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ST]MMARY

This thesis is concerned v/iÈh an investígation into the behaviour of
two independent teletraffic streams which are offered to a cornmon link
ín a telephone nethrork. This behaviour is characterised by the means,

variances and covariances of the traffic overflowing from the common

link.

A mathematícal model is presented and the solutíon of this model is
ínvestigated by analytíc, computatíonal and approximate meÈhods.

The model is solved explicitly f.or a speeial case, ín whích random

traffic is offered to the connon 1ink, by the classical approach

and a direct method. Ttre non-generating function approach is used

to reduce the order of the problem for the general model.

A descríption of a matrix formulaËion of the model is given and

several iterative solution rnethods are discussed. The most suitable
method üras incorporated into a computer program.

Dat,a generaËed by this program was used Ëo invest.igate the accuracy

of some approximate formulas suggested by Olsson, llallstr'órn and

Harrís as well as some simple approximatíons and the equívalent random

method. An approximat.ion based on simple linear regression and tables
for calculating the parameters used in this method are presented.

Graphícal representations of the approximations are included for
visual cornparíson of theír accuracy.
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CHÁ,PTER 1

INTRODUCTION

1.1 Obiectíves
This thesis j-s concerned with a mathematical ínvestigation of an

overflow system in an alternate routing telephone nethrork. The

aim of the research ís to study the behaviour of a network ín
¡¿hich two or more streams of traffic are offered to a common

línk and to determine the proportion of the total overflow
traffic belonging to each stream. The mean and variance of the
total overflor¿ traffic have been investigated previously, for
example 127), but. comparatively little research has been under-
taken on deËerrnínation of the means and variances of the
individual streams. The developrnent of a meËhod of calculating
these statistics is desírable since, in many networks, these
overflo¡nr streams are subsequently offered to different links
on higher choíce routes.

rn this chapter the concepts of teletraffic theory are presented
and a review of research into this and related problems is given.

rn succeedíng chapters a mathematical model is developed and an

iteratíve solution to the model ís derived. Analytíc solutions
for a special case are given and analytic techniques for solving
the general model are treated. The accuracy of several
approximations developed by other researchers ís investigated
and a ner^r approximated method is presented.
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1.2 Telephone Netr¿orks

Each individual telephone is connected to a particular exchange.

When a call is made from one subscríber to another an electrical
círcuit must be closed between the two telephones. If the
phones are connected to the same exchange then the connection is
made by sr^ritching equipment in the exchange. Otherwise, an

additional connection must also be made between the two dífferent
exchanges. This connection may be made directly between the
exchanges or indirectly through one or more other exchanges.

The system through which such connections are made ís called a

telephone network. The research presented in this thesis is
concerned only with Èhe network betr¿een exchanges and does not
consider calls made between subscríbers in the sarne exchange

area.

The physical network consists of telephone exchanges involving
switching equí-pment and junctions for carrying ca1ls between

them. Each junction can carry a single call at any one time
and junctions may take the form of overhead telephone línes,
underground cables or conmunicatj_on channels in satellite

,, networks. Mathematícally, for any particular stream of calls
the system may be considered as a directed graph wÍth nodes

corresponding to the exchanges and links to groups of junctions.
,, There are tr^ro types of node : one type can act as a source or

a sink for cal1s (corresponding to an exchange to which
subscribers are connected), the second type (a tandem exchange)
is purely a switching point in the graph. Dj-rectly linked to
the source of a call is the origin exchange, and to the sink,
rhe destination exchange, the two exchanges together constitute
an origin-destination (0-D) pair.

v An alternate routing netrn/ork is one ín whích there is more than
one route between each o-D pair. A route may consíst of a síngle
link between the orígin and the destination exchanges, knovrn as

the direct link, or a succession of links which connect the tr^ro

exchanges, via one or more tandem exchanges. There is a definite
order of preference for using these routes and they are referred
to as the first choice route, the second choice route and so on.
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In many cases a direct link is present and this ís usually the

first choice route. As an example, a simple one O-D pair network

will be considered (Figure f.1). There are three routes

between the origin exchange t'Ott and the destination exchange

"D". The direct link, 1, makes up the first choice route. The

second choice route consists of links 2 and 3 and passes through

the tandem exchange X. The third choice route has three 1inks,

41 5 and 3 and passes through two tandems, X and Y.

In any network there is a limit to the number of calls which may

be carried siurultaneously. If all junctions on the direct route

were busy then a newly arrivíng call r^¡ould be offered to the

second choice route and would be carried on this route if a

free junction was avaílable on both link 2 and link 3.

Otherwise, it would be offered to the third choice route and

would be carried if there \¡ras a free junction on each of links

, 41 5 and 3, otherwíse it would be lost from the system. This

hierarchy of routes is called an overfloht system.

The development of alternate routing in telephone networks was

necessitated by the prohibitive cost of provided enough junctions

on the direct route to carry the required amount of traffic
between each O-D pair. Non direct links may be part of several

routes, between different O-D paírs and this sharing of junctíons

reduces the overall cost of the network. It is impossible to

províde enough junctions to always be able to carry any call,

/ even using alternate routing. The processes of determining

the number of junctions to be provided on each route is knourn

as dimensioning and networks are dimensioned so that they will
perform to a given grade of service. The grade of service is
measured by the probability that a call will be unable to be

carried on any of the alternate routes and will be lost from

the systern (in Australia, thís is often set at .002). tk

The introduction of alternaËe routing has increased the complexity

of telephone networks, leadíng to a field of study of the

mathematical properties of such networks. I{hile the arrival
and completíon of índividual calls is impossible to predict,
the behaviour of streams of calls can be subject to statistical

>r f1€ o,lo¡crìf n'"* oÉ li*r€t{riot^irV I)\r<:ù4
/.er^e i s ]-z, i luru ,r( l-Ò fJ.r"7(l

¡,rorzle(. C.< rrer< f uet*or k Å¡ ,'ne-<trli<:rti t3 
f,

,o. h'ce, i'. 4u ¡ ¡v., ( t< e{ ær ^ at
<z.l'€ t'&- couc<[,( ,, F oþ .7t."der -F .f<rvìcë.
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analysis . Traffirc arrives, is carried or overflows according to
various probability distributions and the purpose of this thesis
is to investigate the overflow distributions for specific simple

network conf igurations .
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3

- origín/destination exchanges

- tandem exchanges

+ lÍnks

Fígure 1.1 : Single O-D pair network with Ëhree
alternate routes.

o
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1.3 Telephone traffic
The traffic carried on a particular link at any instant, measured

in units called erlangs, is numerically equal to the number of
calls simultaneously i-n progress on that link.X rn" traffic
overflowing from a particular link is equal to the traffÍc
which would be carríed if that traffic were offered to a

fictitious link with an infinite number of junctions.

Traffíc between each O-D pair varies wíEh time, although it does

reach a state of statisËical equilibrium during parts of any

day, including the time when traffic is heaviest. Most networks

are desígned to specificat.ions applied to this time, known as

the busy period, which ensures that the grade of service, for
example, is no r^rorse than a specified value. The assumption

of statistical equilibrium is convenient for modelling the
system.

Traffic ís generally characterised by its mean and variance,
although some recent papers consíder even higher moments, for
example, Freeman [ 9 ] and Schehrer 1241. It was shovrn by

i,Jilkinson 127 f that the mean and variance describe the traf f íc
with sufficient accuracy for dimensioning purposes and recent
dimensioníng models, for example Berry I 2), consider only these

tr^ro parameters.

A link is said to have full availability if an offered call
may be carried on any unoccupied junct.ion. For the particular
case when Èhe offered traffic is Poisson, the link to which ít

t,¿(el ìq f<k¡ r/k¡r<-¡ o¡ rcvfqis offered has full availability, and lost calls are cJÉárred,

the mean and variance of the overflow traffic can .be calculated
exactly. Expressíons for these statisti-cs are given in terms

of the Erlang loss formula, which gives the probabílity that
exactly n junctions on the link are busy. If the arrival rate
is a and the link has d junctions, then the formula is

n
a

a (a) n! 0<n<d (l.l)
n n

t
r=0

r
a
r!

ì. T Ge left"ìh'o" uf a-

6".f{ øt¿A^( h'o¡,r 6r
*t v<le¿r oF ¿cllf iq

" urlnj " çr¿¡i-l Ç"* Þ¡e ur.l4

It¡ f lú<rì I' t <(aQ r Íy'V ',< r (auy

L, .tuo lt er, 'T1p

l- +/< q.vevqee

qr[<-+tlt(g s f<ñ¡ l-; cø fv

or

r tJ {€ s'f z(*r',*( t2... 6.. r¡
f.*c d. e< L*tJ þertoa(.

f' toc< r

.7^¡(i6ri.<rx áwn"17
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Although

corunonly

hold, ae

that a1l-

the assurnption of negaÈive exponential holding times is
made, thls is not a necessary assumption for (1.1) to
was shovrn by Pollaczek [18]. n.(a) is the probabil-ity

d junctlons on the l-ink are occupied and this is called
/ th" blocking probabilitfland denoted by B. Then mean of the

overflow traffic is

M=a.E (a)=aB
d

and Ëhe variance, which was derived by Riordan 127), ís

v=M(l -M+t'-"*")

These formula are no longer exact when the offered traffic is
non random.

lq

(r.2)

(1.¡)

Þ (* a( "l (qc 6ru,¿lq F", ¿ Ér,"øþ5
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I.4 The Equivalent Random l"lethod

The overflor¡ from a link which is offered Poisson traffic is no

longer Poisson, although it is renewal traffic. The overflow
from a renewal stream offered to a link is also renewal but
the combination of two or more renewal streams is not itself
renewal unless all component streams are Poisson. Thus the

formulas described in section (1.3) are not applicable to many

network situations.

An approxímate method of calculating the mean and variance for
the total overflow from a link offered two or more streams of
non Poisson traffic was developed by Wilkinson [27]. A nethTork

of two O-D pairs is considered to illustrate this equivalent random

method (Figure 1.2). The first O-D pair, O and Dl, has direct route,
link 1, second choice route (3,4) and arrival rate a1. The second

pair, O and D2, has direct route 2, second choice route (3r5).
Third choice routes may exist but are not shown, since ít is the
overflow from the second choíce route that is of interest. The

arrivals for the two pairs are independent and have Poisson
distributions, and it wíIl be assumed that any call finding a

free junctíon on línk 3, wíll also find one on link 4 or 5 as

required. Thus overflow from the second choice routes is caused

by congestion on línk 3.

The links may be considered as groups of servers. Each server
corresponds to a junctíon in the línk and may serve only one

customer (ca11) at any one time. The two primary groups

correspond to the direet links and have d1 and d2 serVers

respectively. The customers not served i-n these groups overflow
to a comon secondary group of c servers corresponding to link 3.

-/ (Figure 1.3) The terms calls and customers, junctions and

servers, and so on, will be used equivalenÈly throughout the
text.

The mean and variance of the overflow from the ith primary group

will be denoted by Mi, V. and the overflow from the secondary

group, corresponding to the ith stream, will have mean and

variance m. and v.. The covariance between the two overflowl_ t-
streams will be denoted cov. The parameters for the combínation
of the t\^ro streams will be denoted by the appropriate unsubscripted
symbol (e.g. M, v) and estimates of parameters by a ^ above the
symbol.
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The algorithm for the equivalent random method is;
(a) Calculate Mr, Vr, M2 and V2 using (1.2) and (1.3).
(b) Calculate the total traffic offered to the cornmon

link, M = Ml * Mz, V = Vl * Vz.
(c) Calculate, again from (1.2) and (1.3), the equivalenr

random traffic a., which when offered to a link with
d -i unctions would give overflo¡¿ traffic with meane-
M and variance V.

(d) Calculate the overflow from a síngle link r¿íth (de+c)

junctions, offered a" erlangs of random traffic.
Denote the mean and variance thus calculated, by

(1.2) and (1.3), again by ô and û.

The basic assumption of this method is that Ehe overflow traffic
(or equivalently the blocking probability) depends only on the
total mean and variance of the offered traffic, and not on its

distribution. Steps(a) and (b) give exact results and, if random

traffic is offered to d junctions and the overflow from this to
a further c junctions, then the overflow from the second group

is identical to the overflow from a single group with d*c junctions.
Hence any source of error in this meÈhod is due to the accuracy of
Èhe assumption. The approximation is widely used and the assumption
gives a reasonable approximation of reality in most situations.
The accuracy of this method is discussed further in Chapter 6.

Step (c) was tradítionally performed using tables, for example [5 ì
or graphs as presented in l^Iílkinsonts paper 127). However, some

approximate formulas have been developed by Rapp [21] and these
can be used in computer programs.

a 1)=v*lIrI-
M'M

a.. (u + $)

(1.4)

(1.s)

e

d -M- 1

Thís method gives approximations for the total overflow mean and

variance only. It is often necessary to know the means and

variances of the individual overflor^l streams and this was the
motivation for the research.

e u + $.r r
¿ 4aat( ;Ê qe is þaou,tl ¡<*c,l-V
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a1

A2

a

Offered Overflowl

Mr,Vr

M,V

þlz,Yz

link 2 link 3

(a) The network

a M'V

(b) Equivalent single 1ínk

Brv

(c) Final t'equivalentrr netr¿ork

Fígure 1.3 : The Equivalent Random Method

Overflow2

ItV

ilrV
e

e
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1.5 Review of research into thís and related ob lems

Several papers have been published on net\n/orks in which tv/o or
more streams of traffic are offered to a single link, and some

of these have attempted to find formulas for the statistÍcs for
the individual overflow streams. The net\,rork is usually considered

as a system of service stages as described in the previous section.
The network investigated in the thesis is illustrated in Fígure I.2,
and the servi-ce stage representation is given in Fígure 1.4. The

service stages N1 and N2 corresponding to the direct links, M to

the common link on the second choice route and [1 and L2 to the

fictitious infinite links which are used to measure the overflow

traffic. All network diagrams and parameters of the various
authors in the literature have been translated ínto a contrnon

noÈation, consistent with Neal [16].

There are three main lines of research into this problem. The

analytic approaches generally follow the technique used by

Riordan 127) to obtaín equations (L.2) and (1.3).

Riordan consídered a systen with a single primary group and an

unlimited overflow group (Figure 1.5a). The state of the system

is defined by the number of busy servers in each group, and the

equations of stat.e are obtained, under the assumption of

statistical equilibriurn. Ihese equations are transformed, by

consi-deration of a binomíal monent generating functíon, into
an equivalent sysËem involving the binomial moments, which has

one main equation and one boundary equation. The main equation

with a constraint relaxed to allow an infínite number of servers

r^ras expressed as a differential equatíon in a second generating

function which was solved in terms of the o-polynomials, defined

by

at
e

m=0 (1-t) k

These o-polynomials satisfy a number of recurrence relationships
which when utilised in the boundary condition (or normalising
condition) lead to the formulas for the mean and variance (I.2)
and (1.3).

æ
L on (rn) tm (r.6)
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(a) Riordan's model-.

d

Primary
group

LL

æ

Lz

Overflow
grouPs

Infinite overflow
group

First secondary
group

Nr

ÄJz

Primary
groups

Secondary
grouPs

M

a1

ã2 æ

Figure I.4 : Servíce group representatj-on of Ëwo O-D paír
network

a æ

(b) Chastangrs fírst model.

Figure 1.5 : Some one strearn overflor¿ models.
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Chastang [4J, investigated an extension of Riordan's results. He

first considered a system in which the secondary group r¡ras

finite (Figure 1.5b). The solution of this system (fírst
investigated by Brockmeyer t3l) agaÍn involved several generating
ft¡nction transformations and the o-polynomíals. (Chastang refers
to the traffic carried by this finite secondary group as overflow
traffic, which may cause some confusion.) He then considered
systems with two primary groups and one secondary group

(tr'igure 1.6). For the finite secondary group case, he derived
a set of equations in binomial moments from the state equation

by using a generating function. He then sums some of the
boundary conditons corresponding to one of the primary groups

being fu1l. This leads to a formula, which by the deletion of
several terms, \¡ras analogous to the moment equation f or the one

primary grôup. Chastang suggested that a solution similar to
the solution of the sinple problem would be an approximation for
the two stream model. He stated that the deleted terms r^rere
rcomparatively sma1lr but admits that the approximations 'rfail
however, to give a better accuracy then the approximate method

of R.I. !ùilkinson,l'He suggests they may be used to determine the

dec.omposition of the total overflow stream into its components,

but does not investigate thís idea any further.

Neal [16], investigated a grading system in which t\^/o or more

streams of overflow traffic r{ere recombined (Figure l.7a). He

agaín uses a generati-ng function to obtain equations involving
binornial moments. IIe Ëhen relaxes Èhe constraint on the main

equation to allow lTt to go to infinity and by applying a second

generating function obtains a partial differential equaEion,

which is solved in terms of the o-polynomíals and some unknown

constants. The number of unknornrns corresponds exactly to the

number of boundary equations and they are solved by introduction
of several more generating funetions. Neal does not obtain
explicit results but reduces Lhe order of the system from
(c+1) (dr+1) (dz+l) equations to (¿r+f) (dz+l) equations which

for his system is a reduction from about 500 to less than 36.

A second approach to this problem has been to obtain a computational
solution. This has been achieved by simulation on a computer 122f,
by solving the state or moment equations iterativeLy lI2J, and by

replacing the primary groups by Interrupted Poisson Process (Ipp)
models [9].
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CHAPTER 2

A MATHEMATICAI, MODEL

2.1 Definitions and Assumptions

The model investígated in thís thesis ís the two 0-D pair model,

descríbed in section 1.4 and illustrated in fig. L.4, withín two

primary groups Ñ1 and N2, a shared secondary group M and two

separate overflow groups L1 and L2. The state of the system at

any ínstant ¡¿ill be defined by the number of busy servers in
each group and denoted by the five dimensional vector

S = (Nr, Nz, M, Lr , Lz).

The following assumptions have been made in the model.

(a) Full avaílability condítions apply to all links.
(b) The system is in a state of equilibrium.
(c) Arrivals for the two O-D pairs occur independently,

and have Poisson distributions.
(d) All holding times through the system have independent

negative exponential distributions ¡¿ith unit mean.

(e) No more than one everit, that is an arrival or

departure of a call, can occur ín an arbitrarily
small time ínterval.

(f) Fína1 línks in each route are provided with
sufficient circuits to carry all calls which

are offered to them.

Poisson arrival rates have been assumed in the rnajority of models

of overflor,/ systems in which the number of subscribers connected

to each exchange ís large. Some papers have considered oÈher

distrÍbutions for the arrival rate; the binomial dístribution,
for example, is considered by Schehrer [23 ] and Harris and

Rubas tll l.

Negative exponential service times are also assumed in many

models. The unit mean can be obtained by a suitable scaling
of the arrival rate and holdíng time. This is done simply

for convenience and does not affect the validity of the model

in any way.
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AssumpÈion (e) is a dírect consequence of assumptions (c)

and (d), if in addition, the arríval rates and service times

are independent.

If there is hígh congestlon on a second link of a route then

one of the following assumptions is made. The call finding
a free junction on the first link of a route, but no free
junction on the second link will eíther be lost frour the

system or offered to the next choice route. The former

assumption corresponds to a zeto holding time, the latter
to a call overflowing from a link with a free junction.

Normally, (ín Australia, at least) the final links of second

and higher choice routes are dimensioned so that most of the

congestíon on the route will occur on the first link, and

hence assumption (f) is acceptable.

These six assumptions are cortrnonly made ín similar models,

although not always specifically stated, and are accepted

as being reasonable approximatÍ-ons to the real system.
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2.2 The state equations for the model

The state of the system is defined by the 5 dimensional

vector, S = (Nr , Nz, M, Lr , Lz) and has a probability
distributíon function defined b

f (nt ,fL2 ,llt ,.Ly ,.Lù = Pr {N 1=n ¡ ,Nz=flz ,1,/Fm ,L¡=.t-t ,Lz=Lz}

Since there can never be a negative number of busy servers
and the total number of prímary and secondary servers ís
fínite,

f (nt,fL2,ttt,.(-1 ,Lz) = O outside the range 0<r¿.<d., O<n<c

and Z, >0; i=\,2.
a

Under the assumption of statistícal equílibrium, the
probability of the system being in a particular state is
independent of time and hence no parameter involving tíme

appears in the probability function. The equations of
state are uniquely determined by the definition of f and

by the assumptions described in the previous section.

Consider a point in time, t, when the system is in state

so = (lLt rnz rffi rLt ,Lz) .

By assumption (e), in an arbitrari-ly snall time period, Àt,
only one event can occur, to first order. Hence the state
of the system at time t*Ât can be one of the following,

s I = (tt1+1 ,fr2 ,ffi rL, ,Lr)

"_ 1 = (nrl ,t'12 ,tfi r.L1 ,.L2)

s2 = (n¡rn2*I ,flrLtr.L2) and so on.

State s. differs from ss in thaÈ the jth pararneter is íncreased
J

by 1, and in s . the jth parameter has decreased by 1.
-J

The transítion from state ss to s1 corresponds to an arrival
in the first stream. If all servers in Nr are busy then an

arrival in the first stream would cause an increase in the

number of busy servers in group M, (so to s3), or if the

secondary group also had no free aervers an increase in the

number of busy servers in group [1 (so to s+). The probability
of a first stream arrival occuríng in that small time period
is arAt + o (At) . A simílar set of transitions occur for the

second stream.

(2.r)

(2.2>
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D

I

If a servíce group has x servers busy at time t, thenr since

all the service times have unit mean, the probability of any

particular server cornpleting his service is At. Hence, the

probabilíty that exactly one of the x servers completes a

service in the time interval is xAt + o (^t) , and this
corresponds to a transition, so ao "_j, for the group

corresponding to the jth parameter.

If the probabílity of being in state s at time t is denoted

by Pr{s;t} then the transítion equation for ss is

Pr{so;t*At} = Pr{s_r;t}'a¡Àt (N1 arrival)

+ Pr{s_r;t}'azAt (Ñ2 arrival)

+ Pr{sr;t}. (n1+1)At (lr/¡ departure)

* Pr{sz; t}. (/¿2+1)At (N2 departure)

* Pr{ss;t}. (nrrl)At (M departure)

* Pr{s+;t}.(¿r+1)At (L1 departure)
+ pr{ss ; t}' (Lz+t) At ( L, d"parture)

.| Pr{so ;t} (1- (a1*a2*ln1*n2lm'ÞLylLz)At) (no event)

+ o(Ât) (urore than one event) (2.3)

Equation (2.3) holds for s0, such that O<ní<d.-1, 0<r1<c-1,

X-.>0. (fnis equation, in fact, considers the probabílity of
finishing in state so after Àt, starting from the states
which are one step accessible from that state at tíme t.)

If Pr{so;t} is subtracted from both sides of (2.3) and then

both sides are divided by At, equation (2.3) yields

Pr { s o ; t+at }-Pr'þ¡{ = - (a ¡]¡a2rn 11n2#nil- 1*.(-2) pr ( s s ; r)---_-T.t
+ atPr{s_1;t} + a2Pr{s_r;t}

+ (,rr+1)Pr{sr;t} + (nz+1)Pr{sz;t}

+ (riFt-1)Pr{s3;t}

+ (¿r+l)Pr{sa ; t} + (Lz+l)Pr{s5 ; t}

* o(ar) Q.4).Ar
Under the assumption of statistical equilibrium Pr{s;t} = f(s)
and if At+O then

pr{so;t+Aq}-Pr{so:t} * dPr{so;t} = 0 and "ÍÀt) * O.Ar dË At
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i

Iherefore (2.4) becomes,

(a 1+a2+n 1+n2#nl.(-1*..Lz) f (nt ,n2 ,m ,.Ly ,.L2)

= ê I f (nrl ,fL2 ,lll ,.{-¡ ,Lz) * a2f (ny ,fLz-l ,m r.L1 ,.t 2)

+ (/¿l+1) f (n1¡l,tL2,nt,Lt,Lz) + (nz+I)1(nt,rL2.}I,m,.L1,.L2)

+ (/n-F1) f.(n¡ ,n2,w*1,.L1,.L2)

+ (¿l+1) f.(n1,n2,ttt,.L¡*l,Lz'j + (Lz+t)f(n1,n2,fr ,Lt,Lztl) (2.5a)

and this holds for O<nr<d., O<n-(c-I , L.>O; i=1,2.

The boundary equations corresponding to states in which one or

more of the service groups has no free servers can be derived

in a símiLar way. In order to sirnplify these equations, the

abbreviation f.(f¿) will be used, to indicate that the jth
J

parameter of s9 has been changed to l¿. For example,

f t(nrl) = f (nr-1,trz,ffi ,Lt,Lr)

f + 
, 

s (h r ,lzù = f (n, ,n, ,fr ,Þr ,lz2) and so on

and

f = f (nt ,nz ,ffi rLt ,Lz) .

In addition, Ëhe unsubscripted terms a, IL antd ,L wiLL be used to
indicate the suur of the corresponding two parameters, for exarnple

a = al * aZ.

For tt1 = dl, flz < dz, fi ( C,

(a+n+rn+.L)f

= âtf t(nt-l) t a2f2@z-I)

4 a1f a(m-1) + (n2+l)f 2(n2+I)

+ (rFFl)f 3 (m-t-l)

+ (¿r+l)f 
'+(¿r+1) 

+ (L2+t) f s (Zz+1). (2.5b)

For n1 ( dt, flz = dz, m 1 c,

(a+n+rn+L)f

= alf I (nr-l) * a2f2@z-l)

+ (nr+1)f t (n1+1) + a2fg (m-1)

+ (r7r.t-I)f3(ftl1)

+ (¿r+l)f ,. (zr+1) + (I-2+I)f sQ-z+I). (2.5c)

ti.€
I

\

ì.
i

{

i
1

r'.
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ìf'
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I

I

4
i,
-l

t'
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For lull = dt, lllz = dz, fll 1 c,

(a+n+n+.L)f = arfr(nl-l) * azf.z(nz-l)

+ alf:(m-I) + azfg(m-1)

+ (n*1)f 3 (íFl-l)

+ (¿r+1)f ,,(¿r+1) + (L2+1,)f sQ-z+L).

Eor lL¡ ( dr, Wz < dz, lfl = c,

(a+n+n+,L)f = arf r (nr-l) * a2f 2@z-l)

+ (nr+l)f 1(n1+1) + (n2+I)12(nz+I)

+ (¿r+1)f 4(¿r+1) + (L2+I)f sQ-2+L).

For lrtl = dt, nz < dz, lfl = c,

(a+n+m+,L)f = alf r(/¿t-l) * a2Í2@2-I)

+ arfg(m-1) + (n2+1)f2(nz+l)

* a¡f 4 (Zr-1)

+ (¿r+1) f 4Q-:'+r) + (I-2+L)f 4Q-2+t) .

Eor n¡ ( dt, tlLz = dz, lfl = c,

(a+n+n+,L)f = alf ¡(n¡-1) t a2f 2@z-I)
+ (r¿r+1)fr(r¿r+1) + a2fs(m-1)

+ a2fs (Lz-l)

+ (¿r+1)f4(¿r+1) + (Lz+I)f s(Lz+l).

For n1 = dl , flz = dz, lfl = c,

(a+n++t+.L)f = arf r(r¿r-1) + azfz(nz-l)

+ arfg(n-1) + a2fs(m-1)

* arfr(Zr-1) * azfs (Lz-I)

+ (¿r+1)f q (¿r+1) + (L2+1,)f s (¿2+1).

