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SUMMARY

This thesis investigates general methods with which the circulation induced

by a wind blowing over the surface of a closed basin may be calculated. Firstly, the

linear, depth integrated equations describing such motions are used to model the

motions induced by an oscillating wind blowing over a system of connected lakes

each of constant depth. The techniques used to model this problem are the Collo-

cation and Galerkin methods, which assume the basins are of rectangular shape,

and a Boundary Integral Technique, which models basins of arbitrary contour.

The perfornìance of each of these rnethods is analysed

By way of developing the above methods, the effect of the Coriolis fo¡ce on

the motion in rectangular lakes of various dimensions is also discussed. Results

from the Boundary Integral Technique are also compared with analytic solutions

available for simple geometries.

Various numerical methods of solving the depth integrated equations are also

developed. Some of these methods can be used to calculate the effect of a wind

blowing over a basin of arbitrary depth and contour. As part of this section of

the thesis, finite difference approximations are developed which enable derivatives

at a point near a curved boundary, along which a Neumann boundary condition

applies, to be modelled with second order accuracy. Results from all the numerical

models are compared with each other as well as with analytic solutions of problems

with simple boundaries.

lll



Finally, the depth variation of horizontal velocity in such flows is considered.

Several analytic solutions, applicable to channel flow, are developed. These are

compared with experimental observations. A turbulent energy closure scheme is

also used to examine the vertical profile of velocity and comparisons are made

between the results from this model and the analytic solutions as well as some

experimental observations.
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Cn¡,proR I

THE EQUATIONS FOR GEOPHYSICAL FLOWS

$1.1 DpRrv¡,rroN O¡' Tnp Blsrc EqulrroNs

The equations which describe the motion of an incompressible fluid with con-

stant molecular viscosity are the equations for mass conservation and momentum

conservation, which in tensor notation, are:

0q;
0 (t.t.t(a))ðr¡

and

Dq¡ ðpe"j;; - --h* pF;* pYzq¡ ( r.1 .1 (ö) )

where

x : irrr *i2r2 * isø3 is the position vector,

t is time,

Y2:itff *ir#*irfü,
fl : fl(x;ú) = irgr *izqz * isga is the fluid velocity,

p is the constant fluid density,

p - p(x;ú) is the fluid pressure,

k - * + qtfo + qrh + qzs-* is the material derivative,

F - F(x;ú) are the body forces

: \Íqz - izÍqt - iag,

g is the acceleration due to gravity in the negative ø3 direction,
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Í :Zd'l sin / is the Coriolis parameter,

O : angular speed of the earth's rotation,

ö - ö(x) is the latitude and

¡r is the molecular viscosity.

The above set of Navier-Stokes type equations contains information over a

large range of scales. For oceanographic flows such as wind driven and tidal flows,

these equations are usually averaged over a characteristic time interval, 1. This

results in the so-called Reynolds averaged equations. Writing

u - e(x;r) - å I,':::,' q(x;r)d.r (r.r.z(ø))

so that

q=u+u' (1.1.2(b))

and similarly

p-P+Pl (t.t.2(c))

where u' and p' define the instantaneous fluctuations of q and p about the time

averaged means u and P, yields the following system of equations for the time

averaged components u and P:
ðu:"^*' :0 (r.t.a(ø))ori

Du; ôPe-ñ--ur*pF; 1-pu'ru}) * ¡tY2u;
ðI-' ari (1.r.3(ö))

The terms hCo4) in the above equation represent additional stresses asso-

ciated with all the velocity fluctuations at time scales less than the characteristic

2

time interval, ?.



For oceanographic tidal and wind driven flows the set of equations (1.1.3)

may be further simplified. A scale analysis reveals that the magnitude of terms

0P lôrs and pg are much greater then the magnitude of the remaining terms in the

equation for the conservation of vertical momentum (that is Equation (1.1.3(b))

with i:3). Thus, if the density p is constant over depth, the following equation is

obtained

P(x;t) - Po(rt,xzit) + ps(ç - "r) (1.1.4)

in which

Po(rtrtz,t) is the surface atmospheric pressure averaged over the time inter-

val I and

f : f (ør ,szit) is the sea surface elevation with respect to ø3 = 0 also averaged

over 1.

Substituting Equation (t.t.A) into Equation (1.1.3(b)) and using Equation

(t.t.3(a)) yields the final equations for momentum conservation, namely,

# * fi@,,,¡ -- -;# -'#+ n + i#
tii: tr(#.H) - pu!tu'r.

j = 1,2 (1.1.5)

where

Equations (1.1.5) and (l.t.e(a)) form the basic system of equations used to

model most oceanographic and geophysical flows. However, this system of equa-

tions, as written above, cannot be solved due to the presence of the terms involving
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r¡¡. The exact form for these stresses is not known but closure of the set of equa-

tions may be achieved in a number of ways, two of which are now briefly discussed.

$1.2 Tnp DnprH INTEGRAÎED EQUAUONS

The simplest, rvay of solving Equations (t.t.a(a)) and (1.1.5) is to integrate

the equations with respect to the depth direction. The resultant depth integrated

model will provide information about the surface displacement as well as the depth

averaged motion of the fluid.

The depth integrated horizontal velocity components U and V are defined by

U_ I:^ udz (t.z.t(ø))

and

I:^ ( 1.2.1 (b) )V_ adz

Integrating Equation (1.1.5) results in the following depth integrated Reynolds

averaged equations for momentum conservation

AUô
-r-il'ax

ava
-r-ôt'an

(ç) .h(#) -ff'-Ï#-sh#
- Tbs

p

(+).h(i) +p= -1T-,hH
_ Tbv

p

(t.z.z(c))

( I .2.2 (ö))

where

h-ç+h
4

(1.2.3)



is the total depth of the fluid. Inherent in the above two equations is the assump-

tion that the horizontal and time variations of the stresses are negligible (see,

for example, Noye and Flather (1OAS) and Kuipers and Vreugdenhil (1973)). By

utilising the kinematic boundary conditions at the surface (DçlDt - ,") and at

the bottom (DhlDt - -ro) and Liebnitz's rule, the mass conservation equation

becomes

ôç _âU AV
at- *+ã=0. (1.2.4)

The system of equations described by F,quations (1.2.2) and (f .2.4) form the

usual set of equations used in a depth integrated model of wind and/or tidal driven

flows. This system of equations is solved using the following boundary conditions.

At a solid boundary, that is, a land-water interface, the velocity component

normal to the boundary is required to be zero. At open boundaries where the

modelled region joins another region of water a choice of several boundary condi-

tions can be applied. The simplest condition is to specify the surface elevation or

the normal component of velocity as a function of position along the boundary and

time. There are other ways of specifying the open boundary condition discussed

in Baltzer and Lai (1968), Reid and Bodine (1968), Wurtele et. al. (197f), Reid

et. al. (1977), Flather (1979) and Noye and Flather (1985).

The closure of the problem has been brought about by the specification of

the stress terms. The assumptions concerning the depth integrated stress terms

are that the horizontal gradients of stress are negligible and that the remaining
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two terms, f, and 16 are known. The usual method of determining r" and r¿ is

to utilise the quadratic drag laws which are of the form (see, for example, Nihoul

(te77))

1": poC"WlWl (t.2.5(a))

,o -'fiulul - mr, (1.2.5(ó))

where

po is the density of the atmosphere,

C, is the non-dimensional surface drag coefficient,

Co is the non-dimensional bottom drag coefficient,

W is the wind velocity at some reference height above the fluid surface and

U is the depth integrated velocity vector, U -(t/,y).

The term mt, in F,quation (1.2.5(b)) is included to account for the relative

additional contribution that the bottom stress makes to the surface stress. For

laminar, wind induced flow in a lake of uniform depth, Hellstrom (te+t) and

Keulegan (1951) have deduced m = 0.5. Flancis (1953) showed that in realistic

turbulent flows m is generally less than 0.1. If this term is not included an anomaly

in using Equation (1.2.5(b)) results. In a situation where there is no net flow

when IJ:0 as occurs in the equilibrium wind set-up in a closed basin, F,quation

(1.2.5(b)) without the last term included would predict that the bottom stress

would be zero. However, clearly there would be stress exerted on the bottom

by return currents near the bottom. It is for this reason that the mt, term is

included.
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Actual values for C" and C6 must be experimentally determined. For a sum-

mary of the many empirical formulations suggested for the surface drag coefficient

see, for example, Wilson (1960) or Welander (1961). In particular, the formula of

Wu (1982), namely,

C, - (o.s + o.o65w1o)xro-3 (1.2.6)

where IVro is the wind speed measured at a height of 10m above the surface is

recommended. This formula appears to be applicable for all wind speeds.

Obtaining a value lor C6 is much more difficult. Often in numerical models us-

ing depth integrated equations, a value for C6 is obtained by calibrating the model

with observed results. Bowden et. al. (1959) suggested Co=Z.1xl}-s whilst Bow-

den and Fairbairn (1952) deduced 1.8x10-3. In a model of tidal flow in an estuary,

Johns (1978) found that the value ol. Co varied greatly during a tidal cycle; from

l.24xl0-3 to 1.39x10-r. This variation in values of C6 was also experimentally ob-

served by Sternberg (1968) who found 8.7x10-a 1Co 11.llxl0-2. These ranges

of values lor C6 suggest that Equation (f .2.5(b)) will never completely represent

the bottom stress, f6, ov€r an entire cycle in an oscillating flow. There are other

formulations for C6 based on empirical relationships. One such formula allows C¿

to depend on the total depth. This is known as the Chezy formula for bottom

friction and is given by

c,: oï'!:!: 
0.2.7)(l.oo3)2

where n is Manning's roughness coefficient which varies according to the roughness

of the sea floor.
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The next four chapters of this work deal with the depth integrated equations.

The equations actually used are F,quations (1.2.4) and the linearized form of Equa-

tion (f .2.2). The bottom stress will also be linearized by assuming r - Call.lllh2

is always a constant.

$1.3 Tuu THREE DTMENSTONAL EquluoNs

As has been shown there are several problems involved in the application of

depth integrated models. One other disadvantage is that they supply no informa-

tion about the nature of the flow in the vertical direction. The second method

of closing Equations (t.l.S(a)) and (1.1.5) results in a three dimensional model

capable of providing a complete description of the wind forced or tidal motion

in an arbitrary shaped basin. Such models are becoming increasingly important,

especially in the field of environmental control and off-shore engineering

This closure scheme involves modelling the terms -puliui. The oldest proposal

for modelling these terms is the Boussinesq eddy viscosity concept which presumes

an analogy between the molecular motion, which leads to Stokes'viscosity law in

laminar flow, and the turbulent flow. In general, this concept may be expressed

as

ôu; oui
-ut¡uì, - N ôri ôn;+

)-;
k6;i (1.3.1)

where

lY - lY(x;t) is the turbulent eddy viscosity and

fr - fr(x;t) is the turbulent kinetic energ'y, given by
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k - u';'lz- (1.3.2)

The term involving the Kronecker delta, 6;¡, in the above equation is some-

times not seen in discussions of this sort. Horvever, it is necessary in order to

make the expressions for the Reynolds stresses applicable for the normal stresses

when i = j. Consider Equation (1.3.1) with the last term on the right hand side

omitted. In this case, the sum of the normal stresses would be u!2 = -ZNðu;f ðr;

which is identically zero using Equation (t.t.a(a)). However, by definition, the

sum of the normal stresses should equal 2,t which is always a positive constant.

Hence, the á;¡ term is included in Equation (1.3.1) to ensure the requirement of

Bquation (1.3.2) is fulfilled. The addition of this extra term in Equation (1.3.1)

does not complicate the governing equations, however. Like the pressure, P, ft is a

scalar quantity and when Equation (1.3.1) is substituted into Equation (1.1.3(b)),

for example, the second part of (1.3.1) can be absorbed by the pressure gradient

term. That is, in effect the pressureP is replaced by P* 2klSbut forsimplicity

this quantity is designated by P.

The equations resulting from substituting Equation (1.3.1) into Equation

(1.1.5) may be greatly simplified for most flows. In general, the cross product

terms -pu!;ut¡, il j are greater in magnitude then the normalstress -pu'r2 (see,

for example, Duncan et. al. (1978)). For most flows, the Reynolds stresses are

much greater in magnitude than the molecular stresses. Also, for geophysical

flows, horizontal variations in the velocity components are much smaller than the
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vertical direction. Hence, using these assumptions the resultant three dimensional

equations involving the eddy viscosity are:

ôc AU ôV

-:-,At ôr'ôy

T . T,u'" + fin " + r,f,u, - htu

--hs#-t#*ïl*#,
ôhuð¿fi + f;hau + {on" + nfi,t, * hf u

--uoif'-i#.ïh.#

(t.e.e(o))

(1.3.3(ó))

(t.s.a(c))

and

,-1l.Lr,-1,: u L,, *v - atrru(r) + ,ln - hur rrrl, (1.3.3(d))

in which,

n - ffi is a transformed depth,

ø is the transformed vertical velocity component and

U(q) = Il "drt' and Iz(7) - tl adq'.

The boundary conditions which are used in conjunction with the above set of

equations are:

(1) at a solid boundary, the velocity normal to the boundary is zero,

(2) r no-slip condition applies at the sea bed that is

tt= u: u) =O at q - 0. (1.3.4)

Sometimes a slip velocity condition is used at the bottom. This is, however,

only an approximation.
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(3) at the sea surface the following holds

at4-1, (t.3.5(ø))

ôu
(1.3.5(ö))

pN
h

at7-1,
ôrt

where 1r may be related to the wind stress by (1.2.5(a)).

(a) at open boundaries the height of the surface elevation is usually specified,

although there are several other alternatives as mentioned in the previous

section dealing with the depth integrated equations

A fully three dimensional description of the fluid flow field is available from

Equations (1.3.3) provided a suitable formulation for iV is available. Not only

does this set of equations provide a more complete description, but it also has

less dependence on empirical laws then the depth integrated model. Nihoul (1977)

suggests that investigations into a complete three dimensional model are necessary

if only to check the validity of Equation (1.2.5(b)). Various formulations for JV

which have been deduced from laboratory experiments and field observations will

be discussed in Chapter 6. Also in this chapter will be discussed the various forms

of iV which have been used in numerical models. Finally, methods which allow iV

to be calculated as part of the solution procedure will be discussed

pN ôu
rer = h art

î¿!
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C¡t.rproR 2

CORIOLIS FORCE AND THE CONNECTED LAKE PROBLEM

$2.1 INTROOUCTTON

In Walsh (1974), numerical and analytic models were developed to predict

the effect of a wind blowing over a system of two lakes connected by a narrow

channel and these models were applied to the Mumay Mouth lake system in South

Australia. However, Walsh's analytic model was only reasonably satisfactory; an

improved model is presented in this work.

Three different methods will be used to solve this problem: the Collocation

and Galerkin techniques (both examples of the method of Weighted Residuals)

and a boundary integral approach. The latter approach will be developed in

Chapter 3 ; the two other methods will be described in Section 4 of this Chapter.

Comparisons between all three methods will be made in Chapter 4.

A statement of the connected lake problem will be presented in Section 2 but

firstly the effects, if any, of the Coriolis force will be examined. Walsh (1974)

considers a rotating circular basin and concludes from the resulting analytic so-

lution that the effect of the Coriolis force can be ignored. In order to check this

conclusion an analytic solution for a rotating rectangular basin is now developed.
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52.2 RorerrNc RpcrnNcuLAR Besw

Consider a closed rotating rectangular basin of constant depth Il, length .[

and breadth B as shown in Figure 2.1. An r - y Cartesian coordinate system is

positioned near the bottom left hand corner of the basin. Movement of the surface

of the basin is excited by a variable wind stress, rr.

It will be assumed that the components of the surface wind stress can be

expressed in the form

rrr(nryrt) = rot(rry\"'ot (2.2.t(ø))

rrv(rrY,t) : îoy(t,Y)"'o', (2.2.1(ö))

where

rr¡,tres are respectively the ø and y components of the surface wind stress tr,

ø is the circular frequency of the wind stress,

roatÍos are the amplitudes of the r and y components of wind stress,

a - nÆJ to¿

t is time (in secs).

Letting the response of the surface, ç, be

Ç(x,y,t) : z(a,y,o)e'ot (2.2.2)

then Z satisfies the Helmholtz Equation (see Walsh (1974))

(v'+ k2¡z - 
"L"BtOo 

+ lc) (z.z.r)

where

l3



B

v

x
L

FIGURE 2.1: A closed rectangulør basin ouer which a surføce wind stress, îr, is
bloving in tlt"e n direction.



Yz=#.#,
n,_s(r.#)

ôro" , ôros-;- ï -^-rot oy
þrov ôro,
A" - Ay'

(r + m)lp,

(z.z.e(al\

(2.2.4(b))

(2.2.+(c))

(2.2.4(d))

(z.z.a(e))

D_

C_

K_

and

þ:ro*2a, (2.2.4(f))

in which

/ is the Coriolis para.meter,

m is a constant value and takes a value of about 0.05 for turbulent flow,

2a : rf H where r is a friction parameter,

p is the density of the water (assumed constant) and

c - t/gE is the free gravity wave celerity.

If the r and y components of the depth integrated velocity of the lake are

denoted by U and I/ respectively, then the following forms for these components

are assumed:

U(rrY,t) : P(x,Yro)"'o', (2.2.5(ø))

V (r,y,t) - Qþ,y,o)"'ot. (2.2.5(b))

Walsh (1974) has shown that P and Q may be determined once Z is known

using the following relations

e : vlE l* ro,o, + rroò - r þ# .,K)l' (z.z.o(ø))

15



a (2.2.6(ö))

The above equations are easily derived from Equations (1.2.2) and (1.2.a) by

linearizing these equations and assuming a linear bottom friction law.

Equation (2.2.3) is subject to the boundary condition that there is no flow

across the boundary of the lake. Hence, the following conditions hold:

P-0 atr:0,L;y€[0,8], (z.z.z(ø))

Q=o aty-o,B; x €[0,¿]. (2.2.7(b))

The above boundary conditions may also be expressed in terms o1 Z using Equa-

tions (2.2.6(a),(b)), yielding

-- #l*rr",,- tro")-r (tK -,#)l

BY+tor
az K (þro" + lroc) x : o, L; y e [0, Bl, (z.z.a(ø))

(þrou - Íro") y =0, B; z €[0,¿]. (2.2.s(ö))

09
ðZ

c2

K
ôr c2

Hence, the problem is reduced to one of solving Equation (2.2.3) subject

to the boundary conditions (2.2.8(a),(b)). If the wind stress is assumed to be

homogeneous and unidirectional and the Coriolis force is neglected, then simple

analytic solutions may be obtained lor Z (and thus P and Q). Such solutions are

presented in Walsh (1974). For a similar wind stress and a rotating basin (l + 0),

then a solution to the equations may be obtained using the method of Collocation

as will be shown below
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The amplitude of the stress described above is denoted by

ro'(rrg) = ro, (z.z.e(ø))

îov(r,y) = o, (2.2.e(b))

which corresponds to a homogeneous, unidirectional wind stress aligned in the u

direction. For such a wind stress, the right hand side of Equation (2.2.3) becomes

zero and the boundary conditions given by Equations (2.2.8(a),(b)) are simplified

so that the system which is to be solved becomes

(v'+k2)z-0, (2.2.t0(ø))

subject to

o0Z , ,ôZ _Kþro-ôo 'ôy c2
r : o, L; v e [0, B], (2.2.10(ö))

AZ K lro
ôs o v = o, B; n € [0, ¿]. (2.2.10(c))BY-¡oy

The solution to the above system of equations may be obtained in the following

manner. The function Z is written

Z (r, y,o) : Zo(r,y,o) * Z¡(x,y,o) (2.2.r1)

where Zs is a particular solution of Equation (2.2.1O(a)) which satisfies the bound-

ary conditions at g = 0,8 described by Equation (2.2.10(c)) but not necessarily

those at x = 0, L. Consequently, Z1 also satisfies Equation (2.2.t0(a)) as well

as homogeneous boundary conditions at y - 0, B; that is, Z1 satisfies Equation

(2.2.t0(c)) where the right hand side of this equation is set identically to zero.

t7



An expression for Zs ma! be obtained by assuming that this function depends

only on y. Therefore, Zs satisfies the equation

+*kzzo-søy'

dZo K Íro
dv þc2

Zs
K lro
p

at y - O,B

(2.2.12(ø))

(2.2.rz(b))

(2.2.r3)

subject to

which has the solution

kc2 {#Ðcos'tY-sin/rY

Because Z1 satisfies homogeneous boundary conditions, the elevation Z¡ rep-

resents free motion in the infinite channel0 < y ( B. Hence, Zy may be considered

to be a linear superposition of two Kelvin waves and a double infinity of Poincaré

\ryaves. These two sets of solutions may be derived in the following manner.

The function 21 satisfies the system

(v' + k2) z, - o, (z.z.r+(a))

subject to

p 0Zt ðZt
9 : o, B; r € [0, ¿]. (2.2.14(b))Í ðx,

The y component of depth integrated velocity associated with this free motion

is denoted by Qr (r,yro) , an expression for which is obtainable from Equation

(2.2.6(b)) where 16¡ and rs, have been set to zero.

ôy
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Firstly a solution fior Z¡ will be found for which Qr is zero throughout the

lake. From Equation (2.2.6(b)), it is clear that such a condition on Q1 implies

oô2, _ ,ðZtP av - f Ë e:0, B; x, € [0,¿]. (2.2.15)

A function which satisfies the above expression will also satisfy the boundary con-

dition (2.2.14(b)). The solution to Equation (2.2.15) may be obtainecl by the

method of separation of variables. This expression is then substituted into Equa-

tion (2.2.14(a)) thus yielding one set of solutions Lor Zy, namely

Zr = Zo - As¿Ltor-qo! * Bse-eor*qov e.Z.L6)

where ás and Bs are unknown constants and

(2.2.r7(a))110:(#)r
(2.2.17(b))

Solutions of this type, with the factor e'"¿ adjoined, are called Kelvin waves.

Another type of solution, 26, to Equation (2.2.14) may be obtained by ap-

plying the standard separation of variables technique to Equation (2.2.1a(a)) in

conjunction with Equation (2.2.14(b)). This yields the following solutionÍor Z¡

Zt: Zo- Ë {Ao"r^,[cosá,"y 4- þosinloyl
n=l - (2.2.18)

* Bo¿-1^' [cos doy - {,, sin 0*Vl\ ,
where, for n = 1r2r...,.l{r, and Bo are unknown constant coefficients and

0o:-+

, l^rn
9n = Uçt
tii-01-x2

(2.2.20(ø))

(2.2.20(b)\

and

19



a

0o
nß

(2.2.20(c))B

Waves of the type described by 26, with the factor e'"t adjoined, are called

Poincaré waves.

The two solutions Zo and 26 conslitute a complete set of solutions to the

system of equations (2.2.14). Hence, a solution to Equation (2.2.t0(a)) subject to

Equation 2.2.10(c)) is

Z: Zo+ Zo* Zu,

that is,

z (,, v,,) = p#{ (=#Ð 
cos /cv -,io rv}

* Aç¿L"lot-'oo + Bg¿-¿lot*Oo!
æ

+ t {r'"'An [cos d,"y * /," sin áoy]
n=L

* e-1"'Bn [cos doy - f ,n sin 0"yll¡. Q.2.20)

The above form for Z may be substituted into Equations (2.2.6(a),(b)) to yield

the following expressions for P and Q:

P(',v,") - #{* o^lt . #{ q#tÌ sin /rv +'"s frv}]

lAseq"-o os - Boe-'1 t+o osf

+ f c2 k2å 
{ + lT# cos one+ sin d'"v]

.#l+cos,.nv*sinr"r] )) (2.2.2r(ø))

and
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eþ,y,,\ : #{* r^[-r * # sin rcy + cos Èv]

* ê î(e1,'an ¡ ¿-1n'rtn) (f t7 + þ'l1)W).tr.r.rrtull

Using the Collocation technique together with boundary condition (2.2.10(b))

enables values to be found for the unknowns á,r and B,n for n:0,1,2,.... in the

following manner. If the infinite series in Equation (2.2.20) are truncated to lV

terms then there will be a total o12N *2 unknowns contained in the expression for

Z. Thistruncated form of Z is forced to satisfy the boundary condition (2.2.10(b))

by substituting r = 0 and ø = -t into the expression for Z and in both cases also

letting y take thevalues y - Bil(/V+2) fori:l,...,il+f. This process

results in 2lY * 2 equations from which values for the unknown coefficients may

be obtained.

After substituting Equation (2.2.20) inio (2.2.10(b)), the Galerkin technique

could also be applied. Instead of letting y take on particular values as indicated

above, the equation resulting from the above-mentioned substitution is first multi-

plied by weighting functions, urn(g), for m = 0, l,. . . ,lV and then integrated from

! = o to y - ¡l suitable weighting functions for the above z are

ltJg : ¿0o! (z.z.zz(a))

ttJ¡n: sin á-y * örncos|rny m , N. (2.2.22(b))

This procedure was not carried out here however because satisfactory convergence

was achieved using the Collocation technique. Also, the equations resulting from

2l
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the application of the Galerkin technique are algebraically complicated. Equations

resulting from the use of both methods will be given in later sections in which the

connected lake problem is treated.

To ascertain if the Coriolis parameter is signiflcant, the above solution will be

compared with a solution of Equation (2.2.10) in which / is set to zero. Ignoring

the parameter / results in an essentially one dimensional system in which the y

coordinate may be neglected. The solution for the amplittde, Z , of this simplified

system is (see Walsh (1974))

C'-2-
Kr6 sin [fr x- L

(2.2.23)
frc2 cos (kLl2)

From Walsh and Noye (1973), the largest of the trvo lakes situated near the

Murray mouth in South Australia, Lake Alexandrina, may be approximated by a

rectangularlakeof dimensions.t - 24km., B - 8 frm. and depth , H:3m.

A wind stress given by Equation (2.2.9) is assumed to be blowing over the lake

where the ø axìs is parallel to the largest side of the lake (see Figure 2.1). A value

of rs - 0.lMm-2 is used and a value of f - -8.5x10-5 sec-t is applicable. The

larger of the two lakes is considered in this study because it will be most likely

to be affected by the Coriolis force. The gain and phase lag of the elevation and

velocity components will be examined. The gain, G, and phase ,Ö, of the surface

elevation, ç, are given by

c - { Ín (41' + ts (z)]'? } 
å, 

Q.z.z+(ø))

ö- -arctan[s(Z)lnØ)1 @.2.24(b))
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in which S and $ denote the real and imaginary parts respectively of the func-

tion Z. The gain and phase lag of the depth integrated velocity components are

similarly given

In Figure 2.2,the resultsfor the gain and phase lagof the elevation from the

basin with / : 0 (Equation (2.2.23)) are compared with results obtained for the

case where f + O (Equation (2.2.20)). The results for the gain of the elevation have

been normalised with respect to the equilibrium solution, Z"q: Kts(x- L12)1c2,

available lrom (2.2.23) with o -- O. Various values of the friction parameter, c, are

considered. In all cases, the results are taken from values occurring at the point

r -- SLla , U : Bl2. It is immmediately obvious that the Coriolis effect is very

small. As can be seen from the graphs, almost identical results are obtained for the

gain ancl phase lag for both the c.ases .f : 0 and / I 0. At any given r position,

the value of the gain and phase lag of the amplitude do not vary significantly at

various positions across the lake. The most noticeable differences occur when the

friction parameter , c, is zero. These differences, which are too small to show

on the graphs in Figure 2.2, are presented in Table 2.1. Note that when o is

non-zero the gain takes the same value across the lake and the phase lag changes

only slightly (bV at most 2%). Also note that the values obtained for / : 0 and

Í + 0 agree closely for all cases of a. The worst agreement for both the gain

and phase lag occurs when o : 0. However, the friction parameter in a real lake

is never zero. The presence of a resonance peak indicates that severe flooding

of a lake would occur at certain frequencies if the friction parameter war¡ zero.

