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SUMMARY

The research reported in this thesis has been under-
taken with the objective of finding optimal strategies for
poker using both simulation and game-theoretic methods.

In the introduction the nature of the problem is presented
and the main work already done in this area 1s reviewed.

Next the simulation of poker 1is considered and the
computational difficulties of this approach are investigated
in some detail. It is concluded in this thesis that an
analytic/numerical approach offers better prospects of
success than simulation. Accordingly the numerical approach
to poker is theoretically formulated and new methods of
solution are developed whilch are significantly faster than
existing methods‘found in the literature.

These methods are then used to solve 2, 3 and U-
person poker-like games. In the course of this work a new
integral relevant to the solution of poker-like games is
evaluated. Simulation methods are used to check the work
wherever possilble.

The results obtained from these solutions are unique for
two reasons, TFirst, even though simplifwing assumptions were made
in many phases of this work, the games solved are sufficiently
realistic to be compared with a commonly played variety of poker
and the solutions are shown to agree closely, in most details, with
the strategies used by experienced players, even though some of the
results are in less than complete agreement. Secondly, this appears

to be the
(1)



first time that a solution has been obLtained For a-N-person
poker-like game.

The study then reports the results of the applica-
tion of this work to two practical problems not directly
connected with poker. The first of these relates to net-
works and formulates a new criterion of optimality of flow
which 1s currently the subject of further research by
another worker. The second is a problem in business
management.

The thesls ends wilth a discussion in which general
conclusions are drawn from the whole of the work and in
which new areas of research are identified. In particular
more research on numerical methods, on the methodology of

simulation, and in applled games theory is recommended.
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CHAPTER 1

INTRODUCTION

1.1 Statement of problem

Before making a general statement of the problem to
be dealt with 1n this thesls the following 2 points should
be noted.

(a) The mathematical treatment of poker can have practical
applications in areas not directly related to poker.

The following quote from Karlin, (19), supports this

assertion (also see Pruitt (29)):

"The many respects in which business, polities and
war resemble poker should be evident. Hence, any
progress in our mathematical understanding of poker
games can have 1lts counterpart interpretation in
many relevant circumstances of life."

(b) ©Poker is possibly the most complex of card games.

Indeed Karlin, (19), states that:

"It is the considered opinion of many expert card
players that poker requires the most skill and depth
of any card game."

The intricacles of poker may be appreciated by read-
ing one of the many books written about the subject, for
example "Poker: Game of Skill", (30). As a consequence of
this complexity the mathematical treatment of poker must be

restricted to simplified poker-like games (see the literature



survey glven later in this chapter).

In this study the game of poker has been approached
in such a way that, although certain essentlal character-
istics of the game are retained, simplifylng assumptions
make the problem amenable to mathematlcal solution. Num-
eric methods, suitable for use on the computer are used to
obtain solutions which are then directly applicable to a
commonly played variety of poker.

Various applications of this work to other, not
directly related areas, are then considered.

1.2 Main aim of the work of this thesis

The main difficulty In the mathematical treatment
of poker-like games arises from computational difficulties
(see later in this chapter and chapter 5). This work
hypothesises that, by using numeric methods (suitable for
implementation on a computer), further progress may be made
in solving more realistic models than have been hereto
possible (see chapter 5).

To find these solutlions a new mathematlical technique
for handling the particular type of games treated here has
been developed (see chapter 3). Although the applicabillty
of poker to business has been suggested by Pruitt, (29), and
Karlin, (19), no concrete examples could be found in the
literature. Thus 1t was an object of this study to provide

a specific example of the application of the above work to a



3.
business situation (see chapter 6). Other applications to
poker simulation and the theory of networks are also given

in chapters 2 and 6 respectively.

REVIEW OF RESEARCH INTO POKER

1.3 Methods of classifying poker-like games

Until 1928 the mathematical analysis of poker was
limited to a probabilistic and combinatorial treatment (see
Borel and Ville (3)). In 1928 von Neumann, (26), published
the first paper on game theory and showed how it was poss-
ible to obtain exact solutions to simple poker-like games
using his newly developed theory. Von Neumann formulated
and solved a simple poker-like game, (27), and found that the
solution contained the element of bluffing (see 1.4.1),
which had previously been consldered to include psycholog-
ical factors, and was therefore consldered not to be a
suitable case for a simple mathematical treatment. (A
further discussion of bluffing 1s given in chapter 3).

Since then many papers have been published dealing
with increasingly sophisticated versions of poker-like
games, (12,13,20,22,24,27,29). The recurring problem has
been one of computational difficulty. Thus, although it
can usually be proved that optimal strategles to any poker
game exlst, the mathematical techniques necessary to dis-

cover them are generally lacking.



L,
When presenting the survey of the literature on
poker-1ike games it is helpful if the games are classifled
by the followlng parameters.

(a) Number of players

The number of players largely determines the overall
complexity of the game, as special difficulties are
encountered when the number of players exceeds two.

(v) The hand structure in the game

The hand structure in the game is usually either
discrete, finite and small or else continuous, and
plays a large part in determining the method of solut-
ion. Real poker 1s an exceptlon in that although the
hands are discrete, they are so large in number, that
the hand structure can be considered to be contlnuous.

(¢) The rules governing betting

There is considerable varlation in the rules governing
betting. The more involved the betting, the greater
are the computational difficulties. Some games have
a great varlety in the bidding and rebidding, while
others are limlted to one type. of bet.

(d) The particular method used to solve the game

There 1s no single method which 1s applicable over the
whole range of games. The techniques used to solve

each individual poker-like game are usually different.



(e) Relationship to real poker

Games may be further classified by the insight that
they provlde into real poker.

1.4 QGames of historical interest

A number of games that play an important part in
past research but that are not directly related to this
theslis are now presented.

1.4.1. The games of von Neumann and Morgenstern

Von Neumann, (27), was the first writer to formulate
and solve a poker-like game. The rules of this game allow
two players to obtailn random hands s; € [0,1] and
s, € [0,1] where s; and s, are uniformly distributed
over the closed interval ([0,1]. Both players bid simul-
taneously, elther a or b units (where a>» and a and
b are fixed) not knowing the value of the other player's
pbid. The term "bid simultaneously" signifies that the
players make their bids together, and each player has no
knowledge of what his opponent willl bid. If both bld the
same amount, hands are compared with the higher hand winning
the pot. If one bids high, the other low, the player bidd-
ing low has the option either of forfelting hls low bid, or
of increasing the amount bid to equal the bid of the other
player, in which case the higher hand wins the pot.

The method of solution given by von Neumann, (27),

(although it is not able to be applied directly to the work
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of this thesis) glves heuristic insights into how real poker
should be played and shows clearly the advantages of bluff-
ing (see chapter 3).

Bluffing takes place when a player makes a high bid
(a units) with a hand which is not likely to win i1f the
other player should look. The bluffing strategy for this
game will be described precisely in chapter 3. Bluffing
has 2 purposes. First, the high bet may force a winnilng
situation by causing the other player to back down. Second,
if the other player does look, he will notice the bluff.
Later, therefore, he 1s more likely to look at a high bet,
since he may feel that it 1s another bluff. Thus, bluff-
ing will tend to ensure that a higher profit is made from
good hands as high bets will be more likely to be looked at.

A modified form of thls game allows the first play-
er to bid either a (high) or b (low). If he bids hilgh the
second player has the option either of dropping out and for-
feiting b units, or of matchling the first player's high
bid, with the higher hand winning a units. This model
1s discussed in chapter 3.

1.4.2, The games of Gillis et al, and the game of

Bellman and Blackwell

In thelr paper Gillis, Mayberry and von Neumann,
(13), have solved a two person variant of a poker game, with

simultaneous bidding and a continuous hand structure. It
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is similar to von Neumann's original game, (27), except
that instead of allowing two fixed sizes of a bid, a and
b, the bid can take any value between a and b. Two
versions are considered, one where all bids in the closed
interval [a,b] are allowed, and the other with only a
finlite possible number of bids 1n the same interval. But
the rules differ from von Neumann's original game (1.4.1)
in that no upgrading of bet by the lower bidder, is allowed
and the higher bidder wins the amount of the low bid. - If-
bids are equal, the higher hand wins the amount bet.

Bellman and Blackwell, (2), have also solved a
varliant of poker, which has two players, a continuous hand
structure, and is very similar to the game of von Neumann,
(27).

The main characteristics of the games that have been
descrlbed are:-
(1) Only 2 participants are allowed (i.e. they are 2-person

games).
(2) The hand structure is continuous.
(3) Betting is limited with no reraising.
(4) Although the methods of solutlon are different, none
is applicable to games treated in this study.

(5) The solutions show the importance of bhluffing.
(6) The solutions cannot be directly applied to any real

game of poker.
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1.4.3. The games of Karlin and Restreppo, and Pruitt

Karlin and Restreppo, (20), have developed a fixed
point method which has application to various models as
follows.

The first model relates to a 2~person game with a con-
tinuous hand structure and k rounds of betting. No other
game has been noted that allows a large number of raises and
reralses as does thils model. The second model closely
resembles the game solved by Gillis et.al. (see 1.4.2).

Pruitt, (29), has used the method developed by Karlin
and Restreppo, and applied it to a continuous version of stud
poker. Stud poker is a variety of poker that is fundament-
ally different from draw poker, to which this thesis relates.
The major point of difference between the two games arises
because certain cards belonging to each player are revealed
in stud poker, whereas hands are completely concealed in
draw poker.

1.5. Games of direct significance to this thesis

The games that are now presented are of direct signifi-
cance to the development of the work of this thesis.

1.5.1. Kuhn's 2-person game

Kuhn, (22), has proposed a simplified 2-person poker-
like game which introduces the concept of behaviour para-
meters. Behaviour parameters describe the probabillity with

which actions are undertaken in any prescribed situation,
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and can be used to simplify the computation involved in
solving a game. (This concept 1s described and used in
chapter ).

The game has a discrete hand structure (only 3 types
of hands are allowed) and the solution exhibits both bluff-
Ing and underbidding. Bluffing 1s a feature which was
present In the other models described previously, but under-
bidding has not occurred before. Underbidding occurs when
a player bets the minimum possible while holding a strong
hand. This manoeuvre is used by experienced poker players
when holding a strong hand, 1in order to entice the opposing
player into making a large bet, which 1is then raised. It
has the added advantage that, the opposing player having
been trapped in this way is later reluctant to raise a small
bet, even when he has what is quite probably the winning
hand.

1.5.2. Nash and Shapley's 3-person game

The 3-person game of Nash and Shapley, (24), is import-
ant to this study because 1t presents the concept of the
equllibrium point (e.p.) Nash, (25), defined the e.p. in
order to solve non-cooperative games with more than 2 play-
ers, a situation whlch von Neumann's original theory does
not encompass. Nash and Shapley's game 1s an extension of
Kuhn's 2-person game to the 3-person case although the

number of possible hands is reduced from 3 to 2 . The
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solution obtalned shows exactly the same features as Kuhn's
game, l.e. bluffing and underbidding.

1.6. Friedman's game

Frledman, (12), was the first writer to consider a
realistic bluffing situation, which even though very simpli-
fled, had a direct practical application to certain situa-
tions which arise in real poker. The general approach to
obtain these solutions is based on concepts similar to those
used in thls thesis. The main features of these games are
as follows.

Friedman first conslders the 2-person game where the
pot contains k wunits, and player A holds a 4-flush
(1 card short of a flush) while player B holds 3 of a kind.
Player A discards 1 card and has a chance p = 0.2 of making
the flush. Player B discards 2 cards but his chance of
improving is small by comparison (probability 0.085). It
is clear to player B that since player A has bought 1 card,
then if he completes his flush, he will beat .player B's hand
unless B 1improves (highly unlikely). Player A 1s first
to bet, and he can either decline to bet or else bet 1 unit
(the maximum bet allowed). Obviously, in this situation,
he is in a strong position to bluff player B (by betting 1
unit).

Friedman shows that player A should bluff, when he

misses his flush, with a probabllity of (1+k§(1_p)
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[obviously A will always bet the maximum if he completes
his flush]. Also player B should look at A's potential

bluff with a probability of It is shown that with

K_
1+k’
k=1, one third of A's bets should be bluffs, and that B
should look at such possible bluffs one half of the time.

Friedman next considers the same situation except that
this time player B 1s allowed to reraise 1 unit, after
A's bet. Again the general conclusion reached is that
one third of all raises should be bluffs, while one half of
all potential bluffs should be called. Friedman conject-
ured that this generalised strategy may also apply to more
complicated situations which defy analysis.

These solutions may have a direct application to real.

poker, and are simple to apply in practice.

1.7. Numerical techniques

All of the above mentioned games were solved by analyt-
ic methods, and none were solved numerically. By numerical
methods it is meant that some sort of 1lterative technique
1s used which can approximate the exact solution. The
reason for considering such methods 1s that they may be
implemented on the computer and in this way allow solutions
to be obtained which can not be obtalned analytically (this
is very simllar to the situation encountered in the work on
differential equations, where iterative numerical methods

play an important role).
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One of the major tasks of this thesis was to find
e.p.'s for certain n-person games. However, in the course
of thls work 1t was found that the equations obtained were
too complicated to be solved analytically.

Only 1 numeric method suitable for use with this
problem was discovered in the literature. This was the
method of Rosen, (31), which iterated to find the solution
point by calculating certain derivatives. This '
method is discussed (chapter 4) and shown to be unsuitable
for the games considered here.

A survey of the literature showed that very little
work has been carried out in the area of numerical methods.
However, the usefulness of this approach will be demonstrat-
ed later in this study (chapter 5) when results are obtain-
ed which could not be obtained analytically.

1.8. Computer simulation of poker

Simulation might be expected to provide an effective
approach to the solutlon of poker-like ‘games. However, the
only worker whose publications develop-this approach 1s
Findler. Findler, (10), gave a flow-chart for a proposed
poker playing program, and recently published papers (11;738)
which indicate that further work is currently being carried
out in this area. Some attention has been given 1in this
thesls to the simulation of poker as noted in the following

section.
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NEW WORK PRESENTED IN THIS THESIS

1.9 Poker simulation

As a part of thils study a poker simulator was
programmed. The poker simulation is described in chapter
2 and is related to the main body of the thesls in the
following ways.

First, even though initially it was hoped that
simulation could be used to assist in the analysis of
poker, 1t was established that thls was not a sultable

parhudar

method for the purposes of this\work. Secondly, certain
analytic results which are obtained later may be employed

in this program to enable it to play a better game of poker.
Thirdly, the use of interactive programs in the analysis of
poker are discussed. Furthermore, as a byproduct of this
work, certain poker probabilities, which might be of
interest to other workers in this field, and to the practic-

al poker player, were evaluated.

1.10. A new solution method for n-person games

As has been mentioned in section 1.7, a sultable
numerical method for solving the class of games considered
here, could not be found in the llterature. As a part of
this study a new algorithm was formulated to meet this need,

and it has been used extensively throughout this thesis.
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1.11. Evaluation of a special integral

During the evaluation of the payoff functions for
the poker-like games considered here, a particular multi-
dimensional integral was found to occur repeatedly. This
integral, 1s of central importance to this thesis and as 1t
has not been evaluated elsewhere it 1s evaluated here (see
Appendix A).

1.12. Formulation and solution of a new poker-like game

In chapter 5 a lU-person poker-like game is formulat-
ed and solved. It 1s considered that this game 1s a sig-
nificant contribution to the results already achieved in
this area of study, for the followlng reasons
(a) It 1s the first poker-like game solved which allows
more than 3 players (a LY-person game is considered).

(v) It has the unique property that it . can be = related
to a large subset of a commonly played variety of
poker. It is noteworthy that the solutions found
agree closely with strategies commonly used by
experienced players.

1.13. Applications

An application of game theoretic methods to a network
is presented in which a new criterion of optimality is
defined. This allows the network to be optimized using

methods developed 1n this study.
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Even though the simllarlty of poker to business situ-
ations has been noted by Pruitt, (29), and Karlin, (19), no
explicit examples could be found in the literature. Thus,
as a sequel to thls study, a business operation, which 1is
directly related to poker, is defined and solved.

In this way it is shown that the main work of this
thesis may be applled to other, not directly related
problems,

LAYOUT OF THESIS

1.14. Layout of thesis

This thesis has been organlzed in the following way.
Chapter 1 defines the problem considered, presents a
literature survey, and describes new work carried out.
Chapter 2 describes the computer simulation of a commonly
played variety of poker, and its relevance to thils work.
In chapter 3 a mathematical statement of the problem of
solving n-person games 1s glven and then a new algorithm,
specifically designed to solve the games treated in this
thesis, 1s presented.

In chapters 4 and 5, 2,3 and 4-person versions of the
game simulated (but unsolved) in chapter 2 are consldered,
and solutions found.

Chapter 6 presents examples of practical applications
of the work carried out here. Chapter 7 summarlzes the

work done, draws concluslons, and indicates possible new
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areas of research and application.
The subjects assoclated with the evaluation of the
integrals are treated in chapters 3,4 and 5 while the

evaluation of the integral 1s presented in appendix A.
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CHAPTER 2

SIMULATION OF POKER

INTRODUCTION

2.1. Introduction

Some work has been done in this study on the simula-
tion of poker but, for reasons discussed in detail later in
this chapter, the research was not completed. However,
during the research, results were obtained as follows:-

(1) probabilities were defined and calculated of
winning with specific hands, both before and after
the draw, with given numbers of players
(2) values were obtained for computation times for
investigating different poker strategies by simulation
(3) the strengths and weaknesses of investigating poker
by interactive simulation were assessed by means of a
pilot study.

These results are considered to be of sufficient
value to justify a discussion of the work done on the simu-
lation. This discussion 1s introduced by presenting
briefly the principles used in simulating a game of poker.

2.2. Principles of poker simulation

The rules of the game simulated are given in some
detall in section 2.5, but for general explanatory purposes
a brief description of the game simulated 1s as follows.

Five cards are dealt to each of up to 7 players. Players
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consider the value of thelr hands (defined by combinations
of pairs, three of a kind etc. as described later) and may,
by paying money to enter, take part in the game. Having
entered, a player has the option of replacing up to 4 cards
from his hand in order'to improve his hand. When all play-
ers have.exefcised theilr option a given player (the player
to the left of the dealer) may, if he wishes, bet an amount
on his hand or drop out. If he bets the next player may
ralse the bet, or, by betting an equal amount stake a claim
to "see" his predecessor's hand, or drop out. The opportun-
1ty to exercise these options passes from player to player |
until all players but one have dropped out or, until all
players but one, have claimed to see the hand of the remain-
ing player. In the latter 1instance the player seen must
show hils hand and the monles staked go to him unless some
other player lays down a stronger hand. In the former
instance the residual player takes the pot without showing
his hand. Because a player may win without showing his
hand there is the opportunity for a player to win by bluff-
ing, that is by glving an impression of strength sufficilent
to frighten hils opponents out of the game.

The simulation of the game may be undertaken in
phases thus:

(1) Generation of hands

The first step in simulating a game of poker is to

agree on a representation of each card by an integer from
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1 to 52, thus:

Ace of Clubs =1
Two of Clubs = 2
Queen of Spades = 51
King of Spades = 52

These 52 digits are stored in an array and a shuffling
algorithm applied, which uses a random number generator,
and which guarantees that every possible combination of
h2 cards 1s equally 1likely. This algorithm is described
in section 2.6. This representation of a shuffled deck
of cards may now be used to deal each player a hand of 5
cards, and to deal replacement cards.

(2) Entering the game

In order to decide whether to enter, the probabil-
ity of winning before the draw must be calculated. With
this knowledge it is possible to defilne probability values
which will be criteria for entering or dropping out. Thus,
if at a given stage of the game a hand that has the option
of entering has a probability of 0.80 (say) or more associ-
ated wlth it, then 1t could be asserted that that hand
would continue. The probabllities for each hand would
then be compared,in a similar way with these criteria to

decide the fate of that particular hand at time of play.



20.

(3) Improvement of hand

It 1s easy to define a deterministic algorithm by
which, given any hand, the course to follow will be speci-
fied. For example, 1f a hand contains 2 pairs, then the
rules might prescribe the discarding of the non-paired card.
A deterministic algorithm of thls type is described later
in this chapter. Obviously the element of bluffilng could
be introduced into this stage of the game by specifying,
according to the value of a random number generated, that
a different algorithm might, or might not be used. This
second algorithm might, for example, be designed to give
the lmpression that a poor hand was good.

(4) Betting

The stage of the game concerned with the betting
would be similar to (2) above. In the same way as in (2)
it would be needed to know a probability, in this instance
the probability of winning after improvement. Again, as
in (2) a probabilistic system for betting would be required.
In this instance, however, more sophisticated betting rules
would be needed, based on the probabilities of winning after
hand improvement. For example 1t would be needed to know
how far betting should be taken on a glven hand - 1.e. how
many rounds of betting should be entered into.

(5) Determination of the winner

Provided that more than one hand is left in the game
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at completion of betting, the method of winner identifica-
tion 1s simple. Since each hand is known specifically, it
is merely a matter of comparing hands and selecting the
strongest.

2.3 Results achieved by other workers

A search of the literature revealed that Findler,
(37)3%710,11),1stheon1y writer who has considered the simulation

of poker. Findler's first paper, (10), presented a flow
diagram of a proposed poker playing program. The program
presented here is, in broad detall, similar to the program

suggested by Findler.

TFindler's later work uses the simulation of poker as a means of
studying decision making, A detailed examination of this work is not
included here for two reasons, Iirst, these papers were not available
at the time of writing this study, and secondly, Findler's results do

not affect the validity of the deductions made here,

2.4 Factors involved in setting up a simulation

The main activities involved in setting up a poker
simulation are the following.
(1) Represent each of the 52 cards in the deck
by a unlque Iinteger from 1 to 52.
(2) Develop algorithms which will shuffle this
deck, and calculate various probabilities
assoclated with a hand of cards that are

crucial to the game of poker.
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(3) Prepare an algorithm which will calculate which
cards to discard during the hand improvement
process.

(4) Now methods of describing betting strategiles
must be found which are intelligible to a
computer. The method used here is based on
the program being able to evaluate probabilit-
ies relating to a poker hand, then employing
algorithms which calculate when and how much
to bet in a given situation for a given strength
of hand. These algorithms give numerical
procedures which calculate the size of the bet,
using the above mentioned criteria, and are
based on observed patterns of play followed
by experienced poker players, (30).

(5) Using (1) to (4) above it is a simple matter
to construct a poker playlng program, which
must then be verified.

DETAILED METHOD OF SIMULATION

2.5 Rules of the game

Poker is a game played with a deck of 52 cards, and

any combination of 5 cards constitutes a hand. There is a

hierarchy of hands which 1s well known and 1is glven in table
1. The particular game simulated here is called 5 card

draw poker and is the most commonly played version of the
game. It has the followling rules.
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TABLE 1

CLASSTIFYING POKER HANDS

Poker hands may be classified into 9 different

types as given below 1n decreasing order of strength.
It should be noted that apart from the flush and .the
routine, sults are irrelevant to hand strength.
1. Straight flush or routine, which contains 5 cards in

sequence, and 1n the same suilt.
2. Pour of a kind, and 1 odd card.
3 Full house which has 3 of one kind, and 2 of another.
4., Flush, which has 5 cards of 1 suit.
5. Stralght, which has any 5 cards 1n sequence.
6

Three of a kind, and 2 idle cards. (Idle cards are ones
which take no part 1n determining hand strength.)

7. Two pairs and 1 idle card.
8. One pair and 3 1dle cards.
9. No pair and 5 1dle cards.
The rules for determining the stronger of 2 hands
when both are of the same type are well known and may be

found in any book on poker (see (30)).
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There are n players (1 < n < 7) numbered
consecutively by the integers 1 to n 1n a clockwilse
manner (looking on to the table from above). Player

n-1 1is called the dealer and player n the blind.

The dealer shuffles the deck of cards and deals 5
cards to each player. The blind now places a compulsory
bet of 1 unit into the pot. Next all players look at their
hands, and decide in turn, beginning with player 1 and end-
ing wlth the dealer, whether or not to play. If they_wish
to play they must place 2 units in the pot. If no player
decldes to play, the blind retrileves his 1 unit bet and the

game ends, otherwise the blind has 3 options open to him.

(1) He may drop out of the game and forfeit his 1 unit bet.

(2) He may elect to play on by making an additional bet of
1 unilt.

(3) He may bet a further 3 units (thus making a total of U
units).

This is called doubling, and in this case each player,
in ascending numerical order, must either drop out and for-
feit his bet or else place a further bet of 2 units into the

pot. If, after a double, all other players drop out, then
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the game ends and the blind wins the pot.

Next, each player in turn, may discard up to 4 cards
from his deck and receive an equivalent number of cards from
the dealer. This will be referred to as the hand improve-
ment stage and completes the first phase of the game.

In the second phase of the game all remaining players
take part in a round of betting that determines the ultimate
winner. Betting begins with player 1 and proceeds in a
clockwise manner with each player in turn having 3 options.

(1) He may drop out of the hand.

(2) He may "look", that 1s make such a bet that his
total bet becomes equal to the greatest total bet
made by any other player still in the game.

