wq+k/-k)] - (4.75)

Flaylg, Ko k) = —{wwwq +wqw — 2k - g — 2k - g + [k[* — [k (4.76)

-1
g rie—t(Wk +wie) | |wato—x(Bi = mo — wic — wq+k'—k)]

After putting everything together finally we get for the S-wave interaction

1 N2 P00 (4m)t So
(21)* (47)? 2/ 3 S,

o0 d q4 e_Rgrq2/6' R d 9 -R d 9 ) k, . k
/0 qw—q(Ei_mC_WkI_wq)/o Tz /0 yy° ppu(q2) ppo(gy) oK'y )so(ky)

[(Iagias |6iMliMIIalia1>F(a)s,00(q7 k,7 k) + (Iagiag |i6ijk7_kuoz1ial>5i,iM/6j,iMF(a)U,00(q7 kla k)]

’l)f(a.)(kl, k) =

(=) %5 (2m) " Yoo (K) Yoo (k) (4.77)

Similarly for Fig. 4.6b we have,
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1 N2 PO (4m)t S
T2 (4n)? 2ymwe 3 S,
© ¢ _p 24 [P 2 [* o 2 (K 2)q
/ dg— e~ / dm/ dyy® ppu(42) ppo(qy)jo(k'z) jo (k)

0 wq 0 0

[(quiaa |5iM/iM|Ia1ia1>F(b)s,00 + (chgi(xa lieiM/iMkal-[alia1> F(b)v,OO] (478)

(=) +5etSar (21) Yoo (k') Yoo (k)

vf(b)(kla k)

Where Fy; and Fiy), are given by

Foys = {—wkwq +wqwir — wkwq + wq'Wkr — Swqwqr + Jwkwis

- 1Omfr — |k

2 K" —k -k +3q- (K — k) —3¢"}

(Wi _kx_q(Fi — Mo — wq — Wki_k—q — wi)(Ei —me — wii—k—q — wi)] ™!

E?—2q- (k' +k)}

F(b)u == {—wkwq: + wqwi' + Wrwq — Wq'Wk' — |k|2 +

(Wi —ie_q (Fi — Mo — wq — Wio_k—q — i) (B — me — W _k—q — wi)] ™'

4.3.5 The Contact Interaction

Figure 4.7: Contact interaction

The interaction Hamiltonian for this diagram can be written as

H,(z) = %au [&s {cj’yo ((72% - T(;})ﬁ qr (4.79)
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The interaction matrix element for this is

VoK k) = (o5 k', i Hy(@)|B; kyina) (4.80)
eilk—k')-x

0, Ny 1 3. 2
- (2f)% (47)? (27 )? /d mpt(m)\/2wk2wkf

3
sf(a| Z T;'(a)TJ'(u)|ﬂ>sf(6kiiM€kjiM, + €kjiM,€kiiM)

a=]

For S-wave we found that,

1Nt S
U!](k,’k) - 6iBiB¢6iMiM/(2f)4 (271')3 m)/oo(k/)ybo( "’)

[ etk ol ) (4.81)

4.3.6 The Interaction for Diagram h

Figure 4.8: The interaction for Diagram h

The interaction Hamiltonian for this diagram is

1 t i

i v g e (@) (4.82)

Hy, = Hy(y)

We may project this Hamiltonian into baryon space in usual way. The interaction

matrix element 1s

Veses (k' k) = (4.83)

B i H |s) (s o |orz) (| H <k
Z(% in| l(y)——_Ei—HQ-FiG WT(Z)_——Ei—HO—He ()]s kyinn)

a3y
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Since the incoming and outgoing mesons interact at the contact point z we can write

this as
AC!Oll 1 '
Vs (k! k) = Z<a4|H1(y)|as)m<a3,L Jingt| Hyp(2)] 02 B, iag)
1 .
mﬂl(m)lal,k,w>(4.84)

By recalling from eqns (4.20),(4.21) and (4.29), the interaction matrix element for

Yukawa vertex is

—1

af
V(q) = @f) \/2Tq

(" g NPOT RO g e (485)

We also noted from the eqn (4.37) that the interaction at the contact point, z, 1s

, . 1 N2 Wy + Wi i(k~k')-
! t A =
(cg; k' yipp [ Hiyp(2)|o2; Bying) = ) (4r) Voot / dz2"p,(2 /d~ e

6303502 5ma3m02 <Ia3'¢a3§ IM/ZM/"T B 0|Ia22a2; IMZM> (486)

With the help of eqn (4.85) and (4.86), the interaction matrix element for eqn (4.83)

becomes,
. 1 N® (2m)7° wp + wi 1
Voz.;a] k,,k - s /dS /dS
S ER) = G err Ve ) S0 T et

R R R . ,
A2 (o2 fo dyy’ ppu(q1y) / dzz® ppu(ga) /0 dzz"py(2) / dzeltki)=

C,177.m3rn,'ma,4 iagn’ 1a4 - 1

Sas 1 Say Iyl Ia4 m' "1 E Mgy — Wq, — Wk 6Sa3 Sag 67”03 May
3 1

(Ot - a(a)E, - a'(2)10) (Tagio; Inaring |7+ O] Layigs Inring)

1 m mm l n i
Cs ™ s 2C 26, 4.87
E; — e, — wq — Wk Say 180y Yoyl Iy Sm ™ 92- ( )
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Since we have
(0l - a(gy) t, - a'(qy)10) = 8°(q, — ¢2)(=)"6n,—u, (4.88)

the momentum integral over g, can be done. Therefore the spin part of eqn (4.87)

1S

Mag™ Moy ~May MMay ~ B Y
DD D Dy Pionlotw i KU EART ILART L SHENE SR
SagMaz SagMay m,m’
o MagM May Moy MMay 2 47 m
= Z Z 05021504 Csal1sa2 lq| (? (=)"bms,—m

Sa2m02 m,m’

a7
= 10l () s B (10|

3 (4.89)

25,,+1]*
25, 11

The isospin part of eqn (4.87) becomes [see Appendix C]

n ia4iMI[3 iaa—nia4
> 2 ()G Oy 1,
iniMl n

. : 5 . X . ioln’iaz ioli]\/IIB
<Icva7'otg1 IMllMll'T . 0|1a22a2, IMZ.‘W>CIQ] 1oy YTy Ingl

0=

—
o
Ne}
o

N—

= (=)t [(2La, +1)(21a, +1)]

I 1 I, 1 1,

aq

(Lo 1O o) (Lnar[ 10 )

Il\[’ 1014 1 [as 1 1012
By noting
§ A A ]al Ioz 1 Ial ]CY4 l
SIa = )\ouaa/\oonl S:as Ia4la2 ' ’ ’
Sal IM‘ ]M I IQS Iaz ll
(=St S A 1 T ) (16D ) (+91)
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we can write the interaction for Fig. 4.2h as

N?¢ Wk + wk oo q4 R R
> d —/ dyvy? 0, / dzz?p,, SI,
384f47r4\/m/0 T Jo VP (qv) | dwa’ ppu(ga)

1
[tz kil )

i — Moy — Wq — W) (FE; — Mg, — wq — wy)

vh(k', k)

(4.92)

The Spin-Isospin constant SI, are given in Table 4.5.

Table 4.5: Spin-Tsospin factors arise from diagram (h).

a | Total Isospin | State(au, as, az, ay) Si,
1 172 (N,N,N,N) 75073
2 3/2 (N,N,N,N) 125/3
3 1/2 (N,A,A,N) | +320/3
4 3/2 (N,A, A, N) 1160/3

4.4 Summary

In this chapter we presented the derivation of potential for S-wave 7N interactions.

Kalbermann and Eisenberg’s variant of the non-linear CBM Lagrangian was used

to derive diagrams to order (2+)4 We firstly gave examples in the CBM formalism

to transform the interaction of pion and quarks to those of pion and nucleons. We
1

then calculated higher order diagrams to order @ These interactions will be used

as driving potential to calculate phase shifts and scattering lengths in Chapter 7.
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Chapter 5

P Wave Scattering

5.1 Introduction

In Chapter 4, we calculated the S-wave interaction to order (—2}—)4 within the context
of the Cloudy Bag Model. In this chapter we will calculate the P-wave interaction
to order (2%)2 using the same technique.

The CBM has been very successful in describing P-wave pion nucleon scattering
[Tho+80, Tho+86, PA 86, PA 89]. Our purpose in rederiving the P-wave interaction

is to provide a complete formulation of the 7N system in this work. This P-wave

interaction will also be used in testing various propagators in Chapter 7.

5.2 P-wave interactions

\ / N P \
\ / N 7 \ /
\ / S 7’ \ 7
N oy
\ / /
P \
\ / 7 N \ /
\/ 7/ ~ . /
(a) (b) , (©)

Figure 5.1: Diagrams contributing to the P-wave interaction
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5.2.1 Contact Interaction

The contact interaction diagram shown in Fig. 5.1a is generated by the time piece

(4.8) as well as spatial piece (4.9) of the Weinberg-Tomozawa (WT) interaction:

Hyr(e) = (—;#/d%qvorq-(rbxﬂ) ; (5.1)
Hin(e) = g [ e (x5 6) (5.2

For the time piece of WT interaction, the amplitude between the final state |f) and

initial state |¢) is given by,

op) pi, (R k) = ([ Hyp()l)
= (Spmsp, Inip; k, in| Hiyr ()| S, Inigs k' Invine)

= (SBmB;lm]val(k,k')]SB/mB:;lm), (5.3)

where in eqn (5.3), the interaction matrix elements vBB'(k, k') are those of (4.42)
with the primed and unprimed labels interchanged. The matrix element (5.3) can

be transformed to yield the scattering of total isospin I and spin J as

a(t) AN iginmls viptim 3 mpmM ~mpm'M  a(t) !
Ury (k, k') = Z Z CIBIMI CIB,IM,I Z ZCSE ! JCSB, I JUBiM;B’iM,(kvk)

iBiB’ Tt mpm gt mm/’
a(t) / )‘EVBTI’I wk + Wi o B 2 . <ot INTx (T
vy (k. ) = 82 f2 \/mNs/o dea® py(x)jr(kz) 1 (K'2)Yim (k)Y (K') (5.4)

For the spatial piece of WT term, we first calculate the amplitude between the final

state |f) and initial state |i)(please note the change of the label in this chapter);

Vhinepiin (ko k) = (fIHir()l0)