Indeed, even for very small values of friction, it can be seen from the figure that
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GAIN

d= 0 a = 10-3 d = l0-4

v f-0 1+0 f-0 ll'o f-0 1+0

Bl4
Bl2
3Bl4

1.0120

1.0r20

r.0120

r.0108

1.0104

1.0108

0.9711

0.9711

0.971I

0.9711

0.97r I
0.9711

1.0116

1.0116

1.0116

1.0114

1.0114

l.0ll4

PHASE LAG

c:0 a = l0-3 a - 10-a

v f-0 1+o f-0 1+o f-0 r+o
Bl4
Bl2
3Bl4

0.0000

0.0000

0.0000

0.0035

0.0000

0.0035

0.3217

o.32L7

0.3217

0.3252

0.3218

0.3183

0.0330

0.0330

0.0330

0.0368

0.0335

0.0299

TABLE 2.t: Values ol the gain and phase lag obtained at r - 3Ll4 and lor a

lrequency of o -l c.p.d. andtoraarious ualues oly anda andlor f -0 (Equation
2.2.25) and f t' O (Equation 2.2.20). The ualues for the gain (in metres) haue been
normalized by diuiding by the gain obtained lrom Equation (2.2.20) with a = 0.
The phase lag is in radians.

the gain in displacement rises rapidly at frequencies near the resonance point.

This means that even when the friction is non-zero, the behaviour of the lake

changes radically at particular frequencies. At such frequencies the displacement

is significantly greater than might be expected and severe flooding of the lake

would be likely. The agreement between the results obtained for / - 0 and I + O

are close enough to be able to conclude that the Coriolis effect is negligible. The

invariance of the elevation across the lake lor f I 0 was highlighted when the

real time surface response (obtainable from Equation (2.2.23) with e'd adjoined)

was examined. In no instance did the change in su¡face height affect the fourth
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significant figure, that is, the variation was always less then I mm.

In Figure 2.3 the results for the gain and phase lag of the ø-component of

velocity are presented for the case f = 0 and / I 0. Once again, there is very

little difference in the phase lags for either value of / and for any of the values of a.

There is also no significant difference between the values obtained for the gain for

either I : O and / I 0 and for non-zero values of the friction parameter. However,

when a : 0 (no friction) an interesting shift of the position of the resonance peak

occurred. When Í : O and o : 0, a single discontinuity occurs in the graph of

the velocity gain (and also the amplitude gain) at about 9.76 c.p.d. (cycles per

day). However, when Í +0, this resonance peak is split into a pair of resonance

peaks centred about o - 9.76 c.p.d. This phenomenon was also observed by Walsh

(1974) in his study of rotating circular lakes. Once again, because the friction in a

real lake is never zero, it seems from the above Figure that the Coriolis parameter

does not greatly affect the t/ component of transport. Just as for the elevation,

the value of the response, P, did not vary greatly across the breadth of the lake.

It is also interesting to note that when ù + O, the value of the gain obtained for

the V component of depth integrated velocity was insignificant when compared

with Dr. The gain of V was always at least two orders of magnitude smaller then

that of U f.or d * O. However, in the frictionless case, I/ attained values of the

same order as U. Some results are presented in Table 2.2. For the special case

of Í + 0, the gain of both [r and V for two different values of the dimensionless

friction parameter, c, is presented graphically in Figure 2.4. From both the Table

and the Figure it is clear that for d * O, the gain of V is negligible when compared
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with the gain of úI. Fþom the solution for Q (Equation (2.2.6(b)) it is clear that

when Í = O and the wind stress is given by Equation (2.2.9) then the gain of I/

will always be zero for all values of a. However, when I * 0 the value of Q is

non-zero and for the special case a = 0, Q attains values comþarable to P. Hence,

from this point of view, if o is chosen to be zero, then certainly the Coriolis force

cannot be neglected.

P a
.f:0 I *o l:o Í +o

c:0
a = l0-3
a: lO-a

0.0047

0.0045

0.0047

0.0113

0.0045

0.0049

0.0000

0.0000

0.0000

0.0199

0.0000

0.0000

TABLE 2.2: Compartson ol the gatns ol P and Q obtained at r = 3Ll4 ønd lor
o -- | c.p.d. lor uarious ualues ol a and f .

For the small, shallow rectangular lake described above, the only significant

differences between results obtained with /:0 and Í *0 occurred when d was

set to zero. This is never the case in a real lake and so it was concluded that for

such lakes the Coriolis force may be neglected. Before ending this section it is of

interest to investigate the responses of the above rectangular lake as some of the

parameters are changed. For example, the physical dimensions of the basin will

be altered and the resultant responses wilt be presented. In the following work,

the effect of various values of the friction parameter, r, will be considered with

respect to basins of various dimensions.
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Figures 2.5(a) and (b) display the results for the phase lag and the gain of

ç obtained for a basin of the same horizontal dimensions as previously discussed

(that is, 24 lcm. x 8 km.) but with a much greater depth (20 m. instead of 3 m.).

Clearly, for a basin of this nature the results obtained are very insensitive to the

value of the friction parameter. Virtually identical results are obtained in both

frgures with only a slight difference occurring for large values of the frequency.

The results for the gain and phase lag of U, presented in Figure 2.6(a) and (b),

also show that for r * O, the results are insensitive to the value of r. However,

when r = 0, there is considerable difference between the solutions obtained for

I : O and / I 0. This is due to the presence of a resonance peak at about 12.5

c.p.d. which occurs in the solutions for / I 0. In fact, for all of the basins which

were considered, major differences in the phase lag and gain of both ç and f/ were

obtained in the solutionsusing.f :0 and/ l0 with r =0 inbothcases' For

this reason only results obtained with r: 10-3 msec-L are presented in the next

four figures. As long as r * O, similar results to those shown in the next figures

are obtained since, for the depths considered, the results are insensitive to r.

In Figures 2.7 and 2.8 results for the gain and phase lag of ç and U ate

presented for a basin of much larger horizontal dimensions then were previously

considered. The depth was kept constant at 2O m. but the horizontal dimensions

were increased to 240 km. x 240 km. It is immediateiy clear that for a larger

basin such as the one described the results obtained using 'f = 0 are sometimes

considerably different than those obtained using f # O. From Figure 2.7(a) and

(b), it is seen that for larger values of frequency the two solutions are virtually
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identical. However, at the lower end of the frequency spectrum, the results some-

times vary quite considerably. For example, when the frequency is B c.p.d. the

gain of ç obtained when Í = O differs by about 2.0 m from that obtained with

I # 0. There is a difference of about 30o on the phase lag at the same frequency.

Similar results are displayed in Figure 2.9 which was obtained for a basin of iden-

tical horizontal dimensions but with a depth of 50m. Figures 2.8 and 2.10 display

the gain and phase lags for U lor the two basins. once again, at the upper end

of the frequency spectrum, the two solutions for the gain of U are similar. Large

differences occur in the gain at the lower end with the differences being greater

for the deeper basin. At the lower of the frequency spectrum, the phase lag o'1. U

obtained for the two cases of / can differ quite markedly. Flom Figure 2.10(b) it

is clear that for the deeper basin this difference can be as high as about 45o. In

most other points on the frequency spectrum, the solutions agree quite well except

near resonance points. The resonance splitting mentioned earlier which occurs at

these points results in large differences occurring in the solutions for the phase lag

o'1. U.

Results for a basin of similar horizontal dimensions but with a depth o'f.3 m

were also examined. For both ç and [/, the phase lag and gain obtained for I : o

and/f0wereidentical.

The above discussion illustrates the behaviour of the gain and phase lag of

both ç and U. Clearly for shallow basins of any horizontal dimensions, solutions

obtained for ç and U do not significantly depend on / when the friction parameter
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is non-zero. The solutions are, however, very dependent on the value of the friction

parameter. For deeper basins, however, the results are not as dependent on the

friction parameter but different results are obtained depending on whether I = 0

or f I O. This dependence on depth is expected, since for shallow basins the

parameter a - rl2U will be larger than / and so friction effects dominate the

flow. However, for deeper water, the parameter a will become comparable to or

even less than the magnitude of / and so the flow is affected by both the friction

and Coriolis forces, or, if / is larger in magnitude, then ihe flow is dominated by

the Coriolis force. Presented above are situations in which f can and cannot be

ignored. Also, figures are displayed which show the way in which the Coriolis force

affects the gain and phase lag as the basin gets deeper.

$2.3 Tnu CoNNECTED L¡,rB PRosLpL,r

Consider two rectangular lakes connected by a channel as shown in Figure

2.11. Each of the separate lakes is of constant depth. A solution is sought to

the amplitude, ç, of the oscillating set-up caused when a wind stress described by

Equations (2.2.L) and (2.2.9) blows over the surface of the system. Solutions to

the transport components are then obtained using Equation (2.2.6).

The basins are labelled l, 2 or 3 as indicated in Figure 2.11. A similar notation

to that used in the previous section is used except that subscripts 1, 2 or3 indicate

to which region a particular variable pertains. For example 21 will describe the

elevation response function in Region l, Hz will be the depth of Region 2 and ks
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will be the variable described by Equation (2.2.4(b)) using values of the depth and

friction appropriate for Region 3.

The method determines expressions î,or Z¡ for i-1,2,3 for each region sepa-

rately. The solution for each region is obtained relative to separate coordinate

systems as shown in Figure 2.11. Once these solutions have been obtained the

various expressions are transformed so that they are all in terms of the same

coordinate system, namely the ø - y system shown in Figure 2.11.

The system of equations which must be solved in order to obtain the amplitude

of the surface response of the system is:

(V'+k!)zr-s i-r,z,B (z.a.r(o))

subject to the conditions

z - -Ls12 - Lt; y el-d,BL - dl,
y € [-d,0]
y € [0,.B3]; r - -Lsl7
V elBe, Bt - dl

a -- Bt - d; , el-h12 - Lt,-L"l2l,

(2.3.r(ö))

(z.a.t(c))

(2.3.r(d))

! = -d; n eI-hl2 - Lt,-Lsl2l, (z.e.t(e))

Qs :0 U = Bsi rel-h/z,Lsfzl, (2.3.1(/))

Qs :o y: o; r €l-h/z,h/2], (z.a.t(s))

Qz :0 ! : Bz- s; r elhlZ,L"lZ+ L2l, (2.3.1(r¿))

Qz=o y = -s; ø e lLs12,Lsl2 + L2l,
0 g € [-s,0]Ps y € [0, B3]; r: Ls,/Z
0 y€[Bs,Bz-sl

(2.3.1(i))

(2.3.r (i))E'-t2-
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Pz:o x-- Lsl2* Lzi g € [-s, Bz- sl, (2.3.1(fr))

Zt : Ze , -- -LzlL; y e [0, Br] (2.3.1(r))

and

Zz = Zs r - Lsl2; y € [0,8a]. (z.e.t(rn))

The conditions above state that the normal component of the depth integrated

velocity is zero at any closed boundary and at the open boundaries connecting

two regions at ø -- -Lslz and Lsf 2 there is continuity of volume flux and surface

amplitude.

Considering the results in the previous section, solutions which ignore the

effect of the Coriolis term will be obtained. In the following section the Collocation

and Galerkin techniques will be used to provide such solutions whilst in the next

chapter it will be shown how to use an integral equation approach to obtain a

solution.

$2.4 Tsn ColLocATroN ÀND GÀLERKTN TBcnNreues

Firstly a solution to the response function, ^Z1 which occurs in Region 1 will

be obtained. The function Z1 mrst satisfy

(v'+ k!)2, -s (2.4.r)

where ,t1 is obtained from Equation (2.2.4(b)) which, with / :0 yields

k] - (o2 -zo¡to)/cJ i :1,2,3

4t

(2.4.2)



where cJ - øhi and a¡ denotes the friction parameter appropriate for Region j.

Equation (2.4.1) will be solved subject to the conditions (2.3.1(b), (d) and (e))

which, in terms of the XrY coordinate system shown in Figure 2.11, and with the

aid of Equation (2.2.6) may be written as

ôh Kro X=o; Ye [o,B1l (2.+.a(ø))ôx
ôZt

cl

AY
0 Y =o,Bti X e [0,¿1].

The system of Equations (2.4.1) and (2.4.3) -ry be solved by first simplifying

using the expression

(2.4.3(b))

(2.4.4)z

Substituting (2.4.4) into Equations (2.4.1) and (2.4.3) yields

(v'+ k2r)z¡ -s
such that

zïI

(2.+.s(a))

X-0; Ye[0,^B1] (2.4.5(ö))

and

ffi -o Y =o,Bt, x€ [0,¿r]. e.+.s(c))

The general solution to Equation (2.a.5(a)) is obtained using separation of vari-

ables. The values of three of the four arbitrary constants resulting from this

method may be found using the boundary conditions (2.4.5(b) and (c)). In this

manner the following solution to Zl is obtained:

D Krs sin[fr1 6 - LLlz)l æ
zt = #+ Ð Docosh('y1,"x)cos(0toY), (2'4'6)-L cfkl cos[kthlzl n=o

ôz:¡ _o
ax
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where,for¿:Orlr2r...

where, for n -- O)1r2,

'Iln : 0?* - k?,

0
nÍt"- Bt

and Do is an arbitrary constant

By symmetry, the solution for the elevation in Region 2 with respect to the

X, Y coordinate system is

(2.+.2(a))

(2.4.7(b))

(z.a.o(ø))

(2.4.e(ö))

(2.4.10)

(2.a.1I (ø))

* Ë Co cosh(2 'X) cos(\2oY\, (2.4.8)
n=0

"lzn 0z* kz,

0zo

Equations (2.3.1(h),(i) and (k))

The solution for the elevation in Region 3 is

nt
B,

and C,n is an arbitrary constant. This solution satisfies the conditions given by

æ

+ Ð (.r{o cosh("y3 oX') *,Bo sinh('y3 *X'))cos(d3oY')
¿=0

in which á," and Bo areconstant coefficients and, for ¿ : 0, l, 2r...,

"bn: 03, - k3,

and
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nt
0so

Bs

This solution was obtained using separation of variables and satisfies boundary

conditions (2.3.1(f) and (g))

Using the coordinate transformations

X:r*trr*Lgl2, (2.a.nþ))

Y -s*d, (2.4.12(b)\

X=Lel2iL2-x, (2.+.t2(c))

( -g*s1 (2.4.12(d))

X'=rtLsf2 (2.+.tz(e))

and

Y (2.4.t2(Í))

Equations (2.4.6.,2.4.8 and 2.4.10) may be written in terms of the r - y coordinate

system as follows:

(2.4.r I (ö))

v

+ Ð D,"cosh[.yn(r+ h* Lsl2)]cos[á1o(v+ d)], Q.a.ß(ø))
æ

¿=0
q,tr2--

Kre sin k2(hl2+L212-r)
k2coslk2L2l2l

+ Ð C," cosh['y2 *(Ls/2 * Lz - ø)]cos[á2,"(v + r¡¡
n=O

(2.4.13(ö))

and
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* Ë (r{* cosh[13,,,(ø + Lelz)l
rz=0

* Bosinh["y3o (r + Lsl2)l) cos(d3,ny). (2.a.t3(c))

Using Equation (2.2.6) with / : 0 enables expressions for the depth integrated

velocity components in each region to be obtained. The following equations result:

o _ Kro Í, cos[fr1 (a* Ltlz+ hlz)l\
"-þr\'-@l

- *Ð=o'*"*sinh['Y1,, 
(r * L¡ + l,lz)]

Q, = *Ð^D^/,rocosh[11o 
(r * L¡ + I.lz)

p^ _ Kro [, _ coslkz(Ls12 + Lzlz - r)l\
þz l. 

^ coslk2L2f 2l J

. 
ÊÐ_""*rr*sinh['y2," 

(L"12 + L2 - r)l

* Boleocosh["¡3'" (x + Lsl2)l

(2.ara(ø))

(2.4.14(b)\

(2.a.t5(ø))

) cos(03oy) (2.a.16(ø))

cos[d1'"(y + d)],

lsin[d1"(y + d)],

coslî2o(y + r)1,

_clQz Ð C^r"*cosh[.y2o (Lt 12 * Lz - r)] sin[d2o (y + s)I, (2.4.15(ó))
þ,

æ

n=O

Ps t - #5#\ - ftË(r,r.,"sinh[13,( x+ Ls/z)]

and

Qs: *--A," cosh['y3o (n + Lslz)l

* Bosinh['y3,. (r + Ls/2)l d3,n sin(á3,"y). (2.4.r6(ó))

Not all of the conditions listed in Equation (2.3.1) are satisfied by the above
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expressions for the elevation and transport, which still involve as yet unknown

complex coefficients. The conditions which remain to be satisfied are:

(l) continuity of elevation at r: -Lslz; y € [0,^B3], that is,

Zt= Zs, at n= -Lzlz; y€ [0,83], (2.at7(a))

(2) continuity of elevation at ¡: LslL; I € [0,.Ba], that is,

Zz: Ze at r : Lslz; y € [0, B3], (2.4.17(ö))

(3) continuity of transport at, ¡: -Lslz; V € [0, B3J, that is,

y € [-d,0]ye[0,.Bs]; a=-LelT
geÍBe,8'I-dl

(4) continuity of transport at x: L"lz; y € [0, B3], that is,

(2.a.fi(c))

(2.4.17(d))D_t2-
0 y € [-s,0]Ps y € [0, As]; ¡: Ls/Z
0 !e[Bs,Br -s]

An approximation technique must be used to enable the above conditions to

be satisfied and the unknown coefficients which appear in F,quation (2.a.13) to be

determined. The Collocation and Galerkin methods will be used here. Each of

the series expressions for the elevations or velocties is truncated after JV terms.

Applying the four conditions above yìelds a system 4^ÀI simultaneous linear equa-

tions in the 4lY unknown coefficients Ao, Bo, Co, and Do, for n:0,. .. , ¡f - 1.

The four conditions are now treated in turn.
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(1) The condition Zt = Zs at r : -Lslz; y € [0, B3].

Using Equations (2.a.13(a) and (c)) with the series terms truncated as mentioned

above and substituting the value of r: -Lsl2 for ø yields
ff-1

þ tan(krL, 12) * Docosh(116.f,, ) + t Do cosh(1rotrr ) cos[d1o (v + a¡1cíßt n=!

= -æ,'n(tuLsl2l + Ao* 
Þ--:áo 

cos(d3ov)

(2.4.18)

for y € [0,.B.].

The Collocation technique consists of substituting suitable values for y into

Equation (2.4.17) thus giving an equation in the unknowns .lLo and Do for n :

0,...,N - f. A total of N values of y would be used to ensure that the correct

number of equations needed to obtain a solution for the unknowns is obtaìned.

The Galerkin technique operates further on Bquation (2.a.18). The above

equation is multiplied by the weighting functions ø-(y) : cos(ás,ny) lor m -
0,...,1Y - I and then integrated with respect to y from g : 0 to Bs. This

procedure yields the equations

2

0tn
0?* - 03,

BsA^ Ðr" cosh(.y1o.tt){(-l)- sin[á1,(.B3 + d)] - sin(á¡,d)]
lV-l

ñ:l
¡*J

where

* Dt+P {lrt B"cos(d1¡d) * cos[d1"¡(Bs + d)] sin(zd1 tB"))
(2.a.le(ø))

m:1r...rff-l

and J is such that
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Jm
Bt Be

The condition described above involving J is required in case á1o = 0s^ in which

case the summation term above becomes undefined. A similar equation to Equa-

tion (2.4.19(a)) is obtained for m = 0 and is

{#tan(fr¡ Lrlz) * Docos(k1¿,)}¡,

iv-1
+ t r"*lï3 {sin[d1*(Bs + d)] - sin(o'"d)] (2.4.re(ö))

t¿=l

: {- ffi*^ ro"L"lz)+ eo}4.'

(2) The condition Zz -- Zz at r = LelZ; y € [0, B3].

weighting functions cos(á3-y) for m - 0,. .., JV - I yields

"; tn^cosh(73-,te) + B- sinh('y3-^ú3))

In a similar manner to the process used above, Equations (2.+.ta(b) and (c)) are

used to give

- æhn(k2L2/2) 
+ Cocosh('y2s.f,r, . b. Cocosh(12oL2) cosl;z,(y * ")l¿=l

: 
ætan(/ca.[3/ 

2\ + Aocosh(136trs) + .86 sinh(13e.[3)

JV_I
+ t {;{,n cosh('y3 oI,s) * B," sinh(73'trr)} cos(g3og),

tt=l
(2.4.20)

which holds for all g € [0,Il3]. As before, the above equation is the one used

in conjunction with lY y points in the Coìlocation method. Application of the

0zn

e3^ - 03,
:DC* cosh(12oLr) {(-l)* sin[02"(^B3 + s)] - sin(02,s)]

lv-1

n*J

*Clw{0zlB"cos(02¡s)*cos[02¡(Bg+s)]sin(2d2¡B3)}
Q.a.n(a))
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where

and also

m:Lr...r[-1,
Jm
Bz Bs,

Kro-ffi
JV-1

tan(k2 L2 /2) + Co cos(k2 L2) Bs

{sin[02"(Ba + s)] - sin(O2"s)] (2.4.21(b))+ Dc"
rr=I

cosh(12oL2)
0zo

={
Kro
41"

tan(kslsf 2) + Aocos(k3.[3) * t Bs sin(fr3^ú3) Bs

(3) The condition Pt -
0 y € [-d,o]Ps y€[o,Bs]; n--Lslz.
0 teÍBs,81-dl

Utilising Equations (2.+.t<(a)) and (2.4.16(a)) yields

,¡v- 1

r¿= I
0

e1 IP't
0

*{

={

-Doktsin(k1 Lt) + D D*rr*sinh(11,".[¡) cos[á1o(v + a¡¡

B6k3a * D Bnl"ncos(d3,ng)

y € [-d,0]
y € [0, .B3]

yeÍBs,ù-dl

(2.4.22)
/v- I

n=1

Multiplying the above equation by the weighting functions cos[d1-(y + d)] and

then integrating with respect to yfrom y - -d to y - B1 - d gives the two

equations used in the Galerkin technique, namely,

ffirr, sinh(,y¡-.[ )D^ -

É{Þ- a-ffi[(-')*sin[á1-(83 +d)] -sin(d1-d)l e.+.23(a))
n*J

t Bt ffi WrrB3 cos(d1.¡d) + cos[d1.r(Bs * d)] sin(zd¡rr.)l ]
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in which

and J such that

and also the equation

(a) The condition P2 -

-Wsin(,r1 L)Do='ff"".

m:1r...ril-1,

Jm
Bt - Bs'

0 y € [-s,0]
Ps y € [0, Bs]; a -- Ls/Z.
0 !êïBs,Br-sl

(2.4.23(b))

Combining this condition with Equations (2.4.t5(a)) and (2.4.16(a)) yields

cl
-Cokzsin(fr2.[2) + D Cnlzosinh(12,.[ 2) cosll2n(V + s)l

N-1

n=lþz
0
_.2
þ¿ - Aokesin(k3.fu ) * Bokelcos(,t3.ft )

y € [-s,0]

y € [0, ^B3]

g € [Bs,Bz - sl
(2.4.24)

(2.a.25(a))

+ D %nlAnsinh('y3*.ta) + B" cosh('y3o.t3)]cos(á3"y)
JV-1

¡r-=l

a:l

0

Using the weighting functions cos[d2-(y * s)] and integrating with respect to y

from y - -s to y - Bz -s yields

ffi,r, sinh(12-.L z)C,n =
õt3 ff-1

! 2., [Á. sinh('y3 nLe) t Bo cosh('y3,"trr)] .
þe

n*t

#q,[(-l)- sin[d2-(Be + s)] - sin(dz-s)l

+ # [.Á.¡ sinh('y3 t Ls) * B¡ cosh('y3¡¿.)] .

lïrt B"cos(O2¡s) f cos[02¡ (Be + s)]] sin(2d2¡83)
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for

and also

m=1r...ril-1,
Jm
Bz Bs

Co [-áo sin(k3.ü3) * t,Bs cos(lca.Z3)] . (2.4.25(ö))kzLzstn ( )

The 4JV unknowns may now be determined using either F,quations (2.4.19,

2.4.21, 2.4.23 and 2.4.25) or Equations (2.4. I 8, 2.4.20, 2.4.22, and 2.4.24) together

with a complex matrix inversion routine. Results are presented in Chapter 4 where

comparisons are made with the boundary integral equation method which will be

described in the next chapter.
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Cn^lprpn 3

BOUNDARY INTEGRAL SOLUTION

S3.l DsRrv¡,uo¡¡ Or Tun Sor,urloN

A generalized theory for determining the time varying wind effects on a lake of

arbitrary contour, ôI, and constant depth, If, will now be developed. The effect

of the earth's rotation will be neglected. The following results are a considerable

improvement on solutions used before (for example, see Walsh (1974)) in which

basins were approximated by rectangles or circles.

As has been shown in the previous chapter, when a wind stress deûned by

Ta¡ = roê'ot , (a.t.t(ø))

Trg:O (3.r.r(ä))

acts over the surface of a non-rotating constant depth basin, then the amplitude,

Z, o'f. the surface displacement satisfies the Helmholtz equation given by

(v'+ kz)z -o (3.1.2)

where /c2 is given by Equation (2.2.a(b)) with .f : 0. For an arbitrary shaped basin,

the boundary condition for the above equation is given as (see Walsh (1974))

ðz Kron
^2ar 1¿ðn
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where z denotes the outward normal direction and rs' signifies the amplitude of

wind stress in that direction.

The use of integral equations to solve systems of equations like Equation

(3.1.2) and (3.1.3) h.. been largely ignored by workers in fields examining wind

forced or tidal flows. However, because of the linearity of Equation (3.1.2), the

above problem can be readily reduced to a boundary integral equation.

Helmholtz's Equation frequently occurs in the fields of electromagnetism and

acoustics. Some of the first workers to publish results pertaining to this equation

were Banaugh and Goldsmith (1963) who looked at the diffraction of acoustic

\ryaves caused by surfaces of arbitary shape. Hwang and Tuck (1970) and Lee

(1971) have also investigated the oscillations of harbours of constant depth and

arbitrary shape by studying this equation.

The development of the solution to Equation (3.1.2) subject to Equation

(3.1.3) is now briefly described. Detailed descriptions of the method of solution

can be found in Banaugh and Goldsmith (1963) and Lee (1969 and 1971).

Using Green's Theorem, a solution to Equation (3.f.2), known as Weber's

solution, is (see Banaugh and Goldsmith (1963))

z(*) - -i I ?hrt')(r'.) - äÁ') wtffi) as
ar

(3.1.4)

where x¡ : (r, y) defines some point inside the domain bounded by ôf, r is the

distance between this interior point and any point on the boundary, d,S is a small
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incremental distance along the boundary and ff{t)1tt¡ is the llankel function of

the first kind and zero order. Equation (3.1.4) thus represents an expression for

the amplittde, Z, at any point inside the region of interest in terms of an integral

around the boundary. In fact, the term on the right hand side of Equation (3.1.a)

represents a distribution of sources and sinks and doublets around the boundary.

All of the terms contained in the integrand in Equation (3.1.4) are known

except for the value of Z along the boundary, â1. An expression for Z along the

boundary is obtained also using Equation (3.1.4). An interior point, x¡, is allowed

to approach the boundary at a point, xs. The path of integration along ôf is

then deformed around xq using a small circ.le of radius e and centre xs. For such

a contour, Equation (3.1.4) may now be used by letting e --r 0 in conjunction

wìth integration in the Cauchy sense to provide an expression for Z (*o). Such a

procedure is described in Lee (1969) and results in the following expression

z(*o): -; I (rr*rr*rP(È,) - ni')1*,¡ *re¡l)ds(x,o) (B.r.s)
ar

where xe and x'o are points on ôf and r is the distance between the particular

point xs oIì the boundary and all points x'o which also lie on the boundary. The

above formula holds if the boundary is sectionally smooth. If the point xs is a

corner point then a slightly modified formula is used (see, for example, Lee (1969)).

Equation (3.1.5) represents an integral equation which, in general, must be

solved numerically. The boundary, âI, is divided into .lt[ segments of length (AS)¡

for 1 - 1,.. . , JV. These segments need not be of uniform length. If the midpoint
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of (A,S)t isx¡ - (r¡,y¡) then Equation (8.1.5) *.y be approximated by

Z(*o) = -; {rr*,)*ryr(È,0¡) - ¡/Í,) (È,0¡) *rr*,1 } tastn (8.r.6)

JV

Dj=1

where

roi = l*o -xjl: r¡o.

