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ABSTRACT

This thesis is a contribution to the area of diophantine approximation concerning

the Markoff spectrum. It is based on the connection Harvey Cohn discovered

between the structure of the Markoff spectrum and the behaviour of geodesics on a

hyperbolic punctured torus. The torus T involved is the quotient of the upper half-

plane H by the commutator subgroup l' of the modular group. The connection

is made by associating a form / with the geodesic 7 in H whose endpoints are

the roots of / and then projecting 7 to T. Cohn, [8], found that under this map

the Markoff forms, that is, the forms whose Markoff values lie below 3, correspond

exactly to the simple closed geodesics. Here, we study the Markoff values arising

from geodesics with low self-intersection number.

Closed geodesics can be studied via their free homotopy classes. In this manner,

we show that the closed geodesics with one self-intersection fall into two classes; the

proper closed l-intersectors and the improper closed f-intersectors. The Markoff

values of the improper closed l-intersectors lie in Hall's ray and are not consid-

ered further. For open geodesics we use cutting sequences. It is known that the

geodesics which correspond to forms with Markoff value 3 have aperiodic linear

cutting sequences and therefore are simple and open. We show that the only other

simple open geodesics have half-linear cutting sequences. This is an improvement

on Haas' topological characterisation, [21], because it provides a means of calcu-

lating the associated Markoff values. We show that they all lie in Hall's ray.

By developing an understanding of how the subgroup of Aut f' which frxes

Markoff values lies in Aut f' we are able to convert our characterisation of the

proper closed l-intersectors into a characterisation of the associated forms. This

leads to an expression for the forms in terms of the solutions to Markoff's equation.

lll



'We demonstrate an intriguing symmetry between the Markoff values of the proper

closed l-intersectors and those of the simple closed geodesics. An examination of

the spectrum near the first few values of the proper closed l-intersectors reveals

that they are isolated points of the spectrum. We conjecture that they are all

isolated. Whilst we cannot prove our conjecture we do obtain some useful partial

results. The techniques introduced for this purpose also allow us to describe two

new families of isolated points.
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CHAPTER 1

INTRODUCTION AND PRELIMINARIES

This thesis is a contribution to the area of diophantine approximation concerning

the Markoff spectrum. The Markoff spectrum is the set of values which arise

when one considers the appropriately normalised minima of real indefinite binary

quadratic forms. While it is it¿ toto a complicated subset of the interval [ú, -],
the portion of it lying below 3 has a simple structure. It is a discrete set with 3 as

its only limit point. The specific values in this portion and the associated forms,

called Markoffforms, may be calculated using Markoff's theory, [29] and [30]. The

Markoff spectrum also contains a maximal interval of the form [2, oo). It is referred

to as Hall's ray.

Our work is based on the surprising connection Harvey Cohn discovered between

the properties of the Markoff spectrum and the behaviour of geodesics on a hy-

perbolic once punctured torus. The torus T involved is the quotient of the upper

half-plane H by the commutator subgroup l' of the modular group. The connec-

tion is made by associating a form / with the geodesic 7 in H whose endpoints

are the roots of / and then projecting 7 to T. Cohn, [8], found that under this

map the Markoff forms correspond precisely to the simple closed geodesics. Haas,

[21], has extended this result by showing that geodesics which correspond to forms

with Markoff value equal to 3 are simple and open. In this thesis we examine the

Markoff values which arise from geodesics on T with low self-intersection numbers'

Some of our results shed light on the poorly understood part of the Markoff spec-

trum between 3 and z. A review of these results has already been published, [12].

Our approach also provides insight into Harvey Cohn's work.

The topology of closed geodesics can be studied via their free homotopy classes.

Free homotopy classes on T correspond to conjugacy classes in the fundamental

1



CHAPTER 1. INTRODUCTION AND PRELIMINARIES

group rr (T). The fundamental group of the punctured torus is well-understood, it

is course the free group of rank two. Open geodesics are more awkward. For them

rve use cutting sequences. Cutting sequences were first discussed in this context

by Series, [36]. We provide the relevant background material on cutting sequences

in Chapter 2. Although, Chapter 2 is mainly a review of established notions and

known facts, we do present some new results there. In particular, we introduce

half-Iinear cutting sequences and establish some of their properties.

In Chapter 3, we study geodesics on T with low self-intersection numbers.

Specifically, we characterise the closed geodesics with one self-intersection and the

simple open geodesics which do not correspond to forms with Markoff value equal

to 3. It is convenient to call the closed geodesics with one self-intersection closeil

1-intersectors. We show that there are two types of closed l-intersector. One type

includes a loop which bounds a disc containing the puncture, the other type does

not. 'We refer to geodesics of the latter type as proper closeil l-intersectors and to

the others as improper closeìJ l-intersectors. The presence of this loop around the

puncture forces the Markoff values of the improper closed l-intersectors to lie in

Hall's ray.

'We continue Chapter 3 by studying the simple open geodesics on T. They can

be characterised in terms of their cutting sequences. It is already known, [21] and

[36], that the simple open geodesics which correspond to forms with Markoffvalue

equal to 3 have linear cutting sequences. We show that the remaining simple open

geodesics have half-linear cutting sequences. This is an improvement on Haas'

topological characterisation, [21], since it provides the means of calculating the

associated Markoff values. \Me show that those values lie in Hall's ray.

Closed geodesics are naturally associated with conjugacy classes in l'. Hence we

can assign Markoff values to the conjugacy classes in l'. \Me denote the subgroup

of Aut l' which fixes the Markoff values of such classes by it. In order to convert

our characterisation of the proper closed l-intersectors into a characterisation of

the associated classes of forms we need to develop an understanding of how iû lies

in Aut l'. We do this in Chapter 4. Our main result is a description of a right

2



CHAPTER 1. INTRODUCTION AND PRELIMINARIES

transversal for i[¡ in l'.
In Chapter 5 we show how the Markoff values of the proper closed l-intersectors

may be calculated. 'We achieve this by describing both the associated doubly infi-

nite sequences of positive integers and representatives of the corresponding classes

of forms. We do not include the improper closed l-intersectors because, as we have

mentioned, their Markoff values lie in Hall's ray. Our description of the classes of

forms is given in terms of the solutions to Markoff's equation. We find that corre-

sponding to each Markoffnumber rn there is exactly one proper closed l-intersector.

It has Markoff value

3

Le+-+.
rfl,'

Of course, the Markoff forms can also be expressed in terms of the solutions to

Markoff's equation. As is well-known, the Markoff value of the Markoff form cor-

responding to rn is
4I rn2'

On the basis of this intriguing symmetry between the two sets of values we make

the following conjecture.

Conjecture. The Markoff values of the ptopü closed 7-intersectors on T are

ísolated points of the Markoff spectrum.

Our primary aim in Chapter 6 is to provide evidence for our conjecture. How-

ever, having established the means of doing so, we are also be able to prove the

existence of two new families of values which are isolated in the spectrum. Our

calculations are based on the description of the spectrum in terms of doubly infinite

sequences of positive integers. While we cannot prove in general that the Markoff

value of a proper closed l-intersector is isolated we can, in effect, describe a large

class of integer sequences whose Markoff values are bounded away from the given

one. By estimating the possible Markoff values of the remaining integer sequences

we verify that the first few proper closed l-intersectors do indeed have isolated

Markoff values.

Markoff's original work, [29] and [30], has been refined by several authors. In the



CHAPTER 1. INTRODUCTION AND PRELIMINARIES

appendix we provide a further improvement to part of that theory. As a natural

extension of the results discussed there, we also present a new characterisation of

the linear cutting sequences.

In the remainder of this chapter we define the entities we shall be dealing with

and introduce the notation we shall be using. In the process of doing this we

shall also briefly review some of the known facts about the Markoff spectrum and

especially the connection between its properties and the behaviour of geodesics on

the hyperbolic once punctured torus.

The Markoff spectrum

For the real indefinite binary quadratic form

Í(*,y) : o,t2 + gxa * ^ta' ,, a, 8,1 e R

with discriminant

dff):82-4a7>0

define

*ff): inf{ll@,a)l, @,,v) € z x z,(*,v) I (0'0)}

( 1.1) MU): J¿U)/*U)

with the convention that M(f) : * when -(/) : 0. The quantity M(/) is

called lhe Marlcoff ualue of the form /. The set of Markoff values taken over

all possible real indefinite binary quadratic forms is called the Marlcoff spectrurn.

(Sometimes this term refers to the set of reciprocals of M(/).) As mentioned

earlier, the forms whose Markoff values lie below 3 are called Marlcoff forms and

they may be calculated using Markoff's theory, [29] and [30]. For other treatments

see [5],[14],[17] and [26]. We remind the reader that the Markoff spectrum contains

a maximal interval of the form [2, oo]. The value of z is less than \Æ. :4.582...,
see [14].

4
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CHAPTER 1. INTRODUCTION AND PRELIMINARIES

For the remainder of this thesis by form we shall mean real indefinite binary

quadratic form. The set of all forms can be partitioned into equivalence classes.

'We require a more general definition of equivalence of forms than is usual. Given

two forms / and g, w€ say that g is equiualent lo / if there is some ¡.1 € R and

some 
": 

(: :) . GL(2,2) such that

s(x,v): ttÍ (t (;)) : pf@a *by,cæ *dy)

and

¡r det(?) > 0.

This defines an equivalence relation for forms. The reason forms are partitioned into

equivalence classes is that equivalent forms have equal Markoffvalues. Thus ïve can

refer unambiguously to the Markoff value of an equivalence class of forms. While

it is also evident th,at M(f): M(-f), it is convenient to treat their equivalence

classes separately.

A form / can also be expressed in terms of its roots. The roots oI f arc the zeros

of. f (n,1) : 0 with one of the roots being taken as oo when the leading coefficient

of f(x,l) is zero. Forms which represent zero, that is, which take the value zero

at some integer point (*,y) €. Z xZ other than (0,0), are exactly those with at

least one rational root. They have Markoff value oo and are of no interest here.

We exclude them from consideration. Forms which do not represent zero then, are

exactly those which can be written as

f:p@-na)@-(v)

where p,+ 0 and 4 and { are distinct irrationals. The roots 4 and ( "f / may be

ordered. We order them so that

p'G-?)>0.

\ /ith this ordering, we call r¡ the .¡lrst root of / and ( the seconil. Note that

Dickson, [16] and [17], uses the reverse of this ordering.

5



CHAPTER 1. INTRODUCTION AND PRELIMINARIES

Markoff forms and the Markoff equation

Ma¡koff's theorg [29] and [30], led to a formulae for representatives of the equiv-

alence classes of Markoff forms and their associated Markoff values in terms of the

solutions (*,*r,m2) in positive integers to the diophantine equation

6

'We refer to this equation as Marlcofr's equøtion A good exposition of its solutions

may be found in $3 of Chapter II of Cassels book [5]. We take our notation from

there. Thus we order the triple (*,*t,rn2) so that

rn 2 max(rr1,,rn2).

The solutions (1,1,1) and (2,1,1) are the only ones in which Trù, rrù1 and m2 are

not distinct and for that reason are called singular. For each non-singular solution

(*,*r,mz), there is exactly one integer k and one ordering of rn1 and ?7Ù2 such

that

mlle : m2 (mod rn), 0 < k <rnlz.

Further, there is an integer / satisfying

k2 +L: Im

This last condition is also true for the singular solutions (1,1,1) and (2,1,1) if we

choose k : 0 and k : 1, respectively. Markoff showed that the fonn f ,, defined by

l^(*,y) : mrz * (3rn - 2k)xy+ (t - 3k)V'

is a Markoff form and that it has Markoff value

( 1.2)

(1.3)

n'¿2 + r"? + *Z :3mm1m2.

MU*):

He also showed that any form / with M(/) < 3 is equivalent to some /- and

thereby characterised the Markoff forms. While the notatioî f* is ambiguous in

that it is possible there are two distinct solutions to the equation with the same



CHAPTER 1. INTRODUCTION AND PRELIMINARIES

(1, 1, 1)

(2, 1, 1)

(5, 1, 2)

7

(13, 1, 5) (29,5,2)

/\ /\
(34, 1, 13) (194, 13, 5) (433, 5, 29) (t69,29,2)

Flcunn 1.1. The set of solutions (zr, mt,rnz) in positive integers

to Markoffts equation m2 + *? + *7: flût1,1rn2 arranged as a tree.

maximum member rn there will be no problem with its use within the context of

this monograph. In connection with this we mention that the conjecture that the

solution (*,*t,m2) is completely determined by rzl is well-known and is referred

to as the conjecture on the uniqueness of Markoff numbers.

The complete set of solutions to the equation is usually presented in the form of

a tree. See Figure 1.1. At the top are the singular solutions (1,1,1) and (2,1,1).

Immediately below these is the solution (5, 1,2). The tree is continued from this

node and each of its successors by branching to both the left and the right. At the

typical node (rzl, r.r'a)m2) one forms

(1.4) (mtrrml ,m), *| :3mm1 - rm2

to branch left and

( 1.5) (m\,m,m2), *\ :3mm2 - Tmr

to branch right. It is not hard to verify that these new triples are indeed solutions to

the given equation. Conversely, it is possible to show that by applying this process
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in reverse to any given non-singular solution one eventually arrives at the solution

(5,1,2). It follows that the tree contains every solution (in positive integers) to

Markoff's equation. The same type of argument also shows that each solution

occurs exactly once in the tree.

Doubly infinite sequences of positive integers

To calculate the Markoffvalue of a form we shall also make use of the associated

doubly infinite sequence of positive integers. Before we describe the association

we need some definitions. As usual, [ro, rL¡rz,...] denotes the simple continued

fraction with partial quotients 16 trr,¡t2¡.... For a doubly infinite sequence of

positive integers A -- {"¿}{Î-oo w€ define

(1.6) qi(A): -[0, ai-t¡di-z,cti-s, . . .], (¿(/) : la¡,di+r)ai+2). . .l

À;(,{): (¡("4) -qi(A).
The Markoff value of "4 is the quantity

8

and

(1.7)

(1.8)

M(A) - sup À¿(,4).
iez

It is well-kno\'r'n that the set of values taken by M(A) as ,4 runs through all possible

doubly infinite sequences of positive integers is exactly the Markoff spectrum.

We also need a notion of equivalence for integer sequences. We say that a doubly

infinite sequence of positive integers ß -- {U¿}!i* is equiualent to the sequence ,4

if there is some k e Z such that b¿ : d¿+t for all i e Z. This defines an equivalence

relation and clearly M(B) : M(A). An equivalence class for this relation should

be thought of as an un-indexed doubly infinite sequence of positive integers. In

general, we shall not differentiate between a particular integer sequence and its

equivalence class.

The connection between the sequences of integers and the forms is given by the

map

A: {"¡}lî* H f @,,a) : (r - qv)@ - fu)
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where v¡ : r¡o(A) is the first root of / and € : €o(r4) the second root. The

significance of this map is that it preserves Markoff values, that is, M(A) : MU).

This non-trivial fact can be deduced from the exposition in Dickson's book, [16].

However, it is not hard to verify that

{o¡+,}l:." '* r",-,,.';¡l¡((lå) (;))
and hence that equivalent sequences map to equivalent forms. We therefore have

an induced map between equivalence classes of sequences and equivalence classes

of forms not representing zero. Again, while not explicit, it can be deduced from

Dickson's exposition [16] that the induced map is a bijection. We also note here,

firstly that,

Ã: {o-¿},,*:"" ,- ¡ ((;'ï) (;)) ,

so that the class of sequences containing the reverse of ¿4, is mapped to the class

of forms containing -/, and secondly that, the periodic sequences of integers map

exactly to the classes of forms which contain a representative with integral coeffi-

cients. We shall discuss such forms again later in this section.

To be specific, the results of [16] referred to are contained in sections $61, $62 and

$67 where it is shown that every proper equiaalence (our definition of equivalence

but with p, : L) class of forms contains exactly one chain oî. reduced forms. Also

section $65 from which it can be deduced that such a chain {On}¡+I"" where

cÞ¿(r, u) : a¡x2 t b¡nU * a¿+gz and the chain {Oi}n+:"" defined by Õl(r, y) :

-a¿r2 * b¿rA - ai+tA2 ,, as a pair, uniquely determine and are uniquely determined

by a sequ"n"" {g¿}i+ioo of positive integers and the discriminant d > 0 of the

chains. The correspondence is described by the fact that one of {iÞ¿}n+i"" or

{Õl}n+:"" (depending on the parity of the location of the index i : 0) is the

sequence

I

{*--r¿v)(*-',r,}*:-
where the first root and second roots are

,f¿ : (-1)'10,9¿,gi+r,gi+2,...1 and s¿ : -(-1)'lgn-t¡9i-z¡gi-s,. . .1,
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respectively. (Here \Me are using Dickson's ordering of the roots.) \Mhile this

correspondence is not exactly the map above, it is easily seen that it induces a

bijection like the one above except that / must be replaced with -/. Finally

Theorem 86 states that if the proper equivalence class of a form / contains the

chain {O¡}¡+I." then rn(/) is the infimum of the lo¡l - t@ll¡n - sil, that is,

M(Í): supi€z l/¡ - t; I : M({s¡l¡,+:-).

The punctured torus T

The usual action of SL(2,2) on the upper half plane H is given by the homo-

morphism from ,9.0(2,2) to I : PStr(2,Z) defrned by

(1.e)

(1.10)

T_ 0,

c
b

d
az*bT(z): * + d

and B-

This homomorphism is onto and its kernel is {+/} thus allowing the standard abuse

of notation whereby the same symbol denotes the matrix and the linear fractional

transformation. The generators A and B of the commutator subgroup l' of I are

the transformations associated with the matrices

1

2
1

1 1 )
1 -1A_ 2

'We remark that the group generated by the matrices is the commutator subgroup

o1. S L(2,2); it does not contain --[, and so is isomorphic to l'. The hyperbolic once

punctured torus T which interests us is the quotient of H by l'. The projection

map rs

o: H ------+ H/lt:T

We know T is a once punctured torus because the signature of l' is (1;oo). Thus

l' has no elliptic elements and only one conjugacy class of maximal parabolic cyclic

subgroups. Note in particular that every parabolic element of l' is a conjugate of

ABA-\n-tQ):zi6
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FIcunn 1.2. The fundamental domain D for l' and its

images under A and B. Also shown are the axes (dashed)

of A and B and fundamental segments (solid) thereof.

or one of its powers. A fundamental domain for l' and its images under the

transformations,4. and B are shown in Figure 1.2. The side pairings of the domain

are indicated by the fundamental segments.

By a geoilesic ín II we mean a semi-circle (or half-line) which is orthogonal to

the real axis. Each geodesic is determined up to orientation by its endpoints, that

is, the points at which it meets the real axis. By ordering the endpoints we can

also specify an orientation. We write

t:ln,el,, q+C

to mean that 7 is the geodesic with endpoints 4 and { and that 7 is directed from

ry to (. For a transformation T e l' we define ?(7) to be the oriented geodesic

T(ù : ["(rl),"(()]. Two oriented geodesics 71 and 12 are called l'-equiualentif.

there is some T el' such that n:T(lt).
It is natural to parameterise the points an oriented geodesic 7 in H using hy-

perbolic arc length from some fixed initial point. Thus we associate with 7 all the

3
-2 0_2 _L32 1LZ23

3
2

ì
I
I
I

\
,

I
,
I
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open curves

ci R

whose orientations agree with that of 7 and for which the hyperbolic distance

between c(æ) and c(y) is equal to the Euclidean distance between ø and y for

all o, y € R. In other words, a curve c is associated with 7 if it corresponds to

traversing 7 at unit speed. Note that, if c is associated with 7 then every other

open curve associated with 7 is of the form c(r*ú) where ú € R. Further, the curve

"(-") is associated with the geodesic 7t - [€, n]. We treat segments of geodesics

similarly. Thus lro,"rl,where zo t zt andzs ¡zt e fI, denotesthe orienteil geoilesic

segment which begins at z6 and ends at zt. Of. course such a segment inherits its

parameterisations as a curve from the oriented geodesic which contains it.

A, geoilesi,c 7 on T is the projection of a geodesic I in H. It inherits its orientation

and parameterisations from l. Thai is, we associate with 7 any curve which is the

projection of a curve associated with i. Note that 7 and its associated curves are

also the projection of any geodesic in H which is l'-equivalent to l.
Since l' contains no elliptic transformations the projection ø : fI --+ T is a

universal covering. It follows that, ø together with a fixed lift Éo € H of the base

point po of. the fundamental group "t(T) determine an isomorphism between l'
and zr1(T). For W el', the projection of all curves in H fromÞo to 14z(þ6) is a

homotopy class ur of loops on zr1(T). The isomorphism is the map W è u). A

point Ør € H is another lift of p6 if and only if fu : V(ño) for some V e l'. The

isomorphism for fu is VWV-\ ,- w. It differs from the first only by an inner

automorphism of l' or equivalently of zr1(T). Thus, if we do not insist on a fixed

lift of ps, the projection ø determines a bijection between the conjugacy classes

lwl of l' and the conjugacy classes [to] of "t(T).
There is a natural choice for the base point po of tt(T) and its lift ñ0, namely,

ø(i) and i, respectively. We denote the isomorphism that this choice determines

by á and label the images of A and B by ¿ and ö, respectively. Thus, á is the

isomorphism

( 1.11) 0 : l' : F(A,, B)
-)

F(a,b): z'r(T)
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defined by 0(A): ø and 0(B) : ö. A topological picture of loops representing the

generators ¿ and b of. 11(T) may be obtained by identifying the sides of the funda-

mental domain D shown in Figure 1.2. The loops we refer to are the fundamental

segments of ,4, and B, respectively, with their ends identified, see Figure 2.1.

There is also a natural bijection between the conjugacy classes [to] of zr1(T) and

the free homotopy classes of loops on T. As is well-known, for ur1 trDz € zr1(T) with

representative loops 11, 12 respectively; to1 and ú2 ãre- conjugate in zr1(T) if and

only if 11 and 12 are freely homotopic. The bijection is the map which identifies

the conjugacy class of to with the free homotopy class of the loops I representing

?D. To see that this map is onto, note that, if / is a loop on T and c a curve

joining the base point of zr'1(T) to / then I is freely homotopic to clc-r and such a

loop represents some w € ort(f). BV combining this bijection with that mentioned

above, we can identify the conjugacy classes of l' with the free homotopy classes

of loops on T. Thus the free homotopy class corresponding to the conjugacy class

[W] is that which contains the loops representing [.r] where u : 0(W). It is not

hard to verify that under this correspondence the projection of any curve in H
from some z to W(z) is a loop / in the free homotopy class [u.'].

Closed geodesics on T

Of particular interest are those geodesics on T which are the projection of the

axes of the hyperbolic transformations in l'. The øøis of. W € f is the unique

geodesic i in H which is fixed by W. The effect of W is to translate I along itself

by a fixed hyperbolic distance. We orient i according to this effect. Specifically,

we direct I frorn the repulsiue fineil point oÍ W to the attractiue or¿e. Observe that

I can be partitioned into a fundamental segment of the form lz6,,W(zs)l where

zo € i and its images under 17. Recall that according to our notation the segment

fzs,W(zs)l is directed from zs to W(zo) and hence its orientation agrees with that

of i. Now let 7 be the projection of i to T. Evidently, 7 is covered by and has the

same orientation as the projection of the segment lzs,W(zs)1. Since zs and W("0)

project to the same point on T, \¡/e can view 7 as a closed curve. We call T together
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with the parameterisations it inherits from all the fundamental segments of i with

respect to W a closeil geoilesic. 'We emphasis that our definition is more specific

than is usual in that we have associated with 7 a particular family of closed curves.

For ? € f', the geodesic 
"(i) 

is the axis of the hyperbolic transformation TWT-\
and therefore TWT-I defines the same closed geodesic as W . 'We say that 7 is the

closed geodesic on T ilefineil by the coniugøcy cløss lWl in l'.
'We call an element of l' primitiue if it is not a non-trivial power of some other

element of l'. Every conjugate of a primitive element is also primitive. Thus we

can unambiguously refer to primitive conjugacy classes in l'. We call a closed

geodesic on T prirnitiae if it is defined by a primitive conjugacy class. We shall

consider the situation where 7 is a non-primitive closed geodesic in some detail.

Thus we let [W] be the conjugacy class defining 7 and rve suppose W : V" where

V e l' and n is not 0 or t1. By replaciíLg V by its inverse if necessary, we may

assume n ) 2. It is not hard to verify that V like I4z is hyperbolic and that it has

the same axis as W. Clearly each fundamental segment lz¡,W(zs)] of the axis of l7
can be partitioned into r¿ fundamental segments for V, namely,lVn-t(zs),Vi(zs)l

where i :7,2,. . . ,n. It follows that each closed curve associated with 7 is the n-th

po\Mer of some closed curve associated with the closed geodesic defined by [V]. In

particular, each closed curve associated with 7 has a continuum of self-intersections.

Since we are only interested in geodesics with a low number of self-intersections we

shall restrict our attention to primitive closed geodesics.

In the preceding section we described a bijection between the conjugacy classes

of l' and the free homotopy classes of loops ori ?r1(T). In particular, given W € l' ,

we sa\¡v that the projection of any curve in H from some z to W(z) is a loop in the

free homotopy class [u.'] where . : 0(W). It follows that if 7 is the closed geodesic

defined Iw IWI then the closed curves we have associated with it all lie in the

free homotopy class [u.']. Clearly the closed curves associated with distinct closed

geodesics lie in distinct free homotopy classes. As is common, we shall say that 7
is the unique closeil geodesic in the free homotopy class [u.']. Not all free homotopy

classes contain closed geodesics. Of course those which do not, correspond exactly
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to the parabolic conjugacy classes in l'. 'We remind the reader that the latter are

of the form [(AB A-t B-r)n] where n is a non-zero integer. We shall make much use

of the well-known fact lhat the number of self-intersections of a primitiue closeil

geoilesic is minimal amongst all the curaes in its free homotopy class.

Self-intersection numbers of geodesics on T

'We define llne number of self-intersections of an open geodesic 7 on T to be the

number of self-intersections of any of the open curves associated with it. By the

number of self-intersections of an open curve

C: R 7

we mearr the number of unordered pairs r, y such that c(ø) : "(y). To see that the

self-intersection number of 7 is well-defined suppose c : R -r 7 is a curve associated

with 7. By definition, c is the projection of a curve

R

-----+

-----+ ^l

whichis associatedwith alift i of 7 to H. Since õ(r): õ(y)il andonly if.n - y we

can deduce that the number of self-intersections of c is the number of unordered

pairs z1 ,22 with Zr¡22 € i and zt I zz such that z1 a'nd z2 project to the same

point on T. Obviously this number does not depend on the choice of c or i. It
follows that the self-intersection number of 7 is well-defined.

We emphasis that our conventions are perhaps slightly unusual in that we allow

o,n open geoilesic 1 on T to couer a closeil geoilesic on T. This happens precisely

when one and hence all of the lifts of 7 to II are the axes óf hyperbolic elements

of lt. In this case it is clear that 7 has a continuum of self-intersections.

If 7 is an open geodesic on T which does not cover a closed geodesic then we can

express the self-intersection number of 7 in terms of its lifts to H. In particular,

we claim that if i is any lift of 7 to H then the self-intersection number of 7 is half

the number of geodesics in H which are l'-equivalent to i and intersect it. To see

this, recall that the self-intersection number of 7 is the number of unordered pairs
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zr¡22 with z1 ,¡zz €.I and zt I zz such that o(zt): o(zz).For each such pair of

points zt,z2 there is a unique non-trivial pair of inverse elements ?+1 in l' such

that zz : T(zt) and zt : T-r(22). Since 7 does not cover a closed geodesic ?(i)
and ?-r(i) are not equal to i and hence {trl¡ : i ñfG) and {21l¡ : i n 

"-t(í).
Conversely, if ?+1 is a pair of non-trivial elements of l' such that the intersections of

i with 
"(i) 

and T-t(i) are norr-empty then there is pair of points zt¡ 22 satisfying

{rr} - inT ?ù and {21} : inT-r(i). Henca 22 : T(rr) and z1 : T-r(zz) and so

zt * zz ar,.d. o(21) : o(zz). Thus each self-interseetion of 7 corresponds to a pair of

inverse elements ?11 in l', with i ìT(^r) and i n ?-1(i) non-empty. \Me conclude

that the number of self-intersections of 7 is half the number of transformations

? e f, such that ?(i) iniersects i. The truth of our claim is now evident.

As with open geodesics, we define the number of self-intersections of a closed

geodesic 7 on T to be the number of self-intersections of any of the closed curves

associated with it. By the number of self-intersections of a closed curve

I: ["o,rr] CR,
-)

^l

\Me mean the number of unordered pairs z,y with ïs < I,A ( rr such that l(r) :
t(y). To see that this number is the same for all closed curves associated with 7,

let [W] be the conjugacy class definittg 7. By definition a closed curve I associated

with 7 is the projection of a suitably parameterised fundamental segment of the

axis, say i, of some transformation in [W]. Since the axes of all the members of

lWl arc l'-equivalent we may assume I is the axis of W. Thus / is the projection

of a curve of the form

i, [rs,11] c R lzs,W(zs)) c +---+

which parameterises [zs,W("o)] by hyperbolic arc length. Because l(r) : l(y) if
and only if c : y we find that the number of self-intersections of I is the number

of unordered pairs 21, z2 with zt,t Z2 € lro,,W(to)l and zy, zz * W(ro) such that z1

arrd z2 project to the same point of T. It is not hard to verify that this number

depends only [IlØ] and not the choice of. zs.
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We saw in the previous section that if 7 is a non-primitive closed geodesic then

each closed curve associated with 7 is a non-trivial power of some other closed curve.

It follows that non-primitive closed geodesics have a continuum of self-intersections.

Note that the underlying reason for this is also the reason open geodesics on T
which cover closed geodesics have a continuum of self-intersections. Of course, we

can express the self-intersection number of a primitive closed geodesic 7 on T in
terms of its lifts to H. In particular, if W is a representative of the conjugacy

class definitrg 7 and if i is the axis of lI¡ then the self-intersection number of 7

is half the number of geodesics in H which are l'-equivalent to i and intersect a

frxed fundamental segment lzs,W(zs)] "f í. (In this context the point W(zs) is

not included in the set [26, W("0)].) The verification of this is similar to that given

above for the open geodesics. We shall not be using this result and we omit the

details.

The connection between the Markoff spectrum and T

We now elucidate the connection that Harvey Cohn found between the structure

of the Markoff spectrum and the behaviour of geodesics on T. Cohn's original

work appears in a sequence of papers [6], [S], [9] and [10]. He has reviewed them

and related matters in [11]. Haas, [20] and [21], and Series, [36] and [38], have

reinterpreted and extended Cohn's work. The connection is made by relating forms

to geodesics of the upper half-plane H. As noted earlier, a geodesic in H as a point

set is uniquely determined by its endpoints. Cohn associates with a form / the

geodesic 7 whose endpoints are the roots of /. W'e also orient 7 by directing it

from the first root of / to the second. We write this association as the map

(1.12) l@,a):p(r-nv)@-tv) I : ln,€]H

where pG - ?) > 0. Note that the geodesic associated with -/ covers the same

point set as 7 but has the opposite orientation. Clearly forms map to the same

geodesic if and only if they are positive multiples of one another. Also, if geodesics

with a rational endpoint are excluded, the map is onto.
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In order to best describe the relationship between geodesics which correspond to

equivalent forms we extend the group I. We extend it to the group l* generated

by I and the transformation

Tt: z 
- -2.

Note that ?r is reflection in the imaginary axis. The index of I in l* is 2. By

mapping the matrix (;t i) t" ttt" tra¡rsformation ?r the homomorphism from

SL(2,2) to I defined by (t.9) is extended to one ftorørr GL(2,2) to l* .

It can now be deduced from the results in [11] or [20] that equivalent forms map

to l*-equivalent geodesics. (Here we have extended the notion of l'-equivalence

for geodesics to f*-equivalence in the obvious manner.) In fact for ¡t € R and

T e GL(2,2) with ¡rdet(") ) 0 we have

(1.13) uf (r (;)) .-- r-'Q)
under the correspondence (1.12). Thus (1.12) induces a bijection between equiva-

lence classes of forms and l*-equivalence classes of oriented geodesics. \Me remark

here that the Markoff value of a class of forms is exactly the supremum of the

diameters of the geodesics (as semi-circles) in the associated l*-equivalence class

of geodesics on fI, see [11] and [20].

At this stage Cohn had the insight to consider the effect of projecting the

geodesics to T. He obtained the now well-known result that the simple closed

geodesics on T correspond exactly to the Markoff forms.

The group l' is a normal subgroup of l*. Its index in l* is 12 and therefore

there are twelve geodesics (not necessarily distinct) on T corresponding to each

l*-equivalence class of geodesics in H. Hence there are twelve geodesics on T
corresponding to each class of forms. The relationship between these geodesics is

easy to discover. For ? € l*, consider the map from T to itself defined by

(1.14) z ê o@(z))

where 2 is a,ny lift of z to H. If. 2t is another lift of z to H then there is 17 € f'
such that 2' : W(Z). Hence

o(T(zt )) : o(TW (2)) : o(V rQÐ : o(T(z)),
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where V el' satisfies V :TWT-|. It follows that the map (1.14) is well-defrned.

It is one-to-one and onto since the map corresponding to T-r is its inverse. \Me

know ? is an isometry of H and therefore (1.14) is an isometry of T. It is not

ha¡d to verify that this correspondence between l* and the isometries of T is a

homomorphism and that its kernel is l'. In other words, l* lf' is isomorphic to a

group of isometries of T. It is clear from the construction that the twelve geodesics

on T corresponding to each class of forms are images of each other under this

group. 'We remark that l*/f' accounts for all the isometries of T.

A description of l*/f' may be found in [31]. Its generators are ur l' and ?r l'
where

Uti z 
- 

z+7

The relations follow ftorn tJf(z) : B-rA-rAlQ) € l' and flþ) : z arrd

U[1(z) : TUrr(e). Thus a set of coset representatives is

{Ui,TUi : n :0,1,..',5}.
'We emphasis that the transformations Ur and 7r leave the diameters of geodesics

(as semi-circles) in H unchanged and therefore the Markoff value of a geodesic on

T can be defined, in terms of l' only, as the supremum of the diameters of all its

lifts to H.

Forms mapping to closed geodesics on T

To be rigorous we shall say that the form f maps Io the closed' geoilesic 7 if under

the correspondence (1.12) the form / maps to a geodesic in H which covers and

has the same orientation as 7. Obviously the geodesics i in H with this property

are exactly the axes (with the appropriate orientation) of the transformations in

the conjugacy class [I4z] defining 7. Forms which map to 7 ca;rL be obtained directly

from the elements of fwl.
For w: + ( i'r) ,l', we define

c# +(d- a)ry -ba'
-cx2 -(d_ a)xy+by2

if¿*d>0
if¿*d<0.(1.15) fw(r,y¡:
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Note that Íw : l-w and so there is no loss of generality here in identifying

a transformation with the associated matrices. We claim lhat fry maps to the

closed geodesic 7 defined by the conjugacy class [I4r]. To see this let i be the axis

of W. It is not hard to verify that the roots of Íw are the fixed points of W and

hence one of Íw o, -Íw ^ups to i under the correspondence (1.12). Now recall

that i is directed from the repulsive fixed point of. W to the attractive one. The

dependency of lw on the sign of a+ d ensures that the ordering of its roots agrees

with the ordering of the endpoints of i due to its orientation and hence /¡ar maps

to i. The truth of our claim is now evident. We remark here that since ltrl is

hyperbolic, /¡az does not represent zero. Also /¡,y-t : -lw and therefore fy¡-,
maps to the inverse of 7, as expected.

For ? € l', the transformation TWT-| ües in [I;ti] and so the form fyy¡y-,
also maps to 7. Suppose more generally that ? € f*. Since l' is normal in l*
the transformation TWT-| belongs to l'. Moreover, TWT-| is hyperbolic and

its axis is the image of i under T. lt follows that the form fysT-r maps to the

closed geodesic on T which is the image of 7 under the isometry of T induced by

T. lt also follows that frwr-, is equivalent to fqr. A straightforward calculation

reveals that

(1.16) frwr-,@,y) : det(T)fw (t-t (;))

From this we can deduce that l7 is an automorph of fw, that is,

n (w (;)) : rw(r,v).

We have just seen that for each closed geodesic on T there is a form with integral

coefficients and not representing zero which maps to it. The converse is also true,

that is, each form / with integral coefficients which does not represent zero maps

to a closed geodesic on T. To prove this, we use the fact, shown in sections $69 and

$70 of Dickson's book [16], that such a form has a non-trivial automorph ttr4z € l.
Again, since

¡ (* (;)) : ¡ (-* (;))
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there really is no loss of generality here in identifying a matrix with its negative

and hence with the associated transformation of H. Now let i be the geodesic in H

corresponding to .f. \M" are assumitg "f (t (;)) : f@,ù and so (1.13) implies

W-t(Ð- l. Hence W fixes i. Because / is indefinite, l7 is not elliptic of order

2. It follows that W is hyperbolic and by replacing W by its inverse if necessary

Ìve may assume i is its axis. We know I' is of finite index in I and therefore

there exists n) | such that Wn e f'. Clearly W" defines a closed geodesic on T

which is covered by the projection of i to T. We conclude that / maps to a closed

geodesic on T.
We are especially interested in those classes of forms which map to closed

geodesics on T with low self-intersection numbers. For that reason we have re-

stricted <¡ur attention, amongst the closed geodesics, to those which are primitive.

We observe that as far as the associated classes of forms are concerned this is a

natural restriction anyway. \Me have seen that if a closed geodesic 7 is not primitive

then there is some integer n ) | and a primitive closed geodesic ó such that each

closed curve associated with 7 is the n-th power of some closed curve associated

with ó. In this case, we can choose representatives W arrd V of the conjugacy

classes defining 7 and ó, respectively, such that W : Vn. Obviously W and V

share the same axis. It follows that /y is not only equivalent to /¡a, but is a positive

multiple ol fw.

The group !ü of automorphisms of f'

An automorphisrir G of l' is described by its effect on the generators A and B

of l'. Thus we write G(A,B): (G(A), G(B)). The composition GH of G,H e

Aut l' is defined by GH(A,,8) : (G(,H(A))' G(ff(B))). The sroup Aut f' of all

automorphisms of l' has presentation, see Cohn [9],

(1.17) Aut l': (P,R,^9 I P',Rn,S3,(.RP)2,(R2SP)2,SR252R: RSzR2Sl

where

(1.18) P(A,B): (8, A), R(A,B): (B-r, A), S(A,B): (8, B-r A-r)
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Note that our convention for composition difiers from that of Cohn.

Since l' is normal in l* it is preserved by the inner automorphisms of l*.
Consequently, the map

(1.19) T r--_r Gr(A,B):(TAT-|,TBT-1)

is a homomorphismfrom l* to Aut l'. Because the axes of TAT-| andTBT-r

are the images of those of A and B, respectively, under ? we can deduce that G7

is the identity automorphism only when T is trivial. It follows that the map (1.19)

is an isomorphism. 'We denote the image of l* by ![. Direct calculation shows that

under (1.19) we have

T(r) - -z F----+ P (A, B) : (8, A)

hþ) - z *1 r-r SR2 (A,B) : (B-L,AB)

Ur("): -Ilz '--' R2 (A,B): (A-t,B-t).

The transformations Tt,[h anð,(Jz generate l* and thus the automorphisms P, .82

and ^g generate iú. Note for example that A : UzUt t(Jr(J, and so G ¡. : 52 R2 SR2

and similarly B - (JzUlJ2Ult and so Gn: R2SR2S2' of course, G¡ andGg

generate Inn l', the inner automorphisms of l'.
The significance of the automorphisms in i[¡ is that they preserve the classes of

forms and hence Markoff values associated with the conjugacy classes in l'. To

explain what we mean by this, let [I4l] be a conjugacy class in l'. \Me know from

(1.16) that the class of forms representedby fw does not depend on the particular

representativeW of.lwl. We say that the class of forms containing fw is associateil

with the conjugacy class [I4l]. Now let G e iÛ. Obviously G permutes the conjugacy

classes of l'. We know G : Gr for some ? € l*. Therefore G(W): TWT-| arrd

(1.16) implies that the form f6¡at¡ is equivalent to fs¡. It follows that the same

class of forms is associated with both [I4r] and [G(I4z)]. I" terms of geodesics, the

closed geodesic defined bv lG(W)l is the image of that defined bv [Ø/] under the

isometry of T induced by ? and hence they give rise to the same class of forms. It

will become apparent that iI¡ is the largest subgroup of Aut l' with this property

when we consider the effect of automorphisms on the conjugacy class [AB].
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As we have noted, the image of l' under (1.19) is Inn l'. Hence

f*/f' itrr/Inn l'.

The factor group !trr/Inn l' corresponds to the group Gn in [9]. The isomorphism

between l*/f' and iú/Inn l' has an interpretation on T. Each isometry of T
permutes the free homotopy classes of loops on T and hence the corresponding

conjugacy classes of zr1(T). It follows that each isometry induces an outer isomor-

phism of zr1(T). We have identified the isometries of T with the elements of l*/l'
and hence we can also associate the cosets of l' in l* with the outer automor-

phisms of zr1(T). It should come as no surprise that under this correspondence

the coset ? l' maps to the image of the outer isomorphism Gr Inn l' under the

isomorphism d. We leave the verification to the reader.

Cohnts commutator map

Cohn's original work was based on first projecting H to the complex plane C

with a certain lattice of points deleted. \Me denote the latter by P. His projection

o1 i z r--r to satisfies the equation

(1.20) t-J(z):+P(to)*r.

where I is the elliptic modular function and P is the Weierstrass elliptic function

defined by

(P'('))t:4P(u)+7'

We shall need a better account of this map than Cohn has provided. The elliptic

modular function is well-known. A description of it may be found in Cohn's book,

[7]. Weierstrass elliptic functions in general are also discussed there although the

particular function P is not. The properties of P may be deduced from those of

Ps where

(Pt(*))' : Ps(w) - 1.

