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Summary
Systems such as theMlGll queue are of great interest in queueing theory. Techniques

such as Neuts's block matrix methodology have traditionally been used on the more

complicated generalisations of this type of quene. In this thesis I develop an alternative

method which uses martingale theory and some renewal theory to find solutions for a

class of M lG lI type clueues.

The theory, originally applied by Baccelli and Makowski to simple queueing

problems, derives its key result from Doob's Optional Sampling Theorem. To make use

of this result some renewal theoretic arguments a e necessary, This allows one to find

the probability generating function for the equilibrium distribution of customers in the

system.

Chapter 2 develops the renewal theoretic concepts necessary for the later parts

of the thesis. This involves using the key renewal theorem on a modified type of Markov

renewal process to obtain results pertaining to forward recurrence tifnes.

Chapter 3 contains the martingale theory and the main results. The type of

processes that can be dealt with are described in detail. Briefly these consist of processes

where the busy period is broken into a series of phases. The transitions between phases

can be controlled in a number of ways as long as they obey certain rules. Some examples

are: phases ending when there are more than a certain number of customers in the

system or when-the busy period has continued for a certain number of services. The

behaviour of the server can be different in each phase. For instance, the service-time

distribution or the service discipline may change between phases. The main result uses

Doob's Optional Sampling Theorem and so we must establish a number of conditions on

the martingale used. We establish a simpie criterion for these conditions to hold. Finally

in this chapter we examine the simplest case, the M/G/1 queue.

The following chapters contain a number of examples. Standard probabilistic

arguments are used to obtain the necessary conditions and results to use the theorems of

Chapter 3. The examples considered include cases with two, three, four and an infinite

number of phases. The theoretical results are supported by a number of simulations in

the latter case.

Finally we have some suggestions for possibie future work and the conclusion.
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Chapter 1

Introduction

Aim
The aim of this thesis is to apply a martingale technique to queueing theory. Martingales

have been used successfully in financial modelling and elsewhere and there is a well

developed theory built around them.

One of probability's great achievements is in its use in the study of queues and

so it is surprising that such a powerful area of probability such as martingale theory has

only been slowly taken up in queueing theory.

In order to redress this we have demonstrated how a technique suggested by

F. Baccelli and A.M. Makowski can be extended to solve some queueing problems of

interest.

The Technique
The amount published on the use of martingales in queueing theory, compared to the

total amount of literature on queueing theory, is minimal. Where martingaies have

been used they tend to be deployed on a particular part of a larger problem and not

as a general technique for solving problems. Some examples where this is not true

are Rosenkrantz (1983), Kella and Witt (1992), Ferrandiz (1993), Baccelli (t046) and

Baccelli and Makowski (1985,1986,1989,1991). In these papers the approach is to solve a

problem or problems using martingales as the fundamental means. We are particularly

interested in the papers of Baccelli and Makowski.
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Chapter 1: Introduction

Baccelli and Makowski's technique was first used, in the literature, to demon-

strate stability conditions (1985,1986) and later to provide probability generating func-

tions for the equilibrium number of customers in simple queueing systems, (1989,1991).

The only problem with these was that the systems investigated were the well-known

MlGl! queue (1985,1989) -d the singie-server queue with Markov Moduiated Poisson

Process input (1986,1991). This was criticised in Mathematical Reviews (92k:60202)

where the reviewer stated;

A number of papers including this one (Baccelli, and Makowski,, 1991)have

appea^red in recent years wherein martingale methods have been used to

derive reasonably well-known results derived initially by other, less abstract

methods. It is not clear to the reviewer that our understanding of the related

queueing systems has been advanced by these very technical papers.

The only other direct use of this technique, known to the author, is the master's thesis

of Park (1990). This also examines a well-known system, the Mx/G/1 queue.

This thesis addresses this criticism. \Me use the four papers of Baccelli and

Makowski as a basis for all of the theory herein. The idea is extended to cover a major

group of useful and interesting problems.

The technique involves using Doob's Optional Stopping Theorem on the discrete-

time process, embedded at departure epochs. This theorem allows one to relate the

behaviour of the queue at arbitrary time points to the behaviour of a renewal process

embedded at specific epochs of the queue's history. This is the most important part of

all of the theory to follow, a large part of the remainder merely being support for this

result. In Baccelli and Makowski's papers the ends of the busy periods form the renewal

epochs of interest. In this extension other time points are allowed to have significance in

the queue, and these are then included in the relationship. This considerably complicates

the renewal process of interest and we require a new result because of this complication.

One final note to make about this technique is that it is underutilised in this

thesis. Baccelli and Makowski derive stability criterion and transient results for the

systems they investigate. I have chosen only to look at the equilibrium probability

generating function of the number of customers in the systems. The stability criterion

2



Cha ter 1-: Introduction

is omitted because in the general case examined here the stability criterion depend on

the nature of the specific problem. The transient results are not provided in order to

keep this thesis as concise as possible, as the transient results for many of the problems

investigated are extremely complicated.

The oblems
The class of systems to which this method is applicable is a generalisation of the NU G l1

queue. The single server is retained, as is the Poisson input, and what we call the seruer's

behaui,our is modified. The queue, during the course of a busy period, progresses through

a series of phases. In each phase the server's behaviour may be different. For instance

the service-time distribution, the service discipline or even the probability of blocking

an arrival may vary between phases. (Note that our concept of a phase is different from

the phase-type distribution of Neuts (1989).)

The phases must obey certain rules in order that the theory may be applied. In

some cases, processes whose phase structure does not obey these rules may be remodelled

so that the new phase structure does obey the rules. Through remodelling such as this

a great number of problems are included in this class of queues.

Motivation
The M/G/1 queue and variants thereof form one of the largest fields of study in queueing

theory. Many computing, communication and manufacturing systems can be modelled

by M/G/l models. There are too many articles on this subject to go into all of them

here. The foliowing brief list indicates some of the very recent papers in this area:

Borst eú a/ (1993), Ferrandiz (1993), Takine et al (1993), Schormans et al (f OSe) and

Yashkov (1993). A good initial starting point for investigating all single-server queues is

Cohen (1969).

Many interesting systems fit into the class of systems investigated. Later in this

thesis a number of simple examples are presented. These, while still perhaps too simple

to be used directly, point quite clearly to some of the types of problems that can be

solved. An example is a system with state dependent arrival and service processes as

described in Courtois a¡rd Georges (1971). Numerous papers which deal with problems

3



Chapter 1: Introduction

of this nature could be listed. A small sample of recent papers in this vein:

J. Dshalalow (tsAO),

W. Gong, A. Yan and C.G. Cassandras (t9OZ),

O.C. Ibe and K.S. Trivedi (1990),

M. Kijima and N. Makimoto (1992a,b),

R.O. LaMaire (1992),

J.A. Morrison (1990),

J.A. Schorma,ns an J.M. Pitts and E.M. Scharf (1OOS),

T. Takine, H. Takagi and T. Hesegawa (1993)

and H. Takagi (1992).

Furthermore there is an entire theory developed around precisely such problems. This

is the block-matrix methodology of Neuts eú ol described in Neuts (1989). Given that

this theory exists why have I presented an alternative? For a start many problems

easily soluble by the martingale technique may be solvable in the Neutsian scheme, but

not easily, and vice versa. Furthermore the martingale technique can provide elegant

analytical results and in addition it can in some situations provide, as a byproduct,

results in addition to those initially desired.

Further motivation is given by the examples presented in this thesis.

Outline
This thesis consists of two major parts. The general theory is covered in the following

two chapters. Chapter 2 covers renewal theory. Because of the complex nature of the

renewal processes which I use in this theory they need to be described in detail. Also

a renewal result is given which to the author's knowledge is not to be found in the

literature.

Chapter 3 gives the technical definition of the type of processes investigated and

how these processes are modelled. The martingale (and related probabilistic elements)

that are used are given, as is a set of stopping times which are crucial to the results.

It is vital that these stopping times be regular with respect to the martingale and in

condition (x) (page a0) a condition for this is provided.

The martingale and stopping times are then used in Doob's Optional Stop-
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Chapter 1: Introduction

ping Theorem to provide a set of results which when used in conjunction with those

of Chapter 2 provide the probability generating function of interest. The penultimate

section of Chapter 3 deals with all of the possible generalisations of the basic model to

which this technique can be applied, along with some of the potential pitfalls. Finally

the technique is applied to the simple MlGll queue.

The second major part of this thesis consists of a number of examples. Chapter 4

contains the first set of examples, and for this reason is the most detailed, These are

all two-phase examples, that is, M/G/l queues where the busy period can be broken

into two parts, with different server behaviour in each. We describe this by saying that

the first phase ends when some threshoid is crossed. Three major types of threshold

are considered. The first is when there are more than a certain number of customers in

the system, the second when a geometrically-distributed number of customers have been

served in the busy period and the third when a fixed number of customers have been

served in the busy period.

The individual solutions for each of these cases requires a reasonable amount

of work, using standard probabilistic techniques, before a result can be obtained. This

involves showing that condition (x) is satisfied and investigating the behaviour of the

queue at the thresholds. Rema¡kably, all three solutions are in the same form. The

form of the probability generating function for the number of customers in the systems

is ciosely related to the form of that of the M/G/l queue with a correction term that

depends on the difference in behaviour in the two phases. A number of subsidiary results

such as the equilibrium probability of each phase are calculated using Little's law.

Chapter 5 extends one of the examples of Chapter 4 to the case with three phases

by including a second threshold. This chapter also introduces a new type of threshold.

Chapter 6 describes and solves a four phase model which can be used to model a

}lIIG lI queue which can break down. \{hile this is an unsophisticated breakdown/repair

model it demonstrates how a more sophisticated model could be formed.

Finally, the example in Chapter 7 considers what happens in a case with an

infinite number of phases. This can happen if two service regimes may alternate an

infinite number of times during the busy period. It is difficult in this case to prove

condition (x) and so a number of numerical exampies are provided to support the result.

5



Chapter 1: Introduction

This type of model is then used to investigate the M/G/1 clueue with a finite waiting

room

The major part of the text is followed by Chapter 8, the conclusion, which

discusses further work that could be conducted in this field and block-matrix methods

and how they could be applied to some of the problems herein,

A number of appendices are included in this thesis. These cover some of the

basic theory used in queueing theory and martingale analysis. A great deal of this will be

known to the experienced reader but we include it for two reasons. Firstly it is desirable

for this thesis to be as self contained as possible. To this end the major results which we

call upon are included. Secondly, some of the results appear in several different forms in

the literature. For instance, while the major reference on martingales is Neveu (1975)

and we draw Doob's Optional Stopping Theorem from this reference, Neveu does not

refer to this theorem as Doob's Optional Stopping Theorem. This name appears in

relation to this theorem or related theorems in several places such as Williams (1991).

6



Chapter 2

Renewal Theory

2.I Introduction

In this chapter we consider renewal processes. The results of this chapter provide the

probability generating function for the forward recurrence times of a type of renewal

process. By itself the result is of moderate interest. The results herein are more a means

to an end than an end unto themselves. However it is important that the nature of the

renewal process be understood before the more interesting parts of this thesis commence.

This chapter begins with a brief description of renewal processes, building up to

Markov renewal processes. This basic work on renewal processes and Markov renewal

processes is well known. Several references such as Wolff (1989), Cox (1962) and Pyke

(f S6ta,U) cover this. \Me have included it in order to build up to the type of process of

interest. Definitions such as that of forward renewal times are much easier in the simple

renewal process. The concept is then extended to more complex systems. Further the

arguments used to prove results may be clearer in the simple case. Thus it is to be hoped

that when extended the arguments remain clear.

Two points to note are that we shall be concerned with non-delayed processes

and also that we are interested in lattice processes. The reasons for this will become

evident when the results are put to use.

Once the survey of Markov renewal processes is done we look at what we call

generalised Markov renewal processes. By this we do not mean the same thing as Pyke.

We mean a Markov renewal process in which not all of the states are renev¡al states.

I



Chapter 2: Renewal Theory

This concept is explained in Section 2.3.2. This describes a process more general than

that needed for our results. Part of the reason for this is simply to provide a framework

for the case of interest. However the main reason is that it is to be hoped that the

results might be extended to the whole class of generalised Markov renewal processes.

This would enable simplification of the technique for examining some processes.

The important part of this chapter is that which describes the multi-phase

Markov renewal process. This is the motivating case and the process for which ori-

ginal results are produced. This can be thought of as a process in which the times

between renewals have been broken into a number of phases. The times spent in each of

the phases are not independent. Thus the recourse to the generalised Markov renewal

process. Each phase is considered to be a separate state in the Markov renewal process

with only one of the states being a renewal state. Entries to the renewal state correspond

to the renewals of the simple renewal process.

The two major results both connect the forward recurrence times of this process

to the sojourn times of the process, one of the results through the probability density

functions (Theorem 2.4) and the other through the probability generating functions

(Theorem 2.5). It is the second which is of major interest.

The final part of this chapter considers what happens if the number of phases

becomes infinite in such a process.

8



Chapter 2: Renewal Theory

2.2 Simple renewal theory

A simple renewal process is a proc ss

oo

¡/,:Ð I(T^<t),
n--l

where T" - ÐT=t X¡ and the sequence (X") of non-negative, independent, identically

distributed random variables have probability density function F('). The times Tn a,re

the times of the renewals and I/¿ counts the number of renewals to have occurred by

time ú. Note that

T¡,¡,3t{T¡¡,¡y,

so that T¡v, i. the epoch of the last renewal before ú while Twr+t is the epoch of the next

renewai after ú. Also 1y'7, - 2. The renewal process is said to be delayed if X1 has a

different probability distribution function F1(.) from ,lI(.). We shall consider here only

non-delayed renewal processes but note that the limiting results can all be extended to

delayed processes. \Me take m : E [X,]. The forward and bacl¡ward recurrence times ate

defined by

Ft:Twr+t-t and Xt:t-TN,
respectively. They are the time until the next renewal and the time from the last renewal

respectively.

We shall be concerned with the lattice or arithmetic case where all of the events

in the process occur on a set of lattice points. This occurs if F (u ) is a step function with

the steps on the lattice points led, k e Z+ . If d is the largest such number then d is the

span of the system. We let d, : I by taking a change in time and then we can define the

function l@) : p{X¿ : rz} for a,ll i. \Me assume only one renewal can occur at a time

so that /(0) : 0. \Me define the renewal functi,on

H("): E [/V;] '

Because we want a non-delayed renewal process we assume a dummy renewal that is not

included in I/" occurs at time zero. \Me define h(n) : p{a renewal occurs at time n.} for

n € Z+ and thus

0n0

I

H(")-H(n-I), n)0,
h(n):



Chapter 2: Renewal Theory

so that

H(n) -!n(o),i:I
A number of limit theorems are associated with renewal theory. They ca¡r all be derived

from the Key Renewal Theorerr¿. This theorem can be found in many places in several

forms. This version is the lattice version of Serfozo (1990). Once the renewal function

is defined the Key Renewal Theorem for the lattice case is as follows.

Theorem 2,2 (Key Renewal Theorem) If F is lattice with span d then

co

lim I/ x g(r t nd) : ^-'Ð g(r + kd),
k:1

prouided the sum is fi,ni,te. In this H * g is the conuolution of H and g and m-r i,s taken

to be zero for m: oo.

A renewal equation is an equation involving the renewal function. Such equa-

tions arise often in this context due to the regenerative nature of the process. For instance

we can write a renewal ecluation for h(n),

n-I
h(n) : l@) +ÐnØ - qf Ø. (2.1)

l:t

This equation arises from the two possible ways in which a renewal can occur at time r¿.

The first renewal subsequent to time zero could occur at time n with probability /(n).
Secondly the first renewal could occur at time I < n which happens with probability /(l).
If this is the case we consider the process to have started again at this time and there

will be a renewal at time r¿ with probability h(n- l). Summing over these possibilities

gives the result.

The Key Renewal Theorem can be appiied to this renewal equation as follows.

The first term in this sum tends to zero as r¿ tends to infinity and the second sum is the

convolution H * /(k) so that as r¿ tends to infinity

-+ *-'Ð lu)
co

rn

h(")

10
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Chapter 2: Renewal Theory

Theorem 2.3 Gi,uen the aboae defini,tions the renewal equati,on for the forward recur-

rence times in the renewal process ?,s

p"(r) l?+")+Ðh("-t)f(r+t)
n-I

t:1
(2.2)

where p^(r) : p{F^ - r}. Assuming aperiodici,tA, as n tends to æ

p^(r) (2.3)

Proof: We get the renewal equation for p,(r) in exactly the same way as in (2.1). The

forward renewal time from time r¿ can be equal to r in one of two ways. Firstly the

first renewal can occur at time n t r. Secondly if a renewal occurs before this time at

time r¿ - I (probabiiity h(r- l)) it can be followed r * I later by a second renewal with

probability f (r + l). Summing gives (2.2), From the key renewa,l theorem we get the

limit as r¿ tends to infinity of p"(r) to be

p(r) :

tæ

-+ tt
m":

Í:I

*Ð-rþ +t)

f (r +t)

11



Chapter 2: Renewal Theory

2.3 Basic Markov renewal theory

The concept of renewal theory as outlined above is not sufficient for our purposes here.

\Me need the more advanced concepts of Markov renewal theory. This is because the

renewal process we shall investigate will have a number of stages through which it pro-

gresses. It is natural to call these states and define a process on them as below. We shail

need to progress to a more general description again before we are ready to produce the

results necessary for the later theory.

Although the definitions are quite general the motivation comes from a simple

set of examples. The generality is preserved because it is to be hoped that in the future

more difficult problems might be tackled using these concepts.

We must first define what we mean by a Markov renewal process (MRP). If we

take a Markov chain on the countable set of states ,S, which we shall label 1,2,3,.. .,

with the probability transition matrix P : (po¡), md we take the set of probability

distribution functions F¿¡(t) defined lor p¿¡ > 0 (and arbitrary for p¿¡: 0) then we can

describe a Markov renewal process as follows. It is a process in which a certain time

is spent in each state before the transition to another state. The choice of transitions

between states is governed by the matrix P and the time spent in state i, conditional on

a transition from this state to state j, is determined by proba,bility distribution function

,I}¡. Formally we may consider the two dimensional process {(J", X"): n > 0} where

Jn - the state after n transitions,

Xn : the time spent in state "I,"-r before the transition to ,I,,

such that if the filtration Ç^: o((J,.,X,,) :0 3 m 1 n), (see page 148) and the vector

of initial probabilities is a : {ai}

P{Jo: ¿¡ : ai¡

P{J*+t: ilÇ"} : P{J^+t: 4J"}
: PJn,i,

P{X*+t 1 rlJ* : i, Jn+r : j} : Fn¡(*),

I2



Chapter 2: Renewal Theory

where Fo¡(r) is a probability distribution function such that

F¿¡(r) - g, Vr ( 0

The reason for this being called a renewal process is simply that the future of the queue

at a transition epoch, is independent of the history of the process, except through the

current state. Thus at transitions the process reneus itself. An alternative name is a

regenerative process.

Pyke (1961a) approaches the defi.nition of these processes in a slightly different

manner. It can be shown that the two definitions are equivalent by considering the

matrix valued function Q : Æ -+ .nNx.RN. Q -- @,¡) which is called a matrir of

transition di,stributi,or¿s if the Qa¡ u" non-decreasing functions satisfying

Q¿¡(æ):0, æ(0
N

and /J¿(æ) - lQr¡(æ) is a probability distribution function for 1 ( i < ¡f . This agrees
j=L

with our definition if we take

Qo¡(*) : P;¡F¿¡(r),

or alternatively,

P¿¡

Fo¡(")
Pt¡ ) 0,

Pt¡ :0.

In Pyke's notation

P{J^+t : k, Xn+r < xlÇ.} : Q n,n(r), d.s

for all r e IR and 1 < k < ¡/. Pyke defines the process in terms of Q(.). For our

purposes it is more natural to consider P and F(.) due to the simplicity of the matrix

P in the process we shall investigate.

The things that are normally investigated in Markov renewal theory are the

counting processes defined by

¡/(ú)

¡/¡(¿)

: sup{rz > 017^ < ¿},
N(¿)

I tlt^: ¡¡,

(2.4)

(2.5)
n:7

13



Chapter 2: Renewal Theory

where 7o :0 a,ndT^:ÐT:tX¿. Note that the counting functions ¡f¡(¿) do not record

the value of. Js. The process N(ú) : (¡f1(¿),¡/r(ú),...) will be referred to as the Markov

renewal process determined by (5,a,P,F). Where no ambiguity exists we shall refer

simply to this as the MRP. We can also define a process (Zr) bV

Zt: JwG).

This gives the state of the MRP at time ú.

Just as in the theory of Markov chains the states of a MRP may be classified as to

whether they communicate, are (positive or null) recurrent or transient. For classification

\Me use the following, defined for all i, j e E,

Also we define p,¿¿ the mean time between transitions to state i

p{N¡(t) > 0lZo: ¿¡, if ú > 0,

0, if¿<0.

lo* 
t aGoo(t)

Go¡(t)

F¿¿ =

The following classifications are used.

Definition 2.L The following definitions are used herein.

(a) States i and j communicate iff G¿¡(æ)G¡¿(o") > 0, or i : j.
(b) fhe disjoint classes of communicating states are denoted by {C¡}.

(r) A MRP is said to be irced,ucible iff there i,s only one class.

(d,) A state i i,s said to be recurrent iff G¿¿(*) - L, and is said to be transient

otherwi,se.

(") A state is said to be null recurcent iff it is recurrent and, ¡,t¿¿: æ while i,t is said,

to be positite recurrent i,ff it is recurrent and, ¡-r,¿¿ 
( oo.

(Ð ry ail of the states i e S haue one of the precedi,ng properti,es then we say that the

MRP has thi,s propertg.

Theorem 5.1 of Pyke (1961a) means that the irreducibility and recurrence of the pro-

cess can be based on the corresponding properties of the Markov chain defined by the

transition matrix P. We also define a renewal function for the Markov renewal process

by M(t) : (M4þÐ where M¿¡(t) is

Mo¡(t) : E[¡t/j(ú)lZo : i]

I4
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Note that we can still use a version of the Key Renewal Theorem. However we shall

not be directly interested in /ú(t) and M(t), we shall be more interested in forward

recurrence times, the previous theory'being necessary for definitions and background.

The epoch of the next recurrence of state j after time ú is given by

rt (t) :inf{s > t | .nr¡(s) > N¡(¿)}

From this we define the forward recurrence times for state j by

tí¿(t) : (¿)

r(2" - i)d,s,

These are the total times spent in states i e 5 before the next recurrence of state j

2.3.t Delayed Markov renewal processes

Delayed Markov renewal processes are called generalised Markov renewal processes by

Pyke but we shall reserve this terminology for a later stage. These are processes with

a different set of probability distribution functions describing the time spent in the

initial state. Thus we get a new process which we call the delayed MRP determined by

(S, a, P, F, F)

P{Jo -,t¡
P{J*+t: ,lJ"}

P{Xt < *lJo: i, Jt: i}
P{X*+t 1 rlJ^: i, J**t - ¡}

il t :,S" and Jn : j for some n,

otherwise.

: ait

: PJN,i,

: Fo¡(*),

: F¿¡(*), for n > 1

0

T",

Note that if we take a¿ : n¿lrir where 4¿ is the mean time spent in state i and

Fo¡(t) - ïti| 
[o'lt - Fo¡]da,

we get a stationary process. (Pyke, page 1256). For the remainder of this thesis we shall

be considering non-delayed renewal processes. It is important to note that our reason for

doing this stems from our choice, in later chapters, of initial conditions for the queueing

systems considered. An alternative choice might well result in a delayed renewal process

but this will have no effect on the limiting behaviour of the systems.

15



Chapter 2: Renewal Theory

2.3.2 Generalised Markov renewal processes

We now consider a process such as the one above with the modifrcation that the epochs

of entry to some states do not constitute renewals. We call this a generalised Markov

renewal process (GMRP). If the state space of the process is 5 and the non-renewal

states are 5* C 5 then it is clear that we can no longer simply define Q4 for i e .S*

because

P{J^+t: j,Xn+t < nlÇ-} t PU"+t: j,Xn+r 1 xlJ*},

for Jn € S*. There are a number of ways of approaching this. The approach taken by

Nakagawa and Osaki (1976) follows from Pyke's definition of a MRP and is to define the

functions

q(lt't"z'"'k^'(r): P{after entering i e S\,5. the process next makes transitions through

states lil,l¡zr...rk^ €.S* and finally enters state j €.9,

in a total amount of time ( r],

We shall instead preserve the transition matrix P and define the functions

p(h'"''k^)(*or*r,...,t^) : P{x^ 1r0,Xn+r I rrr...,xn+^ I r,n

lJ.: i, Jn+t - letr. . . , Jn+* : lcrn, Jn+m+L: jj,

for i,j e .S\5. and fr1, ..,k,n €.9*. \Me call the (*g,rt,...,fi*) state sojourn lifetimes

conditional on the states (i, kt, . . . , k^, j) , F!o''"''t*) is then the joint probability distri-

bution function of the times spent in each state prior to a renewal, given the initiai state

i, the other states prior to the renewal (kt,.. .,k^) and final state j.

We can arrive at the notation of Nakagawa and Osaki (1976) by simply consid-

erlng

q\\t,hz,",h^)(r) : panrp¡"r¡r. .. pu^, 
t*,

p(h'"''k*) (*0, *r, . . ., rrn)d,ro drt " - dxrn
I"'tr^:æ

This definition lirnits the dependence upon the history of the process (beyond

dependence on the current state) to the times spent in states and not the actual states.

Thus the process describing the series of state transitions is still a Ma¡kov chain.

In such a process Definition 2.1 still holds. In order to establish the relationship

between the MRP and the Ma¡kov chain that describes the transition states we shall use

16



Chapter 2: Renewal Theory

Theorem 5.1 of Pyke. We do this by forming a Markov renewal process from the renewal

states ,S\S.. When the non-renewal states and corresponding transitions are ignored we

have a standard Markov renewal process and thus \Me can apply the theorem.

2.3.3 Discrete time

In most analyses of renewal processes it is assumed that the distribution functions are

non-lattice. We shall be using renewal theory to examine the behaviour of a discrete-

time process embedded in the queueing processes of interest. For this reason we shall

only consider lattice Markov renewal processes. If all of the functio6 4r or alternately

p(tø'""k^) are lattice with integer spans we call the greatest common denominator of these

spans the span of the process. Herein \Ã/e assume that the span is 1, which precludes

periodicity. We can then introduce the joint probability function

r[!''"''n^) (io, it, . . ., i,,) P{X" : io, Xn+t - it,. . ., Xn+,n : i,,l

Jn: i, Jn+I: ktr. . . , Jn+rn: krn, Jn+rn+l - jj. (2.6)

The process Z¡- "/.¡yp¡ is replaced by Z^: Jx@), the state of the process at time r¿

t7



Chapter 2: Renewal Theory

2.4 Multi-phase Markov renewal process

The case now described is the simplest non-trivial case of the generalised Markov renewal

process. It is called a Markov renewal process of type I in Nakagawa and Osaki (1976).

It is simply the case in which there are Iy' states labelled 1, . . . ,I/ with only state 1 a

renewal state and the states visited in sequential order. Thus the probability transition

matrix P is given by

0 1 0 ... 0 0

0 0 1 ... 0 0

P-

Ignoring non-renetval states 2,.. .,1/ there is oniy a singie state and hence the Markov

chain on this is obviously recurrent, so from Theorem 5.1 of Pyke the MRP must be

recurrent. Thus the muiti-phase Markov renewal process must be recurrent. Furthermore

as all of the states communicate the process is irreducible.

\Me refer to this as a multi-phase Markou renewal p?'ocess. The name refers to

the fact that the epochs of transitions to state 1 form a simple renewal process which is

then brolcen into phases, as \rye are interested in some of the internal behaviour of this

process. Each of the phases is simply a state in the GMRP. Because of the simplicity of

this case, much of the previous notation may be substantially abbreviated. Further this

allows us to use the Key Renewal Theorem in its simple form later in this chapter.

Note that the results of this section seem to be novel.

2.4.L Definitions

We define T! to be the epochof the ith departure from statei andtake TA: T#_r. A.

we consider the lattice case T! e Z+. \Me call the interval ITI-r,2fl) the rnth cycle.