The state equations described in (2.5) are valid for all values

of 'Lt, O, Lz > 0 and fL¡, fL2, lfl must also be non zeto, as well
as satisfying the appropriate conditions, r¿hich precede each

equation.

(2. sd)

(2.5e)

(2.sf)

(2.5e)

(2. sh)
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Although some expressions may be siurplified (e.g.2.5h) by
using ay1.a2 = a, they have been left in the unsimplified
form to lllustrate the changes which occur in the equations,
as each variable reaches its upper lirnit.

These eighÈ equations represent an inflnite system since
both L1 and Lz are unlinited groups. The nodel can be

slnplífied by consldering an equivalenÈ system of equatíons
in which the relationships between the various states of
the system are descríbed ín terms of the binomía1 moments

of L1 and L2.
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2.3 The s stem of moment uations

_L

Proof:
The following identity holds for h>L>O,

,tr, = (ir)+f
.l¿+t. X-= (i-) -E*t(

Hence, the L.H. S. of (2.7) = Lh(Ð (l) l¿tr tl¿) (

The binomial moments of L1 and L2, ãre defíned by

Br-, 
,.Lr(,lt 'tLz 'm) = t rît, urît, :t1" 

'l:) 
r (r¿r 

't/12 'ttt 'l¿, 'l¿,)

for O < n, I d., 0 < m < c, L. > 0
l- l_ l-

= 0 otherwise.

Equations ínvolving these moments can be derived from (2.5)
using the following steps:

(1) change the dunmy variables Lt, Lz to
lz7 and lz2.

(2) multiply the equatíons by ,tr'r rl:, .

(3) sum the equations over the ranges of l¿t

and, lz2, (narnely , l^ , i^ I and símplify.' hfLt Þz=L,

The performance of step (3) is facilitated by use of the
following lemmas.

Lemma I
For a sufficiently well behaved function h(f¿) defined on the
non negative integers

ni=rttn(rù-(h+tltrf 
fz+rI Ì ffl

î n<alrb.
[¿=I- L

(2.6)

(2.7)

l¿+t
L).

I

t

I
i;

,å,

I
.t

I

æ+T
l¿=L+L

- i=r<a*r)h(r¿+t) 
t(ir) - h'

= .Lh(L) <Lr> * 
b=iL*r!n(Ð 

(l)

6h- 
A=Lz*tÞn{la) 

(i) +

= t ,Tt&) (l)

= R"H. S. of (2.1)

h
)

ó
T

l¿=L+l

t-

l¿+t
x-

I
t

l¿

-,ti

I

Lt,(l¿) (
L

)l
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Lenna 2:
ó
T
=L

æ
T

t) ( l¿2

I-2 ) f ,*¡ (l¿r,l¿2-l)
L x-

b(
l¿l¿ 22

= B, , (ntrn2rm) + BD o .(ntrflzrfil)Ll , L2 Ll ,L2- L

And a simílar relationship holds for f 4,5(fzt-f ,l¿z).

Proof:

Using the identíty
,Lr=r'itr.rtri

the L.H.S. of (2.8) =
@t
=L" x,

l¿ t) ( l¿z-I
L2 ) f ,*,s (f¿ t ,lzz-I)

(2 .8)

)

æ+T
lzfLt

æ
T
=L

i
,=L

æI
,=L

l¿ lzzI

ø,î=z,rl;> <11-i) r'.¡ (r¿r ,t¿z-r)

noï- r,- r'li"L," u' s (¿ t' t¿)
t¿

æ
T+

t¿

t¿t )( )f 4,s (¿t,l¿)
tz¡.Lr-I Lt

BL, 
,x-r(tLt 'tlz 'm) * BL, 

,r-r-r(nt 'nz 'm)

( l¿

,Lz-L

= ar II ,l:r,{

= R.H.S. of (2.8).

The sirnplification of the first summation term uses the

def initior o, U¿, 
,.(-r(nr,tL2,ttt) 

anð, ,nlt, = O.

Abbreviations for BLr,Lr(ftt,nz,m) will be used to sinplify the

neür system of equations which will be obtaíned.

B(, , , ) will represent BLr,Lr(tL1 ,n2,m)

B (x , , '¡ = B Lr ,Lr(* ,rLz ,ftt)

B(,,y) = u.(,r,.(_r(*r,tlz,y)

urr(r, r) = urrLr(nt rftz rm) and so on'

Application of the steps described above to (2.5a) yields,
(withII= i i )' l¿r=[, þr=f2' '

(a+n+m)rr(tl) (
l¿2

Lz )r + rx rlirrl:)hrr + ztrf;\>rf;'>d,r

t) (
Il:rtr(r¿r-t) * u, LL(L l:r t,(nr- 1)
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+ (r¿r+1) ,rrf;irrl'rrr(nr+t) + (nz+r) rr <!'l r
l¿2

'(.2
)f 2 @2+r)

+ (nFFl) rr(fr > (;r>f3 (nÈFl)

+ ll qfz,+r r rl' r rl, > t u(f¿ l+t ) + ll lfzr+r r rlr, ff;, > r, (¿ r+t) .

Using the def inition o, ULr,.[-"(^r,fLz,Wt) and Lemma 1, this
simplifies to

(a+n+n+.L)B(,,,) = arB(nl-l,,) * a2B(,nz-I,)

+ (n1+1)B(n1+1,,) * (,,r2+1)B(,n2+I,)

+ (m+1)B(,,ftt-l).

Equation (2.9a) is valid lor l,L1 < dr, tLz 1dz and fi ( q, (and

all five variables, (ntrfl2rtfi,.L1 , and Zz) urust be non negative
integers) .

The boundary conditions can be represenËed in terms of the
bi-nomíal moments and these equations can be obtained from

the state equations analogously to (2.9a). Lemma 2 ís used

in the derivati-on of equations (2.9f , g and h) .

Fornl=dlrnz<dzrffi1c,

(a+n+m+L)B(,,,) = arB(nrl,,) * a2B(,n2-I,)

+ arB(,,m-l) + (n2+l)B(,n2*I,)

+ (rÈ1)B(, ,r4-r-1) .

For n1 ( dl, flz = dz, ffi 1c,

(a+n+tn+.L)B(,,,) = arB(¡,¿r-1,,) * a2B(,n2-I,)

+ (nr+l)s(/rr+t,,) * azB(,,m-I)

+ (n4+1)B(,,n+1).

For /1¡ = dt, fLz = d2, llt ( C,

(a+n+n+,L)B(,,,) = arB(nrI,,) * a2B(,n2-L,)

* a1B(,,m-1) + a2B(r,n-1)

+ (ftr-l)B(,,n+1).

For14 1 1 d1 ,lL2 1d2,m = c,

(a+n+n+.L)B(,,,) = arB(nrl,,) * azB(,n2-I,)

+ (r,r1+1)B(/¿l*1,,) * (nz+t)g(,nz+1,).

(2.9a)

(2.eb)

(2.9c)

(2.ed)

(2.9e)
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For l,ù1 = dl, l/Lz < dz, lfl = c,

(a+n++n+.L)B(,,,) = arB(nr-1,,) * azB(,nz-I,)

* a1B (,,ffi-l) + (n2+1)B(, n2+L,)

* a1B(,,,)

+ arBzr-1, (,,,) '

For nr < dt, fLz = dz, f[I = c,

(a+n+n+.L)B(,,,) = ar¡(nrl,,) * azB(,n2-L,)

+ (/rr+1)B(nûI,,) * azB(,,fl-1)

+ a2B(,,,)

+ a2B, Lz-I(,, , ) .

For lt1 = dr, fL2 = d2, lll = c,

(a+nf+r¡+L)B(,,,) = arB(nrl,,) * a2B(,n2-I,)

+ arB(, ,m-1) * a2B(, ,rn-1)

+ arB(rrr) + azB(,rr)

+ alB¿r-rr("') * a2B'Lz-r ("')'

Once agaín, these equations could have been siurplified but only
at the expense of showing the patterns of changes.

Equations (2.9) describe a system of sinple recursive equations

in Z1 and .L2, whereas the state equations (2.5) are quadratic
recursive equations. The transformation has rremovedt the

terms involvíng (21+1) and (X-r+t> .

If the moments are suffDed over all values of lztl , I/12 aîd fll then

the result, denoted by B (Lt ,.Lr.) 
i"

(2.er)

(2.ec)

(2 . eh)

dr d2 c -B(.(-r,x-,, = r,!; ^r'=i rio nrîur r,Tr"'l:"L:

tr ri=r, 6"i=tr1(|"'n:) 
Pr {r'' =l¿ ¡'L2=Þ2}

) f (nr ,fL2 ,ltt,l¿t ,l¿r)

L2
x-2

= Er (!,) ( )1. (2. 10)
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Furthermore, if equations (2.9) are summed over all values

of (ttlt,lLz and m) the result gives an alternate exPression

f or B (Lt 'Lz' ' 
namelY

d2
(LiI-r)u(¿, 

,Lr.) 
= 

^rnrr=o 
u¿r-, 

,.Lr(d!,tr2,c)
dr

* u" 

^rlo 
B1.-, 

,x-r-, 
(nr 

'dz ' 
c) '

The derivation of (2.11) is gíven ín Appendix A. The two

equations (2.10) and (2.11) lead to expressions for the means,

variances and covaríances of the overflow streams ín terms of

the bínomial moments since

mr = E[L1J = B(1,0)

rn2 = E[L2] = B(0,1)

vr=E[Lî]-E[Lr]2

= zur!-r:j!r:Ð-l + rtllJ - e[11J2

= 2 B(2,0) * u(r,o) - u'(r,o)

v2 = 2 u(o,r) * u(0,1) - u'(o,r)

cov = ¡[Lrlz ] - n[lr ]'n[lz ]

= u(1,1) - u(t,o)'u(o,r)'

Therefore by (2.L2) and (2.11) the five overflov¡ statistics can

be calculated if the system of equations , (2.9) , ean be solved

for (Lt,Lz) equal to the values (0,0), (0,1) and (1,0).

The equatíons (2.9), for fixed values of .L1 and .L2, involve

¡=(dr*1) (d2+1) (c+l) unknoums, namely the binomial moments.

There are exactly the same number of equations ín the system'

and for (!¿,.L2) not equal to (0,0) the equations are linearly
independent. hrhen 21=22=0, (2.11) reduces to the identity 0=0,

indicatíng a linearly dependent relationship between the

equatíons (2.9) in this case. However,

uo,o('r,tlLz,ttt) = 
nrEo brio 

t(ttt,tlz,m,lz1|,z2)

(z.l¡

(2 . 12)

= Pr{N1=n ! r$2=lLzrM=m}. (2.13)
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Hence, there is an additional equation which the moments must

satisfy for this case, namely the normalising equation,
d1 d2 c
I I I B^ ^(/11,n2,m) = 1.

n1=O nr=Q m=O uru

If any one of the equations Ín (2.9) is replaced by (2.I4) then

there are, again, exactly R linearly independent equations which

the BOrO(rt ,t/Lzrnt) moments must satisfy. Therefore for the three
values of .L1 and.L2 that are of interest (and, in fact any values)
the moments can be determined uniquely by solving three sets of
linearly independent equations, and hence the statistics of
(2.L2) can be obtained.

Since the equatíons (2.9) are simple recursive with respect to
!,¡ alad .L2 , and the moments are zero when .L1 or !-2 is negative,
the equations must first be solved for (.L1 ,L2) = (0,0) and

then f or (X,t,.Lz) = (0,1) and (1,0) .

Transformations of a similar nature have been used in many

other papers. Usually they are affected using generating
functi-ons. Neal [16] uses the bivari-ate bínomial mornent

generating function,

B(m,nr,tLzixr,xz) =^ î ^ î r (m,rlt,tlLz,LL,L) (l+xr¡¿l (t-rxr)L2 .
Lt=O t-z=O

Riordan l27l arLd Chastang [4] use whar they eall factorial
moment exponential generating functions which are in fact the
same functions as Neal uses, defined in terms of the appropriate
state probabilities, namely

vM(...,t) = I f(...n)(1+t)
n=O

y may be infinite or finite, and f and M may have two or three
variables, but in essence the methods are the same. The

transformations in these three papers could all have been

obtained by the simpler method used in this model, without
introducing generating functions.

A similar approach was used by Schehrer 124) for a simple
overflov¡ system, that is one with a single primary group,
using factorial moments, that is

u* (x) = i^ {})r: p (x) .ï x=0
He considers both infinite and finite secondary group models,

and calculates higher order moments of the overflow distribution.

(2 . 14)

n
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Ihe transformations not only reduce the system from quadratic

recursive to simple recursive in Z¡ and .L2, but also simplify
the calculation of the statistics. For example, the formula

for Èhe mean in terms of the state probabíliÈies is
dl d2 c _

E[L'] = I
hr=o *"!o ^!, trio zrio'('f 

(n1'rL2'ttt'L1'L2)

and in fact all the moments are defined in Èerms of infiniÈe
sums. The equívalenÈ expressions using the bínonial moments

(2.12) and (2.11) are all finite sums, and in each tetm the

surnmatíon ís over one varíable only.

Higher moments of the distribution of Lr and L2 coul-d be

found, íf desired, by solving (2.9) recursively for the

appropríate values of. ,L1 and .L2.
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CHAPTER 3

ITERATIVE SOLUTION OF THE MODEL

3.1 Matrix formulation of the problem

The system of equations (2.9) has a unique solution sÍnce there
are R = (dl+1) (d2+1) (c+l) linearly independent equations and

the same nurnber of variables. This system can be expressed as

a single matrix equation,

DLr,L, Þ!-r,.(-, = EL1,.L2 (3 ' l)

where DLr 
rL, 

is an RxR matrix and both the vectors have R

elements. The vector ÞLr,L, consists of the moments

BLr,x-r("') ^no E.Lr r.(-, 
Lnuolt"" u¿r- r,Lr("') and BZr,Lz-r("')'

It will be necessary to deviate slightly from standard matrix
notati-on. The subscripts, Lt and .L2 index a 2 parameter farnily
of matrices (vectors) rather than indícating particular elements

of a given matrix (vector).

Capital letters will still be used to indicate matrices and a

lor¿er case letter, with a tilde underneath wíll denote a vector.
The elements of the matrices and vectors will be indicated in
parenthesis and the tilde will be removed from the vector, for
example

xt ,0 
i" the matrix X when h = L, Lz = O,

x(i) is the ith element of the vecËor x, and

X(í,j) is the element of X in the ith row and jth column.

The vecto, ÞLr,L" riIL have as íts elements, the binomial moments.

It is necessary to order these moments, which have a natural
three dimensional representation, into a one dimensional vector.
If B0 o (nt,fLz,ttt) is the rth element of b, D , that isLl ¡L2 -L]- ,Lz'

bo o (r) =8, , (nt,ft2,rít)
LL ¡L2 Ll ,L2

then r is defined by

r = (r¿r+1) + n2(dr+1) + rn(dr+t) (d2+1) (3.2)



31.

This defínition ensures a unique arrangement of the binomial
moments and the three parameters (ntrflz,Wl) of the moments are
arranged in the order,

(0,0,0), (1,0,0),(2,0,0),..., (dr,0,0),(0,1,0), (1,1,0),...,
(dr,1,0), (0 ,2,O),... r (dl,dz,O), (0,0,1), (1,0,1),..., (dr,dz,c).

The uniqueness of r can be verified as follows - suppose there
are tr{o values of (vltrnzrn) which correspond to the same value
of r, namely (xry,z) and (xt,y'rz,)

(x-x') + (y-y') (dr+l) * (z-z') (dr+t) (d2+1) = O

Suppose x # xf and without loss of generality x ) xr. (The

case x = xt is dealt with later in the proof.) Division of
the equation by (dr+1), yields

*-v I

ä;Ti + (Y-Yt) + (z-zr) (dz+l) = o.

Since x, X' , y, yt, z, z', dt and d.2 are all int (x-xt)
esers , iFf

is also integral and hence (x-xt) i_s a nultiple of (dl+l).

But 0 < xr < x < dr and therefore (x-xt) < d1+1 .

Ilence (x-xt) = 0 is the only integer solution.

Therefore

(y-y') + (z-z') (¿z+1) = 0

Repeating the argument yields y = yr and hence z = zt, thus
proving the definitbn of r is unique.

The vecto' \I-t,.(-z contains moments of the tot* u¿r- l,.Lr(^r,tLz,ttt)
"td t¿r,X,z-IQ'I1 ,n2,rn) and hence is a function of ÞLr_r,L, ^nd
Þ.{¿,.(-r-t. Theref ore ÞLr,.L, can be expressed as a function of
Þ.Lr-r,L, ^nd ÞI-r,x-r-r' since Þ-r,.(-, "nd Þzr,-r "t" zero vectors'
for all values of L1 and .L2, the vectors bLrrL, can be calculated
recursívely starting with OO,O. Note that the additional
constraina,lrb',6(r) = 1 must be used to obtain a unique
solution for bo 

,oì wher< À) =Cc+r )(al , +t)( al r+ t ).
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3.2 The structure of the coefficient matrix

For simplicity the subscripts .Ly and L2 wiII be omitted in this
section.

The definition of þ together with equations (2.9) uníquely
determine the coefficient matrix D. The matrix is sparse and

there are at most seven non zero elements in any ror¡¡. These

elements are located in seven bands parallel to the diagonal
and this gives D a hÍghly-structured form.

The coefficient of B(,,,) appears as the diagonal element,
D(r,r) . The element D(r,r-1) is the coefficient of ø(nr|,,) ,

D(r,r-(dl+1)) is the coefficient of B(,nz-I,) and the coeffícient
of B(,,m-I) is located in D(r-(dl+t)(d2+1)). The coefficienrs
of B(n1+1,,), B(,nz+I,) and B(,,m+1) are located in D(rrr*l),
D(r,r*(dr+f )) and D(r,r*(dt+1) (d2+1) ) respecrively.

The matrix may be considered as a hierarchy of tridiagonal
matrices. At the highest level the matrix D is partitioned
ínto square matrices of size (dl+1) (d2+1). All these sub-
matrices ate zexo matrices except Ëhe rdiagonalt uatrices and

those adjacent to the diagonal, as follows

D- Qo uo 0

s Qr U1

QzS U2

s Q.-t uc-l
0 SO 'c (3.3)

(3.4)

(3.s)

The matrices S and U, are diagonal.

u * = -(rn+l) r(¿r+t) (d2+t) 3 m=0, 1, ",c-1

where I ís the identity matrix of order x.x

The diagonal elements of S, are defíned by

S(s, s) = -.rôit - 
"rOUn:

where s = (n1*1) + nz(dz+l) and ô
d
n

is the Kronecker delta.
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The matrices

in which the

%

Q, are themselves tridiagonal at the next level,
relementst are square matrices of order (dl+f).

Qo,t
s1

'0,,n
Qr,,
s?

u ,,^
Qr,^

0

d'2-I rm

dz ,flt

q

(3.6 )

(3.7)

(3 .8)

(3.e)

(3. 10)

(3. 1 t)

0

U
2rffi

S 1 Qdr-l ,r u

S1 a

and Sr = -ael (dr+1)'

The matrices Q are again tridiagonal.
n2 rm

a
I1LZ ,lll

qorn2rm -l

for m=0r1r...rc.

The matrices 51 and U^"r^

u 

^" 
,^ = - (n2*l) r 

(¿ r+t )

are again diagonal with

i lL2 = 0r1r.., dz-l
m = 0r1r.., c

-2

qdr-1 
rfl2rftt -dr

= ar * a2 * t/\ + n2 + m + 14 + I-z

- uÍì u; ", - uu*i ufi ",.

0

-At qL,n2,m

-al
0 -al

for fL2 = 0r1r.. rd and m = 0r1r.. rc.

Finally,

d1 ,l/L2 ,lll

q
l/L¡ ,ltL2 ,lll

The vectot gLr,L, ít defined by

B!-,,,.(-r(r) = uÍl u; ", b¿r-r ,Lrk) * oo.:ôfi "z bLr,L"-rG)

where r is defined by (3.2).

I^Ihen 21 = .L2 = 0 the last row of D is replaced by a row of ones

and the last element of g (which is in fact a zero vector) by

a one. This row then corresponds to the normalísing constraint,
d1 dzc

nrlo n 
L=orlo uo 

,g 
(/tt 

'tL2 'ttl)=l '
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The elements of the coefficient matrix, rrith its highly structural
form and spareness, can be simply and efficiently calculated in
a computer program and is highly suitable for a computational

solution of equation (3.1).
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3.3 Some iterative solution techniques

Theoretically the vector þ can be obtained by

-1
Þ = D g.

This involves calculating the inverse of the matríx D, but
since thís matrix tends to be large, and the inverse when

calculated is no longer sparse, the solution is not very
practical. However, there are several iterative techniques

which can be used to solve the equation

DÞ = g.

The equation can be rewrítten in the form

(r-A)Þ = [,
which can be conveniently effected by dividing each row and

the corresponding element of g by the diagonal element.

Rearrangement of this equation gives

Þ=AÞ+!.
If an initial estimate Þo i" chosen then successive estimates

are calculated iteratively by

b(Í¿+1)=nÞþ+[

until a specific error condiÈíon is fulfilled. For example,

the l¿th and (l¿+l)th estimate of each elemenÈ differ by less
than 10-6 that is

(f¿+1) (r) _ ¡þ
r

max lu

lo(r,r) | >

(') 
I

-6<10

(3. 12)

(3. 13)

(3. r4)

This iterative techníque is known as the Jacobi Method (see

Faddeeva t 8 l). The criteríon for convergence of this
procedure, for any arbitrary initíal estimate, ís that all
eígenvalues of A lie within the unit circle, or equívalently
the spectral radius ís less than one. Generally, for iterative
techniques, the tconvergence criterion is of theoretical
interest only, since finding the spectral radius of the

iteration matrix is usually of the same order of diffículty
as solvíng the original equationsr, to quote from Cooperrs

book [ 6 ]. A sufficient condition for convergence ís strict
diagonal dominance in the coefficient matrix D. That is

Rt
s#r
s=1

lo(r,s) l. (3.ls)
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ThÍs conditi-on is not satisfied but the diagonal elements
are considerably larger in absolute value than the other
elements in the rorrs, and this suggests that convergence

will occur. In fact, in every case considered convergence

has occurred and for practical purposes Ít will be assumed

that this will always happen.

An improvement on the Jacobi method ís a procedure commonly

known as Gauss-Siedel iteration, although the names of
Liebmann and Nekrasov are also associated with the method

(see Cooper t 6 l) . rn this meËhod the elements of bl¿+l

already obtained are used to calculate the ..r"inir] elements
of the vector. The matrix A may be partitioned into a lower
triangular matrix T, and an upper tríangular matrÍx TU: that
is

[= +Ttl
U

Equation (3.13) would then become

o 
(fz+t¡

Since the elements of o(fz+t¡ are calculaÈed in the order I,2,
3,...R, at any stage oi an. calculation all the values of b

whích have a non zero coefficient in T, have already been

found for the (f¿+l)th estimate. Since these values are
presumably more accurate than the corresponding kth estimates,
it is sensible to use them in the calculation of succeeding
elements, that is

o 
(fz+t¡ (fz+t¡ +ruÞ l¿=J-bL-

=rrÞh+ruþþ+Í

f+ (3.16)

The criterion for convergence of Ëhis procedure is that the
spectral radius of (I-TL)-ITU ," less than unity, again of
theoretical interest only.

Gauss-siedel iteratíon can be accelerated by a technique known

as successive overrelaxatíon (abbrevíated to s.o.R.). The new

estimate O(lz+t¡ is obtained from a weighted mean of the old-h
estimate b'" and the (l¿+t)th estimate that would have been
obtained J"irrg Gauss-Si-edel iÈeration. The S.O.R. formula is

o(fz+t¡ - o(rl o(fz+t¡ + ru Þh + r) + (r-0) Þh. (3. 17)
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The parameter 0 is known as the S.O.R. constant. It was found

that using 0 = 1.2 resulted ín a IO-207" improvement in the
convergence rate. For example, the vector þOrO r"u calculated
by the three methods for the case when dr = 3, dz = 4, c = 5,
at = 6 and a2 = 9, with the stopping condition of (3.14).
The Jacobí method required 113 iterations before convergence.
Since there were only 120 elements in the vector this is not
a significant improvement over the straightforward method of
inverting the coefficient matrix OO,O. However, for the
Gauss-Siedel method only 27 iterations were needed and with
an S.O.R. constant of 1.2 this was reduced to 24 iterations.
The initial estimate was the runíformr vector with all elements

Iset to fZO.

It may be noted that ordinary Gauss-Siedel iteration is obtained
when 0 = l. There are many unansr^/ered questions about

convergence in the S.O.R. method, and Cooper suggests that rthe

interested reader should see Varga' 25 f. Once again it is of
theoretical interest on1y, since in the cases considered the
S.O.R. technique r¡/as more efficient than ordinary Gauss-Siedel
iteration.

It was suggested by Benjaroin [ 1J, that the corivergence of the
S.0.R. techníque could be accelerated even more by using a

variable value of 0. A large value of 0 is used in the initial
steps to rshake upr the system, that is cause a large variation
ín successive estímates of Þ. Since the process will diverge
for 0 > 2 a rlarge'value would, for example, be I.9 or 1.95.
Inlith a value of 0 this large the estimates may tovershootf the
true value of b at each step and therefore oscillate about this
true value. rf the average of two successive estimates of b is
then calculated, this average should be close to the true value.

rt can be shown that using a value 0/2 Íor one iteratíon (the h.th)
is equivalent to averaging the l¿th and the f¿+tttr estimates which
would be calculated using the value of 0.

,"(Þ'*'* 
Þþ) = L4{o(r, 

Þh*t + ru Þþ) + (1-0) ¡b + ¡þ}

T"
q
2

+(1-þp'1*ruÞþ)
Þ

b*

l¿+
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The value Þ* should be a good tinitialr estimate to use in
succeeding iterations with a smaller, constant, value of 0.

Hence the process may be descrlbed by the following algorithm
(1) choose an initial estímat. Þ0.
(2) for 5 íterations of S.O.R. method use

0 = 0- (a large value of 0).
L

(3) for one iteration use 0 = 0"/2.
(4) for remaining iteratíons use 0 = 00,

some value which gives a good convergence

rat.e.

In the S.O.R. program which was used to calculated the tables
in Appendíx 4,0, = 1.9 and 0s = 1.4. Mr. Benjamin further
suggested that íf convergence becomes rslor¿r in step (4),
steps (2) and (3) be repeated, but this was not incorporated
into the program, since the convergence rate with standard
S.O.R. was good, the improvement using the algorithm was slight
and further rshaking upr di-d not seem líkely to give sígnificant
improvement.

A díagranatic representation of the íteratíve techniques is
given in Figure 3.1. It is meant only to illustrate the
comparative convergence rates and is not necessarily a true
representation of any actual problem. The díagram may be

considered to represent a projection of the successive estiuates
h

Þ'' onto the (b(1),b(2)) plane.
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b(2>

+
3

o
T

*

+
b3

?or,
o + I

Initial estimate

True value

kth estimate using Gauss-Siedel iteraÈfon
kth estínate using S.O,R. íteration
kth estímate using Benjaminrs iteration

þ* after 3 steps using Benjamints iteration

x
2

1
t3

1a

o

rQ
.T
ok
IK
+k
tr

b(1)

Figure 3.1 : Comparison of iterative methods.
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3.4 Some aspects of programming the algoríthms on a computer

Although the complete listing of the program which performs

the S.O.R. iteration is gi-ven in Appendix B, there are some

features worthy of special mention.

