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SUMMARY

This thesis is concerned with an investigation into the behaviour of
two independent teletraffic streams which are offered to a common link
in a telephone network. This behaviour is characterised by the means,
variances and covariances of the traffic overflowing from the common

link.

A mathematical model is presented and the solution of this model is

investigated by analytic, computational and approximate methods.

The model is solved explicitly for a special case, in which random
traffic is offered to the common link, by the classical approach
and a direct method. The non-generating function approach is used

to reduce the order of the problem for the general model.

A description of a matrix formulation of the model is given and
several iterative solution methods are discussed. The most suitable

method was incorporated into a computer program.

Data generated by this program was used to investigate the accuracy

of some approximate formulas suggested by Olsson, Wallstrom and

Harris as well as some simple approximations and the equivalent random
method. An approximation based on simple linear regression and tables
for calculating the parameters used in this method are presented.
Graphical representations of the approximations are included for

visual comparison of their accuracy.
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CHAPTER 1

INTRODUCTION
1.1 Objectives

This thesis is concerned with a mathematical investigation of an
overflow system in an alternate routing telephone network. The
aim of the research is to study the behaviour of a network in
which two or more streams of traffic are offered to a common
link and to determine the proportion of the total overflow
traffic belonging to each stream. The mean and variance of the
total overflow traffic have been investigated previously, for
example [27], but comparatively little research has been under-
taken on determination of the means and variances of the
individual streams. The development of a method of calculating
these statistics is desirable since, in many networks, these
overflow streams are subsequently offered to different links

on higher choice routes.

In this chapter the concepts of teletraffic theory are presented

and a review of research into this and related problems is given.

In succeeding chapters a mathematical model is developed and an
iterative solution to the model is derived. Analytic solutions
for a special case are given and analytic techniques for solving
the general model are treated. The accuracy of several
approximations developed by other researchers is investigated

and a new approximated method is presented.



1.2

Telephone Networks

Each individual telephone is connected to a particular exchange.
When a call is made from one subscriber to another an electrical
circuit must be closed between the two telephones. If the
phones are connected to the same exchange then the connection is
made by switching equipment in the exchange. Otherwise, an
additional connection must also be made between the two different
exchanges. This connection may be made directly between the
exchanges or indirectly through one or more other exchanges.

The system through which such connections are made is called a
telephone network. The research presented in this thesis is
concerned only with the network between exchanges and does not
consider calls made between subscribers in the same exchange

area.

The physical network consists of telephone exchanges involving
switching equipment and junctions for carrying calls between
them. Each junction can carry a single call at any one time
and junctions may take the form of overhead telephone lines,
underground cables or communication channels in satellite
networks. Mathematically, for any particular stream of calls,
the system may be considered as a directed graph with nodes
corresponding to the exchanges and links to groups of junctions.
There are two types of node : one type can act as a source or

a sink for calls (corresponding to an exchange to which
subscribers are connected), the second type (a tandem exchange)
is purely a switching point in the graph. Directly linked to
the source of a call is the origin exchange, and to the sink,
the destination exchange, the two exchanges together constitute

an origin-destination (0-D) pair.

An alternate routing network is one in which there is more than
one route between each 0-D pair. A route may consist of a single
link between the origin and the destination exchanges, known as
the direct link, or a succession of links which connect the two
exchanges, via one or more tandem exchanges. There is a definite
order of preference for using these routes and they are referred

to as the first choice route, the second choice route and so on.



In many cases a direct link is present and this is usually the
first choice route. As an example, a simple one 0-D pair network
will be considered (Figure 1.1). There are three routes

between the origin exchange "O" and the destination exchange
"D". The direct link, 1, makes up the first choice route. The
second choice route consists of links 2 and 3 and passes through
the tandem exchange X. The third choice route has three links,

4, 5 and 3 and passes through two tandems, X and Y.

In any network there is a limit to the number of calls which may
be carried simultaneously. If all junctions on the direct route
were busy then a newly arriving call would be offered to the
second choice route and would be carried on this route if a

free junction was available on both link 2 and link 3.
Otherwise, it would be offered to the third choice route and
would be carried if there was a free junction on each of links
4, 5 and 3, otherwise it would be lost from the system. This

hierarchy of routes is called an overflow system.

The development of alternate routing in telephone networks was
necessitated by the prohibitive cost of provided enough junctions
on the direct route to carry the required amount of traffic
between each 0-D pair. Non direct links may be part of several
routes, between different O-D pairs and this sharing of junctions
reduces the overall cost of the network. It is impossible to
provide enough junctions to always be able to carry any call,

V/ even using alternate routing. The processes of determining
the number of junctions to be provided on each route is known
as dimensioning and networks are dimensioned so that they will
perform to a given grade of service. The grade of service is
measured by the probability that a call will be unable to be
carried on any of the alternate routes and will be lost from

the system (in Australia, this is often set at .002). 0

The introduction of alternate routing has increased the complexity
of telephone networks, leading to a field of study of the
mathematical properties of such networks. While the arrival

and completion of individual calls is impossible to predict,

the behaviour of streams of calls can be subject to statistical
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analysis. Traffic arrives, is carried or overflows according to
various probability distributions and the purpose of this thesis
is to investigate the overflow distributions for specific simple

network configurations.



(:) - origin/destination exchanges
[:::] ~ tandem exchanges
—_—— links

Figure 1.1 : Single O-D pair network with three
alternate routes.



1.3 Telephone traffic

The traffic carried on a particular link at any instant, measured
in units called erlangs, is numerically equal to the number of
calls simultaneously in progress on that link.¥&The traffic
overflowing from a particular link is equal to the traffic

which would be carried if that traffic were offered to a

fictitious link with an infinite number of junctions.

Traffic between each 0-D pair varies with time, although it does
reach a state of statistical equilibrium during parts of any
day, including the time when traffic is heaviest. Most networks
are designed to specifications applied to this time, known as
the busy period, which ensures that the grade of service, for
example, is no worse than a specified value. The assumption

of statistical equilibrium is convenient for modelling the

system.

Traffic is generally characterised by its mean and variance,
although some recent papers consider even higher moments, for
example, Freeman [ 9] and Schehrer [24]. 1t was shown by
Wilkinson [27 ] that the mean and variance describe the traffic
with sufficient accuracy for dimensioning purposes and recent
dimensioning models, for example Berry [ 2], consider only these

two parameters.

</ A link is said to have full availability if an offered call
may be carried on any unoccupied junction. For the particular
case when the offered traffic is Poisson, the link to which it
. . o ek v (afey fhﬁff er roufe
is offered has full availability, and lost calls are eleared,

the mean and variance of the overflow traffic can be calculated

exactly. Expressions for these statistics are given in terms

of the Erlang loss formula, which gives the probability that

exactly n junctions on the link are busy. If the arrival rate

is a and the 1link has d junctions, then the formula is

IA
=

IA
[=

En(a) e 0 (1.1)
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Although the assumption of negative exponential holding times is
commonly made, this is not a necessary assumption for (1.1) to
hold, as was shown by Pollaczek [181]. Ed(a) is the probability
that all d junctions on the link are occupied and this is called
the blocking probabiliti*énd denoted by B. Then mean of the

overflow traffic is
M= a.Ed(a) =a B

and the variance, which was derived by Riordan [27], is

a

VoM M e

These formula are no longer exact when the offered traffic is

non random,

X or Erlaoﬁ (ere Rormule for pa truules

(1.2)

(1.3)
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1.4

The Equivalent Random Method

The overflow from a link which is offered Poisson traffic is no
longer Poisson, although it is renewal traffic. The overflow
from a renewal stream offered toa link is also renewal but

the combination of two or more renewal streams is not itself
renewal unless all component streams are Poisson. Thus the
formulas described in section (1.3) are not applicable to many

network situations.

An approximate method of calculating the mean and variance for
the total overflow from a link offered two or more streams of
non Poisson traffic was developed by Wilkinson [27]. A network

of two O0-D pairs is considered to illustrate this equivalent random

method (Figure 1.2). The first 0-D pair, O and D1, has direct route,

link 1, second choice route (3,4) and arrival rate aj;. The second
pair, O and D2, has direct route 2, second choice route (3,5).
Third choice routes may exist but are not shown, since it is the
overflow from the second choice route that is of interest. The
arrivals for the two pairs are independent and have Poisson
distributions, and it will be assumed that any call finding a

free junction on link 3, will also find one on link 4 or 5 as
required. Thus overflow from the second choice routes is caused

by congestion on link 3.

The links may be considered as groups of servers. Each server
corresponds to a junction in the link and may serve only one
customer (call) at any one time. The two primary groups
correspond to the direct links and have d; and d, servers
respectively. The customers not served in these groups overflow
to a common secondary group of ¢ servers corresponding to link 3.
(Figure 1.3) The.terms calls and‘customers, junctions and
servers, and so on, will be used equivalently throughout the

text.

The mean and variance of the overflow from the ith primary group
will be denoted by Mi’ Vi and the overflow from the secondary
group, corresponding to the ith stream, will have mean and

variance m, and vy The covariance between the two overflow
streams will be denoted cov. The parameters for the combination

of the two streams will be denoted by the appropriate unsubscripted

symbol (e.g. M, v) and estimates of parameters by a " above the

symbol.



The algorithm for the equivalent random method is;

(a) Calculate M;, Vi, M and V, using (1.2) and (1.3).

(b) Calculate the total traffic offered to the common
link, M = M; + Mo, V = V; + Vy.

(c) Calculate, again from (1.2) and (1.3), the equivalent
random traffic a,» which when offered to a link with
de junctions would give overflow traffic with mean
M and variance V.

(d) Calculate the overflow from a single link with (de+c)
junctions, offered a, erlangs of random traffic.
Denote the mean and variance thus calculated, by

(1.2) and (1.3), again by @ and .

The basic assumption of this method is that the overflow traffic

(or equivalently the blocking probability) depends only on the

total mean and variance of the offered traffic, and not on its
distribution. Steps(a) and (b) give exact results and, if random
traffic is offered to d junctions and the overflow from this to

a further ¢ junctions, then the overflow from the second group

is identical to the overflow from a single group with d+c junctions.
Hence any source of error in this method is due to the accuracy of
the assumption. The approximation is widely used and the assumption
gives a reasonable approximation of reality in most situations.

The accuracy of this method is discussed further in Chapter 6.

Step (c) was traditionally performed using tables, for example [5]
or graphs as presented in Wilkinson's paper [27]. However, some
approximate formulas have been developed by Rapp [21] and these

can be used in computer programs.

= Vv _
a =V+ M(M 1) (1.4)
a_. (M + D) .
d = LV_- -M-1 ( j.(a<~(~ }F .C{e (¥ l»zuown _,(_(Qr_,H‘,) (1.5)
oMl 7

This method gives approximations for the total overflow mean and
variance only. It is often necessary to know the means and
variances of the individual overflow streams and this was the

motivation for the research.
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Figure 1.3 : The Equivalent Random Method



1.5

Review of research into this and related problems

Several papers have been published on networks in which two or

more streams of traffic are offered to a single link, and some

of these have attempted to find formulas for the statistics for

the individual overflow streams. The network is usually considered
as a system of service stages as described in the previous section.
The network investigated in the thesis is illustrated in Figure 1.2,
and the service stage representation is given in Figure 1.4. The
service stages N; and N, corresponding to the direct links, M to
the common link on the second choice route and L; and L, to the
fictitious infinite links which are used to measure the overflow
traffic. All network diagrams and parameters of the various
authors in the literature have been translated into a common

notation, consistent with Neal [16].

There are three main lines of research into this problem. The
analytic approaches generally follow the technique used by

Riordan [27] to obtain equations (1.2) and (l1.3).

Riordan considered a system with a single primary group and an
unlimited overflow group (Figure 1.5a). The state of the system
is defined by the number of busy servers in each group, and the
equations of state are obtained, under the assumption of
statistical equilibrium. These equations are transformed, by
consideration of a binomial moment generating function, into

an equivalent system involving the binomial moments, which has
one main equation and one boundary equation. The main equation
with a constraint relaxed to allow an infinite number of servers
was expressed as a differential equation in a second generating
function which was solved in terms of the O-polynomials, defined

by

at
e

5 o, (m) t" = (1.6)

- k °
m=0 (1-t)
These O-polynomials satisfy a number of recurrence relationships
which when utilised in the boundary condition (or normalising

condition) lead to the formulas for the mean and variance (1.2)

and (1.3).

11.
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Figure 1.4 : Service group representation of two 0-D pair

network
a =3 d >
Primary Infinite overflow
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(a) Riordan's model.
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Primary First secondary
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(b) Chastang's first model.

Figure 1.5 : Some one stream overflow models.
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Chastang [ 4], investigated an extension of Riordan's results. He
first considered a system in which the secondary group was

finite (Figure 1.5b). The solution of this system (first
investigated by Brockmeyer [3]) again involved several generating
function transformations and the O-polynomials. (Chastang refers
to the traffic carried by this finite secondary group as overflow
traffic, which may cause some confusion.) He then considered
systems with two primary groups and one secondary group

(Figure 1.6). TFor the finite secondary group case, he derived

a set of equations in binomial moments from the state equation
by using a generating function. He then sums some of the
boundary conditons corresponding to one of the primary groups
being full. This leads to a formula, which by the deletion of
several terms, was analogous to the moment equation for the one
primary group. Chastang suggested that a solution similar to

the solution of the simple problem would be an approximation for
the two stream model. He stated that the deleted terms were
'comparatively small' but admits that the approximations "fail
however, to give a better accuracy then the approximate method

of R.I. Wilkinsorn.' He suggests they may be used to determine the
decomposition of the total overflow stream into its components,

but does not investigate this idea any further,

Neal [16], investigated a grading system in which two or more
streams of overflow traffic were recombined (Figure 1.7a). He
again uses a generating function to obtain equations involving
binomial moments. He then relaxes the constraint on the main
equation to allow m to go to infinity and by applying a second
generating function obtains a partial differential equation,
which is solved in terms of the O-polynomials and some unknown
constants. The number of unknowns corresponds exactly to the
number of boundary equations and they are solved by introduction
of several more generating functions. Neal does not obtain
explicit results but reduces the order of the system from
(ct+1) (d1+1) (d2+1) equations to (di+1)(d2+l) equations which

for his system is a reduction from about 500 to less than 36.

A second approach to this problem has been to obtain a computational
solution. This has been achieved by simulation on a computer [22],
by solving the state or moment equations iteratively [12], and by
replacing the primary groups by Interrupted Poisson Process (IPP)

models [9].
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Kibble published a paper [12] and again [13], in which he solved
the state equations computationally, Although he does not
describe either the network or the equations of state which

he solves, it is believed that he is referring to the third
model considered by Chastang (Figure 1.6b). The paper describes
without technical details, an iterative procedure and a non
iterative procedure which seems to involve as many operations.
He compares his results to results from the equivalent random
method, by partitioning the overflow mean in the ratio of the
offered means. It is not the overflow mean but the 'blocking
probabilities' which are compared. Although the term is not
defined it appears to refer to the probability that a call

will not be carried on either the relevant primary group or

the secondary (as distinet from the definition of B in Section
1.4). The papers are useful for some numerical results to

which approximate solutions can be compared.

In a recent paper Freeman [9], compares the iterative solutions

of Kibble, the equivalent random method and a model involved
interrupted Poisson processes. The IPP model of Kuczura [ 14]

is used to replace a primary group (Figure 1.7b). The IPP

model has two states, an 'on' state where it generates Poisson
traffic and an 'off' state. This is a realistic approximation

to a simple overflow system since, when there are free servers

in he group an offered call is carried, and there is no overflow,
and, when all servers are occupied, traffic overflows with a
Poisson distribution. The IPP model has three parameters and
Freeman suggests methods of choosing these. (The mean and

variance of the generated traffic are the same as for the

overflow from the primary group.) This system as 4(c+l) states
which is a considerable reduction of the order of the problem.
Freeman investigated the higher moments of the traffic distributions
and claimed that the IPP model was more accurate than the Equivalent

Random Method.

A third approach has been to obtain approximate formulas for the
various statistics. These are usually obtained by observation and
experimentation involving results obtained by a computational
method. Olsson [20] and Wallstrom have suggested formulas for
obtaining the individual overflow means, from results of simulations,
and Harris [ 10] has derived an approximation for the overflow
variances using results from the iterative solution of the author.

These formulas are discussed in Chapter 6.
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CHAPTER 2

A MATHEMATICAL MODEL

2.1 Definitions and Assumptions

The model investigated in this thesis is the two O-D pair model,
described in section l.4 and illustrated in fig. 1.4, within two
primary groups N; and N, a shared secondary group M and two
separate overflow groups L; and L,. The state of the system at
any instant will be defined by the number of busy servers in
each group and denoted by the five dimensional vector

5 E (Nl’ NZ, M, Ll, LZ)O

The following assumptions have been made in the model.

(a) Full availability conditions apply to all links.

(b) The system is in a state of equilibrium.

(c) Arrivals for the two 0-D pairs occur independently,
and have Poisson distributions.

(d) All holding times through the system have independent
negative exponential distributions with unit mean.

(e) No more than one event, that is an arrival or
departure of a call, can occur in an arbitrarily
small time interval.

(f) Final links in each route are provided with
sufficient circuits to carry all calls which

are offered to them.

Poisson arrival rates have been assumed in the majority of models
of overflow systems in which the number of subscribers connected
to each exchange is large. Some papers have considered other
distributions for the arrival rate; the binomial distribution,
for example, is considered by Schehrer [23] and Harris and

Rubas [111].

Negative exponential service times are also assumed in many
models. The unit mean can be obtained by a suitable scaling
of the arrival rate and holding time. This is done simply
for convenience and does not affect the validity of the model

in any way.



Assumption (e) is a direct consequence of assumptions (c)
and (d), if in addition, the arrival rates and service times

are independent.

If there is high congestion on a second link of a route then
one of the following assumptions is made. The call finding
a free junction on the first link of a route, but no free
junction on the second link will either be lost from the
system or offered to the next choice route. The former
assumption corresponds to a zero holding time, the latter

to a call overflowing from a link with a free junction.
Normally, (in Australia, at least) the final links of second
and higher choice routes are dimensioned so that most of the
congestion on the route will occur on the first link, and

hence assumption (f) is acceptable.

These six assumptions are commonly made in similar models,
although not always specifically stated, and are accepted

as being reasonable approximations to the real system.

17,
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18.

The state equations for the model

The state of the system is defined by the 5 dimensional
vector, S = (Ny, Np, M, L;, Ly) and has a probability

distribution function defined by
£(n1,n2,mL1,82) = PriNy=ny,No=np ,M=m,L1=£1,Lo=£,} (2.1)

Since there can never be a negative number of busy servers
and the total number of primary and secondary servers is

finite,

f(ny,np,mLy,£;) = 0 outside the range OsniSdi, O0<m<c
and £,20; i=1,2. (2.2)

Under the assumption of statistical equilibrium, the
probability of the system being in a particular state is
independent of time and hence no parameter involving time
appears in the probability function. The equations of
state are uniquely determined by the definition of f and

by the assumptions described in the previous section.
Consider a point in time, t, when the system is in state
Sp = (y’-l SN2 ’ms’el 522)'

By assumption (e), in an arbitrarily small time period, At,
only one event can occur, to first order. Hence the state

of the system at time t+At can be one of the following,
s1 = (N1+1,n ,m, Ly ,£5)
s_1 = (n1=1,n2,m,£1,£5)
s2 = (ny,na+1,m,£1,£,) and so on.

State sj differs from sy in that the jth parameter is increased

by 1, and in s_j the jth parameter has decreased by 1.

The transition from state s; to s; corresponds to an arrival

in the first stream. If all servers in Nj are busy then an
arrival in the first stream would cause an increase in the
number of busy servers in group M, (sg to s3), or if the
secondary group also had no free servers an increase in the
number of busy servers in group L1 (sgp to su). The probability
of a first stream arrival occuring in that small time period

is ajAt + o(At). A similar set of transitions occur for the

second stream.



If a service group has x servers busy at time t, then, since

all the service times have unit mean, the probability of any

particular server completing his service is At. Hence, the

probability that exactly one of the x servers completes a

service in the time interval is xAt + o(At), and this

corresponds to a transition, sg to s i

corresponding to the jth parameter.

, for the group

If the probability of being in state s at time t is denoted

by Pr{s;t} then the transition equation for sg is

Prisg;t+At} = Pr{s_l;t}°a1At
+ Pr{s_z;t}°a2At
+ Prisy;tle (m+1)At
+ Prissjtl}e(na+1)At
+ Pri{sj;t}e (m+1)At

+ Prisy;t}e (£1+1)At
+ Pr{Ss;t}‘ (La+1)At

(N, arrival)
(N, arrival)
(N, departure)
(N, departure)
(M departure)

(L, departure)

(LZ departure)

+ Priso;t}(1-(a1+as+ni++mL,+L,)At) (no event)

+ o(At)

(more than one event)

Equation (2.3) holds for so, such that OSniSdi—l, 0<m<c-1,

ZiZO. (This equation, in fact, considers the probability of

finishing in state so after At, starting from the states

which are one step accessible from that state at time t.)

