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SUMMARY

This thesis investigates general methods with which the circulation induced
by a wind blowing over the surface of a closed basin may be calculated. Firstly, the
linear, depth integrated equations describing such motions are used to model the
motions induced by an oscillating wind blowing over a system of connected lakes
each of constant depth. The techniques used to model this problem are the Collo-
cation and Galerkin methods, which assume the basins are of rectangular shape,
and a Boundary Integral Technique, which models basins of arbitrary contour.

The performance of each of these methods is analysed.

By way of developing the above methods, the effect of the Coriolis force on
the motion in rectangular lakes of various dimensions is also discussed. Results
from the Boundary Integral Technique are also compared with analytic solutions

available for simple geometries.

Various numerical methods of solving the depth integrated equations are also
developed. Some of these methods can be used to calculate the effect of a wind
blowing over a basin of arbitrary depth and contour. As part of this section of
the thesis, finite difference approximations are developed which enable derivatives
at a point near a curved boundary, along which a Neumann boundary condition
applies, to be modelled with second order accuracy. Results from all the numerical
models are compared with each other as well as with analytic solutions of problems
with simple boundaries.
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Finally, the depth variation of horizontal velocity in such flows is considered.
Several analytic solutions, applicable to channel flow, are developed. These are
compared with experimental observations. A turbulent energy closure scheme is
also used to examine the vertical profile of velocity and comparisons are made
between the results from this model and the analytic solutions as well as some

experimental observations.
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§1.1

CHAPTER 1

THE EQUATIONS FOR GEOPHYSICAL FLOWS

DERIVATION OF THE BASIC EQUATIONS

The equations which describe the motion of an incompressible fluid with con-

stant molecular viscosity are the equations for mass conservation and momentum

conservation, which in tensor notation, are:

oq;

3:5,' =0
and

Dg; ~ 9p _ 3.
where

x = i3y + 1322 + isz3 is the position vector,

t is time,

Q
Q

« 92 . .
V2=ll’£f+ln +1g ’

y
y

T X

2 3

q =q(x;t) =i1q1 + iags + igqs is the fluid velocity,
p is the constant fluid density,

p = p(x; ) is the fluid pressure,

D

D =%+q 3%1- + s + q;:,g:,:—a is the material derivative,

F = F(x;t) are the body forces
=1i1fga2 —iafq1 —1ay,
g is the acceleration due to gravity in the negative z3 direction,

1

(1.1.1(a))

(1.1.1(8))



f = 2Q2sin ¢ is the Coriolis parameter,
) = angular speed of the earth’s rotation,
¢ = ¢(x) is the latitude and

g is the molecular viscosity.

The above set of Navier-Stokes type equations contains information over a
large range of scales. For oceanographic flows such as wind driven and tidal flows,
these equations are usually averaged over a characteristic time interval, T. This

results in the so-called Reynolds averaged equations. Writing

] [t+T/2
u=q(x;t) = ——/ q(x; 7)dr (1.1.2(a))
TJizp2
so that
q=u+u (1.1.2(b))
and similarly
p=P+p (1.1.2(c))

where u’ and p' define the instantaneous fluctuations of q and p about the time
averaged means u and P, yields the following system of equations for the time

averaged components u and P:
au,'

o4 _g (1.1.3(a))
Du; P R -
p Di = —az‘. + p_F, + -6—;3—(——pu:u;) + ﬂv2ui (1‘1'3(b))

The terms %(—pu;u;) in the above equation represent additional stresses asso-

ciated with all the velocity fluctuations at time scales less than the characteristic

time interval, T'.



For oceanographic tidal and wind driven flows the set of equations (1.1.3)
may be further simplified. A scale analysis reveals that the magnitude of terms
dP/8z3 and pg are much greater then the magnitude of the remaining terms in the
equation for the conservation of vertical momentum (that is Equation (1.1.3(b))
with i=3). Thus, if the density p is constant over depth, the following equation is

obtained

P(x;t) = Py(zy1,2q;t) + pg(¢ — z3) (1.1.4)

in which
P,(z,,z2;t) is the surface atmospheric pressure averaged over the time inter-

val T and

¢ = ¢(z1,z2; t) is the sea surface elevation with respect to zz = 0 also averaged

over T.

Substituting Equation (1.1.4) into Equation (1.1.3(b)) and using Equation

(1.1.3(a)) yields the final equations for momentum conservation, namely,

Ou; 15/ 18P, a¢ 1 37y4
ot + Bz,-(u'uj) ~ p Oz gaz,- tE+ pOzi;

i=1,2 (1.1.5)

where

L A— aui + auj _ ulul
A 8z;  0Oz; Uity

Equations (1.1.5) and (1.1.3(a)) form the basic system of equations used to
model most oceanographic and geophysical flows. However, this system of equa-
tions, as written above, cannot be solved due to the presence of the terms involving
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7;;. The exact form for these stresses is not known but closure of the set of equa-

tions may be achieved in a number of ways, two of which are now briefly discussed.
§1.2 THE DEPTH INTEGRATED EQUATIONS

The simplest, way of solving Equations (1.1.3(2)) and (1.1.5) is to integrate
the equations with respect to the depth direction. The resultant depth integrated
model will provide information about the surface displacement as well as the depth

averaged motion of the fluid.

The depth integrated horizontal velocity components U and V' are defined by

¢
U=[_hudz (1.2.1(a))

and

V= /‘g vdz. (1.2.1(d))

—h
Integrating Equation (1.1.5) results in the following depth integrated Reynolds

averaged equations for momentum conservation

ou a4 (U? a (UV h 0P, d¢
‘37+5;(7)+a—y(—h‘)—f""—;az—gha

+ T’“—;"’i (1.2.2(c))
v 9 (UVY 8 (V? hOPs . 3¢
a3 (3 )+ 5 () 0=
e (1.2:2(8))
p
where
h=¢+h (1.2.3)



is the total depth of the fluid. Inherent in the above two equations is the assump-
tion that the horizontal and time variations of the stresses are negligible (see,
for example, Noye and Flather (1985) and Kuipers and Vreugdenhil (1973)). By

utilising the kinematic boundary conditions at the surface (D¢/Dt = w,) and at

the bottom (Dh/Dt = —wj) and Liebnitz’s rule, the mass conservation equation
becomes

a¢ U oV

§+—a?+ a =0. (1.2.4)

The system of equations described by Equations (1.2.2) and (1.2.4) form the
usual set of equations used in a depth integrated model of wind and/or tidal driven

flows. This system of equations is solved using the following boundary conditions.

At a solid boundary, that is, a land-water interface, the velocity component
normal to the boundary is required to be zero. At open boundaries where the
modelled region joins another region of water a choice of several boundary condi-
tions can be applied. The simplest condition is to specify the surface elevation or
the normal component of velocity as a function of position along the boundary and
time. There are other ways of specifying the open boundary condition discussed
in Baltzer and Lai (1968), Reid and Bodine (1968), Wurtele et. al. (1971), Reid

et. al. (1977), Flather (1979) and Noye and Flather (1985).

The closure of the problem has been brought about by the specification of
the stress terms. The assumptions concerning the depth integrated stress terms
are that the horizontal gradients of stress are negligible and that the remaining
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two terms, 7, and 1, are known. The usual method of determining r, and 1 is

to utilise the quadratic drag laws which are of the form (see, for example, Nihoul

(1977))
7, = po.C, W|W| (1.2.5(a))
r = ’%Um - (1.2.5(6))
where

pa is the density of the atmosphere,

C, is the non-dimensional surface drag coefficient,

Cy is the non-dimensional bottom drag coefficient,

W is the wind velocity at some reference height above the fluid surface and

U is the depth integrated velocity vector, U =(U,V).

The term mr, in Equation (1.2.5(b)) is included to account for the relative
additional contribution that the bottom stress makes to the surface stress. For
laminar, wind induced flow in a lake of uniform depth, Hellstrom (1941) and
Keulegan (1951) have deduced m = 0.5. Francis (1953) showed that in realistic
turbulent flows m is generally less than 0.1. If this term is not included an anomaly
in using Equation (1.2.5(b)) results. In a situation where there is no net flow
when U = 0 as occurs in the equilibrium wind set-up in a closed basin, Equation
(1.2.5(b)) without the last term included would predict that the bottom stress
would be zero. However, clearly there would be stress exerted on the bottom
by return currents near the bottom. It is for this reason that the mr, term is

included.



Actual values for C, and Cj must be experimentally determined. For a sum-
mary of the many empirical formulations suggested for the surface drag coefficient
see, for example, Wilson (1960) or Welander (1961). In particular, the formula of
Wu (1982), namely,

C, = (0.8 + 0.065W0)x10~3 (1.2.6)

where Wy is the wind speed measured at a height of 10m above the surface is

recommended. This formula appears to be applicable for all wind speeds.

Obtaining a value for Cj is much more difficult. Often in numerical models us-
ing depth integrated equations, a value for C} is obtained by calibrating the model
with observed results. Bowden et. al. (1959) suggested Cp=2.5x10~2 whilst Bow-
den and Fairbairn (1952) deduced 1.8x1073. In a model of tidal flow in an estuary,
Johns (1978) found that the value of Cp varied greatly during a tidal cycle; from
1.24x1073 to 1.39x10~t. This variation in values of C, was also experimentally ob-
served by Sternberg (1968) who found 8.7x10~% < Cp < 1.11x10~2. These ranges
of values for Cj suggest that Equation (1.2.5(b)) will never completely represent
the bottom stress, 75, over an entire cycle in an oscillating flow. There are other
formulations for Cj based on empirical relationships. One such formula allows Cj
to depend on the total depth. This is known as the Chezy formula for bottom

friction and is given by

gn2h~1/3

Cy = (1.003)2 (1.2.7)

where n is Manning’s roughness coefficient which varies according to the roughness

of the sea floor.



The next four chapters of this work deal with the depth integrated equations.
The equations actually used are Equations (1.2.4) and the linearized form of Equa-
tion (1.2.2). The bottom stress will also be linearized by assuming r = C,|U|/A?

is always a constant.
§1.3 THE THREE DIMENSIONAL EQUATIONS

As has been shown there are several problems involved in the application of
depth integrated models. One other disadvantage is that they supply no informa-
tion about the nature of the flow in the vertical direction. The second method
of closing Equations (1.1.3(a)) and (1.1.5) results in a three dimensional model
capable of providing a complete description of the wind forced or tidal motion
in an arbitrary shaped basin. Such models are becoming increasingly important,

especially in the field of environmental control and off-shore engineering.

"This closure scheme involves modelling the terms — pu:-u;-. The oldest proposal
for modelling these terms is the Boussinesq eddy viscosity concept which presumes
an analogy between the molecular motion, which leads to Stokes’ viscosity law in

laminar flow, and the turbulent flow. In general, this concept may be expressed

as

1,1
._u', b

Ou; Ouy 2
= — —kb;y 1.3.1
o (6:::_,- + 61:,-) 3 v ( )

where
N = N{x;1) is the turbulent eddy viscosity and
k = k(x;t) is the turbulent kinetic energy, given by
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k=ul?/2. (1.3.2)

The term involving the Kronecker delta, 6;;, in the above equation is some-
times not seen in discussions of this sort. However, it is necessary in order to
make the expressions for the Reynolds stresses applicable for the normal stresses
when ¢ = 5. Consider Equation (1.3.1) with the last term on the right hand side
omitted. In this case, the sum of the normal stresses would be u}> = —2N8u;/dz;
which is identically zero using Equation (1.1.3(a)). However, by definition, the
sum of the normal stresses should equal 2k which is always a positive constant.
Hence, the 6;; term is included in Equation (1.3.1) to ensure the requirement of
Equation (1.3.2) is fulfilled. The addition of this extra term in Equation (1.3.1)
does not complicate the governing equations, however. Like the pressure, P, kis a
scalar quantity and when Equation (1.3.1) is substituted into Equation (1.1.3(b)),
for example, the second part of (1.3.1) can be absorbed by the pressure gradient
term. That is, in effect the pressure P is replaced by P + 2k/3 but for simplicity

this quantity is designated by P.

The equations resulting from substituting Equation (1.3.1) into Equation
(1.1.5) may be greatly simplified for most flows. In general, the cross product
terms — pm, 1 # 7 are greater in magnitude then the normal stress —p? (see,
for example, Duncan et. al. (1978)). For most flows, the Reynolds stresses are
much greater in magnitude than the molecular stresses. Also, for geophysical

flows, horizontal variations in the velocity components are much smaller than the

9



vertical direction. Hence, using these assumptions the resultant three dimensional

equations involving the eddy viscosity are:

g oU oV

a + E % = 0, (1.3.3((1))
ohu 9, , O 3

Ty + a—zhu + gghuv + h.%uw —hfv

¢ hAP, 18 _du

R L e (1.3.3(8))
% + a%’“"‘ + g—yhv2 + h—aa—nvw + hfu
= —hggt -2y LN (1.33(c)
and
== [q%v - %nv(n) + f,g—yv - g—th(n)] C (133(d)
inwiich,

n= fﬁ- is a transformed depth,

w 1s the transformed vertical velocity component and

U(n) = [ udn’ and V(n) = [ vdy'.

The boundary conditions which are used in conjunction with the above set of

equations are:
(1) at a solid boundary, the velocity normal to the boundary is zero,

(2) a no-slip condition applies at the sea bed that is
u=v=w=0atn=0. (1.3.4)

Sometimes a slip velocity condition is used at the bottom. This is, however,
only an approximation.

10



(3) at the sea surface the following holds:

= _

Toz = 5 an atn =1, (1.3.5(a))
_oNow

Ty = 5 3 atp =1, (1.3.5(b))

where 7, may be related to the wind stress by (1.2.5(a)).

(4) at open boundaries the height of the surface elevation is usually specified,
although there are several other alternatives as mentioned in the previous

section dealing with the depth integrated equations.

A fully three dimensional description of the fluid flow field is available from
Equations (1.3.3) provided a suitable formulation for N is available. Not only
does this set of equations provide a more complete description, but it also has
less dependence on empirical laws then the depth integrated model. Nihoul (1977)
suggests that investigatiqns into a complete three dimensional model are necessary
if only to check the validity of Equation (1.2.5(b)). Various formulations for N
which have been deduced from laboratory experiments and field observations will
be discussed in Chapter 6. Also in this chapter will be discussed the various forms
of N which have been used in numerical models. Finally, methods which allow N

to be calculated as part of the solution procedure will be discussed.
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CHAPTER 2

CORIOLIS FORCE AND THE CONNECTED LAKE PROBLEM

§2.1 INTRODUCTION

In Walsh (1974), numerical and analytic models were developed to predict
the effect of a wind blowing over a system of two lakes connected by a narrow
channel and these models were applied to the Murray Mouth lake system in South
Australia. However, Walsh’s analytic model was only reasonably satisfactory; an

improved model is presented in this work.

Three different methods will be used to solve this problem: the Collocation
and Galerkin techniques (both examples of the method of Weighted Residuals)
and a boundary integral api)roach. The latter approach will be developed in
Chapter 3 ; the two other methods will be described in Section 4 of this Chapter.

Comparisons between all three methods will be made in Chapter 4.

A statement of the connected lake problem will be presented in Section 2 but
firstly the effects, if any, of the Coriolis force will be examined. Walsh (1974)
considers a rotating circular basin and concludes from the resulting analytic so-
lution that the effect of the Coriolis force can be ignored. In order to check this

conclusion an analytic solution for a rotating rectangular basin is now developed.

12



§2.2 ROTATING RECTANGULAR BASIN

Consider a closed rotating rectangular basin of constant depth H, length L
and breadth B as shown in Figure 2.1. An z — y Cartesian coordinate system is
positioned near the bottom left hand corner of the basin. Movement of the surface

of the basin is excited by a variable wind stress, 7,.

It will be assumed that the components of the surface wind stress can be

expressed in the form

Toz(Z, ¥, 1) = Toa(z, y)e' ™" (2.2.1(a))

Toy (T, U5 1) = Toy{z, y)e ", (2.2.1(b))

where
Texs Tay are respectively the z and y components of the surface wind stress 7,
o is the circular frequency of the wind stress,
Toz; Toy are the amplitudes of the z and y components of wind stress,
¢ =+/—1 and

t is time (in secs).
Letting the response of the surface, ¢, be

¢(z,9,t) = Z(z,y,0)e"" (2.2.2)
then Z satisfies the Helmholtz Equation (see Walsh (1974))

(V24+k%)Z = % (BD + fC) (2.2.3)

where

13
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FIGURE 2.1: A closed rectangular basin over which a surface wind stress, 7,, ts
blowing in the z direction.




Vs e (2.2.4(a)
k? = “:;’ﬂ (1 + {;) : (2.2.4(b))
2o ‘9;‘;”, (2.2.4(c))
C= ‘9‘% B %, (2.2.4(d))
K=(1+m)/p, (2.2.4(0)
s
B =10+ 2, (2.2.4(f))
i wilich

f is the Coriolis parameter,

m is a constant value and takes a value of about 0.05 for turbulent flow,
2a = r/H where r is a friction parameter,

p is the density of the water (assumed constant) and

¢ = +/gH is the free gravity wave celerity.

If the z and y components of the depth integrated velocity of the lake are
denoted by U and V respectively, then the following forms for these components
are assumed:

U(z,y,t) = P(z,y,0)e*"t, (2.2.5(a))

V(z,y,t) = Q(z,y,0)e"". (2.2.5(b))

Walsh (1974) has shown that P and @ may be determined once Z is known

using the following relations

P= g |[K 0ot fr) - (852 +522)], (22600)

15



1

Q= ZFYE [K (Broy — fros) — ¢* (ﬂ% = %—z-)] . (2.2.6(b)

The above equations are easily derived from Equations (1.2.2) and (1.2.4) by

linearizing these equations and assuming a linear bottom friction law.

Equation (2.2.3) is subject to the boundary condition that there is no flow

across the boundary of the lake. Hence, the following conditions hold:

P=0 at z=0,L; y €0, B], (2.2.7(a))

Q=0 at y=20,B; z €0, L] (2.2.7(b))

The above boundary conditions may also be expressed in terms of Z using Equa-

tions (2.2.6(a),(b)), yielding

07 93 _K
0z dy 2

0Z 0Z K
ﬁ_a_y_ _ .5; — ;:_2. (ﬂfoy . f'rO:r.) y= O’ B, T € [0, L]. (2.28(b))

(;BTO:c + fTOy) T = 0: L; ye€ [0) B]a (228(0'))

Hence, the problem is reduced to one of solving Equation (2.2.3) subject
to the boundary conditions (2.2.8(a),(b)). If the wind stress is assumed to be
homogeneous and unidirectional and the Coriolis force is neglected, then simple
analytic solutions may be obtained for Z (and thus P and Q). Such solutions are
presented in Walsh (1974). For a similar wind stress and a rotating basin (f # 0),
then a solution to the equations may be obtained using the method of Collocation
as will be shown below.

16



The amplitude of the stress described above is denoted by

Toz(Z, ¥) = o, (2.2.9(a))

Toy(%, y) = 0, (2.2.9(b))

which corresponds to a homogeneous, unidirectional wind stress aligned in the z
direction. For such a wind stress, the right hand side of Equation (2.2.3) becomes
zero and the boundary conditions given by Equations (2.2.8(a),(b)) are simplified

so that the system which is to be solved becomes

(V2+k%)Z =0, (2.2.10(a))
subject to
o0z 0Z Kpr _ )
5 +f 3y = 2 t=0,L; y€|0,B], (2.2.10(b))
0z 3Z  Kfr _ )
85y ~ 5= =% y=0,B; z€0, L] (2.2.10(c))

The solution to the above system of equations may be obtained in the following

manner. The function Z is written

Z(z,y,0) = Zo(z,y,0) + Z; (z,9,0) (2.2.11)

where Zj is a particular solution of Equation (2.2.10(a)) which satisfies the bound-
ary conditions at y = 0, B described by Equation (2.2.10(c)} but not necessarily
those at £ = 0,L. Consequently, Z; also satisfies Equation (2.2.10(a)) as well
as homogeneous boundary conditions at y = 0, B; that is, Z; satisfies Equation
(2.2.10(c)) where the right hand side of this equation is set identically to zero.

17



An expression for Zy may be obtained by assuming that this function depends

only on y. Therefore, Z, satisfies the equation

d?Z,

ap THZ=0 (2.2.12(a))
subject to
dZ, Kfr _
T e aty=20,B (2.2.12(b))

which has the solution

7, = Kfr {(1 — coskB)

= Bk kB < ky — sin ky} ; (2.2.13)

Because Z; satisfies homogeneous boundary conditions, the elevation Z; rep-
resents free motion in the infinite channel 0 < y < B. Hence, Z; may be considered
to be a linear superposition of two Kelvin waves and a double infinity of Poincaré

waves. These two sets of solutions may be derived in the following manner.

The function Z; satisfies the system

(V2 + k%) 2, =0, (2.2.14(a))
subject to
0z, 07, _ )
3y F 3z y=0,B; z€|[0,L]. (2.2.14(b))

The y component of depth integrated velocity associated with this free motion
is denoted by Q,(z,y,0) , an expression for which is obtainable from Equation

(2.2.6(b)) where 79 and 7, have been set to zero.

18



Firstly a solution for Z; will be found for which @, is zero throughout the

lake. From Equation (2.2.6(b)), it is clear that such a condition on @; implies
S =~ 15, y=0,B; z€[0,L)]. (2.2.15)

A function which satisfies the above expression will also satisfy the boundary con-
dition (2.2.14(b)). The solution to Equation (2.2.15) may be obtained by the
method of separation of variables. This expression is then substituted into Equa-

tion (2.2.14(a)) thus yielding one set of solutions for Z;, namely
2, = Z, = Age10= %Y | Byemtroztboy (2.2.16)

where Ag and By are unknown constants and

_ (=B} .
o = ( 2 ) : (2.2.17(a))
By = —f—‘ﬁ"ﬂ. (2.2.17(b))

Solutions of this type, with the factor *°* adjoined, are called Kelvin waves.

Another type of solution, Z3, to Equation (2.2.14) may be obtained by ap-
plying the standard separation of variables technique to Equation (2.2.14(a)) in

conjunction with Equation (2.2.14(b}). This yields the following solution for Z;:

o0

Z, =2, = Z{Ane""“ [cosbpy + ¢pn sin b,y
n=t (2.2.18)
+ Bpe" 7% [cosbpy — ¢p sin 0,,y]},
where, for n = 1,2,..., A, and B, are unknown constant coefficients and
o = %Z—:, (2.2.20(a))
=02 — k2 (2.2.20(b))

and

19



By = o, (2.2.20(c))

Waves of the type described by Z,, with the factor e°* adjoined, are called

Poincaré waves.

The two solutions Z, and Z, constitute a complete set of solutions to the

system of equations (2.2.14). Hence, a solution to Equation (2.2.10(a)) subject to

Equation 2.2.10(c)) is

Z =20+ 2.+ Zy,

that is,

Z(z,y,0)

_Kfr {(1 — cos kB)

= ka2 kB cos ky — sin ky}

+ Aoebvoz—ooy il Boe—z'voa:+00y

(oo
+ Z{e""“’An [cosbpy + @n sin b,y

n=1

+ € 7% B, [cosfpy — ¢y sin 0ny]}. (2.2.20)

The above form for Z may be substituted into Equations (2.2.6(a),(b)) to yield

the following expressions for P and Q:

P(z,y,0) = ﬁ{ffﬂ‘fc [1 + é—z {%%@sinky +co‘sky}]

[AO euy:l:—ﬂoy _ -BO e—:,7:1:+00y]

X [ eIn= 2
+fc2k2z{e A [""ﬁ'j coseny+sineny]
n=1 &

cAyo k2
+ Yo

e~ "B,

_on'Ync2 .
+ i [ . cos By + sin Gny] } } (2.2.21(a))

and
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. 1 — cos kB)

Q(z_sy:0)='—f2—j_?{Kf‘fo [—1+( kB sipky+cosky]

o ] . .
+ 3 (€7 An + e 7 By) (292 + p262) %Z;'ﬁ }.(2.2.21(b))
n=1 L

Using the Collocation technique together with boundary condition (2.2.10(b))
enables values to be found for the unknowns A, and B, for n=0,1,2,.... in the
following manner. If the infinite series in Equation (2.2.20) are truncated to N
terms then there will be a total of 2N +2 unknowns contained in the expression for
Z. This truncated form of Z is forced to satisfy the boundary condition (2.2.10(b))
by substituting z = 0 and z = L into the expression for Z and in both cases also
letting y take the values y = Bi/(N +2) for i = 1,...,N + 1. This process
results in 2N + 2 equations from which values for the unknown coefficients may

be obtained.

After substituting Equation (2.2.20) into (2.2.10(b)}), the Galerkin technique
could also be applied. Instead of letting y take on particular values as indicated
above, the equation resulting from the above-mentioned substitution is first multi-
plied by weighting functions, wm(y), for m =0,1,..., N and then integrated from

y = 0 to y = B. Suitable weighting functions for the above Z are

wo = eov (2.2.22(a))
Wy = Sin b,y + ¢ cosbny m=1,...,N. (2.2.22(b))
This procedure was not carried out here however because satisfactory convergence

was achieved using the Collocation technique. Also, the equations resulting from
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the application of the Galerkin technique are algebraically complicated. Equations
resulting from the use of both methods will be given in later sections in which the

connected lake problem is treated.

To ascertain if the Coriolis parameter is significant, the above solution will be
compared with a solution of Equation (2.2.10) in which f is set to zero. Ignoring
the parameter f results in an essentially one dimensional system in which the y
coordinate may be neglected. The solution for the amplitude, Z, of this simplified

system is (see Walsh (1974))

7= Krosin [k (z — L/2)]
" kc2cos(kL/2)

(2.2.23)

From Walsh and Noye (1973), the largest of the two lakes situated near the
Murray mouth in South Australia, Lake Alexandrina, may be approximated by a
rectangular lake of dimensions L = 24 km., B = 8 km. and depth , H = 3 m.
A wind stress given by Equation (2.2.9) is assumed to be blowing over the lake
where the z axis is parallel to the largest side of the lake (see Figure 2.1). A value
of 7o = 0.1Nm~2 is used and a value of f = —8.5x107%sec™?! is applicable. The
larger of the two lakes is considered in this study because it will be most likely
to be affected by the Coriolis force. The gain and phase lag of the elevation and

velocity components will be examined. The gain, G, and phase ,¢, of the surface

elevation, ¢, are given by

(M0

¢={Rm@)]+32I}, (2.2.24(a)
¢ = — arctan[S(Z)/R(Z)] (2.2.24(b))
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in which ® and @ denote the real and imaginary parts respectively of the func-
tion Z. The gain and phase lag of the depth integrated velocity components are

similarly given.

In Figure 2.2, the results for the gain and phase lag of the elevation from the
basin with f = 0 (Equation (2.2.23)) are compared with results obtained for the
case where f # 0 (Equation (2.2.20)). The results for the gain of the elevation have
been normalised with respect to the equilibrium solution, Zeq = K7o(z — L/2)/c?,
available from (2.2.23) with ¢ = 0. Various values of the friction parameter, e, are
considered. In all cases, the results are taken from values occurring at the point
z =3L/4, y = B/2. It is inmmediately obvious that the Coriolis effect is very
small. As can be seen from the graphs, almost identical results are obtained for the
gain and phase lag for both the cases f = 0 and f # 0. At any given z position,
the value of the gain and phase lag of the amplitude do not vary significantly at
various positions across the lake. The most noticeable differences occur when the
friction parameter , «, is zero. These differences, which are too small to show
on the graphs in Figure 2.2, are presented in Table 2.1. Note that when a is
non-zero the gain takes the same value across the lake and the phase lag changes
only slightly (by at most 2%). Also note that the values obtained for f = 0 and
f # 0 agree closely for all cases of . The worst agreement for both the gain
and phase lag occurs when a = 0. However, the friction parameter in a real lake
is never zero. The presence of a resonance peak indicates that severe flooding
of a lake would occur at certain frequencies if the friction parameter was zero.
Indeed, even for very small values of friction, it can be seen from the figure that
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FIGURE 2.2(a): The gain (m) of displacement,¢, for the two cases f # 0 and
f =0 for a rectangular basin of length 24 km., breadth 8 km. and depth S m.
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GAIN

a=0 a=10"3 a=10"%

Y =0 120 =0 120 =0 120
B/4 1.0120 1.0108 0.9711 0.9711 1.0116 1.0114
B/2 1.0120 1.0104 0.9711 0.9711 1.0116 1.0114
3B/4 1.0120 1.0108 0.9711 0.9711 1.0116 1.0114

PHASE LAG
a=0 a =103 a=10"*
Y =0 0 =0 20 =0 10

B/4 0.0000 0.0035 0.3217 0.3252 0.0330 0.0368
B/2 0.0000 0.0000 0.3217 0.3218 0.0330 0.0335
3B/4 0.0000 0.0035 0.3217 0.3183 0.0330 0.0299

TABLE 2.1: Values of the gain and phase lag obtained at £ = 3L/4 and for a
frequency of o = 1 c.p.d. and for various values of y and a and for f = 0 (Equation
2.2.28) and f # 0 (Equation 2.2.20). The values for the gain (in metres) have been
normalized by dividing by the gain obtained from Equation (2.2.20) with a = 0.
The phase lag ts in radians.

the gain in displacement rises rapidly at frequencies near the resonance point.
This means that even when the friction is non-zero, the behaviour of the lake
changes radically at particular frequencies. At such frequencies the displacement
is significantly greater than might be expected and severe flooding of the lake
would be likely. The agreement between the results obtained for f =0 and f #0
are close enough to be able to conclude that the Coriolis effect is negligible. The
invariance of the elevation across the lake for f # O was highlighted when the
real time surface response {obtainable from Equation {2.2.23) with €?* adjoined)

was examined. In no instance did the change in surface height affect the fourth
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significant figure, that is, the variation was always less then 1 mm.