(3) He may "raise", that is bet sufficlent to look,
and then increase this by any amount from 1 to 5
units.

Until some player makes an initial bet of 1 to 5 units, all
players who "pass" (i.e. do not bet) must drop out of the
game.

Betting is continued untill either only 1 player remains
in the game, in which case he is declared the wilnner, or else
until, after a raise by one of the players, there has been
no further ralse by the time betting returns to that player.
In the second case the winner is the player showing the best

hand.
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In the succeeding game the blind becomes the new
dealer and the other players are appropriately renumbered.

2.6 Simulation of shuffling

Each card 1is represented by a unique integer from 1
to 52. Initially, these integers may be stored in any
order in an array, ICARD(1)....ICARD(52). An algorithm
was written which used a random number generator to shuffle
the digits randomly in the array ICARD. The algorithm was
based on a method proposed by de Balbine, (1) and has the
property that after the shuffling, all possible combinations
of the 52 cards are equally likely. A flow dlagram of this
algorithm is given in figure 1 in the form applied in this

study.

This algorithm works by exchanging the first element
in the array ICARD(1),...ICARD(52) with itself or with
any other element on the right, with equal probability for
all exchanges (the particular element exchanged is determined
by the random number x). This process is repeated witli the
second, third, fourth element etc. up to the second last
element. de Balbine shows thats regardless of the initial
ordering, this method will yield a random permutation of
the original array, with all possible permutations being
| equally likely. Once the deck is shuffled the cards are
dealt to the players in the conventional way, one card per

player, until each player holds 5 cards.
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2.7 Improvement of hand

An important matter in a hand of poker is choosing
which cards to replace in the hand improvement stage.

There is general agreement amongst card players concerning
which cards to discard from eany given hand, and an account
of this is given in Reece and Watkins, (30).

Thus it is commonly accepted that, if a hand cont-.
ains 2 paired cards, and 3 non-paired or idle cards, then
it is best to discard the 3 idle cards. An asggregation of
these accepted norms would make it possible to construct a
deterministic algorithm to compute which cards should be
discarded for any given hand. However, before using
these arbitrary judgements, a Monte-Carlo method was
programmed to determine optimal throwaway strategies for
every type of hand. The method used to achieve this was
based on an idea of Findler's, (10). The best throwaway
combination for a particular hand was determined by consid-
ering all possible throwaway combinations, improving the
hand randomly a large number of times (~ 20,000) for each
of these, and then choosing that throwaway which gave the -~
best result. The results obtained agreed exactly with the
throwaway strategies advocated by experienced players (30).
However, the time taken to compute each case using this
method was approximately 20 seconds of central processor

(c.p.) time+, and hence a deterministic algorithm was tried.
1.

All computation was carried out using a CDC 6400 computer,
and times taken apply to this machine (see (4)).
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This new algorithm warked in the following waye.
First a hand was classified according to its type, and then
the appropriate cards to discard were chosen on the basis
of the results that had been obtained using the Monte-Carlo
method. This algorithm was faster by 2 orders of magnit-
ude than the Monte~Carlo method, and it is described in
more detail in the flow diagram given in figure 2.

2.8 Calculation of probabilities

The calculation of the probability of winning with a
certain hand, both before and after the draw, is crucial in
poker. Findler, (10), suggests a Monte-Carlo method.

Th but found to.
his qu'trieﬂjgﬂgﬁai%?‘w111 be é yen late€l+hw3»auo &Gu%MmJ
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be very slow.fx.Alternatlvely, Epsteln, (9), derived the
table of probabilities given in table 2. However these
are not sufficient in themselves, because although the
table gives the probability of obtaining any given hand
and the probability of improving to any better hand for
any given number of cards drawn (discarded), it does not
give the corresponding probabilities of winning. As a
table giving the required probabilities could not be

found, they were evaluated in the following way.
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EPSTEIN'S TABLE OF POKER PROBABILITIES

31.

Original Probability Cards Improved hand Probability of
hand of receiv- drawn receiving improved
ing that hand hand

One pair 0.4226 3 two pairs 0.16

3 3 of a kind 0.11k

3 full house 0.0102

3 4 of a kind 0.0028

3 any improvement 0.287

2 2 pairs 0.172

2 3 of & kind 0.078

2 full house 0.0083

2 4 of a kind 0.0009

. 2 any improvement 0.26

two pairs 0.0475 1 full house 0.085
3 of a 0.0211 2 full house 0.061
kind 2 4 of a kind 0.043

2 any improvement 0.104

1 full house 0.064

1 4 of a kind 0.021

1 any improvement 0.085
straight 0.0039 0 cannot be improved 0.0039
flush 0.0020 0 by u N 0.0020
full-house 0.001k 0 " " " 0.001)4
4 of a kind 0.0002k 0 . N " 0.0024
straight 0.00001k4 0 . . i 0.00001k
flush _
royal flush 0.00000123 0 mooom " ~ 0.00000123
4 straight 0.035 1 straight 0.17
(open)
4 straight 0,123 1  straight 0.085
(gap)
4 flush 0.043 il flush 0.191
i straight 0.000123 al straight flush 0.043
flush

1l eny straight or 0.319

flush



32.

Let h Dbe some unimproved poker hand, then fp(h)
is the probability that the hand h has of beatlng any
other random unimproved hand. Now if h is some already
improved poker hand then define fga(h) as the probability
that the hand h has of beating any other random improved
hand. A quick method of evaluating fg(h) and fy(h) 1is
required.

Findler, (10), proposed that a Monte-Carlo method
be used. This method was programmed but found to be slow

(with each calculation taking about 5 secs. of c.p. time).
TITNSET (OES HERE,

Findler in a later publication, (37), deals with the calc-
ulation of probabilities in a more sophisticated way. However,
since this work was not available at the time of writing the sim-
ulation described here, use of these new methods could not be made,
This does not affect the results of this work as the exact method
of calculating probabilities is not of central importance, The
approach to the calculation of probabilities adopted in this study

is a two-phase one, and will now be described,

Vaanwr  a  emoem o 8V el A [« T s it v was CLALY  LlCLLLNA 1 9 -wN--s 3 ———— - -

approximately determined thus. First, a large number,
N(N=30,000), of random hands are generated. Second, L,
the number of times that the given hand h beats the random-
ly generated hands 1s noted, and fp(h) 1s approximated

by L/N. Even though the implementation of this method is
straightforward, the calculation must be carried out in such
a way that the execution time is kept to a reasonable level.

Because of this constraint various complicatlons arise, and
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the technical details of this process are presented in
appendix C.

The Monte-Carlo method used to evaluate f,(h)
differs from the method given above only in that the hand
h 1s tested agalnst a large number of randomly lmproved
hands (see appendix C).

The interpolative phase of this process wlll now be
described.

Table 3 defines 9 intervals 1n which any unimproved
hand h may lie. For each of these intervals the table
gives hi which 1s the lowest hand of the 1i-th 1interval,
and h}% which is the highest hand of this interval (inclus-
ive). The corresponding probabilities fy(hi) and fp(hi),
as calculated by the Monte-Carlo method are also glven.

Consider, for example, the second interval. This
interval includes all hands that contain exactly 1 pair:

By considering all hands of this type it can be seen that
the lowest possible hand of this type 1s 2C 2D 3C U4C 5C
while the highest hand is AC AS KC QC JC.

| The probability of winning that any unimproved hand
h has may be approximated from thls table in the following
way. First it 1s required to determine the interval 1
to which this hand belongs and corresponding to this inter-
val there is a numbering function pi (see table U4) that
assigns an integer pj(h) to each hand h belonging to

the interval. This function pj3; 1s chosen in such a
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TABLE 3

PROBABILITIES OF WINNING FOR UNIMPROVED

HANDS CALCULATED BY A MONTE-CARLO METHOD

Inter-

. A W2, . 2
val No. hi:Low hand of inter-|fp(hi)|hj:high hand of inter-|fy(h)

val val

1 7¢ 4 3D 2D 58 0.0000fAC XC QC JC 9D 0.k4oLs
2 2¢ 2D 3C kLC s5C 0.5010[[AC AS KC QC JC 0.9198

3 3¢ 38 2C 28 ke 0.9205AC AS KC KS 2C 0.9711

4 2C 25 2D L4 55 |0.9T11{AC AS AD 2C 38 0.9920
5 5¢ L4 38 2¢ &S 0.9940fAC KD QS JC 10C 0.99k4
6 TC 6C S5C L4C 2C [0.9964fAC KC JC 10C 9C 0.9975
T 2¢ 25 2D 35 3C [0.9982[AC AS AD KC KS 0.9993
8 2C 28 2H 2D 3S  [0.9993]|AC AS AD AH KS 1.0000
9 5¢c 4t 3C 2C AC  |1.0000f{AC KC QC JC 10C 1.0000

Note that even though suits do not influence the strength of a poker

hand, they are included in the above table for greater clarity.



TABLE L4

HAND NUMBERING FUNCTION pi(h)

35.

Number, i| Hand type| variasble description pi(h) for h in group i
7
1 nothing |il=numerical value pi(h) = i1
of highest card
2 1 pair il=value of pair pz(h) = i1
3 2 pair il=value of higher pair| ps(h) = (11-2;(11—3) +i2
i2=value of lower pair
L4 3 of a kind|il=value of 3 of a kind| p4(h) = il
5 straight il=value of high card ps(h) = i1
(the one exceptional
case when Ace is count-
ed as 1 rather than 1k
occurs when the Ace
forms the first card of
a straight
6 flush il=value of high card | pe(h) = il
T full-book |il=value of 3 of a kind| p7(h) = 12(i1-2)+i2
i2=value of 2 of kind
8 routine as for straight with pe(n) = i1

il=value of high card
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way that the value of fy(h) may be approximated by a lin-

ear interpolation between fb(hi) and fb(hi), see diagram .

below, where the gradients AB and BC may differ slightly.

fp(hi) o
/////
fp(h) ///B
s
g
£y, (hi) A
1 2
pi(hi) pi(h) pi(hi)

By assuming that the gradients AB and BC are equal it
may be found that
1
py(h) - py(hy)

Pi(h?) - Pi(hi)

£y, (h) = £, (ht) + . [fp(n}) - £, (7))

where f,(h) approximates the required probability.

For example, in the interval

i=2, where hj = 2C 2D 3C 4C 5C

and  hi = AC AS KC QC JC

it is natural to choose p;(h) equal to the numerical
value of the pair, where the ace is counted as 14 and it
follows that p;(h}) = 2 and py;(h%) = 1k.

Hence, given some hand h in this interval, say,

h = 6C 6D 7C 2D K8
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fy(h) is approximated by
Py (h) - py(h1)

fp(ht) .[£p (B3)-£ (h})
* p1 (hf)- py(hi) [ D]

6 - 2
0.5010 + o= 2 .[0.9198-0.5010]

= 0.6263.
Note that the failure of this approximation to distinguish,
for example, between 6C 6D 7C 2D KS and 6H 68 AC QS KH,
is unimportant because the 3 non-paired cards in each hand
are later to be discarded, and thus may be safely ignored.

Winning probability for an already improved hand, f,(h).

The winning probability for an already improved
hand f,(h), is found by the same interpolative method as
was used to find f,(h) except, in this case table 5
defines the intervals used.

2.9 Betting strategies

The betting may be divided into 2 phases, betting
before the draw, and betting after the draw.

In betting before the draw each player decides, in
turn, whether to ante 2 units and play, or whether to drop
out of the hand. This decision is determined by the cards
that a player holds, the nunber of players who have already
anted, the number of players still to decide, and the
state of the game.

When this progrem was first written, a very simple
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TABLE 5
PROBABILifIES OF WINNING FOR IMPROVED HANDS

CALCULATED BY A MONTE-CARLO METHOD

Inter-
val no.

e po

1 y
hj:low hand of inter-|{fu(hi)[h}:high Hand of inter-|fy(h3)
val val

1 7 4 3D 2D 58 0.0000[{AC XC @C JC 9D 0.5011
2 2C 28 3C ks s¢C 0.5222|AC AS XS QC JC 0.7983

3 3¢ 35 2¢ 28 ke 0.7T99TAC AS XC KS 2C 0.9097

L 2C 28 2D k¢ s¢C 0.9100f{AC AS AD 2¢ 38 0.9716
5 5 W 33 2C¢ &S 0.97T8fAC KD QS JC 105 0.9820
6 TC 6C 5C hc 2c 0.9820fAC KC QC JC 9C 0.9846
T 2C 23 2D 38 3C [0.9852|AC AS AD KC KS 0.9967
8 2C 25 2H 2D 35 [0.996T{|AC AS AH AD XS 0.9997

9 5¢ LC 3C 2C AC 0.9999|AC KC QC JC 10C 1.0000
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criterion for entering or dropping out was used. However,
this was discarded, because later work in this thesis (see
5.5) showed that there was a better approach to this prob-
lem, and since little extra work was involved, the program
was modified to operate on these improved principles.

The strategy, as used in the program, is most conveniently
considered in two separate parts.

(1) The minimum hand required to enter the game when no

other player has yet entered.

Suppose that a player holds hand R, no other
player has yet entered the game, and remaining players have
yet to decide. Then, (as shown in chapter 5) it is best
to enter the game only if f,(h) > f(n) where

f(n) = 0.01n® + 0.13n + 0.5 (1)

whire m v Ha wusber of plasges,
(2) Minimum hand required to enter if at least one other

player has already entered.

The minimum hand required to enter if at least one
other player has already entered is calculated in the
following way. A player should only enter if his hand h
is such that it is significantly better than the minimum
hand, H, that the last player to enter is expected to have.
More specifically, as shown in chapter 5, a hand h is
good enough if fy(h) > g(£) where

t = Ty (b)
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and g(L) = ¢ + %(14). (2)

The practical application of this idea is illustrated by
means of a simple example.

Consider a 7-player game where the players hold
hands where probabilities of winning, fb(h), are as
given below.

Player number Number left to declare £r (h)
1

0.97
0.99
0.87
0.96

N WO, O

0.52
1 0.76
0 0.84

~N O v Fowon

The decisions made by each player are summarised and
explained in table 6.
Player n (n=7 in the example above), is called

the "blind", and according to the rules of the game has 3
options available to him, to drop out, play on, or double.
He chooses to select his strategy in the following way (see
chapter 5).

Drop if fy(h) < ¢/2

Play on if t/2 < fp(n) < ¢ + £(1-¢)

Double if t+3(1-£) < £, (h)



AN EXAMPLE OF THE BETTING ALGORITHM

TABLE 6

41,

£, the probebility of

the minimum required

Player|Decision Reason hand held by last play-
number| made er to enter
i enters |because 0.972£(6)=0.92 % becomes 0.92
2 enters |because 0.992g(2)=g(0.92) % becomes 0.96
=0.96
3 drops |because 0.87<g(%)=g(0.96) 2 remains at 0.96
=0.97
L drops |because 0.96<g(%)=g(0.96) £ remains at 0.96
=0.97
5 drops [|because 0.52<g(2)=g(0.96) £ remains at 0.96
=0.97
6 drops |because 0.76<g(2)=g(0.96) 2 remains at 0.96
=0.97
T player T, the "blind", selects his strategy in a different way,

which is described on the previous page.
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It is also shown in chapter 5 that following a
double it is best for the players still in the game to
continue playing and this strategy 1is used here.

Second round of betting

Now the second round of betting will be considered.
As this part of the game has not been solved analytically
due to its complexity, the following strategy, partially
based on ideas proposed by Findler, (10), and Coffin, (6),
is used in this program. |
Let p2(h) %be the probability thét a hand h has
of winning, after the draw, against n other players,
where pi(h) = [fa(h)]". Suppose that the size of the
pot is p, q 1is the amount required to look, and e=1
is some constant. Then the strategy followed is:
a player drops if pl(h).(p+q) < g-¢
a player looks if g-€ < pg(h).(p+q) < g+¢€
a player raises by
pa(h).(p+q) - g units if q+e < pi(h).(p+q) (3)
The strategy is based on a computation of a player's
expectation for a given hand (expectation equals probabil-
ity of winning x totsl size of pot), which is then compared
with q, the amount required to look. As this expecta-
tion is below, approximately equal to, or above g, so a
player drops, looks or raises. Obviously the value of ¢
can be adjusted so that a player will raise more or less

frequently.
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This very simple algorithm does not include bluffing

although this was included in an earlier version of the
program, but removed because the program was too slow
(see next section).

Programming

The implementation (programming) of the simulation
was a simple though tedious matter, and hence further
details will not be given here. It was experimentally

found that each game simulation took approximately sec.

4
10
of central processor (c.p.) time.

DISCUSSION

2.10 Checking of results from computer runs

Before the results obtained were used, a check was
carried out to confirm that the program was functioning
correctly. This was done by simulating a number of games
(about 60) and printing out all the relevant details of each
game. It was found that the plays made in each game were
consistent with the logic used in the simulation.

2.11__Interactive poker

The program was set up to play poker interactively,
with a human player able to take the part of one or more
of the simulated players. Communication between the
players and the machine was via a screen and keyboard
terminal. Figure 3 below illustrates the main operating

details of this program.



FIGURE 3

INTERACTIVE POKER SIMULATOR

START

\

Machine shuffles and deals the cards
to all players, where human players
have their hands displayed on the
screen. Special arrangements are
made so that each player's hand is
not revealed to the other players.

4

Players, in turn, nominate whether
they wish to play, or not. The
machine i1s informed, via the key-
board, which players declde to ante,
whille the actions of the simulated
players are described vlia the screen.
Doubling, if it arises, 1s handled in
the same way.

A1l players still in the game are
allowed to improve theilr hands. The
human players must type in which cards
they wish to discard, and their re-
placement cards are shown on the
screen.

The . final round of betting takes
place, wilth all relevant bets display-
ed on the screen. The simulated play-
er's bets are computed by the program,
while the human players must key in
thelr bets on cue from the screen.

The machine calculates the winner, and
computes amounts won and lost by each
player. Then a—new game is commenced.

44
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Because of the following practical difficulties

this work on interactive poker could not be carried to a

satisfactory conclusion (a realistic poker game involving

human players).

(1) Poker needs to be played with real money for the
results to have any practical significance. This
would not only have been difficult to arrange, but
it was felt that this direction of research was
outside the intended scope of the work, which
deals primarily with methods of finding optimal
strategies for poker-like games.

(2) Poker is always played in sessions ranging from
several hours up to 12 hours or more. Indeed,
good players often vary their style of play period-
ically in order to create uncertainty in the other
players, and this tactic is of great importance in
the game of poker.

However, even if it were possible to overcome objection (1),
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it was not possible to obtain the computer for the many
long, uninterrupted sessions which would have been required
in order to conduct such an experiment, as no interactive
time sharing system was available.

Nevertheless, the results obtained with the inter-
dctive poker simulator suggest that it would be possible
to continue work in this area, using the interactive poker
program developed here as a starting point.

2.12 Investigation of poker strategies by simulation

It is theoretically possible to investigate poker
strategies by simulation in the following way.

First note that the strategy of each player in the
simulation model presented here depends on the functions
f(n) and g(t) (see egs.? and 2), and the arbitrarily
chosen parameter e (see eg.3). Consider the parameter e.

By keeping the parameters (f(n), g(£) and €) of
all players constant, one player could be left free to vary
the parameter € as he chose, If a sufficiently large
number of games were simulated for each different choice of
e, he could determine that & which gives him the best
overall results under the given conditions.

However, this approach has several disadvantages.
First, when a simulation of this type was tried on a
simplified version of this game (see chapter L) it was

found that a large number of games (several thous and)
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needed to be simulated with any particular set of parameters
to determine the expectation to any reasonable degree of
accuracy (say to within 1% of the exact expectation which,
in this case, could also be calculated analyticadlly).

But since the game considered here is more complic-
ated than this, and since each hand takes approximately
%5 sec. of c.p. time to simulate, the total amount of c.p.
time required to compute each of these expectations would
be high (several hundred seconds). Now, consider the
following additional factors.

(i) This whole process would need to be repeated,

in turn, for each player.

(ii) The strategies used by each player are inter-
related and so (i) above would need to be
repeated until stable strategies were obtained
for all players concurrently.

From the above analysis it becomes clear that this
method would not be practicable (too much computer time
would be required), even if, as has been done here, the
poker program was kept as simple as possible (i.e. bluff-
ing was not introduced and only one variable, &, was
considered in the hypothetical experiment).

This failure does not imply that a more sophistic-
ated approach to this problem might not drastically reduce

the computation time. But such work would be sufficiently



L48.

complicated to form a large, complete area of research,
and it was decided that this lay outside the scope of this
present work.

2+13 Concluding remarks

It was shown that investigation of poker by simu-

lation is theoretically feasible, but, without further

wetng Wl madhads dusontand Veve,
development, far too time consumingA The program develop-
ed here reduced the c.p. running time by working out prob-
abilities and hand improvement in the fastest possible way.
Evidently, further progress in simulation must follow these
and other lines if these methods are to be at all practic-
able, (see Todhir (11,2%)),

It became clear that the amount of work required to
achieve effective progress in simulation would be 1likely to
be extensive. There was a choice of continuing with the
research on simulation or of attacking the problem using
game theoretic methods. After preliminary investigation
it was realized that it would be impossible to do both,
and thus the game theoretic approach was chosen as it

seemed likely to yield useful results more quickly.

Findler's poker group is currently working ined out on simulation

this area, (37,38), and are obtaining some
interesting result,

and could form a basis for further research,.
Finally, the possibility of using the poker simu-
lator to play interactive poker was demonstrated. Al-

though this idea has no doubt been considered before
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details of experimental work in this area have not previous-
ly been published. Interactive poker is an important part
of poker simulation since it may be used to validate ex~-
perimentally the effectivehéss of strategies calculated
either by simulation or by other methods, by testing them

under conditions of actual play.
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CHAPTER 3
LOOKAHEAD (LAH) ALGORITHM

3.1 An Introduction

It was shown in chapter 2 that simulation could not
be convenlently used to study the game of poker. An alter-
native method of approaching this problem is to construct
mathematical poker models then solve these by game theoret-
ic methods. When this approach was tried it was found
that only the 2-person version of the particular game form-
ulated could be solved by using standard methods (as found
in the 1iteratura. It became evident that more real-
1stic versions of the game, because of thelr greater com-
plexity, could not be solved algebraically, by avallable
methods, and thus numerical lterative methods were consid-
ered.

The only numerical method described in the literat-
ure which 1s relevant to this study, [Rosen, (31)], 1s iter-
atlve and requilres derivatlives which cannot be obtalned for
some of the games treated here. Thus a modifled wversion of
Rosen's method was suggested which does not require deriva-
tives, but it was found to be slow for the purposes of this
research.

As a fresult a new 1lterative method, called the
Lookahead (LAH) algorithm, was formulated. Its speed of

execution was shown to be at least 3 times as fast as
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Rosen's method when applied to problems of the type that
are treated in this study.

This chapter will be organised in the following way.
A general statement of the problem will be gilven. Next,
two numerical methods of solving games will be described.
The first of these ls Rosen's method mentioned above, and
the second, the Lookahead (LAH) algorithm, which 1s the

main theme of this chapter.

3.2 Mathematical Statement of Problem

The games that arise in this study fall into the
category of n-person non-cooperative games, and may be de-
fined in the followlng way. If, In a game T, with n
players, each player acts purely in hls own individual self
interest, and coalitions between players are not allowed,
then TI' 1is defined to be a n-person non-cooperative game.
Consider such a game T when the players are denoted by
the integers 1 = 1,2,...n. The following definitions
relating to this game I will be used.

A strategy 1s the specification of the courses of
action that a player will adopt 1in all given situatlons
with which he can be presented. Let Si, the strategy
space for player 1, be the set of all possible strategies
availlable to player 1.
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Let ol € S; be some particular strategy being
used by player 1. When the n players are using
strategies ol,...a® let o = [ai,...a“]T be the current
strategy vector. If S = 5,®...85, 1s the cartesian
product of 8;,...3;,; then it follows that o e S. Each
player 1 has a real valued payoff function f;(a) which
assigns a unique payoff for every ae S. Hence, f,{(a),
the payoff to player i, is not only a function of his own
strategy o!, but also depends on the strategies al,...aP
followed by the other players.

The variable o may be constrained by p constraint

relationships of the form
gi(a) 2 0 for J=1,...D

where the functions g,,...g are real valued functions

defined over the set S. Fur thermore, each strategy

al € 8; is defined to be a vector with m; real compon-
1 _ 1 1 1T

ents a' = [aj...oq, ] .

Eguilibrium points and optimal strategies

Nash, (25), introduced the concept of the equilib-
rium point (e.p.), which is commonly used to characterize
optimality in the general n-person non-cooperative game.
Nash's definition of optimal strategy is applicable to the
games considered in this study, and will therefore be used,

and is as follows:-~
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Let o!, (i=1,...n) be an optimal strategy for
player i in the game T, where o = [ai,...a”]T is the
optimal joint strategy. Then Nash states that player i
may not change his strategy a! without suffering a de-
crease in his payoff function f;(a) and describes this
situation as occurring at an equilibrium point (e.p.).

