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Summary

This thesis considers harvesting strategies for populations that show a distinct spatial

structure. The exploited popuiation is assumed to be a single species that is composed

of two or.' moïe spatially homogeneous subpopulations, or local populations. The local

populations are connected by the dispersal of individuals, and together the local popu-

lations form a metapopulation. Many species occur as metapopulations. The landscape

over which a population ranges is rarely homogeneous. Due to environmental hetero-

geneity, local populations often experience different conditions and hence population

characteristics vary between local populations. Metapopulation models give us the

ability to model these situations. This thesis is the first to formally document optimal

harvesting strategies for a harvested stock with a metapopulation structure. It is im-

portant to realise the effect of metapopulation structure on harvesting strategies, for

both harvester frnancial viability and stock conservation'

Various metapopulation models are considered in the thesis and optimai harvesting

strategies are then d.etermined. Discrete coupled difference equations form the basis of

the population dynamic modeiling and methods such as dynamic programming and the

method of Lagrange multipliers are used to determine optimal harvesting policies. We

compare the optimal harvesting strategies of the local populations to obtain a rough

guide to the relative harvesting intensity required for each local population. We also

consider the effect on harvests of alternative strategies that incorrectly assume that



the metapopulation is spatially homogeneous. For example, the local populations may

be managed as unconnected single populations, or the managing authority may believe

that the metapopulation is a well-mixed single population'

In Chapter 1 we familiarise the reader with some of the concepts,, definitions and

notations used throughout the thesis. The first section outlines some of the prob-

lems associated with managing harvested populations. We then review the literature

concerned with harvesting spatially unstructured populations, and introduce math-

ematical notation by solving the basic moclel of single population optimal harvesting.

Metapopulation theoly is then discussed. We define what a metapopulation is, ancl

briefly clescribe some of the previous models and applications. We then review the

harvesting models that includ,e spatial structure and conclude with some of the model

assumptions that hold throughout the thesis.

The basic model that we introduce in Chapter 2 considers a metapopulation con-

sisting of two local populations where adults are sedentary and juveniles, e.g. lalvae,

migrate between local populations, joining the exploited adult spawning stock in the

following generation. An economic framework is established and dynamic program-

ming is used to maximise the discounted net revenue obtained from both local pop-

ulations. Two equations are produced, one for each local population, that determine

the optimal equilibrium escapement. Simplifying assumptions are then used to fa-

cilitate comparisons between the harvesting strategies of each local population, and

comparisons between incorrect exploitation policies and the metapopulation theory'

The basic model is extended in Chapter 3 by including a delay in juvenile recruit-

ment to the adult stock. Models are considered where the delay is related to the

receiving local population and where the delay is assocìated with the parent local pop-

ulation. As before, comparisons are made between the harvesting strategies of the

inclividual iocal popuiations. We also consider the harvesting effects of poiicies that
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are adopted with the false belief that the metapopulation is spatially homogeneous.

Chapter 4 assumes that adults can migrate between local populations. The first

model that we consider assumes that only adults migrate, whereas the second model

includes both adult and juvenile migration'

In Chapter 5 we model a metapopulation that includes an unharvested local popu-

lation. Harvested populations may have sections of habitat preserved in a marine park

or closed as a mechanism of harvest regulation and stock protection. We find optimal

harvesting strategies for the exploited local population, and argue that our results can

be usecl to determine the best choice of reserves if a reserve system is to be established

that includes a harvested species.

In Chapter 6 we consid.er metapopulations with multiple patches. This extends the

results of the two local population modei presented in Chapter 2. The ba,sic rules-of-

thumb developed in Chapter 2 are generalised, and we briefly discuss gener-alisations

of our other models.

Finally, the Conclusion summarises the main results of each chapter and suggests

future directions of research that expand upon the work that we present in this thesis.
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Chapter 1

Review

In this chapter we review the literature on single population optimal harvesting, define

terminology and notation, and conclude with an outline of the assumptions of the mod-

eis presented in this thesis. In the first section we review work on optimal harvesting

models when the population considered is assumed to be spatially homogeneous. This

is followed by an introduction to the notation and modelling format used throughout

the thesis. This is achieved by solving the optimal harvesting problem for a single

population using the methodology of Clark (1976; 1990), and a new method that we

call the escapernent comparison method. We then define what a metapopulation is,

and discuss previous theoretical models of metapopulations and their applications. A

review of the literature associated with harvesting spatially structured populations is

presented and we conclude with a brief description of the model assumptions that we

use in the chapters that follow.
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1.1- Renewable resource exploitation

The management of the world's exploited natural resources has become an increasingly

important research area since the turn of the century, when advancements in techno-

logy, mismanagement (or no management) and an ever expanding human presence

began to push the earth's natural resources to, and beyond, ecological sustainability'

Bioeconomics, as its name suggests, deals with the economics of biological resources

under human utilisation. This incorporates not only fisheries (a general term which

includes invertebrate, as well as vertebrate, harvested marine or freshwater stocks),

but also the management of exploited vegetation and telrestrial wildlife' This review

concentrates on literature concerned with fi.sheries management; however many of the

concepts and models can be related to other problems of natural resource management'

A cletailed review discussing ail the enumerabie papers in this growing fleld, including

their assumptions and results, is obviously not possible due to temporal and spatial

considerations. However, we attempt to give an overview of what has been achieved in

the harvesting literature.

Why do our natural renewable resources need to be carefully regulated? Consider

the exploitation of a new, unregulated fishery, i'e' it is an open-access' common-

property resource. Fishers enter the unrestricted fishery and harvest the population

which then provides a profit. This not only entices new fishers into the fishery, but the

existing fishers use their profits to improve their harvesting ability. Thus, the amount

of efiort expended on catching fish increases. Howevet, eventually it is possible that so

much effort is put into the fishery that some fishers make a net loss and are forced to

leave, causing a decrease in fi.shing effort. As Gordon (1954) shows, eventually fishing

effort reaches an equilibrium, the bionomic equilibriurn, where there is no net revenue

accruing to the fishers, i.e. total revenue equals total costs. Thus the open-access'
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common-property fishery can lead to fishers making very little money, and subsequently

overfisþing the stock; an economically and socially unacceptable situation (Clark, 1990;

Cocheba,1990).

Now, rather than assuming no flshery regulation whatsoever, assllme that there

is a sole owner of the exploited stock. This fishery may no longer suffer from the

Traged,y of the Commons (Hardin, 1963) clescribed above, but as Clark (1973) shows,

if the maximum growth rate of the fished population is less than the growth rate from

capital investecl elsewhere (the interest rate), then it can be optimal for the sole owner

to h.arvest the frsh stock to extinction. This, once more, is an unacceptable situation.

These examples are simplistic, but nonetheless informative, icleas about I'esotuce

exploitation (for fulther discussion, see Clark (1990), Reed (1991) and Munro (1992)).

The problems associated with ownership are further complicated by migratory species

that cross international fishing zones or enter unlegulated oceanic waters (Levhari and

Mirman, 1980; Harden Jones, 1984; Hilborn, 1987)'

Assuming that managers have some control over stock regulation, what can be done

to ensure the frnancial sulvival of current fishers anc{ future generations of fishers while

also maintaining the existence of the harvested stock? This is the key question that

fishery bioeconomics attempts to address. It is by no means an easy question to answer,

as every flshery has its own special characteristics. Assumptions holding for one fishery

may not be valid for another, even if the same species is being harvested (e.g different

size limits and open seasons for sub-stocks of southern Australian abalone (Shepherd

and Branden, 1991)).

The fisheries manager has various tools which may assist in the regulation of the

fishery. These include controls on fishing effort such as limits on the number, size or

type of vessels used. Controlling mesh sizes and net types ol the location and time

aliowecl to harvest are also used. These controls are designed to limit total catch, but
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may not recluce catch significantly and can lead to inefficient harvesting (Cocheba,

1g90; Quinn et a|.,1994). Controlling effort is an input control, whereas introducing

quotas on fish caught is an output control. One such quota is the total allowable catch

(TAC) quota, where a limit is placed on the total legal catch of fish from all vessels

in the fishery. Another is the individual transferable quota (ITQ); where a certain

fraction of the total allowable catch can be bought ancl sold between fishers. Quota

systems can lead to efficient cost reducing techniques, however probiems with quotas

include fishers discarding by-catch, enforcement of the quotas, ancl the possibility that

a small number of fishers may become dominant in a flshery. They also rely on accurate

forecasts of catch levels (see Sissenswine and Kirkley (1982), Clark (1990) and Cocheba

(1990) for reviews).

The potential problems facing manageïs are obviously quite daunting. How are

decisions made regard.ing the type of policy that should be adopted and how many

fish should be caught? With such a complex system of interacting forces, it would

6e nice to have a simplified char-acterisation of reality which could provide a guide

and an understancling of the original problem. This is where a mathernati'co,l model is

useful. Mathematical models ale an essential part of providing management advice.

They can iclentify critical variables and processes ancl suggest predictions which can

then guide further research. However, mathematical models can vary widely in their

degree of simplicity and eventual usefulness. As has been pointed out by Fournier and

Warburton (1989), a complex model may not out-perform a simpler one' and so the

clesign of a constructive model is not a trivial task in itseif.

Hotelling (1931) was one of the first authors to address the problem of the optimal

exploitation of (exhaustible) resources over time. While not being directly related

to fishery bioeconomics, his model structure and solution methodology, namely the

calculus of variations, provided a framework for future bioeconomic modelling. The
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problems associated with open-access exploitation of common-property resources were

first discussed by Gordon (1954) and the idea of sole ownership was realised by Scott

(1955). schaefer (1954) produced a dynamic model of the interactions between fish

populations and human harvesting but did not flnd optimal policies over time' A

complete analytical solution to the proposed models of Gordon, schaefer and scott

was not achieved until Clark's (1973) paper, and the freld has deveioped rapidly since

then. Reed (1991) provides a detailed review of the papels of Hotelling, Gordon and

Schaefer, while Clark (1990) describes the mathematical aspects of these models'

In 1g54, Schaefer introclucecl a dynamic, differential equation moclel of fish popula-

tion d.ynamics and harvesting. continuous, deterministic, population dynamic moclels,

such as schaefer's, have been used by many modellers since. In general, the dynamics

of these models is of the form,

dr
dt: F(*) - h(E,r), (1.1)

where ø(f) is the population size at time t, F(r) is a function representing the growth

rate or productivity of the unharvested population and h(E,t) represents the harvest-

ins rate. a function of effort, E and abundance' If we let,

F(") -- rr(r - "lK),
(r.2)

where r is the intrinsic growth rate, K is the equilibrium population size or "carrying

capacity" , and, h(E,r) : qEr, where q is a constant called the catchability coeff-cient,

then we have the "schaefer model". Equiiibrium population levels are found by setting

¿rldt:0 and solving for r(l) and the corresponding equiiibrium catch or yield can

then be found as a function of effort.

If we assume that h(Err) : h, a constant' then we can find the maximum sus-

tainable yield, MSY. The point at which we harvest the maximum sustainable yield
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maximum growth. The points fl1 and ,r2 produce a smaller yield, and æ1 is actually

unstable.

corresponds to the popuiation's maximum sustainable growth rate' The maximum

sustainable yielcl equals this maximum growth (cocheba, 1990)' Figure 1'1 shows the

growth rate as a function of stock size. The two stock sizes, 11 and r2r represent the

equilibria of equation (1.1) for harvests less than the optimal yield. In fact' if the

initial population size is less than 11, then the harvest is not compensated by growth,

¡ : F(r) - h < 0, and the population becomes extinct. A similar result is obtained

for initial population sizes if the harvest is greater than growth for all r. If the initial

population size is above ,'1 and less than 12, then ¿ > 0 and the population approaches

!x2. similarly, 12 is approached from above if the initial population size is greater

than 12, as we now have r < 0. clark (1990) calls the population level at maximum

sustainable yield "semi-stable", as growth from initial stock sizes less than r-", will

tend to zero, whereas those above approach rmsu. Maximum sustainable yield was

the popular harvesting criteria of fisheries managers for many years; however it is now

generaliy believed that this concept is too great a simpiification to warra,nt consider-

ation as a management objective (clark, 1990). The main objection is that it is an

unstable quantity derived from the maximisation of long-term yield, and so ignores the
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economics of the system. (It also ignores biological factors including inter/intraspecies

dynamics, age-structure and. population and environmental variability).

A more acceptable economic objective is to maximise a function of net revenue

over time, thus incorporating both the benefits and the costs of harvesting' This was

suggested by Hotelling in 1931 for exhaustible lesoulces' where the total cliscounted

net revenu eor total present ualuewas maximised. In the following section, Section 1'2'

we briefly discuss the reasoning behind the present value formulation (in the discrete

case). The continuous-time present value expression is given by,

PV : [* "-o'(oq*þ) - c)E(t) clt, (1 3)
Jo

where á is the continuous rate of discount, p is the unit price of harvestecl stock and

c is the unit cost of fishing effort, B. Equation (1.3) is subject to equation (1'1) with

It(E,r) - QEr, *(t) > 0 and h(t) >- 0. This problem can be solved using the Euler

equation or by optimal control theory (for a detailed analysis see clark and Munro

(1975), and clark (1990)), yielding an implicit equation for the optimal population

level,
c'(r)F (1 4)6 : F'(r) - p-c(r)'

where c(r) : cf qr is the unit cost of harvesting when the abundance is r' Equation

(1.a) is known as "the fundamental equation of renewable resources" oI a modified

golden rule (MGR) equation (conrad and clark, 1987; Conrad' 1992; Munro, 1992)'

If we assume that equation (1.4) has a unique solution, r: I*, then the optimal

strategy is to harvest as rapidly as possible if the stock ievel is above the optimal

population, t*, ol to not harvest at all if below r*. specifically, the harvest strategy
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lst

iÎ r(t) > r.
if r(t) : a" (1'5)

iÎ r(t) 1 ï*,

where å-"* ìs the maximum harvest rate. The optimal population level, r*, is frequently

called the optimal escapement. The escapement represents the stock abundance that

escapes capture, and is then able to contribute to future productivity' The "bang-bang"

type behaviour of the approach path to equilibrium is called the "most-rapid-approach"

path strategy.

The above model has been extendecl to include various economic and biological com-

plexities. We describe some of these extensions here, including economic modifrcations'

c{iscrete-time models, age-structured, stochastic and multi-species models.

As Getz et al (L987) and Munro (1992) point out, closure of a fishery when the

population is below r* could be disastrous socially and economically. However, Clark eú

at (Lg79) show that the zero harvest or closure policy is a consequence of the restrictive

assumption of perfect fleet malleability, i.e. that capital (e.g. vessels) can be moved

to other fisheries with no frnancial loss. Indeed, if this assumption is relaxed, it is no

longer optimal to have a zero harvest. The authors find an equilibrium stock level, r*,

clefined by an equation similar to equation (1.4), except that replacing the "variable

costs" term, c, is a t'total costs" expression that includes both "fi.xed coststt (e'g. cost

of vessel manufacture or purchase) and variable costs (e.g. fuel, wages). The path to

the equilibrium shows "boom and bust" behaviour,, with an initial capital investment

(vessels are bought), depreciation, stock depletion and a recoveïy to r* that coincides

with a final smaller capital investment (see Clark and Lamberson (1982), Figure A1).

Clark and Lamberson apply the model to the pelagic whale fishery, and Clark (1990)

notes that fi.shery boom and bust behaviour has been observed in the real world in

8



some circumstances. Further references on irreversible investment and non-malleability

include Botsford and wainwright (1985) and McKelvey (1985).

On a similar note, Clark (1990) considers the effects of nonlinearities in the cost

function, and including a constant seasonal (or trip) set-up cost that is imposed for

every harvest excursion (unlike an initial fixed cost investment, described above). Both

of these extension can produce optimal harvesting strategies that suggest "pulse fish-

ing,, , where it is not necessarily optimal to halvest in every season (or on every ground).

Clark and Munro (1975) derive equation (1.4) and also consider a linear model

where the price and cost vary with time. This nonattonomous model uses optimal con-

trol theory to maximise the discounted present value and produces optimal harvesting

equations similar to equation (1,a). They find the possibility of "blockecl intervals",

where, due to limits on harvest rates, we can not follow the optimal singular path,

,*(t), and. are forced to harvest at a minimum or maximum level for a certain time.

The paper also discusses a nonlinear autonomous model, proclucing possible multiple

equilibria which aïe approached asymptotically, unlike the most-rapid-approach policy

seen for the linear case.

Clark and Kirkwood (1979) investigate the performance of two classes of vessels,

brine and freezer trawlers, harvesting different stocks of prawns in the Gulf of Calpent-

aria, northern Australia. This model uses optimal control theory to maximise annual

net economic revenue; thus within-year dynamics are of interest and so discounting is

not included. The model predicts the optimai number of the two classes of trawlers

that shouid be aliowed entry into the fishery, as well as the prawn stocks that should

be harvested, the opening date and the optimal switching time from banana prawns

to alternative stocks. Features of the results include that a singie fleet flshery should

harvest one species of prawn or the other, and not both at the same time. In the

two-fleet case, the results suggest that either one type of vessel or the other should be

I



used) not a combination of the two.

In the preceding discussion we only considered contìnuous-time models. A disad-

vantage of continuous-time models is that the frshed population is assumed to react

immediately to harvesting and reproduction (growth). Analysis of age-structure, in-

ciuding delays and reproductive truncations, is not facilitated by the continuous-time

frame of the models. As reproduction and harvesting often occur at distinct peri-

ods (e.g. breeding seasons and fishing seasons), discrete-time models can offer greater

realism than continuous-time models (Horwood and shepherd, 1981; Reed, 1983)'

Continuous-time moclels use differential equations to describe the population dy-

namics. In discrete-time, clifference equations are used' For example, the lecurr..ence

relation

rk+r : F(rr), (1'6)

relates the population abundance in per-iod h+7, given by ,*+r, to the abundance, r¿'

of the previous period, k. The function F("r) is called the stock-recruitment relation'

An example of a stock-recruitment relation is Schnute's (1985) equation,

t)k+r: F("^) : arn(r - þ^lrr)'l'' (1'7)

This form not only allows constant recruitment (l : --)' but also incorporates many

of the classic stock-recruitment relations, such as those of Beverton and Holt (1957)

with 7 - -1, Schaefer (1954) with "y : 1 and Ricker (1954) for 1 : g'

The discrete-time maximisation criterion analogous to the continuous-time present

value expression, equation (1.3), is

pV : i oklt("¡, å*;, (1 8)

k:o

where a : lllf d, is the cliscount factor and d is the periodic discount rate. The

expression,ll(*t ,å¡), is the net revenue in period k from a harvest or h¡", and is a

10



function of the beneflts and costs of harvesting. We do not go into the details of this

model here as the full model is described in the following section.

Maximisation of equation (1.S) is achieved using a method analogous to integration

by parts (clark, 1990) or, in the finite horizon case, by dynamic pro8ramming. The

equation that implicitly defines the optimal population level is,

@ - c(F(r))) (1.e)
p - c(x)

This equation is the discrete-time analogy of equation (1.a). we derive equation

(1.g) in the following section. The optimal harvesting policy is the most-rapicl-apploach

to the optimal population level z*, as seen in the continuous case' This result depends

on conditions involving F(r¿) and the ability of the net revenue, fl(r¡,å¿), to be

separated into functions of state, r¡, and action, l¿¡.' Models that have this property

are called "myopic" (Sobel, 1981; Lovejoy, 1988)'

The models discussed to this point have assumed that juveniles either immediately

join the sexually mature or adult stock (in the continuous case), or do so in the following

season (in the discrete case). However, it may take several years for juveniles to become

sexually mature. For example, the abalone species Haliotis laeuigata and Haliotis ruber

mature after approximately 3 years (Shepherd and Laws, 1974), whiie the age at which

50% of the male American Pacific coast halibut become mature is estimated to be

g years of age, while for females it is 13 yeals (St-Pierre, 1934). Other examples

are described in Chapter B. Clark (1976) models a maturation delay with the delay-

difference equation,

rt"+r:À"*+F("r-ò 0<À<1 (1.10)

where r¿ is the adult breeding population abundance, À is the proportion of adults that

survive in each period and F(r¡-B) represents recruitment with a delay of B years.

Clark examines unharvested equilibria, stability conditions, and optimal harvesting

1

a.

F'(*)
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strategies by maximising equation (1.8). A more detailed discussion of the model

proposed by Clark can be found in Chapter 3, where we show that equation (1.10)

approximates a more complex age-structured model (Beddington, 1978)' Other papels

that consider delay-difierence equation popuiation models include Goh and Agnew

(1973), Bergh and Getz (1938) and Botsford (1992)'

The above models have only considered the single variable r¡ to represent the ex-

ploited population. This "lumped-païametel" approach ignores age-clepenclent factors

such as length, weight, sex ancl reproductive capacity which all might affect optimal

harvesting policies (Mendelssohn, 1978; Lovejoy, 1936). The main advantage of the

lumped-parameter models is in their simplicity, as an age-structured model mav have

n-cohorts which require an n-dimensional state vector, not just a single variable' For

models of this form, optimal harvesting behaviour typically has a two-age or bimodal

form, wher.e eit¡er a single age-class is partially or fully harvested, or an age-class is

partially harvested to some optimal level and then fully harvested at a later date (Bed-

dington and Taylor, 1973; Ge1,2,,1980; Reed, 1980). Other models that incorporate age

or size-structure include Deriso (1930), Horwood and Shepherd (1931), Reed (1933)'

Schnute (1gS5; 1987), while PDE models are considered by Botsford (1931)' Botsford

and wainwright (1985), Murphy and smith (1990) and Medhin (1992). Age-structure

is discussed further in ChaPter 3.

Variability is another important consideration. The models described so far have

only considered deterministic dynamics, i.e' models that assume no environmental,

population or system variability. However, uncertainty abounds in fisheries, whether it

be in biological variables such as stock abundance, natural mortaiity and recruitment,

or the nonbiological variables catch, price, fishing efficiency, or even in searching for

flsh. The environment also plays a significant role in catch and stock variability and

adds to the diffi.culty in improving predictions (walters and collie, 1988).
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One way of introducing stochasticity into a discrete model is to include a random

variable, Z¡, in the stock recruitment relation of equation (1'6),

:xk+r : F(r¡, Z¡)' (1.11)

The stochasticity in equation (1.11) can be multiplicative, F(n¡",2*): z¡f(r¡), ot

additive, F(**,2*) : l@r) I Z*. The maximisation criterion used ìs analogous to

equation (1.S), namely we maximise the erpected discounted net tevenue,

EPV:Bl+ okrt(*¡,h*)f. (1.12)
L7-u 'J

Stochastic dynamic programming is commonly used to solve this problem. This iter-

ative procedure is extremely useful for the numerical computation of optimal harvests;

however in this case analytic results can also be found (Reed, 1979; Lovejoy, 1988;

Clark, 1gg0). Once more, the optimal solution is to harvest as rapìdly as possible until

the optimal population level, rl, is reached. Reed (1979) and Lovejoy (1988) investigate

conditions under which the stochastic optimal population level, rl, is greater than or

less than the corresponding deterministic optimal population level, ri. These authors

find that the difference clepends on the cost function and the stock-recruitment rela-

tion; however, for most realistic cases, rI > rå. This suggests that random fluctuations

in the exploited population lead to more conservative harvesting strategies.

Other authors that have utilised stochastic dynamic programming include Walters

(1981) and Smith and Waiters (1981). They consider optimal harvesting policies when

there is uncertainty regarding the form of the stock recruitment reiation. The authors

conclude that a probing or actiuely adaptiue strategy, where escapements are deliber-

ately altered, should form an integral part of managing afishery. Mendelssohn (1978)

considers a stochastic, multiple age-class modei. Using stochastic dynamic program-

ming he finds sufficìent conditions for an optimal age-at-first-capture policy.
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Stochasticity can also be incorporated into continuous-time models. For example,

May et at (1g78) and Ludwig (1930) model population dynamics with a stochastic

dìfferentìal equation where the stochasticity is applied to the stock-recruitment rela-

tionship. Maximising the expected discounted yield, neglecting costs,

EPV : El [* "-t'r¡r1Ðdt],LJo l' 
(1'13)

Ludwig derives an optimal fixed escapement policy, as seen previousiy' He also exam-

ines the effect of various growth functions and different harvesting policies on alternat-

ive performance criter-ia, such as the coeffi.cient of variation of the cliscounted yielcl and

the expected time for the population to reach ten percent of the carrying capacity' For

further cliscussions of stochastic, continuous-time problems in bioeconomics, the book

by Mangel (1935) is recommended.

The effects of harvesting a species may not only impact the target species, but

also have dramatic effects on associated species or ecosystems. For example, blue

shark, Prionace glauca, is a significant by-catch of the Japanese longline harvest tar-

geting bluefin tuna, Thunnus macoyii, in Tasmanian waters. The annual by-catch of

blue shark has been estimated at more than 34 000, most of which are immature and

subadult females. The effect on blue shark stock structure is not known. The im-

pact is likely to be significant due to the typically low growth and reproductive rates

of elasmobranchs (Stevens, 1992). In this fishery, the non-targeted species has little

commercial value (the fins are taken). However, some flsheries target more than one

species. For example, the northern Australian prawn trawlers harvest several species

of prawn (Clark and Kirkwood, 1979). Harvested species may also be a major pred-

ator or pi-ey species in the ecosystem (Mesterton-Gibbons, 1988; Strobele and Wacker,

iggl). Thus, the interaction of harvested species with their community is likely to

be extremely important. Multi-species models are employed in an attempt to determ-
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ine optimai harvesting strategies and the effect of harvesting on species composition,

distribution and abundance'

Multi-species models are more complex both in formuiation and in mathematical

analysis. Uncler simplifying assumptions, Clark (1990) shows that it is possible for one

or more species to be harvested to extinction whiie another more productive or easily

accessible species is "saved" for exploitation. Considering a deterministic, continuous

model for the optimal combined exploitation of independent species, Clark is able to

clerive optimal harvesting equations; however the path to equilibrium is not clear. Sim-

ilarly, the har-vesting of depenclent species with selective harvesting is also consider-ed'

Equations defining the optimal equilibrium solution are given and are a generalisation

of the single-population case. The approach to equilibrium is conjectured, and although

not optimal, the "most-rapid-approach" is suggested as a practical alterna,tive to the

unknown optimal approach. A more complex study can be found in Mesterton-Gibbons

(1932; lgSS) while Strobele and Wacker (1991) derive yield-effort curves and stabilitv

conditions when harvested species are mutualistic, competitive or form a predator-prey

relationship.

We conclude the review at this poìnt. The model descriptions have concentrated

on fishery applications, however bioeconomic modelling can be applied to many other

fields, including forestry (Reecl, 1986), seaweed exploitation (Lee and Ang Jr, 1991)

and elephant ivory harvesting (Basson et a\.,1991). As mentioned earlier, the field

is a rapidly growing one and it has not been possible to describe all of the various

applications of bioeconomic modeiling here. A more detailed description of many of

the models d.escribed here, and more, can be found in Colin Clark's book Mathematical

Bioeconomics, which is highiy recommended.

In the following section we explicitly derive the fundamental equation of renewable

resources for a discrete-time model.

15



t.2 optimal harvesting strategies for a single

population \

To introduce some of the ideas and notations used throughout the thesis, we briefly

review Clark's (1g73; 1g76; 1990) model for the optimal exploitation of a single popu-

lation

I.2.L The model

Consider an unharvested single species population that is spatially unstructured (or

assumed to be spatially homogeneous). Assume that this unexploited population is

governed by the following recurrence relation,

Êt+r : F(Ë*), (1'14)

where ,R¡ is the population's abundance in period k, and F(Rn) is the reproduction

curve or stock-recruitment relation. This function determines the abundance in any

periocl from the stock abundance in the previous period. If we assume that harvesting

occurs before growth but directly after the population is "sutveyed" then equation

(1.14) becomes,

Rn+t : F(R*-n*)

F(S*), (1.15)

where 11¡ is the harvest taken from the population in period k and R* - Hn: S¡ is

called, the escapement (the total stock that escapes capture).

Assume that the cost incurred from harvesting a unit of fish when the stock size

is r is c(r) (a decreasing function of r) and that harvested frsh can be solri at a fixed

prrce, p
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The net revenue from a harvest o1 H¡, in period k is then,

rR¡
tr(A*, S¡,) : 

Jr_" @ - c(r)) dr. (1.16)

For a detailed derivation of equation (1.16) and alternative net revenue expressions,

see Clark (1990).

using the escapement, ^9¿, as the control variable, we maximise the present value

of net revenue over ? seasons) i.e. maximise

T

P.V.:!okn(n¿,,s,r), (1.17)
i<=0

where a: tl(I * d) is the discounting factor, d is the periodic discount rate or interest

rate, and II(Ë*,.9¡) is the net revenue from a harvest or. H¡" in period k. The inclusion

of a discount rate takes into account the fact that a harvest today is considered of

more value than the same catch in the future. To explain the present value expression

in more detail, consider the value in "today's" terms (the present value) of the net

revenue, fI¡, obtained from a catch H¡, in k years time, i'e'

P.V.:,il*,,, (1'18)"'- (1 + d)k'

For example, a catch resulting in a net revenue of $100 000 in 10 years time, is equivalent

to a catch yielding a net revenue of $38 554 today, if we assume a perioclic discount

rate of 10%. Thus, the stream of revenues, fI1,llz,'",[7, produces the present value

expression of equation (1.17).

L.2.2 Derivation of the optimal harvesting strategy

Clark (1g26; 1990) solves this problem using the recursive technique of dynamic pro-

gramming and his results are presented here for comparison later.
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Firstly, assign the value function, Jr(Rs) as follows,

Jr(Ro): o=.Tff"* ! oftn1R*, s*) ( 1.1e)

The value function is the sum of all discounted net revenues up until season ?

maximised by an appropriate choice of the escapements ^9r. The value function depends

on the initial population size Rs'

From expression (1.19) we obtain Bellman's equation (Bellman, 1957)'

Jr+r(Ro): 
o<T.?1". (n{nr, ^90) + CI/"(F(s.))). (1.20)

This expression states that the value function with time horizon T + I is the max-

imum of the immediate returns in the first period plus the returns from future harvests

if the population moves to ,¿7(So) by an appropriate choice of ,So.

Consider first 7 : 0, i.e. we maximise the net revenue expression with no consid-

eration of future generations,

"/o(Ro) max II(,Ro, So)
0(.9o (¡Ro

rI(-Ro, S."), (1.21)

wherewehavechosen,Soosuchthatp-"(S""):0.ThevalueSo"iscalledthezeronet

profrt stock level, and harvesting a population from -Ro down to ,5- will produce the

greatest profit. However, if ,Ro < ,S- then the optimal policy is to not harvest at all'

With negligible costs, c(r):0, we have,Soo :0, and we harvest ail available stock'

If we consider next the ? : 1 time horizon, then, using equation (1.21)'

T

: 
o<T.Ë.. (uin', so) + '7'ir(s')))

: 
o<T.-Y*. (n{n', so) t arl(F(ss)' t""))

(r.22)¿(rRo)

i8

(1.23)



This expression gives the profit over the first two periods in terms of the immediate

proflts acquired from a harvest using ,so and the profits in the next period if the

population moves to -Br : F(So). Maximising equation (1.23) by differentiating with

respect to ,Ss we obtain

0 : -(p - "(,90)) 
+ a(r - c(F(,90)))"'(to), 0.24)

ofr
1 r'(so)(e _ 

"(F(s,)))
p - c(So)

(1.25)
O

Equation (1.25) is called the fundamental equation of lenewa le resources and it

implicitly defines the first period optimal escapement, so' The optimal harvesting

strategy is an "all or nothing" typ" of policy. If the initial stock, Rs, is below the

optimal escapement, sð, then we do not harvest at all, and if it is above si then the

harvest is /1¡ : Ëo-,sð. Equation (1.25) holds for all time horizons ? > 1 (clark ',1976;

clark, 1990) and thus the optimal approach path is the most-rapid-approach to '9fi 
:

S.. The analogous proof is shown in Chapter 2 for spatially structured populations' If

F(rq) is concave and deterministic (clark, 1971; Reed,1979; Lovejoy, 1988) then once

the stock is above ,g- it will never fall below ^9* again, and the equilibrium harvest is

H* : F(S.) -,5*.

t.2.3 No costs analysis

If we assume that the cost of harvesting the stock is negligible, i.e. c(r) :0' oI that

costs do not 'depend on the stock size, c(t) : cj aconstant (for example' this may apply

to somefisheries that harvest clupeids (Munro, 1992)) then equation (1.25) reduces to,

1
F,(S-),

O
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where S* is the optimal escapement. Assuming that F"(^9) ( 0 for all ^9 then there

will be at most one value of S* such that equation (1.26) holds. For example, suppose

the stock-recruitment relation is logistic,

F(S) : á^9 + rS(1 - SIK), (r.27)

where ó is the proportion of the adult stock that survive per period, r is a population

growth rate and Ii is a constant that causes density dependence in the per capita

growth rate, then the optimal escapement is,

,ç.:{ -Lrt+d-d), (1.2s)
2 2r'- ' /'

withoptimalharvest H* : F(S.)-S. > 0. Notethat if I+d-6 > r then it is optimal

to harvest the whole population, S* : 0. This is a consequence of not including costs'

when costs are included ,9* is unlikely to be zero (depending on the cost function

chosen) due to the high cost of harvesting a small population'

1.3 The escapement comparison method

In this section, we present an alternative method to derive the optimal harvesting

equation, equation (1.25). The method, called the escapement comparison method,

compares the present value derived from a currently administered escapement and

an alternative escapement. In this way we are able to determine if, and under what

circumstances, a switch in escapements is economically worthwhile'

Consider an unharvested single species population. As in the previous section, we

model the population dynamics with the difference equation (1.14), i.e.

Rk+r : F(Ê*).
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Recall that .R¿ is the population's abundance in period k, and F (Rt) is the reproduction

curve or stock-recruitment relation. Including harvesting, equation (1.29) becomes,

Rt"+,

: F(S*), (1.30)

where H¡ \s the harvest taken from the population in period k and Rn - Hn: 's* is

the escapement.

The net revenue from a harvest of H¡" in period k is,

II(A*,,s*) : [:- -- (p - c(r)) d'r, (1'31)
J R¡. H¡

as defined in the Previous section'

Choose '5"o such that p - t(S"') : 0 and deflne O(Ë) as follows'

o(B) : [i ø - c(r)) dr. (1'32)
JS-

The expression for Q(Ê) represents the total net ïevenue obtained from harvesting

a population from.R down to the zero net proflt level,,goo' For A ì s.", e('R) is an

increasing function of .R, however, fot ¿ < s-, costs from harvesting outweigh profits

and so it is not optimal to harvest until the stock has recovered to a level such that

we wish to maximise the present value of net revenue, i.e. maximise

Ë > ,s"".

P.V. I o*-tu(r?¿, Sr)
oo

k=l
æ

k=l
oo

le=l

D ofr-t o(r?r) -O(Ê*-U*)

D o*-t o(F(S*-r); - o(,9r) ( 1 .33)

where a:tl(I*d) is the discount factor. This present value expression differs from

equation (1.12), as we now sum the discounted net revenues over inflnite time, rather
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a)

b)

F(So)
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Ê
Ð
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S
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n

I l+l Time

FrcuRp 1.2: Figure a) shows the harvesting strategy employed if we remain harvest-

ing at s,. This is compared with the return provided by a switch in escapements

to Sn, as shown in b) . The escapement comparison method determines the circum-

stances under which the change is advisable.

than over a finite time. However, as we shall see, the optimal harvestìng strategy does

not differ.

Assume that we are currently using the escapement, ^9o. We would like to determine

under what conditions it is economically beneficial to move to a new escapement, say

s, (see Figure 1.2). If we remain using the old escapement, so, then s¡-r : s* : so

for all k and we obtain the following as the present value of revenues over infrnite time,

P.V,S. : Ë o*-'

Ë
l<=l

o(F(s,)) - o(s")

o(r(s,)) - o(^s,) (1.34)

noting that,
k

o¿
_1 _ 1

- l_ cr'
( 1 .35)

for lal < 1.

Consider the decision to change the escapement from So to the ne\Ã/ escapement ,S?¿
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(,9," can be greater or less than ,S,) at the period lc: l. For k ( / the escapements are

St": So and for k>t we have St : Sn. Assuming that F(S") > S" and F(.9,) > S"

the present value obtained when the change in escapements is included is,

p.v.s, :'f.or-'(o1r'1s,;; - o(s,)) * ar-r(.fof*ll - o(s,))
k:t \

+ Ð o*-t o(r(.9")) - o(s")
oo

È:,+r

| - o.t-r

7-a o(F(s,)) - o(s,) + ot-' o(r(.9,)) - o(s")

o(r(s")) - o(^9") (1.36)

(1.37)

where we use,

t
k:l

k0
al

l-a'

for lal < 1.

We would like to know when it is profitable to swap to the new escapement, i.e.

when is P.v.s, > P.v.s, or P.v.s. - P.v.s" > 0? subtracting P.v.s" from P.v.,s, we

obtain the following,

P.V.S^ - P.V.S" ¿-1
Q o(F(s,)) - o(s") o(F(^9")) - O(S")

o(F(s,)) - o(s,)

o.l-r
-o(r(s,)) + o1s"¡ + oo(F(S")) - o(s")

l-a
' +(1 -";(o1r(s,)) -o(s"))]

: *[.tr,l + oo(F(s,)) - oo(F(s,)) - o(s,)] > 0. (1.38)

As a¡-1/(1 - a) > 0 and the term in square brackets is independent of k (and

independent of the time at which we swap escapements, / ) we observe that,

ao(F(S"); - o(s") > ao(F(S")) - o(S,)'
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for it to be profitable to swap escapements.