If Pr{sgy;t} is subtracted from both sides of (2.3) and then

both sides are divided by At, equation (2.3) yields

Priso;t+At}-Prisg;t} _

Rt = —(aj;taz+tnyH,Hml+L2, ) Prsg;t)

+ aiPris_;;t} + a;Pris_,;t}

+ (+D)Pris;;t} + (np+1)Prisy;t}

+ (m1)Prisa;t}

+ (£1+1)Pr{s,;t} + (Lr+1)Pr{ss;t}

ol At)

T TAc

Under the assumption of statistical equilibrium Pr{s;t} = f(s)

and if At»0 then

Priso;t+At}-Pr{sost} | dPr{so;t} _

At dt

OandQ—A(—%E-)——>O.

(2.3)

(2.4)

19.



S

20.

Therefore (2.4) becomes,

(a1+a2+n1+n2+m+£1+1’_2)f (ny,n2 ,m,ﬂl ,Kz)

alf(n1_1,n25m9£1’£2) + aZf(nlsn2_19m921’£2)

M+ E(my+1,np ,m Ly ,85) + (Np+1)E(ny ,na+1,m, Ly ,45)

+

+ (m+1)f(n1,n2’m+1,£19£2)
+ (£1+1)f(n1,n2 ,m,£1+1,£2)' + (£2+1)f(n1,n2,m,21 ,»@2+1) (2.5a)
and this holds for Osni<di, Osmge-1, Kizo; i=1,2.

The boundary equations corresponding to states in which one or
more of the service groups has no free servers can be derived
in a similar way. In order to simplify these equations, the
abbreviation fj(k) will be used, to indicate that the jth

parameter of s, has been changed to k. For example,
f1(ny-1) = £(n1~1,n5,m,L,,£5)

fy, s(R1,k2) = £(ny,n,,m,ky,k;) and so on
and

f = f(ny,ny,mLy,42).

In addition, the unsubscripted terms a, n and £ will be used to

indicate the sum of the corresponding two parameters, for example

a=a; + a,.
For n, = dl’ n, < dz, m< c,

(at+n+ml) £

ayfy(n-1) + afo,(ny-1)

alf3(m—1) + (n2+1)f2(ﬂ2+1)

+

(m+1) £3 (1)

+

+ (£1+1)fq(£1+1) + (£2+1)f5(£2+1). (2.5b)
For n; < dI’ ny = dz, m< ¢,

(atn+mtl) £

a1fi(n1-1) + axf, (ny-1)
+ (ﬂ1+1)f1(n1+1) + a2f3(m—l)
+ (1) f3(m+l)

(L14+1) 4 (£141) + (L2+1)£5(Lo+1). (2.5c)

+



=,

For n, = d;, M,

(a+n+m+L) £

. d2: m < C,
= a1fi(m-1) + axfa(n2-1)
+ alfg(m—l) + azfa(m—l)

+ (m+1)f3(mtl)

+ (£1+1)fq(£1+1) + (£2+1)f5(£2+1).

For n,; < d;, ny < ds, m=c,

(atn+m+L) £

= a1fi1(m-1) + axf, (ny-1)

+ (n1+1)f1(ﬂ1+1) + (ﬂ2+1)f2(n2+1)

+

For ny, = d;, n, < ds, m=c,

(atn+m+L) £

= a;f;(n-1) + af,(n,-1)
+ ajfg(m=1) + (Na+1)f, (No+1)

+ alfq(ﬂl—l)

+ (L+1)fy, (£1+1) + (Lo+1) £y (Lo+1).

For ny < dls ng = dz, m=-¢c¢c,

(at+ntml) £

For ny = di, n

(a+n+tm+L) £

The state equations described in (2.5) are valid for all values
of £1 2 0, £, =2 0 and Ny, N2, M must also be non zero, as well

as satisfying the appropriate conditions, which precede each

equation,.

= a;f; (n;-1) + afy(ny-1)
+ (Im+) £, (n+1) + asfa(m-1)

+ axfs (£2-1)

+ (Lq+1) £y (£34+1) + (Lo+1)fs(Lo+1).

2 = d2s ms=c,

a1fy(ni-1) + axf; (no-1)

+ a;fy(m-1) + afz(m-1)

+ a1fy (£1-1) + azfs(£,-1)

+ (£1+1)fu(£1+1) + (£2+1)f5(£2+1).

(£1+1)fu(£1+1) + (£2+1)f5(£2+1).

21.
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Although some expressions may be simplified (e.g.2.5h) by
using a +a; = a, they have been left in the unsimplified
form to illustrate the changes which occur in the equations,

as each variable reaches its upper limit.

These eight equations represent an infinite system since
both L, and L, are unlimited groups. The model can be
simplified by considering an equivalent system of equations
in which the relationships between the various states of

the system are described in terms of the binomial moments

of L; and L,.

22,



2.3 The system of moment equations

The binomial moments of L; and L,, are defined by

© o ki, ko
B ’ = Z ) f ’ > 9h 9h
Kl,ﬁz(nl’nz m) k1=,€1 k_2=,@2 (21)(32) (”1 Ny ,m 1 2)

for 0 <n, <d,, 0 cm<ec, £, 20
1 1 1

0 otherwise.

Equations involving these moments can be derived from (2.5)

using the following steps:

(1) change the dummy variables £,, £, to
hl and kz.

(2) multiply the equations by (%i)(%;).

(3) sum the equations over the ranges of k;
and Ry, (namely i ¥ ) and simplify.
k1=£1 k2=22
The performance of step (3) is facilitated by use of the

following lemmas.

Lemma 1:

For a sufficiently well behaved function h(k) defined on the

non negative integers

0 k
hzz{kh(h)—(h+l)h(k+l)}(K)

% k
=42 ¥ hR)().
h=¢ 4

Proof:

The following identity holds for k>£>0,
k R+1 . kR+1-£
@ = Cp ki1
_ R+l 2 R+
= Cp) m a0

Hence, the L.H.S. of (2.7)

Kh(ﬂ)(ﬁ) + k§£+lhh(k)(§)

k+1 £ k+1
e) "l e )

S (k+1)h(k+1
k=£( +1)h (k+1)[ (

@@+, § i )

o h 0 h
= P h (k
RRCIOINE P IR IOT

® (k) (R
RRIOYS

R.H.S. of (2.7)

(2.6)

(2.7)

23.



Lemma 2:

¢ 5« 1)( 2) fas (R, kp-)
b=k, k,=t, & e

= B£1,£2(n1’n2,m) + Bﬂl,ﬂz—l(nl,nz’m)

And a similar relationship holds for f,s(R;-1,k;).

Proof:
Using the identity
] k-1 k-1
(K) = ( 2 ) + (ﬂ—l)’
% % (hl)(hz 1
k=L, k=L,

the L.H.S. of (2.8) ) fus (R ,Ra-1)

+

w o) kl hz 1
f JRo-1
. £1 Ry Kz( )( ) uss (R1,R2-1)

- 5 % (zl)(z Y45 (k1)

k.=t @?F
o) © hl k
+ klzg k Z ( 1)(12_1)f4,5(h1,k)
= le’zz(HI’HZ’m) + Btl,zz_l(HI’HZ’m)

R.H.S. of (2.8).

The simplification of the first summation term uses the

£y-1

. e N _
definition of B£1,£2(”1’n2’ ) and ( 2 ) 0.

Abbreviations for BZ 2 (ny,ny ,m) will be used to simplify the
' 1,42

new system of equations which will be obtained.

B(,,,) will represent B (ny,ns ,m)
KI’KZ

B(x,,) le,gz(x,nz,m)

B(,,y)

11

le’ﬂz(nlsn29Y)

z,(”’) = BZ’EZ(W1,H2,m) and so on.

Application of the steps described above to (2.5a) yields,

ith I8 = % T
et ki1=£1 k2=£2)’
(a+n+m)ZZ(£1)(£2)f + ZZ(%I)( Yeif + 22(51)(22)h2f
- o 2EHEH R +a mEH ED D

(2.8)

24,



+ (ny+1) ZZ(%i)(%Z)fl(mH) + (na+1) ZZ(%i)(ﬁz)fz(nzH)

b (m) zz<§i><§§>f3<m+1>

+ 20D G GORu (kD) + 32t () (s (o).

Using the definition of BK 2 (ny,n5,m) and Lemma 1, this
1542

simplifies to

(a+n+m+£)B(,,’) . alB(nl_lﬂ,) + azB(,nz-l,)

+

+ (m+1)B(, ,m+1).

Equation (2.9a) is valid for n; < dj, N2 < dz and M < ¢, (and

all five variables, (n;,ns,m,£;, and £,) must be non negative

integers).

The boundary conditions can be represented in terms of the
binomial moments and these equations can be obtained from

the state equations analogously to (2.9a). Lemma 2 is used

in the derivation of equations (2.9f, g and h).
For n; =di, na < dz, m< ¢,
(atntm+L)B(,,,) = a;B(n1-1,,) + a»B(,h2-1,)
+ a1B(,,m-1) + (n2+1)B(,np+1,)
+ (m1)B(,,m1).

For n; <d,, ng = dp, m < c,

(a+n+m+£)B(,,,) aiB(ni1-1,,) + a2B(,n2-1,)

+

(n+1)B(n,+1,,) + azB(,,m-1)
+ (m+1)B(, ,m+1).
For ny =di, ny =dy, m < ¢,

(a+n+m+£)B(’)’) = alB(n1_199) + aZB(QHZ_I’)

+

alB(,,m—l) + aZB(’am_l)

+

(m+1)B(, ,m+1),
For n1 < di, N2 < do, m = c,

(a+n+m+£)B()39) . alB(nl—lya) + aZB(’HZ_la)

+

(m+DB(n,+1,,) + (na+1)B(,ny+1,)

(H1+1)B(H1+l,,) + (n2+1)B(,n2+1,).

25.
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For Vl1=d1, VL2<d2,m=c,

(a+VL+m+£)B(,,,) alB(”—l_l’:) + azB(,Vlz—l,)
+ alB(,,m—l) + (V12+1)B(,V12+1,)
+ alB(’,))

+ alel_l,(,,,).
For ni1 < di, nz =dz, m = c,
(a+n+m+L)B(,,,) = a1B(n;-1,,) + aB(,n.-1,)
+ (n1+1)B(ny+1,,) + a2B(,,m-1)
+ a2B(,,,)
+ aZB’Kz—l(”’)'
For ny, = dy, ny, =d,, m=c,

(atn+m+£)B(,,,)

alB(Vl]_—l,,) + aZB(,VLZ_]-’)
+ alB(, ,m—l) + azB(, ,m—l)
+alB(ss,) +32B(,,,)

+alB ()’9) "_3-2:B

/@1_1’ ,22—]_(”’).

Once again, these equations could have been simplified but only

at the expense of showing the patterns of changes.

Equations (2.9) describe a system of simple recursive equations
in £, and £,, whereas the state equations (2.5) are quadratic
recursive equations. The transformation has 'removed' the

terms involving (£;+1) and (£,+1).

If the moments are summed over all values of n;, n, and m then

the result, denoted by B(Zl,ﬂz) is

d; d, ¢

© k k
B(Kl te) n,=0 n,=0 m=0 k1=£1 h2=£2 ('61)('@2) (1,02,M,R1,22)

]

© © kl ko
X ) PrilL,=k;,Lo=k,}
k1=£1 h2=£2(£1)(£2) rih 1sL2=K2

L, L2

26.
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Furthermore, if equations (2.9) are summed over all values

of (ny,n2, and M) the result gives an alternate expression

for B(El,ﬁz)’ namely
ds
A R T WA
d,
+ aznlzo le’zz_l(nl,dz,c). (2.

The derivation of (2.11) is given in Appendix A. The two
equations (2.10) and (2.11) lead to expressions for the means,
variances and covariances of the overflow streams in terms of

the binomial moments since

m = E[L1] =B

m2 = E[Lz] = B(O,l)

v, = E[L3] - E[L, ]2
- 2E[L—1'%1ﬁ1 + B[L,] - E[L, 12
- _R2
=2B80,0 " 3a1,0 TP a0

vy = B

2B0,2) * Bo,1) T P 0,1

cov = E[L;L,] - E[LyJ*E[L2]

B, " Ba,0 B,

Therefore by (2.12) and (2.11) the five overflow statistics can
be calculated if the system of equations, (2.9), can be solved

for (£;,£,) equal to the values (0,0), (0,1) and (1,0).

The equations (2.9), for fixed values of £; and £,, involve
R=(d;+1) (d2+1) (c+l) unknowns, namely the binomial moments.
There are exactly the same number of equations in the system,
and for (£,,£,) not equal to (0,0) the equations are linearly
independent. When £,;=£,=0, (2.11) reduces to the identity 0=0,
indicating a linearly dependent relationship between the

equations (2.9) in this case. However,

of f(nl’HZ)m’hl,{?—?_)

(ny,ng,m) = %
' 2 k]_:O k,2=0

0,0

(2.

Pr{N1=n1,N2=n2,M=m}. (2.

27.
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Hence, there is an additional equation which the moments must

satisfy for this case, namely the normalising equation,
d]_ d2 C

X b )X B (Vll,Vlz ,m) = 1. (2.

n1=0 n,=0 m=0 0,0

If any one of the equations in (2.9) is replaced by (2.14) then
there are, again, exactly R linearly independent equations which
the BO,O(nl,nz,m) moments must satisfy. Therefore for the three
values of £; and £, that are of interest (and, in fact any values)
the moments can be determined uniquely by solving three sets of

linearly independent equations, and hence the statistics of

(2.12) can be obtained.

Since the equations (2.9) are simple recursive with respect to
£, and £;, and the moments are zero when £; or £, 1is negative,
the equations must first be solved for (£,.,{;) = (0,0) and
then for (£1,£2) = (0,1) and (1,0).

Transformations of a similar nature have been used in many
other papers. Usually they are affected using generating
functions. Neal [16] uses the bivariate binomial moment

generating function,

_o® o ’El ,@2

B(m:yLlsVLZ;Xl;xZ) - X x f(m,VLlsVLZs’el’[—Z)(l'H(l) (1+X2) .
1=0 £2=0

Riordan [27] and Chastang [4] use what they call factorial

moment exponential generating functions which are in fact the

same functions as Neal uses, defined in terms of the appropriate

state probabilities, namely

M(...,t) = }Z, f(---Vl)(1+t)VL.
n=0

y may be infinite or finite, and f and M may have two or three
variables, but in essence the methods are the same. The
transformations in these three papers could all have been
obtained by the simpler method used in this model, without

introducing generating functions.

A similar approach was used by Schehrer [24] for a simple
overflow system, that is one with a single primary group,
using factorial moments, that is
= ® X v
6o = Ortpo.
He considers both infinite and finite secondary group models,

and calculates higher order moments of the overflow distribution.

28,
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The transformations not only reduce the system from quadratic
recursive to simple recursive in £; and £,, but also simplify
the calculation of the statistics. For example, the formula

for the mean in terms of the state probabilities is
dl d2 C .
E[Llj . z X z z Elf(WI’HZamazlyzz)

o0
)X
n,=0 n,=0 m=0 £1=0 £2=0
and in fact all the moments are defined in terms of infinite
sums. The equivalent expressions using the binomial moments
(2.12) and (2.11) are all finite sums, and in each term the

summation is over one variable only.

Higher moments of the distribution of L and Ly could be
found, if desired, by solving (2.9) recursively for the

appropriate values of £; and £,.
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CHAPTER 3

ITERATIVE SOLUTION OF THE MODEL

Sis

1

Matrix formulation of the problem

The system of equations (2.9) has a unique solution since there
are R = (d;+1)(dy+1) (c+l) linearly independent equations and
the same number of variables. This system can be expressed as

a single matrix equation,

Doy ts R0y 0, = By, 3.

where Dﬁ 2 is an RXR matrix and both the vectors have R
1,42
elements. The vector bﬂ 2 consists of the moments
15%2

B£1,£2(”’) and 521,£2 involves Bﬂl—l,ﬂz(”’) and B£1,ﬂz—1(”’)'

It will be necessary to deviate slightly from standard matrix
notation. The subscripts, £; and £, index a 2 parameter family
of matrices (vectors) rather than indicating particular elements

of a given matrix (vector).

Capital letters will still be used to indicate matrices and a
lower case letter, with a tilde underneath will denote a vector.
The elements of the matrices and vectors will be indicated in
parenthesis and the tilde will be removed from the vector, for

example

X 0 is the matrix X when £; =1, £, = 0,

x(i) is the ith element of the vector x, and
X(i,j) is the element of X in the ith row and jth column.

The vector bﬂ 2 will have as its elements, the binomial moments.
~41,42

It is necessary to order these moments, which have a natural

three dimensional representation, into a one dimensional vector.

If B (ny,ny,m) is the rth element of b that is
21322 ~

L1,82°
b£1,£2(r) = BKI’KZ(HIaHZ’m)
then r is defined by

r = (n1+1) + nz(d1+l) + m(d1+1)(d2+l). (3

1)

.2)

30.



This definition ensures a unique arrangement of the binomial
moments and the three parameters (n;,n,,m) of the moments are

arranged in the order,

(0,0,0),(1,0,0),(2,0,0),...,(d1,0,0),(0,1,0),(1,1,0),...,
(d1,1,0),(0,2,0),...,(d1,d2,0),(0,0,1),(1,0,1),...,(d1,d2,c).

The uniqueness of r can be verified as follows - suppose there
are two values of (M,,4,,m) which correspond to the same value

of r, namely (x,y,z) and (x',y',z')
(x=x") + (y-y") (d1+1) + (z-2')(d1+1)(dp+1) = 0

Suppose x # x' and without loss of generality x > x'. (The

case X = x' is dealt with later in the proof.) Division of

the equation by (di+1), yields

XX | (yoy') + (2-2") (dp+1) = 0.
d;+1
. ' . , . (x-x")
Since x, x', y, v', 2z, 2z', d; and d, are all integers > Tqorl
1

is also integral and hence (x-x') is a multiple of (d;+1).

But 0 < x' < x £ d; and therefore (x-x') < d;+1.

Hence (x-x') = 0 is the only integer solution.
Therefore

(y=y") + (z-2z')(dy+1) =0

Repeating the argument yields y = y' and hence z = z', thus

proving the definiton of r is unique.

The vector g contains moments of the form B (ny,ny ,m)
~£1,/€2 ’61-13'82
and B£1,£2—1(n1’n2’m) and hence is a function of bﬂ;—l,ﬂz and
hﬂ1,£2—1' Therefore §£1’£2 can be expressed as a function of
d . i
Eﬂl—l,ﬂz an b£1,£2—1 Since h—l,ﬂg and bﬂl,—l are zero vectors,
for all values of £; and £,, the vectors b, p can be calculated
1,42

recursively ﬁtarting with b Note that the additional

0,0°

constraint Zlbo 0(r) = 1 must be used to obtain a unique
r= s

solution for EO,O’ where  ny ~Ccr)d, .,.,)(0{1_-1-,)‘_

31.



3

.2

The structure of the coefficient matrix

For simplicity the subscripts £; and £, will be omitted in this

section.

The definition of b together with equations (2.9) uniquely

determine the coefficient matrix D. The matrix is sparse and
there are at most seven non zero elements in any row. These
elements are located in seven bands parallel to the diagonal

and this gives D a highly-structured form.

The coefficient of B(,,,) appears as the diagonal element,
D(r,r). The element D(r,r-1) is the coefficient of B(n,-1,,),
D(r,r-(d;+1)) is the coefficient of B(,#5-1,) and the coefficient
of B(,,m-1) is located in D(r-(d;+1)(d,+1)). The coefficients

of B(m+1,,), B(,n2+l,) and B(,,m+l) are located in D(r,r+l),
D(r,r+(d;+1)) and D(r,r+(d;+1)(d,+1)) respectively.

The matrix may be considered as a hierarchy of tridiagonal
matrices. At the highest level the matrix D is partitioned
into square matrices of size (d;+1)(d,+1). All these sub-
matrices are zero matrices except the 'diagonal' matrices and

those adjacent to the diagonal, as follows

— —

D = Qo Uo 0
S Q1 U
S Q U

L c |

The matrices S and Um are diagomnal.

Up = =M Ty 41y (dp41) ™

where IX is the identity matrix of order x.

The diagonal elements of S, are defined by

d d
S(s,s) = —aléni - azénz (3.

2
where s = (n;+1) + n,(dy,+1) and Gi is the Kronecker delta.

0 S Q (3.

=0,1,..,c-1 (3.