= (Spmg, Isip; k, Iuiv|Higr(2)|Seme, Ipis k' Ivrime)
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1)%iM;B'iMl(k’ k/) = Zﬁ:(BlaT/B 'LMﬂ‘LMI k kl)|B> (5'5)

The interaction matrix element between SU(6) bag states 1s

A;iM;mM,(kak/) = (O‘;kaiM‘ﬁﬁ(;T(ﬂ?)lﬂ;k’aiM’)

2(algyriqlB) (K, in|(@x V @)ilk' ins). (5.6)

The meson part in eqn (5.6) is gives

o—i(k=K')x

1
e — i'~5 1 5'1' k, k ’
) 1655k O0kipng 05 M:( + )(271-)3 2 2wy

(k,in| (% V @il k (5.7)

The baryon part for eqn (5.6) is given by

2

= - Ns y N > a a 2 a = a a
(algrmalp) = iz tyiolwne)ir(w0) srfel ot Do £ ol i 7i18)51(5.8)

a=1

Equations (5.7) and (5.8) put into (5.6) yield:

.8, N 1
Vitoins (o ¥) = it (27r)3\/m/d zjo(wsa) 1 (ws) (5.9)

3
fasin (oo # — gl Fo @} (=) 0)|B;in) s (K + K)o *H

a=1

where in (5.9) we used the notation

—0; = —1€ijk6kip Ojipgi

Since we can prove that (see Appendix C)

/d.’i‘ oo -7 —o0- rf-o-) . (k’ £ k)e—i(k—k’)-x

= 47r Z], (k'z)ji(kz) Yy ( k)Y,m Wi+ 1) Z O1m, TTzlml(S.IO)

mm/ ma
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we write eqn (5.9) as

~ +1 1 R g2 : . :
50 ) k ! — 2/ dr=— N s k/ Tk
ozzM;,BtM/( >k ) 27T2f2 /2wk2wk_/ Ns A z |$|jo(w $)j1(w (E) E[ :.7[( .’13)_][( 3,)

Vid+1) 3 . aleza () 018; i) o OV Vi (F)Yim () (5.11)

mm’my

In order to project the interaction between quarks, (5.11), onto nucleons we will

first define the symmetry factor XP8' such that

el Zam 7185 = X (@], 71)- (5.12)

On the L.H.S. of (5.12) the eigenstates |a),s and |8)f are explicit SU(6) spin-flavour
wave functions and on the R.H.S. the nucleon bag wave functions (c.f. Section 4.2.1).

The symmetry factor X*? in (5.12) is given by

V25.+1 V2D, +1

b — yof
(Sl [SDSp) (LI TV g)

(5.13)

The value for X*? is given in Table 4.1. Using (5.13) we can write eqn (5.11) as

/] -|'l N2 R 1172 ) . / .
szMB’lM/(k k) = 27r2f‘2m ljo(ws )]1(wsx)zl:]l<k‘r)]l(kt)(5]4)

lm’ Yim k) V l(l+1 XBB, Z ( B|01m2T10|B)(IMiMwl.—q'IM’iM’) Ttmlwlml

mm'maq

The interaction (5.14) represent the transition from initial state with spin and isospin

Iz) = |SB’mB’3 IB’iB’; k',IMI,th>

to the final state with spin and isospin

|f) = |SemB, Isip; k, Inin)-
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Now we will transform (5.14) to get the interaction for total spin (J) and total

isospin (I). We can transform (5.14) as

M 'M [ I
ik k)= Y CEE'SCsv T 3 X CEMhs Ol M v i, (B k) (5.15)

mpmpgt lngl ZMlM/

Since we can prove that

'M
s Z Cerry O3Bl (Semploim, |Spme) i

(2J + 1 mBmB‘ Mm m/mg
Sg Sp 1
roorJ

and

Ml tastl
izl izt

( )q(IBiBlquuB'iB’)(IMiM|91,—qIIMI’1:M/>

1313/ qls taripgs
Inp I Ips
= (=)D (T | W 1) (Tne |0 Ing) ; (5.17)
Ig 1 Iy

we can write eqn (5.15) as

. , )\so,II
03, (k, k") = ZI: 2133 TN 2\ /6U(1 + 1)V + 1Y} (k) Vi (k) (5.18)

Zwk ka/

J+i+L S Spr 1 & 2fon2 L : - o
()7 /0 doz [2Nsm]g(wsm)jl(wsx)j[(km)]p(k 2)]
1ol

where A%, in equation (5.18) are defined as

= ABB’
Ao = (_2\[)(53115 O11Sp) (LI TM| ) (I 18] Trr) (5.19)

(it Iy I Ig

I 1 Ium

7



The values for XE’}:-,I, are given in Table 5.1.

Table 5.1: The coupling constants for the contact term, )\gj;,.

B\B'| I=1/2 1=3]2
N N A
N | & —2/2 -5 =25
3 3 [ 3
A 2/2  5/10 25 V10
3 3 3 3
5.2.2 Crossed Born Term
~ S ,
N 7
~ Pl
~ Ve
N 7’7
/
/\
7 \
X

Figure 5.2: Crossed Born term.

The crossed Born diagram shown in Fig. 5.2 is generated by the Yukawa interactions

The interaction Hamiltonian for Fig. 5.2 1s given by

il

Hy = Hl(w)m[ﬁ(y) (5.20)

We will first calculate the interaction matrix element between two SU(6) eigenstates

b

, . 1
”ﬁiM;aiM,(ka k') = (B; kin|Hi()

—H k' i 21
Ei o HO +Z€ l(y)la’ 71’M> (5 )
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Recalling eqn (4.14), the Yukawa interaction is given by

Hi(z) = (2r)°3 / Bk S SV (k)ai(k) + VA (R)al(k)}Bla (5.22)

aff i

— (o ‘%/dSAZZ{Vﬁ“ an(k) + (=) VP (k)al,(k)}B1a(5.23)

af n

where in eqn (5.23), V/#%(k) is given by

N Bo .
~rBox _ —1 A ( Q ) 3 mammg k lafilg 24
Vo) = oy o (o) VERICE TR RO (520

It must be noted that in (5.22) the indices ¢ = 1,2,3 are written in a Cartesian basis
while in (5.23) n = £1,0 are written in a spherical basis for the pion field.

Now by using (5.23) the interaction matrix element for (5.21) is

Wiy (oK) = 200N [ Pad ki (V" (@)e(0)

C o'al
a”|C><C|aIT n'yra'o I’ .
m(—) Ve (qy)al i (g) k' iar) (5.25)
= (2072 X Vi (k) V() (=)™ ba bt 0
C a'a’ e oM Ei — Mg — Wk — Wq,

We will now calculate the transition from state |B’; k', in) to |B; k,in) as

vbBiM;B'iM;(k’k,) = Z(BlﬂTavﬂzMale(,"?k,)|B’)

fex

(2m)3 I ey ( 0 )2 U(k'R)U(kR)
(2f)? V2w 2w \ Q) E

—1 '—mc—wk-wa
CRoTma (3%, - k)OI B Cg el (37, - k)OI M0 (—)™(5.26)

Since we can write

' 47r a /
S k' C5lT sy =K ?(—)m' Tt (KOS 5
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we rewrite eqn (5.26) as

P
5.27
Ei—mc—wk—wa\ )

| 1 ABCXCB 1 N\’ U(KRU(KR)k
b A = e
UBiM;B’iW(,"’,") (2m) (2f)? \/m (Q — 1>

4T 3 4 mem'm ymm I TGt f—ipmt ;
(A7) o (R (CEET 52 O (S I CIR T ()
In order to get the interaction for total spin (J) and isospin (I), we carried out a
similar transformation to that used in (5.15). We can prove that

M 'M '
(2J + 1 Z Z Z C;‘nBB lm.] C.;n?, l:n OSCCT 7;; ;nEI?ITn;Z(_)m

mBmslM —m —m!,m¢

A i i dl
= S5, (=) 8+ 7 : (5.28)
SBA I SC

A similar summation over isospin indices can be carried out. By denoting

0= () 2

the interaction with total isospin (1) and total spin (J) for the crossed box diagram
5.2 becomes

)\BC )\CB' il

vis(k, k) = Yy (k) Vi () (=) 92560 e 5 S0 Il

32f 2f 2r2\Pwlue ™
Sg L J Ig Iy 1 F(E)f (k)

— (5.29)
SB’ ll SC IB/ [Ml Ic Yi — e — W — Wy

5.2.3 The P33 Resonance

The CBM had its first success in explaining Ps3 resonance [Tho+80]. In the context
of Gellmann and Ne’eman’s quark model, the Ps3 resonance is a stable particle
consisting of three quarks. There have been calculations of 7N scattering in the

so-called A-isobar model, which treats the A as a stable particle. In the CBM, the
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\ / AN - T~ 4 V4
N / N s \ /
\ / \ / \ /
\ / \ ] /
() (©)
\ Vs \ /
\ / N\ 7/ > /
\ / \ / N 4
Nl \ L \

Figure 5.3: Direct channel contributing only Pi; and Ps3:(a) The direct channel
with intermediate state nucleon; (b) with delta ; (c) the intermediate nucleon is
renormalised; (d) intermediate delta is renormalised.

direct term appears in Fig. 5.3. The matrix element for the direct term can be

calculated in the following manner. The interaction matrix element is

1
(Ei - Ho —|— 26)

Vs oinn (R E) = (85 ki Hi(y) Hy(z)|os k' ipe)  (5.30)

) o @IONCI
- 3 78"t (1 /,oak’_a_l_____w
(2r) 5 Y V) Ul ) S Ry

C o'al

The propagator (E; — Ho +i€)™! in eqn (5.30) needs to be treated as outlined in
[Tho+80]. The intermediate states |C) involve the self energy graphs shown in Fig.
5.3 which can be a nucleon or A. When the intermediate state is a nucleon we will

approximate the propagator as
SN(Ei) - (E1 — MmN — ENw(Ei) — EAw(Ei) — Zyo(};i))_l. (531)

On the other hand, |C) is a A state, we need to include A self energy shift in the

propagator as

SA(Ei) S (Ez —ma — EA."(Ei))-l. (532)
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After the self energy graphs are included in the propagators, it is straightforward to

calculate the potential for the direct term as

c I o mBmM mpm'M' ~igiyls i gripgt I3
vy (k, k) = Z Z Z Z Csp 1y sB, v 3 Clgiyl CIB,IM,I

mpmpgt mm' igigr iMipg
)