This function, referred as the "equianharmonic case", is described in [41], for

instance. Its relationship to P is given by P(w) : -Ps(iu). Note also that
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(P'(-))" : -(P[(iw))z . The associated tessellations of H and P (to be intro-

duced shortly) and their groups are fully reviewed in Magnus's book, [28].

The elliptic modular function is an analytic map from the upper half-plane H

to the complex plane C which is automorphic with respect to the modular group

l. That is, J(T(z)) : J(t) for all T e l. The group I is discontinuous in H and

a fundamental domain for it consists of the hyperbolic triangle with vertices at p,

p + l and oo where p : "i2t¡3. The boundary points to the left of the imaginary

axis are included but those to the right are not. The function J is a bijection from

this triangle to C.

In order to make better use of Cohn's projection and its properties we consider

J in relation to the extended modular group l*. If ? € f* and ? / I then

J@(r)) is the cornplex conjugate of. JQ). A fundamental domain for l* is the

hyperbolic triangle with vertices p) i and oo. The function .7 maps this triangle to

the half-plane in C lying above the real axis. Furthet, { maps its boundary to the

real axis and in particular J(p):0 and J(i):1. Observe that the fundamental

domain for I together with its boundary consists of the fundamental domain for

l* and its reflection in the imaginary axis. Since reflection in the imaginary axis

is an element of l* but not I it is clear that J maps the hyperbolic triangle with

vertices i, p11 and oo to the half-plane in C lying below the real axis.

The situation for P is analogous. However, before we describe it, it is convenient

to introduce some notation. We take as generators for l* the hyperbolic reflections

in each of the three geodesics containing a side of its fundamental domain. That

is, we take as generators for l* the transformations

Tt(r) - -z Tt(r) : tl7 T"(r) : -z - t.
A presentation for l* is

f* : ( Tt,,Tz,ft I fT -- Tî : T3 : (TtTr)' : (T2T¡)B : Id ).

The modular group I is the subgroup of index 2 consisting of all words of even

length. It is generated by Uz : TtTz and Us : TzTt and has presentation

f : ( (Jz,(Js IUT : Ui : Id ).
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-1-+o+1
Flcunr 1.3. A tiling of the fundamental domain for l'
induced by l*. Tiles which are congruent under I are

either both shaded or both unshaded and uica-aersa.

The transformation t/2 is hyperbolic rotation through zr about i and U3 is hyper-

bolic rotation through2r.lï clockwise about p. The generators A and B of l'
satisfy 

A: uztE'(Jr[J, and B : (Js(Jzul'ur.

A tessellation of the fundamental domain for l' by f* is shown in Figure 1'3.

The \Meierstrass elliptic function P is an analytic map from P to the complex

plane C which is automorphic with respect to a group X of transformations gen-

erated by

(1.21) ur(.): -rD l2wo and ,r(.) :.1r2 l2wo.

Here t s : -i1.52995... is a known constant and , - "ir/s. The domain P

is obtained from C by removing all the images of the origin O under l. The

transformation u2 is rotation through zr about us and z3 is clockwise rotation

through 2tr f 3 abott w1 - ws - iwsf/3. Again we consider an extension E* of D

with index 2. The coset of transformations lying in X* but not X is represented
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by reflection in the imaginary axis. If ? is any transformation in this coset then

PQ@\ is the complex conjugate of. P@). A fundamental domain for Ð* is the

triangle with vertices url, î.De and O and hence a fundamental domain for E is this

triangle together with its reflection in the imaginary a>cis. (To be rigorous, the

fundamental domain for ! includes the boundary points which lie to the left of

the imaginary axis and excludes those to the right.) As with f,, the function P

is a bijection from this fundamental domain to C. It maps the left half to those

points lying below the real axis and the right half to those points lying above it.

Further, the boundary of each half is mapped to the real axis and in particular

P(ro): -Ll4 and P(ur1): ¡.
As with l*, we take as generators for l* the reflections in each of the sides of

its fundamental domain, namelY,

t{.) - -u tz(.):ú *2tno ¿t(.) : 12ú.

A presentation for E* is

X* : (tr,tr,tr lt', - tl - t?: (tú2)2 : (t2ts)3 : 1t3t1)6 : Id ).

Likewise, ! is generated by uz : tttz and u3 : tzts and has presentation

E : ( u2¡?r3 I u'r: u!: (u2us)6 : Id ).

Naturally, we shall also be interested in the subgroup E' generated by

a: uzulruzus and b: utuzulruz

Whilst this notation is in conflict with our earlier usage of the symbols ¿ and ö

to denote the generators of "r(T) no ambiguity will arise as a result of this. The

meaning of ø and ö will always be clear from the context. An elementary calculation

shows

(1.22) aþu):u*2euo and ó(tr) : ul2usfe
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Ftcunn 1.4. A tiling of the fundamental domain for E' induced by l*'
Here t s : -i1.52995... ¡ r\t : yt¡ - iwsf/5 and ,: "inl}. Tiles con-

gruent under X are either both shaded or both unshaded and uica-uersa.

Thus ¿ and b are translation by 2eus and2.u.sf e, respectively, and l'is the free

abelian group of rank two. A tessellation of the fundamental domain for Ð' by !*
is shown in Figure 1.4.

We are ready to describe Cohn's map. It is clear from the discussion above that

equation (1.20) defines a bijection ø1 from the fundamental domain of I to that of

!. MoreoveÍ) or and its inverse are analytic on the interiors of these domains. We

can use the groups I and E to extend ø1 to all of H and P. We know from the

presentations for I and I that there is a homomorphism n from I to Ð defined by

(1.23) r(U2): v, "(Us) - us.

We extend or by defining ot(") : t(o{T-t(r))) where ¡ : r(T) and ? is the

element of I for which T-t(t) € 2. The only points in H at which there may be

a problem with this definition are the points which are fixed by elliptic elements

of l. By noting that a1(i): t s and "t(p) - ul it is not hard to verify that ø1

is well-defined at such points. An immediate consequence of the definition of ø1 is
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that for all z €. H and ? e I we have

(1.24) o{T(z)) : t(o{z)), where t : ¡r(T).

Clearly d1 maps H onto P. With care at the elliptic fixed points it is possible to

verify that ø1 is analytic. Note that ø1 maps the fundamental domain for l' and

its tiling by f* shown in Figure 1.3 to the fundamental domain for X' and its tiling

by E* shown in Figure 1.4.

It is evident from the presentations of I a¡rd E that the kernel of the homomor-

phism zr is the smallest normal subgroup of I containing the. transformation

B-r A-r BA: (u2uù6.

That is, Ker zr is generated by B-r A-r BA and its conjugates in l. Every such

conjugate is a conjugate of B-rA-rBAby an element of l' and so Kerzr is in

fact the smallest normal subgroup of l'containing B-rA-rBA. We know l'is
the free group generated by A and B and it follows that Ker z' is the commutator

subgroup l" of l'. Now observe that since zr is defined by (1.23) we have r(A) : q

and zr(B) : å and therefore the image of l' under n is the group E'. In other

words the map

(1.25) it: l' ----r X'

is a homomorphism defined by zr(,a) : c and r(B) : b. Obviously its kernel is

f". This is of course a realisation of the well-known fact that when the free group

of rank two is factored by its commutator subgroup the result is the free abelian

group of rank two.

Given that Ker r : l" and (1.24) holds, it is clear that ø1 identifies points

in H which are l"-equivalent. We claim that ø1 only identifies points which are

f"-equivalent. To see this, suppose o1(z) : ot(z') for some zrzt € H. Choose

T and Tt in l' so that T(z) andTt(zt) both lie ir'D. Obviously ø1(7(z)) and

o{T'(z')) both lie in the fundamental domain for l' shown in Figure 1.4. More-

over, if ú and ú' are the images of T and ?' under zr, respectively, then

t' t-L (o 1 Q QÐ) : t' (o t (r)) : t' (o 1 (z' )) : o {T' ("' )).
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'We conclude that o{T(z)) and ø1(?'( z')) arc equivalent under the transformation

t't-r e x'. This is only possible fi o1(T(z)): ot(T'(z')) and t't-\ - Id. Therefore

T(z) : T,(",) and T,T-r lies in 1". It follows lhat z and z' are l"-equivalent.
'We have shown that the effect of ø is precisely to identify points which are

f"-equivalent. Since ø1 is analytic we conclude that P is quotient of H by lt''
That is, ø1 is the projection

(1.26) ort H + H/|":P.

As with l, the group l" contains no elliptic elements and so a1 defines a universal

covering of P. We use o1 lo transfer the hyperbolic metric to P and hence can

speak of geodesics on P. Of course, if we then form the quotient of P with respect

to the group E' the combined projection map is (1.10) and we obtain the punctured

torus T. \Me point out here that a standar<l r¡rethod for constructing the torus is

to form a quotient space like C/X'. Since we have obtained P from C by removing

O and its images under X' from C it is clear that P lÐ' is a punctured torus.

We shall refer to the map d1 â,s Cohn's commutator rnúp. As Cohn discovered,

[8], the significance of ø1 is that it maps the geodesics in H which correspond to

the Markoff forms precisely to the geodesics in P which pass between the points

of the lattice E'(O) like those straight lines in P which are parallel to the vectors

joining O to the points of X'(O). (We shall formulate this statement more precisely

in the section of Chapter 2 dealing with cutting sequences.)

We conclude this chapter with the following interesting aside. \Me know ø1

determines a family of isomorphisms between l" and "r(P). VVe take the base

point of zr1(P) to be u6 and we consider the isomorphism determined by lifting

nls to i. Recall that this isomorphism maps a transformation W to the homotopy

class which contains the projection of the geodesic segment li,W(i)1. It is easy to

see that if. C : B-rA-rBA then loop ø1([i,C(i)]) is based at u.r¡ and bounds a

disc containing the point O. Now observe that l" is generated bV C and all its

conjugates in l' and consider W : VCV-! where V e l' . In this case, the geodesic

segment li,W(i)) is homotopic to the composition of [i, V(i)] with lV(i),VC(i)] and

IVC(i),W(i)1. The projection of [i, V(i)] is a curve from trls to o(u.'s) where u is the
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image of V under the homomorphism (1.25). Since IV(i'),VC(i)l : V(li,C(i)l)'
its projection is the image of ø1([i,C(i)]) under u a¡rd so forms a loop based at

u(too) which bounds a disc containing ,(O). Finally, IVC(i),W(i')l : W(ÍV(i),il)
and since w ef.,,the projection of w(lv(i),i]) is the reverse of ø1([i,y(i)]). It
follows that ø1([i, W(i)]) is homotopic to a loop based at tr¡ which bounds a disc

containing the point "(O). We conclude, as expected, that zr1(P) is generated by

all the homotopy classes containing such loops.



CHAPTER 2

CUTTING SEQUENCES

Our main tool for studying the topology of open geodesics on T is cutting

sequences. Descriptions of cutting sequences and their properties may be found

i¡-l27l, [35], [36] and [39]. In this chapter we shall mostly be reviewing the circle

of ideas presented by Caroline Series in [36], however we do produce some new

rnaterial. Theorem 2.2 arld Remark 2.1 contain new results about the cutting

sequences of closed geodesics. More importantly, the sections on reducibility for

doubly infinite sequences and automorphisms of l' applied to reduced sequences

provide a rigourous basis for the application of the automorphisms of l' to cutting

sequences. Also, the final section which deals with O-radial and half-linear cutting

sequences is completely original.

Throughout this chapter unless specifically stated otherwise, all geodesics in

H witl have irrational endpoints and all geodesics on T will be the projection of

such geodesics. Recall from Chapter 1 that this restriction ensures that the corre-

sponding forms do not represent zero. It also ensures that the associated cutting

sequences are doubly infinite. The complete definition of the cutting sequence S(7)

of a geodesic 7 is given in the first section. For the moment, we merely note that

they are doubly infinite sequences composed of the symbols A, B, A-1 and B-1.

It is conventional to omit the commas when listing such sequences. Thus we write

S(Z) : X-1X¡X1..

where each X¿ e {A,B,A-t,B-t}. !V" shall also use the abbreviation

Wn:W...W
Ì¿

31
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where n is a positive integer arrd W is any word in the symbols A, B, A-1 and

B-r\. Likewise, we interpretW* as ...WWW or WWW... or -..WWW...
depending on the context. Although we shall eventually identify the symbols .4,,

B, A-t and B-1 with the corresponding elements of l' we shall in general refrain

from using the notation W-n except when n : L. Of course I'7-1 denotes the

word obtained by reversingW and replacing each symbol by its inverse.

Cutting sequences

To define cutting sequences we must first describe a labelled grid of geodesics

in H. The grid is that which partitions H into the standard tessellation by l'.
Specifically, the grid is obtained by taking all images under l' of (the sides of)

the fundamental domain 2 shown in Figure 1.2. It is labelled by first labelling

2. The label A is placed next to the side joining -1 to oo and then, proceeding

anti-clockwise around D, the labels 8,, A-t and B-1, in that order, are placed next

to the remaining three sides. Since l' is freely generated by .4 and B we know

that each of its elements produces a distinct image of. D. Thus we can use l' to

copy the labelling in D to all its images in the associated tessellation of H. \Me

refer to the resulting grid as the labelled griil iniluced, by I and we denote it by

A. Recall that we are interested only in geodesics whose endpoints are irrational.

Each such oriented geodesic 7 cuts the lines of Â, infinitely often in each direction.

The cutting sequence S(7) of 7 is the doubly infinite sequence of labels which

records its intersections with Ä, with the conventions that reading S(7) from left

to right corresponds to traversing 7 according to its orientation and only the label

immediately after each grid line is listed in S(7). See Figure 2.1. Although we

shall use the notation

S(z): X-tXoXt

where each X¿ e {A,8,, A-t , B-'}, we shall usually consider S(7) to be un-indexed.

That is, we identify the different possible indexings of S(7) in exactly the same

manner as u/e have for the doubly infinite sequences of positive integers. This

is consistent with our decision to not difierentiate between the different possible
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B A-L A

A B_I

-2-i-1-+o+1i
Ftcunn 2.1-. The labelled grid.A, induced by l'. The cutting sequence

of a geodesic 7 is the sequence of labels S(7): ... AB-rB-r3-r...
which records its intersections with Â,, with the convention that only

the label which occurs immediately after each grid line is listed.

33
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parameterisations of 7. Note that there is no ambiguity in omitting the commas

from S(7) since it is composed of only the symbols A,, B, A-1 and B-1.

By using o to project Â to T ïve can likewise define cutting sequences for

geodesics on T. It is clear that the grid on T is covered by the projection of

the sides of. D. Since ø identifres the opposite sides of. D, the projected grid con-

sists of only two geodesics; each begins and ends at the puncture. AIso, since we

labelled Â by using l' to copy the labels inD, the labels on its projection to T all

agree and are simply the projection of those in 2. Obviously the cutting sequences

of geodesics are preserved under this projection, that is,

(2.1) s("(z)) : s(z)

where 7 is any geodesic in H.

In order to use cutting sequences to study the topology of geodesics on T we

need to identify the labels A, B, A-1 and B-1 with the correspondingelements

of l'. This will allow us, for instance, to establish a direct relationship between
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the cutting sequence of a closed geodesic on T and the conjugacy class in f' which

defines 7. Before we discuss such things we describe some of the properties of

cutting sequences.

It is not hard to deduce from the fact that cutting sequences are preserved by ø

that they are also preserved under the action of l' on H. In other words, if 7 is a

geodesic in H and ? e l' then s(?(r)) : s(z). series points out that the converse

is also true, that is, if 7 and 7' are both geodesics in H and S(7') : S(Z) then

| : T(l) for some T e l' . Briefly, the way to prove this is to choose ? so that 7'

and ?(7) traverse the same sequence of tiles in H. In this case, 7' and ?(7) have

the same endpoints and hence are identical. To summarise,

(2.2) S(z'): S('y) <+ t'--T(ù for some ? € f''

Note in particular that a geodesic on T is uniquely determined by its cutting

sequence.

By considering our fundamental domain for l' and its neighbouring tiles, see

Figure 2.1, and by noting that Ä and its labels are preserved under the action of

f', it is not hard to deduce that if the label X appears on one side of a grid line

then the label X-l appears on the other. By f(-t we mean of course the label for

which XX-r: Id in l'. One consequence of this is that the string XX-r never

occurs in a cutting sequence. The reason being that a geodesic 7 in H must enter

and leave each tile it crosses by different sides. If XX-r occurred in S(7) then the

label X would appear twice within the same tile which is impossible. A sequence

which has no occurrence of. XX-l is called reiluced. Evidently cutting sequences

are reduced. We also note that if 7' is the geodesic 7 with the opposite orientation

then S(7t) can be obtained from S(7) by reversing it and interchanging A with

A-r and B with B-1.
Not only are cutting sequences reduced but they also do not contain strings of

the form

(2.3) (ABA-rB-t)- or (BAB-r.4-t)-.

This can be deduced from the properties of the tessellation. The set of images of the

vertices of 2 under I is precisely the set of rationals together with oo. Moreover,



CHAPTER 2. CUTTING SEQUENCES 35

for any given rational r, the images of 2 which have a vertex at r form a fan of

neighbouring tiles. Associated with this fan is a sequence of grid lines emanating

from r and hence a sequence of labels. By considering the canonical fan at oo it is
not hard to see that, depending upon the direction in which the fan is traversed,

the sequence is one those listed in (2.3). Now suppose that some geodesic 7 has a

cutting sequence S(7) which ends with such a sequence. Since the corresponding

sequence of grid lines crossed by 7 is completely determined by the initial one and

that initial one belongs to some fan, it follows that at some point 7 enters a fan

of tiles and never leaves again. This can only happen if one endpoint of 7 is the

rational r upon which the fan is based. However, no pair of geodesics with endpoint

r can intersect and therefore the cutting sequence of 7 terminates when it enters

the fan. This contradiction shows that S(7) cannot end with one of the sequences

in (2.3). A similar argument shows that S(7) cannot begin with such a sequence.

We have seen that the cutting sequence of a geodesic with irrational endpoints

is a reduced doubly infinite sequence of A's, B's, A-L 's and B-1's in which neither

of the sequences (2.3) occurs. The converse is also true, that is, if S is a reduced

sequence of the symbols A, B, A-1 and B-l in which neither of the sequences (2.3)

occurs then S is a cutting sequence of some geodesic 7 with irrational endpoints.

The proof of this involves constructing from S the endpoints of 7. Series, [36], has

given a brief indication of how this may be done. Her idea is to choose a polygonal

path (a sequence of adjoining geodesic segrnents) with cutting sequence S. Since S

is reduced such a path converges to two points 17 and ( on the real axis. Further,

since neither of the sequences (2.3) occurs 7 and ( are irrational. It is possible to

prove from the construction that if. 1 : [q, (] then S : S(Z).

We shall conclude this section with a lemma. It may be found in [39].

Lemma 2.L. If zo €. D and if lzs,, z1l is a geodesic segment with cutting sequence

W : XtXz...Xn, wherc each X¿ € {A,B,A-t,B-t}, thenW-r(21) lies inD.

Proof. Let the segment lro,"rl be as described. We prove the lemma by in-

duction on n. It is easy to verify the lemma is true when n : I. Now sup-

pose n ) 1. Let z2 be a point on [z¡,21] such that [zs, z2]has cutting sequence
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V : XtXz . . .Xn-t and let lrL, r'tl be the image of' lz2,z1] under V-l. Our induc-

tive hypothesis is lhat z'2lies in 2. Since V preserves cutting sequences, lrL, rttl

has cutting sequence Xn. Using our inductive hypothesis again we conclude that

X;'("\) also lies in 2. Obviously l7-1(rt) : X-rV-r(rr) : X;'(r't) and hence

the lemma is true. !

Boundary expansions

The cutting sequence of a geodesic in H can be obtained from the boundary

expansions of its endpoints. Boundary expansions are defined by Series in [3a].

More details may be found in [3] and [39]. The definition Series gives applies to

the limit points of a Fuchsian group acting on the unit disc. 'We reformulate Series

work in tcrms of f' acting on the upper half-plane H. The limit points of f in

fI are exactly the irrationals. Motivated by Series work, we define the bound,ary

expansion S(() of an irrational point ( to be the cutting sequence of any oriented

geodesic ray which begins within D and ends at ( and we write

S(€) : X¡X1X2.

where each X¡ e {A,B,A-t,B-t}. (!V" can assume if desired that the ray starts

at i.) It is not hard to see from our comments on cutting sequences that each

boundary expansion is an infinite reduced sequence of the symbols A, B, A-r
and B-1 in which neither (AAftB-t)- r'.or (BAB-I A-r)- occurs. It is also

not hard to verify that the operation of forming boundary expansions defines a

bijection between the irrationals and the set of all such sequences.
'We claim that if the irrationals q and ( have boundary expansions

S(q) : X-tX-zX-s . ..'. . and S(€) : XyX1X2..

respectively, then the geodesi, 'l - [q, {] has cutting sequence

s(r) : X_I_rx_l_rx_I_rX*X¡+tXk+2...

where k > 0 is the smallest integer such that X-*-t # X*. Moreover, the seg-

ment of 7 between the labels X-l-, and X¡ lies inside the image of 2 under the
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transformation W : XoXt ...X*-t To see this, let fr be as described. We can

choose a point 21 or1. the ray [i, (] so that the cutting sequence of the segment [i, z1]

is XoXr ...Xt-t It follows from Lemma 2.1 that W-t(rr) lies in 2. Similarly,

we can choose a point 22 orl- the ray [i,r7] so that the cutting sequence of.li,,z2lis

X-tX-z . . . X-x. Since W : X-tX-2 ...X-r we know lhat W-t (22) also lies in

D. Thus 21 aîd z2 both lie in W(D). Now let 7 be a geodesic with cutting se-

quence S(Z): ...X-l-"X-ro-rX-l-rX¡X¡r¡1Xk+2... We can choose 7 so that

the segment of it between the labels X-l-, and X¡ also lies in W(D). In this

case, there is a ray contained in 7 which begins inW(D) and has the same cutting

sequence as the ray lz1, e]. W" conclude that ( is an endpoint of 7. Similarly, there

is a ray contained 7 which ends in W(D) and has the same cutting sequence as

ln,,rr] (note the change of orientation here). Hence r¡ is the other endpoint of 7
and the claim is proved.

It is evident from Theorem A of Birman and Series paper, [3], that there is

an ordering of boundary expansions which reflects the natural ordering of the

corresponding irrationals. It is based on the cyclic ordering of the symbols A, B,

A-1 and B-l given by the ordering

(2.4) A-L<B<A<B-L

and all its cyclic permutations. Let XoXr X2... and XIX|XL... be distinct

boundary expansions and let k 2 0 be the smallest integer such that Xn * XL.

We write

XsXyX2 <

if either Ie :0 andXs < Xå in the ordering (2.4) or k>7 and X¡ < XL in the

ordering obtained from (2.4) by cyclically permuting it so that Xl]r, is the smallest

term. Birman and Series refer to this ordering as the cyclic lericographic orilering

of boundary expansions. We omit the word cyclic. Vt¡hile it is straightforward to

deduce from Theorem A of Birman and Series'paper that the lexicographic order-

ing of boundary expansions agrees with that inherited from the natural ordering

of the corresponding irrationals, we present the following proof to provide insight

into the use of boundary expansions.
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Theorem 2.L. Let ( and €' b. distinct inationaJs with boundary expansions

S(() : XoXtXz and S((') : x'oXlXL......'

respectiveþ. Then € < {' if and only if X¡X1X2... < XtXiXL.. . .

Proof. It is sufficient to prove only the forwa¡d implication. Thus v/e assume

e < €' and we shall prove that XoXrXz... < X'oX'tXL... . Let k be the smallest

non-negative integer such that Xx # X[. We deal with the case k : 0 first. The

sides of 2 partition the real axis into four intervals. Since the cutting sequence of

[i, (] begins with Xo we know that ( lies in the interval bounded by the side with

external label Xo. Similarly, (' lies in the interval bounded by the side with external

label Xf . We are assuming € < (' and Xo + X'r. Since the external labels of 2
appear in the order given by (2.a) as one traverses the real axis from left to right we

conclude that Xo < Xt in the ordering (2.a) and hence XoXtXz . . . < X'oX'tXi. ...
Now suppose k ) l and letW: XoXt...Xx-t \Me knowfrom Lemma 2.1

that any segment of the ray li,(] with cutting sequence l7 ends in the tile W(D).

Hence the term X*-t in the boundary expansion of { records the intersection of

the ray [i, (] with a side 7 of. W(D) as it enters that tile. Since the ray [i, oo] lies

entirely inside 2 it cannot intersect 7 and hence the points { and oo are separated

by the endpoints of 7. It follows that { lies in an interval of the real axis bounded

by Z. The remaining sides of. W(D) partition this interval into three sub-intervals.

Clearlg { lies in the sub-interval bounded by the side of W(D) with external label

Xx. Since X; : X'¿ for 0 < i < k - 1 we know (' also lies in the interval of the

real axis bounded by Z. Obviously ( lies in the sub-interval bounded by the side of

W(D) with external label X[. The transformation W is orientation preserving and

hence the order of the labels external to W(D) is the same as that of the labels

external to D. In particular, if we start with the external label Xf , of W(D)

and then proceed in an anti-clockwise direction around W(D), the external labels

of. W(D) appear in the same order as that obtained by cyclically permuting (2.a)

until Xf, is the smallest term. Since € < €' we conclude that Xx 1X[ in this

ordering. Again, XoXrXz ... < X'oX'tXi... and the theorem is proved. n
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Cutting sequences of closed geodesics

Given our convention that closed geodesics on T are closed curves without distin-

guished starting points, it is awkward to directly define cutting sequences for them.
'We overcome this difficulty by using the open geodesics which cover them. Thus

we define the cutting sequence S(f) ,/ a closeil geoìIesic Z bV S(f) : S(Z') where

7' is the open geodesic on T which covers 7 and whose orientation agrees with that

of 7. As Series points out, a cutting sequence S is periodic if and only if it is the

cutting sequence of a closed geodesic 7. However, more can be proved. The period

of the cutting sequence can be related to the conjugacy class defining the closed

geodesic. We remind the reader that to make the connection we need to be able to

view a word W of.the form W : XtXz...Xn,, where each X¿ e {A,B,A-t,B-t},
as both a sequence of labels and an element of l'. As mentioned earlier, we do this

by identify each label with the corresponding element of l'. Before we state the

theorem, recall that a word W : XtXz . . .Xn is cyclically reiluceil if it is reduced

and X,, + Xrt.

Theorem 2.2. Let W be a word of the form W : XtXz ... Xn, where each

X¿ e {ArB,A-r,B-t}. If 1 is a closed geodesic on T and if W is a cyclicaþ

rcduced representative of the conjugacy class defrning 1 then S(7) is periodic with

period W. Conversely, if S is a periodic cutting sequence with period W then

S : S(z) where 7 is the closed geodesic on T defr.ned by the conjugacy class lWl.

Proof. Let 7 be a closed geodesic on T and suppose W is a cyclically re-

duced representative of the conjugacy class defining 7. Since W is hyperbolic

al;.d XtXz . . . Xn is cyclically reduced, the sequence

(2.5) XtXz ... Xn XtXz ... Xn XtXz ... Xn

is a cutting sequence. Hence there is an oriented geodesic 7' in H whose cutting

sequence is (2.5). We can choose 7t so that one of the pairs XnXt in (2.5) arises

from the intersections of 7' with the sides of the fundamental domain 2 for l'.
Further, v/e can choose zs a;îd zr orlL 7'so that the segmentlzsrzl) of.7'begins in

D and has cutting sequence W : XtXz . .. Xn. We know from Lemma 2.1 that
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W-t(rt) lies inD. The transformation l7-1 preserves cutting sequences and so

S(W-t(l')) : S('y'). Moreover, since the point W-'(rt) or.W-t(7') lies in 2 we

know that one of the pairs X,X1 in S(I4r-t(f')) results from the intersections of

W-t(l') with the sides of 2. It follows that S(I4z-t(Z')) - 7' and hence l7-1
translates 7' along itself in the direction opposite to its orientation. 'We conclude

that 7' is the axis of W. Thus the projection of 1' to T covers 7 and has the

same orientation as 7. By definition, S(7) - S(f') and hence S(7) is periodic with
period 17.

Conversely, suppose S is a periodic cutting sequence with period W. Clearly W

is cyclically reduced and hyperbolic. Let 1be the closed geodesic on T defined by

W. h follows from the first part of the proof that S(7) is periodic with periodW.
Hence S : S(Z) and the proof is complete. n

Remark 2.1. The proof of Theorem 2.2 shows that if W : XtX2 . . . Xn, where

each X¿ € {A, B, A-t , B-'}, is a cyclically reduced hyperbolic transformation then

its axis intersects the fundamental domain 2. The converse is also true. To see

this, let W be a hyperbolic transformation whose axis 7' intersects 2. Choose

a fundamental segment lzs,zll of. 1' lor l7 which begins in 2 and let its cutting

sequence be V : XtXz...Xn. Lemma 2.1 implies V-t(21) lies in D. Since

W-'(rr) does also we can deduce that W - V. It is also clear that 7' can be

partitioned into the segment lzs, z1] together with its images under W arrd therefore

S(Z') is periodic with period XrX2...Xn. It follows thatW : XtXz...X," is

cyclically reduced.

.tR-sequences

While cutting sequences provide information on the topological properties of

geodesics on T we are also interested in their Markoff values. These are best calcu-

lated using the associated doubly infinite sequences of integers. We therefore need

a means of obtaining from the cutting sequence of a given geodesic the associated

sequer\ce of integers and uice-uersa. Series, [36], has provided the intermediate

step. She begins with the Farey tessellation.



CHAPTER 2. CUTTTNG SEQUENCES 4l

R R

-2 g.
2 -1 0 1 2

Frcunp 2.2. The Farey tessellation. The .t-R-sequence of a geodesic

7 records the manner in which it partitions the vertices of each of the

triangles it passes through in the tessellation. An .t indicates that the

isolated vertex lies to the left of 7 and an -R that it lies to the right.

The Farey tessellation is the tessellation of H obtained by taking all the images

under I of the ideal triangle with vertices 0,1 and oo. Although this triangle is not

a fundamental domain for I (it is in fact a fundamental domain for a subgroup of

index 3), its images under I do tile H. The resulting tessellation is invariant under

the action of l. It derives its name from the fact that it can be described in terms

of Farey sequences.

As a geodesic 7 in H (with irrational endpoints) traverses the Farey tessellation

it cuts each of the triangles it passes through in two. Thus it divides the vertices

of each triangle in its path into two sets; one set containing two vertices and the

other only one. For each such triangle label the segment of 7 lying inside it by .[

or .B according to whether the isolated vertex lies to the left or right, respectively,

of the segment as it is traversed in the direction indicated by the orientation of 7.

The resulting doubly infinite sequence of .t's and .R's is called the LR-sequence of

7. See Figure 2.2.
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By adapting the methods used for cutting sequences, the following tv/o properties

can be proved. Firstly, the .t.R-sequences of two geodesics 7' and 7 agree if and

only 7' : T(l) for some ? e l, and secondly, a sequence of .t's and R's is the

.tB-sequence of some geodesic if and only if neither .t- nor .B- occurs in it.

Series points out that it is possible to calculate the .t.R-sequence of a geodesic

from its cutting sequence. The reason for this is that the tessellation of H by l'
is contained within the Farey tessellation. To be more specific, our fundamental

domain D for l' consists of the ideal triangle with vertices 0,1 and oo and its

image under the transformation Tt(") - -Z and thus each tile in the tessellation

.4, consists of two triangles in the Farey tessellation. It can now be deduced that

between each pair of neighbouring symbols in the cutting sequence of a geodesic

there is either one or two symbols of its .t-R-sequence. It is not hard to see that

only the patterns in Table 2.\ can occur. The patterns in Table 2.1 provide a recipe

for calculating the .tB-sequence of a geodesic from its cutting sequence.

ARB ALRA ALLB_I BRRA_I

BRLB BLA A_I RB_I A_I LRA_I

A_I LLB B-rRRA B-rRLB-I B-rLA-r

T¡.nLB 2.1. The patterns of symbols describing the connection

between the .L.R-sequence of a geodesic and its cutting sequence.

The reason Series introduced.t.R-sequences is that it is easy to obtain from them

the doubly infinite sequence of integers ,4 associated with the underlying geodesic

7, see [35]. In fact, if we write the ,t.E-sequence of 7 in the form

(2.6) . . . . . Ro-" Lo-, Ro-t Loo Ro, Lo, Ro"

then ¿4 : {"¿}¡+j"". To see this, recall that the -t-R-sequence of any image of 7
under a transformation in I is the same as that of 7. Clearly there is an image

7' which contributes the first .t in the string Loo and does so by cutting the ideal
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triangle with vertices 0,1 and oo. Moreover, since there is an element of I which

permutes the vertices of this triangle we may assume that the vertex isolated by I
is oo. In other words, ïve may assume the endpoints 7 and € of 7' satisfy -1 < 17 < 0

and 1 < (. It is not hard to verify that in this situation

(2.7) ?: -[0, a-r¡d-2¡o-r,...] and (: [oo, o4,,a2)...f

and hence A: {";}|=|-oo, âs claimed.

We now have an algorithm which produces from the cutting sequence of a given

geodesic the associated doubly infinite sequence of positive integers. The algorithm

can be reversed. However, since there are twelve geodesics on T associated with

a given sequence of integers, there are also twelve cutting sequences. This fact

becomes apparent when one considers the reverse algorithm in detail. To this end,

we let .4: {"¡}lîoo be a doubly infinite sequence of positive integers. Obviously,

the geodesics with -t-R-cutting sequence (2.6) are associated with "4. However,

since we are identifying "4 with the sequence obtained by shifting its indexing to

the right by 1, the geodesics with .úß-sequence

(2.8) La-ï Ra-2 La-t Rao Lar Ro" Lo"

are also associated with "4. We know that the connection between the cutting

sequence of a geodesic and its .t-R-sequence is given by the patterns in Table 2.1.
'We can use the table to calculate the cutting sequence of a geodesic from its

.t-R-sequence as long as we have a pattern from the table to start with. We may

assume the initial pattern involves a fixed symbol, say X¡, in the .t.R-sequence con-

cerned. There are exactly six possibilities for the initial pattern; two involving X¿

alone, two involving the pair X¡-1X¿ and two involving the paft X¿X¿..1. Thus we

have accounted for the twelve cutting sequences associated with ¿4. By considering

the details of the reverse algorithm more carefull¡ it is possible to determine how

they are related. However, the relationship is best explained in terms of the effect

of automorphisms in ü on cutting sequences. Before rve can discuss this further

we need to introduce the concept of reducibility for doubly infinite sequences.
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Reducibility for doubly inffnite sequences

To be able to apply automorphisms of l' unambiguously to cutting sequences

we must first develop the theory of reduction for doubly infinite sequences of

.á.'s, B's, A-l's and B-l's. The theory is of course based on the theory of re-

duction for finite sequences. Recall that a word W - XoXt ... Xn where each

X¿ € {A, B, A-t , B-'} is reiluced if no symbol in it is the inverse of its neighbour.

Recall also that if.W is not reduced then it can be reduced by successively deleting

all pairs of neighbouring inverses. 'We refer to the word which results from this

process as the reduceil woril equiualent to W and we note that it is the unique re-

duced word which is equal to W in the free group l' : F(A,B). (We remind the

reader here that we consider W to be both a sequence of symbols a¡rd an element

of l'.) 'We can deal with infinite sequences and doubly infinite sequences of .4.'s,

B's, A-r 's and B-1's in a similar manner. W'e begin by viewing such sequences as

the limit of a sequence of words.

Let S be a sequence of the form

S : XoXr Xz . .... .,

where each X¿ e {A,B,A-r,B-t}.Further, let S(1),5(z),5(s),... be a sequence

of finite words and for each j ) 1 write

s(j) : x[i) xo). . .".{.,ì

where /(j) is the length o1 5(i) and each X[i) e {A,B,A-|,B-t}. We say that

the sequen"" S(t),5(z),5(s), ... conaerges to S and write

(2.9) S:-lim S(j)

if forevery integer n) 0 there is some J >_t suchthat for all j > J wehave

¿(j) > n and Xi: X!i\ tot 0 < i ( n. Note that the sequence S(1),S(2),S(t),...

can have at most one limit. Also, using the definition it is not hard to show that

the sequence S(1),S(2),S(3),... converges if and only if the length of the initial
segment o¡ 5U) which agrees \¡¡ith S(i+l) diverges to oo as j increases. Now set
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S j : XoXt . . .X j and observe that S : limj-oo Sj. It is natural to use this limit
to define reducibility for the sequence S. Thus u¡e say that S is reilucible if the

limit S' : limj*oo S! exists where Sl is the reduced word which is equivalent to

S¡. Obviously, if S' exists then it is a reduced sequence. We refer to S' as the

reduced sequence equiaalent to S.
'We can extend the concept of reducibility to doubly infinite sequences. For this

purpose, \Me now suppose S is a sequence of the form

(2.10) $:......X-tXoX1 ....

where each X¿ e {A, B, A-t , B-t}. 'We say that S is reducíble if each of the

sequences

XoXtXz... and X-tX-zX-s..

are reducible, to say

X'oX'rXi and X' ,X' ^x' ....

respectively, and if further there is some fr > 0 such that X'-x-t I $'*)-r. In

addition, if that is the case and k is minimal then the sequence

(2.11)

is reduced. We refer to it as the reduced sequence equiaalenú to S.

For reducibility to be a useful concept we need to verify that the reduced se-

quence equivalent to S is independent of the indexing of S. By using induction

(and replacing S by its reverse if necessary), it will suffice to do this only for the

case where the indexing has been shifted to the right by one. Thus we assume S is

of the form (2.10) and that it is reducible to the sequence (2.11) and we consider

the sequence S* obtained from S by shifting its indexing to the right by one. In

order to decide whether or not S* is reducible we need to examine the sequences

X1X2Xy and XoX-tX-z.......
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Given that we are assuming X¡X1X2 . . . is reducible to X'oX'rXL . . . if is possible

to deduce that XrXzXs ... is also reducible and that the result is either

xlxixi..... x;txixixL......or

depending on whether Xó : Xo or XI + X6, respectively. The idea here is that if
XoXt...X¡ isreducibletosay XiXi' ...X!'lheraXtXz...X¡ isreducibletoeither

X'.'XL' . . .X'r' or X;r X'l Xl' . .. Xj' depending on whether Xl : Xs or X6' * Xo,,

respectively, and this property is preserved when the limit is taken. Similarly,

XoX-tX-z ... is reducible and the result is either

XoX'-rX'-rX'-, x'_2x'_3x'_4or

depending on whethet X\ * (Xo)-t or X" : (Xo)-l. We shall consider the

four cases separately. Firstly, \¡¡e suppose XI : Xe and X'-t # (Xo)-t. Since

XtXiXL. . . is reduced and Xf - Xo we know Xo # (Xí )-t. Thus S* is reducible

and the result is

(2.12) . . . . . x'_sx'_rx'_rxox'rxLx', . . . . .

Also, k : 0 is the smallest index such that X'-*-t + 6Ð-' and Xf - Xo and so

(2.11) and (2.12) are identical. Similarly, if X6+ Xo and X' t: (Xo)-t then S*

is reducible to

x'_4x'_sx'_rx;r x¿x'rxL. . . . . .

which is identical to (2.11). Now suppose X[, - Xo and Xl1 : (Xo)-l. We are

assuming S is reducible to (2.11) and hence k is the smallest non-negative integer

such that X' *-, is not the inverse of. X'0. Clearly k>-7 and so j : le-1 > 0 is the

smallest non-negative integer such that X'-¡-z # 6}+t)-1. Thus S* is reducible

to

, . . . .X'-¡-4X'- j4X'-¡-zXj*rX"+rX'¡+,

Again this sequence is identical to (2.11). A similar argument works in the remain-

ing case. This completes our verification that the reduced sequence equivalent to

S does not depend on the indexing of S.
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To summarise, we have demonstrated that a doubly infinite sequence S can be

reduced by splitting it in half, reducing the two halves, gluing them back together

and successively cancelling any neighbouring inverses at the join. In practice how-

ever, if we already know S is reducible, there is a better \¡/ay to proceed. It is

evident from the next theorem.

Theorem 2.3. Let S -. ..X¡XoXl ..., where each X; e {A,,B,A-r,B-t},
be a reducible sequence. There is an increasing sequence of indices U(i))r+:."
such that

(a) X¡1;;+ tX jG)+2... X¡6+t)_1 : Id holds in l' for a1l i and

(b) the sequence S' : ... Xy-¡X¡(g)Xj(r) ... is reduced.

frrther, if U(i))r+:oo is any increasing sequence such that (a) a"nd (b) åold úåen

S' is úhe reduced sequence equivalent to S.

Proof. We begin with the fact that the sequence Xs,Xt,Xz,...is reducible.