For example, if player i changes his strategy from ol
to aiy, the new joint strategy is
o* = [at,a?,...at® an]T,
and Nash's definition of the e.p. requires that
fi(a) = £y (a¥).
If, at the end of the game T, total gains equal

total losses, then I is said to be a zero sum game.

n
i.e. 12 fi(a) = 0 for all ae S.
=1

of
aﬁ“;' = 0 fOI‘ i=1,oo-n aIld j=1,ou-ml tllen
[

If

Nash, (24), states that the joint strategy @ is an e.p.
Solving n-person games

For simple games, exact analytic solutions are
obtainable (see chapter b). However, for more complicated

games, numerical iterative methods are required, as dis-

cussed in the next section.
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3.3 Rosen's method of numerical solution

Rosen's method approaches the e.p. by stepping in
the direction of increasing gradient (computed from the
derivatives of each player's payoff function). In this
study it is not possible to calculate derivatives and
consequently the approximation

fx+Ax) - P(x-Ax)
2Ax ’

£/ (x) = Ax small

is useqd. Since this is the only significant change to this
algorithm further details will not be given, but may be
found in (23).

This algorithm was able to solve the 2-person pokerT
like game formulated in chapter L4, but it was slow (see
3.9). Since, later, L-person versions of the 2-person game
were to be treated, speed of execution was crucial.
¢4 The Lookahead algorithm

The Lookahead (LAH) algorithm was formulated as an
alternative to Rosen's method. It is an iterative method
that solves a game by approaching the e.p. in a series of
steps. When implemented on the computer it was found to be
3 times faster than the modified version of Rosen's method
as used here. The algorithm is based on loocking ahead in
the same way that a chess player considers the replies open
to his opponent, before making his own move.

The algorithm is first applied to a 2-person game

and shown to give an e.p. consistent with Nash's definition.
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This algorithm is then generalized to the n-person case.

Finally, two problems with known solutions are solved
correctly.

3.5 _The LAH algorithm in a_ 2-person game

Consider a 2-person non-cooperative game where
rlayers 1. and 2 control respectively the variables o' and
a2, The joint strategy is o = [ai,az]T and the payoffs
f,(a) and fy(a) depend for each player both on his
strategy and on that of his opponent. Suppose that
player 2 has fixed o® and player 1 is considering a
change in at. Player 1 has no control over player 2.
Accordingly he considers the effect of his opponent's
response first to a small increment in a, and then a
small decrement. With this knowledge he chooses the course
most likely to maximize his return. Player 2 responds to
the choice made by player 1, in a similar way. The players
continue to alter their variables in turn until a stable
situation is reached from which neither player is prepared
to deviate.

A simple numerical example will now be given to
show how this algorithm works in practice. Suppose in the
game described above the rules are such that O < al < 1,

0 < a® € 1 and the payoff functions are given byt~
£, (a) = 5al + 707 - q20ta?

fz(a) = -f,(a).
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Assume that each player can only increment or
decrement his wvariable by *A where A = 0.1, and hence
al,a? can only assume the discrete values 0:il,...

0.9, 1.0. Table 7 below glves all possible payoffs f;(a)

in these circumstances.

TABLE 7

AN EXAMPLE OF THE LAH ALGORITHM

PLAYER 2
value of a2

0,1 0.2 0,3 O.4 0.5 0,6 0.7 0.8 0.9 1.0

0.1] 1.08 1.66 2.24 2.82 3.0 3.98 k.56 5.1k 5.72 6.30
0.2f 1.6 1.92 2.38 2.84 3.30 3.76 L4.22 L4.68 5.1k 5.60
0.3] 1.84 2.18 2.52 2.86 3.20 3.54 3.88 k.22 L.56 L4.90
Player 0.b4j 2.22 2.4 2.66 2.88 3.10 3.32 3.54 3.76 3.98 L.20

1 0.5 2.60 2.70 2.80 2.90 3.00 3.10 3.20 3.30 3.4k0 3.50

value 0.6 2.98 2.96 2.94 2.92 2.90 2.88 2.8 2.84 2.82 2.80
of o> 0.7] 3.36 3.22 3.08 2.9% 2.80 2.66 2.52 2.38 2.2k 2.10
0.8f 3.74 3.48 3.22 2.96 2.70 2.4k 2,18 1.92 1.66 1.40

0.9 4.12 3.7h 3.36 2.98 2.60 2.22 1.8% 1.4 1.08 .TO

1.0f 4.50 L4.00 3.50 3.00 2.50 2.00 1.50 1.00 .50  -.00

Suppose that initially o!=0.4 and a?=0.3, and

that each player is aware of what the other is doing.
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Player 1 considers the following 3 possibilities.

(1) Player 1 chooses al=0.4

In this case player 2, knowing that «1=0.4 will
attempt to maximize his payoff fz(a) by changing o® to
0.2, 0.3 or 0.4, Since player 2's payoffs for these 3
choices are -2.44, -2.66, and -2.88 respectively, [as
fo(a) = -f,(a)], he will naturally choose a®*=0.2, as
this maximizes his payoff.

Hence if player 1 lets o'=0.4, he may expect
player 2 to choose a®=0.2. Thus the expected payoff of
player 1 is 2.4L4. The algorithm employs only 1 degree of
look ahead because it was experimentally shown that this is
sufficient for the algorithm to converge when dealing with
the class of games encountered in this study.

(2) Player 1 chooses 01=0,3

Using similar reasoning to that above player 1
calculates that if al=0.3, he may expect player 2 to
choose a®=0.2. Thus his expected payoff in this situa-
tion is 2.18.

(3) Player 1 chooses a*=0.5

Player 1 computes his expected payoff to be 2.7 in
this case.

Hence player 1 realizes that his best strategy is to
choose o!'=0.5, as then his expected payoff is maximized

at 2.7.
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Now it is player 2's turn to repeat this same
process, The starting point this time is al=0.5 and
a2=0.,3. Player 2 considers the following 3 possibilities.

(1) Player 2 chooses 02=0.32

In this case player 2 calculates that he may expect
player 1 to choose a'=0.6 (as this maximizes player 1's
payoff). Thus the expected payoff for player 2 will
become -2.94.

(2) Plaver 2 chooses 02=0.2

Now player 1 may be expected to choose al=0.6,
making player 2's expected payoff -2.96.

(3) Player 2 chooses a2=0.U

Again player 1 may be expected to choose al=0.6,
making player 2's expected payoff -2.92.

Hence player 2's best move is to choose «2=0.14,
as  -2.92 > max{-2.94, -2.96, -2.92{. The solution point
now becomes al=0.,5 and a2=0.4,

In this way the solution point will keep moving
through the game matrix until it reaches a%=0.6 and
a?=0.4, from which point neither player is willing to
deviate. Now the grid size A 1is diminished by some
fraction ¢(0 < o < 1), and the process repeated until
another stable point is reached. The grid size is
again diminished, and this process continues until A

becomes smaller than some predetermined value e. It
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will be shown in 3.6 that in certain cases when the payoff
functions are sufficiently smooth, the final point reached
will be consistent with the equilibrium point of Nash.

Often problems in game theory contain constraint
relationships, and these gre handled as follows.
If at any time a variable is altered in such a way that it
no longer satisfies the constraint relationships then it
is moved back towards its original value until the con-

straint relationship is again satisfied.

3.6 Bguivalence between LAH solution and e.p.

In this section it will be shown that for a 2
person game, where each player controls 1 variable, and
where the payoff functions are sufficiently smooth, there
is an equivalence between the e.p. of Nash, and the isolution
found using the LAH algorithm.
Consider the 2 person game defined in 3.5. Let the grid
size A, used in the LAH algorithm be very small, and
assume that the payoff functions, in the vicinity of some

point o = [ai,az]T can be approximated by the planes

it

£, (o) 8,40 + 8,20% + a3 (1)
fo(a) o 8,0 + 85,07 + agy (2)
which pass through the four grid intersection points adjac-—

ent to a. Then if f,(a) and f,(a) are sufficiently smooth

these approximations and their derivatives will converge



60.
uniformly to the fuqctions fi(a) and fy(a) and their
corresponding derivatives, as A - O (see D?C; Handscomb,
(15 '

Hence thel derivatives of the functions £,(a) and
fz(a) may be ciosely approximated by the derivatives of
these planes.

Differentiating eq.1 and 2, and taking the limit

as A5 0
of, . . of
—_— =8 and 2 =a 3)
aa» 11 5&7 22 (

In this section some new notation will be used.

Let

.
Q
|—b

sty

Si(ai,az) - < 0

wa

(o7 R o% [o7) Re¥) Q
L
i
(@

Therefore from eq.3

a
(=l s a4y 20
a4

5 (at,a®) = ¢ W)

0 H ajy =0

.

Hence 8;(a?,a®) is a constant, independent of a! and oZ2.
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Suppose that the LAH algorithm is being used on this prob-
lem, and it is the turn of player 1 to move. The current
Joint strategy point 1s at E 1in the diagram given below.
Player 1 must decide whether to remain where he 1s at E,

or move right to F, or move left to D.

A B C
(a?-A,|a?+4) (ol ,|a2+a) (al+A,|02+A)

D E B
(al=-A,|a?) (al,|a?) (al+A,|a?)

G H I
(al-A,[a2~A) (al,la2-A) (al+d,|a2=A)

Thus he will consider the 3 situations (a), (b) and (c)

given below.

(a) Player 1 remains at E

Player 1 assumes that player 2 has 3 choices, each

having the payoff as given below.

(1) Player 2 remains at E then his payoff is
fz(al,dz) = 821d1+a22a2+a23
(i1) Player 2 moves to B then hils payoff is

fz(al,a2+A) i

a21a1+a22(a2+A)+a23
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(111) Player 2 moves to H then his payoff is

£2(al,a2-A) = azial+azz(a?-A)ta,,

From this 1t can be seen that if a,» > 0 then player 2
moves to B, 1f az» < 0 then player 2 moves to H,
arid if ajzz = 0 then player 2 remalns at F.

But as from eq.l4

asz = 0 1mplies that S, =0
and azs > 0 implies that S, =1
and azs < 0 implles that S; = -1,

the above situation can be expressed thus.

Player 1 will expect player 2 to

(1) remain at E 1f S, = 0
(i1) move to B 1f S,
(iii) move to H 1if S, = =1

L}
[

That is player 2 will move to a? + A.S,

(b) Player 1 moves to F

Using the same argument as in (a) it can be shown
that

player 2 will

(1) remain at F 1f S, = 0
(11) move to C 1f S, =1
(11ii) move to I 1if S; = -1

That 1s player 2 moves to o2 + A.S,

(e¢) Player 1 moves to D

player 2 will

(1) remain at D if S, =0
(11i) move to A if S, =1
(111) move to @& 1if S; = -1
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That 1s player 2 moves to o2 + A.S,

Hence, regardless of whether player 1 chooses E,F or
D it may be seen that player 2 will move from a? to
a2 + A.S,.

Thus, player 1 may now calculate his expected payoffs

in the 3 situations

(a) player 1 remains at E

expected payoff f£,(oa',0%+A.8,) = a;1a'+a,2[a?+A.S,]+a,s

(b) player 1 moves to F

expected payoff f)(al+A,a?+AS;) = aji(al+A)+a;,[a2+4S,]+a,s

(¢) player 1 moves to D

expected payoff fi(a’-A,a2+AS,) = a;;(a'-A)+a;,[a?+AS,]+a,,.
It can be seen from the above equations that player 1

will maximise hils payoff f;(e) if he

remains at E 1f a;; = 0
moves to F if aj;; > 0
moves to D if a;; <0

l3; a;, >0
It follows from eq. 4 that as S1 = 0 ; a;, 0 then, to
-1 ; a1 <0

maximize his return player 1 moves from o! to a1+A.S,.

Hence, it has been shown that when A 1is sufficiently
small player 1 will move in the direction of increasing
gradient S;, and will only cease to move when S,=0, that

of
18 when the derivative 35} = 0
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By a similar means it can be shown that when A is
sufficiently small, player 2 will move in the direction of
his increasing gradient, 8;, and will only cease to move
when S; = 0, that is %g% = 0. Thus, in the case of a
2 person game, with each player controlling 1 variable,
and the payoff functions satisfying certain conditiomns,
the solution found using the LAH algorithm will be such
that the derivatives gé% and %g% equal zero at that
point. Hence this point will also be an e.p. in the sense
of Nash.

By similar means it may be proved that there is a
similar equivalence between the 2 solutions for the case
of an n-person game, with each player controlling any
finite number of variables, provided that the payoff
functions f;(a) are sufficiently smooth. This will not .

be proved here as the proof used is similar to the one

given above.

3.7 Generalisation of LAH algorithm to_the n-person case

The LAH algorithm can be generalised to the
situation described in 3.2, involving n players, where
player i controls my; variables.

Suppose that the solution point is currently at
some point a = [ai,...a"]T and player i, who controls
the variables a{,...aéi must determine whether or not to

alter any of his variables. Player i will treat each
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variable of,...of  in the following way. First he will
consider ai and he will compute his expected payoff for

the 3 possibilities,

(i) a} altered to al+d

altered to al-A

o=

(i1) «
(i1ii) o} remains unchanged.
He then chooses that value of a} which promises him the
highest expected payoff, which is calculated in the manner
described below.

The expected payoff to player 1 for each of the
above 3 possible choices of a! 1is calculated as follows.
Let each of t he other n-1 players be considered in turn,
and allow each one the option of temporarily changing any
of the variables under his control by an amount A, in
such a way that his own individual payoff is maximized.
When this process has been completed for all players the
joint strategy o 1is changed to some o¥, and the
expected payoff of player i is given, for that particular
initial choice of of, by £(a%).

Player 1 repeats this process for all his other
variables of,...0q .

In this way, starting with player 1, and finishing
with player n, each player is given the opportunity of
changing his variables, and this procedure constitutes one

cycle of the algorithm.
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These cycles are ~ortinued until the joint strategy
oo remains unchanged for 1 cycle,. At this point the grid
size A is made smaller by some factor o, and the
complete process is repeated with the new A. The
algorithm stops when A becomes smaller than some pre-
determined minimum grid size e.

A flow chart of this algorithm is given in figure 4.

3.8 Applications_of the LAH algorithm

Three applications of the LAH algorithm to problems
with known solutions were considered. In each case the
correct result was obtained. Two of these problems were
linear programs reformulated as games, (23), and will not
be discussed here.

von Neumann's poker-like game

The rules of this game have already been given in
chapter 1.

The game is solved in the following way. This
solution will be given in some detail as the methods used
play an important role in the games solved in chapters L
and 5.

It is assumed that player 1 follows a strategy
governed by the function ¢,(x), where g,(x) is the
probability of making the larger bet, that is A units,
for a given hand X.

von Neumann shovs that the rules for this game lead

to the function ¢1(x) having the general form given below,



FIGURE 4

FLOW DIAGRAM OF LAHALGORITHM

FLOW DIAGRAN O A
START

nitlalize variables

number of players

original jJoint strategy vector

initiel step aize

minimum step size

ratio between successive step sizes

number of variables controlled by pleyer p

1
m
3
8
e
a

Tttt et

np

gz
giore latest solution in

array @
l

p=1,...n

consider the p-th player

1= 1,00

consider 1-th varilable

of player p

let t + x{ and conseilder

each of the three cholces of x{
X -t -4
X -t
xg “t + A

in the following way

@~ %

67

in the following way.

[

af s -2
af +«~ B

of « 8+ A

lat B8+ a¥ and calculate
fy(g) for the three choices

now coneider, in turn, each component a't‘(lqép)

and finally replace cx‘[‘ by that cholce

which gives the maximum fy{g)

lnow ealaulate f,(g) ]

thus, sech of the 3 values of x} give a value of £p(a)
replace x’; by that choice which gives the highest fl,(g_t)

does the new solution x

|9
ropaat algorithm

no

\equal the old solution &

a8

dimininh step slze A
A« owb

_/has minimum step size

repeat algorithm
with the emaller
step slze

\\ e been reached

yes

stop: a solution
hae been obtained




£8.

and this form of the functic:i s nsed here.
2 |
|
1l +———- ]
| ,
1 0 ;a<x<b
¢1(x) | $1(x)=
l lix<a or =x>b
I
| >
0 a b 1 X

The above function, ¢;(x), describes a strategy
in which player 1 bets A units if hils hand is elther
very good, (x»>b) or very bad (x<a). The latter bet
on a low hand corresponds to the bluff. If the hand x
1s such that as<x<b then player 1 bets B units.

The strategy for player 2 is given by the funection
¥1(y), where ;(y) 1is the probability that player 2 looks
at a bet of A units by player 1, if he (player 2) holds
hand y. For similar reasons to that given above it 1s

assumed that ¢,;(y) 1s of the form

A

v (y)
1l

03y <c
Pi(y) =
liy=2c
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This means that player 2 only looks at a bzt of A units

if his hand is reasonably good. Note that there is no
opportunity for player 2 to bluff in this situation.

If both players follow the above strategies it is
possible to calculate the expected payoffs to players
1 and 2 as functions f,(a,b,c) and fy(a,b,c) respective-
1y, and as this is a zero sum game, (i.e. the losses of

one player constitute the gains of the other)
fz(a9b’c) = "f1(a,b:c)°

Before calculating the payoff functions a new term

must be defined.
-wy if x>y
'X.Vzv 14 (X,y) =
L; if zx<y

Now it is possible to list all the possible plays, compute
their probability of occurring, and calculate the corres-
ponding payoff to player 1 in the following way. Consider
the play BB (i.e. player 1 bets B, and player 2 bets B).

The probability of player A bettting B is
[1-8,(x)], and the conditional probability of player 2
betting B is 1 (as player 2 is forced to bet B when
player 1 bets B).

Therefore the probability of this play is
[1-8,(x)]#1, and the payoff to player 1 is Bxi:"1(x,y)

because if x>y, then player 1 wins B units
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(x*s~1(x,y) = +1 for x>y) otherwise if 2's hand wins,
2
i.es y>x, then player 1 loses B units (x2:"1(x,y) = -1
2
for x<y). The event x=y of a draw has probability zero

and so does not affect these calculations.

In this manner the 3 different possible plays with
their probabilities and their payoffs may be calculated

and are summarised in table 8.

TABLE 8 : SUMMARY OF PLAYS FOR VON NEUMANN'S GAME

Play Probability Payoff to I
I II
B B 1-g, (x) B x;'“i(x,y)
A By (x)[1=¢,(¥) ] B
A A 4 (x)¢y (y) A x2mt(x,y)

Hence for any given hands x and vy, dE, the
expected payoff to player 1 is given by multiplying the
payoffs for each different play by the probability of that

play ogcurring and summing over all possible plays, i.e.
dB=By 2~ (x,¥) « [1-2, (x) ]+B8, (x) [1-¢, (¥) Jrax o=t (x,5)84 () 4 ()

The total expected payoff, f,(a,b,c), is obtained by
integrating dE over the range O<x<1 and O<y<i, (for
a similar calculation see Pruitt, (29).)

Thus
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14
ro(ap,e) = [ [ Bl G2 x)

x=0 y=0

+B¢1(X)(1-¢1(y))+A¢1(X)¢1(y)x;i‘i(x,y)idx dy

1. o
=f fB(1-¢1(x))x;f-1(x,y)dx dy
x=0 y=0

14
+ Bg, (x) (1-y, (v))dx dy
XZ; f[o

1 1
+ f / A¢1(x)¢1(Y)X;'-1(xsy)dx ay.
x=0 y=0

Now by using the definitions of @,(x) and ¢,(y)
given earlier, it is possible to expand the above integrals

as follows.

b 1
to(anie) = [ [ Bet(xy)ax ay

Xx=a y=0

a c 1 c
+ f f B dxdy + f f B dx ay
x=0 y=0 x=b y=0

a 1 1 1
+ f f Axii=t(x,y)dx dy + f f A-x;:*l(x;y)dxdy
x=0 y=c x=b y=c

Thus f,(a,b,c) = BI,+Bac+B(1~b)c+AI,+AI; where
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b Y
i =/ [ %2 pax a

X=8a y’:o
a 1

Iz = / f x:"i(x,y)dx dy
X= y=cC

1
f (x,y)dx dy

X=b y=cC

This integral presents some difficulty in evalua-
tion, and occurs again in chapters 5 and 6 in a more com-
plicated form. Because of this a general way was found
of evaluating this type of integral, and is givén in
Appendix A. The results obtained in appendix A permit
I,,Iz and I to be evaluated, and it is found that:

I (b-a) (a+b-1)

I, = {—a(1ec) ; a
~a(1-c)+(a-c)?; a

I, = [(1-0)(b—c); b <ec
(1-b)(b=c); b > ¢

vV oA
QO Q@

The constraint relationships governing the variables
a,b and ¢ are:
a <b, and a,b,ce [0,1].
With the above information the problem was solved by means
of the LAH algorithm, which gave
a=0.1, b =07, c = 0.4.

These results were consistent with those given by
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von Neumann in (£7). By evaluating certain derivatives at
the e.p. it may be shown that this optimal strategy also
satisfies Nash's condition for an e.pe.

3,9 Comparison between Rosen's modified method and the

LAH algorithm

A 2-person poker-like game is formulated in
chapter 44 which is typical of the class of games to be
treated in this study. This 2-person game has a known
exact solution, given in terms of variables a,b,d and e.
The meanings of the variables are unimportant in the
present discussion and are therefore not defined. Several
comparisons of the modified Rosen's method and the LAH
algorithm, as applied to this game, were made. Table 9
given below shows the example that was most favourable to

the modified Rosen's method.

TABLE 9: COMPARISON BETWEEN ROSEN'S MODIFIED METHOD AND LAH ALGORITHM

time
a b c a (c.p.seconds)

exact soln. .02980( .64177|.6126T| .81056 -

LAH alg. .02980| .64179|.61269|.81056 30

Rosen's modified method |.02803|.65770|.61448|.819T3 9k

It can be clearly seen from the above table that the
LAH ‘algorithm, even in this instance in which 1its perform-

ance was least good, achieves a more accurate solution
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than Rosen's modified method in only %-of the time.

For this reason the LAH algorithm is to be preferred

for solving the class of games dealt with in this study.
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CHAPTER 4

FORMULATION AND SOLUTION OF A 2-PERSON POKER-LIKE GAME

4,1 Introduction

Chapter U4 1s concerned with solving a 2-person
poker-1like game (2-PG). The more difficult task of solving
the 3 and U4 person versions of thils game is left to chapter
D This work has some significant features whilch are
mentioned below.

(a) A search of the literature suggests that this 1s the
first time that solutions to a poker-like game have
been sufficiently realistic to predict strategies
commonly used by experienced players.

(b) The solution found to this poker-like game 1s applic-
able not only to the analysis of poker, but also to
certain types of business situations. Furthermore a
network problem is solved by the methods developed in
thls study to obtain a new and iInteresting result.
These two topics will be discussed in chapter 6.

Before proceeding to define and solve the 2-person
poker-like game (2-PG), the original poker game on which the
2-PG 1s based will be discussed. From the rules gilven in
chapter 3 it may be seen that thls poker game may be conven-
iently divided into the 2 phases given below (familiarity
with the poker game descrlbed in chapter 2 will be assumed

in the remainder of this chapter).



76.

Phase 1 of the poker game

Phase 1 of the poker game extends from the deal up to the
improvement of hands, which 1s achieved by discarding un-
wanted cards and replacing them with new ones from the deck.

Phase 2 of the poker game

Phase 2 of the poker game conslsts of a round of betting,
after which the winner 1s determined.

A relationship between phase 1 of the game and the
entire game will now be established.

Consider the above poker game under the simplifying
assumption that no further betting is to be allowed 1n phase
2, and call this the phase 1 game. Experienced players
assume that a sound optimal strategy for the entire game
must be based on a sound optimal strategy for the bhase 1l
game (see (30)). This is Justified in the following way.

Observations of games played by experienced players
have shown that mosh s ‘Poker hands have no signif-
icant betting in phase 2. Thus, 1ln these cases, the game
reduces essentially to the phase 1 game and hence the phase
1 optimal strategy can he used. Now consider what will
happen when a player uses the phase 1 strategy o |
oF My o Ny ~_ where there 1s significant bettlng in
phase 2.

Books on the subjJect (8,30), indicate that 1n thils

case the strategy followed in phase 1 is overshadowed by
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the strategy followed in phase 2, That is the elements of

bluffing and poker psychology are paramount, and, to a large
extent, the exact strategy followed in phase 1 loses its
Importance. The use of the phase 1 optimal strategy there-
fore, carries with it no signiflcant penalty when applied to
Huis coge. I For this
reason the phase 1 optimal strategy Caw. be used in the
entire game (which consists of phase 1 followed by phase 2),
otherwise losses willl be sustained in the
instances mentloned above, where there is no significant
betting in phase 2.

The complexity of the game is such that 1ts entire
solution was considered infeasible, partly because of the
difficulty of describlng the payoff functions mathematically,
and partly because of the difficulty of finding an e.p.

Therefore, the phase 1 game only 1s solved in this
study, and thls solution is then used to formulate a strategy
for the entire game in accord with the assumption made
earlier,

Presentation of material

In this chapter a 2-person version of the phase 1
game will be defined and solved by means of the LAH algorithm
(see chapter 3).

The 2-PG is based on the game described in chapter

2 Section 5 (of which the relevant parts, for convenience,
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are repeated here 1n shortened form), but has significant
detalled differences as folloWws.