In Figure 2.3 the results for the gain and phase lag of the z-component of
velocity are presented for the case f = 0 and f # 0. Once again, there is very
little difference in the phase lags for either value of f and for any of the values of a.
There is also no significant difference between the values obtained for the gain for
either f = 0 and f # 0 and for non-zero values of the friction parameter. However,
when a = 0 (no friction) an interesting shift of the position of the resonance peak
occurred. When f = 0 and o = 0, a single discontinuity occurs in the graph of
the velocity gain (and also the amplitude gain) at about 9.76 c.p.d. (cycles per
day). However, when f # 0, this resonance peak is split into a pair of resonance
peaks centred about ¢ = 9.76 c.p.d. This phenomenon was also observed by Walsh
(1974) in his study of rotating circular lakes. Once again, because the friction in a
real lake is never zero, it seems from the above Figure that the Coriolis parameter
does not greatly affect the U component of transport. Just as for the elevation,
the value of the response, P, did not vary greatly across the breadth of the lake.
It is also interesting to note that when a # 0, the value of the gain obtained for
the V component of depth integrated velocity was insignificant when compared
with U. The gain of V was always at least two orders of magnitude smaller then
that of U for a # 0. However, in the frictionless case, V attained values of the
same order as U. Some results are presented in Table 2.2. For the special case
of f # 0, the gain of both U and V for two different values of the dimensionless
friction parameter, a, is presented graphically in Figure 2.4. From both the Table
and the Figure it is clear that for a # 0, the gain of V' is negligible when compared
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FIGURE 2.3(a): The gain (m) of velocity, U, for the two cases f # 0 and f =0
for a rectangular basin of length 24 km., breadth 8 km. and depth 3 m.
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V for the case f # O for a rectangular basin of length 24 km., breadth 8 km. and
depth 8 m.




with the gain of U. From the solution for @ (Equation (2.2.6(b)) it is clear that
when f = 0 and the wind stress is given by Equation (2.2.9) then the gain of V
will always be zero for all values of «. However, when f # 0 the value of @ is
non-zero and for the special case & = 0, @ attains values comparable to P. Hence,

from this point of view, if « is chosen to be zero, then certainly the Coriolis force

cannot be neglected.

f=0 | f#0 | f=0 | f#0
a=20 0.0047 0.0113 0.0000 0.0199
o =103 0.0045 0.0045 0.0000 0.0000

a=10"* 0.0047 0.0049 0.0000 0.0000

TABLE 2.2: Comparison of the gains of P and Q obtained at z = 3L/4 and for
o=1 c.p.d. for various values of @ and f.

For the small, shallow rectangular lake described above, the only significant
differences between results obtained with f = 0 and f # 0 occurred when a was
set to zero. This is never the case in a real lake and so it was concluded that for
such lakes the Coriolis force may be neglected. Before ending this section it is of
interest to investigate the responses of the above rectangular lake as some of the
parameters are changed. For example, the physical dimensions of the basin will
be altered and the resultant responses will be presented. In the following work,
the effect of various values of the friction parameter, r, will be considered with
respect to basins of various dimensions.

29



Figures 2.5(a) and (b) display the results for the phase lag and the gain of
¢ obtained for a basin of the same horizontal dimensions as previously discussed
(that is, 24 km. x 8 km.) but with a much greater depth (20 m. instead of 3 m.).
Clearly, for a basin of this nature the results obtained are very insensitive to the
value of the friction parameter. Virtually identical results are obtained in both
figures with only a slight difference occurring for large values of the frequency.
The results for the gain and phase lag of U, presented in Figure 2.6(a) and (b),
also show that for r # 0, the results are insensitive to the value of r. However,
when r = 0O, there is considerable difference between the solutions obtained for
f =0 and f # 0. This is due to the presence of a resonance peak at about 12.5
c.p.d. which occurs in the solutions for f # 0. In fact, for all of the basins which
were considered, major differences in the phase lag and gain of both ¢ and U were
obtained in the solutions using f = 0 and f # 0 with r = 0 in both cases. For
this reason only results obtained with r = 1073 msec™! are presented in the next
four figures. As long as r # 0, similar results to those shown in the next figures

are obtained since, for the depths considered, the results are insensitive to r.

In Figures 2.7 and 2.8 results for the gain and phase lag of ¢ and U are
presented for a basin of much larger horizontal dimensions then were previously
considered. The depth was kept constant at 20 m. but the horizontal dimensions
were increased to 240 km. x 240 km. It is immediately clear that for a larger
basin such as the one described the results obtained using f = O are sometimes
considerably different than those obtained using f # 0. From Figure 2.7(a) and
(b), it is seen that for larger values of frequency the two solutions are virtually
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FIGURE 2.5(a): The gain (m) of the displacement, ¢ for the two cases f # 0 and
f =0 for a rectangular basin of length 24 km., breadth 8 km. and depth 20 m.
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FIGURE 2.6(a): The gain (m) of the velocity, U, for the two cases f #0 and f =0
for a rectangular basin of length 24 km., breadth 8 km. and depth 20 m.
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FIGURE 2.7(a): The gain (m) of the displacement, ¢, for the two cases f # 0 and
f = 0 for a rectangular basin of length 240 km., breadth 240 km. and depth 20 m.
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FIGURE 2.8(a): The gain (m) of the velocity,U, for the two cases f # 0 and f =0
for a rectangular basin of length 240 km., breadth 240 km. and depth 20 m.
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identical. However, at the lower end of the frequency spectrum, the results some-
times vary quite considerably. For example, when the frequency is 3 c.p.d. the
gain of ¢ obtained when f = O differs by about 2.0 m from that obtained with
f # 0. There is a difference of about 30° on the phase lag at the same frequency.
Similar results are displayed in Figure 2.9 which was obtained for a basin of iden-
tical horizontal dimensions but with a depth of 50m. Figures 2.8 and 2.10 display
the gain and phase lags for U for the two basins. Once again, at the upper end
of the frequency spectrum, the two solutions for the gain of U are similar. Large
differences occur in the gain at the lower end with the differences being greater
for the deeper basin. At the lower of the frequency spectrum, the phase lag of U
obtained for the two cases of f can differ quite markedly. From Figure 2.10(b) it
is clear that for the deeper basin this difference can be as high as about 45°. In
most other points on the frequency spectrum, the solutions agree quite well except
near resonance points. The resonance splitting mentioned earlier which occurs at

these points results in large differences occurring in the solutions for the phase lag

of U.

Results for a basin of similar horizontal dimensions but with a depth of 3 m
were also examined. For both ¢ and U, the phase lag and gain obtained for f =0

and f # O were identical.

The above discussion illustrates the behaviour of the gain and phase lag of
both ¢ and U. Clearly for shallow basins of any horizontal dimensions, solutions
obtained for ¢ and U do not significantly depend on f when the friction parameter
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is non-zero. The solutions are, however, very dependent on the value of the friction
parameter. For deeper basins, however, the results are not as dependent on the
friction parameter but different results are obtained depending on whether f =0
or f # 0. This dependence on depth is expected, since for shallow basins the
parameter o = r/2H will be larger than f and so friction effects dominate the
flow. However, for deeper water, the parameter a will become comparable to or
even less than the magnitude of f and so the flow is affected by both the friction
and Coriolis forces, or, if f is larger in magnitude, then the flow is dominated by
the Coriolis force. Presented above are situations in which f can and cannot be
ignored. Also, figures are displayed which show the way in which the Coriolis force

affects the gain and phase lag as the basin gets deeper.

§2.3 THE CONNECTED LAKE PROBLEM

Consider two rectangular lakes connected by a channel as shown in Figure
2.11. Each of the separate lakes is of constant depth. A solution is sought to
the amplitude, ¢, of the oscillating set-up caused when a wind stress described by
Equations (2.2.1) and (2.2.9) blows over the surface of the system. Solutions to

the transport components are then obtained using Equation (2.2.6).

The basins are labelled 1, 2 or 3 as indicated in Figure 2.11. A similar notation
to that used in the previous section is used except that subscripts 1, 2 or 3 indicate
to which region a particular variable pertains. For example Z; will describe the
elevation response function in Region 1, H; will be the depth of Region 2 and ks
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will be the variable described by Equation (2.2.4(b)) using values of the depth and

friction appropriate for Region 3.

The method determines expressions for Z; for i=1,2,3 for each region sepa-

rately. The solution for each region is obtained relative to separate coordinate

systems as shown in Figure 2.11. Once these solutions have been obtained the

various expressions are transformed so that they are all in terms of the same

coordinate system, namely the z — y system shown in Figure 2.11.

The system of equations which must be solved in order to obtain the amplitude

of the surface response of the system is:
(V2+Kk$HZ; =0 i=1,2,3
subject to the conditions

P1 =0 $=—L3/2—'L1; yG[—d,Bl—d],
0 ye[—dio]
Py =<{ P3 ye€|0,Bs); z=-—L3/2
0 ye€|[Bs, B —d]
Q1=0 ‘y:-Bl—d, $€[—L3/2—L1,'—L3/2],
Ql =0 y:—d; :ce[—L3/2—L1,—L3/2],
Q3—_-O y=B3; zE[—L3/2,L3/2],
Q3=0 y=0; z€[-Ls/2,L3/2],
Q=0 y= B2 —s; z€[L3/2,L3/2 + Ly,
Q2:0 Yy=-—s, ZG[L3/2,L3/2+L2],
0 ye[—s,O]
P2= P3 ye[O,B;;]; $=L3/2
0 yE[Ba,Bg—S]
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(2.3.1(a))

(2.3.1(b))
(2.3.1(c))
(2.3.1(d))

(2.3.1(e))

(2.3.1(f))

(2.3.1(g))

(2.3.1(h))

(2.3.1(3))

(2.3.1(5))



P2 =0 $:L3/2+L2; yEI—S,Bg -—S], (231(k))
Zl = Z3 zr = —L3/2; Yy c [0, B3] (231(’))

and

Zg = Z3 = L3/2; yE [0, B3] (231("’1))

The conditions above state that the normal component of the depth integrated
velocity is zero at any closed boundary and at the open boundaries connecting

two regions at £ = —L3/2 and L3 /2 there is continuity of volume flux and surface

amplitude.

Considering the results in the previous section, solutions which ignore the
effect of the Coriolis term will be obtained. In the following section the Collocation
and Galerkin techniques will be used to provide such solutions whilst in the next

chapter it will be shown how to use an integral equation approach to obtain a

solution.

§2.4 THE COLLOCATION AND GALERKIN TECHNIQUES.

Firstly a solution to the response function, Z; which occurs in Region 1 will

be obtained. The function Z; must satisfy
(V2+k3HZ, =0 (2.4.1)
where k; is obtained from Equation (2.2.4(b)) which, with f = 0 yields

k3 = (0% — 2aj10)/c3  j=1,2,3 (2.4.2)
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where c? = gh; and a; denotes the friction parameter appropriate for Region j.
Equation (2.4.1) will be solved subject to the conditions (2.3.1(b), (d) and (e))
which, in terms of the X, Y coordinate system shown in Figure 2.11, and with the

aid of Equation (2.2.6) may be written as

621 _ KTO s

X = X=0YclB] (2.4.3(a))
07,

W =0 Y=0,B;; Xe€ [O, L1] (243(b))

The system of Equations (2.4.1) and (2.4.3) may be solved by first simplifying

using the expression

KTQ sin[kl(X = Ll /2)]

Zy,=17§ 4.4
: ¥ c?ky coslky Ly /2] (2.4.4)
Substituting (2.4.4) into Equations (2.4.1) and (2.4.3) yields
(V2+ k22 =0 (2.4.5(a))
such that
oz} ey
Y 0 X=0;Y¢€[0,B] (2.4.5(b))
and
‘?,j} =0 Y =0B; Xeo,Li (2.4.5(c))

The general solution to Equation (2.4.5(a)) is obtained using separation of vari-
ables. The values of three of the four arbitrary constants resulting from this
method may be found using the boundary conditions (2.4.5(b) and (c)). In this

manner the following solution to Z; is obtained:

Krosinlk (X — L1/2)] &
= D, cos n nt ), 2.
Z, &k, coski D1 /2] + ; cosh(71p X) cos(81,Y) (2.4.6)
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where, for n =0,1,2,...

Mn = \/03, — K2, : (2.4.7(a))

Bin = — (2.4.7(8))

and D, is an arbitrary constant.

By symmetry, the solution for the elevation in Region 2 with respect fo the

X, Y coordinate system is

— Ko sinlka(X — Ly /2)] 00 i )
ne Cn cosh(yan X) cos(f2nY ), 2.4.8
2 c2kg coslke L2 /2] + n2=:0 cosh(vy2n X) cos(f2,Y) ( )

where, for n =0, 1,2,...

Yon = \/ 83, — k3, (2.4.9(a))

O2n = B, (2.4.9(b))

and Cy, is an arbitrary constant. This solution satisfies the conditions given by

Equations (2.3.1(h),(i) and (k)).

The solution for the elevation in Region 3 is

7 = KT() sin[ka(X' = Laf?)]
T Cg k3 COS[k;; L3/2]
oo (2.4.10)
+ Y (An cosh(v3n X") + Bp sinh(y3n X")) cos(63nY")

n=0

in which A, and B, are constant coefficients and, for n =0,1,2,.. .,

Yan = \/ 03, — k3, (2.4.11(a))

and
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nw

bon = .- (2.4.11())

This solution was obtained using separation of variables and satisfies boundary

conditions (2.3.1(f) and (g)).

Using the coordinate transformations

X=z+L; +L3/2, (2.4.12(a))
Y =y+d, (2.4.12(b))
X =1L3/2+ Ly — =, (2.4.12(c))
Y =y+s, (2.4.12(d))
X'=z+ L3/2 (2.4.12(e))
and
Y'=y, (2.4.12(f))

Equations (2.4.6, 2.4.8 and 2.4.10) may be written in terms of the £ — y coordinate

system as follows:

7. — K1y sin[kl(x + L1/2 + La/?)]
' C?:kl COSUC]_ L]_ /2]

+ f: D, cosh[yin(z + Ly + L3/2)] cos|fin(y + d)], (2.4.13(a))

n=0

_KTO sin[kg(L3/2 + L2/2 - :z:)]

Zs =
2 c2ko coslka Lo /2]

+ Y Cncosh[yan(Ls/2 + Ly — z)] cos[lan(y + )] (2.4.13(b))

n=0

and
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K1y sin[kaz]
c2ks coslks L3 /2]

+ E( n cosh[’13n z+ L3/2)]

Za"—'

+ By, sinh[ysn(z + L3/2)]) cos{fany). (2.4.13(c))

Using Equation (2.2.6) with f = O enables expressions for the depth integrated

velocity components in each region to be obtained. The following equations result:

_ Ko [ coslki(z + L1 /2 + Ls/2)]
Pi=" {1 cos[ky Ly /2] }

B ﬂ_ S Duyinsinh[yin(z + Ly + La/2)] cosloua(y + d)],  (2.4.14(a))
n=0

Q, = , Z Dp8yp cosh[yin(z + Ly + L3/2)] sin[f1n(y + d)],  (2.4.14(b))

A1
_ ﬂ _ coslka(La/2 + L2/2 — z)]
P2 - ﬂg {1 COS[k2L2/2] }

+ —% Z Cunen sinh{yen (L3/2 + Lz — z)] cos[bz2n(y + s)],  (2.4.15(a))

Q. = r 2 E Cp02n cosh[yan (L3 /2 + Ly — z)] sin[fzn(y + )],  (2.4.15(b))
Ky cos(k3 z] 2 — .
P {1 R}~y gl a2
+ By Yan cosh[vyan{z + L3/2)]) cos(fany) (2.4.16(a))
and
Qs = ﬁ—z n=O(A,, cosh|yan(z + L3/2)]
+ By, sinh[yan(z + La /z)]) B2 Sin(B3nY)- (2.4.16(b))

Not all of the conditions listed in Equation (2.3.1) are satisfied by the above
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expressions for the elevation and transport, which still involve as yet unknown

complex coefficients. The conditions which remain to be satisfied are:

(1)

continuity of elevation at £ = —L3/2; y € [0, B3], that is,

2y =23 at z = —L3/2; ye [0) B3]1

continuity of elevation at z = L3/2; y € [0, Bs], that is,

ZQ=Z3 atx——-L3/2; yE[O,B3],

continuity of transport at z = —L3/2; y € [0, B3}, that is,

0 ye[—d,O]
P1= P3 yE[O,Bs], z:—L3/2
0 yG[Ba,Bl—d]

continuity of transport at z = L3/2; y € [0, Bs], that is,
0 yel-s,0]

P2= P3 yG[O,Ba], $=L3/2
0 ye[B3,Bl—S]

(2.4.17(a))

(2.4.17(b))

(2.4.17(c))

(2.4.17(d))

An approximation technique must be used to enable the above conditions to

be satisfied and the unknown coefficients which appear in Equation (2.4.13) to be

determined. The Collocation and Galerkin methods will be used here. Each of

the series expressions for the elevations or velocties is truncated after N terms.

Applying the four conditions above yields a system 4N simultaneous linear equa-

tions in the 4N unknown coefficients A,,, B,, Cp, and D,,, forn=0,...,N — 1.

The four conditions are now treated in turn.
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(1) The condition Z; = Z;  at z = —L3/2; y € [0, Ba).

Using Equations (2.4.13(a) and (c)) with the series terms truncated as mentioned

above and substituting the value of z = —L3/2 for z yields

K N—1
]:0 tan(ky Ly /2) + Do cosh(m0L;) + Z D,, cosh(y1nL1) cos|f1n(y + d)]
1

n=1

N-—-1
KTO

= 2k3 tan(ks L3 /2) + Ao + Z A, cos(83ny)

n=1

(2.4.18)

for y € [0, Bs].

The Collocation technique consists of substituting suitable values for y into
Equation (2.4.17) thus giving an equation in the unknowns A, and D, for n =
0,...,N —1. A total of N values of y would be used to ensure that the correct

number of equations needed to obtain a solution for the unknowns is obtained.

The Galerkin technique operates further on Equation (2.4.18). The above
equation is multiplied by the weighting functions w,,(y) = cos(fa;,y) for m =
0,...,N — 1 and then integrated with respect to y from y = 0 to B;. This

procedure yields the equations

BsA,, N2 9
= 2 Dngg—"5—cosh(mnLy) {(=1)™ sin[f1n(Bs + d)] — sin(61nd)}
::} In 3m
cosh L .
-+ DJ—2(;:;—1) {91133 COS(01_]d) + COS[01_;(B3 -+ d)] sm(201_;B3)}

(2.4.19(a))

where

and J is such that
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J m

B, B;
The condition described above involving J is required in case 8y, = #3,, in which
case the summation term above becomes undefined. A similar equation to Equa-

tion (2.4.19(a)) is obtained for m = 0 and is

{ KZO tan(ky Ly /2) + Do cos(k, Ll)} B,

+ Z D,,-Coihgi—"Lﬁ {sin[0y (Bs + d)] — sin(6;,d)} (2.4.19(b))

n=1

] { KTO tan(k3L3/2) + Ao} Ba.
c2ks

(2) The condition Z; = Z; at z = L3/2; y € [0, Bs).

In a similar manner to the process used above, Equations (2.4.13(b) and (c)) are

used to give

N-1 :

K

;0 tan(kq Lo /2) + Cq cosh(y20 L2) + Z C,, cosh(vzn L) cos|fz(y + s)]

n=1

KTO

: k tan(k3L3/2) + Ao COSh('130 L3) + Bo smh('730 L3)

3/v3
N-1
+ E {An cosh(yanLs) + By sinh(7sn L3)} cos(f3, ),
n=1

(2.4.20)
which holds for all y € [0, B3]. As before, the above equation is the one used
in conjunction with N y points in the Collocation method. Application of the

weighting functions cos(fzpm,y) for m =0,..., N — 1 yields
B .
73 {Ap cosh(YamL3) + B sinh(ysm L3)}

N-1
b2n : :
= E Cn ﬁ cosh(7yenL2) {(—1)™ sin[f2, (B3 + s)] — sin(f2, )}
n=1 2n 3m
n#J

cosh(vy2 L2)

+C; TP

{027 B3 cos(f275s) + cos[fa5 (B3 + s)]sin(2627 Bs)}
(2.4.21(a))
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where

.—n

JN—]‘)

H

m =
iﬂ.
B, B,

and also

K
{— cgk(; tan(k2L2/2) + Co COS(kZLz)} B3

+ 2_: c,.-cfﬂg;’?—h) {sin[02n(B; + )] — sin(fzn3)} (2.4.21(b))

Kf
= { cgko tan(kz L3 /2) + Ag cos{kzL3) + ¢ By sm(k3L3)} B;.

0 ye-4,0]
(8) The condition P, = ¢ P y€ [0, Bs]; z=—L3/2.
0 y€|[Bs, B —d

Utilising Equations (2.4.14(a)) and (2.4.16(a)) yields

N-—-1
;1 { Dokl sm(k1L1 + Z Dn'71n 51nh('11nL1)cos[01n(y+ d)]}
1

n=1
0 y €[-d,0] (2.4.22)
2 N-1
= %: {Bokal. + Y Buvan cos(Gany)} y € [0, Bs]
n=1
0 y € [Bs, B, — d]

Multiplying the above equation by the weighting functions cos{[f;,,(y + d)] and
then integrating with respect to y from y = —d to y = By — d gives the two
equations used in the Galerkin technique, namely,

2B
c1

28, '71,,, sinh (%1, L1 ) Dyp

N-—-1

ﬂz {ZB 6;’3'{‘0’% [(=1)™ sin[f1m(Bs + d)] - sin(61md)] (2.4.23(a))
ngy "

’731

+ BJ [01_133 cos(fysd) + cos|[fy s (B3 + d)] sm(201JB3)]}
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in which

and J such that

-
B, By’
and also the equation
2k
_akBy G kL) D = “353"3 Bo. (2.4.23(b))
3

P
0 yel-s,0
(4) The condition P, = { P; y € [0,Bs]; z=Lj3/2.
0 Yy [B3, Bl . S]

Combining this condition with Equations (2.4.15(a)) and (2.4.16(a)) yields

N-1
c2 ) .
ﬂ_2 {—Cokz sin(kz Lg) + Z CrY2n sinh(van L2) cos[fan(y + s)]}
e n=1
ye [—8,0]
_Tl{ A0k3 sin k3L3) + Bok3b COS(k3L3)
= { _
+ Z Yan [An sinh(7an L) + By cosh(vap La)] cos(03ny) ¢ y € [0, Ba]
0 y € [B31 BQ - 8]
(2.4.24)

Using the weighting functions cos[f2m(y + s)] and integrating with respect to y

from y = —s to y = By — 38 yields

2
c3 B2

28, T2m Slnh("hm Lz)C

{ Z Y3n [An sinh(vsn L3) + By cosh(qan L3)] -

ﬂ3 n=1
ngJ
(2.4.25(a))

02m m - .
2 — g2 [(—=1)™ sin[f3m (B3 + 8)] — sin(f2rm s)]

(737 La) + By cosh(vss L3)] .

3
20,
[02133 COS(GQ]S) + COS[HgJ(B;; + s)]] sin(202_,B3)}
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for

m=1,...,N-1,
LI
By B;
and also
2 2
62?&! sin{kgLg)Co = 0323153 [~ Ao sin(ksL3) + ¢Bg cos(ksL3)]. (2.4.25(b))
2 3

The 4N unknowns may now be determined using either Equations (2.4.19,
2.4.21, 2.4.23 and 2.4.25) or Equations (2.4.18, 2.4.20, 2.4.22, and 2.4.24) together
with a complex matrix inversion routine. Results are presented in Chapter 4 where

comparisons are made with the boundary integral equation method which will be

described in the next chapter.
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CHAPTER 3

BOUNDARY INTEGRAL SOLUTION

§3.1 DERIVATION OF THE SOLUTION

A generalized theory for determining the time varying wind effects on a lake of
arbitrary contour, dI', and constant depth, H, will now be developed. The effect
of the earth’s rotation will be neglected. The following results are a considerable
improvement on solutions used before (for example, see Walsh (1974)) in which

basins were approximated by rectangles or circles.

As has been shown in the previous chapter, when a wind stress defined by

Toa = o€, (3.1.1(a))

Toy =0 (3.1.1(b))

acts over the surface of a non-rotating constant depth basin, then the amplitude,

Z, of the surface displacement satisfies the Helmholtz equation given by

(V2+k%)Z =0 (3.1.2)

where k2 is given by Equation (2.2.4(b)) with f = 0. For an arbitrary shaped basin,

the boundary condition for the above equation is given as (see Walsh (1974))

oz
an

— Kon (3.1.3)

2
ar ¢ lar
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where n denotes the outward normal direction and 7y, signifies the amplitude of

wind stress in that direction.

The use of integral equations to solve systems of equations like Equation
(3.1.2) and (3.1.3) has been largely ignored by workers in fields examining wind
forced or tidal flows. However, because of the linearity of Equation (3.1.2), the

above problem can be readily reduced to a boundary integral equation.

Helmholtz’s Equation frequently occurs in the fields of electromagnetism and
acoustics. Some of the first workers to publish results pertaining to this equation
were Banaugh and Goldsmith (1963) who looked at the diffraction of acoustic
waves caused by surfaces of arbitary shape. Hwang and Tuck (1970) and Lee
(1971) have also investigated the oscillations of harbours of constant depth and

arbitrary shape by studying this equation.

The development of the solution to Equation (3.1.2) subject to Equation
(3.1.3) is now briefly described. Detailed descriptions of the method of solution

can be found in Banaugh and Goldsmith (1963) and Lee (1969 and 1971).

Using Green’s Theorem, a solution to Equation (3.1.2), known as Weber’s

solution, is (see Banaugh and Goldsmith (1963))

Z(x;) = —:‘1-/ (Zg—nﬂé"(kr) - Hél)(kr)%%) ds (3.1.4)
ar

where x; = (z,y) defines some point inside the domain bounded by 8T, r is the
distance between this interior point and any point on the boundary, dS is a small
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incremental distance along the boundary and H((,l)(kr) is the Hankel function of
the first kind and zero order. Equation (3.1.4) thus represents an expression for
the amplitude, Z, at any point inside the region of interest in terms of an integral
around the boundary. In fact, the term on the right hand side of Equation (3.1.4)

represents a distribution of sources and sinks and doublets around the boundary.

All of the terms contained in the integrand in Equation (3.1.4) are known
except for the value of Z along the boundary, dT'. An expression for Z along the
boundary is obtained also using Equation (3.1.4). An interior point, x;, is allowed
to approach the boundary at a point, xg. The path of integration along dTI' is
then deformed around x¢ using a small circle of radius € and centre xo. For such
a contour, Equation (3.1.4) may now be used by letting ¢ — 0 in conjunction
with integration in the Cauchy sense to provide an expression for Z(xq). Such a

procedure is described in Lee (1969) and results in the following expression

2 on
ar

L 0 0
Z(x0) = — / (Z(x;,)—Hg"(kr) - Hél)(kr)é:Z(x:,)> dS(xp)  (3.1.5)
where xo and xj are points on dI' and r is the distance between the particular
point x¢ on the boundary and all points x§, which also lie on the boundary. The

above formula holds if the boundary is sectionally smooth. If the point xp is a

corner point then a slightly modified formula is used (see, for example, Lee {1969)).

Equation (3.1.5) represents an integral equation which, in general, must be
solved numerically. The boundary, dT, is divided into N segments of length (AS);
for y = 1,..., N. These segments need not be of uniform length. If the midpoint
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of (AS); is x5 = (z;,y;) then Equation (3.1.5) may be approximated by

N
Zxo) = =53 {Z(xj)g—nH((,l)(kro,-) - Hgl)(kro,-)g—nZ(xj)} (AS);  (3.1.6)

j=1

N e~

where

roj = [Xo — xj| = rjo.

The above equation is more conveniently written in the matrix form
t L
(~5Ha - )%y = -1Hz, (3.1.7)
2 2
where

(Zv); =2(x) j=1,...,N
is a vector of the unknown values of Z at the point x; on the boundary,

0 ..
(Ha)is = 5-H3 (krij)(AS);  ij=1,...,N

is an N x N matrix containing the normal derivatives of the Hankel function
and rij = |[x; — x| where x; and X; are both points on the boundary,
a

(Zn); = az(X.i) i=1,...,N

is a vector containing the normal derivative of Z at points along the
boundary (this information is available from Equation (3.1.3)),
(H)ej = H (krij)(AS);  §,j=1,....N
is an N x N matrix similar to H, and
(Dij = &5 ,7=1...,N
is the N x N identity matrix where bi7 is 1 if = 7 but is zero otherwise.
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By using a matrix inversion routine, Equation (3.1.7) may be used to solve
for Z along the boundary. A similar approximation to that shown in Equation
(3.1.6) is used for Equation (3.1.4) and in this manner a complete solution for Z
is obtained at any point inside the arbitrary contour 8T'. The solution for Z at an
interior point, x; = (z, y), is, therefore,

Z(x;) = ———f:{Z(x )2 D (kri) — BN (ki) 2 2(x )}(AS(x )i (3.1.8)

i 4]_=1 %7 an "0 B B REF T .

where

r"j= x—'xo .