Thus we set Srr: XoXt...Xn for n 2 0, we let S'" be areduced wordequivalent

to S' and we write

,t!Ls;:x'oxixt.......
Recall that S'" can be obtained from S, by successively cancelling neighbouring

inverses. Since Xl is the initial term of some S'" it follows that there is an index

j(0)>0suchthat

(2.13) XoXt. . .X¡10¡-1 : Id

in l' and X¡(o) - X[. Now frx m I 0 and suppose we have chosen an increasing

sequence of positive indices j(0),j(1), ...,j(*) such that for each i with 0 < i <
m,-lwehave

(2.I4) X¡ç¡aX¡(i)+2...X¡1,+r)-r:Id

and X¡11+r) : Xj+r. \Me know X|X|...X',,+t is the initial segment of some S',,

and we can assume n ) j(*). Our choice of j(0), j(1),. ..,i(*) implies that S', is

the reduction of the word

X'oX X ,
ÍT¿ X¡6¡¡1X¡(*)+2... Xn
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Hence there is an index i(rn* 1) with i(*) < i(* + 1) < r¿ such that

X ¡6¡aX ¡(*)+z . . . X¡çn+r)-r : Id

and X¡1-+ Ð : Xh+t. It follows by induction on rn that there is an increasing

sequence of indices U(t))r+$ such that the identities (2.14) and X¡11¡ : Xi hold

for all i > 0. We can also assum" i(0) 2 0 and (2.13) holds.
'We know the sequence X-y,X-z,X-g,... is also reducible. Thus we set S-r, :

X-tX-z ... X-n for n ) 1, we let S'-, be reduced word equivalent to S-,, and we

write

As above, there is a clecreasing sequence of negative indices {j(-;)}n+$ wittr

(2.15) X ¡1-;¡-rX ¡eÐ-2 . . . X ¡e;-r)+r : Id

and X¡1-l) : X' ¿ for all i > 1. Moreover, tMe can' assume i(-1) ( -1 and

(2.16) X-tX-2.. .X¡(-t)+r : Id

Since S is reducible there is some fr > 0 such that X'-x-t + 6Ð-t. We let fr

be the smallest such index and note that the sequence

x'_k_sx'_o_rx'_o_rxLxL+ÅL*r. . . . . .s

is the reduced sequence equivalent to S. We claim that the sequence

has the required properties. Clearly this sequence is increasing. It is also easy to

see that condition (b) (with an appropriate re-indexing of (2.17)) is true. Condition

(a) can be deduced from (2.14) and (2.15) except that we must also verify

(2.18) X¡ç*-t)+t . . . X-tXoXr . . . X¡ç,¡-r : Id.
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Using (2.13) and (2.1a) with 0 <i < k-l and (2.15) with 1 < i < k and (2.16)

ïve ca'rr deduce that (2.18) is equivalent to

X¡'_Ð ... Xy-z¡X¡1-r¡X¡10¡X¡(r) . .. X¡ç-r) - Id.

We can rewrite the latter as

x'_o... x'_2x'_rx'rxi. .. xl_r : Id

and clearly this is true.

To see that the second statement of the theorem is true, tet {j(;)}n+ioo be an

increasing sequence of indices and suppose that (a) and (b) hold. Now define

S", : X1¡¡X1o¡+r ... X j(o)*n

for all n ) 0 and let S'" be the reduced sequence equivalent to S,r. Conditions

(a) and (b) imply that if " : i(i) - i(0) for some i > 0 then S', is the word

X¡1s¡X¡1r¡ ...X¡(n). 'We are assuming S is reducible. Therefore limr,*ooS', exists

and so

I
rù

: .lim S
t+oo i(i) - j(0) - X¡p¡X¡¡¡X¡(r)

Similarly, we define

S-,, : X¡g¡-rX¡(o)-2 . .. X¡p¡-n

for all n ) 7 and we let S'-, be the reduced sequence equivalent to S-,r. Again,

the conditions (a) and (b) imply that if ": i(0) - ieù for some i ) 1 then S'-,

is the word Xn-¡X¡1-z) ...X¡(-n). It follows that

,l$ S'-, : cl¡å Srlt-rl-¡fol : X ¡ç¡X ¡1-z¡X ¡1-s¡ . .

Obviously Xr(-t) * (X¡fo¡)-l and hence the sequence S' described in (b) is the

reduced sequence equivalent to S. !

Slim
tt+oo
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Remark 2.2. Let $ : . ..X-tXoXr ..., where each X¿ e {A,B,A-'.,8-t}.
The existence of an increasing sequence of indices {j(;)}¡+ioo for which the con-

ditions (a) and (b) of Theorem 2.3 hold does not guarantee the reducibility of S.

For instance, suppose

S - . .. . . . Xjez¡W-2X¡1-\W-1X'@¡WoX¡e¡W1X¡p¡

where each word W¡ is of the form

W¡ : X i(i) . . X j(\x j(å¡X¡10¡X¡1r¡ . . . X¡1;¡

and suppose also that S' : ... X¡ç¡X¡10)X¡(r) ... is reduced. By design, condi-

tions (a) and (b) hold. Now set S,, : X¡6¡X¡(o)+r...Xj(o)*," for each n ) 0 and

let S', be the reduced word equivalent to Srr. Clearly, S,, reduces to the trivial

wordwhenever ": j(i) - j(0) +i+ l for some i > 0. It follows that lim,"*ooS',"

cannot exist and hence S is not reducible.

Automorphisms of l' applied to reduced sequences

Let S be a reduced sequence of A's,, B'sr -A-l's and B-l's and let G be an

automorphism of l'. We shall apply G to S by applying a substitution associated

with G to S and then reducing the resulting sequence. A, substitution for S is a

map

A--+Wa, B +We

where Wt andWe are finite words in the symbols A, B, A-r and B-r. It is

associated with G if. G(A, B) : (W*Wø). The result of applying this substitution

to S is the sequence obtained from S by replacing each of the symbols A, B, A-r
and B-l in it with the words W¿,, Wn, W¡t ar,d Wu', respectively. In this

context, Wjt and WÇt denote the words obtained fromW¡ andWs by reversing

them and interchanging A with .4.-1 and B with B-1. In the following theorem

we show that if a substitution is associated with G then the sequence which results

when it is applied to S is indeed reducible and further, we show that the equivalent

reduced sequence depends only on G and not the particular substitution used.
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Theorem 2.4. Let S -. ..X-tXoXt...r where each X¿ € {.4, B,A-',8-r},
be a rcduced sequence. If the sequence S' is tåe resulú of applying the subsúiúuúion

(2.1e) A-+W¡, 3+Wø

úo S and if the homomorphismG(A,B): (Wç,WB) lies in Aut l''úåen S'is
rcducibla fr;rther, if that is so then the reduced sequence equivaJent to S' depends

only on G and not the particula,r representativesW¡ andWø for G(A) and G(B).

Proof. We write S' : ...X'-1X[X|... where each Xj e {A,B,A-t)B-t}.
Since S' is the result of applying the substitution (2.19) to S we can also write

S, W-tWoWt

where each W¡ is the result of applying (2.19) to X¿. Note that in l' the equality

W¡ - G(X¿) holds. We choose the indexing of S' so that Xf is the first term of

the word l7o.

First we shall show that the sequence XtXlXi... is reducible. Thus we set

Srl : XóXi ...Xi for j ) 0 and we let Srl be the reduced word equivalent to S!.
'We claim that the length of Slt diverges to oo as j increases. Suppose not, that is,

suppose there is a bound below which the lengths of infinitely many Sll ti". Then

infinitely many of the words S¡tr are identical and hence infinitely many of the words

S!. are equal in l'. It follows from our choice of notation that for each word Sl

there is an integer n(j) such that

S'j:WoWt...W.U)V¡

where V¡ is an initial segment of. Wn1¡¡¡1. Therefore, in l' we have

G(XoXr . .. X,U) : WoWt ...W.U) : S'jVj'.

There are only finitely many possibilities for the word Vfl and so in l' infinitely

many of the words S'¡V¡ t are equal. We conclude that there is n1 f n2 such that

G(Xo& ... Xn,) : G(XoXt ... Xn,)
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in l'. However, t\re are assuming S' is reduced and therefore the words XoXt , , , Xnt

and XoXr ... Xn, are not equal in l' and further, since G is an automorphism their

images under G are also not equal in i'. This contradiction implies our claim is

true. Thus the length of Sll diverges to oo as j increases. Obviously, the sequence

Sf*, agrees with S1, i" all but perhaps the last place of Slt and hence lim¡*oo Sfl

exists. We write

limJ+oo

where each Xj' e {A,B,A-t,B-t}. 'We have shown that Xf ,XI,XL,... is re-

ducible to the sequence Xtot Xit XI . . . .

Next we show that the sequence X\X'-2X|B ... is reducible. Thus we set

5'-i : X'-rX'-2. . .X'-¡ for j ) 1 a¡rd we let S'1¡ be the reduced word equivalent

to S'-¡. This time

s'-j : Ñ-rÑ-, . . .fr.r-¡Í-¡
where fr; i" the revers e of. W¿ und, Í-¡ is an initial segment of fr,ç¡-r. \M" write

ãç,1,,a¡: (fr*w"¡.

Clearly, õç,n,n¡: R2GR2 € Aut l'where RZ(A,B): (A-t,B-t). Also, in l'
we have

ã@-rx-z ...x,(-Ð) :fi-tfr-r...frne¡) : s'-., (Í-ù-t

Hence an argument like that above implies lim¡-oo S'1¡ exists. 'We write

s'j : x'Jx't'xi

lim
J+oo

S1j : X'tX':2X t,
-3

where ea"ch Xl' e {A,B,A-t,B-t}. We have shown that X'1,X'-rrX'-r,... is

reducible to X'\X'!rX'!t... .

To prove S' is reducible, it remains to show there is k 2 0 such that X!¡-, t'
(X'Ð-t. To this end, we observe that for each i 2 0 the sequence XIX','...X'n'
is the initial segment of some Sfl. Since Sl can be obtained from S! by suc-

cessively cancelling neighbouring inverses it follows that Xi X't' . . . X'n' is the re-

duction of some initial segment of Si. Hence there is some p(i) > 0 such that
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Sltnl : Xt'X'r' . . .X'n' As elements of l' the words S!1¡¡ and Xi X't' ' ' 'X'n' are equal

and hence in l' we have

G(X o Xr. . . X,,(p( ¡)) ) : WoWt . . . W n(p(i\l : Slt;l Vr(i -- Xi Xi' . . . X'n' Vr(i)

A similar argument shows there is some q(i) > 1 such that

ã1x-rx-z .. .xn(-c(¡))) : x1Å!2. . . x'!r-tÍ;$.

We let Vq1.i¡ be the revers " of. Í01,i¡ and we rewrite this last equality as

G(X*Gq(¿)) . . . X-zX-r) : V;þ\ X!;, . . . X'!rX" r.

Now suppose that X!x-t: (Xi)-t for all fr > 0. Then for all i > 0 we have

(2.20) G(X,ec(¿)) . . . X-rXoXr . . . X,(p(¡))) : Vrti¡V;Al¡

The indice" p(i) and q(i) are increasing functions of i. Moreover, the words

Xn(-q(i)) . . .X-tXoX1 ... Xn(p(;))

and hence there images under G represent distinct elements of l'. However, there

are only finitely many possibilities for the word VråVr(ï in (2.20) and we have

a contradiction. It follows that there is some fr > 0 such that X'!*-t + ,J''l)-t

and hence S' is reducible. Note that, il. k 2 0 is the smallest integer such that

x'!o_r l (xfl)-r then

S x':k_3x':u_"x'!u_rx'lx'l+Å'l*, . . . . . .

is the reduced sequence equivalent to S'.

Finall¡ we shall show that S" depends only on G. For this purpose, \il'e choose

the sequence r(0), r(1),r(2),.. . so that Sl(n) : WoWt . ..W¿ for all i > 0. Obvi-

ously S'/1,¡ is the reduced word equal to G(XsXr .. .X¡) in l' and so S'/1n, depends

only on G and not the representatives lll¿ and Wn of G(,a) and G(B). Since

Sllo¡, S'l1r¡, Sllr¡,. . . is a subsequence of Sl, Sf , St;,... we know that

53

It

x'o' x'r' xi : n!å s'itnl
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and it follows thaf X{XI'XL'... depends only on G. A similar argument shows

that X11X " rX'!r. . . depends only ot õ and not the representatives Ñ¡ und,fra

"t ã1,1¡ ana õ(f). The truth of the theorem follows since õ i, d"t"rmined by

G.!

Given the truth of Theorem 2.4 we can nou¡ make the following definition.

Deffnition 2.1. Let S be a reduced doubly infinite sequence consisting of the

symbols A, B, A-1 and B-1 and let G € Aut l'. According to Theorem 2.4

there is a (unique) reduced sequence S' which is equivalent to all of the sequences

obtained from S by applying to it a substitution of the form ¡ --+ Wb B '-+ WB

where G(A,, B) : (W*WB). 'We say that S' is the result of applying G to S and

we write G S: S'.

'We complete this section by establishing some results concerning the application

of automorphisms in l' to reduced sequences of .4's, B's, A-r's and B-l's. We

shall make much use of Theorem 2.3 in doing this.

Theorem 2.5. Let S be a reduced sequence of the symbols A, B, A-r and

B-r and let G and H be automorpåisms of l'. Then HG S: ¡f(G S).

Proof. We need some notation. We write G(A,B): (W¡,Ws) and we let S'

be the sequence which results when the substitution

A --+ W4, B -.+ Ws

is applied to S. By definition, G S is the reduced sequence equivalent to S'

According to Theorem 2.3, if we write

G S : X'4XtXi

where each X¿ lies in {A, B, ¡-r ,3-t } then S' is of the form

X'_rW - z X'- rW - t x'ow o X lwt X LS

where each W¿ is a consecutive subsequence of S' which reduces to the identity.

Similarly, we write H(A, B) : (V¡,Va) and we let S" be the result of applying the
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substitution

(2.21) A+V¡, B +Vs

to the sequence G S. As above, ¡f(G S) is the reduction of S" and thus if we write

¡r(G s) : ... . .. x'txix'r' ....

where each Xj' lies in {A, B, ¡-r ,3-t } then

S" : . . . . . . x':2v-rX'!r,V-rxto' vox't' vrxl'

where each V¿ is a consecutive subsequence of S" which reduces to the identity.

Now let U¡ and tJs be the result of applying the substitution (2.27) lo Wa and

Ws,, respectively. Clearly HG(A, B) : (U¡rUø) and hence \¡/e can calculate HG S

by applying the substitution

A--+U* 9+Un

to S. We denote the resulting sequence by S"'. Note that St" is also the result of

applying (2.2I) to S'. Since S" is the image of the subsequence G S of S' under

(2.21) it follows that S"' can be obtained from S" by inserting in it the images of

the words Ir7¿ under (2.21). Each IrIl¡ reduces to the identity and hence so does its

image under (2.21). Thus S"' can be obtained from S" by inserting in it words

which are equal to the identity in l'. \Me conclude that S"' is of the form

s,,, : X,lzU_zX'lrU_tX,JUoX'r'hxi

where each U¿ is a consecutive subsequence of S"' which is equal to the identity in

f'. \Me know that the sequence ...X'tX';Xl'... is reduced and therefore Theo-

rem 2.3 implies that it is the reduced sequence equivalent to S"'. We have shown

that

HG s: .... .. x'tx';xí'...... : rr(G s)

and the proof is complete. !
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Theorem 2.6. Let S be a rcduced sequence of the symbols A, B, A-r and

B-t and let G be a.n automorphism of l'.
(") If G is an inner automorphism of l' úhen G S : S.

(b) If S is periodic with pefiodW then G S is periodic with periodWt where

W' is any cyclically reduced word representin g the conlugacy class lG(W)].

Proof. We prove (a) first. Thus v¡e assume G € Inn l' or equivalently

G(A, B) : (W AW-r ,W BW-r)

for some word Ir7 consisting solely of A's, B's, A-r's and B-l's. In order to

calculate G S wewrite S -...X-rXoX1 ... andwe apply the substitution

A ---+ WAW-I, B + WBW-\.

Obviously the result is the sequence

WX-tW-rwxow-rwXrw-t .

An easy application of Theorem 2.3 shows that this sequence reduces to S and

therefore G S : S, as claimed.

Next we prove (b). Thus rve assume S is of the form

s -......www......
for some word W and we let W' be a cyclically reduced word in [G(W)]. As usual

we write G(A, B) : (W*,WB). By definition, G S is the reduction of the sequence

S": WttW"W'

where W" is the word obtained from 17 by applying the substitution

A + W¡, B ---+ Ws.

Since Wt' elG(W)) we know that it reduces to a word of the fotmVW'V-| for

some V. Obviously, W" may be obtained ftom VW'V-\ by inserting in it words

which reduce to the identity. It follows that Sf' may be obtained from the sequence

vw,v-rvw,v-rvw,v-r
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in a similar manner. Theorem 2.3 implies that this last sequence reduces to

S

A further application of Theorem 2.3 shows that S" also reduces to S'. We conclude

that G S : S' and the proof is complete. tr

Automorphisms in iÛ applied to cutting sequences

'We can now return to the question of how the cutting sequences of geodesics

which are images of one another under the isometries in T are related. The answer

is simply that they are images of one another under the automorphisms of iI¡. We

can prove this by showing that if 7 is a geodesic in H and ? an element of l* then

(2.22) s(r(z)) : Gr s(z)

where Gr is the automorphism defined by (1.19). The truth of our statement

follows from this since the projection d preserves cutting sequences and maps the

action of l* to that of the isometries of T and the image of l* under the isomor-

phism (1.19) is ü. Note that, Theorem 2.6 shows (2.22) remains true if we replace

Gr in (2.22) by any automorphism in the coset G7 Inn l'. Corresponding to this

is the fact that cutting sequences are preserved under the action of l' and hence

we can also replace ? by any transformation in the coset ? l'. \Me have of course

identified f*/f' with the isometries of T and we remark that the isomorphism

(1.11) induced by ø maps the coset G7 Inn l' to an outer automorphism of ?r1(T).

Observe that if (2.22) is true for both T : Tt and ? - ?2 then we have

s(T172(7)) : Gr, s(rr(z)) - GrtGr" s(t) : Gr,r, S(^r)

and hence (2.22) is true for the transformation TtTz. Therefore, to show (2.22)

is true for all ? € f* we need only verify that it is true for the generators of l*.
We shall do this for the particular generators Tt(t) - -z and Ur (t) : z * t ar'd

Ur(r) : -Ilz.
It is easy see (2.22) holds for the transformation 7r. The set of lines comprising

the grid Ä is preserved by ?r and its effect on the labels is merely to interchange
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.4 with B and A-1 with B-1. Thus, given any geodesic 7 in ff, we can obtain

S(ft(Z)) from S(7) by applying the automorphism P(A,B) : (B,A). That is,

s(r'(r)) - P s(7).

Since Gr,: P we find as claimed rhar (2.22) holds for ? - Tt.
'We can deal with the transformation Uzina similarmanner. Again, U2 preserves

the set of lines comprising A. This time howeverrfJ2 interchanges A with ,4.-1 and

B with B-1. Thus

s(uz(z)) : R2 S(z)

where.R2 is the automorphism R'(A,B): (A-',.B-l). We know Gur:.R2 and

so (2.22) holds when T : Uz.

In [36], Series states without proof that (2.22) is true when T : Ut. The proof

is not trivial. We note that Gur: SR2 and reformulate (2.22) with ?: U1 as the

following theorem.

Theorem 2.7. If 7 is any geodesic in H tåen S(I/I(Z)) : S^82 S(7) where

Ut(") - z * I and SR2(A, B) : (B-t, AB).

Proof. Let 1be a geodesic in H. We shall prove the theorem with the help of

a neïy type of cutting sequence for 7. It is obtained by extending the grid A. \Me

do this by first adding the line joining O to oo and placing the label -E to its left

and E-l to its right. We then use l' to copy this labelled line to all the other tiles

in the grid. We refer to the cutting sequence of 7 with respect to this new grid as

its extended cutting sequence. Clearly, the extended cutting sequence of 7 can be

obtained from S(7) by inserting the label -Ð-r between all pairs of the form AB-1,
AA, B-rB-1 and B-rA and the label .Ð between their inverses, namely, BA-r,
A-L A-r, BB and A-lB. Note that the resulting sequence is reduced.

The set of lines in our new grid partitions H into the Farey tessellation. We

have noted in the section on .t-R-sequences that t/r fixes this tessellation. It is

not hard to verify that the effect of. Ut on the associated labelling is given by the

substitution

(2.23) A--E-r, B-A, E--+B
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Of course, by definition this substitution also replaces the symbols A-1, B-1 and

E-r by E, A-r and B-1, respectively. To summarise, the extended cutting se-

quence of Ur(f) can be obtained from the extended cutting sequence of 7 by ap-

ptying the substitution (2.23).

Now consider the effect of the substitution

(2.24) A-t E-tA, B + BE

on S(7). It inserts the label E-l between the pairs AB-r, AA, B-t B-r and B-14
and the label .Ð between their inverses. It also inserts EE-r between the pairs BA

and A-lB-1 but leaves the pairs AB and B-rA-r unaltered. This accounts for

all the possible pairs in S(7). Hence the extended cutting sequence of 7 can be

obtained from its cutting sequence by applying the substitution (2.2\ and then

removing all occurrences of EE-r in the resulting sequence'

By composing the substitutions (2.2\ and (2.23) \rye can deduce that the ex-

tended cutting sequence of t/r(Z) is the result of applying the substitution

A - B-r E-r,, B --+ AB

to S(7) and then removing all occurrences of BB-r. We already know the cutting

sequence of yr(Z) can be obtained from its extended cutting sequence by removing

all occurrences of .E and E-r. h follows that S(Ur(7)) can be obtained from S(7)

by applying the substitution

A --+ B-r , B --+ AB

and then removing all occurrences of. BB-r. The truth of the theorem is now

evident. D

Linear cutting sequences

We mentioned in Chapter 1 that the projection under Cohn's commutator map

ø1 of geodesics in H which correspond to the Markoff forms are precisely the

geodesics in P which pass between the points of the lattice t'(O) like those straight
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lines in P which are parallel to the vectors joining O to the points of X'(O). (The

meaning of this statement will be made precise in this section.) A natural extension

of this result, see [21] and [36], is that the projection of the geodesics in H which

correspond to forms with Markoff value equal to 3 are the geodesics in P which

pass between the points of the lattice E'(O) like the other straight lines in the

plane C. The cutting sequences of such geodesics have special properties. In this

section we discuss those properties. As we proceed we shall also review some of

the related facts concerning the Markoff spectrum.

We begin by using Cohn's commutator map o1 to project the labelled grid A to

P. Recall that P is the plane C with the lattice of points t'(O) removed and that'

ø1 is the quotient map (1.26) which takes H to P : IJll" . Since the efiect of a1 is

merely to identify tiles in A which are l"-equivalent and since the labellings of the

tiles in .4, agree under this identification the projection ø1(A) of A is a well-defined

labelled grid. It is illustrated in Figure 2.3. Note that a1(,4,) may be obtained by

using X' to copl oy(D) together with its labels to all of P. We define the cutting

sequence S(f) o/ a geoilesic 7 in P (with respect to the grid ø1(A)) in exactly the

same way that we defined the cutting sequence of a geodesic in H (with respect

to the grid 
^.). 

Obviously cutting sequences of geodesics are preserved by the

projection ø1. Also, since ø1 maps the action of l' in H to that of X' in P, cutting

sequences of geodesics in P are preserved under the action of E'. In fact it is not

hard to verify that the cutting sequences of two geodesics in P agree if and only if
they are Et-equivalent.

We can also define cutting sequences for straight lines in P. In order that our

definition and notation be consistent with that for geodesics we deal only with

oriented lines. The cutting sequence of an oriented straight line I in P is the

sequence of labels

S(/): X-tXoXt

which records its intersections with the grid ø1(Â) with the usual convention that

only the labels immediately after the grid lines are listed. See Figure 2.3. Again,

the cutting sequences of two lines in P agree if and only if they are X'-equivalent.
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Frcuno 2.3. The projection ø1(A) of the labelled grid Â to P. The

cutting sequence of an oriented straight line / in P is the sequence of

labels S(¿) : . . . B-r B-r A. ' . which records its intersections with

"t(A). Again only the label following the grid line is listed in S(l).

Using the concept of cutting sequences for lines in P we can provide a rigorous

formulation of the opening statement of this section. Specifically, a geodesic 7 in

II corresponds to a form with Markoff value less than 3 if and only if S(7) : S(/)

where I is a line in P which is parallel to a vector joining O to apoint of X'(O). We

shall now outline how this result can be extended to include those geodesics which

correspond to forms with Markoff value equal to 3. It is by far too large a task to

provide the complete details here and our intention is only to convey the principles

involved. We refer the reader to the work of Haas, [21], Series, [36] and Lunnon

and Pleasants [27] for the full picture. Note that the grid which these authors use

consists of all vertical and horizontal lines in the plane passing through points of

the integer lattice SL(2,2)(O). For the purposes of studying the cutting sequences

of lines, this grid and its associated labelling is equivalent to d1(A) since there is

an invertible linear transformation which maps it to ø1(Á,).

As a starting point, rvr/e use Haastresult that the geodesics in H which correspond

I

-1

A B

3-r A
B

B-r ¡-r
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to forms with Markoff value less than or equal to 3 are exactly the limits of those

with Markoff value less than 3. By definition, a geodesic 'Y : [T,(] in H is the

Iimitof a sequence {Z¡}Ër of geodesics if 7¡ :lq¿,€¡] *d the sequences r7i and (¡

converge to 4 and {, respectively. Now suppose 7 is the limit of a sequence 7¡ of

geodesics in H which correspond to forms with Ma¡koff value less than 3 and let

l¡ be a sequence of lines in P for which S(Z¡) : S(ør(Z¡¡¡ : S(l;) for all i > 1. By

replacing each l¡ with the appropriate E'-translate we may assume each l¿ follows

the same path through the lattice t'(O) as the corresponding geodesic ø1(7¿). Just

as the sequence 7i converges to 7 in H, the sequence S(7¡) converges to S(7). It
follows that as i increases, the paths which the geodesics ø1(Z;) and hence the lines

l¿ take through the lattice t'(O) converge to that of. o1(7). From this it is possible

to deduce that the lines /¡ can be chosen so that they converge to some line / in
the plane C. There are four possibilities.

Case 1: the line / Iies in P. In this case, it is clear that S(7) : S(ør(Z)) : S(t)

where S(/) is as described above.

Case 2: the line / passes through exactly one point P of E'(O). In this case,

there are effectively two ways the lines /¡ can converge to l. They can approach I

from either above P or below P. Hence S("t(Z)) : S(/) as long as we interpret

S(/) to be the sequence obtained by distorting / so that it passes above P or below

P, respectively.

Case 3: the line / passes through infinitely many points of Ð'(O) but is not a line

in the grid ø1(A) U t'(O). In this case there are four ways the lines /¿ can converge

to /. They can approach / from above or below or by rotating towards it in either

an anti-clockwise or a clockwise direction. In the first two instances S(ø1(7)) :
S(t') where /' is a suitably small translation of I up or down, respectively. In

the second two instances S(ø1(z)) : S(/) as long as we interpret S(/) to be the

sequence obtained by distorting the right half of / so that it passes above or below,

respectively, the points of X'(O) it contains and the left half so that it passes below

or above, respectively, them.

Case 4: the line I is a line in the grid ø1(^) U E'(O). This case is essentially
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the same as the last one. The only difference is that in order to obtain S(l) when

the lines /¡ converge to I by rotation we need to distort I everywhere rather than

just at the points of E'(O).

Deffnition 2.2. A doubly infinite sequence of A's, B's, A-r's and B-r's is
called linear if it is the cutting sequence S(l) of a line I in the plane C where S(l)

satisfies one of the interpretations described in the four cases above. (See also [27].)

We have just outlined why the goedesics in H which correspond to forms with

Markoff value less than or equal to 3 have linear cutting sequences. The same

argument shows that every linear sequence arises in this manner. Hence: the

Marleoff ualue corresponiling to a geod,esic 1 on T is less or equal to 3 if ønil only

,/ S(Z) is linear. It is not hard to verify that a linear cutting sequence is periodic

if and only if it is the cutting sequence of a line I in P which is parallel to one of

the vectors joining O to a point in D'(O). Thus we also have: the Marlcoff ualue

correspond,ing to a geoilesic 1 on T.is equal to 3 if o,nil only ,/ S(f) is linear anil

aperioilic. It is now clear how to phrase the second statement of the introduction

to this section rigorously.

Of course, we know that the geodesics 7 in H which have Markoff value less

than 3 are precisely those which cover the simple closed geodesics on T. Thus:

a primitiae closed geodesic on T is simple if and, only if its cutting sequence is

Iinear (and periodic). Haas and Series point out that we also have: if the cutting

sequence of an open geodesic on T is aperioilic anil linear then it is simple. The

reason for this is easy to see. Let 7 be a geodesic on T whose cutting sequence is

aperiodic and linear. Clearly 7 is open. Suppose 7 is not simple and let I be a lift
of 7 to H. We know i is the limit of a sequence of geodesics i¿ each of which has

a periodic linear cutting sequence. W'e also know that each geodesic f¿ covers a

simple closed geodesic on T. Our assumption that 7 is not simple implies there is

some ? e f' such that ?(i) crosses i. Since the sequence T(l¿) converges to f Q)
\Me can choose i so that T(l¿) crosses i¡. This contradicts the fact that l¿ covers

a simple geodesic on T and it follows that 7 is simple. We shall see in Chapter 3

that the converse is not true. That is, not all simple open geodesics on T have
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aperiodic linear cutting sequences.

The best account of linear cutting sequences is given by Lunnon and Pleasants,

1271. Series', [36], account is not intended to be rigorous and Haas, [21], does

not discuss their properties. It follows from the work of Series and Lunnon and

Pleasants that the cutting sequence of a line I in P is either of the form I/- where

Y e {A,B,A-'rB-t} or it can be partitioned into blocks of the formY"Z and

yn*r2 where n is a positive integer a,nd I', Z e {A,B,A-L,B-t} and Z +Yr'.
('We remind the reader that in this context the abbreviation Y' denotes a sequence

of n consecutive Y's and Yn+t is interpreted similarly.) The following definition is

due to Series.

Deffnitio n 2.3. A doubly infinite sequence S of A's, B's, A-r 's and B-1's is
called deriaable if it can be partitioned into the blocks Y" Z and Y"+r Z, where

n2L and Y, Z e {A,B,A-t,B-t} and Z *y+t. Moreover, if that is the case

then the sequence S' obtained by applying the substitution

(2.25) Y" Z --+ Z, Ynrr 2 ---+ Y Z

to S is called the ileriued sequence of. S.

Of course (2.25) is applied to the sequence S by replacing each block of the form

Yn Z with Z and each block Yn+t Z withY Z. Note that S' is the result of applying

the automorphism G of l' defined by

(2.26) G(Y):Y G(Z):Y-nZ

to S. Series observes that this automorphism can be achieved by applying a linear

transformation to C which preserves the lattice t'(O). Specifically, there is a linear

transformation ? of P to itself such that S(T(¿)) : G S(¿) for all lines / in P. It
follows that if S is the cutting sequence of a line in P then its derived sequence

is also the cutting sequence of a line in P. By induction we find that the cutting

sequences of lines in P are either infinitely derivable or they are derivable to a
sequence of the form Y- where Y e {A, B, A-t , B-t}.
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The last result can be generalised to all linear sequences. While Series neglects

this point, Lunnon and Pleasants do not. Using an intermediate result they show

that every linear sequence is either infinitely derivable or it is derir¡able to a se-

quence of the form Y- or Y* ZY- where Y, Z e {A, B, ¡-t , 9-r } and Z + Y+t .

One way of proving this directly is to view the linear sequences which are not the

cutting sequences of lines in P as limits of those which are and then show that

the property of being derivable is preserved under the operation of taking limits.

The formal definition of such limits requires careful attention to the indexing of

the sequences involved and it is not appropriate to enter into the details here. An

alternative method would be to work directly with the distorted lines which gen-

erate the exceptional linear sequences. By developing the concept of the image

of a distorted line under a linear transformation the arguments Series uses in the

non-exceptional case could be adapted to the exceptional case.

The converseis alsotrue. That is, any sequence S of A's, B's, A-1's and B-1's

which is either derivable infinitely often or derivable to a sequence of the form Y-
or Y* ZY- where Y, Z e {A, B, ¡-t , g-r } and Z I V+r is ünear. Series outlines

a method of proving this and Lunnon and Pleasants provide the details. The idea

here is to show that if a sequence S satisfies the hypothesis mentioned then every

word IrIl contained in S occurs in the cutting sequence of some line. This may be

done by deriving l7 until it is of the form X'where X e {A,B,,A-t,B-r}, in

which case it is clear that W occurs in the cutting sequence of some line, and then

reversing the derivation process. The result follows by choosing a sequence W¿ of.

words in S which converges to S and forming the limit of the associated lines /¿.

Theorem 2.8. A doubly infrnite sequence S of A's, B's, A-r's and B-r's is

linea,r if and only if iú is derivable infr.nitely often or it is deúvable to, or is a sequence

of the form Y* or Y* ZY* where Y, Z e {A, B, ¡-t , 3-r} and Z + Y+t .

While linear sequences have many interesting properties, we only require Theo-

rem 2.8. We complete this section with a few remarks on the geometrical aspects of

Markoff's theory. Recall from Chapter 1 that the Markoff value associated with a
geodesic in H is the supremum of the diameters of the geodesics in its l'-equivalence
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class. Thus it is possible to phrase the qualitative aspects of Markoff's theory in

completely geometrical terms. A general discussion of such matters may be found

in Haas' papers, [20] and [21]. In [36], Series considers the particular statement: ø

geoilesic 1 inIJ is the limit of geoilesics which coaeî simple closeil geoilesics onT if
anil only if the diarneter of 1 anil eaeîy lt -equiaalent geoilesic is less than or equal

fo ,9. She outlines a geometrical proof. Theorem 2.8 arises as an intermediate step.

Although the statement is true, part of her work contains an error. She acknowl-

edges the mistake in [37] and suggests a means of correcting it. The problem arises

when she attempts to show that if S(7) is not derivable infinitely often then some

geodesic in the l'-equivalence class of 7 has diameter greater than 3. In effect, she

assumes without proof that the latter property is preserved when the geodesic 7

is replaced by one whose cutting sequence is the derived sequence of S(7). While

this is true, its proof is by no means trivial.

Half-linear cutting sequences

'We know that of the primitive closed geodesics on T, those which are simple, are

characterised by the fact that their cutting sequences are linear. We can likewise

characterise the simple open geodesics on T. In order to do that we need to define

a nely class of cutting sequences, namely, the half-linear cutting sequences. We

present the definition in this section and we study their properties. We require

some preliminary material on rays first.

By . r(ry we mean any half-line in the plane C which does not contain its

origin. \Me shall always orient a ray so that it faces away from its origin. We

are particularly interested in those rays which lie in P and emanate from a point

of X'(O), we call them O-rays. (Recall from Chapter 1 that l' is the image of

l' under the homomorphism zr defined by (1.25) and that P is the plane C with

the lattice t'(O) removed.) Just as we defined cutting sequences for lines in P
with respect to the grid ø1(A), see Figure 2.3, we can define cutting sequences for

O-rays. Thus the cutting sequence of an O-ray r is the sequence of labels

S(r) : X1X2X,... ...,
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where each X; e {A,B,A-t,B-t}, which records its intersections with the grid

ør(A), subject to the usual conventions. As with geodesics and lines, the cutting

sequences of two O-rays are identical if and only if they are X'-equivalent. One

consequence of this is that an O-ray which emanates from O is uniquely determined

by its cutting sequence. We shall often replace an O-ray by the E'-translate of it

which emanates from O.

In the section of this chapter on reducibility for doubly infinite sequences rve

defined limits of the form S : limi-oo S¡ where each S¡ is a finite sequence and

S : XtXzXs... is a singly infinite sequence of ,4.'s, B's, A-r 's and B-1's. With

minor modifications the definition is also valid in the case where each S¿ like S

is a singly infinite sequence of A's, B's,, A-L's and B-1's. The resulting concept

of limit is exactly that obtained by endowing the space of all such singly infinite

sequences with its standard metric. Thus we can form limits of cutting sequences

of O-rays.

Deffnition 2.4. A singly infinite sequence of A's, B's, A-r 's and B-1's is called

O-railia,l if it is the limit of a sequence of cutting sequences of O-rays.

\Me establish some of the properties of O-radial sequences next. Our approach is

motivated by our knowledge of linear sequences. In fact, we mention in this regard

that linear sequences can be defined as the limits of the cutting sequences of lines

in P in which case Definition 2.2 becomes in effect a theorem.

Let S be an O-radial sequence and let {t¡}Ë, be a sequence of O-rays such that

(2.27) s: n!åS(";).
As mentioned above, rvve may assume each r; emanates from O. It is not hard to

deduce from the convergence of their cutting sequences that the O-rays themselves

converge in C. Specifrcally, there is a ray r in C which emanates from O such that

(2.28) r: lim ri.

By this, v/e mean that the slopes of the rays ri converge to that of r. Note that

r depends only on the sequence S and not the particular choice of the rays r¿ (as

long as they emanate from O). There are three possibilities.
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Case 1: the ray r lies in P. In this case, r is an O-ray and it is clear that S(r)

is the O-radial sequence S we began with. Note that S(r) is aperiodic because if
not, r contains a E'-translate of itself and hence a point of Ð'(O).

Case 2: the ray r contains one and hence infinitely many points of l'(O) but

does not lie in the grid ør(A) U t'(O). In this case there are two ways the rays ri
can converge to r. They can approach r in either an anti-clockwise or a clockwise

direction. (The situation here is similar to that which arises for linear sequences in

Case 3 of the previous section.) Thus S : S(r) as long as rv\¡e agree to interpret S(r)

as the sequence obtained by distorting r so that it passes to the right or to the left,

respectively, of each of the points of X'(O) it contains. 'We can be more specific

about the form of S(r). When the points of l'(O) are removed from r we are left

with an infinite sequence of segments, each of which lies in P. Each segment is a

E'-translate of the initial one and hence each segment has the same cutting sequence

as the initial one. Let that cutting sequence be the word W. At each point P of

E'(O) on r, the distortion of r about P crosses two grid lines at once. Thus each

distortion contributes a pair of symbols Y Z to S. Clearly Y, Z e {A,, B, A-t , B-1}
and Z I y+t. \Ä/e conclude that S(r) is of the form S(r) : (WY Z)-. Note that

the sequence S(r) : (W ZY)- is the O-radial sequence which results when the

rays ri converge to r from the opposite direction.

Case 3: the ray r lies in "r(A) U X'(O). As in Case 2, the rays ri can converge

to r from either an anti-clockwise or a clockwise direction. In either case the

same sequence ó^9(r) results. Clearly it is of the form S(r) : Y- where I/ €

{A, B, A-t 1B-1},

To summarise, we have shown that every O-radial sequence can be interpreted,

as described in the Cases 1 to 3 above, as the cutting sequence S(r) of some O-ray r
which emanates from O. Clearl¡ the converse is also true. That is, if r is an O-ray

emanating from O and if S(r) is a cutting sequence obtained from r according to

the conventions in one of the Cases 1 to 3 above then S(r) is O-radial. Further

properties of O-radial sequences may be established by adapting the techniques

which Series, [36], and Lunnon and Pleasants, [27], use for linear sequences. In
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particular, the application of linear transformations to C provides a useful tool

for studying linear and hence O-radial sequences. However, the only property of

O-radial sequences we shall need can be deduced directly from Theorem 2.8 with

the help of the following lemma. In its proof we do use the easily verified fact that

rotation through zr about O fixes the lines in labelled grid ø1(Á,) and interchanges

the labels A and A-1 and also the labels B and B-r.

Lemma 2.2. Asequences: XtXzXs... ,whereeachX; € {.4., B,A-t,B-'},
is O-radial if and only if the sequence

(2.29) xsx2xlYz xrx2x3......

is Jinear for some Y, Z €. {A, B, ¡-L ,, g-L} with Z + Y+t .

Proof. \Me prove the forward implication first. Let S : XtXzX3 ..., where

each X¿ e {A, B, A-t , B-t}, be an O-radial sequence. We know S arises as the

cutting sequence of a ray r as described in one of the cases above. If S arises

as described in Case 3 the proof of the lemma is easy. In this case, S : Y-
where Y e {A, B, A-r , B-' } and the result follows since each sequence of the form

Y* ZY* where Z e {A, B, A-t , B-t } with Z I y+t is linear.

Suppose S arises as described in Case 1. Thus S : S(r) where r is an O-ray

emanating from O. Let / be the line in C which contains r and has the same orien-

tation as r. Since / contains only the point O of.Ðt(O) it is of the form described in

Case 2 of the previous section. Thus either of the cutting sequences S(/) obtained

by distorting / so that it passes above or below O are linear. Obviously S : S(r)

is the portion of S(/) arising as the cutting sequence of r. It is also easy to see

that the portion of S(/) arising from the distortion at O is a pair of symbols Y Z,

where Y, Z e {A, B, ¡-t ,3-t } and Z I y+t. Thus the lemma will be proved if
we can show that the portion of S(/) not yet accounted for is the reverse of S. To

this end, we consider the line /' obtained by rotating I and its distortion through r'

about O. Its cutting sequence can be obtained by reversing S(r) and interchanging

,4. and B with .4-1 and B-r, respectively. The result now follows since /' is merely

I with its orientation reversed and the opposite distortion at O.
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The only other possibility is that S arises as described in Case 2 above. In this

case, S : S(r) where r is an O-ray emanating from O which contains infinitely

many points of X'(O) but does not lie in o1(A) U E'(O) and S(r) is the sequence

obtained by distorting r so that either it passes to the left of each point of l'(O)
on it or it passes to the right. We assume for the moment that the distortions are

to the left. Again we let I be the line in C which contains r and has the same

orientation as r. This time Case 3 of the previous section applies. Thus a linear

sequence S(/) results when I is distorted so that the half which contains r passes

to the left of each point of X'(O) on it and the other half passes to the right of

them. We allow either distortion at O. By design, S : S(r) is the portion of S(l)

arising from the ray r. Clearly, the portion of S(/) arising from the distortion at

O is a pair of symbols YZ,whereY,Z e {A,B,,A-t,B-t} and Z +Y+t. Thus

to complete the proof in this case v¡e need only show that the remaining portion

of S(/) is the reverse of S. As before, this can be seen by noting that the effect

of rotation through zr about O on the line I and its distortions is to reverse its

orientation and interchange the distortions at O. A similar argument deals with

the case where the distortions of r are to the right.

To see that the converse is true, let S be as described and suppose there are

Y, Z e {A, B, ¡-t , g-t } with Z t' Y+t such that the sequence (2.29) is linear. By

definition, the sequence (2.29) is the cutting sequence S(/) of a line / in C where

S(l) is interpreted as described in one of Cases 1 to 4 in the previous section. Since

Z + Y+l the pair Y Z in (2.29) are the result of the intersection of / or some

distortion of it with a pair of grid lines emanating from the same point in I'(O).
By replacing / with the appropriate I'-translate we can assume that that point is

O. Now consider the line /' which results when / and any distortions it may have

are rotated through zr about O. As mentioned above, the cutting sequence of. l'

can be obtained by reversing S(/) and interchanging A with A-1 and B with B-1.