The game 1s played by two persons called player 1
and player 2. Both players receive a hand of cards, where
the hands are respectively represented by random numbers
¥ and y, that are uniformly distributed over the closed
interval [0,1] (see 4.5). The play before hand improve-
ment is summarized in the flow dlagram given in figure 5.
The hand improvement in this game 1s based on certaln
simplifying assumptions which are made by expert players in
order to analyze the hand improvement process (8),
and are given below.

(a) The first assumption is that each player initially

holds exactly 1 pair

The justlfication for this assmption 1s that players
seldom, 1f ever, play on less than 1 pair,(30). It may be
established from table 2 in chapter 2, that if hands weaker
than 1 pair are ignored, then 7 out of 8 hands are 1 pair.
Thus assumption (a) correctly represents real poker 87% of
the time. But since the probabllity of improving a palr
is 0.287 (see table 2, chapter 2), if (a) above is assumed,
it follows that the probabilility of improving any hand is a
game constant equal to 0.287. Also, since from (a) above
all hands are initlally pairs, 1t follows that 1f one hand
improves whille the. other does not, then the improved hand

must win.
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FLOW DIAGRAM OF 2-PG

1 2 bets 2
player 2 player €
gntes 2 unitg| = = = == === = = = = = = = = = =~
cumulative bets of
L player 2=2
pleyer 1
has 2 choices

player 1 /’////’ \\\\\“ player 1 player 1 bets 2

drops out antes 2 units cumulative bets of player 1
=2
pleyer 2 pleyer 2
retrieves hisd:.nte & has 3 choices
game en pleyer 2 bets 4
cunulative bets

player 2 antes a___ -
5 er/ \ Furtbor 2 wnits of pleyer 2=h

retrieves 1 imit & (i.e. doubles
drops out of the game layer 1

has 2 choices

player 2
player 1 pleys on /\
wins player 1 bets 2

pleyer 1
pleys on and layer 1 \ cumulative bets
pieyer .

antes 2 units drops out of player 1=k

| \

after simulated hand player 2
improvement winner
is determined

wins
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(b) The second assumption is that if 2 hands improve then

the higher original hand will win

From (a) above the probability that 2 hands improve
1s (0.287)%2 = 0.08. Since, it is true that in this case
the higher original hand will win at least half the time,
it follows that the probability that assumption (b) is
incorrect (l1.e. the lower original hand wins), is less than
%(0.287)2 = 0.04 (4%). As a consequence of this it follows
that (b) 1is correct in better than 96% of cases.

The probabillty of all the above assumptions belng
correct concurrently (obtained by multiplying conditional
probabilities) 1is 0.87 x 0.96 = 0.84 (84%). That is the
assumptions break down in 16% of instances.

Hence, 1t would be reasonable to follow a strategy
based on these assumptions provided that heavy losses are
not sustained in the 16% of instances where at least one of
these assumptions was wrong. But it has already been men-
tioned that 1n at least 85% of all hands there is no signif-
icant bettlng in phase 2, and in thils case no more can be
lost on the 16% of occasions when the assumptions do not
hold, than in the 84% of instances when they do. Further-
more, the probability of assumptions (a) and (b) being wrong,
and there being significant betting in phase 2 1is
less than .16 x 0.15 = 0.024, and as noted in 4.1, the act-
ual strategy and assumptions used in phase 1 in this ipStance

are unimportant in any case.
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As a consequence of this, the experienced player
finds 1t reasonable to use the simplifying assumptions (a)
and (b) (see (30)) which are correct in 8U4% of cases, since
he knows that in the 16% of instances where he is wrong, he -
will not sustain any heavy losses as a result of being
incorrect.

Mathematical definition of approximate hand improvement

In accordance with assumptions (a) and (b)
made earlier, the mathematical definition of hand improve-
ment is made in the following way.
Define the game constant q, where q = 0.287.
Then Tq 1s a random transformation defined as
z : with probability l-q

Tq(z) b (l)
2+z : with probability q

At the end of the 2-PG, x 1s replaced by
X = Tq(x) and y by Y = Tq(y). Player 1 wins the game
if X =2 Y and player 2 if Y > X.

4,2 Strategies of players

The strategies of the 2 players are described by
the functions ¢1(x), ¢2(x), ¥1(y) and Y2(y). The mean-
ings assigned to these functlons are displayed in graphical

form in figure 6 below.
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STRATEGIES FOR THE 2-PG

PLAYER 1

2 i
drops with antes with
probability probability
1 - ¢1(x) b1 (x)
PLAYER 2
] Jl 1
drops for half plays with doubles with
with probabillity probability probabillity
1 - yu(y) = v2(y) ¥1(y) Va2 (¥)
PLAYER 1
i —
plays with drops with
probabillity probability
$2(x) 1 - ¢2(x)
hands are
compared
to determine ends
the winner player 2
wins

game ends
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Figure 7 gives the form of the strategy functions
and 1s to be interpreted in the following way. Consider,
for example, the function ¢:(x). This means that player 1
only ever makes an ante if his hand x 1s less than a
(a bluff), or greater than b. He will never play on ;

hand between a and b.

Observation of experienced players as recorded 1n
(30), and solutions to other poker-llke games, (27), suggest
that (in addition to the matters noted above) the strategy
functions have the followling properties:-

(1) Player 1 looks at a double only if his hand x is
such that x > c.

(11) Player 2 always plays on if his hand is better than
da. He doubles on hands better than e, or less than
f (the latter bet being a bluff). Otherwise he drops
out.

The form of the functions chosen implies that play-
ers never follow a variable strategy, i.e. one in which the
probabilities of certain actions lie between 0O and 1.
This is substantiated in practice, and is explalned by

Bellman and Blackwell (2), in the following way.
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FIGURE 7
2-PG STRATEGY FUNCTIONS

PLAYER I: has & hand x

B probability of player 1 meking an

b1(x) ante for a given hand x, where
10<a<1l,0<b<1ada=5h.
0 a b
1
probebility of player 1 looking

¢2(x) at a double for a given hand x

0 1 where 0 ¢ s 1.

PLAYER II: has a hand y

1
probability of player 2 playing
v1(y) a given hand y, where 0 <d <1,
0<e<1l ad 4 <e,
0 1
a e
1 1
probaebility of player 2 doubling
va(y) for a given hand y, where
0<f<l,0<e<l and £ < 4
0 1
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"In a continuous game, one allows the game, which furnishes
a random card, to do the bluffing. It turns out that 1if
the cards are dealt at random, any further randomization
furnished by mixed strategies on the part of the playersl
is superfluous."

Thus, this approach uses a very broad general
observation, made by experienced players, based on sound
practical assumptions, to find a solution in much finer
detail. The results finally obtained show that this
approach ylelds satisfactory results.

4.3 Evaluatlon of payoff functions and solution

The payoff functions for the 2-PG are evaluated in
the same way as the payoff functions for von Neumann's game,

First define the function

xz;z(x,Y) = the expected winnings of player 1 (2) .

holding hand x, competing in the

2-PG against player 2 holding hand

y, Wwhere player 1 elther stands to

gain w units if Tg(x) 2 Tq(y) or

L units if Tgq(x) < Tg(y),
énd, as in chapter 3, define
- W3 X 2Y

2 :
X’ (xiy) =
\ k< (3)

then from eqs. 1 and 2 1t follows that
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Xw’t(x y) = {prob. that both players improve } {w;if x>y
, =
a= + prob. that neither player improves L;1if x<y
()
+ {prob. that player 1 improves while}
player 2 does not oW
“ [prob. that player 2 improves while}
player 1 does not oL
Now, since from eqg. 1
prob. that a player improves = q (5_

and hence

il
-
1
Q

prob. that a player fails to improve (6)
it follows that by using egs. 3, 5 and 6 , eg. L4 may be
written

XZ;‘(x,y) = {q® + (1—q)2}x;"(x,y)

+ q(1-q)w
+ (1-9)qt.

Hence, on simplifying

xg;‘(x,y) = iq2+(1-q)2Bx:"(x,y)+(W+t)q(q-Q) (7

Now it is possible to proceed as in chapter 3.
Table 10 below gives the following information.
(a) All possible outcomes which may occur in the game.

(b) The probability of any particular outcome occurring for
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TABLE 10
SUMMARY OF PLAY FOR THE 2-PG

Probabllity of a Payoff
Game outcome particular outcome to player 1
for a
(the superscripts below re- particular

fer to the player meking a outcome
particular move)

Play?!.Drop? B, (x)e {10y (¥)-¢2(¥)} +1
Play! .Play? g,(x) ¢, (¥) xj;“z(x,y)
Playt.Double®.Dropt #,(x) ¢2(y). f1-8,(x) 1 -2

Playt.Double?.Playt #,(x) ¢a(y) #2(x) x:;“‘(x,y)
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a given set of hands x and ¥. (These probabilities
may be easily found by referring to the rules of the
game and the function definitions given in figure 7).
(¢) The payoff occurring to player 1 for a particular game
outcome (as defined by the rules).
Now, as in chapter 3, P,, the total expected payoff

to player 1, is given by

1
P, f [ [, (%) {1-02 (¥) - ¥2(¥)} (8)
x=0 y=0

+8, () (7272 (x,3)

‘2¢1(X)¢2(Y){1'¢2(X)}
f¢1(x)¢2(y)¢2(x)x:;“‘(x,y)]dxdy

As this is a zero sum game, P,, the expected payoff of
player 2 is =P,

Hence P, = -P,. (9)
In order to evaluate eqe. 8 define

B5(x) ¢1(X)¢2(X) (10)

il

and |
g,(x) = 8,(x){1 - 8.(x)} . (11)

Consider the function @5(x) given by eq. 10 above.
Figure 7 defines the functions #,(x) and #5(x) in terms
of variables a,b and ¢, where a <b.

Then it is simple, though tedious, to show that the

function #5;(x) has the form
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A
1l
y
|
1 |
L — — ]
|
|
|
|
|
> x
T g a h 1l
where g = min(a,c) (12)
and h = max(b,c) (13)
By similar means it can be shown that ¢.(x) has
the form
A
1l
éy(x)
1
0 g b h >
1

where g and h are as defined by egs. 12 and 13,

This result may be stated algebralcally as

' _(0; 0<x<g or a<x<h
Ba(x) = 1 ; g<x<a or h<xc<1
and ;
r
(0 ; g<x<b or h<xs 1
g.(x) = 1 ;0<x<g or b<x<h
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Now eq. 8 may be written
1 y ‘
=] f 8, (%) {1-9, (y) ¢z (v) Jaxdy
x=0 y=0

1
[ [ononon e G asas

x=0 y=0

-2 [1 f1¢4<x)¢z<y)axay

x=0 y=0

1 L
o [ [ s raxay

x=0 y=0
and by using the definitions of the functions

g (X), ¢2(X), ¢3(x), ¢L(X), ¢1(Y), ¢2(Y),

and expanding the integral, and evaluating some of the

component sub-integrals, it can be shown that
P, = (a+1-"D)a-T1)
a e 4 e
+ f f x21-8(x,y)dxdy + f j xi;"z(x,y)dxdy
x=0 y=4 x=b y=4

-2(g + h - Db)(1 - e+ £)

a y 1
+ f f x4+ =4 (x,y)dxdy + f' f x:;“‘(x,y)dxdy

X=g y=e€ X=h y=e
f [ x4 14 (x,y)dxdy + f fr "“‘(X y)dxdy (16)
x=h y=0

x=g y=0
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]
=
'—l-
o
—~
A
Q
~

where g

1l
2]
&
—~
e
N
e

and

Now define

Xaw,2/P1 P2\ . [ 2wt
Q (gi a2> f ]b X! 14 (x,y)axdy

and using eq. 7
bi

rpe(B B2)= [0 [Cmoat-gu

o4 P
+ f fb {q?+(1—q)zlx:"(x,Y)dXdy
X=a, Y=agz
(17)

and as in chapter 3 define
Xu.d 1 bg 1 2 w t( ( 8)
N (Zi ag> = f Xh x,y)dxdy 1
X=a4 y=8g

where it has been shown in appendix A that

i ba u+a, 1 tu
X¥ <gi a2> = Z(u—al) > - a2> + W(b1‘u) > = az>

(19)

“ a2>

V+a, b, +v

- t(v—a1)< - a2> - W(bi-V)< "

u = max(a1,min(b1yaz))

with

and
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v = max(a, ,min(b, ,bz))e

Hence by combining egs. 17, 18 and 19

xaz"(:; ‘;:)=q<1-q)<w+z)<bi-a1)<b2-az>+
(-0 (32 32 (20)

1

Now eq.l16 may be written

P, = (a+1-b)(d-f) - 2(g+h-b)(1-e+f) (21)

+ xags~2<g . ) + XQ%'“ZG) g)
exapmi(G o) e xe(n o)

1
+ XQ%!“‘(Z g> + XQé"‘<h g)

where g = min(a,c), h = max(b,c)

and XQE-‘(bi b2> may be found from eq. 20 .
a4 8ag

Before the problem may be solved by the LAH
algorithm, the constraints on the variables a,b,c,d,e and
£ must be specified. Consider the definitions of ¢1(x),
2.(x), ¢,.(y), ¢2(y) as given in figure 7. It may be
noted from this that the following constraints hold,

a<b
d < e
and a,b,c,d,e,f all lie in the closed interval [0,1].

(22)
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Using the above data it is now possible to solve
the 2-PG using the LAH algorithm, for differing values of
Qe In each case the starting point of the iteration is
zero, and the minimum step size is 10-€. A list of the
e.ps's obtained is given in table 11 below.

From the definitions of the strategy functions
(see figures 6 and 7) it may be seen thats
(1) ¢ is the minimum hand required by player 1 to

play on (look) after a double by player 2;
(2) player 1 never plays on a hand between a and be

Thus, from (1) and (2) above, it follows that the
exact value of ¢ is arbitrary if a < ¢ € b, even though
in the solutions given above c=b.

L.y Analytic solution of the game

Lh.Lhio1 TInitial assumptions

The method of solving the game analytically is a
2 stage process. In the first stage, to be given in this
section, certain assumptions are made, and consequently a
solution is obtained. The second stage of this process,
given in L.y.2, validates these initial assumptions.
Section lelte3 will then show that the 2~PG could not be
solved analytically if an approximate numerical solution
was not already known.

In the previous section it has been shown that the

solution to this game, when g = 0.287 is:
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SOLUTION TO THE 2-PG
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q a b c d e o y?;ff

player

1

0.0 0.0889| 0.7333 | 0.7333 0.6667 0.8667 0.0000| 0.1778
0.1 0.0719] 0.7035 | 0.7035 0.6425 0.8L438 0.0000| 0.1842
0.2 0.0502| 0.6708 | 0.6708 0.6241 0.8236 0.0000| 0.1897
0.287| 0.0298| 0.6418 | 0.6118 0.6127 0.8106 0.0000| 0.1940
0.4 0.0076| 0.6107 | 0.610T 0.6000 0.8000 0.0000| 0.2000




a

£ = 0.0000.

[

00298, b = .6,-'»18, Cc = .6’418, d - .6127’

95.
e = .8’106,

(23)

Suppose that, motivated by the above approximate numerical

solution, the following inequality relationships are

assumed to hold between the varigbles at the exact €.pe

a<d, a<e, d<bge

(2u)

The correctness of this assumption will be shown

in Ll-ou- 2e

Now from eq. 24 it may be established that

a = max(0,min(a,d))
b = max(b,min(1,d))
a = max(a,min(a,e))
e = max(a,mnin(1,e))
e = max(b,min(1,e))
a = max(a,min(a,o)j

b = max(b,min(1,0))

(25)

and by using egs. 19,20,2i and.és, after some lengthy

algebra it may be shown that P, reduces to
P, = (a~£) (1+a~b)=-2a(1+f-e)
+2Q§(e~-d) (1-e-a)+(e-b) (b-d+2e=-2)+2£(1-D) }
where Q=g+ (1-9)?
and thus from eq.9 :
P, = -(d-f)(1+a-b)+2a(1+f-e)
—zqi(e—d)(1-e-a)+(e4b)(b-d+2e-2)+2f(14b)}

(26)
(27)

(28)
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It has been explained earlier in this chapter that
if a<c<b then the exact value of c¢ 1is irrelevant to
.the payoff obtained. This is confirmed by the fact that
o does not appéar in egs. 26 and 28.

It is now possible to solve this game analytically
in the following waye. Firs£ it is assumed that

£=0 (29).
The correctness and consistency of this assumption will be
shown in [.l}e2.

Thus, putting f£=0 into egs. 26 and 28, gives

P, = d4(1+a-b) - 2a(i-e)
+ 2a{(e-a) (1-e-a)+(e-b) (b-a+2e-2)]  (30)

P, = -d(1+a-b)+2a(1-€)

-2Q{(e-a) (1-e-a)+(e=b) (b-d+2e-2) } (31)

Evaluate the following partial derivatives

using egs. 30 and 31
oP,
‘5-8._. = d—2(1—e)—2Q(e-d)

P,

o -d+2Q(~-2b+d-e+2)

oP,
2d

-1-a+b-2Q(a+b-1)

oPg
oe

= -2a~2Q(2e-a-b-1)

and solving the equations
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.aP, . oP,

%a =% + ® <
oP oP,
—=2=0 , 32=0

using Gaussian elimination (assuming that q is such that

division by zero does not occur) it is found that

a=& s b:m
C, L‘-Q
2-c, (2-2Q)
a = 7 -
L 1+2Q » 5@
where
Q = q® + (1-9)?
2(4~
©1 = T4
- 2(29-1)
2 = -lQ - T5g:7
Cz = LI-Q-%-
o, = 2-2q - Safha-1)
2Q(29-1
Cs = 01;c2 - 2Q
Ss  (lg-1
Cg = LQ=2 . [ }
Ce

and for g = 287 it can be shown that
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0.0298 b = 0.6L18

0.8106.'

a
(32)
. a

0.6127 e

i

8ince, as explained earlier, the exact value of c¢ is
immaterial if a < c < b,
let c =b = 0.6418.

Also, by eq.29, f=0, thus the complete solution is

ad = 0.6127 e = 0.8106 £ = 0.,0000

|
l
]

and this is the same as the numerical solution given in
table 11 for gq = 0.287. The numerical sblutions given
in table 11 for other values of q may be checked in the
same waye.
L4.l.,2 Showing that the solution found is _an e.p.

In this section the assumptions made in eqs.2u:and
29 will be validated, and then the solution will be shown
to satisfy Nash's criterion.

First,, eq.2l4 follows from eq732.

It will now be shown that eq.29 (f=0) satisfies
the Nash condition and is therefore éorrect.

Pirst differentiating eq.28 partially with respéct
to £,

= =-0.41 < O (33)

e.p Of
€eQe38

0

Eq.33 shows that the assumption that f=0 1is correct, for
the following reason. From eq.33 player 2 can only in-

crease his payoff P, by making £ smaller (if the other
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variables remain constant) as -%%3 < O. But since £=0

and f is constrained to 0 < f < 1, player 2 is forced
to leave f at O, and hence eq.29 is Jjustified. The
remaining derivatives satisfy the Nash conditions, since
they are zero.

Thus the e.p. found analytically satisfies the

conditions for a Nash e.pe.

L.4.3 The dependence of the analytic solution on the

approximate solution

The above method of analytic solution is based
upon certain assuniptions (1ater proved correct) made in
eqs.2h and 29. However, it can be shown that there can
be spproximately 28 different possible initial assump-
tions. As the algebra required to solve each individual
case is lengthy it would be clearly impractical to attempt
to solve this problem analytically unless the number of
such possible cases was first reduced to manageable propor-
tions. One way of achieving this is to have an approxi-
mate numerical solution initiallye.

A1l the solutions given in table 11 have been
checked analytically in the manner described in this

sectione
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3.5 Validation of hand improvement simulation
In this section it will be shown that the approxi-

mate simulatior of harnd improvement in the 2-PG is, for
the purposes of this study, indistinguishable from real
hand improvement.

Define the 2-PG* to be a game, identical to the
2-PG in every respect, except that exact hand improvement
(as will be defined below), rather than approximate hand
improvement, will be used, and thus the 2~PG* is equiva-
lent to phase 1 of real poker. This section will show
that strategies optimal for the 2-PG are also optimal for
the 2-PG*.

The function fy(h) was defined in chapter 2,
and determines the winning probability, x = fy(h), assoc-
jated with any poker hand he. Define f;1(x) to be the
inverse of the function fy(h), where h = fy*(x) deter-
mines the poker hand h associated with any given winning
probability x. Consequently, h = f31(x) relates any
given x, O < x <1, to some poker hand he.

Suppose a player holds hand X in the 2-PG¥.
Then hand improvement in the 2-PG¥ is defined in the foll-
owing way. First calculate hy = f;1(x). Next improve
hy by discarding the appropriate number of cards (see
chapter 2) and replacing them with new cards (taking into

account cards already held) to give an improved hand hf.
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Now it will be demonstrated that the payoff >
functions for the 2-PG¥ are indistinguishable from the
corresponding payoff functions for the 2-PG.

Proceeding as in the 2-PG, define

x:;tﬁx,y) = the expected winnings of player 1 holding
hand x, competing against player 2 holding
hand y in 2-PG¥* where both players improve
their hands in the manner described above, and
player 1 stands to either gain w units or ¢

units depending on whether he holds the

winning hand or not, (34)
and
0] d ‘
e
Xezf(a g) =f f x4 (x,y)dxdy (35)
Q2
X=8 y=C

It follows from eq.34 and %5 that a monte carlo method may

*
be employed to define XQ&:{ in the following way.

Xng“(g g) = the expected winnings of player 1 over a
period of many games of the 2-PG* where he
stands to either gain w units, or ¢
units during any particular game (depending
on whether he wins or loses the hand), and
where x, the hand of player 1, is such
that a < x<b, amd y, the hand of

player 2 is such that c <y < &, (36)
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Now by using e€q.36 it may be seen that it is possible to

estimate XQ%!“ by simulating the results of a large

number of games played under these particular conditionse

Thus Xanz‘ may be calculated to an arbitrary
degree of accuracy, which is determined by the number of
gemes simulated (max). A Fortran program was written to
do this, and the results are given in table 12 below.

Max was limited to approximately 10,000 for
reasons of economy.

It may be seen from the above results that:

(a) Lines (13) - (415) in table 12 show that when the exact
value of XQ&-‘* is known to be zero, the approximate
value of XQgr‘* approaches the correct value for
increasing values of maXe.

(b) The expected order of inaccuracy which appears to be
associated with the XQgr‘* approximation for
max = 10,000 is approximately 0,005 (see table 12,
lines 2 and 6). Furthermore it may be noted that
the maximum differences associated with X@§:4 and
the XQg-‘* approximation are of the same order.

If it is hypothesised that the function Xngﬂ*
is a normally distribufed approximation to XQ4:{, which
becomes more accurate as max is increased, then a standard
statistical test (t-test) shows that the data supports this

hypothesis to better than the F confidence level.*

*For the values considered t = =0.395 where te(F%) = 2.45.
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SIMULATION OF 2-PG PAYOFF FUNCTIONS
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max. no.of
games used —_ apgrg; ex:c':
W Ll a b c d |in simula~-| XQ2°7| XQ2°" | XQ2°
tion (if known)
(1) 4 | -2/ 0.1 | 1.0 j0.1] 1.0{ 10,000 0.810( 0.815 -
(2) 2| -2/ 0.8 | 1.0 {0.8| 1.0| 210,000 0.000| 0.00% | 0.000
(3) 2 | -2| 0.0 | 0.03}0.5| 0.9| 10,000 |[-0.014(-0.016 -
(1) 2| -2{ 0.5 { 1.0 {o.5{ 0.8/ 10,000 0.071| 0.069 -
(5) 2| -2{ 0.8 1.0 f0.5| 0.8 10,000 0.071| 0.068 -
(6) 2 | -2/ 0.5 | 1.0 |0.5| 1.0{ 10,000 | 0.000| 0.006 | 0.000
(1) 5| -2 0.1 | 0.9 |0.2{ 0.7| 10,000 0.703| 0.702 -
(8) 5| -2{ 0.1 | 0.6 j0.3| 0.8{ 10,000 0.0k4k4 0.639 -
(9) 3| -1{ 0.2 | 0.4 jo.3{ 0.6| 10,000 0.001| 0.002 -
(10) 2| -1/ 0.3 | 0.7 |0.5] 0.9 10,000 |-0.026|-0.023 -
(11) 1| -1 0.6 | 0.9 f0.1] 0.7{ 10,000 0.100{ 0.100 -
(12) 1| -1 0.8 | 1.0 §0.8| 1.0/ 10,000 0.002( 0.001 -
(13) 2| -2/ 0.5 | 1.0 §o0.5| 1.0/ 10,000 | 0.000| 0.006 | 0.000
(14) 2| -2 0.5 | 1.0 |0.5| 1.0/ ko,000 0.000| 0.003 | 0.000
(15) 2| -2 0.5 | 1.0 j0.5| 1.0{ 80,000 0.000( 0.002 | 0.000
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Hence from the above and eq.21 1t follows that the
payoff functions calculated for the 2-PG and 2-PG¥* can be
for the purposes of this study, considered identical. Thus
the optimal strategy for the 2-PG will also be optimal for
the 2-PG¥.