S (B|Blawgiyiai g (ks k)

Lo
2m)? ABC \CB' Q0 |
o (6)? \/M(Q—l) )U(K'R)
47r) . §y 51 5 i
Yo (k) S0 (Bi = R =4 5.33
()lm()C( mC)JJ]] ( )

5.3 Summary

In this chapter, we explained how the 7N P-wave interaction is described in the
CBM to order (2—})—2 These P-wave interactions will also be used to calculate phase

shifts and scattering lengths using different propagators in Chapter 7.
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Chapter 6

Renormalization

6.1 Introduction

So far we have described the mN interaction in terms of a bare three-quark bag
(MIT) and pions. In QED the physical electron is described by a bare electron
surrounded by a cloud of photons. In the case of the strong interaction, the bare
nucleon, which is described by a three-quark bag, is surrounded by a cloud of pions.
As a result, the strength of the coupling constant and, hence, the interaction itself
has changed. This is known as the renormalization effect. In this chapter we will
examine the renormalization effects on 7N interactions. In Section 6.2, we give an
outline of how the various quantities of interest, such as baryon self-energy, the bare
bag probability and the renormalized vertex functions are calculated. In Section
6.3, we calculate the baryon self-energy in detail. In Section 6.4, we study the bare
bag probability. In Sections 6.5.1 and 6.5.2 we calculate the renormalizations for

the Yukawa vertex and contact, or Weinberg-Tomozawa, terms.
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6.2 The Physical Baryon Expansion

We describe the physical baryon state |A) as a combination of the bare baryon, |Ao);
bare baryon and one pion, |Ao;q;,1) ; a bare baryon and two pions, |Ao; 44,2544, 7)
. etc. The physical state, |A), and the bare eigenstate, [Ao), possess the same

quantum numbers (T, T3, J, J.). We can write |A) as,

|A) = /Z4| Ao) + AJA) (6.1)

where Z3' is a bare bag probability and the operator A projects all components of

|A) that have at least one pion. The physical state ,|A), satisfies
H|A) = my|A) (6.2)

where H is the total Hamiltonian and m,4 is the physical mass of the nucleon. The

bare nucleon state |Ao) and bare mass mgy satisfy a similar equation
Hole) - m0A|A0>. (63)

From (6.2) and (6.3) it is clear that in the presence of a pion field, the free Hamilto-
nian, Ho, will become the total Hamiltonian, H = Ho+ Hin¢, where H;y; 1s interaction
Hamiltonian.

Following [Wick55, Tho+81, Tho+83, Tho+80], the physical wave function |A)
can be described in terms of the bare bag probability Z# and bare bag wave function

|Ao) as follows

4) = VZ#{1+ (ma — Ho — AHinA) ™" Hine}| Ao)

- @{1 + (ma — Ho) ™" Hint }| Ao) (6.4)

84



where Hy is defined as
Hy =S AlAomos + 3. / Pk wy al(k)a;(k). (6.5)
A i

The mass shift or self energy of the baryon can be defined [Wick55, Tho+81,

Tho+83, Tho+80] by
ZA(mA) = (Ao|Hini(ma — Ho) ™ Hine| Ao) (6.6)

The bare bag probability Z# can be derived [Wick55, Tho+81, Tho+83, Tho+80]

from the normalization condition of the physical state

Z(ms) = [1 - 5%2"(@] : (6.7

E:mA

In the renormalization procedure, the interaction matrix elements are the matrix ele-
ments between physical baryon states. In general, the relation between the bare ma-
trix element, M8, and physical one, M*B is given by [Wick55, Tho+81, Tho+83,

Tho+80],

MAB = (A|M|B)
E/{m@ M}P (6.8)
where Z{B is another renormalization constant defined via
ZPE = 1+ 08 (6.9)
and €48 is defined through:
MABEAB = (Ao|Him(ma — Ho) M (mp — Ho)™ Hin|Bo). (6.10)
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6.3 Baryon Self Energy

(a) (b) (c)
Figure 6.1: Diagrams contributing to the baryon self energy

When we tried to extend the calculation to higher order, as we did in Chapter 4,
we saw that in eqn (4.1) the interaction Hamiltonian contains not only the Yukawa
term, H; (), which is linear in the pion field, but also other terms non-linear in the
pion field. Yet, when we calculate the self energy for baryons, (6.6), only the Yukawa
term will be taken into account. For the CBM Lagrangian the contribution from
multi-pion states is rather small in comparison to that from one pion. Thomas ectal.
[Tho+81] have rigorously shown that the probability for one pion field surrounding
nucleon is large compared to two or three pions. We will assume that is also true
for our volume coupling type Lagrangian, Kalbermann and Eisenberg’s version of
CBM (See Appendix A.2). The baryon self energy is represented 'graphically in
Fig. 6.1. Figures 6.1a and 6.1b, which contribute to the nucleon self energy are
generated by the Yukawa interaction. For our non-linear version of the CBM there
is an additional contribution for the self energy which is generated by the Weinberg-
Tomozawa interaction Fig. 6.1c. We shall assume this contribution from Fig. 6.1c
is small and can be ignored in our calculations. Therefore, we will simply replace

Hin, in eqn (6.6) by Hy. Then the self-energy for the baryon is given by

SA(ma) &~ (Ao|Hy(ma — Ho) " Hy|Ao)

= ;)(A0|H1|B)(B|(m/1—“go)—1|c)(c|H1lA0) (6.11)
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The intermediate states, |B), are taken as a baryon with one pion. Le.

S IB)BI = XY [ dalBuiq,i)(Boia, il (6.12)

B i

where i is the isospin index of the pion. We recall eqn (4.14),

H = % [ @k {Vo(k)ai(k) + Vi (R)a ()],

=Y Al [ PR - alk) + o (WE -l (R) (6.19)

Ag,Bo

where v2P(k) is given by

P W

. QW(QW)BC?BBT?:@; k) O ry (6.14)

The subscript 0 in (6.13) and (6.14) is to symbolise that these matrix elements are
bare matrix elements. The form factor U(kR) in (6.14) is the same as in eqn (4.21)

and the APB are given in Table 4.2. The constants fLE are given by

(m) - <2f> (ng )

where fo, is the pion decay constant and § = 2.04 is the eigen frequency for quarks

in S-state. Since (0|, - a(k)t., - a’(K)|0) = (0](=)" an(k)a’ . (k")|0), eqn (6.11)

becomes

!

rma) = X [k S EREAR)SE k)l
By

FABBAN oo [AU(KR) 1
BZ( )/0 dk (6.15)

my /2w (2m)3 (ma —mp — wi)

T mpmma ymam'mpgrax 1\ ( ¥ 7 ignia vian'ip n
/dszB 15, YS41 Sg (30 - k)(55 - k) Z CIBIIACIAI Ig b, (—)
n,n’

f
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The sum over charge index n,n’ and the angular integration can be done easily.
Noting that f{# (?A(SBfB)/(gAfA) = (fAB)?, the self energy of the baryon 5% (m,)

becomes

il AB\? roo kA U2(kR)
A — _\Sat+Sp+Iatip 0 d (6.
SA(ma) = 3(-) (m) L o 6.16)

Be 1272 my4 —mpg — wkj

6.4 Bare Bag Probability

The bare bag probability is defined by eqn (6.7). In the Cloudy Bag Model this can

described in term of the bag radius. Here we plot the bare bag probability.

Bare Bag probability
' ‘ | - ' J |

1.0 ' I =¥
0.8 - J,,.ﬁ-””__;ﬂ-_" —
s _//- i
_—
/_’_,'—/
« 0.6 o
£
Z
o
& 0.4
0.2+ -
0.0 L | L 1 X { PR 1 | P S S—
0.6 0.8 1.0 1.2
Bag Radius

Figure 6.2: The Bare bag probability
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6.5 Vertex Renormalization

6.5.1 Yukawa Interaction

(a) (b)

Figure 6.3: Yukawa vertex (a) and Renormalised vertex (b)

As we have stated in Section 6.2 in renormalization procedure we calculate interac-
tion matrix element between two real nucleon states. To do this, it 1s important to

find the function €48, such that,
V8B (k)ELB = (AolHy(ma — Ho) *Vou(k)(mp — Ho) ™" Hi|Bo) (6.17)

where v2F is given by (6.14). Let us first calculate the right hand side of eqn (6.17).
By denoting

D_l(mA7m07w(h) - (TnA —mg - wa)—l’

we have:

(Ao Hy(ma — Ho) ™ Vou(k)(mp — Ho) ™" Hi|Bo)

= > Z/d3q1 & qa{ Ao Hy|Co: 1,8)6:.46(q; — 42)(ColVon(k)| Do)

Co,Do 1,1
(DO; qs, lllHllB()) D_l(mA’ vale)D_l(mBa mDaw(h)

= 3% [ ot a)es U () (=) S i
CO'D() i

D_l(mA? me, wWq, )D_l(va mDaw(h)
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Y L i L L

e 2w(ll 2wk(‘27r)3
D7 (ma, me,wq, ) D™ (mp, mp,wa, )OG5, C8 15 Csy 1 sp
- O ORI O 1y S ()" e (019
By noting that [d§:5), - q,8,,/ - q, = |q1|2(g—”)(—)m'5m:,_mu, we can simplify the
sum over spin indices. Consider the spin part of eqn (6.18). The Clebsch-Gordan
coefficients can be summed over m 4, mp as follows:

S CEETA {CRET B, b = CReT A ORI e O (2)™ 57, R J6.19)
ma,mp
where our notation in eqn (6.19) implied: the spin part of L.H.S(R.H.S) of (6.17)
being written on the L.H.S(R.H.S) of double arrows respectively. Then we applied

the summation C’gz“‘;"gf on both sides. The result is

R SAt8 1 SA 1 SB R
5 k= (—)° [(21c + 1)(21 + 1)]2 s -k (6.20)
Sp 1 Sc¢
A similar procedure is carried out for the isospin part. The result is
. Iy 1 Ip | ..
£ e (=)ot (200 + 1)(20p + 1)]2 i (6.21)
Ip 1 I¢

By combining the equations (6.17),(6.19) and (6.21), we finally have;

AB §CIEP IR ;1 am
7= () X\ T ) Uep
CO|D0 0 7?1.”.
fove) 4U2 R
(12%2)_1/0 dquAD_l(mA,mc,wq)D—l(mB,mD,wq) (6.22)
q
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where

UAE = (-)%orSoteto[(250 +1)(2Sp + 1)(2lo + 1)(2Ip + 1))
Sa 1 Sp Is 1 Ip (6 23)
Sp 1 Sc¢ Ip 1 I¢
From eqn (6.8), the ratio between physical and bare matrix element is
MAB vz ZY
M{E = ZAB
= ZPZP1 + 7] (6.24)

In CBM, Z) and ¢1F are both functions of the bag radius R. In Fig. 6.4 we show

(MAB |M{B) as a function of R.