The elements which appear in the matrices defined above are all easily cal-
culated except for those expressions involving Hankel functions. Difficulties with
using these functions have been overcome, however, by workers such as Banaugh
and Goldsmith(1963) and Lee(1979) and their formulations will be used in this

work.

Similar expressions to Equation(3.1.4) are available for the depth integrated
velocity components, P and Q. Substituting Equation (3.1.4) into Equation

(2.2.6(a) and (b)) with f =0 yields

Plx;) = K00 4 1 {Z(xo)g—; [—kﬂ“’(kr-,-)(z - zo)]

B 44 Tij
ar
W) (kre;)(z — zo
L, KDk rJ_,)( )%Z(xo)}dS(xo) (3.1.9(a))

and
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Qlx) = % {Z(Xo)g—n [_kH(l)(k"if')(y - !Io)]
ar

N kH (kri;)(y — yo) a—Z(xo)}dS(xo)- (3.1.9(b))

1‘,'_.,' dn

r.-_.,

Each of the above formulae may be discretised in a manner similar to that used

to form Equation (3.1.8).
§3.2 COMPARISON WITH ANALYTIC SOLUTIONS

The performance of the model described in the previous section will be exam-
ined by compar_ing the results produced by Equation (3.1.8) with those produced
from analytic solutions for special shapes such as rectangles and circles. As men-
tioned in Chapter 2, the response function, Z, of the surface oscillation which
occurs in a rectangular lake when a wind stress described by Equation (3.1.1)

blows over its surface, is

_ Krysinlk(z — L/2)]
7= kc? cos[kL/2]

(3.2.1)

where L is the length of the basin in the z direction. For similar conditions, the

displacement which occurs in a circular basin of radius a at the location r, 8 is

(from Walsh (1974))

KryJ, (kr)cost

2 = %o (ka) — J1 (ka) ka]

(3.2.2)
where Jy and J; denote the Bessel fuctions of zero and first order respectively.
The results obtained from Equation (3.2.1) and (3.2.2) will be compared with

those obtained using Equation (3.1.8). A rectangular basin of dimensions L = 24
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km, B = 8 km and depth H = 3 m and a circular basin of radius 7.5 km and
depth 2.0 m are modelled. These two basins may be used as a crude approximation
to Lakes Alexandrina and Albert at the Murray Mouth respectively (see Walsh
(1974)). In both cases, various values of the circular frequency, o, and the friction

parameter, a, were used.

Firstly, the convergence of the approximation given by Equation (3.1.8) was
examined. Values of @ = 10"*sec™! and o = 21/ (24x3600)sec—* were used. This
value of o corresponds to a freqency of one cycle per day (c.p.d.). A comparison
of the gain and phase lag of the surface displacement, ¢, for a rectangular lake
obtained using Equations (3.2.1) and (3.1.8) with different values of N is displayed
in Table 3.1. A similar analysis was carried out for the circular lake and the
results obtained are shown in Table 3.2. For the rectangular lake, the results
obtained using Equation (3.1.8) are in close agreement with the analytic results.
The integral equation method gives answers for both the gain and phase lag which
become closer to the analytic solution as N increases. For the circular lake, the
results obtained for the gain and phase lag using Equations (3.1.8) and (3.2.2) agree
equally as well as for the rectangular lake. The errors in the answers obtained using
the integral equation method applied to both the circular and rectangular lakes

are considered to be well within acceptable bounds.

Further comparisons between Equation (3.1.8) and the analytic solutions
(3.2.1) and (3.2.2) were carried out. The differences between the solutions for
the gain and phase lag of the displacement obtained for various ¢ values (o=1,
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GAIN

N= 36 48 72 144
Location v % \Y % \% % Vv %

L/4 0.0007 | 3.02 | 0.0005 | 2.36 | 0.0004 | 1.80 | 0.0002 | 1.15
L/2 0.0000 0.0000 0.0000 0.0000

3L/4 0.0007 | 3.02 | 0.0005 | 2.36 | 0.0004 | 1.80 | 0.0002 1.15

PHASE LAG
N = 36 48 72 144
Location v % v % \% % v %

L/4 0.0003 | 0.01 | 0.0003 | 0.00 | 0.0002 | 0.00 | 0.0001 | 0.00

L/2 0.0687 | 4.13 | 0.0888 | 5.34 | 0.0549

3.30 | 0.0002 | 0.01
3L/4 0.0003 | 0.88 | 0.0002 | 0.65 | 0.0001

0.42 | 0.0001 | 0.20

TABLE 3.1: A comparison of the values for the gain and phase lag obtained us-
ing Equation (8.1.8) for various values of N and the analytic solution, Equation
(8.2.1) at various locations in the rectangular lake (all positions taken aty = B/2).
The parameter V s defined as the absolute difference between the analytic and in-
tegral approximation and the other column contains the relative percentage errors.
When the analytic solution is zero, no relative error is calculated.
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GAIN
N = 36 48 72 144
Location \% % \Y % v % v %
a/4, 6 =0 0.0000 | 0.00 | 0.0000 | 0.00 | 0.0000 | 0.00 | 0.0000 | 0.00
a/2, 6 =0 0.0001 | 0.29 | 0.0001 | 0.28 | 0.0001 | 0.23 | 0.0000 | 0.13
a/4, §=m/2 | 0.0000 0.0000 0.0000 0.0000
a/4, §=m/2 | 0.0000 0.0000 0.0000 0.0000
PHASE LAG
N= 36 48 72 144
Location \Y% % \% % \% % \Y %
af4, § =0 0.0001 | 0.50 | 0.0001 | 0.54 | 0.0001 | 0.47 | 0.0001 | 0.29
af2, §=0 0.0001 | 0.52 | 0.0001 | 0.57 | 0.0001 | 0.51 | 0.0001 | 0.31
af4, § =x/2 | 0.0397 | 1.26 | 0.0363 | 1.15 | 0.0294 | 0.93 | 0.0180 | 0.57
af4, 8 =m/2 | 0.0217 | 0.69 | 0.0217 | 0.68 | 0.0156 | 0.49 | 0.0093 | 0.29

TABLE 3.2: As in Table 8.1 except for the circular lake which has the analytic
solution described by Equation (3.2.2).
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2, 4, or 16 c.p.d.) and for various friction values (@ = 0,1073 or 10~* sec™!) for
both basins are presented in Tables 3.3 and 3.4. In all cases the value of the sum-
mation variable used in the integral approximation was kept constant at N = 72.
The results used for comparison were obtained at £ = 3L/4 and y = B/2 in the
rectangular basin and at r = a/2 and 6 = O in the circular basin. Once again,
the analysis shows that Equation (3.1.8) has performed satisfactorily. In general,
the larger errors occur in calculating the phase lag although in all instances the

absolute error, V, is still small.
§3.3 CONNECTED LAKES

In this section, the theory developed earlier in this chapter is used to model
the connected lake problem presented in Section 3 of Chapter 2. A method similar
to that described in Section 2.4 is used. Equation (3.1.4) is applied to each region.
This does not present any problems except at the interface between two regions

since along these interfaces the value of the normal derivative of Z is not known.

Because integral equations have been used, the general connected lake problem
presented in Figure 3.1 can be solved. Notation similar to that used in Chapter 2
where a subscripted variable denoted the value of that variable in the appropriate

region will again be employed here.

As before, the value that Z takes along the boundary of each region must be
determined first. From Equation (3.1.7) we have

Zyni = M;Zy;, 1=1,2,3 (3.3.1)
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GAIN
a= 0 10—3 10—
o(c.p.d.) v % v % \4 %
1 0.0002 0.92 0.0000 0.00 0.0005 2.30
2 0.0004 1.77 0.0001 0.52 0.0004 1.78
4 0.0005 1.90 0.0002 1.31 0.0004 1.53
16 0.0000 0.00 0.0000 0.00 0.0001 0.95
PHASE LAG
a= 0 10~3 10—
o(c.p.d.) \% % \% % \% %
1 0.0006 0.0047 1.46 0.0000 0.00
2 0.0027 0.0096 1.55 0.0023 3.39
4 0.0043 0.0121 1.10 0.0102 6.66
16 0.0026 0.0231 0.88 0.0001 0.00

TABLE 3.3: Analysis of the rectangular lake for various o and o values caried out
at =3L/4 and y = B/2. A value of N =72 i3 used in Equation (3.1.8). When
the analytic result is zero, no analysis of the percentage error ts carried out.
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GAIN
o= 0 103 10~4
o(c.p.d.) \% % \% % \ %
1 0.0000 0.00 0.0000 0.00 0.0001 0.50
2 0.0000 0.00 0.0000 0.00 0.0000 0.00
4 0.0000 0.00 0.0000 0.00 0.0001 0.46
16 0.0020 1.19 0.0000 0.00 0.0004 0.37
PHASE LAG
a= 0 1073 10~4
o(c.p.d.) v % v % v %
1 0.0000 0.0003 2.09 0.0000 0.00
2 0.0002 0.0014 0.49 0.0001 0.34
4 0.0008 0.0034 0.60 0.0009 1.47.
16 0.0097 0.31 0.0103 0.51 0.0136 0.61

TABLE 3.4: As in Table 3.3 except for the circular basin with results calculated at
r=a/2 and 6 =0.
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where M; is known and is given by

M; = —% (-—%Hm- - I.-)—l H i=1,2,3

The above equation yields the values of Z along the boundary. However, it assumes
knowledge of the normal derivative of Z along all the boundary. Along the closed
boundaries, represented by Ty, ¢+ = 1,2,3 in Figure 3.1, the components of Zgy;
are given simply by the boundary condition (3.1.3). The normal derivative of Z
at the open boundaries is obtained by matching the wave heights and the stream

values at each interface. That is, the following conditions are enforced:

Z,=12;
}along [ey (3.3.2(a))
P1 - P3
and
Zy =123
}along | P (3.3.2(b))
Pg - P3

The boundary defining Region 1 is assumed to be discretised into N; segments.
Of these, p are assumed to be located along the boundary between Regions 1 and
3 represented by the curve I';;. Similarly, there are g segments across the interface
between Regions 2 and 3 and N3 — g points along the remainder of the boundary
of Region 2. Region 3 is divided up into N3 segments as shown in Figure 3.2.
The midpoints of each segment at which actual values of Z, H, 0H/dn, etc. are

calculated are labelled counter-clockwise as shown in Figure 3.2.

With the notation used in Figure 3.2, the condition of continuity of surface

elevation may be written

(sz)j = (zb3)q+n+p+1—:i forj=1,...,p (3.3.3(a))

(Zp2); = (Zva)g_jy1 forj=1,...,q. (3.3.3(b))

64



— 0Ty

Region 3

FIGURE 3.1: The connected lake system to be solved by the sntegration method.
Note the boundary of Region 1 consists of curves 8Ty + 8Ty, Region 2 conststs of
o, + 8T, whilst Region 8 is bounded by —8T;; — 0Ty + OT'3.
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FIGURE 3.2: Labelling of the integration points along the connecting channel.



Using Equations (2.2.6) with f = 0 and remembering that the direction n is always
directed outwards from the boundary, then the remaining two conditions presented

in Equation (3.3.2) may be written

Kry, k2 [Kr, _

(znl)J = ?0 - é [?0 + (zn3)q+r1+p—j+l] = 1) SRRy &) (3'3'4(a))
Kry Kk:[| Ko .

(Zn2); = ——c%_o - 'é‘ [—-;go— + (zn3)q_j+1] i=1,...,9. (3.3.4(b))

With the aid of Equation (3.3.1), the two equations presented above are substituted
into the (p+q) equations given in Equation (3.3.3). Hence, the (p+q) unknown
values of the normal derivative of Zys may be obtained. Once all of the values
of Zq3 are obtained then Equation (3.3.4) is utilised to yield values of the normal
derivative of Z; at the left hand interface and also the g values of the normal

derivative of Z3 at the right hand interface.

Now that the elements of the vectors (Zy;) for i = 1,2,3 have been deter-
mined, then Equation (3.3.1) is used to provide the values of Z at the boundary
of each region. Once these values are known then the value of Z at any interior

point of any of the regions may be obtained using Equation (3.1.8).

Results from the above approach for connected lakes are presented in Chapter
4 and comparisons are made with the previously described methods of Chapter 2.
Further comparisons will be made between the boundary integral method and a

number of numerical methods in Chapter 5.
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CHAPTER 4

THE CONNECTED LAKE PROBLEM

§4.1 THE CONNECTED LAKE SYSTEM

In the preceding chapters several alternative techniques have been described
which may be used to model a system of connected lakes as shown in Figure
2.11. Such a system of lakes may be used to model the Lake Albert-Alexandrina
system which is located at the mouth of the River Murray in the south-east of
South Australia. For the purposes of this study then, the following parameters
are chosen to describe the dimensions of each lake (see Figure 2.11 for the definition
of each symbol)

Hy, =3.0m, H; =2.0m, H; = 2.5 m,
Ly =14.0 km, Ly, = 8.0 km, L; =8.0 km,
B, = 24.0 km, By =12.0 km, B; = 2.0 km,

d=17.0 km, s = 10.0 km.

In all of the following studies, a wind with an amplitude of 7 = 0.1 Nm~2 is
used. The value of the friction coefficient, r, which is used in Regions 1 and 2 is
5x10~% msec~! and from Walsh (1974) a value of r = 1073 msec™! is used in the
channel (denoted Region 3 in Figure 2.11). Walsh suggests using a much higher
value for the friction in the channel to account for the very weedy nature of this

region. A value of 0 =1 c.p.d. is used in the following work.
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§4.2 CONVERGENCE OF THE GALERKIN TECHNIQUE

Using the above parameter values, the convergence of the Galerkin method
is tested by checking that the residuals in each of the four conditions listed in

Equation (2.4.17) become smaller as the value of N is increased.

The errors in the condition Z; = Z3 at £ = —L3/2 and for 0 < y < By are
presented in Table 4.1. The parameter V in this table is defined by the absolute
difference between the gain or the phase lag of the two solutions Z; and Z3. In
relation to the gain, the percentage error is calculated according to the ratio of V
to the gain in Z; whilst for the phase lag, the ratio of V to the phase lag in Z;
is used. The cyclic nature of the phase lag is taken into account when calculating
the absolute difference used in calculating V for the tables relating to the phase

lag.

As can been seen from this table, the condition on the amplitudes at z =
—L3/2 as indicated in Equation (2.4.17(a)) is satisfied. Further, the method con-
verges rapidly. Values obtained for N = 2 and N = 4 were almost identical

although there is a slight improvement in the result for the phase lag when N = 4.

Similar tests were carried out on the last three conditions displayed in Equa-
tion (2.4.17). In all cases rapid convergence was achieved, producing results almost
identical to Table 4.1. For this reason, the results are not tabulated. The results
obtained with the Galerkin method illustrate the advantages of this method; only
small values of N need to be used to obtain very good results.
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GAIN

y \Y % \Y %
B/4 0.0002 1.14 0.0002 1.14

B/2 0.0002 1.14 0.0002 1.14
3B/4 0.0002 1.14 0.0002 1.14

PHASE LAG
N = 2 4

B/4 0.1100 1.71 0.1000 1.62
B/2 0.1100 1.71 0.1000 1.62
3B/4 0.1100 1.71 0.1000 1.62

TABLE 4.1: The error in the displacement condition Z, = Z3 at £ = —L3/2 for
0 < y < Bs using the Galerkin technique for different values of N.
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§4.3 CONVERGENCE OF THE COLLOCATION TECHNIQUE

The convergence of the Collocation technique is now assessed also by examin-
ing the residuals in each of the four conditions listed in Equation (2.4.17). In Table
4.2, the error in the condition indicated by Equation (2.4.17(a)) is examined. The
parameter V has an identical meaning as in Section 4.2 and the percentage error

is calculated using the same procedure as described previously.

Clearly, the Collocation method does not converge as quickly as the Galerkin
technique. Similar accuracy may be achieved using the Galerkin technique with
N = 2 as may be obtained with the Collocation method and N = 6. Once again,
similar tables to Table 4.2 are produced when the other matching conditions are
examined and so they are not presented here. It must be stated, however, that
although similar accuracy to that shown in Table 4.2 was achieved with the velocity
conditions given by Equations {2.4.17(c) and (d)) for N = 6, very poor answers
were obtained for smaller values of N. Indeed, for N = 3 the relative error was

often of the order of 100%.

§4.4 THE BOUNDARY INTEGRAL METHOD

The integral equation solution developed in Section 3 of Chapter 3 is applied
to the connected lake system described earlier in this Chapter. However, firstly
results obtained when all the basins are of the same depth and the friction pa-
rameters are of the same value is analysed. Values of H;= Ho= H; = 3.0 m and
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GAIN

y \% % \% %
B/4 0.0028 11.20 0.0000 0.00

B/2 0.0027 10.80 0.0000 0.00
3B/4 0.0028 11.20 0.0000 0.00

PHASE LAG
N= 3 6

B/4 0.0001 12.15 0.0000 0.92
B/2 0.0072 87.12 6.0000 0.92
3B/4 0.0001 12.15 0.0000 0.92

TABLE 4.2 The error in the displacement condition Zy = Z3 at z = —L3/2 for
0 < y < Bj using the Collocation technique for different values of N.
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r = 6x10~* msec™?! throughout are used. Such a system as this may also be solved
using the scheme developed in Section 1 of Chapter 3 (that is, Equation(3.1.8)).
The contour of integration in this case is simply the total boundary of all three
regions as shown in Figure 2.11. The results obtained from both methods are
compared and in this way a useful check on the program developed to solve the

connected system can be made.

Firstly, for the method of Section 3.3, the matching conditions on velocity
flux and displacement at the junctions between each region are examined when
the depths of each basin are assumed to be equal. The four conditions which
are described in Equation (3.3.2) are found to be obeyed exactly. In Table 4.3 the
error in the gain and the phase lag for the condition Z; = Z3 is examined. Clearly,
to the accuracy shown in the table, there is no error in modelling this condition
using the techniques outlined in Section 3.3. The remaining three conditions were

also found to be modelled exactly, producing identical results to those shown in

Table 4.3.

A comparison of results obtained using the method presented in Section 3
of Chapter 3 and Equation (3.1.8) is undertaken in Table 4.4. The difference in
results for the phase lag and gain of the displacement at various locations in the
lake system is shown in this table. The parameter, V, is simply the absolute value
of this difference whilst the relative percentage error is determined by the ratio of

V with the result produced by the boundary integral method of Section 3.3.

Overall, results obtained agree quite well. The largest difference in solutions
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GAIN PHASE LAG

y v % \% %
B/4 0.0000 0.00 0.0000 0.00
B/2 0.0000 0.00 0.0000 0.00
3B/4 0.0000 0.00 0.0000 0.00

TABLE 4.3: The error in the displacement condition Z; = Z3 at £ = —L3/2 for
0 < y < B; using the tntegral formulation of Section 3.3.

GAIN PHASE LAG

region | x (km) y (km) v % \% %
1 -11 1 0.0005 4.17 0.7578 9.47
1/3 -4 1 0.0003 6.47 0.5159 9.73
3 -1 1 0.0009 3.88 0.4307 7.92
3 1 1 0.0007 2.39 0.4152 7.15
3/2 4 1 0.0004 1.15 0.0329 0.52
2 8 1 0.0008 1.50 0.2370 3.93
2 8 -9 0.0008 1.53 0.2381 3.95

TABLE 4.4: The difference bewteen the gain and phase lag of displacement using
the method of Section 8.3 for equal depths in each region and Equation (3.1.8).
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occurs in region 1. It is unclear why this is so but certainly the absolute error is

always less than 1 mm.

Three techniques, namely the Collocation, Galerkin and boundary integral
method, have been presented as means of solution to the connected lake problem.
If the basins are of the same depth, then a simplified boundary integral formulation
may be used. A comparison between all three methods used when the basins are
of unequal depths is made in Table 4.5 in which values of the gain and phase lag of
the amplitude are presented. A value of N = 2 was used in the Galerkin method

whilst N = 6 was used in the Collocation technique.

In Table 4.5, some large differences occur in the phase lag. This apparently
large difference is due to the cyclic nature of the phase lag. From Table 4.5,
it is clear that the Galerkin techniques and the boundary integral method yield
very similar results. The Collocation technique does not provide results which
are in as close agreement as these. The largest difference between the Galerkin
and integral equation methods occurs at the junction between Regions 1 and 3.
Here, the error in the gain is 0.0011 m which is a relative difference of 6.96%. At
the same location the difference in the phase lag is 0.1005 radians or 1.66%. The
percentage differences presented here are all relative to the solution obtained using
the boundary integral method. The next largest difference in gain is only 0.009m

or 1.72%. The difference in the phase lag at this point is 0.0768 radians or 0.12%.

Clearly, the solution to the connected lake problem may be successfully ob-
tained using either the Galerkin or boundary integral techniques. Both methods
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GAIN

region x (km) y (km) Galerkin Integral Collocation
1 -11 1 0.0103 0.0103 0.0000
1/3 -4 1 0.0147 0.0158 0.0250
3 -1 1 0.0212 0.0217 0.0314
3 1 1 0.0254 0.0255 0.0357
3/2 4 1 0.0319 0.0313 0.0421
2 8 1 0.0533 0.0524 0.0636
2 8 -5 0.0533 0.0523 0.0636

PHASE LAG

region x (km) y (km) Galerkin Integral Collocation
1 -11 1 3.1975 3.5313 3.1370
1/3 -4 1 6.1440 6.0435 0.0011
3 -1 1 6.2405 6.1414 0.0011
3 1 1 6.2773 6.1826 6.2820
3/2 4 1 6.1441 6.2246 6.2794
2 8 1 0.0511 6.2575 6.2819
2 8 -5 0.0511 6.2610 6.2803

TABLE 4.5: A comparison of the gain and phase lag of displacement obtained at
various locations using the Galerkin, Collocation and Boundary Integral methods.
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are relatively simple in concept although the Galerkin technique is probably the
easier to program on a computer. A major drawback of the Galerkin technique
is that it can be applied only to simple shapes. If the basins have a complicated
boundary then the boundary integral technique should be used. However, because
this method involves the inversion of several large complex matrices, it takes much
longer to run on the computer. The matrices involved are not banded and do not

lend themselves to special techniques for inversion.
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CHAPTER 5

NUMERICAL MODELS

§5.1 Two NUMERICAL MODELS

Developed in this chapter are two numerical models both of which use finite
difference techniques to solve wind forced problems. The first model is described

by the following set of equations which are available from Equation (2.2.6) with

f =0, that is,
P= % (KTO,, - c2%f—) o (5.1.1(a))
Q= % (KTOy —c? %) . (5.1.1(b))

The functions, P and @, are related to Z by the conservation of mass equation

oP  0Q
32 + By 1w0Z. (5.1.1(c))

A finite difference solution to Equations (5.1.1) is obtained and thus the solutions
for ¢, U and V for a basin with varying depth and acted upon by a general non-
homogeneous wind stress can be obtained. The model could also be used to solve
for the more general case when f # 0. All solutions so far discussed have been for
constant depth basins subject to a wind stress invariant with horizontal position.
This model, which will be developed in the next section, can be used to solve
for wind effects in arbitrary shaped basins. The performance of this numerical
model will be tested against analytic solutions of rectangular and circular basins of
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constant depth (see Equations (3.2.1) and (3.2.2)). The finite difference equations
used in this model are all second order accurate. However, the model approximates
a curved boundary by a series of steps each parallel to or perpendicular to the
finite difference grid lines. This results in the approximations made for derivatives
near a curved boundary being less than second order accurate. The effects of
approximating a curved boundary in this manner will be determined by comparing

the results obtained for a circular basin with an analytic solution.

The effects of a varying depth will be examined by applying this model to Lake
Albert in South Australia. Also, by assuming this lake to be of constant depth,
the effects of approximating the boundary by a series of steps will be further
examined by comparing the results from the finite difference method with the

solution obtained using the boundary integral method described in the Chapter 3.

It will be shown that major differences in the solutions are obtained by ap-
proximating the boundary in the manner described. This result prompted the
development of a finite difference model which could he used for constant depth
basins of arbitrary shape but which also could model a curved boundary without

loss of accuracy in the finite difference approximations near the bondary.

Hence, the second finite difference model deals with the numerical solution of

the equations used in Chapter 3, namely,

(V2+k)Z =0 (5.1.2(a))
subject to
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(5.1.2(b))
where, as before, dI' describes the boundary of the basin and n is the outward
normal direction. Conventional second order differences are used to solve this
system of equations for all interior points away from the influence of the boundary.

Appropriate second order differences which are available from Appendix A are used

at grid points next to the boundary.

The performance of this model is again tested against the analytic solution for
a circular basin and compared with results from the first numerical model as well
as the integral equation solution. The results using this second model are shown
to be superior to those obtained by the former numerical model suggesting that

this model should be used whenever a constant depth assumption may be made.

In the next section, a general methodology and notation for solving finite
difference equations is described. This information is explained with reference
to the finite difference equations approximating Equation (5.1.1). However, the
method and notation can be readily applied to the finite difference approximation
to Equation (5.1.2). In Sections 5.3 and 5.4 results are presented for the finite
difference solution of Equation (5.1.1). In section 5.5, results obtained using finite

difference approximations to Equation (5.1.2) are given.
§5.2 A FINITE DIFFERENCE MODEL FOR EQUATION (5.1.1)

A staggered grid as shown in Figure 5.1 is used. Constant grid spacings are
used with generally different values in each direction. An element of this grid
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system consists of three points labelled X, — and 1. The distance between an
X-point and an —-point is Az, while an X-point and an f-point are separated by
a distance of Ay. Corresponding points in adjacent elements in the z direction are
separated by a distance 2Az and corresponding points in adjacent elements in the
y direction are separated by 2Ay. At the —-points values of the depth integrated
velocity, U, are calculated. Values of @, which is related to the other component
of depth integrated velocity, V, are calculated at f-points. All other variables are
calculated at X-points. In the following, the notation P; is used to represent the

approximation for P(z,y) at the —-point in the #th element.

When writing a computer program to solve Equation {5.1.1) the above men-
tioned grid scheme is laid ovér a map of the particular body of water being in-
vestigated and each of the grid elements numbered appropriately. For example,
consider the body of water shown in Figure 5.2. This may be modelled as shown.
The heavy line indicates the approximation to the boundary which will be used
in the numerical model. However, this simplistic approach, although it has been
used many times in depth integrated hydrodynamic models, is not very satisfac-
tory. For example, it wastes much computer space because storage space must
be allocated to many land elements which are of no interest. One of the biggest
problems with this approach is the amount of book-keeping involved in writiﬁg a
program. Not only must elements representing land be distinguished from those
representing water but the various types of water elements must be distinguished.

For example, movement of water in those elements surrounded by water will be
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FIGURE 5.1: Plan view of the staggered grid.
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FIGURE 5.2: A ssmplsstic grid scheme.




described by different equations from those used in elements with boundaries run-
ning through them. The finite difference equations applicable in each element will
therefore be different. Each type of boundary element must be distinguished. For
example, the element labelled 10 in Figure 5.2 is surrounded by land on three sides
whilst the element numbered 12 is surrounded on two sides by land. Hence, the
way in which some of the terms in the equations are numerically modelled will be
different in each element. It is thus difficult to write a “general” program which

is applicable for any shape of basin using this approach.

Some improvements can be made, however. For example, in any numerical
approximation using finite difference techniques, one only needs information from
the elements immediately adjoining each particular element. Hence, a method
of labelling as shown in Figure 5.3 is introduced. The two elements above and
below the 7t* element are indicated by j + 1 and j — 1 respectively. The 52 label
indicates the element immediately to the right of the j** element with j2 £ 1
indicating elements above and below this element. The 71 label indicates the
element immediately to the left of the j** element with 71+ 1 being interpreted in
the obvious way. Thus, with reference to Figure 5.2, if the element being considered
is labelled 36 then j1 is 28, 72 is 44 and so on. This labelling scheme not only
simplifies the notation used in writing down the finite difference equations but also

facilitates the writing of a more economical computer program.

Another feature which reduces the amount of book-keeping which must be
carried out in the program to keep account of the type of element being considered
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FIGURE 5.3: The general method of referencing elements with respect to the central
element, j.