Thus S(/') is merely S(/) with the pair ZY in place of.YZ. Evidently the lines /'

and l, when distorted if applicable, follow the same path through the lattice t'(O)
except that O lies between them. This can only happen if the undistorted lines /
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and ¿' both cont ain O and opposing distortions are applied at O to obtain their

cutting sequences. Note in particular that the pair Y Z in S(l) arises from the

distortion of I at O and the pair ZY in S(l') arises from the distortion of lt at O.

Now let r be the ray contained in I which emanates from O and whose orientation

agrees with that of I. Apply the same distortions to r at the points of E'(O) it
contains as are applied to l. Thus S(r) : XtXzXs... - S. It remains to show

that S(r) is O-radial. There are three possibilities. First suppose r contains no

other points of l'(O). In this case, r is an O-ray and the result is trivial. Next

suppose r contains infinitely many points of Ð'(O) but does not lie in the grid

"r(A) U t'(O). According to Case 2 above, S(r) is O-radial unless r is distorted

to both the left and the right of points in E'(O). Assume that the latter occurs.
'We know the distortions of I and l' at such points agree with those of r. Since /'

is the rotation of f, and it distortions, through zr about O we can deduce that / is

distorted to both the left and the right of points in I'(O) and that this happens

on both sides of O. Clearly this contradicts the possibilities listed in Cases I to 4

of the previous section. Thus S(r) is O-radial. The third possibility is that r lies

in the grid ø1(A). In this case r is as described in Case 3 above and an argument

similar to that just completed shows S(r) is O-radial. ¡

Remark 2.3. We claim that every linear sequence which is not the cutting

sequence of a line in P can be written in the form (2.29). This can be verified

directly from the definition of linear sequences given in the previous section by

considering the effect of rotation through zr about the appropriate point of E'(O).

\il'e omit the details. In the same manner it may be seen that if the sequence (2.29)

is linear then the sequence

(2.30) .. XsXzXt ZY XrXzXs . . . .. .

is likewise linear. (This is also evident from the proof of Lemma 2.2.)

Our aim is to use Lemma 2.2 to obtain from Theorem 2.8 an analogous result

for O-radial sequences. 'We begin with the analogous definitions.
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Deffnition 2.6. A singly infinite sequence S of .4.'s, B's, A-r's and B-1's is

called ileriuable if it begins with a block of the lorm Yn Z and can be partitioned

into the blocks YnZ andYn+rZ, where n2l and 1', Z e {A,,B,A-t,B-1} and

Z I y+t. Moreover, if that is the case then we call the sequence S' obtained by

applying the substitution

(2.31) YnZ - Z, Ynrt2 +YZ

to S the ìleriueil sequence of S.

Let S : XtXzXs ..., where each X¡ e {A,B,A-t,B-t}, and supposeY and Z

are elements of {,4,, B, A-t , B-t} with Z + Y+t. Observe that if S consists of Y's

and Z's and is derivable then it can be partitioned into blocks either of the form

Yn Z andyn*t 2 or of the forun ZnY and Z"*rY for some n 21. In this case,

(2.32) XsXzXt Y Z XrX2Xs ... ...

can be likewise partitioned and hence is also derivable. With care it can be verified

that if S' : XIXLXI... is the derived sequence of S then

(2.33) x'sxLxl Y z xlxLx[. .. .. .

is the derived sequence of (2.31). The converse is also true. That is, if (2.32) is

derivable then S consists of Y's and Z's and is derivable and further, if (2.33) is

the derived sequence of (2.31) then S' : XIXLXå . . . i. the derived sequence of S.

The verification of this is straightforward (although not trivial) and we leave the

details to the reader.

Now let S: XtXzXs..., where each X¿ e {A,B,A-t,B-t}, and suppose S

is O-radial. Lemma 2.2 implies (2.32) is linear for some Y,Z e {A,8,,¡-t,,3-r}
with Z +Y+t and hence we can apply Theorem 2.8. Thus either (2.32) is derivable

infinitely often or it is derivable to, or is, a sequence of the form I/- or Z* or

Y* ZY* or Z*Y Z-. In the first instance it follows by induction using the result

just described that S is also derivable infinitely often. In the second instance
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the sequences Y- and Z* are not possible and it follows by induction that S is

derivable to, or is, a sequence of the form Y* or Z*.
Conversely, suppose S is derivable infinitely often. In this case, S consists of Y's

and, Z's where Y, Z e {A, B, A-t , B-1} with Z I y+r. Induction using the result

above shows (2.32) is derivable infinitely often. Thus Theorem 2.8 implies (2.32)

is linear and Lemma 2.2 implies S is O-radial. Similarly, if S is derivable to, or is,

a sequence of the form Y- or Z* then (2.32) is derivable to, or is, a sequence of

the form Y*ZY* or Z*YZ-. Again, Theorem 2.8 implies (2.32) is linear and

Lemma 2.2 implies S is O-radial.

We have proved the following theorem.

Theorem 2.9. A singly infrnite sequences of A's, B's, A-r's and B-r's is

O-radial if and only if either it is derivable infrniteþ often or it is derivable to, or

is, a sequence of the form Y* where Y e {A, B, A-t , B-'}.

We are ready to define half-linear sequences.

Deffnition 2.6. We call a doubly infinite sequence S of A's, B's, A-r's and

B-l's half-Iinear if there are Y, Z e {A,B,A-r,B-t} with Z I y+r such that

s : (r-t)*zY* or

(2.34) s - . .....x;'x;txrt z-rY-r zY xtxzxr......

where each X¿ is Y or Z and XtXzXz. .. is an O-radial sequence or

(2.35) S -. .....X_lX_lX_T Z-ry-rZY XtXzXs...

where each X¡ is Y or Z arrd XtXzXt... and X-1X-zX-t...are periodic

O-radial sequences with periods of the form W ZY and WY Z, respectively, for

some (possibly empty) word W'.

\Me can characterise half-linear sequences in the same way that we have charac-

terised linear sequences in Theorem 2.8 and O-radial sequences in Theorem 2.9.

Deffnition 2.7. We call a doubly infinite sequence S of A's, B's, A-r's and

B-1's half-ileriaable if. we can choose Y, Z e {A, B, ¡-r , g-t } with Z f Y+r srtch
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that S is of the form

(2.36) s - . .....x;tx;rxr-r z-rY-r zY xtxzxr......

where each X¡ is Y or Z and there is some r¿ >

XtXzXs.. . and X¿X-zX-B ... are both derir¡able by either the substitution

(2.37) Y"Z + Z, Yn*|2 +YZ

or the substitution

(2.38) ZnY ---+ Y, 2n*rY + ZY.

Further, if S is half-derivable and fi XiXLXts... and X' ,X'-zX'-t... are the

associated derived sequences of. XtXzX3 ... and X-yX-2X-B ... then we call

(2.3e) s - ... ...(xå)-'(xÐ-'(xí)-' z-ty-t zY xixixi . ...

the half-d,eriaed sequence of. S.

Remark 2.4. We observe for use in Chapter 3 that if S is a half-derivable

sequence then its half-derived sequence S' may be obtained by applying an auto-

morphism of l' to S. In particular, if the sequence (2.36) is half-derivable to the

sequence (2.39) by the the substitution (2.37) then (2.39) is the result of applying

the automorphism G defined by

(2.40) G(Y) : Y and G(Z) : Y-n Z

to (2.36). Similarly if (2.36) is half-derivable to (2.39) by (2.37) then applying the

automorphism G defined by

(2.41)

to (2.36) yields (2.39)

G(Y): Z-nY and G(z): 2
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Theorem z.LO. A doubly infr.nite sequence S of A's, B's, A-r's and B-r's is
half-finear if and only if it is half-deúvab[e infrniteþ often or iú is half-derivable to,

or is, a sequence of the lorm (Y-r)* Z-tY-r Z Y* or (Z-t)* Y-r ZY Z* or

(Z-ty-r)* (ZY)* or (Y-r)*ZY* wherc the symbolsY and Z belong to the

set {A, B, A-r , B-t} and Z + Y+t .

Proof. Suppose S is a half-linear sequence of the form (2.34). Since X1X2Xy . . .

is O-radial and consists of Y's and Z'sTheorem 2.9 implies that either it is derivable

infinitely often or it is derivable to, or is, one of Y- or Z*. It follows immediately

from the definition that S is half-derivable infinitely often or it is half-derivable to,

or is, one of

(2.42) (y-t)"" Z-rY-r ZY Y* (z-t)* z-rY-r zY z*or

Conversely, suppose S is half-derivable infinitely often or it is half-derivable to one

of. Q.a2). Since S is half-derivable it is of the form (2.36). \Mrite Sr : XrXzXs ...
and 52 : X-tX-zX-s.... If S is half-derivable infinitely often then 51 and 52

are derivable infinitely often by the same sequence of substitutions. In this case,

every initial segment of 52 is an initial segment of Sz and aisa-uersa, and hence

Sr : Sz. Further, Theorem 2.9 implies 51 : 52 is O-radial and thus S is a half-

linear sequence of the form (2.34). If S is half-derivable to one of Q.a2) then 51

and 52 are derivable by the same sequence of substitutions to one of Y* or Z*.
Obviously Sr : 52 and Theorem 2.9 implies they are O-radial. Again, S is a
half-linear sequence of the form (2.34).

Now suppose S is a half-linear sequence of the form (2.35) and write Sr :
XtXzXs... and Sz : X-tX-zX-s.. . . We shall show that S is half-derivable to,

or is, the sequence (Z-ty-t)* (ZY)*. We are assuming that Sr : (W ZY)- and

Sz : (WYZ)* for some word W. If l,tr¡ is empty then S: (Z-|Y-t)"" (ZY)*
and we are done. If IrZ is Yn or Z" for some n 2 t then S is derivable by (2.37)

or (2.38), respectively, to the sequence S : (Z-ry-r)* (ZY)* and again rvr¡e are

done. Thus rve can assume I;Ø begins wilh Y" Z or Z"Y where n ) 1. We deal

with the case where tr'll begins with Y" Z first. In this case 51 and Sz both begin
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with Yn Z. We know 51 and 52 are derivable since they are O-radial. Clearly

they are both derivable by the substitution (2.37). Hence bothWZ andWYZ
can be partitioned into the blocks Y" Z and ynrt 2. This is only possible if 14¡

is of the formW :WtY" where W1 caî be partitioned into the blocks Y"Z ar'd
yn'tt 2. Therefore the derived sequences of 51 and 52 are Sï : (V ZY)* and

Sf : (VYZ)*,, respectively, where V is the result of applying(2.37) to I;Ør. In

the case where IrIl begins with Z"Y a similar argument shows 51 and 52 are both

derivable by the substitution (2.38) and that their respective derived sequences are

likewise of the form S" : (VZY)- and Sä : (VYZ)* for some V. It is easily

deduced from Theorem 2.9 that the derived sequence of an O-radial sequence is

also O-radial. It follows that, in either case S'1 and S', are O-radial and hence S

is half-derivable and its half-derived sequence S' is also a half-linear sequence of

the form (2.35). \Me can now repeat the argument with S' in place of S and so

on. Eventually, the situation where W is Y" or Zn will arise. We conclude, as was

claimed, that S is half-derivable to, or is, (Z-rY-t)"" (ZY)*.

Apart from some trivial details which we leave to the reader, \¡/e can complete the

proof by showing that if S is half-derivable to the sequence (Z-rY-t)o" (ZY)*,
where Y, Z e {A,8,, ¡-r ,P-1}, then S is a half-linear sequence of the form (2.35).

Clearly the sequence (Z-ry-t)- (ZY)* itself is of this form and so the result

will follow by induction if we can show that S is a half-linear sequence of the form

(2.35) whenever its half-derived sequence S' is. In other words it suffices to show

that if 51 and 52 are derivable by the same substitution to say Sl and S! and

if S', and S! are periodic O-radial sequences with periods of the form V ZY and

VY Z, respectively, for some V then 51 and 52 are also periodic O-radial sequences

and have periods of the form W ZY and WY Z, respectivelg for some I,7. Suppose

the hypothesis of this last statement is true. As mentioned above, it is an easy

consequence of Theorem 2.9 that Sl and 52 are O-radial. It is also easy to see

that they are periodic. To see that their periods are of the form claimed we note

that the substitution involved is either (2.37) or (2.38) and we consider the inverse

operations. The inverse of the substitution (2.37) is the operation which inserts
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IZ' in front of every Z . In this case the periods of Sr and 52 are V'Y" ZY and

VtYnY Z, respectively, where V' is obtained from V by insertirLg Y" in front of

every Z arrd 'u¡e are done. In the other case, a similar argument shows the periods

of 51 and 52 are VtZ" ZIl and V' Z"Y Z, respectively, where V' is obtained from

V bV inserting Zn in front of every Y and the proof is complete. ¡

Remark 2.5. \Me conclude this section with the following easy consequence

of Theorem 2.10. If a doubly infinite sequence S of A's, B's, A-r's and B-r's is
half-derivable to a sequence S' then S is half-linea¡ if and only if S' is.



CHAPTER 3

GEODESICS ON T \MITH LO\M
SELF-INTERSECTION NUMBER

This chapter is divided into two parts. In the first part we characterise the closeil,

7-intersectorr on T. (Recall that by a closed l-intersector lve mean a closed geodesic

on T with one self-intersection.) In the second we characterise the simple open

geodesics. The closed l-intersectors are characterised in terms of the conjugacy

classes in l' which define them whereas the simple open geodesics are characterised

in terms of their cutting sequences. Our methods reflect this difference.

By definition, a closed l-intersector is a closed geodesic on T whose parametrisa-

tions as a closed curve all have exactly one self-intersection. Thus lve can begin the

characterisation of the closed l-intersectors by studying those free homotopy classes

on T which contain loops with one self-intersection. \Me know closed geodesics

realise the minimum number of self-intersections of all the loops in their free ho-

motopy classes and therefore we can restrict our attention to those classes which

contain a loop with one self-intersection but no simple loops. VVe say that a loop

on T has a, non-triaial single self-intersection if it has a single self-intersection and

is not freely homotopic to a simple loop. To summarise then, \¡¡e are interested in

those free homotopy classes on T which contain a loop with a non-trivial single

self-intersection. We have identified the free homotopy classes on T with the con-

jugacy classes of the fundamental group "t(T). In our first theorem, Theorem 3.1,

we describe the conjugacy classes on T which contain a loop with a non-trivial sin-

gle self-intersection. From the description it is easy to identify those free homotopy

classes which also contain closed l-intersectors. By using the isomorphism 0 de-

fined in (1.11) we can then convert this description into one in terms of conjugacy

classes in f'.

78
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Ftcunu 3.1. The punctured torus T together with the gener-

ators a and b of. r1(T). The puncture is marked with a cross.

It is convenient to remind the reader here that in Chapter 1 we chose the base

point of zr1(T) to be the image of i under the projection (1.10). We also chose the

generators ¿ and b of. nt(T) to be the projection of the fundamental segments of

the axes of ,4. and B, respectively, as shown in Figure 1.2 so that ¿ : d(A) and

b: 0(B). Loops on T which represent ¿ and ä are shown in Figure 3.1.

In order to prove Theorem 3.1 we require the solution to the analogous problem

for simple loops, see Birman and Series [3]. They show that the conjugacy class of

a simple loop / on T is either

(1) the identity and / bounds a disc or

(2) one of.faba-rö-l] or lbab-ta-t1 and / bounds a punctured disc or

(3) [tr.'] where t¿ is a generator of zr1(T) and I does not separate T.

We shall also use the fact that every automorphism of ?r1(T) can be induced by a

homeomorphism of T. One consequence of this last fact is that any automorphism

of zr1(T) at most interchanges the conjugacy classes faba-r ó-l] and lbab-t ø-1] and

likewise the conjugacy classes l(aba-r b-t)'l and [(óøå-r a-t)z].

Theorem 3.1. The conjugacy class in 11(T) of a loop on T with a non-trivial

single seJf-inters ection is either

(u) l(aba-rá-t )'l or l(bab-r a-r)21 or

I
t
t
tt

X

o,

b
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(b) ls@')) or ls(abab-t )l ot ls(aaba-r ô-1)l for some s € Aut tr(T).

Converseþ, each of these conjugacy cJasses contains such a loop.

Proof. Let I be a loop on T with a non-trivial single self-intersection. By using

a free homotopy which preserves the point set covered by I and the intersection

property of l, we can assume without loss of generality that the origin of I is its

point of self-intersection. There are two simple loops \rl2 determined by I: ll2
and two possibilities for their relative orientations. Either /1 and 12 a;re exactly as

shown in Figure 3.2 or they are as shown in Figure 3.2 but with the orientation of

12 reversed. In the former case, \Me say that the intersection is transuerse. In the

latter case, I is homotopic to a simple loop and the self-intersection is trivial. By

hypothesis then, the intersection is transverse.

I2I1

Ftcunp 3.2. The simple loops /1 and /2 determined by I : hlz.

For each pair of points on T there is an isotopy of T which maps one to the

other. By using such an isotopy if necessary we can assume that the point of self-

intersection of / is the base point a(i) of zrr(T). There is no loss of generality in

doing this since isotopies are homeomorphisms and therefore preserve free homo-

topy classes. Now let to,lDt,trDz be the homotopyclasses of.lrIy,/2 respectively. The

corresponding free homotopy classes are [u.,], [u1] and [u.'2]. Note that / : hlz ar'd

therefore u) : rrtrr2. Since 11 and 12 a;re simple loops we know the possibilities for

[tr.,1] and [to2]. Not all of them need to be considered in detail.

Case 1: [tr1] : [Id].

Obviously u1 : Id and so u) : rD2. Thus I is homotopic to 12 and the self-

intersection is trivial. Case 1 does not arise.

Case 2z lw1] - laba-tb-tl -- l-r).
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Here both 11 and 12 bound discs on T containing the puncture. If /2 does not lie

entirely inside the disc bounded by 11 then it must lie entirely outside, bounding a

disc containing both /1 and the puncture. In either event, 11 is homotopic to 12 or

l;1. Only the first possibility occurs since the intersection in I is transverse. Thus

llr : u2 aîd [.] : lr?): l(aba-r ö-t)'].
Case 3: [to1] -laba-tö-r] and f-rl:fbab-ra-rl.

By the argument of Case 2 we have again u)t : ?,o2, This is impossible however

since [to1] * l.rl. Clearly Case 3 does not arise.

It

Flcunn 3.3. The torus T disected along the loop 11 in Case 4.

Case 4z þa1l: [generator] and l-r):laba-rb-rl.
The loop 11 does not separate T. Cut T along f1 to obtain a disc bounded by

11 containing the puncture and a hole also bounded by lr. On this surface /2

bounds a disc containing the puncture, see Figure 3.3. Note that the loops have

the relative orientations indicated since T is orientable and the self-intersection is

transverse. The path ls shown in Figure 3.3 projects to a simple non-separating

loop on T. Let to3 denote its homotopy class. By cutting along ls it is also not hard

to deduce that tr.'1 and tr3 are in fact a generating pair for ?rl(T). That is, there
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is an automorphism g with g(o) : u1 and g(b) : ws. 'We remark here that the

homeomorphism of T which induces g is given by the natural identification of the

'rectangle'obtained by disecting T along ¿ and ä with that obtained by disecting T
along u1 and u.r3. It is evident from Figure 3.3 that fz is homotopic to 1113lr-11;1 and

so u2 : utusult.it. Thus [.] : l-t.rJ - ltu¡o1w rilril] : lg(aaba-ló-1)].

It

Ftcunn 3.4. The torus T disected along the loop 11 in Case 5.

Case 5: [tr1] - [generator] and lrrl: [generator].

Again cut T along lr to obtain a disc bounded by fr which contains both the

puncture and a hole also bounded by /r. Clearly 12 is a simple loop on this surface

and since it does not separate T it must bound a disc containing the hole. There are

two possibilities for the location of the puncture. The first is shown in Figure 3.4.

In this case, the puncture lies 'outside' /2. As before, the path 13 shown projects

to a loop with homotopy class u3 and there is an automorphism g with g(a) : wt

and g(b) - u)s. This time /2 is homotopic to l3l1lfl and so u2 : w3w1wl1 and

[.] : l.r-rl - lwlwsururill : lg(abab-r)1. The other possibility is that the

puncture lies tinside' /2. In this case, /1 is homotopic to /2 and so u)1 : 'uz a;îd

[.] : l-?): ls@)'l: ls@')) for some automorphism s.
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All remaining cases can be expressed in terms of these first five as follows. Since

I : Ilz is freely homotopic to 12\ rve ca¡r interchange the roles of 11 and 12 with-

out changing the conjugacy class of tt. This leaves only the case where [rr] :

lbab-tq-r1 : luzl and the case where [urr] - [generator] and lrrl: fbab-tq-r1
to consider. For these we apply the homeomorphism of T which induces the au-

tomorphism l¿ defined by h(a) : ô and h(b) : ¿ to obtain Case 2 and Case 4,

respectively. This gives us the conjugacy class of the image of I under the home-

omorphism. Applying the inverse automorphism yields the conjugacy class of the

original loop /, namely, l(bab-ta-t)'] i.t the first case and lg'(aaba-rb-1)] where

g' : hg in the second.

To complete the proof it remains to demonstrate loops with non-trivial single

self-intersections for each of the listed conjugacy classes. 'We actually do this only

for the classes la2l,labab-tl,laaba-ló-1] and [(øóø-1ö-1)2] and note that the rest

follow since every automorphism of ø'1(T) can be induced by a homeomorphism

of T. The property of generators of zr1(T) given in Theorem 5.1 of [3] shows that

none of these classes contain a simple loop. It suffices then to merely find a single

self-intersection loop for each of the classes mentioned. Figures 3.5 and 3.6 show

such loops for the classes fabab-tl andlaaba-lå-1]. By considering simple loops

for [a] and [aåa-ló-1] it is not hard to demonstrate single self-intersection loops

for [a2] and [(aôa-ró-r)2]. The proof is complete. ¡

\Me can now consider the closed l-intersectors. It is clear from the discussion

in Chapter 1 on self-intersection numbers that closed l-intersectors are primitive.

Now recall that primitive closed geodesics realise the minimum number of self-

intersections of all the loops in their free homotopy classes. It follows in particular

that the intersection of a closed l-intersector is non-trivial. Therefore rve can apply

Theorem 3.1. By precluding the non-primitive classes, we conclude that the conju-

gacy classes in zr1(T) of the closed l-intersectors on T are all of the form lg(abab-l)l
ot lg(aaba-r ó-1)] where g € Aut "t (T). \Me can express this statement in terms of

It rather than zr1(T) bV using the isomorphism á defined in (1.11). Recall that 0

maps each hyperbolic conjugacy class in l' to the free homotopy class of the closed
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Frcunn 3.5. The geodesic on T in the free homotopy class labab-t).

geodesic on T which it defines. It follows that each conjugacy class in l' which

defines a closed l-intersectoris of theform IG(ABAB-t)l o. \G(AABA-\3-t)] for

some G e Aut l'. This in fact characterises the closed l-intersectors. To see why,

observe first that all such classes are hyperbolic. (The only non-hyperbolic classes

of l' are of the form [(.4.B A-r B-r)'] where n is a non-zero integer.) Thus the

corresponding free homotopy classes lg(abab-r )] and lg(aaba-r ä-1)] contain closed

geodesics. These geodesics are primitive since ABAB-| and AABA-7 B-r are.

According to Theorem 3.1 the classes [g(abab-r)] and lg(aaba-ró-r)] also contain

loops with a single self-intersection but no simple loops. Since geodesics realise the

minimum number of self-intersections of all loops in their free homotopy classes,

the classes lg(abab-l)] and lg(aaba-ró-r)] must contain closed l-intersectors. We

have proved the following theorem.

Theorem 3.2. A closed geodesic on T is a closed 7-intersector if and only if it is
defrned by a conjugacy class in l' of the form IG(AB AB-t )] ot ÍG(AAB A-1 B-1)]

where G e Aut lt .

Because every automorphism of 
"r 

(T) can be induced by a homeomorphism of

T we know that the closed l-intersectors which are defined by the conjugacy classes

of the form [G(,4,ABA-\B-1)] where G e Aut l'are topologically all the same

as the one shown in Figure 3.6. In particular, they all contain a subloop which
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Ftcunn 3.6. The geodesic on T in the free homotopy class laaba-rb-tl

bounds a disc containing the puncture. As stated in the introduction, we call

such geodesics improper closed f -intersectors. The only other closed l-intersectors

are defined by conjugacy classes of the form [G(,4BAB-r)]. \ry" refer to them as

proper closeil f -intersectors. They are all topologically the same as the one shown

in Figure 3.5

Remark 3.1. We can now explain why the improper closed l-intersectors have

Markoff values greater than 6. Suppose 7 is a improper closed l-intersector defined

by the conjugacy class [G(.4 ABA-L B-t)] where G e Aut l'. \Me know 7 is a loop

in the free homotopy class lg(aaba-r ô-1)] where g : d(G) and d is the isomorphism

defined by (1.11). It follows from the proof of Theorem 3.1 that by choosing the

initial point of 7 correctly we can write 'y : 'yrj2 where 12 is a subloop which

bounds a disc containing the puncture. Moreover, assuming we have done so, the

free homotopy classes of 71 and 12 are [g(ø)] and fg(aba-r b-l )], respectively. Since

lg(aba-ró-l)] is either faba-rå-l] or lbab-tø-l] the \ft i2 of 12 to H is a curve

from some z to W(z) where W e IABA-| B-rl or W € lBlS-tA-l|. Thus we

set

T(z) : A-r B-r AB(z) : z * 6.

Since W € lfl or W € ["-t] there is some V el' such that VWV-| is ? or 7-1.
The geodesic segment V(lr) is a lift of 72 from V(z) to VW(z). Our choice of. V
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implies VW(z) is TV(z) or ?-1V(r). Hence V(lr) passes through both the point

V(z) ar.d its translation by *6 or -6. It follows that 7 has a lift to H which, as a

semi-circle, has a diameter greater than 6. The Markoff value of 7 is the supremum

of such diameters and therefore must also be greater than 6.

In the proof of Theorem 3.1 we used the fact that every automorphism g of r'1(T)

can be induced by a homeomorphism of T. This allowed us to replace a conjugacy

class in rr (T) by its image under g without altering our hypothesis concerning the

topological properties of loops in the associated free homotopy classes. 'We thereby

simplified the task of characterising those conjugacy classes containing loops with a

non-trivial single self-intersection. We shall use a similar technique to characterise

the simple open geodesics on T but with cutting sequences in place of conjugacy

classes. We provide the following theorem as motivation for that technique.

Theorem 3.3. Let lt and'yz be primitive closed geodesics on T and suppose

S(Zr) : G S(Zr) for some G e Aut l'. Then 'h and'Yz have the same number of

se]f-interse ctions.

Proof . Let Wt be a cyclically reduced representative of the conjugacy class defin-

irg 7t and choose H €.Inn l' so that Wz - HG(Wy) is a cyclically reduced word.

It is clear from Theorem 2.6 that S(72) : HG S(Zt). We know from Theorem 2.2

that S(71) is periodic with period Wt Therefore Theorem 2.6 implies S(72) is

periodic with period Wz. Now observe that since 7r is primitive and defined by

lWll we know Wt is primitive. Obviously automorphisms preserve the property

of being primitive and hence Wz is also primitive. It follows lhat Wz is primitive

and a period of S(72). Using Theorem 2.2 and the fact lhat 72 is primiiive it
can be seen that any cyclically reduced word in the conjugacy class defining 72 is

also primitive and a period of S(72). Clearly primitive periods of S(72) are cyclic

permutations of one another and hence Wz lies in the conjugacy class definitg 7r.

We have shown flnat lW2] defines 72.

Now recall from Chapter 1 that '/1 and y lie in the free homotopy class€s ?-r.r1 :
0(Wt) and u)2 :O(Wr), respectively, where á is the isomorphism (1.11). We know

thatWz: HG(WI) and therefore u)2: g'(wt) for some g' € rt(T). Using the fact
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that every automorphism of "t(T) is induced by a homeomorphism of T r¡ve can

now deduce that the free homotopy classes [u.'1] and [ur2] are homeomorphic images

of one another. Since primitive closed geodesics realise the minimum number of

self-intersections of all loops in their free homotopy classes, it follows that l1 and

72 have the same number of self-intersections. tr

Theorem 3.3 is also true for open geodesics on T. To be more precise, we

claim that if '/1 and 1z areopen geodesics on T and if S(7r) : G S(Zr) for some

G e Aut l' then J1 and .'fzhave the same number of self-intersections. As indicated

above, we shall use this result to help characterise the simple open geodesics on

T. First we must prove that it is true. 'We cannot use the homeomorphisms of

T to do this since the image of an open geodesic under a homeomorphism is not

in general a geodesic and we have no theory dealing with homotopy and cutting

sequences for arbitrary open curves on T. While we believe it is possible to develop

such a theory there is an easier way to obtain the desired result. We shall need the

following background material.

By applying the automorphism.R(,4', B) : (B-t,A) to boundary expansions we

can define a map

(3.1) f : R\Q 
-) 

R\Q

from the set of irrationals R\Q to itself. Specifically, given an irrational ( with

boundary expansion S({) we define /(() t" be the irrational with boundary expan-

sion .R S(€). BV A S(O we mean of course the image of S(() under the substitution

(3.2) A -- B-r, B -+ A.

In other words, / is defined by

(3.3.) s(/(o) : n s(€)

Obviously / is a well-defined bijection. We claim that it cyclically permutes the

natural ordering of the irrationals. Specifically, we claim that if €t,t2,...,{,, are

any irrationals with

€r<(2."'.e"
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then /((1), /(€r),.. . , /(€") satisfy some cyclic permutation of the ordering

The reason for this is that the substitution (3.2) cyclically permutes the ordering

(2.4). Therefore (3.2) cyclically permutes the associated lexicographic ordering of

boundary expansions and the result now follows from Theorem 2.1.

The map / induces a bijection from the set of geodesics in H (with irrational

endpoints) to itself. Thus we define

(3.4) Tn: Z:lry,(] rn?): [/(ry), /(€)]H

The significance of this map lies in the fact that

(3.5) s("n(z)) : R s(z)

To see that this is true, suppose 17 and ( have boundary expansions

S(ry) : X-tX-zX-B .'.... and S(() : X¡X1X2... ...'

respectively, and recall that

s(r) : xk\X;:2x;!rx¡xt +tXx+z

where k >_ 0 is the smallest integer such that X*-t * Xt. A similar relationship

holds between the boundary expansions of /(r7) and /(() and the cutting sequence

of Tp(1). Since S(/(ry)) and S(/(()) are the images of S(r¡) and S((), respectively,

under the substitution (3.2) it follows that S(?¿(f)) i. likewise the image of S(7)

under (3.2). The truth of (3.5) is now evident.
'We can deduce from (3.5) that ?a maps l'-equivalent geodesics to l'-equivalent

geodesics. To see this, let 7 and'y'be l'-equivalent. 'We have

S("n(z)) : R S(z) : R S(r') : S("a(z'))

and so ?p}) and ?¿(7') are l'-equivalent. Note also that since Ra : Id and hence

fn : Id and Th. : Id, it is clear that the converse is true. Another important
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property of. Tn is that it maps intersecting geodesics to intersecting geodesics. In

other words, for any geodesics 7 arld 7' in H we have

(3.6) lnl'*Ø <+ rn!) nTn(t') # A

To see this, observe that if I # 7' then 1 lÌ"f' * Ø i¡ and only if the endpoints of 7
and 7' separate one another as points of the real axis. Similarly, if 

"¿(7) 
# Ta(l')

then ?¿(7) n 
"Â(7') 

# A it and only if the endpoints of 
"¿(7) 

and ?¿(7') separate

one another. Since the endpoints of fn!) and Tp(1' ) are the images of those of 7
and 7' under the map / and since / preserves the cyclic ordering of the irrationals

we know that the endpoints of 7 and 7' separate one another if and only if the

endpoints of Tp(1) and ?6(7') do also. The truth of (3.6) is now apparent.
'We can noïv prove the following theorem.

Theorem 3.4. Let y and 12 be open geodesics on T and suppose that

S(Zr) : G S(Zr) for some G e Aut l'. ?hen T and 12 have the same number of

self-intersections.

Proof. We shall deal with the case where G e ü first. In this case, lve know

from Chapter l that G - Gr for some? € l*. Letll be alift of 71 to H and

note that (2.22) implies S("(ít)) : Gr S(Ír). Thus

s("(ir)) : G s(i,) : G s(zr) : s(zz)

and so T(lt) is a lift of. 72 to H. It follows that 72 is the image of 71 under the

isometry of T induced by the action of T on H and the truth of the theorem is

evident in this case.

It is easy to verify that if the theorem is true for both G : Gt and G : Gz then

it is also true for G : GrGz. We know .B and ü generate Aut l' and therefore we

can complete the proof by showing the theorem is true for G : .R. Thus we now

assume G : R. We can also assume neither 7r nor 72 covers a closed geodesic.

To see this, observe that if 71 covers a closed geodesic then its cutting sequence

is periodic. In this case, Theorem 2.6 implies S(fr) is periodic and Theorem 2.2

implies 72 covers a closed geodesic. Hence 7 and 7' both have a continuum of
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self-intersections and the theorem is true. A similar argument using the fact that

S(Zt) : G-r S(fr) shows the theorem is true if 72 covers a closed geodesic.

Again, let fu be a lift of 71 to H. We are assuming S(72) : R S(fr) and since

(3.5) is true we have

s("n(ír)) : ^R s(ir) - R s(zr) - s(zz)

Hence the geodesic ?¿(i1) is a lift of 72 to H. Now recall from Chapter 1 that

the self-intersection number of 71 is half the number of geodesics in H which are

l'-equivalent to and intersect 11. Similarly, the self-intersection number of 72 is half

the number of geodesics which are l'-equivalent to and intersect Tn(7t). We have

seen above that the map ?¿ preserves l'-equivalence of geodesics and their inter-

section properties. Clearly then the number of geodesics which are l'-equivalent to

f1 and intersect i1 is the same as the number of geodesics which are l'-equivalent

to Tp(i'y) and intersect Tn(lt). It follows that 7r and 72 have the same number

of self-intersections and the proof is complete. ¡

We are now ready to characterise the simple open geodesics on T. We present

our results in the form of two theorems. In the first theorem, Theorem 3.5, we show

that their cutting sequences are linear and aperiodic or half-linear. In the second

theorem, Theorem 3.6, we show that the converse is true. The proof Theorem 3.5

is algebraic in nature. It relies on the properties of linear and half-linear cutting

sequences discussed in Chapter 2. In contrast to this the proof of Theorem 3.6

is geometrical. It uses the lines and rays associated with linear and half-linear

cutting sequences. 'We remind the reader that Haas, l2ll, has already provided a

topological characterisation of the simple open geodesics on T.

Theorem 3.6. Let 1 be an open geodesic on T. If 7 is simple tåen S(7) is

linear and aperiodic or half--linear.

Proof. Let 1be a simple open geodesic on T. It follows from our conventions

regarding self-intersections numbers that 7 cannot cover a closed geodesic. Thus

S(7) aperiodic. As a consequence of this S(7) is not of the form Y* where Y €

{A,8,,¡-1,3-r}. There are three other possibilities, namely, S(7) is composed of
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two, three or four symbols in {.4', 8,, A-t , B-t}. We shall consider each possibility

separately. Before we do so, we shall establish some general restrictions on the

form of S(Z). For this purpose it is convenient to refer to a pair of symbols Y, Z

with I/, Z e {A,B,,A-t,B-t} and Z ly+r as elementary. The elementary pairs

are exactly the images of the pair A, B under the automorphisms in the subgroup

(3.7) {Id, -8, R", R", P, PR, PR" PRt}

of Aut l'. Theorem 3.4 implies we can replace 7 by any geodesic whose cutting

sequence is the image of S(7) under an automorphism in the set (3.7) without

changing our hypothesis that 7 is simple. It is also clear from Theorems 2.8 and

2.10 or otherwise that the automorphisms in (3.7) permute the set of linear and

half-linear sequences. Hence the conclusion of the theorem is likewise un-effected

by the application of automorphisms in (3.7) to S(7).

We begin with the restriction:-

(R1) there is no elementary pair Y, Z stch lhal
both Y2 arrd 22 occur in S(7).

To see this suppose otherwise. By applying the appropriate automorphism in the

subgroup (3.7) we may assumeY : A and Z : B. Now let ír be the lift of 7 to H

which crosses the fundamental domain 2 shown in Figure 1.2 and contributes A2

to S(7) as it does so and let j2 be the lift which likewise crosses D and contributes

B2 to S(f). By referring to Figure 2.I, for instance, it is not hard to see that

it : [rlt,{t] where W < -1 and 0 < (r ( 1 and iz : lrtr,{;rl where 1 a n,

and -1 < €, < 6. Hence i1 and i2 intersect. Such an intersection projects to

a self-intersection of 7 and we have a contradiction of our assumption that 7 is
simple.

Similarly, we have the restriction:-

(R2) not bolh ZY" Z and Yn+z occur in S(7) where

n 2 t and the pair I', Z is elementary.

Suppose otherwise. As in (R1), tv\¡e may assume Y : A and Z: B. This time we

let i1 be the lift of 7 to H which crosses D and contributes BA to the word BA B
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in S(7) as it does so and we let iz l¡e the lift which crosses D and contributes the

initial A2 to the word ¡n-t2. Clearly, it:lnt,€rl where W ) I and 0 < (r < 1

alnd j2 : lqz,(z] where Tz < -1and 0 < (z < 1. The boundary expansions of (1

*d €, begin with A'B and A'+1, respectively. Since A8... < An+r... in the

lexicographic ordering of boundary expansions Theorem 2.1 implies that (1 < b.
Again, i1 and i2 intersect contradicting our assumption that 7 is simple.

Now suppose S(7) is composed of exactly two symbols in {/', B, A-r, B-1}, say

Y and Z. Since S(7) is reduced, Z I y+r and as usual, we may assume Y : A

and Z - B. Restriction (R1) implies not both A2 and B2 occur in S(7). Thus

one of the symbols A or B is isolated in S(Z). By applying the automorphism P,

if necessary, we may assume B is the isolated symbol. We may also assume that

a word of the forcn BA*B with n ) L occurs, else S(7) : A*BA- and hence

is linear. Let the integer n be minimal. Restriction (R2) implies there are no

occurrences of. AI2. It follows that S(7) can be partitioned into the blocks A"B
and A'*1.B and therefore is derivable. Recall from the section of Chapter 2 on

linear sequences and (2.25) and (2.26) in particular that the derived sequence of

S(7) is G S(r) where G is defined by G(,a) : A and C(B) : A-n B. Let 1t be the

open geodesic on T whose cutting sequence S(Z') is the derived sequence of S(7).

Theorem 3.4 implies 7'is simple. Since G(AB): B and G(A'+IB): AB we

know S(Z') is composed of B's and AB's. Equivalently, S(7') is composed of ,4.'s

and B's and the occurrences of ,4. are isolated. We can norv repeat the argument

with 7' in place of 7 and the roles of A and B interchanged. It follows that either

S(z') : B* AB- or S(7') is derivable. Further, if S(7') is derivable and 7" the

open geodesic on T whose cutting sequence S(2") is the derived sequence of S(7')

then S(7") is composed of A's and B's and the occurrences of B arc isolated. In the

latter case, we repeat the argument with ^1" in place of 7 and so on. By continuing

in this manner we conclude that either S(7) is derivable infinitely often or it is

derivable to a sequence of the form A*BA* or B*AB*. Theorem 2.8 implies

S(7) is linear.

Before we consider the cases where S(7) is composed of three and four symbols
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we establish three further restrictions on its form. We claim that:-

(R3) there is no elementary pair Y, Z s:uch tha't

Y ZnY-r occurs in S(7) with n ) 2.

As usual, v/e suppose otherwise and assume Y : A and Z : B. Let it be the lift

of 7 to H which crosses D arrd contributes AB to the word AB" in S(7) and let

izbe the lift which crosses D and contributes the initial B2 lo the word BnA-r.
Then it : lnt,{1] where U 1 -t and -1 < €t < 0 and iz : lqz,€z] where \z } 1

and -1 < tz < 0. Since the boundary expansions of (r urrd (2 begin with B' and

gn-t¡-r, respectively, and Bn ... > B"-rA we know €r > (2. Thus 11 and

i2 intersect and we have a contradiction.

We also have:-

(R ) not both ZYnZ and Z(V-r)*Z occtr in S(7) where

n 2 L and rn ) 1 and the pair Y,, Z is elementary.

Suppose otherwise and assumeY : A and Z : B. Let il be the lift of 7 to H

which crosses D and contributes BA to the word BA B and let izbe the lift which

crosses D arrd contributes A-l B to the word B(l-t )- B. Then 11 : [tlr , (l ] where

?r > 1 and 0 < €r < l and iz:lnz,{2] where 0 art, ( l and -1 < €z < 0. The

boundary expansions of (r and r¡2 begin v¡ith A'B and A* B-1, respectively, and

since .á.".B... <
have a contradiction.

Our final restriction is that:-

(R5) not both ZY'Z ar,d (Y-r¡n+z occur in S(7) where

n ) l and the pair Y, Z is elementary.

Suppose otherwise and. assumeY : A and Z : B. Let i1 be the lift of 7 to
H which crosses D and contributes BA to the word BAB and let izbe the lift
which crosses D and contributes the finat (,4-l)2 to the word (A-r¡"+2. Then

it : lrtt,€r] where U > 7 and 0 < €r < 1 and iz : lrtz,{z] where 0 1 n, a I
and {2 < -1. The boundary expansions of (1 and r72 begin with ,4.".B and '4'*1,
respectively, and since A8... <
intersect and we have a contradiction.
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Now we suppose S(7) is composed of exactly three symbols in {,4., B, A-t , B-t},
sayY,Y-r and Z. CleaÃy oneof Y-rZnY orYZnY-l with n2ToccursinS(7).
In either case, (RB) implies n: l. By applying the appropriate element of (3.7)

we can assume that Y : A and Z : B and A-18.4 occurs. The symbol B

cannot occur to both the left and right oî. A-rBA in S(7) else words of the form

B(l-r)-B and BAB withn ) l and m27 occurcontradicting(Ra). ThusS(7)

contains one of (A-r)æ BA or A-L BA-. In either case, there can be no other B's

in S(7) etse (R5) is contradicted. It follows that S(7) : (A-r )o".B,4o" and hence

is half-linear.