If we make the left hand side large enough by an appropriate choice of ,9, we can

ensure that this condition will always hold for the new escapement S,, and, once S'

is adopted., we will never need to change to a new escapement thereafter, i.e. we will

have the optimal escaPement.

Maximising aO(F(S")) - O(S") by differentiating with respect to S,, we obtain,

t F'(5,)(p - .(r(S")))
(1.40)

o p - c(.5")

This equation specifres the optimal new escapement, ,9r, to choose when a swap is

necessary. This equation is the same as that derived in the previous section, nameiy

equation (1.25). A similar result holds when we require a temporary clostrre of the

fishery, i.e. when S"> F(5")-

The escapement comparison method is applicable where the preferred regulator¡t

mechanism is a constant escapement policy, with the optimal approach to the escape-

ment being the most-rapid-approach. Fixed escapement policies are not always optimal

and the optimal approach path to the equilibrium optimal escapement is not always

the most-rapid-approach (see Chapter 3 on maturation delays and Chapter 5 on har-

vest closures as examples). Éor this reason, the method has not been applied in the

following chapters. However, the method may be fruitful in circumstances where man-

agers wish to determine the optimal frxed escapement when the most-rapid-approach

is not optimal, explicitly compare the beneflts of various escapements, or determine

under what circumstances temporary closures are profltable. We also suspect that the

method will be able to identify policies that are locally stable, i.e. due to the costs

of altering current or local harvesting strategies, it may be optimal, in some circum-

stances, to remain at the local solution. This is a new way of looking at the harvesting

problem, akin to "evolutionary stable strategy" theory (Maynard Smith, 1982)' and is
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an area of future research

L.4 Metapopulations: definitions, theory and

applications

In this section we introduce the concept of a metapopulation. We present definitions

that we use throughout the thesis, and briefly review some of the historically significant

metapopulation models to introduce notation and build a conceptual understanding

of the field. We conclude this section with a description of some of the leal world

applications of the theorY.

L.4.1" Metapopulations: what are they?

Due to factors such as habitat fragmentation and modification, and environmentai vari-

ability in time and space, the population structure of a species is seldom homogeneous.

Instead, it often exists in distinct patches of suitable habitat; it is patchily distributed'

The patches that are occupied are called local populations. More specifrcally, a local

population is an interacting collection of individuals occupying a single, geographically

distinct patch. The frequency of interactions between individuals within a local popula-

tion is considered greater than the frequency of interactions between local populations.

Interactions include feeding, competition for resources, social behaviour and especiaily

reproduction.

If a local population experiences occasional (infrequent compared to within patch

dynamics) migration from one or more other iocal populations, then the set of con-

nected local populations is called a ntetapopulation. According to Levins (1970), who

is widely credited as being the first to formally define the term, a metapopulation
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is a "population of populations". Furthermore, Hanski and Gilpin (1991) define a

metapopulation as a system of local populations connected by dispersing individuals.

Hansson (1g91) describes three important factors that contribute to population

dispersal. They are (a) economic thresholds, i.e. dispersal triggered by resource (e.g.

food, water, mates) scarcity, (b) conflicts over resources, and (c) inbreedìng avoidance"

The author suggests that the first two factors are likely to cause a density-dependent

response) while the third influences dispersal in a density-independent fashion' Some

species exhibit clensity-independent dispersal (e.g. species of insect where clispelsal is

often weather regllated, and small mammals (Fahrig and Merriam, 1985)), while others

(e.g. some mammals,locusts, snails) often show density-dependent dispersal (Hansson,

1gg1; and authors cited therein). The age and sex of dispersers often depends on the

species and particularly on the reproductive behaviour of the species. Hansson (1991)

cites evidence that immature individuals and mature males are frequently the dispersers

in polygynous mammal species. Waser and Jones (1933) cite evidence suggesting that

where the risk associated with emigration is less for adults than offspring (due to size

or experience), some species show parental abandonment of territories in favour of

their young (e.g. field voles, woodrats, Algerian sandrats and field cats (Waser and

Jones, 1983; and authors cited therein)). Benthic marine organisms, such as abalone,

urchins, barnacles, lobsters and some species of fish, often disperse through a pelagic

larval life stage (Strathmann, I974; Hill and White, 1990; Karlson and Levitan, 1990;

carr, 1991; Booth, 1992; Levin, 1993; shepherd and Brown, 1993). other marine

invertebrates that lack a pelagic larval phase may disperse by drifting in the water

column as juveniles or adults (e.g. some bivalves and gastropods (Martel and Chia,

1ee1)).

An important aspect of metapopulation theory is the concept of local population

extinction and recolonisation. Namely, that patches can temporarily be unoccupied
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due to local population extinction, and be recolonised by the immigration of dispers-

ing individuals at a subsequent date. (However, as Hanski and Thomas (1994) state,

,,any assemblage of local populations which are connected by migration may be called

a metapopulation, regardless of the frequency of local extinctions"). This has lead to

the theory's greatest area of application; the study of threatened species. conservation

biologists are frequently interested in the probability that a population will become

extinct in a given period of time, and also the persistence time of a metapopulation,

i.e. the length of time for all local populations in a metapopulation to become extinct

(Hanski and Gilpin, 1991). These can be used as a guide to management and con-

servation. The theory can predict which local populations (or species) will be most

adversely afiected by say, habitat loss, increased fire frequency and the introduction of

non-indigenous species.

The¡e may be some ambiguity over local population identification, unless the en-

vironment is clearly fragmented into suitable and unsuitable habitat (for example'

mallee habitat that supports fragmented populations of the threatened malleefowl of

southern Australìa (Day and Possingham, 1994)). High levels of migration between dis-

tinct patches can lead to metapopulation delineation being unnecessary (Hanski and

Thomas, 1gg4). Conversely, if occupied patches are isolated due to a lack of migra-

tion, then they can be considered as entities unto themselves, i.e. single homogeneous

populations. However, as subjective as the defrnitions appear to be, the existence of

metapopulations is now widely accepted on both qualitative and quantitative grounds.

Extending the concept further, patches may include more than one-species. Wìthin

patch interactions between species may be significant. As such, the metapopuiation

definitions are easily extended to metacommunities. However, in this thesis we concen-

trate on single species dynamics, rather than multi-species dynamics. A comprehensive

mod.el of metacommunity dynamics and harvesting would no doubt be informative, but
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mathematically ard.uous. References for metacommunity modelling include Nachman

(1gg1), Diekmann (1993) and Nisbet et al (1993) on predator-prey dynamics, and Case

(1991) looks at interspecies competition and metapopulation dynamics.

L.4.2 Modelling

Levins (1969) study of pest control is generally regarded as the inaugural metapopu-

lation mod.el. Some earlier works had a similar notional flavour. These included: An-

c¡-ewartha and Birch (1954), who emphasised the importance of spatial heterogeneity

in population dynamics, MacArthur and Wilson (1967), for their island biogeography

stucly, and den Boer (1968) who recognised that spatialiy structured populations can

.spread the risk" of extinction caused by unstable local population dynamics over all

local populations. However, Levins was the fi.rst to formalise the idea in conceptual and

mathematical terms and in doing so, explicitly model the local dynamics of extinction

and recolonisation.

The Levins Model

In this section we briefly describe the Levins model, outlining the basic assumptions

and results. Consider a single species population that inhabits several indistinguishable,

but geographically isolated, patches. A proportion of these patches are occupied by

members of the species, defined by p(¿), and a proportion are unoccupied, 1 - p(¿)'

This designation immediately assumes (a) that we model the presence or absence of

the species in a patch rather than the abundance, and (b) that the fraction of occupied

patches, a discrete variable, can be approximated by the continuous variable p(t).

The first assumption is valid. for a species that, on colonisation, rapidly grows to the

capacity of the occupied patch, whereas the second assumption is feasible for large
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metapopulations (large in the sense of numerous local populations; see the review by

Day (leea)).

Assume that the rate of local extinction, e, is proportional to the fraction of occu-

pied patches, p(ú). This assumes that all patches experience the same probability of

extinction. The rate of colonisatior.) Tn) is assumed proportional to both the fraction of

patches that are occupied, and the fraction that are not occupied; the more occupied

patches the more possible migrants, and the greater the number of unoccupied habit-

ats the greater the number of sites for migrants to settle. Assume that within patch

interactions do not influence p(ú). Levins models the metapopulation dyna,mics with

the deterministic, differential equation,

@ : *p(r - p) - ep. (1.41)
dt

Equation (1.41) can be rewritten in logistic form,

4:tu / n -l (r.42)dt ,. ._ e)p\t _ r+l*),
which, for m f e, has the solution,

p(t\ : , 
(" -,*) (1.43)u\L) - (@o* t (" - *Dlp') exp{(e - m)t} - m'

The initial proportion of occupied patches is given by po. Equation (1.41) has the

solution,

p(ú) : -=þ =, (1.44)
' mtPo I l'

for m: e (Day, 1994). Thus, if the colonisation rate exceeds the extinction rate, the

equilibrium solution is,

(1.45)

However, if the extinction rate is greater than the colonisation rate, then the metapopu-

lation becomes extinct, p :0. Hence, the model predicts metapopulation persistence as

el1p n1,
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long as the extinction and colonisation rates are either below, or above, some thresholcl

level (Hanski, 1991). Hanski (1991) relates this to the geography of the metapopula-

tion; explaining that extinction rates may decrease with habitat area and increase with

isolation, thus possibly pushing the rates over the threshold persistence values.

Criticisms of the Levins model include the presence-absence description of the state

space, that the model does not differentiate between patches (size, quality, separation,

rnigration or extinction rates) or the biology of the organism (age, size-stlucture, re-

productive behaviour). A further criticism is that the model is deterministic, whereas

the clynamics of migration, extinction and recolonisation are inherently stochastic (Day

and Possingham, 1994). However, the Levins model was the first to explicitly considel

the clynamics of local populations; namely that local populations experience occasional

migration, local extinctions and recolonisation.

Space limitation - Roughgarden and lwasa

A model with applicabiiity to marine systems is the space-iimited population model of

Roughgarden and lwasa (1936). They assume that the larvae produced from several

local populations combine to form a pelagic larval "pool". Larvae then move from the

larval pool into the vacant space of the local populations. The modei is suggested for

sessile marine invertebrates that have a pelagic larval phase, such as barnacies'

For simplicity, we consider the two local population case. Let R¿(t), for i : L,2,be

the adult abundance of local population i. Unlike the Levins model, Roughgarden and

Iwasa explicitiy model the site abundances, rather than just the presence or absence of

individuals. The abundance of the local populations increases with larval settlement

ancl decreases with adult mortaiity. consider local population 1,

dRt
,lt 

: c1LF1 - utR¡ (1.46)
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where Ft: Ar- atfut is the free space in local population 1. The total area available is

A1, ¿nd a1 is the effective average area occupied by a single organism. The accessibility

of local population 1 to larvae is given by the constant c1, and z1 is the average adult

mortality. The abundance of larvae in the larval pool is defined by L, which increases

with the average fertility of the local populations, Tn¿, ar'd decrease with settlement

and larval mortality, u. The rate of change of the larval pool is given by the differential

equation,
dL
# 

: mt Rt I mzïz - c1LF1- c2LF2 - uL. (L47)

Roughgarden and Iwasa (1986) consider the fixed points of the model by setting the

rates of change to zero, deriving a quadratic expression, the zeros of which give the fixed

points. The local stability of the fixed points depends on features of the parameters,

including the existen ce of source patches, where the average number of larvae produced

by a settled organism is larger than one, i.e. m¿f u¡ ) 1 or m¿ ) u¡, attd sink patches,

where m¡ 1 u¿. The authors find that if all patches are sources, then there is a

unique equilibrium set of abundances of adults and larvai organisms that is globally

stable. However, if some patches are sources and some are sinks, then multiple steady

states are possible. It is also shown that uninhabited but suitable patches may require

an initial input of larvae above a threshold level for the metapopulation to become

established. This has important implications for foreign species introductions. A more

explicit age-structured model is considered, leading to the possibility of osciliatory fixed

points.

Improvements over the Levins model include the recognition that patches may differ

in size, fertility rates, mortality rates and thus quality. A more detailed population

structure is modeiled, with adults contributing larvae to a common pelagic larvai pool'

The larvae then settle back into the local populations according to the available free

space in the patches. The model is thus speciflcally aimed at populations with this
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particular life-history; a life-history with applications to sessile marine invertebrates

with peiagic larvae. The authors suggest that further models should include stochastic

migration and larval mortality, adult induced larval mortality (larvaphagy) and the

incomplete mixing of larvae'

Breeding site limitation - Pulliam

puiliam (1gSS) considers a discrete-time model that assumes that birth, death, emigra-

tion and immigration rates can differ between local populations. The model is used to

show that migration from a source local population can maintain an otherwise nonsus-

tainable sinlclocal population. Here, a source is defined as a net exporter of individuals

and-a sink is a net imPorter.

For simplicity, Pulliam initially considers two patches, in which local population

1 is a source patch and local population 2 is a sink patch. The adult abundance in

local population i at the end of period k is defineàby R¿*. Adult survival is given by

the constant P¿, and juvenile survival is defined Ly Pt. Thus, survival is not patch

dependent; this is a possible criticism of the model. The breeding adults of local

population i produce B¿ juveniles in each generation. The difference equation model is,

R¡n+t : P¡R¿x * Ptþ¿R¿* : À¡R;n, (1.48)

where )¿ represents the finite rate of increase of local population i, without migration.

Thus, if )¿ > 1 then local population i is a source, and if )¿ < 1 then local population

i is a sink. For the sink population to persist, it requires net immigration, while the

source requires emigration for stability (D.y, 1994)'

Assume that the source local population is limited by the number of available

breeding sites, which number ñ, in total. Individuals that obtain a breeding site are

able to breed, while others can either migrate in search of alternative breeding sites,
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or remain as non-breeders. Pulliam shows that the equilibrium population size of the

source is greater than the number of breeding sites. This suggests the existence of a

surplus of non-breeding stock that can input members to surrounding sink habitats.

With a connected sink, Pulliam shows that the equilibrium abundances at the source

and sink are,

Aî : îL (1'49)

R; : ñ9+, (1.50)
(I - ^z)

where (À, - 1) is the per capita surplus of local population 1, the source) and (1 - Àz)

is the per capita deficit of local population 2, the sink'

pulliam's model shows that sink populations can persist due to the migration of

surplus individuals from adjacent source patches. Holt and Gaines (1993) cite ex-

amples where such a relationship exists for plants (Keddy, 1981; Kadman and Shmida,

1gg0), and suggest that populations of small mammals, such as cotton rats, prairie

voles and deer mice, may also exhibit immigration reliant sink patches. Pulliam notes

that management considerations should not discount the importance of sotrrce habit-

ats, as a small source patch may be maintaining numerous surrounding sink habitats.

Disturbance of the source patch may then lead to metapopulation extinction.

The model of Pulliam is extended by Howe, Davis and Mosca (1991) by including

survival parameters that depend on the habitat of the iocal population, and pooled

emigrants that settle evenly across the metapopulation (unlike the space-limitation

settlement of Roughgarden and Iwasa (1936)). Their discrete-time model is,

R;n+t : R¿nPt¿ * B¿nþ¿Pt;(i - r¿) - E¿t +r.:+, (1'51)" 
7*, M -r'

for M local populations. The annual adult and juvenile survival are given by P¿¿ and

P7¿, respectively. The number of breeding adults in patch i \s B¿¡, and is bounded above
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by ir¿. The proportion of migrating juveniles is given by ^l;, and so the second term

represents the surviving sedentary juveniles. The third term is the density-dependent

emigration from patch i, and is defined by all the the individuals that do not obtain a

breeding site (Day, 1994). The fourth term represents the immigration from all other

habitats into local population i, and A¡x arc the emigrants of patch j'

For- example, if juveniles do not migrate,li-_ 0, and we consider two patches, then

the immigrants of one patch are the emigrants of the other, and so we have'

Ar¡+r

Rzn+t

PnRy"* PttþrBt*- Et*I Ezn

Pnfuu l P¡zþzBzn- EznI E*

(1.52)

( 1.53)

The authors consider the fixed points of the system, deriving equilibrium total

population sizes, and find similar sink persistence results to those of Pulliam. However,

if I 10, then under some circumstances the metapopulation can become extinct'

We do not go into detail with any more of the theoretical metapopulation models, as

the main objective of this section is to familiarise the reader with the concepts, notation

and basic moclelling framework that has been used. Numerous other papers consider

extensions of the models discussed here, or include other metapopuiation features. Ex-

amples include, the "rescue effect" (Brown and Kodric-Brown, 1977; Hanski, 1982),

where high levels of immigration depress extinction rates, and the "propagule rain"

concept of Gotelli (1991), where local populations experience recolonisation from say,

a seed bank or possibly a mainland source. Stochastic models are considered by several

authors including Richter-Dyn and Goel (1972), Hanski (1983), Chesson (1984), Har-

rison and Quinn (1gSg) and Verboorn et a/(1991a). Models have also been developed

that incorporate local population size-structure, i.e. patches have abundances that are

either high, intermediate or low, and coupled differential equations are used to model

the dynamics (Hanski, 1985; Hastings, 1991)'
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L.4.3 Areas of aPPlication

The main area of application of metapopulation models has been in conservation bio-

logy. Due to increasing habitat fragmentation and modification (most noticeably ter-

restrial), the habitat over which some species may have once ranged has reduced dra-

matically. These species are now confined to sparse patches of suitable habitat. It is

well recognised that a reduction in habitat reduces species persistence, and the man-

agement of remnant patches then becomes of great importance for species conservation.

This is especially evident for species that ranged widely across a once homogeneous

environment that is now a fragmented landscape. These species, now confined to

scattered refugìa, may not be well adapted to migration, or at least more susceptible

to mortality in the migratory transition (Hanski, 1991; Verboorn et a/', 1991a)'

As mentioned, the importance of maintaining remnant patches (especially source

patches (Pulliam, 198s)) then becomes a primary concern. As a guide to management,

models have been developed that investigate mean times to extinction (Richter-Dyn

and Goel, 1972; Hamson and Quinn, 1989; Verboom eú at., I99la), and the probab-

ility of extinction over a given period (Menges, 1990; Lacy and Clark, 1990; Boyce'

1g92; Burgman et al., 1993; Possingham et al., 1994). These models are commonly

called Population Viability Analysis models. Detailed population biology (birth, death,

age-structure, migration), habitat structure (patch size, quality, separation) and envir-

onmental processes (seasons, catastrophes such as fire, drought or flood) can be built

into the models to determine the effects of various management policies, including

variations in flre burning regimes or patch removal, on the probability of extinction.

In Table 1.1 we list some of the organisms to which the metapopulation concept

has been applied. An interesting feature is the few marine applications of the theory.

This may be due to the more noticeable terrestrial effects of habitat fragmentation and
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ReferenceOrganism
Hanski (1982)

Collins and Glenn (1991)

Menges (1990)

Walde (1991)

Harrison eú ø/ (1988)

Hanski and Thomas (199a)

McCauley (1989)

Kindvall and Ahlen (1992)

Gill (1e78)

Sjorgen (1991)

Sinsch (1992)

Fritz (1985)

Van Dorp and Opdam (1987)

Thiollay and Meyburg (1988)

Lamberson et aI (1992)

Harrison et aI (1994)

LaHaye et al (1994)

Verboom et al (7991b)

Hamilton and Muller (1993)

Day and Possingham (1994)

Smith (197a; 1980)

Fahrig and Merriarn (1985)

Henderson eú a/ (1985)

Peltonen and Hanski (1991)

Verboom et aI (I99la)
Durant and Harwood (1992)

Lindenmayer and Lacy (1993)

Possingham et aI (1994)

Kurdziel and Bell (1992)

Karlson and Levitan (1990)

Quinn et al (I99a)
James and Scandol (1992)

Scandol and James (1992)

Shepherd and Brown (1993)

Pennings (1991

Furbish's Lousewort
Mites
Butterflies

Milkweed Beetle

Bush Cricket
Red-spotted Newt
Pool Frog
Natterjack Toad

Spruce Grouse
Forest Birds
Java Hawk Eagle

Spotted Owl

European Nuthatch
Sooty Shearwater
Malleefowl
Pika
White-footed Mouse

Eastern Chipmunk
Shrew
European Badger

Monk Seal

Mountain Brush-tail Possum

Greater Glider
Copepods
Sea Urchin
Red Sea Urchin
Crown-of-thorns Starfi sh

Plants

Abalone
Sea Hare

TRsr,p 1 .1 : Organisms that are believed to have a metapopulation structure or that

have been modelled using metapopulation theory.
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heterogeneity. The consequences of agriculture, forestry, roads and human habitation

have an obvious and dramatic effect on the terrestrial landscape, with remnant patches

often remaining in road-side verges, small and scattered reserves, and ìnaccessible or

economically unproductive land. Marine systems have been spared much of this bload

scale destruction; however, pollution and exploitation are having profouncl effects on

populations and are possible causes of habitat fragmentation (McGuiness, 1990)' The

marine environment, .iust as the terrestrial, is not homogeneous in its natural state'

Differences in habitat suitability (rocky shore, crevices, seagrass beds, tempelature,

salinity, food availability, tidal fluctuations, upwellings, gyres' sunlight, turbiclity) can

cause variations in population structure in both time and space.

Many marine organisms are threatened with extinction. These include species that

are of some commercial value (e.g. whales (Clark and Lamberson' 1982)) and others

that are threatened due to the introduction of foreign species. Marine populations can

beneflt from the application of metapopulation models, for both threatened species

management and commercial management.

1.5 Ilarvesting spatially structured populations

The spatial heterogeneity of marine populations has been recognised for some time now

(Beverton and Holt, 1957). However, models of harvest dynamics have concentrated

on stocks that are either unit stock based, i.e. a single homogeneous stock, or several

stocks that are reproductiveiy isolated and mix at the point of harvesting (e.g. sal-

mon of northern America, (Hilborn, 1935)), but are not connected by the transfer of

individuals.

The first section of this chapter discussed homogeneous stocks. Models that recog-

nise the discrete stock structure of harvested populations include Ricker (1958), Paulik
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et at (L967) and Hilborn (1976; 1985). Ricker and Paulik et aluse deterministicmodels

to consider optimal harvesting rates that maximise sustained yield. Both authors show

that yields from a non-selective fishery are less than if the stocks can be managed on

an individual basis. Furthermore, employing an equal harvest rate across all stocks

may exterminate one or more of the less productive populations.

Hilborn (1976) considers two reproductively isolated stocks of salmon with popula-

tion dynamics defined by the Ricker stock-recruitment model,

Rk+t : r?¡ exp(a(l - Rrl {l)), (r.54)

where ,R¿ is the population abundance in period k, a is a measure of productivity and

B is the unharvested equilibrium population size. The annual average yielcl is max-

imised using stochastic dynamic programming. To facilitate numerical calculations,

the abund.ance is classified into twenty stock levels. Eighteen harvest rates and ten

stochastic deviations from the Ricker curve are considered. Optimal non-equilibrium

harvest rates are determined as a function of the stock abundances for different combin-

ations of the parameters a and B. Under non-equilibrium conditions, Hilborn (1976)

concludes that fixed escapement policies are not always optimal (in fact, only when

the stock parameters are equal, implying a uniform stock, is a constant escapement

optimal). Surprisingly, if one of the stocks is depleted, results suggest that the mixecl

stock should be harvested at a rate higher than if both stock leveis are equal.

It may not always be possible to differentiate between stocks, and so estimates

of incliviclual stock abundance may not be forthcoming. This scenario is consiclered

by Hilborn (1985). Monte-Carlo simulation is used to maximise average annual yield

over 30 yeaïs for a mixed-stock frshery comprising ten discrete stocks. The population

dynamics of the stock is given by a stochastic Ricker equation, namely equation (1.54)

multiplied by exp(c..'), where ø is a normally distributed random variable with mean
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zero and an input variance. The author considers three policies: constant escapement,

fixed harvest rate and fixed constant yield, and their effect on annual yield, average

natural logarithm of catch (an estimate of declining marginal value from increased

catch) and the coefficient of variation of the annual catch. The productivity of the

stock and year-to-year natural variation of the stock is varied. Features of the results

include that a fixed escapement policy appears to be sub-optimal for maximisation of

the natural logarithm of catch. However, a fixed escapement policy is optìmal for the

maximisation of average annual yield when population productivities vary, but natural

variation is perfectly correlated. There is also a tlade-off between average yield and

yieid variability; with constant escapement policies producing larger coefficients of

variation than either'fixed harvest rate or constant harvest policies'

These papers have recognised that stocks are not homogeneous, as harvested pop-

ulations are often composed of several distinguishable stocks. However, the papers

asslme that there is no migration between the stocks, and as such, they are reproduct-

ively isolated. We now consider the (rather timited) literature that assumes that there

is migration between stocks.

Hilborn and Walters (1937) consider stock and fleet dynamics when harvesting

six spatially distinct stocks of southern Australian abalone. They use the clifference-

equation technique of Deriso (1980) and Schnute (1985) to simulate stock dynamics,

and assume that fishers allocate effort to each stock to maximise the value of the catch.

Simulations consider the development of the flshery from a virgin state. Results show

that catch rates can remain high while each stock is gradualiy fished down, until totai

abundance has dropped considerably. Catch rates then fall and the stock recovers.

T¡eir analysis only considers discrete stocks; however, they suggest that if migration

between stocks is evident, then density independent movement can be incorporated

into the Deriso-schnute recruitment expression, Ê¿, using a spatiai transition matrix.
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Recruitment becomes

Rt: P,G", (1.55)

wlrere p, : lp;¡l is the transition matrix, components of which give the probability of

a successful migration from area j to i, and G* is the area-specific recruitment. This

is analogous to the method ernployed in this thesis'

Clark and Mangel (1979) consider a fishery that harvests stocks that form surface

schools. The surface schools interact with an unharvested subsurface (or geographic-

ally clistinct) population. Yellowfin tuna, Thunnus albacores, often form surfa,ce schools

t6at associate with marine mammals (e.g. porpoises) or floating deblis. Evidence srig-

gests that a population of subsurface tuna exists, with (unknown) interchange between

the stocks. The authors consider two models of surface population dynamics. The

fir..st assumes that the equilibrium biomass of the surface school is dependent on the

subsurface stocks, the other modei assumes that it is independent. For brevity, we con-

sider the frrst case (Clark and Mangel's model A). Let A1(ú) be the total surface stock

abundance (of all 1{ schools) at time f. The surface stock increases with immigration

from the subsurface population, and decreases with emigrating tuna and harvesting.

The population is modelled with the deterministic differential equation,

dR,
T 

: dztRz - dnR, - Y(8, Rt), (1.56)

where, R (t),, is the number of tuna in the subsurface stock at time t, d'2y is the intrinsic

schooling rate, d,p is the instantaneous rate of movement from the surface to subsurface

schools, and the yield, Y, is a function of effort, E, and surface school population size'

The subsurface stock increases with density-dependent growth (given by the Schaef-

fer logistic model) and disassociation from the surface stock, and decrea,ses with ex-

change to the surface stock,

+ : rR2(I - RrlRr) - ,lnTr l dnRt, (1'57)
dt
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where r is the intrinsic growth rate and ,R, i. th" carrying capacity' The authors

consider the equilibrium behaviour of the system by setting the rates of change to

zero, an¿ show that if the intrinsic schooling rate is less than the intrinsic growth rate,

clzt 1r, then the surface fishery persists for any fishing effort' However, \f d2r > r then

extinction is possible if effort is excessive'

The authors' model that assumes that the surface school's unharvested equilibrium

is independent of the subsurface stock (Clark and Mangel's (1979) model B) shows

more complicated behaviour (including bifurcations) and is not discussed here' Thus,

these models explicitly assume spatial segregation of a single species population, with

clifferential stock clynamics that includes immigration and emigration between popu-

lations. However, "birth" is only possible in the subsurface stock and so we do not

consider the population model to be characteristic of typical metapopulation models'

Hilborn (198ga) applies model A of Clark and Manget (1979) to a popuiation of

skipjack tuna, Euthynnus pelamis, and suggests that there is evidence for the exist-

ence of a subsurface (or invulnerable) stock in that fishery. Mangel (1982) considers

the models in more detail by investigating non-equilibrium behaviour, environmental

fluctuations and times to extinction.

Hilborn (lgSgb) extends Clark and Mangel's (1979) model A by assuming that the

subsurface stock is harvested by a longline fishery. A size or age-structured model is

considered. The abundance in the surface and subsurface stocks of age ø are given by

R|"(t) and .R2"(l) respectively. The model for a single cohort is,

dRto / ñ: -(þ\Vto+M+drr)R"*dztfuzo (1'58)
dt\

dRr'.

+: -(FrVr,+M+drr)Rr,ldnRto, (1'59)

where F¿ is the fishing mortality for stock i,V¿" \s the relative vulnerability for members

of population i at age cr) M is the natural mortality rate and d¿¡ is the instantaneous
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movement rate from population i to j. Recruitment to each substock is eithel inde-

pendent of stock size (constant), or a Beverton-Holt type stock-recruitment relation.

Yield-per-recruit analysis using simulation techniques is employed to determine the

effect of the longline and surface fishery on yield and total dollar value ($600 per tonne

for surface stock, which is usually canned; and $1800 per tonne for the larger subsurface

fish, which are transported to the sashimi market). For the parameters chosen, analyses

show that total yield is maximised by a mixed fishery, for both constant recruitment

and. when recr-uitment is lelated to spawner abundance. However, total dollar value is

maximisecl by a sole longline fishery for both methods of recruitment'

Hilborn's moclel, as with Clark and Mangel's (1979) models, explicitly considers a

spatially structured population with interacting substocks. Although not an objective

of the paper, an improvement may have been to to specifically consider the effect of

difierent migration rates, as in all analyses Hilborn assumes dn: dzt' The models

that we present in this thesis explictly consider non-symmetric migration'

Clark (1990) considers an inshore-offshore fishery where interactions between the

two substocks are through a diffusion process. Let r?1(f) and,R2(l) be the abunclance

of the inshore and offshore populations respectively at time f . Assume that diffusion

occurs from the population with the larger abundance, to the population with the

smaller, weighted by the constant ø. The model is,

dRt ¡,(Ër) ro(Rz-fi') -ErRt (1.60)
dt

dR,
Fr(R )* o(Êr - nz) - EzRz,, (1.61)

where f @;) represents the natural growth rate of substock i, and E¿ is the fishing effort

exerted in substock i. The discounted net revenues (present value) of both populations

dt
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ìs maximised,

P.v. : 
lo* "-o' (fo*, - ct) Et * (pR, - ,r¡ør) aL, ( 1.62)

where p is the price (equal for both populations) and c¿ is the harvest cost associ-

ated with substock i (Clark assumes that costs are less for the the inshore fishery).

Maximisation by integration by parts yields the optimal equilibrium equations,

(F'(A') - óXp - C'(A')) - n(Rt)C'(A') R,,R,
(,,R? -,,R3) (1.63)

(F;(R )- óXp - Cr(Rr)) - F2(R2)C;@z) :,rJ;("ro| - rra?), (1'64)
ñãnt

where C;(R¿) : c¿l|¿. Note that if there is no diffusion, ø : 0, then we recover

equation (1.4) Clark argues that if the marginal cost of harvesting the inshore fishery

with no cliffusion is less than the marginai cost,0Cf 0R2, of the offshore fishery with

clifflsion, then the optimal with-cliffusion escapement of the inshore fishery decreases

over the non-diffusion model, while the offshore escapement increases. Clark suggests

that this allows stock from offshore to move inshore to be harvested at a lower cost.

Thls Clark models a spatially structured population, and uses present value maxim-

isation to obtain optimal population levels for each substock. Similarly, maximisation

of the discounted net revenues accruing from the substocks of a metapopulation is em-

ployed in this thesis. Clark, again, essentially assumes symmetric migration as lates

of diffusion between substocks are the same for a particular difference in abundance.

Othe¡ models that explicitly consider the spatial structure of harvested populations

include search mociels, transboundary models and models of harvest closures. Within a

fishing area) many fishing grounds may exist, each varying in year-to-year productivity.

Search models are concerned with cleterming how and where to allocate effort across

the frshing grounds. We do not go into the detail of these models and the interested

reader is directed to Mangel and Clark (1933) and Clark (1990). Transboundary fish-

a
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ery problems occur when a common stock is delineated due to its range crossing the

boundaries of jurisdiction of two or more nations. An interesting case may occur where

distinct local populations exist in each country's waters, and exchange of individuals

occurs between the local populations. We do not consider this here, and recommend

Munro (1979), Levhari and Mirman (1980), Kaitala (1985) and Hilborn (1937). Ho-

mogeneous (or otherwise) stocks are also delineated due to harvest regulations. For

example, sections of a population's range may be preserved in an unharvested marine

park, or closed as a harvest management tool to protect stocks' Polacheck (1990)'

DeMartini (1993) and Quinn et at (1994) consider this scenario anci we discuss these

papers in Chapter 5.

The only modelling work that explicitly considers the effects of harvesting a popula-

tion exhibiting a metapopulation structure is that of Quinn, Wing and Botsford (199a)

on the red. sea urchin, Strongylocentrotus franciscanzs, fishery of California. The red

sea urchin is a benthic marine invertebrate that exhibits broadcast spawning and pela-

gic larvae. Evidence suggests that both pre and post-dispersal Allee effects are an

important feature of urchin population dynamics. Fertilisation success decreases signi-

ficantly with adult separation. The authors suggest that densities need to be greater

than one spa\¡/ner per metre for successful larval production. Furthermore, the pres-

ence of adults is believed to enhance larval settlement success. The adults' canopy of

spines protects juveniles from predation (Tegner and Dayton, 1977).

Quinn et al rnodel the metapopulation dynamics with deterministic. differential

equations. Adult densities are nondimensionalised so that the population density of

local population i at equilibrium is given by r?¿ : 1. The first model considers pre-

dispersal Allee effects. The function /(-R¿) : rR¿lQ¡ 1&) represents the per capita

reproductive output, which decreases with small population densities. The paramet-

ers r and zÍ are constant. The fraction of larvae that successfully disperse from local
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population to another is given lry *, with (1 - rn) remaining in the parent local popu-

lation. The harvesting intensity, h is partitioned between locai populations according

to the fraction k, where (1 - k) is the proportion of harvesting effort allocated to local

population 2, and ,k is allocated to local population 1. In this way, the authors are able

to investigate the efiect of a harvest refuge (k : 0, 1) on metapopuiation dynamics and

yields. The model is,

+ : Q-m)f(Rr)Ër r mr(Rz)Rz- dRt - "R?-kh%t (1'65)

# : e-m)f(Rz)R2+mf(R)R1 -dvz-"R7- (1 - k)hR2, (1.66)

where c and d are constants associated with mortality'

If post-dispersal Ailee effects are considered (ignoring pre-dispersal Allee effects,

¡çR;): r), the model is,

4L : g(A,X(i - m)rl1* mrTz\ - dI,r - "R? - khh (1.67)
dt

# : g@z){0 - m)ru2 | mrzl} - dTz - "R7- (1 - k)h%2, (1.68)

where the effect of adult presence on larval recruitment is given by the function g(R¿) :

R;lQn * R;).

The equilibrium behaviour of the system is then considered. Results for the first

model suggest that unless a harvest refuge exists, excessive harvest pressure can lead

to extinction. The maximum sustainabie yield is obtained when the harvest ìntensity

applied to the local populations is equal (k : 0.5). However, a small increase in effort

produces a dramatic reduction in abundance, and eventual extinction. Similar results

are found for the post-dispersal Allee effect model, except that harvesting pressure can

be marginally greater before collapse, and an asymmetric harvest (k I 0.5) produces

the maximum sustainable Yield.
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The two-patch models described by Quinn et al are followed by a more complex

cleterministic simulation model that includes age and spatial structure. The model is

appliecl to a hypothetical red sea urchin metapopulation composed of twenty-four local

populations that run parallel to a linear coastline. Four age-classes are considered:

zygotes, juveniles, subadults and adults. The zygotes disperse to other sites (local

populations), remain in the site of origin or are lost to the system. The proportion of

the larvae that successfully migrate to surrounding sites is varied between 0.1 and 1%,

as is the sedentary larvae. The migrating lalvae are evenly distributed over an input

numbel of the surrounding sites. Similar results to the plevious analyses are found,

including that harvests can cause the population to become extinct if there are no

refugia in the metapopulation. If a reserve is allocated to every other local population,

or every third local population, then the population persists under intensive harvesting

but collapses if reserves are allocated to every sixth local population. Larger harvests

are procluced without reserves, but this requires strict control of harvesting effort, as a

small increases in effort leads to population extinction. Results also show that reser-ves

increase the time to extinction, and, as the authors suggest, this provides time for the

adoption of alternative sustainable management policies'

The models presented in this thesis differ from those of Quinn et al (1994) and

the other authors mentioned in this section in several important respects. We model

spatially structured populations with juvenile and/or adult migration using coupled dif-

ference equations. We are then able to consider explicitly the effects of non-symmetlic

migration on optimal harvesting strategîes. We include iocal population dependent

harvesting costs and find analytic solutions that maximise the present value of the net

revenues obtained from each local population. We compare our results with alternative

management policies based on conventional single population harvesting theory. In this

way we are able to identify the potential economic beneflts of our theory and the costs
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of incorrect harvesting policies, and determine the circumstances which may lead to

over or under-harvesting of the local populations. Finally, we compare the harvesting

strategy of each local population to obtain a rough guide to the relative harvesting

intensity required.

1-.6 Assumptions

In this section we briefly outline some of the basic assumptions of the models that

follow. Although restrictive, many of the economic and biological assumptions are

made to simplify an otherwise complex system, and to facilitate mathematical analysis

and interpretation.

Economic assumptions consistent throughout the thesis include the maximisation

of discounted net revenues, perfect fleet malleability, myopic revenue expressions and

the ability to selectively harvest the local populations.