4 16 128
2 64
1 8 32

FIGURE 5.4: The value of the weights for each of the surrounding eight elements.

and the shape of the body of water which is being modelled was developed by
Stevens and Noye (1984) and is now briefly described. Associated with each active
element, that is, an element that lies within the boundaries of the region of water
being considered, is a special identification number. There are eight elements
surrounding any particular active element and each of them is given a weight of
29,7=0,... y7 (see Figure 5.4). In determining the identification number for an
active element, the weight of each surrounding element which is non-active (that is,
one representing land only) is added together to form a single identification for each
element. An element is non-active jf there is land at the X-point of the particular
grid. For example, the identication number of the element labelled 58 in F igure
5.2 is 232. The weights given to each of the surrounding elements are chosen to
be powers of two because any resultant identification number can be decomposed
into a sum of powers of two in only one way. Hence, the identification number

uniquely determines the types of elements surrounding a particular element,
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Using the above techniques, a general program may be written. The locations
of active and non-active elements are input into a computer program. From such
information, the identification numbers of each element are determined together
with the labels of the eight elements which immediately surround each particular
element. When individual terms of the finite difference scheme are being pro-
grammed, appropriate code is written for particular identification numbers. For
example, the code for the finite difference approximation for P is the same for all
elements except those with an identification number of 64 in which case P is sim-
ply set to zero. Such a computer program is thus applicable to and easily utilised
for any arbitrary shaped basin. The scheme can also be used for non-linear and

time dependent three dimensional wind driven or tidal flows.

Using the techniques and notation described above, together with centred
finite difference approximations, enables Equations (5.1.1) to be discretised in the

following manner:

Kroz — ﬁfP_.,- _

g(hjz + hJ’)/2 B

KTOy - ﬁJQQJ

g(h,‘ + hj—l)/2

—10Z; = (P; - P;1) /205 + (@41 — Q7)/2Ay + O {(A)?, (Ay)?} (5.2.1(c))

(Z;2 — Z;)/20z + 0 {(Az)?} = (5.2.1(a))

=(Z; - Z;—1) /28y + O {(Ay)®}  (5.2.1(3))

where ﬂf and ﬂ_? are the § terms calculated at an —-point and f-point respec-

tively. That is,

B = 1o +2r/(hjz + hj) (5.2.2(a))
B = o +2r/(h; + hj_1) (5.2.2(b))
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for some value of the friction parameter, r. These equations are rearranged to
give, in explicit form, the following equations for the evaluation of P;, @; and Z;

at all active grid points:

4(K1'0,; — ﬂ_;'-’PJ-l)Az

Z; =25 + o(hs + hy1) (5.2.3(a))
L g ki + )2 — Z54)

Q= 5 [K oy Z 1Ay ] (5.2.3(b))

P; = P; — 2Az [LO'ZJ' + (Q-H’zlf;qﬂ] ) (5.2.3(c))

These expressions are obtained by rearranging Equations (5.2.1(a), (b) and (c))
respectively. They are solved in the following order: if necessary, Z; is calculated
first, then Q4 and then P;; Z; is calculated next, then Q3 and P, and so on.
When calculated in this manner the equations are explicit. Values for @; and Z;
need not be calculated since @; will always be zero (see Figure 5.5) and, as will

be discussed shortly, Z; is always assigned a value.

The solution of Equation (5.2.3) is found using an implicit marching method
(Noye (1984)), referred to as the EVP method by Roache (1974). This method was
chosen because it is readily adaptable to irregular boundary geometries and varied
combinations of boundary conditions. Also, a formal error analysis exists for the
method (see Noye (1984)) and it can be shown that the largest error which results
from the application of the this method will occur along the boundary at which
end values are calculated. This fact will make it easier to test the performance of

the method.

Consider Figure 5.5 which describes how the body of water considered in
Figure 5.2 is labelled. Elements which are non-active (land elements) are labelled
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zero. The elements at the western end of the grid ,namely those labelled 1,2 3,
4, 6 and 10 are assigned values for the amplitude Z. The explicit equations (5.2.3)
together with the boundary conditions @ = 0 along any east-west boundary and
P = 0 along any north-south boundary, may now be used to produce a set of values
for the velocity P along the eastern boundary (that is, at elements 22, 33, 34, 35,
36 and 37). These values of course should be zero. The correct starting values are

determined by finding the end values produced by specific starting values.

Because Equations (5.2.1) are linear, the end values, contained in vector e,

are related to the starting values contained in s by the relation
e=ys+¢ (5.2.4)

where ¢ is an N x N square complex matrix and ¢ is the vector produced by
the starting values 8 = 0. The number of starting values (which must equal the
number of end values) is assumed to be N. If starting values defined by s; = b5
for4,7 =1,..., N are used then the 5** column of ¥, denoted by ¥;, is obtained
from

b, =e—¢ (5.2.5)

where e; is the vector of end values obtained using s;. Once ¥ and ¢ have been

determined in this manner, the correct starting values, 8*, are obtained from

8 =y~ l(e* — @) (5.2.6)

where e” is the desired end vector. Of course, for this problem e* = 0 and so

' =—y~l¢ (5.2.7)
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FIGURE 5.5: The new grid labelling scheme for the body considered in Figure 5.2.



Once the correct starting values have been obtained a final sweep through the grid

produces the values for Z, P and @ throughout the region.

§5.3 COMPARISON WITH ANALYTIC SOLUTIONS

The performance of the numerical method described in the previous section
was tested against results obtained from analytic solutions for the elevation oc-
curring in rectangular and circular lakes of constant depth (Equations (3.2.1) and
(3.2.2)). Results are presented in Tables 5.1 and 5.2. In the former case, results are
presented for the rectangular lake for ¢ =1 c.p.d., @ = 10~* sec™! and at points
z=L/2 y= B/2and z =3L/4, y = B/2. The dimensions of the basin are those
which have already been used. Similar parameters are used in the comparison for
the circular basin presented in Table 5.2 but in this case results are presented at
positions r = a/4, § = 0 and r = a/4, § = n/2. The dimensions of the circular
basin are also those which have been previously described. In both cases values are
presented for various values of Az and Ay. The relative percentage error is defined
by the ratio of the difference between the numerical and the analytic solutions,

defined by V, with the result obtained using the analytic solution.

From Tables 5.1 and 5.2, it is clear that the numerical method will adequately
predict the gain in displacement occurring in both types of basins. In general, the
results obtained for the rectangular basin are better than those obtained for the
circular basin. This reflects the errors introduced by approximating the boundary
of a circle in a step-wise fashion. The rectangular boundary can, of course, be
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GAIN PHASE LAG

v % v %
Az = Ay = 500m z=1L/2 0.0018 0.0553 3.33
rz=3L/4 0.0000 0.00 0.0000 0.00
Az = Ay = 1000m z=1L/[2 0.0036 0.0553 3.33
r=3L/4 0.0000 0.00 0.0000 0.00
Az = Ay = 2000m z=1L/2 0.0072 0.1063 6.39
z=3L/4 0.0000 0.00 0.0003 0.91

TABLE 5.1: The gain and phase of the displacement for the rectangular lake pre-
dicted using the numerical model for various grid sizes and compared with the
analytic solution.

GAIN PHASE LAG
\Y % v %
Az = Ay = 500m r=a/4,0=0 0.0000 | 0.00 | 0.0041 | 26.86

r=a/4,§ =x/2 | 0.0000 | 0.00 | 0.0029 0.09
Az = Ay = 1000m r=a/4,6=0 0.0006 | 6.26 | 0.0045 | 29.23

r=af4,0 =7/2 0.0000 | 0.00 0.0236 0.75

TABLE 5.2: As in Table 5.1 except for the circular lake.
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modelled exactly. In the circular case, the performance of the model appears to
behave badly along the line # = 0. However, along this line the phase lag is
very small (of the order of 0.01 radians) and so even though the absolute error is
sufficiently small (of the order of 0.001 radians) the resulting relative percentage
errors are significant. Along the line 8§ = m/2 where the phase lag is of the order of
m, the absolute errors are certainly not a lot smaller than before but the relative
percentage errors are considerably smaller because of the significant order of the

phase lag along this line.

§5.4 A MODEL FOR LAKE ALBERT

The numerical model and associated grid scheme is used to analyse the am-
plitude of the response of Lake Albert to a surface wind stress. The contour of
the lake is shown in Figure 5.6 together with the grid scheme which is used. The
grid spacing is Az = Ay = 500 m. In Figure 5.6, each of the squares contains an
element of the numerical scheme as has been previously described. Each square
is therefore 1 km x 1 km in size. An array of 14 elements in the z direction and
15 elements in the y direction was needed. Only those elements which lie within
the heavy step-wise varying curve which approximates the boundary are active.
There are 150 such active elements for which calculations for Z, P and @ will be

made. The total number of elements is 14 x 15 = 210.

To further illustrate the ease with which the numerical method described in
the earlier section of this chapter may be applied, it is useful to look at the input
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FIGURE 5.6: A model for Lake Albert. Each square (1 km. x 1 km.) represents
an element of the numerical scheme. The heavy step-wise varying curve 1s the
approzimation to the actual boundary used by the numerical model. The numbers
in the squares designate locations at which some analysis will be carried out.
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FIGURE 5.7: The array describing the location of active elements (denoted by 1)
and the land elements (denoted by zero).



which was required by the program to model this particular lake. The number
number of grid elements in the z and y directions was the first input. In this case
values of 14 and 15 respectively were required. The overall dimensions of the grid
were next input; the required values for this problem are 14 km in the z direction
and 15 km in the y direction. The location in the grid of the active elements is
also required by the program. This is achieved by inputting a series of 0’s and 1’s
where 1 represents an active element (water) and O represents an inactive element
(land). This part of the input file is shown in Figure 5.7. Finally, the depth of
the lake at each active element is input to the program. Simply by changing the

above data the program can be used for any lake.

Values used for the other parameters required by the problem were ¢ = 1

c.p.d., a =10"* sec™! and 7y = 0.1 Nm~2,

The numerical method was first used to analyse the effects of assuming a
constant depth bathymetry. Lake Albert has an average depth of 2.0 m and the
actual profile varies from about 1.5 m to 2.9 m. The deepest region of the lake
occurs near the element labelled 8 in Figure 5.6. A comparison of the values
obtained at the nine elements indicated in Figure 5.6 for a constant depth and
variable bathymetry is made Table 5.3. The relative percentage error is defined by
the ratio of the difference between the two results, denoted by V, with the result

obtained using the actual bathymetry.

Clearly, using a constant depth bottom does not cause excessive absolute
errors. The absolute difference between the two results for the gain is never more

92



GAIN PHASE LAG

Location v % \% %
1 0.0013 5.68 | 0.0013 0.04
2 0.0000 0.00 | 0.0011 0.03
3 0.0017 9.94 | 0.0017 0.05
4 0.0016 9.30 | 0.0017 9.88
5 0.0036 | 25.17 | 0.0000 0.00
6 0.0041 | 13.27 | 0.0001 0.00
7 0.0043 | 21.08 | 0.0002 0.00
8 0.0031 | 19.74 | 0.0033 | 38.37
9 0.0011 2.11 | 0.0019 0.03

TABLE 5.3: Comparison of results obtained for gain and phase lag of displacement
using a constant depth bottom and the actual bathymetry.

GAIN PHASE LAG
Location \vJ % v %
1 0.0060 20.36 0.0173 0.67

0.0034 14.01 0.0210 0.67
0.0007 3.67 0.0235 0.75
0.0002 0.96 0.0020 0.41
0.0061 56.54 0.0339 1.08
0.0012 4.48 0.1868 5.95
0.0009 5.81 0.0454 0.72
0.0060 3.19 0.0020 0.41
0.0181 33.96 0.0019 0.03

WO 00 =~ O U oA W W

TABLE 5.4: Comparison of results obtained for gain and phase lag of displacement
using the numerical model with a constant depth bottom and the boundary integral
approach.
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than about 4 mm. whilst even better agreement is achieved for the phase lag.
In terms of the percentage error some of the results differ quite markedly. It was
found that at the locations where these differences occurred, the depth differed
significantly from 2 m. For example, at locations 5 and 8, where the depth is 1.5

m and 2.8 m respectively, large percentage differences were observed.

An analysis is now be performed on the difference between solutions obtained
using the numerical method with a constant depth bottom and the integral equa-
tion approach described in Chapter 3. As has been shown by comparison with
analytic solutions for simple geometries, both of these methods adequately model
the gain and phase lag of the response. Any difference in the solutions obtained
should be entirely due to the different ways in which the boundary of the lake
is being approximated. Seventy two unevenly spaced segments were used in the

integral equation model to approximate the boundary of the lake.

A comparison of the results obtained from the two methods is made in Table
5.4. From here it can be seen that the absolute differences between the two models
can be more significant than those which were achieved by assuming a constant
depth. For instance, at one location the absolute error has reached a value of a cen-
timetre. Clearly, significant errors can result in having to approximate a boundary

in a step-wise fashion as is necessary in the finite difference model presented here.

Consider the elements labelled 1, 2, 3, and 4 in Figure 5.6. The X-point at
which Z is calculated is 500 m from the boundary used in the finite difference
model. However, this same point is about 800 m away from the boundary used in
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the integral equation solution. This difference is reflected in the percentage error
for the gain at Location 1 as shown in Table 5.4. The further one moves away
from the boundary (that is, at Locations 2, 3 and 4) the less significant is the
resulting percentage error. At Location 2 the error decreases to about 14%, at 3
it is about 4% and at Location 4 the error has dwindled to about 1%. This trend
reflects the decreasing significance of the error introduced by the approximation
made for the boundary as one moves away from it. The other locations with high
percentage errors all occur near boundaries where the approximate shape used in
the numerical mefhod differed significantly from the boundary used in the integral

equation method.

§5.5 A FINITE DIFFERENCE SOLUTION FOR EQUATION (5.1.2)

In this section, a new finite difference solution to Equation (5.1.2) is con-
structed. The approximations used are second order accurate everywhere, in-
cluding those points near the boundary. However, the boundary curve, I, is not
approximated by a series of steps as in most conventional finite difference models

but retains its shape.

Results from this model are compared with those obtained with a conven-
tional model of Equation (5.1.2) in which the boundary is approximated by a
series of steps. Although this is the treatment of the boundary that has been
used in solving Equation (5.1.1) in Sections 5.3 and 5.4, in order to get an exact
comparison between the model developed in this section and conventional models
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which alter the boundary, a conventional model is also described which models

Equation (5.1.2).

Exactly the same notation and computer methods are used as are described
in the earlier sections. For solving Equation (5.1.2) a staggered grid is not needed
since only one variable, Z, is being considered. In this model a grid element
consists of a cell containing only one point, namely a Z point. A grid element is
located at the intersection of grid lines so that the point Z; in the finite difference
scheme refers to the point in the top right hand corner of a grid element labelled
i. Each Z point is separated by a distance Az in the horizontal and Ay in the
vertical. This differs with the previous finite difference model in which the points
at which Z is calculated were separated by a distance of 2Az in the horizontal and
2Ay in the vertical. All points lying inside the boundary are active points. All
such points for which one or more of the surrounding points § +1, 7 — 1, 71 and
72 are land elements are called boundary points. The region described in Figure
5.2 will now be labelled as shown in Figure 5.8. The computer program described
in Section 5.2 readily determines whether any grid element lies near the boundary

or is an internal point.

Assuming Az = Ay then a suitable second order approximation for the
Helmholtz Equation is
Zjl + ZJ'2 + ZJ'+1 + ZJ'_I + (AI2k2 - 4)ZJ =0. (551)

This formula may be used for all interior grid points, that is, those for which no
neighbouring grid point in the direction of either coordinate axis lies outside the
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boundary. Interior points at which the above formula is valid are easily detected
by the computer program since these are points, 7, for which the locations at 741,

4 —1, 71 and j2 are all water elements.

Alternative formulae must be used at boundary points, 7, for which one or
more of the surrounding points j+1, § —1, 71 and 72 are land elements. Formulae
for the finite difference approximations to the derivatives 82Z/3z? and 82Z/8y?

at such points are given in Appendix A.

For Type 1 boundary points where two of the four neighbouring grid points lie
outside of the boundary, the second order accurate approximation used to model

Helmholtz’s Equation is of the form
(sxx1+ syy1)Zr + (sxx2 + syv2)Zg + (sxx3 + syyas + k*Az?sxx4)Z;

= —(sxx5 + Syys)Az
(5.5.2)

This formula assumes that the vertical and horizontal grid spacings are the same,
that i1s, Az = Ay. The coefficients sxx1, sxx2 etc. are given in Equations
(A9(b)-(e)) and Equation (A6(e)) of Appendix A. The coefficients syy;, syyz
etc. are given by Equations (A11(b)-(e)) and Equation (A6(e)). Type 1 boundary
elements for which the expression (5.5.2) is valid can occur in any of four possible
orientations, labelled 11, 12, 13 and 14 in Appendix A. The coefficients sxx, syyi
etc. are modified as determined by the orientation of the boundary elements. The
values of the points T' and @ which appear in Equation (5.5.2) also are determined
by whether the boundary element is of orientation 11, 12, 13 or 14.
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Consider the element labelled 15 in Figure 5.8. The program readily detects
that the neighbouring elements 72 and 7 — 1 (in this case elements 22 and 14
respectively) are water elements. Similarly it detects that the points 71 and j+1
are land elements. Thus, grid element 15 is determined to be a boundary point.
In fact it is a Type 1 boundary point since two of the neighbouring grid points are
land elements. Further, because of the nature of the four neighbouring grid points
the program can determine that element 15 has the orientation 12. Therefore, the
appropriate approximation to Helmholtz’s Equation at grid element 15 is given by
Equation (5.5.2) in which the coefficients are given by (A6(e)), (A9(b)-(e)) and
(A11(b)-e)). The modifications which have to be made to these expressions for
the coefficients because of the particular orientation of this boundary point are
given by (A15 and A17). In a similar way, the finite difference approximations to

the derivatives at all boundary points is obtained.

For Type 2 boundary elements, j, in which only one neighbouring grid point

lies outside of the boundary, the following approximation may be used:

(gxx1 +9xx5)2r + 9xx22q + (gxx3 + 9xx5)2Zr
(5.5.3)
+(gxxs — 29xx5 + k*Az’qxx5)Z; = —qxx6Az.

where the coefficients gxx1, gxx2 etc. are given by Equations (A24(b)-(f)) and
(A23(f)). Once again, boundary elements of this type can occur in four possible
orientations. The modifications which need to be made to gxx1, ¢xx2 etc. because
of these different orientations are given in Appendix A as are the positions of the
points T, @ and R for each orientation.
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The above equations (5.5.1, 5.5.2 and 5.5.3) are solved implicitly to give the

solution for Z at each grid point.

The difference in the solutions from the two numerical models so far developed
may not be due entirely to the way in which the boundary has been modelled. The
first model is based on Equation (5.1.1) using the scheme presented in Section 5.2,
whilst the second finite difference approach uses Equation (5.1.2) and an implicit
solution to the approximations. For this reason, two more numerical solutions are
developed for Equation (5.1.2) which firstly alter the boundary so that it lies along
grid lines and secondly use second order approximations to the derivatives at the
boundary. Hence, any difference between these last two numerical models and the
one presented so far in this section must be due to the way in which the boundary

is being modelled since all the models are second order and solved implicitly.

The first of these more conventional models is one in which the grid points are
considered to lie along the boundary. Consider the point P lying along the straight
boundary as shown in Figure 5.9. The grid points are separated by a distance Az

in both coordinate directions. An approximation for Helmholtz’s Equation at P is
Zr+Zg+Zr+ 25+ (K¥Az? —4)Zp =0 (5.5.4)

which is simply the second order approximation for an interior point given in
Equation (5.5.1). The problem with using Equation (5.5.4) is that the point T lies
outside of the region. To find an expression for Zr, a second order approximation is

made to the boundary condition (5.1.2(b)). At P, the boundary condition implies

0z . K'To
= == (5.5.5)
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Applying the second order approximation for the left hand side of the above equa-
tion yields

Zr = Zp + 2Az% (5.5.6)

which may be substituted into Equation (5.5.4) to give the required expression for

the approximation to the Helmholtz Equation, namely,

_2A:cK‘r0

ZQ +Zs+2Zp + (k2A$2 — 4)Zp = 2

: (5.5.7)

A boundary point, 7, as defined earlier will be in this model a point such
as P in Figure 5.9 which lies on a boundary. As discussed earlier in this section
and in Appendix A, this point can be orientated in any of four ways which are
once again denoted 11, 12, 13 and 14. These orientations are shown in Figure
5.10. In a similar fashion to the previous model a general formula can be given
for all boundary points. This formula is then adjusted according to the particular

orientation. From Equation (5.5.7) we have, for a boundary point, j,
Zg+ 25 +2Zp + (¥ Az? —4)Z; = —2AzA, (5.5.8)
where:

(1) for orientation 11

Q=7+1, (5.5.9(a))
S=j—1, (5.5.9(b))
R =32 (5.5.9(c)

and
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FIGURE 5.10: The four possible orientations, labelled 11, 12, 13 and 14, of a
boundary point such as P.




(2) for orientation 12

and

(3) for orientation 13

and

(4) for orientation 14

and

Q=75+1,
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(5.5.12(d))

The boundary point, j, may also be a boundary point which lies on a corner

as shown in Figure 5.11. Once again, there are four possible orientations for such

a point, each denoted 21, 22, 23 and 24, and these are illustrated in Figure 5.11.

A general formula for Helmholtz’s Equation for such a boundary point is

2Zs +2Zp + (K¥Az% — 4)Z;

where:

(1) for orientation 21

and

(2) for orientation 22

and

R = j2,
S=j3-1
KT()
A=—-22—
R =31,
S=75-1
K‘Tg
AZ—CQ—'

(5.5.13)

(5.5.14(a))

(5.5.14(b))

(5.5.14(c))

(5.5.15(a))

(5.5.15(b))

(5.5.15(c))
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FIGURE 5.11: The four possible orsentations, labelled 21, 22, 28 and 24 of a corner
boundary posnt such as P.




(3) for orientation 23

R =71, (5.5.16(a))
S=35+1 (5.5.16(b))
and
KT()
(4) for orientation 24
R =j2, (5.5.17(a))
S=j+1 (5.5.16(b))
and
KT()
A = —c—z. (55.16(6))

In this model, all points lying inside the boundary are interior points and
the approximation at these points is given by Equation (5.5.1). The three sets
of equations (5.5.1, 5.5.8 and 5.5.13) form the complete set of finite difference
equations which may be used to model Helmholtz’s Equation for the given normal
derivative boundary condition. This set also forms the first of the conventional
models which will be discussed. The model will be applied to a circle and the
finite difference grid is positioned so that the grid points lie on the straight lines

approximating the circle.

The second conventional model which will be described is very similar to the
one described above. In this model, however, the grid lines of the finite difference
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scheme are positioned so that the straight lines approximating the curved bound-
ary lie midway between two parallel grid lines (see figure 5.12). In this model a
boundary point is any point which lies immmediately adjacent to the boundary

and is inside the boundary.

For all interior points, Equation (5.5.1) holds. All the remaining points may
be placed into two groups as above. Also, just as above, there are four possible
orientations for each group of boundary points. These orientations are exactly the
same as those presented in Figures 5.10 and 5.11 except for the relocation of the
boundary so that the points P, @, R and S all lie exactly Az/2 inside the solid
boundary. For a point j such as shown in Figure 5.10 (with the boundary adjusted

as indicated) the following approximation holds:
Zo+Zp + Zs + (k*Az? — 3)Z; = —AAz (5.5.18)

where, for each of the orientations 11, 12, 13 and 14 the parameters @, R, S and
A are given respectively by Equations (5.5.9, 5.5.10, 5.5.11 and 5.5.12). For all the
corner boundary points such as shown in Figure 5.11 (with the boundary adjusted)

the following approximation holds:
Zp +Zs + (K2 Az — 2)Z; = —AzA (5.5.19)

where, for each of the orientations 21, 22, 23 and 24, the parameters R, S and
A are given respectively by Equations (5.5.14, 5.5.15, 5.5.16 and 5.5.17). The
above two equations (5.5.18 and 5.5.19) are derived using the fact that the spatial

derivatives at the boundary are approximated by formulae such as

Z—f = (2p — Zr)/Ax. (5.5.20)
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This second model represented by Equations (5.5.1, 5.5.18 and 5.5.19) will
also be used to solve Equation (5.1.2) with a circular basin. The finite difference
grid is positioned so that the staight lines approximating the curved boundary
lie midway between adjacent lines of the grid. Differences between these two

conventional models will be described in the next section.

§5.6 COMPARISONS BETWEEN THE FINITE DIFFERENCE MODELS

Firstly, the performance of the numerical models described in the previous
section was tested against results obtained from the analytic solution for the dis-
placement occurring in a circular basin. All the parameters used in the comparison
are the same as those used in producing Table 5.2. In this Section, however, a
comparison is made using only a grid spacing of Az = Ay =2000 m. Note that
this spacing corresponds to a spacing of Az = Ay = 1000 m. in the staggered

grid model. The analytic solution is available from Equation (3.2.2).

A comparison between the first numerical method developed in the previous
section and the analytic solution is made in Table 5.5. Clearly, this finite difference
model performs well. The largest relative percentage error of 2.6% was found to
occur along the line § = 0. This result is far better than that achieved with the
previous numerical solution discussed (see Table 5.2). A comparison is made in
Table 5.6 between the three models models so far tabulated (that is, the integral
equation method, the numerical solution of Section 5.3 and the first model of
Section 5.5). This table, therefore, summarises results presented in Tables 3.2,
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GAIN PHASE LAG

v % \% %
Az = Ay =2000 m r=a/4,0=0 0.0000 | 0.00 | 0.0004 2.60
r=af4,0 =x/2 | 0.0000 [ 0.00 0.0000 0.02

TABLE 5.5: Comparison of the first numerical model for Helmholtz’s Equation
presented tn Section 5.5 against the analytic solution for a circle.

GAIN PHASE LAG

v % v %
Integral Equation Solution; Table 3.2 0.0000 0.00 0.0001 0.50
First Numerical Solution; Table 5.2 0.0006 6.26 0.0045 29.23
Second Numerical Solution; Table 5.5 0.0000 0.00 0.0004 2.60

TABLE 5.6: Comparison of the three methods used so far for the wind forced prob-
lem with a circular basin. The results are presented at § = 0 and r = a/4. The
results for the Integral Solution are obtained with N = 36.

5.2 and 5.5. Clearly, the two methods which most closely approximate the real

boundary are to be recommended. Of these two, the integral equation approach

appears to be better. However, it is difficult to make a direct comparison between

these two methods because of the difficulty in relating the grid spacing, Az, to

the summation number, N. For the given values of Az and N used in Table 5.6,

the integral equation method needed substantially more CPU time to solve the

problem then did the finite difference solution and so from this point of view, the

finite difference approach could be preferred.
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A further comparison was made between the finite difference model which
does not alter the curved boundary and the boundary integral solution. A useful
comparison of the two methods can be made by requiring the two solutions to use
a similar amount of computer CPU time when the programs are run. For a value
of Az = 1000m in the finite difference model, a value of N = 115 resulted in the

boundary integral solution using about the same CPU time.

Table 5.7 compares the two methods with the analytic solution. The largest
errors which occurred when using the finite difference method were found to lie
along the line § = 0 and for this reason the comparisons in Table 5.7 are made
along this line at r = a/4. The results shown in this table suggest that under
the criterion of equivalent CPU times the finite difference solution appears to be
better. This is an encouraging result. A major reason for using boundary integral
techniques is often because the boundary of the region of interest can be modelled
more correctly. However, as has been shown, if special finite difference formulae
are used which are capable of modelling the boundary accurately, then results

which are at least as good as those obtained with the boundary integral approach

may be achieved.

In Table 5.8 the differences between the finite difference solution first devel-
oped in the previous section and the two conventional models are displayed. A
grid spacing of Az = 2000 m is used. Once again, the largest error in results was
found to lie along the line # = 0 and results from the various models are given for
the point § = 0 at a distance of a/4 from the origin. From Table 5.8, it is clear

111



GAIN PHASE LAG

v % v %
Boundary Integral Solution 0.00002 0.16 0.00005 0.35
Second Finite Difference Solution 0.00001 0.01 0.00005 0.34

TABLE 5.7: Comparison of the curved boundary finite difference solution presented
in Section 5.5 with the Boundary Integral solution with Az = 1000 m and N = 115.

GAIN PHASE LAG

\vJ % v %
First Conventional Solution 0.0000 0.00 0.0015 9.70
Second Conventional Solution 0.0000 0.00 0.0010 6.50
Curved Boundary Solution; Table 5.5 0.0000 0.00 0.0004 2.60

TABLE 5.8: Comparison of the three numerical models presented in Section 5.5
and used to solve Helmholtz’s Equation.

that the first model discussed in the previous Section which uses second order
differences to approximate the curved boundary provides superior results. Of the
two conventional models, both of which are second order, the one in which the

boundary bisects two adjacent grid lines provides the best results.

Comparing Table 5.6, 5.7 and 5.8 it is apparent that in solving wind forced
problems for which either Equation (5.1.1) or Equation (5.1.2) may be used, bet-
ter overall results were obtained using Equation (5.1.2) than with the method
presented for Equation (5.1.1). Using methods which enable the boundary points
to be modelled with the same accuracy as the interior points gives far better re-
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sults than a conventional treatment in which the boundary is approximated by a

set of straight line segments.
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CHAPTER 6

EDDY VISCOSITY - A REVIEW

All of the work discussed so far has dealt only with depth integrated models.
These models provide no information about the nature of the vertical profile of the
horizontal velocity components. In order to achieve this information, equations
similar in form to (1.3.3) must be used. However, as was stated in Chapter 1, in
order to use these equations the eddy viscosity, N, must be specified. This chapter
examines the various formulations for N which have been deduced from laboratory
and field experiments and also those forms of N which have been used in numerical
models. Finally, methods which allow the eddy viscosity to be calculated as part
of the solution procedure are discussed. The following work is directed mainly
at wind driven flows but, because of their similarity with and because they are
often considered in conjunction with wind driven flows, tidal flows will also be

mentioned.