The above equation is more conveniently written in the matrix form

(ir"-ùr"--!rnz^ (3.1.7)

where

(Zu)¡ - Z(xs) i - 1,...,JV

is a vector of the unknown values oI z at the point x¡ on the boundary,

(H,);¡ - fin['tftr;¡)(As)¡ i,i =r,...,il
is an lY x -M matrix containing the normal derivatives of the Hankel function

and r¡¡ : lx¡ - x¡ I where x¡ and x¡ are both points on the boundary,

(zo)i: *rr*r) j - 1,...,Jv
is a vector containing the normal derivativ e o1 z at points along the

boundary (this information is available from Equation (B.l.B)),

(H)¿¡ - ¡rÍt) (kr¡¡)(As)¡ i,i:1,...,ff
is an JV x lY matrix similar to I/. and

(I)¡¡=6¡¡ i,j = 1,...,ff

is the Àr x ^M identity matrix where ô;¡ is l if i = i but is zero otherwise.
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By using a matrix inversion routine, Equation (3.1.7) may be used to solve

lor Z along the boundary. A similar approximation to that shown in Equation

(3.1.6) is used for Equation (3.1.4) and in this manner a complete solution lor Z

is obtained at any point inside the arbitrary contour ô1. The solution lor Z at an

interior point, x¡ : (ø, g), is, therefore,

z(*ù -- -iå{r,-" )*r[uþ,¡¡)- ¡/i') &,;¡)hr6,)]tas{*")); (B.r.s)

where

r¡¡-lx-*ol.

The elements which appear in the matrices defined above are all easily cal-

culated except for those expressions involving Hankel functions. Difficulties with

using these functions have been overcome, however, by workers such as Banaugh

and Goldsmith(1963) and Lee(1979) and their formulations will be used in this

work.

Similar expressions to Equation(3.t.+) are available for the depth integrated

velocity components, P and Q. Substituting Equation (3.1.4) into F,quation

(2.2.6(a) and (b)) with /: 0 yields

P(*¡) :+* 
*4

¡¡yÍ) (kr;¡

Iôr
)("

{"*u*l
- "o)

-¡g(t) ftr;¡)(x - ro)

+ *"rr*"r)rr1*"¡ (s.t.o(ø))

and

r¡i
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Q(*r) : tc2 r

^plAT

¡¡¡(t)

{"*u*l
_¡¡7G)&ri¡)(y _ yo)

r;i

(kt¡r)(v - vo) (3.r.e(ö))r¡i

Each of the above formulae may be discretised in a manner similar to that used

to form Bquation (3.1.8).

$3.2 Corr,rplRlsox W¡ru AN¡,r,ytlc Sor,urIoNS

The performance of the model described in the previous section will be exâm-

ined by comparing the results produced by Equation (3.1.8) with those produced

from analytic solutions for special shapes such as rectangles and circles. As men-

tioned in Chapter 2, the response function, Z, of. the surface oscillation which

occurs in a rectangular lake when a wind stress described by Bquation (3.t.1)

blows over its surface, is

+ hrr*ulast*"1.

(3.2.1)

where .[ is the length of the basin in the ø direction. For similar conditions, the

displacement which occurs in a circular basin of radius ø at the location r, 0 is

(from Walsh (1e74))

(3.2.2)

where Js and J1 denote the Bessel fuctions of zero and flrst order respectively.

The results obtained from Equation (3.2.1) and (3.2.2) will be compared with

those obtained using Equation (3.1.8). A rectangular basin of dimensions L - 24

Ð/



km, B - 8 km and depth H :3 m and a circular basin of radius 2.5 km and

depth 2.0 m are modelled. These two basins may be used as a crude approximation

to Lakes Alexandrina and Albert at the Murray Mouth respectively (see Walsh

(1974)). In both cases, various values of the circular frequency, o, and, the friction

parameter, a, were used.

Firstly, the convergence of the approximation given by Equation (B.l.g) was

exanrined. Values of c = lO-asec-l and o - 2rl(24x8600)sec-1 were used. This

value of ø corresponds to a freqency of one cycle per day (..p.d.). A comparison

of the gain and phase lag of the surface displacement, Ç, for a rectangular lake

obtained using Equations (3.2.1) and (3.1.8) with different values of lV is displayed

in Table 3.1. A similar analysis was carried out for the circular lake and the

results obtained are shown in Table 3.2. For the rectangular lake, the results

obtained using Equation (3.1.8) are in close agreement with the analytic results.

The integral equation method gives answers for both the gain and phase lag which

become closer to the analytic solution as .lY increases. For the circular lake, the

results obtained for the gain and phase lag using Equations (8.1.8) and (8.2.2) agree

equally as well as for the rectangular lake. The errors in the answers obtained using

the integral equation method applied to both the circular and rectangular lakes

are considered to be well within acceptable bounds.

F\rther comparisons between F,quation (a.r.S) and the analytic solutions

(3.2.1) and (3.2.2) were carried out. The differences between the solutions for

the gain and phase lag of the displacement obtained for various ø values (o-1,
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GAIN

/v 36 48 72 t44
Location V % V % V % V %

Ll4
Ll2
3L/4

0.0007

0.0000

0.0007

3.02

3.O2

0.0005

0.0000

0.0005

2.36

2.36

0.0004

0.0000

0.0004

1.80

1.80

0.0002

0.0000

0.0002

l. t5

l. l5

PHASE LAG

¡r 36 48 72 t44

Location V % V % V % V %

Ll4
Ll2
ïLl4

0.0003

0.0687

0.0003

0.01

4.13

0.88

0.0003

0.0888

0.0002

0.00

5.34

0.65

0.0002

0.0549

0.0001

0.00

3.30

o.42

0.0001

0.0002

0.0001

0.00

0.01

0.20

TABLE 3.1: A comparison ol the ualues lor the gain and phase lag obtained us-
ing Equation (9.1.8) for uarious ualues of N and the analytic solution, Equation
(3.2.1) at aarious locations ínthe rectangular lake (all positions talcen aty - B12).
The parameter Y is defined as the absolute difrerence between the analytíc and ín-
tegral approrimation and the other column contains the relatiue percentage errors.
When the analytic solution is zero, no relatíae error ís calculated.
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GAIN

N 36 48 72 t44

Location V % v % V % V %

af4,0:o
afz, 0 -0

af4,0=r12
af 4,0 -r12

0.0000

0.000r

0.0000

0.0000

0.00

0.29

0.0000

0.0001

0.0000

0.0000

0.00

0.28

0.0000

0.000r

0.0000

0.0000

0.00

0.23

0.0000

0.0000

0.0000

0.0000

0.00

0.13

PIIASE LAG

IY 36 48 72 r44

Location v % V v V % v Y
øf4,0-o
afz, 0 --O

øf4,0-¡r12
øf+,0-rlz

0.0001

0.0001

0.0397

0.o2r7

0.Þ0

0.52

r.26

0.69

0.0001

0.0001

0.0363

0.0217

0.5-{

0.57

1.15

0.68

0.0001

0.0001

0.0294

0.0156

0.47

0.51

0.93

0.49

0.0001

0.0001

0.0180

0.0093

0.29

0.31

0.57

0.29

TABLE 3.2: As in Table 3.1 emept lor the circular lake whích has the ønalytic
solatíon described by Equatíon (9.2.2).
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2, 4, or 16 c.p.d.) and for various friction values (a = 0,10-3 or 10-a sec-l) for

both basins are presented in Tables 3.3 and 3.4. In all cases the value of the sum-

mation variable used in the integral approximation was kept constant at N - 72.

The results used for comparison wereobtained at r=3L14 and y - B/2 in the

rectangular basin and at r = o,/2 and d = 0 in the circular basin. Once again,

the analysis shows that Equation (3.1.8) has performed satisfactorily. In general,

the larger errors occur in calculating the phase lag although in all instances the

absolute error, V, is still small.

$3.3 cowxucrED LAKES

In this section, the theory developed earlier in this chapter is used to model

the connected lake problem presented in Section 3 of Chapter 2. A method similar

to that described in Section 2.4is used. Equation (3.1.4) is applied to each region.

This does not present any problems except at the interface between two regions

since along these interfaces the value of the normal derivative of Z is not known.

Because integral equations have been used, the general connected lake problem

presented in Figure 3.1 can be solved. Notation similar to that used in Chapter 2

where a subscripted variable denoted the value of that variable in the appropriate

region will again be employed here.

As before, the value that Z takes along the boundary of each region must be

determined first. From Equation (3.1.7) we have

ZV¡: M;Zo;, i: lr2r3 (3.3.1)
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GAIN

d: 0 10-3 10-4

o(c.p.d. V % V T V %

I
2

4

16

0.0002

0.0004

0.0005

0.0000

0.92

1.77

r.90

0.00

0.0000

0.0001

0.0002

0.0000

0.00

o.52

l.3l
0.00

0.0005

0.0004

0.0004

0.0001

2.30

1.78

1.53

0.55

PIIASE LAG

d: 0 10-3 10-4

o(c.p.d.) V t/o V % V %

I
a,

4

16

0.0006

0.0027

0.0043

0.0026

0.0047

0.0096

0.0121

0.0231

1.46

1.55

1.10

0.88

0.0000

0.0023

0.0102

0.0001

0.00

3.39

6.66

0.00

TABLE 3.3: Analysis ol the rectangular lake for uarious o and a aalues caried out
at x:3L/4 and y - Bl2. A aalue ol N -72 is used in Equation (3.1.8). When
the analytic result is zero, no ønalysis ol the percentage error is carried out.

62



GAIN

d: 0 l0-3 l0-4
o(c.p.d.) V % V % V %

I
2

4

16

0.0000

0.0000

0.0000

0.0020

0.00

0.00

0.00

l.l9

0.0000

0.0000

0.0000

0.0000

0.00

0.00

0.00

0.00

0.0001

0.0000

0.0001

0.0004

0.50

0.00

0.46

0.37

PHASE LAG

d, 0 l0-3 l0-4
o c.p.d. V % V % v %

I
2

4

16

0.0000

0.0002

0.0008

0.0097 0.31

0.0003

0.0014

0.0034

0.0103

2.09

0.49

0.60

0.5r

0.0000

0.0001

0.0009

0.0136

0.00

0.34

t.47,

0.61

TABLE 3.4: As in Table 3.3 ercept lor the círcular basin with results calculated at
r:a/2 and0 -O.
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and

where M; is known and is given by

M; - -;(-1r,,- t)-',, i - 1,2,8.

The above equation yields the values of Z along the boundary. However, it assumes

knowledge of the normal derivative ol. Z along all the boundary. Along the closed

boundaries, represented by ôf;, d = Lr2r3 in Figure 3.1, the components oI Z'o^¡

are given simply by the boundary condition (3.1.3). The normal derivative oL Z

at the open boundaries is obtained by matching the wave heights and the stream

values at each interface. That is, the following conditions are enforced:
Zt=Zt

Pt: Ps

Zz: Zs

Pz: Ps

along f"1 (a.a.z(ø))

along f"2. (3.3.2(ó))

The boundary defining Region I is assumed to be discretised into iVr segments.

Of these, p aîe assumed to be located along the boundary between Regions I and

3 represented by the curve l"r. Similarly, there are q segments across the interface

between Regions 2 and 3 and Nz - q points along the remainder of the boundary

of Region 2. Region 3 is divided up into JV3 segments as shown in Figure 3.2.

The midpoints of eachsegment at which actualvalues o'f. Z, H, ðHf ôn, etc. are

calculated are labelled counter-clockwise as shown in Figure 3.2.

With the notation used in Figure 3.2, the condition of continuity of surface

elevation may be written

(Zvt)¡=(Zvs\q+¡t*p*L-i for j - 1,...,p (a.a.a(ø))

(Zvz)¡ = (Zus)q-i+r for j - 1,...,8.
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Using Bquations (2.2.6) with / : 0 and remembering that the direction n is always

directed outwards from the boundary, then the remaining two conditions presented

in Equation (3.3.2) may be written

(z^)¡ = ? - #"1+ * (zos)q+,,+r-e+r] i = 1,... ¡p¡(s.a.+(ø))

(z^z)¡:-+- E * (Z^e)o-¡+r i = 1,. .. ,Q- (3'3.4(ö))kz
k3

Kro

Vfith the aid of Equation (3.3.1), the two equations presented above are substituted

into the (p+q) equations given in Bquation (3.3.3). Hence, the (p+q) unknown

values of the normal derivative o1 Zos may be obtained. Once all of the values

ol Zo3 are obtained then Equation (3.3.4) is utilised to yield values of the normal

derivative of Zt at the left hand interface and also the g values of the normal

derivative of. 22 at the right hand interface.

Now that the elements of the vectors (2";) for i - lr2,'3 have been deter-

mined, then Equation (3.3.1) is used to provide the values oI Z at the boundary

of each region. Once these values are known then the value of. Z at any interior

point of any of the regions may be obtained using Equation (3.1.8).

Results from the above approach for connected lakes are presented in Chapter

4 and comparisons are made with the previously described methods of Chapter 2.

Further comparisons will be made between the boundary integral meihod and a

number of numerical methods in Chapter 5.

t-

66



Cn¡,prpR 4

THE CONNECTED LAKE PROBLEM

s4.l Tnp cowNEcrED L¡,xu svsrpu

In the preceding chapters several alternative techniques have been described

which may be used to model a system of connected lakes as shown in Figure

2.11. Such a system of lakes may be used to model the Lake Albert-Alexandrina

system which is located at the mouth of the River Murray in the south-east of

South Australia. For the purposes of this study then, the following parameters

are chosen to describe the dimensions of each lake (see Figure 2.ll for the definition

of each symbol)

Ht :3.0 m, Hz - 2.0 m, Hs - 2.5 m,

Lr :14.0 km, Lz:8.0 km, Ls:8.0 km,

Bt :24.0 km, B2 - l2.O km, Bs - 2.0 km,

d. - l7.O km, s - 10.0 frm.

In all of the following studies, a wind with an amplitude of 16 - 0.1 JVm-2 is

used. The value of the friction coefficient, r, which is used in Regions I and 2 is

5x10-a msec-L and from Walsh (1974) a value of r: l0-3 msec-l is used in the

channel (denoted Region 3 in Figure 2.11). Walsh suggests using a much higher

value for the friction in the channel to account for the very weedy nature of this

region. A value oI o : I c.p.d. is used in the following work
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$4.2 CoNvpncENcE Or Tnp G¡,r,pnrnv TBcnwrQuB

Using the above parameter values, the convergence of the Galerkin method

is tested by checking that the residuals in each of the four conditions listed in

Equation (2.4.17) become smaller as the value of iV is increased.

The errors in the condition Zt : Zs at n -- -Lsl2 and for 0 ( y ( .B3 are

presented in Table 4.1. The parameter V in this table is defined by the absolute

difference between the gain or the phase lag of the two solutions Z¡ and Zs. In

relation to the gain, the percentage error is calculated according to the ratio of V

to the gain in Zr whilst for the phase lag, the ratio of V to the phase lag in 21

is used. The cyclic nature of the phase lag is taken into account when calculating

the absolute difference used in calculating V for the tables relating to the phase

lag-

As can been seen from this table, the condition on the amplitudes at r =

-Ls/2 as indicated in Equation (2.4.17(a)) is satisfied. Further, the method con-

verges rapidly. Values obtained for ,lV - 2 and /V - 4 were almost identical

although there is a stight improvement in the result for the phase lag when N : 4.

Similar tests were carried out on the last three conditions displayed in Equa-

tion (2.4.17). In all cases rapid convergence rvas achieved, producing results almost

identical to Table 4.1. For this reason, the results are not tabulated. The results

obtained with the Galerkin method illustrate the advantages of this method; only

small values of ff need to be used to obtain very good results.
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GAIN

JV 2 4

v v % V %

Bl4
B12

3Bl4

0.0002

0.0002

0.0002

t.l4
l.14

1.14

0.0002

0.0002

0.0002

1.14

t.t4
1.14

PTIASE tAG
il 2 4

v V Yo v To

Bl4
B12

3Bl4

0.1100

0.1100

0.1r00

t.7r
t.7l
l.7l

0.1000

0.r000

0.1000

1.62

1.62

r.62

TABLE 4.1: The error in the ilisplacement condition Zr = Zs øt r = -Lsl2 lor
0 I y I Bs using the Galerkin technique lor difrerent ualues ol N.

69



$4.3 CoNvERcENcE Or Tuo Cor,loc¡.TroN Tncnmquu

The convergence of the Collocation technique is now assessed also by examin-

ing the residuals in each of the four conditions listed in Equation (2. .LT). In Table

4.2, the error in the condition indicated by Equation (2.4.17(a)) is examined. The

parameter V has an identical meaning as in Section 4.2 and the percentage error

is calculated using the same procedure as described previously.

Clearly, the Collocation method does not converge as quickly as the Galerkin

technique. Similar accuracy may be achieved using the Galerkin technique with

N - 2 as may be obtained with the Collocation method and JV : 6. Once again,

similar tables to Table 4.2 are produced when the other matching conditions are

examined and so they are not presented here. It must be stated, however, that

although similar accuracy to that shown in Table 4.2 was achieved with the velocity

conditions given by Equations (2.4.17(c) and (d)) for JV : 6, very poor answers

were obtained for smaller values of .N. Indeed, for JY : 3 the relative error was

often of the order of 100%

$4.4 THE BoUNDARY INTEGRAL Mnr¡roo

The integral equation solution developed in Section 3 of Chapter 3 is applied

to the connected lake system described earlier in this Chapter. However, firstly

results obtained when all the basins are of the same depth and the friction pa-

rameters are of the same value is analysed. Values of Il1- Hz: Hs - 3.0 m and
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GAIN

JV 3 6

v V % V %

Bl4
Bl2
3Bl4

0.0028

0.0027

0.0028

11.20

10.80

11.20

0.0000

0.0000

0.0000

0.00

0.00

0.00

PHASE LAG

IY 3 6

v V Yo v %

Bl4
Bl2
3Bl4

0.000r

0.0072

0.0001

t2.t5
87.r2

12.15

0.0000

0.0000

0.0000

0.92

0.92

0.92

TABLE 4.2 The error in the displacement condítion 21 - Zs at x - -Lel2 Íor
0 < y S Bg using the Collocatíon technique for difrerent ualues oÍ N.
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r - 6xl0-4 msec-r throughout are used. Such a system as this may also be solved

using the scheme developed in Section I of Chapter 3 (that is, Equation(3.t.8)).

The contour of integration in this case is simply the total boundary of all three

regions as shown in Figure 2.11. The results obtained from both methods are

compared and in this way a useful check on the program developed to solve the

connected system can be made.

Firstly, for the method of Section 3.3, the matching conditions on velocity

flux and displacement at the junctions between each region are examined when

the depths of each basin are assumed to be equal. The four conditions which

are described in Equation (3.3.2) are found to be obeyed exactly. In Table 4.3 the

error in the gain and the phase lag for the condition Z¡ - Zs is examined. Clearly,

to the accuracy shown in the table, there is no error in modelling this condition

using the techniques outlined in Section 3.3. The remaining three conditions were

also found to be modelled exactly, producing identical results to those shown in

Table 4.3.

A comparison of results obtained using the method presenied in Section 3

of Chapter 3 and Equation (3.1.8) is undertaken in Table 4.4. The difference in

results for the phase lag and gain of the displacement at various locations in the

lake system is shown in this table. The parameter, V, is simply the absolute value

of this difference whilst the relative percentage error is determined by the ratio of

V with the result produced by the boundary integral method of Section 3.3.

Overall, results obtained agree quite well. The largest difference in solutions
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GAIN PHASE LAG

v V % v %

Bl4
Bl2
3Bl4

0.0000

0.0000

0.0000

0.00

0.00

0.00

0.0000

0.0000

0.0000

0.00

0.00

0.00

TABLE 4.3: The emor in the displacement conditíon Zt = 23 at , - -Lsl2 lor
0 ( y S .B3 using the íntegral formulation ol Sectíon 3.9.

GAIN PHASE LAG
reglon x (,tm) v (km) V % V %

I
rl3
3
3

312
2
2

-11
-4
-1
I
4
8
8

I
I
I
1

I
I

-5

0.0005
0.0003
0.0009
0.0007
0.0004
0.0008
0.0008

4.r7
6.47
3.88
2.39
1.15
r.50
1.53

0.7578
0.5159
0.4307
0.4152
0.0329
0.2370
0.2381

9.47
9.73
7.92
7.r5
0.52
3.93
3.95

TABLE 4.4: The difrerence bewteen the gaín and phase lag ol displacement ustng
the method ol Section 3.3 for equal depths in each regíon and Equation (3.1.8).
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occurs in region l. It is unclear why this is so but certainly the absolute error is

always less than L mm.

Three techniques, namely the Collocation, Galerkin and boundary integral

method, have been presented as means of solution to the connected lake problem.

If the basins are of the same depth, then a simplified boundary integral formulation

may be used. A comparison between all three methods used when the basins are

of unequal depths is made in Table 4.5 in which values of the gain and phase lag of

the amplitude are presented. A value of JV - 2 was used in the Galerkin method

whilst N - 6 was used in the Collocation technique.

In Table 4.5, some large differences occur in the phase lag. This apparently

large difference is due to the cyclic nature of the phase lag. From Table 4.5,

it is clear that the Galerkin techniques and the boundary integral method yield

very similar results. The Collocation technique does not provide results which

are in as close agreement as these. The largest difference between the Galerkin

and integral equation methods occurs at the junction between Regions I and 3.

Here, the error in the gain is 0.0011 m which is a relative difference of 6.96%. At

the same location the difference in the phase lag is 0.1005 radians or 1.66%. The

percentage differences presented here are all relative to the solution obtained using

the boundary integral method. The next largest difference in gain is only 0.009m

or L.72To. The difference in the phase lag at this point is 0.0768 radians or O.LZYo.

Clearly, the solution to the connected lake problem may be successfully ob-

tained using either the Galerkin or boundary integral techniques. Both methods
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GAIN
regron x (km) v (km) Galerkin Integral Collocation

I
r13
3
3

312
2
2

-ll
-4
-l
I
4
8
8

I
I
I
I
I
I
5

0.0103
0.0147
0.0212
0.0254
0.0319
0.0533
0.0533

0.0103
0.0158
o.o2r7
0.0255
0.0313
0.0524
0.0523

0.0000
0.0250
0.0314
0.0357
o.o42t
0.0636
0.0636

PHASE LAG
regron x (km) v (km) Galerkin Integral Collocation

I
r13
3
3

312
2
2

-ll
-4
-1
I
4
I
8

1

I
I
I
1

I
-5

3.1975
6.1440
6.2405
6.2773
6.1441
0.0511
0.05r l

3.53r3
6.0435
6.1414
6.r826
6.2246
6.2575
6.2610

3.1370
0.0011
0.001r
6.2820
6.2794
6.2819
6.2803

TABLE 4.5: A comparison ol the gain and phase lag ol displacement obtained at
aarious locations using the Galerkín, Collocation and Boundary Integral methods.
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are relatively simple in concept although the Galerkin technique is probably the

easier to program on a computer. A major drawback of the Galerkin technique

is that it can be applied only to simple shapes. If the basins have a complicated

boundary then the boundary integral technique should be used. However, because

this method involves the inversion of several large complex matrices, it takes much

longer to run on the computer. The matrices involved are not banded and do not

lend themselves to special techniques for inversion.
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CnepreR 5

NUMERICAT MODELS

g5.l Two Nun¡nRrc¡,r, Moogrs

Developed in this chapter are two numerical models both of which use finite

difference techniques to solve wind forced problems. The first model is described

by the following set of equations which are available from Ðquation (2.2.6) with

I : O, that is,

(5.t.t(a))P: i (*^,- rK)
a=i(*^,-r#) (5.r.1(ö))

The functions, P and Q, are related to Z by the conservation of mass equation

# *æ: -¿oz. (s.r.r(c))

A finite difference solution to Equations (5.1.1) is obtained and thus the solutions

for f, U and V Lor a basin with varying depth and acted upon by a general non-

homogeneous wind stress can be obtained. The model could also be used to solve

for the more general case when I f O. All solutions so far discussed have been for

constant depth basins subject to a wind stress invariant with horizontal position.

This model, which will be developed in the next section, can be used to solve

for wind effects in arbitrary shaped basins. The performance of this numerical

model will be tested against analytic solutions of rectangular and circular basins of

ll



constant depth (see Equations (3.2.1) and (3.2.2)). The finite difference equations

used in this model are all second order accurate. However, the model approximates

a curved boundary by a series of steps each parallel to or perpendicular to the

finite difference grid lines. This results in the approximations made for derivatives

near a curved boundary being less than second order accurate. The effects of

approximating a curved boundary in this manner will be determined by comparing

the results obtained for a circular basin with an analytic solution.

The effects of a varying depth will be examined by applying this model to Lake

Albert in South Australia. Also, by assuming this lake to be of constant depth,

the effects of approximating the boundary by a series of steps will be further

examined by comparing the results from the finite difference method with the

solution obtained using the boundary integral method described in the Chapter 3.

It will be shown that major differences in the solutions are obtained by ap-

proximating the boundary in the manner described. This result prompted the

development of a finite difference model which could þe used for constant depth

basins of arbitrary shape but which also could model a curved boundary without

loss of accuracy in the finite difference approximations near the bondary.

Hence, the second finite difference model deals with the numerical solution of

the equations used in Chapter 3, namely,

(V'+ kz¡Z :o (s.r.z(ø))

subject to
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az
ôn - Kro

c2
(5.1.2 (b))

ôF

where, as before, âf describes the boundary of the basin and ¿ is the outward

normal direction. Conventional second order differences are used to solve this

system of equations for all interior points away from the influence of the boundary.

Appropriate second order differences which are available from Appendix A are used

at grid points next to the boundary.

The performance of this model is again tested against the analytic solution for

a circular basin and compared with results from the first numerical model as well

as the integral equation solution. The results using this second model are shown

to be superior to those obtained by the former numerical model suggesting that

this model should be used whenever a constant depth assumption may be made.

In the next section, a general methodology and notation for solving finite

difference equations is described. This information is explained with reference

to the finite difference equations approximating Equation (5.1.1). However, the

method and notation can be readily applied to the finite difference approximation

to Equation (5.1.2). In Sections 5.3 and 5.4 results are presented for the finite

difference solution of Equation (5.1.1). In section 5.5, results obtained using finite

difference approximations to Equation (5.1.2) are given.

$5.2 A Fnurp DTFFERENCE MoDEL FoR Equlrrow (5.1.1)

A staggered grid as shown in Figure 5.1 is used. Constant grid spacings are

used with generally different values in each direction. An element of this grid
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system consists of three points labelled X, - and f. The distance between an

X-point and an -+-point is Ar, while an X-point and an f-point are separated by

a distance of Ay. Corresponding points in adjacent elements in the r direction are

separated by a distance 2Ar and corresponding points in adjacent elements in the

y direction are separated by 2Ay. At the -+-points values of the depth integrated

velocity, U, are calculated. Values ol Q, which is related to the other component

of depth integrated velocity, V, are calculated at f-points. All other variables are

calculated at X-points. In the following, the notation R is used to represent the

approximation for P(r,y) at the -r-point in the fh element.

When writing a computer program to solve Equation (5.1.1) the above men-

tioned grid scheme is laid ovér a map of the particular body of water being in-

vestigated and each of the grid elements numbered appropriately. For example,

consider the body of water shown in Figure 5.2. This may be modelled as shown.

The heavy line indicates the approximation to the boundary which will be used

in the numerical rnodel. However, this simplistic approach, although it has been

used many times in depth integrated hydrodynamic models, is not very satisfac-

tory. For example, it wastes much computer space because storage space must

be allocated to many land elements which are of no interest. One of the biggest

problems with this approach is the amount of book-keeping involved in writing a

program. Not only must elements representing land be distinguished from those

representing water but the various types of water elements must be distinguished.

For example, movement of water in those elements surrounded by water will be
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described by different equations from those used in elements with boundaries run-

ning through them. The finite difference equations applicable in each element will

therefore be different. Bach type of boundary element must be distinguished. For

example, the element labelled 10 in Figure 5.2 is surrounded by land on three sides

whilst the element numbered 12 is surrounded on two sides by land. Hence, the

way in which some of the terms in the equations are numerically modelled will be

different in each element. It is thus difficult to write a "general" program which

is applicable for any shape of basin using this approach.

Some improvements can be made, however. For example, in any numerical

approximation using flnite difference techniques, one only needs information from

the elements irnmediately adjoining each particular element. Hence, a method

of ìabelling as shown in Figure 5.3 is introduced. The two elements above and

below the jth element are indicated by t * I and j - I respect.ively. The i2 label

indicates the element immediately to the right of the jüh element with j2 t I

indicating elements above and below this element. The i I label indicates the

element immediately to the left of the i¿Þ element with j1* I being interpreted in

the obvious way. Thus, with reference to Figure 5.2, il the element being considered

is labelled 36 then jl is 28, jZ is 44 and so on. This labelling scheme not only

simplifies the notation used in writing down the finite difference equations but also

faciliiates the writing of a more economical computer program.

Another feature which reduces the amount of book-keeping which must be

carried out in the program to keep account of the type of element being considered
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FIGURE 5'3: The general method of relerencing elements with respect to the centralelement, j.