3)

4)

5)
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The matrices Qm are themselves tridiagonal at the next level,

in which the 'elements' are square matrices of order (d;+1).

ra—

Qm N Qo,m Uo,m g
S
i Ql,m U1,m
S
' 2,m U2,m
51 de—l,m Udz—l,m
0 S
| ! ds ,m
for m=0,1,...,c.
The matrices S; and Un m are again diagonal with
' 2y
= — + . = .o -
Unz,m (ny I)I(d1+1)’ no 1,.., do-1
m=20,1,.., ¢

and S; =

ma2lig 41y

The matrices Qn are again tridiagonal.

2:m
an,m a qO,nz,m
—al q1,n2,m -2
Bt qd1_19n2’m _dl
0 -a
L ! qdl,nz,@_
for n, = 0,1,..,d and m = 0,1,..,c.
Finally,
=ayt+ax +n; +np +m+4L; +4
qnl,nz,m 1 2 1 2 1 2
d1 Cc dz C
- 6”1 S ar - 6%2 Gm as.

The vector 8. ¢ is defined by
~Alat2

C
m

ds .c
no dm

_ «d1 ¢ ‘
8, 2, (F) = S, S arby |, (0) +8

az bﬂl,ﬂz—l(r)
where r is defined by (3.2).

When £; = £ = 0 the last row of D is replaced by a row of ones

and the last element of g (which is in fact a zero vector) by

a one,
d;

This row then corresponds to the normalising constraint,
d2 C

z LI X B

(ny,no,m=1,
n1=0 na=0m=0 0,0 1>"2 )

(3.6)

(3.7)

(3.8)

(3.9)

33.
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The elements of the coefficient matrix, with its highly structural
form and spareness, can be simply and efficiently calculated in
a computer program and is highly suitable for a computational

solution of equation (3.1).

34.



3

.3

Some iterative solution techniques

Theoretically the vector b can be obtained by

-1
b=D g.

This involves calculating the inverse of the matrix D, but
since this matrix tends to be large, and the inverse when
calculated is no longer sparse, the solution is not very
practical. However, there are several iterative techniques

which can be used to solve the equation

Db = g.

~

The equation can be rewritten in the form
(I"A)I_?I = f,’

which can be conveniently effected by dividing each row and
the corresponding element of g by the diagonal element.

Rearrangement of this equation gives
b = Ab + f.

If an initial estimate ho is chosen then successive estimates
are calculated iteratively by

b(!a+1) _ Abh s

until a specific error condition is fulfilled. For example,
the kth and (kR+1)th estimate of each element differ by less
than 10_6, that is
+1 6
( )(r) .

max ]b - bk(r)| < 10

T

This iterative technique is known as the Jacobi Method (see
Faddeeva [ 8 ]). The criterion for convergence of this
procedure, for any arbitrary initial estimate, is that all
eigenvalues of A lie within the unit circle, or equivalently
the spectral radius is less than one. Generally, for iterative
techniques, the 'convergence criterion is of theoretical
interest only, since finding the spectral radius of the
iteration matrix is usually of the same order of difficulty
as solving the original equations', to quote from Cooper's
book [ 6 ]. A sufficient condition for convergence is strict

diagonal dominance in the coefficient matrix D. That is

Ip(e,r)| > 1 [D(r,s)].

s#r
s=1

I~
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This condition is not satisfied but the diagonal elements
are considerably larger in absolute value than the other
elements in the rows, and this suggests that convergence
will occur. 1In fact, in every case considered convergence
has occurred and for practical purposes it will be assumed

that this will always happen.

An improvement on the Jacobi method is a procedure commonly
known as Gauss-Siedel iteration, although the names of

Liebmann and Nekrasov are also associated with the method
(see Cooper [ 6 ]). In this method the elements of Qk+1
already obtained are used to calculate the remaining elements
of the vector. The matrix A may be partitioned into a lower
triangular matrix TL and an upper triangular matrix TU, that

is

= + T .
A TL U

Equation (3.13) would then become
(k+1) k f
= + + f
R
(k+1)

Since the elements of b are calculated in the order 1,2,
3,...R, at any stage of the calculation all the values of b
which have a non zero coefficient in T  have already been

L
found for the (R+1)th estimate. Since these values are

presumably more accurate than the corresponding kth estimates,
it is sensible to use them in the calculation of succeeding

elements, that is

t~)(!z+1) (k+1) e i k

+ f.
u 2

~

= b
TL b

The criterion for convergence of this procedure is that the

spectral radius of (I—TL)—lT is less than unity, again of

U
theoretical interest only.

Gauss-Siedel iteration can be accelerated by a technique known

as successive overrelaxation (abbreviated to S.0.R.). The new

(R+1)

estimate b is obtained from a weighted mean of the old

fe
estimate b and the (k+1)th estimate that would have been

~

obtained using Gauss-Siedel iteration. The S.0.R. formula is

12(h+1) = 6(1, b(h+1) + Ty Qk + £) + (1-6) bh-

36.
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The parameter O is known as the S.0.R. constant. It was found
that using 0 = 1.2 resulted in a 10-20% improvement in the
convergence rate. For example, the vector EO,O was calculated
by the three methods for the case when d; = 3, dy = 4, ¢ = 5,
a; = 6 and a, = 9, with the stopping condition of (3.14).

The Jacobi method required 113 iterations before convergence.
Since there were only 120 elements in the vector this is not

a significant improvement over the straightforward method of

inverting the coefficient matrix D However, for the

0,0°
Gauss-Siedel method only 27 iterations were needed and with
an S.0.R. constant of 1.2 this was reduced to 24 iterations.
The initial estimate was the 'uniform' vector with all elements

set to ‘12—0

It may be noted that ordinary Gauss-Siedel iteration is obtained
when 6 = 1. There are many unanswered questions about
convergence in the S.0.R. method, and Cooper suggests that 'the
interested reader should see Varga' [25]. Once again it is of
theoretical interest only, since in the cases considered the
5.0.R. technique was more efficient than ordinary Gauss-Siedel

iteration.

It was suggested by Benjamin [ 1], that the convergence of the
5.0.R. technique could be accelerated even more by using a
variable value of 0. A large value of 6 is used in the initial
steps to 'shake up' the system, that is cause a large variation
in successive estimates of b. Since the process will diverge
for 6 > 2 a 'large' value would, for example, be 1.9 or 1.95.
With a value of © this large the estimates may 'overshoot' the
true value of b at each step and therefore oscillate about this
true value. If the average of two successive estimates of E is

then calculated, this average should be close to the true value.

It can be shown that using a value 8/2 for one iteration (the kth)
is equivalent to averaging the Rth and the k+1th estimates which

would be calculated using the value of 6.

56+ ph = utec, B 4 b 4 o) Bt 4 o)
6, bl b 0. .k
=T B+ T )+ (- b

b*.

v



The value b* should be a good 'initial' estimate to use in

succeeding iterations with a smaller, constant, value of 0.

Hence the process may be described by the following algorithm
(1) choose an initial estimate QO.
(2) for 5 iterations of S.0.R. method use
0 = GL (a large value of 0).
(3) for one iteration use 9§ = GL/Z.
(4) for remaining iterations use 6 = 04,

some value which gives a good convergence

rate,

In the S.0.R. program which was used to calculated the tables

in Appendix 4, GL = 1.9 and 63 = 1.4. Mr. Benjamin further
suggested that if convergence becomes 'slow' in step (4),

steps (2) and (3) be repeated, but this was not incorporated
into the program, since the convergence rate with standard
S.0.R. was good, the improvement using the algorithm was slight
and further 'shaking up' did not seem likely to give significant

improvement.

A diagramatic representation of the iterative techniques is
given in Figure 3.1, It is meant only to illustrate the
comparative convergence rates and is not necessarily a true
representation of any actual problem. The diagram may be
considered to represent a projection of the successive estimates

gk onto the (b(1),b(2)) plane.
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4
*® Initial estimate b(1)

¢ T True value

®k kth estimate using Gauss-Siedel iteration
X k kth estimate using S.0,.R. iteration

#+ k kth estimate using Benjamin's iteration

" b* after 3 steps using Benjamin's iteration

Figure 3.1 : Comparison of iterative methods.
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3.4

Some aspects of programming the algorithms on a computer

Although the complete listing of the program which performs
the S.0.R. iteration is given in Appendix B, there are some

features worthy of special mention.

For a system with R = (d;+1)(dy+1) (c+l) states the array which

holds the values of the coefficient matrix would need R® elements.

The 120 X 120 matrix needed for the case described above,

(d; = 3, dy = 4, ¢ = 5) is a considerably large array, although
the size of the service groups is comparatively small. However,
at most seven elements in each row are non-zero and these can
be stored in an R X 7 array, each column of the array corres-
ponding to one 'diagonal band'. However, this still requires
considerable storage space and it was found that core space

was more critical than processing time in limiting the size

of the systems which could be considered.

The highly structured form of D, and hence A, allowed the
elements of each row of A to be calculated very quickly, and,
for each iteration of the algorithm, the non-zero elements
of each row were calculated when required,with the result
that the storage requirements were reduced to a 1 X 7 array.
The vector f, size R X 1, also contained a majority of zero
elements. In fact all non-zero elements must be in the last
(d1+1) (d2+1) positions and only these elements of f were
stored in the computer. The efficient storage of these two
quantities has allowed systems with values of R up to 10,000
to be evaluated. All programs are written in FORTRAN for
CDC 6000 or Cyber series computers, and require less than

60000 (octal) words of central memory to compile and execute.

The actual iterations are performed in a subroutine (SEID).

Since three applications of the algorithm are required, one

for each of the vectors b b and b it is important
20,0 20,1 21,0’ =

that various parameters and arrays are calculated before the

next use of the subroutine overwrites the arrays. The vector

ﬁo o must first be calculated and this allows QO 0 to be
bl b
obtained. Both gl,O and gO,l are functions of EO,O and must

be calculated before the next vector, is obtained.

13'O,l

Similarly m; and mp; must be calculated before b

i d.
bo,0 is destroye
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The vector bO 1 can be obtained using go 1 and this is used
to calculate v; and the first term of cov. Finally, El 0

is used to calculate vz and the second term of cov.

A 'flowchart' showing the requirements and order of calculations

is given in Figure 3.2.
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> y means x is used to calculate y
b _->. y means X must be calculated before y

Figure 3.2 : Requirements and order of calculations
for vectors and statistics in the program
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CHAPTER 4

ANALYTIC SOLUTION OF A SPECIAL NETWORK

Description of the network

In a telephone network there may be some 0-D pairs which do not
warrant direct 1links, because of the low level of traffic
between the two exchanges. When two of these 0-D pairs share

a common link on the first choice route, a simplified version
of the model is obtained (Figure 4.1). The traffic for the

two streams arrives with independent Poisson streams and the
other assumptions of section 2.1 apply. This network is
equivalent to the system modelled in Chapter 2, when d; = 0

and d2 = 0, and the computer program which solves the model

using the S.0.R. technique can still be applied.

Results from the computer program, in which d; and d, were
set to zero, were tabulated and graphed. It was noted that
the overflow means were proportional to the arrival rates for

the particular streams and in fact,

m, = a_  E (a) (4.1)
1 1 C

This formula is quite well known and is a consequence of the
assumption of Poisson input. (The sum of two independent
Poisson streams is itself Poisson with mean equal to the

sum of the means of the two component streams.) The total

overflow mean and variance are

m= g Ec(a) (4.2)

and
a

L Ec(a)(l—aEC(a) + c+1—a+aEc(a))' (4.3)
These two equations are particular cases of equations (1.2)
and (1.3).
Comparison of (4.1) and (4.2) indicates a similar form for the
two means with one of the 'a' terms of m replaced by an 'a;'
in the expression for U&. That is, if the function (x,y) is
defined by

m(x,y) = x E_(y) (4.4)
then

m= m(a,a) and m, = m(a, ,a).
i i
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Figure 4.1 : No direct links in network

(a) Network representation;
(b) Server system representation.
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It seemed possible that there may be a similar relationship
holding between v, and v. Several different expressions
were evaluated, in which one or more 'a' terms in (4.3)
were replaced by 'ai' terms and these expressions were
compared with the value of vi calculated by the computer
program, for some different values of aj, az and ¢. 1In all
cases there was 'exact' (to the level of accuracy of the
iterative solution) agreement between the results from the

program and the formula
m

i
=m(l ~-m +—7),
vy = i ¥ otl-atm
This corresponds to v = v(a,a) and v, = v(ai,a) for a function
i
defined by

= )
c+1—y+yEc(y) *

v(x,y) = x Ec(y)(l - X Ec(y) +

Use of the identity,
Var(X,Y) = Var(X) + Var(Y) + 2 cov(X,Y)

enable cov to be expressed explicitly by

=3

cov = my (-m; + E-E:f——ﬁ
or
as
= M, (— +_.
cov 1 (-mp T )

These two formulas are equivalent since

ma; = a1'Ec(a)'az = a;my

(This should be expected since cov(X,Y) = cov(Y,X).) A symmetric

expression can be obtained by taking the average of the two

formulas (4.7) and (4.8), namely

_, 1= __ay m, (- = E2 .
cov = %{my (-m; + c+1—a+m) + M(me + c+1—a+m)

This intuitive result for the variance of the individual overflow

streams, was derived analytically, following the method of

Riordan [ 27]. The formulas were first published in the Second

Progress Report to the Australian Telecommunications Commission

[19] and then in a paper presented at the 8th International
Teletraffic Congress [28]. They were later obtained by Pearce

[17], who used a completely different technique.

(4.5)

(4.6)

(4.7)

(4.8)

(4.9)
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The results can also be obtained using a second 'binomial'
transformation similar to the transformation of (2.5) to (2.9)
and in fact can be obtained directly from the moment equations.
One or more of these techniques may be extended to give a
solution to the general model and consideration of three
different approaches gives some insight into which of these

can most easily be applied to the more difficult problem.

46 .
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47.

The Analytic solution of the simple model

Although the system, illustrated in Figure 4.1, is equivalent to
the general model of Chapter 2 with dy, = d; = 0, the state

equations and moment equations will again be presented.

The state of the system is described by a three parameter vector
(M,L1,L2) corresponding to the number of busy servers in the
three service groups, M, L, and L,. The state probability

function f is defined by
£(m,L1,85) = PriM=m,L1=£;,L,=0,}
for 0 <m < ¢, Ki >0

0 otherwise. (4.10)

The state equations for this system can be derived analogously

to (2.5), and again are presented in abbreviated form.

For m < ¢
(aHn+L)f = a £1(m-1) + (M+1) £ (m+1)
+ (O+D) 2 (L14+1) + (La+1)£5(Lp+1) (4.11a)
and
(cH)f = a fi(c-1)

+ a1f2 (£1-1) + axf3(£r-1)

+

(£1+1)f2(£1+1) + (£2+1)f3(£2+1)- (4.11b)
The binomial moments are defined by

= 3 © Ry Ry
P8 ™ T Ly g2, () (g k) (4.12)

An equivalent system involving the binomial moments can be

derived by a procedure similar to the derivation of (2.5).

For m < ¢
(a+m+ﬂ)B£1’£2(m) = a le,ﬂz(m_l)
+ (m+1)B£1,£2(m+1), (4.13a)
and
(c+0)B

’61”62 (C) - @ B’el ”62 (C—l)

+ a1B£1—1,£2(c) + aZBZz,£1—1(C)' (4.13b)



. . 4
The quantity B(£1,£2) is defined by

¢
= ¥
Blen, o) = pio 21,8
- Ly, L2
= E[(ﬂ1)(£2)]
and summation of (4.13) for m=0,1,..,c yields
OB, ) = 2180,01,0, () * 228y g1

The expressions (2.12) relating the overflow statistics to

are valid for this model.

B(ﬂl,ﬂz)

These moment equations (4.13) can now be solved by several
different analytic approaches. The derivation presented in
the next section is an extension of the classical approach

of Riordan [27].

48.
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Solution of the model by Riordan's Method

If the constrain on m in (4.13a) is relaxed to allow m to have
any non negative integer value, then new equations and new
variables are introduced into the system. For each new
value of m > ¢ a new variable BK 2 (m+1) is introduced and

2
defined in terms of B (m) and B (m-1). The introduction
KI’KZ 21,12
of these artifical variables does not affect the relationships

between the physical moments corresponding to B (m) for

m < c. If the extended solution can be solved ﬁéézihat
solution also satisfies the boundary condition (4.13b) or
the normalising constraint in the case £; = £, = (), then it
is also a solution to the original, restricted, system of

equations.

For fixed values of £ and £; the extended equation (4.13a) will

be transformed using the generating function

oo

B(t) = X

m
A B£1,£2(m) t 0<t< 1 (4.16)

The derivative of B with respect to t is

m-1

dp (m) t (4.17)

T " o ek,

™8

Multiplication of (4.13a) by tm and summation yields,

o m-1
(a+£)mEOB£1’£2(m)t + t Z m B£1,ﬂz(m) t

[ m
+ mEO(m+1) le’zz(m+1) t (4.18)

and this simplifies to the differential equation,

gy 98 _ a8

(at)B + t qc = at* B + dc - (4.19)
Rearrangement of (4.19) gives

dB £

It - ( + )B (4.20)
which has the solution

eat
B(t) = B(0) DRV (4.21)

(1-t)



A second generating function o(t) is considered .

® m At
o(t) = X ap(mt” = 7 (4
m=0 (1-t)
The O-polynomials OZ(m)’ which are attributed to Nyquist in
[27], satisfy a number of recurrence relations, including
oz(m) = 0£+1(m) - o£+1(m—1), (4.
m oﬂ(m) = a oz(m—l) + £ 0£+1(m—1), (4.
/4 o£+1(m) = (mL-a) oz(m) + a Gt-l(m)’ (4
and
T k
g1 (M = !zEO AR (4
Substitution of (4.22) in (4.21) yields
x m
B(t) = B(O) X Op(m) t (4.
m=0
and equating powers of t in this equation on (4.16) yields
Bﬂl,ﬂz(m) = B(0) g,(m. (4.
Substitution of t=0 in (4.16) with the convention 0" = 0;
implies
=B 0). 4.
B(0) = By 4 (0) (

When £, = £, = 0 the solution (4.25) for BK 2 (m) must
1,42

satisfy the normalising constraint

(o

mEOBEI ,'82 (m) =1

Therefore

[}
i

[
B(0) X ao(m)
m=0

and by (4.23d)

1

B(0) = O] (4.

50.
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23a)

23b)

.23¢c)

.234)

24)

25)

26)

27)



Therefore
_ Oa(c)
B5,0(9) = 5, () -
at A
When £= 0, o(t) = e° and hence g,(m) = pry hence

By.0(e)

Ec(a)

For £ > 0 the solution (4.25) must also satisfy the boundary
condition (4.13b), that is

(c+) BK1,12(0) Oz(c) = a BK;,KZ(O) Oz(c—l)

+

a1 By _1,2,(0) 9p 1 (©
+ a, B£1,£2—1(0) Oz_l(c)

or

[ (c+d) oﬂ(c) - a Oﬂ(c—l)] BK1,K2(O)
= [a; B£1—1,£2(0) + ay Bﬂl,ﬂz—l(o)] Oﬂ—l(c)

But
(ctl) OK(C) - a Ot(c—l)

(c+L-2a) OK(C) + a(oﬂ(c) - Oz(c—l))

Lo (c)

£+1 (m)

- a cﬂ—l(m) + a 02_1

e 0£+1(c)_

This result is obtained using (4.23c and a) and its substitution

(0).

into (4.31), gives a recursive formula for B

’e-l ’£2

51.
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(4.31)



[ Aeteal

B(Iu‘lo) =

o BleCe) =

q43c;c,(‘°) 6,C(c)

o, (<)

B.o (0)T (<)

A, B, ()6, (<) a(c)

G CC)

a( 3&(0(6) G, ((}

{

G,/

i — N
=Ky t'.’.(d)(“’((/

thefe Lo -

—

o ()

tﬂ(c)/cr.(c) ,



Gp_p(e)
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~ |
Bgl,gz(o) = z::?z{al 321-1,12(0) + ap BKI,KZ(O)]———————- (4.32)

=1 0y ()

This recursive formula together with (4.30) and (4.25) allows

Bg ¢ (m) to be calculated for any values of £,, £, and m<c,
142

in particular, (c) and B (c) which are needed to

51,0 0,1

calculate vy, vy and cov. [The higher moments of the over-
flow traffic can also be calculated using (4.15) by the
recursive calculation of the appropriate binomial moments

at m=c.]

Hence

_ . 90(c)
By 0@ = a1 By (0 5

and

_ gg(c)
Bl,O(C) = a Ec(a) E;(T)

03 (c)

1

=

I ™0
Q
-
~
=
-

]
[
~~
O
+
—

1
=
S
§1m

Therefore,

= o2(c)
01(e)

(c+l) X — azl R
_ m=0 m! m=0 (m-1)1
m

C
Lo
m=0 " n c
€ a a
alZ - op
= (c+l) - m=0
c m
a
Lo
m=0 "°

c+1-a+ aEc(a)

c+1~-a+m.