Finally, we suppos. S(Z) is composed of all four symbols in {,4., B,¡-t,B-t}.
Using (R3) it is not hard to see that a word of the form Y-l ZY where the paft Y, Z

is elementary occurs. As usual, we assume Y:,4. and Z : B and hence A-|BA
occurs. Since (Ra) implies no word of the form B(.A-t)ÌnBAnB with n ) 1 and

mt L occurs and since at least one B-r occurs we conclude that one of the words

B-t(A-r)"BA or A-rBAB-r where n 2 L occurs. Restriction (R3) implies

n: I. By apptying the appropriate element of (3.7) we can assume B-rA-rBA
occurs. \Me write

s(z) : x-¿x-;x-l a-t ¡-r BA xtxzxs ..-... .

Suppose for the moment that Xr : B-r. Then 7 has a lift i : ln,(] to H with

r¡ < -5 and ( > 1. Clearly i has a diameter greater than 6 and so intersects

UÎ(.ù where UfQ) - z t 6. Since [/16 € f' this contradicts our assumption that

7 is simple. A similar argument shows X-l +,4. Thus X1 is A or B and X--r1 is

A-r or B-r. It follows that 7 has a lift i : Írl,(] to H with -7 < n < -5 and

-1 < € < 1. We claim that this implies neither AB-r tor BA-r occurs in S(7).

If. AB-r occurs then 7 has a tift i' : lrl',{'] to H with q' < -L and (' > 1. In
this case, ryt must be less than -7 else i and lt intersect. But then the diameter of

i' is greater than 6 which have just seen is impossible. Similarly, if. B A-r occurs

then 7 has a lift it : ln',{'] with q' > -5 and (' < -7. In this case, ry' > 1

else i and jt intersect but again this implies i' has a diameter greater than 6

which is impossible. It follows that our claim is true. Note that our claim implies
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that Xr,Xz,Xs... is composed entirely of A's and B's and. ..X-lx-rlx--rl is

composed entirely of ,4.-1's and B-1's.
'We know from (R1) that either the symbols A and -4-1 are isolated in S(7) or

the symbols B and B-1 are. We shall assume first that B and B-r are isolated.

If X1 ,Xz,Xs... is.4.- then (R5) implies...X-!X-;X--rr is (a-t;- in which

case, S(7) is half-linear. Thus we also assume Xt,Xz,,Xs... begins with A"B for

some r¿ 2 0. A similar argument allows us to assume . . . X--}X--)X -i ends with

B-r(A-r)-. Note that rn 2l since (B-r¡z cannot occur. Since B-t(A-r)*B-t
and BA'*1.B occur in S(7), restriction (R5) implies r¿ : r¿ or n1, : n * 1 or

n'¿: n * 2. We consider two cases.

Suppose that rn : n*t or m: n*2. Let ltbe the open geodesic on T
whose cutting sequence is the image of S(7) under the automorphism G(A,B) :
(A, A-@+t)B). R""all that, S(Z') is obtained from S(7) by applying the substitu-

tion ,4. - A, B --+ (A-r)n+r B and reducing the resulting sequence. In this process

only the symbols .4. and A-r are added to or removed from S(7). It follows that

the occurrence of the string

g-t ç¡-t)* B-t A-t g¡n*t 3

in S(7) implies the occurrence of

(3.8) g-tç¡-r)r B-t A-188,

where le : m - (" * 1), in S(z'). 'We know S(z') is simple and we have shown

that B-l A-r B occurs. According to the arguments above if all four symbols occur

in S(7') then A must occur immediately before or after B-r A-r B. It is evident

from (3.8) that that is impossible. Hence only three symbols occur in S(7'). The

arguments above imply S(Z') : (B-r)-A-tB- and therefore

s(z) : (B-r ¡-r (,4-t)")'" B-r A-L BA (A" BA)*

where r¿ I 0. Clearly S(7) is half-linear in this case.

The other possibility is that n : n'¿ 2 1. In this case, the words 9-r ç¡-r)" B-t
and BA*1.B occur in S(7). It follows from (R2) and (R5) that X1 ,Xz,Xs... can
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be partitioned into the blocks AnB and ¡n+'rB. Similarl¡ X-t,X-z,X-s... can

be likewise partitioned. Since Xt,Xz,Xt... and X-t,X-z,X-s... both begin

with A'B they areboth derivableby the substitution AB + B, An+rB -+ AB.

Let their derived sequences be Xl ,,XL,,Xl... and X' ,,XLr,X'-"..., respectively.

Also, let .y' be the open geodesic on T whose cutting sequence is the image of S(7)

under the automorphism G(A, B) : (A, A-" B). With care, it can be verified that

Note that the sequence X|XIXå ... is composed of /.'s and B's and that the

sequence ...(Xlr)-t(X'-r)-t(Xlr)-t i. composed of. A-r's and B-1's. Further,

the symbols .4 and A-r are isolated in S(7'). Note also that 7' is a simple open

geodesic and S(7') is the half-derived sequence of S(7).

To summarise, we have shown that if B and B-r are isolated in S(7) then either

S(7) is half-linear or it is half-derivable to the cutting sequence of a simple open

geodesic on T which is of the same form as S(7) except that A and A-1 are the

isolated symbols. A similar argument shows that in the case where A ar.d A-r
are isolated in S(7) either S(7) is half-linear or it is half-derivable to the cutting

sequence of a simple open geodesic on T which is of the same form as S(7) except

that B and B-1 are the isolated symbols. (The truth of the latter statement may

also be deduced from the former by reversing the orientation of 7 and applying P

to S(7).) It follows by induction that either S(7) is half-derivable infinitely often or

it is half-derivable to, or is, a half-linear sequence. In the first case, Theorem 2.10

implies S(7) is half-linear and in the second case, Remark 2.5 does. The proof is

complete. ¡

Theorem 3.6. Let 7 be an open geodesic on T. If S(7) is linea,r a,nd aperiodic

or haJf-linear then 1 is simple.

Proof. \Me have already noted in Chapter 2 that Haas, [21], has proved the

theorem is true if S(7) is aperiodic and linear. Thus we shall assume S(7) is half-

linear. We point out however that our method also works in the case wher" S(Z)

is linear. Half-linear sequences are aperiodic and hence 7 does not cover a closed
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geodesic on T. It follows from our discussion in Chapter 1 on the self-intersection

numbers of geodesics that we can prove 7 is simple by showing there is a lift f of

7 to H which is not intersected by any l'-equivalent geodesic. 'We shall prove the

latter is true by assuming otherwise and obtaining a contradiction. Specifically,

rve assume that for every lift i of 7 to H there is some non-trivial element ? of l'
such that T(il intersects l.

It is evident from Theorem 3.4 that \Me can replace 7 by any geodesic whose

cutting sequence is an image of S(7) under an automorphism of l' without changing

the conclusion of the theorem. 'We also know from Remark 2.4 that the half-

derived sequence of S(7) can be obtained by applying an automorphism of l' to

S(f). Hence we can replace S(f) bV any of the sequences it is half-derivable to. It
now follows from Theorem 2.10 that u¡e may assume either S(7) is half-derivable

infinitely often or it is one of

(3.9) (y-t)- 2-t'v-t 2 væ (z-t)* Y-r zY z*or

or one of

(3.10) (z-ry-t)* ØY)* (Y-r)* ZY*,or

where Y,, Z e 1A, B, ¡-t ,3-t ) and Z + Y+t.
\Me shall deal with the case where S(7) is half-derivable infinitely often first.

In this case, with reference to Definitions 2.6 and 2.7 and by noting that periodic

singly infinite sequences can only be derived a finite number of times it is clear

that S(7) is of the form

g :. .....x;tx;'xrt z-rY-rzY xrxzxg......

wheteY,Z € {A,,8,¡-r,g-r} with Z + Yll and each X¿ is Y or Z ar'd

XtXzXs... is an aperiodic O-radial sequence. Every aperiodic O-radial sequence

arises as described in Case 1 of the section on half-linear sequences in Chapter 2.

Hence we may assume there is some O-ray r emanating from O such that

S(r) : X1X2X, ... .
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By applying the appropriate element of the set

(3.11) {Id, -8, R', Rt, P, PR, PR', PAt}

to S(7) v/e may also assumeY :.4-1 and Z : B-r.
Now let i be the lift of 7 to H which crosses D arrd contributes the pair AB-r to

the word BAB-r A-1 in S(i) : S(z) as it does so. W'e shall examine the projection

of I to P by Cohn's commutator map ar. With reference to the description of ø1

given in Chapter 1, it can be seen that "t(7) circles around O in an anti-clockwise

direction contributing the word BAB-1Á-r to S(dl(í)) : S(f) as it does so. The

remaining right and left portions of S(ø1(f )) are S(r) and its 'inverse', respectively.

Therefore "t6) follows the reverse of r through the lattice t'(O) until it reaches O,

at which point it circles around O in an anti-clockwise direction and then follows

r back out through the lattice. Consequentl¡ there is a lift ñ of. r to H which

emanates from oo and follows the portion of i with cutting sequence S(r) through

the grid Â,. Similarly, there is a lift í' of. r which emanates from oo and follows the

portion of the reverse of i with cutting sequence S(r). In other words, if we write

i : lrt,(] then there are lifts ñ and ñ' of. r which join oo to ( and 17, respectively.
'We know from the properties of ø1 that ñ' is l"-equivalent to ñ. It is not hard

to see that ñ' is the image of ñt under the translation B AB-L A-t (") : z - 6 and

therefore i has diameter 6.

We are assuming there is ? € l' such that 
"(i) 

intersects l. Hence, on the

real axis, the endpoints ?(a) and 
"(() 

of fQ) separate and are separated by the

endpoints r7 and € "f i. Now observe that T(ñ') joins 7(oo) to 
"(ry) 

and ?(ñ) joins

"(*) 
to 

"((). 
We know 

"(-) f oo since f has diameter 6 and the stabiliser of

oo in |' is the cyclic subgroup generated by translation by ABA-t B-'(r) : z 16.
Thus one of the points 

"(ri) 
or 

"(() 
and the point 

"(-) 
separate and are separated

by the points 7 and {. It follows that one of 
"(ñ) 

or T(ñ') crosses one of ñ or ñt.

This intersection property is preserved by the projection ø1. However, the pair i
and ñ' project to r and the pair 

"(ñ) 
and f(ñ') project to ú(r) where ú € l' is

thc image of. T e f' under the isomorphism n defined in (1.25). We know E' is
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generated by the translations (L.22) and so Í is a translation. Since f(r) and r are

parallel they cannot intersect and we have the required contradiction.

Next we assume S(7) is one of the sequences displayed in (3.9) where Y, Z €.

{A, B, A-r , B-t } and Z I y+r. By reversing the orientation of 7 (which does

not change its self-intersection number and replaces S(7) by its 'inverse') and then

applying the automorphism G defined by G(y) : Z and G(Z) : Y to S(7) we may

assume that S(7) is the sequence (f -t ¡'" Z-rY-r ZY Y*. As usual, by applying

the appropriate element of (3.11) we may also assumeY :,4.-l and Z : B-1. In
other words, we may assume

(3.12) S(r): A* BAB-t (,4-t)-.

As above, we let i : lrt,{] be the lift of 7 to H which crosses D and contributes the

pait AB-r to the word BAB-rA-r in S(i) : S(7) as it does so and we examine

the projection of i to P by ot. Again, "t6) circles around O in an anti-clockwise

direction contributing BAB-r A-r to S(o1(i)) : S(Z). This time the remaining

Ieft and right portions of S(ør(i)) are A- and (A-1)-, respectively. Let r be the

ray in "r(A)UE'(O) 
which emanates from O and faces north west. (Equivalently, r

is the ray in C emanating from O which passes through the point "-t (O) where ¿

is defined by (t.ZZ).) The portion of ø1(f) with cutting sequence (a-t ¡'" traverses,

in the same direction as r, the chain of tiles in P which lies above and borders r and

the portion of ø1(i) with cutting sequence A* traverses this same chain of tiles

in the opposite direction. 'We can lift this chain of tiles to similar chains of tiles in

H. Obviously there is such a chain which contains the portion of j with cutting

sequence (a-t¡'" and another chain which contains the portion of I with cutting

sequence -4-. By considering the edges of the first chain of tiles it can be deduced

that r lifts to a chain of geodesics {ñ¡}p, in the grid Â with the property that

each ñ; : lP¿,4+r] where Pr : oo and the sequence P¿ converges to the endpoint

t "f i. Similarly, consideration of the second chain of tiles shows r also lifts to a

chain of geodesics {ñi}pt in A such that ñ'¡ : lP:,P,f*t] where Pl. : oo and the

sequence Pj converges to the endpoint n of i. We shall denote these chains by ñ

and ñ', respectively. As above, it is not hard to see that the second chain of tiles is
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the image of the first under the translation B AB-r A-r (") : z - 6. Thus ñ' is the

translate of ñ to the left by 6 and i has diameter 6. We remark that the sequences

4 and Pj converge to ( md ?, respectivel¡ from above.

Now suppose there is ? e l' such that 
"(i) 

intersects i. Bv arguing as above we

carr assume 
"(oo) 

f oo and one of the points ?(7) or ?(() together with the point

T(-) separate and are separated by the points 17 and (. Since the endpoints of the

chains ?(ñ) and T(ñ') start at 
"(*) 

and converge to 
"(() 

and T(q),, respectivelg

it follows that one of the chains 7(ñ) or T(ñ') crosses one of ñ or ñ'. Of course,

we must allow the possibility that the chains cross at a point of R rather than

at a point in H. This possibility causes no difficulty because no matter how the

crossing occurs, it is clear that one of the chains 
"(ñ) 

or f(ñ') enters or leaves one

of the chains of tiles which neighbour ñ and ñ' . By projecting to P we can conclude

as before that ú(r) crosses r where t : r(T). Again, this is impossible since ú(r) is

parallel to r and we have the required contradiction.

The final possibility is that S(7) is one of (3.10) where Y, Z e {A, B, ¡-r ,3-r}
with Z # Y*'. Since the image of (Z-ry-t)* (ZY)- under the automorphism

G define by G(f ) : Z-rY and G(Z) : Z is (V-r¡'" rr- we may assume S(7) is

the latter sequence. As usual, we also assume Y : A-r and Z : B-r so that

(3.13) S(z): A* B-t (,4-t)'".

We choose i : lrt,€l b" the lift of 7 to H which crosses 2 and contributes the

paft AB-1 to the word BAB-rA-r in S(i) : S(7) as it does so. In this case,

the geodesic o1(l) only contributes AB-r A-r lo its cutting sequence as it circles

around O. The remaining left and right portions of S("t(í)) : S(f) are ,4- and

(Á-t)-, respectively. As in the second case, rve take r to be the ray in ø1(A)UI'(O)

which emanates from O and faces north west. Again, the portion of ø1(f) with

cutting sequence (a-t ¡"" traverses, in the same direction as r, the chain of tiles

which lies above and borders r. This time however, the portion of ø1(l) with

cutting sequence A- traverses, in the opposite direction to r, the chain of tiles

which lies below and borders r. Apart from this difference the argument proceeds

in much the same rvr/ay as it did before. Thus the chain of tiles lying above r lifts
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to a chain of tiles in H which contains the portion of i with cutting sequence

(a-t;- and the chain of tiles below r lifts to a chain which contains the portion

of i with cutting sequence A-. Note that the two chains of tiles in H, being lifts

of difierent chains in P, are certainly not l"-equivalent. As before, by considering

the appropriate edges of these chains of tiles it can be seen that r lifts to a chain

ñ of geodesics in Â which starts at oo and converges to ( and also to a chain ñ'

which starts at oo and converges to 7. A straightforward calculation shows i has

diameter less than 6. We remark that while the points P¡ converge to ( from above

as before, the points P/ converge to r¡ from below.

As usual, we suppose there is ? e f' such that 
"(i) 

intersects I. Since 7 has

diameter less than 6 we can assume 
"(*) I æ. The argument of the second case

now applies and we conclude that one of the chains T(ñ) or T(ñ') enters or leaves

one of the chains of tiles which neighbour ñ and ñ'. By considering the projection

of this situation to P we produce the usual contradiction. ¡

The second half of the proof of Theorem 3.6 consists of showing that the open

geodesics 7 on T with cutting sequences (3.12) and (3.13) are simple. The proof

we have presented involves the use of Cohn's commutator map d1. We believe

that the details of the proof provide useful insight into the properties of ø1 and

especially in relation to its application to problems arising in connection with the

Markoff spectrum. However, there is a simpler alternative. It is not hard to

demonstrate smooth curves on T with cutting sequences equal to (3.12) and (3.13)

which are simple, see for instance [36]. The existence of such curves implies that

the associated geodesics are simple. The reason is outlined in the next remark.

Remark 3.2. In this remark, we discuss open curves on T other than geodesics.

Of course, we have not defined cutting sequences for such curves and our intention

here is only to convey an idea. Let 7 be an open geodesic on T which does not

cover a closed geodesic and suppose ó is a twell-behaved'operr curve on T whose

cutting sequence is equal to S(7). For each lift i : [q, €] of 7 to H there is a lift ã

of ó to H which also has endpoints 4 and (. \M" know that a geodesic T('l), where

T e l' , intersects i if and only if the endpoints of 
"(i) 

and i separate one another
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on the real axis. It follows that if ?(j) intersects i then 
"(ã) 

intersects õ. Sin""

the self-intersection numbers of 7 and ó can be expressed in terms of the number

of curves which are l'-equivalent to and intersect I and õ *" 
"orr"lude 

that the

number of self-intersections of ó must be greater than or equal to that of 7.

Remark 3.3. We complete this chapter by demonstrating that the Markoff

values of the simple open geodesics T with half-linear cutting sequences lie in

Hall's ray. Let 7 be such a geodesic and let A: 1"¿\lîoo be the associated doubly

infinite sequence of positive integers. Our aim is to show that M(A) lies in Hall's

ray. 'We shall do this by using the algorithm described in Chapter 2 to establish

certain properties of ¿4, from the properties of S(Z). To this end recall that we can

replace S(Z) bV any of its images under i[¡ without changing "4. Since S(7) half-

linear we know it contains a block of the forrn Z-rY-r ZY or Y-rY-r ZYY where

Y, Z € {A, B, ¡-t ,9-t } and Z I y+t. By applying the appropriate element of Ü

we may assume either B-r A-t BA or B-r ABA-r occurs. It follows, with reference

to Table 2.1, that the combined cutting and .tB-sequence of 7 contains the blocks

B-r LA-r LLBLA or B-r RRARBRRA-r ,

respectively. Hence the .t-R-sequence of 7 contains a block of the form La or -R5.

In the latter case, we know some ø¡ is 5 or more and so M(A) 2 À¿(ra) ) 5 and

ïye are done. Thus v/e assume -t4 occurs. Clearly we can also assume that it is

preceded and followed by ^8. The block L4R3 cannot occur else we have

B_I LA_L LLBLARBRRA_I

implying lhat B-r A-r BABA-1 occurs in S(7) which contradicts the fact that

S(7) is half-linear. Similarly, the block Rs L4 cannot occur else

BRRA_I RB_I LA_I LLBLA

implying t}rat BA-r3-t¡-rgA occurs in S(7). We conclude that there is some

index i suchthat ø¿:4 and a;-t 12 and a¿+t 12. ln this case,

M(A) I )¿("a) ) 14,2,11 + [0, 2,L]:4.666...

and M(A) lies in Hall's ray.



CHAPTER 4

A RIGHT TRANSVERSAL FOR !I, IN Aut l'

We begin this chapter by motivating the need for a right transversal for iú in

Aut l'. \Me saw in the last chapter that the proper closed l-intersectors on T are

defined by the primitive conjugacy classes of the form [G(V)] where

V : ABAB-| and G e Aut l'.

In the next chapter we shall calculate the representatives fs where W : G(V) of

the corresponding classes of forms and their Markoffvalues. However, redundancies

will be encountered in this process. In particular, we know from the section of

Chapter 1 dealing with the automorphisms of l' that if G e V then .fc1v¡ is

equivalent b fv. Since we shall only want one representative for each equivalence

forms we shall only need to consider the conjugacy classes of the form [G(V)] where

G lies in a right transversal for t[ in Aut l'. 'We remark that itrr is not normal in

Aut l'.
In order to describe the transversals we shall be using we introduce the semi-

group O of Aut f' generated by

SR(A,B) : (A8,, B) and 52 R3 (A,B) : (A,, AB).

Specifically, we define

(4.1) f) : {Gr Gz ...Gn : n ) 0, G¿: S.R or S2.R3 for i : L,2,.. .,n}.

This set is most easily comprehended when arranged as a tree. We use two ar-

rangements, the first is shown in Figure 4.1 and the second in Figure 4.2. These

arrangements arise from the two methods of recursively building the typical ele-

ment GtGz...Gn of f) from the identity. In the first tree, we view GtGz... G,, as

103
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(A, B)

(AB, B) (A, AB)
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/\ /\
(AB2 , B) (A2 B, AB) (AB, AB',) (A, A2 B)t\ t\ t\ t\

Frcunn 4.1. The set O of automorphisms of l'. The tree continues

by substituting AB for A to branch left and AB for B to branch right.

being the result of composing G1 with G : GzGs . . . Gn. When Gt : ^9.R the tree

branches left and when Gt : 52 Rs it branches right. The branching operations

themselves are a consequence of the fact the automorphism ,S-R may be applied to

an element W of.l' by writing W as a word in the generators A and B of l' and

then substituting AB for A everywhere in W, and similarly, 52 R3 may be applied

to W by substituting AB for B everywhere. In the second tree, we view the ele-

ment GtGz...Gn as being the result of composing G - GtGz...Gn-t with G".

Again, when Gn:,SR the tree branches left and when Gn: S2R3 it branches

right. This time the branching operations are a consequence of

G SR(A,B): (G(A)G(B), G(B))

and

G 52 R3 (A, B) : (G(A), G(A)G(B)).

In our main result of this chapter, Theorem 4.1, we shall show that the set

T:{RG: G €f¿}u{RGR: Ge Cl}

of automorphisms is a right transversal for tI¡ in Aut l'. The proof of Theorem 4.1

relies on the following three lemmas. While the second lemma is not essential to

the proof we require it in Chapter 5.
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(A, B)

(AB, B) (A, AB)
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/\ /\
(A82,, B) (AB, AB2) (A28, AB¡ (A, A2B)t\ t\ t\ t\

Ftcuno 4.2. Another arrangement of the set f) as a tree.

The tree continues from the node (IrZr,,Wr) by forming

(WtWz,W2) to branchleft and (Wt,WtW2) to branchrighi.

Lemma4.1. ThecosetequalityV GR2:ü G holdsfor aJIG e Autlt.

Proof. \Me know from Chapter 1 that P, R and .9 generate Aut l' and that
p-r - P,, R-r : Ã3 and ,5-1 : 52 . Therefore, any G € Aut l' can be written as

G : GtGz ...G,

where each G¡ is one oI P, R or ,9. We prove the lemma for all such words by using

induction on the length n.

For n : 0 or 1 the truth of the lemma is trivial since P, R2 and ^S belong to {¡.
Forn:2 thelemmais againtrivialexcept when G: RP and G:.R,9. Forthe

first exception, using the relation PR2 : R2 P, we have

'ú GR2:V RPR2:V RR2P:V G

and for the second, using the relatior RSR2 - 1z 5z gz SR3S, we have

V G R2 : ìú ^R.gRz : ú R2 32 R2 SR3,S : ,I, BS : itr/ G.

In either case, the lemma is true.
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Now suppose r¿ ) 3 and the lemma is true for all words of length less than n. 'We

must establish the lemma for G : GtGz . . . Gn. If. G": R the truth of the lemma

follows directly from our inductive hypothesis and if Gn : P it follows after using

the relation PR2 : R2P. Thus we assumê Gn: S and consider the possibilities

for G,r-1. It will be convenient to write

H¿-GtGz...G¿, L1i1n.
First we suppose Gn-t : S. If also Gn-z: ^9 then since ,93 : 1 we know

G : Hn-s and our inductive hypothesis shows the lemma is true. If. G"-2 - R

then using the relation RSz R2 : SRz 52 RS2 we have

v G R2 - ü I/,,-s RSz R2 : ú Hn-s SRz 52 RSz

and by induction

V GR2 :ú Hn-sSsRS2:ú Hn-sRSz:{t G

and so the lemma is true. The only remaining possibility is Gn-z: P in which

case using the relations of Aut l' and our inductive hypothesis we have

V GR2:ú Hn-rPS2R2:ú Hn-sR2SP

- ü H,,-s SPR2 : ú Hn-s R2 P52

: i[ Ifn-s PS2 :ú G

and again the lemma is true.

Next we suppose Gn-t: -R. Here the lemma follows from

v GR2:ú Hn-zRSR2:ú Hn-zR252R2SR3S

-- ú H,-2,S3.R3,5 : ú Hn-z Rs S

: ú Hn-z r?,S : itr¡ G.

The only remaining possibility is that Gn-t: P in which case

V GR2 :ú Hn-zPSR2:ú Hn-2R252P

: ú Hn-z 52 R2 P : ú Hn-z R2 PS

:ú Hn-zPS:ú G.

The proof of the lemma is complete. n
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Lernrna 4.2. The identities

ilrG^9.RP:i[¡ GPS2RS and llrGS2.R3P:{¡ GPSR

hold for every automorphism G in Auú l'.

Proof. Let G € Aut l'. Using the relations of Aut l' and Lemma 4.1 we have

V GSRP: t[¡ GSPR': i[¡ G R2PS2R: i[¡ G P 52R3.

Similarly

V G52R3 P: Ü G52PR: iÚ G PR2SR! :Ú GP SR

and we are done. !

Lemma 4.3. The set of automorphisms of l' defrned by

T:{RG: G €ç¿}u{RG.R: Ge fi}

contains a right transversal îor ú in Aut l'.

Proof. Let G be an arbitrary element of Aut l'. We must show there is G' e T
such that iú G : 'ú G' . As stated in the proof of Lemma 4.1, we can write

G -- GrGz...Gx

where each G¡ is one of. P, -R or,S. By repeatedly using the relations RP : PRg

and ^9P : PR252R2 of Aut l', any occurrence of P in GtGz...G* may be shifted

to the left hand end without changing the coset V G. Since P e iú it follows that

we may assume P does not occur at all. Likewise, according to Lemma 4.1, we can

successively remove all occurrences of. R2 without changing the coset iI, G. Atty

remaining occurrences of 53 can be deleted since Ss : Id. Thus we can write

i[G:VG\Gr...G',

where each G! is either .R or S and there are no occurrences of ,S3 or R2. In
addition, since ^9 € ü, we may assume that either I : 0 or G\ :.8. It is not hard

to deduce now that either ü G : i[¡ or ü G is of the form

(4.2) ü G: E ¿5j(t)¿7iQ)...Pgi@)
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where n ) L and each j(i) is I or 2 except j(n) which may also be 0. Using

Lemma 4.1, we can insert in an .R2 immediately to the right of each 52 in (a.2). If
j(") * 0 we also add an additional R2 altet the term 5j(n). It follows that if we

Ief Gt! -- S R when j(i) : L and G'! : 52 Rs when i(i) :2 then we have

üG:V RG,1C,;...G,1,_,

if j(rz):0 and

iúG:vRGtiGi...G'i,R

otherwise. The case ü G: ü is covered also since ilr : ültld.R. The proof of

the lemma is complete. !

Theorem 4.1. The set of automorpåisms of lt defrned by

(4.3) T:{RG: G €o}u{RGR: Ge CI}

is a ñght transversal for i[¡ in Auú l'.

Proof. We know already from Lemma 4.3 that the automorphisms described

include representatives of every coset. It remains to show that they represent

distinct cosets. \il'e do this by first showing that if two cosets are identical then

there is some G e f) such that V RG : V. \Me then complete the proof by showing

that this is impossible.

There are three ways two cosets can be identical. The first possibility we shall

consider is that there is n ) 0 and m ) 0 such that

where each G¿ and Gl is either ,SR or 52R3. If. m:0 then

Ú RGtGz...Gn: i[¡ .R.R : i[¡

and we are done. Thus we assume rn + 0. lf. Gt,.: ,S.R then

ú RGtGz . . . Gn - iú .R G'tG', . . .G',n R

itr/ -RGl Gz .. . Gn : V RG\G', . . . G',n-t S RR
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which implies, after composition with .92.ã13 : S2 R2 R and an application of

Lemma 4.1, that

ú RGtGz ... Gn 52 Rs : i[ R G\G'r... G'^-t R.

While, if. G'* - ^92-R3 then

Ú RGtGz . . . Gn: ìÚ .R G\G'r... G',n-t 52 R3 R

which implies, a,fter composition with .9.R, that

ü .RGr Gz...G. SR: iû R G\G'r...G',n-t R.

In either case we have

V RGtGz...GnGn+l : V RG\G|...G',n-tR

where Gn+r: SR or Gn¡1 : $2pt and we can repeat the argument. Eventually

m :0 will arise. It follows, as claimed, that V RG: V for some G e f).

The next possibility we consider is that there is n ) 0 and m ) 0 such that

Ú RGtGz...Gn: i[¡ .R G\G'r...G',n

where as usual each G¿ and G! is ^9.R or,S2.R3. We cancel G, and Gt^if. they are

equal. By repeating this cancellation as often as is necessary \¡¡e may assume that

either G"+G',nandn>. I and m ì l orexactly oneof not rn is 0. In thefirst

casewe can assumewithout loss of generality that G," - SRandG'rn:,S2R3, so

that,

ú RGtGz...Gn-t SR : V RG\G'r...G'*-r 52 R3.

Using Lemma 4.1 to remove -R2, then cancelling S.R and using Lemma 4.1 again

we have

Ú RGtGz . . . Gn-t : ![¡ -R G",G'r. . - G',n-t S R R

and we can apply the argument above to obtain the desired result. In the second

case rve can assume without loss of generality that m: 0 and n + 0. If. G" : SR

then

{! RGtGz...Gn-t,S.R : ü .R
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and by cancelling .B and composing with ,92 we have V RGvG2 . . .Gn:t: t[¡ while

if. G.: ,S2.R3 then

ú RGtGz ...Gn-t 52 R3 - ü .R

and by cancelling .R, applying Lemma 4.1 ar¡d composing with ,S we again find

that iú RGtGz...Gn-t: ü. In all cases we have the desired result.

The final possibility is that there is n ) 0 and m ) 0 such that

itr/ -R Gl Gz . . . Gn R: ü .R G\G', . . .G',n R

where each G¿ and Gl is Sfi or ,S2R3. Cancelling .R we have

ú RGtGz . . .Gn: iÚ .R G'rG'r. ..G'*

and hence can apply the argument just completed.

To complete the proof we need to show there is no automorphism G e f) such

that iú RG : iú. Since S e ilr it is equivalent to show that there is no G € f) such

that iü SnG : ú. Clearly it suffices to prove this only for the relevant images

under the natural homomorphism

(4.4) 0: Aut f' GL(2,2).
-)

This homomorphism is as described by Cohn in [9] except that, since we are in-

terpreting the composition GH of automorphisms as ff foilowed by G rather than

G followed by H, we must use the transpose of the matrices Cohn describes. The

image of iU is

(4.5) d(!I,) :

The image of the automorphisms of the form ,S-R G where G e f), can be calculated

by starting with the image (l T) of .R^9 and post-multiplying successively by the

image (lT) of RS and the imase (ål) of .R3,S2. Post-multiplying a matrix by

(l l) replaces its first column by tLre sum of its columns and post-multiplying by

. (å T),. (î

. (î å),. (_l

1

1

0
1

.(.I 
i)I=iúlrnn..(å -i)l

)

)
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( 11
0l ) replaces its second column by the sum of its columns. It is clear that all

matrices arising in this manner except (l i) itself have an entry which is greater

than or equal to 2 and hence do not lie in d(V). Hence there is no G € 0 such

that d(SßG) e d(V). It follows that there is no G € O such that SRG e iú. The

theorem is proved. !

Remark 4.1. In the proof of Theorem 4.1, we have shown that each auto-

morphism of the form.RGtGz..,Gn, where each G; is.9rB or.92.R3, represents

a distinct right coset of itr¡. Consequently the automorphisms themselves are dis-

tinct elements of Aut l'. It follows that for each element G of f,) there is only one

expression of the form G - GtGz. .. G' where each G¿ is ^9R or ,S2.R3. In other

words, there is no duplication of automorphisms amongst the nodes of either of

the trees shown in Figures 4.1 and 4.2.

Remark 4.2. The automorphisms inT are not the most convenient to calculate

with. For such purposes either one of the right transversals

(4.6) TL:{SRG : G €O}u {SRGRsP : Ge 0}

or

(4.7) T2:{s2RtG, Ge 0}u{s2n3GRsP: Ge o}

is better. That these are transversals can be seen by applying the relation .R3P :
P.R and Lemma 4.2 to them and then noting that S, P, R2 € iI¡. \Me can use the

arrangement of the set f,) shown in Figure 4.2 to explain the structure of these sets.

First note that

G R3 P (A, B) : (G(A)-" c(B)).

Now observe that when the base node (,4., B) of the tree in Figure 4.2 is deleted

two trees are left behind. The left hand tree comprises the set {SÄG : G e O}

and the right hand tree comprises {S2.R3G : G e O}. Clearly 71 consists of all

pairs of the form (I/r ,,Wr) or (I4lr-1 ,W2) wherc (W1,Wz,) lies in the left hand

tree. Similarly, T2 consists of all pairs of the form (Wt,W) or (Wr t,l72) where
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(Wt,Wr,) lies in the right hand tree. We remark that this process is not so simple

for the tree in Figure 4.1.

'We conclude this chapter with a description of a left transversal for i[¡ in Aut l'.
'We iterate that {¡ is not normal in Aut l' and the set 7 defined in Theorem 4.1

is not a left transversal. However, with the help of an a¡rti-isomorphism of Aut l'
we can obtain such a transversal ftom T. It is described in Theorem 4.2. Beforc

we state and prove Theorem 4.2 we introduce the anti-isomorphism involved.

Remark 4.3. Recall that Aut l'is generated by P, R and,5 and hence the

typical element G carr be written in the form G - GtGz . . . G,, where each G¿ is

one of P, R and S or their inverses. The anti-isomorphism ïve are referring to is

the map from Aut l' to itself defined by

(4.8) 0: G:GtGz...Gn 0(G):Gn...GzGt.}-}

To see that d is well-defined it suffices to check that when the relations defining

Aut l' are reversed, the resulting words are also relations of Aut f'. The only

relations changed by reversing are (RP)': Id and (R2SP)2: Id. They become

(PR)' : Id and (PSR2)2 - Id, respectively. Conjugating the first by P yields

(RP)t : Id again, whilst conjugating the second by Rz P yields

R2 sR2 PSR2PRZ :rd

whichis a consequence of (R2SP)2: Id since.R2P : PRz and Ra: Id. Thus d

is a well-defined map from Aut f' to itself. It is onto since it maps the generators

P,, R and ^9 to themselves and it is a bijection since d2 is the identity. Obviously

o(GH) : o@)e(G)

for all G,H e Aut l'and hence d is an anti-isomorphism. Note that in effect we

have shown that the presentation (1.17) of Aut f is independent of whether the

composition of automorphisms GIf is interpreted to mean .tf folowed by G as is

our convention, or G followed by Il as Cohn does in [9].
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Theorem 4.2. The set of automorpåisms of l' defrned by

Tt:dlu{nG: Ge O}

113

(4.e)

constitutes a left transvercal for {l in Auú l'.

Proof. As indicated in the preamble, we shall prove this theorem by applying

the anti-isomorphism d defined in Remark 4.3 to the right transversal 7 defined

by (4.3). The reason we can do this is that á maps the generators P, .R2 and S

of ü to themselves and hence preserves iû, that is, á(ilr) : ![. Because á is an

anti-isomorphism, it follows immediately that 0(f) is a left transversal for iI¡ in

Aut l'. \Me shall complete the proof by demonstrating a bijection between á(7)

and Tt which preserves left cosets of i[. Before we begin note that by applying d

to the identity in Lemma 4.1 we know

(4.10) R2GlI¡:G\t¡

for all automorphisms G in Aut l'.
'We consider the elements of. 0(T) of the form d(.R G), where G € fl, first.

According to the definition of f) we can write G : GtGz... G, where each G; is

^9.R or 52 R3. The lefi coset associated with d(r? G) is

0(RGßz . . . G") ú : 0(G").. . 0(Gz)0(G1) R iI,.

'We know each 0(G¿) is R.9 or .R3S2 depending on whether G¿ is .9-R or S'Rt,
respectively. By repeatedly using the identity (4.10) it follows that

0(RGrGz...G") iû - G'n.. . G'2G\ R V

where G'¿is RS or RS2R2 depending on whether G¿ is S-B or S'R", respectively

It is now clear that

0(RGrGz. . . G") iú - RGn.. .GzGr ú

and we have a bijection between the sets {0(RG) : G e O} and {RG : G e f}}
which preserves left cosets of i[¡.
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Next we consider the elements of 0(T) of. the form 0(RG.R) where G e Q.

Again, we let G : GtGz...Gn where each G¡ is S.R or ^92R3. The left coset

associated with á(.R G ^R) is

0(RGß2...Gnn) v : R$(G")... 0(Gz)o(Gr) n iú.

By arguing as above, we know that

0(RGß2...GnR) V : RRG,.. .GzGt ú

and hence the identity (4.10) shows

0(RGrGz... G" R) ú : Gn...GzGt ú.

Thus we also have a bijection between the sets {0(RG R) : G e O} and O which

preserves the left cosets of ü. By combining this bijection with the first one we

obtain the desired bijection between 0(T) and Tt arrd the proof is complete. !



CHAPTER 5

MARKOFF VALUES FOR THE
PROPER CLOSED I-INTERSECTORS

In this chapter we provide the means of calculating the Markoff values of the

proper closed l-intersectors. We achieve this by describing both the associated dou-

bly infinite sequences of positive integers and representatives of the corresponding

classes of forms. 'We do not include the improper closed l-intersectors because,

as v/as demonstrated in Remark 3.1, their Markoff values are greater than 6 and

hence lie in Hall's ray. Although the results for the simple closed geodesics are

already known, we outline at the end of the chapter how they may be dealt with

in a similar manner. We do this in order to shed more light on Cohn's work.
'We have seen in Chapter 3 that the proper closed l-intersectors on T are defined

by the conjugacy classes in l'of the form \G(ABAB-|)] where G e Aut l'. In

order to simplify the calculations in this chapter we replace ABAB-I by A282.
'We are able to do this since

A2 82 : s2 R2 sR'snç.l,n.l,B-t).

Thus the proper closed l-intersectors are defined by the conjugacy classes

(5.1) lGØ2 B2)l where G e Aut l'

The corresponding equivalence classes of forms are represented by the forms /¡,y

where W : G(A'B'). (Recall here that the definition of fw is given in (1.15) and

does not depend on the choice of matrix for W.) As mentioned in the introduction

to Chapter 4, there is some redundancy amongst these representatives and it suffices

to take only the forms /¡az where W : G(A2 B2) and G lies in a right transversal for

ú. However, there is further redundancy in such a set of forms. More restrictions

115
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on the automorphisms G involved are needed. Our next theorem describes a set

of automorphisms for which there is no duplication of representatives. In its proof

we make use of the right transversal 7 described in Theorem 4.1.

Theorem 5.1. The forms f1ry whereW : G(A2 82) for some G e K and

(b.2) rc:{SR2s2,sR3}u{sRssRG: Ge o}

represent all classes of forms which map to proper closed 7-intersectors on T.

Proof. It is clear from the discussion above that the theorem will be proven if
v/e can show that for every G e T there exist Il, Ht e ì[ and Gt e K such that

H G(A2 B2) : H'G'(A' B'). We consider the two possibilities for G € T separately.

First suppose G : RGrGz . . . Gn where n )- 0 and each G¿ is SR or ^92-R3 . If n :
0 then H : SR2, Ht : Id and Gt : SR3 satisfy the required conditions. Similarly,

if r¿ ) 1 and Gt:,s.R then H : sR2, H', : Id and G', : s.R3s.RGzGs...G,

will do. Now assumen) 1 and Gt:52R3. Let H be conjugationby G(,4-2):
(G(A))-' so that

HG(A2 B2) : G(82 l',) : G P(A2 B\ : RGtGz . . . Gn P(A2 82)

and note that ff € ![¡ since Inn l' C itrt. Using Lemma 4.2 and the relation

RP : P.R3 we can deduce that

itr¡ RGr Gz...Gn P: ü Pß3 G\G'r...G'n: iú .R C\G'r...G'n

where G'i: S2Rs if. Gi:.9.R and G'i: ^9R if G¿: 52R3. Hence rve carl. choose

Ilr€Üsothat
H G(Az 82) : Ht RG\G', . . . G',(A2 B2).

Since G\ : ,5rB the first part of our argument shows there is H2, Hs e. iü and

G'eK suchthat

Hz RG\G'" . . . G'.(A2 B',) -- HtG',(A', B").

It follows fhaf HG(A' B') : H'G'(A2 B2) where H' -- HlHlr Hs Ç ü, as required
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Now suppose G : RGtGz...Gn.R where r¿ 2 0 and each G¡ is s.Ror s2R3.

If. n:0 then H : SR2S2R2, H' : Id and G' : SR2S2 will do. Thus we may

assume n 2 7. We consider two possibilities. First we suppose that Gn :,S,R. Let

If be conjugation by G(B). Then If e Ü and

HG(A2 B2) : G(BA'B) : RGtGz.. .Gn-t SRZ(BA2 B)

and so

HG(A2 B2) : R GtGz...Gn-tG+n-t AB).