§6.1 EXPERIMENTAL OBSERVATIONS

Because of the relationship between the eddy viscosity and the gradient of
velocity, it is useful to first discuss observations of currents which have been made
in tidal or wind driven oscillating flows. In particular, since the vertical gradient
of the horizontal velocity components is dominant in the types of flows considered
here, the vertical profile of the horizontal components is of prime importance.
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In the following work, the variable u is used to represent the horizontal velocity
components. Analogous results hold for v. Similarly, for other vector components;
equations will be given only for the z-component, with analogous results holding
for the other components. Also, in the following discussion the transformed depth,

n, defined in Chapter 1, will be used.

In the bottom boundary layer of such geophysical flows (that is as n — 0),
the Reynolds stresses may be assumed to be constant (see, for example, Bowden
et. al. (1959), Engelund (1973), Swift et. al. (1979) or Duncan et. al. (1978)).

This leads to the universal law of the wall which states that

u ~ logn as n — wall, (6.1.1)

that is, the vertical profile of velocity is logarithmic near a solid boundary. From

Equation (1.3.1) this law implies that

N ~nq as n — wall. (6.1.2)

That is, in the boundary layer near a wall it is expected that N increases linearly
with height above the wall from some small value usually taken to be zero or the
kinematic viscosity, v, of the water. If a wind stress is acting upon the surface of
the water, then it would be expected that the above relationships between N and

u and depth would also hold near the surface.

Whether the fluid in tidal and wind driven flows does in fact behave in this
manner, has been examined by many workers since early this century. As early
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as 1925, Powell (1925), examined the tidal flow in the Sound of Jura which has
a depth of about 50 m. He concluded, however, that the velocity of tidal current
decreased with the square of depth. Van Veen (1938), from his observations of the

tidal current in a channel, proposed
u=u,n’ (6.1.3)

where u, is the surface velocity and g8 is some constant. The best fit of Equation
(6.1.3) to the data was achieved with #—! = 5.2. This is very near to a logarithmic

variation of u with n for small 5.

Bowden et. al. (1959) observed the tidal current in homogeneous water of
depth of 22 m. in the Irish Sea. They concluded that a reasonable approximation
to the velocity profile was given by a model in which the profile was logarithmic
to a height ah above the sea floor (where h is the depth of water and « is a
constant) and the profile was parabolic above this height. From their observations

they concluded that a = 0.14.

Dyer (1970) measured the vertical profile of horizontal currents in a channel
for a complete tidal cycle in the West Solent near Southampton. In most obser-
vations, the bottom 2.3 m of water (in a total depth of about 18 m) could well be

represented by a linear relationship between velocity and the logarithm of height.

During investigations in six tidal channels at depths of 8 m to 42 m. in Puget
Sound and the Strait of Juan de Fuca area, Sternberg (1968) found logarithmic
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profiles near the bottom occurred for 85% of the time, although for individual

channels the proportion ranged from 62% to 100%.

Further investigations of the vertical profile of velocity are to be found in

Grace (1929), Harvey and Vincent (1977), Wolf (1979), Heathershaw (1979) and

Soulsby and Dyer (1981).

The existence of a logarithmic velocity profile near solid boundaries is thus
well established. The mathematical analysis predicting its existence { the law of
the wall) was established considering steady flows. Presumably, this logarithmic
profile is observed in tidal flows because the time scale of the oscillating flow near
the wall is small compared with the tidal period, enabling a quasi-steady state to

develop.

It was stated above that just as the bottom shear stress causes a logarithmic
velocity profile near the bed, a surface wind stress causes a logarithmic velocity
profile in the topmost layer of water. This fact was recorded by Shemdin (1972) and
also by Francis (1953) who experimentally examined the vertical velocity profile
in steady circulation caused by water jets on the surface of a laboratory flume to

simulate stress caused by a wind.

Lathbury et. al. (1960) observed a near surface logarithmic velocity profile

in their work on the hypolimnion of Lake Mendota.

Baines and Knapp (1965), Fitzgerald and Mansfield (1965) and Koutitas and
O’Connor (1980) all examined the turbulent flow in a closed channel acted upon
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by a surface wind stress. The vertical profiles for velocity which they recorded are

compared in Figure 6.1.

Verification of the existences of bottom and surface logarithmic boundary
layers certainly aids in formulating an expression for the eddy viscosity in these
regions. However, to obtain a complete picture, requires obtaining the Reynolds
stresses, accurate measurements of which are very difficult to obtain. Heathershaw
and Simpson (1978) report that the sampling error in measuring the Reynolds

stress can be as high as 40%.

Amongst early investigators concerned with the measurement of the eddy vis-
cosity were Nomitsu and Matsuzaki (1936) who examined the vertical distribution
of eddy viscosity in rivers. Neglecting convection and horizontal diffusion terms
and considering river flow to be steady and one dimensional yields the following
momentum equation:

%% (N%%) — _gpg%_ (6.1.4)
Using field measurements of the surface slope and the vertical velocity profile,
Nomitsu and Matsuzaki (1936) integrated the above equation resulting in a for-
mulation for N. In large rivers tens of metres deep they found that N did not
vary greatly with depth but was rather uniform except in the bottom one to two
metres. They also found that the shallower the river, the larger the coefficient of
eddy viscosity. The overall shape of the profile was found to be concave upwards
especially in the upper parts of the fluid column and N increased rapidly near the
bottom to eighty to ninety percent of its surface value. In shallower rivers, only
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a few metres deep, they observed that N seemed to vary with the square of the

velocity except in the bottom layer of about one metre.

Bowden et. al. (1959) measured the Reynolds stresses as well as the vertical
variation of velocity. From these measurements they concluded that N is greatest
near mid-depths, with a maximum at g = 0.375. They also found that N at-
tained its greatest value at times nearly three hours before and three hours after
high water, when the current is greatest. No reliable estimates were available at
times of high water when the currents and stress are small. They deduced that a
good theoretical model for N which would describe the flow was one in which N

increased linearly from 1 = 0 to a height 5 = a and then took the constant value
N = kau,ph a<n<l1 (6.1.5)

where k is Von Karman’s constant (k = 0.41) and u,p is the friction velocity at
the bottom, that is, u., = /7 /p where 7, is the bottm stress. They also found

that the maximum value of N could be represented by
Niax = 2.9x1073|U|h (6.1.6)
where U is the depth integrated velocity.

Bowden and Hamilton (1975) suggest using the following expression for N in

turbulent flow near a solid boundary where the velocity profile is logarithmic:

N = chu.p(n +n,) (6.1.7)

where 7, is the roughness height.
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For steady flow with no surface stress, Rossby and Montgomery (1935) de-

duced

N = chuyn(l — n). (6.1.8)

This parabolic form of N is zero at the bottom and top and reaches its maximum

value at n = 0.5 with

Niax = 0.25kht.s. (6.1.9)

In a laboratory experiment, Jobson (1968) and Jobson and Sayre (1970) de-
termined a parabolic distribution for the eddy viscosity similar to that described
by Equation (6.1.8) in which u.p is replaced by the shear velocity, u., of the fluid.
This velocity was determined from the shear stress which was assumed to vary
linearly from zero at the bottom to a value of 7AS at the surface where 7 is the
weight of a unit volume of water and § is the energy gradient. Knight et. al.
(1980), in their survey of the Great Ouse estuary, also plotted out the profile of N
with depth. The measured values were much less than those predicted by Equation

(6.1.8).

The eddy viscosity is also modified by the stability of the fluid. For example,

Munk and Anderson (1948) introduced
N = No(1 + 10Ri)~/? (6.1.10)

where Ny is the eddy viscosity in conditions of neutral stability and Ri is the

Richardson number defined: by
. ghdp ou\?
Ri = ——p—g" E" . (6.1.11)
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The Delft Hydraulics Laboratory (1974) have investigated many different relation-

ships for N in cases where a density gradient exists.

From the discussion so far it seems that an exact formulation for N is difficult
to acquire. Certainly, assuming N to be independent of time is physically unreal-
istic. At the very least, N should be considered to vary with time according to the
instantaneous values of |u.p|h or |[U|h. The values of N determined in field investi-
gations vary greatly. Indeed, Bowden and Fairbairn (1952) were unable to deduce
the dependence of N on depth because of the large range of values obtained from
different stations in the Irish Sea. They found values ranging from 10~3 m2sec™}
to 1072 m2sec™!. Bowden et. al. (1959) estimate that the errors which occur in

their values of N could be in error by as much as 50%.

When a wind is acting on the surface of the fluid, a formulation for N is still
difficult to obtain from observation. Bowden (1964) relates N to wind speed, W,

measured at a height of 15 m by
pN =W? for W > 6 msec™!. (6.1.12)

Bengtsson (1973) experimentally examined the variations of the eddy viscosity
with depth in a wind affected lake. The eddy viscosity was found to increase

linearly with wind speed.

Koutitas and O’Connor(1980) also measured the eddy viscosity occurring in
wind induced flow in a closed channel. Their resultant profile for N is shown in

Figure 6.2
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Huang (1979) presents a list of values of N which have been experimentally
deduced for both wind and tidal problems by different authors. He also gives forms
of N which have been used in theoretical models. The experimentally determined
values of N were found to vary considerably, from 0.1 m?sec™! to 4x1073 mZsec™1.
Similarly, the expressions which have been used in theoretical models also vary
greatly from a linear dependence on depth to a parabolic and even an exponential

dependence.
§6.2 THE VERTICAL EDDY VISCOSITY USED IN MATHEMATICAL MODELS

The first workers examining the flow regime in wind forced motions occurrfing
in shallow sea and estuaries assumed the eddy viscosity was an absolute constant
(see, for example, Bowden (1953), Tarayev (1958(a)), Birchfield (1971), Heaps
(1972) and Cooper and Pearce (1980)). Cooper and Pearce (1982) develop a three
dimensional model for analysing the currents produced in seas during the passage
of storms. They use Galerkin techniques in their model and it is capable of coping
with any form of N which varies piecewise linearly with depth. However, they

used a form of N invariant over depth when producing any results.

Reasonable results have been obtained when using a constant form of N as
in the above models. However, a slip velocity condition at the bottom needed to
be used to achieve this. A similar requirement was observed in models of tidal
flow. Johns (1966) and Stolzenbach et. al. (1977) both obtained poor agreement
with observed results when a constant N was used in conjunction with a no-slip

124



condition. However, Raney et. al. {1980) used a constant eddy viscosity with a
no-slip bottom condition on velocity in a three dimensional storm surge model.
Like the tidal model of Lee (1969), which employs the same assumptions, this
model surprisingly produced good qualitative results but the model was not well

validated.

Using the constant eddy viscosity model with a slip condition, Heaps (1972}
also examined the sensitivity of the bottom current and the surface elavation to
the value chosen for N (see Figure 6.3). Figure 6.4 shows the velocity profiles
)for both u and v obtained using different values of N and r, the linear friction
coefficient. The profiles obtained are much more sensitive to changes in N than
r. Clearly, from these two figures, the value of the eddy viscosity coefficient can
significantly affect the results from an oceanographic model. The best value of N
which should be used is usually obtained by “tuning” the model with observed
results. If a constant value of N is not used then just as much care should be

taken in obtaining a good approximation for the variation of N with depth.

In a later paper, Heaps (1982) developed a three layered numerical model
to describe the motions of a stratified sea. This spectral model was applied to
the Celtic Sea which has a mean depth of about 100 m. The bottom layer of
the model was assumed to be of depth 60 m, the middle layer to be 15 m deep
and the top layer was 25 m deep. Within each layer, the density was assumed
to be constant but was different between layers. The vertical eddy viscosity was
modelled similarly. In the bottom layer, the eddy viscosity was taken to be Ny =
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10~2 m2sec™!, in the middle layer No = 1072 mZsec™! was used and in the top
layer N3 = 3x10~2 m2sec™!. The value of Nj is an estimate corresponding to a
wind stress of 0.1 Nm~2. The comparitively low value of N; was chosen to reflect
a situation of vertical stability in the thermocline, while the value of N; was taken
to be larger than N, since vertical stability in the bottom layer was comparitively
weak. However N; was taken to be smaller than N3 due to the separation of the

bottom layer from the wind force upper layer by the middle layer.

Davies (1977) also used a constant eddy viscosity with a slip condition in his
three dimensional model of a closed, rectangular rotating basin acted upon by a
homogeneous wind. He used finite difference techniques in the horizontal combined
with Galerkin techniques over depth. The effect of using different basis functions
is examined in later papers (for example, see Davies (1980(a)) and Davies and
Owen (1979)). Davies also proposed an eddy viscosity whose depth variation is
shown in Figure 6.5. The effect of varying Ny, N; and N2 on the vertical velocity
profiles is also examined. Results from this work can be found in, for example,

Davies (1980(b), 1982(a),(b),(c) and 1983).

In Davies (1981) a three dimensional ocean shelf model is developed. Both
stratified and homogeneous seas are considered. In the latter case, a constant eddy

viscosity was defined by

N =c|U)*/o (6.2.2)

where 0 = 10~ %sec™! and ¢ = 2x10~° were considered appropriate values for an
M, tide on a shelf. When the effect of a wind on a stratified sea was considered, an
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eddy viscosity formulation was used which did not vary with horizontal position
or time and had the vertical distribution shown in Figure 6.6. The eddy viscosity
was assumed to decrease linearly in the top 50 m of the water column with Ny =
5%x10~2 m2sec™! and N3 = 2x10~2 m2sec™!. This represents a surface layer in
which the wind generated turbulence decreases linearly with depth. Below the
surface layer, there is a layer of 10 m. thickness corresponding to the pycnocline.
Within this layer, turbulence is suppressed and this reduction is modelled by a
reduction in the value of the eddy viscosity to a value of N3 = 10~2 mZ2sec™2 in
the centre of the pycnocline. Below this layer, turbulence was assumed to be of
tidal origin and a constant value of N; = 1072 m2%sec™! was used throughout the

remaining depth of water.

Pearce and Cooper (1981) also developed a numerical model similar to those
of Heaps and Davies mentioned above. The form of eddy viscosity used was similar
to that shown in Figure 6.5 except N; = Ny. The value at the surface was chosen
to be 2.5x10~° m2sec™! and at depths below 5 = 0.8, an eddy viscosity given by
No = u4,h/12 was prescribed. The form near the surface was originally proposed
by Csanady (1978) while the latter formulation was previously used by Townsend
(1976). This model gives good agreement with the experimental results of Baines

and Knapp (1965) and Shemdin (1968).

There is an important feature of models such as that used by Pearce and
Cooper (1981). An expression to determine the bottom stress is usually required.
An equation such as (1.2.5(b)) or its linear equivalent is often used but Pearce and
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Cooper (1981) used a linear stress law given by
T = C,')pub_ (6.2.3)

The drag law coeflicient, C} which depends on the flow must be prescribed. To fit
the experimental data of Baines and Knapp (1965), a value of G} = 5x10~% msec™!
was used but to fit the data of Shemdin (1968), a value of C} = 2x10~2 msec™! was
required. The fact that this parameter may take a value within such a large range
makes the model difficult to apply to any real situation for which there are no

experimental results available with which the numerical model may be calibrated.

Simons (1971) and Leendertse et. al. (1975(a),(b)) also used layered models.
In both models, the fluid is divided into several layers within which the eddy

viscosity is assumed constant.

Since a logarithmic velocity profile is expected near the surface, Johnson

(1967) chose

N = g hu,,(1 —1n) (6.2.4(a))

near the surface and

N = khu.p (6.2.4(b))

near the bottom. The constants k&, and « are the “mixing constants” and so & is
Von Karman’s constant for wall flow and &, is the analogous quantity for surface
flow (0.4 < k, < 1.0). Johnson (1967) then postulates that the form of N for the
entire flow is

N = ku.aphn(l — 9)(1 + Bn) (6.2.5)
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for some constant @ and for which it was assumed that

Kslis/Ktip = 1. (6.2.6)

The results of a model using Equation (6.2.5) are compared with the experimental
results of Fitzgerald and Mansfield (1965) in Figure 6.7. Good agreement for the
vertical form of the horizontal veclocity profile was achieved near the surface and
bottom, but the agreement in the central regions is not good. The formulation
described by Equation (6.2.4) with &, = & was also used by Madsen (1977) in
a model of wind driven ocean flows. In the middle regions of the flow N was
assumed constant. Thus, the profile is similar to that shown in Figure 6.5 with
Ny = N, = 0. The slopes of the lines at the top and bottom are determined by

Equation (6.2.4). For very shallow water Madsen (1977) proposed 1, = 5.

A more complicated form for N was proposed by Dyke (1977) in his model of
the surface layer of an ocean acted upon by a steady wind stress. His formulation

was

N = Ny (1 — ah(n - 1))? (6.2.7)

for some constant o.

M¢Phee (1979) in contrast chose
N = u.,ch(1 — n)exp (cfh(n — 1)/ u.,) (6.2.8)

in his model of the effect of pack ice moving over the surface of a deep ocean.
This expression for N implies that the eddy viscosity reaches its maximum value
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just below the surface and decreases below that. The parameter f in the above

equation is the Coriolis parameter whilst ¢ was given by a function involving u.,,

N, f, hand n.

Thomas (1975) in his study of shallow basins acted upon by a steady wind,
used a linear variation of N as given by Equation 6.2.4(a}). A no-slip condition
on velocity was used at the bottom. An iterative scheme was developed so that
the analytic formulation for u was forced to be asymptotic to a logarithmic profile
at the bottom. Good results were obtained but only with great computational
effort and complexity. These computational difficulties caused Witten and Thomas
(1976) to abandon this method of solution in favour of more conventional methods.
Stolzenbach et. al. (1977) found that analytic results obtained using Equation
(6.2.4(b)) and the equations describing wind driven flow in an infinite channel and

a channel of finite length were in poor agreement with laboratory results.

Tarayev (1958(b)) used a vertical eddy viscosity coefficient with only a linear

dependence on %, namely,

N= (6.2.9)

for some constant 7, in his model of an oscillating wind over a shallow sea. He
states that a deficiency in his model is the neglect of time dependence in his formu-
lation of N and concludes that any a priori attempt to define such a dependence
would be extremely difficult unless it is defined to depend on w. or u, as in several
of the previously discussed models.

134



Analytic solutions describing the near bed velocity profile in a tidal channel
in which an oscillating boundary condition is imposed on the velocity at the open
of the channel, are presented in Lavelle and Mofjeld (1983). A time dependent
eddy viscosity coefficient whose vertical profile varied as shown in Figure 6.5 (with

N, = N,) was used. The actual formulation used was

_ {nlublhn nr<n<m (6.2.10(a))

kluplhny n>m

in which %, is the roughness height and u; is a function of time and is a modified

bottom friction velocity defined by

wp = [u2, + 2u2y(t + T/4)] '/, (6.2.10(b))

where T is the period of the oscillation of the velocity at the open end and € is a
constant given the value of 0.2. The height, n,, at which N becomes a constant
was determined by the intensity of the flow. An alternative form of N for which
numerical solutions were obtained was also used by Lavelle and Mofjeld (1983). It

was

N = k|up|nh exp(—nh/n1) (6.2.11)

which describes an eddy viscosity increasing linearly above the bottom to reach a

maximum at n; and then decreases in value.

Ottesen-Hansen (1975) has carried out a numerical study of the effects of a
wind stress acting on the surface of a deep stratified lake. Only the upper layer
of the lake was considered and in this layer N was assumed to be a constant over
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nearly the whole depth. At the bottom and surface of the upper layer, the eddy
viscosity was assumed to decay logarithmically to zero. Using this formulation,

the entrainment velocity of the upper layer was successfully modelled.

The form of vertical eddy viscosity used by Nihoul (1977) and Nihoul et. al.

(1980} in their three dimensional model of wind affected continental seas was

N(z,y,2,t) = F(z,y,)A(n) (b +¢)? (6.2.12)

where F' and X are some functions. A parabolic form of A was used and it was

given by
A(n) =n(1 —n/2) (6.2.13)

The function F was determined from the bottom stress, the depth averaged ve-

locity components, the surface stress and surface slopes.

Both Engelund (1978) and Koutitas (1978) also used parabolic formulations
for the eddy viscosity in studies concerned with wind driven flows. The former

proposed

N = ku, ,hn(n — 1) (6.2.14)

while Koutitas (1978) used

N = Non(n-1) (6.2.15)

for some constant Ny. Both of these formulations were found to provide reasonable
results when compared with the laboratory experiments of Stolzenbach et. al.
(1977).
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Liggett (1970) proposed the formula

N-= No + (N1 - No)ﬂn (6216)

in his studies of lake circulation. In this equation the parameters No, Ny and n

are all constants and Liggett used n = 0.5 in all test runs.

From the above review of the forms of eddy viscosity which have been used
in models of wind driven flows, it is apparent that many varied formulations have
been used by different workers. The above review is concerned mainly with wind
driven flows although most of the formulations presented could also be used in tidal
flow models. Likewise, some formulations which are used in tidal flow problems
could also be used in wind driven flow problems. Some further formulations which
have been used in tidal flow models may be found in Kagan (1979), Swift et. al.
(1979), Johns (1966, 1968, 1969, 1970), Johns and Dyke (1971), laniello (1977),
Tee (1979), M¢Gregor (1972), Jordan and Baker (1980), Noye et. al. (1981),

Bowden (1964), Kajiura (1964), Ricco (1982), Blumberg (1975) and Owen (1980).

§6.3 TURBULENT ENERGY CLOSURE SCHEMES

As has been shown, the Boussinesq approximation is a popularly applied con-
cept. Unfortunately, the exact form of N is difficult to establish. A wide range
of formulations have been measured or proposed for use in various oceanographic
models. Indeed, the comment of Shanahan and Harleman (1982) that “the ver-
tical eddy viscosity will be a problematic parameter for the circulation model” is
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frustratingly accurate. In recent years, however, work has been carried out which
enables the form of the eddy viscosity to be calculated in addition to the other
flow properties. This is a reasonable approach because N is not a property of the
fluid but rather of the flow itself and so is difficult to quantify without knowledge

of the flow.

There are two types of turbulent models commonly employed in models of
wind forced or tidal flows. These models are referred to as one-equation and
two-equation models. Both use a transport equation for the kinetic energy of the
turbulent motion (per unit mass). For high Reynolds’ number this equation is, for

non buoyant flows,

ok ok 8 [u, (u;-u;- P)] ——0u; O u!

3t %oz - 8z %i8z; "0z, 9z,

2 p

(6.3.1)

The exact form of the k equation given above is of no use as presented because new
unknown correlations involving u! terms appear. To obtain a closed set some extra
assumptions are made. Firstly, the diffusion flux is assumed to be proportional to

the gradient of k. That is,

(Y%, P _ N ok
( ) = (6.3.2)

for some constant og. This is a common assumption and is used in the derivation
of the usual transport equation for a scalar quantity. The last term on the right
hand side of Equation (6.3.1) is usually denoted by a scalar quantity, e. Expres-
sions enabling € to be obtained are given later in this section. Substituting these

assumptions and Equation (1.3.1) into Equation (6.3.1) yields

ok ok 0 N 0k OJu; Ouy\ Ou;
bl — = - — €. 6.3.3
ot M 0z; Oz (ak 61:,-) i i (8:5_,- + 3:5,-) oz, ¢ ( )
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Using assumptions such as those made in deriving the momentum equations ( for
example, neglecting horizontal gradients) simplifies Equation (6.3.3) to the usual

form of the k equation used in oceanographic models, namely,

£9-Iﬁ+u%+v%+w?—k-—ﬁ o 2+ ik 2 +l3_ gL (6.3.4)
at " “az 'ay  “on K2 |\on an w2om \ogon ) & O
A value of o = 1 is commonly used.

In one equation models, the dissipation of turbulent energy, €, and the eddy
viscosity N are related to a length scale, [. The Kolmogorov-Prandtl law is used

to define N by

N =g (6.3.5)

with ¢’ & 0.08. The dissipation is usually modelled by

e = 343121, (6.3.6)

It remains now only to specify I so that a value for N may be obtained.
However, a formulation for { is difficult to establish. Johns (1977 and 1978) and
Vager and Kagan (1969(a),(b) and 1971) suggest using Von Karman’s expression

for I, namely,

chkl/2]-1
~ o (k211 Jan

(6.3.7)
which is solved subject to I = khn, at n = 0.
The appropriate boundary conditions for Equation (6.3.4) are somewhat con-

tentious. In many turbulent models the boundary conditions are not applied at
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the bottom but empirical laws are applied at a small distance away from the wall.
The Reynolds stresses are assumed constant within this distance which leads to
a logarithmic velocity profile as mentioned previously. Also in this layer the pro-
duction and dissipation of k are assumed to be in equilibrium and this leads to

the condition
k=uZ//c atg=mn, (6.3.8)

where n; defines the bottom boundary in which the Reynolds stresses are constant.
However, many workers using equations of this type in oceanographic modelling of
the type being discussed here have used boundary conditions at the bottom, n = 0.
Because of this, and also to be consistent with the formulation of the momentum
equations for which a boundary condition at n = 0 is employed, a condition for k
at n = 0 is given here. Because of the no-slip condition for velocity at n = 0 the

fluctuating velocities u! are also equal to zero at n = 0. Thus,

k

0 at n =0. (6.3.9)

At the surface, the boundary condition is more difficult to quantify. If there is no
surface stress, then, as for other scalar quantities, the surface is considered to be

a symmetry line. Thus,

g% =0 atp=1 (6.3.10)
is the condition when there is no surface stress. If a surface stress does exist then
the top boundary condition is difficult to determine. There is little experimental
evidence to provide assistance for a correct formulation. A reasonable approxima-

tion would be to consider the stress imparted at the surface by a wind to behave
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like the stress imparted by a solid boundary. That is, the surface is considered to
behave like a wall. Thus a condition analogous to Equation (6.3.8) could be used,

namely,

2
Uls

k= e at n = 1. (6.3.11)

The effect, if any, of using Equation (6.3.10) or (6.3.11) will be examined in relation

to wind driven flows, in the next chapter.

Johns (1978) used a one equation model to study oscillating tidal flow in
a channel of variable width and depth. Vager and Kagan (1969(a)) applied the
method to examine the flow in the bottom turbulent boundary layer in a homo-
geneous deep sea. In a later paper, Vager and Kagan (1969(b)) studied the tidal
flow in a shallow sea. The model was extended further in Vager and Kagan (1971)
to account for a stratified boundary layer in a tidal flow. In all cases, N was found

to vary considerably over a tidal cycle.

Instead of using Equation (6.3.6) to determine ¢, a transport equation similar
to Equation (6.3.4) may be developed for . Using assumptions similar to those

used in deriving Equation (6.3.4), the following equation is obtained

(6.3.12)

Lo [(n)" (2] 12 (o) o
 kh? dn dn k2 0n \o. 07 k

where ¢; = 1.44 and ¢, = 1.92. In this two equation model the eddy viscosity is

defined by

2
N= °_’°€._ (6.3.13)



with ¢ = 0.09.

Using similar assumptions to those made in deriving Equation (6.3.8), a wall

condition for € may be obtained. It is

at n = 9. (6.3.14)

In most numerical models, the value of 9, required in Equations (6.3.8) and
(6.3.14) is taken to be the distance the first grid point is above the wall. The depth
of the viscous sublayer n;, can, however be related to a non-dimensional depth,

nt, by

ntv

m = (6.3.15)

Uih
where 30 < nt < 100 (see Rastogi and Rodi (1974)) and the numerical grid is

chosen so the Equation (6.3.15) is valid.

However, as was the case for the k equation, a boundary condition applicable
at the bottom is required. Launder and Spalding (1974) report that measurements
indicate that the turbulence energy dissipation is constant in the immediate vicin-

ity of a wall. This suggests using

de
—_—= = 0. 6.3.16
3 0 atp ( )

This was the boundary condition used by Lam and Bremhorst (1978) in a low
Reynolds number k — ¢ model. However, Jones and Launder (1972) reported

difficulty in this approach. Instead, they chose to add an extra term to the k
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equation which is exactly equal to the dissipation rate at the wall and then use € =
0 at the wall. Jones and Launder (1972) and Launder and Spalding (1974) calculate
that the dissipation at the wall is equal to 2v(8k!/2/3z;)2. For flows considered
here we have consistently neglected viscous effects and so a good approximation

at the boundary must be

e=0 atn=0, (6.3.17)

with the k equation remaining as shown in Equation (6.3.4). This is the condition
used in this work. The effects, if any, of using either Equation (6.3.17) or Equation

(6.3.16) will be examined in the next chapter.