The state sojourn times of the rnth cycle are the times ui," : TL - Tl,-t , the times spent

in each state during that cycle. We assume that the process is not delayed and the

vector of initial probabilities is a - €r. : (1,0, . . . ,0). By this we mean that the process

starts with a transition to state 1 (and a corresponding renewal). So Tfl : 0 and the

0 0 0 ... 0 1

1 0 0 ... 0 0

18



Chapter 2: Renewal Theory

1

a

Figure 2.1: The Markov renewal process. ! denotes a renewal point while Q denotes

a non-renewal point

probability function for the initial transition times is the same as that for a1l of the other

transition times. In terms of the notation of Section 2.3 we have

Xçn-t).N+i

Jç,,'_t¡.x+i

.rJ _-m Tl--t

J

Due to the nature of renewal processes the joint distributions of u)^, . . . , vfl arc

identical for all rn. Thus we may drop the subscript and refer to the state sojourn times

vt. We may from this define the joint probability function l(ü,i2,...,ir) of the state

sojourn times ur r. . . ,uN by

l(h,iz,'. ., i¡v) : p{rt : i1,u2 : iz, ".,uN : i¡¡}

: P{Xw.@_l)+t : it, X¡¡.(^_t)+z : i2,..', Xw.çn-r¡¡iv : ix},

: /Í? t) (ir,ir,. . . , iiv),

with ¡r(f"'w) as is defined by (2.6). We take p: Elr'*...+"t] and recluire that

ur +' . ' I uN ) 1 with probability one. The multi-phase MRP is positive recurrent when

19



Chapter 2: Renewal Theory

p < oo and nuli recurrent otherwise. This can again be seen by considering the renewal

process formed by transitions to state 1.

The times of interest are the times spent in each state before the recurrence of

state 1, the forward recurrence times ¡.r¿1. Mathematically these are as follows. Define

the I/ t 2 sequences of random variables ("¡("))Ëo and (r(n)) for r¿ € Zr as follows

"(")

'¡(")

:{

:{

inf{/r > nlk : Til, m e IN}, if the set is non-empty,

@, otherwise,

sup{n < k < ,(")lle : Tk, n'¿ € IN}, if the set is non-empty,

n) otherwise.

(Note the difference between 1¡ and ri. The former is defined immediately above while

the latter is the epoch of the next recurrence of state j.) In this context we are only

interested in the recurrence of state 1 and so we drop the superscript and refer to the

following lemma. By the forward recurrence times vr'e mean the forwa¡d recurrence times

for state 1 and we label these times lry po(n).

Lemma 2,3.L (Forward recurrence tirnes) For the multi-phase MRP the following

holds.

0 n:TI, for some m € IN,

otherwise,

if. n:T^ a"nd Jrn - j for some m Ç IN,

otherwise,

p¿(n):
r¿(n) - r¿-t(n),

Vie {r,...,¡/} andnelN

Proof: \Me defined the forward recurrence times for state j by

pt¿("):
0,

"i 
(n)

k:n
I tlzn: ¿¡,

where, as before, Zn is the state of the process at time ft and

d (t) :inf{s > t | /ú¡(s) > /{¡(¿)}.

Now for a multi-phase MRP the definitions of ,t(n) and r(n) are equivalent. Thus

0 if. n: Trn and J* - 1 for some m € IN,

otherwise.
,(n)

I tçzn: ¿¡,
p!("):

k:n

20



Chapter 2: Renewal Theory

As T,n is the time of the mth transition and J- is the state to which the mth transition

is made rre can see that n:T,n a¿¡.'d J,n:1for some m €.ð/ is equivalent ton:TL
for some m € IN. Also for a multi-phase MRP

I(Zk: i) : 1, rfr¡-{n)<k<r¿(n),
0, otherwise,

so that (dropping the superscript) we get

F;(n) -
if n: TI fot some 7r¿ € W,

,o(n) - r¿-t(n), otherwise.

¡
Assuming that at time n, one is in the rnth cycle and the current state is Zn ) 1, the

forward recurrence times a,re as follows for 1 ( j < ¡{,

0

p¡(n)

j <k,
j:k,
j>k.

j>1

(2,7)

0

rh

1J

n,

ri - 
,r,j -l-rn -m ,

-n\
- 

.trj -7-m1

If the state at time n, Zn - 1, then there are two possibilities. The first is simply that

a renewal occurs at time n in which case ¡^c¡(n):0 for all 1 ( j < N.If this is not the

case then we get

p¡(n)

Within the following sections we use the notation

Definition 2,2 For I : 1,.. .,N

(2.8)

Ð
ô¿ i¡:0 i¡+r:0 i¡v:0

ÐÐ Ð,
ooæ

ooæ

oo

co

Ð
9¿ ir:0 iz:o ir-r:0

ÐÐ Ð

with the empty set i,n the latter, for I : I, being interpreted, o,s zero

This is used to simplif¡¡ notation in later parts of this chapter.
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\Me can define the joint probability functions

Qn(rt,r2)..)ry) : p{p¿(n): r¿, (1 < i < ¡f)}, (2.9)

pl*(rt,r¡+r,..., riv) _ P{Z^t - t, p¿(n) : r¡, (I < i < ¡ú)}, (2.10)

l'(ir,ir*r,..., iiv) : Ð l(¿t, i2,...,i¡¡), (2.11)
v¿

gt*(i't,it+t,..',iw) - É Ð l(it,..,it-t,itli,i+t,...,i¡v), (2.12)
j:I ù-1"'-lit-t:n-J

f@ : Ð l(h,i2,...,iru). (2.13)
ir*"'*i¡v:i

Note that gt (ù,it+t,...,i¡y) is the probability that the first I transitions in the process

take total time r¿ f i¿, the lth transition takes time ) i¿ and transitions / + 1 to I/ take

times i¡¡1to i¡y respectively and pt (n,rt+r¡...¡r.¡y) is the probabitity that at time r¿ the

the last prior transition was to state I and the the forward recurrence times þt>...¡F¡t
ârê 1 ¿, . . . , rN respectively. Also from the theorem of total probability we get for r¿ > 1

N
qn (rt,rz,..,r¡,t) : Ðp'"(rr,rt+r,.., rru)

t:I

\Me can define the following probability generating functions

F*(rt,t2,. .. , riv)

(2.r4)

'r) rt,',: Ðrfllr \t:r
N,Ù?,2 )

Fi@r,rt+tt.. . , r,v)

E)'{'- N+l

when these converge. We take h(n) to be the probability of a renewal (subsequent to

time 0) at time r¿. Thus

1

Ì (g ,'t) t'u,,,it+t,..,iw),

F.(1,..., 1, rtt...,fr¡i-),

h(")
oo

rn:t
Ð p{r# : "}
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2.4.2 Results

Theorem 2.4 Gi,uen the aboue def,nitions the renewal equation is

r¿-t
p!*(rt" ' , riv)

Ðg'o(,,,"',r,v)

gt^(n,...,riv) + Ð h(" - k)g'nþr,. ..,riv). (2.15)
k:7

Assuming aperiodi,city, lor I : 1,. . . ,N, and p ( oo ¿s ?¿ -) oo we get

h(") -+

Pl^(n,'. ' , rry) -)

1
,p

)P=rr(',+t',..',rr)'

(2. i6)

(2.r7)

Proof: To obtain (2.16) we consider the simple renewal process formed by transitions

to state 1. This has probability density function given ¡V /(.) defined in (2.13). This

will behave as in the simple renewal process of Section 2.2. Thus we get (2.16).

In order to obtain the renewal ecluation we follow the procedure of Theorem 2.3

and sum over all of the possibilities to get

pt^(rt,...,rr) : gt*(rt,...,r¡v) + f h@- k)g'n4r,...,riv).
È:1

The lattice version of the Key Renewal Theorem gives

Pt(rtr'..,rry)

Now

!î,n'u',,..',riv).

oofr

k=7 IFL i:lù1...¡ù-t:k-i
oo oo

j:I k:j fit...ti¡a:þ-j
coæ

ÐÐ Ð lTt,"',it_t,rtli,?"r+l,"',r¡v)

ÐÐ Ð lUt,"',it_!,rt*i,rt+rt"',r.¡v)

;Ð:r, n, * tt', r¡¡1,"', riv)

Ð Ð Ð l\t, "' ,it r,rt r i,rt+r," ' , riv)
j:I k:0 i1f ...fi¡-1=/s
co

Ð Ð lUt, . . . ,it-r,rt * i,rt+rt'. ' , r,v)
j:r at
co

Ðl'U,li,r+t,...,r¡v)
J:I

tr

and so

Pt(rt,".,riv)
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Remark: Intuitively this can be explained in the following manner. We consider the

process after a long time. We then consider all of the ways in which a set of for-

ward recurrence times can occur. In order to have the forward renewal times rt, . . . ,rN,
given the last transition prior to time r¿ was to state l, we must have the sojourn times

it+t: rt+rt... ,i¡t - r¡¡. The the oniy restriction on i¿ is that i¡ ) r¡ * 1 and there will

be no restrictions on i1 to i¡-1. The probability of any particular set of sojourn times

it,...,i¡y will be /(i1,...,iru). As we consider the long time limit, the probability of

a renewal at any particular time point is a consta¡rt |lp. Thus the probability of a

set of sojourn times occurring in the context of our forward recurrence times will be

|l{l't,"',i;v) when i¡ } r¡ * 1 and it+t: rt+r¡.'.,iiv : rr and zero otherwise. When

\Me sum over all of these probabilities \Me get the result. This alternative explanation is

more intuitive but lacks the rigour of the proof.

As we can now see that the limits exist we define

The corresponding probability generating functions are

q(rt,rz,

pt (rt,

Q*(rt,ß2,' . . ,rw)

'rrrv) :

',riv) :
J$ ø"(.t,...,riv),

j4 PL(',,'",r,v)'

q(rurz,. . . ,rw),

(2.18)

(2. 1 e)

(2.20)

Pi@r,ßt+r¡.. . , r.v)

and from (2.14) we get

Q*(*r,12,'.-,tN)
t:1

Theorem 2.6 Gi,uen the aboue d,efinitions, V¡/ > L and tLtt2,. . . ,tN € [0, 1),

: :(9"*)

l{r'.'rn,r', 
. ", i¡v) - for' {*,0,*,, ", o") 

}

Ì fU 'i') o'o"r'+t' '' r¡v)'

1 tt+tr" ' , tN -Fi@r,...,ury) (2.2r)L-xt
Furthermore, if Q* conuerges for sorTt€ a.,1,t2t... ,fr¡¡ Trot necessari,ly all in the i,nterual

[0,1), then it conuerges to the right-hand, side of equati,on 2.21.

Proof: Fbom Theorem 2.4 and Definitions 2.19 and 2.11 we can see that

rlV

Q*(*rrr2r...,æN) : lfPet

pt(it,it+t,'., ir)

24
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Chapter 2: Renewal Theory

Consider first the case with nlt...,rN € [0,1). Multiplying (2.22) ¡V (nil:, rf ) and

summing over i¡ for k : 1,.. .,Iü we get the generating function Pl on the left-hand side

and on the right-hand side we get the following

Pi(rr.,nr+t,., .,riv) : l'*'(ir*r,...,ir)

rf T'(^,it+t, ..,iN)

Ð "i' l'*t (it+t, . .', ir):;{¿(J,'*)

.r)tI
pl

/c:l*
Ð

ô¿+1PI - rt

Ð
ôr

ót:0

Ð
ôl+

il r'[ Ð ri' Ð /'(^,i,*r,.., ir)
N æ

æ

xl

N

Ð il
â¿+1 k:l-lI

ôl+1

ô¡+1

l'*t(ir*t,'.',i,v) (;")

k:tiI i¡:0 rn:Q

æ

rn:0

l'*'(ir*r,'.',iiv) (år, )

Ð
ô¿+

Ð il

Ð f'@,it+t,.',iu)

Ð l'(^,it+t,..,i¡r)

1 ))
*i'x'[

;{ t ^xkúlc

N
æ[

1 n:0

^ffiúl

7-rtk:lI

11 N

''r)'*'(i¿+''"''i")

.'t) rø" 'o',) '

il
1

Pf (r¡, æ¡¡1, t-xt (2.23)

If Ç* converges for some set of. xi > 1 then P,* must also converge for this set. Note that

if r¡ < 1 the proof of (2.23) remains unchanged. However if. r¡ > 1 we must modify this

proof as follows.

that is,

Pi @r,tt+7t .. . , ø¡v) :

Fi*t@, *1,'.,,r,v) - Fi(*r,.' ., rry): 
;{

,*)

Ì(-u;{

!I
n\ r

xlc

kæ

N

il
Ð l'(¿, -l m,'. ' , iiv)
rn:7

Ð
â¿+1

xh Ð Ð,i' l'U, * m,..',i.,v)k

æ

k:tl r
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î *¡^ î *i'n^ l' (it * m,. . ., i,v)

k:I*I

\
"T ) 

^l'(i"'

itr. . .

l'(¿, + k,
æ
\-/-
fr:1

æ

Ë
it:o

oo

Ð

N

il .r)

ú)

1lc:ll

"tr)

.3)

N

il
+1k:t

N

il
k:l-l

Ð
rn:7 "¡- lË *î,¡,(i,t,.. . , iw)

Lir:o

rn:I i¡:0

co

-Ð *i'lt(it,.'.,ir)

Ð il Ð *i, l' (i,,. . .,i*) Ð *,^
â,+1 k:l*I rn=7

æ nt,-t

rn-t

it:o
oo

Ð *,^ Ð *i' Í'(i,,.. , , i.v)
rn:L i¡=o

--1n

r-rt

, ir)

oo co

it:o rn-itll

r-1
, i,v) L-xt

corf
rl

(-q'*;{

N

t
âr

l'U,,...,iiv)

I:
p

Ð r'(i,,...,i*) Ð ,i'-^

!lpl

;{

t
â¿+1

Ð
â¡+1

Pr*(*rrtt+rt...,æru) :

Ð/'(i,,...,i*)Ð*,^
rn:L:0xl

r "lt
PI-rt l'(ir,.. . , iiu)r'f

Ð f fr r7) ¡t+11;,,1,...,¿")Ì
ât+r \t:r+t / )

Fr**r(,r*t, ,riv)- Ff(*r,...,uiv):;{

, iru)

r-rt
which again gives us (2.23). The case when tt : I can be seen to give

Ð l'(k,...,iw)

26

it:0 k:itll



Chapter 2: Renewal Theory

: 
;{

: 
;{

Ð

le=

li-t

Ðl'(n,.'.,i")
/c:1 i¡:0
æ

Ðnr',,o,.,.,i,v)
1

út:L

as we would expect from L'Hôpitals rule. From (2,23) and (2.20) we get (2.2L), that is

dFt, \
--(rt'."' 0¡v)
dtt'

$ 4ïr(r,*1, . . ., øry) - Fi@u. . .,niv)

?-r r-'uQ*(*t,fr2,' . .rtw) :

which is the desired result

1
p
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2.5 Multi-phase Markov renewal process with an in-

finite number of phases.

We consider here the case when -ôy' - oo. These occur naturally in some circumstances,

In Figure 2.2 we present a GMRP that represents a situation we shall see in Chapter 7.

Figure 2.2: GMRP type II. tr denotes a renewal point while Q denotes a non-renewal

point

This has two renewal states. Starting from state 1 we can return directly to state

1 or have a transition to state 2. From here the process may undertake any number of

transitions between states 2 and 3 before returning through state 3 to state 1. \Me shall

call this the GMRP type IL

We obtain a multi-phase MRP from this as follows. \Me start in state 1. If we

return immediately to state 1 we consider the multi-phase process to have traversed all

of the other states in zero time. If from state 1 we go to state 2 we proceed as follows.

We consider each subsequent entry into states two and three, before returning to state

1, to be a ne\¡¡ state. In this case we may alternate an infinite number of times between

states 2 and 3, before the end of the busy period so there are an infinite number of
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states. The two phases alternate an infinite number of times with probability zero (as a

transition from 3 to 1 occurs with positive probability and so the process's recurrence is

not adversely effected by this. \Mhen the transition to state 1 finally occurs we consider

the process to again traverse all of the unvisited states in zero time before returning to

state 1.

Thus we get the multi-phase MRP of Figure 2,3 with the states deflned as follows.

States 2n*2 in the multi-phase MRP corresponds to the nth entry (before returning to

state 1) to state 2 of the GMRP type II while states 2nt3 correspond to the nth entry

to state 3 in the GMRP type II and state 1 corresponds to state 1. Upon return to state

one rve begin this transition through states 2,3,. .., again. Note also that the positive

recurrence (or null recurrence) of state 1 (and hence the other states) in the multi-phase

MRP will be related directly to the positive recurrence (or null recurrence) of state 1 in

the GMRP type IL

Also we note that the odd numbered states would stil1 appear to be renewal

states in this process. They are not, but only because when we finally have a transition

from state 3 to state 1 in the GMRP type II in the equivalent multi-phase MRP we get a

transition through all of the remaining states in the process. This means that the times

spent in these phases are no longer entirely independent.

Finally ¡i (ú), the number of transitions that occur before time f , becomes infinite

after only one cycle through the phases of the multi-phase MRP, Thus p{l/(ú) < oo, Vú )
0] : 0 and rve can no longer define ¡f¡(¿) as in (2.5). However if we define C(ú) the

number of cycles that have occurred before time ú rve can see that l{¡(ú) will simply be

C(ú) or C(t)+ 1 depending on the current state. Thus we can define all of the necessary

quantities in a sensible fashion. The epochs of transitions Zfi wiil still be defined and

ïve can continue. We state without proof the following extension of Theorem 2.5.

Theorem 2,6 G'iuen the øboue def,nitions and, 11,r'2¡. ..€ [0,1),

Q*(rt,rz,' . .)
Ff*r(r+t, ".) - Fl (r,,.' .)

(2.24)L-rt

Furthermore, if Q* conuerges for sorne rr)t2¡... not necessarily all i,n the interual [0,1),

then it conuerges to the right-hand, si,d,e of equation 2.21¡.

Ð
l:t

I
p
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1
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Figure 2.3: Multi-phase MRP with an infinite number of phases. tr denotes a renewal

point while Q denotes a non-renewal point

\ \ \
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Chapter 3

The Multi-phase }.4IG/L Queue

3.1 Introduction

We sha,ll consider a single-server queueing process in which the arrivals form a homo-

geneous Poisson process with rate À, and the service times are non-negative random

variables each with probability distribution function given by one of a set of probability

distribution functions {,4,(.)}Ër. The queue size is unlimited. The service discipline

may be any non-preemptive discipline. The period during which ai(.) is chosen is called

phasej. Thus we have .f/ phases labelled 1,...,N.

We assume that the phase changes occur at the end of services and are stopping

times with respect to the filtration generated by the queueing procìess. This essentially

means that the decision to change phase at time ? is based only on the information up

until the time 7, and not on any information about the future behaviour of the queue.

Also we assume that the times spent in two phases are independent if the two phases are

not in the same busy period. These limitations are necessary for the analysis to follow,

but are not unreasonable assumptions.

The motivating case and the case for which we calculate solutions is the case in

which the phases occur in some specific pre-defined order. We shail label the phases in

the order that they occur and call one transition through all of the phases a cycle.

It will also be convenient to consider each cycle of transitions between phases to

occur during one busy period. That is, we start the cycle (in phase 1) when an arriving

customer finds the system with no customers in it, and if the cycle is not complete by
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the time the system is again empty, we say the process spends zero time in the remaining

phases. Thus we enter each phase exactly once during each busy period. This and the

fact that the times spent in two phases in different busy periods are independent mean

that the ends of busy periods are still renewal points of the process. We shall call a

queue which satisfi.es all of the above the multi-phase M/C/1 queue.

This does not limit the systems considered as much as it may at first seem. F'or

instance, if a particular phase is skipped over, r¡/e may insert a transition through the

missing phase which takes zero time. Also if a phase may be visited more than once

during a cycle rve may consider the second entry to that phase to be a neir¡ phase, say

¡/ + 1, and so on for future repetitions. This introduces the possibility of infinitely many

phases, which we shall not consider until Section 3.6.

As is the case with the usual }i,{IGIL queue we consider the embedded, discrete-

time process formed when one observes the number of customers in the system after

departures, In this case this embedded process does not form a Markov chain, as

with the standa¡d Mlcll case, without the additional complexity of a supplement-

ary variable to describe the current phase. We shall follow the approach of Baccelli and

Makowski (1985,1989) in defining a martingale with respect to the embedded process,

and from this we establish a relationship between the forward recurrence times in a

multi-phase Markov renewal process and the system size.

Before the results can be obtained we need to prove the regularity of all the

stopping times involved with respect to the martingale of interest. This is closely linked

with the stability of the queueing process as we shall see. The primary condition of

interest called condition (*) is considered in Section 3.2.2.

Then we get the fundamental relationship of this paper which is expressed in

Theorem 3.6. From an analysis of the multi-phase MRP, in Chapter 2, the limiting

probability generating function for the number of customers in the system in equilibrium

may be expressed in terms of that of the state sojourn times of the multi-phase MRP.

Helpful results for the calculation of these probability generating functions are found in

Corollary 3.7 and Theorern 3.8 using the martingale once again. A general form for the

equilibrium probability generating function of the system size can then be found. This

is expressed in Theorem 3.10.
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The example of the standardll{lGll queue is examined using this technique

in Section 3.7. To obtain the final solution for a more complicated problem further

work must be done using conventional probabilistic arguments. Further examples are

examined in Chapters 4-7.

Note that in this chapter the exact nature of the transitions between phases is

not specified. We provide the constraints on what types of transitions are allowed but say

nothing about the actual way in which the transitions are governed. The theory allows

a quite general approach to these transitions. In Chapters 4-7 we consider a number of

possible cases. For instance in Chapter 4 we consider a process in which the transition

occurs when some threshoid is crossed. This threshold could be a physical limit on the

queue size or a limit on the number of customers served after the busy period begins.

The scope for choice of this threshold is quite large. We shall often refer to the points in

the process at which transitions occur as a threshold. For more details the reader must

consider the examples presented in following chapters. These, however, are by no means

exhaustive.

\Me now describe the model used to examine these processes. The basic parts of

this model are described in Appendix C.
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3.1.1 The rnodel

Take the number of customers in the system at time ú to be X(t). We consider the

discrete-time embedded process X",, where X" is the number of customers seen by the

rzth departing customer. Formally, if the departure epochs are ú1, tz,. . . then Xr, -
X(¿,+). We shall assume that the queue starts at time 0 with a departure, thus Xo :
0. The arrivals to the queue form a homogeneous Poisson process with rate À. The

service-time distribution is a general service-time distribution chosen from a set of general

clistributions according to the phase of the queue, where the phase is chosen from the

set {1, . . . , ¡ú}. The phases of the queue obey certain rules.

(i) The phase can change only on service completion.

(ii) The times at which phase changes occur are stopping times.

(iii) The times spent in two phases in different busy periods are independent.

For the examples we consider we also recluire the following three extra conditions on the

phases.

(iv) At the start of busy periods we are always in phase 1.

(v) The phases occlü in order, so phase i is followed by phase (; + t) mod I/.
(vi) Each phase is entered exactly once during a busy period.

We refer to the time from the beginning of phase 1 to the end of phase .ð/ as a cycle. Thus

a cycle corresponds to a busy period. We say phase(n) : i, if a,fter the r¿th departure,

the system is in phase i.

We define the epochs at which the phase changes T! e Z)-, by

T! : the time of the ith transition out of phase j,

with d0 : TIt. We define C!, in terms of T! by

{alr!-t(a) !n <r!(r)}

{r:-t <n<r!},

phase(n): j,

otherwise.

U
i€W

U
i€.W

so that C{ is the event that at time r¿ the queue is in phase j. W. use the usual indicator

notation
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It is worth noting that the above does not preclude zero time being spent in a phase, as

{-i might equal T!. ln this case we still say T! 1 o..trrc before {.
During phase j the service times are random variables with distribution function

,4t (.) Service times are assumed to be independent of the a¡rival epochs. We take the

number of arrivals during the nth service time, given the queue is in phase j, to be the

random variable Afi. These random variables form.l/ independent, identically distributed

sequences of random variables (Afi). We define alo : p{A|r: i}. We take the probability

generating function

"¡(") - ElzAll
co

: Ðoi '0,i:0

and note that (from Theorem C.4) it is given in term of the Laplace-Stieltjes transform

or Aj(.) bv

a¡(z):'ry.(^- \')'

We take p j - oij(I) which is the mean number of arrivals during a single service in phase

j and we call this the trffic intensity during phase j. Note that p¡ : \lp¡ where Lf p,¡

is the mean service-time during phase j. In the following text we shall use {¡(z) defined

by

Ë¡(r\ : ', ..a¡\z)

Given this model \¡\¡e can define -f/+2 sequences of stopping times ("0(")), ("t(")), ..., ("r("))
and (r(n)) for n € %t as follows

,(")

,¡(")

:{

:r(

inf{m > nl X,,: 0}, if the set is non-empt¡

ñ, otherwise,

n) n inf{rn } nlphase(*) > j}

: r(n) ni"r{- 
= "1,å, ,"*-- rl,

where A denotes the minimum (and V denotes the maximum). When j : N the sum is

empty and so rx(n) : r(n). Note then that
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with probability one. r(n) is the epoch of the end of the current busy period at time

n. r¡(n) : n if. the process has already been through phase j in the current busy period

and otherwise it is the time of the next transition out of phase j. Note that when the

busy period ends we consider the process to go through the remaining phases, spending

zero time in each. That r(n) and r¡(n) are stopping times comes clirectly from the fact

that we only allow phase transitions at stopping times. \Me can also define the following

sequences of times

,¡(n) - ,¡(") - ri-1(n), (3.1)

p¡(n) : [ '''"'' 
x^ # o' 

(3.2)

I o' Xn:O,

Lor j - 1,...,N. We assumethat there is a dummy service completion at time zero.

Thus \Me can take X¡ to be some random variable E. For our purposes here it is convenient

to take Xo:0 a.s. and correspondingly phase(O) - 1. Hence 4 : O. One of the results

of this is

pj(n-1(0)):
,¡(0), j > l,

0, i <1.

3.L.2 Probabilistic elements

Of course the above model must be specifi.ed on some probability space (Q,?,P). 'We

wish all of the random variables to be .F-measurable. The phase at a given time, and the

number of customers in the system at a given time are suffi.cient to generate this space.

We may define the filtration Fnby

Fn: 
"(Aklo 

1m /-n,i: 1,..,r/)

Clearly X," is determined purely by Ah and I"^ at times m 1n. \Me chose the ends of

phases tobe at stoppingtimes, thus {{ <?z} € Fnf.or atl j:1,...,/{ andie .üV. As

Fn is a o-algebra we can see also that {Tf > r¿} € Fn for all j :1, . . . ,l/ and i e .ZV (as

Fn is closed under complements), Now from this Ci, : l)or*{Tl-t 1 n { f!} e F* (as

Fn is closed under intersections and countable unions) and hence I ri is -F.-measurable.

Thus Xn is.F,,-measurable. Indeed we can see that for aII m 1n, X,n, Iri and A!^ arc
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all .F,-measurable. \Me then take

F

3.2 The martingale

We now define the martingale which wili provide the majority of the results herein.

Theorem 3.2 The followhg (A/I^(z)) ør o non-negati,ue integrable mart,ingale for z e

FnU
n:L

(0,1]

Proof: \Me have

E lM"¡1(z)l F"l zx*+'fI

Mo(r) : 1,

n-L / ,r(xh+o) \
u^(,) : "*" Fu\Ð-Tr,"rd , 

n) r.

"l
il
È:0

'tL

k:0

E lzx**'lr*f , o.t.,
zr(xk+0)

Ðj:t I"ta¡(z)

from the .F^-measurability of Crr and /(X¿ I 0) for k - 0 to n. The following recurrence

relation gives X^n1 in terms of Xn,

xn+t- xn+f 4*a'^+r- I(x^+o).
J:T

This simply states that during the busy period the number of customers left in the system

after a service completion is the number in the system before the service begins, plus

the number who arrive during the service, minus one for the customer who completed

service. When the queue is empty it must wait for a customer to arrive before it begins

service and so there is one extra arrival to the system, hence the I(X" l0) term. So

: fi ( - :'!2-) t f r"" 
FÐL, 1",^A1*+,-'t*'+ql r^] a.s.åå\tFE ø)"1" '^ 

l-"1

: zx--r(x^+,, ü(#Ã) r l,t*,' "*r.,lr^f a.s.
k
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Using the fact that the Ct*are a disjoint, complete set for j:L,..,ly' we get

E ,Di=, 
1",^A1^+, Icl

N

Ð
i:7
N

Ð
i:7

E o,.slzA!"*'f

Iria¡(z) a.s.

and so

1n
E lM^+t(r)l F^l ,** fI a.s

È:0

M.(z) a.s.

It is trivial to show tlnat M.(z) is non-negative, therefore E llM"(z)l] : A lM.(z)] < æ

and hence the martingale is integrable. tr

3.2.L Stability and recurrence

In order for us to be able to find useful equilibrium results the processes investigated

must be stable. Furthermore in order for the martingale results to be of use we shall

relate them to the multi-phase MRP discussed in Section 2.4. To do this we require

the process to be recurrent. Lemma 3.2.2 provides a useful result based on the stability

of the MlGll queue and condition (x) presented in the following section is a sufficient

condition for stability but in general each situation must be considered on its merits.