Maximisation of present value is generally considered to be the objective func-

tion with most applicability in real world fisheries, and is superior to the objectives

of maximum sustainable yield and the assumption of open-access harvesting (Clark,

1gg0). However, other factors may have a significant influence on the choice of ob-

jective function; most notably these are social objectives (e.g. to keep the abundance

of a population such as whales above certain socially acceptable thresholds) and in-

dustry objectives (e.g. minimising the variance of yield, maintaining employment and

financial viability).

We assume perfect fleet malleability, (e.g. transfer of vessels between fisheries), and

myopic net revenue expressions, to facilitate mathematical analyses and interpretation

of results. We assume that harvesting can be regulated according to the individual local

populations of the metapopulation (selective harvesting); and that costs are local-
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population clependent. Whether regulation on a local population basis is feasible is

likely to depenc{ on the dimensions of the metapopulation. A geographically large

metapopulation with local population separation in the order of kilometres, will be

more easily regulated than local populations with smaller separations. For marine

populations where harvesting is site-specific, such as sedentary benthìc invertebrates,

selective harvesting is likely to be feasible'

Many of the analytic results are derived with the assumption of negligible halvest

costs, or that costs are constant for any population density. The costs associated with

harvesting will rarely, if ever, be negligible, and, as mentioned, some species of clupeid

are harvested with approximately fixed costs (Munro, 1992). This assumption allows

analytic insights into the behaviour of the system, and many of the conclusions appear

(from numerical examples) to be robust to the inclusion of density-dependent costs.

A more detailed economic model including vessel restriction, multiple jurisdiction,

employment and investment could be informative; however, these factors are likely

to cloud the general relationships that we seek regarding immigration and emigration.

Thus, a basic economic model is considered so we can concentrate on the main extension

of the thesis; namely the effects of metapopulation structure on optimal harvesting

policies.

As with the economic conjectures, several biological assumptions are made to sim-

plify the complexity of the environmental system and facilitate analysis. All models

considered here use discrete-time rather than continuous-time. As explained earlier'

many biological characteristics (e.g. discrete spawning events, delays) are most easily

described in discrete-time, as is harvesting. Thus, we assume that harvesting occurs

soon after a "census" of the population and before reproduction (inter-period dynamics

can be modelled in continuous-time (Clark, 1990)).

Commercially harvested metapopulations are likely to have significant interactions
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with other species. Multi-species, or metacommunity, harvesting models are not con-

sidered due to their inherent complexity (Mesterton-Gibbons, 1987; Mesterton-Gibbons,

1g88; Clark, 1990). Detailed age-structure is also not explicitly analysed; however

Chapter 3 considers a simple age-structured population where juveniles experience

a delay of arbitrary length before attaining sexual maturity (Clark, 1976; Getz and

Haight, 1939).

The metapopulation models that we adopt are coupled difference-equation models 
"

where local population abunclances are explicitly defined in the state spa,ce. We do

not consider presence-absence metapopulation models, as these are not amenable to

harvesting analysis. Our metapopulation model is an extension into two dimensions of

the basic discrete-time single population harvesting model, Rn+r: F(Rr - 11*). W"

assume density-independent migration between local populations. This is the simplest

form of migration that allows an intoductory investigation of metapopulation dynam-

ics. Density-dependent migration, for example, where the range of migration increases

with abundance (due to space-limitation), decreases with abundance (due to a lack of

territories (Hansson, 1991)) or where migration acts to even out variations in density

across the metapopulation (Hilborn and Walters, 1987), add further complexity to the

models, and are an area of future research. We assume that the migration parameters

can be chosen to represent either distance effects (e.g. successful migration decreasing

with local population separation (Hanski and Thomas, 1994)) or local environmental

effects (e.g. water currents). The models that we present emphasise the effects of non-

symmetric migration between local populations which is indicative of heterogeneous

environments

The chapters that follow include several numerical examples. The main purpose of

these examples is to explore the behaviour of the system in greater detail than would

be possible using analytic methods and to present results in an understandable fashion.
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Examples are used to compare numeric results with analytic solutions, and to investig-

ate the effect of harvesting strategies across a broad range of parameter values. Explicit

use of data is not used here. As Polacheck (1990) observes, the literature contains little

quantitative information on movement rates, and so the model parameters that \Ã'e use

here are estimates, chosen to reflect possible real world applications. For all examples

we assume that the unharvested equilibrium abundances are locaily stable' A more

cletailed analysis of local stability can be found in Agnew (1932) and Fisher (198a) for

analogous multi-species models. In most discussìons we assume that the models apply

to marine or- freshwater fisheries. However, the models are generic ancl applicable to

terrestrial systems where the assumptions are acceptable'

No environmental or economic stochastic effects are considered; we only consider

deterministic dynamics. Including random events and parameter uncertainty would

certainly be informative and be an important improvement for future models. Fisheries

abound with uncertainty and ther-e is wide scope for the inclusion of stochasticity

in these models. Metapopulation theory emphasises the importance of variability in

local extinction and recolonisation. The effects of harvesting vulnerable populations is

important for the sustainable management of metapopulations as a whole. For example,

recovery from local catastrophes (e.g. overfishing, oil spillage), a stochastic event itself

(Reec{ and Echavarria, 1992), may be reliant on immigration, and practical harvesting

policies will be required. As important as stochasticity may be, this thesis presents

new theories about the management of spatially structured populations; the simple

rules generated from deterministic dynamics give valuable insights for management.
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Chapter 2

Optimal harvestittg strategies for a

metapopulation

In this chapter we extend Clark's homogeneous population model by assuming the

existence of two local populations which, due to the migration of juveniles between

them, form a metapopulation (see Figure 2.1). The metapopulation concept allows us

to introduce spatial heterogeneity into the model. Local populations can have different

growth and mortality rates, reflecting geographic variability. This chapter presents

the first work to find analytic optimal harvesting strategies for a spatially structured,

single species population with juvenile migration between occupied patches of habitat.

It is clear that many species occur as metapopuiations. In Australia, harvested spe-

cies like abalone have a well-deflned metapopulation structure (Shepherd and Brown,

1993). Other marine populations, such as scallops, sea hares, cod, starfrsh, urchins and

prawns, also have spatially structured populations containing local populations that ex-

perience immigration and emigration of individuals (Fairbridge, 1953; Pennings, 1991;

Frank, 1gg2; scandol and James, 1992; o'Brien, 1994; Quinn et a1.,1994). We cannot

expect the environment of a population to be homogeneous, nor to be unstructured
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spatially. Due to environmental heterogeneity, local populations experience different

conditions and hence population parameters will vary between local populations.

In this chapter we assume that the fished population is a single species, composed of

two well-mixed, spatialiy homogeneous sub-populations which we shall henceforth refer

to as local populations. The local populations are connected by the dispersal of juven-

iles and together form a metapopulation. In this introductory chapter we concentrate

on the case where there are just two local populations, so as to assist the interpret-

ation of results. Chapter 6 extends the results to N local populations. We assume

that the metapopulation is exploited by a single owner or authority. Managers are able

to uniquely define the local populations and we assume that regulation measures can

be applied to the individual sites (examples where reproductively isolatecl stocks are

harvested and the individual stock abundances either can or can not be identified are

considered by Hilborn (1976; 1985); see Chapter 1).

12

P,,

FrcuRB 2.1: A. metapopulation with two local populations. The circles represent the

local populations, and the proportion of juveniles migrating from local population i

to j in each generation is given by p¿¡.

We begin by describing the metapopulation using coupled deterministic difference

equations. The state space is composed of the abundances of these local populations.

Following Clark (1976), we establish an economic framework and use dynamic pro-

gramming to flnd optimal policies for the maximisation of the discounted net revenue

obtained from both local populations. Results are discussed with simplifying assump-

p

P,,

P,,
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tions which facilitate analytic comparisons between the local popuiations and with

alternative policies that are made without the managing body recognising the meta-

population structure of the stock. These results are interpreted in relation to some

simple local population classifications, and are illustrated with specific examples.

In this model we assume that adults are sedentary and that after a period of spawn-

ing, larvae produced by the adults of the local populations either remain in the parental

population, move to the other local population or are lost from the system. A model of

this form may be most applicable to benthic marine invertebrates with pelagic larvae,

commercial examples of which include urchins (Quinn et a\.,1994), scallops (Fairbridge,

1953; Brand, 1991), abalone (Brown and Murray,l'992; Shepherd and Brown, 1993),

oysters (Matthiessen, 1991) and lobster (Hill and white, 1990).

Features of the results include the conservative harvesting of relatiue etporter and

relatiue source local populations in comparison to alternative incorrect harvesting

policies. A relative exporter is defined as the local population that exports more larvae

per capita than it imports. A relative source is the local population that produces the

greater per capita number of larvae. Relative source local populations should also have

the larger equilibrium population level (escapement) of the two habitats.

Under some circumstances we find harvesting policies that require a negative har-

vest from one (the relative exporter) of the local populations. This situation does not

arise in conventional single population optimal harvesting theory. If we interpret a neg-

ative harvest as an optimal seeding policy, then our results suggest that stock should be

placed in a local population to enhance abundance for future harvests. Seeding poptl-

lations is a common (where flnanciaily feasible) stock management procedure in many

fisheries, for example, abalone and scallop populations in Japan. Schiel (1992) quotes

frgures from the Iwate Prefecture Mariculture Centre that from 1984 to 1986, over 30%

of the total weight of caught abalone was seeded stock, with rearing programs releas-
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ing hundreds of thousands of seed abalone per year (see Tegner and Butler (1992)).

Scallops have had artificially replenished stocks in Japan's Mutsu Bay for many years

now (Aoyama, 1g88). Salmon ranching is used on the west coast of North Amer-

ica to enhance Pacific salmon production (Pitcher and Hart, 1987; Brannon, 1984).

Enhancements are also used to replenish depleted stocks (Tegner, 1992; Mackie and

Ansell, 1gg3). If a negative harvest is infeasible, we discuss a method for eliminating

the possibility of a negative harvest and negative harvests are discussed further in the

Closing Remarks of this chaPter.

2.L Theory

Assume that adults do not migrate between local populations. The adults produce

juveniles, e.g. larvae, of which a proportion remain within the natal local population,

a proportion migrate to the connected local population and the remaining juveniles

are lost from the system. The migrating juveniles become members of their new local

population and, together with the sedentary juveniles and adults, form the adults of

the following generation.

2.L.1 The basic model

Assume that the two ìnteracting local populations can be modelled with the following

population equations,

Rt*+t : 6t&tn * p¡G{Rtn) I pztGz(Rz*) (2 1)

Rzk+t

where R¡n+t is the number of fish in the i¿h population at the beginning of the k + 1rà

period. The proportion of adults surviving per generation in the ith iocai population
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ìs represented by ó¿ and p;¡ is the proportion of the juveniles produced by population i

that recruit to population j. Assume that the remaining proportion of the juveniles of

population ,i) ei) ar:e lost from the system) so pil I p;z I €¿: I' The function G¿(R¿¡)

is the recruit production function for population i. For example, we might assume a

logistic form for the recruit production (as in chapter 1), namely

G¿(R¡n) : r¡R¿t (l - R;nIK;), (2.3)

where r¿ is a growth rate and K¿ \s a form of carrying capacity that causes density de-

pendence in the per capita growth rate of local population i. Abundance in a particular

local population thus increases with adult survival, juvenile retention and immigration'

The local populations are harvested, H;¡,, and the escapements s* : R¡n - H;*

then grow according to equations (2.1) and (2.2) to R¿¡¡1. Thus, including harvesting,

equations (2.1) and (2.2) become,

Rtt+t : ðr,9r¡ * ptGt(,9t¡) + pnGz(Szn) Q'4)

Rzt +t : 6zSzt l pnGJS*) I prrGr(Srn). (2 5)

Now, using the escapements, ,9¿¡, as the control variables, our objective is to maximise

the present value of net revenue over ? seasons, namely maximise

T

P.V. : Ð "r | II;(R¿¿, S¿¡),

t

k=0 i=l
(2.6)

subject to equations (2.4) and (2.5) and 0 ( ,s¿¡, 1 R¡*. The function II¿(-R¿¿, s¿¡,)

represents the net revenue from harvesting local population i.

Equation (2.6) is similar to equation (1.16) except that the discounted net revenues

from both local populations are added to form our present value expression. As before,

o is a discounting factor. The net revenue produced in period k from a harvest of H¿¡"
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from local population i is,

tr¿(R¿t , s¿n) : [l'r @ - c;(r)) d,n, (2'7)
J S;x

where p is the price of the stock and c¿(r) is the cost of harvesting a unit of stock from

local population i when its abundance is r. See Clark (1990) for a detailed derivation

of the singie population anaiogy of equation (2.7). The cost of harvesting can vary from

local popuiation to iocal population. Local populations may have different harvesting

costs associated, with them due to factors such as the cost oftravelling to the population,

clifierences in weather or depth to the population, or even risks to health (Hilborn and

Kennedy, 1gg2). However, we shall assume that the price of the harvested stock is

independent of its source.

2.L.2 Derivation of the optimal harvesting strategy

Dynamic programming is used to determine the optimal harvesting strategy. We assign

the value function, Jr(Rto,.R2¡), as follows

T2
Jr(Rro, Rzo) : 

o<f_T*,* Ð 
r* Ð tro(Ro*, s,*)' (2 8)

The value function is the sum of the discounted net revenues from both local popula-

tions up until season T, maximised by an appropriate choice of the escapements S¿¡,'

The value function depends on the initial local population sizes, R1s and .Rzo.

A recursive equation in terms of the value functions is then obtained from equa-

tion (2.8),

/2 \
Jr+t(Rto,Rzo): oag.þ,.(f n;iar,,S¿o) * aJ7(R11,R r)). (2.9)

Equation (2.9) is Beliman's equation (Bellman, 1957). This expression states that

the value function with time horizon ? * 1 is the maximum of the immediate returns in
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the first period plus the returns from future harvests if the local populations' abund-

ances move to ,Rrr and .Rzr. This maximum is achieved by an appropriate choice of

the escapements S¿s.

Consider first the value function with 7 : 0, i.e. our objective is to maximise our

immediate net revenue without any consideration of future generations. In this case,

t

Js(R1s, R2s) : max_ I no(r?0, ,S¿o)
O1S;s1R¡s a-

z=l

2

D IIo(Aoo, &-), (2.10)

(2. 1 1)

(2.r2)

i=l

where ,9¿." is called the zero net profit level for local popuiation i and is chosen so that

p - c¿(S¿*) : 0 and harvesting a local population from -R¿o down to S,oo will produce

the maximum possible profit from that local population.

For the next time horizon T : I we obtain the following recursive equation,

h(Rrc, Rzo) osf.Ë*. (É n'to"' s¿o) -f ."ls(R11''o"))

o5S.-?ä,, (å n,,o,,, s¿o) + "{å n¿(R;','s¿"")

Equation (2.11) is maximised by partial differentiation with respect to Sro and ,Szo.

Define V(Rrx,,R2¡) as follows,

2

V(R*,, Rz*) ! II¿(-R¿¡, S¿-)
i=l

nl::(p- c¿(r))d'r'

where

ôr,Sr¡,-r t prrGr (Srr-r) + pztGz(Srn-t)

615r*-, * pzzGz(Sz*-r) + pnGr(Stn-t)

Rtn

Rz*
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Thus, partially differentiating the first summed term in equation (2.11) with respect

to S¿s, we find
ôIl¿(,R¿o,S;o) t to

osoo ' -(P - c¿('s¿o))' (2'13)

Noting that,

av( Rtt, R t) (p - "r(Rr'))(ô' * pnG|(Sto)) + (p - "r(R t))przG|(Sro), (2.14)
ô,9r0

and similarly for ry\HPù, we obtain

aJ(Rrc, R2o)

0Sn

0J(Rrc, Rzo)

0 Szo

-(p-c1(,S1s)) +a

-(p-c2(S2s))¡a

f(r - .,{air))(á1 * prG'1 (s'o))

+ (p - "r(R r))Prrcl(S,.)]

l@ - øf nzr))(62 i p,,G'r(s,o))

+ (p - ,r(Rrr))Pzrc;(Srr)f

0

-0

After minor rearrangements, we produce equations (2.15) and (2.16),

1 (ðt * pttG'r(S'o))(p - cr(Ërr)) * ptrG't( Sto)(p - cz(R r))
p - ci(Sro)

(2.15)
Q

(6, * prrGr(S^) )(p- "r(Rrr)) * puG',z(Szo)(p - "'(,?")) (2.16)
P - cz(Szo)

These equations are generalisations of the optimai harvesting equation for a single

population. If we remove migration by setting p¿j :0 for i I j and assign F'(S) :

6¿ I p¿¿G'¿(S¿) then equation (1.25) is recovered. From equations (2.15) and (2.16) it is

possible to find the optimal escapements, ^9fo 
and ,9i'0, for each local population. There

are also second derivative conditions which must hoid to ensure a maximum,, rather

than a minimum or turning point. These conditions are given in Appendix 1.

Equations (2.15) and (2.16) hold for all time horizons T >- l. To prove this we

adjust Clark's (1976; 1990) proof for the analogous single population case. R.ewrite

1 :
d.

58



Jr(Rto,,R2s) as,

Jt(Rro,, Rzo) : V (Rro, Rzo) - V (Sro, Sro) * aV (R11, R2y), (2.I7)max
0(S;o (R;o

where V(R,*,-R2¿) is defined by equation (2.I2). Assume that we have found optimal

escapements, ,Sfo and ^9j0, from equations (2.15) and (2.16). Equation (2.I7) becomes,

Jr(Rro, Rzo) : V(Rro,, Rzo) - V(Sio, ,9io) + aV(Rir, R\r), (2.18)

where the star in the terms .Rf, indicates that they are functions of the escapements,

,9,f,. Consider the next time horizon, T :2,

Jz(Rn, Rzo) : 
o.3li,T*,.

v(Rro, Rzo) - V(Sto, Sro) * aJ1(R¡, R21)

v(R o,, Rzo) - 7(Sro, Sro)max
0(5;6lrR¿6

+ a(v @rr, R r) - v (sîo,säo) + av (Ri, R;r))

- -qÌal V (Rro, Rzo) - V(,9r0, ,Szo)
0(S;o (R;o

+ a(v (atr, Rrr) + A(.9î0, .9;o))

Jr(Rro,,Bro) * aA(Sio, Sio) (2.1e)

when maximising J"(Rrc,,R26) with respect to ,sro and ,s26, the term A(sio' sl'o) is

constant, and we simply maximise Jr(Rro,,R2¡). Thus, the maximisation of J2(R1s, R2s)

is mathematically equivalent to maximising fi(r?ro, Aro), and so we produce the same

optimal escapements, Sio and ,Si6. This is also true for time horizons T ) 2, and so

the optimal first-year escapements are independent of the time horizon considered.

2.L.3 Optimal negative harvests

The optimal escapements will depend on the initial population levels, ,Rro and R2o- If

R¿o ) Sfi then the optimal harvest is /fi - R¡o - Så. However, if ,R¿o < .9fr then

't
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population i will have escapement r?¿6, and there is no harvest from local population

i. This assumes that the optimal escapements produce harvests that are non-negative,

or equivalently, that \1 R¡o < Så then local population i will experience an increase in

abundance when optimally harvesting.

Unlike the analysis of single population exploitation, it is possible that one of the

optimal escapements will produce negative harvests, even if Ê¿o > Så. Thus our

globally optimal solution may be infeasible unless we can produce a negative harvest,

by placing stock into the population rather than removing stock. This halvesting

strategy is called seedi,ng and is used to restock depletecl populations ol to enhance

stocks for future harvesting.

Assuming that a negative harvest is impossible, we should harvest no stock from

that local population. Thus we can still maximise ,/r as deflned by equation (2.11)

(assuming that the concavity conditions in Appendix t hold) by setting Ht; :0 and

searching along the curve determined by this constraint for the maximum of the surface

definecl by equation (2.11). In general it will not be optimal to remain harvesting at

^9;o if local population i has a globally optimal negative harvest. Thus we produce new

optimal escapements Sfl ""d .9já. A numerical example of a globaily optimal negative

harvest is given later in this chapter. We discuss the feasibility of negative harvests

in the Closing Remarks of this chapter, and an analytic solution to the non-negative

harvest problem is produced in Appendix 4'

Equations (2.15) and (2.16) are sufficient to find optimal harvests; however they

give little indication of their meaning. In the foilowing sections we make simplify-

ing assumptions to help further our understanding of the optimal harvesting policies

suggested by the equations.
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2.2 Discussion of the two local population results

To facilitate interpretations of the above results, we defrne two types of local popu-

lation according to their per capita larval production. The assumption of negligible

costs is then used to produce analytic results that can be readily interpreted' Finally,

examples comparing optimal and sub-optimal strategies for the costs and no costs case

are examined.

2.2.L Local population classifications

Before proceeding with the no costs theory, we make two biological classifications of

local populations according to their per capita larval production, i'e' the number of

larvae produced per individual in a local population'

Relative exporters /imPorters

Firstly, consider a local population, say local population i, that exports a greater per

capita number of larvae to the other local population, locai population j, than local

population j exports to it. We call such a local population a relatiue erporter IocaI

population. Mathematically it is a local population i with

r¿p¡¡ ) r¡p¡; vj+i. (2.20)

Similarly, a local population that imports a greater per capita number of larvae than

it exports we call a relatiue importer local population and it is defined by reversing the

above inequality. For the two local population case, if local population i is a relative

exporter then local population j is a reiative importer'
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Relative sources/sinks

Consider a local population whose per capita larval production is greater than the

other local population's per capita larval production. We call this local population a

relati,ue source local population and mathematically a relative source local population

i has

,o(I-e¿)>r¡(1'-e¡) Vi+i' (2'21)

Ã relatiue sinkis the local population that has the smaller per capita larval production

and it has r¿(1-.0) < ,¡(l- e¡). For the two local population case, if local population

i is a relative source then local population j is automatically a relative sink.

2.2.2 No costs analysis

Assume that the cost of harvesting the resource is either negligible or independent of

the density and local population. Equations (2.15) and (2.16) respectively simplify to,

ó'+Gi(Si)@"Ip'r) (2.22)

6z+G"(Si)(prr*prr), (2.23)

where si is the optimal equilibrium escapement for local population i.

Assume that Gi'(S¿) ( 0 so that these equations determine no more than one

solution for ,Si. For example, assume logistic growth for G¿(S¿¡) of the form seen in

equation (2.3). In this case the optimal escapements are,

si: K1 I{t(1 +d-ô1) (2.24)
2 2r1 (prt t ptr)

S;: Kz Kr(r*d-62)
2rz (prr l prr) '

satisfled.

1 :
a
1 :
a

2

and the conditions for a maximum are
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A comparison of the above equations with the escapement derived for the optimal

economic harvesting of a single population shows that if we set r: r¿(p¿¿ *p;¡) then

the equations aïe of the same general form.

Comparisons with incorrect harvesting policies

The theory generates optimal harvesting policies, but we may be interested in how the

policies differ from those predicted by existing single population theory. There are two

possible incorrect harvesting policies that could be employed if the metapopulation

structure has not been recognised. Firstly, the local populations themselves have been

recognised but they are believed to be reproductively isolated, i.e. recruitment is as-

sumed to be local and there is no migration between the stocks (see (a) of Figure 2.2).

Secondly, the metapopulation is incorrectly assumed to be a well-mixed single popu-

lation, i.e. a population with reproductive interactions equally likely across the whole

population (see (b) of Figure 2.2).

We would then like to know under what circumstances the metapopulation es-

capements are iarger (or smaller) than the escapements used if the metapopulation is

mismanaged, and if the local populations are over or under-harvested. For the follow-

ing analyses we assume that the optimal escapements defined by equations (2.24) and

(2.25) produce positive harvests.

Assume that the two locai populations have I{t : I{z and that the local popu-

lations are harvested as two unconnected single populations. Further, assume that

observations of a local population suggest that its growth rate, r¿", would be measured

ri":ripii+rjpjij (2.26)

if we did not know that the population was connected by migration to another local

AS
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Frcunp 2.2: a) Two unconnected single populations with their estimated growth

rates. b) A well-mixed single population with its estimated growth rate.

population. This is essentially the "flow in" to local population i. The estimate assumes

that the growth rate is measured from the sedentary juveniles of local population i

and, unwittingly, the immigrants from local population j. It also assumes that the

population sizes are roughly equal, and that measurements are made after clispersal.

A suggested. alternative pre-dispersal measure of the growth rate, r¿s : r¿(p¿¡ *p¿¡), is

not employed here, as measuïements made before dispersal are not likely to be able to

predict with confidence the proportion of juveniles that successfully migrate or remain

within the parental population, i.e. the migration parameters p¡¡.

The optimal escapement of local population i derived from metapopulation har-

vesting theory will be larger than that from unconnected single population harvesting

theory, ,Si > Så, if r¿p¿¡ > rjpji. If this inequality holds for local population i then

the reverse is automatically true for the other local population, i.e. if ^9i > Si then

Sî < Si for i + j. We conclude that relative exporter populations will be over-

harvested if unconnected single population harvesting theory is the preferred guide to

managing the stock, while relative importer populations will be under-harvested. The
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sum of the optimal escapements from both local populations will be greater than the

sum of the escapements when the populations are believed to be unconnected single

populations, ,Si * S; > ^9i" + S;", if r¡p¿¡ > ripi¿ and r¡p¿¿ 1 rip¡¡ (see Appendix 2)'

Thus if the metapopulation is a relative exporter/importer system with the relative

exporter local population retaining fewer of its larvae per capita than the importer

local population, we should leave more of the total stock than if the metapopulation

were managed as two unconnected populations.

The metapopulation could also be managed as a well-mixed single population. In

making a comparison of the optimal escapements for the local populations we estimate

the escapements for the local populations from the single population theory by dividing

the single optimal escapement by two (we are assuming Kt : Kz)' For simplicity,

assume that ôr : ðz and that the growth rate measured for the single merged population

is the average per capita juvenile production,

rt(pt I pn) I rz(pzz t pzt) tq ,i\,-,:T
The escapement from local population i will be larger than the estimated optimal

escapement from single population exploitation, Si > ST,l2, if r¿(p;¿ -f p¿¡) s rLt

i.e. ,o(I - ,n) , r¡(I - e¡). We conclude that, to harvest the metapopulation as a

well-mixed single population will over-harvest relative source populations and under-

harvest relative sink populations. The sum of the optimal escapements from both

local populations will never be greater than the escapement derived from the well-

mixed single population exploitation, i.e. ,si + ^9; < sL (see Appendix 3). Thus a

metapopulation that is managed as a well-mixed single population may be harvested

too conservatively.
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Comparisons between local populations

Finally, assume that we have recognised the metapopulation structure of the stock.

We would like to know how a particular local population's escapement differs from the

other local population's escapement. In this way we can develop rough guides that

determine how heavily different stocks should be harvested.

For example, assumin B Kt : K2 and 6t : 6, and that r¡(p¿¿ * pij) > r¡(p¡¡ I p¡¿),

(or r¿(1 - ro), rj(I - e;)), then^9i > S;. This means that relative source populations

shoulcl be harvested more conservatively than relative sink populations. If a local

population has no juvenile production at all or there is total juvenile wastage frotn

that local population, i.e. ei : I, then that local population should be completely

harvested, Si : 0. For example, if migration were uni-directional such that p¿¡ ) 0

and p¡. : 0 then we should fully harvest local population 7. Uni-directional migration

may be observed in a river hatchery/put and take fishery where the source is the

hatchery and the sink local population is the fishing ground. Oceanic currents may

also produce juvenile migration that is uni-directional (Pennings, 1991).

The escapement for local population i will also be larger than that of local pop-

ulation j, Sî > S;,\f Ii¿ > K¡ or 6; ) 6¡, if all other population parameters remain

equal. (These conditions are analogous to increasing a single population's size or adult

survival, as can be seen from equation (1.28)). Thus, local populations that produce

a large per capita number of larvae, have a large density-dependence parameter K¡,

or- have low adult mortality, should be harvested more conservatively than those local

populations that do not. Howevet, if one local population has, say, a larger Iv- but is

a relative sink then there is a trade-off in escapement sizes.
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Examples

In the following sections we use numerical examples to investigate the harvesting be-

haviour of the models in more detail. The initial examples consider the numerical

iteration of the dynamic programming equations. The results are compared with the

analytic conclusions to confir- (u) that the optimal harvesting strategies are given by

equations (2.15) and (2.16), and (b) that the optimal approach to equilibrium is in-

deed the most-rapid-approach. Specific examples are then considered to facilitate the

interpretation of the optimal harvesting results and the incorrect harvesting policies'

The initial examples assume negligible costs, and then costs are included in the latter

examples. The main effect of including costs appears to be an increase in optimal

escapements (a zero escapement is not possible for the cost function that we consider).

The general behaviour of the models remains the same, as does the harvesting results.

2.3 Examples with no costs

2.3.t Iteration of the dynamic programming equations

In this example we compare the analytic results with optimal escapements obtained by

iterating Bellman's equation. Suppose that we wish to harvest the two local populations

of a previously unharvested metapopulation. We can express the migratory parameters

using a migration matrix where the (i, j)th entry is the proportion of juveniles migrating

from local population i to local population j. I" this example, the local populations'

dispersal is represented by the migration matrix,
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T¡SLO 2.1: Escapements and halvests from iterating the dynamic programming

equations. The left hand column is time to go, and so T = 5 is the Present or initial

period.

The juvenile production function is logistic, with growth rates 11 - 12: 10, adjus-

ted carrying capacities 1{r - Kz :200 and adult suïvival pel period 6t : 6z: 0.1.

Thus, local population 2 is a relative source/exporter, while locai population 1 is a

relative sink/importer. The unharvested equilibrium population sizes are Ër : 133 for

local population 1 and Rz:I05 for local population 2. The discount rate is 10%.

The optimal escapements from the analytic solutions, equatìons (2.2\ and (2.25),

are ,gî : 50 and Sä : 60, with equilibrium harvests, Hî :56 aìd Hî : 26. Thus

we protect the relative source/exporter local population and more heavìly exploit the

relative sink/importer local population.

We can compare the above analytic solutions with the solutions obtained from

iterating Bellman's equation, equation (2.9). The escapements and harvests produced

are shown in Table 2.1.

As we do not consider generations after the frnal period, the terminal period's

escapements for both local populations are zero. The initial conditions are the unhar-

vested equilibrium population sizes, Êr : 133 and ,Rz : 105. The equiiibrium escape-
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ments found are ,Sf : 50 and Sî : 60, with harvests 'Ili : 56 and Hi :26' Thus' the

analytic and numerical solutions produce the same optimal harvesting strategy. Note

that the optimal escapements, ,Si and ,S{, hold for all time horizons T } 0, as expected'

2.3.2 Variation of the migration parameters

In this example we consid,er the behaviour of our analytic results, equations (2.24) and

(2.25), as the juvenile migration parameters, Ptz and pzt' vary' This allows greater

insight into the effect of migration on escapements and harvests. Only the migration

parameters are varied; all other parameters remain constant. We only consider the

analytic solution, as numerical solutions are not facilitated by the large state space'

Assume that the metapopulation shows logistic juvenile production, with paramet-

€rs ?-1 - 12 : 1000, Kt : I{z :400000 and adult survival 6, : 6z : 0.001. The

cliscount rate is 10%, and we assume that costs are negligible. The migration matlix

IS

P-
0.001 ptz

Pzt 0.001

A contour plot of the optimal equilibrium escapements of local population 1 is

shown in Figure 2.3. The escapements of local population 2 ate not shown as they

can be found by reflecting Figure 2.3 about the line Pn : p21. LocaI population 1 is

a relative source/exporter if the point (pn,pzt) is below the line Ptz : p21, arld it is a

relative sink/importer if above.

We can see from Figure 2.3, and from equatîon (2.24), that the escapement of local

population 1 is independent of pzt. We can explicitly define the change in the escape-

ment for a particular change in the migration variables by using partial differentiation.
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FrcuRp 2.3: Ã contour plot of the escapements of local population 1 as a function

of the migration parameters. Numbers on the contours are escapements x103' The

escapements of local population 2 can be found by reflecting the contours about the

line p12 = Pzt.

For example, the rate of change of ^9i with respect to p¿i, is given by

asi
0p¿¡

t{¿( I+d-6t) (2.28)
Zr¿(p¿¿ + p¿¡)2

For the parameters of our example, this equation simplifies to,

asi : 219.8

0p¿¡ (0.001 * p¿¡)2
(2.2e)

Thus, with an increment in pn of 0.0005, we expect a change in the escapement of

approximately 49 000 near Ptz :0.0005, and near Ptz :0.002 we expect a change of

approximately 12 000. Indeed, this is observed in Figure 2.3. Thus, for a particular

increment, small p;¡ vaiues have a greater effect on the optimal escapement than larger

values of pij. As far as management implications are concerned, if P;¡ is iarge, then

uncertainty about its exact value should not influence the choice of escapement as much

as it would 1f P¿¡ wete small.

In Figure 2.4 we plot the contours of the equilibrium harvests of local population 1.

In the lower-right of Figure 2.4,local population 1 is a strong relative source/exporter,

and this produces an optimal negative harvest. If we consider a negative harvest as
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Frcuno 2.4: Contours of local population t harvests as a function of the migration

parameters. Numbers on the contours are harvests x103'

being equivalent to seeding the population, i'e. placing stock into a local population

rather than taking stock out, then the optimality of a negative harvest suggests that

strong source/exporter local populations should be used to "boost" or enhance stock

abundance in harvested sink/importer local populations. Note that the seeded stock are

adults, and. so they become part of the spawning stock abundance of local population 1'

As shown for the optimal escapements, we can explicitly define the change in the

harvest as the migration variables change. Recall that the equilibrium harvest of local

population 1 is,

Hî: ôl,sî + ptGt(sî) + pnGr(Si) - si, (2'30)

where .9f and ,9i are the optimal equilibrium escapements given by equations (2.24)

and (2.25). Partially differentiating the harvest with respect to p12, we obtain,

aHi /{r(1*d-6r) (2.31)[4, -1+;+;(1+d-6,)],L ptlPtz7prr- 2rr(pttlpn)2

and similarly, partial differentiation with respect to pzt yields,

rz(pzz I Pzt) +2(t+o-62)
2

7T

(t + d- 6r) (2.32)



For the parameters of our example, equation (2.31) simplifies to,

aHi : 219.8

7prr- (0.001 lpn)2
0.001( 1.()ee)

-0.999 + (2.33)
0.001 1p12

Thus, we expect a decrease in harvest of approximately 13 000 for a change in p12 of

0.000b rreàr ptz: 0.0005, and near pt2 : 0.002 the decrease is approximateiy 7 700.

Figure 2.4 confrrms these results'

Similarly, equation (2.32) reduces to,

AHT

oPrt

2r9.8
- (0.001 I pz')2

( P" - Il ru.oee)l
\pzr -l 0.001 2 )'""""'l (2.34)

Thus,anincrementof0.000SîeaÎp21:0.000Sproducesachangeinharvestofap-

proximately 41 000, while rrcat p21 : 0.002 we expect an increase of around 52 000.

Again, this is observed in Figure 2.4.

Similar results can be found by partially differentiating the escapement and harvest

of local population 2; however, we do not include these equations here' In other models

presented in this thesis we can also use partial differentiation to investigate the rates of

change of our negligible costs escapements and harvests. However it appears that the

graphical representation is more easily interpreted, and so we do not include the explicit

mathematical forms for the rates of change in the models of the following chapters.

2.3.3 Flarvesting relative sources and sinks

In the following exampies we restrict attention to more specific situations and consider

optimal harvesting behaviour from our theory, and harvesting strategies where man-

agers have not recognised the metapopulation structure of the stock. \Me assume that

the initial population size is the stable equilibrium of the unharvested metapopulation,

Rio:,R¿, and equilibrium harvesting behaviour is then considered.
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The local populations' parameters are rL : 12 : 1 000, I{1 -- Kz : 400 000 and

ô1 - 6z : 0.001. The migratory parametets, p;j, are given in the examples and

the discount rate is 10%. Consider a metapopulation whose local populations are

indistinguishable except that pp) pzt, i.e. local population 1is a relative source and

exporter population. In this example, the migration matrix is,

,-lo'oot o'oo3). 
(2.35)' ' - 1o.oot o.ool /

The unharvested metapopulation has a stable equilibrium of Rr : 148 028 and Rz --

334 710.

In Figure 2.5 we plot the contours of the objective function given by equation

(2.11), along with the contours of the harvests from each local population that are pro-

duced. from using particular escapements. The zero harvest contours indicate where

the escapements produce àzero harvest in one or the other local population. Negative

harvests are possibie but in this case, they are not optimal. The optimal escape-

ments derived from equations (2'24) and (2'25) are Si :145050 and Sä : 90100 (see

Table 2.2) which is the maximum observed from Figure 2'5.

The equilibrium harvests produced using the optimal escapements are Hi : 17 351

and. H$ : 257149. Thus we protect the relative source population and heavily harvest

the relative sink population.

Comparisons with incorrect harvesting policies

If the metapopulation is managed assuming it to be two unconnected single populations

then the escapements and harvests derived for each local population are ,Si" : 90100

and ^9j" 
:145050 with harvests HL:72246 and Ilj" : 156961. The total harvest,

Hî" + H;, -- 229207 is less than the total harvest from optimal metapopulation har-

vesting, Hî + H; :274500. Note that the escapements are the direct opposite of those
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FIcuRB 2.5: The objective function and harvest contours as functions of escapements

,St and ^g2 
for Pr with negligible costs. The objective function is represented by the

dash contours, harvests 11r by dot contours, and Hz by the dash-dot contours' The

global maximumis found at ,9i = 145 050 and Si = 9O 100 with harvests ,É/i = 17 351

and, Hi = 257 I4g. The contour increment is 25 000, starting from zero.

derived for metapopulation harvesting. This is due to the difference in the growth rate

terms. In the metapopulation theory, local popuiation i has r : r¿(P¿¿ * p¿¡) whereas

ri" : ripii + r¡p¡; in the unconnected single population case. Thus if this metapop-

ulation is exploited assuming that the local populations are unconnected single pop-

ulations then we will be under-harvesting the relative sink/importer iocal population

while over-harvesting the relative source/exporter local population.