Interaction Ra

tios for Yukawa vertex

1 T ' T
1.4 - .
x\‘\.__‘
1.2k ~ |
as] [ h ‘q\“\--._‘__
< e—
o —
= —_—
™~ 1.0 —
m I
<t
=
0.8 -
0.6 - =
| L 1 i . : | |
0.6 0.8 1.0 1.2
Bag Radius

Figure 6.4: Ratios of unrenormalised and renormalised interactions
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6.5.2 Weinberg-Tomozawa Interaction

N\ V4 \ 7/
\ V4 \ 7/
\ /7 A /7
\ /7 7N\ VAR
\ 7 / \ Ve \
\NZ L hd 3
() (b)

Figure 6.5: Unrenormalised Weinberg-Tomozawa interaction (a) and renormalised
interaction (b)

In Section 6.5.1, we obtained the renormalized version of the Yukawa interaction. In
this section we repeat the same procedure on the Weinberg-Tomozawa interaction.

To do this we need to find the expression for /5. which satisfies

v(ﬁB”M(L' E)EAE. = (Ao Hy(ma — Ho) Vai, i (K k) (mp — o)™ H;|Bo) (6.25)

By recalling eqn (4.37), the L.H.S. of eqn (6.25) 1s,

7 ( Aol Vo prine (', k)| Bo)

= hB (Ao k' ingt| Hiyr ()| Bos Ky i) (6.26)
1 N2 U)/+U,)
= Sy () VameTon o | tnte) [ ~{Ausine |7 - 01Bos )

AB,I k-k'yz
ZA'lMIIS vigip s AWT N Wy + Wk t[ )

= ZCIAIM/I Iplyl 2f) I \/mw—/ dz2"py(z /d7 58

11

On the other hand, the R.H.S. of (6.25) is written as

(Aol Hy(ma — Ho) ™ Voi,,in (k' k) (mp — Ho) ™" Hi|Bo)
= Z Z/d?’% dan(AO‘Hllc();q11i1>(CO;ql')i,lf/OiMliM(k,’k)|D0;q27i>
Co,Do 14"

<D0,q2,l|H1|B0> (mAvmcaw(h)D_l(mBamDaw(h)
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— Z/d3 A()"/Qn (kl)an (kl)lCU,q, )(CO; I%le'LM("“/ )|D0’ >

CoDo 1,1’
(Do; q,ilVy _ (ke )n”("’Z)( )" |BO)D_1(mAamo,wq)D_l(mB,mD,wq)

AC
= (271’)_3 (0 0 )/ dq D_l(mA,mc,wq)D_l(mB,mD,wq)
Co, Do
N2 , k L)Z
L e + Wk / dzz2%pi(2 /dz (6.27)
(21)? (47 V2010 2w
/dqc?cc{nﬂ" SIS 8T g8 qu‘C’Tf}ﬁ ﬁﬁ;(-)”(co;iM'lT'9|Do;77M>

As in Section 6.5.1, we shall sum over Clebsch-Gordan coeflicients. We first write

isospin part of eqn (6.25) as

AB,I ~taipyIs vipiggfa CTiA YIB—NID . : . i
YR CEM PO = ()OI CET B cic; Invim | T « OlInin; Inin)
Il

. __\n+qYicnia ig—nip ipgic ;M= it
= (=)"MCECET RO Ly b L

(L]l D\Ip) (Laar 16D 1)
V2I.+1 V2l +1

(6.28)

Applying

1‘A7‘M’13 ZBiMI:;
Z Z CIAIMII’C[BIMI’7

LA Lp i M
to both L.H.S and R.H.S of (6.28) we get (a similar procedure is carried out in

obtaining equation (4.90));

/\f}VE;’I < (—)I+IB+1jAjD (629)

ly Ia Ip ly 1y Ip
(Ic||TM | Ip) (I | [0 Tar)
I Iy Inp L Ip I

Finally, by combining eqns (6.25)-(6.29), we have:
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AC rDB 1 00 q4U2(qR)
AB 9_0 det—=— L DV m 4. mo,wq)D N me, mp,w
WT o%z:)o (/\#?p'[m?r) 12”2/0 q 2o (ma,mg,wq)D ™" (mp, mp,wq)

LI TN o) I 10D Ia) IaTn 855"

(yTset l, 14 Ip lo Ix Ip (6.30)

I Iy Ipnp L Ip I¢

The R dependence of the ratio of renormalised to unrenormalised strength for the

Weinberg-Tomozawa interaction is given in Fig. 6.6.

h}te__raction Ratios for W-T vertex
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Figure 6.6: Renormalised to unrenormalised ratios of Weinberg-Tomozawa term
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6.6 Summary

In this chapter we presented the renormalization procedure for the CBM. We first
outlined how the bare bag probability, self energy and vertex renormalization are
obtained. Firstly, we calculated the baryon self energy and bare bag probability.
We then calculated the vertex renormalization for the Yukawa interaction and the
Weinberg-Tomozawa interaction. The effect of renormalization on S-wave in 7N

scattering will be studied in Chapter 7.
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Chapter 7

Numerical Results

In this Chapter, we present the results for the S-wave and P-wave 7V phase shilts
and scattering lengths and compare the use of different propagators. In Section
7.2.1 we show how the scattering length and phase shift for S-wave 7V data is
reproduced phenomenologically. We also compare the scattering lengths and phase
shift for different propagators using phenomenological potentials. In Section 7.2.2 we
study the threshold behaviour of the S-wave potentials which we derived in Chapter
4 . TIn Section 7.2.3 the S-wave scattering lengths and phase shifts for different
propagators with CBM potentials are presented. In Section 7.2.4 we discuss the
effects of renormalization on the S-wave results.

In Section 7.3.1 the phenomenological approach to 7N P-wave scattering with
a comparison of different propagators is presented. In Section 7.3.2 we present
the theoretical results for P-wave scattering using the CBM potentials derived in

Chapter 5. The comparison with different propagators has also been made.
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7.1 Experimental Data for 7N S and P-waves

There are accurate 7N scattering data up to a c.m. energy of 1.7 GeV. The ex-
perimental phase shifts for both S-and P-wave in this work are from R.A.Arndt
and L.D.Roper, Scattering analysis dial in( SAID programme). The experimental
scattering lengths and volumes are given in Table 7.1 and Table 7.2(see also Ref.

[Kol 69]).

Table 7.1: The Experimental S-wave scattering lengths (m;")

ay as References

0.182 + 0.006 —0.103 + 0.006 [Fis 59, Bie 62]
0.17 —0.10 [McK 63]

0.171 £ 0.005 —0.088 £+ 0.004 (Ham 63]

0.183 £0.016 —0.109 £ 0.016 [Wool65]

0.179 £ 0.019 —0.013 £ 0.019 [Don 66]

0.206 £ 0.007 —0.099 + 0.007 [AZR 80]

0.170 —0.099 [Stah]

Table 7.2: The Experimental P-wave scattering volumes (m®)

an a3 asy 33 Reference
-0.015 -0.0035 -0.13 0.243 [McK 63]a
-0.016 -0.13 -0.13 0.201 [McK 63]b
20.1014 0.007 -0.029 + 0.005 -0.038 + 0.005 0.215 & 0.005 [Ham 63]

7.2 The S-wave Scattering Lengths and Phase

Shifts

7.2.1 Phenomenological Results

There have been many calculations for S-wave 7N scattering using separable, phe-

nomenological potentials [Tho 76]. In his work, Thomas used a separable potential
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of the form

v(k', k) = Ag(K')g(k),

where A = (£1) is repulsive(attractive) and the form factor g(k) is given by

g(k) = S1/(a? + )+ 2/ (02 + k). (7.1)

The nucleon is treated as static and the pion relativistic, while the R-matrix
approach was used to solve the scattering equation. The parameters Sy, Sz, ¢,
are given in Table 7.3. We repeated this calculation using fully relativistic kine-
matics for both the pion and nucleon. The results from matrix inversion method of
Haftel and Tabakin [HT 70] using various relativistic equations are given in Table
7.4 and Figure 7.1. There has also been a calculation for the comparison among
relativistic propagators by Pearce and Jennings [PJ 90]. In their work, Pearce and
Jennings used a Lagrangian that treated the nucleon and A as elementary particles
and therefore were able to describe the interaction in a covariant fashion. They
found that there are.no significant difference in phase shifts in using the Smooth
(CJ) and Blankenbecler-Sugar (BbS) propagators. In our work the CBM Lagrangian
is used and therefore interactions are calculated in non-covariant fashion. We there-
fore include not only relativistic propagators but also Lippmann-Schwinger (LS)
propagators in our calculations. In this work we find a significance difference in the
scattering lengths and phase shifts between Lippmann-Schwinger (LS) and relativis-
tic propagators while very close results are produced by CJ and BbS propagators as

can be seen from Table 7.4 and Fig. 7.1.

7.2.2 The Threshold Behaviour

It is well known that at threshold, the Weinberg-Tomozawa(WT) term reproduces

the isovector scattering lengths [Tho 81]. For our calculation with the CBM, we must
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Figure 7.1: The S-wave phase shifts using phenomenological potentials. The solid

line experimental data.
The dash-dotted line Smooth(CJ) propagator.
Sugar(BbS) propagators.
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Table 7.3: The parameters used in the form factor (7.1) and the corresponding

scattering lengths
Channel S1 o So Qo Scattg : Length
St 1.7826 3.188  0.894  0.8255 +0.171 m;!
Sa1 6.078 3.382 —0.1661 1.107 —0.091 m;!