4 t6 128

2 64
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FIGLIRE 5'a: The ualue ol the weíghts for each ol the surrounding eight elements.

and the shape of the body of water which is being modelled was developed by
Stevens and Noye (19s4) and is now briefly described. Associated with each active

element, that is, an element that lies within the boundaries of the region of water
being considered, is a special identification number. There are eight elements

surrounding any particular active element and each of them is given a weight of
2i,j :0,...,2 (see Figure 5.a). In determining the identification number for an

active element, the weight of each surrounding element which is non-active (that is,

one representing land only) is added together to form a single identification for each

element' An element is non-active if there is land at the x-point of the particular
grid' For example, the identication number of the element labelled 5g in Figure
5'2 is 232' The weights given to each of the surrounding elements are chosen to
be powers of two because any resultant identification number can be decomposed

into a sum of powers of two in only one way. Hence, the identification number

uniquely determines the types of elements surrounding a particular element.
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Using the above techniques, a general program may be written. The locations

of active and non-active elements are input into a computer program. FÏom such

information, the identifrcation numbers of each element are determined together

with the labels of the eight elements which immediately surround each particular

element. When individual terms of the finite difference scheme are being pro-

grarnmed, appropriate code is written for particular identification numbers. For

example, the code for the finite difference approximation for P is the same for all

elements except those with an identification number of 64 in which case P is sim-

ply set to zero. Such a computer program is thus applicable to and easily utilised

for any arbitrary shaped basin. The scheme can also be used for non-linear and

time dependent three dimensional wind driven or tidal flows.

Using the techniques and notation described above, together with centred

finite difference approximations, enables Equations (5.1.1) to be discretised in the

following manner:

Kro, - þf P,
- (z¡z - z¡)lz\^x + o {(4")'} (5.2.t(ø))

g(ll¡z + hi)12

Kros - P?a¡ : (z¡ - zi_r)lz\v+ o {(Ay)r} (5.2.1(ö))
g(h¡ + h¡-t)12

-toz¡ = (P¡ - Pit)lz\'r* (8r+r -Qìlz\y+o {(¡r)',(Ly)'}(s.z.t(c))

where 9f ana Þf, ^r" the p terms calculated at an --+-point and f-point respec-

tively. That is,

þf :rc+2rl(hiz*h¡)

þ9:rc*2rl(h¡+h¡- J

(5.2.2(ø))
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for some value of the friction parameter, r. These equations are rearranged to

give, in explicit form, the following equations for the evaluation of P¡, Q¡ and Z¡

at all active grid points:

4(Krn, - Þf P¡1)A,øz¡:z¡r*ffi, (5'2'3(a))

e¡: þl*,"" -
s(h¡-t + ä¡) (Z¡ - Z¡-r)

4Lv
(Q¡+t - Q¡)

(5.2.3(ö))

2Lv (s.z.a(c))

These expressions are obtained by rearranging Equations (5.2.1(a), (b) and (c))

respectively. They are solved in the following order: if necessary, 22 is calculated

first, then Q2 and then Pr; Zs is calculated next, then Q3 and P2 and so on.

When calculated in this manner the equations are explicit. Values for Q¡ and 21

need not be calculated since Q¡ will always be zero (see Figure 5.5) and, as will

be discussed shortly, Zy is always assigned a value.

The solution of Equation (5.2.3) is found using an implicit marching method

(Noye (1984)), referred to as the EVP method by Roache (1974). This method was

chosen because it is readily adaptable to irregular boundary geometries and varied

combinations of boundary conditions. Also, a formal error analysis exists for the

method (see Noye (1984)) and it can be shown that the largest error which results

from the application of the this method will occur along the boundary at which

end values are calculated. This fact will make it easier to test the performance of

the method.

Consider Figure 5.5 which describes how the body of water considered in

Figure 5.2 is labelled. Elements which are non-active (land elements) are labelled
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zero. The elements at the western end of the grid ,namely those labetled l, Z, A,

4, 6 and 10 are assigned values for the amplitude Z. The explicit equations (5.2.8)

together with the boundary conditions Q = O along any east-west boundary and

P : 0 along any north-south boundary, may now be used to produce a set of values

for the velocity P along the eastern boundary (that is, at elements 22, gg, g4, Bs,

36 and 37). These values of course should be zero. The correct starting values are

determined by finding the end values produced by specific starting values.

Because Equations (5.2.1) are linear, the end values, contained in vector e,

are related to the starting values contained in s by the relation

e-tþs*ö (5.2.4)

where r/ is an .¿Y x /Y square complex matrix and / is the vector produced by

the starting values s = O. The number of starting values (which must equal the

numbe¡ of end values) is assumed to be JV. If starting values defined by s; - f¡,

for r, i = lr.. . , JV are used then the i¿å column of ry', denoted by ú;, ir obtained

from

Û¡=e;-Ô (5.2.5)

where e; is the vector of end values obtained using s;. Once r/ and rf have been

determined in this manner, the correct starting values, s*, are obtained from

"* 
: ú-t (". - C) (b.2.6)

where e* is the desired end vector. of course, for this probtem e* = o and so

e* --rþ-tö (5.2.7)
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Once the correct starting values have been obtained a final sweep through the grid

produces the values for Z, P and Q throughout the regi'on.

$5.3 Corr¡p¡,RrsoN WITH A.NAIYTIC SoturIoNS

The performance of the numerical method described in the previous section

was tested against results obtained from analytic solutions for the elevation oc-

curring il rectangular and circular lakes of constant depth (Equations (3.2.1) and

(3.2.2)). Results are presented in Tables 5.1 and 5.2. In the former case, results are

presented for the rectangular lake for o : I c.p.d., a = 10-a sec-l and at points

r= L/2,y - B/2 and r -3L/4,y - B12. Thedimensionsof the basin are those

which have already been used. Similar parameters are used in the comparison for

the circular basin presented in Table 5.2 but in this case results are presented at

positions r - a/4, 0 : O and r - a/4, 0 = rl2. The dimensions of the circular

basin are also those which have been previously described. In both ca,sies values are

presented for various values of Aø and Ày. The relative percentage error is defined

by the ratio of the difference between the numerical and the analytic solutions,

defined by V, with the result obtained using the analytic solution.

From Tables 5.1 and 5.2, it is clear that the numerical method will adequately

predict the gain in displacement occurring in both types of basins. In general, the

results obtained for the rectangular basin are better than those obtained for the

circular basin. This reflects the errors introduced by approximating the boundary

of a circle in a step-wise fashion. The rectangular boundary can, of course, be
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GAIN PHASE LAG
V % V %

Aø:Ay-500m n-LlZ
r - 3Ll4

0.0018

0.0000 0.00

0.0553

0.0000

3.33

0.00

La:Ay-1000m x-LlZ
n -3Lf 4

0.0036

0.0000 0.00

0.0553

0.0000

3.33

0.00

L,n = Ly :20OOm a -- Ll2
ø - 3Ll4

0.0072

0.0000 0.00

0.1063

0.0003

6.39

0.9r

TABLE 5.1: The gain and phase of the displacement for the rectangular lake pre-
dicted using the numerical model for uarious grid sizes and compared with the
analytic solution.

GAIN PHASE LAG
v % V %

Ar: Ly = 500m r-a/4,0-o
r-ø/4,0-r/2

0.0000

0.0000

0.00

0.00

0.0041

0.0029

26.86

0.09

L,n:Ay=1000m r-ø/4,0-o
r : ø/4ro - ¡r 12

0.0006

0.0000

6.26

0.00

0.0045

0.0236

29.23

0.75

TABLE 5.2: As in Table 5.1 emept for the circular lake
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modelled exactly. In the circular case, the performance of the model appears to

behave badly along the line 0 - O. However, along this line the phase lag is

very small (of the order of 0.01 radians) and so even though the absolute error is

sufficiently small (of the order of 0.001 radians) the resulting relative percentage

errors are significant. Along the line 0 : r 12 where the phase lag is of the order of

r, the absolute errors are certainly not a lot smaller than before but the relative

percentage errors are considerably smaller because of the significant order of the

phase lag along this line.

$5.4 A Moonr, Fon LrxE ALBERT

The numerical model and associated grid scheme is used to analyse the am-

plitude of the response of Lake Albert to a surface wind stress. The contour of

the lake is shown in Figure 5.6 together with the grid scheme which is used. The

grid spacing is Aø - Ây - 500 m. In Figure 5.6, each of the squares contains an

element of the numerical scheme as has been previously described. Each square

is therefore I km x I km in size. An array of 14 elements in the ø direction and

l5 elements in the y direction was needed. Only those elements which lie within

the heavy step-wise varying curve which approximates the boundary are active

There are 150 such active elements for which calculations Íor Z, P and Q will be

made. The total number of elements is 14 x l5 : 210.

To further illustrate the ease with which the numerical method described in

the earlier section of this chapter may be applied, it is useful to look at the input
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FIGURE 5.6: á model for Lake Albert. Each' squa,re (1 km. x 1 km-) represents

øn element of the nutnerical scheme. The h,eøay step-wise tarying curue is the

approrimation to the actual boundary used by th,e nurnerical model. Tlt'e numbers

in the squares designate locations at uhich sorne analysis uill be carríed out.
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which was required by the program to model this particular lake. The number

number of grid elements in the ø and y directions was the first input. In this case

values of 14 and 15 respectively were required. The overall dimensions of the grid

were next input; the required values for this problem are 14 km in the ø direction

and 15 lcm in the y direction. The location in the grid of the active elements is

also required by the program. This is achieved by inputting a series of 0's and l's

where I represents an active element (water) and 0 represents an inactive element

(land). This part of the input file is shown in Figure 5.7. Finally, the depth of

the lake at each active element is input to the program. Simply by changing the

above data the program can be used for any lake.

Values used for the other parameters required by the problem were ø = I

c.p.d., a : lO-a sec-t and rs - 0.1 Nm-2.

The numerical method was first used to analyse the effects of assuming a

constant depth bathymetry. Lake Albert has an average depth of 2.0 m and the

actual profile varies from about 1.5 m to 2.9 m. The deepest region of the lake

occurs near the element labelled 8 in Figure 5.6. A comparison of the values

obtained at the nine elements indicated in Figure 5.6 for a constant depth and

variable bathymetry is made Table 5.3. The relative percentage error is deflned by

the ratio of the difference between the two results, denoted by V, with the result

obtained using the actual bathymetry.

Clearly, using a constant depth bottom does not cause excessive absolute

enors. The absolute difference between the two results for the gain is never more
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GAIN PIIASE LAG

Location v % V %

I
2

3

4

5

6

I

8

I

0.0013

0.0000

0.0017

0.0016

0.0036

0.0041

0.0043

0.003r

0.0011

5.68

0.00

9.94

9.30

25.17

13.27

21.08

19.74

2.rl

0.00r3

0.0011

0.0017

0.00r7

0.0000

0.0001

0.0002

0.0033

0.0019

0.04

0.03

0.05

9.88

0.00

0.00

0.00

38.37

0.0d

TABLE 5..3: Comparison ol results obtained lor gain and phase lag of displacement
using a constant depth bottom and the øctual bathymetry.

GAIN PHASE LAG

Location V % V %

I
2

3

4

5

6

I

8

I

0.0060

0.0034

0.0007

0.0002

0.0061

0.00r2

0.0009

0.0060

0.0181

20.36

14.01

3.67

0.96

56.54

4.48

5.81

3.19

33.96

0.0173

0.0210

0.0235

0.0020

0.0339

0.1868

0.0454

0.0020

0.00r9

0.67

0.67

0.75

0.41

1.08

5.95

0.72

0.4r

0.03

TABLB 5.4: Compørtson of results obtained lor gain and phase lag ol displacement
using the numerical model with a constant depth bottom and the bou'ndary integral
approach.
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than about 4 mm. whilst even better agreement is achieved for the phase lag.

In terms of the percentage error some of the results differ quite markedly. It was

found that at the locations where these differences occurred, the depth differed

significantly from 2 m. For example, at locations 5 and 8, where the depth is 1.5

m and 2.8 m respectively, large percentage differences were observed.

An analysis is now be performed on the difference between solutions obtained

using the numerical method with a constant depth bottom and the integral equa-

tion approach described in Chapter 3. As has been shown by comparison with

analytic solutions for simple geometries, both of these methocls adequately model

the gain and phase lag of the response. Any difference in the solutions obtained

should be entirely due to the different ways in which the boundary of the lake

is being approximated. Seventy two unevenly spaced segments were used in the

integral equation model to approximate the boundary of the lake.

A comparison of the results obtained from the two methods is made in Table

5.4. From here it can be seen that the absolute differences between the two models

can be more significant than those which were achieved by assuming a constant

depth. For instance, at one location the absolute error has reached a value of a cen-

timetre. Clearly, significant errors can result in having to approximate a boundary

in a step-wise fashion as is necessary in the finite difference model presented here.

Consider the elements labelled l, 2, 3, and 4 in Figure 5.6. The X-point at

which Z is calculated is 500 m from the boundary used in the finite difference

moclel. However, this same point is about 800 m away from the boundary used in
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the integral equation solution. This difference is reflected in the percentage error

for the gain at Location I as shown in Table 5.4. The further one moves away

from the boundary (that is, at Locations 2, 3 and 4) the less significant is the

resulting percentage error. At Location 2 the error decreases to about l4Yo, at 3

it is about 4To and at Location 4 the error has dwindled to about 1%. This trend

reflects the decreasing significance of the error introduced by the approximation

made for the boundary as one moves away from it. The other locations with high

percentage errors all occur near boundaries where the approximate shape used in

the numerical method differed significantly from the boundary used in the integral

equation method.

$5.5 A FrNrrE DmrnRp¡lcn SoLUTIoN FoR Eeulrrox (5.1.2)

In this section, a new finite difference solution to Equation (5.1.2) is con-

structed. The approximations used are second order accurate everywhere, in-

cluding those points near the boundary. However, the boundary curve, l, is not

approximated by a series of steps as in most conventional finite difference models

but retains its shape

Results from this model are compared with those obtained with a conven-

tional model of Equation (5.1.2) in which the boundary is approximated by a

series of steps. Although this is the treatment of the boundary that has been

used in solving Equation (5.1.1) in Sections 5.3 and 5.4, in order to get an exact

comparison between the model developed in this section and conventional models
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which alter the boundary, a conventional model is also described which models

Equation (5.1.2).

Exactly the same notation and computer methods are used as are described

in the earlier sections. For solving Equation (5.1.2) a staggered grid is not needed

since only one variable, Z, \s being considered. In this model a grid element

consists of a cell containing only one point, namely a Z point. A grid element is

located at the intersection of grid lines so that the poini Z; \n the finite difference

scheme refers to the point in the top right hand corner of a grid element labelled

i. Ðach Z point is separated by a distance Aø in the horizontal and Ày in the

vertical. This differs with the previous finite difference model in which the points

at which Z is calculated were separated by a distance of 2Aø in the horizontal and

2L,y in the vertical. All points lying inside the boundary are active points. All

such points for which one or more of the surrounding points i + l, i - l, il and

j2 arc land elements are called boundary points. The region described in Figure

5.2 will now be labelled as shown in Figure 5.8. The computer program described

in Section 5.2 readily determines whether any grid element lies near the boundary

or is an internal point.

Assuming L,n : Ay then a suitable second order approximation for the

Helmholtz Equation is

Z¡t * Z¡z * Zi+t + Z¡-r * (L,x2k2 - 4)Z¡ - g. (5.5.1)

This formula may be used for all interior grid points, that is, those for which no

neighbouring grid point in the direction of either coordinate axis lies outside the

96



0 0 -y --0- { 0 0 0 0

0 ,r 15 22 0 \q 0 0 0

0/ 8 l4 2l 28 0 0 f 0

2\ 7 13 20 2T 33 38 0\ 0

1\ 6 t2 19 26 32 37 4T \0
0 ) ll 18 25 31 36 40 0

0 (a 10 L7 24 30 35 39 /
/o

0 -o 0\3-- -ru /¿.) -Áv ó4

FIGURE 5.8: Î[e ncw grid lobelling lor the region shourt in Figure 5.2



boundary. Interior points at which the above formula is valid are easily detected

by the computer program since these are points, j, for which the locations at j * l,

i - l, jl and j2 are all water elements.

Alternative formulae must be used at boundary points, ¡, for which one or

more of the surrounding points j+ l, j -1, jl and j2 are lancl elements. Formulae

for the finite difference approximations to the derivatives ð2Zfôø2 ancl ô2Zlôy2

at such points are given in Appendix A.

For Type I boundary points where two of the four neighbouring grid points lie

outside of the boundary, the second order accurate approximation used to model

Helmholtz's Equation is of the form

(t*x, * svvr )Zr + (t**, * svv2)Zq * (txx. * svvs + k2 L,r2 sxx+)Z¡

: -(sxxs * svvs)Ar
(5.5.2)

This formula assumes that the vertical and horizontal grid spacings are the same,

that is, Aø - Ay. The coefficients sxxr, s1ç2ç2 etc. are given in Equations

(AO(U)-(e)) and Equation (40(e)) of Appendix A. The coefficients sy¡¡t, syyz

etc. are given by Equations (Af r(b)-(")) and Equation (46(e)). Typ" I boundary

elements for which the expression (5.5.2) is valid can occur in any of four possible

orientations, labelled 11, 12, 13 and 14 in Appendix A. The coefficients s¡¡1 , s1yyt

etc. are modified as determined by the orientation of the boundary elements. The

values of the points T and Q which appear in Equation (5.5.2) also are determined

by rvhether the boundary element is of orientation ll,12, 13 or 14.
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Consider the element labelled 15 in Figure 5.8. The program readily detects

that the neighbouring elements j2 and j - I (in this case elements 22 and 14

respectively) are water elements. Similarly it detects that the points jl and j * I

are land elements. Thus, grid eìement 15 is determined to be a boundary point.

In fact it is a Type I boundary point since two of the neighbouring grid points are

land elements. Further, because of the nature of the four neighbouring grid points

the program can determine that elernent 15 has the orientation 12. Therefore, the

appropriate approximation to Helmholtz's Equation at grid element l5 is given by

Equation (5.5.2) in which the coefficients are given by (40(e)), (49(b)-(e)) and

(Att(b)-e)). The modifications which have to be made to these expressions for

the coefficients because of the particular orientation of this boundary point are

given by (Al5 and Al7). In a similar way, the finite dìfference approximations to

the derivatives at all boundary points is obtained.

For Type 2 boundary elements, j, in which only one neighbouring grid point

lies outside of the boundary, the following approximation may be used:

(qxx, -t qxxs)Zr I qxxzZq * (qxxe * qxxs)Zn
(5.5.3)

t(qxxo - Zqxxs + k2 A'x2q*xu)Z¡ - -QxxøLt.

where the coefficients g¡¡t¡ exxz etc. are given by Equations (424(b)-(f)) and

(423(f)). Once again, boundary elements of this type can occur in four possible

orientations. The modifications which need to be made to gxxr , Çlxxz etc. because

of these different orientations are given in Appendix A as are the positions of the

points T, Q and.B for each orientation.
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The above equations (5.5.1, 5.5.2 and 5.5.3) are solved implicitly to give the

solution Íor Z at each grid point.

The difference in the solutions from the two numerical models so far developed

may not be due entirely to the way in which the boundary has been modelled. The

first model is based on Equation (5.1.1) using the scheme presented in Section 5.2,

whilst the second finite difference approach uses Equation (5.1.2) and an implicit

solution to the approximations. For this reason, two more numerical solutions are

developed for Equation (5.1.2) which firstly alter the boundary so that it lies along

grid lines and secondly use second order approximations to the derivatives at the

boundary. Hence, any difference between these last two numerical models and the

one presented so far in this section must be due to the way in which the boundary

is being modelled since all the models are second order and solved implicitly.

The first of these more conventional models is one in which the grid points are

considered to lie along the boundary. Consider the point P lying along the straight

boundary as shown in Figure 5.9. The grid points are separated by a distance Aø

in both coordinate directions. An approximation for Helmholtz's Equation at P is

zr *zq* za* zs*(k2Lr2 -4)zp -g (5.5.4)

which is simply the second order approximation for an interior point given in

Equation (5.5.1). The problem with using Bquation (5.5.4) is that the point T lies

outside of the region. To frnd an expression for Zr, a second order approximation is

made to the boundary condition (5.1.2(b)). At P, the boundary condition implies

AZ Kro
ðx
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Applying the second order approximation for the left hand side of the

tion yields

zv - zn *uLrT (5.5.6)

which may be substituted into Equation (5.5.4) to give the required expression for

the approximation to the Helmholtz Equation, namely,

zq * zs * Zzn + (k2 Lî2 - a)zp = -'L:{to, (5.5.2)

A boundary point, j, æ defined earlier will be in this model a point such

as P in Figure 5.9 which lies on a boundary. As discussed earlier in this section

and in Appendix A, this point can be orientated in any of four ways which are

once again denoted lL, 12, 13 and 14. These orientations are shown in Figure

5.10. In a similar fashion to the previous model a general formula can be given

for all boundary points. This formula is then adjusted according to the particular

orientation. From Equation (5.5.7) we have, for a boundary point, j,

ze * zs i 2zn + (k2 ar2 - Ðz¡ - -Z\aa, (5.5.8)

where:

(l) for orientation ll

q-i+l, (s.s.s(ø))

,s:j-l, (5.5.9(ó))

R = i2 (5.5.e(c)

and
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. KroA=-
u

Q-i+r,
S:i-t,
R: il

(5.5.e(d))

(5.5.10(ø))

(5.5.10(ö))

(5.5.10(c)

(5.5.10(d))

(5.5.tt(a))

(5.5.11(ó))

(5.5.11(c)

(5.5.1r(d))

(5.5.t2(a))

(5.5.12 (ö))

(5.5.12(c)

(2) for orientation 12

and

(3) for orientation 13

and

(a) for orientation 14

Q=i2

,9 = j1,

R= i -l

Á=0.

Q: i2,

,9 : jl,

R-i+L
and
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.¡4.: 0. (5.5.12(d))

The boundary point, j, may also be a boundary point which lies on a corner

as shown in Figure 5.11. Once again, there arefour possible orientations forsuch

a point, each denoted 21, 22, 23 and 24, and these are illustrated in Figure 5.ll

A general formula for Helmholtz's Equation for such a boundary point is

2Zs + 2Zp * (k2 L,z2 - a)Z¡ - -2L'oA, (5.5.13)

where

(1) for orientation 2l

R: iZ, (5.5.1a(ø))

^9=t-l (5.5.r4(ö))

and

R: it,
S = j -l

(s.5.ta(c))

(5.5.15(ø))

(5.5.r5(å))

(2) for orientation 22

and

(5.5.15(c))
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FIGURE S.tr: The lour possible orientøtions, labelled 27, 22, 23 ønd 21 ol a cornet
boundary point such øs P.



(3) for orientation 23

and

(a) for orientation 24

and

. KroA-- --7.

R: it,
5i-i+l

R: j2,

sr_i+1

(5.5.16(ø))

(5.5.r6(ó))

(5.5.16(c))

(s.5.t7(ø))

(5.5.16(ó))

(s.5.16(c))

In this model, all points lying inside the boundary are interior points and

the approximation at these points is given by Equation (5.5.1). The three sets

of equations (5.5.1, 5.5.8 and 5.5.13) form the complete set of finite difference

equations which may be used to model Helmholtz's Equation for the given normal

derivative boundary condition. This set also forms the flrst of the conventional

models which will be discussed. The model will be applied to a circle and the

finite difference grid is positioned so that the grid points lie on the straight lines

approximating the circle.

The second conventional model which will be described is very similar to the

one described above. In this model, however, the grid lines of the finite difference

. KroA- -
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scheme are positioned so that the straight lines approximating the curved bound-

ary lie midway between two parallel grid lines (see figure 5.12). In this model a

boundary point is any point which lies immmediately adjacent to the boundary

and is inside the boundary.

For all interior points, Equation (5.5.1) holds. All the remaining points may

be placed into two groups as above. Also, just as above, there are four possible

orientations for each group of boundary points. These orientations are exactly the

same as those presented in Figures 5.10 and 5.ll except for the relocation of the

boundary so that the points P, Q, R and.9 all lie exactly L,alz inside the solid

boundary. For a point i such as shown in Figure 5.f0 (with the boundary adjusted

as indicated) the following approximation holds:

Zq * zn * zs * (k2 Lr2 - 3)z¡ = -a\,x (5.5.18)

where, for each of the orientations ll, 12, l3 and 14 the parameters Q, R,,S and

.¿{ are given respectively by Bquations (5.5.9, 5.5.10, 5.5.11 and 5.5.12). For all the

corner boundary points such as shown in Figure 5.11 (with the boundary adjusted)

the following approximation holds:

Zn * Zs * (k2 A,r2 - 2)z¡ : -L,rA (5.5.19)

where, for each of the orientations 21, 22,23 and 24, the parameters ,8, ^S and

A are given respectively by Bquations (5.5.14, 5.5.15, 5.5.16 and 5.5.17). The

above two equations (5.5.18 and 5.5.19) are derived using the fact that the spatial

derivatives at the boundary are approximated by formulae such as

ôz
*: (Zp - Zy)l\,r. (5.5.20)
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This second model represented by Equations (5.5.1, 5.5.18 and 5.5.19) will

also be used to solve Equation (5.1.2) with a circular basin. The finite difference

grid is positioned so that the staight lines approximating the curved boundary

lie midway between adjacent lines of the grid. Differences between these two

conventional models will be described in the next section.

$5.6 Coup¿,RrsoNs BETïVEEN THE FINITE DmrnRnwcE MoDErs

Firstly, the performance of the numerical models described in the previous

section was tested against results obtained from the analytic solution for the dis-

placement occurring in a circular basin. All the parameters used in the comparison

are the same as those used in producing Table 5.2. In this Section, however, a

comparison is made using only a grid spacing of Aø - Ay :2000 m. Note that

this spacing corresponds to a spacing of Aø - Ay - 1000 m. in the staggered

grid model. The analytic solution is available from Equation (3.2.2).

A comparison between the first numerical method developed in the previous

section and the analytic solution is made in Table 5.5. Clearly, this finite difference

model performs well. The largest relative percentage error of 2.6% was found to

occur along the line 0 - O. This result is far better than that achieved with the

previous numerical solution discussed (see Table 5.2). A comparison is made in

Table 5.6 between the three models models so far tabulated (that is, the integral

equation method, the numerical solution of Section 5.3 and the first model of

Section 5.5). This table, therefore, summarises results presented in Tables 3.2,
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GAIN PHASE LAG

v % V %

Lr: Ly - 2OOO m î - a/4,0 -o
r-o,/4,0-r12

0.0000

0.0000

0.00

0.00

0.0004

0.0000

2.60

0.02

TABLE 5.5: Comparíson ol the first numerícal model lor Helmholtz's Equation
presented in Section 5.5 against the analytic solution for a circle.

TABLE 5.6: Comparison of the three methods used so far lor the wtnd torced prob'
Iem wíth a circular basín. The results are presented at 0 : O and r: a/4. The
results for the Integral Solution are obtained with l[ - 36.

5.2 and 5.5. Clearly, the two methods which most closely approximate the real

boundary are to be recommended. Of these two, the integral equation approach

appears to be better. However, it is difficult to make a direct comparison between

these two methods because of the difficulty in relating the grid spacing, Aø, to

the summation number, lV. For the given values of Aø and JV used in Table 5.6,

the integral equation method needed substantially more CPU time to solve the

problem then did the finite difference solution and so from this point of view, the

finite difference approach could be preferred.

ll0

GAIN PHASE LAG

V % V %

Integral Equation Solution; Table 3.2
First Numerical Solution; Table 5.2
Second Numerical Solution; Table 5.5

0.0000
0.0006
0.0000

0.00
6.26
0.00

0.0001
0.0045
0.0004

0.50
29.23

2.60



A further comparison was made between the finite difference model which

does not alter the curved boundary and the boundary integral solution. A useful

comparison of the two methods can be made by requiring the two solutions to use

¿ similar amount of computer CPU time when the programs are run. For a value

of Aø - 1000m in the finite difference model, a value of /V = 115 resulted in the

boundary integral solution using about the same CPU time

Table 5.7 compares the two methods with the analytic solution. The largest

errors which occurred when using the finite difference method were found to lie

along the line 0 - O and for this reason the comparisons in Table 5.7 are made

along this line at r -- øf4. The results shown in this table suggest that under

the criterion of equivalent CPU times the frnite difference solution appears to be

better. This is an encouraging result. A major reason for using boundary integral

techniques is often because the boundary of the region of interest can be modelled

more correctly. However, as has been shown, if special finite difference formulae

are used which are capable of modelling the boundary accurately, then results

which are at least as good as those obtained with the boundary integral approach

may be achieved.