4.6 Non-optimal solutions

Situations often arise in real games where one of
the players is known to be playing non-optimally. It is
then possible to use the LAH algorithm to find strategles
for the other player, which will yileld him an even better
return. Consider the example of a 2-PG with g=0.287, with
the solution (see table 11):-

a b c d e f payoff to I payoff to II
0.03 0.642 0.642 0.613 0.811 0.000 0.1940 ~0.1940

Note that player II has a payoff of -0.1940 which means that,
on the average, he expects to lose 0.1940 units per game.
Suppose that player 1 now plays b=0.500 (instead
of b = 0.642). It is then possible to solve the game as
before, except now the variable b 1s treated as a constant,

equal to 0.5. The new solution 1s -:

a b c a e f payoff to I payoff to II

0.020 0.500 0.500 0.538 0.750 0.000 0.174 ~-0.174

Note the changes made in the variables d and e by player

2 in order to take full advantage of player 1's bad play and
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thereby increase his own expected payoff from -0.194 to
-0.174, that is, instead of losing 0.194 he now loses 0.174,
which is an improvement of 0.02.

4,7 Discussion of results

A general discussion of this analytic solution of
poker is given in chapter 5 in the context of the Y-person
version of this game (4-PG). However, particular aspects
of the 2-PG which lead to simplifying assumptions used in
solving the U-PG, are dlscussed below.

(a) Bluffing by player 1

The 2-PG, with q = 0.287, has the solution (gilven
in table 11):-
a=0.03, b=20.64, c=0.64, d4=0.61, e=0.82, f=0.00
Figures 6 and 7 show that player 1 will play with a hand x
if 0 <x <a or b <x <1. If x 1is such that
0 ¢x <a, and since a = 0.03, this means that x 1s a
weak hand. Hence, to bet with such a hand is to bluff, and
the value of a shows that thls bluff should only be tried,
on the average, 1 hand in every 33.

This agrees with the opinions expressed in poker
books that this bluff should be used extremely sparingly, if
at all ,(30).

In the complete poker game bluffing in phase 1 be-
comes even less important, since bluffing can be done far
more efficiently 1in phase 2, when more information has be-

come available and unlimited betting is possible.
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(b) Playing on after a double by the last player

The solution to the 2-PG (see (a) above) shows
b =c= 0.64, Figure 7 may be used to interpret these
values, and it is found that player 1 wlll always play on
after a double unless his original bet was a bluff.

This may be intuitively justified because player 1
only ever plays with a good hand (assuming he rarely, if
ever, bluffs, as discussed in (a) above). Thus it is
always worth playing on after a double as i1t only costs a
further 2 units from player 1 to have a reasonable chance
of winning what will now have become a large pot. - This
same strategy 1s recommended in poker books, (32).

(¢) Bluffing by the last player (player 2)

The solutlon to the 2-PG (sec (a) above) shows that
e=0.0. From figure 7 and the fact that e=0,.00 1t follows
that player 2 never bluffs by doubling with a weak hand.

It will become apparent in chapter 5 that this game
becomes too complicated to solve (by the methods used here)
if the rules are extended to allow 3 and i players. In
order to obtain a solution for the 4d-person case the rules
must bewsimplified.

Tt has been shown here that in the 2-PG, players very
rarely bluff (see (a) and (c) above), and a player will
always continue after a double (see (b) above). In addi-

tion poker books suggest that these same precepts are used
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by experienced poker players (see discussion above).
Hence, the following simplifying assumptions were incorpor-

ated in the rules of the 3-PG and 4-PG.

First, players do not bluff, and second, all players

continue after a double.
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CHAPTER 5

SOLUTION OF 3 AND 4 PERSON GAMES (3-PG AND 4-PG)

5.1 Introduction

In this chapter a simplified 3 and 4 person version

(3-PG and 4-PG) of the game treated in chapter 4, will be

solved. There are, however, several points which should

first be noted.

(1)

(2)

The need for simplification of the rules

(see 4.7) will become apparent when the large
amount of central processor (c.p.) time
required to solve the 4-PG 1s noted (see
5.3.3). Without thils simplification the
amount of c.p. time would be many times
greater, and as a consequence, 1t would not
be practicable to solve thls problem on
avallable computers.

Since much of this work is a straightforward
extension of work done in chapter U, unnecessary
detalls will be omitted. Also the arguments
used to justify approximate hand improvement
and the applicability of the phase-1l solution
to the entire game willl not be repeated as

they remain unchanged from chapter 4.
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5.2 Solution of the 3-PG

5.2.1 Rules of play

The rules of the 3-PG and 4-PG are the same as for
the 2-PG with the following 2 simplifications, which have
been discussed in 4.7, and will be stated here without
further explanation.

(a) The form of the strategy functions is so chosen
that direct bluffing is not allowed. Note,
however, that a subtle form of bluffing is
still possible (see 5.5.2).

(b) When the last player doubles all other players
must look.

5.2.2 Strategies

In the 3-PG players 1,2 and 3 receilve hands x,y and
z respectively, and then must make decisions, according to
the rules of the game, on the basis of their hands and the
actions taken by other players. This 1s most convenlently
represented by figure 8 below, which gives a flow diagram
for the 3-PG. It 1s assumed that the 3 players are dealt
hands x,y and z. The diagram lists all possible game
outcomes and specifies the probabllity function which each
player will use to decide which action to take at any partic-
ular stage of the game. Each probability function f%(x)
is defined in terms of variables a% as indicated 1n figure

8.
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PLAYER 3
WINS BY
DEFAULT

AFTER A DOUBLE ALL PLAYERS
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FIGURE 8
Summary of strategy function definitions and game flow dlagram for 3-PG
£1{x)
1
0 & 1 x
where f{(x) is the prob-
abllity of player 1 play-
ing with hand x.
PLAYER 1
PLAYER 1 PLAYS
DROPS
, 1) £3(y)
0 a L v 0 aj ¥

where £3(y) is the
probability that
player 2 plays with
hand y if player 1
has dropped.

£§(z) 1s the prob.
that pleyer 3 plaeys

£3(z)

0 & 1 z

STILL IN THE GAME MUST PLAY £3(2) is the prob.

ON,

that player 3 doubles

where fi(y) 4s the
probability that
player 2 will play if
player 1 is playing.

N

PLAYER 2 PLAYER 2
DROPS PLAYS
£i(z) £3(z)
1 ‘ |l
0 &8f & 1 z T ey eg 1 e

£i(z) is the prob.

£3(z) is the prob.
that player 3 plays.

that player 3 pleys

£3(2) £d(z)
1 1
0 & 1 % T oap 1 z
£3(2) 1s the prob. £3(z) is the prob.
that player 3 doubles thet pleyer 3 doubles
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The following points relating to the form of the

probability functions should be noted.
The strategy function for the first player in the
2-PG was assumed to be of the form £(x), as described in

the figure below.

I

£{x)

I
-

(1)

| — ————— — — — — —

As has been noted in 4.7 a non-zero value of a
indicates bluffing. As bluffing has been excluded from
the 3-PG, a 1is set to zero, and thus the strategy function
for the first player in the 3-PG, fi(x), takes the form
shown in the figure below.
£i(x) |

1

(2)
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o2 Bvaluation o ayoff functions
Before the payoff function is evaluated (in the
same manner as for the 2-PG) it is necessary to define

the following function.

x:;‘(x,y,z) = the expected winnings of player 1, (3)
holding hand x, competing against
players 2 and 3 holding hands Yy
and 2 respectively, in the 3-PG,
where player 1 wins w if he beats
his opponents, or ¢ if he loses.

Now, proceeding as before, it is possible to

express this function in t erms of the functions

x:-‘(x,y) and xgal(xyy,z) where
w,t — w ;X Y
xr et (x,y) = { L ¥x<y (L)

and

w,Z _ w; if x2y and x 2 z
X3 (x,y,2) = { L ; if X<y or X< z (5)

By combining egs. 3,4 and 5 it may be seen that

w,l _ (probability that hand x
Xqa (x,5,2) = {improves while hands y and z do not{* b (6)

5 probability that at least 1 of hands P
Yy or z improve while hand x does not(°

probability that hands x and y im- w,g(x )
prove while hand z does not. . Xz 24
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4fprobability that hands x and z Wil (x,2)
improve while hand y does not. (" X2 ’

probability that either all hands Wil(x,y,2)
improve, or all fail to improve (° X i

Now .from the definitions given by eq.41, chapter L,
it follows thats-

probability of improving hand = q (7)

probability of failing to improve a hand = 1-q (8)

and combining egqs. 6, 7 and 8 it may be secen that

Xeat (x,5,2) = wia(1-0)®} + £{(1-q)[1-(1-a)?]]
+x0ny) (@ (1-a) ] + x4 (x,2) {@*(1-0) ]
+ x:"(x,y,Z) {a®+(1-q)?}

which simplifies to

xegt(x,y,2) = wa(1-q)® + £(1-@)[1-(1-9)?] (9)
+ {2(-a) b DA (xy) + x4 (x,2) ]

+ 1@ + (1-9)® Jox! 4 (x,5,2)
Since from this point, the triple integrals of x":¢(x,¥y,z)
q3
and ngl(x,y,z) arise repeatedly in the text, it is con-

venient to define, (as in the 2-PG),

bi bz ba
X W,l 1 b2 bS = W,l
QS <21 ag aa> f [ f an (x,y,2)dxdydz (10)

X=a1 y=a2 Z=a3
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and
b b 5
Wl 1 bz ba - 1 2 w,¢
X:’s" (21 g aa> B / [ Xa (x,y,Z)d-Xdde
X=8, y=8g 2=ag

then by substituting eq.9 into eq.10, and using the above

equation, it can be shown that

xqyf(3r 92 32) = [ B, (ouman) [ maCi-0)2ee (1) [1-(1-)°] |

1 8g

2(4_ . w,& 1 bz = w,t 1 ba
+ a2 (1 Q)O[(bs aa)xz @1 a2> + (bg az)xz (21 8,3>}
by D
+ 8 4+ (1-qg)3 {.X¥:t("”1 P2 Ps 11
{q ( q)} 3*(21 o a3> (11)
where the functions X":¢{(P1 P2 gng xv.£(Ps P2 Ds
2 84 BZg 3 a; ag ag

have been evaluated and are given in appendix A.

From this point the calculation follows the pattern estab-
lished in chapter L. First, all possible plays, their
probabilities of occurring, and corresponding payoffs, are
calculated, and the se are given in table 13,

Next, proceeding as in the 2-PG, and making use of
table 13 and eq.11, the payoff functions for each player
may be evaluated. Since the method of calculation is the

same as for the 2-PG, only the final result will be given

here.
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SUMMARY OF PLAY FOR THE 3-PG
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Play Probsbility Payoffs

1 I1 -III
D'P?D? [1-ri(x)1e}(y) [1-11(2)-£i(2)] 0 1 -1
p'P2P? [1-r1(x)]1£3(y)£i(2) 0 Xe, “(¥s2) xg, *(2.y)
p'P2Df [1-£1(x)13(y)£d(2) 0 X, "t (vs2) Xq, " (25¥)
PID?D® £} (x)[1-£3(y) 1[1-£3(2)-£3(z2)] +1 0 -1
PID?%P? £}(x)[1-£3(y)1£3(2) x:’; 2(x,2) 0 xéz"z(z,x)
Pp%D £}(x)[1-£3(y)1fid(z2) X;Z'"'(x,z) 0 Xt~ *(z,x)
PP2D® r}(x)£3(y)[1-£2(2)-£é(z)] xi;‘z(x,y) x;;‘z(y,x) -1
P'P2P? r}(x)r3(y)£i(2) Xy (xs¥52) | X022y ,x,2) Xgy "2 (2:2,7)
p'p?Dy £1(x)£3(y)d(2) Xgy "y s2) | X8 (yax,z) | xgy T (2o%0y)

a3
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Define the joint strategy vector
T
‘g‘—' [aiaaaz.’a%,a?.’agyagsaf,ag’ag] (12)

and let Pé(a) be the corresponding payoff to player i,
for i=1,2 and 3.

Then, it may be shown that:

P(z) = ages(1-at)vapxag (] )

. 1 1 _ 1 1

_ 1 a3 _ 1 1
Pile) - st(1-ad)ed ¢ otheEr2(op o) ¢ WO (i o)
. 1 1 1 1 ag 1 1 1
3¥n3,-2 L ,-2 8,-4
*+ a5XQz <a§ ai>+XQ3 (a% a} a§>+XQ'3 <;§ aj a§>
g
3 = 32(1-22)g3 1¥02.-2(2
P3(a) = ai(1-a%)ad + a}XQs (ag a§>

. -zfa 1
v sxas (g o) - Cap)agegeagxag (3 1)
1 1

: ai) - (1-a})(1-a8)ag
1

-2 aa 1 1 8,4 1 1 1
* XA a3 a5>”‘% (az a a3
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Constraints

By virtue of the function definitions (see figure

8) it follows that:
0<al €1 for all a}

and

a < ad, & < af, af < af

Knowledge of these data permits solution of the
3-PG by the LAH algorithm.
5.2.4 Solution of the 3-PG

The solution of the 3-PG,, for q = 0.287, is

presented below.

Player Expected Variables

Payoff
1 0.1386 aif = 0.715
a? = 00830 ag = 0.825 ag = 0.885

This solution will be discussed in 5.5..4.
The LAH algorithm took approximately L. seconds of
Central Processor (C.P.) time to compute this solution.

5.3 Solution of the L-P@

5.3.1 Evaluation of payoff functions

The rules of the U-PG, apart from the sddition of

1 extra player, are exactly the same as for the 3-PG.
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Also the method of evaluating the payoff functions remains

unchanged, except that the following preliminary result is
first required.
Before evaluating the payoff functions for the

2

atedi Similarly the function XQg:‘<Ei g: g:) was
L

required before the 3-PG payoff functions could be calcula-

2-PG, the function xqg»t(zi 22> was defined and evalu-
1

ted. Now, following this pattern, the function
w,t 1 b2 b3 bL
xau (Zi 4z 4 a,,>
will be defined and evaluated as a prerequisite to calcula-

ting the L4-PG payoff functions.

First, define

x::‘(x,y,z,w) = the expected winnings of (13)
player 1 in the 4-PG
holding hand x, competing
against players 2,3 and 4 who
are holding harnds Yy,2 and W
respectively, where all players
are given an opportunity of
improving their hand with prob-
ability aq.

Now, as for the 3-PG, x":{(x,y,z,w) may be expressed in
Qs

terms of the functions
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X" (x,y) = {; %2 § (14)
.t _fw $x2y and x> z

Xy (x,5,2) = {g 5 X<y Or X< Z (1)
Wil | w3 x2y,x22,xX2W

xL’ (x,57,2,w) = {g § X < y’ or x’< Z Oor X< Ww (16)

By combining egsi 13 to 16,

w,2t _ {probability that hand x improves
qu (x,5,2,w) = {while hands y,z,w do not b

2 Probability that hand x does not improve Z
and at least one of the hands y,z,w does (°

+| all hands improve except hand y};{st‘(x,z,w)
3

Y o

=

r N
+| all hands improve except hand z}.{xwaz(x,y,w)
3

-

-

~
+{ all hands improve except hand w}.{x""(x,y,z)

- -’

+{only hands x and y improve

:‘(x y)}

-

+{only hands x and 2z improve

X"+ (x, z)}

.

all hands improve or all fail

* to improve concurrently

H
{ He
fomiy namas x wa . smprome Yz o)
{ )

{ "12(x,y,2, W)}
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From egs. 7 and 8, eq.17 reduces to
x:Z‘(X5y,z,W) = wa(1-9)2 + £{(1-q)[1-{1-q)2]} (18)
+ qa(""Q.)-{X:"(x,z’w) + X:’t(x,Y9w) + X:’t(x,y:z)}

+ q2(1~q)21x:"(x,y) + x:"(x,Z) + x:"(x,W)}

+ {a* + (1~q)‘}xf"(x,y,z,W)-

Now, as before, define

, b D v
w,l 1 b2 b3 bL - e 2 8 & w,é
XQI'_ <§.1 az a3 a‘> - f qu (X,y,Z,W)d}CWGdeﬂ

X=a, y=8p Z=ag W=a,
(19)
and
CRCEE IRy R A R R
X=8y Y=ap Z=ag W=a,
(20)
Thus using egs.11, 18, 19 and 20, and integrating, it can
be shown that

T T A

1

+ q3(1-q){(b4—aL)X;" 1 Pe b3)+(b3‘aa)xw l(gi - ZZ)

aq 1 8g

bs b
+(bo=a, )X":t ("1 Pa Y4
( 2~az) 3 (21 ag aL)}

+q2<1-q)2{<b2-a2>(ba—a3>x;~(;§ ar ) #(bamsa) (bima, x4 (0t 26)

1 &g
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+ (by~ay) (b, —a, Yx¥,2(P1 Pz
( 3 aa)( L aL) A (:-1 a2>}

- {q‘+(1-q)‘} XZ*‘(Zi Dz Da b‘) (21)

1 &g 8z 8,

Figure 9 below defines the game flow diagram and
the strategy functions for the 4-PG in the same way that
figure 8 was used to define the same aspects of the 3-PG.
In this diagram all possible game outcomes, and their
probabilities of occurrence, are presented. It is
assumed that players 1,2,3 and 4 are dealt hands x,y,Z
and W respectively, and that each player's actions are
governed by probability functions of the form f;(x)

1

which are defined in terms of variables aj. Define, a,

the joint strategy vector for the L-PG as follows:

- 1 .2 3 o3 o3 53
a = [a},a%,a%,a83,a3,ad,af,a],a5,a%,af,

R i A ol b ok pk gk 1T
85 y8g 907 585 985,87, 9814 ,8{2+813 s25, ]

The next step is to summarize all possible plays,
and to specify the probability of each play occurring and
the corresponding payoffs. This is done in table 14
which follows the same pattern as table 13 for the 3-PG,
with the following exception.

It is clear that if player 1 declines to play in
the 4-PG then the game becomes equivalent to a 3-PG
(see figure 10). This fact may be used to reduce the

amount of computation necessary to compute the payoff
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OF STRATEGY Puncyion *
. x
PLAYER 1 PLAYER 1
DROPS PLAYS
3(y): b. that
£}(y) :ithe prob.thet £3(y) ithe prol
1 player 2 enters player 2 enters
L PLAYER 2
PLAYER 2 PLAYER 2 PLAYER 2
PLAYS
DROPS PLAYS DROPS
3 q
£3(2) 1the prob.that £3(z) :the prob.that £3(2) rthe prob.thet
player 3 enters pleyer 3 enters pleyer 3 enters
o] 1 S 0 ul 1 s . 0 oy 2 |
LS PLAYER PLAYER 3 PLAER 3 PLAYER 3 PLAYER 3 FLAYER 3 PLAYER 3
YER 3
Ly PLAYS DROEC PLAYH it PLAYS BROPS PLAYS
GAME hd v W W W w w
@ 1 1 I 1 1 1 1
0uja v 0ay = w 0 ny g v 0a;ag w 0 nj afy o Oafa}; 1 0w 0 afyng, Pl
u . -
oi{w) spley t Hw):plny r3{%) iplay £3(w) :play £3(w) tploy £11(w) :play fia(v) cploy
£3(w) :double (v} :double rilv) sdoutile rilw) :doubla £yalw) :dovble £42(w) :double riv{v) sdnuble

tnote The above representation

of the pair of functions f}(w)
and fi(w) is choseh to conserve
space, The mea.ning is that player
b plays if ajsw<ai end doubles
if a;swsl.

£3(z) rthe prob.that
player 3 enters
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SUMMARY OF PLAY FOR THE L-PG
Payoffs

PLAY PROBABILITY 1 11 III Iv
1.|p! [1-r1(x)1] 0 pi T p3 T Py’
2.|pi%p%*  ellx)(1-28{y) 1[1-28(2) 13-3Cw)-28(w) ] | +1 0 0 -1
3.|P20%PY  rh(x)[2-£3(y) 1{1-£3(y) I£3(w) X;z’-z(x’w) 0 0 X;z’_z(w’x)
L pio?p®p*  rl(x)[1-£3(y) 1[1-23(y) I£8(w) x;z"l'(x,w) 0 0 X;Z""(w,x)
5.[p'p?Pip" £Hx) [1-£3(3) 1e3 () [£3 (w) ~£10 (w) ] x;z'"z(x,z) 0 x(;;"z(z,x) -1
6.|P'0%P%P*  £i(x) [1-£3(y) 123(y) £4 () X, H(xszow)  fO xg, Plxw) X Hwx,2)
7.|P'p*P Dy £1(x) [1-78(y) 1£3(y) £1o (w) X;;_“(X,Z,W) 0 x;;"’(z,x,w) x;s""(w,x,z)
8.(p'P20%"*  rl(x)£i(y) [1-ri(2) J[1-£t1(w)-ria(w)] Xéz"z(x,y) X;zl—z(y’x) 0 -
9. PP %" £l(x)eE(y) [1-22(2) et (w) R CR AU PR E R xg, 2 0esxsy)
10.[P'P?D0p  £1(x)£3(y) [1-£8(2) 1£da (w) Xy "Ceaysw)  xgrtysxw) 0 X3, %y )
1L [PIRERTD £t (y) £l () (1ot s (W) -1 () ] g ys2) g txae) xgr i (eay) L
2. |p'P%e%  rl(x) R (y) ed(z) ths(w) x;;-z(x;y,z,W) Xgr Hyaxszaw) g Hzuxy,w) xS, 2%,y ,2)

1p2p3nk 1 2 3 4 - - — -~ .
L3, |PPPDy  £i(x)£E(y) fulz) £ (w) R ERD] PR R NRY] PN CE R P LR )

pi,p3,p}

are the payoffs for the 3-PG
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functions for the L-PG, by making use of the 3-PG

payoff functions which have already been calculated, (see

5.2.3).

Let Pi(a) De
for joint strategy a.
the functions P4(a)

and it is found that:

Pi(a) = (1-ai)aZadas + azagxaswz(

)

1
ai

.1

+ agaSXan~L< ot

1
1
ay

+ a3Xa} v“2< :

VA =

) v o

the corresponding payoff to player i
Then, using table 14 and figure 9,

may be calculated, in the usual way,

PR

a

g + XQi2.-4 1
ais & a}

aﬁang’_2<

[YERNRS

—_ 3 3 3 3
Pg(%) = a'}.Pi(ai’aisazsali:aléyagyat ’alé’alé)

.1
a3

1

3 .4 3,~2
+ azaj XQ3* ( al
1

1

3
2

> + a?XQ§'~2<a

3 ol
aXQg <a§
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2 o1 .3
as az a3 &8 &g

4
+a’13XQ§"2<a% a; 3>+XQ?"2<1 - a2'~>+

pz/ 1 1 1A
12,4
SN R

Pé(f;) = a}.Pg(aEJag3ag,ali’alésalé9at’a’é’a(é)
' 1 1 : 1 1 at
254XQ3 -2 + 2 L ,-2 0 +
+ a3asXQy <a8 at agXQs a? at aé
- 1 1 1
+ a3XQ§: L<aa 1 L
3 1
1 1 1 1 1 1 a%
4 5,~-2 6 ,-2 18
+ a¥3XQ8: + XQf: o +
oG8 (og ap ag) * Ko 3
1
+ XQERa-4 ; e
_ az 1
Pé(,?;) = a%Pg(aE,ag,a%,aLi’alé’aé,at’agralé)
- (1-al)aZafa%

28702 -2/ 38 1 2,8%04 o ~4( 1
+ a3azXQ3: a? + aZagXQs3: ot )=

1 4
7 a1 ag

[EENEN

aZaf(1-at)(1-a3)

I3
+ aSXQé"2<:§° ajiL a?;) + a%XQ%“’*( g 1) -

L 3
ajo ai aj

afat, (1-at) (1-a2

.o/at 1 4 ' - 1 1 1
eRG o ag)t e Bl o )

ata(1-a8) (1-a8) (1-a2)

8,-2(2]s 1 1 1 2,-¢f 1 1 1 1
XA (aia ai of a7 ) * XU (a4, af af af
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5.3.2 Special method to speed the solution of the L-PG

It is not practical to apply the LAH algorithm
directly to the task of solving the L4-PG for the following
reason. Experimental evidence showed that:

(a) Bach function evaluation for the 4-PG took

approximately ﬁa sec. of c.p. time.

(b) 2016 function evaluations were required per

cycle of the LAH algorithm.
Hence, time per cycle was approximately 50 secs. Since
many cycles (see chapter 3) are needed to find the e.p.
it would be advantageous if some way could be found to
reduce the cycle time.