Table 7.4: Phenomenological scattering lengths (m; ')

Propagator a as

LS 0.1756 —0.0894
CJ 0.1477 —0.1358
BbS 0.1441 —0.1538

compare with the phase shifts as well as the scattering lengths. When we iterate
the LS equation using the WT term as the driving potential we observe a large
discrepancy in scattering lengths as well as in the Sy phase shifts. This discrepancy
is known to arise from not preserving chiral symmetry when we iterate the WT term
in a LS equation [Tho+87]. Attempts have been made to overcome this difliculty by
including the diagrams to order ﬁ in driving potential. In the work of Thomas
et al. [Tho+87, CJ 86] experimental isovector form factors were used and only the
isoscalar interaction for Fig. 4.1e and Fig. 4.1f was calculated in the model. In this
work we calculated both the isovector and isoscalar contributions from the CBM
Lagrangian. Within the isoscalar interaction for v. and vy, the essential difference
between our work and that of Cooper and Jennings is the treatment of the pion-
pion scattering. Cooper and Jennings did not wish to introduce an extra parameter
(pion radius) in their formulation and sidesteped this difficulty by transforming
the interaction to coordinate space. They also approximated the nucleon and A
as having the same mass. In our work, the pion form factor was introduced and

formulated in momentum space.

We will firstly look at the behaviour of transition amplitude as we extend the
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calculation to order (—2# As we can see from Table 7.6, WT term in the N

approximation, which is a transition amplitude of order (-Z}T obeys the Adler con-

sistency condition ay + 2a3 = 0. This condition is badly violated when we include

potentials to order (2%)4 in Born Approximation. It is found that the scattering

length as is then changed by 100 per cent (see Table 7.6).

We also study the behaviour of transition amplitude in the soft pion limits. It

is how each potential v, to v, behaves when the incident pion energy becomes zero.

In the following we list the analytic form of the potentials which were derived in

Chapter 4 at threshold. These can be obtained by setting ingoing and outgoing

pion energies are the same, i.e. wx = wys, and the incident energy being taken as

FE; = my + wy.

_ At a2 A
vy, = 8f27r2N / dzz’p,(z (7.2)
N1 g (ectwa)® [ R o T ey
Vp = WZUE/O dqu—);m f dzz®p.(z)jo(qz) (251‘/\4,1‘,\4, —Ayer) (7.3)
Nt 1 o g% (wg — wq)? : .
= Gt i dqwq ot ) J; de(eYilge)| (=281 = Nyr) (1)
4 2 2
Singins 9B R .
e = dz: w{qT .0
? 64f47r4 wyg (3 —wq) [ o T b (42) (7.5)
v(A) Ciria Nz/wd € (2 : /Rd g2 |7
e I — \ = L Ppyul g .
64 f4rt wi Jo qwq 3 my —ma — wq b g 4) )
Nt 25 1 g gt o [ (R ’
o = s /Y - da 21— —R%q%/6. / d 2 gz
vi(e) 64 firt 9 2wk/o qwfie 0 =2 pm(9)
{8innings (—10m2 + 3w +3(w? — |aI*)) + Ay rwnwq (7.7)
NY 25 1 [  ¢' oo R ’
— s =¥ da=— —R2q%/4. / drx?
Vs(b) 64 f4rt 9 4wk/(; qwée 0 2T ppo(g)
Sirgiper (—10m2 + 3uwf — 3(wf + lgI*)) (7.8)
N¢ 32 1 oo ¢t e~ Raa’/6. i :
o(B) = o [T L [ daatpyulge
vi(a)(D) 6447t 9 2wy Jo qw<21 (ma — my +wq)? | Jo LT Py (ql)}

{Biring (—10m2 + 3w — 3(wd +1a[")) + 4Mprereq [ (7.9)
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Nt 32 1 o gt e RRl[f dza’py, (g2))?
viw(d) = —ﬂ——/ by — .
64 firt 9 2wy Jo wl (ma —mn + 2wq)(ma —my + wq)
Singing (—mm +3uf —3(w3 +1gl*)  (7.10)
_ _ Diwwiagr d 7.11
Vs 64 fAmt 2wy / 2 ( )

— d
Y 3847r4f4/ 22 pu(z
R 2 2
/ dqq_ [fO d.’B.’E ppv(qx)] Sla (712)
0

N = ey — ) (M — Ty — )

Here, the numerical factors S1, in eqn (7.12) are those of the spin-isospin factors
given in Table 4.5. In Table 7.5, we give numerical values of the potentials at
threshold energy.

One can now divide the potential into three different categories, depending on
the behaviour of vanishing external pion energy limit wy = 0. 1.e.
(i) Independent of this limit
(ii) goes to zero in that limit
(ii1) Becomes infinite in that limit.

In order to see the dependence of the external pion energy, lets rewrite v, to vy

tabulated in eqns (7.2-7.12) as follows:

Ve = 2f2 Ti(z)Awr (7.13)
v = 64];14 i( 11—41(”))[ 26001 + My (7.14)
ve = {)4]}/;4»11( To + Tp — AT )[ Birgring — Myr) (7.15)
ve T 64]}[5142?5%1(1‘5N) e 6
B) = Gyt T S (7.17)
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Nt 25

[4/\{/VTf3£iv)+

vt 64f47r4T§

{—mﬁffff ) 4 3 F 4 S )} 61-,\,,1-M,](7.18)

Wi Wik

via)(A) 54—]}[:;—4% [ 4 My 7D

{~10m—3ff1(;‘) + Bwn Fle + iféf)} a-M,Z-M,} (7.19)

Wk wk
VS ((6)+(2)) 64]}[5%4% {—1oz—jffb + 3wy — wikféiv)} Sing g 1-20)
s+ (D) @%4?%2 {—1OT:—Efl(f) + 3w Fiy — %féf)} innvind 1-21)
v, 64];57&%:_1( 2 (2)ingin (7.22)
v = 64%4 ]\EI (2)Z(2) ST, (7.23)
wd) = ¢ 4]}[: ; ]\é ZL( VI (2) S 1, (7.24)

The integrals 7, F are given in Appendix A.4. It can be seen that the Weinberg-
Tomozawa term v, and v, are independent of this m?2 = 0 (i.e. wyx =~ 0) limit.
The troublesome terms that are infinite in the soft-pion limit m2 ~ 0 come from
Vb, Ve, Ve, v and vy, Numerically, The sum of troublesome terms from v, and v,
cancel with v, since

T
I3 ~ ‘Q—Ig(.’l,')

This is not surprising since the contact term v, is designed to cancel the terms that
are infinite in the soft pion limit arising from iteration of v,, i.e. vy and v, [Gui 85].
However, as shown below, the troublésome term from v, does not cancel with that of
vs. Therefore, in contrast to the transition amplitude for the Weinberg-Tomozawa

term, which is independent of the soft-pion limit, the transition amplitude of order
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—(2})4 is sensitive to the soft pion limit.

N: 1 e 25 i . 1 N
64f47'('4 Wi { 0 21:,;(.’1:) 3 ( E(N) + EFZ(a ) 23 Q(b ))+
32 A 1 A 1 (
3 (Ié ) + §f2(a) - 5 2(0-3))}

= {—0.0033 + 0.2658 + 0.4070}

K

= 0.08104

Table 7.5: The potential strength at threshold energy. The A in brackets denotes
for inclusion of the A intermediate state in that diagram.

Diagram Total Isospin

1/2 3/2  Iso-scalar

Vg -0.11372  0.05686  0.00000
Up -0.07386  -0.01847  0.00000
Ve 0.00473 -0.00236  -0.00473
Ve 0.00000  0.00000 0.06909
Ye(A) 0.00000 0.00000  0.05914
v -0.02096  0.01048  -0.04742
ve(A) | -0.00894 0.00446  -0.02698
Vg 0.00000  0.00000  0.02299
v, 0.00757 -0.00379  0.00000
vn(A) 0.01365 -0.00683  0.00000

Table 7.6: S-wave Scattering Lengths at Threshold in Born approximation

air asy
WT Term (v,) only 0.208 —0.104
Full-set (v, to vy) 0.219 —0.206

7.2.3 Phase shifts and scattering lengths at finite energy

We now calculate the phase shifts and scattering lengths using various propagators.

The scattering lengths are given in Table 7.7. The phase shifts plotted in Figure
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7.2 corresponds to using only the WT term (Fig. 4.la ) as the driving potential.
For the WT term as driving potential with various propagators, it is found that
the BbS propagator gives the best scattering lengths. The phase shifts plotted in

Fig. 7.3 are the results from the full set of potentials derived in Chapter 4 to order

1
(2f)4 b)

while the contributions from A intermediate states in Figs. 4.1e and 4.1f are
omitted. In Figure 7.4, we plot the phase shifts using various propagators with the
fullset of potentials including A contributions in Figs.4.le and 4.1f. From Figs. 7.3
and 7.4, we see that the inclusion of the A in potentials has no significant effect on
phase shifts however Table 7.7 shows an improvement in the scattering lengths. All
of the CBM results tabulated in Table 7.7 were calculated for a bag radius £ =1

fm and pion coupling constant f = 93 MeV.

Table 7.7: Scattering lengths for CBM calculation (m;"')
a1 as Remarks

WT term (LS)  0.3006 —0.0616 w, only

WT term (CJ)  0.2042 —0.0683 v, only

WT term (BbS) 0.1942 —0.0707 v, only

Fullset-1 (LS) 0.2320 —0.0941 no A in v, and vy

Fullset-1 (CJ) 0.1532 —0.1137 no A in v, and vy

Fullset-1 (BbS)  0.1443 —0.1172 no A in v, and vy

Fullset-2 (LS) 0.1810 —0.1195 A in v, and vy
(C
(

Fullset-2 (CJ) 0.1148 —0.1486 A in v, and vy
Fullset-2 (BbS)  0.1069 —0.1538 A in v, and vy

7.2.4 Renormalised S-wave scattering

We derived the renormalised Weinberg-Tomozawa term in Chapter 6. We present
the renormalised scattering lengths in Table 7.8 and the phase shifts obtained for
different propagators in Fig.7.5. The phase shifts for different bag radii for un-
renormalised WT term and renormalised WT term are given in Figs. 7.6 and 7.7

respectively. In Fig. 7.7 it can be seen that the phase shifts are insensitive to the bag
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Figure 7.2: S-wave phase shifts using only the Weinberg-Tomozawa term as the driv-
ing potential; solid line experimental value; dashed line Lippmann-Schwinger(LS)
propagator; dot-dash Smooth(CJ) propagator; 3-dot-dash Blankenbecler-
Sugar(BbS) propagator.
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Figure 7.3: S-wave phase shifts using the full set of theoretical driving potentials;
solid line experimental value; dash line Lippmann-Schwinger(LS) propagator; dot-
dash, Smooth(CJ) propagator; 3-dot-dash, Blankenbecler-Sugar(BbS) propagator.
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Figure 7.4: S-wave theoretical phase shifts with the full set of potentials including
the A contributions. The same symbols are used here as in previous Figures.
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radius when the WT interaction gets renormalised. This is in contrast with unrenor-
malised WT term in Fig. 7.6 for which the phase shifts show a strong dependence

on the bag radius.