_m see Of}offfe (4.33)



53.

Hence
= — M
Bl,O(c) ct+l-a+m (4.34a)
and similarly
- M2
BO,I(C) Floatm® (4.34b)

Since equations (2.12) are valid for this model, use of (4.15),
(4.30) and (4.34) allows the overflow statistics to be
expressed explicitly, and the results confirm the intuitive

formula.
m; = a; Ec(a)

mp = a, E (C)
[od

Vi

ajm
GRS
W

a
"m-m o
a
ve = mp(l - mp + R
_ aimp , apmy _
cov 2.w 2.w M m
= Mmy (—mz + =2 ). (4.35)

c+l-a+m



4.4

Solution without the use of generating functions

Equation (4.13a) is similar to (2.5) in that it is quadratic
recursive in M. A second binomial transformation similar to

the one applied to (4.11) can be used to simplify the model.

The equations will be expressed in a new set of variables

p TR The subscript notation indicates that a binomial
m,£1,4L2

transformation has been applied to the subscripted parameters.

(This is consistent with the notation BK 2 im).)
1,42

It is logical to relax the constraint on m for (4.13a) and
allow m to take any non negative integer value. This follows
from a similar relaxation in the generating function approach

and suggests that p be defined by

m;/el )'KZ

% kR
pm,'e—l,KZ B kzm(m) B'el ,'KZ (k),

which is analogous to the definition of BKI,EZ(m). The
binomial transformation is achieved by replacement of the
dummy variables m by k in (4.13a), multiplication of this
equation by (m) and summation over the range, kR=m, m+l,

This leads formally to the equation

o) ’2 _® k
hz (a+h+£)(m) Bﬂ1,£z(h) = hEma(m) le,ﬂz(k_l) +

=m

k
+ % (k1 B (R+1),
RGN

/@1 3'32

which simplifies, using lemmas 1 and 2, to

(a%ﬂ)pm’zl,/ez = a (pm’zl,zz +p m-1,£, ,/62)

or

a
Pm, 2,8, ~ ML Pme1,2,,8,°

Equation (4.38) is simply recursive in m and in fact

m
_ a
pm,zl ,'82 B (m""e)m pos’el ”62

where

(x)

m

x(x-1) (x-2)...(x+1-m)

X

=

54.
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(4.37)

(4.38)

(4.39)
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However, the lemmas only apply to 'sufficiently well-behaved
functions' and when m=0, (4.37) becomes

kzo(a+k+£) le’zz(k) = hzo a (k-1)

eyt

+ ¥ (k+1) B (k+1)
k=0

£1,42

which simplifies to

'KOO

kzo le,ﬂz(h) =0

which together with (4.39) implies either B£1,£z(h) =0

for k=0,1,... or £=0.

In fact, when (£,,£,) # (0,0) the series defining pm’zl,z2 is
divergent and the artifical variables.le,ﬁz(m); m>c are not
sufficiently well-behaved. (The generating function method
does not have this obstacle since the " factor, for 0 < t < 1,
is small enough to give a convergent series for B(t).)

When this transformation is applied the values of B

/61 ’1712 (C)

obtained are

B (c) = E (a)
c

0,0
= === __
BI,O(C) ct+l-ata* z
|
BO,l(C) ct+l-ata-z
where
c
g = : /c!
a ¢ Q"
e = ¥ =
m=0 M-

These results are obtained using (4.40), together with the
normalising constraint for £=0, and the boundary equation

(4.13b) for £=1. As expected from the previous discussion,

55,

(4.41)

(4.42)



B0 0(c) agrees with the correct results obtained by the

generating function method, but B (c) and B

1,0 0,1(C) are

incorrect. (z should be Ec(a).)

The failure of this method is due to the implicit
introduction of the artificial variables corresponding
to m>c. This extension is not only invalid but is also

unnecessary.

If the function P 2 is defined as a finite sum then the
142

introduction of artificial variables is avoided. That is

_ k
pm:'el 3’62 hzm(m) B’el 9’?—2 (k) ’

Substitution in (4.43) for B 2 (R) gives
2

’ela

(o4 o 00 k
p -t 1 OEHEDEE kL
Mtike ke =gy Rymg, ™

and so p 210 is in fact a trivariate binomial moment of
1542

m, Kl and «@2.

It is convenient to use lemmas similar to Lemmas 1 and 2,

but these must be adapted for finite summation. If h(k) is

a functlon deflned for k=0,1,..,c, and H(m) is defined by
H(m) = kZ ( ) h(kR) then the following results hold;

Lemma 1%
g h(h) h(k) Z (h+1)( h(k+1)
i + = .
oL th f% m H(m)

Proof

Use of the identity

k k+1 m k+l
(m) = ( m ) - el ( " )
leads to
_ m = k ~ & k+1
L.H.S. = m h(m)(m) +k=%+1 k(m) h(k) k+1£m+1(k+1)( M

s k+1 c k
+ z m h(k+1) = 5 =
k+1=m+1 ( i PGS S k=m(m) h (k)

Yh(k+1)

H.S.
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Lemma 2%

z ()

g I
k=m M

Proof
Use of the
k
() =
leads to

L.H.S.

exploiting
The result

H(e) =
and

Cc
) +

The equati

variable kR

(at+k+L) B(R)

(a+c+f) B(c)

where

A

n(k-1) = () + 1E-1) - (T He))

identity
f~1 k-1
Cp) * (m—l)
ccl k-1 czl k-1
= z h(k-1) + )X h (k-1
k-1=m-1( m ) h(R-1) k—1=m-1(m‘1) (r-1)

(&4 - C
H(m) - () h(e) + Hm-1) - ( ~;) h(c)
the definition (m;I) = 0.
follows, since

¢ ¢
)} (m) h(c) = h(c)
m=c

c _ ,cHl . .
() = () by (447

ons (4.13) can be rewritten in terms of the dummy

, with the subscripts £, and £, omitted, to become

a B(k-1) + (k+1) B(k), 30

a B(c-1) + a B(c) + u

0 (!—1 3’62) . (an)
O,O(C) (31,£2) = (1,0)
az By o) (L1,L2) = (0,1).

alB
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k
Multiplication of the equations by (m) and (;), respectively,

and summation give

§ (a+h+£)(h) B(R) Z a( ) B(k-1) + Z (k+1)( Yy B(R) +
k=m i =m e=m

k=m

+

(;) (aB(c)+u).

Application of Lemmas 1% and 2%, yields
+1
(atmel) o = a(p, + 0, ;= (5,00 ) + () (ap_ +u),

or

a
P = T Pt ™ e )o)+m+£()u

When £, =0, £, =0

a c
P = m Py ™ (120
c
and pg = X B(kR) = 1 by the normalising constraint.
Hence,

p1 = a(l = (Dp.).

and
al2 k am

-_— C -_—
P =BT T Pe iy T Geom) RTDeZeeeae

Equation (4.52) can easily be obtained by induction using

(4.51). Clearly, it holds for k=1 as basis.

In particular,

a© ¢ a c
- x
Pe Ter 7 Pe m=1 (), (c—m)
so that
c
a
c!
Pe "¢ m* Ec(a)
7y &=
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Since B(c) =
m = alBO,O(C) = a1Ec(a)
and
= a,E
my as C(a)

When (£;,£2) = (1,0) or (0,1) (4.50) becomes

_.a_ _ ¢ ¢ 1
P = e Py = ot P * T GOV
where
mi (21322) = (1’0)
u H

my (£,,£2) = (0,1)

c
00321322 B kio BZIsKZ(k)
B(’el ”82)

and B = m; and B = my,

(1,0) (0,1)

Therefore py = Y for both values of (£;,£5) and this leads to

k m 8 k m
Pp =¥ I (h'+'1')_ Gem? = Pe L, (k+1) e

k=1,2,..,c.
which again can be proved by induction @sing (4.55)).

In particular,

o =u % ~—""T—w(°>—p §~—a~—(c)
c m=0 (c+1)m+1 c-m C m=1 (c+1)m c-m

which becomes

' 7 1N -
o m (c+l)m+1
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c m

Therefore, division by ZO :' . Z%T, yields
m= .
m
c
I m %T
m=0 i
Dc(c+1) - T T u
2t
m=0 °
C am C am_l c am ac
mot mt = AL DT T 20 W T e

and therefore

]

Pe = c+1—a+aEC(a) -
That is
= M3
Bl,O(c) c+1l-a+m

_ __mp
By.1(®) = Gt

which give v;, v, and cov as in the Riordan method.
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4.5 A direct solution of the moment equations

The overflow means and variances can be obtained directly from

the moment equations (4.13), without the application of any

further transformation.

When £, = £, = 0, (4.13b) can be rewritten as

aB(c-1) = cB(c)

or

' c-1

c (e-D7Y

(g]

B(c-1) =

B(c)

o

and B(c-2), B(c-3),
(4.13a), to give

m

B(m) = % 2 B(e).

o8]

This, again, can be proved by induction.

(4.60) holds for c¢ and c-1.

.. can be obtained recursively using

Since

Assuming the result for m2k, for m=k (4.13a) can be written,

k
k a
a BT

B(k-1) = B(k) - Ségll B(k+1) +-§ B(k)
k+1
_ ot a__ ktl _a
=B Gr- T T

o))

as required.

c
Since X B

(m) =1
m=0 00
C
a
c!
BO,O(C) = m - Ec(a).

y &_

m=0 M-

61.
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When (£,,£5,) = (1,0) or (0,1) (4.13a) becomes
a(B(m) - B(m-1) = (m+1)(B(m+l) - B(m)) m=0,1,..,(c-1).

If the differences Am are defined by

>
[l

B(m) - B(m-1) m=1,2,..,c
Ay = B(0). (4.62)

Then

a

Am+1 - m+1 Am

which implies

A =224, (4.63)

c c am
B(c) = & A =A I —
mo M meo M
Therefore
B
By = 2Ll (4.64)
LIy
m=0 m'

The boundary condition (4.13b) becomes

(c+1)B(c) - aB(c) aB(c-1) + u -~ aB(c)

1}
=

(c+1-a)B(c) + aAC

But, by (4.63) and (4.64),

c

aAc = a %T Ay = a Ec(a) B(c),



AET

=

and therefore

63.

— H
B(e) = e
that is,
- I
Bl,O(c) c+l-a+m
- — 2
By,1(®) = e es652

Equations (4.61) and (4.65) lead to the required expressions

for m,, v, and cov.
i i

Both this direct solution and the binomial transformation
technique of section 4.4 could have been applied to Riordan's
original model, which is in fact a simplification of the

model discussed in this chapter (that is a; = a and a, = 0).
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4.6 Generalisation to more than two streams

When more than two independent Poisson streams are offered to
a common link (figure 4.2), the formulas for the overflow
statistics can be obtained by straightforward generalisations
of (4.36). Each stream has an independent Poisson arrival
rate, with mean ai; i=1,2,..,r, and the other assumptions

of Section 2.1 apply.

The streams may be partitioned into two parts, one
containing a single stream and the second containing the
others. 1If the single stream is the ith, then the other
streams may be combined into a single stream which will have

a Poisson arrival rate, independent of stream i, with mean

r
ak = T a, (4.66)
: o5=1 1
: j#i
’ The total arrival rate a will be
T
a= X a, =a,_ + a%.
j=1 J 1
The link is therefore offered two independent Poisson streams
and equations (4.36) are valid. Hence
mi = a, Ec(a) (4.67a)
4
Vi = mi (1 - mi b = m) (4.67b)
where
r
' m= X m, =akE (a)
Ii. 1=1 c
; and
{
i 2
A = m* (-
: Covl,l* ml( n c+1—a+m)
:‘j.‘ r ai
% = ¥ m, (-m, + Y
j=1 3 i ct+1l-a+m
‘ j#i

= =

-



- =
- cySh
Lo

ot e e

Since
r
cov, ., = L cov_
i,1 j=1 1,]
i
a,
cov, ., =m, (-m ) ).
i,] ] 1 C+1-a+1'ﬂ

65.
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Figure 4.2 : No direct links, r input streams
(a) Network

(b) Service system
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CHAPTER 5

ANALYTIC SOLUTION OF THE GENERAL MODEL

Introduction

The first binomial transformation on the equations of state

lead to a system of equations in BK1,K2(n1’n2’m) which was
simply recursive in £; and £,. This initial transformation

is applied to the state equations in the papers by Riordan

[27], Chastang [5] and Neal [16]. They affect this
transformation by introducing the binomial moment generating
function and then after applying the appropriate multiplications
and summations, obtain the new system of equations by equating
like powers of x;, %, (the carrier variables introduced in the
definition of the generating function). Riordan and Neal then
apply a second generating function to the 'main equation' in

the new system in which the constraint on one of the parameters
has been relaxed (thus introducing artificial quantities). This
yields a differential equation which is solved in terms of a
third generating function involving the O-polynomials. Equating
like powers of the appropriate carrier variables lead to equations
relating the moments to the O-polynomials which involve a
certain number of unknown variables (introduced in a general
Taylor series expansion in Neal's paper). Fortunately, the
number of these unknowns is identical to the number of boundary
equations and they can be found uniquely. For Riordan's model,
there is only one unknown and the solution follows straightforwardly
using properties of the O-polynomials. Neal finds it necessary
to introduce only three more generating functions in order to
obtain his result, which effectively reduces the order of the
system, by a factor of (c+l). He then solves the reduced system

recursively.

Chastang, after the initial binomial transformation, simply sums
the equations for which one parameter is at its upper limit, over
other parameter. He deletes several terms which he claims are
comparatively small and obtains an equation similar to the

simple overflow case, which he had solved in the earlier part

of the paper. He then postulates that a solution analogous to

the solution of the simple case will be an approximate solution

67.



to the two overflow case. He admits, however, that this is

not as good as the equivalent random approximation.

It was shown in chapter 4 that the simple model could be

solved without the introduction of generating functions or
artifidal variables which are implicitly introduced by relaxing
the constraint on m. A succession of these transformatioms

can be applied to equation (2.9) to reduce the system from

quadratic recursive to linear recursive in n;, 1, and m.
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5.2 Simplification of the model by binomial transformation

The binomial transformation of (2.9) with respect to m

givesa system involving the quantities

k

C
em)KI)KZ(nl,WZ) - kim(m) BEI,EZ(HI’HZ,h)-

69.

The new system is obtained by appropriate multiplications by

(k) or (;) and summation, and simplified using lemmas 1%
m

2%, Abbreviations similar to those applied to BK ) (m

1,142

will be used. Equations (2.9a) and (2.9e) become,

for ny < d;, no, < da,

(atn+tm+£)6 = a; 8(n-1,) + a» 6(,ns-1)
+ (ﬂ1+1)e(ﬂl+l,) + (H2+1)e(,ﬂ2+1).

(2.9b) and (2.9f) >

for n; = d;, np, < dsp,

(atn+m+L)0 = a; 6(n1-1,) + az 8(,n2-1) + (na+1)0(,n2+1)

)

+a; 06 +a; 6 1

m=-1,, a1 (

(&
+ al(m) ec,£1—1,£2

(2.9¢) and (2.9g) ~

for na < dl, ny, = dz,

(atn+ml)0 = a; 6(ny-1,) + a, 6(,ny~-1) + (N +1)6 (1,
+ as 6 + as em_l,’ - aZ(mf
c
*a1() 8 g k-1
(2.9d) and (2.9h) -
for ny = dy, nyg = da
(atn+m+£)0 = a; 6(n1-1,) + a» 6(,n2-1)
(o]
+ab+a em_l - a(m—l) ec

+

C
(m)(al eC,Kl—l,EZ + as e

(5.1)
and
,Hz,m)
(5.2a)
0
Cy»
(5.2b)
+1,)
1)6c,,
(5.2¢)
C,zl,zz—l)

(5.24)



A further binomial transformation, this time with respect to

na, gives a system of equations in
d, i
T . n = Z B ) (n | (5-3)
n2,m321,£2( 1) j=n2(”2) my£y,L2 1,3)

(5.2a) and (5.2c) -+

for ny; < dy

(atnHmH)T = a3 T(ny-1) + (ny+1)m(ny+1)
ds
+ az [m + ﬂnz—l,,, - (nz—l) Wdz,,’
+ 42y (o - (Sym + ) }
() d2,m_1” m-1 dZsCas m d29c’£2_1
(5.4a)
(5.2b) and (5.2d ~»
for n, = d;s
(atn+HmL)m = a; m(n,~-1)
c c
tar w7 e, W -1,
d;
T az L ﬂn2_1s,, (n2_1)ﬁd2,m_19’
d2 [ (&
* (nZ){ﬂdZ’m—lss (m—l)ﬂdZ,Csa N (m)ﬂdZ:c’KZ_l}]'
(5.4b)
Finally, a binomial transformation with respect to n,; gives
an equation in
d, i
= X m i). 5.5
p”ls”ZsmaﬂlaKZ i=n1 (nl) n23m9£1,£2(1) ( )
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(5.4a) and (5.4b) >

d;

(atntm+l)p = a,lp + pnl—l,,,, - (nl—l)pdh,,,
+ (ii) {pdl,m—l,, - (mfl) Pdr,e,,
+ (;)pd1,c,£1—1,}]
+ a,lp + ® po-1,,, (ylc:i]_) P ds,,,
+(ﬂ§){p,d2,m_1,, LI
+ (;)p,dz,c,ﬂz-l}]’ -

which may be written as

aj
nHmL

0 Lp

n19n2’m,£1’£2 nl_lan2,m9£1:£2

dy
+ (nl) ¢n2,m,£1,£2]

az
n+m+L

+

pn1,n2—1,m,£1,£2 -

d;
(nz) lpy"l9"1"6’1”@’2]

where
¢ =p - (e
na,m,Ly,42 di,he,m-1,21,42 'm-1""dy,h2,c,£1,£
c
* (m) pdlan,cazl_lazz
and
- _ c
lle1,m9£1”e2 - pnlst’m_lazl,KZ (m_l)

c .
M (m) pnlsd29c,£19£2_l.

pnlstsCSKI,ZZ

d;

(le-l)pdl SN2 ,mLy L

do
Nno—

( 1)p

ni,dz,m,£1,£2

(5.

+

+

.6)

7)
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This equation could, in fact, have been obtained directly from
the state equations (2.9) via a single penta-variate binomial
transformation, since
d d c
1 2 k

o) 0 i i k 1 kz . .
P kR (GG GG,k k.

0 =
ﬂl,nz,m,zlaKZ i=n, j=na k=m k1=£1 h2=£2

(5.8)
The use of four transformations was simply for convenience.

The two equivalent systems, described by (2.9) and (5.7)
respectively may be compared using the 'blocks' notation of
Appendix A. For fixed £;, £; the general element le’lz(nl,nz,m)
may be considered as a unit cube inside the block which contains
(d1+1) (d2+1) (c+1) such cubes. This cube is defined, according
to (2.9),in terms of the six blocks which surround it. (Figure
5.1) The general element pnl,nz,m,£1,£2 can be defined in

terms of the two adjacent blocks which precede it in the m level
of blocks, the two blocks on the faces furtherest from the axis
on the same level, the two blocks immediately below these and
the two blocks above these on the top face. (Figure 5.2) By
solving (5.7) recursively it is possible to obtain an expression
defining, for fixed £; and £, any cube in terms of the cubes
along the two faces corresponding to n; = d; and Ny = dp, in

the m, m-1 and ¢ levels (figure 5.3). The two shaded cubes
correspond to the values of p required to calculate the overflow

statistics, namely,

= I B dq,n2,
Pd1,0,c,21,L, My=0 21,32( 1:12,¢)

and
d;
po,dz,c,zl,ﬂz = nf=o le,zz(nladZ,c), (5-9)

for (£;,4,) = (0,0), (0,1) and (1,0) and so on.



Equation (5.7) also contains some terms which do not correspond
to any cubes in the block. These terms will be known constants
if equation (5.7) is solved for (£;,£;) such that £=0,1,2,....

successively.

The equation reduces to the identity 0=0 when n;=n,=m=£,=£,=0,
Howeyer, 00,0,0’0’0 is simply the sum of all the state
probabilities (by 5.8) and hence

£6,0,0,0,0

is the starting point of the recursion.

(5.10)
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na

Figure 5.1

: Blocks used to calculate B (ny,n, ,m
Ly,L,
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ny

Figure 5.2

: Blocks used to calculate p

ny,ny ,m"el 91—2
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<

na

nm

Figure 5.3 : Alternate set of blocks for calculating

pV’-l N2 ’m,’el 9’62 :
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5.3 Reduction of the order of the system of equations

The following formula for pn1 My m can be established for fixed

£, and £, (with these subscripts omitted)

o R TV . TN SIS N
Ni,M2,M -0 4=0 (n+m+£)i+1+n2_j ni-i i j,m

N2 a{ll—i azj+1 d, ni-i+j
* 5o 520 et G2 € g D Vim
i=0 j=0 ni-itj+l 127 ) .

ny no i na-j
(1-8° ) 5§ -—3L _a ( 4 )(1+1+”2 Iy p

n1"i=1 j=0 (Vt+m+1’_)i+n2_j ni- Pay,j.m
S0y 5 g 2,0 2y (22 (i,
n2" 520 j=1 (n+m+£)n1—i+j na—j j+1 i,dr,m
form+ £ >0 (5.11)
and
alVll anlz

Pry,np,0,0,0 ~ my!  mp!