Since 5z ts(AB-t AB) : AB-L AB we know that either

HG(A2 82) : R(AB-I AB) - B-r A-r B-r A: S2(A2 82)

or there is j with L < j 1 n - 1 such that G¡ : SR' In the first instance,

HG(A282): H'G\(A'B') where H' : R252 and G' : SR252 as required. Thus

r¡ve assume the latter is true. 'We choose j to be maximal and observe that

HG(A2 B2) : .R GtGz ... Gj(AB-r AB) : RGtGz... G¡-r(A2 B2).

In this case, the results already established imply that there are H1,Hz € i[ and

G'eK suchthat

Ht RGtGz . . . G ¡-r(A' B') : HzG' (A2 B2)

and hence H G(A2 B') : H' G' (A2 B2 ) where Ht : H, ' Hr.

The other possibility is that Gn : 52 R3. In this case' \¡r'e let H € Ü be

conjugation by G(A-2) so that

HG(A2 B2) : G(B2,qt) : G P(A2 B2) : RGtGz . . . Gn RP(A2 B2).

As above,

ú RGtGz ...Gn RP : ú RGtGz...Gn PRs : V RG\G|...G'nR
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where G'i: s2R3 if. G;:,9R and G'i:,SR if G¿: 52R3. Hence there is some

Ifr € iú such that

HG(A2 Bz) : H, RG\G', . . .G'n R(Az B\.

Since G'r: S.R we can apply the argument just completed to find the required H'

and G'. The proof is complete. ¡

Theorem 5.1 allows us to list one representative from each of the classes of

forms which map to proper closed l-intersectors on T. (It will become apparent,

when we describe the associated sequences of integers that there is exactly one

representative for each class, see Remark 5.1.) However, the set K involved is not

unique in this respect. By forming compositions of the type I/G where ff e ì[¡ and

G e K we can produce other such sets. We have chosen the particular set K in the

theorem for two reasons. Firstly, for each G e K, the transformations G(A) and

G(B) can be expressed as finite continued fractions and secondly, there is a simple

formula for G(A) and G(B) in terms of the solutions to Markoff's equation. The

first property allows us to describe the doubly infinite sequences of positive integers

arising from the proper closed l-intersectors, and the second leads to a formula for

the representatives of the associated classes of forms. Before we discuss such things,

we shall examine the set K more closely.

Again, the set K is best appreciated when arranged as a tree. We simplify this

process by first introducing the transformations C and D defined by

(5.3) C(z) : B-r A-r B-t(r) :#
and

(5.4) D(z): n-'Q):'i !|\ / zI7
Note that SRsSR(A,B): (C,,D) and hence C and D generate l'.

As with the set O there are two useful arrangements of K as a tree. The first

arrangement is shown in Figure 5.1. It is obtained by placing SR2S2(A,B):
(C D-t,,D) and SR\(A,B) : (C O-t, D) at the top. Next comes

.9.R3^S^B(,4, B) : (C, D).
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The remaining elements of K are all of the form S.E3^9R GtGz...Gn where n)-L
We view each such element as being the result of composing

(s^R3 s.R) Gl (s.R3 S.R)-r

with
G : (Sn} SR)G2%...Gn.

'When Gt: SR the tree branches left and when Gt: S2R3 it branches right. As

in Figure 4.1, the branching operations are a consequence of

(5.5) (^sR3 ^9^R) ^SÃ (S.83 S R)-t (C ,, D) : (C D , D)

and

(5.6) (.9,R3S.R) 52R3 (,9.R3Sn)-t(C,n): (C,,CD)

(Here we have extended our notation for automorphisms so that they can act

on any pair of elements of l'.) Since the tree begins branching from the node

s R3 s R(A, B) : (C, D) induction shows that at every subsequent node G(A, B) :
(G(A),G(B)) both G(A) and G(B) can be written as words consisting solely of

C's and D's. It follows that the tree branches to the left by substitutingCD for

C everywhere in both G(,4) and C(B) and to the right by substituting C D for D'

We refer to this tree as K anangeil by substitution.

The second tree, shown in Figure 5.2, is obtained by again placing the automor-

phisms SR2 52,,S.R3 and S,E3SR at the top. This time however we view the typical

element SÃ3^9R GtGz...Gn of K with n2L as being the result of composing

G : ^9ß3,9 RGrGz...Gn-t

with G,". When Gn :.9-R the tree branches to the left and when Gn : S2.R3 the

tree branchesto the right. Forthis tree, the branchingoperations are a consequence

of the formulae

(5.7) G S R(A, B) : (G(A)G(B), G(B))
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(cD-2, D)

(c D-r, D)

(c,, D)

(c D, D) (c, c D)

L20

/\ /\
(cD2, D) (C2D, CD) (CD, CD') (C, C2D)

Ftcunn 5.1. The set 5 arranged by substitution. Here (C, D) :
(B-t ¡-r B-t, B-t). The tree continues by substituting C D fot

C to branch left and C D for D to branch right.

and

(5.8) G SZR7(A,B): (G(A),, C(A)C(B)).

'We refer to this tree as K arrøngeil by juutaposition.

The primary reason for our particular choice of K is that, the transformations

C and D can be expressed as finite continued fractions, that is,

(b.e) C(z) :2 + +:12,2, zf

2*:
and

(5.10) D(z):t*+:l1,r,zl.
t+;

Here [a6, at¡. .. ,dn, z] denotes the finite continued fraction with partial quotients

ao¡dr¡.. . ¡dn arld z. The composition of such transformations is easy. If

W("): [ø0, dr¡...,anrz] and V(z): [bo,ót,,...,b*,rf
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(CD_2,, D)

(CD_|,, D)

(C, D)

(c D, D) (c, c D)

121

/\ /\
(c D2 ,, D) (C D, C D') (C2 D, C D) (C, C2 D)

FIcunn 5.2. The set ,S arranged by juxtaposition. This tree

continues from the node (Il[/r ,Wr) by forming (WtWr,W2) to

branch left and (W1,W1W2) to branch right.

then

WV(z) : [¿o ¡... ¡an¡lôg,.. .,b^,2]l : fas,... ¡an¡å0,... rb*, zf.

Now let G(A,B) : (G(A),G(B)) be an automorphism in K other thar' SR2 52

and ^9.R3. 
'We have seen from the arrangements of K by substitution and by juxta-

position that both G(A) and G(B) can be written as a words consisting solely of

C's and D's. It follows that the transformation

w : G(A' B') : G(A)G(A)G(B)G(B)

can likewise be written as a word consisting solely of C's and D's. By expressing

C and D as continued fractions and using the rule above for the composition of

such transformations, we find that W(z) is of the form

(5.11) W(r): [øo ¡dr¡ . . . ,a*, zf .

Of course, given that Theorem 5.1 is true, \Me are interested in the associated form

fyv and its Markoffvalue. With this in mind, we observe that it is possible to obtain
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the sequence of positive integers corresponding to lw directly from the expression

(5.11). Specifically, w€ claim that under the correspondence (1.8) established in

Chapter 1 we have

(5.12) "A: {";}l=_i*: {asñffi} pfw@,,v)

where p is some positive real number. As is standard, {@;4;} denotes the

periodic doubly infinite sequence with period asral¡. .. ¡dm. To see that the state-

ment is true, it sufÊces to show that /¡az has first root 7 : -[0, ú-r¡a-2'd-3'...]
and second root € : [o0,ar,a2,...]. By the elementary properties of continued

fractions, { is a fixed point of W. Similarly, 4 is a fixed point of its inverse

W-' (r) : -[0, am¡. . .,t at¡ ø,o, -l l r]

and hence also of W . lt follows that 4 and ( are the roots of fw . To see that they

are correctly ordered, note that W' has a matrix with all positive entries. Hence

the leading coefficient p, o1 fw is positive and the result follows since ¡r(( - 17) > 0.

We have now established a direct relationship between each element G of K

and the sequence of positive integers which corresponds to the form fsr where

W : G(A'Bt). This relationship allows to describe an algorithm which lists the

periods of all such sequences of positive integers. It is based on the arrangement

of K by substitution. In order to describe it we let G(A,B) : (G(A),G(B)) be

an element of K other than,9,R2S2 and S.R3. We have seen above that both G(A)

and G(B) and hence the transformation W : G(A2 B2) can be written as a words

consisting solely of C's and D's. Consequently W is of the form (5.11) and

dO¡Cll¡... tQtn

is the period of the corresponding sequence of positive integers. The arrangement

of K by substitution continues from G by substitutingCD for C everywhere in

both G(,4) and G(B) to branch left and C D for D to branch right. 'We denote the

resulting automorphisms by G' and G", respectively. Clearly the transformation

W' : G'(A2 B2) can be obtained frorn W by substituting C D for C everywhere in
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W. h follows thatW'(z): [oä,a\,...,a'¡,27 where aL,a\,...,a'k isobtainedfrom
do¡ar¡...¡arn by substituting 2,2rL,1 for 2,2. We define the substitution / by

(5.13) d(1,1) : 1,1 and ó(2,2) :2,2,1,L

and we write

aL,, o\,. . ., d'k : ó(ao, arr. . . ra*).

Note that (5.12) implies alo,,a\,. . . ,a'k is the period of the integer sequence associ-

ated with the form fw,. We deal with the transformation Wtt : G't(A282)ina
similar manner. It can be obtained from W by substituting C D for D everywhere.

Hence W"(t): lollro'1,...,a'¡',2) where a!d,a!|,...,,o't' is the result of substituting

2,,2rLr1 for 1,1 in ø6,tdr¡...¡ürn. We define the substitution t/ by

(5.14) ,þ(1,1) :2,2,1,,L and ,þ(2,,2) :2,2

and write

o'J,o'1,,. . . ,o't' : rþ(ao,dr,... ,a*).

Clearly ald,a'1,...,o't'is a period of the integer sequence associated with the form

fw,,. We now repeat the process with G'and G" in place of G and so on. Since

the arrangement of K by substitution begins branching from the automorphism

S-R3SR and since

sR3 sR(A',A',)Q) - 12,2,2,2,7,\,!,7, zl,

our algorithm begins with the period 2,2,2,2,1,1,t,1.
To summarise, we have shown that by starting with 2,212,2,1,1,1,1 and repeat-

edly applying the substitutions / and ,þ *. obtain all the periods of the integer

sequences which correspond to the forms /¡,y where W - G(A2 B2) and G is an

element of K other than SR2S2 and,5.r?3. It follows from Theorem 5.1 that our

algorithm accounts for all the sequences of positive integers which map to proper

closed l-intersectors on T except those which correspond to the forms /¡az where

W : G(A2 F2) and G is SRz 52 or ,S-R3. For these automorphisms we have

SR2 S2(A2 B\Q) : CD-2C(r) -- l1,,s, zl
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212,2,2,,7rLrLrl

2r2rLrtr2,,2r1, 1, 1, 1, 1, 1 2 12 12 12, 2, 2, L, r 12, 2,, L, r
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I

1,1

I

/\ /\

Frcunn 5.3. Periods of the sequences of positive integers which map

to proper closed l-intesectors on T. The tree continues by substituting

2,2,1,,L for 2,2 to branch left arrd2,2,I,,1for 1,1 to branch right.

a¡rd

s R3 (A2 B2)Q) : c D-r c DQ) : 12,r,L,2,1,,r,, zf .

Periods of the associated sequences of integers are 3 and zrt,I, respectively. Since

we obtained our algorithm from the the arrangement of K by substitution it is

natural to present it in the form of a tree. The tree is shown in Figure 5.3.

Theorem 6.2. A doubly infrnite sequence of positive integerc maps to a proper

closed 7-intersector on T if and only if it is periodic and has a period appearing

somewhere in the tree shown in Figure 5.3'

Just as the tree of periods in Figure 5.3 was derived from the arrangement of K

by substitution, we can derive a re-arrangement of it from the arrangement of K by

juxtaposition. However, there is no simple formulae for the branching operations

in this second tree. The problem is that the way a ner¡v period in it is formed from

an existing period depends on the way the existing was formed from the period

preceding it. While it is possible to overcome this problem by inserting markers in

the periods, this is not necessary for our purposes and we omit the details.

In the next theorem, Theorem 5.3, we shall describe some of the properties
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of the periods displayed in Figure 5.3 and we shall show how to calculate the

Markoffvalues of the associated periodic doubly infinite sequences. 'We can reduce

the amount of work involved by taking advantage of a symmetry of tree. The

symmetry we shall use is best seen by introducing another operation on sequences

of 1,lts and 2,2ts. If ao¡dr¡. . . ¡attt. is a sequence composed solely of 1,l's and 2,2ts

then we define z by

(5.15) r(ao,,úr,¡...,a^): a't,a!2,...,,Q'^

where a\ra'zr... ra'* is obtained from øs, at¡... rar,'bY reversing it and interchang-

ing each 2,,2 with 1,1 and uica-aersø. It is straightforward to show that

(5.16) r2:ld and roþor:1þ.

These equations together with the remark that the first non-singular sequence in

the tree in Figure 5.3, namelv 2,2r2,2,L,1,1,1, is invariant under ¡ show that the

non-singular part of the tree is invariant under r. In other words, if the sequence

ao¡et¡. .. ,tdtn lies in the tree then so does r(as, d!¡. .. ,a*). The symmetry we are

referringto is the fact that the location of r(ø6 ¡dr¡...,arn) in the tree is areflection

of that of øs, at¡...rarn it the vertical line which passes through the base node.

Note in particular that r(46 ,arr...ra*) and cs, út,¡. . . )clm are at the same level

in the tree.

Before we begin the proof of Theorem 5.3 it is also convenient to extend the

definition of the operations $,, tþ and r so that they act on doubly infinite sequences

of 1,1's and 2,2's. (Recall rhat S and t/ are defined by (5.13) and (5.14).) For

the operations / and t/ it is clear how this is done. One applies / by replacing

each occurrence of.2,2 with 2,2rl,l and one applies t/ by replacing each 1,1 with

2,,2,7,1. Further, it is not hard to verify that if ao¡ at, . . . , d^ is a sequence of 1, 1's

and 2,2's then

(5.17) ó({ø;a¡;:. ;ç}) : { AO¡CLL,t, , . ,,dqt

and

(5.18) ,or-)\Vt(toord"t¡..,,ar"j) : {rÞ(ao, at,
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The operation r is also easily extended. Given a doubly infinite sequence ,4 of

1,l's and 2,2's, we define r(A) to be the sequence obtained by reversing ",4 and

replacing each occurrence of 1, 1 with 2, 2 and uice-uersa. As above, we have

(5.1e) r(16-,a^\) : {r(ø0, atr... rd*) )

Note also that the relationships (5.16) still hold for the extended operations.

Remark 5.1. We can now show that there is no duplication amongst the equiv-

alence classes represented by the forms described in Theorem 5.1. This is possible

because, as can be deduced from the construction of the tree in Figure 5.3, it is
equivalent to show that there is no duplication amongst the periodic sequences of

integers which have a period appearing in the tree. To prove the latter is true

we shall use the fact that every such sequence, other than {3} and {2lfJ}, can

be obtained from { ,212r1r1', by applying the substitutions / and /. First

note that if "4 is a sequence consisting solely of 1, l's and 2,2's then /(r4) can be

partitioned into the sequences 1,1 and 2,,217,,1 and hence any occurrence of.2r2 in

/("a) is isolated. Similarly, if "4' is another sequence of 1,l's and 2r2's then any

occurrence of 1, 1, in tþ(At) is isolated. Therefore,

ó(A): rþ(A') e A: {T ,2} and "4' : {IT}.
It is also apparent that

ó(A) : ó(A') <+ A: A' <+ ,þ(A) : ,þ(A').

Using these identities it is not hard to deduced that there is at most one way for

anygivenSequencetobeobtainedfromthe{,wJJ}byappIyingthe
substitutions / and {. It follows, as claimed, that the sequences which have a

period appearing in the tree in Figure 5.3 are all distinct.

Theorem 6.3. Let A: {"¿}lï-*: {as,,ar,-,a,^} be a peñodic sequence

of positive integers, other úåan {3} or {Tff}, whose period do¡dt¡...¡am occurs

somewhere in the tree shown in Figure 5.3. Then, m I1 : 4n for some n 2 2 and

clotatr. . . ¡dm is of the form

(5.20) 212ra2¡as¡...¡a2n-3,t212rtrtrazn-s¡...¡asra2rlrl
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where d2,ctrB¡... ,¡Q2n-s is symmettic. Furthet M(A): Ào(/)'

Proof. 'We prove the first statement of the theorem by induction on the level

of the sequence do¡dt¡... ¡drn in the tree. By the level of øs, dt¡"')o'rn we mean

the number of nodes between it and the sequence 2,,2,212,1,1, 1, 1. The statement

is true with n :2 if. do¡ar¡...¡dm is 2r2,,2r2rLr1,1,1 itself. Hence, \4¡e assume

¿o¡ar,...,dm is at some arbitrary position in the tree and that it is of the form

(5.20) where m * 1 - 4n ) 8 and a2¡es¡... ¡a2n-s is symmetric and we prove that

the two sequences immediately below, namely

Ó(oo,at,... rd*) and rþ(oo,ar,¡...,a*),

are of the same form. Since 7 preserves the symmetry of (5.20) and tþ : r o ö o r

it suffices to do this only for the sequence Ó(oo,dt,t...,a*)' \Me write

alo,, o'tr. . . r a'k : ó(aor atr. . ., ú^)

The symmetry of d2¡as,t...¡ú2n-s implies that af , o\,...,ør¡ is of the form

2 12, l, L, o,'n, o,'u, . . ., a|r-s, 2, 2, 7- 11, 1, 1, a'+,, aL, . . ., a!r, -r,, L, L

where 4r: le * 1 and

o'4, o'ur. . ., útzr-s : Ó(az, ctrB¡. . ., azn-s)

To see that a[, o\,...,4,u has the required property we need only verify that

(5.21) lri^ratoroLr.. . ,alzr-s : a!zr-'r... ,aLra'n,,!rl.

For this purpose, we let / denote the substitution

(5.22) õG,t): 1,1 and Ob,r) : L,t,,2,2-

Since õQ,t) ana$(2,2) arc the reverse of /(1,1) and ó(2,2), respectively, it is

clear that õ(or,-r,,... ,ta¡ o2) is the reverse of þ(a2,,ar¡... ,azn-t). Thus,

õ@r.-r,. . .,t ctrlr az) : alzr-s r''' r o'5r d'4'
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Using the symmetry of a2,t(l¿¡.. . ,ta2n-s $te ca,n now re-write (5.21) as

I, L, S(a2 ¡ dB ¡ . . ., azn-s) : õ(or, (18 ¡ . . ., a2n -s), L,, L

This equality is easily verified by noting that / and / both increase by one the

number of 1, lts between each pair of.2r2's in a2raB¡. . . tdzn-s and that / adds an

extra 1,1 on the right where as / adds an extra 1,1 on the left.

The other claim of the theorem is that M(A) : )o("4). We shall prove a

somewhat stronger result. \Me shall prove that for all integers i

(5.23) €o(/) >- €z;(A) and qo(A) 3 nz¿(A).

Recall that the functions (2¿ and Tzi are defined by (1.6) in Chapter 1. To see that

these inequalities imply M(A): Ào(r4) note that they certainly imply

Ào(/) : €o(/) - ryo(A) ) t ¡ - \zi : 
^z¿(A)

for all i. Now observe that the the period (5.20) of "4 has a centre of symmetry

between the terms o¿-1 and ørr. Thus a,nIj : dn-r-j for all integers j. Further,

("+¡(A): an-r-j - T"-r-¡(A)

and

T"+i(A): Qn-r-j - t"-t-¡(A)

and so \"+¡(A): À,"-r-j("4) for all integers j. Putting j :2i + | - n we have

\r¿+t(A): Àzn-z¿-z(A)

Since 2n -2i -2 is even v¡e know lo(/) ) \zn-z¿-z(,A) and therefore Ào(",a) 2
)r¿+r(/) for all integers i. It follows that M(A): )o("4).

We prove the inequalities (5.23) by induction on the level of. as,dL¡. . ., a,,, in the

tree. All we require to make the relevant comparisons of the continued fractions is

the fact that

[ót, ót,bz,bz,, . . .,bj,b¡,2,2, . . .] > [ót, bt,bz,,bz, . . .,b¡,bi,,1, 1 . . . ]
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and

[0, åt, bt,bz,bz, . . .,,bj,bj,2r2,.. . ] < [0, bt,bt,bz,bz r. . .,bj,b¡,L,1 . . . ]

for any j > 0 and positive integers bt,bz,...,,bj. With this in mind it is easy to ver-

ify that (5.23) is true for all i when ao¡at¡ . . . ¡dm is the sequence 2,2,,2,2,I,1,I,I.
Having established the basis for inductionlve now assume the period do¡et¡. . . ,drn

is at an arbitrary position in the tree and that (5.23) holds. We shall prove that

for all i we have

(5.24) €o(A') >- tt¿(A') and qo(A') 3 rtz¿(A')

where At : {a'n}!!*: a'ora\r"'rû'r, and ø[ ra'rr... rú'k: ó(oo,,at¡...,a-) and

(5.25) €o(A") 2 Ëz;(A") and no(A"¡ 3 nz{A")

whereA,,:{oi,}L1"":{W4}anda,J,a,l,...,o,t,:,þ(oo,la|¡...,a*).
We deal the inequality (o(..4') 2 (2,;(/') first. To this end, we observe from

(5.17) that A' : ö(A). Note in particular that

oLro\,alsr... . . . : ó(oorat¡as,. . . . .. )

Now suppose that a'z¿ra'z¡+t:2,2. Since A' : ó(A) we know that the 2,2'sin
A' ate isolated. Thus olz¿+rrú!z¿+s:1,1and the sequence oL¿,,o'z¿+t,,o'z¿+zratr¿*"is

the image under / of some pair a2¡,azj+r :2,2 in A. It follows that

olr¿ro!"¿+tralz¿r... ... : ó(or¡ra2j+r,,d2j+sr.. .. )

Our inductive hypothesis is that

Since the image of.2,2 under / begins with 2,2 and the image of 1,1is 1,1it is

clear that the inequality (5.26) is preserved by the substitution /. Thus
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and we are done. The only other possibility is that a'z¿,o!z¿+t: 1,1. In this case

the inequality is trivial since ø[, a\:2r2.
For the inequality no(A') < ,l2i(A') we make use of the substitution / defin"d

by (5.22). 'We have

a'''"'o'-3''d'-2' t : ó(.. ... d-3 ,a-2ra-r)

and therefore

at-1, a'-2,, û'-g, :6@-r,d-2ra-3¡.. ., . .)

Now suppose that o'z;-2,,a'z;-t : 1,1. Since A' : Ó(A) we know that either

a'z;-zra'z¿-t is the image under þ of. a pair a2¡-2,,azi-t : 1,1 or o|2¿-ataL¡-s :
2r2 and the sequence a'r¿-n,,o'z;-sra'z¿-zraL¡-t is the image under ç! of a pair

azj-zrazj-t :2,,2' In either case, we have

o'z¿ -s, a!z¿-2, alz¿-t : ó( . . . . . az j -s, az j -2, az i -t)

and hence

for some integer 7. Our inductive hypothesis is that

(5.27)

rlo(A): -[0, d-r,d-2,a-s¡ ] < -[0, azj-t,azj-z,a2i-s'.'... .l: €r¡(A)

Since the images of both the sequences 1,1,1,1 and 1, I,2r2 under / begin with

1,1,1,1 and the image o1 2,2 is 1,1, 2,2 it is clear that the inequality (5.27) is

preserved by the substitutiott /. Thttt

and we have the desired result. The only other possibility is that dlz¿-zrolz¿-t :2,2
in which case the inequality is trivial since ø'-2, a'-t : trl.
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'We complete the proof by using the symmetry induced by ¡ and the truth of

(5.24) to show that the inequalities (5.25) hold. Thus we let "4 : 1at¡1.:7* :
{ffi::Ã} where ão,ãt,... ,ãt : r(a'd,a!|,... ,o't') and we note from (5.19)

that ¿õ : r(A"). It is not hard to deduce from the definition of r that

6(A"¡ 2 &;(A") <+ qo(A) < ,t-ri(Á)

To see that the right hand side is true we observe that

Á, : rA" : r o rþ(A) : ó o r(A) : ó(rA).

Since rA is at the same level in the tree as ,4 our inductive hypothesis applies

and the argument above shows no(ó(rA)) <

€o(A"¡ >
similar manner. !

While Theorem 5.3 allows us to calculate the Markoff values arising from the

proper closed l-intersectors, there is a better way. Just as the Markoff forms and

their Markoff values can be expressed in terms the solutions to Markoff's equation,

so too can the forms and values arising from the proper closed l-intersectors. The

connection here is that the automorphisms of K themselves can be so expressed.

We describe how to do this in the next theorem. Lekkerkerker, [26], has already

established such a result for a different but closely related set of automorphisms.

We shall elaborate on Lekkerkerker's work at the end of this chapter.

Theorem 5.4. There is a bijection between the elements G of K other than

SR2 52 a,nd SR3 a,nd the soJuúions (*,*r,m2) in positive integers to the Markoff

equation

(5.28) n't2 + rnl + m? :3mm1m2, rn 2 max{ mt,rnz}

other than (I,1,1) and (2,I,1), for which

(5.2e) G(A,B): ((t^';r' ii), (t*;r, r:))
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where the integer Ie and the ordering of rn1 and rn2 â,1ê uniquely determined by

(5.30) mle = m2 (mod m), ,nl2 < lc < m

and Iq and (cz a.re the integers which satisfy

(5.31) ryJc - rnlel : vn, and mkz - m2le : m1

*d pt and p2 are chosen so that the matñces have deterrninant 7.

Proof. Throughout this proof, when we say (*,*t,m2) is a solution, we shall

mean that rn, m1 and Til,2 ãîe positive integers satisfying (5.28). The set of all

such solutions is described by Cassels in $3 of Chapter II of his book, [5]. We have

summarised his work in the section of chapter 1 on Markoff forms.

It is appropriate to begin the proof by outlining why all the integers mentioned

in the theorem are well-defined. Recall that the solutions (1,1,1) and (2,1,1)

are called singular and that for each non-singular solutioî (m,mt,,mz) there is

exactly one integer k with 0 < k < n't,12 and one ordering of. mt and m2 such that

mrle : rn2 (mod *). By replacing k by m - k and interchanging rn1 anld m2 it can

be seen that there is exactly one integer k and one ordering of rn1 and rn2 such

that (5.30) holds. It is also readily seen from Cassels' work that there are integers

¡tr and kz which satisfy (5.31) and that p1 and p2 carL be chosen as described. We

refer, as Cassels does, to the collection of integers

(5.32) (*,, lr rmt, kt; mz, lez)

as an orilered Marlcoff set. We stress that our definition includes the restriction

rnl2<þ <m ratherthan 0 <le <mf2,arrd therefore, ourorderingof m1 anð,rn2

is the reverse of Cassels'. We shall also require the identity

(5.33) mtkz - mzlq :3mtm2 - rt-t'.

It may be found in Cassels' exposition and is an consequence of (5.31) and (5.28).

We shall actually prove that there is a bijection between the non-singular ordered

Markoff sets (5.32) and the elements G of K other than S.rB2S2 and S.R3 which has
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the property (5.29). In order to define the bijection we first need to arrange the

order Markoff sets into a tree. Cassels' has already done this for the solutions of

(5.28). His tree is shown in Figure 1.1. Obviously we can obtain a similar arrange-

ment of the ordered Markoff sets by replacing each solution with the corresponding

set. More importantly however, we can extend Cassels'branching operations (1.4)

and (1.5) so that they produce the associated tree of ordered Markoff sets. Before

we describe the extended branching operations we must modify Cassels' tree.

As already indicated, we need to interchange m1 and m2. It is also necessary

to interchange the branching operations. The top of Cassels' tree is unaltered by

these changes, it still contains the singular solutions (1,1,1) and (2,1,1). However,

immediately below is the non-singular solution (5,2, 1). The modified tree then

continues from each such non-singular solution (*r*r,mz) by forming the solution

(*\,*,rn2) where m\ :3mm2 - rÍ71to branch left and the solutio" (*|,mt,m)
where mL :3mm1- rÍt2 to branch right. The associated tree of ordered Markoff

sets is obtained by replacing each non-singular solution with the corresponding

set. It is shown in Figure 5.4. It continues from the set (nz, lr; *t,letl rnzrkz) by

forming the set

(5.34) (*\,k'ri m,,lei mz,lez), m\ :3mm2 - fft1, kl :3lcmz - let

to branch left and the set

(5.35) (^!r,k'r; rnt,leti m,k), *!:3mm1 - Trù2, kL:\kmt - kz

to branch right.

Of course we need to verify that the sets (5.34) and (5.35) are indeed ordered

Markoff sets. For the first set, using the definitions of lrr, lr', and ne', we have

,nk| - m'rlc : mtk - mlel : yn,

and

3m2(mle2 - *rk) * mzlq - mtlez

Thus

m\kz - *rk',

mk| = m2 (rnod m\)

n'¿
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(1; ;1)

(5, 3; 2,l; t,l)

(13, 8 i 5, 3; 1, 1) (29,17; 2, 1; 5, 3)

;1)2(

1

1

/\ /\

FrcUnp 5.4. The tree of ordered Markoff sets described in the proof

of Theorem 5.4. The tree continues from (rn, lr; *t,,kti mz,,kz) by

forming (5.34) to branch left and (5.35) to branch right.

'We also have

kl : Skmz - (*tk - m2) lm - m\k lm * *r l*

andsince rnlz<le <mandm2fm < 1it follows that rn"12 <k't<m| Note

that, ftl I *\ because m2 aîd rn', aÍe coprime. The proof for the other set is

similar.

\Me can noïl' use the congruence of shape between the tree of ordered Markoff sets

shown in Figure 5.4 and the arrangement of K by juxtaposition shown in Figure 5.2

to define the bijection rrye are interested in. The bijection simply identifies elements

which occupy the same relative positions in the trees. To see that the bijection

is well-defined, we note that the automorphisms in the tree in Figure 5.2 are all

distinct since Remark 4.1 shows that the same is true of the automorphisms the

tree in Figure 4.2. It is evident from Cassels' work that the solutions to (5.28) in

the tree in Figure 1.1 are likewise all distinct and therefore there is no duplication

of ordered Markoff sets in the tree in Figure 5.4.

\Me can complete the proof by showing that if under the bijection described a

uon-singular ordered Markoff set (rn, k; *t,,kt, rnz, k2) corresponds to an automor-
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phism G and if p1 and p2 aîe chosen so that the matrices in (5.29) have determinant

1 then (5.29) is true. The proof is by induction on the level of the set in the tree.

When

(*,k; rmr)ler; mz,lez): (5, 3 ;2, L; L, L)

the corresponding automorphism is

sRs sR(A, 
") 

: ((; ?) , (? l))
and (5.29) is true and we have a basis for induction. Now let (*,,k; rmt,lerl mz,lcz)

be an arbitrary non-singular ordered Markoffset and G the corresponding automor-

phism of K and suppose that the matrices in (5.29) have determinant 1 and (5.29)

is true. The tree of ordered Markoff sets continues from (*',k; rnr)lct m2rle2) by

forming the set (5.34) to branch left and (5.35) to branch right. Likewise, the

arrangement of K by juxtaposition continues from G by forming G SR to branch

left and G 52 R3 to branch right. Therefore, we must prove that

G LR(A,B) : ((t*; r i) , (3m2 - k2 r))
and

G s2 Rs (A, B) : ((t-;; *' orl) , (t*; r r ))
where p is chosen so that the associated matrix has determinant is 1. Our inductive

hypothesis is that (5.29) holds and since

G S R(A, B) : (G(A)G(B), G(B))

and

G 52 R\(A,B) : (G(A),G(A)G(B))

it suffices to show that

(5 36) (t*; r ,r) : (t*';r' fi ) (3mz - tez i:)
To this end note that (5.33) implies \mz - k2 : (m - rrr2kt)l*t and define

(: 1) : ('*'*,r'rl)((m-T:',,*' i:)
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Clearly

c: n¿ - mzlq * mzlq : m

and since rmzpz: (m - m2le1)lc2l*t - 1 we have

rn2d,: nlfn2p2 * mzletk2 : (m - m2k1)lc2 - trÙ1I mzlctlcz : mzle

and since nùtpr : (3"t t - kt)h - 1 we also have

Tn1o,: (3-t - kt)(* - *rkt) * ((3rn1 - frr)frt - L)*,
:3mmt-ktm-Tn2

-- m1(3m - k).

Thus c : rn) d, : le and ¿ : 3m- k. That b : Pfollows from ad - bc : 1 and the

proof is complete. !

Remark 6.2. Il we dispense with the restriclion mf 2 < k < rn then it is

possible to define ordered Markoff sets for the two non-singular solutions to (5.28).

The set corresponding to the solution (1,1,1) is (1,0; 1,1; 1, 1) and the set for

(2, 1,1) is (2,1; 1,0; 1, 1). These sets can be obtained by applying the reverse of the

branching operation (5.34) to the set (5, 3;2,1;1,1). (The sets produced by reverse

of (b.35) are different.) When the bijection described in Theorem 5.4 is extended

in the obvious manner to include these new sets, the identity (5.29) remains true.

Theorem 6.6. Let G e K and W : G(A2 B2), If (m,mt,mz) is the ttiple of

positive integers corresponding to G under the bijection described in Theorem 5.4

and if lc, le1 a"nd le2 ate as defr'ned thete then

(5.37) fw(*,u) :3m2n' + ç2, - 9m2)xy - sY2

where r :9mrm2lc -3m1let -3mzle2 and s satisfies 3m2s :9m2(r it) - r2

F\;.rthet

(5.38) Mffw): 49* ".
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Proof. W'e know from (5.11) that lve can write

137

az*b
""+d

w(z) : : [ø0, dt¡ . . . ,an,, zl.

NowsetA:{o¿},*:.":{a6}*drecallthatweproved(5.12)is
consistent with the correspondence (1.8) established in Chapter 1 by showing that

fw has first and second roots

and {:[ro,drtt2,...],

respectively. The significance of (1.8) is that UUw) : M(A). We know from

Theorem 5.3 that M(A) : lo(A) and hence M(fw): Ào(A) : € - n. Since we

can assume all of the integers a, b, c and d are positive it is not hard to verify that

? : -[0, ctr-r,ta-2,d-8,. . . ]

(a-d)+ (d-"),*4bcand (:
2c

It follows that

(d-" + 4bc (a-lQ2 -a
c2

Mjw):
c

The last equality being due to ad - bc: 1. Thus we only need show

W: s
r+1

9m2-r+1
3m2

in order to prove the theorem is true.

We know W : G(A" B') : (G(A))'(G(B))'. Hence Theorem 5.4 implies

W: o,

where p1 and p2 a;te chosen so that the determinants of the matrices are 1. We

shall use (5.28) and (5.31) to show that ¿ : 9m2 - r I L, c : 3m2 and d : r I 1-

The definition of p1 implies rntpt: (Srnr - kr)h - 1 and hence

r2or)fi):) :(
c

3m1- le1

Tft'1

3m2 - le2

lTI2

2

(

(
3m1- lc1 3m1(3m1- ft) - 1 3k{3mt - tr) -33*? 3m1lc1 - tTft,1
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Similarly, using the rearrangement of (5.33) to 3m2-lez : (m-m2le1)/rn1 we have

(
3m2 - Ie2

ITù2

Pz
lcz

2
3m2(m - mzkt)l*t - I 3k2(m - mzlct)l*, - S

3*7 Smzltz - |

+1
Ífùy

)
It follows that

c : 3mt3m2(rn - mzlet) - 3*? * gmlmlkt - 3*7

:9mmtm"-3*?-3*Z
:3m2

and

d : 3mt3le2(m - mzkt) - 9*? * (3rn1k1 - 1)(3nz zkz - l)
: 9mt(mlcz - mt) - Smtlq - Smzlcz * 7

:r*1

and

¿ :(3rn1(3 nr1 -kr) - Ð (vfu;:t!ù - t)
+ Smlskt(S*t - ky) - 9m|

:9mz(Smt - kr)(* - rÍr,2kr) - 3m1(3m1- kr) -
+ Smlskt(S*, - k) - 9ml

3mz m - m2lc1)

:gmmz(3Tmr -kr) - Bm1(Bm1 - k) -\mz(m--- 
mzkt) +r -gmlTft'1

:27mmtm2 - 9m2(mh * mz) - 3m1(3mt - kt) - 3m2(3m2 - kz) + 7

--27mm1m2 - 9m1m2k - 9m! * 3m1fu - 9ml * Smzlez + L

:9m2-r*1.

That b : s follows from ad - bc: 1. The proof is complete. !

We conclude this chapter with a brief review of the situation for simple closed

geodesics and related to this, Lekkerkerker's version of Theorem 5.4.

By considering the conjugacy classes in zr1(T) which contain simple loops, as

described in the preamble to Theorem 3.1, it can be shown that the conjugacy
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classes in I' which define the simple closed geodesics are of the form tG(A)] where

G e Aut l'. Since AB : SR(A) the class tG(A)l can be replaced by [G(AA)].
Flom this and the arguments of Theorem 5.1 with appropriate modifications it can

be deduced that the forms /¡az where

(5.39) W:G(AB) and GeK

represent all classes of forms which map to the simple closed geodesics on T. In

other words the forms /¡az represent all classes containing Markoff forms. The

discussion following Theorem 5.1 is still relevant. As before, each transformation

W - G(AB): G(A)G(B) where G is an element of K other than SR2S2 and

,S.R3 can be expressed as a continued fraction whose sequence of partial quotients

is comprised solely of the blocks 2,2 and 1,1. Further, since

s R3 s R(AB)(") : 12,2,,1,7, zf

that sequence can be obtained by successively applying the substitutions $ and tþ to

the initial sequence 2,2,1,1. Thus the periods of the sequences which map to simple

closed geodesics can be arranged as a tree like that in Figure 5.3. For the singular

entries in the tree we have S.RS( AB)(z) : C(") - 12,2,2] and, replacing SR2 52 by

^92 which is allowable since SR2 e V, we also have S2(AB)(z) : D(r) : 17,1, zl.

Details of the construction and properties of the general period

AO¡ül¡. . . ¡Aqt

be found in [8], [14] and [17], for example. The properties of the associated doubly

infinite sequences ¿.: {"¿}!i* : {aop1,, - ,a,n} are similar to those of the se-

quences arising from the proper closed l-intersectors, as described in Theorem 5.3.

To be precise, if rn is minimal and if A is indexed so thaf M(A) : Ào(,a) then we

can choose the period e0¡...1arn so that it is of the form

(5.40) 2r2, a2, ds ¡. . ., ap-2,,Irt

where a2rdB¡...¡dm-2 is symmetric. Finally, an application of Theorem 5.4 yields

the analogue of Theorem 5.5. In particular, if (*,,1r; rrl1)ler; rn2,le2) is the non-

singular ordered Markoff set corresponding to G and if. W : G(AB) : G(A)G(B)
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then

and so

(5.41)

and

(5.42)

W: 3m1- Ie1

m,l( rl) (3m2 - k2 i:) : ('*; r i)

fw(r,a) : mæ2 - (3* - 2k)xv - py'

M(fw) : 9- 4
rnz'

While fw is not the usual representative of the class of Markoff forms associated

with the triple (*,*r,m2)it is closely related. We describe the connection after

discussing Lekkerkerker's work.

Lekkerkerker, [26], has produced a concise formulation of the usual represen-

tatives for the Markoff forms from Cohn's work with triples of matrices, [6], and

Cassels' solution to the diophantine equation (5.28). An indication of Lekkerk-

erker's results follows. If in the definition of an ordered Markoff set given in the

proof of Theorem 5.4 we replacethe restriclionmf2 < lc <mby 0 < k <mf2and
interchange the order of m1 and m2 then the ordered Markoff set (5.32) becomes

(*,i; mz,,iz; mt,fr)

where

fr :m-le, it:mt-ler,, frz:mz-1e2.

These new sets are the sets originally defined by Cassels, [5]. It is not hard to

verify that

(l -,') ('*;- i) (å ?):(k ,,.ï-r)
where as usual p and þ arc chosen so that the the determinants of the matrices are

1. The same is true for the other pairs with the appropriate choice of pr, þ1 and

p2, ñ2 and it follows that

(*, s*i'-r,) (::, s*i'-r,): (:, ,,,!-r)



CHAPTER 5. MARKOFF VALUES FOR THE 1_INTERSECTORS

The corresponding set of automorphisms

t4r

G(A, B): ((ål s*i'- r,), (*, s*i'-r, ))
is the focus of Lekkerkerker's work. To see the direct connection between Lekkerk-

erker's set and ours, note that ( ) ir ttr" matrix of the transform ation Ul2l-2
01

where Ut(") : z * 1. We know from the section of Chapter 1 dealing with ü that

conjugation by U-2 can be achieved by applying the automorphism (S.R')-' :
(R'S')'. Thus the non-singular elements of Lekkerkerker's set are of the form

(R'S')' G where G is a non-singular element of K. We define

rt : 1çn2 s')' S'\u {(n' S')' G : G e K., G + SR2S2}

Since (R'S')' € itr, it is clear that the forms /¡a, where

(5.43) W:G(AB) and Ceñ

represent the same classes of forms as do the forms /¡ar where (5.39) is true.

Hence they represent all classes containing Markoff forms. Now observe that if
(*,i; mz,frz; *t,it) is the ordered Markoff set corresponding to G € Ê and if
W : G(AB) then

(5.44) fw@,a) : mr2 r (3m - zfr)xv - ñv'

These forms are exactly the Markoff forms described by Cassels

Remark 5.3. In terms of the size of coefficients the forms (5.41) are just as

efficient at representing their equivalence class as the forms (5.44). Specifically,

m * (3m - 2k) * p : m i (3m - zie) + e.