The single escapement derived if the metapopulation is believed to be a well-mixed

single population is Si : 253 467 , which, as shown above, is greater than the sum of the

two escapements from metapopulation harvesting, ,Si + S; :235150. The estimated

harvest \s Hi : 266267 which is less than the total harvest from metapopulation

expioitation, 11î + Hî :274500. Thus if we manage the population believing it to be

a single well mixed population, we will be under-exploiting the resource.
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Metapopulation Unconnected Single

Populations

Well-mixed Single

Population

si
q*u2

Jiotal

745

90

235

90

I45

235 Si':2s\

Hi

H;

Hlotot

77

257

274

72

r57

229 Hi':266

Tnslo 2.2.. Management policy comparisons with migration matrix Pr and negligible

costs. Table escapements and harvests are rounded to the nearest thousand x103'

2.3.4 An example with an optimal harvest that is negative

As an example that produces negative harvests on applying the escapements from

equations (2.24) and (2.25), consid.er a local population that has Pzz: pp atd Prr and

pzr equal and extremely small, i.e. few recruits remain within local popula,tion 1 and

few migrate there.

Assume that the migration matrix is,

Pz:
0.0001 0.002

0.0001 0.002
(2.36)

Thus, local population 1 is a relative exporter, but it is not a relative source. The local

populations have unharvested stable equilibria Ri : 10982 and Rz:219651'

Equations (2.24) and (2.25) produce equai optimal escapements for both iocal pop-

ulations, ,9î : Sî : 95 333. However, the equilibrium harvests are Hi : -80 715

and, HI : 195 210. If we assume that no harvest is taken from local population 1

while Rro ( Si (this is the procedure for a single population), and attempt to use the
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Flcuno 2.6: The objective function and harvest contours as functions of escapements

,9r and sz lor P2 with negtigible costs. The objective function is represented by the

dash contours, harvests I11 by dot contours, and Hz by dash-dot contours' The global

maximum produces a negative harvest from local population 1. The positive harvest

maximum is found along the 111 = 0 contour' The contour increment is 25 000'

starting from zero'

above escapements, local population 1 does not apptoach si but actually decreases

(see Table 2.3). From Figure 2.6 we see that negative harvests are indeed produced

from locai population 1. To flnd the feasible non-negative optimal escapements we

set 11î' : 0 and flnd the new maximum of equation (2.11). In this example the new

optimal escapements are sî' : 8 333 and sî' : 100174, with harvests -t¡i' : 0 and

H;' - 6641g (see Table 2.4). Thus we protect the relative exporter local population

and harvest the relative importer local popuiation'

Comparison with an incorrect harvesting policy

Due to the negative harvests produced, in this case it is difficult to make a comparison

with the escapements and harvests produced from well-mixed single population man-

agement. We find that the estimated escapements from the ìncorrect policy produce a
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Tesr,B 2.3: Escapements and harvests for the migration matrix Pz. The global

optimal escapements are Sl - Sî = 95 333 ' However, starting from the unharvested

equilibria, local population 1 does not increase to si, suggesting the optimality of a

"negative" harvest

negative harvest as well. However, we can make a comparison if the metapoptllation is

assumed to be two unconnected single populations. The escapement for local popula-

tion 1 is negative and thus is set to zero, while ST,:145050' The harvests produced

are .É1i" : g245 and. H$": 39998 with a total harvest considerably less than that

achieved using metapopulation harvesting. Thus, local population 1 is over-harvested

while local population 2 is under-harvested. The harvest for local population 1 is not

zero even though its escapement is zero due to the seasonal migrationof juvenilesfrom

local population 2.

Note that if pr, - pzt :0 in the above example then local population 1 is doomed

to extinction (Si : 0) and we harvest local population 2 as a single population.
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Metapopulation Unconnected Single

Populations

si

S;

c*ÙTotal

8

100

108

0

I45

145

Hi 0

66

66

9

H; 40

49Hlot't

Tnslp 2.4: Management policy comparisons with migration matrix P2 and negligible

costs. Table escapements and harvests are rounded to the nearest thousand x103.

2.4 Examples that include harvest costs

So far we have ignored the costs associated with harvesting the local populations. The

inclusion of costs makes interpretatìons more difficult, so in the next section \/e use

speciflc examples to illustrate our results.

2.4.I Iteration of the dynamic programming equations

In this example, we simply iterate the dynamic programming equations so as to com-

pare the results from our analytic solution with the numeric solution, and to observe

the effect of including costs on optimal expioitation strategies.

Suppose that we have an unharvested metapopulation that is composed of two

connected local populations. Both iocal populations are to be exploited. The local

populations' dispersal is represented by the migration matrix,

0.1 0.1

0.15 0.1
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Tnslp 2.5: Escapements and harvests from iterating the dynamic programmlng

equations.

Thus, local population 2 is a relative source/exporter, while local population 1 is a

relative sink/importer. The juvenile production function is logistic, as seen earlier'

with growth rates rt: 12 - 10, adjusted carrying capacities K1-- Kz:200 and adult

survival per period 6r: 6z: 0.1. The unharvested equilibrium population sizes are

Rr : 133 for local population 1 and Rz : 105 for local population 2.

The cost function is defined bY,

where a¿ :30 and q; : 1.3 x 10-2

zero net profi.t escapement level is,

c¿(r¡): L, (2.37)
Q;T¿

The price of a unit of stock i. p - 70. Thus the

,Sioo : a;lq¿p: 33.

for i : 1,2. The discount rate is 10%. If the dynamic programming equations (2.9)

are iterated, weproduce the escapements and harvests shown in Table 2.5.

The initial conditions are the unharvested equilibrium population sizes, Ër : 133

and ,Rz : 105. The final period's escapements is the zero net proflt level,,S¿-, as
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expected. The equilibrium escapements found are ,9i : 65 and Så : 68, with harvests

Hî:53 and Hî:28. Thus we protect the relative source/exporter local population

and take a greater harvest from the relative sink/importer local population.

Comparing the numerical results from the above analysis to the analytic results

derived from equations (2.15) and (2.16), we see that similar equilibrium escapements

ancl harvests are found; Sî : 66 and Si : 70 with harvests Hi : 53 and H| : 27 '

The small differences may be due to rounding errors in the computer programs. Com-

parisons with the negligible costs harvests from the example in Section 2.3.1 suggest

th.at the rule of thumb source/sink results appear to be robust when costs are included.

2.4.2 Variation of the migration parameters

To further investigate the effect of the migration parameters on optimal harvesting

policies, in this example we vary the proportion of juveniles that migrate between local

populationsj pt2 and p21, while the other parameters remain constant. The section

extends the no costs example of Section 2.3.2'

Consider a metapopulation with parameters, rt : 12: 1 000, Kt : Kz :400 000

and á1 - 6z:0.001, and migration matrix,

P-
0.001

Fzt

Ptz

0.001

The cost function is deflned by equation (2.37), with ø¿ :5000 and q¿ : 1.3 x 10-5

for i: 1,2. The price of a unit of fished stock it p - 7000. The discount rate is 10%.

In Figure 2.7 we plot the escapements and harvests of local population 1 as contour

lines. Local population 1 is a relative source/exporter if the point (pn,pzt) is below

the line ptz : p21, and it is a relative sink/importer if above. To determine the optimal

escapement and harvest of local population 2 we can transpose the migration matrix

P. This reflects Figure 2.7 about the line pn: p2t'
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,n:lxÍ

0.002

0.0015

0.001

0.0005

p2r

0.0005 0.001 0.0015

pL2

0.002

Frcunp 2.7: Escapements (dashes) and harvests (dots) of local population 1 as a

function of the migration parameters. Numbers on the contours are escapements and

harvests x 103.

As observed in the example of Section2.3.2) a negative harvest is obtained from

local population 1 if it is a strong relative exporter/source. As an example? take

prz:0.0014 and. p21: 0.0002. This produces optimal escapements, ,9i : ll7 621 and

Sî: g0701, with harvests Hî: -20442 and H|:95772. Assuming that seeding a

unit of stock costs the same as harvesting the same unit of stock, then the net harvest

from the metapopulation is //i + Hî : 75 330. If a negative harvest is not possible

fromlocal population l then, setting HI' :0 and maximisingequation (2.11), wefind

ST' : TT 047 and,Si' : 97658 with a harvest from local population 2 of Hi' : 63344.

Thus, the net harvest is greater if we seed local population 1 (however, see the Closing

Remarks of this chapter for a discussion on the optimality of a negative harvest)'

2.4.9 flarvesting relative sources and sinks

We now consider the two exampies with migration matrices P1 and P2 when costs are

no longer considered negligible. The cost function used is defined by equation (2.37),

with a¿ : b000 and q¿: 1.3 x 10-5 for i : 1,2. The price of a unit of fished stock is

p:7000.
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Metapopulation Unconnected Single

Populations

Well-mixed Single

Population

q*ul

S;

156

r22

278Slotot

11.4

158

272 sL:270

Hi

H;

Hlotot

24

249

273

63

r82

245 Hi.:267

TnSLp 2.6: Management policy comparisons with migration matrix Pr and costs

included. Table escapements and harvests are rouncled to the nearest thousandxl03.

For the first example, where the migration matrix is Pr, equations (2.15) and (2.16)

yield optimal escapements, ,si : 156169 and sî : 12t953 (see Table 2.6). The optimal

harvests are Ili : 23 9b6 and H$ : 248532. Thus we still harvest the rela,tive source

population conservativelY.

Comparisons with incorrect harvesting policies

If the local populations are believed to be reproductively isolated then the optimal

escapementsforeachiocalpopulationareSf":!14121andSi":158141withhar-

vests ¡ii" : 63175 and Hi" : 182323. Once again, the sum of the metapopulation

escapements is greater than the sum of the escapements if the local populations were

managecl beiieving them to be unconnected, ^9i" +^9;" :272262. The total harvest,

Hî" + Hî":245498, is also less than the harvest from metapopulation management'

The escapement derived from well-mixed single population harvesting is Si :

269996, which is no longer greater than the sum of the escapements from metapopu-
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lation harvesting, si + si :278I22. The harvest produced using sf \s Hi: 266 895,

which is less than the total harvest from metapopulation harvesting, Hi+ H; : 272 488.

Thus we not only leave more stock but we also harvest more than if the population

was managed as a well-mixed single population.

Thus, in comparison to alternative management schemes, metapopulation harvest-

ing not only leaves more of the stock behind but it also increases the combined harvest

from the local populations.

2.4.4 An example u/ith an optimal harvest that is negative

Using the migration matrix Pz the optimal escapements from equations (2.15) and

(2.16) are,Sf :118129 and ^91': 118397 (see Table 2.7). As before this produces a

negative harvest in local population 1. Setting Hî, :0 and searching for the maximum

of equation (2.11), we produce new optimal escapements Si' : 9 509 and ^9i' 
: 124400

with harvest H[' : 65713.

Comparison with an incorrect harvesting policy

If the local populations were managed believing them to be unconnected single popu-

lations then the escapements produced would be ,Sf" : 7164 and Si" : 158141 with

harvests Hî" :3 109 and Hî" : 47 328. The total harvest, Hi, + HI" : 50 437 is less

than the harvest achieved using metapopulation harvesting theory.

2.5 Closing Remarks

In this chapter we have extended the single population optimal harvesting model of

Clark (1g72; 1973) by assuming that the exploited stock is spatially structured. We
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Metapopulation Unconnected Single

Populations

si 10

124

134

ù
I

158

165

S;

Slo'"t

H 0
,
t)

47

50

H; 66

66Hlotot

Tnsln 2.7: Management policy comparisons with migration matrix P2 and costs

included. Table escapements and harvests are rounded to the nearest thousand x 103.

no longer assume that the exploited stock is a single homogeneous population, but

assume it is composed of two interacting sub-populations or local populations' The

local populations have their own specific growth and death characteristics. Together

the local populations form a dynamic heterogeneous unit that is connected by migrating

juveniles and referred to as a metapopulation.

Modelling the metapopulation dynamics with discrete, coupled difference equations'

we optimised the present value of net revenues derived from each local popuiation.

This maximisation used the dynamic programming techniques of Clark (1976). We

showed that the equations for optimal harvesting are generaiisations of the fundamental

equation of renewable resources derived for the exploitation of a single population.

To facilitate our understanding of the system, results were derived under some sim-

plifying assumptions (negligible costs, equivalence of some local population parameters,

logistic growth). In this \.vay we were able to compare escapements between local pop-

ulations and compare harvesting strategies from incorrect management policies. These
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comparisons ,ffere then discussed in relation to two biological classifications of local pop-

ulations, namely relatiue source/sink local populations and relatiue erporter/importer

local populations. These populations are defined according to their per capita larval

production.

Under the simplifying assumptions, our results suggest that relative source local

populations should have the larger optimal escapement of the two local populations.

Relative sinks should have the smaller escapement. We also compared the escape-

ments clerivecl from the metapopulation theory with the estimated escapements from

harvesting policies that are employed without the managing body recognising the meta-

population structure of the stock. If the local populations are managed as two ttncon-

nected single populations, results suggest that relative exporter local populations will

have a smaller escapement than that proposed by the metapopulation theory. Over-

exploitation of relative exporters is therefore a possible consequence of this mismanage-

ment. Conversely, relative importer local populations will be harvested too conservat-

ively. The metapopulation could also be managed as a well-mixed single population.

In this case, we flnd that the relative source local population will be over-exploited,

while the relative sink local population is under-exploited. Numerical examples for the

special case of negligible or density and local population independent costs confirm

these results and the above rules-of-thumb also appear to be robust when costs are

included.

An interesting result which is a direct consequence of the extension into two dimen-

sions is the optimality of a negative harvest. Long (1992), in a note on the modei of

Feichtinger et al (1992), discovers that by a change of variable, Feichtinger et al's model

on resource-employment dynamics can be transformed into a predator-prey model.

Long applies the model to squid-krill interactions and finds an optimal negative har-

vest of squid when krill abundance is high and squid stocks are low. The negative
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harvest is interpreted as an optimal seeding policy, i.e. replenish the squid stock and

encourage growth in the population. The negative harvest is optimal until the squid

abundance begins to decrease due to a decline in krill stocks (see Feichtinger et al

(1992), Figure 5).

In our formulation, we also find an optimal negative harvest which is interpreted as

an optimal seeding strategy, i.e. placing stock into a particular local population so as

to maximise economic gains from the harvest of the other local population' However,

we now consider what a negative harvest actually means in terms of the net revenue

expression for local poPulation i,

NR¿ - l::_,,Q - e) * (2 Bs)

Evaluating the integral, this can be rewritten as,

N Ri : PH; - 
oo 

In( 
= 

Ro 
,r\ 1z':o¡rx'qn'"\R¿-H¡)'

For a positive or zero harvest this expression states that the net revenue is equal to

the benefits received from the sale of a harvest 11¿, minus the costs of harvesting the

population down to R¿ - H¿. How do we interpret the above equations when harvests

are less than zero?

The first term, pH¿ can be interpreted as the cost (remember Ilo < 0) of buying (or

raising) É/¿ juveniles for seeding. However, the price per unit of juveniles is not likely to

be equal to the sale price of adults. In a more realistic model we could have a different

price, say pt, for the sale price (or raising cost) per individual. The second term is the

benefit (positive) of restocking the population up to R¿ - H¿. This is unrealistically

positive in the current form and should actually be the cost, possibly independent of

stock size, of restocking a local population. In a more realistic model we could have C¿

representing this cost.
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Thus, a model where seeding is considered a possible harvest strategy, the net

revenue for local population i could be of the form,

NRi: ß;-,,@ - fft) a" ifllr>0
p'H; - C; if H¡ < 0.

(2.40)

This model is not analysed in this thesis and is a possible area for future research.

In the basic model described in this chapter, and in the models that follow, the lim-

itation described above should be kept in mind when optimal negative harvests are

found. As unrealistic as the negative harvests are, they are a good indication of where

seed.ing strategies could be considered. If negative harvests are not possible then the

best strategy is to set the harvest of that local population to zero and sea,rch for the

escapements which maximise the particular objective function with which we are con-

cerned. We suspect that a revised model of the form shown above will show regions in

parameter space where fully harvested metapopulations are optimal, then move into

a region where a local population should be unharvested, then as parameters change

further, a region where it has become economically feasible for the seeding of the local

population.
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Chapter 3

I)elayed juvenile recrultment

In this chapter we consider populations where there is a delay in recruitment to the

adult breeding stock. Previous chapters have assumed that the juveniles produced

from the breeding adults of one generation become members of the spawning stock

themselves in the following generation. In a sense, there is already a one year delay

inherent in the discrete models. However, it may take several years for juveniles to

reach sexual maturitY.

A well-documented example of species that have an extended period of growth

before sexual maturity are the baleen whales. Baleen whales have a maturation period

of at least frve years (Clark and Lamberson, 1932). Sei whales are believed to reach

sexual maturity after approximately nine years, while for southern hemisphere Fin

whales the maturation period is around eight years (Allen, 1963; Fisher and Goh,

1e84).

Australia's orange roughy flshery is a recently established and valuable fishery,

exploiting stock off the north-east and southern coast of Tasmania. Radiometric aging

of otoliths (the ear bone) have estimated that orange roughy live past 100 years and do

not become sexually mature until 20-25 years old (Francis (1992) uses an estimate of

a
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23 years in a risk assessment model). This can have a dramatic affect on management

strategies due to lower rates of growth, naturai mortality and thus productivity than

other harvested stocks. Determining the stock structure of the population has yet

to be fllly addressed (Elliott and Ward, 1992) and the degree of mixing between

the two populations will be important for the sustainable management of the fishery

(Sustainable Development Fisheries Working Group, 1991)'

The age at maturity of scallops varies widely depending on the species and locality

(Orensanz et al.,1gg1). The saucer scallop Arnusiurn japonicum balloti of the centlal

Queensland coast begins spawning after approximately one year (no delay a's far as our

models are concernecl) (Dredge, 1981), while arctic species may take up to 6 years, (e.g.

the Iceland scallop Chlamys islandica (Vahl, 19S1)). Scallops also show marked differ-

ences in reproductive schedules within species. These differences have been attributed

to genetic or environmentalfactors (for a review see Orensanz et al (1991)).

The size and age at sexual maturity of five species of southern Australian abalone is

investigated by Shepherd and Laws (1974). They find that the commercially valuable

abalone species Haliotis laeui,gata and Hali,otis ruber both become sexually mature after

around B years and between 75-120mm, depending on locality. Interestingly, H' ruber

of Tipara Reef appear to mature later than at the other localities, maturing at 4 years

of age. The local environment of the abalone species also plays an important role in

determining the size at maturity, through its affect on growth tates, and on spawning

times, which is related to factors like sea temperature and food availability. This

emphasises the importance of iocal habitats on population dynamìcs and ultimately

on management policies.

In this chapter we frrst consider optimal harvesting policies for a spatially homo-

geneous population with a maturation clelay. Ciark (1976) uses Lagrange multipliers to

determine the optimal harvesting equation that implicitly deflnes the optimal escape-
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ment for ar.bitrary recruitment delays. Clark then employs dynamic programming to

show that the most-rapid-approach is not optimal when costs are density-dependent.

We show that Clark's dynamic programming procedure can be extended to derive his

optimal harvesting equation.

We then consider two models that include spatial structure. The first model assumes

that larvae that settle at a particular local population experience a delay in sexual

maturation that is related to the local population they settle in. This delay effect may

be clue to environmental conditions (food availability, local temperature)' The second

moclel assumes that the delay experienced by the larvae is lelatecl to the source of

t¡e larvae, i.e. the parent local population. We assume that either genetic (however,

there is not likely to be great genetic differences in such a well-mixed population)

or environmental conditions cause the delay. For example, larvae may lemain in the

parent local population while immature and before migration occuts'

These two models are then mathematically described using coupled delay-difference

equations, and the method of Lagrange multipliers is used to determine optimal har-

vesting poiicies. Using the simplifying assumption of negligible costs we produce ana-

lytic results that allow comparisons between each local population's escapement and

comparisons between incorrect harvesting policies and the metapopulation theory' We

conclude each model with hypothetical examples which allow us to investigate optimal

harvesting strategies in more detail.

3.1 single population recruitment delay model

In 1926, Colin Clark determined the optimal harvesting equation for a single popula-

tion that has delayed juvenile recruitment to the breeding stock. The clelay-difference
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equation used to model the population dynamics is,

Rt+r : 6R* -f G(R*-B), (3.1)

where .R* is the stock abundance in generation k, ó is the per generation adult survival,

the functio" G(') is called the recruit production function and defines the number of

surviving juveniles produced B years ago that join the mature stock. The recruit

production function is a function of the adult abundance B years àgo (B is the juvenile

recruitment delay).

This model presents a simple way in which to include age-structure in a lumped-

parameter population model. Beddington (197S) showed that the delay-difference equa-

tion model is a simplification of a more detailed age-structured Leslie matrix model

(Leslie, 1945). Let ,nr/,(k) be the number of immature females of age i in generation

or year k, with associated survivorship ó0. Let NB@) be the number of mature and

reproductive females of age B or more in year k, with ôp their annual survivorship. Let

F(NB(k)) be a density dependent function representing the fecundity of reproducing

females in year k. We can then relate the abundance in generation k + 1 to that of

generation k using the matrix formulation below,

¡/o(k + 1)

¡r,(k + r)

¡rz(k + r)

r(¡úB(/c))

(3.2)

0

óo

0

0

0

0

0

0

0

0

61

¡ú.(k)

¡r,(k)

¡úr(k)

NB(k)¡,rB(k + 1) 0 0 6B-t 6B

Multiplying this matrix equation out and back substituting iteratively, beginning

with the equation for l/B(k f 1), we find

Np(k + 1) : ôB-'ô p-2 . .. ôgF(¡/B(/c - {l))wBU' - P) + 6pNB(k), (3.3)
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which can then be simplified to the difference equation (3.1) if we assume that

R* : IúB(k), 6 : 6p and G(r?¡- B) : 6B-ðB-r' ''6oF(Rn-B)Rn-B'

The Leslie matrix model described lumps female abundances into the single variable

¡/B(k) and then assumes that all females that reach sexual maturity have an equal effect

on recruitment. In many cases this assumption should be relaxed and several different

adult female age-classes should be followed. The effect of truications in reproduction,

where after a fixed period of time individuals are no longer reproductive' can then be

investigated (see Levin and Goodyear (1980), Reed (1983), Silva and Hallam (1993)).

In this analysis we only consider the delay-difference equation (3.1) and its extension

to include spatially heterogeneous populations.

3.1.1- Derivation of the optimal harvesting strategy

We now derive the equation that defines the optimal harvesting strategy for the delay-

difference equation model (3.1).

An interesting feature of this model is that the most-rapid-approach policy is not

optimal when harvest costs are included due to the nonlinearity of the net revenue

expression. To show this, we extend the dynamic programming framework proposed

by Clark (1976) and attempt to flnd an optimal equilibrium solution. For simplicity,

considerajuveniierecruitmentdelayofoneyearrB:1'Assumethatweareableto

selectively harvest the breeding adults from the local populations' Following Clark, we

define the value function,

T

Jr(Ro;Ê-r) : max- | aÈrI(,R¡,,S¿), (3'4)
ossk<Rk 7^

which is subject to equation (3.1), and where ,R-1 is the stock abundance (or escape-

ment) of the generation before the initial period.
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(3 5)

(3.6)

(3.7)

(3.8)

Jr+t(Ro;¿-,) : o.T&å, (n{,t., so) + aJ7(6So+ G(n-'); sr))

From the value function, equation (3.4), we derive Bellman's equation,

If the time horizon is zero, 7 : 0, then

"/o(r3o;Ë-r) max fI(,Ro, So)
O(So(Ro

rI(,80, S."),

where ,soo is chosen such that p - c(s.") : 0. consider next the time horizon T : I,

: max
0(So (RoKRo; R-t) tr(Ao, So) + als(6Ss * G(rB-1); S¡)

: o4ff*. (n{n., so) + ail(áss + G(Æ-1)' s-))

Differentiating equation (3.7) with respect to ^9s 
we find,

0 : -(p - "(^90)) 
i "(p- c(ô^96 + c(Ê-r)))ó

ort

KRo; ¿-') : tr(Ro, si) + arl(ð^9i + G(Ë-1)' s""). (3.10)
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Consider the time horizon T :2,

Jz(Ro ¿-t) : II(,Ro, So) + a-rr(ôSo + G(Ê-r);.90)max
o(,90 (Ro

: max II(r?s,,90) + oII(ôSs + G(,R-1), .9"")
o(,So (Ro

+ a2n1AS¡ + G(,So), S.") (3. 1 1)

Differentiating with respect to 56 we find,

0 : -(p - .(So)) + "(p - c(ôSs + G(R-l)))ó

+ o'(p - c(á.9i + G(S0)))F'(S6). (3.12)

Equation (3.12) implicitly defines the optimal escapement when there are two periods

to go, Si. In the non-delay model (see Chapt er 2 for the two local population non-delay

analogy), the second discounted term is not a function of ,Ss, and so we produce the

same optimal equation for T ) 2 as T : t and this equation is optimal for all periods.

The approach path to the equilibrium escapement is thus the most-rapid-approach.

Here, the second discounted term is a function of ,S¡, and so the optimal equation that

defines .9f , equation (3.12), is different from equation (3'9).

Placing ^9j back into equation (3.11),

Jz(Ro;¿-r) : rI(Ë0,.9;) + arl(ôSi + G(R-l), Si)

+ a2n10s; + G(s;), s-). (3.13)

Now consider the following time horizon, ? : 3,

J¡(Ro; g-r) : 
o<T,_y*. (n1no, so) + (.lz65o+ G(R-r i; sr))

: rrqal (n1no, so¡
o(s¡(Rs \ + aII(ôSs + G(A-l), S;)

+ cl'nçts; + G(,so), si)

+ o3ulAS¡ + G(S;), S.") (3.14)
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Differentiating with respect to ,Ss, we produce'

0 : -(p - "(So)) + o(p -c(ó^9s + G(Ë-1)))ô

+ o'(p - c(6si + G(so)))F'(So)' (3.15)

Equation (3.15) can be implicitly solved for the optimal escapement when there are

three periods to go, ,Sj.

We generalise this procedure to the l/ periods to go case,

J¡¿(Æo; Ë-r ) : o<To?**o (Ir(Ao' so)

: max ln(Ro,,9o)
o<So<Ro \

+ aJ N-t(dso * G(R-rl' s.))

+ oII(ôSs + G(R-t), Si,-')

+ o2u1as;_1 * G(^90)' Sñ_r)

+ a3nla^9;_, + G(Sfr_r), SÄ,_r)

oN-'r1ðsä + c1q;, s;;

oNnias¡ + G(s;), s.")),

+ oII(ðSs + G(Ê-1), Sïu-')

+ o2u1as;_1 + G(so), si,_r) + A(sl)

+

+

+

(3.16)

(3.17)

(3.18)

and so we have,

J¡r(Ro; ¿-r) : o.T.y". (n1,?., so)

)

where A(S;) is constant in terms of So. Differentiating with respect to 56 we find,

0 : -(p - c(^90)) + o(p -c(ðSs + G(R-r)))ó

+ o'(p - c(óSi¡-1 + G(S0)))F'(So)' (3.1e)

If we assume that the system is in equilibrium, then So - .R-r : ^9År-r and r?¡.+r :

Rn : óS" + G(S.) where S* is the equilibrium optimal escapement. We can rewrite
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equation (3.19) as,

orr

0 : -(p - "(^9.)) 
+ ù(p - c(6S. + G(S.)))(ð + ûF'(SO)), (3.20)

I (p - c(ós. J _c(.9.))) (ó + aF,(s_)).
(p - "(s.))

(3.21)
(\

This equation implicitly defines the optimal equilibrìum escapement ,9*, when there

is a one year delay in juvenile recruitment to the adult breeding stock. Clark (1976)

derives the optimal equation for a general delay B using the method of Lagrange mul-

tipliers. The details of this method are not given for the single population case, as we

use the method in the two local population theory that follows.

The equation that defines the optimal equilibrium escapement for a general delay

þ i", r:p-',|Hi,l(o+orc,1s.¡), 
e.zz)o p-c(5.) \

where,

F(.9.) : ôS* + G(.9.). (3.23)

Clark notes that even though the most-rapid-approach policy is sub-optimal to an

asymptotic approach, it is only marginally sub-optimal.

When harvest costs are negligible or density-independent, the most-rapid-approach

is the optimal approach policy. Equation (3.22) becomes,

1 :d ¡aPG,(5"), (3.24)
a.

and this equation holds for all time horizons, unlike when harvesting costs are included.

If we assume that the population has logistic juvenile production, then the optimal

equilibrium escapement is,

ñ* Ã_1{l'*q-6ì, 
(3.2b)J T\* 

',
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and clearly, if S* is negative then we reassign the escapement to zero. The inclusion of

a d.elay in recruitment results in a decrease in the optimal escapement over the non-

delay model (B : 0). This result is intuitive if we consider the complete harvesting of a

population clue to a large (infinite say) delay. It can not be optimal to wait (infrnitely

long) for the juveniles to mature.

Clark (1926) also considers local stability conditions for the unexploited delay-

clifference equation (3.1). Using linearised stability analysis, Clark analytically determ-

ines a sufficient condition for stability ancl numerically determines, for combinations of

ô ancl B,the necessary ancl sufficient condition for stability. Goh and Agnew (1978)'

Fisher and Goh (1984), Bergh and Getz (1938) and Botsford (1992)) among othel

authors, have looked at the stabilìty of various extensions of the moclel.

We now consicler strategies for the optimal harvesting of a spatially structured

population with juvenile recruitment delays. The first model assumes that the delay

experienced by the larvae is relatecl to the receiving local population; we call this model

the receptor local population delay model. The second model assumes that the delay

is related to the source of the larvae; we call this the parental clelay model. A general

two-species modei formulated by Agnew (1982) has a similar structure to the receptol

delay model analysed here. Agnew considers two species (or two sexes) that reach

sexual maturity after a specified delay (or no delay) and investigates stability and

optimal exploitation regimes. The single-species model employed here can be seen as

a special case of Agnew's model, but with additional features such as spatial structure

and local population interaction.
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FlcuRp 3.1: A metapopulation that shows delayed juvenile recruitment. The delay

for local population i is given by B¡. The boxes represent the immaturestock before

it joins the sexually mature adults represented by the circles.

3.2 Receptor local population delay model

Assume that we have an unharvested metapopulation composed of two local popula-

tions. The proportion of juveniles that migrate from local population i and successfully

recruit to local popuiation j after the maturation delay is given by p¡¡. We assume

that the sedentary larvae of local population i and those larvae that migrate to local

population i from local population j, will experience a delay of B¿ periods before re-

cruiting to the adult stock (see Figure 3.1). This assumes that the delay is related to

the environment of the receptor local population, and not the parent local population.

Thus, suppose that the two interacting unharvested local populations are modelled

by the following stock-recruitment relation,

,?r*+r : 6rLtx * pnGt(Rrn-.Br) I prrGz(Rzn-þt) (3.26)

Rz*+r : 6zÐzn * pnGt(Rtn-B) I pzzGz(R2k-þ,), (3'27)

where parameters and variables retain their usuai meaning.

The local populations are harvested, ,Ë1¿¡, and the escapements S¿¿ - R¡*- H¿¡ then

grow according to equations (3.26) and (3.27) to,R¿¡11. Thus, including harvesting,
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equations (3.26) and (3.27) become,

Rt¡+t

Rzt+t

: ôrSr¿ * pnG{S*-8,) * pztGr(Srç8,)

: 6zSzx I ptzGt(Stn-8") I nzzGz(Szn-B),

(3.28)

(3.2e)

(3.30)

As in the single population case, analyses that use dynamic programming are not

facilitated by the non-linearity of the net revenue function, and so in this section (and

for the parental delay model) we use the method of Lagrange multipliers to determine

the equilibrium optimal harvesting strategy. The objective is to maximise the present

value of net revenue, as before, only the maximisation is over infinite time, rather than

having a final period, 7. Thus, we maximise,

P.v. : D o^ lrr¿(R¡¡, H¿¡),
2

lc=O 'i=I

subject to equations (3.28) and (3.29) and 0 1 S* 1 R¿n.

The net revenue produced in period k from a harvest of H¿¡ from local population i

IS

rr¿(R¡n, H¡t) : 
l::rr_, r@ - c¿(r)) dr (3.31)

3.2.1 Derivation of the optimal harvesting strategy

The method of Lagrange multipliers is used to determine the optimai harvesting

strategy. See Clark (1976; 1990) for a description of the application of the method

of Lagrange muitipliers to problems of this form. We define the Lagrangian,

@r

L : !l"*{nr{ Rtn,Ht) *fIz(Rzt,Hrn))
Æ=o' 

/
- )r¡.( Ê'**t - ô'(Rt¡ - Htn)

\

- prrG{Rtk-þt - H*-t3t) - prrGr(Rzx-þr- ¡fr*-B,))
/
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- À"*(or**r - 6r(R t - Hzt")

- ptzGr(Rr*-2, - H*-þz) - prrGr(Rzn-p" - nr*-r))f, (3.32)

with necessary conditions,

AL
0R¿*

AL

0 k : I,2,3, (3.33)

0H¡*
(3.34)

for i :1,2. Necessary condition (3.33) does not include k : 0 as 'R¿¡ is predefined.

Assume that there exist equilibrium solutions ^9r and ^92. Consider local population

1, i.e. i : l. Equations (3.33) and (3.34) become,

AL
AR* 

: oÀfl'R'u - Àr*-t * ôr)rt

I pn\u"+p, Gl (St ) l pnÀzt +8, G" (.9t ¡ : g (3'35)

ðL
AH*: akfltl'o-órÀr¡

- p¡'Àu,+g G|(St) - pnÀzx+p,G"(St; : ¡. (3.36)

Adding equations (3.35) and (3.36) we find,

)rÈ-r : ak(flrør* * flrn,o), (3.37)

and similarly for local population 2,

Àzk-, : ak (flzø"rt llznru) (3.38)

Placing equations (3.37) and (3.3S) into equation (3.36), we obtain,

c-kIlrørr ðrok+t (flr¡r,o * flrn,o)

p11G'r(S 1) aki þt *t (flr¡r,o * IIrn,o )

pnG't(S r¡ox+ o'+t (nru,r t llzn,o) : 0,

0 k:0,1,2,...,
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and so,

ku 6 plk+t * p¡.G|(S,¡o*+o' +t

- V#-þ u",,(,sr ) ar+,,, + r 

]

Dividing through by ak+t and rearranging we obtain,

1 :
d

1 :
d

1 :
d.

1 :
a

[ttr,, * flrRro

Ir¡r,o

nrrro * flzR,n

nrr"o

lô, 
+ o',c'r(s')'B'] +

16, 
+ ,rrc'r(sr)o1'] +

IIzH"n *flzn o

Irrro

[tt,o A fIrR,,.

nrrro

þu"'r(s,)oP"]

þ^c;{s,)'o'f

(3.3e)

(3.40)

If II¿(R¿¡,I{,¡) is given by equation (2.7) then equations (3.39) and (3.40) become,

(p - .r(Rr)) 
lA, 

+ p¡G'r(Sy)aP' + (p - ,,(R ))þ-c;(s')oo']
(3.41)

P - cr(Sr)

(p - "r(Rr))
6r l prrG'r(Sr)oB' + (p - cr(Æ'))þ^c;(s,)ol'l

(3.42)
P - cz(Sz)

where,

Rt : órSr*ptGt(^9l) +prtGz(Sz)

Rz : 6z5zlpnGt(Sl)+ p22G2(Sz).

Equations (3.41) and (3.42) implicitly define the optimal equilibrium escapements

Si and ^9j. These equations can be seen as a special case of equations (18a) and (18b) of

the general two-species modei of Agnew (1982). Unlike Agnew, we consider the model

from the perspective of a single species that interacts via the migration of juveniles.

Thus, in the following subsection we investigate the effect of migration and delays on

optimal harvesting strategies. As in previous sections, results are facilitated with the

assumption of negligible costs.
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3.2.2 No costs analysis

If we assume that the costs associated with harvesting are negligible, or that they are

clensity and local population independent, equations (3.a1) and (3.a2) simplify to,

ð' + Gï(^9i)(prroþ' + pnaþ') (3.43)

6, + G;(S;)(prroþ' * pzzaþ"),

1 :
d

1 :
a

(3.44)

where ,Si is the optimal equilibrium escapement for local population i.

If the recruit production function is logistic (see equation (2.3) of Chapter 2), then

the optimal escapements derived from equations (3.43) and (3.44) are,

.9
K1 K1 1.*d-6t

(3.45)
2

K2

2 rt(ptaþt + ptzaþr)

r+d-62
(3.46)

I{2

I

S;
2 rz(pztaþ' I pzzaþ')

A" 13¿, the delay in recruitment to local population i, increases, the optimal escape-

ment decreases, as with single population model. If both delays are infinite, implying

that the juveniles never recruit, then the optimal escapements are zero, as we would

expect. However, if one of the delays is infinite and the other is not, then neither local

population has a zero escapement.