0 2 a11 aznz—J d1 1+1+n2 J
(1=, ) z I 2 (" .( )e

dl,j,0,0,0

0 M2 alnl—l aZJ d) Nny— 1+j+l
(1-§° ) I & FH—=—( ") (

)0,
N2"3=0 4=0 (n)n1-i+j N2=j i,d2,0,0,0

I

(5.12)

The two (1-8) terms are included to avoid difficulties with
summations from 1 to 0, since, when ni=0, the corresponding
sum is no longer present in the formula. The validity of this

formula will be proved inductively.
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For m+ £ > 0, ny =0, n, =0, (5.11) becomes
- a1 _az
pQ,O,m m4-£. ¢0 m m+£ lpo,m (5.13)
which agrees with (5.7) when n; =n, =0, m + £ > 0,
When n, = 0, n; > 0, (5.7) becomes
_ar . d, d
= © +
pnl,o,m n1+m+£ Lo n1—1,0,m (nl—l) pd1,0,m (nl) ¢0,m]
2y (5.14)

myHntl g ,m

Substitution for p » using (5.11), yields

n,-1,0,m
-1 i+l
a

- a1 1
pnl,O,m ny-Hn+L iEg (n1+m+=€—l)i+1 (n1 1- 1) ¢0 m
ni-1 nl—l—i
+ aj 5 aj az w
nyHml 429 (nHmel-1) i,m
ni-1i
ni-1 i
_ 0 ay aj d1
(1~ 6”1 1) ny+HHL izl (n1+m+£—l)i (nl-l—i) pdl,O,m
" -¢ 91 ) + G o
n1+m+£ n,-1’ Pa, ,0,m 0, m
az
* nyH+-L lpnl,m
n it+l)+1
_ 1 al(le ) ( dl ) ¢
41=1 O Gy M EHDT TOm
al d)
T iy 1 (nl) ¢O,m
ni-1 ny—-1i
+ % aj 11 az w.

i=0 (n1+m+£)n1_



ni-r,
a

v

(N H+L) ny,m

ny-n1+1

i+l
a

%
i+1=2 (mtmel) .

ni

- (1-8} ) (

a!

d;
(n1+m+£)1 pd],o m’

ni-1

= (

ni—

d;
(i+1)

which agrees with (5.11) evaluated at (n,,0,m).

) P4, .0,m

Hence, by
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(5.15)

induction, (5.11) is wvalid for {0<ni1<dy, n,=0, O<m<c, m+l1+L,>0}

and, by a similar induction, for {n,=0, 0=<n,=<d,,

For nl > 0, nz > 0,

. ) ni—l n§ a11+2 aznz-j dy )(1+n2—3)¢
niy,na,m i=0 j=0 (n+m+£)i+2+n2—j n1-i-1
\ né—l n; alnl—i a2j+1 ( dz )(”1 1+J 1) .
ni-1n i+l n2-j . ]
- (1—61 ) % % a1 az s ( dl )(1+n2—3) 0
n’ i=0 3=0 (n+m+£)i+n2_j+1 ni-i-1"" i+l
B Vil PLR TN
i=0 j=1 (n+m+£)m_i+j no—-j i,dy,m
T -, (- a8y
n-HHL (nl 1) pdl,nz,m n+Hm+-L (nl) ¢n2,m
na no -1 i+l no—j d; i+ngp-j-1
+ L I (aim+£ 22 G- C 17 ) ¥ym
i=0  §=0 WHMO), 14 s
.\ né H;—l alﬂl—j a2j+2 ( d, (nl—i+j) .
. . n —i- ; |
i=0 j=0 ¢ +m+£)n1—i+j+2 ne=j=1"" J
B T Y T
i=0 j=0 (n-Hn+ )i+n ny-i i+l di,j,m
_ (1—61 ) ﬂ% HE—I alnl—l azq+1 ( ds )(H1—i+j+1
n2” j=g 4=1 (ML) na-j-1 3+1

ny-it+j+l

substitution of (5.11) in (5.7) yields,

Osms<c, mHLy+£,>0}.

dy

)p

»3-m

i,d2,m



_ay az dz
+-—_
nHn+L (nz 1) pﬂl,dz,m ntml (”2) w”l m

s

The terms in ¢j,m are
" 2
n% n; 31} L aznz 1 ( d, )(1 1+n2 J) ¢
1 LD (L) | . ni1-i
i=1 j=0 i+1H,-j
ny na-1 i+l Nao—j
+ % ; ai as > J ( d, )(1+n2 j- 1) o
i=0 J =0 (VL'H’YH‘/@) +]_+V[2 J y’.l i J,m

ap d;
+ nHm-L (nl) ¢n2,m

Use of the identity (?Z}) + (x;l) - (;‘) in (5.17), yields

ni na-1 i+l Nno=j . .
. L (ni$+£) = (ndii)(1+?2 Do, m
i=1 j=0 i+14n,-9 ° Np
n, i+l .
d i-1
+ 7 el - 1
% n+m+£ ( )¢n2,m i=1 (n+m)i+1 (Hl—i)(i—l) ¢d2,m

n No=1
+ § 2y ap 77 GH "™ 6
No-no-1

The last term uses the fact ( 0 ) =0, Hence (5.18)
simplifies to,

n i+ No—1 . .

P T AL e a4 ey

1=0 =0 (u+m+£)i+1+ﬂ2__J niy-i i j,m

as required.

The terms in ¢y, , p .
wlﬁm dl:J’m

required results and hence (5.11) is valid for all values

{0<n;<d;, Os<np<d,, O<msc, m+£>0}. When m=£,=£,=0, (5.12) can

and pi,dz,m also simplify to the

be proved by a similar induction starting with po 0.0.0.0 = 1.
> 3 ’ b4

Equations (5.11) and (5.12) define the general term Prs nam
1572
[Zandp

in terms of pdl’ d, .k for k=m, m~1 and c.

Ny, Ny,
and p are defined in terms of

In particular, b o ol
1,42,

pdl N,m
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b and p b and (since the two terms needed for

pdlsH'Z’ n‘l’dz’
calculation of the overflow statistics are pdl,O,c and pO,dz,c)

only these terms need be evaluated.

Thus the size of the system of equations needed to be solved

has been reduced from (d;+1) (d2+41) (c+1) to (di+ds+1) (c+1).

If x

X000, is defined by

s I

pdl,nz,m,£1,£2 ’ (na+1)+(do+1) (m+1)

21,80

y T

ny,dy,mLy,4, ° (do+1) (c+1)+(n+1)+(d1+1) (M+1)

then (5.11) and (5.12) may be written

e, A£1,ﬂz 221,42 * ££1,£2

for some matrix A and vector f . As before £ is
£1,4£2 AW S ~L1,42

a function of Xﬁl—l,ﬂz and le,ﬂz_l. Hence these equations

in p can be solved using the S.0.R. algorithm described in

Chapter 3. The size of the matrices and vectors has been

reduced, but AK 2 for this system is no longer sparse.
1542

When ¢=0, £=0 equation (5.12) applies, and

d d i
a) d L aj d) )

= = I
$d41,0,0,0,0 ~ TdiT T 42; (@), ‘di-1’ P41,0,0,0,0

which is analogous to (4.53). Hence

= E d
P4,,0,0,0,0 ~ Fay 4V
and
my = My = a1Ea (d1) as required.
1
Similarly

mp = a, Eaz(dz).

81.

(5.20)

(5.21)

(5.22)



When £1=1, £2=0, by (5.11)

d; i+1 4
o = I Sl— (%l
dlsOsO’I:O i=0 (dl)i+1 dl—i d,,0,0,0,0

d;

a1i d;
- iEl (dl)i (dl_i) pdlso’oslso

which is similar to (4.57). Hence

a .
1 ), as required,

it V=m0 - m - e

and similarly v; = V,.
Thus the model reduces to give known results in the limiting

case ¢=0. A similar reduction will occur when d;=d,=0 to give

results agreeing with those obtained in Chapter 4.
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CHAPTER 6

THE ACCURACY OF SOME APPROXIMATE FORMULAS

Introduction
Several researchers in the field of teletraffic theory have

suggested approximate formulas for determining the individual

overflow means and variances for the network under consideration.

These have generally been formulas for partitioning the total
overflow mean and variance into the components corresponding
to each stream and the total overflow traffic is also
obtained by an approximation, such as the Equivalent Random

Method.

Although some formulas give approximations for the ratio of

the means of two streams (mi:m,) it is convenient for comparison
of accuracy to consider the corresponding formula for the ratio
of the ith stream to the total mean (mi:m). The symbol Pm,i

will be used to denote the 'proportion of the total mean

belonging to the ith stream', that is

(and similar abbreviations will be used to denote proportions of

other parameters).

Formulas for Pm,' have been suggested by Olsson and Wallstrom
and for Pv,i by Harris. The accuracy of these approximations
was investigated, along with some simple approximations which
have been used by traffic engineers. Since these formulas are
often used to partition the total overflow mean and variance as
calculated by the equivalent random method, the accuracy of

this method is also discussed.
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Generation of test data

A large amount of data was generated by the computer program of

the S.0.R. algorithm. The convergence criterion was set at 107°
and since at most four decimal places will be considered for all
results in this chapter, the data may be considered to be 'exact'

at this level of significance.

The networks considered corresponded to a service system in which
the number of secondary group servers, c¢, and the mean of the
total traffic offered, M, were fixed. For each value of (M,c),
30 different values of primary group servers, (d,,d,), were
considered. The arrival rates (a;,as) were chosen such that

the overflow from the two primary groups had a total mean M and
had fixed ratios corresponding to five values of PM,l' Three
values of ¢ (c=2,5,8) and five values of M (M=2,4,8,16,32) were
chosen to give a total of 3 X 5 X 30 x 5 = 2,250 different
networks. The values of (d;,d;) used were (2,3), (2,4), ...,
(2,10), (5,6), ..., (5,10), (8,9), (8,10) and (3,2), (4,2), ...,

(10,2), (6,5), ..., (10,5), (9,8), (10,8) and P_ . had the
M,1

1 3 1 L L ’

2> 8 & 8 16

values

Since each value of (M,c) has 150 different values of (PM’I,dl,dz),
the effect on the overflow means and variances of small changes
in the input parameters can be investigated. This sensitivity
analysis has been notably lacking in other papers which compare

approximate solutions to computational solutions.

Kibble [ 12 ], for example, in his comparison of the means,
calculated by the equivalent random method and the 'exact'
solution to the state equations, considered fewer than 200
networks and these were spread over a large range of values of

(ay,a2,d1,d2,c). The results obtained gave little insight into

the relationship between the overflow mean and the input parameters.

Kibble was limited by the power of the computer used which he says
took 7m.sec. to perform each row operation. Computer technology
has improved considerably since 1968 and the same operation

would take less than 150 p sec. on the machine used by the author,
a CDC Cyber 173 (that is, about 50 times faster than Kibble's
computer). Even so, the data generated required hours of
computing time and this indicates the impracticability of using
computational solutions on an actual network which may have

dozens or even hundreds of subnetworks of the type investigated

in this thesis,.
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All results are proportions and have values between 0 and 1,

and since

the absolute errors in ﬁx,l and ﬁx,z arf identical, 1If, for
example, P .2 N .9Athen a 10%Z error in Px,2 would correspond
to a 90% error in Px,l and hence the relative error is not a
particularly useful criterion for measuring the accuracy of
these formulas, Hence the worst absolute difference between
the value calculated by the formula and the exact solutiomn is
used as a basis for comparison of the formulas. The results
are summarised in tables which give this 'worst error' over

the 150 results corresponding to each value of M and c.

The various formulas are represented graphically for the case

M=8, ¢=8, in Appendix C.
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The accuracy of the Equivalent Random Method

The equivalent random method (E.R.M.) has, in the words of
Prof. Wallstrom [ 26 ], 'found world-wide application for the
planning of alternative routing networks'. As mentioned in
the previous section, Kibble [ 12 ] compared the E.R.M. with
results from an iterative solution of the state equations.
He does not actually compare the overflow means, but the
'probability of blocking', which he does not define. It
appears that this term refers to the probability that a
call will not be served on either the primary or secondary
group (as distinct from the blocking probability B, defined
in Chapter 1, which refers to a single group only). This

would correspond to the ratios,

for the total and ith streams respectively.

Kibble first considers nmetworks in which a; = a, and d; = d,,

and the worst relative error found is 47%. When the input is

asymmetric, Kibble partitioned the overflow mean in the ratio

of the offered mean, (that is, P_ . = P .) and errors of up
m,i M,i

to 50% were found. These errors are only partially due to the

A

inaccuracy of the E.R.M. The assumption, P_ . = P . which is
m,i M,1

discussed in the next section, is also not particularly accurate.

The E.R.M. was used to calculate ﬁ, v for the data set and the
ratios % and %—were calculated. The worst values of these
ratios, for fixed M and c, are given in Table 6.1. It should
be noted, that, although all results given correspond to m>m
and ¥>v, this is not always the case. The E.R.M. does under-
estimate the values in some networks but the worst errors were
overestimates. It can be seen that the estimates tend to get
worse as M decreases and ¢ increases. These two trends both
correspond to a decrease in the %»ratio, which means the
servers are becoming less heavily loaded. In the worst case
M=2, c=8 each server is offered an average of a quarter of an
erlang of traffic. 1In such cases the total overflow traffic
has mean of the order of 1/10 erlang or less and in practical

situations this inaccuracy is not significant. There is a



ok

) _é

general trend,in all approximations suggested, for the poorest

accuracy to occur in the 'underloaded' situation. Even so,

for the cases where M2c, errors of 20-50% occur. This must
be taken into account when considering the accuracy of the
splitting formulas, since 6 decimal place accuracy in Pm or

P is hardly necessary when m and V are accurate to only

2 or 3 significant figures.
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c M fi/m e/v
1.534 1.488

1.355 1.256

2 8 1.168 1.085
16 1.069 1.016

32 1.027 1.003

1.888 1.915
I 1.554 1.470
5 1.233 1.135
16 1.085 1.026
32 1.030 1.003

2.387 2.505

1.824 1.829

8 8 1.326 1.230
16 1.105 1.039
32 1.034 1.004

i A

Table 6.1 : Worst results, E and %3 for fi and ¢ calculated

by the Equivalent Random Method.




6.4

Some simple approximations

One of the earliest methods of determining the overflow means
was to partition the total overflow mean in the ratio of the

offered mean for each stream, that is,

P =P (6.1)

as used by Kibble. This is a logical first approximation since
a large overflow mean would be caused by a large offered mean.
This is especially true when the total mean offered is greater

than the number of junctions provided (M>c).

A second simple approximation, (which is still used by the

Australian Telecommunications Commission) is
P =P _, (6.2)

the overflow mean is proportional to the offered variance. This
formula may be intuitively derived as follows. If M<c¢c and the
offered variances were zero then there would be little overflow.
The overflow is caused not by the magnitude of M, but by the
peaks (and troughs) in the arrival streams described by the
variance. Larger variances would correspond to bigger peaks

and hence larger overflows. This effect holds for M>c as well

but is less marked as M increases relative to c.

From the two intuitive arguments, it would be expected that (6.1)
would become more accurate as %-increases and (6.2) would be

M
most accurate when — was near one.
C

The two formulas were compared with the results from the iterative
solutions and are summarised in Table 6.2. The trends suggested

intuitively are confirmed by these results. Graphs of Pm ; Vs PM i
H b
and P , vs P_ are given in Appendix C.
m,1 V,1

Table 6.3 summarises the worst errors involved when P, and PVi
’1 b

are used as estimates of Pv i They both tend to overestimate
b

the value, (as indicated in the graphs in Appendix C) because of
the correlation between the overflow streams induced by the

sharing of the secondary group servers and
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i
P | == s=——uamae—s
v,1i vi+va+2cov
Since cov is largest when M; and M, are equal, this tends to
cause the largest errors in these two approximations for

P . to occur when P.. ., is near %.
v,1i M,1

(6.3)
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6.5

Olsson's conjecture

One of the few formulas available for calculating the ratio of
the means of individual overflow streams was suggested by

Dr. K.M. Olsson. Dr. Olsson has been involved in research in
teletraffic theory for many years and obtained his result

by observation of results from simulations of teletraffic
networks. This result has not been published by Olsson, but is
quite well-known from private correspondence and discussions
between Dr. Olsson and other researchers, for example, at the

International Teletraffic Congresses.

The conjecture is that the overflow means are proportional to
a combination of the offered means and variances, namely,

M2

i
m, oV, +-—
i 5 Vi

Olsson*, first considered the approximation

M.

which is equivalent to (6.2). He then added a second termvl
and foynd that this correction was not large enough. The *

(6.4)

(6.5)

term Vi-was found to be a better correction and this led to (6.4).

i

This correction term is, in fact, the inverse of a statistical

quantiEy called the coefficient of variation. It may be noted
i, ; . . ; ;

that v 1s dimensionally consistent with Vi in that both terms
i

reduce to a; when there are no primary groups. Thus m, O a,

in this case which is consistent with the results of Chapter 4.

The accuracy of Olsson's formula is summarised in Table 6.2 and

again represented graphically in Appendix C. The formula tends
. M ]

to become more inaccurate as E—gets further from 1 and is

M
especially bad when E’<1.

*This information was given to the author in a discussion with

Dr. Olsson at the 8th I.T.C., Melbourne 1976.
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Even disregarding the cases where M<c the formula has a large
error and in fact the smallest of these 'worst errors' is still
.0144, Olsson's conjecture is generally more accurate than

(6.1) for M <1 and better than (6.2) for M/.>1.
. c

One severe criticism of this formula, (and also with the two
simple approximations) is that it contains no information about

the number of servers in the secondary group.

(This formula was first introduced into Australia by Pratt [20 ]
but was incorrectly presented. This incorrect formula had been

copied by several other Australian researchers before the error

was corrected at the 8th I.T.C.)
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6.6 A formula suggested by Wallstrom

Prof. B. Wallstrom has also been doing research in this field for

many years and recently* suggested a formula for Pm i
3

Pm,i = PV,i(l_B) + B°PM, (6.6)

where B is the blocking probability on the secondary group for

the combined streams. That is

(6.7)

=i

Since m is dependent on c¢ this formula does contain information

about the number of servers in the secondary group.

It also is consistent with known results for two limiting cases.
When there are no primar roups, P. . =P , =P . and hence
p y groups, M,i v,i a,i

P = Pa i as required. When there is no secondary group,
m,i )

B=1 and (6.6) reduces to

That is, the offered and overflow streams are equal as is

required when there are no secondary servers.

It may be noted that disregarding the underloaded cases, PM i is
3

a more accurate estimate than P i when % is large and the
reverse is true when % is near,l. The blocking probability,
B, increases as E—increases and therefore Wallstrom's formula,
which is a weighted mean of P, . and P, _ gives a heavier

M,1 V,i

weighting to whichever factor is more accurate at the appropriate

value of % .

In general, Wallstrom's formula is significantly better than
Olsson's conjecture, and the two are compared in Table 6.2, A

graph of Wallstrom's formula for M=8, c=8 is given in Appendix C.

*This formula was given to the author in a discussion with

Prof. Wallstrom at the 8th I.T.C., Melbourne 1976.



c M Py P Olsson | Wallstrom
2 .0776 .0365 .0294 .0267
4 .0415 .0796 0144 .0109
2 8 .0191 . 1045 .0314 .01ll6
16 .0075 . 1090 .0330 .0082
32 .0023 .0963 L0247 .0042
. 1841 .0782 .1378 .0893
| .1015 .0175 .0510 .0208
5 8 .0483 .0768 .0130 .0204
16 ] .0178 .1002 .0245 .0188
32 .0065 .0934 .0218 .0101
2711 .1855 .2357 .1864
. 1492 .0484 .1085 .0552
8 8 .0768 L0472 .0296 .0169
16 .0305 .0898 0177 .0268
32 .0104 .0902 .0196 .0156

The worst error |Pm . Pm il for fixed M and c is given

’1 s
for each of the four approximate formulas.

Table 6.2 : Comparison of formulas for overflow means.
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Modifications of the formulas of Olsson and Wallstrom

It is unfortunate that both formulas tend to overestimate (or
underestimate) the value of Pm . for the same network. Otherwise
bl

some weighted average of the two formulas might have given a

more accurate estimate.