In Table 5.8 the differences between the fi,nite difference solution first devel-

oped in the previous section and the two conventional models are displayed. A

grid spacing of Az - 2000 m is used. Once again, the largest error in results was

found to lie along the line 0 - O and results from the various models are given for

the point 0 - O at a clistance of af 4from the origin. From Table 5.8, it is clear
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GAIN PHASE LAG
V % V %

Boundary Integral Solution
Second Finite Difference Solution

0.00002
0.00001

0.16
0.01

0.00005
0.00005

0.35
o.34

TABLE 5.7: Comparíson ol the curaed boundary finite difrerence solutíon presented
in Section 5.5 with the Boundary Integral solution with La - 1000 m and JV - ll5.

TABLE 5.8: Comparison of the three numerical models presented in Sectíon 5.5
and used to solue Helmholtz's Equation.

that the first model discussed in the previous Section which uses second order

differences to approximate the curved boundary provides superior results. Of the

two conventional models, both of which are second order, the one in which the

boundary bisects two adjacent grid lines provides the best results.

Comparing Table 5.6, 5.7 and 5.8 it is apparent that in solving wind forced

problems for which either Equation (5.1.1) or Bquation (5.1.2) may be used, bet-

ter overall results were obtained using Equation (5.1.2) than with the method

presented for Equation (5.1.1). Using methods which enable the boundary points

to be modelled with the same accuracy as the interior points gives far better re-

GA.IN PHASE LAG
V % V %

First Conventional Solution
Second Conventional Solution
Curved Boundary Solution; Table 5.5

0.0000
0.0000
0.0000

0.00
0.00
0.00

0.0015
0.00r0
0.0004

9.70
6.50
2.60
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sults than a conventional treatment in which the boundary is approximated by a

set of straight line segments.
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CHAPTER 6

EDDY VISCOSITY. A REVIEW

All of the work discussed so far has dealt only with depth integrated models.

These models provide no information about the nature of the vertical profile of the

horizontal velocity components. In order to achieve this information, equations

similar in form to (1.3.3) must be used. However, as was stated in Chapter l, in

order to use these equations the eddy viscosit¡ JV, must be specified. This chapter

examines the various formulations for/Y which have been deduced from laboratory

and fleld experiments and also those forms of lY which have been used in numerical

models. Finally, methods which allow the eddy viscosity to be calculated as part

of the solution procedure are discussed. The following work is directed mainly

at wind driven flows but, because of their similarity with and because they are

often considered in conjunction with wind driven flows, tidal flows will also be

mentioned.

g6.l ExppRtursNTAL OssERvatloNs

Because of the relationship between the eddy viscosity and the gradient of

velocity, it is useful to first discuss observations of currents which have been made

in tidal or wind driven oscillating flows. In particular, since the vertical gradient

of the horizontal velocity components is dominant in the types of flows considered

here, the vertical profile of the horizontal components is o{ prime importance.
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In the following work, the variable u is used to represent the horizontal velocity

components. Analogous results hold for u. Similarly, for other vector components;

equations will be given only for the ø-component, with analogous results holding

for ihe other components. Also, in the following discussion the transformed depth,

7, deflned in Chapter l, will be used.

In the bottom boundary layer of such geophysical flows (that is as 17 -t 0),

the Reynolds stresses may be assumed to be constant (see, for example, Bowden

et. al. (1959), Engelund (1973), Swift et. al. (1979) or Duncan et. al. (197s)).

This leads to the universal law of the wall which states that

u - log? as ? + wallt (6.1.r)

that is, the vertical profile of velocity is logarithmic near a solid boundary. From

Equation (1.3.1) this law implies that

N-rì as4+wall. (6.1.2)

That is, in the boundary layer near a wall it is expected that lY increases linearly

with height above the wall from some small value usually taken to be zero or the

kinematic viscosity, z, of the water. If a wind stress is acting upon the surface of

the water, then it would be expected that the above relationships between lV and

¿ and depth would also hold near the éurface.

Whether the fluid in tidal and wind driven flows does in fact behave in this

manner, has been examined by many workers since early this century. As early

115



as 1925, Powell (1925), examined the tidal flow in the Sound of Jura which has

a depth of about 50 m. He concluded, however, that the velocity of tidal current

decreased with the square of depth. Van Veen (1938), from his observations of the

tidal current in a channel, proposed

u: ur49 (6.1.3)

where u, is the surface velocity and B is some constant. The best fit of Equation

(6.1.3) to the data was achieved with B-r - 5.2. This is very near to a logarithmic

variation of ¿ with r2 for small q

Bowden et. al. (1959) observed the tidal current in homogeneous water of

depth of 22 m. in the Irish Sea. They concluded that a reasonable approximation

to the velocity profile was given by a model in which the profile was logariihmic

to a height aI¿ above the sea floor (where l¿ is the depth of water and a is a

constant) and the profiIe was parabolic above this height. From their observations

they concluded that a - 0.14.

Dyer (1970) measured the vertical profile of horizontal currents in a channel

for a complete tidal cycle in the West Solent near Southampton. In most obser-

vations, the bottom 2.3 m of water (in a total depth of about 18 m) could well be

represented by a linear relationship between velocity and the logarithm of height.

During investigations in six tidal channels at depths of 8 m to 42 m. in Puget

Sound and the Strait of Juan de Fuca area, Sternberg (1968) found logarithmic
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profiles near the bottom occurred tor 85%o of the time, although for individual

channels the proportion ranged from 62To to 100%.

Further investigations of the vertical profile of velocity are to be found in

Grace (1929), Harvey and Vincent (1977), Wolf (1979), Heathershaw (1979) and

Soulsby and Dyer (1981).

The existence of a logarithmic velocity profile near solid boundaries is thus

well established. The mathematical analysis predicting its existence ( the law of

the wall) was established considering steady flows. Presumably, this logarithmic

profile is observed in tidal flows because the time scale of the oscillating flow near

the wall is small compared with the tidal period, enabling a quasi-steady state to

develop.

It was stated above that just as the bottom shear stress causes a logarithmic

velocity profile near the bed, a surface wind stress causes a logarithmic velocity

profile in the topmost layer of water. This fact was recorded by Shemdin (1972) and

also by Flancis (1953) who experimentally examined the vertical velocity profile

in steady circulation caused by water jets on the surface of a laboratory flume to

simulate stress caused by a wind.

Lathbury et. al. (1960) observed a near surface logarithmic velocity profile

in their work on the hypolimnion of Lake Mendota.

Baines and Knapp (tO0S), Fitzgerald and l\{ansfield (1965) and Koutitas and

O'Connor (1930) all examined the turbulent flow in a closed channel acted upon
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by a surface wind stress. The vertical profiles for velocity whiqh they recorded are

compared in Figure 6.1

Verification of the existences of bottom and surface logarithmic boundary

layers certainly aids in formulating an expression for the eddy viscosity in these

regions. However, to obtain a complete picture, requires obtaining the Reynolds

stresses, accurate measurements of which are very difficult to obtain. Heathershaw

and Simpson (1978) report that the sampling error in measuring the Reynolds

stress can be as high as 40T0.

Amongst early investigators concerned with the measurement of the eddy vis-

cosity were Nomitsu and Matsuzaki (1936) who examined the vertical distribution

of eddy viscosity in rivers. Neglecting convection and horizontal diffusion terms

and considering river flow to be steady and one dimensional yields the following

momentum equation:

#h('#) --sp# (6,4)

Using field measurements of the surface slope and the vertical velocity profile,

Nomitsu and N{atsuzaki (f936) integrated the above equation resulting in a for-

mulation for .¿Y. In large rivers tens of metres deep they found that lY did not

vary greatly with depth but was rather uniform except in the bottom one to two

metres. They also found that the shallower the river, the larger the coefficient of

eddy viscosity. The overall shape of the profile was found to be concave upwards

especially in the upper parts of the fluid column and JV increased rapidly near the

bottom to eighty to ninety percent of its surface value. In shallower rivers, only
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a few metres deep, they observed that lV seemed to vary with the square of the

velocity except in the bottom layer of about one metre.

Bowden et. al. (1959) measured the Reynolds stresses as well as the vertical

variation of velocity. From these measurements they concluded that lY is greatest

near mid-depths, with a maximum at q - 0.375. They also found that JV at-

tained its greatest value at times nearly three hours before and three hours after

high water, when the current is greatest. No reliable estimates were available at

times of high water when the currents and stress are small. They deduced that a

good theoretical model for lV which would describe the flow was one in which lV

increased linearly from 4 : 0 to a height rl = a and then took the constant value

N:nau*bh a1q1L (6.1.5)

where rc is Von Karman's constant (rc ru O.al) and u*¿ is the friction velocity at

the bottom, that is, u*6 - \ñn where 16 is the bottm stress. They also found

that the maximum value of iV could be represented by

ff*,* - 2.9xlo-tlulh (6.r.6)

where t/ is the depth integrated velocity.

Bowden and Hamilton (1975) suggest using the following expression for JV in

turbulent flow near a solid boundary where the velocity profile is logarithmic

N -- rchu*b(n + rtr) (6.1.7)

where 4, is the roughness height.
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For steady flow with no surface stress, Rossby and Montgomery (1935) de-

duced

N:rchu*bq(t-q). (6.1.8)

This parabolic form of iV is zero at the bottom and top and reaches its maxtmum

value at q - 0.5 with

In a laboratory experiment, Jobson (1968) and Jobson and Sayre (1970) de-

termined a parabolic distribution for the eddy viscosity similar to that described

by Equation (6.1.8) in which u*6 is replaced by the shear velocity, u*, of the fluid.

This velocity was determined from the shear stress which was assumed to vary

Iinearly from zero at the bottom to a value of 'ylu,S at the surface where 'y is the

weìght of a unit volume of water and ^9 is the energ"y gradient. Knight et. al.

(1980), in their survey of the Great Ouse estuary, also plotted out the profile of ./V

with depth. The measured values were rnuch less than those predicted by Equation

(6.1.8).

The eddy viscosity is also modified by the stability of the fluid. For example,

Munk and Anderson (1948) introduced

JV: lYo(r + rOR;¡-t/z (6.1.10)

where IIo is the eddy viscosity in conditions of neutral stability and .Ri is the

Richardson number defined' by

fl-"* - O.2ínhu"o. (6.1.e)

(6.1.11)Ri--'+H l(#)'
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The Delft Hydraulics Laboratory (197a) have investigated many different relation-

ships for lV in cases where a density gradient exists.

From the discussion so far it seems that an exact formulation for lV is difficult

to acquire. Certainly, assuming iV to be independent of time is physically unreal-

istic. At the very least, JV should be considered to vary with time according to the

instantaneous values of lu.olå or ltllå,. The values of lY determined in field investi-

gations vary greatly. Indeed, Bowden and Fairbairn (1OSZ) were unable to deduce

the dependence of JV on depth because of the large range of values obtained from

different stations in the lrish Sea. They found values rangingfrom l0-3 m2sec-L

to l0-2 m2 sec-r. Bowden et. al. (1959) estimate that the errors which occur in

their values of JV could be in error by as much as 5O%.

When a wind is acting on the surface of the fluid, a formulation for /V is still

difficult to obtain from observation. Bowden (1964) relates iV to wind speed, Vf ,

measured at a height of 15 m by

pN -W2 for W ) 6 msec-t. (6.1.12)

Bengtsson (1973) experimentally examined the variations of the eddy viscosity

with depth in a wind affected lake. The eddy v,iscosity was found to increase

linearly with wind speed.

Koutitas and O'Connor(1980) also measured the eddy viscosity occurring in

wind induced flow in a closed channel. Their resultant profile for JV is shown in

Figure 6.2

r22



1.0
x

x
X

.c.
+t
CL
o
!

x
0.5

x

2.O

eddg vtscosttg N n2

FIGURE 6.2: Plots ol the eddy viscosity profiIe ín o cl¿onnel ol uniform depth as

recorded by Koutitos and O'Connor (1950)'

x

x

0 4.0
_tsec I

6.0
( xl 0000 )



Huang (1979) presents a list of values of N which have been experimentally

deduced for both wind and tidal problems by different authors. He also gives forms

of .M which have been used in theoretical models. The experimentally determined

values of JV were found to vary considerably, from 0.L m2 sec-l to 4xl0-3 m2 sec-t .

Similarly, the expressions which have been used in theoretical models also vary

greatly from a linear dependence on depth to a parabolic and even an exponential

dependence.

56.2 THE VERTTCAL EDDY VIscosITy USED IN MATnEMATICAL Moopl,s

The first workers examining the flow regime in wind forced motions occurq$ng

in shallow sea and estuaries assumed the eddy viscosity was an absolute constant

(see, for example, Bowden (1953), Tarayev (t9Sa(a¡), Birchfield (1971), Heaps

(1972) and Cooper and Pearce (1980)). Cooper and Pearce (toaz) develop a three

dimensional model for analysing the currents produced in seas during the passage

of storms. They use Galerkin techniques in their model and it is capable of coping

with any form of lY which varies piecewise linearly with depth. However, they

used a form of JV invariant over depth when producing any results.

Reasonable results have been obtained when using a constant form of JV as

in the above models. However, a slip velocity condition at the bottom needed to

be used to achieve this. A similar requirement was observed in models of tidal

flow. Johns (1966) and Stolzenbach et. al. (1977) both obtained poor agreement

with observed results when a constant JV was used in conjunction with a no-slip
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condition. However, Raney et. al. (1980) used a constant eddy viscosity with a

no-slip bottom condition on velocity in a three dimensional storm surge model.

Like the tidal model of Lee (1969), which employs the same assumptions, this

model surprisingly produced good qualitative results but the model was not well

validated.

Using the constant eddy viscosity model with a slip condition, Heaps (1972)

also examined the sensitivity of the boitom current and the surface elavation to

the value chosen for lY (see Figure 6.3). Figure 6.4 shorvs the velocity profiles

,for both ¿ and u obtained using different values of /V and r, the linear friction

coefficient. The profiles obtained are much more sensitive to changes in lY than

r. Clearly, from these two figures, the value of the eddy viscosity coefficient can

significantly affect the results from an oceanographic model. The best value of /V

which should be used is usually obtained by "tuning" the model with observed

results. If a constant value of /V is not used then just as much care should be

taken in obtaining a good approximation for the variation of ff with depih.

In a later paper, Heaps (1932) developed a three layered numerical model

to describe the motions of a stratified sea. This spectral model was applied to

the Celtic Sea which has a mean depth of about 100 m. The bottom layer of

the model was assumed to be of depth 6O m,, the middle layer to be l5 m deep

and the top layer was 25 m deep. Within each layer, the density was assumed

to be constant but was different between layers. The vertical eddy vìscosity was

modelled similarly. In the bottom layer, the eddy viscosity was taken to be /Vl -
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lO-2 m2sec-l, in the middle layer Nz - l}-s m2sec-l was used and in the top

layer JV3 - 3x10-2 m2sec-t. The value of /Vs is an estimate corresponding to a

wind stress of 0.1 Nm-2. The comparitively low value of lY2 was chosen to reflect

a situation of vertical stability in the thermocline, while the value of lY1 was taken

to be larger than /Yz since vertical stability in the bottom layer was comparitively

weak. However.lVl was taken to be smaller than lY3 due to the separation of the

bottom layer from the wind force upper layer by the middle layer.

Davies (1977) also used a constant eddy viscosity with a slip condition in his

three dimensional model of a closed, rectangular rotating basin acted upon by a

homogeneous wind. He used flnite difference techniques in the horizontal combined

with Galerkin techniques over depth. The effect of using different basis functions

is examined in later papers (for example, see Davies (t980(a)) and Davies and

Owen (1979)). Davies also proposed an eddy viscosity whose depth variation is

shown in Figure 6.5. The effect of varying /Y0, /Yl and ffz on the vertical velocity

profrles is also examined. Results from this work can be found in, for example,

Davies (1980(b), 1e82(a),(b),(c) and 1983).

In Davies (1981) a three dimensional ocean shelf model is developed. Both

stratified and homogeneous seas are considered. In the latter ca,se, a constant eddy

viscosity was defined by

N - clul2lo (6.2.2)

where ø : 10-as¿c-r and c - 2xl}-5 were considered appropriate values for an

Mz tide on a shelf. When the effect of a wind on a stratified sea was considered, an
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eddy viscosity formulation was used which did not vary with horizontal position

or time and had the vertical distribution shown in Figure 6.6. The eddy viscosity

was assumed to decrease linearly in the top 50 m of the water column with iV¿ -

5x10-2 m2 sec-t and lYs - 2xl}-2 m2 sec-L . This represents a surface layer in

which the wind generated turbulence decreases linearly with depth. Below the

surface layer, there is a layer of l0 m. thickness corresponding to the pycnocline.

Within this layer, turbulence is suppressed and this reduction is modelled by a

reduction in the value of the eddy viscosity to a value of lY2 = 10-3 m2 sec-z in

the centre of the pycnocline. Below this layer, turbulence was assumed to be of

tidal origin and a constant value of JVr = l0-2 m2 sec-L was used throughout the

remaining depth of water.

Pearce and Cooper (tOat) also developed a numerical model similar to those

of Heaps and Davies mentioned above. The form of eddy viscosity used was similar

to that shown in Figure 6.5 except lVl - ÀIo. The value at the surface was chosen

to be 2.5x10-0 m2sec-r and at depths below r2:0.8, an eddy viscosity given by

No - u*"hf 12 \ilas prescribed. The form near the surface was originally proposed

by Csanady (1978) while the latter formulation was previously used by Townsend

(1976). This model gives good agreement with the experimental results of Baines

and Knapp (1965) and Shemdin (1963).

There is an important feature of models such as that used by Pearce and

Cooper (1981). An expression to determine the bottom stress is usually required.

An equation such as (1.2.5(b)) or its linear equivalent is often used but Pearce and
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Cooper (1981) used a linear stress law given by

n: ClPua. (6.2.3)

The drag law coefficient., C'6 which depends on the flow must be prescribed. To fit

the experimental data of Baines and Knapp (1965), a value of C', - 5x10-5 msec-r

was used but to fit the data of Shemclìn (1968), a value oI C'u - 2xl}-2 ræsec-l was

required. The fact that this parameter may take a value within such a large range

makes the model difficult to apply to any real situation for which there are no

experimental results available with which the numerical model may be calibrated.

Simons (1971) and Leendertse et. al. (1975(a),(b)) also used layered models.

In both models, the fluid is divided into several layers within which the eddy

viscosity is assumed constant.

Since a logarithmic velocity profile is expected near the surface, Johnson

(1967) chose

N = rc,hu.,(l - f) (0.2.1(a))

near the surface and

N : rchu*art (6.2.4(ö))

near the bottom. The constants rc, and rc are the "mixing constants" and so r is

Von Karman's constant for rvall fl.ow and rc, is the analogous quantity for surface

flow (0.4 ( rc" ( f .0). Johnson (f002) then postulates that the form of JV for the

entire flow is

N : nu*bh?(l - q)(r + pn) (6.2.5)
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for some constant B and for which it was assumed that

rc"u*rf rcu*ó = l. (6.2.6)

The results of a model using Equation (6.2.5) are compared with the experimental

results of Fitzgerald and Mansfield (1965) in Figure 6.7. Good agreement for the

vertical form of the horizontal veclocity profile was achieved near the surface and

bottom, but the agreement in the central regions is not good. The formulation

described by Equation (6.2.a) with æ, = ,c was also used by Madsen (1977) in

a model of wind driven ocean flows. In the middle regions of the flow JV was

assumed constant. Thus, the profile is similar to that shown in Figure 6.5 with

N0 - N2 - 0. The slopes of the lines at the top and bottom are determined by

Bquation (6.2.4). For very shallow water Madsen (1977) proposed It = 42.

A more complicated form for lV was proposed by Dyke (1977) in his model of

the surface layer of an ocean acted upon by a steady wind stress. His formulation

was

rY: i% (l - aä(a - 1))' (6.2.7)

for some constant a.

M"Phee (1979) in contrast chose

N : u*,nh(t - rl) exp(cf h(tt - l)1u"") (6.2.8)

in his model of the effect of pack ice moving over the surface of a deep ocean.

This expression for lY implies that the eddy viscosity reaches its maximum value
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just below the surface and decreases below that. The parameter / in the above

equation is the Coriolis parameter whilst c was given by a function involving ü*¡,

N, Í, ä and 4.

Thomas (1975) in his study of shallow basins acted upon by a steady wind,

used a linear variation of /V as given by Equation 6.2.a(a)). A no-slip condition

on velocity was used at the bottom. An iterative scheme \ryas developed so that

the analytic formulation for ¿ was forced to be asymptotic to a logarithmic profile

at the bottom. Good results were obtained but only with great computational

effort and complexity. These computational difficulties caused Witten and Thomas

(1976) to abandon this method of solution in favour of more conventional methods.

Stolzenbach et. al. (1977) found that analytic results obtained using Equation

(6.2.4(b)) and the equations describing wind driven flow in an infinite channel and

a channel of frnite length were in poor agreement with laboratory results.

Tarayev (1958(b)) used a vertical eddy viscosity coefficient with only a linear

dependence on q, namely,

N :1t (6.2.9)

for some constant .y, in his model of an oscillating wind over a shallow sea. He

states that a deficiency in his model is the neglect of time dependence in his formu-

lation of .tY and concludes that any a priori attempt to define such a dependence

would be extremely difficult unless it is defined to depend on u*ö or u, as in several

of the previously cliscussecl models.
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Analytic solutions describing the near bed velocity profile in a tidal channel

in which an oscillating boundary condition is imposed on the velocity at the open

of the channel, are presented in Lavelle and Mofjeld (1983). A time dependent

eddy viscosity coefficient whose vertical profile varied as shown in Figure 6.5 (with

.lYl - iVr) *as used. The actual formulation used was

ub
ub

in which 4, is the roughness height and u6 is a function of time and is a modifred

JV-

bottom friction velocity defined by

u6 - lul6 + e2 u2*o(t + r lt¡)t 12, (6.2.10(ö))

where f is the period of the oscillation of the velocity at the open end and e is a

constant given the value of 0.2. The height, lr, at which N becomes a constant

was determined by the intensity of the flow. An alternative form of JV for which

numerical solutions were obtained was also used by Lavelle and Mofjeld (1983). It

was

,C

l1'

hn q,1q1nt
hqt I ) ttt (6.2.t0(o))

lY - rcluul4åexp(-Tlrlrtt) (6.2.11)

which describes an eddy viscosity increasing linearly above the bottom to reach a

maximum at 71 and then decreases in value.

Ottesen-Hansen (1975) has carried out a numerical study of the effects of a

wind stress acting on the surface of a deep stratified lake. Only the upper layer

of the lake was considered and in this layer lV was assumed to be a constant over
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nearly the whole depth. At the bottom and surface of the upper layer, the eddy

viscosity was assumed to decay logarithmically to zero. Using this formulation,

the entrainment velocity of the upper layer was successfully modelled.

The form of vertical eddy viscosity used by Nihoul (1977) and Nihoul et. al.

(1930) in their three dimensional model of wind affected continental seas was

N(r,y,z,t) - F(r,!,t)f (a)(lz + ç)2 $.2.r2)

where .t' and ,\ are some functions. A parabolic form of ) was used and it was

given by

À(z) - q(t - nlz) (6.2.13)

The function ,t' was determined from the bottom stress, the depth averaged ve-

locity components, the surface stress and surface slopes.

Both Engelund (1978) and Koutitas (1978) also used parabolic formulations

for the eddy viscosity in studies concerned with wind driven flows. The former

proposed

N : tsu*"hq(q - t) (6.2.14)

while Koutitas (1978) used

rY-ffot(q-r) (6.2.15)

for some constant il0. Both of these formulations were found to provide reasonable

results when compared with the laboratory experiments of Stolzenbach et. al

(re77).
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Liggett (1970) proposed the formula

lY: j% + (Nr - ffo)z' (6.2.16)

in his studies of lake circulation. In this equation the parameters .lVs, .tYr and ¿

are all constants and Liggett used ¿ - 0.5 in all test runs.

From the above review of the forms of eddy viscosity which have been used

in models of wind driven flows, it is apparent that many varied formulations have

been used by different workers. The above review is concerned mainly with wind

driven flows although most of the formulations presented could also be used in tidal

fl.ow models. Likewise, some formulations which are used in tidal flow problems

could also be used in wind driven flow problems. Some further formulations which

have been used in tidal flow models may be found in Kagan (1979), Swift et. al.

(1979), Johns (1966, 1968, 1969, 1970), Johns and Dyke (1971), Ianiello (1977),

Tee (tOzo), M"Gregor (tozz), Jordan and Baker (1980), Noye et. al. (1981),

Bowden (1964), Kajiura (1964), Ricco (1982), Blumberg (1975) and Owen (1980).

$6.3 TunsuLpNT ENERGY CLosuRE SCHEMES

As has been shown, the Boussinesq approximation is a popularly applied con-

cept. Unfortunately, the exact form of N is difficult to establish. A wide range

of formulations have been measured or proposed for use in various oceanographic

models. Indeed, the comment of Shanahan and Harleman (1982) that "the ver-

tical eddy viscosity will be a problematic parameter for the circulation model" is
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frustratingly accurate. In recent years, however, work has been carried out which

enables the form of the eddy viscosity to be calculated in addition to the other

flow properties. This is a reasonable approach because ff is not a property of the

fluid but rather of the flow itself and so is difficult to quantify without knowledge

of the flow.

There are two types of turbulent models commonly employed in models of

wind forced or tidal flows. These models are referred to as one-equation and

two-equation models. Both use a transport equation for the kinetic energy of the

turbulent motion (per unii mass). For high Reynolds' number this equation is, for

non buoyant flows,

# .',# : hþ, (# . i)l -qH - . *,ry#, (6 8,)

The exact form of the ,b equation given above is of no use as presented because new

unknown correlations involving u.4 terms appear. To obtain a closed set some extra

assumptions are made. Firstly, the diffusion flux is assumed to be proportional to

the gradient of /c. That is,

NAk
(6.3.2)

o¡, ôx¡

for some constant o¡. This is a common assumption and is used in the derivation

of the usual transport equation for a scalar quantity. The last term on the right

hand side of Equation (6.3.1) is usually denoted by a scalar quantity, e. Expres-

sions enabling e to be obtained are given later in this section. Substituting these

assumptions and Bquation (1.3.1) into Equation (6.3.1) yields

",(+.i)

akaka /il ôfr \
\aa) ..(H.#)H-,

- 

_l_

ill ôx; ôn¡
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Using assumptions such as those made in deriving the momentum equations ( for

example, neglecting horizontal gradients) simplifies Equation (6.3.3) to the usual

form of the k equation used in oceanographic models, namely,

#*"#+,#*,#--#[(*l'.(?,)'] .# ie#) -. (634)

A value of. o¡, -- I is commonly used.

In one equation models, the dissipation of turbulent energ'y, e, and the eddy

viscosity JV are related to a length scale, f. The Kolmogorov-Prandtl law is used

to define /Y by

y _ ¿tlt¡¡rlz (6.3.5)

with c' av 0.08. The dissipation is usually modelled by

e: cñlakslz¡-r. (6.8.6)

It remains now only to specify I so that a value for lY may be obtained.

flowever, a formulation for t is difficult to establish. Johns (|OZZ and 1978) and

Vager and Kagan (1969(a),(b) and l97l) suggest using Von Karman's expression

for I, namely,

, - 
*¡¡rlz¡-r

¡ _ - (6.3.7)
ô (rrlz¡-r) lart

which is solved subject to I - rcltq, at ? : 0.

The appropriate boundary conditions for Equation (0.e.+) are somewhat con-

tentious. In many turbulent models the boundary conditions are not applied at
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the bottom but empirical laws are applied at a small distance away from the wall.

The Reynolds stresses are assumed constant lvithin thìs distance which leads to

a logarithmic velocity profile as mentioned previously. Also in this layer the pro-

duction and dissipation of ft are assumed to be in equilibrium and this leads to

the condition

k = u2*al{c atr q = qr, (6.3.3)

where 41 defines the bottom boundary in which the Reynolds stresses are constant.

However, many workers using equations of this type in oceanographic modelling of

the type being discussed here have used boundary conditions at the bottom, ? : 0.