Table 7.8: S-wave renormalised scattering lengths with various propagators.
Method ay as

LS Propagator | 0.1856 —0.0490
CJ Propagator | 0.1430 —0.0537
BbS Propagator | 0.1380 —0.0545

Table 7.9: S-wave renormalised scattering lengths for different bag radii. The LS
propagator is used.

BagRadius(fm™) a, as
0.7 0.1353 —0.0305
0.8 0.1613 —0.0378
0.9 0.1792 —0.0436
1.0 0.1856 —0.0490
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Figure 7.5: The phase shifts obtained for the renormalised Weinberg-Tomozawa
term with various propagators. The notation for different propagators is as before.
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Figure 7.6: The phase shifts for different bag radii with the un-renormalised
Weinberg-Tomozawa term; dash line for R=1.0; dot-dash for R=0.8 and 3-dot dash
for R=0.7 fm.
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Figure 7.7: The phase shifts for different bag radii with the renormalised Weinberg-
Tomozawa term; dash line for R=1.0; dot-dash for R=0.7 and 3-dot dash for
R=0.9fm.
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7.3 P-wave Scattering Lengths and Phase Shifts

7.3.1 Phenomenological Results

The P-wave phenomenological scattering parameters can be found in [Tho 76]. The

form factors used in those potentials are:

g(k) = Sik/(a? + K2)? + Spk®/ (o + K)°. (7.25)

Table 7.10: The parameter for the P-wave scatiering

Channel | S ay Sy oy
Ps3 0.5403 1.475 1.0583 3.400
Psy 4.290 2.059 0.0 0.0
Pis 1.557 - 1.224 3.659  1.945
P 0.3959 1.074 0.0 0.0

The parameters Sy, aq, Sz, as for eqn (7.25) are given in Table 7.10. The phe-
nomenological potentials are used in testing various propagators. It is found that
for Ps3 phase shifts are not reproduced for the CJ and BbS propagators in Fig. 7.8.
These two relativistic propagators behave differently for the P13 and FPs; cases as
well. In Fig. 7.10 different phase shifts among propagators is observed for P13 chan-
nel while almost the same behaviour was shown for Ps; in Fig. 7.11. The scattering

volumes evaluated by various propagators are given in Table 7.11.

Table 7.11: Phenomenological scattering volumes (m?).

Propagator an as; a13 as3

Experiment | —0.101 —0.029 —-0.038 0.215
LS —0.05946 —0.4562 —0.03545 0.1853
CJ —0.05991 —0.1645 —0.03735 —0.00474
BbS | —0.05996 —0.3798 —0.03767 —0.00339
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Figure 7.8: Phenomenological Py;/Ps3 phase shifts; solid line and long dash repre-
sents the Ps3 and P, experimental phase shifts respectively; 3-dot dash and short
dash represents phenomenological Ps3 and Pj;. The LS propagator is used for the
P33 calculation and the relativistic propagators do not produce a resonance.
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Figure 7.9: Phenomenological Pi3 and Ps; phase shifts; solid line and long dash line
represents experimental P and Ps; phase shifts; dot dash line and 3-dot dash line
represents the phenomenological P3; and P53 phase shifts respectively.
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Figure 7.10: Phenomenological P;3 phase shifts with different propagators; solid line
the experimental; 3-dot dash line LS propagator; dash and dot dash lines CJ and
BbS propagators respectively.
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Figure 7.11: Phenomenological Ps; phase shifts with different propagators; solid line
the experimental; 3-dot dash line LS propagator; dash and dot dash lines CJ and
BbS propagators respectively.
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7.3.2 Theoretical P-wave results

For the theoretical P-wave calculations, we used the CBM potentials derived in
Chapter 5 as the driving potential with the various propagators given in Chapter
3. The scattering volumes are given in Table 7.12. The phase shifts are plotted
in Figures 7.12,7.13,7.14. In Fig. 7.12 phase shifts for Ps3 channel is given and
it is found that the LS propagator as well as the relativistic propagators produce
the resonance. This is in contrast with the phenomenological potential that fails
to produce the resonance for the relativistic propagators in Fig. 7.8. In Fig. 7.12
we only show the phase shifts for potential with parameters (coupling constant and
mass of A) unadjusted.

The CBM has been very successful in describing P-waves. The first calculation
for Ps3 resonance using a surface coupling version of CBM was done by Thomas
et al [Tho+80]. The calculation for the P-wave scattering using volume coupling
version was done in Ref. [Tho+86]. When we use the Lagrangian of Kalbermann
and Eisenberg and take the interaction to order ﬁ, the potentials are the same
as those of [Tho+86]. Those calculations (and ours too) give good agreement with
the experimental phase shifts except for the Py channel. Our point in repeating the
calculation was not only to provide a comprehensive presentation but also to test
the different propagators for the P-waves.

We also noticed that Pearce and Afnan [PA 86, PA 89] have made a serious in-
vestigation of the P;; channel. In their work, they demand that the renormalization
procedure should be consistent with the LS equation and used modified version of
LS equation. A reasonable agreement was found for the Pj; channel for 7, < 400
MeV.

For the P-wave scattering volumes, it is well known that Born approximation

to order (2—})5 produces a good result in usual covariant calculations [EW 88]. Our

experience in S-wave tell us that the scattering volume produced by LS equation will
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Figure 7.12: Theoretical P33 phase shifts; solid line experimental; long dash-dot line
LS propagator; 3-dot-dash and dash lines CJ and BbS propagators respectively.

be different from those in Born approximation. Although previous authors do not
mention the problem [Tho+80, Tho+86, PA 86, PA 89], we expect (and shown in

Table 7.12) that the scattering volumes are not as good in agreeing with experiments.

Table 7.12: Theoretical scattering volumes( m_*).

Propagator Py Psy Pis Pas
LS —0.0386 —0.0370 —0.0356 0.1024
CJ —0.0715 —0.0407 —0.0365 —0.0954
BbS —0.0785 —0.0414 —0.0366 —0.0943
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Figure 7.13: Theoretical P;; phase shifts; solid line experimental; long dash-dot line
LS propagator; 3-dot-dash and dash lines CJ and BbS propagators respectively.
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Figure 7.14: Theorelical Py3/Ps phase shifts; solid line experimental I’j3; long-
dash for experimental Ps;; dash-dot theoretical Py3; 3-dot-dash theoretical Ps;. LS
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Chapter 8

Discussion and Outlook

In this chapter we present discussion of the result and give an outlook for the 7N
calculations. We will firstly look at the result of carrying out the calculation to order
(—2}? in S-wave. In Born approximation, the scattering lengths are not improved by
taking the calculation to higher order. In Table 7.6 we can see that the Adler
consistency condition (a; + 2a3 = 0, or that the threshold scattering lengths should
be purely isovector) has been badly violated by this. It has also seen in Section 7.2.2
that in the soft pion limit, m2 = 0, the badly behaved components( which become
infinite in the soft pion limit) arise from vy, ve, ve, v and vy. The cancellation of the
isoscalar piece, v,, by the badly behaved piece of v, and v. can be proved explicitly
[Gui 85]. We prove numerically that the badly behaved piece of vy is not guaranteed
to cancel exactly those of v.. Nevertheless, these two diagrams at threshold energy
do tend to cancel as advocated by Cooper and Jennings [CJ 86].

The phase shifts obtained by using higher order interactions are not much im-
proved over the results ;)f the leading order, Weinberg-Tomozawa term. However 1t
is remarkable that the leading order results are not greatly altered by adding higher
order graphs, as can be seen from Figs. 7.2 and 7.3. It 1s also seen that when we

add the A contribution in the graphs, the overall magnitude over phase shifts is not

greatly altered but the scattering lengths are improved ( Table 7.7).

122



A nice feature of the CBM is that it treats the nucleon and A on the same
footing as required by QCD [Tho+80, Tho 84]. This also prevents double counting
in LS type equations [Hol+87]. The improvement over scattering lengths in Table
7.7 when we add the A contribution shows the Lagrangian of Kalbermann and
Fisenberg has kept this nice feature of the CBM.

We therefore conclude that for Chiral Bag Lagrangians it is possible to guarantee
convergence by adding higher order graphs. The overall magnitude of the phase
shifts in Figs. 7.3 and 7.4 proves that the inclusion of higher order graphs does not
induce significance alterations to the leading order result of Fig. 7.2.

One major drawback in our work is not including center of mass and recoil
corrections to each higher order diagram. All graphs are calculated in the static
approximation for the nucleon. While, those corrections are expected to be small
[Tho 84] they may be very important in the rather subtle soft pion limit.

As for the question of unitarity, we compare the results from covariant 3-dimensional
propagators and the Lippmann Schwinger propagators in Iigs. 7.1,7.3 and Tables
7.4, 7.7. There are significant differences in results between LS and relativistic prop-
agators in Figs. 7.1 and 7.3. There is some slight improvement when we use a smooth
propagator with leading order, Weinberg-Tomozawa interactions, as has been spec-
ulated by Cooper and Jennings [CJ 88]. This is not the case when we use the full
set of diagrams to calculate phase shifts and scattering lengths as shown in Fig. 7.4
and Table 7.7. The relativistic propagators underestimate a; and overestimate a3
as we see in Table 7.7.

For completeness, we calculated the P-wave interaction and used it with various
propagators. It was demonstrated that the P-wave phenomenological separable po-
tentfials are not reliable sources to learn potential strength and behaviour. This can
be seen from Figs 7.8 and 7.10, where the P33 and Py3 results are not well reproduced

by relativistic propagators. In contrast, the theoretical P33 can be tested reliably by
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both relativistic and LS propagators, as shown in Fig. 7.12 - although we need to fit
the A mass for different propagators. There is still problem in scattering volumes
for P-wave. Because of the richness of physical content of the higher order CBM
diagrams that has been demonstrated in the S-wave calculations, one is encouraged
to extend the calculation to order (—2}—)4 , including the resonances.