Comparisons with incorrect harvesting policies

Assume that the metapopulation is being managed as two unconnected single popu-

lations. For local population i, the estimated per capita growth rate measured might

be,

ris: riqii+rjqji. (3.47)

As described in Chapter 2, this assumes that abundances are roughly equal and that

the measurements are made after dispersai (see Section 2.2.2).

t02
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If we assume that 1(r - I{z and ô1 : 62, then the optimal escapement of local

population i derived from harvesting the population as a spatially structured meta-

population is greater than that from the incorrect harvesting policy, ^9; > S,i, if,

r¡p;¡a?i > r¡p¡;aBi (3.48)

Due to the introduction of the delay, we can no longer conclude that relative ex-

porters should be more conservatively harvested. We interpret local population i as

relative exporter of discounted larvae, while local population 7 is a relative importer

of discounted larvae. The discounted per capita value of juveniles exported from local

population i, taking into account the time it takes to mature, is r¿p;¡a?i . Note that

if the delays are equal, 0¿ : 0¡, then condition (3.48) simplifies to, r¿p¿¡ ) r¡p¡;1or

^9i > Så. Thus, with equal recruitment delays, the analogous result of Chapter 2 holds,

i.e. relative exporters should have a greater escapement if metapopulation harvesting,

than if the population were managed as a single unconnected population. If the per

capita larval migration is equal for both local populations, ripij : r¡p¡.i, lhen^9; > ^9å

\f 0¡ > þ¡. In this case, the local population with larger recruitment delay is being

over-harvested, while the local population with the smaller delay is under-harvested.

If the metapopulation is managed as a well-mixed single population, then an estim-

ate of the growth rate may be the averaged juvenile production,

rr(pt i pn) r rz(pzt * pzz)rL:-, (3.-19)

with averaged delay,

g":LIþ. (3.50)

Assume that 1{r - Kz and ór : ô2. The optimal escapement from harvesting local

population i using the metapopulation harvesting theory is greater than the estimated
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escapement from exploiting the population as a well-mixed population, Si > Sif 2, if ,

h*92
A2

rt(pn * pn) I rz(pzt t pzz)
1r¿(p¿¡aþ' I n;¡a9i) (3.51)

2

Again, the relative source results from previous analyses without delays, do not

hold in this instance. However, as before, if the recruitment delays are equal, þ¿ : þ¡,

then ,Si > Sï,12 if r¿(p¿¿ -f p¿¡) > ,¡(p¡; * p¡¡). Thus, with equal recruitment delays,

relative source local populations should be more conservatively harvested than if the

metapopulation were managed as a well-mixed single population. Thus, only where

the recruitment delays are different, B1l 0r, do the results of Chapter 2 Ïa11.

Comparisons between local populations

Assuming that we have recognised the metapopulation structure of the population,

we now consider how the escapements differ between local populations. Assume that

Kt : K2 and 6t : 62. The escapement of local population 1 is greater than that of

local population 2, Si > S;,if

rt(ptaþ' I prro,?') ) rz(pztaþ' + prroþ'). (3.52)

Thus, if the delays are equal, þ, : 82, then local population t has the higher

escapement if it is a relative source local population, and local population 2 the smaller

escapement if it is a relative sink local population. Note that if r1p11 -- r2p21 and

rrptz : r2p22 then the escapements will be equal, regardless of the difference in the

deiay.

3.2.3 Variation of the delay parameters

In this example we consider a metapopulation that is essentially homogeneous, except

for differences in the.juvenile recruitment delays, É¿. Consider a metapopulation with
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FtcuRB 3.2: The escapement of local population 1 (and 2) for the receptor delay

model as a function of the delay in recruitment to the adult breeding stock. In this

example, the metapopulation is homogeneous except for differences in the delays.

The contour increment is 10,000 and escapements decrease from the origin.

the following parameters; ð1 - 6z:0.001, a logistic juvenile production function with

rt: 12: 1000, Kt: Kz:400000 and symmetric migration matrix,

D-1-

Assuming that costs are negligible, c;(r) : 0, we vary the delay in recruitment to

the adult breeding stock for each local population between zero (no delay) and twenty,

{J¡ : 0r. . . ,20 for i :1,2. All other parameters remain constant and we consider the

equilibrium solutions produced by equations (3.a5) and (3.a6). In this example and the

examples that follow, we plot contours of the escapements and harvests. The actual

grid points are the integer values of the delays 0¿, u" fractional delays are not possible

in the current model formulation. However, we interpolate the data to include partial

delays to facilitate graphical interpretation.

For the symmetric example, the optimal escapements and harvests of the local

populations are exactly the same for a particular delay (þr,þr). To see this, notice

that equations (3.43) and (3.44) are equivalent for the populations' parameters given

above (in fact, equations (3.41) and (3.42) are also equivalent).
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FrcuRp 3.3: The harvests from local population 1 (and 2) for the receptor delay

model and a homogeneous metapopulation except for the delays. The contour incre-

rnent is 5,000 and harvests decrease away from the origin.

In Figure 3.2we plot the escapement of the local populations as a function of the

delays þ¿. A, expected, the delays cause a decrease in the optimal escapement as the

delay in either local population increases. Eventually, an optimal negative escapement

is produced and thus it is optimal to harvest the whole population. As previously

stated, when the delays become large we reach a point where it is no longer profitable

to wait for the juveniles to join the breeding adult stock. The zero escapement contour

is given by the equation,

ln L*d,-6; 
- ?1'ûBr)

ripii pi; )
0; (3.53)

ln(a)

This equation is derived by setting the equations (3.43) and (3.44) to zero and rearran-

ging. For example, if PL : 0z : {J we find 0 : 6.28 and if 0z:2 then Bv: 13.63.

The harvest contours plotted in Figure 3.3 are the same for both local populations

for a particular delay (0t,0ù.The harvests decrease away from the origin (no deiay)

until the optimal escapements become zero and therefore the equilibrium harvest is

also zero. The zero harvest contour is not smooth due to problems in its estimation

with the package (GNUPLOT) used.
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FrcuRp 3.4: The escapements of local populations 1 and 2 for the receptor delay

model as a function of the delays. For the non-symmetric migration matrix, with

ptz ) pzt , the escapement of local population l increases over that of the symmetric

example. The contour increment is 10,000 and escapements decrease from the origin.

If we replace the migration matrix from the above symmetric example with,

, - (o'oot o'oo') 
,' - \o.oo' o.ool /

then we can investigate the effect of sources, sinks and delays on optimal harvesting

policies.

Figure 3.4 shows a contour plot of the escapements of both local populations. In

this example, the escapement of local population 1 is always larger than that of local

population 2, conforming to the source/sink rules of the non-delay model; to see this,

consider the inequality (3.52). From this inequality we see that it is conceivable that

a relative exporter local population could have a smaller optimal escapement than

the relative importer local population if the juvenile recruitment delay of the relative

exporter local population is large enough. As in the previous example, eventually the

equilibrium escapements become negative for large delays. Local population 2 has a

non-negative escapement for a greater range of B1 and B2 dre to an increase in the

parameter prz (see inequality (3.52) and equation (3.53)).

We note that a delay of B \n local population j produces a greater decrease in the
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FrcuRn 3.5: The harvests from local population 1 as a function of the delay para-

rneters for the non-symmetric migration matrix and the receptor delay model. The

contour increment is 5,000. Numbers on the contours are harvests x103.

optimal escapement of the relative exporter local population i than the same delay in

local population i. For example, with no delay (0r,0r): (0,0), local population t has

escapement Si : 126733. When (þt,0r): (0,4) we frnd .9i : 107101. Conversely,

when (þt,l3r): (4,0) the escapement is ^9i : 118077. This appears to be coun-

terintuitive as we would expect the delay in local population i to decrease that local

population's escapement to a greater extent than if the delay were in local population

j. With the above delays, the escapement of local population 2 is exactly the same,

Si :6g401, for both (B1, þr): (0,4) and (þt,0r): (4,0). (see the inequality (3.54)).

With the delay (0r, {Jr): (4,0), the escapement of local population 1 is higher as more

stock can then migrate to local population 2 where it is heavily harvested. In this way,

we "avoid" the delay in local population l. If (Pr,0r): (0,4), then the delay in local

population 2 counter-acts the flow of juveniles into that population.

In general, if we assume negligible costs, local population i in a metapopulation

with delays (P'r,Bt) willhave a greater escapement than local population i with delays

@i, {t';) ff,

(p¿¿oþi I p¿¡a7'i) > (pooo7l' I p¿¡a7i') (3.54)
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Flcuns 3.6: The harvests from local population 2 as a function of the delay para-

meters for the receptor delay model and the non-symmetric migration matrix. The

contour increment is 10,000 and increases monotonically from zero.

Thus, with (Bi, PÐ: (4,0), (P'i,PÐ: (0,4), and the parameters from the non-

symmetric migration matrix, we find ,9i' > ,9f " and Si' : Si".

Unlike the symmetric migration example, we find that under some circumstances

optimal negative harvests are produced by local population 1. In Figure 3.5 we plot the

contours of the equilibrium harvests of local population 1 as a function of the delays.

As the clelays increase, eventually a negative harvest is produced in local population 1.

As the delays increase further, the harvest becomes zero due to the escapements in

both local populations becomingzeîo (see Figure 3.4).

Figure 3.6 plots the equilibrium harvests of local population 2 as a function of the

delays. In the mid-right region we observe that a positive harvest is produced even

though the equilibrium escapement from local population 2 is zero (see Figure 3.a).

This is due to the seasonal migration of juveniles from the relative exporter, local

population 1. As the delays increase, eventually a zero harvest is optimal due to the

escapements both becoming zero.

We now attempt to explain some of the results from this model. Firstly, from

Figure 3.5 we observe that negative harvests are produced for high values of B1 and
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FlcuRo 3.7: For large values of the delay in local population 1, B1 , (and for some

small B1 delays) the optimal policy is to seed that local population, and then harvest

the adults in local population 2. The seeded juveniles take less time to mature and

join the harvestable stock in local population 2, than if maturing in local population 1.

low p2 delays. In the same range, the escapement of local population 1 is positive,

the escapement of local population 2 is zero, and the harvest from local population

2 is always positive. If a negative harvest is interpreted as placing stock into a local

population, then we seed local population 1 and harvest local population 2. This

strategy takes the yield from the local population with the smallest delay in juvenile

recruitment, thus minimising the time taken for juveniles to join the harvestable stock

(see Figure 3.7).

The seeding strategy is also optimal for B1low and B2high, only over a smaller range.

This is due to iocal population 1 being a relative source/exporter local population. It

is still optimal to seed local population 1 due to the large migration of juveniles from

the relative source/exporter, local population 1, to the relative sink/importer, local

population 2, which can then be harvested. As the delay in local population 2 increases

further eventually this policy is no longer optimal and both escapements approach zero.

Thus there is a trade-off between the benefits of the migration from local population 1

to 2 and the costs of the deiay in local population 2.
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Flcung 3.8: A metapopulation where juveniles experience a delay before recruiting

to the adult breeding stock. The delay, B¿, for local population i depends on the

source of the larvae, i.e. it is determined by the larvae's parents and/or birth place.

3.3 Parental delay model

In the previous section, \¡r'e assume that the recruitment delay occurs in the local

population that receives the juveniles. However, the delay may occur due to effects

originating in the parent local population (see Figure 3.8). For example, genetic influ-

ences on age at sexual maturity may cause juvenile stock from local population i to

take 0¿ years to reach maturity, regardless of where it migrates. Another possibility

is that the juveniles produced by the parent stock of local population i take B; learc

to reach sexual maturity, at which time they disperse to find mates and acquire new

territories.

Thus, including harvesting, we replace equations (3.2S) and (3.29) by,

Rtn+t : órSr¡, * ptGt(Stn-¡,) + pzßz(Szn-þ") (3.55)

Rzn+, : 615r* I pnGt(Stn-Br) * prrGz(Szx-B'). (3.56)

As before, we use the method of Lagrange multipliers to determine the equilibrium

optimal harvesting equations. The details of the derivation are not given here. The

p

-L

p
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equations found are,

1 :
a

1 :
Q.

1p - ",(Ë,))[ð, * prtG't(S,)o,'l + @ - "r(R ))þ,,rG'r(Sr)oP'

P - ct(St)

6z I pzzG'r(S r) oP'] + @ - cr (Êr) ) þrrG'r(Sr)oe'
p - cz(Sz)

(p - .r(R ))

(3.57)

(3.58)

where,

Rt

Rz

: ór,9r * pnGt(,gl) + prÇz(Sr)

: 6z5z i pnGt(^9r) + pzzGz(Sz).

3.3.1 No costs analysis

Assuming that harvest costs are negligible, the equilibriumescapements, ,Si, are deflned

by,

ü * aþ' Gi(Si)(pll * pn) (3.5e)

6z + aþ, G'"(Si)@r, * pzz). (3.60)

If we assume that the recruit production function is logistic, then the optimal

escapements from equations (3.59) and (3.60) are,

si: I{t K1 I*d-6t
(3.61)

S;:

2 2 aþ'rt(pntpn)
Kz K2 l+d-62

(3.62)
2 2 aþ"rz(pzt*pzz)

As before, an increase in the delay decreases the optimal escapement. If the delay

in local population i is infrnite, implying that the juveniles never recruit, then the

optimal escapement for local population i is zeto'

1 :
d.

1 :
a
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Comparisons with incorrect harvesting policies

If the metapopuiation is incorrectly managed as two unconnected single populations,

the estimated growth rate for local population i is given by equation (3.a7). Assuming

that 1lr - I{2 and ó1 : 62, then S; > ,Så if'

ripij > rjpji (3.63)

Thus, relative exporters will be over-exploited if the metapopulation is mismanaged,

and relative importers under-exploited. This is the same result that we derived when

there are no delays (see Chapter 2).

The estimated growth rate if the metapopulation is managed as a well-mixed single

population is defined by equation (3.49), with the averaged delay of equation (3.50).

If we assume that /{r - Kz and ó1 : 62, then the optimal escapement from har-

vesting local population i as a metapopulation is greater than the escapement from

incorrectly exploiting the population as a well-mixed population, ,Si > Sil2, if ,

r¿(pu I pij) > r¡(p¡¡ -f p¡;) (3.64)

Relative source local populations should be more conservatively harvested than is

suggested by the incorrect harvesting policy. Similarly, relative sink local populations

are under-exploited if the metapopulation is managed as a weli-mixed single population

Thus, the rules-of-thumb for incorrect harvesting policies that we derive in Chapter 2

are insensitive to parent site induced delays in recruitment.

Comparisons between local populations

If we have recognised the spatial structure of the population, then we may like to know

how the escapements differ between local popuiations. We have already mentioned that
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FrcuRe 3.g: The escapements 0,";: as a function of the delay parameters for the

parental delay model and the symmetric migration matrix. The contour increment

is 10,000 and escapements increase monotonically from the zero contour toward the

origin.

an increase in the delay will decrease the optimal escapements. Assume that Kt : Kz

and ór : ó2, then Si > .9; if'

oþ'rr(pr, * øz) > oþ'rr(prr l pzz)' (3'65)

The per capita discounted juvenile production for local population i is given by

aþtr¿(p¿¡ * p¡¡). This takes into account the time taken for juveniles to reach sexual

maturity. To facilitate interpretations of the inequality (3.65), we consider two special

cases. If the per capita juvenile production is the same in both local populations, i.e'

rr(pt -l pn) : rz(pzt * pzz), then Si > S; if the delay in local population 1 is smaller

than that of local population 2. If the delays are equal, then the relative source local

population has the larger optimal escapement, while the relative sink locai population

has the smaller.

3.3.2 Variation of the delay parameters

In this section we repeat the receptor delay examples of the previous section only now

we assume that the delay is related to the parental stock. Therefore, we begin by
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Flcunp 3.10: The harvests from local population 1 as a function of the delay para-

meters for the parental delay model and the symmetric migration matrix. The contour

increment is 10,000. Numbers on the contours are harvests x10a'

considering a homogeneous metapopulation and vary the delay parameters, B¡ between

zero and twenty. The parameters of the metapopulation are; ô1 - 6z:0.001, a

logistic juvenile production function with 11 - 12 : 1 000, Kt : K2 -- 400 000 and the

symmetric migration matrix,

P-

As before, we assume negligible costs and that the discount rate is 10%.

In Figure 3.9 we plot the escapements of both iocal populations as functions of the

delays. Uniike the receptor delay model, the escapements are no longer equivalent for

alI (fu,pr). We also note that the escapement of iocal population i is independent

of the delay in local population j (see equations (3.61) and (3.62)) and decreases as

B¿ increases. Eventually the escapements become zero when it is no longer optimal

to conserve the stock due to the excessive time for the juveniles to join the breeding

adults. The zero escapement contour is given by,

0.001

0.001

0.001

0.001

ln(a)0¡:
ln
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where we have rearranged equations (3.61) and (3.62). For the symmetric migration

matrix, the zero escapement contour is found at B¿ : 6.83 and so a delay of seven

years or more in local population i produces a zero optimal escapement for that local

population.

The harvest from local population 1 is plotted in Figure 3.10. Harvests from local

population 2 are not shown as they can be found by reflecting Figure 3.10 about the

li¡;,e h : þ2. The greatest harvest, Ht :69 805, is produced with h > 6 and B, : g.

In some circumstances a negative harvest is produced and, as the delays ìncrease,

eventually both escapements become zero and so the equilibrium harvest also becomes

zero. For B1 ) 6 and 0z < 7 a positive yield is taken from local population 1 even

though the optimal escapement is zero. As seen in the receptor delay model, this is

clue to the seasonal migration of juveniles from local population 2.

pl I
/7

". þ2 ,1,

S =0I
s >0

1

H >0
I

FlcuRn 3.11: For large values of the delay in local population 1, 81, the optimal

policy is to seed local population 2 and harvest all of local population 1. This takes

advantage of the small maturation delay associated with juveniles that mature in

Iocal population 1.

If we assume that a negative harvest can be interpreted as seeding a locai population

then for large values of B1 and low B2 delays it is optimal to seed local population 2. In

the same range, the optimal escapement for local population 2 is positive, the optimal

escapement for local population 1 is zero and the equilibrium harvest is positive (see

Figure 3.10). It is optimal to place stock into local population 2 so that the time taken

H <0
2
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FrcunB 3.12: The escapements as a function of the delay parameters for the parental

delay model and the non-symmetric migration matrix. The contour increment is

10,000 and escapements increase monotonically from the zero escapement contout

towards the origin.

for juveniles to join the harvestable stock (in local population 1) is minimised (see

Figure 3.11). This policy is reversed for a large B1 delay and a small B2 delay. In this

case, we seed stock in local population 1 so we can take advantage of the shorter delay

in local population 2.

Consider next the non-symmetric migration matrix,

' 
: lo'oot 

o oo') 
'I o.oor o.oo1 / '

where local population 1 is a relative source/exporter local population.

The optimal escapements of the local populations are shown in Figure 3.12. Increas-

ing the proportion of juveniles migrating from local population 1 to iocal population

2 increases the optimal escapements of local population 1 but has no effect on the

escapement of local population 2. This can be seen by observing the equations that

deflne the optimal escapements, equations (3.61) and (3.62). The increase in p12 also

increases the range over which the escapement of local population 1 is non-negative

(see equation (3.66)). For local population 1 the zero escapement contour is found at

Ér : 6.83, and for local population 2, 0, : 10.54. Thus if the delay is seven years or
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FrcuRe 3.13: The harvests from local population 1 as a function of the delay para-

meters for the parental delay model and the non-symmetric migration matrix' The

contour increment is 10,000. Numbers on the contours are harvests x104.

more in local population 1, or fourteen years or more in local population 2, then the

optimal escapements should be zero.

The harvest of local population 1 is shown as a contour plot in Figure 3.13. The

greatest harvest from local population L, H, -- 69805, is found for parameters B1 ) 10

and, B2: 0 (however, local population 2 has a negative optimal harvest in this range).

In the range h > lt and B2 ( 7 positive harvests are produced from local population 1

when the escapement of that local population is zero. This is due to the seasonal

migration of juveniles from local population 2. In this delay range, local population 2

experiences an optimal negative harvest. As in previous examples, as the escapements

both become zero, the equilibrium harvest also becomes zero. As B2 increases, we frnd

optimal negative harvests for local population 1.

Note that under some circumstances it is optimal to seed local population 1 when

the delay in that local population is greater than the delay in local population 2. This

is due to the increase in the migration parameter, p12. There is a trade-off between the

harvest benefits (to local population 2) due to the migrating juveniles and the cost of

an increase in the delay of local population 1'

20

15

10
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FrcuRB 3.14: The harvests from local population 2 as a function of the delay para-

meters. The contour increment is 10,000. Numbers on the contours are harvests

x 104.

Figure 3.14 shows a contour plot of the harvests of local population 2 as function of

the delays þ;. The greatest harvest for local population 2is 173160, when Ér :0 and

þz > 6. The harvests are zero where the escapements àre zetol and there is a region

of optimal negative harvests as B1 becomes large and B2 is less than 6.83. Similar to

the harvests of local population 1, there exists a region of positive local population 2

harvests when the escapement of that local population is zero, due to the migration of

juveniles from local population 1. This occuls in the lange h < Il and B2 > 7 .

3.4 Closing Remarks

In this chapter we have extended the basic metapopulation model by including simple

age structure in the form of two age-classes where the juvenile age-ciass exists for an

arbitrary number of years. In the rest of this thesis organisms are assumecl to breed

the year after they are born. Many populations experience a period of growth over

several years before attaining sexual maturity, and even then may take further years

to fully contribute to the population's recruits. For example, some species of abalone
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take 3 years to reach sexual maturity at which time their larval production is much

less than those ofolder age classes (Shepherd and Laws, 1974; Shepherd,1976).

We considered two models where the delay is related either to the receiving local

population or where it is due to the parent local population. Results depended not

only on the per capita larval production but also on the delays.

For the receptor model, comparisons between incorrect harvesting policies and the

metapopulation theory, and comparisons between the local population's escapements

themselves, showed that the relative source/sink rules of the non-delay model no longer

necessarily hold (see Chapter 2). However, ìf the delays are equal then the lelative

source/sink rules remain, i.e. r'elatìve exporters (impolters) should be more (less) con-

servatively harvested than if the local populations are managed as single unconnected

populations and relative sources (sinks) should be more (less) conservatively harvested

than if the metapopulation were managed as a well-mixed single population. Relative

sources (sinks) should also have the larger escapement of the metapopulation if the

delays are equal.

The parental delay model adheres to the above relative source/sink results for the

harvest policy comparisons regardless of the population delays. However, the difference

between the local population's escapements does depend upon the delays, except for

the special case of equal maturation delays. In this case the relative source (sink) local

population has the larger (smaller) escapement, as before.

The examples that varied the delay parameters suggest that local populations with

juveniles that cause large delays should be harvested conservatively, if at all. For

example, if an optimal negative harvest is interpreted as an optimal seeding policy, then

in some circumstances it is optimal to place stock into populations that cause large

delays and harvest the population with the smaller delay. This, in effect, minimises

the time for juveniles to reach sexual maturity, at which point they can be harvested.
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These examples assume that costs are negligible. If harvesting costs are included then

the strategy of placing little harvesting effort into large delay local populations remains

optimai; however it is less pronounced than the no costs case.

We can enhance our understanding of the effects of introducing a delay in mat-

uration if we consider the annual juvenile survival. The delay models that we have

discussed ass¿me that there is either no juvenile mortality or that juvenile mortality is

subsumed within the migration parametet p¡¡. Assume that the proportion of juveniles

surviving each period in local population i is D¿. Let yl¿¡ be the initial proportion of

the juveniles of local population i that migrate to local population j. Therefore, if

annual juvenile survival and the delay are related to the local population of settling

(the receptor model), the proportion of juveniles that migrated from local population

i to j and are still alive after B¡ years is,

(3.67)

Substituting this expression into our no costs optimal escapement for local population

1 say, equation (3.45), we find,

q::[!- (rl 1+d-6r I r¡.oalu' - T - T lr{e\JDr.,f, * p'tz(Dz.,)P')l'

Similarly, if the annual juvenile survival and delay are associated with the parental

local popuiation (the parental model) then,,

i,i : 1,2 (3.6e)

and the optimal escapement for local population 1 is,

,çi:4i- Ktl 1=+d-6' I 1l.zo¡ut- 2 -t L(Dt")B'tt(pi,+p',r)l'

We can now appreciate the effects of the delay, discounting and juvenile survival. The

inclusion of a delay in maturation essentially acts as a dampener on the growth of the

D'j'Ft¡ : P';¡ J 21

P';¡ : P'orDf'
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population (most easily seen if a : 1, i.e. no discounting; also see equations (3'67)

ancl (3.6g)). Discounting then acts multiplicatively with juvenile survival, and as far

as economic decisions and management are concetned, an increase in interest rates is

equivalent to a decrease in annual juvenile survival.

In the introduction to the parental delay model, one of the justifications for the

delay's association with the parent population was that local genetics influenced the

time at maturation, regardless of where the juveniles migrated. On recollection, this

seems trnlikely. Assrme that juveniles of local population 7 with a gene for a B¡

clelay migrate to local population i. These juveniles reach maturity aftet B¡ years

ancl then produce juveniles themselves. Now, ignoring the complications of breeding

with B¿ clelay inclividuals, assume that the B¡ gene is passed on to these juveniles.

Some of these juveniles then migrate back to their parent's birth local population

with delay B¡. However, individuals born in local population i should have that local

population's delay, B¿, not a B¡ deIay. We therefore have a contradiction, suggesting

that the formulated model as stands is not appropriate for the genetic application

described. The current parental delay model is better suited to delays caused by

environmentai effects of the local population (temperature, food availability affecting

growth and maturation) before eventual migration.

In the examples of the previous chapter, and in the chapters that follow, we iterate

the dynamic programming equations to compare numerical solutions with the derived

analytic solutions. In this chapter we have not been able to do this due to computa-

tional difficulties with the large state space. The state space has increased over the

non-delay models because we have to iterate over all possible previous abundances, as

weli as over all initial abundances. For a one-period delay in both locai populations, the

dimension of the state space becomes I( x T. Attempts to overcome this problem by

contracting the state space to a region surrounding the optimal solution derived from
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the analytic equations also proved fruitless due to the most-rapid-approach policy no

longer being optimal. Results were produced when one of the local populations has no

delay and the other has a one period delay, i.e. say þt:0 and B2: 1. However due to

the reduction in K, (I{:50 was used), it was difficult to differentiate between effects

caused by the delays, migration or any possible rounding errors. For this reason, the

results are not shown here.

In a number of examples, we varied the delay parameters between zero and twenty

and investigated optimal harvesting regimes. Thus, it is possible for one local popula-

tion's juveniles to recruit immediately to the spawning stock (no delay) while the other

local population has a very large delay before sexual maturation. This does not seem

likely for a single species population. When interpreting the results, it may be more

realistic to consider dìfferences between the local population delays of eB, where eB is

small (results near the line h : B2 of the diagrams) or an increasing function of the

delays.

As mentioned, if there is no difference in delay between the local populations then

the two models, the receptor model and the parental delay model, are mathematically

equivalent. The relative source/sink results from the non-delay analyses hold fol this

special case. Thus, if there is little to no difference in the delays, the general rules-of-

thumb from the non-delay model should suffice.

Botsford (1992), in a summary of the future directions of delay difference and age

structured models, suggests a need for further research into the behaviour of these

models when there are several subpopulations connected by dispersing larvae. In this

chapter, we have considered the problem of spatial structure and dispersal when there

are arbitrary maturation delays. Our majol conclusions are (a) results differ if the

delay is determined by the destination site or birth site of the larvae (b) results only

cliffer from those of Chapter 2 if the delays differ between local populations (or if
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annual juvenile mortality differs between local populations) and (c) harvests should be

conservative if juveniles recruited to a local population take time to reach maturity;

we are then able to take advantage of possible smaller delays in the connected local

population. Although we have not considered a size-structured model, we suspect that

a similar strategy should be adopted for connected local populations that vary in size-

at-maturity, i.e. conservatively harvest local populations with a propensity for small

sized individuals, and take advantage of migration to the connected local population

where larger stock can then be harvested.
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Chapter 4

Adult migration

The models of the previous chapters assume that juveniles migrate between local pop-

ulations, but that adults are sedentary. In this chapter we investigate the effect of

ac{ult migration on optimal harvesting strategies. In the first section we assume that

only adults migrate and that juveniles remain in their parental local population until

the following period, when they become sexually mature and are then able to migrate.

This model is followed by a model that assumes that both adults and juveniles migrate

between local populations.

We model the population dynamics in discrete-time using coupled difference equa-

tions. The optimal harvesting strategies are described without detailed analysis as the

solution method is analogous to the dynamic programming procedure of Chapter 2.

We produce optimality equations that implicitly define the equilibrium optimal es-

capements for both local popuiations. As in the previous chapters, \Ã/e use simplifying

assumptions to further analyse the results. Comparisons are made between the local

population's escapements and between escapements produced when incorrect manage-

ment policies are employed. In various respects, the results are qualitativeiy similar to

the relative source/sink and relative exporter/importer resuits of Chapter 2.
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Broad scale migrations of adult stocks are weil documented,, examples including Pa-

cific salmon (Brannon, 1984; Harden Jones, 1984), tuna (Harden Jones, 1984)' halibut

(St-pierre, 1984), whales (Clark and Lamberson, 1932) and shark (Walker, 1992).

However, these migrations are often seasonal and relate to factors such as movements

to feeding habitat, spawning grounds or refugia (Wootton, 1990) and seldom is there a

clearly defrned metapopulation-like structure to the life-history strategy. Most meta-

population models assume that juveniles are the source of spatial interaction. However,

there is evidence of aclult clispersal, including "artificial" adult migrations, and we de-

scribe these examples below.

The anadromous salmonids of the northern Pacific and Atlantic often have large

scale migrations from their freshwater natal rivers to various oceanic feeding habitats,

and. return again after a number years (depending on the species) to a freshwater en-

vironment where they spawn. The semelparous salmon of the genus Oncorhynchus die

cluring or immediately after spawning, while the the closely related iteroparous genus

Salrno survive to breed in following seasons (Wootton, 1990). These salmon are well

known for their ability to return to the river at which they were spawned, i.e. their

home river. For example, less than one percent of the sockeye salmon, Oncorhynchus

nerka, are believed to have strayed from their natal stream during a study by Quinn

et at (1987). However, some spawners become lost or stray to alternate, usually adja-

cent, non-natal streams. Many studies have ignored the effect of strays on popuiation

dynamics and management (Legget, 1984; Quinn, 1984)' Quinn and Nemeth (1991)'

however, believe that strays are vital for the colonisation of new habitats or recolon-

isation of restored habitat, and that they are an essential response to the degradation

of spawning habitat. Their study on fall chinook salmon suggests that up to 27.5Y0 of

the stock from certain streams of the Columbia River strayed.

If we consider the spawning habitats to be local populations (Schaffer and Elson,
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1975) that are connected by the migration of strays, then we have defined a meta-

population. Salmon populations show many of the characteristics of metapopulations,

including local extinction and recolonisation, occasional migration between breeding

local populations and a distinct geographical structure. The population dynamics

are also appropriate for the models proposed in this thesis. The model described in

Chapter 2 rnay be appropriate for the semelparous salmon if we set ð¿ : 0. While,

iteroparous species, where adults survive for more than a single spawning event, may

be modelled with the adult migration models that we introduce in this chapter.

Further examples of adult migrations occur due to human interference. As cliscussed

in Chapter 2, some populations are enhanced by the introduction of adults (or juveniles)

from foreign or human raised stocks. If adult stock are transplanted from one local

population to another, then an "artificial" metapopulation may have been created. For

example, due to the excessive costs and low survival rates of larval seedings (Schiel,

1g92; Tegner, 1992), mature stocks of abalone and scailop ale used to enhance their

r-espective stocks (Aoyama, 1988; Tegner, 1992), while legal-sized trout are placed in

rivers for recreational fishers (Cooper, 1952). Artificial colonisation is an accepted

practice for the conservation of threatened species, and metapopulation models are

recognised as important guides to management in these cases (Hanski and Gilpin,

1ee1 ).

Evidence exists for amphibians (Sinsch, 1992) and barnacles and gastropods (Martel

and Chia, 1991) that both adults and juveniles disperse. Waser and Jones (1983) and

Hansson (1991) describe situations in which the adults of some species of mammals

(e.g. woodrats, Algerian sandrats, field voles) disperse due to the abandonment of their

home range in favor of their offspring. The authors suggest that this strategy may be

related to a lower risk of migration mortality in adults due to size and experience.

Anecclotal evidence of adult migration and colonisation is provided by John (1979)'
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as cited by John (1984), for ichthyoneuston and by trlliot and Ward (1992) for orange

roughy.

Metapopulation models that explicitly include adult migration include Freedman

and Wu (1gg4), and Wu and Freedman (i991), with a model suggested for the western

tent caterpillar, Malacosoma californicum pluuiale. Both papers assume a multiple

patch environment occupied by a single species population that has an immature and

a mature stage structure. Migration can occur in both stages. In Freedman and Wu,

dispersal is linear, while in Wu and Freedman, migration of immature individuals is

1are, while adult migration is more frequent and non-linear. The age at maturity is

assumecl constant across the metapopulation. A partial differential equation model

is usecl clo clescribe the population dynamics, and they find conditions for the global

stability of the positive equilibrium. trxploitation is not considered.

In the first section of this chapter we consider a metapopulation model where only

adults migrate between the local populations. Optimal harvesting equations are found

and we then illustrate the results with numerical examples. This model is extended in

the following section where both adult and juvenile migration between local populations

occurs

4.L Adult migration and no juvenile migration

4.t.t The model

In this section we consider a model where adults migrate between locai populations,

but juveniles are sedentary. Assume that a proportion of the surviving adult stock

from local population i migrates to local population j. This proportion is defrnec{ by

m¡¡.'lhe proportion of the adults that are lost from the system is given by rn. Thus,
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FlcuRn 4.1: A metapopulation with two local populations. The proportion of sur-

viving adults migrating from local population i to j in each generation is given by

,nii.

we have rrlí l m¿z I a¿ : I. The stock-recluitment relation is then,

Rt*+t : 61m1vF,1¡ * lzmzt&zk + G{Rrk) (4'1)

Rzt"+t : 62m22R2¡ * |tmn4tk + G2(R2k), Ø'2)

where ð¿ is the pre-mi$ation survival of local population i adults (-uy be subsumed

within the m¿¡ terms). Other parametels and variables have their usual meaning.

We do not go into the details of the derivation of the optimal harvesting equations

here as small changes to the dynamic programming procedure used in chapter 2,

Section 2.L.2, are all that is required.

The equations that define the optimal escapements are,

m

m
2

m
22

1

a

1

(v.

(ðrrnrr + Gî(,9r0)) (P - "(
R")) * Stmn(p - cz(Rzt))

P - cr(Sro)

(6zmzz + G'z(Szo)) - cz(R t)) * 6zmzt(p - .r(Ëtr))

(4.3)

(p (4.4)
p - cz(Szo)

These equations implicitly defrne the optìmal equilibrium escapements, Si and Si,

for each local population. We can prove that these equations hold for all time horizons

T > I by modifying the analogous proof in chapter 2, section2.l.2.
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4.L.2 No costs analYsis

In this section we assume that harvesting costs are negligible or independent of the local

populations and density. This will facilitate comparisons between various management

policies and the interpretation of the results. With no harvesting costs, equations (4'3)

and (4.4) simplify to,

1 :
d

I :
d

6r(*rr*mn)+Gi(si) (4.5)

(4.7)

6r(*rrimzz)+G'r(S;), (4.6)

where Si is the optimal equilibrium escapement for local population i.

If we assume that G'l(S¿) < 0 then these equations determine no more than one

solution for Si. Assuming logistic growth for the juvenile production function, G¡(S¿n)

(see equation (2.3)), the optimal escapements from equations (a.5) and (4'6) are,

.9i

S;

Kt _Kt

2

L+d-6t(-tt*rntz)

l+d-6r(*rtimzz)

2 2rt

K2K2

2rz
(4.8)

Thus, as the adult migration survival, 6¿* -- 6r(*, *m¡¡), for local population i

increases, the optimal escapement for local population i a,lso increases.

Comparisons ïvith incorrect harvesting policies

In a similar fashion to the previous chapters, we compare the escapements derived from

metapopulation harvesting theory to escapements that assume that the local popula-

tions are either unconnected by migration or that the metapopulation is a well-mixed

single population. In this way) we are able to determine the advantage of using the

metapopulation theory and the effect of incorrect harvesting policies on the population.
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Assume that the local populations are managed as two unconnected single pop-

ulations. For simplicity, assume that the density-dependent parameters 1{¿ and the

growth rates r¿ for each population are equal. Measurements of the adult survival in

local population i are taken as,

6¿":6¿m¿¿+\jrnji (4.e)

(4.11)

This measures the "flow in" of adults to a local popuiation, and is analogous to equation

(2.26) of Chapter 2, Section 2.2.2. As in Chapter 3, this assumes that the local popula-

tion's abundances are approximately the same, and that measurements are made after

dispersal. The optimal escapement of local population i from harvesting the popuiation

as a metapopulation is greater than the optimal escapement if the local populations

are incorrectly assumed to be unconnected, Si > '9å, if

6¿m¿¡ ) 6¡mji (4.10)

This suggests that locai populations with high adult export survival should be harvested

more conservatively than would be recommended from managing the population as an

unconnected single PoPulation.

If the iocal populations are managed as a well-mixed single population, adult sur-

vivai may be measured as

6t: d'( rnn*m1¡¿)*6r(*rr*mzt)
2

This quantity measures the average adult migration survival. Assume that Kt : I{z

and 11 : rz. The optimal escapement from our metapopulation harvesting theory is lar-

ger than the estimated escapement from the weli-mixed single population, ^9i > Silz,

if
6¡(*¿¿ * m¿¡) > 6¡(*¡¡ t m¡¿). (4'12)
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Thus harvesting the metapopulation as a well-mixed single population will over-harvest

local populations with high adult migration survival, and under-harvest those with low

adult migration survival.