Because of this, and also to be consistent with the formulation of the montenturn

equatìons for which a boundary condition at 4 - 0 is employed, a condition for ,b

zt q - 0 is given here. Because of the no-slip condition for velocity at q - 0 the

fluctuating velocities ul. are also equal to zero at rt - 0. Thus,

,t - 0 at r1 - 0. (6.3.9)

At the surface, the boundary condition is more difficult to quantify. If there is no

surface stress, then, as for other scalar quantities, the surface is considered to be

a symmetry line. Thus,

ôk
fi-o atq-l (6.3.10)

is the condition when there is no surface stress. If a surface stress does exist then

the top boundary condìtion is difficult to determine. There is little experimental

evidence to provide assistance for a correct formulation. A reasonable approxima-

tion would be to consider the stress imparted at the surface by a wind to behave
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like the stress imparted by a solid boundary. That is, the surface is considered to

behave like a wall. Thus a condition analogous to Equation (6.3.8) could be used,

namely,

r=9 atq-:. (6.8.ll)
t/c

The effect, if any, of using Equation (6.3.10) or (0.a.f t) will be examined in relation

to wind driven flows, in the next chapter.

Johns (1978) used a one equation model to study oscillating tidal flow in

a channel of variable width and depth. Vager and Kagan (1969(a)) applied the

method to examine the flow in the bottom turbulent boundary layer in a homo-

geneous deep sea. In a later paper, Vager and Kagan (1969(b)) studied the tidal

flow in a shallow sea. The model was extended further in Vager and Kagan (1971)

to account for a stratified boundary layer in a tidal flow. In all cases, JV was found

to vary considerably over a tidal cycle.

Instead of using Equation (6.3.6) to determine €, a transport equation similar

to Equation (6.3.a) may be developed for e. Using assumptions similar to those

used in deriving Equation (6.3.4), the following equation is obtained

ôe ôe ôe ðe
u+"ar*uau*'u,

(6.3.r2)
: #lt*l' . (y,)'1. #i e#) - +

where h: L.44 and c2 - 1.92. In this two equation model the eddy viscosity is

N--"p
e

defined by

r41

(6.3.13)



with c = 0.09.

Using similar assumptions to those made in deriving Equation (6.3.8), a wall

condition for e may be obtained. It is

In most numerical models, the value of 41 required in F,quations (6.3.8) and

(6.3.14) is taken to be the distance the first grid point is above the wall. The depth

of the viscous sublayer [1, câtr, however be related to a non-dimensional depth,

n by+

- _ ul,a

nIt atq-ry. (6.3.14)

(6.3.15)

(6.3.16)

where 30 ( 4+ < 100 (see Rastogi and Rodi (197a)) and the numerical grid is

chosen so the Equation (6.3.15) is valid

However, as was the case for the ,t equation, a boundary condition applicable

at the bottom is required. Launder and Spalding (fSZ+) report that measurements

ìndicate that the turbulence energy dissipation is constant in the immediate vicin-

ity of a wall. This suggests using

atq-O.

This was the boundary condition used by Lam and Bremhorst (1978) in a low

Reynolds number k - e model. However, Jones and Launder (ISZZ) reported

difficulty in this approach. Instead, they chose to add an extra term to the It
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equation which is exactly equal to the dissipation rate at the wall and then use € =

0 at the wall. Jones and Launder (1972) and Launder and Spalding (1974) calculate

that the dissipation at the wall is equal toZv(ôkrl'lðr¡)'. For flows considered

here we have consistently neglected viscous effects and so a good approximation

at the boundary must be

e:o at7-0, (6.3.17)

with the & equation remaining as shown in Equation (6.3.a). This is the condition

used in this work. The effects, if any, of using either Equation (6.3.17) or Equation

(6.3.16) will be examined in the next chapter.

If there is no surface stress, then a symmetry condition applies for e. Thus,

ãe

--0 atq-t. (6.3.18)
ôa

A condition analogous to Bquation (6.3.14) will be used at the surface when there

is an applied wind stress. Combining Equations (6.3.14) and (6.3.15) yields

atq-1. (6.3.1e)

lvill be examined later.

Such two equation models have been used by Blumberg and Mellor (1978)

in their numerical model of coastal seas. Svensson (1979) extended the above

turbulent equations to accomodate rotating flows. His model was found to compare

favourably with laboratory experiments of channel florv and wind induced channel
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flow. The turbulent equations are examined in detail by Mellor and Yamada

(1974). Several turbulent models are presented and all compare favourably with

one another. Marchuk et. al. (1977) used a two equation model to study the

temperature profile occurring in the upper ocean.

A major drawback of turbulent energy closure schemes is that the amount of

computational effort required to solve hydrodynamic problems increases apprecia-

bly. In an effort to overcome this problem, Smith (1982) formulated an expression

for iY like

N - M(x,y,t)F(q) (6.3.20)

where M is a function determined using the depth integrated turbulent kinetic

energy and the dissipation of such energy. Using the depth integrated turbulence

equations greatly reduces the computational effort. The vertical profile of eddy

viscosity was determined by .F'(q) and two forms were proposed, namely,

F(ù - (r - rù'l""rf (aa) (6.3.2r(ø))

and

F(n) - 2aq exp(-a4) (6.3.21(ö))

where a was determined to have a value of.3.2. Results from this model compared

favourably rvith results from a two equation turbulent model.

The two equation model will be used in the next chapter together with analytic

solutions involving various formulations for iV to model wind induced flow in a

channel. Results will be compared with laboratory experiments.
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Cu¡,prpR 7

WIND DRIVEN FLOW IN A CHANNEL

7.1 The Equations For Wind Driven Flow In a Channel

The previous chapter presented many different formulations for the eddy vis-

cosity profrle which have been used in the study of both wind forced and tidally

induced florvs. Some of the more commonly used profiles will be used in this

chapter to develop analytic solutions to solve for the set-up and for the horizontal

velocity which occurs when a wind is blown over a long, narrow channel. The

vertical profiles of velocity and the set-up will be compared with results from

laboratory experiments. Finally, the performance of a numerical model which cal-

culates the eddy viscosity as part of the solution procedure will be examined. The

vertical profiles of lY for which analytic solutions are developed are displayed in

Figure 7.1.

The problem which is to be modelled is essentially two dimensional; it has

variation in the ø and z directions. The linear equations which are to be solved

analytically are, therefore,

#:-'#.1(.#) (zr r(o))

L f ud" - -4 (z.r.r(ö))
ôr J-u ôt

¿-o atr:o,L (z.t.t(c))

u-0 atz--H (7.1.1(d))

L45



const qnt (S ec 7
I r nenn (Sec 7.3
quodnotrc (Sec
quodrottc (Sec
quodnottc (Sec

.2
)
'l .
7.
7.

)

4)
5)
6)(Sec 7.71

1.0

0,5

composrte I¡neqn

./
E
+t
o.
û)
!

---?

e4'?'=
--?:

eddg vtscosrtg N

FIGURE 7.f : Profles of eddy víscosíty consid,ercd, in Chopter 7.

0



and

fifr - r, at, z: o (z.r.r(e))

where If is the constant depth of the channel, iV is the vertical eddy viscosity, u is

the horizontal velocity of the fluid and ç is the elevation of the surface of the water

above the mean water depth. The undisturbed surface water level is denoted by

z = O. For the purpose of developing analytic solutions it will be assumed that

lV varies only with depth and is constant with respect to time and horizontal

position. The density p is assumed to be constant. The wind stress at the surface

is denoted by 
"r.

Boundary condition (7.t.1(c)) implies that the velocity and thus, using Equa-

tions (7.1.1(b) and (c)), the surface elevation and wind stress may be described

by

u(x,2,¿) : D Ur(",t)sin(Koø),
oo

P=l
oo

P=L
æ

P=l

Kp: pr
L for integer p.

ç(r, t) - t ço(f) cos(Krz),

(7.1.2(ø)

(7.1.2(ó)

(7.t.2(c)1(c,t) - t ro(t) sin(Kor),

in which

The wind stress is assumed to be homogeneous in space varying sinusoidally

with time with amplitude r¡; that is,

(7.1.3)

(7.r.4)T" : Toê'ot ,
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which may also be written as

hl*r,

T¿ = Íoelot
4
L

where Kzo-t is defined in (7.1.3). Therefore, we write

ro$) - To"'o'

where

, _l* forp-Zn-r'o- l0' forp-2n
and look for solutions for U, and ço of the form

Uo(",t\ - up(")"'"'

fo(ú) = zo,'o'

for odd integers.

(7.1.5)

(7.1.6)

n: lr2r. . .

n: lr2r. . .

- H2tour(rl) - -gKrZrH2, (7.1.10(ø))

(7.1.7)

(z.t.s(ø))

(7.r.8(b))

Using the above formulations for u and ç together with the depth transfor-

mation described by

z* Hn= H
(7.1.e)

results in the system of equations

HK, 
Iot 

ur,rrort: -LoZpt

up(?) :0, 4:o
p!! dur-(tt) = T-. rt : L.H dn --P'

(7.r.10(ä))

(7.t.to(c))

(7.t.t0(c))

This set of equations is now solved for various forms of tY(7).
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97.2 N Cowst¡,Nr, vlz. ¡V(rl) -iYo

The solution to this problem is available from Walsh(1974) and it is

ç(",ú):#P__'w[sinhöIl_h,o_tcoshåIl]e,"t,(7.z.t(a))

u(r,tt,Ð - ffi2*:{sinn(aø(r - r)) +sinhbø

I Rzn-t[cosh(öfl(7 - 1)) - cosh öIl] ,t ot

Lr--
2

(7.z.r(b)

(z.z.z(ø))

(7.2.2(b))

where

IÌe- 
'

6z
LO

and

The equilibrium response due to a steady uniform wind is found by letting

o ---+ O in Equation (7.2.1) to give

¡Io

gKp
JVo

ep

ç(r) :h(
u(x,z):ffir(?-t)

)

$7.3 N LINntn ,, vrz,. JV(a) - Àf0 + (ilt - flo)tl, Nt * No

A linear formulation (see Figure 7.1) for iV(tl), namely,

il(rl) - lVo + (lvl - ffo)2, Nt * No
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for some constant values of ilg and iVr, is substituted into Equations (7.1.10). The

substitution,

€(rl) = {(¡¡o + (/Vr - No\n}tl' , (7.3.2)

transforms Equations (7.t.tO(a)) into the following

where

(7.3.3)

(7.3.4)

where Js and Ys are the Bessel functions of zero order and Á1o and B1o are

arbitrary unknown constants.

The boundary conditions (7.1.10(c) and (d)) imply

at€-rÆ (z.a.s(a))

and

üp({) :o at€-.'Æ' (7.3.5(ö))

The remaining equation to be satisfied, namely, Equation (7.1.10(b)) becomes

The solution to this equation is (see Abramowitz and Stegun(1972))

,a(€) =,{rpJo(Àr€) +Blpro(Àr q+M
LO

r.Æ' nzo(Nv - lvo)I €,u"(€)d€:
I ¿6 

I -'¡l\r/ ' 2

du,
d€f

150

(z.a.s(c))



For ÀIs f 0, Bquation (7.3.4) *ry be substituted into Equation (7.3.5(b))

to yietd an expression for Zo. This expression together with Equations (7.3.4)

and (7.3.5(c)) enables the unknown Aloto be expressed in terms of B1o. Finally,

Equation (7.3.S(a)) is used to solve for B1o. This process yields the solutions

,o(€) - Btp{-",o (ro(^,€) - Jo(rrÆl)

* ("0(),g - Yo(ÀrÆl)),

z p : - B t, f* r{ = R'o"ro 1r' v/ltro.) + r0 (À1 tfivt) }

(2.a.0(ø))

(7.3.6(ó))

lYr - Àh)Yo(Àt\Æ)

with

Rtp = [(t t^,,Æl - +ro()r "ø,)'Æ
- (",(À,\Æ) - ryro(À,ø,) 1ffi +

I lj,,(À, \Æ) - +ro(À' ø,)'Æ
- (r'1,r,1Æ) - ryro(Àrvm,) 1ffi +

o2Àr (

zsKfi H

o'Àt (fft - ÀIo) Jo (Àt úfo-)
2sKlH

(7.3.6(c))

and

2 H (7.3.6(d))Btp = pÀt (flt - JV.) I (RrrJ r(11 \,@) - Yr (À t',Æ))

where ?.lo is defined by Equation (7.L.7)

The solutions for u(r,q,ú) and ç(r,ú) are then immediately available from

the above system of equations using Equations (7.1.2) together with (7.a.2). For

completeness, they are presented belorv:

l5l



u(r,qrt) -- "'"'D B no- tsin (K2,"- r ù {- Rrr*- r [;o 1.t, € (t) ) - Jo (), Æl]
æ

z=l

ç(ø, ú) - -î"'"'å r,,,-'#j*{-"',*-' r' (ÀrlÆl

+ ro()1 .Æl) t7-3.7(b))

where €(rt) i. defined in equation (7.3.2) and the constants Rtz,.-t and B12o-1 are

defined by Equations (7.3.6(c) and (d)) respectively. Note that the above solution

holds only for No * O.

The equilibrium solutions for ¿ and ç are obtained from the above analysis

by letting ø --+ 0. For the case ÀIs 10, the solutions for u and ç are:

u(x,,ù - B'tro{t- fi -"i (,"r,-'"ïiÆ)} (2.3.a(ø))

and

and

where

and

+ Yo()r€(rt)) - Yo(ÀrÆl)

"o(
/Yl - Àfo)'

$.e.2(a))

(7.3.8(ö))

-;)

(z.a.s(o))

c(ø)
PgHz No (t-"l rog\Æ) þ-Llz),

: [", ('-,*) -+] ll.'(r"*"@-*ïil^
-ivo(r.rÆ-*P-;)]

P, -- 
2Hut - - p(Nr - Jvo) (q tt - zrv' rerrv/M' * ffi)

Ri

r52
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$7.4 /V Qu^l,onArlc, vtz. N - (\Æ'+ (\Æ - r,[M)n)', ú f No

In this section, solutions are obtained for the eddy viscosity function given by

(see also Figure 7.1)

il(r) -{rÆ;+(/[-rÆrr] /vr I Àio. F.4.r)

{('r) = ,Æ+ (\Æ - tffi)n

2

The substitution

is made in Equations (7.1.10) which then become

' (7.4.2)

(7.4.3(c))

(z.a.a(ø))

(7.4.3(b))

*#+ze#-Àzup: -#^",
¡'/ñ1I "o!)d€ =J\Æ

up

,zd2üpc ¿€'

-0

toZog/-N¡ - \Æ)
HKo

at€-\Æ,
T,H at € - ,Æ, F.4.3(d))p('Æ-lm)

where

where

(7.4.4)

(7.4.6)

(7.4.5)

The general solution to Equation (7.4.3(a)) is

up: Azp€"' + F,20("' + t
LO

|^tr|.z:

gKpZp

_1+,ÃÃù I(

and A2, and B2o are arbitrary unknown coefficients.
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Following a similar procedure to that used in the previous section yields the

following solutions for uo and Z, for the case JVe I 0:

up: Bzp{€" - N[zlz - R'p({" - ro;'/')} ,

zp: -Bzp *{*';þ - noox['l2\

(2.+.2(a))

(7.4.7(b))

where

and

T,H
Bzp = prt(Æ.- /m) (- n"orr¡¡{rr-t)/z + rz N["-t) lz¡

,Æ (*ø.#T(\Æ-"r8,)]

(z.a.a(a))

R2p * N"lz

ll^(g-M'") +M'/z( tFno.fusÆ-rG,)]f1
11 *1

(7.4.8(ö))

with ?o defined by Equation (7.t.2)

The exact formulation for u(t,qrú) and ç(r,ú) is derived from Equations

(7.4.7) with the aid of Equations (7.1.2) and (7.4.2). This procedure was out-

lined in the previous section. However, because these resultant equations are so

strongly related to the expressions for uo and Zo and are readily available from

these expressions, they will not be presented explicitly in this section or in the

follorving sections.

The following solutions are the equilibrium solutions for u and ç. Once again,

these solutions are only valid for No * 0. With the parameters, .Ri and B!, defined
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as

and

u - l.ø; (' -.Trf.,' ) - "ø (' -'"T;'flm' )l I
-ros ,Æ- u"îffit) *rog.r";l (2.+.0(ø)).1Æ (tos tÆ - t

0 IoS\16

BL= ,

then the equilibrium solutions for u and ç are

los €
rÆ0 los \Æo'

(7.4.e(ó))

(7.+.t0(ø))u(n,t) - BLro I -4 -å) )
and

ç(") : -
BL'o(t * 4¡¡M)( ,Æ-'[M)"þ-Llz) (7.4.10(ü))

gH2 log, {M

$7.5 ff QunonArlc, vlz. iV: (lYo2 * (ilrt - N|)ù'l', lvl I ivo

The solution to the problem for an alternative quadratic eddy viscosity (see

Figure 7.1) defined bY

JV(r) - (iv"'+ (iví - ivf)'r)'l' , N, * No (7.5.1)

is developed in this section. Again, a coordinate transformation is made to facili-

tate the process of frnding a solution. For this case

€(r) : {ro'+ (N,' - nilrt}'|" (7.5.2)
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is chosen. This transforms Equation (7.t.10(a)) to

!ûu,
€, d€2 -Àluo-- gKpZp

À3 (7.5.3)
LO

where

The solution to this equation is available from Abramowitz and Stegun (fO7Z) and

IS

u,- (,t2{e.,øÍià (*":t) +B3pHÍ2tå (ue#)}. o5f 
, (7.5.4)

where nÍ'Ì"trl ana ø{l!12) are the Hankel functions of the first and second kind

of order l/3. The above solution could also be written in terms of Airy functions.

However, doing so further complicates the expressions for á3o and B3o due to

Equation (7.1.10(b)) which necessitates a calculation of the form ! rAi(x)dx. It

is easier to work with an expression for u, as defined above and then, to obtain

numerical results, convert the results into expressions involving Airy functions'

Boundary condition (7.1.t0(c)) may be used as before to derive an expressron

lor Zo. This results in

zp ',\ (
.5)

Substi on o an up

which A th are
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obtained using Equations (7.1.10(b) and (d)). This process results in the following

equations:

{-"., (e'r'øÍ)} (fi) -,,Ænl}} (r&g))
+ e, t" H!"tà (,&#) -,,ø;"f7à (?$) ) (z s o(a))

zp:-a,,fx,{-'.""m4)à (z$f) ..,m"lià (?&#) }

Bspup

and

lvhere

and

(7.5.6(ö))

Rsp !u9)
^3 ) ry42(*#)a,rJls

2.1.,¿vot/t\ _\/MN? H3 )---2 "

e,t,nÍ'À(*#) :

3
* * uÍiÌ (r&#) ("r . "affiP)l

I)à (+) -*"

ÀsprYl(JV,' - "e) (-". or!)p + ng)rc("+r

(1)
-2lg tù

Bep

(z.s.z(a))

. (7.5.7(D))

For the purposes of computing the above expressions, it is convenient to now

use Airy functions and the following relationships:

,ß"-Ë
le, (-*r'e) - ,r; (-,r'r's)]

À1 3
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etl'Jr. (

= ,{+ (€), (z.s.a(a))

,) --#lei(-*r'€) -,rÍ (-,r,r'6)]

: B+((), (7.5.8(ö))

ry) = #[n, (-.r,r.e) *,a (-r,r.s)]

= á-(€) (7.5.4(c))

€,t'HÍ?" (

and

€,nl)p(Ta) :+Ff,ri (-r'r'e) *,4Í (-.rzraç)]

- a-(€), (7.5.8(d))

where ,4.¡ and B¡ are the Airy functions (see Abramowitz and Stegun (1SZZ)) and

Áf and Brl denote the derivatives of these functions.

Hence, Equations (7.5.6) and (7.5.7) ^"y be written as

up: Bsp {-R"o (¿+(€) - A+(iV.)) + A-(€) - ,{-(iv.)} , (7.5.9(o))

Zp: -Bzrftr{-À.o,{+(iv0) +,{-(Jvo)} (7.5.e(ö))

in which

Rep :try . +(il'' - "lr (' #)1 I
(No,-ryr('-fu)]B+ Jvo - B+ (Àr, ) ,{+ (^6)

l3 +
2

and

(z.s.s(c))

(7.5.e(d))D _ zHTpu3P )sp(dr2 - No,) FR"B+(N')+ B-(Nt)) '

The Airy functions are calculated using

A;(z) - qf (z) - czs(z),
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B;(") -,,,Æ,lrrÍ(") + c2g(z)l (7.5.10(ö))

where

z3h (7.5.t I (ø))
Ë (3fr)!'

z3k+l (7.5.11(ö))
k (3Ë + l)!

with

(a+t/a)o-1

and

aß(a + rl3)r - (3o + 1)(3a + 4) ...(3o + 3/c - 2)

for arbitrary a. The derivatives of the Airy functions are easily obtained from

Equations (7.5.10) and (7.5.11).

The equilibrium solutions are once again obtained from the above result by

letting ø -r 0. The solutions for u and ç are as follows

1(ò=å'"(å)

g(z\=å'-(:)

;t_\ _ sBLro(r- Llz)
s \&/ - psï(r + anåflí)'

(2.5.t2(ø))

(7.5.12(ó))

(7.5.13)

in which

ñ, rYr'(Nt 13 - Nolz) + tY3/0
f,g: '
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$7.6 lV QuaonÀrlc, vlz. N : N,rf + JV¿f + ¡f0

In this section, the system of Equations (7.1.10) are solved for the general

quadratic form given by

ff(z) -N"42¡Ntl+À6, (7.6.1)

(7.6.2(ó))

(2.ø.2(a))

where

and

iv,-(iv.-r-, (,.ffi.r1ffi)
lY- - .lYr/vr-2(N,"-JVr) 1+ lY- - i%

which ensure that the I'alue of iV at the surface is .lVr and at the bottom is ÀIo

The formulation for ff(a) given above may be written in the form

il(tr) - rY" (r + a)þr + þ) (7.6.3)

where

drþ:
lY¿ + t - 4N"lYo (7.6.4)

2N,

The above expression for N together with the depth transformation

€('r) :h+þ)l@-") (7.6.5)

are substituted into Bquation (7.1.10). This yields the following system of equa-

tions:

€(€ - \W+ (2€ - \#*Àaup: -o*t",
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€(€ - 1)

r €,t

I urdg--
J Ê,a

uP(€) = o

duo
d€

toZo
(B - a)HKo'

at€-€¿'

(7.6.6(ö))

(2.0.0(c))

at {: €,, (7.6.6(d))

(7.0.7(o))

(7.6.7(ö))

where,

and

\+: -roï' lN",

c._ p
\o- p-a

- þ+tsr- âp-ü. (7.ø.2(c))

The general solution to the homogeneous form of Equation (7.6.6(a)) is

up = A+pF(ø,b;L; €) * Bno { F(ø,b; l;{)log f

* Ë (o)r'(9)l€" 
bþ@+n)-,þ(o)+rþ(b+') - ,þ(b) -2{(n+r) +2ú(1)l- L lz!)2 |

n=l \ / 
(z'6'8)

for unknown coefficients .r{,ao and Bao, and where

a*b:1,

øb: \+.

The function rþ(z) in Equation (7.6.8) is defined by

ú(") = 1'(z) lt(z),

which implies

(z.o.o(a))

(7.6.e(ó)

,þ(, + t) - rþ(z) + r/z with r/(1) : -^t,

and the function (z)" is deflned by
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(z)n - z(z * r) ... ("+ n - 1)

=l(z + n)ll(z). (7.6.e(d))

In the above equations

f (z) is the Gamma function,

f'(r) denotes the derivative of the Gamma function,

1 is Euler's constant (t - 0.5772156649.. .) and

F(ø,b; l; {) is the hypergeometric function.

The h5'pergeometric function (see Abramowitz and Stegun (1972)) may be

simplified using the definition

F(a,b;l; {) :.äÍfuå f(o*n f b+n €" (7.6.10)l(l + z) n!

(7.6.12)

(7.6.11)

The term in Equation (7.6.8) which involves the summation may also be

simplifred giving

Ë lúþ+¡r) -ú(o) +,þ(b+') -'l(ö) -ztþ(n+ l) +2ú(l)l(o)' (ö)"€'
("!)'

which yields

¡¡=l

where

- t ao€o'

F(a,b;r;€) : r(€) :, * Ë II^,^* + i +,\&
n=t i=O

æ

¿:1

and
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b,: À¿*n n-l (7.6.13(ö))
n2

ll

with åo = 1 and 4o = 0.

The general solution to Bquation (7.6.6(a)) -.y therefore be written as

up = A¿pF (€) + Bno r({)log€+Do"€"
æ

n=l
(7.6.14)

(7.0.ts(ø))

where F is defrned in (7.6.11) and ø,' is defined in (7.6.13)

Using proceclures similar to those used in the previous sections, Equations

(7.6.6(b), (c) and (d)) may now be used in conjunction with Equation (7.6.1a) to

give the following solutions for uo and Zo:

up: B+p -R+p (F(€) - r((u)) + r(€)los(€) - r(€u)los(€a)

+Dan(€o-ff)
co

n:L
Lø

zp Bno gKo -RooF(€,6) + r(€o) los(€a) +D ""Ci
æ

n=l
, (7.6.15(ö))

in which

+ €¡ D €i - lzîa) + €¿r(€o)los(€¡)
æ

n=l

02 F( €u)r' ({') - rr (€o) + r(€¿)€¡ - r(€¿){, +
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and

fL=t

wiih the functions F' ., Ft and Íz deflned by

oo ¿-l
r,(€) -€+tII (À¿+j

(n + l)(n!)2
+ j')€+t

n=l j=Q
oo ¿-l À¿*j + j'\€+l

B+p : rrH I l¡,u"(Þ - a)€, (Ê, - 1)(-R4ptr"(€,) + F'(€,) log(€,)

+ FG)li., + Ë o*n€!-\f, (7.6.16(ó))

(
Í,(€,) -{log€-€+Ð II (n + l)(n!)2n=L i=O

The equilibrium solutions for this form of eddy viscosity are

u(n,n): B'+ro
loe 

I € - rl +llosl(6 - tl
_"1 ( €-11

log [(6 - ll

(7.0.t6(c))

7.6.16(e))

(7.6.t7(ø))

(7.6.r7(ä))

(r"*r-,|) (2.6.16(d))

and

F,(€) : oTf, 
.

The above solutions for uo and Zo are valid only for €rr& * O'

los I log + log
))

and

ç(ø) :-rl*;fu-{ I - ,Rl los ) ('- i)
where

R'n:[-tr" - 1)(log l€, - ll - \lloel€ - tl + €, - €u

+ (€o - r)(log l€a - rl - r)ltos l€¿ - tll I
(1 - log l{, - 1l) bs l# * rog l€, - rl - t) - €,(rog €, - 1)(€, - l)

-(€¡-t)
log l{6 - 1l

(l-logl {o - tl)
los lf6 - 1l

log

+ €o(los (o - 1)
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and

I log(l{¿ - I (¿

€" log l{6 - ll
(7.6.r8(ö))

$7.7 lY Cotr,tposlTu LINEAR

In this section a solution to Equations (7.1.10) is found for an eddy viscosity

profile made up of three distinct linear sections. Near the bottom, N is assumed to

increase linearly with height above the bottom to a value of lYl at n - 41 which is

assumed to be the value of the eddy viscosity in the mid-depths, that is, .iV - /Vl

for 71 1 q 142. Near the surface where n ) nz, /V is assumed once again to vary

linearly from a value of /vr to a value of il2 at the surface 4 = l' Hence, the eddy

viscosity is defined by

iV('r) -
rYo -f o#o
Ivl
rvr+ W+)frn

oln<?l
u1q3qz
r¡21r¡1L

(7.7.r)

and this form is also displayed in Figure 7.1.