In fact the number of function calls required per
cycle may be reduced in the following way. Consider the
tree diagram given in figure 10. The section of the
tree diagram enclosed in the dashed rectangle is a subset
of the }-PG which arises when player 1 declines to play.
This subset is exactly equivalent to the 3-PG. Thus, the
solution already found for the 3-PG may be used in this
section of the 4L-PG. (Note that this fact has already
been used in table 14). This then reduces the number of
unknown variables in the L4-PG, and, as a consequence,
experiments show that the number of function calls per
cycle of the LAH algorithm is reduced to 666. The

evaluation time per function remains at approximately ﬁa
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EQUIVALENCE BETWEEN THE 3-PG AND

THE 4-PG WHEN PLAYER 1 DECLINES TO PLAY

PLAYER .1
DROPS PLAYS
r_____—_?L_A_YER > : PLAYER 2
} DROV\PLAYS | DROPS/\’LAYS
I PLAYER 3 PLAYER 3 : PLAYER .3 PLAYER 3
E DROPS PLAYS DROPS PLAYS | DROPS PLAYS DROPS PLAYSI

| PLAYER 4 PLAYER 4 PLAYER 4 PLAYER 4 |PLAYER 4 PLAYER 4 PLAYER 4 PLAYER
|

| DROPS DROPS DROPS DROPS DROPS DROPS DROPS DROPS

| PLAYS PLAYS PLAYS PLAYS PLAYS PLAYS PLAYS PLAYS

| DOUBLES DOUBLES DOUBLES DOUBLES |DOUBLES DOUBLES DOUBLES DOUBLES
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of a second, and thus the overall execution time per
cycle is reduced to 14 secs. This is a factor of 3 times
faster than before.

Constraints

An examination of figure 9 shows that:-
0 < a} <0 for all variables ag
and

g < ah, ab < af, ab < a, ab < ab
A ‘ L 4 ]
a§ < ajo, ai < ajg,afs< aj,

5.3.3 Solution of L-PG

With the above data it is possible to solve the
L~-PG (with q = 0.287) by using the LAH algoritkm. The
minimum step size used by the algorithm was 0.00045 and
the execution time was approximately 320 seconds of c.Dp.
time. The solution is given in table 15 below.

5.4 Checking the 3-PG and L-PG payoff functions

Both the 3-PG and 4-PG payoff functions were
tested in the same way, hence details are only given for
one of the above cases. The 3-PG case was chosen to
maximize simplicity of presentation. |

Two tests were carried out.

(a) Checking that the sum of the payoff functions is zero.

Since the 3-PG is a zero-sum game (see chapter 3),
it follows that for any given joint strategy vector a

(see eq.12)
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TABLE 15

SOLUTION TO THE 4-PG

Expected
Payoff

0.113
0.129
0.169
-0.411

129.

Varisbles

a$=0.790

a$=0.715 a%=0.815
a3=0.615 a2=0.800
at=0.620 ak=0.815
ag=0.825 a4=0.885
85=0.830 at,=0.900
a4 3=0.840 a%,=0.999

" a§=0.730 a}{=0.830

a4=0.800 a§=0.880
ai 1=0 . 830 ag’_ 2=0 . 920
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P2(a) + P3(a) + P3(a) = O (22)

A random number generator was used to generate an
acceptable strategy vector a, and this parameter was
substituted into the L.H.S. of eqg.22 to check its validity.
This process was repeated a large number of times, and in
each case eqg.22 was satisfied.

(p) Use of simulation as an alternative method of

calculating the payoff function.
The payoff functions for the 3-PG may be approx-

imated by using simulation, in the manner to be described
below. Given some strategy variable, a, many games are
simulated, and the average expected payoff accruing to
each player, as a result of this particular value of g,
is then calculated. Each individual game is simulated
in the following way. A random number generator (see
appendix B) is used to deal hands Xx,y, and z to players
1,2 and 3 respectively. Next, the joint strategy vector,
a5, predicts the course of events in this game according
to figure 8. For example, if x < ai then player 1
drops. Next, if y > a?%, say, player 2 will play,
while player 3 will drop if 1z < af.

Finally, the random number generator is used to
effect hand improvement according to eq.%1 in chapter L.,
This is done by generating a random number, r, O < r < Iy

and allowing the hand x to improve to X = x+2 1if
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O<rs<gq (g=0.287). If g< r < 1 then the hand

does not improve, and X=x. After this has been done
for all hands, the eventual winner is decided in the usual
waye
Thus, for any given a the payoff functions may be

calculated in 2 ways. First, by using the analytic results
given 1n 5.2.3 and secondly, using simulation to give an
approximate answer. This experiment was carrled out for
several different values of a, and the 2 sets of results
agreed each time. The detalls of the least favourable such
result will now be given.
Let

a = (0.715, 0.615, 0.800, 0.645, 0.815, 0.730, 0.830,

0.825, 0.885]"

The 3 payoff functions for this wvalue of a were calculat-
ed analytically. Next, the same payoff functions were
approximated by simulating 100 games. This procedure was
repeated several times, each time using progressively high-
er numbers of games in the simulation. Then the results
obtained were analyzed in the followling way. Consider
the payoffs obtained for the 3 players by simulating 100
games, The relative error between each of the 3 player's
payoffs, and the corresponding payoffs calculated from the
payoff functions, may be computed, and the maximum relative

error of the 3 determined. This turns out to be 64%.
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This procedure is repeated for the payoffs obtained by
simulating 10,000, 30,000 and 100,000 games, and the results
are graphically represented by figure 11. Figure 11 shows
that the payoffs obtained from simulation approach the
analytic payoffs, as the number of games simulated increas-
es. Since the simulation of 100,000 games took approxi-
mately 30 seconds of c.p. time, and convergence appeared
slow, the experiment was terminated at this point. Clearly,
simulation, as a method of obtaining payoff functions, 1s
slow and not sufficlently accurate for the purposes of this
study. It 1s, nevertheless, a useful standard against
which the analytically evaluated payoff functions may be
tested.

The same method was used to check the payoff
functions for the U4-PG.

5.5 Discussion of results

5.5.1 Comparlison between the 2-PG and 3-PG

Define the game 2-PG¥ to be the 3-PG where the
first player has declined to play. Thus the 2-~PG¥ is
equivalent to the 2-PG (compare with the 4-PG reducing to
the 3-PG when player 1 does not play, as described in
figure 10). In this section the differences between the
strategles adopted by player 1 in the 2-PG and 2-PG¥ will

be discussed.
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FIGURE 11
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In L.3 1t was shown that, in the case of the
2~PG, player 1 will play, only if his hand x 1is such that
0 < x £0.03 or 0.64 < x < 1.0 (see chapter 4, table 11).
However, because of differences 1n the assumed form of the
strategy functions for the 2-PG¥ (see discussion 5.2.2),
the solution to the 2-PG¥ shows that player 1 will only play
if his hand x 1s such that x 2z 0.61 (see 5.2.4). It
wlll be shown that, for practical purposes, these two
strategles are i1dentical.

First, in the case of a hand x, x 2 0.64, both
strategies require the player to enter the game and are
thus identical. Now consider what happens when
0.61 < x < 0.64, The 2-PG* strategy requires the player
to enter, while the 2-PG strategy does not.

However, if player 1 does enter, and he 1s looked
at, he can only possibly win if the second player's hand ¥y
is in the range 0.62 <y < 0.64, since the second player
will only play on a hand y 2 0.62. Thus summarising the
above, if player 1 has a hand x, 0.61 < x < 0.64, and
player 2 has a hand y, 0.62 <y < 0.64, then player 1
should win half the time. That is, his chances of winnlng

in such a situation are
¥ x (0.64-0.61) x (0.64-0.62) = 0.0003.

Hence, for practical purposes, player 1 may ignore the
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possibility of winning in this position.

Conversely, if x 1is such that 0 < x < 0.03
then the 2-PG strategy requires a player to enter, while
the 2-PG# strategy does not. Using the same arguments as
above it follows that in this second case the practical
result again is that player 1 may expect to lose if player
2 looks. " '

Thus, it has been demonstrated that the practical
effects of player 1 either playing on hands x,

0.61 < x < 0.64, or of playing on hands x, O < x < 0.03,
are the same. Since the frequencies of both occurrences
are equal (0.64-0.61 = 0.03), it follows that the two
apparently dissimilar strategies have a very similar prac-
tical effect.

5.5.2 Practical Interpretation of the solution to the 4-PG

This section will discuss the practical interpreta-
tlon of the solution to the 4-PG.

Chapter 1 presented a survey of the literature on
poker-like games. It was then pointed out that this
search falled to find any games that could be directly
related to any commonly played variety of poker. In the
ensulng discussion it will be shown how the solutions
obtained here may be used in this way.

Before this can be done two preliminary results

are required.
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(1) Relating a real poker hand to some hand x 1in the 4-PG

Any real poker hand, h, may be related to a hand
x 1in the U4-PG, in the following way. The work on poker
simulation required the definition (see 2.8) of a function
fy(h) which gave the probability of a hand h beating any
other randomly dealt hand. However, any hand x 1in the
L-PG, by virtue of being evenly randomly distributed on
(0,1) (see 4.1), 1is numerically equal to the probability
of beating any other randomly dealt hand y. Thus, 1t
follows that any poker hand h 1s equivalent to a hand
x = fp(h) 1n the U4-PG.

The algorithms developed in chapter 2 may be used
to evaluate fy(h), the probability that a poker hand h
has of winning. Table 16 gives the values of these prob-
abilities for various types of hands, and, as a result of
the above discussion, an equivalence 1s thus established
between h, a real poker hand, and x, a hand dealt in
the U4-PG.

(2) Correspondence between a given hand in the 4-PG

and a poker hand

As a consequence of (1) above it is possible to
provide an interpretation of any hand x in the 4-PG in
terms of a real poker hand h. This procedure is best

illustrated by an example.
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EQUIVALENCE BETWEEN HANDS IN THE 4-PG AND REAL POKER HANDS

1 POKER HAND, h EQUIVALENT HAND IN 4-PG
x = fp(h)
NOTHING
PAIR OF 2's OR BETTER 0.50 OR HIGHER
PAIR OF 3's OR BETTER 0.53 OR HIGHER
PAIR OF U's OR BETTER 0.57 OR HIGHER
PAIR OF 5's OR BETTER 0.60 OR HIGHER
PAIR OF 6's OR BETTER 0.64 OR HIGHER
PAIR OF T's OR BETTER 0.67 OR HIGHER
PAIR OF 8's OR BETTER 0.71 OR HIGHER
PATR OF 9's OR BETTER 0.74 OR HIGHER
PAIR OF 10's OR BETTER 0.78 OR HIGHER
PAIR OF J's OR BETTER 0.81 OR HIGHER
PATIR OF Q's OR BETTER 0.85 OR HIGHER
PAIR OF K's OR BETTER 0.88 OR HIGHER
PAIR OF Aces OR BETTER 0.92 OR HIGHER
THREE OF A KIND OR BETTER 0.98 OR HIGHER
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It was shown in table 15 that the optimal solution
to the 4-PG had al = 0.790. By referring to the original
strategy function definitions (figure 9) it may be seen
that this requires player 1 to play if his hand x 1is
such that x 2 a}l, and drop if x < al.

Table 15 shows that a pair of 10's or better is
equivalent to a hand x, x 2 0.78, while a pair of Jacks
is equivalent to a hand x, x 2 0.81. Thus x 2 0.79
means that hands h weaker than a pair of 10's are never
played on, while all hands stronger than a pair of 10's are
always good enough. However, 1t is not immediately clear
what action should be taken when Lolding exactly a pair of
10's, and this problem 1is resolved in the followlng way.

First, two hands both containing one pair of 10's
may be ordered on the basis of the 3 remaining cards (see
table 1, chapter 2). Thus x =2 0.79 means that only pairs
of 10's of above a certaln strength (Judged by the 3 non-
paired cards) are sufficiently good to play on. Since
the probabllity of obtalning better than or equal to one
pair of 10's is 0.78 and better than or equal to a pair of
Jacks 1s 0.81, then the probability of obtaining exactly 1
pair of 10's is 0.81-0.78 = 0.03. If now only pairs of
10's are considered when x 2 0.79, then the probability of

obtaining such a hand is 0.81-0.79 = 0.02. Thus, this

0.02
0.03

analysis shows that x 2 0.79 implies that only %
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of all pairs of 10's dealt will be sufficiently good to play

on.

Since, in a real game of poker, the 3 non-paired
cards 1n the hand are usually discarded, from a practical
point of view, all pairs of 10's are equivalent. Thus,
using the above two ideas, it is possible to interpret
x 2 0.79 to mean that a pair of 10's 1s only played on %
of the time. This strategy would mean that a player could
make a random choice on whether or not to play with a pair
of 10's, provided that, on the average, he played % of the
time.

If, as mentioned by von Neumann, (27), one of the
obJects of bluffing is to create uncertainty in the opposing
players, then, the above apparent randomness (i.e. playing
only two thirds of the time with a pailr of tens) in the
strategy, could be interpreted as a form of bluff.

Each of the varilables ag may be interpreted in
the above manner, and the resultant, overall, strategy, is
given in figure 12. It should be noted that in this figure,
only the probabilities of playing with the critical hands
are specified, as it 1s automatically assumed that hands
weaker than this are never played on, whille stronger hands

are always played on.

5.5.3 Discussion of solution to the 4-PG

This section will discuss the solution to the

4-PG given in table 15. A comparison will then be drawn
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In the dlagram below statements of the form |PAIR TENS, PROB=0.7 should be interpreted in the following way.
A player should never play if his hand is weaker than a pair of tens, and always play 1f his hand 1s stronger
than a pair of tens. However, if he has exactly a palr of tens then he should only play with probability 0.7.

PLAYER 1

PAIR TENS, PROB=0.7

DROPS “PLAYS
PLAYER 2 PLAYER 2
l PAIR EIGHTS, PROB=0.8 J [- PAIR JACKS, PROB=0.8 '
DROPS PLAYS DROPS PLAYS
PLAYER PLAYER 3 PLAYER 3 PLAYER 3

| PAIR TENS, PROB=0.3 I | PAIR QUEENS, PROB=0.3 | l PAIR ACES, PROB=1.0

PLAYS DROPS PLAYS DROPS PLAYS DROPS ' PLAYS

L PAIR FIVES, FROB=0.7 ‘

PLAYER Y PLAYER 4 PLAYER 4

PATR JACKS,PROB~0.5

PATR TENS ,PROB=0.3
; DOUBLES ACEs,PRoaul.q

PATR RIGHTS,PROB=0.3 DOUBLES KINGS PROB=1,0

DOUBLES JACKS,PROB=0.5

PLAYER 4
PLAYER 4 PLAYER 4 PLAYER 4

PAIR FIVES ,PROB=0.5

DOUBLES JACKS ,PROB=0.8

PAIR JACKS ,PROB=0.5
DOUBLES KINGS,PROB=0.8

PAIR JACKS ,PROB=0.5
DOUBLES KINGS,PROB=0.5

PAIR JACKS,PROB=0.3
DOUBLES ONLY ON AN
EXTREMELY STRONG HAND
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between the analytic solution and the strategles adopted by

experienced players, as recorded in books on the subject,
(6,8,30).

By studying figure 12 the following polnts may be
noted.

(a) When to play first

The minimum hand required before a player will
enter the game, glven that no other player has yet anted, is
found from figure 12 and given in table 17 below.

(b) Conditions under which the last player,

drops, plays or doubles.

Generally the last player continues to play if
he has a hand at least as good as the expected hand of the
first player to make an ante. The last player then gener-
ally doubles holding:

(1) Jacks or better if 1 other player is in.
(11) Kings or Aces if 2 other players are in.
(i1i) Only an extremely strong hand if more than 2 players
are in.

(¢) Expectations of various players

Table 15 shows that players have the following

expectations (of winnings) in the U4-PG.

Player Expectation
1 0.113
2 0.129
3 0.169
4 -0.411
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TABLE 17

MINIMUM HAND WHEN FIRST TO PLAY: THEORETICAL RESULT

n, number of players Minimum hand required
to follow
3 pair of 10's
2 pair of 8's

1 pair of 5's




143,

Coffin, (6), makes the following general comments about
poker. First, since the last player is compelled to ante
(while the others are not) he suffers a disadvantage. This
is also evident in the solution because the last player is
the only one to have a negative expectation for the game.

Second, since out of players 1,2 and 3, the later
players have an advantage over the earlier players, 1ln that
they have less players ahead of them who have not yet anted,
and can thus arrive at a more informed decision. Again,
thls effect 1s demonstrated in the expectations of the 3
players.

The most striking aspect of the solution is the
degree of disadvantage incurred by player 4 in having to
make an initial compulsory ante.

5.5.4 Comparison of analytic solution with the strategles

used by experienced players

Over many years certaln strategies have evolved for
the type of game considered here (see (6,8,30)). Even
though the rules of some of these games may differ slightly,
the salient points of these strategles remain largely in-
variant, and are listed below. These practical strategies
will then be compared to the theoretical strategles found

here.
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(2) When to play first

It is generally agreed, (6,8) that the minimum hand
required when first to play, 1s as given in table 18 below.

It may be seen that table 18 and table 17 (theoret-
ical results) agree for n = 2 and 3, with the exception of
the minimum hand requirements for the second last player
(n=1). Whereas, 1t 1s generally recommended that any pair
is sufficient under these conditions, the theoretical re-
sult shows that a pair of 5's is required. This discrep-
ancy may have the followlng explanation.

First, it 1s possible that the generally recommended
strategy 1s not correct in this instance. Certainly, the
concepts of good play in poker have changed over the last
100 years (see (8)).

Second, table 18 is quoted in various books as not
only applying to the particular version of the game solved
here (30,32), but also to a version of this game where the
second to last player makes a compulsory ante, half the
size of that put in by the blind. Obviously, in this case,
the second last player would play on a somewhat weaker hand
as he 1s already partially committed. Thus poker books
generally consider that slight variations such as this in
the rules do not affect the optimal strategy, and that the
same strategies may be used in similar types of game. This
idea appears correct when the first and second player in the

L-PG are considered, but seems to break down for the second
last player.
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TABLE 18
MINIMUM HAND WHEN FIRST TO PLAY; PRACTICAL CRITERIA

n, the number of Minimum hand Corresponding hand
players to follow | requirement X in the 4-PG

6 pair of Aces 0.92

5 pair of Kings 0.90

4 pair of Queens 0.86

3 palr of 10's 0.80

2 palr of 8's 0.71

1 any pair 0.50




146,

Application of table 18 to the simulation of poker

It has been indicated in chapter 2 that the results
of table 18 have been applied to the poker simulator. It
was found that a quadratic function of n,

f(n) = -0.01n%? + 0.13n + 0.50
would closely approximate the value of x, (hand strength)
for any given value of n (number of players to follow).
This function, x = f(n), 1is employed in the poker simulat-
or, as described in section 2.9.

(b) On playing after another player

Thils discussion will consider the strategy to be
followed if another player has already entered the game.

The last player's strategy in this situation, however, will
not be treated here, but will be discussed separately in the
next section.

Books on the subject, (30,32) agree that players
should have better than the minlmum expected hand of the
last player to enter, before making an ante. If the
solution given in figure 12 is examined, then 1t may be
seen to agree with this principle. For example, if player
1 enters then he must have a hand of at least a pair of 10's.
In this case player 2 will only enter if his hand y 1is at
least a pair of Jacks. Similar patterns may be found

throughout this solution.
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This behaviour may be approximately described using
a function g(2) = 2 + $(1-2) where £ 1is the last minimum
expected hand that was entered, and g(f&) glves the next
minimum required hand to enter. This function is used in
the poker simulator (chapter 2).

(c) Play by the last player

Books on the subject, (30,32) do not state any
specific requirements on the minimum hands required by the
last player. Only 2 general observations are made.

First, the last player should only play if his
hand compares favourably with the minimum expected hands
of other players who have made an ante. This same criter-
ion is seen to hold for the solution to the 4-PG (figure 12).
For example, if players 1 and 2 drop, while 3 plays, then
player U4 expects player 3 to have at least a palr of 5's.
Accordingly, he only plays on a palr of 6's.

Second, 1t 1s recommended that the last player
should only double when there is a good chance that he has
the best hand. An examination of figure 12 shows that this
criterion also holds for the analytic solution. Consequent-
ly, 1t may be noted that if player 1 drops whille players 2
and 3 play, then player 4 may assume that player 2 holds at
least a pair of 8's, while player 3 must have at least a
palr of 10's. Thus player 4 plays on a pailr of Jacks or

better, and doubles only on a pair of Kings or above.
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CHAPTER 6

APPLICATIONS OF THE WORK CARRIED OUT IN THIS STUDY

6.1. Introduction

As a sequel to the work of this study, two practical
applications will now be glven, which illustrate the inter-
disciplinary nature of this work.

6.2. Application of game theoretic methods to a problem in

networks

Tn this section a game theoretic approach to a partic-
ular network problem will be formulated. The treatment
presented here will only give sufficient detail to 1llus-
trate the principle underlying this new approach. A more
detailed paper (Harris (16)) on the subject which applies
thls method to a problem in telephone networks, has been
wrltten, following a discussion of these ideas with the

author.

6.2.1. Theoretical background

The ideas involved in the application of game theoretic
methods to networks may be conveniently explained by means
of an example taken from Dafermos, (7).

Figure 13 below shows two towns, labelled node x and
node y. There are 5 one-way roads between node X and
node Yy, called links. Each link can only carry traffic
in a single direction, and the amount of traffic being

carried on 1link 1 is called the flow, fj.
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FIGURE 13 AN EXAMPLE OF A SIMPLE NETWORK
s | |
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Define the vector f to be the total flow vector
where f = [£1,f2,fs,f4,T5] .
Suppose that for any given total flow vector f there 1s a
cost c¢3(f) assoclated with each link 1 and assume that

the network is such that:

c1(£f) = Lf,2 + 2f,f, + 900f,
c2(f) = 6£2% + 2f,f, + 9001,
ca(f) = 6f32 + 3ff, + 820f,
cy(f) = Bf,2 + 3fyf, + B820f,
cs(f) = 5fs* + 1220f (1)

This means, for example that, cl(f), the cost of carrying
traffic f; on link 1, depends not only on, fi., the
traffic carried by 1link 1, but also on f,, the traffic on
link 2. In practice, this type of interaction may occur if
links 1 and 2 form one two way road, and thus the flow on
one side of the road will, to some degree, affect the flow
of traffic on the other side.

Next deflne d(x’y) as the travel demand from node
X to node y. In this particular network it is required
that 120 units of flow be transported from node x to node
y, and 120 units from node y to node X. Thus

dey.yy = 120

' ¥)
dey,x) = 120 (2)

Since, from figure 13, total flow from node x to node ¥y

is f1 + £, + £y and from node y to node X it is fa+fy,

then eq.2 becomes
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f, + £ + £5 = 120

£y + £, = 120 (3)
where fy 2 0 for i=1,..45s

The problem is to apportion the flow vector £ in

such a way that while eq.3 is satisfied, the costs associ-
ated with the network, given by eq.1, are in some sense
minimized. Two criteria of minimization which are common-
1y used (see Potts, (28) and Dafermos, (7)), are given
below, while a new, game theoretic approach, will be
defined in the next section.

(1) System Optimization

System optimization consists of minimizing the

function

o(£) = 3 e1(g) )

and therefore gives the lowest possible overall
cost, while ensuring that the constraints are
satisfied.

(2) User optimization

Dafermos, (7), states that for the problem being
considered here, if each unit of flow is con-
sidered to be an individual car, and the cost
per unit flow represents average time taken to
complete the journey, then the user optimized
pattern will occur if each individual is free

to choose his own route independently. It is
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assumed that he does this in such a way that
his own travelling time is minimized. A
mathematical formulation of this crilterion
will not be given here as it is not relevant
to this study, but it may be found in
Dafermos, (7).

6.2.2 Game theoretic network optimization

A new criterion of minimization, which proved to be
of theoretical and practical importance (see (16)), 1s
proposed in this section.

Consider the network given in figure 13 as a
2-person non-cooperative game, defined in the followilng way.
Player 1 must transport 120 units of flow (dex,yy = 120)
from node x to node Y. He is free to direct this
flow in any way he chooses within the limltatlons of the
constraints, along links 1, 3 and 5. Player 2 must like~-
wise transport 120 units of flow from node y to node x
(dey,x) = 120). Again he is free to direct this flow 1n
any way that he desires along links 2 and U. Thus accord-
ing to earlier definitions, the cost to player 1 for any
given flow configuration f is given by c1(§)+ca(f)+cs(£),
and player 1 seeks to minimize this cost, and hence maximize
his payoff function, Pi(f), where

P1(f) = =c1(f) - ca(f) - cs(f) (5)
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Similarly, player 2 seeks to maximlze his payoff function,

Pz(g), where
P2(£) = —ca(f) - cu(f) (6)

Hence, the 2 players are in a competitive game
situation since the costs sustained by each player are not
only a function of their own actions, but also depend on the
actions taken by the opposing player. This game was solved
by means of the LAH-algorithm (see table 19) and the solu-
tion also found algebraically by Harrils (details will not
be given here as the algebraic method used to find the
solution was the same as that given in 5.5).

6.2.3. Discussion of results

The three solutions to this problem, using the 3
different criteria of optimization, are displayed in table
19. The followlng points should be noted.

(1) System optimization provides the overall

minimum total cost, c(f).