For a system with R = (dr+1) (d2+1) (c+1) states the array which

holds the values of the coefficient matrix would need R2 elements

The 120 x 120 matrix needed for the case described above,

(dl = 3, d2 = 4, c = 5) is a considerably large array, although

the size of the service groups is comparatively smaIl. However,

at most seven elements ín each ror¡/ are non-zero and these can

be stored in an R x 7 array, each column of the array corres-
ponding to one rdiagonal bandr. However, this still requires
considerable storage space and it was found that core space

r^ras more critical than processing time in limiting the size
of the systems which could be consídered.

The highly structured form of D, and hence A, allowed the

elements of each row of A to be calculated very quickly, and,

for each iteration of the algorithm, the non-zero elements

of each ro\¡/ \^rere calculated when required, \^rith the result
that the storage requírements \^7ere reduced to a I x 7 atray.
The vector f, size Rx l, also contained a majority of zero

elements. In fact all non-zero elements must be in the last
(dl+1) (d2+1) positions and only these elements of ! were

stored in the computer. The efficient storage of these two

quantiti-es has allowed systems with values of R up to 10,000

to be evaluated. All programs are written in FORTRAN for
CDC 6000 or Cyber series computers, and requíre less than

60000 (octal) words of central memory to compile and execute.

The acËua1 iterations are performed in a subroutine (SEID).

Since three applications of the algorithm are required, one

for each of the vectors Þ0,0, ÞO,l "rd þI,0, it is important
that various parameters and arrays are calculated before the

next use of the subroutine overwrites the arrays. The vector

IO,0 *."È first be calculated and this allor" Þ0,0 ao bu

obtained. Both !l,O "rd I0,, "r. functions of ÞO,g and must

be calculated before the next vectot, Þ0,1 i" obtained.
Similarly fi1 and fi2 must be calculated befo." Þ0,0 i" destroyed.
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4r.

The vecto. bO,1 can be obtained using !0,1 "rd this is used

to calculate v1 and the first term of cov. Finally, Þl,O
is used to calculate v2 and the second term of cov.

A t flowchart I showing the requírements and order of calculations
is gíven in Figure 3.2.
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CHAPTER 4

ANALYTIC SOLUTION OF A SPECIAL NETII]ORK

4.I Description of the network

In a telephone nethrork there may be some O-D pairs which do not

r^rarrant direct links, because of the low level of traf f ic
between the two exchanges. trrlhen two of these O-D pairs share

a common link on the first choice route, a símplified version
of the model is obtained (Figure 4.1). The traffic for the

tülo streams arrives with independent Poisson streams and the

other assumptions of section 2.1 apply. This network is
equivalent to the system nodelled in Chapter 2, when dr = 0

and dz = 0, and the computer program which solves the model

using the S.0.R. technique can still be applied.

Results from the computer program, in which dr and d2 were

set to zeto, were tabulated and graphed. It was noted that
the overflovr means \¡rere proportional to the arríval rates for
the particular streams and ín fact,

This formula is quite well kno¡^¡n and is a consequence of the
assumption of Poisson input. (fne sum of two independent

Poisson streams j-s itself Poisson with mean equal to the

sum of the means of the two component streams.) The total
overflow mean and variance are

m= a E (a)
c

and

v=aE (a) (I-aE (a) + a
c c c*l-a*aE (a)

c

m.=a.E(a)
11c'

(4. 1)

(4.2)

(4.3)

I

f

i,'

These trr/o equations are particular cases of equations (1 .2)
and (t.¡).

Comparison of (4.t¡ and (4.2¡ indicates a similar form for rhe

t\,/o means with one of the tar terms of m replaced by an ral t

in the expression for m- . That i-s, if the function (x,y) is
defíned by

m(x,y) = x E.(V)

then

m = m(a,a) and m. = m(a. ra).

:,
i,l
li
I

I

'4
T'

'l

(4 .4)
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Figure 4.I : No direct lÍnks in network
(a) Network representation;
(b) server system representatíon.
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rt seemed possible that there may be a sirnÍlar relationship
holding between v. and v. several different expressions
r¡rere evaluated, in which one or more tat terms in (4.3)
were replaced by t"rt terms and these expressions r¡/ere

compared with the value of v. calculated by the computer
program, for some different values of a¡, a2 and c. In all
cases there was rexactt (to the level of accuracy of the
iterative solution) agreement between the results from the
program and the formula

m.

v. = m.(1 - m. +-.-f )-Í i' i c*l-afm" (4. s)

This corresponds to v = v(a,a) and v = v(a ,a) for a function
l- l_

defined by

v (x, y) = * E"(v)(r - * E.(y) + A1-fo¡9). (4.6)

Use of the identity,

Var(x,Y) = Var(x) + Var(v) * 2 cov(X,y)

enable cov to be expressed explicitly by

cov = mz (-mr + 
"+il"+r) G.7)

or
cov = mr(-me + 

"+rl+m)' 
(4.8)

These two formulas are equivalent since

mla2 = ar.E^ (a).az = atmz
c

(This should be expected since cov(X,y) = cov(y,X).) A symmetric
expressíon can be obtained by taking the average of the two
formulas (4.7) and (4.8), namely

cov = %{tnz(-rnr + c+fl+",) + mr(-rnz * 
".r_Ï.]tr) 

(4.9)

This intuitive result for the variance of the individual overflow
streams' r¡ras derived analytically, followíng the rnethod of
Riordan I 2n. The formulas were first published in the second
Progress Report to the Australian TelecommunÍcations Commissíon
[19] and then in a paper presenËed at the gth rnternational
Teletraffic congress [2g]. They were later obtained by pearee

l17l, who used a completely different technique.
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The results can also be obtaÍned using a second rbinomialf

transformation similar to the transformation of (2.5) to (2.9>

and in fact can be obtained directly from the moment equations.
One or more of these techniques may be extended to give a

solutíon to the general model and consideration of three
different approaches gives some l-nsight into which of these
can most easily be applied to the more difficult problen.
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(4. 10)

(4. t ta)

(4.1lb)

(4. 12)

(4. tla)

Arthough the system, illustrated in Figure 4.1, is equívalent to
the general model of Chapter 2 with d¡ = d2 = e, the state
equations and moment equations will again be presented.

The state of the system is described by a three parameter vector
(t"trl,l,Lz) corresponding to the number of busy servers in the
three service groups, M, L1 and L2. The state probabilíty
function f is defÍned by

f. (m,Lt,Lz) = pr{M=mrL¡ =h,L2=fr}
for0<m<er.L.>O

= 0 otherwise.

The state equations for this system can be derived anarogously
to (2.5), and again are presented ín abbreviated form.

For,î<c

(a+nr.L)f = a f r (r¡-1) + (m+1) f r (nrrl)

+ (Zr+t)f2Q-ftt) + (X-z+L)f se-z+r)

and

(c+.L)f = a f1(c-1)

* atfz(,/-t-t) * azÍsQ-z-I)

+ (¿r+t)fz(LûD + e-2+r)fse-z+r).

The binomial moments are defíned by

B Lr,f,-r(m) =, 
rîr, trri=trr|i,,l:) r (m,t¿t,t¿r)

An equivalent system involving Èhe binonial moments can be
derived by a procedure similar to the derivarion of (2.5) .

Fortfl<c

(a+m+.L)B 
rr,.(_.(^) = ^ u.Lr,.Lr(^-r)

+ (m+I)B D ' 
(n+I) ,Lt,Lz

and

(c) =a BLr,Lr(c-1)(c+Z) nLt,Lz

* "lBzr- t,.LrG) * ^2BLz,zl-1(c) . (4. 13b)
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The quantiËy B (Lt,Lz, is defined by

ô
B (Lr,Lrl = 

,30 
u.(-r,.(-"(^)

= Et(f,r) {Lr"))

and summation of (4.13) for m=0,1r..rc yields

(LiLz)t (h,Lù = aLB.Lt-t,.LrG) + azB,Lt,.L"-rG) .

The expressions (2.L2) relating the overflow statistics to

B (!-, ,Lr) "tt valid f or this model '

These moment equations (4.13) can norir be solved by several
dífferent analytlc approaches. Íhe derivation presented in
the next section is an extension of the classical approach

of Riordan 1271.

(4. 14)

(4. 1s)
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4.3 Solution of the model by Riordanfs Method

If the constrain on fi ín (4.13a) is relaxed to allow fi to have

any non negative i-nteger value, Èhen ne\¡r equations and new

variables are introduced into the system. For each new

value of m > c a nehr variable BLr,!,r(nn+1) ís introduced and

defined in terms ot U.L.r,.Lr.(^) and Br, 
,L2(m-I). 

The j-nrroducrion

of these artifical variables does not affect the relatíonshíps
between the physícal moments corresponding ao U¿, 

,,Lr(^) 
for

m < c. If the extended solution can be solved and that
solution also satisfies the boundary condítion (4.13b) or

the normalising constraint in the case Z¡ = .Lz = 0, then it
is also a solution to the original, restricted, system of
equations.

For fíxed values of .Lt and,Lz the extended equation (4.13a) will
be transformed using the generating function

ß (t)
ooI

m=
B (m) t

0 Lt,Lz

The derivative of ß with respect to t is

dß
ãE uLr,Lr(') t

m 0< t < I (4. 16)

(4.17)

(4.18)

(4. le)

(4.20)

æ
= Lm m-I

n=0

BLr,Lr(m-r¡

Multiplication of (4.13a) by tm and sunmation yields,

æ
(a+Z) I B (m)tm + . i u.Lr,.Lr(') tm-I

fi=0

m=0 Lt,L,

=at
oo
L

m

m-It
m=O

+
oo

I (rft¡l) B
tî=0

and this sirnplifies

(a+'L)'ß + t 4Ê
dr

'Lt,'Lz

to the di-fferentía1 equation,

= at.ß +S.'dt

(n¡+1) tm

Rearrangement of (4.19) gíves

dß=
dr

which has

ß (r)

(a +å)ß

the solution
at

= ß(0) -:----=
( r_r)¿

(4.21)



A second generating function o(t) is considered.

Lt,L, (m) mus r
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(4.22)

(4.23a)

(4.23b)

(4.23c)

(4.23d)

(4.2q>

(4.2s)

(4.26>

æo(t) = I
m=O

aL@)t
at

e

(t-r)L
m

The o-polynomials or(m), which are atrribured to NyquisÈ in
127f, satísfy a number of recurrence relaËions, includíng

o LØ) = o L*t 
(m) - o r*r(m-I) ,

m oLØ) = a oU(m-L) + L or*r(m-L),

LoL*r,(m) = (n+L-a) or(m) * ^ol_'(m),
and

(þ) .

Substitution of (4.22¡ in (4.21) yíelds

ß(r) = ß(o) i or(m) tm
tfl=0

and equating powers of t in this equation on (4.16) yields

m

o L*tØ) = 
ulo 

o t

BLr,Lr(n) = ß(o) or(m)'

Substítution of t=0 in (4.16) with the convention Ofl = o0
m

implies

ß(0) = B, , (0).
Ll tL2

trlhen Lt = .l-z = 0 the solution (4.25) for B

satisfy the normalísíng constraint

m=0 Lt,L, (rn) = t

Therefore

c
ß(0)Ioe(n)=1

llt=O

and by (4.23d)

c
XB

ß(0) = (4.27)



51.

Therefore

oo (c)
or (c)

!ühen L= 0, o(t) = ""t and hence oo<ù : #

uo,o{") = (4.28)

(4.2s>

(4.30)

(4. 3 l)

hence

=f,, (a)
c

For .L > 0 the solution (4.25) must also satisfy the boundary

condition (4.13b), that is

or

(c+l-) BLr,.Lr(O) o¿(c) = ^ u!-r,Lr(o) or(c-r)

+ ar B¿r- t,Lr(o) or-r(c)

+ az BLt,Lz-r(o) o¿-r(c)

l(c+.L) or(c) - a or(c-r)l B¿r 
,Lr(O)

= [at 
".Lr-r,.L"(o) 

* ", BLr,Lz-L(O)] o¿-r(c)

But

(c+.(-) o r(c) - a or(e-l)

= (c+Z-a) or(c) + a(or(c) - oa(c-l))

= L o L*I(c) - ^ o L_L(n) + a o r_r(m)

- L or*r(c).

This result is obtaíned using (4.23c and a) and its substiÈution
into (4.31), gives a recursive fornula for ULr,Lr(O).
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8,,.r(t ) B,,o (6) Ç,(c)

Q , 3c¿,,(- o) E" ( c) Ç,( < )

ÇL(< )

q,Bo.o(c) t,(r)
6-L( c)

\-/\ts_¿(4)()tt'.)

cr--( (' ,,

fA,

q

L)

,+>leiq Ç-cr)la,(c)t ,.)
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ht
/i
iì

This recursíve formula to¡;eÈher with (4.30) and (4.25) allows
8,, , (n¡) to be cal-culated tor any valucs of .{.¡, .L2 and wt<c,ttrxz
in particular, Ur,O{.) and BO,1(c) which are needed to
calculate vl r V2 and cov. [The hígher moments of the over-
flow traffic can also be calculated using (4.15) by Èhe

recursive calculatlon of the appropriate binouríal moments

at m=c. ]

Hence

uo,o(o)' ff{S

,r,O{") = ", E.(") ffi
-f l'";fe

(4.32)

(4. 33)

Br,o(o) = ar

and

m¡
ü/

J?C

02 (c) = or (m)
c
1

lll=O

m-r
5.o

r-0 ri
c
ç

fi=0

c
-ç

m=0
(c+1-n)

m
a
m'.

Therefore,
oz (c)* or (c)

(c+l)
m

a
m

c
5'

fll=0

c
-aI

fû=0

c
ç

m=0

m
a
m'.

ca(r
fn=O

mca a.
W- c)

= (c*t) -
m

a
mT

=c*1-a+aE(a) c

c
ç

llt=O

=c+1-a*m.
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Hence

and similarly

uo,r{") = c+ffi'
Sfnce equations (2.L2) are valid for this model, use of (4.15),
(4.30) and (4.34) allows the overflow starisrics ro be

expressed explicitly, and the results confírrn the intuitive
formula.

tttl = ât E" (a)

lri2=âzE(e)
c

armìvl =-tm
I^7

f-m?

-- nr(l - n1 * a
c*1-a{r

ur,o{") = ã+å+, (4.34a)

(4. 34b)

(4. 3s)

)

.'2=rt2(1 -mz+;;ff"1*)

ry**#- mr il2cov =

= mr (-mz + ;;f;f,1_).
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4.4 Solution without the use of generatj-ng functions
EquatÍon (4.t:a¡ is simílar to (2.5) in rhar ir ís quadraric
recursive in lr. A second binomial transformation similar to
the one applied to (4.11) can be used ro simplify the model.
The equations r¿ill be expressed in a ner¡r seË of variables
pm,.(-¡,.L2. The subscripÈ notation indicates that a binomíal
transformation has been applied to the subscripted parameters.
(ttris is consistenÈ \,üith the notaÈtor U¿, 

,L2(m) 
.)

It ís logical to relax the constraint on n for (4.13a) and

allow fi to take any non negative int.eger value. This follows
from a similar relaxation in the generating function approach
and suggests that Qm,.(-t,.Lr. b" def íned by

ee .l¿Q^,x-r,L, = 
t!^('^> "Lr,.Lr(b)'

which is analogous to the definitíon of U¿, 
,.Lr(^). 

Ihe
binomíal transformation is achieved by replacement of the
dummy variables n by lz in (4.13a), multiplication of this

h
equation ¡V (n) and summation over the range, lz=ftt, ntiI ,
This leads formally to the equation

(þ-1) +

(4.36)

(4.37)

(4.38)

(4.3e)

l¿ lzæ
T (a+l¿+L) ( B (l¿) B

l¿=m m Lt rL, l¿=m m Lt,Lz

em,Lr,L, = T@; Po 
,.L1 ,.L2

where

(*)nr = x(x-1)(x-2)... (x+l-m)

+ 
n\^<þ+r"k' 

u ur,L,('+r)'

) )a
æ

_L

which simplifies, using lemmas I and 2, to

(a+m+.L)Q
ffir'L1 ,'L2

- ^ 
(Qm,Lt,L, * g t-L,.(-7,.L2)

or

Pm 
rL, ,.L2 m Pm-1,.(-¡ 

,.L2'

Equation (4.38) is sirnply recursive in m and in fact

m
a

a

x!-m!' (4 .40)
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However, the lemmas only apply to rsufficiently well-behaved
functionsr and when fi=O, (4.37) becomes

æt
Í¿=o

(a+lz+.L) uLr,Lr(Þ)
æ= I aB (þ- t)

l¿=o Lt,Lz

* 
nÏo(Í¿+1) 

BLr,[-r(iz+t¡

which simplifies to

toå=o 
"rr,2r(z) 

= o

which together wíth (4.39) irnplies eirher B

f or f¿=0, 1, . . . or ,L=O .

In fact, when (Lt,Lz) * (0,0) the series def ining pm,!-r,L2 is
divergent and the artifical variables 

.BLr,L"(nr) ; 
m>c are not

sufficiently well-behaved. (ttre generatíng functíon method

does not have this obstacle since the tfi facËor, for 0 < t < I,
is small enough to give a convergent seríes for ß(t).)
trthen this transformation is applied the values of U.Lr,Lrk)
obtained are

uo,o(") = E.(a)

Lt,Lz (f¿) = 0

(4 .4r>

(4 .42)

where

m

c*'l-a*.a. z

c!

ro, 
, 
(c) --

m

c
I

n=0

a
e

ca

m
a

These results are obtained using (4.+O), together wirh the
normalising constraint for .L=0, and the boundary equation
(4.13b) f.or .L=I. As expected from the previous discussion,
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UO,O{") agrees with the correct results obtained by the
generating function method, bur Ur,O{.) and BO,1(.) "r"
incorrect . (z should be E (a) . )

The failure of this method is due to the implicit
introduction of the artificial variables corresponding
to n>c. This extension is not only invalid but is also
unnecessary.

If the function pm,.(-1,.L2 is defined as a finite sum then the
introduction of artificial variables is avoided. That is

B (l¿) .Lt rL,

Substitution ín (4.43) for B (þ) givesLt,Lz

Qr,Lr,L, = 
ni^'ft'

Cæ
-\'s_LL

ttt,L1 ,{'2 |¿=m l¿ f Lt

(4 .43)

(4.44)

(4.4s)

p l¿z
) f (l¿ ,l¿ t ,l¿z)I-z

is in fact a trivariate binornial moment of

n,ir,rhr 
r":r,

and so pm,.(-7r.L2

ffi, Lt and .Lz.

It is convenient to use lemmas similar to Lemmas I and 2,
but these must be adapted for finite summation. If h(f¿) is
a function defined for f¿=Or1,.,rc, and H(n) is defined bych
H(nr) = 

¡rl'('^> 
nçt'¡ then the following results hold;

Lemma 1*

l¿.

d.,

Ic
LI¿

l¿=m
h (f¿)

c-
I (f¿+r) rk"(f¿+l) = m H(m) .(

Use of the identíÈy

l¿=m

Proof

leads to

(o;t)m

ET(n;t)
h(;)

+T
h4ilI ,h, h(t¿) l¿+t(i¿+I) ( )h (f¿+t)

m

+
m

c
I

c c
I

lz+I=mIL
L.H.S.=mh(m)(m

l¿)
1

ct
=lYl*'

+
b+t

t¿

h,((

mI

rn

m
I ) h(¿¿+1) =m

l¿=
h(f¿) = R,H.S.
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(4.46)

(4 .47)

(4.48)

c
5'

l¿=m
<fr:

c*1h(þ-1) = (H(rn) +u(n-l) - ( ) tt(c) )
m

&;\ . ,'-l

Use of the Ídentity
Proof

and

( )=

H(c) =

lz
)

m

leads to

c-l
L.H. S. = I

l¿-I=m-L

(;)

exploitíng the definition

The result follows, since

tn;tl h(r¿-r) . 
n_;il_r,Í-l,n(f¿-r)

= H(m) - (r!r) t' 1"¡

,!",fi, h(c) = ¡q"¡

0

"t Bo,6(t)

^' Bo,g (t)

{trl) = o.

(Lt ,Lz) = (0 ,0)
(Lt,Lz) = ( 1,0)

(Lt,Lz) = (0,1).

cfi> * (rlr) = ,"ilt, by G.47).

Ttre equations (4.13) can be rewritten in terms of the dummy

variable f¿, with the subscripts X-1 ar.d ¿2 omitted, to become

(a+lz+.L) B(þ.) = a B(k.-I) + (þ+r) B(l¿), l¿r0

(a+c+Z) B(c) = a B(c-l) + a B(c) + U

where

u=
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Multiplication of the equations by

and summation give

cand ( ) , respectively,
m,h',

c
T
=m

ça+lz+L) ( B (f¿) ( ) B(f¿-1) +
m m

+ (;) (an(c)+u) .

o'm ffi <r^-, p)
c m+L m

)u.c
1

!Íhen 21 = O, 'Lz = O

and pe -

Hence,

t¿
c

= Ia t¿ c-1
T

t¿=m
B(/¿) +(t¿+t) (Þ))

=mlzb

Application of Lemnas 1* and l*, yields

(a+n+.L) em = u(e^ * prn_1 c'jl) o.)
c+( ) (ap *u),
n c

(4 .4e)

(4.s0)

(4. s 1)

(4.s2)

(4. s3)

or

,c(r- I
) + (

p^=# (or-r - c
)pm-l c

B(f¿) 1 by the normalising constraint.
0

c
I

Iz=

Pr = a(l -

l¿
a

PL-= E - P

cf) o")
and

c m=l

m
a

(¿)
m

l¿

t

n lflì a ,co" ,1, q (":m)

(
c

l¿-m ) l¿=1 ,2,...rc.

Equation (4.52) can easily be obtained by induction using
(4.51). Clearly, it holds for b=l as basis.

c

so that
c

c! n (a).

m

m
a

In particular,

a

a
c

p=
c

c
L

m=0

p
cc
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Since n(c) = P

m¡

and

m2 azE" (a)

"tUO,O(c) = arE"(a)

c

lrlhen (Zr ,Lz) = (1,0) or (0,1)

pm = # (or-r - crlrl o.) +

In particul-ar,

ct

(4.50) becomes

(4.54)

(4. ss)

G.sa)

(4.57>

1 c
tl¡+l m

( ) u

where

u=
{:;

(!-¡,Lz) = (1,0)

(Lt,.Lz¡ = (0,1)

Qo,Lt,Lz

a

uLr,Lr(Þ)
c\'
L

b=O

and B,l,o) = m¡ and t(o,t) = IIt2'

= B (Lr,.[-r)

(.)m

(c+l),

Iherefore 0o = U for both values of (Lt,,Lz) and this leads to

l¿-m )

t¿=lr2r..rc.

which again can be proved by induction Ssing (4.55)).

m m
a c

c-m
a

c*1
nFt-1

c

which becomes

mbmarc',
læîtr; \,1^) - o" ,1, iai¡; c

l¿

o¿=urle c

cp =u xc m=o
( )-p

1
(c+l), (")

c-m

m

c
x

m=

(c)m

p
c=u r

m=0
c tï=0 m!

m
a
ñ (c+l)

m+I



Therefore, division by

p (c+1)
c

c
Lm

m=O

c
T

m=0

m
a
mt ' #' Yields

60

(4. s8)

(4 . se)

n
a
m!

- 

- 

: ll

cmt.
at

lll=O
mt

m

and therefore

That is

c
Lm a

m

c
aI

m=O

m-l
3 

- ^t(m-1) I - or
c
I

m=O

m
a
mt futm=0

c
c

B
,0

(c)

uo, 
I 
(")

lll I
c*1-a*m

IIIZ

c*1-a*rn

1

which give vtr v2 and cov as in the Riordan method.
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4.5 A direcl solution of the moment equations

The overflow means and variances can be obtained dlrectly frorn

the moment equatíons (4.13), without the application of any

further transformation.

lühen 21 = Lz = O, (4.13b) can be rewritten as

aB(c-l) = cB(c)

or

cI
c

a

c-1
B (c- 1)

a B(c)

and B(c-2), B(c-3),
(4.13a), to give

can be obtained recursively using

61.

(4 .60)

(c- 1

This, again, can be proved by induction. Since

c

.m
B(m) = T fr: n{c).

a

= * ut"'
a

n(c) = { h u(.),

(4.60) holds for c and c-1.

Assuming the result for m>lz, for m=l¿ (4. 13a) can be written,

B(f¿-t) = B(þ) - -sU B(f¿+l) + þ n(f¿)aa
l¿

(fu t¿+t 
"h+1- ; lE+rX

a

t¿
a
E+l¿

a )

c!=- c
a

B(c)

as required.

Si-nce uo (m) I

c

0

ct
m=O

uo 
ro

a
^lU.(c)=i-, =E"(a)

-aL ---y¡=6 llli

(4.6 1)



trlhen (Zl ,Lz) = (1r0) or (0,1) (4.13a) becomes

a(B(m) - B(m-l) = (nrrl)(B(m+1) - B(m)) m=0,1,..,(c-1).

If the dífferences A._ are defíned by
m

A, = B(n) - B(m-l) m=1,2,. .,c

Âo = B(0) .

Then

a

62.

(4.62)

(4.63)

(4.64>

An+ ^n1 m+l

which iurplíes

m

Ilence , by (4.62)

B(c)

ar = #r ao'

c
B(c)= ¡ A.-=Ao

lll=O m

(c+l-a)B(c)+aÁ"=U.

But, by (4.0:¡ and (4.64),

c
T

m
a

0m!fll=

Therefore

Ao=
m

a

The boundary condÍtion (4.13b) becomes

(c+l)B(c) - aB(c) = aB(c-l) + u - aB(c)

il
c
t

m=0

c
a

acaA c! Ao = " E"(a) B(c),
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and therefore

B(c) =;#{{l

that is,

,0
(c) Itrr

c*1-a*m

rr2
c*1-a*rn

Equations (4.0t) and (4.65) lead to rhe required expressions
for m., v. and cov,

Both thls direct solutlon and the bínonial transformation
technique of section 4.4 could have been applied to Riordanrs
original nodel, which is in fact a simplification of the
model discussed ín this chapter (ttrat is a¡ = a and az = 0).

B I

uo, 
, {") = (4.6s)

I

I

t\

q

i'
{

r
,¡'



4.6 Generalisation to more than two streams

trrlhen more than t\do Índependent Poisson streams are offered to
a common link (figure 4.2), the formulas for the overflow
slatistics c¿Ìn be obtained by s[raightforward genc:ralisations
of (4.36). Each streann h¿rs an independent Poisson arrival
rate, with mean a.; i=lr2r..rr, and the other assumptions

of Sectíon 2.L apply.