The process should also be irreducible. That is, we want there to be no more

than one communicating class. In some types of queueing process (see Section 3.4 on

page 56) it is possible to have more than one communicating class, We wish to avoid

these possibilities. More will be said about this in Section 3.3.1.

The obvious criterion of use here is simply to require that r(n) be almost surely

finite for all n € %+. This means that state 0 will recur within a finite time almost

surely. Lemma 3.3.2 shows that it is suffi.cient to iook at r(0).

We need one further condition, that pr > 0. Simply stated, we require that the

traffic intensity during the first phase to be positive. This is because the busy system

enters phase one at the completion of each busy period. It cannot leave phase one until

there has been at least one service completion. Thus, if p1 were zero, there would be
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no arrivals and hence we would never leave state 0. There are other similar conditions

which suffi.ce, such as requiring that a maximum time can be spent in phase 1 before

switching to a phase with positive traffi.c intensity but these violate some of our rules for

phases, therefore \rye assume below that p1 > 0.

Lemma 3,2.1 Gi'uen Xo : 0, i'f r(0) i's almost surely fini'te then r(n) and r¿(n) are also

almost surely fini,te fori:1,..., N andfor alln€ Zl+.

Proof: \Mhen Xo : 0, r(0) being almost surely finite implies that the busy period is

almost surely finite. From this r(zz) must be a.s. finite. This is because all of the states

are reachable from state 0 in one transition. So, as r(0) is almost surely finite, we return

to state 0 in an almost surely finite time. Hence no matter what state the process is in

it must return to state zero in an a.s. finite time. It is immediate that r¿(n) must also

be almost surely finite as r¿(n) S r(") almost surely. tr

Lemma 3.2.2 IÍ p¡¡ > I and p{rry(O) - r¡v-r(O) > 0} > 0 then the process ts unstable.

Proof: We take 
"¡v-r(O) 

{ oo. In this case we havep{r¡y(O) -"r-r(0) > 0} > 0 so over

a busy period there is a positive probability of spending time in phase -lú. Once in phase

l/ the queue behaves as an }l,dIGIL queue. Thus the stability conditions of the MIGIL

queue apply, Hence for p¡y > 1, p{riv(O) < *} ( I and hence the queue is unstable. tr

This last condition arises from the fact that the iast phase ends when the system

empties. If p* > 1 and the process is not already empty at the beginning of this phase

then, with positive probability, the process may never become empty again, and hence

the phase might not end.
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3.2.2 Regularity of the stopping times

In order to uses Doob's Optional Sampling Theorem we must demonstrate that the

stopping times involved are regular for the martingale. This would be trivial if the

martingale were uniformly integrable, (from Neveu, IV-3-14) however it may not be.

Thus we must investigate the conditions under which \Me can prove regularity.

Condition (*) We take .S : {1,2,.. . ,If} and ,S* c .S to be the set of all j
with p¡ > 1. The condition is that

E fl €r1r¡"io)-1-1(o) ( oo,
€,5*

for all z Ç10,1]. \Mhen S* : ó the condition is automatically satisfied

\Mhen S. : {i} so that p¿ } I and p¡ ( I for all other j we can write this condition as

E la';@) "-'(o)] (@,

where o : sllpzeto,rl{,(z). This will be the condition used in Chapter 4. Note that

condition (x) implies that r(0) is almost surely finite, and hence the queue is stable.

Theorem 33 If (*) is satisfied then the stoppi,ng times ro(n),...r*(n) and r(n) are

regular for the martingale M^(t), z e 10,71, n e Z+.

Furthermore when r(zl) : çe

M,6¡(z) :0.

Proof: We wish the stopping times ry(n),. . . "r(r) and r(n) to be regular for the

martingale for n € Z+. First we consider the case with,S* : þ. In this case Takács's

lemma (C.5) implies that €¡(") l1 for all j : I,. . . , ¡y'. Hence

lM"(z)l ! L,

which implies tihat (M^(")) is uniformly integrable (p.g" 157). As (*"A>) is a positive

integrable martingale, condition (a) of Neveu IV-3-14 is automatically satisfied. When
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U^(r) is uniformly integrable so too must Mn(z) /(" > n) for all stopping times r and

so condition (b) of Neveu IV-3-14 is also satisfied. Hence any possible stopping time is

regular in this case. Next we show that r(0) is regular for the case when S. : {i}.

Lemma3.3.1 For p¡ < L,Vi f i, and, p¿) !, i,f Ela"@)-"-'(0)] 1æ wherea:
supzç[6,1] €"("), thenr(0) is regular for the martingale M^(r), z e [0,1].

Proof: We use Neveu IV-3-16. Condition (1) of this proposition,

f",0,..", lM'(o)Q)ld'e ( oo'

is automatically satisfied for our martingale. Condition (2),

lim t
u +co"/{,(o)> *rlM"(')laP: o,

Noting that the martingale is non-negative we start with r¿ ) 0is satisfi.ed as follows

from

which because 
"(0) 

> n gives

il
ft:0

lM^(r)l ,xn

(a (0)¡n)-1

€,(.)) ('::{'^j{,(,)) (
(z¡y(0)Ân) 1

il Ë*Q)
lc:ztv-r (0)Ân

as a : supze[o,1] €o(r) > 1. Now due to the almost sure finiteness of r(0) implied by (x)

Jgå/(r(o)>") : 0 ¿.s.

(3.3)

(3.4)

Thus (3.3) and (3.a) imply lM^(t)lf(r(O) > zr,) tends to 0 almost surely as r¿ tends to

infinity. Also from (3.3) we get
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the right-hand side of which has finite expectation by the assumption. Thus \Me can use

the Dominated Convergence Theorem to show

lim E llu*(òlr(r(o) > r)l - u ['q* lM^(òl /(r(0) t,)] : o,

from which we get condition (2) and thence the result. The latter part of the theorem

follows also from Neveu IV-3-16. ¡

The generalisation of E* is done in the same manner as the previous lemma with

the substitution of the more general condition.

Lemma 3.3,2 If r(0) i,s regular for the marti,ngøle then r(n) and r¡(n) are also regular

for the martingale for i:1,..., N and for alln € Z+..

Proof: Given that r(n) is regular, Neveu IV-3-13 implies that r¿(n) must also be regular.

All we need to show now is that the regularity of r(0) implies the regularity of r@).

r(n)-1
M,<*)(z) : zx"(') II

,(n

il,(nzx
k:q(

/t:0

n@)-

il
fr:0

1 1

TL

where n(n) : sup{rn 1 nlX^ - 0}, the epoch of the beginning of the current busy

period. Now the latter product in this equation is the product over one busy period.

Due to the regenerative nature of this process at time 4(n), for m) n

f r(*)_t / -r(xk+o) \ I
E 

lI 
(r(n) > m) zx,(n) 

_:TIr, l#¿fIÐJ l
: ø fl1"1o¡ > n'¿ - r¡(n)) zx,o, 

"tll' ( -:tt"-*o' I I
L ' Èì \ÐË' t"':t(r) ))

and also

and /(r(rz) t m) zx't^t fl

are independent. Thus for n't,>n $¡e can write

n llM"raQ)ll(r(n) t '")]

n@)-

il
,t:0

1 r(n)-t
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ci

Now for fixed, finite n the first expectation is clearly flnite and as rn tends to infinity the

E

E

,t(n)-

il
&:0

n(n)-

il
fr:0

1

1 zr(xk+0)
s.NL j:t I o¡(')

zr(xk+0)

Df:Içtra¡(z)

) ] " fr,",,, 
) m) zx,r*, 

;'ïì; æ;h)l
) ] 

t 
fr,',', 

> n't, - r¡(n)) zx,o, 
"'lI-' (#äfu) 

]

second equals lim E lf 1"1O; > m)M,@) (z)] which tends to zero as rn tends to infinity

from Lemma 3.3.1. So we have our result

This concludes the proof of Theorem 3.3.

From here on we shall refer to the stopping time Z. By this we shall mean one

of thestoppingtimes n,rs(n),...r*(n)orr(n) forn€ Z+. Theoremswhicharesaid

to be true for stopping times 7 are also true for each of these stopping times. This is

expressed in the following definition.

Definition 3.1 The stopping ti,me 1 will refer to each of the stopping times

ro(n),. . .r*(n) or r(n) for n € Z+.

Theorem 3.4 Il (*) is satisfied then the stoppi,ng times ro(l),...,r*(l) and r(1) are

regular for the marti,ngale M^(r), 2 el0,Il andl d,efi,ned, in Defi,ni,tion 3.1.

Furthermore when "(l) 
: -

M,(y)(r):0 ¿.s.

Proof: We proceed as in Lemma 3.3.1. We satisfy the conditions of Neveu's Proposi-

tion IV-3-16. As before Condition (1) is automatically satisfied. Condition (2),

rim t lM^(òld,P :0,
n-+* J{rbò>n}'

is satisfied as follows.

+ -lip / I(t > n)M^(z) d,P' z¿-+oo J1rç1¡>n¡ \ I

Jipg l . . - /(z < n)M-(z) d,Pn-æ J {r(1)>n}

+ _tiru f . M^(z) dP.
n-+æ J{1}n}

tr

(3.5)
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When I : r(m) the second term of (3.5) becomes

-rir+/. -M*(z)d,P:o, (3.6)n-+* J1rlrn¡>n¡ ''\ /

since we know from Theorem 3.3 that r(rn) is regular for the martingale and must satisfy

condition (2) of Neveu IV-3-16. Hence from (3.5) and (3.6) we get

J* f",r,, .rlM*{ùlae = Is* lr,,rrr^¡I(t < n)M*(z) d'P

tim t M^(z\ dP,n+æ J {11ncr(1)}

when I : r(m). In this integral ,(*) < r¿ and so $/e can write

M^(,) : 
['H' (#ø)] l*" _*, (#ifu) 

]

As in Lemma 3.3.2 the two parts of this product are independent due to the regenerative

nature of the process. Furthermore the regularity of r(m) implies that the former term

has finite expectation. The expectation of the second part can be shown to approach zero

as n tends to infinity by exactly the same method as is used to demonstrate condition

(2) of Neveu IV-3-16 in Lemma 3.3.1.

Thus the theorem is proven for 7 : r(m), When I : ,¡(*) u¡e can see that

r(r(m)) > r(r¿(m)) almost surely and so from Neveu IV-3-13 we get the regularity of

alI r(r¡(m)). This is the result we need. The latter part of the theorem again comes

directly from Neveu IV-3-16. ¡
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3.2.3 LJse of the Optional Sampling Theorem

Theorern 3.6 For z el},I),1 as in Definition 3.1 and with(*) sati,sf,ed,

E
JV

j:tlI to?)""" F.,l : 7xt 2I(xt:0) , 0,.s,

Proof: Consider Doob's Optional Sampling Theorem (A.S) wittr stopping times 7 and

r(7). We know 7 < r(7) a.s. a¡rd condition (x) gives the regularity of these stopping

times through Theorem 3.4 and so the following is true

ElM,r,Ølr.,l -- M,(r), 0,.s

Rewritten this is

1T

F,,
(r)-

il
Ë:0

zr(xþ+o)

Ðfi I 
"¿a¡(z)

1-I: ,*, fl, , a.s.
,t:0

E zx'(

There are two possibilities: r(7) : oo in which case M,ç.r1Q) :0 from Theorem 3.4 or

r(l) < oo in which case X"1r¡ - 0. The former case can make no contribution to the

expectation so by using the fact tirat fr =191i- 
is .Er-measurable we get

*:g L¡:1 t Cikui\z )

f ,(z)_r _r6k+o) I I

'Lg ffiI"): 'x" os

It is clear that X¿ l0 for lc: ^t * 1 to r(l) - 1 from the definition of r(7). Thus

f ,t1x",¡o¡ "(r)-1

I;;rr.. ,*"6*I,,E
DltI"'ra¡(z)

¡" ,I(xrfj) is also .Er-measurable we can write this as

,x, , (I.g

,*r, a,szr(x.t+0)-tE Fr)

Frl

(r)t 
"rrot

I 
"tro¡

s-.NLi:t

ç.N
z¿ j:L

'(z)-1il
k:.,1

,h)-t
il
l":l

t

E
(")

We note that 1 - I(X, # 0) : I(X..t :0) and

L, ,o-t(l) < /c < ,¿(l),

0, otherwise,
Ic,r:
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";(t)-"¡-t(t)

E r(r(o) > ùI(t < oo) fl€¡Q¡",<,tj:t

F., : ,I(Xt:o) rXt , a.s

: f (r(0) > ùI(l 1 æ)zI(x,-o) zx, , a.s.

(3.7)

F., : I(X, l})zx, zI(x,:0), o,.s.

N
E il

J:T

and by substituting the definitions of u¡(7) and {¡(z) this gives

E

which is the required result

Remark: Note that at this point $¡e may multiply by any .Fr-measurable random vari-

able such as 1(r(0) > 7) to get

Fr)

N

N

i:t

F.,

Theorem 3,6 For z el0,I),1 as in Defi,nition 3.1 and condition (x) satisfied

ul"*,f : rLLt,e¡(z)r,irrrl .

Proof: From Theorem 3.5 we get

| ru ,ltl : 7xt 7r(xt:ot, o,.s.t 
1,4 

t,Q)"'(' | ,)

Due to the .F.r-measurability of. X, we may multiply both sides of the equation by

I(X, # 0) and write

E I(x, # o) fl €¡(r)",t'r

We may then take expectations of this equation

þ

jV

(x., t o) fJ {¡(,)",r'rE
j:t
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Notingthat X,, l0 implies that p¡(l):u¡(l)for i - 1,.,.,I/ andadding p{Xr:0}
to both sides gives

p{x.,: o} + E r(x, + o) II €¡þ)*oh) : p{x^,: 0} + ø lt1x., + o}r*,)
N

i:t

The right-hand side is equal to E lzx,f. The events

lXr:0] <+ [p¡(0) :0, j : L,..,N],

are equivalent, by (3.2) and so

lX, + 0] <+ [p¡(0) + 0, for some j],

which implies

p{p¡@): 0, vj} + E {1j, st, p¡(") I 0} II €¡þ)wØ) u l"*"1 ,

I'

jV

i:7

and so finally

E

which is the desired result

Corollary 3,7 For z el},L), condition (x) sati,sfied andl > I

þ¡(r,-1(o)) :
uj(O), j > l,

0, i <1.

tr

Remark: Note that the case with I : 1 is excluded as when l: I, r¿-r(0) : f0(0) :0
and p¡(0) : 0 because X6 : 0. Thus the result would not hold. Instead we resort to the

following theorem.

u lt.')

fw l
" LU 

€iQ)u<ot 
1 

: E lzx'-',f '

Proof: The proof is simply a matter of putting "y : n-r(O) in the preceding theorem

and noting that we assume Xo :0 and so
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Theorern 3.8 For z el},L) and condition (x) satisfi,ed

E

Proof: Simply taking 'Y : 0 in Theorem 3.5 and taking expectations gives us

r 
L_!,ei{,¡',torl

E lzxo zIlxo:o\) ,

which, as IMe assume Xo :0 gives

" Lü6r{,¡',tor]

3.2.4 Martingale arguments for stability

In this section we examine martingale stability arguments. From Lemma 3.3.2 it is

sufficient to consider r(0) when Xo :0. As before it is sufficient to discuss the behaviour

of r(0) when Xo :0. When condition (x) is satisfied we know that p{r(0) < *} : 1.

Thus condition (x) is a sufrcient condition for the stability of the queueing process (and

hence the recurrence of the MRP).

It would be nice to have necessary and sufficient conclitions for stability as Bac-

celli and Makowski provide in the examples they have considered. Their results however

revolve around the following type of technique. They provide a tra,ffic intensity p for

the system of interest and then the condition for stability is simply that p ( 1. The

traffic intensity in the MIGII case is the standard intensity ),1¡r (Baccelli and Makowski,

1985). In the case with Markov modulated input the traffic intensity is a weighted sum

of the intensities during each of the input states (Baccelli and Makowski, 1986),

We can see that this approach would give us a traffic intensity in our type of

process as well. It is not, however, easy to see how this woulcl benefit us in this case. In

our type of process we could take the approach of setting

.¡V

p : Ð p¡Ó¡,
J:T

¡

48



Chapter 3: The Multi-phase M/G/L Queue

where d¡ is the probability of finding the system in phase j during ecluilibrium. In order

to have the probabilities p¡ we must assume the existence of the equilibrium solution.

Thus any argument based on this would be inherently circular. This occurs because the

time spent in phase j may be strongly dependent on p¡. Thus we may have a situation

where during one of the phases p¡ is very large but a phase shift occurs if too many

customers arrive during one service and so the length of the phase is very small, so the

two balance. \Me may not however assume this balance.

It is thus not clear as yet how to provide the type of elegant stability criterion

that is commonly used in many other situations. It is to be strongly suspected that

condition (x) is related to the necessary conditions. It would not be surprising if condition

(x) is in fact also a necessary condition for stability. One approach to this problem would

be to use Rosenkrantz (1989) which deals with ergodicity conditions for two-dimensional

Markov chains. Our queueing processes can be represented by a two-dimensional Markov

chain by taking the number of customers in the system and the phase to be the two

variables. If the conditions of Rosenkrantz could be related to condition (x) this might

provide the desired result.

Another related question is that of null recurrence. Even though r(0) < oo

almost surely v¡e may still have

¿'[r(0)] : oo,

In other words the length of the busy period is almost surely finite but the mean length of

the busy period is infinite, this is the null recurrent case. Although in the null recurrent

case our martingale arguments will still work the equilibrium results will be inherently

uninteresting. We shall not consider these cases in most examples.
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3.3 Relationship \Mith the MRP

The connection between the multi-phase MRP and the multi-phase }i,{IGIL queueing

process will by now be obvious. Each phase of the queueing process is associated with a

state in the multi-phase MRP. Transitions between states in the MRP are at the same

times as changes in phase in the queueing process. Because phases change only at the

end of services .rve use the embedded process and consequently the multi-phase MRP has

discrete or lattice time. We must resort to a generalised muiti-phase MRP because there

is no requirement that the time spent in each phase be independent of the times spent

in each of the other phases. However, we do assume that the times when the system is

left empty do constitute renewals. This means the times spent in phases during different

busy periods must be independent. Also because we assume the queue begins with a

dummy service leaving it empty (Xo - 0) we have a non-delayed renewal process.

Given this description it becomes clear that the p¡(n) are forward recurrence

times in the multi-phase MRP as can be seen in Lemma 2.3.L, and the z¡(0) are sojourn

lifetimes in the multi-phase MRP. With this relationship

lry I
e.(tíò,Ëz(z),...,€ru(z)) : lim E 

I II Cre)n@1,L¡:t I
fr I

¡'.(€'("), €r("),...,6'(r)) : E I II t¡Q)"i@1,
L'-r I

,e,v(z)) : rLür,(,),,,0,] ,

where Q* is defined in (2.20) and f'* and {* are as defined in Section 2.4. Thus Theor-

ems 3.6 and 3.8 and Corollary 3.7 imply respectively that

Q.(€{r),€r("),..',€r(z)) : limEl"*-f, (3'8)

F.(€t(r),€r(r),...,dru(z)) : z, (3.9)

4 ({,(r),Ë,*t("),"',(r(z)) : Elzx"-'t'tl' (3.10)

From these we deduce the following

Theorem 3.9 For z el},I) and(x) satisfied,

(€,(r), €,+r(r), 'Fi

:*ållim
u +æ

F¡**t(Êr+t("),.
' 
€'(r)) - riG,Q), " ., €'(r))E zx
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where m acts o,s o, norrnalising constant

Proof: The result comes directly by substituting (3.8) in Theorem 2.5.

Theorern 3,lO For z € l},t) and (x) satisfi,ed

Elr*l:1 lË 
Elzx"o-f - n-Vx"-'<"tf 

*ul:."'::) . "l ,t-*l?= t-tt(") ' 1-Ët(") l'
where m acts 0,s o, norn'talisi,ng constant and X(t) -+ X almost surely ¿s ú -t oo

Proof: We substitute (3.9) and (3.10) into the preceding theorem and then use the

dominated convergence theorem (4.4), PASTA (pug" i67) and Theorem C.2 to see that

lim -Ð l"*"1 : [m ,Ð lzx(')1u-+oo L I ¿)æ L I

From this we get the result n

3.3.1 Discussion

A number of points deserve some further discussion before we continue on to some ex-

amples. The first point to note is that we have looked only at the system size distribution.

From this we may use the arguments of Section C.5 to calculate the waiting time distri-

butions for a first-in, first-out (FIFO) queue. For other service disciplines this may be

more difficult.

AIso it is of some inte¡est to consider the origin of these results. \Me have con-

sidered three processes on different time scales: the queueing processes itself, a discrete-

time queueing process embedded at departure epochs and a further process embedded

in this at the epochs of phase changes.

Given sufficient conditions on the queueing process considered, one interpreta-

tion of the Optional Sampling Theorem is that the proces" Me*(z) (where QnN+j : Tl)
is also a martingale a¡rd from this we derive our relationships. The epochs Q,, are the

transition epochs of the multi-phase MRP of Chapter 2 and so we can obtain limiting

formulae using the renewal techniques.
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The results of this chapter are cluite general but may be extended. The following

section documents some of the ways in which the results can be generalised still further.

Two major extensions are proposed. The first considers the server's behaviour. \Me have

until now assumed that only the service-time distribution can change between phases but

there a¡e other types of behaviour that can be used. The second proposal (in Section 3.5)

concerns the rules which limit the types of phase transitions allowed.

It is also worth noting here that many processes which might not appear to have

the required phase structure actualiy can be considered in this mold. This is considered

in Section 3.6.
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3.4 Generalisations of server behavrour

In the ptocesses considered so far we have considered service times. \Me have said that the

service-time distribution changes between phases. There are, however, other plausible

models with which this technique deals with equal facility.

We can vary a whole range of server behaviour between phases without affecting

the results obtained thus far. The results we have obtained need only the probability

generating function for the number of arrivals during a single service in each phase. So

we may, for instance, change service discipline between phases with no alteration of the

results (so long as the discipline remains non-preemptive).

In the following we elucidate a number of examples. We give the relevant prob-

ability generating function and some motivation for each example. Throughout this

discussion we mean by blocked that a customer is either lost or rerouted. Customers

who are blocked do not return for service at a later time.

(i)

During phase j a customer waits a random period of time before beginning service. If

the extra time has probability distribution function ,Bi (.) then

o¡(r) : A'.(,\(1 - z))Bt. (.1(t - z))

This is an example of the service time for a customer being extended and so the probab-

ility distribution function for the service time is a convolution of 4r(.) and 3r(.). Thus

the Laplace-Stieltjes transform of the new service time is the product Ai*(s)Bi* (s) and

hence from Theorem C.4 the result.

This type of behaviour is likely to occur if the service time of a customer who

arrives at an empty server is different from the service time of a customer who arrives at

a busy server. This might occur if the server has some warmup time when it starts up

at the beginning of the busy period or if the server can take vacations when unoccupied.

In this case the modified behaviour occurs in the first phase which lasts but one service

time.
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(ii)

During phase j a customer waits rnlil M¡ arrivals have occurred before commencing

service. In this case

a¡(z) : zM"4*(À(1 -'))'

This also might occur for one service at the start of the busy period but for a

different reason. If the server has some overhead associated with starting and stopping

service it is better to reduce the frequency of these events. To do this the busy period

must be increased in length. One way to do this is to allow a backlog to build up before

beginning service. This then minimises the number of times the server switches from

idle to busy states. This is called the N-policy queue by Neuts (1989).

(iii)

During phase j only the first Iú¡ arrivals during a,ny particula,r service are allowed to join

the clueue, any further arrilrals being blocked. In this case

N¡-T æ

a¡(")- Ð"iror-zM¡Ð"1
i:0

N;-1
i:iV¡

Nr.-1

Ð otoro i zN¡ I- Ð "loi:0 i:l
N;-1

Ð "!o 
(rn - ,*t) + zNi ,

i:0

where øf is the probability of i arrivals occurring during one service time in phase j.
This also might occur as part of a control strategy. However the reason for

using such a strategy might be to limit the number of customers in the system (thus

minimising waiting times).

(i")

During phase j arrivals are blocked with probability p¡. The arrivals are still Poisson

with new rate )p¡ and so

a¡(z):AI.(\P¡(I-t))'
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This could also occur as part of a control strategy. For instance if the arrival

process is the superposition of several independent Poisson streams with rates l¿, it will

itself be a Poisson stream with rate | À¿. If these streams are then assigned different

priorities then we can block some of the streams on the basis of their priority during

phase j in order to limit congestion for the higher priority arrivals. This would give us

the situation above.

(")

Batch arrivals. If the batch size is given by the random variable B where ó¿ is defined

by

b¿: P{B : i},

then

o¡("): Ar.(ì[1 - B(')]),

where B(z) is the probability generating function for the batch sizes. This is from Park

(1990) in which Baccelli and Makowski's technique has been shown to work for the simple

Mx lG lL queue. The derivation from Park follows.

o¡(") Ë t(o, : tùzka'N þ)
,t:0

ÐÐ
e-^t(\t¡'" m) ,kaw çt¡

k:0 rn:O
oo,h

mt

cok

lo*

lo^ Ð Ð e-^te^tB(z)dAi(t)
k:0m:0

4r.(l(1 - B(r)),

where ó[-) i. the m-fold convolution of å(k) with itself. Note that for such a system the

initial service of the busy period will also have a slightly different form. Thus for the

simple batch arrival queue

Xn+7 - Xn+ B*I(X^: 0) * An+r- L,

where -8,, is the batch size of the first arrival during a busy period a,fter the rzth service

ifX^:9.
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("i)

In all but (ii) of the above examples the service times are still independent of the arrival

epochs. This is an important assumption and may only be relaxed with care. An example

of a case in which this assumption does not hold would be if the server terminates

service only after ,ly' arrivals have occurred during the service. This example could cause

problems. For example a server that terminates service after exactly one arrilral would

result in the process sticking in a certain state. Other problems such as reducibility of

the state space or periodicity of the states could occur given this type of service. We

shall avoid these possibilities throughout with the exception of case (ii). We allow this

in the situation described for its use, that is, for one service at the beginning of the busy

period. In this case it cannot cause any problems for regularity. Further problems can

occur in PASTA (prg" 167) if this independence is not maintained.

3.4.L Blocking versus zero service time

We have considered the possibility that p¡ > L in our discussion of regularity, and

these cases must be dealt with on an individual basis. Mostly it will be obvious from

the stability of the queue when the stopping times are regular. However we have not

considered the case when pj :0. Given a normal service with probability distribution

function Ai(.) this would imply that lJif(l - Aiþ))dt:0. One way this can occur

is if the mass of 4r(') is concentrated at zero, that is the services take zero time with

probability one. This could be the case if the server serves the customers in the queue

instantaneously. We shall refer to this as discarding a customer. The customers are

discarded in the order of service. Thus in a FIFO queue the customer at the front of the

queue is discarded. This suggests that an alternative service discipline might be used in

different phases. For example FIFO in the norma,l phases and LIFO in the phase with

zero service time, in order to discard customers from the end of the queue.

This is different from the other situation in which pj - 0. This is the case when

I : 0 or all arriving customers are blocked. If all of the customers arriving at the queue

during a phase are blocked upon arrival, then the arrival rate becomes zero and traffi.c

intensity also becomes zero. The service times, however, can still be positive.
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It is noteworthy that the case with blocking does not immediately lead to the

solntion for the MlGll queue with alimited waiting room. This is the normal model

chosen for such a system but in our model v¡e a,re limited to changing phase at the ends

of services. Thus the limit of the waiting room might be reached and exceeded during a

service without any blocking occurring. This could be overcome with difficulty by having

a separate phase for each state of the queueing system with each phase allowing only a

certain number of arrivals chosen to make sure the limit of the waiting room was not

exceeded. We can however model the M/G/1 queue with a limited waiting room using

the case with zero service times. This is discussed in Section 7.5,

\Me might note also that although there are subjective differences in what we

may mean by having P j : 0 the resulting solution is identical. Thus once we decide upon

the model being used we may then ignore this for all further purposes.

These possibilities, with Pj :0, may occur in a sensible fashion, as is described

above, but there is a case where it does not. If pt: 0 and the queue starts empty the

queue will remain empty forever. While this case is not impossible it is clearly trivial.

Such trivial cases are easily avoided and so we shall say no more about them here.

Throughout the rest of this we shall assume that they are excluded from any discussion.

Finally we make the observation that while customers who are blocked never

enter the queue, they are still considered to have entered the system. Thus our results,

which are arrived at from the equilibrium distribution that depa,rting customers see,

will include the number of customers left in the system by a departing customer that is

blocked as well as the number left in the system by a customer who receives service.