(1i) Game optimization provides a lower total cost,
c(f), than user optimization. Although it
has not been proved it is conjectured that this
may have the following explanation. In the
game theoretic optimization there are two
conflicting players. However, the definition
of user optimization, as given earlier, means

that each of the individual users 1is in



TABLE 19
RESULTS FOR NETWORK OPTIMIZATION

il ™MW

Define the total cost c(f) =

I ci(D)
1

1

SYSTEM GAME USER

OPTIMIZED OPTIMIZED OPTIMIZED

i 50.2 54.5 61.3
fa 66.1 66.2 64.3
fs 35.2 0.6 47.9
Ty 53.9 53.8 55.7
fs 34.6 24.9 10.8

c(£) 317,500 318,300 322,000
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competition with every other user. This
greater degree of competition in the user
optimized system would tend to create a lesser
degree of cooperation, and hence higher costs.

Thus, 1t has been shown that game theoretic methods
can have application in other, not directly related, areas
of applied mathematics, and the numerical techniques
developed in thils study (e.g. LAH algorithm) can be applied
to such problems. In conclusion Harris, (16), has shown
that the game theoretic optimization principle has lmport-
ant theoretical and practical applications in the theory
of telephone networks. It is considered by Harris that
the game theoretic principle can be used to clarify certain
heuristic methods which are used by telephone network plann-
'ing authorities. Also, the game theoretic solution may be
used as a close approximation to the system optimized
solution.

6.3. Business model

As has been observed in chapter 1, even though prev-
jous writers have remarked on the similarity between poker-
l1ike games and problems of business operations, (29), no
explicit examples could be discovered in the literature.
Thus, in this sectlon, a business model is constructed to
parallel the 4-PG solved in chapter 5. The broad princ-

iples on which the model is based are as follows.
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Consider a situation involving 4 competing manufact-
urers denoted by 1,2,3 and 4. Each manufacturer must
decide whether or not to market a particular product and
thereby involve himself in a situation in which he will
either make a profit or a loss depending on various assump-
tions, which are given below.

(a) The first assumption is that a highly speclalized
product that has a limited appeal 1is being marketed.
The market has the property that it will ultimately
buy from only one of the manufacturers. Three
practical examples of such a situation are:

(1) When the market consists of only one customer

for example, a government department.

(i1) When the market is so small that eventually only
the most successful manufacturer will be able to
operate in it. The remaining manufacturers will
be forced to cut their losses and quit.

(111) When a monopoly situation can be established by
one of the manufacturers.

(b) The second assumption is that when the winning manu-
facturer emerges, hils total profit will equal the
amount spent on advertising and promotion by the other
manufacturers who have entered thils competition. This

assumption may be justified in the following way.
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It is known that in certain situations, sales, and
therefore profits, may be directly related to ad-
vertising expenditure. If the major non-returnable
cost involved in this business 1s that of advertils-
ing, and if all the advertising is such that 1t
benefits all manufacturers equivalently (i.e.
develops new sections of the market which will
eventually all be serviced by the final winner)
then 1t is possible that profits will equal total
amount spent on advertising. A historical example
of this 1s given by Winkler, (36), and concerns the
development of the tobacco industry in the U.S.A.,
around 1900, which was eventually dominated by one
company . During certain periods of intense comp-
etition which preceded this, little or no profits
were made, but huge markets were developed by all
manufacturers as a result of the price cutting and
heavy advertising which took place. Finally, a
single company was successful in obtaining a mon-
opoly of over 90% of all the tobacco trade, and
eventually made enormous profits. It would not be
unreasonable to assume that these profits were
directly related to the huge sums spent in advertis-
ing and promotion by all manufacturers during the

period of intense competition.
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(c) Each manufacturer, before he decldes whether or not
to enter the market, needs to rate his product in
some way. For the purposes of this model it will
be assumed that this rating is given by some number
x, 0 £ x <1, where this value has the following
properties.

(1) A clear and common understanding of this
value exlsts among all players. That is,
each manufacturer, if he had to value any
one of the products, would give it the same
value as all the other manufacturers. This
would, in practice, arise because those who
consistently over-valued or under-valued
their products would go out of business, and
only those who could give an accurate value,
would remain.

For example pawn-brokers and used car
salesmen must exercise this ability, while
new car manufacturers must also learn to make
accurate, consistent value judgements of this
type.

(i1) By common agreement this value X has the
following meaning. This is best illustrated
by an example. Consider the case of a used

car salesman who specialises in appralilsing a
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particular model of car. Because of his
experience he is able to rate any given car,
in relation to all other cars of that type,
and state that this car 1s better than say
p% of cars of this type. Then, in this case,
define x to be equal to p/100.

It is assumed that one of the four manufact-
urers is prepared to initiate the competitive
situation in the following way. He postu-
lates that there may exist a need for some
particular product. Although he knows that
he will be able to manufacture it he does not
yet know just how good his product will be
(i.e. he does not know his own value of x).
However, he is prepared, at the cost of 1 un-
it, to mount a small advertising campalgn,
which will establish whether this particular
product will in fact find a market. At this
point the other three manufacturers are in-
formed of the results of this survey, and
thus the competitive situation is created.
The other three manufacturers, knowing their
own value of x, must now make a decision
whether or not to enter the market. This

will immediately involve them in a cost of 2
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units for advertising. It is assumed that
the competitors have certain fixed policiles
established over a period of time, that
decisions are made in some definite pre-
determined order. Conditions are such that
all are aware of any decislons which are made.
When all manufacturers have made known their
intentions, the last manufacturer, now also
knowing his value of x, has 3 choices.
(1) He may choose to drop out and forfelt
his initial outlay of 1 unit.
(ii) He may decide to continue, but on equal
terms with hls rivals. Thus he 1ncreas-
es his expenditure by 1 unit to match

the total amounts outlayed by the others.

(iii) If his product happens to be particular-

ly good, and because of his good strat-
egic position (i.e. he was first into

the market and has had the greatest
amount of time to consider the situation,
knowing the actions taken by the other
players) he may increase his outlay by a
further 3 units. This will introduce a
tendency for hils competitors to match

his expenditure (at a cost of a further
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2 units) as they are already fully
commltted and must continue. Not to
match this increased expenditure would
mean that they would certainly lose.

(g) The winning manufacturer 1is determined in the
following way. Initially, each manufacturer
computes the value of x applying to his own
product. Denote these values by X;,X2,X3,
and x5, respectively. At this stage none
of the manufacturers know the xj values
calculated by any of their rivals. There 1is
some fixed chance, g, equal for all compet-
itors, of making a last minute technological
breakthrough, which, 1s of such a magnitude
that, if achieved, it will ensure that partic-
ular competitor of winning the market. How-
ever, 1f two or more manufacturers achieve a
simultaneous breakthrough, then the winner is
the one with the higher initlal xj. If no
technological advances are made then the high-
est x3 will win.

Eq.1l, chapter U4, defined the function Tq(x) where,

given some random number r, 0 s r < 1, then
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Thus, using the above definition it follows that the winner
may be defined as follows. Each value of xj 1s replaced
by Tq(xi), and then the highest value wins.

Now, using (a) to (g) above, 1t is possible to
formulate a business operation which completely parallels
the L4-PG. Familiarity with the U4-PG and polnts (a) to (g)
above, will be assumed in the ensuing discussion.

6.3.1. Definition of business model

Suppose that four manufacturers denoted 1,2,3 and
4 are identified with players 1,2,3 and 4 in the 4-PG. In
the ensuing discussion the 4-PG will be described and
interpreted in terms of the business model.

First, player U4 makes an ante of 1 unit. This
corresponds to manufacturer 4 initializing the competitive
situation by outlaying 1 unilt as described in (d) above.
Next, the four players in the 4_-PG are dealt hands X;,X2,
x3 and Xu. This corresponds to the four manufacturers
calculating the goodness of their products in terms of the
variables xi,X»,Xs and x, as described in (¢). Now,
beginning with player 1 each player, in turn, decides
whether or not to enter the game by making an ante of 2
units. This same situation occurs in the business opera-
tion (see (e)), with each manufacturer, in turn, deciding

whether or not to enter the competition at a cost of 2 units.
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Player 4 may now drop out, play on, or double,
thereby forcing his competitors to double. This also
oceurs in the business model and is described in (f), where
manufacturer U4 also has the option of dropping out (and for-
feiting 1 unit), remaining in the market (at a total cost of
2 units), or doubling his expenditure (to a total cost of hy
units). At this stage of the 4-PG all hands xj are
improved by the transformation Tq(xi) as given in eq.l
chapter 4. Exactly the samé procedure 1s used in the
business model and this is described in (g). The winner
is then identified in the same way 1ln both cases. The
4-PG allows the winning player to take all bets made, while,
the business model allows the winning manufacturer a profit
equal to the sum totals of all amounts spent by his compet-
itors, as described in (b).

Hence, the solution found for the L-PG may be
directly applied to the business model, and each of the
four manufacturers can consider his value of Xj (goodness
of product) to be equivalent to a hand xi 1in the 4-PG,
and take actlons in the business situation corresponding to
the ones that he would take in the A4-PG.

6.3.2. Discussion of business model

The discussion above showed how a business operation
could be defined to parallel the 4-PG in such a way that the

optimal strategy for the L_PG could be applied to the busi-
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ness model. This suggests that other business models of
this type may also be studled and solved by means of the
theoretical methods developed in this study. The above
example also indicates, in a practical way, the close

connection between business and poker.
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CHAPTER 7

SUMMARY, CONCLUSIONS AND

DISCUSSION OF NEW WORK

7.1 Summary

This section will summarise and discuss the work
carried out in this study. The initial investigation of
the problem of solving poker-like games, revealed the
following points.

(a) A review of the literature showed that poker

was amongst the most difficult of card games, and

that a signhificant amount of work had been

carried out in this area by Bellman, Friedman,

Karlin, von Neumann, Restreppo and others.

However, the games solved could not be applied to

any commonly played variety of poker. Thls was

because the problems posed by poker-like games
were sufficlently formidable to restrict the
workers noted above to relatively simple analyses.
(p) Apart from the work of Findler, no treatment of
poker simulation was noted in the literature.

This was surprising because:- |

(i) Simulation of poker offers a worker
the capabllity of evaluating optimal
strategies and of testing the validity

of theoretlcal results.
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(i1) A poker simulator could be adapted to

play interactively with human opponents.
Thus simulation appeared to offer attractive
possibilities of giving further insight into the theory
of the game of poker.

(¢) A review of the literature showed that the main
difficulty in applying game theoretic methods to
poker arose in the solution of the resultant
equations. It followed that the application of
numerical methods might yield useful results.
However, this approach had not previously been used
for poker, and no suitable algorithms were found
to exist. It was probable therefore, that the
numerical approach might require much new work.

(d) Finally, despite comments by various writers (19,29)
on the connection between poker and business
operations, no application of poker results to a
practical problem, could be found. This suggested
that an important sequel to a theoretical study of
poker should be an application of theoretical
results to relevant problems.

The foregoing consideratlons led to the work of this

thesls belng carried out in four main parts as follows.
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7.2 Approach to the problem posed in this thesis

(a)

Simulation of poker

The first part of this work, see chapter 2, dealt
with the simulation of poker. During this research the
following .csults were obtailned.

(1) probabilities of winning with poker hands

were deflined and calculated

(1i) values were obtained for computation times
for the simulation of poker

(iii) a method of determining optimal strategies
using simulation was presented but was shown
to be impractical, as too much computer time
was required

(iv) the simulation program was modified to play
poker interactively. However, this part of

the work could not be carried through to a

satisfactory conclusion because:

1. sufficiently long poker sessions between
the machine and human players could not
be arranged

2. poker needs to be plryed for money if the
results are to have practical significance,
but this could not be arranged in the

circumstances of the work of this thesis.
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As a result of the work done it was concluded
that simulation offered a possible method of solution
but there were considerable computational difficulties
involved. Accordingly, a preliminary study was made
of a game-theoretic approach and this appeared to
offer good prospects of achieving a solution more
easily than simulation. As a result the simulation
studies were discontinued.

The game theoretic approach for solving games and

numerical methods

The game-theoretic approach to the study of poker-
like games required the solution of certain complicated
equations. Research showed that these equations could
be most convenilently solved using numerical methods,
but a survey of the literature did not reveal any
applications of such methods to poker-~like games.
Hence, much work was carried out in this area, ab
initio. This work is described in chapter 3 and forms
an important part of this study.

The main results of thils work are as follows.

(1) Two numerical algorithms capable of solving
poker-like games were programmed. The first
of these was a modification of Rosen's method

(31). However it was demonstrated that this



(¢)

(i1)

169.

algorithm was too slow for the purposes of this

work.

Consequently a new iterative method called the
iookahead (LAH) algorithm was formulated.

This operated on a lookahead principle (as
described in chapter 3) and proved to be three

times faster than Rosen's modified method.

Solution of realistic poker-like games

Chapters 4 and 5 describe the work carried out

in applying game theoretic methods to a commonly played

variety of poker. This research was structured as

follows.

(1)

(i1)

Since the game considered was too com-
plicated to treat in its entirety, the rules
were carefully simplified, in such a way
that much of the essential character of the
game remained unaltered.

In the course of deriving payoff functions
for this game a multi-dimensional integral,
which commonly arises in games of thils type,
was encountered. Its evaluation for the
n-person case presented considerable
difficulties and merited treatment in a

separate appendix (Appendix A).
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This result played an important part in the
method used for solving the 3 and 4 person
poker-like games, and could be extended to
poker-like games for 5, 6 and 7 players.
Next, the lookahead algorithm was applied

to the payoff functions and the game solved.

This solution had several new features.

1. Previous research in this area had only
considered poker-like games with no more
than three players. L2ty were not
sufficiently realistic to have any broad
practical application to real poker with
more than two players. In this study, by
using the results obtained during the work
on poker simulation, it was possible to
relate the solutions obtained to a real
game of poker. It was then found that
the theoretical optimal strategies agreed

with the strategies recommended by

aAlMMunndn Phuw ue s aieas o diffevence <udh o miniuntin kad w?uu:ec['
b sepomd b lagt plager,
éxperienced pia ersv<(30). For example,

minimum hand requirements, when first to
enter, agreed closely with the work of
Reece and Watkins, (30). Also the
disadvantage of playing last was demon-

strated analytically, and it was confirmed
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that players closest to the last player
had the highest expectations.

2. Computer running times required to determine
the solution were recorded, and it was noted
that, using present methods, too much
computer time would be required, if more
than 4 person games were to be solved.

(d) Practical applications of thils work

Two applications of this study to practical
problems are presented 1in chapter 6. The first
application describes a game theoretic approach to a
problem in networks. This work defines the network
to be a game between 2 or more players. This game can
then be solved by the methods glven in thilis study.

The results obtained by this approach have proved use-
ful in the analysis of telephone networks, as they
define a new criterion of optimality, (16).

The second application defines a business
operation involving four manufacturers, who must
decide whether or not to market a new product. This
business operation is . dufixed to Pamihk,ﬁu;uga&

* the U-person poker-like game. Thus an exact
criterion of optimality that can be applied by each
manufacturer when deciding whether or not to enter the

market follows from the solution to the poker-like game.
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Furthermore, this solution also indicates to each
manufacturer the amount of his expected profit.

Further areas of research

(a)

Simulation

As a result of the work carried out on the
simulation of poker, it appears that further research
could be dilirected 1n the following areas.

(1) In chapter 2 a theoretical method is described
by which simulation could be used to determilne
optimal poker strateglies. But experimental work
showed that this approach was computationally too
slow. A new approach to this problem would be to
study the loglcal processes by which an
experienced poker player analyses the game, and
1s able to adapt his strategy to give himself the
best results. Perhaps, as a result of such work,
fewer games would need to be simulated to determine
optimal strategies. Thus the total amount of
computation would be reduced and 1t would then be
feasible to carry out these calculations, on a
computer, 1n a reasonable time.

(11) Ultimately, the success or fallure of any poker
playing program can only be measured by play
against human opponents. This can best be carried

out by using interactive poker programs under
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realistic playing conditions. Money should be
used in such experiments, and the poker sessions
should extend over many hours. Results

obtained from such experiments could be

analysed to give further information about poker,
to determine weaknesses in the program and to
indicate ways in which the program logic might
be improved.

Numerical methods of solving games

Since 1t would be of great practical importance
to solve more complicated games, new research in the
area of numerilcal methods of solution should be carried
out. One point of departure would be to carry out
further work on the lookahead algorithm. For example,
the various combined effects of altering the degree of
lookahead, the ratio between successive step sizes
and various other parameters of the algorithm could be
studied. In addition, completely new approaches to
this problem, could be attempted. A possible source of
new 1deas lies in the analysis of the human, intultive,
approach to the solution of games, by which gifted
managers achieve favourable outcomes in situations of

great complexity, (35).
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Solution of more complicated games

It would be feasible to solve a 7-person poker-
like game, by game-theoretic methods. There are,
however, two obstacles.

The first difficulty 1s the large number of
strategy variables (many hundreds), which would arise
in the analysis of this game. New work may discover
means of representing the strategles using a smaller
number of variables.

The second difficulty arises in solving these
games. Obviously, improved numerical methods, will be
of assistance. But, another approach might be to devise
a technique which uses the algebraic method of
solution, solved on the computer, by the methods of
symbolic manipulation.

Applied games theory

Game theo.; cain oe appiled to a wide circle of
problems. Until now, as a consequence of the daifficulty
of finding solutions, work in this area has met with
little practical success. However, work OL
applications should continue, because any progress
would be of practical use, as has been particularly

demonstrated 1n chapter 6.
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In particular, the new work on the game~theoretic
approach to network problems has ylelded useful
results and work in this area is being continued by

another researcher.



176.

APPENDIX A : EVALUATION OF PAYOFF FUNCTION INTEGRAL

A.1. Introduction

It was found that, in the course of this study
(see chapters 3,4,5), a certain integral arose repeatedly.
An intensive search of the literature revealed no publica-
tion dealing with this or any other related integral.
Accordingly, a method for the evaluation of this integral
was developed, and is presented in this appendix. This
integral is defined in the following waye.

Let

w,t _(w; if x, > xy for all i=1,..en
X'n (knseeesxy) = {z; if x, < x; for any i#fn (1)

then the required integral is

b b
woe | O Ps ’ : )
Xn, s .. =[ e s 0 f XF{’ (xn,-ooxi)dxlo.-dxn

Xp=8n X, =84 (2)
where a; < by for 1i=1,...n.

This integral will be evaluated in the following way.
First, the case n=2 will be considered. It will Dbe
shown that there is a relatively straight forward, graphic-
al method which can evaluate this integral, and which, in
theory, could be generalised. However, it will then be
proven that it is not practically possible to extend this

method to the general case (any value of n).
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Accordingly this integral (for n=2) is evaluated
by using a more difficult and less obvious technique, which
can, however, with some hardship, be generalised to give
the result for arbitrary values of n. The wvalidity of
the expression found is then checked by comparison with the
results from a monte-carlo method, which is itself, however,
shown to be too slow and inaccurate to be used here.

A.2. Calculation of integral for n=2

The integral will be calculated, for the case n=2,
by two methods. First, by a graphical method, and second,
by an algebraic method.

A.2.1. Calculation of integral for n=2 by a graphical

method

If n=2 then egs. 1 and 2 take the form
w,t _(w; if x 2%
X2 (X’Y) - {g; if X<y (3)

and

a ¢6

b a b a
X"z""[ - -}= f f 8¢ (x,y)axdy (4)

X=a Yy=cC
Consider the case ¢ < a<d and c¢c < b<d, then

figure A.1 below illustrates the domain of integration.
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FIGURE A.1

Diagonal
y=x

>X

The double integral is taken over the quadrilateral PQSR.
However, in that part of PQSR which is below the line
™, x > y, and hence, from eq.3, x&:¢(x,y) is constant
over this region, and equals w. Similarly, x&%:%(x,y)

is constant over the region inside TWSR and equals £.

Accordingly,

¢] d
f f x4+ (x,y)axdy

X=a Jy=C

f f x4 ¢ (x,y)dxdy

area inside
PAQSR

f [ x§+¢ (x,y)axdy + f f x5 14 (x,y)dxdy

area inside . 3
inside
PQWT area S

TWSR

= ff 1 w dxdy + rf £ ¢ dxqdy
area inside area inside

PQWT TWSR
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= w (area inside PQWT) + & (area inside TWSR).

By the geometry of figure A.1l it may be seen that:-

1(b-a)? + (b-a)(a-c) (5)
3}(b-a)? + (b-a)(d-b) (6)

area inside PQWT

area lnside TWSR

Thus
wﬂ,bd
X3° =w[1(b-a)%+(b-a) (a-c)J+&[$(b-a)*+(b-a)(d-b)]
a ¢
There are, in all, 6 possibilities of the above type,
and these are enumerated below along with the corresponding

values of

a
b 4
1. O<asc; Osb<e; . x‘{”{ ]=2{(b—a)(d—c)
a C
a b
a
b d
2. Osasc; csb2d; c X‘;’z[ ]:w.%(b-a)2+k[('b-a,)(d-c)
& ¢d_y(v-a)?]
a b
b d ’
3. Osasc; a<bsl; Xyt = 3 a~c)2+(a-c) (b-4) ]
¢ a ¢ |+2[2(d-c)2%+(d~c)(c-a)]
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d
P 4
4., c<a<d; csb<d; x5 =w[1(b-a)2+(b~a)(a~c)]
a c |+2[1(p-8)%+(b-a)(d-b)]
c
a b
P d v
5. c<a<d; d<bsl d x"{’“( j[=2[%(d—a)2]
. _a c_|+w[(b-a)(d-ec)-1(d-a)?]
a b
b d
6. ds<a<l; ds<bsl x‘z"gl: ]w(b-a)(d—c)
a a ¢
c
a b

The above results may now be employed to evaluate
this integral, and a fortran function was written to do this.
However, if this method of evaluation is applied to the
integral with n=3 then 1t may be seen that 90 cases arise,
and it would be extremely difficult to tabulate all of these,
let alone attempt to apply this method to the case when n=4
or more. Hence, as integrals of dimension 3 and higher
must be evaluated later, an alternative method 1s developed

in the next section.
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A.2.2. Calculation of integral for n=2 by sn algebraic

method

b a4
An algebraic method for evaluating xg"[ ‘l
a c_|

will now be given. This me thod is based on the idea of
expressing the integral as the sum of Ly separate sub-
integrals, each of which may be simply evaluated.

First, write

P a4 b o] d 5
Xyt . / flx‘gsl(x,y)dxdy+[ ./.xg’ (x,y)ax dy

X=a ' y=¢C X=a y=X
(7).

Now define

-
B
-
o o
[e I
L 1
|

b
f /xx”;"(x,y)dx dy (8).

X=a y=C

P x b

X=a y=4

and hence

P x o]
_Jylv.l[a d] = f jdxwz'z(x,y)dx dy (9)

X=a y=X

Substituting eqs.8 and 9 into eqg.7?

b 4 b x b x
Xg:z 8 @ _—_Jg:z I _JV:ILV,-t a d (10)

In order to evaluate J, define
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g = max(min(b,c),a) (11).
As will become apparent later this particular choice of g
has been made becauise, since a<b and c<d (see eq.2) it
follows thatt-
(i) if ce [a,b] then g=c
(i) if c < a then g=a
(iii) if e > b then g=b

Next expand eq.8 by introducing g into the limits of

integration
FCv x| b
S LN I f fx x84 (x,y)ax dy
B T x=a y=c
b x| g X ie
It g o | = f f x5 4 (x,y) dxdy+ f fx x5 ¢ (x,y)dxdy
- . X=a y=C X=g y=C
(12)
and let

Il

X
C

b x
Ky s¢ &

then eq.12 becomes

vyt P x
1 a ¢

g
f x4t (x,y)dx dy
X=g y=C

and

D X
f [ 8¢ (x,y)dax ay

X=g y=¢C

g X P x
L R . Ll I (13)
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A g X
First consider XKYy:‘| _

It will be shown that

K‘,’_‘"[i i:‘ = t(g—a)[g;—a - 0_ (14)

for the 2 possible cases cza and c<a.

(a) c2a
In this case it follows from eq.11 that g = min(b,c), and
thus c2g. Hence as ye [c,x] and xe [a,g] then x<y,

and so x%:%(x,y) = ¢ from eq.6.

K:'{"[g X_] /g fxxé‘"(x,y)dxdy
a ¢

X=g y=C

[ e

X=a y=C

Now

I
=
I\)le
]
Q
5
L1
=] m

1l
[
]
Q

I
)
S

1
mﬁ
(]
Q
I

and hence eq.14 holds.
(b) c<a
Again from eq.ll, c<a implies that g=a.

g x a
Hence KX"[a GJ = f ]xxg’z(x,Y)dXdy

X=a y=C
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= 0 as the variable x has zero range.
Thus, again eq.1l4 holds.
Hence eg.14 always ﬁolds.

Next, using the same method it will be shown that

Kg,l{z :‘\ = w(b—g)l:Pizg -c |- (15)

Again consider the 2 possible cases c<b and c>be.
() c<b
From eq.11, g = max(a,c), thus g>c.
Hence as y e [c,x] and xe [g,p] then x>y, and 8O
xg"(X,y) = w from eq. L.

b x

Thus, as before, K}',"[g c:} may be calculated,

and it is found that
P x
w,t - - __gb+ -

The same argument as was used earlier may be employ-

(P) b

ed to show that g=b and that consequently eg.15 holds.
Hence eq.15 holds for all cases.