The solutions for uo and Z, in each depth section are available from the

previous sections. From Equation (7.3.4) we have that the solution for the velocity

in the bottom section, O < q 1qt, which is denoted by u1o is

)s €r i BlpYs
)

ls €t
B

where

,r, = AtpJo Bt
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€r : (Àh + Brrù'/2 ,

\? : -4H2 ¿o

Bt
Nl - JVo

4t

$.2.e(ø))

(7.7.3(ö))

(z.z.a(c))

Similarly, the solution in the upper section, qz 1 4 ( l, is denoted by uep and is

and

are

(+) )s (s

)uap: AspJo I BspYs

ütp = ìl2p

dutp _ d,uz,
d'q dn

(7.7.4)

(z.z.s(o))

(7.7.5 (b))

gKpZp
(7.7.6)

LO

(7.7.7(b))

(z.z.z(c))

(7.7.7(d)\

(z.z.z(e))

ö3

where

€s = {(/Yz + Bs (t? - l)}t/'

and

Bs:NL-I!:'rlz- |
The general solution for the central region, qt 1 n ( 42, is

,trr:.á2pcos (tft) ¡ Bzo.t'(#) *

The boundary conditions which apply to the expressions for u1o, u2o and I4p

uro:o at 7 - 0, (7.2.2(a))

u3p

duzp
drt

pN
H

ai 4 : tìt,

atq:qt,

a\q:qz,

àl q : ¡ls,

u2p

duzp
d,q

duep
dq

(7.7.7U))_ t¡t
-rp
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and

HKrU"" uþ* 
Ir',,' 

,rr* Ir',uro) 
: -wzr. (z.z.z(s))

The above conditions yield seven equations enabling the seven unknowns Aþ, Azp,

Asp, Brp, Bzp, B"p and Zo to be found. For JVo I 0 and Nz * 0, the following

set of equations may then be developed.

The last boundary condition, (Z.Z.Z(g)) implies

zp l- _ _zHKp A
toÀg ,"( ,/w,t,(f) -,Æt,(f))

.,/noY,(f))
,Æt,(f))
,,Æv,(f))
1ffsin(uïft))
v@.o, (#, ) ) ). t'.'.'t"rl

(7.7.8(ö))

The remaining boundary conditions (Z.Z.Z(a)-(f)) yield, in turn,

A,ono(f) * BTpYs(lf) ¡eKp-z'- -0,

A,pro(lf) *BþYs(f)
- Azp."' (¡ffi) - ",,''" (r#) - o,

-A,or,(f) -B,oY,(f)
¡ Azo,', (#ft) - u,,*' (#ft) - o,

(z.z.a(c))
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(z.z.a(e))

The above equations may now be solved to obtain solutions for the velocity in

each section and also for the elevation

The equilibrium case may also be developed. The following solution applies

for the special cases of Àf0 I 0 and Nz # O.

The equations which describe the velocity and elevation for the equilibrium

case are given by Bquations (7.1.10) with o : 0. After substituting the eddy

viscosity given by Equation (7.7.1) into this new set of equations, the following

general solutions are obtained for the velocity:

A"pro(lf) iBspYs(f)
- Azp.* (r#) - u,,.'" (r*) = o,

-Aspr,(f) -wY,(f)
* Azo,," (r}6) _ 

",,.". (#) = o,

A*r,(f) * Bspy¡(*) : -ffi.

gH2 KoZ,
,),ro : €? + Arolog €r * Ûry,

u"p: rytf * Azpq * Bzp,

gH2 KrZo
uso : €3 + A"olog €s * Bsp,

(7.7.8(e))

(7.7.8U))

(z.z.o(ø))

(7.7.e(ó))

(z.z.s(c))

where, as before, z1o is the solution for the velocity in the bottom region, 4 1 4t,

u3o is the solution in the top region, I 2 tlz, and u2o describes the velocity in the

central region in which the eddy viscosity is a constant.The variables, €r, €e, Br
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and .B3 are given in Equations (7.7.3) and (7.7.5) and Aro, Arr, Asp, Ûry, B2p

and B3p denote arbitrary constânts'

The above expressions for velocity are subject to the boundary conditions

(2.7.t(a)-(f)) as well the condition (Z.t.Z(g)) in which the right hand side is re-

placed by zero.

The last of these conditions implies

I
B

{
1

Bs

N3_N?
.B3

q3-q
3lYl

Zo*

3

-zp

Azp

Asp

+

* Atn

-gíz Kp

+

+

{*.*'Æ - +- rYorog'/N" * +} + 4,,4f
ú+\*",,{,1,-zr}+ "",ry

lvz los ,Æ - +- rYr log tÆ+ Jv'
2

The other six boundary conditions imply

- 0. (7.7.t0(ø))

(z.7.to(e))

-ryzr+ Alrros \rfr-, ¡ Bw- o, (7.z.ro(ö))

lN, ll? \
\la?- rN') Z, * A¡rlog \Æ ¡ Bw - A"on, - Bzp - 0, (7.7.10(c))

-gH2 Kp (å - h) r,+ r,,ft- Azp- o,(z.z.1o(d))

-gH2 Kp
Nt_nZ Z, - Arorlz - Bzp4 ^ásr los \r@ ¡ Bso - 0, (7'7'10(e))B3 2Nt)

The above set of equations may be written in matrix form as

Apxp: Tpb

(å - #,) t, - Azp+ e",ft,- 0,(7'7'10(/))

Asp _ 2TpH
Nz PNz

-gH2 Kp
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where
xp = (2, Ar, Bþ Aro Bzp Asp B"o )' ,

/ 2Ir\"b-f00000o om)
and the matrix .,{o is available from the system of equatiots given by Equation

(7.7.10).

A solution for the vector xo could be obtained from the above matrix equation

and then using Equations (7.7.9) and (7.f .2), solutions for the equilibrium velocity

u(rrt) and the displacement ç(ø) could be derived. However, as in the equilibrium

solutions given in the previous sections, the above solution may be simplified to

an expression which does not involve a summation over infinity.

Note that the elements in the first column of matrix A, aII contain the factor

-gïzKo. Hence, we may write

Ap : MCp, (7.7.12)

where M is the matrix ,4.o except that the factor -gH2 Kp has been removed from

the first column and replaced by I so that M is now independent of the index p

and Co is a 7x7 diagonal matrix given by

cp = diag (-grr2 Kp,l,l,l, 1, l,l) .

Hence, the solution for xn may be expressed by

Xp = Tp(MCò-tb (7.7.13)

and if

p - M-lb, (7.7 -14)
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then

:fpxP

zp
Atp
Btp
Azp
Bzp
Asp
Bsp

Pz
Ps
Pa
Ps
þa
Pt

(7.7.15)

where pi,i = l, . . . ,7 denote the elements of the vector p. Using Equations (7.7.9)

and (7.1.2) together with the above values for the unknowns gives the following

equilibrium solutions:

( ,o(pte? lB7 * p2 log €r * p3) o 3 q 3 qt
u(r,rù - { ro(-ptq2 lLNt*pett+ps) rySnSqz (7.7.16)

[ "o(pt €3lBZ * p6 log €s + p7) q2 1 q 1 |

Similarly, the solution for the equilibrium elevation ç(z) is

ç(") : ffiø- Llz). (7.7.r7)

$7.s A TunnuLENT ExsRcv CrosuRs ScrmuE

The turbulent energy closure scheme in which the eddy viscosity is calculated

as part of the solution procedure (see Chapter 6) will be used here to model the

same problem for which analytic solutions have been obtained in the previous

section of this chapter. In particular, the so-called k - e equations will be used

together with the usual equations of continuity and momentum to model the wind

set up and the horizontal velocity which occurs when a wind is blowing over a long

narrow channel filled with an incompressible fluid.

Because the physical problem is essentially two dimensional, equations in-

volving only a horizontal and a vertical component of velocity will be used. Also,

t7t



because a numerical model is used to obtain solutions, the non-linear equations

are used. The complete set of equations is available from the previous chapter and

Chapter 1 and are:

ô9 * ôu 
=0.At 0r

ðu ôu ôu âç
at+uar+'an=-l*
' -Il1$.'- luu"'
akôkðkN
at+uar+*"ar= h,

+ ôrt
ôu
Art

lva
o
I

h

)'* #h(##)

(z.a.t(ø))

(7.8. I (å)) )

(z.a.t(c))

(
ôu
ãq -e (7.8.r(d))

and

0e ðe ôe

at+"ar+'an
C1 eJV ôu ' ra

)
+ e#) cz€2 (7.4.t(e))

æ ô4 h2 ðq k

This set of equations is subject to to the boundary conditions

u=0 atr=OrL,

l):tt):k:e:0 atq-O,

ø--0 atq-1,

(z.a.z(ø))

(7.8.2(ó))

(2.8.2(c))

k
u7, (7.s.2(d))- ,/¿

atrT-1,

c-
ulu
ß4t

at4-l (7.8.2(e))

and

IY
ôu hro (7.s.2(/))ôqp

Note that the explicit equation for the transformed vertical velocity, tr, given by

Bquation (7.8.1(c)) automatically satisfies the boundary conditions ø - 0 at 4 = 0

andT-l. '
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A finite difference scheme is used to solve the above mentioned set of partial

difierential equations and associated boundary conditions. A smoothly varying

grid spacing, based on the kappa method (see Noye (1983), is used in the vertical

direction since this permits more accurate differencing of velocities which change

rapidly over depth; in particular this process occurs in the boundary layers near

the sea floor and the sea surface. Constant grid spacings using a staggered grid

system as shown in Figure 5.1 are used in the horizontal plane.

The horizontal grid elements consist of the two points X and -* used in

Chapter 5. At fþs +-points, the horizontal component of velocity is calculated.

All other variables are calculated at X points. The notation uli* is used to

represent the approximation for u(ø,4, t) computed at the -+ point of the r¿h

element at the /cth depth level at time zAú, where Àt is the constant time step.

The (,t - l)ttr and the ,t¿D layers are separated by a distance A4¡, that is,

Lq*=qtc-ltc-t ,k: l, ...rND (7.8.3)

where q¡ defrnes the height of the lcúh layer above the bottom of the channel and

there are (ND * f ) depth levels. The distance between each depth layer is given

by the kappa method of Noye(1983) and so Aq¡: Arlr-r(1 - rc47¡-r) for some

constant rc. The Ic - I layer is at the bottom of the basin, that is, at ? - 0, whilst

the surface, 4 = 1, is defined bY k = N D.

The governing equations are discretised in the form

ôç fù

3

0
fùAU

A" tat +
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+
n]Lôu

at
0u
ônd'k d,ß

irh

fù

*u
irk

:)

*h*H1)-
2h2

*'#1",,**'#[-= # (#)' L .# (

ôu
An

I

*wlu

aI-' ðrl

ôe+t/-dn

ðç
ðr

+
]L

i,h
')

a
Art

(7.s.4(D))

(##) 
I d,k

') (z.a.l(c))

- ",t*li- .tîl', (2.8.4(d))

ðk fL

at

]t

ôe
at

(;t*#) l;.he#) [)
;l'i'-*o'*',] l,-

(

I

I

(7.a.4(e))

and

dlTo - c2k2ll,rlrl|,o. (7.8.4(/))

Equations (2.4.+(a)-(d)) are used together with values of ç, u, fr and e at the

n¿ä time level to calculate the value of these variables at the new time level (n * 1).

Equation (7.a.+(a)) is calculated first, providing an approximation for çli+l using

values for [/ calculated at time level ¿. This value of ç is used in the time and space

centred approximations for the momentum equations to provide an approximation

for u at the new time level (n+ 1). Once this value for u has been obtained, a more

accurate approximation for ç is calculated using an equation like (7.4.+(a)) except

that this time an average of the velocity components at time z and (n + 1) is used

when approximating the velocity term in this equation. The remaining equations

(2.8.a(e) and (f)) are all explicit and use these values to calculate lV and ø at
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the new time level. Note that the dissipation, e, which appears on the right hand

side of the turbulent energy equation involves a term at the (n + 1) time level. It

is therefore necessary that Equation (7.8.4(d)) be solved before (2.4.+(c)). Note

also that the second order derivatives with respect to 4 which appear in Equations

(2.4.+(a)-(d)) also involve terms at the (n + l) time level. Time centering in this

manner results in an implicit scheme which contributes to the overall stability of

the method.

The discretisation of the individual terms in the governing equations is norv

discussed

AIt the time derivatives are approximated by the forward time form

(7.8.e)

Centred differencing is used to model all the spatial derivatives. For example,

ôuln L , -ll'r: ¡fu ("io -'i-r,r) + o{ (4")'}' (7's'r0)

Because a variable grid spacing is used in the vertical, to keep the differencing

second order accurate, the following formula must be used for derivatives with

respect to 4

ðu ft

# |]-: ] {to*' - çi") + o {aú} '

ôq i,k r¡44¡44¡.r-1
(Lq*ui,n - A?¡.+r k* - t)u[r-r * r¡(r¡ - z)ui,r)

+ O {A'rlk\n*+t} (7.8.10)

where rr: Lnr+tf A,q* * I (see Noye (19s3)). The corresponding formula for

the second order derivatives with respect to q is derived by first using Equation

175

I



(2.8.10) with ¿ replaced by Nðulôq, lor example, and the three depth levels are

taken to be the frth, the level halfway between the lcútr and (ft - l)to, denoted

(k-t12) and the level (fr +ll2) which is halfway between the frth and (,t+ l)th

levels. This yields an equation containing derivatives at levels (k - | l2), (k + t lZ)

and ,b. At the lcúb level, Equation (7.8.10) is applied. Centred differences are used

to represent the first order derivatives at the two levels (k - ll2) and (k + ll2).

For example,

H1",,**,,,:t#+ o {(47¡*')'}' (7'8'rr)

This procedure yields the formula

a ôu ]L

N
ôn ðn irk)t A?r )' [t* - r)(ñî¡.-, *[,ï,,*-')

rlc

,r(Lqr)2 (Atlr+t )' [-{lrn )' (¡rír + il,1,,0)

- (rn - z)(Nir * Nji',*
Ic

(ro - r)(Anr+t )' (Ñ,in-, * får,n-,)

* r¡(r¡ - 2)'(An¡,)t (Nî¡. + Jviïr,n)]

+ ,1lo*t .= [tr;o * Jv,ir,*)' tn(A?o*r)2 Lt'

* (rr - z)(Nît + il&,,r)] (7.8.12)

where Ñn;,h: (N,ïr,¡. + Nià12.

The integrals which appear in the equations are computed using the Trape-

zoidal rule. For example,

+

u-1"
1 t lr

-_t,- 2L
Àrlr(¿io + rTr) i Lqz(ui1 + u?,) i...

. . . * ar¡v o(r?,n p-, + u[rvo)] {z.a.ra)

udq
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if there are (/YD + 1) depth levels of variable spacing.

Atl of the boundary conditions for which boundary values are known are

easily handled. These values are used in the finite difference equations applied at

neighbouring grid points.

Derivative conditions are somewhat more difficult to incorporate. When ap-

proximating the derivatives with respect to 7 at the boundaries, second order

accurate differencing has been used. For example, at the surface, ? : 1, the

following scheme was used:

ôu
An

lù I
i,N D Lttw p (T'trvp-r- ufrvo-r. il+T u?,¡¡p-z

(7.8.14)

in which 11 - Lqwp-tlLnyp * l. A similar method as was used to derive

Equation (7.8.12) was then used to construct the surface double derivative ap-

proximation, giving,

ðu
ðq

fL

i,N D
:^ft-(/ri*, +Hi)

-4(f.1,,, o + ñiN o-,) + #fr#j]
+ ,rirr-, I
+ ui,*o-rl -flfto-t

(Azrup * A?rvp-r )A?rv.o-r
(7.8.r5)

If required, a similar expression may be used for derivative conditions at the bot-

tom.
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Modelling the equations ari shown results in a tridiagonal system of linear

algebraic equations which must be solved. For example, the value of uifl for

k -- 1,.. ., N D may be found from a system like

A!,It"?ï!r+ Bi,tt"Tilt + ci|t"?,11r- Dl,*, k =1,...,ND - L (7.8.16)

in which Ai,I', Bi,I', cîIt a"d Diilt are known and uif r - o. Systems of

this form may be solved by the very efficient Thomas Algorithm for tridiagonal

systems of equations described by Noye (1933). Note that the formulation used

for the derivatives in the vertical direction at the surface (and at the bottom,

if required) need to specially incorporated into this system before the Thomas

Algorithm can be applied. For instance, consider the system of equations (7.8.16).

Using Equation (7.S.15) results in an expression connecting terms u'!,Iutr, "i,Tr;-t
and ui{rto_r. However, Bquation (7.8.16) with k - ND - l also contains terms

in uiffo, "î;;-, and ui|lr-, which may be used to eliminate "[itp-, f.om

Equation (7.8.15) thus yielding an expression involving only terms in u[{rr12 and

,!,!u'o_, in the set of equations obtained at the surface. This gives the additional

equation

A:,lt"iÍ1t + Bi,[t u?,lt = Di,r for k - ffD' (7'8'17)

The system formed by Equations (7.8.16) and (7.8.17) is now in the required form

for solution by the Thomas Algorithm.
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$7.9 Rnsulrs

The analytic and numerical solutions which are presented in the previous

sections are now used to analyse the performance of the various formulations for

the eddy viscosity. Firstly, the equilibrium cases are examined. Bach solution

is in turn discussed and then compared with each other. The analytic solutions

are then compared with some laboratory experiments. The performance of the

k- e model is also analysed by comparison with these experiments. Finally, the

unsteady oscillating solutions are discussed.

In Figure 7.2 velocily profiles are displayed which have been obtained using

the equilibrium solution for the velocity in which the eddy viscosity has a constant

value, /V¡ (see Equation (7.2.2)). The profiles are normalized with respect to

the velocìty obtained using a reference eddy viscosity value of N. The effect of

increasing the eddy viscosity relative to the base value of lV is examined. The

value of JY is arbitrary. The same normalized profiles will result using any value

of -tY. Note that if this model was being used to provide quantitative profiles for

a given basin, the actual value of .ð/ which needs to be used would have to be

obtained by comparing, say, the predicted set-up with a measured set-up.

From Figure 7.2,it is clear that the velocity profile which is obtained is very

sensitive to the value of ¡fo. As lYo is increased, the velocity is greatly reduced-

Doubling the value of the constant eddy viscosity more then halves the velocity

values
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In Figures 7.3, 7.4 and 7.5 similar results are displayed which have been

obtained using the formulations for the eddy viscosity presented in Sections 7.3,

7.4 and 7.5. That is, results from the linear and the first two quadratic forms for iV

are displayed. Once again, the results have been normalized with respect to certain

base values which in this case have been chosen to be /Vo = JV and lVr : 10.1Y.

The profiles which are shown in these figures are very similar. In all cases, when

the value of lYo, that is, the value of the eddy viscosity at the bottom, is greater

than the value at the surface, JV1, the magnitude of velocity is considerably less

than those obtained using values of ilo < /Yr. Also, when ilg > JV1, the profiles

are reasonably insensitive to changes in the relative values of ivo and lY1. These

profiles are all considerably different from the profiles obtained using the more

conventional situation in which il1 > Àf0. For the two profiles shown in each

figure for which lYl > lV6, there is only a slight difference in the profiles between

each figure. These profiles also show that for the three formulations of eddy

viscosity considered in these figures, the profiles âre less sensitive to changes in

the value of the eddy viscosity than was the case for the constant eddy visosity

For example, decreasing the relative value between ÀIe and JVr from ten to two,

decreased the velocity profile by only about 20% in the upper layers and 4O% in

the lower layers. It is also apparent that the second quadratic formulation (Figure

7.5) is ìess sensitive to changes in the relative values of ¡I0 and lfl then is the case

for the first quadratic formulation (Figure 7.4). There is also a clear difference in

the profiles between these two figures although the basic shape is similar
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A substantial difference between the previous velocity profiles and the velocity

profile obtained when using the quadratic formulation of Section 7.6 is evident

in Figure 7.6. The profiles in this figure have all much the same value in the

mid-depths. If the bottom and surface values of the eddy viscosity, ÀIe and lY1,

are kept constant and the value of the eddy viscosity in the mid-depths, /V-,

is increased, the resultant profiles of velocity are substantially decreased. There

is also a difference between the profiles as the relative values of ilo and N1 are

changed and JV- ìs kept constant, although these differences are only slight.

Similar behaviour can be observed in the profiIes displayed in Figure 7.7

which displays the results obtained using the composite formulation for the eddy

viscosity (see Section 7.7). The results in Figure 7.7 are obtained using qy -- 0.25

and q2 - 0.75. Figure 7.8 displays profiles obtained for this particular eddy

viscosity formulation for different values of the parameters rJ¡ and ez. II42 is kept

constant, and 41 is changed, there is very little difference between the velocity

profiles especially near the surface. If 41 is kept constant and 42 is changed, there

is a larger difference between the velocity profiles at the surface but very little

difference near the bottom.

The next series of figures examines the performance of the various analytic

models when compared with the experimental results of Baines and Knapp (f965),

Fitzgerald and Mansfield (1965) and Koutitas and O'Connor (tSaO). In all cases,

the velocity proflles are normalized with respect to the surface velocity, ur, ob-

tainedatq-1.
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Figure 7.9 compares the velocity profile obtained using a constant eddy vrs-

cosity with the experimental profiles. Clearly,the analytic profile is not a very

good approximation to the observed profiles.

Figures 7.10, 7.tl and 7.12 respectively compare the profiles obtained using

the linear formulation for the eddy viscosity, and the two quadratic formulations

presented in Sections 7.4 and 7.5. The relative values of ivo and JV1 used in

these figures were found to provide profrles which best fitted the observed results.

As expected from the results in the previous figures, the profiles obtained using

each of these three formulations for the eddy viscosity are very similar. In each

of these three figures, for the case .lY1 - No/lO, the resultant velocity profiles

agree reasonably well with the observed results near the surface layer. However,

the agreement is not so good in the rest of the fluid column. The other profiles

presented in these figures (when ivl - 1.5il0) provided about the best fit for the

case JVl > Àfo. In this case, the agreement is not very good throughout the whole

depth of the fluid.

The next two figures, namely Figures 7.13 and 7.14, provide profiles in much

better agreement with the observed velocity profiles. For the quadratic formulation

(Figure 7.13), reasonable agreement is achieved for all of the various values of Àõ,

.lV1 and tYrr, which have been considered. Probably the best agreement is achieved

for the formulation for which iVr = l0No and N^:1031V0. This profile certainly

provides good agreement with the observed profiles near the the surface and in

the mid-depth regions. There is a considerable difference between the observed
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near the bottom but certainly the agreement between the observed profiles and

the analytic solution is acceptable

Similar profiles are displayed in FigureT.l4 which shows the results obtained

using the composite formulation for the eddy viscosity. The best agreement is

again achieved with ÀIz - lOilo and /V1 - 103/Y0. For these parameters, two

profiles are displayed; one with 4¡ - 0.25 and 72 - 0.75 and the other with

tìt : 0.1 and lz : 0.9. The best overall results are obtained with the first set

of parameters. In fac.t, the profile obtained with these 4 values ancl the above

mentioned relative values for À16, N1 and lYr, it very similar to the best profile

obtained in the previous figure for the quadratic case'

Clearly, the last two analytic models provide the best agreement with exper-

iment.

In Chapter 6, mention was made of a numerical model developed by Pearce

and Cooper (tOat). The formulation for the eddy viscosity proposed in this model

is essentially the composite linear formulation with lYr - Àf0. A method for

calculating the values of jYg and lYz was also described. The value of the eddy

viscosity at the surface was taken to be 2.5x10-6 m2 sec-t and a value given by

u*"ltf !2 was used below ? = 0.8. This special case of the composite formulation

is used to produce the profile in Figure 7.15 where a comparison is made with the

experiment of Baines and Knapp (1965). This formulation for the eddy viscosity

provided good agreement with the observed results. Good agreement was also

achievecl by Pearce and Cooper (1981) but, however, they obtained their results
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from a numerical model not an analytic model as is done here. For comparison,

also plotted on this graph are the best curves mentioned above which were obtained

using the three parameter quadratic formulation desc¡ibed in Section 7.6 and the

composite formulation.

A final comparison between the various analytic solutions is made in Figure

7.16. The relative values of the parameters between the various formulations

are kept consistent where the formulations are similar. Clearly, the profiles can

be divided into three distinct groups; those with one parameter describing the

eddy viscosity (the constant formulation), those using two parameters (the linear

and first two quadratic formulations) and those using three parameters (the last

quadratic and composite formulatìons). The difference between the two profiles in

this last group is particularly small.

The next group of frgures display some results obtained using the ,t - e model.

In Figure 7.17, the normalized velocity profrle obtained using the /c - e model

presented in Section 8 of this chapter is compared with the laboratory experiments.

Clearly, the agreement is very good.

As was mentioned in Chapter 6, various boundary conditions for the k - e

equations have been used by authors in the past. The effect of using some of these

alternative conditions is displayed in the next two figures.

The effect of using symmetry conditions at the surface, that is ôklôq -
ðelôA: 0 at 4 : l, is examined in Figure 7.18. The effeci of using this boundary
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condition is dramatic and the result is unsatisfactory. Clearly, surface values for

lc and e which are dependent on the surface stress need to be used as the surface

boundary conditions. This is done using the wall conditions proposed in Chapter

6.

As was mentioned in Chapter 6, a derivative boundary condition for e at the

bottomhasalsobeenproposed. Theeffectof using ðelða -0at 4:0 isshown

in Figure 7.19. For comparison, the profile obtained using e : 0 at q - 0 is also

displayed. There is very little difference between the two curves, with only a slight

difference occurring near the bottom. The e = 0 condition used in the k - e model

proposed in this thesis is to be preferred because of the ease with which it can

programmed.

The next three figures examine more closely the experiments of Koutitas and

O'Connor (1981). In Figure 7.20, the velocity profile predicted by the fr-e model is

compared with the observed values. In this figure, the actual raw values of velocity

are displayed. This figure illustrates the value of the k - e method. Not only is

the normalized profile successfully predicted by this model, but also the actual

data values are successfully predicted. In contrast, although the last quadratic

and composite analytic solutions can successfully predict the shape of the velocity

profile, in order to obtain the actual, raw velocity values from these models they

must be "tuned" with the particular experiment in order to find the correct value

of the base value, JV, which must be used.

Comparisons between the observed and predicted values for the turbulent
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kinetic energy and the eddy viscosity are made in Figures 7.21 and 7.22. The

agreement in these two graphs between the observed and predicted values is not

as good as previously obtained. However, it must be remembered that there is

a great deal of difficulty in measuring these values in experiments as has been

pointed out by several authors mentioned in Chapter 6.

The last series of figures deals with the unsteady solutions presented earlier

in this chapter. A basin identical to that used by Baines and Knapp (1965) is

modelled with an oscillating wind stress with a period, 1, of ten minutes. Profiles

of the velocity over depth obtained at times, ú : 0, Tl8, Tl4 and 3l/8 are

displayed in the next figures.

Once again, the types of profiles obtained can be roughly divided into three

groups depending on the number of parameters used to formulate the eddy viscos-

ity. In Figures 7.23,7.24,7.25 and 7.26 the profiles obtained using the constant,

linear and the first two quadratic formulations are displayed. There is not much

difference between the profiles shown in these figures. Although there is a dif-

ference between the profrles obtained using a constant eddy viscosity and those

obtained using a two parameter formulation for .lV, this difference is only relatively

small.

The next figure, namely Figure 7.27, displays the profiles obtainecl using the

three parameter quadratic formulation. This profile is similar to those shown in

the previous figures except that the velocity increases much more rapidly near the

bottom.
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Figure 7.28 displays the profiles obtained using the composite formulation. As

in the previous figure, the velocity increases rapidly near the bottom. However,

there is a major difference in the profiles in Figure 7.28 in that the magnitude of

the velocity in the lower depths is much greater than is observed in Figure 7.27.

Figures 7.29 and 7.30 show the results obtained using the numerical ,t - e

model. Of all the analytic profiles presented so far, the profrles obtained using the

three parameter quadratic formulation most closely resemble the profrles obtained

by the k - e model, shown in Figure 7'29.

The variation of eddy viscosity with time is displayed in Figure 7.30. Clearly,

lV is not constant with respect to time. Not only does the maximum value of

the eddy viscosity change significantly with time, but also the position of this

maximum varies with time.

The analytic solutions presented above for the oscillating wind case are de-

rived from equations which do not include any convection terms. To examine

the importance of these terms, a finite difference solution to the non linear equa-

tions described by Equations (7.8.1(t), (b) and (c)) was established, with ff being

defined by the three parameter quadratic formulation used earlier.

Results from this model are displayed in Figure 7.31. Clearly, there is a

marked difference between the previous analytic solution in which convection terms

were ignored (see Figure 7.27). In fact, the results displayed in Figure 7.31 are

very similar to those presented in Figure 7.29 which were obtained using the ¡t - e
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model. By adjusting the parameters in the eddy viscosity formulation, the profiles

presented in Figure 7.31 could be altered somewhat. Ilowever, the parameters used

in this figure are those which provided the best agreement for the equilibrium case.

The effect of using a time varying eddy viscosity was also examined. The

same vertical profile of .lV as was used in the previous figure is again used here

but the expression is multiplied by the factor r" thus forcing the eddy viscosity to

vary with time. The results from this model, shown in Figure 7.32, do not differ

appreciably from the results obtained using the time invariant eddy viscosity (see

Figure 7.31) except at time 3T lS when a considerably larger velocity is predicted.