The streams may be partitÍoned into two parts, one

containing a single st.ream and the second containing the

others. If the single stream is the ith, then the other
streams rnay be combined into a single stream which will have

a Poisson arrival rate, independent of stream i, with mean

=a *a
l_

The link is therefore offered two índependent Poisson streams

and equaËions (4.36) are valid. Hence

m,
l-

v.
l_

(1 - rn
l_

rnrhere

a*
l_

r
I a.
=1 J

64

(4.66)

(4.67 a)

(4.67b)

j
j #i

Ihe total arrival rate a will be

*
i

ri
q
,t

r
I a.

j=l J

a- E (a)ac

r
Im.

i=l l-

=m.
l_

m= =aE (a)
c

and

.oti,io = mf (-m. * f"*l
r

= I m. (-m.
j=l J r-

j#i

i.
i

i

i
(
t
¡i

!

¡.
,¡.
ú
r
.t

,{

I

4
ll
I
ir

1'
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(4 .67 c)

Since

cov

cov (-m

l_ Ji* cov.
1

t
I
ijÏ

. =m.a¡J J l-

-.¡
ll,l

',;

I

i

I

I
I

r{,
!.1'f
'ìr

I

,t

I

-"{

i
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FIgure 4.2 : No direct links, r input streams
(a) Network

(b) Service system

{
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CHAPTER 5

ANALYTIC SOLUTION OF THE GENERA], MODEL

5.1 Introduction
The first binomíal transformation on the equations of state

lead to a system of equations in BLr,Lr(nt,nz,m) which was

simply recursive in ,L¡ ar'd .L2. This initial transformation
is applíed to the state equations in the papers by Riordan

127f, Chastang [5J and Neal t16]. They affect thís
transformation by introducing the binomíal moment generating

function and ther¡ after applyíng the appropriate rnultíplications
and summationg obtain the new system of equations by equating

like powers of Xr, xz (the carrier variables íntroduced in the

definition of the generating function). Riordan and Neal then

apply a second generatíng function to the 'main equationr in
the new system in which the constraint on one of the parameters

has been relaxed (thus introducing artifícial quantities). This

yields a differential equation which is solved in terms of a

thírd generating function involving the o-polynomials. Equating

like powers of the appropriate carrier variables lead to equations

relating the moments to the o-polynornials which involve a

certain number of unknown variables (introduced in a general

Taylor series expansion in Nealts paper). Fortunately, the

number of these unknorr¡ns is identícal to the number of boundary

equations and they can be found uniquely. For Riordanrs model,

there is only one unknown and the solution follows straightforwardly
using properties of the o-polynomials. Neal finds it necessary

to introduce only three more generating functíons in order to
obtain his result, whieh effectively reduces the order of the

system, by a factor of (c+1). He Èhen solves the reduced system

recursively.

Chastang, after the Ínitial binomial transformation, simply sums

the equations for whieh one parameter is at its upper limít, over

other parameter. He deletes several terms whích he claims are

comparatively sma1l and obtains an equation similar to the

simple overflow case, which he had solved in the earlier part
of the paper. He then postulates that a solution analogous to

the solution of the sirnple case will be an approximate solution
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to the two overflow case. He admits, however, that this is
not as good as the equivalent random approximation.

It was shornrn in chapter 4 that the sirnple model could be

solved without the introduction of generating functions or
arÈifidal variables which are ímplícitly lntroduced by relaxing
the constraint on n. A succession of these transformations
can be applied to equatíon (2.9) to reduce the system from

quadratic recursive to línear recursive in /l 1 , n2 arrð. m.

I

I
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5.2 Simplification of the model by binomial transformation
The binomial transformation of (2.9) with respect to m

givesa system involving the quantities

0 (nr,n2)
l¿=m

) BLt,I-r.(^1'tt2 
'lz) 'm r'L7 ,'L2 m

The new system is obtained by appropríate multiplications by

and summation, and simplified using lemmas 1* and

2*. Abbreviations similar to those applied to ,Lr,.Lr(nt,t/Lz,ttt)

will be used. Equations (2.9a) and (2.9e) become,

for /t1 ( dr, lLz 1 dz,

(a+n+n+,L)0 = ar 0(nr-1,) + az 0(,nz-I)

+ (/¿r+1)0(n1+1 ,) + (nz+t)0(,n2+t).

(2.9b) and (2.9t) ->

for n¡ = dl, fLz 1 dz,

(a+n++n+'L)o = ar o(nl-I,) + az 0( ,nz-I) + (nz+I)0(,nz+L)

c= r( l¿

(þ) ot (")mm

(2 .9d) and (2 . grr) ->

for lL¡ = dl, lLz = d2

(a+n+rn+'L)O = al

o 4 a1 oni-I,, - r, (rlr)u",,

fit c r.Ly-L r.L2

*ar

* "r( 0

(s. l)

(5.2a)

(s .2b)

(5 . ze¡

(2 .9c) and (2 .9s) ->

for rtL¡ ( dt, frz = dz,

(a+niln+.L)o = ar 0(tt1-1 ,) + az 0(,n2-L) + (i4r+1)e(r¿r+1,)

+ a2 o + az om_l,, rr(rlt)o
+ ar (fi) 

'",ur,.Lz-r'

Ct t

0(nr-I ,) r az 0(,nz-L)

*a0*r0r_I ca( )m-L
0

c

)+ (;) ("r o. ,Lrr,L, * ^, 0 c,L1 ,'L2-I
(s.2d)
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A further bínomial transformation, this tirne with respect to
fL2, gives a system of equaEions in

T 
n2 ,m r,,(-1 ,Lr(nt)

d.2

L
j=nz

(nt,i)

)r

m,L1r.L2

c

(t 
r)

U (s .3)

(5.2a) and (5 .2c) '+

for lrt¡ < d1

(a+n++n+,L)t¡ = a¡ fi(,n1-1) + (n¡+1)n(nr+l)

d2
r az ltt * nnr-r,,, (or-r) nd.,

,rt

* <u_i ){ Td2rm-l 
,,

(
m-L d2rc'

( n 
d, ," r,Lr-t\ f

+ c
m

(5.2b) and (5.2û ->

for n1 = d1

(a+n+m|.L)r = at n(,41-l)

+ar [T+fi c
)n +

,ffi-L, , m-I ¡c¡ r
( (fi)n.,2,-r,l

(s. 4a)

(s .4b)

(s.s)

+a2 [fi+TT

){fr¿r,fr-I,, {rlr)nu, ,., , * rfi)"u, ,",L,r-r}l '

Q^r rn" rltlrlt,.L, = i!^,
.i(nr) n nr rffi,Lt ,I-z(i) '

fr2-1, , ,
( )Tdr,m-1, 

,

d2
nz-L

+(

Finally, a bínomial transformation with respect to ,/tr gives

an equatlon in

dr

d2
n2
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(5 . 4a) and (5 .4b) -+

(a+n+m+L)p=allp+p

+

frL-I r,, '

d1
nrl

d2
nz-I

(

c )pm-I dlrc,,

)pdÌ,,,,

) o,ur,,,

+ (å)ou¡,",21-r,]l

+a2[pt0
,fLz-I , , ,

,il) {pd1,m-r,,

){ P,¿z ,ffi-L, ,

* <lr1) þnt,m,.Ly,.Lrl

(

(

(

which may be written as

where

and

q/

c
)pm-l ,d2 rc,

c

. e";

* (;) 9 ,dr,",.(-r-rlf '
(5 .6)

(s.7)

' nr,nr,ffirlt,L, = ffi l9nrL 
rn2 rfii,,(-¡,Lz 

- t^l]r' 9ðr,nr,mr.Ly 
r'L2

+ 0
f'L2 ,lll ,,L1 ,,L2

l

+
n+m+I-

lQ n, ,nz-l ,m,L1 *Lz ç:'-r)Q nr,d, ,m,.L¡ ,.L2

)

a2

e"

þ 

^, ,, ,Lt ,Lz = Pd 
r ,rL2 ,ttt-L ,Lt ,Lz - 

(m:1) 
''u, ,n, ,c ,.L1 ,.L2

+ (;) 9ur,nr,e,.Ly-r,.L2

+

ll1 ,Wl ,.L1 ,.L2
Q n, ,d, ,m-L r[4 ,.L2

(m-l) onr ,dz,c,.(-1,.L, 
+

(l) o 

^, 
,d2 ,c,.(-1 ,.L2-r'

+
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Equation (5.7) also contains some terms which do not correspond

to any cubes in the block. These terms will be known consÈants

íf equation (5.7) is solved f.or (L1,22) such that Z=0,L,L....
successívely.

The equatjon reduces to the'identlty 0=0 when t,t1=14r=vn=fr=lr-I.

However, 90,0r0r0r0 is simply the sum of al-l the state
probabilities (bV 5.8) and hence

0,0,0,0,0 -1

is the stârtíng point of the recursion.

p (s.10)
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m

n2
lL¡

Figure 5.1 : Blocks used to calculate B.(-rrl"(n1rn2,m)



m

Figure 5.2 : Blocks used to calculate p

75.

n2

lL1

fLt ,tlLZ ,m r'(-y,,L2
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fr2

l/L1

Figure 5.3 Alternate set of blocks for calculatíng
9r, ,n, ,m r.L¡ ,.L2'

m



5.3 Reduction of the order of the system of equaËions

The following formula for e*r,nr,, ""r be established for fixed
.Ly and .L2 (with these subscripts omitted)

)0 j'm

) ú r,,
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dr,i ,fi

i,d2 ,0,0,0

p
t/11 tL2 _ i+l , nz-i
\"çíl1 A2-r

ilo jlo @+m+.L) i+r+n2_j

dr.)(i+,42-j
nI-L l-fL1 ,fL2 ,lll

lL1 llz
+I I

i=0 j=0

tL t-i
ê1

j+1

(wm+L) ..o, .) (L-í+j
YL2-J J

A2 (
lztl-i+j*1

(1-ô0'n
I/L¡)r lL2

T
=Q

1
arnz- 

j
al dr ,,í*L*n2-j

nt-i) t i+l )p(

(

(

(

r i=1 j (n+n+L) i+n2-j

( 1-ô;
l/11 fL2

)T I
i=0 j=l

nrial
j

(n+n+L)
d2

nz-j
a 2 n1-i+j+1

j+1)( ) Pi,d.r,m

(s.11)

d 1 , ,i*1*n2-j
t/tt-j-) t i+I )pd1 ,i ,0,0,0

2 n¡-í+j

and

forffi+X->0

Qnr,^rro,o,o
IlL t

al
nl'.

lLcaz'
nz!

W1 l/12

)I I
i=l j=0

(1-ô0-n

( 1-ô;, )
lly l/12

LL
i=0 j=0

l- nz-ja1 az
(n)

â1

tu)

i*n2-j

lLt-í- j
a2 )( )p

n2-i+j+L
j+1

I

dr
nz-jny-í+j

The two (1-ô) tenns are included to avoid difficulties with
sumrnations from I to 0, since, when ni=O, the corresponding
sum is no longer present in the formula. Ihe validity of this
forrnula r¿il1 be proved inductively.

(s. 12)
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For m + L > O, /tr = O, fL2 = O, (5.11) becomes

p

p

0,0 ,tï
At

m+L 0

lL1

x
itl= I

0 ,m
* ffirt,o,^ (s. 13)

(s. 14)

whlch agrees wíth (5.7) when frr = rL2 = Q, ffi + L > O.

Irlhen /t2 = 0, 14¡ ) 0, (5.7) becomes

dr
nrtfL¡ r0 ,lll

Ar
nfiil*L 'vn¡-L,O,m dr,0,m

(n,11_rl oo,

0 l
orffi

d¡ rorm

( )p e"+ t)
I

t,' fLL ,lll

Substitution for p

Ar^-nny 
rO rm nftm+L

ft¡-L rA ,m'
using (5. I l) , yields

m

lLrI
T

i=0

n,- 1-i
âl a,

qr(n+n+L-t)
lLr! irffi

l_at
(ni*+L-t).

l_

<f;r oo,,t

dr
n¡-I-l-( )p

r- (

rl.,

d1
tLrI

fLt rlll

) o¿r,0,fi *

^ (i+t)+1
41 dl

nl- (i+1)( ) ou,t(n¡n+.L) (í+1)+1

d
lL1 ,m

fLt-iâr'az

I ô'0)

nrl
+x

i=0 (ngn+.L)
lLri*'l

rf írfr
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fL¡ ,l/12 ,lll

(nftn+L)
dl

n1- (í+1) d¡,0,m
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(s. ls)

dr ,i ,fi

lL ¡-lL 1

(nim+L) ft¡_n.*l
u

al a2
nl rm

i+1
( 1-ôå

lL¡
T

i*I=2)
â1 ( )p

i+1

d1
nrl( )

ftt-I flz
TT

i-=0 j =0

i+2
ê1

(s.11)

nz-j

aI I 
^(nûm+.L), ud, ,O,ffi'

which agrees wíth (5.11) evaluated at (n1,O,m). Hence, by

ínductíon, (5.11) is valid for {0<nl<dy, rL2=0, O<mcc, m+X-¡'L2>O}

and, by a simílar induction, for {nr=O, O<n2<d2, O<m<c, m+I-r+X-r>O}-

For lzl¡ ) O, llz > 0, substitution of in (5.7) yields,

a, ( d 1 \ ,i+n2-j
r¿r-i-1l \ ip (n+n+L) I+2+n2-j

)0

)0

)r,

irm

j-rfr
nrL nz

+TI
í=0 j=0 (n+m+L) r¿r-i*j

fLt -lâr d2 ,,141-i*j-l
nz-j) t j

j+1
a2

) t.|,,(

(1-ôr'u (n+m+,L)

lL1-L lL2

)T I
i=0 j=0

i+1 nz-jat a2 d¡ ,,í+.n2-j
nt-í-Il ( i+l )p

i+nz-i+I

nt-l lttz

TT
i=0 j=1

nrí j
ê1 a2

çn+n+L) nr-i+j

d1
( dr
nrL )p - êl

d¡ rll2 rllt ' n+m+L 0

(

^i'-t 
(";iTj ) p i,d, ,m

( )

lLt nz -7 i+1 nz-i
T

at A2
dt .) ¿+n2-i-Inr-]- 1

nz-i
A2

lL1 n2 rm

)p

(
+

l/11

+T
i=0

fLt
L

i=0

I
i=0 j=0 (n+n+L) í+r+n2-j

i,m

nz-I
T

j=0

nz-I
L

j=0

d2 \,14r-i+j
nz-j-l \ j(

irffi

l_

(n++n+L)
dl , ri+nz-j

nt-i) \ i+l dr,i rfl
â1

(
i*n2-i

(1-ôI.n2
IrLl)r
i=0

nz-I
Tj=l

nt-i j+1
ê1 A2 (

(n+m+,L)
n I -i+j +1

d2 .,/l 1-i*j*1
nz-i-l \ j+I )p i rd2 ,fl|
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al
n+{n+L

The terms in Q are
i,m

) o^r.,d2,t, + ffi 
'un1' 

r^r,,

lL1 fL2

TT
i=l j=0

( d2
nz-L

i+1 nz- j
A2

i,m

(s. 16)

(s. 17)

(s. 1B)

(s. le)

â1 d1 , rí-I*n2-j
nt-í'\ í-1

( )0(n+m+L)
i+L+yL2- j

lly lLz-
+x I

i=0 j=0

1 i+I
-al 

a2
,lli) (í+n2-i-r)0

in (5.L7), yields

i,m

i+1 d1 ,,i-1
l,¿r-i/ (i-1

nz-j
((nm+L)

n2 rm

(*-1) =
v

j'm

)0

í+I+n2-j

Use of the identity

+ffi,Í|,*
(x-
v-

I
1
)+ (")

v

lll1
v

í=1

IrLl fLZ

TI
í=0 j=0

nz-I
L

j=0 (n+m+L>

i+l ttLc-ial a2
,flr, èM'-i )0(

I
ç

d1

n

lLz

i+I+n2-i

d1( )0 + al
flz rlll ilLl t (nfl)i+r (

dz rfr

+T al a2
nz-j

The last term uses the fact (

sirnplif ies to,

j=0 (nwLfnr_-, )( )0( nz-j-I
0 i,mlL1

/12-n2-l
0 ) = 0. Hence (5. 18)

)( i+n2-j
a )0 j,ffi

d1
t,Lt-i(

as required.

The terms 'tt Úi rm, 
Qdt,j,ffi and pr,d2r,t also simplify to the

required resulÈs and hence (5.I1) is valid for all values
{O<nt !d1, O<tL2<d2 , O<m< e, m+,L>o}. trrrhen ffi=I-¡=f,r=g, (5. 12) can
be proved by a similar induction starting with p0,0,0,0r0 = 1.

Equations (5.11) and (5.L2> define rhe general Ëerm p
l/Ly ,fL2 ,lllin terms of gdr 

,rlLzrh 
and gnt 

,dzrlz for h=ffi, m-l and c.
In particular, p

d ¡ ,l/L ,fll
and p

fly ,d2 ,lh
are defined in terms of
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'urr^rrþ "td QnrrorrÞ ^nd 
(since the t¡¿o terms needed for

calculation of the overflow statistics
only these terms need be evaluated.

ate Qdr ,o r" "td go,d, 
,.)

Thus the size of the sysÈem of equations needed to be solved

has been reduced from (dt+l) (d2+1) (c+1) Eo (dt+d2+t) (c+1).

rf lLr,.L, is defined by

*Lr,.(-r=
Qdr,nr,m,.L1,.L2 ; r = (r¿r+L)+(d2+1) (til-l-1)

onr,u",m,,(.¡,.L2 ; r = (d2+1) (c+1)+(nr+1)+(dr+1) (rnFl)

ttren (5.11) and (5.12) may be written

ÍI-r,.L, AL,,L, I,I-1,.L, * !,Lr,.(-,

for some matrix AL.,X-, and vecto, Í.Lr,.Lr. As before ÍLr,L, i"
a functíon of *'Lr-r,L, ^nd x'L¡,'L2-r' Hence these equations

ín p can be solved using the S.O.R. algorithm described in
Chapter 3. The size of Èhe matríces and vectors has been

reduced, but A, o for this system ís no longer sparse.
Ll tL2

!ühen c=0 , I=O equation (5.I2) applies, and

(s .20)

(s.2 1)

(s.22)
l-al

1 (dr),
dr

d r-i
d¡

Pdr,o,o,o,o = I ( )p
l_ dr ,0,0,0,0

which is analogous to (4.53). Hence

p E (dr )d1,0,0,0,0 a1

ml=Ml=alE (d1) as required.al

and

Sinilarly

rÍr2 = ã2 E
a2

(dz).
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I^Ihen Z¡=1 , Lz=O, by (5.11)

^ : t¡. 
# tu]l'l'ou"o'o'o'o'dt r0 r0, 1r0 tZ

)p d¡ ,0 r0, 1,0i

which 1s sinilar to (4.57>. Hence

v1 = V1 = nì1 (1 - rnr - Afu¡, as required,

and similarly v1 = Y2.

Thus the model reduces to give knor^m results in the límíting
case c=0. A sinilar reduction will occur r¿hen dl=d2=0 to give
results agreeíng r¿lth those obtaíned in Chapter 4.

d1

-x
!_
I-

d¡
d ¡-i

(r(dr )
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CHAPTER 6

THE ACCURACY OF SOME APPROXIMATE FORMULAS

6. I Introduction
Several researchers in the field of teletraffic theory have

suggested approximate formulas for determining the indivídual
overflow means and variances for the network under consideration.
These have generally been formulas for partitioning the total
overflow mean and variance into the components corresponding
to each stream and the total overflow traffic is also
obtained by an approximatíon, such as the Equivalent Random

Method.

Although some formulas give approximations for the ratio of
Èhe rneans of two streams (m-:m.) it is convenient for comparison1J
of accuracy to consider the corresponding formula for the ratio
of the ith stream to the total mean (m.:m). The symbot tr,,
will be used to denote the rproportion of the total mean

belonging to the ith streamr, that is

P
flr1

(and sirnilar abbreviations will be used to denote proportíons of
other parameters).

Formulas for P - have been suggested by olsson and l^Iallströmflrr
and for P__ , by Harris. The accuracy of these approxímationsVrl
was investigated, along with some simple approximations which
have been used by trafflc engineers. Since these formulas are
often used to partition the total overflow mean and variance as

calculated by the equivalent random method, the accuracy of
thi-s nethod is also discussed.

m.
l-
m
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6"2 Generation of test data

A large amount of data !\ras generated by the computer Program of

the S.O.R. algorithm. The convergence criterion was set at 10-6

and since at most four decimal places r¿ill be considered for all
results in this chapter, the data may be considered to be rexactl

at this level of significance.

The networks considered corresponded to a service system in whÍch

the number of secondary group servers, c, and the mean of the

total traffic offered, M, were fixed. For each value of (Mrc),

30 different values of primary group servers, (dl,d2), were

considered. The arrival rates (arraz) were chosen such that
the overflow from the two primary groups had a total mean M and

had fixed ratios corresponding to five values of t", r. Three

values of c (c=2,5,8) and five values of M (M=2,4,8,L6,32) were

chosen to give a total of 3 x 5 x 30 x 5 = 2,250 different
networks. The values of (dr,dz) used were (2,3) , (2,4), ...,
(2,10), (5,6), ..., (5,10), (8,9), (8,10) and (3,2), (4,2),
(10,2), (6,5),

_131values t, g, 4

(10,5), (9,8), (10,8) "ru t",, had the
I

' 16'
1

I

Since each value of (t"t,c) has 150 diff erent values of (tr,r,dr,dz),
the effect on the overflow means and variances of small changes

in the input parameters can be investigated. This sensitivity
analysis has been notably lacking in other papers which compare

approximate solutions to computational solutÍons.

Kibble ltZ f, for example, in his comparison of the means,

calculated by the equivalent random method and the 'exactt
solution to the state equations, considered fewer than 200

networks and these r¡/ere spread over a large range of values of
(at,az,d¡,d2,c). The results obtained gave little insight into
the relationship between the overflow mean and the input parameters.

Kibble r¿as limited by the power of the computer used which he says

took 7m.sec. to perform each ro\¡r operation. Computer technology

has improved considerably since 1968 and the same operatíon
would take less than 150 U sec. on the machine used by the author,
a CDC Cyber 173 (that is, about 50 times faster than Kibblers
computer). Even so, the data generated required hours of
computing time and this indicates the ímpracticability of using
computational solutions on an actual network which may have

dozens or even hundreds of subnetworks of the type investigated
in this thesis.

*

r
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All results are proportions and have values between 0 and 1,

and since

P +P 1,

I

I

l-r

xrl x12

the absolute errors in ij r and î--. 
"." 

identícal. If, forX, I X,Z
example, Pr,2 = .9^Ëhen a lA% error in P*r2 ritould correspond

to a 9O% error in P . and hence the relative error ís not aX,I
particularly useful criterion for measuríng the accuracy of
these formulas. Hence the r^rorst absolute difference between

the value calculated by the formula and the exact solution ís
used as a basis for comparison of the formulas. lhe results
are suÍrmarísed ín tables which give this rworst errorr over

the I50 results eorrespondíng to each value of M and c.

The various formulas are represented graphically for the case

M=8, c=8, in Appendíx C.

l
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6 "3 The accuracv of the Equivalent Random Method

The equÍ-valent random method (E.R.M.) has, in the words of

Prof . lrrallström 126 l, rfound world-r^ride application for the

planning of alternative routing net\"torks | . As mentioned in

the previous section, Kibble l12 J compared the E.R.M. wíth

results from an iterative solution of the state equations.

He does not actually compare the overflo\^/ means, but the
tprobability of blockingr, which he does not define. It
appears that this term refers to the probability that a

call will not be served on either the prirnary or secondary

group (as distinct from the blocking probability B, defíned

in Chapter 1, which refers to a single group only) . This

would correspond to the ratios,
m.m,1

- ancl 
-,a a.

1

for the total and ith streams respectively.

Kibble first considers networks in which 3r = ãz and d t = dz,

and the \^rorst relative error found ís 47". I^Ihen the ínput ís

asymmetríc, Kibble partitioned the overflow mean in the ratio

of the offered mean, (that r", ô*ri = PMri) and errors of up

to 507" ¡¿ere found. These errors are only partially due to the

inaccuracy of the E.R.M. The assumption' î*,, = P"r. which is

discussed ín the next section, ís also not particularly aecurate.

The E.R.M. was used Ëo calculate m,
^^

î fot the data set and the
. m .vratios : and = were calculated. The worst values of thesemv

ratios, for fixed M and c, are given in Table 6.1. It should

be noted, that, although all results given correspond to â>m

and û>v, this is not always the case. The E.R.M. does under-

esÈimate the values in some networks but the l^lorst errors Ii/ere

overestimates. It can be seen that the estimates tend to get

r¡rorse as M decreases and c increases. These two trends both

correspond to a decrease in the 4 r"tío, which means the
c

servers are becoming less heavíly loaded. In the worst case

Y-2, c=8 each server is offered an average of a quarter of an

erlang of traffic. In such cases the total overflow traffic
has mean of the order of I/10 erlang or less and ín PracËical
situations this inaccuracy is not significant. There is a

.'t

H
I

{

.$

r

I

.,+{

i'
.t



87.

general trend,in all approximations suggested, for the poorest

accuracy to occur ín the runderloadedr sítuaËi-on. Even so,

for the cases where M2c, errors of 20-507" occur. This must

be taken into account when considering the accuracy of the

splitting formulas, since 6 decimal place accuracy in P, or

P.,, is hardly necessary when m and î are accurate to only

2 or 3 significant figures.

i

i
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1

l
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l,
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2.505
r.829

r.230
1 .039

1 .004

2.387

r.824

I.326
1.105

1.034

2

4

8

16

32

8

1 .915

r.470
1.135

r.026
1 .003

1 .888

1 .554

r.233
1 .085

1.030

2

4

8

L6

32

5

I .488

L.256

1.085

1 .016

I .003

r.534
r .355

1. 168

1 .069

r.o27

2

4

I
16

32

2

îlvñ/rnMc

i

I

ì Table 6.1 : tr{orst results, m

m ".r¿ 
9. for û and O calculatedv'

by the Equivalent Random Method.

ì
l

{1

!
I
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6.4 Some simple approximations

One of the earliest methods of determining the overflow means

\^ras to partition the total overflow mean in the ratio of the

offered mean for each stream, that is,

P P
ilra Mrí

as used by Kibble. This is a logical first approximation since

a large overflow mean r¡rould be caused by a large offered mean.

This is especially true when the total mean offered is greater

than the number of junctions provided (U>c).

A second simple approximation, (which is stil1 used by the

Australian Telecommunications Commission) is

(6.1)

(6.2¡P
flra .,

Vra
P

the overflow mean ís proportional to the offered variance. This

formula may be intuitively derived as follows. If M<c and the

offered variances \¡/ere zero then there would be little overflow.
The overflow is caused not by the magnitude of M, but by the
peaks (and troughs) in the arrival streams described by the

variance. Larger varíances would correspond to bigger peaks

and hence larger overflows. This effect holds for M)c as well
but is less marked as M increases relative to c.

From the two intuitive arguments, it would be expected that (6.t)
would become more accurate as 4 irr"t.""es and (6.2) would be

most accurate when 4
c

c
hTas near one.