If Olsson's formula is considered as a corrected estimate of

PV i then the substitution of this factor for P_ ., in Wallstroms
] bl

formula could possibly lead to an improved formula.

P _ = (l-B)Px . + B P
m,i (1-B) v,i M,i
where
v, + Mi/v_
P* = 1 o .
v,i IV, +M2/V, (6.8)
J

The results of this formula are given in Table 6.3, and it can be
seen that it is only more accurate than Wallstroms result when M
is considerably larger than c. It does however, suggest that an
improved formula may be obtained by some modification of

Wallstrom's approximation.

Olssonngormula may also be modified by weighting the correction

£ L,
actor V.
1
That is,
M2
A, oV, +w., =% . (6.9)
i i Vi

The weighting factor, w, should contain some information about the
secondary group, if the new formula is to be more accurate than

Olssons result.

The formula was used, with several values of w, to estimate mi for
the cases for which exact results were known. The results in Table
6.3 give the best value of w (to 1 decimal place only), which, for
fixed ¢ and M, minimise the worst absolute error over the range

of (d;,d, and PM) considered and the value of that worst error.
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It can be seen that w depends on both M and ¢, and tends to

decrease as M decreases or c¢ increases. The modified formula
is considerably more accurate than the original approximation
and in the majority of the cases considered was better than

Wallstrom's results.



|
c M a) b) c)
2 .0522 .0093 0.4
.0257 .0107
2 8 .0113 .0099 1.8
16 .0047 .0076 1.9
32 .0018 .0085 1.9
. 1426 .0146 -0.6
4 .0649 .0067 0.2
5 8 .0262 0117 1.1
16 L0111 .0108 1.6
32 .0044 .0084 1.7
.2361 .0553 -1.1
L1124 .0128 -0.4
8 8 .0423 .0108 0.5
16 0166 .0123 1.3
32 0067 .0098 1.5
a) Substitution of Olsson's formula for P in

v,i

Wallstrom's approximation; worst absolute errors.

b) Modified Olsson's formula; worst absolute errors.

¢) Weighting factor, w, used in b).

Table 6.3 : Comparison of some modified versions of
Olsson's and Wallstrom's formulas.
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6.8 Harris's formula for the overflow variances

Until recently, little research had been undertaken into the

proportioning of overflow variance into its components (which
include covariance terms). Neal [16] derived an analytically
based recursive formula for the variances of separate streams

but this was for a different system.

This research was supported in part by a contract with the
Australian Telecommunications Commission (then part of the
Australian Post Office). The iterative solution to the
problem was first published in the Second Progress Report [19]
to the Commission. Dr. R. Harris utilised this solution and
corresponding program to generate results for many networks,
and from observation of the results found an approximate

formula.

The formula was based on some results by Descloux[ 7 ] and Lotze [15]

quoted in Neal's paper [161].

m1 = pi m
and
Vi v
E; - 1= Pi(a" . (6.10)

Harris used the formula (6.2) to estimate m, which in fact gives
p. = P_ .. (6.11)
Rearrangement of (6.10) gives

g, = v-m)+m]. 6.12
; = p;[p, (v-m)+m] (6.12)
This formula agrees with the known results when there are no

primary servers, but was found to be inaccurate in a number of

cases. Improved accuracy was obtained by a small modification

to give,
P HE
Gi = pi[(pi + (1—pi)e )Y (v-m) + m] (6.13)



99.

This modified version is however, no longer accurate for a
system with no primary group but is valid for other limiting

cases.

When there are no secondary servers, (6.13) reduces to Gi = Vi

as required and as c tends to infinity it approaches the

formula of (6.12).

The values of PV 5 calculated using this formula are summarised
?

in Table 6.4, and graphically represented in Appendix C. The
results are generally less accurate than the corresponding
estimates for the means but better overall than either of the
simple approximations for PV i Obviously, the assumption

b

P . =P . contributes appreciably to the errors.
m,i V,1i
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c M PM PV Harris
.1987 .0916 .0600
4 .1739 .0886 .0434
2 8 . 1550 .0547 .0449
16 .1324 .0394 .0465
32 . 1064 .0220 .0390
.3081 .2022 L1444
4 . 2480 .1317 .0567
5 8 .1991 . 1080 .0485
16 .1581 .0895 .0572
32 .1181 .0528 .0527
.3802 .2946 .2204
4 .2999 .1890 .0930
8 8 .2370 .1303 .0348
16 .1813 .1284 .0620
32 .1309 .0812 .0516

The worst error ﬁv,i - Pv,il for fixed M and c is

given for each of the three formulas.

Table 6.4 : Comparison of formulas for overflow variances.



CHAPTER 7

STATISTICALLY DERIVED APPROXIMATE FORMULAS

Introduction

The tables in Chapter 6 summarise the worst errors for various

approximations for Pm,i and Pv,i' Even disregarding the under-
loaded cases, in which the estimates are almost uniformly bad,

the formulas are generally not accurate to 2 decimal places.

The author hoped to utilise the large amount of data generated

by the iterative method, to obtain more accurate approximations.

This task was aided considerably by use of a graphic display
terminal, which enabled any formula which seemed likely to be
useful, to be represented visually, as a graph, in a matter of
seconds. This saved a considerable amount of time plotting
graphs by hand and also allowed obviously wrong formulas to

be rejected quickly.

The true value of the parameter, Pm,i or Pv,i’ was plotted in
the x direction and the estimates in the y direction. Both
values are between 0 and 1 and a good formula would be one
which gives points near to the diagonal line y=x. Graphs of
the approximate formulas of Chapter 6 are given, in this form,

in Appendix C.
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2

Simple linear regression approximation

(The remarks made in this section about the overflow means are
also applicable to the variances, and the i subscript will be

omitted from P .)
x,1i

The graph of PMvs Pm consists of a number of sets of points
which are line segments parallel to the x axis (see Appendix C).
This occurs because of the way the data was generated, namely

a fixed value of M and five values of PM,l each corresponding
to 30 values of a; and a,. Hence each set corresponds to 30

points which are constant with respect to the y direction.

The corresponding points in a graph of Pv’ivs Pm,i are also
nearly linear but not parallel to the x axis. If the 30

points are represented by a staight line then, for each set,
the supposition of the two graphs is similar to the diagram

(figure 7.1).

If the position and slope of the EV . line were known then a
b
linear combination of PV and PM could be obtained which is
equivalent to P_ ..
m,i

If the PV line passes through the point (PM, PM + B) and has
slope 0 then,

(PV - PM) = e(Pm - PM) + R (7.1)
or

Pm = PM + a(PM - PV + B) (7.2)
where
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Figure 7.1 : Section of graphs of PM and EV against Pm.

The accuracy of this formula is limited by the accuracy of the
linear approximation of RVVS Pm, and by the accuracy of the
estimates of o and B. The assumption of linearity is good
except in the underloaded cases, and the estimates of o and R

may be obtained using simple linear regression (S.L.R.).

If a set of data {(xi,yi); i=1,n} is believed to satisfy a

linear relationship of the form,
yi =a+b xi,

then the parameters a and b may be estimated by

n

X X

4= 31 © =
n

(7.3)

(7.4)
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and

I t~8

(x,=%) (y,=y)

o>
It

(7.5)

[[InsR=)

(x,-x)2
1 1

i
The estimate b gives the slope of the line, passing through the
point (x,y) which most closely fits the data. A close fit is
one in which the sums of the squares of the distances between
the actual points and the line is minimised, (that is,
n
z

(y.-9.)? is minimised).
i=1 11

A program was written to estimate © (and hence &) and B for

the Pv-vst line segments.

This was used to calculate 0 and 3 and hence ﬁm for the test data
and this estimate was compared with the exact results. The
results summarised in Table 7.1 indicate the accuracy of this
approach. Apart from two underloaded cases the worst errors

are less than .0l and even in the two bad cases, the results

are much more accurate than any other approximation. In general,
the S.L.R. approximation is between 3 and 10 times better than

the formula of Wallstrom.

A similar S.L.R. approximation was obtained for Pv which is
summarised in Table 7.2. This is a significant improvement
over Harris's formula, being between 7 and 20 times more

accurate,
The two proportions have the same formula,
= + P - .
Px = Py otx( M PV+Bx)’ -9

where X is either m or v, Of course o and av,and B and B_,
m m v

may be quite different for the same network.
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Estimation of o and R.

It is, of course, impractical to get 30 points for every value
of M and c that might be needed and it was hoped that formulas
could be found for o and B, in terms of M, PM and c¢. The

values of o and B were calculated for the data available and
graphs were plotted to give a visualisation of the relationships
between the parameters. Although general trends were noted and
the curves appeared to belong to the same families, no simple
functions could be found which were consistently accurate for

the whole range of PM, M and c*,.

It seemed desirable, then to generate some tables which would
give the values of o and B for a wide range of PM, M and c,
which by interpolation and extrapolation would allow calculation
of a and B for intermediate values of the parameters. Again,
there were practical objections to using 30 points to get each
estimate and it was decided to check whether the PV lines could

be accurately generated by only two points.

Initially the values of the S.L.R. approximations for the data
were calculated with o and B, 10% more and 10% less then the
'correct values'. The errors were of course greater than the
correct S.L.R. approximations, but were twice as good as
Wallstrom's results for the mean, and for the variances at least
twice as accurate as the formula of Harris. Hence, if a and R
could be estimated to 10% accuracy the S.L.R. formula would be
more accurate than the other approximations. After many
different pairs of points (d;,d;) were considered, it was

found that (0,10) and (10,0) give estimates of o and B to an
accuracy of better than 10%. These values were used to generate
the tables in Appendix D. Nine values of c; (c=2,4,6,8,10,15,20,

25 and 30) were chosen and for each value, seven values of M

and five values of PM were used.

* - _ 1 _ - 132 3¢ -40M
eg. Bm (PM LB (1 4(PM J)) . In( 8).e . etec. was found

to be reasonably accurate but hardly simple.)



c M S.L.R (1) (2)
.0032 .0093 .0038
4 .0028 .0060 .0035
2 8 .0016 .0030 .0021
16 .0010 L0012 .0013
32 .0005 .0006 .0006
.0125 .0248 .0248
.0020 .0107 .0195
5 8 .0029 .0059 .0055
16 .0021 .0026 .0024
32 .0011 .0013 .0013
.0330 L0475 .0475
.0074 .0213 .0168
8 8 .0024 .0082 .0071
16 .0027 .0037 .0035
32 .0016 .0018 .0018

(1) 10% error in o, worst results.

(2) 10% error in B, worst results.

Table 7.1 :

S.L.R. approximation for Pm'
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¢ M S.L.R. (1) 2) |
i .0070 .0208 .0126
4 .0048 | .0184 .0105
2 .0023 | .0165 .0065
16 .0027 | .0138 .0056
32 .0017 .0105 .0032
' .0191 .0329 .0258
4 .0062 | .0262 .0159
5 .0032 | .0212 .0122
16 .0045 .0168 .0112
32 .0035 | .0119 .0074
i 2 .0412 | .0599 .0502
1 .0118 | .0360 .0210
8 8 .0039 .0247 .0157
16 .0047 .0191 0144
32 .0045 | .0134 .0106

(1) 10% error in O, worst results.

(2) 10% error in B, worst results.

Table 7.2 :

L -

N e R A

el
t*ﬂ%Jgf b

S.L.R. Approximation for PV.
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7.4

Use and accuracy of the tables

The values of o and B in the tables are given to only three
decimal places. The third significant figure, if present,
should be treated with suspicion as it is probably inaccurate.
However, since even a 10%7 fit is an improvement, this is not
particularly worrisome. Generally, linear interpolation between
successive values of M, PM and ¢ will be sufficiently accurate

and :
for all parameters am, Bm, av n BV

The extension of the approximations to more than 2 streams may
be achieved by a method similar to section (4.6).
1) Partition the 'streams' into two groups, the ith
stream and stream i*, formed by the combination
of the other streams.
2) Calculate Pm , and Pv . as before.

’ b

3) Repeat 1) and 2) for all values of 1.

The accuracy of this extension is difficult to evaluate but is
probably comparable with similar extensions of the other

approximations.

An example of calculation of means and variances using the tables
is given below for a two stream case; with (a;,aj;,d;,d;,c) =
(5,9,2,2,7). For this case the approximations for Pm and Pv

are all accurate to 2 decimal places.
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Example

ay <= 5 as = 9

dy = 2 d, =7

c =5

M; = 3.378 My = 3.254

Vy = 4.220 Vo = 5.657

M = 6.632 V =9.877
PM,l = .509 Pyg " 491
Py = 427 PV,Z = .573

ml . 1.349 my = 1.543

vy = 2.071 vy = 2.877
cov = ,615

m = 2.892 v =6,178
Pm’l = 466 Buo = .534
P,y " .335 Pv’z = 466
oam’l = -.539
Bm,i = -.001
ocv’l = - ,888 oav’z = -.898
sv,l = .108 Bv,z = .108
ﬁm [ = -509 - .539 (.509 - .427 + .001)

= 464
Pm’z = .536
ﬁv [ = 509 - .888 (.509 - .427 + .108)
= .340

P =  .491 - .898 (.491 - .573 + .108)
v,2

= .468
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CHAPTER 8

CONCLUSION

The purpose of this thesis was to investigate a telephone network in which
two independent overflow streams of traffic were offered to a common link.
This network has been modelled as a system of service stages with two
primary groups and one secondary group. Random traffic is offered to

the primary groups and the overflow from these is offered to the

secondary group. Correlation is induced between the two overflow

streams from the link due to the sharing of the service facilities by

the two streams. In order to understand the effect of sharing a common
link, it was desirable to calculate the means and variances of the two
overflow streams and the covariance between them. The objective of

the research was to investigate methods of calculating these statistics.

The state equations of the system were derived and binomial transformations
were applied to these equations in terms of the binomial moments of £,

and £, to a finite, linear recursive, system.

Analogous transformations were made to the equations of state in papers

by Riordan [27], Chastang [4] and Neal [16]. These three researchers all
used a binomial moment generating function which involved the introduction
of carrier variables. The new system was then found, after suitable
multiplications and summations, by equating coefficients of like powers

of these carrier variables.

The transformation in this thesis was effected without the use of
generating functioms, thus avoiding the introduction of the carrier
variables. Two lemmas were proved which were convenient in the
simplification of the transformation. This improved method could have

been used in the papers described above.

In the third chapter, the system of equations was expressed as a single
matrix equation. The highly structured form of the coefficient matrix
was analysed, and suggested that a solution could be obtained iteratively.
Two iterative techniques were discussed; the Jacobi and Gaus-Seidel
methods. Although Gaus-Seidel iteration was better, it was shown that
this could be improved by the acceleration technique known as successive
over-relaxation (S.0.R.). An improved S.0.R. method with a variable

S.0.R. parameter, was also discussed.



A computer program of the S.0.R. method was written and used to find the
solution to a large number of networks. Some features of this program,

including efficient use of storage, were discussed.

A simple system with no primary groups was considered in the next
chapter. The state equations were again derived and a binomial trans-
formation applied. The system of binomial moment equations was solved

using the classical technique of Riordan [27], involving relaxing a

constraint on the main equation to allow one parameter to go to infinity.

This implicitly introduced an infinite number of artificial variables
into the system. The extended system was solved by using a generating
function, B8(t). A differential equation in B was obtained and solved
in terms of O-polynomials. The boundary condition (or normalising
condition for the case £; = £, = 0) was used to obtain a unique
solution. The means and variances thus derived, were expressed in

terms of the Erlang loss formula.

An improved method of solving this system using a second binomial
transformation was presented. This method does not use generating
functions and does not require the relaxation of any constraints.
Thus the introduction of artificial variables was avoided.
Generalisations of the two lemmas were given which facilitated this

transformation.

It was also shown that the system of equations could be solved directly,
without any further transformations being applied. Both these
techniques could have been used to solve Riordan's original problem
which was a special, simple case of the model considered. The

solution was generalised to allow more than two random streams to be
offered to the common link. The solution also allowed calculation

of higher moments, although this was not of primary interest to the

research.

In the following chapter, an extension of the binomial transformation
method was applied to the general model. The system of eight equations,
which is quadratic recursive in #u;, #, and m was replaced by a single
equation which was linear recursive in the variables, by three

successive binomial transformations. This system was of order
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using analytic techniques. The reduced problem can also be solved by

iterative techniques such as the S.0.R. method.

Approximate formulas for partitioning the total overflow mean into
the means of individual streams have been suggested by Olsson and
Wallstrom, and a similar formula for the variances by Harris.

These formulas, together with some simple partitioning formulas

were investigated, in chapter six, using data corresponding to
solutions of over 2,000 networks which was calculated by the S.0.R.
method. The absolute errors of each of these formulas were evaluated
and their accuracy compared. The errors in estimates calculated by
Olsson's formula were generally greater than those by Wallstrom's
formula. The worst results, for fixed c¢ and M, were generally between
.01 and .02 for Wallstrom's formula although in underloaded cases
they were as high as .05 to .18. Harris's formula generally had
worst errors of the order .03 - .06 and once again was even less

accurate in underloaded situations.

Graphs in which the estimated value of the relevant parameter was
plotted against the true value were produced for each formula,
consisting of 150 points which corresponded to networks in which
the total mean of the traffic offered to the.common link was 8
erlangs and the link had 8 junctions. These enabled visual
comparisons between the formulas to be made. Modifications to
the formulas are suggested, one of which gives a significant

improvement to Olsson's result, with worst error about .0l.

Since these formula are often used to partition total overflow means
and variances which are calculated by the equivalent random method,
the accuracy of this approximation was also investigated. There were
up to 50% errors in the results calculated by the E.R.M. for cases
where % = 1 although the approximation improved as %-increased.

In the underloaded cases the estimates were up to 2! times the
correct values. The actual size of the parameters in these cases
were very small and this large relative error corresponded to an

absolute error of the order of .1 erlang.



Finally, an approximate solution based on simple linear regression was
derived. This method relied on the assumption that, for fixed values
of the means of the offered streams, the proprotions of the mean and
variance of the overflow for each stream, have a linear relationship
with the proportion of the offered variance of the corresponding
stream. This assumption gave a good approximation to reality for
networks in which the average erlang per server ratio was not
significantly less than one, becoming a better approximation as this
ratio increased. Simple linear regression was used to estimate the
slope and position of the lines best approximating these relationships,
and from these approximate formulas for the proportions of the mean
and variances were derived. The formulas involve two parameters and
Appendix D contains tables which allow these parameters to be
calculated. The S.L.R. approximations, except for the underloaded
cases where they were still 6 times more accurate than the other
approximations, generally gave errors significantly better than .01,
and even with a 107 error in one of the parameters the estimates

were still twice as accurate as Wallstrom's formula for the means

and Harris's for the variances.

This thesis has investigated the problem under consideration from three
approaches; analytic, computational and approximate. Analytic techniques
have been used to solve the model explicitly for a special case and

to reduce the order of the problem in the general model. A technique
of performing binomial transformations without the introduction of
generating functions was employed, which could be used in several

other models considered by other authors. A computational solution

to the model was obtained and incorporated into a computer program.
This program was used to generate a large amount of data which led

to an investigation into the accuracy of some approximate solutions.

An approximate solution which is based on simple linear regression

was also developed and tables for calculating the solution by this

method were provided.
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APPENDIX A

Derivation of the Sum of the Moment Equations

The alternate definition of B(E £,)° equation (2.11), is obtained by
1,42

summing the Moment Equatioms (2.9). The derivation of (2.11) may be

facilitated by considering the summation symbols as operators. To

simplify notation the following abbreviations will be used:
d1 dz C
LLL represents z L L o
n;=0 n,=0 m=0
If a variable is summed up to the value one less than the maximum

(i.e. di—l,c—l) then the corresponding summation symbol will have

a superscripted dash, that is X', and if the parameter is a constant

then the value of the constant will replace the "I'". For example
d; da-1
Ll'c.g(ny,nz,m) = 1L L g(ny,nz,c).
Vl1=0 yl_2=0

The range of summation may be represented as a cuboid in R®. Each
value of (ni,Nn,,Mm) corresponds to a unit cube in the block. The
division of the block into 'sub-blocks' corresponding to the range
of each equation is illustrated in Figure A.l, and Table A.l lists
the summation operator and number of values of (ni,nz2,m) (equal

to the volume of the sub-block) for each equation in (2.9).
m

e e

ny na
\/

a) Representation of the system of equations (2.9)

Figure A.1l



b) Breakdown into sub-blocks representing'each equation

The following steps will be used to calculate the sum of (2.9).

Figure A.1l

Equation Operator Number

a o 0 s dy.dy.c

b dy Z'2 ds.c

c z'd,r’ dy.c

d d1 dzz' ZC

e Z'Z'C dl'd2

f dlZ'c dz

g Z'dzc d1

h d1d2C 1
Total LLX R

Table A.1l

Apply the appropriate operator to each equation.