Comparisons between local populations

If we have recognised the metapopulation structure of the population, then vve may

like to know how the local populations' escapements compare. Thus, if we assume

that 1{r - Kz and 11 : rz then the escapement from local population i, Si, should be

greater than ,9j if 6¿(m¿¿ -f m¿¡) > 6¡(*¡¡ I m¡¿). We conclude that local populations

with high adult migration survival should be harvested more conservatively than those

with lower adult migration survival.

4.L.3 Iteration of the dynamic programming equations

In this section we iterate the dynamic programming equations so as to compare nu-

merical solutions with our analytic solutions, equations (4'3) and (4.4). Further as-

sume that a metapopulation with two local populations is currently unharvested. As-

sume that juvenile production function is logistic (see equation (2.3))' with parameters

rt:12:1 and Kt : Kz:200. Pre-migration adult survival is given by ð1 : 6z:L

(thus we concentrate our attention on the migration parameters, mii), ancl the adult

migration matrix is,

tuf:
0.2

0.2

The unharvested equilibrium local population sizes are Rt : 106 and Bz : 88'

If the cost function is defined by equation (2.37) with parameters ø¿ : 30 and q¿ :

1.3 x 10-2, the price of a unit of stock is p: 70 and the discount rate is 10%, then

iterating the dynamic programming equations produces the escapements and harvests

0.2

0.4
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TRt Rz Sr Sz H1 H2

5

4

3

2

1

0

106

79

79

79

79

79

88

68

68

68

68

68

59

59

59

59

59

33

63

63

63

63

63

33

47

20

20

20

20

46

5

5

5

5

25

35

TaSLp 4.1: Escapements and harvests from iterating the dynamic programming

equations.

shown in Table 4.1.

Theoptimalescapementforlocalpopulationlis^9i:Sgwithequilibriumharvest

Hî : 20. Local population 2 has optimal escapement S; : 63 with equilibrium

harvest Hî : 5. The terminal period escapements are the zero profit escapement

levels Soo : 33. Thus we conservatively harvest local population 2 and take a greater

harvest from local population 1. This reiterates the analytic results which suggest that

a local population with high aduit migration survival shouid have a larger optimal

escapement than a local population with lower adult migration survival.

The numerical solutions above compare favourably with soiutions produced from

the analytic equations derived in the previous section, equations (4.3) and ( .a). The

optimalescapementsfromtheseequationsareSf:57andSi:63withoptimal

equilibriumharvests Hî :20 and Hî :4. Differences between analytic and numerical

solutions are likely to be due to rounding errors in the computer programs'
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FrcuRn 4.2: Contours of the escapement of local population 1 from equation (4'7) as

a function of the adult migration parameters. Numbers on the contours are escape-

ments x103. The contours of the escapements of local population 2 can by found be

reflecting the flgure about the line mp = Trr27'

4.L.4 variation of the adult migration parameters

In this example we investigate the effect of varying the adult migration parameters

rnp aîd. ft121 oÍI escapements and harvests' Ail other parameters remain constant'

Assume that the metapopulation shows logistic juvenile production with parameters:

Kt: Kz:400000, rL:12_- 0.75, adult survival 6t:62:1 and migration matrix'

M-

The cost of harvesting the stock is assumed negligible, and the discount rate is 10%.

The escapements of local population 1 are plotted as contour lines in Figure 4.2.

Locai population t has high adult migration survival if the point (-rr',ræ21) is below

the line rrlr2 : rn21 and.low adult migration survival if above. The escapements of

local population 2 are not shown as they can be found by reflecting Figure 4.2 about

the line rft12 : mzt. The escapement of local population 1 is aiways greater than, or

equal to, that of local population 2 \1 me ) *rr. This conforms to the negligible costs

analytic results derived in Section 4.I-2.

0.4 rrttz

rttzt 0.4
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FrcuRB 4.3: Contours of the harvests of local population I as a function of the adult

migrationparameters. Numbers on the contours are harvests x103. The contours of

the harvests of local population 2 can be found by reflecting the figure about the line

rnl2 -- rnzl

In Figure 4.3 we plot the contours of the equilibrium harvests of local population

1. We note that if local population t has greater adult migration survival than local

population 2, mn ) rl2t,t then local population 1 is the more conservatively har-

vested population, Hî < H;. The general form of Figure 4.3 is similar to that of

Figure 2.4 \n Chapter 2. A negative equilibrium harvest is produced if local popula-

tion 1 shows strong adult migration survival, just as strong relative exporters/sources

did in Chapter 2. Thus, in both cases) it is optimal to conservatively harvest local

populations that are sources of dispersing individuals.

In the following section we assume that both adults and juveniles can migrate

between local populations.

4.2 Adult and juvenile migration

Some populations show both adult and juvenile dispersive stages, for example, the

models by Wu and Freedman (1991) and Freedman and Wu (199a) for butterfly meta-

populations. Sinsch (1992) describes a natterjack toad metapopulation where adult
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FlcuRp 4.4: A. metapopulation with two local populations. The proportion of ju-

veniles migrating from local population i to j ín each generation is given by p¿¡' and

the proportion of surviving adults that migrate from local population i to j in each

generation is given ItY m¿i-

females and young males are the main source of spatial interaction. Martel and Chia

(1gg1) give evidence for adult and juvenile dispersal in bivalves and gastropods that

do not have a planktonic larval stage.

4.2.L The model

In this section we extend the previous model by including juvenile migration, in addi-

tion to adult migration. Recall that the juvenile migration parameter' p¿j' represents

the proportion of juveniles that migrate from local population i to local population j in

each period. Similarly, adult migration is given Ly 
^¿¡ 

and represents the proportion

of adults that migrate from local population i to j. The stock-recruitment relation is,

Ër¡r+r

Rzn+t

61m¡R1¡ I 6zmztRz* * prrGr(Êt*) * pzrGz(R n)

62m22R2¡" * |tmn4tn * pnGt(Ët¡) + pzrGz(R n),

(4.13)

(4.t4)

where parameters and variables have their usual meaning'

Minor amendments to the dynamic programming procedure used in Chapter 2 will
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determine the optimal harvesting strategy, and so the details are not given here

The equations that define the optimal escapements are,

(6rmn 1p11G'1(Sro)) (p - rr(R" )) + (6tmn -f p'"G\(Sto))(p - cz(R t))1

a

1

a

p - cr(Sro)

(6zmzz ¡ p22G'2(Szo)Xp - cz(Rzt)) 6zmzt + prtG'r(Szo))(p - .r (Art))+(
P - cz(Szo)

6r(-r, * mn) + Gi(sixP:n * pp)

6r(*r', * mzz) + c;(S;)(Pzt * Pzz),

(4.15)

(4.16)

(4.r7)

(4.18)

These equations implicitly define the optimal equilibrium escapements, ,9i and ,Sl,

for each local population. These equations hold for all time horizons T > I (see the

analogous proof in the ChaPter 2).

4.2.2 No costs analysis

If we assume that harvesting costs are negligible, equations (4.15) and (4.16) become,

1 :
d.

1 :
d.

where si is the optimal equilibrium escapement for local population i.

Assuming logistic growth for the juvenile production function, G¿(S;*), the optimal

escapements from equations (4.17) and (4.18) are,

si: K1 Kr(l+d- ót(-tt ¡*tr)) (4.1e)
2 2r1 (ptt t prr)

Kz I{z I+d-6r(*rtlmzzS;: (4.20)
2 2r2 (pn * pzz)

Comparisons with incorrect harvesting policies

If the local popuiations are managed as two unconnected single populations, then

the estimated growth tate, r¿", and adult survival, ð¿", maj be given by equations
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(2.26) and (4.9) respectively. Assume that 1{r - K2. The optimal escapement of local

population 1 determined from our metapopulation harvesting theory will be larger than

the escapement if the local population is managed as an unconnected singie population,

^9i > Si", if,

1*d-ór( ntt i *tr)) 6tmn -f 6zmzt))
(4.2r)

rt(pr. i pn) r1p¡ I rzpzr

Assume that local population 1 is a relative exporter, rtPn ) rzPzt, and has higher

adult export survival than local population 2, 61mp t 62m21. In this case, if the meta-

population structure is recognised, then the optimal escapement of local population

1 is larger than if the local populations are harvested as single unconnected popula-

tions, sî > ^9î". Thus, a iocal population that is an exporter of adults and juveniles

is over-harvested if the metapopulation is managed as two unconnected single popula-

tions. Similarly, if a local population is an importer of adults and juveniles, then it is

under-harvested.

If local population i is a relative exporter but has a lower adult export survival than

local population j, then the difference in escapements from the alternative management

policies will depend on the inequality (4'2t)'

The metapopulation could also be managed as a well-mixed single population. The

growth rates and adult survival are given by the average per capita juvenile production,

equation (2.27), and the average adult migration survival, equation (4.11). Assume

that 1{r - Kz. The optimal escapement of local population 1 from our metapopu-

lation theory, namely equation (4.19), is larger than the estimated escapement if the

metapopulation is managed as a well-mixed single population if,

I+d-ðr(-rt ¡*rr)) I + d- (ðt(-tt I mtz) * 6z(mr, + *rt)) 12) (4.22)
rt(pn * p::-) ("r(pt' t p'z) r rz(pzz + pzt)) l2

Thus, if locai population 1 is a relative source' rt(pn *prz) ) rz(pzz *pzr)' ancl

has greater adult survival, ôr(-r, *m ¡,) ) 6r(*rr*mzt), then harvesting the meta-

( r+d-(

(
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popslation as a well-mixed single population will over-exploit local population 1 and

under-exploit local population 2. We conclude that if local population i is a juven-

ile and adult source, then local population i should be more conservatively harvested

than would be suggested from harvesting the metapopulation as a well-mixed single

population. Similarly, juvenile and adult sinks should be exploited to a greater degree.

Thus, the conclusions of Chapter 2 and the adult migration only model of Section 4'1

are enhanced. As mentioned in the discussion above, if a local population is a relative

source, but has lower adult survival than the other local population, then diffelences

in optimal escapements will depend on the inequality (4'22)'

Comparisons between local populations

Having recognised the metapopulation structure of the population' \ /e may like to know

how the escapements compare between local populations. If we assume that Kt : I{z

and 11 : rz, then the optimal escapement of local population 1 should be greater than

that of local population 2, Si > ^9;, if

I+d-6t(*tt¡-tr)) (4.23)
rt(pt r pn)

This result reinforces the relative source/sink results of Chapter 2 and the adult mi-

gration res¡lts of Section 4.1. For example, if local population 1 is a relative source

and has greater adult survival than local population 2, then local population t has the

larger optimal escapement. However, if a local population is a relative source' but has

lower adult migration survival thän the other local population, then differences in the

escapements will depend upon the inequality (4.23).

4.2.3 Iteration of the dynamic programming equations

(

Case 1
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As in Section 4.1.3, assume that we are to harvest a previously unexploited meta-

population composed of two local populations. Assume that the juvenile production

function is logistic, with parameters 11 - T2 : 10 and Iit : Kz :200. Adult survival

is given by ô, : 6, -- l. The adult migration matrix is,

M-

and the juvenile migration migration matrix is,

/ 0J 0.1\
P- I I

\ o.t, o.r ) 
'

In this example local population 2 is a relative source/importer local population

and. has greater adult migration survival than local population 2. The unharvested

equilibrium local population sizes are Rl : 176 for local population 1 and Rz : I28

for local population 2. The cost function is defined by equation (2.37) with parameters

ø¿ : 30 and q¿ : 1.3 x 10-2, the price of a unit of stock is p : 70, and the discount rate

is 10%. The dynamic programming equations produce the escapements and harvests

shown in Table 4.2.

TheoptimalescapementforlocalpopulationlisSi:S0andforlocalpopulation

2, S; : 87. The optimal equilibrium harvests are /1i : 93 and Hi : 44. The terminal

period escapements are the zero profit escapement levels Soo : 33. As expected, the

relative source/exporter local population, local population 2, has the iarger optimal

escapement and smaller equilibrium harvest.

The analytic solutions from equations (4'15) and (4.16) are Sf : 79 and Si : 89

with equilibrium harvests Hi : 94 and Hl : 42. Thus, results suggest that local

populations with high per capita juvenile production and high adult migration survival

should be conservatively harvested. This is shown even more markedly in the negligible

costs case where the optimal escapements are Si : 6S and Si : 80.
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98

Tnrlø 4.2: Escapements and harvests from iterating the dynamic programmlng

equations.

Case 2

In this example we transpose the adult migration matrix to determine the impact on

harvesting strategies of a relative source/exporter local population that has iow adult

migration survival. The parameters are the same as those of the previous example'

except that the adult migration matrix is,

ll/[ :

Iterating the dynamic programming equations (not shown here), we find optimal

equilibrium escapements Sf : 86 and Si : 83' The harvests are 11| : 70 and

Hî : 66. Transposing the adult migration matrix has increased the escapement of

local population 1 while decreasing that of local population 2, the effect being to

,,equalise" the escapements. If we assume negligible harvesting costs, this equalising is

even more pronounced. The no-costs optimal escapements are Si : 7S and S{ :72'

This trend reversal was expected from our analytic work of Section 4.2.2.
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Frcunp 4.5: The escapements of the local populations from equations (4.19) and

(4.20) as a function of the adult migration parameters. The vertical contour lines are

local population 1 escapements, and the horizontal contours represent local popula-

tion 2 escapements. Numbers on the contours ale escapements x103' The uppel-

most cÌiagonal line separates the parameters for which .9f > ^9i (below) and si < ^9i

(above).

4.2.4 Variation of the migration parameters

To investigate the behaviour of the system in more detail, we vary the adult and juvenile

migration parameters while all other parameters remain constant. In this way we are

able to determine the effect of migration on the local populations' optimal escapements

and harvests.

In this example we use the parameter values from the example presented ìn Sec-

tion 4.I.4. However, as we now have juvenile migration effects as well, it is more diffi-cult

to fully investigate the parameter space. Thus, in the first example we hold the juvenile

migration constant, and vary the adult migration parameters. This is followed by an

example where adult migration is constant and juvenile migration is varied.

0. l- 0.2 0.4 0.s 0.6
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Frcune 4.6: The harvest of local population 1 as a function of the adult migration

parameters. Numbers on th contours are harvests x103'

Example 1-

Consider a metapopulation with a logistic recruit production function, parameters,

rt: 12 - 300, Kt: Kz:400000, and juvenile migration matrix,

o_ /o.ool 0.002\

' : lo.oo, o.ool ,l 
'

Adult survival is ð1 : áz : 1.0 and the adult migration matrix is,

0.1 0 .2 0.4 0.5 0.5

ll/[ -

Costs associated with harvesting are assumed negligible and the discount rate is 10%.

The escapements of iocal population 1 and local population 2 are shown in Fig-

ure 4.5. If m21 ) mn the optimal escapement of local population 2 is not always

greater than that of local population 1 (unlike the example of Section 4.1.4), as local

population 1 is a relative source. Local population 2 has a greater escapement than

local population I \f 2mn 1 3m21- 0.7 (see equation (4.23) and Figure 4.5). Note that

the escapement of local population 2iszerofor m211ess than 0.1, and thus harvests in

local population 2 rcly on immigration from local population 1.
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FrcuRB 4.7: The harvest of local population 2 as a function of the adult migration

parameters. Numbers on the contours are harvests x 103

Figures 4.6 and 4.7 show the equilibrium harvests from local population 1 and local

population 2 respectively. These figures have a similar form to those of chapter 2,

Figure 2.4, and the adult-migration-only model, Figure 4'3' The harvests from local

population 1 are less than those of local population 2 over a greater range of the para-

meter space. This is a consequence of the non-symmetric juvenile migration, Pn ) Pzt,,

causing more conservative harvesting in the relative exporter/source local population.

The discontinuity in harvest contours observed for populations with mzt 10.1 is due to

local population 2 having a zero optimal escapement over this range. The equilibrium

harvest of local population 2 is not zero in this range due to the seasonal migration of

juveniles and adults from local population 1.

Example 2

In this example, we hold the adult migration parameters constant and vary the juvenile

migration parameters. The parameters are the same as those defined in the previous

example except the migration matrices are now'

0.1 0.2 0.4 0.5 0.6

0.001 ptz

Pzt 0.001
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FrcuRp 4.8: Contours of the escapements of both local populations derived from

equations (4.19) and (4.20) as a function of the juvenile migration parameteÌs. Num-

bers on the contours are escapements x 104. Contours labelled with even numbers are

Iocal population 1 escapements, and those odd are local population 2 escapements.

Local population t has a greater escapement than local population 2 for parameters

below the upper diagonal line, and local population 2 has the larger escapement above

the line.
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The optimal escapements of local population 1 and 2 are shown in Figure 4.8. The

escapement contours are of the same form as those shown in Chapter 2, Figure 2.3. The

effect of adult migration is most noticeable when pn: pzr. Without adult migration,

or with rfi,12 : trtr21, we would expect the optimal escapements to be equal. However,

ð.s TrL12 ) lrùzt, we find that the optimal escapement of local population 1 is greater

than that of local population 2. Similarly, if p¿¡ > pji we can not say that local

population i has the larger escapement (as we did in Chapter 2, Section 2.2.2), as

adult migration now effects the equilibriumescapement. In fact, from equation (4.23),

the optimal escapement of local population 1 is greater than the optimal escapement

of local population 2 if 0.2p21< 0.0001 * 0.3prz (see Figure 4.8).

The equilibrium harvests from local population 1 and 2 are plotted in Figures 4.9
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FrcuRp 4.g: The harvest of local population 1 as a function of the juvenile migration

parameters. Numbers on the contours are harvests x103
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FrcuRs4.10: Theharvestoflocalpopulation2asafunctionofthejuvenilemigration

parameters. Numbers on the contours are harvests x103

and 4.10 respectively. Once again, the harvest contours are of the same general form

as those shown in Figure 2.4. The local populations show an optimal negative har-

vest when the proportion of immigrating larvae is low compared to the proportion of

emigrating larvae. Local population 1 is more conservatively harvested than local pop-

ulation 2 over a greater range of the parameters. This is due to the greater adult export

survival of local population !, TrLn ) rnzt. As mentioned earlier, this suggests that local

populations that are sources of migration should be protected from harvesting.
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4.3 Closing Remarks

In this chapter we have considered adult migration between local populations. Some

species show spatial interactions that involve dispersing adults (Waser and Jones, 1983;

Hansson, 1991; Martel and Chia, 1991; Wu and Freedman, 1991; Sinsch, 1'992)' We

considered two models; the first assumed that only adults are able to migrate, and

the second assumed that both adults and juveniles migrate. The metapopulations are

moclelled with coupled difference equations, and equations are derived that implicitly

clefine the optimal equilibrium escapements for each local population'

To obtain a greater understanding of our results, some simplifying assumptions are

made (e.g. no costs). Comparisons between local populations are used to obtain rough

guides to the relative harvest intensity that is required for each local population. For

the adult-migration-only model, we find that the iocal population with the higher adult

migration survival should be harvested more conservatively than the local population

with lower migration survival. This is analogous to our rule-of-thumb from the juvenile

migration only model of Chapter 2,i.e. that the local population with the greater per

capita iarval production shouid be more conservatively harvested.

Comparisons are then made between the optimal escapements from our metapopu-

lation theory and incorrect harvesting strategies. Firstly, if the local populations have

been recognisecl but the managing authority does not believe that they are connected by

migration, then we flnd that the local population with the greater adult export survival

is over-harvested., while the other local population remains under-harvested' Secondly,

if the metapopulation is managed as a well-mixed single population, then the local

population with the greater adult migration survival is over-exploited, while the other

is under-exploited. Again, these results are analogous to those found in Chapter 2,

Section 2.2.2 for the juvenile migration only models. If we include both adult and
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juvenile migration, the results described here for the adult migration only model and

the results from Chapter 2 are reinforced, e.g. conservative harvesting of relative ex-

porters/sources with high adult migration survival. However, there is a trade-off in

harvest if a local population is, say, a relative exporter/source local population but has

low adult migration survival.

Note that the adult survival terms that we have used in this chapter's examples are

signifi.cantly greater than that of Chapter 2, where adult survival is 6 : 0.001. The

increase in parameter values is necessary to obtain the richness of behaviour observecl

in the examples; very low levels of adult survival, while still plausible, have little effect

on optimal harvesting strategies. In fact, in the examples of Chapter 2', we could have

increased adult survival by a factor of 100 with no qualitative difference and little

quantitative difference to the results.
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Chapter 5

Optimal harvestittg of a partially

closed or reserved metapopulation

In Chaptet 2 weconsidered optimal harvesting policies for a fully harvested metapopu-

lation, where all local populations are available for exploitation. In this chapter we con-

sider the possibility that particular local populations cannot be harvested. An example

where local popuiations may be closed, or otherwise unharvested, is the prohibition of

harvesting from breeding habitats, where protection of juveniles and breeding adults is

vital for stock persistence. Fishing may also be financially undesirable in certain local

populations due to these regions being prone to under-sized or unmarketable individu-

als. Sub-populations of harvested stock may be unreachable due to depth or distance

from port, as was the case for many populations before new technologies made these

remote populations accessible (Davis, 1989). Another example is the temporary closure

of fishing ground.s to allow stock recovery from overfishing or damage from pollutants

(Cook and McGaw, 1991; Tegner, 1992). This is all too common a problem' as seen

in South Australia's Gulf St. Vincent prawn fishery, and the oil spill in Spencer's Gulf

in 1g92 (Noye et a1.,1994). Fishing activities may be restricted in marine sanctuar-
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ies or protected aïeas, for example West Island's Marine Reserve in South Australia

(Shepherd, 1991). Marine habitats are worthy of protection for ecological reasons and

these preservecl areas may have commercially viable populations that are connected to

exploited populations by the dispersai of juveniles or adults.

Harvesting a partially closed metapopulation'

Fishery managers are often faced with the problem of deciding how best to serve their

fishery with the knowledge that a significant part of the stock cannot be harvested,

ancl is interacting with the exploitable population. For example, a harvested metapop-

ulation may require the closure of a iocal population because of overfishing (Cook ancl

McGaw, 1991; Orensanz et ø/., 1991). How then should the exploited local population

be harvested to maximise the fishery's financial viability and improve stock recovery in

the closed patch? How will the closed local population react to closure? How should

we manage sources and sinks?

Harvest closures can also be applied as a fishery stock and harvest regulatory mech-

anism. Prohibiting the exploitation of known areas of high stock production or breed-

ing grounds can be used to boost abundance and possibly future catch. Refugia can

also be applied as an alternative to other regulatory measures such as restricting season

lengths, as a means to reduce fishing effort and maintain stocks (Davis, 1989; Shepherd

and Brown, 1993; Quinn et a1.,1994).

Shepherd (1991) suggests that marine reserves should be used to help manage the

recovery of declining abalone stocks. He lists three main reasons why reserves are a

potentially valuable management tool. Firstly, for research, as fishing can bia,s measure-

ments of growth and make estimates of natural mortality difÊcult to obtain. Secondly,

harvest reserves can protect genetic diversity. Due to harvesters selecting faster grow-
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ing individuals, over time selective harvesting may result in a reduction of growth rates,

increases in fecundity at age, reductions in age at maturity and decreases in size at

maturity (Brown and Parman, 1993; Policansky, 1993). It has been suggested that at

least one local population of abalone be preserved every few hundred kilometres, which

is the scale of genetic change across the population. The flnal purpose is that reserves

could provide a restocking source for populations that experience dramatic declines in

abundance (Tegner, 1992)'

Given that the metapopulation is over-exploited, rather than close the whole fishery

down (a rather drastic decision economically), managers may wish to close only a

portion of the fishing zone. Or, perhaps a manager wishes to introduce a harvest

refuge as a regulatory measure. How should the refuge choice be made to maximise

economic benefits and/or stock recovery? What is the influence of sources ancl sinks

on the optimal choice of habitat for closure?

Managers may also have to determine optimal harvesting policies when their stock

is intimately connected to a reserve system or marine sanctuary.

Flarvesting within a reserve system.

Scientiflc and social desires for species and ecosystem conservation have led to the pre-

servation of a variety of ecologically valuable habitats. While terrestrial habitats have

received greater attention as far as preservation and management are concerned, the

benefits of preserving marine and estuarine habitats are only now beginning to be real-

ised (Fairweather and McNeitl, 1993). The Green Island Marine Park was Australia's

first marine reserve, being declared in 1938, while in 1879 the first Australian terrestrial

park was proclaimed at Royal National Park in New South Wales' In 1991, less than

one percent of Australia's maritime area was protected outside of the Great Barrier
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Reef Marine Park, which comprised 88% of the total preserved area of approximately

4.LT0, whereas 5.3% of Australia's land was under park protection (Bridgewater and

Ivanovici, 1993; Fairweather and McNeill, 1993). Taking a world view, coastal and

marine reserves comprise approximately 850 of the 4500 protected areas of the world

(Elder, 1gg3). This is contrast to the fact that the marine environment is the most

phyla rich environment on the planet, and far outweighs Earth's land in terms of surface

area (Bridgewater and lvanovici, 1993; Elder, 1993)'

Marine sanctuaries, or Marine and Estuarine Protected Areas (MEPAs)' are dis-

crete areas of coastal waters and underlying terrain where commercial and recreational

activities are limited or prohibited entirely (see Ballantine (1987) and Elder (1993))'

The merits of MEPAs for conservation are obvious. Protection from pollution, over'-

exploitation, and. habitat destruction benefrts both recreational users and the envir-

onment. There are also likely to be beneficial effects on recreational and commercial

fisheries, especially if fished habitat is connected to the reserved region' This is due to

the protection of stock, breeding habitats and sources of food (Davis, 1989; McNeill,

1ee1 ).

When establishing a reserve system our decision may be determined by issues of

nature conservation, profitability or a combination of these alternatives. Firstly, there

may be a predetermined site for the reserve, a region of significant biodiversity, or an

important refuge of a threatened species. In this case, conservation goals are the main

objective. The other extreme is that the impact of the reservation on a fishery is the

primary concern. If a commercially valuable species inhabits the area proposed for

preservation, and. is relevant to the reserve choice (for example the abalone population

off West Isiand (Shepherd, 1991)), then we may like to know which area will preserve

the greatest number of the species. The exploited habitat that is likely to maximise

economic gain to commercial industry may also be an important factor in reserve
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choice. Thus, the choice of habitat for preselvation will depend upon the objectives of

the MEPA in question, namely, if conservation is the primary objective, if commercial

interests are to have an influence on the decision (Peterson, 1993), or some combination

of these two objectives. Regardless of the circumstances surrounding the reserve choice,

once the reserve system is established, we still need to determine optimal harvesting

policies for the exploited local popula'tions'

Once established, the influence of the reserve system should be monitored (for

examples, see Alcaia (1931; 19SS); cole eú ø/. (1990))' we might like to know what

effect harvesting has on the reserved habitat. If it is detrimental to the conservation

goals of the MtrPA, then alternative management policies need to be investigated'

Conversely, the efiect of the reserve population on harvesting may be of interest' Fish

catch and quality may improve with the increase in environmental quality' If the

reserve system had previously been harvested, either correctly as a metapopulation

or incorrectly as unconnectecl single populations, then a comparison of harvests and

escapements would be informative. The influence of sources and sinks may also be

important, especially in reserve choice. Should sources or sinks be reservecl to achieve

economic or conservation goals? How does the preservation of a source patch affect

harvests in sink populations (and vice versa) and the metapopulation as a, whole?

Thls, similar questions need to be answered regardless of the reasons behind the

closure of a local population. For example, how do we optimally harvest the exploitable

local populations? what is the effect of sources and sinks on the metapopulation? How

is the closed habitat affected?
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5.1 Previous modelling of harvest closures

The effects of harvest refugia on fisheries has received little attention in the fisheries

modelling literature. However, with increasing desires for marine protection, two recent

papers (polacheck, 19g0; DeMartini, 1993) use deterministic simuiation techniques,

while Quinn et at. (1.994) use a two patch differential equation model, to determine if

year-round. closures or marine reserves can be an effective management tool'

Polacheck (1990) uses an extension of the Beverton-Holt equation (Beverton ancl

Holt, 1g5Z) to model the efiects of a marine fi.shery reserve on surrounding harvested

temperate zone frsh, Georges Bank cod Gadus morhua and haddock Melanogrúrn'mu's

aeglefinus. Measurements of spawning stock biomass (ssB) and yield are made under

changes in refuge size, ranging from l-50% of the possible fished area, transfer rates

between the refuge and the exploited habitat, and the fishing mortality rate. For

species with rapid growth rates and moderate transfer rates, Polacheck found that

marine sanctuaries could increase the spawning stock and biomass.

The model of Polacheck is used by DeMartini (1993) to model the effects of closure

size, fi.shing mortality, emigration-immigration rates, fishing effort and age at first

capture on spawning stock biomass per recruit (SSB/R) and yield per recruit (Y/R)

for three types of tropical Paciflc reef fi,sh. Unlike Poiacheck, DeMartini uses a three-

sided reserve, noting that most tropicai harvest refugia have a shoreline edge' with

migration only occurring between the downcoast, upcoast and offshore boundaries'

DeMartini also considered the SLOSS (single large or several small) problem with

respect to marine reserves, namely if several small reserves (ten 1% closures) or a

single large reserve (one 10% closure) can increase SSB/R'

Similar results to those of Polacheck were found. Spawning stock biomass per recruit

increased. with increasing closure s\ze, but yield per recruit generaily decreasecl. Uniike
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natural and fishing mortality rates, transfer rates had little effect on SSB/R. Due to

the difference in perimeter-to-area ratios, DeMartini concluded that the contribution

to SSB/R of several small reserves will be less than that of a single large reserve.

Both authors believe that harvesting refugia have the potential to increase spawning

stock biomass per recruit, but will have little effect on increasing yield per recruit.

However, flshing effort and age at frrst capture, among other factors listed, will have

to be controlled for this potentìal to be realised.

Quinn et at. (1994) investigate the effectiveness of harvest refugia for conservation

and for harvest regulation. They apply their model to the red sea urchin, Strongy-

locentrotus franciscanzs, which exhibits both pre-larval and post-larval Allee effects.

The proportion of harvesting effort is varied in each patch, allowing the possibilities

of reserves (zero effort) or poaching (small effort). They find that harvest refugia are

necessary for the population and the fishery to remain viable with certainty. It is fur-

ther suggested that harvest refugia may be especially useful where harvesting effort

is difficult to control, and sanctuaries can provide a useful management alternative to

limiting harvest efficiency'

As mentioned in Chapter 1, Clark and Mangel (1979) model two subpopulations

of tuna where the underlying subpopulation is unharvested, but connected by migra-

tion to the harvested subpopulation above. Yellowfrn tuna (Thunnus albacares) and

skipjack tuna (Iíøtsuwonus pelamis) are harvested by tuna purse seine fleets that take

advantage of the aggregating behaviour of these fish. Floating objects, marine mam-

mals or man-made rafts (flsh-aggregating devices, FADs) appear to attract signifrcant

surface schools of exploitable fish (Hilborn and Medley, 1989). Interacting with these

surface schools is a subsurface population that remains unharvested and is essentially a

reserved. population. Clark and Mangel (1979) model this situation using two coupled

differential equations where individuals diffuse from one population to the other. They
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find that under some circumstances the underlying population may become extinct, in

spite of not being harvested. Mangel (1932), Samples and Sproul (1985)' Hilborn and

Medley (1g8g) and Hilborn (1989a) consider various extensions of this model, including

removing the steady state assumptions, stochastic fluctuations, different assumptions

regarding recruitment to fish-aggregating devices, effects of fish-aggregating devices

and vessel number on profitability and parameter estimation from tagging clata.

We consider the problem of optimally exploiting a local population that is connec-

tecl to an unharvested local population by explicitly defining the spatial population

clynamics using coupled difference equations, and then searching for analytic solutions

rsing dynamic programming and the method of Lagrange multipliers' We then consider

how the optimal harvesting strategies affect yield and spawning stock abundances, and

relate this to problems associated with reserve establishment and management.

5.2 Theory

Assume that we have recognised the spatial structure of the population. For simplicity,

assume that the metapopulation has two local populations and one is to be reserved

or closed. Without loss of generality assume that local population 1 is closed and iocal

population 2 is harvested.

We set up the problem as in the previous chapters, only the escapement for local

popuiation 1 is the unharvested abundance, S¿¡ -- R¿n, and the present value expression

is the sum of discounted net revenues from the harvested iocal population, iocal pop-

ulation 2. Local population 2 is harvesled, H2¡, and its escapement Szn- Rz*- Hz*

then grows according to equations (2.1) and (2.2) to Rzn+t. Thus, including harvesting,

equations (2.1) and (2.2) become,

6t Rr* -l pnG{R*) I pzrGr(Sr¡),?r¿+r
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Rzn+t 6r Srx I pnG {Rt n) I pzzG z(S z*) (5.2)

Now, using the escapement, 52¡, as the control variable, our objective is to maxtmlse

the present value of net levenue over ?a seasons, namely maximise

D r/ - f ornrçn t", S"*), (5.3)t ''' - 
r=o

subject to equations (5.1) and (5.2) and 0 S Sz* 1 Rzn'

The net revenue produced in period k from a harvest of Hz* from locai population

two ls
r Rzr

rlr(Rr¡, Sr¡) : 
Jr,:" @ - c2(r)) dx, (5'4)

where p is the price of the stock and c2(r) is the cost of harvesting a unit of stock from

locai population 2 when its abundance is r'

6.2.L Derivation by dynamic programming

As in the previous chapter, dynamic programming is used to determine the optimal

harvesting strategy. Let the value function be,

T

Jr(Rro, Rzo) : 
o<ff*?^r* ! ofrnr1Rrt , Sr*). (5'5)

The value function is the sum of the discounted net revenue from local population

2 up until season T, maximised by an appropriate choice of the escapement ^92*. The

value function depends on the initial local population sizes, Rro and Rzo'

A recursive equation for the value functions is obtained from equation (5.5),

/\
Jr+r(R,.o, R o) : o<¡lp!,. (nr(",0, s'o) * alr(Rtt' g"))' (5'6)

This expression states that the value function with time horizon ? + 1 is the max-

imum of the immediate returns in the first period plus the returns from future harvests

1.57



if the local population's abundances move to .Rrr and 'Rzr' This maximum is achieved

by an appropriate choice of the escapement Szo'

consider first the value function with time horizon T :0, i.e. we wish to maximise

our immediate net revenue without any consideration of future generations' Then,

Jo(Rrc, Rzo) max- tlz(Rzo, Szo)
0(Szo (rRzo

lIr(R o,,9zoo), (5 7)

where S2oo is the zero-profit escapement size for local population 2.

If we consid.er next the time horizon T : I we obtain the following recursive equa-

tion,

/ .\
J¡(Rrc,, R2ù : 0..Ðff^,0 (nr(Oro, .9ro) * aJs(R11, Rrt) 

)
/- ' - ,lrtr1,Rrr, tr"")]) (5.8): 

or5f'-%" (tr'(R'o' 5'zo) * ¿

Equation (b.S) is maximised by partial differentiation with respect to S2s,

0: -(p- cr(Szo)) +al(e -cz(Rzr))(6,) prrG;(s'.))]

oft
6z t przG'r(^9ro))(r - "r(R t)) (5.e)

P - cz(Szo)

1(
a

From equation (5.9) we implicitly frnd the optimal escapement when there is one

period to go, så.(Rro). The optimal escapement's dependence on the abundance of

local population 1, Êro (through Rzt : 6zSzo * przGz(Sro) * pnG{Rro)), is due to

the connection of the local populations through migration' The optimal escapement

of local population 2 derived when harvesting both local populations also depended

on the abund.ance of local population 1, only in that case the population sizes were
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,,controlled,, by harvesting. Obviously, a single, unconnected population has no such

reliance.

To find the optimal escapement if there are two periods to go, first recall

Jy(R1s, R2s) : o<lL?h,. (nr,oro, '9zo) * olrt"çR r,tr.")])

: (nr(oro, så.) + oltrrçR r,,tr"")]),

Rrr(Rro, Sl\ : 615l. I pzzGz(Så-) + pnGJRrc)

(5.1o)

where,

Now if we let,

(5.11)

then

III(R o,Sro) : V(Rro) - V(Szo) (5.12)

Thus,

Jr(Rro, Rzo) : v(R o) - V(SI\ * aV(R2)' (5'13)

If there are two periods to go, i.e. T : 2, we have,

Jz(Rto,, Rzo) : o<Ð.?!,, (nr(*ro, Szo) * ..l1(R1v,*rr)),

: 
o<g.?h,. (vtar.) - v(sro) ¡ .,lv(arr) - v(så.) + olz('r,,)]),

(5.14)

where,

Ê2i(ß1s,,S2s) : 6zSro -l pzzGz(Szo) * pnGr(Aro),

R22(R'', S;") : 615l" I pzzGz(Sl.) + ptrGt(Ërr),

v(R,n) : I::@ - c2(r)) d,x,

and
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Rrr(Äro,,9zo) ór r?ro * pnGíRrc) i PztGr(,920)

Difierentiating equation (5.14) with respect to Szo we produce the following equa-

tion,

0: -(p-"r(Sro))

*a (p - c2(Rzr))(6, * pzzG'r(520)) - (p - "r(Sl\) PrrG'r(Sro)
as;.
ôRn

*" 
f{o 

- "r(R r))(Hrr"'z(Szo)(62 + prrG'"(Så.)) + PtzG'r(R")p"G'r,t?lJ,

In chapter 2, where both local populations are harvested (with no delav in re-

cruitment), the terms I/(Sr1.) and. V(R22) of equation (5'14) were not functions of the

escapemen t, s"o, and so dropped out under differentiation' This was vital for the

proof that the equations for optimal harvesting (and thus the escapements) held for

all 7 > 1. However, in this case we have an extra dependence on '92¡, producing

an optimal equation for the 2-periods to go escapement which is different from the

l-period to go escapement. For the remaining sections of the derivation' we assume

that Sf.(r?10) : ,Sf. for k > 0. This assumption simplifies the mathematics and does

not affect the resulting equilibrium optimal solution'

Assume that we can implicitly solve equation (5.15) to find the optimal escapement

when there are two periods to go, ,sr2*. Placing this escapement back into Jz(Rro, Rro)

we find,

Jr(Rro,Rzo):v(R r) -v(53\ + alvçn") - v(s;.) + ov(Rfi)'

Now, if there are three periods to go, \'e' T : 3, then'

J3(Rr., ß20) : ^-,,'aÏ- (nr(oro,,Sro) + aJ2(R11, arr))
' o<Szo lRzo \
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o<E?h,, (v tn^) - v (s,o) + *lv çn ,) - v (s3.)