If there is no surface stress, then a symmetry condition applies for e. Thus,

de
— =0 tn=1. 3.1
B at 9 (6.3.18)

A condition analogous to Equation (6.3.14) will be used at the surface when there

is an applied wind stress. Combining Equations (6.3.14) and (6.3.15) yields

4
U,y

= =i tp=1. 6.3.19
e=SaF " ( )

The effect of using Equation (6.3.18) and (6.3.19) when there exists a wind stress

will be examined later.

Such two equation models have been used by Blumberg and Mellor (1978)
in their numerical model of coastal seas. Svensson (1979) extended the above
turbulent equations to accomodate rotating flows. His model was found to compare
favourably with laboratory experiments of channel flow and wind induced channel
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flow. The turbulent equations are examined in detail by Mellor and Yamada
(1974). Several turbulent models are presented and all compare favourably with
one another. Marchuk et. al. (1977) used a two equation model to study the

temperature profile occurring in the upper ocean.

A major drawback of turbulent energy closure schemes is that the amount of
computational effort required to solve hydrodynamic problems increases apprecia-
bly. In an effort to overcome this problem, Smith (1982) formulated an expression

for N like

N = M(z,y,t)F(n) (6.3.20)
where M is a function determined using the depth integrated turbulent kinetic
energy and the dissipation of such energy. Using the depth integrated turbulence

equations greatly reduces the computational effort. The vertical profile of eddy

viscosity was determined by F(n) and two forms were proposed, namely,

F(n) = (1 —n)'/eri(4n) (6.3.21(a))

and

F(n) = 2an exp(—an) (6.3.21(d))

where a was determined to have a value of 3.2. Results from this model compared

favourably with results from a two equation turbulent model.

The two equation model will be used in the next chapter together with analytic
solutions involving various formulations for N to model wind induced flow in a

channel. Results will be compared with laboratory experiments.
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CHAPTER 7

WIND DRIVEN FLOW IN A CHANNEL

7.1 The Equations For Wind Driven Flow In a Channel

The previous chapter presented many different formulations for the eddy vis-
cosity profile which have been used in the study of both wind forced and tidally
induced flows. Some of the more commonly used profiles will be used in this
chapter to develop analytic solutions to solve for the set-up and for the horizontal
velocity which occurs when a wind is blown over a long, narrow channel. The
vertical profiles of velocity and the set-up will be compared with results from
laboratory experiments. Finally, the performance of a numerical model which cal-
culates the eddy viscosity as part of the solution procedure will be examined. The
vertical profiles of N for which analytic solutions are developed are displayed in

Figure 7.1.

The problem which is to be modelled is essentially two dimensional; it has
variation in the z and z directions. The linear equations which are to be solved

analytically are, therefore,

du 8¢ 0 ou
at =~ Yoz + oz (Naz> (7.1.1{a))
a [° a¢
32 /_H udz = ~%5 (7.1.1(b))
u=0 at z=0,L (7.1.1(c))
u=0 atz=-H (7.1.1(d))

145



constant (Sec 7.2)
— — linear (Sec 7.3)
— — — quadratic (Sec 7.4)
—————— quadratic (Sec 7.5)
—— -— quadratic (Sec 7.6)
— —— —composite linear (Sec 7.7)
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and

pNg—:' = at z=0 (7.1.1(¢))

where H is the constant depth of the channel, N is the vertical eddy viscosity, u is
the horizontal velocity of the fluid and ¢ is the elevation of the surface of the water
above the mean water depth. The undisturbed surface water level is denoted by
z = 0. For the purpose of developing analytic solutions it will be assumed that
N varies only with depth and is constant with respect to time and horizontal
position. The density p is assumed to be constant. The wind stress at the surface

is denoted by 7,.

Boundary condition (7.1.1(c)) implies that the velocity and thus, using Equa-

tions (7.1.1(b) and (c)), the surface elevation and wind stress may be described

by

[e o]

u(z, 2,t) = z Up(z,t) sin{Kpz), (7.1.2(a)
$(z,t) = Y ¢p(t) cos(Kpz), (7.1.2(b)

Ty{z,t) = 2 7p(t) sin( Kpz), (7.1.2(c)

in which

K, = Bg— for integer p. (7.1.3)
The wind stress is assumed to be homogeneous in space varying sinusoidally
with time with amplitude 7o; that is,

1, = 10€""¢, (7.1.4)
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which may also be written as

4 = sin(Kon—
Ty = 'roe“’t-I: Z sin(H3n-17) (7.1.5)

n=1

Tp(t) = Tpe* (7.1.6)
where
At = — =
T, = {g’L ;'or P = 2n—1 _n 1,2,... (7.1.7)
orp=>2n n=12,...

and look for solutions for U, and ¢, of the form
Uy(2,t) = up(z)e*” (7.1.8(a))
$p(t) = Zpe'”* (7.1.8(b))

for odd integers.

Using the above formulations for u and ¢ together with the depth transfor-

mation described by

_z+H

n i (7.1.9)
results in the system of equations
d duy (1) 2 _ 2
2 (w22 - mim) =~k 27, (71100)
1
HK, | up(n)dn = —iw0Z),, (7.1.10(b))
0
up(n) =0, n=0 (7.1.10(c))
ﬂd“p(ﬂ) _ _
AT Tp, n=1L1 (7.1.10(c))

This set of equations is now solved for various forms of N(n).
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§7.2 N CONSTANT, VIZ. N(n) = No

The solution to this problem is available from Walsh(1974) and it is

4b7y = 08 Kop_1% . .
z,t) = sinh bH — Ry, cosh bH] e'?%,(7.2.1(a
(e, = T Y T 1 cosh bH] 74(7.2.1(a)

n=1

[e o] .
u(z,n,t) = L;‘]’:;Ob Yy = Kon-12 {sinh(bH(r) —1)) +sinh bH
n=1

K2n—1

+ Rgp—1[cosh(bH(n — 1)) — cosh bH]}e“" (7.2.1(b)

where
_ sinh bH([Nob® + €, K bH| + €, Kp[1 — cosh bH]
= T Cosh bH[Nob® + €, K bH] — €, K, sinh bH

g K
B =5

and

_ 9K,
6p = —]W

The equilibrium response due to a steady uniform wind is found by letting

o — 0 in Equation (7.2.1) to give

(o) = 5 (s-2). (7.2:2(a)
u(z,z) = 2’;;30,; (%’l - 1) . (7.2.2(b))

§7.3 N LINEAR, VIZ. N(n) = No+ (N, — No)n, N, # N
A linear formulation (see Figure 7.1) for N(n), namely,

N(n) = No+(Ny — No)n, N1 # N (7.3.1)
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for some constant values of Ny and Ny, is substituted into Equations (7.1.10). The

substitution,
£(n) = {(No + (N1 — Nojn}'72, (7.3.2)
transforms Equations (7.1.10(a)) into the following

du,  1ldu, _ gKpZ,)3

—_— 2 = — «Ja
& tEa H i eoL, (7.3.3)
where
o —4H% 10
M=
(Ny — Np)

The solution to this equation is (see Abramowitz and Stegun(1972))

9K, 2,

up(€) = A1pJo(A1€) + B1pYo(Ai §) + w0

(7.3.4)

where Jy and Yy are the Bessel functions of zero order and A,, and B, are

arbitrary unknown constants.

The boundary conditions (7.1.10{(c) and (d)) imply

dup 2T, H _
e A ¢=VN (7.3.5(a))

and

up(6) =0  at £ =\/No. (7.35(8))

The remaining equation to be satisfied, namely, Equation (7.1.10(b)) becomes

Vi 10Z,(Ny — Ny
[~ eupleyig = - 22220l (7.3.5(¢))
VNo
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For No # 0, Equation (7.3.4) may be substituted into Equation (7.3.5(b))
to yield an expression for Z,. This expression together with Equations (7.3.4)
and (7.3.5(c)) enables the unknown Aj, to be expressed in terms of By,. Finally,

Equation (7.3.5(a)) is used to solve for Byp. This process yields the solutions

up(§) = Blp{_Rlp (Jo()uf) — Jo(A1 \/JTO))

+ (YO(’\I €) — Yo(A1 \/170)) }a (7.3.6(a))
Zy=Bip— [~ RipTo(0v/Fo) + Yo (A1 v/ o) } (7.3.6(b))
with
Ry = [ (ri0avE) - 2 p 0 V) ) VL

_ (yl(,\l\/ﬁo—) - ’\“ngo(/\I\/J_VZ)) Vo + Tl ;gjlv?;?(l\lmq
/[(Jl(z\x\/ﬁ—) - AlmJo(*l‘/ﬁ‘;)) VM

2
(7.3.6(c))
and
Bio S (7.3.6(d))

- pA1 (N1 — No)V/ Ny (RipJi (A VN1 = Y1(01vV/Ny))

where T}, is defined by Equation (7.1.7).

The solutions for u(z,7,t) and ¢(z,t) are then immediately available from
the above system of equations using Equations (7.1.2) together with (7.3.2). For

completeness, they are presented below:
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u(z,n,t) = e f: Bizn—1sin(Kzn—1 I){—Rlzn—l [JO(ME(’?)) — Jo(M \/170)]

+ Yolhié(n) — Yo(Av/No) } (7.3.7(a))
and
g0t cos(Kap—17)
¢(z,t) = Zan— —K—%_—{—Rlzn-—lh()q\/lvo)

+ YO(AI\/JTO)} (7.3.7(5))

where £(n) is defined in equation (7.3.2) and the constants Ry2n—1 and Bign—; are
defined by Equations (7.3.6(c) and (d)) respectively. Note that the above solution

holds only for Ny # 0.

The equilibrium solutions for 4 and ¢ are obtained from the above analysis

by letting o — 0. For the case Ny # 0, the solutions for u and ¢ are:

em =B {1 a (e N g
: () = =20 (1 - Bl bog /) (=~ L/2), (7:350)
" )2 o235

- No (og VI, - SEY T _ )] (7:39(0)
" B = R (A e TeTAY (1390))
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§7.4 N QUADRATIC, VIz. N = (vVNo + (VN —VNo)n)?, N1 # No

In this section, solutions are obtained for the eddy viscosity function given by

(see also Figure 7.1)

N = {VRo+ (VN -V}, Bi# Mo, (7.4.1)

The substitution
£(n) =/ No+ (VN1 —/Nojn +(7.4.2)

is made in Equations (7.1.10) which then become

¢2 d:; gdd“g’—,\zu,, = _-"I‘:';Z"M, - (74.3(a))
VNy Z _

[ wterag = 2GR0, (7.43(0)

up, =0 at £ =+/No, (7.4.3(c))

) B T,H e
sw— T VN, (7.4.3(d))

where
o H?
o= ) 7.4.4
. p(V Ny — vV Np) ( )

The general solution to Equation (7.4.3(a)) is

K,Z

up = Agp€™ + Bypl"® + g—;—" (7.4.5)
where

ror = (~1£V1+4%) /2 (7.4.6)

and A, and B, are arbitrary unknown coefficients.
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Following a similar procedure to that used in the previous section yields the

following solutions for u, and Z, for the case Ny # O:

up = Bap {€7 = Np*/* — By (&7 = N %)}, (7.4.7(a))
wd ra r1
Zy=~Bu, gz { N5 - Rap N /2} (7.4.7(b))
where
T, H
B;p = r — = (7.4.8(a))
PV (VL = VG) (~Rapr N1 4y NP0
and
Ry = /——N NI'?/Q _ nT2l2 +Nr2/2( o /—N \+ o2 ( N N)
. "\ +1 o 0 ro +1 0 gHKZ " b= G
VN N _ N2} N2 A/, +——U2—(\/N VSTA
1 r + 1 0 0 r + 1 0 gHK}% 1 0
(7.4.8(b))

with T}, defined by Equation (7.1.7).

The exact formulation for u(z,n,t) and ¢(z,t) is derived from Equations
(7.4.7) with the aid of Equations (7.1.2) and (7.4.2). This procedure was out-
lined in the previous section. However, because these resultant equations are so
strongly related to the expressions for u, and Z, and are readily available from
these expressions, they will not be presented explicitly in this section or in the

following sections.

The following solutions are the equilibrium solutions for 4 and ¢. Once again,
these solutions are only valid for Ny # 0. With the parameters, Rj and Bj, defined
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as

e [ () v -5

log v/No log vV No
VA (log V; — 1) (log /N ~ 1)
[ TN log VN, ~log /Ny — log Ve + log \/]TO} (7.4.9(a))

and

v/No H log vNo
p(VN; — VNo) (—R.(vVWNo log /No + V/N1) — VNovNy)’

(7.4.9(b))

then the equilibrium solutions for u and ¢ are

= B! _ﬂg__ d ._ﬂe____l_ a
"‘”’“*B“"{l e, R“(ﬂvalogm e)}(”'“" )

and

_ Bino(i + RY/VI) (VNG — V) (z— L/2)

la) = gH? log /N,

(7.4.10(b))

§7.5 N QUADRATIC, ViZ. N = (N2 + (N? — N3)n)}/2, N1 # No

The solution to the problem for an alternative quadratic eddy viscosity (see

Figure 7.1) defined by
= (N2 + (N2 = N2)n)'?, Ny # Mo (7.5.1)

is developed in this section. Again, a coordinate transformation is made to facili-

tate the process of finding a solution. For this case

£(n) = {N2 + (N? — N2)n}'/” (7.5.2)

155



is chosen. This transforms Equation (7.1.10(a)) to

ldgup ~ Xu, = 9K, Z,

e = DY (7.5.3)

where

_AH%o
(NP — Ng)*

A =
The solution to this equation is available from Abramowitz and Stegun (1972) and
is

2436312 245 £3/2 K,Z
u, = £/ {Aa,,Hf}f,, (—%—) + Ba, H{7) (—%—)} 4+ 202% (754

Lo

where H f}g(z) and H i%(z) are the Hankel functions of the first and second kind
of order 1/3. The above solution could also be written in terms of Airy functions.
However, doing so further complicates the expressions for Asp and Bsp due to
Equation (7.1.10(b)) which necessitates a calculation of the form [ zAi(z)dz. Tt
is easier to work with an expression for u, as defined above and then, to obtain

numerical results, convert the results into expressions involving Airy functions.

Boundary condition {7.1.10(c)) may be used as before to derive an expression

for Z,. This results in

20:N5? N3 12 2N N2/
22 I NNz BE) +V/NoBgp HO) [ 2222— | 3.
: / /

3

(7.5.5)
Substituting the above equation into Equation (7.5.4) yields an expression for u,
which contains the unknowns As, and Bj,. Expressions for these unknowns are
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obtained using Equations (7.1.10(b) and (d)). This process results in the following

equations:

275 £3/2 2\ N3/?
up = Ba,,{—Rs,, (51/211}}; (_35_) VN.H) ( 2 ))
1/2 (2) 2)353/2 (2) 2A3Ng/2
+ ¢ 200 ——3—) ~VRHE), (R0 (15.6(a))

3

and

223N 223 N3/?
Zp — —BspgK { Rgp\/ Non}?i ( 3 ) + \/ NOH:{?; ( 3 )}

where

C[No @y (226N VEGNE ) 2,\3 N2
R O H
3p — A3 —2/3 3 9 1/3

Nl {g) 2/\3N13/2 N() (2) 2A3Ng/2 9 (4 (le - Ng)
_-—H_m( e A e el N C R e 7o
No iy (2eN5”) _ VRN poy (22857 _ Mgy (200
Xs —2/3 3 9 1/3 3 s —-2/3 3

AL s Ny o?(N? — N3
Y 2H (_33—“) (Ng + Lﬂ;?fi)] (7.5.7(a))
v

and

2HT,
a/2
Aale(Nf-Ng)( Rop HY),o (MJ_) + B9, (””J ))

Bs, = . (7.5.7(b)

For the purposes of computing the above expressions, it is convenient to now

use Airy functions and the following relationships:

51/2HS; (z_’\%fal_z) _ \/;f/‘: [A.- (—,\2/35) —uB; (—,\2/36)]
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= A4 (£), (7.5.8(a))
et (2257) = G [ (o) - (3o

3 \2/3
= B, (¢), (7.5.8(b))
3/2 %
¢ 52 (”‘{,f ) - ‘ﬁe/a [4: (-312¢) +uB: (-22%¢) |
=A_(¢) (7.5.8(c))
and
3/2 —5xe
et (P77) = Y [ () i (00
= B_(8), (7.5.8(d))

where A; and B; are the Airy functions (see Abramowitz and Stegun (1972)) and

A:- and B: denote the derivatives of these functions.

Hence, Equations (7.5.6) and (7.5.7) may be written as

up = Bap {—Rap (A4 (E) — A4 (No)) + A_(§) — A_(No)},  (7.5.9(a))
Z, = —Bapg—‘,% {~RapAs(No) + A_(No)} (7.5.9(b))
in which

- [ A (1 2]/

[B+(No]—B+(N1) 4 AN (v oy (1_ o’ )] (7.5.9(¢))

Az 2 gK2H
and
Bos = S5 R E = N (=R, B (W] 5 BT (7:5:9(d)
The Airy functions are calculated using
Ai(z) = c1 f(2) — cag(2), (7.5.10(a))
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Bi(2) = V3leL f(2) + cag(2)] (7.5.10(b))

where
=S ae(l) = .
=225 (3), G (75.11(a)
oo 9 23k+1
with
(a+ 1/3)0 =1
and

3F(a+1/3)r = (Ba+ 1)(Ba+4) ... (3 + 3k — 2)

for arbitrary a. The derivatives of the Airy functions are easily obtained from

Equations (7.5.10) and (7.5.11).

The equilibrium solutions are once ‘again obtained from the above result by

letting o — 0. The solutions for » and ¢ are as follows:

U,(:C t) . 2H7'0
Y p(N - N3)(1 +3RyNY

{-Rs(NS - &%) + 6~ No}, (7.5.12(a))

¢(z) = 3R,1o(z — L/2)

= B SR (7.5.12(b))

in which

R, = NZ(N;/3— No/2) + Ng/6

. . .5.13
NZ(N3/2— N3/5) — 3N3/10 (d5215)
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§7.6 N QUADRATIC, VIZ. N = N,n?+ Niyn+ Np

In this section, the system of Equations (7.1.10) are solved for the general

quadratic form given by

N(n) = N,n? + Nen + No, (7.6.1)
where
N, = (Ny — N, 1+ ——F7F—+ 2y ———— 7.6.2
( 0 m) ( Nm _ NO Nm _NO) ( (a'))
and
N,.—- N,
— g —m_ - .6.2(b
N; = 2(N No) (l + N, — No) (7.6.2(b))

which ensure that the value of N at the surface is Ny and at the bottom is Np.

The formulation for N(n) given above may be written in the form

N(n) = Ny(n + a)(n + B) (7.6.3)

where

_ Ny £+/N? - 4N, Ny

a,f = 2N, (7.6.4)
The above expression for N together with the depth transformation
&(n) =(n+B)/(B—a) (7.6.5)

are substituted into Equation (7.1.10). This yields the following system of equa-

tions:

du,
d¢?

d K,Z,H?
+ (26 - 1)7“5’1+,\4u,, = —g——”F"—, (7.6.6(a))
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/ " uydé = - (7.6.6(b))
¢

b (ﬁ - a)HKP ’
up(€) =0  at { =&, (7.6.6(c))
dup, HT, .
-G =at s alE=t, (168()
where,
Ay = —w0H?/N,, (7.6.7(a))
__B
& 7o (7.6.7(b))
and
_p+1
€ = s (7.6.7(c))

The general solution to the homogeneous form of Equation (7.6.6(a)) is

up = AgpF(a,b;1;€) + B4p{F(a, b;1;€)logé

> L(rﬁ’f))i Wlatn)— p(a) + 96 +n) — $(b) — 20(n + 1) + 20(1)]

(7.6.8)
for unknown coefficients A4p and By, and where
a+b=1,
(7.6.9(a))
ab = A4.
The function $(2) in Equation (7.6.8) is defined by
¥(z) = I'(2) /T(=), (7.6.9(b)
which implies
Y(z + 1) = ¥(2) + 1/z with ¥(1) = —9, (7.6.9(c))

and the function (z), is defined by
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(2)n =2(2+1)...(z4+n—-1)

=T[(z+ n)/T'(2). (7.6.9(d))

In the above equations
I'(z) is the Gamma function,
['(2) denotes the derivative of the Gamma function,
7 is Euler’s constant (7 = 0.5772156649...) and

F(a,b;1; €) is the hypergeometric function.

The hypergeometric function (see Abramowitz and Stegun (1972)) may be

simplified using the definition

F(a,b;1;¢) = ' Ef(a+n)1‘(b+n)§_n

T@rE) 2« T(i+n) nl (7.6.10)
which yields
oo n—1 n
Fla,b;1;6) = F(&) =1+ > _ [ +7+77 T (7.6.11)
n=1 y=0 )

The term in Equation (7.6.8) which involves the summation may also be

simplified giving

> ‘—‘"’(—,E'.’,’;i [¥(a + 1) — ¥(a) + P(b+ n) — $(b) — 29(n + 1) + 29(1)]

n=1
00
e E an gn,
n=1
(7.6.12)

where

—2A Ag + -1
- 3 4bn—l + s+ nin )
n

an

Gpn_1 (7.6.13(a))
and
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b1, (7.6.13(b))
with bo =1 and ag = 0.

The general solution to Equation (7.6.6(a)) may therefore be written as

up = AgF(£) + Bap {F(e) logé+ Y ane"} 4 Hole (7.6.14)
n=1

where F is defined in (7.6.11) and a,, is defined in (7.6.13).

Using procedures similar to those used in the previous sections, Equations
(7.6.6(b), (c) and (d)) may now be used in conjunction with Equation (7.6.14) to

give the following solutions for u, and Zp:

e B4p{—R4p (F(€) — F(&)) + F(€) log(¢) — F(&) log(€)
+ ) an(E" - {;)}, (7.6.15(a))

Z, = ”B4p;; { — R4, F(&) + F (&) log(6p) + Zanﬁb} (7.6.15(b))

in which

R4p:[f2(fa) £ F (&) log (&) +Zn T ET g -6 ) et
n=1

+ & E &5 — f2(&s) + & F (€b) log(&s)

st (s s /

o?F (&)
[Fl(fa) — Fy (&) + F(&)é — F(&)& + JHK2(f - a)] (7.6.16(a))

p
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and

By = ToH [ [oN,(6 — @)€0(6 — (= Rap F'(&) + F'(62) og (&)

[e o]
+F(E)/6+ Y annl™Y)], (7.6.16(b))
n=1
with the functions F’, F} and f; defined by
co n—1
(Ag + + nt
=6+ H 4 ’ ’ )6 , (7.6.16(c))
n=1 3=0
°°"1)\4+J+_1 )5"“ 1
fa(6) = Elog€— €+ ) 1'[ I (1ogg —~ m) (7.6.16(d))
n=1 3=0
and
F'(¢) = drig), 7.6.16(e))
d¢
The above solutions for u, and Z, are valid only for &,, & # 0.
The equilibrium solutions for this form of eddy viscosity are
log |€ — 1]
_ 4
u(z,n) = 470{ Ifb—1|+l
log|¢—1| . | — 1 iE—ll)}
— R} ( lo +log =—— 7.6.17(a
oglés— 11 16l T F [é (r:6.47(2)
and
Ns |£b = 1[ } ( L)
z) = — B, {I—R' log=>— 2 lz— = 7.6.17(b
8 = B logle — L' % [6l 2 (76470
where

Ry = [~(6 — 1)(log|€ — 1] = 1)/ log|§ = 1] + & — &
+ (& ~ 1)(log & — 1~ 1)/ log|&, — 1] /

(1 —log|é —1]) 1& — 1
[(68—1){ 1Og|£b'—ll lO |£ I +loglfs—1|_1}“fs(logfa—l)

T (1—loglép—1]), [&—
(& ”{ oglés— 11 5 &

+ &p(log & — 1)] (7.6.18(a))

]+log|€b—ll—1}
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and

pi=r [ [ome-oe (oo - B (- )]

(7.6.18(b))

§7.7 N COMPOSITE LINEAR

In this section a solution to Equations (7.1.10) is found for an eddy viscosity
profile made up of three distinct linear sections. Near the bottom, N is assumed to
increase linearly with height above the bottom to a value of Ny at n = n; which is
assumed to be the value of the eddy viscosity in the mid-depths, that is, N = Ny
for 7; < n < n2. Near the surface where n > 53, N is assumed once again to vary
linearly from a value of N; to a value of N7 at the surface n = 1. Hence, the eddy

viscosity is defined by
Nn)=q M m<n<n (7.7.1)
and this form is also displayed in Figure 7.1.

The solutions for u, and Z, in each depth section are available from the
previous sections. From Equation (7.3.4) we have that the solution for the velocity

in the bottom section, 0 < 5 < n;, which is denoted by uy, is

) ) K,Z
= AspJo ( ;’f‘) + B1,Yo ( ;f‘) 4+ 2 = (7.7.2)

where
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& = (No + Bin)'”?, (7.7.3(a))
A2 = —4H?%0 (7.7.3(b))

and

B N, — N,
/1 -

By (7.7.3(c))

Similarly, the solution in the upper section, 7 < # < 1, is denoted by u3, and is

A A K,Z
Uzp — ASpJO —5—53) + BapYO 563 -+ 9% (7.74)
ba ba Lo
where
¢ = {(Na + B (n — 1)}/ (7.7.5(a))
and
_Ni—N;
B; = 1 (7.7.5(b))
The general solution for the central region, ; < n < g, is
As?) . As7 dK,Z
Ugp = Agp CcoS (2—\/-7v_:) + ng sin (TNT) + -T‘;—p' (776)

The boundary conditions which apply to the expressions for u;p, u2, and usp

are:

u1p=0 at n =0, (7.7.7(a))
Ugp = Ugp at n =, (7.7.7(b))
du.lp _ d‘ng _
dn - dr’ a't r’ - r’l’ (7'7'7(6))
Ugp = Usp at n = 2, (7.7.7(d))
dusp  dusp _
3 D at n = na, (7.7.7(e))
pN dusp
— prmens —_— .7.
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and

L N2 1
HK, {/ Ulp +/ Uzp +/ uap} = —10Zp.
0 LM N2z

(7.7.7(9))

The above conditions yield seven equations enabling the seven unknowns A;,, Asp,

Asp, Bip, Bap, Bsp and Z, to be found. For Ny # 0 and N3z # 0, the following

set of equations may then be developed.

The last boundary condition, (7.7.7(g)) implies

HEK? VN,
zZ, (1— = P) :—2HK”{A1,, (\/JTlJ1 (’\5 M
5 1

o B

The remaining boundary conditions (7.7.7(a)-(f)) yield, in turn,

) + By, Yo (Ast N") + s _
1

o

AsvV' N,
AlpJO( sB\/ 0
1

PVIA VI A
Al,,J(,( 531 1)+Bleo( 2 ‘)

Asy . Asn
— Agp cos (ﬁ——}\%) — Byp sin (2\;%1> =0,
AsvV' N AsVN.
_Alle( 5B 1)—B,,,Y1( “'B ‘)
1 1

. Asm Asm
+ Agp sin (2\/J_VT) — Bap cos (2\/17: =0,
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AsV N AsvV N
(55 (45

A5 . [ Asm
— Agp COS (ﬁ—l\%) — Byp sin (ﬁ) =0, (7.7.8(e))
As\/Nl) _B,Y, (As\/M)
P
3

— A3pJ1 ( B3 B

(A A
+ Agpsin (#’%) — Bypcos (2 \;’%) =0, (7.7.3(f)

AsvV N Asy/ N 2T, H
A3pJ1 ( 5.B3 2) +B3pY1 (LB;_%) = —ﬁ. (7.7.8(9))
2

The above equations may now be solved to obtain solutions for the velocity in

each section and also for the elevation.

The equilibrium case may also be developed. The following solution applies

for the special cases of Ny # 0 and N2 # 0.

The equations which describe the velocity and elevation for the equilibrium
case are given by Equations (7.1.10) with ¢ = 0. After substituting the eddy
viscosity given by Equation (7.7.1) into this new set of equations, the following

general solutions are obtained for the velocity:

H?K,Z
Ulp = —g—"'EEuff + Alp log ‘El + Blp) (7.7.9((1))
1
H2K,Z
Ugp = _g_—pg_nz + A2p') + B2p7 (7°7'9(b))
2N,
H?K,Z
u3p e —g—B—nggg + A3p 108' 63 + B3p7 (7'7'9(6))
3

where, as before, u;, is the solution for the velocity in the bottom region, n < 7y,
u3, is the solution in the top region, n > 12, and uy, describes the velocity in the
central region in which the eddy viscosity is a constant.The variables, &, &3, By
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and Bs are given in Equations (7.7.3) and (7.7.5) and Asp, Azp, Aap, Bip, Bap

and Bj;p, denote arbitrary constants.

The above expressions for velocity are subject to the boundary conditions
(7.7.7(a)-(f)) as well the condition (7.7.7(g)) in which the right hand side is re-

placed by zero.