For each term in the equations, add the operators for

each equation in which the term appears.

Simplify this result to a single operator.

Add the terms together and simplify.
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The term (a+n+mtf) B(,,,) appears on the L.H.S. of each equation.

Therefore its operator is ZXLXL, the sum of the operations for

equations (a) - (h).

The R.H.S. terms are

i)

ii)

iii)

iv)

V)

vi)

vii)

viii)

ix)

a;B(n;-1,,) which appears in every equation.
Oop(i) = ZXZ.

asB(,n,-1),) also appears in each equation.
Op(ii) = LIZ.

(n1+1)B(n+1,,) appears in (a), (¢), (e) and (g).
Op(iii) = Z'L'E" + Z'dZ' + Z'Z'¢ + 2'ds ¢

'L + Z'Ec

L'IL.

(np+1)B(,ny,+1,) appears in (a), (b), (e) and (f).

Op(iv) = ZE'L.

(m+1)B(,,m+1) appears in (a), (b), (c) and (d).
Op(v) = ZZIZ'.

a;B(,,m-1) appears in (b), (d), (f) and (h).

]

Op (vi) d;Z'E' + d;do2" + dyZ'c + didse
4,53,

asB(,,m-1) appears in (c), (d), (g) and (h).

Op(vii) = XZd,X.

a;B(,,,) + ale (,,,) appears in (f) and (h).

1—13
dIZ'C + d1d2C
diZc.

Op (viii)

aZB(a9’) + 32322_1(’as) appears in (g) and (h)-

Op(ix) = Idsc.

The sum of equations (2.9) is therefore,

LLL (a+n+Hm+L)B(,,,)
= a;*LrZ*B(Ni1-1,,) + az*ILL*B(,n-1,)
+ L'ZZe(ny+1) B(ny+l,,) + ZZ'Z+(ny+1) B(,ns+1,)
+ Zxn'e(m+l) B(,,m+1)
+ a;*d;ZZ°B(,,m-1) + as*rd,Z*B(,,m-1)
+ a;°diZc*B(,,,) + ax*Zdsc°B(,,,)
+ ajyed;Zc*B

(555) + ap*tdyc*B 1(”3)

£1-1, £2-

(A.1)
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Now,

LIL*B(n;-1,,) = L'ZZ-B(,,,),

ZZZ'(”1+1)B(H1+1,,) = ZZZ.”IB(9’9),

and similar identities are valid for other terms, therefore (A.1l)

becomes

aZZZB(s:,) + ZZZHB(,,,) + Zzsz(’;:) + EZZZB(:):)

= ay*Z'LIi*B(,,,) + az°*LL'lB(,,,)
+ a;*d,ZE"*B(,,,) + az*Zd,l'*B(,,,)
+ aj;°diZe*B(,,,) + ax*Zdyc*B(,,,)
+ ZXZemB(,,,) + ZLZ-nyB(,,,)

+ ILIZ*mB(,,,)

+ al.dlzc.le_l (’,,) + 32°Zd2C'B,£2_1(3,3)

Since,
L'2Y + 422" + dyZc = ZIXE
LI'T + XdypX' + Zdyc = ZIL
and
ZrXiB(,,,) = B
(22) = Bip )
(A.2) simplifies to
dz
£1+£,)B = I B dy,n
( 1 2) (KI,KZ) a1n2=0 £1—1,£2( 1 Z’C)
d;
oH
+ a2n2=0 Btz,ﬂz—l(dl,dz’C)

which is (2.11).

(A.2)
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APPENDIX B

COMPUTER PROGRAMS

The two main programs used in this research are S$.0.R. and APPROX.
The first program was used to calculate solutions to the model using
Gauss-Seidel iteration with successive over-relaxation. TFor each
value of the input parameters MT (the total mean offered to the
common link) and KK (the number of junctions, c), five values of
PM are considered. MT is proportioned into the two means, M1 and
M2, of the offered streams. For each of these values thirty values
of II and JJ (corresponding to d; and d,) are considered and the
corresponding arrival rates Al and A2 are calculated such that the
overflow from the direct links have means Ml and M2. For each
value of (Al, A2, II, JJ and KK) the overflow means (OMl, OM2),
variances (0V1, OV2) and covariance (COV) are calculated. The
elements of the vector f are calculated in the subroutine FGEN and
the initial estimates of b in EST. The vector b was stored in the
array called X in the program. The iterative algorithm is
performed in the subroutine SEID and the rows of the coefficient
matrix A calculated as required in the subroutine and stored in

the array A. The output from this program was stored on magnetic

disc for later use.

The program APPROX used the data stored on disc as input. It has
many subroutines, one to calculate the S.L.R. estimates (SLR), one
to estimate the absolute errors (ERRCAL), one to plot graphs of

the results and one for each of the approximate formulas considered.
This program was used to generate results from which the tables of

Chapters 6 and 7, and the graphs of Appendix C, were obtained.

Both programs were written in FORTRAN, for CDC 6000 or Cyber series

computers, and use non standard, unformatted READ and PRINT statements.

The plotting subroutine YPLOT (in the APPROX) uses a system of
plotting subroutines, COMPLOT, available at the South Australian

Institute of Technology and some other computer installatioms.

A modified version of SOR was used to generate the tables of Appendix

D.
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222
14

o w

49

500

PROGRAM SOR(INPUT,QUTOUT,NATA, TAOF3=NATA)

DIMENSIONX(8000)sF1(RO0)»F2(BND)

DIMENSIQON PARL1(LO),PARZ2(10D)
REAL M1,M2,MT

COMMON JTIsJJsKKeyIPsJPeKPy JMyKMeAT s A2,AT
o o ol ol ok ok o ool ok kA e ok o o o ok o ok ok ok o o ok ok ok o o ok ok ko ok ok ok

*

BY SEIDAL'S METHND,

X = A%X + F

*
*
*
%
*
*
*
%
*
%
%
*
%
*
%
*
*
*
*
*
%

PRINT 14

FORMAT (* DATA,PT1,PT?2,KK *)
NP1aNP2=1

READ #,PT1,PT2sKK
IF(KK,EQ.0)GO TO 333

CALL PARGEN(NPL,PT1sPARI)
IF(NPL.EQuNP2eAsPT1eFR4PT2)2,3
DO 4 J=1,10

PAR2(J)}=sPAR]1(J)

GO TN 5

CALL PARGEN(NP2,PT2,PAR?2)
PRINT 40

FORMAT(*1 DI C AT oMI
+*% RNOM,ROV RCMyRVM MT VT
WRITE (3,49) KKyPT1,PT2
FORMAT(1X,I352F8.4)

DO 555 IX=2,8,3

II=1X

Al=PARI(II)

IF(Al.GT.0.)GO TO 500
II=T1I+1

Al=PARI(II)

IF(Al1.LE.Q.)GO TO 555
JM=2IP=11+1

DO 554 JX=IP,10

Jd=JX

A2=PAR2(JJ)

IF(A2.LE.0.)GO TO 554
AT=A1+4A2

JP=JJ+1

KP=KK+1

KM=JM* Jp

NN=IP#* JP*KP

NM=TIP#*Jp

THIS PROGRAM SNLVES THF LINFA?

THE ITERATINN CONTINHMES UNTTL
BETWEEN THE K THY, ANN K=1 Tu,
GIVEN ERROR TN ABSAOLUTF VALUF, (F.G.

THE METHQOD USFS THE RELATTNAN

XK =L*XK + IJ%XK=1 + F

nvr
"NY,RF

CANSTANT

|

FOUATIONS

A=zl +!) THEN

1E-6)

THE PROCESS HAS RFEN ACCFLERATED 3V SUCCESSIVE
OVER=RELAXATION MITH S M,P,

z1l.2 &

Ov/QOM
MT,VT*/)

IF A IS COSINERFD AS THE <tiv NF A LOWER (L) AND AN UPPER
(U) TRIANGULAR MATRIX,I.F,
STARTING WITH AN INTTIAL FESTIMATE YO,XK IS CALCULATED BY

THF LARGEST DIFFERENCE
FSTYIMATES IS LESS THAN A

3 o o o ok o b ke o o o ook ok ok ookt s ok ok e ol ok okl sk e ok o sk e ok ok ok ok ok ok R o o ok ok sk ok K &

CM/OM%,

*
*
*
%
*
%
*
%
A
%*
*
*
*
*
*
*
*
*
*
¥
%
*



ERR=1E=-6
CALL EST({XsNN)
CALL FGEN(F1,X,NNyNM,0)
CALL SEID(XsF1lyERRyNNyNM,0)
MLI=A1*SUMJ(X,NN)
M2=A2%SUMI(X,NN)
MT=M14+M2
CALL FGEN(F1,X,NNyNMs1)
CALL FGEN(F2sXsNNyNM,?)
CALL SEID(XsF1,ERRsNNyNM, 1)
V1izA1*SUMJ(XsNN)+MI-M1 %M
COV=,5%A2%SUMI (X NN)
CALL SEID(X»F2,ERRsNNyNM,2)
V2=A2*SUMI(X)NN) +M2=M2%£M?
COV=COV+5%AT%XSUMJI(XsNN)=M1%*MD
VT=aV1+V2+2.%C0OV
RE=2.%COV/VT%100,
OM1=A1*E(II,Al)
OM2=A2*E(JJsA2)
OV1=0M1*(1l=0OML+AL/(TT+OM1=-A1+17,))
OV220M2%(1=0M2+A2/7(JJ+NM2-A2+1, )
ROM=0M1/0M2
ROV=0V1/QV?2
VM1=0V1/0M1
VM2=0V2/0M2
CM1=0M1=-M1
CM2=0M2=-M2
RCM=CM1/CM2
C01=CM1/0M]
C02=CM2/0M2
RVM=\YM1/VM2
PRINT 41sIIsKKyALyOM1,0OV1IsCM1sUMT N TeROM, PCM,Mi,V1,C0VyMT,
+JJrsA2,0M2,0V25,CM2,VM?2,CO2s ROV, RUYMy MO D, PE, YT
444 CONTINUE
41 FORMAT(1X,2I35i2F844/1X»I353X,172FR,4/)
WRITE (3,5C) OV1,s0V2,CM1,CM2,y1,Y2," 1V
50 FORMAT(1Xs7F8es4)
5S4 CONTINUE
555 CONTINUE
PRINT 60
60 FORMAT(10X, *ITERATIVE(S:MNeR) METHND IJSFEN, %)
ENDFILE 3
GO TO 222
333 CONTINUE
PRINT 334
334 FORMAT(LIH ,23(LH*)/2H *,21X, IH*/ 244 % WAPMTNG = PACK DATA *
+/2H *,21 X9 IHX/1H 523(1H*))
END
SUBROUTINE EST(XsNN)
DIMENSION X (NN)
COMMON TIsJJsKKsIPsJPoKPy My KMeAT1 4 A2 AT
U=1/NN
DO 20 NR=1,NN
20 X{(NR)=U
RETURN
END

SUBROUTINE FGEN(F,XsNNyNM, L)
COMMON II,JJsKKyIPsJPyKPy JUyKMyAT1 A2 ,AT
DIMENSION FONM)s XINN)
DD 1 N=1,NM
1 FIN)=0,
F(NM)=1,
FT=0.



11

20

2l

11

INaKK*KM
IF(L=1)9,10,20
RE TURN

DO 11 J=1,JP
JL=J-1
NR=IP+JL*JM
XCxA1®X(NR+JN)
F(NR)zXC
FT=FT+XC
CONTINUE

FINM) =FT
RETURN

DO 21 I=1,1P
NR=T+JJ%JM
XC=A2%X (NR+JN)
FUNR)=XC
FT=FT+XC
CONTINUE
FONM)=FT

RE TURN

END

SUBROUTINE SEID(XsFsFERRyNNyNM, )
COMMON TIIsJUsKKsIPsJ2PgKPy  JMyKM AT, A2 AT
DIMENSION A(7)
DIMENSTION X(NN),NPOS{7)sF (NM)
NIT=0

LL=(L+1)/2

CONTINUE

E=XS=0.

DU 2 K=1yKP

KL=K=1

DO 2 J=1,JP

JL=J-1

DO2 I=1,1IP

IL=I-1
NR=zI+JL*JM+KL*KM
DIAG=AT+IL+JL+KL+LL

DO 3 M=1,7

A(M)=0,
IF(J.GT41)A(2)=A2
IF(I.GTs1)A(3)=A1
IF(I.LTLIP)A(D)=]
IF(JeLToJdPIA(E)=
IF(KeLTKPIA(T)=K
IF(J.EQ.JP)A(1)=A2
IF(IFQ.IPIA(L)=A(1)+A]
IF(K.EQQKP)A(Q)’A(I)
IF(KsEQL1)A(1)=0
NPOS(1)=NR=KM
NPOS(2)=NR-JM
NPOS(3)=NR-1
NPQOS{4)=NR
NPOS(5)=NR+1
NPDS(6)=NR+JM
NPOS(7)=NR+KM

XT=0,

DD 5 M=1,7
IF(A{(M).EQ.0,)GOTO5

NP =NPQOS(M)
XT=XT+A(M)*X(NP)
CONTINUE

NF 2NR-KK%*KM
IFINFoGTO)XT=XT+F (NF)



XT=XT/DIAG
XT=XT*]1e2=-02%X{(NR)
IF(NR EQNN)XT=F (NM)=XS
XS=XS+XT
EN=ABS {XT=X{NR))
X{NR)=XT
IF(ENSLT.EIGO TO 2
E=EN
NE =NR

2 CONTINUE
NIT=NIT+1
IF(E.LT.ERR)12,11

12 CONTINUE

23 FORMAT(1HO,* ERROR*F10,7% AFTFRkT&L* TTERATT(ONS AT *I4)
RETURN $ END

FUNCTION SUMI(XyNN)
DIMENSION X{NN)
COMMON II5JJsKKpIPsyJPyKPy JMyKM AL, A2 ,AT
SUMI=0.,
DO 1 I=1,1P
NR=T+JJ¥x JM+KKEKM
1 SUMI=SUMI+X(NR)
RETURN
ENTRY SUMJ
SUMI‘O.
DO 2 J=1,4P
NR2TP+(J=1)%k JM+KK*KM
2 SUMI=SUMI+X(NR)
RETURN % END

FUNCTION E(N,A)
E=1l.
IF(NsEQ.O)RETURN
DO 1 I=1,N
AE=AXE

1 E=zAE/(I+AE)
RETURN $ END

SUBROUTINE PARGEN{NPAR+PT,PAR)
DIMENSION PAR(10)
IF(PT.EQ«O)RETURN
DO 106 J=1,10
Y2PT+J
IF(NPARVEQ.2)Y=2%J
X=Y/2,
CALL CALC(X»JsrPXsNPAR)
CALL CALC({YsJsPY,NPAR)

102 DT=PY=PX
EX=PT=-PX
IF(ABS(EX) LT, 1lE=5)GNTOL04
Z=X+(Y=X)*EX/DT
IF(Z.LT.0)GO TO 205
IF(Z.GT.40)GC TO 205
CALL CALCI(Z»JsPZsNPAR)
IF(PZ.GT.PT)GUTO 103
X=7 % PX=PZ
6aT0 102

103 Y27 & PY=PZ
GOTO 102

205 X=0,

104 PAR(J)=X

106 CONTINUE
RETURN $ END



SUBRODUTINE CALC(AsNsP,yNP)
PaA%E(N, A)
IFINPLEQ.1)RETURN

Q=P

P=1-Q+A/ (N+1.-A+Q)
IF(NP,EQ.2)RETURN

P2 Q%P

RETURN ¢ END



PROGRAM APPRX(INPUTsNUTPUT,NATA, TAPE2=NATAY
REAL M(952)sMT(9)sVI(0,1552)e VT (2,15,
REAL CM(951552)»CMTIO9,s15)sIM(9475,2), MT(2,15)
REAL OV(951552)s0VP(9,15)sQVTIO, 16V, (0Q,15)
REAL PM(952)sPV(95,1552)sPCM(y15e2)e PAM(O,15,72)
REAL POVP(9,51552)sPNVT(9515402)4P"V(2,15)
COMMON MyMToVyVTsCrCMyCMT, MM ,OMT,, AV, MVO, YT, CQOV,
» PMasPVyPCMpPNMePOVYD, PNOVYT 4BV ,TMAY
REWIND 3
DO 10 1I=1,10
IMAX=T1-1
READ (3549) C(I)sM(Te1)eM({Ty2)
49 FORMAT(F&4,2FB44%)
IF(EOF(3)NELGIGD TN 11
MT(ID)=M{I,1)+M(I,2)
DD 10 J=1,15
READ (35,50) V(IsJdsLl)sVI {TeJs2)sCM{Te )1V, M{TI,U0s2))
» OV(Isdsl)sNV(IsJe?2YCOVITH, )
50 FORMAT(LlX,7F8.,4)
VT(Isd)=VIInJsl)+VIiT,sdy2)
CMT (I J)=CM(IsJsl)+CM{Ts}s?)
OMT(I,J)=MT(I)=CMT(TI,J)
DVP(I,J)=0V(I,ds)+0V(Ts.s?2)
OVT(IsJ)=0VP(IsJ)+2.*%COV(IsJ)
DO 12 K=1,2
DM TsJyK)=M{T,K)I=CM(TyJyK)
PMUI»K)=M(IsK)/MT(I)
PVIIsJoK)=V(IsdsK)/VT(TIyJ)
PCM{Iy»JsKI=CM(I,JpKY/CMTI(T, )
POM(T s JsK)=OM(IsJpKY/OMT(TsJ)
POVP{TsJsK)=UVIIsJsKY/OVYP(T, J)
POVT(I»JsK)=0V(InsdsK)/DVT(I, )
PCV(IsJ)=COV(IsJ)/0VT(TIsJ)
12 CONTINUE
10 CONTINUE
11 CONTINUE
ok o oo ek ok o ok ok ko o ok kK koo R ok ok stk ok ko sk ok ok ok ok R KR o o o ok
*

* INSERT SUBROUTINE CALLS HERE

*

e e oot ook o ok o ok o ok o o o o ook ook ol ot e o o ok o o o ok ot sk e o e kol ok ot ok ok ok ok ok o ok o ok ok ok o ok ok e ook ok
STOP
END

SUBROUTINE SLR(PMyPVsPXy TUMAX,ALPHALRFTA)
REAL PM(9,2)sPV(951592)50X(9,15,?),A10HA(9,2),BETA(D,2)
DO 1 IA=1,IMAX
I18=TA
IF(IA.GT1)IB=1A+4
IF(IAGT.S)IB=IA-4
SX=SV=SXX=SXV=0,
IF(I.GT.5)1IB=1-4%
DO 2 J=1,15
SXaSX+PX(IAsJs1l)+PX (IR Uy ?)
SV2SV+PV(IA,Js 1)+PVI(IB,Js2)
SXX=SUX+PX(TAsJs 1) ¥%2+PX(TRy Jy 2)*%2
SXVaSXV+PX(IAsJp1)#PV(IAeJs1)+PYXITRy Jy2V&DY(IBy Jy2)
2 CONTINUE
VB=SV/30.
XB=SX/30,
THETA= (SXV=SX*YB )/ (SXX=SY%YXR)
ALPHA(TA,1)=ALPHA(IBs?)==1,7THETA
BETA(IA»1)=BETA(IB»2)=PM(TA, L)YV (OM{TA, Y V=~X3)%THETA



=N

1 CONTINUE
RETURN
END

SUBROUTINE WALSTM
REAL Y(9,51552)ERM(9,2)YsERP(3,2)
REAL M(952)sMT(9)5VI(951592), VT (2151 .010)
REAL CM(951552)sCMT(9515),0M(9315,2) ,MMT(9,15)
REAL OV(951552),0VP{9515)s0VT(9,15),COVY(0Q,15)
REAL PM(952)sPV(95152)sPCM(09,15,2), POM(Q,15,72)
REAL POVP(951592)sPDVT (9515, 2),RCV(",15)
REAL BL(9,15)
COMMON MyMT Ve VT HCrlMyCMT oMM, OMT NV, MYDL,OVUT,COV,
’ PMs PVyPCMyPOMy POYP, POYT, PV ,TMAY
DO 1 I=1,IMAX
DN 1 J=1,15
B2aOMT (I, J)/MT(I)
BL(I»J)=8B
DD 1 K=1,2
Y{IpJoK)=PV(IpJdsKIk(1.=BY+PM(T,XKI%R
1 CONTINUE
CALL ERRCAL(YsPOMyIMAX,FERM,ERD)
PRINT 2
2 FORMAT(/*WALLSTROM'S APPRAXTMATTNAN FNR THE MEANS*/)
PRINT 3
3 FORMAT (* C MT pM (=VE) ERPNRCT (+VEY%/)
PRINT 43 ((C(I)sMT(I)yPM(T)K)SEPM(T oK I4FRP(T,K)sI=1lsIMAX)sK=1s1)
4 FORMAT(2F4sF6e4r2FB8e4)