3.4.2 Later rnodifications

Later in this text we shall present a number of examples. For the most part we shall

assume the varying service-time description of the processes. We shall consider the other

cases only briefly. However, once the modified form of the generating functions a,j(z) is

noted the only major difference in the computations occurs in the calculation E lz"t{o)l
fot j :1,...,¡f - l and then onlyin some cases. We shall give more details in the

examples.
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3.5 Generalisations of the phases

To understand possible generalisations of the phase structure of these processes we must

first understand why we have chosen the restrictions on phase structure, We have chosen

the rules governing the phases so that the phase transitions are as general as possible

while still allowing us to work with our model. To this end the rules restrict the behaviour

of the phases. RuIe (i) is a result of considering the embedded process. \Me desire

the restriction in order that the embedded process's behaviour characterises that of the

queueing process. Rule (ii) is necessary in order that Doob's Optional Sampling Theorem

can be applied at the relevant time points. Rules (iii) and (iv) are required so that the

ends of busy periods are renewal points of the process. Finally we require rules (v) and

(vi). These a,re required in order that the structure of the renewal process we consider

is that of a multi-phase MRP.

Rule (ii) is therefore crucial to the whole idea of using a martingale argument.

Rules (iii) and (iv) are requirements for the Markov renewal results. Thus we must retain

these rules in all of the generalisations that can be considered.

Rules (v) and (vi) are required to enforce the multi-phase nature of the renewal

process. If we could obtain an equivalent result to that of Theorem 2.5 for generalised

Markov renewal processes that are not of the multi-phase form we could modify or

remove these two rules. This is suggested as a direction for continued work in Section 8,1.

However, in the next section we shall see that this is not a necessary area of expansion as

equivalent multi-phase Markov renewal processes can be found for generalised Markov

renewal process.

One possible area of expansion that has not yet been considered is processes

which change behaviour between service completions. An example of this is the single

server queue with Ma,rkov modulated Poisson input. This has been considered in Baccelli

and Makowski (1986,1991) using a modification of their technique for the},llGll queue.

Thus we can expect that it will be possible to modify the results herein to cover such

cases. If we were to consider this type of process in our model it violates rules (i), (iv),

(v) and (vi), However \Me have an extra condition which is simply that the time spent in

each phase is independent of the times spent in all other phases. This will require some
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further work before it can be dealt with through the multi-phase method, if it can.

A more profitable approach would be to modify the multi-phase technique in the

same way that Baccelli and Makowski modify the simple technique for the MIGII queue

to cover Markov modulated arrivals. This also is mentioned in the section on possible

further work.

We have mentioned a number of relaxations of the phase transition rules which

can be considered. These have been left for future work as they require a great deal

of theoretical work before becoming practical and because the resulting complexity of

the theory might make this thesis somewhat unwieldy. The following section presents a

more fruitful way of extending the systems that can be considered.
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3.6 Infinitely-many phases

\Me have until now only considered systems with a finite number of phases. Now we

consider some reasons for considering processes with an infinite number of phases. Some

cases with more complex structure require that we modify how we consider them in

order that they fit into the form of sequential phases each occurring once during the

busy period. A simple example is one where one or more phases do not necessarily occur

during every busy period. \Me deal with this by inserting transitions through the missed

phase which spend zero time in the phase. An infinite number of phases can easily be

deait with in this case as iong as the original process under consideration has only a

finite number of phases occur during the busy period, with probability one.

A more difficult example is when a phase may be entered more than once during

the busy period. This may be modelled by considering each subsequent entry into this

phase during a single busy period to be a nev/ phase. Clearly in cases where two phases

may alternate an infinite number of times before the end of the busy period, this results

in an infinite number of phases. In Chapter 7 we sha,ll see an example of a situation in

which this occurs. The two phases alternate for ever with probability zero and so the

processes recurrence is not adverseiy effected by this.

Note that when we use this procedure the probability generating functions a7 (z)

(and henc" €¡(z)) will be the same for a number of the new phases. This will allow a

great simplification in the problems using this technique.

In all of these cases we simply generalise the results of this chapter replacing lú

with infinity.
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3.7 A single-phase example

In this section we consider the simplest example of this type, the MlGll queue. This

is one of the problems that this technique was originally applied to by Baccelli and

Makowski (1989). Thus the results here are exactly the same as theirs with some slight

modifications due to the notation. The solution to the ergodicNllGlL queue is well

known and can be derived by a number of means (Cooper (L972)). It is given by

El,"l:(l - r)!P, (rn)
a\z) - z

where a(z) is the probability generating function for the number of arrivals during a

service.

Note that in our notation this is a single-phase M/G/l queue and the result is

obtained directly from Theorem 3.10 with I/: 1. It is simply

,1,*): *l+râ]
I la1(z)(I - ")l: *l "J,ò-, )'

where m : L l(I- pt), which is the expected answer. It is worth noting that Theorem 3.8

gives

(s.tz;

rhis may then be used both t" .".:'::':']- 1o oro-,ia. the generating runction ror

the number of custome¡s served during the busy period (Baccelli and Makowski, 1989).

Namely for each € e [0, 1) the equation in the unknown variable z

2: {a(z),

has the unique solution Z(() in the interval [0,1]. From Baccelli and Makowski (2.1a)

F-(v) : z(v) (3.13)
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Two-phase examples

In this chapter we consider the simplest non-trivial case of the type of process described

in Chapter 3. This is the case with only two phases and hence two possible service-time

distributions A1(.) and ,42(.). As in the general theory of Chapter 3 the times at which

the service-time distributions switch must be stopping times. Also the two phases each

occur exactly once during a busy period and always occur in the same order. \Me call

the point at which the transition from phase L to 2 occurs a threshold. When the queue

is empty we start with service-time distributio" A1(.). When the threshold is reached

the server switches to distribution A2(.) and as would be expected it switches back to

the initial distribution when the system becomes empty.

As there are only two phases we shall use A and B instead of. At and A2 with

the corresponding changes in notation listed below.

A(t)

An

"(")
€"(,)

At(t),

A1*,

at(z),

t'Q),
ol,

B(t)

Bn

b(r)

Ëo(r)

b¿

Pu

: Ar(t),
¡2flnl

: az(z),

: Ër('),

- o?,

(4.1)

A¿

P" - Pt, Pz

We assume that po ) 0 throughout otherwise the solution is trivial. The results v/e use

demonstrate the connection between the queueing process and a discrete-time two-phase

NiIRP of the type described in Chapter 2. This process is illustrated in Figure 4.1.
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1

r(0)

r(0)

Figure 4.1: The two phase, Markov renewal process (state 2 is the non-rene\Mal state)

We shall consider three major types of threshold in this chapter,

(i) \t\le call the first a fixed upward threshold. This is when the phase change occurs at

the first time immediately a,fter a customer finishes service when there are more than

a certain number of customers in the system. We shall label this critical number of

customers by k.

(ii) The second is when the phase change occurs a,fter a random number of customers

have been served in the busy period. \Me will consider the case when the number of

customers served before the phase change is geometric with parameter p and thus we

call this the geometricaliy-distributed ra¡rdom-time threshold.

(iii) The third is a fixed-time threshold. This is when the phase change occurs after a

set number of customers are served during the busy period. ït/e shall label this number

of customers by S.

In Section 4.5 we briefly consider some other random thresholds.

4.0.1 Motivation

The motivation for each of these examples is slightly different. There are three funda-

mental reasons for considering problems of this sort. The first reason is simply to model

systems which may have some peculiarity which fits this structure.

The second reason is control. By allowing some sort of control over the system

63



Chapter 4: Two-phase examples

through service times (or arrival blocking, etc) we can optimise a performance measure

of the system. For instance we may wish to constrain the average waiting time for a

customers while at the same time maximising the proportion of time in which server is

busy in order to make the most of the server,

In the standard NIIGIL model these two objectives are not compatible. In the

MIGII queue the probability of there being no customers in the system is 1-p. The

mean number of customer in the system has a term proportional to 1l Q - p) in it. Thus

if we constrain this (and hence the mean waiting time) we may be forced to have an

unacceptably high probability of the system being empty. Note also that the length of

the busy period is 1 divided by the probability of the server being empty (from renewal

theory). Thus the longer the busy period, the greater the server utilisation.

Because of this incompatibility we introduce elements such as \¡/e have described

to give further control over the queue. This is the aim of a fixed upward threshold. The

server may serve slowly during the first phase in order to lengthen the busy period and

thus increase the utilisation of the server. However if the number of customers in the

system becomes too large (and hence waiting time becomes too long) the queue switches

to a faster service rate to remove the excess customers. In this case the queue is cleared

before returning to the slower service rate. A more desirable situation is that the faster

service continues only until enough customers are removed from the system to remove

the problem. This will be considered in Chapter 7.

Such stochastic control over a queue is not an unusual idea, for instance Dshala-

low (1OAO) uses this concept. In most problems the basis for the control is assumed to

be state-dependent and otherwise independent of the history of the process. This is the

novel part of the problem considered here. The phase depends on the history of the

process, not just the current phase.

The fixed-time threshold is a cruder type of control. The server serves slowly

for the first ,S services in order to build up a backlog which will then increase the length

of the busy period and thus server utilisation. This is mentioned in Neuts (1939) and is

closely related to the E-limited service discipline of LaMaire (1992).

The final reason given here for considering such situations is to model a server

which may breakdown (or exhibit some similar phenomena), In such a situation there
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Chapter 4: Two-phase examples

are many possible descriptions for the way in which the breakdown occurs. The one we

shall look at is when the server breaks down at the end of a service with probability p

which is a constant. \Me assume in this particular model that the server must then aiter

its behaviour until the queue is emptied and the server can be repaired. For instance the

queue might simply discard all of the customers present at the time of the breakdown.

This is not a very good model for breakdo\Mns. For a start we have assumed

that the repair takes zero time and requires the queue to be empty. Other descriptions

of breakdowns include features such as the server breaking down during the service or

even when the server is iclle. Further the time until a breakdówn might depend on the

number of customers served since the last breakdown or since the last checkup of the

server. We shall address some of these criticisms in Section 4.5 and other aspects of the

problem in Chapter 5 where we consider problems with four phases. We might note also

that these examples are provided to demonstrate the utility of this method, not to be

an end unto themselves. \ /ith some further work a suitable model for breakdowns could

be constructed but the specifics will depend on the mechanisms involved in the system.

We call this case the geometrically-distributed random-time threshold because

the breakdown occurs after a geometrically distributed number of customers have been

served in the busy period.

4.L Results

Theorem 4.2 The following results hold for the releuant thresh,olds described aboue.

(i) For a fi,red upward threshold condition (*) hold,s for all k e IN iÍ pa < L

(ä,) For a geometri,cally-distributed random-time threshold conditi,on (*) hold,s for

pe 1
1

1 and p61I,
a

where d : sup,6¡ o¡¡ €"(z).

(äi,) For a fined ti,me threshold, conditi,on (*) holds for all S e IN i,f p6 < I.

Proof:

(i) See Lemma 4.3.1 in Section 4.2.

(ii) See Lemma 4.4.1 in Section 4.3
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(iii) See Section 4.4

For the rest of this chapter we shall use the following matrix defined for k e /f .

A1 A2 A3

Pr:
a,g a1 a2

0øoa1

000 o,g al

an-L

ak-z

a*-g

A¡

an-t

ak-2 (4.2)
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Chapter 4: Two-phase examples

Theorem 4.3 Giuen either k, e IN,p a (1 - *,1) or S €. IN for each type of threshold,

respectiuely the following results hold.

(i) For pu > I the queue i,s transi,ent.

(ä) For Pa: L the queue is null recurrent.

(äi) For pa 1 | the queue i,s positiue recurrent and, the probabi,lity generati,ng function

for the equilibrium distribution of customers in the queue is giuen by

ø I zxl : t 
lb(z)(t - z) + {b(z) - a(z)} zRIF) (z)l 

.t'-l - *l b(")-" )'
for z € l0,I) and with the rneo,n length of the busy period m giuen by

Ir + {p" _ pu} n[Fl1r¡1m: L l-eb I'
where R[F)(z) ',s a non-negati,ue function bound,ed, aboue on the interual l0,I] that is

determined by the specifi,c type of threshold between the phases. F specifies the type of

threshold used, and q is a parameter associated, with that type of threshold. Th,us we write

nd,om-time threshotd,, 

oo:Ï: 

ä'- *, 1) ,

q: S e 'ðr¡'

The actual ualues for R[F)(z) are giuen by

nLqQ):)"rQ-Pk)-1¿, (4.3)

where P¡" i,s the le x k matrir defined in (1.2),

Ry)(z):ffi, Ø.4)

where F.(r) is the probability generating functi,on for the number of customers serued,

during the busy period of the M/G/I queue with serui,ce-time distributio" A(-) (see 3.13

on page 61).

p(")i.\_l Ë"(r)t-t l_(t-ðsr) tSl g"(r)to-1 I
Ri"'Q): 

Lel,)'-,(€"(,) - r)l z !i¡6"ffii16rq,¡ 1 )"'n' 
, (4'5)

where

Cí
lo* 

"-^* 
(+*)o-' 

o*(t) @),

¿t;)1.¡ bei,ng the i-fotd conuolution of A(.)
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Proof: \Me use the notation from (a.1) and definitions from Chapter 3 so that

MoQ) _ 1,

U^(t) - zxn
zr-I

il
ft=0

is the martingale for n e IN.

lf p" > 0 and pu ) !, Lemma 3.2.2 demonstrates that r(0) - oo with positive

probability. Thus the queue is unstableinthe sense thal X* -) oo as r¿ -+ oo.

If however po ) 0 and p6 ( 1 we must show that condition (x) holds so that the

stopping times rve use are regular for the martingale. I1 p, ( 1 the condition is trivial

and if po ) I the condition becomes (noting that p¡ < 1)

E ozt (0) (@,

where a : supz€to,r¡€"(z). This must be shown with respect to each specific threshold.

Theorem 4.2 is provided to point to the relevant proofs as they are located in the sections

dealing with their respective thresholds.

Theo¡em 3.10 gives the probability generating function for the number of cus-

tomers in the system at equilibrium to be

zx'r(o) E lzx',rot

(4.6)

(4.7)

,1,") +
E1:

n1,

€

1:
n1'

t

2

1:
n'L

1

1

1

1

1

t - {a(r) t - €"(r)

l€"Q) - t Q)l

zb )

n lzx",otf - z]
+

€¡ (t-{"(r))(t-€u(r)))

1:
n'¿

In order to find the final result we must calculate

E lzxn<øf - z,

but this will be different for each threshold considered and so we will consider each in a

separate section below. However, we may note that this solution will exist for p" ) 1 and

in this case there will be some ae e (0, 1) such that a(26) : z0 and hence the denominator
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in the second term of (a.7) will be zero. Therefore, in order that the generating function

exist we must have the numerator equal to zero at this point as well. For this to be so

we shall write

E lzx,,røf - z - ("(r) - z)R(z),

for some function r?(z) bounded on [0, 1]. Then \üe can write the solution as

n lrxl : t 
lb(z)(t - z) + {b(z) - a(z)} zn(z)l

Note that we have yet to demonstrate that an R(z) of this form can be found but we shall

do this in the following sections. As the particular function .R(z) depends both on the

type of threshold and its relerrant parameter we shall write it as A[F)(z) where F gives

the type of threshold and g gives the relevant parameter. For proofs of the expressions

for R[F)(z) see Theorems 4.4, 4.5 and 4.7.

The value of zn may be calculated in two ways. The first is to note that rn is

given by the renewal results to be the mean number of customers served in the busy

period. This can be calculated through use of the generating function F*(*t,æ2). The

alternative, which rve use here due to its ease, is to note that .Ð lr"] ir a probability

generating function and in the limit as z tends up to 1 it must be 1. Hence rn can be

viewed as a normalising constant. Taking the limit as z tends up to 1 using L'Hôpital's

rule the left-hand side is equal to one, and hence multiplying both sides by rn gives

-ó(1) +{ô(1) -"(1)} '(1)+{å(1)-o(1)} ¡)(1)+{b,(1)-o,(1)} ¡') (1)

ó'(1) - 1

where noting that ø(1) : 1, o'(1) : po, ô(1) :1 and ó'(1) : p6 gives

Ir + {p" - po} fttF)(1)l
,rv I 

- 

I .I, r-ø I

Note that as pa 1 1, rn tends to infinity and so when pa: L the process is null recurrent. E

Remarks: (i) The generating function in the solution is interesting in itself as it suggests

that the solution can be written as the normal solution to the MIGII queue plus a

correcting term that depends on the difference between a(z) and å(z) and the type of

threshold.
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(ii) Note that m is insensitive to the actual distribution B(.) except through p6

and when p7 : p2, n¿ is insensitive to both distributions A(.) and B(.) except through

Po úd Pa.

For each type of threshold considered we must now prove that condition (x) is

satisfied and calculate fi[F)(z). It will be seen that conditions (x) is satisfied without

restriction except in the case of the geometrically-distributed random-time threshold.
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4.2 Fixed upward threshold

In this case the threshold is a fixed number of customers, say k. If more than this number

of customers are in the system at the end of a service then the queue switches from phase

1 to phase 2. \Me take

,r(n) : { "(") A inf{rn > nlx'' > k}' if phase(n) : 1'

|. ,, if phase(n) : 2,

Iç¡lr(n) A inf{rn > nlx,,> ft}] I I6p.

If at time r¿ the process is in phase 1 then r1(n) is the time of the next transition to

phase 2. (Note that when the queue empties we assume a dummy transition through

phase 2.) \Mhen at time r¿ the process is in phase 2, 1(n) is defined to be equal to n. in

order to be consistent with our definitions. When n : 0 we have assumed the process

to be in phase 1 and so

rr(0) : r(0) n inf{rn > 01X,. > k}. (4.9)

In order to apply the results of Section 3.2.3 and 3.3 we must first prove the

regularity of the stopping time r(0). To do this we must satisfy conditio" (*).

Lemma 4.3.L For a threshold as described aboue with k € W, po ) Q and p6 I t
condition (x) is satisfi,ed. Furthermore

E iø"'{o)] - 1 + (, - 1) 
",,(I - up¡)-r It,

foralløe[0,a].

Proof: Condition (x) is

.E'la"'tol] ( oo,

for a: supze[',l] Ë"(").We write, for ø € [0,o] the expectation

.E'[ar"'{ol] : îrop{rr(o) :i}
i:I

: ËÉ aip{r1(o):i,,x¡-r: j}
i:t j:0

: a p{1(0): 1} f
ook

Ð Ð aà p{7(0) : ilX¿:: j,rt(O) 2 i} p{X¿-t : j,"t(o) 2 i}. (4.10)
i:2 j:I
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Nowwe canseethatp{1(0):1}:o,ol ÐËr+rø¡ andfor i > l and j:I,...,1r

p{"r(O) : ilX¿:: j,rt(0) > i} : ¿oðrr * Ð o,-¡*t
l:k-ft
h

1 Ð açj+t
¿:(j- 1)v 1

oo

where a¿: p{A1: i} as defined by (a.1). We shall define 9¡ by

k

for a matrix A : (a¿¡). Then

llPull" : max

: max

k

i:0

9¡ 1 Ð açj+t
¡=u-1)v1

fr k

Ðo,ri-', Ð"t úi 2,

j:t j =1'

k-7

llAll, :oT,Tu 
þ1",,1,'-'f 

,

and from this we form the vector g. Substituting these in (a.10) we arrive at
frco

ø [øn{ol] : ah t ,l %Ðrop{xo - i,1(o) > i}'
j:r i:r

In order to find Ð]tw¿p{X¿: j,n(O) > i}, we define the vector

vi : (p{X¿ -- !,rt(0) > i}, p{Xo:2,11(0) > i},. . . ,p{X¿: /c,71(0) > i}), (4.11)

the sub-stochastic probability transfer matrix P¿ as in (a.2) and v1 : (¿r, a2,,..,a*),

the probability vector of initial probabilities given a transition from Xo:0. Then

v' : vlpl-l.

\Me seek conditions under which

Ðr'Pi
i:L

converges. From Property El.3 of no ms and Theorems 8.2 and 8.3 the series converges

if løl [e|| { 1 for some matrix norm llPll.

We use the matrix norm defined in (8.6), for z € (0, 1] by

k

I a¡-zzi-\ ,
j:2

Ie

"(z)

Ðo¡ri-t, Ðo¡r¡-tj:t r:0

72



Chapter 4: Two-phase examples

so that
1-r'

¡lPrll, 
- 

"(r)
Thus there exists a zs € [0, 1) such that

zt
.Ëìäl', "(ò' liPili;

Thus ollPnll- ( I and hence the series converges for a., € [0, a]. This proves that

E fo''to)] 
( oo. For the second part we can note that we now have

E lø',{or] : ,{n,+øvl (å,'"t) n} ,

when the sum converges. The previous result means that this sum converges for all

a,, e [0, a] and we know from Theorem 8.3 that it must converge to (I - øP¿)-1 and so

E [øn{ol] : , {tt I a vt (I - øP¿)-t*'} .

Now v1 : er Pr and so Lemma 8.L.2 means that

, v1 iI - rPo)-t : øe1P¡(I - rPn)-t

-er * "r (I - ,Pt)-',

which gives

E ø'r (o) , {or- er B¿ f e1 (I - rPn)-ts'}

, {st - h I ", 
(I - rP*)-ts'} .

E [øn{o)] : øe1 (I - rpu) l1t - tn¡r'
: 

"t 
(I - øP¡)-l(øI - øP¿)1¿

: 
"t 

(I - a.'en)-1(I - øP¡)l¿ f e1 (I - rPu) t(øI - I)1¿

: 1*(ø - 1)"t(I-øP¿)-1t¿.

Now g¿ : (I - Pn)lt so that we get (again using Lemma 8.1.2) that

¡This is the desired result.
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Remark: It can be seen that this has the desirable properties of a probability generating

function. VVhen u): L, E føntol] - 1 and when we take the derivative with respect to

u at u: 1 we get the mean time until the threshold is reached

E [rr(o)] : "t 
(I - Po)-tl',

which agrees with (4.29) of Section 4.6.1.

Note that rve now have the constraint necessary for the almost sure finiteness and

regularity of r(0). Next we provide the value of Alu) Q) from the value of E lzxn<qf - z.

Theorem 4,4 For po)0, zel\,L), Xo:0 and,thethresholdke IN we get

E lzx",<øf - z : l"þ) - zl nf) Q),

where

aY)þ): !"re-ro)-'/

and, P¡" is the le x k sub-stochastic matrir d,efined, in (1.2).

Proof: We can write E lzx"rø) as

ooh
Elzx"<øl : ÐÐ ølzx,t(r1(0) : i)lxn_r: j,rt(O) > i]n{x;t: j,rr(0) > i}

ô:t j:0
: n lzx, t(r1(o) : r)lxr : o] p{xo : o}

cok
+ÐÐ alzx't(rt(o) : ùlxo-1: j,n(o) 2t]n{xr_r: j,rr(0) } i}

i=2 j:!

: nlzx't(r1(0): r)lxo: o]

ook
+ÐÐ ølzx't(r1(0): ùlxo-'r: j,\(0) 2tln{x,_t: j,4(0) 2 i}

i:2 i:I

as\MehaveX¡:0. Now fori: l and j -0,ølzx't(rr(O):i)l X¿-t: j,n(g) >l] is

nlzx,t(r1(o) :r¡lxo:o] - ûo* î o,r'
l:fr*1

: o(,) - f o,,, .

t--t
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For i > 1 and j : Ithe result is

alzx't(rr(o) : ùlxo_.: t,"r(o) 2 1] Ð o,"'ag

æ

l:fr*1
k

t:1- "(") -Ðo,r',

andforj>Iand'i>litis

n lzx't (rt(o) : i)l xo-, - j, 1(0) > i] : î o,-¡*rr'
t:&+1

k
: a(z)zi-t- Ð o,--j+rrt.

t:j-r
From the previous two equations we get fot j : 1,..., fr and i > 1 the following

k

nlzx't(r1(o) : i)lxo t : i,"t(o) 2 i] : aþ)zi r - Ð at--j+rzt,
¿:(j-1)v1

which we shall cúl g¡(z). Thus we arrive at the equation

E zx'r(o) o(,) -Ðo,,'
k

I:I
h

Ð
i=!

fr

+9t

oo

+ÐÐ
i:|j:I

a(z)zi-t - Ð at-j+tzt p{X¿:j,q(0)/i}
¿:u-1)v1

(")
/n
(¿ p{X¡: j,rL(0) 2 i}g¡(r)

oo

In order to find Ðp{Xn: j,"r(O) >i} we define v¿ and P¿ as in (4.11) and

(4.2) respectively and vl ?t(or, a2¡ . . ., ø¡). These are respectively the probability vector

after the ith transition in phase 1, the sub-stochastic probability transfer matrix and

the vector of initial probabilities for the subset {L,2,...,k}, of the state-space of. Xn.

Immediately from this we get

v' : vlPi 1.

Theorem 8.3 shows that summing this from i: 1 to oo gives

æ

Ð", 
: ot(I-po)-t.

Now v1 : er Pr and so we can see (using Lemma 8.1.2) that

.lrt(I - P*)-t : e1P¿(I - Pn)-t

: -er * ", (I - Pn)-t
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Take g(z) : (gt(r), gr(r), . - - 
, gn(")) and g(z)¿ the corresponding column vector and we

octb""

E lzx"otf
/*fr
\r=r

co: sr(") +Ð
i:I

(r)ú¡g¡

: etg(z)t+fvig(z)¿
oo

i:7

e1 * vl (I - Pu)-t s(")',

E lzx,,otf : (", - e1 f e1 (I - Pu)-t) S(r)'

: 
", (I - 

pn)-t eQ),.

(4.13)

which from (4.12) gives

Now we can simplify g¡Q) and hence g(z)t as follows

g¡(r) : 9 r, - ê¡P ¡" zt ,

+ sQ)' : 44-u' -Pnzt'

Hence \Me can write E [za't'l] as

E fzx"otf : ", (I - Po)-t
o(z) 

r, _p zt
z

9 "r(I - Pu)-t z' - et (l - P k)-L P kzt

9 "r(I - Po) rz' + etlzt -"r (I - Po)-'u'

9 "r(I - Pn)-t z' + z- e1 (I-P )-r z'

:(

:1
7

"(r) j ut (I - Pu)-t z' +,

("(r) - a) e1 (I - Pu)-t z' t z,

using Lemma 8.L2. This leads easiiy to the desired result.
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4.2.L Some limiting cases

There are severa,l special cases of this system which have been examined in detail in

the literature, the simplest of which is the MIGII queue. The probability generating

function for the equilibrium number in the MIG ll clueueing system is expressed in (3.t 1).

In the following special cases we expect the same solution as in the }dIGIL model. If

a(z) : ó(z) the solution is immediate. If k -+ oo and po 1 I we also expect (3.11).

As k + oo, F*(t,A), which is the generation function for the time spent in phase 2,

approaches 1. This is because the probability that zero time is spent in the second phase

approaches one. Hence

\Me shall next consider what happens if a customer arriving at an empty server

has a different service-time distribution from that of customers arriving when the server

is busy. The solution to this type of problem can also be found in Yeo (1962). The result

given by Yeo is

El,"l:*l!%gl,
where ^ - ltL-ofutP. This might occur if there was some overhead associated with

restarting the server or if there are server vacations. The two-phase M/G/1 queue with

a fixed upward threshoid should be the sarne as this when fr : 0. We have not included

this in the previous results but it is an easy case since Coroilary 3.7 gives F.(1,y) as

o" (r,ô) : E lzx,,{o)l ,\
the right-hand side of which is a(z) in this case. Once F*(l,y) is known \Ã/e can write

the solution using Theorem 3.9 as

("(r) - ,)0 - ñ^) + (t - ø(z))(t - ñ)
(1 -óxl -û)

Hz\-!rJrrr a(

a(z)(I a

z7

)

)

za(z))tb(

b(z) - z
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Chapter 4: Two-phase examples

4.2.2 Modifications

As noted in Section 3.4 some modifications may be needed to deal with other possible

descriptions of the server's behaviour. \Me shall consider here some such modifications.

(I) Modifications during phase 1.

If we consider properties other than the service-time distribution of the server to vary

between phases then we may need to modify the previous work slightly. We use the

relevant expression for a(z) in the solution. However we must, in some cases, make further

modifications to the solution, Cases (i), (ii) and (iv) require no further modification to

the solution. Case (v) is covered by Park (1990) for a queue with one phase and can be

dealt with here by an obvious extension. Case (vi) will not be used. This leaves (iii) as

the interesting example and we shall consider this here.