The last of these conditions implies

ZQHQKp{Nz No+N§—N?+n§—n?}

2 B} B3 3N,
N, N, — N,
+A1,, Ny log\/N, - = —Nolog No+ 24+ B, —=2
B;_ 2 Bl
- N, - N
+ Agp {’72 - i } +sz{ﬂ2 —m)} +Bap_2T1_
1 N,
+ ASpB_3 {Nz log\/N; — —= — Nilog vV Ny + —51-} =0. (7.7.10(a))

The other six boundary conditions imply

H2K,N,
-7 pr ° Zy+ Ayplog/No + Byp =0, (7.7.10(d))
N 2
g Ky (35 = ) 2y + Asg1og /s + Buy — Azgms — Bap =0, (1:710(0)
1
—gB*K, (= Z,+ A B _ 4y, = 0,(7.7.10(d))
P\ B, Nl ey, — 2T AT

N 2
—gH2 Kp <—.B_§ — 2”—]3;) Zp — Agpﬂg - ng + A3p log \/ Ny + B3p =0, (7710(6))

1 B;
— 2 —
gH Kp (Ba N1) Z Azp + Aap 2N =0 (7 7. 10(f))
WK, . Asp _ 2T H

The above set of equations may be written in matrix form as

Apx, = T,b (7.7.11)
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where r
Xp = (Zy Arp Bip Azp Byp Asy Bsp ),

oH\T
b=(000000 —
( PNz)

and the matrix A, is available from the system of equations given by Equation

(7.7.10).

A solution for the vector x, could be obtained from the above matrix equation
and then using Equations (7.7.9) and (7.1.2), solutions for the equilibrium velocity
u(z,t) and the displacement ¢(z) could be derived. However, as in the equilibrium
solutions given in the previous sections, the above solution may be simplified to

an expression which does not involve a summation over infinity.

Note that the elements in the first column of matrix A, all contain the factor

—gH?K,. Hence, we may write
A, = MC,, (7.7.12)

where M is the matrix A, except that the factor —gH? K, has been removed from
the first column and replaced by 1 so that M is now independent of the index p

and C, is a 7x7 diagonal matrix given by
C, = diag (—gH?K,,1,1,1,1,1,1).
Hence, the solution for x; may be expressed by
xp = Tp(MGC,)~'b (7.7.13)

and 1if
p=M"'b, (7.7.14)
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then

[ Zp T [ — quﬁKp il
Alp D2
Byp P3
Xp=|Azp | =Ty P4 (7.7.15)
B2p Ps
A3p pG
\-BSp R L ) 24 -

where p;,i = 1,...,7 denote the elements of the vector p. Using Equations (7.7.9)
and (7.1.2) together with the above values for the unknowns gives the following

equilibrium solutions:

T0(p1€3/B? + palogéi +p3) 0<n<my
u(z,n) = 1o(—p1n?/2N1 +pan+ps) Mm<n<n (7.7.16)
10(p1€2/B2 + pelogés+pr) n2 <9<l

Similarly, the solution for the equilibrium elevation ¢(z) is

__ToP1
¢(z) = gF(z: - L/2). (7.7.17)

§7.8 A TURBULENT ENERGY CLOSURE S CHEME

The turbulent energy closure scheme in which the eddy viscosity is calculated
as part of the solution procedure (see Chapter 6) will be used here to model the
same problem for which analytic solutions have been obtained in the previous
section of this chapter. In particular, the so-called k — € equations will be used
together with the usual equations of continuity and momentum to model the wind
set up and the horizontal velocity which occurs when a wind is blowing over a long

narrow channel filled with an incompressible fluid.

Because the physical problem is essentially two dimensional, equations in-
volving only a horizontal and a vertical component of velocity will be used. Also,
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because a numerical model is used to obtain solutions, the non-linear equations

are used. The complete set of equations is available from the previous chapter and

Chapter 1 and are:

g AU
5 T 5. =0 (7.8.1(a))
du du du 8¢ 13 . Ou
3 +u-é; +w$ =93, + 2 anNan' (7.8.1(b)))
1 a d
w= [naU - EhU(r))] i (7.8.1(c))
ok 0Ok ok N (ou\® 18 (NOok
— tu— — === —— == - 8.1(d
2 +uax++wan -2 (317) +h26n <0kaﬂ) e (7.8.1(d))
and
oc B 0c
at " "8z " Yo
__c1eN {0Ou 2 198 (N e co €2
= (3n> rr (af )~ s

This set of equations is subject to to the boundary conditions

u=20 at =0, L, (7.8.2(a))
u=w=k=€¢=0 at n =0, (7.8.2(b))
w=0 at p =1, (7.8.2(c))
u?,
k=t atn=1 (7.8.2(d))
e—i:’z—b— atnp=1 (7.8.2(¢))
KM = o
and
du ko
_—=— 7.8.2
o= (7.82(9)

Note that the explicit equation for the transformed vertical velocity, w, given by
Equation (7.8.1(c)) automatically satisfies the boundary conditions w =0 at n = 0

and n = 1. g
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A finite difference scheme is used to solve the above mentioned set of partial
differential equations and associated boundary conditions. A smoothly varying
grid spacing, based on the kappa method (see Noye (1983), is used in the vertical
direction since this permits more accurate differencing of velocities which change
rapidly over depth; in particular this process occurs in the boundary layers near
the sea floor and the sea surface. Constant grid spacings using a staggered grid

system as shown in Figure 5.1 are used in the horizontal plane.

The horizontal grid elements consist of the two points X and — used in
Chapter 5. At the —-points, the horizontal component of velocity is calculated.
All other variables are calculated at X points. The notation u[}, is used to
represent the approximation for u(z,n,?) computed at the — point of the ith
element at the kt* depth level at time nAt, where At is the constant time step.

The (k — 1)** and the kt* layers are separated by a distance Ang, that is,
ANk =Nk — Nk—1 ;kzl)---aND (783)

where nj defines the height of the kt* layer above the bottom of the channel and
there are (N D + 1) depth levels. The distance between each depth layer is given
by the kappa method of Noye(1983) and so Ang = Ang_1{1 — kAng_,) for some
constant x. The k = 1 layer is at the bottom of the basin, that is, at n =0, whilst

the surface, n = 1, is defined by k = ND.

The governing equations are discretised in the form

n

i =0, “ (7.8.4(a))

+_.
‘ oz

d¢

ot
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ou |" du |® du g (¢ " 8¢ |"
It |« 9z |; M |k 2\ 0z |; dz |;
1 (8 _oul|® 9 _oul|"!
+— | —N— —N— , 7.8.4(b
2h° (3’? o ;e O 9n |k ) S Al
L O O] N (L0 (NP
Bt |, Oz i On i K \On) L 2% \Om \0kdn) |
8 (NAk\ "™\ 1/, . wn
an (aa) L —§(€.k+€|.k ) (7.8.4(c)
a—e n +u‘3_€ n _H‘)ﬁ ﬂHCQEN (5_1.&)2 n
Ot | 0% ik 0N ik kh? \ 91 ik
1 (8 (Noe\|” 8 (Nae\|*" €
— | == +——= —ca—| ¢PFt, (7.8.4(d
97,2 (37) (0’E 31}) ik on (0’5 37)) ik ) 2k i k I:,k ( (d))
1[ 8 ] "
n = |p—U—- —hU 7.8.
olte = 1350 - 5] | (7:84(0)
and
Nity = R /el (7.8.4(f))

Equations (7.8.4(a)-(d)) are used together with values of ¢, u, k and € at the

nt? time level to calculate the value of these variables at the new time level (n+1).

Equation (7.8.4(a))

is calculated first, providing an approximation for §|:-""1 using

values for U calculated at time level n. This value of ¢ is used in the time and space

centred approximations for the momentum equations to provide an approximation

for u at the new time level (n+1). Once this value for u has been obtained, a more

accurate approximation for ¢ is calculated using an equation like (7.8.4(a)) except

that this time an average of the velocity components at time n and (n 4 1) is used

when approximating the velocity term in this equation. The remaining equations

(7.8.4(e) and (f)) are all explicit and use these values to calculate N and w at
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the new time level. Note that the dissipation, €, which appears on the right hand
side of the turbulent energy equation involves a term at the (n + 1) time level. It
is therefore necessary that Equation (7.8.4(d)) be solved before (7.8.4(c)). Note
also that the second order derivatives with respect to n which appear in Equations
(7.8.4(a)-(d)) also involve terms at the (n 4 1) time level. Time centering in this
manner results in an implicit scheme which contributes to the overall stability of

the method.

The discretisation of the individual terms in the governing equations is now

discussed.

All the time derivatives are approximated by the forward time form

3¢

at

"

T Al P - o) +o{at}. (7.8.9)

Centred differencing is used to model all the spatial derivatives. For example,

n

a_u.
oz

_ 1
ik 4Az

(uP —ulix) + O {(A2)%}. (7.8.10)

Because a variable grid spacing is used in the vertical, to keep the differencing
second order accurate, the following formula must be used for derivatives with

respect to n

du |" 1
dn ik e AN ANkt 1 ( Nt Met1(Tk )u,,k_1 + ri(re )”:,k)
+ O {AnkAmp} (7.8.10)

where rx = Angy1/Ank + 1 (see Noye (1983)). The corresponding formula for
the second order derivatives with respect to 5 is derived by first using Equation
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(7.8.10) with u replaced by Ndu/d1, for example, and the three depth levels are
taken to be the kt*, the level halfway between the k** and (k — 1)t*, denoted
(k —1/2) and the level (k + 1/2) which is halfway between the k** and (k + 1)**
levels. This yields an equation containing derivatives at levels (k—1/2), (k+1/2)
and k. At the kt* level, Equation (7.8.10) is applied. Centred differences are used
to represent the first order derivatives at the two levels (k —1/2) and (k + 1/2).

For example,

n

du
on

Ulpy1 — Uik 2
= = 4+ 0 {(Ame+1)?}. (7.8.11)

ik+1/2 ANkt
This procedure yields the formula

0 du\ |" g ~ B
ar Var) | = riage L~ DOy + Nl
an ( 617) ik re(Ang)? [( k ) k=1 +1,k 1)

~ (e~ ) (NP + NPy i
u:}‘k
7k (A7 )? (Ank+1

+ [ (An (0 + )

— (re — 1)(A'Ik+1)2(N3k—1 + N?+1,k—1)
+ ric(re — 2)2 (Ang)? (N + ?+1,k)]
Ukt o o
" :‘ + N’."'
rk(Arlk+1)2 [( k +1,k)
+ (rk — 2) (N, + NP )| (7.8.12)

where Nn;x = (NP, o + NP)/2.

The integrals which appear in the equations are computed using the Trape-

zoidal rule. For example,

1
U=/ udn
0

n

[Anl(u:{o +uly) + Ang(ul; + uﬁQ) +...
1

1
2
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if there are (ND + 1) depth levels of variable spacing.

All of the boundary conditions for which boundary values are known are
easily handled. These values are used in the finite difference equations applied at

neighbouring grid points.

Derivative conditions are somewhat more difficult to incorporate. When ap-
proximating the derivatives with respect to 5 at the boundaries, second order
accurate differencing has been used. For example, at the surface, n = 1, the

{following scheme was used:

du
dn

n
! r+ 1 n 7y n 1 0 ]
= u” tie—ma—y" [T —; ~
i,ND A’?ND( g OND T e RNDEI T )N D=2

T1—1

(7.8.14)
in which ry = Anyp_1/Anyp + 1. A similar method as was used to derive
Equation (7.8.12) was then used to construct the surface double derivative ap-

proximation, giving,

ad du
an (”%)

“':“,ND
(Anyp)?

+ulNp-1 [—2(Nin+1,ND +Nlyp_1) —

n
37’0

=2 (H*,( +H"

i ND AﬂND( i+1 )

[_4(N|F+1,ND + N'np_1) +

Af)ND—lNir:ND—l]
Anyp + Annp-1
(Annp—1 — A'IND)N:!,IND—I]

AnNp—1

—N©
ND-1 ] . (7.8.15)

+ Ui Np—2 [
' (Annp + Annp—1)AnND_1

If required, a similar expression may be used for derivative conditions at the bot-

tom.
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Modelling the equations as shown results in a tridiagonal system of linear

algebraic equations which must be solved. For example, the value of ut! for

ik
k=1,...,ND may be found from a system like
ATt + BE O ol =D, k=1,...,ND -1 (7.8.16)

in which A;‘,;:l, B}, CPt! and D! are known and ufd' = 0. Systems of
this form may be solved by the very efficient Thomas Algorithm for tridiagonal
systems of equations described by Noye (1983). Note that the formulation used
for the derivatives in the vertical direction at the surface (and at the bottom,
if required) need to specially incorporated into this system before the Thomas

Algorithm can be applied. For instance, consider the system of equations (7.8.16).

. . . . - "+1 n+1
Using Equation (7.8.15) results in an expression connecting terms ¥; n'p, %; Np_1

and u:"'}\}lD_z. However, Equation (7.8.16) with £ = ND — 1 also contains terms

i n+1 n+1 n+1 4 U n+1
in w?%h, ulyp_y and ¥y p_o which may be used to eliminate uiyp_, from

Equation (7.8.15) thus yielding an expression involving only terms in u:-‘jle and

u;"}*'le_l in the set of equations obtained at the surface. This gives the additional
equation

Arfrulft 4+ By 'upft =DP, fork=ND. (7.8.17)

1,

The system formed by Equations (7.8.16) and (7.8.17) is now in the required form

for solution by the Thomas Algorithm.
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§7.9 RESULTS

The analytic and numerical solutions which are presented in the previous
sections are now used to analyse the performance of the various formulations for
the eddy viscosity. Firstly, the equilibrium cases are examined. Each solution
is in turn discussed and then compared with each other. The analytic solutions
are then compared with some laboratory experiments. The performance of the
k — € model is also analysed by comparison with these experiments. Finally, the

unsteady oscillating solutions are discussed.

In Figure 7.2 velocity profiles are displayed which have been obtained using
the equilibrium solution for the velocity in which the eddy viscosity has a constant
value, Ny (see Equation (7.2.2)). The profiles are normalized with respect to
the velocity obtained using a reference eddy viscosity value of N. The effect of
increasing the eddy viscosity relative to the base value of N is examined. The
value of N is arbitrary. The same normalized profiles will result using any value
of N. Note that if this model was being used to provide quantitative profiles for
a given basin, the actual value of N which needs to be used would have to be

obtained by comparing, say, the predicted set-up with a measured set-up.

From Figure 7.2, it is clear that the velocity profile which is obtained is very
sensitive to the valu; of No. As Ny is increased, the velocity is greatly reduced.
Doubling the value of the constant eddy viscosity more then halves the velocity
values.

179



depth

=

0 | T 1 | T [ |
-0.6-0.4-0.2 0 0.2 0.4 0.6 0.8 1.0

velocity u/us
FIGURE 7.2: Vertical profile of velocity oblained with various values of consiant
eddy viscosity (results are normalized with respect to the surface velocity obtained
when the eddy viscosity, Ny, is equal to the constant value, N ).
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FIGURE 7.3: Vertical profile of velocity obtained with a linear eddy viscosity for .
different values of Ny and N (results are normalized with respect to the surface
velocity obtained with No = N and Ny = 10N ).
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FIGURE 7.4: Vertical profile of velocity obtained with the quadratic eddy viscosily
defined in Section 7.4 for different values of No and N, (results are normalized
with respect to the surface velocity obtained with No = N and N, = 10N ).
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FIGURE 7.5: Vertical profile of velocity obtained with the quadratic eddy viscosity
defined in Section 7.5 for different values of Ny and N, (results are normalized
with respect to the surface velocity obtained with Ng = N and N, = 10N ).



In Figures 7.3, 7.4 and 7.5 similar results are displayed which have been
obtained using the formulations for the eddy viscosity presented in Sections 7.3,
7.4 and 7.5. That is, results from the linear and the first {wo quadratic forms for N
are displayed. Once again, the results have been normalized with respect to certain
base values which in this case have been chosen to be Ny = N and N; = 10N.
The profiles which are shown in these figures are very similar. In all cases, when
the value of Ny, that is, the value of the eddy viscosity at the bottom, is greater
than the value at the surface, N;, the magnitude of velocity is considerably less
than those obtained using values of Ng < Nj. Also, when Ny > Nj, the profiles
are reasonably insensitive to changes in the relative values of No and Ny. These
profiles are all considerably different from the profiles obtained using the more
conventional situation in which N3y > Np. For the two profiles shown in each
figure for which Ny > N, there is only a slight difference in the profiles between
each figure. These profiles also show that for the three formulations of eddy
viscosity considered in these figures, the profiles are less sensitive to changes in
the value of the eddy viscosity than was the case for the constant eddy visosity.
For example, decreasing the relative value between Ny and N; from ten to two,
decreased the velocity profile by only about 20% in the upper layers and 40% in
the lower layers. It is also apparent that the second quadratic formulation (Figure
7.5) is less sensitive to changes in the relative values of Ny and N; then is the case
for the first quadratic formulation (Figure 7.4). There is also a clear difference in

the profiles between these two figures although the basic shape is similar.
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A substantial difference between the previous velocity profiles and the velocity
profile obtained when using the quadratic formulation of Section 7.6 is evident
in Figure 7.6. The profiles in this figure have all much the same value in the
mid-depths. If the bottom and surface values of the eddy viscosity, No and Ny,
are kept constant and the value of the eddy viscosity in the mid-depths, Nm,
is increased, the resultant profiles of velocity are substantially decreased. There
is also a difference between the profiles as the relative values of Ny and N, are

changed and Ny, is kept constant, although these differences are only slight.

Similar behaviour can be observed in the profiles displayed in Figure 7.7
which displays the results obtained using the composite formulation for the eddy
viscosity (see Section 7.7). The results in Figure 7.7 are obtained using n; = 0.25
and 7o = 0.75. Figure 7.8 displays profiles obtained for this particular eddy
viscosity formulation for different values of the parameters ; and n2. If 52 is kept
constant, and n, is changed, there is very little difference between the velocity
profiles especially near the surface. If ; is kept constant and 5, is changed, there
is a larger difference between the velocity profiles at the surface but very little

difference near the bottom.

The next series of figures examines the performance of the various analytic
models when compared with the experimental results of Baines and Knapp (1965),
Fitzgerald and Mansfield (1965) and Koutitas and O’Connor (1980). In all cases,
the velocity profiles are normalized with respect to the surface velocity, u,, ob-
tained at p = 1.
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FIGURE 7.6: Vertical profile of velocity obtained with the quadratic eddy viscosity

defined in Section 7.6 for different values of Ny, Ny and Ny, (results are normalized
with respect to the surface velocity obtained with No = N, N; = N and N, =5N).
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FIGURE 7.7: Vertical profile of velocity obtasned for the composite linear eddy
viscosity defined in Section 7.7 for different values of No, N1 and N» (results are
normalized with respect to the surface velocsty obtained with No = N, Ny = 5N
and N; = N). The parameters, n, and n; are given the values 0.25 and 0.75
respectively.
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FIGURE 7.8: Vertical profile of velocity obtained for the composite linear eddy
viscosity for different values of n; and ng with No = N, N; = 10N and N3 =N
(results are normalized with respect to the surface velocity obtained with n, = 0.25
and ng = 0.75).
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FIGURE 7.9: Plots of the wind driven velocity profile in a channel of uniform

depth as recorded from ezperiments compared with the analytic solution obtained
with constant N.




Figure 7.9 compares the velocity profile obtained using a constant eddy vis-
cosity with the experimental profiles. Clearly,the analytic profile is not a very

good approximation to the observed profiles.

Figures 7.10, 7.11 and 7.12 respectively compare the profiles obtained using
the linear formulation for the eddy viscosity, and the two quadratic formulations
presented in Sections 7.4 and 7.5. The relative values of Ny and N; used in
these figures were found to provide profiles which best fitted the observed results.
As expected from the results in the previous figures, the profiles obtained using
each of these three formulations for the eddy viscosity are very similar. In each
of these three figures, for the case Ny = Ny/10, the resultant velocity profiles
agree reasonably well with the observed results near the surface layer. However,
the agreement is not so good in the rest of the fluid column. The other profiles
presented in these figures (when N; = 1.5Np) provided about the best fit for the
case N, > Nj. In this case, the agreement is not very good throughout the whole

depth of the fluid.

The next two figures, namely Figures 7.13 and 7.14, provide profiles in much
better agreement with the observed velocity profiles. For the quadratic formulation
(Figure 7.13), reasonable agreement is achieved for all of the various values of Ny,
N, and N,, which have been considered. Probably the best agreement is achieved
for the formulation for which Ny = 10N, and N,, = 10®N,. This profile certainly
provides good agreement with the observed profiles near the the surface and in
the mid-depth regions. There is a considerable difference between the observed
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FIGURE 7.10: Plots of the wind driven velocity profile in a channel of uniform

depth as recorded from ezperiments compared with the analytic solution obtasned
with linear N.
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FIGURE 7.11: Plots of the wind driven velocily profile in a channel of uniform
depth as recorded from ezperiments compared with the analytic solutson obtasned
with the quadratic N defined tn Section 7.4.




Baines and Knapp (1965)

Fitzgerald and Mansfield (1965)

Koutitas and O’Connor (1980)

_Computed with quadratic N (Sec. 7.5); No = N, N, = N/10
___ ___Computed with quadratic N (Sec. 7.5); No = N, N; = 1.5N

oap

depth

=

0 T ! T I | T
-0.4 -0.2 0 0.2 0.4 0.6 0.8 1.0

velocity u/us
FIGURE 7.12: Plots of the wind driven velocity profile in a channel of uniform

depth as recorded from ezperiments compared with the analytic solution obtained
with the quadratic N defined in Section 7.5.
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FIGURE 7.13: Plots of the wind driven velocity profile in a channel of uniform

depth as recorded from ezperiments compared with the analytic solution obtasned
with the quadratic N defined sn Section 7.6.
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FIGURE 7.14: Plots of the wind driven velocsty profile in a channel of uniform

depth as recorded from ezperiments compared with the analytic solution obtained
with the composite linear formulation for N.
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using the third quadratic formulation (Sec. 7.6) , the composite linear form and
the composite linear form suggested by Pearce and Cooper (1981).



near the bottom but certainly the agreement between the observed profiles and

the analytic solution is acceptable.

Similar profiles are displayed in Figure 7.14 which shows the results obtained
using the composite formulation for the eddy viscosity. The best agreement is
again achieved with N = 10N and N; = 103Ny. For these parameters, two
profiles are displayed; one with #; = 0.25 and 1, = 0.75 and the other with
m = 0.1 and 5z = 0.9. The best overall results are obtained with the first set
of parameters. In fact, the profile obtained with these n values and the above
mentioned relative values for No, N1 and Nz, is very similar to the best profile

obtained in the previous figure for the quadratic case.

Clearly, the last two analytic models provide the best agreement with exper-

iment.

In Chapter 6, mention was made of a numerical model developed by Pearce
and Cooper (1981). The formulation for the eddy viscosity proposed in this model
is essentially the composite linear formulation with Ny = N;. A method for
calculating the values of Ny and N, was also described. The value of the eddy
viscosity at the surface was taken to be 2.5x107% mZsec™! and a value given by
.,h/12 was used below 7 = 0.8. This special case of the composite formulation
is used to produce the profile in Figure 7.15 where a comparison is made with the
experiment of Baines and Knapp (1965). This formulation for the eddy viscosity
provided good agreement with the observed results. Good agreement was also
achieved by Pearce and Cooper (1981) but, however, they obtained their results
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from a numerical model not an analytic model as is done here. For comparison,
also plotted on this graph are the best curves mentioned above which were obtained
using the three parameter quadratic formulation described in Section 7.6 and the

composite formulation.

A final comparison between the various analytic solutions is made in Figure
7.16. The relative values of the parameters between the various formulations
are kept consistent where the formulations are similar. Clearly, the profiles can
be divided into three distinct groups; those with one parameter describing the
eddy viscosity (the constant formulation), those using two parameters (the linear
and first two quadratic formulations) and those using three parameters (the last
quadratic and composite formulations). The difference between the two profiles in

this last group is particularly small.

The next group of figures display some results obtained using the k— e model.
In Figure 7.17, the normalized velocity profile obtained using the k — e model
presented in Section 8 of this chapter is compared with the laboratory experiments.

Clearly, the agreement is very good.

As was mentioned in Chapter 6, various boundary conditions for the k — €
equations have been used by authors in the past. The effect of using some of these

alternative conditions is displayed in the next two figures.

The effect of using symmetry conditions at the surface, that is dk/dn =
de/dn =0 at n = 1, is examined in Figure 7.18. The effect of using this boundary
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FIGURE 7.16: Plots of the wind driven velocity profile in a channel of uniform

depth obtasned with various formulations of eddy viscosity ( results are normalized
with respect to the surface velocsty).
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FIGURE 7.17: Plots of the wind driven velocity profile in a channel of uniform

depth as recorded from ezperiments compared with that predicted by the k—e model.
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depth as recorded from ezperiments compared with that predicted by the k—e model.



condition is dramatic and the result is unsatisfactory. Clearly, surface values for
k and € which are dependent on the surface stress need to be used as the surface

boundary conditions. This is done using the wall conditions proposed in Chapter

6.

As was mentioned in Chapter 6, a derivative boundary condition for € at the
bottom has also been proposed. The effect of using d¢/dn = 0 at » = 0 is shown
in Figure 7.19. For comparison, the profile obtained using e = 0 at n = 0 is also
displayed. There is very little difference between the two curves, with only a slight
difference occurring near the bottom. The € = 0 condition used in the k — ¢ model
proposed in this thesis is to be preferred because of the ease with which it can

programmed.

The next three figures examine more closely the experiments of Koutitas and
O’Connor (1981). In Figure 7.20, the velocity profile predicted by the k—e model is
compared with the observed values. In this figure, the actual raw values of velocity
are displayed. This figure illustrates the value of the k — € method. Not only is
the normalized profile successfully predicted by this model, but also the actual
data values are successfully predicted. In contrast, although the last quadratic
and composite analytic solutions can successfully predict the shape of the velocity
profile, in order to obtain the actual, raw velocity values from these models they
must be “tuned” with the particular experiment in order to find the correct value

of the base value, N, which must be used.

Comparisons between the observed and predicted values for the turbulent
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FIGURE 7.19: Plots of the wind driven velocity profile tn a channel of untform
depth as recorded from ezpersments compared with that predicted by the k—e model.
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FIGURE 7.20: Plots of the dimensional vertical velocity profile in a channel of

uniform depth as recorded by Koutitas and O’Connor (1980) compared with that
predicted by the k — € model.




kinetic energy and the eddy viscosity are made in Figures 7.21 and 7.22. The
agreement in these two graphs between the observed and predicted values is not
as good as previously obtained. However, it must be remembered that there is
a great deal of difficulty in measuring these values in experiments as has been

pointed out by several authors mentioned in Chapter 6.

The last series of figures deals with the unsteady solutions presented earlier
in this chapter. A basin identical to that used by Baines and Knapp (1965) is
modelled with an oscillating wind stress with a period, T, of ten minutes. Profiles
of the velocity over depth obtained at times, ¢ = 0, T/8, T'/4 and 3T/8 are

displayed in the next figures.

Once again, the types of profiles obtained can be roughly divided into three
groups depending on the number of parameters used to formulate the eddy viscos-
ity. In Figures 7.23, 7.24, 7.25 and 7.26 the profiles obtained using the constant,
linear and the first two quadratic formulations are displayed. There is not much
difference between the profiles shown in these figures. Although there is a dif-
ference between the profiles obtained using a constant eddy viscosity and those
obtained using a two parameter formulation for N, this difference is only relatively

small.

The next figure, namely Figure 7.27, displays the profiles obtained using the
three parameter quadratic formulation. This profile is similar to those shown in
the previous figures except that the velocity increases much more rapidly near the

bottom.
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FIGURE 7.21: Plots of the turbulent kinetic energy profile in a channel of uniform
depth as recorded by Koutitas and O’Connor (1980) compared with that predicted

by the k — € model.
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FIGURE 7.22: Plots of the eddy viscosity profile sn a channel of uniform depth
as recorded by Koutitas and O’Connor (1980) compared with that predicted by the
k — € model.
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FIGURE 7.23: Plots of the velocity profile caused by an oscillating wind of period
T blowing over a channel of uniform depth (results are normalized with respect to

the results at t=0). A constant N is used.
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FIGURE 7.24: Plots of the velocity profile caused by an oscillating wind of period
T blowing over a channel of uniform depth (results are normalized with respect to
the results at t=0). A linear N s used.
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FIGURE 7.25: Plots of the velocity profile caused by an oscillating wind of persod
T blowing over a channel of uniform depth (results are normalized with respect to
the results at t=0). The quadratic N defined in Sec. 7.4 ts used.
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FIGURE 7.26: Plots of the velocity profile caused by an oscillating wind of period

T blowing over a channel of uniform depth (results are normalized with respect to
the results at t=0). The quadratic N defined in Sec. 7.5 13 used.




Figure 7.28 displays the profiles obtained using the composite formulation. As
in the previous figure, the velocity increases rapidly near the bottom. However,
there is a major difference in the profiles in Figure 7.28 in that the magnitude of

the velocity in the lower depths is much greater than is observed in Figure 7.27.

Figures 7.29 and 7.30 show the results obtained using the numerical k — €
model. Of all the analytic profiles presented so far, the profiles obtained using the
three parameter quadratic formulation most closely resemble the profiles obtained

by the k — € model, shown in Figure 7.29.

The variation of eddy viscosity with time is displayed in Figure 7.30. Clearly,
N is not constant with respect to time. Not only does the maximum value of
the eddy viscosity change significantly with time, but also the position of this

maximum varies with time.