PRINT #*,"PLOT WALLSTRAOMIS ENRPMULA 2%

READ *,NAX

IF(NAXsGE+O)CALL YPLTUYs»POM, IMAY,NAX ,72YNYFRFLGW MEAN,~-13,
’ I9HWALLSTRMAMYS FORMUL Ay 191

RETURN

END

SUBROUTINE OLSSON
REAL Y(9515,2)9ERM(Qy2)sFRDP(3, )
REAL M(952)sMT(9)sVI(Q,1552)Vy VT (94151, (3)
REAL CM(9515,2)sCMT(9515)sOM{0,1542)4OMT(2,15)
REAL QV(9,5,15,2),0VPI9,15),NVYT(9s15),C YV (0,15)
REAL PM(952)sPV(Gs15+2)90CM(9, 15,21, POM(0O,15,72)
REAL POVP(9515,5,2)sPOVT {95159 2)sPCVYIQ,15)
REAL T(2)
COMMON MoMTo Vs VTsCr My CMTs DM, NIMT, AV NP, NYT,COV,
» PMy PUyPCMsPOM,POVP, PCYT, PV 4TMAY
77 CONTINUE
READ *,FAC
IF(ABS(FAC) «LToLE=4)RETURN
DO 1 I=1,IMAX
DO 1 J=1,15
DO 22 K=1,2
TIK)=2V(I,JsK)+FAX X*M(ToK)%%2 /Y (T, ),K)
22 CONTINUE
TSUM=T(1)+T(2)
DO 1 K=1,2
Y(IyJdsK)=T(K)/TSUM
1 CONTINUE
CALL ERRCAL(Y,POMyIMAXsFRM,=RDP)
PRINT 2
2 FORMAT(/*%0LSSON'S APPROXIMATINN FAR TUF MEANS*/)
PRINT 3
3 FORMAT(#* cC M7 PM  (=VE) FPRRNRS (+YFY*/)
PRINT 4o ((C(I)sMTII)pPMITK) yFRMIT, K I,FADIT yK),I=]1yIMAX)»K=1s1)



4 FORMAT(2F4sFb644y 2F844)

GO 10 77

PRINT *,"PLOT OLSSOM'S FARMILA 27

READ #*,NAX

IF(NAX<GESO)CALL YPLT(Y,POM, IMAY,NAY ,12UNYFRFLOW MEAN,=~13,
’ 16HOLSSON'S FNRMIJL A, A)

GO TO 77

RETURN

END

SUBROUTINE HARRIS

REAL Y(9,1552)sERM(Q52)9FRP(9, 2)

REAL M(9,2)sMT(9)sV(Q515,2),VT(0,15),0 (")

REAL CM(951552),CHMT(9,15),0M(9,15,2),NMT(0,15)

REAL QV(951552)s0VPI9,15),NVT(2,15),CAY(0,15)

REAL PMU9s2)sPVIGsy18s2)sPCM{O,15+s2)s POIMIQ,715,2)

REAL POVP(951552),POVT(9415,72) 4PV I0,17)

COMMON MoMTr Vo VT sCaCMeCMT, OM,OMT, NV, DYD, NVYT ,COV,
’ PMy PVsPCMyPOMy PNYP, PAVT PR ,TMAY

DO 1 I=1,IMAX

DO 1 J=1,15

DO 1 K=1,2

RHO=PV(IsJ»rK)

T2RHO+ (1., =-RHO)*EXP(=RHO*C(T))
Y(IsJsK)=RHOX(T*(OVT(IoJY=OMT(T, DI+ MMT(T,d)1)/0OVT(L,J)
CONTINUE

CALL ERRCAL(Y,POVTsTMAX,5RM, FRP)

PRINT 2

FORMAT (/*HARRIS'S APPRDOXYIMATTNN S0P THFE VUYARTANCES*/)
PRINT 3

FORMAT ( * C MT PM  (=VE) EPRARS (+YEY%/)

PRINT 4o ((CCI)sMTIIVsPM(T oK) SERMIT oK)y FOP(T,K),I=1,IMAX)»K=1s2)
FORMAT(2F4,Fb6e45 2F844)

PRINT *,"PLOUT AHARRIS'S FNRMULA °"

READ *,NAX

IF(NAXeGESO)CALL YPLT(Y»O0VT,IMAX,NAX,T7HOVERFLOW VARIANCE,=-17,
» 16HHARRIS!S FNRMULA,16)

RETURN

END

SUBROUTINE SLROM

REAL Y(9,15,2)ERM(Q,2),FRP(9,2)

REAL M(9,2),MT{9),V(951552)sVT(0,15),0(9)

REAL CM(9515,2)sCMT(9+15)9IM(9,15,2),NMT(9,415)
REAL OV(9,15,2),0VP(9,15),0VT(9,15)1,CNV(0Q,15)
REAL PM(952)sPV(991552),PCM(3,15,2), PAM(9,15,2)
REAL POVP(9,5,15,2),PDVT(9,1552),2C0V(9,15)

COMMON MyMToVyVTsCsCMyCMT, M, NMT, NV, NYPL,NVT,COV,
» PMyPVyPCM,POM, POVP, PAVYT, PV 4 TMAY

REAL A(9,2)5B(9,52)

CALL SLR{PMsFV,POM,TMAX,A,8)

DO 1 I=1,IMAX

DO 1 J=1,15

DO 1 K=1,2
Y(IsJsKY=PMII,K)+A(ToKIR(PMITyKY=PVIT, JyKVY=B(TI,K))
CONTINUE

CALL ERRCAL(YsPOM, IMAX,ERM,ERD)

PRINT 2

FORMAT(/*SeLsRe APPROXIMATION FNR THF MCANMQ%/)

PRINT 3

FORMAT (* C HMT PM  (=VE) ERRARS (+VF) A B*/)

PRINT 4,5 ({CUI)DsMTCI)pPMIT  K) yFRMIT K1y PP(T , K))A(TsK)sB(IoK)sI=1,I



o LT

p—

» MAX) sK=ls 1)
4 FORMAT(2F4sF ety aFBed)

PRINT *,mPL 0T SLR APPRNX, FNR MEANMS 20

READ *,NAX .

IF(NAXGESCICALL YPLT({Y POM,TMAY,NAY ,TIHOVEREL W MFANy,=12,
19HS e Lo RJAPOPRNXTMATTNN, 10

RETURN

END

SUBROUTINE SLROVT

REAL YU(9515,2) s ERM(952)sFRP(Q,?)

REAL M(9,2)»MT(9)sVIG,1552)s VT (Q2,15),0(0)

REAL CM(951552),CMT(9,15),0M(Q,15,2),MT(0,15)

REAL OVI(9,1552),0VP(9,15),0VYT(O,18),CNV(0,15)

REAL PM(G,2),PV(9515,2)52CM{9,15¢2),PNM{0,15,2)

REAL POVP(951552)sPDVT{Q515,2)4PrV{0,15)

COMMON MyMTy Vs VT»CrCMyCMT s MMy OMT ¢ NV, NYD, NVT ,C OV
PMs PVsPCMyPOM, PNYD, DOYT, PV ,TMAY

REAL A(9,2),B(9,2)

CALL SLR(PM,y,PV,sPOVTsIMAX,A,8)

DD 1 I=1,IMAX

DO 1 J=1,15

DO 1 K=1,2

Y(IsJoK)=aPMUIpK)+A(T»K)IR(PMIT,KY=DV(Ty)yKY=B(IsK))

CONTINUE

CALL ERRCAL(YsPOVT»TMAXsERM, FR P)

PRINT 2

FORMAT(/*%SslL eRe APPPOXIMATION FO2 TYF YARTANCES*/)

PRINT 3

FORMAT (* C MT PM  (=VE) FRRNAPS (+VYEY A B*x/)

PRINT 4 {{(C(I)sMT(IVsPM{ToK)YpEPMIToK)IZTODIT K)sA{TIosK)sB(IpK)pI=1sI

MAX) sK=1s2)
FORMAT(2F4,F6.694F8,4)

PRINT #,"PLOT SLR APPRNX, FNOR VARS,2"™
READ *,NAX

IF(NAXeGE«OICALL YPLT(YsPOUT,TIMAX,NAY, 17HNVERFLOW VARIANCF,~=17,

LGHS oL ReAPPROXTMATINN,1Q)
RETURN
END

SUBRODUTINE ERRCAL(YsXs TMAXsFERM,FRDY

REAL X(9,1552)sY(991592)9FRM(9,2),EPD(9,2)
REAL Z2(9,515,2)

DO 1 I=1,IMAX

DO 1 K=1,2

EM=E930.

DO 2 J=1,15

ER=Y(IsJsK)=X(IyJsK)

Z(I»JyK)=ER*10000

EP=AMAX1(EP, ER)

EM=AMINL(EM, ER)

CONTINUE

ERMII,K)=EM

ERP(I,K)=EP

CONTINUE

PRINT S, (((Z(IsJsK)pT=193),K=1,2)1,J=21,1%)
FORMAT(9F6,5Xs9F6)

RETURN

END

SUBROUTINE ERMETH
REAL M(952)sMT(9)sVI(9,15,2),VYT(2,15),(Q)
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REAL CM(951552)pCMT(9515),NM(0,4165,2),IMT{OQ,15)

REAL 0OV(9,515,2),0VP(9,15)V,0VT(3,15),C{(0,15)

REAL PM({9,2),sPVI(9,15+2)5PCM(G,15,2),PNN(0,15,2)

REAL POVP(951552)sPNVUT(9515,52) 420V (2,1F)

COMMON MyMTy Vs VTsCrCMy CMT, OM,OMT AV, DYD, PYT , COV,
PMy PVp PCMyPOMy POV P POVT P 4TMAY

PRINT 4

FORMAT(/*E R,APPROXIMATINN#%)

PRINT 2

EMM=EMP=EVM=EVP=],

FORMAT (/% C MT PM  =VE MEAM 3VE =VF VAR. +VE*)

DO 1 I=1sIMAX

DO 11 J=1,15

TVaVT(I,J)

TM=MT(I)

VM=TV/TM

AE=TV+3 . %VMk(VYM=1,)
DE=(AEX(TM+TV)/(TM+TV=-1,))=-TM=1
EM=AE*E(C(I)+DEs AE)
EV=EM¥(1.—EM+AE/ (C(I)+DE-AE+FM41,))
RM=EM/OMT (I, J)

RV=EV/OVT(I»J)
EMP=AMAX1(EMPsRM)
EMM=AMINI(EMM, RM)
EVP=AMAX1(EVP,RV)
EVM=AMINL(EVMsRV)

CONTINUE

PRINT 3,C{I)yMT(I)sPM(T»1)sEMM,FMD,FYM, VD
FORMAT(2F 4, 5FB844)

CONTINUE

RETURN

END

SUBROUTINE OFFMN

REAL Y(95155,2)sERM(10,2),FRP(10,?)

REAL M(952)sMT(9)sVI(9515e?2)s VT (3,15),C109)

REAL CM(951552)»CMT(9515), IM(F,515,2)4OMT (2, 15)

REAL OV(95,1552),0VPI0,18),NVT(0,15),CNV(0,15)

REAL PM(952)5sPV(95,15s2)sPCMIQy 1520 PAM(0,15,72)

REAL POVP{(951552)sPOVT(9,15,2),°P V(9,15)

COMMON MyMTHo Vo VT,CrCMy CMT, MMy OMT , NV, DYD, AYT ,C OV,
PMs PVsPCMpPNIMy PNYP, PNYT 4DV g TMAY

PRINT 2

PRINT 3

DO 1 I=1,IMAX

DO 1 J=1,15

DO 1 K=1,2

Y{(IyJsK)=PM(I,K)

CONTINUE

CALL ERRCAL(Y,POMyIMAX,ERM,FRP)

FORMAT(/*0OFFERED MEAN APPRAXIMATTNM FNR TUF MEANS*/)

FORMAT ( * C MT DM (=VF) FRRARS (+\VC)%/)

PRINT 4o ((CCI)sMTCI)sPM{TsK)pFRMITGK)IeERP(T,K),I=1,IMAX)sK=1,y1)

FORMAT(2F4y3F8.4)

PRINT *,%pLOT OFFERED MEAN 2%

READ *,NAX

IF(NAX.GE«O)CALL YPLT(YsPOMy TMAY,NAX413HNYCERFLOW MEAN,~13,
12HOFFERED MEAN,12)

RETURN

END

SUBROUTINE OFFVAR
REAL Y(9,1551)»ERM(INS2)»ERP 10,2



N~

REAL M(9,2),MT(9)sVI(95,15:2), VT (R,15),0(Q)
REAL CM(9,1552)sCMT(9515),IM(9,15,2),"MT(9,15)
REAL OV(9515,2)s0VP(9515)yNVT(Q,15),NV(0Q,15)
REAL PM(9,2),PV(9515,2)9PCM(Qy15,2)4PIM(0,75,2)
REAL POVP(95s1552),PMVT(9,15,2),P0Y(0,10)
COMMON MyMT Ve VToCoCMy CMT s NM,OMT, NV, AUD ., NVYT,COV)
PMsy PVsPCMpPOM,PNVYP, PNVT, DY ,TMAY
CALL ERRCAL(PV,POMsTMAX,ERM, FR D)
PRINT 2
FORMAT(/*OFFERED VAR, APPROAXIMATYNAN FAP THFE MEANS%/)
PRINT 3
FORMAT ( * C M1 PM (=VE) FOPNRS (+VFE)%/)
PRINT 4o {(CUI)sMTUIV9yPMITsK)FEPM(TyK)pFRP(T,K)yI=1sIMAX)sK=1,2)
FORMAT(2F4y3F844)

PRINT #*,"PLOT OFFERFED VARTANCE *?"

READ *,NAX

IF(NAX.GEO)CALL YPLT(PV,PIM,IMAX NAX, YAHNVERFLOW MEAN,~-13,
16HGFFERED VARIANCE,16)

RETURN

END

FUNCTION E(DsA)
E=1,
IF(DeEQeOIRETURN
NL =D

NP=NL+1

DO 1 I=1,NL
AE=AXE

E=AE/ (I+AE)
CONTINUE

EP=sA%E/ (NP+AXE)
E=E+(D~NL)*(EP-E)
RETURN

END

SUBROUTINE YPLT(YrXs IMAXsNAX T Xy NXoTY,NY)
REAL X(9,155,2)5Y{(9515,2)

REAL XX{(270),YY(270)

DO 1 I=1,IMAX

DO 1 J=1,15

DO 1 K=1,2

N=J+(I-1)%15+(K-1)*IMAX*15

XX (NY=X(T1sJd»K)

YY(N)=Y(]ysJsK)

CONTINUE

CALL PLOTS(7HTEK4010)

IF(NAX,EQ.0)GD TO 2

CALL PLOT(0s9545-3)

DO 7 L=1s4

CALL AXIS(Oes0es IXsNXp10450.904re150)
CALL AXIS(O.’O.’IY,MY’IO.’QO.’O.'.]’-1)
CONTINUE

NMAX=IMAX*30

D0 3 N=1,NMAX

CALL NSSYMB(1Oa%(XX(N)»10,%YY(N)y,0147,Nn,)
CALL PLOT(Oes0es3)

CALL PLOT(104510452)

CALL PLOTE

RETURN

END

SUBROUTINE OFFMNV
REAL Y(9,1552)ERM(1I0,2),FRP(10,?)



™

»

REAL M(9,2)»MT(9)pV(94155,2),VT(0,15),C19)
REAL CM(9,15,2),CMT(9,15),IM(9,15,2),0MT(2,15)
REAL 0OV(951552),0VP(95,15), W T(G,15),CNY(G,75)
REAL PM(992)sPV(9s15s21,5P M(9, 15421, 0AM(0,15,2)
REAL POVP(9515»2)sPOVT (9515, 2) 4,00V ({2,1F)
COMMON MyMTs Vs VT sCaCMaCMT o NM,OMT, NV MIPL NYT,C OV,
PMy PV, PCMsPOM, POYD, PAYT, DY ,TMAY
PRINT 2
PRINT 3
DO 1 I=1,IMAX
DO 1 J=1,15
DO 1 K=1,2
Y{IsJsK)2PM({I,K)
CONTINUE
CALL ERRCAL(Y,PUVT»TMAXyFRM, FOP)
FORMAT(/*0OFFERED MEAN APPROXIMATTAN FAR TUF YARIANCES*/)
FORMAT (* c M7 PM (=VE) FROORS (+VEY%/)
PRINT 45 ((CCI)sMTCIVsPM(ToK) sFERMIT oK )pFRP{T,K)pI=1sIMAX),K=1,1)
FORMAT(2F4,3F844)

PRINT *,%PLOT OFFERFD MEAN 270

READ *,NAX

IF(NAXeGESO)CALL YPLT(Y,POVT,TMAX,NAX, Y?HAVERFLOW VARIANCE,=17,
12HOFFERED MEAN,12)

RETURN

END

SUBROUTINE OFFVARY
REAL Y(9,1551),ERM(10s2),FRP(11y?)
REAL M(9,2)sMT(9)sV(9915,2),VT(9,15),01(0Q)
REAL CM(951552)sCMT(9,15),0M(9,1542),NMT (0, 15)
REAL OV(9515,2),0VP(9515),0VT(9415), NV(0,15)
REAL PM(9,2),PV(9515,2)sPCM(9,15,21,PM(0Q,15,2)
REAL POVP(951552)5sPNVT(95,1552)sPCV(9,15)
COMMON MyMT,V,yVTsCsCMyCMT,IM,0OMT, NV, MNP, NYT,,CQV,
PMp PVs PCMyPOM, PNYP, PAVYT, PIY 4, TMAY
CALL ERRCAL(PV,POVT»IMAX,FRM,ERD)
PRINT 2
FORMAT(/*CFFERED VAR. APPROXTMATYNN FNP THE VARIANCES*/)
PRINT 3
FORMAT (* C MT PM {(=VF) ERONDS (4VYE Y */)
PRINT Gy (CCLIDsMTCINs PM(TsK) sFRMIT, K ), FRD(T ,K)yIxly,IMAX)sK=1,2)
FORMAT(2F453FB8,4)

PRINT *,"pPLOT OFFERFND VARTANCE 2%

READ *,NAX

IF(NAXeGE«O)CALL YPLT(PVsPDVT, IMAY,NAY,174NVERFLOW VARIANCEs=17,
16HOFFERED VARIANCE,16)

RETURN

END
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APPENDIX C

GRAPHS OF THE APPROXIMATE FORMULAS

The graphs presented in this appendix all correspond to the case
M=8, c=8. The value of Pm or Pv as calculated by the program SOR
is plotted in the x direction and the estimate of this value, as
calculated by the approximation indicated by the labelling, in the

y direction. The 'points' are represented by asterisks one m.m.

in height.
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APPENDIX D

TABLES FOR THE S.L.R. APPROXIMATION

Each table corresponds to a single value of ¢ (the number of
secondary group servers). Seven values of total offered mean are
considered and these are listed under MT. The total mean is split
into proportions corresponding to .1, .2, ..., .9, as indicated by
PM. Since am has the same value at p and l-p only values of

PM < .5 are given. Similarly only values of PM < .5 are considered

for 8 . If p > .5 then B | = B |
m m

d = =
m! PM=p an Bm 0 for PM 0,
.5 or 1.

PM=1-P

The values of o and B not represented on the table may be obtained
by linear interpolation between the values given. For large values

M .
of o Pm should be approximated by PM.
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s
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20 : 0021
25 : 2017

5 00 93 06 9o 5O 09 eo e
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e o9 B A% 8 9 wa B  Ae

H ®e we 68 6o 4+ w3 o2 BE we a0
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i 15, Po=eh4Q T =o6RG 1 =, A79 2 =695 3 =4T71l4 ' =,737 i =,766 t =,800 : -.,839
: 20, Po=eb677 2 =yBBA T —,R94 3 =,701 ¥ =,711 ¥ =.726 ¢ =,748 : =,777 : =.812 :
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————————— el i Ert el ettt Tttt R e A e bttt
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20 : <100 ¢ « 16/ 2 e 2N4G : 218 8 212 3 «190 @ 155 ¢ 111 ¢ 059 3
25, : s NRT7 % « 167 W184 2 «201 @ o196 ¢ «182 ¢ 18 : «109 ¢ «058 %
30. 073 ¢ o 124 2 A 0177 178 2 165 ¢ <139 o101 = +C54 @
35. : o063 : « 107 129 «154 ¢ 157 «147 ¢ » 124 . 091 : w009t

————————— T ———— T ——————— —————— ——— T —————————, i — T ———————— — T f—————— -~ —— O ———— T —————— ———— T



.
e A

NUMBER OF JUNCTIONS 20

—— i — T ———— i A S S S o —

: \ PM ALPHA - MEAN i BETA = MEAN :
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