(iii) During phase 1 the server allows only the first I{r I 1 arrivals during each service,

the remaining arrivals (if there are any) are blocked, (ït/e shall simply write I{ : ffr

here.) In this case
N-1

a(z)-Ðoo(ro-r*)l_zN.
i:0

The only other modifi.cation necessary in the calculation of E lzx,,otl. We define the

sub-stochastic probability transfer matrix yP¡ for 1 < ¡r/ < k by

.¡vP¡,

a¡r-t

a¡t-z

¿iv-g

ÐËr ¿¿

aw-t

aN-2

0

ÐË.x a¿

aN-t

0

0

0

ul,"l: *l ]

ag

A1

o,g

0

0

O,2

A1

(4.14)

0 0 0 0

Note that when N > k this modification is trivial as iyP¿ - P¡.. Having done this, the

same procedure as in Theorcm 4.4 produces the result

E lzxn<"tf - z : )øA> - ") et(I -7yp¡)-12¿,

which gives the solution

A1
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C Two-phase exarnples

where

n1,

and

ra[u)1r¡ : e1 (I -¡vP u)-tu'

(II) Modifications during phase 2.

Modifications to the behaviour in phase two are relatively inconsequential. \4/e take å(a)

as defined in the relevant part of Section 3.4 and then p6 - ó'(i). The condition for

recurrence, p¡ 1 1, remains the same. With ó(z) given by the relevant function the

solution remains the same as that in Theorem 4.3.
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Cha ter 4: Two- hase exam

4.3 The geom.-distributed random-time threshold

This is the case in which the switch between the two service-time distributions occurs

at a random time, \Me assume that the probability of the switch occurring at the end of

a service is p. That is to say given the process is in phase 1 at time n and X^+t * 0

p{n(n):n-rr}:p,

,r(n)
if phase(n)

if phase(n)

where .R is a random variable with the geometric distribution

p{R: i} - (1 -p)o-'p

Thus we could consider the threshold to occur at a random time which is geometrically

distributed. From this we can write

"t 
(o) r(o) n n

where p is a constant 0 < p ( 1. Thus we can write, at some time n €. Z+

: Is' lr(n) A (n. * a)] + IcAn,

1

2

(4.15)

The following lemma provides the constraint necessary for regularity

Lemma 4.4.L When po ) 0, p6 1I and,

1
P}L_-,a

cond,i,tion (x) zs satisfi,ed and furthern'tore for a € [0, a]

ap+ I-u)F.(u(t-p))ø [c.r-io)] - 1.-a(t-p) )

where f.(€) is the unique solution to the equation 7: (a(z) in the interua|l},L)

Proof: When po 1! and hence o : 1, condition (x) is trivially true. When po ) L a,nd

hence a ) 1 the following is true

an(o) <
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Chapter 4: Two-phase examples

therefore

¿ fo"'(o)l <LILI
co

- | aip{Ã :
i:1
oo

: Ðoo(t -p)o-tp

ij

i:I
co

: po f [a(1 - p)]o
i:0

pa
1- a(t -p)

when this converges. It converges for a(1 -p) < 1 and so

p>L-1.
a

For the second part of the proof we consider

E lø"'{or] : î r føarorl a: nf p{R: n}
n:l

.!-Ë u lø',{o)rqr(o) >,?)lo : r] G - p)"L-p7:t

*:-i 
" 1a,",{o)r1r1o) . Ã)l n: nf 0 - p)'I-P7:T

When 
"(0) 

> r?, 1(0) :.R so that

E lr"(0)/(r(0) t n)l n: nf - a"p{r(o) ) ,RlÃ : n}

(tn 1- Ðr{r(o) : ¿1

n-7

i:I

When 
"(0) 

< r?, 1(0) : "(0) 
and /(r(0) < Ã) : ÐT:Í /(r(o) : i) so we get

E[ønro)] : hå(t - i,o{,fo)-ilÀ-"}) ,.(r-p)^

. p $^-t+#iÐ 
Ð 

ala,{o)r(r(o) : i)l A "fG - n)",

which when we rearrange and swap the order of summands gives

E [øa{or] : hË,"(t -p)-
t x:L

-*Ë Ë a^ p{r(o) : ilL: n}(1 - p)^
L I' i:I n:i+L

*#tË Ë,op{"(0) :ilI-:n}(1 -p)*.L Ir i_L n:i+I
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Chapter 4: Two-phase examples

When n ) i, p{"(0) : ilB: r¿} is simply p{"'(0) : i} where r'(0) is defined by

r'(o) : inf{rn > olx|": o},

where X'," is the process formed bV Xó : 0 and

X'^*r - X',.1 A,n+t - I(X'^ + 0),

for all m € Z+. Hence we get

ø þ"'ror] - 
=ie{r'(o) 

-i} i,"0-p)"
' f i:I n=i+ l

*#,Ëp{''(o) :'i}ai Ë tt - p)"
- I' à:L n:ilL

ap
pa(r1 )

ap
L-a(t-p) r-a(r-p)

æ

+!r{r'(o): i}ri(1-n)o
i:7

ap
Ðp{"'(o):¿}ro(t-p)i
co

i:l

ap 7-E (r(1 -p))n(o)]]
I-u(I-p) + E [(u(1 - p))"'(o)] .

Ãs X'., is analogous to the embedded process of the NUGII queue we can see that r'(0)

is the number of customers served during the first busy period and so E lø"'(0)] 
: F.(r),

where F.(r) is the probability generating function for the number of customers served

during the busy period of the NIIGII queue with service-time distributio" A(.) (see 3.13

on page 61). Thus we get

E u'a (0)
,plr- F. (ø(1 -p)) ] * ". 

(,(r - r)) tr - ,(r - p)l

I-a(L-p)
ap * (L - ,)F* (r(r - p))

L-a(L-p)

Note that the condition p a (1 - J, f) i. a sufficient condition, not a necessary

one. We have said nothing about the case when p < 7 - i. tt provides regularity and

recurrence as does Lemma 4.3.1 in Section 4.2. It is important for us to note also that

this is the only one of the three examples in which there is a constraint placed upon the

threshold parameter p. Because, however, we have chosen this as a model for a server

which is the desired result
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Chapter 4: Two-phase examples

which may breakdown this causes no problems. In such a system po would be the normal

traffi.c intensity of the system and as such would normally be chosen to be less than one.

Hence t"Q) S L for z € [0, 1] and hence a : 1. This means that for such an example

there is only the restriction that p be positive. This is a trivial restriction as when p :0
we have a degenerate case with only one phase. \Me next proceed to find the value of

RtG)(z).

Theorem 4,6 For po)0,p>I-l witho:snp,6¡0,r1€r(z) and,z € [0,1),

Elzxn<øf -z : l"e)-zla[G)þ),

where

z-F.(L-p)nlctlz¡ :
and, F.({) is the uni,que solution Z({) to

Proof: First for n € IN

z-a(z)(t-p)
2: (a(z), for z el0,I)

Elzx',,ot lO - "] : E lt/(r(o) < r¿) +r(r(o) > n)lzx,,r')lA: n]

: n](r(o) <")lÆ-nl *ølr1r1o¡ )n)zxtto) lo:"]
- p{"(0) < 7¿lA - n} * a [r1r1o¡ > ,)r*"ln : 

"] ,

because when 
"(0) 

< R, X,,(0): 0 and when 
"(0) 

> R, X,r(g) - Xp. As in the previous

proof \Me use the process defined bV X6: 0 and

X'**r: X' I An+l- I(X'" + 0),

where the random variables An are the number of arrivals during the nth service given

that the process is in phase 1. We have X' : Xn ror n, < rr(0). Thus if we define

r'(n) : inf {m > "lxk: 0} when this set is non-empty and r'(n) : oo when the set is

empty rve can see that p{"(0) < 
"lR - n} : p{r'(0) ( rz} which gives

Elzx-,ot lo:"] : p{",(0) <?z}+E l/(1(0) >n)"*.lo:"] . (4,16)

Now we consider Xn for n 1 R and r(0) > r¿. In this case Xn : Xl Thus we can use

the following process slightly modified from Baccelli and Makowski (1989). We define

for the standard }úIG lI queue (a single-phase queue with embedded process Xl)

g(v,n): Elvr'@lr1r1o; t ")] .
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Chapter 4: Two- examples

We can use the Rema¡k on page 47 to show (in a similar manner to Theorem 3.6) that

g(€"("), n) : E lrx" t çr1o¡ t ")] .

Thus we get

co)

I ø [11"10¡ > r)r*"ln : "]t^ : I nl'x;rlrço¡, ùft"
n:7 ,:t

: Ðo(t"{r),n){,

which is defined to be C. (€"çt¡,t) - t. Now Baccelli and Makowski also show (2.30)

that

G*(v,ú) : t *tF. (Y) - Y-F. (t)

a -t
From this we can deduce that

rì ø 
f 
rl'10; > n)r**ln: 

"f 
t" :

n:t

tF-({"(z)) - (" (z)F.(t)
Ë"(r) - t

tz - ("(z)F.(t)
(4.17)

(4.18)

Ë"(r) - t
as -t'.({"(z)) : , from (3'12)' \M" can also write

æfL

Ð p{"'(o) 1 n} t' : Ð Ðp{"'(o) : i} r'
N:L n:! i:L

æ

i:I
1

l-t

: Ðp{"'(o) : i}ti l¡"-o
oo

TL:X
oo

Ðe{"'(o) : i}ti
ò:L

F,-(ú)

E lzxtrot I 
O : 

"] 
p{R: n}

E lzx,,<otl o _ 
"] 

p0 - p)^-t

_>__t lzx,{ot Io : "] e - p)^

L-t'
We note that

E zx'r(o) Ë
n:7

oo

Ð
r¿:I

p
l-p

: :-Ë p{"'(o) < ,r}(t - p)^
t-pn_I

++ eå r [11"10¡ > n),**l o : ,] (r - p)*,
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Chapter 4: Two-phase examples

from (4.16). If we now substitute the results of (4.18) and (a.17) with ú: (1-p) we get

Elzx,,otf : frryJ.=¡.ffi
This may be simplified in the following manner (where we have written for brevity

{: €"(r)).

E zx,r(o)
F.(1 -p)[€ - (r -p)] + p(r - p)z - p€F.(r -p)

(t-p)({-(t-p))
F.(1 -p)(€ - 1)(1 - p) + p(L - p)z - z(I -pX€ - (t -p))

(t-pX€-(t-p))
F,-(1 -p)(€ - 1) (t - p) + (1 - p)z - z(1- p)t

(t -p)(€ - (t -p))
F" 7-p €-1 iz-z(

€-(t-p)
l, - F" (t - p)l(1 - ()

€-(t-p)
z-F.(L-p)

(1 - €)
€ - (t -p)
z-F.(I-p)

(a(z) - z), (4.1e)z-(I-p)"(r)
which is the required result

Remark: From (a.tS), F.(1 -p) is the unique solution to

":(7-p)a(z)

for unknown z € [0,1). Thus when the denominator of (a.19) is zero the numerator is

also zero.

4.3.L Some limiting cases

When po 1I and hence a - L the condition is simply that p > 0. If we then take the

limit as p J 0 we should get the result for the standard MlGll queue with p - po. From

the solution we get

E l"*l : t 
lu(z)(t 

- z) + z {u(z) - a(ò} -#Å/à1-r ml b(")-z )
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C er 4: Two-phase examples

which when we take the limit as p J 0 gives

t l,"l
1:

n'¿

1:
n'¿

1:
n'¿

1:
,IT¿

b(z)(I - z)("(r) - z) + z {b(z) - "(r)} 0 - ")("(r)-z)(b(z)-z)

{uç'¡1"çr¡ - z) + zb(z) - za(z)1:
n'l'

1:
n'r

){r-,)
(a(z) - z

{uçr¡"çr¡ - zaQ))
("(")-z)(b(z)-z)

(u(r)-z)a(z)(L-z)

"(r)-z)(b(z)-z)

)(b(z) - z)

(t -')

(

o, (z)(r - z)

which is the solution we expect for the MIGII queue. When p: I the system is the

same as the M/G/l queue with a different service-time distribution when a customer

arrives at an empty server. From the result we get

b(,

t¿a )

E

Now F.(0) : O so that we get

b(z) - z

b(z)(I - z)+z{u(z¡-"(r)}

""1

" l,"l å(

which is what we expect

4.3.2 Modifications

No modification to the solution is necessary for any of the examples of modified server be-

haviour except using the correct generating functions lor a(z) and ó(z) from Section 3.4.

b( ) - za(z)
)

b t )
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Chapter 4: Two-phase examples

4.4 Fixed-Time Threshold

In this case the threshold is passed after a fixed number of customers have been served

during the busy period. We label the number of customers served before the switch by

S e /V. Note that if the system clears before this threshold is reached then it is reset

when the next busy period begins. This is so that times spent in phases in different busy

periods will be independent. We can write

,r(n) :
r(n) n n-|S-x(n) if phase(n) : 1,

if phase(n) :2,n,

: r(n) n [n + (s - x("))*] ,

where ¡(n) is the number of customers served since the beginning of the current busy

period. The second equation occurs as (^9 - X(")) will be negative when phase(n) : 2.

Thus

rr(0) _ r(0) 4,9 (4.20)

It is worth noting at this point that condition (x) is trivially satisfied for this type of

threshold. This can be seen as when a ) 1 we have os ¡ orr(0) with probability one.

Theorem 4.6 For po ) 0,,S e .ð/ and z € [0, 1] we arriue at

E lzxnotf - z : lo(r) - zlaf) e),

where nf)þ) can be d,efined, recursiuely by

Rflrþ) :){of,tz)a(z)- ooR!')qo)} + r,

and, Rf) Q) - t

Proof: We use the stopped process Zn defrned in the foilowing way

17 _1/ztn - AnAr(o)

E lzx,'otf : n lrt'l ,

Note that
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Chapter 4: Two-phase examples

so v¡e shall consider Zs rather than X,r1o¡ throughout this proof. When ,S : I

Elzxnotl-z : Elrz')-z
: ElzA'l - "LI

: a(z) _ z,

where Ar is the number of arrivals during the first service. Clearly ttren a[")(z) : L.

This provides the starting point for a¡r inductive proof. Assume the lemma is true for

S:n>1,sothat
t lrt"l - z - lo(r) - zl nf,t Q).

Consider the case S : n * 1. We want to show that

E lzz^+,f - z : l"e) - zl aflre).

Now we can see for ,S : n l1 that

E lzxnotl - z 
: !_'i" r., ):,ir-: iln{z^: í} - z

t:u
We deduce that

zi-La(z), i ) 0,

1, i :0,
from the fact that when Zn - 0, Zn+t must also be zero and when Zn - i > 0 then

Zn+t: i I An¡1- 1 where ,4..a1 is the number of arriv¿ls during the (n + l)th service.

This means that

,1,2,+t)-z : p{Z^:0}f ,(r)Ë "o_lp{Z^:i}-z" l" ) " F_l.on_ 
i:L

: p{z^: 0} * I ttl"'"1 - p{z*: 0}} - r.

We can see that p{2. - 0} will be asÐf) (0) and we have assumed tlrt"l-z to be

l"(r) - zl nat (z) so

Elzz^*,1- z : oollï) (0) + 9 {rU) - rlnrrte)+ z -all(r) (0)} -,
fa(z) - zl

Rf)(z)a(z)
+ ø¡n[)(o¡ - a(z)a¡ nfzl1o¡

E lzz"+,1t": r)

7

Rf)(z)a(z) a¡af)
fa(z) - zl

7
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Chapter 4: Two-phase examples

with some rearrangement. Thus we have inductively proved that ,Ð

a factor of a(z) - z and also demonstrated the stated recursion.
fax"r"l] - z contains

¡

(4.2r)

We still require a closed form for nf)Q) for Theorem 4.3 equation (a.5). The

following theorem provides it.

Theorern 4.7 For the process discussed aboue

s-1

Ð
h:l

a&)
s-ft

n?Q) :
and

where

co

fixed-time threshold at ,S : r¿. Thus ïv'e can write

(1 - ðst) 1-€" 7

€"(z)s t-t(l - Ë"(r))

Rf) 0( ) = 1 f ornl
ao 7=t

a&) - Io* 
"-^-(I;ï)o-' ¿¡(Ð@),

A(ft) (.) bei,ng the k-fold conuolution of A(.).

Proof: When we consider the geometrically-distributed random-time threshold the solu-

tion for E lzx-otl - z could be written as

Fll,.xnot) - z : Ë t" lzx,,<otl" : r] - zln{R: n}" Lo 
n:l

: :t, lzx",otlo:"] -,lní-p)'-'
: .+Ë l" lzx'.otlo:,r] - rl0-p)*r-p/:rL L

Now fElzx,t@t ln: "]-r) is just ("(r) - z)RPþ) where RPQ) is defined for a

a[ct çz¡ lo(") - ,1D aftçz¡çr - p)^
p

: :,lo(r) - zl R(z,t - p),
L-p

t-p N:I

nf)çz¡'p".Ð
n:t

89
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Chapter 4: Two-phase examples

By comparing this with the ans'wer in Theorem 4.5 which states

we get

R(z,I - p)
r-p z-F*(t-p)

R(r,p) :
p 'z 

- (1 - p)"(r)
p , - F.(p)

I-p'z-pa(z)
This in itself is interesting but it also gives us a ïyay of calculating r?[)(a) explicitly,

namely by expanding the right-hand side in terms of p and equating coefficients of p.

Elzxnotl-z :

First we expand IIG - p) as p < L to get

R(',P) : :-I-p
: pÐpo

i:0

Next we expand F;øtr which we can do for

one, a(z)fz tends to one and p < 1. This gives

" - F.(p)
z - pa(z)

r - lP.(p)
L_pg

some inter.ual [z¡,1] as when z tends to

Ë
i:0
oo

Ð
i:0

p

t
i:7

slù

Ëj:0
i

Ðj:0
1-

1

l
R(t,P)

Now from Takács's lemma

p pt

pi

{'- l'.ør}

{t - l".r,l}
't,

{
p

1
F-(p)i

F. (p): 
å o* Io* 

u-^* (I')n-t 
¿40d, @),

where At't) 1.; is the k-fotd convolution of A(.) with itself. We shall write

æ ¿-rc(¡r)t-t
¿4{Ð @).orn, : 

Io kt

Thus

)pR ( piË
i:L

elòsk)1-
1- z
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Chapter 4: Two-phase examples

1

1- sk)

1-

1- elù 1 elù

L - (4?)',

sk)&I

z

Ë
i:l

co

Ð
i--2

_1
7

pi
1- tk) ÐPko{.*t

fr:1z

oo

i-k
1
t

poÐ
i-t

z )
k:1 1-e(4

n-k

a(k)

o(n),

z

By equating coem.cients we get

n
1 )1nf)þ):

i- 7-t\4
z

for z Ç. (ro, 1] where pa(zs)f zs: 1. Now as fi[)(z) should not in any rvay be dependent

on p we can take the limit as p tends to zero. Thus the above is true for z e (0, 1]

To get ÆlÐ (0) u¡e can use the fact that Rf) (z) satisfi.es the recursive relationship

Rfl,e) :)lof,(z)a(z) - R|(o)oo] + r,

witn A[)(z) : 7. This can be used as follows. We set

R(r, p) : Ð af) (r)p^
æ

n:l
æ: p+Ð nf)Q)p"

n:2

which with some rearrangement gives

R(2,7 - p) :

: o * 
=Ë_-L] 

¡tlr't z)a(z) - al'ì,10¡oo] + rlr"

- o *: Ë lotf,t z)a(z)- nl?,(o)o o)n^ +î0"
n2 1-- n + f;* o; Ð,lnf)t,)"(,) - n[")(o)ø¡] p"

t'n:7

: :- + o! lil(z,p)a(z) - Ã(o,p) ao)pn,
I-P 'r 

" 
L-"'

R(z,r-r) {' - o9\ : rl;- îo@,' -o)l
-1 _ 2R(0,1- p)

I-p ek)
z

_1 o6.R(0, I - p)
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C ter 4: Two-phase examples

From the geometrically-distributed random-time threshold we have (4.2L)

E lzx 
n<,,f _ z 

: 
_|:;íå_.ä,i,_ 

: _ 

^
,-(L-p)"(r) (4.22)

By comparing (+.ZZ) and Theorem 4.5 we see that

pasR(o,I-p) : F.(1 -p),

and so

fi(o,p)

By equating coeffi.cients we get

afr(o¡ a@)

which is the required value.

4.4.L Some limiting cases

1
F*

d&)

(p

pk

a(k)

)ao(r - p
1æ

oo,Á'
tær \--i

^ko

)

Ë
k=t

i

Ð
ft:1

1nt\-
oo ?_,

The case of the }ld|GIL queue with a different service-time distribution for customers

arriving at an empty server is the same as the case with ,S : 1. In this case we get

n? Q): 1 so that the solution is simply

nt _xj 1 lb(z)(r - z) + {u(r) - a(z)} zluLo l - rnl )
r lb(z) - za(z)l
m I b(r) -, l'

which is as expected.

4.4.2 Modifications

As before no modifications to the solution are necessary for any of the examples save

using the correct generating functions for ø(z) andb(z).
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Chapter 4: Two- hase exarnples

4.5 Other random thresholds

We would like to be able to find a solution if the random variable .R is not geometrically

distributed, for instance if the time of a breakdown in the system depends in some way

on the number of customers served in the current busy period.

If the random variable .R has probability function h(.) then the solution will be

of the form

E l,"l
b(z)(t - z) + - "(r)j "nf) Q¡t

b(z) - z

f.or z e [0, 1) where

nf)Q) : I nç"¡aft ç27,

oo

n:I

providing rve can satisfy condition (x). Condition (*) is easily satisfied if there exists an

I/ such that h(n): 0 for all r¿ > l/. Otherwise it might be difficult to provide condition

(x). This would have to be dealt with on an individual basis.
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4.6 The probability of a given phase

One thing that may be of use in these results is the probability of being in a given phase.

For example in order to calculate the cost of running the queue, given the costs for

running it in phase 1 and 2. This might be used to optimise a queueing system. Another

situation in which this information might prove usefui is the breakdown model, in which

\üe may want to know how many customers are affected by a breakdown. In this section

we shall use Little's law to calculate these probabilities. Little's law (1961) states

L:^W, (4.23)

where .L is the mean number of customers in the system, À is the arrival rate to the

system and W is the mean time spent by a customer in the system. If we apply this

to the server alone v¡e can see that .L is the probability that there is a customer in the

system a,ndW is the mea,n service time so

,ttJ: p{X+0}:t-*,

w: r-Ó+!,
lf,o ltu

where / is the probability of of being in phase 2. We have from Theorem 4.3 that

n-t : fl + {p" - pb}fi[F)(l)l

L r-pa -.1 '

where R[F)(z)is determined by the specific type of threshold between th. ph..".. Thus

f
pøt(p"-p6)n[F)(t)
t + (p"- rr)n[r)1t¡ '

^W 
: ó(pu - o) 1- p6.

Substituting in (4.23) we get an equation fot þ (when p" + pb)

, lpr*(p'-p6)n[F)(t) ] tq:tffi-e"lpb-h
pa- po+ (1 - p")(p" - na).R[Fl(r¡

| + (p,- po)nlÐ(r)
L+(p"-t)nfFrlr;
r + (p"- ra)n[F)1r¡
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Chapter 4: Two-phase examples

This is the probability of being in phase 2. It is worth noting that this is insensitive

to the actual distributio" B(.) except through p6, the tra,ffic intensity during phase 2.

Because of this insensitivity we can calculate þ even when po : p¡ by taking a set a

distributions such that lim pa ) po and using L'Hôpital's rule in the previous working

to get

ô:r*(p"-r)a[Frlr¡.
As an example we investigate the random threshold where

RtF)P) R,R) Q)
z-F.(L-p)

which when we take z - 1 gives

n[Frlr¡ fu-r.(1 -p)l

\Mhen we substitute this back into (4,24) we get

] _ p* (p" - 1)[1 - F-(1 -p)]vffi
In the breakdown model where all of the customers in the system at the time of a

breakdown are discarded p6 : g. In this case / is the probability that a customer is

discarded because of a breakdown and it is given by

ó:
p t (p" - 1)[1 - F.(1 -p)]

p -r p"lL - F.(1 - p)l
1 - F.(1 -p)

ptp"lL-F-(1 -p)l

4.6.L The length of the phases

Another thing that might be of interest is the time spent in each of the two phases. As we

have seen in the previous sections the generating functions .E fzatol] are quite complex

and depend on the specific threshold and we may suppose the same about Elzn{o)f.

We shall just consider the averages which are relatively easy to calculate. z1(0) and

z2(0) give the number of customers served during phase 1 and 2 respectively of the busy

z-(I-p)o(r)'

1
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period. We calculate the expected values which are given by equations (a.29) and (a.30)

The calculation of these values is as follows

d
d, a(z)'b(z)

þ (@#t) "f^ror (A)21(o)-1 (ó)"',',]

.çt#t) ,þ,ror (A)"'"'(û)-"''] ,

pi#ø) uf*ror (A)*,0,-'] ,

F

d

d,
F

#1,.
d

d"

Now we have, from previous working, the following two equations

t

from which we get

(ô,û)1,:,: (L-p")Eru1(0)r+(1 - pa)E[,,(o)] ,

f". (t, ú)) ":, 
: (i - po) E lu2(o)t.

Elu(,)l:W

(4.25)

(4.26)

t
F*

a(z)' b(z)

F*
7

1_
" b(") - l"e) - zlR[F)(z) + z.

Taking the derivatives of these and taking tjË *" get from equations (4.25) and (a.26).

(L - p")El"t(o)l + (1 - pb)Elu2(0)1, : 1, (4.27)

(r - pb)El"r@)l : (p. - r¡afrrqr¡ + r. (4.28)

Substituting (a.28) irrto (4.27) and then using the resuitant expression for E[21(0)] in

(4.27) we arrive at

Elu{o)l : nÍ")(r), (4.2e)

(4.30)Elur(0)l : 1*(p"-1 (1)

L- Po

Note that by adding (4.29) and 4.30) together we get

7

which agrees with our value f.or m.
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4.7 Sumrnary

As this chapter contains solutions to problems using the techniclue described in Chapter 3

now would seem an appropriate moment to summarise what has been done so far.

Chapters 2 and 3 provide a powerful result using Markov renewal theory and some

martingale results. This has been applied to a number of different two-phase problems

in this chapter. The ecluilibrium probability generating functions for three problems are

given in Theorem 4.3. In this chapter, three examples, each with a different type of

threshold between the phases, are considered and a general form of solution is found.

The three thresholds considered are the fixed upward threshold, the fixed-time threshold

and a geometrically-distributed random-time threshold. Each of these has a different

technique for finding the final solution and so each is considered in its own section of

this chapter, For each of the thresholds two major results must be obtained.

The first is simply to demonstrate when condition (x) is satisfied. This condition

being sufficient to use the results of Chapter 3. In conjunction with this result we have

also calculate the values of E løn(ol] the probability generating function for the length

of the first phase.

The second result necessary for a useful solution is the value of E lzxn<q) - ".
This can be given in each case in the following form

E lzx,,otf - z - l"(r) - zl R(z),

and so we have throughout used the notation A[F)(z) to denote .R(z) where f' gives the

type of threshold and g is replaced with the type of parameter relevant to the threshold.

Both this and the previous result are proven using a number of standa,rd probabilistic

techniques.

The results we have obtained are then used to calculate a number of quantities

of interest in the study of such systems, namely the probability of being in a particular

phase during ecluilibrium and the mean number of customers served in each phase during

a busy period.

Finally we shall comment upon the solutions obtained. The final result is in an

elegant form. The equilibrium distribution of customers in the queue is given by the
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probability generating function

" l,"l
t fa(z)(t - z) + {b(r) - "(")} zn[Ft(z¡1
*l uqr¡" 1'

for z € [0, 1) and with

Ir + {p" - pa} nfrrlr¡1n,: ¡ r-ø J'

where A[Flçz¡ is a non-negative function bounded above on the interval [0,1] and is

determined by the specific type of threshold between the phases. The value F specifies

the type of threshold used and g is a parameter associated with the type of threshold,

A standardMlGll queue with service-time distribution given by g(.) would have the

probability generating function for the equilibrium distribution of customers in the queue

given by

ul,"l : (r-p)lt#_?)
Thus we can see that our solution is a modification of this solution. The modification

is proportional to the difference of the probability generating functions b(z) and a(z).

This can be seen to make sense by considering the following. Our systems are all simply

i|l{IGII queueswithmodifiedinitialbehaviour. (Thebehaviourduringphase 1.) Thuswe

should expect the solution to be that of ai:|r,dlG lI queue with some sort of modification.

That this modification is proportional fo b(z) - "(") 
is of some interest.

\Me should, at this time, note the work of Fuhrmann and Cooper (1985) which

deals with the stochastic decomposition of the M/G/l queue with generalised vacations.

This is an M/G/1 queue in which the server is unavailable for certain periods of time.

For certain of these systems they obtain a result which states;

The (stationary) number of customers in the system at a random point in time

is distributed as the sum of two or more independent random variables, one

of which is the (stationary) number of customers present in the corresponding

NUGIL queue at a random point in time.

We might, using some imagination, rearrange the scheme we have used herein to describe

multi-phase M/G/l queues in terms of generalised vacations. To do this the queueing
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system must satisfy Assumptions 1-5 of Fuhrmann and Cooper, However, Proposition 2

of Fuhrmann and Cooper's paper require a further assumption, Assumption 6, which our

systems vioiate and it is not clear how the other propositions could be usefully applied.