+ 'lv@,,) -v(sl.) + "vtn,.¡]]) (5 16)

where,

and

tion,

.Rzr(,Rro, ,9zo) : 6zSzo t pzzGz(Sro) * ptzGt(R:o),

R2z(RÍ, 53") : õ"53. * pzzGz(S'r") + pt'rGt(Brr)'

Rß(Rr2, S;.)

,Rrr(-Rro,Szo) : órÊro lptGr (Êto) * pztGz(Szo),

R¡2(R1',S3.) : ôtRrr *pnGt(Att) * prtGr(î|.)'

Differentiating equation (5.16) with respect to ^926, 
we produce the following equa-

0 - (p - "r(Sro)) 
+ o 

l@ - øWr,))(ô, + nrrcr(Sro))f

+ r'llo - rr(R r))pnG't(Rn)nrrc'r(sro)f

+ ,,lir - cz(R z))ptzG't(Rtz)p21G'r(Szo)(ô, + r,'Gi(Ê,r))] (5.17)

This equation can be implicitly solved for the optimal escapement when there are

three periods to go, ,9f*. The terms Rn, Rzz and.Rzs are functions of ^926, through

r?11, and this produces a different optimal equation again from equation (5.15).

Generalising this proced.ure to the case when there are lú periods to go, we flnd,

J¡¿(.Rro, Rzo) : 0.,Ðp**,. (nr(oro, ^9zo) * aJ N-t(R,r, Rr,)),

/: 
o<g.?h,. (vin,.) - v(sro) + 'lv{n,) - v(sfl-l.¡

+ *lv@,,) - v(sl-'.)
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*a v(R 
") - v(sfl-'.)

+.'.

t aV(RzN)

Differentiating with respect to ,szo we determine the equation that deflnes the lú¿h

period to go escaPement,

0- (p-c2(Szo))

|)
(5.18)

(p - rr(Rtt ))(ô, * prrG'r(Sro))

(p - "r( 
Rr")) p rrG', ( Rrr) prrG'r( Sro ) ( 6, 1 pt, G', ('?r, ) )]

(p-rr(Rrn))prrG'r(Rr")prrG'r(Sro)(át +p1rG'r(Rrr))(ót lpr,'G'r('?,'))]

r" 
f 
{r - cz ( Rz ¡,r)) p n G't( Rr ¡,r - ò pzß'"( szo ) ( 61 * p nG't( At t ) )

. .(ót * prrGi(R'¡¡-r)) (5.1e)

where we have used mathematical induction to prove that, for k ) 2,

+cr

*' ll, - c, ( Rrz)) p t zG't ( Rr r) P ^ 
G'r( sr. )]+

+

+

+

+

.1a

4a

k-2
av(Rzk : (p - cr(Rr*))przprtG'r(Rtr,-t)G'r(S2s) ll (ðt 1p11G"('?r¡))' (5'20)

,Szo J

Simplifying equation (5'19) we find,

0 - - (p- cz(Szo)i +'[(r - cz(Rzt))(6r-rprrG;(sr.))]

+ Ë *rlln - cr(Rzn))ptzpztG't(Rtn-r)G'r(s2.) h' (ô, * p,rGi(n'r))]' (5'21)

n--z L j=l,lc>.2

This equation gives little insight into the optimal strategy. However, we can search

for equilibriumsoiutions to this equation. settin| R¡*-- R;x+t for i:1,2 and k > 0
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and letting lú tend to inflnity, equation (5.21) becomes,

0 - (p - cz(^9zo)) * o (p - "r(Rn ))(ó, * pz2G'"(Srs))

We use the result,
1

l-1'

+ a2 (p - cz(Rz)) ptzpztG't(Rrr) G'26 2s)å (",r' + p rrG'r(Rr' ) ))'

î,,
j=o

for l1l < 1, to show that if la(d1 lpnG|(Ëtt))l < 1then,

0 : -(p - rz(Szo)) + "ffo - c2(R21))(62I p22G'r(Sr.))]

. 2@ - ,r(Rrr))pnpztG\(R:n)G'262ù-r " 1-46trp¡'G|(Êrr)) )

(5.22)

(5.23)

(5.24)

OI

(5.25)

Equation (5.25) defines the optimal escapement for the harvested patch, local pop-

ulation 2,lor any initiai population sizes ,R1s and -Rzo' This equilibrium solution is the

solution to the infi.nite time horizon problem (shown later) and so is only an approx-

imation for small time horizons, ?.

To solve this equation, the initial abundances are input and the escapement, Si, is

then found implicitiy. The local populations grow after harvesting and the following

period,s escapement is found by placing these abundances back into the equation, and

so on. Eventually an equilibrium is found that is independent of the initial population

sizes. Alternatively, we can replace Êrr by Sro, due to the zero equilibrium harvest,

and numerically search over S¿s for the solution'

In the derivation of equation (5.2\ we required the condition,

lo(ôt + pnG't(.9'o))l < 1,
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(we have replaced ,?r, by ,s1s). This condition is equivalent to,

and if the .iuvenile production function is logistic, then G" (Sro) : rr (1 - 25rc f Kr), and

so we have,

-t+=<Gi(s,o) .t-tfJt

Kt
1 ( ,Sro ( I{t

22

This inequality will hold for most realistic parameter values. In the next section we

no longer require this condition to derive equation (5'25)'

5.2.2 Derivation by the method of Lagrange multipliers

Before proceeding further, we first show that equation (5.25) can be derived in a much

simpler fashion using the method of Lagrange multipliers. In this case' we produce

equation (5.25) directly and d.o not require the back-stepping procedures of dynamic

programming. unlike the dynamic programming method, the present value expression

is summed over infinite time instead of having a final time, ?. Thus, we maximise,

p.V.:!oÀn1nrn,H"n),
oo

fr=0

(5.26)

subject to equations (5.1) and (5.2) and 0 1 Hr¡ 3 Rzn'

To facilitate calculations, the net revenue expression is written as a function of

population size and harvest, rather than escapement. Hence, the net levenue produced

in period k from a harvest ol Hz* from local population 2 is,

n(R r, Hzn) : [:'r -- (p - c2(r)) dr, (5.27)
J R2¡-H2¡

where parameters and variables have their usual meaning'
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The method of Lagrange multipliers is used to determine the optimal harvesting

strategy. We assign the Lagrangian,

L i
lc=O

rrkTI(Rr¡, Hrn) - Àtn ,Rr*+r - 6r&tn - p¡.Gl*t n) - pztGz(Rzx - Hz*)

- Àzt"["r**, - 6r(R * - Hzt) - PtzGt(Ë,¡) - pzzGz(Rztr- *-)]]'
(5.28)

with necessarY conditions,

AL (5.2e )
0R¡n

AL (5.30)
0Hrn

If we expand equations (5.29) we find,

AL
-)r¡-l*Àr¡.(ðr +prrG'r(Rr*)) * Àz*pnG't(Êtr) :0 (5'31)

ðRrn

AL
okfIn, I \*pztGi(S.) - Àzx-t * \z*(62 * pzzG'r(S*)) : 0, (5'32)

0Rrn

and equation (5.30) becomes,

AL
aHr-- oklrn' - À*pztG;(s.) - À'n(6" + p"G''(S.)) : 0' (5'33)

where S* is the optimal equiiibrium escapement. Adding equation (5.32) and (5'33)

we produce,

\zk: o**t(II", + IIø,). (5'34)

Now, rewrite equation (5.33) as,

o,kfIn" - o*+t (fI", + IIs,)(ô, + prrG'r(S-))
prtG'r(S")

?,10 k 21

0 k>0.

)r¡. :
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substituting equations (5.35) and (5.34) into equation (5.31), we have,

o*-rLInz - dk(fIR,+ IIs,)( 6z I pzzG'z (s.))
0 pttG'r(S")

okfluz - o*+t (flo, + IIø,)(6z + pzzG'r(S"))

prtG'r(S.)
(6' * p"Gî(Ë1))+

+ ok*t(Iln, * II¡1")P2G'.(R1)'

Multiplying through by p2fi'r(S*) and dividing by sk+t we produce'

\+ -l(n*, + rl¡r,)(ð, + pzzG'r(sx))
d

: l+ - (rln, * rIø")(6, * prrG'r(s.))]{a' t p,,G't(Ër))

* (rI", * Írn,)pnp^Gtt(Rr)G; (s.)'

and so,

få - ,u' + p,,G',(R,ll] [tn", *rrø,)(õ, + p,,G',(s.)) - *]
* (IIn, I fIn.,)PnP21G'1(R1) Gi ( S- )

After algebraic rearrangement we find,

l6r+prrci(,9.) 
+ffi]

(5.36 )

0

1 (IIn, + IIø,) (5.37)
d IIn"

which is equivalent to equation (5'25)' Note that 116, : (p - "'(R')) - (p - "'(S.))

and fI¡¡, : (P- tr(S.)).

A further method to derive equation (5.25) uses difference equation techniques to

solve equation (5.31), a linear fi.rst-order reculrence relation in )r¡. The solution can

then be substituted into equation (5.35) and rearranged, producing equation (5'25)'

6.2.3 Interpretation of the result

It is difficult to interpret our main result, equation (5.25), directly, and so we discuss

some special cases.
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Uni-directional migration

If there is no migration between the local populations in one direction or in both

directions, i'.. prr:0 and/or Pzt':0, then equation (5'25) reduces to'

! : (o - ,\2?,1) 
lr, * p,,G,,(s,o)). (b 3s)

a \P-c2(.92o))l'- '--

Toexplainthis,firstconsiderPtz:0'Ifp¡,:0thentheharvestedlocalpopula-

tion,s abundance is independent of the closed local population and it is harvested as a

single population with population dynamics,

Rz*+, : 6zSzx * PzzGz(Szn)'

As expectecl, equation (5.3S) d.efines the optimal escapement for a population with the

above growth characteristics. The harvested local population sends juveniles to the

closed local population; however this does not affect the optimal harvesting decision

for local population 2.

If pzt:0, the explanation is not intuitively obvious. Recall the optimai equation

for harvesting local population 2 when both patches are harvested,

(6, * PrrG', (s,o))(p - c, (Rzt)) I pzt G'r(S2s)(p - c1( A"))
P - cz(Szo)

This reduces to equation (5.38) \f p21:0. If costs are assumed negligibie, then the

optimai escapement for the exploited local population is,

K__Kf1 +d_ô,1. (5.8e)s;: T - tl ,rp- )'

This suggests that the escapement of local population 2 is not influenced by the input

of juveniles from local population 1. This is because the abundance of local population

1 is independent of the harvested stock of locai population 2,, and so any juveniles that

migrate to the exploited local population are "bonuses" to the harvest, and do not

influence the equilibrium harvesting decision'

1

Q
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Mathematically, we can show that equation (5.38) holds by observing that the

term v(-Rzz) inequation (5.14) is not a function of ^9zo 
fi pt, - 0 and/or Pzt :0. This

term is held constant under partial differentiation with respect to ^9zo 
and we produce

equation (5.35). This is true for ail ? > 0 and thus equation (5.38) determines the

optimal equilibrium escaPement.

Using the method of Lagrange multipliers with Pzt :0 we place \zk : ak+l(fln t

II¡7) back into equation (5.32) to produce equation (5'3S). Equation (5.32) is not a

function of À1¡ and so equation (5,31) is redundant' similarly, for Pn -- 0 we substitute

equation (5.35) into (5.32) to produce the optimal harvesting equation.

comparisons Tr/ith incorrect harvesting policies

In this section we compare harvest strategies from our metapopulation theory and

policies where the managing authority has not recognised the metapopulation structure

of the stock. As described in the previous section, analytic results are not facilitated

by the nonlinear form of equation (5.25), and so we only consider the special case of

uni-directional migration and negligible or density-independent costs'

Assume that p21:0 and/or ptz:0. With no costs, equation (5.25) simplifies to,

: 6z I prrGt"(Sr), (5.40)

and with logistic juvenile production, equation (2.3), the optimal escapement for local

population 2 is,
r(__tifl+d_árl. (b.4t)s;:T- 2l ,*_ l

Assume that the authority managing the metapopulation has recognised the two

local populations but does not believe there to be any larval exchange between them.

One of the local populations is reserved., say local population 1, and the other local

T
ot
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population is harvested. The estimated growth rate for local population 2 is the "flow

in" to the local population,

T2":rzPzzITtPtz, (5.42)

as described in Chapter 2, Section2'2'2'

There are two possibilities for the uni-directional flow. Firstly, assume that there is

no larval migration from the exploited population to the reserve' i.e' pzt: 0' In this

case, the escapement of local popuiation 2 from our metapopulation theory is greater

than that if the local populations ale assumed unconnected, Sl' ) Sä", if rtpn < 0' This

inequality is not feasible, suggesting that the exploited local population will always be

harvested too conservatively. The incorrect harvesting strategy does not take advantage

of the migrants to the exploited local population, p12'

The second. case of uni-directional flow occurs when larval migration only occurs

from the exploited population to the reserve, and so we have Pn : 0. we find that

the escapements from both the correct metapopulation harvesting strategy and the

incorrect policy are exactly the same, i.e equation (5.a1)' As described in the previ-

ous section, in these special circumstances, the optimal escapement is not influenced by

mìgration in and out of local population 2,, and now that Pzt :0, the incorrect harvest-

ing policy wiil estimate the correct growth rate for local population 2, and ultimately

produce the same optimal escapement.

The metapopulation could also be managed as though it is one iarge well-mixed

single population. trstablishing a reserve system then requires haif of the population

to be set aside for preservation, the other half for exploitation. The estimated growth

late of the exploited half of the population is assumed to be the average per capita

juveniie production, as seen in Chapter 2, Section2'2'2,

rr(prr I ptz) i rz(pzz -f pzt) /< ,r?\,'L:7. \v.'1ul

169



Assume that there is no larval flow from the exploited local population to the

reserved local population, i.e. Pzt : 0' The escapement from our metapopulation

theory is greater than the estimated escapement if the local population is a,ssumed to

be part of a well-mixed single population , S; > SLl2,if r27t22 ) rt(pnlprz)' This result

is similar to our rule-of-thumb from chapter 2; namely, that if the per capita juvenile

production in local population 2 is greater than the per capita juvenile production in

local population 1, then we should harvest local population 2 more conservatively than

local population 1. Thus, if the exploited population is a relative source (to itself)

then management that assumes that the metapopulation is a single population mav

over-harvest the PoPulation'

Now assume that the uni-directional flow is from the exploited locai population to

the reserve, and there is no larvai flow in the opposite direction, i'"' prr: 0' In this

case the optimal escapement if the metapopulation structure is recognised is greater

than that if it is not, ,Si > Sî12, Tf r2p22 t rtpt I rzpzt Thus, the exploited local

population will be over-harvested if more larvae per capita remain within the harvested

local population than flow in to the reserve'

As far as management implications are concerned, it appears that it is better to err

on the side of unconnected single population management, where either the harvest

policy is correct or under-harvests the stock, than a management policy that assumes

that the metapopulation is a well-mixed single population'

5.3 Examples

In this section we consider some examples that help explore our main result in more

detail. The first example simply iterates the dynamic programming equations and

compares numerical results with the escapement and harvest of our analytic solution,
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Pl2=0. I

CLOSED HARVESTED

Pt t=o't
Prr=o'l

P21=0.15

FrcuRp 5.1: The reserve system of the exampleof Section 5.3.1' The shaded region

represents the unharvested relative sink/importer local population'

equation (5.25). we then vary the migration parameters, p12 and p2r, to determine how

sources and sinks may effect harvesting strategies and reserve choice' Comparisons are

then made between policies from the harvest closure theory presented in the previous

sections of this chapter and the theory of Chapter 2, where the metapopuiation is fully

harvested.

5.3.1- Iteration of the dynamic programming equations

Suppose that we have an unharvested metapopulation that is composed of two con-

nected locai populations. Local population 1 is an unharvested reserve and we wish to

harvest local population 2. Movement of juveniles within and between the populations

is represented by the migration matrix,

P_
0.1 0.1

0.i5 0.1

Thus, local population 2 is a relative source/exporter local population, while local

population 1 is a relative sink/importer local popuiation. In this example we harvest

the relative source/exporter local population and preserve the relative sink/importer

local population (see Figure 5.1).
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The juvenile production function is logistic) as seen earlier, with growth rates 11 :

rz : L0, density-dependent factors Kt : Kz : 200 and adult survival per period

6t: 6z: 0.1. The unharvested equilibrium population sizes are Rt :133 for local

population 1 and Rz : I05 for local population 2'

The cost function is defrned bY,

c2(r): !-,
qr

where ø:30 and q:1.3 x 10-2. The priceof aunit of stock i. p - 70. Thus thezeto

net profit escapement level is,

Szo' : alqP -- 33

If the dynamic programming equations (5.6) are iterated, we produce the escape-

ments and harvests shown in Table 5'1'

The final period's escapement (the first period determined in the dynamic program-

ming procedure) is the zero net profit level, ^926ç, 
â,s expected' The penultimate period,

T : l, has its escapement defi.ned by equation (5.9). An equilibrium escapement is

reached, S* : 47 , for the preceding periods until the flrst (last according to the iter-

ation) two periods. The initial conditions are the unharvested equilibrium population

sizes, Êr : 133 and. Rz: 105 and the iteration quickiy finds the harvested equilibrium

thereafter.

Comparing the numerical results from the above analysis to our analytic result,

equation (5.25), we find that the same equilibrium escapement and harvest are pro-

duced, namely Si:47 and Ili :43'

Consider the reverse situation where locai population 2,, the relative source/exporter

local popuiation, is reserved and iocal population 1, the sink/importer local population,

is harvested. Rather than solving the corresponding equations for the harvesting of
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T Rt Rz Sz H2

I

6

b

4

3

2

1

0

133

111

115

tl4
rr4

LL4

IT4

r17

105

85

91

90

90

90

90

92

46

48

47

47

47

47

50

.).)

59

37

44

43

43

43

40

59

Tlsr,B 5.1: Escapements and harvests from iterating the dynamic programming

equations. Here we harvest the relative source/exporter local population' ? is time-

to-go, and T = 0 is the final period. The abundances immediately prior to harvesting

are given by rR1 and rR2. The escapement of the exploited local population is sz and

the harvest is I12.

local population 1, for the analyses we transpose the migration matrix' so we have,

/ 0t 0.15 \
": (,0., 0., J '

and remain harvesting local population 2. To minimise confusion the results are dis-

played as if we are indeed harvesting local population 1. Thus we now preserve the

source/exporter local population and harvest the sink/importer local population. Iter-

ating the dynamic programming equations, we produce the results shown in Table 5.2.

The equilibrium optimal escapement derived from the numerical iteration of the dy-

namicprogrammingequationsisSf:S2withequiiibriumharvestHi:67.

It may be important, especially in reserve choice, to determine which closed local

population maximises economic and/or conservation benefits. We can compare the res-

ults from harvesting the relative sink/importer local population with those from har-
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6

5

4

3

2

1

0

105

100

98

98

98

98

98

98

133

t20

118

119

119

119

119

i19

54

50

52

52

52

52

52

33

79

70

66

67

67

67

b/

86

TRSr,n 5.2: Escapements and harvests from exploiting the relative sink/importer

local population.

vesting the relative source/exporteï local population. we observe that the escapement

and harvest is larger if we exploit the relative sink/importer local population. This

is an ideal situation for the harvested local population, i'e. 'we are able to conserve

more of the exploited stock while also harvesting more. Total equilibrium population

sizes are also larger if the relative source/exporter local population is reserved, with

Rr : Rt I Rz : 227 for the harvesting of the sink/importer, and Rr : 204 other-

wise. However, the preserved local population will have less stock in it, with Rz :98

compared with ,Rr : lI4-

Thus, if we have to select one of the two patches for preservation, the ultimate

choice depends on the objectives of the policy makers. If we wish to conserve as much

of the harvested stock as possible in the reserved local population then, according to

the analyses, we reserve local population 1, the relative sink/importer iocal population'

However, if we wish to maximise total population size over the metapopulation, or max-
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imise harvest, then local population 2 should be reserved, the relative source/exporter

local population.

Comparison with the analytic solution shows that the equilibrium escapements dif-

fer by one, with the analytic solution being, ,5* : 53 and harvest H* :66' Numerical

errors in the computer programs (possibly rounding error) account for the small dif-

ference in escaPement size.

6.3.2 Variation of the migration parameters

In this section we vary the migration parameters, p12 and p21' so we can further explore

the efiect of migration on optimal harvesting policies. consider a metapopulation with

thefollowingparameters;ô1_õz:0.00l,alogisticjuvenileproductionfunctionwith

rr:12:1000,Kt:Kz-400000andmigrationmatrix'

P-

The migration parameters p12 and. p21are free while other parameters remain con-

stant. In this way we produce a contour plot of the escapements and harvests as

functions of the migration parameters. For this example we only consider the equilib-

rium solution derived from equation (5.25), as numerical solutions are not facilitated

by the large state space'

In Figure 5.2 we plot the escapement of the exploited local popuiation as con-

tour lines, where the migration parameters range from 0.0001 to 0.0025. Similarly,

in Figure 5.3 the correspond.ing harvests are plotted. Local population 2 is a relative

sink/importer if the point (pn,pzt) is beiow the line Pn -- p21, and it is a relative

source/exporter if above. Thus, in the upper-left region, relative source/exporter local

populations are harvested while in the lower-right relative sink/importer local popula-

tions are harvested.

0.001 Ptz

Pzt 0.001
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FrcuRe 5.2: Escapements of local population 2 as a function of the migration para-

meters. Numbers on the contours are escapements x103'

0.0005

0.0005

0 .001 0 .0015

pr2

0.001 0.0015

p72

0.002

0.002

0.002

0.0015

0.001-

0.000s

0.002

0.001_5

0.001

0.0005

p2]'

p2L

FrcuRp 5.3: Harvests from local population 2 as a function of the migration para-

meters. Numbers on the contours are harvests x103'

We can see from Figures 5.2 and 5.3 that if the relative sink/importer local popula-

tion is exploited, then both the escapement and harvest in the exploited local popula-

tion is larger than if the relative source/exporter local population is exploited. This was

seen in the previous example with the specifled migration matrix. This suggests that

to maximise the escapement of the exploited local population, relative sink/importer

local populations should be harvested. Commercial industry also benefits the most if

this strategy is employed, through an increase in harvests.

Figure 5.4 shows the equilibrium abundance of the unharvested local population

00
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0.002

0.001s

0.001

0.0005

p2L

o. ooo5 o. oo1 0 ' 0015 0 ' 002

p12

FrcuRB 5.4: The equilibrium abundance in the closed local population' Numbers on

the contours are the abundance x103.

size as a function of the migration palameters. If the objective is to maintain as large

a population size as possible, relative sink/importer local populations shouid be pre-

served.. However, the over-exploitation of a reiative source/exporter local population

could have a devastating effect on the preserved. relative sink/importer local popula-

tion, especially if the sink is reliant on the influx of immigrants from the source for

its existence. The possibility of stock coliapse, which may be even more eviclent in

a stochastically varying population, ffiaY sway the IeseIVe decision in favour of the

preservation of relative source/exporter local populations. This is an area of future

research.

It should. be noted that if relative source/exporter local populations are preserved

then, even though abundance in the reserve is lower, the overall metapopulation size,

Rr : Rt I Rz, is in general greater than if we had reserved the relative sink/importer

local population. However, this measure of total population size includes the "soon-to-

be-harvested,' stock of the exploited local population. An alternative measure is the

total spawning stock abundance (SSA). The spawning stock abundance is the number

of adults that are left after harvesting and that contribute to the reproductive growth

of the population. If we have a fully harvested metapopulation, then the SSA is Si + S;,
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0.002

0.001-5

0.001

0.0005

p2r

0.0005 0.001 0.0015

FL2

0.002

0.003

0.001

FrcuRB 5.5: The spawning stock abund,ance (ssA) of the metapopulation. Numbers

on the contours are SSA x103.

whereas with a closed local population the SSA is -R * 'S*' Figure 5'5 plots contours

of the spawning stock abundance as a function of the migration parameters' From

this figure we can see that spawning stock abundance is greatest when source local

populations are harvested.

In this section we have explored the general behaviour of the system when soulces

and sinks are harvested in a reserve system. In the following section, we consider a

more specific example where we compare harvesting strategies for a metapopulation

that is partially closed with that of harvesting both local populations.

5.3.3 Comparison with a fully harvested metapopulation

Assume that the metapopulation has the parameters of the previous example, only

with migration matrix,

P-

This example is analysed in Chapter 2, where both local populations are exploited'

The unharvested equilibrium population sizes are Êr : 148 028 and Rz :334710' The

optimalescapementsproduced'are,Sî:156169and5i,:l2tgS3,withequilibrium

0.001

0.001
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harvests Hi :23956 and, Hi : 248532. We might now like to know how these

escapements and harvests differ if one of the local populations is reserved'

If local population 1 is reserved then the escapement for local population 2, the

harvested local population, is si : 106990 with harvest Hi:2676IL' The stock

abundance in local population 1 is 'R1 : 177 257 ' If local population 2 is r-eserved

then the escapement for iocal population 1, is Si -- 64825 with harvest fli : 81856'

The stock abundance in local population 2, is R2 :255510. As expected, this shows

that reserving local population 1, the relative source/exportet, produces the greatest

harvest for the exploited patch. The resuits ale summarised in Table 5.3' The starred

numbers represent locai population sizes before harvesting.

The totai harvest from exploiting both local populations is 11r : Htl H2 -- 272488

compared to H2:267 611 if the relative sink/importer local population is harvested'

This suggests that similar catches can be made in a reserve system to catches utilising

both patches in the metapopulation, if the stock is optimally harvested' The spawning

stock abundance is only marginally more in the sink harvested leserve system than

in the fully harvested metapopulation. The spawning stock abundance in the fully

harvestedmetapopulationisSf*Sî:z7sI22,whileinthesinkharvestedreserve

system it is Sj * ßr : 284247 ' As fas as management is concerned, the benefits

of reservation (e.g. minimai environmental degradation, improved quality of catch,

tourism) may outweigh the small economic cost of reserving the relative source local

population.

If the relative sink is reserved., and the relative source exploited, there is a dramatic

drop in the equilibrium harvest; the economic consequences of which may be disastrous

for fi.shers reliant on the resource. However, there is a substantiai increase in spawning

stock abundance. If economic benefits are associated with increased abundance (e.g.

tourism), then reserving the relative sink may be worthwhile. This situation may occur

179



where coral reefs are important for both tourism and, to a lesser extent, harvesting

(Ballantine, 1987; Alcala' 1988; Craik, 1993)'

The escapements and harvests can also be compared to those derived from in-

correctly harvesting the metapopulation. In chaptet 2 we investigated the harvest-

ing strategies if the metapopulation is believed to be composed of two unconnected

single populations, or of one well-mixed single population' If the local populations

are assumed to be unconnected by larval exchange, then harvests are lower than if we

managed the metapopulation as a sink harvested reselve system' The spawning stock

abunclance is significantly greater if the sink is reserved' however this is at the expense

of harvests from the relative source. If the metapopulation is managed as a well-mixed

single population, harvests are not greater than if the relative sink is harvested when

the metapopulation structure has been recognised. Note that the numbers for the well-

mixed single population harvesting policy when both local populations are harvested

are for the whole metapopulation, not just local population 1, as shown in Table 5'3'

Again, incorrect management prod.uces large spawning stock abundances, but harvests

aïe poor.; possibly disastrously so if the source local population is harvested and the

sink reserved

Variation of the migration parameters

In this section \¡/e vary the parameters p¿¡ where i I j to see how the spawning stock

abundance and harvests differ if the metapopulation has a closed iocal population and

if it is fully harvested. As in previous analyses, we consider the migration matrix,

P-

with the following parametersi ðr : ôz : 0.001, a iogistic juvenile production ftrnction

with 11 - 12:1000, Kt : Kz :400 000'

i80

0.001 pn

Pzt 0.001



0.0025

0.002

0.001s
ç2L

0.001

0.0005

0 . 0015

pl2

FrcuRs 5.6: The difl'erence in spawning stock abundance between afully harvested

metapopulation and a metapopulation with local population 1 closed. Numbers on

the contours are the difference x103. A positive number indicates that spawning

stock abundance is greater when local population 1 is closed'

The difierence between the spawning stock abundances of the two harvesting policies

are plotted. in Figure 5.6. In this plot we assume that a negative harvest is possible

and we use the escapements that ploduce the negative harvests for the comparisons'

The ssA is exactly the same where local population 1 moves from having a positive

harvest to a negative harvest in the fully harvested metapopulation case (see Chapter 2,

Figure 2.7). Another region where the ssA is the same is in the upper right region of

Figure 5.6.

The difference in harvest produced by fully harvesting the metapopulation and

reserving local population 2 is shown in Figure 5.7. This shows that using closures as a

mafì.agement tool does not increase harvests. The harvests are the same only when the

fully harvested metapopulation moves from positive harvests in local population 1, to

negative harvests. For ali other parameter values, fuily exploiting the metapopulation

provides the greater harvests. This result is intuitive as removing a local population

from harvesting d.ecreases harvest potential, and if it were optimal to close a local

population, the theory of Chapter 2 should indicate this (as it does for the transition

0.0005 0.001 0.002 0.0025
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0.002s
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0.001
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p12

FrcuRp 5.7: The difference in harvests between a fully harvested metapopulation

and a metapopulation with local population 2 closed. Numbers on the contours are

the harvests diffêrence x103. This difference is always non-negative, indicating that

total harvests are always greater from a fully harvested metapopulation'

from positive to negative harvests)

5.4 Closing Remarks

In this chapter we have considered the effects of closing a local population on optimal

harvesting strategies. Harvest closures ale culrently receiving great attention because

of their role in conservation and flshery regulation'

Fishing closures provide a place of refuge for threatened species or communities

an¿ as such are of great importance for marine biodiversity conservation' Protected

communities are likely to be connected to surrounding habitat that is experiencing

some kind of human impact (Bailantine, 1987). This connection may be through adult

or larval migration or through nutrient or chemical (".s. pollutant) exchange' Human

impact may involve harvesting, waste disposal or perhaps mineral or oil extraction'

All of these factors (and. more) influence the effectiveness of a reserve system' In this

chapter we have concentrated on the possible effects of exploitation on harvest closutes,

and vice versa.
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Another important application of harvest closures is as a harvest reguiatory mech-

anism. Due to overflshing or some other unforeseen catastroph" ("'g. oil spillage),

harvest closures may be forced upon a flshery for stock recovery purposes' Harvest

refugia are also used as a method to regulate stock and harvest effort. For example,

prohibition of harvesting in spawning grounds is used to increase future abundance and

ultimately catch (for example, prawn nursery grounds (o'Brien, 1994), and haddock

spawning habitat (sissenwine and Kirkley, 1982)). closures are also used a's an altern-

ative to some of the more common regulatory mechanisms that are administratively

costly (e.g, to police) ancl costly to fishers. Thus, in an area of conflict, harvest Ïefugia

can provide a medium of compromise between conservation and economic goals'

using coupled difierence equations to model the harvested and closed local popu-

lations of a two patch metapopulation, we derived an equation that implicitly defines

the optimal equilibrium escapement for the harvested stock. This was achieved using

both dynamic programming and the method of Lagrange multipliers'

In a brief discussion of this result for the special case of uni-directional migration

(and negligible costs for pzt: 0) we showed that the optimai equation, equation (5'25),

red.uces to an equation that does not involv e pp ot p21. Recall that we harvest local

population 2. with no migration into the exploited habitat ', Ptz :0, local population 2

is independent (through a lack of incoming juveniles) of the reserve and so is harvested

as a single population. Thus, optimal policies for exploiting local population 2 do

not depend upon migrating larvae leaving that local population' Now, when Pzt :0

the abundance of the unharvested reserve is independent of the expioited habitat'

and additional juveniles are then a "bonus" to the controlled, harvested stock. This

somewhat surprising result has important implications for the management of harvested

ïeserve systems. If we can ascertain that there is uni-directional migration (or none

at all) then the harvested popuiation should be managed using the parameters of that
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patch, regardless of the juveniie migration'

Comparisons with incorrect harvesting policies were then made with the assumption

of uni-directional migration. As described. above, this assumption facilitates analytic

results. If the iocal populations are believed to be unconnected by larval exchange, we

find that the exploited local population is either under-harvested or correctly harvested,

depending on the direction of larval flow. However, if the metapopulation is managed

as a well-mixecl single population, harvesting may over oI under-utilise the resoutce'

This suggests that it is better to err on the side of unconnected single population

management if uni-directional fl,ow is suspected. In a numeÌical study with larval

exchange between both local populations, we have shown that incorrect harvesting

strategies (with either both local populations harvested or one reserved) do not harvest

more than the fully harvested metapopulation or the sink harvested reserve system'

In fact, if the metapopulation structure is not recognised, and the relative source local

population is exploited, then harvests reduce dramatically, the consequences of which

may be catastrophic for the fishery'

Further results in the chapter were obtained from more specific examples. Analytic

results that could be easily interpreted were not forthcoming due to nonlinearities in the

optimal equilibrium equation, and the assumption of negligible costs also was ineffective

except in the special case of uni-directional migration. The numerical examples suggest

that maximum yield is obtained from exploiting the relative sink local population,

rather than the relative source. This is a sensibie strategy to adopt, as harvesting

source local populations is fraught with the danger of collapse (Shepherd and Brown,

1993). Howevet,, to maximise the metapopulation's spawning stock abundance our

results suggest that relative source local population's should be harvested (with a

significant decrease in harvest over sink harvesting). As previously mentioned, this

strategy will require strict regulation for the conservation goals to be realised.
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Fairbridge (1953, as cited by Orensanz et al. (1991)) states that the preservation

of ,,upstream" stocks whose larvae are transported to populations in the direction of

water flow can be used to protect populations such as scallops. This is analogous

to results presented in this chapter regarding the preservation of relative source local

populations. Orensanz et al. (1991) cite Caddy (1983) as suggesting that scallop pop-

ulations that experience consistent larval retention are appropriate choices for refugia.

These populations may be sink populations, in which case reservation may be optimal

to preserve maximum spawning stock. However, as mentioned in our discussion above,

and by Fairbridge, it may be more worthwhile preserving the larvai source.

The examples show that, while yield is never greater than a fully harvested meta-

population (assuming optimal policies are adopted), it is comparable for populations

with low per capita migration into the reserve local population. Once again, this

suggests that relative sink local populations should be harvested to keep yield at a level

that approximates that taken for a fully harvested metapopulation. The small economic

loss due to a decrease in harvests may be countered by the potential environmental

and economic benefits of the reserve. However, a reserve system in which a relative

source is harvested, while increasing spawning stock abundance, produces a dramatic

d.ecrease in yield. This strategy may be financially unwise, unless significant gains can

be made from the increase in abundance'
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^9r Sz Rt Rz SSA Ht H2 Hrorot

True Optima

Harvest Both

Harvest LP2 (si.)

Harvest LP1 (so')

156 r22

- 107

65

180*

t77

r47*

371*

375.

256

278

284

321

24 249 273

268 268

8282

False Optima

Unconnected (both) 114

Harvest LP2

Harvest LPl ll4

Well-mixed (both) 270

Harvest LP2

Harvest LP1 135

158

158

135

177*

196

150.

537*

189

149"

340.

396*

313

389.

328

272

354

427

270

324

463

63

36

267

T4

r82

238

254

245

238

36

267

254

l4

T¡.sLp b.B: A comparison of escapements and harvests from different management

policies. Numbers in the table are rounded to the nearest thousand x103. Results

under the heading of True Optima assume that the metapopulation structure has

been recognised, whereas False Optima results have not. The starred numbers are

abundances immediately before harvesting. Spawning stock abundance (SSA) is the

total number of adults from both local populations that contribute to the abundance

of the following generation. The figures for the well-mixed incorrect harvesting policy

when both local populations are harvested are population-wide, not just for local

population 1. The abbreviation (si.) indicates that the relative sink is harvested, and

(so.) indicates that the relative source is harvested.
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Chapter 6

More than two local Populations

In this chapter we generalise the juvenile migration modei introduced in Chapter 2'

We determine optimal harvesting strategies for a spatially structured population that

is composed of lú interacting local populations. We assume that the local populations

interact via the periodic migration of juveniles. We further assume that there is no

adult migration or delay in juvenile recruitment to the adult stock.

As in Chapter 2, we model the metapopulation dynamics using coupled differ-

ence equations. In this case, we have ly' equations that represent the abundance of

each local population. Dynamic programming is used to determine lú modifled golden

rule equations that specify the optimal escapement for each local population. Using

simplifying assumptions, including negligible costs, we frnd explicit equations for the

equilibrium optimal escapements and investigate the effect of alternative management

policies on harvests. \Me also compare the escapements of the locai popula,tions if the

metapopulation structure has been recognised.

The comparisons are facilitated by local population classifications which are gener-

alisations of those defined in Chapter 2. We redefine relative exporters/importers and

relative sources/sinks both verbally and mathematically for the l/ local population
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case. we d.efine aî ûuerage relatiue source locai population as a local popuiation that

has a per capita larval production greater than the arithmetic average per capita larval

production of all other local populations. Auerage relatiue si,nkshave a per capita larval

production that is smaller than the average per capita larval production of all other

local populations.