From eq.13

i b X . g X 7 b x
w, — KW, W,
J1 a c | - a c | TE g ¢

where from eg.11, g = max(a,min(b,c)) and using egs.ll and
15
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Ji"‘]:z :-} = z(ec—a)[%ﬂ - c] + W(b-g)[%g = c___‘

(16)
By a similar means it may be shown that
if h = max(a,min(b,d)) (17)
then 31+t | o = t(h-a)| 252 - ¢ +w(b-h)[w’ c_l.
1 a d | N 2 _ 2 _
(18)

By substituting egqs.16 and 18 into eq.10 it is found that
b d pa o

= z(h—a)[-ll'-;—a - c]-—w(b-h) p—"'éll' - C] (19)

where g and h are defined by egs.11 and 17 respectively.

Thus, the integral
, b a4
w
Xz a ¢

A.3 Generalisation of the algebraic method

is given by eq.19.

The method used above for the case n=2, may be
extended, with some difficulty, to the general n-dimensional
case. The general approach is to express the integral as
the sum of several integrals, each of which may be
individually evaluated. This is carried out in several

stages.



186.
First, the integral will be split into 2n-1 sub-
integrals, in an analogous manner to the case for n=2.
Secondly, a set S8 will Dbe defined, which may be used to
express more conveniently these 2n=1  gubintegrals.
Pinally, each of these subintegrals will be individually

evaluated to give the final result.

In what follows it will be convenient to denote
Xg’z(xng'oOxi)an_io..dxi by‘ "”3.

From eq.2

bn b, 1o} Dy
Xg:z = s e xgiz(xn,...xi)dxn..-d_x.
dp ee0 8y

Xn =an Xi == 8.1

Hence expanding this integral

bn bl bn - bn-i n
xw't = L) Ldd +
n Ay esedy [ /[

Xp=8p \Xpn-41=8n-1 X158

Do by
f * 9 © j “v d-Xn
Xn_1=an_1 X1=Xn
~ fbn j.bn—-i [Xn** ~ [-bn-i j'xn#:_‘t dx
— s e e ¢ oo J n
Xp=8p ~ Xp-1=8n-1 X4=8y Xn-1=8n.q X130y (20)

Thus eg. 20 may be further expanded to give

bn bl bl’l bn-:L n n -bn"i
Xg,l 2 & = [ f aoce W + f se @
neoedy

X=an Xn_.1=an._1 X2=8.2 X1=a1 Xn_-l:an..i

[bg [xn##]

Xg=Xp X;=84
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_ /" [*w,, f’ [ Lm

Xn._.i—an_. ngag xi—bi Xn_i—-an.. XQ—xn Xl—-—b

x-a,,{ f [rooe [T L [res

Xn_1=an_1 x1=a1 Xn_i-—an_i Xg—bz Xi—ai

__ f‘ oo [rit [r free) e

Xn- 1—an 1 X, =Dy Xn-1--an—1 Xa=bz X4=Dy

By repeating the above process the final result is

R
Xw,t = #
N 8n e ee8y f

Xp=8p ~1=8p-q4 X1=84 Xpw1=8n-4Xo=83X =Dy

Xnoq4=8np.y Xg=bg X3=84 Xn-_,=8n-4 Xo=Dg X,=b,

+(=1)nme fxn f(n** axn (21)

Xn-1=Pn_g  Xq4=Dy
Eq.21 may be expressed in a more convenient form, but to do

this some new notation must be introduced.
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Define the set

S = f{ch.yse-9Cy ] wWhere cy = a; or Djy. (22)
Let the set J be the set of all possible 8, (note that
there are 2°-1 different S which may be formed as there
are 2 possibilities for each element ¢y, and there are
n-1 elements in S).

For any Se J define a function

p(8) = {t}

if the no. of bJ elements in 8 1s even
if the no. of bj elements in 8 is odd

(23)

we ‘oo

Define Ygii(cn_i,ootci,xn) =

n n
[x oo e f( XH"(Xn,-olXi)dxicoadxn

Xn_1=cn_1 X1=C1

Then by inspecting eq.21 it may be seen that this equation

can be written

X4 bn by bn P
n’ 8peesdy = f SZ;?(S)Y331(°n~1s°°°°1;xn) (24)
e

X= an
Now define

o o,
Zg’ —] f Ygig(Cnhi,c-lci,xn)an (25)

an Cn~1"'cl

X=8ap

then eq.24 becomes
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(26)

(P Pe ¢|Pm )
XY = % p(S)zy>
o an.l.ai SEJ—p( ) n an cn_iouoci

In evaluating
bn
A RN
8n Cn_qee0Cy

the order of evaluating with respect to Cp_gse+eCyr 18

immaterial, hence there is no loss in generality in assuming

that Cp., 2 MAX{Cp.pseesCq}e (27)
The following lemma will be used to evaluate
zg,l[b" ]
8n CpwqeeeCy
Lemna
Define
d = min(max(a,sCneyq) »Pn) (28)
and
b 1 o T
W“[a cn_i...ci:! = f 11;[1(x-ci)dx (29)
X=a
Then
wz[b" } | a il
Zn’7\ g Cpogesscy | T bWl g cpgeeecy | T
L -
bn
+ W'W“L_d °n—1°--°1j (30)
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Proof

Consider the followirng % cases.
(a) Ch.1 € 8y
From the definition of 4 it fqllows that 4 = aps
As ap > Cn_4, and cCy., = Max{Ch.sise.sCy ) (from eq.27)
it follows that if x, € [an,bn] and
Xno1 € [Cneq1sXn]lseeeXy € [CyXn]

then X, > mMaxX{Xp_.g,-0¢Xy }
and hence %% (x,,+0¢%) = w from eq.l. (31)

Hence from eqe.z25

bn
PA R =
n
an Cn_lo..ci
{bn X
f fx ces f %14 (XpyeoeaXy )dXpesodx,y

Xp=0 Xp.,=Cp_yq X3=Cy

i¢)

n Xn n
[ [ . WwdX,...dx; from eg.31.

Xn=d Xn.4=Cp-y X3=Cy

bn n-4
w f 1I'I (x-c4)dx
=1

=d

Pn
=WWn dcn-:L'"C:L *
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d
And as W = 0 because ap=d it follows
L al’l Cn_i..uci

that eqg.29 holds in this case.
(b) Cn-1 € [ansbn] (32)

Prom the definition of d,
d = min(max(a,,Cpn-4),bn) and using eq.32
it follows that d = min(cp_,,bn) = Cno1 (33)
When X, € [@nsCn-4] anmd X, 4 € [Cn-1s%n],

then x,., 2 X,, and thus from eq.1
xR E(Xnyeeexy) = £ o (34)

Similarly, when X, € [Cpo4,bn] and Xn.4 € [CnoiXn],
Xne2 € [ChnogsXplsessXy € [CysXn]s since in eq.27 cCupoy
has been defined in such a way that cp_4 2 mM8X Cp_gseeeCy
it follows that

Xn ? Xn_i’ Xn ; Xn_z,.o.Xn ? Xi
and thus yN'4(Xpseee%X,) = w from eg.l. (35)

Hence from eq.25

Pn
Z\g,l =
an Cn-i"‘"ci
bn n n
f j“ L] ]‘x Xg’g(Xn’OIOXj-)anoo.dxi

Xn=8p Xp.,4=Cp.q X31=Cy

and expanding this integral

d n n L
= f b x Wl (X y0eexy)dXpe.edx,

Xn=8n Xpn-414=Cpn-2a Xy1=Cy
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bn N n .
+ ‘/' f 0.; f( xgit(xn,--oxi)dX.--dX1

Xp=Q Xp_.4=Cp.y  X3=Cy
Now employing the fact that d = c,., and applying egs.3L

and 35 this integral may be written

t bn
YA ’ AXpes«dX
n an cn'—i"'ci Z n 1

Xpn=8n Xn-41=Cpn.yg X1=Cy

P n n
+ f vo WAXp e o e X,

Xp=d Xp-4=Cn.gq  X1=Cy

d Pn
=L Wl o cpigeeec, | TV Wald cpgeeecy

Hence eqg.29 holds.

(C) Cn-4 = by
This case is rather similar to (a).
First d = min(max(apsCn_4)sbn) = min(c,_,,by) = bpe
Now if X, € [ap,bs] and X,_; € [Cn-ssXn],
Xn-5 € [CnegsXn]seesXs € [Cy,rXn],

then since c,.,; > maxfcp_p,«.ecy}, 1t follows
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that xg’t(Xn,-ooxi) = l.

Hence from eq.25, carrying out the calculation in the same

way as before it can be shown that

b a -
g el " - LW,
an CH_iuocc an Cn_iolici

bn

Furthermore b,=d, implies that Wn| 45 . re e = 0
n-41¢-° 1

thus

P bn d
w _
Zn? 8p CpuqeseCy = 4 8n Cp_qe09Cy *
bn
+ Wi | g Cn_4eeeCy

This completes the proof of the lemma.

and eg.30 holds.

Now eqgs.28 - 30 may be used in conjunction with

eqs. 22,23 and 26 to, give:

| Pn P ,b oo ]
X% = S)zZ%.
n anl!.al SEEJP( ) n an Cn_j..-.Ci (3 )
where
‘ o2 a
W, -
Zn 8n CpoqeeeCyq = LW, 8 CpugeesCy

bn
+ wvvn d cn_iouﬂcl



194,

d = min(max(ap,cn-1) sbn)

b ' b oy "
= X=C X
wn a Cn_io..ci f 1=1 1

X=a

and 8,J,p(S) have been defined earlier.

Example
. l bS b2 bi
Eq.3%6 may be used to find X¥: 8s 85 2, |°
Using eq.22 let
S, = {azsayls Sz = fag,by}l, 8s = {bas8y 3,

SL = {bz:bizy
then by the definition given earlier J = {8,,8;,53,S,1,

and using eq.23

p(8,) =1, p(82) = -1, p(8s) =1, p(8,) = -1.

Also from eq.29

b b
Wj a cp ¢, = j. igi(x—cl)dx

X=a

b
f (x2=(c +Cz) X+C4 Cp ) dx

X=a

= %(b"-a")—-‘a—(ci+cz) (b2-a2)+c,cy(b-2a)

(c,+c5) (a+b)
_ (b-va){_ a3+§b+b2 D 22 + cicz:l.

Thus from eq.30
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b d B b
gu.t| ° — + owWa| o
8 ag Cz C4 3| ag c5 C4 d cg5 cy

where from eq.28 d = min(maX(aa,Cz),ba)-

Hence substituting into eq.36

bg bg D b 7 b
Xg'g 3 2 1 =ZW,! 3 -Zg;z 3
g ap 8a, o 8z 85 a4 ag ag by

(37)

b b
- ozyat] + L84 °

A fortran subroutine was programmed to evaluate

this funcetione.

b, Dby
The integral XJ:¢

8, 0008y :} may be evaluated in
the same way.
From eq.36

XY ¢
a‘ e e 0 al

dg ag &g

"
5]
=
-
1
» o
~ F
[\
@
»
[
L1
i
N
~=
-
» o
~
o
..I
| |

a, ag b2 a4 a, 8as b2 bi_l
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Now from eq«29

‘=
F -3

® o
Q

[¢1]

Q

v

Q

[Ty

| I |

fl

b 3
f I (x~-cy)dx
i=1

Xx=8a

b —gh (¢ +cp+cs) (b2+a®)

T 3

1

(e, co+c cg+cycy ) (D2-a?)
2

~- ¢, cyc5(b-a)
(38)
Thus using egs.:30 and 38,

LI e a by
w, o
z? a, Cg Cs, C4 = W 8, C3 Cg Cy WL g g By &g

with d = min(max(as,Cs),b3)e
A fortran function was written to evaluate this
integral.

A.lb.  Use of monte-carlo method to_check validity of the

algebraic expression

A standard monte-carlo method has been used to

show that the analytic expressions obtained for

3 as 8z a4 an e Bpeee8y

are correct. As the method used is a standard one,
details of the procedure will not be given here but may be

found if required in (33). Furthermore the random gener-
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ator used has been tested and found to be satisfactory.

Details are given in appendix B.
The table below gives the results of an investiga-

tion where values of

were calculated for differing values of aj,b;y using the 2
methods. The monte-carlo method employed 10,000 random
points (see (33) for explanation), and w was set to +5

and ¢ to =2.

Monte-
a) b1 as ba as by Carlo Analytic
Method | Method

(2)| 0.000 | 1.000 | 0.000 | 1.000 | 0.000 | 1.000 | 0.3698 | 0.3333
(2)| 0.500 | 1.000 | 0.500 | 1.000 | 0.500 | 1.000 | 0.0429 | 0.0L1T
(3)| 0.00 1.000 | 0.500 | 1.000 | 0.500 | 0.900 [-0.135T7 |-0.12h7
()| 0.100 | 0.900 | 0.700 | 0.700 | 0.200 | 0.800 | 0.0000 | 0.0000
(5)] 0.000 | 1.000 | 0.200 | 0.200 | 0.000 | 0.500 | 0.0000 | 0.0000
(6)| o.400 | 0.700 | 0.100 | 0.200 | 0.200 | 0.500 | 0.0416 | 0.0L15
(7)| o.400 | 0.700 | 0.500 | 0.600 | 0.200 | 0.900 | 0.0032 | 0.0023
(8)| o.400 | 0.700 | 0.200 | 0.500 | 0.600 | 0.800 |-0.0255 |-0.0255
(9)| o.bo0 | 0.700 | 0.600 | 0.800 | 0.400 | 0.700 |-0.0269 |-0.0267
(10)| 0.4%00 | o0.700 | 0.500 | 0.600 | 0.200 | 0.800 | 0.0087 | 0.0083
(11)| 0.200 | 0.400 | 0.300 | 0.800 | 0.100 | 0.306 |-0.0325 [-0.0330

Closer agreement between the 2 sets of figures is
obtained when the number of random points used by the monte-
carlo method is 1lncreased. For example, in the worst poss-
ible case, the 7th line of the table shows that for 10,000

points the monte-carlo method gives a value of .0032 whille
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repeating the calculation using 10° points(and taking
20 sec. of c.p. time) gives a value of .0024  which is
much nearer to the correct answer. However this was not
done with the remaining set of results for reasons of
eConomy. Thus the results serve to confirm the accuracy
of the analytic expression given by eq.37.
Note that the monte-carlo method could not itself
be used to evaluate these integrals because it is:
(a) too slow (2 sec. per 10,000 points)
(b) not sufficiently accurate unless exceptional-
ly large numbers of points are used.

The validity of the analytic expression obtained for

Xw L
L aL e Oai

was confirmed in the same way.
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APPENDIX B

RANDOM NUMBER GENERATOR

This appendix will discuss the random number gener-
ator used to implement the simulation techniques employed
in this study.

The random number generator used is of the linear
congruential type, see . Knuth (21), and is provided as a
standard library subroutine (RN2) on the CDC-6000 series
computers (see CDC Reference Manual (5)).

The following statistical test was applled to thils
generator. Since this 1s a standard test (14,17,18,21),
only a brief outline will be given here, in which a famili-
arity with the details of this test will be assumed.

The random number generator provided a sequence of
numbers which were tested for uniform distribution over the
interval (0,1) as follows. The interval was divided into
ten equal subintervals, and f; , the number of random
numbers falling into the i-th interval was counted.

If n is the length of the sequence, then the

statistic

10 2
10 2_)

2 — = -
Xi T n 121(:61 10

has a x? distribution with 9 degrees of freedom. This

experiment 1s repeated m times and the m values of x?
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thus obtained are compared with the theoretically expected

distribution of x? values. The results obtained with
n=1000 and m=1000 show that the assertion that the
original random number sequence is uniformly distributed 1s
correct at the 60% level, a satisfactory result (see
Snedecor ahd-Cochran (3L)).

A second test was carried out where 'f,J was defln-
ed to be the number of numbers in the 1-th interval, foll-
owed by a number in the J-th interval. The x2 statistic

thus becomes

2 - - ==

Proceeding as before, 1t was found that the assertion that
consecutive random numbers are not palrwise correlated, was
correct at the 90% level, again a satisfactory result.

Generation of n random numbers from a single random number

The following, standard, technique, 1s used to
generate n, non-correlated random numbers from one single
random number. This method wlll be described for the case
n=2 from which the generalization of this method for
n >2 1s an obvious one.

The method works by dividing the interval (0,1)
into m? equal subintervals I1,...I 2 such that these

subintervals cover the interval (0,1). A 1-1 mapping,
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f, 1s then defined from any interval Iy to some integer
pair (i,J) where (1,J) belongs to the set
s = {(0,0)...(0,n),(1,0)...(1,n)...(n,0)...(n,n)} with n=m-1.
This mapping is defined in the following way.

Suppose that k has the unique representation

kK = m(i-1) + J where O s J < m-1,

then f£(Ix) maps on to (1,J).

i

Now define r, = ——l and ©ra2 = E%T »

then since 0 s i sm-1 and 0 < J < m-1, 1t follows that
0 <r; <1 and 0 s r; <1, Thus the function f may be
used to produce the two random numbers ri, Iz from the
single random number r. Also, since f 1is a 1-1 mapping,
the components of the random pair r;,r: are not correlated
if the original sequence is not correlated.

The above method 1s used to generate random numbers
which are used in simulating the hands dealt in the 2-PG,
3-PG and U4-PG (see chapters I and 5). In actual implement-
ation the above process is easily carrlied out by dividing
the computer word into 2 halves, where I, is calculated
directly from the first half of the word, while r; 1s

calculated from the second half.
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APPENDIX C

CALCULATION OF PROBABILITIES

This appendix describes the use of a monte-carlo
method to calculate the probabilitles of winning associated
with any given poker hand (=ce chapter 2). Two types of
probabilities are required.

(a) fp(h), the probabllity that a given hand has

of beating any other random unimproved hand.

(b) fg(h), the probability that a given hand h
has of beating any random improved hand.

Since the methods used to find fp(h) and fga(h) are very
similar, only the calculation of fp(h) will be described
in detail.

The method used to calculate fp(h) 1is based on
the following idea.
Givar any hand h, fy(h), may be approximately determined
thus. First, a very large number, N, of random hands
are generated. The method of hand generation 1s the same
as was used for the poker simulator (see chapter 2). It
has been shown in chapter 2 that the hands produced in this
way are random. Next, L, the number of times that the
given hand h beats the randomly geherated hands, and LD,
the number of times that the given hand draws with the
random hands, i1s found. Then fp(h) 1is approximated by

(IL+LD/2)/N. Since this process is time consuming (for
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large N) some measures were taken to speed the calculation.

1. Instead of generating N random hands each
time that fy(h) 1s calculated, the set of
N random hands is only generated once, and
then stored. All f,(h) values are then
calculated with respect to thils same set of
random hands.

2. The process of determining whether one hand
beats another hand 1s repeated many times
during the execution of this algorithm.

For this reason the following method was
devised to speed up this hand comparison
process.

It is possible to define a function q(h) (see

later) which assigns a unique integer to every hand h.
Furthermore, the function q(h) has the property that,

hand h; Dbeats hand h; 1if an” only 1if qf(h;:) > q(hz), and
hand h; draws with hand h, if and only if q(h;) = q(h,).
The definition of this function, and the proof that 1t has
the above properties, wlll be given later in this text.

Thus, instead of storirng N random hands, the N

corresponding numbers, as defined by the function aq(h),
are stored. Then, given any hand h, q(h) may be calcula-
ted for that hand, and the hand comparison process may be

achleved by testing the number of times that the Integer
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a(h) 1s greater than or equal to the glven integers in the
set of N numbers already generated.

The method used to store the N numbers was to put
them in an array (A(I), I=1,N). An alternative approach
would be to have an array C(l), C(2),...C(X) where the
element C(J) counts the number of times that the integer
J occurs in the set of N numbers. However, since
K(maximum of q(h)) 1s approximately 137 (see definition
of q(h) later in text), it is clearly impractical to
employ the latter method.

A drawback of the method used here 1s that it does
not give a reliable estimate of how often a particular type
or class of hand occurs when the percentage of occurrences
of that particular class among the N random hands gener-
ated is small. But, for the purposes of thils study,
invariably only large classes of hands are dealt with, for
example, the percentage of hands weaker than a pailr of 8's.
Hence this partlcular disadvantage, in this case, 1s of no
practlcal consequence.,

The process of finding fp(h) will now be summaris-
ed.

(1) Generate a random hand h, and calculated g(n).

Repeat this process N times (N = 30,000) and

store the resultant numbers in the array

(A(I), I=1,N).
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(11) Given any hand h for which fp(h) 1s requilred,
first calculate q(nh). Now compute L, the
number of times that a(h) > A(I), and LD, the
number of times that q(h) = A(I), for I=1,N.
Then fp(h) 1s approximated by (L+LD/2)/N.
A very similar process is used to compute fa(h)
except this time the array (A(I), I=1l,...N) 1s computed
in the followlng way. A random hand is dealt, and if this
hand is a pair or better then 1t is randomly improved,
taking into account cards already held, to some new hand h¥%.
If the hand is weaker than 1 pair it is discarded. This
selective process is used because, 1n poker, players seldom,
if ever, play on less than a pair (see chapter 5). As
before this process was repeated N times (not counting
hands weaker than 1 pair) and each time q(h*) was stored
in the array (A(I),I=1,...N). Now fg(h) may be calcula-
ted in the same way as fp(h).

Definition of the function q(h).

The function q(h) is calculated according to
table 20. This table will not be discussed in detail
as 1t is not of central importance to this thesis. However,
by careful examination of this table the following points may

be validated.
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DEFINITION OF HAND JEQUENCING FUNCTION
Hand Type Definition of variables Value of q{h)
1) 1less than 1 pair I1,I2,I3,I4,I5 are hand q(h)=Il-l3"+I2vl33+IB0132+Ih-131+Is

mex.velue of q(h) < 12(13%+..+13%)

oL . .
values , in descenditg = 12(13%-1) < 13°

order of magnitude

2) 1 pair I1 = value of pair q(h)=13%+11: 13%+TI2 13%+I3 13+Ik
I2,I3,I4, are hand values max.value of q(h)
of unpsired cards in < 13%+12(133%+13%+13+1)
descending order of mag- < 13%+13°
nitude

3) 2 pair Il=value of higher pair q(h)=135+13%+I1 -13%+12 13+I3
I2=value of lower pair max q(h) < 13°+13%+13"

I3=value of unpaired card

L) 3 of a kind I1 = value of treble q(h)=13%+13%+13%+11:13%+12:13+I3
I2,I3 unmatch?d cards in max q(h) < 2.13%+135+13°

descending order

5) straight I1 = value of highest card q(b) = 2.13%+135+135+11

it vaca in suraigny’ 7% Aln) < 13203330
6) flush 11,12,13,I4,I5 are hand (n)=13+2.13%+13%+13%+71.13%+12.13%1L |13+T5
A q

values in descending order n 5 6
: +2,13%+13%+2,
of magnitude max q(n) & B35ck K00 hes £

T) full book I1 = value of three of a a(h)=13+2.13%+13%+2,13%+11.13+12
kind
I2 = value of two of a kind max g(h) < 13+135+2,13%+135%+2.136

8) L of a kind I1 = value of 4 of & kind q(h)=13+13%2,13%+135+2,13%+11
max g{h) < 2.13+13%+2.13%+135+2,136

9) routine T1 as for straight (see a(h)=2

.13+23%+2,13%+135%+2,135+11
above) max q(h) < 3

< 3.13+13%2.13%+135%4+2,13% < 137

§ a(l-rn-1)

The sum of the G.P. atar+...+ar® is given by Sn = =T -7

hand values are assigned in the following way (irrespective of suit)

CARD 2 3 4 5 6 7 8 9 10 J q K A
VALUE 0 1 2 3 4 5 6 7 8 9 10 11 12
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1. Each unique hand (irrespective of suit) gives

a unique integer q(h). If h; and hz are

2 different hands then q(h:) # q(h2), and if

h; and hs are identical hands then q(h;) = q(hz).

2. The value of q(h) for hands of differing types+

1s so calculated that given hands h; and ha2

where h; 1s a stronger type of hand than h,,

then q(h;) > a(hz).

3. If 2 hands h; and h,; are of the same type,
but hand h,; beats hand h,, then g(h,) > a(hz).
Now, by using points 1 to 4 above it will be shown
that:

hand h, beats hand h, if and only 1if

g(hy) > a(hz), and h; draws with h, 1if

and only if q(h;) = q(hz).

This statement will be proved in 4 steps.

(1) If h, beats hp then by 1,2 and 3 above,
q(hy) > q(hz)

(11) If aq(h;) > q(hz) then by 1. and (i) above,
hand h; beats hand h,.

(1ii) If hand h; draws with hand h. then

a(h,y)
q(hi)

q(hs) as from (i) and (il1) above

A

q(h2) and q(hi) 2 q(hz), thus

+For definition of hand types see table 1.



(1v)

a(h;) must equal q(hz).
If qf(h;) = q(hz) then hands

must draw by 1 above.

Thus, the proof 1s complete.

h,

208..

and

ha
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