(This assumption requires the number of arriv¿ls during a vacation to be independent of

the number of customers in the system at the start of the vacation.) We have, in a sense,

obtained our o\Mn decomposition result however. This is not in terms of independent

random variables but dependent random variables as we sum two generating function,

not multiply. This could in itself be of interest in future research.

The solutions may look complex but they are not computationally hard to calcu-

late. For instance the solution for the fixed upward threshold requires the inversion of a

k x k matrix, however, the matrix is already in lower Hessenburg form. Putting a matrix

into Hessenburg form is a major part of one of the better computational procedures for

inverting matrices (Golub and van Loan (1983)) and so this matrix inversion is roughly

an order of magnitude easier than an ordinary inversion. The solution for the fixed-time

threshold is not difficult either. It can be done through a set of discrete convolutions

using the fact that ø(È) is L I k times the probability that there are (k - 1) arrivals during

k services so that

ae)

aQ) : aTaot

ø(3) : o?oo+a2a1af;,

Also the geometrically distributed random threshold relies on F* (z) which is a standard

function for the NUGIL queue, the probability generating function for the number of

customers served during the busy period. Thus the results are in a useful form for

calculation.

In the next chapter we shall consider the slightly more complex case of three

phases.

aot
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Three-phase examples

In this chapter we consider an example with three phases. This is a simple extension of

the fixed upward threshold example considered in the previous chapter. In this case we

have two fixed upward thresholds at fr1 and k2. The ends of phases 1 and 2 correspond

to the times at which the system has more than k1 and k2 customers in it respectively.

We also describe a ne\M type of threshold in Section 5.2, the fixed downward

threshold. This is the case when a phase ends if there are fewer than a certain number

of customers in the system immediately after a service completion.

We use a three-phase MRP which is shown in F igure 5.1 and \Me use the standard

notation defined in Chapter 3. Throughout this chapter \4re use the matrix

a'l"r_ r a1",

o'kr-2 a"kr_ r

oL,-s oL,-, (5.1)Px¿ :

a'! ai a!

a'o a\ ai

0 o'o dit

000 a'g a'!

which is analogous to the matrix P¡ in the previous chapter. Several of the proofs that

follow are also analogous to those in the previous chapter because each of the thresholds

is not qualitatively different from the single upward threshold in Section 4.2.
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Tt T2

T

Figure 5.1: A three-phase MRP. tr denotes a renewal point while Q denotes a non-

renewal point
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5.1 Two fixed upward thresholds

In this case we take the end of phase i, (i:1,2) to be when the system first has more than

k¡ customers in it immediately after a service, or of coutse the end of the busy period.

So we can write

,r(n) : ft¡lr@) A inf{rn > nlx,, r t'}] * (r"r + Icl) n,

'r(n) 
: (t"* * 

'rr)l'@)A 
inf{rn > nlx,.t *r}1 t Içp'

11 pt > 0 and ps ) l, Lemma 3.2.2 shows that the queue is unstable. Thus we

shall consider the case with ps 1 L We must show that condition (x) is satisfied. \Me

do this in the following lemma.

Lernma 5.L,2 For p1) 0, pz)0 and, pe ( 1 condition (x) is satisfi,ed,.

Proof: In this case condition (x) is satisfied if E [ai(o) a']@) n(0)] . *, where

ai : stlpz€to,rl€'(r).

E lais altor-'(o)] E l"T@)o7(o)-n(o)11x,,,0, 
: ;¡]

EltT(.)/(x',(0) : i)] E lo?ot "(0)/(x",10) : i)] ,

as the times 11(0) and ,r(0) - 11(0) are independent given the value of X",1¡¡. We know

from Lemma 4.3.1 that E ["í'to'] exists and is finite and therefore ø f"i(0)f 1X,,10¡ : i)]

also exists and is finite. It can be shown in exactly the same fashion as in Lemma 4.3.1

that E la;(o)-nto)/(X",(0) : i)] exists and is finite and so we have condition (x). tr

Theorem 5.2 For h ) 0, pz ) 0 and, ps { 7, z € [0, 1) the probability generating

function for the equi,librium number of customer in the system is

a3(z)(r - z) + {"t(") - a1(z)}z*ff' Q) + {as(z) - a2(z)}z*Y-"ìfr¡

Ë
i:0
æ

Ð
i:0

t l""l as(z) - z

where nY)Q) ,is d,efi,ned, in Theorem /¡.3 and,

nfÍìt"l : *'(r - Pr,)-' t,
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tnl (r{x",tot - 1}, P{x,,(o) - 2},.' . ,p{x,,(ol : kz}) , P¡,, is d,ef,ned, by (5.1) and

nr _ fr + {pr - p'}n[?(r) + {p, - prin[IT](r)l

L r-e' l

Proof: Note that as condition (*) is satisfied (Lemma 5.L.2), Theorem 3.10 gives

E lzxnotlE lzxnotl - z - E lzx"<'tl 7-E zx'r(o)t l,"l t - {r(r)
E lzx'r<ot

1

n-t,
+ +

)-,

t - Ër(r)

E lzx',ot) - z

r - Ës(")

1:
n'l' t - ã(z)

E lzx-otf - z

t - Ëz(z)

E lzxn<øf -+ t-€z(z) t-€s(r)

ã(r) - Ër(r) E zx",@l - z

(t-f'(r))(t -€r(r))
tz(z) -(r(r)l zx'r(o) -a

E

(t-€r(r))(t-€s(,))
z {a2Q) - "'þ)} lø 1""-otl - ,l

("t(r)-z)(a2(z)-z )

'l-"1
("r(")-z)(as(z)-z) (5.2)

The following lemma gives the important values of. E lzx,,<"r) - " and, E lzx,"otl - z.

Lemma 6.2,I For p1)0, z € [0, 1], Xs-0 andthethresholdsllletllø we get

E lzxnotl - z : ("r(r) - z) nff) e),

Elzx.,otf - z : ("r(r) - r¡affiçz) -("r(") - 4Rlu,',un)ç"¡,

where AL?Ø is d,ef,ned, in Theorem f.S,

aÍ;t,,uìQ) : *t (r - Pn )-' I

and' wL : (n{X,,ro) : 1}, p{X,,lr) :2},. .. ,p{X,,(ol : kz}) and, Pp, i,s d,efined, by (5.1).

Proof: The derivation of E lzx"rotf remains unchanged from Theo rcm 4.4in Section 4.2

except for the slightly altered notation. Hence

Elzxnotf -z : ("r(r)-)nff)e),

z {asQ) - "rQ)) lø 1"".o+
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where nLu,)(r) : l"r(I - Pu,)-12¿ and P¿, is the k1xk1 sub-stochastic matrix defined

in (5.1), However E lzx-ot) must be dealt with slightly differently.

There are three possible outcomes for X"r1o¡.

(i) Xa(g) :0 which implies Xn6¡): X",(0) : 0.

(ii) Xn@) > k2 which implies X,,(0): X,,(0).

(iii) X,,io¡ : let I I,. . .,k2.

Thus we arrive at the following result.

E lzx.ot) - z - E lzx",<ot) - z

k

k2

+ É p{xnll)- ,} {u lzxnot 1",,,0, 
:i]- Elzx',ot lt,,o,:4 }i:fr¡.-t7

: (or(r) - z)nff)Q) *.å .p{x.^,p)-,;}{r lzx,,<otlx,ror :ol- 
"o}i:Ér-Ir

Now for i : kt* 1,. . . ,lc2 we can write E lzxnrolt",,o, : i] .*

co

Ð Ðø lzx^I(rz(0) : -)l X^-t - i,rz(o) ) m - 1,X,,1¡¡ : i]
m:n(0)+7 j:7

x p{X," t: j,rz(O) > m - LlX-,qo) : i}

The value of Elzx^t("r(O) - ùlX^-t: j,rz(O) > nx- 1,X,,(0) : i] i, given by

kz

ú(,) a2(z)zi-t - Ð o|-j+rr'
,:(j-1)v1

Thus we arrive at the equation

E lzx'zrot I 
tr,o, : O]

Now p{X- : i,r2(0) > m'1X,,ç¡) : i} is the probability of being in state j and. still in
phase 2 after the rnth service, given that m I ri(0) and X"r1¡¡ : i for i: kt*I,. ..,k2.
In order to find. 

_,Ð,rro{*^: 
i,rz(0) } mlX,,@): i} we define vi as the row vector

Ë (f,^*^: i,r2(o) ) m x,,p¡: ¿]gr'(r))
rn:'r (0) \j:1 /

p{X^: L,r2(0) > rnlx"1(o) : i},
p{X," : 2, r2(0) > mlX,r@) : i}

,. . .,p{X^ : lez,rz(O) } mlX,,(o) : i} ),

vi

r04

(5.3)
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which is the probability vector for phase 2 after the rnth transition given that X,r1e¡ - i
and. rn > 

"t(0). 
The initial probability vector v".r(o) - e¿ . If P¿, is the sub-stochastic

probability tra¡rsfer matrix defined by (5.1) then

y](o)+- = e¿pffr,

so that

co

ÐPi;Ð p{x," -- i,rz(o) > n'¿ - 11x,,1¡¡ : i} : €¡
,":n(0) m:0

: 
"o 

(I - Pu,)-t

Taking eQ) : þt(r), gz(z), . . . , 7kz(z)), we can see that

: 
", 

(I - Pr,)-t s'(r)'

We can simplify S'Q)'as in the proof of Theorem 4.4 to get

sre), : aztz) 
r, _po,rr.

Hence \Me can write .E zx'r(o)

Elzx,ztot X,r1o1 : i]

X,r(o): i] ..

Xrru¡ : i]

(5.4)

E zx'r(o) X..'p¡ : if : e¿ (I - P*,)-t or(r)
zt -P¡rzt

which can be simplified as in Theorem 4.4 to get

E -X,.(o\
1

("r(r) - z) e¿ (I - Pn,)-tu' + ,o.

(Note that we get zi not just z as the extra term.) Now using this result gives us

E zX'r(o) ("r(") - )alu,)(")
k2

+ É p{xn,,) : n} l)øQ) - z)e¿(r - Pn,)-'u' + 
"o - ro]

i:frr--|r

(o'(r) - )al!)(r) +!(or(r) - r)f n{x^<o): i}e¿(r-p¡,)-rzt,

because for i :1,. . , ,k1 we get p{X"rq¡) : i} : 0. From this we get

(or(r) - z) aff) þ) + (a2(z) - ")! *t (t - 
p n,) t ,, ,

E lzx-otl
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where ryt : (n{x",(o) : t},p{x,,@) :2},. . . ,p{xn(ol : kz}). Thus we get the result

E lzxnot) - z : ("r(r) - r) RÍ| ) e) + @2(z) - z) RY:,¿e),

which proves Lemma 5.2.L.

Now substituting the results of Lemma 5.2.1 into (5,2) we get

a2(z) - a1(z) z (a{z) - )af,)Q)Elrxl : 1lL r ml ("t(r)-z)(a2(z)-z)

as(z) - a2(z) z (a2(z) - z¡nf,u,)çz¡
+ (or(r) - ,)(ot(r) -')

l{"r{r) - a1(z))(ar(r) - z) + (as(z) - a2(z))(ar(r) - "¡], affi çr¡
("r(r)-z)(as(z)-z)

as(z) - ø2(z) , nf,',u)ç"¡

1l- -l + +ml

as(z) - z

la2Q)as(z) t za1(z) - a2(z)a1(z) - za3(z) I " alit ç¡
("r(r)-z)(as(z)-z)

+
or(") - "r!)l " 

nf,,ur)Q) asQ) r-t)
as(z) - z

+
as(z) - z

("'(r) - a1(z))(ar(r) - ò)1, nY,) þ)
("r(r)-z)(as(z)-z)

,l"t!) - "rþ)1, af,,un)]r¡ , o3(z)(l - ò1- "tçr¡-" --;rçr¡;1

which proves Theorem 5.2

Remark: In order to make use of this result we need to calculate trl in the above

solution. Now p{X,r(g) : i} - 0 for i: I,. . . ,lq and for i: ktf 1,. . .,1e2 the following

holds

ü
d"'P{X'Q¡ : i}
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E lzx-otl : @r(r) - òRff) e) + z.

When we differentiate this i times we get

p{x-.¡: i} : ïp,Ãtd # þX'e)) "_o ffi (",e) -,),_o+ õ0,

: 
-Ð:,Ãèd # þg'(')) ":o 

(oî-' (¿ - *)t - õ¿-^'t)+ ô¿r

Now aff (r) : !", (I - P*,)-tr'so we get

Now we know that

#(^tr'(')).:o : "t 
(I - P¿r)-1e-11rn!, m:0,. .. ,kt

0, otherwise.

a-+t(z)(t - ") iÐT_la^+r(r) - a¡(z)lz RtT,.).,u,Q)

a^¡1(z) - z

1
(5.5)

Thus as i: ktlI,...,kz we have i > lq - 1 and hence i-m > l whenever (5.5) is

positive and also i > 1 (as \Ã/e assume k1 e /V) and hence

p{x,,1s¡ : i} - ït+ *"r(I - pn,)-t"-*, mt(al-,,- ô,--,r) r ð0,t 
^?o 

mt dzn
frr -1: Ð "r 

(I - Pn,)-re,n+to!¡-^
rn:0

ft1

Ð "r (I - Pn,)-t",.al-^+t
tn:7

This can then be used to perform the necessary calculations as we have already inverted

(I - Pu, ). This could also be calculated directly using probabilistic arguments but as we

neea n[f)(a) in the solution it makes sense to use this.

The obvious extension to this chapters result, aithough not proved here, is

Proposition 5.2 For n threshold,s at Ie1{ lcz I ... 1k,. we fi,nd

,l,"l

where

Rt|),n,e) : )*-' (, - pr,)-' I
and, uÍ : (n{X,,<o) : L},p{X,,(o) : 2}, ...,p{X;¡ol : ft¿+r}) and, w0 : et
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5.2 Downward thresholds

One type of threshold has not been mentioned in previous examples, the fixed downward

threshold. This threshold occurs when the number of customers in the system becomes

less than or equal to say I e IN.

We did not consider this type of threshold in Chapter 4 for the simple reason

that it makes little sense to consider this type of threshold in isolation. The busy period

begins with the number of customers in the system being zero and hence the threshold

would automatically be passed before the process even began. Thus processes with two

phases and hence only one threshold have little use for the fixed downward threshold.

We shall consider this type of threshold in the following context. The transition

from phase 1 to phase 2 will have a threshold of the fixed upward type at fr. The

transition from phase 2 to phase 3 will occur at the first time subsequent to the process

entering phase 2 at which there are no more than I customers in the system. The system

then continues in phase three until the end of the busy period.

We shall limit our investigation to the case when I < k. This is because if
I > k the process would be equivalent to one with I : k and so the case with I > k is

unnecessa,ry. Further it makes little sense to consider the case with I : 0 as this will

simply be the two-phase case because the third phase always takes zero time.

From the description above lve are able to see that

,r(n)

,r(n)

f
.T F7

Ictr

r(n) ninf{rn > nl x^ t *} 
] + (I"z-t lcl) n,

r(n) n inf{rn > nlX^ 11, Is,^_,: I}

lrølA inf{rn > nlx,,. ¿}] i lqn.¡1c,,

This type of process has an interesting feature. The GMRP that corresponds to

the phase structure of the process is shown in Figure 5.2. In this GMRP state 3 is also

a renewal state. This is because the embedded process obtained from considering the

queueing process at departures is skip-free to the left. This means that if we consider

the embedded process to be a random walk, the walk never skips a state while moving

to the left. This is the result of only one customer being served at a time. If the process

begins above state I it must pass through state I before entering any lower state and
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Chapter 5: Three- hase exarnples

hence in this case X"r1¡¡ : L State 3 is then a renewal state because the time spent in

this state will no longer be in arìy IMay dependent upon the time spent in states I or 2.

The alternative is that the system never passes the first threshold. If this is the

case then it cannot pass the second threshold either and hence X,r(¡) : 0 and X,r16¡ : 0.

X'>K X,<L

X'=0
X'=0

Figure 5.2: The MRP for one upwards and one downwards threshold.

When we convert this GMRP to a three-phase MRP by considering transitions

from state 1 to state 1 to pass through states 2 and 3 spending zero time in each we

loose this renewal structure. However, it is still sufficient to enable some simplification

of the results. The resulting three-phase MRP is shown in Figure 5.3

One further thing to note is that in this process neither p2 rror p3 can be greater

than one if the queue is to be stable. Thus this is not perhaps a queue of great interest.

What is more interesting is the process which may make repeated transitions between

phases as it passes above and below the thresholds. We shall consider this type of process

in Chapter 7. Thus we shall consider a few results here which will contribute to that

later problem but we shall not bother to obtain the probability generating function for

the equilibrium behaviour of the system.
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X'>K
X'=0

X,<L

X'=0
Figure 5.3: The three-phase MRP for one upwards and one downwards threshold. !
denotes a renewal point while Q denotes a non-renewal point

It is obvious that X,r(g) : 0 implies that Xz(o) - 0. Also when X,,(0) I 0 we

can see from the skip-free to the left nature of the embedded process that X,r1o) : l.

Hence we get

E lzx-otf : p{X.,.u,: 0} * ,, (1 - p{X..,e) - 0})

We can calculate p{Xn¡¡: 0} from the following

p{x"1¡¡ : 0} 

: ffl;::l_,",,
From this we could obtain the solution but it would be of little use at this stage and so

we shall adjourn this discussion until Chapter 7.
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Chapter 6

A breakdown f repair model

In this chapter we consider a four-phase M/G/l queue. This is intended to model a

simple breakdown f rcpaft queue. We have a single-server queueing process with generally-

distributed service times, with probability distribution function, ,4(.), and Poisson arrivals

with rate l The process considered is one in which a breakdown occurs after a random

number of customers has been served in the busy period. A major assumption rue make

here is that the server can only breakdown once per busy period. This may be a realistic

approximation if the probability of a breakdown is small. If not, a more complex model

must be considered.

We assume that during each idle period the server is checked and any necessa y

repairs are made. Thus at the beginning of the busy period we can ignore how many cus-

tomers have previously been served, making the beginning of the busy period a renewal

point. This checkup takes a random time with distributio" ,S(.). Checking the server can

in many cases be considered to be a set task or sequence of tasks, such as checking certain

components and replacing them if worn. Each task in this sequence takes either zero or

a deterministic amount of time and so ïve may consider the checkup-time distribution to

be a probabilistic mixture of deterministic distributions. That is 
^S(ú) 

:lp¿õ(r¡ -t).
A breakdown occurs during a service with some probability *hii is dependent

on how many customers have been served in the current busy period. \Mhen the server

breaks down, the service currently in progress is interrupted and a repair is begun. The

repair time has probability distribution function .R(.). When the repair is completed the
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Chapter 6: A breakdown/repair model

interrupted service may begin again in two ways. It may resume where it left off or it may

have to repeat the work done before the interruption. In these cases the Laplace-Stieltjes

transform of the total time spent during the service and repair is

(i) resume: B.(s) : ,4.(s)A-(s),

(ii) repeat: B.(s) : A.(s),R.(s)C.("),

where C(') is the probability distribution function for the amount of work done before a

breakdown. The function C(.) will depend on the service time and where in this service

the breakdown occurs. F'or our purposes here it is easier and more natural to use the

resume model.

Once the breakdown and repair have occurred the process continues normally

until the end of the busy period.

We use, for this process, a four-phase model. The first phase is only a single

service long. A customer arriving at the empty queue must first wait until the server's

check is completed before it can begin service. Thus we add to this customer's service

time the remaining checkup-time. The Laplace-Stieltjes transform of this remaining time

IS

\P6e-^*'
s-À

From this we get ,41.(s) :,4.("),9-(").

The second phase is the normal service period with a random threshold. During

this phase customers are served normally. Thus A2*(s) : A* (s) where A(.) is the service-

time distribution. This phase ends at the breakdown. Phases must obey the rules of

Chapter 3 but we have said that breakdowns may occur during services in this model.

In this case phase rules (i) and (ii) appear to be broken. We can get around this by

saying that when a breakdown occurs during a particular service, the decision that the

breakdown occtrrs during that service is made before the service begins. Thus the phase

change occurs before the service in which the breakdown occurs. With this model in

mind we take the probability of the phase change occurring between the nth service and

the (n + l)th service of a busy period to be h(n).

The third phase is a repair phase, consisting of a single service in which the

customer waits for the repair time and then has its normal service. Thus A3*(s) : B.(r).

S-(t) : Ð
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Chapter 6: A breakdown/repair rnodel

As we are assuming the service resumption model of breakdowns it does not matter at

what point the breakdown occurs during the service time,

The final phase is again a normal phase which ends when the system is empty.

Hence An.(r) - A2*(s) : ,4.(s). \Me define the tra,frc intensity during this phase and

phase 2 to be po.

We shall consider only the case when po 1L. It makes sense to do this because

\Me are considering an M/G/l queue that may break down. For this to be stable the

corresponding M/G/1 queue without breakdowns must also be stable.

One final assumption we make to simplify the problem is to assume that a

breakdown will not occur during the first service of a busy period. (i.e. h.(0) : 0) This is

not an unreasonable assumption as we have assumed the server gets checked during the

idle period. This is to avoid the possibility that the first service has extra time added to

it from the left over checking and repair. Removing this assumption makes the problem

harder but not insoluble.

11. po{ l wemight stillhave acasewhen Æ> 7 orp3 ) l inwhichcasewemust

consider condition (x). However as phases 1 and 3 last only one service each, condition

(x) is easily satisfied. The equilibrium distribution of customers in the system is then

given by the foliowing theorem.

Theorem 6,2 For po 1L and z € [0, 1)

or(") - zay(z) + ("rQ) - as(z)) (" - '3n[Ð10¡)
a2(z) - z

+ nf)(z¡ (orQ)-,r(r))] ,

where nf) Q) is d,efined, to be l-?:rh(n)nf,') (z) where nf ) þ¡ is d,efi,ned, by the recursiue

relationshi,p

nff t¿ : ){of',(z)a(z) - asftQ\ (o)} + r

ønd R\r')þ) - ffi. Also the mean length of the busy period, i,s gi,uen by

r + (p, - pz) + (ps - où lt - ,3n[r1o¡]
,ìTL :

t l,")
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Chapter 6: A breakdown/repair rnodel

Proof: From Theorem 3.10 we get the the equilibrium probability generating function

to be

E zx'r(o) E lzx-otf_E zxt@)

'l'"1 t - 6r(z) t - €z(r)
+

E zXn@) - E lzx-otf
t - €e(z)

Now because the first phase lasts for only one service

E lzxnot) : at(z)

Thus we get

t l""l
E zxn{otf - "r(")

t - tz(r)

L_E
t - Ë+(z)

zx'"@f
+

Using tz(z) : da(z) and rearranging we get

zxn@) _E zx'r(o) T_E zx'r(o)

t - Ëe(z)
+ t - €+(z)

E lzxnotl - n [rx-t"l]
t - €z(z)

Elzx^otl-Elzx-otl

E
+

u l,"l a1(z) +

+
1 - 6e(r)

+

which, as in similar arguments, gives

(nl"*^*,1-ølzxnotf)rç"rç"¡-orþ)) a2(z) - za1 (r)t l,"l
1:

n'ù
+("r(r)-z)(as(z)-z) (6.1)

a2(z) - z

Now, since X"r1¡) :0 implies that X".(0) :0, we get

Elzx-<øl - Elzxnr")l: Elzx,trotl(Xnp¡ +ql - Elzx,z{o)r(Xn(o) +0)l $.2)

Furthermore rve spend exactly one service time in phase 3 and so 13(0) : rz(0) * l. This

mea,ns that when xno) I 0 we get x,*10¡ : x",rl) * Altol*, - 1 so that

E lzxnot I(X-@) + 0)f : Elzx',<oft¿l,tol*'-1/( X,z@) I O)]
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Chapter 6: A breakdown/repair model

Now ,4f,,0)+r is independent of X,r16¡ so that

E lzxnou (x,,(0) I 0)] : E lzxnot I (xap¡ + 0)l E 
lro?,*,*,f "-',

1""",,*r*,] 
z-! : a3(z) I z so we get

Elzx'ttot /(X,,(0) l0)] - 9ø-Elzxntotl(X.,1o7 l0)]

Using this result in (6.2) we get

Elzx.<øf - Elzxnotf ) @A> - ,) E l,*n<ot l(x',pl I o)]

By the same arguments used in Section 4.5

and,Ð

and so

(6.3)

E lzxn<øf - z : ("r(r) - ")Ðh@)af)Q),
æ

n=t

where by the same recurrence arguments of Theorem 4.6 we can show that

n#\t¿ : ){of',(z)a(z) - a¡ftQ) (o)} + r,

and Ãl') Q) : ffi- The different initial value Af') Q) arises from the difierent

behaviour of the server during the first service of a busy period. We shall write nf) çr¡ :
IËr h@)AF') (z) and so

E lzx-otf : þr(") - ")Rf) þ) + z.

From the fact that p{X,,(g) :0} : Elrxn<",],:o we get

P{X'1¡¡ :0} : ofrn[Ð10¡,

E fzx'zto)I(X",10¡ I 0)] ("r(") - r)Rf)Q) - a?onf)10¡ +,

Substituting this into (6.3) and thence into (6.1) we get
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Chapter 6: A breakdown /repair model

i:
n'¿

1 ("'ç,¡ - ") (@,e) - òRf)e) - afiaf)10¡ +,)'(rt l - o,e))u l,"l or(r)-z)(as(z)-z)

a2(z) - za1 (r)
+

a2(z) - z

(@,Ø - òRf)þ) - afinf)10¡ +,) (røl - orQ)) * a2(z) - za1(z)1:
n'¿ a2(z) - z

or(r) - za{z) * ("rþ) - ",e)) (0)), - "2oLf)
a2(z) - z

+ Rf) e) (arþ) - ,r(,))]

If we now take the limit as z f 1 then we shall get an expression for m. This is

7+(pt-pz)*(pt-pz) þ - oSnf)n'ù : (0)l

I-p,
as desired.

Remarks:

(i) As in Theorem 4'7 we could obtain a closed form for Rf') (z) and thence write nf) þ)
explicitly. For brevity we have omitted such a derivation in this case.

(ii) It is noteworthy that if we take the repair times to be zero with probability one then
as(z) - a2(z) and so the solution is

a2(z) - za1 (r)E "x a2(z) - z

which is the expected result for a queue with a different service-time distribution for a
server arriving at an empty server. (See Section a.2.L.)
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Chapter 7

A two-threshold, infinite-phase

example.

In Section 5.2 we described the downwards threshold. Used in conjunction with an

upwards threshold this can produce an interesting example. We noted in Section b.2

that the three-phase process with an upwards threshold at k and a downwards threshold

at I is of limited interest. The process \¡r'e are interested in is the one in which the

server can switch between service-time distributions each time a threshold is crossed

and not just the first time the thresholds are crossed each busy period. This presents

a problem, the thresholds can be crossed an infinite number of times during one busy

period, admittedly with probability zero. Thus the process lye are interested in has an

infinite number of phases. Another way of viewing this is given below.

The example can be considered as a process with two regimes. In regime one the

service-time distribution is A(.) while in regime two the service-time distribution is B(.).

If the process starts at time zero with no customers in the system and in regime one then

rü/e carr describe the transitions between regimes in the following way. The first time the

system has more than 1l customers in it at a service completion epoch it enters regime

two' When next the queue has no more than .L customers in it at a service completion

epoch it returns to regime one. It makes sense to take only values of .L,lf e -ô¡r such

that .L < K ' lf. L :0 then we simpiy have the system of Chapter 4 with a fixed upwards

threshold. If L > y'l transitions to the second regime (which spend a positive time in
that regime) would only occur when there \Mere more than ,L customers in the system at
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Chapter 7: A two-threshold, infinite-phase exaûrple.

the transition point a¡rd so \rye may as well increase lf so that it equals tr.

We can model this process by a three state GMRP as in Figure 7.1. This is

a natural description of the process involved. This, however, would not fit the general

)C>K )Ç<L

X"=0

)C=0

Figure 7.1: GMRP type IL tr denotes a renewal point while Q denotes a non-renewal

point

theory we have developed. Thus we consider a different process in which each subsequent

transition past a threshold is represented by a transition into a ne\¡¡ phase. This procedure

results in the multi-phase MRP of Figure 7.2. \Me obtain this multi-phase process by

using the procedure of Section 3.6 on the GMRP of Figure 7.1.