$7.10 cONCT,USTO¡¡

In this chapter, analytic solutions for the equilibrium case of a wind blowing

over the surface of a channel, have been presented. Good agreernent with exPer-

imental observations was obtained provided an appropriate formulation for the

eddy viscosity was used. The three parameter quadraiic and the composite linear

formulations provided the best agreement.

A disadvantage with these analytic solutions is that to provide quantitative

results they must be "tuned" with observed data. For this reason, a turbulent

energy closure scheme was discussed. A numerical solution to the non linear

equations of mass, momentum, turbulent kinectic energy and dissipation of such

energ'y was also presented. Such a numerical scheme òan be easily expanded to

cater for three dimensional flows. This ,t - e model provided excellent quantitative
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results. No "tuning" was necessary. It must be pointed out, however, that the

analytic solutions using the above mentioned formulations of JV provided profiles

in close agreement with the Ic - e profiles. Ilence, provided that the necessary data

is available so that the analytic models can be "tuned", then these solutions can

be used successfully to provide quantitative results.

For the oscillating wind case, the agreement between the analytic solutions

and the k - e model was not as good as for the equilibrium case. This appears to

be due mainly to neglecting the convection terms rather then being due to using a

time invariant eddy viscosity. Once these convection terms were included, profiles

very similar to these obtained using the k - e model were achieved. This suggests

that even for non steady flows, a time invariant eddy viscosity formulation can be

successfully used provided that there is adequate data available for "tuning" and

the comect formulation for JV is used.
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Apput{oIx A

A SBCOND ORDER METHOD FOR TIIE NEUMANN CONDITION

WITH CURVED BOUNDARIES

$A.l INrRooucrIoN

When finite difference methods are used to solve a system of equations in

a domain bounded by an arbitrary curve, problems arise in the discretisation of

derivatives at grid. points adjacent to the curved boundary. Care must be taken

at these points if the finite difference approximations near the boundary are to be

as accurate as those approximations used in the interior'

A common treatment of the boundary is to reshape it so that it is made

up of straight lines which are parallel to the grid lines. Once the boundary has

been treated in this way, any boundary conditions can be easily dealt with using

existing methods (see, for example, Noye (1983)). However, this approach results

in a contribution of the order of either the horizontal or vertical grid spacing in

the discretisation error at grid points adjacent to the boundary.

Clearly, a method is required in which the shape of the boundary is not altered

and which also provides finite difference approximations adjacent to the boundary

which are as accurate as those used in the interior region. In general, second order

sc.hemes are used in the interior of the region so that a second order treatment for

approximations to the derivatives at the grid points near the curved boundary is
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required. Such a scheme is available for problems involving the Dirichlet condition

in which the dependent variable is specified on the boundary. Noye (1933) presents

such a solution using a Taylor Series approach. Fox (1944) proposed a scheme for

the Neumann condition in which the normal derivative of the dependent variable

is specified at the boundary. This scheme was, however, only first order accurate.

Noye (lg83) describes the basis for a second order solution using a Taylor Series

approach but he did not give final expressions. In this work, second order finite

dìfference approximations to the derivatives, ðf 0r, ôlÔy, a2 f an2, ô2 f ðy2 and

ð21ðrðy will be obtained using the techniques suggested by Noye (1983).

$4.2 Sor,utlo¡l

In the following discussion, interior grid points are defined as those for which

no neighbouring grid point in the direction of either coordinate axis lies outside

the boundary. Grid points, interior to the curved boundarg but which have at

least one neighbouring grid point in the direction of either coordinate axis lying

outside the boundary are termed boundary points.

In Figure 4.1, the point P is a boundary point whilst points labelled Q and

T are interior points. The vectors labelled 4n,4n and ¿s give the direction of the

normal derivative to the curve at the points R, N and ,S. If Z is the dependent

variable, then the value of. ðZlðn is assumed to be known at the points.B, JY and

.g. The angles, 1, define the angle between the normal to the curve and the X

axis. This angle is always measured in an anti-clockwise sense with the positive X
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axis corresponding to 1 - 0. The distance between grid points in the X direction

is AX while AY gives the distance between vertical grid lines. The parameters

öx, öv, 6¡ and fu all have the property that 0 1Ôx,Óv,6x,6v <L and simply

define the distances between the point P and the points B, lV and ,5 as shown on

Figure 4.1.

Finite diference expressions for the derivatives, ðZf ðX, ôZf ôY, ô2ZlAlP,

A2 Z lAY2 and ô2 Z lA XAY at P may be obtained by constructing the Taylor Series

expansions, centred at point P,o'1. thevariable Z at the points Q,T, R, N and,S.

For example, consider the point .B in Figure A.l. The Taylor Series expansion,

centred at P, for the variable Z calculated at R is

Y)"ð'Z (r{1)
a P

in which notation such as Zp denotes the value o1 Z calculated at the point P.

Replacing z by ðzlaX and then by ôzlaY yields the two equations

zp- zp*ô"or#l

az
ax

+!@,0
PE

+
Y2

ax
az

az

ôY

R

R

P

P

+öv LY #'* l" *o { (d"¡Y)'} , (Áz(ø))

*övLY#lr+o {(Ò"^Y)'}. (.42(ö))az
AY

by the relation

The normal derivative may be related to the derivatives in the X and Y directions

ôn AX
(á.3)

where the angle 1 specifies the direction relative to the X axis of the normal to

az az AZ
cos "y * ¡7 stn "Ir
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the boundary. Equations (4.2) and (4.3) may be combined to yield

,)

P

az
A" P

-(Lx)212
öxLX cos')g

óx^X cos'IJv
0
0

6Y LY sin'y¡y
óv LY sin 1¡
-(LY)2 12

(a.4)
cos'f¿

sinl¡ +o{(öuLY)'\

Two similar equations may be derived for the points JV and S. Adding to these

three equations the two Taylor Series expansions about P for Zq and Zy gives

a total of flve equations containing the unknown derivat\ves ôZf ôXlp,AZlAYlp,

A2 Z lAX2lp, ô2 Z lAY2lp and ô2 Z lôXôY2lp. These five equations may be written

in matrix form as shown below:

AX
COS'15

0
stn'|5

P
P

P

l"
P

0
0

(r{.5)
aza;az
ðnaz
ðn

0

öxLX sin'yg
(ry ¡Y cos'Irv
+ôX^X sin "J¡y )

óv LY cos't¡
0

aztãxlaztæl
a2zãxt
a2z

axaY
ô22
ñ1

COS'f¡y
COS'f¿

0

Sln "IJV

sin'y¿
AY

zp-zq
,s

JV

R
Zp-Zr

With the aid of a symbolic manipulation program such as MACSYMA, the

above matrix equation was solved to give second order accurate expressions for

the unknown derivatives. Expressions for the required derivatives at the point P

near a curved boundary as shown in Figure 4.1 follow. For simplicity, it has been

assumed that AX = AY - l¿. The first order derivative with respect to X is

+ o {(^x)' ,LxLY,(^v)'}

zx-K-- +o{h2}
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lvhere

sxl = 2 {rJ"" löv@x - 6x) - 6vôxl+ 6vöv(F{t'- Fr""t)} , (/.6(å))

sx2 = -2{ö*ö,fzf¡g{sN - pNns) -26yF{ sn + rf"t(26v + 1)]

+ 6xlôx(F*t* - r{"") - ö"F{^tl - a"ö*F,"""}, (Á.0(c))

sx3 = -z{ö*ô" [1rju"" +z6x(E'u"" - ¿f"t) + 26rFlrvsR - ¡rRsrv(26r + l)]

- ry"t þxöv + ivöx) - Frt"t (6vöv + 6xþx)

* óx(6*F{*t + fuF,t"8) + óv(6"F{t" + 6xFrtrßs)}, (Á'6(d))

sx4 = zöxóv [fr""t (26x+\ -26x4lgRs - 26"F{t^ *Fr*"t(2fu + 1)]

+ (26x + l)(F2Rsrv öx -Frt""d") + (26,. + r)(F'RS¡I Öv - F{t^Ô*)

- 2öv(6*r'lu"" + fufrt""\ - zö*(6*F{*t + furfl"*)

+ ó¡ç(Frtrsn - ¡rrn's) + fu(Frtt" - Frt"") (á.0(e))

lôx(zóv * 1)sin 1n - {v cos'In]sin 1"
N

f(-öx76v + l) + 6x) sin'y¡v + 6v cos'Irv]sin ^¡"

and

sx5 :

+

+

az
A"
az
A"
AZ
A"

R

{ - (A* sin 'y¡v + ôr cos 'lr ) (1 + 2Öv) sin 'y¡

+ óvQ6v + 1)cos'Y¡ sin'Yrv).

The functions, F¡áBc which appear in the above equations are defined by

F{"" = cos'}4 cosle sin'}6:,

Fî"" : sin "y¡ sin l¡l cos'f6r,

s
(,{.6(/))

(,4.2(a))

2tl

(Á.7(ö))



F{ac = sin'ya sin 19 sinlç (á.2(c))

and

Ff;ac : cos']4 cos 'lB cos'lç (Á.7(d))

The solution for AZ IAY , denoted by Zy, is

Zv AZ sytZr * svz * sy3Zp I hsyg +o{h2\, (,l.a(a))
ôY hsv+

where

syl = -2{ö*ö, [Fr""t (26* + l) - 26x4irns + 26"(Fft* - Frt"")]

- óv(6*Frt"" + &Frt"") + fu (d"tr'r""* - d*4*"")), (,{.8(ö))

s,.2= 2 {ry"" Wv(óx -óx) -6vóxl*ôx6x(Frt*" -Fr""t)}, (,{.a(c))

sy3 : 2{ö*ö" lp*t" (26* + r) - 26xn{"s + 26"(FÍt* - Ft"") - FJ""]

- öv(ó*Fr*t" + &Frt"*) + Fr*"t (6vóv + 6xóx) + rJsR(6x Ôv t 6vÔx)

- öx(fuFrt"" + 6xrflRs)), (Á.8(d))

sy4 : ex4r as defined in (4.6(e)),

l,óv(2óx f l) cos ls - óx sin 1s]cos "fp

{@*(26x + 1) sin rc - 6v(zÖ* + 1) cos rs) cos "¡t

+ 6x(2öx * 1) sin'[v cos ]s ]

t(6v - öv (26x + 1)) cos'fry * ôx sin rrvl cos 1"

and

svs :

+
il

R

az
A"
AZ
A"

az
a+ n .9

2t2

(,a.a(e))



a2z,,z,xx-æ-

The second order derivative in the X direction is given by

sxxtZr * sxxzZq * s2çysZp * lrs¡ç;ç5 +o {h2l¡, (Á.e(¿))
h2 sxx¿

where

sxxr - ¿ {Fjv"* lö"@* - 6x) - 6vöxl+ 6vöv(r;u"" - Fr""t)} , (Á.e(ö))

sxxz - z{öv(2ö*F*t* - rr""" - 26xF{ ns - 26vr1rvsE)

+ (z6:y + l)(dv Fr*"" - û*F{ t *) + #tt d*

+ 6x(^ssn - pNRs ) + 6"(Frt"" - Frt"")), (.{.s(c))

sxxg - -z{zþxöt(F{t* +Fr""t) -26xóv(F.t"" +Ffl*")

+z6vöv(4t"* - F{stt -rfl"") - r{*tôv +þvFf"t(2fu + t)

* óx(¿f"t - 26yn{s") - ó*F{ ""(2fu + 1) + 6*(F{t* - r#t")

+ ôv(tr'rtrR" - Frt"")), (,4.9(d))

sxx+: sx4 (see Equation (,{.6(e))) and

sxxs : r{ Kl"löv(zöxsin.y¡ - cosrn)+ {¡ç sin?nlsin'¡"

Í-6v(Zöx sin 7¡y - cos Z,v) + (óx - /;ç) sin ?r] sin'¡"

[-(0* (2Ö" + t) sin'Ir * 6v(2Óv * l) cos1ry) sin 1¿

* Öv(26v + 1) sin'|¡ cos'|¡] (.r{.0(e))

The cross derivative, A2 Z lôXâY, is expressed by

+

+
n

,s

az
A"
az
A"

d A2 Z sxv tZr * s2çY2Zq * sYYsZP * hs2
¿,xY= a](aY: +o{h2},1e.to1o¡¡

2t3



where

sx'.t: -z{ö"(Frt"" (zö* + l) - (26x + l).lr2nsrv) - õ"F{""(zC* + t)

+ 6"F{t^\,

sxyz--z{zóvFrt"*(d* -óx) +öx(Frtt" -Frnsry(26y + 1))

(Á.10(ó))

+ ó¡ç(F'NR" - Fr""")), (á.10(c))

sxye - z{óv [rjo"" (zöx + 1) - Ef"t (26* + 1) + zrfls*(ó* - 0")]

* óx [-Fr""t (z6v + \ - 26. F{ R" + Frt""] + ó¡ç (FrilÃ" - Frt"")

+ w@{t" - rlo*")}, (.Á.lo(d))

sxln¿ = sx4 (see Equation (4.6(e))) and

azsxys = --on
az

l0 + 2Ôx(2Ö" + t) + 2Öl-) sin'yp cos'Isr - cos'yp sin 151

ôn {-(t + 26v +2Óx(26v + 1))sin'}¡¡ cos'}5
R

+ (26x * l) cos'¡ry sin 1s )

.rV

{-(t + 26x *2Ôv(26x * l))cos1¡v sin'}¿
s

+ (26Y * l) sin 'Y¡v cos'|p ). (.,{. ro(e))

The second order derivative in the Y direction is defined by

Zvv A2Z syvtZr * syyzZq *syysZp *hsvYs +o {h2]¡, (á.tt(o))
aY2 h2 svv¿

where

syyt :2{ö" [zd*Fr*"t - Frt*" (26x + r) + FrRs¡r]
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* öx [r#"t (26x + l) - ¡';o"" -zt*tr{Rt - zt"p{t*l

+ 6x(F;vsB - pNRs ) + fu(Frt'" - Frt"")), (.{.11(ö))

syyz - q {F{*" [d" @x - 6x) - 6vóxjr 6xöx(Frt"" - rr*"t)] , (Á.tt(c))

s1,ys - -z{zqyd" (Fr""t + ¡X*") - ó" F{ *" (t + 26x) + rr""t (öv - 26xóx)

+ ôx [rf"" (26* + l) - Fjo"" +26vF{Rs - zt*r{ Rs - 2fuFr""*]

- zB/v *t (6xÖv + 6vÖx) + 6¡(Frrsn - ¡rns¡

+ 6"(F{"" - Frt"*)}, (.Á.11(d))

s;,,1 + - sx¿ as defined by Equation (4.6(e)) and

syys = ,{ Kl"Wv(2öx* 1)cos ^ts - Öxsinl5lcos'}p

[- cos l¡r (öv (26* + 1) - & ) * 6x sin'I^v ] cos 1*

lÓ*(zt* * 1)sin ß -26v cosls)cos'|¡v

- (6x (2Ö* + l) sin'I¡v * 6v cos ^¡ry ) cos'y5] (Á.tt(e))

In any situation involving curved boundaries, the point P, which has two

adjacent grid points exterior to the domain of interest as shown in Figure 4.1, can

be surrounded by the boundary in any of four different orientations as shown in

Figure 4.2. For each orientation, stightly different versions of the discretisations of

the derivatives are obtained. Presented below is a systematic method of expressing

the derivatives at P in terms of the solutions in Equations (4.6), (4.8), (4.9)'

(4.10) and (4.11).

The orientation defined by 11 in Figure A'.2 is simply the case considered in

deriving the above formulae. Hence, for this orientation, the expressions for the

+

+

s

R

az
ãn
ðz
A"

215



\H\

S'P

ll 12

1413

o

FIGURE A2: The uorious orientations, ilenoted 77, 72' 73 ond 71, uhích o bounil-

ary poirtt, P, con be surroundeit by o curtted boundøry such thot tuo ol thc neigh-

bouríng grid points lie outside ol the boundary'

F SJ

.1R

rS P

ñL-



derivatives at the point P are

and

azd
-: 

úX¡or (/.t2(a))

(,4.12(ó))

(,a.tz(c))

(A.12(d))

az
ðy

Zv,

ôrz _,.tXXtoî'
ô22 ú
aray = rtxY t

azz D--_ : I¿yy ¡o!' (Á.tz(e))

where in the expressionslor 22ç, Zv, Zxx, Zyy and Zyy which are defined by

Equarions (A.6(a)), (4.8(a)), (A.e(a)), (A.tO(a)) and (4.11(u)), the coordinate x

has been replaced by ø and Y has been replaced by y.

If the point, P, is the grid point labelled j, then using the notation described

in Chapter 5, the points Q and I are defined by

Zq: Z¡tt (á.ts(ø))

and

Zy - Zi-r. (Á.13(ó))

The orientation 12 described in Figure A..2 is obtained from that shown tn

Figure A.l by the coordinate transformation

(Á.ta(ø))

!=Y.

X

2t7

(,4.14(ö))



This necessitates the following replacements which must be made to Equations

(4.6), (4.8), (4.9), (4.10) and (4.11) in order to obtain the formulae. Firstly, the

angles ? are replaced by r - 1, that is,

?s e'll -'lst (á.ts(ø))

,IfV e- ,l - ^lN t (á.r5(ö))

and

'IR<-r-1n. (Á.ts(c))

The expressions for the derivatives at the point P for orientation 12 are then

azd
OT

Y-zv,oy
a2z ,
=--; : úXX¡
dto

(,4.t0(o))

(Á.r6(å))

(A.12(d))

ô22 Zxv, (.Á.16(d))
ôrðy

and

azz d
=--; 

: 
'ltYY tdy'

(á.t0(e))

where X has been replaced by u and Y by y in the right hand sides of the above

equations. In this orientation, the values at the points Zq and 27 are defined by

zq: Z¡zt (Á.t7(ø))

Zr - Zi-r.

ancl
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It is important to note that the distances /¡, 6y etc. are always taken to be

positive no matter what orientation is being considered.

Similarly, for the orientation 13 shown in Figure A..2, the coordinate trans-

formation r: X and g - -Y applies and the following expressions hold;

ðZ 
-oT-øX¡dr

(Á.ts(ø))

(.4.18(ó))

(Á.ta(c))

(Á.18(d))

(Á.ta(e))

ð22 vzXX ¡
dÍo

azz d
= -t1¿"¿.crrd!

az
ðy

ô22

Zy,

Zvv,

and

in which

and

ðy'

'Yse2íl.-1s, (Á.to(ø))

,Irv +- 2r - 1N, (Á.1e(ô))

1n +- 2o -.1* (Á.t0(c))

ZQ: Zir, (,,{.19(d))

Zv - Zi*t. (á.ts(e))

For the orienation 14 in Figure 4.2, the following expressions hold for the

derivatives at P

az
ãr

2t9

Zx, (/.20(ø))



az Zy, (Á.20(ö))

(,,{.ZO(c))

(,{.20(d))

a2z D:; = úXX¡
dln

ôy

a2z
ôn0y

Zxv,

and

(Á.zo(e))

in which

'Is <- 'ls - llt (,{.zt(ø))

.lN ç- .lN - If ¡ (Á.2r(b))

^ln +- ^ln -'t(t (Á.zt(c))

zQ: zi, (Á.21(d))

and

Zr: Zi+t (A.zr(e))

A computer program using iechniques described in Chapter 5 can readily

identify which of the orientations are applicable. For each orientation, the formulae

described above are calculated and Equations (4.6), (4.8), (4.9), (A.tO) and

(4.11) used to flnd the required derivatives at point P.

The above analysis is applicable only for a boundary point for which two of

the four neighbouring grid points are interior points. If the radius of curvature of

the boundary in the vicinity of a boundary point is not as great as that shown

#: zyy,
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in Figure A.l, then only one of the neighbouring grid points may be outside of

the region. This is the case shown in Figure 4.3. A new set of expressions for

the requìred derivatives at boundary points such as P in Figure 4.3 must now be

derived.

The analysis is similar to that performed above for the situation presented

in Figure 4.1. Indeed, the only effect of this new boundary configuration is to

change the fourth row of the square matrix and the fourth element in the right

side vector of the matrix equation (A..5). The new fourth row is

Io -LY 0 0 - (w)2 lzl (A.zz(a))

and the new fourth element is

Zp - Zn. (A.22{b))

The resultant matrix equation may be solved, yielding the following second

order accurate expressions for the derivatives at the point P for the curved bound-

ary shown in Figure 4.3:

where the overbar is used to distinguish between these formulae and those for the

previous case. The coefficients gxr etc. are given by the following formulae:

Qxt : - {(6* * óx\6y - l)) sin'Iry * fu cos 7rv} sin "¡", (Á.23(ó))

exz : -4öx{6¡ cos'f¡y sìn fs - (óx sin 11y * ôr cos'Irv) cos 15}'(Á.23(c))
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¿xs: - {(ö*(Zt" + 1) - 6x)sin11y - fu cosl¡y}sin1s, (d.23(d))

ext = qÖxfifu sin'Iry * 6¡ cos'Irv)sin 1"

- (6x sin'y¡v * 6v cos "¡1y) cos 1s ), (á.za(e))

Lxs = Öx(26x * t) cos 1¡v sin "Y5

- (2öx + 1)(6x sin 1¡¡ * 6r, cos 1¡v ) cos 1s, (,4.23(/))

and

az
exo -- *

.az
¡ç Sln l5 onó (ó¡ sin'Irv * fu cos.y¡v). (Á.za(g))

¡I s

The solution for A2ZIA)P at the point P is

v__ _ ð'Z _AxtZr *qxxzZq *qxxeZn+q**nZ, *lLx*u +O{h2\,úxx = AX":
(a.z+(a))

where

exxt : - {(dx Q* - 1) + óx) sin 1¡v * ôr cos ?rv } sin 7", Ø'24(b))

exxz - 2 {(Óx sin "ys - 6y cos'ys) cos 'lt't - ó¡ sin'}¡y cos'}s } , @-Zl(c))

Sxxs : - {(öx(26v + l) - 6x) sin'y¡v - 6y cos "y¡y } sin 7s, Ø.24(d))

gxx+ - z{óx(2fu sin rr - cos l¡v)sin'yg

+ (6x sin 'y¡y * 6y cos'Irv ) cos 1" ), (A.z+(e\)

exxs: Qxs is defined in (A'.23(f)) and

.az
¡ Sln'!5 - A"

az
ð"Qxxa :2

Àt
ó
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Zxv

The cross derivative A2 Z IAXAY is given by

a2z QxvtZr * qxvzZq * qxysZ. * qxy+Zp * Zhqyyu
ðXôY 2lr'qxys +o{h21,

(Á.zs(ø))

where

exvt - (26y - l)(zÖx * l) sin'f¡y cos ^ts + (26x * l) cos'y¡y sin'ys' (Á-25(å))

Qxvz:4(6x - Ôx) cos'|¡v cos't5, (.a.zs(c))

Qxve - (26y + l)(zöx * l) sin'f¡y cos ls - (26x * 1) cos'y¡ sin 1s, (A.25(d))

lxv+ - -l{6vQöx * l)sin'Iry * (6x - {¡)cos"y¡y} cosls (.A.ZS(e))

exys: exs (see Equation (A'.23(f))) and

az
Ixva = An

(26x + 1) COS'fg
ctn

(2Ö* + l) cos'yry. (Á.25(/))az
s ff

The two remainìng derivatives, which are dependent only on the Y direction,

are easily handled since the two grid points above and below point P both lie

inside the boundary. Hence, existing second order formulae may be used for these

derivatives at point P. That is,

;t az Zn - Zr + o Íh2) ( A.26)¿Y:ñ: 2h 
-rLt\rb I

and

Zvv A2Z Zn*Zr-ZZp + o {h2l'/ (A.27)
AXAY h2

As before, the boundary point P in Figure A'.3 may be surrounded by a curved

boundary in any of four orientations which are shown in the Figure 4.4.
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For the orientation labelled 2l in Figure 4.4 the expressions for the derivatives

at P are immediately available from the preceeding analysis. In fact,

az Zx, (z{.za(a))
ôr
az Zy, (,,{.28(ö))
0y

a2z Zxx, (,a.za(c))
ôn2

a2z Zxv, (Á.28(d))
ôxôy
ô22 Zvv, (Á.za(e))
ôs'

where the expressions on the right hand sides may be obtained from F,quations

(A.23(a)), (4.2a(a)), (4.25(a)), (A.zo(a)) and (4.27(a)). For this particular ori-

entation, the values Zq, Zn and 27 are defined by

Ze = Til, @.ZS(a))

Zn = Zi+t (,4.29(ö))

and

Z7 - Zi-r. (.A.zs(c))

For the orientation 22 in Figure 4.4, the following formulae hold:

az tr_ = _LXt
dÍ

Zxv,

(.{.so(ø))

(Á.30(D))

(Á.ao(c))

(,,{.30(d))

az Zy,
0y

a2z Zxx,
ônz

ô22
ôrôy
ô22 Zvv,
ðy2
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in which

'Iser-1s, (.4.31(ø))

'Ir e ß-'t¡.tt (.Á.31(ä))

Ze: Ziz, (Á.et(ø))

Zn: Zi+t (Á.31(b))

and

Zr - Zi-r. (..{-at(c))

As before, the symbol e indicates that the angles ls and 1¡ which appear in the

formula lor zy, zy , zxy etc. are to be replaced by the angles r -'ls and n - "y¡y

respectively.

A coordinate transformation ol g - X and x -- Y applied to the situation in

Figure 4.3 yields the orientation labelled 23 in Figure 44. The resultant formulae

for the derivatives are, therefore,

az Zy, (.a.az(o))
ôa
az Zx, (Á.32(ö))
ðy

a2z Zvv, (A.sz(c))
ð12

a2z Zxv, (á.32(d))
ðrôy
a2z Zxx, (Á.az(e))
0y'

in which

.Is +- r 12 - .ls,
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Iiv r- r 12 - 1n, (Á.33(ö))

ze = Z¡-t, (Á.ae(c))

Zn: Ziz (Á.33(d))

Zr: Zit (Á.es(e))

6x-6v (.Á.33(/))

and

6v * 6x. (.{.sa(s))

The final orientation to be considered is that which is labelled 24 in Figure

A.4. For this case, the derivatives at the point P are given by

az Zv, (A.aa(a))

in which

0n
az
ðy

a2z
ôx2
a2z

Zx,

Zvv,

(Á.34(ö))

(.{.s+(c))

(.d.34(d))

(á.a+(e))

(Á.3s(ø))

(Á.35(ü))

(Á.as(c))

ôtôy
a2z

Zxv,

ðy' Zxx,

?s F 6 -3rf2,

Tr e'I¡v - 7rf 2,

zq - zi*t,

Zp - Z¡2,

228

(Á.35(d))



Zr - Z¡-t, (Á.as(e))

6x*6v (Á.35(t))

and

6v * 6x. (Á.as(e))

There remains one final case to consider for the point P which has been

discussed above. In Figure 4.3, the point lY is displayed lying on the boundary

between the points 5 and .8. It is just as likely that a suitable JV may be found

which lies between the point .9 and f. If this is the case, the analysis is identical

to that presented above except that in the formulae for Z*, 2", etc., the following

replacement is made

õv * -6v (á.36)

That is, for this positioning of JV, whenever a 6y appears in the formulae for the

derivatives, it is replaced bY -&.

$4.3 Cowcr,uslott

Presented in this work are finite difference formulae which may be used to

approximate the derivatives ôzf 0r, ôzlôy, ô2zf ôr2, ô2zf ônôy and 02zlôy2

at a point which is next to a curved boundary along which a normal gradient

boundary condition is ìmposed. These approximations are second order accurate.

A systematic method which can be readily incorporated into a computer program

has also been given to account for the several various ways in which the curved

229



boundary may surround a given boundary point. Using techniques described in

Chapter 5, a program may be written which identifies the type of boundary point

(that is, whether there are one or two neighbouring grid points outside of the

boundary) and then calculates the type of orientation (as shown in Figures ,{.2

and 4.4). Once these factors have been determined, the required modifications

can be made to the general expression s for Zv, Zx, Zv , Zv , etc-

Although the coefficients s¡1, g¡ç1 etc. which appear in the flnite difference

approximations are complicated, theymay be used in finite difference scheme with

only a small increase in computer time. In most problems nearly all the grid points

are interior points and so the formulae above only need to be applied to a small

number of boundary points. Also, all the coefficients need only to be calculated

once for each boundary point and this further prevents any major increase in

computing time.
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