The two formulas \¡rere compared with the results from the iterative
solutions and are sunnnarised in Table 6.2. The trends suggested

intuitively are confirmed by these results. Graphs of P

and P vs P are gÍven in Appendix C.mri Vri

Table 6.3 summarises the worst errors involved when P and PM,i Vri
are used as estimates of trrr. lhey both tend to overestimate

the value, (as indicated in the graphs ín Appendix C) because of
the correlation between the overflow streams induced by the

sharing of the secondary group servers and

vsP
f,ra Mri
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V
P

l-

V,i v1*v2*2cov

Since cov is largest when M1

cause the largest errors
and M2 are equal, this tends to

these turo approximations for

(6. 3)

1n

l_s near L
'2P to occur when Pvri M t-
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6.5 olssonts conjecture
One of the few formulas available for calculating the ratio of
the means of individual overflow streams T¡/as suggested by

Dr. K.M. Olsson. Dr. Olsson has been involved in research in
teletraffic theory for many years and obtained his result
by observation of results from simulations of teletraffic
networks. This result has not been publÍshed by Olsson, but is
quite well-known from private correspondence and discussions
between Dr. Olsson and other researchers, for example, at the
International Teletraffic Congresses .

The conjecture is that the overflow means are proportional to
a combination of the offered means and variances, namely,

Olsson*, first considered the approximation

m.0V.
l- l-

m. cr v. +
l_a

M:
I

V.
l_

(6 .4)

(6. s)

which ís equívalent to (6.2¡. He then added a second term
M.

t-

V.
t-and fognd that this correction T¡ras not large enough.

l"lÍ
t"tr =! was found to be a better correction and this

V.
l_

The

led to (6.4).

This correcËion term is, in fact, Ëhe inverse of a statistical
quantiçy called the coefficient of variation. It rnay be noted

MÍ
that Vi is dimensionally consistent with V. in that both terms

L
reduce to a- when there are no primary groups. Thus m- ct a-.l_--r-1
in this case which is consistent with the results of Chapter 4.

¡rThis information r^ras gÍ-ven to the author in a díscussion with
Dr. Olsson at the Bth I.T.C., Melbourne 1976.

The accuracy of Olssonrs formula ís summarised in Table 6.2 and

again represented graphícally ín Appendix C. The formula tends

to become more ínaccurate r" g g"a" further from 1 and ís
especially bad when I .t. 

e
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Even disregarding the cases where M<c the formula has a large

error and in fact the smallest of these tworst errorsr is stíll
.0L44. Olssonrs conjecture is generally more accurate than

(6. 1) for M

c
<1 and better than (6.2) for M/.>I.

One severe crlticism of this formula, (and also with the two

símple approximations) is that 1È contains no information about

the number of servers in the secondary group.

(rhís formula was first introduced into Australia by Pratt t20 l
but was lncorrectly presenÈed. This íncorrect formula had been

copied by several other Australían researchers before the error
'Ì¡ras corrected at the Bth I. T. C. )
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6.6 A formula suggested by l{allstrom
Prof . B. l,Iallstrom has also been doing research in this fíe1d for
many years and recently* suggested a formula tot tr,r,

Püri

where B is the blocking probability on the secondary group for
the combined streams. lhat is

B=r.

Since m is dependent on c this formula does contain information
about the number of servers in the secondary group.

It also is consistent hrith knor¿n results for two liniting cases.

hlhen there are no primary groups, PMri = Pvrí = P.ri "rd hence

P = P , as required. I^Ihen there is no secondary group,
flrl âra

B=1 and (6.6) reduces to

Pilra

That ís, the offered and overflow streams are equal as ís
required when there are no secondary servers.

It may be noted that disregardín; Ëhe underloaded cases, P-- is
a more accurate estimate than PU,i th"n l is large ".r¿ anÏ'i
reverse is true when M i" ,r."r 1. The blockíng probabitity,
B, increases as { ,n"å."es and therefore l^lallstr'ómrs formula,

c
whích is a weighted mean of t",. and t'r, *t.t.s a heavier

weighting to whichever factor is more accurate at the appropriate

value of U .
c

In general, l,Iallsträmts formula ís signifícantly better than

Olssonrs conjecture, and the t\^ro are compared in Table 6.2. A

graph of l^Iallsträmts formula for M=8, c=8 is given in Appendix C.

*This formula was given to the author in a discussion with
Prof . lJallsträm at the 8th I.T.C., Melbourne 1976.

P (1-B) + B.PV,i' M-
(6.6)

(6 .7)

D
'M, í'
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.1864

.0552

.0 169

.0268

.0 156

.2357

. 1085

.0296

.0177

.0 196

. 1855

.0484

.0472

.0898

.0902

.27 TT

.1492

.0768

.0305

.0 104

2

4

8

16

32

.0893

.0208

.0204

.0 188

.0r01

. 1378

.0510

.0 130

.0245

.02 18

.0782

.0175

.0768

.1002

.0934

.1841

.1015

.0483

. 0178

.0065

2

4

8

16

32

5

.0267

.0 109

.0116

.0082

.0042

.0294

.or44

.0314

.0330

.0247

.0365

.o796

.1045

. 1090

.0963

.077 6

.04ls

.0191

.0075

.0023

2

4

I
r6

32

2

!ùa11strðmOlssonP
vP

M
Mc

TabLe 6.2 : Comparison of forrnulas for overflow means.

The worst error lÊ- - - P ,l for fixed M and c is given
' f,ra flra'

for each of the four approximate formulas.
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6.7 Modif ications of the f ormulas of Olsson and lrlallström
It is unfortunate that both formulas tend Èo overestimate (or

underestimate) the value of trr. for the same network. Otherwise

some weighted average of the two formulas rníght have given a
more accurate estimate.

If Olssonrs formula is considered as a corrected estimate of
PV,i, then the substitutíon of this factor for tU,, tr !üallströms
formula could possibly lead to an improved formula.

P (l-B)P* + B Pv,i M,iflra

V
l_

+ M2.lV.
l- l_

V.
J

+ M?lv.
JJ

The results of this formula are given in Table 6.3, and it can be

seen that it is only more accurate than l^lallströms result r¿hen lul

is consíderably larger than c. It does however, suggest that an

improved formula may be obtained by some modificati-on of
I,{alls tröur t s approximation.

where

l_
Pi(

V Ij
(6.8)

(6.e)

Olssonb

factor
,fotttf" 

may also be rnodified by weighting the correction

V

M:
1

V.
t-

l_

Ihat is,

ñ.ov.*w.
l_ l-

The weighting factor, rr, should contain some information about the

secondary group, if the new formula is to be more accurate than

Olssonb result.

The formula was used, with several values of rn¡, to estimate m. for
the cases for which exact results were knovm. The results in Table

6.3 give the best value of w (to I decimal place only), which, for
fixed c and M, minimise the \¡/orst absolute error over the range

of (drrdz and P") consídered and the value of that \¡rorst error.
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It can be seen that w depends on both M and c, and tends to
decrease as M decreases or c increases. The modified formula

is consíderably more accurate than the original approximation

and ín the najority of the cases consídered was better than

I,lallström's results.
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-1.1
-0.4
0.5

1.3

1.5

.0553

.0 128

.0108

.0 123

.0098

.236r

.1124

.0423

.0r66

.0067

2

4

I
T6

32

8

-0.6
0.2

1.1

1.6

I.7

.0 146

.0067

.0117

.0 108

.0084

.1426

.0649

.0262

.01 1r

.0o44

2

4

I
16

32

5

0

1

1

I

4

3

8

9

I.9

.0093

.0 107

.0099

.oo7 6

.008s

.0522

.0257

.0113

.0047

.0018

2

4

8

16

32

2

c)b)a)Mc

Substítution of Olssonrs formula for tUr, tt
I,lallströmts approximation; rnrorst absolute errors.

Modified Olssonrs formula; \¡/orst absolute errors.
iùeíghting factor, w, used ín b).

Table 6.3 Comparison of some modified versions of
Olssonrs and ltlallströmrs formulas.

a)

b)

c)
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6.8 Harrísrs formula for the overflow variances

Until recently, lit.tle research had been undertaken into the

proportioning of overflow variance into its components (which

include covariance terms) . Neal [ 16] derived an analytically
based recursive formula for the variances of separate streams

but this was for a different system.

This research was supported in part by a contract r^¡ith the

Australian TelecornmunicaEions Commission (then part of the

Australian Post Office). The iterative solution to the

problem was first published in the Second Progress neport [19J

to the Commission. Dr. R. Harris utilised this solution and

correspon<ling program to generate results for many networks,

and from observation of the results found an approximate

formula.

The formula was based on some results by Descloux [ 7 ] and Lotze [ 15 ]

quoted in Nealrs paper t161.

m =p m
a l_

and

v.
l_ 1=p 1). (6.10)

m l_

Harris used the formula (6.2) to estimate m which in fact gives
l_

p (6. 1 1)

Rearrangement of (6. 10) gives

û. = p.[p. (v-rn)+m].
t- -a -t- (6 . 12)

This formula agrees with the known results when there are no

primary servers, but r¿as found to be inaccurate in a number of

cases. Improved accuracy rnras obtained by a sma1l modifícation
to give,

v. = p.
tl-

e

v
m

l_

l_

D'vri'

l_
)t(p

l_
+ (1-p

l-

p c
) (v-rn) + ml (6. 13)
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This nodífied version is however, no longer accurate for a

system r,rith no primary group but is valíd for other límiting
cases.

tr{hen there are no secondary servers, (6.13) reduces to û
as required and as c tends to infinity ít approaches the
formula of (6.L2).

V
l- L

The values of î-- - calculaËed using Ëhis formula are summarísedVra
in Table 6.4, and graphically represented in Appendix C. The

results are generally less accurate than the corresponding
estimates for the means but better overall than either of the
símple approximations tor t.,rrr. Obviously, the assumption
P_ - = P., , contributes appreciably to the errors.Br1 Vra
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.2204

.0930

.0348

.0620

.05 16

.2946

.1890

. 1303

.1284

.0812

.3802

.2999

.2370

.1813

.1309

2

4

8

T6

32

8

.L444

.0567

.0485

.0572

.0527

.2022

.L3t7

.1080

.0895

.0528

.3081

.2480

.1991

.1581

. 1181

2

4

8

16

32

5

.0600

.0434

.0449

.0465

.0 390

.09 16

.0886

.0s47

.0394

.0220

.1987

.1739

. 1550

.1324

.1064

2

4

8

16

32

2

HarristuPtMc

The worst error lî - P .l for fixed M and c is' Vra vra'
given for each of the three formulas.

Table 6.4 : Comparison of formulas for overflow variances.
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CHAPTER 7

STATISTICALLY DERIVED APPROXIMATE FORMULAS

7.I Introduction
The tables in Chapter 6 summarise the worst errors for various

approximations tot t,nr. and trrr. Even disregarding the under-

loaded cases, in which the estimates are almost uniformly bad '
the formulas are generally not accurate to 2 decimal places.

The author hoped to utilise the large amount of data generated

by the iterative method, to obtain more accurate approximaÈions.

This task was aíded considerably by use of a graphic display

terminal, which enabled any formula which seemed likely to be

useful, to be represented visually, as a graph, in a matter of

seconds. This saved a considerable amount of time plotting
graphs by hand and also allowed obviously \rrong formulas to
be rejected quickly.

The true value of the parameter, P*ri ot Prrir $/as plotted in
the x dírection and the estimates in the y direction. Both

values are between 0 and 1 and a good formula would be one

which gives points near to the diagonal line y=x. Graphs of

the approxímate formulas of Chapter 6 are given, in this form,

in Appendíx C.



ro2.

].2 SÍ le linear re ssaon a roximation
(The remarks made in this section about the overflow means are

also applicable to the variances, and the i subscript will be

ornitted from P ..)xta

The graph of Prvs P* consists of a number of sets of points

which are li-ne segments parallel to the x axis (see Appendix C).

This occurs because of the way the data was generated, namely

a fixed value of M and five values of trr, .".n corresponding

to 30 values of a1 ar.d a2. Ilence each seÈ corresponds to 30

points ¡¿hich are constant with respect Ëo the y directíon.

The corresponding points in a graph of PUrir" Pr,. are also
nearly linear but not parallel to the x axis. If the 30

points are represented by a staight line then, for each set,
the supposition of the two graphs is simílar to the diagrarn

(figure 7.1).

If the position and slope of th. PV,i line were knov¡n then a

linear co¡nbinatíon of PU and P, could be obtained which is
equivalena ao trn 

r, 
.

If the PU líne passes through the point
slope 0 then,

(Pu, P
M

* $) and has

or

where

(Pv - tr) = 6(P* PM) + ß

P,n=PM+o(P"-PV+ß)

(7.1)

(7 .2)

I
U
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P
m

ß

then the parameters a and b may be estimated by
ItIx.

r-1 l- 
-^_r-r4--=X

n

P
M

0

Figure 7.1 : Section of graphs of P P aeaínst P .V"mM

The accuracy of this formula is límÍted by the accuracy of the

línear approximation of PUvs P*, and by Èhe accuracy of the
est.imates of cr and ß. Ihe assumption of linearity ís good

except in the underloaded cases, and Ëhe estimates of cl and $

may be obtained using simple línear regression (S.t.R.).

If a set of data {(x.,y.); i=lrn} is belíeved to satisfy a

l-inear relationship of the form,

v =a*bx itl-

and

(7.3)

(7.4>
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ro4.

and
n
L

I (v.-î. )
i=l - a - 1

(x . -x) (v . -v)a -'l
l-þ= I

-;),

The estim"tu û gives the slope of the line, passing through the

point (x,y) which most closely fits the data. A close fit is
one ín which the sums of the squares of the distances between

the actual points and the line is minimised, (that is,
2 is minirnised) .

A program was written to estimaÈe 0 (and hence o.) and $ for
the PU vs Prn line segments.

This was used to calculate cl and ß and hence Ê tor Ehe test data
m

and this estimate \¡ras compared with the exact results. The

results summarised in Table 7.I indícate the accuracy of this
approach. Apart from two underloaded cases the rrrorst errors
are less than .01 and even in the two bad cases, the results
are much more accurate than any other approximation. In general,

the S.L.R. approximation is between 3 and 10 tirnes better than

the formula of Inlallstrom.

A similar S.L.R. approximation was obtained for P.,, which is
sumrnarised ín Table 7.2. This is a significant improvement

over Harrisrs formula, being between 7 and 20 times more

accurate.

The two proportions have the same formula,

(x.
l_

n
T

i=1

(7.s)

(7.6)P* = PM * o*("" \, +ß)x

where x is either m or v . Of course o,o' and

may be quite different for Ëhe same netvrork.

s -and ß and ßvt 'm vt
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7.3 EsÈimation of o¿ and ß.

It is, of course, impractical to get 30 points for every value
of M and c that might be needed and it was hoped that formulas
could be found for cr and ß, in terms of M, p" and c. The

values of cr and ß were calculated for the data available and

graphs were plotted to give a visualisation of the relationships
between the parameters. Although general trends r^rere noted and

the curves appeared to belong to the same families, no simple
functions could be found which r¡rere consistently accurate for
the whole range of Pr, M and c*.

It seemed desirable, then to generate some tables which would
give the values of o and ß for a wide range of pr, M and c,
which by interpolation and extrapolation would allow calculation
of o, and $ for intermediate values of the parameters. Again,
there \Á/ere practical objections to using 30 points to get each

estimate and it was decided to check whether the pu lines could
be accurately generated by only two points.

rnitially t.he values of the s.L.R. approximations for the data
r^rere calculated with cr and $ , lo"/" more and 10% less then the
rcorrect valuesr. The errors \¡tere of course greater than the
correct S.L.R, approximations, but were twíce as good as

trrlallstromrs resulÈs for the mean, and for the variances at least
twice as accurate as the formula of Harris. Hence, if cr and ß

could be estimated to 10% accuracy the S.L.R. formula would be

more accurate than the other approximations. After many

different pairs of points (dr,dz) were considered, it was

found that (O,fO) and (10,0) gíve estímates of cl and ß to an

accuracy of better than l0%. These values were used to generate
the tables in Appendix D. Nine values of c . (c=2,4 ,6 ,8, l0 , 15 , 20 ,

25 and 30) were chosen and for each value, seven values of M

and five values of P" were used.

*eg. ß
m

(r, .,ò (r-4(pM-.%)' ) . 1r, r*i .e-40M.

il
IP
iú

¡

i
ì

i

t

rì

'$"
1:
I

I

,{

T¡
1_

to be reasonably accurate but hardly símple.)
etc. \^ras f ound
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ry,il

¡

,047 5

.0168

.007 1

.0035

.0018

.a475

.02L3

.0082

.0037

.0018

.0330

.o07 4

.0024

.oo27

.0016

2

4

I
16

32

.0248

.0195

.00s5

.0024

. 0013

.0248

.0107

.00s9

.0026

.0013

. 0125

.0020

.oo29

.002 1

.001 I

2

4

8

16

32

5

.0038

.0035

.0021

. 0013

.0006

.0093

.0060

.0030

.0012

.0006

.oo32

.0028

.0016

.0010

.0005

2

4

8

16

32

2

( 2 )( 1)S.L. R.Mc

j

I

l"t

(1) 10% error ín o,, rrorst results.
(2) IO7" error in ß, ri/orst results.

Table 7.1 : S.L.R. approximation for P*.

t.
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I
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{
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S.L.R.

.0502

.02 10

. 0157

.or44

.0r06

.0599

.0360

.o247

.0191

.0134

.o4L2

.0118

.0039

.0047

.004s

2

4

I
L6

32

I

.0258

. 0159

.0L22

.or1,2

.oo7 4

.0329

.o262

.0212

.0168

.0119

.0191

.0062

.0032

.0045

.0035

2

4

8

16

32

5

.ot26

.0 105

.0065

.0056

.0032

.0208

.0184

.0165

.0138

.0105

.0070

.0048

.0023

.0027

. 0017

2

4

8

16

32

2

( 2 )( I )Mc

1

I

I

I

¿'

( 1)

(2)

IOi| error 1n cL, vrorst results.
lOlÁ error ín ß, worst results.'

lab1.e 7.2 : S.L.R. Approximation for P.r.

I
i

¡

I

I

't
t
{

I,

{
,l

I
{

-q
r
{
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I

7.4 Use and accuracy of the tables
The values of o¿ and ß in the tables are givc:n to only Ehree

<lecimal places. The third significant figurc, if present,

should be Ereated with suspicion as it is probably inaccurate.
However, since even a L07" fit is an improvement, this is not

particularly worrisome. Generally, linear interpolatíon between

successive values of M, P" and c will be sufficiently accurate

for all parameters G , ß , cl and ß_r.

The extension of the approximations to more than 2 streams may

be achieved by a method similar to section (4.6).
1) Partition the rstreamst into t\,ro groups, the ith

stream and stream i*, formed by the combination

of the other streams.

2) Calculate P . and P as before.
flrl Vra

3) Repeat I) and 2) for all values of i.

The accuracy of this extension is diffícult to evaluate but is
probably comparable with simílar extensions of the other
approximations.

An example of calculation of means and variances using the tables
is given below for a t\^/o stream case; wíth (atrazrdlrdz,c) =

(5,9,2,2,7). For this case the approxímations for prn and p'
are all accurate to 2 decimal places.

I

,t

I

'l

I,

;t
1l

I

(
{

--(

I
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Example

al =

dI =

Mr=
Vt=
M=

m¡

\¡l

cov

m

T'ta,I

tr, ,

ot, I

ßtr t
otr l
ßt',

5

2

5

3.378

4.220

6.632

.509

.427

= -.539

= - .001

= -.888

= .108

ã2=

dz=

Y12

3.254

s.6s7

9.877

.49r

.s73

m2 = 1.543

v2 = 2.877

= I.349

= 2 .071

= .615

= 2.892

= .466

= .335

9

7

þ12 =

Y2=
V=

P
M

tu, t

tt,
P

2I

Pmt2

P

v= 6.L78

.534

.466

= .509 _ .539 (.509

= .464

= .536

= .509 - .888 (.509

= .340

= .49L - .898 (.491

= .468

v

c[ -.898v,
ßv12 108

.427 + .001)

.427 + .108)

.s73 + .108)

2t

2

P

and P

P

P

mrl

m12

v12

vr l

{

I
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CHAPTER 8

CONCLUSION

The purpose of this thesis was to investigate a telephone net\^/ork in which

two i-ndependent overflow streams of traffic \^rere offered to a cornmon llnk.
This network has been modelled as a system of service stages with two

primary groups and one secondary group. Random traffic is offered to

the primary groups and the overflow from these is offered to the

secondary group. CorrelatÍon is induced between the tr^/o overflow

streams fron the link due to the sharing of the service facilities by

the two streams. In order to understand the effect of sharing a common

línk, it was desírable to calculate the means and variances of the two

overflow streams and the covariance between them. The objective of

the research was to investígate methods of calculating these statistics.

The state equations of the system were derived and binomial transformations

were applied to these equations in terms of the binomíal moments of .[-¡

and .L2 to a finite, línear recursive, system.

Analogous transformations r¿ere made to the equations of state in papers

by Riordan 127f, Chastang t4l and Neal t161. These three researchers all
used a binomial momenÈ generating function which involved the introduction
of carrier variables. The new system was then found, after suitable
nultiplications and summatíons, by equating coefficients of líke powers

of these carrier variables.

The transformation in this thesis was effecÈed without the use of
generating funetiors, thus avoidíng the introduction of the carrier
variables. Two leuunas I^rere proved which r¡/ere convenient in the

simplification of the transformatíon. Thís improved method could have

been used in the papers described above.

In the third chapter, the system of equations hras expressed as a single
matrix equation. The highly structured forur of the coefficient matrix

was analysed, and suggested that a solution could be obtained iteraËively.
Ttuo iterative techniques were discussed; the Jacobi and Gaus-Seidel

methods. Although Gaus-Seidel íteration was better, it was shown that
this could be improved by the acceleratíon technique known as successive

over-relaxation (S.0.R.). An improved S.O.R. method with a variable
S .0. R. parameter, r^ras also discussed.
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A computer program of the S.O.R. method was written and used to fínd the
solution to a large number of networks. Some features of this program,

íncluding efficient use of storage, rrere discussed.

A simple system with no primary groups was considered in the next
chapter. The state equatíons were agaÍn derived and a binorníal trans-
formation applied. The system of binomial moment equations \^ras solved
using the classical technique of Riordan 1271, involving relaxing a

constraínt on the main equation to a1low one parameter to go to infinity.
This implícitly introduced an infinite number of artifícial variables
into the system. The extended system v/as solved by using a generating
function, ß(t). A differential equation in $ was obtained and solved
in terms of o-polynomials. The boundary condition (or normalising
conditlon for the case Z1 = Lz = 0) was used to obtaÍn a unique

solution. The means anil variances thus derived, rrere expressed in
terms of the Erlang loss formula.

An improved method of solving Èhis system using a second binomial
transformation was presented. This method does not use generating
functions and does not require the relaxation of any constraints.
Thus the introduction of artificial variables was avoided.
Generalisations of the two lemmas r¡rere given which facilitated this
transformaËion.

It r¿as also shor^¡n that the system of equations could be solved directly,
without any further transformations being applied. Both these
techniques could have been used to solve Riordanrs original problem

which r^/as a special , símp1e case of the model considered. The

solution v/as generalised to allow more than two random streans to be

offered to the cofitmon link. Ihe solution also allowed calculation
of higher moments, although this was not of prirnary interest to the
research.

In the following chapter, an extension of the binomial transformation
method was applied to the general model. The system of eight equations,
which is quadratic recursive in tLt, t/Lz and n was replaced by a single
equation which was linear recursive in the variables, by three
successive binomial transformations. This system was of order
(dt+l) (d2+1) (c+1) whích was reduced by one dimension to order (drftz+I) (c+1)
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using analytic techniques. The reduced problem can also be solved by

iterative techniques such as the S.O.R. method.

Approxl-mate formulas for partitioning the total overflow mean into
the means of individual streams have been suggested by Olsson and

I{allström, and a similar formula for the variances by Harris.
These formulas, together wiËh some simple partitioning formulas

were investigated, in chapter six, using data corresponding to
solutÍons of over 2,000 networks which was calculated by the S.O.R.

method. The absolute errors of each of these formulas \¡rere evaluated

and their accuracy compared. Ihe errors in estimates calculated by

Olssonf s formula r¡/ere generally greater than those by I^lallströmrs

formula. The \nrorst results, for fixed c and M, were.generally between

.01 and .02 for l,Iallströmrs formula although in underloaded cases

they were as high as .05 to .18. Harrisrs formula generally had

ü/orst errors of the order .03 - .06 and once again rnras even less
accuraËe in underloaded situatíons.

Graphs in whích the estimated value of the relevant parameter \^ras

plotted against the true value were produced for each formula,
consisting of 150 points which corresponded to networks in which

the total mean of the traffic offered to the 
,cornmon 

link was 8

erlangs and the link had B junctions. These enabled visual
comparisons between the formulas to be made. Modifications to
the formulas are suggested, one of which gives a significant
improvement to Olssonrs result, with rarorst error about .01.

Since these forrnula are often used to partiÈion total overflow means

and variances which are calculated by the equivalent random method,

the accuracy of this approximation was also investigated. There were

up to 5O7" erroxs in the results calculated by the E.R.M. for cases

where T - t although the approximation improved "" { írr"teased.c-c
In the underloaded cases the estímates \¡rere up to 2l tirnes the
correct values. The actual síze of the parameters in these cases

!/ere very small and this large relati-ve error corresponded to an

absolute error of the order of .1 erlang.
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Finally, an approximate solution based on simple linear regression \"Jas

<lerived. This method relied on the assumptíon that, for fixed values
of the means of the offered streams, the proprotí_ons of the mean and

variance of the overflow for each stream, have a linear relationship
with the proportion of the offered variance of the corresponding
stream. This assumption gave a good approximation to reality for
netvrorks in which the average erlang per server ratio úras not
significantly less than one, becoming a better approximation as this
ratio increased. Sinple linear regression rÁras used to estimate the

slope and position of the lines best approximating these relationships,
and from these approximate formulas for the proportions of the mean

and variances r¡Iere derived. The formulas involve t\./o parameters and

Appendix D contains tables which al1ow these parameters to be

calculated. The S.L.R. approximations, except for the underloaded

cases where they were still 6 times more accurate than the other
approximations, generally gave errors significantly better than .01,
and even with a lOi( error in one of the parameters the estimates
were still twice as accurate as hlallstriirnrs formula for the means

and Harris t s for the variances.

This thesis has investigated the problem under consideration from three
approaches; analytic, computatÍ-onal and approximate. Analytic techniques
have been used to solve the model explicitly for a special case and

to reduce the order of the problem in the general model. A technique
of performing binomíal transformations without the introducËion of
generating functions \^ras ernployed, which could be used in several
other models considered by other authors. A cornputational solution
to the model was obtained and incorporated into a computer program.

This program r4tas used to generate a large amount of data which led
to an investigatíon into the accuracy of some approximate solutions.
An approximate solution which ís based on simple linear regression
was also developed and tables for calculatíng the solution by this
method \¡rere provided.
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APPENDIX A

Derivation of the Sum of the Moment Equations

The alternate definitíon of B(Z,,Lz), equation (2.1I), ís obtained by

summing the Moment Equatiors (2.9). The derívation of (2.11) may be

facilitated by considering the summatíon symbols as operators. To

siurplify notation the following abbreviations will be used:
dl d2 c

Illrepresents t I I
nr=O nr=O m=0

If a variable is summed up to the value one less than the maximum

(i.e. d.-1,c-1) then the corresponding surnmation symbol will have

a superscripted dash, that is Ir, and if the parameter is a constant

then the value of the constant will replace the I'I". For example

II I c. g(nt,ftz,ïn) =
dr dz-I
T'

ft1=0 n2=0
g(n¡ rn2 ,c) .