Thus we consider an infinite-phase process. Clearly phases 1,3,5, . . . will all

correspond to the system being in regime 1 and hence At(.), At(.), Au(.),.. . : A(.)

while phases 2,4,6,... correspond to regime two and so A2(.), An(.), Au(.),.,. : B(.),

Thus we can write, by extending the notation,

AL,A1,A1,,... _

ot("), os (r), ou ("), . . . :

ã(z), €t(r), €e(r),' . . :
al,a?,a6i,... :

Pt¡ Pg, Psr' ' ' :

A?_, Al, A1,.

o'("),o4(r),ou(r),.

tz(z), €+(z), €o (z), .

al,a!,a|,.

An,

o("),

€"(z),

: Bn,

: b("),

: €a(z),

: b¿,

: Pa.

Ait

Po,

X>K

1 3
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Chapter 7: A two-threshold, infinite-phase example.

1

X"<L X.>K
X"=0

)C>K
X"=0

X<L

I )C>K
X"=0I

\
\
\
\
\

X<L

Figure 7.2: Multi-phase MRP with an infinite number of phases. tr denotes a renewal

point while Q denotes a non-renewal point

In this exampie we have not demonstrated that condition (x) is satisfied. When

Po 1 I it is satisfied but when po ) I there are problems. It is easy to prove the regularity

of the stopping times r¿(0) (wheî pa 11) using the same type of arguments as used in

Section 4.2 bú in this case it is ha¡d to show that r(0) is regular, due to the infinite

number of phases. Thus we present the results we get for this problem in the proposition

below. In Section 7.3 of this chapter \Me provide a number of numerical examples to

support the result. While these do not prove the proposition it is to be hoped that they

remove any immediate doubts about its veracity.

\ \ \ \
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Chapter 7: A two-threshold, infinite-phase example.

7.L Motivation

There are several reasons for studying such systems. The case where K : L appears in

the literature. For instance, Morrison (1990) investigates a system in which the service

times are negative exponentially distributed and instead of changing this between the

two regimes he allows two servers to operate in the second regime. Because of the

exponential service times, two servers are equivalent to one server with twice the service

rate (for the purpose of queue length calculation). Another example is Gong et at (Igg2).

In this case they consider the system with the arrival rate dependent on the number of

customers in the queue. The example in this chapter, with K : L is a particular case

of this. A major reason why such models are considered is to allow customer balking.

This is when a customer can refuse to enter a queue if it believes the queue is too long.

A way of modelling this is by giving the customers a probability of balking when the

queue has more than a set number of customers in it. Another reason for considering

such a problem is if more than one type of customer arrives at a system. If these types

have different priorities we may wish to block some types when the queue has more than

a certain number of customers in it.

The unusual feature, in terms of queueing theory, of this chapter's example is

that L can be less than K. What is particularly unusual about this is the fact that the

embedded process is no longer a Markov chain as in most conventional examples. We

might want .L ( K because in the case with K - L it is possible that the system will

spend much of its time switching between the two regimes, for example if p" > 1 and

Pu 11 1. If there is an overhead associated with swapping between regimes it is desirable

for frequent swapping to be avoided. An alternative to changing the tra,ffic intensities is

to have L < K which will minimise the number of swaps between regimes.

This type of policy occurs in inventory problems, for example Morse (1962). We

consider the queue to be a store of some resource and the service times to be the times

between orders for the resource. The store does not want to run out of the resource, but

neither does it want to store more than is necessary. A possible policy is to start ordering

when the store falls below a certain level .L, and stop ordering when above another level

If. Note however, that the Poisson process is not normally used for ordering resources.

r20



Chapter 7: A two-threshold, infinite- hase example.

7.2 Results

Proposition 7.1 For the process aboue the following hold,

(i) When po ) 0 and, p6 > 7 the proceEs is transi,ent.

(ä) When p" > 0 and, p6: I the process is null recurcent.

(i,ä) When p, > 0 and, p6 < 7 the probability generating function for the equili,brium

number of customers in the sgstem is giuen by

E lr"l

for z € [0, 1), where

a%i)e)

h

h1

u l,"l

b(z)(L - z) + {u(,) - a()}znfl!)Q)
b(z) - z

1:

:1
l("'*(*) "")o-rrrof
- aoeL (I - P¡,)-r e1t,

I - asel(I - P¡,)-r e1t

and m, the mean number of custorners serued, in one busE peri,od, is giuen by

* _ lt + {p" - pu}nlY? 0)l
l- r-po j

Proof: (i) When pa ) 0 there is a positive probability that the process will get to the

second regime at some stage in the busy period. \¡/hile in regime two the traffic intensity

i. pu > 1 and so the probability that the number of customers in the system goes below

.L again is less than one (from the behaviour of the standardMl?ll queue). Thus in

the long term the process will be unstable.

(ii) This follows from the value of rn as pa I L

(iii) From Theorem 3.10 we get the solution to be

+
E lzx-otf - z E lzx-otl - n zx'tP)

+ t - €z(z)

We take hn : p{X,.(o) > 0}, the probability that phase n + I is reached before the end

of the busy period. The process is skip-free to the left so that the transitions below .L

will always be to .L and so

hzn : p{Xn*(o): L},

hzn+t : P{Xrr^+r(o) > 1l}.

T2T

t - €r(z)
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It is easy to see that the thresholds must alternate. Thus a jo-p above y'l is always

followed by a jump down to L at some time before the end of the busy period so that

h2n: hzn-t

Also from the theorem of total probability \Me can write

hzn+t : p{X,,.+r(g¡ } KlX,r*tol : I}p{ X,r^(o) : L}

-f p{X,r^*r1o¡ } KlX,r* (o) : 0] p{Xn^@¡ :0}

ü

: P{X,r^+'(o¡ } KlX,r.(ù: L} h2*

: p{X,r.=r(o¡ } I(lX,r*(o) : ¿} hzn-t.

Thus if we set h : p{Xn +r(0) } KlX,r*(g): tr} then

hzn+r : hthn,

1

- hth"

For r¿ ) 1 we get

hzn+z hzn+

ølzx,"otf : Elzx,"rÐI(X,,_.(o) - 0)] + Elzx"*{o)I(X,._,(0) l0)]
: p{X,^-,(o): 0} f *p{X,^-,(ol l0}El"x,^<ot lX,,-,qo¡ I 0]

: (t - h.-r) i h^_18lzx,*<ot lX,._,(o) t 0] .

From (7.2) this gives

E lzx'z^tol ] : (L-hr^_r)th2n_121,

r : t nl'*"otl,
' I ( - hr^) I h2.E lzx"*+''to) lx",,tol : Lf ,

(7.2)

n)0,

n)0.
0nE zx'rn+r.(o)

As in Lemma 4.4

E l"x-otl l"þ) - ,l nft ç,¡

Xn^(o):Lf:rQ),

We can see that for r¿ > 0

E lzx'r^+rlo)
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where r(z) is independent of rz. Now this means that for r¿ > 0

E lzx,,**,<.,] - ø lzx,,"ot) :

E lzxn.*r<',] - ø lzx,z*+,otf :

(L - hr^) t h2*r(z) - (1 - hz*_l) - hzn-tzL

h2^r(z) - hzn-tzL

hrh"-|(r(z) - ,t),

(! - hr**r) i h2^¡12' - (t - hz^) - h2*r(z)

-hzn+t * hzn+tzL I hz- - h2^r(z)

hthn r 
{-n* h"L +1 -r(z)}

hth -r(r - h) + hthn r {nrt - rþ)} .

\Me can now write the probability generating function for the number of customers in

the system as follows.

E zx't@) -z E
u l,"l

zx'"(o) _E zx"r(o)

1 - {r(r)
+ t - Ëz(r)

E lzx"^+,to) E lzx"' ,", 
1

t _ Ër(")

E lzx"'^+,{t'l - ¿ I 'x'r^L'
t - tz(z)

1+-
n't,

1+-
n'I

T(_)*l
1+-

nù

1+-
TN

T(t-l
1+-

n'ù

1+-
n'ù

T(: -¿,æl

Ë
n:L
oo

Ð
N:I

El

+r{o) 
]

zx,,

t - 6r(r)

ht¡"-t (rçr¡ - r')
1 - dr(r)

fuh^-L(r - h) + h1¡n-t' {nr, - rQ))
t - Ëz(z)

L - E lzx^<øf

(0)

Ð
n:I
oot

n:I

El

-,Q))

E

zx (o) -þ1l

+t - €t(") t - €z(z)

r(z) - zL)h1

t - Ë{")

tu(L-h)+ht

ì-

lP-
{n,'

hn-r

zxt@)

t - €r(")

-z I-E zx,r,
+

,r, 
]

t - ü(r)
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h' (rþ) - ,')
t - (r(z)

ht(t-h)+h1 {

two terms with Y(z) for the moment.

El,*l: +.#i{

t - tz(z)

hzL - rQ)\

Now the first two terms in this are the same as in the MICIL queue with a single fixed

threshold at lf (apart from the different normalising constant rn). \Me shall replace these

r t -L

1

t - €r(r)

ht - h) + {nr" - rQ)}
m(I - h) t - Ëz(r)

r þ .L
-L

t - €r(r)
(""-1)(1 -h) (1 -h)+{nzL-r(")

t - €z(z)

)
+ )

Y(") h1 I: * -;GlÐ 
1

El
co

Ð
i:0

r .L

r - €t(z)

r(" .L

t - ã(z)
r ,)-"')l€'Q)-Ër(,

K

I.#i{ffi\
)

(7.3)("(")-z)(b(z)-z)
We must now calculater(z). As before we expect r(z) - ("(r) - z)R(z) +z¿ for some

bounded function R(t). We use the technique used in Section 4.2, Theorem 4.4 of

expanding the expectation to get

(t-{'(,))(t-€r(,))
z(r(z) - "L) lb(z) - a(z)l

zx'rn+r@) Xrr*(q: Lf

v"g(")',

,(r)

where we take S(") : btç¡,92(z),... ,7x(z)),

a(z)zi-r - Ð a>j+tzt
¿:0-1)^1

g¡(z) :
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and vi : (ui,uT,r.. . ,u'à where

'f¡ 
: P{X,r.(o)+i : i, Tzn+t } T2n + ilX,r*(¡) - L}'

Again we use the sub-stochastic transition matrix P¡ defined in (a.\ with the initial

vector v0 : e¿. Now as before we can write

Ë to : rro(I - P*)-t
i:0

: 
"r(I - Pu)-t,

eQ)' : 
o(") r' tP¡"2t.

Then \ ¡e can see that

,(r) ) "' - ("r(t - Pu)-l) P*z'

) u' * ("r(t - pu)-') (r -p¡)zt - ("r(t - pn)-') ,'

z) - ,j "r(I - Pn)-tu' i zL.

: "(r)
a

: "(z)

r ,^,
;1"\

("r(t - Pu)-'

("r(t - Pn)-'

(7.4)

Substituting 7.4) into (7.3) we get(

u l,"l
Y(r)

I

n'ù

ht {"(r) - z}e¡(l - Pr)-rzt fb(z) - "(r)l

Y(r)
m(I - h)

h1

("(r)-z)(b(z)-z)
]e¿(I - P

m(I - h) (b(z) - z)

b -tzt
+

n'ù

Now Y(z) is given by

Y(z):

and so

E zx'r(o) -z L-E I'x"otlY(z): +
1 - €r(z) t - tz(r)

which we know, from the }dlcll queue with a single upwards threshold at, K, to be

E lr*l
b(z)(t - z) + {u(,) - o(")} [(", * (#) ", (I - P¡)-12¿]

b(z) - z

rn is calculated as before by taking lim,11 and using L'Hôpital's rule, From this we get

-å(1) + {å' (1) - o' (r)}a!lrD) ( r)
ó'(1) - 1

Lt {p" - pø jafli) 0)
7- p,

n',,
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Now from the definitions of â and lr1 we get

ht

h

¡Thus we have the proposition.

r - Efzx-r'ot Ito : o],:o

t - l: @Q) -z)e1 (I - Pr)-'u' * ,l 
":o

1 - osel (I - P¿)-1ei ¿,

L - E lzx',**,to)l *n*ro, : Lf ,:o
, - l: {oQ) - z} e¡ (t- Pr) ''u' + ""],:o
L - aser, (I - P¿)-1e1¿.

Remark: Note that as condition (x) is automatically true for po ( 1 and p6 ( 1 the

proposition has been proved over this range. It would be nice to be able to prove it is

true for p, > !. This, however, is somewhat elusive. If the connection between regularity

and stability could be made into a necessaxy and sufficient relationship then this problem

would be solved as this queue we have described above remains stable when po ) 1 so

long as pa 1L
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7.3 Numerical examples

In this section we investigate a number of numerical examples. As was noted in the pre-

vious section the conditions necessary for the result have not all been proved. However,

we shall support the conclusion with a number of examples. Obviously these do not form

any sort of proof of the result but they lend support to our proposition.

We show in the graphs the probabilities of having zero to twelve customers in

the system. The dots show the results as calculated using our method, while the bars

show 95% confidence intervals for these probabilities, produced through simulations of

the systems involved. \Me calculated the probabilities from the generating functions using

Maple. This is a matter of expanding the generating function as a Taylor series about

z :0.
I have tried to present a spectrum of results. Each page has a different combin-

ation of service-time distributions and values of the thresholds I{ and L. Also within

this I have varied the value of po the traffi.c intensity during the first regime. Alt of the

examples are limited l,o p6 :0.5 in order that comparisons between different systems

might be made.

Of interest might be the fact that these show some nice behaviour in some cases.

For instance the probability of having the system empty is quite small in some cases while

the probability of having more than say ten customers is eclually small. This type of

control over the system \¡/as one of the stated aims of using this type of threshold and

so these results are encouraging.
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7.4 The probability of a given regirne

We can extend the technique of Chapter 4 for finding the probability of a given phase to

finding the probability of a given service regime, the technique is almost the same. We

apply Little's law to the server so

: p{X+0}:t- t,
1T¿

L-rþ . ,þ

F" l-tu

where t/ is the probability of of being in the second regime. For the case we have

described

Pa t (p" - pùa$| 0)
r + (p" - pr)n$| G)'

,þ(po-P")1p,.

Substituting in (4.23) we get an equation for tþ when p" # p¡

Pa t (p" - pùafl/) 0) 1

L

W

L

AW

P"7+(p.-pùaVPG) Pa-P"

I þo - p") + (L - p")(p. - pr)nff? 0ll 1

l )p,-h
: r+(p"-¡nfitg /¡zr\

L + (p" - pu)allP A' (r'Ðl

This is the probability of being in regime 2.

When K : L this gives the special result, the probability that there are more

than y'l customers in the system. This can be used in the MIG lL queue to calculate the

equilibrium distribution of customers in the system. Note that we can consider 1þ - ,þ(pu)

as the only dependence on B(.) is through pu. lf we then take a series of distributions

such that pu ) po we get

,þ(p") r + (p, - ¡af fl) çt¡

\Mhen B(t) : A(t) for all t e .B this simply gives the probability that there are more than

.ü( customers in tlr.e }dIG 11 queue. Note that this is insensitive to the actual distlibution

,þ
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B(.) except through its mean. We can then immediately deduce that un, the probability

that there a,re ?¿ customers in the system, is given by

uo : (1 - p"), (7.6)

lrn : (1 - p")[fiYP$) - nf !],*_rçt¡1, (T.T)

with r?[fD)(t) : 1. (\Mhen K : L:0 we have the situation where a customer arriving

at the empty server has a different service-time distribution from all other customers. In

Section 4.2.Ithe solution is given for this and in order to be consistent with this we set

n[fl")qr¡ - r.¡
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7.5 The M/G/ l/N+f queue

The M/G/1/N+1 queue is the MlGll queue with a finite waiting room. Any arrivals

that occur when the waiting room is full are blocked. If we take the maximum queue

size to be l/ then the maximum number of customers in the system is N * 1. As in

the previous examples tve consider the process embedded at departure epochs. When

we consider a departure we include customers who are blocked and leave the system

immediately. After a customer that receives service leaves the queue there can be no

more than I/ customers in the system and so the probability that there are l/ * 1

customers in the system will give the blocking probability.

We shall not model this in the standard way. We take the system to be an multi-

phase }i/ IGII queue as described in this chapter with L: K - ¡f. The probability

generating function for the service times during the second regime is given by

.B(r) : ú(0,

This means that when the process is in regime two customers are served in zero time.

This is equivalent to blocking the customers, except that the customer involved spends

some time in the queue before being expelled.

Note that this would in fact give us a queue in which arriva,ls can stay in the

system when there are more than Iú customers in the queue because the system must

wait until the end of the current service before expelling any excess customers. Also the

excess customers are be expelled in the order of service. Thus, as we want to expel the

customers in the correct order (that is, remove those customers who arrived when the

buffer size was exceeded and not those already in the system), the service discipline must

be the non-preemptive last in first out discipline. We can however swap disciplines as

well as service-time distribution at transition points and so we can always swap to this

discipline when needed. Furthermore the service discipline does not effect the number

of customers in the system only the waiting time distribution for those customers,

The extra arrivals during the service wili a,ffect the results. Obviously if we

allow more than I/ f 1 customers in the system this wili affect the distribution for the

number of customers in the system. However, if we note that when there are more

t

0

1 0
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than Iú customers in the queue the extra customers are all served in regime two and

hence correspond to blocked customers, then we can see that the blocking probability

will simply be the probability of being in regime two. We can get this probability from

Section 7.4.

Proposition 7.2 The blocking probabili,ty i,n the M/G/1/N+t queue, tþ, is gi,uen by

^t. L+(p"-t¡ajflftlt¡v l*p",RÍfl,fl)(l) )

where

,?Ífl,fl)(1) : et* r-h ê¡¡ Q - rfi-L tt.h1

Proof: From Proposition 7.1 for 0 4 z < l and palI the generatingfunctionforthe

equilibrium behaviour of the queueing process described above is given by

n r_xr t I uþ)0 - ò + {b(z) - "(,)},nfffltç¡]uro j _ 
*\ ¡,

where m, the mean number of customer's served in one busy period, is given by

Now ô(z) : 1 so pa:0 and

E lr"l
(t-r)*{L-a Q)\ zafffl) þ)

rn

(7.8)t- z

Note that from (7.5) we get the probability of being in the second regime ty' by

,þ
r + (p"- pu)afl,fl)(r)

t + (p"- r¡nff)1r¡
1 + p"ÃÍfl,fl)(l) '

where

aÍf,fl)(r) : r-h
h1

) "')
This is the blocking probability

er-|
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Now in our multi-phase lli,[IG lI queue we know that the probability that there

are more than N customers in the system is the blocking probability, which in turn is

the probability that there are more than I/ customers in the M/G/1/N*1 system. Also

the probability that there a,re zero customers in the system is the same for both systems.

Furthermore the behaviour of the two systems when the number of customers in the

system is less than ll f 1 is identical. Thus the equilibrium distributions for the number

of customers in the systems, given this number is less than l[ f 1, are the same. Thus

we have a successful model of the M/G/1/N+ 1 queue,

7.6.L A check of the blocking probabilities

In order to check this result we use some results from Cooper (L972) and Cohen (1969).

\Me define

pn : p{ a customer leaving the M/G/1/N* 1 queue leaves n customers behind},

8n _ p{ a customer who receives service in the M/G/1/N*1 queue leaves n customers},

lrn : p{ a customer leaving the MIGIL queue leaves n customers}.

Note that p^ includes customers who are blocked and therefore leave -|y' * 1 customer

behind. Cooper, pages I79-I82 gives us

8n

qo * Po'
Qo*P"-I

P¡,t+t :
8oJ- Po

Cohen, 6.26, page 560 gives for 0 ( r¿ ( I/ that

un

?ro * '" -l- t¿ru

From (7.6) and (7.7) we get

- (L - P"),

: (t - pòln;Y_")(r) - a[1f,)"_,1r¡1,

IV

N:L

(L - p") + (1 - p")[ÆÍf,fl)(1) - nffiD)(l)]

(r - p")njfl,fl)(r).

Pn 0(n(I{

8n

ug

un

(r - p") + Ð (L - p")[RY^o)(t) - af_?"_r(t)l
JV

Ð** :
n:0

and so

I4T



Chapter 7: A two-threshold, infinite-phase example.

Substituting back we get

L- p")

(r - p")njfl,fl)(r)
1

aÍf,fl)(r)'

and from this we get from Cooper, L79-L82,

1

r + p"affnf)(r)'

which agrees with'the value of p6 derived from po: Llm. We also get

8o

Po

Pr+r :
qo* P"-I

Qo*' P"

(1)
+ P"-1

]V (1)
lP"

t + (p"- rlajfl,flrir¡
I + p",rÍlf)(1)

which agrees with our blocking probability
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Chapter 8

Concluslon

8.1 F\rrther work

There a,re a number of ways in which this work can be generalised, In this section we

investigate some of the potential areas for future work. The most obvious is further use

of the results of Chapter 3 to examine more problems. The examples of systems that

we have considered here are, in some cases, a little too simple to model real situations.

There are many possibie systems which fit the multi-phase model and examination of

these cases is not trivial as they require work to obtain condition (x) and the values of

ø fx"itor].
One of the examples that ¡night prove interesting immediately are the extension

of the results of Section 4.2 to deal with n upward thresholds at 1e1,. . . ,kn. A suggested

result is given for this case in PropositionS.2, but we have not proved this here.

Another example of interest would be that of Chapter 7 extended to multiple

upward and downward thresholds at let,. . . ,kn and h,...,1",. This would link up nicely

with the previous case.

Further examples could be considered with different thresholds. One possibility

is the combination of two or more thresholds in some way. For instance if we take the

first time either one of two different conditions is satisfied. One way of dealing with this

might be to add in extra phases, with the same service-time distribution in order to take

account of the two different thresholds.

Considering other types of system may provide motivations for various types of

a
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thresholds and blocking patterns. For example it may be useful to consider the systems

with discrete time services and batch arrivals. This has been suggested as a model for

some parts of ATM networks. For instance we consider packets arriving as a Poisson

stream containing a number of cells, and the server takes unit time to serve each packet.

Another direction for continuation of this work is simply to consider processes

based on queues other than the NIIGII queue. This is more difficult as it requires more

theoretical results. However, in simple cases they should be analogous to the results in

this thesis.

A further area that needs work is condition (x). \Me have shown in Section 3.2.2

that this is a sufficient condition for the regularity of the relevant stopping times. We

have yet to find a neiessary condition for the types of process considered. This would

be a worthwhile task. Closely related to this is the issue of stability. \Mhen condition

(x) is satisfied the queue is stable. It would be both elegant and useful to demonstrate

that the reverse is also true, or to provide some other condition for which this holds,

One final and important way is to generalise the results of Chapter 2 from multi-

phase MRPs to GMRPs. This would allow the calculation of results without the need

to resort to modifying the phase structure to give a multi-phase MRP. It would also

eliminate a large proportion of the infinite phase examples, making it easier to obtain

results. This would be invaluable but requires some work. Namely the multi-phase

MRP results must be extended and the results of Chapter 3 must also be extended. The

hardest part of this seems to be finding an equivalent condition to condition (x).

8.2 Block-matrix geometric techniques

The type of problem we have considered in this thesis has strong similarities with many

of the systems discussed by Neuts. One important point to make is that \rye use 'phase'

slightly differently herein. Phase often refers to phase-type distributions for the service

times or arrival process. This is not the sarne as our use of phase which refers to the

phase of the whoie process.

Secondly we note that many of the problems considered herein could be ex-

amined through block-matrix type methods.
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Table 8.1: The transition matrix for the two-phase MIGII queue with a fixed-upward

threshold at k.
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For example in the single fixed-upward threshold case we could write the trans-

ition matrix as in Table 8.1 where in this matrix the state is the number of customers

in the system and the substates give the current phase. Even in this simple case this

matrix is not trivial. Block matrix methods could be applied by some partitioning of

the state space but this would be quite complex, especially in more complicated cases.

8.3 Dénoûement

In conclusion there are three main points I would like to make.

The first is that we have succeeded in our aim, which was to apply a martingale

technique to queueing theory. The main part of the theory, developed in Chapter 3, and

supported by Chapter 2, provides a major new technnique for investigating single server

queues with some sort of phase structure.

The second point I would like to make is that we have proved the utility of this

method. We have done this by considering a number of example in Chapters 4 to 7,

Further we have mentioned several recent papers in which processes which fit our model

are investigated.

Finally I would like to note that this is a fruitful area for further study. In the

Section 8.1 we point out just a few of the areas in which this theory has potential for

expansion.
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Appendix A

Probability and Martingales

In this appendix we examine some of the basic concepts and theorems upon which the

work in this thesis is based. The experienced reader will find this to a large degree

uninteresting. It is included for completeness and to remove any possible doubt about

the form of various theorems or notation.

In most cases the theorems herein are presented without proof but reference to

the proof is provided.

The basic theory can be found in many places. We have used here as the chief

reference Williams (1991) with smatterings from Neveu (1975) and Brémaud (1981).

4.1 Elementary probability theory and notation

Take a set f), A, si,gma-algebra F on this set is any collection of subsets of f,) which

satisfies the following properties.

(i)CIer.
(ii) .F is closed under complements, that is, A € F + A\A e F.

(iii) .F is closed under countable unions, that is, An e F, n e IN * U", A^ e F.

Note that property (ii) combined with properties (i) and (iii) implies

(i)þeF,
(ii) .F is closed under countable intersections, that is , An € F, n € IN

*O",AnÇF,
respectively. A ø-algebra generated by a collection of subsets C of CI is the smallest
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ø-algebra that includes all of the subsets in C, and is written ø(C).

We define a set-function P : F + [0, t] to be a probability rneasureif. it satisfies

the following properties.

(i) rlcl¡ : r,

(ii) For all series An, n € W, of disjoint members of. F,

'(ç A-):Ðr(o^)

Note that these properties imply P(d) : O. A .F-measurable subset of CI, is any set

A e F. The -F-measurable subsets of f,) are called euents. P(A) is called the probability

of event A,VA€.F. Wesha,llalsowritethisasp{'}where{.}e f.Thetriple (Q,F,P)

is then called a probabi,li,ty space. Throughout, where it is not expiicitly stated, we assume

that all stochastic elements have some underlying probability space. An event A, is said

to be almost sure (a.s.), or to occur with probabili,ty one (*.p.1), if PØ): 1. We assume

also that all ø-algebras a,re completed, that is, if A € .F with P(A) :0 and At c A then

A'e F.

,A..1-.1 Randorn variables

A function h: f,l +.H is called f-measurable if h-I : ß ) F, where we define h-I by

h-'(B): {ø € cllh,(ø) € B}, VB e ß,

and ß denotes the Borel sets of the real iine. This may be simplified slightty to the

condition that

h-t(B): {ø € CIlh(ø) e B}, for all intervals B of the form (-oo, a],

as the mapping preserves intersections and unions and a ø-algebra is closed under such

operations. A real-valued f-measurable function X, on 0 is called a random uariable.

That is, a function x : CI + IR such that {, e fllx(ø) < r} e F, Given a family

(Xrh e C) of maps X, : Q -+ IR we define the ø-algebra generated by the family,

F:o(XtWeC),

to be the smallest a-algebra T on f,) such that all of the maps X" (l e C) are F-
measurable.
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A random variable X is ca,lledlatticeif p{wlx(a) : ô *len,n € Z}: L.

Written simply a random variable is lattice or discrete ff X : b+kn,n € Z almost

surely. If /c is the largest number for which this is true then k is called the span of the

random variable.

We define a random variable called lhe i,ndicator funct'ion I, of. an event A e F,

by

I¡(a):
1, w€4,
0, aø4.

In some cases '$/e shall write 1(A) for .Ia where A e F.

Given a random variable X on (Q,F,P), we can define the probabi,lity distri,bu-

tion function F : IR + [0,1] of the random variable X by

F(r) - p{X < r} : p{alX(r) l r}.

f'(r) must satisfy the following properties,

(i) lim,--"" F(r) - g.

(ii) lim,** F(r) : 1.

(iii) F(r) is non-decreasing.

(iv) .F (r) is right-continuous.

If F(r)isdifferentiablewedefine l@):#tobethe probabilitydensityfunctionof X.

Where ambiguity exists we shall write Fx(*) for the probability distribution function of

X.

4.L.2 fndependence

Independence of random variables and a-algebras will be important in a number of

places. Simpl¡ we call two random variabie's X and Y independ,err,t,if.

P{X < n,Y 1y} : P{X < r}P{Y < a}.

More technical definitions are included here to cover events and ø-algebras.

(i) Events

Events Et, Ez, Es, . . . ale independ,ent if for i1, ..in €.[V distinct,

P(Eo, t E¿, 1... n Ei,) : fr P(Eor).
,t:1
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(ii) a-algebras

Sub-ø-algebras Ç1, Ç2,Çs,... of F a.re called i,ndependentif VGi € Ç;, (i € /V) and

ir, ..in € .ð/ distinct, the events G¿rrG¿", . . . ,Gi, are independent.

liii) Random Variables

Random va,riables Xt,Xz,. .. are independenú if the ø-algebras o(Xì,o(Xz),, , . a e

independent.