The analytic solutions presented above for the oscillating wind case are de-
rived from equations which do not include any convection terms. To examine
the importance of these terms, a finite difference solution to the non linear equa-
tions described by Equations (7.8.1(a), (b) and (c)) was established, with N being

defined by the three parameter quadratic formulation used earlier.

Results from this model are displayed in Figure 7.31. Clearly, there is a
marked difference between the previous analytic solution in which convection terms
were ignored (see Figure 7.27). In fact, the results displayed in Figure 7.31 are
very similar to those presented in Figure 7.29 which were obtained using the k—¢
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FIGURE 7.27: Plots of the velocity profile caused by an oscillating wind of period
T blowing over a channel of uniform depth (results are normalized with respect to

the results at t=0). The quadratic N defined in Sec. 7.6 13 used.
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FIGURE 7.28: Plots of the velocsty profile caused by an oscillating wind of period
T blowing over a channel of uniform depth (results are normalized with respect to

the results at t=0). The composite linear N defined in Sec. 7.7 is used.
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FIGURE 7.29: Plots of the velocity profile caused by an oscillating wind of period
T blowing over a channel of uniform depth (results are normalized usth respect to

the results at t=0). These results are obtained using the k — € model.
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FIGURE 7.30; Plots of the eddy viscosity profile caused by an oscillating wind of
period T blowing over a channel of uniform depth (results are normalized with
respect to the results at t=0). These results are obtained using the k — € model.
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FIGURE 7.31: Plots of the velocity profile caused by an oscillating wind of period
over a channel of uniform depth (results are normalized with respect to
d using the three parameter quadratsc
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FIGURE 7.32: Plots of the velocity profile caused by an oscillating wind of period
T blowing over a channel of uniform depth (results are normalized with respect to
the results at t=0). These results are obtained using the three parameter quadratic
eddy viscosity formulation of Sec. 7.6 which is dependent on the magnitude of the

surface stress.




model. By adjusting the parameters in the eddy viscosity formulation, the profiles
presented in Figure 7.31 could be altered somewhat. However, the parameters used

in this figure are those which provided the best agreement for the equilibrium case.

The effect of using a time varying eddy viscosity was also examined. The
same vertical profile of N as was used in the previous figure is again used here
but the expression is multiplied by the factor 7, thus forcing the eddy viscosity to
vary with time. The results from this model, shown in Figure 7.32, do not differ
appreciably from the results obtained using the time invariant eddy viscosity (see

Figure 7.31) except at time 3T'/8 when a considerably larger velocity is predicted.
§7.10 CONCLUSION

In this chapter, analytic solutions for the equilibrium case of a wind blowing
over the surface of a channel, have been presented. Good agreement with exper-
imental observations was obtained Iprovided an appropriate formulation for the
eddy viscosity was used. The three parameter quadratic and the composite linear

formulations provided the best agreement.

A disadvantage with these analytic solutions is that to provide quantitative
results they must be “tuned” with observed data. For this reason, a turbulent
energy closure scheme was discussed. A numerical solution to the non linear
equations of mass, momentum, turbulent kinectic energy and dissipation of such
energy was also presented. Such a numerical scheme can be easily expanded to
cater for three dimensional flows. This k— e model provided excellent quantitative
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results. No “tuning” was necessary. It must be pointed out, however, that the
analytic solutions using the above mentioned formulations of N provided profiles
in close agreement with the k — e profiles. Hence, provided that the necessary data
is available so that the analytic models can be “tuned”, then these solutions can

be used successfully to provide quantitative results.

For the oscillating wind case, the agreement between the analytic solutions
and the k — € model was not as good as for the equilibrium case. This appears to
be due mainly to neglecting the convection terms rather then being due to using a
time invariant eddy viscosity. Once these convection terms were included, profiles
very similar to these obtained using the k — e model were achieved. This suggests
that even for non steady flows, a time invariant eddy viscosity formulation can be
successfully used provided that there is adequate data available for “tuning” and

the correct formulation for N 1s used.
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APPENDIX A

A SECOND ORDER METHOD FOR THE NEUMANN CONDITION

WITH CURVED BOUNDARIES

§A.1 INTRODUCTION

When finite difference methods are used to solve a system of equations in
a domain bounded by an arbitrary curve, problems arise in the discretisation of
derivatives at grid points adjacent to the curved boundary. Care must be taken
at these points if the finite difference approximations near the boundary are to be

as accurate as those approximations used in the interior.

A common treatment of the boundary is to reshape it so that it is made
up of straight lines which are parallel to the grid lines. Once the boundary has
been treated in this way, any boundary conditions can be easily dealt with using
existing methods (see, for example, Noye (1983)). However, this approach results
in a contribution of the order of either the horizontal or vertical grid spacing in

the discretisation error at grid points adjacent to the boundary.

Clearly, a method is required in which the shape of the boundary is not altered
and which also provides finite difference approximations adjacent to the boundary
which are as accurate as those used in the interior region. In general, second order
schemes are used in the interior of the region so that a second order treatment for
approximations to the derivatives at the grid points near the curved boundary is
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required. Such a scheme is available for problems involving the Dirichlet condition
in which the dependent variable is specified on the boundary. Noye (1983) presents
such a solution using a Taylor Series approach. Fox (1944) proposed a scheme for
the Neumann condition in which the normal derivative of the dependent variable
is specified at the boundary. This scheme was, however, only first order accurate.
Noye (1983) describes the basis for a second order solution using a Taylor Series
approach but he did not give final expressions. In this work, second order finite
difference approximations to the derivatives, 8/3z, 8/dy, 8°/9z?, 32 /3y? and

82 /3zdy will be obtained using the techniques suggested by Noye (1983).

§A.2 SOLUTION

In the following discussion, interior grid points are defined as those for which
no neighbouring grid point in the direction of either coordinate axis lies outside
the boundary. Grid points, interior to the curved boundary, but which have at
least one neighbouring grid point in the direction of either coordinate axis lying

outside the boundary are termed boundary points.

In Figure A.1, the point P is a boundary point whilst points labelled @ and
T are interior points. The vectors labelled gg, #n and ng give the direction of the
normal derivative to the curve at the points R, N and S. If Z is the dependent
variable, then the value of 3Z/8n is assumed to be known at the points R, N and
S. The angles, v, define the-angle between the normal to the curve and the X
axis. This angle is always measured in an anti-clockwise sense with the positive X
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axis corresponding to y = 0. The distance between grid points in the X direction
is AX while AY gives the distance between vertical grid lines. The parameters
éx, ¢y, 6x and &y all have the property that 0 < ¢x, ¢y, 8x,8y < 1 and simply
define the distances between the point P and the points R, N and S as shown on

Figure A.1.

Finite diference expressions for the derivatives, 82/8X, 8Z/dY, 82Z/3X?,
82Z/3Y? and 82Z/8X8Y at P may be obtained by constructing the Taylor Series

expansions, centred at point P, of the variable Z at the points @, T, R, N and S.

For example, consider the point R in Figure A.1. The Taylor Series expansion,

centred at P, for the variable Z calculated at R is

oz
Zr =2p + ¢yAY5?—

8%z

+%(¢Y6Y)2 +... (A1)
P

in which notation such as Zp denotes the value of Z calculated at the point P.

Replacing Z by 8Z/8X and then by 8Z/3Y yields the two equations

827

| 2| ar g | volweare),  waat)
0z 0z %7

The normal derivative may be related to the derivatives in the X and Y directions

by the relation

8Z 097 aZ .
In = 3% <057 + Fy S (A.3)

where the angle v specifies the direction relative to the X axis of the normal to
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the boundary. Equations {A.2) and (A.3) may be combined to yield

oz 0z 0%z
an |p (EE . T AY oxey ,,) Rl
8z A ‘ (4.4
eyl - . 4 2
+ (GY . +¢y AY e P) sinyg + O {(d)yAY) }

Two similar equations may be derived for the points N and §. Adding to these
three equations the two Taylor Series expansions about P for Zg and Zr gives
a total of five equations containing the unknown derivatives 3Z/3X|p,0Z/3Y |p,
8%2Z/8X?|p,82Z/3Y?|p and 82Z/8XY?|p. These five equations may be written

in matrix form as shown below:

CAX 0. —(AX))2 0 o [ FlrT
cosvys sinys ¢xAXcosqs ¢xAXsins 0 %IP
(6y AY cosyn 3%z |
cosyny sinyy O6xAXcosqy +6XAXsinqy) 6YAYsinqy ‘33(; P
cosYr sinqg 0 ¢y AY cosqr ¢y AY sinyg WIF
L 0 AY 0 0 —@ayy/2 1L &4,
ZI*JT”EIZQ
9n IS '
=| 2|y | +0{(aX)? AXAY,(AY)*} (A.5)
pral:
Zp — Zr |

With the aid of a symbolic manipulation program such as MACSYMA, the
above matrix equation was solved to give second order accurate expressions for
the unknown derivatives. Expressions for the required derivatives at the point P
near a curved boundary as shown in Figure A.1 follow. For simplicity, it has been

assumed that AX = AY = h. The first order derivative with respect to X is

YA . sx12r + stZQ + sxalp + hsxs

Ix=3x~ hSxa

+ 0 {r?} (A.6(a))
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where

sx1 =2 {FNS® by (dx — 6x) — by bx] + by v (F5F — FF°N)},  (46())
sxa = —2{dx by [26x(ERSY — EFRS) - 26, FNSR 4+ FFS™ (26 +1)]

+6x [@x (FRESN — FYRS) — ¢y F{YRS] — by ¢ F{' 71}, (4.6(c))
sxs = —2{dxby [FNR 4+ 26x (FNRS — FFSN) 1+ 26y F{VSR — FRSN(28y +1)]

— FYSE(5x ¢y + by ¢x) — F3°V (by ¢y + 8x éx)

+ ¢x (x FIVRS + 6y FVSR) + ¢y (8 F3Y°F + 6x F'*9) }, (4.6(d))
sxs = 20x ¢y [FESN (26x + 1) — 26x FY' RS — 26y F)YS® + FFON 26y + 1)]

+ (26x + 1)(FESN px — FNRS ¢y) + 28y + 1)(FFV ¢y — FJ' 5% x)

— 28y (6x FNES 4 5y FNSR) — 26 (5x FF RS + 6y F{Y°F)

+ 8x (FVSR — FYES) 4 8y (FV RS — F'SF) (4.6(e)

and

YA . .
$x5 = 5 [¢x (2¢y + 1) sin g — dy cosyr|sin s
N

Y . '
+ 3 [(—¢x (26y + 1) + 8x) sin 7y + 8y cosn]sin s
R

8z ) .
+ B {—(6x sinyny + 8y cosyn)(1 + 2¢y ) sinyr
s

+ ¢y (26y + 1) cos g sin 1w }. (A.6(f))

The functions, FABC which appear in the above equations are defined by

FAPC = cosv4 cosqp sine, (A.7(a))

FAPC = sinq,4 sinyp cos e, (A.7(d))
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FAPC = siny, sinyp sinye (A.7(c))

and

FABC = cosy4 cosyp cosqc. (A.7(d))

The solution for 3Z /Y, denoted by Zy, is

_08Z _ sy1Zr +9vy2Zq +syaZp +hsys 9
=52 = L +0{r?}, (4.8(a))
where
Sy1 = —2{¢x¢y [FZ,RSN (26x +1) ~ 25XF;’RS + 26y (FIRSN — FINSR)]
— ¢y (6x FNES + 5y FNSR) + 8y (¢y N — ¢x F3'5F)}, (A.8(b))
sys =2 {FVSR [y (x — 8x) — Sy dx| + ¢xbx(FVRS —FFM)},  (A8(c)

sva = 2{dxdy [FfN (26x +1) — 26x F}' 75 + 26y (FFSN — F'SR) — F{TS %]
— ¢y (6x FNRS + 6 FNSR) 4 FESN (6y ¢y + bxdx) + F3' % (Sx ¢y + by éx)
— ¢x (by Fy SR + 6x F'*9)}, (A.8(d))
Sys4 = Sx4, as defined in (A.6(e)),

and

07 5
svo = 3 | [bv(2bx +1)cos7s — bxsins]cos 1z
n N

Lz
on

{(¢x(25x + 1) sinys — 8y (2¢x + 1) cosvs) cosn
R

+ 6x(2¢x + 1) sin yn cos '13}

0z
+_

5 | [y — éy (26x + 1)) cosw + 8x sin ] cos Y. (A.8(e))

s
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The second order derivative in the X direction is given by

Fw = 8%Z  sxx1Zr +sxx22q +sxxsdp + hsxxs
XX — 6X2 -

T +0 {1}, (A9(a))

where

sxx1 =4 {FNSR ¢y (¢x — bx) — by dx| + by v (Fy' °F — FFSN)Y, (A9(b)
sxxa2 = 2{¢y (20x FRSN — FNRS _ 25k F)Y RS — 26, F\'°F)

+ (26y +1)(py FESY — ¢x FY58) + F3¥N ¢x

+ bx (F o8 — F'R%) 4 6y (FVRS — F{TST)}, (A.9(c))
sxxs = —2{20x ¢y (FFSE + FFSN) — 26x ¢y (F3'°F + FJ' %)

+ 26y ¢y (PSR — FRPSN — FYVSR) — PV RS ¢y + ¢y FSN (28y +1)

+ ¢x(FRSN — 26y FY'S®) — ¢ FY SR (26 + 1) + 8x (F °F — Fy' ™)

+ 6y (FYES — FYOR)Y, (A.9(d))
8xX4 = 8X4 (see Equation (A.6(e))) and
8z ) . .
Sx x5 =2{% [¢y (2¢x sinygr — cosr) + ¢x sinyr]sin s
N
8z ) . .
+ I [—6y (2¢x sin v — cosyn) + (6x — ¢x) sin yn]sin s
R
0Z ) .
+ I [—(éx(2¢y + 1) sinyy + 8y (2¢y + 1) cosyn) sinqr
s
+ ¢y (26y + 1) sin 7y cosr] } (A.9(e))

The cross derivative, 82Z/8X3Y , is expressed by

9?2z sxy1Zr + sxvaZg + sxvsZp + hsxys 2
xv = 5xav = T +0{n?}, (4.10(c))
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where

sxy1 = —2{dy (FN RS (2¢x +1) — (26x + V)FFN) - 6y F' R¥(2¢x + 1)

4+ 6y FNSRY, (A.10(b))
sxya = —2{2¢y F{V 5% (¢x — 8x) + ¢x (F{'°F — F{*¥0 (26¢ + 1))

+ 6x(FNRS — FNSR)Y, (A.10(c))
sxys = 2{¢y [F'"5(2¢x +1) — FfFoV (26x + 1) + 2F)" 5% (¢x — )]

+ ¢x [~FRSN (26y + 1) — 26y FY RS + FVSE] 4 65 (F{' 7% — F{'5F)

+ by (F3' SR — FYR9)}, (4.10(d))
Sxy4 = Sx4 (see Equation (A.6{e))) and
az ] .
sxys = — 5 [(1 4 2¢x(2¢y + 1) + 2¢y ) sin g cosys — cosYr SID 7s]
N
0z

an

{~(1 + 26y + 2¢x(28y + 1)) sinqy cos s
R

+ (26x + 1) cosyn sin ’75}
YA

5o {—(1 + 26x + 2¢y(26x + 1)) cosyn sinyr

s

+ (26y + 1) sin 7y cos YR }- (A.10(e))

The second order derivative in the Y direction is defined by

82Z syyi1Zr +syv2Z2q +SyysZp + hsyys
= O {h? A.ll
aY? Rsyva +0{n’}, (4.11(a))

Zyy =
where

syy1 = 2{¢y [20xFRSY — FNRS(26x +1) + F{*°N ]

214



+ ¢x [FFSN(26x +1) — Fy SR — 26x Fy' RS — 26y FYYS ]

+ 6x (FY SR — FYR9) + 6y (FYRS — F{T5F)}, (A.11(b))
syys =4 {FVRS [$y (px — bx) — by bx] + oxdx (F{¥ *° - FFSN)}, (A11(c))
syvs = —2{2¢x by (FFSN + FNRS) — ¢y FNRS (14 26x) + F{¥°N (¢y — 26x ¢x)

+ ¢x [FRSN (26x + 1) — FNS® + 25x FV RS — 265 Fj' RS — 26y F{VSF]

— 2FN RS (5x ¢y + by ¢x) + x(Fy' SR — FYRS)

+ 6y (F{YRS — FVSR), (A.11(d))

Syy4 = Sx4 as defined by Equation (A.6(e)) and
YA .
Syys = 2 B [#y (2¢x + 1) cosys — @x sinys] cosqr
N

+ [— cosyn (¢y (26x + 1) — by ) + 6x sinyn]cosyr

9z
an
£y ,
B [¢x((26x + 1) sinys — 26y cos ¥s) cosIn

S
R

— (6x(2¢x + 1) sinyy + 8y cosn) cos s ] } (A.11(e))

In any situation involving curved boundaries, the point P, which has two
adjacent grid points exterior to the domain of interest as shown in Figure A.1, can
be surrounded by the boundary in any of four different orientations as shown in
Figure A.2. For each orientation, slightly different versions of the discretisations of
the derivatives are obtained. Presented below is a systematic method of expressing
the derivatives at P in terms of the solutions in Equations (A.6), (A.8), (A.9),

(A.10) and (A.11).

The orientation defined by 11 in Figure A.2 is simply the case considered in

deriving the above formulae. Hence, for this orientation, the expressions for the
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derivatives at the point P are

- = Zx, (4.12(a))
%%:aq (A.12(b))
22 = txx, (4.12())
::(BZy XY s (A.12(d))

and
% = Zyy, (4.12(e))

where in the expressions for Zx, Zy, Zxx, Zxy and Zyy which are defined by

Equations (A.6(a)), (A.8(a)), (A.9(a)), (A.10(a)) and (A.11(a)), the coordinate X

has been replaced by z and Y has been replaced by y.

If the point, P, is the grid point labelled 7, then using the notation described

in Chapter 5, the points @ and T are defined by

Zq = Z;, (4.13(a))

and

Zr =2;_,. (A.13(b))
The orientation 12 described in Figure A.2 is obtained from that shown in

Figure A.1 by the coordinate transformation

z = —X, (A.14(a))

y=Y. (A.14(b))



This necessitates the following replacements which must be made to Equations
(A.6), (A.8), (A.9), (A.10) and (A.11) in order to obtain the formulae. Firstly, the

angles v are replaced by 7 — 4, that is,

Vs + T — s, (A.15(a))

IN T =N, (A.15(b))
and

TR — T — R- (A.15(c))

The expressions for the derivatives at the point P for orientation 12 are then

22 - -, (A.16(a))
.‘;_f =7 (4.16(b)
&7 — zxx, (4.12(d))
aB:aZy = —Zxy, (A.16(d))
and
%';g = Zyy, (4.16(c))

where X has been replaced by z and Y by y in the right hand sides of the above

equations. In this orientation, the values at the points Zg and Zr are defined by

ZQ = ng, (A17(a.))
and

Zr = Z; ;. (A.17(b))
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It is important to note that the distances ¢x, 6x etc. are always taken to be

positive no matter what orientation is being considered.

Similarly, for the orientation 13 shown in Figure A.2, the coordinate trans-

formation £ = X and y = —Y applies and the following expressions hold;
2 =, (4.18(a))
% ==y, (A.18(5))
7 = zxx, (4.18(c))
22—y, (415()
and
%%f— = Zyvy, (A.18(e))
in which
Vs — 27 — s, (A.19(a))
IN < 27 — N, (A.19(b))
YR < 2T — 1R (A.19(c))
Zo =21, (A.19(d))
and
Zr = Zjq1. (A.19(e))

For the orienation 14 in Figure A.2, the following expressions hold for the

derivatives at P

% = —Zx, (A.20(a))
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—— =2
ay Y
0%z _
az2 - XX)
027 _
azay — LXY,
and
8%z
3_3]2 YY,
in which
Vs s — T,
IN <IN — T,
TR +— TR — T,
ZQ = ng
and
ZT e ZJ‘+1.

(4.20(b))
(4.20(c))

(4.20(d))

(4.20(¢))

(A.21(a))
(A4.21(b))
(A4.21(c))

(4.21(d))

(A.21(e))

A computer program using techniques described in Chapter 5 can readily

identify which of the orientations are applicable. For each orientation, the formulae

described above are calculated and Equations (A.6), (A.8), (A.9), (A.10) and

(A.11) used to find the required derivatives at point P.

The above analysis is applicable only for a boundary point for which two of

the four neighbouring grid points are interior points. If the radius of curvature of

the boundary in the vicinity of a boundary point is not as great as that shown
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in Figure A.1, then only one of the neighbouring grid points may be outside of
the region. This is the case shown in Figure A.3. A new set of expressions for
the required derivatives at boundary points such as P in Figure A.3 must now be

derived.

The analysis is similar to that performed above for the situation presented
in Figure A.1. Indeed, the only effect of this new boundary configuration is to
change the fourth row of the square matrix and the fourth element in the right

side vector of the matrix equation {(A.5). The new fourth row is
[0 —AY 0 0 —(AY)?/2] (A.22(a))
and the new fourth element is

Zp — Zg. (A.22(b))

The resultant matrix equation may be solved, yielding the following second
order accurate expressions for the derivatives at the point P for the curved bound-

ary shown in Figure A.3:

7 07z _ 9x1 Zr + qx22¢ + 9x3Zr + qxaZp + 2hqgxe

Zx = 5% 2haxs +0{h?}, (A23(a))

where the overbar is used to distinguish between these formulae and those for the

previous case. The coefficients gx; etc. are given by the following formulae:

gx1 = — {(6x + ¢x(28y — 1)) sinqy + &y cosyn } sinvs, (A.23(b))

gx2 = —4¢x {6x cos Yy sinvs — (8x sin yv + by cosyn) cos s} ,(A.23(c))
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FIGURE A3: Geometry of a boundary point, P, for which only one of the neigh-
bouring grid points ts outside of the boundary.




and

gxs = — {($x(28y + 1) — 6x) sinyy — by cosyn}sinqs,
dxs = 4¢x{(5y sin Yy + 8x cosyn) sin vg
— (6x sinyy + 8y cosn) COS’VS},
gxs = ¢x(26x + 1) cosyn sin s
— (2¢x + 1)(8x sin vy + 8y cosyx) cos s,
o0z 0z

xe = 3 . ¢xsins — o~ ) (6x sin Y + 8y cosw).

The solution for 822 /8X? at the point P is

where

h? gxxs

axx1 = — {(¢x (26y — 1) + 8x)sinyy + 8y cosyn } sins,

gxx2 = 2{(¢x sinys — 8y coss) cosyny — Ox sinyx cos s},

gxxs = — {(¢x (26y + 1) — 6x) sinyy — by cosn }sinqs,
dxx4 = 2{¢x(25y sinyy — cos Yy ) sin s
+ (6x sin vy + 8y cosx) cos s },

qxxs = 4xs is defined in (A.23(f)) and
¥4

(4.23(d))

(4.23(e))

(4.23(f))

(A.23(9))

Ty = g}zz _ Ixx1 Zr +9xx2Zg +4xx3Zr + 9xx4Zp + hgxxe L0 {hz} ,

(A.24(a))

(A.24(b))
(A.24(c))

(A.24(d))

(A.24(e))

gxxe = 2 {% $xsinys — _c')_i_’ (6x sinyn — 5ycos'7N)} . (A.24(f))

N d S
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The cross derivative 822 /8X38Y is given by

92z _ Ixv12r +qxvyaZq + qxyadr + dxy4Zp + 2hgxve +0{A?)
9X3Y 2h%qxys ’

(A4.25(a))

ZXY =

where

axy1 = (26y — 1)(2¢x + 1) sin 7w cosvs + (26x + 1) cos yw sinvs, (A-25(b))
gxyz = 4(6x — ¢x) cosyn cosns, (A.25(c))
gxys = (26y + 1)(2¢x + 1) sinyy cosys — (26x + 1) cosyw sin s, (A4.25(2))
dxya = —4 {0y (2¢x +1)sinyv + (6x — ¢x)cosn} cosvs (A.25(¢))

axys = 4xs (see Equation (A.23(f))) and

0z 0z
gxye = 3 (26x + 1) cosys — — (2¢x + 1) cosn. (A.25(f))
n|g » an N

The two remaining derivatives, which are dependent only on the Y direction,
are easily handled since the two grid points above and below point P both lie
inside the boundary. Hence, existing second order formulae may be used for these

derivatives at point P. That is,

__8Z Zp—Zr

_ 2
¥ =T + 0 {h?} (A.26)
and

027 _ Zr+2p —22p
X3y h3

Zyy = + O {hz} . (A.27)
As before, the boundary point P in Figure A.3 may be surrounded by a curved
boundary in any of four orientations which are shown in the Figure A.4.
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FIGURE A4: The various orientations, denoted 21, £2, 23 and 24, which a bound-
ary point, P, can be surrounded by a curved boundary such that only one of the
neighbouring grid points lie outside of the boundary.



For the orientation labelled 21 in Figure A.4 the expressions for the derivatives

at P are immediately available from the preceeding analysis. In fact,

2 -y,
5=,
7L — Ixx,
2
::cazy = Zxy,
=,

(A4.28(a))
(A.28(b))
(A4.28(c))
(A4.28(d))

(A.28(e))

where the expressions on the right hand sides may be obtained from Equations

(A.23(a)), (A.24(2)), (A.25(a)), (A.26(a)) and (A.27(a)). For this particular ori-

entation, the values Zg, Zr and Zr are defined by

Zq = Zj,

Zp = Zj41
and

Zr =Zj_,

For the orientation 22 in Figure A.4, the following formulae hold:

% -z,
% =%
22 = 2xx,
::azy = ~Zxv,
=2,

226

(4.29(a))

(4.29(b))

(4.29(c))

(4.30(a))
(4.30(b))
(4.30(c))
(A.30(d))

(4.30(e))



in which

s T — s,

IN & T — 1IN,

Zo = Zj,

Zr =211
and

Zr = Z;_3.

(A.31(a))
(A.31(}))
(A.31(a))

(A.31(b))

(A.31(c))

As before, the symbol « indicates that the angles vs and 7y which appear in the

formula for Zx, Zy, Zxy etc. are to be replaced by the angles 7 — s and T — N

respectively.

A coordinate transformation of y = X and z =Y applied to the situation in

Figure A.3 yields the orientation labelled 23 in Figure A4. The resultant formulae

for the derivatives are, therefore,

7 _,

e — 4y,

0z _

a_y ZX:
0%Z =
32 Zyy,
8227 _
dzdy ZxY,
LA -
*5?‘ = Zxx,

in which

1s — /2 — 75,
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(4.32(a))
(A4.32(b))
(4.32(c))
(A.32(d))

(A4.32(¢))

(4.33(a))



and

IV~ T[2 =N,
ZQ = Zj-1,

Zr = Zj3
Zr=2Zj

dx — by

6y€-—5x.

(A.33(b))
(4.33(c))
(A.33(d))
(A.33(e))

(4.33(f))

(4.33(¢)

The final orientation to be considered is that which is labelled 24 in Figure

A.4. For this case, the derivatives at the point P are given by

in which

o7 _,
oz — 4y,
0z -
By -Zx,
827
azz = YY)
8%Z -
827z _
£ =2xx,

s + s — 37/2,
IN — N —37/2,
Zq = Zj41,

Zr = Zj2,

228

(A.34(a))
(A.34(b))
(A.34(c))
(A.34(d))

(A.34(¢))

(4.35(a))
(A.35(b))
(A.35(c))

(A.35(d))



ZT = ZJ‘_I, (A35(e))
bx « by (4.35(f))

and

by « bx. (A.35(9))

There remains one final case to consider for the point P which has been
discussed above. In Figure A.3, the point N is displayed lying on the boundary
between the points S and R. It is just as likely that a suitable N may be found
which lies between the point S and T. If this is the case, the analysis is identical
to that presented above except that in the formulae for Zx, Zy, etc., the following

replacement is made

Sy — —by (A.36)

That is, for this positioning of N, whenever a éy appears in the formulae for the

derivatives, it is replaced by —éy.

§A.3 CONCLUSION

Presented in this work are finite difference formulae which may be used to
approximate the derivatives 8Z/8z, 8Z /8y, 3*Z/0z?, 37 [8zdy and 827 /3y?
at a point which is next to a curved boundary along which a normal gradient
boundary condition is imposed. These approximations are second order accurate.
A systematic method which can be readily incorporated into a computer program
has also been given to account for the several various ways in which the curved
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boundary may surround a given boundary point. Using techniques described in
Chapter 5, a program may be written which identifies the type of boundary point
(that is, whether there are one or two neighbouring grid points outside of the
boundary) and then calculates the type of orientation (as shown in Figures A2
and A.4). Once these factors have been determined, the required modifications

can be made to the general expressions for Zx, Zx, Zy, Zy, etc.

Although the coefficients sx1, gxi etc. which appear in the finite difference
approximations are complicated, theymay be used in finite difference scheme with
only a small increase in computer time. In most problems nearly all the grid points
are interior points and so the formulae above only need to be applied to a small
number of boundary points. Also, all the coefficients need only to be calculated
once for each boundary point and this further prevents any major increase in

computing time.
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