Given that the transformations I,7 which define the forms (5.41) can be written

in the formW(z) : [oo, dL¡...,a*rzl where úytar¡...¡dm is the period of the

associated sequence of integers we would argue that the forms (5.41) are preferable

representatives.
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Remark 5.4. We can now explain our comment in Chapter 1 that !I¡ is the

largest subgroup of Aut l' which preserves the Markoff values of the conjugacy

classes in I'. By the Markoff value of a conjugacy class [I;Ø] we mean of course the

Markoff value of the form fy¡. Suppose G does not belong to t[. We shall show

that G does not preserve the Markoff value of the class [AB]. We know G : HG'

for some If e iú and G' e ñ. Clea¡Iy G' + (R'S')'.92 else G' e ìú. Since Il e itrr

the Markoff value of lG(AB)l is the same as that of [G'(AB)]. The discussion

above shows that the Markoff value lG'(AB)l is of the form /(9 - al*\ where rn

is a Markoff number other than 1. The Markoff value of.lABl is of course /5. W"

conclude as required that the Markoff values of lG(AB)l and [AB] ditrer.



CHAPTER 6

ISOLATION RESULTS

Our primary aim in this chapter is to provide evidence for our conjecture that

the Markoff values of the proper closed l-intersectors are isolated in the Markoff

spectrum. However, having established the means of doing this, we shall also be

able to prove the existence of two new families of values which are isolated in the

spectrum. Our calculations are based on the description of the spectrum in terms

of doubly infinite sequences of positive integers. \Mhile we cannot prove in general

that the Markoff value of a proper closed l-intersector is isolated we can, in effect,

describe a large class of integer sequences whose Markoff values are bounded away

from the given one. By estimating the possible Markoff values of the remaining

integer sequences we verify that the first few proper closed l-intersectors do have

isolated Markoff values.

The first restriction rve can place on the integer sequences whose Markoff values

are close to those of the proper closed l-intersectors is easy to obtain. 'We have

seen that the integer sequences arising from the proper closed l-intersectors are

composed solely of l's and 2's. It follows that their Markoff values all lie in the

portion of the spectrum below tÆ,. tt is also well-known that the Markoff value

of an integer sequence is greater than or equal to tlIS if and only if at least one of

its terms is 3 or larger. Thus we can restrict our attention to sequences consisting

solely of 1's and 2's. This restriction will also apply to the two families of isolated

values mentioned above for exactly the same reasons. There is another elementary

restriction \Me can make on the sequences we consider, if desired. It arises from the

fact that the Markoff spectrum (excluding oo) is covered by the Markoff values of

the sequences of positive integers A for which M(A) : )o(/). In order that our

results be as general as possible, we will not always apply these conditions.

743
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We shall of course be dealing with continued fractions. The following background

material and notation will be useful. Details may be found in [4], [14], [15], [16]

and [19]. As in Cusick and Flahive's book [14], we denote the numerator of the

finite continuedfraction [0,rr, a2¡...,ø,r] by K(or¡a2¡...ran) so that

loo,ot¡d2,,... ,anf : {r\:t'"" 'eK(otrd2,t.. . ,an)'

It can be calculated recursively from

K(ot¡d2¡. . .,, an) : K(at¡a2,t. . ., an-z) * anK(atra2¡. . ., an-t),

where n ) 3, the recursion being initiated with ,t((ør) : ør and K(41 ,az) :
ataz * 1. Note that

K(ot,,... ,,an¡2) : K(ot,... ,anrL,t)

and

K(ot¡d2¡. ..,,an) : K(anr... ,,a2)ar).

We shall also make use of functions of the form

f @) : ##: [¿0, aL¡ "' ,an,tl

where n 2 0 and øs, dt¡...,ør, is a sequence of positive integers (except that

possibly ¿o : 0). It is well-known that

(: 3):(r å)(r å) (r å)

F\rrther, alc- loo,ot,...,anl andbld: [¿o ¡d!¡...,,ún-rf and in particular,

(6.1) c: K(at,ctr2,,. ..,an) and d: K(at,a2,...,an-t)

A simple calculation using the fact lhat ad - bc: (-t;"+t shows

(6.2) r@) - Í(v): J-tì"]]J" , 'ì .("*+d)("y+d)'
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It is easy to deduce from this that /(r) is an increasing function of ø if r¿ is odd and

a decreasing function of ø if n is €v€rl¿ We shall use this fact often without further

comment. 'We also observe that /'(r) : (-l)tt+t lþ* + d')' . Thus l/'(t)l ( 1 for

o ) 1 and so the function

(6.3) g(a) : r I Íao, dt¡. . .,an,rf

is strictly increasing for æ ) 1.

We now state and prove three lemmas. Although the first is not new in its
essence, our restriction to sequences of l's and 2's allows us to obtain the specific

constant ó mentioned.

Lemma 6.I. Let A: {"¡}15 and B: {ó¿}¡+5 be sequences of 7's a,nd 2's and

set6:8t/313-4. If thercisa,nintegern20 sucå thatb¿: aifor 0 < i 1n then

l[oo,o, ¡a2,...]- [ôo ,bt,,br,...]l < ffi
with equality possible only when n :1 and a¡: 1. Fl¡rtåer, if bn+t t an¡y then

lloo,, o, ¡ d2 ¡ . .. ] _ [óo,,bt,bz, . . . ] I > A<"r, "r, . . ., on,2))2

with equality possible only when n :0.

Proof. Let Aand 6 be as described and suppose ó¡ : ø¿ for 0 < i < n. Set

(z å):(r å)(r å) (r å)

so that
arlb

T@) : ffi: loo ¡ar¡ "' ,an,r]'

It is not hard to deduce from (6.1) and the recursion formula for K that

K(ot¡a2¡...,,dnrl) : " + d and K(ot',d2¡...,,anr2) -- 2c -l d.

\il'e also set

a : lan+t¡anI2¡dn*s,...] and 0 : lb,"+t,,bnI2¡örr+s,...],
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so that

l[oo, ot ¡a2,. ..] - [óo ,bt,bz,. . .]l : l/(") - f (P)1.

The first inequality of the lemma can be re-written "t l/(o) - f @l S 6lþ+ d)2

By interchanging ,4 and B if necessaxy, we may assume B < o and thus

G + \ß)12 : lL=l < p < a 3 lTJl- 1 + /5.

Since f'@) is non-zero on o > 0, it follows that

v@) - r@l < l/(1 + /5) - /((1 +'/3)12)l

By (6.2) we have

l/(r + \/B) -/((1 + Js)tz)t: -:-:- -, (t + t/s)lz
((1 +,/s).+dx(l + 'ß).lz+d,)'

and therefore to prov" l/(*) - f @l < 6l@ + d,)' it suffices to show

(t+\ß)12 _ 6

((r + tß)" +dx(l + ß)"12 + d) = 1" a a¡'

or equivalently (when d + 0)

(6.4) (1 +t/s)ç¡a+ 1)' 12 <@\f3ß-4)((1+'/5)c¡a+ 1)((1 +tß)ç¡a)lz+t).

Clearly d, :0 if and only if n : 0 and if that is the case then c : 1 and

l/(r +'ø -/((1 +'fs¡ ¡z¡1 : 7 I G +'ß) < 8\ßß - { - 6 I þ + d,)2

Assuming d,+ 0,, it can be deduced from (6.1) that cf d: lon,on-r...,ø1] and

hence L < cld ( 3. Using this it is not hard to verify that (6.4) is true and that

there is equality only when cf d : 1. The first statement of the lemma follows since

cfd : 1 implies n : t and ø1 : 1.

Now suppose that bn+t # o¿11 and re-write the second inequality of the lemma

as l/(o) - f@l >- 6lQc+ d,)'. Again rve assume B < o and thus ó,-.,"1 : 1 and

dn*r:2 and 
p <rr,T.-,r: Js s(s+,/i)rz:r2,{r < a
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and so

l/(,) - r@l > l/((3 + 
'fs¡¡z¡ - /(y'5)l : s - \Æ)lz

((3 +'ß).lz + d)(tflc + d,)'

It remains to show that

(6.5) JT A>4 = = r- ,= 6

((3 + tß)"lz + d)(tßc + d) - (2c + a¡z'

If. d:0 then n :0 and c : 1 and so the two terms are in fact equal. When d + 0

we re-a,rrange (6.5) to

@ - \ß)Qc l d, * 1)' l 2 > @\ß ß - 4X(3 +'ß)ç ¡ a) l z + t)(t/Sc l d + t)

and observe that again this is true (without equality) since I < cld < 3. tr

Lemma 6.2. Let "l: {"¿}Tî* and ß -- {U¿}lÎoo b" sequences of 7's and

2's and suppose there are integers m,n ) 0 such that b¿ : ai for -m 1 i' < n. If
furthe4 (-1)"(o,+r - ó,,+r) > 0 and (-1)*("- tn-r - b-*-t) > 0 then

(

)
1

(K ("t ¡ a2 ¡ . . . ¡ ún ¡2))'' (K (ú-r, a-2, . . ., a -*,2))2
1Ào(6)-)o(,4))min

Proof. From the definition of Ào(6) and lo("4), see Chapter 1, and our assump-

tion that bi: ai for -m < i < n we know that À6(8) - Ào(/) : d,t * d2 where

dr. : loorat¡... ¡Qnrbnlt¡bn*2r. ..] - loorot¡... ¡an¡dnIt¡anl2r...\

and

d,2:lag¡a-t¡...rã-rnrb-^-trb-^-2,...]-looro-rr...¡d-m¡d-m-tra-*-2,,...f

Our assumption that (-l)"(on+t - ó'+r) > 0 implies d1 > 0. Similarly, the

inequality (-1)-("-tn-r -b-*-t) > 0 implies dz ) 0. Therefore d1 :ld1l and

d,2 : ld,2l and an application of Lemma 6.1 yields

orr-ffi and d">ffi.
The truth of the lemma follows from this and the fact that lo(6) - lo(/) : dt*d,z

sinceó>112.!
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Lemma 6.3. Let A : {"¡}l-j-.* and 6 : {ô¿}¡+Ioo b" sequences of 7's and

2's and suppose there are integerc mrn ) 0 sucå that b;: ai fot -m 1 i 1 n and

suppose aJso that (-1)"(o"+r - ó,,+r) ) 0. Tåen )o(6) - )o("4) > 0 if

K(otra2¡... ranr2) < K(o-t¡d-2t...¡a-tn¡L) + 2

and

if
K(or¡ a2¡.. . ¡dn12) < K(a-t¡d-2r. . ., a-*rL).

Proof. From the definitions and our assumption that ó¿ : ai for -m 1i < n it

is clear that À6(6) - Ào(/) - dt - d2 where

d4 : lagrút,,... ¡ün¡bn*t¡bn*2¡. .. ] - foo,,or¡... ¡an¡anlt¡an*2r...1

and

d,2 : lag ¡ Q-y r . . .,¡ a-n ¡ d-rn-t ¡ d-¡n-2, . . . ] - lor r o-r r . . . r a-m r b-rn-t rb-*-z, .' . ].

Since (-1)'(o'+r - ô,,+r) ) 0 we know that dr ) 0 and hence d4: ld,1l. Clearly

dz < ldzl. It follows from Lemma 6.1 that

or.ffi and or=ffi
and equality is possible in the first term only when n : 0 and in the second term

only when m -- t and ø-1 : 1. Since lve are not interested in the case where

K(orro,2,t... ,an,2) : K(a-t¡a-2¡... ,Q-m,,t) :2,

we can deduce that

d,t-d,z)6 (K("-t ¡a-2,. . . ¡a-tn, 1))' - (K("t¡a2¡. . .,on,2))2
(K ("r,,, a2, . . .,¡ a n ¡ 2) K (a -1 ¡ d -2, . . .,, o - *,, 1))2

The truth of the lemma is now clear. ¡
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Remark 6.1. Although the statement of Lemma 6.3 is asymmetrical in the in-

dices nz and n, it can be seen by considering the reverse sequences Á: {o-¡}n*:""
and B : {b-¿}¡+-joo, that the same result holds with the roles of rn and n inter-

changed.

In Theorem 5.3 we gave a description of the doubly infinite sequences of pos-

itive integers other than {5} and {7$T} which arise from the proper closed

l-intersectors. We saw that each such seguence A: {o;}¡+ioo has a period of

length 4n where n ) 2 and that v/e ca,rr choose the indexing of .,¿[ so that the period

dotdt,t. . . ¡a4n-r is of the form

(6.6) 2r2, a2¡ dg¡. . . ¡ azn-s¡zr2rLrL, (r2,,-g ¡., . ¡(7g, a2r7rt

where ez¡ús¡...,ta2n-s is symmetric. VVe also saw that if this is the case then

M(A) : lo (,4). It is convenient to use a different indexing here. Thus we write

A: {"¿}lîoo : { (zn-t)t " ' t -1r n

where a-(zn-t)t...¡a-r¡ao¡ctrr¡...¡cl2nistheperioddescribedby(6.6). Notethat
with this change a-1zn-t)t... ¡a-r¡ctrorat¡... ¡a2n is of the form

2r2ra2n-2r. . . rd¡rdgt2¡2r7rLrag¡d4¡. ., ra2n-2rIr\

where aJ¡e4¡...¡e2n-B¡d2n-2 is symmetric. It is evident from the symmetry of 
"4,

that we still have M(A): l0("4). The following lemma deals with all sequences

of this type. Its proof relies on Lemmas 6.2 and 6.3.

Lemma 6.4. Let A: {"¿}{î*: {a1r,-r¡,-,a-r,uSr,^,,a2,} where

n ) 2 be a peúodic sequence of 7's and 2's such that M(A) : Ào(r4) and suppose

that the period a-(z,"-r)). . . ,a-r¡ao,tat¡. . . ¡a2n of A is of the form

2 12, a2n-2 ¡ azn-B ¡ . . . ¡ a4 ¡ as,,2 )2 r7 rt, aB ¡ a4 ¡ . . . ¡ ú2n-g, a2¡-2, I, L

whete (tr8¡a4¡...¡dzn-s,ta2n-2 is symmetric. If B : {ó¿}¡+j"" is any sequence of
positive integers other than A which saúisfies bi : ai for -(2n - 2) < i 1 2n then

M(B)-M(A)>6
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where ó : min{( K (ot ¡ d2 ¡ . . . ¡ d4n-r, 1))-n, (K (o -, ¡ a-2, . . ., d -(4n-l), 1))-4 }.

Proof. We shall prove the theorem by showing that if. B : {å¡}¡+=1." is a sequence

of positive integers which satisfies bi : ai for -(2n - Z) S i 1 2n and if M(ß) -
M(A) ( ó then ß : A. We shall often make use of the facts that øa,,1¡ : ¿i and

azn+t-i: ai for all integers i.

First we assume only that 6 - {ó;}¡+Soo is a sequence for which M(B)-M("4) <
ó and we shall describe certain restrictions on the form of 6. As indicated in the

introduction, if some ô¿ 2 3 then M(B) > /i3. We also know M(A) < ú2 and

since ó < t/Ls - tÆ we can assume B is a sequence of l's and 2's. Next we have

the restriction:-

(R1) there is no index j such that ó¡a, : ¿i for -Ø" - 1) < i < k where

0 < k 1 4n -1 and (-1)o("0+t -bj+*+t) > 0.

To see that this is true suppose such a j exists. If. Ic:4n-1r then (-1)o(o**, -
ój+o+r) > 0implies -(2-b¡+n^) > 0whichisimpossible. Thus k34n-2 and

K(ot¡d2¡... ,,ak12) <K(ot¡ü2¡. . .ra+n-z12)

:K(lrL, as, . . . ¡ a2n-2r|r1r2r2, a2n-2r. . ., as12)

:I{(2, úJt, . . ¡ a2n-21212rlrL, úzn-zr . . . ¡ as, 1, 1)

<K(2reB¡. . . ¡cl2n-zr2r2rLrlrctzn-2r. . . ¡cb, 1, 1, 1)

:K(a-t, ü-2, ., ., a-(4n-r¡, 1).

It follows from Lemma 6.3 that À¡(B) - Ào(,a) > (K("-r¡d-2¡...,a-(4n-1),1))-4.
Bú M(B) > 

^¡(B) 
and hence M(ß) - M(A) 2 

^¡(ß) 
- Ào(/) ) ó, contradicting

our initial assumption about B.
'We also have:-

(R2) there is no index j such that ö¡-.,.¿ : ai lor -k < i 1 4n - 1 where

-(a"- 1) < -k <0 and (-1)*("-tft+r) - ó¡-1rar;) > 0.

Again, suppose otherwise. If fr : 4n-L then (-1)ß(a-1r+r) -b¡-(u+r)) > 0 implies

-(2-b¡-+") > 0 which is impossible. Similarly, if /c : 4n-2 then t-b¡-@n-l) > 0
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which is also impossible. Thus lc 1 4n - 3 and

K(o-r¡a-2, t d-k ¡2) 3K (a-t ¡ a-2 ¡ . . ., a-4n+s 12)

:K(2, Q3 ¡. . . ¡ a2n-2¡2,,zrLrl, a2n-2,''

:If(l, 1, û3, . . . ¡ a2n-2rlrl,,2r2, a2n-2,

</f(1, l, dt, . . . ¡ d2n-2 ¡ 7, l r2r2, Q2n-2,

:K (at, a2 ¡ . . . 1 a4n-t rl).

,a312)

..1agrz)

.. ,agr2,,l)

As before, an application of Lemma 6.3 (with "4 and 6 replaced by their reverses)

shows l¡(S)-)o( A) > (K("t,,a2,¡... ,,ctr4n-r,1))-n. Hence M(ß)-M("4) > À¡(6)-
Ào(r4) > ó and we have a contradiction.

The restrictions (R1) and (R2) also apply to the sequence B : {b-¿},+:""
obtained by reversirLgß.To see this, observe that l;(B): À-¿(6) for all integers

i and hence M(B): À0(F) : M(ß) and lM(B) - M(A)I < ó. The restriction

(R1) applied to B implies that there is no index j such that ô-1¡..,. ù : ai for all

-G" - 1) < i < k where 0 < k 14n - 1 and (-l)u(ou+r - ô-(j+*+1)) > 0. By

replacing iby -i and j bV -j and using the fact that ø-¿ : d2n+r+i \Me can rewrite

this as:-

(R3) there is no index i such that ö¡a; : azn+r+á for -fr < i 3 4n -l where

-Ø"- 1) < -k <0 and (-l)u(ot*+1-(ft+l) - ó¡-(k+r)) > 0.

Similarly, (R2) implies:-

(R4) thereisnoindex j suchthat ó¡1;:d2n+r+ifor -(4n-t) S i<k where

0 < /ú 14n- l and (-L)o(ot"+r+&+1 -bj+t+t) > 0.

Now we assume 6 also satisfies bi : a¿ for all -(2" - 2) < i 12n. In order to

prove the theorem vye must show ß : A. We assume ß + 14 and we shall obtain

a contradiction. Clearl¡ either there is r ) 2n such that ó'11 I or+t or there is

s ) 2n- 2 such that ó-1"+ ¡ t o-1r+r¡ or both. By choosing r and s to be minimal

(if they exist) it follows that at least one of the following conditions holds:-

(C1) bi: o¿fot -(2n-2) < i ( r and b,+t * a,¡1 fot some r 22n.
(C2) bi:ai for -s <i <2nand ó-1"+r) f a-1"+t) for some s)2n-2-
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'We claim that if (C1) is true then

(C3) (-1)'(o,+t - brrr) > 0 and

(Ca) r 14n- l and

(C5) b¡ * o¿for some i with -Ø"- 1) < i < -(2n - l).

To see that (C3) is true suppose not, that is, suppose (-1)'(ø'+r - är+r ) < 0. Note

that r f 2n else (-1)'(o.+r - ör+r) < 0 implies 2-bzn+t > 0 which is impossible.

Thus we can choose an integer d > 0 such that 4nd+2n+1 ( r < +n(d+L)+Zn+t.

Set j : 4nd*2n*1 and le : r-j. Then bj*, : ai+i : dzn+t+ifor -(4n-1) < i <
k and 0 S k 14n- 1 and (-L)o(or"+1+k+1 -b¡¡k+t): -(-1)'(o,+r-br+t) > 0.

This contradicts (Ra) and hence'we can assume (C3) holds. Now suppose (C ) is

false, that is, suppose r ) 4n. Let d 2 l be the integer satisfying 4nd 1r < 4n(d*
1) andset j - 4ndandlc:r-j. Then bj*n:aj+i:a¡fot -(4"-1) < i ( /c and

0 < k 1 4n -1 and (-1)o("0+r - äj+r+r) : (-1)'(Qrrr -å.+r) ) 0, contradicting

(R1). Hence we (C4) holds. Finally, if ó¡ : a¿ for -@" - 1) I i < -(2n - 1) then

since (C1), (C3) and (C ) are true we have a contradiction of (R1) with j : 0 and

lc : r. Thus (C5) is true also.

Similarly, rve carì show that if (C2) is true then

(C6) (-1)"("-ts*1) - b-("+r)) ) 0 and

(C7) s S4n- l and

(C8) b¡ # o¿for some i with 2n tl < i < 4n - L.

Again we prove this by supposing otherwise and obtaining a contradiction. First

suppose (-1)"("-ts*1) - ó-1"ar¡) < 0. Note that s f 2n - 2 else (-l)"(o'+t -
b,+r) ( 0 implies 2 - b-pn-r) < 0 which is impossible. Thus we can choose an

integer d> 0 suchthat 4nd+2n-1 ( s <4n(d+L)+2"-1. Set j: -(4nd*2n-L)
and k : s* j.Then bj*n: aj+i: azn+t+i for -k < i < 4n-l and 0 < k < 4n-L
and (-1)k (azn+t-(te+1¡ - ó¡-1r+r)) : -(-1)"("-(s*1) - ó-("+r)) ) 0, contradicting

(R3). Hence (C6) is true. Now suppose s ) 4n. Let d 2 1 be the integer satisfying

4nd1s <4n(d*1) and set j - -4nd and fr: sf j. Then bj*o: dj+i: o'i

for -le < i < 4n-L and 0 < k < 4n- l and (-1)k("-tft+1) -ój-(È+1)):
(-1)"("-ts*l) - å-("+r)) ) 0, contradicting (R2). Hence (C7) holds. Since (C2),
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(C6) and (C7) are all true it follows that if bi : ai for 2n+ 1 S i 3 4n- 1 then we

have a contradiction of (R2) with j :0 and fr : s' Thus (C8) holds also'

We know that one of (C1) or (C2) is true. If (C1) is true then (C5) is true and

hence so is (C2) and if (C2) is true then so is (C8) and hence (C1). Evidently the

only possibility is that all of (C1) through to (C8) are true. Hence there is r with

2n S r 1 4n-1 ands with 2n-2( s ( 4n-lsuchthat bi : aifor -s < i <r and

(-1)'(o'+r - ó'+r) ) 0 and (-1)"(o-ts*l) - ó-("+r)) > 0. Applying Lemma 6'2

we conclude that

Ào(6) - Ào("a) ) min {(f("r ,d2,... ,o,,2))-' , (K(o-t,d-2,... ,d-",2))-'\ .

This together with r 1 4n- 1 and s I 4n- 1 implies Às(6) - ìo(/) ) ó and hence

M(ß) - M(A) 2 ó. This contradiction completes the proof. !

Let A: {"¿}¡+joo b" as described in Lemma 6.4. It follows from Lemma 6.4

that there is a constant ó ) 0 such that if 6 : {ó¿}¿+joo is any sequence with

b; : ai for -n < i < n then either M(B) : M(A) or the distance ftom M(B) to

M(A) is at least ó. We can express this more succinctly by introducing the natural

topology on the space of sequences of positive integers. The topology is induced

by defining the distance between two sequences 6 : {ó¡}ljoo and ß' : {b'¡}lÎ*
to be

d(ß,8'):
0 if B:B'
1l&+t) irß+B'

where k > 0 is the largest integer such that b¡: b'; for -fr < i < k. With this

definition in mind, our earlier statement is equivalent to saying fhat M(A) is an

isolated point of the image under the function M of some neighbourhood ,Á/ of

,4. Davis and Kinney, [15], have considered such sequences before. The following

definition is due to them.

Definition 6.1. Let A: {o¿}¡+joo b" a sequence of positive integers which

satisfies M(A) : Ào(,4). The function M is said to have a locally isolated aalue

at A if there is a constant ó ) 0 and an integer rz ) 0 such that if 6 is any

sequence of positive integers with d (B,A) < ll@ * 2) then either M(B) : M(A)
or lM(ß) - M(A)I > 6.
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It follows from Davis and Kinney's work that M takes locally isolated values at

the integer sequences ",4 of the form described in Lemma 6.4. It is convenient to

restate the relevant result here.

Remark 6.2. In Theorem 5 of [15], Davis and Kinney show that if ,.4 is a

periodic sequence of l's and 2's with M("4) : )o(r4), and if there is some odd

integer k such that ø¡-¿ : øi for all integers i then M takes a locally isolated value

at A. (It is evident from their discussion of Theorem 5 that its statement contains

an error, namely, the condition that fr be odd is not present. Note also that their

restriction that ",4 have a period of even length is redundant.)

Although, like Lemma 6.4, Davis and Kinney's work shows that the value of

M at the sequences A of the form described in Lemma 6.4 is locally isolated,

the estimate it provides of the size of the neighbourhood N of. ¿4 in which this

is true is not as good. To be more precise the class of sequences whose Markoff

values are shown to be bounded arvay from M(A) by Lemma6.4 is substantially

larger than corresponding class in Davis and Kinney's work. In order to be able

to discover isolated points of the Markoff spectrum we are of course interested in

determining exactly how large this class can be made and especially in the case

where ,4 arises from a proper closed l-intersector. Note also that the constant

6 specified in Lemma 6.4 is larger than the corresponding constant described by

Davis and Kinney.

Davis and Kinney point out that if M has a locally isolated value at 
"4, 

but M(A)
is not isolated in the Markoff spectrum then there is a sequence B other than 

"4,

and its reverse such that M(B): À0(6) : M(A). We provide a brief explanation

of why this is so.

Remark 6.3. If M(A) ( oo is not isolated in the Markoff spectrum then there

is a sequence of integer sequences, fl(l), BQ),BG),. . . , such that M(ß{i)¡ ¡ M(A)
and

M(A): rl¡å M@{i)¡.

As noted at the beginning of the chapter, we can assume M(BU)) : )0(6(i)).
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Since the metric space consisting of all sequences of positive integers is compact

there is a subsequence 6(j(t)) which converges to some integer sequence B. It is

not hard to verify rhaf M(B) : )o(6) and

M(B): olIL M@{i{x))¡ - M(A).

(The details may be found in Lemma 6 and Theorem 8 of Chapter 1 of [1a] for

instance.) If also, M takes a locally isolated value at ,4 then by definition there

is some neighbourhood N of ,,4 such fhaf M(A) is an isolated point of. M(N).

Because M@{i)¡ converges to M(A) it follows that there is some integer J > 7

such that BU) ø.Â/ for all j 2 J. Therefore B ø Af and in particular B + A.

Obviously M also takes a locally isolated value at the reverse of "4 and the same

argument shows 6 is not the reverse of. A.

Our main result for the sequences ",4 of the form described in Lemma 6.4 is pre-

sented in Theorem 6.1. In it we establish constraints on the sequences B for which

M(B): )o(B) : M(A). Our motivation is that if it can be shown that there are

no such sequences (other than "4 and its reverse) then according to Remark 6.3 the

value M(A) is isolated in the Markoff spectrum. While there are some sequences ,4

such that M(A) is an isolated point of the spectrum and M(A) : M(B): À0(B)

for some sequence 6 other than "4, and its reverse, we are presuming, at least in

the case where ,4 arises from a proper closed l-intersector, that this is not so. In

connection with this presumption we mention the well-known conjecture about the

uniqueness of Markoff numbers. That conjecture is equivalent to our presumption

in the case where ,4 arises from a simple closed geodesic. Even if our presumption

is not correct Theorem 6.1 is still useful. We demonstrate this in the remark fol-

lowing it where we deduce from it information about the class of sequences whose

Markoff values are bounded away ftom M(A).
Before we state and prove Theorem 6.1 we record, for use in its proof and

elsewhere, some simple consequences of the results in Bumbyts paper, [4].

Remark 6.4. Let A: {"¿}!--|-oo and 6 : {b¡}¡+Ioo be sequences of l's and 2's

with M(A) : Ào(.4) and M(B): 10(6). We claim that if a-!¡ao¡ar :2,2,1then
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M(ß) is bounded away ftorn M(A) unless b-t,bo,bt :212,1or b-t,,bo,bt : L,2,2.

To see this, observe that according to Bumby's work, [4], if .,4 is as described then

(6.7) ,Æ¡s: M(rzJJ) S M(A) < M(w):40\Æ17.
If ó0 : 1 then M(B) : M(1) : \/5 < tÆzt¡\ if ó-1, ó0, ör :2,2,2 then M(B) :
M(2): \ß < t/Znlf and if å-r,óo ,bt: !)2,! then M(B)> M(T=|J) : /10'>
40\Æ17. In each of these cases M(B) is bounded away ftom M(A). The only

other possibility is that ó-r,ô0,ô1 is \2,t or Lr2r2 and hence the claim is true.

Similarly, we claim that if a-r,ao¡ür¡úz :2,2,1,1 then M(B) is bounded away

ftorn M(A) unless b-t,bo,btrbz :2,2,1, 1 or b-zrb-t,bo,br: 1, 1,2,2. This time,

as well as (6.7), we have

M (A) 3 tw (-2 2, t, t ¡) : v65o o / t g.

We have already seen that b-t,bo,bt -- 2,2,1 or b-t,,bo,,ót : 1,2,,2. It follows from

Bumby's work that if å-1 ,bo,bt,bz :2,2rIr2 or b-2,b-t,bo,,br :2,,1,2,2 then

M (B) > M(WTJ||J) : tMl t55 >'/lsao ¡ rc

and M(ß) is bounded away Írorn M(A). The truth of the claim is now evident.

Theorem 6.L. Let "4: {o¡}¡+f *: { } wherc

n ) 2 be a periodic sequence of 7's and 2's such that M(A) : Ào(r4) and suppose

that the period a-(zn-r)t. . . ,d-r,ao¡at¡. . . ¡azn of A is of the form

(6.8) 2r2ra2n-2¡d2n-g¡. . . ta4ras,,2r2r 1,1, a3 ¡ú4r. . . ¡a2n-s¡a2n-2r7rI

where ds¡ú4¡. . . ¡a2n-s¡ctr2n-2 is symmetñc. If M(A) is noú an isolated value of the

Markoff spectrum then there is a sequen ce ß : {ó¡}n+I." of 7's a.nd 2's other than

A such that b-t,bo,bt,bz : 2,2,1,7 and M(ß): Ào(6) : M(A). Fuúher, for each

suchsequencethereisr with2lr 12n- 3 sucå thatb¿: aifor -(r-1) < i < r
and b-, : brlr I or+t : a-r.

Proof. Let A be as described and suppose M(A) is not isolated. It is clear

from Lemma 6.4 or Remark 6.2 that M takes a locally isolated value at A. Thus
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Remark 6.3 implies there is a sequence of integers 6, other than "4 or its reverse,

satisfying M(B): À0(6) : M(A). Since M(A) < t/n we know B consists solely

of l's and 2's. Further, it is evident from Remark 6.4 that either b-t,bo,b1,b2 :
2r2r1,,1 or ô-2,å-t,á0,ór : 1,L,2,2. By reversing 6 if necessary u/e can assume

the former is true. It remains to show that there is an integer r as described.

Lemma 6.4 applies to "4 and since M(B) : M(A) we can conclude lhat b¿ { a¿

for some i with -(2n - 2) < i 12n. There are two possibilities:-

(C1) bi:ai for i:3,4,,...,r and b,+t# a¡a1 where2lr 12n-L.
(C2) bi : o¿for i : -2,-3,...' -.s and ó-1"+r¡ t a-ç+r¡ where L ( s 1 2n-3.

We can complete the proof by showing that both (C1) and (C2) are true and that

r : s + 1 < 2n - 3 since the condition b-, : br+t * dr*r : a-, is an easy

consequence of this and the symmetry of the period of A.

We claim first that if (C2) holds then so does (C1) and r 1 s + 2. Suppose

not. That is, suppose (C2) holds and that either (Ct) does not or (C1) holds with

r ) s * 2. Then b¿: ai for -s < i < s +2. Since ó-1"+r) I ø-1"1r¡ and

K(o-r¡d-2¡. ..ta-st2) : K(2ras¡a4¡. .. ,,a"+1.12)

< K(l, Iras,,a4r. . . r ds*l ,a"+zr7)

: K(atrd2r. ..¡ús*2¡l) + 2

\Me can apply Lemma 6.3 (with ,4 and 6 replaced by their reverses). We conclude

that )6(6) * So(A) and hence M(B) + M(A) and we have a contradiction.

Next, we claim that if (C1) holds then so does (C2) and s ( r. Again, suppose

not. That is, suppose (Cl) holds and that either (C2) does not or (C2) holds with

s ) r. Assuming for the moment that r 12n - 2 we have bi : ai for -r 1i 1 r.
Since br+t # ø¡a1 and

K(ot¡a2¡. . . ,úr12): K(1, Lrasra4r... ,ar12)

: I{ (2, ú -2 ¡ Ctr-s, . . ., o, -(r-\ )2)

< K(o-t¡a-2¡.. . ,o,-(r-r¡tø,-rtl) + 2
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Lemma 6.3 again implies Ào(8) # 
^o(A). 

Hence M(B) + M(A) and we have a

contradiction. It remains to consider the case where r : 2n - L. In this case,

bi:aifot -(2n-Z)Si12n -1. If alsoó-1zrr-r): o,-(2n-t) thensince

K atrctr2¡... ¡ezn-t12): K(1,1, ag¡d4¡... rdzn-zr7,,2)

< K(2, a3 ¡ d4t . . . ¡ Q2n-2 r2r2rl)
: K(a-t¡a-2¡. . . ,o,-(zn-t)t )

and ör11 # or+t, an application of Lemma 6.3 leads as usual to a contradiction.

If. b-pn-t¡ * a-pn-r¡ then since ø-1zn-l) : 2 we have (-t¡2"-zro'-en-1) -
ä-12"-r¡) > 0. 'We already know br+t I d¡11 and since ø2," : 1 we also have

(-f¡2"-t,ü2n-brn) > 0. In this case, Lemma6.2 implies Ào(6) I Ào(.4) ""d
again we have a contradiction. There are no more possibilities and the claim is

proven.

Since one of (C1) or (C2) is true it follows from the two claims above that both

(C1) and(C2) aretrue. Further,s ( r ( sf2andsor: s*1. Weknow r 32n-2
since s 12n-3 and therefore it only remains to show that r 12n-3. Suppose not,

that is, suppose r : 2n - 2. Then bi : ai lor -(2n - g) S i 1 2n - 2 and brn-, *
d2n-r: 1 and b-pn-z) f a-pn-z):2. Further, (-t¡2"-zra2n-r-bzn-t) < 0 and

(-t¡2"-r,a-en-2)-b-pn-z)) < 0 and so Lemma 6.2 (with "4 and 6 interchanged)

implies Ào(6) * 
^o(A) 

and hence M(ß) + M(A). This contradiction completes

the proof. !

Remark 6.5. Let Abe as described in Theorem 6.1. We claim that if 6 :
{ó¿}¿+f"" is a sequence of 1's and 2's other than .4 with ó-r ,bo,br,b, :2,2,!,1 and

M(B): )o(6) and if there is no integer r such that 2 ( r I 2n-3 and b¡ : ai for

-(r - 1) < i ( r and b-,:b,+t * dr1r: ø-, then M(B) is bounded awayfrom

M(A). To see that this true, suppose otherwise. In this case, there is a sequence

of sequences, 6(1), 3Q),6ß),. . . , such that, firstly, M(A): limjroo M(BU\ and,

secondly, for each j > 7 the sequence BU) : {ö(j); }n+:- is a sequence of 1's and 2's

other than ,4, which satisfies t9)r,Uf;),Uli) ,U!:) : 2,2,1,1 and M(ßo) : lo(6(i)¡
andforwhichthereisnointegerr with 23r 12n-3 suchthat óli) : aifor
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-(r- 1) < i ( r and bgl : tllt + dr*r :a-'. As was done in Remark 6.3, we let

6 be the limit of some subsequence 6(i(È)) so that M(B) : M(A). It is not hard

to verify that 6 satisfies the same conditions as each 60ft)) and hence we have a

contradiction of Theorem 6.1

'We can now describe how we have tested our conjecture that the Markoff val-

ues of the proper closed l-intersectors are isolated points of the spectrum. For

this purpose r¡ve let A be a sequence of integers arising from some proper closed

l-intersector. 'We know that "4 satisfies the hypothesis of Theorem 6.1. Therefore,

in order to prove M(A) is an isolated point of the spectrum, it suffices to show

that M(ß) + M(A) for every sequence S : {å¿}¡+Ioo of 1's and 2's other than ,4

with ó-1 ,bo,bt,b, :2,2,,1,1 and M(B): À0(6). Thus we assume M(B) is such a

sequence and we attempt to show M(ß) + M(A). We only need to consider the

casewherethereis some r with 2 1 r 1 2n-Ssuchthat bi : aifor -(r-1) < i < r
and ö-, : brtt * or+, : o,-r because it follows immediately from Theorem 6.1

fhaf M(B) + M(A) if no such r exists. For each such r we consider the possibilities

for the segments

(6.9) b-,,r. . . ,b-¡+z), ó-1'+r) and br*2¡br+s,. . . ,bn

of B as n and r¿ increase to oo. For each choice of the segments (6.9) we calculate

bounds on the range of M(B). If for some choice of rn and n we find thaf M(A)
lies outside all the relevant bounds then it is not possible f]r'at M(B) : M(rA) and

\Me can consider the next t. (By considering Lemma 6.3 it can be seen that during

this process is it desirable to choose rn and n so that K(b-r,b-2, . . . ,b-*) is about

the same size as K(bt,b2,...,b").) Clearly the algorithm will terminate only if it
is impossible to choose 6 so that M(ß) : M(A) and therefore if it does M(A)
is an isolated point of the spectrum. Our conjecture in a slightly stronger form is

that the algorithm will always terminate.
'We have implemented such an algorithm on a computer and thereby tested

our conjecture for the sequences in the first five non-singular levels of the tree in

Figure 5.3. There are 63 such sequences. Explicit details for the first three are

presented after the following remark.
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Remark 6.6. For use in the examples below and latter, we let -4: {"¿}I-I""
be a sequence of 1's and 2's with M(A): )o("4) and we note the following. Firstl¡
if a-1 ¡ctorer:2r2r1 then there is no index i such that ø¿-1 ¡ditai+r:7r2r1. To

see this, suppose such an index i exists. Then

À¡(/) 2 12,,1,-LA + [0, 1, 1,Tl - 2 + 2\ß I 3

However, we have seen in Remark 6.4 that M(A) S M(WTJ): +tÆlZ.
Since 4'/3017 <2+2\/313 we have M(A) < À¿("4) which is impossible.

Likewise, if ¿-r ¡d0¡at¡a2 -- 2,,2r111 then there is no i such that ai¡ai+r¡o,i+2 :
2rIr2. Again, suppose otherwise. The argument above shows lr2r7 cannot occur

in "4. Hence ai-r :2 and

À¿(/) ) 12,7,,2,r-,\ + [0,2, -rA : (45 + ßJÐ122.

.WeknowfromRemark6.4thatM(A)sM(w):\Æ360/19andagain

we have a contradiction.

Example6.1.ThevalueM(A)whereA:{a;}n+:"":{6¡}and

a-g¡a-2¡, .. ¡Ctr4 :2r2r212rIr 1,1,1

is an isolated value of the Markoff spectrum. This is an easy consequence of

Theorem 6.1, since there is no integer r with 2 1r < 4 - 3.

Exarnple 6.2. The value M(A) where A: {"¿}|=f--o" : {a-5, -,ø6} and

a-5¡. . . ¡d6 :212rLr7r212rIrLr 1, 1, 1, 1

is an isolated value of the Markoff spectrum. We know M(A): )o(/) and there-

ftorc M(A) : 1525 169. By Theorem 6.1, it suffices to show that if B is a,

sequence of 1's and 2's with M(B) : )o(6) and if there is an integer r with
21r S 3 suchthat b¡ : ailor -(r-1) < i ( r and b-r:b,+t # e-r: er.r
ther M(ß) + M(A). 'We assume 6 is such a sequence. Remark 6.6 shows 1,2,,1
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and 2,1,2 cannot occur in B. Hence the only possibility is that r :2 and the

initial segment b-2r...,ó0, ... rbs of 6 is 2r2,2,trtr2. If ó-s : 2 then

M(B) < 12,1,1,2,3] + [0,2, 2,2,3] :20931697 < M(A),

while if ó-s : 1 we know b-¿ : 1 and b+ : 2 else 1, 2,1 or 2,Lr2 occurs and so

M(ß) >12,1,7,2,2,3] + [0,2,2,1,1,3] : 529611763> M(A).

Since M(B) + M(A) in all cases, M(A) is isolated.

Example 6.3. The value M(A) where A: {"¿}!Îoo : {ø-5, - , a6} and

Q,-5¡. . . ¡ cL6 : 2r2r2r2r2r2,,7rLrzr2rLrl

is an isolated value of the Markoff spectrum. In this case, M(A) : 573 841.

Again, we suppose ß is a sequence of 1's and 2's wifh M(B) : Ào(.8) and that

there is an integer r with 2 S r ( 3 such that ó¡ : øi for -(r - 1) < i ( r and

b-, : b,+r * a-r : d¡11 and we shall show that M(ß) + M(A). By reasoning

as in Example 6.2, \Me can assume the initial segment b-zr...rbor...,ö3 of 6 is

7,2r2r1,1,1. Further, ó-s : 1 since Remark 6.6 shows 2,\r2 cannot occur' If
ó¿ : 2 then

M(B) > 12,I,1,I,2,3] + [0' 2,1,,I,I1:6491216 > M(A).