The range of sum¡nation may be represented as a cuboid in R3. Each

value of (ft1,n2,fit) corresponds to a unit cube in the block. The

division of the block into rsub-blocksr corresponding to the range

of each equation is illustraÈed in Figure 4.1, and Table 4.1 lists
Ëhe surnnation operator and number of values of (nt rnz rm) (equal

to the volume of the sub-b ) for each equatíon ín (2.9) .
m

lL1

a) Representation of the system of equations (2.9)

Figure 4.1

lL2



1ls.

b) Breakdown into sub-blocks representing'each equation

Figure 4.1

RIITTotal

d¡.d2.c
dz.c

dr.c
Ic

dt.dz
d2

d1

I

TIIII'

d¡ ItIr

Ifd2II

d1 d2I I

ItItc

dlItc
I rd2c

d 1d2c

a

b

c

g

e

f

c

h

NumberOperatorEquation

Table 4.1

the sum of (2.9) .

Apply the appropríaLe operator to each equation.

For each term in the equations, add the operators for
each equation in which the term appears.

Simplify this result to a single operator.
Add the terms together and simplify.

The followíng sËeps will be used to calculate

1

2

3

4
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The term (a+n+n+.L) B(,,,) appears on the L.H.S. of each equation.

Therefore i-ts operator is f,II, the sum of the operations for
equations (a) - (h).

The R.H.S. terms are

i) alB(/l¡-l,,) which appears in every equation.
OP(i) = III'

ii) a2B(,n2-l),) also appears in each equation.

oP(ii) = III.
iii) (n¡+l)g(nr+I,,) appears in (a), (c), (e) and (g).

op(iii) = I'X'Ir + Ird2lr + I'Xrc * Ird2 c

= IrIIr + Irlc
= IrII .

iv) (nz+l)B(,n2|l,) appears in (a), (b), (e) and (f).

OP(iv) = IIrI'
v) ('7FF1)B(,,tï+l) appears in (a), (b), (c) and (d).

OP (v) = III' '
ví) arB(,,m-1) appears ín (b), (d) , (f ) and (h) .

op(vi) = drl'Ir + dtd2lr + dllrc * d1d2c

= dlII.
vii) azB(,,m-l) appears in (c), (d), (g) and (h).

OP(vii) = IdzI.
viií) arB(,,,) * ^rB,Lr_!,(r,r) appears in (f) and (h).

OP(viii)=dtlrctdld2c
= d rlc.

íx) azB(,,,) * az\Lz_r(r,,) appears in (g) and (h).

oP(ix) = Idzc'

The sum of equations (2.9) is therefore,
LLL(a+n+n+L)B(,,,)

= ar.IXI.B(nrl,,) * a2.III.B(,nz-|,)
+ IrII. (r,rr+1) B(n¡+1,,) * II'I. (nz+I) B(,nz*|,)
+ IIXr.(r+1) B(,,nÈFl)

* al.drII.B(, ,n-1) + az.Ld2l.B(, ,m-1)
* a1.d1Ic.B(,,,) * a2.Ld2c.B(,,,)
+ ar.drI".B¿r_1, (,, ,) I az.Id2c.B ,.Lz_I(r,,) (A.l)
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Now,

III'B(n¡-1,,) = IrXI'B(,,,),

III' (n1+1)B(nl+1,,) = IIX'n¡B(,,,),

and símílar identities are valid for other terms, therefore (4.1)

becomes

aIIXB(,,,) + XXXnB(,,,) + XIXmB(,,,) + ¿XXXB(,,,)

= ât'IfII'B(rrr) f a2'LLtX'B(rrr)

+ at'drXXt'B(rrr) * az'Ldzl't.B(r rr)

* a1.d1Ie.B(, , ,) * a2.Ld2c.B(, , ,)

+ ItX./rrB(,,,) * IIX.n2B(rr,)

* III.mB(,,,)

f a¡.d1Xc.U.(-r_r,(rrr) + az. Idzc.B rLz_I(rrr)

Since,

I'XX+drllf*d1lc=IXI

IX'X+Id2Ir*Xd2c=XIX

and

IIXB(,,,) = B(Lr,Lr>

(4.2) símplifíes to
d2
TB

fi.2=O

(4.2)

(Ll|L2)u(¿, 
,Lr) = 

^r .LrL,'Lz

d1
*az X B

lLz=O .Lz,,Lz-l

whích is (2.11) .

(d1,n2rc)

(d1,d2,c)
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APPENDIX B

COMPUTER PROGRAMS

The two main prograrns used in this research are S.O.R. and APPROX.

The first program was used to calculate solutions to the model usi-ng

Gauss-Seidel iteration wíth successive over-relaxation. For each

value of the input parameters MT (the total mean offered to the

conmon link) and KK (the number of junctions, c), five values of
PM are considered. MT is proportioned into the two means, Ml and

M2, of the offered streams. For each of these values thirty values
of II and JJ (corresponding to d1 and d2) are considered and the

corresponding arrival rates A1 and Ã2 are calculated such that the
overflow from the direct links have means Ml and M2. For each

value of (Al, 42, II, JJ and KK) the overflow means (0M1, OM2),

variances (0V1, oV2) and covariance (COV) are calculated. The

elements of the vector t are calculated in the subroutine FGEN and

the initial estimates of b in EST. The vector b was stored in the
array called X in the program. The iterative algorithm is
performed in the subroutine SEID and the rows of the coefficient
matrix A calculated as required in the subroutine and stored in
the array A. The output from Èhis program r¡/as stored on magnetic

disc for later use.

The program APPROX used the data stored on disc as input. It has

many subroutines, one to calculate the S.L.R. estimates (StR), one

to esÈimate the absolute errors (ERRCAf), one to plot graphs of
the results and one for each of the approximate formulas considered.

This program \¡/as used to generat.e results from which the tables of
Chapters 6 and 7, and the graphs of Appendix C, \¡rere obtained.

Both programs ürere written in FORTRAN, for CDC 6000 or Cyber series
computers, and use non standard, unformatted READ and PRINT st.atements.

The plotting subroutine YPLOT (in the APPROX) uses a system of
plotting subroutines, COMPLOT, available at the South Australian
Institute of Technology and some other computer ínstallations.

A nodified version of sOR was used to generate the tables of Appendix

D.



PR0GRÂM S0R( INPUT, ltlToUTrD^TÂ, TÂoF3=n^TÀ l
DIt'IENS I0NX ( 8000) ¡ F t ( aO0 ) r F 2 ( 80 0l
DI nENS I0N PÂR1( 101 I pÀR 2( 10 )

REÂL M1r M2r MT

C0Mi40N I Ir JJTKKT IPr JPr KPr Jl'1r KH rÂ'l r À ) çttT
* ++*¡f + * +* * t +* +** *****+ + *+ *+* * tik *û fitrr. 'k * * ** * *** +**** ***+**+*+**
t*
* THIS P|IOGRAI,I SNLVES THF LTNIFÂ? çQIIÀTIONS *
* BY SEIDAL I S METHTID. *
**
* THT METHOD T'SFS THE PF IATTNN *
*+
* X = Â*X + F *
**
* IF A IS C0SïDERFD ÀS Tpr qltu nF À LnyúER (L) AND AN UpprR *
* (UI TRIANGULAA ¡4ÂTqTY. T.E. {=I.+IJ THEN +
* STARTING t{lITH AI'I T\TTIAL trSTTV^TF YOTXK IS CÀLCULÀTTD BY *
+*
* xK rl*xK + lJ*xK-l + F *
++
+ THE ITERATINN CONTINIIES (INlTL TqF LÂRGEST DIFFERENCE *
* BETll|lTEN THE K T!{. AÀtD t(-1 T{. trçrT¡,!ATES IS LESS THAN Â +
+ GIVEN ERROR TN ÂBSlLL'TF \'^LIIE.(E.G. 1E-ó) +
**
* THE pR0CESS HAS REEN ÂCîtr1':a A1tr1 qv SUCCESSIVE *
* 0VER-RËLÀXATI0N t¡|ITH S.tr.Þ. Cn\!îI^NT =1.2 o +
*+
* ** **** ** * * ** **** *** + * * ** ** * **+ ** +* fr* * ** ++ *** * * * ** * **+* ** + * **

222
l4

PR INT 14
F0R14AT ( * DATAr PT1, PT?r KK + )
NPl'NP2-1
READ +r PTlr PT2r KK
IF(KK.EQ.OIGTJ TO 333
CÀLL PÂRGEN ( N,Plr PTlr PARI I
IF ( NPl ' E Q' NP 2 ' A ' PT !¡FQ r PT? l? t3
D0 4 J=1r10
PAR2(Jl=PARI(Jl
GOTDS
CALL PARGEN( NPZtPT2¡PÂR2)
PR INT 40
FORMÂT(+1 DI C AI OiII

+* RDl"lrR0v RcMr RVl,l qT vI
t/RITE (3r49) KKrPTLTPTZ
F0RMÂT(lXrI3rZF8.4l
D0 555 IX.Zt8¡3
II"IX
Al-PARl.(II)
IF(Â1.GT.0.)Gû Til 500
II.II+1
À1=PARl(II)
IFIAl.LE.O.)GiJ TO 555
JM'IP=II+l
D0 554 JX-IPr10
JJ'JX
A2=P AR2 ( JJ I
IF(Â¿.1Ë,0.¡G0 T0 

'c4Al,À1+A2
JPr¡¡1t
KP=KK+1
Kl,t-Jf,l+Jp
NN-I P*JP*KP
trll'1=JP*Jp

n\t¡ ci'tl 0v/0t1
lnvrRç I,tTrVT+/)

2
4

3
5

40

49

500

cM/01,1Èr



444
4l

50
5c¡4
555

ó0

?33

33q

20

ERR-1E-ó
CALL FSf (X,NNI
CA LL FGEN ( F 1r X r NNr NMr 0 )
cÂLL s E I D ( Xr Flr ERR thl\!t Nr'lr o )
Ml=41+SUMJ(XrNN)
M2,Â2*SUMI(XrNN)
f'1T"lrll+MZ
CÂLL FGEN(FlrXrNNrNMrl I
CALL FGENIF2IXTNN¡\M'2¡
CÂLL StID(Xr Fl r ÈRRrr\tN, r.JM,,l I
Vl ¡41* SUl"lJ ( X¡ NN ) +M1-¡11*f'41
C0V=. 5tA¿*5UMI ( Xr Ni{ )
cALL S F I D l\¡ F 2r ERR, t\r\t, ¡,!r'.r, 2 I
V?_nA2*SUMI ( X r NN ) +M2-M 2.+t4?
c 0 v ' c u v + . 5 * A I * s u M J ( x r N N ) - f.,! 1 * 112

VT'V1 +U2+ 2. *C0V
F.E.Z.,a, C 0 V / VT *l 0rf, .
Otl1"A1*E(IIrAl)
0f,12- 

^2*E 
( JJr A2l

0V1.0M1* ( l.-0t'11+ 
^L 

I ll I+rl¡,! 1-A 1+ 1. ì I
0V2'0M2* ( 1.-0M2+ 

^2/ 
( J J+ni42-Â Z+ I r ) !

R0t{"0tll / 0M2
R0V'0V1/0V2
VMl-flVl/0Ml
Vl,'12=BVZIONz
Ct'|1'0r'11-11l
CM2=0112-112
RC H=C141/Cl''¡2
C01'CMl /0Ml
CO2"Ct42l O¡42
RVH"VITI / Vt'12
PR INT 41 r I I r KK r A 1r 0l'1 r llVl r C i4 1 ¡ \/M'l r I .l'! r a n Mr p C I'tr M Lr V 1 r C 0Vr MT r

+JJ r A2r 0M?tOy2tCHZtVt4? çCD?, Rn\/, QUM, M 2 t\t2, p trr VT
CONTI NUE
FDRMAT ( I Xt 2T3t LZF8.4/1X r I 3 t 7\t 1)çB.L ll
WRITE (3t50l DVlrûV2rCMl tCY|?.rV'lerl?r^ ñ\/
F0RMAT ( 1\¡7F8.41
CONTINUE
C ONT I NUE
PR INT 6O
F0Rf''lAT(10Xr*ITERATIVE (S.0.q. ) METHn'l !JSFn.f.)
ENDFILE 3
G0 T0 222
CONTINUE
PR INT 334
FORIlÂT(IH T23(IH*II?H *¡7.LXI1H*I?411 + IJAÞ\!TNG PACK DATÂ +

+l2H *tZIXr lH*/1H t2?(lH*) )

END
SUBROUTINE EST ( XTNN)
DIMENSIL]N X(NN)
C 0 M M 0 N I I r J J r K K ¡ I P r J p r K P r J 14 r K M r Â. I r À 2 . A T

U-l/NN
D0 20 NR=1rNN
X(NR)-U
RE TUR N

ENT)

SUBR0UTINE FGEN( I'r XrN\rNMr L )

C0i'll.lnN I Ir JJrKK t IP t JPI KPr Jnlr KM IÂ 1 ' À2 rl\1
DIMENSI0N F (N¡4)rX (NN)
D0 1 N=lrNM

1 F(N)=0.
F(NM)=1.
FT'0.



JN'KK*KM
IFIL-119r10r20

9 RETURN
1o Dc ll J'trJP

JL.J-1
NR'IP+JLTJM
XC'Â1+X(NR+JN)
F(NRl.XC
¡1rff+XC

tl coNTIr,luË
F(NMl"Fï
RETURN

20 D0 2l I=lrIP
NR¡I+JJ*JM
xC,Az*x(NR+JN)
F(NRl'XC
FT=FT+XC

2T CONTII{UE
F(N¡'1).FT
REIURN
END

SUBRiIUTINE SEID (X¡ FTFRRTNNT\14r Ll
C D l'tlt4 0 N I I r J J r K K r I P r J ? I ( P I J r\4 .r K M t A '! t Ä 2 I Â T

DIMENSION A(7)
DIMENSI0N X (NN)TNPDS lTlrF (\^a )

NIT=0
LL,(L+tttz

I.I CONTINUE
E'XS'0.
DU 2 K=IIKP
KL=K-l
D0 2 J-lrJP
JL.J-l
DOz I-1r IP
IL'I-t
NR'I+JL+JM+KL*KM
DIAG=AT+IL+JL+KL+LL
D0 3 \-Lt7

3 A(M)'0.
IF(J.GT.llA(2)=AZ
IF (I.GT.llA(31=Al
IF (I.LT.IPTA(5)=I
IF(J.LT.JP)A(ól=J
IF(K.LT.KPIA(7)=K
IF(J.E0.JPlA(11=A2
IF (I.FQ. IP lA (1 )=A(11+al
IF(K.É8.KPlA(4)=A(1)
IF(K.EO.1)A(1)=0
NP0S ( 1l=NR-KM
NP0S(21-NR-JM
NP0S(3)=NR-1
NP0S(4)=NR
NP0S(5)-NR+1
NP0S(ó)=NR+JM
NP0S(71=NR+KM
XT.0.
DD 5 MolrT
IF (A ( r.t I . E0.0. I G0T05
NP =NP0S(M)
XT'XT+A ( M) +X (NP I

5 CONTINUE
NF ¡NR-KK*KM
IF (NF. GT.0 I XT= XT+F (NF t



2

XT'XT/DIAG
xT,xf *I.2-.2+x (NR)
IF (NR . EQ.NN ) XT=F (Ni'l1-X S

XS.XS+XT
FN.ABS(XT-X(NP))
X(NR l:XT
IF(EN.LT.Ë)GO TO 2
E'EN
NE -NR
COÀITINUE
NIT=NIT+I
IF (E.LT'ERR l12tIL
C ONT I NUË
F0RMÁT ( 1H0r * ËilR0R *F10.7*
RETURN $ END

aÊTFp+T4* TTtrQ,\TT ONS Al *I4l
72
2.3

L02

103

205
104
10ó

FUNCTI0N SUMI(xrNNl
DI HENS ION X ( NN I
C 0 M M 0 N I I r J J r K K I I P r J P r K P r J ¡4 I K M I l\ 1 t ll ? t l\ r
SUMI=0.
D0 1 I'lrIP
NR,I+JJ*JM+KK+KH

I SUMITSUMI+X ( NR )
RETURN
ENTRY SUMJ
SUÞ1I=0.
D0 7 J-lrJP
NR 'I P+ I J-1 I * JM+KK*KM

2 SUIII'SUMI+X(NR)
RETURN S END

FUNCTION E(NTA)
E.l.
IF (N.ES.OIRETURN
D0 I I.1rN
ÂE =A*E

1 E"AE/(I+AE)
RETURN $ END

SUBR0UTINE PARGËN( NPÀRr olr DÀR)

DI I'lENS ION PÂR( IO )

IF(PT.EQ.OIRETURN
D0 l0ó J=1¡10
Y' PT+J
IF (NPAR. EQ.2 )Y =2*J
\.Y I 2,
CALL CALC(Xr JtPXtNPAc¡
CALL CALC ( Yr Jr PYTNPAR )

DT¡PY-PX
EX-PT-PX
IF (ABS (TXI.LT. IË-5)GNTNlO4
Z.X+ ( Y-X, *F-X /DT
IF(Z.LT.0)G0 T0 205

IF ( Z. GT.40 ¡ GC T0 205
CALL CALCIZt JtPZTNPÂRl
IF(PZ.GT.PT)GüTÛ I03
X'Z $ PX'PZ
G0T0 102
Y,7 $ PY=PZ
GOTI] LO?
X. 0.
PAR(Jl=X
CONTINUE
RETLIRI.I S END



SUBR0UTINE C ALC ( Ar N' Pr NP )

PrA*E(l.lrÂ)
IF(NP.EQ.IIRETURN
8=P
P'l-0+A/ (N+1.-A+Q)
IF(NP.EO.2)RETURN
prQ*P
RETURN $ END



ll

PR0GRAM ÂPPRX( INPUIT OtlTptlTrlÂTl' TÀ oc?:ñÀT{ I
REÁL r'l(9r 2l rllT ( 9)¡ V(at15ç2l,VT (or 151rC lal
REAL Cf''1( q t15 tZl tClfT (q çl5l ç 0M (q )\ qt? I tnMr ( ar l5 )

REAL 0V( 9r L5tzlr 0Vp(9r 151 r î\tT( or ! 5r, r-'rì\'(a, I 5)
RÊAL PM(9r?-ltP V(9rIqr?lr0Cì(ar ÌFrtlr rQMlorl 5rZ)
REÀL p0VP(9r lJr2 )r Pn\/T(9r I r¡¡ ?l ¡Þ^\/(o rr 5 )

CUI'lM0N Mr l''llT r Vr VT r C r CM r CMT r lt'î.r 0 MT r nV I n\ro ' 
oVT r C 0Vr

r PÈ1 rPVrPCt\,| rÞrll'4rpl-l Vor prl\/Tro('\lrli4AY
RE I.'I ND 3
D0 l0 I=1r10
If'lAX=I-l
REÂD 13t49l C(I)rl'l(Trl l¡À4( Tr 2l

49 F0RHAT(F4rZFB.4l
IF(EOF(3I.NE.O)GÛ TN 11
MT (I l=1,'t ( I, 1 ) +M ll tZl
D0 10 J=1r15
READ 13t50 I V( ir Jr ll rV( I ç Jt2 )r CM ( I e.l tl I r nM( Ir Jt2l t

r 0V( Ir Jr l)rrlV( Ir Jr "-l çC lì\l( Tr J )

50 F0RMAT ( L Xr 7F B. 4 )

VT (I r J ) =V (Ir Jr I ) +V lT ¡,.1 t 2l
CilT( Ir J ) =Cl'î( Ir Jr 1) +CM ( Ir Jr ? I
0F!T( Ir J ) "MT( I )-CMT( Ir J )
0VP ( Ir J I =0V I Ir Jr I )+nVl T.t'lç 2l
0VT( Ir J l'0Vp ( I r J )+2.*C 0V( I I J )

D0 12 K=Lt7
0M (I r J r K ) =M ( Ir K l-C!''l( I r Jr K. I
Pl,| (Ir K ) =l'11 Ir K) /¡4T( I )
pV (Ir JrK )=V ( Ir J tKl l\tT( Ir.l )

PCt'Î( I r Jr Kl -CM( Ir Jr Kl /CuT ( I',l I
POM( I r JrK )=0M( Ir Jr Kl /nMT( Ir J I
POVP( I r Jr K )=üV( Ir JrK I /r:ìVD ( Ir Jl
POVT ( [ I JrK I =tjV ( I I JrK I /!]VT( I' Jl
PCV( Ir J ) =C0V (I r J I /OVT( Ir J )

12 CONTINUE
IO CONTTNUE
I1 CONTI NUE

*+**** +*+*****++***+++*+*******+ *+ *È*+** +ù+*****+****++**+****++
*
+ INSERT SUBROUTINË CATLS HÊPE
*
+ + *+ ** ** + * + * ** + * ++ + * **+*++ * * + * ** ** *'r ** + * *+ * * *+ * ** *+ + *** * ++ ** +* * *

ST OP

END

S U B R O U T I N E S L R ( P 14 r P V r Þ X r T T A X r 
^ 

L O fJ 

^ 
I q FT { !

REAL Plvl(9 t2l tPV(9r 15t?l toX ('e t].4¡7 I r ALnLr^ (âç 2l TBETA(9r 2)
D0 I IA=1r IMÀX
I8=IÂ
IF(IÀ.GT.IIIB=IA+4
IF ( I A ¡ GT.5l I B= I A-4
SX=SV=SXX=SXV=0.
IF(I.GT.5lIB=I-4
D0 2 J=ItL5
SX¡SX+PX ( IAr Jr 1 ) +PX( IB t Jt? I

SV'SV+PV ( IAr Jr I )+PV( IRr Jr 2 I
SXX'SXX+PX ( IAr Jr I l **:+pX( I At Jç 2) t*2
sxv'sxv+Px ( I Ar Jr 1) *DV ( IAr J r 1 )+ PY I T R t ,lç ? | *DV ( I flr Jr 2 I

2 CONTI NUE
VB=SUl?O.
XB'SX/30.
THETA= ( S XV-SX*VB ) / ( SXY-Sl(*Y B )
AL PHA ( TA r I I =AL PH À ( IB t2lo-I . / TH ETA
BETA ( IA r l l'BETA ( IB t2l =P i',1( I Â I 1) -\la - I Þ M( T À r t I -XE ) *THËTA

f



1 CONI T NUE
RETT,lCN
END

¿l

SUBROUTI NF |l.lALSTM
REAL Y(9r15t2 )r ËRM(q'2lrcRP(Qr 2)
REÂL M(9r2ltl',T (9)rV(9r15ç21çVT lc'1Fì rCf ql
REAL CM(9¡ l'.t t? lr Ct"lT (9tL5) r 1{ (Qr'l 5 t)l çl.ìrqT (a t L5 I
REAL 0V(9 ¡I5t? lr 0VPl9r t5) I DVT( ar 1 5 ì I CnV(9r 1 5 I
REÂL PM ( 9 t? I tP V( 9r I5ç?l t ÞC 14 ( 91 |q¡?l t FnM laç1 5t2l
REAL P0VP(9r 1lr2 )r PD\/T(qt15¡ ?1,ÞC\/lô'1 q)
REAL BL(9r15)
CCl,llt{0N Mr l.l T I Vr VTr C r Cñ,1 I Ci'|T r lr4r 0 Ml I n1,r n\lDr n\lT r C 0Vr

Pt4r PVr PC Hr Pl-lI't t pnVp I P0VT r DI\l tT t"rÄ X

D0 1 I=lrIHAX
DD I J-Lt15
B: I'Ji-{T ( I r J I /l'lT( I I
BL(IrJ)=B
DD I K=1r2
Y( Ir Jr K )=PV( I¡ Jr Kl*(1.-B l+ei't (l r( ì*R
CONlI NUE
CALL ERRCAL(YrP0Mr IMAXrÇR|.,lrtrRP )

PR INT 2
F0RHAT(/*l|lALLSTR0t'trS AppanITM^Tfnt\t ÊQa lHE MEANS*/)
PR INT 3

FoRMAT(* C f'lT pÞ1 (-VE) FpÞnac l+!'tr)*/)
PR INT 4r ( (C ( I) rMT( I)r P¡4( I¡ Kl rF PM( Ir K ì' FPP( r rK ) r I"1r IMAX ) r K'Ir 1)
F0RHÀT ( 2 F4 t F6.4t ZF 8.4 )

PRINT *¡llp¡6¡ dALLSTPnMTS trnpMUl 4 7]t
REÂD *rNAX
IF (NA X . GË. 0 ) CAL L Y PLT ( Y I pl-l\¡lr TM ÄY t Nl\X 11 2t1nVF R FL Úrl MEÂNr -L? t

l9HhJÄ LLSTi{nM I S F 0R ¡,lUL Ar 1a I
RETURN
END

SUBROUTINE OLSSON
RE AL Y ( 9, 15t Z ) r FRM ( qr 2 ) r i:R r ( at ?l
REAL t{(9r2)rMT(9lrV(9r15r2lr VT larl5ì rÊlql
REÂL C¡4(gr L5t2)rCHT(9t15 ),0M (qr15,21 trì!.lT(:l,l5)
REAL 0V(9 tL5t?)r 0VP(9r15)r0\/T( 9r 1 5 I rCn!/lor1 5)
R E Â L P M ( 9 r ? I t P V ( 9 r I 5 t 2 I ç o C M ( o r 1 

q r " I r P0 M I o ç 1 5 t 2 I
RE AL P0VP ( 9r 15 t ?l t Pn\lT ( 9r 1 5 ¡ 2l çe Ctl I a tl 6 ì

REÂL T 121
C0t'lMotl llr l'lTr Vr VT tCtC Mr Ct',lI' 0r4 r0FTr 1\/r nlror nllTrC0Vr

Pf,,tr PVr PCMr p0Mr pflVP, PCVrr Þ1lt.1MAY
CONTINUË
READ +rFAC
IF (ABS (FAC I. LT. Ib-4)RETUqN
D0 I I=IrIMÀX
D0 I J=1r15
D0 22 K=lr2
T(K)rV ( Ir Jr K )+FA* *M(frK)**? l\l lr' J'K ì
CONTI NUE
TSUtr:T ( 1) +T ( 2 )

D0 1 K-1r2
Y(IrJrK)=T(K)/TSUM
CONTINUE
cALL ERRcAL ( Yr PtlMr IMAXr EQMt;eD ì
PR TNT 2
F0RilAT(/*0LSS0NrS APPRnXIqÀlInN FrirÞ rHF MtrÅNS*/)
PR INT 3
F0Rl'1ÂT(+ C tlT pu (-VE) FRanal l+lrFl*/l
PR INf 4t ( ( C ( I ! r MT( I ) r pM( I r K I rF t'^'l T r ( lr F? D I T' K ) r I'1r IMAX )¡ K=lr I )

t

I

2

3

4

,

il
i{t

I

I

t

i

't
I
li

ri

¡.
l,Ì{.
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t

4 F0RM AT ( 2 F4 t F6,4t 2F 3.4 t
G0 T0 77

PRINT *rttp¡gt íJLs50r,!rs Fnpi4t,LA 7n
REÂD *rNAX
I F ( NÂ X. GE.O ) CAL L Y PLT ( Yr POM r IM ÂY, \I AY 

'.I. 
?HN\/f: iì F L I]þ/ ME ÂN ¡-IJ I

16110LSS0\ rS FnPi,rtJL A r 1 aì
GO TD 77
RETURN
END

SUBROUTINE HÂRRIS
REAL Y (9rL5t ?l r ERM 19ç? lrFRPlg¡ ?l
RE ÀL 11( 9r 2l tl1-l ( 9 ) r V( or 15 ¡21o VT (o''l 5 ì 'C 

( o )
REAL CH(9 tL5tZ)rCl{T(9rt5lrfl^{ (9rl 5 ç21 tnuTf q

R E A L 0 V ( 9 t 15 t Z ) r 0 V P ( 9 r '!. 5 l r l V T ( 9r 1 5 t r C I V ( o r
REAL PM ( 9 tZl tP V ( 9r l1ç21ç pC M ( 9r 14tcl r Pfìr't ( q'
RE ÂL P0VP ( 9r I5 t2l t PDVT ( 9r 15 t ?t tolìt/ I a,t 5 t
C0l'll'l0N M I MTr Vr VT r C r CÀ'l r C ilT r 0llr n ljlT r n\1' fl\/ o r n\/T r C 0Vr

PMr PVr PCHr PnMt piVPr Pl-ll'1' ÞC\l tl \'rÀ Y

D0 I I-lrIMAX
D0 1 J-LtL5
D0 I K=1r2
RH0'PV(IrJrK)
T,RH0+ ( I.-RH0t *EXP (-RH0+C ( I I )

Y ( Ir J r K ) =RH0*( T+ ( 0VT( I I J l-1-\T( Tr,f t r + nMr I Ir J ) ) / úVl ( I I J I
CONTINUE
CALL ERRCAL ( Yr P0VTT IMA Xr!:Q ¡'t r FP Pì
PR INT 2
F0RMAT(/*HÀRRISTS Appenyl¡4ATÍnNj cnp THF V¡IpIANCES*/)
PRINf 3
FoRMAT(* C MT PM (-V!:) EpelaS (+rlEl*/ ì
PRINT 4r ( ( C ( I I r r'lT( I I r PM(Ir K ) rE aM ( 1r ( I r trÐ Þ ( r r K ) r Iolr IMAX ) r K-7 tZl
FfIRMÀT ( 2 F4 r I 6. 4 t 2F 8. 4 )

ü
irg

I

¡ l5l
15)
15tZl

,

I

2

3

4

PRINT *trrPL0T dARRIStS trnR'\,llJLA ?'f
READ *rNAX
I F ( N A X . G Ë . 0 I C A L L Y P L r ( Y r o 0 V T r I M^ X ' \! Â X ' 

'! 7 u 1\/ F R F L 0 h V A R I A N C Ë t - L7 t
1ôHHARR IS I S F f-IRI'1UL Â r I 6!