Models that determine optimal exploitation regimes for commercially viable pop-

ulations have mainly concentrated on single stock populations (Hilborn, 1985), and

where the spatial structure of a population has been recognised, the usual assumption

is that the stocks are discrete or reproductively isolated (stock here -,.'efers to a "local

population,, of, say, salmon that has come from a distinct spawning ground)' The

stocks are assumed to be unconnected by migration and the harvest taken is often a

mixture of individuals from all stocks of the population. Paulik et al (1967) determines

equilibrium harvest rates for up to twenty discrete stocks by maximising sustainable

yietd. Monte cario simulation is employed by Hilborn (1985) who assumes that the

stock abundances (of a ten stock population) are unknown and the manager must rely

on total abundance information only. Hilborn's paper does not assume that the fishery

is in equilibrium (unlike Paulik et at,1967) and results suggest that a fixed escapement

policy is only optimal in special circumstances (see also Kope (i992) a'nd collie eú

ø/ (1gg0)). Hilborn and Walters (i987) use the Deriso-Schnute model (Deriso, 1980;

Schnute, lgSb) to simulate the dynamics of six discrete stocks of southern Australian

abalone. They suggest that the Deriso-schnute iterative technique can also accommod-

ate spatially connected stocks. If migration is density-independent, movement can be

included into the recruitment (or biomass) expression using spatial transition matrices,

analogous to the migration matrices deflned here'

As cliscussed in previous chapters, Quinn et at (1994) use coupled differential equa-

tion metapopulation models to analyse the effects of harvest refugia on harvests and
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stock abundance. The initial two-patch models are followed by an age-structured sim-

ulation model applied to a red sea urchin (Strongylocentrotus franciscanzs) metapop-

ulation. The metapopulation is composed of twenty-four local populations that run

along a coastline. Results show the importance of harvest refugia for metapopulation

persistence when harvest intensities are excessive. Further results are described ìn

Chapter 2. euinn et at (Ig94) do not explicitly consider the costs of harvesting and,

their model being a simulation, analytic solutions are not found.

The work presented here differs from that of previous authors because we consider a

spatially structured population that is connected by the migration of juveniles' we ex-

plicitly include local population dependent costs, and present a more detaiied economic

framework from which analytic solutions are found'

It is clear that commercially harvested local populations are not always repro-

cluctively isolated (Fairbridge, 1953; John, 1979; Quinn, 1984; Macleod et al', 1985;

Orensanz et a:.,1991; Frank, 1992; Shepherd and Brown, 1993; O'Brien, 1994; Quinn

et a1.,1994). In this chapter we present a simplemetapopulation model that assumes

that ,^/ local populations are connected by dispersing larvae. Each local population is

assumed to be easily discernible from other local populations and we assume that man-

agers can regulate harvests according to each local population. Following the math-

ematical description of the model, we analytically determine the optimal harvesting

policies for each local population, simplify our results to facilitate our understanding

of the system and conclude with some simple examples to illustrate possible applica-

tions
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FrcuRB 6.1 : A metapopulation with multiple local populations. The circles represent

the local populations, the area of which roughly represents the size of the patch.

Arrows indicate paths of juvenile migration which may occur in one or both directions'

6.1- TheorY

Consider Iú local populations that interact through the dispersal of their juveniles (see

Figure 6.1 and the examples at the end of this chapter). To reflect geographic variabilitv

in environmental conditions, the local populations have different growth and mortality

characteristics. As in chapter 2, we assume that adults do not migrate between local

popuiations. The adults produce juveniles of which a proportion remain within the

natal local population, pii) ald. a proportion migrate to other local populations, p;¡'

The remaining juveniles are lost from the system and this loss is defined by the fraction

ei. The migrating juveniles recruit to their new local population and, together with

the sedentary juveniles and adults, form the adults of the following generation'

6.1.1 The model

The metapopulation dynamics is modelled by l/ coupled difference equations,

N

R¿t"+t -- 6¿R¿* *Ðp¡¡G¡(r?¡t) i: l,

)

--l

U

j=l
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where
N

lnri * ei: I i: 1,. . ',1ú' (6'2)
j=l

Equations (6.1) are generalisations of equations 2.1 and 2.2 of chapter 2" Recall

that the term ,R¿¡..,l-1 defrnes the adult abundance of local population i in generation

k + l. The number of juveniles produced per generation by'local population j is given

by the recruit production function G¡(R¡n). The proportion of adults surviving each

period in local PoPulation i is ó¡'

Including harvesting, the population dynamics defined by equations (6'1) become,

N

R¡t +t : 6¿S¿t" +\nißi6in) i : 1," ' , ¡ú (6'3)
j=l

where
N

f no, * ei: I i: 1, ' '' ,lú, (6'4)
j=L

and s¡* - R¡n - H¡r is the escapement of local population j.

,We wish to maximise the present value of the total net revenue derived from all lú

local populations, i.e. maximise

p.v. : i^rË no(oo*, r,*) (6.5)

fr=O i=l

subject to equations (6.3) and (6.4), and 0 3 s¿* 3 R* for all i and k. The parameter

d : Il(If d) is the discounting factor and II¿(,R¿I,,S¿¡,) is the net revenue of local

population i from a harvest of H¿¡'

This maximisation can be achieved using dynamic programming' The procedure is

not given here as it is a simple extension of the procedure outlined in Chapter 2. The

optimal equations that implicitly define the flrst period optimal escapement for each

local population are,

t 6¿(p - "¿(&t)) 
+ G'i(Sio) [rË t P¿¡(P - c¡(R¡r))

i:1,...,¡ú. (6.6)
o¿ p - "¿(S¡o)
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Here, s¿o is the first period escapement for local population i' The term rB;r is the

abundance of local population i in the following generation and is a function of 
'9¿o'

We can prove that these equations hold for alt T > 1 by adjusting the analogous proof

of chapter 2. Note that these equations are a generaiisation of the optimal harvesting

result d.erived in Chapter 2. If we assign N : 2, we recover equations (2'15) and

(2.16). As in the two local population case, if the initial population levels are iess than

the optimal escapement then we do not harvest until the stock reaches an abundance

greater than s,f,. If the optimal escapement of one or more populations produces a

negative harvest (even if R¿o > s,ä) then we set His: 0 for all those populations and

search for the new escapements for all local populations that maximise equation (6'5)'

6.2 Discussion

To facilitate interpretations of the above results, we define three types of local pop-

ulation according to their per capita larval production. The assumption of negligible

costs is then used to produce analytic results that can be readily interpreted' Fi-

nally, examples comparing optimal and sub-optimal strategies for the no costs case are

examined.

6.2.t Local population classifications

Before proceeding with the no costs theory, we make three classifi.cations of local pop-

ulations according to their per capita larval production, ì'e' the number of larvae or

juveniies produced per individual in a local population.

consider a local population that exports a greater per capita number of larvae to

other local populations than it imports. we call such a local population a relatiue
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etporteriocal population. Mathematically they are local populations i with

NN
r¿iP;¡: r¿(1 - €i) > Ð''P'o' (6'7)

l=r j=r

conversely, a population that imports more larvae per capita than it exports we call

a relatiue importerlocal population and they are mathematically defrned by reversing

the above inequalitY.

A local population whose per capita larval production is greater than that of any

other local population is called a relatiue source local population' Local population i

is a relative source local population if,

,o(I - e¡) > r¡(t - e¡) Vi, i + i' (6's)

A. relatiue sink is a iocal population that has the smallest per capita larval production

and it has r¿(1 -.0) < ,¡(l - e¡) for all other local populations j'

Finally, consider a locai population that has a per capita iarval production greater

than the average per capita larval production of ail other local populations' such

populations we call o,uera,ge relatiue source local populations and are mathematically

defined by
N (i - .¡r (6.e)r¿(I-e;)> t ¡ú-1j=t,j+i

A local population that is not an average relative source is an auerage relatiue sinlc

local population.

6.2.2 No costs analysis

Assuming negligible costs or density-ind.ependent costs, equation (6'6) becomes'

r : 6n+ Gi(si)(r - e¿) ¡/1

o
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Assume that Gi'(sr) < 0 so that equations (6'10) determine no more than one

solution for each ^9i. For example, assume that G¿(Si) is logistic'

G;(S¿) : r¿S¿(l - S¡lI{¿), (6'11)

where r¿ is a growth rate and 1l¿ is a form of carrying capacity that causes density

dependence in the growth rate of local population i' The optimal escapement for each

local population is then,

I{¿ K; ( I+d-6;) ¡ú (6.12)1qr
"x 2 2r¿ (1 -.¿)

Comparisons with incorrect harvesting policies

we now d.etermine in what way the metapopulation optimal escapements' defined by

equations (6.12), difier from escapements that assume the population is composed

either of single unconnected populations or of one well-mixed population' For the

following analysis \Me assume that equations (6.12) produce non-negative harvests for

all local poPulations.

Assume that K¿ - Ki for all i,j and, that the local populations are harvested as

single unconnected populations. The optimal escapement for each unconnected single

population is

s; K¿ K¡ (1+d-6;) (6.13)
22r

Assume that observations of a particular local popuiation i produce estimated growth

rates, r¿", given by the total "flow in" to local population i' namely'

,0,:f ,,0,0. (6'14)

l:|

As described in previous chapters, this assumes that abund,ances in the local popula-

tions are roughly equal and that measurements are made after dispersal'

xa
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Thus the optimal escapement for local population i wilt be greater (smaller) than

the escapement from the wrong harvesting policy, '9i S '9å' if

,o(r - r) gf ,¡p¡o', (6'15)
j=l

or
N

flr,oo, - r¡P¡ò S o' (6'16)
j=l

condition (6.15) defines relative exporter/importer iocal populations' Thus, relat-

ive exporter (importer) local populations should be harvested more (less) conservatively

than if they were managed as single unconnected populations'

Now assume that the lú local populations are managed as a well-mixed single

population. For simplicity, assume that K¿ - Ki: K,6¿-- 6¡:6 for ail i'i and that

the population's growth rate is measured as,

N
rL:D

j=l

r¡(r - e (6.17)

that is, the average per capita juvenile production across all local populations'

To compare the escapement of a local population with that from the exploitation

of a well-mixed single popuiation, we estimate the local population's escapement by

divid'ing Si bv lú (remembering that K¿ : K for all i)' Note that'

,qî: ¡ú1{ _ ¡\r/{(1 -6+d). (6.18)uL- 2 2r7

Thus we frnd that Si S SLIN if,
N (1 - .¡)

(6.1e)T
r¿(1-e¿)$ t ¡\r-1j=t,i+i

Recall fiom our d.efinitions of local populations that condition (6.19) defines aver-

age relative source/sink local populations. Thus average relative source (sink) local

¡ú

195



populations should have a larger (smaller) escapement than if we had considered the

population to be a well-mixed single population'

Comparisons between local populations

Assume that we have recognised the metapopulation structure of the stock. We would

now like to know how the escapements differ from one local population to the next'

As in the two local population case, if the local populations have parameters K¿ : ¡ç,

and ô¿ : ój, then Si S Si if'

to(t-,o)Sr¡(l -.,) (6.20)

A local population i with ,o(1 - e¿) > r¡(l - e¡) for all j is a relative source local

population while alocalpopulation i with ,o(l_ e¿) <r¡(I - e¡) for all j is arelative

sink iocal population. Thus the reiative source (sink) local population has the largest

(smallest) optimal escapement of all local populations. There is only one relative source

local population and. one relative sink local population unless one or more of the local

populations have an equal per capita larval production. Note that a relative source

(sink) local population is an average relative source (sink) local population, but not

necessarily vice versa.

If the local populations are indistinguishable except for K¿ > K¡ or 6¿ ) ô¡, then

Si > Srî. Thus populations that have greater per capita larval production, high adult

survival or a large density dependence paramet et, K¿, will have larger optimal escape-

ments than populations that do not have those characteristics.
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6.3 ExamPles

In this section, unlike previous chapters, we do not go into detail as far as numerical

examples are concerned. The aim of these examples is simply to present some possible

geographic f'orms of spatially structured populations with multiple local populations

and ad¿ some comments regarding harvesting. We use the simplifying assumptions of

negligible costs (or that costs are density and local population independent) and that

the aclult survival, ó¿, and density-dependent parameters, Ki, are equal for all i'

oG)@ a) 6)\l \rPrr*-,

p
12

'N.lN

FtcuRp 6.2: A metapopulation with uni-directional migration

6.3.1 Uni-directional migration

consider a metapopulation that has unidirectional migration, possibly due to water

currents, as shown in Figure 6.2. For example, Pennings (1991) describes a mollusc

metapopulation in which recruits to a local population off the coast of santa catalina

Island, Caiifornia, derive from local spawners and also migrants from spawners in Baja

california, Mexico. Larvae from the Mexican local populations are carried north bv

summer currents; however, no evidence is described for southerly transport of califor-

nian larvae.

Assume that the lú local populations are indistinguishable except for differences in

r¿(I - e¿). The size of the optimai escapements increases with increasing per capita

larval production , r;(! - e¿). The local population with the largest escapement is the

population with the largest 
"o(1 - e¿) and is the relative soulce population' Note that

o'N-2Nlpp
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if no juveniles are retained in the terminal local population, PNN : 0' then regardless

ofl{¡vandô¡¿,theescapementisSi':0'i'e'weharvestalloftheindividualsinlocal

population N in each season. The harvest from lú in this special case is the iuvenile

emigrants from local population ¡ú - 1'

(tt
\_--l \__/ o3

r---'a)
\--l \_,/

r-'Ô\_-./ \__./

FIcuRn 6.3: A metapopulation with a mainland-island spatial structure

6.3.2 Mainland-island spatial structure

Now consider a metapopulation with a mainland-island, or wagon-wheel like spatial

structure with outward migration, a schematic representation of which is shown in Fig-

ure 6.3. The position, size and number of the local populations in the figure are purely

hypotheticai, but may be appropriate in one form or another to some populations' In

thiscase,acentral(..mainland,')iocalpopulationprod,ucesabundantlarvaewhichre-

plenish skirting (,,island") local populations that are possibly in iess desirable habitat'

orensanz et at (1991) suggests that semi-enclosed bays are often areas which' due to

water movements, are areas of enhanced settiement for scaliops and may provide larvae

for scarcely populated surrounding grounds'

If ali migration occurred. from the central local population, say local population 1'

and p;¿ :0, for alli 11, then the optimai escapement for local population i under
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thenegligiblecostsassumptionisSi:0'forallill'Thus'localpopulationlisa

relative source local population and we harvest all of the juveniles that emigrate from

local population l. If p¿¡ f 0,lor aIl i 11, then the sizes of the optimal escapements

depends on the quantities ,o(l - e¿) with Sî > Sî if r;(1 - .n)'r¡(l - e¡)'

We could also have a mainland-island metapopuiation structure with inward mi-

gration. If local population t has no outward migratioÏ¡ Ptj: 0, for aII j I 1 and no

juvenileretention,Pr :0,thenitsequilibriumoptimalescapementisSi:0andwe

harvest all of the immigrating larvae. The mainland-island metapopulation stluctures

clescribed here may arise in situations whele gyles or eddies cause the aggregation of

larvae (Fisk and Harriott, 1990; orensanz et al',1991; Pennings, 1991)' However, in

most circumstances there would be both inward and outward migration between at

least some of the local populations'

One of the main points from the mainland-island and uni-directional migration

examples is that "dead-end" local populations should be fully harvested under the

example,s assumptions. By dead-end we mean locai populations that have immigrating

larvae, but no larvae emigrate and none remain in the population' Thus, even without

harvesting, these local populations wouid be doomed to extinction if it were not for

the periodic immigration of larvae'

6.4 Adult migration and delaYs

The previous models assume that there is no adult migration, n'ol any juvenile delays

in recruitment to the aduit breeding stock. For completeness we give the optimal

harvesting equations for these model here. we do not describe the behaviour of the

results here, but we suspect that many of the results from the models outlined in

previous chapters will be robust to the extensions'
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Assume that adults are capable of migration between local populations as well

as juveniles. Initially, assume that there is no juvenile delay in recruitment' As in

chapter 4, we define the proportion of adults migrating from local population i to

local population j by the parameter rn¿¡. Maximising the present value derived from

all locai populations, equation (6.5)' we find

sNL¡-t (6¿m¿¡ I p;¡G';(S¿o))(P - r¡(R¡t))
, ¡r (6.21)

p - c¡(S¡o)

where s;o is the optimal equiiibrium escapement. Equation (6.21) implicitly defines

the optimal escapement for a local population with both adult and juvenile migration

in an 1ú local population metapopulation'

Assume that juveniles take a number of periods before they become sexuaily mature'

If the delay is related to the local population that receives the juveniles, and the delay

associated with local population i is B¡, then the optimal equilibrium escapements from

maximising the present value expression are implicitly defined by the equation'

DË,((6¿m¿¡ + p¿jaþici(Sro))(r - .; (n¡r)))

1

a
1x

1 i -- 7,. . . , ¡ú (6.22)
a. 'P - c¿(S;o)

where 
^9¿o 

is the optimal equilibrium escapement. As explained in chapter 3, a delay of

this kind may occur due to environmental conditions (tempetatute, food availability)

affecting the sexual maturity of juveniles in the foster local population.

If the delay is associated with the source of the larvae, i.e. the parental local popu-

lation, then maximising the discounted net revenue derived from all local populations,

equation (6.5), we frnd

1 rË,( (6¿m¿¡ * p;¡ aBi Gto(S;o)) (r - c¡ (-R¡r)) )
1?,

d. P - c¿(S;o)
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where ,5¿o is the optimal equilibrium escapement. Environmental conditions could

possibly cause juveniles that migrate to alternative local populations having a time

to sexual maturity that is related to the parental population (see Chapter 3 for more

details).

6.5 Closing Remarks

In this chapter we generaiise the juvenile migration model introduced in chapter' 2'

we assume that the metapopulation is composed of lú locai populations connected

by dispersing juveniles, e.g. larvae. The metapopulation is modellecl using lvr differ-

ence equations; each equation representing the abundance of a local population in one

generation as a function of the abundance of ali local populations in the previous gen-

eration. Equations are derived that impiicitly define the optimal escapement for each

local population. The details of the derivation are not included here as the method is

a simple generalisation of that used in Chapter 2'

To faciiitate our understanding of the system, we assume that there are negligible

costs and that local populations are indistinguishable except for differences in the mi-

gration parameter s,, p¿i. This enables us to find an explicit equation for the optimal

escapement for the local populations. Comparisons aIe made between the local popula-

tions, escapements, and, between the metapopulation results and harvesting strategies

where managers assume that the popuiation is not spatially structured' Results are

then related to simple stock classifrcations, that are generaiisations of those defined in

chapter 2. Features of the results included, that the optimal escapements depend on

the relative size of the per capita larval production; the iarger the per capita larval

production, the larger the escapement. The local poprrlation with the largest per cap-

ita larval production we call the relative source local population, and the reiative sink
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has the smallest per capita larval production. we find that the relative source local

population should have the largest optimal escapement of the metapopulation and the

relative sink the smallest. If the locai populations are believed to be unconnected by

migration, we frnd that relative exporter iocal populations are over-exploited while re-

lative importer local populations are under-exploited. A relative exporter (importer)

local population is defined as a local population that exports more (less) larvae per

capita than it imports. similarly, if the metapopulation is managed as a well-mixed

single popuiation, then average relative source local populations are over-exploited and

average relative sink local populations are under-exploited. Average relative source

(sink) local populations are defined as local populations that have greater (lesser) per

capita larval production than the average per capita larval production of all other

local populations in the metapopulation. Note that if lü : 2, then an average relative

source (sink) is a relative source (sink). This explains why we only required the two

classifications, relative exporter/importer and relative source/sink, in the defrnitions

of Chapter 2.

Two examples of typical geographic structures for a multiple local population meta-

population are considered. we describe a metapopulation with uni-directional migra-

tion and a metapopulation with a mainland-island structure; however, any number of

spatial formations could be applied.. A feature of these examples was that "dead-end"

local populations are likely to be harvested more heavily than local populations with

strong connectivitY.

The chapter is concluded with further multiple locai population generalisations'

optimal harvesting equations are defined for both juvenile and adult migration, and

when juvenile delays are associated with either the source of the juveniles or with

the receiving local population. Detailed investigation of these equations is left to the

reader, however we suspect that many of the basic rules from previous chapters will
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generalise well when more than two local populations exist in the metapopulation'
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Chapter 7

Conclusion

In this thesis we have formally documented harvesting strategies for the optimal ex-

ploitation of a metapopulation. We assume that the exploited population is not homo-

geneous in space; distinct local populations show characteristic growth' mortality and

recruitment traits. Local populations are not reproductively isolated due to the peri-

odic exchange of ind.ividuals through dispersive activity' Together the local populations

form a dynamic, heterogeneous unit known as a metapopulation'

Many natural populations can be d.escribed as metapopulations (Pennings' 1991;

Frank, 1992; shepherd and. Brown, 1993; Quint et a1.,1994)' Habitat destruction and

modification continues to reduce and fragment the range of species, creating a mo-

saic of habitable and uninhabitable patches. Distinct population aggregations are also

a natural consequence of environmental variability in habitat suitability' Frequently'

local populations are reliant on immigration for local persistence, and this can have

important implications for regulation and conservation. This is one reason why meta-

popuiation modelling is attracting a great deai of interest and the literature is rapidly

expanding in complexity and applicability' Metapopuiation modelling has become an

important part of applied conservation biology (Hanski, 1991; Boyce' 1992; Possingham
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et al., igg4). We believe that recognising the metapopulation structure of an exploited

stock can also have a significant impact on both economic and social objectives.

In Chapter 2 we introduce a basic metapopulation model where two local popula-

tions interact through the migration of juveniles, e.g. larvae. Sedentary adults produce

young, a proportion of which remain in the parental population, a proportion success-

fully immigrate to the connected iocal population and the rest are assumed to either

suffer migratory mortality or are redundant non-breeders'

To facilitate interpretation of our results, we define two local population classifica-

tions according to the per capita larval production. First, we define a relative source

(sink) local population as the local population with the greater (iesser) per capita

larval production. Second., the local population that exports a greater (lesser) per

capita number of larvae to the connected iocal population is called a relative exporter

(importer) local population.

Maximising the discounted net revenues from both local populations, we derive two

equations, one for each local population, that define the local populations' optimal pop-

ulation levels, or escapements. The equations are generalisations of the fundamental

equation of renewable resources (Conrad and Clark, 1987) first derived by Clark (1973).

Under simplifying assumptions we are able to determine some simple rules-of-thumb for

the exploitation of a metapopulation. First, relative source local populations should

have the larger of the two escapements, while relative sinks should have the smal-

ler. This result gives a rough guide to the relative degree of harvesting necessary for

each iocal population. However, we may be interested in how different our results are

from conventional single populatìon harvesting theory. The metapopulation could be

managed in the false belief that the locai populations are not connected by periodic

migration of juveniles, or that the metapopulation is one well-mixed population. This

leads to our second rule-of-thumb; if the local populations have been recognised, but the
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inter-population migration has not, we find that the relative exporter local population

could be harvested too heavily, while the relative importer local population remains

under-exploited. Finally, if the metapopulation is incorrectly managed as a well-mixed

single population, the relative souïce local population could be over-exploited, whereas

the relative importer may be under-exploited'

An interesting feature of the results is that, under some circumstances' an optimal

negative harvest is obtained from one of the local populations. White problematic as far

as economic interpretations are concerned in the present model format, we believe that

the optimality of a negative harvest is a good indication of where seeding strategies,

i.e. enhancing stock for future harvests, should be considered.

In Chapter 3 a simple form of age-structure is considered. We no longer assume

that juveniles join the adult breeding population in the year following birth. Thus, an

arbitrary delay in juvenile maturation is introduced. The delay in maturation can be

determined by either the source of the larvae or its destination. The first moclel that we

consider assumes that the delay is determined by the local population of settlement;

we call this the receptor delay model. Second, we assume that the source of the

larvae afiects the time to sexual maturation; we call this the parental deiay model.

We assume that the delays are related to local environmental conditions (e.g. food

availability, temperature).

As in Chapter 2, we maximise the discounted total net revenues and produce equa-

tions that implicitly define the optimal equilibrium escapements for each local pop-

ulation. Features of the results include that the optimal harvesting strategies differ

according to the source of the delay, and that the rules-of-thumb from Chapter 2 hold

if there is no difierence in the delays between populations and if the juvenile survival

is the same in both local populations. If the delays differ between iocal populations,

we find that the local population containing juveniles that show the larger maturation
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delay should be conservatively harvested; in this way we are able to take advantage

of the larval migration to the other local population where juveniles take less time to

mature and join the harvested adult stock.

In Chapter 4 two mod.els of adult migration are presented. The first model assumes

that only adults can migrate between local populations. This model is then extended

to include both adult and juvenile migration. Results for the adult migration only

moclei are similar to the juvenile migration model of Chapter 2. For example, the local

population with the higher adult migration survival should be the more conservatively

harvested population, and could be over-exploited if the metapopttlation is incorrectly

managed as a single well mixed population. Similarly, local populations with high

adult export survival could be over-expioited if the managing body believes the local

populations are reproductively isolated. The inclusion of juvenile and adult migration

reinforces many of the results of Chapter 2 and the adult migration only model.

Many harvested species have a portion of their population protected in a marine

reserve, or as a result of a harvest regulation. This situation is considered in Chapter 5'

We assume that one of the local populations is an unharvested reserve, and we find

optimal harvesting policies for the exploited local population. If a reserve system is to

be established, we show that the relative source local population should be preserved

for maximum economic benefrt. The total stock that remains unharvested and con-

tributes to future generations, i.e. the spawning stock abundance, is maximised with

the preservation of the relative sink local population. However this is countered by the

possibility of local population collapse if the source population is excessively harves-

ted. We show that harvests in a reserve system are never greater than the combined

harvests from a fully harvested metapopulation, but are only marginally less in many

circumstances

In Chapter 6 we generalise the juvenile migration model of Chapter 2 to metapopu-
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lations with more than two local populations. We derive optimal harvesting equations

and find that the rules-of-thumb in Chapter 2 extend to the l/ local population case.

A modified rule is that relative average sources (sinks), defined as those local popula-

tions with greater (less) per capita larval production than the average of all other local

populations, should be more conservatively harvested than predicted if the metapopula-

tion is incorrectly managed as a well-mixed single population. Two possible geographic

forms of metapopulation are considered; uni-directional migration and mainland-island

(or wagon-wheel) metapopulation structures. The main result from these examples is

that local populations with little emigration or larval retention (dead-end local popu-

lations) should be heavily (or fully) harvested. The models of Chapters 3 and 4 are

briefly reconsidered in this context. We derive the optimal harvesting equations, and

it is left to the reader to analyse the equations further. We suspect that many of the

r-esults derived in the previous chapters will extend to the general case.

The models that we have presented in this thesis are a first step in the problem

of optimally harvesting metapopuiations, and it is hoped that many of the concepts

introduced here will stimulate further research. The models allow us to consider some

simpie aspects of harvesting and spatial structure and enhance our understanding of an

inherently complex biological and economic system. There are many assumptions that

we have made to facilitate derivations of results (outlined in Chapter 1). More complex

models, while not accessible to mathematical analysis, may yield interesting results.

However, for this thesis we have kept models relatively simple, and as such, we have

concentrated on the main extension to the optimal harvesting literature; namely the

effects of inter-population migration and spatial structure. More complex biological

models (e.g. that include age-structure, seasonal effects, space-iimitation, multicom-

munities) and economic modelr (".g. employment, fleet dynamics, investment) would

improve the realism of future modeis, but possibly to the detriment of our understand-
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ing of the implications of metapopulation structure on harvesting strategies.

However, we believe that some extensions may be particularly important and profit-

able. Future models should consider stochastic migration, catastrophes, local extinction

and recovery, harvesting within a reserve system in the face of uncertain dynamics, the

Single Large Or Several Small (SLOSS) reserve design problem, parameter estimation,

and seeding strategies.

Many, if not most, populations experience recruitment that varies both in time and

space. The optimal harvesting of a population with variable recruitment and migration

(e.g. good and bacl years of recruitment), has important implications for management.

Variable recruitment may lead to population collapse or local recovery, important con-

cepts in metapopulation theory. Harvesting these populations will intensify problems

associated with management, and policies will require careful consideration to prevent

local or metapopulation extinction (see Quinn et al (I99\). Closely linked to this is

the effect of random catastrophes, e.g. oil spills, that cause local extinctions. In this

case, connections between populations become vital and how harvesting wiìl fit into

this scheme is yet to be determined.

One way of mediating the effect of a possible collapse or catastrophe is with a reserve

system. It has been shown that reserves can prevent extinction under excessive harvest

intensities (Quinn et a1.,,199a); however, uncertain recruitment may necessìtate more

conservative harvesting strategies to maintain the population even with the luxury of a

reserve. It may be possible to determine, under optimal harvesting situations, the best

sequence of reserves in a multiple-patch metapopulation to maximise economic and/or

social objectives (the SLOSS problem; see DeMartini (1993) and Quinn et al (199a)).

The models and subsequent examples developed in this thesis rely upon hypothet-

ical estimates of the migration parameters for both analytical and numerical results.

Estimating the parameters of fisheries models is difficult even in models that do not
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include spatial structure (Hilborn and Walters, 1992). However, as we have shown

here, if we can measure the mixing parameters then significant economic and social

gains may be made, and so parameter estimation is an important future tesearch area

for spatially structured models.

A feature of the models that we have introduced here is the optimality (under some

circumstances) of a negative harvest, which we interpret as a seeding strategy. This has

relevant real world applications, and although the current model format is not strictly

appropriate for seeding strategy analysis due to possible different cost structures for

positive ancl negative harvests, we have proposed an alternative model in the Closing

Remarks of chapter 2 that is worth further consideration.

Throughout the thesis we have assumed that the local populations can be regu-

lated on a local population basis, i.e. we can assign independent escapements to the

various local populations. However, in some circumstances it may not be possible to

assign different harvest limits to each separate population. This may occur where local

populations are relatively close to one another, or where management feels that reg-

ulation on a local population basis is costly or otherwise infeasible. Thus, we have

recognised the metapopulation structure (unlike the well-mixed single population ìn-

correct management policies considered here) and must set a single escapement (or

other harvest regulating mechanism) across the whole metapopulation, or part thereof.

As in the reproductively isolated population case considered by Paulik et al (1967),

where less productive populations could be exterminated, local populations with min-

imal per capita larval production (e.g. average relative sinks) could face the prospect

of over-exploitation unless conservative harvesting regimes are considered.

We wish to reiterate that this thesis is by no means the final word on harvesting

spatially structured populations. However, we hope that, as an introductory guide, the

present study initiates further work in an interesting and rewarding research area. We
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can not over-emphasise the importance of diligent and enduring resource management.

In a society that is placing ever increasing pressure on its natural resources' it is vital

that they be managed with the interests of current and future generations held firmly

in mind; otherwise, in the long run, we shall all be poorer for the loss'
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Chapter I

Appendices

8.1- Appendix 1-

In this appendix we determine the conditions that ensure that our equations (2'15)

and (2.16) define a maximum, rather than a minimum or a saddle point, for the adult

and/or juvenile migration models of Chapters 2 and 4. The more general model that

includes both adult and juvenile migration is considered, as the pure adult migration

or pure juvenile migration models can be obtained by setting Ptz : Pzt : 0 and

Ptt : Pzz: l, or mp - Trlzt: 0 and rrt11 : TrL22:1 respectively'

Recall that the model is,

(8.1)

(8.2)

"i(s,o) + '[c11s,o)(p''(p - cr(ß'r)) r pn(p - "r(R r)))

- "i(Rtt)( 
6tmr. + ptrGi(Sto))' - c'r(Rrr)(6tmn I ppG\(S'o))

Rr¡r+r

Rz*+t

61msSs * \zmzrszn t ntGt(St¿) * pztGz(Szx)

6zmzzSz* ! õympS1* * pnGt(St*) + pzrGz(Srn).

To ensure that our solution is a maximum' vr'e must have,

,I.9ro,9ro

<0
(s.3)
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and

J sro sro "!r(sro) 
+ "lc;tsro)(prr(p - cz(Rz)) -r pn(p- 

"(4,,)))
- "|(Rrr)(6zmzz 

+ prrG'r(Sro))' - c'r(Rrr)(6rmn * pztG'r(Sro))'

while also,,-/s,osroJsros"o - (/s,osro)'> 0, where,

Js,os,o : -t f"ilArr )(6r*rt + pr,,G'r(Szo))(d1rn11 * ptrGi(Sto))

+ clr(n t)çõzmzz + prrG'r(Szo))(61mp I pnG'r(Sto))

<0
(8.4)

(8.5)

8.2 Appendix 2

In finding conditions under which Si + S; > Si" * Sä", we assume that 1{r : Kz: K

and ð1 - 6z : ð and assign Mùi : r¿p¿¡. Consider

(si+ s;)- (^9i"+si")

:Trt+d-Ðl*i*i,- 1 1

Mzz i Mn Mn I Mn Mzz * Mzt
1

(s.6)

If we multiply through to produce a positive common denominator for the square

bracket terms, we need only consider the numerator. Let M : (Mt I Mn * Mzz I

Mzt) > 0. The numerator becomes,

(Mr, * Mrr)(Mr, + Mn)(M2z * Mzt) * (Mtt + M2r)(Mrt -f Mn)(Mrz I Mzt')

-(Mr, * Mz)(Mzz * Mn)(Mzz I Mz) - (Mr, + M2r)(M2r'f M,,)(Mtt I Mn)
r:l{*rr+ Mt2)(M2,* M")M] - l,t" t Mzù(Mz'+ M")A/r]

-f I: M 
lM 

rrMrt * MzzMn - Mtt Mn - MrrMrr)
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: MlrrprrrzPzt * r2p2zrtpr2 - r?pnpn - rZpzzpztf

: Ml?rprt - rfln)(rtpt - rrprr)f.

Thus, for (si + s;) - (^9î" + S;") ) 0 we require r¿p¿i ) r¡p¡; and r¿P¿¿ 1 r¡p¡¡ fot

i :1,2 ar'd j :1,2 with j + i-

8.3 Appendix 3

To prove that Si +^9; < ^9i where Si is determined assuming that the population is

a well-mixed single popuiation and that there are no costs associated with harvesting,

we first recall the expressions ,Sf * Si and .9i,

si*s;:1r-1((1 +d-ô) | 1 ' 1 'l

2 Lr1(1 - e1) ' ,r(I - rr))

zK(r+d-6 (8 8)

"t(1- 
e1)¡r2(I-e2)

Let A¡ : r¡(L - er). Thus,

si : K-

(8.7)

(8.e)

si+s;-s;

-K(r+d-6)
(At - Ar)'

0
2(At t A2)AIA2

8.4 Appendix 4

Non-negative harvesting

In Chapter 2 we discussed the possibility of an optimal negative harvest or optimal

seeding of a local population. However, if a negative harvest was infeasible, we set
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that local populations harvest to zero and searched for new optimal escapements that

maximise the objective function, equation (2.11). In this appendix we find an analytic

solution to this problem using Lagrange multipliers.

Assume that the optimal escapements from equations (2.15) and (2.16) produce a

negative equilibrium harvest in local population 1. A negative harvest is not feasible.

We must now maximise equation (2.11) subject to a zero harvest constraint for local

population 1. Thus, we maximise

/r(sro,,sro) : IIr(Aro, ^9ro)* TI|(R o,,Sro)*a(II1(.R11, Sro") lflz(Rzt,Sz"")), (S.10)

subject to

,.9r0: Ëtt ôr,Sro * prrGr(Sro) I pzyG2(S2s), (8.11)

where

Rzt : 6rR o -l nzG{Írc) I pzzGz(Szo) (s.i2)

Equation (8.11) ensures that local population t has a zero equilibrium harvest.

Note that the one-step maximisation of the objective function, "I1, disregards the

initial conditions, Rio, as they are held constant when maximisingwith respect to the

escapements, ,9¿¡. The Lagrangian is,

L : flr(Êro, sro) * nr(Rro,sro) + a(fI1(R11, st"") + nr(R t,sr."))

-)(Sro - ór,Sro - prrGr(Sn) - pztGz(Szo)), (8.13)

with necessary conditions,

AL
-(p- 'r(,Sro)) - "(p - cr(Sro)) - "(p- rz(Rzt))p'rGi(S'o)

-À(1 - 6t - py.G|(Sto)) : 0, (S.14)

and

ôSto
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AL
0Szo

Note that we have used,

0S¿o

Rearranging equation (8.14) we find,

-(p- cz(^9ro)) - o(p - cz(Rzt))(6rt prrG!(^9zo))

-À(-prtG'r(Sro)) : 0.

ðlr¿ S¿o)R¿o(

(8.i5)

(8.16)

(s.17)

: -(p - "¿(.9,0)).

)- 1p - c1(Sro)) (o-1) lapnG|(Sto)(p - .z(Rzt))
1-(¿t *pnG'r(Sto))

pztG'r(Szo I - Ilc-)

Substituting ) into equation (8'15) and rearranging we find,

: : (#æ) þ' * P"G''(s'o) .'ffi1
1- (¿' *p"Gi(S'o))

(8.18)

Equation (S.18), along with the zero equilibrium harvest condition (8.11), determ-

ines the optimal escapement to the non-negative harvest problem, deflned by equations

(S.10) and (8.11). Equation (S.1S) is similar to equation (5.25) of Chapter 5. This is

not surprising, as forcing a zero harvest from local population 1 is essentially reserving

or closing that local population to harvesting. The difference in the two results occurs

due to the present theory assuming a fixed escapement policy, and initial and terminal

harvests. The closure theory presented in Chapter 5 assumes that there is no harvest

whatsoever from local population 1, i.e. ,5ro : ,R1¡, and escapements are not necessarily

constant for all periods.
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