(iv) Combinations

Combinations of the three above, are said to be independent if the relevant combinations

of ø-algebras are independent. For instance, a random variable X, and an event E, a,re

said to be independent if "(X) and t are independent, where t : {ó,.Ð, f)\,Ð, Cl}, the

ø-algebra generated by E.

4.1.3 Expectation

If we have probability space (Q, F,P) then the expectation of a .F-measurable random

variable X, is simply the integral of X on fl with respect to P. That is

Elxl: t,xae : ln*@)P(d,a)

where this is defined,

As in all measure theory this integral must be defined through a series of ex-

tension from the basic measure P(A) where A e F. Briefly this is done in the following

v¡ay.

(i) Simple random variables

A simple random variable is a non-negative random variable which can be written

X :Ðo,¿[t,,
m

á:I

'ITL

i--1

for a¿ € [0, oo] and ,4.¡ € .F. The expectation of such a random variable is simply

ElXl:la¿P(A¿),

where oo.0 is defined to be 0.

(ii) Non-negative random variables

The monotone convergence theorem is used here to show that

Elxl : suP{P(r)lY simple,Y < x},
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is a valid integral for non-negative random variables. This is done by showing that any

non-negative f-measurable random variable X is the limit of a series of simple random

variables.

liii) -F-measurable random variables

We now write a .F-measurable random variable X as X : Xl - X- where X+ (a) :
max(X(a),0) and X-(r) : max(-X(r),0). Note that lxl : X+ + X-. A random

variable for which E'[lXl] < oo is said to be integrable and we denote the family of

.F-measurable, integrable random variables by Lt(Q,F,P). For all random variables

X e LL(A,F,P) \rye can write the expectation as follows

Elxl - Elx*l - Elx l.

Also even if only one of the conditions .E[X+] < oo or EIX-I ( oo is satisfied then the

expectation is defined as above. Notationally we take, for A e F and integrable random

variable X,

ElxIAl : lnx toae : loxar.
For a Borel measurable function I , IR -+ IR we define a neìM random variable

l(X) : 0 -r IRby /(XXr) : l(X(u)). When 16) € LL we define the expectation as

before.

Etr(Ðt: l¡{*)or.
By Theorem T15 of Brémaud (1931) we arrive at the Lebesgue-Stieltjes integral

for the expectation in terms of the probability distribution function of a random variable

Explicitly stated this gives,

nlgex)l - þ6 (a))p (d,u) : I oo@)arx 
(').

Theorem ,{.2 (Jensents Inequality) A c: H -+ IR is a conuer functi,on on an open

sub-interual H of the real line, and X is an integrable random uariable such that

p{x € H} : I, E'¡c(X)ll ( oo,

øfc(x)l > c(E'[x])

then
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Definition 4.1 ForI lp <Ø ue say that X e Lp: Lv(Q,F,P) iÍ

Ellx\l ( oo,

and defi,ne

llxll" : {Eilxlel}å

Definition A,2 (Laplace-Stieltjes transform) The Laplace-Sti,eltjes transform of a

random uariable X , on the probability space (A, F, P) i,s

E l"-""1 : I:e-"*d,Fy(n).

Definition 4.3 (Probability generating function) The probability generating func-

tion of a lattice random uariable X, i,s

E lzx): Ë "^p{x - nd},

where d is the span of the random uariable.

Given a probability distribution function F(r) which is non-lattice or lattice we

can define its Laplace-Stieltjes transform or probability generating function respectively,

as above, and we denote this by .F.(r) or .F.(z) respectively. (The probabiiity generating

function is a special case of the Laplace-Stieltjes transform.)

If we take the random variable given by the sum of two independent random

variables X and Y the the probability distribution function for this is given by

F*+r(*) - I:,_Fx(r - a)dFv(a).

Definition l{.4 We defi,ne the conaolution of two independent probability d,istri,bution

functions Fx(*) and Fy(y) bg

Fy * Fy(r) : I:* px(r - y),t4v(u).

This is the probability distribútion function for the sum of X and,Y. The n-fotd, conuo-

Iution ol Fx is simply d,enoted, eP @).

Note that the Laplace-Stieltjes transform of the convolution Fy x Fy is simply

the product of the respective transforms oL Fy and Fy.

n:-æ
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^.L.4 
Convergence

There are a number of different types of convergence. The two used herein are

(i) Almost sure convergence

Suppose that (X,) is a sequence of random variables and X is a random variable then

we say that X^ -r X almost surely if, as n J oo,

P(X^+X):1'

(ii) Convergence in mean

Suppose that (X") is a sequence of random variables and X is a random variable then

we say that Xn + X in mean (in expectation, in Lr) if, as r¿ -+ oo,

Ellx^ - xll -+ 0,

and thence as ?z -) oo

Etlx",ll -r øflxll.

The following theorems relate the two types of convergence.

Theorern ,A'.3 (Monotone Convergence Theorem) Il 6^) ,is a series of random

uari,ables and X is a random uariable such that 0 < X^ t X a.s. then

proof: williams pages 2Lr-2rJ. 

Elx^]I Elxl'

¡

Theorem 4.4 (Dominated Convergence Theorem) If 6ò is a series of random

uariables and,Y is a random uariable such that lX"(r)l 3Y(") for all (n,r) and ElYl <

æ tl'¿en (X.) conuerges to some random uariable X in rnean ¿s ?¿ -+ oo.

Proof: Williams page 55. tr

Theorern 4.5 (Bounded Convergence Theorem) If 6.) 'is a series of non-negati,ue

random uariables bound,ed aboue bA M ( oo, for all (n,r) then (X") conuerges to some

random uari,able X in rnean ø,s r¿ -) oo.

Proof: This theorem is an immediate consequence of the Dominated Convergence the-

orem.
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4.1-.5 Conditional expectation

We can define the conditional probability of an event A e F given event B e F of

positive probability by

P(AIB): 
"Êrlr'

This can be seen to form a neru probability measure on (CI,.F). From this we may naively

define a new expectation, the expectation of X given the event B,by

ElxlBl

A useful result for dealing with such expectations is as follows. If. A6,At,Az,.., is a

complete system of events (i.e.: mutually exclusive and exhaustive) then for a random

variable X

: 
lnxçr¡eçd,u,ll)

: ;@ tnxç'¡rçd'a À B)

: å l"xq,¡eça,¡
: ;@ l¡"xç'¡P(d'a)

ElxrB)
P(B)

æ

ElXl: | ø¡X1A*lrç.1,.¡
n:0

This naive definition of conditional expectation does not in general suffice and so we

must use a more technical definition.

Theorem 4.6 (Conditional Expectation) ,Leú (Q,F,P) be a probability space, and

X an integrable random uariable Let Ç be a sub-o-algebra of F. Then there erists an

integrable Ç -measurable random uariable Y such that for euerA set G € Ç we haue

Iv¿p: I x¿p.Jc Jc

Moreouer if 9' is another rand,om uariable with these properties thent :Y a.s. The

random uariable Y is called a aersion ol the conditi,onal eæpectation, ElXlÇl of

X giuen Ç. We write

Y -- ElXlç1, a.s.
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Proof: Proof that such a random variable exists and is unique (except for a set of

measure 0) can be found in Williams, page 85. ¡
Notationally we normally identify all of the versions of the conditional expectation. In

general \'/e use the notation ElXlGl where X is a random variable to mean the naive

concept of conditional expectation and EIXIY] where X and Y are random variables to

mean the random variable ølXlo(V)].

Properties of conditional expectation:

(i) Jensen's inequality, the monotonic convergence theorem and the dominated

convergence theorem all hold for conditional expectations.

(ii) If Y is any version of Elxlçl then .E[Y] : ElXl.

(iii) If X is Ç-measurable then E[XlÇ]: X, u.".

(iv) linearity, ElalXt t a2X2lÇl: otÐlxtlÇl + a2ElX2lÇ1, a.s.

(v) positivity, if X > 0 then E[XlÇ] ) 0, a.s.

(vi) If ?{ is a sub-ø-algebra of Ç, then

ElÐlx lç1117) : Elx l?tl, o,.s.

(vii) If Z is a Ç-measurable, bounded random variabie then,

Elzxlçl: zElxlç\, a.s,

(viii) If X is independent of 7l then

ElxllLl: Elxl, a.s
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A.2 Martingale theory

This is the essential part of the background theory, but still is only a very small sub-

set of martingale theory. We shall only consider discrete-parameter martingales for a

start. Although many theorems on discrete-parameter martingales can be generalised to

continuous-parameter martingales they require more rigour. \Me take a probability space

(Q, F, P) as before. We then take a set of increasing sub-ø-algebras of F , (F* : n € .üV).

That is

FoCFtC"'CF.

We define

F*:" (ç r-) c r.
\Me call (f") . filtration on the probability space and write (Q,F,(F^),P). A process

(X^ , n e IN) is called adapted if for each n, X,, is .fro-measurable. In most cases

if we have a stochastic process (X*, n e IN) we define Fn - o(Xy,Xt,...,X,) and

F : F,n. Thus {.F,} ir automatically a filtration and the sequence (X") ir adapted to

this filtration. We shall refer, in such a case, to (F"), as the history of the process.

Definition 4.5 (Martingale) ,4 process X : (X^) is called an integrable martingale

with respect to ({F"}, P) tf

(i) X is adapted.

(ü) E(lX^l) < *, Vr¿ e .ô/.

(äi) Elx^+lF^1: xn, a.s., vn e l\/.

Submarti,ngales a,nd superrnartingales are defined in the same way except that (iii) is

replaced by ElX"¡lF"]2 X* and ElX"+LlF"l < X" respectively.

Properties (of martingales)

(i) E[x"] : ElXol for all n € IN '

(ä) EIX^+,"lF"l: Xn, a.s.,Vn,m € IN

Deflnition .4'.6 (stopping times) A map ? : CI -i .0ü U i*) is called a stopping

tirne i,f {f < "} ,f Fn-measurable. That is,

{" < n} : {alT(r) < n} e Fn, Vn e .ô/
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Intuitively the idea is that at some point in the process you stop. Your decision

to stop (or not stop if 7 : oo) can be based only on the information you have up to

that time. Thus your decision to stop the process is made on the basis of the history of

the process up until time n. Note that if ,9 and T arc stopping times then so also are

S +7, S AT and ,9 V ?. For a stopping time 7 we define the ø-algebra F7 by

Fr: {A e F*lAn {7 < n} e F*, Vrz > 0}

Now if ,S and ? are two stopping times then

{^s < 7}, {s < 7}, {^9 : T},{S > 
"} 

and {^9 > T} e F7,

and by symmetry also in .Fs.

Definition 4.7 A class C of random uariables is called uniformly integrable if giuen

€ ) 0, there erists K e [0, *) such that

E'lEl /(El ")] .., vxec

Sufficient Conditions (for the class to be uniformly integrable.)

(i) It is bounded in LP, p > 7.

(ii) It is dominated by another integrable random variable.

Theorem 4.7 Let M be a uni,formly integrable martingale then

M* - limn-*Mn erists a.s. and in Lr

Moreouer, for euery n,

Mn: EIM*\F^1, d.S

Neveu uses the term regul¿r to denote uniformly integrable martingales (Pro-

position IV 2-3). \Me shall use the latter appellation here. However he also uses regula,r

in the following way.

Definition 4.8 (Regularity) A stopping time r, is regular with, respect to a martin-

gale Mn if the marti,ngale formed bA M,¡n is uniformly integrable.
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This definition is in Neveu, Proposition IV 3 12. Also in this proposition is the following

theorem which is the fundamental result used herein in order to obtain the result crucial

to this thesis. It is a surprisingly elegant theorem referred to elsewhere as the optional

stopping theorem, the optional sampling theorem, or either or these two versions prefaced

by Doob's, a,fter its originator. Versions of this theorem come in several form as we1l.

trssentially they are either equivalent to or simple corollaries to the following version.

Theorem 4.8 (Doob's Optional Sampling Theorem) If the process Mn is an in-

tegrable martingale and r is a regular stopping time tlten for euery pair of stopping times

\ o,nd, T2 such that 11 1 12 1 r almost surely the random uariables X,, and X,, both

erist, are'integrable and satisfy

X,,: ElXnlF",]

Proof: Neveu, Proposition IV-3-12. ¡
Essentiaily this means that given a secluence of stopping times (7,) which satisfies certain

properties on a martingale Mn then the process formed by Mr^ is also a martingale. Two

results from Neveu that are of use are also given here.

Theorern 4.9 (Corollary IV-3-13) Let 11 and 12 be two stopping ti,mes such that

11 1 12 almost surely. For a giuen marti,ngale (M^), the stopping time 11 is regular

wheneuer the stopping time 12 is regular.

Theorem 4.9 shows that for a uniformly integrable martingale all stopping times are

regular.

Theorem ,A..10 (Proposition IV-S-16) Let (M") be an integrable marti,ngale. In or-

der that the stopping time r be regular for the martingale and that also jSM" - g

almost surely on {r : æ}, it is necessary and sufficient that the followi,ng two condi-

tions be satisf,ed:

(i) .ft,."o1 lx,ldP <
(ü) jg ft"r*1 lx^ldP : 0.

Note that from Neveu, Proposition IV-3-14 condition (i) is satisfled for all positive

integrable martingales.

158



Appendix B

Vectors and matrices

A certain amount of the work presented in this thesis relies on matrix notation and a

number of theorems. For simplicity this section details those parts of matrix theory used

herein. The work on no ms presented here is based on Barnett and Storey (tO7O) ana

Householder (1964), while the probabilistic parts come from Gantmacher (1959). Other

specifics are referred to within the text. The norm which we present in (8.6) and use in

Lemma 4.3.1 is the only original part of this Appendix.

Throughout this thesis boldface capitals refer to matrices (eg: A) while boldface

lowercase letters denote row-vectors (eg: v). We will be for the most part only concerned

with real squaxe matrices. The following common notational conventions are used.

P' : P to the power of i,

Po : I, the identity matrix,

P-1 : the inverse of P,

Pt : the transpose of P,

vt : the column vector corresponding to v,

0 _ the zero vector or matrix depending on the context.

Matrix products and determinants are standard a¡rd the scalar product of two vectors v

and w is v.w: vwú. \4/e can specify a matrix by its elements in the following way

A : {on¡},
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where a¿¡ is the element in the ith row and jth column. The following standard vectors

will be used throughout.

E¿ : (0,0,...,0,1,0,...,0)

= (õ"r,õ0r,... ,õ¿,"),

z - (r,r',23,"'rzn),

1 - (1,1,...,1).

Also the following lemma will be of use later on.

Lemma 8.L,2 For any matrir P such that (I- P)-r erists

P(r - P)-' : (r - Ð-tP - -r+ (r - P) t.

Proof: The proof is trivial. ¡

8.1 Eigenvalues and eigenvectors

For any nxn ma,trix A a scalar À and vector v that satisfy the equation

vA : Àv, (8.1)

are called the eigenvalue and corresponding eigenvector of A, respectively. Note, because

$/e are working with row vectors by default, \¡¡e use the left-eigenvector of A. This alters

some of the later work from the texts but only notationally. It is easily seen that the

values À satisfy the equation

det(ll-A):0.

This is called the characteristic equation of A. The left-hand side of this equation is

clearly a polynomial of degree r¿ in ) and thus a nxn matrix has at most n (possibly

complex) eigenvalues. We define the spectral radius of the nxn ma,trix A to be

P(A) : o4ry,ll,(A)l'

where lfo(A)l is the absolute value of the ith eigenvalue of A. Note that l(A') :
l(A)' and hence the same is true for the spectral radius, namely p(A"): p(A)'. Atso

À(r-A):1-r(A).
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8.2 Norms

A matrix norm is a single non-negative real-valued scalar that provides a measure of the

magnitude of a matrix (or vector), in some sense of magnitude. In general we say that

a real-valued functio" llAll of the elements of the matrix A is a norm if it satisfies the

following four properties.

A+o + llAll >0, (8.2)

llrAll : l)lllAll, (8.3)

llA + Bll <

llABll <

for all r¿xrz matrices and À e Æ, while a vector norm is a real-valued function of the

elements of a vector x, that satisfies the first three properties above. A vector norm is

said to be consistent with a matrix norm if

il"nil < il"ililAil,

for any A and x.

Theorem 8.2 IÍ ll,tll r;s a matri,r norrn consistent wi,th uector norrnllæll then the spectral

rad;ius p(A) ol a matri,r A satisfies the inequality

p(,4) < ll,4ll.

A norm of later use is the norm llPll, for z e (0,1) which is defined by

llPll, :og,T^ 
[Ë 

ro,rt,'-']

It satisfies the properties as follows for r¿xr¿ matrices P and Q "ttd 
scalar I

(8.2) (this is obvious)

(8.3)

llrPll, : ogìÎî^ [Ë 
t^o,rt,,-,]

t)t,s,i, 
[Ë 

'o,, 

Þ,-'f

(8.6)
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(8.4)

(8.5)

llP + Qll, zJ -'+ qij

lzt-'
f,lr
Li:t

* max
'i:I,..,n 8¿j lzt-'

In a similar manner it can be seen that the vector norm

ll*ll, - il,nl,o-',
i=L

satisfies properties (8,2), (B.3) and (B.a) for z e (0,1) and

ll"All, :

(8.7)

lnlr
l*:r

Ë
i:T

Ð
i:I

fL

Ð
k:t
n

Ð
k=7
n

Ð
k=7

kak¿ zi-tfr

r¡lla¡¿lzi-1

l*nl"*-, (å',-, 1,,-r)

hence the norms are consistent

l*rlrn-t llAll,,

E}.3 Non-negative matrices

The following sections are from Gantmacher (1959). A matrix with real elements is

called non-negati,ueif. a,nd only if all of its elements are ) 0. We write this as A > O. A

square'matrix A: {a¿¡} is called reducible if the index set 1,2,...,n can be split into

two complimentary sets i1, ...,it,kt,...,k, (plu: zz) such that

aiokB -0 (a : 1,..., p; þ : I,...ru).
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otherwise the matrix is called i,rreducible.

This may also be expressed as follows. A matrix A is called reducible if there is

a permutation (of the rows and columns) that puts it in the form

BC
A

OD
where B and D are square matrices. Otherwise ,4, is called irreducible.

We shall for the most part only be concerned with irreducible matrices. It should

be noted that most results can be generalised in some manner to reducible matrices. A

theorem of Frobenius is used implicitly a great deal. The main result in this context is

that the spectral radius of a non-negative matrix is one of the simple eigenvalues of that

matrix, and that this eigenvalue has a corresponding eigenvector that is positive. \Me

now state the most useful theorem of this section

Theorem 8,3 For ang matri,r P such that p(P) < I

lr: (1- P)-',
i:0

and if p(P) > I then the series does not conaerge

8.4 Matrices and probability

If we consider a system with transitions between states that occur at a countable set of

times \Me may model this system by a series of random variables (X"), n €. IN where Xe

is the initial state of the system a,nd Xn, for n ) 0, describes the state of the system

immediately after the r¿th tra¡rsition. We take Xn to have values in f), where Í^l is the

state space of the process.

\Me can then make the further assumption that the process has the Markov

property (or memoryless property). This is essentially

p{X.+t : nlXo,. . ., X^} : p{Xn+t : nlX,},

for all z € CI. Also we assume the process is homogeneous, that is

p{X*+t: xlX^} : P{Xn+z: rlXn+t},
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for all n > 0. The theorem of total probability (Takács, pg 230) essentially implies that

for a system with a finite state space (Cl - {1,. . . , k}) the above equation reduces to the

matrix equation.

Pzrat : P"rP'

where p",: (n{x":t},plX*:2},...,p{X^- k}) and P : {n;¡} where

P¿i : P{X*+t: ilx": i}'

By extending this we arrive at

Pr, : PoP',

where pe is the vector of initial probabilities of the system. We call P a probability

transition matrix or stochastic matrix. Clearly its elements are all non-negative and its

rows must each sum to l- Hence a stochastic matrix will always have eigenvalue 1 with

corresponding right-eigenvector I: Also if we define the matrix norm

llAll, :,T,T-f l",rl

lr/e can see that llPll," : 1 for any stochastic matrix. Hence as p(P) < llPll, : 1 and there

is an eigenvalue at 1 we can see that p(P) : 1.

If we consider the behaviour of the system on asubset B : {h,i2,. . .,i,}, u { fr,

of the state space we get

Qr, : QoQ*,

where % : (n{X^: it},p{X,: iz},. ..,p{X^: i,}) and Q is the appropriate trans-

ition matri". Q is now a sub-stochastic matrix. Its rows must each sum to less than 1.

Clearly, using the same norm rre can see that p(Q) < 1.

Of interest in such systems is often equilibrium behaviour. This can be charac-

terised by lim,,-oo P^.

For our purposes later in this thesis we will be interested in the total time spent

in a subset of the state space before leaving that subset. This may be written

Ëo^: o,(åa')
Thus we need conditions for this to converge, and then determine what it converges to.

\Me know p(Q) < 1 and so we can see from Theorem B.3 that this converges and that it
converges to qe(I - P)-t.
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Queueing theory

One of the major uses for stochastic processes is in the study of queues. In this chapter

we describe some of the basic queueing theory which is necessary for the work herein.

In fact this is the principal use of this thesis. Parts of this section are drawn from

Takács (1962), Cohen (1969), Wolff (1982), Kleinrock (1975), Neuts (1989). Again it is
not intended to be anything like a complete survey. We shall concentrate here on the

NIIGII queue. This has been one of the most studied queues and consequently there

are no shortage of references to it and many of its variants. \Me shall not attempt to

document these. We devote our time to some standard techniques in order to lay the

groundwork for the results of this thesis. Both in terms of supplying solutions to some

problems and providing the basic models used throughout.

C.1 The Poisson process

Consider a counting process A(t): ¿ > 0 on %+. We take A(0) - 0 and say that A can

only increase by 1, at any particular time. If A(ú) increases at the times r¿, i) 0, (with

ro: o) then

A(r¡) : ¿.

For technical reasons we desire A to be right-continuous and have left limits. \Me define

0n : rn - rn-! for n ) 0 to be a series of independent, identically distributed (i.i.d.)
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random variable with p.d.f. ,F.("). If F(z) is given by

.F(æ) :
r-" ^*,

0,

0ß

ø<0

then we say that A(ú) is a homogeneous Poisson process with rate À, (rtre can define this

more generally, see Brèmaud (1981), but this is unnecessary for our purposes). This is

a very commonly used process. For our purposes rue shall use it as an arrival stream to

the clueue. It is usefui to note that if v¡e remove the time epochs r", with probability p

from the Poisson process of rate I we are left with a Poisson process of rate Àp. This

is particularly useful when we consider a Poisson arrival process in which an arrival is

blocked with probabiiity p.

C.2 Queues

A clueue, in general, is a stochastic process on the integers, which gives the number of

customers in the system at a given time. The notion of a customer includes such concepts

as a computer job. The process, which can be characterised by a series of arrivals and

departures, usually has the following characteristics. Arrivals increase the number of

customers in the system by one. (In some cases ami.rals may come in batches which

increase the number of customers by more than one.) Departures decrease the system

size by one, except for batch departures. The most common reason for a departure is

that a customer has received service although customers may depart for reasons such as

not enough space in the queue. A general form of Notation can be used to clescribe a

large number of queues. This is the Kendall notation (Kendall, 195I) which is as follows.

Arrival Process/ Service Times/ Number of servers/ Max no. of customers.

Where in the first two places we write , M lor Poisson arrivals or Negative exponential

services, G for generally distributed arrivals or services and D for deterministic arrivals

or services. This is just the simplest form of this notation but it is all we use herein,

Note that where a number is omitted it is assumed to be infinity. Some examples are

o GllMls - General independent arriva,ls, Negative exponential service times, s servers.

t }l{lGllln - Poisson arrivals, General service times, 1 server, maximum number of

customers in the svstem n.
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The system of primary interest to us here is the }i,{lGll queue andits variants.

C.2.L Queue discipline

The queueing discipline is the way in which customers get chosen for service from the

queue. Possibilities include First-in First-out, Last-in First-out, and Random Order. We

shall assume throughout that the queueing discipline is non-preemptive. That is, once

a customer is in service it remains there until it is finished. Other customers do not

pre-empt it.

Essential in the idea of waiting times is the concept of non-scheduled service

disciplines. Basically these are disciplines in which the order of service does not depend

on the amount of service each customer requires. Thus when it gets to the server each

customers service time is taken as a random variable with whose service time is inde-

pendent of the other customers in the queue. All of the above are of this type. An

example of a service discipline that is scheduled is one in which the customer with the

smallest service time in the queue is served first.

When considering quene lengths, the choice of discipline is irrelevant except for

the proviso that it be non-scheduled and non-preemptive, which is necessary for the

analysis of the embedded process.

C.3 The embedded process

We use one of the most common approaches to this type of problem which consists of

considering the process at departures epochs. We say that we observe the system size

distribution that the customers see on departure. The equilibrium number of customers

seen on departures in the stationary distribution can be seen by the following argument

to be the same as the equilibrium number of customers in the system.

A very useful rule called PASTA, Poisson arrila,ls see time averages, can be used

to see that the distribution seen by arrivals is the same as the stationary distribution of

the queue. (A fact that is not true for general arrivals.) Note that a very neat proof of

PASTA that uses martingales appears in Wolff (1989).

In Cooper (L972) pg 154 the following theorem appears.
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Theorem C.Z y(t) is a stochast'ic process whose sample functions are (almost all) step

functions with unit jumps. Let the points of increase after some time t : 0 be labelled,

consecutiuelE to, and points of decrease t'o, ot - 0,I,2,.. .. Let X(t"+) be d,enoted, by {,
and y(t'.-) be denoted by (.. Then if either lim,,-oo P{t. < k} or lim,,-oo P{C" < k}

etists, then so does the other and they are equal.

Because of PASTA and Theorem C.2 considering the queue immediately after

departures is quite vaiid. By doing this we reduce the problem to the consideration

of a discrete-time stochastic process. This process which we call (X") is in the case

of the NIIGII queue a Markov process. In the cases ïve consider it is not in general

a Markov process although a Markov process can be constructed from it by adding

'supplementary' variables. That is by considering a new process (X",Y*) where Y, adds

some information about the history of the process to the state. This is the normal

approach in such modifications to the M/G/1 queue and results usually in the matrix

geometric techniques of Neuts.

C.4 Useful theorems

There a number of useful theorems which we draw upon in this thesis

Theorern C.3 (Littlets Law) For any queueing process the following relationship holds

L: ÀW,

where L is the rnean number of customers i,n the system, ), is the arriual rate to the

system and W is the n'teo,n wai,ting ti,me of a customer.

Proof: Little (1961).

Theorem C.4 If aQ) i,s the probabilitg generating function for the number of Poisson

euents of rate ), during a positi,ue t'ime interual with probability d,istribution function F(r)
then

a(z): F.(À - )z),

where F* is the Laplace-Stieltjes transform of F.
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Proof:

a(z)
e À¿(Àt

il dA(t)Ð
i:0

t

lo*

e

lo*

lo*

lo*

lo*

À¿

Ð dA(t)
oo

i:0

(^tz)¿

it

e-x, e^r, d,A(t)

e^r?-r) dA(t).

We use Lemma 1 from Takács (1962) page 47 at one point in this thesis. For

brevity we do not include this here. We shall however include a direct result of this

lemma.

Theorem C.6 If aþ) i,s as in theorern C.4 then a(z) > z for all z € [0,1) ,/ and only

if a'(7) 3 L

Proof: from Takács (1962) page 47.

This could also be derived from convexity arguments.

C.5 .Waiting 
times

In many applications it is useful to know the time spent by a customer before it receives

service. We want to calculate the waiting-time distribution for the system. To do this we

must specify the service discipline. For the First-in, First-out or order of arrival services

there is a neat way of doing this. If we call this waiting-time distribution function W(.),

then its Laplace-Stieltjes transform can be written as

where ,a(') is the service-time distribution and ,S(.) is the sojourn time distribution.

(The sojourn time is the time spent by a customer in the system, clearly the sum of the

,s.(r)
Á.(r)

(")W*
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waiting time and the service time.) From Theorem C.4 we can see that the probability

generating function of the number of arrivals during the sojourn time of a customer,

s(a), is given by

s(z): ^9-(À(1 -'))'

For an order of arrival service discipline it is easy to see that the number of customers

left in the queue by a customer who is departing is the number of customers that arrive

during the customer sojourn time. This means that in s(z) : g(z) where g(z) is the

p.g.f. for the number on the system in equilibrium. For the MIG l1 queue this is

s(z) : (r -'4.(À(1 - z))(t - z)-t')--(ì(1 
- r))-z '

Thus we can easily get the Laplace-Stieltjes transform of the waiting time distribution

bytakings:À(1 -z),

w- (t) (t-p) 1 ,a.(")Ì
A-('),4.(') -1+i

s

This technique can be used for all single server 'order of arrival processes'. In order to

get the actual distribution the Laplace-Stieltjes distribution must be inverted.

This concludes our work on basic theory.
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