RETURN
END

,

SU BR NUT I NË S LR f]M
REAL Y ( 9r l5 t2l t FRM ( Q¡?l ¡ ERp I ar 2l
REÂL Pl(9r 2l tNT(9lrV(9r15r2 )' VT lorl 5) rC lql
REÂL Ci4( 9r 15 t2)¡ Cl'lT(9r 15) r1¡4 (9rl 5 ç21 tnMT (qr 15 )

REÂL 0V(9r 15t2lr 0VPl9rl5lr 0VT( 9,'!5 1'r^rì\/(or1 5)
REAL Pltl( 9r 2l tPV (9tL5¡2 )r DC ^l( 9r 1t t2l ç P1t4 (Õr 1 5 t?l
REAL P0VP(9r l5t2lr POVT(ar15t 2l tol\f(9'1 5ì
C0MM0N Mr MTr Vr VTr C r C¡'lr CMtr 1M rf-l t'!1' nV¡ ¡t¡Þ. n\lTr C 0Vr

t P Mr PVr PCM, Pnqr PnVD, pnVT, pC\/,Tr,tÂX
REAL A(9r21¡Bl9tZl
CALL SLR ( PMr PVr P0Mr TMÀX r Ar B )
D0 I I.1r IMAX
D0 I J=LtL5
Dt I K-1r2
Y( Ir Jr K ) =PM ( I¡ K l +A ( Ir K ) * ( P'\'l ( L Kì -pVl rr J r K l -B ( Ir K ) )

1 CONTINUE
CALL ERRCAL ( Yr POMr IMAXr EqU'FRD I
PRINT 2

2 F0R14Afll+S.L.R. APPRnYIMÀTInN Fna tHtr r''!trÂ\ts*/)
PRINT 7

3 FoRtlÂT(* C l'4T pM (-VEl trpanQs (+\,Fì A B*/)
PRINT 4tllC(I)rllT(I)rPM(IrKl'ERt'tlTrKlrrPÞlrrK)rA(IrK)rB(IrK)rI=lrI

i

I
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I

I

,.1

rMÂXl tK'1rl)
4 F0RMAT l2F4 tFó. 4r 4FB. 4t

PRINT *rrPL0T SLR AppaDX. FnR ME^r\rS ?"
READ *rNAX
IF (NAX . Gt. O ) CAL L Y PLT ( Y' PNMI IM ÀY, II ¡ Y I J lLINVF R I-L OI¡ Í'IF ANr -I?r

I gl.ls. L. R. APoQ nxT M 

^T 
Tn Nlr I Q I

RETURN
END

PRINÏ *rrrPL0T SLR. APPRnX. Fi'lR V^RS.?"
READ ITNAX
IF(NAX.GË.0lCALL YPLT(Y.rP0VT,Ir¿,lYrNÂYrt7r-tî\tËRFL0t¡ VARIÀNCF t-l-7t

lgHs. L. R. APPR 0X Il,! AT InN!. .! a !
RETURN
END

SUBPOUTII'¡Ë SLROVT
R E A L Y ( 9 r l 5 t 2l t Ë R M ( q t ?. 1 t l: R P ( a r 2 l
REAL M ( 9r 2l t MT ( 9 ) r V l9t 75 r 2l r VT lor ! 5l rC I a I
REAL CM ( 9r 15 tZ l r CMT (9r 151r 0À4 (Q rl5 t"l ç1Ml I ar t5 )
REAL 0V(9tL5tZ lr 0VP(9r l5lrlVT(q,t 5 !, Cnrr(orl 5t
RE AL PM ( 9 t2l t pv ( 9r L5t? l, ÐCÀ,1( 9r'l q.2 ì r Þnu ( a r,! 5r 2l
REÀL P0VP(9r 15ç 2l çPDVT( Qr 15, ?-l,D^\,(Q rl 5)
C0MM0N Mr MTr Vr VTr Cr CMr CMTr 0M¡ ¡ ¡¡. n\tr n\l Þr î\lTr C 0Vr

, P Mr PVr PCMr P0¡4r P1\/o r DlîVr r Þ1\l rTMÀ Y

REAL A (9r ?l tB(9t21
CALL S LR ( P14 r PV r P0VTr IMÂXr À r B )
D0 1 I'lrIMAX
D0 1 J=ltL5
D0 1 K=1r2
Y( Ir Jr K I'PÈl ( I, Kl +A (Ir K I *( p!4( Tr Kl -DV ( Tr J r K ! -B ( I I K ) I

1 CONTINUE
CALL ERRCÂL(Yr P0VTTTFAXTEQi'lr Fp pt
PR INT 2

2 FORt4AT(/*S.L.R. APPPnXIi4ATTIN Fn? TL{F t/ÂaT,\NCËS*/)
PR INf 3

3 FORMÂT(* C i'lT pM (-Vtr) FpaoÞs (+r/Ft A 8*/)
PRINT 4r ( (C ( I) r MT( I )r ÞM( I' K) rE PMI I'K !r troDl Y r K l r A ( Ir Klr B ( Ir K ) r I=1r I

rl''lÀXl ¡K=lrZ)
4 F0RMÀT I 2t q tF 6,4 t 4F 8,41

,

t

SUBR0UTINE ERRCÂL(YrYr lMÂXr FRl.4'FaDl
REÀL X(9rl5t2l tY(9r15ç21 rEQi,l (9 rc1r Fo Þ(e, 2ì
REÂL Z(9tL5tZl
D0 1 I=1"¡IilAX
D0 I K'1r2
EH-EP.0.
D0 2 J=1r15
ER=Y(IrJrK)-X(IrJrK)
Z( Ir Jr Kl =ER*10000
EP'Âf'tAXl(EPTER)
Et*l'ÀtlINl(EMr ËR I

? CONTINUE
ERM(IrKl=EM
ERP(IrKl=ËP

1 CONTI NUE
PRINT 5t I ( lTlL t J rK lr I=1r Q ) r K -1¡21 ¡ J='!r I q I

5 F0Rt'lAT ( 9Fó t5Xt)t6l
REÏURN
END

SUBRI]UTINE ERMËTH
REÂL {(9rZl tMT(9}rV(er15r?ìr VT(1'15) rC lo)

,'
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2

rt

l1

3

I

REÂL CPr(9rL5tZlrCMl(9r I 5ì' 0rvl (9rl 5 ç?l ç'lMTlar 15 I

REÂL 0V(9t15tZ)r0VP(qt15l r0VT(q,75¡' fn\/(or 1 5)
RE ÂL PM (9 t? I tP V ( 91 15t? I t PC \4 ( 9r '!q r ? I ' 

pnv (Oot 5t2¡
REAL P0VP(9r 15 t 2l ç Pî\tT(9r 1 5ç ?l rr'r'\/ ("r1q I
c0MM0N MrMTr Vr VTTCTCMT CMrr 1M rflMrr nl'r O\/Dr n\rrrcDVr

PMr PVr PCM, pOMt p0\/Þr Pf"ì\/r' olV rT Mlr X
PRINT 4
FORMAT ( / *E. R . A P PROX IMÂTI lNT I
PR INT 2
Et'lM'E tt P. E VM' EV P. I .
FoRMAT ( /* C f'tT F,l't -VE MÊ ¡'.t +VE -VF VAR.
D0 1 I'lrIMAX
D0 11 J=1r15
TV'VT(IrJl
Ttl-l.,lT ( I I
VM'TV/Tl',l
ÂE.TV+3. *VM+ (VM-1. I
0E = ( AE * ( TM+TV ) / ( TM+TV-1. , ) -T ¡4- 1

TM¡ÂE+EIC(II+DETAE)
EV'Ef¡î* ( 1,.-EM+AE/ (C ( I ) +DE-AE+ Ft'r+J . I )

RH'EM/0MT(IrJl
RV'EV/0Vl( Ir J )
Ef{P'AMAXl(EMPrRl'l)
EMM-AMINl ( EM14r ¡{M )
EVP-Âf'tAXf ( EVPr RV )
EVH'AMINI ( ËVMr RV I
CONTI NUE
PR INT 3r C ( I I r MT ( I ) r PM ( I r 1 ) r E MM rF Mo r tr \,r'1' tr\/o
FORHÀT(2F415F8.4)
CONTINUE
RETURN
END

)

t

+VE*}

SUBROIJTINE OFFMN
REAL Y (9r l5t Zl t ERI'4110ç?l r EQP ( 10' 2l
RÊAL ltl (912 ) r MT (9lr V(9r l5r ? )r VT (9rr- 5l rC lel
REAL CM(9r 15 tZ)rC14T(9t 15) r rlv (9rl 5 o?l 1rìMT( ec 15l
RE AL 0V ( 9 t15 t?l tOV P( ot 15 ì r lVT( Qr I 5 ) r Cntr ( or 1 5 )

REÂL P{( 91 2l tP V ( 9¡ L5t2l ç PC M( 91 15 r ? ! r PîÈ! lotl5tZl
REÂL P0VPl9tL5t 2l tPnVT(9r 15 ¡ ?l tÞ1\/lq'15)
C0f'iil0N Hr MTr Vr VTrCrCi,lr CMTr 0M r nMTr 1ì/r lllor 0Vr rC 0Vr

PMr PVr PCMr PflM.r PflVpr pn\/r. oCll rT MÂ)r

PR INT ?
PR INÏ 3

D0 I I-lrIMAX
D0 1 J=LtL5
D0 1 Kolr2
Y(IrJ¡Kl=PH(IrKl
CONTINUE
CALL ERRCÂL ( Yr P014r IMAX r EoM r E RP )

F0RM,.Tll*0FFERED MEÀN ÂppRrlXIM¡1TnÀ' FnQ rLtF MTANS*/)
F0RMAT(* C MT ÞM (-VFl treQnaS (+ttc¡sr,
PR INT 4t I lC ( I I r l4T( I I I Pil( I I K) rF Pu I T r K )r trP Ír ( r r K t r I=1r IHAX I r K=1r I )

F0RMÂT(2F4t3F8.4)

PRf NT *r I'p¡¡t 0FFËRFD !''!EAN ?tt
READ *r NAX
IF (NAX. GE.0l CÂLL YPLT ( Yr PllMr II'4 ¡x ' \lAY r1 3Hn\/c RFL0þJ 1,1ÊANr -L3t

I2HOFFERËD I'!FÂNI I.2 )

RETURN
END

SUBROUlINE OFFVAR
REAL Y (9r 15çLl r ERM l'IOç ?-l r FRp l10r " t
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t

R E A L t1 I 9 t 2 I r M T ( 9 ) r V ( a r 1 5 , 2 I ; VT ( o r ! 5 ) r C I a I
REAL C ¡4(9 t15t2 ) rCMT(9r 15) r 1t'l (9 r15 t2l sñ^1r( gr 15 )

REAL 0V( 9r L5t2lr DVP(qr 15l r ît/T( qr 151r f 0\, ( o' 1 5 )

REÂL PM ( 91 2l tP V ( 91 15t21¡ DC{ ( ar 15r z I I D1\| lõç15ç21
REÄL P0VP19t 15t2l tPn\lT(9r I 5 ç ?,1 toCV(qrl 5 t
C0Mt'10N itlr MT I VI Vf I C I Cf'lr CMTr I'{ rl-lMT' nlrr n!D ç rì\f Tr CflVr

PMr PVr PCM, p0Mr ÞîVÞr Drl\/1r D1\/ rlMAX
CÂLL ERRCAL ( PVt P0MrIf4AXrÇR14r Fo o¡
PR INT 2
FORMAT(/+OFFERED VAP. ÂÞ9A1XIMåITN\I FND THF MEANS*/)
PR INT 3

F0RMÂT (* C í,lT pM (-VF¡ eoÞnQ S (+ur ¡ 4r,
PR INT 4r ( (C ( I ) r f'lT ( I ) r PM( Ir Kl rF PM ( T r K )r Ea P ( Y r K ) r I'lr f MAX ) r K=1r 2 )
F0RMA.1 (2F4t3F8.4)

pRINT *,rrp¡91 0f_FERFn vÂaIA\tcF ?Í
READ *rNAX
I F ( N A X . G E . 0 ) C À L L Y P L T ( P V r P I'vl r I M¿t Y ' N A X ¡ r 1 H I lt I R F L l] lll M E A N t -L3 t

l6HOFFERED VARIÂNCE T1 f'I
RETURN
END

2

3

l+

{

t

FUNCTInN E(DrA)
E'1.
IF (D.EQ.O. 

'RETURNNL ¡D
NP3NL+l
D0 1 I.ITNL
AEoÂ*E
E¡AE/(I+ÀEI

1 CONTINUE
EP'Â*E/(NP+A+8,
E¡E+(D-NLl*(EP-El
RETURN
END

SUBR0UTINE YPLT( Yr Xr It'!AXr NAX rI Xr À!Y' T Y' \!Y)
RE ÄL X ( 9r l5 t Zl, Y ( 9 t75 ç ?-l
REAL XX( 270 ) TYYI2TOI
D0 1 I=lrIHAX
D0 1 J'1r15
00 I K=1rZ
N=J+ ( I-1 ) *15 + ( K-r I *Ir,!A X+15
XX(Nl'X(I¡JrKl
YY(N)-Y(IrJrKl

1 CONTINUE
CALL PLOTS ( 7HTËK4O1O )

IF (NÀX.EQ.O}GT TO 2

CALL PL0T(0.r5.t-31
D0 7 L-Lt4
CALL ÂXIS(0.r0'rIXrNXrl0.rOr r0.r.'! r1 I
CALL ÂXIS(0.r0.r IYrÀlYr l.0.rg0.r O.r .l r-1 )

7 CONTINUE
2 NMÀX=I MAX*30

D0 3 N"1r N14AX
3 CALL NSSYMB(1C.*XX(N)r1o.*YY(N 1r.01r711. I

CALL PL0T(0.r0.r3)
CALL PL0T(l0.rLA,-t2l
CALL PLOTE
RETURN
ENID

SUBROUTINE OFF I'1NV
REÂL Y (9r 15¡2 ) rERH (1Oo ? I r FRP (1 0r ? )



R E Â L ?4 ( 9 ¡ 2 ) r M T ( 9 I r V ( 9 r 1 5 r 2 ì r VT ( ô r 1 E ì r C I g t
REÀL CM(9 tL5 t2)rCl''lT(9t15) rlM (9rl 5 t ?l tlMT(a. l5)
REAL 0Vl9tL5t?-lr 0VP(qr 151'1\/T(C'! 5 ! r CnVlgr! F )
REÂL pM ( gr 2l tp v( gr lqt2l ¡ Þ1r,1( g t 1\.? I r Dlv la¡15¡21
RE AL P0Vp lgt15 r 2 ) I p0\1T ( ar 15r ?) rDî\t ( o,1 'ì )
C0l'lM0N Hr MT t Vt V Tr C r CMr CMT r 0M r [lMT, n\/r f.\/ Dr nVTr C 0Vr

t P Mr PVr PCl'1, pltv!r pDVDr Pl\/rt ol'\l,Tv t\v
PR INT 2
PR INT 3

D0 I I-lrIMAX
D0 I J-lrl5
D0 I K-lr2
Y(IrJrKl-PH(IrK)

I CONTINUE
CALL ERRCAL ( Yr PUVTr T¡,lAXr ER¡4r Fo Pl

2 FORI.IAT(/*OFFERED 14EÂN ÀPT'RlXIM¡Í1NN FlE TL{F VÂPIANCES+/)
3 F0R¡{AT (* C l,lT PM (-\1t) Faonp ç f +VF l */ )

PR INT 4 t I lC ( I ) r MT ( I I r Pil ( I r K I rE PM I I r( lr tre p ( T r K I r I-1r IMAX ) r K-lr J )4 FDRMAT(?F4t3f8.4)

t

PRINT *rttP¡91 0FFERFD HE^N ?rr
READ *rNAX
IF ( NA X . GE. 0 ) C A LL Y PLT ( Yr p0\/T I T ili X r \ld Xr -1 ?ÞrlV E R F L OtJ VAR IANC E t -L7 t

l?H0FFÊRËD ME/rNr 12)
RETURN
END

SUBROUTINE OFFVARV
REÂL Y (9r L5tL I r ERM(10r 2) rFRp (1 ar ?)
REÀL M(9r2I tl1T(9)rV(9;15¡2!-VT (Qr 1 5I rC Ia)
REAL CM(9r15t2 )rCi4T(er15ìr0i4 (9r15 ¡2.1 çnMTlor L5l
REAL 0V(9r L5t2)r 0VP(9r 15)rtlVT( 9. 151 r C1\/(a, I 5)
REAL PM(9 tZl t pV( 9r L5tZl, pC¡,t( 9r 1q,2 t, Þnq Iot.r 5r2¡
REÂL P0VP(9r I5tZl¡ PI]VT(9r 15 ç ?l tnCV(9rtcI
C0MMON fvlr l4Tr Vr VTr C r CMr C t4Tr 0V r 0 Mr r n\, ' nlrp I nrtT r C OVr

PMr PVr PCMr Þ0Mr Pl-ìVpr Pfl\/T' pn\l r1 u¡ y
CALL ERRCAL ( PVr POVTI II{ÂXI Eqq'F PO )
PR INT ?
F0RMAT ( /*0FFERED VAR. ÂPPRlX T¡,rÂlTnN FnÞ rHE vÀn¡ANcEs+/ )
PRINT 3
FoRMÂl(* C t4T pM (-vFl trRa.nÞs f+ìtr:t*/)
PR INT 4r ( ( C ( I lr f'lT ( Ilr PH( I r K ! rFpM lI r K lr F? D lf ,K ) r I-Ir I MAX I r K =!tZlFORUAT(2F413F8.4)

PRINT *¡ttp¡¡1 0FËERFn VÂRIÀr.lCF ?'r
RE AD *r NAX
IF (NAX.GE.0)CALL YPLT( PVr PllVTr TMl\Yr\l 

^Y' 
l7r-¡lVERFL0l,/ VÂRIANCË t-I7t

1óHOF FER FD VA RI Â\C E T 1 6)
RETURN
END

,

2

3

4

t
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APPENDIX C

GRAPHS OF THE APPROXIMATE FORMT]LAS

The graphs presented in thís appendix all correspond to the case

M=8, c=8. The value of P, or P.,, as calculated by the progran SoR

is plotted in the x direction and Èhe estimate of this value, as

calculated by the approximation indicated by the labelling, ín the

y direetion. Ttre rpointst 4t. represented by asterisks one m.m.

in height.
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APPENDIX D

TABLES FOR THE S.L.R. APPROXIMATION

Each table corresponds to a single value of c (the number of
secondary group servers). Seven values of total offered mean are
considered and these are listed under MT. The total mean is split
into proportions corresponding to.1, .2r..., .9, as indicated by
PM. Since cl_ has the same value at p and l-p only values ofm

PM < .5 are given. slrnilarly only values of pM ( .5 are consídered
for ßo,. rf p > .5 then ß,nlr"=o = -ßrlr"=r_, and ß* = 0 for pM = 0,
.5 or 1.

The values of cl and ß not represented on Ëhe table rnay be obtained
by linear interpolation between the values given. For large values

Mof tc
P* should be approximated by pU.



NUMBER OF JUNCTIONS 2

\ Ptl I BETA I,IEAN I
r'tT \

1.
2.
4.
6.

10.
15.
20.

! ALpHA trlEA N
: .1 : .2 t
t -------- t ------_ r
I -1.?55 3 -1.338 !
I -.708 I -.719 !
t -.350 r -.356 t
z -.22L | -. ?27 !
3 -.117 | -.l2? I
r -.0ó8 r -.074 I
| -.04ó r -.051 3

-1.3?1 :
-.7?4 t
-.36ó I
-.234 :
-.729 t
-.079 3

-.05ó ¡

-1. 703
-1.?05
-.958
-.902
-. ggó
-.89ó
-.909

-L.3?9 ¡

-.?46 t
-.373 r
-.?39 3

-.133 3

-.083 t
-.O59 t

t -1.ó87 ¡
! -1.2L6 3

z -c963 ¡
t -.9O2 t
r -.993 |
3 -.89q I
I -.907 t

-1.328 :
-.750 t
-.375 3

-.?41 .
-.L34 t
-.08( ¡

-.0ó0 t

-1.703 t

-L.233 z

-.9ó9 3

-.903 I
-.gg2 .
-.89? t
-.90ó r

-. O04
.013
,027
.03?
.039
.011
.041

-L.Tr 3 r

-L.?59 r

-.977 ¡

-.905 r

-.991 :
-.891 I
-.905 r

.2

-.004
.019
.03 g

.046

.051

.051

.049

-1. 841 I
-1.294 ¡

-o9gg :
-.909 :

-.882 t
-.893 I
-.907 t

.3

- .003
. 01?
.033
.040
.043
.o42
.040

-1.970 t
-1.337 :
-1.001 I
-.915 t
-.885 t
-.89ó t
-.91? t

-.oo2 !
.010 3

.019 3

,o22 :
.ozq I
,423 r
.0?? :

.4

-2.L34
-1.38ó
-1 .01 ó
-.92L
-.899
-,9O2
-.9lg

t t ¡ t I 3 t' ! r rl r la a la: t l a tl t¡ M ! !l t a I t I I r a a a l! t t at ! ! t 3 t a ¡ I f ! ! I t ! ! ¡ a ! l! t l a - t t - - 3 3 t¡ r - t t- ¡ a¡¡ I 3 3 ¡ a ¡ = a a-I \ PI,I 3 II.PHÂ - VARIANCF
t l{T \ ¡ .l r ¡2 .z

I -------- 3 --------- t ----..--- t
r 1. I -L.g?? S -1,752 r
t 2¡ 3 -1.198 I -1.200 t
t .t¡ t -.951 ¡ -o95î I
t 6¡ I -.9o2 | -.Kr? I
r l0¡ | -.990 I -. ggg 3

r 15¡ ! -.900 I -.ggQ !
. 20¡ I -.911 I -.911 ¡

!r at¡ a tl t ¡ t¡ rlr t lt !l t¡ -t a- = t r a !a r!r¡ t l! t a a !¡ ¡ lra-a t ¡ a t r l¡ t ttrr r r aa t¡ ¡!a ! tt¡ ¡- - - =! = ¡ = -=t = r 3 r r - ! 8 - a, = =\ Ptl
l.lT \

BETA - VARIANCE
.l .2

l.
2.
4.
ó¡

10.
15.
20.

-.004
,Ol?
.02 0
.020
.01ó
.012
. 010

-.001
.O?4
.036
.035
.028
. 021
. 017

t .? t .4 I ¡5 I .6 I .7 g .g t .g ;
t 
-------- 

I ----- t_____-___t _________t _t _________ 3 _________r
t .007 : .019 s .029 : .03ó r .o3g s .035 3 .o?2 :l .035 r .043 r .0{8 r .o4g | .045 ? ,0?6 | oo?L ¡I .049 t .057 I .0ó1 r .0óo I .054 | .oqz , ,O24 r| .047 t .054 t .058 3 .058 I .Oi3 s .O4Z ? .O?5 3: .0?7 I .043 | .047 I .O{Z 3 .044 ¡ .03ó t .O?L 33 .028 I .033 t .036 t .03ó t .034 s .o27 s .olz I? .O22 . .026 r .028 s .OZg s .026 , ,OZZ I .013 r



NUf-,IBEF LT JUNClIDNS 4

\ PM ¡ ALPHÂ - I.,IEA N

t'lT \ : .l : .2 | .?
-:---------: -: ---------

I

a

.5
BFTA

.1
MEÀl'i
: .2 a .3 ¡

3 --------- ! --------- 3

: -.014 3 -.CI2 2

! .014 ! .012 3

: .028 | .O?.4 3

: .040 ! .034 ¡

¿ ,044 3 ,036 :
: .04{ ! .c36 3

: .043 : .034 :

2.
4.
6.

10.
L5.
24.
25.

2.
4.
6.

10.
15.
zo.
25.

2,
4,
6,

10.
L5,
20,
25,

-L.442
-.65 6
-.411
-.? 2I
-.131
-.089
-.0ó 5

: -.00 1

,o21
.c35
.032
.026
,o2l
.01 7

-.2?o
-,144
'. 1ñ2
-.07?

.007

.0q0
,06"
. 057
. ôô5
.03a
.03c

-.?56
-.159
-r11?
-.086

-!.61)7
-1 . O0?
_.841
-. e00
-.808
' . A?-7

-.84 (

.021

. o6g

.n82
,07 6
.060
.04F
.039

,4

-1.317
-,722
-.474
-.267
-. 16ó
-. 119
-.o92

: -1.498
r -1.030
: -.878
: -.804
3 -.807
| -.8?6
3 -.844

.03ó

.080

.094

.08 7

.0ó9

-1.309
- '7?8-.480
-,27L
-. 169
-. 121
-.094

-.010
. 010
.021
.031
,O35
.037
.037

-1 .610 !