The renormalization for the S-wave Weinberg-Tomozawa term was calculated
and tested numerically. The renormalised interaction over the Bag radius can be
studied from Fig. 7.7 and Table 7.8. It is interesting to note that overall the phase
shift is not significantly altered by changing the bag radius when the interaction
gets renormalised. This is in contrast to the unrenormalised Weinberg-Tomozawa,
term, which shows a dependence on Bag radius as can be seen from Fig. 7.6.

From the overall picture of both S- and P-wave calculations, the CBM Lagrangian
is reliable to calculate higher order graphs. This is not a new conclusion as previ-
ous workers, Kalbermann and Eisenbergs, [KE 83] pointed out a long time ago.
Cancellations of higher order diagrams such as Fig. 4.le and 4.1f can be consid-
ered as a major attribute of the chiral Lagrangians [Gro 82, CJ 86]. Numerically,
the isoscalar contribution from v, and v, are large (Table 7.5). One of our dis-
satisfaction in calculating higher order graphs such as Fig. 4.1f is that we have to
use an over simplified account of the 77 vertex. This kind of 77 interaction is also
encountered in NN interaction as the correlated 2-pion resonance for the S-wave
[Hol4-87, PA 89]. In our calculation, the strength of vy is greatly influenced by the
assumption made on the w7 vertex. When we vary the form factor at the mx vertex
by altering pion radius, it shows a significant difference in the phase shifts, especially
in the Sy; channel in Fig. 8.2. Therefore a more careful analysis is necessary for the
77 interaction.

From Figs. 7.3, 7.4 and 8.2, the S3; channel calculations are in good agreement

with the experiment. We therefore conclude that the remaining discrepancy in Sy
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Figure 8.1: The phase shift obtained by turning off the isoscalar contributions from
v, and vy; dashed line v, only; dotted line full-set of driving potentials; dot-dash
line, the isoscalar contribution from v, and vy turned off.

channel is due to N(1535) resonance and the strength of the wm vertex.

The most challenging aspect of our work was to ensure that the Kalbermann and
Eisenberg’s Lagrangian does give the soft-pion limit. The troublesome part is clearly
the isoscalar piece arising from Figs. 4.le and { that would violate soft pion limit
(becomes infinite in that limit). On the other hand, the isoscalar piece is necessary
to produce scattering lengths and phase shifts at higher energies. This is shown in
Fig.8.1 when we turn off the isoscalar contribution from v, and vy the phase shifts

bend away from experiment.
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Figure 8.2: The phase shifts resulted from using different pion radius at 4-pion
vertex at v;. Dashed line R, = 0.4;dot-dash R, =0 and 3 dot-dash K, = 0.6.
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Appendix A

The CBM Lagrangian and Wave

function

A.1 MIT Bag wave functions

In this Appendix we give the quark wave functions which were used in calculating
interaction matrix elements in Chapter 4. In the Cloudy Bag Model (CBM) quarks
are treated as massless Dirac particles confined to a spatial region (Bag). Hence,
the quark wave functions in CBM are the same as those of MIT. In this work, we

only used the ground state wave function for quarks. The wave function for quark

(a) is given by [Tho 84, Tho+83],

-/ Qz
N, JoUR :
%(z) = —7= o() e "Ry, (A1)
i\ o fi]l(ﬂ—;)

Here Q = 2.04 is the quark eigen-frequency, R the bag radius N; is the normalization

constant

= sy (@)
NS_2R3j0(Q)2 Q-1
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and 9, is the combined spin-flavour wave function for quark (a). Pion field is treated
as elementary particle (structureless). The pion field operators in orthogonal basis

are given by

e + al(g)e™ V| (A-2)

¢i(z) = (27) z / \/2—“;

where j = 1,2,3 is the isospin index. The spherical basis for the pion field operators

(a+1,a0) are built up from orthogonal basis according to eqns (C.1) and (C.2).

(a1 £ 1a2) (A.3)

Sia

ax1 = F

ag = ag (A4)

A.2 The Non-Linear CBM Lagrangian

There are two types of chirally symmetric Lagrangians that describe # N interac-
tions, namely ¢ and p types. It is also known that one can apply the unitarity
transformation on ¢ type Lagrangians to yield p type coupling.

The Cloudy Bag Model Lagrangians are constructed from MIT Bag model in
order to have chiral symmetric properties. This is achieved by incorporating the
pion as a separate local field which couples with the quarks. Likewise in traditional
nuclear physics, there have been Chiral Bag Lagrangians that include o field [CT 75]
and those reminisence of p type [Tho 81]. The latter type can be obtained by
applying unitarity transformation on the o type Lagrangians. All these Lagrangians
are equivalent representation of'the same basic theory and provide a freedom to
choose for particular application.

In this thesis, we choose to work with the Lagrangian of Kalbermann and Eisen-
berg [KE 83]. The Hamiltonian density is written in such a way that the time

derivative of pion field being replaced by its canonical momenta. This has the ad-
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vantage of cancelling bad piece of the isoscalar component that arises from iterating
lowest order (Weinberg-Tomozawa) term in Lippmann-Schwinger equation [Gui 85

(see the discussion in Section 7.2.2). The Lagrangian density is given by

—

L(z) = (Ez

e 1_ 0, [ 10,0 7 -(¢x0.0)

q@q—B)HU—gqqéer[lerW]qv ('75 5f 27 ) )q
(an‘f’)z m72r¢’2

M+p P 2A+p,] (A-5)

-+

where as in (A.5) 0, is the step function, 1 inside the bag and 0 outside; B the bag

pressure constant; &, the surface delta function and p, = (—2%2 By noting

FH(p) = (F°(¢),F (¢))

[T TX
= qy (W — W) g0y, (A.6)

the canonical momenta for the pion field is given as

_ 0L(x)
II(z) = 9
o ()
- . A7
T+p.P te, A
Then, the Hamiltonian density can be written as
H = II-(0p)— L
< b D o )2 2 42 )2
g, VeF@) | (Fer | mét @),

1+ p,] 20+ p,17 2[1+p,] 201+ p,]°

We expand (A.8) for small pion field i.e. p, = é < 1, we have

l+p ) ml—ptp;—

M+p,] 2 =1—2p, +3p2 —.....
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The Hamiltonian density to order (2f)~° becomes

H o= Lo (I FY@)+ T F () + (5 + 6%+ (T 9
—p (IT - FO($)— V - F () + p,(IT* — (V ¢)*) — p,m2e’ +
1, 0 g 1
3 (F(®) + 05

= Hmir + Hro + Hine

In (A.9),

Humir
7_{‘/rO

Hint

7 — — 1
597 (V = V)a+ B)y + 5a46,s
1 —_
-3 (H2 +mi¢® +(V ¢)2>

Hi + Hs + Hiyp + Hipr + H' + Hax

where the interaction Hamiltonian is given by

H] (213)

H ()

H41|—(IC)

b,

—af—)fﬁ%”'q- v ¢

i TV 6 6+
(20;)2 g - (¢ x II)
(29;)2 GyTq - ($x V ¢)

L, T (T X @)\ 1

r (I~ (9 87 —mie?) -

(2f)?

The pion canonical momenta II has the property,

—zw = [H,Hwo] 9

(A.9)

(A.10)
(A.11)

(A.12)

(A.13)
(A.14)
(A.15)
(A.16)
(A17)

(A.18)

and therefore the pion canonical momenta in (A.15) served as time derivative of the
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pion field.

A.3 SU(6) Wave functions

In the following we will give SU(6) wave functions and matrix elements of transition
spin-isospin operators. In studying the 7N system, it is sufficient to consider only
two flavours u, d. From this we can construct spin(flavour) symmetric xs(¢s), mix-
symmetric X s(@um,s) and mixed-asymmetric xm.a(Pm.a) (see Section 4 of F.E.

Close) [Clo 79]. We will denote spin S,MS and A states as follows:

X2) = [111)
1 1
) = I TN+

Tiudh = %Inum —2111)
N %ITLT—HT) (A.19)

The flavour $,MS,MA states are obtained by replacing 1 (]) with u(d) flavour.
The N, A spin-flovour states with particular spin(isospin) 3rd components can

be constructed as follows.

1 1 1 1 1 1 1
|N; I, = 5752 = §)sf = 5 |¢12\/15X12v15+ ¢12\4AX12\/1A>
1 1 11
ALy = 5,5 = gl = |3 x3)
34 3 =
|A;13 = Ea S, = E)Sf = |¢sXs) (A-20)

The matrix elements of (1.25) can be obtained as

1 13 .
Mpp = sf(N;Iszi,Szziizoﬁ,“)Tef )lN;I3=

a=1

1 1
_Sz:-s
5 5)ss

S
. (A.21)
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Table A.1: The Quark spin isospin matrix element
a\p N A
N 5/3 | 4/2/3
A 4,/2/3 | 1/3

When the transition involved only isospin, it is sufficient to determine the matrix
element with flavour wave functions since spin functions are orthonormal. In this

case we easily find that

1.3 1
sf(N;13=i§|ZT§ >|N;13:i§)sf = 1 (A.22)
a=1
1l (o) 1
si{A I3 = :i:§|ZT3 |A;I3::t§)sf =1 ‘(A.23)
a=1
3= (a) 3
sf{A; I3 = :l:§| 273 |A; I3 = :i:'2—)sf = 3 (A.24)
a=1
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A.4 The Value for the Numerical Integrals

In this Appendix, we give the numerical integrals used in Section 7.2.2. We denote

w = wq, A = ma—mpy, Li(qz) = fOR dzz?pi(z)jo(qz) and Iy (qz) = fOR dza?p,,(qz).

symbol Integral Numerical value
Ti(z) [y dea’pi(a) 0.19436

Zo Jo~ dqq*Zi(qa) 0.1937

Il:, I5° dqq? =Tt (qx) 0.08371

;) 57 daq o2 (gw) —0.16875

Y ded’ gstie) 0.06138

I )y de T (q2) 0.06999

I J5 de% (sms) Zo(42) 0.04671

FOV [ dg Lo B 152 (gz) 0.01183

FOV [ dgLe IS T2 () 0.005918

FET oo gadt (;)2 e FR /572 (gz) 0003518

ma—my+tw

O 2 det (h) e /0T (gz)  0.001758

mgy—mpy+w

Fa) fP dgSye T l5T2 (o) 0.02219
A oo 1 —RLg /6

f:%av)) fO dq%;WI(pu)(qm) 0007440

-:’Cli;v I’ dfjﬂ-;e‘nﬂ‘f /4'I;fu(2q:f) 0.01129

FR [ (w0 + |g]?)e R ATE (ga) 0.08211
(A) o 4 e—ﬁ'.iqz/'i I?u(qx)