Note that we have shown 2,1,,7,7,,2,2,1,1 cannot occur in B. Now we suppose

b+: L. If ó5 : 2 then, either b-t :1 and

M(B) 112,7, L, 1,1, 2,3) + [0,2, 1, 1,1,1] - 17151572 < M(A),

or b-a: 2 and b-s:2 (else 7,2,1occurs) and

M(ß) < 12,I,1,1, 1, 2,31+ 10,2,7,7,2,2,31:699712332 < M("4).

Thus ìMe can assume ö¡ : 1. We can also assumeb-¿:1 else b-+:2 and

M(ß) ) 12,L,1,1,1,1,1] + [0,2,1,1,2,3] :17L71572 > M(A)
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Further, since 2,1,1,1,2,,2,,711 cannot occur ó-s : 1. If á6 : 2 then ó-o : 1 and

M(ß) ) 12,1,1, 1,1, t,2,31+ [0,2, 1,1,1,1, 1,3] : 16195/5396 > M(A),

or ó-6 :2 and

M(B) > 12,L,1,1,1, 1,2,31+ [0,2, 1,1,1,1,2,3] - 245t418165 > M(A).

'We assume ó6 : 1. If óz : 2 then

M(ß) 1[2,L,1,1,1, 1,1,2,,3] + [0,2,L,7,1,1,3] :1621715405 < M(A)

Now assume b7 :1. If ó-6 : 1 then

M(ß) 112,L,1,1,1,1,1,1,31 + [0,2,7,7,,1,1,1, L]:387717292 < M(A).

Finally, assume b-.^ :2 and note that b-z :2 (else LrzrL occurs). If bB :2 then

M(B) > Í2,L,1,1,1,1, 1,1,2,3] + 10,2r1,1,1,1,2,2,L1:64189121390 > M(A),

and if ós : 1 then

M(ß) 112,t,1, 1, 1,1, 1, 1,1, 1] + [0,2, 1, 1, 1, 1,2,2,3] :2819919405 < M(A)

We have shown M(ß) + M("4) in all cases and hence M(A) is isolated.

In the remainder of this chapter we describe two new families of isolated points

of the Markoff spectrum and the integer sequences which give rise to them. Our

motivation came from Gbur's work, [19]. There she showed that for all n ) 1 the

Markoff values M(A) where "4 is periodic with period

are isolated points of the Markoff spectrum. 'We note that this is also a consequence

of Theorem 6 in Davis and Kinney's paper [15]. It is natural to examine in a similar

manner the Markoff values of the sequences which have a period of the form

2n

tr2r... 12
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These sequences constitute our first family. 'We prove that their Markoff values

are isolated in Theorem 6.2. Our second family of sequences is closely related. We

described them in Theorem 6.3. Of the first family, only the case where n : t has

been discussed before, see [a]. The second family is completely new. Our methods

are more direct than Gbur's. One reason for this is that \¡/e are only interested in

establishing that the values are isolated rather than determining the endpoints of

the neighbouring gaps. Like Davis and Kinney we make use of the fact that the

value of M at ,4 is locally isolated.

We begin by stating the following simplified version of Proposition 2 in Bumby's

paper, [4]. (A similar result may also be found in Gbur's paper.)

Lemma 6.6. Let A: {"¡}lî- be a sequence of positive integers and suppose

n 2 7 and ay¡az¡. . . ¡dn-r is symmetric. Then Ào(rA) > À"(,4) if and only if

loo, o-t¡ a-2¡. . . ] > lan, an+t, an*2r. . .l

Using Lemma 6.5 and Davis and Kinney's results on local isolation lve can prove

the following general result.

Lemma 6.6. Let A -- [a¿\lî*: { } be a se-

quence of 7's and 2's satisfying M(A): Ào(/) and suppose both úåe sequences

o,-tn,t... ra-2,¡Q-l and dl¡d2¡...¡dn

a,re symmetric and nrm ) 0 arc both even and a-1*+1) : ¿ro . Then there is a

constantf > 0 such that if B : {ó¿}¡+j"" is any sequence of 7's and 2's other than

A satisfying M(ß): À0(6) and b¿ : ai îor -m 1i 1 n then M(B) - M(A) > 6.

Proof. Let A be as described and suppose 6 : {ó¿}n+I"" is a sequence of 1's

and 2's other than "4 satisfying M(B): )o(B) and ó¿ : ¿i for -m 1 i 1 n. We

shall begin by showing M(B) > M(A). For this purpose we set

at : fan+1ran!2tan+s¡...1 a2 : la-1m*t)ta-(rn¡2)ta-(rn1ll),... I

and

0r : lb,*t,bnr2,ó,+e,...] B, : lb-61r)rô-(m+z¡,b-çn¡s),...]
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so that

M(A): [øo ,ars.. . ¡dn,ot] * [0, o-t ta-2r.. . ,¡a-m¡oe)

and

M(B): loo ,ar¡.. . ¡an¡ 7tl + [0, ø-r ¡e-2¡. . . ,a-,n, þzl.

Note that the periodicity and symmetry of ,,4 implies

04 : laoro,-!¡... ,a-rrrazf a¡rd a2: las¡dr¡.. . ranrdtl.

Since M(B): )0(6) we know Ào(B) > À"+r(B). We are assuming úr¡a2¡ ' . . , ø,, is

symmetric and therefore an application of Lemma 6.5 to 6 implies

(6.10) þt 1loo,a-t¡...,a-,n,02f.

Similarly, by applying Lemma 6.5 to the reverse of ß we have

(6.11) þ" < loo¡ar¡...,an,0t1.

Now suppose B1 ( a1 and set B3 : loo;ar¡...¡antÉr]. Constraint (6.11) can be

re-written as 0z < 0t. 'We are assuming rn is even and therefore

M(ß) > loo ¡QL¡'' ' ¡Qn¡ 0t] + [0, o-, ,d-2,''' ,a-^, gs]

: þt * [0, o-t ,a-2r. . . ,a-*, þsf.

The right hand side of this inequality is a function of the form (6.3) and hence

increases with B3. Since n is even we know

0t : losrdr¡.. - ranr /tl ) loo, at¡... ,anralf : a2

and so

M(B) ) az I [0, ¿-r ta-2¡. ... ¡a-¡n,,azl : M(A).

Similarly, suppose 0z 1 az and set þt : foo,o-t,...,,a-*,þzf. In this case,

(6.10) implies h < þs and so

M(B) 2 [oo, ctrL¡. . . ,an, þsf * [0, ø-t ¡ú-2¡. . . ,a-*, þz]

: 0s * [0, ¿r, a2¡ . . . ,únr 0s].
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'We also have

þt : loore,-r¡. . . ,a-m¡ þzl > looro-t,,, .. ¡a-mraz): at

and therefore

M(B) ) ar + [0,ør, a2t...,,a,,rar]: M(A).

The only other possibility is that h 2 q *d 0, ) az. In this case,

az : lao,,dt¡. . . ,anrdtl I [oo, dt¡. .. ,,an', þtl2 0z 2 az

implying that fu - o\ and B2 - or2. However, this contradicts our assumption

that B * A. lt follows fhar M(B) > M(A) as $'as claimed.

Now suppose the lemma is not true. Then for every ó > 0 we can choose the

sequence 6 so that it also satisfies M(A) + ó > M(ß) > M(A). Hence there is

a sequence of sequen"", 6(i) : {äÍi)}n+:"", where j : L,2,3..., each of which

consists only of 1's and 2's and none of which is ,4, such that, firstly, for each j 2 1

we have M@tÐ¡: l0(6(i)) ur,d ä(i) : ai for all -m < i < n, and secondly,

M(A): rl¡å M@ri)¡.

As noted in Remark 6.3, there is a subsequence ?UQ')) which converges to a se-

quence B : {b¿}!îoo and further,

M(B) - À0(6) : ulg M@ri{xtt¡ - M(A).

It is not hard to verify that, like each of the sequences B(i(k)), the sequence B

consists only of 1's and 2's and bi: ai for all -m 1i 1n. Since M(B): M(A)
the sequence B cannot satisfy the hypothesis of our initial claim. It follows that

ß: A and hence the sequence ßOG)) converges to A. We also know M(ß{i{t'))¡

converges to M(A) and therefore there is no neighbourhood N of "4 such that

M(A) is an isolated point of the set M(N). But ,4 is a periodic sequence of l's
and 2's with M(A) : Ào("4) and rn * 1 is odd and a-þn*t)-i: ¿i for all integers

i and therefore, according to Remark 6.2, M takes a locally isolated value at A.

This contradiction completes the proof. tr
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Remark 6.7. In Lemma 6.6 we have assumed the sequences "4 and B consist

of l's and 2's rather than arbitrary positive integers. The reason we have done

so is that such an assumption is made in the result of Davis and Kinney cited in

the proof. 'We believe that that result, namely Theorem 5 of [15], does not require

such an assumption and therefore it is not necessa,ry in Lemma 6.6 either.

Remark 6.8. The sequences .,4 discussed in Lemma 6.4 satisfy the hypothesis

of Lemma 6.6. Thus a weaker version of Lemma 6.4 is deducible from Lemma 6.6.

However, the proof of Lemma 6.6 provides no estimate of the size of the constant

ó involved. As mentioned before, the size of ó is of interest because, in the case

where M(A) is isolated, it provides information about the size of the gap in the

spectrum above M(A).

The two families of sequences generating the Markoff values we shall be consid-

ering satisfy the hypothesis of Lemma 6.6. We shall use Lemma 6.6 to help prove

their Markoff values are isolated. \Me need one final technical lemma before we can

proceed.

Lemma 6.7. Let A : {a¿}n+:"" and B : {ó¡}l:îoo b" sequences of 7's and 2's

such that M("4): À0("4) a.nd M(ß): Ào(6) a,nd suppose

2n 2n

and
2n 2n

2n-L

where n ) 7 a.nd the asteúsk disúinguishes the term with index zero. Then

ß

M(A) - M(ß)> o.oooe 6 (ffi))-,

2n 2n

Proof. Set



CHAPTER 6. ISOLATION RESULTS 767

so that M(A) -2+ /(ot) +s(oz) and M(B)=2* f(þt)+s(þz) where

a1 : la-pn¡t)ta-(znfz)ta-(2n¡B),. . . I o, : lazr+zrd2n+3to'2n+4)...f

and

Bt : lb-pn¡ltb-en+ltb-en+s),. . .l þ, : lbz,+z',bzn+s,bzn++', "'f

Hence

M(A) - M(B): f(ot) - Í(þr) + s(or) - s(02).

According to Remark 6.6 the sequence Lr2rL cannot occur in "4. Since- a-2n+I:
1 we have o, < [1, 7,2,,2] : 1217. Similarly, a2 ] ll,2,2l : 7 l5 arld h > Í2,2,,L] :
713. We also have B2 < ,,2,2,2,11 : 1717 because if not 0z :12,1,...]' To see

that the latter is impossible note that the sequence consisting of the single term

a1 is symmetric and hence Lemma 6.5 implies

2n 2n

12,2,.. . ,2,2,,. . .] > 12,,. .. ,2, þrl

or equivalently B2 112,2,. . . ]. The functions / and g are decreasing and increasing,

respectively, and therefore

M(A) - M(B) > fT2l7) + s(7 15) - fg ß) - s(17 17).

We shall prove the lemma by obtaining a lower bound for the right hand side.

As usual, we know from the definitions of / and g as continued fractions that

/(") : +4 and s(r): - , t'+--, axrb ---d s(r): @+.)*+(ó+d)
where

2n

a 1

0 )
2
1c å):): (i

2n 2n-l 2n-L

Note that af c:1,...À anð, dlb: ¡O,f,.jand ö : c: K(ffi). Using

ad - bc: (-L)'" : 1 it is not hard to verify that

rG2ft) - l(T ls) : ,== -:?l!,!=71,? 
=,' (72a17 + b)(7a13 + b)
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and

s(7 l5) - s(t7 17) : 716 - L7
(7(a + c) l5 +(ó + d)X17(a + c) l7 + (ö + d))'

We also know af b : dlb + 2 and cf b:1 and hence can deduce that

168

and

f G2l7) - Í(713) - ,==,=, ,,r, , =='?(7,' ,. ' ='=. ,. ,(r217(dlb) + 3117)(7 llJ(dlb) + 77 lÐ b'

s(715) - s(t717)- 36/35=b,
It follows that

2n-l

f O2fi) - f (7 ß) + g(715) - s(1717) : h(dlb) K(ffi)
where

h(r) : L3l2t 36135
(L2x l7 + 3L l7)(7n 13 + L7 13) Qar l7 + 5817)(r2x l5 i 2615)'

To complete the proof it suffices to show h(dlb) > 0.0009

Rearranging the expression for ä we have

(6.12) h(x): +ax2 l+9 I668x 1245 + 6321735
(Lzx I 7 + 31 I 7)(7 n I 3 + 17 I 3)Qan I 7 + 58 I 7)(12r I 5 * 26 I 5)'

It is evident from the continued fraction expansion of. dlb thal dlb ) [0, 2, 2] : 215

and dlb < [0,2] : Ll2. Hence a crude lower bound for h(dlb) may be found by

substituting t :215 in the numerator of (6.12) and u :712 in the denominator.

In this manner we find h(dlb) > 0.0009 as claimed. !

Theorem 6.2. If A: {"¿}¡+j*: {a-2nr*,a-1,,asl¡ wheren2I and

2n

A-2n¡.., ¡d-l¡(lO : 1r2r.,, 12

then M(A) : Ào(.4) and M(A) is an isolated point of the Markoff spectrum.

Proof. Let Abe as described. Using Lemma 6.5 and the periodicity and symme-

try of A (or otherwise), it is not hard to verify that Ào("4) 2 )¿(ra) for -2n < i < 0.
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Hence M(A) : )o("Á). Because .r4 is a periodic sequence of l's and 2's and

o,-(2n-t)-i : ai for all integers i, Remark 6.2 implies that the function M has

a locally isolated value at A. It follows from Remark 6.3 that if M(A) is not iso-

lated in the spectrum then there is a sequence 6 other than "4 and its reverse such

that M(B) : Ào(6) : M(A). We shall prove the theorem by showing no such

sequence B exists.

Suppose B : {b¿}l=j-oo is a sequence other than ",4 and its reverse which satisfies

M(ß): Ào(6) : M(A). Clearly, ï¡e can assume 6 consists solely of 1's and 2's.

Further, since a-1 ¡eo¡dt : 2r2r1, Remark 6.4 implies that either b-yrbsrbl :
2r2,I or b-1 ,bo,,b, : Lr2,2. By replacing 6 by its reverse if necessary we can

assume the former is true. We shall divide the possibilities lor B into several cases.

Before we begin, observe that

2n-l 2n

where the asterisk marks the term øs.

Now, suppose 6 is of the form

j+r

where 0 S j 12n - 2 and the asterisk marks the term bs in B. The sequence

consisting of the single term ó1 is symmetric and so Lemma 6.5 applied to 6 shows

j+t l
12,2,...,ì,b-O+z),b-(j+s),b-(j+n),...] > (2,...,2,!,b¡¡s,bi+n,bj+u,...].

Consequently jiseven. Also, ó¡: aifor -(j+t¡ <i S j+ l andsince

(-r¡r+r(b¡+r-e¡+z) ) 0 and

J

l j+r

Lemma 6.3 (applied with "4 and 6 interchanged) implies M(A) > M(B). This

contradicts our assumption that M(B) : M(A).
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Next, suppose

,Lr2r'" ,2r2* rl

where L < j 12n-2. In this case, j is odd else Lemma 6.7 implies M(A) > M(ß)
As above, Lemma 6.5 implies

JJ
12,2,...,,2,7,b-(j*r),ó-(j*r), b-(j*n),,...] > 12,...,2,bj+2,öj+r,bj+¿,...1

and hence bj*, :2. It follows that bi : oifor -j < i < i+2. Since (-f ¡r(å-t¡+tl-
¿-(¡+r)))0and 

Å ÅK(2,... ,2,2) < K(1,2,...,2,2,r)

Lemma 6.3 (applied with "4 and 6 interchanged and replaced by their reverses)

implies M(A) > M(B). Again we have a contradiction.

The only other possibility is that B is of the form

2n-l 2n-l

t j

B

As usual, rve can apply Lemma 6.5. Thus

(6.13)
2n-l

and so bzn+t : 2. Il follows lhal b-2n: 1 because if not (-t¡2"-t (a-zn-b-2.) > 0

in which case, since ai : bi fot -(2n - 1) < i 12n * 1 and

2n-l

Lemma 6.3 (applied with A and 6 replaced by their reverses) implies M(B) >
M(A). Further, rve can now deduce from the inequality (6.13) that b2n¡2: !.

We know that "4 : { } and M(A): Ào(/),

2n-l 2n-l

2n-2 2n
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a;nd a,-(z,,-r) : ¿0. Therefore ¿4 satisfies the hypothesis of Lemma 6.6. 'We are

assuming 6 is a sequence of 1's and 2' other than ¿4 with M(ß) : Ào(6) and we

have shown that bi : ai for -(2n - 2) < i 1 2n + 2. If follows from Lemma 6.6

that M(B) + M(A). This contradicts our assumption that M(B) : M(A) and

the proof is complete. !
Theorem 6.9. rf A: {"¡}¡+=ioo : {ry} where n 2 L and

2n 2n*2

tr-(+n¡s)t. . .,t a-!, do : L 7r2r " ' ',2
then M(A) : lo(.4) and M(A) is an isoJated point of the Markoff spectrum.

Proof. The proof of this theorem is very similar to that of Theorem 6.2 and we

shall refer to that proof for certain details. As was done there, we shall use an

asterisk to mark terms which have index zero.

Let A be as described. Since the sequence consisting of the single term a1 is

symmetric and
2nl2 2n

Ñ,,...1>ffi,,l,...1
Lemma 6.5 implies Às(,4) > 

^r(A). 
By noting the periodicity and symmetry of

"4 and using Lemma 6.5 in a similar manner it is not hard to verify that one of

Ào(/) > À¿(r4) or À2("4) > )¿(/) is true for all -(a" +3) < i < 0 and hence

M(A): Ào("4). Also, "4 is a periodic sequence of l's and 2's and a-pn+t)-i: a,i

for all integers i and so again Remark 6.2 implies the function M has a locally

isolated value at A. As before, to prove the theorem it suffices to show there is no

sequence 6 other than "4 and its reverse such that M(ß): Ào(6) : M(A).
Suppose B : |b¿j1.îoo is such a sequence. Since "4 is of the form

2n-l 2n

A - ......, 7r2r... r2r2*,,1r2r... r2r7r......,

the arguments in this first part of the proof of Theorem 6.2 apply uerbatim. Thus

6 consists solely of 1's and 2's and, by replacing 6 by its reverse if necessary, ïue

can assume ó-r, ö6, å1 : 2,2,1. Similarly, we know lhat ß is neither of the form
i+t i

B - ......,2r... r2r2* r7r2r... r2rrr......
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where 0 < j 1 2n - 1 nor of the form

where L < j 12n. (Note the range of the index j in each case.) It follows that B
is of the form 2n,.r zn

J i

2* rLr2r. .. ,2,

F\rrther, bzn+z: 1 because if not (-1)'"+t( a2n+2 -bzn+z) ) 0 in which case, since

ai: bi for -(2n + 1) < i 12n * 1 and

B

2n 2nIL

Lemma 6.3 implies M(B) > M(A).
Clearly A : {Ee"+ù ttr-2n,t. . . ¡ e-r ¡ao¡ ar,. . . )dl;+l} and M(A) : )o(r4),

a-2nt...rd-2rA-l :2r... r2,, dl¡dzr... rúZn+2 :tr2r... r2,,7

and a-1zn*1) : ¿0. Again, "4 satisfies the hypothesis of Lemma 6.6 and hence

M(ß) + M(A) contradicting our initial assumption about ß. The proof is com-

plete. !

2n2n



APPENDIX

SOME SIMPLIFICATIONS TO MARKOFF'S THEORY

Markoff's original work,[29] and [30], has been refined by several authors. See for

instance the books by Dickson, [17], and Cusick and Flahive, [14]. Here, we present

another improvement to some of the theory. Specifically, w€ shall give a shortened

proof of a theorem which is equivalent to Theorem 64 in [17] and Theorem 3 in

Chapter 1 of [14]. Having done this, it will also be appropriate to make some

comments on the connection between the cutting sequences of lines in the plane

and the sequences of positive integers associated with the Markoff forms.

\Me shall use the notation introduced in the section of Chapter 2 on doubly

infinite sequences of positive integers. Recall in particular that if. A : {"¡}¿+S""
is a sequence of positive integers then we write Ã : 1o-¿Ìr+:." and note that

^;(A): 
À-¿(r4) for all i so that M(A) : M(A). We shall also need the following

two lemmas. The first is well-known. The second is easy to verify and may be

found in any of the references mentioned.

Lemma A.L. Let a: lao,ar¡a2¡....1 and þ : lbo,h,bz,...l. Then a > B if
andonlyif thercisr¿ ) 0 such thata¡:b¿for 0 < i S n-L and(-t)"(""-ó") > 0.

Lemma A.2. Let a and B be any rcaJ numbers. Then

a < þ e l2,2,alI[0,1,1, þl SS

with equality on the left if and only if there is equality on the right.

We can state and prove the theorem referred to above.

Theorem A,.L. Let A : {"n}lîoo b" a sequence of positive íntegerc. Then

M(A) < 3 if and only if A is (1,1)"" or (1,1)-,2,2, (1,1)"" or A is of the form

(4.1) ,2,2,(L,1)r(-t¡ ,2,2,(r,1)r(o; ,2,,2,(r,1)r(-1) ,,2,2,. . . . . .

1.73



APPENDIX. SOME SIMPLIFICATIONS TO MARKOFF'S THEORY 174

where {"(¿)}¡+I- is a sequen ce of non-negative inúegers for which

(u) lr(i + 1) -r(i)l 1L for alli,
(b) if r(í, 11) - r(i) is *1 or -L, rcspectively, for some i then either aJl the

differencesr(i* 1+ j) -r(i- j) where j:7,2,3,,... are zero or thefrrst
which is non-zero is negative or positive, respectiveþ.

Proof. Suppose M(A) < 3. Since M("4) 2 À;(ra) ) a¡ for all i, we know that

each ø¡ is 1 or 2. Further, there is no i such that ai-r)ai)ai+t -- 1,2, 1 else

M(A) 2 À¿(/) : €¿(/) - rìi(A) > l2,I,1l + [0, 1, 1] : 3,

and similarly, there is no i such that ai¡ai+t¡ai+z :2rtr2 else

M(A) I )¡(.4) : €¿(A) - r{A) > l2,t,2l + [0, 2,7] : 3.

It follows that we can write ¿4 in the form

"(-l) ú(-l) "(0) ú(1) "(1) ¿(1)

,2r... ,2rLr. .. ,lr2r, .. r2r 1r. . . ,1r2r... ,2rtr. . . r 1,

where each s(j) and each t(j) is an integer greater than or equal to 2. Note that it
is possible that the sequence ...,"(-1),¿(-1),s(0),ú(0),s(1),ú(1),... terminates

in one or both directions with oo.

We claim that each s(j) is even (or oo). To see this suppose not and let s ) 3

be the smallest odd integer which occurs among the s(j). Clearly, there is some i
such that 

Lai-2¡ai-t¡Qi¡... - 1, 7r2r2r2r... r2rlrLr....

By Lemma A..2,, we know À¿(ra) < 3 if and only if
s-2

1 ] s [o¿-r,di-4¡ctri-|,. . . ].

Since s - 2 is odd, it can be deduced from Lemma 4.1 that there is some odd

s'(s-2suchthat
9'

ai-s¡Qi-4¡ai-;¡. . . - 2r, .. ,2,,1,1,. .. .
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However, this contradicts the minimality of s and the claim is true.

Similarly, we claim that each t(j) is even (or oo). Again suppose not and let

ú > 3 be the smallest odd integer which occurs anrong the t(j) and let i be the

index for which

t-2
úi-t¡ai¡ai+t¡... - zr2rlrlrl,..., L,,2r2,,....

An application of Lemma 4.2 to ",4 (the reverse of ,,4) shows that Àt("4) < 3 if and

onlY if 
t-z

lo¿+r,(ri+r¡,,i+4¡. . .] S tñ, 2,2,...1.

Again, since ú-2 is odd, Lemma 4.1 implies that thereis someodd ú' <t-2 such

that 
L

ai+2,¡ai+g¡o,i+4)... - 1,..., 1, 2r2r...

and the minimality of ú is contradicted.

If (1,1)"" occurs in .,4 and A + (7,1)- then, by reversing Aif. necessary, v¡e can

assume that for some i

&i-r)ai)ai+t¡. . . - 2r2r7rl11, 1,. . . .

Applying Lemma 4.2 to ,4 shows that À¡("4) < 3 if and only if

lo¿-t,di-4tai-|t...] s [1, 1, 1, 1,...].

Since each ú(j) is even, this last relation is an equality and A: (I,1)-,2,2, (1, 1)o".

It follows that if ¿4 is not (1, 1)"" or (1, I)*,2,2, (1,1)o" then (1,1)- does not

occur in ,4 in which case, \¡r'e can express ,4 in the form (4.1) where {r(i)}n+j""
is a doubly infinite sequence of non-negative integers. If (a) is not true then, by

reversing "4 if necessary, \¡ve can assume there is some j such that r(j + 1) < ,(j) -2
and hence that there is some i such that

Ai,tAi+t¡Ai+z¡. : 2,, 2, (7, I)'U +r), 2, 2,
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and 
(ri-r¡ai-2¡(ti-3¡.. . - 1, 1, (1, 1)'(i+'), 1, 1, . . . .

However, \Me are assuming À¿(ra) ( 3 and Lemma 4.2 implies

[(t, t¡"ti+t) ,2,2,. . .] < [(r, r¡Ú+t), 1,1, . . .]

which contradicts Lemma 4.1.

Similarly, if (b) is not true then, by reversing,4 if necessary, \Me can assume there

is some j andsome k>L suchthat r(j + 1): r(j)-1and r(j + 1+k) <r(j -k)
and r(j + 1 + l) : r(j - f) for I : 7,,2,...,k - t and hence that there is some i
such that ai)ai+r,,ai+2,... is the sequence

2,2,(l,l)r(i+t¡ ,2,2,(!,1)'o+z) ,. . . ,2,,2, (1, 1)'(i+ttu) ,2,2,.. . . . .

and ø¡-1 ¡di-2¡aå-s,. . . i" the sequence

1, 1, (1, l)'(i+t),2,2, (L,l)'(j+z),, . . .,2,2, (l,l¡Q+t*o), 1, 1, . . . . . . .

Again, since l¡(",4) S 3, Lemma 4.2 implies

[(1, r¡(i+t) ,2,,2,,(t, t;"(i+z) ,...,2,2, (1,1¡"(i+t*o) ,2,2,... ...1

< [(1, 1)"(i+t),2,2, (1,1)"(i+z),. . .,2,2, (l,t¡,Q+r*o), 1, 1, . . . . . . ].

which contradicts Lemma 4.1. The proof of the forward implication is complete.

To prove the reverse implication we assume,4 is (1,1)- or (1, 1)-,2,2, (1, 1)- or

of the form (4.1) where {"(¿)}n+5." is a sequence of non-negative integers satisfying

(a) and (b) and we prove rhat M(A) < 3 by showing À¿(r4) ( 3 for all i.

If. a¿ - 1 then À;(/) < [1, 1]+[0, 1] : 3 and if. a¿-1¡ai,di+r : 2,2,2 then À¿("4) <

12,21+ [0, Z1 : 3. Since there are no isolated 2's in ,4 the only other possibilities

ate ai-t¡ctirdi+r:1r2r2 or a¿-v¡Qi¡ai+r:2r2r7. By reversiîE A, if necessary,

$¡e can assume that the former is true. In this case, either A: (1, 1)-, 2,,2r(1,1)*

and Lemma A.2 shows that À¿("4) : 3 or 
"4, 

is of the form (4.1) and we can choose

an integer j so that r(j) > 1 and

À;("a) :12,2,(1, 1¡'(i+t),2,2,(L,1)"(i+z),,2,,2,(L.,1)"(i+s),2,2,.. . ]

+ [1, 1, (t, t¡'ti)-t ,2,2,,(r,l)r(i-t; ,,2,2,(r,l)r(i-z¡ ,2,2,.. . . .].



APPENDIX. SOME SIMPLIFICATIONS TO MARKOFF'S THEORY 177

In the latter situation it suffices, by Lemma 4.2, to show that

[(1, r¡'(i+t) ,2,2,(1,1¡'(j+z) ,2,2,(L,1)'(i+3) ,2,2,.. . . . .]

< [(1,1)(i)-1,2,2,(L,,])r(i-t¡,,2,2,(L,l)r(i-z¡,2,2,.. .1.

That this is true is an easy consequence of Lemma 4.1 and the fact that {"(¿)}¿+I."
satisfies the properties (a) and (b). 'We leave the details to the reader. D

Remark 4.1. Although our statement of Theorem 4.1 is asymmetrical with

respect to the terms 1,1 and 2,2 this is for convenience only. It is not hard to show

that if ,4 is of the form (4.1) where {"(¿)}o+I"" satisfies the conditions described.

and if "4 is not (2,2)* or (2,2)*,L,L,(2,2)* then ,4 can also be written in the

form

where {"'(¿)}n+Ioo is a sequence of non-negative integers which satisfies the same

conditions as {r(i)}n+joo. Moreover, either {r(¿)}n+j"" consists of positive integers

and {r'(i)},*I"" i.
r(i-1)-1 r(i)-1 r(i*1)-l

1, 0,...,0,1,0,...,0,1, 0,...,0,1,... ...

or this is true with the roles of {t(¿)}n+I." and {r'(i)}L:"" reversed.

Remark 4.2. Theorem 4.1 with conditions (a) and (b) replaced by

(.)' l"U) - '(i)l S 1 for all i and j,,

(b)' if r(i * t) - r(i) is *1 or -1, respectively, for some i then either all the

differences r(i* 1+ j) -r(i-j) where j:7,2,3,... arezeroorthefirst
which is non-zero is -1 or f 1, respectively.

is essentially Theorem 3 in Chapter 1 of Cusick and Flahive's book, [14]. The only

difierence being that we also allow sequences ¿4 with À¡(ra) : 3 for some i. We

claim that the two pairs of conditions are equivalent. Clearly, (a)' and (b)' imply

(a) and (b). Likewise, (a)' and (b) imply and (b)'. Therefore to prove the claim we
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need only demonstrate that (a) and (b) imply (a)'. Suppose not, that is, suppose

(a) and (b) are true and (a)' is not. Then there exist integers i < j such that

lr(j)-r(i)l > 2. Choosei and j sothat inaddition j - i isminimal. Notethat

(a) implies j - i 2 2. By reversing .,4, if necessary, u'e carl assume r(r) 2 r(i) + 2.

Since j - i is minimal we know

r(k) : r(i) * 1, le :i*L,,i *2,...,i -7

and thus (a) implies r(j) : r(i) * 2. Since ,(j) : r(i) + 2, the minimality of j - i
also implies

,(j + /) > r(i) * 1, l:1,,2,..., j -i-7
and hence

,(j +I)2r(j - 1- r)' l:1,2,...,i -i-2
andr(j+r) > r(j - 1-l) when l: j -i-1. It followsthat thefirst of the

differences

,(j +I)-r(j - 1-l), I:7,2,...,i -i-l
which is not zero is positive. However, ,(j) -r(j - 1) is *1 and we have a contra-

diction of conditio" (b). We conclude that (a) and (b) imply (a)' and the claim is

true.

We shall complete this appendix by converting the characterisation of the integer

sequences ¿4 with M(A) ( 3 given in Theorem A'.1 into a similar characterisation

of the cutting sequences of the corresponding geodesics on T. We shall use the

algorithm involving,t.R-sequences as described in Chapter 2 to do this. We remind

the reader that we use the abbreviation

Wn : W ...W

where n ) 0 is an integer and 17 is a word in the symbols {A,8,, A-t ,, B-t}.

Theorem L.2. A doubly infrnite sequence S of A's, B's, A-r's a^nd B-r's is
the cutting sequence of a geodesic onT which corresponds to a sequence of positíve

ft
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integers A with M(A) S 3 if and only if there areY,Z e {A,8,¡-r,,8-t} with
Z I y+r such that S : Y- or S : Y* ZY* or S is of the form

(A.2) Zy"Gr) Zys(o) 2ys(r) Z ......

where {"(¿)}¡+j"" is a sequen ce of positive integers for which

(u) ls(i + 1) - s(i)l 37 for alti,
(b) if s(i * t) - s(i) is *1 or -L, respectively, fot some i then either aJl the

differences s(i*1+ j)-"(i - j) wherc j:1,2,,3,... are zeroorthefrrst
which is non-zero is negative or positive, respectiveþ.

Proof. 'We prove the forward implication first. Let A: {"¿}¡+joo be a sequence

of positive integers with M(A) < 3. Theorem 4.1 describes the possibilities for

"4. We suppose first that ",4 is of the form (4.1) where {"(¿)}n+I- is as described.

According to the section of Chapter 2 on .L-R-sequences rve can produce the cut-

ting sequence of a geodesic on T which corresponds to "4 by first forming the

.t.B-sequence

(A.3) L2 R2 (LR)r(-r) ¡z PzQ,n¡'Ol t2 R2çln¡'O) L2 R2

'We then form a pattern from Table 2.1 somewhere in (4.3) and extend it to the

whole sequence using only patterns in Table 2.1. There are six possibilities. One

of them is

... B-r R2 AQ,AI¡'{-L) L2 B-r R2 A(LRA)r(o) L2 B-r R2 Açt RA)r(r) L2B-t ..

which yields the cutting sequence

(A.4) g-t ¡r(-r)*r B-t ¡r(0)+18-l Ar(r)+r B-r

This is of the form (4.2) with Y : A and Z : B-r and s(i) : r(i) * 1 for all i.
It is not hard to deduce from the fact that {"(¿)}n+S"" satisfies the conditions (a)

and (b) of Theorem 4.1 that {s(i)}I:"" satisfies the corresponding conditions of

this theorem. Hence (4.4) is of the form described in this theorem.
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We know that altogether there arc 72 cutting sequences which correspond to A.

The others may be obtained from (4.4) by applying to it automorphisms which

represent the cosets of ìú/Inn l'. W'e take as a transversal the set

{Id, s, s', R', R' s, R' s', P, P s, P st,, P R',, P R2 S, P R2 52 } .

Thus all cutting sequences which correspond to ,,4 may be obtained by applying

the automorphisms Id, P, R2 arrd PR2 lo (4.4) and its images under ,S and ,92.

The image of (A. ) under S(A,,8): (B,r-t¿-t) is

(A.5) AB'Gt\+z ABr(o)+2 ABr(t)+z A

This is of the form (4.2) with Y : B and Z : A and s(i) : r(i) + 2 for all i.

Again, it is easy to deduce that {s(i)}n*:"" satisfies the conditions (a) and (b) of

this theorem from the fact that {r(i)}n*:"" satisfies the corresponding conditions

of Theorem A'.1. Hence (4.5) is of the form described in this theorem.

A second application of ^9 to (A.a) yields the sequence

(4.6) . . .(A-t B-t ¡r(-t)+t ¡-r ç¡-r 3-t ¡r(o)+t ¡-t ç¡-r g-t ¡r(t)+L A-r . . .

We can re-write (4.6) in the form

(A.7)

where {"(¿)}n+j"" is the sequence

(A.8)

r(i-l) "(i) r(i{l)

2rrr... rlr2r1,...,Lrzrrr...,1,2r.......

Clearly condition (a) holds in this case. Suppose condition (b) does not. By

reversing {"(¿)}n+I"" and {r(i)}l:.", if necessary, we can assume there are integers

i and j >L such that s(i) : 1 and s(i + 1) :2 and

s(i - /): s(i + 1+/), l:t,2,...,j -I
and s(i - j) : 1 and s(i * 1* j) : 2. Re-index {r(¿)},+I." so that r(i + 1)

corresponds to the block of l's immediately following s(i * L) : 2 and let k > 0
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be the number of indices / with i + 1 < I < i + 1 + j and s(I) : 2. If k : 0

then r(i) 22: r(iI1)+2 contradicting (a) in Theorem 4.1 and if /c 2 l then

r(i):r(i* 1)*l and

r(i - I): r(i + 1+ ¿), l:t,2,...,k -I
and r(i - k) > r(i+t+/c)+l contradicting (b) in Theorem 4.1. Hence condition

(b) also holds for {s(i)};+ioo and (4.7) is of the required form.

Since P(A,B): (8,.4) and n2(A,B): (A-t,B-t), it is trivial that the im-

ages of the sequences (4.4), (4.5) and (4.7) under P, R' and PR2 are of the

required form. Therefore to complete the proof of the forward implication rü¡e

need only consider the sequences (1,1)- and (1,1)-,2,,2,(L,t)-. Correspond-

ing to these are the -L.B-sequences (.Lr?)- and (^L.R)-L2R2(LR)-, respectively,

and hence the cutting sequences ,4.- and .4.-B-1r4."". The images of the latter

under ^9 are B- and B*AB* and a second application of ,S yields (B-tA-t¡""
and (B-1 A-t)*A-r(B-14-1)-. Obviously all these sequences and their images

under P, R' ar'd PR2 are of the required form.

To prove the reverse implication we let S be a doubly infinite sequence of A's,

B's, A-rts and B-l's and we let A be the corresponding integer sequence. We

suppose first that S is of the form (4.2) where {t(¿)}¡+-i"" is as described and

Y,Z e {A,B,¡-t,g-t } and Z ly+t. We shall use Theorem 4.1 to show that

M(A) ( 3. We can replace S by any of its images under P, R' and PR2 without

altering the sequence A. Hence we can assume Z : B-r. If also Y : A then S is

of the form (4.4) where r(i) : "(i) - 1 for all i. In this case, the corresponding

.t.R-sequence is (4.3) and so ",4 is of the form (4.1). It is not hard to verify that

{"(¿)}n+:a"" satisfies the same conditions as {s(i)}n+ioo (except that some of the

r(i)'s may be zero). Therefore Theorem 4.1 implies M(A) ( 3 and vüe are done. If
Y : A-r we consider two subcases. The first subcase is that "(i) > 2 for all i. In
this subcase, we replace S by its image under PRz so that it is of the form (4.5)

where r(i) : r(i) - 2 for all i. The corresponding -tR-sequence is (4.3) and "4, is

of the form (4.1). Again, {r(¿)}n+-i." satisfies the same conditions as {s(i)}n+i-
and so Theorem 4.1 implies M(A) ( 3 and we are done.
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It remains to consider the situation where Y : A-r ar,.d Z : B-r and some s(i)

is 1. In Remark 4.2 we reformulated the conditions (a) and (b) of Theorem 4.1 to

the conditions (a)' and (b)t. Clearly this reformulation is equally applicable to the

conditions which {"(¿)}r+j"" satisfies. It follows from the condition corresponding

to (a)' that {s(i)}n*:." is a sequence of l's and 2's. If {s(i)}r+i"" is

1 1 1 1112111or, )

then S is (B-tA-t)- or (B-t¡-t¡*A-r(B-r¡-r)-, respectively, and so,4 is

(1,1)- or (1,1)-,2,2,(1,1)- and M(A) < 3. Theonly other possibilityis that

more than one 2 occurs in {s(i)}r+i"". In this case, it can be deduced from

condition (b) that every block of 1's in {s(;)}n+joo is of finite length. Hence

{r(¿)}n+I." is of the form (4.8) where {"(¿)},+:1." is a sequence of non-negative

integers. We are assuming S is of the form (4.7) and therefore we can re-write

S in the form (4.6). The corresponding .t.R-sequence is (4.3) and as usual ,4, is

of the form (4.1). To see fhat M(A) < 3 we need only show that the sequence

{r(i)}L:"" satisfies the conditions (a) and (b) of Theorem 4.1.

Suppose condition (a) of Theorem 4.1 does not hold. By reversing {r(i)}c+i""
and {s(i)}L:"", if necessary, we may assume there is some i such that r(i + 1) >
r(i)+2. Re-index {t(¿)}r+I." so that s(i) : 2 and r(i+1) corresponds to the block

of 1's immediatelyfollowing.s(i). Set fu: "(i) *1. Then s(i):2 and s(i*1): t
and

s(i - /): s(i + 1+ /):1, l:1,2,...,k-I
and s(i - k):2 and s(i * 1+ k) : 1. This contradicts the property (b) of this

theorem. Now suppose condition (b) of Theorem 4.1 does not hold. By reversing

the sequences, if necessary, we may assume there are integers i and j > 7 such that

r(i-l1):r(i)*1and

r(i -l): r(i + 1+ ¿), I:1.,2,...,, j -L

andr(i +1+ i)2r(i - j)+2. Again, re-index {r(¿)}I-I." sothat s(i) - 2 and

r(i -l1) corresponds to the block of 1's immediately following s(i) : 2. This time
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set

ft : r(i)+ 1 + r(i -1) + 1 + "' + r(i -i) + 1

Then s(i) :2 and s(i * 1) : 1 and

s(i - l): s(i + 1+¿), l:L,2,...,k -l

and s(i -k):2 and s(i+1+k) : 1. Again this contradicts the property (b) of this

theorem. 'We conclude, as required, that {r(i)}r*:"" satisfies both the conditions

of Theorem 4.1.

To complete the proof it remains to consider the situation where S : Y- or

S:Y*ZY- for some Y,Z e {A,8,¡-1,3-t } with Z lY+t. In this case,

by applying one of Id, P, R, or PR2 we may assume that s is one of ,4.- or

A*BA* or A*B-1A*. The corresponding integer sequence "4 is (1,1)- or

(1,1)-,2,2,(I,1)- or (1,1)-,2,2,(1,1)-, respectively. In all cases Theorem 4.1

implies M(A) ( 3 and the proof is complete. I

Remark 4.3. We saw in the section of Chapter 2 on linear sequences that

the integer sequences "4 with M(A) ( 3 correspond exactly to the geodesics on T
with linear cutting sequences. It follows that Theorem 4.2 provides a characteri-

sation of linear sequences. There are many other cha¡acterisations. An example is

Theorem 2.8. Further examples may be found in 1271.
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