-1.106 !

-.92? 2

-.819 i
-.812 :

-.828 3

-,846 z

.05ó

.08?

.094

.090

.073

-1o?q4 : -1r?4?
-.ó!1 : -.4)1.
-.4?5 : -.45q

,4 !

------.--:
-.007

. c07

.c14

.c1g

.020

. C19

.rJI8a

: \ PM
= 3 = =: = B= t = ¡=:=3 == t: ¡ =: -= -= = = =: -= = t 3 = = = a = 3 t -=¡ =¡ 3: = 3 = = =:= = = == =: = =:3 3== = = = t = == = = = = == = == = = = = = = = = = = = = = =

MT\
S ALPHÀ VARTAN'tr
3 ol I .?
: --------- t -- --: -1.65q : -1.56?_
: -.9ó8 ! -.9q4
| -.872 2 -.8L6
3 -.791 : -.79ß.
: -.906 ! -.F08
s -.8?7 | -.828
r -,845 | -.8L7

t¡=aataat!ta:¡3:¡¡tt|!a!:-¡:=tl=:=l=at3tt=ata-rttl==-ar=t:-=!t=!:--la=l:=3-==-=t========:===:-=-a:-=

\ PM S BETÀ - VARIÁNCF
MT \ : .1 i .2

- ! --------- 3

I

a

t

.9

3 -1,532 :
t -1.063 t
: -.898 :
: -.810 :
! -.808 :
3 -.825 ¡
: -.844 i

.048 3

.085 3

.098 3

.o92 r

.074 ¡

-1.7q1
-r.157
- .95c
-,832
-.820
- .835
-.853

. a56

.072
,O82
.080
.066

! -1.941
| -L.2L9
| -.984
s -.891
! -.834
| -.848
: -.8óó

.048

.055

.0ó1

.0ó2

.052

-?.2?L
-L.287
-L.0?a
-.?'72
-,852
-.8óó
-.883

:
: .9 :
: --------- 3

! .029 :
: .031 3

a 
^at. . U Jl

t ,o35 :
: .030 :

'. .cZq :
z .ozc :a

a

a

a

.A5'¿ s .059 : .C59 | ,05? | .9qz

.o45r.048:.0q83.0441.035



NUMBER 0F JUNCTInNS Ft

\ Pr,i ÂLPHA - MEA I'I
.J : r? | r?

-: ________ !

-1.021 : -1,01 2 : -1.rr0?

MT \

-.ó14 | -.64?

3 BTTÂ
ç.1a) . aI.4

-.999
-,695
- .507
- .397
-.249
-.L79
-.138

3 -1.143 :
t -.910 !
: -.807 ¡
3 -.762 :

! -,74L 3

: -.757 ¡
! -,779 3

MEÀN

a

a

a

4.
6.
o9a

10.
L5,
?0.
25.

MT \

4,
6.
8.

10.
15.
20,
25.

-r428
-.323
-. 1.91
-.1?0
-.096

3 -1.121 :
2 -.822 :
| -.736 t
. -.712 !
3 -.72I :
r -.748 |
z -.774 ¡

-. 4á 1

-.353
-.216
-. 151
-. 114

-1.1'!n
-. a47
-. 75 I
_. 7)- q

-.7?Q
-.15?
-.779

-,66Q
-.4e9
-.380
-.2?A
-.1ó8
-.12a

! -1.1'! 5

: -.875
: -.781
: - 1444
I -.775
I -.455
: -.7'1 8

,2 : .3 2 ,4 :

-: --------- ! --------- ¡

-. c06 ! -.005 : -.00 3 :

.011 ¡ .C09 : .C05 :

.o22 ! .019 : .010 3

.029 3 ,Q24 3 .013 !

.037 : .030 : .017 :

.o?9 | .a3? 2 ,oL7 :

.039 : .031 ¡ .cì17 :

-.996
-.ó90
- .5L4
-,403
-.254
-.192
-.141

-1.194
-.954
-.838
-.793
-.749
-,760
-.780

,5

.085

. 114
,L26
.128
.112
.092
.076

-. 004
.009
.017
,O?2
.030
,O33
'034

.084

.107

.llg

.l2l

.108

.099

.07 ti

3 4.
3 ó.
t 8r: r0.
. 'lE. L)a

I zo.
| 25.

! .6 t .7 ! .8 S .9 ;
: --------- 3 ----- i --------- : --------- !
| -L269 3 -1,?74 : -1 , 519 : -l .70ô :

s -1.005 t -1.065 3 -1.I36 3 -L.2L5 :
r -.873 : -,9I4 : -.959 : -1.008 :
3 -.808 3 -.838 | -,872 3 -.910 i
: -.7ó1 I -.779 : -.804 3 -.834 3

r -,768 | -.782 r -,804 t -,832 3

! -.786 ! :.799 3 -.8I9 3 -,?46 :

.6 .9

tl:a!tattlal:aSIalSalt!3a:Êrata!=ltrt:3:!:¡lt:E!a-ltat:-=t:aalaa!!ta:3t:-==-a=-3====-a=-=-===-=3:==

\ Pll r BETô - VAPIANCF
.1 3 .2_ = .? : .4 |

- 3 -------- ! - t ---------3
.020 t .042 | .t\62 3 .077 3

.041 r .074 : .O97 s .111 3

.049 : .cA5 : .110 ¿ ,L?4 r

.048 | .085 : .l_10 t .l?4 r

.0{0 : .07 1, : .09? : .107 3

.033 : .057 2 ,^75 : .087 3

.027 z .O47 3 .06? : .071 t I Ia

,07 6
. 091
. 100
.103
.094
.079
.06ó

.05 9

.067
,07 4
.077
.071
.0ó1
.051

.033
,o37
.040
.o+2
.c40
,03q
. Q29



NU14BEP OF JiJNCTIONS 8

: \ PH : ÀLPHA - I'I

s MT \ : .1 3

3 --------- 3 --------- |
| 4. : -Lr48? :
! ó. | -.854 !
t 8¡ I -'581 ¡

3 10¡ 3 -.432 ?

s L5¡ ! -,253 2

¿ 20. : -,7.72 t
3 25. : -.7?7 t

EÂN
.2 : .1 :

-: --------- 3

-1.??5 ; -1.?4? 3

-.85? : -.8q4 3

-rê12 B -.6a1 I

8ETÂ
.I

MEA N

I-.330 3 -.336
-.238 | -.243
-.184 : -.188

.4

-1.191
-,857
- .65L
- .5I7

-.975
-.828
-,753
-,695
-.701
-,722

,4

.465

. 109

. L37

.L4g

.142
,L20
. l0O

-1.175
-.956
-. t,56
-.523

a?

-.019
-.002

. 010

.clit

.030

. c34

.03ó

-.999
-.881
-.766
-,748
-,757

.3

-.017
-.002

.009

.015

.o?4
,Q27

3 ,4

-.015
-. 001

.009

.015

.024
, O29
.031

- .93 tt

-.834
-.737
-.-126
-,739

-.009
-.00I

.004

.008

.013

. 015

-az!¡¡t3lla!a=!l!lltaa at rl=!t: ¡!:tlt= t=acl-t:!3¡=!ASaaEgt!=a3:t=g::-¡3-====-:=3====-==-===a=::¡-===

\ PM S ALPHÂ - VARIÂNCtr
MT \ ¡ .1 ! .? | .?

-:---------! : ---------
4. s -1.428 3 -1.304 , -1,254

.4 3 .5 I ,6 i ,7
-: ------___ 3 _: _________

-L,258 s -1.307 s -1,402 s -I.559

,OZ8 : .015

!
3 .8 : .g :
! --------- : --------- :
! -1 . 814 | -2.2.3O 3

3 -1.328 : -l .487 :
s -1,473 : -1.157 :
: - .934 : -,991 t
: -.800 i - .839 :
: -.777 : -.812 :
¡ -.784 r -.8I8 !

.035
,437
.041
,O45
.04ó

-r 46Q

-.?45
-. ?QO

-. I51

-. ?5'!
-. ó8o
-. 6Á 4

-.h86
-.77 4

-t 4gg
-. ?13
-.2)-?
-. 1 7'l_

-.7qf
-. 71A
-. A?q
-.694
-.7'l 8

I

-l.o?2 : -1.10ó : -1.202ó.
8.

10.
L'.
20.
25.

4.
6.
8.

I0.
15.
20.
25,

-.993 :

-,720 :

-. óó1 I

-.6q q I
-.677 :

-.707 ¿

.00"

.cì38

.055

.0ó I

-, gog : -,9?4
-.877 3

-,791 r

-.7L4 3

-. 711 :
-,728 z

t .? ¿ .? !
t --------- ? --------- :
2 .e25 ! r04? :
? ,170 I .09î :
t .006 ? .1r-4 t
I .106 ! .1?5 :
2 ,jQa ? ,126 :
! .081 : .105 3

t .067 t .087 3

I
t

I

.077 3 .080 2 ,O75 s .0ó0
,113 ! .107 ! .092 ¡ .0ót
.138 t .L27 ¡ .10ó ¿ ,O77
.150 : .138 : .115 s .084
,L45 s .13ó s .lló : .086: .05ó

: .04ó
I .038

.Izq I .119 : .103 2 .077 s .O42

.104 t .lo1 s .088 s .067 z .o37



--'----_,1Êa - ^ -*-.' .'. #+- - -_

-.990
-.773
-.624
- .407
-.295
- .229
-.186

NUMBER. OF JUNCTIONS 1O

\ PM 4¡pHA
.l

EA N
MT \ .,

.L a?

I

t

t

t

a

a

r.t

t

a

a

t

I
¡

6,
8.

10.
I5.
20.
?5.
30.

MT \

ó.
8.

10.
L5,
20.
25,
30.

-1.140
-.758
-.455
-.317
-.214
-.159
-.12?

B ETÂ
.l

.o27

.054

.0óg

.07 t

.t)61

.050

.0 42

-1.048
-. 16''
-r 597
-. ?et 6

-.2-49
-.18Q
-. 151

-1 .lì19
-.'l''?
-. ó't 0
-r?q7
-, ?1a
- ,214
-.17?

: BFTA - MEÂN
: .1 : .2
l --------- t -----3 -.0C9 | -, C,lZ
3 .0c0 3 -.000: .008 ¡ .009
: .019 s .023
3 ,0?5 z .O?.9

:
: .3 2 ,4 :
3 --------- : --------- 3

! -.011 : -.00ó :
3 -.00c : -.000 :
: .007 : .004 !
3 .019 : .Glo :

3 .023 : .013 :
| ,025 3 .013 :

.B 3 .9 ;

- ! --------- !

-L.523 : -1.815 :

-1.211 : -1.354 |
-L.O23 : -1.109 :

-.818 : -.8ó5 :

-.764 3 -.805 :
-.75e s -. 7gt :

-.769 : -.808 :

.0ó7

.077

.099

.095

.091

.081

. 07I

.037

.c41
, C45
.051
.049
,c 44
.039

-.ggl
',773
- .628
-.4r3
-.30L
-1234 t .028 2 .C?2
-.191 I ,o29 ! .033 z .O2' : .014 :

l===--t-t:=::=3=t:==t=====:==t=======31==t=33a=t::===3==3===:==2=-===:=3===::==========:=::========

3 \ PH 3 ALPHÂ - VÀRIAN:E
: HT \ 3 .1 ! r? | .3
3 --------- 3 ----- : --------- t -----
3 6. : -1.049 : -1.Cl6 : -1.ô!7
! 8. : -.758 | -.7q6 ! -.3?7
! I0 r : -,645 t -. 681 ! -.7? |
3 15. : -.590 : -.ól_5 : -.641
¿ 2or ! -.ó12 2 -.62q ? -.64?
t ?5. : -.644 I -.656 ? -.frfrfi
| 30. : -.{r75 t -.^85 r -.{igl

.ó: .4 ¿ .5
¡ ---------: -----
: -l ,a4g s -1.109
¿ -.871 ! -.931
: -.768 ¡ -.921
3 -.669 ! -.701
: -.659 3 -.677! -,675 ¡ -.68ó
: -1697 : -.704

.5
VARIÄNCtr

3 !? ? .? 2 ,4
! ---------: ----- : ---------a .057 r .083 r .I00
¡ .o95 2 .'-1?? 3 .I37
: .tr17 2 .147 : .1ó1
, ol2? t ,156 t ,L72
! .115 : .1 ?ó 3 .152
! .OeB : .114 3 ,lZ9
2 .074 : .ôqÂ ! .109

.1. al

\ PM

-1.198
-1.005
-.990
- r7?6
-. 700
-,702
-,7L7

.103
,I2.7
.ttt4
. L57
.145
, L27
.109

-I.328
-1. 09ó
-.9(.7
-,775
-.729
-.726
-,7 38

.090

.106

.1la

.131
,123
. 109
.095

a

I
I

.107

.138

.159

. r71

. L55

.I33

.114

¡



:.-: ê -€Ê;'.-:. .- 4+-- - -

NUIVlBíP OF JLJNCTIlI.IS 15

\ PM S ÂLPHA ìi!EÀN

f{t \ .1 ,4.? : r? :

- ! ---------:
-1.1"5 ! -1rô?2 :

-.88] : -.F47 2

-.541 ? -.5Á2 z

-.376 | -.409 :

-.?a4 : -rala :

-.?2A z -.?51 ¿

-. 1Q-7 ? -r?Ió :

-o Qârì

-.77Q
-, 564
-.524
-r 5l'4
-. aA7

-.5Q4

.164 :

.1t'6 :

.147 |

.1)1 :

.'l /ì7 :

.1oq

.2O(r

.134

.14^

I

+Xr.-.t:¡üL-

-.988
-,829
-,574
-,428
-,317
-.27 6

-,?33

,2O9
, zI8
,201
,177

: qbTÂ
! ol

I.IEÁN
.tr. aJ .2

-.016

.00 3

.0r8

.427

.025

.o?7

.096

.113

. 14 (
,15,
. 15r
.13q
. 124

)
.J

-.013
-.00ó

.007

.014

.018

.02u

.Q20

.0 7r

.080

.1C2

. l.¡. I

.1C9

.1.0 1

.0gl

.4

-.007
-.003

.004

. co7

.009

. 010

. UÌ I

I

3 \ PH S ALÞH¡\ - V4qTÄNlC
: MT \ : .1 i ,2
: --------- t ----- 3 ----

B.
10.
L5.
?0.
tÉL J.
2ñ

. ttr

i 8.
. lU.
. L).
. 2Q,
2 25,
r 30,
2 3r.

-L.70 6

-.9? 4

-.4)6
-.331
-.?40
-. 1 g 5

: -.\49

: -1.C82
: -¡772_
! -. 51R
i -.412
: -. Fl4
2 -.546
3 -,518

-.975
-,824
-,577
-,434
-.344
- ,283
- .239

ç

-1 .0ó4
-.927
-.729
-.649
-.626
-.6?8
-. ó41

.118

. L(t9

.2ù1
,21?
.199
.178

-.013
-.00ó

.007

.015

.020

.023

. 025

.6 .1 3 .B ? .9: .? : .4 3

: --------- ! --------- !
: -. Q?5 s -1, C04 :
: -.810 : -.8ó0 r
: -.Â15 : -.ó70 3

: -.565 z -,606 3

: -.557 : -.596 :
| -.5qÉ' ¡ -.606 :
: -.ó1'l : -,625 3

-1.159
-1.014
-.792
-. ó93

.1lz

.13á

. 178

.190

.18?

.ló5

. L47

2 -L.?Ç2 . -Lr37 :
3 -1.128 ! -1.291 3

: -.8r9 : -.933 :
: -,739 2 -.787 :

-1.970 2

-L.i37
-1.017
-.838
-.780
-.768 z

-.773 .

.9

.038

.O q?
,-\Ã,

, Arq
.0tg
.c54
.A¿,t)

-.658 | -,691 ! -.734
-.653 ¿ -.ó84 : -,722
-.662 | -.ó89 : -.726

.8

= I t : t : 3 = = = = = = = = : = t = = : : 3 = := = = = = == r = : t a = = - =: a ¡ a = = t = ! a a - a a I = ! : t = E I a a r = = = a - = : = = = : = :: = = = =:: = = = = = = : = = t : = =

\ Pt4 : dET^ - VâelÀNCtr
t"1T \ : .'! 3

- 3 --------- !
8. 3 .07_7 t

I0. | .055 2

I5, : r0qg :

2A. ! .100 !

25, : .1Ê7 :

3C. : .07a :

35. : .0ó3 :

.C6? ! .0Q-? : .lI2

.J^2 : .1?¿ .. .L50

.1-?P . .L54 | .L57

I



---*" ,L -. a --€;È¡ir, . -sr+- -

NUMBER OF JUNCTICINS ?-O

\ Pt4 : ÂLpHÂ - MEAN
t\T \ 3 .L : .? | r? 3 04 s .5

-: ---------: -: --------- 3 - l ---------
: -I.37q r -1.123 ! -'l_.014 : -,965

B ETÂ
.l

MEAl.,r

10.
1tlJa

20,
25,
30.
35,
4Ç.

15.
2U.
?t.
3A,
35.
40.

10.
L5.
20,
25.
30.
2C

44.

-.7ql
-.47 L

-,i34
-,) 55
-.2C3
-.158

,02.7
.0q2
.1?g
.1.2 6
.111
.0q6
.082

a

'7) )
51 a

?83
?^4
?_71

21 ?

-. ?l- 0
-.530
- . 4'1,6

-. t?Q
-.28F
-.246

.100

.I ?l
,2 1î
,?44
.?)4
.'! co
,7.? 5

-.703
-.54L
-.434
-.3ó0
-.30ó
- ,265

-,9 64
-.724
-.611

-.951
-.701
-,545
-.440
-.367
-.313
-,27 ?-

-I.02'
- .7 9Ê.t

-.67 3

- .6L5
-.594
-.592
-. ó01

-.014
-,c02

.007

. 0.13

.c17
, O?A
.021

-1.117
-.876
-.7?7
-,664
-.632
- .623
- ,627

-. 01ó :
-. ccz 3

.003 I

.015 :

.019 3

.021 3

-.013
-.0ù1

.00 6

.01 I

- ,7 6.A

- .7IZ
-.696

.4

-,c07
-. c01

.c03

. C'06

-.911
-,7 rE
-,7 43
-.7 4,

a

a

,022 : .017 : .009

.014 : .0C8

.01ó : .008

-1.5r,1 z -2,iL3
-1.099 : -1.?77
-,87? . -.950

\ PI'1 ' ALÞHô - VARJÂN:C
MT \ : .l ! .? '. .3

-3---------: I ---------
10. s -1.08q : -.Qtr? : -.4?8

: -.570 I -.6] I ? -.65?.
3 -.43q ¡ -.(o2 : -.55Ô

-1.260
-.973
-.803
- .7 r?-
-,67L
- r 6'17

. -.425 : -r4.ÁQ : -.516 3 -,565
? -.445 ! -.4a1 : -.5].7 3 -,555
3 -.475 t -.5O4 : -.53? 2 -.562
: -.506 ! -.q21 : -.55¿ ¡ -.577 -.658 | -.696

3aE==:==-t¡:===--!3:!=!t3===!==:::E====¡At¡=:a=t!a8¡=¡la=¡t:====-:-a==:3=-====:====E========:E=====

¡ \ PM S EET'I - VÂqIÂNCtr
: MT \ 3 .1 ! ¡? | .-? | .4 .c,. a-/ 3 .ó t1. al

.0Â8

.'! ç4

. ?ô?

.?64

.'194

.lA^

.l?c

. 119 3

.zo2 :

,247 :
,254 I
.239 :
.2L6 3

,L92 ¡

, L?4
.194
.233
.2q2
.232
,2L3
.19z

.ll6

. 171
,2O4
.214
.?08
. ÌQ4
.L77

.098

.r37

.164

.77 4

.171

.lól

.1.48

: .3 : .9
: ---------: -----
2 .O72 3 .C38
: .09b : .049
: .115 : .059
3 .I23 : .065
2 .LzZ 2 .A65
s .llc : .Ù61
s .I07 3 .C57



NUMEER OF JUNCTTI.-ìNS 2f

\ PM ¡ ÂLOLIA
t4T \ : .1

-: ---------
IC. 3 -r.831
15. : -1.10ó
2C, : -.634
25. : -.446
30. 3 -.?34
35. : -,264
40. | -.?16

? -r .1 10 2 -L,055
i -.d25 : -.8û0
: -.Á?t : -.634

|,,IEÀN ¡ B FTÂ - r',lE AN
: .3 : ,4 ;

: --------- : --------- :
: -.01ô 3 -.008 3

: -.oob : -.c03 :
: .C01 : .00i :
: .00ó s .003 :

: .010 : .005 :

! .012 : .005 :
s .014 : .007 :

r=======:=3:=====-=:::======:==:=======-=-3=-=Ata===========-==t3===:==3=====-=:=========t===:=====

\ PIl^ : ALPHA - VÀRIÂN'E
f4T \ s .t : .2 2 r? 3 .4 z .5

-: --------- I ! ---------: ----- ¡ ---------
.6

-1. ?1 4

-. 8Q 1

'. faA
-.4R4_. ?q4
-.31 4

-. ?.6 a

- .5)7
-.417
-. "5?
-.304

-1.n55
'.411
-. FRl
-.50Á
-. LA7
-.ltq?
-.495

.07ô

.15F

.2?h
,244
.276
.7rA
,?21

-.519
-.435
-.173
-.3?6

-1.05 6

-.79 6

-. ó48
-.57 I
-.5?7
-. r27
-,532

. 091

.L73

. ?4?
,277
.283
,269
.?q8

: -1.03ó: -.793! -.634
a -,523
¡ -.qqI3 -.38C
: -.333

r -l.0gg
2 -.865
| -.7¿1
3 -.636
3 -,59L
: - '5723 -,568

.099

. 170

.227
,259
.266
.257
.24I

-. 019
-.008

. 001

. c07
,012
.015
.017

-1.r93
-.95?
-.798
-.700
- ,643
-.ó14
- .6A4

-,02L
-.008

.0c1

.0cE

.013

. 016

.013

-r.356
-1 .0ó 9

-,885
-.763
-.69?

10.
TCL ¿.

2C,
?-5.
2n

35,
40.

10.
'lÃ
L)a

?o.
25.
30.
35,
40.

1?1
't1 4
5rq
4L4
4?q
laq
4Ea

-1.463
-.7 34
-.4h5
-.395
-.a77
-.?e5
- .4 2_?.

.008

.063
,724
.154
.151
.175
.117

! -1¡

! -.
! -o
I -.
! -.
! -.

-L.679
-L .24 ÊJ

-.989
-.828
-.739

-2,688
-L. t7 4

-1.131
-.898
-.78o
-,738
-,7 22

^çc

,065
.070
.070
.0 67

-,655 t -,694 z

-.639 i -,(r77 :

: = = = = = = =:: = = = =: = = 3 =:: = 3: :=:: =: == = = =: = =: = = = - = = = = =:3 = = = = = = = = = = = = =: = 3 = = = = = = = = = = = = = = =: = = = =: = = =: = = = = = =: =

\ pM

tiT \

¡Ol')
.122
.21ì
,244
. ?-?7

,21 7

.192

,c9ó!.084:.0é.33.Ü3'
.152 t .123 ! .086 3 .043
.198 . .1,r7 : .109
.225 ¡ .179 z ,LZb
.?33 t .1q8 3 .133
.229 : .187 t .r33
.?76 3 .178 | .Lze



NUI'IBER OF JUNCTII']NS ?C)

\ PI' : ALDHA - i.I

MT \ s rl :

-: ---------:
Lr, . -L."76 :

2a. : -.F27 :

25, : -.574 ?

30. ¡ -.47_6 :
35. . -,?3? i
4C. : -.259 :
45, 3 -.2?5 !

EÂN
'r.Aa'¡a

! ---------
-1 la

a

a

tr.ì aa/

-.44ô
-. ¿+^ q

-.?o7
-. qa5

-.4?z

-.Â3q
-.528
-.L?5

3 EFTA - MEÂN
,4 : t5 2 .l i .2

-: ---------¡ -: ---------

: -1.011
: -.858
| -.748
3 -.673
! -.627
! -.60I
: - '590

,219
,247
.249
.?45
.235

-1.136
-.959
-.927
- .735

).J

-.CC.¡9
-,OCz

.ûc3

.00ó

.0ü9

.011
,A12

-1.3+7
-1.099
-.gI7
-.794
-,720
-.ô8t¡
- .6ö?

-. 001
. u02
.003
.c05
.006
. c06

-L .7 6+
-1.339
-1.034
-,857
-.763
-.7 r9
-.703

:

. f ', .

: --------- !
3 .(J3g :
: .049 :

! .061 :
I ,Q7Q I
2 .o75 :

2 ,Q75 :
I .07i :

o^Q
'7çr'1

5q?
46a

"a4a?a
?qc

-. o'1.6

- .712
-.547
-.¿RO
-rL1'l
-.161
-.31q

-.87b
-.709
-.591
- .502
-,435
-.382
-.340

-.86ó
-. 701
- .599
-,542

-,864
-.7Có
-,rq?-
-.50L

- ,925
-.774
-.673
-. b09

-.01I : -.012
-.004 : -.004
.002 : . 003
.007 : .OCB

-.441 : .011 t .j|z
-.389 : .013 ! .014
-,347 t .Cl5 : .01ó

\ Pt'!

MT \

I5.
20.
25.
30.
35,
40,
q5.

-.563
-.?98
-.745
-.347
-. ?57
-.?81.

ALPHA . VAATÂI'1Ê :
.1 t .2 ? .3 ! 14 t .5 3 .6 : ,7 | .8 ! .9 :

-: -- -- ! ----- :---------: ----- : ---------: ----- : ---------: ---------:
-.9?3 : -.F?1 : -.e1.

-.45Â:-.5L5t-.573
-.456 3 -.507 ! -,556
-.Itja 3 -.509 3 -.55L

=: = E 3 E ==: = = 3 A: = = a: = = I = =: == = ! = ¡ == = = g = - = = I =: t t I -: a = t = = = = = t = a a 3 ¡ = = = - 3: = =: = = =: == = = == = = = = = Ê = = = = = = = = = = = = =
\ PM

: -.b26 !

-.676 !

-.64? z

.171
, L92
.20 L

. 199

.192

t1ï \
! BETÄ
. al-

V¡\clÂNeF
,?. : .? : .4 3 !5 I

-: -- ! ---------: ---------:
.llQQ ? .12(, I .141 : .143 ¡

.14R | .71A z ,2L6 2 .206 :

.??a i .?'t? | ,274 | ,254 :

.?61 : .?')? : .303 | .2gO !

.?Aa : .?n4 z .307 3 .23ö :

.2L1 ? .zqa | .295 i .27P-. :

.7?1 i .2^? a .275 | .263 :

i .3
: --------- : --------- :
I 15. : .C40 t
3 20r 3 .Oa7 !
2 2ro 3 .'! 54 :
: 30. : .17Q t
z 3r. : .J74 !
: 40. : .158 :
| 45. : .13ß :

,(: 2 ,7
-: ---------

.131 : .r0g

.180 : .I43
.u76
.c98
.l2ü
. I3'
. I42
, I42
.13[ì
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