Fiy Jo dqj%(-—~—~—"—&,ﬁ,gw,maF ol 0.002125
(8) oo 1 gt (W24q?)eR70 /T2 (qx)

‘7:.2!) f(}n dq% (ﬂm+2w}{ém+:u) 0018859

Ty(x)  Jo dza®pi(z) 0.12118

IM(2)  f5° dg % T2 (gx) 2 0.02635
A e 4

LV (2) Jy de (m) 12, (qz) 0.00954
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Appendix B

Relativistic Jacobi coordinates

The relativistic Jacobi coordinates for two particles with mass my and my , momenta
p1, p2 are defined as follows. In the c.m. frame, the total 4-momentum, P, Is related

to the total energy squared, 5, via

The energy of each particle when the square of total energy is S

S 4 m2—m?
a=a(S)=2""2""1 (B.2)
2V'S
S +m?—m}
€y = 62(5) = ’—2\/—5—‘— (B3)

We will denote the energy of particle 1 with total four momentum square P = 5’

as €, = ¢1(5') etc. The relative 4-momentum is given by the relation

Capy — P2
) = —. B.4
f €1 —|— €y ( )
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By defining another energy variable P’ = \/%P, one can show that

e P’ ? € 2_ .2
tl+£2—|—p —mi=c?+2P- p\/g (mi —p%) (B.5)
s P’ ’ €,

(ﬁ, :_ —a p) —m2=¢el —2P- 7_5 — (m} - p°) (B.6)

From (B.5) and (B.6), the two delta functions in eqn.(3.37) can be written as,

25 ((r ' (Sp+"n:12_m%)2 (Sp+m%_m%) +2P. CI +.CJ)

172" 45, B 45, VS

, S, +m?—m2)? (S, +m}—mj)? ¢, — €
é ‘J’ d ( p 1 2 p 1 2 2P . 1 2 ) B.7
((1 + ('2 4Sp + 4Sp + p \/E ( )

By noting m? — mj = M, we can prove that

-l =M (B.8)
) S/2+M2
6’12 + 622 = —25—1— (Bg)

Using (B.8) and (B.9), the pair of delta functions in (B.7) become

St S? 4+ M2 SI4 M? € — €

Provided that
P-p=0,

by the 1st delta function the roots of 2nd delta function are S, and M?*/S,. We can

therefore rewrite (B.10) by using the property -

6(5'— 5,
§(£(5")) = (S,”S S)
05! '=Sp
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as

45, §(2P ﬁ)é(S’ S,) (B.11)
52— M? P\Vs P '

By utilizing the relation in (B.11), the integration along the unitarity cut in the
complex energy plane S, (3.37), can be carried out as
o0 ds’ . 452 ol )
Gyen(p, P) = /m§+m§ FERTACE )W5 2P - py\[ 5 | 6(5" = 55)

_ J(8,5,) SSp
= S5-% 61(5,,)62(5,,)“’(21) - p). (B.12)

By using one more relation,

458,

(S_SP) :(p —k )(SPS—M?)?

we rewrite (B.12) as,

f(S’ SP) ‘-(;pS — (m% — 771%)2

G en p7P .
gen(P; P) pr—k* 4 SSp €1(Sp)ea(5p)

5(2P - p) (B.13)
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Appendix C

Angular momentum relations

In this appendix, we give details of some of angularmomentum calculations done in

Chapters 4,5 and 6.

C.1 Spherical tensors

The spherical basis (€41, €_1, o) can be defined from the orthogonal basis (€1, €,. €3)

as [Rosed7, Edm 57, Bri 68, Sch 87]

1 . =
€11 = :Fﬁ(elizez) (C.1)

€ = €3 (C.2)
These spherical tensors have the property
=(=)"é-m , (C.3)
and the scalar product

= bpn - (C.4)
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We can write a vector A = (A,%, Ayij, A,2) as a spherical tensor of rank-1 [Rose57,

Edm 57]
A=) Amné, (m==x1,0)

where the components Aj,, are given by

1 .
Al:tl = :*:75(A$ + ZAy)

A10 = Az .

In particular we denote spin(isospin) operators in spherical representation as

o = Y o, (m==%1,0)

T = Zﬁni; (n = £1,0)

(C.5)

(C.8)

(C.9)

It is useful to write a vector in cartesian coordinate r = #|r| = (&2, 9y, 2z) by rank-1

spherical harmonic Y,,(7) as

Il /=Y (F) = F—7=(z1y)

S

The scalar product of two vectors can be written in spherical notation as

A : B . Z AlmBlmé:,l N é;

m,n

= Z(_)mAlm Bl,—m

m

Ar\ %
ooi = (F) Tomtin®
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(C.13)



ki = |k

(F) 2 Yim (0755, (C.14)

Tt is useful to describe the matrix element of spin(isospin) operators in the spherical
representation. The matrix element of a spin vector can be decribed, for example,

using reduced matrix elements as

<SBImBIlO'|SBmB) = (SB/mB:|Zalm§;|SBmB)

mpBmm gt (SB’ | |0.{1] l l‘gB) é

- C *
SplSg 25'31 T 1 m

(C.15)

C.2 Proof of Eqn. (4.19)
By using the equations (C.13) and (C.14), we can write (4.19) as

A

. 47\ 3
/daca-fk-fefk* = (%) 3 /d:&o—lmliﬂtnl(f)|kllﬁmz(k)iﬂ%2(f)

lmm1 ma

(47)(8) 51 (k) Vi (k) Yim (%) (C.16)
Since we have (Edmonds: eqn (4.6.3) [Edm 57])

[ 4875, ()i, ()i (7) = (C.17)

32(21%&]% 1 1 1 1 1 l

0 0 O —my —Mmy m

and (Edmonds: (4.6.5))
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Yim, (6)Yim (k) = (C.18)

g+ D+ L LT L ;
Z[( )( )] ( ) }l’m(l"))

47

'm/’

we can write eqn (C.16) as

(4_?:_r> (47 ILiZ Yi(kz) ['}'3(23 s 1)]5 [32(254— I)]i (C.19)

4 4
1 . s N [ 171
o1 Vi (B
0 0 0 0 0 0
Since [ — 0 and [ = 2 are allowed, eqn (C.16) becomes
~ ~ ~ 1kx 47r 1 ¢
/dm o-tk-re” = ( 3 ) (]O(kz) —2j2(kz))o - k (C.20)

C.3 Proof of Eqn. (4.90)

We can calculate the isospin relations (4.90) and (6.29) with the help of graphical

methods [ See Brink [Bri 68] for details]. First, we write (4.90) as

za4iM113 iuS—niu,‘
2I+ 1 Z Z Ia4IMII CTogllloq
1M1‘M’ n,I3

B . . . . iﬂlnia2 ia]ij\,![(i
(Idglolgj IM'ZM‘IT . 0I1021‘0’2) IMZM>CIalllla2 ClallM[ . (CQl)

Since we can write in spherical representation

0= (=)0

q
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we write the eqn (C.21) in terms of reduced matrix elements as (c.f. eqn (C.15))

(T [ |70 L) (Inar 1011 Tna) 1
\/2;a3+1 V2hy +1 (21 +1)

_\n+tg ia4iMr13 ial'iMIS iasnia4 'ial —'nia2 i0(2qi(!3 TAL gyt
Z( ) CIQ4 Il CIal Ipgl Cfaallla,‘ CIallllaz 0102[2103 CIMIQIM/

(C.22)

allm

The Clebsch-Gordan coefficients in eqn (C.22) can be represented graphically as

[Bri 68]:
- loq +
1 I
I
+ g -
/ 1
M %
y I
M a3
l
- +

This process is described by algebraric methods as follows. We first transcribe the

Clebsch-Gordan coeflicients in 3-j symbols. Equation (C.22) then becomes
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A

(Lo 17O Ty ) (Tnae 16N ) o L

Z (_)—2[3-{-[1\,11—21—0‘1 —102 —IC':] ——104 —iMl—ia2 —1'0‘3 —ia4 +201 420+ n+q

allm
L, Im 1 I.,, L 1, /O
'i(,4 iM/ —13 ias —n —ia4 ia2
In ly e IOI] Iy 1012
M —q —imp oy T —Slzm

Since we can write, using (Edmonds:(6.2.8)),

> Ly Iy I S
—tyn—ipn—la ial iM —13 '.".t,_‘I "":M“ ~13
I I l
_ (_)-I+13—2IM,+10,—Ia4+iM+iM, @ o, "2
~tay  tey —4q

We use eqn (C.24) in (C.23). We Finally have

(2%

Ivm

M

Ly

—-q

3 (=)=l Iar =L ~lay — Loy =2Ta, +im —iog —iay —iag +2l1+2l24n+q

allm
L, I, L L. L L, L.. b Ty
_ioa ioq —q iaa —n _ia’4 7;0‘2 q _i"‘f‘
I, 1, I

I Im T
= (=)*rI SIIT“HIM)UM'HO Nne) fau o,
I,

I I 1
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A

Lo,

L

Iz

Tnr

i

(C.24)



C.4 Proof of Egn. (5.10)

Since (oo - & — o - 20) = —2i(0 X £), we can write

/d§:(0'0' i—o-io)- (K + k)e~itk-k)x

¥ / d5(0 X §) - {(§ eFR)emkx _ (F ¢mikx)k'x)

Since we can write [Edm 57, Rose57, Bri 68],

—

(0 X £)- V YVim(2)

we can then write (C.26) as

I:v

(Utxm) (‘T—a—m—?’ |5'3| )Km(:%)
%I(a X ) - (& X L)Yim(%)
éa LYin(%)

ﬁ\{l(l—{— 1) o - yum(:f?)

VD) 3 OF T P (@) -

\/ (I+1) Z C"l'”ln;n tmt (2) T 1m

) S 3 ik a)silke) i (B Yim BV 1)

Ilm m'mgy

Omy {Ommzm

(=)meTm Ty

(C.26)

(C.27)

= TP 3 K i(ke) Y (B Yin R0+ Do, O 77 (C.28)

Im m'mg
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